SEW-DΒΆ

OverviewΒΆ

SEW-D (Squeezed and Efficient Wav2Vec with Disentangled attention) was proposed in Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.

The abstract from the paper is the following:

This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.

Tips:

  • SEW-D is a speech model that accepts a float array corresponding to the raw waveform of the speech signal.

  • SEWDForCTC is fine-tuned using connectionist temporal classification (CTC) so the model output has to be decoded using Wav2Vec2CTCTokenizer.

This model was contributed by anton-l.

SEWDConfigΒΆ

class transformers.SEWDConfig(vocab_size=32, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, squeeze_factor=2, max_position_embeddings=512, position_buckets=256, share_att_key=True, relative_attention=True, position_biased_input=False, pos_att_type='p2c', 'c2p', norm_rel_ebd='layer_norm', hidden_act='gelu_python', hidden_dropout=0.1, activation_dropout=0.1, attention_dropout=0.1, feat_proj_dropout=0.0, final_dropout=0.1, layerdrop=0.1, initializer_range=0.02, layer_norm_eps=1e-07, feature_layer_norm_eps=1e-05, feat_extract_norm='group', feat_extract_activation='gelu', conv_dim=64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512, conv_stride=5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, conv_kernel=10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1, conv_bias=False, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_feature_prob=0.0, mask_feature_length=10, ctc_loss_reduction='mean', ctc_zero_infinity=False, use_weighted_layer_sum=False, classifier_proj_size=256, pad_token_id=0, bos_token_id=1, eos_token_id=2, **kwargs)[source]ΒΆ

This is the configuration class to store the configuration of a SEWDModel. It is used to instantiate a SEW-D model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SEW-D asapp/sew-d-tiny-100k architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Parameters
  • vocab_size (int, optional, defaults to 32) – Vocabulary size of the SEW-D model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling SEWD.

  • hidden_size (int, optional, defaults to 768) – Dimensionality of the encoder layers and the pooler layer.

  • num_hidden_layers (int, optional, defaults to 12) – Number of hidden layers in the Transformer encoder.

  • num_attention_heads (int, optional, defaults to 12) – Number of attention heads for each attention layer in the Transformer encoder.

  • intermediate_size (int, optional, defaults to 3072) – Dimensionality of the β€œintermediate” (i.e., feed-forward) layer in the Transformer encoder.

  • squeeze_factor (int, optional, defaults to 2) – Sequence length downsampling factor after the encoder and upsampling factor after the transformer.

  • max_position_embeddings (int, optional, defaults to 512) – The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).

  • position_buckets (int, optional, defaults to 256) – The maximum size of relative position embeddings.

  • share_att_key (bool, optional, defaults to True) – Whether to share attention key with c2p and p2c.

  • relative_attention (bool, optional, defaults to True) – Whether to use relative position encoding.

  • position_biased_input (bool, optional, defaults to False) – Whether to add absolute position embedding to content embedding.

  • pos_att_type (Tuple[str], optional, defaults to ("p2c", "c2p")) – The type of relative position attention, it can be a combination of ("p2c", "c2p", "p2p"), e.g. ("p2c"), ("p2c", "c2p"), ("p2c", "c2p", 'p2p").

  • norm_rel_ebd (str, optional, defaults to "layer_norm") – Whether to use layer norm in relative embedding ("layer_norm" if yes)

  • hidden_act (str or function, optional, defaults to "gelu_python") – The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "selu", "gelu_python" and "gelu_new" are supported.

  • hidden_dropout (float, optional, defaults to 0.1) – The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

  • attention_dropout (float, optional, defaults to 0.1) – The dropout ratio for the attention probabilities.

  • final_dropout (float, optional, defaults to 0.1) – The dropout probability for the final projection layer of SEWDForCTC.

  • initializer_range (float, optional, defaults to 0.02) – The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

  • layer_norm_eps (float, optional, defaults to 1e-7) – The epsilon used by the layer normalization layers in the transformer encoder.

  • feature_layer_norm_eps (float, optional, defaults to 1e-5) – The epsilon used by the layer normalization after the feature extractor.

  • feat_extract_norm (str, optional, defaults to "group") – The norm to be applied to 1D convolutional layers in feature extractor. One of "group" for group normalization of only the first 1D convolutional layer or "layer" for layer normalization of all 1D convolutional layers.

  • feat_proj_dropout (float, optional, defaults to 0.0) – The dropout probability for output of the feature extractor.

  • feat_extract_activation (str, `optional, defaults to "gelu") – The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, "gelu", "relu", "selu" and "gelu_new" are supported.

  • conv_dim (Tuple[int], optional, defaults to (64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512)) – A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature extractor. The length of conv_dim defines the number of 1D convolutional layers.

  • conv_stride (Tuple[int], optional, defaults to (5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1)) – A tuple of integers defining the stride of each 1D convolutional layer in the feature extractor. The length of conv_stride defines the number of convolutional layers and has to match the the length of conv_dim.

  • conv_kernel (Tuple[int], optional, defaults to (10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1)) – A tuple of integers defining the kernel size of each 1D convolutional layer in the feature extractor. The length of conv_kernel defines the number of convolutional layers and has to match the the length of conv_dim.

  • conv_bias (bool, optional, defaults to False) – Whether the 1D convolutional layers have a bias.

  • num_conv_pos_embeddings (int, optional, defaults to 128) – Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer.

  • num_conv_pos_embedding_groups (int, optional, defaults to 16) – Number of groups of 1D convolutional positional embeddings layer.

  • apply_spec_augment (bool, optional, defaults to True) – Whether to apply SpecAugment data augmentation to the outputs of the feature extractor. For reference see SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition.

  • mask_time_prob (float, optional, defaults to 0.05) – Propability of each feature vector along the time axis to be chosen as the start of the vector span to be masked. Approximately mask_time_prob * sequence_length // mask_time_length feature vectors will be masked along the time axis. This is only relevant if apply_spec_augment is True.

  • mask_time_length (int, optional, defaults to 10) – Length of vector span along the time axis.

  • mask_feature_prob (float, optional, defaults to 0.0) – Propability of each feature vector along the feature axis to be chosen as the start of the vector span to be masked. Approximately mask_time_prob * hidden_size // mask_time_length feature vectors will be masked along the time axis. This is only relevant if apply_spec_augment is True.

  • mask_feature_length (int, optional, defaults to 10) – Length of vector span along the feature axis.

  • diversity_loss_weight (int, optional, defaults to 0.1) – The weight of the codebook diversity loss component.

  • ctc_loss_reduction (str, optional, defaults to "sum") – Specifies the reduction to apply to the output of torch.nn.CTCLoss. Only relevant when training an instance of SEWDForCTC.

  • ctc_zero_infinity (bool, optional, defaults to False) – Whether to zero infinite losses and the associated gradients of torch.nn.CTCLoss. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of SEWDForCTC.

  • use_weighted_layer_sum (bool, optional, defaults to False) – Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of Wav2Vec2ForSequenceClassification.

  • classifier_proj_size (int, optional, defaults to 256) – Dimensionality of the projection before token mean-pooling for classification.

Example:

>>> from transformers import SEWDModel, SEWDConfig

>>> # Initializing a SEW-D asapp/sew-d-tiny-100k style configuration
>>> configuration = SEWDConfig()

>>> # Initializing a model from the asapp/sew-d-tiny-100k style configuration
>>> model = SEWDModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

SEWDModelΒΆ

class transformers.SEWDModel(config: transformers.models.sew_d.configuration_sew_d.SEWDConfig)[source]ΒΆ

The bare SEW-D Model transformer outputting raw hidden-states without any specific head on top. SEW-D was proposed in Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.).

This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (SEWDConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_values, attention_mask=None, mask_time_indices=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ

The SEWDModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_values (torch.FloatTensor of shape (batch_size, sequence_length)) – Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, the Wav2Vec2Processor should be used for padding and conversion into a tensor of type torch.FloatTensor. See transformers.Wav2Vec2Processor.__call__() for details.

  • attention_mask (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing convolution and attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A BaseModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (SEWDConfig) and inputs.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the model.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

BaseModelOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import Wav2Vec2Processor, SEWDModel
>>> from datasets import load_dataset

>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> sampling_rate = dataset.features["audio"].sampling_rate

>>> processor = Wav2Vec2Processor.from_pretrained('asapp/sew-d-tiny-100k')
>>> model = SEWDModel.from_pretrained('asapp/sew-d-tiny-100k')

>>> # audio file is decoded on the fly
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

SEWDForCTCΒΆ

class transformers.SEWDForCTC(config)[source]ΒΆ

SEW-D Model with a language modeling head on top for Connectionist Temporal Classification (CTC). SEW-D was proposed in Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.).

This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (SEWDConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_values, attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None)[source]ΒΆ

The SEWDForCTC forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_values (torch.FloatTensor of shape (batch_size, sequence_length)) – Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, the Wav2Vec2Processor should be used for padding and conversion into a tensor of type torch.FloatTensor. See transformers.Wav2Vec2Processor.__call__() for details.

  • attention_mask (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing convolution and attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size, target_length), optional) – Labels for connectionist temporal classification. Note that target_length has to be smaller or equal to the sequence length of the output logits. Indices are selected in [-100, 0, ..., config.vocab_size - 1]. All labels set to -100 are ignored (masked), the loss is only computed for labels in [0, ..., config.vocab_size - 1].

Returns

A CausalLMOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (SEWDConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Language modeling loss (for next-token prediction).

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

CausalLMOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import Wav2Vec2Processor, SEWDForCTC
>>> from datasets import load_dataset
>>> import torch

>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> sampling_rate = dataset.features["audio"].sampling_rate

>>> processor = Wav2Vec2Processor.from_pretrained('asapp/sew-d-tiny-100k')
>>> model = SEWDForCTC.from_pretrained('asapp/sew-d-tiny-100k')

>>> # audio file is decoded on the fly
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
>>> logits = model(**inputs).logits
>>> predicted_ids = torch.argmax(logits, dim=-1)

>>> # transcribe speech
>>> transcription = processor.batch_decode(predicted_ids)

>>> # compute loss
>>> with processor.as_target_processor():
...     inputs["labels"] = processor(dataset[0]["text"], return_tensors="pt").input_ids

>>> loss = model(**inputs).loss

SEWDForSequenceClassificationΒΆ

class transformers.SEWDForSequenceClassification(config)[source]ΒΆ

SEWD Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting.

SEW-D was proposed in Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.).

This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (SEWDConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_values, attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None)[source]ΒΆ

The SEWDForSequenceClassification forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_values (torch.FloatTensor of shape (batch_size, sequence_length)) – Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, the Wav2Vec2Processor should be used for padding and conversion into a tensor of type torch.FloatTensor. See transformers.Wav2Vec2Processor.__call__() for details.

  • attention_mask (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing convolution and attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size,), optional) – Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

A SequenceClassifierOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (SEWDConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Classification (or regression if config.num_labels==1) loss.

  • logits (torch.FloatTensor of shape (batch_size, config.num_labels)) – Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

SequenceClassifierOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import Wav2Vec2FeatureExtractor, SEWDForSequenceClassification
>>> from datasets import load_dataset
>>> import torch

>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> sampling_rate = dataset.features["audio"].sampling_rate

>>> feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('asapp/sew-d-tiny-100k')
>>> model = SEWDForSequenceClassification.from_pretrained('asapp/sew-d-tiny-100k')

>>> # audio file is decoded on the fly
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt")
>>> logits = model(**inputs).logits
>>> predicted_class_ids = torch.argmax(logits, dim=-1)
>>> predicted_label = model.config.id2label[predicted_class_ids]

>>> # compute loss - target_label is e.g. "down"
>>> target_label = model.config.id2label[0]
>>> inputs["labels"] = torch.tensor([model.config.label2id[target_label]])
>>> loss = model(**inputs).loss