UniSpeechΒΆ
OverviewΒΆ
The UniSpeech model was proposed in UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang .
The abstract from the paper is the following:
In this paper, we propose a unified pre-training approach called UniSpeech to learn speech representations with both unlabeled and labeled data, in which supervised phonetic CTC learning and phonetically-aware contrastive self-supervised learning are conducted in a multi-task learning manner. The resultant representations can capture information more correlated with phonetic structures and improve the generalization across languages and domains. We evaluate the effectiveness of UniSpeech for cross-lingual representation learning on public CommonVoice corpus. The results show that UniSpeech outperforms self-supervised pretraining and supervised transfer learning for speech recognition by a maximum of 13.4% and 17.8% relative phone error rate reductions respectively (averaged over all testing languages). The transferability of UniSpeech is also demonstrated on a domain-shift speech recognition task, i.e., a relative word error rate reduction of 6% against the previous approach.
Tips:
UniSpeech is a speech model that accepts a float array corresponding to the raw waveform of the speech signal. Please use
Wav2Vec2Processor
for the feature extraction.UniSpeech model can be fine-tuned using connectionist temporal classification (CTC) so the model output has to be decoded using
Wav2Vec2CTCTokenizer
.
This model was contributed by patrickvonplaten. The Authorsβ code can be found here.
UniSpeechConfigΒΆ
-
class
transformers.
UniSpeechConfig
(vocab_size=32, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act='gelu', hidden_dropout=0.1, activation_dropout=0.1, attention_dropout=0.1, feat_proj_dropout=0.0, feat_quantizer_dropout=0.0, final_dropout=0.1, layerdrop=0.1, initializer_range=0.02, layer_norm_eps=1e-05, feat_extract_norm='group', feat_extract_activation='gelu', conv_dim=512, 512, 512, 512, 512, 512, 512, conv_stride=5, 2, 2, 2, 2, 2, 2, conv_kernel=10, 3, 3, 3, 3, 2, 2, conv_bias=False, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, do_stable_layer_norm=False, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_feature_prob=0.0, mask_feature_length=10, num_codevectors_per_group=320, num_codevector_groups=2, contrastive_logits_temperature=0.1, num_negatives=100, codevector_dim=256, proj_codevector_dim=256, diversity_loss_weight=0.1, ctc_loss_reduction='mean', ctc_zero_infinity=False, use_weighted_layer_sum=False, classifier_proj_size=256, num_ctc_classes=80, pad_token_id=0, bos_token_id=1, eos_token_id=2, replace_prob=0.5, **kwargs)[source]ΒΆ This is the configuration class to store the configuration of a
UniSpeechModel
. It is used to instantiate an UniSpeech model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the UniSpeech facebook/unispeech-base-960h architecture.Configuration objects inherit from
PretrainedConfig
and can be used to control the model outputs. Read the documentation fromPretrainedConfig
for more information.- Parameters
vocab_size (
int
, optional, defaults to 32) β Vocabulary size of the UniSpeech model. Defines the number of different tokens that can be represented by theinputs_ids
passed when callingUniSpeechModel
. Vocabulary size of the model. Defines the different tokens that can be represented by the inputs_ids passed to the forward method ofUniSpeechModel
.hidden_size (
int
, optional, defaults to 768) β Dimensionality of the encoder layers and the pooler layer.num_hidden_layers (
int
, optional, defaults to 12) β Number of hidden layers in the Transformer encoder.num_attention_heads (
int
, optional, defaults to 12) β Number of attention heads for each attention layer in the Transformer encoder.intermediate_size (
int
, optional, defaults to 3072) β Dimensionality of the βintermediateβ (i.e., feed-forward) layer in the Transformer encoder.hidden_act (
str
orfunction
, optional, defaults to"gelu"
) β The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu"
,"relu"
,"selu"
and"gelu_new"
are supported.hidden_dropout (
float
, optional, defaults to 0.1) β The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.attention_dropout (
float
, optional, defaults to 0.1) β The dropout ratio for the attention probabilities.final_dropout (
float
, optional, defaults to 0.1) β The dropout probability for the final projection layer ofUniSpeechForCTC
.initializer_range (
float
, optional, defaults to 0.02) β The standard deviation of the truncated_normal_initializer for initializing all weight matrices.layer_norm_eps (
float
, optional, defaults to 1e-12) β The epsilon used by the layer normalization layers.feat_extract_norm (
str
, optional, defaults to"group"
) β The norm to be applied to 1D convolutional layers in feature extractor. One of"group"
for group normalization of only the first 1D convolutional layer or"layer"
for layer normalization of all 1D convolutional layers.feat_proj_dropout (
float
, optional, defaults to 0.0) β The dropout probability for output of the feature extractor.feat_extract_activation (
str, `optional
, defaults to"gelu"
) β The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string,"gelu"
,"relu"
,"selu"
and"gelu_new"
are supported.(obj (feat_quantizer_dropout) β float, optional, defaults to 0.0): The dropout probabilitiy for quantized feature extractor states.
conv_dim (
Tuple[int]
, optional, defaults to(512, 512, 512, 512, 512, 512, 512)
) β A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature extractor. The length of conv_dim defines the number of 1D convolutional layers.conv_stride (
Tuple[int]
, optional, defaults to(5, 2, 2, 2, 2, 2, 2)
) β A tuple of integers defining the stride of each 1D convolutional layer in the feature extractor. The length of conv_stride defines the number of convolutional layers and has to match the the length of conv_dim.conv_kernel (
Tuple[int]
, optional, defaults to(10, 3, 3, 3, 3, 3, 3)
) β A tuple of integers defining the kernel size of each 1D convolutional layer in the feature extractor. The length of conv_kernel defines the number of convolutional layers and has to match the the length of conv_dim.conv_bias (
bool
, optional, defaults toFalse
) β Whether the 1D convolutional layers have a bias.num_conv_pos_embeddings (
int
, optional, defaults to 128) β Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer.num_conv_pos_embedding_groups (
int
, optional, defaults to 16) β Number of groups of 1D convolutional positional embeddings layer.do_stable_layer_norm (
bool
, optional, defaults toFalse
) β Whether to apply stable layer norm architecture of the Transformer encoder.do_stable_layer_norm is True
corresponds to applying layer norm before the attention layer, whereasdo_stable_layer_norm is False
corresponds to applying layer norm after the attention layer.apply_spec_augment (
bool
, optional, defaults toTrue
) β Whether to apply SpecAugment data augmentation to the outputs of the feature extractor. For reference see SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition.mask_time_prob (
float
, optional, defaults to 0.05) β Propability of each feature vector along the time axis to be chosen as the start of the vector span to be masked. Approximatelymask_time_prob * sequence_length // mask_time_length
feature vectors will be masked along the time axis. This is only relevant ifapply_spec_augment is True
.mask_time_length (
int
, optional, defaults to 10) β Length of vector span along the time axis.mask_feature_prob (
float
, optional, defaults to 0.0) β Propability of each feature vector along the feature axis to be chosen as the start of the vector span to be masked. Approximatelymask_time_prob * hidden_size // mask_time_length
feature vectors will be masked along the time axis. This is only relevant ifapply_spec_augment is True
.mask_feature_length (
int
, optional, defaults to 10) β Length of vector span along the feature axis.num_codevectors_per_group (
int
, optional, defaults to 320) β Number of entries in each quantization codebook (group).num_codevector_groups (
int
, optional, defaults to 2) β Number of codevector groups for product codevector quantization.contrastive_logits_temperature (
float
, optional, defaults to 0.1) β The temperature kappa in the contrastive loss.feat_quantizer_dropout (
float
, optional, defaults to 0.0) β The dropout probabilitiy for the output of the feature extractor thatβs used by the quantizer.num_negatives (
int
, optional, defaults to 100) β Number of negative samples for the contrastive loss.codevector_dim (
int
, optional, defaults to 256) β Dimensionality of the quantized feature vectors.proj_codevector_dim (
int
, optional, defaults to 256) β Dimensionality of the final projection of both the quantized and the transformer features.diversity_loss_weight (
int
, optional, defaults to 0.1) β The weight of the codebook diversity loss component.ctc_loss_reduction (
str
, optional, defaults to"mean"
) β Specifies the reduction to apply to the output oftorch.nn.CTCLoss
. Only relevant when training an instance ofUniSpeechForCTC
.ctc_zero_infinity (
bool
, optional, defaults toFalse
) β Whether to zero infinite losses and the associated gradients oftorch.nn.CTCLoss
. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance ofUniSpeechForCTC
.use_weighted_layer_sum (
bool
, optional, defaults toFalse
) β Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance ofUniSpeechForSequenceClassification
.classifier_proj_size (
int
, optional, defaults to 256) β Dimensionality of the projection before token mean-pooling for classification.replace_prob (
float
, optional, defaults to 0.5) β Propability that transformer feature is replaced by quantized feature for pretraining.
Example:
>>> from transformers import UniSpeechModel, UniSpeechConfig >>> # Initializing a UniSpeech facebook/unispeech-base-960h style configuration >>> configuration = UniSpeechConfig() >>> # Initializing a model from the facebook/unispeech-base-960h style configuration >>> model = UniSpeechModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config
UniSpeech specific outputsΒΆ
-
class
transformers.models.unispeech.modeling_unispeech.
UniSpeechBaseModelOutput
(last_hidden_state: torch.FloatTensor = None, extract_features: torch.FloatTensor = None, hidden_states: Optional[Tuple[torch.FloatTensor]] = None, attentions: Optional[Tuple[torch.FloatTensor]] = None)[source]ΒΆ Output type of
UniSpeechBaseModelOutput
, with potential hidden states and attentions.- Parameters
last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model.extract_features (
torch.FloatTensor
of shape(batch_size, sequence_length, conv_dim[-1])
) β Sequence of extracted feature vectors of the last convolutional layer of the model.hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) βTuple of
torch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) βTuple of
torch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
class
transformers.models.unispeech.modeling_unispeech.
UniSpeechForPreTrainingOutput
(loss: Optional[torch.FloatTensor] = None, projected_states: torch.FloatTensor = None, projected_quantized_states: torch.FloatTensor = None, codevector_perplexity: torch.FloatTensor = None, hidden_states: Optional[Tuple[torch.FloatTensor]] = None, attentions: Optional[Tuple[torch.FloatTensor]] = None)[source]ΒΆ Output type of
UniSpeechForPreTrainingOutput
, with potential hidden states and attentions.- Parameters
loss (optional, returned when model is in train mode,
torch.FloatTensor
of shape(1,)
) β Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the official paper . (classification) loss.projected_states (
torch.FloatTensor
of shape(batch_size, sequence_length, config.proj_codevector_dim)
) β Hidden-states of the model projected to config.proj_codevector_dim that can be used to predict the masked projected quantized states.projected_quantized_states (
torch.FloatTensor
of shape(batch_size, sequence_length, config.proj_codevector_dim)
) β Quantized extracted feature vectors projected to config.proj_codevector_dim representing the positive target vectors for contrastive loss.hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) βTuple of
torch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) βTuple of
torch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
UniSpeechModelΒΆ
-
class
transformers.
UniSpeechModel
(config: transformers.models.unispeech.configuration_unispeech.UniSpeechConfig)[source]ΒΆ The bare UniSpeech Model transformer outputting raw hidden-states without any specific head on top. UniSpeech was proposed in UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.).This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
UniSpeechConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
forward
(input_values, attention_mask=None, mask_time_indices=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ The
UniSpeechModel
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_values (
torch.FloatTensor
of shape(batch_size, sequence_length)
) β Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, theUniSpeechProcessor
should be used for padding and conversion into a tensor of type torch.FloatTensor. Seetransformers.UniSpeechProcessor.__call__()
for details.attention_mask (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βMask to avoid performing convolution and attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
Warning
attention_mask
should only be passed if the corresponding processor hasconfig.return_attention_mask == True
. For all models whose processor hasconfig.return_attention_mask == False
,attention_mask
should not be passed to avoid degraded performance when doing batched inference. For such modelsinput_values
should simply be padded with 0 and passed withoutattention_mask
. Be aware that these models also yield slightly different results depending on whetherinput_values
is padded or not.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple.
- Returns
A
UniSpeechBaseModelOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (UniSpeechConfig
) and inputs.last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model.extract_features (
torch.FloatTensor
of shape(batch_size, sequence_length, conv_dim[-1])
) β Sequence of extracted feature vectors of the last convolutional layer of the model.hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
UniSpeechBaseModelOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import Wav2Vec2Processor, UniSpeechModel >>> from datasets import load_dataset >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") >>> sampling_rate = dataset.features["audio"].sampling_rate >>> processor = Wav2Vec2Processor.from_pretrained('microsoft/unispeech-large-1500h-cv') >>> model = UniSpeechModel.from_pretrained('microsoft/unispeech-large-1500h-cv') >>> # audio file is decoded on the fly >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state
UniSpeechForCTCΒΆ
-
class
transformers.
UniSpeechForCTC
(config)[source]ΒΆ UniSpeech Model with a language modeling head on top for Connectionist Temporal Classification (CTC). UniSpeech was proposed in UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.).This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
UniSpeechConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
forward
(input_values, attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None)[source]ΒΆ The
UniSpeechForCTC
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_values (
torch.FloatTensor
of shape(batch_size, sequence_length)
) β Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, theUniSpeechProcessor
should be used for padding and conversion into a tensor of type torch.FloatTensor. Seetransformers.UniSpeechProcessor.__call__()
for details.attention_mask (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βMask to avoid performing convolution and attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
Warning
attention_mask
should only be passed if the corresponding processor hasconfig.return_attention_mask == True
. For all models whose processor hasconfig.return_attention_mask == False
,attention_mask
should not be passed to avoid degraded performance when doing batched inference. For such modelsinput_values
should simply be padded with 0 and passed withoutattention_mask
. Be aware that these models also yield slightly different results depending on whetherinput_values
is padded or not.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size, target_length)
, optional) β Labels for connectionist temporal classification. Note thattarget_length
has to be smaller or equal to the sequence length of the output logits. Indices are selected in[-100, 0, ..., config.vocab_size - 1]
. All labels set to-100
are ignored (masked), the loss is only computed for labels in[0, ..., config.vocab_size - 1]
.
- Returns
A
CausalLMOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (UniSpeechConfig
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) β Language modeling loss (for next-token prediction).logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
CausalLMOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import Wav2Vec2Processor, UniSpeechForCTC >>> from datasets import load_dataset >>> import torch >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") >>> sampling_rate = dataset.features["audio"].sampling_rate >>> processor = Wav2Vec2Processor.from_pretrained('microsoft/unispeech-large-1500h-cv') >>> model = UniSpeechForCTC.from_pretrained('microsoft/unispeech-large-1500h-cv') >>> # audio file is decoded on the fly >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") >>> logits = model(**inputs).logits >>> predicted_ids = torch.argmax(logits, dim=-1) >>> # transcribe speech >>> transcription = processor.batch_decode(predicted_ids) >>> # compute loss >>> with processor.as_target_processor(): ... inputs["labels"] = processor(dataset[0]["text"], return_tensors="pt").input_ids >>> loss = model(**inputs).loss
UniSpeechForSequenceClassificationΒΆ
-
class
transformers.
UniSpeechForSequenceClassification
(config)[source]ΒΆ UniSpeech Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting.
UniSpeech was proposed in UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.).This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
UniSpeechConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
forward
(input_values, attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None)[source]ΒΆ The
UniSpeechForSequenceClassification
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_values (
torch.FloatTensor
of shape(batch_size, sequence_length)
) β Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, theUniSpeechProcessor
should be used for padding and conversion into a tensor of type torch.FloatTensor. Seetransformers.UniSpeechProcessor.__call__()
for details.attention_mask (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βMask to avoid performing convolution and attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
Warning
attention_mask
should only be passed if the corresponding processor hasconfig.return_attention_mask == True
. For all models whose processor hasconfig.return_attention_mask == False
,attention_mask
should not be passed to avoid degraded performance when doing batched inference. For such modelsinput_values
should simply be padded with 0 and passed withoutattention_mask
. Be aware that these models also yield slightly different results depending on whetherinput_values
is padded or not.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size,)
, optional) β Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
- Returns
A
SequenceClassifierOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (UniSpeechConfig
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) β Classification (or regression if config.num_labels==1) loss.logits (
torch.FloatTensor
of shape(batch_size, config.num_labels)
) β Classification (or regression if config.num_labels==1) scores (before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
SequenceClassifierOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import Wav2Vec2FeatureExtractor, UniSpeechForSequenceClassification >>> from datasets import load_dataset >>> import torch >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") >>> sampling_rate = dataset.features["audio"].sampling_rate >>> feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/unispeech-large-1500h-cv') >>> model = UniSpeechForSequenceClassification.from_pretrained('microsoft/unispeech-large-1500h-cv') >>> # audio file is decoded on the fly >>> inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt") >>> logits = model(**inputs).logits >>> predicted_class_ids = torch.argmax(logits, dim=-1) >>> predicted_label = model.config.id2label[predicted_class_ids] >>> # compute loss - target_label is e.g. "down" >>> target_label = model.config.id2label[0] >>> inputs["labels"] = torch.tensor([model.config.label2id[target_label]]) >>> loss = model(**inputs).loss
UniSpeechForPreTrainingΒΆ
-
class
transformers.
UniSpeechForPreTraining
(config: transformers.models.unispeech.configuration_unispeech.UniSpeechConfig)[source]ΒΆ UniSpeech Model with a vector-quantization module and ctc loss for pre-training. UniSpeech was proposed in UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.).This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
UniSpeechConfig
) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
forward
(input_values, attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]ΒΆ The
UniSpeechForPreTraining
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_values (
torch.FloatTensor
of shape(batch_size, sequence_length)
) β Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, theUniSpeechProcessor
should be used for padding and conversion into a tensor of type torch.FloatTensor. Seetransformers.UniSpeechProcessor.__call__()
for details.attention_mask (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) βMask to avoid performing convolution and attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
Warning
attention_mask
should only be passed if the corresponding processor hasconfig.return_attention_mask == True
. For all models whose processor hasconfig.return_attention_mask == False
,attention_mask
should not be passed to avoid degraded performance when doing batched inference. For such modelsinput_values
should simply be padded with 0 and passed withoutattention_mask
. Be aware that these models also yield slightly different results depending on whetherinput_values
is padded or not.output_attentions (
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) β Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) β Whether or not to return aModelOutput
instead of a plain tuple.mask_time_indices (
torch.BoolTensor
of shape(batch_size, sequence_length)
, optional) β Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in config.proj_codevector_dim space.sampled_negative_indices (
torch.BoolTensor
of shape(batch_size, sequence_length, num_negatives)
, optional) β Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. Required input for pre-training.
- Returns
A
UniSpeechForPreTrainingOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (UniSpeechConfig
) and inputs.loss (optional, returned when model is in train mode,
torch.FloatTensor
of shape(1,)
) β Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the official paper . (classification) loss.projected_states (
torch.FloatTensor
of shape(batch_size, sequence_length, config.proj_codevector_dim)
) β Hidden-states of the model projected to config.proj_codevector_dim that can be used to predict the masked projected quantized states.projected_quantized_states (
torch.FloatTensor
of shape(batch_size, sequence_length, config.proj_codevector_dim)
) β Quantized extracted feature vectors projected to config.proj_codevector_dim representing the positive target vectors for contrastive loss.hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> import torch >>> from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForPreTraining >>> from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices >>> from datasets import load_dataset >>> import soundfile as sf >>> feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("patrickvonplaten/wav2vec2-base") >>> model = Wav2Vec2ForPreTraining.from_pretrained("patrickvonplaten/wav2vec2-base") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = feature_extractor(ds["speech"][0], return_tensors="pt").input_values # Batch size 1 >>> # compute masked indices >>> batch_size, raw_sequence_length = input_values.shape >>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length) >>> mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob=0.2, mask_length=2, device=model.device) >>> with torch.no_grad(): ... outputs = model(input_values, mask_time_indices=mask_time_indices) >>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states) >>> cosine_sim = torch.cosine_similarity( ... outputs.projected_states, outputs.projected_quantized_states, dim=-1 ... ) >>> # show that cosine similarity is much higher than random >>> assert cosine_sim[mask_time_indices].mean() > 0.5 >>> # for contrastive loss training model should be put into train mode >>> model.train() >>> loss = model(input_values, mask_time_indices=mask_time_indices).loss
- Return type
UniSpeechForPreTrainingOutput
ortuple(torch.FloatTensor)