Source code for transformers.models.mbart.configuration_mbart

# coding=utf-8
# Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MBART model configuration """
from collections import OrderedDict
from typing import Mapping

from transformers.onnx import OnnxConfigWithPast

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)

MBART_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/config.json",
    # See all MBART models at https://huggingface.co/models?filter=mbart
}


[docs]class MBartConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a :class:`~transformers.MBartModel`. It is used to instantiate an MBART model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MBART `facebook/mbart-large-cc25 <https://huggingface.co/facebook/mbart-large-cc25>`__ architecture. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: vocab_size (:obj:`int`, `optional`, defaults to 50265): Vocabulary size of the MBART model. Defines the number of different tokens that can be represented by the :obj:`inputs_ids` passed when calling :class:`~transformers.MBartModel` or :class:`~transformers.TFMBartModel`. d_model (:obj:`int`, `optional`, defaults to 1024): Dimensionality of the layers and the pooler layer. encoder_layers (:obj:`int`, `optional`, defaults to 12): Number of encoder layers. decoder_layers (:obj:`int`, `optional`, defaults to 12): Number of decoder layers. encoder_attention_heads (:obj:`int`, `optional`, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (:obj:`int`, `optional`, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. dropout (:obj:`float`, `optional`, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (:obj:`float`, `optional`, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (:obj:`float`, `optional`, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. classifier_dropout (:obj:`float`, `optional`, defaults to 0.0): The dropout ratio for classifier. max_position_embeddings (:obj:`int`, `optional`, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). init_std (:obj:`float`, `optional`, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. encoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0): The LayerDrop probability for the encoder. See the `LayerDrop paper <see https://arxiv.org/abs/1909.11556>`__ for more details. decoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0): The LayerDrop probability for the decoder. See the `LayerDrop paper <see https://arxiv.org/abs/1909.11556>`__ for more details. scale_embedding (:obj:`bool`, `optional`, defaults to :obj:`False`): Scale embeddings by diving by sqrt(d_model). use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not the model should return the last key/values attentions (not used by all models) forced_eos_token_id (:obj:`int`, `optional`, defaults to 2): The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to :obj:`eos_token_id`. Example:: >>> from transformers import MBartModel, MBartConfig >>> # Initializing a MBART facebook/mbart-large-cc25 style configuration >>> configuration = MBartConfig() >>> # Initializing a model from the facebook/mbart-large-cc25 style configuration >>> model = MBartModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config """ model_type = "mbart" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=50265, max_position_embeddings=1024, encoder_layers=12, encoder_ffn_dim=4096, encoder_attention_heads=16, decoder_layers=12, decoder_ffn_dim=4096, decoder_attention_heads=16, encoder_layerdrop=0.0, decoder_layerdrop=0.0, use_cache=True, is_encoder_decoder=True, activation_function="gelu", d_model=1024, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, classifier_dropout=0.0, scale_embedding=False, pad_token_id=1, bos_token_id=0, eos_token_id=2, forced_eos_token_id=2, **kwargs ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.classifier_dropout = classifier_dropout self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, forced_eos_token_id=forced_eos_token_id, **kwargs, )
class MBartOnnxConfig(OnnxConfigWithPast): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: if self.use_past: return OrderedDict( [ ("last_hidden_state", {0: "batch", 1: "sequence"}), ("past_keys", {0: "batch", 2: "sequence"}), ("encoder_last_hidden_state", {0: "batch", 1: "sequence"}), ] ) else: return OrderedDict( [ ("last_hidden_state", {0: "batch", 1: "sequence"}), ("encoder_last_hidden_state", {0: "batch", 1: "sequence"}), ] )