Source code for transformers.models.deberta.tokenization_deberta_fast

# coding=utf-8
# Copyright 2020 Microsoft and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fast Tokenization class for model DeBERTa."""

from typing import List, Optional

from ...tokenization_utils_base import AddedToken
from ...utils import logging
from ..gpt2.tokenization_gpt2_fast import GPT2TokenizerFast
from .tokenization_deberta import DebertaTokenizer


logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "microsoft/deberta-base": "https://huggingface.co/microsoft/deberta-base/resolve/main/vocab.json",
        "microsoft/deberta-large": "https://huggingface.co/microsoft/deberta-large/resolve/main/vocab.json",
        "microsoft/deberta-xlarge": "https://huggingface.co/microsoft/deberta-xlarge/resolve/main/vocab.json",
        "microsoft/deberta-base-mnli": "https://huggingface.co/microsoft/deberta-base-mnli/resolve/main/vocab.json",
        "microsoft/deberta-large-mnli": "https://huggingface.co/microsoft/deberta-large-mnli/resolve/main/vocab.json",
        "microsoft/deberta-xlarge-mnli": "https://huggingface.co/microsoft/deberta-xlarge-mnli/resolve/main/vocab.json",
    },
    "merges_file": {
        "microsoft/deberta-base": "https://huggingface.co/microsoft/deberta-base/resolve/main/merges.txt",
        "microsoft/deberta-large": "https://huggingface.co/microsoft/deberta-large/resolve/main/merges.txt",
        "microsoft/deberta-xlarge": "https://huggingface.co/microsoft/deberta-xlarge/resolve/main/merges.txt",
        "microsoft/deberta-base-mnli": "https://huggingface.co/microsoft/deberta-base-mnli/resolve/main/merges.txt",
        "microsoft/deberta-large-mnli": "https://huggingface.co/microsoft/deberta-large-mnli/resolve/main/merges.txt",
        "microsoft/deberta-xlarge-mnli": "https://huggingface.co/microsoft/deberta-xlarge-mnli/resolve/main/merges.txt",
    },
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
    "microsoft/deberta-base": 512,
    "microsoft/deberta-large": 512,
    "microsoft/deberta-xlarge": 512,
    "microsoft/deberta-base-mnli": 512,
    "microsoft/deberta-large-mnli": 512,
    "microsoft/deberta-xlarge-mnli": 512,
}

PRETRAINED_INIT_CONFIGURATION = {
    "microsoft/deberta-base": {"do_lower_case": False},
    "microsoft/deberta-large": {"do_lower_case": False},
}


[docs]class DebertaTokenizerFast(GPT2TokenizerFast): """ Constructs a "fast" DeBERTa tokenizer, which runs end-to-end tokenization: punctuation splitting + wordpiece. It is backed by HuggingFace's `tokenizers` library. Args: vocab_file (:obj:`str`): File containing the vocabulary. do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to lowercase the input when tokenizing. unk_token (:obj:`str`, `optional`, defaults to :obj:`"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (:obj:`str`, `optional`, defaults to :obj:`"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask", "token_type_ids"] slow_tokenizer_class = DebertaTokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, errors="replace", bos_token="[CLS]", eos_token="[SEP]", sep_token="[SEP]", cls_token="[CLS]", unk_token="[UNK]", pad_token="[PAD]", mask_token="[MASK]", add_prefix_space=False, **kwargs ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, **kwargs, ) @property def mask_token(self) -> str: """ :obj:`str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not having been set. Deberta tokenizer has a special mask token to be used in the fill-mask pipeline. The mask token will greedily comprise the space before the `[MASK]`. """ if self._mask_token is None and self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def mask_token(self, value): """ Overriding the default behavior of the mask token to have it eat the space before it. """ # Mask token behave like a normal word, i.e. include the space before it # So we set lstrip to True value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value self._mask_token = value
[docs] def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A DeBERTa sequence has the following format: - single sequence: [CLS] X [SEP] - pair of sequences: [CLS] A [SEP] B [SEP] Args: token_ids_0 (:obj:`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep
[docs] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa sequence pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | first sequence | second sequence | If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (:obj:`List[int]`): List of IDs. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + token_ids_1 + sep) * [0]