T5¶
Overview¶
The T5 model was presented in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu.
The abstract from the paper is the following:
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pretraining objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.
Tips:
T5 is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format. T5 works well on a variety of tasks out-of-the-box by prepending a different prefix to the input corresponding to each task, e.g., for translation: translate English to German: …, for summarization: summarize: ….
T5 uses relative scalar embeddings. Encoder input padding can be done on the left and on the right.
See the Training, Inference and Example scripts sections below for all details regarding usage.
T5 comes in different sizes:
Based on the original T5 model, Google has released some follow-up works:
T5v1.1: T5v1.1 is an improved version of T5 with some architectural tweaks, and is pre-trained on C4 only without mixing in the supervised tasks. Refer to the documentation of T5v1.1 which can be found here.
mT5: mT5 is a multilingual T5 model. It is pre-trained on the mC4 corpus, which includes 101 languages. Refer to the documentation of mT5 which can be found here.
byT5: byT5 is a T5 model pre-trained on byte sequences rather than SentencePiece subword token sequences. Refer to the documentation of byT5 which can be found here.
All checkpoints can be found on the hub.
This model was contributed by thomwolf. The original code can be found here.
Training¶
T5 is an encoder-decoder model and converts all NLP problems into a text-to-text format. It is trained using teacher
forcing. This means that for training, we always need an input sequence and a corresponding target sequence. The input
sequence is fed to the model using input_ids
. The target sequence is shifted to the right, i.e., prepended by a
start-sequence token and fed to the decoder using the decoder_input_ids
. In teacher-forcing style, the target
sequence is then appended by the EOS token and corresponds to the labels
. The PAD token is hereby used as the
start-sequence token. T5 can be trained / fine-tuned both in a supervised and unsupervised fashion.
One can use T5ForConditionalGeneration
(or the Tensorflow/Flax variant), which includes the
language modeling head on top of the decoder.
Unsupervised denoising training
In this setup, spans of the input sequence are masked by so-called sentinel tokens (a.k.a unique mask tokens) and the output sequence is formed as a concatenation of the same sentinel tokens and the real masked tokens. Each sentinel token represents a unique mask token for this sentence and should start with
<extra_id_0>
,<extra_id_1>
, … up to<extra_id_99>
. As a default, 100 sentinel tokens are available inT5Tokenizer
.For instance, the sentence “The cute dog walks in the park” with the masks put on “cute dog” and “the” should be processed as follows:
from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("t5-small") model = T5ForConditionalGeneration.from_pretrained("t5-small") input_ids = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='pt').input_ids labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2>', return_tensors='pt').input_ids # the forward function automatically creates the correct decoder_input_ids loss = model(input_ids=input_ids, labels=labels).loss
If you’re interested in pre-training T5 on a new corpus, check out the run_t5_mlm_flax.py script in the Examples directory.
Supervised training
In this setup, the input sequence and output sequence are a standard sequence-to-sequence input-output mapping. Suppose that we want to fine-tune the model for translation for example, and we have a training example: the input sequence “The house is wonderful.” and output sequence “Das Haus ist wunderbar.”, then they should be prepared for the model as follows:
from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("t5-small") model = T5ForConditionalGeneration.from_pretrained("t5-small") input_ids = tokenizer('translate English to German: The house is wonderful.', return_tensors='pt').input_ids labels = tokenizer('Das Haus ist wunderbar.', return_tensors='pt').input_ids # the forward function automatically creates the correct decoder_input_ids loss = model(input_ids=input_ids, labels=labels).loss
As you can see, only 2 inputs are required for the model in order to compute a loss:
input_ids
(which are theinput_ids
of the encoded input sequence) andlabels
(which are theinput_ids
of the encoded target sequence). The model will automatically create thedecoder_input_ids
based on thelabels
, by shifting them one position to the right and prepending theconfig.decoder_start_token_id
, which for T5 is equal to 0 (i.e. the id of the pad token). Also note the task prefix: we prepend the input sequence with ‘translate English to German: ‘ before encoding it. This will help in improving the performance, as this task prefix was used during T5’s pre-training.However, the example above only shows a single training example. In practice, one trains deep learning models in batches. This entails that we must pad/truncate examples to the same length. For encoder-decoder models, one typically defines a
max_source_length
andmax_target_length
, which determine the maximum length of the input and output sequences respectively (otherwise they are truncated). These should be carefully set depending on the task.In addition, we must make sure that padding token id’s of the
labels
are not taken into account by the loss function. In PyTorch and Tensorflow, this can be done by replacing them with -100, which is theignore_index
of theCrossEntropyLoss
. In Flax, one can use thedecoder_attention_mask
to ignore padded tokens from the loss (see the Flax summarization script for details). We also passattention_mask
as additional input to the model, which makes sure that padding tokens of the inputs are ignored. The code example below illustrates all of this.from transformers import T5Tokenizer, T5ForConditionalGeneration import torch tokenizer = T5Tokenizer.from_pretrained("t5-small") model = T5ForConditionalGeneration.from_pretrained("t5-small") # the following 2 hyperparameters are task-specific max_source_length = 512 max_target_length = 128 # Suppose we have the following 2 training examples: input_sequence_1 = "Welcome to NYC" output_sequence_1 = "Bienvenue à NYC" input_sequence_2 = "HuggingFace is a company" output_sequence_2 = "HuggingFace est une entreprise" # encode the inputs task_prefix = "translate English to French: " input_sequences = [input_sequence_1, input_sequence_2] encoding = tokenizer([task_prefix + sequence for sequence in input_sequences], padding='longest', max_length=max_source_length, truncation=True, return_tensors="pt") input_ids, attention_mask = encoding.input_ids, encoding.attention_mask # encode the targets target_encoding = tokenizer([output_sequence_1, output_sequence_2], padding='longest', max_length=max_target_length, truncation=True) labels = target_encoding.input_ids # replace padding token id's of the labels by -100 labels = [ [(label if label != tokenizer.pad_token_id else -100) for label in labels_example] for labels_example in labels ] labels = torch.tensor(labels) # forward pass loss = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels).loss
Additional training tips:
T5 models need a slightly higher learning rate than the default one set in the
Trainer
when using the AdamW optimizer. Typically, 1e-4 and 3e-4 work well for most problems (classification, summarization, translation, question answering, question generation). Note that T5 was pre-trained using the AdaFactor optimizer.According to this forum post, task prefixes matter when (1) doing multi-task training (2) your task is similar or related to one of the supervised tasks used in T5’s pre-training mixture (see Appendix D of the paper for the task prefixes used).
If training on TPU, it is recommended to pad all examples of the dataset to the same length or make use of pad_to_multiple_of to have a small number of predefined bucket sizes to fit all examples in. Dynamically padding batches to the longest example is not recommended on TPU as it triggers a recompilation for every batch shape that is encountered during training thus significantly slowing down the training. only padding up to the longest example in a batch) leads to very slow training on TPU.
Inference¶
At inference time, it is recommended to use generate()
. This
method takes care of encoding the input and feeding the encoded hidden states via cross-attention layers to the decoder
and auto-regressively generates the decoder output. Check out this blog post to know all the details about generating text with Transformers.
There’s also this blog post which explains how
generation works in general in encoder-decoder models.
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("t5-small")
model = T5ForConditionalGeneration.from_pretrained("t5-small")
input_ids = tokenizer('translate English to German: The house is wonderful.', return_tensors='pt').input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
# Das Haus ist wunderbar.
Note that T5 uses the pad_token_id
as the decoder_start_token_id
, so when doing generation without using
generate()
, make sure you start it with the pad_token_id
.
The example above only shows a single example. You can also do batched inference, like so:
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("t5-small")
model = T5ForConditionalGeneration.from_pretrained("t5-small")
# when generating, we will use the logits of right-most token to predict the next token
# so the padding should be on the left
tokenizer.padding_side = "left"
tokenizer.pad_token = tokenizer.eos_token # to avoid an error
task_prefix = 'translate English to German: '
sentences = ['The house is wonderful.', 'I like to work in NYC.'] # use different length sentences to test batching
inputs = tokenizer([task_prefix + sentence for sentence in sentences], return_tensors="pt", padding=True)
output_sequences = model.generate(
input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask'],
do_sample=False, # disable sampling to test if batching affects output
)
print(tokenizer.batch_decode(output_sequences, skip_special_tokens=True))
# ['Das Haus ist wunderbar.', 'Ich arbeite gerne in NYC.']
Example scripts¶
T5 is supported by several example scripts, both for pre-training and fine-tuning.
pre-training: the run_t5_mlm_flax.py script allows you to further pre-train T5 or pre-train T5 from scratch on your own data. The t5_tokenizer_model.py script allows you to further train a T5 tokenizer or train a T5 Tokenizer from scratch on your own data. Note that Flax (a neural network library on top of JAX) is particularly useful to train on TPU hardware.
fine-tuning: T5 is supported by the official summarization scripts (PyTorch, Tensorflow, and Flax) and translation scripts (PyTorch and Tensorflow). These scripts allow you to easily fine-tune T5 on custom data for summarization/translation.
T5Config¶
-
class
transformers.
T5Config
(vocab_size=32128, d_model=512, d_kv=64, d_ff=2048, num_layers=6, num_decoder_layers=None, num_heads=8, relative_attention_num_buckets=32, dropout_rate=0.1, layer_norm_epsilon=1e-06, initializer_factor=1.0, feed_forward_proj='relu', is_encoder_decoder=True, use_cache=True, pad_token_id=0, eos_token_id=1, **kwargs)[source]¶ This is the configuration class to store the configuration of a
T5Model
or aTFT5Model
. It is used to instantiate a T5 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the T5 t5-small architecture.Configuration objects inherit from
PretrainedConfig
and can be used to control the model outputs. Read the documentation fromPretrainedConfig
for more information.- Parameters
vocab_size (
int
, optional, defaults to 32128) – Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by theinputs_ids
passed when callingT5Model
orTFT5Model
.d_model (
int
, optional, defaults to 512) – Size of the encoder layers and the pooler layer.d_kv (
int
, optional, defaults to 64) – Size of the key, query, value projections per attention head.d_kv
has to be equal tod_model // num_heads
.d_ff (
int
, optional, defaults to 2048) – Size of the intermediate feed forward layer in eachT5Block
.num_layers (
int
, optional, defaults to 6) – Number of hidden layers in the Transformer encoder.num_decoder_layers (
int
, optional) – Number of hidden layers in the Transformer decoder. Will use the same value asnum_layers
if not set.num_heads (
int
, optional, defaults to 8) – Number of attention heads for each attention layer in the Transformer encoder.relative_attention_num_buckets (
int
, optional, defaults to 32) – The number of buckets to use for each attention layer.dropout_rate (
float
, optional, defaults to 0.1) – The ratio for all dropout layers.layer_norm_eps (
float
, optional, defaults to 1e-6) – The epsilon used by the layer normalization layers.initializer_factor (
float
, optional, defaults to 1) – A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing).feed_forward_proj (
string
, optional, defaults to"relu"
) – Type of feed forward layer to be used. Should be one of"relu"
or"gated-gelu"
. T5v1.1 uses the"gated-gelu"
feed forward projection. Original T5 uses"relu"
.use_cache (
bool
, optional, defaults toTrue
) – Whether or not the model should return the last key/values attentions (not used by all models).
T5Tokenizer¶
-
class
transformers.
T5Tokenizer
(vocab_file, eos_token='</s>', unk_token='<unk>', pad_token='<pad>', extra_ids=100, additional_special_tokens=None, sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs)[source]¶ Construct a T5 tokenizer. Based on SentencePiece.
This tokenizer inherits from
PreTrainedTokenizer
which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.- Parameters
vocab_file (
str
) – SentencePiece file (generally has a .spm extension) that contains the vocabulary necessary to instantiate a tokenizer.eos_token (
str
, optional, defaults to"</s>"
) –The end of sequence token.
Note
When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the
sep_token
.unk_token (
str
, optional, defaults to"<unk>"
) – The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.pad_token (
str
, optional, defaults to"<pad>"
) – The token used for padding, for example when batching sequences of different lengths.extra_ids (
int
, optional, defaults to 100) – Add a number of extra ids added to the end of the vocabulary for use as sentinels. These tokens are accessible as “<extra_id_{%d}>” where “{%d}” is a number between 0 and extra_ids-1. Extra tokens are indexed from the end of the vocabulary up to beginning (“<extra_id_0>” is the last token in the vocabulary like in T5 preprocessing see here).additional_special_tokens (
List[str]
, optional) – Additional special tokens used by the tokenizer.sp_model_kwargs (
dict
, optional) –Will be passed to the
SentencePieceProcessor.__init__()
method. The Python wrapper for SentencePiece can be used, among other things, to set:enable_sampling
: Enable subword regularization.nbest_size
: Sampling parameters for unigram. Invalid for BPE-Dropout.nbest_size = {0,1}
: No sampling is performed.nbest_size > 1
: samples from the nbest_size results.nbest_size < 0
: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm.
alpha
: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout.
-
sp_model
¶ The SentencePiece processor that is used for every conversion (string, tokens and IDs).
- Type
SentencePieceProcessor
-
build_inputs_with_special_tokens
(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) → List[int][source]¶ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A sequence has the following format:
single sequence:
X </s>
pair of sequences:
A </s> B </s>
- Parameters
token_ids_0 (
List[int]
) – List of IDs to which the special tokens will be added.token_ids_1 (
List[int]
, optional) – Optional second list of IDs for sequence pairs.
- Returns
List of input IDs with the appropriate special tokens.
- Return type
List[int]
-
create_token_type_ids_from_sequences
(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) → List[int][source]¶ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make use of token type ids, therefore a list of zeros is returned.
- Parameters
token_ids_0 (
List[int]
) – List of IDs.token_ids_1 (
List[int]
, optional) – Optional second list of IDs for sequence pairs.
- Returns
List of zeros.
- Return type
List[int]
-
get_special_tokens_mask
(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False) → List[int][source]¶ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer
prepare_for_model
method.- Parameters
token_ids_0 (
List[int]
) – List of IDs.token_ids_1 (
List[int]
, optional) – Optional second list of IDs for sequence pairs.already_has_special_tokens (
bool
, optional, defaults toFalse
) – Whether or not the token list is already formatted with special tokens for the model.
- Returns
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
- Return type
List[int]
-
save_vocabulary
(save_directory: str, filename_prefix: Optional[str] = None) → Tuple[str][source]¶ Save only the vocabulary of the tokenizer (vocabulary + added tokens).
This method won’t save the configuration and special token mappings of the tokenizer. Use
_save_pretrained()
to save the whole state of the tokenizer.- Parameters
save_directory (
str
) – The directory in which to save the vocabulary.filename_prefix (
str
, optional) – An optional prefix to add to the named of the saved files.
- Returns
Paths to the files saved.
- Return type
Tuple(str)
T5TokenizerFast¶
-
class
transformers.
T5TokenizerFast
(vocab_file=None, tokenizer_file=None, eos_token='</s>', unk_token='<unk>', pad_token='<pad>', extra_ids=100, additional_special_tokens=None, **kwargs)[source]¶ Construct a “fast” T5 tokenizer (backed by HuggingFace’s tokenizers library). Based on Unigram.
This tokenizer inherits from
PreTrainedTokenizerFast
which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.- Parameters
vocab_file (
str
) – SentencePiece file (generally has a .spm extension) that contains the vocabulary necessary to instantiate a tokenizer.eos_token (
str
, optional, defaults to"</s>"
) –The end of sequence token.
Note
When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the
sep_token
.unk_token (
str
, optional, defaults to"<unk>"
) – The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.pad_token (
str
, optional, defaults to"<pad>"
) – The token used for padding, for example when batching sequences of different lengths.extra_ids (
int
, optional, defaults to 100) – Add a number of extra ids added to the end of the vocabulary for use as sentinels. These tokens are accessible as “<extra_id_{%d}>” where “{%d}” is a number between 0 and extra_ids-1. Extra tokens are indexed from the end of the vocabulary up to beginning (“<extra_id_0>” is the last token in the vocabulary like in T5 preprocessing see here).additional_special_tokens (
List[str]
, optional) – Additional special tokens used by the tokenizer.
-
build_inputs_with_special_tokens
(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) → List[int][source]¶ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A sequence has the following format:
single sequence:
X </s>
pair of sequences:
A </s> B </s>
- Parameters
token_ids_0 (
List[int]
) – List of IDs to which the special tokens will be added.token_ids_1 (
List[int]
, optional) – Optional second list of IDs for sequence pairs.
- Returns
List of input IDs with the appropriate special tokens.
- Return type
List[int]
-
create_token_type_ids_from_sequences
(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) → List[int][source]¶ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make use of token type ids, therefore a list of zeros is returned.
- Parameters
token_ids_0 (
List[int]
) – List of IDs.token_ids_1 (
List[int]
, optional) – Optional second list of IDs for sequence pairs.
- Returns
List of zeros.
- Return type
List[int]
-
save_vocabulary
(save_directory: str, filename_prefix: Optional[str] = None) → Tuple[str][source]¶ Save only the vocabulary of the tokenizer (vocabulary + added tokens).
This method won’t save the configuration and special token mappings of the tokenizer. Use
_save_pretrained()
to save the whole state of the tokenizer.- Parameters
save_directory (
str
) – The directory in which to save the vocabulary.filename_prefix (
str
, optional) – An optional prefix to add to the named of the saved files.
- Returns
Paths to the files saved.
- Return type
Tuple(str)
-
slow_tokenizer_class
¶ alias of
transformers.models.t5.tokenization_t5.T5Tokenizer
T5Model¶
-
class
transformers.
T5Model
(config: transformers.models.t5.configuration_t5.T5Config)[source]¶ The bare T5 Model transformer outputting raw hidden-states without any specific head on top.
The T5 model was proposed in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It’s an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
T5Config
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
deparallelize
()[source]¶ Moves the model to cpu from a model parallel state.
Example:
# On a 4 GPU machine with t5-3b: model = T5ForConditionalGeneration.from_pretrained('t5-3b') device_map = {0: [0, 1, 2], 1: [3, 4, 5, 6, 7, 8, 9], 2: [10, 11, 12, 13, 14, 15, 16], 3: [17, 18, 19, 20, 21, 22, 23]} model.parallelize(device_map) # Splits the model across several devices model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
-
forward
(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
T5Model
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.
Indices can be obtained using
T5Tokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for detail.To know more on how to prepare
input_ids
for pretraining take a look a T5 Training.attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
torch.LongTensor
of shape(batch_size, target_sequence_length)
, optional) –Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using
T5Tokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.T5 uses the
pad_token_id
as the starting token fordecoder_input_ids
generation. Ifpast_key_values
is used, optionally only the lastdecoder_input_ids
have to be input (seepast_key_values
).To know more on how to prepare
decoder_input_ids
for pretraining take a look at T5 Training.decoder_attention_mask (
torch.BoolTensor
of shape(batch_size, target_sequence_length)
, optional) – Default behavior: generate a tensor that ignores pad tokens indecoder_input_ids
. Causal mask will also be used by default.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) –Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) –Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (
torch.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) –Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (
tuple(tuple(torch.FloatTensor)
, optional) – Tuple consists of (last_hidden_state
,optional
: hidden_states,optional
: attentions)last_hidden_state
of shape(batch_size, sequence_length, hidden_size)
is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.past_key_values (
tuple(tuple(torch.FloatTensor))
of lengthconfig.n_layers
with each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) –Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If
past_key_values
are used, the user can optionally input only the lastdecoder_input_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of alldecoder_input_ids
of shape(batch_size, sequence_length)
.inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix.decoder_inputs_embeds (
torch.FloatTensor
of shape(batch_size, target_sequence_length, hidden_size)
, optional) –Optionally, instead of passing
decoder_input_ids
you can choose to directly pass an embedded representation. Ifpast_key_values
is used, optionally only the lastdecoder_inputs_embeds
have to be input (seepast_key_values
). This is useful if you want more control over how to convertdecoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.If
decoder_input_ids
anddecoder_inputs_embeds
are both unset,decoder_inputs_embeds
takes the value ofinputs_embeds
.use_cache (
bool
, optional) – If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
).output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple.
- Returns
A
Seq2SeqModelOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (T5Config
) and inputs.last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) – Sequence of hidden-states at the output of the last layer of the decoder of the model.If
past_key_values
is used only the last hidden-state of the sequences of shape(batch_size, 1, hidden_size)
is output.past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) – Tuple oftuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.decoder_hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> from transformers import T5Tokenizer, T5Model >>> tokenizer = T5Tokenizer.from_pretrained('t5-small') >>> model = T5Model.from_pretrained('t5-small') >>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> # forward pass >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state
- Return type
Seq2SeqModelOutput
ortuple(torch.FloatTensor)
-
parallelize
(device_map=None)[source]¶ This is an experimental feature and is a subject to change at a moment’s notice.
Uses a device map to distribute attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks across all devices.
- Parameters
device_map (
Dict[int, list]
, optional, defaults to None) –A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always automatically mapped to the first device (for esoteric reasons). That means that the first device should have fewer attention modules mapped to it than other devices. For reference, the t5 models have the following number of attention modules:
t5-small: 6
t5-base: 12
t5-large: 24
t5-3b: 24
t5-11b: 24
Example:
# Here is an example of a device map on a machine with 4 GPUs using t5-3b, which has a total of 24 attention modules: model = T5ForConditionalGeneration.from_pretrained('t5-3b') device_map = {0: [0, 1, 2], 1: [3, 4, 5, 6, 7, 8, 9], 2: [10, 11, 12, 13, 14, 15, 16], 3: [17, 18, 19, 20, 21, 22, 23]} model.parallelize(device_map)
T5ForConditionalGeneration¶
-
class
transformers.
T5ForConditionalGeneration
(config)[source]¶ T5 Model with a language modeling head on top.
The T5 model was proposed in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It’s an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
T5Config
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
deparallelize
()[source]¶ Moves the model to cpu from a model parallel state.
Example:
# On a 4 GPU machine with t5-3b: model = T5ForConditionalGeneration.from_pretrained('t5-3b') device_map = {0: [0, 1, 2], 1: [3, 4, 5, 6, 7, 8, 9], 2: [10, 11, 12, 13, 14, 15, 16], 3: [17, 18, 19, 20, 21, 22, 23]} model.parallelize(device_map) # Splits the model across several devices model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
-
forward
(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
T5ForConditionalGeneration
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.
Indices can be obtained using
T5Tokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for detail.To know more on how to prepare
input_ids
for pretraining take a look a T5 Training.attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
torch.LongTensor
of shape(batch_size, target_sequence_length)
, optional) –Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using
T5Tokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.T5 uses the
pad_token_id
as the starting token fordecoder_input_ids
generation. Ifpast_key_values
is used, optionally only the lastdecoder_input_ids
have to be input (seepast_key_values
).To know more on how to prepare
decoder_input_ids
for pretraining take a look at T5 Training.decoder_attention_mask (
torch.BoolTensor
of shape(batch_size, target_sequence_length)
, optional) – Default behavior: generate a tensor that ignores pad tokens indecoder_input_ids
. Causal mask will also be used by default.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) –Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) –Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (
torch.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) –Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (
tuple(tuple(torch.FloatTensor)
, optional) – Tuple consists of (last_hidden_state
,optional
: hidden_states,optional
: attentions)last_hidden_state
of shape(batch_size, sequence_length, hidden_size)
is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.past_key_values (
tuple(tuple(torch.FloatTensor))
of lengthconfig.n_layers
with each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) –Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If
past_key_values
are used, the user can optionally input only the lastdecoder_input_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of alldecoder_input_ids
of shape(batch_size, sequence_length)
.inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix.decoder_inputs_embeds (
torch.FloatTensor
of shape(batch_size, target_sequence_length, hidden_size)
, optional) –Optionally, instead of passing
decoder_input_ids
you can choose to directly pass an embedded representation. Ifpast_key_values
is used, optionally only the lastdecoder_inputs_embeds
have to be input (seepast_key_values
). This is useful if you want more control over how to convertdecoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.If
decoder_input_ids
anddecoder_inputs_embeds
are both unset,decoder_inputs_embeds
takes the value ofinputs_embeds
.use_cache (
bool
, optional) – If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
).output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size,)
, optional) – Labels for computing the sequence classification/regression loss. Indices should be in[-100, 0, ..., config.vocab_size - 1]
. All labels set to-100
are ignored (masked), the loss is only computed for labels in[0, ..., config.vocab_size]
- Returns
A
Seq2SeqLMOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (T5Config
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) – Language modeling loss.logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) – Tuple oftuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.decoder_hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples:
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration >>> tokenizer = T5Tokenizer.from_pretrained('t5-small') >>> model = T5ForConditionalGeneration.from_pretrained('t5-small') >>> # training >>> input_ids = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='pt').input_ids >>> labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2>', return_tensors='pt').input_ids >>> outputs = model(input_ids=input_ids, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits >>> # inference >>> input_ids = tokenizer("summarize: studies have shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model.generate(input_ids) >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) >>> # studies have shown that owning a dog is good for you.
- Return type
Seq2SeqLMOutput
ortuple(torch.FloatTensor)
-
parallelize
(device_map=None)[source]¶ This is an experimental feature and is a subject to change at a moment’s notice.
Uses a device map to distribute attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks across all devices.
- Parameters
device_map (
Dict[int, list]
, optional, defaults to None) –A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always automatically mapped to the first device (for esoteric reasons). That means that the first device should have fewer attention modules mapped to it than other devices. For reference, the t5 models have the following number of attention modules:
t5-small: 6
t5-base: 12
t5-large: 24
t5-3b: 24
t5-11b: 24
Example:
# Here is an example of a device map on a machine with 4 GPUs using t5-3b, which has a total of 24 attention modules: model = T5ForConditionalGeneration.from_pretrained('t5-3b') device_map = {0: [0, 1, 2], 1: [3, 4, 5, 6, 7, 8, 9], 2: [10, 11, 12, 13, 14, 15, 16], 3: [17, 18, 19, 20, 21, 22, 23]} model.parallelize(device_map)
T5EncoderModel¶
-
class
transformers.
T5EncoderModel
(config: transformers.models.t5.configuration_t5.T5Config)[source]¶ The bare T5 Model transformer outputting encoder’s raw hidden-states without any specific head on top.
The T5 model was proposed in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It’s an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.
This model inherits from
PreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
T5Config
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
deparallelize
()[source]¶ Moves the model to cpu from a model parallel state.
Example:
# On a 4 GPU machine with t5-3b: model = T5ForConditionalGeneration.from_pretrained('t5-3b') device_map = {0: [0, 1, 2], 1: [3, 4, 5, 6, 7, 8, 9], 2: [10, 11, 12, 13, 14, 15, 16], 3: [17, 18, 19, 20, 21, 22, 23]} model.parallelize(device_map) # Splits the model across several devices model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
-
forward
(input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
T5EncoderModel
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.
Indices can be obtained using
T5Tokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for detail.To know more on how to prepare
input_ids
for pretraining take a look a T5 Training.attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) –Mask to nullify selected heads of the self-attention modules. Mask values selected in
[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix.output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple.
- Returns
A
BaseModelOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (T5Config
) and inputs.last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) – Sequence of hidden-states at the output of the last layer of the model.hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> from transformers import T5Tokenizer, T5EncoderModel >>> tokenizer = T5Tokenizer.from_pretrained('t5-small') >>> model = T5EncoderModel.from_pretrained('t5-small') >>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids) >>> last_hidden_states = outputs.last_hidden_state
- Return type
BaseModelOutput
ortuple(torch.FloatTensor)
-
parallelize
(device_map=None)[source]¶ This is an experimental feature and is a subject to change at a moment’s notice.
Uses a device map to distribute attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks across all devices.
- Parameters
device_map (
Dict[int, list]
, optional, defaults to None) –A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always automatically mapped to the first device (for esoteric reasons). That means that the first device should have fewer attention modules mapped to it than other devices. For reference, the t5 models have the following number of attention modules:
t5-small: 6
t5-base: 12
t5-large: 24
t5-3b: 24
t5-11b: 24
Example:
# Here is an example of a device map on a machine with 4 GPUs using t5-3b, which has a total of 24 attention modules: model = T5ForConditionalGeneration.from_pretrained('t5-3b') device_map = {0: [0, 1, 2], 1: [3, 4, 5, 6, 7, 8, 9], 2: [10, 11, 12, 13, 14, 15, 16], 3: [17, 18, 19, 20, 21, 22, 23]} model.parallelize(device_map)
TFT5Model¶
-
class
transformers.
TFT5Model
(*args, **kwargs)[source]¶ The bare T5 Model transformer outputting raw hidden-stateswithout any specific head on top.
The T5 model was proposed in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It’s an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.
This model inherits from
TFPreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_ids
only and nothing else:model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
T5Config
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs)[source]¶ The
TFT5Model
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
tf.Tensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on the right or the left.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.__call__()
andtransformers.PreTrainedTokenizer.encode()
for details.To know more on how to prepare
inputs
for pretraining take a look at T5 Training.decoder_input_ids (
tf.Tensor
of shape(batch_size, target_sequence_length)
, optional) –Provide for sequence to sequence training. T5 uses the
pad_token_id
as the starting token fordecoder_input_ids
generation. Ifpast_key_values
is used, optionally only the lastdecoder_input_ids
have to be input (seepast_key_values
).To know more on how to prepare
decoder_input_ids
for pretraining take a look at T5 Training.attention_mask (
tf.Tensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_attention_mask (
tf.Tensor
of shape(batch_size, target_sequence_length)
, optional) – Default behavior: generate a tensor that ignores pad tokens indecoder_input_ids
. Causal mask will also be used by default.head_mask –
(
tf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional): Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask –
(
tf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional): Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (
tuple(tuple(tf.FloatTensor)
, optional) – Tuple consists of (last_hidden_state
,optional
: hidden_states,optional
: attentions)last_hidden_state
of shape(batch_size, sequence_length, hidden_size)
is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.past_key_values (
tuple(tuple(tf.Tensor))
of lengthconfig.n_layers
with each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) –contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If
past_key_values
are used, the user can optionally input only the lastdecoder_input_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of alldecoder_input_ids
of shape(batch_size, sequence_length)
.inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix.decoder_inputs_embeds (
tf.Tensor
of shape(batch_size, target_sequence_length, hidden_size)
, optional) –Optionally, instead of passing
decoder_input_ids
you can choose to directly pass an embedded representation. Ifpast_key_values
is used, optionally only the lastdecoder_inputs_embeds
have to be input (seepast_key_values
). This is useful if you want more control over how to convertdecoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.If
decoder_input_ids
anddecoder_inputs_embeds
are both unset,decoder_inputs_embeds
takes the value ofinputs_embeds
.use_cache (
bool
, optional, defaults toTrue
) – If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
).output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.training (
bool
, optional, defaults toFalse
) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
- Returns
A
TFSeq2SeqModelOutput
or a tuple oftf.Tensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (T5Config
) and inputs.last_hidden_state (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
) – Sequence of hidden-states at the output of the last layer of the decoder of the model.If
past_key_values
is used only the last hidden-state of the sequences of shape(batch_size, 1, hidden_size)
is output.past_key_values (
List[tf.Tensor]
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) – List oftf.Tensor
of lengthconfig.n_layers
, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)
).Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_values
input) to speed up sequential decoding.decoder_hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples:
>>> from transformers import T5Tokenizer, TFT5Model >>> tokenizer = T5Tokenizer.from_pretrained('t5-small') >>> model = TFT5Model.from_pretrained('t5-small') >>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="tf").input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="tf").input_ids # Batch size 1 >>> # forward pass >>> outputs = model(input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state
- Return type
TFSeq2SeqModelOutput
ortuple(tf.Tensor)
TFT5ForConditionalGeneration¶
-
class
transformers.
TFT5ForConditionalGeneration
(*args, **kwargs)[source]¶ T5 Model with a language modeling head on top.
The T5 model was proposed in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It’s an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.
This model inherits from
TFPreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_ids
only and nothing else:model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
T5Config
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs)[source]¶ The
TFT5ForConditionalGeneration
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
tf.Tensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on the right or the left.
Indices can be obtained using
BertTokenizer
. Seetransformers.PreTrainedTokenizer.__call__()
andtransformers.PreTrainedTokenizer.encode()
for details.To know more on how to prepare
inputs
for pretraining take a look at T5 Training.decoder_input_ids (
tf.Tensor
of shape(batch_size, target_sequence_length)
, optional) –Provide for sequence to sequence training. T5 uses the
pad_token_id
as the starting token fordecoder_input_ids
generation. Ifpast_key_values
is used, optionally only the lastdecoder_input_ids
have to be input (seepast_key_values
).To know more on how to prepare
decoder_input_ids
for pretraining take a look at T5 Training.attention_mask (
tf.Tensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_attention_mask (
tf.Tensor
of shape(batch_size, target_sequence_length)
, optional) – Default behavior: generate a tensor that ignores pad tokens indecoder_input_ids
. Causal mask will also be used by default.head_mask –
(
tf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional): Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask –
(
tf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional): Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (
tuple(tuple(tf.FloatTensor)
, optional) – Tuple consists of (last_hidden_state
,optional
: hidden_states,optional
: attentions)last_hidden_state
of shape(batch_size, sequence_length, hidden_size)
is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.past_key_values (
tuple(tuple(tf.Tensor))
of lengthconfig.n_layers
with each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) –contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If
past_key_values
are used, the user can optionally input only the lastdecoder_input_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of alldecoder_input_ids
of shape(batch_size, sequence_length)
.inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix.decoder_inputs_embeds (
tf.Tensor
of shape(batch_size, target_sequence_length, hidden_size)
, optional) –Optionally, instead of passing
decoder_input_ids
you can choose to directly pass an embedded representation. Ifpast_key_values
is used, optionally only the lastdecoder_inputs_embeds
have to be input (seepast_key_values
). This is useful if you want more control over how to convertdecoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.If
decoder_input_ids
anddecoder_inputs_embeds
are both unset,decoder_inputs_embeds
takes the value ofinputs_embeds
.use_cache (
bool
, optional, defaults toTrue
) – If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
).output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.training (
bool
, optional, defaults toFalse
) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).labels (
tf.Tensor
of shape(batch_size, sequence_length)
, optional) – Labels for computing the cross entropy classification loss. Indices should be in[0, ..., config.vocab_size - 1]
.
- Returns
A
TFSeq2SeqLMOutput
or a tuple oftf.Tensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (T5Config
) and inputs.loss (
tf.Tensor
of shape(n,)
, optional, where n is the number of non-masked labels, returned whenlabels
is provided) – Language modeling loss.logits (
tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).past_key_values (
List[tf.Tensor]
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) – List oftf.Tensor
of lengthconfig.n_layers
, with each tensor of shape(2, batch_size, num_heads, sequence_length, embed_size_per_head)
).Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see
past_key_values
input) to speed up sequential decoding.decoder_hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples:
>>> from transformers import T5Tokenizer, TFT5ForConditionalGeneration >>> tokenizer = T5Tokenizer.from_pretrained('t5-small') >>> model = TFT5ForConditionalGeneration.from_pretrained('t5-small') >>> # training >>> inputs = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='tf').input_ids >>> labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2>', return_tensors='tf').input_ids >>> outputs = model(inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits >>> # inference >>> inputs = tokenizer("summarize: studies have shown that owning a dog is good for you", return_tensors="tf").input_ids # Batch size 1 >>> outputs = model.generate(inputs) >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) >>> # studies have shown that owning a dog is good for you
- Return type
TFSeq2SeqLMOutput
ortuple(tf.Tensor)
TFT5EncoderModel¶
-
class
transformers.
TFT5EncoderModel
(*args, **kwargs)[source]¶ The bare T5 Model transformer outputting encoder’s raw hidden-stateswithout any specific head on top.
The T5 model was proposed in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It’s an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.
This model inherits from
TFPreTrainedModel
. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with
input_ids
only and nothing else:model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
- Parameters
config (
T5Config
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(input_ids, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs)[source]¶ The
TFT5EncoderModel
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
inputs (
tf.Tensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on the right or the left.
Indices can be obtained using
T5Tokenizer
. Seetransformers.PreTrainedTokenizer.__call__()
andtransformers.PreTrainedTokenizer.encode()
for details.To know more on how to prepare
inputs
for pre-training take a look at T5 Training.attention_mask (
tf.Tensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
inputs_embeds (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix.head_mask –
(
tf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional): Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple.training (
bool
, optional, defaults toFalse
) – Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
- Returns
A
TFBaseModelOutput
or a tuple oftf.Tensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (T5Config
) and inputs.last_hidden_state (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
) – Sequence of hidden-states at the output of the last layer of the model.hidden_states (
tuple(tf.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples:
>>> from transformers import T5Tokenizer, TFT5EncoderModel >>> tokenizer = T5Tokenizer.from_pretrained('t5-small') >>> model = TFT5EncoderModel.from_pretrained('t5-small') >>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="tf").input_ids # Batch size 1 >>> outputs = model(input_ids)
- Return type
TFBaseModelOutput
ortuple(tf.Tensor)
FlaxT5Model¶
-
class
transformers.
FlaxT5Model
(config: transformers.models.t5.configuration_t5.T5Config, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]¶ -
__call__
(input_ids: jax._src.numpy.lax_numpy.ndarray, attention_mask: Optional[jax._src.numpy.lax_numpy.ndarray] = None, decoder_input_ids: jax._src.numpy.lax_numpy.ndarray = None, decoder_attention_mask: Optional[jax._src.numpy.lax_numpy.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: jax._src.random.PRNGKey = None)¶ The
FlaxT5PreTrainedModel
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
jnp.ndarray
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.
Indices can be obtained using
T5Tokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for detail.To know more on how to prepare
input_ids
for pretraining take a look a T5 Training.attention_mask (
jnp.ndarray
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
jnp.ndarray
of shape(batch_size, target_sequence_length)
, optional) –Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using
T5Tokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.T5 uses the
pad_token_id
as the starting token fordecoder_input_ids
generation. Ifpast_key_values
is used, optionally only the lastdecoder_input_ids
have to be input (seepast_key_values
).To know more on how to prepare
decoder_input_ids
for pretraining take a look at T5 Training.decoder_attention_mask (
jnp.ndarray
of shape(batch_size, target_sequence_length)
, optional) – Default behavior: generate a tensor that ignores pad tokens indecoder_input_ids
. Causal mask will also be used by default.encoder_outputs (
tuple(tuple(jnp.ndarray)
, optional) – Tuple consists of (last_hidden_state
,optional
: hidden_states,optional
: attentions)last_hidden_state
of shape(batch_size, sequence_length, hidden_size)
is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.past_key_values (
tuple(tuple(jnp.ndarray))
of lengthconfig.n_layers
with each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) –Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If
past_key_values
are used, the user can optionally input only the lastdecoder_input_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of alldecoder_input_ids
of shape(batch_size, sequence_length)
.output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple.
- Returns
A
FlaxSeq2SeqLMOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (T5Config
) and inputs.logits (
jnp.ndarray
of shape(batch_size, sequence_length, config.vocab_size)
) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).past_key_values (
tuple(tuple(jnp.ndarray))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) – Tuple oftuple(jnp.ndarray)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.decoder_hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
, optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
FlaxSeq2SeqLMOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import T5Tokenizer, FlaxT5Model >>> tokenizer = T5Tokenizer.from_pretrained('t5-small') >>> model = FlaxT5Model.from_pretrained('t5-small') >>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="np").input_ids >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="np").input_ids >>> # forward pass >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state
-
decode
(decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jax._src.numpy.lax_numpy.ndarray] = None, decoder_attention_mask: Optional[jax._src.numpy.lax_numpy.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: jax._src.random.PRNGKey = None)¶ - Parameters
decoder_input_ids (
jnp.ndarray
of shape(batch_size, target_sequence_length)
) –Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using
T5Tokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.For training,
decoder_input_ids
should be provided.encoder_outputs (
tuple(tuple(jnp.ndarray)
) – Tuple consists of (last_hidden_state
, optional:hidden_states
, optional:attentions
)last_hidden_state
of shape(batch_size, sequence_length, hidden_size)
, optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.encoder_attention_mask (
jnp.ndarray
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_attention_mask (
jnp.ndarray
of shape(batch_size, target_sequence_length)
, optional) –Default behavior: generate a tensor that ignores pad tokens in
decoder_input_ids
. Causal mask will also be used by default.If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
past_key_values (
Dict[str, np.ndarray]
, optional, returned byinit_cache
or when passing previouspast_key_values
) – Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape [batch_size, max_length].output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple.
- Returns
A
FlaxBaseModelOutputWithPastAndCrossAttentions
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (~transformers.
) and inputs.last_hidden_state (
jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) – Sequence of hidden-states at the output of the last layer of the model.If
past_key_values
is used only the last hidden-state of the sequences of shape(batch_size, 1, hidden_size)
is output.past_key_values (
tuple(tuple(jnp.ndarray))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) – Tuple oftuple(jnp.ndarray)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
) and optionally ifconfig.is_encoder_decoder=True
2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
config.is_encoder_decoder=True
in the cross-attention blocks) that can be used (seepast_key_values
input) to speed up sequential decoding.hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
andconfig.add_cross_attention=True
is passed or whenconfig.output_attentions=True
) – Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
Example:
>>> from transformers import T5Tokenizer, FlaxT5ForConditionalGeneration >>> import jax.numpy as jnp >>> tokenizer = T5Tokenizer.from_pretrained('t5-small') >>> model = FlaxT5ForConditionalGeneration.from_pretrained('t5-small') >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, return_tensors='np') >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits
- Return type
FlaxBaseModelOutputWithPastAndCrossAttentions
ortuple(torch.FloatTensor)
-
encode
(input_ids: jax._src.numpy.lax_numpy.ndarray, attention_mask: Optional[jax._src.numpy.lax_numpy.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: jax._src.random.PRNGKey = None)¶ - Parameters
input_ids (
jnp.ndarray
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.
Indices can be obtained using
T5Tokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for detail.To know more on how to prepare
input_ids
for pretraining take a look a T5 Training.attention_mask (
jnp.ndarray
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple.
- Returns
A
FlaxBaseModelOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (~transformers.
) and inputs.last_hidden_state (
jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) – Sequence of hidden-states at the output of the last layer of the model.hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> from transformers import T5Tokenizer, FlaxT5ForConditionalGeneration >>> tokenizer = T5Tokenizer.from_pretrained('t5-small') >>> model = FlaxT5ForConditionalGeneration.from_pretrained('t5-small') >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, return_tensors='np') >>> encoder_outputs = model.encode(**inputs)
- Return type
FlaxBaseModelOutput
ortuple(torch.FloatTensor)
-
FlaxT5ForConditionalGeneration¶
-
class
transformers.
FlaxT5ForConditionalGeneration
(config: transformers.models.t5.configuration_t5.T5Config, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: numpy.dtype = <class 'jax._src.numpy.lax_numpy.float32'>, **kwargs)[source]¶ -
__call__
(input_ids: jax._src.numpy.lax_numpy.ndarray, attention_mask: Optional[jax._src.numpy.lax_numpy.ndarray] = None, decoder_input_ids: jax._src.numpy.lax_numpy.ndarray = None, decoder_attention_mask: Optional[jax._src.numpy.lax_numpy.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: jax._src.random.PRNGKey = None)¶ The
FlaxT5PreTrainedModel
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
jnp.ndarray
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.
Indices can be obtained using
T5Tokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for detail.To know more on how to prepare
input_ids
for pretraining take a look a T5 Training.attention_mask (
jnp.ndarray
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (
jnp.ndarray
of shape(batch_size, target_sequence_length)
, optional) –Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using
T5Tokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.T5 uses the
pad_token_id
as the starting token fordecoder_input_ids
generation. Ifpast_key_values
is used, optionally only the lastdecoder_input_ids
have to be input (seepast_key_values
).To know more on how to prepare
decoder_input_ids
for pretraining take a look at T5 Training.decoder_attention_mask (
jnp.ndarray
of shape(batch_size, target_sequence_length)
, optional) – Default behavior: generate a tensor that ignores pad tokens indecoder_input_ids
. Causal mask will also be used by default.encoder_outputs (
tuple(tuple(jnp.ndarray)
, optional) – Tuple consists of (last_hidden_state
,optional
: hidden_states,optional
: attentions)last_hidden_state
of shape(batch_size, sequence_length, hidden_size)
is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.past_key_values (
tuple(tuple(jnp.ndarray))
of lengthconfig.n_layers
with each tuple having 4 tensors of shape(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) –Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If
past_key_values
are used, the user can optionally input only the lastdecoder_input_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of alldecoder_input_ids
of shape(batch_size, sequence_length)
.output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple.
- Returns
A
FlaxSeq2SeqLMOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (T5Config
) and inputs.logits (
jnp.ndarray
of shape(batch_size, sequence_length, config.vocab_size)
) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).past_key_values (
tuple(tuple(jnp.ndarray))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) – Tuple oftuple(jnp.ndarray)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.decoder_hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (
jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
, optional) – Sequence of hidden-states at the output of the last layer of the encoder of the model.encoder_hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
FlaxSeq2SeqLMOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import T5Tokenizer, FlaxT5ForConditionalGeneration >>> tokenizer = T5Tokenizer.from_pretrained('t5-small') >>> model = FlaxT5ForConditionalGeneration.from_pretrained('t5-small') >>> ARTICLE_TO_SUMMARIZE = "summarize: My friends are cool but they eat too many carbs." >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], return_tensors='np') >>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids']).sequences >>> print(tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False))
-
decode
(decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jax._src.numpy.lax_numpy.ndarray] = None, decoder_attention_mask: Optional[jax._src.numpy.lax_numpy.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: jax._src.random.PRNGKey = None)[source]¶ - Parameters
decoder_input_ids (
jnp.ndarray
of shape(batch_size, target_sequence_length)
) –Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using
T5Tokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.For training,
decoder_input_ids
should be provided.encoder_outputs (
tuple(tuple(jnp.ndarray)
) – Tuple consists of (last_hidden_state
, optional:hidden_states
, optional:attentions
)last_hidden_state
of shape(batch_size, sequence_length, hidden_size)
, optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.encoder_attention_mask (
jnp.ndarray
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
decoder_attention_mask (
jnp.ndarray
of shape(batch_size, target_sequence_length)
, optional) –Default behavior: generate a tensor that ignores pad tokens in
decoder_input_ids
. Causal mask will also be used by default.If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
past_key_values (
Dict[str, np.ndarray]
, optional, returned byinit_cache
or when passing previouspast_key_values
) – Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape [batch_size, max_length].output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple.
- Returns
A
FlaxCausalLMOutputWithCrossAttentions
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (~transformers.
) and inputs.logits (
jnp.ndarray
of shape(batch_size, sequence_length, config.vocab_size)
) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
past_key_values (
tuple(tuple(jnp.ndarray))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) – Tuple ofjnp.ndarray
tuples of lengthconfig.n_layers
, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant ifconfig.is_decoder = True
.Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.
Example:
>>> from transformers import T5Tokenizer, FlaxT5ForConditionalGeneration >>> import jax.numpy as jnp >>> tokenizer = T5Tokenizer.from_pretrained('t5-small') >>> model = FlaxT5ForConditionalGeneration.from_pretrained('t5-small') >>> text = "summarize: My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, return_tensors='np') >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits
- Return type
FlaxCausalLMOutputWithCrossAttentions
ortuple(torch.FloatTensor)
-
encode
(input_ids: jax._src.numpy.lax_numpy.ndarray, attention_mask: Optional[jax._src.numpy.lax_numpy.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: jax._src.random.PRNGKey = None)¶ - Parameters
input_ids (
jnp.ndarray
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.
Indices can be obtained using
T5Tokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for detail.To know more on how to prepare
input_ids
for pretraining take a look a T5 Training.attention_mask (
jnp.ndarray
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
output_attentions (
bool
, optional) – Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – Whether or not to return aModelOutput
instead of a plain tuple.
- Returns
A
FlaxBaseModelOutput
or a tuple oftorch.FloatTensor
(ifreturn_dict=False
is passed or whenconfig.return_dict=False
) comprising various elements depending on the configuration (~transformers.
) and inputs.last_hidden_state (
jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) – Sequence of hidden-states at the output of the last layer of the model.hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> from transformers import T5Tokenizer, FlaxT5ForConditionalGeneration >>> tokenizer = T5Tokenizer.from_pretrained('t5-small') >>> model = FlaxT5ForConditionalGeneration.from_pretrained('t5-small') >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, return_tensors='np') >>> encoder_outputs = model.encode(**inputs)
- Return type
FlaxBaseModelOutput
ortuple(torch.FloatTensor)
-