Source code for transformers.models.herbert.tokenization_herbert

# coding=utf-8
# Copyright 2020 The Google AI Language Team Authors, Allegro.pl, Facebook Inc. and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...utils import logging
from ..bert.tokenization_bert import BasicTokenizer
from ..xlm.tokenization_xlm import XLMTokenizer


logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {
    "vocab_file": "vocab.json",
    "merges_file": "merges.txt",
}

PRETRAINED_VOCAB_FILES_MAP = {
    "vocab_file": {
        "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json"
    },
    "merges_file": {
        "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt"
    },
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"allegro/herbert-base-cased": 514}
PRETRAINED_INIT_CONFIGURATION = {}


[docs]class HerbertTokenizer(XLMTokenizer): """ Construct a BPE tokenizer for HerBERT. Peculiarities: - uses BERT's pre-tokenizer: BaseTokenizer splits tokens on spaces, and also on punctuation. Each occurrence of a punctuation character will be treated separately. - Such pretokenized input is BPE subtokenized This tokenizer inherits from :class:`~transformers.XLMTokenizer` which contains most of the methods. Users should refer to the superclass for more information regarding methods. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, merges_file, tokenizer_file=None, cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", sep_token="</s>", do_lowercase_and_remove_accent=False, **kwargs ): super().__init__( vocab_file, merges_file, tokenizer_file=None, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, sep_token=sep_token, do_lowercase_and_remove_accent=do_lowercase_and_remove_accent, **kwargs, ) self.bert_pre_tokenizer = BasicTokenizer( do_lower_case=False, never_split=self.all_special_tokens, tokenize_chinese_chars=False, strip_accents=False, ) def _tokenize(self, text): pre_tokens = self.bert_pre_tokenizer.tokenize(text) split_tokens = [] for token in pre_tokens: if token: split_tokens.extend([t for t in self.bpe(token).split(" ")]) return split_tokens