# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ELECTRA model configuration """
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/electra-small-generator": "https://huggingface.co/google/electra-small-generator/resolve/main/config.json",
"google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/config.json",
"google/electra-large-generator": "https://huggingface.co/google/electra-large-generator/resolve/main/config.json",
"google/electra-small-discriminator": "https://huggingface.co/google/electra-small-discriminator/resolve/main/config.json",
"google/electra-base-discriminator": "https://huggingface.co/google/electra-base-discriminator/resolve/main/config.json",
"google/electra-large-discriminator": "https://huggingface.co/google/electra-large-discriminator/resolve/main/config.json",
}
[docs]class ElectraConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.ElectraModel` or a
:class:`~transformers.TFElectraModel`. It is used to instantiate a ELECTRA model according to the specified
arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar
configuration to that of the ELECTRA `google/electra-small-discriminator
<https://huggingface.co/google/electra-small-discriminator>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 30522):
Vocabulary size of the ELECTRA model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.ElectraModel` or
:class:`~transformers.TFElectraModel`.
embedding_size (:obj:`int`, `optional`, defaults to 128):
Dimensionality of the encoder layers and the pooler layer.
hidden_size (:obj:`int`, `optional`, defaults to 256):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (:obj:`int`, `optional`, defaults to 4):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (:obj:`int`, `optional`, defaults to 1024):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (:obj:`int`, `optional`, defaults to 2):
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.ElectraModel` or
:class:`~transformers.TFElectraModel`.
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
The epsilon used by the layer normalization layers.
summary_type (:obj:`str`, `optional`, defaults to :obj:`"first"`):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Has to be one of the following options:
- :obj:`"last"`: Take the last token hidden state (like XLNet).
- :obj:`"first"`: Take the first token hidden state (like BERT).
- :obj:`"mean"`: Take the mean of all tokens hidden states.
- :obj:`"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- :obj:`"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (:obj:`bool`, `optional`, defaults to :obj:`True`):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Whether or not to add a projection after the vector extraction.
summary_activation (:obj:`str`, `optional`):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Pass :obj:`"gelu"` for a gelu activation to the output, any other value will result in no activation.
summary_last_dropout (:obj:`float`, `optional`, defaults to 0.0):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
The dropout ratio to be used after the projection and activation.
position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`):
Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`,
:obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on
:obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.)
<https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to
`Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)
<https://arxiv.org/abs/2009.13658>`__.
classifier_dropout (:obj:`float`, `optional`):
The dropout ratio for the classification head.
Examples::
>>> from transformers import ElectraModel, ElectraConfig
>>> # Initializing a ELECTRA electra-base-uncased style configuration
>>> configuration = ElectraConfig()
>>> # Initializing a model from the electra-base-uncased style configuration
>>> model = ElectraModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "electra"
def __init__(
self,
vocab_size=30522,
embedding_size=128,
hidden_size=256,
num_hidden_layers=12,
num_attention_heads=4,
intermediate_size=1024,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
summary_type="first",
summary_use_proj=True,
summary_activation="gelu",
summary_last_dropout=0.1,
pad_token_id=0,
position_embedding_type="absolute",
classifier_dropout=None,
**kwargs
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_last_dropout = summary_last_dropout
self.position_embedding_type = position_embedding_type
self.classifier_dropout = classifier_dropout