# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from functools import partial
from multiprocessing import Pool, cpu_count
import numpy as np
from tqdm import tqdm
from ...file_utils import is_tf_available, is_torch_available
from ...models.bert.tokenization_bert import whitespace_tokenize
from ...tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase, TruncationStrategy
from ...utils import logging
from .utils import DataProcessor
# Store the tokenizers which insert 2 separators tokens
MULTI_SEP_TOKENS_TOKENIZERS_SET = {"roberta", "camembert", "bart", "mpnet"}
if is_torch_available():
import torch
from torch.utils.data import TensorDataset
if is_tf_available():
import tensorflow as tf
logger = logging.get_logger(__name__)
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text):
"""Returns tokenized answer spans that better match the annotated answer."""
tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))
for new_start in range(input_start, input_end + 1):
for new_end in range(input_end, new_start - 1, -1):
text_span = " ".join(doc_tokens[new_start : (new_end + 1)])
if text_span == tok_answer_text:
return (new_start, new_end)
return (input_start, input_end)
def _check_is_max_context(doc_spans, cur_span_index, position):
"""Check if this is the 'max context' doc span for the token."""
best_score = None
best_span_index = None
for (span_index, doc_span) in enumerate(doc_spans):
end = doc_span.start + doc_span.length - 1
if position < doc_span.start:
continue
if position > end:
continue
num_left_context = position - doc_span.start
num_right_context = end - position
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
if best_score is None or score > best_score:
best_score = score
best_span_index = span_index
return cur_span_index == best_span_index
def _new_check_is_max_context(doc_spans, cur_span_index, position):
"""Check if this is the 'max context' doc span for the token."""
# if len(doc_spans) == 1:
# return True
best_score = None
best_span_index = None
for (span_index, doc_span) in enumerate(doc_spans):
end = doc_span["start"] + doc_span["length"] - 1
if position < doc_span["start"]:
continue
if position > end:
continue
num_left_context = position - doc_span["start"]
num_right_context = end - position
score = min(num_left_context, num_right_context) + 0.01 * doc_span["length"]
if best_score is None or score > best_score:
best_score = score
best_span_index = span_index
return cur_span_index == best_span_index
def _is_whitespace(c):
if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
return True
return False
def squad_convert_example_to_features(
example, max_seq_length, doc_stride, max_query_length, padding_strategy, is_training
):
features = []
if is_training and not example.is_impossible:
# Get start and end position
start_position = example.start_position
end_position = example.end_position
# If the answer cannot be found in the text, then skip this example.
actual_text = " ".join(example.doc_tokens[start_position : (end_position + 1)])
cleaned_answer_text = " ".join(whitespace_tokenize(example.answer_text))
if actual_text.find(cleaned_answer_text) == -1:
logger.warning(f"Could not find answer: '{actual_text}' vs. '{cleaned_answer_text}'")
return []
tok_to_orig_index = []
orig_to_tok_index = []
all_doc_tokens = []
for (i, token) in enumerate(example.doc_tokens):
orig_to_tok_index.append(len(all_doc_tokens))
if tokenizer.__class__.__name__ in [
"RobertaTokenizer",
"LongformerTokenizer",
"BartTokenizer",
"RobertaTokenizerFast",
"LongformerTokenizerFast",
"BartTokenizerFast",
]:
sub_tokens = tokenizer.tokenize(token, add_prefix_space=True)
else:
sub_tokens = tokenizer.tokenize(token)
for sub_token in sub_tokens:
tok_to_orig_index.append(i)
all_doc_tokens.append(sub_token)
if is_training and not example.is_impossible:
tok_start_position = orig_to_tok_index[example.start_position]
if example.end_position < len(example.doc_tokens) - 1:
tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
else:
tok_end_position = len(all_doc_tokens) - 1
(tok_start_position, tok_end_position) = _improve_answer_span(
all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.answer_text
)
spans = []
truncated_query = tokenizer.encode(
example.question_text, add_special_tokens=False, truncation=True, max_length=max_query_length
)
# Tokenizers who insert 2 SEP tokens in-between <context> & <question> need to have special handling
# in the way they compute mask of added tokens.
tokenizer_type = type(tokenizer).__name__.replace("Tokenizer", "").lower()
sequence_added_tokens = (
tokenizer.model_max_length - tokenizer.max_len_single_sentence + 1
if tokenizer_type in MULTI_SEP_TOKENS_TOKENIZERS_SET
else tokenizer.model_max_length - tokenizer.max_len_single_sentence
)
sequence_pair_added_tokens = tokenizer.model_max_length - tokenizer.max_len_sentences_pair
span_doc_tokens = all_doc_tokens
while len(spans) * doc_stride < len(all_doc_tokens):
# Define the side we want to truncate / pad and the text/pair sorting
if tokenizer.padding_side == "right":
texts = truncated_query
pairs = span_doc_tokens
truncation = TruncationStrategy.ONLY_SECOND.value
else:
texts = span_doc_tokens
pairs = truncated_query
truncation = TruncationStrategy.ONLY_FIRST.value
encoded_dict = tokenizer.encode_plus( # TODO(thom) update this logic
texts,
pairs,
truncation=truncation,
padding=padding_strategy,
max_length=max_seq_length,
return_overflowing_tokens=True,
stride=max_seq_length - doc_stride - len(truncated_query) - sequence_pair_added_tokens,
return_token_type_ids=True,
)
paragraph_len = min(
len(all_doc_tokens) - len(spans) * doc_stride,
max_seq_length - len(truncated_query) - sequence_pair_added_tokens,
)
if tokenizer.pad_token_id in encoded_dict["input_ids"]:
if tokenizer.padding_side == "right":
non_padded_ids = encoded_dict["input_ids"][: encoded_dict["input_ids"].index(tokenizer.pad_token_id)]
else:
last_padding_id_position = (
len(encoded_dict["input_ids"]) - 1 - encoded_dict["input_ids"][::-1].index(tokenizer.pad_token_id)
)
non_padded_ids = encoded_dict["input_ids"][last_padding_id_position + 1 :]
else:
non_padded_ids = encoded_dict["input_ids"]
tokens = tokenizer.convert_ids_to_tokens(non_padded_ids)
token_to_orig_map = {}
for i in range(paragraph_len):
index = len(truncated_query) + sequence_added_tokens + i if tokenizer.padding_side == "right" else i
token_to_orig_map[index] = tok_to_orig_index[len(spans) * doc_stride + i]
encoded_dict["paragraph_len"] = paragraph_len
encoded_dict["tokens"] = tokens
encoded_dict["token_to_orig_map"] = token_to_orig_map
encoded_dict["truncated_query_with_special_tokens_length"] = len(truncated_query) + sequence_added_tokens
encoded_dict["token_is_max_context"] = {}
encoded_dict["start"] = len(spans) * doc_stride
encoded_dict["length"] = paragraph_len
spans.append(encoded_dict)
if "overflowing_tokens" not in encoded_dict or (
"overflowing_tokens" in encoded_dict and len(encoded_dict["overflowing_tokens"]) == 0
):
break
span_doc_tokens = encoded_dict["overflowing_tokens"]
for doc_span_index in range(len(spans)):
for j in range(spans[doc_span_index]["paragraph_len"]):
is_max_context = _new_check_is_max_context(spans, doc_span_index, doc_span_index * doc_stride + j)
index = (
j
if tokenizer.padding_side == "left"
else spans[doc_span_index]["truncated_query_with_special_tokens_length"] + j
)
spans[doc_span_index]["token_is_max_context"][index] = is_max_context
for span in spans:
# Identify the position of the CLS token
cls_index = span["input_ids"].index(tokenizer.cls_token_id)
# p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer)
# Original TF implementation also keep the classification token (set to 0)
p_mask = np.ones_like(span["token_type_ids"])
if tokenizer.padding_side == "right":
p_mask[len(truncated_query) + sequence_added_tokens :] = 0
else:
p_mask[-len(span["tokens"]) : -(len(truncated_query) + sequence_added_tokens)] = 0
pad_token_indices = np.where(span["input_ids"] == tokenizer.pad_token_id)
special_token_indices = np.asarray(
tokenizer.get_special_tokens_mask(span["input_ids"], already_has_special_tokens=True)
).nonzero()
p_mask[pad_token_indices] = 1
p_mask[special_token_indices] = 1
# Set the cls index to 0: the CLS index can be used for impossible answers
p_mask[cls_index] = 0
span_is_impossible = example.is_impossible
start_position = 0
end_position = 0
if is_training and not span_is_impossible:
# For training, if our document chunk does not contain an annotation
# we throw it out, since there is nothing to predict.
doc_start = span["start"]
doc_end = span["start"] + span["length"] - 1
out_of_span = False
if not (tok_start_position >= doc_start and tok_end_position <= doc_end):
out_of_span = True
if out_of_span:
start_position = cls_index
end_position = cls_index
span_is_impossible = True
else:
if tokenizer.padding_side == "left":
doc_offset = 0
else:
doc_offset = len(truncated_query) + sequence_added_tokens
start_position = tok_start_position - doc_start + doc_offset
end_position = tok_end_position - doc_start + doc_offset
features.append(
SquadFeatures(
span["input_ids"],
span["attention_mask"],
span["token_type_ids"],
cls_index,
p_mask.tolist(),
example_index=0, # Can not set unique_id and example_index here. They will be set after multiple processing.
unique_id=0,
paragraph_len=span["paragraph_len"],
token_is_max_context=span["token_is_max_context"],
tokens=span["tokens"],
token_to_orig_map=span["token_to_orig_map"],
start_position=start_position,
end_position=end_position,
is_impossible=span_is_impossible,
qas_id=example.qas_id,
)
)
return features
def squad_convert_example_to_features_init(tokenizer_for_convert: PreTrainedTokenizerBase):
global tokenizer
tokenizer = tokenizer_for_convert
def squad_convert_examples_to_features(
examples,
tokenizer,
max_seq_length,
doc_stride,
max_query_length,
is_training,
padding_strategy="max_length",
return_dataset=False,
threads=1,
tqdm_enabled=True,
):
"""
Converts a list of examples into a list of features that can be directly given as input to a model. It is
model-dependant and takes advantage of many of the tokenizer's features to create the model's inputs.
Args:
examples: list of :class:`~transformers.data.processors.squad.SquadExample`
tokenizer: an instance of a child of :class:`~transformers.PreTrainedTokenizer`
max_seq_length: The maximum sequence length of the inputs.
doc_stride: The stride used when the context is too large and is split across several features.
max_query_length: The maximum length of the query.
is_training: whether to create features for model evaluation or model training.
padding_strategy: Default to "max_length". Which padding strategy to use
return_dataset: Default False. Either 'pt' or 'tf'.
if 'pt': returns a torch.data.TensorDataset, if 'tf': returns a tf.data.Dataset
threads: multiple processing threads.
Returns:
list of :class:`~transformers.data.processors.squad.SquadFeatures`
Example::
processor = SquadV2Processor()
examples = processor.get_dev_examples(data_dir)
features = squad_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=not evaluate,
)
"""
# Defining helper methods
features = []
threads = min(threads, cpu_count())
with Pool(threads, initializer=squad_convert_example_to_features_init, initargs=(tokenizer,)) as p:
annotate_ = partial(
squad_convert_example_to_features,
max_seq_length=max_seq_length,
doc_stride=doc_stride,
max_query_length=max_query_length,
padding_strategy=padding_strategy,
is_training=is_training,
)
features = list(
tqdm(
p.imap(annotate_, examples, chunksize=32),
total=len(examples),
desc="convert squad examples to features",
disable=not tqdm_enabled,
)
)
new_features = []
unique_id = 1000000000
example_index = 0
for example_features in tqdm(
features, total=len(features), desc="add example index and unique id", disable=not tqdm_enabled
):
if not example_features:
continue
for example_feature in example_features:
example_feature.example_index = example_index
example_feature.unique_id = unique_id
new_features.append(example_feature)
unique_id += 1
example_index += 1
features = new_features
del new_features
if return_dataset == "pt":
if not is_torch_available():
raise RuntimeError("PyTorch must be installed to return a PyTorch dataset.")
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_masks = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
all_is_impossible = torch.tensor([f.is_impossible for f in features], dtype=torch.float)
if not is_training:
all_feature_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
dataset = TensorDataset(
all_input_ids, all_attention_masks, all_token_type_ids, all_feature_index, all_cls_index, all_p_mask
)
else:
all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
dataset = TensorDataset(
all_input_ids,
all_attention_masks,
all_token_type_ids,
all_start_positions,
all_end_positions,
all_cls_index,
all_p_mask,
all_is_impossible,
)
return features, dataset
elif return_dataset == "tf":
if not is_tf_available():
raise RuntimeError("TensorFlow must be installed to return a TensorFlow dataset.")
def gen():
for i, ex in enumerate(features):
if ex.token_type_ids is None:
yield (
{
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"feature_index": i,
"qas_id": ex.qas_id,
},
{
"start_positions": ex.start_position,
"end_positions": ex.end_position,
"cls_index": ex.cls_index,
"p_mask": ex.p_mask,
"is_impossible": ex.is_impossible,
},
)
else:
yield (
{
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
"feature_index": i,
"qas_id": ex.qas_id,
},
{
"start_positions": ex.start_position,
"end_positions": ex.end_position,
"cls_index": ex.cls_index,
"p_mask": ex.p_mask,
"is_impossible": ex.is_impossible,
},
)
# Why have we split the batch into a tuple? PyTorch just has a list of tensors.
if "token_type_ids" in tokenizer.model_input_names:
train_types = (
{
"input_ids": tf.int32,
"attention_mask": tf.int32,
"token_type_ids": tf.int32,
"feature_index": tf.int64,
"qas_id": tf.string,
},
{
"start_positions": tf.int64,
"end_positions": tf.int64,
"cls_index": tf.int64,
"p_mask": tf.int32,
"is_impossible": tf.int32,
},
)
train_shapes = (
{
"input_ids": tf.TensorShape([None]),
"attention_mask": tf.TensorShape([None]),
"token_type_ids": tf.TensorShape([None]),
"feature_index": tf.TensorShape([]),
"qas_id": tf.TensorShape([]),
},
{
"start_positions": tf.TensorShape([]),
"end_positions": tf.TensorShape([]),
"cls_index": tf.TensorShape([]),
"p_mask": tf.TensorShape([None]),
"is_impossible": tf.TensorShape([]),
},
)
else:
train_types = (
{"input_ids": tf.int32, "attention_mask": tf.int32, "feature_index": tf.int64, "qas_id": tf.string},
{
"start_positions": tf.int64,
"end_positions": tf.int64,
"cls_index": tf.int64,
"p_mask": tf.int32,
"is_impossible": tf.int32,
},
)
train_shapes = (
{
"input_ids": tf.TensorShape([None]),
"attention_mask": tf.TensorShape([None]),
"feature_index": tf.TensorShape([]),
"qas_id": tf.TensorShape([]),
},
{
"start_positions": tf.TensorShape([]),
"end_positions": tf.TensorShape([]),
"cls_index": tf.TensorShape([]),
"p_mask": tf.TensorShape([None]),
"is_impossible": tf.TensorShape([]),
},
)
return tf.data.Dataset.from_generator(gen, train_types, train_shapes)
else:
return features
[docs]class SquadProcessor(DataProcessor):
"""
Processor for the SQuAD data set. overridden by SquadV1Processor and SquadV2Processor, used by the version 1.1 and
version 2.0 of SQuAD, respectively.
"""
train_file = None
dev_file = None
def _get_example_from_tensor_dict(self, tensor_dict, evaluate=False):
if not evaluate:
answer = tensor_dict["answers"]["text"][0].numpy().decode("utf-8")
answer_start = tensor_dict["answers"]["answer_start"][0].numpy()
answers = []
else:
answers = [
{"answer_start": start.numpy(), "text": text.numpy().decode("utf-8")}
for start, text in zip(tensor_dict["answers"]["answer_start"], tensor_dict["answers"]["text"])
]
answer = None
answer_start = None
return SquadExample(
qas_id=tensor_dict["id"].numpy().decode("utf-8"),
question_text=tensor_dict["question"].numpy().decode("utf-8"),
context_text=tensor_dict["context"].numpy().decode("utf-8"),
answer_text=answer,
start_position_character=answer_start,
title=tensor_dict["title"].numpy().decode("utf-8"),
answers=answers,
)
[docs] def get_examples_from_dataset(self, dataset, evaluate=False):
"""
Creates a list of :class:`~transformers.data.processors.squad.SquadExample` using a TFDS dataset.
Args:
dataset: The tfds dataset loaded from `tensorflow_datasets.load("squad")`
evaluate: Boolean specifying if in evaluation mode or in training mode
Returns:
List of SquadExample
Examples::
>>> import tensorflow_datasets as tfds
>>> dataset = tfds.load("squad")
>>> training_examples = get_examples_from_dataset(dataset, evaluate=False)
>>> evaluation_examples = get_examples_from_dataset(dataset, evaluate=True)
"""
if evaluate:
dataset = dataset["validation"]
else:
dataset = dataset["train"]
examples = []
for tensor_dict in tqdm(dataset):
examples.append(self._get_example_from_tensor_dict(tensor_dict, evaluate=evaluate))
return examples
[docs] def get_train_examples(self, data_dir, filename=None):
"""
Returns the training examples from the data directory.
Args:
data_dir: Directory containing the data files used for training and evaluating.
filename: None by default, specify this if the training file has a different name than the original one
which is `train-v1.1.json` and `train-v2.0.json` for squad versions 1.1 and 2.0 respectively.
"""
if data_dir is None:
data_dir = ""
if self.train_file is None:
raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor")
with open(
os.path.join(data_dir, self.train_file if filename is None else filename), "r", encoding="utf-8"
) as reader:
input_data = json.load(reader)["data"]
return self._create_examples(input_data, "train")
[docs] def get_dev_examples(self, data_dir, filename=None):
"""
Returns the evaluation example from the data directory.
Args:
data_dir: Directory containing the data files used for training and evaluating.
filename: None by default, specify this if the evaluation file has a different name than the original one
which is `dev-v1.1.json` and `dev-v2.0.json` for squad versions 1.1 and 2.0 respectively.
"""
if data_dir is None:
data_dir = ""
if self.dev_file is None:
raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor")
with open(
os.path.join(data_dir, self.dev_file if filename is None else filename), "r", encoding="utf-8"
) as reader:
input_data = json.load(reader)["data"]
return self._create_examples(input_data, "dev")
def _create_examples(self, input_data, set_type):
is_training = set_type == "train"
examples = []
for entry in tqdm(input_data):
title = entry["title"]
for paragraph in entry["paragraphs"]:
context_text = paragraph["context"]
for qa in paragraph["qas"]:
qas_id = qa["id"]
question_text = qa["question"]
start_position_character = None
answer_text = None
answers = []
is_impossible = qa.get("is_impossible", False)
if not is_impossible:
if is_training:
answer = qa["answers"][0]
answer_text = answer["text"]
start_position_character = answer["answer_start"]
else:
answers = qa["answers"]
example = SquadExample(
qas_id=qas_id,
question_text=question_text,
context_text=context_text,
answer_text=answer_text,
start_position_character=start_position_character,
title=title,
is_impossible=is_impossible,
answers=answers,
)
examples.append(example)
return examples
class SquadV1Processor(SquadProcessor):
train_file = "train-v1.1.json"
dev_file = "dev-v1.1.json"
class SquadV2Processor(SquadProcessor):
train_file = "train-v2.0.json"
dev_file = "dev-v2.0.json"
class SquadExample:
"""
A single training/test example for the Squad dataset, as loaded from disk.
Args:
qas_id: The example's unique identifier
question_text: The question string
context_text: The context string
answer_text: The answer string
start_position_character: The character position of the start of the answer
title: The title of the example
answers: None by default, this is used during evaluation. Holds answers as well as their start positions.
is_impossible: False by default, set to True if the example has no possible answer.
"""
def __init__(
self,
qas_id,
question_text,
context_text,
answer_text,
start_position_character,
title,
answers=[],
is_impossible=False,
):
self.qas_id = qas_id
self.question_text = question_text
self.context_text = context_text
self.answer_text = answer_text
self.title = title
self.is_impossible = is_impossible
self.answers = answers
self.start_position, self.end_position = 0, 0
doc_tokens = []
char_to_word_offset = []
prev_is_whitespace = True
# Split on whitespace so that different tokens may be attributed to their original position.
for c in self.context_text:
if _is_whitespace(c):
prev_is_whitespace = True
else:
if prev_is_whitespace:
doc_tokens.append(c)
else:
doc_tokens[-1] += c
prev_is_whitespace = False
char_to_word_offset.append(len(doc_tokens) - 1)
self.doc_tokens = doc_tokens
self.char_to_word_offset = char_to_word_offset
# Start and end positions only has a value during evaluation.
if start_position_character is not None and not is_impossible:
self.start_position = char_to_word_offset[start_position_character]
self.end_position = char_to_word_offset[
min(start_position_character + len(answer_text) - 1, len(char_to_word_offset) - 1)
]
class SquadFeatures:
"""
Single squad example features to be fed to a model. Those features are model-specific and can be crafted from
:class:`~transformers.data.processors.squad.SquadExample` using the
:method:`~transformers.data.processors.squad.squad_convert_examples_to_features` method.
Args:
input_ids: Indices of input sequence tokens in the vocabulary.
attention_mask: Mask to avoid performing attention on padding token indices.
token_type_ids: Segment token indices to indicate first and second portions of the inputs.
cls_index: the index of the CLS token.
p_mask: Mask identifying tokens that can be answers vs. tokens that cannot.
Mask with 1 for tokens than cannot be in the answer and 0 for token that can be in an answer
example_index: the index of the example
unique_id: The unique Feature identifier
paragraph_len: The length of the context
token_is_max_context: List of booleans identifying which tokens have their maximum context in this feature object.
If a token does not have their maximum context in this feature object, it means that another feature object
has more information related to that token and should be prioritized over this feature for that token.
tokens: list of tokens corresponding to the input ids
token_to_orig_map: mapping between the tokens and the original text, needed in order to identify the answer.
start_position: start of the answer token index
end_position: end of the answer token index
encoding: optionally store the BatchEncoding with the fast-tokenizer alignment methods.
"""
def __init__(
self,
input_ids,
attention_mask,
token_type_ids,
cls_index,
p_mask,
example_index,
unique_id,
paragraph_len,
token_is_max_context,
tokens,
token_to_orig_map,
start_position,
end_position,
is_impossible,
qas_id: str = None,
encoding: BatchEncoding = None,
):
self.input_ids = input_ids
self.attention_mask = attention_mask
self.token_type_ids = token_type_ids
self.cls_index = cls_index
self.p_mask = p_mask
self.example_index = example_index
self.unique_id = unique_id
self.paragraph_len = paragraph_len
self.token_is_max_context = token_is_max_context
self.tokens = tokens
self.token_to_orig_map = token_to_orig_map
self.start_position = start_position
self.end_position = end_position
self.is_impossible = is_impossible
self.qas_id = qas_id
self.encoding = encoding
class SquadResult:
"""
Constructs a SquadResult which can be used to evaluate a model's output on the SQuAD dataset.
Args:
unique_id: The unique identifier corresponding to that example.
start_logits: The logits corresponding to the start of the answer
end_logits: The logits corresponding to the end of the answer
"""
def __init__(self, unique_id, start_logits, end_logits, start_top_index=None, end_top_index=None, cls_logits=None):
self.start_logits = start_logits
self.end_logits = end_logits
self.unique_id = unique_id
if start_top_index:
self.start_top_index = start_top_index
self.end_top_index = end_top_index
self.cls_logits = cls_logits