Source code for transformers.modeling_tf_flaubert

# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 Flaubert model.
"""

import random

import tensorflow as tf

from .configuration_flaubert import FlaubertConfig
from .file_utils import add_start_docstrings
from .modeling_tf_outputs import TFBaseModelOutput
from .modeling_tf_utils import keras_serializable, shape_list
from .modeling_tf_xlm import (
    TFXLMForMultipleChoice,
    TFXLMForQuestionAnsweringSimple,
    TFXLMForSequenceClassification,
    TFXLMForTokenClassification,
    TFXLMMainLayer,
    TFXLMModel,
    TFXLMPredLayer,
    TFXLMWithLMHeadModel,
    get_masks,
)
from .tokenization_utils import BatchEncoding
from .utils import logging


logger = logging.get_logger(__name__)

TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    # See all Flaubert models at https://huggingface.co/models?filter=flaubert
]

FLAUBERT_START_DOCSTRING = r"""

    This model is a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ sub-class.
    Use it as a regular TF 2.0 Keras Model and
    refer to the TF 2.0 documentation for all matter related to general usage and behavior.

    Parameters:
        config (:class:`~transformers.FlaubertConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

FLAUBERT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.
            Indices can be obtained using :class:`transformers.BertTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
            :func:`transformers.PreTrainedTokenizer.__call__` for details.
            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
            `What are attention masks? <../glossary.html#attention-mask>`__
        langs (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            A parallel sequence of tokens to be used to indicate the language of each token in the input.
            Indices are languages ids which can be obtained from the language names by using two conversion mappings
            provided in the configuration of the model (only provided for multilingual models).
            More precisely, the `language name -> language id` mapping is in `model.config.lang2id` (dict str -> int) and
            the `language id -> language name` mapping is `model.config.id2lang` (dict int -> str).
            See usage examples detailed in the `multilingual documentation <https://huggingface.co/transformers/multilingual.html>`__.
        token_type_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
            `What are token type IDs? <../glossary.html#token-type-ids>`_
        position_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
            `What are position IDs? <../glossary.html#position-ids>`_
        lengths (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size,)`, `optional`):
            Length of each sentence that can be used to avoid performing attention on padding token indices.
            You can also use `attention_mask` for the same result (see above), kept here for compatbility.
            Indices selected in ``[0, ..., input_ids.size(-1)]``:
        cache (:obj:`Dict[str, tf.Tensor]`, `optional`):
            dictionary with ``tf.Tensor`` that contains pre-computed
            hidden-states (key and values in the attention blocks) as computed by the model
            (see `cache` output below). Can be used to speed up sequential decoding.
            The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
        head_mask (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
        inputs_embeds (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
        output_attentions (:obj:`bool`, `optional`):
            If set to ``True``, the attentions tensors of all attention layers are returned. See ``attentions`` under returned tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`):
            If set to ``True``, the hidden states of all layers are returned. See ``hidden_states`` under returned tensors for more detail.
        return_dict (:obj:`bool`, `optional`):
            If set to ``True``, the model will return a :class:`~transformers.file_utils.ModelOutput` instead of a
            plain tuple.
"""


[docs]@add_start_docstrings( "The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.", FLAUBERT_START_DOCSTRING, ) class TFFlaubertModel(TFXLMModel): config_class = FlaubertConfig def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer")
@keras_serializable class TFFlaubertMainLayer(TFXLMMainLayer): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.layerdrop = getattr(config, "layerdrop", 0.0) self.pre_norm = getattr(config, "pre_norm", False) self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict def call( self, inputs, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): # removed: src_enc=None, src_len=None if isinstance(inputs, (tuple, list)): input_ids = inputs[0] attention_mask = inputs[1] if len(inputs) > 1 else attention_mask langs = inputs[2] if len(inputs) > 2 else langs token_type_ids = inputs[3] if len(inputs) > 3 else token_type_ids position_ids = inputs[4] if len(inputs) > 4 else position_ids lengths = inputs[5] if len(inputs) > 5 else lengths cache = inputs[6] if len(inputs) > 6 else cache head_mask = inputs[7] if len(inputs) > 7 else head_mask inputs_embeds = inputs[8] if len(inputs) > 8 else inputs_embeds output_attentions = inputs[9] if len(inputs) > 9 else output_attentions output_hidden_states = inputs[10] if len(inputs) > 10 else output_hidden_states return_dict = inputs[11] if len(inputs) > 11 else return_dict assert len(inputs) <= 12, "Too many inputs." elif isinstance(inputs, (dict, BatchEncoding)): input_ids = inputs.get("input_ids") attention_mask = inputs.get("attention_mask", attention_mask) langs = inputs.get("langs", langs) token_type_ids = inputs.get("token_type_ids", token_type_ids) position_ids = inputs.get("position_ids", position_ids) lengths = inputs.get("lengths", lengths) cache = inputs.get("cache", cache) head_mask = inputs.get("head_mask", head_mask) inputs_embeds = inputs.get("inputs_embeds", inputs_embeds) output_attentions = inputs.get("output_attentions", output_attentions) output_hidden_states = inputs.get("output_hidden_states", output_hidden_states) return_dict = inputs.get("return_dict", return_dict) assert len(inputs) <= 12, "Too many inputs." else: input_ids = inputs output_attentions = output_attentions if output_attentions is not None else self.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.output_hidden_states return_dict = return_dict if return_dict is not None else self.return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: bs, slen = shape_list(input_ids) elif inputs_embeds is not None: bs, slen = shape_list(inputs_embeds)[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if lengths is None: if input_ids is not None: lengths = tf.reduce_sum(tf.cast(tf.not_equal(input_ids, self.pad_index), dtype=tf.int32), axis=1) else: lengths = tf.convert_to_tensor([slen] * bs, tf.int32) # mask = input_ids != self.pad_index # check inputs # assert shape_list(lengths)[0] == bs tf.debugging.assert_equal( shape_list(lengths)[0], bs ), f"Expected batch size {shape_list(lengths)[0]} and received batch size {bs} mismatched" # assert lengths.max().item() <= slen # input_ids = input_ids.transpose(0, 1) # batch size as dimension 0 # assert (src_enc is None) == (src_len is None) # if src_enc is not None: # assert self.is_decoder # assert src_enc.size(0) == bs # generate masks mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask) # if self.is_decoder and src_enc is not None: # src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None] # position_ids if position_ids is None: position_ids = tf.expand_dims(tf.range(slen), axis=0) else: # assert shape_list(position_ids) == [bs, slen] # (slen, bs) tf.debugging.assert_equal( shape_list(position_ids), [bs, slen] ), f"Position id shape {shape_list(position_ids)} and input shape {[bs, slen]} mismatched" # position_ids = position_ids.transpose(0, 1) # langs if langs is not None: # assert shape_list(langs) == [bs, slen] # (slen, bs) tf.debugging.assert_equal( shape_list(langs), [bs, slen] ), f"Lang shape {shape_list(langs)} and input shape {[bs, slen]} mismatched" # langs = langs.transpose(0, 1) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.n_layers # do not recompute cached elements if cache is not None and input_ids is not None: _slen = slen - cache["slen"] input_ids = input_ids[:, -_slen:] position_ids = position_ids[:, -_slen:] if langs is not None: langs = langs[:, -_slen:] mask = mask[:, -_slen:] attn_mask = attn_mask[:, -_slen:] # embeddings if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids) tensor = inputs_embeds + self.position_embeddings(position_ids) if langs is not None and self.use_lang_emb: tensor = tensor + self.lang_embeddings(langs) if token_type_ids is not None: tensor = tensor + self.embeddings(token_type_ids) tensor = self.layer_norm_emb(tensor) tensor = self.dropout(tensor, training=training) tensor = tensor * mask[..., tf.newaxis] # transformer layers hidden_states = () if output_hidden_states else None attentions = () if output_attentions else None for i in range(self.n_layers): # LayerDrop dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue if output_hidden_states: hidden_states = hidden_states + (tensor,) # self attention if not self.pre_norm: attn_outputs = self.attentions[i]( tensor, attn_mask, None, cache, head_mask[i], output_attentions, training=training ) attn = attn_outputs[0] if output_attentions: attentions = attentions + (attn_outputs[1],) attn = self.dropout(attn, training=training) tensor = tensor + attn tensor = self.layer_norm1[i](tensor) else: tensor_normalized = self.layer_norm1[i](tensor) attn_outputs = self.attentions[i]( tensor_normalized, attn_mask, None, cache, head_mask[i], output_attentions, training=training ) attn = attn_outputs[0] if output_attentions: attentions = attentions + (attn_outputs[1],) attn = self.dropout(attn, training=training) tensor = tensor + attn # encoder attention (for decoder only) # if self.is_decoder and src_enc is not None: # attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache) # attn = F.dropout(attn, p=self.dropout, training=self.training) # tensor = tensor + attn # tensor = self.layer_norm15[i](tensor) # FFN if not self.pre_norm: tensor = tensor + self.ffns[i](tensor) tensor = self.layer_norm2[i](tensor) else: tensor_normalized = self.layer_norm2[i](tensor) tensor = tensor + self.ffns[i](tensor_normalized) tensor = tensor * mask[..., tf.newaxis] # Add last hidden state if output_hidden_states: hidden_states = hidden_states + (tensor,) # update cache length if cache is not None: cache["slen"] += tensor.size(1) # move back sequence length to dimension 0 # tensor = tensor.transpose(0, 1) if not return_dict: return tuple(v for v in [tensor, hidden_states, attentions] if v is not None) return TFBaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions)
[docs]@add_start_docstrings( """The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, FLAUBERT_START_DOCSTRING, ) class TFFlaubertWithLMHeadModel(TFXLMWithLMHeadModel): config_class = FlaubertConfig def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer") self.pred_layer = TFXLMPredLayer(config, self.transformer.embeddings, name="pred_layer_._proj")
[docs]@add_start_docstrings( """Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, FLAUBERT_START_DOCSTRING, ) class TFFlaubertForSequenceClassification(TFXLMForSequenceClassification): config_class = FlaubertConfig def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer")
[docs]@add_start_docstrings( """Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, FLAUBERT_START_DOCSTRING, ) class TFFlaubertForQuestionAnsweringSimple(TFXLMForQuestionAnsweringSimple): config_class = FlaubertConfig def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer")
[docs]@add_start_docstrings( """Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, FLAUBERT_START_DOCSTRING, ) class TFFlaubertForTokenClassification(TFXLMForTokenClassification): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer")
[docs]@add_start_docstrings( """Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, FLAUBERT_START_DOCSTRING, ) class TFFlaubertForMultipleChoice(TFXLMForMultipleChoice): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer")