MobileBERT¶
Overview¶
The MobileBERT model was proposed in MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. It’s a bidirectional transformer based on the BERT model, which is compressed and accelerated using several approaches.
The abstract from the paper is the following:
Natural Language Processing (NLP) has recently achieved great success by using huge pre-trained models with hundreds of millions of parameters. However, these models suffer from heavy model sizes and high latency such that they cannot be deployed to resource-limited mobile devices. In this paper, we propose MobileBERT for compressing and accelerating the popular BERT model. Like the original BERT, MobileBERT is task-agnostic, that is, it can be generically applied to various downstream NLP tasks via simple fine-tuning. Basically, MobileBERT is a thin version of BERT_LARGE, while equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks. To train MobileBERT, we first train a specially designed teacher model, an inverted-bottleneck incorporated BERT_LARGE model. Then, we conduct knowledge transfer from this teacher to MobileBERT. Empirical studies show that MobileBERT is 4.3x smaller and 5.5x faster than BERT_BASE while achieving competitive results on well-known benchmarks. On the natural language inference tasks of GLUE, MobileBERT achieves a GLUEscore o 77.7 (0.6 lower than BERT_BASE), and 62 ms latency on a Pixel 4 phone. On the SQuAD v1.1/v2.0 question answering task, MobileBERT achieves a dev F1 score of 90.0/79.2 (1.5/2.1 higher than BERT_BASE).
Tips:
MobileBERT is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right rather than the left.
MobileBERT is similar to BERT and therefore relies on the masked language modeling (MLM) objective. It is therefore efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation. Models trained with a causal language modeling (CLM) objective are better in that regard.
The original code can be found here.
MobileBertConfig¶
-
class
transformers.
MobileBertConfig
(vocab_size=30522, hidden_size=512, num_hidden_layers=24, num_attention_heads=4, intermediate_size=512, hidden_act='relu', hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, embedding_size=128, trigram_input=True, use_bottleneck=True, intra_bottleneck_size=128, use_bottleneck_attention=False, key_query_shared_bottleneck=True, num_feedforward_networks=4, normalization_type='no_norm', classifier_activation=True, **kwargs)[source]¶ This is the configuration class to store the configuration of a
MobileBertModel
. It is used to instantiate a MobileBERT model according to the specified arguments, defining the model architecture.Configuration objects inherit from
PretrainedConfig
and can be used to control the model outputs. Read the documentation fromPretrainedConfig
for more information.- Parameters
vocab_size (
int
, optional, defaults to 30522) – Vocabulary size of the MobileBERT model. Defines the different tokens that can be represented by the inputs_ids passed to the forward method ofMobileBertModel
.hidden_size (
int
, optional, defaults to 512) – Dimensionality of the encoder layers and the pooler layer.num_hidden_layers (
int
, optional, defaults to 24) – Number of hidden layers in the Transformer encoder.num_attention_heads (
int
, optional, defaults to 4) – Number of attention heads for each attention layer in the Transformer encoder.intermediate_size (
int
, optional, defaults to 512) – Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.hidden_act (
str
orfunction
, optional, defaults to “relu”) – The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”, “swish” and “gelu_new” are supported.hidden_dropout_prob (
float
, optional, defaults to 0.0) – The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.attention_probs_dropout_prob (
float
, optional, defaults to 0.1) – The dropout ratio for the attention probabilities.max_position_embeddings (
int
, optional, defaults to 512) – The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).type_vocab_size (
int
, optional, defaults to 2) – The vocabulary size of the token_type_ids passed intoMobileBertModel
.initializer_range (
float
, optional, defaults to 0.02) – The standard deviation of the truncated_normal_initializer for initializing all weight matrices.layer_norm_eps (
float
, optional, defaults to 1e-12) – The epsilon used by the layer normalization layers.pad_token_id (
int
, optional, defaults to 0) – The ID of the token in the word embedding to use as padding.embedding_size (
int
, optional, defaults to 128) – The dimension of the word embedding vectors.trigram_input (
bool
, optional, defaults toTrue
) – Use a convolution of trigram as input.use_bottleneck (
bool
, optional, defaults toTrue
) – Whether to use bottleneck in BERT.intra_bottleneck_size (
int
, optional, defaults to 128) – Size of bottleneck layer output.use_bottleneck_attention (
bool
, optional, defaults toFalse
) – Whether to use attention inputs from the bottleneck transformation.key_query_shared_bottleneck (
bool
, optional, defaults toTrue
) – Whether to use the same linear transformation for query&key in the bottleneck.num_feedforward_networks (
int
, optional, defaults to 4) – Number of FFNs in a block.normalization_type (
str
, optional, defaults to “no_norm”) – The normalization type in BERT.
Example
>>> from transformers import MobileBertModel, MobileBertConfig
>>> # Initializing a MobileBERT configuration >>> configuration = MobileBertConfig()
>>> # Initializing a model from the configuration above >>> model = MobileBertModel(configuration)
>>> # Accessing the model configuration >>> configuration = model.config
-
pretrained_config_archive_map
¶ A dictionary containing all the available pre-trained checkpoints.
- Type
Dict[str, str]
MobileBertTokenizer¶
-
class
transformers.
MobileBertTokenizer
(vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token='[UNK]', sep_token='[SEP]', pad_token='[PAD]', cls_token='[CLS]', mask_token='[MASK]', tokenize_chinese_chars=True, strip_accents=None, **kwargs)[source]¶ Constructs a MobileBertTokenizer.
BertTokenizer
and runs end-to-end tokenization: punctuation splitting + wordpiece.Refer to superclass
BertTokenizer
for usage examples and documentation concerning parameters.-
build_inputs_with_special_tokens
(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) → List[int]¶ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format:
single sequence:
[CLS] X [SEP]
pair of sequences:
[CLS] A [SEP] B [SEP]
- Parameters
token_ids_0 (
List[int]
) – List of IDs to which the special tokens will be addedtoken_ids_1 (
List[int]
, optional) – Optional second list of IDs for sequence pairs.
- Returns
list of input IDs with the appropriate special tokens.
- Return type
List[int]
-
create_token_type_ids_from_sequences
(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) → List[int]¶ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence |
if token_ids_1 is None, only returns the first portion of the mask (0’s).
- Parameters
token_ids_0 (
List[int]
) – List of ids.token_ids_1 (
List[int]
, optional) – Optional second list of IDs for sequence pairs.
- Returns
List of token type IDs according to the given sequence(s).
- Return type
List[int]
-
get_special_tokens_mask
(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False) → List[int]¶ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer
prepare_for_model
method.- Parameters
token_ids_0 (
List[int]
) – List of ids.token_ids_1 (
List[int]
, optional) – Optional second list of IDs for sequence pairs.already_has_special_tokens (
bool
, optional, defaults toFalse
) – Set to True if the token list is already formatted with special tokens for the model
- Returns
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
- Return type
List[int]
-
save_vocabulary
(vocab_path)¶ Save the sentencepiece vocabulary (copy original file) and special tokens file to a directory.
- Parameters
vocab_path (
str
) – The directory in which to save the vocabulary.- Returns
Paths to the files saved.
- Return type
Tuple(str)
-
MobileBertTokenizerFast¶
-
class
transformers.
MobileBertTokenizerFast
(vocab_file, do_lower_case=True, unk_token='[UNK]', sep_token='[SEP]', pad_token='[PAD]', cls_token='[CLS]', mask_token='[MASK]', clean_text=True, tokenize_chinese_chars=True, strip_accents=None, wordpieces_prefix='##', **kwargs)[source]¶ Constructs a “Fast” MobileBertTokenizer (backed by HuggingFace’s tokenizers library).
MobileBertTokenizerFast
is identical toBertTokenizerFast
and runs end-to-end tokenization: punctuation splitting + wordpiece.Refer to superclass
BertTokenizerFast
for usage examples and documentation concerning parameters.
MobileBert specific outputs¶
-
class
transformers.modeling_mobilebert.
MobileBertForPreTrainingOutput
(loss: Optional[torch.FloatTensor] = None, prediction_logits: torch.FloatTensor = None, seq_relationship_logits: torch.FloatTensor = None, hidden_states: Optional[Tuple[torch.FloatTensor]] = None, attentions: Optional[Tuple[torch.FloatTensor]] = None)[source]¶ Output type of
MobileBertForPreTrainingModel
.- Parameters
loss (optional, returned when
labels
is provided,torch.FloatTensor
of shape(1,)
) – Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.prediction_logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).seq_relationship_logits (
torch.FloatTensor
of shape(batch_size, 2)
) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) –Tuple of
torch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) –Tuple of
torch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
class
transformers.modeling_tf_mobilebert.
TFMobileBertForPreTrainingOutput
(loss: Optional[tensorflow.python.framework.ops.Tensor] = None, prediction_logits: tensorflow.python.framework.ops.Tensor = None, seq_relationship_logits: tensorflow.python.framework.ops.Tensor = None, hidden_states: Optional[Tuple[tensorflow.python.framework.ops.Tensor]] = None, attentions: Optional[Tuple[tensorflow.python.framework.ops.Tensor]] = None)[source]¶ Output type of
TFMobileBertForPreTrainingModel
.- Parameters
prediction_logits (
tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).seq_relationship_logits (
tf.Tensor
of shape(batch_size, 2)
) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) –Tuple of
tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) –Tuple of
tf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
MobileBertModel¶
-
class
transformers.
MobileBertModel
(config)[source]¶ The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MobileBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
https://arxiv.org/pdf/2004.02984.pdf
-
forward
(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, output_hidden_states=None, output_attentions=None, return_dict=None)[source]¶ The
MobileBertModel
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
transformers.MobileBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B tokenposition_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.encoder_hidden_states (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.encoder_attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.output_attentions (
bool
, optional) – If set toTrue
, the attentions tensors of all attention layers are returned. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – If set toTrue
, the hidden states of all layers are returned. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – If set toTrue
, the model will return aModelOutput
instead of a plain tuple.
- Returns
A
BaseModelOutputWithPooling
(ifreturn_dict=True
is passed or whenconfig.return_dict=True
) or a tuple oftorch.FloatTensor
comprising various elements depending on the configuration (MobileBertConfig
) and inputs.last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) – Sequence of hidden-states at the output of the last layer of the model.pooler_output (
torch.FloatTensor
of shape(batch_size, hidden_size)
) – Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
BaseModelOutputWithPooling
ortuple(torch.FloatTensor)
Example:
>>> from transformers import MobileBertTokenizer, MobileBertModel >>> import torch >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = MobileBertModel.from_pretrained('google/mobilebert-uncased', return_dict=True) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state
MobileBertForPreTraining¶
-
class
transformers.
MobileBertForPreTraining
(config)[source]¶ MobileBert Model with two heads on top as done during the pre-training: a masked language modeling head and a next sentence prediction (classification) head. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MobileBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
forward
(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, next_sentence_label=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
MobileBertForPreTraining
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
transformers.MobileBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B tokenposition_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.encoder_hidden_states (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.encoder_attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.output_attentions (
bool
, optional) – If set toTrue
, the attentions tensors of all attention layers are returned. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – If set toTrue
, the hidden states of all layers are returned. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) –If set to
True
, the model will return aModelOutput
instead of a plain tuple.- labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional): Labels for computing the masked language modeling loss. Indices should be in
[-100, 0, ..., config.vocab_size]
(seeinput_ids
docstring) Tokens with indices set to-100
are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]
- next_sentence_label (
torch.LongTensor
of shape(batch_size,)
, optional): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see
input_ids
docstring) Indices should be in[0, 1]
.0
indicates sequence B is a continuation of sequence A,1
indicates sequence B is a random sequence.
- labels (
- Returns
A
MobileBertForPreTrainingOutput
(ifreturn_dict=True
is passed or whenconfig.return_dict=True
) or a tuple oftorch.FloatTensor
comprising various elements depending on the configuration (MobileBertConfig
) and inputs.loss (optional, returned when
labels
is provided,torch.FloatTensor
of shape(1,)
) – Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.prediction_logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).seq_relationship_logits (
torch.FloatTensor
of shape(batch_size, 2)
) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples:
>>> from transformers import MobileBertTokenizer, MobileBertForPreTraining >>> import torch >>> tokenizer = MobileBertTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = MobileBertForPreTraining.from_pretrained("google/mobilebert-uncased", return_dict=True) >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids) >>> prediction_logits = outptus.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits
- Return type
MobileBertForPreTrainingOutput
ortuple(torch.FloatTensor)
MobileBertForMaskedLM¶
-
class
transformers.
MobileBertForMaskedLM
(config)[source]¶ MobileBert Model with a language modeling head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MobileBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
forward
(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)[source]¶ The
MobileBertForMaskedLM
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
transformers.MobileBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B tokenposition_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.encoder_hidden_states (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.encoder_attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.output_attentions (
bool
, optional) – If set toTrue
, the attentions tensors of all attention layers are returned. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – If set toTrue
, the hidden states of all layers are returned. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – If set toTrue
, the model will return aModelOutput
instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) – Labels for computing the masked language modeling loss. Indices should be in[-100, 0, ..., config.vocab_size]
(seeinput_ids
docstring) Tokens with indices set to-100
are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]
kwargs (
Dict[str, any]
, optional, defaults to {}) – Used to hide legacy arguments that have been deprecated.
- Returns
A
MaskedLMOutput
(ifreturn_dict=True
is passed or whenconfig.return_dict=True
) or a tuple oftorch.FloatTensor
comprising various elements depending on the configuration (MobileBertConfig
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) – Masked languaged modeling (MLM) loss.logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
MaskedLMOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import MobileBertTokenizer, MobileBertForMaskedLM >>> import torch >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = MobileBertForMaskedLM.from_pretrained('google/mobilebert-uncased', return_dict=True) >>> input_ids = tokenizer("Hello, my dog is cute", return_tensors="pt")["input_ids"] >>> outputs = model(input_ids, labels=input_ids) >>> loss = outputs.loss >>> prediction_logits = outputs.logits
MobileBertForNextSentencePrediction¶
-
class
transformers.
MobileBertForNextSentencePrediction
(config)[source]¶ MobileBert Model with a next sentence prediction (classification) head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MobileBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
forward
(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, next_sentence_label=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
MobileBertForNextSentencePrediction
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
transformers.MobileBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B tokenposition_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.encoder_hidden_states (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.encoder_attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.output_attentions (
bool
, optional) – If set toTrue
, the attentions tensors of all attention layers are returned. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – If set toTrue
, the hidden states of all layers are returned. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) –If set to
True
, the model will return aModelOutput
instead of a plain tuple.- next_sentence_label (
torch.LongTensor
of shape(batch_size,)
, optional): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see
input_ids
docstring) Indices should be in[0, 1]
.0
indicates sequence B is a continuation of sequence A,1
indicates sequence B is a random sequence.
- next_sentence_label (
- Returns
A
NextSentencePredictorOutput
(ifreturn_dict=True
is passed or whenconfig.return_dict=True
) or a tuple oftorch.FloatTensor
comprising various elements depending on the configuration (MobileBertConfig
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned whennext_sentence_label
is provided) – Next sequence prediction (classification) loss.logits (
torch.FloatTensor
of shape(batch_size, 2)
) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples:
>>> from transformers import MobileBertTokenizer, MobileBertForNextSentencePrediction >>> import torch >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = MobileBertForNextSentencePrediction.from_pretrained('google/mobilebert-uncased', return_dict=True) >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt') >>> outputs = model(**encoding, next_sentence_label=torch.LongTensor([1])) >>> loss = outputs.loss >>> logits = outputs.logits
- Return type
NextSentencePredictorOutput
ortuple(torch.FloatTensor)
MobileBertForSequenceClassification¶
-
class
transformers.
MobileBertForSequenceClassification
(config)[source]¶ MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MobileBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
forward
(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
MobileBertForSequenceClassification
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
transformers.MobileBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B tokenposition_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.encoder_hidden_states (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.encoder_attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.output_attentions (
bool
, optional) – If set toTrue
, the attentions tensors of all attention layers are returned. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – If set toTrue
, the hidden states of all layers are returned. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – If set toTrue
, the model will return aModelOutput
instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size,)
, optional) – Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
- Returns
A
SequenceClassifierOutput
(ifreturn_dict=True
is passed or whenconfig.return_dict=True
) or a tuple oftorch.FloatTensor
comprising various elements depending on the configuration (MobileBertConfig
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) – Classification (or regression if config.num_labels==1) loss.logits (
torch.FloatTensor
of shape(batch_size, config.num_labels)
) – Classification (or regression if config.num_labels==1) scores (before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
SequenceClassifierOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import MobileBertTokenizer, MobileBertForSequenceClassification >>> import torch >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = MobileBertForSequenceClassification.from_pretrained('google/mobilebert-uncased', return_dict=True) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits
MobileBertForMultipleChoice¶
-
class
transformers.
MobileBertForMultipleChoice
(config)[source]¶ MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MobileBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
forward
(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
MobileBertForMultipleChoice
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
transformers.MobileBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B tokenposition_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.encoder_hidden_states (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.encoder_attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.output_attentions (
bool
, optional) – If set toTrue
, the attentions tensors of all attention layers are returned. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – If set toTrue
, the hidden states of all layers are returned. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – If set toTrue
, the model will return aModelOutput
instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size,)
, optional) – Labels for computing the multiple choice classification loss. Indices should be in[0, ..., num_choices-1]
where num_choices is the size of the second dimension of the input tensors. (see input_ids above)
- Returns
A
MultipleChoiceModelOutput
(ifreturn_dict=True
is passed or whenconfig.return_dict=True
) or a tuple oftorch.FloatTensor
comprising various elements depending on the configuration (MobileBertConfig
) and inputs.loss (
torch.FloatTensor
of shape (1,), optional, returned whenlabels
is provided) – Classification loss.logits (
torch.FloatTensor
of shape(batch_size, num_choices)
) – num_choices is the second dimension of the input tensors. (see input_ids above).Classification scores (before SoftMax).
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
MultipleChoiceModelOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import MobileBertTokenizer, MobileBertForMultipleChoice >>> import torch >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = MobileBertForMultipleChoice.from_pretrained('google/mobilebert-uncased', return_dict=True) >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True) >>> outputs = model(**{k: v.unsqueeze(0) for k,v in encoding.items()}, labels=labels) # batch size is 1 >>> # the linear classifier still needs to be trained >>> loss = outputs.loss >>> logits = outputs.logits
MobileBertForTokenClassification¶
-
class
transformers.
MobileBertForTokenClassification
(config)[source]¶ MoibleBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MobileBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
forward
(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
MobileBertForTokenClassification
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
transformers.MobileBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B tokenposition_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.encoder_hidden_states (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.encoder_attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.output_attentions (
bool
, optional) – If set toTrue
, the attentions tensors of all attention layers are returned. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – If set toTrue
, the hidden states of all layers are returned. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – If set toTrue
, the model will return aModelOutput
instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) – Labels for computing the token classification loss. Indices should be in[0, ..., config.num_labels - 1]
.
- Returns
A
TokenClassifierOutput
(ifreturn_dict=True
is passed or whenconfig.return_dict=True
) or a tuple oftorch.FloatTensor
comprising various elements depending on the configuration (MobileBertConfig
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) – Classification loss.logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.num_labels)
) – Classification scores (before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TokenClassifierOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import MobileBertTokenizer, MobileBertForTokenClassification >>> import torch >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = MobileBertForTokenClassification.from_pretrained('google/mobilebert-uncased', return_dict=True) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> labels = torch.tensor([1] * inputs["input_ids"].size(1)).unsqueeze(0) # Batch size 1 >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits
MobileBertForQuestionAnswering¶
-
class
transformers.
MobileBertForQuestionAnswering
(config)[source]¶ MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits). This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config (
MobileBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
forward
(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]¶ The
MobileBertForQuestionAnswering
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
transformers.MobileBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B tokenposition_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.encoder_hidden_states (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.encoder_attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.output_attentions (
bool
, optional) – If set toTrue
, the attentions tensors of all attention layers are returned. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – If set toTrue
, the hidden states of all layers are returned. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – If set toTrue
, the model will return aModelOutput
instead of a plain tuple.start_positions (
torch.LongTensor
of shape(batch_size,)
, optional) – Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.end_positions (
torch.LongTensor
of shape(batch_size,)
, optional) – Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
- Returns
A
QuestionAnsweringModelOutput
(ifreturn_dict=True
is passed or whenconfig.return_dict=True
) or a tuple oftorch.FloatTensor
comprising various elements depending on the configuration (MobileBertConfig
) and inputs.loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) – Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.start_logits (
torch.FloatTensor
of shape(batch_size, sequence_length,)
) – Span-start scores (before SoftMax).end_logits (
torch.FloatTensor
of shape(batch_size, sequence_length,)
) – Span-end scores (before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
QuestionAnsweringModelOutput
ortuple(torch.FloatTensor)
Example:
>>> from transformers import MobileBertTokenizer, MobileBertForQuestionAnswering >>> import torch >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = MobileBertForQuestionAnswering.from_pretrained('google/mobilebert-uncased', return_dict=True) >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> inputs = tokenizer(question, text, return_tensors='pt') >>> start_positions = torch.tensor([1]) >>> end_positions = torch.tensor([3]) >>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) >>> loss = outputs.loss >>> start_scores = outputs.start_logits >>> end_scores = outputs.end_logits
TFMobileBertModel¶
-
class
transformers.
TFMobileBertModel
(*args, **kwargs)[source]¶ The bare MobileBert Model transformer outputing raw hidden-states without any specific head on top. This model is a tf.keras.Model sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with input_ids only and nothing else:
model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({'input_ids': input_ids, 'token_type_ids': token_type_ids})
- Parameters
config (
MobileBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(inputs, **kwargs)[source]¶ The
TFMobileBertModel
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
transformers.MobileBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.token_type_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B tokenposition_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
np.ndarray
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.inputs_embeds (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length, embedding_dim)
, optional) – Optionally, instead of passinginput_ids
you can to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.training (
boolean
, optional, defaults toFalse
) – Whether to activate dropout modules (if set toTrue
) during training or to de-activate them (if set toFalse
) for evaluation.output_attentions (
bool
, optional) – If set toTrue
, the attentions tensors of all attention layers are returned. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – If set toTrue
, the hidden states of all layers are returned. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – If set toTrue
, the model will return aModelOutput
instead of a plain tuple.
- Returns
A
TFBaseModelOutputWithPooling
(ifreturn_dict=True
is passed or whenconfig.return_dict=True
) or a tuple oftf.Tensor
comprising various elements depending on the configuration (MobileBertConfig
) and inputs.last_hidden_state (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
) – Sequence of hidden-states at the output of the last layer of the model.pooler_output (
tf.Tensor
of shape(batch_size, hidden_size)
) – Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.This output is usually not a good summary of the semantic content of the input, you’re often better with averaging or pooling the sequence of hidden-states for the whole input sequence.
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFBaseModelOutputWithPooling
ortuple(tf.Tensor)
Example:
>>> from transformers import MobileBertTokenizer, TFMobileBertModel >>> import tensorflow as tf >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertModel.from_pretrained('google/mobilebert-uncased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> outputs = model(inputs) >>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
TFMobileBertForPreTraining¶
-
class
transformers.
TFMobileBertForPreTraining
(*args, **kwargs)[source]¶ MobileBert Model with two heads on top as done during the pre-training: a masked language modeling head and a next sentence prediction (classification) head. This model is a tf.keras.Model sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with input_ids only and nothing else:
model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({'input_ids': input_ids, 'token_type_ids': token_type_ids})
- Parameters
config (
MobileBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(inputs, **kwargs)[source]¶ The
TFMobileBertForPreTraining
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
transformers.MobileBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.token_type_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B tokenposition_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
np.ndarray
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.inputs_embeds (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length, embedding_dim)
, optional) – Optionally, instead of passinginput_ids
you can to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.training (
boolean
, optional, defaults toFalse
) – Whether to activate dropout modules (if set toTrue
) during training or to de-activate them (if set toFalse
) for evaluation.output_attentions (
bool
, optional) – If set toTrue
, the attentions tensors of all attention layers are returned. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – If set toTrue
, the hidden states of all layers are returned. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – If set toTrue
, the model will return aModelOutput
instead of a plain tuple.
- Returns
A
TFMobileBertForPreTrainingOutput
(ifreturn_dict=True
is passed or whenconfig.return_dict=True
) or a tuple oftf.Tensor
comprising various elements depending on the configuration (MobileBertConfig
) and inputs.prediction_logits (
tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).seq_relationship_logits (
tf.Tensor
of shape(batch_size, 2)
) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples:
>>> import tensorflow as tf >>> from transformers import MobileBertTokenizer, TFMobileBertForPreTraining >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased') >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 >>> outputs = model(input_ids) >>> prediction_scores, seq_relationship_scores = outputs[:2]
- Return type
TFMobileBertForPreTrainingOutput
ortuple(tf.Tensor)
TFMobileBertForMaskedLM¶
-
class
transformers.
TFMobileBertForMaskedLM
(*args, **kwargs)[source]¶ MobileBert Model with a language modeling head on top. This model is a tf.keras.Model sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with input_ids only and nothing else:
model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({'input_ids': input_ids, 'token_type_ids': token_type_ids})
- Parameters
config (
MobileBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(inputs=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False)[source]¶ The
TFMobileBertForMaskedLM
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
transformers.MobileBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.token_type_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B tokenposition_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
np.ndarray
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.inputs_embeds (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length, embedding_dim)
, optional) – Optionally, instead of passinginput_ids
you can to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.training (
boolean
, optional, defaults toFalse
) – Whether to activate dropout modules (if set toTrue
) during training or to de-activate them (if set toFalse
) for evaluation.output_attentions (
bool
, optional) – If set toTrue
, the attentions tensors of all attention layers are returned. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – If set toTrue
, the hidden states of all layers are returned. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – If set toTrue
, the model will return aModelOutput
instead of a plain tuple.labels (
tf.Tensor
of shape(batch_size, sequence_length)
, optional) – Labels for computing the masked language modeling loss. Indices should be in[-100, 0, ..., config.vocab_size]
(seeinput_ids
docstring) Tokens with indices set to-100
are ignored (masked), the loss is only computed for the tokens with labels
- Returns
A
TFMaskedLMOutput
(ifreturn_dict=True
is passed or whenconfig.return_dict=True
) or a tuple oftf.Tensor
comprising various elements depending on the configuration (MobileBertConfig
) and inputs.loss (
tf.Tensor
of shape(1,)
, optional, returned whenlabels
is provided) – Masked languaged modeling (MLM) loss.logits (
tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFMaskedLMOutput
ortuple(tf.Tensor)
- Example::
>>> from transformers import MobileBertTokenizer, TFMobileBertForMaskedLM >>> import tensorflow as tf
>>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertForMaskedLM.from_pretrained('google/mobilebert-uncased')
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
>>> outputs = model(input_ids) >>> prediction_scores = outputs[0]
TFMobileBertForNextSentencePrediction¶
-
class
transformers.
TFMobileBertForNextSentencePrediction
(*args, **kwargs)[source]¶ MobileBert Model with a next sentence prediction (classification) head on top. This model is a tf.keras.Model sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with input_ids only and nothing else:
model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({'input_ids': input_ids, 'token_type_ids': token_type_ids})
- Parameters
config (
MobileBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(inputs, **kwargs)[source]¶ The
TFMobileBertForNextSentencePrediction
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
transformers.MobileBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.token_type_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B tokenposition_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length)
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
np.ndarray
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.inputs_embeds (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length, embedding_dim)
, optional) – Optionally, instead of passinginput_ids
you can to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.training (
boolean
, optional, defaults toFalse
) – Whether to activate dropout modules (if set toTrue
) during training or to de-activate them (if set toFalse
) for evaluation.output_attentions (
bool
, optional) – If set toTrue
, the attentions tensors of all attention layers are returned. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – If set toTrue
, the hidden states of all layers are returned. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – If set toTrue
, the model will return aModelOutput
instead of a plain tuple.
- Returns
A
TFNextSentencePredictorOutput
(ifreturn_dict=True
is passed or whenconfig.return_dict=True
) or a tuple oftf.Tensor
comprising various elements depending on the configuration (MobileBertConfig
) and inputs.logits (
tf.Tensor
of shape(batch_size, 2)
) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples:
>>> import tensorflow as tf >>> from transformers import MobileBertTokenizer, TFMobileBertForNextSentencePrediction >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertForNextSentencePrediction.from_pretrained('google/mobilebert-uncased') >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors='tf') >>> logits = model(encoding['input_ids'], token_type_ids=encoding['token_type_ids'])[0]
- Return type
TFNextSentencePredictorOutput
ortuple(tf.Tensor)
TFMobileBertForSequenceClassification¶
-
class
transformers.
TFMobileBertForSequenceClassification
(*args, **kwargs)[source]¶ MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. This model is a tf.keras.Model sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with input_ids only and nothing else:
model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({'input_ids': input_ids, 'token_type_ids': token_type_ids})
- Parameters
config (
MobileBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(inputs=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False)[source]¶ The
TFMobileBertForSequenceClassification
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
np.ndarray
ortf.Tensor
of shape{0}
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
transformers.MobileBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
np.ndarray
ortf.Tensor
of shape{0}
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.token_type_ids (
np.ndarray
ortf.Tensor
of shape{0}
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B tokenposition_ids (
np.ndarray
ortf.Tensor
of shape{0}
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
np.ndarray
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.inputs_embeds (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length, embedding_dim)
, optional) – Optionally, instead of passinginput_ids
you can to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.training (
boolean
, optional, defaults toFalse
) – Whether to activate dropout modules (if set toTrue
) during training or to de-activate them (if set toFalse
) for evaluation.output_attentions (
bool
, optional) – If set toTrue
, the attentions tensors of all attention layers are returned. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – If set toTrue
, the hidden states of all layers are returned. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – If set toTrue
, the model will return aModelOutput
instead of a plain tuple.labels (
tf.Tensor
of shape(batch_size,)
, optional) – Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
- Returns
A
TFSequenceClassifierOutput
(ifreturn_dict=True
is passed or whenconfig.return_dict=True
) or a tuple oftf.Tensor
comprising various elements depending on the configuration (MobileBertConfig
) and inputs.loss (
tf.Tensor
of shape(1,)
, optional, returned whenlabels
is provided) – Classification (or regression if config.num_labels==1) loss.logits (
tf.Tensor
of shape(batch_size, config.num_labels)
) – Classification (or regression if config.num_labels==1) scores (before SoftMax).hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFSequenceClassifierOutput
ortuple(tf.Tensor)
Example:
>>> from transformers import MobileBertTokenizer, TFMobileBertForSequenceClassification >>> import tensorflow as tf >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertForSequenceClassification.from_pretrained('google/mobilebert-uncased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> inputs["labels"] = tf.reshape(tf.constant(1), (-1, 1)) # Batch size 1 >>> outputs = model(inputs) >>> loss, logits = outputs[:2]
TFMobileBertForMultipleChoice¶
-
class
transformers.
TFMobileBertForMultipleChoice
(*args, **kwargs)[source]¶ MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. This model is a tf.keras.Model sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with input_ids only and nothing else:
model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({'input_ids': input_ids, 'token_type_ids': token_type_ids})
- Parameters
config (
MobileBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False)[source]¶ The
TFMobileBertForMultipleChoice
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, num_choices, sequence_length)
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
transformers.MobileBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
np.ndarray
ortf.Tensor
of shape(batch_size, num_choices, sequence_length)
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.token_type_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, num_choices, sequence_length)
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B tokenposition_ids (
np.ndarray
ortf.Tensor
of shape(batch_size, num_choices, sequence_length)
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
np.ndarray
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.inputs_embeds (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length, embedding_dim)
, optional) – Optionally, instead of passinginput_ids
you can to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.training (
boolean
, optional, defaults toFalse
) – Whether to activate dropout modules (if set toTrue
) during training or to de-activate them (if set toFalse
) for evaluation.output_attentions (
bool
, optional) – If set toTrue
, the attentions tensors of all attention layers are returned. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – If set toTrue
, the hidden states of all layers are returned. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – If set toTrue
, the model will return aModelOutput
instead of a plain tuple.labels (
tf.Tensor
of shape(batch_size,)
, optional) – Labels for computing the multiple choice classification loss. Indices should be in[0, ..., num_choices]
where num_choices is the size of the second dimension of the input tensors. (see input_ids above)
- Returns
A
TFMultipleChoiceModelOutput
(ifreturn_dict=True
is passed or whenconfig.return_dict=True
) or a tuple oftf.Tensor
comprising various elements depending on the configuration (MobileBertConfig
) and inputs.loss (
tf.Tensor
of shape (1,), optional, returned whenlabels
is provided) – Classification loss.logits (
tf.Tensor
of shape(batch_size, num_choices)
) – num_choices is the second dimension of the input tensors. (see input_ids above).Classification scores (before SoftMax).
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFMultipleChoiceModelOutput
ortuple(tf.Tensor)
Example:
>>> from transformers import MobileBertTokenizer, TFMobileBertForMultipleChoice >>> import tensorflow as tf >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertForMultipleChoice.from_pretrained('google/mobilebert-uncased') >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> choice0 = "It is eaten with a fork and a knife." >>> choice1 = "It is eaten while held in the hand." >>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='tf', padding=True) >>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()} >>> outputs = model(inputs) # batch size is 1 >>> # the linear classifier still needs to be trained >>> logits = outputs[0]
-
property
dummy_inputs
¶ Dummy inputs to build the network.
- Returns
tf.Tensor with dummy inputs
TFMobileBertForTokenClassification¶
-
class
transformers.
TFMobileBertForTokenClassification
(*args, **kwargs)[source]¶ MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. This model is a tf.keras.Model sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with input_ids only and nothing else:
model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({'input_ids': input_ids, 'token_type_ids': token_type_ids})
- Parameters
config (
MobileBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(inputs=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False)[source]¶ The
TFMobileBertForTokenClassification
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
np.ndarray
ortf.Tensor
of shape{0}
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
transformers.MobileBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
np.ndarray
ortf.Tensor
of shape{0}
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.token_type_ids (
np.ndarray
ortf.Tensor
of shape{0}
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B tokenposition_ids (
np.ndarray
ortf.Tensor
of shape{0}
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
np.ndarray
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.inputs_embeds (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length, embedding_dim)
, optional) – Optionally, instead of passinginput_ids
you can to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.training (
boolean
, optional, defaults toFalse
) – Whether to activate dropout modules (if set toTrue
) during training or to de-activate them (if set toFalse
) for evaluation.output_attentions (
bool
, optional) – If set toTrue
, the attentions tensors of all attention layers are returned. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – If set toTrue
, the hidden states of all layers are returned. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – If set toTrue
, the model will return aModelOutput
instead of a plain tuple.labels (
tf.Tensor
of shape(batch_size, sequence_length)
, optional) – Labels for computing the token classification loss. Indices should be in[0, ..., config.num_labels - 1]
.
- Returns
A
TFTokenClassifierOutput
(ifreturn_dict=True
is passed or whenconfig.return_dict=True
) or a tuple oftf.Tensor
comprising various elements depending on the configuration (MobileBertConfig
) and inputs.loss (
tf.Tensor
of shape(1,)
, optional, returned whenlabels
is provided) – Classification loss.logits (
tf.Tensor
of shape(batch_size, sequence_length, config.num_labels)
) – Classification scores (before SoftMax).hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFTokenClassifierOutput
ortuple(tf.Tensor)
Example:
>>> from transformers import MobileBertTokenizer, TFMobileBertForTokenClassification >>> import tensorflow as tf >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertForTokenClassification.from_pretrained('google/mobilebert-uncased') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> input_ids = inputs["input_ids"] >>> inputs["labels"] = tf.reshape(tf.constant([1] * tf.size(input_ids).numpy()), (-1, tf.size(input_ids))) # Batch size 1 >>> outputs = model(inputs) >>> loss, scores = outputs[:2]
TFMobileBertForQuestionAnswering¶
-
class
transformers.
TFMobileBertForQuestionAnswering
(*args, **kwargs)[source]¶ MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits). This model is a tf.keras.Model sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note
TF 2.0 models accepts two formats as inputs:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using
tf.keras.Model.fit()
method which currently requires having all the tensors in the first argument of the model call function:model(inputs)
.If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
a single Tensor with input_ids only and nothing else:
model(inputs_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
model([input_ids, attention_mask])
ormodel([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring:
model({'input_ids': input_ids, 'token_type_ids': token_type_ids})
- Parameters
config (
MobileBertConfig
) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out thefrom_pretrained()
method to load the model weights.
-
call
(inputs=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, start_positions=None, end_positions=None, training=False)[source]¶ The
TFMobileBertForQuestionAnswering
forward method, overrides the__call__()
special method.Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.- Parameters
input_ids (
np.ndarray
ortf.Tensor
of shape{0}
) –Indices of input sequence tokens in the vocabulary.
Indices can be obtained using
transformers.MobileBertTokenizer
. Seetransformers.PreTrainedTokenizer.encode()
andtransformers.PreTrainedTokenizer.__call__()
for details.attention_mask (
np.ndarray
ortf.Tensor
of shape{0}
, optional) –Mask to avoid performing attention on padding token indices. Mask values selected in
[0, 1]
:1
for tokens that are NOT MASKED,0
for MASKED tokens.token_type_ids (
np.ndarray
ortf.Tensor
of shape{0}
, optional) –Segment token indices to indicate first and second portions of the inputs. Indices are selected in
[0, 1]
:0
corresponds to a sentence A token,1
corresponds to a sentence B tokenposition_ids (
np.ndarray
ortf.Tensor
of shape{0}
, optional) –Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
[0, config.max_position_embeddings - 1]
.head_mask (
np.ndarray
ortf.Tensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1
indicates the head is not masked,0
indicates the head is masked.inputs_embeds (
np.ndarray
ortf.Tensor
of shape(batch_size, sequence_length, embedding_dim)
, optional) – Optionally, instead of passinginput_ids
you can to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.training (
boolean
, optional, defaults toFalse
) – Whether to activate dropout modules (if set toTrue
) during training or to de-activate them (if set toFalse
) for evaluation.output_attentions (
bool
, optional) – If set toTrue
, the attentions tensors of all attention layers are returned. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) – If set toTrue
, the hidden states of all layers are returned. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) – If set toTrue
, the model will return aModelOutput
instead of a plain tuple.start_positions (
tf.Tensor
of shape(batch_size,)
, optional) – Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.end_positions (
tf.Tensor
of shape(batch_size,)
, optional) – Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
- Returns
A
TFQuestionAnsweringModelOutput
(ifreturn_dict=True
is passed or whenconfig.return_dict=True
) or a tuple oftf.Tensor
comprising various elements depending on the configuration (MobileBertConfig
) and inputs.loss (
tf.Tensor
of shape(1,)
, optional, returned whenlabels
is provided) – Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.start_logits (
tf.Tensor
of shape(batch_size, sequence_length,)
) – Span-start scores (before SoftMax).end_logits (
tf.Tensor
of shape(batch_size, sequence_length,)
) – Span-end scores (before SoftMax).hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) – Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) – Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
- Return type
TFQuestionAnsweringModelOutput
ortuple(tf.Tensor)
Example:
>>> from transformers import MobileBertTokenizer, TFMobileBertForQuestionAnswering >>> import tensorflow as tf >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertForQuestionAnswering.from_pretrained('google/mobilebert-uncased') >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" >>> input_dict = tokenizer(question, text, return_tensors='tf') >>> start_scores, end_scores = model(input_dict) >>> all_tokens = tokenizer.convert_ids_to_tokens(input_dict["input_ids"].numpy()[0]) >>> answer = ' '.join(all_tokens[tf.math.argmax(start_scores, 1)[0] : tf.math.argmax(end_scores, 1)[0]+1])