MobileBERT

Overview

The MobileBERT model was proposed in MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. It’s a bidirectional transformer based on the BERT model, which is compressed and accelerated using several approaches.

The abstract from the paper is the following:

Natural Language Processing (NLP) has recently achieved great success by using huge pre-trained models with hundreds of millions of parameters. However, these models suffer from heavy model sizes and high latency such that they cannot be deployed to resource-limited mobile devices. In this paper, we propose MobileBERT for compressing and accelerating the popular BERT model. Like the original BERT, MobileBERT is task-agnostic, that is, it can be generically applied to various downstream NLP tasks via simple fine-tuning. Basically, MobileBERT is a thin version of BERT_LARGE, while equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks. To train MobileBERT, we first train a specially designed teacher model, an inverted-bottleneck incorporated BERT_LARGE model. Then, we conduct knowledge transfer from this teacher to MobileBERT. Empirical studies show that MobileBERT is 4.3x smaller and 5.5x faster than BERT_BASE while achieving competitive results on well-known benchmarks. On the natural language inference tasks of GLUE, MobileBERT achieves a GLUEscore o 77.7 (0.6 lower than BERT_BASE), and 62 ms latency on a Pixel 4 phone. On the SQuAD v1.1/v2.0 question answering task, MobileBERT achieves a dev F1 score of 90.0/79.2 (1.5/2.1 higher than BERT_BASE).

Tips:

  • MobileBERT is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right rather than the left.

  • MobileBERT is similar to BERT and therefore relies on the masked language modeling (MLM) objective. It is therefore efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation. Models trained with a causal language modeling (CLM) objective are better in that regard.

The original code can be found here.

MobileBertConfig

class transformers.MobileBertConfig(vocab_size=30522, hidden_size=512, num_hidden_layers=24, num_attention_heads=4, intermediate_size=512, hidden_act='relu', hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, embedding_size=128, trigram_input=True, use_bottleneck=True, intra_bottleneck_size=128, use_bottleneck_attention=False, key_query_shared_bottleneck=True, num_feedforward_networks=4, normalization_type='no_norm', classifier_activation=True, **kwargs)[source]

This is the configuration class to store the configuration of a MobileBertModel. It is used to instantiate a MobileBERT model according to the specified arguments, defining the model architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Parameters
  • vocab_size (int, optional, defaults to 30522) – Vocabulary size of the MobileBERT model. Defines the different tokens that can be represented by the inputs_ids passed to the forward method of MobileBertModel.

  • hidden_size (int, optional, defaults to 512) – Dimensionality of the encoder layers and the pooler layer.

  • num_hidden_layers (int, optional, defaults to 24) – Number of hidden layers in the Transformer encoder.

  • num_attention_heads (int, optional, defaults to 4) – Number of attention heads for each attention layer in the Transformer encoder.

  • intermediate_size (int, optional, defaults to 512) – Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

  • hidden_act (str or function, optional, defaults to “relu”) – The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”, “swish” and “gelu_new” are supported.

  • hidden_dropout_prob (float, optional, defaults to 0.0) – The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

  • attention_probs_dropout_prob (float, optional, defaults to 0.1) – The dropout ratio for the attention probabilities.

  • max_position_embeddings (int, optional, defaults to 512) – The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).

  • type_vocab_size (int, optional, defaults to 2) – The vocabulary size of the token_type_ids passed into MobileBertModel.

  • initializer_range (float, optional, defaults to 0.02) – The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

  • layer_norm_eps (float, optional, defaults to 1e-12) – The epsilon used by the layer normalization layers.

  • pad_token_id (int, optional, defaults to 0) – The ID of the token in the word embedding to use as padding.

  • embedding_size (int, optional, defaults to 128) – The dimension of the word embedding vectors.

  • trigram_input (bool, optional, defaults to True) – Use a convolution of trigram as input.

  • use_bottleneck (bool, optional, defaults to True) – Whether to use bottleneck in BERT.

  • intra_bottleneck_size (int, optional, defaults to 128) – Size of bottleneck layer output.

  • use_bottleneck_attention (bool, optional, defaults to False) – Whether to use attention inputs from the bottleneck transformation.

  • key_query_shared_bottleneck (bool, optional, defaults to True) – Whether to use the same linear transformation for query&key in the bottleneck.

  • num_feedforward_networks (int, optional, defaults to 4) – Number of FFNs in a block.

  • normalization_type (str, optional, defaults to “no_norm”) – The normalization type in BERT.

Example

>>> from transformers import MobileBertModel, MobileBertConfig
>>> # Initializing a MobileBERT configuration
>>> configuration = MobileBertConfig()
>>> # Initializing a model from the configuration above
>>> model = MobileBertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
pretrained_config_archive_map

A dictionary containing all the available pre-trained checkpoints.

Type

Dict[str, str]

MobileBertTokenizer

class transformers.MobileBertTokenizer(vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token='[UNK]', sep_token='[SEP]', pad_token='[PAD]', cls_token='[CLS]', mask_token='[MASK]', tokenize_chinese_chars=True, strip_accents=None, **kwargs)[source]

Constructs a MobileBertTokenizer.

BertTokenizer and runs end-to-end tokenization: punctuation splitting + wordpiece.

Refer to superclass BertTokenizer for usage examples and documentation concerning parameters.

build_inputs_with_special_tokens(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) → List[int]

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format:

  • single sequence: [CLS] X [SEP]

  • pair of sequences: [CLS] A [SEP] B [SEP]

Parameters
  • token_ids_0 (List[int]) – List of IDs to which the special tokens will be added

  • token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs.

Returns

list of input IDs with the appropriate special tokens.

Return type

List[int]

create_token_type_ids_from_sequences(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) → List[int]

Creates a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

if token_ids_1 is None, only returns the first portion of the mask (0’s).

Parameters
  • token_ids_0 (List[int]) – List of ids.

  • token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs.

Returns

List of token type IDs according to the given sequence(s).

Return type

List[int]

get_special_tokens_mask(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False) → List[int]

Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model method.

Parameters
  • token_ids_0 (List[int]) – List of ids.

  • token_ids_1 (List[int], optional) – Optional second list of IDs for sequence pairs.

  • already_has_special_tokens (bool, optional, defaults to False) – Set to True if the token list is already formatted with special tokens for the model

Returns

A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.

Return type

List[int]

save_vocabulary(vocab_path)

Save the sentencepiece vocabulary (copy original file) and special tokens file to a directory.

Parameters

vocab_path (str) – The directory in which to save the vocabulary.

Returns

Paths to the files saved.

Return type

Tuple(str)

MobileBertTokenizerFast

class transformers.MobileBertTokenizerFast(vocab_file, do_lower_case=True, unk_token='[UNK]', sep_token='[SEP]', pad_token='[PAD]', cls_token='[CLS]', mask_token='[MASK]', clean_text=True, tokenize_chinese_chars=True, strip_accents=None, wordpieces_prefix='##', **kwargs)[source]

Constructs a “Fast” MobileBertTokenizer (backed by HuggingFace’s tokenizers library).

MobileBertTokenizerFast is identical to BertTokenizerFast and runs end-to-end tokenization: punctuation splitting + wordpiece.

Refer to superclass BertTokenizerFast for usage examples and documentation concerning parameters.

MobileBert specific outputs

class transformers.modeling_mobilebert.MobileBertForPreTrainingOutput(loss: Optional[torch.FloatTensor] = None, prediction_logits: torch.FloatTensor = None, seq_relationship_logits: torch.FloatTensor = None, hidden_states: Optional[Tuple[torch.FloatTensor]] = None, attentions: Optional[Tuple[torch.FloatTensor]] = None)[source]

Output type of MobileBertForPreTrainingModel.

Parameters
  • loss (optional, returned when labels is provided, torch.FloatTensor of shape (1,)) – Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.

  • prediction_logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • seq_relationship_logits (torch.FloatTensor of shape (batch_size, 2)) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) –

    Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) –

    Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

class transformers.modeling_tf_mobilebert.TFMobileBertForPreTrainingOutput(loss: Optional[tensorflow.python.framework.ops.Tensor] = None, prediction_logits: tensorflow.python.framework.ops.Tensor = None, seq_relationship_logits: tensorflow.python.framework.ops.Tensor = None, hidden_states: Optional[Tuple[tensorflow.python.framework.ops.Tensor]] = None, attentions: Optional[Tuple[tensorflow.python.framework.ops.Tensor]] = None)[source]

Output type of TFMobileBertForPreTrainingModel.

Parameters
  • prediction_logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • seq_relationship_logits (tf.Tensor of shape (batch_size, 2)) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) –

    Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) –

    Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

MobileBertModel

class transformers.MobileBertModel(config)[source]

The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (MobileBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

https://arxiv.org/pdf/2004.02984.pdf

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, output_hidden_states=None, output_attentions=None, return_dict=None)[source]

The MobileBertModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.MobileBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

  • output_attentions (bool, optional) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – If set to True, the hidden states of all layers are returned. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – If set to True, the model will return a ModelOutput instead of a plain tuple.

Returns

A BaseModelOutputWithPooling (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (MobileBertConfig) and inputs.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the model.

  • pooler_output (torch.FloatTensor of shape (batch_size, hidden_size)) – Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

BaseModelOutputWithPooling or tuple(torch.FloatTensor)

Example:

>>> from transformers import MobileBertTokenizer, MobileBertModel
>>> import torch

>>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased')
>>> model = MobileBertModel.from_pretrained('google/mobilebert-uncased', return_dict=True)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
get_input_embeddings()[source]

Returns the model’s input embeddings.

Returns

A torch module mapping vocabulary to hidden states.

Return type

nn.Module

set_input_embeddings(value)[source]

Set model’s input embeddings

Parameters

value (nn.Module) – A module mapping vocabulary to hidden states.

MobileBertForPreTraining

class transformers.MobileBertForPreTraining(config)[source]

MobileBert Model with two heads on top as done during the pre-training: a masked language modeling head and a next sentence prediction (classification) head. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (MobileBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, next_sentence_label=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]

The MobileBertForPreTraining forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.MobileBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

  • output_attentions (bool, optional) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – If set to True, the hidden states of all layers are returned. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) –

    If set to True, the model will return a ModelOutput instead of a plain tuple.

    labels (torch.LongTensor of shape (batch_size, sequence_length), optional):

    Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

    next_sentence_label (torch.LongTensor of shape (batch_size,), optional):

    Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see input_ids docstring) Indices should be in [0, 1]. 0 indicates sequence B is a continuation of sequence A, 1 indicates sequence B is a random sequence.

Returns

A MobileBertForPreTrainingOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (MobileBertConfig) and inputs.

  • loss (optional, returned when labels is provided, torch.FloatTensor of shape (1,)) – Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.

  • prediction_logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • seq_relationship_logits (torch.FloatTensor of shape (batch_size, 2)) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Examples:

>>> from transformers import MobileBertTokenizer, MobileBertForPreTraining
>>> import torch

>>> tokenizer = MobileBertTokenizer.from_pretrained("google/mobilebert-uncased")
>>> model = MobileBertForPreTraining.from_pretrained("google/mobilebert-uncased", return_dict=True)

>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
>>> outputs = model(input_ids)

>>> prediction_logits = outptus.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

Return type

MobileBertForPreTrainingOutput or tuple(torch.FloatTensor)

get_output_embeddings()[source]

Returns the model’s output embeddings.

Returns

A torch module mapping hidden states to vocabulary.

Return type

nn.Module

tie_weights()[source]

Tie the weights between the input embeddings and the output embeddings. If the torchscript flag is set in the configuration, can’t handle parameter sharing so we are cloning the weights instead.

MobileBertForMaskedLM

class transformers.MobileBertForMaskedLM(config)[source]

MobileBert Model with a language modeling head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (MobileBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)[source]

The MobileBertForMaskedLM forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.MobileBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

  • output_attentions (bool, optional) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – If set to True, the hidden states of all layers are returned. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – If set to True, the model will return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) – Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

  • kwargs (Dict[str, any], optional, defaults to {}) – Used to hide legacy arguments that have been deprecated.

Returns

A MaskedLMOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (MobileBertConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Masked languaged modeling (MLM) loss.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

MaskedLMOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import MobileBertTokenizer, MobileBertForMaskedLM
>>> import torch

>>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased')
>>> model = MobileBertForMaskedLM.from_pretrained('google/mobilebert-uncased', return_dict=True)

>>> input_ids = tokenizer("Hello, my dog is cute", return_tensors="pt")["input_ids"]

>>> outputs = model(input_ids, labels=input_ids)
>>> loss = outputs.loss
>>> prediction_logits = outputs.logits
get_output_embeddings()[source]

Returns the model’s output embeddings.

Returns

A torch module mapping hidden states to vocabulary.

Return type

nn.Module

tie_weights()[source]

Tie the weights between the input embeddings and the output embeddings. If the torchscript flag is set in the configuration, can’t handle parameter sharing so we are cloning the weights instead.

MobileBertForNextSentencePrediction

class transformers.MobileBertForNextSentencePrediction(config)[source]

MobileBert Model with a next sentence prediction (classification) head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (MobileBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, next_sentence_label=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]

The MobileBertForNextSentencePrediction forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.MobileBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

  • output_attentions (bool, optional) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – If set to True, the hidden states of all layers are returned. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) –

    If set to True, the model will return a ModelOutput instead of a plain tuple.

    next_sentence_label (torch.LongTensor of shape (batch_size,), optional):

    Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see input_ids docstring) Indices should be in [0, 1]. 0 indicates sequence B is a continuation of sequence A, 1 indicates sequence B is a random sequence.

Returns

A NextSentencePredictorOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (MobileBertConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when next_sentence_label is provided) – Next sequence prediction (classification) loss.

  • logits (torch.FloatTensor of shape (batch_size, 2)) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Examples:

>>> from transformers import MobileBertTokenizer, MobileBertForNextSentencePrediction
>>> import torch

>>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased')
>>> model = MobileBertForNextSentencePrediction.from_pretrained('google/mobilebert-uncased', return_dict=True)

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt')

>>> outputs = model(**encoding, next_sentence_label=torch.LongTensor([1]))
>>> loss = outputs.loss
>>> logits = outputs.logits

Return type

NextSentencePredictorOutput or tuple(torch.FloatTensor)

MobileBertForSequenceClassification

class transformers.MobileBertForSequenceClassification(config)[source]

MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (MobileBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]

The MobileBertForSequenceClassification forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.MobileBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

  • output_attentions (bool, optional) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – If set to True, the hidden states of all layers are returned. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – If set to True, the model will return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size,), optional) – Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

A SequenceClassifierOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (MobileBertConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Classification (or regression if config.num_labels==1) loss.

  • logits (torch.FloatTensor of shape (batch_size, config.num_labels)) – Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

SequenceClassifierOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import MobileBertTokenizer, MobileBertForSequenceClassification
>>> import torch

>>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased')
>>> model = MobileBertForSequenceClassification.from_pretrained('google/mobilebert-uncased', return_dict=True)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits

MobileBertForMultipleChoice

class transformers.MobileBertForMultipleChoice(config)[source]

MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (MobileBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]

The MobileBertForMultipleChoice forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.MobileBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

  • output_attentions (bool, optional) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – If set to True, the hidden states of all layers are returned. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – If set to True, the model will return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size,), optional) – Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices-1] where num_choices is the size of the second dimension of the input tensors. (see input_ids above)

Returns

A MultipleChoiceModelOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (MobileBertConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Classification loss.

  • logits (torch.FloatTensor of shape (batch_size, num_choices)) – num_choices is the second dimension of the input tensors. (see input_ids above).

    Classification scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

MultipleChoiceModelOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import MobileBertTokenizer, MobileBertForMultipleChoice
>>> import torch

>>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased')
>>> model = MobileBertForMultipleChoice.from_pretrained('google/mobilebert-uncased', return_dict=True)

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k,v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

MobileBertForTokenClassification

class transformers.MobileBertForTokenClassification(config)[source]

MoibleBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (MobileBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]

The MobileBertForTokenClassification forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.MobileBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

  • output_attentions (bool, optional) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – If set to True, the hidden states of all layers are returned. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – If set to True, the model will return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) – Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1].

Returns

A TokenClassifierOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (MobileBertConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Classification loss.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.num_labels)) – Classification scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TokenClassifierOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import MobileBertTokenizer, MobileBertForTokenClassification
>>> import torch

>>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased')
>>> model = MobileBertForTokenClassification.from_pretrained('google/mobilebert-uncased', return_dict=True)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> labels = torch.tensor([1] * inputs["input_ids"].size(1)).unsqueeze(0)  # Batch size 1

>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits

MobileBertForQuestionAnswering

class transformers.MobileBertForQuestionAnswering(config)[source]

MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits). This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (MobileBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)[source]

The MobileBertForQuestionAnswering forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.MobileBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

  • output_attentions (bool, optional) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – If set to True, the hidden states of all layers are returned. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – If set to True, the model will return a ModelOutput instead of a plain tuple.

  • start_positions (torch.LongTensor of shape (batch_size,), optional) – Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

  • end_positions (torch.LongTensor of shape (batch_size,), optional) – Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

Returns

A QuestionAnsweringModelOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (MobileBertConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length,)) – Span-start scores (before SoftMax).

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length,)) – Span-end scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

QuestionAnsweringModelOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import MobileBertTokenizer, MobileBertForQuestionAnswering
>>> import torch

>>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased')
>>> model = MobileBertForQuestionAnswering.from_pretrained('google/mobilebert-uncased', return_dict=True)

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors='pt')
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])

>>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
>>> loss = outputs.loss
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits

TFMobileBertModel

class transformers.TFMobileBertModel(*args, **kwargs)[source]

The bare MobileBert Model transformer outputing raw hidden-states without any specific head on top. This model is a tf.keras.Model sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({'input_ids': input_ids, 'token_type_ids': token_type_ids})

Parameters

config (MobileBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(inputs, **kwargs)[source]

The TFMobileBertModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.MobileBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (np.ndarray or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (np.ndarray or tf.Tensor of shape (batch_size, sequence_length, embedding_dim), optional) – Optionally, instead of passing input_ids you can to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • training (boolean, optional, defaults to False) – Whether to activate dropout modules (if set to True) during training or to de-activate them (if set to False) for evaluation.

  • output_attentions (bool, optional) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – If set to True, the hidden states of all layers are returned. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – If set to True, the model will return a ModelOutput instead of a plain tuple.

Returns

A TFBaseModelOutputWithPooling (if return_dict=True is passed or when config.return_dict=True) or a tuple of tf.Tensor comprising various elements depending on the configuration (MobileBertConfig) and inputs.

  • last_hidden_state (tf.Tensor of shape (batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the model.

  • pooler_output (tf.Tensor of shape (batch_size, hidden_size)) – Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.

    This output is usually not a good summary of the semantic content of the input, you’re often better with averaging or pooling the sequence of hidden-states for the whole input sequence.

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TFBaseModelOutputWithPooling or tuple(tf.Tensor)

Example:

>>> from transformers import MobileBertTokenizer, TFMobileBertModel
>>> import tensorflow as tf

>>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased')
>>> model = TFMobileBertModel.from_pretrained('google/mobilebert-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

TFMobileBertForPreTraining

class transformers.TFMobileBertForPreTraining(*args, **kwargs)[source]

MobileBert Model with two heads on top as done during the pre-training: a masked language modeling head and a next sentence prediction (classification) head. This model is a tf.keras.Model sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({'input_ids': input_ids, 'token_type_ids': token_type_ids})

Parameters

config (MobileBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(inputs, **kwargs)[source]

The TFMobileBertForPreTraining forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.MobileBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (np.ndarray or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (np.ndarray or tf.Tensor of shape (batch_size, sequence_length, embedding_dim), optional) – Optionally, instead of passing input_ids you can to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • training (boolean, optional, defaults to False) – Whether to activate dropout modules (if set to True) during training or to de-activate them (if set to False) for evaluation.

  • output_attentions (bool, optional) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – If set to True, the hidden states of all layers are returned. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – If set to True, the model will return a ModelOutput instead of a plain tuple.

Returns

A TFMobileBertForPreTrainingOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of tf.Tensor comprising various elements depending on the configuration (MobileBertConfig) and inputs.

  • prediction_logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • seq_relationship_logits (tf.Tensor of shape (batch_size, 2)) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Examples:

>>> import tensorflow as tf
>>> from transformers import MobileBertTokenizer, TFMobileBertForPreTraining

>>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased')
>>> model = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased')
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :]  # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_scores, seq_relationship_scores = outputs[:2]

Return type

TFMobileBertForPreTrainingOutput or tuple(tf.Tensor)

get_output_embeddings()[source]

Returns the model’s output embeddings.

Returns

A torch module mapping hidden states to vocabulary.

Return type

tf.keras.layers.Layer

TFMobileBertForMaskedLM

class transformers.TFMobileBertForMaskedLM(*args, **kwargs)[source]

MobileBert Model with a language modeling head on top. This model is a tf.keras.Model sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({'input_ids': input_ids, 'token_type_ids': token_type_ids})

Parameters

config (MobileBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(inputs=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False)[source]

The TFMobileBertForMaskedLM forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.MobileBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (np.ndarray or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (np.ndarray or tf.Tensor of shape (batch_size, sequence_length, embedding_dim), optional) – Optionally, instead of passing input_ids you can to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • training (boolean, optional, defaults to False) – Whether to activate dropout modules (if set to True) during training or to de-activate them (if set to False) for evaluation.

  • output_attentions (bool, optional) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – If set to True, the hidden states of all layers are returned. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – If set to True, the model will return a ModelOutput instead of a plain tuple.

  • labels (tf.Tensor of shape (batch_size, sequence_length), optional) – Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels

Returns

A TFMaskedLMOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of tf.Tensor comprising various elements depending on the configuration (MobileBertConfig) and inputs.

  • loss (tf.Tensor of shape (1,), optional, returned when labels is provided) – Masked languaged modeling (MLM) loss.

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TFMaskedLMOutput or tuple(tf.Tensor)

Example::
>>> from transformers import MobileBertTokenizer, TFMobileBertForMaskedLM
>>> import tensorflow as tf
>>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased')
>>> model = TFMobileBertForMaskedLM.from_pretrained('google/mobilebert-uncased')
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :]  # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_scores = outputs[0]
get_output_embeddings()[source]

Returns the model’s output embeddings.

Returns

A torch module mapping hidden states to vocabulary.

Return type

tf.keras.layers.Layer

TFMobileBertForNextSentencePrediction

class transformers.TFMobileBertForNextSentencePrediction(*args, **kwargs)[source]

MobileBert Model with a next sentence prediction (classification) head on top. This model is a tf.keras.Model sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({'input_ids': input_ids, 'token_type_ids': token_type_ids})

Parameters

config (MobileBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(inputs, **kwargs)[source]

The TFMobileBertForNextSentencePrediction forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.MobileBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (np.ndarray or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (np.ndarray or tf.Tensor of shape (batch_size, sequence_length, embedding_dim), optional) – Optionally, instead of passing input_ids you can to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • training (boolean, optional, defaults to False) – Whether to activate dropout modules (if set to True) during training or to de-activate them (if set to False) for evaluation.

  • output_attentions (bool, optional) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – If set to True, the hidden states of all layers are returned. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – If set to True, the model will return a ModelOutput instead of a plain tuple.

Returns

A TFNextSentencePredictorOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of tf.Tensor comprising various elements depending on the configuration (MobileBertConfig) and inputs.

  • logits (tf.Tensor of shape (batch_size, 2)) – Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Examples:

>>> import tensorflow as tf
>>> from transformers import MobileBertTokenizer, TFMobileBertForNextSentencePrediction

>>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased')
>>> model = TFMobileBertForNextSentencePrediction.from_pretrained('google/mobilebert-uncased')

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors='tf')

>>> logits = model(encoding['input_ids'], token_type_ids=encoding['token_type_ids'])[0]

Return type

TFNextSentencePredictorOutput or tuple(tf.Tensor)

TFMobileBertForSequenceClassification

class transformers.TFMobileBertForSequenceClassification(*args, **kwargs)[source]

MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. This model is a tf.keras.Model sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({'input_ids': input_ids, 'token_type_ids': token_type_ids})

Parameters

config (MobileBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(inputs=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False)[source]

The TFMobileBertForSequenceClassification forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (np.ndarray or tf.Tensor of shape {0}) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.MobileBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (np.ndarray or tf.Tensor of shape {0}, optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (np.ndarray or tf.Tensor of shape {0}, optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (np.ndarray or tf.Tensor of shape {0}, optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (np.ndarray or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (np.ndarray or tf.Tensor of shape (batch_size, sequence_length, embedding_dim), optional) – Optionally, instead of passing input_ids you can to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • training (boolean, optional, defaults to False) – Whether to activate dropout modules (if set to True) during training or to de-activate them (if set to False) for evaluation.

  • output_attentions (bool, optional) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – If set to True, the hidden states of all layers are returned. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – If set to True, the model will return a ModelOutput instead of a plain tuple.

  • labels (tf.Tensor of shape (batch_size,), optional) – Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

A TFSequenceClassifierOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of tf.Tensor comprising various elements depending on the configuration (MobileBertConfig) and inputs.

  • loss (tf.Tensor of shape (1,), optional, returned when labels is provided) – Classification (or regression if config.num_labels==1) loss.

  • logits (tf.Tensor of shape (batch_size, config.num_labels)) – Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TFSequenceClassifierOutput or tuple(tf.Tensor)

Example:

>>> from transformers import MobileBertTokenizer, TFMobileBertForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased')
>>> model = TFMobileBertForSequenceClassification.from_pretrained('google/mobilebert-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> inputs["labels"] = tf.reshape(tf.constant(1), (-1, 1)) # Batch size 1

>>> outputs = model(inputs)
>>> loss, logits = outputs[:2]

TFMobileBertForMultipleChoice

class transformers.TFMobileBertForMultipleChoice(*args, **kwargs)[source]

MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. This model is a tf.keras.Model sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({'input_ids': input_ids, 'token_type_ids': token_type_ids})

Parameters

config (MobileBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False)[source]

The TFMobileBertForMultipleChoice forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (np.ndarray or tf.Tensor of shape (batch_size, num_choices, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.MobileBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (np.ndarray or tf.Tensor of shape (batch_size, num_choices, sequence_length), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (np.ndarray or tf.Tensor of shape (batch_size, num_choices, sequence_length), optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (np.ndarray or tf.Tensor of shape (batch_size, num_choices, sequence_length), optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (np.ndarray or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (np.ndarray or tf.Tensor of shape (batch_size, sequence_length, embedding_dim), optional) – Optionally, instead of passing input_ids you can to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • training (boolean, optional, defaults to False) – Whether to activate dropout modules (if set to True) during training or to de-activate them (if set to False) for evaluation.

  • output_attentions (bool, optional) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – If set to True, the hidden states of all layers are returned. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – If set to True, the model will return a ModelOutput instead of a plain tuple.

  • labels (tf.Tensor of shape (batch_size,), optional) – Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices] where num_choices is the size of the second dimension of the input tensors. (see input_ids above)

Returns

A TFMultipleChoiceModelOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of tf.Tensor comprising various elements depending on the configuration (MobileBertConfig) and inputs.

  • loss (tf.Tensor of shape (1,), optional, returned when labels is provided) – Classification loss.

  • logits (tf.Tensor of shape (batch_size, num_choices)) – num_choices is the second dimension of the input tensors. (see input_ids above).

    Classification scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TFMultipleChoiceModelOutput or tuple(tf.Tensor)

Example:

>>> from transformers import MobileBertTokenizer, TFMobileBertForMultipleChoice
>>> import tensorflow as tf

>>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased')
>>> model = TFMobileBertForMultipleChoice.from_pretrained('google/mobilebert-uncased')

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='tf', padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> logits = outputs[0]
property dummy_inputs

Dummy inputs to build the network.

Returns

tf.Tensor with dummy inputs

TFMobileBertForTokenClassification

class transformers.TFMobileBertForTokenClassification(*args, **kwargs)[source]

MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. This model is a tf.keras.Model sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({'input_ids': input_ids, 'token_type_ids': token_type_ids})

Parameters

config (MobileBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(inputs=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False)[source]

The TFMobileBertForTokenClassification forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (np.ndarray or tf.Tensor of shape {0}) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.MobileBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (np.ndarray or tf.Tensor of shape {0}, optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (np.ndarray or tf.Tensor of shape {0}, optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (np.ndarray or tf.Tensor of shape {0}, optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (np.ndarray or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (np.ndarray or tf.Tensor of shape (batch_size, sequence_length, embedding_dim), optional) – Optionally, instead of passing input_ids you can to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • training (boolean, optional, defaults to False) – Whether to activate dropout modules (if set to True) during training or to de-activate them (if set to False) for evaluation.

  • output_attentions (bool, optional) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – If set to True, the hidden states of all layers are returned. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – If set to True, the model will return a ModelOutput instead of a plain tuple.

  • labels (tf.Tensor of shape (batch_size, sequence_length), optional) – Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1].

Returns

A TFTokenClassifierOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of tf.Tensor comprising various elements depending on the configuration (MobileBertConfig) and inputs.

  • loss (tf.Tensor of shape (1,), optional, returned when labels is provided) – Classification loss.

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.num_labels)) – Classification scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TFTokenClassifierOutput or tuple(tf.Tensor)

Example:

>>> from transformers import MobileBertTokenizer, TFMobileBertForTokenClassification
>>> import tensorflow as tf

>>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased')
>>> model = TFMobileBertForTokenClassification.from_pretrained('google/mobilebert-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> input_ids = inputs["input_ids"]
>>> inputs["labels"] = tf.reshape(tf.constant([1] * tf.size(input_ids).numpy()), (-1, tf.size(input_ids))) # Batch size 1

>>> outputs = model(inputs)
>>> loss, scores = outputs[:2]

TFMobileBertForQuestionAnswering

class transformers.TFMobileBertForQuestionAnswering(*args, **kwargs)[source]

MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits). This model is a tf.keras.Model sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit() method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({'input_ids': input_ids, 'token_type_ids': token_type_ids})

Parameters

config (MobileBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

call(inputs=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, start_positions=None, end_positions=None, training=False)[source]

The TFMobileBertForQuestionAnswering forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (np.ndarray or tf.Tensor of shape {0}) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.MobileBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (np.ndarray or tf.Tensor of shape {0}, optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (np.ndarray or tf.Tensor of shape {0}, optional) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (np.ndarray or tf.Tensor of shape {0}, optional) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (np.ndarray or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (np.ndarray or tf.Tensor of shape (batch_size, sequence_length, embedding_dim), optional) – Optionally, instead of passing input_ids you can to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • training (boolean, optional, defaults to False) – Whether to activate dropout modules (if set to True) during training or to de-activate them (if set to False) for evaluation.

  • output_attentions (bool, optional) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – If set to True, the hidden states of all layers are returned. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – If set to True, the model will return a ModelOutput instead of a plain tuple.

  • start_positions (tf.Tensor of shape (batch_size,), optional) – Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

  • end_positions (tf.Tensor of shape (batch_size,), optional) – Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

Returns

A TFQuestionAnsweringModelOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of tf.Tensor comprising various elements depending on the configuration (MobileBertConfig) and inputs.

  • loss (tf.Tensor of shape (1,), optional, returned when labels is provided) – Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

  • start_logits (tf.Tensor of shape (batch_size, sequence_length,)) – Span-start scores (before SoftMax).

  • end_logits (tf.Tensor of shape (batch_size, sequence_length,)) – Span-end scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

TFQuestionAnsweringModelOutput or tuple(tf.Tensor)

Example:

>>> from transformers import MobileBertTokenizer, TFMobileBertForQuestionAnswering
>>> import tensorflow as tf

>>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased')
>>> model = TFMobileBertForQuestionAnswering.from_pretrained('google/mobilebert-uncased')

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> input_dict = tokenizer(question, text, return_tensors='tf')
>>> start_scores, end_scores = model(input_dict)

>>> all_tokens = tokenizer.convert_ids_to_tokens(input_dict["input_ids"].numpy()[0])
>>> answer = ' '.join(all_tokens[tf.math.argmax(start_scores, 1)[0] : tf.math.argmax(end_scores, 1)[0]+1])