Source code for transformers.generation_utils

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Iterable, List, Optional, Tuple

import torch
from torch import Tensor
from torch.nn import functional as F

from .file_utils import ModelOutput
from .utils import logging


logger = logging.get_logger(__name__)


[docs]class GenerationMixin: """ A class contraining all of the functions supporting generation, to be used as a mixin in :class:`~transfomers.PreTrainedModel`. """
[docs] def prepare_inputs_for_generation(self, input_ids, **kwargs): """ Implement in subclasses of :class:`~transfomers.PreTrainedModel` for custom behavior to prepare inputs in the generate method. """ return {"input_ids": input_ids}
[docs] def adjust_logits_during_generation(self, logits, **kwargs): """ Implement in subclasses of :class:`~transfomers.PreTrainedModel` for custom behavior to adjust the logits in the generate method. """ return logits
[docs] def enforce_repetition_penalty_(self, lprobs, batch_size, num_beams, prev_output_tokens, repetition_penalty): """ Enforce the repetition penalty (from the `CTRL paper <https://arxiv.org/abs/1909.05858>`__). """ for i in range(batch_size * num_beams): for previous_token in set(prev_output_tokens[i].tolist()): # if score < 0 then repetition penalty has to multiplied to reduce the previous token probability if lprobs[i, previous_token] < 0: lprobs[i, previous_token] *= repetition_penalty else: lprobs[i, previous_token] /= repetition_penalty
def postprocess_next_token_scores( self, scores, input_ids, no_repeat_ngram_size, bad_words_ids, cur_len, min_length, max_length, eos_token_id, repetition_penalty, batch_size, num_beams, ): # repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858) if repetition_penalty != 1.0: self.enforce_repetition_penalty_( scores, batch_size, num_beams, input_ids, repetition_penalty, ) # set eos token prob to zero if min_length is not reached if eos_token_id is not None and cur_len < min_length: scores[:, eos_token_id] = -float("inf") if no_repeat_ngram_size > 0: # calculate a list of banned tokens to prevent repetitively generating the same ngrams num_batch_hypotheses = batch_size * num_beams # from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345 banned_batch_tokens = calc_banned_ngram_tokens( input_ids, num_batch_hypotheses, no_repeat_ngram_size, cur_len ) for i, banned_tokens in enumerate(banned_batch_tokens): scores[i, banned_tokens] = -float("inf") if bad_words_ids is not None: # Exclude EOS token (already processed) bad_words_ids = list(filter(lambda bad_token_seq: bad_token_seq != [eos_token_id], bad_words_ids)) # calculate a list of banned tokens according to bad words banned_tokens = calc_banned_bad_words_ids(input_ids.tolist(), bad_words_ids) # Modify the scores in place by setting the banned tokens logits to `-inf` set_scores_to_inf_for_banned_tokens(scores, banned_tokens) return scores
[docs] @torch.no_grad() def generate( self, input_ids: Optional[torch.LongTensor] = None, max_length: Optional[int] = None, min_length: Optional[int] = None, do_sample: Optional[bool] = None, early_stopping: Optional[bool] = None, num_beams: Optional[int] = None, temperature: Optional[float] = None, top_k: Optional[int] = None, top_p: Optional[float] = None, repetition_penalty: Optional[float] = None, bad_words_ids: Optional[Iterable[int]] = None, bos_token_id: Optional[int] = None, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, length_penalty: Optional[float] = None, no_repeat_ngram_size: Optional[int] = None, num_return_sequences: Optional[int] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_start_token_id: Optional[int] = None, use_cache: Optional[bool] = None, **model_kwargs ) -> torch.LongTensor: r""" Generates sequences for models with a language modeling head. The method currently supports greedy decoding, beam-search decoding, sampling with temperature, sampling with top-k or nucleus sampling. Adapted in part from `Facebook's XLM beam search code <https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529>`__. Apart from :obj:`input_ids` and :obj:`attention_mask`, all the arguments below will default to the value of the attribute of the same name inside the :class:`~transformers.PretrainedConfig` of the model. The default values indicated are the default values of those config. Most of these parameters are explained in more detail in `this blog post <https://huggingface.co/blog/how-to-generate>`__. Parameters: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): The sequence used as a prompt for the generation. If :obj:`None` the method initializes it as an empty :obj:`torch.LongTensor` of shape :obj:`(1,)`. max_length (:obj:`int`, `optional`, defaults to 20): The maximum length of the sequence to be generated. min_length (:obj:`int`, `optional`, defaults to 10): The minimum length of the sequence to be generated. do_sample (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to use sampling ; use greedy decoding otherwise. early_stopping (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to stop the beam search when at least ``num_beams`` sentences are finished per batch or not. num_beams (:obj:`int`, `optional`, defaults to 1): Number of beams for beam search. 1 means no beam search. temperature (:obj:`float`, `optional`, defaults tp 1.0): The value used to module the next token probabilities. top_k (:obj:`int`, `optional`, defaults to 50): The number of highest probability vocabulary tokens to keep for top-k-filtering. top_p (:obj:`float`, `optional`, defaults to 1.0): If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation. repetition_penalty (:obj:`float`, `optional`, defaults to 1.0): The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details. pad_token_id (:obj:`int`, `optional`): The id of the `padding` token. bos_token_id (:obj:`int`, `optional`): The id of the `beginning-of-sequence` token. eos_token_id (:obj:`int`, `optional`): The id of the `end-of-sequence` token. length_penalty (:obj:`float`, `optional`, defaults to 1.0): Exponential penalty to the length. 1.0 means no penalty. Set to values < 1.0 in order to encourage the model to generate shorter sequences, to a value > 1.0 in order to encourage the model to produce longer sequences. no_repeat_ngram_size (:obj:`int`, `optional`, defaults to 0): If set to int > 0, all ngrams of that size can only occur once. bad_words_ids(:obj:`List[int]`, `optional`): List of token ids that are not allowed to be generated. In order to get the tokens of the words that should not appear in the generated text, use :obj:`tokenizer.encode(bad_word, add_prefix_space=True)`. num_return_sequences(:obj:`int`, `optional`, defaults to 1): The number of independently computed returned sequences for each element in the batch. attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values are in ``[0, 1]``, 1 for tokens that are not masked, and 0 for masked tokens. If not provided, will default to a tensor the same shape as :obj:`input_ids` that masks the pad token. `What are attention masks? <../glossary.html#attention-mask>`__ decoder_start_token_id (:obj:`int`, `optional`): If an encoder-decoder model starts decoding with a different token than `bos`, the id of that token. use_cache: (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding. model_kwargs: Additional model specific kwargs will be forwarded to the :obj:`forward` function of the model. Return: :obj:`torch.LongTensor` of shape :obj:`(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or shorter if all batches finished early due to the :obj:`eos_token_id`. Examples:: tokenizer = AutoTokenizer.from_pretrained('distilgpt2') # Initialize tokenizer model = AutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from S3 and cache. outputs = model.generate(max_length=40) # do greedy decoding print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('openai-gpt') # Initialize tokenizer model = AutoModelWithLMHead.from_pretrained('openai-gpt') # Download model and configuration from S3 and cache. input_context = 'The dog' input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context outputs = model.generate(input_ids=input_ids, num_beams=5, num_return_sequences=3, temperature=1.5) # generate 3 independent sequences using beam search decoding (5 beams) with sampling from initial context 'The dog' for i in range(3): # 3 output sequences were generated print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('distilgpt2') # Initialize tokenizer model = AutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from S3 and cache. input_context = 'The dog' input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context outputs = model.generate(input_ids=input_ids, max_length=40, temperature=0.7, num_return_sequences=3, do_sample=True) # generate 3 candidates using sampling for i in range(3): # 3 output sequences were generated print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('ctrl') # Initialize tokenizer model = AutoModelWithLMHead.from_pretrained('ctrl') # Download model and configuration from S3 and cache. input_context = 'Legal My neighbor is' # "Legal" is one of the control codes for ctrl input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context outputs = model.generate(input_ids=input_ids, max_length=50, temperature=0.7, repetition_penalty=1.2) # generate sequences print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('gpt2') # Initialize tokenizer model = AutoModelWithLMHead.from_pretrained('gpt2') # Download model and configuration from S3 and cache. input_context = 'My cute dog' # "Legal" is one of the control codes for ctrl bad_words_ids = [tokenizer.encode(bad_word, add_prefix_space=True) for bad_word in ['idiot', 'stupid', 'shut up']] input_ids = tokenizer.encode(input_context, return_tensors='pt') # encode input context outputs = model.generate(input_ids=input_ids, max_length=100, do_sample=True, bad_words_ids=bad_words_ids) # generate sequences without allowing bad_words to be generated """ # We cannot generate if the model does not have a LM head if self.get_output_embeddings() is None: raise AttributeError( "You tried to generate sequences with a model that does not have a LM Head." "Please use another model class (e.g. `OpenAIGPTLMHeadModel`, `XLNetLMHeadModel`, `GPT2LMHeadModel`, `CTRLLMHeadModel`, `T5WithLMHeadModel`, `TransfoXLLMHeadModel`, `XLMWithLMHeadModel`, `BartForConditionalGeneration` )" ) max_length = max_length if max_length is not None else self.config.max_length min_length = min_length if min_length is not None else self.config.min_length do_sample = do_sample if do_sample is not None else self.config.do_sample early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping use_cache = use_cache if use_cache is not None else self.config.use_cache num_beams = num_beams if num_beams is not None else self.config.num_beams temperature = temperature if temperature is not None else self.config.temperature top_k = top_k if top_k is not None else self.config.top_k top_p = top_p if top_p is not None else self.config.top_p repetition_penalty = repetition_penalty if repetition_penalty is not None else self.config.repetition_penalty bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty no_repeat_ngram_size = ( no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size ) bad_words_ids = bad_words_ids if bad_words_ids is not None else self.config.bad_words_ids num_return_sequences = ( num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences ) decoder_start_token_id = ( decoder_start_token_id if decoder_start_token_id is not None else self.config.decoder_start_token_id ) if input_ids is not None: batch_size = input_ids.shape[0] # overriden by the input batch_size else: batch_size = 1 assert isinstance(max_length, int) and max_length > 0, "`max_length` should be a strictly positive integer." assert isinstance(min_length, int) and min_length >= 0, "`min_length` should be a positive integer." assert isinstance(do_sample, bool), "`do_sample` should be a boolean." assert isinstance(early_stopping, bool), "`early_stopping` should be a boolean." assert isinstance(use_cache, bool), "`use_cache` should be a boolean." assert isinstance(num_beams, int) and num_beams > 0, "`num_beams` should be a strictly positive integer." assert temperature > 0, "`temperature` should be strictly positive." assert isinstance(top_k, int) and top_k >= 0, "`top_k` should be a positive integer." assert 0 <= top_p <= 1, "`top_p` should be between 0 and 1." assert repetition_penalty >= 1.0, "`repetition_penalty` should be >= 1." assert input_ids is not None or ( isinstance(bos_token_id, int) and bos_token_id >= 0 ), "If input_ids is not defined, `bos_token_id` should be a positive integer." assert pad_token_id is None or ( isinstance(pad_token_id, int) and (pad_token_id >= 0) ), "`pad_token_id` should be a positive integer." assert (eos_token_id is None) or ( isinstance(eos_token_id, int) and (eos_token_id >= 0) ), "`eos_token_id` should be a positive integer." assert length_penalty > 0, "`length_penalty` should be strictly positive." assert ( isinstance(no_repeat_ngram_size, int) and no_repeat_ngram_size >= 0 ), "`no_repeat_ngram_size` should be a positive integer." assert ( isinstance(num_return_sequences, int) and num_return_sequences > 0 ), "`num_return_sequences` should be a strictly positive integer." assert ( bad_words_ids is None or isinstance(bad_words_ids, list) and isinstance(bad_words_ids[0], list) ), "`bad_words_ids` is either `None` or a list of lists of tokens that should not be generated" if input_ids is None: assert isinstance(bos_token_id, int) and bos_token_id >= 0, ( "you should either supply a context to complete as `input_ids` input " "or a `bos_token_id` (integer >= 0) as a first token to start the generation." ) input_ids = torch.full( (batch_size, 1), bos_token_id, dtype=torch.long, device=next(self.parameters()).device, ) else: assert input_ids.dim() == 2, "Input prompt should be of shape (batch_size, sequence length)." # not allow to duplicate outputs when greedy decoding if do_sample is False: if num_beams == 1: # no_beam_search greedy generation conditions assert ( num_return_sequences == 1 ), "Greedy decoding will always produce the same output for num_beams == 1 and num_return_sequences > 1. Please set num_return_sequences = 1" else: # beam_search greedy generation conditions assert ( num_beams >= num_return_sequences ), "Greedy beam search decoding cannot return more sequences than it has beams. Please set num_beams >= num_return_sequences" # create attention mask if necessary # TODO (PVP): this should later be handled by the forward fn() in each model in the future see PR 3140 if (attention_mask is None) and (pad_token_id is not None) and (pad_token_id in input_ids): attention_mask = input_ids.ne(pad_token_id).long() elif attention_mask is None: attention_mask = input_ids.new_ones(input_ids.shape) # set pad_token_id to eos_token_id if not set. Important that this is done after # attention_mask is created if pad_token_id is None and eos_token_id is not None: logger.warning( "Setting `pad_token_id` to {} (first `eos_token_id`) to generate sequence".format(eos_token_id) ) pad_token_id = eos_token_id # vocab size if hasattr(self.config, "vocab_size"): vocab_size = self.config.vocab_size elif ( self.config.is_encoder_decoder and hasattr(self.config, "decoder") and hasattr(self.config.decoder, "vocab_size") ): vocab_size = self.config.decoder.vocab_size else: raise ValueError("either self.config.vocab_size or self.config.decoder.vocab_size needs to be defined") # set effective batch size and effective batch multiplier according to do_sample if do_sample: effective_batch_size = batch_size * num_return_sequences effective_batch_mult = num_return_sequences else: effective_batch_size = batch_size effective_batch_mult = 1 if self.config.is_encoder_decoder: if decoder_start_token_id is None: # see if BOS token can be used for decoder_start_token_id if bos_token_id is not None: decoder_start_token_id = bos_token_id elif ( hasattr(self.config, "decoder") and hasattr(self.config.decoder, "bos_token_id") and self.config.decoder.bos_token_id is not None ): decoder_start_token_id = self.config.decoder.bos_token_id else: raise ValueError( "decoder_start_token_id or bos_token_id has to be defined for encoder-decoder generation" ) assert hasattr(self, "get_encoder"), "{} should have a 'get_encoder' function defined".format(self) assert callable(self.get_encoder), "{} should be a method".format(self.get_encoder) # get encoder and store encoder outputs encoder = self.get_encoder() encoder_outputs: ModelOutput = encoder(input_ids, attention_mask=attention_mask, return_dict=True) # Expand input ids if num_beams > 1 or num_return_sequences > 1 if num_return_sequences > 1 or num_beams > 1: input_ids_len = input_ids.shape[-1] input_ids = input_ids.unsqueeze(1).expand(batch_size, effective_batch_mult * num_beams, input_ids_len) attention_mask = attention_mask.unsqueeze(1).expand( batch_size, effective_batch_mult * num_beams, input_ids_len ) input_ids = input_ids.contiguous().view( effective_batch_size * num_beams, input_ids_len ) # shape: (batch_size * num_return_sequences * num_beams, cur_len) attention_mask = attention_mask.contiguous().view( effective_batch_size * num_beams, input_ids_len ) # shape: (batch_size * num_return_sequences * num_beams, cur_len) if self.config.is_encoder_decoder: # create empty decoder input_ids input_ids = torch.full( (effective_batch_size * num_beams, 1), decoder_start_token_id, dtype=torch.long, device=next(self.parameters()).device, ) cur_len = 1 assert ( batch_size == encoder_outputs.last_hidden_state.shape[0] ), f"expected encoder_outputs.last_hidden_state to have 1st dimension bs={batch_size}, got {encoder_outputs.last_hidden_state.shape[0]} " # expand batch_idx to assign correct encoder output for expanded input_ids (due to num_beams > 1 and num_return_sequences > 1) expanded_batch_idxs = ( torch.arange(batch_size) .view(-1, 1) .repeat(1, num_beams * effective_batch_mult) .view(-1) .to(input_ids.device) ) # expand encoder_outputs encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.index_select( 0, expanded_batch_idxs ) # save encoder_outputs in `model_kwargs` model_kwargs["encoder_outputs"] = encoder_outputs else: cur_len = input_ids.shape[-1] assert ( cur_len < max_length ), f"The context has {cur_len} number of tokens, but `max_length` is only {max_length}. Please make sure that `max_length` is bigger than the number of tokens, by setting either `generate(max_length=...,...)` or `config.max_length = ...`" if num_beams > 1: output = self._generate_beam_search( input_ids, cur_len=cur_len, max_length=max_length, min_length=min_length, do_sample=do_sample, early_stopping=early_stopping, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, no_repeat_ngram_size=no_repeat_ngram_size, bad_words_ids=bad_words_ids, pad_token_id=pad_token_id, eos_token_id=eos_token_id, batch_size=effective_batch_size, num_return_sequences=num_return_sequences, length_penalty=length_penalty, num_beams=num_beams, vocab_size=vocab_size, attention_mask=attention_mask, use_cache=use_cache, model_kwargs=model_kwargs, ) else: output = self._generate_no_beam_search( input_ids, cur_len=cur_len, max_length=max_length, min_length=min_length, do_sample=do_sample, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, no_repeat_ngram_size=no_repeat_ngram_size, bad_words_ids=bad_words_ids, pad_token_id=pad_token_id, eos_token_id=eos_token_id, batch_size=effective_batch_size, attention_mask=attention_mask, use_cache=use_cache, model_kwargs=model_kwargs, ) return output
def _generate_no_beam_search( self, input_ids, cur_len, max_length, min_length, do_sample, temperature, top_k, top_p, repetition_penalty, no_repeat_ngram_size, bad_words_ids, pad_token_id, eos_token_id, batch_size, attention_mask, use_cache, model_kwargs, ): """Generate sequences for each example without beam search (num_beams == 1). All returned sequence are generated independantly. """ # length of generated sentences / unfinished sentences unfinished_sents = input_ids.new(batch_size).fill_(1) sent_lengths = input_ids.new(batch_size).fill_(max_length) past = None while cur_len < max_length: model_inputs = self.prepare_inputs_for_generation( input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **model_kwargs ) outputs = self(**model_inputs, return_dict=True) next_token_logits = outputs.logits[:, -1, :] scores = self.postprocess_next_token_scores( scores=next_token_logits, input_ids=input_ids, no_repeat_ngram_size=no_repeat_ngram_size, bad_words_ids=bad_words_ids, cur_len=cur_len, min_length=min_length, max_length=max_length, eos_token_id=eos_token_id, repetition_penalty=repetition_penalty, batch_size=batch_size, num_beams=1, ) # if model has past, then set the past variable to speed up decoding if "past_key_values" in outputs: past = outputs.past_key_values elif "mems" in outputs: past = outputs.mems if do_sample: # Temperature (higher temperature => more likely to sample low probability tokens) if temperature != 1.0: scores = scores / temperature # Top-p/top-k filtering next_token_logscores = top_k_top_p_filtering(scores, top_k=top_k, top_p=top_p) # Sample probs = F.softmax(next_token_logscores, dim=-1) next_token = torch.multinomial(probs, num_samples=1).squeeze(1) else: # Greedy decoding next_token = torch.argmax(next_token_logits, dim=-1) # update generations and finished sentences if eos_token_id is not None: # pad finished sentences if eos_token_id exist tokens_to_add = next_token * unfinished_sents + (pad_token_id) * (1 - unfinished_sents) else: tokens_to_add = next_token # add token and increase length by one input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=-1) cur_len = cur_len + 1 if eos_token_id is not None: eos_in_sents = tokens_to_add == eos_token_id # if sentence is unfinished and the token to add is eos, sent_lengths is filled with current length is_sents_unfinished_and_token_to_add_is_eos = unfinished_sents.mul(eos_in_sents.long()).bool() sent_lengths.masked_fill_(is_sents_unfinished_and_token_to_add_is_eos, cur_len) # unfinished_sents is set to zero if eos in sentence unfinished_sents.mul_((~eos_in_sents).long()) # stop when there is a </s> in each sentence, or if we exceed the maximul length if unfinished_sents.max() == 0: break # extend attention_mask for new generated input if only decoder if self.config.is_encoder_decoder is False: attention_mask = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 ) return input_ids def _generate_beam_search( self, input_ids, cur_len, max_length, min_length, do_sample, early_stopping, temperature, top_k, top_p, repetition_penalty, no_repeat_ngram_size, bad_words_ids, pad_token_id, eos_token_id, batch_size, num_return_sequences, length_penalty, num_beams, vocab_size, attention_mask, use_cache, model_kwargs, ): """Generate sequences for each example with beam search.""" # generated hypotheses generated_hyps = [ BeamHypotheses(num_beams, max_length, length_penalty, early_stopping=early_stopping) for _ in range(batch_size) ] # scores for each sentence in the beam beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device) # for greedy decoding it is made sure that only tokens of the first beam are considered to avoid sampling the exact same tokens three times if do_sample is False: beam_scores[:, 1:] = -1e9 beam_scores = beam_scores.view(-1) # shape (batch_size * num_beams,) # cache compute states past = None # done sentences done = [False for _ in range(batch_size)] while cur_len < max_length: model_inputs = self.prepare_inputs_for_generation( input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **model_kwargs ) outputs = self(**model_inputs, return_dict=True) # (batch_size * num_beams, cur_len, vocab_size) next_token_logits = outputs.logits[:, -1, :] # (batch_size * num_beams, vocab_size) # if model has past, then set the past variable to speed up decoding if "past_key_values" in outputs: past = outputs.past_key_values elif "mems" in outputs: past = outputs.mems if self.config.is_encoder_decoder and do_sample is False: # TODO (PVP) still a bit hacky here - there might be a better solution next_token_logits = self.adjust_logits_during_generation( next_token_logits, cur_len=cur_len, max_length=max_length ) scores = F.log_softmax(next_token_logits, dim=-1) # (batch_size * num_beams, vocab_size) scores = self.postprocess_next_token_scores( scores=scores, input_ids=input_ids, no_repeat_ngram_size=no_repeat_ngram_size, bad_words_ids=bad_words_ids, cur_len=cur_len, min_length=min_length, max_length=max_length, eos_token_id=eos_token_id, repetition_penalty=repetition_penalty, batch_size=batch_size, num_beams=num_beams, ) assert scores.shape == (batch_size * num_beams, vocab_size), "Shapes of scores: {} != {}".format( scores.shape, (batch_size * num_beams, vocab_size) ) if do_sample: _scores = scores + beam_scores[:, None].expand_as(scores) # (batch_size * num_beams, vocab_size) # Temperature if temperature != 1.0: _scores = _scores / temperature # Top-p/top-k filtering _scores = top_k_top_p_filtering( _scores, top_k=top_k, top_p=top_p, min_tokens_to_keep=2 ) # (batch_size * num_beams, vocab_size) # re-organize to group the beam together to sample from all beam_idxs _scores = _scores.contiguous().view( batch_size, num_beams * vocab_size ) # (batch_size, num_beams * vocab_size) # Sample 2 next tokens for each beam (so we have some spare tokens and match output of greedy beam search) probs = F.softmax(_scores, dim=-1) next_tokens = torch.multinomial(probs, num_samples=2 * num_beams) # (batch_size, num_beams * 2) # Compute next scores next_scores = torch.gather(_scores, -1, next_tokens) # (batch_size, num_beams * 2) # sort the sampled vector to make sure that the first num_beams samples are the best next_scores, next_scores_indices = torch.sort(next_scores, descending=True, dim=1) next_tokens = torch.gather(next_tokens, -1, next_scores_indices) # (batch_size, num_beams * 2) else: next_scores = scores + beam_scores[:, None].expand_as(scores) # (batch_size * num_beams, vocab_size) # re-organize to group the beam together (we are keeping top hypothesis accross beams) next_scores = next_scores.view( batch_size, num_beams * vocab_size ) # (batch_size, num_beams * vocab_size) next_scores, next_tokens = torch.topk(next_scores, 2 * num_beams, dim=1, largest=True, sorted=True) assert next_scores.size() == next_tokens.size() == (batch_size, 2 * num_beams) # next batch beam content next_batch_beam = [] # for each sentence for batch_idx in range(batch_size): # if we are done with this sentence, add a pad token if done[batch_idx]: assert ( len(generated_hyps[batch_idx]) >= num_beams ), "Batch can only be done if at least {} beams have been generated".format(num_beams) assert ( eos_token_id is not None and pad_token_id is not None ), "generated beams >= num_beams -> eos_token_id and pad_token have to be defined" next_batch_beam.extend([(0, pad_token_id, 0)] * num_beams) # pad the batch continue # next sentence beam content, this will get added to next_batch_beam next_sent_beam = [] # next tokens for this sentence for beam_token_rank, (beam_token_id, beam_token_score) in enumerate( zip(next_tokens[batch_idx], next_scores[batch_idx]) ): # get beam and token IDs beam_id = beam_token_id // vocab_size token_id = beam_token_id % vocab_size effective_beam_id = batch_idx * num_beams + beam_id # add to generated hypotheses if end of sentence if (eos_token_id is not None) and (token_id.item() == eos_token_id): # if beam_token does not belong to top num_beams tokens, it should not be added is_beam_token_worse_than_top_num_beams = beam_token_rank >= num_beams if is_beam_token_worse_than_top_num_beams: continue generated_hyps[batch_idx].add( input_ids[effective_beam_id].clone(), beam_token_score.item(), ) else: # add next predicted token since it is not eos_token next_sent_beam.append((beam_token_score, token_id, effective_beam_id)) # once the beam for next step is full, don't add more tokens to it. if len(next_sent_beam) == num_beams: break # Check if we are done so that we can save a pad step if all(done) done[batch_idx] = done[batch_idx] or generated_hyps[batch_idx].is_done( next_scores[batch_idx].max().item(), cur_len ) # update next beam content assert len(next_sent_beam) == num_beams, "Beam should always be full" next_batch_beam.extend(next_sent_beam) assert len(next_batch_beam) == num_beams * (batch_idx + 1), "We should have added num_beams each step" # stop when we are done with each sentence if all(done): break # sanity check / prepare next batch assert len(next_batch_beam) == batch_size * num_beams beam_scores = beam_scores.new([x[0] for x in next_batch_beam]) beam_tokens = input_ids.new([x[1] for x in next_batch_beam]) beam_idx = input_ids.new([x[2] for x in next_batch_beam]) # re-order batch and update current length input_ids = input_ids[beam_idx, :] input_ids = torch.cat([input_ids, beam_tokens.unsqueeze(1)], dim=-1) cur_len = cur_len + 1 # re-order internal states if past is not None: past = self._reorder_cache(past, beam_idx) # extend attention_mask for new generated input if only decoder if self.config.is_encoder_decoder is False: attention_mask = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 ) # finalize all open beam hypotheses and add to generated hypotheses for batch_idx in range(batch_size): if done[batch_idx]: continue # test that beam scores match previously calculated scores if not eos and batch_idx not done if eos_token_id is not None and all( (token_id % vocab_size).item() != eos_token_id for token_id in next_tokens[batch_idx] ): assert torch.all( next_scores[batch_idx, :num_beams] == beam_scores.view(batch_size, num_beams)[batch_idx] ), "If batch_idx is not done, final next scores: {} have to equal to accumulated beam_scores: {}".format( next_scores[:, :num_beams][batch_idx], beam_scores.view(batch_size, num_beams)[batch_idx], ) # need to add best num_beams hypotheses to generated hyps for beam_id in range(num_beams): effective_beam_id = batch_idx * num_beams + beam_id final_score = beam_scores[effective_beam_id].item() final_tokens = input_ids[effective_beam_id] generated_hyps[batch_idx].add(final_tokens, final_score) # depending on whether greedy generation is wanted or not define different output_batch_size and output_num_return_sequences_per_batch output_batch_size = batch_size if do_sample else batch_size * num_return_sequences output_num_return_sequences_per_batch = 1 if do_sample else num_return_sequences # select the best hypotheses sent_lengths = input_ids.new(output_batch_size) best = [] # retrieve best hypotheses for i, hypotheses in enumerate(generated_hyps): sorted_hyps = sorted(hypotheses.beams, key=lambda x: x[0]) for j in range(output_num_return_sequences_per_batch): effective_batch_idx = output_num_return_sequences_per_batch * i + j best_hyp = sorted_hyps.pop()[1] sent_lengths[effective_batch_idx] = len(best_hyp) best.append(best_hyp) # prepare for adding eos sent_max_len = min(sent_lengths.max().item() + 1, max_length) decoded = input_ids.new(output_batch_size, sent_max_len) # shorter batches are padded if needed if sent_lengths.min().item() != sent_lengths.max().item(): assert pad_token_id is not None, "`pad_token_id` has to be defined" decoded.fill_(pad_token_id) # fill with hypotheses and eos_token_id if the latter fits in for i, hypo in enumerate(best): decoded[i, : sent_lengths[i]] = hypo if sent_lengths[i] < max_length: decoded[i, sent_lengths[i]] = eos_token_id return decoded @staticmethod def _reorder_cache(past: Tuple, beam_idx: Tensor) -> Tuple[Tensor]: return tuple(layer_past.index_select(1, beam_idx) for layer_past in past)
def calc_banned_ngram_tokens(prev_input_ids: Tensor, num_hypos: int, no_repeat_ngram_size: int, cur_len: int) -> None: """Copied from fairseq for no_repeat_ngram in beam_search""" if cur_len + 1 < no_repeat_ngram_size: # return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet return [[] for _ in range(num_hypos)] generated_ngrams = [{} for _ in range(num_hypos)] for idx in range(num_hypos): gen_tokens = prev_input_ids[idx].tolist() generated_ngram = generated_ngrams[idx] for ngram in zip(*[gen_tokens[i:] for i in range(no_repeat_ngram_size)]): prev_ngram_tuple = tuple(ngram[:-1]) generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]] def _get_generated_ngrams(hypo_idx): # Before decoding the next token, prevent decoding of ngrams that have already appeared start_idx = cur_len + 1 - no_repeat_ngram_size ngram_idx = tuple(prev_input_ids[hypo_idx, start_idx:cur_len].tolist()) return generated_ngrams[hypo_idx].get(ngram_idx, []) banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)] return banned_tokens def calc_banned_bad_words_ids(prev_input_ids: Iterable[int], bad_words_ids: Iterable[int]) -> Iterable[int]: banned_tokens = [] def _tokens_match(prev_tokens, tokens): if len(tokens) == 0: # if bad word tokens is just one token always ban it return True if len(tokens) > len(prev_tokens): # if bad word tokens are longer than prev tokens they can't be equal return False if prev_tokens[-len(tokens) :] == tokens: # if tokens match return True else: return False for prev_input_ids_slice in prev_input_ids: banned_tokens_slice = [] for banned_token_seq in bad_words_ids: assert len(banned_token_seq) > 0, "Banned words token sequences {} cannot have an empty list".format( bad_words_ids ) if _tokens_match(prev_input_ids_slice, banned_token_seq[:-1]) is False: # if tokens do not match continue continue banned_tokens_slice.append(banned_token_seq[-1]) banned_tokens.append(banned_tokens_slice) return banned_tokens def set_scores_to_inf_for_banned_tokens(scores: torch.Tensor, banned_tokens: List[List[int]]) -> None: """Modifies the scores in place by setting the banned token positions to `-inf`. Banned token is expected to be a list of list of banned tokens to ban in the format [[batch index, vocabulary position],...] Args: scores: logits distribution of shape (batch size, vocabulary size) banned_tokens: list of list of tokens to ban of length (batch_size) """ banned_mask_list = [] for idx, batch_banned_tokens in enumerate(banned_tokens): for token in batch_banned_tokens: banned_mask_list.append([idx, token]) if not banned_mask_list: return banned_mask = torch.LongTensor(banned_mask_list) indices = torch.ones(len(banned_mask)) # A sparse tensor is generated from a list of coordinates: [[0, 1], [0, 2], [2, 0]]. A conversion to dense tensor generates: # [ 0 1 1 ] # [ 0 0 0 ] # [ 1 0 0 ] banned_mask = torch.sparse.LongTensor(banned_mask.t(), indices, scores.size()).to(scores.device).to_dense().bool() scores.masked_fill_(banned_mask, -float("inf")) def top_k_top_p_filtering( logits: Tensor, top_k: int = 0, top_p: float = 1.0, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1, ) -> Tensor: """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) if top_k > 0: keep only top k tokens with highest probability (top-k filtering). if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) Make sure we keep at least min_tokens_to_keep per batch example in the output From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ if top_k > 0: top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs > top_p if min_tokens_to_keep > 1: # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) logits[indices_to_remove] = filter_value return logits class BeamHypotheses(object): def __init__(self, num_beams, max_length, length_penalty, early_stopping): """ Initialize n-best list of hypotheses. """ self.max_length = max_length - 1 # ignoring bos_token self.length_penalty = length_penalty self.early_stopping = early_stopping self.num_beams = num_beams self.beams = [] self.worst_score = 1e9 def __len__(self): """ Number of hypotheses in the list. """ return len(self.beams) def add(self, hyp, sum_logprobs): """ Add a new hypothesis to the list. """ score = sum_logprobs / len(hyp) ** self.length_penalty if len(self) < self.num_beams or score > self.worst_score: self.beams.append((score, hyp)) if len(self) > self.num_beams: sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.beams)]) del self.beams[sorted_scores[0][1]] self.worst_score = sorted_scores[1][0] else: self.worst_score = min(score, self.worst_score) def is_done(self, best_sum_logprobs, cur_len): """ If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst one in the heap, then we are done with this sentence. """ if len(self) < self.num_beams: return False elif self.early_stopping: return True else: cur_score = best_sum_logprobs / cur_len ** self.length_penalty ret = self.worst_score >= cur_score return ret