Source code for transformers.configuration_fsmt

# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" FSMT configuration """


import copy

from .configuration_utils import PretrainedConfig
from .file_utils import add_start_docstrings_to_callable
from .utils import logging


logger = logging.get_logger(__name__)

FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP = {}


FSMT_CONFIG_ARGS_DOC = r"""
    Args:
        langs (:obj:`List[str]`):
            source language, target_language (e.g. ['en', 'ru'])
        src_vocab_size (:obj:`int`):
            defines the different tokens that can be represented by `inputs_ids` passed to the forward
            method in the encoder.
        tgt_vocab_size (:obj:`int`):
            defines the different tokens that can be represented by `inputs_ids` passed to the forward
            method in the decoder.
        d_model (:obj:`int`, `optional`, defaults to 1024):
            Dimensionality of the layers and the pooler layer.
        encoder_layers (:obj:`int`, `optional`, defaults to 12):
            Number of encoder layers, 16 for pegasus, 6 for bart-base and marian
        decoder_layers (:obj:`int`, `optional`, defaults to 12):
            Number of decoder layers, 16 for pegasus, 6 for bart-base and marian
        encoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
            Number of attention heads for each attention layer in the Transformer decoder.
        decoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in decoder.
        encoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in decoder.
        activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to "relu"):
            The non-linear activation function (function or string) in the encoder and pooler.
            If string, "gelu", "relu", "swish" and "gelu_new" are supported.
        dropout (:obj:`float`, `optional`, defaults to 0.1):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (:obj:`float`, `optional`, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        max_position_embeddings (:obj:`int`, `optional`, defaults to 1024):
            The maximum sequence length that this model might ever be used with.
            Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
        init_std (:obj:`float`, `optional`, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        scale_embedding (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Scale embeddings by diving by sqrt(d_model).
        bos_token_id (:obj:`int`, `optional`, defaults to 0)
            Beginning of stream token id.
        pad_token_id (:obj:`int`, `optional`, defaults to 1)
            Padding token id.
        eos_token_id (:obj:`int`, `optional`, defaults to 2)
            End of stream token id.
        decoder_start_token_id (:obj:`int`, `optional`):
            This model starts decoding with `eos_token_id`
        encoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
            Google "layerdrop arxiv", as its not explainable in one line.
        decoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
            Google "layerdrop arxiv", as its not explainable in one line.
        is_encoder_decoder (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether this is an encoder/decoder model.
        tie_word_embeddings (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether to tie input and output embeddings.
        num_beams (:obj:`int`, `optional`, defaults to 5)
            Number of beams for beam search that will be used by default in the :obj:`generate` method
            of the model. 1 means no beam search.
        length_penalty (:obj:`float`, `optional`, defaults to 1)
            Exponential penalty to the length that will be used by default in the :obj:`generate` method
            of the model.
        early_stopping (:obj:`bool`, `optional`, defaults to :obj:`False`)
            Flag that will be used by default in the :obj:`generate` method of the model. Whether to stop
            the beam search when at least ``num_beams`` sentences are finished per batch or not.
"""


class DecoderConfig(PretrainedConfig):
    r"""
    Configuration class for FSMT's decoder specific things.
    note: this is a private helper class
    """
    model_type = "fsmt_decoder"

    def __init__(self, vocab_size=0, bos_token_id=0):
        super().__init__()
        self.vocab_size = vocab_size
        self.bos_token_id = bos_token_id


[docs]@add_start_docstrings_to_callable(FSMT_CONFIG_ARGS_DOC) class FSMTConfig(PretrainedConfig): r""" Configuration class for FSMT. """ model_type = "fsmt" # update the defaults from config file def __init__( self, langs, src_vocab_size, tgt_vocab_size, activation_function="relu", d_model=1024, max_length=200, max_position_embeddings=1024, encoder_ffn_dim=4096, encoder_layers=12, encoder_attention_heads=16, encoder_layerdrop=0.0, decoder_ffn_dim=4096, decoder_layers=12, decoder_attention_heads=16, decoder_layerdrop=0.0, attention_dropout=0.0, dropout=0.1, activation_dropout=0.0, init_std=0.02, pad_token_id=1, bos_token_id=0, eos_token_id=2, decoder_start_token_id=2, is_encoder_decoder=True, scale_embedding=True, tie_word_embeddings=False, num_beams=5, length_penalty=1.0, early_stopping=False, **common_kwargs ): r""" :class:`~transformers.FSMTConfig` is the configuration class for `FSMTModel`. Examples:: >>> from transformers import FSMTConfig, FSMTModel >>> config = FSMTConfig.from_pretrained('facebook/wmt19-en-ru') >>> model = FSMTModel(config) """ if "hidden_size" in common_kwargs: raise ValueError("hidden size is called d_model") super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, decoder_start_token_id=decoder_start_token_id, is_encoder_decoder=is_encoder_decoder, tie_word_embeddings=tie_word_embeddings, **common_kwargs, ) self.langs = langs self.src_vocab_size = src_vocab_size self.tgt_vocab_size = tgt_vocab_size self.d_model = d_model # encoder_embed_dim and decoder_embed_dim self.max_length = max_length self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = self.num_hidden_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.max_position_embeddings = max_position_embeddings self.init_std = init_std # Normal(0, this parameter) self.activation_function = activation_function self.num_beams = num_beams self.length_penalty = length_penalty self.early_stopping = early_stopping self.decoder = DecoderConfig(vocab_size=tgt_vocab_size, bos_token_id=eos_token_id) self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True # 3 Types of Dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.dropout = dropout @property def num_attention_heads(self) -> int: return self.encoder_attention_heads @property def hidden_size(self) -> int: return self.d_model
[docs] def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default `to_dict()` from `PretrainedConfig`. Returns: :obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["decoder"] = self.decoder.to_dict() output["model_type"] = self.__class__.model_type return output