Source code for transformers.configuration_bert_generation

# coding=utf-8
# Copyright 2020 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""  BertGeneration model configuration """

from .configuration_utils import PretrainedConfig


[docs]class BertGenerationConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a :class:`~transformers.BertGenerationPreTrainedModel`. It is used to instantiate a BertGenerationConfig model according to the specified arguments, defining the model architecture. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: vocab_size (:obj:`int`, `optional`, defaults to 50358): Vocabulary size of the BertGeneration model. Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.BertGeneration`. hidden_size (:obj:`int`, `optional`, defaults to 1024): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (:obj:`int`, `optional`, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (:obj:`int`, `optional`, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (:obj:`int`, `optional`, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"swish"` and :obj:`"gelu_new"` are supported. hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (:obj:`int`, `optional`, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (:obj:`float`, `optional`, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): The epsilon used by the layer normalization layers. gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`): If :obj:`True`, use gradient checkpointing to save memory at the expense of slower backward pass. Example:: >>> from transformers import BertGenerationConfig, BertGenerationEncoder >>> # Initializing a BertGeneration config >>> configuration = BertGenerationConfig() >>> # Initializing a modelfrom the config >>> model = BertGenerationEncoder(configuration) >>> # Accessing the model configuration >>> configuration = model.config """ model_type = "bert-generation" def __init__( self, vocab_size=50358, hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, intermediate_size=4096, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, bos_token_id=2, eos_token_id=1, gradient_checkpointing=False, **kwargs ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.gradient_checkpointing = gradient_checkpointing