Source code for transformers.configuration_albert

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
""" ALBERT model configuration """

from .configuration_utils import PretrainedConfig

    "albert-base-v1": "",
    "albert-large-v1": "",
    "albert-xlarge-v1": "",
    "albert-xxlarge-v1": "",
    "albert-base-v2": "",
    "albert-large-v2": "",
    "albert-xlarge-v2": "",
    "albert-xxlarge-v2": "",

[docs]class AlbertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a :class:`~transformers.AlbertModel`. It is used to instantiate an ALBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ALBERT `xxlarge <>`__ architecture. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: vocab_size (:obj:`int`, optional, defaults to 30000): Vocabulary size of the ALBERT model. Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.AlbertModel`. embedding_size (:obj:`int`, optional, defaults to 128): Dimensionality of vocabulary embeddings. hidden_size (:obj:`int`, optional, defaults to 4096): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (:obj:`int`, optional, defaults to 12): Number of hidden layers in the Transformer encoder. num_hidden_groups (:obj:`int`, optional, defaults to 1): Number of groups for the hidden layers, parameters in the same group are shared. num_attention_heads (:obj:`int`, optional, defaults to 64): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (:obj:`int`, optional, defaults to 16384): The dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. inner_group_num (:obj:`int`, optional, defaults to 1): The number of inner repetition of attention and ffn. hidden_act (:obj:`str` or :obj:`function`, optional, defaults to "gelu_new"): The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "swish" and "gelu_new" are supported. hidden_dropout_prob (:obj:`float`, optional, defaults to 0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (:obj:`float`, optional, defaults to 0): The dropout ratio for the attention probabilities. max_position_embeddings (:obj:`int`, optional, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large (e.g., 512 or 1024 or 2048). type_vocab_size (:obj:`int`, optional, defaults to 2): The vocabulary size of the `token_type_ids` passed into :class:`~transformers.AlbertModel`. initializer_range (:obj:`float`, optional, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (:obj:`float`, optional, defaults to 1e-12): The epsilon used by the layer normalization layers. classifier_dropout_prob (:obj:`float`, optional, defaults to 0.1): The dropout ratio for attached classifiers. Example:: >>> from transformers import AlbertConfig, AlbertModel >>> # Initializing an ALBERT-xxlarge style configuration >>> albert_xxlarge_configuration = AlbertConfig() >>> # Initializing an ALBERT-base style configuration >>> albert_base_configuration = AlbertConfig( ... hidden_size=768, ... num_attention_heads=12, ... intermediate_size=3072, ... ) >>> # Initializing a model from the ALBERT-base style configuration >>> model = AlbertModel(albert_xxlarge_configuration) >>> # Accessing the model configuration >>> configuration = model.config """ model_type = "albert" def __init__( self, vocab_size=30000, embedding_size=128, hidden_size=4096, num_hidden_layers=12, num_hidden_groups=1, num_attention_heads=64, intermediate_size=16384, inner_group_num=1, hidden_act="gelu_new", hidden_dropout_prob=0, attention_probs_dropout_prob=0, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, classifier_dropout_prob=0.1, pad_token_id=0, bos_token_id=2, eos_token_id=3, **kwargs ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.embedding_size = embedding_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_hidden_groups = num_hidden_groups self.num_attention_heads = num_attention_heads self.inner_group_num = inner_group_num self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.classifier_dropout_prob = classifier_dropout_prob