max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
fortnitepy/ext/commands/bot.py
gfdb/fortnitepy
127
5159
<filename>fortnitepy/ext/commands/bot.py<gh_stars>100-1000 """ The MIT License (MIT) Copyright (c) 2015-present Rapptz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging import inspect import asyncio import types import sys import importlib import collections import traceback from typing import Any, List, Optional, Mapping, Set from fortnitepy.client import Client from fortnitepy.auth import Auth from fortnitepy.typedefs import MaybeCoro, ListOrTuple from ._types import _BaseCommand from .errors import (ExtensionFailed, ExtensionMissingEntryPoint, ExtensionNotLoaded, ExtensionAlreadyLoaded, ExtensionNotFound, CheckFailure, CommandError, CommandNotFound) from .core import GroupMixin from .cog import Cog from .view import StringView from .context import Context from .help import HelpCommand, FortniteHelpCommand from .typedefs import Message log = logging.getLogger(__name__) def _is_submodule(parent: str, child: str) -> bool: return parent == child or child.startswith(parent + ".") class _DefaultRepr: def __repr__(self) -> str: return '<default-help-command>' _default = _DefaultRepr() class Bot(GroupMixin, Client): """Represents a fortnite bot. This class is a subclass of :class:`fortnitepy.Client` and as a result anything that you can do with a :class:`fortnitepy.Client` you can do with this bot. This class also subclasses :class:`.GroupMixin` to provide the functionality to manage commands. Attributes ----------- command_prefix The command prefix is what the message content must contain initially to have a command invoked. This prefix could either be a string to indicate what the prefix should be, or a callable that takes in the bot as its first parameter and :class:`fortnitepy.FriendMessage` or :class:`fortnitepy.PartyMessage` as its second parameter and returns the prefix. This is to facilitate "dynamic" command prefixes. This callable can be either a regular function or a coroutine. An empty string as the prefix always matches, enabling prefix-less command invocation. The command prefix could also be an iterable of strings indicating that multiple checks for the prefix should be used and the first one to match will be the invocation prefix. You can get this prefix via :attr:`.Context.prefix`. To avoid confusion empty iterables are not allowed. .. note:: When passing multiple prefixes be careful to not pass a prefix that matches a longer prefix occurring later in the sequence. For example, if the command prefix is ``('!', '!?')`` the ``'!?'`` prefix will never be matched to any message as the previous one matches messages starting with ``!?``. This is especially important when passing an empty string, it should always be last as no prefix after it will be matched. case_insensitive: :class:`bool` Whether the commands should be case insensitive. Defaults to ``False``. This attribute does not carry over to groups. You must set it to every group if you require group commands to be case insensitive as well. description: :class:`str` The content prefixed into the default help message. help_command: Optional[:class:`.HelpCommand`] The help command implementation to use. This can be dynamically set at runtime. To remove the help command pass ``None``. For more information on implementing a help command, see :ref:`ext_commands_help_command`. owner_id: Optional[:class:`int`] The user ID that owns the bot. This is used by :meth:`.is_owner()` and checks that call this method. owner_ids: Optional[Collection[:class:`int`]] The user IDs that owns the bot. This is similar to `owner_id`. For performance reasons it is recommended to use a :class:`set` for the collection. You cannot set both `owner_id` and `owner_ids`. This is used by :meth:`.is_owner()` and checks that call this method. """ def __init__(self, command_prefix: Any, auth: Auth, *, help_command: Optional[HelpCommand] = _default, description: Optional[str] = None, **kwargs: Any) -> None: kwargs['case_insensitive'] = kwargs.get('case_insensitive', False) super().__init__(auth, **kwargs) self.command_prefix = command_prefix self.description = inspect.cleandoc(description) if description else '' self.owner_id = kwargs.get('owner_id') self.owner_ids = kwargs.get('owner_ids', set()) if self.owner_id and self.owner_ids: raise TypeError('Both owner_id and owner_ids are set.') if (self.owner_ids and not isinstance(self.owner_ids, collections.abc.Collection)): raise TypeError( 'owner_ids must be a collection not ' '{0.__class__!r}'.format(self.owner_ids) ) self.__cogs = {} self.__extensions = {} self._checks = [] self._check_once = [] self._help_command = None self._before_invoke = None self._after_invoke = None if help_command is _default: self.help_command = FortniteHelpCommand() else: self.help_command = help_command self.add_event_handler('friend_message', self.process_commands) self.add_event_handler('party_message', self.process_commands) def register_methods(self) -> None: for _, obj in inspect.getmembers(self): if isinstance(obj, _BaseCommand): obj.instance = self if obj.parent is None: try: self.add_command(obj) except CommandError: traceback.print_exc() continue super().register_methods() async def close(self, *, close_http: bool = True, dispatch_close: bool = True) -> None: if dispatch_close: await asyncio.gather( self.dispatch_and_wait_event('before_close'), self.dispatch_and_wait_event('close'), ) for extension in tuple(self.__extensions): try: self.unload_extension(extension) except Exception: pass for cog in tuple(self.__cogs): try: self.remove_cog(cog) except Exception: pass await self._close( close_http=close_http, dispatch_close=dispatch_close ) def check(self, func: MaybeCoro) -> MaybeCoro: r"""A decorator that adds a check globally to every command. .. note:: This function can either be a regular function or a coroutine. This function takes a single parameter, :class:`.Context`, and can only raise exceptions inherited from :exc:`.CommandError`. Example ------- .. code-block:: python3 @bot.check def global_check(ctx): # Allows only party commands. return ctx.party is not None """ self.add_check(func) return func def add_check(self, func: MaybeCoro, *, call_once: bool = False) -> None: """Adds a global check to the bot. This is the non-decorator interface to :meth:`.check` and :meth:`.check_once`. Parameters ---------- func The function that was used as a global check. call_once: :class:`bool` If the function should only be called once per :meth:`Command.invoke` call. """ if call_once: self._check_once.append(func) else: self._checks.append(func) def remove_check(self, func: MaybeCoro, *, call_once: bool = False) -> None: """Removes a global check from the bot. Parameters ---------- func The function to remove from the global checks. call_once: :class:`bool` If the function was added with ``call_once=True`` in the :meth:`.Bot.add_check` call or using :meth:`.check_once`. """ list_ = self._check_once if call_once else self._checks try: list_.remove(func) except ValueError: pass def check_once(self, func: MaybeCoro) -> MaybeCoro: r"""A decorator that adds a "call once" global check to the bot. Unlike regular global checks, this one is called only once per :meth:`Command.invoke` call. Regular global checks are called whenever a command is called or :meth:`.Command.can_run` is called. This type of check bypasses that and ensures that it's called only once, even inside the default help command. .. note:: This function can either be a regular function or a coroutine. This function takes a single parameter, :class:`.Context`, and can only raise exceptions inherited from :exc:`.CommandError`. Example ------- .. code-block:: python3 @bot.check_once def whitelist(ctx): return ctx.message.author.id in my_whitelist """ self.add_check(func, call_once=True) return func async def can_run(self, ctx: Context, *, call_once: bool = False) -> bool: data = self._check_once if call_once else self._checks if len(data) == 0: return True for func in data: if asyncio.iscoroutinefunction(func): res = await func(ctx) else: res = func(ctx) if not res: return False return True async def is_owner(self, user_id: str) -> bool: """|coro| Checks if a user id is the owner of the bot. Parameters ---------- user_id: :class:`str` The user id to check for. Returns ------- :class:`bool` Whether the user is the owner. """ if self.owner_id: return user_id == self.owner_id else: return user_id in self.owner_ids def before_invoke(self, coro: MaybeCoro) -> MaybeCoro: """A decorator that registers a coroutine as a pre-invoke hook. A pre-invoke hook is called directly before the command is called. This makes it a useful function to set up database connections or any type of set up required. This pre-invoke hook takes a sole parameter, a :class:`.Context`. .. note:: The :meth:`~.Bot.before_invoke` and :meth:`~.Bot.after_invoke` hooks are only called if all checks and argument parsing procedures pass without error. If any check or argument parsing procedures fail then the hooks are not called. Parameters ---------- coro The coroutine to register as the pre-invoke hook. Raises ------ TypeError The coroutine passed is not actually a coroutine. """ if not asyncio.iscoroutinefunction(coro): raise TypeError('The pre-invoke hook must be a coroutine.') self._before_invoke = coro return coro def after_invoke(self, coro: MaybeCoro) -> MaybeCoro: r"""A decorator that registers a coroutine as a post-invoke hook. A post-invoke hook is called directly after the command is called. This makes it a useful function to clean-up database connections or any type of clean up required. This post-invoke hook takes a sole parameter, a :class:`.Context`. .. note:: Similar to :meth:`~.Bot.before_invoke`\, this is not called unless checks and argument parsing procedures succeed. This hook is, however, **always** called regardless of the internal command callback raising an error (i.e. :exc:`.CommandInvokeError`\). This makes it ideal for clean-up scenarios. Parameters ---------- coro: The coroutine to register as the post-invoke hook. Raises ------ TypeError The coroutine passed is not actually a coroutine. """ if not asyncio.iscoroutinefunction(coro): raise TypeError('The post-invoke hook must be a coroutine.') self._after_invoke = coro return coro def add_cog(self, cog: Cog) -> None: """Adds a "cog" to the bot. A cog is a class that has its own event listeners and commands. Parameters ---------- cog: :class:`.Cog` The cog to register to the bot. Raises ------ TypeError The cog does not inherit from :class:`.Cog`. CommandError An error happened during loading. """ if not isinstance(cog, Cog): raise TypeError('Cogs must derive from Cog.') cog = cog._inject(self) self.__cogs[cog.__cog_name__] = cog def remove_cog(self, name: str) -> None: """Removes a cog from the bot. All registered commands and event listeners that the cog has registered will be removed as well. If no cog is found then this method has no effect. Parameters ---------- name: :class:`str` The name of the cog to remove. """ cog = self.__cogs.pop(name, None) if cog is None: return help_command = self.help_command if help_command and help_command.cog is cog: help_command.cog = None cog._eject(self) def get_cog(self, name: str) -> Optional[Cog]: """Gets the cog instance requested. If the cog is not found, ``None`` is returned instead. Parameters ----------- name: :class:`str` The name of the cog you are requesting. This is equivalent to the name passed via keyword argument in class creation or the class name if unspecified. """ return self.__cogs.get(name) @property def cogs(self) -> Mapping[str, Cog]: """Mapping[:class:`str`, :class:`Cog`]: A read-only mapping of cog name to cog. """ return types.MappingProxyType(self.__cogs) def _remove_module_references(self, name: str) -> None: # find all references to the module # remove the cogs registered from the module for cogname, cog in self.__cogs.copy().items(): if _is_submodule(name, cog.__module__): self.remove_cog(cogname) # remove all the commands from the module for cmd in self.all_commands.copy().values(): if cmd.module is not None and _is_submodule(name, cmd.module): if isinstance(cmd, GroupMixin): cmd.recursively_remove_all_commands() self.remove_command(cmd.name) # remove all the listeners from the module for event_list in self._events.copy().values(): remove = [] for index, event in enumerate(event_list): if (event.__module__ is not None and _is_submodule(name, event.__module__)): remove.append(index) for index in reversed(remove): del event_list[index] def _call_module_finalizers(self, lib: object, key: str) -> None: try: func = getattr(lib, 'cog_teardown') except AttributeError: pass else: try: func(self) except Exception: pass finally: self.__extensions.pop(key, None) sys.modules.pop(key, None) name = lib.__name__ for module in list(sys.modules.keys()): if _is_submodule(name, module): del sys.modules[module] def _load_from_module_spec(self, spec: types.ModuleType, key: str) -> None: # precondition: key not in self.__extensions lib = importlib.util.module_from_spec(spec) sys.modules[key] = lib try: spec.loader.exec_module(lib) except Exception as e: del sys.modules[key] raise ExtensionFailed(key, e) from e try: setup = getattr(lib, 'extension_setup') except AttributeError: del sys.modules[key] raise ExtensionMissingEntryPoint(key) try: setup(self) except Exception as e: del sys.modules[key] self._remove_module_references(lib.__name__) self._call_module_finalizers(lib, key) raise ExtensionFailed(key, e) from e else: self.__extensions[key] = lib def load_extension(self, name: str) -> None: """Loads an extension. An extension is a python module that contains commands, cogs, or listeners. An extension must have a global function, ``extension_setup`` defined as the entry point on what to do when the extension is loaded. This entry point must have a single argument, the ``bot``. Parameters ---------- name: :class:`str` The extension name to load. It must be dot separated like regular Python imports if accessing a sub-module. e.g. ``foo.test`` if you want to import ``foo/test.py``. Raises ------ ExtensionNotFound The extension could not be imported. ExtensionAlreadyLoaded The extension is already loaded. ExtensionMissingEntryPoint The extension does not have a extension_setup function. ExtensionFailed The extension or its setup function had an execution error. """ if name in self.__extensions: raise ExtensionAlreadyLoaded(name) spec = importlib.util.find_spec(name) if spec is None: raise ExtensionNotFound(name) self._load_from_module_spec(spec, name) def unload_extension(self, name: str) -> None: """Unloads an extension. When the extension is unloaded, all commands, listeners, and cogs are removed from the bot and the module is un-imported. The extension can provide an optional global function, ``cog_teardown``, to do miscellaneous clean-up if necessary. This function takes a single parameter, the ``bot``, similar to ``extension_setup`` from :meth:`~.Bot.load_extension`. Parameters ------------ name: :class:`str` The extension name to unload. It must be dot separated like regular Python imports if accessing a sub-module. e.g. ``foo.test`` if you want to import ``foo/test.py``. Raises ------- ExtensionNotLoaded The extension was not loaded. """ lib = self.__extensions.get(name) if lib is None: raise ExtensionNotLoaded(name) self._remove_module_references(lib.__name__) self._call_module_finalizers(lib, name) def reload_extension(self, name: str) -> None: """Atomically reloads an extension. This replaces the extension with the same extension, only refreshed. This is equivalent to a :meth:`unload_extension` followed by a :meth:`load_extension` except done in an atomic way. That is, if an operation fails mid-reload then the bot will roll-back to the prior working state. Parameters ------------ name: :class:`str` The extension name to reload. It must be dot separated like regular Python imports if accessing a sub-module. e.g. ``foo.test`` if you want to import ``foo/test.py``. Raises ------- ExtensionNotLoaded The extension was not loaded. ExtensionNotFound The extension could not be imported. ExtensionMissingEntryPoint The extension does not have a extension_setup function. ExtensionFailed The extension setup function had an execution error. """ lib = self.__extensions.get(name) if lib is None: raise ExtensionNotLoaded(name) # get the previous module states from sys modules modules = { name: module for name, module in sys.modules.items() if _is_submodule(lib.__name__, name) } try: # Unload and then load the module... self._remove_module_references(lib.__name__) self._call_module_finalizers(lib, name) self.load_extension(name) except Exception: # if the load failed, the remnants should have been # cleaned from the load_extension function call # so let's load it from our old compiled library. lib.extension_setup(self) self.__extensions[name] = lib # revert sys.modules back to normal and raise back to caller sys.modules.update(modules) raise @property def extensions(self) -> Mapping[str, types.ModuleType]: """Mapping[:class:`str`, :class:`py:types.ModuleType`]: A read-only mapping of extension name to extension. """ return types.MappingProxyType(self.__extensions) @property def help_command(self) -> Optional[HelpCommand]: return self._help_command @help_command.setter def help_command(self, value: Optional[HelpCommand]) -> None: if value is not None: if not isinstance(value, HelpCommand): raise TypeError('help_command must be a subclass ' 'of HelpCommand') if self._help_command is not None: self._help_command._remove_from_bot(self) self._help_command = value value._add_to_bot(self) elif self._help_command is not None: self._help_command._remove_from_bot(self) self._help_command = None else: self._help_command = None async def get_prefix(self, message: Message) -> Any: """|coro| Retrieves the prefix the bot is listening to with the message as a context. Parameters ---------- message: Union[:class:`fortnitepy.FriendMessage`, :class:`fortnitepy.PartyMessage`] The message context to get the prefix of. Returns -------- Union[List[:class:`str`], :class:`str`] A list of prefixes or a single prefix that the bot is listening for. """ # noqa prefix = ret = self.command_prefix if callable(prefix): if asyncio.iscoroutinefunction(prefix): ret = await prefix(self, message) else: ret = prefix(self, message) if not isinstance(ret, str): try: ret = list(ret) except TypeError: # It's possible that a generator raised this exception. Don't # replace it with our own error if that's the case. if isinstance(ret, collections.abc.Iterable): raise raise TypeError('command_prefix must be plain string, ' 'iterable of strings, or callable ' 'returning either of these, not ' '{}'.format(ret.__class__.__name__)) if not ret: raise ValueError('Iterable command_prefix must contain at ' 'least one prefix') return ret async def get_context(self, message: Message, *, cls: Context = Context) -> Context: r"""|coro| Returns the invocation context from the message. This is a more low-level counter-part for :meth:`.process_commands` to allow users more fine grained control over the processing. The returned context is not guaranteed to be a valid invocation context, :attr:`.Context.valid` must be checked to make sure it is. If the context is not valid then it is not a valid candidate to be invoked under :meth:`~.Bot.invoke`. Parameters ---------- message: Union[:class:`fortnitepy.FriendMessage`, :class:`fortnitepy.PartyMessage`] The message to get the invocation context from. cls The factory class that will be used to create the context. By default, this is :class:`.Context`. Should a custom class be provided, it must be similar enough to :class:`.Context`\'s interface. Returns ------- :class:`.Context` The invocation context. The type of this can change via the ``cls`` parameter. """ # noqa view = StringView(message.content) ctx = cls(prefix=None, view=view, bot=self, message=message) prefix = await self.get_prefix(message) invoked_prefix = prefix if isinstance(prefix, str): if not view.skip_string(prefix): return ctx else: try: if message.content.startswith(tuple(prefix)): for element in prefix: if view.skip_string(element): invoked_prefix = element break else: invoked_prefix = None else: return ctx except TypeError: if not isinstance(prefix, list): raise TypeError('get_prefix must return either a string ' 'or a list of string, not ' '{}'.format(prefix.__class__.__name__)) for value in prefix: if not isinstance(value, str): raise TypeError('Iterable command_prefix or list ' 'returned from get_prefix must ' 'contain only strings, not ' '{}'.format(value.__class__.__name__)) raise invoker = view.get_word() ctx.invoked_with = invoker ctx.prefix = invoked_prefix ctx.command = self.all_commands.get(invoker) return ctx def _print_error(self, ctx: Context, error: Exception) -> None: print( 'Ignoring exception in command {}:'.format(ctx.command), file=sys.stderr ) traceback.print_exception( type(error), error, error.__traceback__, file=sys.stderr ) async def wait_for_futures(self, futures: ListOrTuple, *, check: Optional[callable] = None, timeout: Optional[int] = None, cancel: bool = False) -> None: def _cancel_futs(pending_futures: Set[asyncio.Future]) -> None: for p in pending_futures: if not p.cancelled(): p.cancel() pending = futures while pending: done, pending = await asyncio.wait( pending, return_when=asyncio.FIRST_COMPLETED, timeout=timeout ) # Set should only contain one value for future in done: if check is None or check(future): if cancel: _cancel_futs(pending) return future async def _wait_for_error_return(self, futures: List[asyncio.Future], ctx: Context, error: Exception) -> None: def check(future): return future.result() is False ret = await self.wait_for_futures(futures, check=check) if isinstance(ret, asyncio.Future): self._print_error(ctx, error) def dispatch_error(self, ctx: Context, error: Exception) -> None: if self._event_has_handler('command_error'): futures = self.dispatch_event('command_error', ctx, error) asyncio.ensure_future(self._wait_for_error_return( futures, ctx, error )) else: self._print_error(ctx, error) async def invoke(self, ctx: Context) -> None: """|coro| Invokes the command given under the invocation context and handles all the internal event dispatch mechanisms. Parameters ----------- ctx: :class:`.Context` The invocation context to invoke. """ if ctx.command is not None: self.dispatch_event('command', ctx) try: if await self.can_run(ctx, call_once=True): await ctx.command.invoke(ctx) else: raise CheckFailure('The global check once functions ' 'failed.') except CommandError as exc: await ctx.command.dispatch_error(ctx, exc) else: self.dispatch_event('command_completion', ctx) elif ctx.invoked_with: exc = CommandNotFound('Command "{}" is not found' ''.format(ctx.invoked_with)) self.dispatch_error(ctx, exc) async def process_commands(self, message: Message) -> None: """|coro| This function processes the commands that have been registered to the bot and other groups. Without this coroutine, none of the commands will be triggered. By default, this coroutine is called automatically when a new message is received. This is built using other low level tools, and is equivalent to a call to :meth:`~.Bot.get_context` followed by a call to :meth:`~.Bot.invoke`. Parameters ----------- message: Union[:class:`fortnitepy.FriendMessage`, :class:`fortnitepy.PartyMessage`] The message to process commands for. """ # noqa if message.author.id == self.user.id: return ctx = await self.get_context(message) await self.invoke(ctx)
src/data_loading.py
katerakelly/pytorch-maml
565
5185
<gh_stars>100-1000 import numpy as np import random import torch from torch.utils.data import DataLoader from torch.utils.data.sampler import Sampler import torchvision.transforms as transforms from dataset import Omniglot, MNIST ''' Helpers for loading class-balanced few-shot tasks from datasets ''' class ClassBalancedSampler(Sampler): ''' Samples class-balanced batches from 'num_cl' pools each of size 'num_inst' If 'batch_cutoff' is None, indices for iterating over batches of the entire dataset will be returned Otherwise, indices for the number of batches up to the batch_cutoff will be returned (This is to allow sampling with replacement across training iterations) ''' def __init__(self, num_cl, num_inst, batch_cutoff=None): self.num_cl = num_cl self.num_inst = num_inst self.batch_cutoff = batch_cutoff def __iter__(self): '''return a single list of indices, assuming that items will be grouped by class ''' # First construct batches of 1 instance per class batches = [[i+j*self.num_inst for i in torch.randperm(self.num_inst)] for j in range(self.num_cl)] batches = [[batches[j][i] for j in range(self.num_cl)] for i in range(self.num_inst)] # Shuffle within each batch so that classes don't always appear in same order for sublist in batches: random.shuffle(sublist) if self.batch_cutoff is not None: random.shuffle(batches) batches = batches[:self.batch_cutoff] batches = [item for sublist in batches for item in sublist] return iter(batches) def __len__(self): return 1 def get_data_loader(task, batch_size=1, split='train'): # NOTE: batch size here is # instances PER CLASS if task.dataset == 'mnist': normalize = transforms.Normalize(mean=[0.13066, 0.13066, 0.13066], std=[0.30131, 0.30131, 0.30131]) dset = MNIST(task, transform=transforms.Compose([transforms.ToTensor(), normalize]), split=split) else: normalize = transforms.Normalize(mean=[0.92206, 0.92206, 0.92206], std=[0.08426, 0.08426, 0.08426]) dset = Omniglot(task, transform=transforms.Compose([transforms.ToTensor(), normalize]), split=split) sampler = ClassBalancedSampler(task.num_cl, task.num_inst, batch_cutoff = (None if split != 'train' else batch_size)) loader = DataLoader(dset, batch_size=batch_size*task.num_cl, sampler=sampler, num_workers=1, pin_memory=True) return loader
observations/r/bomsoi.py
hajime9652/observations
199
5203
<gh_stars>100-1000 # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def bomsoi(path): """Southern Oscillation Index Data The Southern Oscillation Index (SOI) is the difference in barometric pressure at sea level between Tahiti and Darwin. Annual SOI and Australian rainfall data, for the years 1900-2001, are given. Australia's annual mean rainfall is an area-weighted average of the total annual precipitation at approximately 370 rainfall stations around the country. This data frame contains the following columns: Year a numeric vector Jan average January SOI values for each year Feb average February SOI values for each year Mar average March SOI values for each year Apr average April SOI values for each year May average May SOI values for each year Jun average June SOI values for each year Jul average July SOI values for each year Aug average August SOI values for each year Sep average September SOI values for each year Oct average October SOI values for each year Nov average November SOI values for each year Dec average December SOI values for each year SOI a numeric vector consisting of average annual SOI values avrain a numeric vector consisting of a weighted average annual rainfall at a large number of Australian sites NTrain Northern Territory rain northRain north rain seRain southeast rain eastRain east rain southRain south rain swRain southwest rain Australian Bureau of Meteorology web pages: http://www.bom.gov.au/climate/change/rain02.txt and http://www.bom.gov.au/climate/current/soihtm1.shtml Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `bomsoi.csv`. Returns: Tuple of np.ndarray `x_train` with 106 rows and 21 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'bomsoi.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/DAAG/bomsoi.csv' maybe_download_and_extract(path, url, save_file_name='bomsoi.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
mol_dqn/experimental/multi_obj.py
deepneuralmachine/google-research
23,901
5208
<reponame>deepneuralmachine/google-research<gh_stars>1000+ # coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python2, python3 """Generates molecules that satisfy two targets. Target1: SAS Target2: QED """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import os from absl import app from absl import flags from rdkit import Chem from rdkit.Chem import QED from rdkit.Contrib import SA_Score from tensorflow.compat.v1 import gfile from mol_dqn.chemgraph.mcts import deep_q_networks from mol_dqn.chemgraph.mcts import molecules as molecules_mdp from mol_dqn.chemgraph.mcts import run_dqn from mol_dqn.chemgraph.tensorflow import core flags.DEFINE_float('target_sas', 1, 'The target SAS of the molecule.') flags.DEFINE_float('target_qed', 0.5, 'The target QED of the molecule.') flags.DEFINE_float('gamma', 0.999, 'discount') FLAGS = flags.FLAGS class MultiObjectiveRewardMolecule(molecules_mdp.Molecule): """Defines the subclass of generating a molecule with a specific reward. The reward is defined as a 1-D vector with 2 entries: similarity and QED reward = (similarity_score, qed_score) """ def _reward(self): """Calculates the reward of the current state. The reward is defined as a tuple of the similarity and QED value. Returns: A tuple of the similarity and qed value """ # calculate similarity. # if the current molecule does not contain the scaffold of the target, # similarity is zero. if self._state is None: return 0.0, 0.0 mol = Chem.MolFromSmiles(self._state) if mol is None: return 0.0, 0.0 qed_value = QED.qed(mol) sas = SA_Score.sascorer.calculateScore(mol) return -abs(sas - FLAGS.target_sas), -abs(qed_value - FLAGS.target_qed) def soft_cst(v, l, r): if l <= v <= r: return 1 return -min(abs(l - v), abs(r - v)) class Molecule(molecules_mdp.Molecule): """SAS and QED reward molecule.""" def _reward(self): """Calculates the reward of the current state. The reward is defined as a tuple of the similarity and QED value. Returns: A tuple of the similarity and qed value """ # calculate similarity. # if the current molecule does not contain the scaffold of the target, # similarity is zero. if self._state is None: return 0.0, 0.0 mol = Chem.MolFromSmiles(self._state) if mol is None: return 0.0, 0.0 qed_value = QED.qed(mol) sas = SA_Score.sascorer.calculateScore(mol) # c1 = soft_cst(sas, FLAGS.target_sas - 0.2, FLAGS.target_sas + 0.2) # c2 = soft_cst(qed_value, FLAGS.target_qed - 0.1, FLAGS.target_qed + 0.1) # # if c1 < 0 and c2 < 0: # # return - c1 * c2 # # else: # # return c1 * c2 return (soft_cst(sas, FLAGS.target_sas - 0.2, FLAGS.target_sas + 0.2) + soft_cst(qed_value, FLAGS.target_qed - 0.1, FLAGS.target_qed + 0.1)) * FLAGS.gamma**( self.max_steps - self._counter) def main(argv): del argv if FLAGS.hparams is not None: with gfile.Open(FLAGS.hparams, 'r') as f: hparams = deep_q_networks.get_hparams(**json.load(f)) else: hparams = deep_q_networks.get_hparams() hparams.add_hparam('target_qed', FLAGS.target_qed) hparams.add_hparam('target_sas', FLAGS.target_sas) environment = Molecule( atom_types=set(hparams.atom_types), init_mol='CCc1c(C)[nH]c2CCC(CN3CCOCC3)C(=O)c12', allow_removal=hparams.allow_removal, allow_no_modification=hparams.allow_no_modification, allow_bonds_between_rings=False, allowed_ring_sizes={3, 4, 5, 6}, max_steps=hparams.max_steps_per_episode) dqn = deep_q_networks.DeepQNetwork( input_shape=(hparams.batch_size, hparams.fingerprint_length + 1), q_fn=functools.partial( deep_q_networks.multi_layer_model, hparams=hparams), optimizer=hparams.optimizer, grad_clipping=hparams.grad_clipping, num_bootstrap_heads=hparams.num_bootstrap_heads, gamma=hparams.gamma, epsilon=1.0) run_dqn.run_training( hparams=hparams, environment=environment, dqn=dqn, ) core.write_hparams(hparams, os.path.join(FLAGS.model_dir, 'config.json')) if __name__ == '__main__': app.run(main)
src/generate_class_specific_samples.py
HesterLim/pytorch-cnn-visualizations
6,725
5212
""" Created on Thu Oct 26 14:19:44 2017 @author: <NAME> - github.com/utkuozbulak """ import os import numpy as np import torch from torch.optim import SGD from torchvision import models from misc_functions import preprocess_image, recreate_image, save_image class ClassSpecificImageGeneration(): """ Produces an image that maximizes a certain class with gradient ascent """ def __init__(self, model, target_class): self.mean = [-0.485, -0.456, -0.406] self.std = [1/0.229, 1/0.224, 1/0.225] self.model = model self.model.eval() self.target_class = target_class # Generate a random image self.created_image = np.uint8(np.random.uniform(0, 255, (224, 224, 3))) # Create the folder to export images if not exists if not os.path.exists('../generated/class_'+str(self.target_class)): os.makedirs('../generated/class_'+str(self.target_class)) def generate(self, iterations=150): """Generates class specific image Keyword Arguments: iterations {int} -- Total iterations for gradient ascent (default: {150}) Returns: np.ndarray -- Final maximally activated class image """ initial_learning_rate = 6 for i in range(1, iterations): # Process image and return variable self.processed_image = preprocess_image(self.created_image, False) # Define optimizer for the image optimizer = SGD([self.processed_image], lr=initial_learning_rate) # Forward output = self.model(self.processed_image) # Target specific class class_loss = -output[0, self.target_class] if i % 10 == 0 or i == iterations-1: print('Iteration:', str(i), 'Loss', "{0:.2f}".format(class_loss.data.numpy())) # Zero grads self.model.zero_grad() # Backward class_loss.backward() # Update image optimizer.step() # Recreate image self.created_image = recreate_image(self.processed_image) if i % 10 == 0 or i == iterations-1: # Save image im_path = '../generated/class_'+str(self.target_class)+'/c_'+str(self.target_class)+'_'+'iter_'+str(i)+'.png' save_image(self.created_image, im_path) return self.processed_image if __name__ == '__main__': target_class = 130 # Flamingo pretrained_model = models.alexnet(pretrained=True) csig = ClassSpecificImageGeneration(pretrained_model, target_class) csig.generate()
features/steps/section.py
revvsales/python-docx-1
3,031
5217
<reponame>revvsales/python-docx-1<filename>features/steps/section.py # encoding: utf-8 """ Step implementations for section-related features """ from __future__ import absolute_import, print_function, unicode_literals from behave import given, then, when from docx import Document from docx.enum.section import WD_ORIENT, WD_SECTION from docx.section import Section from docx.shared import Inches from helpers import test_docx # given ==================================================== @given("a Section object as section") def given_a_Section_object_as_section(context): context.section = Document(test_docx("sct-section-props")).sections[-1] @given("a Section object {with_or_without} a distinct first-page header as section") def given_a_Section_object_with_or_without_first_page_header(context, with_or_without): section_idx = {"with": 1, "without": 0}[with_or_without] context.section = Document(test_docx("sct-first-page-hdrftr")).sections[section_idx] @given('a section collection containing 3 sections') def given_a_section_collection_containing_3_sections(context): document = Document(test_docx('doc-access-sections')) context.sections = document.sections @given('a section having known page dimension') def given_a_section_having_known_page_dimension(context): document = Document(test_docx('sct-section-props')) context.section = document.sections[-1] @given('a section having known page margins') def given_a_section_having_known_page_margins(context): document = Document(test_docx('sct-section-props')) context.section = document.sections[0] @given('a section having start type {start_type}') def given_a_section_having_start_type(context, start_type): section_idx = { 'CONTINUOUS': 0, 'NEW_PAGE': 1, 'ODD_PAGE': 2, 'EVEN_PAGE': 3, 'NEW_COLUMN': 4, }[start_type] document = Document(test_docx('sct-section-props')) context.section = document.sections[section_idx] @given('a section known to have {orientation} orientation') def given_a_section_having_known_orientation(context, orientation): section_idx = { 'landscape': 0, 'portrait': 1 }[orientation] document = Document(test_docx('sct-section-props')) context.section = document.sections[section_idx] # when ===================================================== @when("I assign {bool_val} to section.different_first_page_header_footer") def when_I_assign_value_to_section_different_first_page_hdrftr(context, bool_val): context.section.different_first_page_header_footer = eval(bool_val) @when('I set the {margin_side} margin to {inches} inches') def when_I_set_the_margin_side_length(context, margin_side, inches): prop_name = { 'left': 'left_margin', 'right': 'right_margin', 'top': 'top_margin', 'bottom': 'bottom_margin', 'gutter': 'gutter', 'header': 'header_distance', 'footer': 'footer_distance', }[margin_side] new_value = Inches(float(inches)) setattr(context.section, prop_name, new_value) @when('I set the section orientation to {orientation}') def when_I_set_the_section_orientation(context, orientation): new_orientation = { 'WD_ORIENT.PORTRAIT': WD_ORIENT.PORTRAIT, 'WD_ORIENT.LANDSCAPE': WD_ORIENT.LANDSCAPE, 'None': None, }[orientation] context.section.orientation = new_orientation @when('I set the section page height to {y} inches') def when_I_set_the_section_page_height_to_y_inches(context, y): context.section.page_height = Inches(float(y)) @when('I set the section page width to {x} inches') def when_I_set_the_section_page_width_to_x_inches(context, x): context.section.page_width = Inches(float(x)) @when('I set the section start type to {start_type}') def when_I_set_the_section_start_type_to_start_type(context, start_type): new_start_type = { 'None': None, 'CONTINUOUS': WD_SECTION.CONTINUOUS, 'EVEN_PAGE': WD_SECTION.EVEN_PAGE, 'NEW_COLUMN': WD_SECTION.NEW_COLUMN, 'NEW_PAGE': WD_SECTION.NEW_PAGE, 'ODD_PAGE': WD_SECTION.ODD_PAGE, }[start_type] context.section.start_type = new_start_type # then ===================================================== @then('I can access a section by index') def then_I_can_access_a_section_by_index(context): sections = context.sections for idx in range(3): section = sections[idx] assert isinstance(section, Section) @then('I can iterate over the sections') def then_I_can_iterate_over_the_sections(context): sections = context.sections actual_count = 0 for section in sections: actual_count += 1 assert isinstance(section, Section) assert actual_count == 3 @then('len(sections) is 3') def then_len_sections_is_3(context): sections = context.sections assert len(sections) == 3, ( 'expected len(sections) of 3, got %s' % len(sections) ) @then("section.different_first_page_header_footer is {bool_val}") def then_section_different_first_page_header_footer_is(context, bool_val): actual = context.section.different_first_page_header_footer expected = eval(bool_val) assert actual == expected, ( "section.different_first_page_header_footer is %s" % actual ) @then("section.even_page_footer is a _Footer object") def then_section_even_page_footer_is_a_Footer_object(context): actual = type(context.section.even_page_footer).__name__ expected = "_Footer" assert actual == expected, "section.even_page_footer is a %s object" % actual @then("section.even_page_header is a _Header object") def then_section_even_page_header_is_a_Header_object(context): actual = type(context.section.even_page_header).__name__ expected = "_Header" assert actual == expected, "section.even_page_header is a %s object" % actual @then("section.first_page_footer is a _Footer object") def then_section_first_page_footer_is_a_Footer_object(context): actual = type(context.section.first_page_footer).__name__ expected = "_Footer" assert actual == expected, "section.first_page_footer is a %s object" % actual @then("section.first_page_header is a _Header object") def then_section_first_page_header_is_a_Header_object(context): actual = type(context.section.first_page_header).__name__ expected = "_Header" assert actual == expected, "section.first_page_header is a %s object" % actual @then("section.footer is a _Footer object") def then_section_footer_is_a_Footer_object(context): actual = type(context.section.footer).__name__ expected = "_Footer" assert actual == expected, "section.footer is a %s object" % actual @then("section.header is a _Header object") def then_section_header_is_a_Header_object(context): actual = type(context.section.header).__name__ expected = "_Header" assert actual == expected, "section.header is a %s object" % actual @then("section.{propname}.is_linked_to_previous is True") def then_section_hdrftr_prop_is_linked_to_previous_is_True(context, propname): actual = getattr(context.section, propname).is_linked_to_previous expected = True assert actual == expected, ( "section.%s.is_linked_to_previous is %s" % (propname, actual) ) @then('the reported {margin_side} margin is {inches} inches') def then_the_reported_margin_is_inches(context, margin_side, inches): prop_name = { 'left': 'left_margin', 'right': 'right_margin', 'top': 'top_margin', 'bottom': 'bottom_margin', 'gutter': 'gutter', 'header': 'header_distance', 'footer': 'footer_distance', }[margin_side] expected_value = Inches(float(inches)) actual_value = getattr(context.section, prop_name) assert actual_value == expected_value @then('the reported page orientation is {orientation}') def then_the_reported_page_orientation_is_orientation(context, orientation): expected_value = { 'WD_ORIENT.LANDSCAPE': WD_ORIENT.LANDSCAPE, 'WD_ORIENT.PORTRAIT': WD_ORIENT.PORTRAIT, }[orientation] assert context.section.orientation == expected_value @then('the reported page width is {x} inches') def then_the_reported_page_width_is_width(context, x): assert context.section.page_width == Inches(float(x)) @then('the reported page height is {y} inches') def then_the_reported_page_height_is_11_inches(context, y): assert context.section.page_height == Inches(float(y)) @then('the reported section start type is {start_type}') def then_the_reported_section_start_type_is_type(context, start_type): expected_start_type = { 'CONTINUOUS': WD_SECTION.CONTINUOUS, 'EVEN_PAGE': WD_SECTION.EVEN_PAGE, 'NEW_COLUMN': WD_SECTION.NEW_COLUMN, 'NEW_PAGE': WD_SECTION.NEW_PAGE, 'ODD_PAGE': WD_SECTION.ODD_PAGE, }[start_type] assert context.section.start_type == expected_start_type
coltran/run.py
DionysisChristopoulos/google-research
23,901
5220
<filename>coltran/run.py # coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ColTran: Training and Continuous Evaluation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import os import time from absl import app from absl import flags from absl import logging from ml_collections import config_flags import tensorflow as tf import tensorflow_datasets as tfds from coltran import datasets from coltran.models import colorizer from coltran.models import upsampler from coltran.utils import train_utils # pylint: disable=g-direct-tensorflow-import # pylint: disable=missing-docstring # pylint: disable=not-callable # pylint: disable=g-long-lambda flags.DEFINE_enum('mode', 'train', [ 'train', 'eval_train', 'eval_valid', 'eval_test'], 'Operation mode.') flags.DEFINE_string('logdir', '/tmp/svt', 'Main directory for logs.') flags.DEFINE_string('master', 'local', 'BNS name of the TensorFlow master to use.') flags.DEFINE_enum('accelerator_type', 'GPU', ['CPU', 'GPU', 'TPU'], 'Hardware type.') flags.DEFINE_enum('dataset', 'imagenet', ['imagenet', 'custom'], 'Dataset') flags.DEFINE_string('data_dir', None, 'Data directory for custom images.') flags.DEFINE_string('tpu_worker_name', 'tpu_worker', 'Name of the TPU worker.') flags.DEFINE_string( 'pretrain_dir', None, 'Finetune from a pretrained checkpoint.') flags.DEFINE_string('summaries_log_dir', 'summaries', 'Summaries parent.') flags.DEFINE_integer('steps_per_summaries', 100, 'Steps per summaries.') flags.DEFINE_integer('devices_per_worker', 1, 'Number of devices per worker.') flags.DEFINE_integer('num_workers', 1, 'Number workers.') config_flags.DEFINE_config_file( 'config', default='test_configs/colorizer.py', help_string='Training configuration file.') FLAGS = flags.FLAGS def restore_checkpoint(model, ema, strategy, latest_ckpt=None, optimizer=None): if optimizer is None: ckpt_func = functools.partial( train_utils.create_checkpoint, models=model, ema=ema) else: ckpt_func = functools.partial( train_utils.create_checkpoint, models=model, ema=ema, optimizer=optimizer) checkpoint = train_utils.with_strategy(ckpt_func, strategy) if latest_ckpt: logging.info('Restoring from pretrained directory: %s', latest_ckpt) train_utils.with_strategy(lambda: checkpoint.restore(latest_ckpt), strategy) return checkpoint def is_tpu(): return FLAGS.accelerator_type == 'TPU' def loss_on_batch(inputs, model, config, training=False): """Loss on a batch of inputs.""" logits, aux_output = model.get_logits( inputs_dict=inputs, train_config=config, training=training) loss, aux_loss_dict = model.loss( targets=inputs, logits=logits, train_config=config, training=training, aux_output=aux_output) loss_factor = config.get('loss_factor', 1.0) loss_dict = collections.OrderedDict() loss_dict['loss'] = loss total_loss = loss_factor * loss for aux_key, aux_loss in aux_loss_dict.items(): aux_loss_factor = config.get(f'{aux_key}_loss_factor', 1.0) loss_dict[aux_key] = aux_loss total_loss += aux_loss_factor * aux_loss loss_dict['total_loss'] = total_loss extra_info = collections.OrderedDict([ ('scalar', loss_dict), ]) return total_loss, extra_info def train_step(config, model, optimizer, metrics, ema=None, strategy=None): """Training StepFn.""" def step_fn(inputs): """Per-Replica StepFn.""" with tf.GradientTape() as tape: loss, extra = loss_on_batch(inputs, model, config, training=True) scaled_loss = loss if strategy: scaled_loss /= float(strategy.num_replicas_in_sync) grads = tape.gradient(scaled_loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) for metric_key, metric in metrics.items(): metric.update_state(extra['scalar'][metric_key]) if ema is not None: ema.apply(model.trainable_variables) return loss return train_utils.step_with_strategy(step_fn, strategy) def build(config, batch_size, is_train=False): optimizer = train_utils.build_optimizer(config) ema_vars = [] downsample = config.get('downsample', False) downsample_res = config.get('downsample_res', 64) h, w = config.resolution if config.model.name == 'coltran_core': if downsample: h, w = downsample_res, downsample_res zero = tf.zeros((batch_size, h, w, 3), dtype=tf.int32) model = colorizer.ColTranCore(config.model) model(zero, training=is_train) c = 1 if is_train else 3 if config.model.name == 'color_upsampler': if downsample: h, w = downsample_res, downsample_res zero_slice = tf.zeros((batch_size, h, w, c), dtype=tf.int32) zero = tf.zeros((batch_size, h, w, 3), dtype=tf.int32) model = upsampler.ColorUpsampler(config.model) model(zero, inputs_slice=zero_slice, training=is_train) elif config.model.name == 'spatial_upsampler': zero_slice = tf.zeros((batch_size, h, w, c), dtype=tf.int32) zero = tf.zeros((batch_size, h, w, 3), dtype=tf.int32) model = upsampler.SpatialUpsampler(config.model) model(zero, inputs_slice=zero_slice, training=is_train) ema_vars = model.trainable_variables ema = train_utils.build_ema(config, ema_vars) return model, optimizer, ema ############################################################################### ## Train. ############################################################################### def train(logdir): config = FLAGS.config steps_per_write = FLAGS.steps_per_summaries train_utils.write_config(config, logdir) strategy, batch_size = train_utils.setup_strategy( config, FLAGS.master, FLAGS.devices_per_worker, FLAGS.mode, FLAGS.accelerator_type) def input_fn(input_context=None): read_config = None if input_context is not None: read_config = tfds.ReadConfig(input_context=input_context) dataset = datasets.get_dataset( name=FLAGS.dataset, config=config, batch_size=config.batch_size, subset='train', read_config=read_config, data_dir=FLAGS.data_dir) return dataset # DATASET CREATION. logging.info('Building dataset.') train_dataset = train_utils.dataset_with_strategy(input_fn, strategy) data_iterator = iter(train_dataset) # MODEL BUILDING logging.info('Building model.') model, optimizer, ema = train_utils.with_strategy( lambda: build(config, batch_size, True), strategy) model.summary(120, print_fn=logging.info) # METRIC CREATION. metrics = {} metric_keys = ['loss', 'total_loss'] metric_keys += model.metric_keys for metric_key in metric_keys: func = functools.partial(tf.keras.metrics.Mean, metric_key) curr_metric = train_utils.with_strategy(func, strategy) metrics[metric_key] = curr_metric # CHECKPOINTING LOGIC. if FLAGS.pretrain_dir is not None: pretrain_ckpt = tf.train.latest_checkpoint(FLAGS.pretrain_dir) assert pretrain_ckpt # Load the entire model without the optimizer from the checkpoints. restore_checkpoint(model, ema, strategy, pretrain_ckpt, optimizer=None) # New tf.train.Checkpoint instance with a reset optimizer. checkpoint = restore_checkpoint( model, ema, strategy, latest_ckpt=None, optimizer=optimizer) else: latest_ckpt = tf.train.latest_checkpoint(logdir) checkpoint = restore_checkpoint( model, ema, strategy, latest_ckpt, optimizer=optimizer) checkpoint = tf.train.CheckpointManager( checkpoint, directory=logdir, checkpoint_name='model', max_to_keep=10) if optimizer.iterations.numpy() == 0: checkpoint_name = checkpoint.save() logging.info('Saved checkpoint to %s', checkpoint_name) train_summary_dir = os.path.join(logdir, 'train_summaries') writer = tf.summary.create_file_writer(train_summary_dir) start_time = time.time() logging.info('Start Training.') # This hack of wrapping up multiple train steps with a tf.function call # speeds up training significantly. # See: https://www.tensorflow.org/guide/tpu#improving_performance_by_multiple_steps_within_tffunction # pylint: disable=line-too-long @tf.function def train_multiple_steps(iterator, steps_per_epoch): train_step_f = train_step(config, model, optimizer, metrics, ema, strategy) for _ in range(steps_per_epoch): train_step_f(iterator) while optimizer.iterations.numpy() < config.get('max_train_steps', 1000000): num_train_steps = optimizer.iterations for metric_key in metric_keys: metrics[metric_key].reset_states() start_run = time.time() train_multiple_steps(data_iterator, tf.convert_to_tensor(steps_per_write)) steps_per_sec = steps_per_write / (time.time() - start_run) with writer.as_default(): for metric_key, metric in metrics.items(): metric_np = metric.result().numpy() tf.summary.scalar(metric_key, metric_np, step=num_train_steps) if metric_key == 'total_loss': logging.info('Loss: %.3f bits/dim, Speed: %.3f steps/second', metric_np, steps_per_sec) if time.time() - start_time > config.save_checkpoint_secs: checkpoint_name = checkpoint.save() logging.info('Saved checkpoint to %s', checkpoint_name) start_time = time.time() ############################################################################### ## Evaluating. ############################################################################### def evaluate(logdir, subset): """Executes the evaluation loop.""" config = FLAGS.config strategy, batch_size = train_utils.setup_strategy( config, FLAGS.master, FLAGS.devices_per_worker, FLAGS.mode, FLAGS.accelerator_type) def input_fn(_=None): return datasets.get_dataset( name=config.dataset, config=config, batch_size=config.eval_batch_size, subset=subset) model, optimizer, ema = train_utils.with_strategy( lambda: build(config, batch_size, False), strategy) metric_keys = ['loss', 'total_loss'] # metric_keys += model.metric_keys metrics = {} for metric_key in metric_keys: func = functools.partial(tf.keras.metrics.Mean, metric_key) curr_metric = train_utils.with_strategy(func, strategy) metrics[metric_key] = curr_metric checkpoints = train_utils.with_strategy( lambda: train_utils.create_checkpoint(model, optimizer, ema), strategy) dataset = train_utils.dataset_with_strategy(input_fn, strategy) def step_fn(batch): _, extra = loss_on_batch(batch, model, config, training=False) for metric_key in metric_keys: curr_metric = metrics[metric_key] curr_scalar = extra['scalar'][metric_key] curr_metric.update_state(curr_scalar) num_examples = config.eval_num_examples eval_step = train_utils.step_with_strategy(step_fn, strategy) ckpt_path = None wait_max = config.get( 'eval_checkpoint_wait_secs', config.save_checkpoint_secs * 100) is_ema = True if ema else False eval_summary_dir = os.path.join( logdir, 'eval_{}_summaries_pyk_{}'.format(subset, is_ema)) writer = tf.summary.create_file_writer(eval_summary_dir) while True: ckpt_path = train_utils.wait_for_checkpoint(logdir, ckpt_path, wait_max) logging.info(ckpt_path) if ckpt_path is None: logging.info('Timed out waiting for checkpoint.') break train_utils.with_strategy( lambda: train_utils.restore(model, checkpoints, logdir, ema), strategy) data_iterator = iter(dataset) num_steps = num_examples // batch_size for metric_key, metric in metrics.items(): metric.reset_states() logging.info('Starting evaluation.') done = False for i in range(0, num_steps, FLAGS.steps_per_summaries): start_run = time.time() for k in range(min(num_steps - i, FLAGS.steps_per_summaries)): try: if k % 10 == 0: logging.info('Step: %d', (i + k + 1)) eval_step(data_iterator) except (StopIteration, tf.errors.OutOfRangeError): done = True break if done: break bits_per_dim = metrics['loss'].result() logging.info('Bits/Dim: %.3f, Speed: %.3f seconds/step, Step: %d/%d', bits_per_dim, (time.time() - start_run) / FLAGS.steps_per_summaries, i + k + 1, num_steps) # logging.info('Final Bits/Dim: %.3f', bits_per_dim) with writer.as_default(): for metric_key, metric in metrics.items(): curr_scalar = metric.result().numpy() tf.summary.scalar(metric_key, curr_scalar, step=optimizer.iterations) def main(_): logging.info('Logging to %s.', FLAGS.logdir) if FLAGS.mode == 'train': logging.info('[main] I am the trainer.') try: train(FLAGS.logdir) # During TPU Preemeption, the coordinator hangs with the error below. # the exception forces the coordinator to fail, and it will be restarted. except (tf.errors.UnavailableError, tf.errors.CancelledError): os._exit(os.EX_TEMPFAIL) # pylint: disable=protected-access elif FLAGS.mode.startswith('train'): logging.info('[main] I am the trainer.') train(os.path.join(FLAGS.logdir, FLAGS.mode)) elif FLAGS.mode == 'eval_train': logging.info('[main] I am the training set evaluator.') evaluate(FLAGS.logdir, subset='train') elif FLAGS.mode == 'eval_valid': logging.info('[main] I am the validation set evaluator.') evaluate(FLAGS.logdir, subset='valid') elif FLAGS.mode == 'eval_test': logging.info('[main] I am the test set evaluator.') evaluate(FLAGS.logdir, subset='test') else: raise ValueError( 'Unknown mode {}. ' 'Must be one of [train, eval_train, eval_valid, eval_test]'.format( FLAGS.mode)) if __name__ == '__main__': app.run(main)
pyctcdecode/__init__.py
kensho-technologies/pyctcdecode
203
5237
# Copyright 2021-present Kensho Technologies, LLC. from .alphabet import Alphabet # noqa from .decoder import BeamSearchDecoderCTC, build_ctcdecoder # noqa from .language_model import LanguageModel # noqa __package_name__ = "pyctcdecode" __version__ = "0.3.0"
platypush/backend/joystick/linux/__init__.py
BlackLight/platypush
228
5239
import array import struct import time from fcntl import ioctl from typing import IO from platypush.backend import Backend from platypush.message.event.joystick import JoystickConnectedEvent, JoystickDisconnectedEvent, \ JoystickButtonPressedEvent, JoystickButtonReleasedEvent, JoystickAxisEvent class JoystickLinuxBackend(Backend): """ This backend intercepts events from joystick devices through the native Linux API implementation. It is loosely based on https://gist.github.com/rdb/8864666, which itself uses the `Linux kernel joystick API <https://www.kernel.org/doc/Documentation/input/joystick-api.txt>`_ to interact with the devices. Triggers: * :class:`platypush.message.event.joystick.JoystickConnectedEvent` when the joystick is connected. * :class:`platypush.message.event.joystick.JoystickDisconnectedEvent` when the joystick is disconnected. * :class:`platypush.message.event.joystick.JoystickButtonPressedEvent` when a joystick button is pressed. * :class:`platypush.message.event.joystick.JoystickButtonReleasedEvent` when a joystick button is released. * :class:`platypush.message.event.joystick.JoystickAxisEvent` when an axis value of the joystick changes. """ # These constants were borrowed from linux/input.h axis_names = { 0x00: 'x', 0x01: 'y', 0x02: 'z', 0x03: 'rx', 0x04: 'ry', 0x05: 'rz', 0x06: 'throttle', 0x07: 'rudder', 0x08: 'wheel', 0x09: 'gas', 0x0a: 'brake', 0x10: 'hat0x', 0x11: 'hat0y', 0x12: 'hat1x', 0x13: 'hat1y', 0x14: 'hat2x', 0x15: 'hat2y', 0x16: 'hat3x', 0x17: 'hat3y', 0x18: 'pressure', 0x19: 'distance', 0x1a: 'tilt_x', 0x1b: 'tilt_y', 0x1c: 'tool_width', 0x20: 'volume', 0x28: 'misc', } button_names = { 0x120: 'trigger', 0x121: 'thumb', 0x122: 'thumb2', 0x123: 'top', 0x124: 'top2', 0x125: 'pinkie', 0x126: 'base', 0x127: 'base2', 0x128: 'base3', 0x129: 'base4', 0x12a: 'base5', 0x12b: 'base6', 0x12f: 'dead', 0x130: 'a', 0x131: 'b', 0x132: 'c', 0x133: 'x', 0x134: 'y', 0x135: 'z', 0x136: 'tl', 0x137: 'tr', 0x138: 'tl2', 0x139: 'tr2', 0x13a: 'select', 0x13b: 'start', 0x13c: 'mode', 0x13d: 'thumbl', 0x13e: 'thumbr', 0x220: 'dpad_up', 0x221: 'dpad_down', 0x222: 'dpad_left', 0x223: 'dpad_right', # XBox 360 controller uses these codes. 0x2c0: 'dpad_left', 0x2c1: 'dpad_right', 0x2c2: 'dpad_up', 0x2c3: 'dpad_down', } def __init__(self, device: str = '/dev/input/js0', *args, **kwargs): """ :param device: Joystick device to monitor (default: ``/dev/input/js0``). """ super().__init__(*args, **kwargs) self.device = device self._axis_states = {} self._button_states = {} self._axis_map = [] self._button_map = [] def _init_joystick(self, dev: IO): # Get the device name. buf = array.array('B', [0] * 64) ioctl(dev, 0x80006a13 + (0x10000 * len(buf)), buf) # JSIOCGNAME(len) js_name = buf.tobytes().rstrip(b'\x00').decode('utf-8') # Get number of axes and buttons. buf = array.array('B', [0]) ioctl(dev, 0x80016a11, buf) # JSIOCGAXES num_axes = buf[0] buf = array.array('B', [0]) ioctl(dev, 0x80016a12, buf) # JSIOCGBUTTONS num_buttons = buf[0] # Get the axis map. buf = array.array('B', [0] * 0x40) ioctl(dev, 0x80406a32, buf) # JSIOCGAXMAP for axis in buf[:num_axes]: axis_name = self.axis_names.get(axis, 'unknown(0x%02x)' % axis) self._axis_map.append(axis_name) self._axis_states[axis_name] = 0.0 # Get the button map. buf = array.array('H', [0] * 200) ioctl(dev, 0x80406a34, buf) # JSIOCGBTNMAP for btn in buf[:num_buttons]: btn_name = self.button_names.get(btn, 'unknown(0x%03x)' % btn) self._button_map.append(btn_name) self._button_states[btn_name] = 0 self.bus.post(JoystickConnectedEvent(device=self.device, name=js_name, axes=self._axis_map, buttons=self._button_map)) def run(self): super().run() self.logger.info(f'Opening {self.device}...') while not self.should_stop(): # Open the joystick device. try: jsdev = open(self.device, 'rb') self._init_joystick(jsdev) except Exception as e: self.logger.debug(f'Joystick device on {self.device} not available: {e}') time.sleep(5) continue # Joystick event loop while not self.should_stop(): try: evbuf = jsdev.read(8) if evbuf: _, value, evt_type, number = struct.unpack('IhBB', evbuf) if evt_type & 0x80: # Initial state notification continue if evt_type & 0x01: button = self._button_map[number] if button: self._button_states[button] = value evt_class = JoystickButtonPressedEvent if value else JoystickButtonReleasedEvent # noinspection PyTypeChecker self.bus.post(evt_class(device=self.device, button=button)) if evt_type & 0x02: axis = self._axis_map[number] if axis: fvalue = value / 32767.0 self._axis_states[axis] = fvalue # noinspection PyTypeChecker self.bus.post(JoystickAxisEvent(device=self.device, axis=axis, value=fvalue)) except OSError as e: self.logger.warning(f'Connection to {self.device} lost: {e}') self.bus.post(JoystickDisconnectedEvent(device=self.device)) break
src/modules/sensors/vehicle_magnetometer/mag_compensation/python/mag_compensation.py
SaxionMechatronics/Firmware
4,224
5240
<reponame>SaxionMechatronics/Firmware #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ File: mag_compensation.py Author: <NAME> Email: <EMAIL> Github: https://github.com/baumanta Description: Computes linear coefficients for mag compensation from thrust and current Usage: python mag_compensation.py /path/to/log/logfile.ulg current --instance 1 Remark: If your logfile does not contain some of the topics, e.g.battery_status/current_a you will have to comment out the corresponding parts in the script """ import matplotlib.pylab as plt from mpl_toolkits.mplot3d import Axes3D from pyulog import ULog from pyulog.px4 import PX4ULog from pylab import * import numpy as np import textwrap as tw import argparse #arguments parser = argparse.ArgumentParser(description='Calculate compensation parameters from ulog') parser.add_argument('logfile', type=str, nargs='?', default=[], help='full path to ulog file') parser.add_argument('type', type=str, nargs='?', choices=['current', 'thrust'], default=[], help='Power signal used for compensation, supported is "current" or "thrust".') parser.add_argument('--instance', type=int, nargs='?', default=0, help='instance of the current or thrust signal to use (0 or 1)') args = parser.parse_args() log_name = args.logfile comp_type = args.type comp_instance = args.instance #Load the log data (produced by pyulog) log = ULog(log_name) pxlog = PX4ULog(log) def get_data(topic_name, variable_name, index): try: dataset = log.get_dataset(topic_name, index) return dataset.data[variable_name] except: return [] def ms2s_list(time_ms_list): if len(time_ms_list) > 0: return 1e-6 * time_ms_list else: return time_ms_list # Select msgs and copy into arrays armed = get_data('vehicle_status', 'arming_state', 0) t_armed = ms2s_list(get_data('vehicle_status', 'timestamp', 0)) if comp_type == "thrust": power = get_data('vehicle_rates_setpoint', 'thrust_body[2]', comp_instance) power_t = ms2s_list(get_data('vehicle_rates_setpoint', 'timestamp', comp_instance)) comp_type_param = 1 factor = 1 unit = "[G]" elif comp_type == "current": power = get_data('battery_status', 'current_a', comp_instance) power = np.true_divide(power, 1000) #kA power_t = ms2s_list(get_data('battery_status', 'timestamp', comp_instance)) comp_type_param = 2 + comp_instance factor = -1 unit = "[G/kA]" else: print("unknown compensation type {}. Supported is either 'thrust' or 'current'.".format(comp_type)) sys.exit(1) if len(power) == 0: print("could not retrieve power signal from log, zero data points") sys.exit(1) mag0X_body = get_data('sensor_mag', 'x', 0) mag0Y_body = get_data('sensor_mag', 'y', 0) mag0Z_body = get_data('sensor_mag', 'z', 0) t_mag0 = ms2s_list(get_data('sensor_mag', 'timestamp', 0)) mag0_ID = get_data('sensor_mag', 'device_id', 0) mag1X_body = get_data('sensor_mag', 'x', 1) mag1Y_body = get_data('sensor_mag', 'y', 1) mag1Z_body = get_data('sensor_mag', 'z', 1) t_mag1 = ms2s_list(get_data('sensor_mag', 'timestamp', 1)) mag1_ID = get_data('sensor_mag', 'device_id', 1) mag2X_body = get_data('sensor_mag', 'x', 2) mag2Y_body = get_data('sensor_mag', 'y', 2) mag2Z_body = get_data('sensor_mag', 'z', 2) t_mag2 = ms2s_list(get_data('sensor_mag', 'timestamp', 2)) mag2_ID = get_data('sensor_mag', 'device_id', 2) mag3X_body = get_data('sensor_mag', 'x', 3) mag3Y_body = get_data('sensor_mag', 'y', 3) mag3Z_body = get_data('sensor_mag', 'z', 3) t_mag3 = ms2s_list(get_data('sensor_mag', 'timestamp', 3)) mag3_ID = get_data('sensor_mag', 'device_id', 3) magX_body = [] magY_body = [] magZ_body = [] mag_id = [] t_mag = [] if len(mag0X_body) > 0: magX_body.append(mag0X_body) magY_body.append(mag0Y_body) magZ_body.append(mag0Z_body) t_mag.append(t_mag0) mag_id.append(mag0_ID[0]) if len(mag1X_body) > 0: magX_body.append(mag1X_body) magY_body.append(mag1Y_body) magZ_body.append(mag1Z_body) t_mag.append(t_mag1) mag_id.append(mag1_ID[0]) if len(mag2X_body) > 0: magX_body.append(mag2X_body) magY_body.append(mag2Y_body) magZ_body.append(mag2Z_body) t_mag.append(t_mag2) mag_id.append(mag2_ID[0]) if len(mag3X_body) > 0: magX_body.append(mag3X_body) magY_body.append(mag3Y_body) magZ_body.append(mag3Z_body) t_mag.append(t_mag3) mag_id.append(mag3_ID[0]) n_mag = len(magX_body) #log index does not necessarily match mag calibration instance number calibration_instance = [] instance_found = False for idx in range(n_mag): instance_found = False for j in range(4): if mag_id[idx] == log.initial_parameters["CAL_MAG{}_ID".format(j)]: calibration_instance.append(j) instance_found = True if not instance_found: print('Mag {} calibration instance not found, run compass calibration first.'.format(mag_id[idx])) #get first arming sequence from data start_time = 0 stop_time = 0 for i in range(len(armed)-1): if armed[i] == 1 and armed[i+1] == 2: start_time = t_armed[i+1] if armed[i] == 2 and armed[i+1] == 1: stop_time = t_armed[i+1] break #cut unarmed sequences from mag data index_start = 0 index_stop = 0 for idx in range(n_mag): for i in range(len(t_mag[idx])): if t_mag[idx][i] > start_time: index_start = i break for i in range(len(t_mag[idx])): if t_mag[idx][i] > stop_time: index_stop = i -1 break t_mag[idx] = t_mag[idx][index_start:index_stop] magX_body[idx] = magX_body[idx][index_start:index_stop] magY_body[idx] = magY_body[idx][index_start:index_stop] magZ_body[idx] = magZ_body[idx][index_start:index_stop] #resample data power_resampled = [] for idx in range(n_mag): power_resampled.append(interp(t_mag[idx], power_t, power)) #fit linear to get coefficients px = [] py = [] pz = [] for idx in range(n_mag): px_temp, res_x, _, _, _ = polyfit(power_resampled[idx], magX_body[idx], 1,full = True) py_temp, res_y, _, _, _ = polyfit(power_resampled[idx], magY_body[idx], 1,full = True) pz_temp, res_z, _, _, _ = polyfit(power_resampled[idx], magZ_body[idx], 1, full = True) px.append(px_temp) py.append(py_temp) pz.append(pz_temp) #print to console for idx in range(n_mag): print('Mag{} device ID {} (calibration instance {})'.format(idx, mag_id[idx], calibration_instance[idx])) print('\033[91m \n{}-based compensation: \033[0m'.format(comp_type)) print('\nparam set CAL_MAG_COMP_TYP {}'.format(comp_type_param)) for idx in range(n_mag): print('\nparam set CAL_MAG{}_XCOMP {:.3f}'.format(calibration_instance[idx], factor * px[idx][0])) print('param set CAL_MAG{}_YCOMP {:.3f}'.format(calibration_instance[idx], factor * py[idx][0])) print('param set CAL_MAG{}_ZCOMP {:.3f}'.format(calibration_instance[idx], factor * pz[idx][0])) #plot data for idx in range(n_mag): fig = plt.figure(num=None, figsize=(25, 14), dpi=80, facecolor='w', edgecolor='k') fig.suptitle('Compensation Parameter Fit \n{} \nmag {} ID: {} (calibration instance {})'.format(log_name, idx, mag_id[idx], calibration_instance[idx]), fontsize=14, fontweight='bold') plt.subplot(1,3,1) plt.plot(power_resampled[idx], magX_body[idx], 'yo', power_resampled[idx], px[idx][0]*power_resampled[idx]+px[idx][1], '--k') plt.xlabel('current [kA]') plt.ylabel('mag X [G]') plt.subplot(1,3,2) plt.plot(power_resampled[idx], magY_body[idx], 'yo', power_resampled[idx], py[idx][0]*power_resampled[idx]+py[idx][1], '--k') plt.xlabel('current [kA]') plt.ylabel('mag Y [G]') plt.subplot(1,3,3) plt.plot(power_resampled[idx], magZ_body[idx], 'yo', power_resampled[idx], pz[idx][0]*power_resampled[idx]+pz[idx][1], '--k') plt.xlabel('current [kA]') plt.ylabel('mag Z [G]') # display results plt.figtext(0.24, 0.03, 'CAL_MAG{}_XCOMP: {:.3f} {}'.format(calibration_instance[idx],factor * px[idx][0],unit), horizontalalignment='center', fontsize=12, multialignment='left', bbox=dict(boxstyle="round", facecolor='#D8D8D8', ec="0.5", pad=0.5, alpha=1), fontweight='bold') plt.figtext(0.51, 0.03, 'CAL_MAG{}_YCOMP: {:.3f} {}'.format(calibration_instance[idx],factor * py[idx][0],unit), horizontalalignment='center', fontsize=12, multialignment='left', bbox=dict(boxstyle="round", facecolor='#D8D8D8', ec="0.5", pad=0.5, alpha=1), fontweight='bold') plt.figtext(0.79, 0.03, 'CAL_MAG{}_ZCOMP: {:.3f} {}'.format(calibration_instance[idx],factor * pz[idx][0],unit), horizontalalignment='center', fontsize=12, multialignment='left', bbox=dict(boxstyle="round", facecolor='#D8D8D8', ec="0.5", pad=0.5, alpha=1), fontweight='bold') #compensation comparison plots for idx in range(n_mag): fig = plt.figure(num=None, figsize=(25, 14), dpi=80, facecolor='w', edgecolor='k') fig.suptitle('Original Data vs. Compensation \n{}\nmag {} ID: {} (calibration instance {})'.format(log_name, idx, mag_id[idx], calibration_instance[idx]), fontsize=14, fontweight='bold') plt.subplot(3,1,1) original_x, = plt.plot(t_mag[idx], magX_body[idx], label='original') power_x, = plt.plot(t_mag[idx],magX_body[idx] - px[idx][0] * power_resampled[idx], label='compensated') plt.legend(handles=[original_x, power_x]) plt.xlabel('Time [s]') plt.ylabel('Mag X corrected[G]') plt.subplot(3,1,2) original_y, = plt.plot(t_mag[idx], magY_body[idx], label='original') power_y, = plt.plot(t_mag[idx],magY_body[idx] - py[idx][0] * power_resampled[idx], label='compensated') plt.legend(handles=[original_y, power_y]) plt.xlabel('Time [s]') plt.ylabel('Mag Y corrected[G]') plt.subplot(3,1,3) original_z, = plt.plot(t_mag[idx], magZ_body[idx], label='original') power_z, = plt.plot(t_mag[idx],magZ_body[idx] - pz[idx][0] * power_resampled[idx], label='compensated') plt.legend(handles=[original_z, power_z]) plt.xlabel('Time [s]') plt.ylabel('Mag Z corrected[G]') plt.show()
examples/qmmm/02-mcscf.py
QuESt-Calculator/pyscf
501
5246
#!/usr/bin/env python # # Author: <NAME> <<EMAIL>> # ''' A simple example to run MCSCF with background charges. ''' import numpy from pyscf import gto, scf, mcscf, qmmm mol = gto.M(atom=''' C 1.1879 -0.3829 0.0000 C 0.0000 0.5526 0.0000 O -1.1867 -0.2472 0.0000 H -1.9237 0.3850 0.0000 H 2.0985 0.2306 0.0000 H 1.1184 -1.0093 0.8869 H 1.1184 -1.0093 -0.8869 H -0.0227 1.1812 0.8852 H -0.0227 1.1812 -0.8852 ''', basis='3-21g', verbose=4) numpy.random.seed(1) coords = numpy.random.random((5,3)) * 10 charges = (numpy.arange(5) + 1.) * -.1 # # There are two ways to add background charges to MCSCF method. # The recommended one is to initialize it in SCF calculation. The MCSCF # calculation takes the information from SCF objects. # mf = qmmm.mm_charge(scf.RHF(mol), coords, charges).run() mc = mcscf.CASSCF(mf, 6, 6) mc.run() mc = mcscf.CASCI(mf, 6, 6) mc.run() # # The other method is to patch the MCSCF object with the background charges. # Note: it updates the underlying SCF object inplace. # mo_init = mf.mo_coeff mf = scf.RHF(mol) mc = mcscf.CASSCF(mf, 6, 6) mc = qmmm.mm_charge(mc, coords, charges) mc.run(mo_init) mf = scf.RHF(mol) mc = mcscf.CASCI(mf, 6, 6) mc = qmmm.mm_charge(mc, coords, charges) mc.run(mo_init)
ens/exceptions.py
pjryan93/web3.py
326
5258
import idna class AddressMismatch(ValueError): ''' In order to set up reverse resolution correctly, the ENS name should first point to the address. This exception is raised if the name does not currently point to the address. ''' pass class InvalidName(idna.IDNAError): ''' This exception is raised if the provided name does not meet the syntax standards specified in `EIP 137 name syntax <https://github.com/ethereum/EIPs/blob/master/EIPS/eip-137.md#name-syntax>`_. For example: names may not start with a dot, or include a space. ''' pass class UnauthorizedError(Exception): ''' Raised if the sending account is not the owner of the name you are trying to modify. Make sure to set ``from`` in the ``transact`` keyword argument to the owner of the name. ''' pass class UnownedName(Exception): ''' Raised if you are trying to modify a name that no one owns. If working on a subdomain, make sure the subdomain gets created first with :meth:`~ens.main.ENS.setup_address`. ''' pass class BidTooLow(ValueError): ''' Raised if you bid less than the minimum amount ''' pass class InvalidBidHash(ValueError): ''' Raised if you supply incorrect data to generate the bid hash. ''' pass class InvalidLabel(ValueError): ''' Raised if you supply an invalid label ''' pass class OversizeTransaction(ValueError): ''' Raised if a transaction you are trying to create would cost so much gas that it could not fit in a block. For example: when you try to start too many auctions at once. ''' pass class UnderfundedBid(ValueError): ''' Raised if you send less wei with your bid than you declared as your intent to bid. ''' pass
src/backend/schemas/vps.py
ddddhm1/LuWu
658
5261
from typing import List from typing import Optional from typing import Union from models.vps import VpsStatus from schemas.base import APIModel from schemas.base import BasePagination from schemas.base import BaseSchema from schemas.base import BaseSuccessfulResponseModel class VpsSshKeySchema(APIModel): name: str public_key: str = None private_key: str = None isp_id: int ssh_key_id: Optional[str] date_created: Optional[str] fingerprint: Optional[str] class VpsSpecPlanSchema(APIModel): name: str plan_code: Union[str, int] region_codes: List = None bandwidth: float ram: int vcpu: int disk: int price_monthly: Union[float, int, str] = None price_hourly: Union[float, int, str] = None price_yearly: Union[float, int, str] = None class VpsSpecRegionSchema(APIModel): name: str region_code: Union[str, int] features: List[str] = None plan_codes: List[Union[str, int]] = [] class VpsSpecOsSchema(APIModel): name: str os_code: Union[str, int] region_codes: List[Union[str, int]] = [] plan_codes: List[Union[str, int]] = [] class VpsSpecSchema(APIModel): region: List[VpsSpecRegionSchema] = [] plan: List[VpsSpecPlanSchema] = [] os: List[VpsSpecOsSchema] = [] class VpsSpecResponse(BaseSuccessfulResponseModel): result: VpsSpecSchema class VpsCreateSchema(APIModel): hostname: str isp_id: int region_code: str os_code: str plan_code: str ssh_keys: List[str] = [] status: int = VpsStatus.init remark: str = None class VpsItemSchema(BaseSchema): isp_id: int ip: Union[int, str, None] server_id: Optional[str] hostname: str os: Optional[str] plan: Optional[str] region: Optional[str] status: int status_name: str status_msg: Optional[str] isp_provider_name: str class VpsItemResponse(BaseSuccessfulResponseModel): result: VpsItemSchema class VpsPaginationSchema(BasePagination): items: Optional[List[VpsItemSchema]] class VpsPaginationResponse(BaseSuccessfulResponseModel): result: VpsPaginationSchema class VpsSshKeyResponseSchema(BaseSuccessfulResponseModel): result: List[VpsSshKeySchema]
editortools/player.py
bennettdc/MCEdit-Unified
237
5281
"""Copyright (c) 2010-2012 <NAME> Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.""" #-# Modifiedby D.C.-G. for translation purpose from OpenGL import GL import numpy import os from albow import TableView, TableColumn, Label, Button, Column, CheckBox, AttrRef, Row, ask, alert, input_text_buttons, TabPanel from albow.table_view import TableRowView from albow.translate import _ from config import config from editortools.editortool import EditorTool from editortools.tooloptions import ToolOptions from glbackground import Panel from glutils import DisplayList from mceutils import loadPNGTexture, alertException, drawTerrainCuttingWire, drawCube from operation import Operation import pymclevel from pymclevel.box import BoundingBox, FloatBox from pymclevel import nbt import logging from player_cache import PlayerCache, ThreadRS from nbtexplorer import loadFile, saveFile, NBTExplorerToolPanel import pygame log = logging.getLogger(__name__) class PlayerRemoveOperation(Operation): undoTag = None def __init__(self, tool, player="Player (Single Player)"): super(PlayerRemoveOperation, self).__init__(tool.editor, tool.editor.level) self.tool = tool self.player = player self.level = self.tool.editor.level self.canUndo = False self.playercache = PlayerCache() def perform(self, recordUndo=True): if self.level.saving: alert(_("Cannot perform action while saving is taking place")) return if self.player == "Player (Single Player)": answer = ask(_("Are you sure you want to delete the default player?"), ["Yes", "Cancel"]) if answer == "Cancel": return self.player = "Player" if recordUndo: self.undoTag = self.level.getPlayerTag(self.player) self.level.players.remove(self.player) if self.tool.panel: if self.player != "Player": #self.tool.panel.players.remove(player_cache.getPlayerNameFromUUID(self.player)) #self.tool.panel.players.remove(self.playercache.getPlayerInfo(self.player)[0]) str() else: self.tool.panel.players.remove("Player (Single Player)") while self.tool.panel.table.index >= len(self.tool.panel.players): self.tool.panel.table.index -= 1 #if len(self.tool.panel.players) == 0: # self.tool.hidePanel() # self.tool.showPanel() self.tool.hidePanel() self.tool.showPanel() self.tool.markerList.invalidate() self.tool.movingPlayer = None pos = self.tool.revPlayerPos[self.editor.level.dimNo][self.player] del self.tool.playerPos[self.editor.level.dimNo][pos] if self.player != "Player": del self.tool.playerTexture[self.player] else: del self.level.root_tag["Data"]["Player"] del self.tool.revPlayerPos[self.editor.level.dimNo][self.player] self.canUndo = True def undo(self): if not (self.undoTag is None): if self.player != "Player": self.level.playerTagCache[self.level.getPlayerPath(self.player)] = self.undoTag else: self.level.root_tag["Data"]["Player"] = self.undoTag self.level.players.append(self.player) if self.tool.panel: #if self.player != "Player": # self.tool.panel.players.append(self.playercache.getPlayerInfo(self.player)[0]) #else: # self.tool.panel.players.append("Player (Single Player)") if "[No players]" in self.tool.panel.players: self.tool.panel.players.remove("[No players]") self.tool.hidePanel() self.tool.showPanel() self.tool.markerList.invalidate() def redo(self): self.perform() class PlayerAddOperation(Operation): playerTag = None def __init__(self, tool): super(PlayerAddOperation, self).__init__(tool.editor, tool.editor.level) self.tool = tool self.level = self.tool.editor.level self.canUndo = False self.playercache = PlayerCache() def perform(self, recordUndo=True): initial = "" allowed_chars = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_" while True: self.player = input_text_buttons("Enter a Player Name: ", 160, initial=initial, allowed_chars=allowed_chars) if self.player is None: return elif len(self.player) > 16: alert("Name too long. Maximum name length is 16.") initial = self.player elif len(self.player) < 1: alert("Name too short. Minimum name length is 1.") initial = self.player else: break # print 1 data = self.playercache.getPlayerInfo(self.player) if "<Unknown UUID>" not in data and "Server not ready" not in data: self.uuid = data[0] self.player = data[1] else: action = ask("Could not get {}'s UUID. Please make sure that you are connected to the internet and that the player \"{}\" exists.".format(self.player, self.player), ["Enter UUID manually", "Cancel"]) if action != "Enter UUID manually": return self.uuid = input_text_buttons("Enter a Player UUID: ", 160) if not self.uuid: return # print 2 self.player = self.playercache.getPlayerInfo(self.uuid) if self.player == self.uuid.replace("-", ""): if ask("UUID was not found. Continue anyways?") == "Cancel": return # print "PlayerAddOperation.perform::self.uuid", self.uuid if self.uuid in self.level.players: alert("Player already exists in this World.") return self.playerTag = self.newPlayer() #if self.tool.panel: # self.tool.panel.players.append(self.player) if self.level.oldPlayerFolderFormat: self.level.playerTagCache[self.level.getPlayerPath(self.player)] = self.playerTag self.level.players.append(self.player) #if self.tool.panel: #self.tool.panel.player_UUID[self.player] = self.player else: self.level.playerTagCache[self.level.getPlayerPath(self.uuid)] = self.playerTag self.level.players.append(self.uuid) if self.tool.panel: self.tool.panel.player_UUID["UUID"].append(self.uuid) self.tool.panel.player_UUID["Name"].append(self.player) self.tool.playerPos[self.editor.level.dimNo][(0,0,0)] = self.uuid self.tool.revPlayerPos[self.editor.level.dimNo][self.uuid] = (0,0,0) # print 3 r = self.playercache.getPlayerSkin(self.uuid, force_download=False) if not isinstance(r, (str, unicode)): # print 'r 1', r r = r.join() # print 'r 2', r self.tool.playerTexture[self.uuid] = loadPNGTexture(r) self.tool.markerList.invalidate() self.tool.recordMove = False self.tool.movingPlayer = self.uuid if self.tool.panel: self.tool.hidePanel() self.tool.showPanel() self.canUndo = True self.playerTag.save(self.level.getPlayerPath(self.uuid)) self.tool.nonSavedPlayers.append(self.level.getPlayerPath(self.uuid)) self.tool.inOtherDimension[self.editor.level.dimNo].append(self.uuid) def newPlayer(self): playerTag = nbt.TAG_Compound() playerTag['Air'] = nbt.TAG_Short(300) playerTag['AttackTime'] = nbt.TAG_Short(0) playerTag['DeathTime'] = nbt.TAG_Short(0) playerTag['Fire'] = nbt.TAG_Short(-20) playerTag['Health'] = nbt.TAG_Short(20) playerTag['HurtTime'] = nbt.TAG_Short(0) playerTag['Score'] = nbt.TAG_Int(0) playerTag['FallDistance'] = nbt.TAG_Float(0) playerTag['OnGround'] = nbt.TAG_Byte(0) playerTag['Dimension'] = nbt.TAG_Int(self.editor.level.dimNo) playerTag["Inventory"] = nbt.TAG_List() playerTag['Motion'] = nbt.TAG_List([nbt.TAG_Double(0) for i in xrange(3)]) spawn = self.level.playerSpawnPosition() spawnX = spawn[0] spawnZ = spawn[2] blocks = [self.level.blockAt(spawnX, i, spawnZ) for i in xrange(self.level.Height)] i = self.level.Height done = False for index, b in enumerate(reversed(blocks)): if b != 0 and not done: i = index done = True spawnY = self.level.Height - i playerTag['Pos'] = nbt.TAG_List([nbt.TAG_Double([spawnX, spawnY, spawnZ][i]) for i in xrange(3)]) playerTag['Rotation'] = nbt.TAG_List([nbt.TAG_Float(0), nbt.TAG_Float(0)]) return playerTag def undo(self): self.level.players.remove(self.uuid) self.tool.movingPlayer = None if self.tool.panel: #self.tool.panel.players.remove(self.player) self.tool.panel.player_UUID["UUID"].remove(self.uuid) self.tool.panel.player_UUID["Name"].remove(self.player) self.tool.hidePanel() self.tool.showPanel() if self.tool.movingPlayer is None: del self.tool.playerPos[self.tool.revPlayerPos[self.uuid]] else: del self.tool.playerPos[(0,0,0)] del self.tool.revPlayerPos[self.uuid] del self.tool.playerTexture[self.uuid] os.remove(self.level.getPlayerPath(self.uuid)) if self.level.getPlayerPath(self.uuid) in self.tool.nonSavedPlayers: self.tool.nonSavedPlayers.remove(self.level.getPlayerPath(self.uuid)) self.tool.markerList.invalidate() def redo(self): if not (self.playerTag is None): self.level.playerTagCache[self.level.getPlayerPath(self.uuid)] = self.playerTag self.level.players.append(self.uuid) if self.tool.panel: #self.tool.panel.players.append(self.uuid) #self.tool.panel.player_UUID[self.player] = self.uuid self.tool.panel.player_UUID["UUID"].append(self.uuid) self.tool.panel.player_UUID["Name"].append(self.player) # print 4 r = self.playercache.getPlayerSkin(self.uuid) if isinstance(r, (str, unicode)): r = r.join() self.tool.playerTexture[self.uuid] = loadPNGTexture(r) self.tool.playerPos[(0,0,0)] = self.uuid self.tool.revPlayerPos[self.uuid] = (0,0,0) self.playerTag.save(self.level.getPlayerPath(self.uuid)) self.tool.nonSavedPlayers.append(self.level.getPlayerPath(self.uuid)) self.tool.markerList.invalidate() class PlayerMoveOperation(Operation): undoPos = None redoPos = None def __init__(self, tool, pos, player="Player", yp=(None, None)): super(PlayerMoveOperation, self).__init__(tool.editor, tool.editor.level) self.tool = tool self.canUndo = False self.pos = pos self.player = player self.yp = yp def perform(self, recordUndo=True): if self.level.saving: alert(_("Cannot perform action while saving is taking place")) return try: level = self.tool.editor.level try: self.undoPos = level.getPlayerPosition(self.player) self.undoDim = level.getPlayerDimension(self.player) self.undoYP = level.getPlayerOrientation(self.player) except Exception as e: log.info(_("Couldn't get player position! ({0!r})").format(e)) yaw, pitch = self.yp if yaw is not None and pitch is not None: level.setPlayerOrientation((yaw, pitch), self.player) level.setPlayerPosition(self.pos, self.player) level.setPlayerDimension(level.dimNo, self.player) self.tool.playerPos[tuple(self.pos)] = self.player self.tool.revPlayerPos[self.player] = self.pos self.tool.markerList.invalidate() self.canUndo = True except pymclevel.PlayerNotFound as e: print "Player move failed: ", e def undo(self): if not (self.undoPos is None): level = self.tool.editor.level try: self.redoPos = level.getPlayerPosition(self.player) self.redoDim = level.getPlayerDimension(self.player) self.redoYP = level.getPlayerOrientation(self.player) except Exception as e: log.info(_("Couldn't get player position! ({0!r})").format(e)) level.setPlayerPosition(self.undoPos, self.player) level.setPlayerDimension(self.undoDim, self.player) level.setPlayerOrientation(self.undoYP, self.player) self.tool.markerList.invalidate() def redo(self): if not (self.redoPos is None): level = self.tool.editor.level try: self.undoPos = level.getPlayerPosition(self.player) self.undoDim = level.getPlayerDimension(self.player) self.undoYP = level.getPlayerOrientation(self.player) except Exception as e: log.info(_("Couldn't get player position! ({0!r})").format(e)) level.setPlayerPosition(self.redoPos, self.player) level.setPlayerDimension(self.redoDim, self.player) level.setPlayerOrientation(self.redoYP, self.player) self.tool.markerList.invalidate() @staticmethod def bufferSize(): return 20 class SpawnPositionInvalid(Exception): pass def okayAt63(level, pos): """blocks 63 or 64 must be occupied""" # return level.blockAt(pos[0], 63, pos[2]) != 0 or level.blockAt(pos[0], 64, pos[2]) != 0 return True def okayAboveSpawn(level, pos): """3 blocks above spawn must be open""" return not any([level.blockAt(pos[0], pos[1] + i, pos[2]) for i in xrange(1, 4)]) def positionValid(level, pos): try: return okayAt63(level, pos) and okayAboveSpawn(level, pos) except EnvironmentError: return False class PlayerSpawnMoveOperation(Operation): undoPos = None redoPos = None def __init__(self, tool, pos): super(PlayerSpawnMoveOperation, self).__init__(tool.editor, tool.editor.level) self.tool, self.pos = tool, pos self.canUndo = False def perform(self, recordUndo=True): if self.level.saving: alert(_("Cannot perform action while saving is taking place")) return level = self.tool.editor.level ''' if isinstance(level, pymclevel.MCInfdevOldLevel): if not positionValid(level, self.pos): if config.spawn.spawnProtection.get(): raise SpawnPositionInvalid( "You cannot have two air blocks at Y=63 and Y=64 in your spawn point's column. Additionally, you cannot have a solid block in the three blocks above your spawn point. It's weird, I know.") ''' self.undoPos = level.playerSpawnPosition() level.setPlayerSpawnPosition(self.pos) self.tool.markerList.invalidate() self.canUndo = True def undo(self): if self.undoPos is not None: level = self.tool.editor.level self.redoPos = level.playerSpawnPosition() level.setPlayerSpawnPosition(self.undoPos) self.tool.markerList.invalidate() def redo(self): if self.redoPos is not None: level = self.tool.editor.level self.undoPos = level.playerSpawnPosition() level.setPlayerSpawnPosition(self.redoPos) self.tool.markerList.invalidate() class PlayerPositionPanel(Panel): def __init__(self, tool): Panel.__init__(self, name='Panel.PlayerPositionPanel') self.tool = tool self.player_UUID = {"UUID": [], "Name": []} self.level = tool.editor.level self.playercache = PlayerCache() # Add this instance to PlayerCache 'targets'. PlayerCache generated processes will call # this instance 'update_player' method when they have finished their execution. self.playercache.add_target(self.update_player) if hasattr(self.level, 'players'): players = self.level.players or ["[No players]"] if not self.level.oldPlayerFolderFormat: for player in players: if player != "Player" and player != "[No players]": if len(player) > 4 and player[4] == "-": os.rename(os.path.join(self.level.worldFolder.getFolderPath("playerdata"), player+".dat"), os.path.join(self.level.worldFolder.getFolderPath("playerdata"), player.replace("-", "", 1)+".dat")) player = player.replace("-", "", 1) # print 5 data = self.playercache.getPlayerInfo(player, use_old_data=True) #self.player_UUID[data[0]] = data[1] self.player_UUID["UUID"].append(data[0]) self.player_UUID["Name"].append(data[1]) #self.player_UUID[player] = data if "Player" in players: #self.player_UUID["Player (Single Player)"] = "Player" self.player_UUID["UUID"].append("Player") self.player_UUID["Name"].append("Player (Single Player)") if "[No players]" not in players: self.player_names = sorted(self.player_UUID.values(), key=lambda x: False if x == "Player (Single Player)" else x) else: self.player_UUID["UUID"].append("[No players]") self.player_UUID["Name"].append("[No players]") else: players = ["Player (Single Player)"] self.players = players if 'Player' in self.player_UUID['UUID'] and 'Player (Single Player)' in self.player_UUID['Name']: self.player_UUID['UUID'].insert(0, self.player_UUID['UUID'].pop(self.player_UUID['UUID'].index('Player'))) self.player_UUID['Name'].insert(0, self.player_UUID['Name'].pop(self.player_UUID['Name'].index('Player (Single Player)'))) self.pages = TabPanel() tab_height = self.pages.tab_height max_height = tab_height + self.tool.editor.mainViewport.height - self.tool.editor.toolbar.height - self.tool.editor.subwidgets[0].height - self.pages.margin * 2 #-# Uncomment the following line to have a maximum height for this panel. # max_height = min(max_height, 500) self.editNBTDataButton = Button("Edit NBT", action=self.editNBTData, tooltipText="Open the NBT Explorer to edit player's attributes and inventory") addButton = Button("Add", action=self.tool.addPlayer) removeButton = Button("Remove", action=self.tool.removePlayer) gotoButton = Button("Goto", action=self.tool.gotoPlayer) gotoCameraButton = Button("Goto View", action=self.tool.gotoPlayerCamera) moveButton = Button("Move", action=self.tool.movePlayer) moveToCameraButton = Button("Align to Camera", action=self.tool.movePlayerToCamera) reloadSkin = Button("Reload Skins", action=self.tool.reloadSkins, tooltipText="This pulls skins from the online server, so this may take a while") btns = [self.editNBTDataButton] if not isinstance(self.level, pymclevel.leveldbpocket.PocketLeveldbWorld): btns.extend([addButton, removeButton]) btns.extend([gotoButton, gotoCameraButton, moveButton, moveToCameraButton, reloadSkin]) btns = Column(btns, margin=0, spacing=2) h = max_height - btns.height - self.pages.margin * 2 - 2 - self.font.get_linesize() * 2 col = Label('') def close(): self.pages.show_page(col) self.nbttree = NBTExplorerToolPanel(self.tool.editor, nbtObject={}, height=max_height, \ close_text="Go Back", no_header=True, close_action=close, load_text=None) self.nbttree.shrink_wrap() self.nbtpage = Column([self.nbttree]) self.nbtpage.shrink_wrap() self.pages.add_page("NBT Data", self.nbtpage) self.pages.set_rect(map(lambda x:x+self.margin, self.nbttree._rect)) tableview = TableView(nrows=(h - (self.font.get_linesize() * 2.5)) / self.font.get_linesize(), header_height=self.font.get_linesize(), columns=[TableColumn("Player Name(s):", (self.nbttree.width - (self.margin * 3)) / 3), TableColumn("Player UUID(s):", (self.nbttree.width - (self.margin * 3)))], ) tableview.index = 0 tableview.num_rows = lambda: len(self.player_UUID["UUID"]) tableview.row_data = lambda i: (self.player_UUID["Name"][i],self.player_UUID["UUID"][i]) tableview.row_is_selected = lambda x: x == tableview.index tableview.zebra_color = (0, 0, 0, 48) def selectTableRow(i, evt): tableview.index = i tableview.click_row = selectTableRow def mouse_down(e): if e.button == 1 and e.num_clicks > 1: self.editNBTData() TableRowView.mouse_down(tableview.rows, e) tableview.rows.mouse_down = mouse_down tableview.rows.tooltipText = "Double-click or use the button below to edit the NBT Data." self.table = tableview col.set_parent(None) self.col = col = Column([tableview, btns], spacing=2) self.pages.add_page("Players", col, 0) self.pages.shrink_wrap() self.pages.show_page(col) self.add(self.pages) self.shrink_wrap() self.max_height = max_height def editNBTData(self): player = self.selectedPlayer if player == 'Player (Single Player)': alert("Not yet implemented.\nUse the NBT Explorer to edit this player.") elif player == '[No players]': return else: player = self.level.getPlayerTag(self.selectedPlayer) if player is not None: self.pages.remove_page(self.nbtpage) def close(): self.pages.show_page(self.col) self.nbttree = NBTExplorerToolPanel(self.tool.editor, nbtObject=player, fileName=None, savePolicy=-1, dataKeyName=None, height=self.max_height, no_header=True, close_text="Go Back", close_action=close, load_text=None, copy_data=False) self.nbtpage = Column([self.nbttree,]) self.nbtpage.shrink_wrap() self.pages.add_page("NBT Data", self.nbtpage) self.pages.show_page(self.nbtpage) else: alert(_("Unable to load player %s" % self.selectedPlayer())) @property def selectedPlayer(self): if not self.level.oldPlayerFolderFormat: player = self.players[self.table.index] if player != "Player (Single Player)" and player != "[No players]" and player != "~local_player": return self.player_UUID["UUID"][self.table.index] else: return player else: return self.players[self.table.index] def key_down(self, evt): self.dispatch_key('key_down', evt) def dispatch_key(self, name, evt): if not hasattr(evt, 'key'): return if name == "key_down": keyname = self.root.getKey(evt) if self.pages.current_page == self.col: if keyname == "Up" and self.table.index > 0: self.table.index -= 1 self.table.rows.scroll_to_item(self.table.index) elif keyname == "Down" and self.table.index < len(self.players) - 1: self.table.index += 1 self.table.rows.scroll_to_item(self.table.index) elif keyname == 'Page down': self.table.index = min(len(self.players) - 1, self.table.index + self.table.rows.num_rows()) elif keyname == 'Page up': self.table.index = max(0, self.table.index - self.table.rows.num_rows()) elif keyname == 'Return': if self.selectedPlayer: self.editNBTData() if self.table.rows.cell_to_item_no(0, 0) + self.table.rows.num_rows() -1 > self.table.index or self.table.rows.cell_to_item_no(0, 0) + self.table.rows.num_rows() -1 < self.table.index: self.table.rows.scroll_to_item(self.table.index) elif self.pages.current_page == self.nbtpage: self.nbttree.dispatch_key(name, evt) def update_player(self, data): if isinstance(data, tuple): if data[0] in self.player_UUID['UUID']: idx = self.player_UUID['UUID'].index(data[0]) self.player_UUID['UUID'][idx] = data[0] self.player_UUID['Name'][idx] = data[1] class PlayerPositionTool(EditorTool): surfaceBuild = True toolIconName = "player" tooltipText = "Players" movingPlayer = None recordMove = True def reloadTextures(self): self.charTex = loadPNGTexture('char.png') @alertException def addPlayer(self): op = PlayerAddOperation(self) self.editor.addOperation(op) if op.canUndo: self.editor.addUnsavedEdit() @alertException def removePlayer(self): player = self.panel.selectedPlayer if player != "[No players]": op = PlayerRemoveOperation(self, player) self.editor.addOperation(op) if op.canUndo: self.editor.addUnsavedEdit() @alertException def movePlayer(self): if self.panel.selectedPlayer != "[No players]": self.movingPlayer = self.panel.selectedPlayer if self.movingPlayer == "Player (Single Player)": self.movingPlayer = "Player" @alertException def movePlayerToCamera(self): player = self.panel.selectedPlayer if player == "Player (Single Player)": player = "Player" if player != "[No players]": pos = self.editor.mainViewport.cameraPosition y = self.editor.mainViewport.yaw p = self.editor.mainViewport.pitch op = PlayerMoveOperation(self, pos, player, (y, p)) self.movingPlayer = None self.editor.addOperation(op) if op.canUndo: self.editor.addUnsavedEdit() def delete_skin(self, uuid): del self.playerTexture[uuid] self.playerTexture[uuid] = self.charTex @alertException def reloadSkins(self): #result = ask("This pulls skins from the online server, so this may take a while", ["Ok", "Cancel"]) #if result == "Ok": try: for player in self.editor.level.players: if player != "Player" and player in self.playerTexture.keys(): del self.playerTexture[player] # print 6 r = self.playercache.getPlayerSkin(player, force_download=True, instance=self) if isinstance(r, (str, unicode)): r = r.join() self.playerTexture[player] = loadPNGTexture(r) #self.markerList.call(self._drawToolMarkers) except: raise Exception("Could not connect to the skins server, please check your Internet connection and try again.") def gotoPlayerCamera(self): player = self.panel.selectedPlayer if player == "Player (Single Player)": player = "Player" try: pos = self.editor.level.getPlayerPosition(player) y, p = self.editor.level.getPlayerOrientation(player) self.editor.gotoDimension(self.editor.level.getPlayerDimension(player)) self.editor.mainViewport.cameraPosition = pos self.editor.mainViewport.yaw = y self.editor.mainViewport.pitch = p self.editor.mainViewport.stopMoving() self.editor.mainViewport.invalidate() except pymclevel.PlayerNotFound: pass def gotoPlayer(self): player = self.panel.selectedPlayer if player == "Player (Single Player)": player = "Player" try: if self.editor.mainViewport.pitch < 0: self.editor.mainViewport.pitch = -self.editor.mainViewport.pitch self.editor.mainViewport.cameraVector = self.editor.mainViewport._cameraVector() cv = self.editor.mainViewport.cameraVector pos = self.editor.level.getPlayerPosition(player) pos = map(lambda p, c: p - c * 5, pos, cv) self.editor.gotoDimension(self.editor.level.getPlayerDimension(player)) self.editor.mainViewport.cameraPosition = pos self.editor.mainViewport.stopMoving() except pymclevel.PlayerNotFound: pass def __init__(self, *args): EditorTool.__init__(self, *args) self.reloadTextures() self.nonSavedPlayers = [] textureVerticesHead = numpy.array( ( # Backside of Head 24, 16, # Bottom Left 24, 8, # Top Left 32, 8, # Top Right 32, 16, # Bottom Right # Front of Head 8, 16, 8, 8, 16, 8, 16, 16, # 24, 0, 16, 0, 16, 8, 24, 8, # 16, 0, 8, 0, 8, 8, 16, 8, # 8, 8, 0, 8, 0, 16, 8, 16, 16, 16, 24, 16, 24, 8, 16, 8, ), dtype='f4') textureVerticesHat = numpy.array( ( 56, 16, 56, 8, 64, 8, 64, 16, 48, 16, 48, 8, 40, 8, 40, 16, 56, 0, 48, 0, 48, 8, 56, 8, 48, 0, 40, 0, 40, 8, 48, 8, 40, 8, 32, 8, 32, 16, 40, 16, 48, 16, 56, 16, 56, 8, 48, 8, ), dtype='f4') textureVerticesHead.shape = (24, 2) textureVerticesHat.shape = (24, 2) textureVerticesHead *= 4 textureVerticesHead[:, 1] *= 2 textureVerticesHat *= 4 textureVerticesHat[:, 1] *= 2 self.texVerts = (textureVerticesHead, textureVerticesHat) self.playerPos = {0:{}, -1:{}, 1:{}} self.playerTexture = {} self.revPlayerPos = {0:{}, -1:{}, 1:{}} self.inOtherDimension = {0: [], 1: [], -1: []} self.playercache = PlayerCache() self.markerList = DisplayList() panel = None def showPanel(self): if not self.panel: self.panel = PlayerPositionPanel(self) self.panel.centery = (self.editor.mainViewport.height - self.editor.toolbar.height) / 2 + self.editor.subwidgets[0].height self.panel.left = self.editor.left self.editor.add(self.panel) def hidePanel(self): if self.panel and self.panel.parent: self.panel.parent.remove(self.panel) self.panel = None def drawToolReticle(self): if self.movingPlayer is None: return pos, direction = self.editor.blockFaceUnderCursor dim = self.editor.level.getPlayerDimension(self.movingPlayer) pos = (pos[0], pos[1] + 2, pos[2]) x, y, z = pos # x,y,z=map(lambda p,d: p+d, pos, direction) GL.glEnable(GL.GL_BLEND) GL.glColor(1.0, 1.0, 1.0, 0.5) self.drawCharacterHead(x + 0.5, y + 0.75, z + 0.5, self.revPlayerPos[dim][self.movingPlayer], dim) GL.glDisable(GL.GL_BLEND) GL.glEnable(GL.GL_DEPTH_TEST) self.drawCharacterHead(x + 0.5, y + 0.75, z + 0.5, self.revPlayerPos[dim][self.movingPlayer], dim) drawTerrainCuttingWire(BoundingBox((x, y, z), (1, 1, 1))) drawTerrainCuttingWire(BoundingBox((x, y - 1, z), (1, 1, 1))) #drawTerrainCuttingWire( BoundingBox((x,y-2,z), (1,1,1)) ) GL.glDisable(GL.GL_DEPTH_TEST) markerLevel = None def drawToolMarkers(self): if not config.settings.drawPlayerHeads.get(): return if self.markerLevel != self.editor.level: self.markerList.invalidate() self.markerLevel = self.editor.level self.markerList.call(self._drawToolMarkers) def _drawToolMarkers(self): GL.glColor(1.0, 1.0, 1.0, 0.5) GL.glEnable(GL.GL_DEPTH_TEST) GL.glMatrixMode(GL.GL_MODELVIEW) for player in self.editor.level.players: try: pos = self.editor.level.getPlayerPosition(player) yaw, pitch = self.editor.level.getPlayerOrientation(player) dim = self.editor.level.getPlayerDimension(player) self.inOtherDimension[dim].append(player) self.playerPos[dim][pos] = player self.revPlayerPos[dim][player] = pos if player != "Player" and config.settings.downloadPlayerSkins.get(): # print 7 r = self.playercache.getPlayerSkin(player, force_download=False) if not isinstance(r, (str, unicode)): r = r.join() self.playerTexture[player] = loadPNGTexture(r) else: self.playerTexture[player] = self.charTex if dim != self.editor.level.dimNo: continue x, y, z = pos GL.glPushMatrix() GL.glTranslate(x, y, z) GL.glRotate(-yaw, 0, 1, 0) GL.glRotate(pitch, 1, 0, 0) GL.glColor(1, 1, 1, 1) self.drawCharacterHead(0, 0, 0, (x,y,z), self.editor.level.dimNo) GL.glPopMatrix() # GL.glEnable(GL.GL_BLEND) drawTerrainCuttingWire(FloatBox((x - .5, y - .5, z - .5), (1, 1, 1)), c0=(0.3, 0.9, 0.7, 1.0), c1=(0, 0, 0, 0), ) #GL.glDisable(GL.GL_BLEND) except Exception, e: print "Exception in editortools.player.PlayerPositionTool._drawToolMarkers:", repr(e) import traceback print traceback.format_exc() continue GL.glDisable(GL.GL_DEPTH_TEST) def drawCharacterHead(self, x, y, z, realCoords=None, dim=0): GL.glEnable(GL.GL_CULL_FACE) origin = (x - 0.25, y - 0.25, z - 0.25) size = (0.5, 0.5, 0.5) box = FloatBox(origin, size) hat_origin = (x - 0.275, y - 0.275, z - 0.275) hat_size = (0.55, 0.55, 0.55) hat_box = FloatBox(hat_origin, hat_size) if realCoords is not None and self.playerPos[dim][realCoords] != "Player" and config.settings.downloadPlayerSkins.get(): drawCube(box, texture=self.playerTexture[self.playerPos[dim][realCoords]], textureVertices=self.texVerts[0]) GL.glEnable(GL.GL_BLEND) GL.glBlendFunc(GL.GL_SRC_ALPHA, GL.GL_ONE_MINUS_SRC_ALPHA) drawCube(hat_box, texture=self.playerTexture[self.playerPos[dim][realCoords]], textureVertices=self.texVerts[1]) GL.glDisable(GL.GL_BLEND) else: drawCube(box, texture=self.charTex, textureVertices=self.texVerts[0]) GL.glDisable(GL.GL_CULL_FACE) #@property #def statusText(self): # if not self.panel: # return "" # player = self.panel.selectedPlayer # if player == "Player": # return "Click to move the player" # # return _("Click to move the player \"{0}\"").format(player) @alertException def mouseDown(self, evt, pos, direction): if self.movingPlayer is None: return pos = (pos[0] + 0.5, pos[1] + 2.75, pos[2] + 0.5) op = PlayerMoveOperation(self, pos, self.movingPlayer) self.movingPlayer = None if self.recordMove: self.editor.addOperation(op) addingMoving = False else: self.editor.performWithRetry(op) #Prevent recording of Undo when adding player self.recordMove = True addingMoving = True if op.canUndo and not addingMoving: self.editor.addUnsavedEdit() def keyDown(self, evt): keyname = evt.dict.get('keyname', None) or self.editor.get_root().getKey(evt) if not self.recordMove: if not pygame.key.get_focused(): return if keyname == "Escape": self.recordMove = True if self.panel and self.panel.__class__ == PlayerPositionPanel: self.panel.key_down(evt) def keyUp(self, evt): pass def levelChanged(self): self.markerList.invalidate() @alertException def toolSelected(self): self.showPanel() self.movingPlayer = None @alertException def toolReselected(self): if self.panel: self.gotoPlayer() class PlayerSpawnPositionOptions(ToolOptions): def __init__(self, tool): ToolOptions.__init__(self, name='Panel.PlayerSpawnPositionOptions') self.tool = tool self.spawnProtectionCheckBox = CheckBox(ref=AttrRef(tool, "spawnProtection")) self.spawnProtectionLabel = Label("Spawn Position Safety") self.spawnProtectionLabel.mouse_down = self.spawnProtectionCheckBox.mouse_down tooltipText = "Minecraft will randomly move your spawn point if you try to respawn in a column where there are no blocks at Y=63 and Y=64. Only uncheck this box if Minecraft is changed." self.spawnProtectionLabel.tooltipText = self.spawnProtectionCheckBox.tooltipText = tooltipText row = Row((self.spawnProtectionCheckBox, self.spawnProtectionLabel)) col = Column((Label("Spawn Point Options"), row, Button("OK", action=self.dismiss))) self.add(col) self.shrink_wrap() class PlayerSpawnPositionTool(PlayerPositionTool): surfaceBuild = True toolIconName = "playerspawn" tooltipText = "Move Spawn Point\nRight-click for options" def __init__(self, *args): PlayerPositionTool.__init__(self, *args) self.optionsPanel = PlayerSpawnPositionOptions(self) def toolEnabled(self): return self.editor.level.dimNo == 0 def showPanel(self): self.panel = Panel(name='Panel.PlayerSpawnPositionTool') button = Button("Goto Spawn", action=self.gotoSpawn) self.panel.add(button) self.panel.shrink_wrap() self.panel.left = self.editor.left self.panel.centery = self.editor.centery self.editor.add(self.panel) def gotoSpawn(self): cv = self.editor.mainViewport.cameraVector pos = self.editor.level.playerSpawnPosition() pos = map(lambda p, c: p - c * 5, pos, cv) self.editor.mainViewport.cameraPosition = pos self.editor.mainViewport.stopMoving() @property def statusText(self): return "Click to set the spawn position." spawnProtection = config.spawn.spawnProtection.property() def drawToolReticle(self): pos, direction = self.editor.blockFaceUnderCursor x, y, z = map(lambda p, d: p + d, pos, direction) color = (1.0, 1.0, 1.0, 0.5) if isinstance(self.editor.level, pymclevel.MCInfdevOldLevel) and self.spawnProtection: if not positionValid(self.editor.level, (x, y, z)): color = (1.0, 0.0, 0.0, 0.5) GL.glColor(*color) GL.glEnable(GL.GL_BLEND) self.drawCage(x, y, z) self.drawCharacterHead(x + 0.5, y + 0.5, z + 0.5) GL.glDisable(GL.GL_BLEND) GL.glEnable(GL.GL_DEPTH_TEST) self.drawCage(x, y, z) self.drawCharacterHead(x + 0.5, y + 0.5, z + 0.5) color2 = map(lambda a: a * 0.4, color) drawTerrainCuttingWire(BoundingBox((x, y, z), (1, 1, 1)), color2, color) GL.glDisable(GL.GL_DEPTH_TEST) def _drawToolMarkers(self): x, y, z = self.editor.level.playerSpawnPosition() GL.glBlendFunc(GL.GL_SRC_ALPHA, GL.GL_ONE_MINUS_SRC_ALPHA) GL.glEnable(GL.GL_BLEND) color = config.selectionColors.black.get() + (0.35,) GL.glColor(*color) GL.glPolygonMode(GL.GL_FRONT_AND_BACK, GL.GL_LINE) GL.glLineWidth(2.0) drawCube(FloatBox((x, y, z), (1, 1, 1))) GL.glPolygonMode(GL.GL_FRONT_AND_BACK, GL.GL_FILL) drawCube(FloatBox((x, y, z), (1, 1, 1))) GL.glDisable(GL.GL_BLEND) GL.glEnable(GL.GL_DEPTH_TEST) GL.glColor(1.0, 1.0, 1.0, 1.0) self.drawCage(x, y, z) self.drawCharacterHead(x + 0.5, y + 0.5 + 0.125 * numpy.sin(self.editor.frames * 0.05), z + 0.5) GL.glDisable(GL.GL_DEPTH_TEST) def drawCage(self, x, y, z): cageTexVerts = numpy.array(pymclevel.MCInfdevOldLevel.materials.blockTextures[52, 0]) pixelScale = 0.5 if self.editor.level.materials.name in ("Pocket", "Alpha") else 1.0 texSize = 16 * pixelScale cageTexVerts = cageTexVerts.astype(float) * pixelScale cageTexVerts = numpy.array( [((tx, ty), (tx + texSize, ty), (tx + texSize, ty + texSize), (tx, ty + texSize)) for (tx, ty) in cageTexVerts], dtype='float32') GL.glEnable(GL.GL_ALPHA_TEST) drawCube(BoundingBox((x, y, z), (1, 1, 1)), texture=pymclevel.alphaMaterials.terrainTexture, textureVertices=cageTexVerts) GL.glDisable(GL.GL_ALPHA_TEST) @alertException def mouseDown(self, evt, pos, direction): pos = map(lambda p, d: p + d, pos, direction) op = PlayerSpawnMoveOperation(self, pos) try: self.editor.addOperation(op) if op.canUndo: self.editor.addUnsavedEdit() self.markerList.invalidate() except SpawnPositionInvalid, e: if "Okay" != ask(str(e), responses=["Okay", "Fix it for me!"]): level = self.editor.level status = "" if not okayAt63(level, pos): level.setBlockAt(pos[0], 63, pos[2], 1) status += _("Block added at y=63.\n") if 59 < pos[1] < 63: pos[1] = 63 status += _("Spawn point moved upward to y=63.\n") if not okayAboveSpawn(level, pos): if pos[1] > 63 or pos[1] < 59: lpos = (pos[0], pos[1] - 1, pos[2]) if level.blockAt(*pos) == 0 and level.blockAt(*lpos) != 0 and okayAboveSpawn(level, lpos): pos = lpos status += _("Spawn point shifted down by one block.\n") if not okayAboveSpawn(level, pos): for i in xrange(1, 4): level.setBlockAt(pos[0], pos[1] + i, pos[2], 0) status += _("Blocks above spawn point cleared.\n") self.editor.invalidateChunks([(pos[0] // 16, pos[2] // 16)]) op = PlayerSpawnMoveOperation(self, pos) try: self.editor.addOperation(op) if op.canUndo: self.editor.addUnsavedEdit() self.markerList.invalidate() except SpawnPositionInvalid, e: alert(str(e)) return if len(status): alert(_("Spawn point fixed. Changes: \n\n") + status) @alertException def toolReselected(self): self.gotoSpawn()
labgraph/graphs/node_test_harness.py
Yunusbcr/labgraph
124
5289
<gh_stars>100-1000 #!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import asyncio import functools import inspect from contextlib import contextmanager from typing import ( Any, AsyncIterable, Awaitable, Callable, Generic, Iterator, List, Mapping, Optional, Sequence, Tuple, Type, TypeVar, Union, overload, ) from ..messages.message import Message from ..util.testing import get_event_loop from .config import Config from .method import AsyncPublisher from .node import Node from .state import State from .topic import Topic N = TypeVar("N", bound=Node) # Node type T = TypeVar("T", bound=Tuple[Topic, Message]) # Type yielded by async functions class NodeTestHarness(Generic[N]): """ Utility class for testing Labgraph nodes. This allows a user to test some behavior of a node in an asyncio event loop, with the harness taking care of setting up and cleaning up the node. Args: node_type: The type of node this harness will test. """ def __init__(self, node_type: Type[N]) -> None: self.node_type: Type[N] = node_type @contextmanager def get_node( self, config: Optional[Config] = None, state: Optional[State] = None ) -> Iterator[N]: """ Context manager to create, configure and yield a node of specified type. Node is cleaned up when the context manager exits. Args: config: The configuration to set on the node, if provided. state: The state to set on the Node, if provided. """ node = None try: node = self.node_type(config=config, state=state) node.setup() yield node finally: if node is not None: node.cleanup() @overload def run_with_harness( node_type: Type[N], fn: Callable[[N], AsyncIterable[T]], config: Optional[Config], state: Optional[State], max_num_results: Optional[int] = None, ) -> List[T]: ... @overload def run_with_harness( node_type: Type[N], fn: Callable[[N], Awaitable[T]], config: Optional[Config], state: Optional[State], ) -> T: ... def run_with_harness(node_type, fn, config=None, state=None, max_num_results=None): """ Runs an async function on a new node of the provided type using `NodeTestHarness`. Args: node_type: The type of node to create. fn: The async function to run. An instance of a node typed `node_type` will be provided to the function as an argument. config: The configuration to set on the node, if provided. state: The state to set on the node, if provided. max_num_results: If `fn` is an async generator, the maximum number of results it will generate. If this is `None`, then the generator can produce an unbounded number of results. """ # Check whether the max_num_results argument was improperly provided _check_max_num_results_arg(run_with_harness.__name__, fn, max_num_results) test_harness = NodeTestHarness(node_type=node_type) with test_harness.get_node(config=config, state=state) as node: return run_async(fn, args=[node], max_num_results=max_num_results) @overload def run_async( fn: Callable[..., Awaitable[T]], args: Optional[Sequence[Any]] = None, kwargs: Optional[Mapping[str, Any]] = None, ) -> T: ... @overload def run_async( fn: Callable[..., AsyncIterable[T]], args: Optional[Sequence[Any]] = None, kwargs: Optional[Mapping[str, Any]] = None, max_num_results: Optional[int] = None, ) -> List[T]: ... def run_async(fn, args=None, kwargs=None, max_num_results=None): """ Runs an async function to completion. Uses the current thread's event loop. Blocks until the async function has finished executing. Forwards all arguments after `fn` to the async function. Args: fn: The async function to run. args: Positional arguments to forward to the function. kwargs: Keyword arguments to forward to the function. max_num_results: If `fn` is an async generator, the maximum number of results it will generate. If this is `None`, then the generator can produce an unbounded number of results. """ # Check whether the max_num_results argument was improperly provided _check_max_num_results_arg(run_async.__name__, fn, max_num_results) # Unwrap functools.partial so we can check whether it is async if isinstance(fn, functools.partial): test_fn = fn.func else: test_fn = fn if inspect.isasyncgenfunction(test_fn): return get_event_loop().run_until_complete( _async_generator_to_list( fn=fn, args=args or [], kwargs=kwargs or {}, max_num_results=max_num_results, ) ) elif asyncio.iscoroutinefunction(test_fn): return get_event_loop().run_until_complete(fn(*(args or []), **(kwargs or {}))) else: raise TypeError(f"{run_async.__name__}: function '{fn}' is not async") def _check_max_num_results_arg( called_fn_name: str, fn: Union[Callable[..., Awaitable[Any]], Callable[..., AsyncIterable[Any]]], max_num_results: Optional[int] = None, ) -> None: if not inspect.isasyncgenfunction(fn) and max_num_results is not None: raise TypeError( f"{called_fn_name}: function '{fn}' is not an async generator but " "max_num_results was provided" ) async def _async_generator_to_list( fn: Callable[..., AsyncIterable[T]], args: Sequence[Any], kwargs: Mapping[str, Any], max_num_results: Optional[int] = None, ) -> List[T]: if max_num_results is not None and max_num_results < 0: raise ValueError("max_num_results must be non-negative") result = [] async for retval in fn(*args, **kwargs): result.append(retval) if max_num_results is not None and len(result) >= max_num_results: return result return result
extras/usd/examples/usdMakeFileVariantModelAsset/usdMakeFileVariantModelAsset.py
DougRogers-DigitalFish/USD
3,680
5383
#!/pxrpythonsubst # # Copyright 2016 Pixar # # Licensed under the Apache License, Version 2.0 (the "Apache License") # with the following modification; you may not use this file except in # compliance with the Apache License and the following modification to it: # Section 6. Trademarks. is deleted and replaced with: # # 6. Trademarks. This License does not grant permission to use the trade # names, trademarks, service marks, or product names of the Licensor # and its affiliates, except as required to comply with Section 4(c) of # the License and to reproduce the content of the NOTICE file. # # You may obtain a copy of the Apache License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the Apache License with the above modification is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the Apache License for the specific # language governing permissions and limitations under the Apache License. # ''' Creates a top-level, referenceable asset USD file from one or more 'variant' files, each of which can contain arbitrary scene description. When supplying multiple files, one must also provide the name for a variantSet that will be constructed to switch between the files. The asset file will place the variant files behind a "payload", which will enable consumers to defer loading and processing of the data when composed onto a UsdStage. The names of the created variations will be taken directly from the basename of their corresponding input file. ''' from __future__ import print_function from pxr import Tf, Kind, Sdf, Usd # ToDo: # - handle multiple variantSets # - layer multiple kinds of files (e.g. shading.usd over geom.usd) # - allow output filename to be independently specifiable? (Breaks with Pixar # convention) # - allow variant names to be specified independently of variant file names # - Compute and present (per-variant) UsdGeomModelAPI.extentsHint # - Compute and author UsdModelAPI::SetPayloadAssetDependencies() def CreateModelStage(assetName, assetIdentifier=None, kind=Kind.Tokens.component, filesToReference=None, variantSetName=None, defaultVariantSelection=None): # Preconditions.... if not Tf.IsValidIdentifier(assetName): print("assetName '%s' must be a valid identifier. Aborting." % assetName) return None if variantSetName and not Tf.IsValidIdentifier(variantSetName): print("variantSetName '%s' must be a valid identifier. Aborting." % variantSetName) return None if filesToReference and len(filesToReference) > 1 and not variantSetName: # For now, we only allow multiple files to reference if we're switching # them with a variantSet. We can relax this restriction when we can # make internal payload arcs (bug #119960) print("Cannot create multiple-file-reference without a variantSet. Aborting") return None if not Kind.Registry.IsA(kind, Kind.Tokens.model): print("kind '%s' is not a valid model kind, which must be one of:" % kind) print(Kind.Registry.GetAllKinds()) return None # Create the root file for the stage, and make it ASCII text. # We need some nicer sugar for this. fileName = assetName + ".usd" rootLayer = Sdf.Layer.CreateNew(fileName, args = {'format':'usda'}) stage = Usd.Stage.Open(rootLayer) # Name the root prim after the asset. Don't give it a type, since we # want that to come from referenced files. Make it be the "default prim" # so that we can reference the resulting file without specifiying a # prim path rootPath = Sdf.Path.absoluteRootPath modelRootPrim = stage.DefinePrim(rootPath.AppendChild(assetName)) stage.SetDefaultPrim(modelRootPrim) modelAPI = Usd.ModelAPI(modelRootPrim) modelAPI.SetKind(kind) # See http://openusd.org/docs/api/class_usd_model_a_p_i.html#details # for more on assetInfo modelAPI.SetAssetName(assetName) modelAPI.SetAssetIdentifier(assetIdentifier or fileName) # Add a class named after the asset, and make the asset inherit from it. # This is not necessary for a valid asset, and the class-naming is a Pixar # convention. But always having a class associated with each asset is # extremely useful for non-destructively editing many referenced or # instanced assets of the same type. classPrim = stage.CreateClassPrim(rootPath.AppendChild("_class_"+assetName)) modelRootPrim.GetInherits().AddInherit(classPrim.GetPath()) if not filesToReference: # weird edge case... we're done return stage elif len(filesToReference) == 1 and not variantSetName: # The other, more plausible edge case: we're just wrapping # some other file (e.g. alembic) in order to give it a payload # and other proper USD trappings - no variants modelRootPrim.GetPayloads().AddPayload(Sdf.Payload(filesToReference[0])) return stage # OK, we're making a variantSet, and we are going to vary the payload # in each variant varSet = modelRootPrim.GetVariantSet(variantSetName) for variantFile in filesToReference: import os variantName = os.path.splitext(os.path.basename(variantFile))[0] # If we didn't specify a default selection, choose the first one if not defaultVariantSelection: defaultVariantSelection = variantName varSet.AddVariant(variantName) varSet.SetVariantSelection(variantName) # The context object makes all edits "go inside" the variant we # just created. with varSet.GetVariantEditContext(): modelRootPrim.GetPayloads().AddPayload(Sdf.Payload(variantFile)) # Now put the variantSet into the state we want it to be in by default varSet.SetVariantSelection(defaultVariantSelection) return stage if __name__ == "__main__": import argparse, os, sys descr = __doc__.strip() parser = argparse.ArgumentParser(prog=os.path.basename(sys.argv[0]), description=descr) parser.add_argument('assetName') parser.add_argument('variantFiles', nargs='+') parser.add_argument( '-k', '--kind', default='component', action='store', metavar='kind', help="Model kind, one of: component, group, or assembly") parser.add_argument( '-v', '--variantSet', default='', action='store', metavar='variantSet', help="Variantset to create to modulate variantFiles. Can be elided " "if only one file is supplied") parser.add_argument( '-i', '--identifier', default='', action='store', metavar='identifier', help="The identifier you would expect your Ar asset-resolver plugin " "to resolve to the (installed) assetName.usd file this script creates. " " If unspecified, defaults to assetName.usd") parser.add_argument( '-d', '--defaultVariantSelection', default='', action='store', metavar='defaultVariantSelection', help="This variant will be selected by default when the asset is " "added to a composition. If unspecified, will be the variant for " "'variantFile1'") args = parser.parse_args() if not args.assetName or args.assetName == '': parser.error("No assetName specified") stage = CreateModelStage(args.assetName, assetIdentifier=args.identifier, kind=args.kind, filesToReference=args.variantFiles, variantSetName=args.variantSet, defaultVariantSelection=args.defaultVariantSelection) if stage: stage.GetRootLayer().Save() exit(0) else: exit(1)
src/zvt/recorders/em/meta/em_stockhk_meta_recorder.py
vishalbelsare/zvt
2,032
5389
# -*- coding: utf-8 -*- from zvt.contract.api import df_to_db from zvt.contract.recorder import Recorder from zvt.domain.meta.stockhk_meta import Stockhk from zvt.recorders.em import em_api class EMStockhkRecorder(Recorder): provider = "em" data_schema = Stockhk def run(self): df_south = em_api.get_tradable_list(entity_type="stockhk", hk_south=True) df_south = df_south.set_index("code", drop=False) df_south["south"] = True df = em_api.get_tradable_list(entity_type="stockhk") df = df.set_index("code", drop=False) df_other = df.loc[~df.index.isin(df_south.index)].copy() df_other["south"] = False df_to_db(df=df_south, data_schema=self.data_schema, provider=self.provider, force_update=self.force_update) df_to_db(df=df_other, data_schema=self.data_schema, provider=self.provider, force_update=self.force_update) if __name__ == "__main__": recorder = EMStockhkRecorder() recorder.run() # the __all__ is generated __all__ = ["EMStockhkRecorder"]
moderngl_window/resources/data.py
DavideRuzza/moderngl-window
142
5424
<reponame>DavideRuzza/moderngl-window """ Registry general data files """ from typing import Any from moderngl_window.resources.base import BaseRegistry from moderngl_window.meta import DataDescription class DataFiles(BaseRegistry): """Registry for requested data files""" settings_attr = "DATA_LOADERS" def load(self, meta: DataDescription) -> Any: """Load data file with the configured loaders. Args: meta (:py:class:`~moderngl_window.meta.data.DataDescription`): the resource description Returns: Any: The loaded resource """ return super().load(meta) data = DataFiles()
NLP/UNIMO/src/finetune/visual_entailment.py
zhangyimi/Research
1,319
5443
<gh_stars>1000+ # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model for visual_entailment.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import glob import time import numpy as np import paddle.fluid as fluid from model.unimo_finetune import UNIMOModel from eval import glue_eval from collections import OrderedDict from utils.utils import print_eval_log def kl_divergence_with_logits(q_logits, p_logits): """ symmetric KL-divergence (See SMART, Sec 3.1) q_logits: logits p_logits: delta_logits """ q = fluid.layers.softmax(input=q_logits) p = fluid.layers.softmax(input=p_logits) kl_qp = fluid.layers.reduce_sum(q * (fluid.layers.log(q) - fluid.layers.log(p)), -1) kl_pq = fluid.layers.reduce_sum(p * (fluid.layers.log(p) - fluid.layers.log(q)), -1) vat_loss = fluid.layers.mean(x=kl_qp+kl_pq) return vat_loss def create_model(args, config, pyreader_name="train_reader", is_train=True): """create_model""" shapes = [[-1, args.max_seq_len, 1], # src_ids [-1, args.max_seq_len, 1], # pos_ids [-1, args.max_seq_len, 1], # sent_ids [-1, args.max_img_len + args.max_seq_len, args.max_img_len + args.max_seq_len], # input_mask [-1, args.max_img_len, 1], # v_mask [-1, args.max_seq_len, 1], # t_mask [-1, args.max_img_len, config["image_embedding_size"]], # image_embedding [-1, args.max_img_len, 5], # image_loc [-1, 1] # labels ] dtypes = ['int64', 'int64', 'int64', 'float32', 'float32', 'float32', 'float32','float32', 'int64'] lod_levels = [0, 0, 0, 0, 0, 0, 0, 0, 0] pyreader = fluid.layers.py_reader( capacity=70, shapes=shapes, dtypes=dtypes, lod_levels=lod_levels, name=pyreader_name, use_double_buffer=True) (src_ids, pos_ids, sent_ids, input_mask, v_mask, t_mask, image_embedding, image_loc, labels) \ = fluid.layers.read_file(pyreader) emb_ids = {"word_embedding": src_ids, "sent_embedding": sent_ids, "pos_embedding": pos_ids} image_input = {"image_embedding": image_embedding, "loc_embedding": image_loc} adv_step, adv_lr, norm_type, adv_max_norm, adv_init_mag = \ args.adv_step, args.adv_lr, args.norm_type, args.adv_max_norm, args.adv_init_mag assert adv_step > 0 and adv_init_mag > 0 def get_loss_and_logits(text_feats, image_feats): feats = text_feats + image_feats cls_params_name = ["cls_out_w_0", "cls_out_b_0"] feats = fluid.layers.fc( input=feats, size=2048, param_attr=fluid.ParamAttr( name=cls_params_name[0], initializer=fluid.initializer.TruncatedNormal(scale=0.02)), bias_attr=fluid.ParamAttr( name=cls_params_name[1], initializer=fluid.initializer.Constant(0.))) feats = fluid.layers.dropout( x=feats, dropout_prob=0.1, dropout_implementation="upscale_in_train") cls_params_name = ["cls_out_w_1", "cls_out_b_1"] logits = fluid.layers.fc( input=feats, size=args.num_labels, param_attr=fluid.ParamAttr( name=cls_params_name[0], initializer=fluid.initializer.TruncatedNormal(scale=0.02)), bias_attr=fluid.ParamAttr( name=cls_params_name[1], initializer=fluid.initializer.Constant(0.))) ce_loss, probs = fluid.layers.softmax_with_cross_entropy( logits=logits, label=labels, return_softmax=True) loss = fluid.layers.mean(x=ce_loss) / adv_step return loss, logits, probs def init_delta(input, mask, shape, name='text'): real_seq_len = fluid.layers.shape(input)[1] fake = fluid.layers.data(name=name+"_fake", shape=shape, dtype='float32') mask_slice = fluid.layers.slice(mask, axes=[1], starts=[0], ends=fluid.layers.shape(mask)[1]) length = fluid.layers.reduce_sum(mask_slice, dim=1, keep_dim=True) * shape[-1] # l2 norm delta = fluid.layers.uniform_random_batch_size_like(mask, shape=fake.shape, min=-1.0, max=1.0) delta = fluid.layers.slice(delta, axes=[1], starts=[0], ends=real_seq_len) delta = delta * mask_slice mag = adv_init_mag / fluid.layers.sqrt(length) delta = delta * mag return delta if is_train: text_emb_shape = [-1, args.max_seq_len, config['hidden_size']] text_delta = init_delta(src_ids, t_mask, text_emb_shape, name='text') image_emb_shape = [-1, args.max_img_len, config['image_embedding_size']] image_delta = init_delta(image_embedding, v_mask, image_emb_shape, name='img') else: text_delta, image_delta = None, None def pgd_with_l2(loss, delta): # grad delta_grad = fluid.backward.gradients(loss, delta)[0] # l2 norm delta_norm = fluid.layers.sqrt(fluid.layers.reduce_sum(fluid.layers.pow(fluid.layers.reshape(delta_grad, \ [fluid.layers.shape(delta_grad)[0], -1]), factor=2), dim=1, keep_dim=True)) delta_norm = fluid.layers.clamp(delta_norm, min=float(1e-8)) # pgd delta = delta + adv_lr * delta_grad / delta_norm # projection if adv_max_norm > 0: exceed_mask = (delta_norm > adv_max_norm).astype('float32') reweights = (adv_max_norm / delta_norm) * exceed_mask + (1 - exceed_mask) delta = delta * reweights delta_grad.stop_gradient=True return delta loss = None for iter in range(adv_step): vl_pure = UNIMOModel( emb_ids=emb_ids, input_mask=input_mask, config=config, image_input=image_input, weight_sharing=args.weight_sharing ) vl_text = UNIMOModel( text_adv_delta=text_delta, emb_ids=emb_ids, input_mask=input_mask, config=config, image_input=image_input, weight_sharing=args.weight_sharing ) vl_image = UNIMOModel( image_adv_delta=image_delta, emb_ids=emb_ids, input_mask=input_mask, config=config, image_input=image_input, weight_sharing=args.weight_sharing ) h_pure_text, h_pure_image = vl_pure.get_pooled_output() h_text_text, h_text_image = vl_text.get_pooled_output() h_image_text, h_image_image = vl_image.get_pooled_output() loss_pure, logit_pure, probs_pure = get_loss_and_logits(h_pure_text, h_pure_image) loss_text, logit_text, probs_text = get_loss_and_logits(h_text_text, h_text_image) loss_image, logit_image, probs_image = get_loss_and_logits(h_image_text, h_image_image) if is_train: text_delta = pgd_with_l2(loss_text, text_delta) image_delta = pgd_with_l2(loss_image, image_delta) kl_adv_text_loss = kl_divergence_with_logits(logit_pure, logit_text) kl_adv_image_loss = kl_divergence_with_logits(logit_pure, logit_image) cur_loss = loss_pure + loss_text + loss_image + kl_adv_text_loss + kl_adv_image_loss loss = cur_loss if loss is None else loss + cur_loss num_seqs = fluid.layers.create_tensor(dtype='int64') accuracy = fluid.layers.accuracy(input=probs_pure, label=labels, total=num_seqs) graph_vars = { "loss": loss, "probs": probs_pure, "accuracy": accuracy, "labels": labels, "num_seqs": num_seqs } for k, v in graph_vars.items(): v.persistable = False return pyreader, graph_vars def evaluate(args, exe, test_pyreader, graph_vars, eval_phase, dev_count=1, gpu_id=0): """evaluate""" all_mat = [] test_pyreader.start() time_begin = time.time() fetch_list = [graph_vars["probs"].name, graph_vars["labels"].name] while True: try: np_probs, np_labels = exe.run(fetch_list=fetch_list) np_preds = np.argmax(np_probs, axis=1).reshape((-1, 1)) np_labels = np_labels.reshape((-1, 1)) mat = np.concatenate([np_preds, np_labels], axis=1) all_mat.extend(mat.tolist()) except fluid.core.EOFException: test_pyreader.reset() break all_mat = np.array(all_mat) time_end = time.time() save_file = "%s/%s.trainers_%d.part_%d.npy" % (args.eval_dir, eval_phase, dev_count, gpu_id) np.save(save_file, all_mat) tmp_file = "%s/%s.trainers_%d.part_%d.finish" % (args.eval_dir, eval_phase, dev_count, gpu_id) tmp_writer = open(tmp_file, "w") tmp_writer.close() if gpu_id == 0: while True: ret = os.popen('find %s -maxdepth 1 -name "%s.trainers_%d.part_*.finish"' % (args.eval_dir, eval_phase, dev_count)).readlines() if len(ret) != dev_count: time.sleep(1) continue else: break all_mats = [] save_files = glob.glob("%s/%s.trainers_%d.part_*.npy" % (args.eval_dir, eval_phase, dev_count)) for cur_save_file in save_files: mat = np.load(cur_save_file).tolist() all_mats.extend(mat) all_mats = np.array(all_mats) cur_time = str(int(time.time())) os.system("mkdir %s/%s" % (args.eval_dir, cur_time)) os.system("mv %s/%s.trainers_%d.* %s/%s" % (args.eval_dir, eval_phase, dev_count, args.eval_dir, cur_time)) ret = OrderedDict() ret['phase'] = eval_phase ret['loss'] = -1 ret['data_num'] = all_mats.shape[0] ret['used_time'] = round(time_end - time_begin, 4) metrics = OrderedDict() metrics["simple_accuracy"] = glue_eval.simple_accuracy if args.eval_mertrics in metrics: ret_metric = metrics[args.eval_mertrics](all_mats[:, 0], all_mats[:, 1]) ret.update(ret_metric) print_eval_log(ret) else: raise ValueError('unsupported metric {}'.format(args.eval_mertrics)) return ret else: return None
pytorch_translate/models/__init__.py
Ayansam1152/translate
748
5451
<reponame>Ayansam1152/translate #!/usr/bin/env python3 import importlib import os # automatically import any Python files in the models/ directory for file in sorted(os.listdir(os.path.dirname(__file__))): if file.endswith(".py") and not file.startswith("_"): model_name = file[: file.find(".py")] importlib.import_module("pytorch_translate.models." + model_name)
keras/models.py
kalyc/keras-apache-mxnet
300
5455
<filename>keras/models.py """Model-related utilities. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from . import backend as K from .utils.generic_utils import has_arg from .utils.generic_utils import to_list from .engine.input_layer import Input from .engine.input_layer import InputLayer from .engine.training import Model from .engine.sequential import Sequential from .engine.saving import save_model from .engine.saving import load_model from .engine.saving import model_from_config from .engine.saving import model_from_yaml from .engine.saving import model_from_json from .engine.saving import save_mxnet_model try: import h5py except ImportError: h5py = None def _clone_functional_model(model, input_tensors=None): """Clone a functional `Model` instance. Model cloning is similar to calling a model on new inputs, except that it creates new layers (and thus new weights) instead of sharing the weights of the existing layers. # Arguments model: Instance of `Model`. input_tensors: optional list of input tensors to build the model upon. If not provided, placeholders will be created. # Returns An instance of `Model` reproducing the behavior of the original model, on top of new inputs tensors, using newly instantiated weights. # Raises ValueError: in case of invalid `model` argument value. """ if not isinstance(model, Model): raise ValueError('Expected `model` argument ' 'to be a `Model` instance, got ', model) if isinstance(model, Sequential): raise ValueError('Expected `model` argument ' 'to be a functional `Model` instance, ' 'got a `Sequential` instance instead:', model) layer_map = {} # Cache for created layers. tensor_map = {} # Map {reference_tensor: (corresponding_tensor, mask)} if input_tensors is None: # Create placeholders to build the model on top of. input_layers = [] input_tensors = [] for layer in model._input_layers: input_tensor = Input(batch_shape=layer.batch_input_shape, dtype=layer.dtype, sparse=layer.sparse, name=layer.name) input_tensors.append(input_tensor) # Cache newly created input layer. newly_created_input_layer = input_tensor._keras_history[0] layer_map[layer] = newly_created_input_layer for _original, _cloned in zip(model._input_layers, input_layers): layer_map[_original] = _cloned else: # Make sure that all input tensors come from a Keras layer. # If tensor comes from an input layer: cache the input layer. input_tensors = to_list(input_tensors) _input_tensors = [] for i, x in enumerate(input_tensors): if not K.is_keras_tensor(x): name = model._input_layers[i].name input_tensor = Input(tensor=x, name='input_wrapper_for_' + name) _input_tensors.append(input_tensor) # Cache newly created input layer. original_input_layer = x._keras_history[0] newly_created_input_layer = input_tensor._keras_history[0] layer_map[original_input_layer] = newly_created_input_layer else: _input_tensors.append(x) input_tensors = _input_tensors for x, y in zip(model.inputs, input_tensors): tensor_map[x] = (y, None) # tensor, mask # Iterated over every node in the reference model, in depth order. depth_keys = list(model._nodes_by_depth.keys()) depth_keys.sort(reverse=True) for depth in depth_keys: nodes = model._nodes_by_depth[depth] for node in nodes: # Recover the corresponding layer. layer = node.outbound_layer # Get or create layer. if layer not in layer_map: # Clone layer. new_layer = layer.__class__.from_config(layer.get_config()) layer_map[layer] = new_layer layer = new_layer else: # Reuse previously cloned layer. layer = layer_map[layer] # Don't call InputLayer multiple times. if isinstance(layer, InputLayer): continue # Gather inputs to call the new layer. reference_input_tensors = node.input_tensors reference_output_tensors = node.output_tensors # If all previous input tensors are available in tensor_map, # then call node.inbound_layer on them. computed_data = [] # List of tuples (input, mask). for x in reference_input_tensors: if x in tensor_map: computed_data.append(tensor_map[x]) if len(computed_data) == len(reference_input_tensors): # Call layer. if node.arguments: kwargs = node.arguments else: kwargs = {} if len(computed_data) == 1: computed_tensor, computed_mask = computed_data[0] if has_arg(layer.call, 'mask'): if 'mask' not in kwargs: kwargs['mask'] = computed_mask output_tensors = to_list( layer(computed_tensor, **kwargs)) output_masks = to_list( layer.compute_mask(computed_tensor, computed_mask)) computed_tensors = [computed_tensor] computed_masks = [computed_mask] else: computed_tensors = [x[0] for x in computed_data] computed_masks = [x[1] for x in computed_data] if has_arg(layer.call, 'mask'): if 'mask' not in kwargs: kwargs['mask'] = computed_masks output_tensors = to_list( layer(computed_tensors, **kwargs)) output_masks = to_list( layer.compute_mask(computed_tensors, computed_masks)) # Update tensor_map. for x, y, mask in zip(reference_output_tensors, output_tensors, output_masks): tensor_map[x] = (y, mask) # Check that we did compute the model outputs, # then instantiate a new model from inputs and outputs. output_tensors = [] for x in model.outputs: assert x in tensor_map, 'Could not compute output ' + str(x) tensor, _ = tensor_map[x] output_tensors.append(tensor) return Model(input_tensors, output_tensors, name=model.name) def _clone_sequential_model(model, input_tensors=None): """Clone a `Sequential` model instance. Model cloning is similar to calling a model on new inputs, except that it creates new layers (and thus new weights) instead of sharing the weights of the existing layers. # Arguments model: Instance of `Sequential`. input_tensors: optional list of input tensors to build the model upon. If not provided, placeholders will be created. # Returns An instance of `Sequential` reproducing the behavior of the original model, on top of new inputs tensors, using newly instantiated weights. # Raises ValueError: in case of invalid `model` argument value. """ if not isinstance(model, Sequential): raise ValueError('Expected `model` argument ' 'to be a `Sequential` model instance, ' 'but got:', model) def clone(layer): return layer.__class__.from_config(layer.get_config()) layers = [clone(layer) for layer in model.layers] if input_tensors is None: return Sequential(layers=layers, name=model.name) else: if len(to_list(input_tensors)) != 1: raise ValueError('To clone a `Sequential` model, we expect ' ' at most one tensor ' 'as part of `input_tensors`.') x = to_list(input_tensors)[0] if K.is_keras_tensor(x): origin_layer = x._keras_history[0] if isinstance(origin_layer, InputLayer): return Sequential(layers=[origin_layer] + layers, name=model.name) else: raise ValueError('Cannot clone a `Sequential` model on top ' 'of a tensor that comes from a Keras layer ' 'other than an `InputLayer`. ' 'Use the functional API instead.') input_tensor = Input(tensor=x, name='input_wrapper_for_' + str(x.name)) input_layer = input_tensor._keras_history[0] return Sequential(layers=[input_layer] + layers, name=model.name) def clone_model(model, input_tensors=None): """Clone any `Model` instance. Model cloning is similar to calling a model on new inputs, except that it creates new layers (and thus new weights) instead of sharing the weights of the existing layers. # Arguments model: Instance of `Model` (could be a functional model or a Sequential model). input_tensors: optional list of input tensors to build the model upon. If not provided, placeholders will be created. # Returns An instance of `Model` reproducing the behavior of the original model, on top of new inputs tensors, using newly instantiated weights. # Raises ValueError: in case of invalid `model` argument value. """ if isinstance(model, Sequential): return _clone_sequential_model(model, input_tensors=input_tensors) else: return _clone_functional_model(model, input_tensors=input_tensors)
experimental/tracing/bin/diff_heap_profiler.py
BearerPipelineTest/catapult
1,894
5476
#!/usr/bin/env python # Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from __future__ import absolute_import from __future__ import print_function import argparse import gzip import json import os import shutil import six from six.moves import zip _OUTPUT_DIR = 'output' _OUTPUT_GRAPH_DIR = os.path.join(_OUTPUT_DIR, 'graph') class Process(object): def __init__(self): self.pid = None self.name = None self.labels = None self.types = {} self.strings = {} self.stackframes = {} self.allocators = None self.version = None class Entry(object): def __init__(self): self.count = None self.size = None self.type = None self.stackframe = None class GraphDump(object): def __init__(self): self.pid = None self.name = None self.labels = None self.heap = None self.root = '' self.leaks = '' self.leak_stackframes = 0 self.leak_objects = 0 def OpenTraceFile(file_path, mode): if file_path.endswith('.gz'): return gzip.open(file_path, mode + 'b') return open(file_path, mode + 't') def FindMemoryDumps(filename): processes = {} with OpenTraceFile(filename, 'r') as f: data = json.loads(f.read().decode('utf-8')) for event in data['traceEvents']: pid = event['pid'] if pid not in processes: processes[pid] = Process() processes[pid].pid = pid process = processes[pid] # Retrieve process informations. if event['ph'] == 'M': if event['name'] == 'process_name' and 'name' in event['args']: process.name = event['args']['name'] if event['name'] == 'process_labels' and 'labels' in event['args']: process.labels = event['args']['labels'] if event['name'] == 'typeNames': process.types = {} for type_id, t in six.iteritems(event['args']['typeNames']): process.types[int(type_id)] = t if event['name'] == 'stackFrames': process.stackframes = {} for stack_id, s in six.iteritems(event['args']['stackFrames']): new_stackframe = {} new_stackframe['name'] = s['name'] if 'parent' in s: new_stackframe['parent'] = int(s['parent']) process.stackframes[int(stack_id)] = new_stackframe # Look for a detailed memory dump event. if not ((event['name'] == 'periodic_interval' or event['name'] == 'explicitly_triggered') and event['args']['dumps']['level_of_detail'] == 'detailed'): continue # Check for a memory dump V1. if u'heaps' in event['args']['dumps']: # Get the first memory dump. if not process.allocators: process.version = 1 process.allocators = event['args']['dumps']['heaps'] # Check for a memory dump V2. # See format: [chromium] src/base/trace_event/heap_profiler_event_writer.h if u'heaps_v2' in event['args']['dumps']: # Memory dump format V2 is dumping information incrementally. Update # the cumulated indexes. maps = event['args']['dumps']['heaps_v2']['maps'] for string in maps['strings']: process.strings[string['id']] = string['string'] for node in maps['nodes']: node_v1 = {} node_v1['name'] = process.strings[node['name_sid']] if 'parent' in node: node_v1['parent'] = node['parent'] process.stackframes[node['id']] = node_v1 for t in maps['types']: process.types[t['id']] = process.strings[t['name_sid']] # Get the first memory dump. if not process.allocators: dump = event['args']['dumps'] process.version = 2 process.allocators = dump['heaps_v2']['allocators'] # Remove processes with incomplete memory dump. for pid, process in processes.items(): if not (process.allocators and process.stackframes and process.types): del processes[pid] return processes def ResolveMemoryDumpFields(entries, stackframes, types): def ResolveStackTrace(stack_id, stackframes): stackframe = stackframes[stack_id] tail = () if 'parent' in stackframe: tail = ResolveStackTrace(stackframe['parent'], stackframes) name = stackframe['name'].replace('\r', '').replace('\n', '') return (name,) + tail def ResolveType(type_id, types): return types[type_id] for entry in entries: # Stackframe may be -1 (18446744073709551615L) when not stackframe are # available. if entry.stackframe not in stackframes: entry.stackframe = [] else: entry.stackframe = ResolveStackTrace(entry.stackframe, stackframes) entry.type = ResolveType(entry.type, types) def IncrementHeapEntry(stack, count, size, typename, root): if not stack: root['count'] += count root['size'] += size if typename not in root['count_by_type']: root['count_by_type'][typename] = 0 root['count_by_type'][typename] += count else: top = stack[-1] tail = stack[:-1] if top not in root['children']: new_node = {} new_node['count'] = 0 new_node['size'] = 0 new_node['children'] = {} new_node['count_by_type'] = {} root['children'][top] = new_node IncrementHeapEntry(tail, count, size, typename, root['children'][top]) def CanonicalHeapEntries(root): total_count = 0 total_size = 0 for child in six.itervalues(root['children']): total_count += child['count'] total_size += child['size'] root['count'] -= total_count root['size'] -= total_size for typename in root['count_by_type']: total_count_for_type = 0 for child in six.itervalues(root['children']): if typename in child['count_by_type']: total_count_for_type += child['count_by_type'][typename] root['count_by_type'][typename] -= total_count_for_type for child in six.itervalues(root['children']): CanonicalHeapEntries(child) def FindLeaks(root, stack, leaks, threshold, size_threshold): for frame in root['children']: FindLeaks(root['children'][frame], [frame] + stack, leaks, threshold, size_threshold) if root['count'] > threshold and root['size'] > size_threshold: leaks.append({'count': root['count'], 'size': root['size'], 'count_by_type': root['count_by_type'], 'stackframes': stack}) def DumpTree(root, frame, output, threshold, size_threshold): output.write('\n{ \"name\": \"%s\",' % frame) if root['count'] > threshold and root['count'] > size_threshold: output.write(' \"size\": \"%s\",' % root['size']) output.write(' \"count\": \"%s\",' % root['count']) output.write(' \"children\": [') is_first = True for child_frame, child in root['children'].items(): if is_first: is_first = False else: output.write(',') DumpTree(child, child_frame, output, threshold, size_threshold) output.write(']') output.write('}') def GetEntries(heap, process): """ Returns all entries in a heap, after filtering out unknown entries, and doing some post processing to extract the relevant fields. """ if not process: return [] entries = [] if process.version == 1: for raw_entry in process.allocators[heap]['entries']: # Cumulative sizes and types are skipped. see: # https://chromium.googlesource.com/chromium/src/+/a990af190304be5bf38b120799c594df5a293518/base/trace_event/heap_profiler_heap_dump_writer.cc#294 if 'type' not in raw_entry or not raw_entry['bt']: continue entry = Entry() entry.count = int(raw_entry['count'], 16) entry.size = int(raw_entry['size'], 16) entry.type = int(raw_entry['type']) entry.stackframe = int(raw_entry['bt']) entries.append(entry) elif process.version == 2: raw_entries = list(zip(process.allocators[heap]['counts'], process.allocators[heap]['sizes'], process.allocators[heap]['types'], process.allocators[heap]['nodes'])) for (raw_count, raw_size, raw_type, raw_stackframe) in raw_entries: entry = Entry() entry.count = raw_count entry.size = raw_size entry.type = raw_type entry.stackframe = raw_stackframe entries.append(entry) # Resolve fields by looking into indexes ResolveMemoryDumpFields(entries, process.stackframes, process.types) return entries def FilterProcesses(processes, filter_by_name, filter_by_labels): remaining_processes = {} for pid, process in six.iteritems(processes): if filter_by_name and process.name != filter_by_name: continue if (filter_by_labels and (not process.labels or filter_by_labels not in process.labels)): continue remaining_processes[pid] = process return remaining_processes def FindRelevantProcesses(start_trace, end_trace, filter_by_name, filter_by_labels, match_by_labels): # Retrieve the processes and the associated memory dump. end_processes = FindMemoryDumps(end_trace) end_processes = FilterProcesses(end_processes, filter_by_name, filter_by_labels) start_processes = None if start_trace: start_processes = FindMemoryDumps(start_trace) start_processes = FilterProcesses(start_processes, filter_by_name, filter_by_labels) # Build a sequence of pair of processes to be compared. processes = [] if not start_processes: # Only keep end-processes. for _, end_process in six.iteritems(end_processes): processes.append((None, end_process)) elif match_by_labels: # Processes are paired based on name/labels. for _, end_process in six.iteritems(end_processes): matching_start_process = None for _, start_process in six.iteritems(start_processes): if (start_process.name == end_process.name and (start_process.name in ['Browser', 'GPU'] or start_process.labels == end_process.labels)): matching_start_process = start_process if matching_start_process: processes.append((matching_start_process, end_process)) else: # Processes are paired based on their PID. relevant_pids = set(end_processes.keys()) & set(start_processes.keys()) for pid in relevant_pids: start_process = start_processes[pid] end_process = end_processes[pid] processes.append((start_process, end_process)) return processes def BuildGraphDumps(processes, threshold, size_threshold): """ Build graph for a sequence of pair of processes. If start_process is None, counts objects in end_trace. Otherwise, counts objects present in end_trace, but not in start_process. """ graph_dumps = [] for (start_process, end_process) in processes: pid = end_process.pid name = end_process.name if end_process.name else '' labels = end_process.labels if end_process.labels else '' print('Process[%d] %s: %s' % (pid, name, labels)) for heap in end_process.allocators: start_entries = GetEntries(heap, start_process) end_entries = GetEntries(heap, end_process) graph = GraphDump() graph.pid = pid graph.name = name graph.labels = labels graph.heap = heap graph_dumps.append(graph) # Do the math: diffing start and end memory dumps. root = {} root['count'] = 0 root['size'] = 0 root['children'] = {} root['count_by_type'] = {} for entry in start_entries: if entry.type: IncrementHeapEntry(entry.stackframe, - entry.count, - entry.size, entry.type, root) for entry in end_entries: if entry.type: IncrementHeapEntry(entry.stackframe, entry.count, entry.size, entry.type, root) CanonicalHeapEntries(root) graph.root = root # Find leaks leaks = [] FindLeaks(root, [], leaks, threshold, size_threshold) leaks.sort(reverse=True, key=lambda k: k['size']) if leaks: print(' %s: %d potential leaks found.' % (heap, len(leaks))) graph.leaks = leaks graph.leak_stackframes = len(leaks) for leak in leaks: graph.leak_objects += leak['count'] return graph_dumps def WritePotentialLeaks(graph_dumps): for graph in graph_dumps: if graph.leaks: filename = 'process_%d_%s-leaks.json' % (graph.pid, graph.heap) output_filename = os.path.join(_OUTPUT_DIR, filename) with open(output_filename, 'w') as output: json.dump(graph.leaks, output) def WriteGrahDumps(graph_dumps, threshold, size_threshold): for graph in graph_dumps: # Dump the remaining allocated objects tree. filename = 'process_%d_%s-objects.json' % (graph.pid, graph.heap) output_filename = os.path.join(_OUTPUT_GRAPH_DIR, filename) if graph.root: with open(output_filename, 'w') as output: DumpTree(graph.root, '.', output, threshold, size_threshold) graph.root = filename def WriteIndex(graph_dumps): output_filename = os.path.join(_OUTPUT_GRAPH_DIR, 'index.json') with open(output_filename, 'w') as output: json.dump([ {'pid': graph.pid, 'heap': graph.heap, 'name': graph.name, 'labels': graph.labels, 'objects': graph.root, 'potential leaks': graph.leak_stackframes, 'objects leaked': graph.leak_objects, } for graph in graph_dumps], output) def WriteHTML(): # Copy the HTML page. source = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'diff_heap_profiler.html') destination = os.path.join(_OUTPUT_GRAPH_DIR, 'index.html') shutil.copyfile(source, destination) # Copy the D3 library file. source = os.path.join(os.path.dirname(os.path.abspath(__file__)), os.path.pardir, os.path.pardir, os.path.pardir, 'tracing', 'third_party', 'd3', 'd3.min.js') destination = os.path.join(_OUTPUT_GRAPH_DIR, 'd3.min.js') shutil.copyfile(source, destination) def Main(): parser = argparse.ArgumentParser() parser.add_argument( '--flame-graph', action='store_true', help='Output a flame graph based on stackframe allocations') parser.add_argument( '--threshold', type=int, default=0, help='Objects threshold for being a potential memory leak') parser.add_argument( '--size-threshold', type=int, default=0, help='Size threshold for being a potential memory leak') parser.add_argument( '--filter-by-name', type=str, help='Only keep processes with name (i.e. Browser, Renderer, ...)') parser.add_argument( '--filter-by-labels', type=str, help='Only keep processes with matching labels') parser.add_argument( '--match-by-labels', action='store_true', help='Match processes between runs by labels') parser.add_argument( 'trace', nargs='+', help='Trace files to be processed') options = parser.parse_args() if options.threshold == 0 and options.size_threshold == 0: options.threshold = 1000 if len(options.trace) == 1: end_trace = options.trace[0] start_trace = None else: start_trace = options.trace[0] end_trace = options.trace[1] if not os.path.exists(_OUTPUT_DIR): os.makedirs(_OUTPUT_DIR) # Find relevant processes to be processed. processes = FindRelevantProcesses(start_trace, end_trace, options.filter_by_name, options.filter_by_labels, options.match_by_labels) graph_dumps = BuildGraphDumps(processes, options.threshold, options.size_threshold) WritePotentialLeaks(graph_dumps) if options.flame_graph: if not os.path.exists(_OUTPUT_GRAPH_DIR): os.makedirs(_OUTPUT_GRAPH_DIR) WriteGrahDumps(graph_dumps, options.threshold, options.size_threshold) WriteIndex(graph_dumps) WriteHTML() if __name__ == '__main__': Main()
differential_privacy/run_federated.py
HanGuo97/federated
330
5518
# Copyright 2020, Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Runs federated training with differential privacy on various tasks.""" import functools from absl import app from absl import flags from absl import logging import tensorflow as tf import tensorflow_federated as tff from utils import task_utils from utils import training_utils from utils import utils_impl from utils.optimizers import optimizer_utils with utils_impl.record_hparam_flags() as optimizer_flags: # Defining optimizer flags optimizer_utils.define_optimizer_flags('client') optimizer_utils.define_optimizer_flags('server') with utils_impl.record_hparam_flags() as shared_flags: # Federated training hyperparameters flags.DEFINE_integer('client_epochs_per_round', 1, 'Number of epochs in the client to take per round.') flags.DEFINE_integer('client_batch_size', 20, 'Batch size on the clients.') flags.DEFINE_integer('clients_per_round', 10, 'How many clients to sample per round.') flags.DEFINE_integer('client_datasets_random_seed', 1, 'Random seed for client sampling.') flags.DEFINE_integer( 'max_elements_per_client', None, 'Maximum number of ' 'elements for each training client. If set to None, all ' 'available examples are used.') # Training loop configuration flags.DEFINE_integer('total_rounds', 200, 'Number of total training rounds.') flags.DEFINE_string( 'experiment_name', None, 'The name of this experiment. Will be append to ' '--root_output_dir to separate experiment results.') flags.DEFINE_string('root_output_dir', '/tmp/fed_opt/', 'Root directory for writing experiment output.') flags.DEFINE_integer( 'rounds_per_eval', 1, 'How often to evaluate the global model on the validation dataset.') flags.DEFINE_integer( 'num_validation_examples', -1, 'The number of validation' 'examples to use. If set to -1, all available examples ' 'are used.') flags.DEFINE_integer('rounds_per_checkpoint', 50, 'How often to checkpoint the global model.') with utils_impl.record_hparam_flags() as dp_flags: # Differential privacy flags flags.DEFINE_float( 'clip', None, 'Clip value for fixed clipping or initial clip for ' 'adaptive clipping. If None, no clipping is used.') flags.DEFINE_float('noise_multiplier', None, 'Noise multiplier. If None, non-DP aggregator is used.') flags.DEFINE_float( 'adaptive_clip_learning_rate', None, 'Adaptive clip learning rate. If ' 'None, clip adaptation is not used.') flags.DEFINE_float('target_unclipped_quantile', 0.5, 'Target unclipped quantile.') flags.DEFINE_boolean('uniform_weighting', False, 'Whether to weigh clients uniformly.') # Task specification with utils_impl.record_hparam_flags() as task_flags: task_utils.define_task_flags() FLAGS = flags.FLAGS def _write_hparam_flags(): """Returns an ordered dictionary of pertinent hyperparameter flags.""" hparam_dict = utils_impl.lookup_flag_values(shared_flags) # Update with optimizer flags corresponding to the chosen optimizers. opt_flag_dict = utils_impl.lookup_flag_values(optimizer_flags) opt_flag_dict = optimizer_utils.remove_unused_flags('client', opt_flag_dict) opt_flag_dict = optimizer_utils.remove_unused_flags('server', opt_flag_dict) hparam_dict.update(opt_flag_dict) # Update with task flags task_flag_dict = utils_impl.lookup_flag_values(task_flags) hparam_dict.update(task_flag_dict) training_utils.write_hparams_to_csv(hparam_dict, FLAGS.root_output_dir, FLAGS.experiment_name) def main(argv): if len(argv) > 1: raise app.UsageError('Expected no command-line arguments, ' 'got: {}'.format(argv)) client_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags('client') server_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags('server') train_client_spec = tff.simulation.baselines.ClientSpec( num_epochs=FLAGS.client_epochs_per_round, batch_size=FLAGS.client_batch_size, max_elements=FLAGS.max_elements_per_client) task = task_utils.create_task_from_flags(train_client_spec) logging.info('Trainable weights:') for weight in task.model_fn().trainable_variables: logging.info('name: %s shape: %s', weight.name, weight.shape) if FLAGS.uniform_weighting: client_weighting = tff.learning.ClientWeighting.UNIFORM elif FLAGS.task == 'shakespeare_character' or FLAGS.task == 'stackoverflow_word': def client_weighting(local_outputs): return tf.cast(tf.squeeze(local_outputs['num_tokens']), tf.float32) else: client_weighting = None if FLAGS.noise_multiplier is None: if FLAGS.uniform_weighting: aggregation_factory = tff.aggregators.UnweightedMeanFactory() else: aggregation_factory = tff.aggregators.MeanFactory() if FLAGS.clip is not None: if FLAGS.clip <= 0: raise ValueError('clip must be positive if clipping is enabled.') if FLAGS.adaptive_clip_learning_rate is None: clip = FLAGS.clip else: if FLAGS.adaptive_clip_learning_rate <= 0: raise ValueError('adaptive_clip_learning_rate must be positive if ' 'adaptive clipping is enabled.') clip = tff.aggregators.PrivateQuantileEstimationProcess.no_noise( initial_estimate=FLAGS.clip, target_quantile=FLAGS.target_unclipped_quantile, learning_rate=FLAGS.adaptive_clip_learning_rate) aggregation_factory = tff.aggregators.clipping_factory( clip, aggregation_factory) else: if not FLAGS.uniform_weighting: raise ValueError( 'Differential privacy is only implemented for uniform weighting.') if FLAGS.noise_multiplier <= 0: raise ValueError('noise_multiplier must be positive if DP is enabled.') if FLAGS.clip is None or FLAGS.clip <= 0: raise ValueError('clip must be positive if DP is enabled.') if FLAGS.adaptive_clip_learning_rate is None: aggregation_factory = tff.aggregators.DifferentiallyPrivateFactory.gaussian_fixed( noise_multiplier=FLAGS.noise_multiplier, clients_per_round=FLAGS.clients_per_round, clip=FLAGS.clip) else: if FLAGS.adaptive_clip_learning_rate <= 0: raise ValueError('adaptive_clip_learning_rate must be positive if ' 'adaptive clipping is enabled.') aggregation_factory = tff.aggregators.DifferentiallyPrivateFactory.gaussian_adaptive( noise_multiplier=FLAGS.noise_multiplier, clients_per_round=FLAGS.clients_per_round, initial_l2_norm_clip=FLAGS.clip, target_unclipped_quantile=FLAGS.target_unclipped_quantile, learning_rate=FLAGS.adaptive_clip_learning_rate) iterative_process = tff.learning.build_federated_averaging_process( model_fn=task.model_fn, server_optimizer_fn=server_optimizer_fn, client_weighting=client_weighting, client_optimizer_fn=client_optimizer_fn, model_update_aggregation_factory=aggregation_factory) train_data = task.datasets.train_data.preprocess( task.datasets.train_preprocess_fn) training_process = ( tff.simulation.compose_dataset_computation_with_iterative_process( train_data.dataset_computation, iterative_process)) training_selection_fn = functools.partial( tff.simulation.build_uniform_sampling_fn( train_data.client_ids, random_seed=FLAGS.client_datasets_random_seed), size=FLAGS.clients_per_round) test_data = task.datasets.get_centralized_test_data() validation_data = test_data.take(FLAGS.num_validation_examples) federated_eval = tff.learning.build_federated_evaluation(task.model_fn) evaluation_selection_fn = lambda round_num: [validation_data] def evaluation_fn(state, evaluation_data): return federated_eval(state.model, evaluation_data) program_state_manager, metrics_managers = training_utils.create_managers( FLAGS.root_output_dir, FLAGS.experiment_name) _write_hparam_flags() state = tff.simulation.run_training_process( training_process=training_process, training_selection_fn=training_selection_fn, total_rounds=FLAGS.total_rounds, evaluation_fn=evaluation_fn, evaluation_selection_fn=evaluation_selection_fn, rounds_per_evaluation=FLAGS.rounds_per_eval, program_state_manager=program_state_manager, rounds_per_saving_program_state=FLAGS.rounds_per_checkpoint, metrics_managers=metrics_managers) test_metrics = federated_eval(state.model, [test_data]) for metrics_manager in metrics_managers: metrics_manager.release(test_metrics, FLAGS.total_rounds + 1) if __name__ == '__main__': app.run(main)
designate-8.0.0/designate/tests/test_api/test_v2/test_limits.py
scottwedge/OpenStack-Stein
145
5520
<reponame>scottwedge/OpenStack-Stein # Copyright 2013 Hewlett-Packard Development Company, L.P. # # Author: <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from designate.tests.test_api.test_v2 import ApiV2TestCase class ApiV2LimitsTest(ApiV2TestCase): def test_get_limits(self): response = self.client.get('/limits/') self.assertEqual(200, response.status_int) self.assertEqual('application/json', response.content_type) self.assertIn('max_zones', response.json) self.assertIn('max_zone_records', response.json) self.assertIn('max_zone_recordsets', response.json) self.assertIn('max_recordset_records', response.json) self.assertIn('min_ttl', response.json) self.assertIn('max_zone_name_length', response.json) self.assertIn('max_recordset_name_length', response.json) self.assertIn('max_page_limit', response.json) absolutelimits = response.json self.assertEqual(cfg.CONF.quota_zones, absolutelimits['max_zones']) self.assertEqual(cfg.CONF.quota_zone_records, absolutelimits['max_zone_recordsets']) self.assertEqual(cfg.CONF['service:central'].min_ttl, absolutelimits['min_ttl']) self.assertEqual(cfg.CONF['service:central'].max_zone_name_len, absolutelimits['max_zone_name_length']) self.assertEqual(cfg.CONF['service:central'].max_recordset_name_len, absolutelimits['max_recordset_name_length']) self.assertEqual(cfg.CONF['service:api'].max_limit_v2, absolutelimits['max_page_limit'])
tests/test_sync_module.py
naveengh6/blinkpy
272
5531
<reponame>naveengh6/blinkpy """Tests camera and system functions.""" import unittest from unittest import mock from blinkpy.blinkpy import Blink from blinkpy.helpers.util import BlinkURLHandler from blinkpy.sync_module import BlinkSyncModule, BlinkOwl from blinkpy.camera import BlinkCamera, BlinkCameraMini @mock.patch("blinkpy.auth.Auth.query") class TestBlinkSyncModule(unittest.TestCase): """Test BlinkSyncModule functions in blinkpy.""" def setUp(self): """Set up Blink module.""" self.blink = Blink(motion_interval=0) self.blink.last_refresh = 0 self.blink.urls = BlinkURLHandler("test") self.blink.sync["test"] = BlinkSyncModule(self.blink, "test", "1234", []) self.camera = BlinkCamera(self.blink.sync) self.mock_start = [ { "syncmodule": { "id": 1234, "network_id": 5678, "serial": "12345678", "status": "foobar", } }, {"event": True}, {}, {}, None, {"devicestatus": {}}, ] self.blink.sync["test"].network_info = {"network": {"armed": True}} def tearDown(self): """Clean up after test.""" self.blink = None self.camera = None self.mock_start = None def test_bad_status(self, mock_resp): """Check that we mark module unavaiable on bad status.""" self.blink.sync["test"].status = None self.blink.sync["test"].available = True self.assertFalse(self.blink.sync["test"].online) self.assertFalse(self.blink.sync["test"].available) def test_bad_arm(self, mock_resp): """Check that we mark module unavaiable if bad arm status.""" self.blink.sync["test"].network_info = None self.blink.sync["test"].available = True self.assertEqual(self.blink.sync["test"].arm, None) self.assertFalse(self.blink.sync["test"].available) self.blink.sync["test"].network_info = {} self.blink.sync["test"].available = True self.assertEqual(self.blink.sync["test"].arm, None) self.assertFalse(self.blink.sync["test"].available) def test_get_events(self, mock_resp): """Test get events function.""" mock_resp.return_value = {"event": True} self.assertEqual(self.blink.sync["test"].get_events(), True) def test_get_events_fail(self, mock_resp): """Test handling of failed get events function.""" mock_resp.return_value = None self.assertFalse(self.blink.sync["test"].get_events()) mock_resp.return_value = {} self.assertFalse(self.blink.sync["test"].get_events()) def test_get_camera_info(self, mock_resp): """Test get camera info function.""" mock_resp.return_value = {"camera": ["foobar"]} self.assertEqual(self.blink.sync["test"].get_camera_info("1234"), "foobar") def test_get_camera_info_fail(self, mock_resp): """Test handling of failed get camera info function.""" mock_resp.return_value = None self.assertEqual(self.blink.sync["test"].get_camera_info("1"), {}) mock_resp.return_value = {} self.assertEqual(self.blink.sync["test"].get_camera_info("1"), {}) mock_resp.return_value = {"camera": None} self.assertEqual(self.blink.sync["test"].get_camera_info("1"), {}) def test_get_network_info(self, mock_resp): """Test network retrieval.""" mock_resp.return_value = {"network": {"sync_module_error": False}} self.assertTrue(self.blink.sync["test"].get_network_info()) mock_resp.return_value = {"network": {"sync_module_error": True}} self.assertFalse(self.blink.sync["test"].get_network_info()) def test_get_network_info_failure(self, mock_resp): """Test failed network retrieval.""" mock_resp.return_value = {} self.blink.sync["test"].available = True self.assertFalse(self.blink.sync["test"].get_network_info()) self.assertFalse(self.blink.sync["test"].available) self.blink.sync["test"].available = True mock_resp.return_value = None self.assertFalse(self.blink.sync["test"].get_network_info()) self.assertFalse(self.blink.sync["test"].available) def test_check_new_videos_startup(self, mock_resp): """Test that check_new_videos does not block startup.""" sync_module = self.blink.sync["test"] self.blink.last_refresh = None self.assertFalse(sync_module.check_new_videos()) def test_check_new_videos(self, mock_resp): """Test recent video response.""" mock_resp.return_value = { "media": [ { "device_name": "foo", "media": "/foo/bar.mp4", "created_at": "1990-01-01T00:00:00+00:00", } ] } sync_module = self.blink.sync["test"] sync_module.cameras = {"foo": None} sync_module.blink.last_refresh = 0 self.assertEqual(sync_module.motion, {}) self.assertTrue(sync_module.check_new_videos()) self.assertEqual( sync_module.last_record["foo"], {"clip": "/foo/bar.mp4", "time": "1990-01-01T00:00:00+00:00"}, ) self.assertEqual(sync_module.motion, {"foo": True}) mock_resp.return_value = {"media": []} self.assertTrue(sync_module.check_new_videos()) self.assertEqual(sync_module.motion, {"foo": False}) self.assertEqual( sync_module.last_record["foo"], {"clip": "/foo/bar.mp4", "time": "1990-01-01T00:00:00+00:00"}, ) def test_check_new_videos_old_date(self, mock_resp): """Test videos return response with old date.""" mock_resp.return_value = { "media": [ { "device_name": "foo", "media": "/foo/bar.mp4", "created_at": "1970-01-01T00:00:00+00:00", } ] } sync_module = self.blink.sync["test"] sync_module.cameras = {"foo": None} sync_module.blink.last_refresh = 1000 self.assertTrue(sync_module.check_new_videos()) self.assertEqual(sync_module.motion, {"foo": False}) def test_check_no_motion_if_not_armed(self, mock_resp): """Test that motion detection is not set if module unarmed.""" mock_resp.return_value = { "media": [ { "device_name": "foo", "media": "/foo/bar.mp4", "created_at": "1990-01-01T00:00:00+00:00", } ] } sync_module = self.blink.sync["test"] sync_module.cameras = {"foo": None} sync_module.blink.last_refresh = 1000 self.assertTrue(sync_module.check_new_videos()) self.assertEqual(sync_module.motion, {"foo": True}) sync_module.network_info = {"network": {"armed": False}} self.assertTrue(sync_module.check_new_videos()) self.assertEqual(sync_module.motion, {"foo": False}) def test_check_multiple_videos(self, mock_resp): """Test motion found even with multiple videos.""" mock_resp.return_value = { "media": [ { "device_name": "foo", "media": "/foo/bar.mp4", "created_at": "1970-01-01T00:00:00+00:00", }, { "device_name": "foo", "media": "/bar/foo.mp4", "created_at": "1990-01-01T00:00:00+00:00", }, { "device_name": "foo", "media": "/foobar.mp4", "created_at": "1970-01-01T00:00:01+00:00", }, ] } sync_module = self.blink.sync["test"] sync_module.cameras = {"foo": None} sync_module.blink.last_refresh = 1000 self.assertTrue(sync_module.check_new_videos()) self.assertEqual(sync_module.motion, {"foo": True}) expected_result = { "foo": {"clip": "/bar/foo.mp4", "time": "1990-01-01T00:00:00+00:00"} } self.assertEqual(sync_module.last_record, expected_result) def test_check_new_videos_failed(self, mock_resp): """Test method when response is unexpected.""" mock_resp.side_effect = [None, "just a string", {}] sync_module = self.blink.sync["test"] sync_module.cameras = {"foo": None} sync_module.motion["foo"] = True self.assertFalse(sync_module.check_new_videos()) self.assertFalse(sync_module.motion["foo"]) sync_module.motion["foo"] = True self.assertFalse(sync_module.check_new_videos()) self.assertFalse(sync_module.motion["foo"]) sync_module.motion["foo"] = True self.assertFalse(sync_module.check_new_videos()) self.assertFalse(sync_module.motion["foo"]) def test_sync_start(self, mock_resp): """Test sync start function.""" mock_resp.side_effect = self.mock_start self.blink.sync["test"].start() self.assertEqual(self.blink.sync["test"].name, "test") self.assertEqual(self.blink.sync["test"].sync_id, 1234) self.assertEqual(self.blink.sync["test"].network_id, 5678) self.assertEqual(self.blink.sync["test"].serial, "12345678") self.assertEqual(self.blink.sync["test"].status, "foobar") def test_unexpected_summary(self, mock_resp): """Test unexpected summary response.""" self.mock_start[0] = None mock_resp.side_effect = self.mock_start self.assertFalse(self.blink.sync["test"].start()) def test_summary_with_no_network_id(self, mock_resp): """Test handling of bad summary.""" self.mock_start[0]["syncmodule"] = None mock_resp.side_effect = self.mock_start self.assertFalse(self.blink.sync["test"].start()) def test_summary_with_only_network_id(self, mock_resp): """Test handling of sparse summary.""" self.mock_start[0]["syncmodule"] = {"network_id": 8675309} mock_resp.side_effect = self.mock_start self.blink.sync["test"].start() self.assertEqual(self.blink.sync["test"].network_id, 8675309) def test_unexpected_camera_info(self, mock_resp): """Test unexpected camera info response.""" self.blink.sync["test"].cameras["foo"] = None self.mock_start[5] = None mock_resp.side_effect = self.mock_start self.blink.sync["test"].start() self.assertEqual(self.blink.sync["test"].cameras, {"foo": None}) def test_missing_camera_info(self, mock_resp): """Test missing key from camera info response.""" self.blink.sync["test"].cameras["foo"] = None self.mock_start[5] = {} self.blink.sync["test"].start() self.assertEqual(self.blink.sync["test"].cameras, {"foo": None}) def test_sync_attributes(self, mock_resp): """Test sync attributes.""" self.assertEqual(self.blink.sync["test"].attributes["name"], "test") self.assertEqual(self.blink.sync["test"].attributes["network_id"], "1234") def test_owl_start(self, mock_resp): """Test owl camera instantiation.""" response = { "name": "foo", "id": 2, "serial": "foobar123", "enabled": True, "network_id": 1, "thumbnail": "/foo/bar", } self.blink.last_refresh = None self.blink.homescreen = {"owls": [response]} owl = BlinkOwl(self.blink, "foo", 1234, response) self.assertTrue(owl.start()) self.assertTrue("foo" in owl.cameras) self.assertEqual(owl.cameras["foo"].__class__, BlinkCameraMini)
python/flexflow_cffi_build.py
zmxdream/FlexFlow
455
5561
<filename>python/flexflow_cffi_build.py #!/usr/bin/env python # Copyright 2020 Stanford University, Los Alamos National Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import, division, print_function, unicode_literals import argparse import os import subprocess def find_flexflow_header(ffhome_dir): def try_prefix(prefix_dir): flexflow_ch_path = os.path.join(prefix_dir, 'python', 'flexflow_c.h') flexflow_cxxh_path = os.path.join(prefix_dir, 'include', 'model.h') if os.path.exists(flexflow_ch_path) and os.path.exists(flexflow_cxxh_path): flexflow_cxxh_dir = os.path.join(prefix_dir, 'include') return flexflow_cxxh_dir, flexflow_ch_path result = try_prefix(ffhome_dir) if result: return result raise Exception('Unable to locate flexflow_c.h and flexflow.h header file') def build(output_dir, libname, ffhome_dir): flexflow_cxxh_dir, flexflow_ch_path = find_flexflow_header(ffhome_dir) header = subprocess.check_output(['gcc', '-I', flexflow_cxxh_dir, '-E', '-P', flexflow_ch_path]).decode('utf-8') with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'flexflow_cffi_header.py.in')) as f: content = f.read() content = content.format(header=repr(header), libname=repr(libname)) if output_dir is None: output_dir = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(output_dir, 'flexflow_cffi_header.py'), 'wb') as f: f.write(content.encode('utf-8')) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--ffhome-dir', required=True) parser.add_argument('--libname', required=True) parser.add_argument('--output-dir', required=False) args = parser.parse_args() build(args.output_dir, args.libname, args.ffhome_dir)
Python/Tests/TestData/ProjectHomeProjects/Subfolder/ProgramB.py
techkey/PTVS
404
5591
# ProgramB.py print('Hello World')
ssod/utils/structure_utils.py
huimlight/SoftTeacher
604
5596
<reponame>huimlight/SoftTeacher<gh_stars>100-1000 import warnings from collections import Counter, Mapping, Sequence from numbers import Number from typing import Dict, List import numpy as np import torch from mmdet.core.mask.structures import BitmapMasks from torch.nn import functional as F _step_counter = Counter() def list_concat(data_list: List[list]): if isinstance(data_list[0], torch.Tensor): return torch.cat(data_list) else: endpoint = [d for d in data_list[0]] for i in range(1, len(data_list)): endpoint.extend(data_list[i]) return endpoint def sequence_concat(a, b): if isinstance(a, Sequence) and isinstance(b, Sequence): return a + b else: return None def dict_concat(dicts: List[Dict[str, list]]): return {k: list_concat([d[k] for d in dicts]) for k in dicts[0].keys()} def dict_fuse(obj_list, reference_obj): if isinstance(reference_obj, torch.Tensor): return torch.stack(obj_list) return obj_list def dict_select(dict1: Dict[str, list], key: str, value: str): flag = [v == value for v in dict1[key]] return { k: dict_fuse([vv for vv, ff in zip(v, flag) if ff], v) for k, v in dict1.items() } def dict_split(dict1, key): group_names = list(set(dict1[key])) dict_groups = {k: dict_select(dict1, key, k) for k in group_names} return dict_groups def dict_sum(a, b): if isinstance(a, dict): assert isinstance(b, dict) return {k: dict_sum(v, b[k]) for k, v in a.items()} elif isinstance(a, list): assert len(a) == len(b) return [dict_sum(aa, bb) for aa, bb in zip(a, b)] else: return a + b def zero_like(tensor_pack, prefix=""): if isinstance(tensor_pack, Sequence): return [zero_like(t) for t in tensor_pack] elif isinstance(tensor_pack, Mapping): return {prefix + k: zero_like(v) for k, v in tensor_pack.items()} elif isinstance(tensor_pack, torch.Tensor): return tensor_pack.new_zeros(tensor_pack.shape) elif isinstance(tensor_pack, np.ndarray): return np.zeros_like(tensor_pack) else: warnings.warn("Unexpected data type {}".format(type(tensor_pack))) return 0 def pad_stack(tensors, shape, pad_value=255): tensors = torch.stack( [ F.pad( tensor, pad=[0, shape[1] - tensor.shape[1], 0, shape[0] - tensor.shape[0]], value=pad_value, ) for tensor in tensors ] ) return tensors def result2bbox(result): num_class = len(result) bbox = np.concatenate(result) if bbox.shape[0] == 0: label = np.zeros(0, dtype=np.uint8) else: label = np.concatenate( [[i] * len(result[i]) for i in range(num_class) if len(result[i]) > 0] ).reshape((-1,)) return bbox, label def result2mask(result): num_class = len(result) mask = [np.stack(result[i]) for i in range(num_class) if len(result[i]) > 0] if len(mask) > 0: mask = np.concatenate(mask) else: mask = np.zeros((0, 1, 1)) return BitmapMasks(mask, mask.shape[1], mask.shape[2]), None def sequence_mul(obj, multiplier): if isinstance(obj, Sequence): return [o * multiplier for o in obj] else: return obj * multiplier def is_match(word, word_list): for keyword in word_list: if keyword in word: return True return False def weighted_loss(loss: dict, weight, ignore_keys=[], warmup=0): _step_counter["weight"] += 1 lambda_weight = ( lambda x: x * (_step_counter["weight"] - 1) / warmup if _step_counter["weight"] <= warmup else x ) if isinstance(weight, Mapping): for k, v in weight.items(): for name, loss_item in loss.items(): if (k in name) and ("loss" in name): loss[name] = sequence_mul(loss[name], lambda_weight(v)) elif isinstance(weight, Number): for name, loss_item in loss.items(): if "loss" in name: if not is_match(name, ignore_keys): loss[name] = sequence_mul(loss[name], lambda_weight(weight)) else: loss[name] = sequence_mul(loss[name], 0.0) else: raise NotImplementedError() return loss
dev/Tools/build/waf-1.7.13/waflib/extras/fc_xlf.py
jeikabu/lumberyard
1,738
5598
<gh_stars>1000+ #! /usr/bin/env python # encoding: utf-8 # harald at klimachs.de import re from waflib import Utils,Errors from waflib.Tools import fc,fc_config,fc_scan from waflib.Configure import conf from waflib.Tools.compiler_fc import fc_compiler fc_compiler['aix'].insert(0, 'fc_xlf') @conf def find_xlf(conf): """Find the xlf program (will look in the environment variable 'FC')""" fc = conf.find_program(['xlf2003_r', 'xlf2003', 'xlf95_r', 'xlf95', 'xlf90_r', 'xlf90', 'xlf_r', 'xlf'], var='FC') fc = conf.cmd_to_list(fc) conf.get_xlf_version(fc) conf.env.FC_NAME='XLF' @conf def xlf_flags(conf): v = conf.env v['FCDEFINES_ST'] = '-WF,-D%s' v['FCFLAGS_fcshlib'] = ['-qpic=small'] v['FCFLAGS_DEBUG'] = ['-qhalt=w'] v['LINKFLAGS_fcshlib'] = ['-Wl,-shared'] @conf def xlf_modifier_platform(conf): dest_os = conf.env['DEST_OS'] or Utils.unversioned_sys_platform() xlf_modifier_func = getattr(conf, 'xlf_modifier_' + dest_os, None) if xlf_modifier_func: xlf_modifier_func() @conf def get_xlf_version(conf, fc): """Get the compiler version""" cmd = fc + ['-qversion'] try: out, err = conf.cmd_and_log(cmd, output=0) except Errors.WafError: conf.fatal('Could not find xlf %r' % cmd) for v in (r"IBM XL Fortran.* V(?P<major>\d*)\.(?P<minor>\d*)",): version_re = re.compile(v, re.I).search match = version_re(out or err) if match: k = match.groupdict() conf.env['FC_VERSION'] = (k['major'], k['minor']) break else: conf.fatal('Could not determine the XLF version.') def configure(conf): conf.find_xlf() conf.find_ar() conf.fc_flags() conf.fc_add_flags() conf.xlf_flags() conf.xlf_modifier_platform()
Codes/gracekoo/test.py
ghoslation/algorithm
256
5606
# -*- coding: utf-8 -*- # @Time: 2020/11/8 23:47 # @Author: GraceKoo # @File: test.py # @Desc: from threading import Thread import time def print_numbers(): time.sleep(0.2) print("子线程结束") if __name__ == "__main__": t1 = Thread(target=print_numbers) t1.setDaemon(True) t1.start() # print("主线程结束")
layers/gin_layer.py
JakeStevens/benchmarking-gnns
275
5624
<reponame>JakeStevens/benchmarking-gnns<gh_stars>100-1000 import torch import torch.nn as nn import torch.nn.functional as F import dgl.function as fn """ GIN: Graph Isomorphism Networks HOW POWERFUL ARE GRAPH NEURAL NETWORKS? (<NAME>, <NAME>, <NAME> and <NAME>, ICLR 2019) https://arxiv.org/pdf/1810.00826.pdf """ class GINLayer(nn.Module): """ [!] code adapted from dgl implementation of GINConv Parameters ---------- apply_func : callable activation function/layer or None If not None, apply this function to the updated node feature, the :math:`f_\Theta` in the formula. aggr_type : Aggregator type to use (``sum``, ``max`` or ``mean``). out_dim : Rquired for batch norm layer; should match out_dim of apply_func if not None. dropout : Required for dropout of output features. graph_norm : boolean flag for output features normalization w.r.t. graph sizes. batch_norm : boolean flag for batch_norm layer. residual : boolean flag for using residual connection. init_eps : optional Initial :math:`\epsilon` value, default: ``0``. learn_eps : bool, optional If True, :math:`\epsilon` will be a learnable parameter. """ def __init__(self, apply_func, aggr_type, dropout, graph_norm, batch_norm, residual=False, init_eps=0, learn_eps=False): super().__init__() self.apply_func = apply_func if aggr_type == 'sum': self._reducer = fn.sum elif aggr_type == 'max': self._reducer = fn.max elif aggr_type == 'mean': self._reducer = fn.mean else: raise KeyError('Aggregator type {} not recognized.'.format(aggr_type)) self.graph_norm = graph_norm self.batch_norm = batch_norm self.residual = residual self.dropout = dropout in_dim = apply_func.mlp.input_dim out_dim = apply_func.mlp.output_dim if in_dim != out_dim: self.residual = False # to specify whether eps is trainable or not. if learn_eps: self.eps = torch.nn.Parameter(torch.FloatTensor([init_eps])) else: self.register_buffer('eps', torch.FloatTensor([init_eps])) self.bn_node_h = nn.BatchNorm1d(out_dim) def forward(self, g, h, snorm_n): h_in = h # for residual connection g = g.local_var() g.ndata['h'] = h g.update_all(fn.copy_u('h', 'm'), self._reducer('m', 'neigh')) h = (1 + self.eps) * h + g.ndata['neigh'] if self.apply_func is not None: h = self.apply_func(h) if self.graph_norm: h = h* snorm_n # normalize activation w.r.t. graph size if self.batch_norm: h = self.bn_node_h(h) # batch normalization h = F.relu(h) # non-linear activation if self.residual: h = h_in + h # residual connection h = F.dropout(h, self.dropout, training=self.training) return h class ApplyNodeFunc(nn.Module): """ This class is used in class GINNet Update the node feature hv with MLP """ def __init__(self, mlp): super().__init__() self.mlp = mlp def forward(self, h): h = self.mlp(h) return h class MLP(nn.Module): """MLP with linear output""" def __init__(self, num_layers, input_dim, hidden_dim, output_dim): super().__init__() self.linear_or_not = True # default is linear model self.num_layers = num_layers self.output_dim = output_dim self.input_dim = input_dim if num_layers < 1: raise ValueError("number of layers should be positive!") elif num_layers == 1: # Linear model self.linear = nn.Linear(input_dim, output_dim) else: # Multi-layer model self.linear_or_not = False self.linears = torch.nn.ModuleList() self.batch_norms = torch.nn.ModuleList() self.linears.append(nn.Linear(input_dim, hidden_dim)) for layer in range(num_layers - 2): self.linears.append(nn.Linear(hidden_dim, hidden_dim)) self.linears.append(nn.Linear(hidden_dim, output_dim)) for layer in range(num_layers - 1): self.batch_norms.append(nn.BatchNorm1d((hidden_dim))) def forward(self, x): if self.linear_or_not: # If linear model return self.linear(x) else: # If MLP h = x for i in range(self.num_layers - 1): h = F.relu(self.batch_norms[i](self.linears[i](h))) return self.linears[-1](h)
lstm-synthetic-wave-anomaly-detect.py
cse-icon-dataAnalytics/lstm-anomaly-detect
178
5631
<reponame>cse-icon-dataAnalytics/lstm-anomaly-detect """ Inspired by example from https://github.com/Vict0rSch/deep_learning/tree/master/keras/recurrent Uses the TensorFlow backend The basic idea is to detect anomalies in a time-series. """ import matplotlib.pyplot as plt import numpy as np import time from keras.layers.core import Dense, Activation, Dropout from keras.layers.recurrent import LSTM from keras.models import Sequential from numpy import arange, sin, pi, random np.random.seed(1234) # Global hyper-parameters sequence_length = 100 random_data_dup = 10 # each sample randomly duplicated between 0 and 9 times, see dropin function epochs = 1 batch_size = 50 def dropin(X, y): """ The name suggests the inverse of dropout, i.e. adding more samples. See Data Augmentation section at http://simaaron.github.io/Estimating-rainfall-from-weather-radar-readings-using-recurrent-neural-networks/ :param X: Each row is a training sequence :param y: Tne target we train and will later predict :return: new augmented X, y """ print("X shape:", X.shape) print("y shape:", y.shape) X_hat = [] y_hat = [] for i in range(0, len(X)): for j in range(0, np.random.random_integers(0, random_data_dup)): X_hat.append(X[i, :]) y_hat.append(y[i]) return np.asarray(X_hat), np.asarray(y_hat) def gen_wave(): """ Generate a synthetic wave by adding up a few sine waves and some noise :return: the final wave """ t = np.arange(0.0, 10.0, 0.01) wave1 = sin(2 * 2 * pi * t) noise = random.normal(0, 0.1, len(t)) wave1 = wave1 + noise print("wave1", len(wave1)) wave2 = sin(2 * pi * t) print("wave2", len(wave2)) t_rider = arange(0.0, 0.5, 0.01) wave3 = sin(10 * pi * t_rider) print("wave3", len(wave3)) insert = round(0.8 * len(t)) wave1[insert:insert + 50] = wave1[insert:insert + 50] + wave3 return wave1 + wave2 def z_norm(result): result_mean = result.mean() result_std = result.std() result -= result_mean result /= result_std return result, result_mean def get_split_prep_data(train_start, train_end, test_start, test_end): data = gen_wave() print("Length of Data", len(data)) # train data print "Creating train data..." result = [] for index in range(train_start, train_end - sequence_length): result.append(data[index: index + sequence_length]) result = np.array(result) # shape (samples, sequence_length) result, result_mean = z_norm(result) print "Mean of train data : ", result_mean print "Train data shape : ", result.shape train = result[train_start:train_end, :] np.random.shuffle(train) # shuffles in-place X_train = train[:, :-1] y_train = train[:, -1] X_train, y_train = dropin(X_train, y_train) # test data print "Creating test data..." result = [] for index in range(test_start, test_end - sequence_length): result.append(data[index: index + sequence_length]) result = np.array(result) # shape (samples, sequence_length) result, result_mean = z_norm(result) print "Mean of test data : ", result_mean print "Test data shape : ", result.shape X_test = result[:, :-1] y_test = result[:, -1] print("Shape X_train", np.shape(X_train)) print("Shape X_test", np.shape(X_test)) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) return X_train, y_train, X_test, y_test def build_model(): model = Sequential() layers = {'input': 1, 'hidden1': 64, 'hidden2': 256, 'hidden3': 100, 'output': 1} model.add(LSTM( input_length=sequence_length - 1, input_dim=layers['input'], output_dim=layers['hidden1'], return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM( layers['hidden2'], return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM( layers['hidden3'], return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense( output_dim=layers['output'])) model.add(Activation("linear")) start = time.time() model.compile(loss="mse", optimizer="rmsprop") print "Compilation Time : ", time.time() - start return model def run_network(model=None, data=None): global_start_time = time.time() if data is None: print 'Loading data... ' # train on first 700 samples and test on next 300 samples (has anomaly) X_train, y_train, X_test, y_test = get_split_prep_data(0, 700, 500, 1000) else: X_train, y_train, X_test, y_test = data print '\nData Loaded. Compiling...\n' if model is None: model = build_model() try: print("Training...") model.fit( X_train, y_train, batch_size=batch_size, nb_epoch=epochs, validation_split=0.05) print("Predicting...") predicted = model.predict(X_test) print("Reshaping predicted") predicted = np.reshape(predicted, (predicted.size,)) except KeyboardInterrupt: print("prediction exception") print 'Training duration (s) : ', time.time() - global_start_time return model, y_test, 0 try: plt.figure(1) plt.subplot(311) plt.title("Actual Test Signal w/Anomalies") plt.plot(y_test[:len(y_test)], 'b') plt.subplot(312) plt.title("Predicted Signal") plt.plot(predicted[:len(y_test)], 'g') plt.subplot(313) plt.title("Squared Error") mse = ((y_test - predicted) ** 2) plt.plot(mse, 'r') plt.show() except Exception as e: print("plotting exception") print str(e) print 'Training duration (s) : ', time.time() - global_start_time return model, y_test, predicted run_network()
wouso/core/security/admin.py
AlexandruGhergut/wouso
117
5671
from django.contrib import admin from wouso.core.security.models import Report admin.site.register(Report)
latest/probe.py
Soldie/Nscan-scanner-ip
574
5676
import time import Queue import random import socket import struct import logging import threading from convert import * from protocol import ethernet, ip, tcp, udp ETH_P_IP = 0x0800 # IP protocol ETH_P_ALL = 0x0003 # Every packet NSCRIPT_PATH = 'nscript' # NSCRIPT PATH PAYLOAD = { 53:('\x5d\x0d\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06' 'google\x03com\x00\x00\x01\x00\x01'), # 'google.com' DNS Lookup 161:('\x30\x26\x02\x01\x01\x04\x06public\xa1\x19\x02' '\x04\x56\x9f\x5a\xdd\x02\x01\x00\x02\x01\x00\x30\x0b\x30\x09\x06' '\x05\x2b\x06\x01\x02\x01\x05\x00'), # SNMP GetNextRequest|public|2c version|1.3.6.1.2.1 123:('\x17\x00\x02\x05'), # NTP systats commands lacks 38 null bytes (just to save bandwidth) 1900:('M-SEARCH * HTTP/1.1\r\nHOST: 192.168.127.12:1900\r\n' 'MAN: "ssdp:discover"\r\nMX: 2\r\nST: ssdp:all\r\n\r\n') } class Generator(object): def __init__(self, size): self.size = size self.inc = size/4 if self.inc<1: self.inc = 1 self.base = -self.inc self.num = self.base self.index = 0 def __iter__(self): return self def next(self): if (self.num+self.inc)>=self.size: self.next_index() self.next_base() self.num = self.num + self.inc return self.num def next_base(self): self.base = 0 self.base-= self.index self.num = self.base def next_index(self): self.index+=1 if self.index>=self.inc: raise StopIteration def suspend(self): return self.size, self.inc, self.base, self.num, self.index def resume(self, size, inc, base, num, index): self.size = size self.inc = inc self.base = base self.num = num self.index = index class ScriptEngine(object): def __init__(self, imports): self.imports = imports self.event = threading.Event() self.queues = {} self.thread = [] def Load(self): for script in self.imports: q = Queue.Queue() s = __import__('{}.{}'.format(NSCRIPT_PATH, script), fromlist=[NSCRIPT_PATH]) t = threading.Thread(target=s.run, args=(q, self.event)) self.thread.append(t) t.setDaemon(True) t.start() self.queues[script] = q def Feed(self, host, port): for scr in self.imports: for r in self.imports[scr]: if port in xrange(r[0], r[1]): self.queues[scr].put((host, port)) break def Cleanup(self): while Alive(self.thread): time.sleep(10) class nscan(object): def __init__(self, options): self.options = options self.hosts = self.split(options.hosts, options.threads) self.ports = options.ports self.srcp = random.randint(1, 65535)#self.PickPort() # source port self.smac = options.smac self.dmac = options.dmac self.ifname = options.ifname self.siface = options.siface self.diface = options.diface self.banner = options.banner self.count = options.count self.cooldown = options.cooldown self.queue = Queue.Queue() if options.stype.upper()=='U': self.stype = socket.IPPROTO_UDP else: self.stype = socket.IPPROTO_TCP self.events = { 'send': threading.Event(), 'recv': threading.Event()} self.threads = { 'send': [], 'recv': None} def __Transport(self, src, dst=0): if self.stype==socket.IPPROTO_TCP: transport = tcp.TCP(src, dst) transport.seqn = 0xDEADC0DE else: transport = udp.UDP(src, dst) return transport def __Pack(self, transport, src, dst): if self.stype==socket.IPPROTO_TCP: transport.payload = '' else: transport.payload = PAYLOAD.get(transport.dstp, '\x00\r\n\r\n') packed = transport.pack(src, dst) return packed + transport.payload def __CookieCheck(self, data): check = False dstp = struct.unpack('!H', data[22:24])[0] if self.stype==socket.IPPROTO_UDP: if dstp==self.srcp: check = True else: ackn = struct.unpack('!L', data[28:32])[0] flags = struct.unpack('B', data[33])[0] & 0b010010 # SYN-ACK if dstp==self.srcp and ackn==0xDEADC0DF and flags==18: check = True return check def init(self): generators = [] for h in self.hosts: g = Generator(h[1]-h[0]) generators.append(g) t = threading.Thread(target=self.send, args=(h, self.srcp, g)) t.setDaemon(True) self.threads['send'].append(t) t = threading.Thread(target=self.recv) t.setDaemon(True) self.threads['recv'] = t if 'resume' in dir(self.options): i = 0 for g in generators: g.resume(*self.options.indexes[i]) i+=1 return self.threads, self.events, self.queue, generators def run(self): self.events['send'].set() self.events['recv'].set() for t in self.threads['send']: t.start() self.threads['recv'].start() def send(self, hosts, srcp, gen): if 'ppp' in self.ifname: family = socket.AF_INET proto = socket.IPPROTO_RAW eth = '' else: family = socket.AF_PACKET proto = ETH_P_IP eth = ethernet.ETHER(mac2byte(self.smac), mac2byte(self.dmac), ETH_P_IP).pack() sock = socket.socket(family, socket.SOCK_RAW, proto) transport = self.__Transport(srcp, 0) npacket = 0 self.events['send'].wait() target = hosts[0] while self.events['send'].isSet(): try: target = hosts[0] + gen.next() iph = ip.IP(self.diface, dec2dot(target), self.stype) except StopIteration: break for port_list in self.ports: for port in range(port_list[0], port_list[1]): if self.events['send'].isSet(): transport.dstp = port packet = eth + iph.pack() + self.__Pack(transport, iph.src, iph.dst) #tcph.pack(iph.src, iph.dst) sock.sendto(packet, (dec2dot(target), 0)) # self.ifname npacket+=1 if not npacket%self.cooldown[0]: time.sleep(self.cooldown[1]) else: break logging.info('[SEND] Sent: {} packets'.format(npacket)) sock.close() def recv(self): sock = socket.socket(socket.AF_INET, socket.SOCK_RAW, self.stype) sock.bind(('', self.srcp)) sock.settimeout(5) self.events['recv'].wait() counter = 0 while self.events['recv'].isSet(): try: data, sa_ll = sock.recvfrom(65535) if self.__CookieCheck(data): self.queue.put(Extract(data)) counter += 1 if counter==self.count: self.events['send'].clear() break except socket.timeout: continue sock.close() logging.info('[RECV] Received: {} packets'.format(counter)) def split(self, hosts, n): ''' Split host range into n parts (multithreaded) ''' nhosts = hosts[1] - hosts[0] # number of hosts nparts = nhosts/n + 1 host_parts = [] start = hosts[0] while True: if len(host_parts)<n-1: end = start + nparts host_parts.append((start, end)) start = end else: host_parts.append((start, hosts[1])) break return host_parts def PickPort(self): while True: srcp = random.randrange(10000, 65535) if srcp not in self.sport: self.sport.append(srcp) break return srcp def Extract(packet): src = socket.inet_ntoa(packet[12:16]) srcp = struct.unpack('!H', packet[20:22])[0] return src, srcp def Alive(thread_list): ''' check if thread is alive ''' alive = False for t in thread_list: if t.isAlive(): alive = True break return alive
codalab/lib/path_util.py
kl-chou/codalab-worksheets
236
5682
<filename>codalab/lib/path_util.py """ path_util contains helpers for working with local filesystem paths. There are a few classes of methods provided here: Functions to normalize paths and check that they are in normal form: normalize, check_isvalid, check_isdir, check_isfile, path_is_url Functions to list directories and to deal with subpaths of paths: safe_join, get_relative_path, ls, recursive_ls Functions to read files to compute hashes, write results to stdout, etc: getmtime, get_size, hash_directory, hash_file_contents Functions that modify that filesystem in controlled ways: copy, make_directory, set_write_permissions, rename, remove """ import errno import hashlib import itertools import os import shutil import subprocess import sys from typing import Optional from codalab.common import precondition, UsageError, parse_linked_bundle_url from codalab.lib import file_util from codalab.worker.file_util import get_path_size # Block sizes and canonical strings used when hashing files. BLOCK_SIZE = 0x40000 FILE_PREFIX = 'file' LINK_PREFIX = 'link' def path_error(message, path): """ Raised when a user-supplied path causes an exception. """ return UsageError(message + ': ' + path) ################################################################################ # Functions to normalize paths and check that they are in normal form. ################################################################################ def normalize(path): """ Return the absolute path of the location specified by the given path. This path is returned in a "canonical form", without ~'s, .'s, ..'s. """ if path == '-': return '/dev/stdin' elif path_is_url(path): return path else: return os.path.abspath(os.path.expanduser(path)) def check_isvalid(path, fn_name): """ Raise a PreconditionViolation if the path is not absolute or normalized. Raise a UsageError if the file at that path does not exist. """ precondition(os.path.isabs(path), '%s got relative path: %s' % (fn_name, path)) # Broken symbolic links are valid paths, so we use lexists instead of exists. if not os.path.lexists(path): raise path_error('%s got non-existent path:' % (fn_name,), path) def check_isdir(path, fn_name): """ Check that the path is valid, then raise UsageError if the path is a file. """ check_isvalid(path, fn_name) if not os.path.isdir(path): raise path_error('%s got non-directory:' % (fn_name,), path) def check_isfile(path, fn_name): """ Check that the path is valid, then raise UsageError if the path is a file. """ check_isvalid(path, fn_name) if os.path.isdir(path): raise path_error('%s got directory:' % (fn_name,), path) def path_is_url(path): if isinstance(path, str): for prefix in ['http', 'https', 'ftp']: if path.startswith(prefix + '://'): return True return False ################################################################################ # Functions to list directories and to deal with subpaths of paths. ################################################################################ def safe_join(*paths): """ Join a sequence of paths but filter out any that are empty. Used for targets. Note that os.path.join has this functionality EXCEPT at the end of the list, which causes problems when a target subpath is empty. """ return os.path.join(*[_f for _f in paths if _f]) def get_relative_path(root, path): """ Return the relative path from root to path, which should be nested under root. """ precondition(path.startswith(root), '%s is not under %s' % (path, root)) return path[len(root) :] def ls(path): """ Return a (list of directories, list of files) in the given directory. """ check_isdir(path, 'ls') (directories, files) = ([], []) for file_name in os.listdir(path): if os.path.isfile(os.path.join(path, file_name)): files.append(file_name) else: directories.append(file_name) return (directories, files) def recursive_ls(path): """ Return a (list of directories, list of files) in the given directory and all of its nested subdirectories. All paths returned are absolute. Symlinks are returned in the list of files, even if they point to directories. This makes it possible to distinguish between real and symlinked directories when computing the hash of a directory. This function will NOT descend into symlinked directories. """ check_isdir(path, 'recursive_ls') (directories, files) = ([], []) for (root, _, file_names) in os.walk(path): assert os.path.isabs(root), 'Got relative root in os.walk: %s' % (root,) directories.append(root) for file_name in file_names: files.append(os.path.join(root, file_name)) # os.walk ignores symlinks to directories, but we should count them as files. # However, we can't used the followlinks parameter, because a) we don't want # to descend into directories and b) we could end up in an infinite loop if # we were to pass that flag. Instead, we handle symlinks here: for subpath in os.listdir(root): full_subpath = os.path.join(root, subpath) if os.path.islink(full_subpath) and os.path.isdir(full_subpath): files.append(full_subpath) return (directories, files) ################################################################################ # Functions to read files to compute hashes, write results to stdout, etc. ################################################################################ def getmtime(path): """ Like os.path.getmtime, but does not follow symlinks. """ return os.lstat(path).st_mtime def get_size(path, dirs_and_files=None): """ Get the size (in bytes) of the file or directory at or under the given path. Does not include symlinked files and directories. """ if parse_linked_bundle_url(path).uses_beam: return get_path_size(path) if os.path.islink(path) or not os.path.isdir(path): return os.lstat(path).st_size dirs_and_files = dirs_and_files or recursive_ls(path) return sum(os.lstat(path).st_size for path in itertools.chain(*dirs_and_files)) def hash_directory(path, dirs_and_files=None): """ Return the hash of the contents of the folder at the given path. This hash is independent of the path itself - if you were to move the directory and call get_hash again, you would get the same result. """ if parse_linked_bundle_url(path).uses_beam: # On Azure Blob Storage, we just use the directory size for the hashed contents. return get_size(path) (directories, files) = dirs_and_files or recursive_ls(path) # Sort and then hash all directories and then compute a hash of the hashes. # This two-level hash is necessary so that the overall hash is unambiguous - # if we updated directory_hash with the directory names themselves, then # we'd be hashing the concatenation of these names, which could be generated # in multiple ways. directory_hash = hashlib.sha1() for directory in sorted(directories): relative_path = get_relative_path(path, directory) directory_hash.update(hashlib.sha1(relative_path.encode()).hexdigest().encode()) # Use a similar two-level hashing scheme for all files, but incorporate a # hash of both the file name and contents. file_hash = hashlib.sha1() for file_name in sorted(files): relative_path = get_relative_path(path, file_name) file_hash.update(hashlib.sha1(relative_path.encode()).hexdigest().encode()) file_hash.update(hash_file_contents(file_name).encode()) # Return a hash of the two hashes. overall_hash = hashlib.sha1(directory_hash.hexdigest().encode()) overall_hash.update(file_hash.hexdigest().encode()) return overall_hash.hexdigest() def hash_file_contents(path): """ Return the hash of the file's contents, read in blocks of size BLOCK_SIZE. """ message = 'hash_file called with relative path: %s' % (path,) precondition(os.path.isabs(path), message) if os.path.islink(path): contents_hash = hashlib.sha1(LINK_PREFIX.encode()) contents_hash.update(os.readlink(path).encode()) else: contents_hash = hashlib.sha1(FILE_PREFIX.encode()) with open(path, 'rb') as file_handle: while True: data = file_handle.read(BLOCK_SIZE) if not data: break contents_hash.update(data) return contents_hash.hexdigest() ################################################################################ # Functions that modify that filesystem in controlled ways. ################################################################################ def copy(source_path: str, dest_path: str, follow_symlinks: Optional[bool] = False): """ Copy |source_path| to |dest_path|. Assume dest_path doesn't exist. |follow_symlinks|: whether to follow symlinks Note: this only works in Linux. """ if os.path.exists(dest_path): raise path_error('already exists', dest_path) if source_path == '/dev/stdin': with open(dest_path, 'wb') as dest: file_util.copy( sys.stdin, dest, autoflush=False, print_status='Copying %s to %s' % (source_path, dest_path), ) else: if not follow_symlinks and os.path.islink(source_path): raise path_error('not following symlinks', source_path) if not os.path.exists(source_path): raise path_error('does not exist', source_path) command = [ 'rsync', '-pr%s' % ('L' if follow_symlinks else 'l'), source_path + ('/' if not os.path.islink(source_path) and os.path.isdir(source_path) else ''), dest_path, ] if subprocess.call(command) != 0: raise path_error('Unable to copy %s to' % source_path, dest_path) def make_directory(path): """ Create the directory at the given path. """ try: os.mkdir(path) except OSError as e: if e.errno != errno.EEXIST: raise check_isdir(path, 'make_directory') def set_write_permissions(path): # Recursively give give write permissions to |path|, so that we can operate # on it. if not os.path.islink(path): # Don't need write permissions if symlink subprocess.call(['chmod', '-R', 'u+w', path]) def rename(old_path, new_path): # Allow write permissions, or else the move will fail. set_write_permissions(old_path) subprocess.call(['mv', old_path, new_path]) def remove(path): """ Remove the given path, whether it is a directory, file, or link. """ if parse_linked_bundle_url(path).uses_beam: from apache_beam.io.filesystems import FileSystems if not FileSystems.exists(path): FileSystems.delete([path]) return check_isvalid(path, 'remove') set_write_permissions(path) # Allow permissions if os.path.islink(path): os.unlink(path) elif os.path.isdir(path): try: shutil.rmtree(path) except shutil.Error: pass else: os.remove(path) if os.path.exists(path): print('Failed to remove %s' % path) def soft_link(source, path): """ Create a symbolic link to source at path. This is basically the same as doing "ln -s $source $path" """ check_isvalid(source, 'soft_link') os.symlink(source, path)
shared/templates/coreos_kernel_option/template.py
deperrone/content
1,138
5686
<reponame>deperrone/content<filename>shared/templates/coreos_kernel_option/template.py from ssg.utils import parse_template_boolean_value def preprocess(data, lang): data["arg_negate"] = parse_template_boolean_value(data, parameter="arg_negate", default_value=False) data["arg_is_regex"] = parse_template_boolean_value(data, parameter="arg_is_regex", default_value=False) return data
capirca/lib/ipset.py
google-admin/capirca
604
5691
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Ipset iptables generator. This is a subclass of Iptables generator. ipset is a system inside the Linux kernel, which can very efficiently store and match IPv4 and IPv6 addresses. This can be used to dramatically increase performace of iptables firewall. """ import string from capirca.lib import iptables from capirca.lib import nacaddr class Error(Exception): """Base error class.""" class Term(iptables.Term): """Single Ipset term representation.""" _PLATFORM = 'ipset' _SET_MAX_LENGTH = 31 _POSTJUMP_FORMAT = None _PREJUMP_FORMAT = None _TERM_FORMAT = None _COMMENT_FORMAT = string.Template( '-A $filter -m comment --comment "$comment"') _FILTER_TOP_FORMAT = string.Template('-A $filter') def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # This stores tuples of set name and set contents, keyed by direction. # For example: # { 'src': ('set_name', [ipaddr object, ipaddr object]), # 'dst': ('set_name', [ipaddr object, ipaddr object]) } self.addr_sets = {} def _CalculateAddresses(self, src_addr_list, src_addr_exclude_list, dst_addr_list, dst_addr_exclude_list): """Calculates source and destination address list for a term. Since ipset is very efficient at matching large number of addresses, we never return any exclude addresses. Instead least positive match is calculated for both source and destination addresses. For source and destination address list, three cases are possible. First case is when there are no addresses. In that case we return _all_ips. Second case is when there is strictly one address. In that case, we optimize by not generating a set, and it's then the only element of returned set. Third case is when there are more than one address in a set. In that case we generate a set and also return _all_ips. Note the difference to the first case where no set is actually generated. Args: src_addr_list: source address list of the term. src_addr_exclude_list: source address exclude list of the term. dst_addr_list: destination address list of the term. dst_addr_exclude_list: destination address exclude list of the term. Returns: tuple containing source address list, source address exclude list, destination address list, destination address exclude list in that order. """ target_af = self.AF_MAP[self.af] src_addr_list = self._CalculateAddrList(src_addr_list, src_addr_exclude_list, target_af, 'src') dst_addr_list = self._CalculateAddrList(dst_addr_list, dst_addr_exclude_list, target_af, 'dst') return (src_addr_list, [], dst_addr_list, []) def _CalculateAddrList(self, addr_list, addr_exclude_list, target_af, direction): """Calculates and stores address list for target AF and direction. Args: addr_list: address list. addr_exclude_list: address exclude list of the term. target_af: target address family. direction: direction in which address list will be used. Returns: calculated address list. """ if not addr_list: addr_list = [self._all_ips] addr_list = [addr for addr in addr_list if addr.version == target_af] if addr_exclude_list: addr_exclude_list = [addr_exclude for addr_exclude in addr_exclude_list if addr_exclude.version == target_af] addr_list = nacaddr.ExcludeAddrs(addr_list, addr_exclude_list) if len(addr_list) > 1: set_name = self._GenerateSetName(self.term.name, direction) self.addr_sets[direction] = (set_name, addr_list) addr_list = [self._all_ips] return addr_list def _GenerateAddressStatement(self, src_addr, dst_addr): """Returns the address section of an individual iptables rule. See _CalculateAddresses documentation. Three cases are possible here, and they map directly to cases in _CalculateAddresses. First, there can be no addresses for a direction (value is _all_ips then) In that case we return empty string. Second there can be stricly one address. In that case we return single address match (-s or -d). Third case, is when the value is _all_ips but also the set for particular direction is present. That's when we return a set match. Args: src_addr: ipaddr address or network object with source address of the rule. dst_addr: ipaddr address or network object with destination address of the rule. Returns: tuple containing source and destination address statement, in that order. """ src_addr_stmt = '' dst_addr_stmt = '' if src_addr and dst_addr: if src_addr == self._all_ips: if 'src' in self.addr_sets: src_addr_stmt = ('-m set --match-set %s src' % self.addr_sets['src'][0]) else: src_addr_stmt = '-s %s/%d' % (src_addr.network_address, src_addr.prefixlen) if dst_addr == self._all_ips: if 'dst' in self.addr_sets: dst_addr_stmt = ('-m set --match-set %s dst' % self.addr_sets['dst'][0]) else: dst_addr_stmt = '-d %s/%d' % (dst_addr.network_address, dst_addr.prefixlen) return (src_addr_stmt, dst_addr_stmt) def _GenerateSetName(self, term_name, suffix): if self.af == 'inet6': suffix += '-v6' if len(term_name) + len(suffix) + 1 > self._SET_MAX_LENGTH: set_name_max_lenth = self._SET_MAX_LENGTH - len(suffix) - 1 term_name = term_name[:set_name_max_lenth] return '%s-%s' % (term_name, suffix) class Ipset(iptables.Iptables): """Ipset generator.""" _PLATFORM = 'ipset' _SET_TYPE = 'hash:net' SUFFIX = '.ips' _TERM = Term _MARKER_BEGIN = '# begin:ipset-rules' _MARKER_END = '# end:ipset-rules' _GOOD_OPTIONS = ['nostate', 'abbreviateterms', 'truncateterms', 'noverbose', 'exists'] # TODO(vklimovs): some not trivial processing is happening inside this # __str__, replace with explicit method def __str__(self): # Actual rendering happens in __str__, so it has to be called # before we do set specific part. iptables_output = super().__str__() output = [] output.append(self._MARKER_BEGIN) for (_, _, _, _, terms) in self.iptables_policies: for term in terms: output.extend(self._GenerateSetConfig(term)) output.append(self._MARKER_END) output.append(iptables_output) return '\n'.join(output) def _GenerateSetConfig(self, term): """Generates set configuration for supplied term. Args: term: input term. Returns: string that is configuration of supplied term. """ output = [] c_str = 'create' a_str = 'add' if 'exists' in self.filter_options: c_str = c_str + ' -exist' a_str = a_str + ' -exist' for direction in sorted(term.addr_sets, reverse=True): set_name, addr_list = term.addr_sets[direction] set_hashsize = 1 << len(addr_list).bit_length() set_maxelem = set_hashsize output.append('%s %s %s family %s hashsize %i maxelem %i' % (c_str, set_name, self._SET_TYPE, term.af, set_hashsize, set_maxelem)) for address in addr_list: output.append('%s %s %s' % (a_str, set_name, address)) return output
stp_core/common/logging/handlers.py
andkononykhin/plenum
148
5700
<reponame>andkononykhin/plenum<filename>stp_core/common/logging/handlers.py import logging class CallbackHandler(logging.Handler): def __init__(self, typestr, default_tags, callback, override_tags): """ Initialize the handler. """ super().__init__() self.callback = callback self.tags = default_tags self.update_tags(override_tags or {}) self.typestr = typestr def update_tags(self, override_tags): self.tags.update(override_tags) def emit(self, record): """ Passes the log record back to the CLI for rendering """ should_cb = None attr_val = None if hasattr(record, self.typestr): attr_val = getattr(record, self.typestr) should_cb = bool(attr_val) if should_cb is None and record.levelno >= logging.INFO: should_cb = True if hasattr(record, 'tags'): for t in record.tags: if t in self.tags: if self.tags[t]: should_cb = True continue else: should_cb = False break if should_cb: self.callback(record, attr_val) class CliHandler(CallbackHandler): def __init__(self, callback, override_tags=None): default_tags = { "add_replica": True } super().__init__(typestr="cli", default_tags=default_tags, callback=callback, override_tags=override_tags) class DemoHandler(CallbackHandler): def __init__(self, callback, override_tags=None): default_tags = { "add_replica": True } super().__init__(typestr="demo", default_tags=default_tags, callback=callback, override_tags=override_tags) class TestingHandler(logging.Handler): def __init__(self, tester): """ Initialize the handler. """ super().__init__() self.tester = tester def emit(self, record): """ Captures a record. """ self.tester(record)
test/tst_vlen.py
timgates42/netcdf4-python
574
5712
import sys import unittest import os import tempfile from netCDF4 import Dataset import numpy as np from numpy.testing import assert_array_equal FILE_NAME = tempfile.NamedTemporaryFile(suffix='.nc', delete=False).name VL_NAME = 'vlen_type' VL_BASETYPE = np.int16 DIM1_NAME = 'lon' DIM2_NAME = 'lat' nlons = 5; nlats = 5 VAR1_NAME = 'ragged' VAR2_NAME = 'strings' VAR3_NAME = 'strings_alt' VAR4_NAME = 'string_scalar' VAR5_NAME = 'vlen_scalar' data = np.empty(nlats*nlons,object) datas = np.empty(nlats*nlons,object) nn = 0 for n in range(nlats*nlons): nn = nn + 1 data[n] = np.arange(nn,dtype=VL_BASETYPE) datas[n] = ''.join([chr(i) for i in range(97,97+nn+1)]) data = np.reshape(data,(nlats,nlons)) datas = np.reshape(datas,(nlats,nlons)) class VariablesTestCase(unittest.TestCase): def setUp(self): self.file = FILE_NAME f = Dataset(self.file,'w') vlen_t = f.createVLType(VL_BASETYPE, VL_NAME) f.createDimension(DIM1_NAME,nlons) f.createDimension(DIM2_NAME,nlats) ragged = f.createVariable(VAR1_NAME, vlen_t,\ (DIM2_NAME,DIM1_NAME)) strings = f.createVariable(VAR2_NAME, str, (DIM2_NAME,DIM1_NAME)) strings_alt = f.createVariable(VAR3_NAME, datas.astype(str).dtype, (DIM2_NAME, DIM1_NAME)) string_scalar = f.createVariable(VAR4_NAME,str,()) vlen_scalar = f.createVariable(VAR5_NAME,vlen_t,()) ragged[:] = data ragged[-1,-1] = data[-1,-1] strings[:] = datas strings[-2,-2] = datas[-2,-2] strings_alt[:] = datas.astype(str) string_scalar[...] = 'foo' #issue458 vlen_scalar[...] = np.array([1,2,3],np.int16) f.close() def tearDown(self): # Remove the temporary files os.remove(self.file) def runTest(self): """testing vlen variables""" f = Dataset(self.file, 'r') v = f.variables[VAR1_NAME] vs = f.variables[VAR2_NAME] vs_alt = f.variables[VAR3_NAME] assert list(f.vltypes.keys()) == [VL_NAME] assert f.vltypes[VL_NAME].dtype == VL_BASETYPE assert f.variables['string_scalar'][...] == 'foo' assert_array_equal(f.variables['vlen_scalar'][...],np.array([1,2,3],np.int16)) data2 = v[:] data2s = vs[:] for i in range(nlons): for j in range(nlats): assert_array_equal(data2[j,i], data[j,i]) assert datas[j,i] == data2s[j,i] assert_array_equal(datas, vs_alt[:]) f.close() class TestInvalidDataType(unittest.TestCase): def runTest(self): f = Dataset(FILE_NAME, 'w', format='NETCDF3_CLASSIC') f.createDimension('x', 1) # using assertRaisesRegext as a context manager # only works with python >= 2.7 (issue #497) #with self.assertRaisesRegexp(ValueError, 'strings are only supported'): # f.createVariable('foo', str, ('x',)) try: f.createVariable('foo', str, ('x',)) except ValueError: pass f.close() os.remove(FILE_NAME) class TestScalarVlenString(unittest.TestCase): # issue 333 def runTest(self): f = Dataset(FILE_NAME, 'w', format='NETCDF4') teststring = f.createVariable('teststring', str) stringout = "yyyymmdd_hhmmss" teststring[()] = stringout f.close() f = Dataset(FILE_NAME) assert f.variables['teststring'][:] == stringout f.close() os.remove(FILE_NAME) class TestIntegerIndex(unittest.TestCase): # issue 526 def runTest(self): strtest = Dataset(FILE_NAME, 'w', format='NETCDF4') strtest.createDimension('tenstrings', 10) strtest.createVariable('tenstrings', str, ['tenstrings']) strtest['tenstrings'][np.int32(5)] = 'asdf' strtest['tenstrings'][6.0] = 'asdf' strtest.close() f = Dataset(FILE_NAME) assert f.variables['tenstrings'][np.int32(5)] == 'asdf' assert f.variables['tenstrings'][6.0] == 'asdf' f.close() os.remove(FILE_NAME) class TestObjectArrayIndexing(unittest.TestCase): def setUp(self): self.file = FILE_NAME f = Dataset(self.file,'w') vlen_t = f.createVLType(VL_BASETYPE, VL_NAME) f.createDimension(DIM1_NAME,nlons) f.createDimension(DIM2_NAME,nlats) strings_alt = f.createVariable(VAR3_NAME, datas.astype(str).dtype, (DIM2_NAME, DIM1_NAME)) strings_alt[:] = datas.astype(str) f.close() def tearDown(self): # Remove the temporary files os.remove(self.file) def runTest(self): """testing vlen variables""" f = Dataset(self.file, 'r') vs_alt = f.variables[VAR3_NAME] unicode_strings = vs_alt[:] fancy_indexed = unicode_strings[0][[1,2,4]] assert fancy_indexed[0] == 'abc' assert fancy_indexed[1] == 'abcd' assert fancy_indexed[2] == 'abcdef' f.close() class VlenAppendTestCase(unittest.TestCase): def setUp(self): import netCDF4 if netCDF4.__netcdf4libversion__ < "4.4.1": self.skip = True try: self.skipTest("This test requires NetCDF 4.4.1 or later.") except AttributeError: # workaround for Python 2.6 (skipTest(reason) is new # in Python 2.7) pass else: self.skip = False self.file = FILE_NAME f = Dataset(self.file, 'w') vlen_type = f.createVLType(np.float64, 'vltest') f.createDimension('x', None) v = f.createVariable('vl', vlen_type, 'x') w = f.createVariable('vl2', np.float64, 'x') f.close() def tearDown(self): # Remove the temporary files os.remove(self.file) def runTest(self): """testing appending to vlen variables (issue #527).""" # workaround for Python 2.6 if self.skip: return f = Dataset(self.file, 'a') w = f.variables["vl2"] v = f.variables["vl"] w[0:3] = np.arange(3, dtype=np.float64) v[0] # sometimes crashes v[0].tolist() # sometimes crashes v[0].size # BOOM! f.close() class Vlen_ScaledInts(unittest.TestCase): def setUp(self): self.file = FILE_NAME nc = Dataset(self.file, 'w') vlen_type = nc.createVLType(np.uint8, 'vltest') nc.createDimension('x', None) v = nc.createVariable('vl', vlen_type, 'x') v.scale_factor = 1./254. v.missing_value=np.array(255,np.uint8) # random lengths between 1 and 1000 ilen = np.random.randint(1,1000,size=100) n = 0 for nlen in ilen: data = np.random.uniform(low=0.0, high=1.0, size=nlen) v[n] = data if n==99: self.data = data n += 1 nc.close() def tearDown(self): # Remove the temporary files os.remove(self.file) def runTest(self): """testing packing float vlens as scaled integers (issue #1003).""" nc = Dataset(self.file) data = nc['vl'][-1] # check max error of compression err = np.abs(data - self.data) assert(err.max() < nc['vl'].scale_factor) # turn off auto-scaling nc.set_auto_maskandscale(False) data = nc['vl'][-1] assert(data[-1] == np.around(self.data[-1]/nc['vl'].scale_factor)) nc.close() if __name__ == '__main__': unittest.main()
sonnet/src/once.py
ScriptBox99/deepmind-sonnet
10,287
5713
# Copyright 2019 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Utility to run functions and methods once.""" import uuid from sonnet.src import utils _ONCE_PROPERTY = "_snt_once" def _check_no_output(output): if output is not None: raise ValueError("@snt.once decorated functions cannot return values") def once(f): """Decorator which ensures a wrapped method is only ever run once. >>> @snt.once ... def f(): ... print('Hello, world!') >>> f() Hello, world! >>> f() >>> f() If `f` is a method then it will be evaluated once per instance: >>> class MyObject: ... @snt.once ... def f(self): ... print('Hello, world!') >>> o = MyObject() >>> o.f() Hello, world! >>> o.f() >>> o2 = MyObject() >>> o2.f() Hello, world! >>> o.f() >>> o2.f() If an error is raised during execution of `f` it will be raised to the user. Next time the method is run, it will be treated as not having run before. Args: f: A function to wrap which should only be called once. Returns: Wrapped version of `f` which will only evaluate `f` the first time it is called. """ # TODO(tomhennigan) Perhaps some more human friendly identifier? once_id = uuid.uuid4() @utils.decorator def wrapper(wrapped, instance, args, kwargs): """Decorator which ensures a wrapped method is only ever run once.""" if instance is None: # NOTE: We can't use the weakset since you can't weakref None. if not wrapper.seen_none: _check_no_output(wrapped(*args, **kwargs)) wrapper.seen_none = True return # Get or set the `seen` set for this object. seen = getattr(instance, _ONCE_PROPERTY, None) if seen is None: seen = set() setattr(instance, _ONCE_PROPERTY, seen) if once_id not in seen: _check_no_output(wrapped(*args, **kwargs)) seen.add(once_id) wrapper.seen_none = False decorated = wrapper(f) # pylint: disable=no-value-for-parameter,assignment-from-none decorated.__snt_once_wrapped__ = f return decorated
tests/_test_progress_board.py
stjordanis/Hyperactive
382
5716
<gh_stars>100-1000 import os, glob import subprocess from subprocess import DEVNULL, STDOUT abspath = os.path.abspath(__file__) dir_ = os.path.dirname(abspath) files = glob.glob(dir_ + "/_progress_board_tests/_test_progress_board_*.py") for file_path in files: file_name = str(file_path.rsplit("/", maxsplit=1)[1]) try: print("\033[0;33;40m Testing", file_name, end="...\r") subprocess.check_call(["pytest", file_path], stdout=DEVNULL, stderr=STDOUT) except subprocess.CalledProcessError: print("\033[0;31;40m Error in", file_name) else: print("\033[0;32;40m", file_name, "is correct")
allure/pytest_plugin.py
allure-framework/allure-pytest
112
5726
import uuid import pickle import pytest import argparse from collections import namedtuple from six import text_type from allure.common import AllureImpl, StepContext from allure.constants import Status, AttachmentType, Severity, \ FAILED_STATUSES, Label, SKIPPED_STATUSES from allure.utils import parent_module, parent_down_from_module, labels_of, \ all_of, get_exception_message, now, mangle_testnames from allure.structure import TestCase, TestStep, Attach, TestSuite, Failure, TestLabel def pytest_addoption(parser): parser.getgroup("reporting").addoption('--alluredir', action="store", dest="allurereportdir", metavar="DIR", default=None, help="Generate Allure report in the specified directory (may not exist)") severities = [v for (_, v) in all_of(Severity)] def label_type(name, legal_values=set()): """ argparse-type factory for labelish things. processed value is set of tuples (name, value). :param name: of label type (for future TestLabel things) :param legal_values: a `set` of values that are legal for this label, if any limit whatsoever :raises ArgumentTypeError: if `legal_values` are given and there are values that fall out of that """ def a_label_type(string): atoms = set(string.split(',')) if legal_values and not atoms < legal_values: raise argparse.ArgumentTypeError('Illegal {} values: {}, only [{}] are allowed'.format(name, ', '.join(atoms - legal_values), ', '.join(legal_values))) return set((name, v) for v in atoms) return a_label_type parser.getgroup("general").addoption('--allure_severities', action="store", dest="allureseverities", metavar="SEVERITIES_SET", default={}, type=label_type(name=Label.SEVERITY, legal_values=set(severities)), help="""Comma-separated list of severity names. Tests only with these severities will be run. Possible values are:%s.""" % ', '.join(severities)) parser.getgroup("general").addoption('--allure_features', action="store", dest="allurefeatures", metavar="FEATURES_SET", default={}, type=label_type(name=Label.FEATURE), help="""Comma-separated list of feature names. Run tests that have at least one of the specified feature labels.""") parser.getgroup("general").addoption('--allure_stories', action="store", dest="allurestories", metavar="STORIES_SET", default={}, type=label_type(name=Label.STORY), help="""Comma-separated list of story names. Run tests that have at least one of the specified story labels.""") def pytest_configure(config): reportdir = config.option.allurereportdir if reportdir: # we actually record something allure_impl = AllureImpl(reportdir) testlistener = AllureTestListener(config) pytest.allure._allurelistener = testlistener config.pluginmanager.register(testlistener) if not hasattr(config, 'slaveinput'): # on xdist-master node do all the important stuff config.pluginmanager.register(AllureAgregatingListener(allure_impl, config)) config.pluginmanager.register(AllureCollectionListener(allure_impl)) class AllureTestListener(object): """ Per-test listener. Is responsible for recording in-test data and for attaching it to the test report thing. The per-test reports are handled by `AllureAgregatingListener` at the `pytest_runtest_logreport` hook. """ def __init__(self, config): self.config = config self.environment = {} self.test = None # FIXME: that flag makes us pre-report failures in the makereport hook. # it is here to cope with xdist's begavior regarding -x. # see self.pytest_runtest_makereport and AllureAgregatingListener.pytest_sessionfinish self._magicaldoublereport = hasattr(self.config, 'slaveinput') and self.config.getvalue("maxfail") @pytest.mark.hookwrapper def pytest_runtest_protocol(self, item, nextitem): try: # for common items description = item.function.__doc__ except AttributeError: # for doctests that has no `function` attribute description = item.reportinfo()[2] self.test = TestCase(name='.'.join(mangle_testnames([x.name for x in parent_down_from_module(item)])), description=description, start=now(), attachments=[], labels=labels_of(item), status=None, steps=[], id=str(uuid.uuid4())) # for later resolution in AllureAgregatingListener.pytest_sessionfinish self.stack = [self.test] yield self.test = None self.stack = [] def attach(self, title, contents, attach_type): """ Store attachment object in current state for later actual write in the `AllureAgregatingListener.write_attach` """ attach = Attach(source=contents, # we later re-save those, oh my... title=title, type=attach_type) self.stack[-1].attachments.append(attach) def dynamic_issue(self, *issues): """ Attaches ``issues`` to the current active case """ if self.test: self.test.labels.extend([TestLabel(name=Label.ISSUE, value=issue) for issue in issues]) def description(self, description): """ Sets description for the test """ if self.test: self.test.description = description def start_step(self, name): """ Starts an new :py:class:`allure.structure.TestStep` with given ``name``, pushes it to the ``self.stack`` and returns the step. """ step = TestStep(name=name, title=name, start=now(), attachments=[], steps=[]) self.stack[-1].steps.append(step) self.stack.append(step) return step def stop_step(self): """ Stops the step at the top of ``self.stack`` """ step = self.stack.pop() step.stop = now() def _fill_case(self, report, call, pyteststatus, status): """ Finalizes with important data :param report: py.test's `TestReport` :param call: py.test's `CallInfo` :param pyteststatus: the failed/xfailed/xpassed thing :param status: a :py:class:`allure.constants.Status` entry """ [self.attach(name, contents, AttachmentType.TEXT) for (name, contents) in dict(report.sections).items()] self.test.stop = now() self.test.status = status if status in FAILED_STATUSES: self.test.failure = Failure(message=get_exception_message(call.excinfo, pyteststatus, report), trace=report.longrepr or hasattr(report, 'wasxfail') and report.wasxfail) elif status in SKIPPED_STATUSES: skip_message = type(report.longrepr) == tuple and report.longrepr[2] or report.wasxfail trim_msg_len = 89 short_message = skip_message.split('\n')[0][:trim_msg_len] # FIXME: see pytest.runner.pytest_runtest_makereport self.test.failure = Failure(message=(short_message + '...' * (len(skip_message) > trim_msg_len)), trace=status == Status.PENDING and report.longrepr or short_message != skip_message and skip_message or '') def report_case(self, item, report): """ Adds `self.test` to the `report` in a `AllureAggegatingListener`-understood way """ parent = parent_module(item) # we attach a four-tuple: (test module ID, test module name, test module doc, environment, TestCase) report.__dict__.update(_allure_result=pickle.dumps((parent.nodeid, parent.module.__name__, parent.module.__doc__ or '', self.environment, self.test))) @pytest.mark.hookwrapper def pytest_runtest_makereport(self, item, call): """ Decides when to actually report things. pytest runs this (naturally) three times -- with report.when being: setup <--- fixtures are to be initialized in this one call <--- when this finishes the main code has finished teardown <--- tears down fixtures (that still possess important info) `setup` and `teardown` are always called, but `call` is called only if `setup` passes. See :py:func:`_pytest.runner.runtestprotocol` for proofs / ideas. The "other side" (AllureAggregatingListener) expects us to send EXACTLY ONE test report (it wont break, but it will duplicate cases in the report -- which is bad. So we work hard to decide exact moment when we call `_stop_case` to do that. This method may benefit from FSM (we keep track of what has already happened via self.test.status) Expected behavior is: FAILED when call fails and others OK BROKEN when either setup OR teardown are broken (and call may be anything) PENDING if skipped and xfailed SKIPPED if skipped and not xfailed """ report = (yield).get_result() status = self.config.hook.pytest_report_teststatus(report=report) status = status and status[0] if report.when == 'call': if report.passed: self._fill_case(report, call, status, Status.PASSED) elif report.failed: self._fill_case(report, call, status, Status.FAILED) # FIXME: this is here only to work around xdist's stupid -x thing when in exits BEFORE THE TEARDOWN test log. Meh, i should file an issue to xdist if self._magicaldoublereport: # to minimize ze impact self.report_case(item, report) elif report.skipped: if hasattr(report, 'wasxfail'): self._fill_case(report, call, status, Status.PENDING) else: self._fill_case(report, call, status, Status.CANCELED) elif report.when == 'setup': # setup / teardown if report.failed: self._fill_case(report, call, status, Status.BROKEN) elif report.skipped: if hasattr(report, 'wasxfail'): self._fill_case(report, call, status, Status.PENDING) else: self._fill_case(report, call, status, Status.CANCELED) elif report.when == 'teardown': # as teardown is always called for testitem -- report our status here if not report.passed: if self.test.status not in FAILED_STATUSES: # if test was OK but failed at teardown => broken self._fill_case(report, call, status, Status.BROKEN) else: # mark it broken so, well, someone has idea of teardown failure # still, that's no big deal -- test has already failed # TODO: think about that once again self.test.status = Status.BROKEN # if a test isn't marked as "unreported" or it has failed, add it to the report. if not item.get_marker("unreported") or self.test.status in FAILED_STATUSES: self.report_case(item, report) def pytest_runtest_setup(item): item_labels = set((l.name, l.value) for l in labels_of(item)) # see label_type arg_labels = set().union(item.config.option.allurefeatures, item.config.option.allurestories, item.config.option.allureseverities) if arg_labels and not item_labels & arg_labels: pytest.skip('Not suitable with selected labels: %s.' % ', '.join(text_type(l) for l in sorted(arg_labels))) class LazyInitStepContext(StepContext): """ This is a step context used for decorated steps. It provides a possibility to create step decorators, being initiated before pytest_configure, when no AllureListener initiated yet. """ def __init__(self, allure_helper, title): self.allure_helper = allure_helper self.title = title self.step = None @property def allure(self): listener = self.allure_helper.get_listener() # if listener has `stack` we are inside a test # record steps only when that # FIXME: this breaks encapsulation a lot if hasattr(listener, 'stack'): return listener class AllureHelper(object): """ This object holds various utility methods used from ``pytest.allure`` namespace, like ``pytest.allure.attach`` """ def __init__(self): self._allurelistener = None # FIXME: this gets injected elsewhere, like in the pytest_configure def get_listener(self): return self._allurelistener def attach(self, name, contents, type=AttachmentType.TEXT): # @ReservedAssignment """ Attaches ``contents`` to a current context with given ``name`` and ``type``. """ if self._allurelistener: self._allurelistener.attach(name, contents, type) def label(self, name, *value): """ A decorator factory that returns ``pytest.mark`` for a given label. """ allure_label = getattr(pytest.mark, '%s.%s' % (Label.DEFAULT, name)) return allure_label(*value) def severity(self, severity): """ A decorator factory that returns ``pytest.mark`` for a given allure ``level``. """ return self.label(Label.SEVERITY, severity) def feature(self, *features): """ A decorator factory that returns ``pytest.mark`` for a given features. """ return self.label(Label.FEATURE, *features) def story(self, *stories): """ A decorator factory that returns ``pytest.mark`` for a given stories. """ return self.label(Label.STORY, *stories) def issue(self, *issues): """ A decorator factory that returns ``pytest.mark`` for a given issues. """ return self.label(Label.ISSUE, *issues) def dynamic_issue(self, *issues): """ Mark test ``issues`` from inside. """ if self._allurelistener: self._allurelistener.dynamic_issue(*issues) def description(self, description): """ Sets description for the test """ if self._allurelistener: self._allurelistener.description(description) def testcase(self, *testcases): """ A decorator factory that returns ``pytest.mark`` for a given testcases. """ return self.label(Label.TESTCASE, *testcases) def step(self, title): """ A contextmanager/decorator for steps. TODO: when moving to python 3, rework this with ``contextlib.ContextDecorator``. Usage examples:: import pytest def test_foo(): with pytest.allure.step('mystep'): assert False @pytest.allure.step('make test data') def make_test_data_bar(): raise ValueError('No data today') def test_bar(): assert make_test_data_bar() @pytest.allure.step def make_test_data_baz(): raise ValueError('No data today') def test_baz(): assert make_test_data_baz() @pytest.fixture() @pytest.allure.step('test fixture') def steppy_fixture(): return 1 def test_baz(steppy_fixture): assert steppy_fixture """ if callable(title): return LazyInitStepContext(self, title.__name__)(title) else: return LazyInitStepContext(self, title) def single_step(self, text): """ Writes single line to report. """ if self._allurelistener: with self.step(text): pass def environment(self, **env_dict): if self._allurelistener: self._allurelistener.environment.update(env_dict) @property def attach_type(self): return AttachmentType @property def severity_level(self): return Severity def __getattr__(self, attr): """ Provides fancy shortcuts for severity:: # these are the same pytest.allure.CRITICAL pytest.allure.severity(pytest.allure.severity_level.CRITICAL) """ if attr in dir(Severity) and not attr.startswith('_'): return self.severity(getattr(Severity, attr)) else: raise AttributeError MASTER_HELPER = AllureHelper() def pytest_namespace(): return {'allure': MASTER_HELPER} class AllureAgregatingListener(object): """ Listens to pytest hooks to generate reports for common tests. """ def __init__(self, impl, config): self.impl = impl # module's nodeid => TestSuite object self.suites = {} def pytest_sessionfinish(self): """ We are done and have all the results in `self.suites` Lets write em down. But first we kinda-unify the test cases. We expect cases to come from AllureTestListener -- and the have ._id field to manifest their identity. Of all the test cases in suite.testcases we leave LAST with the same ID -- becase logreport can be sent MORE THAN ONE TIME (namely, if the test fails and then gets broken -- to cope with the xdist's -x behavior we have to have tests even at CALL failures) TODO: do it in a better, more efficient way """ for s in self.suites.values(): if s.tests: # nobody likes empty suites s.stop = max(case.stop for case in s.tests) known_ids = set() refined_tests = [] for t in s.tests[::-1]: if t.id not in known_ids: known_ids.add(t.id) refined_tests.append(t) s.tests = refined_tests[::-1] with self.impl._reportfile('%s-testsuite.xml' % uuid.uuid4()) as f: self.impl._write_xml(f, s) self.impl.store_environment() def write_attach(self, attachment): """ Writes attachment object from the `AllureTestListener` to the FS, fixing it fields :param attachment: a :py:class:`allure.structure.Attach` object """ # OMG, that is bad attachment.source = self.impl._save_attach(attachment.source, attachment.type) attachment.type = attachment.type.mime_type def pytest_runtest_logreport(self, report): if hasattr(report, '_allure_result'): module_id, module_name, module_doc, environment, testcase = pickle.loads(report._allure_result) report._allure_result = None # so actual pickled data is garbage-collected, see https://github.com/allure-framework/allure-python/issues/98 self.impl.environment.update(environment) for a in testcase.iter_attachments(): self.write_attach(a) self.suites.setdefault(module_id, TestSuite(name=module_name, description=module_doc, tests=[], labels=[], start=testcase.start, # first case starts the suite! stop=None)).tests.append(testcase) CollectFail = namedtuple('CollectFail', 'name status message trace') class AllureCollectionListener(object): """ Listens to pytest collection-related hooks to generate reports for modules that failed to collect. """ def __init__(self, impl): self.impl = impl self.fails = [] def pytest_collectreport(self, report): if not report.passed: if report.failed: status = Status.BROKEN else: status = Status.CANCELED self.fails.append(CollectFail(name=mangle_testnames(report.nodeid.split("::"))[-1], status=status, message=get_exception_message(None, None, report), trace=report.longrepr)) def pytest_sessionfinish(self): """ Creates a testsuite with collection failures if there were any. """ if self.fails: self.impl.start_suite(name='test_collection_phase', title='Collection phase', description='This is the tests collection phase. Failures are modules that failed to collect.') for fail in self.fails: self.impl.start_case(name=fail.name.split(".")[-1]) self.impl.stop_case(status=fail.status, message=fail.message, trace=fail.trace) self.impl.stop_suite()
talleres_inov_docente/figures/plot_helpers.py
jfcaballero/Tutorial-sobre-scikit-learn-abreviado
576
5734
from matplotlib.colors import ListedColormap cm3 = ListedColormap(['#0000aa', '#ff2020', '#50ff50']) cm2 = ListedColormap(['#0000aa', '#ff2020'])
sympy/tensor/tests/test_functions.py
iamabhishek0/sympy
8,323
5743
<reponame>iamabhishek0/sympy<filename>sympy/tensor/tests/test_functions.py from sympy.tensor.functions import TensorProduct from sympy import MatrixSymbol, Matrix, Array from sympy.abc import x, y, z from sympy.abc import i, j, k, l A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) def test_TensorProduct_construction(): assert TensorProduct(3, 4) == 12 assert isinstance(TensorProduct(A, A), TensorProduct) expr = TensorProduct(TensorProduct(x, y), z) assert expr == x*y*z expr = TensorProduct(TensorProduct(A, B), C) assert expr == TensorProduct(A, B, C) expr = TensorProduct(Matrix.eye(2), [[0, -1], [1, 0]]) assert expr == Array([ [ [[0, -1], [1, 0]], [[0, 0], [0, 0]] ], [ [[0, 0], [0, 0]], [[0, -1], [1, 0]] ] ]) def test_TensorProduct_shape(): expr = TensorProduct(3, 4, evaluate=False) assert expr.shape == () assert expr.rank() == 0 expr = TensorProduct([1, 2], [x, y], evaluate=False) assert expr.shape == (2, 2) assert expr.rank() == 2 expr = TensorProduct(expr, expr, evaluate=False) assert expr.shape == (2, 2, 2, 2) assert expr.rank() == 4 expr = TensorProduct(Matrix.eye(2), [[0, -1], [1, 0]], evaluate=False) assert expr.shape == (2, 2, 2, 2) assert expr.rank() == 4 def test_TensorProduct_getitem(): expr = TensorProduct(A, B) assert expr[i, j, k, l] == A[i, j]*B[k, l]
mturk/comparison_among_different_models/sample_from_models_for_comparison.py
qiaone/GIF
322
5754
import sys sys.path.append('../../') import constants as cnst import os os.environ['PYTHONHASHSEED'] = '2' import tqdm from model.stg2_generator import StyledGenerator import numpy as np from my_utils.visualize_flame_overlay import OverLayViz from my_utils.flm_dynamic_fit_overlay import camera_ringnetpp from my_utils.generate_gif import generate_from_flame_sequence from my_utils.generic_utils import save_set_of_images from my_utils import compute_fid import constants from dataset_loaders import fast_image_reshape import torch from my_utils import generic_utils from my_utils.eye_centering import position_to_given_location def ge_gen_in(flm_params, textured_rndr, norm_map, normal_map_cond, texture_cond): if normal_map_cond and texture_cond: return torch.cat((textured_rndr, norm_map), dim=1) elif normal_map_cond: return norm_map elif texture_cond: return textured_rndr else: return flm_params # General settings save_images = True code_size = 236 use_inst_norm = True core_tensor_res = 4 resolution = 256 alpha = 1 step_max = int(np.log2(resolution) - 2) root_out_dir = f'{cnst.output_root}sample/' num_smpl_to_eval_on = 1000 use_styled_conv_stylegan2 = True flength = 5000 cam_t = np.array([0., 0., 0]) camera_params = camera_ringnetpp((512, 512), trans=cam_t, focal=flength) run_ids_1 = [29, ] # with sqrt(2) # run_ids_1 = [7, 24, 8, 3] # run_ids_1 = [7, 8, 3] settings_for_runs = \ {24: {'name': 'vector_cond', 'model_idx': '216000_1', 'normal_maps_as_cond': False, 'rendered_flame_as_condition': False, 'apply_sqrt2_fac_in_eq_lin': False}, 29: {'name': 'full_model', 'model_idx': '294000_1', 'normal_maps_as_cond': True, 'rendered_flame_as_condition': True, 'apply_sqrt2_fac_in_eq_lin': True}, 7: {'name': 'flm_rndr_tex_interp', 'model_idx': '051000_1', 'normal_maps_as_cond': False, 'rendered_flame_as_condition': True, 'apply_sqrt2_fac_in_eq_lin': False}, 3: {'name': 'norm_mp_tex_interp', 'model_idx': '203000_1', 'normal_maps_as_cond': True, 'rendered_flame_as_condition': False, 'apply_sqrt2_fac_in_eq_lin': False}, 8: {'name': 'norm_map_rend_flm_no_tex_interp', 'model_idx': '009000_1', 'normal_maps_as_cond': True, 'rendered_flame_as_condition': True, 'apply_sqrt2_fac_in_eq_lin': False},} overlay_visualizer = OverLayViz() # overlay_visualizer.setup_renderer(mesh_file=None) flm_params = np.zeros((num_smpl_to_eval_on, code_size)).astype('float32') fl_param_dict = np.load(cnst.all_flame_params_file, allow_pickle=True).item() for i, key in enumerate(fl_param_dict): flame_param = fl_param_dict[key] flame_param = np.hstack((flame_param['shape'], flame_param['exp'], flame_param['pose'], flame_param['cam'], flame_param['tex'], flame_param['lit'].flatten())) # tz = camera_params['f'][0] / (camera_params['c'][0] * flame_param[:, 156:157]) # flame_param[:, 156:159] = np.concatenate((flame_param[:, 157:], tz), axis=1) # import ipdb; ipdb.set_trace() flm_params[i, :] = flame_param.astype('float32') if i == num_smpl_to_eval_on - 1: break batch_size = 64 flame_decoder = overlay_visualizer.deca.flame.eval() for run_idx in run_ids_1: # import ipdb; ipdb.set_trace() generator_1 = torch.nn.DataParallel( StyledGenerator(embedding_vocab_size=69158, rendered_flame_ascondition=settings_for_runs[run_idx]['rendered_flame_as_condition'], normal_maps_as_cond=settings_for_runs[run_idx]['normal_maps_as_cond'], core_tensor_res=core_tensor_res, w_truncation_factor=1.0, apply_sqrt2_fac_in_eq_lin=settings_for_runs[run_idx]['apply_sqrt2_fac_in_eq_lin'], n_mlp=8)).cuda() model_idx = settings_for_runs[run_idx]['model_idx'] ckpt1 = torch.load(f'{cnst.output_root}checkpoint/{run_idx}/{model_idx}.model') generator_1.load_state_dict(ckpt1['generator_running']) generator_1 = generator_1.eval() # images = np.zeros((num_smpl_to_eval_on, 3, resolution, resolution)).astype('float32') pbar = tqdm.tqdm(range(0, num_smpl_to_eval_on, batch_size)) pbar.set_description('Generating_images') flame_mesh_imgs = None mdl_id = 'mdl2_' if settings_for_runs[run_idx]['name'] == 'full_model': mdl_id = 'mdl1_' for batch_idx in pbar: flm_batch = flm_params[batch_idx:batch_idx+batch_size, :] flm_batch = torch.from_numpy(flm_batch).cuda() flm_batch = position_to_given_location(flame_decoder, flm_batch) batch_size_true = flm_batch.shape[0] if settings_for_runs[run_idx]['normal_maps_as_cond'] or \ settings_for_runs[run_idx]['rendered_flame_as_condition']: cam = flm_batch[:, constants.DECA_IDX['cam'][0]:constants.DECA_IDX['cam'][1]:] shape = flm_batch[:, constants.INDICES['SHAPE'][0]:constants.INDICES['SHAPE'][1]] exp = flm_batch[:, constants.INDICES['EXP'][0]:constants.INDICES['EXP'][1]] pose = flm_batch[:, constants.INDICES['POSE'][0]:constants.INDICES['POSE'][1]] # import ipdb; ipdb.set_trace() light_code = \ flm_batch[:, constants.DECA_IDX['lit'][0]:constants.DECA_IDX['lit'][1]:].view((batch_size_true, 9, 3)) texture_code = flm_batch[:, constants.DECA_IDX['tex'][0]:constants.DECA_IDX['tex'][1]:] norma_map_img, _, _, _, rend_flm = \ overlay_visualizer.get_rendered_mesh(flame_params=(shape, exp, pose, light_code, texture_code), camera_params=cam) rend_flm = torch.clamp(rend_flm, 0, 1) * 2 - 1 norma_map_img = torch.clamp(norma_map_img, 0, 1) * 2 - 1 rend_flm = fast_image_reshape(rend_flm, height_out=256, width_out=256, mode='bilinear') norma_map_img = fast_image_reshape(norma_map_img, height_out=256, width_out=256, mode='bilinear') else: rend_flm = None norma_map_img = None gen_1_in = ge_gen_in(flm_batch, rend_flm, norma_map_img, settings_for_runs[run_idx]['normal_maps_as_cond'], settings_for_runs[run_idx]['rendered_flame_as_condition']) # torch.manual_seed(2) identity_embeddings = torch.randint(low=0, high=69158, size=(gen_1_in.shape[0], ), dtype=torch.long, device='cuda') mdl_1_gen_images = generic_utils.get_images_from_flame_params( flame_params=gen_1_in.cpu().numpy(), pose=None, model=generator_1, step=step_max, alpha=alpha, input_indices=identity_embeddings.cpu().numpy()) # import ipdb; ipdb.set_trace() images = torch.clamp(mdl_1_gen_images, -1, 1).cpu().numpy() flame_mesh_imgs = torch.clamp(rend_flm, -1, 1).cpu().numpy() save_path_current_id = os.path.join(root_out_dir, 'inter_model_comparison', settings_for_runs[run_idx]['name']) save_set_of_images(path=save_path_current_id, prefix=f'{mdl_id}_{batch_idx}', images=(images + 1) / 2, show_prog_bar=True) #save flam rndr save_path_current_id_flm_rndr = os.path.join(root_out_dir, 'inter_model_comparison', settings_for_runs[run_idx]['name']) save_set_of_images(path=save_path_current_id_flm_rndr, prefix=f'mesh_{batch_idx}', images=(flame_mesh_imgs + 1) / 2, show_prog_bar=True) # save_set_of_images(path=save_path_this_expt, prefix='mesh_', images=((norma_map_img + 1) / 2).cpu().numpy()) # save_set_of_images(path=save_path_this_expt, prefix='mdl1_', images=((mdl_1_gen_images + 1) / 2).cpu().numpy()) # save_set_of_images(path=save_path_this_expt, prefix='mdl2_', images=((mdl_2_gen_images + 1) / 2).cpu().numpy())
dymos/utils/test/test_hermite.py
kaushikponnapalli/dymos
104
5761
import unittest import numpy as np from numpy.testing import assert_almost_equal from dymos.utils.hermite import hermite_matrices class TestHermiteMatrices(unittest.TestCase): def test_quadratic(self): # Interpolate with values and rates provided at [-1, 1] in tau space tau_given = [-1.0, 1.0] tau_eval = np.linspace(-1, 1, 100) # In time space use the boundaries [-2, 2] dt_dtau = 4.0 / 2.0 # Provide values for y = t**2 and its time-derivative y_given = [4.0, 4.0] ydot_given = [-4.0, 4.0] # Get the hermite matrices. Ai, Bi, Ad, Bd = hermite_matrices(tau_given, tau_eval) # Interpolate y and ydot at tau_eval points in tau space. y_i = np.dot(Ai, y_given) + dt_dtau * np.dot(Bi, ydot_given) ydot_i = (1.0 / dt_dtau) * np.dot(Ad, y_given) + np.dot(Bd, ydot_given) # Compute our function as a point of comparison. y_computed = (tau_eval * dt_dtau)**2 ydot_computed = 2.0 * (tau_eval * dt_dtau) # Check results assert_almost_equal(y_i, y_computed) assert_almost_equal(ydot_i, ydot_computed) def test_cubic(self): # Interpolate with values and rates provided at [-1, 1] in tau space tau_given = [-1.0, 0.0, 1.0] tau_eval = np.linspace(-1, 1, 101) # In time space use the boundaries [-2, 2] dt_dtau = 4.0 / 2.0 # Provide values for y = t**2 and its time-derivative y_given = [-8.0, 0.0, 8.0] ydot_given = [12.0, 0.0, 12.0] # Get the hermite matrices. Ai, Bi, Ad, Bd = hermite_matrices(tau_given, tau_eval) # Interpolate y and ydot at tau_eval points in tau space. y_i = np.dot(Ai, y_given) + dt_dtau * np.dot(Bi, ydot_given) ydot_i = (1.0 / dt_dtau) * np.dot(Ad, y_given) + np.dot(Bd, ydot_given) # Compute our function as a point of comparison. y_computed = (tau_eval * dt_dtau)**3 ydot_computed = 3.0 * (tau_eval * dt_dtau)**2 # Check results assert_almost_equal(y_i, y_computed) assert_almost_equal(ydot_i, ydot_computed) if __name__ == '__main__': # pragma: no cover unittest.main()
observations/r/zea_mays.py
hajime9652/observations
199
5780
<gh_stars>100-1000 # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def zea_mays(path): """Darwin's Heights of Cross- and Self-fertilized Zea May Pairs Darwin (1876) studied the growth of pairs of zea may (aka corn) seedlings, one produced by cross-fertilization and the other produced by self-fertilization, but otherwise grown under identical conditions. His goal was to demonstrate the greater vigour of the cross-fertilized plants. The data recorded are the final height (inches, to the nearest 1/8th) of the plants in each pair. In the *Design of Experiments*, Fisher (1935) used these data to illustrate a paired t-test (well, a one-sample test on the mean difference, `cross - self`). Later in the book (section 21), he used this data to illustrate an early example of a non-parametric permutation test, treating each paired difference as having (randomly) either a positive or negative sign. A data frame with 15 observations on the following 4 variables. `pair` pair number, a numeric vector `pot` pot, a factor with levels `1` `2` `3` `4` `cross` height of cross fertilized plant, a numeric vector `self` height of self fertilized plant, a numeric vector `diff` `cross - self` for each pair <NAME>. (1876). *The Effect of Cross- and Self-fertilization in the Vegetable Kingdom*, 2nd Ed. London: <NAME>. <NAME>. and <NAME>. (1985) *Data: a collection of problems from many fields for the student and research worker*. New York: Springer. Data retrieved from: `https://www.stat.cmu.edu/StatDat/` Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `zea_mays.csv`. Returns: Tuple of np.ndarray `x_train` with 15 rows and 5 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'zea_mays.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/HistData/ZeaMays.csv' maybe_download_and_extract(path, url, save_file_name='zea_mays.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
recipes/libstudxml/all/conanfile.py
rockandsalt/conan-center-index
562
5787
from conans import ConanFile, AutoToolsBuildEnvironment, MSBuild, tools from conans.errors import ConanInvalidConfiguration import os import shutil required_conan_version = ">=1.33.0" class LibStudXmlConan(ConanFile): name = "libstudxml" description = "A streaming XML pull parser and streaming XML serializer implementation for modern, standard C++." topics = ("xml", "xml-parser", "serialization") url = "https://github.com/conan-io/conan-center-index" homepage = "https://www.codesynthesis.com/projects/libstudxml/" license = "MIT" settings = "os", "compiler", "build_type", "arch" exports_sources = "patches/*" options = { "shared": [True, False], "fPIC": [True, False], } default_options = { "shared": False, "fPIC": True, } _autotools = None @property def _source_subfolder(self): return "source_subfolder" def config_options(self): if self.settings.os == "Windows": del self.options.fPIC def configure(self): if self.options.shared: del self.options.fPIC def requirements(self): self.requires("expat/2.4.1") def validate(self): if self.settings.compiler == "Visual Studio": if tools.Version(self.settings.compiler.version) < "9": raise ConanInvalidConfiguration("Visual Studio {} is not supported.".format(self.settings.compiler.version)) @property def _settings_build(self): return getattr(self, "settings_build", self.settings) def build_requirements(self): if self.settings.compiler != "Visual Studio": self.build_requires("gnu-config/cci.20201022") self.build_requires("libtool/2.4.6") if self._settings_build.os == "Windows" and not tools.get_env("CONAN_BASH_PATH"): self.build_requires("msys2/cci.latest") def source(self): tools.get(**self.conan_data["sources"][self.version], destination=self._source_subfolder, strip_root=True) def _configure_autotools(self): if not self._autotools: args = ["--with-external-expat"] if self.options.shared: args.extend(["--enable-shared", "--disable-static"]) else: args.extend(["--disable-shared", "--enable-static"]) self._autotools = AutoToolsBuildEnvironment(self, win_bash=tools.os_info.is_windows) self._autotools.configure(configure_dir=self._source_subfolder, args=args) return self._autotools def _build_vs(self): vc_ver = int(tools.Version(self.settings.compiler.version).major) sln_path = None def get_sln_path(): return os.path.join(self._source_subfolder, "libstudxml-vc{}.sln".format(vc_ver)) sln_path = get_sln_path() while not os.path.exists(sln_path): vc_ver -= 1 sln_path = get_sln_path() proj_path = os.path.join(self._source_subfolder, "xml", "libstudxml-vc{}.vcxproj".format(vc_ver)) if not self.options.shared: tools.replace_in_file(proj_path, "DynamicLibrary", "StaticLibrary") tools.replace_in_file(proj_path, "LIBSTUDXML_DYNAMIC_LIB", "LIBSTUDXML_STATIC_LIB") msbuild = MSBuild(self) msbuild.build(sln_path, platforms={"x86": "Win32"}) @property def _user_info_build(self): return getattr(self, "user_info_build", self.deps_user_info) def _build_autotools(self): shutil.copy(self._user_info_build["gnu-config"].CONFIG_SUB, os.path.join(self._source_subfolder, "config", "config.sub")) shutil.copy(self._user_info_build["gnu-config"].CONFIG_GUESS, os.path.join(self._source_subfolder, "config", "config.guess")) if self.settings.compiler.get_safe("libcxx") == "libc++": # libc++ includes a file called 'version', and since libstudxml adds source_subfolder as an # include dir, libc++ ends up including their 'version' file instead, causing a compile error tools.remove_files_by_mask(self._source_subfolder, "version") with tools.chdir(self._source_subfolder): self.run("{} -fiv".format(tools.get_env("AUTORECONF")), win_bash=tools.os_info.is_windows) autotools = self._configure_autotools() autotools.make() def build(self): for patch in self.conan_data.get("patches", {}).get(self.version, []): tools.patch(**patch) if self.settings.compiler == "Visual Studio": self._build_vs() else: self._build_autotools() def package(self): self.copy(pattern="LICENSE", dst="licenses", src=self._source_subfolder) if self.settings.compiler == "Visual Studio": self.copy("xml/value-traits", dst="include", src=self._source_subfolder) self.copy("xml/serializer", dst="include", src=self._source_subfolder) self.copy("xml/qname", dst="include", src=self._source_subfolder) self.copy("xml/parser", dst="include", src=self._source_subfolder) self.copy("xml/forward", dst="include", src=self._source_subfolder) self.copy("xml/exception", dst="include", src=self._source_subfolder) self.copy("xml/content", dst="include", src=self._source_subfolder) self.copy("xml/*.ixx", dst="include", src=self._source_subfolder) self.copy("xml/*.txx", dst="include", src=self._source_subfolder) self.copy("xml/*.hxx", dst="include", src=self._source_subfolder) self.copy("xml/*.h", dst="include", src=self._source_subfolder) suffix = "" if self.settings.arch == "x86_64": suffix = "64" if self.options.shared: self.copy("*.lib", dst="lib", src=os.path.join(self._source_subfolder, "lib" + suffix)) self.copy("*.dll", dst="bin", src=os.path.join(self._source_subfolder, "bin" + suffix)) else: self.copy("*.lib", dst="lib", src=os.path.join(self._source_subfolder, "bin" + suffix)) else: autotools = self._configure_autotools() autotools.install() tools.remove_files_by_mask(os.path.join(self.package_folder, "lib"), "libstudxml.la") tools.rmdir(os.path.join(self.package_folder, "lib", "pkgconfig")) tools.rmdir(os.path.join(self.package_folder, "share")) def package_info(self): self.cpp_info.libs = tools.collect_libs(self) self.cpp_info.names["pkg_config"] = "libstudxml" # If built with makefile, static library mechanism is provided by their buildsystem already if self.settings.compiler == "Visual Studio" and not self.options.shared: self.cpp_info.defines = ["LIBSTUDXML_STATIC_LIB=1"]
plaso/formatters/interface.py
jonathan-greig/plaso
1,253
5813
<gh_stars>1000+ # -*- coding: utf-8 -*- """This file contains the event formatters interface classes. The l2t_csv and other formats are dependent on a message field, referred to as description_long and description_short in l2t_csv. Plaso no longer stores these field explicitly. A formatter, with a format string definition, is used to convert the event object values into a formatted string that is similar to the description_long and description_short field. """ import abc import re from plaso.formatters import logger class EventFormatterHelper(object): """Base class of helper for formatting event data.""" @abc.abstractmethod def FormatEventValues(self, event_values): """Formats event values using the helper. Args: event_values (dict[str, object]): event values. """ class BooleanEventFormatterHelper(EventFormatterHelper): """Helper for formatting boolean event data. Attributes: input_attribute (str): name of the attribute that contains the boolean input value. output_attribute (str): name of the attribute where the boolean output value should be stored. value_if_false (str): output value if the boolean input value is False. value_if_true (str): output value if the boolean input value is True. """ def __init__( self, input_attribute=None, output_attribute=None, value_if_false=None, value_if_true=None): """Initialized a helper for formatting boolean event data. Args: input_attribute (Optional[str]): name of the attribute that contains the boolean input value. output_attribute (Optional[str]): name of the attribute where the boolean output value should be stored. value_if_false (str): output value if the boolean input value is False. value_if_true (str): output value if the boolean input value is True. """ super(BooleanEventFormatterHelper, self).__init__() self.input_attribute = input_attribute self.output_attribute = output_attribute self.value_if_false = value_if_false self.value_if_true = value_if_true def FormatEventValues(self, event_values): """Formats event values using the helper. Args: event_values (dict[str, object]): event values. """ input_value = event_values.get(self.input_attribute, None) if input_value: output_value = self.value_if_true else: output_value = self.value_if_false event_values[self.output_attribute] = output_value class CustomEventFormatterHelper(EventFormatterHelper): """Base class for a helper for custom formatting of event data.""" DATA_TYPE = '' IDENTIFIER = '' @abc.abstractmethod def FormatEventValues(self, event_values): """Formats event values using the helper. Args: event_values (dict[str, object]): event values. """ class EnumerationEventFormatterHelper(EventFormatterHelper): """Helper for formatting enumeration event data. Attributes: default (str): default value. input_attribute (str): name of the attribute that contains the enumeration input value. output_attribute (str): name of the attribute where the enumeration output value should be stored. values (dict[str, str]): mapping of enumeration input and output values. """ def __init__( self, default=None, input_attribute=None, output_attribute=None, values=None): """Initialized a helper for formatting enumeration event data. Args: default (Optional[str]): default value. input_attribute (Optional[str]): name of the attribute that contains the enumeration input value. output_attribute (Optional[str]): name of the attribute where the enumeration output value should be stored. values (Optional[dict[str, str]]): mapping of enumeration input and output values. """ super(EnumerationEventFormatterHelper, self).__init__() self.default = default self.input_attribute = input_attribute self.output_attribute = output_attribute self.values = values or {} def FormatEventValues(self, event_values): """Formats event values using the helper. If default value is None and there is no corresponding enumeration value then the original value is used. Args: event_values (dict[str, object]): event values. """ input_value = event_values.get(self.input_attribute, None) if input_value is not None: default_value = self.default if default_value is None: default_value = input_value event_values[self.output_attribute] = self.values.get( input_value, default_value) class FlagsEventFormatterHelper(EventFormatterHelper): """Helper for formatting flags event data. Attributes: input_attribute (str): name of the attribute that contains the flags input value. output_attribute (str): name of the attribute where the flags output value should be stored. values (dict[str, str]): mapping of flags input and output values. """ def __init__( self, input_attribute=None, output_attribute=None, values=None): """Initialized a helper for formatting flags event data. Args: input_attribute (Optional[str]): name of the attribute that contains the flags input value. output_attribute (Optional[str]): name of the attribute where the flags output value should be stored. values (Optional[dict[str, str]]): mapping of flags input and output values. """ super(FlagsEventFormatterHelper, self).__init__() self.input_attribute = input_attribute self.output_attribute = output_attribute self.values = values or {} def FormatEventValues(self, event_values): """Formats event values using the helper. Args: event_values (dict[str, object]): event values. """ input_value = event_values.get(self.input_attribute, None) if input_value is None: return output_values = [] for flag, mapped_value in self.values.items(): if flag & input_value: output_values.append(mapped_value) event_values[self.output_attribute] = ', '.join(output_values) class EventFormatter(object): """Base class to format event values. Attributes: custom_helpers (list[str]): identifiers of custom event formatter helpers. helpers (list[EventFormatterHelper]): event formatter helpers. """ # The format string can be defined as: # {name}, {name:format}, {name!conversion}, {name!conversion:format} _FORMAT_STRING_ATTRIBUTE_NAME_RE = re.compile( '{([a-z][a-zA-Z0-9_]*)[!]?[^:}]*[:]?[^}]*}') def __init__(self, data_type='internal'): """Initializes an event formatter. Args: data_type (Optional[str]): unique identifier for the event data supported by the formatter. """ super(EventFormatter, self).__init__() self._data_type = data_type self._format_string_attribute_names = None self.custom_helpers = [] self.helpers = [] @property def data_type(self): """str: unique identifier for the event data supported by the formatter.""" return self._data_type.lower() def _FormatMessage(self, format_string, event_values): """Determines the formatted message. Args: format_string (str): message format string. event_values (dict[str, object]): event values. Returns: str: formatted message. """ try: message_string = format_string.format(**event_values) except KeyError as exception: data_type = event_values.get('data_type', 'N/A') display_name = event_values.get('display_name', 'N/A') event_identifier = event_values.get('uuid', 'N/A') parser_chain = event_values.get('parser', 'N/A') error_message = ( 'unable to format string: "{0:s}" missing required event ' 'value: {1!s}').format(format_string, exception) error_message = ( 'Event: {0:s} data type: {1:s} display name: {2:s} ' 'parser chain: {3:s} with error: {4:s}').format( event_identifier, data_type, display_name, parser_chain, error_message) logger.error(error_message) attribute_values = [] for attribute, value in event_values.items(): attribute_values.append('{0:s}: {1!s}'.format(attribute, value)) message_string = ' '.join(attribute_values) except UnicodeDecodeError as exception: data_type = event_values.get('data_type', 'N/A') display_name = event_values.get('display_name', 'N/A') event_identifier = event_values.get('uuid', 'N/A') parser_chain = event_values.get('parser', 'N/A') error_message = 'Unicode decode error: {0!s}'.format(exception) error_message = ( 'Event: {0:s} data type: {1:s} display name: {2:s} ' 'parser chain: {3:s} with error: {4:s}').format( event_identifier, data_type, display_name, parser_chain, error_message) logger.error(error_message) message_string = '' # Strip carriage return and linefeed form the message strings. # Using replace function here because it is faster than re.sub() or # string.strip(). return message_string.replace('\r', '').replace('\n', '') def FormatEventValues(self, event_values): """Formats event values using the helpers. Args: event_values (dict[str, object]): event values. """ for helper in self.helpers: helper.FormatEventValues(event_values) @abc.abstractmethod def GetFormatStringAttributeNames(self): """Retrieves the attribute names in the format string. Returns: set(str): attribute names. """ # pylint: disable=unused-argument def AddCustomHelper( self, identifier, input_attribute=None, output_attribute=None): """Adds a custom event formatter helper. Args: identifier (str): identifier. input_attribute (Optional[str]): name of the attribute that contains the input value. output_attribute (Optional[str]): name of the attribute where the output value should be stored. """ self.custom_helpers.append(identifier) def AddHelper(self, helper): """Adds an event formatter helper. Args: helper (EventFormatterHelper): event formatter helper to add. """ self.helpers.append(helper) @abc.abstractmethod def GetMessage(self, event_values): """Determines the message. Args: event_values (dict[str, object]): event values. Returns: str: message. """ @abc.abstractmethod def GetMessageShort(self, event_values): """Determines the short message. Args: event_values (dict[str, object]): event values. Returns: str: short message. """ class BasicEventFormatter(EventFormatter): """Format event values using a message format string. Attributes: custom_helpers (list[str]): identifiers of custom event formatter helpers. helpers (list[EventFormatterHelper]): event formatter helpers. """ def __init__( self, data_type='basic', format_string=None, format_string_short=None): """Initializes a basic event formatter. The syntax of the format strings is similar to that of format() where the place holder for a certain event object attribute is defined as {attribute_name}. Args: data_type (Optional[str]): unique identifier for the event data supported by the formatter. format_string (Optional[str]): (long) message format string. format_string_short (Optional[str]): short message format string. """ super(BasicEventFormatter, self).__init__(data_type=data_type) self._format_string_attribute_names = None self._format_string = format_string self._format_string_short = format_string_short def GetFormatStringAttributeNames(self): """Retrieves the attribute names in the format string. Returns: set(str): attribute names. """ if self._format_string_attribute_names is None: self._format_string_attribute_names = ( self._FORMAT_STRING_ATTRIBUTE_NAME_RE.findall( self._format_string)) return set(self._format_string_attribute_names) def GetMessage(self, event_values): """Determines the message. Args: event_values (dict[str, object]): event values. Returns: str: message. """ return self._FormatMessage(self._format_string, event_values) def GetMessageShort(self, event_values): """Determines the short message. Args: event_values (dict[str, object]): event values. Returns: str: short message. """ if self._format_string_short: format_string = self._format_string_short else: format_string = self._format_string short_message_string = self._FormatMessage(format_string, event_values) # Truncate the short message string if necessary. if len(short_message_string) > 80: short_message_string = '{0:s}...'.format(short_message_string[:77]) return short_message_string class ConditionalEventFormatter(EventFormatter): """Conditionally format event values using format string pieces.""" _DEFAULT_FORMAT_STRING_SEPARATOR = ' ' def __init__( self, data_type='conditional', format_string_pieces=None, format_string_separator=None, format_string_short_pieces=None): """Initializes a conditional event formatter. The syntax of the format strings pieces is similar to of the basic event formatter (BasicEventFormatter). Every format string piece should contain at maximum one unique attribute name. Format string pieces without an attribute name are supported. Args: data_type (Optional[str]): unique identifier for the event data supported by the formatter. format_string_pieces (Optional[list[str]]): (long) message format string pieces. format_string_separator (Optional[str]): string by which separate format string pieces should be joined. format_string_short_pieces (Optional[list[str]]): short message format string pieces. """ if format_string_separator is None: format_string_separator = self._DEFAULT_FORMAT_STRING_SEPARATOR super(ConditionalEventFormatter, self).__init__(data_type=data_type) self._format_string_pieces = format_string_pieces or [] self._format_string_pieces_map = [] self._format_string_separator = format_string_separator self._format_string_short_pieces = format_string_short_pieces or [] self._format_string_short_pieces_map = [] def _CreateFormatStringMap( self, format_string_pieces, format_string_pieces_map): """Creates a format string map. The format string pieces map is a list containing the attribute name per format string piece. E.g. ["Description: {description}"] would be mapped to: [0] = "description". If the string piece does not contain an attribute name it is treated as text that does not needs formatting. Args: format_string_pieces (list[str]): format string pieces. format_string_pieces_map (list[str]): format string pieces map. Raises: RuntimeError: when an invalid format string piece is encountered. """ for format_string_piece in format_string_pieces: attribute_names = self._FORMAT_STRING_ATTRIBUTE_NAME_RE.findall( format_string_piece) if len(set(attribute_names)) > 1: raise RuntimeError(( 'Invalid format string piece: [{0:s}] contains more than 1 ' 'attribute name.').format(format_string_piece)) if not attribute_names: # The text format string piece is stored as an empty map entry to keep # the index in the map equal to the format string pieces. attribute_name = '' else: attribute_name = attribute_names[0] format_string_pieces_map.append(attribute_name) def _CreateFormatStringMaps(self): """Creates the format string maps. Maps are built of the string pieces and their corresponding attribute name to optimize conditional string formatting. Raises: RuntimeError: when an invalid format string piece is encountered. """ self._format_string_pieces_map = [] self._CreateFormatStringMap( self._format_string_pieces, self._format_string_pieces_map) self._format_string_short_pieces_map = [] self._CreateFormatStringMap( self._format_string_short_pieces, self._format_string_short_pieces_map) def _ConditionalFormatMessage( self, format_string_pieces, format_string_pieces_map, event_values): """Determines the conditional formatted message. Args: format_string_pieces (dict[str, str]): format string pieces. format_string_pieces_map (list[int, str]): format string pieces map. event_values (dict[str, object]): event values. Returns: str: conditional formatted message. Raises: RuntimeError: when an invalid format string piece is encountered. """ string_pieces = [] for map_index, attribute_name in enumerate(format_string_pieces_map): if not attribute_name or event_values.get( attribute_name, None) is not None: string_pieces.append(format_string_pieces[map_index]) format_string = self._format_string_separator.join(string_pieces) return self._FormatMessage(format_string, event_values) def GetFormatStringAttributeNames(self): """Retrieves the attribute names in the format string. Returns: set(str): attribute names. """ if self._format_string_attribute_names is None: self._format_string_attribute_names = [] for format_string_piece in self._format_string_pieces: attribute_names = self._FORMAT_STRING_ATTRIBUTE_NAME_RE.findall( format_string_piece) if attribute_names: self._format_string_attribute_names.extend(attribute_names) return set(self._format_string_attribute_names) def GetMessage(self, event_values): """Determines the message. Args: event_values (dict[str, object]): event values. Returns: str: message. """ if not self._format_string_pieces_map: self._CreateFormatStringMaps() return self._ConditionalFormatMessage( self._format_string_pieces, self._format_string_pieces_map, event_values) def GetMessageShort(self, event_values): """Determines the short message. Args: event_values (dict[str, object]): event values. Returns: str: short message. """ if not self._format_string_pieces_map: self._CreateFormatStringMaps() if (self._format_string_short_pieces and self._format_string_short_pieces != ['']): format_string_pieces = self._format_string_short_pieces format_string_pieces_map = self._format_string_short_pieces_map else: format_string_pieces = self._format_string_pieces format_string_pieces_map = self._format_string_pieces_map short_message_string = self._ConditionalFormatMessage( format_string_pieces, format_string_pieces_map, event_values) # Truncate the short message string if necessary. if len(short_message_string) > 80: short_message_string = '{0:s}...'.format(short_message_string[:77]) return short_message_string
audiomate/annotations/label_list.py
CostanzoPablo/audiomate
133
5820
import collections import copy import intervaltree from .label import Label class LabelList: """ Represents a list of labels which describe an utterance. An utterance can have multiple label-lists. Args: idx (str): An unique identifier for the label-list within a corpus for one utterance. labels (list): The list containing the :py:class:`audiomate.annotations.Label`. Attributes: utterance (Utterance): The utterance this label-list is belonging to. label_tree (IntervalTree): The interval-tree storing the labels. Example: >>> label_list = LabelList(idx='transcription', labels=[ >>> Label('this', 0, 2), >>> Label('is', 2, 4), >>> Label('timmy', 4, 8) >>> ]) """ __slots__ = ['idx', 'label_tree', 'utterance'] def __init__(self, idx='default', labels=None): self.idx = idx self.utterance = None self.label_tree = intervaltree.IntervalTree() if labels is not None: self.update(labels) def __eq__(self, other): data_this = (self.idx, self.label_tree) data_other = (other.idx, other.label_tree) return data_this == data_other def __iter__(self): for interval in self.label_tree: yield interval.data def __len__(self): return self.label_tree.__len__() def __copy__(self): # utterance is ignored intentionally, # since it is kind of a weak ref return LabelList( idx=self.idx, labels=[iv.data for iv in self.label_tree] ) def __deepcopy__(self, memo): # utterance is ignored intentionally, # since it is kind of a weak ref return LabelList( idx=self.idx, labels=copy.deepcopy([iv.data for iv in self.label_tree], memo) ) @property def labels(self): """ Return list of labels. """ return list(self) @property def start(self): """ Return start of the earliest starting label (lower bound). """ return self.label_tree.begin() @property def end(self): """ Return end of the lastly ending label (upper bound). """ return self.label_tree.end() @property def total_length(self): """ Return the cumulative length of all labels (Number of characters). """ return sum(label.length for label in self.labels) # # Alteration # def add(self, label): """ Add a label to the end of the list. Args: label (Label): The label to add. """ label.label_list = self self.label_tree.addi(label.start, label.end, label) def addl(self, value, start=0.0, end=float('inf')): """ Shortcut for ``add(Label(value, start, end))``. """ self.add(Label(value, start=start, end=end)) def update(self, labels): """ Add a list of labels to the end of the list. Args: labels (list): Labels to add. """ ivs = [] for label in labels: label.label_list = self ivs.append(intervaltree.Interval(label.start, label.end, label)) self.label_tree.update(ivs) def apply(self, fn): """ Apply the given function `fn` to every label in this label list. `fn` is a function of one argument that receives the current label which can then be edited in place. Args: fn (func): Function to apply to every label Example: >>> ll = LabelList(labels=[ ... Label('a_label', 1.0, 2.0), ... Label('another_label', 2.0, 3.0) ... ]) >>> def shift_labels(label): ... label.start += 1.0 ... label.end += 1.0 ... >>> ll.apply(shift_labels) >>> ll.labels [Label(a_label, 2.0, 3.0), Label(another_label, 3.0, 4.0)] """ for label in self.labels: fn(label) def merge_overlaps(self, threshold=0.0): """ Merge overlapping labels with the same value. Two labels are considered overlapping, if ``l2.start - l1.end < threshold``. Args: threshold (float): Maximal distance between two labels to be considered as overlapping. (default: 0.0) Example: >>> ll = LabelList(labels=[ ... Label('a_label', 1.0, 2.0), ... Label('a_label', 1.5, 2.7), ... Label('b_label', 1.0, 2.0), ... ]) >>> ll.merge_overlapping_labels() >>> ll.labels [ Label('a_label', 1.0, 2.7), Label('b_label', 1.0, 2.0), ] """ updated_labels = [] all_intervals = self.label_tree.copy() # recursivly find a group of overlapping labels with the same value def recursive_overlaps(interval): range_start = interval.begin - threshold range_end = interval.end + threshold direct_overlaps = all_intervals.overlap(range_start, range_end) all_overlaps = [interval] all_intervals.discard(interval) for overlap in direct_overlaps: if overlap.data.value == interval.data.value: all_overlaps.extend(recursive_overlaps(overlap)) return all_overlaps # For every remaining interval # - Find overlapping intervals recursively # - Remove them # - Create a concatenated new label while not all_intervals.is_empty(): next_interval = list(all_intervals)[0] overlapping = recursive_overlaps(next_interval) ov_start = float('inf') ov_end = 0.0 ov_value = next_interval.data.value for overlap in overlapping: ov_start = min(ov_start, overlap.begin) ov_end = max(ov_end, overlap.end) all_intervals.discard(overlap) updated_labels.append(Label( ov_value, ov_start, ov_end )) # Replace the old labels with the updated ones self.label_tree.clear() self.update(updated_labels) # # Statistics # def label_total_duration(self): """ Return for each distinct label value the total duration of all occurrences. Returns: dict: A dictionary containing for every label-value (key) the total duration in seconds (value). Example: >>> ll = LabelList(labels=[ >>> Label('a', 3, 5), >>> Label('b', 5, 8), >>> Label('a', 8, 10), >>> Label('b', 10, 14), >>> Label('a', 15, 18.5) >>> ]) >>> ll.label_total_duration() {'a': 7.5 'b': 7.0} """ durations = collections.defaultdict(float) for label in self: durations[label.value] += label.duration return durations def label_values(self): """ Return a list of all occuring label values. Returns: list: Lexicographically sorted list (str) of label values. Example: >>> ll = LabelList(labels=[ >>> Label('a', 3.2, 4.5), >>> Label('b', 5.1, 8.9), >>> Label('c', 7.2, 10.5), >>> Label('d', 10.5, 14), >>> Label('d', 15, 18) >>> ]) >>> ll.label_values() ['a', 'b', 'c', 'd'] """ all_labels = {l.value for l in self} return sorted(all_labels) def label_count(self): """ Return for each label the number of occurrences within the list. Returns: dict: A dictionary containing for every label-value (key) the number of occurrences (value). Example: >>> ll = LabelList(labels=[ >>> Label('a', 3.2, 4.5), >>> Label('b', 5.1, 8.9), >>> Label('a', 7.2, 10.5), >>> Label('b', 10.5, 14), >>> Label('a', 15, 18) >>> ]) >>> ll.label_count() {'a': 3 'b': 2} """ occurrences = collections.defaultdict(int) for label in self: occurrences[label.value] += 1 return occurrences def all_tokens(self, delimiter=' '): """ Return a list of all tokens occurring in the label-list. Args: delimiter (str): The delimiter used to split labels into tokens. See :meth:`audiomate.annotations.Label.tokenized` Returns: :class:`set`: A set of distinct tokens. """ tokens = set() for label in self: tokens = tokens.union(set(label.tokenized(delimiter=delimiter))) return tokens # # Query Label Values # def join(self, delimiter=' ', overlap_threshold=0.1): """ Return a string with all labels concatenated together. The order of the labels is defined by the start of the label. If the overlapping between two labels is greater than ``overlap_threshold``, an Exception is thrown. Args: delimiter (str): A string to join two consecutive labels. overlap_threshold (float): Maximum overlap between two consecutive labels. Returns: str: A string with all labels concatenated together. Example: >>> ll = LabelList(idx='some', labels=[ >>> Label('a', start=0, end=4), >>> Label('b', start=3.95, end=6.0), >>> Label('c', start=7.0, end=10.2), >>> Label('d', start=10.3, end=14.0) >>> ]) >>> ll.join(' - ') 'a - b - c - d' """ sorted_by_start = sorted(self.labels) concat_values = [] last_label_end = None for label in sorted_by_start: if last_label_end is None or (last_label_end - label.start < overlap_threshold and last_label_end > 0): concat_values.append(label.value) last_label_end = label.end else: raise ValueError('Labels overlap, not able to define the correct order') return delimiter.join(concat_values) def tokenized(self, delimiter=' ', overlap_threshold=0.1): """ Return a ordered list of tokens based on all labels. Joins all token from all labels (``label.tokenized()```). If the overlapping between two labels is greater than ``overlap_threshold``, an Exception is thrown. Args: delimiter (str): The delimiter used to split labels into tokens. (default: space) overlap_threshold (float): Maximum overlap between two consecutive labels. Returns: str: A list containing tokens of all labels ordered according to the label order. Example: >>> ll = LabelList(idx='some', labels=[ >>> Label('a d q', start=0, end=4), >>> Label('b', start=3.95, end=6.0), >>> Label('c a', start=7.0, end=10.2), >>> Label('f g', start=10.3, end=14.0) >>> ]) >>> ll.tokenized(delimiter=' ', overlap_threshold=0.1) ['a', 'd', 'q', 'b', 'c', 'a', 'f', 'g'] """ sorted_by_start = sorted(self.labels) tokens = [] last_label_end = None for label in sorted_by_start: if last_label_end is None or (last_label_end - label.start < overlap_threshold and last_label_end > 0): tokens.extend(label.tokenized(delimiter=delimiter)) last_label_end = label.end else: raise ValueError('Labels overlap, not able to define the correct order') return tokens # # Restructuring # def separated(self): """ Create a separate Label-List for every distinct label-value. Returns: dict: A dictionary with distinct label-values as keys. Every value is a LabelList containing only labels with the same value. Example: >>> ll = LabelList(idx='some', labels=[ >>> Label('a', start=0, end=4), >>> Label('b', start=3.95, end=6.0), >>> Label('a', start=7.0, end=10.2), >>> Label('b', start=10.3, end=14.0) >>> ]) >>> s = ll.separate() >>> s['a'].labels [Label('a', start=0, end=4), Label('a', start=7.0, end=10.2)] >>> s['b'].labels [Label('b', start=3.95, end=6.0), Label('b', start=10.3, end=14.0)] """ separated_lls = collections.defaultdict(LabelList) for label in self.labels: separated_lls[label.value].add(label) for ll in separated_lls.values(): ll.idx = self.idx return separated_lls def labels_in_range(self, start, end, fully_included=False): """ Return a list of labels, that are within the given range. Also labels that only overlap are included. Args: start(float): Start-time in seconds. end(float): End-time in seconds. fully_included(bool): If ``True``, only labels fully included in the range are returned. Otherwise also overlapping ones are returned. (default ``False``) Returns: list: List of labels in the range. Example: >>> ll = LabelList(labels=[ >>> Label('a', 3.2, 4.5), >>> Label('b', 5.1, 8.9), >>> Label('c', 7.2, 10.5), >>> Label('d', 10.5, 14) >>>]) >>> ll.labels_in_range(6.2, 10.1) [Label('b', 5.1, 8.9), Label('c', 7.2, 10.5)] """ if fully_included: intervals = self.label_tree.envelop(start, end) else: intervals = self.label_tree.overlap(start, end) return [iv.data for iv in intervals] def ranges(self, yield_ranges_without_labels=False, include_labels=None): """ Generate all ranges of the label-list. A range is defined as a part of the label-list for which the same labels are defined. Args: yield_ranges_without_labels(bool): If True also yields ranges for which no labels are defined. include_labels(list): If not empty, only the label values in the list will be considered. Returns: generator: A generator which yields one range (tuple start/end/list-of-labels) at a time. Example: >>> ll = LabelList(labels=[ >>> Label('a', 3.2, 4.5), >>> Label('b', 5.1, 8.9), >>> Label('c', 7.2, 10.5), >>> Label('d', 10.5, 14) >>>]) >>> ranges = ll.ranges() >>> next(ranges) (3.2, 4.5, [ < audiomate.annotations.Label at 0x1090527c8 > ]) >>> next(ranges) (4.5, 5.1, []) >>> next(ranges) (5.1, 7.2, [ < audiomate.annotations.label.Label at 0x1090484c8 > ]) """ tree_copy = self.label_tree.copy() # Remove labels not included if include_labels is not None: for iv in list(tree_copy): if iv.data.value not in include_labels: tree_copy.remove(iv) def reduce(x, y): x.append(y) return x # Split labels when overlapping and merge equal ranges to a list of labels tree_copy.split_overlaps() tree_copy.merge_equals(data_reducer=reduce, data_initializer=[]) intervals = sorted(tree_copy) last_end = intervals[0].begin # yield range by range for iv in intervals: # yield an empty range if necessary if yield_ranges_without_labels and iv.begin > last_end: yield (last_end, iv.begin, []) yield (iv.begin, iv.end, iv.data) last_end = iv.end def split(self, cutting_points, shift_times=False, overlap=0.0): """ Split the label-list into x parts and return them as new label-lists. x is defined by the number of cutting-points (``x == len(cutting_points) + 1``). The result is a list of label-lists corresponding to each part. Label-list 0 contains labels between ``0`` and ``cutting_points[0]``. Label-list 1 contains labels between ``cutting_points[0]`` and ``cutting_points[1]``. And so on. Args: cutting_points(list): List of floats defining the points in seconds, where the label-list is splitted. shift_times(bool): If True, start and end-time are shifted in splitted label-lists. So the start is relative to the cutting point and not to the beginning of the original label-list. overlap(float): Amount of overlap in seconds. This amount is subtracted from a start-cutting-point, and added to a end-cutting-point. Returns: list: A list of of: class: `audiomate.annotations.LabelList`. Example: >>> ll = LabelList(labels=[ >>> Label('a', 0, 5), >>> Label('b', 5, 10), >>> Label('c', 11, 15), >>>]) >>> >>> res = ll.split([4.1, 8.9, 12.0]) >>> len(res) 4 >>> res[0].labels [Label('a', 0.0, 4.1)] >>> res[1].labels [ Label('a', 4.1, 5.0), Label('b', 5.0, 8.9) ] >>> res[2].labels [ Label('b', 8.9, 10.0), Label('c', 11.0, 12.0) ] >>> res[3].labels [Label('c', 12.0, 15.0)] If ``shift_times = True``, the times are adjusted to be relative to the cutting-points for every label-list but the first. >>> ll = LabelList(labels=[ >>> Label('a', 0, 5), >>> Label('b', 5, 10), >>>]) >>> >>> res = ll.split([4.6]) >>> len(res) 4 >>> res[0].labels [Label('a', 0.0, 4.6)] >>> res[1].labels [ Label('a', 0.0, 0.4), Label('b', 0.4, 5.4) ] """ if len(cutting_points) == 0: raise ValueError('At least one cutting-point is needed!') # we have to loop in sorted order cutting_points = sorted(cutting_points) splits = [] iv_start = 0.0 for i in range(len(cutting_points) + 1): if i < len(cutting_points): iv_end = cutting_points[i] else: iv_end = float('inf') # get all intervals intersecting range intervals = self.label_tree.overlap( iv_start - overlap, iv_end + overlap ) cp_splits = LabelList(idx=self.idx) # Extract labels from intervals with updated times for iv in intervals: label = copy.deepcopy(iv.data) label.start = max(0, iv_start - overlap, label.start) label.end = min(iv_end + overlap, label.end) if shift_times: orig_start = max(0, iv_start - overlap) label.start -= orig_start label.end -= orig_start cp_splits.add(label) splits.append(cp_splits) iv_start = iv_end return splits # # Convenience Constructors # @classmethod def create_single(cls, value, idx='default'): """ Create a label-list with a single label containing the given value. """ return LabelList(idx=idx, labels=[ Label(value=value) ]) @classmethod def with_label_values(cls, values, idx='default'): """ Create a new label-list containing labels with the given values. All labels will have default start/end values of 0 and ``inf``. Args: values(list): List of values(str) that should be created and appended to the label-list. idx(str): The idx of the label-list. Returns: (LabelList): New label-list. Example: >>> ll = LabelList.with_label_values(['a', 'x', 'z'], idx='letters') >>> ll.idx 'letters' >>> ll.labels [ Label('a', 0, inf), Label('x', 0, inf), Label('z', 0, inf), ] """ ll = LabelList(idx=idx) for label_value in values: ll.add(Label(label_value)) return ll
astropy/io/fits/hdu/streaming.py
jayvdb/astropy
445
5824
<gh_stars>100-1000 # Licensed under a 3-clause BSD style license - see PYFITS.rst import gzip import os from .base import _BaseHDU, BITPIX2DTYPE from .hdulist import HDUList from .image import PrimaryHDU from astropy.io.fits.file import _File from astropy.io.fits.header import _pad_length from astropy.io.fits.util import fileobj_name class StreamingHDU: """ A class that provides the capability to stream data to a FITS file instead of requiring data to all be written at once. The following pseudocode illustrates its use:: header = astropy.io.fits.Header() for all the cards you need in the header: header[key] = (value, comment) shdu = astropy.io.fits.StreamingHDU('filename.fits', header) for each piece of data: shdu.write(data) shdu.close() """ def __init__(self, name, header): """ Construct a `StreamingHDU` object given a file name and a header. Parameters ---------- name : file path, file object, or file like object The file to which the header and data will be streamed. If opened, the file object must be opened in a writeable binary mode such as 'wb' or 'ab+'. header : `Header` instance The header object associated with the data to be written to the file. Notes ----- The file will be opened and the header appended to the end of the file. If the file does not already exist, it will be created, and if the header represents a Primary header, it will be written to the beginning of the file. If the file does not exist and the provided header is not a Primary header, a default Primary HDU will be inserted at the beginning of the file and the provided header will be added as the first extension. If the file does already exist, but the provided header represents a Primary header, the header will be modified to an image extension header and appended to the end of the file. """ if isinstance(name, gzip.GzipFile): raise TypeError('StreamingHDU not supported for GzipFile objects.') self._header = header.copy() # handle a file object instead of a file name filename = fileobj_name(name) or '' # Check if the file already exists. If it does not, check to see # if we were provided with a Primary Header. If not we will need # to prepend a default PrimaryHDU to the file before writing the # given header. newfile = False if filename: if not os.path.exists(filename) or os.path.getsize(filename) == 0: newfile = True elif (hasattr(name, 'len') and name.len == 0): newfile = True if newfile: if 'SIMPLE' not in self._header: hdulist = HDUList([PrimaryHDU()]) hdulist.writeto(name, 'exception') else: # This will not be the first extension in the file so we # must change the Primary header provided into an image # extension header. if 'SIMPLE' in self._header: self._header.set('XTENSION', 'IMAGE', 'Image extension', after='SIMPLE') del self._header['SIMPLE'] if 'PCOUNT' not in self._header: dim = self._header['NAXIS'] if dim == 0: dim = '' else: dim = str(dim) self._header.set('PCOUNT', 0, 'number of parameters', after='NAXIS' + dim) if 'GCOUNT' not in self._header: self._header.set('GCOUNT', 1, 'number of groups', after='PCOUNT') self._ffo = _File(name, 'append') # TODO : Fix this once the HDU writing API is cleaned up tmp_hdu = _BaseHDU() # Passing self._header as an argument to _BaseHDU() will cause its # values to be modified in undesired ways...need to have a better way # of doing this tmp_hdu._header = self._header self._header_offset = tmp_hdu._writeheader(self._ffo)[0] self._data_offset = self._ffo.tell() self._size = self.size if self._size != 0: self.writecomplete = False else: self.writecomplete = True # Support the 'with' statement def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() def write(self, data): """ Write the given data to the stream. Parameters ---------- data : ndarray Data to stream to the file. Returns ------- writecomplete : int Flag that when `True` indicates that all of the required data has been written to the stream. Notes ----- Only the amount of data specified in the header provided to the class constructor may be written to the stream. If the provided data would cause the stream to overflow, an `OSError` exception is raised and the data is not written. Once sufficient data has been written to the stream to satisfy the amount specified in the header, the stream is padded to fill a complete FITS block and no more data will be accepted. An attempt to write more data after the stream has been filled will raise an `OSError` exception. If the dtype of the input data does not match what is expected by the header, a `TypeError` exception is raised. """ size = self._ffo.tell() - self._data_offset if self.writecomplete or size + data.nbytes > self._size: raise OSError('Attempt to write more data to the stream than the ' 'header specified.') if BITPIX2DTYPE[self._header['BITPIX']] != data.dtype.name: raise TypeError('Supplied data does not match the type specified ' 'in the header.') if data.dtype.str[0] != '>': # byteswap little endian arrays before writing output = data.byteswap() else: output = data self._ffo.writearray(output) if self._ffo.tell() - self._data_offset == self._size: # the stream is full so pad the data to the next FITS block self._ffo.write(_pad_length(self._size) * '\0') self.writecomplete = True self._ffo.flush() return self.writecomplete @property def size(self): """ Return the size (in bytes) of the data portion of the HDU. """ size = 0 naxis = self._header.get('NAXIS', 0) if naxis > 0: simple = self._header.get('SIMPLE', 'F') random_groups = self._header.get('GROUPS', 'F') if simple == 'T' and random_groups == 'T': groups = 1 else: groups = 0 size = 1 for idx in range(groups, naxis): size = size * self._header['NAXIS' + str(idx + 1)] bitpix = self._header['BITPIX'] gcount = self._header.get('GCOUNT', 1) pcount = self._header.get('PCOUNT', 0) size = abs(bitpix) * gcount * (pcount + size) // 8 return size def close(self): """ Close the physical FITS file. """ self._ffo.close()
paasta_tools/async_utils.py
sobolevn/paasta
1,711
5831
import asyncio import functools import time import weakref from collections import defaultdict from typing import AsyncIterable from typing import Awaitable from typing import Callable from typing import Dict from typing import List from typing import Optional from typing import TypeVar T = TypeVar("T") # NOTE: this method is not thread-safe due to lack of locking while checking # and updating the cache def async_ttl_cache( ttl: Optional[float] = 300, cleanup_self: bool = False, *, cache: Optional[Dict] = None, ) -> Callable[ [Callable[..., Awaitable[T]]], Callable[..., Awaitable[T]] # wrapped # inner ]: async def call_or_get_from_cache(cache, async_func, args_for_key, args, kwargs): # Please note that anything which is put into `key` will be in the # cache forever, potentially causing memory leaks. The most common # case is the `self` arg pointing to a huge object. To mitigate that # we're using `args_for_key`, which is supposed not contain any huge # objects. key = functools._make_key(args_for_key, kwargs, typed=False) try: future, last_update = cache[key] if ttl is not None and time.time() - last_update > ttl: raise KeyError except KeyError: future = asyncio.ensure_future(async_func(*args, **kwargs)) # set the timestamp to +infinity so that we always wait on the in-flight request. cache[key] = (future, float("Inf")) try: value = await future except Exception: # Only update the cache if it's the same future we awaited and # it hasn't already been updated by another coroutine # Note also that we use get() in case the key was deleted from the # cache by another coroutine if cache.get(key) == (future, float("Inf")): del cache[key] raise else: if cache.get(key) == (future, float("Inf")): cache[key] = (future, time.time()) return value if cleanup_self: instance_caches: Dict = cache if cache is not None else defaultdict(dict) def on_delete(w): del instance_caches[w] def outer(wrapped): @functools.wraps(wrapped) async def inner(self, *args, **kwargs): w = weakref.ref(self, on_delete) self_cache = instance_caches[w] return await call_or_get_from_cache( self_cache, wrapped, args, (self,) + args, kwargs ) return inner else: cache2: Dict = cache if cache is not None else {} # Should be Dict[Any, T] but that doesn't work. def outer(wrapped): @functools.wraps(wrapped) async def inner(*args, **kwargs): return await call_or_get_from_cache(cache2, wrapped, args, args, kwargs) return inner return outer async def aiter_to_list(aiter: AsyncIterable[T],) -> List[T]: return [x async for x in aiter] def async_timeout( seconds: int = 10, ) -> Callable[ [Callable[..., Awaitable[T]]], Callable[..., Awaitable[T]] # wrapped # inner ]: def outer(wrapped): @functools.wraps(wrapped) async def inner(*args, **kwargs): return await asyncio.wait_for(wrapped(*args, **kwargs), timeout=seconds) return inner return outer
datagen.py
kuangliu/pytorch-ssd
124
5872
'''Load image/class/box from a annotation file. The annotation file is organized as: image_name #obj xmin ymin xmax ymax class_index .. ''' from __future__ import print_function import os import sys import os.path import random import numpy as np import torch import torch.utils.data as data import torchvision.transforms as transforms from encoder import DataEncoder from PIL import Image, ImageOps class ListDataset(data.Dataset): img_size = 300 def __init__(self, root, list_file, train, transform): ''' Args: root: (str) ditectory to images. list_file: (str) path to index file. train: (boolean) train or test. transform: ([transforms]) image transforms. ''' self.root = root self.train = train self.transform = transform self.fnames = [] self.boxes = [] self.labels = [] self.data_encoder = DataEncoder() with open(list_file) as f: lines = f.readlines() self.num_samples = len(lines) for line in lines: splited = line.strip().split() self.fnames.append(splited[0]) num_objs = int(splited[1]) box = [] label = [] for i in range(num_objs): xmin = splited[2+5*i] ymin = splited[3+5*i] xmax = splited[4+5*i] ymax = splited[5+5*i] c = splited[6+5*i] box.append([float(xmin),float(ymin),float(xmax),float(ymax)]) label.append(int(c)) self.boxes.append(torch.Tensor(box)) self.labels.append(torch.LongTensor(label)) def __getitem__(self, idx): '''Load a image, and encode its bbox locations and class labels. Args: idx: (int) image index. Returns: img: (tensor) image tensor. loc_target: (tensor) location targets, sized [8732,4]. conf_target: (tensor) label targets, sized [8732,]. ''' # Load image and bbox locations. fname = self.fnames[idx] img = Image.open(os.path.join(self.root, fname)) boxes = self.boxes[idx].clone() labels = self.labels[idx] # Data augmentation while training. if self.train: img, boxes = self.random_flip(img, boxes) img, boxes, labels = self.random_crop(img, boxes, labels) # Scale bbox locaitons to [0,1]. w,h = img.size boxes /= torch.Tensor([w,h,w,h]).expand_as(boxes) img = img.resize((self.img_size,self.img_size)) img = self.transform(img) # Encode loc & conf targets. loc_target, conf_target = self.data_encoder.encode(boxes, labels) return img, loc_target, conf_target def random_flip(self, img, boxes): '''Randomly flip the image and adjust the bbox locations. For bbox (xmin, ymin, xmax, ymax), the flipped bbox is: (w-xmax, ymin, w-xmin, ymax). Args: img: (PIL.Image) image. boxes: (tensor) bbox locations, sized [#obj, 4]. Returns: img: (PIL.Image) randomly flipped image. boxes: (tensor) randomly flipped bbox locations, sized [#obj, 4]. ''' if random.random() < 0.5: img = img.transpose(Image.FLIP_LEFT_RIGHT) w = img.width xmin = w - boxes[:,2] xmax = w - boxes[:,0] boxes[:,0] = xmin boxes[:,2] = xmax return img, boxes def random_crop(self, img, boxes, labels): '''Randomly crop the image and adjust the bbox locations. For more details, see 'Chapter2.2: Data augmentation' of the paper. Args: img: (PIL.Image) image. boxes: (tensor) bbox locations, sized [#obj, 4]. labels: (tensor) bbox labels, sized [#obj,]. Returns: img: (PIL.Image) cropped image. selected_boxes: (tensor) selected bbox locations. labels: (tensor) selected bbox labels. ''' imw, imh = img.size while True: min_iou = random.choice([None, 0.1, 0.3, 0.5, 0.7, 0.9]) if min_iou is None: return img, boxes, labels for _ in range(100): w = random.randrange(int(0.1*imw), imw) h = random.randrange(int(0.1*imh), imh) if h > 2*w or w > 2*h: continue x = random.randrange(imw - w) y = random.randrange(imh - h) roi = torch.Tensor([[x, y, x+w, y+h]]) center = (boxes[:,:2] + boxes[:,2:]) / 2 # [N,2] roi2 = roi.expand(len(center), 4) # [N,4] mask = (center > roi2[:,:2]) & (center < roi2[:,2:]) # [N,2] mask = mask[:,0] & mask[:,1] #[N,] if not mask.any(): continue selected_boxes = boxes.index_select(0, mask.nonzero().squeeze(1)) iou = self.data_encoder.iou(selected_boxes, roi) if iou.min() < min_iou: continue img = img.crop((x, y, x+w, y+h)) selected_boxes[:,0].add_(-x).clamp_(min=0, max=w) selected_boxes[:,1].add_(-y).clamp_(min=0, max=h) selected_boxes[:,2].add_(-x).clamp_(min=0, max=w) selected_boxes[:,3].add_(-y).clamp_(min=0, max=h) return img, selected_boxes, labels[mask] def __len__(self): return self.num_samples
lingvo/core/builder.py
allenwang28/lingvo
2,611
5873
# Lint as: python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A library to build composite layers. WARNING: The builder pattern is still experimental and we need to gain experience on when to use and when not to use. Please discuss w/ teammates before using it to build complicated layers. """ import functools from lingvo.core import activations from lingvo.core import builder_layers from lingvo.core import hyperparams from lingvo.core import layers from lingvo.core import py_utils from lingvo.core import tshape class Base: """Model builder with commonly used layers. A method in a builder class constructs a layer param. FProp of a layer constructed by a builder takes a tuple of tf.Tensor (one or more) and returns a tuple of tf.Tensor (one or more). Even though certain layers support FProp argument being None (e.g., Conv2DLayer), builder should not depend on such a support. The constructed layer is often a composition of multiple sub-layers connected in certain patterns. We expect to have a few methods to facilitate building these patterns. For example, _Seq() helps to build a sequential layer that calls its sub-layer one after another. TODO(zhifengc): Adds a more concrete example. """ @classmethod def Params(cls): """The params of this layer.""" p = hyperparams.InstantiableParams(cls) p.Define('deterministic_dropout', False, 'Used deterministic dropout or not.') p.Define( 'fprop_dtype', None, 'Activations datatype to use. To enable bfloat16 activations for ' 'layers built using model builder, set fprop_dtype to ' 'tf.bfloat16, which will be propagated to layers that support ' 'bfloat16 activations. Default is None, which will use float32 ' 'activations.') # SPMD partition related params. p.Define( 'device_mesh', None, 'A numpy.ndarray specifying the topology of a device mesh to place the ' 'computations onto. If device_mesh is None, it is assumed to be a ' 'single device. Here are some examples: ' 'np.array([0, 1, 2, 3, 4, 5, 6, 7]) which is a 1d mesh with 8 devices, ' 'np.array([[0, 1, 2, 3], [4, 5, 6, 7]]) which is 2d matrix of 8 ' 'devices.') p.Define( 'weight_split_dims_mapping', None, 'Relevant only if device_mesh above is not None. If not None, it ' 'specifies how weight of this layer or those of the sublayers should ' 'be sharded over device mesh. ') p.Define( 'activation_split_dims_mapping', None, 'Relevant only if device_mesh above is not None. If not None, it ' 'specifies how activation of this layer or those of the sublayers ' 'should be sharded over device mesh. ') return p @property def params(self): """Returns the params upon which this layer is built.""" return self._params def __init__(self, params): # Sub-classes should put some options common to many layers in __init__. self._params = params.Copy() ###################################################################### # Layers to compose multiple layers. # # Sub-classes are discouraged to override these composition method. ###################################################################### def _Rep(self, name, repeat, *subs): r"""Connects sub-layers sequentially and repeat multiple times. E.g., _Rep('foo', 2, sa, sb, sc) constructs a layer with 6 layers sequentially connected: [sa1, sb1, sc1, sa2, sb2, sc2]. sa1 and sa2 have the same structure as the given sa, but sa1 and sa2 do not share the same weight. Args: name: The layer name. repeat: Repeat \*subs this many times in the compose layer. *subs: A list of sub-layers. Returns: The param for the composed layer. """ iterations = [] for i in range(repeat): iterations.append(self._Seq('iter_%03d' % i, *[p.Copy() for p in subs])) return self._Seq(name, *iterations) def _Seq(self, name, *subs): """Connects sub-layers sequentially.""" return builder_layers.SequentialLayer.Params().Set( name=name, sub=list(subs)) def _Graph(self, name, input_endpoints, output_endpoints, *signature_sub_param_list): """Connects sub-layers into a data flow graph.""" return builder_layers.GraphLayer.Params().Set( name=name, input_endpoints=input_endpoints, output_endpoints=output_endpoints, sub=list(signature_sub_param_list)) def _Id(self, name): """Identity. (t_1, ..., t_n) -> (t1, ..., t_n).""" return self._Seq(name) def _Arg(self, name, index): """Picks index-th element. (t_1, ..., t_n) -> (t_{index},).""" return builder_layers.ArgIndexLayer.Params().Set(name=name, idx=[index]) def _Par(self, name, *subs): """y = (f1, f2, ..., fn)(x). We feed the input tuple to all sub-layers and concatenates their output tuples into one tuple. Args: name: The layer name. *subs: A list of sub-layers. Returns: The param for the composed layer. """ def ConcatTuples(tuples): # tuples is a list of tuples. return tuple(functools.reduce(lambda x, y: x + list(y), tuples, [])) def ConcatMeta(tuples): return py_utils.NestedMap( flops=0, out_shapes=tuple( functools.reduce(lambda x, y: x + list(y), tuples, []))) return builder_layers.ParallelLayer.Params().Set( name=name, sub=list(subs), merge=ConcatTuples, merge_meta=ConcatMeta) def _Fn(self, name, fn, fn_out=None, fn_flops=None): """y = fn(x). Applies a fn: tuple(Tensor) -> a single Tensor or tuple(Tensor) to the input tuple. Typically, fn is a very simple python function. This layer can be used for prototyping but we advice to implement the logic as a sub-class of BaseLayer for all established layers as FnLayer can't be serialized. Args: name: The layer name. fn: A lambda tuple(Tensor) -> tuple(Tensor). fn_out: A lambda tuple(tshape.Shape) -> output tuple(tshape.Shape) fn_flops: A lambda tuple(tshape.Shape) -> estimated flops of fn. If None, we assume flops == sum of elements in the inputs. Returns: The param for the composed layer. """ def FnMeta(*shapes): """A lambda tuple(tshape.Shape) -> NestedMap{flops, out_shapes}.""" if fn_out: out_shapes = fn_out(*shapes) if isinstance(out_shapes, tshape.Shape): out_shapes = (out_shapes,) else: out_shapes = shapes if fn_flops: flops = fn_flops(*shapes) else: flops = sum([s.size for s in shapes]) return py_utils.NestedMap(flops=flops, out_shapes=out_shapes) return builder_layers.FnLayer.Params().Set(name=name, fn=fn, fn_meta=FnMeta) def _Save(self, name): """Returns a layer from which the activation and gradient can be accessed.""" return layers.FetchLayer.Params().Set(name=name) def _AddFetches(self, name, body, fetches): """Fetches saved activations in the body sub-layer. E.g.: _AddFetches('foo', _Seq( 'stack', _Layer('layer1', ...), _Save('layer1_out', ...), _Layer('layer2', ...), _Save('layer2_out', ...), _Output('output', ...)), ['layer1_out', 'layer2_out']) The layer returns the stack's final output together with intermediate activations from layer1_out and layer2_out. Args: name: This layer's name. body: The sub-layer. fetches: A list of fetch names inside the sub-layer body. Returns: A layer whose outputs correspond to the activations of fetch points in the sub-layer body. [input1, input2, ..., inputN, fetch1, ..., fetchM]. """ return builder_layers.BranchLayer.Params().Set( name=name, body=body, fetches=fetches) def _Rematerialize(self, name, body): """Forces rematerialization on FProp of the body layer.""" return builder_layers.RematerializationLayer.Params().Set( name=name, body=body) def _BatchParallel(self, name, sub): """Splits the batch and compute the forward pass on multiple devices. Args: name: This layer's name. sub: The sub-layer. Returns: A BatchParallel layer which splits the batch and computes the forward pass on multiple devices. """ return builder_layers.BatchParallelLayer.Params().Set(name=name, sub=sub) def _PrintShape(self, name): """Print FProp input shape information.""" return builder_layers.PrintShapeLayer.Params().Set(name=name) def _CreateNestedMap(self, name, keys): """Returns a NestedMap with keys from fprop args.""" return builder_layers.CreateNestedMapLayer.Params().Set( name=name, keys=keys) ########################################################################### # Basic nn layers. # # The following method returns a layer param, whose FProp takes a single # Tensor and returns a single Tensor. # # These methods are designed to have minimal knobs. Sub-classes which needs to # be flexible can override these methods with different options. E.g., a # sub-class builder can override _BN() to tune the decay option. ########################################################################### def _BN(self, name, dims): """Batch norm.""" return layers.BatchNormLayer.Params().Set(name=name, dim=dims, decay=0.99) def _LN(self, name, dims, use_fused_layernorm=False): """Layer norm.""" return layers.LayerNorm.Params().Set( name=name, input_dim=dims, use_fused_layernorm=use_fused_layernorm, fprop_dtype=self.params.fprop_dtype) def _Dropout(self, name, keep_prob, noise_shape_broadcast_dims=None): """Returns a DropoutLayer Params.""" if self.params.deterministic_dropout: return layers.DeterministicDropoutLayer.Params().Set( name=name, keep_prob=keep_prob, noise_shape_broadcast_dims=noise_shape_broadcast_dims) return layers.DropoutLayer.Params().Set( name=name, keep_prob=keep_prob, noise_shape_broadcast_dims=noise_shape_broadcast_dims, fprop_dtype=self.params.fprop_dtype) def _Linear(self, name, idims, odims, device_mesh=None, weight_split_dims_mapping=None, qdomain=None): """Linear layer. y = matmul([..., idims], [idims, odims]).""" p = builder_layers.LinearLayer.Params() p.name = name p.input_dims = idims p.output_dims = odims p.fprop_dtype = self.params.fprop_dtype p.device_mesh = device_mesh p.weight_split_dims_mapping = weight_split_dims_mapping p.qdomain.default = qdomain return p def _Bias(self, name, dims, device_mesh=None, weight_split_dims_mapping=None): """Bias layer. The bias is added to the last dimension of the input.""" return builder_layers.BiasLayer.Params().Set( name=name, dims=dims, fprop_dtype=self.params.fprop_dtype, device_mesh=device_mesh, weight_split_dims_mapping=weight_split_dims_mapping) def _Activation(self, name, fn='RELU'): """Activation layer.""" return activations.ActivationLayer.Params().Set(activation=fn, name=name) def _FC(self, name, idims, odims, act='RELU'): """Feed-forward fully connected. y = act(matmul(x, w) + b).""" # pyformat: disable return self._Seq( name, self._Linear('linear', idims, odims), self._Bias('bias', odims), self._Activation('act', fn=act)) def _MLP(self, name, dims, act='RELU'): """Multiple layers of feed-forward fully connected. Args: name: The layer name. dims: A list of int. i-th layer has dims[i] as its input dimension, and dims[i+1] as its output dimensions. act: The activation function. Returns: The param for the composed layer. """ l = [] for n, (i, o) in enumerate(zip(dims[:-1], dims[1:])): l += [self._FC('l%03d' % n, i, o, act)] return self._Seq(name, *l) def _Conv2D(self, name, filter_shape, filter_stride): """Conv2D layer.""" return layers.Conv2DLayerNoPadding.Params().Set( name=name, filter_shape=filter_shape, filter_stride=filter_stride, fprop_dtype=self.params.fprop_dtype) def _Reshape(self, name, shape): """Reshape inputs to the shape provided.""" return builder_layers.ReshapeLayer.Params().Set(name=name, shape=shape)
raiden/tests/integration/long_running/test_stress.py
tirkarthi/raiden
2,101
5875
<gh_stars>1000+ import time from http import HTTPStatus from itertools import count from typing import Sequence import gevent import grequests import pytest import structlog from eth_utils import to_canonical_address from flask import url_for from raiden.api.python import RaidenAPI from raiden.api.rest import APIServer, RestAPI from raiden.constants import RoutingMode from raiden.message_handler import MessageHandler from raiden.network.transport import MatrixTransport from raiden.raiden_event_handler import RaidenEventHandler from raiden.raiden_service import RaidenService from raiden.settings import RestApiConfig from raiden.tests.integration.api.utils import wait_for_listening_port from raiden.tests.integration.fixtures.raiden_network import RestartNode from raiden.tests.utils.detect_failure import raise_on_failure from raiden.tests.utils.protocol import HoldRaidenEventHandler from raiden.tests.utils.transfer import ( assert_synced_channel_state, wait_assert, watch_for_unlock_failures, ) from raiden.transfer import views from raiden.ui.startup import RaidenBundle from raiden.utils.formatting import to_checksum_address from raiden.utils.typing import ( Address, BlockNumber, Host, Iterator, List, Port, TokenAddress, TokenAmount, TokenNetworkAddress, Tuple, ) log = structlog.get_logger(__name__) def iwait_and_get(items: Sequence[gevent.Greenlet]) -> None: """Iteratively wait and get on passed greenlets. This ensures exceptions in the greenlets are re-raised as soon as possible. """ for item in gevent.iwait(items): item.get() def _url_for(apiserver: APIServer, endpoint: str, **kwargs) -> str: # url_for() expects binary address so we have to convert here for key, val in kwargs.items(): if isinstance(val, str) and val.startswith("0x"): kwargs[key] = to_canonical_address(val) with apiserver.flask_app.app_context(): return url_for(f"v1_resources.{endpoint}", **kwargs) def start_apiserver(raiden_app: RaidenService, rest_api_port_number: Port) -> APIServer: raiden_api = RaidenAPI(raiden_app) rest_api = RestAPI(raiden_api) api_server = APIServer( rest_api, config=RestApiConfig(host=Host("localhost"), port=rest_api_port_number) ) # required for url_for api_server.flask_app.config["SERVER_NAME"] = f"localhost:{rest_api_port_number}" api_server.start() wait_for_listening_port(rest_api_port_number) return api_server def start_apiserver_for_network( raiden_network: List[RaidenService], port_generator: Iterator[Port] ) -> List[APIServer]: return [start_apiserver(app, next(port_generator)) for app in raiden_network] def restart_app(app: RaidenService, restart_node: RestartNode) -> RaidenService: new_transport = MatrixTransport( config=app.config.transport, environment=app.config.environment_type ) raiden_event_handler = RaidenEventHandler() hold_handler = HoldRaidenEventHandler(raiden_event_handler) app = RaidenService( config=app.config, rpc_client=app.rpc_client, proxy_manager=app.proxy_manager, query_start_block=BlockNumber(0), raiden_bundle=RaidenBundle( app.default_registry, app.default_secret_registry, ), services_bundle=app.default_services_bundle, transport=new_transport, raiden_event_handler=hold_handler, message_handler=MessageHandler(), routing_mode=RoutingMode.PRIVATE, ) restart_node(app) return app def restart_network( raiden_network: List[RaidenService], restart_node: RestartNode ) -> List[RaidenService]: for app in raiden_network: app.stop() wait_network = (gevent.spawn(restart_app, app, restart_node) for app in raiden_network) gevent.joinall(set(wait_network), raise_error=True) new_network = [greenlet.get() for greenlet in wait_network] return new_network def restart_network_and_apiservers( raiden_network: List[RaidenService], restart_node: RestartNode, api_servers: List[APIServer], port_generator: Iterator[Port], ) -> Tuple[List[RaidenService], List[APIServer]]: """Stop an app and start it back""" for rest_api in api_servers: rest_api.stop() new_network = restart_network(raiden_network, restart_node) new_servers = start_apiserver_for_network(new_network, port_generator) return (new_network, new_servers) def address_from_apiserver(apiserver: APIServer) -> Address: return apiserver.rest_api.raiden_api.address def transfer_and_assert( server_from: APIServer, server_to: APIServer, token_address: TokenAddress, identifier: int, amount: TokenAmount, ) -> None: url = _url_for( server_from, "token_target_paymentresource", token_address=to_checksum_address(token_address), target_address=to_checksum_address(address_from_apiserver(server_to)), ) json = {"amount": amount, "identifier": identifier} log.debug("PAYMENT REQUEST", url=url, json=json) request = grequests.post(url, json=json) start = time.monotonic() response = request.send().response duration = time.monotonic() - start log.debug("PAYMENT RESPONSE", url=url, json=json, response=response, duration=duration) assert getattr(request, "exception", None) is None assert response is not None assert response.status_code == HTTPStatus.OK, f"Payment failed, reason: {response.content}" assert response.headers["Content-Type"] == "application/json" def sequential_transfers( server_from: APIServer, server_to: APIServer, number_of_transfers: int, token_address: TokenAddress, identifier_generator: Iterator[int], ) -> None: for _ in range(number_of_transfers): transfer_and_assert( server_from=server_from, server_to=server_to, token_address=token_address, identifier=next(identifier_generator), amount=TokenAmount(1), ) def stress_send_serial_transfers( rest_apis: List[APIServer], token_address: TokenAddress, identifier_generator: Iterator[int], deposit: TokenAmount, ) -> None: """Send `deposit` transfers of value `1` one at a time, without changing the initial capacity. """ pairs = list(zip(rest_apis, rest_apis[1:] + [rest_apis[0]])) # deplete the channels in one direction for server_from, server_to in pairs: sequential_transfers( server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) # deplete the channels in the backwards direction for server_to, server_from in pairs: sequential_transfers( server_from=server_from, server_to=server_to, number_of_transfers=deposit * 2, token_address=token_address, identifier_generator=identifier_generator, ) # reset the balances balances by sending the "extra" deposit forward for server_from, server_to in pairs: sequential_transfers( server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) def stress_send_parallel_transfers( rest_apis: List[APIServer], token_address: TokenAddress, identifier_generator: Iterator[int], deposit: TokenAmount, ) -> None: """Send `deposit` transfers in parallel, without changing the initial capacity.""" pairs = list(zip(rest_apis, rest_apis[1:] + [rest_apis[0]])) # deplete the channels in one direction iwait_and_get( [ gevent.spawn( sequential_transfers, server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) for server_from, server_to in pairs ] ) # deplete the channels in the backwards direction iwait_and_get( [ gevent.spawn( sequential_transfers, server_from=server_from, server_to=server_to, number_of_transfers=deposit * 2, token_address=token_address, identifier_generator=identifier_generator, ) for server_to, server_from in pairs ] ) # reset the balances balances by sending the "extra" deposit forward iwait_and_get( [ gevent.spawn( sequential_transfers, server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) for server_from, server_to in pairs ] ) def stress_send_and_receive_parallel_transfers( rest_apis: List[APIServer], token_address: TokenAddress, identifier_generator: Iterator[int], deposit: TokenAmount, ) -> None: """Send transfers of value one in parallel""" pairs = list(zip(rest_apis, rest_apis[1:] + [rest_apis[0]])) forward_transfers = [ gevent.spawn( sequential_transfers, server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) for server_from, server_to in pairs ] backwards_transfers = [ gevent.spawn( sequential_transfers, server_from=server_from, server_to=server_to, number_of_transfers=deposit, token_address=token_address, identifier_generator=identifier_generator, ) for server_to, server_from in pairs ] iwait_and_get(forward_transfers + backwards_transfers) def assert_channels( raiden_network: List[RaidenService], token_network_address: TokenNetworkAddress, deposit: TokenAmount, ) -> None: pairs = list(zip(raiden_network, raiden_network[1:] + [raiden_network[0]])) for first, second in pairs: wait_assert( assert_synced_channel_state, token_network_address, first, deposit, [], second, deposit, [], ) @pytest.mark.skip(reason="flaky, see https://github.com/raiden-network/raiden/issues/4803") @raise_on_failure @pytest.mark.parametrize("number_of_nodes", [3]) @pytest.mark.parametrize("number_of_tokens", [1]) @pytest.mark.parametrize("channels_per_node", [2]) @pytest.mark.parametrize("deposit", [2]) @pytest.mark.parametrize("reveal_timeout", [15]) @pytest.mark.parametrize("settle_timeout", [120]) def test_stress( raiden_network: List[RaidenService], restart_node: RestartNode, deposit: TokenAmount, token_addresses: List[TokenAddress], port_generator: Iterator[Port], ) -> None: token_address = token_addresses[0] rest_apis = start_apiserver_for_network(raiden_network, port_generator) identifier_generator = count(start=1) token_network_address = views.get_token_network_address_by_token_address( views.state_from_raiden(raiden_network[0]), raiden_network[0].default_registry.address, token_address, ) assert token_network_address for _ in range(2): assert_channels(raiden_network, token_network_address, deposit) with watch_for_unlock_failures(*raiden_network): stress_send_serial_transfers(rest_apis, token_address, identifier_generator, deposit) raiden_network, rest_apis = restart_network_and_apiservers( raiden_network, restart_node, rest_apis, port_generator ) assert_channels(raiden_network, token_network_address, deposit) with watch_for_unlock_failures(*raiden_network): stress_send_parallel_transfers(rest_apis, token_address, identifier_generator, deposit) raiden_network, rest_apis = restart_network_and_apiservers( raiden_network, restart_node, rest_apis, port_generator ) assert_channels(raiden_network, token_network_address, deposit) with watch_for_unlock_failures(*raiden_network): stress_send_and_receive_parallel_transfers( rest_apis, token_address, identifier_generator, deposit ) raiden_network, rest_apis = restart_network_and_apiservers( raiden_network, restart_node, rest_apis, port_generator ) restart_network(raiden_network, restart_node)
igibson/utils/data_utils/ext_object/scripts/step_1_visual_mesh.py
mamadbiabon/iGibson
360
5883
<reponame>mamadbiabon/iGibson<filename>igibson/utils/data_utils/ext_object/scripts/step_1_visual_mesh.py import os import sys import bpy script_dir = os.path.dirname(os.path.abspath(__file__)) utils_dir = os.path.join(script_dir, "../../blender_utils") sys.path.append(utils_dir) from utils import bake_model, clean_unused, export_ig_object, import_obj_folder ############################################# # Parse command line arguments ############################################# def get_arg(argv, flag, default=None): if flag in argv: return argv[argv.index(flag) + 1] return default should_bake = "--bake" in sys.argv axis = ["X", "Y", "Z", "-X", "-Y", "-Z"] import_axis_up = get_arg(sys.argv, "--up", default="Z") if import_axis_up not in axis: raise ValueError("Axis up not supported: {} (should be among X,Y,Z,-X,-Y,-Z)".format(import_axis_up)) import_axis_forward = get_arg(sys.argv, "--forward", default="X") if import_axis_forward not in axis: raise ValueError("Axis forward not supported: {} (should be among X,Y,Z,-X,-Y,-Z)".format(import_axis_forward)) source_dir = get_arg(sys.argv, "--source_dir") if source_dir is None: raise ValueError("Source directory not specified.") dest_dir = get_arg(sys.argv, "--dest_dir") if dest_dir is None: raise ValueError("Destination directory not specified.") os.makedirs(dest_dir, exist_ok=True) model_id = os.path.basename(source_dir) ############################################# # Importing obj files from source dir ############################################# for on in bpy.context.scene.objects.keys(): obj = bpy.context.scene.objects[on] bpy.data.objects.remove(obj) clean_unused() import_obj_folder(model_id, source_dir, up=import_axis_up, forward=import_axis_forward) ############################################# # Optional UV Unwrapping # This only needed if baking will be performed ############################################# if should_bake: uv_unwrapped = True for o in bpy.context.scene.objects: if not o.data.uv_layers: uv_unwrapped = False if not uv_unwrapped: bpy.ops.object.mode_set(mode="OBJECT") vl = bpy.context.view_layer bpy.ops.object.select_all(action="DESELECT") for on in bpy.context.scene.objects.keys(): obj = bpy.context.scene.objects[on] new_uv = bpy.context.scene.objects[on].data.uv_layers.new(name="obj_uv") vl.objects.active = obj obj.select_set(True) bpy.ops.object.editmode_toggle() bpy.ops.mesh.select_all(action="SELECT") bpy.ops.uv.smart_project(angle_limit=66, island_margin=0.02) bpy.context.tool_settings.mesh_select_mode = (False, False, True) bpy.ops.object.mode_set(mode="OBJECT") ############################################# # Export models ############################################# export_ig_object(dest_dir, save_material=not should_bake) ############################################# # Optional Texture Baking ############################################# if should_bake: mat_dir = os.path.join(dest_dir, "material") os.makedirs(mat_dir, exist_ok=True) # bpy.ops.wm.open_mainfile(filepath=blend_path) # import_ig_object(model_root, import_mat=True) for obj in bpy.context.scene.objects: obj.select_set(True) bpy.context.view_layer.objects.active = obj bpy.ops.object.select_all(action="SELECT") bpy.ops.object.join() channels = { "DIFFUSE": (2048, 32), "ROUGHNESS": (1024, 16), "METALLIC": (1024, 16), "NORMAL": (1024, 16), } bake_model(mat_dir, channels, overwrite=True) bpy.ops.wm.quit_blender()
mushroom_rl/utils/plots/common_plots.py
PuzeLiu/mushroom-rl
344
5888
from mushroom_rl.utils.plots import PlotItemBuffer, DataBuffer from mushroom_rl.utils.plots.plot_item_buffer import PlotItemBufferLimited class RewardPerStep(PlotItemBuffer): """ Class that represents a plot for the reward at every step. """ def __init__(self, plot_buffer): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used. """ title = "Step_Reward" curves_params = [dict(data_buffer=plot_buffer)] super().__init__(title, curves_params) class RewardPerEpisode(PlotItemBuffer): """ Class that represents a plot for the accumulated reward per episode. """ def __init__(self, plot_buffer): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used. """ title = "Episode_Reward" curves_params = [dict(data_buffer=plot_buffer)] super().__init__(title, curves_params) class Actions(PlotItemBufferLimited): """ Class that represents a plot for the actions. """ def __init__(self, plot_buffers, maxs=None, mins=None): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used; maxs(list, None): list of max values of each data buffer plotted. If an element is None, no max line is drawn; mins(list, None): list of min values of each data buffer plotted. If an element is None, no min line is drawn. """ title = "Actions" super().__init__(title, plot_buffers, maxs=maxs, mins=mins) class Observations(PlotItemBufferLimited): """ Class that represents a plot for the observations. """ def __init__(self, plot_buffers, maxs=None, mins=None, dotted_limits=None): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used; maxs(list, None): list of max values of each data buffer plotted. If an element is None, no max line is drawn; mins(list, None): list of min values of each data buffer plotted. If an element is None, no min line is drawn. dotted_limits (list, None): list of booleans. If True, the corresponding limit is dotted; otherwise, it is printed as a solid line. """ title = "Observations" super().__init__(title, plot_buffers, maxs=maxs, mins=mins, dotted_limits=dotted_limits) class LenOfEpisodeTraining(PlotItemBuffer): """ Class that represents a plot for the length of the episode. """ def __init__(self, plot_buffer): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used; """ title = "Len of Episode" plot_params = [dict(data_buffer=plot_buffer)] super().__init__(title, plot_params)
src/models/nn/adaptive_softmax.py
dumpmemory/state-spaces
513
5897
# Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional import functools import torch import torch.nn as nn import torch.nn.functional as F class OptionalParameterList(nn.ParameterList): def extra_repr(self): child_lines = [] for k, p in self._parameters.items(): if p is not None: size_str = 'x'.join(str(size) for size in p.size()) device_str = '' if not p.is_cuda else ' (GPU {})'.format(p.get_device()) parastr = 'Parameter containing: [{} of size {}{}]'.format( torch.typename(p), size_str, device_str) child_lines.append(' (' + str(k) + '): ' + parastr) tmpstr = '\n'.join(child_lines) return tmpstr class ProjectedAdaptiveLogSoftmax(nn.Module): def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, tie_projs=None, out_layers_weights=None, out_projs=None, keep_order=False, bias_scale=0.0, dropout=0.0, ): super().__init__() self.n_token = n_token self.d_embed = d_embed self.d_proj = d_proj self.cutoffs = list(cutoffs) + [n_token] self.cutoff_ends = [0] + self.cutoffs self.div_val = div_val self.shortlist_size = self.cutoffs[0] self.n_clusters = len(self.cutoffs) - 1 self.head_size = self.shortlist_size + self.n_clusters # [21-09-15 AG]: bake the first False into the definition, just as [0] is built into the cutoffs if tie_projs is None: tie_projs = [] elif isinstance(tie_projs, bool): tie_projs = [tie_projs] * len(cutoffs) else: tie_projs = list(tie_projs) tie_projs = [False] + tie_projs self.tie_projs = tie_projs if self.n_clusters > 0: self.cluster_weight = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed)) self.cluster_bias = nn.Parameter(torch.zeros(self.n_clusters)) if not out_layers_weights: self.out_layers_weights = nn.ParameterList() else: self.out_layers_weights = out_layers_weights self.out_layers_biases = nn.ParameterList() self.shared_out_projs = out_projs self.out_projs = OptionalParameterList() self.dropout = dropout self.drop = nn.Dropout(dropout) if div_val == 1: if d_proj != d_embed: for i in range(len(self.cutoffs)): if tie_projs[i]: self.out_projs.append(None) else: self.out_projs.append( nn.Parameter(torch.zeros(d_proj, d_embed)) ) else: # self.out_projs = [None] * len(self.cutoffs) self.out_projs.append(None) self.out_layers_biases.append( nn.Parameter(torch.zeros(n_token)) ) if not out_layers_weights: self.out_layers_weights.append( nn.Parameter(torch.zeros(n_token, d_embed)) ) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1] d_emb_i = d_embed // (div_val ** i) if tie_projs[i]: self.out_projs.append(None) else: self.out_projs.append( nn.Parameter(torch.zeros(d_proj, d_emb_i)) ) self.out_layers_biases.append( nn.Parameter(torch.zeros(r_idx - l_idx)) ) if not out_layers_weights: self.out_layers_weights.append( nn.Parameter(torch.zeros(r_idx - l_idx, d_emb_i)) ) for bias in self.out_layers_biases: bound = bias_scale * d_proj ** -.5 nn.init.uniform_(bias, -bound, bound) self.keep_order = keep_order def _compute_logit(self, hidden, weight, bias, proj): if proj is None: logit = F.linear(hidden, weight, bias=bias) else: if self.dropout > 0.0: logit = hidden @ proj logit = self.drop(logit) logit = logit @ weight.t() else: logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) if bias is not None: logit = logit + bias return logit def get_out_proj(self, i): if self.tie_projs[i]: if len(self.shared_out_projs) == 0: return None elif len(self.shared_out_projs) == 1: return self.shared_out_projs[0] else: return self.shared_out_projs[i] else: return self.out_projs[i] def forward(self, hidden, target, keep_order=False, key_padding_mask=None, *args, **kwargs): # [21-09-15 AG]: TODO may need to handle key_padding_mask ''' hidden :: [len*bsz x d_proj] target :: [len*bsz] ''' hidden = hidden.reshape(-1, hidden.size(-1)) target = target.reshape(-1) if hidden.size(0) != target.size(0): print(hidden.shape, target.shape) raise RuntimeError('Input and target should have the same size ' 'in the batch dimension.') if self.n_clusters == 0: logit = self._compute_logit(hidden, self.out_layers_weights[0], self.out_layers_biases[0], self.get_out_proj(0)) nll = -F.log_softmax(logit, dim=-1) \ .gather(1, target.unsqueeze(1)).squeeze(1) else: # construct weights and biases weights, biases = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] weight_i = self.out_layers_weights[0][l_idx:r_idx] bias_i = self.out_layers_biases[0][l_idx:r_idx] else: weight_i = self.out_layers_weights[i] bias_i = self.out_layers_biases[i] if i == 0: weight_i = torch.cat( [weight_i, self.cluster_weight], dim=0) bias_i = torch.cat( [bias_i, self.cluster_bias], dim=0) weights.append(weight_i) biases.append(bias_i) head_weight, head_bias, head_proj = weights[0], biases[0], self.get_out_proj(0) head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj) head_logprob = F.log_softmax(head_logit, dim=1) nll = torch.zeros_like(target, dtype=hidden.dtype, device=hidden.device) offset = 0 cutoff_values = [0] + self.cutoffs for i in range(len(cutoff_values) - 1): l_idx, r_idx = cutoff_values[i], cutoff_values[i + 1] mask_i = (target >= l_idx) & (target < r_idx) indices_i = mask_i.nonzero(as_tuple=False).squeeze() if indices_i.numel() == 0: continue target_i = target.index_select(0, indices_i) - l_idx head_logprob_i = head_logprob.index_select(0, indices_i) if i == 0: logprob_i = head_logprob_i.gather(1, target_i[:, None]).squeeze(1) else: weight_i, bias_i, proj_i = weights[i], biases[i], self.get_out_proj(i) hidden_i = hidden.index_select(0, indices_i) tail_logit_i = self._compute_logit(hidden_i, weight_i, bias_i, proj_i) tail_logprob_i = F.log_softmax(tail_logit_i, dim=1) logprob_i = head_logprob_i[:, -i] \ + tail_logprob_i.gather(1, target_i[:, None]).squeeze(1) if self.keep_order or keep_order: nll.index_copy_(0, indices_i, -logprob_i) else: nll[offset:offset+logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return nll.mean() # TODO maybe cases for length or padding_mask class AdaptiveEmbedding(nn.Module): """ Copy of transformers.AdaptiveEmbedding that works with fp16 by replacing the index_put_ operation Initialization has been fixed for the case when d_proj = d_embed """ def __init__(self, n_token, d_embed, d_proj, cutoffs : List[int], div_val=1, init_scale=1.0, sample_softmax=False, dropout=0.0): super().__init__() self.n_token = n_token self.d_embed = d_embed self.cutoffs = list(cutoffs) + [n_token] self.div_val = div_val self.d_proj = d_proj self.drop = nn.Dropout(dropout) if dropout > 0.0 else nn.Identity() self.emb_scale = d_proj ** 0.5 self.cutoff_ends = [0] + self.cutoffs self.emb_layers = nn.ModuleList() self.emb_projs = nn.ParameterList() if div_val == 1: self.emb_layers.append(nn.Embedding(n_token, d_embed, sparse=sample_softmax > 0)) _init_embed(self.emb_layers[-1].weight, d_embed, init_scale) # torch.nn.init.normal_(self.emb_layers[-1].weight, mean=0, std=init_scale * d_embed ** -.5) if d_proj != d_embed: # TODO # self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) # torch.nn.init.normal_(self.emb_projs[-1], mean=0, std=init_scale * 1./self.emb_scale) _init_proj(self.emb_projs[-1], d_proj, init_scale) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = d_embed // (div_val ** i) self.emb_layers.append(nn.Embedding(r_idx - l_idx, d_emb_i)) # torch.nn.init.normal_(self.emb_layers[-1].weight, mean=0, std=init_scale * d_emb_i ** -.5) _init_embed(self.emb_layers[-1].weight, d_emb_i, init_scale) self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i))) # torch.nn.init.normal_(self.emb_projs[-1], mean=0, std=init_scale * 1./self.emb_scale) _init_proj(self.emb_projs[-1], d_proj, init_scale) def forward(self, inp, *args, **kwargs): if self.div_val == 1: embed = self.emb_layers[0](inp) embed = self.drop(embed) if self.d_proj != self.d_embed: embed = F.linear(embed, self.emb_projs[0]) else: param = next(self.parameters()) inp_flat = inp.view(-1) # Changes # emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], dtype=param.dtype, device=param.device) embeddings = [] indices = torch.zeros_like(inp_flat) # empty should work as long as cutoffs[-1] > max token _total_tokens = 0 # emb_flat = inp.new_zeros(inp_flat.size(0), self.d_proj) for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx) indices_i = mask_i.nonzero().squeeze(-1) # shape (_tokens,) _tokens = indices_i.numel() if _tokens == 0: continue inp_i = inp_flat.index_select(0, indices_i) - l_idx emb_i = self.emb_layers[i](inp_i) emb_i = self.drop(emb_i) emb_i = F.linear(emb_i, self.emb_projs[i]) # Changes embeddings.append(emb_i) indices.index_put_( (indices_i,), torch.arange(_tokens, device=inp.device) + _total_tokens ) _total_tokens += _tokens # emb_flat.index_copy_(0, indices_i, emb_i) embeddings = torch.cat(embeddings, dim=0) emb_flat = embeddings[indices] embed_shape = inp.size() + (self.d_proj,) embed = emb_flat.view(embed_shape) embed.mul_(self.emb_scale) # embed.div_(self.emb_scale) return embed def _init_weight(weight, d : int, init_scale : Optional[float], default=None): assert init_scale or default if init_scale is None: std = default else: std = init_scale * (d ** -0.5) nn.init.normal_(weight, mean=0, std=std) _init_embed = functools.partial(_init_weight, default=0.02) _init_proj = functools.partial(_init_weight, default=0.01) ### Just for this codebase, we need to squeeze the last dimension because inputs are always given as (B, L, D) instead of (B, L) import src.models.nn.utils as U # AdaptiveEmbedding = U.Squeeze(AdaptiveEmbedding)
test/jit/test_backend_nnapi.py
Hacky-DH/pytorch
60,067
5949
import os import sys import unittest import torch import torch._C from pathlib import Path from test_nnapi import TestNNAPI from torch.testing._internal.common_utils import TEST_WITH_ASAN # Make the helper files in test/ importable pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.append(pytorch_test_dir) if __name__ == "__main__": raise RuntimeError( "This test file is not meant to be run directly, use:\n\n" "\tpython test/test_jit.py TESTNAME\n\n" "instead." ) """ Unit Tests for Nnapi backend with delegate Inherits most tests from TestNNAPI, which loads Android NNAPI models without the delegate API. """ # First skip is needed for IS_WINDOWS or IS_MACOS to skip the tests. # Second skip is because ASAN is currently causing an error. # It is still unclear how to resolve this. T95764916 torch_root = Path(__file__).resolve().parent.parent.parent lib_path = torch_root / 'build' / 'lib' / 'libnnapi_backend.so' @unittest.skipIf(not os.path.exists(lib_path), "Skipping the test as libnnapi_backend.so was not found") @unittest.skipIf(TEST_WITH_ASAN, "Unresolved bug with ASAN") class TestNnapiBackend(TestNNAPI): def setUp(self): super().setUp() # Save default dtype module = torch.nn.PReLU() self.default_dtype = module.weight.dtype # Change dtype to float32 (since a different unit test changed dtype to float64, # which is not supported by the Android NNAPI delegate) # Float32 should typically be the default in other files. torch.set_default_dtype(torch.float32) # Load nnapi delegate library torch.ops.load_library(str(lib_path)) # Override def call_lowering_to_nnapi(self, traced_module, args): compile_spec = {"forward": {"inputs": args}} return torch._C._jit_to_backend("nnapi", traced_module, compile_spec) def test_tensor_input(self): # Lower a simple module args = torch.tensor([[1.0, -1.0, 2.0, -2.0]]).unsqueeze(-1).unsqueeze(-1) module = torch.nn.PReLU() traced = torch.jit.trace(module, args) # Argument input is a single Tensor self.call_lowering_to_nnapi(traced, args) # Argument input is a Tensor in a list self.call_lowering_to_nnapi(traced, [args]) # Test exceptions for incorrect compile specs def test_compile_spec_santiy(self): args = torch.tensor([[1.0, -1.0, 2.0, -2.0]]).unsqueeze(-1).unsqueeze(-1) module = torch.nn.PReLU() traced = torch.jit.trace(module, args) errorMsgTail = r""" method_compile_spec should contain a Tensor or Tensor List which bundles input parameters: shape, dtype, quantization, and dimorder. For input shapes, use 0 for run/load time flexible input. method_compile_spec must use the following format: {"forward": {"inputs": at::Tensor}} OR {"forward": {"inputs": c10::List<at::Tensor>}}""" # No forward key compile_spec = {"backward": {"inputs": args}} with self.assertRaisesRegex(RuntimeError, "method_compile_spec does not contain the \"forward\" key." + errorMsgTail): torch._C._jit_to_backend("nnapi", traced, compile_spec) # No dictionary under the forward key compile_spec = {"forward": 1} with self.assertRaisesRegex(RuntimeError, "method_compile_spec does not contain a dictionary with an \"inputs\" key, " "under it's \"forward\" key." + errorMsgTail): torch._C._jit_to_backend("nnapi", traced, compile_spec) # No inputs key (in the dictionary under the forward key) compile_spec = {"forward": {"not inputs": args}} with self.assertRaisesRegex(RuntimeError, "method_compile_spec does not contain a dictionary with an \"inputs\" key, " "under it's \"forward\" key." + errorMsgTail): torch._C._jit_to_backend("nnapi", traced, compile_spec) # No Tensor or TensorList under the inputs key compile_spec = {"forward": {"inputs": 1}} with self.assertRaisesRegex(RuntimeError, "method_compile_spec does not contain either a Tensor or TensorList, under it's \"inputs\" key." + errorMsgTail): torch._C._jit_to_backend("nnapi", traced, compile_spec) compile_spec = {"forward": {"inputs": [1]}} with self.assertRaisesRegex(RuntimeError, "method_compile_spec does not contain either a Tensor or TensorList, under it's \"inputs\" key." + errorMsgTail): torch._C._jit_to_backend("nnapi", traced, compile_spec) def tearDown(self): # Change dtype back to default (Otherwise, other unit tests will complain) torch.set_default_dtype(self.default_dtype)
tests/test_markup.py
samdoran/sphinx
4,973
5984
<gh_stars>1000+ """ test_markup ~~~~~~~~~~~ Test various Sphinx-specific markup extensions. :copyright: Copyright 2007-2021 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ import re import pytest from docutils import frontend, nodes, utils from docutils.parsers.rst import Parser as RstParser from sphinx import addnodes from sphinx.builders.html.transforms import KeyboardTransform from sphinx.builders.latex import LaTeXBuilder from sphinx.roles import XRefRole from sphinx.testing.util import Struct, assert_node from sphinx.transforms import SphinxSmartQuotes from sphinx.util import docutils, texescape from sphinx.util.docutils import sphinx_domains from sphinx.writers.html import HTMLTranslator, HTMLWriter from sphinx.writers.latex import LaTeXTranslator, LaTeXWriter @pytest.fixture def settings(app): texescape.init() # otherwise done by the latex builder optparser = frontend.OptionParser( components=(RstParser, HTMLWriter, LaTeXWriter)) settings = optparser.get_default_values() settings.smart_quotes = True settings.env = app.builder.env settings.env.temp_data['docname'] = 'dummy' settings.contentsname = 'dummy' settings.rfc_base_url = 'http://tools.ietf.org/html/' domain_context = sphinx_domains(settings.env) domain_context.enable() yield settings domain_context.disable() @pytest.fixture def new_document(settings): def create(): document = utils.new_document('test data', settings) document['file'] = 'dummy' return document return create @pytest.fixture def inliner(new_document): document = new_document() document.reporter.get_source_and_line = lambda line=1: ('dummy.rst', line) return Struct(document=document, reporter=document.reporter) @pytest.fixture def parse(new_document): def parse_(rst): document = new_document() parser = RstParser() parser.parse(rst, document) SphinxSmartQuotes(document, startnode=None).apply() for msg in document.traverse(nodes.system_message): if msg['level'] == 1: msg.replace_self([]) return document return parse_ # since we're not resolving the markup afterwards, these nodes may remain class ForgivingTranslator: def visit_pending_xref(self, node): pass def depart_pending_xref(self, node): pass class ForgivingHTMLTranslator(HTMLTranslator, ForgivingTranslator): pass class ForgivingLaTeXTranslator(LaTeXTranslator, ForgivingTranslator): pass @pytest.fixture def verify_re_html(app, parse): def verify(rst, html_expected): document = parse(rst) KeyboardTransform(document).apply() html_translator = ForgivingHTMLTranslator(document, app.builder) document.walkabout(html_translator) html_translated = ''.join(html_translator.fragment).strip() assert re.match(html_expected, html_translated), 'from ' + rst return verify @pytest.fixture def verify_re_latex(app, parse): def verify(rst, latex_expected): document = parse(rst) app.builder = LaTeXBuilder(app) app.builder.set_environment(app.env) app.builder.init() theme = app.builder.themes.get('manual') latex_translator = ForgivingLaTeXTranslator(document, app.builder, theme) latex_translator.first_document = -1 # don't write \begin{document} document.walkabout(latex_translator) latex_translated = ''.join(latex_translator.body).strip() assert re.match(latex_expected, latex_translated), 'from ' + repr(rst) return verify @pytest.fixture def verify_re(verify_re_html, verify_re_latex): def verify_re_(rst, html_expected, latex_expected): if html_expected: verify_re_html(rst, html_expected) if latex_expected: verify_re_latex(rst, latex_expected) return verify_re_ @pytest.fixture def verify(verify_re_html, verify_re_latex): def verify_(rst, html_expected, latex_expected): if html_expected: verify_re_html(rst, re.escape(html_expected) + '$') if latex_expected: verify_re_latex(rst, re.escape(latex_expected) + '$') return verify_ @pytest.fixture def get_verifier(verify, verify_re): v = { 'verify': verify, 'verify_re': verify_re, } def get(name): return v[name] return get @pytest.mark.parametrize('type,rst,html_expected,latex_expected', [ ( # pep role 'verify', ':pep:`8`', ('<p><span class="target" id="index-0"></span><a class="pep reference external" ' 'href="http://www.python.org/dev/peps/pep-0008"><strong>PEP 8</strong></a></p>'), ('\\sphinxAtStartPar\n' '\\index{Python Enhancement Proposals@\\spxentry{Python Enhancement Proposals}' '!PEP 8@\\spxentry{PEP 8}}\\sphinxhref{http://www.python.org/dev/peps/pep-0008}' '{\\sphinxstylestrong{PEP 8}}') ), ( # pep role with anchor 'verify', ':pep:`8#id1`', ('<p><span class="target" id="index-0"></span><a class="pep reference external" ' 'href="http://www.python.org/dev/peps/pep-0008#id1">' '<strong>PEP 8#id1</strong></a></p>'), ('\\sphinxAtStartPar\n' '\\index{Python Enhancement Proposals@\\spxentry{Python Enhancement Proposals}' '!PEP 8\\#id1@\\spxentry{PEP 8\\#id1}}\\sphinxhref' '{http://www.python.org/dev/peps/pep-0008\\#id1}' '{\\sphinxstylestrong{PEP 8\\#id1}}') ), ( # rfc role 'verify', ':rfc:`2324`', ('<p><span class="target" id="index-0"></span><a class="rfc reference external" ' 'href="http://tools.ietf.org/html/rfc2324.html"><strong>RFC 2324</strong></a></p>'), ('\\sphinxAtStartPar\n' '\\index{RFC@\\spxentry{RFC}!RFC 2324@\\spxentry{RFC 2324}}' '\\sphinxhref{http://tools.ietf.org/html/rfc2324.html}' '{\\sphinxstylestrong{RFC 2324}}') ), ( # rfc role with anchor 'verify', ':rfc:`2324#id1`', ('<p><span class="target" id="index-0"></span><a class="rfc reference external" ' 'href="http://tools.ietf.org/html/rfc2324.html#id1">' '<strong>RFC 2324#id1</strong></a></p>'), ('\\sphinxAtStartPar\n' '\\index{RFC@\\spxentry{RFC}!RFC 2324\\#id1@\\spxentry{RFC 2324\\#id1}}' '\\sphinxhref{http://tools.ietf.org/html/rfc2324.html\\#id1}' '{\\sphinxstylestrong{RFC 2324\\#id1}}') ), ( # correct interpretation of code with whitespace 'verify_re', '``code sample``', ('<p><code class="(samp )?docutils literal notranslate"><span class="pre">' 'code</span>&#160;&#160; <span class="pre">sample</span></code></p>'), r'\\sphinxAtStartPar\n\\sphinxcode{\\sphinxupquote{code sample}}', ), ( # interpolation of arrows in menuselection 'verify', ':menuselection:`a --> b`', ('<p><span class="menuselection">a \N{TRIANGULAR BULLET} b</span></p>'), '\\sphinxAtStartPar\n\\sphinxmenuselection{a \\(\\rightarrow\\) b}', ), ( # interpolation of ampersands in menuselection 'verify', ':menuselection:`&Foo -&&- &Bar`', ('<p><span class="menuselection"><span class="accelerator">F</span>oo ' '-&amp;- <span class="accelerator">B</span>ar</span></p>'), ('\\sphinxAtStartPar\n' r'\sphinxmenuselection{\sphinxaccelerator{F}oo \sphinxhyphen{}' r'\&\sphinxhyphen{} \sphinxaccelerator{B}ar}'), ), ( # interpolation of ampersands in guilabel 'verify', ':guilabel:`&Foo -&&- &Bar`', ('<p><span class="guilabel"><span class="accelerator">F</span>oo ' '-&amp;- <span class="accelerator">B</span>ar</span></p>'), ('\\sphinxAtStartPar\n' r'\sphinxguilabel{\sphinxaccelerator{F}oo \sphinxhyphen{}\&\sphinxhyphen{} \sphinxaccelerator{B}ar}'), ), ( # no ampersands in guilabel 'verify', ':guilabel:`Foo`', '<p><span class="guilabel">Foo</span></p>', '\\sphinxAtStartPar\n\\sphinxguilabel{Foo}', ), ( # kbd role 'verify', ':kbd:`space`', '<p><kbd class="kbd docutils literal notranslate">space</kbd></p>', '\\sphinxAtStartPar\n\\sphinxkeyboard{\\sphinxupquote{space}}', ), ( # kbd role 'verify', ':kbd:`Control+X`', ('<p><kbd class="kbd compound docutils literal notranslate">' '<kbd class="kbd docutils literal notranslate">Control</kbd>' '+' '<kbd class="kbd docutils literal notranslate">X</kbd>' '</kbd></p>'), '\\sphinxAtStartPar\n\\sphinxkeyboard{\\sphinxupquote{Control+X}}', ), ( # kbd role 'verify', ':kbd:`Alt+^`', ('<p><kbd class="kbd compound docutils literal notranslate">' '<kbd class="kbd docutils literal notranslate">Alt</kbd>' '+' '<kbd class="kbd docutils literal notranslate">^</kbd>' '</kbd></p>'), ('\\sphinxAtStartPar\n' '\\sphinxkeyboard{\\sphinxupquote{Alt+\\textasciicircum{}}}'), ), ( # kbd role 'verify', ':kbd:`M-x M-s`', ('<p><kbd class="kbd compound docutils literal notranslate">' '<kbd class="kbd docutils literal notranslate">M</kbd>' '-' '<kbd class="kbd docutils literal notranslate">x</kbd>' ' ' '<kbd class="kbd docutils literal notranslate">M</kbd>' '-' '<kbd class="kbd docutils literal notranslate">s</kbd>' '</kbd></p>'), ('\\sphinxAtStartPar\n' '\\sphinxkeyboard{\\sphinxupquote{M\\sphinxhyphen{}x M\\sphinxhyphen{}s}}'), ), ( # kbd role 'verify', ':kbd:`-`', '<p><kbd class="kbd docutils literal notranslate">-</kbd></p>', ('\\sphinxAtStartPar\n' '\\sphinxkeyboard{\\sphinxupquote{\\sphinxhyphen{}}}'), ), ( # kbd role 'verify', ':kbd:`Caps Lock`', '<p><kbd class="kbd docutils literal notranslate">Caps Lock</kbd></p>', ('\\sphinxAtStartPar\n' '\\sphinxkeyboard{\\sphinxupquote{Caps Lock}}'), ), ( # non-interpolation of dashes in option role 'verify_re', ':option:`--with-option`', ('<p><code( class="xref std std-option docutils literal notranslate")?>' '<span class="pre">--with-option</span></code></p>$'), (r'\\sphinxAtStartPar\n' r'\\sphinxcode{\\sphinxupquote{\\sphinxhyphen{}\\sphinxhyphen{}with\\sphinxhyphen{}option}}$'), ), ( # verify smarty-pants quotes 'verify', '"John"', '<p>“John”</p>', "\\sphinxAtStartPar\n“John”", ), ( # ... but not in literal text 'verify', '``"John"``', ('<p><code class="docutils literal notranslate"><span class="pre">' '&quot;John&quot;</span></code></p>'), '\\sphinxAtStartPar\n\\sphinxcode{\\sphinxupquote{"John"}}', ), ( # verify classes for inline roles 'verify', ':manpage:`mp(1)`', '<p><em class="manpage">mp(1)</em></p>', '\\sphinxAtStartPar\n\\sphinxstyleliteralemphasis{\\sphinxupquote{mp(1)}}', ), ( # correct escaping in normal mode 'verify', 'Γ\\\\∞$', None, '\\sphinxAtStartPar\nΓ\\textbackslash{}\\(\\infty\\)\\$', ), ( # in verbatim code fragments 'verify', '::\n\n @Γ\\∞${}', None, ('\\begin{sphinxVerbatim}[commandchars=\\\\\\{\\}]\n' '@Γ\\PYGZbs{}\\(\\infty\\)\\PYGZdl{}\\PYGZob{}\\PYGZcb{}\n' '\\end{sphinxVerbatim}'), ), ( # in URIs 'verify_re', '`test <https://www.google.com/~me/>`_', None, r'\\sphinxAtStartPar\n\\sphinxhref{https://www.google.com/~me/}{test}.*', ), ( # description list: simple 'verify', 'term\n description', '<dl class="docutils">\n<dt>term</dt><dd>description</dd>\n</dl>', None, ), ( # description list: with classifiers 'verify', 'term : class1 : class2\n description', ('<dl class="docutils">\n<dt>term<span class="classifier">class1</span>' '<span class="classifier">class2</span></dt><dd>description</dd>\n</dl>'), None, ), ( # glossary (description list): multiple terms 'verify', '.. glossary::\n\n term1\n term2\n description', ('<dl class="glossary docutils">\n' '<dt id="term-term1">term1<a class="headerlink" href="#term-term1"' ' title="Permalink to this term">¶</a></dt>' '<dt id="term-term2">term2<a class="headerlink" href="#term-term2"' ' title="Permalink to this term">¶</a></dt>' '<dd>description</dd>\n</dl>'), None, ), ]) def test_inline(get_verifier, type, rst, html_expected, latex_expected): verifier = get_verifier(type) verifier(rst, html_expected, latex_expected) @pytest.mark.parametrize('type,rst,html_expected,latex_expected', [ ( 'verify', r'4 backslashes \\\\', r'<p>4 backslashes \\</p>', None, ), ]) @pytest.mark.skipif(docutils.__version_info__ < (0, 16), reason='docutils-0.16 or above is required') def test_inline_docutils16(get_verifier, type, rst, html_expected, latex_expected): verifier = get_verifier(type) verifier(rst, html_expected, latex_expected) @pytest.mark.sphinx(confoverrides={'latex_engine': 'xelatex'}) @pytest.mark.parametrize('type,rst,html_expected,latex_expected', [ ( # in verbatim code fragments 'verify', '::\n\n @Γ\\∞${}', None, ('\\begin{sphinxVerbatim}[commandchars=\\\\\\{\\}]\n' '@Γ\\PYGZbs{}∞\\PYGZdl{}\\PYGZob{}\\PYGZcb{}\n' '\\end{sphinxVerbatim}'), ), ]) def test_inline_for_unicode_latex_engine(get_verifier, type, rst, html_expected, latex_expected): verifier = get_verifier(type) verifier(rst, html_expected, latex_expected) def test_samp_role(parse): # no braces text = ':samp:`a{b}c`' doctree = parse(text) assert_node(doctree[0], [nodes.paragraph, nodes.literal, ("a", [nodes.emphasis, "b"], "c")]) # nested braces text = ':samp:`a{{b}}c`' doctree = parse(text) assert_node(doctree[0], [nodes.paragraph, nodes.literal, ("a", [nodes.emphasis, "{b"], "}c")]) # half-opened braces text = ':samp:`a{bc`' doctree = parse(text) assert_node(doctree[0], [nodes.paragraph, nodes.literal, "a{bc"]) # escaped braces text = ':samp:`a\\\\{b}c`' doctree = parse(text) assert_node(doctree[0], [nodes.paragraph, nodes.literal, "a{b}c"]) # no braces (whitespaces are keeped as is) text = ':samp:`code sample`' doctree = parse(text) assert_node(doctree[0], [nodes.paragraph, nodes.literal, "code sample"]) def test_download_role(parse): # implicit text = ':download:`sphinx.rst`' doctree = parse(text) assert_node(doctree[0], [nodes.paragraph, addnodes.download_reference, nodes.literal, "sphinx.rst"]) assert_node(doctree[0][0], refdoc='dummy', refdomain='', reftype='download', refexplicit=False, reftarget='sphinx.rst', refwarn=False) assert_node(doctree[0][0][0], classes=['xref', 'download']) # explicit text = ':download:`reftitle <sphinx.rst>`' doctree = parse(text) assert_node(doctree[0], [nodes.paragraph, addnodes.download_reference, nodes.literal, "reftitle"]) assert_node(doctree[0][0], refdoc='dummy', refdomain='', reftype='download', refexplicit=True, reftarget='sphinx.rst', refwarn=False) assert_node(doctree[0][0][0], classes=['xref', 'download']) def test_XRefRole(inliner): role = XRefRole() # implicit doctrees, errors = role('ref', 'rawtext', 'text', 5, inliner, {}, []) assert len(doctrees) == 1 assert_node(doctrees[0], [addnodes.pending_xref, nodes.literal, 'text']) assert_node(doctrees[0], refdoc='dummy', refdomain='', reftype='ref', reftarget='text', refexplicit=False, refwarn=False) assert errors == [] # explicit doctrees, errors = role('ref', 'rawtext', 'title <target>', 5, inliner, {}, []) assert_node(doctrees[0], [addnodes.pending_xref, nodes.literal, 'title']) assert_node(doctrees[0], refdoc='dummy', refdomain='', reftype='ref', reftarget='target', refexplicit=True, refwarn=False) # bang doctrees, errors = role('ref', 'rawtext', '!title <target>', 5, inliner, {}, []) assert_node(doctrees[0], [nodes.literal, 'title <target>']) # refdomain doctrees, errors = role('test:doc', 'rawtext', 'text', 5, inliner, {}, []) assert_node(doctrees[0], [addnodes.pending_xref, nodes.literal, 'text']) assert_node(doctrees[0], refdoc='dummy', refdomain='test', reftype='doc', reftarget='text', refexplicit=False, refwarn=False) # fix_parens role = XRefRole(fix_parens=True) doctrees, errors = role('ref', 'rawtext', 'text()', 5, inliner, {}, []) assert_node(doctrees[0], [addnodes.pending_xref, nodes.literal, 'text()']) assert_node(doctrees[0], refdoc='dummy', refdomain='', reftype='ref', reftarget='text', refexplicit=False, refwarn=False) # lowercase role = XRefRole(lowercase=True) doctrees, errors = role('ref', 'rawtext', 'TEXT', 5, inliner, {}, []) assert_node(doctrees[0], [addnodes.pending_xref, nodes.literal, 'TEXT']) assert_node(doctrees[0], refdoc='dummy', refdomain='', reftype='ref', reftarget='text', refexplicit=False, refwarn=False) @pytest.mark.sphinx('dummy', testroot='prolog') def test_rst_prolog(app, status, warning): app.builder.build_all() rst = app.env.get_doctree('restructuredtext') md = app.env.get_doctree('markdown') # rst_prolog assert_node(rst[0], nodes.paragraph) assert_node(rst[0][0], nodes.emphasis) assert_node(rst[0][0][0], nodes.Text) assert rst[0][0][0] == 'Hello world' # rst_epilog assert_node(rst[-1], nodes.section) assert_node(rst[-1][-1], nodes.paragraph) assert_node(rst[-1][-1][0], nodes.emphasis) assert_node(rst[-1][-1][0][0], nodes.Text) assert rst[-1][-1][0][0] == 'Good-bye world' # rst_prolog & rst_epilog on exlucding reST parser assert not md.rawsource.startswith('*Hello world*.') assert not md.rawsource.endswith('*Good-bye world*.\n') @pytest.mark.sphinx('dummy', testroot='keep_warnings') def test_keep_warnings_is_True(app, status, warning): app.builder.build_all() doctree = app.env.get_doctree('index') assert_node(doctree[0], nodes.section) assert len(doctree[0]) == 2 assert_node(doctree[0][1], nodes.system_message) @pytest.mark.sphinx('dummy', testroot='keep_warnings', confoverrides={'keep_warnings': False}) def test_keep_warnings_is_False(app, status, warning): app.builder.build_all() doctree = app.env.get_doctree('index') assert_node(doctree[0], nodes.section) assert len(doctree[0]) == 1 @pytest.mark.sphinx('dummy', testroot='refonly_bullet_list') def test_compact_refonly_bullet_list(app, status, warning): app.builder.build_all() doctree = app.env.get_doctree('index') assert_node(doctree[0], nodes.section) assert len(doctree[0]) == 5 assert doctree[0][1].astext() == 'List A:' assert_node(doctree[0][2], nodes.bullet_list) assert_node(doctree[0][2][0][0], addnodes.compact_paragraph) assert doctree[0][2][0][0].astext() == 'genindex' assert doctree[0][3].astext() == 'List B:' assert_node(doctree[0][4], nodes.bullet_list) assert_node(doctree[0][4][0][0], nodes.paragraph) assert doctree[0][4][0][0].astext() == 'Hello' @pytest.mark.sphinx('dummy', testroot='default_role') def test_default_role1(app, status, warning): app.builder.build_all() # default-role: pep doctree = app.env.get_doctree('index') assert_node(doctree[0], nodes.section) assert_node(doctree[0][1], nodes.paragraph) assert_node(doctree[0][1][0], addnodes.index) assert_node(doctree[0][1][1], nodes.target) assert_node(doctree[0][1][2], nodes.reference, classes=["pep"]) # no default-role doctree = app.env.get_doctree('foo') assert_node(doctree[0], nodes.section) assert_node(doctree[0][1], nodes.paragraph) assert_node(doctree[0][1][0], nodes.title_reference) assert_node(doctree[0][1][1], nodes.Text) @pytest.mark.sphinx('dummy', testroot='default_role', confoverrides={'default_role': 'guilabel'}) def test_default_role2(app, status, warning): app.builder.build_all() # default-role directive is stronger than configratuion doctree = app.env.get_doctree('index') assert_node(doctree[0], nodes.section) assert_node(doctree[0][1], nodes.paragraph) assert_node(doctree[0][1][0], addnodes.index) assert_node(doctree[0][1][1], nodes.target) assert_node(doctree[0][1][2], nodes.reference, classes=["pep"]) # default_role changes the default behavior doctree = app.env.get_doctree('foo') assert_node(doctree[0], nodes.section) assert_node(doctree[0][1], nodes.paragraph) assert_node(doctree[0][1][0], nodes.inline, classes=["guilabel"]) assert_node(doctree[0][1][1], nodes.Text)
virtual/lib/python3.6/site-packages/sqlalchemy/sql/default_comparator.py
mzazakeith/flask-blog
207
5986
<reponame>mzazakeith/flask-blog # sql/default_comparator.py # Copyright (C) 2005-2018 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Default implementation of SQL comparison operations. """ from .. import exc, util from . import type_api from . import operators from .elements import BindParameter, True_, False_, BinaryExpression, \ Null, _const_expr, _clause_element_as_expr, \ ClauseList, ColumnElement, TextClause, UnaryExpression, \ collate, _is_literal, _literal_as_text, ClauseElement, and_, or_, \ Slice, Visitable, _literal_as_binds, CollectionAggregate from .selectable import SelectBase, Alias, Selectable, ScalarSelect def _boolean_compare(expr, op, obj, negate=None, reverse=False, _python_is_types=(util.NoneType, bool), result_type = None, **kwargs): if result_type is None: result_type = type_api.BOOLEANTYPE if isinstance(obj, _python_is_types + (Null, True_, False_)): # allow x ==/!= True/False to be treated as a literal. # this comes out to "== / != true/false" or "1/0" if those # constants aren't supported and works on all platforms if op in (operators.eq, operators.ne) and \ isinstance(obj, (bool, True_, False_)): return BinaryExpression(expr, _literal_as_text(obj), op, type_=result_type, negate=negate, modifiers=kwargs) elif op in (operators.is_distinct_from, operators.isnot_distinct_from): return BinaryExpression(expr, _literal_as_text(obj), op, type_=result_type, negate=negate, modifiers=kwargs) else: # all other None/True/False uses IS, IS NOT if op in (operators.eq, operators.is_): return BinaryExpression(expr, _const_expr(obj), operators.is_, negate=operators.isnot, type_=result_type ) elif op in (operators.ne, operators.isnot): return BinaryExpression(expr, _const_expr(obj), operators.isnot, negate=operators.is_, type_=result_type ) else: raise exc.ArgumentError( "Only '=', '!=', 'is_()', 'isnot()', " "'is_distinct_from()', 'isnot_distinct_from()' " "operators can be used with None/True/False") else: obj = _check_literal(expr, op, obj) if reverse: return BinaryExpression(obj, expr, op, type_=result_type, negate=negate, modifiers=kwargs) else: return BinaryExpression(expr, obj, op, type_=result_type, negate=negate, modifiers=kwargs) def _custom_op_operate(expr, op, obj, reverse=False, result_type=None, **kw): if result_type is None: if op.return_type: result_type = op.return_type elif op.is_comparison: result_type = type_api.BOOLEANTYPE return _binary_operate( expr, op, obj, reverse=reverse, result_type=result_type, **kw) def _binary_operate(expr, op, obj, reverse=False, result_type=None, **kw): obj = _check_literal(expr, op, obj) if reverse: left, right = obj, expr else: left, right = expr, obj if result_type is None: op, result_type = left.comparator._adapt_expression( op, right.comparator) return BinaryExpression( left, right, op, type_=result_type, modifiers=kw) def _conjunction_operate(expr, op, other, **kw): if op is operators.and_: return and_(expr, other) elif op is operators.or_: return or_(expr, other) else: raise NotImplementedError() def _scalar(expr, op, fn, **kw): return fn(expr) def _in_impl(expr, op, seq_or_selectable, negate_op, **kw): seq_or_selectable = _clause_element_as_expr(seq_or_selectable) if isinstance(seq_or_selectable, ScalarSelect): return _boolean_compare(expr, op, seq_or_selectable, negate=negate_op) elif isinstance(seq_or_selectable, SelectBase): # TODO: if we ever want to support (x, y, z) IN (select x, # y, z from table), we would need a multi-column version of # as_scalar() to produce a multi- column selectable that # does not export itself as a FROM clause return _boolean_compare( expr, op, seq_or_selectable.as_scalar(), negate=negate_op, **kw) elif isinstance(seq_or_selectable, (Selectable, TextClause)): return _boolean_compare(expr, op, seq_or_selectable, negate=negate_op, **kw) elif isinstance(seq_or_selectable, ClauseElement): if isinstance(seq_or_selectable, BindParameter) and \ seq_or_selectable.expanding: return _boolean_compare( expr, op, seq_or_selectable, negate=negate_op) else: raise exc.InvalidRequestError( 'in_() accepts' ' either a list of expressions, ' 'a selectable, or an "expanding" bound parameter: %r' % seq_or_selectable) # Handle non selectable arguments as sequences args = [] for o in seq_or_selectable: if not _is_literal(o): if not isinstance(o, operators.ColumnOperators): raise exc.InvalidRequestError( 'in_() accepts' ' either a list of expressions, ' 'a selectable, or an "expanding" bound parameter: %r' % o) elif o is None: o = Null() else: o = expr._bind_param(op, o) args.append(o) if len(args) == 0: op, negate_op = ( operators.empty_in_op, operators.empty_notin_op) if op is operators.in_op \ else ( operators.empty_notin_op, operators.empty_in_op) return _boolean_compare(expr, op, ClauseList(*args).self_group(against=op), negate=negate_op) def _getitem_impl(expr, op, other, **kw): if isinstance(expr.type, type_api.INDEXABLE): other = _check_literal(expr, op, other) return _binary_operate(expr, op, other, **kw) else: _unsupported_impl(expr, op, other, **kw) def _unsupported_impl(expr, op, *arg, **kw): raise NotImplementedError("Operator '%s' is not supported on " "this expression" % op.__name__) def _inv_impl(expr, op, **kw): """See :meth:`.ColumnOperators.__inv__`.""" if hasattr(expr, 'negation_clause'): return expr.negation_clause else: return expr._negate() def _neg_impl(expr, op, **kw): """See :meth:`.ColumnOperators.__neg__`.""" return UnaryExpression(expr, operator=operators.neg, type_=expr.type) def _match_impl(expr, op, other, **kw): """See :meth:`.ColumnOperators.match`.""" return _boolean_compare( expr, operators.match_op, _check_literal( expr, operators.match_op, other), result_type=type_api.MATCHTYPE, negate=operators.notmatch_op if op is operators.match_op else operators.match_op, **kw ) def _distinct_impl(expr, op, **kw): """See :meth:`.ColumnOperators.distinct`.""" return UnaryExpression(expr, operator=operators.distinct_op, type_=expr.type) def _between_impl(expr, op, cleft, cright, **kw): """See :meth:`.ColumnOperators.between`.""" return BinaryExpression( expr, ClauseList( _check_literal(expr, operators.and_, cleft), _check_literal(expr, operators.and_, cright), operator=operators.and_, group=False, group_contents=False), op, negate=operators.notbetween_op if op is operators.between_op else operators.between_op, modifiers=kw) def _collate_impl(expr, op, other, **kw): return collate(expr, other) # a mapping of operators with the method they use, along with # their negated operator for comparison operators operator_lookup = { "and_": (_conjunction_operate,), "or_": (_conjunction_operate,), "inv": (_inv_impl,), "add": (_binary_operate,), "mul": (_binary_operate,), "sub": (_binary_operate,), "div": (_binary_operate,), "mod": (_binary_operate,), "truediv": (_binary_operate,), "custom_op": (_custom_op_operate,), "json_path_getitem_op": (_binary_operate, ), "json_getitem_op": (_binary_operate, ), "concat_op": (_binary_operate,), "any_op": (_scalar, CollectionAggregate._create_any), "all_op": (_scalar, CollectionAggregate._create_all), "lt": (_boolean_compare, operators.ge), "le": (_boolean_compare, operators.gt), "ne": (_boolean_compare, operators.eq), "gt": (_boolean_compare, operators.le), "ge": (_boolean_compare, operators.lt), "eq": (_boolean_compare, operators.ne), "is_distinct_from": (_boolean_compare, operators.isnot_distinct_from), "isnot_distinct_from": (_boolean_compare, operators.is_distinct_from), "like_op": (_boolean_compare, operators.notlike_op), "ilike_op": (_boolean_compare, operators.notilike_op), "notlike_op": (_boolean_compare, operators.like_op), "notilike_op": (_boolean_compare, operators.ilike_op), "contains_op": (_boolean_compare, operators.notcontains_op), "startswith_op": (_boolean_compare, operators.notstartswith_op), "endswith_op": (_boolean_compare, operators.notendswith_op), "desc_op": (_scalar, UnaryExpression._create_desc), "asc_op": (_scalar, UnaryExpression._create_asc), "nullsfirst_op": (_scalar, UnaryExpression._create_nullsfirst), "nullslast_op": (_scalar, UnaryExpression._create_nullslast), "in_op": (_in_impl, operators.notin_op), "notin_op": (_in_impl, operators.in_op), "is_": (_boolean_compare, operators.is_), "isnot": (_boolean_compare, operators.isnot), "collate": (_collate_impl,), "match_op": (_match_impl,), "notmatch_op": (_match_impl,), "distinct_op": (_distinct_impl,), "between_op": (_between_impl, ), "notbetween_op": (_between_impl, ), "neg": (_neg_impl,), "getitem": (_getitem_impl,), "lshift": (_unsupported_impl,), "rshift": (_unsupported_impl,), "contains": (_unsupported_impl,), } def _check_literal(expr, operator, other, bindparam_type=None): if isinstance(other, (ColumnElement, TextClause)): if isinstance(other, BindParameter) and \ other.type._isnull: other = other._clone() other.type = expr.type return other elif hasattr(other, '__clause_element__'): other = other.__clause_element__() elif isinstance(other, type_api.TypeEngine.Comparator): other = other.expr if isinstance(other, (SelectBase, Alias)): return other.as_scalar() elif not isinstance(other, Visitable): return expr._bind_param(operator, other, type_=bindparam_type) else: return other
vel/notebook/__init__.py
tigerwlin/vel
273
6015
from .loader import load
CircuitPython_JEplayer_mp3/repeat.py
gamblor21/Adafruit_Learning_System_Guides
665
6022
<gh_stars>100-1000 # The MIT License (MIT) # # Copyright (c) 2020 <NAME> for Adafruit Industries LLC # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ Make a key (button) repeat when held down """ import time class KeyRepeat: """Track the state of a button and, while it is held, output a press every 'rate' seconds""" def __init__(self, getter, rate=0.5): self.getter = getter self.rate_ns = round(rate * 1e9) self.next = -1 @property def value(self): """True when a button is first pressed, or once every 'rate' seconds thereafter""" state = self.getter() if not state: self.next = -1 return False now = time.monotonic_ns() if state and now > self.next: self.next = now + self.rate_ns return True return False
tests/test_env.py
Majanao/pytorch-blender
381
6047
import pytest from pathlib import Path from blendtorch import btt BLENDDIR = Path(__file__).parent/'blender' class MyEnv(btt.env.OpenAIRemoteEnv): def __init__(self, background=True, **kwargs): super().__init__(version='1.0.0') self.launch(scene=BLENDDIR/'env.blend', script=BLENDDIR / 'env.blend.py', background=background, **kwargs) # For Blender 2.9 if we pass scene='', the tests below fail since # _env_post_step() is not called. Its unclear currently why this happens. def _run_remote_env(background): env = MyEnv(background=background) obs = env.reset() assert obs == 0. obs, reward, done, info = env.step(0.1) assert obs == pytest.approx(0.1) assert reward == 0. assert not done assert info['count'] == 2 # 1 is already set by reset() obs, reward, done, info = env.step(0.6) assert obs == pytest.approx(0.6) assert reward == 1. assert not done assert info['count'] == 3 for _ in range(8): obs, reward, done, info = env.step(0.6) assert done obs = env.reset() assert obs == 0. obs, reward, done, info = env.step(0.1) assert obs == pytest.approx(0.1) assert reward == 0. assert not done assert info['count'] == 2 env.close() @pytest.mark.background def test_remote_env(): _run_remote_env(background=True) def test_remote_env_ui(): _run_remote_env(background=False)
pytorch_ares/pytorch_ares/attack_torch/mim.py
thu-ml/realsafe
107
6060
<gh_stars>100-1000 import imp import torch import torch.nn as nn import numpy as np import torch.nn.functional as F from pytorch_ares.attack_torch.utils import loss_adv class MIM(object): '''Projected Gradient Descent''' def __init__(self, net, epsilon, p, stepsize, steps, decay_factor, data_name,target, loss, device): self.epsilon = epsilon self.p = p self.net = net self.decay_factor = decay_factor self.stepsize = stepsize self.target = target self.steps = steps self.loss = loss self.data_name = data_name self.device = device if self.data_name=="cifar10" and self.target: raise AssertionError('cifar10 dont support targeted attack') def forward(self, image, label, target_labels): image, label = image.to(self.device), label.to(self.device) if target_labels is not None: target_labels = target_labels.to(self.device) batchsize = image.shape[0] advimage = image momentum = torch.zeros_like(image).detach() # PGD to get adversarial example for i in range(self.steps): advimage = advimage.clone().detach().requires_grad_(True) # clone the advimage as the next iteration input netOut = self.net(advimage) loss = loss_adv(self.loss, netOut, label, target_labels, self.target, self.device) grad = torch.autograd.grad(loss, [advimage])[0].detach() grad_norm = torch.norm(nn.Flatten()(grad), p=1, dim=1) grad = grad / grad_norm.view([-1]+[1]*(len(grad.shape)-1)) grad = grad + momentum*self.decay_factor momentum = grad if self.p==np.inf: updates = grad.sign() else: normVal = torch.norm(grad.view(batchsize, -1), self.p, 1) updates = grad/normVal.view(batchsize, 1, 1, 1) updates = updates*self.stepsize advimage = advimage+updates # project the disturbed image to feasible set if needed delta = advimage-image if self.p==np.inf: delta = torch.clamp(delta, -self.epsilon, self.epsilon) else: normVal = torch.norm(delta.view(batchsize, -1), self.p, 1) mask = normVal<=self.epsilon scaling = self.epsilon/normVal scaling[mask] = 1 delta = delta*scaling.view(batchsize, 1, 1, 1) advimage = image+delta advimage = torch.clamp(advimage, 0, 1)#cifar10(-1,1) return advimage
ares/defense/randomization.py
KuanKuanQAQ/ares
206
6064
<reponame>KuanKuanQAQ/ares<gh_stars>100-1000 ''' The randomization defense method, which applies random . ''' import tensorflow as tf from ares.defense.input_transformation import input_transformation def randomize(xs, scale_min=0.875, pad_value=0.0): ''' Apply random rescaling and padding to xs. :param xs: A batch of inputs for some classifier. :param scale_min: The random rescaling rate would be chosen between ``scale_min`` and 1.0. :param pad_value: ``constant_values`` parameter for the ``tf.pad`` method. :return: A new tensor with same shape and dtype as xs. ''' ratio = tf.random.uniform((), minval=scale_min, maxval=1.0) height, width = tf.cast(xs.shape[1].value * ratio, tf.int32), tf.cast(xs.shape[2].value * ratio, tf.int32) xs_rescaled = tf.image.resize(xs, (height, width), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR, align_corners=True, preserve_aspect_ratio=False) height_rem, width_rem = xs.shape[1].value - height, xs.shape[2].value - width pad_left = tf.random_uniform((), 0, width_rem, dtype=tf.int32) pad_right = width_rem - pad_left pad_top = tf.random_uniform((), 0, height_rem, dtype=tf.int32) pad_bottom = height_rem - pad_top xs_padded = tf.pad(xs_rescaled, [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]], constant_values=pad_value) xs_padded.set_shape(xs.shape) return xs_padded def randomization(scale_min=0.875, pad_value=0.0): ''' A decorator to apply randomize rescaling and padding to input of the classifier. :param scale_min: The random rescaling rate would be chosen between ``scale_min`` and 1.0. :param pad_value: ``constant_values`` parameter for the ``tf.pad`` method. ''' def args_fn(_): return (scale_min, pad_value) def kwargs_fn(_): return {} return lambda rs_class: input_transformation(rs_class, randomize, args_fn, kwargs_fn)
jumpy/jumpy/ndarray.py
rghwer/testdocs
13,006
6072
################################################################################ # Copyright (c) 2015-2018 Skymind, Inc. # # This program and the accompanying materials are made available under the # terms of the Apache License, Version 2.0 which is available at # https://www.apache.org/licenses/LICENSE-2.0. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # SPDX-License-Identifier: Apache-2.0 ################################################################################ from .java_classes import * import numpy as np import ctypes import warnings native_ops = NativeOpsHolder.getInstance().getDeviceNativeOps() # DATA TYPE MANAGEMENT DOUBLE = DataType.DOUBLE FLOAT = DataType.FLOAT HALF = DataType.HALF LONG = DataType.LONG INT = DataType.INT SHORT = DataType.SHORT UBYTE = DataType.UBYTE BYTE = DataType.BYTE BOOL = DataType.BOOL UTF8 = DataType.UTF8 COMPRESSED = DataType.COMPRESSED UNKNOWN = DataType.UNKNOWN SUPPORTED_JAVA_DTYPES = [ DOUBLE, FLOAT, HALF, LONG, INT, SHORT, BOOL #UTF8 ] SUPPORTED_PYTHON_DTYPES = [ np.float64, np.float32, np.float16, np.int64, np.int32, np.int16, np.bool_ #np.str_ ] _PY2J = {SUPPORTED_PYTHON_DTYPES[i] : SUPPORTED_JAVA_DTYPES[i] for i in range(len(SUPPORTED_JAVA_DTYPES))} _J2PY = {SUPPORTED_JAVA_DTYPES[i] : SUPPORTED_PYTHON_DTYPES[i] for i in range(len(SUPPORTED_JAVA_DTYPES))} def _dtype_py2j(dtype): if isinstance(dtype, str): dtype = np.dtype(dtype).type elif isinstance(dtype, np.dtype): dtype = dtype.type jtype = _PY2J.get(dtype) if jtype is None: raise NotImplementedError("Unsupported type: " + dtype.name) return jtype def _dtype_j2py(dtype): pytype = _J2PY.get(dtype) if pytype is None: raise NotImplementedError("Unsupported type: " + (str(dtype))) return pytype def set_context_dtype(dtype): ''' Sets the dtype for nd4j # Arguments dtype: 'float' or 'double' ''' dtype_map = { 'float32': 'float', 'float64': 'double' } dtype = dtype_map.get(dtype, dtype) if dtype not in ['float', 'double']: raise ValueError("Invalid dtype '{}'. Available dtypes are 'float' and 'double'.".format(dtype)) dtype_ = DataTypeUtil.getDtypeFromContext(dtype) DataTypeUtil.setDTypeForContext(dtype_) if get_context_dtype() != dtype: warnings.warn("Can not set context dtype now. Set it at the beginning of your program.") def get_context_dtype(): ''' Returns the nd4j dtype ''' dtype = DataTypeUtil.getDtypeFromContext() return DataTypeUtil.getDTypeForName(dtype) _refs = [] def _from_numpy(np_array): ''' Convert numpy array to nd4j array ''' pointer_address, _ = np_array.__array_interface__['data'] _refs.append(np_array) pointer = native_ops.pointerForAddress(pointer_address) size = np_array.size pointer.limit(size) jdtype = _dtype_py2j(np_array.dtype) ''' mapping = { DOUBLE: DoublePointer, FLOAT: FloatPointer, HALF: HalfPointer, LONG: LongPointer, INT: IntPointer, SHORT: ShortPointer, BOOL: BoolPointer } pc = mapping[jdtype] #pointer = pc(pointer) ''' buff = Nd4j.createBuffer(pointer, size, jdtype) assert buff.address() == pointer_address _refs.append(buff) elem_size = buff.getElementSize() assert elem_size == np_array.dtype.itemsize strides = np_array.strides strides = [dim / elem_size for dim in strides] shape = np_array.shape nd4j_array = Nd4j.create(buff, shape, strides, 0) assert buff.address() == nd4j_array.data().address() return nd4j_array def _to_numpy(nd4j_array): ''' Convert nd4j array to numpy array ''' buff = nd4j_array.data() address = buff.pointer().address() dtype = nd4j_array.dataType().toString() mapping = { 'DOUBLE': ctypes.c_double, 'FLOAT': ctypes.c_float, 'HALF': ctypes.c_short, 'LONG': ctypes.c_long, 'INT': ctypes.c_int, 'SHORT': ctypes.c_short, 'BOOL': ctypes.c_bool } Pointer = ctypes.POINTER(mapping[dtype]) pointer = ctypes.cast(address, Pointer) np_array = np.ctypeslib.as_array(pointer, tuple(nd4j_array.shape())) return np_array def _indarray(x): typ = type(x) if typ is INDArray: return x elif typ is ndarray: return x.array elif 'numpy' in str(typ): return _from_numpy(x) elif typ in (list, tuple): return _from_numpy(np.array(x)) elif typ in (int, float): return Nd4j.scalar(x) else: raise Exception('Data type not understood :' + str(typ)) def _nparray(x): typ = type(x) if typ is INDArray: return ndarray(x).numpy() elif typ is ndarray: return x.numpy() elif 'numpy' in str(typ): return x elif typ in (list, tuple): return np.array(x) elif typ in (int, float): return np.array(x) else: raise Exception('Data type not understood :' + str(typ)) def broadcast_like(y, x): xs = x.shape() ys = y.shape() if xs == ys: return y _xs = tuple(xs) _ys = tuple(ys) nx = len(xs) ny = len(ys) if nx > ny: diff = nx - ny ys = ([1] * diff) + ys y = y.reshape(ys) ny = nx elif ny > nx: raise Exception('Unable to broadcast shapes ' + str(_xs) + '' ' and ' + str(_ys)) yt = [] rep_y = False for xd, yd in zip(xs, ys): if xd == yd: yt.append(1) elif xd == 1: raise Exception('Unable to broadcast shapes ' + str(_xs) + '' ' and ' + str(_ys)) elif yd == 1: yt.append(xd) rep_y = True else: raise Exception('Unable to broadcast shapes ' + str(_xs) + '' ' and ' + str(_ys)) if rep_y: y = y.repmat(*yt) return y def broadcast(x, y): xs = x.shape() ys = y.shape() if xs == ys: return x, y _xs = tuple(xs) _ys = tuple(ys) nx = len(xs) ny = len(ys) if nx > ny: diff = nx - ny ys = ([1] * diff) + ys y = y.reshape(*ys) ny = nx elif ny > nx: diff = ny - nx xs = ([1] * diff) + xs x = x.reshape(*xs) nx = ny xt = [] yt = [] rep_x = False rep_y = False for xd, yd in zip(xs, ys): if xd == yd: xt.append(1) yt.append(1) elif xd == 1: xt.append(yd) yt.append(1) rep_x = True elif yd == 1: xt.append(1) yt.append(xd) rep_y = True else: raise Exception('Unable to broadcast shapes ' + str(_xs) + '' ' and ' + str(_ys)) if rep_x: x = Nd4j.tile(x, *xt) if rep_y: try: y = Nd4j.tile(y, *yt) except: y = Nd4j.tile(y, *yt) return x, y class ndarray(object): def __init__(self, data, dtype=None): # we ignore dtype for now typ = type(data) if 'nd4j' in typ.__name__: # Note that we don't make a copy here self.array = data elif typ is ndarray: self.array = data.array.dup() else: if typ is not np.ndarray: data = np.array(data) self.array = _from_numpy(data) def numpy(self): try: return self.np_array except AttributeError: self.np_array = _to_numpy(self.array) return self.np_array @property def size(self): return self.array.length() @property def shape(self): return tuple(self.array.shape()) @shape.setter def shape(self, value): arr = self.reshape(value) self.array = arr.array @property def ndim(self): return len(self.array.shape()) def __getitem__(self, key): return ndarray(self.numpy()[key]) if type(key) is int: return ndarray(self.array.get(NDArrayIndex.point(key))) if type(key) is slice: start = key.start stop = key.stop step = key.step if start is None: start = 0 if stop is None: shape = self.array.shape() if shape[0] == 1: stop = shape[1] else: stop = shape[0] if stop - start <= 0: return None if step is None or step == 1: return ndarray(self.array.get(NDArrayIndex.interval(start, stop))) else: return ndarray(self.array.get(NDArrayIndex.interval(start, step, stop))) if type(key) is list: raise NotImplementedError( 'Sorry, this type of indexing is not supported yet.') if type(key) is tuple: key = list(key) shape = self.array.shape() ndim = len(shape) nk = len(key) key += [slice(None)] * (ndim - nk) args = [] for i, dim in enumerate(key): if type(dim) is int: args.append(NDArrayIndex.point(dim)) elif type(dim) is slice: if dim == slice(None): args.append(NDArrayIndex.all()) else: start = dim.start stop = dim.stop step = dim.step if start is None: start = 0 if stop is None: stop = shape[i] if stop - start <= 0: return None if step is None or step == 1: args.append(NDArrayIndex.interval(start, stop)) else: args.append(NDArrayIndex.interval( start, step, stop)) elif type(dim) in (list, tuple): raise NotImplementedError( 'Sorry, this type of indexing is not supported yet.') return ndarray(self.array.get(*args)) def __setitem__(self, key, other): self.numpy()[key] = _nparray(other) return other = _indarray(other) view = self[key] if view is None: return view = view.array other = broadcast_like(other, view) view.assign(other) def __add__(self, other): return ndarray(self.numpy() + _nparray(other)) other = _indarray(other) x, y = broadcast(self.array, other) return ndarray(x.add(y)) def __sub__(self, other): return ndarray(self.numpy() - _nparray(other)) other = _indarray(other) x, y = broadcast(self.array, other) return ndarray(x.sub(y)) def __mul__(self, other): return ndarray(self.numpy() * _nparray(other)) other = _indarray(other) x, y = broadcast(self.array, other) return ndarray(x.mul(y)) def __div__(self, other): return ndarray(self.numpy() / _nparray(other)) other = _indarray(other) x, y = broadcast(self.array, other) return ndarray(x.div(y)) def __pow__(self, other): return ndarray(self.numpy() ** _nparray(other)) other = _indarray(other) x, y = broadcast(self.array, other) return ndarray(Transforms.pow(x, y)) def __iadd__(self, other): self.numpy().__iadd__(_nparray(other)) return self other = _indarray(other) if self.array.shape() == other.shape(): self.array = self.array.addi(other) else: x, y = broadcast(self.array, other) self.array = x.add(y) return self def __isub__(self, other): self.numpy().__isub__(_nparray(other)) return self other = _indarray(other) if self.array.shape() == other.shape(): self.array = self.array.subi(other) else: x, y = broadcast(self.array, other) self.array = x.sub(y) return self def __imul__(self, other): self.numpy().__imul__(_nparray(other)) return self other = _indarray(other) if self.array.shape() == other.shape(): self.array = self.array.muli(other) else: x, y = broadcast(self.array, other) self.array = x.mul(y) return self def __idiv__(self, other): self.numpy().__idiv__(_nparray(other)) return self other = _indarray(other) if self.array.shape() == other.shape(): self.array = self.array.divi(other) else: x, y = broadcast(self.array, other) self.array = x.div(y) return self def __ipow__(self, other): self.numpy().__ipow__(_nparray(other)) return self other = _indarray(other) if self.array.shape() == other.shape(): self.array = self.array.divi(other) else: x, y = broadcast(self.array, other) self.array = Transforms.pow(x, y) return self def __getattr__(self, attr): import ops f = getattr(ops, attr) setattr(ndarray, attr, f) return getattr(self, attr) def __int__(self): if self.array.length() == 1: return self.array.getInt(0) raise Exception('Applicable only for scalars') def __float__(self): if self.array.length() == 1: return self.array.getDouble(0) raise Exception('Applicable only for scalars') @property def T(self): return self.transpose() def array(*args, **kwargs): return ndarray(*args, **kwargs)
localgraphclustering/algorithms/eig2_nL.py
vishalbelsare/LocalGraphClustering
106
6078
import numpy as np import scipy as sp import scipy.sparse.linalg as splinalg def eig2_nL(g, tol_eigs = 1.0e-6, normalize:bool = True, dim:int=1): """ DESCRIPTION ----------- Computes the eigenvector that corresponds to the second smallest eigenvalue of the normalized Laplacian matrix then it uses sweep cut to round the solution. PARAMETERS (mandatory) ---------------------- g: graph object PARAMETERS (optional) --------------------- dim: positive, int default == 1 The number of eigenvectors or dimensions to compute. tol_eigs: positive float, double default == 1.0e-6 Tolerance for computation of the eigenvector that corresponds to the second smallest eigenvalue of the normalized Laplacian matrix. normalize: bool, default == True True if we should return the eigenvectors of the generalized eigenvalue problem associated with the normalized Laplacian. This should be on unless you know what you are doing. RETURNS ------ p: Eigenvector or Eigenvector matrixthat corresponds to the second smallest eigenvalue of the normalized Laplacian matrix and larger eigenvectors if dim >= 0. """ n = g.adjacency_matrix.shape[0] D_sqrt_neg = sp.sparse.spdiags(g.dn_sqrt.transpose(), 0, n, n) L = sp.sparse.identity(n) - D_sqrt_neg.dot((g.adjacency_matrix.dot(D_sqrt_neg))) emb_eig_val, p = splinalg.eigsh(L, which='SM', k=1+dim, tol = tol_eigs) F = np.real(p[:,1:]) if normalize: F *= g.dn_sqrt[:,np.newaxis] return F, emb_eig_val """ Random walks and local cuts in graphs, Chung, LAA 2007 We just form the sub-matrix of the Laplacian and use the eigenvector there. """ def eig2nL_subgraph(g, ref_nodes, tol_eigs = 1.0e-6, normalize: bool = True): A_sub = g.adjacency_matrix.tocsr()[ref_nodes, :].tocsc()[:, ref_nodes] nref = len(ref_nodes) D_sqrt_neg = sp.sparse.spdiags(g.dn_sqrt[ref_nodes].transpose(), 0, nref, nref) L_sub = sp.sparse.identity(nref) - D_sqrt_neg.dot((A_sub.dot(D_sqrt_neg))) emb_eig_val, emb_eig = splinalg.eigsh(L_sub, which='SM', k=1, tol=tol_eigs) emb_eig *= -1 if max(emb_eig) < 0 else 1 f = emb_eig[:,0] if normalize: f *= g.dn_sqrt[ref_nodes] return ((ref_nodes,f), emb_eig_val)
src/toil/batchSystems/abstractBatchSystem.py
Hexotical/toil
348
6096
<reponame>Hexotical/toil<gh_stars>100-1000 # Copyright (C) 2015-2021 Regents of the University of California # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import enum import logging import os import shutil from abc import ABC, abstractmethod from argparse import ArgumentParser, _ArgumentGroup from contextlib import contextmanager from typing import (Any, Callable, ContextManager, Dict, Iterator, List, Optional, Tuple, Type, TypeVar, Union, NamedTuple) from toil.common import Toil, cacheDirName, Config from toil.deferred import DeferredFunctionManager from toil.fileStores.abstractFileStore import AbstractFileStore from toil.job import JobDescription from toil.resource import Resource logger = logging.getLogger(__name__) # Value to use as exitStatus in UpdatedBatchJobInfo.exitStatus when status is not available. EXIT_STATUS_UNAVAILABLE_VALUE = 255 class BatchJobExitReason(enum.Enum): FINISHED: int = 1 # Successfully finished. FAILED: int = 2 # Job finished, but failed. LOST: int = 3 # Preemptable failure (job's executing host went away). KILLED: int = 4 # Job killed before finishing. ERROR: int = 5 # Internal error. MEMLIMIT: int = 6 # Job hit batch system imposed memory limit class UpdatedBatchJobInfo(NamedTuple): jobID: int exitStatus: int """ The exit status (integer value) of the job. 0 implies successful. EXIT_STATUS_UNAVAILABLE_VALUE is used when the exit status is not available (e.g. job is lost). """ exitReason: Optional[BatchJobExitReason] wallTime: Union[float, int, None] # Information required for worker cleanup on shutdown of the batch system. class WorkerCleanupInfo(NamedTuple): workDir: str """workdir path (where the cache would go)""" workflowID: str """used to identify files specific to this workflow""" cleanWorkDir: str class AbstractBatchSystem(ABC): """ An abstract (as far as Python currently allows) base class to represent the interface the batch system must provide to Toil. """ @classmethod @abstractmethod def supportsAutoDeployment(cls) -> bool: """ Whether this batch system supports auto-deployment of the user script itself. If it does, the :meth:`.setUserScript` can be invoked to set the resource object representing the user script. Note to implementors: If your implementation returns True here, it should also override """ raise NotImplementedError() @classmethod @abstractmethod def supportsWorkerCleanup(cls) -> bool: """ Indicates whether this batch system invokes :meth:`BatchSystemSupport.workerCleanup` after the last job for a particular workflow invocation finishes. Note that the term *worker* refers to an entire node, not just a worker process. A worker process may run more than one job sequentially, and more than one concurrent worker process may exist on a worker node, for the same workflow. The batch system is said to *shut down* after the last worker process terminates. """ raise NotImplementedError() def setUserScript(self, userScript: Resource) -> None: """ Set the user script for this workflow. This method must be called before the first job is issued to this batch system, and only if :meth:`.supportsAutoDeployment` returns True, otherwise it will raise an exception. :param userScript: the resource object representing the user script or module and the modules it depends on. """ raise NotImplementedError() @abstractmethod def issueBatchJob(self, jobDesc: JobDescription, job_environment: Optional[Dict[str, str]] = None) -> int: """ Issues a job with the specified command to the batch system and returns a unique jobID. :param jobDesc a toil.job.JobDescription :param job_environment: a collection of job-specific environment variables to be set on the worker. :return: a unique jobID that can be used to reference the newly issued job """ raise NotImplementedError() @abstractmethod def killBatchJobs(self, jobIDs: List[int]) -> None: """ Kills the given job IDs. After returning, the killed jobs will not appear in the results of getRunningBatchJobIDs. The killed job will not be returned from getUpdatedBatchJob. :param jobIDs: list of IDs of jobs to kill """ raise NotImplementedError() # FIXME: Return value should be a set (then also fix the tests) @abstractmethod def getIssuedBatchJobIDs(self) -> List[int]: """ Gets all currently issued jobs :return: A list of jobs (as jobIDs) currently issued (may be running, or may be waiting to be run). Despite the result being a list, the ordering should not be depended upon. """ raise NotImplementedError() @abstractmethod def getRunningBatchJobIDs(self) -> Dict[int, float]: """ Gets a map of jobs as jobIDs that are currently running (not just waiting) and how long they have been running, in seconds. :return: dictionary with currently running jobID keys and how many seconds they have been running as the value """ raise NotImplementedError() @abstractmethod def getUpdatedBatchJob(self, maxWait: int) -> Optional[UpdatedBatchJobInfo]: """ Returns information about job that has updated its status (i.e. ceased running, either successfully or with an error). Each such job will be returned exactly once. Does not return info for jobs killed by killBatchJobs, although they may cause None to be returned earlier than maxWait. :param maxWait: the number of seconds to block, waiting for a result :return: If a result is available, returns UpdatedBatchJobInfo. Otherwise it returns None. wallTime is the number of seconds (a strictly positive float) in wall-clock time the job ran for, or None if this batch system does not support tracking wall time. """ raise NotImplementedError() def getSchedulingStatusMessage(self) -> Optional[str]: """ Get a log message fragment for the user about anything that might be going wrong in the batch system, if available. If no useful message is available, return None. This can be used to report what resource is the limiting factor when scheduling jobs, for example. If the leader thinks the workflow is stuck, the message can be displayed to the user to help them diagnose why it might be stuck. :return: User-directed message about scheduling state. """ # Default implementation returns None. # Override to provide scheduling status information. return None @abstractmethod def shutdown(self) -> None: """ Called at the completion of a toil invocation. Should cleanly terminate all worker threads. """ raise NotImplementedError() def setEnv(self, name: str, value: Optional[str] = None) -> None: """ Set an environment variable for the worker process before it is launched. The worker process will typically inherit the environment of the machine it is running on but this method makes it possible to override specific variables in that inherited environment before the worker is launched. Note that this mechanism is different to the one used by the worker internally to set up the environment of a job. A call to this method affects all jobs issued after this method returns. Note to implementors: This means that you would typically need to copy the variables before enqueuing a job. If no value is provided it will be looked up from the current environment. """ raise NotImplementedError() @classmethod def add_options(cls, parser: Union[ArgumentParser, _ArgumentGroup]) -> None: """ If this batch system provides any command line options, add them to the given parser. """ pass OptionType = TypeVar('OptionType') @classmethod def setOptions(cls, setOption: Callable[[str, Optional[Callable[[Any], OptionType]], Optional[Callable[[OptionType], None]], Optional[OptionType], Optional[List[str]]], None]) -> None: """ Process command line or configuration options relevant to this batch system. :param setOption: A function with signature setOption(option_name, parsing_function=None, check_function=None, default=None, env=None) returning nothing, used to update run configuration as a side effect. """ # TODO: change type to a Protocol to express kwarg names, or else use a # different interface (generator?) pass def getWorkerContexts(self) -> List[ContextManager[Any]]: """ Get a list of picklable context manager objects to wrap worker work in, in order. Can be used to ask the Toil worker to do things in-process (such as configuring environment variables, hot-deploying user scripts, or cleaning up a node) that would otherwise require a wrapping "executor" process. """ return [] class BatchSystemSupport(AbstractBatchSystem): """ Partial implementation of AbstractBatchSystem, support methods. """ def __init__(self, config: Config, maxCores: float, maxMemory: int, maxDisk: int) -> None: """ Initializes initial state of the object :param toil.common.Config config: object is setup by the toilSetup script and has configuration parameters for the jobtree. You can add code to that script to get parameters for your batch system. :param float maxCores: the maximum number of cores the batch system can request for any one job :param int maxMemory: the maximum amount of memory the batch system can request for any one job, in bytes :param int maxDisk: the maximum amount of disk space the batch system can request for any one job, in bytes """ super().__init__() self.config = config self.maxCores = maxCores self.maxMemory = maxMemory self.maxDisk = maxDisk self.environment: Dict[str, str] = {} self.workerCleanupInfo = WorkerCleanupInfo(workDir=self.config.workDir, workflowID=self.config.workflowID, cleanWorkDir=self.config.cleanWorkDir) def checkResourceRequest(self, memory: int, cores: float, disk: int, job_name: str = '', detail: str = '') -> None: """ Check resource request is not greater than that available or allowed. :param int memory: amount of memory being requested, in bytes :param float cores: number of cores being requested :param int disk: amount of disk space being requested, in bytes :param str job_name: Name of the job being checked, for generating a useful error report. :param str detail: Batch-system-specific message to include in the error. :raise InsufficientSystemResources: raised when a resource is requested in an amount greater than allowed """ batch_system = self.__class__.__name__ or 'this batch system' for resource, requested, available in [('cores', cores, self.maxCores), ('memory', memory, self.maxMemory), ('disk', disk, self.maxDisk)]: assert requested is not None if requested > available: unit = 'bytes of ' if resource in ('disk', 'memory') else '' R = f'The job {job_name} is r' if job_name else 'R' if resource == 'disk': msg = (f'{R}equesting {requested} {unit}{resource} for temporary space, ' f'more than the maximum of {available} {unit}{resource} of free space on ' f'{self.config.workDir} that {batch_system} was configured with, or enforced ' f'by --max{resource.capitalize()}. Try setting/changing the toil option ' f'"--workDir" or changing the base temporary directory by setting TMPDIR.') else: msg = (f'{R}equesting {requested} {unit}{resource}, more than the maximum of ' f'{available} {unit}{resource} that {batch_system} was configured with, ' f'or enforced by --max{resource.capitalize()}.') if detail: msg += detail raise InsufficientSystemResources(msg) def setEnv(self, name: str, value: Optional[str] = None) -> None: """ Set an environment variable for the worker process before it is launched. The worker process will typically inherit the environment of the machine it is running on but this method makes it possible to override specific variables in that inherited environment before the worker is launched. Note that this mechanism is different to the one used by the worker internally to set up the environment of a job. A call to this method affects all jobs issued after this method returns. Note to implementors: This means that you would typically need to copy the variables before enqueuing a job. If no value is provided it will be looked up from the current environment. :param str name: the environment variable to be set on the worker. :param str value: if given, the environment variable given by name will be set to this value. if None, the variable's current value will be used as the value on the worker :raise RuntimeError: if value is None and the name cannot be found in the environment """ if value is None: try: value = os.environ[name] except KeyError: raise RuntimeError(f"{name} does not exist in current environment") self.environment[name] = value def formatStdOutErrPath(self, toil_job_id: int, cluster_job_id: str, std: str) -> str: """ Format path for batch system standard output/error and other files generated by the batch system itself. Files will be written to the Toil work directory (which may be on a shared file system) with names containing both the Toil and batch system job IDs, for ease of debugging job failures. :param: int toil_job_id : The unique id that Toil gives a job. :param: cluster_job_id : What the cluster, for example, GridEngine, uses as its internal job id. :param: string std : The provenance of the stream (for example: 'err' for 'stderr' or 'out' for 'stdout') :rtype: string : Formatted filename; however if self.config.noStdOutErr is true, returns '/dev/null' or equivalent. """ if self.config.noStdOutErr: return os.devnull fileName: str = f'toil_{self.config.workflowID}.{toil_job_id}.{cluster_job_id}.{std}.log' workDir: str = Toil.getToilWorkDir(self.config.workDir) return os.path.join(workDir, fileName) @staticmethod def workerCleanup(info: WorkerCleanupInfo) -> None: """ Cleans up the worker node on batch system shutdown. Also see :meth:`supportsWorkerCleanup`. :param WorkerCleanupInfo info: A named tuple consisting of all the relevant information for cleaning up the worker. """ assert isinstance(info, WorkerCleanupInfo) workflowDir = Toil.getLocalWorkflowDir(info.workflowID, info.workDir) DeferredFunctionManager.cleanupWorker(workflowDir) workflowDirContents = os.listdir(workflowDir) AbstractFileStore.shutdownFileStore(workflowDir, info.workflowID) if (info.cleanWorkDir == 'always' or info.cleanWorkDir in ('onSuccess', 'onError') and workflowDirContents in ([], [cacheDirName(info.workflowID)])): shutil.rmtree(workflowDir, ignore_errors=True) class NodeInfo: """ The coresUsed attribute is a floating point value between 0 (all cores idle) and 1 (all cores busy), reflecting the CPU load of the node. The memoryUsed attribute is a floating point value between 0 (no memory used) and 1 (all memory used), reflecting the memory pressure on the node. The coresTotal and memoryTotal attributes are the node's resources, not just the used resources The requestedCores and requestedMemory attributes are all the resources that Toil Jobs have reserved on the node, regardless of whether the resources are actually being used by the Jobs. The workers attribute is an integer reflecting the number of workers currently active workers on the node. """ def __init__(self, coresUsed: float, memoryUsed: float, coresTotal: float, memoryTotal: int, requestedCores: float, requestedMemory: int, workers: int) -> None: self.coresUsed = coresUsed self.memoryUsed = memoryUsed self.coresTotal = coresTotal self.memoryTotal = memoryTotal self.requestedCores = requestedCores self.requestedMemory = requestedMemory self.workers = workers class AbstractScalableBatchSystem(AbstractBatchSystem): """ A batch system that supports a variable number of worker nodes. Used by :class:`toil. provisioners.clusterScaler.ClusterScaler` to scale the number of worker nodes in the cluster up or down depending on overall load. """ @abstractmethod def getNodes(self, preemptable: Optional[bool] = None) -> Dict[str, NodeInfo]: """ Returns a dictionary mapping node identifiers of preemptable or non-preemptable nodes to NodeInfo objects, one for each node. :param preemptable: If True (False) only (non-)preemptable nodes will be returned. If None, all nodes will be returned. """ raise NotImplementedError() @abstractmethod def nodeInUse(self, nodeIP: str) -> bool: """ Can be used to determine if a worker node is running any tasks. If the node is doesn't exist, this function should simply return False. :param nodeIP: The worker nodes private IP address :return: True if the worker node has been issued any tasks, else False """ raise NotImplementedError() # TODO: May be unused! @abstractmethod @contextmanager def nodeFiltering(self, filter: Optional[Callable[[NodeInfo], bool]]) -> Iterator[None]: """ Used to prevent races in autoscaling where 1) nodes have reported to the autoscaler as having no jobs 2) scaler decides to terminate these nodes. In parallel the batch system assigns jobs to the same nodes 3) scaler terminates nodes, resulting in job failures for all jobs on that node. Call this method prior to node termination to ensure that nodes being considered for termination are not assigned new jobs. Call the method again passing None as the filter to disable the filtering after node termination is done. :param method: This will be used as a filter on nodes considered when assigning new jobs. After this context manager exits the filter should be removed """ raise NotImplementedError() @abstractmethod def ignoreNode(self, nodeAddress: str) -> None: """ Stop sending jobs to this node. Used in autoscaling when the autoscaler is ready to terminate a node, but jobs are still running. This allows the node to be terminated after the current jobs have finished. :param nodeAddress: IP address of node to ignore. """ raise NotImplementedError() @abstractmethod def unignoreNode(self, nodeAddress: str) -> None: """ Stop ignoring this address, presumably after a node with this address has been terminated. This allows for the possibility of a new node having the same address as a terminated one. """ raise NotImplementedError() class InsufficientSystemResources(Exception): pass
robosuite/models/grippers/__init__.py
kyungjaelee/robosuite
397
6120
<reponame>kyungjaelee/robosuite<gh_stars>100-1000 from .gripper_model import GripperModel from .gripper_factory import gripper_factory from .gripper_tester import GripperTester from .panda_gripper import PandaGripper from .rethink_gripper import RethinkGripper from .robotiq_85_gripper import Robotiq85Gripper from .robotiq_three_finger_gripper import RobotiqThreeFingerGripper, RobotiqThreeFingerDexterousGripper from .panda_gripper import PandaGripper from .jaco_three_finger_gripper import JacoThreeFingerGripper, JacoThreeFingerDexterousGripper from .robotiq_140_gripper import Robotiq140Gripper from .wiping_gripper import WipingGripper from .null_gripper import NullGripper GRIPPER_MAPPING = { "RethinkGripper": RethinkGripper, "PandaGripper": PandaGripper, "JacoThreeFingerGripper": JacoThreeFingerGripper, "JacoThreeFingerDexterousGripper": JacoThreeFingerDexterousGripper, "WipingGripper": WipingGripper, "Robotiq85Gripper": Robotiq85Gripper, "Robotiq140Gripper": Robotiq140Gripper, "RobotiqThreeFingerGripper": RobotiqThreeFingerGripper, "RobotiqThreeFingerDexterousGripper": RobotiqThreeFingerDexterousGripper, None: NullGripper, } ALL_GRIPPERS = GRIPPER_MAPPING.keys()
tests/arch/x86/test_x86parser.py
IMULMUL/barf-project
1,395
6128
# Copyright (c) 2014, Fundacion Dr. <NAME> # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import absolute_import import unittest from barf.arch import ARCH_X86_MODE_32 from barf.arch import ARCH_X86_MODE_64 from barf.arch.x86.parser import X86Parser class X86Parser32BitsTests(unittest.TestCase): def setUp(self): self._parser = X86Parser(ARCH_X86_MODE_32) def test_two_oprnd_reg_reg(self): asm = self._parser.parse("add eax, ebx") self.assertEqual(str(asm), "add eax, ebx") def test_two_oprnd_reg_imm(self): asm = self._parser.parse("add eax, 0x12345678") self.assertEqual(str(asm), "add eax, 0x12345678") def test_two_oprnd_reg_mem(self): asm = self._parser.parse("add eax, [ebx + edx * 4 + 0x10]") self.assertEqual(str(asm), "add eax, [ebx+edx*4+0x10]") def test_two_oprnd_mem_reg(self): asm = self._parser.parse("add [ebx + edx * 4 + 0x10], eax") self.assertEqual(str(asm), "add [ebx+edx*4+0x10], eax") def test_one_oprnd_reg(self): asm = self._parser.parse("inc eax") self.assertEqual(str(asm), "inc eax") def test_one_oprnd_imm(self): asm = self._parser.parse("jmp 0x12345678") self.assertEqual(str(asm), "jmp 0x12345678") def test_one_oprnd_mem(self): asm = self._parser.parse("inc dword ptr [ebx+edx*4+0x10]") self.assertEqual(str(asm), "inc dword ptr [ebx+edx*4+0x10]") def test_zero_oprnd(self): asm = self._parser.parse("nop") self.assertEqual(str(asm), "nop") # Misc # ======================================================================== # def test_misc_1(self): asm = self._parser.parse("mov dword ptr [-0x21524111], ecx") self.assertEqual(str(asm), "mov dword ptr [-0x21524111], ecx") self.assertNotEqual(str(asm), "mov dword ptr [0xdeadbeef], ecx") def test_misc_2(self): asm = self._parser.parse("fucompi st(1)") self.assertEqual(str(asm), "fucompi st1") class X86Parser64BitsTests(unittest.TestCase): def setUp(self): self._parser = X86Parser(ARCH_X86_MODE_64) def test_64_two_oprnd_reg_reg(self): asm = self._parser.parse("add rax, rbx") self.assertEqual(str(asm), "add rax, rbx") def test_64_two_oprnd_reg_reg_2(self): asm = self._parser.parse("add rax, r8") self.assertEqual(str(asm), "add rax, r8") def test_64_two_oprnd_reg_mem(self): asm = self._parser.parse("add rax, [rbx + r15 * 4 + 0x10]") self.assertEqual(str(asm), "add rax, [rbx+r15*4+0x10]") # Misc # ======================================================================== # def test_misc_offset_1(self): asm = self._parser.parse("add byte ptr [rax+0xffffff89], cl") self.assertEqual(str(asm), "add byte ptr [rax+0xffffff89], cl") def main(): unittest.main() if __name__ == '__main__': main()
unittest/scripts/py_devapi/scripts/mysqlx_collection_remove.py
mueller/mysql-shell
119
6140
# Assumptions: validate_crud_functions available # Assumes __uripwd is defined as <user>:<pwd>@<host>:<plugin_port> from __future__ import print_function from mysqlsh import mysqlx mySession = mysqlx.get_session(__uripwd) ensure_schema_does_not_exist(mySession, 'js_shell_test') schema = mySession.create_schema('js_shell_test') # Creates a test collection and inserts data into it collection = schema.create_collection('collection1') result = collection.add({"_id": "3C514FF38144B714E7119BCF48B4CA01", "name": 'jack', "age": 17, "gender": 'male'}).execute() result = collection.add({"_id": "3C514FF38144B714E7119BCF48B4CA02", "name": 'adam', "age": 15, "gender": 'male'}).execute() result = collection.add({"_id": "3C514FF38144B714E7119BCF48B4CA03", "name": 'brian', "age": 14, "gender": 'male'}).execute() result = collection.add({"_id": "3C514FF38144B714E7119BCF48B4CA04", "name": 'alma', "age": 13, "gender": 'female'}).execute() result = collection.add({"_id": "3C514FF38144B714E7119BCF48B4CA05", "name": 'carol', "age": 14, "gender": 'female'}).execute() result = collection.add({"_id": "3C514FF38144B714E7119BCF48B4CA06", "name": 'donna', "age": 16, "gender": 'female'}).execute() result = collection.add({"_id": "3C514FF38144B714E7119BCF48B4CA07", "name": 'angel', "age": 14, "gender": 'male'}).execute() # ------------------------------------------------ # collection.remove Unit Testing: Dynamic Behavior # ------------------------------------------------ #@ CollectionRemove: valid operations after remove crud = collection.remove('some_condition') validate_crud_functions(crud, ['sort', 'limit', 'bind', 'execute']) #@ CollectionRemove: valid operations after sort crud = crud.sort(['name']) validate_crud_functions(crud, ['limit', 'bind', 'execute']) #@ CollectionRemove: valid operations after limit crud = crud.limit(1) validate_crud_functions(crud, ['bind', 'execute']) #@ CollectionRemove: valid operations after bind crud = collection.remove('name = :data').bind('data', 'donna') validate_crud_functions(crud, ['bind', 'execute']) #@ CollectionRemove: valid operations after execute result = crud.execute() validate_crud_functions(crud, ['limit', 'bind', 'execute']) #@ Reusing CRUD with binding print('Deleted donna:', result.affected_items_count, '\n') result=crud.bind('data', 'alma').execute() print('Deleted alma:', result.affected_items_count, '\n') # ---------------------------------------------- # collection.remove Unit Testing: Error Conditions # ---------------------------------------------- #@# CollectionRemove: Error conditions on remove crud = collection.remove() crud = collection.remove(' ') crud = collection.remove(5) crud = collection.remove('test = "2') #@# CollectionRemove: Error conditions sort crud = collection.remove('some_condition').sort() crud = collection.remove('some_condition').sort(5) crud = collection.remove('some_condition').sort([]) crud = collection.remove('some_condition').sort(['name', 5]) crud = collection.remove('some_condition').sort('name', 5) #@# CollectionRemove: Error conditions on limit crud = collection.remove('some_condition').limit() crud = collection.remove('some_condition').limit('') #@# CollectionRemove: Error conditions on bind crud = collection.remove('name = :data and age > :years').bind() crud = collection.remove('name = :data and age > :years').bind(5, 5) crud = collection.remove('name = :data and age > :years').bind('another', 5) #@# CollectionRemove: Error conditions on execute crud = collection.remove('name = :data and age > :years').execute() crud = collection.remove('name = :data and age > :years').bind('years', 5).execute() # --------------------------------------- # collection.remove Unit Testing: Execution # --------------------------------------- #@ CollectionRemove: remove under condition //! [CollectionRemove: remove under condition] result = collection.remove('age = 15').execute() print('Affected Rows:', result.affected_items_count, '\n') docs = collection.find().execute().fetch_all() print('Records Left:', len(docs), '\n') //! [CollectionRemove: remove under condition] #@ CollectionRemove: remove with binding //! [CollectionRemove: remove with binding] result = collection.remove('gender = :heorshe').limit(2).bind('heorshe', 'male').execute() print('Affected Rows:', result.affected_items_count, '\n') //! [CollectionRemove: remove with binding] docs = collection.find().execute().fetch_all() print('Records Left:', len(docs), '\n') #@ CollectionRemove: full remove //! [CollectionRemove: full remove] result = collection.remove('1').execute() print('Affected Rows:', result.affected_items_count, '\n') docs = collection.find().execute().fetch_all() print('Records Left:', len(docs), '\n') //! [CollectionRemove: full remove] # Cleanup mySession.drop_schema('js_shell_test') mySession.close()
leaf/rbac/model/__init__.py
guiqiqi/leaf
119
6142
"""用户, 组, 及相关认证数据库模型""" from .group import Group from .user import User from .user import UserIndex from .auth import Authentication from .accesspoint import AccessPoint
alipay/aop/api/domain/KbAdvertSettleBillResponse.py
snowxmas/alipay-sdk-python-all
213
6146
<filename>alipay/aop/api/domain/KbAdvertSettleBillResponse.py #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class KbAdvertSettleBillResponse(object): def __init__(self): self._download_url = None self._paid_date = None @property def download_url(self): return self._download_url @download_url.setter def download_url(self, value): self._download_url = value @property def paid_date(self): return self._paid_date @paid_date.setter def paid_date(self, value): self._paid_date = value def to_alipay_dict(self): params = dict() if self.download_url: if hasattr(self.download_url, 'to_alipay_dict'): params['download_url'] = self.download_url.to_alipay_dict() else: params['download_url'] = self.download_url if self.paid_date: if hasattr(self.paid_date, 'to_alipay_dict'): params['paid_date'] = self.paid_date.to_alipay_dict() else: params['paid_date'] = self.paid_date return params @staticmethod def from_alipay_dict(d): if not d: return None o = KbAdvertSettleBillResponse() if 'download_url' in d: o.download_url = d['download_url'] if 'paid_date' in d: o.paid_date = d['paid_date'] return o
django_loci/tests/base/test_admin.py
yashikajotwani12/django-loci
205
6161
<filename>django_loci/tests/base/test_admin.py import json import os import responses from django.urls import reverse from .. import TestAdminMixin, TestLociMixin class BaseTestAdmin(TestAdminMixin, TestLociMixin): geocode_url = 'https://geocode.arcgis.com/arcgis/rest/services/World/GeocodeServer/' def test_location_list(self): self._login_as_admin() self._create_location(name='test-admin-location-1') url = reverse('{0}_location_changelist'.format(self.url_prefix)) r = self.client.get(url) self.assertContains(r, 'test-admin-location-1') def test_floorplan_list(self): self._login_as_admin() self._create_floorplan() self._create_location() url = reverse('{0}_floorplan_changelist'.format(self.url_prefix)) r = self.client.get(url) self.assertContains(r, '1st floor') def test_location_json_view(self): self._login_as_admin() loc = self._create_location() r = self.client.get(reverse('admin:django_loci_location_json', args=[loc.pk])) expected = { 'name': loc.name, 'address': loc.address, 'type': loc.type, 'is_mobile': loc.is_mobile, 'geometry': json.loads(loc.geometry.json), } self.assertDictEqual(r.json(), expected) def test_location_floorplan_json_view(self): self._login_as_admin() fl = self._create_floorplan() r = self.client.get( reverse('admin:django_loci_location_floorplans_json', args=[fl.location.pk]) ) expected = { 'choices': [ { 'id': str(fl.pk), 'str': str(fl), 'floor': fl.floor, 'image': fl.image.url, 'image_width': fl.image.width, 'image_height': fl.image.height, } ] } self.assertDictEqual(r.json(), expected) def test_location_change_image_removed(self): self._login_as_admin() loc = self._create_location(name='test-admin-location-1', type='indoor') fl = self._create_floorplan(location=loc) # remove floorplan image os.remove(fl.image.path) url = reverse('{0}_location_change'.format(self.url_prefix), args=[loc.pk]) r = self.client.get(url) self.assertContains(r, 'test-admin-location-1') def test_floorplan_change_image_removed(self): self._login_as_admin() loc = self._create_location(name='test-admin-location-1', type='indoor') fl = self._create_floorplan(location=loc) # remove floorplan image os.remove(fl.image.path) url = reverse('{0}_floorplan_change'.format(self.url_prefix), args=[fl.pk]) r = self.client.get(url) self.assertContains(r, 'test-admin-location-1') def test_is_mobile_location_json_view(self): self._login_as_admin() loc = self._create_location(is_mobile=True, geometry=None) response = self.client.get( reverse('admin:django_loci_location_json', args=[loc.pk]) ) self.assertEqual(response.status_code, 200) content = json.loads(response.content) self.assertEqual(content['geometry'], None) loc1 = self._create_location( name='location2', address='loc2 add', type='outdoor' ) response1 = self.client.get( reverse('admin:django_loci_location_json', args=[loc1.pk]) ) self.assertEqual(response1.status_code, 200) content1 = json.loads(response1.content) expected = { 'name': 'location2', 'address': 'loc2 add', 'type': 'outdoor', 'is_mobile': False, 'geometry': {'type': 'Point', 'coordinates': [12.512124, 41.898903]}, } self.assertEqual(content1, expected) @responses.activate def test_geocode(self): self._login_as_admin() address = 'Red Square' url = '{0}?address={1}'.format( reverse('admin:django_loci_location_geocode_api'), address ) # Mock HTTP request to the URL to work offline responses.add( responses.GET, f'{self.geocode_url}findAddressCandidates?singleLine=Red+Square&f=json&maxLocations=1', body=self._load_content('base/static/test-geocode.json'), content_type='application/json', ) response = self.client.get(url) response_lat = round(response.json()['lat']) response_lng = round(response.json()['lng']) self.assertEqual(response.status_code, 200) self.assertEqual(response_lat, 56) self.assertEqual(response_lng, 38) def test_geocode_no_address(self): self._login_as_admin() url = reverse('admin:django_loci_location_geocode_api') response = self.client.get(url) expected = {'error': 'Address parameter not defined'} self.assertEqual(response.status_code, 400) self.assertEqual(response.json(), expected) @responses.activate def test_geocode_invalid_address(self): self._login_as_admin() invalid_address = 'thisaddressisnotvalid123abc' url = '{0}?address={1}'.format( reverse('admin:django_loci_location_geocode_api'), invalid_address ) responses.add( responses.GET, f'{self.geocode_url}findAddressCandidates?singleLine=thisaddressisnotvalid123abc' '&f=json&maxLocations=1', body=self._load_content('base/static/test-geocode-invalid-address.json'), content_type='application/json', ) response = self.client.get(url) expected = {'error': 'Not found location with given name'} self.assertEqual(response.status_code, 404) self.assertEqual(response.json(), expected) @responses.activate def test_reverse_geocode(self): self._login_as_admin() lat = 52 lng = 21 url = '{0}?lat={1}&lng={2}'.format( reverse('admin:django_loci_location_reverse_geocode_api'), lat, lng ) # Mock HTTP request to the URL to work offline responses.add( responses.GET, f'{self.geocode_url}reverseGeocode?location=21.0%2C52.0&f=json&outSR=4326', body=self._load_content('base/static/test-reverse-geocode.json'), content_type='application/json', ) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertContains(response, 'POL') @responses.activate def test_reverse_location_with_no_address(self): self._login_as_admin() lat = -30 lng = -30 url = '{0}?lat={1}&lng={2}'.format( reverse('admin:django_loci_location_reverse_geocode_api'), lat, lng ) responses.add( responses.GET, f'{self.geocode_url}reverseGeocode?location=-30.0%2C-30.0&f=json&outSR=4326', body=self._load_content( 'base/static/test-reverse-location-with-no-address.json' ), content_type='application/json', ) response = self.client.get(url) response_address = response.json()['address'] self.assertEqual(response.status_code, 404) self.assertEqual(response_address, '') def test_reverse_geocode_no_coords(self): self._login_as_admin() url = reverse('admin:django_loci_location_reverse_geocode_api') response = self.client.get(url) expected = {'error': 'lat or lng parameter not defined'} self.assertEqual(response.status_code, 400) self.assertEqual(response.json(), expected)
test/run/t344.py
timmartin/skulpt
2,671
6171
for ch in "Hello world!": d = ord(ch) h = hex(d) o = oct(d) b = bin(d) print ch, d, h, o, b
build/lib/jet_django/views/model.py
lukejamison/jet-dasboard
193
6226
from django.core.exceptions import NON_FIELD_ERRORS from rest_framework import status, viewsets, serializers from rest_framework.decorators import list_route from rest_framework.response import Response from rest_framework.serializers import ModelSerializer from jet_django.filters.model_aggregate import AggregateFilter from jet_django.filters.model_group import GroupFilter from jet_django.pagination import CustomPageNumberPagination from jet_django.permissions import HasProjectPermissions, ModifyNotInDemo from jet_django.serializers.reorder import reorder_serializer_factory class AggregateSerializer(serializers.Serializer): y_func = serializers.IntegerField() def __init__(self, *args, **kwargs): if 'y_func_serializer' in kwargs: self.fields['y_func'] = kwargs.pop('y_func_serializer') super().__init__(*args, **kwargs) class GroupSerializer(serializers.Serializer): group = serializers.CharField() y_func = serializers.IntegerField() def __init__(self, *args, **kwargs): if 'group_serializer' in kwargs: self.fields['group'] = kwargs.pop('group_serializer') if 'y_func_serializer' in kwargs: self.fields['y_func'] = kwargs.pop('y_func_serializer') super().__init__(*args, **kwargs) def model_viewset_factory(build_model, build_filter_class, build_serializer_class, build_detail_serializer_class, build_queryset, build_actions, ordering_field): ReorderSerializer = reorder_serializer_factory(build_queryset, ordering_field) class Viewset(viewsets.ModelViewSet): model = build_model queryset = build_queryset pagination_class = CustomPageNumberPagination filter_class = build_filter_class authentication_classes = () permission_classes = (HasProjectPermissions, ModifyNotInDemo) def get_serializer_class(self): if self.action == 'aggregate': return AggregateSerializer elif self.action == 'group': return GroupSerializer elif self.action == 'retrieve': return build_detail_serializer_class else: return build_serializer_class @list_route(methods=['get']) def aggregate(self, request): queryset = self.filter_queryset(self.get_queryset()) y_func = request.GET['_y_func'].lower() y_column = request.GET.get('_y_column', 'id') y_field = self.model._meta.get_field(y_column) y_serializer_class, y_serializer_kwargs = ModelSerializer().build_standard_field(y_column, y_field) y_serializer = y_serializer_class(**y_serializer_kwargs) queryset = AggregateFilter().filter(queryset, { 'y_func': y_func, 'y_column': y_column }) serializer = self.get_serializer( queryset, y_func_serializer=y_serializer ) return Response(serializer.data) @list_route(methods=['get']) def group(self, request): queryset = self.filter_queryset(self.get_queryset()) x_column = request.GET['_x_column'] x_lookup_name = request.GET.get('_x_lookup') y_func = request.GET['_y_func'].lower() y_column = request.GET.get('_y_column', 'id') x_field = self.model._meta.get_field(x_column) x_lookup = x_field.class_lookups.get(x_lookup_name) y_field = self.model._meta.get_field(y_column) if x_lookup: x_field = x_lookup('none').output_field x_serializer_class, x_serializer_kwargs = ModelSerializer().build_standard_field(x_column, x_field) x_serializer = x_serializer_class(**x_serializer_kwargs) y_serializer_class, y_serializer_kwargs = ModelSerializer().build_standard_field(y_column, y_field) y_serializer = y_serializer_class(**y_serializer_kwargs) queryset = GroupFilter().filter(queryset, { 'x_column': x_column, 'x_lookup': x_lookup, 'y_func': y_func, 'y_column': y_column }) serializer = self.get_serializer( queryset, many=True, group_serializer=x_serializer, y_func_serializer=y_serializer ) return Response(serializer.data) def get_serializer(self, *args, **kwargs): """ Return the serializer instance that should be used for validating and deserializing input, and for serializing output. """ serializer_class = self.get_serializer_class() kwargs['context'] = self.get_serializer_context() return serializer_class(*args, **kwargs) @list_route(methods=['post']) def reorder(self, request): serializer = ReorderSerializer(data=request.data) serializer.is_valid(raise_exception=True) serializer.save() return Response(serializer.data) @list_route(methods=['post']) def reset_order(self, request): i = 1 for instance in build_queryset: setattr(instance, ordering_field, i) instance.save() i += 1 return Response({}) for action in build_actions: def route(self, request): form = action(data=request.data) if not form.is_valid(): return Response(form.errors, status=status.HTTP_400_BAD_REQUEST) queryset = form.filer_queryset(self.get_queryset()) try: result = form.save(queryset) except Exception as e: return Response({NON_FIELD_ERRORS: str(e)}, status=status.HTTP_400_BAD_REQUEST) return Response({'action': form._meta.name, 'result': result}) decorator = list_route(methods=['post']) route = decorator(route) setattr(Viewset, action._meta.name, route) return Viewset
pylayers/em/openems/test/Rect_Waveguide.py
usmanwardag/pylayers
143
6254
<filename>pylayers/em/openems/test/Rect_Waveguide.py<gh_stars>100-1000 from openems.openems import * # A simple simulation # # FDTD Simulation Setting # F = FDTD() F.add(Exc(typ='Sinus',f0=100000)) F.add(BoundaryCond(['PMC','PMC','PEC','PEC','MUR','MUR'])) # # CSX (Geometry setting) # C = CSX() # The Box is added as a property C.add(Excitation('excitation'),p=Box(P1=[-10,-10,0],P2=[10,10,0],Pr=0)) C.add(DumpBox('Et'),p=Box(P1=[-10,0,-10],P2=[10,0,30],Pr=0)) C.add(RectilinearGrid(np.arange(-10,11,1),np.arange(-10,11,1),np.arange(-10,11,1))) C.add(Polyhedron()) S = OpenEMS(F,C) S.save(filename='RectWaveguide.xml') #gnd = Matter('gnd') #sphere = Matter('sphere') #patch = Matter('patch') #substrate = Matter('substrate',typ='Ma',Epsilon="3.38",Kappa="0.00046") #cdgsht = Matter('copper',typ='Cs',conductivity="56e6",thickness="40e-6") #b1 = Box(P1=[0,0,0],P2=[100,100,200],Pr=0) #b2 = Box(P1=[0,0,0],P2=[10,20,30],Pr=10) #b4 = Box(P1=[-10,0,-10],P2=[10,0,30],Pr=0) #s1 = Sphere(P=[0,0,0],R=100,Pr=50) #dump = DumpBox() #C.add(gnd) #C.add(patch) #C.add(substrate) #C.add(sphere) #C.add(cdgsht) #C.add(exc) #C.add(dump) #C.set('gnd',b1) #C.set('gnd',b2) #C.set('sphere',s1) #C.set('copper',b1) #C.set('copper',b2) #C.set('Et',b4) #C.save(filename='structure.xml') ##C.AddBox(prop='ConductingSheet',name='copper',P1=[0,-50,200],P2=[1000,50,200],Pri=10) ##C.AddCylinder(prop='Metal',name='cyl0',P1=[0,0,0],P2=[0,0,100],Rad=50,Pri=10) #
nodes/2.x/python/View.ViewTemplate.py
andydandy74/ClockworkForDynamo
147
6264
import clr clr.AddReference('RevitAPI') from Autodesk.Revit.DB import * def GetViewTemplate(view): if not view: return None elif hasattr(view, "ViewTemplateId"): if view.ViewTemplateId.IntegerValue == -1: return None else: return view.Document.GetElement(view.ViewTemplateId) else: return None views = UnwrapElement(IN[0]) if isinstance(IN[0], list): OUT = [GetViewTemplate(x) for x in views] else: OUT = GetViewTemplate(views)
igibson/object_states/aabb.py
mamadbiabon/iGibson
360
6273
<reponame>mamadbiabon/iGibson import numpy as np from igibson.external.pybullet_tools.utils import aabb_union, get_aabb, get_all_links from igibson.object_states.object_state_base import CachingEnabledObjectState class AABB(CachingEnabledObjectState): def _compute_value(self): body_id = self.obj.get_body_id() all_links = get_all_links(body_id) aabbs = [get_aabb(body_id, link=link) for link in all_links] aabb_low, aabb_hi = aabb_union(aabbs) if not hasattr(self.obj, "category") or self.obj.category != "floors" or self.obj.room_floor is None: return np.array(aabb_low), np.array(aabb_hi) # TODO: remove after split floors # room_floor will be set to the correct RoomFloor beforehand room_instance = self.obj.room_floor.room_instance # Get the x-y values from the room segmentation map room_aabb_low, room_aabb_hi = self.obj.room_floor.scene.get_aabb_by_room_instance(room_instance) if room_aabb_low is None: return np.array(aabb_low), np.array(aabb_hi) # Use the z values from pybullet room_aabb_low[2] = aabb_low[2] room_aabb_hi[2] = aabb_hi[2] return np.array(room_aabb_low), np.array(room_aabb_hi) def _set_value(self, new_value): raise NotImplementedError("AABB state currently does not support setting.") # Nothing needs to be done to save/load AABB since it will happen due to pose caching. def _dump(self): return None def load(self, data): return
Kmeans Cluster/Kmeans_Compare.py
Jojoxiao/Machine-Learning-for-Beginner-by-Python3
397
6285
#-*- coding:utf-8 -*- # &Author AnFany # 引入方法 import Kmeans_AnFany as K_Af # AnFany import Kmeans_Sklearn as K_Sk # Sklearn import matplotlib.pyplot as plt from pylab import mpl # 作图显示中文 mpl.rcParams['font.sans-serif'] = ['FangSong'] # 设置中文字体新宋体 mpl.rcParams['axes.unicode_minus'] = False import numpy as np # 利用sklearn生成数据集 from sklearn.datasets import make_blobs X, Y = make_blobs(n_samples=600, centers=6, n_features=2) # 绘制散点图 def fig_scatter(exdata, eydata, titl='训练数据散点图', co=['r', 'g', 'k', 'b', 'y', 'm'], marker=['o','^','H','v','d','>']): typeclass = sorted(list(set(eydata))) for ii in range(len(typeclass)): datax = exdata[eydata == typeclass[ii]] plt.scatter(datax[:, 0], datax[:, -1], c=co[ii], s=50, marker=marker[ii]) plt.title(titl) #plt.legend(['%d类'%i for i in typeclass], bbox_to_anchor=(1.2, 0.9)) plt.xlabel('特征1') plt.ylabel('特征2') # 调用不同的方法 # AnFany kresult = K_Af.op_kmeans(X, countcen=6) # Sklearn sk = K_Sk.KMeans(init='k-means++', n_clusters=6, n_init=10) train = sk.fit(X) result = sk.predict(X) skru = K_Sk.trans(result) #绘制算法后的类别的散点图 def sca(Xdata, Center, signdict, co=['r', 'g', 'y', 'b', 'c', 'm'], marker=['o','^','H','s','d','*'], titl = 'AnFany 结果'): du = 1 for jj in signdict: xdata = Xdata[signdict[jj]] plt.scatter(xdata[:, 0], xdata[:, -1], c=co[jj], s=50, marker=marker[jj], label='%d类' % jj) # 绘制样本散点图 for ss in Center: if du: plt.scatter(ss[0], ss[1], c='k', s=100, marker='8', label='类别中心') #绘制类别中心点 du = 0 else: plt.scatter(ss[0], ss[1], c='k', s=100, marker='8') # 绘制类别中心点 plt.legend(bbox_to_anchor=(1.2, 1)) plt.title(titl) plt.xlabel('特征1') plt.ylabel('特征2') # 定义欧几里得距离 def dis(sample, center): cen = np.array([center]) sample = np.array(sample) if len(sample) != 0: usb = np.sum((sample - cen) ** 2, axis=1) ** 0.5 return usb else: return 0 # 计算最终的分类结果的成本值 def Cost(Xdata, typedict): center = {} for kk in typedict: center[kk] = np.mean(Xdata[typedict[kk]], axis=0) # 均值 cio = 0 for cc in typedict: cio += np.sum(dis(Xdata[typedict[cc]], center[cc])) return cio # 最终的结果展示 plt.subplot(2, 2, 1) fig_scatter(X, Y) plt.subplot(2, 2, 2) sca(X, kresult[0], kresult[2]) plt.subplot(2, 2, 3) sca(X, train.cluster_centers_, skru, titl='Sklearn 结果') plt.subplot(2, 2, 4) plt.axis('off') plt.text(0.3, 0.6, 'AnFany 最终的分类成本值为:%.5f'%Cost(X, kresult[2])) plt.text(0.3, 0.3, 'Sklearn 最终的分类成本值为:%.5f'%Cost(X, skru)) plt.show()
sdc/utilities/sdc_typing_utils.py
dlee992/sdc
540
6295
# ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** """ | This file contains SDC utility functions related to typing compilation phase """ import numpy import numba import sdc from numba import types from numba.core.errors import TypingError from numba.np import numpy_support from sdc.datatypes.indexes import * from sdc.str_arr_type import string_array_type, StringArrayType from sdc.datatypes.categorical.types import Categorical sdc_old_index_types = (types.Array, StringArrayType, ) sdc_pandas_index_types = ( EmptyIndexType, PositionalIndexType, RangeIndexType, Int64IndexType, MultiIndexType, ) + sdc_old_index_types sdc_indexes_range_like = ( PositionalIndexType, RangeIndexType, ) # TO-DO: support caching of data allocated for range indexes at request for .values sdc_indexes_wo_values_cache = ( EmptyIndexType, PositionalIndexType, RangeIndexType, ) sdc_pandas_df_column_types = ( types.Array, StringArrayType, Categorical, ) class TypeChecker: """ Validate object type and raise TypingError if the type is invalid, e.g.: Method nsmallest(). The object n given: bool expected: int """ msg_template = '{} The object {}\n given: {}\n expected: {}' def __init__(self, func_name): """ Parameters ---------- func_name: :obj:`str` name of the function where types checking """ self.func_name = func_name def raise_exc(self, data, expected_types, name=''): """ Raise exception with unified message Parameters ---------- data: :obj:`any` real type of the data expected_types: :obj:`str` expected types inserting directly to the exception name: :obj:`str` name of the parameter """ msg = self.msg_template.format(self.func_name, name, data, expected_types) raise TypingError(msg) def check(self, data, accepted_type, name=''): """ Check data type belongs to specified type Parameters ---------- data: :obj:`any` real type of the data accepted_type: :obj:`type` accepted type name: :obj:`str` name of the parameter """ if not isinstance(data, accepted_type): self.raise_exc(data, accepted_type.__name__, name=name) class SDCLimitation(Exception): """Exception to be raised in case of SDC limitation""" pass def kwsparams2list(params): """Convert parameters dict to a list of string of a format 'key=value'""" return ['{}={}'.format(k, v) for k, v in params.items()] def sigparams2list(param_names, defaults): """Creates a list of strings of a format 'key=value' from parameter names and default values""" return [(f'{param}' if param not in defaults else f'{param}={defaults[param]}') for param in param_names] def has_literal_value(var, value): """Used during typing to check that variable var is a Numba literal value equal to value""" if not isinstance(var, types.Literal): return False if value is None: return isinstance(var, types.NoneType) or var.literal_value is value elif isinstance(value, type(bool)): return var.literal_value is value else: return var.literal_value == value def has_python_value(var, value): """Used during typing to check that variable var was resolved as Python type and has specific value""" if not isinstance(var, type(value)): return False if value is None or isinstance(value, type(bool)): return var is value else: return var == value def is_default(var, value): return has_literal_value(var, value) or has_python_value(var, value) or isinstance(var, types.Omitted) def check_is_numeric_array(type_var): """Used during typing to check that type_var is a numeric numpy arrays""" return check_is_array_of_dtype(type_var, types.Number) def check_index_is_numeric(ty_series): """Used during typing to check that series has numeric index""" return isinstance(ty_series.index.dtype, types.Number) def check_types_comparable(ty_left, ty_right): """Used during typing to check that specified types can be compared""" if hasattr(ty_left, 'dtype'): ty_left = ty_left.dtype if hasattr(ty_right, 'dtype'): ty_right = ty_right.dtype # add the rest of supported types here if isinstance(ty_left, types.Number): return isinstance(ty_right, types.Number) if isinstance(ty_left, types.UnicodeType): return isinstance(ty_right, types.UnicodeType) if isinstance(ty_left, types.Boolean): return isinstance(ty_right, types.Boolean) if isinstance(ty_left, (types.Tuple, types.UniTuple)): # FIXME: just for now to unblock compilation return ty_left == ty_right return False def check_arrays_comparable(ty_left, ty_right): """Used during typing to check that underlying arrays of specified types can be compared""" return ((ty_left == string_array_type and ty_right == string_array_type) or (check_is_numeric_array(ty_left) and check_is_numeric_array(ty_right))) def check_is_array_of_dtype(type_var, dtype): """Used during typing to check that type_var is a numeric numpy array of specific dtype""" return isinstance(type_var, types.Array) and isinstance(type_var.dtype, dtype) def find_common_dtype_from_numpy_dtypes(array_types, scalar_types): """Used to find common numba dtype for a sequences of numba dtypes each representing some numpy dtype""" np_array_dtypes = [numpy_support.as_dtype(dtype) for dtype in array_types] np_scalar_dtypes = [numpy_support.as_dtype(dtype) for dtype in scalar_types] np_common_dtype = numpy.find_common_type(np_array_dtypes, np_scalar_dtypes) numba_common_dtype = numpy_support.from_dtype(np_common_dtype) return numba_common_dtype def find_index_common_dtype(left, right): """Used to find common dtype for indexes of two series and verify if index dtypes are equal""" left_index_dtype = left.dtype right_index_dtype = right.dtype index_dtypes_match = left_index_dtype == right_index_dtype if not index_dtypes_match: numba_index_common_dtype = find_common_dtype_from_numpy_dtypes( [left_index_dtype, right_index_dtype], []) else: numba_index_common_dtype = left_index_dtype return index_dtypes_match, numba_index_common_dtype def gen_impl_generator(codegen, impl_name): """Generate generator of an implementation""" def _df_impl_generator(*args, **kwargs): func_text, global_vars = codegen(*args, **kwargs) loc_vars = {} exec(func_text, global_vars, loc_vars) _impl = loc_vars[impl_name] return _impl return _df_impl_generator def check_signed_integer(ty): return isinstance(ty, types.Integer) and ty.signed def _check_dtype_param_type(dtype): """ Returns True is dtype is a valid type for dtype parameter and False otherwise. Used in RangeIndex ctor and other methods that take dtype parameter. """ valid_dtype_types = (types.NoneType, types.Omitted, types.UnicodeType, types.NumberClass) return isinstance(dtype, valid_dtype_types) or dtype is None
DQM/L1TMonitorClient/python/L1EmulatorErrorFlagClient_cfi.py
ckamtsikis/cmssw
852
6297
<filename>DQM/L1TMonitorClient/python/L1EmulatorErrorFlagClient_cfi.py<gh_stars>100-1000 import FWCore.ParameterSet.Config as cms from DQMServices.Core.DQMEDHarvester import DQMEDHarvester l1EmulatorErrorFlagClient = DQMEDHarvester("L1EmulatorErrorFlagClient", # # for each L1 system, give: # - SystemLabel: system label # - HwValLabel: system label as used in hardware validation package # (the package producing the ErrorFlag histogram) # - SystemMask: system mask: if 1, the system is masked in the summary plot # - SystemFolder: the folder where the ErrorFlag histogram is looked for # # the position in the parameter set gives, in reverse order, the position in the reportSummaryMap # in the emulator column (left column) L1Systems = cms.VPSet( cms.PSet( SystemLabel = cms.string("ECAL"), HwValLabel = cms.string("ETP"), SystemMask = cms.uint32(1), SystemFolder = cms.string("") ), cms.PSet( SystemLabel = cms.string("HCAL"), HwValLabel = cms.string("HTP"), SystemMask = cms.uint32(1), SystemFolder = cms.string("") ), cms.PSet( SystemLabel = cms.string("RCT"), HwValLabel = cms.string("RCT"), SystemMask = cms.uint32(0), SystemFolder = cms.string("") ), cms.PSet( SystemLabel = cms.string("Stage1Layer2"), HwValLabel = cms.string("Stage1Layer2"), SystemMask = cms.uint32(0), SystemFolder = cms.string("") ), cms.PSet( SystemLabel = cms.string("DTTF"), HwValLabel = cms.string("DTF"), SystemMask = cms.uint32(0), SystemFolder = cms.string("") ), cms.PSet( SystemLabel = cms.string("DTTPG"), HwValLabel = cms.string("DTP"), SystemMask = cms.uint32(1), SystemFolder = cms.string("") ), cms.PSet( SystemLabel = cms.string("CSCTF"), HwValLabel = cms.string("CTF"), SystemMask = cms.uint32(1), SystemFolder = cms.string("") ), cms.PSet( SystemLabel = cms.string("CSCTPG"), HwValLabel = cms.string("CTP"), SystemMask = cms.uint32(1), SystemFolder = cms.string("") ), cms.PSet( SystemLabel = cms.string("RPC"), HwValLabel = cms.string("RPC"), SystemMask = cms.uint32(0), SystemFolder = cms.string("") ), cms.PSet( SystemLabel = cms.string("GMT"), HwValLabel = cms.string("GMT"), SystemMask = cms.uint32(0), SystemFolder = cms.string("") ), cms.PSet( SystemLabel = cms.string("GT"), HwValLabel = cms.string("GT"), SystemMask = cms.uint32(1), SystemFolder = cms.string("L1TEMU/Stage1GTexpert") ) ) )
examples/ingenerator.py
quynhanh-ngx/pytago
206
6315
def main(): n = 111 gen = (n * 7 for x in range(10)) if 777 in gen: print("Yes!") if __name__ == '__main__': main()
azbankgateways/views/__init__.py
lordmahyar/az-iranian-bank-gateways
196
6330
<reponame>lordmahyar/az-iranian-bank-gateways<gh_stars>100-1000 from .banks import callback_view, go_to_bank_gateway from .samples import sample_payment_view, sample_result_view
src/resources/clients/python_client/visitstate.py
visit-dav/vis
226
6344
<reponame>visit-dav/vis import sys class RPCType(object): CloseRPC = 0 DetachRPC = 1 AddWindowRPC = 2 DeleteWindowRPC = 3 SetWindowLayoutRPC = 4 SetActiveWindowRPC = 5 ClearWindowRPC = 6 ClearAllWindowsRPC = 7 OpenDatabaseRPC = 8 CloseDatabaseRPC = 9 ActivateDatabaseRPC = 10 CheckForNewStatesRPC = 11 CreateDatabaseCorrelationRPC = 12 AlterDatabaseCorrelationRPC = 13 DeleteDatabaseCorrelationRPC = 14 ReOpenDatabaseRPC = 15 ReplaceDatabaseRPC = 16 OverlayDatabaseRPC = 17 OpenComputeEngineRPC = 18 CloseComputeEngineRPC = 19 AnimationSetNFramesRPC = 20 AnimationPlayRPC = 21 AnimationReversePlayRPC = 22 AnimationStopRPC = 23 TimeSliderNextStateRPC = 24 TimeSliderPreviousStateRPC = 25 SetTimeSliderStateRPC = 26 SetActiveTimeSliderRPC = 27 AddPlotRPC = 28 SetPlotFrameRangeRPC = 29 DeletePlotKeyframeRPC = 30 MovePlotKeyframeRPC = 31 DeleteActivePlotsRPC = 32 HideActivePlotsRPC = 33 DrawPlotsRPC = 34 DisableRedrawRPC = 35 RedrawRPC = 36 SetActivePlotsRPC = 37 ChangeActivePlotsVarRPC = 38 AddOperatorRPC = 39 AddInitializedOperatorRPC = 40 PromoteOperatorRPC = 41 DemoteOperatorRPC = 42 RemoveOperatorRPC = 43 RemoveLastOperatorRPC = 44 RemoveAllOperatorsRPC = 45 SaveWindowRPC = 46 SetDefaultPlotOptionsRPC = 47 SetPlotOptionsRPC = 48 SetDefaultOperatorOptionsRPC = 49 SetOperatorOptionsRPC = 50 WriteConfigFileRPC = 51 ConnectToMetaDataServerRPC = 52 IconifyAllWindowsRPC = 53 DeIconifyAllWindowsRPC = 54 ShowAllWindowsRPC = 55 HideAllWindowsRPC = 56 UpdateColorTableRPC = 57 SetAnnotationAttributesRPC = 58 SetDefaultAnnotationAttributesRPC = 59 ResetAnnotationAttributesRPC = 60 SetKeyframeAttributesRPC = 61 SetPlotSILRestrictionRPC = 62 SetViewAxisArrayRPC = 63 SetViewCurveRPC = 64 SetView2DRPC = 65 SetView3DRPC = 66 ResetPlotOptionsRPC = 67 ResetOperatorOptionsRPC = 68 SetAppearanceRPC = 69 ProcessExpressionsRPC = 70 SetLightListRPC = 71 SetDefaultLightListRPC = 72 ResetLightListRPC = 73 SetAnimationAttributesRPC = 74 SetWindowAreaRPC = 75 PrintWindowRPC = 76 ResetViewRPC = 77 RecenterViewRPC = 78 ToggleAllowPopupRPC = 79 ToggleMaintainViewModeRPC = 80 ToggleBoundingBoxModeRPC = 81 ToggleCameraViewModeRPC = 82 TogglePerspectiveViewRPC = 83 ToggleSpinModeRPC = 84 ToggleLockTimeRPC = 85 ToggleLockToolsRPC = 86 ToggleLockViewModeRPC = 87 ToggleFullFrameRPC = 88 UndoViewRPC = 89 RedoViewRPC = 90 InvertBackgroundRPC = 91 ClearPickPointsRPC = 92 SetWindowModeRPC = 93 EnableToolRPC = 94 SetToolUpdateModeRPC = 95 CopyViewToWindowRPC = 96 CopyLightingToWindowRPC = 97 CopyAnnotationsToWindowRPC = 98 CopyPlotsToWindowRPC = 99 ClearCacheRPC = 100 ClearCacheForAllEnginesRPC = 101 SetViewExtentsTypeRPC = 102 ClearRefLinesRPC = 103 SetRenderingAttributesRPC = 104 QueryRPC = 105 CloneWindowRPC = 106 SetMaterialAttributesRPC = 107 SetDefaultMaterialAttributesRPC = 108 ResetMaterialAttributesRPC = 109 SetPlotDatabaseStateRPC = 110 DeletePlotDatabaseKeyframeRPC = 111 MovePlotDatabaseKeyframeRPC = 112 ClearViewKeyframesRPC = 113 DeleteViewKeyframeRPC = 114 MoveViewKeyframeRPC = 115 SetViewKeyframeRPC = 116 OpenMDServerRPC = 117 EnableToolbarRPC = 118 HideToolbarsRPC = 119 HideToolbarsForAllWindowsRPC = 120 ShowToolbarsRPC = 121 ShowToolbarsForAllWindowsRPC = 122 SetToolbarIconSizeRPC = 123 SaveViewRPC = 124 SetGlobalLineoutAttributesRPC = 125 SetPickAttributesRPC = 126 ExportColorTableRPC = 127 ExportEntireStateRPC = 128 ImportEntireStateRPC = 129 ImportEntireStateWithDifferentSourcesRPC = 130 ResetPickAttributesRPC = 131 AddAnnotationObjectRPC = 132 HideActiveAnnotationObjectsRPC = 133 DeleteActiveAnnotationObjectsRPC = 134 RaiseActiveAnnotationObjectsRPC = 135 LowerActiveAnnotationObjectsRPC = 136 SetAnnotationObjectOptionsRPC = 137 SetDefaultAnnotationObjectListRPC = 138 ResetAnnotationObjectListRPC = 139 ResetPickLetterRPC = 140 SetDefaultPickAttributesRPC = 141 ChooseCenterOfRotationRPC = 142 SetCenterOfRotationRPC = 143 SetQueryOverTimeAttributesRPC = 144 SetDefaultQueryOverTimeAttributesRPC = 145 ResetQueryOverTimeAttributesRPC = 146 ResetLineoutColorRPC = 147 SetInteractorAttributesRPC = 148 SetDefaultInteractorAttributesRPC = 149 ResetInteractorAttributesRPC = 150 GetProcInfoRPC = 151 SendSimulationCommandRPC = 152 UpdateDBPluginInfoRPC = 153 ExportDBRPC = 154 SetTryHarderCyclesTimesRPC = 155 OpenClientRPC = 156 OpenGUIClientRPC = 157 OpenCLIClientRPC = 158 SuppressQueryOutputRPC = 159 SetQueryFloatFormatRPC = 160 SetMeshManagementAttributesRPC = 161 SetDefaultMeshManagementAttributesRPC = 162 ResetMeshManagementAttributesRPC = 163 ResizeWindowRPC = 164 MoveWindowRPC = 165 MoveAndResizeWindowRPC = 166 SetStateLoggingRPC = 167 ConstructDataBinningRPC = 168 RequestMetaDataRPC = 169 SetTreatAllDBsAsTimeVaryingRPC = 170 SetCreateMeshQualityExpressionsRPC = 171 SetCreateTimeDerivativeExpressionsRPC = 172 SetCreateVectorMagnitudeExpressionsRPC = 173 CopyActivePlotsRPC = 174 SetPlotFollowsTimeRPC = 175 TurnOffAllLocksRPC = 176 SetDefaultFileOpenOptionsRPC = 177 SetSuppressMessagesRPC = 178 ApplyNamedSelectionRPC = 179 CreateNamedSelectionRPC = 180 DeleteNamedSelectionRPC = 181 LoadNamedSelectionRPC = 182 SaveNamedSelectionRPC = 183 SetNamedSelectionAutoApplyRPC = 184 UpdateNamedSelectionRPC = 185 InitializeNamedSelectionVariablesRPC = 186 MenuQuitRPC = 187 SetPlotDescriptionRPC = 188 MovePlotOrderTowardFirstRPC = 189 MovePlotOrderTowardLastRPC = 190 SetPlotOrderToFirstRPC = 191 SetPlotOrderToLastRPC = 192 RenamePickLabelRPC = 193 GetQueryParametersRPC = 194 DDTConnectRPC = 195 DDTFocusRPC = 196 ReleaseToDDTRPC = 197 MaxRPC = 198
core/src/main/python/akdl/entry/base_entry.py
zhangjun0x01/Alink
3,301
6356
import abc from typing import Dict, Callable import tensorflow as tf from flink_ml_framework.context import Context from flink_ml_framework.java_file import * from ..runner import tf_helper, io_helper from ..runner.output_writer import DirectOutputWriter try: from flink_ml_tensorflow.tensorflow_context import TFContext except: from flink_ml_tensorflow2.tensorflow_context import TFContext # noinspection PyUnresolvedReferences from tensorflow_io.core.python.ops import core_ops __all__ = ['TF1_TYPE', 'TF2_TYPE'] TF1_TYPE = 'tf1' TF2_TYPE = 'tf2' class BaseEntry(abc.ABC): def __init__(self, func_name, engine_type): self.func_name = func_name self.engine_type = engine_type @staticmethod def get_func_by_name(func_name): """ Get function by the func name :param func_name: func name :return: function """ if '.' not in func_name: if func_name in globals(): return globals()[func_name] else: raise RuntimeError('cannot find function[{}]'.format(func_name)) else: module_name, func_name = func_name.rsplit('.', 1) import importlib # load the module, will raise ImportError if module cannot be loaded m = importlib.import_module(module_name) # get the class, will raise AttributeError if class cannot be found c = getattr(m, func_name) return c @abc.abstractmethod def construct_args(self, **kwargs): pass def is_batch(self): return True def post_process(self, **kwargs): pass def entry_func(self, context: Context): tf_context = TFContext(context) properties = tf_context.properties print('properties', properties, flush=True) # intra_op_parallelism is set by akdl, because there is a bug in TensorFlow 1.x # See: https://stackoverflow.com/questions/34426268/restricting-number-of-cores-used intra_op_parallelism = int(properties['ALINK:intra_op_parallelism']) if self.engine_type == TF1_TYPE: tf_helper.set_intra_op_parallelism(intra_op_parallelism_threads=intra_op_parallelism) elif self.engine_type == TF2_TYPE: tf.config.threading.set_intra_op_parallelism_threads(intra_op_parallelism) num_workers = int(properties['ALINK:num_workers']) work_dir = properties['ALINK:work_dir'] cluster, task_type, task_index = tf_context.export_estimator_cluster() if self.is_batch(): java_queue_file = JavaFile(context.from_java(), context.to_java()) dataset_file = os.path.join(work_dir, 'dataset.tfrecords') dataset, dataset_length = io_helper.convert_java_queue_file_to_repeatable_dataset(java_queue_file, dataset_file) print("number of records: " + str(dataset_length), flush=True) dataset_fn: Callable[[], tf.data.TFRecordDataset] = lambda: tf.data.TFRecordDataset(dataset_file) else: dataset_fn: Callable[[], tf.data.TFRecordDataset] = lambda: tf_context.flink_stream_dataset() dataset = None dataset_file = None dataset_length = None saved_model_dir = os.path.join(work_dir, 'savedmodel') user_params: Dict = json.loads(properties['ALINK:user_defined_params']) for i in range(1, 1024): key = "ALINK:bc_" + str(i) if key in properties: user_params[key] = context.properties[key] key = "ALINK:model_dir" if key in properties: user_params[key] = properties[key] output_writer = DirectOutputWriter(tf_context.from_java(), tf_context.to_java()) locals_copy = locals().copy() locals_copy.pop("self") print("locals_copy = ", locals_copy, flush=True) args = self.construct_args(**locals_copy) func = self.get_func_by_name(self.func_name) func(args) print("task_type = {}, task_index = {}: done tf_user_main".format(task_type, task_index), flush=True) local_vars = locals().copy() local_vars.pop('self') self.post_process(**local_vars) print("task_type = {}, task_index = {}: exit".format(task_type, task_index), flush=True) output_writer.close()
simba/run_dash_tkinter.py
justinshenk/simba
172
6364
# All credit to https://stackoverflow.com/questions/46571448/tkinter-and-a-html-file - thanks DELICA - https://stackoverflow.com/users/7027346/delica from cefpython3 import cefpython as cef import ctypes try: import tkinter as tk from tkinter import messagebox except ImportError: import Tkinter as tk import sys import platform import logging as _logging # Fix for PyCharm hints warnings WindowUtils = cef.WindowUtils() # Platforms WINDOWS = (platform.system() == "Windows") LINUX = (platform.system() == "Linux") MAC = (platform.system() == "Darwin") # Globals logger = _logging.getLogger("tkinter_.py") url = "localhost:8050/" class MainFrame(tk.Frame): def __init__(self, root): self.closing = False self.browser = None # Root root.geometry("900x640") tk.Grid.rowconfigure(root, 0, weight=1) tk.Grid.columnconfigure(root, 0, weight=1) # MainFrame tk.Frame.__init__(self, root) self.master.title('SimBA Dashboard') self.master.protocol("WM_DELETE_WINDOW", self.on_close) self.bind("<Configure>", self.on_configure) self.bind("<FocusIn>", self.on_focus_in) self.bind("<FocusOut>", self.on_focus_out) self.focus_set() # Pack MainFrame self.pack(fill=tk.BOTH, expand=tk.YES) def embed_browser(self): window_info = cef.WindowInfo() rect = [0, 0, self.winfo_width(), self.winfo_height()] window_info.SetAsChild(self.get_window_handle(), rect) self.browser = cef.CreateBrowserSync(window_info, url=url) #todo assert self.browser self.browser.SetClientHandler(LoadHandler(self)) self.browser.SetClientHandler(FocusHandler(self)) self.message_loop_work() def get_window_handle(self): if self.winfo_id() > 0: return self.winfo_id() else: raise Exception("Couldn't obtain window handle") def message_loop_work(self): cef.MessageLoopWork() self.after(10, self.message_loop_work) def on_configure(self, event): width = event.width height = event.height if self.browser: if WINDOWS: ctypes.windll.user32.SetWindowPos( self.browser.GetWindowHandle(), 0, 0, 0, width, height, 0x0002) elif LINUX: self.browser.SetBounds(0, 0, width, height) self.browser.NotifyMoveOrResizeStarted() if not self.browser: self.embed_browser() def on_focus_in(self, _): logger.debug("BrowserFrame.on_focus_in") if self.browser: self.browser.SetFocus(True) self.focus_set() def on_focus_out(self, _): logger.debug("BrowserFrame.on_focus_out") if self.browser: self.browser.SetFocus(False) def on_close(self): if self.browser: self.browser.CloseBrowser(True) self.clear_browser_references() self.destroy() self.master.destroy() def get_browser(self): if self.browser: return self.browser return None def clear_browser_references(self): self.browser = None class LoadHandler(object): def __init__(self, browser_frame): self.browser_frame = browser_frame class FocusHandler(object): def __init__(self, browser): self.browser = browser def OnTakeFocus(self, next_component, **_): logger.debug("FocusHandler.OnTakeFocus, next={next}" .format(next=next_component)) def OnSetFocus(self, source, **_): logger.debug("FocusHandler.OnSetFocus, source={source}" .format(source=source)) return False def OnGotFocus(self, **_): """Fix CEF focus issues (#255). Call browser frame's focus_set to get rid of type cursor in url entry widget.""" logger.debug("FocusHandler.OnGotFocus") self.browser.focus_set() # if __name__ == '__main__': logger.setLevel(_logging.INFO) stream_handler = _logging.StreamHandler() formatter = _logging.Formatter("[%(filename)s] %(message)s") stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) logger.info("CEF Python {ver}".format(ver=cef.__version__)) logger.info("Python {ver} {arch}".format( ver=platform.python_version(), arch=platform.architecture()[0])) logger.info("Tk {ver}".format(ver=tk.Tcl().eval('info patchlevel'))) assert cef.__version__ >= "55.3", "CEF Python v55.3+ required to run this" sys.excepthook = cef.ExceptHook # To shutdown all CEF processes on error root = tk.Tk() app = MainFrame(root) def on_closing(): if messagebox.askokcancel("Quit", "Do you want to quit?"): root.destroy() root.protocol("WM_DELETE_WINDOW", on_closing) # Tk must be initialized before CEF otherwise fatal error (Issue #306) cef.Initialize() root.mainloop() # app.mainloop() cef.Shutdown()
security_monkey/watchers/vpc/vpn.py
boladmin/security_monkey
4,258
6374
<reponame>boladmin/security_monkey # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. module: security_monkey.watchers.vpc.vpn :platform: Unix .. version:: $$VERSION$$ .. moduleauthor:: <NAME> <<EMAIL>> @alex.cline """ from cloudaux.aws.ec2 import describe_vpn_connections from security_monkey.cloudaux_watcher import CloudAuxWatcher from security_monkey.watcher import ChangeItem DATETIME_FORMAT = '%Y-%m-%dT%H:%M:%SZ' class VPN(CloudAuxWatcher): index = 'vpn' i_am_singular = 'VPN Connection' i_am_plural = 'VPN Connections' def __init__(self, *args, **kwargs): super(VPN, self).__init__(*args, **kwargs) self.honor_ephemerals = True self.ephemeral_paths = [ 'VgwTelemetry$*$LastStatusChange', 'VgwTelemetry$*$Status', 'VgwTelemetry$*$StatusMessage', ] def get_name_from_list_output(self, item): if item.get("Tags"): for tag in item["Tags"]: if tag["Key"] == "Name": return "{} ({})".format(tag["Value"], item["VpnConnectionId"]) return item["VpnConnectionId"] def list_method(self, **kwargs): return describe_vpn_connections(**kwargs) def get_method(self, item, **kwargs): # Remove the CustomerGatewayConfiguration -- it's not necessary as all the details are present anyway: item.pop("CustomerGatewayConfiguration", None) # Set the ARN: item["Arn"] = "arn:aws:ec2:{region}:{account}:vpn-connection/{id}".format(region=kwargs["region"], account=kwargs["account_number"], id=item["VpnConnectionId"]) # Cast the datetimes to something JSON serializable (ISO 8601 string): for vgw in item.get("VgwTelemetry", []): if vgw.get("LastStatusChange"): vgw["LastStatusChange"] = vgw["LastStatusChange"].strftime(DATETIME_FORMAT) return item class VPNItem(ChangeItem): def __init__(self, region=None, account=None, name=None, arn=None, config=None, source_watcher=None): super(VPNItem, self).__init__( index=VPN.index, region=region, account=account, name=name, arn=arn, new_config=config if config else {}, source_watcher=source_watcher)
_ar/masking_provement.py
TomKingsfordUoA/ResidualMaskingNetwork
242
6388
import os import glob import cv2 import numpy as np import torch from torchvision.transforms import transforms from natsort import natsorted from models import resmasking_dropout1 from utils.datasets.fer2013dataset import EMOTION_DICT from barez import show transform = transforms.Compose( [ transforms.ToPILImage(), transforms.ToTensor(), ] ) def activations_mask(tensor): tensor = torch.squeeze(tensor, 0) tensor = torch.mean(tensor, 0) tensor = tensor.detach().cpu().numpy() tensor = np.maximum(tensor, 0) tensor = cv2.resize(tensor, (224, 224)) tensor = tensor - np.min(tensor) tensor = tensor / np.max(tensor) heatmap = cv2.applyColorMap(np.uint8(255 * tensor), cv2.COLORMAP_JET) return heatmap model = resmasking_dropout1(3, 7) # state = torch.load('./saved/checkpoints/resmasking_dropout1_rot30_2019Nov17_14.33') state = torch.load("./saved/checkpoints/Z_resmasking_dropout1_rot30_2019Nov30_13.32") model.load_state_dict(state["net"]) model.cuda() model.eval() for image_path in natsorted( glob.glob("/home/z/research/bkemo/images/**/*.png", recursive=True) ): image_name = os.path.basename(image_path) print(image_name) # image_path = '/home/z/research/bkemo/images/disgust/0.0_dc10a3_1976_0.png' image = cv2.imread(image_path) image = cv2.resize(image, (224, 224)) tensor = transform(image) tensor = torch.unsqueeze(tensor, 0) tensor = tensor.cuda() # output = model(tensor) x = model.conv1(tensor) # 112 x = model.bn1(x) x = model.relu(x) x = model.maxpool(x) # 56 x = model.layer1(x) # 56 m = model.mask1(x) x = x * (1 + m) x = model.layer2(x) # 28 m = model.mask2(x) x = x * (1 + m) x = model.layer3(x) # 14 heat_1 = activations_mask(x) m = model.mask3(x) x = x * (1 + m) # heat_2 = activations_mask(m) x = model.layer4(x) # 7 m = model.mask4(x) x = x * (1 + m) x = model.avgpool(x) x = torch.flatten(x, 1) output = model.fc(x) # print(np.sum(heat_1 - heat_2)) # show(np.concatenate((image, heat_1, heat_2), axis=1)) cv2.imwrite( "./masking_provements/{}".format(image_name), np.concatenate((image, heat_1), axis=1), ) # np.concatenate((image, heat_1, heat_2), axis=1)) # output = output.cpu().numpy() # print(EMOTION_DICT[torch.argmax(output, 1).item()])
mod/tools/ccmake.py
mattiasljungstrom/fips
429
6394
<gh_stars>100-1000 """ wrapper for ccmake command line tool """ import subprocess name = 'ccmake' platforms = ['linux', 'osx'] optional = True not_found = "required for 'fips config' functionality" #------------------------------------------------------------------------------- def check_exists(fips_dir) : """test if ccmake is in the path :returns: True if ccmake is in the path """ try: out = subprocess.check_output(['ccmake', '--version']) return True except (OSError, subprocess.CalledProcessError): return False #------------------------------------------------------------------------------- def run(build_dir) : """run ccmake to configure cmake project :param build_dir: directory where ccmake should run :returns: True if ccmake returns successful """ res = subprocess.call('ccmake .', cwd=build_dir, shell=True) return res == 0
heat/api/openstack/v1/views/stacks_view.py
noironetworks/heat
265
6404
<reponame>noironetworks/heat # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import itertools from heat.api.openstack.v1 import util from heat.api.openstack.v1.views import views_common from heat.rpc import api as rpc_api _collection_name = 'stacks' basic_keys = ( rpc_api.STACK_ID, rpc_api.STACK_NAME, rpc_api.STACK_DESCRIPTION, rpc_api.STACK_STATUS, rpc_api.STACK_STATUS_DATA, rpc_api.STACK_CREATION_TIME, rpc_api.STACK_DELETION_TIME, rpc_api.STACK_UPDATED_TIME, rpc_api.STACK_OWNER, rpc_api.STACK_PARENT, rpc_api.STACK_USER_PROJECT_ID, rpc_api.STACK_TAGS, ) def format_stack(req, stack, keys=None, include_project=False): def transform(key, value): if keys and key not in keys: return if key == rpc_api.STACK_ID: yield ('id', value['stack_id']) yield ('links', [util.make_link(req, value)]) if include_project: yield ('project', value['tenant']) elif key == rpc_api.STACK_ACTION: return elif (key == rpc_api.STACK_STATUS and rpc_api.STACK_ACTION in stack): # To avoid breaking API compatibility, we join RES_ACTION # and RES_STATUS, so the API format doesn't expose the # internal split of state into action/status yield (key, '_'.join((stack[rpc_api.STACK_ACTION], value))) else: # TODO(zaneb): ensure parameters can be formatted for XML # elif key == rpc_api.STACK_PARAMETERS: # return key, json.dumps(value) yield (key, value) return dict(itertools.chain.from_iterable( transform(k, v) for k, v in stack.items())) def collection(req, stacks, count=None, include_project=False): keys = basic_keys formatted_stacks = [format_stack(req, s, keys, include_project) for s in stacks] result = {'stacks': formatted_stacks} links = views_common.get_collection_links(req, formatted_stacks) if links: result['links'] = links if count is not None: result['count'] = count return result
desktop/core/ext-py/pyasn1-0.1.8/pyasn1/compat/iterfunc.py
kokosing/hue
422
6410
<filename>desktop/core/ext-py/pyasn1-0.1.8/pyasn1/compat/iterfunc.py from sys import version_info if version_info[0] <= 2 and version_info[1] <= 4: def all(iterable): for element in iterable: if not element: return False return True else: all = all
tzwhere/tzwhere.py
tuxiqae/pytzwhere
115
6420
<reponame>tuxiqae/pytzwhere #!/usr/bin/env python '''tzwhere.py - time zone computation from latitude/longitude. Ordinarily this is loaded as a module and instances of the tzwhere class are instantiated and queried directly ''' import collections try: import ujson as json # loads 2 seconds faster than normal json except: try: import json except ImportError: import simplejson as json import math import gzip import os import shapely.geometry as geometry import shapely.prepared as prepared # We can save about 222MB of RAM by turning our polygon lists into # numpy arrays rather than tuples, if numpy is installed. try: import numpy WRAP = numpy.asarray COLLECTION_TYPE = numpy.ndarray except ImportError: WRAP = tuple COLLECTION_TYPE = tuple # for navigation and pulling values/files this_dir, this_filename = os.path.split(__file__) BASE_DIR = os.path.dirname(this_dir) class tzwhere(object): SHORTCUT_DEGREES_LATITUDE = 1.0 SHORTCUT_DEGREES_LONGITUDE = 1.0 # By default, use the data file in our package directory DEFAULT_SHORTCUTS = os.path.join(os.path.dirname(__file__), 'tz_world_shortcuts.json') DEFAULT_POLYGONS = os.path.join(os.path.dirname(__file__), 'tz_world.json.gz') def __init__(self, forceTZ=False): ''' Initializes the tzwhere class. @forceTZ: If you want to force the lookup method to a return a timezone even if the point you are looking up is slightly outside it's bounds, you need to specify this during initialization arleady ''' featureCollection = read_tzworld(tzwhere.DEFAULT_POLYGONS) pgen = feature_collection_polygons(featureCollection) self.timezoneNamesToPolygons = collections.defaultdict(list) self.unprepTimezoneNamesToPolygons = collections.defaultdict(list) for tzname, poly in pgen: self.timezoneNamesToPolygons[tzname].append(poly) for tzname, polys in self.timezoneNamesToPolygons.items(): self.timezoneNamesToPolygons[tzname] = WRAP(polys) if forceTZ: self.unprepTimezoneNamesToPolygons[tzname] = WRAP(polys) with open(tzwhere.DEFAULT_SHORTCUTS, 'r') as f: self.timezoneLongitudeShortcuts, self.timezoneLatitudeShortcuts = json.load(f) self.forceTZ = forceTZ for tzname in self.timezoneNamesToPolygons: # Convert things to tuples to save memory for degree in self.timezoneLatitudeShortcuts: for tzname in self.timezoneLatitudeShortcuts[degree].keys(): self.timezoneLatitudeShortcuts[degree][tzname] = \ tuple(self.timezoneLatitudeShortcuts[degree][tzname]) for degree in self.timezoneLongitudeShortcuts.keys(): for tzname in self.timezoneLongitudeShortcuts[degree].keys(): self.timezoneLongitudeShortcuts[degree][tzname] = \ tuple(self.timezoneLongitudeShortcuts[degree][tzname]) def tzNameAt(self, latitude, longitude, forceTZ=False): ''' Let's you lookup for a given latitude and longitude the appropriate timezone. @latitude: latitude @longitude: longitude @forceTZ: If forceTZ is true and you can't find a valid timezone return the closest timezone you can find instead. Only works if the point has the same integer value for its degree than the timezeone ''' if forceTZ: assert self.forceTZ, 'You need to initialize tzwhere with forceTZ' latTzOptions = self.timezoneLatitudeShortcuts[str( (math.floor(latitude / self.SHORTCUT_DEGREES_LATITUDE) * self.SHORTCUT_DEGREES_LATITUDE) )] latSet = set(latTzOptions.keys()) lngTzOptions = self.timezoneLongitudeShortcuts[str( (math.floor(longitude / self.SHORTCUT_DEGREES_LONGITUDE) * self.SHORTCUT_DEGREES_LONGITUDE) )] lngSet = set(lngTzOptions.keys()) possibleTimezones = lngSet.intersection(latSet) queryPoint = geometry.Point(longitude, latitude) if possibleTimezones: for tzname in possibleTimezones: if isinstance(self.timezoneNamesToPolygons[tzname], COLLECTION_TYPE): self.timezoneNamesToPolygons[tzname] = list( map(lambda p: prepared.prep( geometry.Polygon(p[0], p[1]) ), self.timezoneNamesToPolygons[tzname])) polyIndices = set(latTzOptions[tzname]).intersection(set( lngTzOptions[tzname] )) for polyIndex in polyIndices: poly = self.timezoneNamesToPolygons[tzname][polyIndex] if poly.contains_properly(queryPoint): return tzname if forceTZ: return self.__forceTZ__(possibleTimezones, latTzOptions, lngTzOptions, queryPoint) def __forceTZ__(self, possibleTimezones, latTzOptions, lngTzOptions, queryPoint): distances = [] if possibleTimezones: if len(possibleTimezones) == 1: return possibleTimezones.pop() else: for tzname in possibleTimezones: if isinstance(self.unprepTimezoneNamesToPolygons[tzname], COLLECTION_TYPE): self.unprepTimezoneNamesToPolygons[tzname] = list( map(lambda p: p.context if isinstance(p, prepared.PreparedGeometry) else geometry.Polygon(p[0], p[1]), self.timezoneNamesToPolygons[tzname])) polyIndices = set(latTzOptions[tzname]).intersection( set(lngTzOptions[tzname])) for polyIndex in polyIndices: poly = self.unprepTimezoneNamesToPolygons[ tzname][polyIndex] d = poly.distance(queryPoint) distances.append((d, tzname)) if len(distances) > 0: return sorted(distances, key=lambda x: x[0])[0][1] class prepareMap(object): def __init__(self): DEFAULT_SHORTCUTS = os.path.join(os.path.dirname(__file__), 'tz_world_shortcuts.json') DEFAULT_POLYGONS = os.path.join(os.path.dirname(__file__), 'tz_world.json.gz') featureCollection = read_tzworld(DEFAULT_POLYGONS) pgen = feature_collection_polygons(featureCollection) tzNamesToPolygons = collections.defaultdict(list) for tzname, poly in pgen: tzNamesToPolygons[tzname].append(poly) for tzname, polys in tzNamesToPolygons.items(): tzNamesToPolygons[tzname] = \ WRAP(tzNamesToPolygons[tzname]) timezoneLongitudeShortcuts,\ timezoneLatitudeShortcuts = self.construct_shortcuts( tzNamesToPolygons, tzwhere.SHORTCUT_DEGREES_LONGITUDE, tzwhere.SHORTCUT_DEGREES_LATITUDE) with open(DEFAULT_SHORTCUTS, 'w') as f: json.dump( (timezoneLongitudeShortcuts, timezoneLatitudeShortcuts), f) @staticmethod def construct_shortcuts(timezoneNamesToPolygons, shortcut_long, shortcut_lat): ''' Construct our shortcuts for looking up polygons. Much faster than using an r-tree ''' def find_min_max(ls, gridSize): minLs = (math.floor(min(ls) / gridSize) * gridSize) maxLs = (math.floor(max(ls) / gridSize) * gridSize) return minLs, maxLs timezoneLongitudeShortcuts = {} timezoneLatitudeShortcuts = {} for tzname in timezoneNamesToPolygons: tzLngs = [] tzLats = [] for polyIndex, poly in enumerate(timezoneNamesToPolygons[tzname]): lngs = [x[0] for x in poly[0]] lats = [x[1] for x in poly[0]] tzLngs.extend(lngs) tzLats.extend(lats) minLng, maxLng = find_min_max( lngs, shortcut_long) minLat, maxLat = find_min_max( lats, shortcut_lat) degree = minLng while degree <= maxLng: if degree not in timezoneLongitudeShortcuts: timezoneLongitudeShortcuts[degree] =\ collections.defaultdict(list) timezoneLongitudeShortcuts[degree][tzname].append(polyIndex) degree = degree + shortcut_long degree = minLat while degree <= maxLat: if degree not in timezoneLatitudeShortcuts: timezoneLatitudeShortcuts[degree] =\ collections.defaultdict(list) timezoneLatitudeShortcuts[degree][tzname].append(polyIndex) degree = degree + shortcut_lat return timezoneLongitudeShortcuts, timezoneLatitudeShortcuts def read_tzworld(path): reader = read_json return reader(path) def read_json(path): with gzip.open(path, "rb") as f: featureCollection = json.loads(f.read().decode("utf-8")) return featureCollection def feature_collection_polygons(featureCollection): """Turn a feature collection into an iterator over polygons. Given a featureCollection of the kind loaded from the json input, unpack it to an iterator which produces a series of (tzname, polygon) pairs, one for every polygon in the featureCollection. Here tzname is a string and polygon is a list of floats. """ for feature in featureCollection['features']: tzname = feature['properties']['TZID'] if feature['geometry']['type'] == 'Polygon': exterior = feature['geometry']['coordinates'][0] interior = feature['geometry']['coordinates'][1:] yield (tzname, (exterior, interior)) if __name__ == "__main__": prepareMap()
examples/scripts/segmentation/nnet3-segmenter.py
mxmpl/pykaldi
916
6481
#!/usr/bin/env python from __future__ import print_function from kaldi.segmentation import NnetSAD, SegmentationProcessor from kaldi.nnet3 import NnetSimpleComputationOptions from kaldi.util.table import SequentialMatrixReader # Construct SAD model = NnetSAD.read_model("final.raw") post = NnetSAD.read_average_posteriors("post_output.vec") transform = NnetSAD.make_sad_transform(post) graph = NnetSAD.make_sad_graph() decodable_opts = NnetSimpleComputationOptions() decodable_opts.extra_left_context = 79 decodable_opts.extra_right_context = 21 decodable_opts.extra_left_context_initial = 0 decodable_opts.extra_right_context_final = 0 decodable_opts.frames_per_chunk = 150 decodable_opts.acoustic_scale = 0.3 sad = NnetSAD(model, transform, graph, decodable_opts=decodable_opts) seg = SegmentationProcessor(target_labels=[2]) # Define feature pipeline as a Kaldi rspecifier feats_rspec = "ark:compute-mfcc-feats --config=mfcc.conf scp:wav.scp ark:- |" # Segment with SequentialMatrixReader(feats_rspec) as f, open ("segments", "w") as s: for key, feats in f: out = sad.segment(feats) segments, stats = seg.process(out["alignment"]) seg.write(key, segments, s) print("segments:", segments, flush=True) print("stats:", stats, flush=True) print("global stats:", seg.stats, flush=True)
ppcls/data/preprocess/__init__.py
zhusonghe/PaddleClas-1
3,763
6502
<filename>ppcls/data/preprocess/__init__.py # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ppcls.data.preprocess.ops.autoaugment import ImageNetPolicy as RawImageNetPolicy from ppcls.data.preprocess.ops.randaugment import RandAugment as RawRandAugment from ppcls.data.preprocess.ops.timm_autoaugment import RawTimmAutoAugment from ppcls.data.preprocess.ops.cutout import Cutout from ppcls.data.preprocess.ops.hide_and_seek import HideAndSeek from ppcls.data.preprocess.ops.random_erasing import RandomErasing from ppcls.data.preprocess.ops.grid import GridMask from ppcls.data.preprocess.ops.operators import DecodeImage from ppcls.data.preprocess.ops.operators import ResizeImage from ppcls.data.preprocess.ops.operators import CropImage from ppcls.data.preprocess.ops.operators import RandCropImage from ppcls.data.preprocess.ops.operators import RandFlipImage from ppcls.data.preprocess.ops.operators import NormalizeImage from ppcls.data.preprocess.ops.operators import ToCHWImage from ppcls.data.preprocess.ops.operators import AugMix from ppcls.data.preprocess.batch_ops.batch_operators import MixupOperator, CutmixOperator, OpSampler, FmixOperator import numpy as np from PIL import Image def transform(data, ops=[]): """ transform """ for op in ops: data = op(data) return data class AutoAugment(RawImageNetPolicy): """ ImageNetPolicy wrapper to auto fit different img types """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __call__(self, img): if not isinstance(img, Image.Image): img = np.ascontiguousarray(img) img = Image.fromarray(img) img = super().__call__(img) if isinstance(img, Image.Image): img = np.asarray(img) return img class RandAugment(RawRandAugment): """ RandAugment wrapper to auto fit different img types """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __call__(self, img): if not isinstance(img, Image.Image): img = np.ascontiguousarray(img) img = Image.fromarray(img) img = super().__call__(img) if isinstance(img, Image.Image): img = np.asarray(img) return img class TimmAutoAugment(RawTimmAutoAugment): """ TimmAutoAugment wrapper to auto fit different img tyeps. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __call__(self, img): if not isinstance(img, Image.Image): img = np.ascontiguousarray(img) img = Image.fromarray(img) img = super().__call__(img) if isinstance(img, Image.Image): img = np.asarray(img) return img
SearchService/test/unit/test_solr_interface.py
loftwah/appscale
790
6522
<gh_stars>100-1000 #!/usr/bin/env python import os import json import sys import unittest import urllib2 from flexmock import flexmock sys.path.append(os.path.join(os.path.dirname(__file__), "../../")) import solr_interface import search_exceptions class FakeSolrDoc(): def __init__(self): self.fields = [] class FakeDocument(): INDEX_NAME = "indexname" INDEX_LOCALE = "indexlocale" def __init__(self): self.fields = [] self.id = "id" self.language = "lang" class FakeSchema(): def __init__(self): self.fields = [] class FakeIndex(): def __init__(self): self.name = "name" self.schema = FakeSchema() class FakeIndexSpec(): def __init__(self): pass def namespace(self): return 'ns' def name(self): return self.name class FakeUpdate(): def __init__(self, name, field_type): self.name = name self.field_type = field_type class FakeConnection(): def __init__(self, is_good_code): self.code = 200 if not is_good_code: self.code = 500 def getcode(self): return self.code class TestSolrInterface(unittest.TestCase): """ A set of test cases for the solr interface module. """ def test_get_index_adapter(self): appscale_info = flexmock() appscale_info.should_receive("get_search_location").\ and_return("somelocation") solr = solr_interface.Solr() solr = flexmock(solr) flexmock(solr_interface) solr_interface.should_receive("get_index_name").and_return("index_ns_name") flexmock(urllib2) urllib2.should_receive("urlopen").and_return(FakeConnection(False)) self.assertRaises(search_exceptions.InternalError, solr._get_index_adapter, "app_id", "ns", "name") # Test the case of ValueError on a json.load. urllib2.should_receive("urlopen").and_return(FakeConnection(True)) flexmock(json) json.should_receive("load").and_raise(ValueError) self.assertRaises(search_exceptions.InternalError, solr._get_index_adapter, "app_id", "ns", "name") # Test a bad status from SOLR. dictionary = {'responseHeader':{'status': 1}} json.should_receive("load").and_return(dictionary) self.assertRaises(search_exceptions.InternalError, solr._get_index_adapter, "app_id", "ns", "name") fields = [{'name':"index_ns_name_"}] dictionary = {'responseHeader':{'status': 0}, "fields": fields} json.should_receive("load").and_return(dictionary) index = solr._get_index_adapter("app_id", "ns", "name") self.assertEquals(index.schema[0]['name'], "index_ns_name_") def test_update_schema(self): appscale_info = flexmock() appscale_info.should_receive("get_search_location").\ and_return("somelocation") solr = solr_interface.Solr() flexmock(urllib2) urllib2.should_receive("urlopen").and_return(FakeConnection(False)) updates = [] self.assertRaises(search_exceptions.InternalError, solr.update_schema, updates) updates = [{'name': 'name1', 'type':'type1'}] flexmock(json) json.should_receive("load").and_raise(ValueError) urllib2.should_receive("urlopen").and_return(FakeConnection(True)) self.assertRaises(search_exceptions.InternalError, solr.update_schema, updates) dictionary = {"responseHeader":{"status":1}} json.should_receive("load").and_return(dictionary) self.assertRaises(search_exceptions.InternalError, solr.update_schema, updates) dictionary = {"responseHeader":{"status":0}} json.should_receive("load").and_return(dictionary) solr.update_schema(updates) def test_to_solr_hash_map(self): appscale_info = flexmock() appscale_info.should_receive("get_search_location").\ and_return("somelocation") solr = solr_interface.Solr() self.assertNotEqual(solr.to_solr_hash_map(FakeIndex(), FakeDocument()), {}) def test_commit_update(self): appscale_info = flexmock() appscale_info.should_receive("get_search_location").\ and_return("somelocation") solr = solr_interface.Solr() flexmock(json) json.should_receive("loads").and_return({}) flexmock(urllib2) urllib2.should_receive("urlopen").and_return(FakeConnection(False)) self.assertRaises(search_exceptions.InternalError, solr.commit_update, {}) json.should_receive("load").and_raise(ValueError) urllib2.should_receive("urlopen").and_return(FakeConnection(True)) self.assertRaises(search_exceptions.InternalError, solr.commit_update, {}) dictionary = {'responseHeader':{'status': 1}} json.should_receive("load").and_return(dictionary).once() self.assertRaises(search_exceptions.InternalError, solr.commit_update, {}) dictionary = {'responseHeader':{'status': 0}} json.should_receive("load").and_return(dictionary).once() solr.commit_update({}) def test_update_document(self): appscale_info = flexmock() appscale_info.should_receive("get_search_location").\ and_return("somelocation") solr = solr_interface.Solr() solr = flexmock(solr) solr.should_receive("to_solr_doc").and_return(FakeSolrDoc()) solr.should_receive("_get_index_adapter").and_return(FakeIndex()) solr.should_receive("compute_updates").and_return([]) solr.should_receive("to_solr_hash_map").and_return(None) solr.should_receive("commit_update").and_return(None) solr.update_document("app_id", None, FakeIndexSpec()) solr.should_receive("compute_updates").and_return([1,2]) solr.should_receive("update_schema").twice() solr.update_document("app_id", None, FakeIndexSpec()) solr.should_receive("to_solr_hash_map").and_return(None).once() solr.update_document("app_id", None, FakeIndexSpec()) def test_json_loads_byteified(self): json_with_unicode = ( '{"key2": [{"\\u2611": 28, "\\u2616": ["\\u263a"]}, "second", "third"], ' '"key1": "value", ' '"\\u2604": {"\\u2708": "\\u2708"}}' ) parsed_obj = solr_interface.json_loads_byteified(json_with_unicode) def walk_and_check_type(obj): if isinstance(obj, dict): for key, value in obj.iteritems(): self.assertIsInstance(key, str) walk_and_check_type(value) elif isinstance(obj, list): for value in obj: walk_and_check_type(value) else: self.assertIsInstance(obj, (str, int)) walk_and_check_type(parsed_obj) self.assertEqual(parsed_obj, { 'key1': 'value', 'key2': [ {'\<KEY>': 28, '\xe2\x98\x96': ['\xe2\x98\xba']}, 'second', 'third' ], '\xe2\x98\x84': {'\xe2\x9c\x88': '\xe2\x9c\x88'} })
script.video.F4mProxy/lib/flvlib/constants.py
akuala/REPO.KUALA
105
6534
<filename>script.video.F4mProxy/lib/flvlib/constants.py """ The constants used in FLV files and their meanings. """ # Tag type (TAG_TYPE_AUDIO, TAG_TYPE_VIDEO, TAG_TYPE_SCRIPT) = (8, 9, 18) # Sound format (SOUND_FORMAT_PCM_PLATFORM_ENDIAN, SOUND_FORMAT_ADPCM, SOUND_FORMAT_MP3, SOUND_FORMAT_PCM_LITTLE_ENDIAN, SOUND_FORMAT_NELLYMOSER_16KHZ, SOUND_FORMAT_NELLYMOSER_8KHZ, SOUND_FORMAT_NELLYMOSER, SOUND_FORMAT_G711_A_LAW, SOUND_FORMAT_G711_MU_LAW) = range(9) (SOUND_FORMAT_AAC, SOUND_FORMAT_SPEEX) = range(10, 12) (SOUND_FORMAT_MP3_8KHZ, SOUND_FORMAT_DEVICE_SPECIFIC) = range(14, 16) sound_format_to_string = { SOUND_FORMAT_PCM_PLATFORM_ENDIAN: "Linear PCM, platform endian", SOUND_FORMAT_ADPCM: "ADPCM", SOUND_FORMAT_MP3: "MP3", SOUND_FORMAT_PCM_LITTLE_ENDIAN: "Linear PCM, little endian", SOUND_FORMAT_NELLYMOSER_16KHZ: "Nellymoser 16-kHz mono", SOUND_FORMAT_NELLYMOSER_8KHZ: "Nellymoser 8-kHz mono", SOUND_FORMAT_NELLYMOSER: "Nellymoser", SOUND_FORMAT_G711_A_LAW: "G.711 A-law logarithmic PCM", SOUND_FORMAT_G711_MU_LAW: "G.711 mu-law logarithmic PCM", SOUND_FORMAT_AAC: "AAC", SOUND_FORMAT_SPEEX: "Speex", SOUND_FORMAT_MP3_8KHZ: "MP3 8-kHz", SOUND_FORMAT_DEVICE_SPECIFIC: "Device-specific sound" } # Sound rate (SOUND_RATE_5_5_KHZ, SOUND_RATE_11_KHZ, SOUND_RATE_22_KHZ, SOUND_RATE_44_KHZ) = range(4) sound_rate_to_string = { SOUND_RATE_5_5_KHZ: "5.5-kHz", SOUND_RATE_11_KHZ: "11-kHz", SOUND_RATE_22_KHZ: "22-kHz", SOUND_RATE_44_KHZ: "44-kHz" } # Sound size (SOUND_SIZE_8_BIT, SOUND_SIZE_16_BIT) = range(2) sound_size_to_string = { SOUND_SIZE_8_BIT: "snd8Bit", SOUND_SIZE_16_BIT: "snd16Bit" } # Sound type (SOUND_TYPE_MONO, SOUND_TYPE_STEREO) = range(2) sound_type_to_string = { SOUND_TYPE_MONO: "sndMono", SOUND_TYPE_STEREO: "sndStereo" } # AAC packet type (AAC_PACKET_TYPE_SEQUENCE_HEADER, AAC_PACKET_TYPE_RAW) = range(2) aac_packet_type_to_string = { AAC_PACKET_TYPE_SEQUENCE_HEADER: "sequence header", AAC_PACKET_TYPE_RAW: "raw" } # Codec ID (CODEC_ID_JPEG, CODEC_ID_H263, CODEC_ID_SCREEN_VIDEO, CODEC_ID_VP6, CODEC_ID_VP6_WITH_ALPHA, CODEC_ID_SCREEN_VIDEO_V2, CODEC_ID_H264) = range(1, 8) codec_id_to_string = { CODEC_ID_JPEG: "JPEG", CODEC_ID_H263: "Sorenson H.263", CODEC_ID_SCREEN_VIDEO: "Screen video", CODEC_ID_VP6: "On2 VP6", CODEC_ID_VP6_WITH_ALPHA: "On2 VP6 with alpha channel", CODEC_ID_SCREEN_VIDEO_V2: "Screen video version 2", CODEC_ID_H264: "H.264" } # Frame type (FRAME_TYPE_KEYFRAME, FRAME_TYPE_INTERFRAME, FRAME_TYPE_DISPOSABLE_INTERFRAME, FRAME_TYPE_GENERATED_KEYFRAME, FRAME_TYPE_INFO_FRAME) = range(1, 6) frame_type_to_string = { FRAME_TYPE_KEYFRAME: "keyframe", FRAME_TYPE_INTERFRAME: "interframe", FRAME_TYPE_DISPOSABLE_INTERFRAME: "disposable interframe", FRAME_TYPE_GENERATED_KEYFRAME: "generated keyframe", FRAME_TYPE_INFO_FRAME: "video info/command frame" } # H.264 packet type (H264_PACKET_TYPE_SEQUENCE_HEADER, H264_PACKET_TYPE_NALU, H264_PACKET_TYPE_END_OF_SEQUENCE) = range(3) h264_packet_type_to_string = { H264_PACKET_TYPE_SEQUENCE_HEADER: "sequence header", H264_PACKET_TYPE_NALU: "NAL unit", H264_PACKET_TYPE_END_OF_SEQUENCE: "sequence end" } # Value type (VALUE_TYPE_NUMBER, VALUE_TYPE_BOOLEAN, VALUE_TYPE_STRING, VALUE_TYPE_OBJECT, VALUE_TYPE_MOVIECLIP, VALUE_TYPE_NULL, VALUE_TYPE_UNDEFINED, VALUE_TYPE_REFERENCE, VALUE_TYPE_ECMA_ARRAY) = range(9) (VALUE_TYPE_STRICT_ARRAY, VALUE_TYPE_DATE, VALUE_TYPE_LONGSTRING) = range(10, 13) value_type_to_string = { VALUE_TYPE_NUMBER: 'Number', VALUE_TYPE_BOOLEAN: 'Boolean', VALUE_TYPE_STRING: 'String', VALUE_TYPE_OBJECT: 'Object', VALUE_TYPE_MOVIECLIP: 'MovieClip', VALUE_TYPE_NULL: 'Null', VALUE_TYPE_UNDEFINED: 'Undefined', VALUE_TYPE_REFERENCE: 'Reference', VALUE_TYPE_ECMA_ARRAY: 'ECMA Array', VALUE_TYPE_STRICT_ARRAY: 'Strict Array', VALUE_TYPE_DATE: 'Date', VALUE_TYPE_LONGSTRING: 'Longstring' }
jug/subcommands/demo.py
rdenham/jug
309
6556
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright (C) 2017, <NAME> <<EMAIL>> # vim: set ts=4 sts=4 sw=4 expandtab smartindent: # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from . import SubCommand __all__ = ['DemoCommand'] class DemoCommand(SubCommand): '''Create demo directory. ''' name = "demo" def run(self, *args, **kwargs): import os from os import path print(''' Jug will create a directory called 'jug-demo/' with a file called 'primes.py' inside. You can test jug by switching to that directory and running the commands: jug status primes.py followed by jug execute primes.py Upon termination of the process, results will be in a file called 'output.txt'. PARALLEL USAGE You can speed up the process by running several 'jug execute' in parallel: jug execute primes.py & jug execute primes.py & jug execute primes.py & jug execute primes.py & TROUBLE SHOOTING: Should you run into issues, you can run the internal tests for jug with jug test-jug FURTHER READING The online documentation contains further reading. You can read the next tutorial here: http://jug.readthedocs.io/en/latest/decrypt-example.html ''') if path.exists('jug-demo'): print("Jug-demo previously created") return os.mkdir('jug-demo') output = open('jug-demo/primes.py', 'wt') output.write(r''' from time import sleep from jug import TaskGenerator @TaskGenerator def is_prime(n): sleep(1.) for j in range(2, n - 1): if (n % j) == 0: return False return True @TaskGenerator def count_primes(ps): return sum(ps) @TaskGenerator def write_output(n): output = open('output.txt', 'wt') output.write("Found {0} primes <= 100.\n".format(n)) output.close() primes100 = [] for n in range(2, 101): primes100.append(is_prime(n)) n_primes = count_primes(primes100) write_output(n_primes) ''') output.close() demo = DemoCommand()
src/python/nimbusml/internal/entrypoints/trainers_lightgbmbinaryclassifier.py
montehoover/NimbusML
134
6559
# - Generated by tools/entrypoint_compiler.py: do not edit by hand """ Trainers.LightGbmBinaryClassifier """ import numbers from ..utils.entrypoints import EntryPoint from ..utils.utils import try_set, unlist def trainers_lightgbmbinaryclassifier( training_data, predictor_model=None, number_of_iterations=100, learning_rate=None, number_of_leaves=None, minimum_example_count_per_leaf=None, feature_column_name='Features', booster=None, label_column_name='Label', example_weight_column_name=None, row_group_column_name=None, normalize_features='Auto', caching='Auto', unbalanced_sets=False, weight_of_positive_examples=1.0, sigmoid=0.5, evaluation_metric='Logloss', maximum_bin_count_per_feature=255, verbose=False, silent=True, number_of_threads=None, early_stopping_round=0, batch_size=1048576, use_categorical_split=None, handle_missing_value=True, use_zero_as_missing_value=False, minimum_example_count_per_group=100, maximum_categorical_split_point_count=32, categorical_smoothing=10.0, l2_categorical_regularization=10.0, seed=None, parallel_trainer=None, **params): """ **Description** Train a LightGBM binary classification model. :param number_of_iterations: Number of iterations. (inputs). :param training_data: The data to be used for training (inputs). :param learning_rate: Shrinkage rate for trees, used to prevent over-fitting. Range: (0,1]. (inputs). :param number_of_leaves: Maximum leaves for trees. (inputs). :param minimum_example_count_per_leaf: Minimum number of instances needed in a child. (inputs). :param feature_column_name: Column to use for features (inputs). :param booster: Which booster to use, can be gbtree, gblinear or dart. gbtree and dart use tree based model while gblinear uses linear function. (inputs). :param label_column_name: Column to use for labels (inputs). :param example_weight_column_name: Column to use for example weight (inputs). :param row_group_column_name: Column to use for example groupId (inputs). :param normalize_features: Normalize option for the feature column (inputs). :param caching: Whether trainer should cache input training data (inputs). :param unbalanced_sets: Use for binary classification when training data is not balanced. (inputs). :param weight_of_positive_examples: Control the balance of positive and negative weights, useful for unbalanced classes. A typical value to consider: sum(negative cases) / sum(positive cases). (inputs). :param sigmoid: Parameter for the sigmoid function. (inputs). :param evaluation_metric: Evaluation metrics. (inputs). :param maximum_bin_count_per_feature: Maximum number of bucket bin for features. (inputs). :param verbose: Verbose (inputs). :param silent: Printing running messages. (inputs). :param number_of_threads: Number of parallel threads used to run LightGBM. (inputs). :param early_stopping_round: Rounds of early stopping, 0 will disable it. (inputs). :param batch_size: Number of entries in a batch when loading data. (inputs). :param use_categorical_split: Enable categorical split or not. (inputs). :param handle_missing_value: Enable special handling of missing value or not. (inputs). :param use_zero_as_missing_value: Enable usage of zero (0) as missing value. (inputs). :param minimum_example_count_per_group: Minimum number of instances per categorical group. (inputs). :param maximum_categorical_split_point_count: Max number of categorical thresholds. (inputs). :param categorical_smoothing: Lapalace smooth term in categorical feature spilt. Avoid the bias of small categories. (inputs). :param l2_categorical_regularization: L2 Regularization for categorical split. (inputs). :param seed: Sets the random seed for LightGBM to use. (inputs). :param parallel_trainer: Parallel LightGBM Learning Algorithm (inputs). :param predictor_model: The trained model (outputs). """ entrypoint_name = 'Trainers.LightGbmBinaryClassifier' inputs = {} outputs = {} if number_of_iterations is not None: inputs['NumberOfIterations'] = try_set( obj=number_of_iterations, none_acceptable=True, is_of_type=numbers.Real) if training_data is not None: inputs['TrainingData'] = try_set( obj=training_data, none_acceptable=False, is_of_type=str) if learning_rate is not None: inputs['LearningRate'] = try_set( obj=learning_rate, none_acceptable=True, is_of_type=numbers.Real) if number_of_leaves is not None: inputs['NumberOfLeaves'] = try_set( obj=number_of_leaves, none_acceptable=True, is_of_type=numbers.Real) if minimum_example_count_per_leaf is not None: inputs['MinimumExampleCountPerLeaf'] = try_set( obj=minimum_example_count_per_leaf, none_acceptable=True, is_of_type=numbers.Real) if feature_column_name is not None: inputs['FeatureColumnName'] = try_set( obj=feature_column_name, none_acceptable=True, is_of_type=str, is_column=True) if booster is not None: inputs['Booster'] = try_set( obj=booster, none_acceptable=True, is_of_type=dict) if label_column_name is not None: inputs['LabelColumnName'] = try_set( obj=label_column_name, none_acceptable=True, is_of_type=str, is_column=True) if example_weight_column_name is not None: inputs['ExampleWeightColumnName'] = try_set( obj=example_weight_column_name, none_acceptable=True, is_of_type=str, is_column=True) if row_group_column_name is not None: inputs['RowGroupColumnName'] = try_set( obj=row_group_column_name, none_acceptable=True, is_of_type=str, is_column=True) if normalize_features is not None: inputs['NormalizeFeatures'] = try_set( obj=normalize_features, none_acceptable=True, is_of_type=str, values=[ 'No', 'Warn', 'Auto', 'Yes']) if caching is not None: inputs['Caching'] = try_set( obj=caching, none_acceptable=True, is_of_type=str, values=[ 'Auto', 'Memory', 'None']) if unbalanced_sets is not None: inputs['UnbalancedSets'] = try_set( obj=unbalanced_sets, none_acceptable=True, is_of_type=bool) if weight_of_positive_examples is not None: inputs['WeightOfPositiveExamples'] = try_set( obj=weight_of_positive_examples, none_acceptable=True, is_of_type=numbers.Real) if sigmoid is not None: inputs['Sigmoid'] = try_set( obj=sigmoid, none_acceptable=True, is_of_type=numbers.Real) if evaluation_metric is not None: inputs['EvaluationMetric'] = try_set( obj=evaluation_metric, none_acceptable=True, is_of_type=str, values=[ 'None', 'Default', 'Logloss', 'Error', 'AreaUnderCurve']) if maximum_bin_count_per_feature is not None: inputs['MaximumBinCountPerFeature'] = try_set( obj=maximum_bin_count_per_feature, none_acceptable=True, is_of_type=numbers.Real) if verbose is not None: inputs['Verbose'] = try_set( obj=verbose, none_acceptable=True, is_of_type=bool) if silent is not None: inputs['Silent'] = try_set( obj=silent, none_acceptable=True, is_of_type=bool) if number_of_threads is not None: inputs['NumberOfThreads'] = try_set( obj=number_of_threads, none_acceptable=True, is_of_type=numbers.Real) if early_stopping_round is not None: inputs['EarlyStoppingRound'] = try_set( obj=early_stopping_round, none_acceptable=True, is_of_type=numbers.Real) if batch_size is not None: inputs['BatchSize'] = try_set( obj=batch_size, none_acceptable=True, is_of_type=numbers.Real) if use_categorical_split is not None: inputs['UseCategoricalSplit'] = try_set( obj=use_categorical_split, none_acceptable=True, is_of_type=bool) if handle_missing_value is not None: inputs['HandleMissingValue'] = try_set( obj=handle_missing_value, none_acceptable=True, is_of_type=bool) if use_zero_as_missing_value is not None: inputs['UseZeroAsMissingValue'] = try_set( obj=use_zero_as_missing_value, none_acceptable=True, is_of_type=bool) if minimum_example_count_per_group is not None: inputs['MinimumExampleCountPerGroup'] = try_set( obj=minimum_example_count_per_group, none_acceptable=True, is_of_type=numbers.Real, valid_range={ 'Inf': 0, 'Max': 2147483647}) if maximum_categorical_split_point_count is not None: inputs['MaximumCategoricalSplitPointCount'] = try_set( obj=maximum_categorical_split_point_count, none_acceptable=True, is_of_type=numbers.Real, valid_range={ 'Inf': 0, 'Max': 2147483647}) if categorical_smoothing is not None: inputs['CategoricalSmoothing'] = try_set( obj=categorical_smoothing, none_acceptable=True, is_of_type=numbers.Real, valid_range={'Min': 0.0}) if l2_categorical_regularization is not None: inputs['L2CategoricalRegularization'] = try_set( obj=l2_categorical_regularization, none_acceptable=True, is_of_type=numbers.Real, valid_range={'Min': 0.0}) if seed is not None: inputs['Seed'] = try_set( obj=seed, none_acceptable=True, is_of_type=numbers.Real) if parallel_trainer is not None: inputs['ParallelTrainer'] = try_set( obj=parallel_trainer, none_acceptable=True, is_of_type=dict) if predictor_model is not None: outputs['PredictorModel'] = try_set( obj=predictor_model, none_acceptable=False, is_of_type=str) input_variables = { x for x in unlist(inputs.values()) if isinstance(x, str) and x.startswith("$")} output_variables = { x for x in unlist(outputs.values()) if isinstance(x, str) and x.startswith("$")} entrypoint = EntryPoint( name=entrypoint_name, inputs=inputs, outputs=outputs, input_variables=input_variables, output_variables=output_variables) return entrypoint