hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
11 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
251
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
251
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
251
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.05M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.04M
alphanum_fraction
float64
0
1
08804de9d3324b167c6447b69cc226552d4b7bbe
282
py
Python
Mundo-1/exercicio-05.py
FRafaelPA/Praticando-Python
d8a46beceeae2ac20acf4c63f86a32cba537c896
[ "MIT" ]
null
null
null
Mundo-1/exercicio-05.py
FRafaelPA/Praticando-Python
d8a46beceeae2ac20acf4c63f86a32cba537c896
[ "MIT" ]
null
null
null
Mundo-1/exercicio-05.py
FRafaelPA/Praticando-Python
d8a46beceeae2ac20acf4c63f86a32cba537c896
[ "MIT" ]
null
null
null
''' Faa um programa que leia um nmero inteiro e mostre na tela o seu sucessor e seu antecessor. ''' n = int(input('Entre com um valor: ')) antecessor = n - 1 sucessor = n + 1 msg = 'o antecessor do nmero {} {} e seu sucessor {}'.format(n, antecessor, sucessor) print(msg)
23.5
93
0.673759
0880a4f7dffdc5894d94be459ed45b4d22287a7c
3,505
py
Python
tests/sql_parser/ast/test_insert_statement_is_parsed.py
vladbalmos/mitzasql
06c2a96eb4494095b2b72bc1454199a4940b0700
[ "MIT" ]
69
2019-05-16T06:40:18.000Z
2022-03-24T06:23:49.000Z
tests/sql_parser/ast/test_insert_statement_is_parsed.py
vladbalmos/mitzasql
06c2a96eb4494095b2b72bc1454199a4940b0700
[ "MIT" ]
36
2019-05-15T19:55:24.000Z
2021-07-22T07:07:14.000Z
tests/sql_parser/ast/test_insert_statement_is_parsed.py
vladbalmos/mitzasql
06c2a96eb4494095b2b72bc1454199a4940b0700
[ "MIT" ]
8
2019-05-16T06:56:28.000Z
2022-02-11T02:24:12.000Z
import pytest from mitzasql.sql_parser.parser import parse from mitzasql.utils import dfs
26.353383
77
0.650499
088195a1ba4520a7f098f9cb7902e66481e7e187
21
py
Python
checkov/version.py
pmalkki/checkov
b6cdf386dd976fe27c16fed6d550756a678a5d7b
[ "Apache-2.0" ]
null
null
null
checkov/version.py
pmalkki/checkov
b6cdf386dd976fe27c16fed6d550756a678a5d7b
[ "Apache-2.0" ]
null
null
null
checkov/version.py
pmalkki/checkov
b6cdf386dd976fe27c16fed6d550756a678a5d7b
[ "Apache-2.0" ]
null
null
null
version = '2.0.1048'
10.5
20
0.619048
0881a63860af8a2c6c4f14401c7170b38015ba3a
775
py
Python
ArraysAndSorting/MakeItAnagram.py
tejasnikumbh/Algorithms
2a2983a522be295ce95bd970a0ee8a617866992f
[ "BSD-2-Clause" ]
8
2015-04-16T03:43:49.000Z
2018-08-14T22:47:03.000Z
ArraysAndSorting/MakeItAnagram.py
tejasnikumbh/Algorithms
2a2983a522be295ce95bd970a0ee8a617866992f
[ "BSD-2-Clause" ]
null
null
null
ArraysAndSorting/MakeItAnagram.py
tejasnikumbh/Algorithms
2a2983a522be295ce95bd970a0ee8a617866992f
[ "BSD-2-Clause" ]
7
2016-03-22T20:29:27.000Z
2018-09-29T18:55:47.000Z
# Importing standard libraires import sys ''' Main Function for the program. Logic is as follows Make two frequency tables for two strings Take overlap of both and add up the non overlapping regions (absolute values) ''' if __name__ == "__main__": # Parsing in the input s1 = list(sys.stdin.readline().rstrip()) s2 = list(sys.stdin.readline().rstrip()) # Initialize the character array as a hashtable charFreqs1 = [0]*26 charFreqs2 = [0]*26 anagram = [0]*26 # Record frequencies of characters in s1 and s2 for i in s1: charFreqs1[ord(i) - ord('a')] += 1 for i in s2: charFreqs2[ord(i) - ord('a')] += 1 for i in range(26): anagram[i] = abs(charFreqs1[i] - charFreqs2[i]) print sum(anagram)
31
81
0.636129
08826307649d95fd1f1fa357479507c8385245c7
1,181
py
Python
tests/test_get_schedule.py
j-muller/pypuregym
396862047f8b5c0b1138b5c562ddb6958aaa6817
[ "MIT" ]
1
2020-12-31T01:42:14.000Z
2020-12-31T01:42:14.000Z
tests/test_get_schedule.py
j-muller/pypuregym
396862047f8b5c0b1138b5c562ddb6958aaa6817
[ "MIT" ]
null
null
null
tests/test_get_schedule.py
j-muller/pypuregym
396862047f8b5c0b1138b5c562ddb6958aaa6817
[ "MIT" ]
null
null
null
from .utilities import Response SCHEDULE_RESPONSE = b""" {"error":{"code":200,"message":"Success"},"data":{"classes":[{ "id":113209,"sector":"F","class_type_id":48,"start_date":"2020-06-07", "end_date":"2020-06-07","start_time":"09:00:00","end_time":"09:45:00", "duration":"2700000","teacher_id":782,"location_id":10,"level_id":9, "pillar_id":6,"button_status":0,"booking_id":0, "start_datetime":"2020-06-07T09:00:00+08:00","is_free":false, "color_code":"","is_filmed":false,"is_online":0,"is_cycling":false, "free_class_type":0,"special_flag":null,"duration_min":45, "class_type":{"id":48,"name":"TRX Blast", "description":"","is_fuze":false,"pillar":{"name":"Strength", "color":"#ed1c24","code":"strength_and_conditioning"},"level":"All Levels"}, "teacher":{"id":782,"name":"","full_name":"","image_link":"", "type":"teacher"}}]}} """
36.90625
76
0.663844
0883af2fe80ecab9fbfc1b7be524e037979d920a
518
py
Python
testing/examples/talib-macd.py
pchaos/quanttesting
98331670547e8a45ba93b49f3e9c660495645114
[ "MIT" ]
5
2020-04-08T14:14:05.000Z
2021-06-29T03:42:01.000Z
testing/examples/talib-macd.py
pchaos/quanttesting
98331670547e8a45ba93b49f3e9c660495645114
[ "MIT" ]
null
null
null
testing/examples/talib-macd.py
pchaos/quanttesting
98331670547e8a45ba93b49f3e9c660495645114
[ "MIT" ]
7
2020-04-15T15:07:39.000Z
2022-03-23T05:44:02.000Z
''' Ta-libMACD ''' import pandas as pd import numpy as np import talib as ta import tushare as ts from matplotlib import rc import matplotlib.pyplot as plt import seaborn as sns rc('mathtext', default='regular') sns.set_style('white') # %matplotlib plt.rcParams["figure.figsize"] = (20, 10) dw = ts.get_k_data("600600") close = dw.close.values dw['macd'], dw['macdsignal'], dw['macdhist'] = ta.MACD(close, fastperiod=12, slowperiod=26, signalperiod=9) dw[['close','macd','macdsignal','macdhist']].plot() plt.show()
24.666667
107
0.722008
0883de75e3222b2bd0245697a6613a014446c4c7
252
py
Python
packages/regression_model/regression_model/__init__.py
abdurrehman11/deploying-machine-learning-models
93872e4c197df2543e492af3df718bdad1817752
[ "BSD-3-Clause" ]
null
null
null
packages/regression_model/regression_model/__init__.py
abdurrehman11/deploying-machine-learning-models
93872e4c197df2543e492af3df718bdad1817752
[ "BSD-3-Clause" ]
null
null
null
packages/regression_model/regression_model/__init__.py
abdurrehman11/deploying-machine-learning-models
93872e4c197df2543e492af3df718bdad1817752
[ "BSD-3-Clause" ]
null
null
null
import logging from regression_model.config import config from regression_model.config import logging_config VERSION_PATH = config.PACKAGE_ROOT / 'VERSION' with open(VERSION_PATH, 'r') as version_file: __version__ = version_file.read().strip()
25.2
50
0.797619
0886c3adb37d4bb2d284b34954bef308daf23bd3
508
py
Python
001-Python-basico/008-desafio-pratico.py
clebertonf/Python-course
a57f405cbd27f96e0cb61128df31e9249c79a962
[ "MIT" ]
null
null
null
001-Python-basico/008-desafio-pratico.py
clebertonf/Python-course
a57f405cbd27f96e0cb61128df31e9249c79a962
[ "MIT" ]
null
null
null
001-Python-basico/008-desafio-pratico.py
clebertonf/Python-course
a57f405cbd27f96e0cb61128df31e9249c79a962
[ "MIT" ]
null
null
null
from datetime import date year_current_date = date.today().year get_info("Cleberton", 28, 1.69, 75) # Funo recebe algumas informaoes por parametro, e retorna ano de nascimento, imc # com algumas frases customizadas
28.222222
83
0.687008
0887199a887a1fbf59285a7c42522a561d36fdf6
160
py
Python
jsons.py
tebeka/py2go-cheatsheet
14c83850876ef80c36af326ab4fc6f56344781c7
[ "BSD-3-Clause" ]
13
2017-09-09T08:32:34.000Z
2022-02-28T04:32:43.000Z
jsons.py
tebeka/py2go-cheatsheet
14c83850876ef80c36af326ab4fc6f56344781c7
[ "BSD-3-Clause" ]
3
2017-11-25T18:48:11.000Z
2017-12-30T13:00:04.000Z
jsons.py
tebeka/py2go-cheatsheet
14c83850876ef80c36af326ab4fc6f56344781c7
[ "BSD-3-Clause" ]
2
2019-11-03T19:58:17.000Z
2020-04-28T01:14:17.000Z
import json from sys import stdout # START data = '''{ "name": "bugs", "age": 76 }''' obj = json.loads(data) json.dump(obj, stdout) # END print(obj)
10.666667
22
0.59375
08873554c1a8d8174ca6425485bfe2a0d0880e6a
2,306
py
Python
tests/components/speedtestdotnet/test_init.py
pcaston/core
e74d946cef7a9d4e232ae9e0ba150d18018cfe33
[ "Apache-2.0" ]
1
2021-07-08T20:09:55.000Z
2021-07-08T20:09:55.000Z
tests/components/speedtestdotnet/test_init.py
pcaston/core
e74d946cef7a9d4e232ae9e0ba150d18018cfe33
[ "Apache-2.0" ]
47
2021-02-21T23:43:07.000Z
2022-03-31T06:07:10.000Z
tests/components/speedtestdotnet/test_init.py
OpenPeerPower/core
f673dfac9f2d0c48fa30af37b0a99df9dd6640ee
[ "Apache-2.0" ]
null
null
null
"""Tests for SpeedTest integration.""" from unittest.mock import patch import speedtest from openpeerpower import config_entries from openpeerpower.components import speedtestdotnet from openpeerpower.setup import async_setup_component from tests.common import MockConfigEntry
28.825
82
0.717259
088834b65e8fc3335e7c944aeb1e307017ece6c9
1,258
py
Python
opetuskoodi/2021_10_18/2_kerta_kertaus.py
mikkokotola/pythonkoodaus
5415b3d87dfcb65b72edb916967824304d155d9a
[ "CC-BY-4.0", "MIT" ]
null
null
null
opetuskoodi/2021_10_18/2_kerta_kertaus.py
mikkokotola/pythonkoodaus
5415b3d87dfcb65b72edb916967824304d155d9a
[ "CC-BY-4.0", "MIT" ]
null
null
null
opetuskoodi/2021_10_18/2_kerta_kertaus.py
mikkokotola/pythonkoodaus
5415b3d87dfcb65b72edb916967824304d155d9a
[ "CC-BY-4.0", "MIT" ]
null
null
null
# Kertaus, kerta 3 # Muuttujat ja sytteen lukeminen kyttjlt nimi = input("Anna nimesi: ") kengnnumero = input("Mik on kengnnumerosi: ") print("Moi vaan, " + nimi + "! Kengnnumerosi on " + kengnnumero + ".") # F-merkkijono print(f"Moi vaan, {nimi}! Kengnnumerosi on {kengnnumero}.") # Numerot # Iklaskuri syntymvuosi = input("Mik on syntymvuotesi? ") syntymvuosi = int(syntymvuosi) # Muunnetaan merkkijono kokonaisluvuksi, jotta voimme laskea sill ik = 2021 - syntymvuosi print(f"Iksi vuoden 2021 lopussa on {ik}") # Laskin, joka osaa kertoa lukuja luku1 = int(input("Anna luku: ")) luku2 = int(input("Anna toinen luku: ")) tulos = luku1 * luku2 print(f"{luku1} * {luku2} = {tulos}") # Laskin, joka laskee kolmen luvun summan summa = 0 luku = int(input("Ensimminen luku: ")) summa = summa + luku luku = int(input("Toinen luku: ")) summa = summa + luku luku = int(input("kolmas luku: ")) summa = summa + luku print(f"Lukujen summa: {summa}") # Minklaisia laskuja voi laskea print(5+2) print(5-2) print(5*2) print(5/2) print(5//2) print(5%2) print(2 + 2 * 3) print((2 + 2) * 3) # Liukuluvut = desimaaliluvut luku1 = 4.0 luku2 = 1.5 tulos = luku1 - luku2 print(f"Tulos on {tulos}") print(f"{luku1} - {luku2} = {tulos}")
21.689655
99
0.683625
0888b580bb9eb1968da656fe5efb329d6602a748
616
py
Python
case/xpath.py
xierensong/learnPython
33f9891d8a8ed39772ff9bcbeb1e5cff6f3b5455
[ "MIT" ]
null
null
null
case/xpath.py
xierensong/learnPython
33f9891d8a8ed39772ff9bcbeb1e5cff6f3b5455
[ "MIT" ]
null
null
null
case/xpath.py
xierensong/learnPython
33f9891d8a8ed39772ff9bcbeb1e5cff6f3b5455
[ "MIT" ]
1
2018-10-11T08:20:44.000Z
2018-10-11T08:20:44.000Z
import requests from lxml import etree if __name__ == '__main__': headers = {"User-Agent":'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36'} url = 'https://www.apache.org/dist/ant/' sourceHTML = requests.get(url, headers = headers) selector = etree.HTML(sourceHTML.text) folder_list = selector.xpath('//pre[position()=1]/a[@href]') for elmt in folder_list: # href_TT = elmt.get('href') print('href_TT ', href_TT) if href_TT[len(href_TT)-1] == '/': print('folder_list', elmt.attrib)
41.066667
144
0.63474
088c4b3ec59271d9af6031e07d4cb3e300f061c4
62
py
Python
hermes1d/__init__.py
certik/hermes1d-llnl
8e3b76fd3022af90e5c4c3923337a422d79604d5
[ "BSD-3-Clause" ]
1
2016-08-18T23:21:55.000Z
2016-08-18T23:21:55.000Z
hermes1d/__init__.py
certik/hermes1d-llnl
8e3b76fd3022af90e5c4c3923337a422d79604d5
[ "BSD-3-Clause" ]
null
null
null
hermes1d/__init__.py
certik/hermes1d-llnl
8e3b76fd3022af90e5c4c3923337a422d79604d5
[ "BSD-3-Clause" ]
null
null
null
from h1d_wrapper.h1d_wrapper import Element, Mesh, Linearizer
31
61
0.854839
088ddea79b72540b919336ee600c90b0505ded86
5,132
py
Python
jelm/tests/unit/test_jelm_class.py
endremborza/jelm
6916bbd4ceb909ad3350c56d3a149bdb97671489
[ "MIT" ]
null
null
null
jelm/tests/unit/test_jelm_class.py
endremborza/jelm
6916bbd4ceb909ad3350c56d3a149bdb97671489
[ "MIT" ]
null
null
null
jelm/tests/unit/test_jelm_class.py
endremborza/jelm
6916bbd4ceb909ad3350c56d3a149bdb97671489
[ "MIT" ]
null
null
null
import pytest from jelm import Jelm, Node, Edge from jelm.tests.network_case_set_class import NetwokCaseTemplate
25.034146
77
0.639517
088f0e150b58a95dbcc3bacf169c6bdc57e4eedc
6,582
py
Python
trajectory_prediction/evaluation.py
libai2019/dataset-api
2f793821864f32bd210c17060a70682488bb74e0
[ "Apache-2.0" ]
385
2018-07-02T22:21:25.000Z
2022-03-28T13:12:47.000Z
trajectory_prediction/evaluation.py
libai2019/dataset-api
2f793821864f32bd210c17060a70682488bb74e0
[ "Apache-2.0" ]
102
2018-08-01T10:40:40.000Z
2022-03-16T10:32:44.000Z
trajectory_prediction/evaluation.py
libai2019/dataset-api
2f793821864f32bd210c17060a70682488bb74e0
[ "Apache-2.0" ]
98
2018-07-12T18:36:42.000Z
2022-03-20T04:38:03.000Z
''' Evaluation code for trajectory prediction. We record the objects in the last frame of every sequence in test dataset as considered objects, which is stored in considered_objects.txt. We compare the error between your predicted locations in the next 3s(six positions) and the ground truth for these considered objects. To run this script, make sure that your results are in required format. ''' import os import argparse import numpy as np if __name__ == '__main__': main()
36.364641
139
0.628836
0891695cf058c07ea805662895cf40325fd7ce37
2,561
py
Python
shellfoundry/commands/install_command.py
p-sherratt/shellfoundry
d1f35a31123b9e701c801345fb633b6fda5420b7
[ "Apache-2.0" ]
null
null
null
shellfoundry/commands/install_command.py
p-sherratt/shellfoundry
d1f35a31123b9e701c801345fb633b6fda5420b7
[ "Apache-2.0" ]
1
2021-03-25T23:21:02.000Z
2021-03-25T23:21:02.000Z
shellfoundry/commands/install_command.py
p-sherratt/shellfoundry
d1f35a31123b9e701c801345fb633b6fda5420b7
[ "Apache-2.0" ]
null
null
null
# !/usr/bin/python # -*- coding: utf-8 -*- import click import os try: # Python 2.x version from urllib2 import HTTPError, URLError except: # Python 3.x version from urllib.error import HTTPError, URLError from shellfoundry.exceptions import FatalError from shellfoundry.utilities.config_reader import Configuration, CloudShellConfigReader from shellfoundry.utilities.installer import ShellInstaller from shellfoundry.utilities.shell_config_reader import ShellConfigReader from shellfoundry.utilities.shell_package import ShellPackage from shellfoundry.utilities.shell_package_installer import ShellPackageInstaller
43.40678
119
0.705193
0893025cc2e6d02ad0cc2a38ee4b17db36c8a68d
9,064
py
Python
sam_actions/scripts/gps_fix_server.py
Jollerprutt/sam_common
dd8b43b3c69eee76fe0c35a98db9dfb67f2b79f2
[ "BSD-3-Clause" ]
1
2020-06-09T18:23:53.000Z
2020-06-09T18:23:53.000Z
sam_actions/scripts/gps_fix_server.py
Jollerprutt/sam_common
dd8b43b3c69eee76fe0c35a98db9dfb67f2b79f2
[ "BSD-3-Clause" ]
3
2020-10-06T09:46:03.000Z
2021-03-10T13:40:44.000Z
sam_actions/scripts/gps_fix_server.py
Jollerprutt/sam_common
dd8b43b3c69eee76fe0c35a98db9dfb67f2b79f2
[ "BSD-3-Clause" ]
5
2020-01-20T18:33:55.000Z
2020-12-29T12:34:22.000Z
#!/usr/bin/python import rospy from rospy import ROSException from std_msgs.msg import Header, Bool from std_srvs.srv import SetBool from geometry_msgs.msg import PoseWithCovarianceStamped, Point, Quaternion from sensor_msgs.msg import NavSatFix, NavSatStatus from sam_msgs.msg import GetGPSFixAction, GetGPSFixFeedback, GetGPSFixResult from sam_msgs.msg import PercentStamped import actionlib import tf_conversions import tf from tf.transformations import quaternion_from_euler, quaternion_multiply from geodesy import utm import math import numpy as np if __name__ == "__main__": rospy.init_node('gps_fix_server', anonymous=False) #True) check_server = GPSFixServer(rospy.get_name()) rospy.spin()
42.553991
143
0.645521
08967bfbf25d6987de9933fc65d4f932dbcd6e60
1,307
py
Python
src/model/RoleProxy.py
JulienGrv/puremvc-python-demo-PySide-employeeadmin
b076493ac34254e665b485259b0a7122fa9cfde4
[ "BSD-3-Clause" ]
4
2017-08-26T10:18:10.000Z
2020-07-28T19:50:54.000Z
src/model/RoleProxy.py
JulienGrv/puremvc-python-demo-PySide-employeeadmin
b076493ac34254e665b485259b0a7122fa9cfde4
[ "BSD-3-Clause" ]
null
null
null
src/model/RoleProxy.py
JulienGrv/puremvc-python-demo-PySide-employeeadmin
b076493ac34254e665b485259b0a7122fa9cfde4
[ "BSD-3-Clause" ]
3
2020-09-22T12:17:14.000Z
2021-07-16T12:28:18.000Z
# -*- coding: utf-8 -*- from puremvc.patterns.proxy import Proxy from .. import ApplicationFacade
27.808511
72
0.61974
0896a00f400830a8eb41593559f65d607a6a09c6
1,358
py
Python
flappy-brird/utils/radio.py
victorathanasio/Personal-projects
94c870179cec32aa733a612a6faeb047df16d977
[ "MIT" ]
null
null
null
flappy-brird/utils/radio.py
victorathanasio/Personal-projects
94c870179cec32aa733a612a6faeb047df16d977
[ "MIT" ]
null
null
null
flappy-brird/utils/radio.py
victorathanasio/Personal-projects
94c870179cec32aa733a612a6faeb047df16d977
[ "MIT" ]
null
null
null
import pygame import os
25.148148
77
0.611193
0896e29401ea1989cb26ef01107f5729035c11a7
4,405
py
Python
app/__main__.py
pablohawz/tfg-Scan-Paint-clone
056cd50d9e4274620cf085a41ed9d326e16dd47b
[ "MIT" ]
null
null
null
app/__main__.py
pablohawz/tfg-Scan-Paint-clone
056cd50d9e4274620cf085a41ed9d326e16dd47b
[ "MIT" ]
null
null
null
app/__main__.py
pablohawz/tfg-Scan-Paint-clone
056cd50d9e4274620cf085a41ed9d326e16dd47b
[ "MIT" ]
null
null
null
# This Python file uses the following encoding: utf-8 from app.package.views.Calibrate_view import CalibrateView from app.package.controllers.Calibrate_controller import CalibrateController from app.package.models.Calibrate_model import CalibrateModel import sys import matplotlib from PySide2.QtWidgets import QApplication from PySide2 import QtCore from .package.models.NewProjectModel import NewProjectModel from .package.models.DataAcquisitionModel import DataAcquisitionModel from .package.models.DisplayResultsModel import DisplayResultsModel from .package.controllers.Navigator import Navigator from .package.controllers.NewProjectController import NewProjectController from .package.controllers.DataAcquisitionController import ( DataAcquisitionController) from .package.controllers.DisplayResultsController import ( DisplayResultsController) from .package.views.MainWindow import MainWindow from .package.views.NewProjectView import NewProjectView from .package.views.DataAcquisitionView import DataAcquisitionView from .package.views.DisplayResultsView import DisplayResultsView sys._excepthook = sys.excepthook sys.excepthook = exception_hook matplotlib.use('tkagg') if __name__ == "__main__": main() # if __name__ == "__main__": # import cProfile # cProfile.run('main()', 'output.dat') # import pstats # from pstats import SortKey # with open("output_time.dat", "w") as f: # p = pstats.Stats("output.dat", stream=f) # p.sort_stats("time").print_stats() # with open("output_calls.dat", "w") as f: # p = pstats.Stats("output.dat", stream=f) # p.sort_stats("calls").print_stats()
33.120301
76
0.711691
0897118d6f2834e2b8c74ba12247412406dbd2c7
557
py
Python
Trakttv.bundle/Contents/Libraries/Shared/playhouse/berkeleydb.py
disrupted/Trakttv.bundle
24712216c71f3b22fd58cb5dd89dad5bb798ed60
[ "RSA-MD" ]
1,346
2015-01-01T14:52:24.000Z
2022-03-28T12:50:48.000Z
Trakttv.bundle/Contents/Libraries/Shared/playhouse/berkeleydb.py
alcroito/Plex-Trakt-Scrobbler
4f83fb0860dcb91f860d7c11bc7df568913c82a6
[ "RSA-MD" ]
474
2015-01-01T10:27:46.000Z
2022-03-21T12:26:16.000Z
Trakttv.bundle/Contents/Libraries/Shared/playhouse/berkeleydb.py
alcroito/Plex-Trakt-Scrobbler
4f83fb0860dcb91f860d7c11bc7df568913c82a6
[ "RSA-MD" ]
191
2015-01-02T18:27:22.000Z
2022-03-29T10:49:48.000Z
import datetime import decimal from playhouse.sqlite_ext import * # Peewee assumes that the `pysqlite2` module was compiled against the # BerkeleyDB SQLite libraries. from pysqlite2 import dbapi2 as berkeleydb berkeleydb.register_adapter(decimal.Decimal, str) berkeleydb.register_adapter(datetime.date, str) berkeleydb.register_adapter(datetime.time, str)
27.85
69
0.779174
089a04fda175104b7a74e5689381760d2e0c8310
1,513
py
Python
PyEEA/analysis/SimulationAnalysisEngine.py
ThomasJFR/PyEEA
7927ee5ff1de8d3cf9e9654899ea4c2c0284519c
[ "MIT" ]
1
2020-06-15T03:16:06.000Z
2020-06-15T03:16:06.000Z
PyEEA/analysis/SimulationAnalysisEngine.py
ThomasJFR/PyEEA
7927ee5ff1de8d3cf9e9654899ea4c2c0284519c
[ "MIT" ]
1
2020-06-19T04:56:21.000Z
2020-06-19T04:56:21.000Z
PyEEA/analysis/SimulationAnalysisEngine.py
ThomasJFR/PyEEA
7927ee5ff1de8d3cf9e9654899ea4c2c0284519c
[ "MIT" ]
null
null
null
from numpy.random import standard_normal from numbers import Number def simulation_analysis(project, sim_dict, iterations=250, valuator=None): """ Purpose: Analyses the effects of uncertainty of a system by performing a Monte Carlo simulation. Args: project: An instance of Project to perform the simulation on sim_dict: A dict where the key is the name of the cashflow to simulate and the value is either a number defining the standard deviation for the cashflow as a percentage, or a function defining some way to modify the cashflow by an amount """ # Make every sim_fun value a callable, converting numbers to stdev functions for key in sim_dict: if isinstance(sim_dict[key], Number): stdev = sim_dict[key] sim_dict[key] = std_dist valuator = valuator or project.npw if not callable(valuator): return TypeError("Valuator must be a callable construct!") # Perform the simulation valuations = [] for _ in range(iterations): with project as p: for key in sim_dict: sim_fun = sim_dict[key] n_cashflows = len(p[key]) for n in range(n_cashflows): cf = p[key][n] cf.amount += sim_fun(cf.amount) valuations.append(valuator()) return valuations
35.186047
110
0.61996
089bce5935bf86ce3e21aaf4f16ec72196bcf521
433
py
Python
bot/handlers/common.py
slawiko/remindmelater_bot
76e46f7a42ee2eb02d0b06eea1eb2b8c6f76cb9e
[ "Apache-2.0" ]
null
null
null
bot/handlers/common.py
slawiko/remindmelater_bot
76e46f7a42ee2eb02d0b06eea1eb2b8c6f76cb9e
[ "Apache-2.0" ]
2
2017-06-11T11:07:30.000Z
2017-06-24T05:37:34.000Z
bot/handlers/common.py
slawiko/remindmelater_bot
76e46f7a42ee2eb02d0b06eea1eb2b8c6f76cb9e
[ "Apache-2.0" ]
null
null
null
import logging from telegram.ext import CommandHandler logger = logging.getLogger(__name__)
18.041667
69
0.699769
089c7e0aea70b01bb6426d16f39e585a80906239
307
py
Python
src/papierstat/datasets/data_helper.py
sdpython/papierstat
f69de884c59ada30b58224dca39f2a44d92122c1
[ "MIT" ]
7
2019-03-21T09:52:31.000Z
2021-01-17T16:56:27.000Z
src/papierstat/datasets/data_helper.py
sdpython/papierstat
f69de884c59ada30b58224dca39f2a44d92122c1
[ "MIT" ]
33
2018-02-08T23:56:57.000Z
2021-02-10T23:55:43.000Z
src/papierstat/datasets/data_helper.py
sdpython/papierstat
f69de884c59ada30b58224dca39f2a44d92122c1
[ "MIT" ]
1
2021-02-11T09:16:33.000Z
2021-02-11T09:16:33.000Z
# -*- coding: utf-8 -*- """ @file @brief Fonctions retournant des jeux de donnes. """ import os def get_data_folder(): """ Retourne le rpertoire de donnes inclus dans ce module. """ this = os.path.dirname(__file__) data = os.path.join(this, "data") return os.path.abspath(data)
19.1875
60
0.641694
089f58dcbc654f5aa5c0245f1cc3a918e10ba168
464
py
Python
ollivanders/offer/models.py
paradox-particle/diagon-alley
184a58da34046319c96b6d5535646497d80c4970
[ "MIT" ]
null
null
null
ollivanders/offer/models.py
paradox-particle/diagon-alley
184a58da34046319c96b6d5535646497d80c4970
[ "MIT" ]
null
null
null
ollivanders/offer/models.py
paradox-particle/diagon-alley
184a58da34046319c96b6d5535646497d80c4970
[ "MIT" ]
null
null
null
from django.db import models
24.421053
46
0.661638
089fb8ac7ea2e682cd5404a50c0fbd9b93f873d7
6,470
py
Python
qa/advancedloggingplugin/advancedlogging.py
robertstarmer/aurora
ae98329c8dc466dea2c8040203624f0bfc1c7cfe
[ "Apache-2.0" ]
23
2015-01-22T22:23:35.000Z
2021-10-21T23:08:29.000Z
qa/advancedloggingplugin/advancedlogging.py
sysbot/aurora
9e319d4eb8c760cf84cb80ed2959cd52976af11c
[ "Apache-2.0" ]
2
2015-10-13T00:47:45.000Z
2019-05-06T14:52:33.000Z
qa/advancedloggingplugin/advancedlogging.py
sysbot/aurora
9e319d4eb8c760cf84cb80ed2959cd52976af11c
[ "Apache-2.0" ]
27
2015-03-18T19:39:30.000Z
2022-03-11T00:58:09.000Z
import os from os.path import join import traceback from bs4 import BeautifulSoup from nose.plugins import Plugin
30.956938
75
0.52813
08a0d32c04f17aef2a43162c106a80b10c85518c
999
py
Python
setup.py
sunghyunzz/aiohttp-toolbox
1948a1962b3bd4071f234719b6683b55cd03d6f0
[ "MIT" ]
6
2016-11-21T08:38:34.000Z
2019-02-20T12:56:16.000Z
setup.py
sunghyunzz/aiohttp-toolbox
1948a1962b3bd4071f234719b6683b55cd03d6f0
[ "MIT" ]
1
2017-07-20T02:20:03.000Z
2017-07-20T02:20:03.000Z
setup.py
sunghyunzz/aiohttp-toolbox
1948a1962b3bd4071f234719b6683b55cd03d6f0
[ "MIT" ]
2
2017-07-20T02:20:44.000Z
2019-02-21T13:37:37.000Z
""" aiohttp-ultrajson ----------------- Integrates UltraJSON with your aiohttp application. """ from setuptools import setup setup( name='aiohttp-ultrajson', version='0.1.0', url='https://github.com/sunghyunzz/aiohttp-ultrajson', license='MIT', author='sunghyunzz', author_email='me@sunghyunzz.com', description='Integrates UltraJSON with your aiohttp application.', long_description=__doc__, py_modules=['aiohttp_ultrajson'], zip_safe=False, platforms='any', install_requires=[ 'aiohttp>2', 'ujson>=1.34' ], classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: MIT License', 'Intended Audience :: Developers', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Internet :: WWW/HTTP', 'Framework :: AsyncIO' ] )
27
70
0.608609
08a23fb05230d43cddbfc2a0b66eda446175157f
322
py
Python
PTA/PAT_B/Python3/B1061_AC.py
StrayDragon/OJ-Solutions
b31b11c01507544aded2302923da080b39cf2ba8
[ "MIT" ]
1
2019-05-13T10:09:55.000Z
2019-05-13T10:09:55.000Z
PTA/PAT_B/Python3/B1061_AC.py
StrayDragon/OJ-Solutions
b31b11c01507544aded2302923da080b39cf2ba8
[ "MIT" ]
null
null
null
PTA/PAT_B/Python3/B1061_AC.py
StrayDragon/OJ-Solutions
b31b11c01507544aded2302923da080b39cf2ba8
[ "MIT" ]
null
null
null
n, m = map(int, input().split()) scores = list(map(int, input().split())) answers = list(map(int, input().split())) for i in range(n): actuals = list(map(int, input().split())) result = 0 for i, score in enumerate(scores): if actuals[i] == answers[i]: result += score print(result)
21.466667
45
0.568323
08a37f1f4c2faa26bde495db95f37f4816d7caf0
12,652
py
Python
dh/network/__init__.py
dhaase-de/dh-python-dh
40b04407e5f67ec261f559263718ec2b2588dabb
[ "MIT" ]
null
null
null
dh/network/__init__.py
dhaase-de/dh-python-dh
40b04407e5f67ec261f559263718ec2b2588dabb
[ "MIT" ]
null
null
null
dh/network/__init__.py
dhaase-de/dh-python-dh
40b04407e5f67ec261f559263718ec2b2588dabb
[ "MIT" ]
null
null
null
""" Tools for network communication. """ import abc import io import json import socket import struct import sys import time import zlib import dh.ejson import dh.utils # NumPy is only needed for some parts and is optional try: import numpy as np except ImportError as e: _NUMPY_ERROR = e else: _NUMPY_ERROR = None ### #%% socket message types ### ### #%% extended socket with support for multiple message types ### ### #%% socket servers/clients ###
30.858537
163
0.641084
08a4afc96f7c56b3ec32526d5ad975c5272d1d27
1,225
py
Python
setup.py
danizen/apache-replay
5e5cc8d0df693f2367d188d71099041c6a65317f
[ "MIT" ]
null
null
null
setup.py
danizen/apache-replay
5e5cc8d0df693f2367d188d71099041c6a65317f
[ "MIT" ]
null
null
null
setup.py
danizen/apache-replay
5e5cc8d0df693f2367d188d71099041c6a65317f
[ "MIT" ]
null
null
null
from setuptools import setup setup( name = 'apache-replay', version = '0.0.3', url = 'https://github.com/danizen/apache-replay.git', author = 'Daniel Davis', author_email = 'dan@danizen.net', description = 'Facilitates replaying of Apache files in Common Log and Combined Log format', long_description = get_readme(), long_description_content_type='text/markdown; charset=UTF-8; variant=CommonMark', packages = ['apache_replay'], entry_points={ 'console_scripts': [ 'apache-replay=apache_replay.script:main', ] }, install_requires = ['attrs', 'requests'], tests_require = ['attrs', 'requests', 'pytest', 'pytest-pythonpath', 'pytest-cov', 'tox'], classifiers = [ 'Development Status :: 3 - Alpha', 'Programming Language :: Python :: 3', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Environment :: Console', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Topic :: Software Development :: Testing :: Traffic Generation', ] )
33.108108
96
0.625306
08a6713846bc912e38363c64df0ddb98d1d40470
464
py
Python
setup.py
duytintruong/do_more
3a306da78ca302d2963cc7bae5f17e668168b595
[ "MIT" ]
null
null
null
setup.py
duytintruong/do_more
3a306da78ca302d2963cc7bae5f17e668168b595
[ "MIT" ]
null
null
null
setup.py
duytintruong/do_more
3a306da78ca302d2963cc7bae5f17e668168b595
[ "MIT" ]
null
null
null
from distutils.core import setup setup( name='do_more', packages=['do_more'], version='0.1.0', description='A library enhancing pydoit features.', author='Duy Tin Truong', author_email='', url='https://github.com/duytintruong/do_more', download_url='https://github.com/duytintruong/do_more/archive/0.1.0.tar.gz', keywords=['pipeline', 'data', 'doit'], classifiers=[], install_requires=[ 'doit>=0.31.1', ], )
27.294118
80
0.637931
08a7afeb8a1abc10ec91968f8b8eddea6a7e071a
16,361
py
Python
qtable/engine.py
ihgazni2/qtable
269bb1052d7c7aeeae4d0b1024746fae38870c40
[ "MIT" ]
null
null
null
qtable/engine.py
ihgazni2/qtable
269bb1052d7c7aeeae4d0b1024746fae38870c40
[ "MIT" ]
null
null
null
qtable/engine.py
ihgazni2/qtable
269bb1052d7c7aeeae4d0b1024746fae38870c40
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np import elist.elist as elel import edict.edict as eded import tlist.tlist as tltl import copy __all__ = [ '_append_col', '_append_cols', '_append_row', '_append_rows', '_cn2clocs', '_col', '_cols', '_columns_map', '_crop', '_get_clocs', '_get_rlocs', '_getitem', '_index_map', '_insert_col', '_insert_cols', '_insert_row', '_insert_rows', '_ltd_index_first', '_ltd_index_last', '_name2ilocs', '_prepend_col', '_prepend_cols', '_prepend_row', '_prepend_rows', '_reindex_cols', '_reindex_rows', '_rename_cols', '_rename_rows', '_repl_col', '_repl_cols', '_repl_row', '_repl_rows', '_rmcol', '_rmcols', '_rmrow', '_rmrows', '_rn2rlocs', '_row', '_rows', '_setitem', '_subtb', '_swapcol', '_swaprow', '_transpose', '_fliplr', '_flipud' ] #all operations will generate a new Qtable(copy.deepcopy), and will not change the original Qtable #columns col-names-list no-duplicate-names-permitted #index rowname-names-list no-duplicate-names-permitted #df pd.DataFrame # index_map = _index_map(df) # columns_map = _columns_map(df) # _getitem(df,rowname,colname,rloc=0,cloc=0) # rloc relative-row-position # cloc relative-col-position #rn ---------------------rowname #cn ---------------------colname
27.40536
110
0.603753
08a840735e2065bf6687b54ab836fe21b29363da
901
py
Python
src/npgru/predictor/tensorflow_predictor.py
grainpowder/gru-forward-numpy-app
efd24f9f397d51e7e18bdad5cba12451ad69d3de
[ "MIT" ]
null
null
null
src/npgru/predictor/tensorflow_predictor.py
grainpowder/gru-forward-numpy-app
efd24f9f397d51e7e18bdad5cba12451ad69d3de
[ "MIT" ]
null
null
null
src/npgru/predictor/tensorflow_predictor.py
grainpowder/gru-forward-numpy-app
efd24f9f397d51e7e18bdad5cba12451ad69d3de
[ "MIT" ]
null
null
null
from typing import List, Tuple import sentencepiece as spm import tensorflow as tf import tensorflow.keras as keras from npgru.predictor.category_predictor import CategoryPredictor from npgru.preprocessor.model_file import get_model_dir
39.173913
116
0.751387
08a9c217d15d92822c4d608156162c3fb67806ee
358
py
Python
eo_sensors/migrations/0005_auto_20210425_1946.py
dymaxionlabs/satlomas-back
f4568f6535755fd4a2432ecc661a264872206c6c
[ "Apache-2.0" ]
1
2021-02-18T20:11:25.000Z
2021-02-18T20:11:25.000Z
eo_sensors/migrations/0005_auto_20210425_1946.py
dymaxionlabs/satlomas-back
f4568f6535755fd4a2432ecc661a264872206c6c
[ "Apache-2.0" ]
7
2020-06-09T14:54:43.000Z
2021-09-22T21:00:13.000Z
eo_sensors/migrations/0005_auto_20210425_1946.py
dymaxionlabs/satlomas-back
f4568f6535755fd4a2432ecc661a264872206c6c
[ "Apache-2.0" ]
1
2020-05-08T20:42:49.000Z
2020-05-08T20:42:49.000Z
# Generated by Django 3.1.6 on 2021-04-25 19:46 from django.db import migrations
19.888889
57
0.592179
08ab2b8e0ae8691b40dba63be074cd70a395c8c1
503
py
Python
algorithms/course_1/assignments/frac_knapsack/code.py
ideahitme/coursera
af44c8d817481d4f9025205284f109d95a9bb45d
[ "MIT" ]
null
null
null
algorithms/course_1/assignments/frac_knapsack/code.py
ideahitme/coursera
af44c8d817481d4f9025205284f109d95a9bb45d
[ "MIT" ]
null
null
null
algorithms/course_1/assignments/frac_knapsack/code.py
ideahitme/coursera
af44c8d817481d4f9025205284f109d95a9bb45d
[ "MIT" ]
null
null
null
import math line = raw_input().strip().split() N = int(line[0]) cap = float(line[1]) items = [] for _ in xrange(N): items.append(map(float, raw_input().split())) items = sorted(items, cmp=custcmp) answer = 0.0 index = 0 while cap > 0 and index < N: cur = items[index] to_add = min(cur[1], cap) answer += to_add*(cur[0]/cur[1]) cap -= to_add index+=1 print answer
14.371429
46
0.600398
08ab2c42e46cc085323887951f27802509bc2c01
1,131
py
Python
pythonDesafios/desafio058.py
mateusdev7/desafios-python
6160ddc84548c7af7f5775f9acabe58238f83008
[ "MIT" ]
null
null
null
pythonDesafios/desafio058.py
mateusdev7/desafios-python
6160ddc84548c7af7f5775f9acabe58238f83008
[ "MIT" ]
null
null
null
pythonDesafios/desafio058.py
mateusdev7/desafios-python
6160ddc84548c7af7f5775f9acabe58238f83008
[ "MIT" ]
null
null
null
from random import randint from time import sleep opcao = 123 cont = 0 while opcao != 0: print('-=-' * 20) print('Vou pensar em um nmero entre 0 e 10, quer tentar adivinhar?') print('-=-' * 20) print('\n[ 1 ] Sim [ 0 ] No') opcao = int(input('Escolha uma das opes acima\n>')) if opcao == 1: computador = randint(0, 10) # O computador sorteia um nmero de 0 a 10 usuario = int(input('\nEscolha um nmero entre 0 e 10: ').strip()) cont += 1 while usuario != computador: if usuario < computador: print('Mais... Tente novamente') else: print('Menos... Tente novamente') usuario = int(input('Insira outro nmero: ')) cont += 1 if usuario == computador: print('\nPARABNS. Voc ACERTOU!!!') print('Calculando a quantide de tentivas necessrias...') sleep(1) print('-=-' * 15) print(f'Voc precisou de {cont} tentativa(s) para acertar.') print('-=-'* 15) elif opcao == 0: print('Voc saiu do jogo.')
35.34375
78
0.535809
08ab8c8ec2777c51be6f0455ab77ed9f159c8995
1,896
py
Python
FeatureEngineeringPy_DataScience/demo153_rarecategories.py
mahnooranjum/Programming_DataScience
f7a4215d4615b3f8460c3a1944a585628cf6930d
[ "MIT" ]
null
null
null
FeatureEngineeringPy_DataScience/demo153_rarecategories.py
mahnooranjum/Programming_DataScience
f7a4215d4615b3f8460c3a1944a585628cf6930d
[ "MIT" ]
null
null
null
FeatureEngineeringPy_DataScience/demo153_rarecategories.py
mahnooranjum/Programming_DataScience
f7a4215d4615b3f8460c3a1944a585628cf6930d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Demo153_RareCategories.ipynb ## Rare Categories - Labels - The number of labels in the dataset are different - __high cardinality__ refers to uniqueness of data values - The lower the cardinality, the more duplicated elements in a column - A column with the lowest possible cardinality would have the same value for every row - Highly cardinal variables dominate tree based algorithms - Labels may only be present in the training data set, but not in the test data set - Labels may appear in the test set that were not present in the training set __Tree methods are biased towards variables with many labels__ """ import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from google.colab import drive drive.mount('/content/gdrive') data = pd.read_csv("gdrive/My Drive/Colab Notebooks/FeatureEngineering/train.csv") cat_cols = ['Name', 'Sex', 'Ticket', 'Cabin', 'Embarked'] for i in cat_cols: print('Number of categories in the variable {}: {}'.format(i,len(data[i].unique()))) print('Total rows: {}'.format(len(data))) data['Sex'].value_counts() data['Cabin_processed'] = data['Cabin'].astype(str).str[0] data['Cabin_processed_X'] = data['Cabin'].astype(str).str[1] cat_cols = [ 'Sex', 'Embarked', 'Cabin_processed'] for i in cat_cols: sns.catplot(x=i, kind='count', data=data) data['Cabin_processed'].value_counts() / len(data) for i in cat_cols: sns.catplot(x=i,data=data, hue='Survived', kind='count', palette="ch:.25") """### Transform Rare Labels""" _temp = pd.Series(data['Cabin_processed'].value_counts() / len(data)) _temp.sort_values(ascending=False) _temp _temp = pd.Series(data['Cabin_processed'].value_counts() / len(data)) _temp for i in _labels: data['Cabin_processed'].replace(i, 'rare', inplace=True) _temp = pd.Series(data['Cabin_processed'].value_counts() / len(data)) _temp
26.704225
88
0.728903
08ac25798ceabd59a9de5ca3ae55d5d23549ad85
6,640
py
Python
adios-1.9.0/utils/skel/lib/skel_params.py
swatisgupta/Adaptive-compression
b97a1d3d3e0e968f59c7023c7367a7efa9f672d0
[ "BSD-2-Clause" ]
null
null
null
adios-1.9.0/utils/skel/lib/skel_params.py
swatisgupta/Adaptive-compression
b97a1d3d3e0e968f59c7023c7367a7efa9f672d0
[ "BSD-2-Clause" ]
null
null
null
adios-1.9.0/utils/skel/lib/skel_params.py
swatisgupta/Adaptive-compression
b97a1d3d3e0e968f59c7023c7367a7efa9f672d0
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python import sys import os import argparse import adios import skel_settings import skel_bpls # Command line parsing is chained together. This is stage two. The first stage happens in ../bin/skel # TODO: Get rid of this in favor of chained version, above. if __name__ == "__main__": main()
37.514124
181
0.613253
08ac337e36cbf17a299188a90d4c593630ec7136
786
py
Python
centraldogma/util.py
line/centraldogma-python
2248e8d7d660c0535aa747a70742ddd2bb0a5268
[ "Apache-2.0" ]
8
2021-12-02T00:51:35.000Z
2022-01-07T09:49:08.000Z
centraldogma/util.py
line/centraldogma-python
2248e8d7d660c0535aa747a70742ddd2bb0a5268
[ "Apache-2.0" ]
8
2021-11-22T03:37:17.000Z
2022-02-14T10:02:31.000Z
centraldogma/util.py
line/centraldogma-python
2248e8d7d660c0535aa747a70742ddd2bb0a5268
[ "Apache-2.0" ]
4
2021-11-22T03:48:39.000Z
2021-12-31T05:42:43.000Z
# Copyright 2021 LINE Corporation # # LINE Corporation licenses this file to you under the Apache License, # version 2.0 (the "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at: # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License.
39.3
78
0.720102
08ad2e5befe9beab57f5cfbb4752e8b8f6f82193
3,834
py
Python
Build/site_scons/msvs_preprocessed.py
Syeberman/nohtyP
59d7214a5a5474a03c54f45d79ad4fd037989a79
[ "CNRI-Python-GPL-Compatible" ]
null
null
null
Build/site_scons/msvs_preprocessed.py
Syeberman/nohtyP
59d7214a5a5474a03c54f45d79ad4fd037989a79
[ "CNRI-Python-GPL-Compatible" ]
null
null
null
Build/site_scons/msvs_preprocessed.py
Syeberman/nohtyP
59d7214a5a5474a03c54f45d79ad4fd037989a79
[ "CNRI-Python-GPL-Compatible" ]
null
null
null
"""Provides a Preprocessed action for the Microsoft Visual Studio compilers. """ import os import SCons.Action import SCons.Util import preprocessed_builder # XXX These are internal to SCons and may change in the future...but it's unlikely from SCons.Tool.msvc import CSuffixes, CXXSuffixes, msvc_batch_key # TODO Contribute this back to SCons # XXX Adapted from SCons' msvc_output_flag def msvc_pp_output_flag(target, source, env, for_signature): """ Returns the correct /Fi flag for batching. If batching is disabled or there's only one source file, then we return an /Fi string that specifies the target explicitly. Otherwise, we return an /Fi string that just specifies the first target's directory (where the Visual C/C++ compiler will put the .i files). """ # TODO /Fi is not supported on Visual Studio 9.00 (2008) and earlier # https://msdn.microsoft.com/en-us/library/8z9z0bx6(v=vs.90).aspx # Fixing MSVC_BATCH mode. Previous if did not work when MSVC_BATCH # was set to False. This new version should work better. Removed # len(source)==1 as batch mode can compile only one file # (and it also fixed problem with compiling only one changed file # with batch mode enabled) if not 'MSVC_BATCH' in env or env.subst('$MSVC_BATCH') in ('0', 'False', '', None): return '/Fi$TARGET' else: # The Visual C/C++ compiler requires a \ at the end of the /Fi # option to indicate an output directory. We use os.sep here so # that the test(s) for this can be run on non-Windows systems # without having a hard-coded backslash mess up command-line # argument parsing. return '/Fi${TARGET.dir}' + os.sep CPreprocessedAction = SCons.Action.Action("$PPCCCOM", "$PPCCCOMSTR", batch_key=msvc_batch_key, targets='$CHANGED_TARGETS') CXXPreprocessedAction = SCons.Action.Action("$PPCXXCOM", "$PPCXXCOMSTR", batch_key=msvc_batch_key, targets='$CHANGED_TARGETS')
41.673913
139
0.684142
08af1415b9293340224b8360402e471dbf0548c7
5,716
py
Python
django_geoip/south_migrations/0001_initial.py
mandalay-rp/django-geoip
2608cb15cdd7678c2ff923aff2437b1a861b8e6b
[ "MIT" ]
38
2015-01-10T06:44:12.000Z
2021-11-16T10:53:43.000Z
django_geoip/south_migrations/0001_initial.py
mandalay-rp/django-geoip
2608cb15cdd7678c2ff923aff2437b1a861b8e6b
[ "MIT" ]
28
2015-01-11T08:44:06.000Z
2019-07-25T19:04:10.000Z
django_geoip/south_migrations/0001_initial.py
mandalay-rp/django-geoip
2608cb15cdd7678c2ff923aff2437b1a861b8e6b
[ "MIT" ]
56
2015-01-11T08:30:57.000Z
2021-10-01T05:57:00.000Z
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models
53.420561
147
0.601645
08af904e7f82a923beed7c2fa65793eb9bf02793
878
py
Python
popbl_servicesapp/flask_app/order/application/api_client.py
xetxezarreta/master-popbl1
253880b9ba358f63f666893cdbbffe7391fcd096
[ "MIT" ]
null
null
null
popbl_servicesapp/flask_app/order/application/api_client.py
xetxezarreta/master-popbl1
253880b9ba358f63f666893cdbbffe7391fcd096
[ "MIT" ]
1
2021-06-02T00:57:11.000Z
2021-06-02T00:57:11.000Z
popbl_servicesapp/flask_app/order/application/api_client.py
xetxezarreta/master-popbl1
253880b9ba358f63f666893cdbbffe7391fcd096
[ "MIT" ]
null
null
null
import requests import json from os import environ from .models import Order, Piece from .BLConsul import BLConsul GATEWAY_PORT = environ.get("HAPROXY_PORT") GATEWAY_ADDRESS = environ.get("HAPROXY_IP") MACHINE_SERVICE = "machine" PAYMENT_SERVICE = "payment" DELIVERY_SERVICE = "delivery" AUTH_SERVICE = "auth" CA_CERT = environ.get("RABBITMQ_CA_CERT") consul = BLConsul.get_instance()
29.266667
100
0.693622
08b0009d58869628b97762ea4dfa9d97bd3f4777
429
py
Python
envdsys/envdaq/migrations/0006_controllerdef_component_map.py
NOAA-PMEL/envDataSystem
4db4a3569d2329658799a3eef06ce36dd5c0597d
[ "Unlicense" ]
1
2021-11-06T19:22:53.000Z
2021-11-06T19:22:53.000Z
envdsys/envdaq/migrations/0006_controllerdef_component_map.py
NOAA-PMEL/envDataSystem
4db4a3569d2329658799a3eef06ce36dd5c0597d
[ "Unlicense" ]
25
2019-06-18T20:40:36.000Z
2021-07-23T20:56:48.000Z
envdsys/envdaq/migrations/0006_controllerdef_component_map.py
NOAA-PMEL/envDataSystem
4db4a3569d2329658799a3eef06ce36dd5c0597d
[ "Unlicense" ]
null
null
null
# Generated by Django 3.1.7 on 2021-02-26 21:54 from django.db import migrations, models
22.578947
79
0.615385
08b08e4c091db6970d8bd9b3e8f858f92dfeb9ac
2,569
py
Python
polya/modules/congruence_closure_module.py
holtzermann17/polya
6d611bf47185249a96f4cf7ee9b3884bc70a15ac
[ "Apache-2.0" ]
24
2015-01-01T18:21:40.000Z
2021-08-29T01:56:14.000Z
polya/modules/congruence_closure_module.py
holtzermann17/polya
6d611bf47185249a96f4cf7ee9b3884bc70a15ac
[ "Apache-2.0" ]
1
2018-09-06T17:53:13.000Z
2018-09-07T13:57:39.000Z
polya/modules/congruence_closure_module.py
holtzermann17/polya
6d611bf47185249a96f4cf7ee9b3884bc70a15ac
[ "Apache-2.0" ]
4
2017-02-08T15:04:09.000Z
2021-05-02T15:13:05.000Z
#################################################################################################### # # congruence_closure_module.py # # Authors: # Jeremy Avigad # Rob Lewis # # This module maintains a union-find structure for terms in Blackboard, which is currently only used # for congruence closure. It should perhaps be integrated differently into Blackboard. # # Contains a set for each equality class (up to constant multiples) of terms, and tracks which terms # appear as arguments to which function terms. # #################################################################################################### import polya.main.terms as terms import polya.main.messages as messages import polya.util.timer as timer import fractions import itertools
36.7
100
0.54963
08b3ea49c776eba1ca9a6e036f7a93721ad3e46b
3,280
py
Python
build.py
Jackcava/mappingToFHIR
3189b55121a50ee1c4734227cde6da58ed6cb576
[ "MIT" ]
null
null
null
build.py
Jackcava/mappingToFHIR
3189b55121a50ee1c4734227cde6da58ed6cb576
[ "MIT" ]
null
null
null
build.py
Jackcava/mappingToFHIR
3189b55121a50ee1c4734227cde6da58ed6cb576
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np import csv
34.893617
78
0.576524
08b53292c5c752e44fcf8b466dc5d84fa3ed0ec7
231
py
Python
server.py
LuisAlbizo/luisalbizo.github.io
823cac2c184686eb5056f9e1d3d0790f9a2233e1
[ "MIT" ]
null
null
null
server.py
LuisAlbizo/luisalbizo.github.io
823cac2c184686eb5056f9e1d3d0790f9a2233e1
[ "MIT" ]
null
null
null
server.py
LuisAlbizo/luisalbizo.github.io
823cac2c184686eb5056f9e1d3d0790f9a2233e1
[ "MIT" ]
null
null
null
import http.server import os import socketserver Handler = http.server.SimpleHTTPRequestHandler httpd = socketserver.TCPServer(("127.0.0.1", 8080), Handler) print("server:\thttp://127.0.0.1:8080\n\nlog:") httpd.serve_forever()
19.25
60
0.757576
08b53ae263a1ae583483ba9e1d84efca2906ad4a
2,109
py
Python
sources-filter-list.py
kerberizer/wikimedia-scripts
18b78d5cc0042d5efcb355a65f4309fb4ae97eaf
[ "CC0-1.0" ]
null
null
null
sources-filter-list.py
kerberizer/wikimedia-scripts
18b78d5cc0042d5efcb355a65f4309fb4ae97eaf
[ "CC0-1.0" ]
null
null
null
sources-filter-list.py
kerberizer/wikimedia-scripts
18b78d5cc0042d5efcb355a65f4309fb4ae97eaf
[ "CC0-1.0" ]
1
2016-07-31T07:26:33.000Z
2016-07-31T07:26:33.000Z
#!/usr/bin/env python3 import locale import sys from datetime import datetime as dt import pywikibot as pwb if __name__ == '__main__': main(sys.argv) # vim: set ts=4 sts=4 sw=4 tw=100 et:
31.477612
98
0.543385
08b87f9a1caf36c7bc295170c1ae9c29a566dd2b
1,494
py
Python
Python scripts/Mail/search-and-modify-inbox-mail.py
shartrooper/My-python-scripts
5c3a8db4ed9a75bd9ab4b29153a788d9e6c5d28c
[ "MIT" ]
null
null
null
Python scripts/Mail/search-and-modify-inbox-mail.py
shartrooper/My-python-scripts
5c3a8db4ed9a75bd9ab4b29153a788d9e6c5d28c
[ "MIT" ]
null
null
null
Python scripts/Mail/search-and-modify-inbox-mail.py
shartrooper/My-python-scripts
5c3a8db4ed9a75bd9ab4b29153a788d9e6c5d28c
[ "MIT" ]
null
null
null
Python 3.8.3 (tags/v3.8.3:6f8c832, May 13 2020, 22:20:19) [MSC v.1925 32 bit (Intel)] on win32 Type "help", "copyright", "credits" or "license()" for more information. >>> # pip install imapclient // pip install pyzmail >>> import imapclient >>> conn= imapclient.IMAPClient('imap.gmail.com', ssl=True) #True to use SSL encryption >>> conn.login('example2@mail.com','whatever') >>> conn.select_folter('INBOX',readonly= True) >>> UIDs = conn.search(['SINCE 20-Aug-2015']) #return a list of unique IDs for mails >>> rawMessage=conn.fetch(['mail int UID number to fetch'],['BODY[]','FLAGS']) >>> import pyzmail >>> pyzmail.PyzMessage.factory(rawMessage['same UID Number passed to rawMessage'][b'BODY']) >>> message=pyzmail.PyzMessage.factory(rawMessage['same UID Number passed to rawMessage'][b'BODY']) T >>> message.get_subject() #mail's subject >>> message.get_addresses('from') >>> message.get_addresses('to') >>> message.get_addresses('bcc') >>> message.text_part # return len and type >>> message.text_part #None if doesn't have html >>> message.html_part == None # True >>> message.text_part.get_payload().decode('UTF-8') >>> message.text_part.charset >>> conn.list_folders() >>> conn.select_folder('INBOX',readonly=False) #to modify the inbox >>> UIDS= conn.search(['ON 24-Aug-2015']) >>> conn.delete_messages(['UIDs to delete']) >>> ''' Full documentation ar: https://imapclient.readthedocs.org http://www.magiksys.net/pyzmail '''
33.954545
101
0.680054
08bc79ee80be4534b8a825bbd1af9247d2662a71
2,633
py
Python
diagnosis/system_diagnosis/inference.py
opengauss-mirror/openGauss-AI
449ce3cac81ced74dd56edf76709553411b0814a
[ "MulanPSL-1.0" ]
1
2021-12-22T08:31:07.000Z
2021-12-22T08:31:07.000Z
diagnosis/system_diagnosis/inference.py
opengauss-mirror/openGauss-AI
449ce3cac81ced74dd56edf76709553411b0814a
[ "MulanPSL-1.0" ]
null
null
null
diagnosis/system_diagnosis/inference.py
opengauss-mirror/openGauss-AI
449ce3cac81ced74dd56edf76709553411b0814a
[ "MulanPSL-1.0" ]
3
2021-12-16T13:55:57.000Z
2022-02-24T09:53:49.000Z
/* * Copyright (c) 2020 Huawei Technologies Co.,Ltd. * * openGauss is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * See the Mulan PSL v2 for more details. */ import pickle, os, json import numpy as np import train from argparse import ArgumentParser from pprint import pprint anomaly_type_num = 10 n_neighbors = 5 # data_explore() # 0"cpu_saturation", # 1"io_saturation", # 2"database_backup", # 3"table_restore", # 4"poorly_physical_design", # 5"poorly_written_query", # 6"workload_spike", # 7"flush_log", # 8"vacuum_analyze", # 9"lock_contention", X_train_path = "./model/X_train.npy" y_train_path = "./model/y_train.npy" alpha_vec_path = "./model/anomaly_vec.npy" if __name__ == "__main__": parser = ArgumentParser(description="") parser.add_argument("--vec_path") args = parser.parse_args() X_train, y_train, alpha_vec = np.array([]), np.array([]), np.array([]) if os.path.isfile(X_train_path)==False or os.path.isfile(y_train_path)==False: train.generate_X_y() if os.path.isfile(alpha_vec_path)==False: train.generate_anomaly_alpha() X_train = np.load(X_train_path) y_train = np.load(y_train_path) alpha_vec = np.load(alpha_vec_path) new_vec = np.load(args.vec_path) root_cause_id = kNN(alpha_vec, X_train, y_train, new_vec) build_description(root_cause_id)
28.010638
87
0.689708
08bd8918199d2e5006f69cc8ccd6b3fde0ba16d8
1,850
py
Python
python/test_golden_master.py
AEGISoft/GildedRose-Refactoring-Kata
a81452de5b6831fa6c4f42b15f827ecf6ef29807
[ "MIT" ]
null
null
null
python/test_golden_master.py
AEGISoft/GildedRose-Refactoring-Kata
a81452de5b6831fa6c4f42b15f827ecf6ef29807
[ "MIT" ]
null
null
null
python/test_golden_master.py
AEGISoft/GildedRose-Refactoring-Kata
a81452de5b6831fa6c4f42b15f827ecf6ef29807
[ "MIT" ]
null
null
null
import unittest from gilded_rose import Item, GildedRose if __name__ == '__main__': unittest.main()
31.355932
87
0.617838
08bee3076eef6096e40c84d40b43d0ef450a6e30
895
py
Python
utils/randomdata.py
M1d0r1/py_mantis
8d2b05601b9240e76e2e07b50770e39df5bcade9
[ "Apache-2.0" ]
null
null
null
utils/randomdata.py
M1d0r1/py_mantis
8d2b05601b9240e76e2e07b50770e39df5bcade9
[ "Apache-2.0" ]
null
null
null
utils/randomdata.py
M1d0r1/py_mantis
8d2b05601b9240e76e2e07b50770e39df5bcade9
[ "Apache-2.0" ]
null
null
null
import random import string
22.948718
107
0.61676
08c039eccfb3500006401f61d37873f932777364
1,120
py
Python
douyin/hot/trend.py
miaotiaotech/DouYin
e996ad99ce27e0d13f2856c497fd4b4f05f95b56
[ "MIT" ]
657
2018-10-24T16:58:04.000Z
2022-03-15T03:58:04.000Z
douyin/hot/trend.py
1997lw/DouYin
5859f4db5258ad10926fddaa2b4074c85581d419
[ "MIT" ]
15
2018-10-30T09:40:11.000Z
2020-08-09T13:58:31.000Z
douyin/hot/trend.py
1997lw/DouYin
5859f4db5258ad10926fddaa2b4074c85581d419
[ "MIT" ]
249
2018-10-25T07:12:14.000Z
2022-02-21T07:49:58.000Z
from douyin.utils import fetch from douyin.config import hot_trend_url, common_headers from douyin.utils.tranform import data_to_music, data_to_topic from douyin.structures.hot import HotTrend from douyin.utils.common import parse_datetime # define trend query params query = { 'version_code': '2.9.1', 'count': '10', }
32
99
0.633036
08c1a85992031481a6829f933c45c2206c709fa4
288
py
Python
hashing/hashing.py
subhamsagar524/Learn-Blockchain
316f30ed9d43f6ab806ca87b9b83c0237ef69828
[ "MIT" ]
null
null
null
hashing/hashing.py
subhamsagar524/Learn-Blockchain
316f30ed9d43f6ab806ca87b9b83c0237ef69828
[ "MIT" ]
null
null
null
hashing/hashing.py
subhamsagar524/Learn-Blockchain
316f30ed9d43f6ab806ca87b9b83c0237ef69828
[ "MIT" ]
1
2020-03-13T06:32:46.000Z
2020-03-13T06:32:46.000Z
# Import the hashing Library import hashlib # Get the string as input word = input("Enter the word for Hashing: ") # Get the hashing hashed_code = hashlib.sha256(word.encode()) final = hashed_code.hexdigest() # Print the result print("Hashed with 256 bit: ") print(final)
20.571429
45
0.704861
08c3c73fb071c563aa6c6cb9106af9a4e78d2bdf
1,416
py
Python
bookmarks/bookmarks/models.py
tom-henderson/bookmarks
5515bedf1008da3e97caf0ed5867bcf983b375b1
[ "MIT" ]
6
2017-01-09T22:59:31.000Z
2022-01-06T01:40:57.000Z
bookmarks/bookmarks/models.py
tom-henderson/bookmarks
5515bedf1008da3e97caf0ed5867bcf983b375b1
[ "MIT" ]
30
2016-09-13T07:30:26.000Z
2022-02-07T22:49:03.000Z
bookmarks/bookmarks/models.py
tom-henderson/bookmarks
5515bedf1008da3e97caf0ed5867bcf983b375b1
[ "MIT" ]
null
null
null
from __future__ import unicode_literals from django.db import models from django.utils import timezone from django.dispatch import receiver from django.conf import settings from taggit.managers import TaggableManager import requests
28.897959
74
0.631356
08c3ea3ed3c0d6241f479fa852ed05c431f46706
797
py
Python
vernam cipher.py
BenMiller3/Vernam-Cipher
19f7a447bc8080c8e275b96a85d359f4e187a4d3
[ "MIT" ]
null
null
null
vernam cipher.py
BenMiller3/Vernam-Cipher
19f7a447bc8080c8e275b96a85d359f4e187a4d3
[ "MIT" ]
null
null
null
vernam cipher.py
BenMiller3/Vernam-Cipher
19f7a447bc8080c8e275b96a85d359f4e187a4d3
[ "MIT" ]
null
null
null
""" Vernam Cipher Benjamin D. Miller Takes a key, and a message Encripts the message using the key """ """ * TEST CASES * """ vernam(9,"hello world") vernam(14,"TEST_CASE 34!") vernam("test","test")
27.482759
91
0.567127
08c47e02acc3cf4c516e8edc1336ab1be1430cd8
421
py
Python
utils.py
c0derabbit/talk
26673fde934ef51e76002ea6ddc65bdb42720865
[ "MIT" ]
null
null
null
utils.py
c0derabbit/talk
26673fde934ef51e76002ea6ddc65bdb42720865
[ "MIT" ]
1
2017-05-25T20:37:54.000Z
2017-05-26T07:33:00.000Z
utils.py
c0derabbit/talk
26673fde934ef51e76002ea6ddc65bdb42720865
[ "MIT" ]
null
null
null
from datetime import datetime as d
30.071429
100
0.64133
08c693a49ad9f776684155a7c2f26843f0a00070
3,694
py
Python
fineract/objects/org.py
mobidevke/py-fineract
712b0c20686accd7d7e0a2356ccaf59c5fe4f7dd
[ "Apache-2.0" ]
7
2019-03-11T16:17:33.000Z
2020-10-22T21:57:51.000Z
fineract/objects/org.py
mobidevke/py-fineract
712b0c20686accd7d7e0a2356ccaf59c5fe4f7dd
[ "Apache-2.0" ]
3
2019-11-05T20:22:16.000Z
2019-12-11T17:09:04.000Z
fineract/objects/org.py
mobidevke/py-fineract
712b0c20686accd7d7e0a2356ccaf59c5fe4f7dd
[ "Apache-2.0" ]
2
2020-11-19T16:00:36.000Z
2021-11-19T09:36:13.000Z
from fineract.objects.currency import Currency from fineract.objects.fineract_object import FineractObject from fineract.objects.types import ChargeTimeType, ChargeAppliesTo, ChargeCalculationType, ChargePaymentMode
36.574257
117
0.647266
08c6e61cafacb0416494f10178b2d50c3d4b7ef8
1,736
py
Python
Heap/PathWithMinEffort.py
karan2808/Python-Data-Structures-and-Algorithms
a4b39ddf7297541d90dc4efcaab883f928281abd
[ "MIT" ]
2
2021-01-31T03:42:01.000Z
2021-01-31T03:43:08.000Z
Heap/PathWithMinEffort.py
karan2808/Python-Data-Structures-and-Algorithms
a4b39ddf7297541d90dc4efcaab883f928281abd
[ "MIT" ]
null
null
null
Heap/PathWithMinEffort.py
karan2808/Python-Data-Structures-and-Algorithms
a4b39ddf7297541d90dc4efcaab883f928281abd
[ "MIT" ]
1
2021-01-31T03:42:02.000Z
2021-01-31T03:42:02.000Z
from heapq import heapify, heappop, heappush if __name__ == "__main__": main()
36.166667
123
0.506336
08c9e9c176a984ea5d15821ab3616cd2313fc432
1,427
wsgi
Python
vagrant/catalog/StuffMart.wsgi
cpwhidden/StuffMart
a192b8cad8942d0bfddb3af861f1e48c460e28cf
[ "MIT" ]
null
null
null
vagrant/catalog/StuffMart.wsgi
cpwhidden/StuffMart
a192b8cad8942d0bfddb3af861f1e48c460e28cf
[ "MIT" ]
null
null
null
vagrant/catalog/StuffMart.wsgi
cpwhidden/StuffMart
a192b8cad8942d0bfddb3af861f1e48c460e28cf
[ "MIT" ]
null
null
null
activate_this = '/var/www/html/venv/bin/activate_this.py' execfile(activate_this, dict(__file__=activate_this)) import sys, os, logging from flask_apscheduler import APScheduler sys.path.insert(0, 'var/www/html/StuffMart/vagrant/catalog') logging.basicConfig(stream=sys.stderr) from server import flask as application application.secret_key = 'qPHE[Cht}*kSCVango3i' application.config['APP_DIR'] = os.path.abspath(os.path.dirname(__file__)) application.config['WHOOSH_BASE'] = 'server/whoosh' application.config['PRODUCT_IMAGES_FOLDER'] = 'vagrant/catalog/server/static/product_images/' application.config['JOBS'] = [ { 'id': 'buildNewlyAddedRSSFeed', 'func': 'server.views:buildNewlyAddedRSSFeed', 'trigger': 'interval', 'seconds': (60*60) }, { 'id': 'buildNewlyAddedAtomFeed', 'func': 'server.views:buildNewlyAddedAtomFeed', 'trigger': 'interval', 'seconds': (60*60) }, { 'id': 'buildNewlyAddedRSSFeedAtStartup', 'func': 'server.views:buildNewlyAddedRSSFeed' }, { 'id': 'buildNewlyAddedAtomFeedAtStartup', 'func': 'server.views:buildNewlyAddedAtomFeed' } ] application.config['SCHEDULER_VIEWS_ENABLED'] = True application.debug = True scheduler = APScheduler() scheduler.init_app(application) scheduler.start()
34.804878
93
0.658725
08cc589cc9423942aa94cc3bb343109a1f7cba67
18,161
py
Python
tests/strategies/test_horizontal.py
rohith-bs/dgraphpandas
29e91e2e7bb1d5d991ab94709a2d7e27f7dd7316
[ "MIT" ]
1
2022-02-28T17:34:11.000Z
2022-02-28T17:34:11.000Z
tests/strategies/test_horizontal.py
rohith-bs/dgraphpandas
29e91e2e7bb1d5d991ab94709a2d7e27f7dd7316
[ "MIT" ]
null
null
null
tests/strategies/test_horizontal.py
rohith-bs/dgraphpandas
29e91e2e7bb1d5d991ab94709a2d7e27f7dd7316
[ "MIT" ]
1
2021-04-10T19:57:05.000Z
2021-04-10T19:57:05.000Z
import unittest from unittest.mock import patch, Mock import pandas as pd from pandas.testing import assert_frame_equal from parameterized import parameterized from dgraphpandas.strategies.horizontal import horizontal_transform
34.395833
125
0.472
08cedf482cda63c943ec43e8d04a65c278427e19
378
py
Python
clienteTCP.py
planetacomputer/pythonsecurity
5b808512afae5bc221715f37f91a0294f4800f19
[ "MIT" ]
null
null
null
clienteTCP.py
planetacomputer/pythonsecurity
5b808512afae5bc221715f37f91a0294f4800f19
[ "MIT" ]
null
null
null
clienteTCP.py
planetacomputer/pythonsecurity
5b808512afae5bc221715f37f91a0294f4800f19
[ "MIT" ]
null
null
null
#!/usr/bin/python # This is client.py file import socket # Import socket module s = socket.socket() # Create a socket object #host = socket.gethostname() # Get local machine name host = socket.gethostbyname("localhost") print host port = 53 # Reserve a port for your service. s.connect((host, port)) print s.recv(1024) s.close
29.076923
59
0.637566
08ceeff12c2a6ee62212a18498cd6880997296e3
1,759
py
Python
application/routes.py
N-A-Podgornov/CFT-MLC
ded9267c5b8053a15bdcc67be9f83097749cfb13
[ "Apache-2.0" ]
null
null
null
application/routes.py
N-A-Podgornov/CFT-MLC
ded9267c5b8053a15bdcc67be9f83097749cfb13
[ "Apache-2.0" ]
null
null
null
application/routes.py
N-A-Podgornov/CFT-MLC
ded9267c5b8053a15bdcc67be9f83097749cfb13
[ "Apache-2.0" ]
null
null
null
import os import shutil from flask import render_template, redirect, url_for, request from werkzeug.utils import secure_filename from config import Config from application import app from application.model import Model
30.859649
106
0.704377
08cfc63dc9bcf57b5303ab14c053f28fd612cafc
4,095
py
Python
tests/test_onnxml_imputer_converter.py
vumichien/hummingbird
8981e11ce2536167c329a5d9d20e81125a792fe4
[ "MIT" ]
2,772
2020-05-04T21:03:40.000Z
2022-03-30T11:00:03.000Z
tests/test_onnxml_imputer_converter.py
vumichien/hummingbird
8981e11ce2536167c329a5d9d20e81125a792fe4
[ "MIT" ]
486
2020-05-05T00:45:44.000Z
2022-03-15T01:02:31.000Z
tests/test_onnxml_imputer_converter.py
vumichien/hummingbird
8981e11ce2536167c329a5d9d20e81125a792fe4
[ "MIT" ]
232
2019-11-02T22:06:38.000Z
2022-03-25T07:36:17.000Z
""" Tests onnxml Imputer converter """ import unittest import warnings import numpy as np import torch from sklearn.impute import SimpleImputer from hummingbird.ml._utils import onnx_ml_tools_installed, onnx_runtime_installed, lightgbm_installed from hummingbird.ml import convert if onnx_runtime_installed(): import onnxruntime as ort if onnx_ml_tools_installed(): from onnxmltools import convert_sklearn from onnxmltools.convert.common.data_types import FloatTensorType as FloatTensorType_onnx if __name__ == "__main__": unittest.main()
40.147059
125
0.70696
08d1b0407331ee4e1921fc4b74a0794639337160
7,520
py
Python
rs_etl.py
jlauman/data_engineering_project_03
722c0f5226ed29c00d6b33e64da5982fe0be69e0
[ "MIT" ]
null
null
null
rs_etl.py
jlauman/data_engineering_project_03
722c0f5226ed29c00d6b33e64da5982fe0be69e0
[ "MIT" ]
null
null
null
rs_etl.py
jlauman/data_engineering_project_03
722c0f5226ed29c00d6b33e64da5982fe0be69e0
[ "MIT" ]
null
null
null
import configparser, os, glob, csv, json, hashlib, time import pandas as pd import psycopg2 from pprint import pprint from rs_sql_queries import staging_events_insert, staging_songs_insert from rs_sql_queries import insert_table_queries import boto3 from botocore import UNSIGNED from botocore.config import Config DEND_BUCKET='udacity-dend' # global lookup table NAME_TO_GENDER = {} def load_gender_lookup(): """Load lookup dictionary to find gender given a name. """ base_path = os.getcwd() + '/data/names' for root, dirs, files in os.walk(base_path): file_paths = glob.glob(os.path.join(root,'*.txt')) for file_path in file_paths: print('names: %s' % file_path) with open(file_path) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') for row in csv_reader: # pprint(row) NAME_TO_GENDER[row[0]] = row[1] # pprint(NAME_TO_GENDER) True def get_object_paths(s3, bucket, prefix): """List objects in S3 bucket with given prefix. Uses paginator to ensure a complete list of object paths is returned. """ # r1 = s3.list_objects(Bucket=DEND_BUCKET, Prefix=prefix) # r2 = list(map(lambda obj: obj['Key'], r1['Contents'])) # r3 = list(filter(lambda str: str.endswith('.json'), r2)) # s3 client does not need to be closed object_paths = [] paginator = s3.get_paginator('list_objects') pages = paginator.paginate(Bucket=bucket, Prefix=prefix) for page in pages: # print("len(page['Contents'])=" + str(len(page['Contents']))) r1 = list(map(lambda obj: obj['Key'], page['Contents'])) r2 = list(filter(lambda str: str.endswith('.json'), r1)) object_paths.extend(r2) print('%s/%s total object paths = %d' % (bucket, prefix, len(object_paths))) time.sleep(2) return object_paths def load_staging_log_data(cur, conn): """Load song-play event records into s_songplay_event table. """ # import pdb; pdb.set_trace() # load log_data (events) into s_event table s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED)) file_paths = get_object_paths(s3, DEND_BUCKET, 'log_data') pprint(file_paths) for file_path in file_paths: sql = str(staging_events_insert) print('log_data: %s' % file_path) obj1 = s3.get_object(Bucket='udacity-dend', Key=file_path) str1 = obj1['Body'].read().decode('utf-8').strip() df = pd.read_json(str1, lines=True) df = df[df.page == 'NextSong'] df['timestamp'] = pd.to_datetime(df['ts'], unit='ms') df['year'] = df['timestamp'].dt.year df['week'] = df['timestamp'].dt.weekofyear df['month'] = df['timestamp'].dt.month df['day'] = df['timestamp'].dt.day df['hour'] = df['timestamp'].dt.hour df['weekday'] = df['timestamp'].dt.weekday # pprint(df) for index, row in df.iterrows(): # create a sha256 hash for event's unique id event_id = hashlib.sha256((str(row.userId) + ' ' + str(row.sessionId) + ' ' + row.timestamp.strftime('%Y%m%d%H%M') + ' ' + row.song).encode('utf-8')).hexdigest() str1 = ("(" + "'" + event_id + "', " + "'" + row.artist.replace("'", "''") + "', " + "'" + row.auth + "', " + "'" + row.firstName.replace("'", "''") + "', " + "" + str(row.itemInSession) + ", " + "'" + row.lastName.replace("'", "''") + "', " + "'" + NAME_TO_GENDER[row.firstName] + "', " + "" + str(row.length) + ", " + "'" + row.level + "', " + "'" + row.location.replace("'", "''") + "', " + "'" + row.method + "', " + "'" + row.page + "', " + "'" + str(row.registration) + "', " + "'" + str(row.sessionId) + "', " + "'" + row.song.replace("'", "''") + "', " + "'" + str(row.status) + "', " + "'" + row.timestamp.strftime('%Y-%m-%d %H') + "', " + "" + str(row.year) + ", " + "" + str(row.week) + ", " + "" + str(row.month) + ", " + "" + str(row.day) + ", " + "" + str(row.hour) + ", " + "" + str(row.weekday) + ", " + "'" + row.userAgent.replace("'", "''") + "', " + "'" + str(row.userId) + "'" + "),\n") sql += str1 sql = ''.join(sql).strip()[:-1] + ';' # print(sql) # import pdb; pdb.set_trace() cur.execute(sql) conn.commit() def load_staging_song_data(cur, conn): """Load song records into s_song staging table. """ sql = str(staging_songs_insert) s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED)) file_paths = get_object_paths(s3, DEND_BUCKET, 'song_data') pprint(file_paths) for file_path in file_paths: print('song_data: %s' % file_path) obj1 = s3.get_object(Bucket='udacity-dend', Key=file_path) str1 = obj1['Body'].read().decode('utf-8').strip() data = json.loads(str1) if data['year'] == 0: data['year'] = None # fix link string... if str(data['artist_location']).startswith('<a'): data['artist_location'] = None # pprint(data) str2 = ("(" + "'" + data['artist_id'] + "', " + "" + (str(data['artist_latitude']) if not data['artist_latitude'] == None else 'null') + ", " + "'" + str(data['artist_location']).replace("'", "''") + "', " + "" + (str(data['artist_longitude']) if not data['artist_longitude'] == None else 'null') + ", " + "'" + str(data['artist_name']).replace("'", "''") + "', " + "" + str(data['duration']) + ", " + "" + str(data['num_songs']) + ", " + "'" + data['song_id'] + "', " + "'" + str(data['title']).replace("'", "''") + "', " + "" + (str(data['year']) if not data['year'] == None else 'null') + "" + "),\n") sql += str2 # print(str2) # batch inserts at 8k character threshold if len(sql) > 8192: print(' 8k insert...') sql = ''.join(sql).strip()[:-1] + ';' cur.execute(sql) conn.commit() sql = str(staging_songs_insert) print('last insert...') sql = ''.join(sql).strip()[:-1] + ';' # print(sql) # import pdb; pdb.set_trace() cur.execute(sql) conn.commit() def insert_tables(cur, conn): """Populate staging, dimension and fact tables. The fact table must be the last item in the query list. """ for query in insert_table_queries: if query.strip() != "": pprint(query) cur.execute(query) conn.commit() def main(): """Run Redshift ETL for staging, dimension and fact tables. """ config = configparser.ConfigParser() config.read('rs_dwh.cfg') conn = psycopg2.connect("host={} dbname={} user={} password={} port={}".format(*config['CLUSTER'].values())) cur = conn.cursor() load_gender_lookup() load_staging_tables(cur, conn) insert_tables(cur, conn) conn.close() if __name__ == "__main__": main()
38.367347
173
0.529255
08d269d1ebc51a6ac75c04bc8fcc26f6ea8bd98e
1,002
py
Python
cron/weather.py
joedanz/flask-weather
fe35aa359da6f5d7f942d97837403e153b5c5ede
[ "Apache-2.0" ]
1
2017-08-25T18:55:11.000Z
2017-08-25T18:55:11.000Z
cron/weather.py
joedanz/flask-weather
fe35aa359da6f5d7f942d97837403e153b5c5ede
[ "Apache-2.0" ]
null
null
null
cron/weather.py
joedanz/flask-weather
fe35aa359da6f5d7f942d97837403e153b5c5ede
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python import json, urllib2, datetime from sqlite3 import dbapi2 as sqlite3 # zip codes to log zipcodes = ['07740','11210','33139','90210'] # configuration DATABASE = '../db/weather.db' SECRET_KEY = 'hackerati' DEBUG = True # open database db = sqlite3.connect(DATABASE) for zipcode in zipcodes: # pull weather from API weather_api = urllib2.urlopen('http://api.openweathermap.org/data/2.5/weather?zip='+zipcode+',us') weather_data = weather_api.read() weather_api.close() weather = json.loads(weather_data) # convert from kelvin to fahrenheit temp_val = (((weather['main']['temp']-273.15)*9)/5)+32 humidity_val = weather['main']['humidity'] print zipcode, print temp_val, print humidity_val # insert db entry db.execute('insert into weather (zipcode, temp, humidity, stamp) values (?, ?, ?, ?)', [zipcode, int(temp_val), int(humidity_val), datetime.datetime.utcnow()]) db.commit() # close database db.close()
26.368421
102
0.673653
08d4af28a19751f94bb0827b79075eb4b7ae0ea7
234
py
Python
tests/test_print_as_discovered.py
acardos/git_inspector
ee194a62606ddb882ce0736618bae053e6b8521d
[ "MIT" ]
4
2021-12-06T15:35:19.000Z
2022-01-23T23:17:38.000Z
tests/test_print_as_discovered.py
acardos/git_inspector
ee194a62606ddb882ce0736618bae053e6b8521d
[ "MIT" ]
12
2021-03-31T09:14:40.000Z
2022-01-31T10:01:25.000Z
tests/test_print_as_discovered.py
acardos/git_inspector
ee194a62606ddb882ce0736618bae053e6b8521d
[ "MIT" ]
1
2022-01-22T11:37:08.000Z
2022-01-22T11:37:08.000Z
from git import Repo from git_inspector import find_git_directories
19.5
69
0.794872
08d50632dbe42cde10ed75ee126dd035ddf3804a
3,480
py
Python
src/frontend/function_transforms/pass_div_zero.py
mfeliu/gelpia
30c6c1030165b26bf5f84613316f6fc2ce3ebe8b
[ "MIT" ]
null
null
null
src/frontend/function_transforms/pass_div_zero.py
mfeliu/gelpia
30c6c1030165b26bf5f84613316f6fc2ce3ebe8b
[ "MIT" ]
null
null
null
src/frontend/function_transforms/pass_div_zero.py
mfeliu/gelpia
30c6c1030165b26bf5f84613316f6fc2ce3ebe8b
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 try: from gelpia import bin_dir except: print("gelpia not found, gaol_repl must be in your PATH\n") bin_dir = "" from pass_utils import * from output_flatten import flatten import re import sys import subprocess import os.path as path if __name__ == "__main__": try: runmain() except KeyboardInterrupt: print("\nGoodbye")
23.355705
67
0.611207
08d52a54cf446718a15b7b80b28b2ccd05586869
2,150
py
Python
setup.py
bearroast/django-estimators
5dd72694dab6725335214543a59104c4de504037
[ "MIT" ]
46
2016-09-13T06:33:30.000Z
2022-01-08T00:55:37.000Z
setup.py
bearroast/django-estimators
5dd72694dab6725335214543a59104c4de504037
[ "MIT" ]
14
2016-09-10T04:56:30.000Z
2017-11-28T04:12:43.000Z
setup.py
bearroast/django-estimators
5dd72694dab6725335214543a59104c4de504037
[ "MIT" ]
19
2016-09-20T23:53:26.000Z
2022-01-08T00:55:39.000Z
import os from pip.req import parse_requirements from setuptools import find_packages, setup with open(os.path.join(os.path.dirname(__file__), 'README.rst')) as readme: README = readme.read() # parse_requirements() returns generator of pip.req.InstallRequirement objects install_reqs = parse_requirements( os.path.join(os.path.dirname(__file__), 'requirements.txt'), session=False) reqs = [str(ir.req) for ir in install_reqs] # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name='django-estimators', version='0.2.1', packages=find_packages(), include_package_data=True, install_requires=reqs, license='MIT License', # example license description='A django model to persist and track machine learning models', long_description=README, url='https://github.com/fridiculous/django-estimators', author='Simon Frid', author_email='simon.frid@gmail.com', classifiers=[ 'Environment :: Web Environment', 'Framework :: Django', 'Framework :: Django :: 1.9', 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', # example license 'Operating System :: OS Independent', 'Programming Language :: Python', # Replace these appropriately if you are stuck on Python 2. 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Software Development :: Version Control', ], keywords='''scikit-learn, sklearn, machine learning, artificial intelligence, ml, ai, estimators, version, versioning, benchmark, persist, storage, track, models, repository, evaluation, workflow''' )
40.566038
88
0.670698
08d5314ae1e6b39701c18dfc2466ee45cde74ef6
7,517
py
Python
ip_group.py
vectranetworks/csv-to-ip-group
f8f53f979c62c3db161fcb7fdc3b7ebb26842055
[ "MIT" ]
null
null
null
ip_group.py
vectranetworks/csv-to-ip-group
f8f53f979c62c3db161fcb7fdc3b7ebb26842055
[ "MIT" ]
null
null
null
ip_group.py
vectranetworks/csv-to-ip-group
f8f53f979c62c3db161fcb7fdc3b7ebb26842055
[ "MIT" ]
null
null
null
import csv import ipaddress import logging.handlers import sys import argparse try: import vat.vectra as vectra import requests except Exception as error: print('\nMissing import requirements: {}\n'.format(str(error))) sys.exit(0) LOG = logging.getLogger(__name__) INVALID_CHARS = ['~', '#', '$', '^', '+', '=', '<', '>', '?', ';'] SUB_CHAR = '_' # Suppress Detect certificate warning requests.packages.urllib3.disable_warnings() def ip_subnet(subnet_string): """ Called with string that represents an IP subnet with CIDR or netmask in dotted decimal format Validates string represents valid subnet and removes host bits Returns string representation of subnet in CIDR format :param subnet_string: string representing subnet in CIDR w.x.y.z/n or netmask w.x.y.z/aa.bb.cc.dd format :return: returns string representation of subnet in CIDR format """ try: ipaddress.IPv4Network(subnet_string) except (ipaddress.AddressValueError, ipaddress.NetmaskValueError) as error: LOG.info('Subnet {} format error, {}'.format(subnet_string, error)) return except ValueError as error: LOG.info('{}, removing host bits'.format(error)) subnet = ipaddress.IPv4Network(subnet_string, strict=False) return str(subnet) def sub_bad_chars(string, sub=SUB_CHAR): """ Substitute unsupported characters in string representing group :param string: original string :param sub: substitution character, default defined in SUB_CHAR :return: returns the original string with any illegal characters substituted """ for bad_char in INVALID_CHARS: string = string.replace(bad_char, sub) return string def group_exists(group_name, brain): """ Determines if group exists Called with initialized vectra client and name of group :param group_name: group name :param brain: initialized Vectra Client object :return: True if group exists, False otherwise """ group_iterator = brain.get_all_groups(name=group_name) for item in group_iterator: if item.json()['count'] > 0: for group in item.json()['results']: if group['name'] == group_name: return {'name': group['name'], 'id': group['id']} return False def create_group(name, subnet, brain, descr=''): """ Creates group and adds supplied subnet, and description if supplied :param name: group name :param subnet: CIDR subnet string :param brain: initialized Vectra Client object :param descr: group description, optional """ if bool(descr): brain.create_group(name=name, description=descr, type='ip', members=list(subnet)) else: brain.create_group(name=name, type='ip', members=list(subnet)) def update_group(grp_id, subnet, brain, descr=''): """ Updates existing group with supplied subnet, and description if supplied :param grp_id: group ID :param subnet: CIDR subnet string :param brain: initialized Vectra Client object :param descr: group description, optional """ if bool(descr): brain.update_group(group_id=grp_id, description=descr, members=subnet, append=True) else: brain.update_group(group_id=grp_id, members=subnet, append=True) def main(): """ Supplied with valid CSV file containing 3 or 4 columns of data, iterates over rows and creates or updates groups Supports CSV files with following format examples with or without header row group 1,192.168.1.0/255.255.255.0,group1 description group 2,10.1.1.0/24,group2 description """ args = obtain_args() sub_char = args.sub_char if args.sub_char else SUB_CHAR log_level = logging.DEBUG if args.verbose else logging.INFO logging.basicConfig(level=log_level, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') if len(sys.argv) == 1: print('Run python3 ip_group.py -h for help.') sys.exit() file = args.file with open(file, newline='') as csvfile: vc = vectra.VectraClientV2_1(url='https://' + args.brain, token=args.token, verify=False) reader = csv.reader(csvfile) for row in reader: if len(row) < 3 or len(row) > 4: LOG.info('Invalid number of columns in row, skipping') continue if len(row) == 4: LOG.debug('Number of rows 4: {}'.format(len(row))) subnet = ip_subnet('{}/{}'.format(row[1], row[2])) description = sub_bad_chars(row[3], sub_char) elif len(row) == 3: LOG.debug('Number of rows 3: {}'.format(len(row))) subnet = ip_subnet(row[1]) description = sub_bad_chars(row[2], sub_char) group_name = sub_bad_chars(row[0], sub_char) if subnet is not None: """group_obj False or {'name': 'somename', 'id':'123'}""" group_obj = group_exists(group_name, vc) if not group_obj: # Group does not exist, creating LOG.info('Group does not exist, creating. group:{}, subnet:{}, description:{}'.format( group_name, subnet, description)) create_group(group_name, [str(subnet)], vc, description) else: LOG.info('Group exists, updating. group:{}, subnet:{}, description:{}'.format( group_name, subnet, description)) update_group(group_obj['id'], [str(subnet)], vc, description) else: LOG.info('Invalid subnet, skipping') if __name__ == '__main__': main()
39.151042
118
0.596648
08d5fc45e5a26919b46ae56fd9e3cb2d53ede3e7
512
py
Python
BasicSyntax/DataType.py
Fjaxzhy/top.kagurayayoi.learn.Python
af2ad3b7da85fb0af1668d3751c0342b16d0966f
[ "MIT" ]
null
null
null
BasicSyntax/DataType.py
Fjaxzhy/top.kagurayayoi.learn.Python
af2ad3b7da85fb0af1668d3751c0342b16d0966f
[ "MIT" ]
11
2021-03-29T08:50:16.000Z
2021-03-31T08:46:55.000Z
BasicSyntax/DataType.py
Fjaxzhy/top.kagurayayoi.learn.Python
af2ad3b7da85fb0af1668d3751c0342b16d0966f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Python # # # Number / String / Tuple # List / Dictionary / Set # Number # Int IntNum = 100 # Float FloatNum = 100.10 # Boolean // True:1 False:0 BoolNum = True # Complex ComplexNum = 1.00j # String Str = "" # List List = ['a', 'b', 1, 2] # Tuple Tup = ('a', 'b', 1, 2) # Set Set = {'a', 'b', 1, 2} # Dictionary Dict = {'key1': 'value1', 'key2': 'value2'}
14.628571
43
0.59375
08d5febbe68f3f78281ba4430f7b17df3067f244
3,526
py
Python
tcex/api/tc/v3/_gen/_gen_args_abc.py
GShepherdTC/tcex
70b1199b8bb9e63f53e2ba792489267108c909cd
[ "Apache-2.0" ]
null
null
null
tcex/api/tc/v3/_gen/_gen_args_abc.py
GShepherdTC/tcex
70b1199b8bb9e63f53e2ba792489267108c909cd
[ "Apache-2.0" ]
null
null
null
tcex/api/tc/v3/_gen/_gen_args_abc.py
GShepherdTC/tcex
70b1199b8bb9e63f53e2ba792489267108c909cd
[ "Apache-2.0" ]
null
null
null
"""Generate Docs for ThreatConnect API""" # standard library import importlib import sys from abc import ABC from typing import Any, Optional # first-party from tcex.api.tc.v3._gen._gen_abc import GenerateABC
33.264151
89
0.574022
08d6edb44ef1415e69d5e8564970749ce00f431c
382
py
Python
rename_smpls.py
Chartiza/bulls
e4e7895a37a0335572dea50f2cbaae2737b3cd5f
[ "MIT" ]
null
null
null
rename_smpls.py
Chartiza/bulls
e4e7895a37a0335572dea50f2cbaae2737b3cd5f
[ "MIT" ]
null
null
null
rename_smpls.py
Chartiza/bulls
e4e7895a37a0335572dea50f2cbaae2737b3cd5f
[ "MIT" ]
null
null
null
#!/usr/bin/python sootv = {} #Read file sootvetstviya for l in open ("filesootv"): data = l.strip().split("\t") if data[0] not in sootv: sootv[data[0]] = data[1] #Read FinalReport file for l in open('Ire30_GP'): data = l.strip().split("\t") if data[1] in sootv: print(data[0]+"\t"+sootv[data[1]]+"\t"+data[2]+"\t"+data[3]+"\t"+"\t"+data[4]+"\t"+data[5])
23.875
94
0.570681
08d8b9d0bef0b39a979fb0521f02328c098ccbd7
448
py
Python
3day/Quiz01_1.py
jsjang93/joony
62f7a325094c887212b894932263bf84500e0f03
[ "MIT" ]
null
null
null
3day/Quiz01_1.py
jsjang93/joony
62f7a325094c887212b894932263bf84500e0f03
[ "MIT" ]
null
null
null
3day/Quiz01_1.py
jsjang93/joony
62f7a325094c887212b894932263bf84500e0f03
[ "MIT" ]
null
null
null
# Quiz01_1.py items = {"":1000,"":900,"":500,"":700,"":800} print("=== ====") print("[][][][][] ") print(" --> ) , ") # item, price item = input() # , items2 = item.strip().split(',') price = pItems(*items2,**items) print(" : {0} ".format(price) )
22.4
58
0.564732
08d8e05ba83fd1eb90111af5408ae91ffdf11318
2,619
py
Python
src/custom_arch/custom_alexnet.py
joeyseash/PruneTrain
5adb367eb90b7e1e38251f8e3a8e7eb65b167aa0
[ "Apache-2.0" ]
1
2021-10-03T00:57:32.000Z
2021-10-03T00:57:32.000Z
src/custom_arch/custom_alexnet.py
VictorSuciu/prunetrain
ef84a88ef8a34f8e79de783ffdb9d3b82545dc3b
[ "Apache-2.0" ]
null
null
null
src/custom_arch/custom_alexnet.py
VictorSuciu/prunetrain
ef84a88ef8a34f8e79de783ffdb9d3b82545dc3b
[ "Apache-2.0" ]
null
null
null
""" Copyright 2019 Sangkug Lym Copyright 2019 The University of Texas at Austin Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os from .arch_utils import layerUtil arch = {} arch[0] = {'name':'conv1', 'kernel_size':11, 'stride':4, 'padding':5, 'bias':True} arch[1] = {'name':'conv2', 'kernel_size':5, 'stride':1, 'padding':2, 'bias':True} arch[2] = {'name':'conv3', 'kernel_size':3, 'stride':1, 'padding':1, 'bias':True} arch[3] = {'name':'conv4', 'kernel_size':3, 'stride':1, 'padding':1, 'bias':True} arch[4] = {'name':'conv5', 'kernel_size':3, 'stride':1, 'padding':1, 'bias':True} arch[5] = {'name':'pool', 'kernel_size':2, 'stride':2} arch[6] = {'name':'relu'} arch[7] = {'name':'fc', 'out_chs':'num_classes'}
34.012987
104
0.658267
08da6b4771c11626f2b1e4199314a129e0c7bb3d
3,089
py
Python
app/ml/train_data.py
curioswati/scrapy-tsa
50556880125412e0b8d925fb46c41c44dd31fb37
[ "MIT" ]
2
2020-01-15T05:17:23.000Z
2020-08-13T01:50:00.000Z
app/ml/train_data.py
curioswati/scrapy-tsa
50556880125412e0b8d925fb46c41c44dd31fb37
[ "MIT" ]
null
null
null
app/ml/train_data.py
curioswati/scrapy-tsa
50556880125412e0b8d925fb46c41c44dd31fb37
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import numpy import csv import re, nltk from sklearn.feature_extraction.text import CountVectorizer from nltk.stem.porter import PorterStemmer from sklearn.linear_model import LogisticRegression # from sklearn.cross_validation import train_test_split from sklearn.externals import joblib from sklearn.feature_extraction.text import TfidfTransformer from sklearn.naive_bayes import MultinomialNB if __name__ == "__main__": train_data = { "text": [], "sentiment": [] } raw_count = 0 with open('Sentiment Analysis Dataset.csv', 'r') as csvfile: csvreader = csv.reader(csvfile) headers = next(csvreader, None) for line in csvreader: train_data["text"].append(line[3].strip()) train_data["sentiment"].append(int(line[1])) # raw_count += 1 # if raw_count >= 1000: # break raw_count = 0 with open('training.1600000.processed.noemoticon.csv', 'r') as csvfile: csvreader = csv.reader(csvfile) for line in csvreader: try: train_data["text"].append(line[5].strip()) except Exception as e: print e print "line", line print line[5] exit(0) if int(line[0]) == 4: train_data["sentiment"].append(1) else: train_data["sentiment"].append(0) # raw_count += 1 # if raw_count >= 1000: # break print train_data["text"][:3] print train_data["sentiment"][:3] print numpy.unique(numpy.array(train_data["sentiment"])) print "data extracted" # exit(0) stemmer = PorterStemmer() vectorizer = CountVectorizer( analyzer = 'word', tokenizer = tokenize, lowercase = True, stop_words = 'english', max_features = 100, encoding='utf-8' ) print "creating corpus_data_features" X_train_counts = vectorizer.fit_transform(train_data["text"]) # tf_transformer = TfidfTransformer(use_idf=False).fit(X_train_counts) # X_train_tf = tf_transformer.transform(X_train_counts) tfidf_transformer = TfidfTransformer() X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts) print "X_train_tfidf.shape", X_train_tfidf.shape print "training" model = MultinomialNB().fit(X_train_tfidf, train_data["sentiment"]) joblib.dump(model, 'twitter_MultinomialNB_model.pkl', compress=1) joblib.dump(vectorizer, 'vectorizer.pkl', compress=1) joblib.dump(tfidf_transformer, 'tfidf_transformer.pkl', compress=1) docs_new = ['God is love', 'OpenGL on the GPU is fast', "it was a very fantastic experience"] X_new_counts = vectorizer.transform(docs_new) X_new_tfidf = tfidf_transformer.transform(X_new_counts) predicted = model.predict(X_new_tfidf) print "predicted", predicted print model.score(X_train_tfidf, train_data["sentiment"])
26.86087
94
0.717708
08dc052ecc3d96e2ef3efe41624a974268f5c7b0
2,596
py
Python
DIP/exercises/ex10/pca.py
apeyrard/sjtu-work
ca98fec3c83b81ed9091bdc968cb5ad8a74d1d6a
[ "MIT" ]
1
2022-03-26T10:04:05.000Z
2022-03-26T10:04:05.000Z
DIP/exercises/ex10/pca.py
apeyrard/sjtu-work
ca98fec3c83b81ed9091bdc968cb5ad8a74d1d6a
[ "MIT" ]
null
null
null
DIP/exercises/ex10/pca.py
apeyrard/sjtu-work
ca98fec3c83b81ed9091bdc968cb5ad8a74d1d6a
[ "MIT" ]
1
2022-03-26T10:04:06.000Z
2022-03-26T10:04:06.000Z
#!/usr/bin/env python3 # -*- coding: UTF-8 -*- import sys import os from PIL import Image import numpy as np size = None matrix_x = None for image in os.listdir('./washington'): try: print(image) with Image.open(os.path.join('./washington',image)) as im: imgVector = np.array(list(im.getdata())) imgVector = imgVector.reshape(1, imgVector.shape[0]) try: matrix_x = np.vstack((matrix_x, imgVector)) except: matrix_x = imgVector except FileNotFoundError as e: sys.exit("Error : file not found") #matrix_x = np.array([[0,1,1,1], #[0,0,1,0], #[0,0,0,1] #]) #mean vector K = matrix_x.shape[1] print('K', K) nb = matrix_x.shape[0] print('nb', nb) mx = np.zeros((nb, 1)) for x in range(K): for y in range(nb): mx[y] += matrix_x[y, x] mx = mx/K #covar matrix cx = np.zeros((nb,nb)) for x in range(K): tmp = (matrix_x[:,x]) tmp = tmp.reshape(tmp.shape[0],1) cx += np.dot(tmp,tmp.T) - np.dot(mx,mx.T) cx = cx/K eigenvalues, eigenvectors = np.linalg.eig(cx) #tri eival = np.zeros(eigenvalues.shape) eivec = np.zeros(eigenvectors.shape) j = 0 for _ in range(nb): maxval = eigenvalues.max() for i in range(eigenvalues.shape[0]): val = eigenvalues[i] if val == maxval: eival[j] = val eigenvalues[i] = 0 eivec[j] = eigenvectors[i] j += 1 break #pruning eivec pruning = 2 eivec = eivec[:pruning,:] print(eivec) matrix_y = np.zeros((pruning, matrix_x.shape[1])) for i in range(K): tmp = (matrix_x[:,i]).reshape(nb, 1) truc = np.dot(eivec,(tmp-mx)) matrix_y[:, i] = truc.reshape(truc.shape[0]) #reconstruction matrix_x2 = np.zeros(matrix_x.shape) for i in range(K): tmp = (matrix_y[:,i]) tmp = tmp.reshape(tmp.shape[0], 1) matrix_x2[:, i] = np.array((np.dot(eivec.T,tmp)+mx).reshape(nb)) data = np.vsplit(matrix_x2, 6) for i,item in enumerate(data): item = list(rescale(item.reshape(item.shape[1]))) newIm = Image.new(im.mode, im.size) newIm.putdata(item) newIm.show() diff = item - matrix_x[i] epsilon = 0.1 print(diff) for j,val in enumerate(diff): if abs(val) < epsilon: diff[j] = 0 print(diff) diff = rescale(diff) newIm = Image.new(im.mode, im.size) newIm.putdata(list(diff)) newIm.show()
23.6
68
0.573575
08dc36bae83be55acec0ed61f76a33d11f4bb8a1
1,677
py
Python
organisations/migrate-entities/script.py
jbarnes/aws-python-script-collection
bf2accf60b8c14af89fab3a210c4df6a3b2e0ba9
[ "MIT" ]
null
null
null
organisations/migrate-entities/script.py
jbarnes/aws-python-script-collection
bf2accf60b8c14af89fab3a210c4df6a3b2e0ba9
[ "MIT" ]
null
null
null
organisations/migrate-entities/script.py
jbarnes/aws-python-script-collection
bf2accf60b8c14af89fab3a210c4df6a3b2e0ba9
[ "MIT" ]
null
null
null
import boto3 import sys if __name__ == "__main__": if len(sys.argv) > 2: print("[ERROR] You have passed in an invalid target-id, example target-id is ou-zhz0-prn5fmbc") sys.exit() else: print("[INFO] Valid argument detected, proceeding with account migration") destination_id = str(sys.argv[1]) # Gather source ids with open("source_ids.txt") as f: source_ids = f.read().splitlines() l = len(source_ids) print("[INFO] Detected {} source id(s) to be migrated".format(l)) print("[INFO] Beginning processing of source id(s)...") # Process the source ids for migration client = boto3.client("organizations") for source_id in source_ids: print("[INFO] Now attempting to move source id: {}".format(source_id)) get_parent = client.list_parents(ChildId=source_id) parent_id = get_parent["Parents"][0]["Id"] try: response = client.move_account( AccountId=source_id, SourceParentId=parent_id, DestinationParentId=destination_id ) print( "[INFO] Successfully moved source id: {} to target id: {}".format( source_id, destination_id ) ) except client.exceptions.DuplicateAccountException: print( "[NOTICE] Source id: {} is already migrated to target id: {}".format( source_id, destination_id ) ) print("[INFO] Successfully migrated required accounts.")
35.680851
103
0.556947
08dcaa11c309d6ad11738f4ba7bc30c87f71fe32
274
py
Python
templates/python.py
limacat76/Polyglot-Study
ec71186d4dfbecebf372eb11affd9b5a2b76e47a
[ "MIT" ]
null
null
null
templates/python.py
limacat76/Polyglot-Study
ec71186d4dfbecebf372eb11affd9b5a2b76e47a
[ "MIT" ]
null
null
null
templates/python.py
limacat76/Polyglot-Study
ec71186d4dfbecebf372eb11affd9b5a2b76e47a
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from sys import argv from sys import stdin from sys import stdout alp = len(argv) if alp > 1 and argv[1] == "--version": print ('version 0.1') quit() if alp > 1 and argv[1] == "--help": print ('ctrl+d to quit') quit() print('todo')
17.125
38
0.605839
08dfdc660c21f835d66e36e8817b005006f680b0
1,142
py
Python
Transcribing_DNA_into_RNA.py
hedianeposselt/ROSALIND
6d53167e1ec98fc22992da7cd74d385a97baa870
[ "Apache-2.0" ]
1
2022-03-29T10:17:56.000Z
2022-03-29T10:17:56.000Z
Transcribing_DNA_into_RNA.py
hedianeposselt/ROSALIND
6d53167e1ec98fc22992da7cd74d385a97baa870
[ "Apache-2.0" ]
null
null
null
Transcribing_DNA_into_RNA.py
hedianeposselt/ROSALIND
6d53167e1ec98fc22992da7cd74d385a97baa870
[ "Apache-2.0" ]
null
null
null
# https://rosalind.info/problems/rna/ # Transcribing DNA into RNA exercise from ROSALIND DNA = "ACAACAAAGGATCGGCGAGGAGCTGGTTAATCTCGATTCTAACAAAGGCCTCTTGAGTGACATAAAGTTGCTGTTCGGCCCCCGTTGCAGCCAAGCCTAGACTCGAGCGGGGTCTACCTCTGTAAACCCAAGTCGCAGGCCAAGGGCATTTTAACCCCCAAAGTTAGATACGTCGATTGAGTGCGCACTCCCTAACTTCAGACAGGATGGCGCTTAGCACTGGTTAGGTCCCTCATTAGAGGCTTACACGGGACCCCAGCGATCTGCAGGGCTACATGAACCGGCGATACCTGCAACCCTTCACGTGTGGTGCGAGTGCTGGACCCATGCACGGGCCCAAGAAGCGGGAGCACCCACGGCCTGAGCCTGTAGCTTCATACTTAGAGTAACACCTATAAGTTCTCCGTTTCACGTTATTTTACTTAACAAAGCACATCGATGGGCGGACGTACGAGCCGAGCCTCGTCCCCATTTACTCAAGTAACCAAGTCATTGTTTAGTCTATGGTAGGCTCTTTGATTGGGTACGCCGCAGCCATCCGCACACTTGCAGGGCTTTAGTCCGAACTCGTTCAAAGGGTTCGACGTACAACAGCGCCTACTAAATCCCCGCCTTGTAACGGAAGACGTGTGGGACCTCTTGAAACATCTTCGACCATACATCTCCATTTTAACAATGAAGCTGTATCAGTGGTCAGTCTTACTATGCCTGCACTCAGCAACAAGGGGCGCGATGATGTAGTCAGCGTGCCCAGATTCAGTACGGACAGTCAAGTGCGATCTTTCTGGGTCGCGCGGCTGGTGGTAATGAGAATGTTCTTACCTGACAAGTAATGCTTCTTCCAATCGTGCTGGGGGCAAGGTTTATTCTCTCTTAACCTGTTGCTCATCTCTAGCGATAACTGGTGCATGATCAATTTGCGG" RNA = "" for nucleotide in DNA: if nucleotide == "T": RNA = RNA + "U" else: RNA = RNA + nucleotide print( RNA )
81.571429
931
0.932574
08e02a9b4adc8aa43eb49a2fd41a870ebd71dbaa
516
py
Python
micro_admin/migrations/0010_auto_20160804_1044.py
lance0145/micro-finance
1ba6339a9d05ff2f20b020b97a233c766b2ee6e0
[ "MIT" ]
72
2015-09-18T07:23:20.000Z
2022-03-23T14:35:46.000Z
micro_admin/migrations/0010_auto_20160804_1044.py
mohbadar/micro-finance
00fc9ad1e09cd6658aa5fa0dd991cf18fe2927a6
[ "MIT" ]
68
2015-01-03T13:44:40.000Z
2021-06-10T20:00:23.000Z
micro_admin/migrations/0010_auto_20160804_1044.py
mohbadar/micro-finance
00fc9ad1e09cd6658aa5fa0dd991cf18fe2927a6
[ "MIT" ]
73
2015-02-10T07:03:42.000Z
2022-02-24T21:11:01.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-08-04 10:44 from __future__ import unicode_literals from django.db import migrations
25.8
162
0.629845
08e07a97a9f3cede768ff174381cda6e3a2e9847
3,823
py
Python
ProgrammersGuideExamples/provisioning.py
mrhorrible78/PyU4V
5b9274fd6f5f80a4a6e7aa487e348fa91f6f315c
[ "MIT" ]
null
null
null
ProgrammersGuideExamples/provisioning.py
mrhorrible78/PyU4V
5b9274fd6f5f80a4a6e7aa487e348fa91f6f315c
[ "MIT" ]
null
null
null
ProgrammersGuideExamples/provisioning.py
mrhorrible78/PyU4V
5b9274fd6f5f80a4a6e7aa487e348fa91f6f315c
[ "MIT" ]
null
null
null
# The MIT License (MIT) # Copyright (c) 2016 Dell Inc. or its subsidiaries. # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, # merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import argparse from PyU4V import U4VConn ru = U4VConn(u4v_version='84') PARSER = argparse.ArgumentParser(description='This python scrtipt is a basic ' 'VMAX REST recipe provisioning ' 'multiple sized volume for an ' 'application.\n' 'python provisioning.py -sg TEST ' '-ig initiators.txt -pg ports.txt' ' -cap 1') RFLAGS = PARSER.add_argument_group('Required arguments') RFLAGS.add_argument('-sg', required=True, help='Storage group name, typically ' 'the application name ' 'e.g. oraclefinace') RFLAGS.add_argument('-ig', required=True, help='Filename containing initiators' ',one per line ' 'e.g. 10000000c9873cae') RFLAGS.add_argument('-pg', required=True, help='Filename containing list of ' 'ports one per line, ' 'e.g. FA-1D:25') RFLAGS.add_argument('-cap', required=True, help='Capacity in GB') # Assign parameters to command line arguments ARGS = PARSER.parse_args() sgname = ARGS.sg hba_file = ARGS.ig port_file = ARGS.pg appname = "REST_" + sgname sg_id = appname + "_SG" ig_id = appname + "_IG" pg_id = appname + "_PG" mv_id = appname + "_MV" requested_capacity = ARGS.cap initiator_list = ru.common.create_list_from_file(hba_file) provision_storage()
43.443182
86
0.625948
08e17200183b1b4c4b38978e4c91346462570f54
8,227
py
Python
quickdraw-doodle-recognition/gcloud/common.py
yasserglez/kaggle_titanic
7a4857ec9a99c31eb53a91dda3ad9ecd5b647278
[ "MIT" ]
2
2019-09-29T02:26:58.000Z
2020-03-06T07:38:58.000Z
quickdraw-doodle-recognition/gcloud/common.py
yasserglez/kaggle_titanic
7a4857ec9a99c31eb53a91dda3ad9ecd5b647278
[ "MIT" ]
2
2018-12-17T04:32:09.000Z
2019-10-22T00:31:06.000Z
quickdraw-doodle-recognition/gcloud/common.py
yasserglez/kaggle
7a4857ec9a99c31eb53a91dda3ad9ecd5b647278
[ "MIT" ]
null
null
null
import struct import itertools import numpy as np from bitarray import bitarray RANDOM_SEED = 2387613 IMAGE_SIZE = 128 BATCH_SIZE = 2048 # Assign an integer to each word to be predicted. WORD2LABEL = { 'The Eiffel Tower': 0, 'The Great Wall of China': 1, 'The Mona Lisa': 2, 'airplane': 3, 'alarm clock': 4, 'ambulance': 5, 'angel': 6, 'animal migration': 7, 'ant': 8, 'anvil': 9, 'apple': 10, 'arm': 11, 'asparagus': 12, 'axe': 13, 'backpack': 14, 'banana': 15, 'bandage': 16, 'barn': 17, 'baseball': 19, 'baseball bat': 18, 'basket': 20, 'basketball': 21, 'bat': 22, 'bathtub': 23, 'beach': 24, 'bear': 25, 'beard': 26, 'bed': 27, 'bee': 28, 'belt': 29, 'bench': 30, 'bicycle': 31, 'binoculars': 32, 'bird': 33, 'birthday cake': 34, 'blackberry': 35, 'blueberry': 36, 'book': 37, 'boomerang': 38, 'bottlecap': 39, 'bowtie': 40, 'bracelet': 41, 'brain': 42, 'bread': 43, 'bridge': 44, 'broccoli': 45, 'broom': 46, 'bucket': 47, 'bulldozer': 48, 'bus': 49, 'bush': 50, 'butterfly': 51, 'cactus': 52, 'cake': 53, 'calculator': 54, 'calendar': 55, 'camel': 56, 'camera': 57, 'camouflage': 58, 'campfire': 59, 'candle': 60, 'cannon': 61, 'canoe': 62, 'car': 63, 'carrot': 64, 'castle': 65, 'cat': 66, 'ceiling fan': 67, 'cell phone': 68, 'cello': 69, 'chair': 70, 'chandelier': 71, 'church': 72, 'circle': 73, 'clarinet': 74, 'clock': 75, 'cloud': 76, 'coffee cup': 77, 'compass': 78, 'computer': 79, 'cookie': 80, 'cooler': 81, 'couch': 82, 'cow': 83, 'crab': 84, 'crayon': 85, 'crocodile': 86, 'crown': 87, 'cruise ship': 88, 'cup': 89, 'diamond': 90, 'dishwasher': 91, 'diving board': 92, 'dog': 93, 'dolphin': 94, 'donut': 95, 'door': 96, 'dragon': 97, 'dresser': 98, 'drill': 99, 'drums': 100, 'duck': 101, 'dumbbell': 102, 'ear': 103, 'elbow': 104, 'elephant': 105, 'envelope': 106, 'eraser': 107, 'eye': 108, 'eyeglasses': 109, 'face': 110, 'fan': 111, 'feather': 112, 'fence': 113, 'finger': 114, 'fire hydrant': 115, 'fireplace': 116, 'firetruck': 117, 'fish': 118, 'flamingo': 119, 'flashlight': 120, 'flip flops': 121, 'floor lamp': 122, 'flower': 123, 'flying saucer': 124, 'foot': 125, 'fork': 126, 'frog': 127, 'frying pan': 128, 'garden': 130, 'garden hose': 129, 'giraffe': 131, 'goatee': 132, 'golf club': 133, 'grapes': 134, 'grass': 135, 'guitar': 136, 'hamburger': 137, 'hammer': 138, 'hand': 139, 'harp': 140, 'hat': 141, 'headphones': 142, 'hedgehog': 143, 'helicopter': 144, 'helmet': 145, 'hexagon': 146, 'hockey puck': 147, 'hockey stick': 148, 'horse': 149, 'hospital': 150, 'hot air balloon': 151, 'hot dog': 152, 'hot tub': 153, 'hourglass': 154, 'house': 156, 'house plant': 155, 'hurricane': 157, 'ice cream': 158, 'jacket': 159, 'jail': 160, 'kangaroo': 161, 'key': 162, 'keyboard': 163, 'knee': 164, 'ladder': 165, 'lantern': 166, 'laptop': 167, 'leaf': 168, 'leg': 169, 'light bulb': 170, 'lighthouse': 171, 'lightning': 172, 'line': 173, 'lion': 174, 'lipstick': 175, 'lobster': 176, 'lollipop': 177, 'mailbox': 178, 'map': 179, 'marker': 180, 'matches': 181, 'megaphone': 182, 'mermaid': 183, 'microphone': 184, 'microwave': 185, 'monkey': 186, 'moon': 187, 'mosquito': 188, 'motorbike': 189, 'mountain': 190, 'mouse': 191, 'moustache': 192, 'mouth': 193, 'mug': 194, 'mushroom': 195, 'nail': 196, 'necklace': 197, 'nose': 198, 'ocean': 199, 'octagon': 200, 'octopus': 201, 'onion': 202, 'oven': 203, 'owl': 204, 'paint can': 205, 'paintbrush': 206, 'palm tree': 207, 'panda': 208, 'pants': 209, 'paper clip': 210, 'parachute': 211, 'parrot': 212, 'passport': 213, 'peanut': 214, 'pear': 215, 'peas': 216, 'pencil': 217, 'penguin': 218, 'piano': 219, 'pickup truck': 220, 'picture frame': 221, 'pig': 222, 'pillow': 223, 'pineapple': 224, 'pizza': 225, 'pliers': 226, 'police car': 227, 'pond': 228, 'pool': 229, 'popsicle': 230, 'postcard': 231, 'potato': 232, 'power outlet': 233, 'purse': 234, 'rabbit': 235, 'raccoon': 236, 'radio': 237, 'rain': 238, 'rainbow': 239, 'rake': 240, 'remote control': 241, 'rhinoceros': 242, 'river': 243, 'roller coaster': 244, 'rollerskates': 245, 'sailboat': 246, 'sandwich': 247, 'saw': 248, 'saxophone': 249, 'school bus': 250, 'scissors': 251, 'scorpion': 252, 'screwdriver': 253, 'sea turtle': 254, 'see saw': 255, 'shark': 256, 'sheep': 257, 'shoe': 258, 'shorts': 259, 'shovel': 260, 'sink': 261, 'skateboard': 262, 'skull': 263, 'skyscraper': 264, 'sleeping bag': 265, 'smiley face': 266, 'snail': 267, 'snake': 268, 'snorkel': 269, 'snowflake': 270, 'snowman': 271, 'soccer ball': 272, 'sock': 273, 'speedboat': 274, 'spider': 275, 'spoon': 276, 'spreadsheet': 277, 'square': 278, 'squiggle': 279, 'squirrel': 280, 'stairs': 281, 'star': 282, 'steak': 283, 'stereo': 284, 'stethoscope': 285, 'stitches': 286, 'stop sign': 287, 'stove': 288, 'strawberry': 289, 'streetlight': 290, 'string bean': 291, 'submarine': 292, 'suitcase': 293, 'sun': 294, 'swan': 295, 'sweater': 296, 'swing set': 297, 'sword': 298, 't-shirt': 299, 'table': 300, 'teapot': 301, 'teddy-bear': 302, 'telephone': 303, 'television': 304, 'tennis racquet': 305, 'tent': 306, 'tiger': 307, 'toaster': 308, 'toe': 309, 'toilet': 310, 'tooth': 311, 'toothbrush': 312, 'toothpaste': 313, 'tornado': 314, 'tractor': 315, 'traffic light': 316, 'train': 317, 'tree': 318, 'triangle': 319, 'trombone': 320, 'truck': 321, 'trumpet': 322, 'umbrella': 323, 'underwear': 324, 'van': 325, 'vase': 326, 'violin': 327, 'washing machine': 328, 'watermelon': 329, 'waterslide': 330, 'whale': 331, 'wheel': 332, 'windmill': 333, 'wine bottle': 334, 'wine glass': 335, 'wristwatch': 336, 'yoga': 337, 'zebra': 338, 'zigzag': 339, } LABEL2WORD = dict((v, k) for k, v in WORD2LABEL.items()) # https://docs.python.org/3/library/itertools.html#recipes
20.880711
95
0.519874
08e17bfd02380a8da82eb6cb901cf80fe395ede2
34,734
py
Python
feature.py
TimothyChen225/AFC-X
901a0019b7c153804570c480c3da4825776dbf02
[ "MIT" ]
null
null
null
feature.py
TimothyChen225/AFC-X
901a0019b7c153804570c480c3da4825776dbf02
[ "MIT" ]
null
null
null
feature.py
TimothyChen225/AFC-X
901a0019b7c153804570c480c3da4825776dbf02
[ "MIT" ]
null
null
null
from collections import Counter from Bio import SeqIO import numpy as np import warnings import math warnings.filterwarnings(action='ignore', category=UserWarning, module='gensim') from gensim.models import Word2Vec Max_length = 100 # maximum length of used peptides # AFC-T, AFC-CP # AFC-C based on main dataset # AFC-C based on alternate dataset
31.040214
241
0.501324
08e364b287cb5954101aa31b3cb5304b7c80b252
35
py
Python
excel4lib/macro/analysis/__init__.py
aaaddress1/boobsnail
c0c2067d7271ca76ee721998d28e8c3c81a48397
[ "MIT" ]
169
2021-05-26T13:35:16.000Z
2021-09-06T08:04:19.000Z
excel4lib/macro/analysis/__init__.py
H4xl0r/boobsnail
c0c2067d7271ca76ee721998d28e8c3c81a48397
[ "MIT" ]
2
2021-06-01T13:46:37.000Z
2021-07-12T19:06:37.000Z
excel4lib/macro/analysis/__init__.py
H4xl0r/boobsnail
c0c2067d7271ca76ee721998d28e8c3c81a48397
[ "MIT" ]
29
2021-05-27T17:28:29.000Z
2021-09-04T19:24:50.000Z
from .excel4_anti_analysis import *
35
35
0.857143
08e511f1a5de576d29d0f24338c61be5e0fb82ee
2,250
py
Python
multiband_melgan/dataset.py
AppleHolic/multiband_melgan
e0864d0fc205c3bdf5e19c77753e105e29a2641b
[ "MIT" ]
41
2020-06-24T08:07:23.000Z
2022-01-24T16:39:54.000Z
multiband_melgan/dataset.py
AppleHolic/multiband_melgan
e0864d0fc205c3bdf5e19c77753e105e29a2641b
[ "MIT" ]
2
2020-06-24T08:02:15.000Z
2020-11-23T02:56:42.000Z
multiband_melgan/dataset.py
AppleHolic/multiband_melgan
e0864d0fc205c3bdf5e19c77753e105e29a2641b
[ "MIT" ]
5
2020-07-03T04:00:50.000Z
2020-11-04T03:24:48.000Z
import numpy as np import librosa import os from pytorch_sound.data.meta.ljspeech import LJSpeechMeta from torch.utils.data import Dataset, DataLoader from typing import Tuple
34.090909
106
0.679111
08e85c7f00798390cfd21fa3cd1b2758063f698c
3,830
py
Python
yasmss/sparkmapper/sparkmapper.py
AshirwadPradhan/yasmss
8b8b7108a3a437f0c757f19225a0c2082dbbd488
[ "MIT" ]
null
null
null
yasmss/sparkmapper/sparkmapper.py
AshirwadPradhan/yasmss
8b8b7108a3a437f0c757f19225a0c2082dbbd488
[ "MIT" ]
2
2019-09-22T03:27:20.000Z
2019-09-22T13:56:35.000Z
yasmss/sparkmapper/sparkmapper.py
AshirwadPradhan/yasmss
8b8b7108a3a437f0c757f19225a0c2082dbbd488
[ "MIT" ]
2
2019-09-15T13:10:41.000Z
2019-10-29T11:20:10.000Z
"""Get the parsed query from the driver and apply transformation and action based on the query template """ import time import pyspark.sql.functions as f from pyspark.sql import SparkSession from pyspark.sql.types import IntegerType, StringType, StructField, StructType import yaml from schema import schema with open("config.yaml", 'r') as file: data = yaml.load(file, Loader=yaml.FullLoader) baseURI = data['pathconfig']['host_ip_port'] + \ '/' + data['pathconfig']['input_dir'] table_format = '.csv'
33.304348
91
0.621671
08ee02203bdf0fc6105effa49f09100d9294242e
8,412
py
Python
main_gui.py
vedymin/All_IPG_Move
b8b079fd471709731a7550cec3a5add3db409b81
[ "MIT" ]
null
null
null
main_gui.py
vedymin/All_IPG_Move
b8b079fd471709731a7550cec3a5add3db409b81
[ "MIT" ]
null
null
null
main_gui.py
vedymin/All_IPG_Move
b8b079fd471709731a7550cec3a5add3db409b81
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'main_gui.ui' # # Created by: PyQt5 UI code generator 5.9.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets
54.980392
116
0.714812
08f00026b0a8d4a6cccad1a88563ce7a5b83f749
1,522
py
Python
src/config.py
DQiaole/ZITS
5f7a060167790789d5e29a3d14d3c2ef8a34e765
[ "Apache-2.0" ]
40
2022-03-02T06:12:43.000Z
2022-03-30T02:17:02.000Z
src/config.py
DQiaole/ZITS
5f7a060167790789d5e29a3d14d3c2ef8a34e765
[ "Apache-2.0" ]
6
2022-03-06T03:53:14.000Z
2022-03-31T06:36:34.000Z
src/config.py
DQiaole/ZITS
5f7a060167790789d5e29a3d14d3c2ef8a34e765
[ "Apache-2.0" ]
5
2022-03-04T06:39:44.000Z
2022-03-28T04:58:32.000Z
import os import yaml DEFAULT_CONFIG = { 'SEED': 10, # random seed 'BATCH_SIZE': 8, # input batch size for training 'INPUT_SIZE': 256, # input image size for training 0 for original size 'MAX_ITERS': 1e6, # maximum number of iterations to train the model 'SAVE_INTERVAL': 1000, # how many iterations to wait before saving model (0: never) 'SAMPLE_INTERVAL': 1000, # how many iterations to wait before sampling (0: never) 'SAMPLE_SIZE': 12, # number of images to sample 'EVAL_INTERVAL': 0, # how many iterations to wait before model evaluation (0: never) 'LOG_INTERVAL': 10, # how many iterations to wait before logging training status (0: never) }
35.395349
107
0.557819
08f0432c93f8f390bd7d7a71479785cb462167ba
8,786
py
Python
examples/acados_python/test/generate_c_code.py
besticka/acados
32767a19aed01a15b5e7b83ebc6ddbd669a47954
[ "BSD-2-Clause" ]
null
null
null
examples/acados_python/test/generate_c_code.py
besticka/acados
32767a19aed01a15b5e7b83ebc6ddbd669a47954
[ "BSD-2-Clause" ]
null
null
null
examples/acados_python/test/generate_c_code.py
besticka/acados
32767a19aed01a15b5e7b83ebc6ddbd669a47954
[ "BSD-2-Clause" ]
null
null
null
# # Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren, # Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor, # Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan, # Jonas Koenemann, Yutao Chen, Tobias Schls, Jonas Schlagenhauf, Moritz Diehl # # This file is part of acados. # # The 2-Clause BSD License # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE.; # from acados_template import * import acados_template as at from export_ode_model import * import numpy as np import scipy.linalg from ctypes import * import json import argparse # set to 'True' to generate test data GENERATE_DATA = False LOCAL_TEST = False TEST_TOL = 1e-8 if LOCAL_TEST is True: FORMULATION = 'LS' SOLVER_TYPE = 'SQP_RTI' QP_SOLVER = 'FULL_CONDENSING_QPOASES' INTEGRATOR_TYPE = 'IRK' else: parser = argparse.ArgumentParser(description='test Python interface on pendulum example.') parser.add_argument('--FORMULATION', dest='FORMULATION', default='LS', help='FORMULATION: linear least-squares (LS) or nonlinear \ least-squares (NLS) (default: LS)') parser.add_argument('--QP_SOLVER', dest='QP_SOLVER', default='PARTIAL_CONDENSING_HPIPM', help='QP_SOLVER: PARTIAL_CONDENSING_HPIPM, FULL_CONDENSING_HPIPM, ' \ 'FULL_CONDENSING_HPIPM (default: PARTIAL_CONDENSING_HPIPM)') parser.add_argument('--INTEGRATOR_TYPE', dest='INTEGRATOR_TYPE', default='ERK', help='INTEGRATOR_TYPE: explicit (ERK) or implicit (IRK) ' \ ' Runge-Kutta (default: ERK)') parser.add_argument('--SOLVER_TYPE', dest='SOLVER_TYPE', default='SQP_RTI', help='SOLVER_TYPE: (full step) sequential quadratic programming (SQP) or ' \ ' real-time iteration (SQP-RTI) (default: SQP-RTI)') args = parser.parse_args() FORMULATION = args.FORMULATION FORMULATION_values = ['LS', 'NLS'] if FORMULATION not in FORMULATION_values: raise Exception('Invalid unit test value {} for parameter FORMULATION. Possible values are' \ ' {}. Exiting.'.format(FORMULATION, FORMULATION_values)) QP_SOLVER = args.QP_SOLVER QP_SOLVER_values = ['PARTIAL_CONDENSING_HPIPM', 'FULL_CONDENSING_HPIPM', 'FULL_CONDENSING_QPOASES'] if QP_SOLVER not in QP_SOLVER_values: raise Exception('Invalid unit test value {} for parameter QP_SOLVER. Possible values are' \ ' {}. Exiting.'.format(QP_SOLVER, QP_SOLVER_values)) INTEGRATOR_TYPE = args.INTEGRATOR_TYPE INTEGRATOR_TYPE_values = ['ERK', 'IRK'] if INTEGRATOR_TYPE not in INTEGRATOR_TYPE: raise Exception('Invalid unit test value {} for parameter INTEGRATOR_TYPE. Possible values are' \ ' {}. Exiting.'.format(INTEGRATOR_TYPE, INTEGRATOR_TYPE_values)) SOLVER_TYPE = args.SOLVER_TYPE SOLVER_TYPE_values = ['SQP', 'SQP-RTI'] if SOLVER_TYPE not in SOLVER_TYPE: raise Exception('Invalid unit test value {} for parameter SOLVER_TYPE. Possible values are' \ ' {}. Exiting.'.format(SOLVER_TYPE, SOLVER_TYPE_values)) # print test setting print("Running test with:\n\tformulation:", FORMULATION, "\n\tqp solver: ", QP_SOLVER,\ "\n\tintergrator: ", INTEGRATOR_TYPE, "\n\tsolver: ", SOLVER_TYPE) # create render arguments ocp = acados_ocp_nlp() # export model model = export_ode_model() # set model_name ocp.model = model Tf = 2.0 nx = model.x.size()[0] nu = model.u.size()[0] ny = nx + nu ny_e = nx N = 50 # set ocp_nlp_dimensions nlp_dims = ocp.dims nlp_dims.nx = nx nlp_dims.ny = ny nlp_dims.ny_e = ny_e nlp_dims.nbx = 0 nlp_dims.nbu = nu nlp_dims.nu = model.u.size()[0] nlp_dims.N = N # set weighting matrices nlp_cost = ocp.cost if FORMULATION == 'LS': nlp_cost.cost_type = 'LINEAR_LS' nlp_cost.cost_type_e = 'LINEAR_LS' elif FORMULATION == 'NLS': nlp_cost.cost_type = 'NONLINEAR_LS' nlp_cost.cost_type_e = 'NONLINEAR_LS' else: raise Exception('Unknown FORMULATION. Possible values are \'LS\' and \'NLS\'.') Q = np.eye(4) Q[0,0] = 1e0 Q[1,1] = 1e2 Q[2,2] = 1e-3 Q[3,3] = 1e-2 R = np.eye(1) R[0,0] = 1e0 unscale = N/Tf Q = Q * unscale R = R * unscale if FORMULATION == 'NLS': nlp_cost.W = scipy.linalg.block_diag(R, Q) else: nlp_cost.W = scipy.linalg.block_diag(Q, R) nlp_cost.W_e = Q/unscale Vx = np.zeros((ny, nx)) Vx[0,0] = 1.0 Vx[1,1] = 1.0 Vx[2,2] = 1.0 Vx[3,3] = 1.0 nlp_cost.Vx = Vx Vu = np.zeros((ny, nu)) Vu[4,0] = 1.0 nlp_cost.Vu = Vu Vx_e = np.zeros((ny_e, nx)) Vx_e[0,0] = 1.0 Vx_e[1,1] = 1.0 Vx_e[2,2] = 1.0 Vx_e[3,3] = 1.0 nlp_cost.Vx_e = Vx_e if FORMULATION == 'NLS': x = SX.sym('x', 4, 1) u = SX.sym('u', 1, 1) ocp.cost_r.expr = vertcat(u, x) ocp.cost_r.x = x ocp.cost_r.u = u ocp.cost_r.name = 'lin_res' ocp.cost_r.ny = nx + nu ocp.cost_r_e.expr = x ocp.cost_r_e.x = x ocp.cost_r_e.name = 'lin_res' ocp.cost_r_e.ny = nx nlp_cost.yref = np.zeros((ny, )) nlp_cost.yref_e = np.zeros((ny_e, )) # setting bounds Fmax = 2.0 nlp_con = ocp.constraints nlp_con.lbu = np.array([-Fmax]) nlp_con.ubu = np.array([+Fmax]) nlp_con.x0 = np.array([0.0, 3.14, 0.0, 0.0]) nlp_con.idxbu = np.array([0]) # set QP solver ocp.solver_options.qp_solver = QP_SOLVER ocp.solver_options.hessian_approx = 'GAUSS_NEWTON' ocp.solver_options.integrator_type = INTEGRATOR_TYPE ocp.solver_options.sim_method_num_stages = 2 ocp.solver_options.sim_method_num_steps = 5 # set prediction horizon ocp.solver_options.tf = Tf ocp.solver_options.nlp_solver_type = SOLVER_TYPE # set header path ocp.acados_include_path = '../../../../include' ocp.acados_lib_path = '../../../../lib' acados_solver = generate_solver(ocp, json_file = 'acados_ocp.json') Nsim = 100 simX = np.ndarray((Nsim, nx)) simU = np.ndarray((Nsim, nu)) for i in range(Nsim): status = acados_solver.solve() if status !=0: print("acados failure! Exiting. \n") sys.exit(status) # get solution x0 = acados_solver.get(0, "x") u0 = acados_solver.get(0, "u") for j in range(nx): simX[i,j] = x0[j] for j in range(nu): simU[i,j] = u0[j] # update initial condition x0 = acados_solver.get(1, "x") acados_solver.set(0, "lbx", x0) acados_solver.set(0, "ubx", x0) # update reference for j in range(N): acados_solver.set(j, "yref", np.array([0, 0, 0, 0, 0])) acados_solver.set(N, "yref", np.array([0, 0, 0, 0])) # dump result to JSON file for unit testing test_file_name = 'test_data/generate_c_code_out_' + FORMULATION + '_' + QP_SOLVER + '_' + \ INTEGRATOR_TYPE + '_' + SOLVER_TYPE + '.json' if GENERATE_DATA: with open(test_file_name, 'w') as f: json.dump({"simX": simX.tolist(), "simU": simU.tolist()}, f, indent=4, sort_keys=True) else: with open(test_file_name, 'r') as f: test_data = json.load(f) simX_error = np.linalg.norm(test_data['simX'] - simX) simU_error = np.linalg.norm(test_data['simU'] - simU) if simX_error > TEST_TOL or simU_error > TEST_TOL: raise Exception("Python acados test failure with accuracies {:.2E} and {:.2E} ({:.2E} required) on pendulum example! Exiting.\n".format(simX_error, simU_error, TEST_TOL)) else: print('Python test passed with accuracy {:.2E}'.format(max(simU_error, simX_error)))
31.604317
178
0.669019
08f05b58d9116c10d8df8fa1c928dc1cf428e826
2,820
py
Python
collectors/cpustats.py
vijayanant/kunai
0dfe169731eaceb1bba66e12715b3968d2a3de20
[ "MIT" ]
1
2020-04-12T21:05:46.000Z
2020-04-12T21:05:46.000Z
collectors/cpustats.py
vijayanant/kunai
0dfe169731eaceb1bba66e12715b3968d2a3de20
[ "MIT" ]
null
null
null
collectors/cpustats.py
vijayanant/kunai
0dfe169731eaceb1bba66e12715b3968d2a3de20
[ "MIT" ]
null
null
null
import httplib # Used only for handling httplib.HTTPException (case #26701) import os import sys import platform import re import urllib import urllib2 import traceback import time from StringIO import StringIO from multiprocessing import subprocess from kunai.log import logger from kunai.collector import Collector
32.790698
114
0.510638
08f3eae9e91dde600e2781b52aa83909fff87587
1,560
py
Python
prob_h.py
ShinjiKatoA16/icpc2017ucsy
de1954620036e8025b7b4c1b469e6b8c57af212e
[ "MIT" ]
null
null
null
prob_h.py
ShinjiKatoA16/icpc2017ucsy
de1954620036e8025b7b4c1b469e6b8c57af212e
[ "MIT" ]
null
null
null
prob_h.py
ShinjiKatoA16/icpc2017ucsy
de1954620036e8025b7b4c1b469e6b8c57af212e
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # -*- coding: utf-8 -*- ''' 2017 ICPC at UCSY Problem-H: Sum Square ''' import sys def parse_tc(tc): ''' Input: Test Case Update: Return: None ''' x = list(map(int,tc.infile.readline().split())) tc.dataset = x[0] tc.max_num = x[1] tc.base = x[2] tc.a0 = x[3] return def solve(tc): ''' Input: Test Case Return: None ''' parse_tc(tc) ak = tc.a0 ssd_list = [ak] for i in range(tc.max_num): ssd_val = ssd(tc.base, ak) if ssd_val in ssd_list: index_k = ssd_list.index(ssd_val) print(tc.dataset, len(ssd_list)+1, len(ssd_list)-index_k) ssd_list.append(ssd_val) prt_list(ssd_list[index_k:]) break ssd_list.append(ssd_val) ak = ssd_val else: print(tc.dataset, tc.max_num, 0) print(ak) return ## ## Main routine ## if __name__ == '__main__': tc = TestCase() tc.infile = sys.stdin tc.t = int(tc.infile.readline()) for i in range(tc.t): solve(tc) if tc.infile != sys.stdin: tc.infile.close()
16.956522
69
0.501923
08f52305d640784da8d8fb26cf618726da107b3a
2,357
py
Python
spark_mapinput.py
pw2393/spark-bitcoin-parser
320eb30ffcc462b0607655d2f4002a82590fd120
[ "MIT" ]
11
2017-09-29T05:37:57.000Z
2022-02-04T06:34:17.000Z
spark_mapinput.py
pw2393/spark-bitcoin-parser
320eb30ffcc462b0607655d2f4002a82590fd120
[ "MIT" ]
2
2018-07-03T12:19:50.000Z
2019-10-19T21:24:53.000Z
spark_mapinput.py
pw2393/spark-bitcoin-parser
320eb30ffcc462b0607655d2f4002a82590fd120
[ "MIT" ]
3
2019-11-09T13:01:07.000Z
2021-12-03T04:20:29.000Z
""" Author: Peng Wu License: MIT """ # Initialize Spark Context: local multi-threads from pyspark import SparkConf, SparkContext output_folder = './csv/' # with open(output_folder+'viz_txedge.csv', 'w') as f: # pass # def formatted_print_2(keyValue): # with open(output_folder+'viz_txedge.csv', 'a') as f: # f.write('{},{},{},{}\n'.format(keyValue[0][0], keyValue[1][1][0], keyValue[1][0][0], keyValue[1][0][2])) # metafinal.foreach(formatted_print_2) # #print metafinal.first() if __name__ == "__main__": import sys if len(sys.argv) != 1: print "\n\tUSAGE:\n\t\tspark-submit spark_mapinput.py" sys.exit() import time start_time = time.time() main() print("--- %s seconds ---" % (time.time() - start_time))
28.39759
117
0.602036
08f5c575bcbcd0ee74f875b6fd32a403f396576c
6,819
py
Python
neuralpredictors/layers/readouts/factorized.py
kellirestivo/neuralpredictors
57205a90d2e3daa5f8746c6ef6170be9e35cb5f5
[ "MIT" ]
9
2020-11-26T18:22:32.000Z
2022-01-22T15:51:52.000Z
neuralpredictors/layers/readouts/factorized.py
kellirestivo/neuralpredictors
57205a90d2e3daa5f8746c6ef6170be9e35cb5f5
[ "MIT" ]
60
2020-10-21T15:32:28.000Z
2022-02-25T10:38:16.000Z
neuralpredictors/layers/readouts/factorized.py
mohammadbashiri/neuralpredictors
8e60c9ce91f83e3dcaa1b3dbe4422e1509ccbd5f
[ "MIT" ]
21
2020-10-21T09:29:17.000Z
2022-02-07T10:04:46.000Z
import torch from torch import nn as nn import numpy as np from .base import Readout def initialize(self, mean_activity=None): """ Initializes the mean, and sigma of the Gaussian readout along with the features weights """ if mean_activity is None: mean_activity = self.mean_activity self.spatial.data.normal_(0, self.init_noise) self._features.data.normal_(0, self.init_noise) if self._shared_features: self.scales.data.fill_(1.0) if self.bias is not None: self.initialize_bias(mean_activity=mean_activity) def initialize_features(self, match_ids=None, shared_features=None): """ The internal attribute `_original_features` in this function denotes whether this instance of the FullGuassian2d learns the original features (True) or if it uses a copy of the features from another instance of FullGaussian2d via the `shared_features` (False). If it uses a copy, the feature_l1 regularizer for this copy will return 0 """ c, w, h = self.in_shape if match_ids is not None: assert self.outdims == len(match_ids) n_match_ids = len(np.unique(match_ids)) if shared_features is not None: assert shared_features.shape == ( n_match_ids, c, ), f"shared features need to have shape ({n_match_ids}, {c})" self._features = shared_features self._original_features = False else: self._features = nn.Parameter( torch.Tensor(n_match_ids, c) ) # feature weights for each channel of the core self.scales = nn.Parameter(torch.Tensor(self.outdims, 1)) # feature weights for each channel of the core _, sharing_idx = np.unique(match_ids, return_inverse=True) self.register_buffer("feature_sharing_index", torch.from_numpy(sharing_idx)) self._shared_features = True else: self._features = nn.Parameter(torch.Tensor(self.outdims, c)) # feature weights for each channel of the core self._shared_features = False # Classes for backwards compatibility
35.889474
120
0.60698
08f7015d2835dcc1e926fd4acbcfff51249816e9
1,186
py
Python
app/main/views.py
josphat-otieno/news-app
e6ff307230bd2cab787489fca4850004cd9bdbd0
[ "MIT" ]
null
null
null
app/main/views.py
josphat-otieno/news-app
e6ff307230bd2cab787489fca4850004cd9bdbd0
[ "MIT" ]
null
null
null
app/main/views.py
josphat-otieno/news-app
e6ff307230bd2cab787489fca4850004cd9bdbd0
[ "MIT" ]
1
2022-02-28T22:33:33.000Z
2022-02-28T22:33:33.000Z
from flask import render_template,request, redirect, url_for from . import main from ..requests import get_articles, get_news_sources,get_top_headlines, get_news_category
34.882353
120
0.729342
08f715599ebdccb7db7f9153cc150737106850d8
6,904
py
Python
fabric_cf/actor/core/util/resource_count.py
fabric-testbed/ActorBase
3c7dd040ee79fef0759e66996c93eeec57c790b2
[ "MIT" ]
null
null
null
fabric_cf/actor/core/util/resource_count.py
fabric-testbed/ActorBase
3c7dd040ee79fef0759e66996c93eeec57c790b2
[ "MIT" ]
67
2020-12-21T15:39:49.000Z
2022-02-27T17:55:00.000Z
fabric_cf/actor/core/util/resource_count.py
fabric-testbed/ControlFramework
95ab745e32f15c993bc7a017aa97a5a0f67f210f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # MIT License # # Copyright (c) 2020 FABRIC Testbed # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # # Author: Komal Thareja (kthare10@renci.org) from fabric_cf.actor.core.util.resource_type import ResourceType
33.033493
119
0.637167
08f958d96728940d01ac948489adc3f2710db6d4
114
py
Python
unweaver/graphs/digraphgpkg/nodes/__init__.py
jsbeckwith/unweaver
a4ba9e4e288c75e93bf7f9d67bc11680f09c3da0
[ "Apache-2.0" ]
4
2019-04-24T16:38:57.000Z
2021-12-28T20:38:08.000Z
unweaver/graphs/digraphgpkg/nodes/__init__.py
jsbeckwith/unweaver
a4ba9e4e288c75e93bf7f9d67bc11680f09c3da0
[ "Apache-2.0" ]
3
2021-06-02T04:06:33.000Z
2021-11-02T01:47:20.000Z
unweaver/graphs/digraphgpkg/nodes/__init__.py
jsbeckwith/unweaver
a4ba9e4e288c75e93bf7f9d67bc11680f09c3da0
[ "Apache-2.0" ]
1
2020-08-13T04:42:05.000Z
2020-08-13T04:42:05.000Z
from .node_view import NodeView from .node import Node from .nodes_view import NodesView from .nodes import Nodes
22.8
33
0.824561
08f98d32f073c8a759a51d5a1b5fc9a27ec1c07c
1,927
py
Python
python/http_request.py
MrVallentin/http_request
b21cb23ead1e3bc7176f09804f9cc9287b9f0168
[ "MIT" ]
null
null
null
python/http_request.py
MrVallentin/http_request
b21cb23ead1e3bc7176f09804f9cc9287b9f0168
[ "MIT" ]
null
null
null
python/http_request.py
MrVallentin/http_request
b21cb23ead1e3bc7176f09804f9cc9287b9f0168
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Author: Christian Vallentin <mail@vallentinsource.com> # Website: http://vallentinsource.com # Repository: https://github.com/MrVallentin/http_request # # Date Created: February 28, 2016 # Last Modified: February 29, 2016 # # Developed and tested using Python 3.5.1 import http.client, urllib.parse
23.790123
65
0.694862
3e92c270410556137345bdc66663f957e85d9d78
937
py
Python
notebook/pypdf2_merge_page.py
vhn0912/python-snippets
80b2e1d6b2b8f12ae30d6dbe86d25bb2b3a02038
[ "MIT" ]
174
2018-05-30T21:14:50.000Z
2022-03-25T07:59:37.000Z
notebook/pypdf2_merge_page.py
vhn0912/python-snippets
80b2e1d6b2b8f12ae30d6dbe86d25bb2b3a02038
[ "MIT" ]
5
2019-08-10T03:22:02.000Z
2021-07-12T20:31:17.000Z
notebook/pypdf2_merge_page.py
vhn0912/python-snippets
80b2e1d6b2b8f12ae30d6dbe86d25bb2b3a02038
[ "MIT" ]
53
2018-04-27T05:26:35.000Z
2022-03-25T07:59:37.000Z
import PyPDF2 merger = PyPDF2.PdfFileMerger() merger.append('data/src/pdf/sample1.pdf', pages=(0, 1)) merger.append('data/src/pdf/sample2.pdf', pages=(2, 4)) merger.merge(2, 'data/src/pdf/sample3.pdf', pages=(0, 3, 2)) merger.write('data/temp/sample_merge_page.pdf') merger.close() merger = PyPDF2.PdfFileMerger() merger.append('data/src/pdf/sample1.pdf', pages=PyPDF2.pagerange.PageRange('-1')) merger.append('data/src/pdf/sample2.pdf', pages=PyPDF2.pagerange.PageRange('2:')) merger.merge(2, 'data/src/pdf/sample3.pdf', pages=PyPDF2.pagerange.PageRange('::-1')) merger.write('data/temp/sample_merge_pagerange.pdf') merger.close() reader1 = PyPDF2.PdfFileReader('data/src/pdf/sample1.pdf') reader2 = PyPDF2.PdfFileReader('data/src/pdf/sample2.pdf') writer = PyPDF2.PdfFileWriter() writer.addPage(reader1.getPage(0)) writer.addPage(reader2.getPage(2)) with open('data/temp/sample_merge_wr.pdf', 'wb') as f: writer.write(f)
30.225806
85
0.741729
3e93e3456bdf96692c3deeb42d3cc140eb248959
1,983
py
Python
examples/nlp/bert_squad_pytorch/data.py
gh-determined-ai/determined
9a1ab33a3a356b69681b3351629fef4ab98ddb56
[ "Apache-2.0" ]
1,729
2020-04-27T17:36:40.000Z
2022-03-31T05:48:39.000Z
examples/nlp/bert_squad_pytorch/data.py
ChrisW09/determined
5c37bfe9cfcc69174ba29a3f1a115c3e9e3632e0
[ "Apache-2.0" ]
1,940
2020-04-27T17:34:14.000Z
2022-03-31T23:02:28.000Z
examples/nlp/bert_squad_pytorch/data.py
ChrisW09/determined
5c37bfe9cfcc69174ba29a3f1a115c3e9e3632e0
[ "Apache-2.0" ]
214
2020-04-27T19:57:28.000Z
2022-03-29T08:17:16.000Z
from transformers.data.processors.squad import SquadV1Processor, SquadV2Processor from transformers import squad_convert_examples_to_features import urllib.request import os
44.066667
122
0.670701
3e946fdc0458e3cc6d05239b37f7f11a04a0d076
898
py
Python
test_simplebuy.py
caoxuwen/bitgym
0a6796a039290122430ebc13c8d7ad9ff741921a
[ "MIT" ]
1
2018-09-07T10:10:29.000Z
2018-09-07T10:10:29.000Z
test_simplebuy.py
caoxuwen/bitgym
0a6796a039290122430ebc13c8d7ad9ff741921a
[ "MIT" ]
null
null
null
test_simplebuy.py
caoxuwen/bitgym
0a6796a039290122430ebc13c8d7ad9ff741921a
[ "MIT" ]
null
null
null
import random import numpy as np import pandas as pd import trading_env # np.set_printoptions(threshold=np.nan) #df = pd.read_hdf('dataset/SGXTW.h5', 'STW') #df = pd.read_hdf('dataset/SGXTWsample.h5', 'STW') df = pd.read_csv('dataset/btc_indexed2.csv') print(df.describe()) env = trading_env.make(env_id='training_v1', obs_data_len=1, step_len=1, df=df, fee=0.0, max_position=5, deal_col_name='close', sample_days=1, feature_names=['low', 'high', 'open', 'close', 'volume', 'datetime']) env.reset() env.render() state, reward, done, info = env.step(1) print state # randow choice action and show the transaction detail while True: state, reward, done, info = env.step(0) env.render() if done: print state, reward break
27.212121
77
0.587973