hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
11 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
251
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
251
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
251
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.05M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.04M
alphanum_fraction
float64
0
1
ef1beeeb227406f72c9053a339254f85199fda6b
2,062
py
Python
app/app.py
tigpt/docker-flask-postgres
ba0b192afe77e6946c8e49574def3533ea0f1181
[ "MIT" ]
null
null
null
app/app.py
tigpt/docker-flask-postgres
ba0b192afe77e6946c8e49574def3533ea0f1181
[ "MIT" ]
null
null
null
app/app.py
tigpt/docker-flask-postgres
ba0b192afe77e6946c8e49574def3533ea0f1181
[ "MIT" ]
null
null
null
from elasticapm.contrib.flask import ElasticAPM import os from flask import Flask, request, render_template from flask_migrate import Migrate from flask_sqlalchemy import SQLAlchemy APP = Flask(__name__) APP.config['ELASTIC_APM'] = { } apm = ElasticAPM(APP) APP.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False APP.config['SQLALCHEMY_DATABASE_URI'] = 'postgresql+psycopg2://%s:%s@%s/%s' % ( # ARGS.dbuser, ARGS.dbpass, ARGS.dbhost, ARGS.dbname os.environ['DBUSER'], os.environ['DBPASS'], os.environ['DBHOST'], os.environ['DBNAME'] ) # initialize the database connection DB = SQLAlchemy(APP) # initialize database migration management MIGRATE = Migrate(APP, DB) from models import * # bad query # error message # Error # Unhandled error
25.775
90
0.70805
ef1c14040a2c37814d24485011b2191f84d572dc
325
py
Python
pytify/strategy.py
EngineeringIsLife/Pytify
ae9a351144cb8f5556740d33cdf29073ffd2dc1e
[ "MIT" ]
null
null
null
pytify/strategy.py
EngineeringIsLife/Pytify
ae9a351144cb8f5556740d33cdf29073ffd2dc1e
[ "MIT" ]
null
null
null
pytify/strategy.py
EngineeringIsLife/Pytify
ae9a351144cb8f5556740d33cdf29073ffd2dc1e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from sys import platform
21.666667
58
0.630769
ef1e04b7ef6eaf43f6fa7d6f871605144e4d447e
8,836
py
Python
scrapers/meetings/fetch_meetings.py
spudmind/spud
86e44bca4efd3cd6358467e1511048698a45edbc
[ "MIT" ]
2
2015-04-11T12:22:41.000Z
2016-08-18T11:12:06.000Z
scrapers/meetings/fetch_meetings.py
spudmind/spud
86e44bca4efd3cd6358467e1511048698a45edbc
[ "MIT" ]
84
2015-01-22T14:33:49.000Z
2015-04-01T23:15:29.000Z
scrapers/meetings/fetch_meetings.py
spudmind/spud
86e44bca4efd3cd6358467e1511048698a45edbc
[ "MIT" ]
1
2015-04-16T03:10:39.000Z
2015-04-16T03:10:39.000Z
# -*- coding: utf-8 -*- from datetime import datetime import logging import os.path import requests import time import urllib from bs4 import BeautifulSoup from utils import mongo
46.26178
175
0.563943
ef20178603cd20e2dd144ff595f24f1bbc671045
282
py
Python
django_mediamosa/templatetags/mediamosa_extras.py
UGentPortaal/django-mediamosa
553a725cd02e8dd2489bf25a613c9b98155cf90d
[ "BSD-3-Clause" ]
null
null
null
django_mediamosa/templatetags/mediamosa_extras.py
UGentPortaal/django-mediamosa
553a725cd02e8dd2489bf25a613c9b98155cf90d
[ "BSD-3-Clause" ]
null
null
null
django_mediamosa/templatetags/mediamosa_extras.py
UGentPortaal/django-mediamosa
553a725cd02e8dd2489bf25a613c9b98155cf90d
[ "BSD-3-Clause" ]
null
null
null
from django import template register = template.Library()
21.692308
60
0.695035
ef21cfd36477df2859e374f71d6a0bbf86ff8519
561
py
Python
tests/settings.py
managedbyq/mbq.atomiq
23edd33e8b958cfd9257ea62a107d8bb793ff3b9
[ "Apache-2.0" ]
null
null
null
tests/settings.py
managedbyq/mbq.atomiq
23edd33e8b958cfd9257ea62a107d8bb793ff3b9
[ "Apache-2.0" ]
9
2018-09-17T20:50:43.000Z
2018-12-07T21:19:56.000Z
tests/settings.py
managedbyq/mbq.atomiq
23edd33e8b958cfd9257ea62a107d8bb793ff3b9
[ "Apache-2.0" ]
null
null
null
import os import boto3 import dj_database_url from mbq import env, metrics SECRET_KEY = 'fake-key' DEBUG = True ATOMIQ = { 'env': 'Test', 'service': 'test-service', } database_url = os.environ.get('DATABASE_URL', 'mysql://root:@mysql:3306/atomiqdb') DATABASES = { 'default': dj_database_url.parse(database_url), } INSTALLED_APPS = [ 'mbq.atomiq', ] USE_TZ = True boto3.setup_default_session( region_name='us-east-1', ) ENV = env.get_environment("ENV_NAME") metrics.init('mbq.atomiq', env=ENV, constant_tags={"env": ENV.long_name})
16.5
82
0.695187
ef246213ff135ecbc464dc2dd429de5edde34475
720
py
Python
backend/util.py
ahangchen/Rasp-Person-Sensor
77d0e41b1a80cf9012f66c7bd44f062edbc6825d
[ "MIT" ]
2
2018-02-26T10:00:29.000Z
2018-03-16T11:39:34.000Z
backend/util.py
ahangchen/Rasp-Person-Sensor
77d0e41b1a80cf9012f66c7bd44f062edbc6825d
[ "MIT" ]
null
null
null
backend/util.py
ahangchen/Rasp-Person-Sensor
77d0e41b1a80cf9012f66c7bd44f062edbc6825d
[ "MIT" ]
null
null
null
import json import requests
27.692308
83
0.708333
ef249d4819e51ded253cba64970d4792e29e13ee
4,761
py
Python
hard-gists/2338529/snippet.py
jjhenkel/dockerizeme
eaa4fe5366f6b9adf74399eab01c712cacaeb279
[ "Apache-2.0" ]
21
2019-07-08T08:26:45.000Z
2022-01-24T23:53:25.000Z
hard-gists/2338529/snippet.py
jjhenkel/dockerizeme
eaa4fe5366f6b9adf74399eab01c712cacaeb279
[ "Apache-2.0" ]
5
2019-06-15T14:47:47.000Z
2022-02-26T05:02:56.000Z
hard-gists/2338529/snippet.py
jjhenkel/dockerizeme
eaa4fe5366f6b9adf74399eab01c712cacaeb279
[ "Apache-2.0" ]
17
2019-05-16T03:50:34.000Z
2021-01-14T14:35:12.000Z
""" Tools for creating a CA cert and signed server certs. Divined from http://svn.osafoundation.org/m2crypto/trunk/tests/test_x509.py The mk_temporary_xxx calls return a NamedTemporaryFile with certs. Usage ; # Create a temporary CA cert and it's private key cacert, cakey = mk_temporary_cacert() # Create a temporary server cert+key, signed by the CA server_cert = mk_temporary_cert(cacert.name, cakey.name, '*.server.co.uk') """ from tempfile import NamedTemporaryFile as namedtmp import time from M2Crypto import X509, EVP, RSA, ASN1 __author__ = 'eskil@yelp.com' __all__ = ['mk_temporary_cacert', 'mk_temporary_cert'] def mk_ca_issuer(): """ Our default CA issuer name. """ issuer = X509.X509_Name() issuer.C = "US" issuer.CN = "ca_testing_server" issuer.ST = 'CA' issuer.L = 'San Francisco' issuer.O = 'ca_yelp' issuer.OU = 'ca_testing' return issuer def mk_cert_valid(cert, days=365): """ Make a cert valid from now and til 'days' from now. Args: cert -- cert to make valid days -- number of days cert is valid for from now. """ t = long(time.time()) now = ASN1.ASN1_UTCTIME() now.set_time(t) expire = ASN1.ASN1_UTCTIME() expire.set_time(t + days * 24 * 60 * 60) cert.set_not_before(now) cert.set_not_after(expire) def mk_request(bits, cn='localhost'): """ Create a X509 request with the given number of bits in they key. Args: bits -- number of RSA key bits cn -- common name in the request Returns a X509 request and the private key (EVP) """ pk = EVP.PKey() x = X509.Request() rsa = RSA.gen_key(bits, 65537, lambda: None) pk.assign_rsa(rsa) x.set_pubkey(pk) name = x.get_subject() name.C = "US" name.CN = cn name.ST = 'CA' name.O = 'yelp' name.OU = 'testing' x.sign(pk,'sha1') return x, pk def mk_cacert(): """ Make a CA certificate. Returns the certificate, private key and public key. """ req, pk = mk_request(1024) pkey = req.get_pubkey() cert = X509.X509() cert.set_serial_number(1) cert.set_version(2) mk_cert_valid(cert) cert.set_issuer(mk_ca_issuer()) cert.set_subject(cert.get_issuer()) cert.set_pubkey(pkey) cert.add_ext(X509.new_extension('basicConstraints', 'CA:TRUE')) cert.add_ext(X509.new_extension('subjectKeyIdentifier', cert.get_fingerprint())) cert.sign(pk, 'sha1') return cert, pk, pkey def mk_cert(): """ Make a certificate. Returns a new cert. """ cert = X509.X509() cert.set_serial_number(2) cert.set_version(2) mk_cert_valid(cert) cert.add_ext(X509.new_extension('nsComment', 'SSL sever')) return cert def mk_casigned_cert(): """ Create a CA cert + server cert + server private key. """ # unused, left for history. cacert, pk1, _ = mk_cacert() cert_req, pk2 = mk_request(1024, cn='testing_server') cert = mk_cert(cacert) cert.set_subject(cert_req.get_subject()) cert.set_pubkey(cert_req.get_pubkey()) cert.sign(pk1, 'sha1') return cacert, cert, pk2 def mk_temporary_cacert(): """ Create a temporary CA cert. Returns a tuple of NamedTemporaryFiles holding the CA cert and private key. """ cacert, pk1, pkey = mk_cacert() cacertf = namedtmp() cacertf.write(cacert.as_pem()) cacertf.flush() pk1f = namedtmp() pk1f.write(pk1.as_pem(None)) pk1f.flush() return cacertf, pk1f def mk_temporary_cert(cacert_file, ca_key_file, cn): """ Create a temporary certificate signed by the given CA, and with the given common name. If cacert_file and ca_key_file is None, the certificate will be self-signed. Args: cacert_file -- file containing the CA certificate ca_key_file -- file containing the CA private key cn -- desired common name Returns a namedtemporary file with the certificate and private key """ cert_req, pk2 = mk_request(1024, cn=cn) if cacert_file and ca_key_file: cacert = X509.load_cert(cacert_file) pk1 = EVP.load_key(ca_key_file) else: cacert = None pk1 = None cert = mk_cert() cert.set_subject(cert_req.get_subject()) cert.set_pubkey(cert_req.get_pubkey()) if cacert and pk1: cert.set_issuer(cacert.get_issuer()) cert.sign(pk1, 'sha1') else: cert.set_issuer(cert.get_subject()) cert.sign(pk2, 'sha1') certf = namedtmp() certf.write(cert.as_pem()) certf.write(pk2.as_pem(None)) certf.flush() return certf if __name__ == '__main__': cacert, cert, pk = mk_casigned_cert() with open('cacert.crt', 'w') as f: f.write(cacert.as_pem()) with open('cert.crt', 'w') as f: f.write(cert.as_pem()) f.write(pk.as_pem(None)) # Sanity checks... cac = X509.load_cert('cacert.crt') print cac.verify(), cac.check_ca() cc = X509.load_cert('cert.crt') print cc.verify(cac.get_pubkey()) # protips # openssl verify -CAfile cacert.crt cacert.crt cert.crt # openssl x509 -in cert.crt -noout -text # openssl x509 -in cacert.crt -noout -text
23.924623
87
0.710985
ef25471191ad1db593810b69150f45edb9dc331e
2,615
py
Python
WickContractions/ops/indexed.py
chrisculver/WickContractions
a36af32bdd049789faf42d24d168c4073fc45ed0
[ "MIT" ]
2
2021-08-03T17:32:09.000Z
2021-08-03T18:28:31.000Z
WickContractions/ops/indexed.py
chrisculver/WickContractions
a36af32bdd049789faf42d24d168c4073fc45ed0
[ "MIT" ]
null
null
null
WickContractions/ops/indexed.py
chrisculver/WickContractions
a36af32bdd049789faf42d24d168c4073fc45ed0
[ "MIT" ]
null
null
null
from collections import deque
30.406977
111
0.549522
ef25c53ea4c0fb58041ed1cd6cded53b4e340d23
10,942
py
Python
v0/aia_eis_v0/ml_sl/rf/dt_main.py
DreamBoatOve/aia_eis
458b4d29846669b10db4da1b3e86c0b394614ceb
[ "MIT" ]
1
2022-03-02T12:57:19.000Z
2022-03-02T12:57:19.000Z
v0/aia_eis_v0/ml_sl/rf/dt_main.py
DreamBoatOve/aia_eis
458b4d29846669b10db4da1b3e86c0b394614ceb
[ "MIT" ]
null
null
null
v0/aia_eis_v0/ml_sl/rf/dt_main.py
DreamBoatOve/aia_eis
458b4d29846669b10db4da1b3e86c0b394614ceb
[ "MIT" ]
null
null
null
import copy from utils.file_utils.dataset_reader_pack.ml_dataset_reader import get_TV_T_dataset, get_T_V_T_dataset from ml_sl.rf.dt_0 import Node, save_node, load_node from ml_sl.ml_data_wrapper import pack_list_2_list, single_point_list_2_list, reform_labeled_dataset_list from ml_sl.ml_data_wrapper import split_labeled_dataset_list from utils.file_utils.filename_utils import get_date_prefix from ml_sl.ml_critrions import cal_accuracy, cal_kappa, cal_accuracy_on_2, cal_accuracy_on_3 label_list = [2, 4, 5, 6, 7, 8, 9] # Import dataset (Training, validation, Test) ml_dataset_pickle_file_path = '../../datasets/ml_datasets/normed' tr_dataset, va_dataset, te_dataset = get_T_V_T_dataset(file_path=ml_dataset_pickle_file_path) tr_va_dataset, test_dataset = get_TV_T_dataset(file_path=ml_dataset_pickle_file_path) tr_label_list, tr_data_list = split_labeled_dataset_list(tr_dataset) va_label_list, va_data_list = split_labeled_dataset_list(va_dataset) tr_va_label_list, tr_va_data_list = split_labeled_dataset_list(tr_va_dataset) te_label_list, te_data_list = split_labeled_dataset_list(te_dataset) # --------------------- 1-No Pruning --------------------- #------------- Train on tr, tested on va #------------- # acc,kappa = dt_no_pruning(training_dataset=tr_dataset, validation_dataset=[], test_dataset=tr_dataset) # print(acc,kappa) # --> 1.0 1.0 #------------- Train on tr, tested on va #------------- # if __name__ == '__main__': # training_dataset, validation_dataset, test_dataset = get_T_V_T_dataset(file_path='../../datasets/ml_datasets/normed') # Running condition-1 # acc, kappa = dt_no_pruning(training_dataset, validation_dataset, test_dataset) # print('Accuracy: {0}, Kappa: {1}'.format(acc, kappa)) # Running condition-2 # acc, kappa = dt_no_pruning(training_dataset, validation_dataset=[], test_dataset=validation_dataset) # print('Accuracy: {0}, Kappa: {1}'.format(acc, kappa)) """ Running condition-1 Train on [Training+validation]-dataset Test on test-dataset 1-Accuracy: 0.45054945054945056, Kappa: 0.3173293323330833 2-Accuracy: 0.45054945054945056, Kappa: 0.3173293323330833 Running condition-2 Train on [Training]-dataset Test on validation-dataset 1-Accuracy: 0.5319148936170213, Kappa: 0.42762247439800716 2-Accuracy: 0.5319148936170213, Kappa: 0.42762247439800716 """ # training_dataset, validation_dataset, test_dataset = get_T_V_T_dataset(file_path='../../datasets/ml_datasets/normed') # load_dt_no_pruning(training_dataset, validation_dataset, test_dataset, label_list=[2,4,5,6,7,8,9]) # Decision Tree with no pruning: Accuracy on 1 = 0.4945054945054945, Accuracy on 2 = 0.5164835164835165, # Accuracy on 3 = 0.6923076923076923, Kappa=0.3706209592542475 # --------------------- 1-No Pruning --------------------- """ EA-Revise EA-Revise, DTGS no pruning / posterior pruning,DTGSFinal res DT final config no pruning tr+va te """ # dtFinalRes() """ node = pickle.load(file) ModuleNotFoundError: No module named 'ml_sl' Final res: trVaAcc=0.9163568773234201, trVaKappa=0.897055384288296, trVaAK=1.813412261611716, teAcc=0.4945054945054945, teKappa=0.3706209592542475, teAK=0.8651264537597421 """ # --------------------- 2-Pruning --------------------- # if __name__ == '__main__': # training_dataset, validation_dataset, test_dataset = get_T_V_T_dataset(file_path='../../datasets/ml_datasets/normed') # acc, kappa = dt_pruning(training_dataset, validation_dataset, test_dataset, label_list=[2, 4, 5, 6, 7, 8, 9]) # print('Accuracy: {0}, Kappa: {1}'.format(acc, kappa)) """ 1- Accuracy: 0.4835164835164835, Kappa: 0.3591549295774648 2- Accuracy: 0.4835164835164835, Kappa: 0.3591549295774648 """ # training_dataset, validation_dataset, test_dataset = get_T_V_T_dataset(file_path='../../datasets/ml_datasets/normed') # load_dt_pruning(test_dataset, label_list=[2,4,5,6,7,8,9]) # Decision Tree with pruning: Accuracy on 1 = 0.4835164835164835, Accuracy on 2 = 0.5054945054945055, # Accuracy on 3 = 0.6703296703296703, Kappa = 0.3591549295774648 # --------------------- 2-Pruning ---------------------
46.961373
123
0.732681
ef29d7cb4df5849c15653808babb4473a2403757
874
py
Python
python/sagiri-bot/SAGIRIBOT/data_manage/update_data/update_setting.py
GG-yuki/bugs
aabd576e9e57012a3390007af890b7c6ab6cdda8
[ "MIT" ]
null
null
null
python/sagiri-bot/SAGIRIBOT/data_manage/update_data/update_setting.py
GG-yuki/bugs
aabd576e9e57012a3390007af890b7c6ab6cdda8
[ "MIT" ]
null
null
null
python/sagiri-bot/SAGIRIBOT/data_manage/update_data/update_setting.py
GG-yuki/bugs
aabd576e9e57012a3390007af890b7c6ab6cdda8
[ "MIT" ]
null
null
null
from SAGIRIBOT.basics.aio_mysql_excute import execute_sql
31.214286
105
0.662471
ef2afd3b3d3cc23390816b111f6a8ec32454a594
486
py
Python
setup.py
fmaida/caro-diario
adc5018f2ef716b49db39aa9189ab1e803fcd357
[ "MIT" ]
null
null
null
setup.py
fmaida/caro-diario
adc5018f2ef716b49db39aa9189ab1e803fcd357
[ "MIT" ]
null
null
null
setup.py
fmaida/caro-diario
adc5018f2ef716b49db39aa9189ab1e803fcd357
[ "MIT" ]
null
null
null
from distutils.core import setup setup( name = 'caro-diario', packages = ['caro-diario'], # this must be the same as the name above version = '0.1', description = 'Diario', author = 'Francesco Maida', author_email = 'francesco.maida@gmail.com', url = 'https://github.com/fmaida/caro-diario.git', # use the URL to the github repo download_url = '', # I'll explain this in a second keywords = ['diario', 'logging', 'esempio'], # arbitrary keywords classifiers = [], )
34.714286
85
0.67284
ef2c168f7b4d969663dc1ed93f01785a68c36dd1
3,695
py
Python
cVQE/operators/converters/tensoredop_distributor.py
gblazq/cVQE
5a566103c35696ec0cf2b016c38d71de696e0e29
[ "Apache-2.0" ]
1
2021-09-16T12:43:21.000Z
2021-09-16T12:43:21.000Z
cVQE/operators/converters/tensoredop_distributor.py
gblazq/cVQE
5a566103c35696ec0cf2b016c38d71de696e0e29
[ "Apache-2.0" ]
null
null
null
cVQE/operators/converters/tensoredop_distributor.py
gblazq/cVQE
5a566103c35696ec0cf2b016c38d71de696e0e29
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Guillermo Blzquez # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import reduce from qiskit.aqua.operators.converters import ConverterBase from qiskit.aqua.operators.list_ops import TensoredOp, SummedOp from qiskit.aqua.operators.primitive_ops import PauliOp
43.988095
131
0.677402
ef313c50d5c6317ec48b8b4af0c2b6702fb01991
8,027
py
Python
tests/test_core_deformation.py
matmodlab/matmodlab2
97bb858e2b625cca5f3291db5d50bdbb6352e976
[ "BSD-3-Clause" ]
6
2017-02-14T02:04:56.000Z
2022-02-03T04:53:32.000Z
tests/test_core_deformation.py
tjfulle/matmodlab2
97bb858e2b625cca5f3291db5d50bdbb6352e976
[ "BSD-3-Clause" ]
10
2017-01-21T00:00:06.000Z
2017-01-22T07:39:44.000Z
tests/test_core_deformation.py
tjfulle/matmodlab2
97bb858e2b625cca5f3291db5d50bdbb6352e976
[ "BSD-3-Clause" ]
3
2018-10-20T22:53:59.000Z
2022-01-13T07:17:24.000Z
# -*- coding: utf-8 -*- """ This file contains tests for tensor.py """ import sys import pathlib import pytest import numpy as np from testing_utils import isclose # Ensure that 'matmodlab2' is imported from parent directory. sys.path.insert(0, str(pathlib.Path(__file__).absolute().parent.parent)) import matmodlab2 import matmodlab2.core.deformation as df deformation_measures_db = [ {"name": "Uniaxial Extension", "eps": np.array([0.042857142857142857143,0,0,0,0,0]), "depsdt": np.array([0.10000000000000000000,0,0,0,0,0]), "subtests": [ { "k": 2, "u": np.array([1.0419761445034553738,1.0000000000000000000,1.0000000000000000000,0,0,0]), "dudt": np.array([0.095971486993739310740,0,0,0,0,0]), "d": np.array([0.092105263157894736842,0,0,0,0,0]), }, { "k": 1, "u": np.array([1.0428571428571428571,1.0000000000000000000,1.0000000000000000000,0,0,0]), "dudt": np.array([0.10000000000000000000,0,0,0,0,0]), "d": np.array([0.095890410958904109589,0,0,0,0,0]), }, { "k": 0, "u": np.array([1.0437887715175541853,1.0000000000000000000,1.0000000000000000000,0,0,0]), "dudt": np.array([0.10437887715175541853,0,0,0,0,0]), "d": np.array([0.10000000000000000000,0,0,0,0,0]), }, { "k": -1, "u": np.array([1.0447761194029850746,1.0000000000000000000,1.0000000000000000000,0,0,0]), "dudt": np.array([0.10915571396747605257,0,0,0,0,0]), "d": np.array([0.10447761194029850746,0,0,0,0,0]), }, { "k": -2, "u": np.array([1.0458250331675944350,1.0000000000000000000,1.0000000000000000000,0,0,0]), "dudt": np.array([0.11438711300270564133,0,0,0,0,0]), "d": np.array([0.10937500000000000000,0,0,0,0,0]), }, ], }, {"name": "Uniaxial Extension with rotation", "eps": np.array([0.026196877156206737235,0.016660265700936119908,0,0.020891312403896220150,0,0]), "depsdt": np.array([-0.0045059468741139683829,0.10450594687411396838,0,0.063726469853100399588,0,0]), "subtests": [ { "k": 2, "u": np.array([1.0256583576911247384,1.0163177868123306353,1.0000000000000000000,0.020461857461098139159,0,0]), "dudt": np.array([-0.0056192451222061811013,0.10159073211594549184,0,0.061454775148472809312,0,0]), "d": np.array([-0.0066876940055755266344,0.098792957163470263477,0,0.059274595960483676859,0,0]), }, { "k": 1, "u": np.array([1.0261968771562067372,1.0166602657009361199,1.0000000000000000000,0.020891312403896220150,0,0]), "dudt": np.array([-0.0045059468741139683829,0.10450594687411396838,0,0.063726469853100399588,0,0]), "d": np.array([-0.0056693735828201687630,0.10155978454172427835,0,0.061415383576480024658,0,0]), }, { "k": 0, "u": np.array([1.0267663449262200007,1.0170224265913341846,1.0000000000000000000,0.021345447796308002806,0,0]), "dudt": np.array([-0.0032560207940279426371,0.10763489794578336117,0,0.066186651517750065998,0,0]), "d": np.array([-0.0045260401459293278687,0.10452604014592932787,0,0.063731056011271402912,0,0]), }, { "k": -1, "u": np.array([1.0273698716557383822,1.0174062477472466924,1.0000000000000000000,0.021826744302578140456,0,0]), "dudt": np.array([-0.0018481668596687927090,0.11100388082714484528,0,0.068860299997538432155,0,0]), "d": np.array([-0.0032383326989564664762,0.10771594463925497394,0,0.066244519079865882721,0,0]), }, { "k": -2, "u": np.array([1.0280110311733133167,1.0178140019942811183,1.0000000000000000000,0.022338051955872830687,0,0]), "dudt": np.array([-0.00025673980976010909772,0.11464385281246575042,0,0.071777050608761226760,0,0]), "d": np.array([-0.0017829682784827673453,0.11115796827848276735,0,0.068982906840537447349,0,0]), }, ], }, ] def test_deformation_measures_from_strain_dissertation_test(): """ Verify that we are converting from strain to D correctly. """ a = 0.5 t = 0.1 # Setup (inputs) st = np.sin(np.pi * t) ct = np.cos(np.pi * t) sht = np.sinh(a * t) eat = np.exp(a * t) eps = np.array([a * t * np.cos(np.pi * t / 2.0) ** 2, a * t * np.sin(np.pi * t / 2.0) ** 2, 0.0, a * t * np.sin(np.pi * t) / 2.0, 0.0, 0.0]) depsdt = np.array([a / 2.0 * (1.0 + ct - np.pi * t * st), a / 2.0 * (1.0 - ct + np.pi * t * st), 0.0, a / 2.0 * (np.pi * t * ct + st), 0.0, 0.0]) # Setup (expected outputs) d_g = np.array([(a + a * ct - np.pi * st * sht) / 2.0, (a - a * ct + np.pi * st * sht) / 2.0, 0.0, (a * st + np.pi * ct * sht) / 2.0, 0.0, 0.0]) # Test d = df.rate_of_strain_to_rate_of_deformation(depsdt, eps, 0) assert vec_isclose("D", d, d_g) # Teardown pass def test_deformation_measures_from_strain_dissertation_static(): """ Verify that we are converting from strain to D correctly. """ # Setup (inputs) eps=np.array([2.6634453918413015230,0.13875241035650067478,0,0.60791403008229297100,0,0]) depsdt=np.array([-0.66687706806142212351,1.9745693757537298158,0,4.2494716756395844993,0,0]) # Setup (expected outputs) d_g=np.array([-4.3525785227788080461,5.6602708304711157384,0,11.902909607738023219,0,0]) # Test d = df.rate_of_strain_to_rate_of_deformation(depsdt, eps, 0) assert vec_isclose("D", d, d_g) # Teardown pass
38.042654
123
0.590133
ef3678c7e21e6c165bc6c6b597bc9cfc9cfa52bc
10,380
py
Python
examples/tutorial/example4.py
sathiscode/trumania
bcf21c4f9e1ff0fe03fd9cbe2dc367f0df033fbc
[ "Apache-2.0" ]
97
2018-01-15T19:29:31.000Z
2022-03-11T00:27:34.000Z
examples/tutorial/example4.py
sathiscode/trumania
bcf21c4f9e1ff0fe03fd9cbe2dc367f0df033fbc
[ "Apache-2.0" ]
10
2018-01-15T22:44:55.000Z
2022-02-18T09:44:10.000Z
examples/tutorial/example4.py
sathiscode/trumania
bcf21c4f9e1ff0fe03fd9cbe2dc367f0df033fbc
[ "Apache-2.0" ]
33
2018-01-15T19:34:23.000Z
2022-03-05T22:39:33.000Z
from trumania.core import circus import trumania.core.population as population import trumania.core.random_generators as gen import trumania.core.operations as ops import trumania.core.story as story import trumania.components.time_patterns.profilers as profilers import trumania.core.util_functions as util_functions import trumania.components.db as DB import pandas as pd # each step?() function below implement one step of the fourth example of the # tutorial documented at # https://realimpactanalytics.atlassian.net/wiki/display/LM/Data+generator+tutorial # this is essentially a modification of example3, with some supplementary # features demonstrating persistence if __name__ == "__main__": util_functions.setup_logging() step2()
34.832215
87
0.657225
ef377a0c8139bd037fffc10567802d319f904716
1,104
py
Python
Hackerrank/Python/class-1-dealing-with-complex-numbers.py
PROxZIMA/Competitive-Coding
ba6b365ea130b6fcaa15c5537b530ed363bab793
[ "MIT" ]
1
2021-01-10T13:29:21.000Z
2021-01-10T13:29:21.000Z
Hackerrank/Python/class-1-dealing-with-complex-numbers.py
PROxZIMA/Competitive-Coding
ba6b365ea130b6fcaa15c5537b530ed363bab793
[ "MIT" ]
null
null
null
Hackerrank/Python/class-1-dealing-with-complex-numbers.py
PROxZIMA/Competitive-Coding
ba6b365ea130b6fcaa15c5537b530ed363bab793
[ "MIT" ]
null
null
null
import math if __name__ == '__main__': c = map(float, input().split()) d = map(float, input().split()) x = Complex(*c) y = Complex(*d) print(*map(str, [x+y, x-y, x*y, x/y, x.mod(), y.mod()]), sep='\n')
33.454545
130
0.588768
ef3d18dad9fb4f3ea7850ca0af729153b0fd6bb6
1,828
py
Python
hyperparameter_tuner/run_command_generator.py
chutien/zpp-mem
470dec89dda475f7272b876f191cef9f8266a6dc
[ "MIT" ]
1
2019-10-22T11:33:23.000Z
2019-10-22T11:33:23.000Z
hyperparameter_tuner/run_command_generator.py
chutien/zpp-mem
470dec89dda475f7272b876f191cef9f8266a6dc
[ "MIT" ]
null
null
null
hyperparameter_tuner/run_command_generator.py
chutien/zpp-mem
470dec89dda475f7272b876f191cef9f8266a6dc
[ "MIT" ]
null
null
null
from itertools import product from hyperparameter_tuner.single_parameter_generator import single_parameter_generator as sgen if __name__ == '__main__': commands = default_commands_generator() for c in commands: print(c)
46.871795
116
0.650438
ef3d7706ee027142a3cc848598e7a4e1a2e3f600
1,718
py
Python
utils/storage/redisPSCO/python/storage/storage_object.py
TANGO-Project/compss-tango
d9e007b6fe4f8337d4f267f95f383d8962602ab8
[ "Apache-2.0" ]
3
2018-03-05T14:52:22.000Z
2019-02-08T09:58:24.000Z
utils/storage/redisPSCO/python/storage/storage_object.py
TANGO-Project/compss-tango
d9e007b6fe4f8337d4f267f95f383d8962602ab8
[ "Apache-2.0" ]
null
null
null
utils/storage/redisPSCO/python/storage/storage_object.py
TANGO-Project/compss-tango
d9e007b6fe4f8337d4f267f95f383d8962602ab8
[ "Apache-2.0" ]
null
null
null
# # Copyright 2017 Barcelona Supercomputing Center (www.bsc.es) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # '''Redis Storage Object implementation for the PyCOMPSs Python Binding @author: srodrig1 ''' import uuid import storage.api '''Add support for camelCase ''' StorageObject = storage_object
28.163934
75
0.679278
ef3ec4855031980afb1650987b97c64ce63c1807
5,476
py
Python
origin_response_test.py
dnsinogeorgos/lambdas
4294089b311585c18e101e776aa2e8ca211413cd
[ "Apache-2.0" ]
null
null
null
origin_response_test.py
dnsinogeorgos/lambdas
4294089b311585c18e101e776aa2e8ca211413cd
[ "Apache-2.0" ]
null
null
null
origin_response_test.py
dnsinogeorgos/lambdas
4294089b311585c18e101e776aa2e8ca211413cd
[ "Apache-2.0" ]
null
null
null
# pylint: disable=C0114 import unittest from origin_response import lambda_handler event = { "Records": [ { "cf": { "config": {"requestId": "thisfakeidisthisfakeidisthisfakeidis"}, "request": {"uri": ""}, "response": {"headers": {}, "status": 0}, } } ] } if __name__ == "__main__": unittest.main()
58.255319
974
0.626004
ef3f29141380c4970504779ca0adbe37edfcc48e
377
py
Python
lang/Python/abstract-type-2.py
ethansaxenian/RosettaDecode
8ea1a42a5f792280b50193ad47545d14ee371fb7
[ "MIT" ]
null
null
null
lang/Python/abstract-type-2.py
ethansaxenian/RosettaDecode
8ea1a42a5f792280b50193ad47545d14ee371fb7
[ "MIT" ]
null
null
null
lang/Python/abstract-type-2.py
ethansaxenian/RosettaDecode
8ea1a42a5f792280b50193ad47545d14ee371fb7
[ "MIT" ]
null
null
null
from abc import ABCMeta, abstractmethod
17.136364
39
0.594164
ef4114aeaf1e0c3215bf5aee9d278bc0e2171dca
338
py
Python
apps/permissions/router.py
yhkl-dev/JAutoOps
e42342fc6d814813dcac2e0154cd5dfdc1adf4c1
[ "MIT" ]
null
null
null
apps/permissions/router.py
yhkl-dev/JAutoOps
e42342fc6d814813dcac2e0154cd5dfdc1adf4c1
[ "MIT" ]
null
null
null
apps/permissions/router.py
yhkl-dev/JAutoOps
e42342fc6d814813dcac2e0154cd5dfdc1adf4c1
[ "MIT" ]
null
null
null
from rest_framework.routers import DefaultRouter from .views import PermissionsViewset, GroupPermissionsViewset permission_router = DefaultRouter() permission_router.register(r'permissions', PermissionsViewset, basename="permissions") permission_router.register(r'grouppermissions', GroupPermissionsViewset, basename="grouppermissions")
48.285714
101
0.866864
ef41254ab69ff27661576195222b554a1c94e4da
6,158
py
Python
src/inscriptis/model/canvas/__init__.py
rlskoeser/inscriptis
e23f79a4ad561f53943c3c6dd70a7d4981b0e0fb
[ "Apache-2.0" ]
90
2016-01-29T15:09:21.000Z
2022-03-08T15:08:57.000Z
src/inscriptis/model/canvas/__init__.py
rlskoeser/inscriptis
e23f79a4ad561f53943c3c6dd70a7d4981b0e0fb
[ "Apache-2.0" ]
27
2016-01-14T10:30:10.000Z
2022-03-24T08:00:31.000Z
src/inscriptis/model/canvas/__init__.py
rlskoeser/inscriptis
e23f79a4ad561f53943c3c6dd70a7d4981b0e0fb
[ "Apache-2.0" ]
20
2016-01-14T12:50:55.000Z
2022-03-04T07:26:30.000Z
#!/usr/bin/env python # encoding: utf-8 """Classes used for rendering (parts) of the canvas. Every parsed :class:`~inscriptis.model.html_element.HtmlElement` writes its textual content to the canvas which is managed by the following three classes: - :class:`Canvas` provides the drawing board on which the HTML page is serialized and annotations are recorded. - :class:`~inscriptis.model.canvas.block.Block` contains the current line to which text is written. - :class:`~inscriptis.model.canvas.prefix.Prefix` handles indentation and bullets that prefix a line. """ from inscriptis.annotation import Annotation from inscriptis.html_properties import WhiteSpace, Display from inscriptis.model.canvas.block import Block from inscriptis.model.html_element import HtmlElement from inscriptis.model.canvas.prefix import Prefix
38.248447
79
0.636733
ef4351fb100c957415ebe720f79b5a02ebc2c300
9,324
py
Python
tests/webtests/test_admin.py
zodman/ZoomFoundry
87a69f519a2ab6b63aeec0a564ce41259e64f88d
[ "MIT" ]
8
2017-04-10T09:53:15.000Z
2020-08-16T09:53:14.000Z
tests/webtests/test_admin.py
zodman/ZoomFoundry
87a69f519a2ab6b63aeec0a564ce41259e64f88d
[ "MIT" ]
49
2017-04-13T22:51:48.000Z
2019-08-15T22:53:25.000Z
tests/webtests/test_admin.py
zodman/ZoomFoundry
87a69f519a2ab6b63aeec0a564ce41259e64f88d
[ "MIT" ]
12
2017-04-11T04:16:47.000Z
2019-08-10T21:41:54.000Z
# -*- coding: utf-8 -*- """ zoom.tests.webdriver_tests.test_admin test admin app functions """ from zoom.testing.webtest import AdminTestCase
30.976744
88
0.569284
ef44efdf1df1a7a380310f517a87f13a57e2f804
1,832
py
Python
server/app.py
Catsvilles/Lofi
f3a783a5ba3e80e6c8f958990f6f09767d25a48e
[ "Apache-2.0" ]
27
2021-07-14T17:12:29.000Z
2022-03-18T16:15:18.000Z
server/app.py
Catsvilles/Lofi
f3a783a5ba3e80e6c8f958990f6f09767d25a48e
[ "Apache-2.0" ]
3
2021-08-29T11:22:04.000Z
2022-02-16T23:20:04.000Z
server/app.py
Catsvilles/Lofi
f3a783a5ba3e80e6c8f958990f6f09767d25a48e
[ "Apache-2.0" ]
4
2021-07-25T09:55:09.000Z
2022-03-25T17:16:18.000Z
import json import torch from flask import Flask, request, jsonify from flask_limiter import Limiter from flask_limiter.util import get_remote_address from model.lofi2lofi_model import Decoder as Lofi2LofiDecoder from model.lyrics2lofi_model import Lyrics2LofiModel from server.lofi2lofi_generate import decode from server.lyrics2lofi_predict import predict device = "cpu" app = Flask(__name__) limiter = Limiter( app, key_func=get_remote_address, default_limits=["30 per minute"] ) lofi2lofi_checkpoint = "checkpoints/lofi2lofi_decoder.pth" print("Loading lofi model...", end=" ") lofi2lofi_model = Lofi2LofiDecoder(device=device) lofi2lofi_model.load_state_dict(torch.load(lofi2lofi_checkpoint, map_location=device)) print(f"Loaded {lofi2lofi_checkpoint}.") lofi2lofi_model.to(device) lofi2lofi_model.eval() lyrics2lofi_checkpoint = "checkpoints/lyrics2lofi.pth" print("Loading lyrics2lofi model...", end=" ") lyrics2lofi_model = Lyrics2LofiModel(device=device) lyrics2lofi_model.load_state_dict(torch.load(lyrics2lofi_checkpoint, map_location=device)) print(f"Loaded {lyrics2lofi_checkpoint}.") lyrics2lofi_model.to(device) lyrics2lofi_model.eval()
29.548387
90
0.771288
ef473c6a7f8ab89bcd75652de804e2198dfb2d97
1,153
py
Python
cw-bitcoin-price.py
buraktokman/Crypto-Exchange-Data-Fetcher
23e6ba542ff7a862af3247db2c04c2c10a5f3edf
[ "MIT" ]
1
2021-08-09T07:22:25.000Z
2021-08-09T07:22:25.000Z
cw-bitcoin-price.py
buraktokman/Crypto-Exchange-Data-Fetcher
23e6ba542ff7a862af3247db2c04c2c10a5f3edf
[ "MIT" ]
null
null
null
cw-bitcoin-price.py
buraktokman/Crypto-Exchange-Data-Fetcher
23e6ba542ff7a862af3247db2c04c2c10a5f3edf
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 ''' Cryptowat.ch API https://cryptowat.ch/docs/api https://api.cryptowat.ch/markets/prices ''' import urllib.request, json, datetime, time from urllib.request import urlopen from pathlib import Path csv_file_price = Path(__file__).parents[0] / 'data' / 'cryptowatch-bitcoin-price2.csv' if __name__ == '__main__': #main() while True: now = datetime.datetime.now() while (now.second % 5): now = datetime.datetime.now() print(now.second) time.sleep(0.5) main()
26.813953
86
0.633998
ef477b67fc29e51e58555a187fcad861bf802178
3,516
py
Python
Actor_critic/actor_critic_test.py
aniketSanap/RL-session
68243121277c24509585f51fd01f53fe8d41f119
[ "MIT" ]
null
null
null
Actor_critic/actor_critic_test.py
aniketSanap/RL-session
68243121277c24509585f51fd01f53fe8d41f119
[ "MIT" ]
null
null
null
Actor_critic/actor_critic_test.py
aniketSanap/RL-session
68243121277c24509585f51fd01f53fe8d41f119
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """actor_critic.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/17Gpya9yswf-xonOvKhoHpmQGhCYpq8x4 """ # !pip install box2d-py # !pip install gym[Box_2D] import torch from torch import nn from torch.nn import functional as F import numpy as np import gym import os agent = Agent() agent.play() torch.save(agent.ac_network.state_dict(), agent.MODEL_PATH)
32.859813
103
0.593003
ef488748bc20e35c68916d75dae55ef743e1069d
6,145
py
Python
python/orz/sta2json.py
ViewFaceCore/OpenRoleZoo
19cef3cdc5238374cedcf7068dc7a6ad8448c21b
[ "BSD-2-Clause" ]
null
null
null
python/orz/sta2json.py
ViewFaceCore/OpenRoleZoo
19cef3cdc5238374cedcf7068dc7a6ad8448c21b
[ "BSD-2-Clause" ]
null
null
null
python/orz/sta2json.py
ViewFaceCore/OpenRoleZoo
19cef3cdc5238374cedcf7068dc7a6ad8448c21b
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python # coding: UTF-8 import os import struct from .sta import * import json import copy import base64 from collections import OrderedDict def unpack_obj(stream, **kwargs): """ Convert an stream(sta format) to object(json format) :param stream: Stream of binary sta file :param workshop: path to write binary file :param getway: the getway to all values :param binary_mode: 0(default): means write @base64@... 1: means @file@path 2: means write @binary@size 3: means str for binary memory :return: unpacked object """ mark = struct.unpack('=b', stream.read(1))[0] if mark == STA_NIL: return unpack_nil(stream, **kwargs) elif mark == STA_INT: return unpack_int(stream, **kwargs) elif mark == STA_FLOAT: return unpack_float(stream, **kwargs) elif mark == STA_STRING: return unpack_string(stream, **kwargs) elif mark == STA_BINARY: return unpack_binary(stream, **kwargs) elif mark == STA_LIST: return unpack_list(stream, **kwargs) elif mark == STA_DICT: return unpack_dict(stream, **kwargs) else: raise Exception("Unsupported mark type: ", type(mark)) def sta2obj(sta_filename, **kwargs): """ Convert filename.sta to object :param sta_filename: input sta filename :param binary_mode: 0(default): means write @base64@... 1: means @file@path 2: means write @binary@size 3: means str for binary memory :return: """ byte = '' with open(sta_filename, 'rb') as ifile: byte = ifile.read() stream = Stream(byte) mark = struct.unpack('=i', stream.read(4))[0] if mark != STA_MARK: raise Exception("%s is not a valid sta file." % sta_filename) # kwargs = {} if 'binary_mode' not in kwargs: kwargs['binary_mode'] = 0 obj = unpack_obj(stream, **kwargs) return obj def sta2json(sta_filename, json_filename=None, **kwargs): """ Convert filename.sta to filename.json. :param sta_filename: input sta filename :param json_filename: output json filename or path :param binary_mode: 0(default): means write @base64@... 1: means @file@path 2: means write @binary@size 3: means str for binary memory :return: """ filepath, filename_ext = os.path.split(sta_filename) filename, ext = os.path.splitext(filename_ext) if json_filename is None: json_filename = os.path.join(filepath, filename + ".json") if os.path.isdir(json_filename): json_filename = os.path.join(json_filename, filename + ".json") workshop, getway_ext = os.path.split(json_filename) getway = os.path.splitext(getway_ext)[0] if len(workshop) > 0 and not os.path.isdir(workshop): raise Exception("%s/ is not a valid path." % workshop) with open(json_filename, 'w') as ofile: byte = '' with open(sta_filename, 'rb') as ifile: byte = ifile.read() stream = Stream(byte) mark = struct.unpack('=i', stream.read(4))[0] if mark != STA_MARK: raise Exception("%s is not a valid sta file." % sta_filename) kwargs['workshop'] = workshop kwargs['getway'] = getway if 'binary_mode' not in kwargs: kwargs['binary_mode'] = 1 obj = unpack_obj(stream, **kwargs) json.dump(obj, ofile, indent=2)
28.449074
73
0.593979
ef4888a9795dbbe5df0abc36429c88521fbd3e99
1,494
py
Python
872 Leaf-Similar Trees.py
krishna13052001/LeetCode
cd6ec626bea61f0bd9e8493622074f9e69a7a1c3
[ "MIT" ]
872
2015-06-15T12:02:41.000Z
2022-03-30T08:44:35.000Z
872 Leaf-Similar Trees.py
nadeemshaikh-github/LeetCode
3fb14aeea62a960442e47dfde9f964c7ffce32be
[ "MIT" ]
8
2015-06-21T15:11:59.000Z
2022-02-01T11:22:34.000Z
872 Leaf-Similar Trees.py
nadeemshaikh-github/LeetCode
3fb14aeea62a960442e47dfde9f964c7ffce32be
[ "MIT" ]
328
2015-06-28T03:10:35.000Z
2022-03-29T11:05:28.000Z
#!/usr/bin/python3 """ Consider all the leaves of a binary tree. From left to right order, the values of those leaves form a leaf value sequence. For example, in the given tree above, the leaf value sequence is (6, 7, 4, 9, 8). Two binary trees are considered leaf-similar if their leaf value sequence is the same. Return true if and only if the two given trees with head nodes root1 and root2 are leaf-similar. Note: Both of the given trees will have between 1 and 100 nodes. """ # Definition for a binary tree node.
25.758621
80
0.566934
ef4f605e514f18c935ef699c3ca9417a54b457c9
2,465
py
Python
apollo/auth.py
sorinbiriescu/Apollo_backend
b6fb68a26487a138e7efd691e7fdffaa5042a155
[ "Apache-2.0" ]
null
null
null
apollo/auth.py
sorinbiriescu/Apollo_backend
b6fb68a26487a138e7efd691e7fdffaa5042a155
[ "Apache-2.0" ]
null
null
null
apollo/auth.py
sorinbiriescu/Apollo_backend
b6fb68a26487a138e7efd691e7fdffaa5042a155
[ "Apache-2.0" ]
null
null
null
from datetime import datetime, timedelta from typing import Optional from fastapi import Depends, HTTPException, status from fastapi.security import OAuth2PasswordBearer from jose import JWTError, jwt from passlib.context import CryptContext from apollo.crud import query_first_user from apollo.main import site_settings from apollo.schemas import TokenData, UserModel oauth2_scheme = OAuth2PasswordBearer(tokenUrl="api/token") pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
30.060976
103
0.710345
ef519f677beac77f2c2e144f66d4be64d1cbd341
200
py
Python
main.py
Gabriel-ino/Automated-Sticker-Hero
d76952cc35f051b7d9562912f0a063fed6f75068
[ "MIT" ]
null
null
null
main.py
Gabriel-ino/Automated-Sticker-Hero
d76952cc35f051b7d9562912f0a063fed6f75068
[ "MIT" ]
null
null
null
main.py
Gabriel-ino/Automated-Sticker-Hero
d76952cc35f051b7d9562912f0a063fed6f75068
[ "MIT" ]
null
null
null
from App import App from utils.get_screen_size import get_screen_size if __name__ == "__main__": app = App() h, w, ch = get_screen_size() while True: app.proccessing(h, w, ch)
16.666667
49
0.655
ef53ba7f982e4f61582b4dfc595af89608ab9da3
3,695
py
Python
third_party/graphy/graphy/common_test.py
tingshao/catapult
a8fe19e0c492472a8ed5710be9077e24cc517c5c
[ "BSD-3-Clause" ]
2,151
2020-04-18T07:31:17.000Z
2022-03-31T08:39:18.000Z
third_party/graphy/graphy/common_test.py
tingshao/catapult
a8fe19e0c492472a8ed5710be9077e24cc517c5c
[ "BSD-3-Clause" ]
4,640
2015-07-08T16:19:08.000Z
2019-12-02T15:01:27.000Z
third_party/graphy/graphy/common_test.py
tingshao/catapult
a8fe19e0c492472a8ed5710be9077e24cc517c5c
[ "BSD-3-Clause" ]
698
2015-06-02T19:18:35.000Z
2022-03-29T16:57:15.000Z
#!/usr/bin/python2.4 # # Copyright 2008 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for common.py.""" import warnings from graphy import common from graphy import graphy_test from graphy.backends import google_chart_api if __name__ == '__main__': graphy_test.main()
33.899083
74
0.707984
ef53e0e036cb078d36e154064142222b1dfe4d85
608
py
Python
projects/utils_func/fetch_data.py
blitty-codes/ml-proyects
97d41757cfb45209bbbb09e4c3b51e20c4328a30
[ "Apache-2.0" ]
null
null
null
projects/utils_func/fetch_data.py
blitty-codes/ml-proyects
97d41757cfb45209bbbb09e4c3b51e20c4328a30
[ "Apache-2.0" ]
null
null
null
projects/utils_func/fetch_data.py
blitty-codes/ml-proyects
97d41757cfb45209bbbb09e4c3b51e20c4328a30
[ "Apache-2.0" ]
null
null
null
# Download the data you import os import tarfile import requests
27.636364
68
0.692434
ef54bb20c88dda93a302698251aa2e77667dc8a2
4,526
py
Python
xpython/builtins.py
pmp-p/x-python
e5bdc15af1bf9cf696b2d9a8e1a02a4863b1fb8a
[ "MIT" ]
null
null
null
xpython/builtins.py
pmp-p/x-python
e5bdc15af1bf9cf696b2d9a8e1a02a4863b1fb8a
[ "MIT" ]
null
null
null
xpython/builtins.py
pmp-p/x-python
e5bdc15af1bf9cf696b2d9a8e1a02a4863b1fb8a
[ "MIT" ]
null
null
null
""" A place to implement built-in functions. We use the bytecode for these when doing cross-version interpreting """ from xpython.pyobj import Function, Cell, make_cell from xdis import codeType2Portable, PYTHON_VERSION, IS_PYPY # This code was originally written by Darius Bacon, # but follows code from PEP 3115 listed below. # Rocky Bernstein did the xdis adaptions and # added a couple of bug fixes. def build_class(opc, func, name, *bases, **kwds): """ Like built-in __build_class__() in bltinmodule.c, but running in the byterun VM. See also: PEP 3115: https://www.python.org/dev/peps/pep-3115/ and https://mail.python.org/pipermail/python-3000/2007-March/006338.html """ # Parameter checking... if not (isinstance(func, Function)): raise TypeError("func must be a PyVM function") if not isinstance(name, str): raise TypeError("name is not a string") metaclass = kwds.pop("metaclass", None) if metaclass is None: metaclass = type(bases[0]) if bases else type if isinstance(metaclass, type): metaclass = calculate_metaclass(metaclass, bases) if hasattr(metaclass, "__prepare__"): prepare = metaclass.__prepare__ namespace = prepare(name, bases, **kwds) else: namespace = {} python_implementation = "PyPy" if IS_PYPY else "CPython" if not ( opc.version == PYTHON_VERSION and python_implementation == opc.python_implementation ): # convert code to xdis's portable code type. class_body_code = codeType2Portable(func_code(func)) else: class_body_code = func.func_code # Execute the body of func. This is the step that would go wrong if # we tried to use the built-in __build_class__, because __build_class__ # does not call func, it magically executes its body directly, as we # do here (except we invoke our PyVM instead of CPython's). # # This behavior when interpreting bytecode that isn't the same as # the bytecode using in the running Python can cause a SEGV, specifically # between Python 3.5 running 3.4 or earlier. frame = func._vm.make_frame( code=class_body_code, f_globals=func.func_globals, f_locals=namespace, closure=func.__closure__, ) # rocky: cell is the return value of a function where? cell = func._vm.eval_frame(frame) # Add any class variables that may have been added in running class_body_code. # See test_attribute_access.py for a simple example that needs the update below. namespace.update(frame.f_locals) # If metaclass is builtin "type", it can't deal with a xpython.pyobj.Cell object # but needs a builtin cell object. make_cell() can do this. if "__classcell__" in namespace and metaclass == type: namespace["__classcell__"] = make_cell(namespace["__classcell__"].get()) try: cls = metaclass(name, bases, namespace) except TypeError: # For mysterious reasons the above can raise a: # __init__() takes *n* positional arguments but *n+1* were given. # In particular for: # class G(Generic[T]): # pass import types cls = types.new_class(name, bases, kwds, exec_body=lambda ns: namespace) pass if isinstance(cell, Cell): cell.set(cls) return cls # From Pypy 3.6 # def find_metaclass(bases, namespace, globals, builtin): # if '__metaclass__' in namespace: # return namespace['__metaclass__'] # elif len(bases) > 0: # base = bases[0] # if hasattr(base, '__class__'): # return base.__class__ # else: # return type(base) # elif '__metaclass__' in globals: # return globals['__metaclass__'] # else: # try: # return builtin.__metaclass__ # except AttributeError: # return type def calculate_metaclass(metaclass, bases): "Determine the most derived metatype." winner = metaclass for base in bases: t = type(base) if issubclass(t, winner): winner = t elif not issubclass(winner, t): raise TypeError("metaclass conflict", winner, t) return winner
32.328571
84
0.650685
ef58bac3885ae00f40f0903957d207828fe3e0c6
857
py
Python
config/object_detection_retinanet_config.py
kadirtereci/Keras-retinanet-Training-on-custom-datasets-for-Object-Detection--
5baacf4475f3679b96ea2001994a575ec0a72bf0
[ "Apache-2.0" ]
null
null
null
config/object_detection_retinanet_config.py
kadirtereci/Keras-retinanet-Training-on-custom-datasets-for-Object-Detection--
5baacf4475f3679b96ea2001994a575ec0a72bf0
[ "Apache-2.0" ]
null
null
null
config/object_detection_retinanet_config.py
kadirtereci/Keras-retinanet-Training-on-custom-datasets-for-Object-Detection--
5baacf4475f3679b96ea2001994a575ec0a72bf0
[ "Apache-2.0" ]
null
null
null
# import the necessary packages import os # Set the dataset base path here BASE_PATH = "/content/Keras-retinanet-Training-on-custom-datasets-for-Object-Detection--/dataset" # build the path to the annotations and input images ANNOT_PATH = os.path.sep.join([BASE_PATH, 'annotations']) IMAGES_PATH = os.path.sep.join([BASE_PATH, 'images']) # degine the training/testing split # If you have only training dataset then put here TRAIN_TEST_SPLIT = 1 TRAIN_TEST_SPLIT = 0.80 # build the path to the output training and test .csv files TRAIN_CSV = os.path.sep.join([BASE_PATH, 'train.csv']) TEST_CSV = os.path.sep.join([BASE_PATH, 'test.csv']) # build the path to the output classes CSV files CLASSES_CSV = os.path.sep.join([BASE_PATH, 'classes.csv']) # build the path to the output predictions dir OUTPUT_DIR = os.path.sep.join([BASE_PATH, 'predictions'])
35.708333
97
0.757293
ef593e9168b64350b18b0f9f56ed9f30d578e6cf
4,199
py
Python
CiTOCrawler/OC/script/static_lode.py
patmha/CiTOCrawler
6c5027f42aacc2d250305e5e877bc271470acde5
[ "BSD-3-Clause" ]
null
null
null
CiTOCrawler/OC/script/static_lode.py
patmha/CiTOCrawler
6c5027f42aacc2d250305e5e877bc271470acde5
[ "BSD-3-Clause" ]
null
null
null
CiTOCrawler/OC/script/static_lode.py
patmha/CiTOCrawler
6c5027f42aacc2d250305e5e877bc271470acde5
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2016, Silvio Peroni <essepuntato@gmail.com> # # Permission to use, copy, modify, and/or distribute this software for any purpose # with or without fee is hereby granted, provided that the above copyright notice # and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH # REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND # FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, # OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, # DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS # ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS # SOFTWARE. __author__ = 'essepuntato' import os import requests import codecs import argparse import re if __name__ == "__main__": arg_parser = argparse.ArgumentParser("static_lode.py") arg_parser.add_argument("-pu", "--prefix-url", dest="prefurl", required=True, help="The prefix followed by a ':' plus the URL of the ontology to convert.") arg_parser.add_argument("-o", "--output-dir", dest="output_dir", required=True, help="The directory where to store the documentation files created.") arg_parser.add_argument("-s", "--source-material-url", dest="source_material_url", help="The directory that contains all the LODE related files for " "presentation on the browser.") arg_parser.add_argument("-l", "--lode-url", dest="lode_url", default="http://eelst.cs.unibo.it/apps/LODE", help="The URL where LODE is available.") arg_parser.add_argument("-lang", "--language", dest="language", default="en", help="The ISO code of the language used to retrieve the documentation " "(default: 'en?).") arg_parser.add_argument("-repl", "--string-replace", dest="string_replace", help="A 'source->replace' regular expression for replacement of strings.") args = arg_parser.parse_args() all_ontologies_url = {} split_input = args.prefurl.split(":", 1) all_ontologies_url.update({split_input[0]: split_input[1]}) sl = StaticLODE(args.output_dir, all_ontologies_url, args.language, args.source_material_url, args.lode_url, args.string_replace) sl.create_documentation() # How to call it for a specific ontology: # python static_lode.py -pu fabio:http://purl.org/spar/fabio -o spar/ontology_documentations -s /static/lode
49.988095
112
0.635389
ef59c84efb2830bb4da68800485a32f52a474ab9
14,738
py
Python
src/c4/cmany/cmake.py
biojppm/cmany
b20c24169d60077122ae29a0c09526913340fd5c
[ "MIT" ]
20
2017-05-17T18:43:08.000Z
2021-02-13T16:20:53.000Z
src/c4/cmany/cmake.py
biojppm/cmany
b20c24169d60077122ae29a0c09526913340fd5c
[ "MIT" ]
8
2017-06-04T17:01:06.000Z
2022-03-17T12:43:32.000Z
src/c4/cmany/cmake.py
biojppm/cmany
b20c24169d60077122ae29a0c09526913340fd5c
[ "MIT" ]
1
2017-06-04T13:09:19.000Z
2017-06-04T13:09:19.000Z
import re import os from collections import OrderedDict as odict from .conf import USER_DIR from .util import cacheattr, setcwd, runsyscmd, logdbg from . import util from . import err _cache_entry = r'^(.*?)(:.*?)=(.*)$' def loadvars(builddir): """if builddir does not exist or does not have a cache, returns an empty odict""" v = odict() if builddir is None or not os.path.exists(builddir): return v c = os.path.join(builddir, 'CMakeCache.txt') if os.path.exists(c): with open(c, 'r') as f: for line in f: # logdbg("loadvars0", line.strip()) if not re.match(_cache_entry, line): continue ls = line.strip() name = re.sub(_cache_entry, r'\1', ls) vartype = re.sub(_cache_entry, r'\2', ls)[1:] value = re.sub(_cache_entry, r'\3', ls) # logdbg("loadvars1", name, vartype, value) v[name] = CMakeCacheVar(name, value, vartype) return v # ----------------------------------------------------------------------------- # ------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- def _remove_invalid_args_from_sysinfo_cmd(cmd): gotit = None # remove compile commands args for i, elm in enumerate(cmd): if 'CMAKE_EXPORT_COMPILE_COMMANDS' in elm: # can't strip out if compile commands is not given as one, # because the command will become malformed when we remove if elm not in ('-DCMAKE_EXPORT_COMPILE_COMMANDS=ON', '-DCMAKE_EXPORT_COMPILE_COMMANDS=OFF'): raise Exception("malformed command") gotit = i if gotit is not None: del cmd[gotit] # remove architecture args if '-A' in cmd: i = cmd.index('-A') del cmd[i+1] del cmd[i] # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # def get_toolchain_cache(toolchain): # d = os.path.join(USER_DIR, 'toolchains', re.sub(os.sep, '+', toolchain)) # logdbg("toolchain cache: USER_DIR=", USER_DIR) # logdbg("toolchain cache: d=", d) # bd = os.path.join(d, 'build') # logdbg("toolchain cache: bd=", bd) # if not os.path.exists(d): # os.makedirs(d) # with setcwd(d): # with open('main.cpp', 'w') as f: # f.write("int main() {}") # with open('CMakeLists.txt', 'w') as f: # f.write(""" # cmake_minimum_required(VERSION 2.6) # project(toolchain_test) # add_executable(main main.cpp) # """) # if not os.path.exists(bd): # os.makedirs(bd) # with setcwd(bd): # cmd = ['cmake', '-DCMAKE_TOOLCHAIN_FILE='+toolchain, '..'] # runsyscmd(cmd, echo_output=True) # return loadvars(bd)
36.937343
125
0.519677
ef5a62962aed890737736832f581c39140877b07
2,130
py
Python
Python/Searching/2/quick_select.py
Tikam02/Data_Structure_Algorithms
7c17f744975a72fa42f0f3f892c0b7e041cdef0c
[ "MIT" ]
5
2017-08-03T06:33:49.000Z
2021-08-06T13:20:57.000Z
Python/Searching/2/quick_select.py
Tikam02/Data_Structure_Algorithms
7c17f744975a72fa42f0f3f892c0b7e041cdef0c
[ "MIT" ]
null
null
null
Python/Searching/2/quick_select.py
Tikam02/Data_Structure_Algorithms
7c17f744975a72fa42f0f3f892c0b7e041cdef0c
[ "MIT" ]
6
2017-04-27T13:30:49.000Z
2020-11-01T20:28:55.000Z
#!/usr/bin/env python __author__ = "bt3" import random ''' The simplest way...''' ''' If you don't want to use pythons feature at all and also select pivot randomly''' if __name__ == '__main__': # Checking the Answer seq = [10, 60, 100, 50, 60, 75, 31, 50, 30, 20, 120, 170, 200] #seq = [3, 7, 2, 1, 4, 6, 5, 10, 9, 11] # we want the middle element k = len(seq) // 2 # Note that this only work for odd arrays, since median in # even arrays is the mean of the two middle elements print(quickSelect(seq, k)) print(quickSelectHard(seq, k)) import numpy print numpy.median(seq)
23.932584
78
0.597653
ef5b7b88dd380eec142de24fd5621ee02381ea01
3,744
py
Python
RGB_extraction_maize_diversity.py
xiangjunli/Maize_Phenotype_Map
15765c1a9a58bdf5cfca5602e09e9cbe74d12b98
[ "BSD-3-Clause" ]
4
2018-02-06T21:15:31.000Z
2018-07-28T14:00:17.000Z
RGB_extraction_maize_diversity.py
xiangjunli/Maize_Phenotype_Map
15765c1a9a58bdf5cfca5602e09e9cbe74d12b98
[ "BSD-3-Clause" ]
null
null
null
RGB_extraction_maize_diversity.py
xiangjunli/Maize_Phenotype_Map
15765c1a9a58bdf5cfca5602e09e9cbe74d12b98
[ "BSD-3-Clause" ]
2
2020-02-07T18:26:09.000Z
2020-10-16T15:52:56.000Z
import numpy as np import cv2 import sys import os #######################RGB Image Data Analysis############################################################ ###Should follow the data structure of image data: Genotype --> Replicates (Plants) --> Different Views --> Image captured by each Day### # mfold defines the folder name that stores the data in our data structure mfold = sys.argv[1] # The ratio between pixels further zoom level and closer zoom level is 1:2.02, each pixel in closer zoom level is 0.746mm. This script generates values based on pixel counts. # binary function is going to extract green pixels by defined threshold of (2*G)/(R+B) > 1.15 # create a function to extract values of plant height, plant width and plant area pixel counts whole = os.listdir(mfold) # because two zoom levels were applied on the RGB images in different days, and we analyze plant images in two zoom levels close = set([]) far = set([]) for i in range(1,27): close.add('Day_'+str(i).zfill(3)) close.remove('Day_'+str(11).zfill(3)) for i in range(27,33): far.add('Day_'+str(i).zfill(3)) far.add('Day_'+str(11).zfill(3)) # out is the file with extracted numeric values from RGB images out = open('RGB_extraction.csv','w') # create this file to trace some image files that can not load correctly to make sure the whole loop can go correctly error = open('RGB_extraction_error.csv','w') out.write('PlantID'+'\t'+'Date'+'\t'+'View'+'\t'+'Plant Height'+'\t'+'Plant Width'+'\t'+'Projected Plant Area'+'\n') views = ['VIS SV 0','VIS SV 90'] for j1 in sorted(whole): if j1 == 'Genotype_ZL022':continue for i1 in os.listdir('{0}/{1}'.format(mfold,j1)): for v in views: for d1 in sorted(os.listdir('{0}/{1}/{2}/{3}/'.format(mfold,j1,i1,v))): nlist = [i1,d1.replace('.png','')] myview = 'View'+v.replace('VIS SV ','') na = [myview,'NA','NA','NA'] date = d1.replace('.png','') try: abc = cv2.imread('{0}/{1}/{2}/{3}/{4}'.format(mfold,j1,i1,v,d1)) abc = abc.astype(np.float) imgreen = (2*abc[:,:,1])/(abc[:,:,0]+abc[:,:,2]) if date in close: thresh = binary(imgreen,50,1950,335,2280) elif date in far: thresh = binary(imgreen,50,1450,815,1780) cv2.imwrite('test.jpg',thresh) thresh = cv2.imread("test.jpg",cv2.CV_LOAD_IMAGE_GRAYSCALE) h,w,area,areas0 = call_numeric(thresh) total = max(areas0) k = areas0.index(total) del areas0[k] for i in areas0: total -= i nlist.append(myview) if date in far: nlist.append(str(float(h)*2.02)) nlist.append(str(float(w)*2.02)) nlist.append(str(float(total))) else: nlist.append(h) nlist.append(w) nlist.append(total) except: nlist.extend(na) error.write(j1+':'+i1+':'+v+':'+d1+'\n') out.write('\t'.join(nlist)+'\n') out.close() error.close()
32
174
0.626603
ef5c0e5ff1790c1367e3395cb63ad1ddf91375ef
4,620
py
Python
cgtools/skinning.py
tneumann/cgtools
8f77b6a4642fe79ac85b8449ebd3f72ea0e56032
[ "MIT" ]
10
2019-05-02T14:08:32.000Z
2021-03-15T16:07:19.000Z
cgtools/skinning.py
tneumann/cgtools
8f77b6a4642fe79ac85b8449ebd3f72ea0e56032
[ "MIT" ]
null
null
null
cgtools/skinning.py
tneumann/cgtools
8f77b6a4642fe79ac85b8449ebd3f72ea0e56032
[ "MIT" ]
3
2019-05-02T14:08:33.000Z
2021-02-10T03:47:29.000Z
import numpy as np from . import vector as V def blend_skinning(pts, BW, rbms, method='lbs'): """ perform blend skinning of pts given blend weights BW and the 4x4 rigid body motions in rbms pts should be an array of points, so the shape should be (num_points, 3) BW should be an array of blendweights, so the shape should be (num_points, num_rbms) where num_rbms give the number of rigid body motion parts (joints) rbms should be an array of shape (num_rbms, 4, 4) - one rigid body motions for each column in BW supported methods are "lbs" (linear blend skinning) and "dq" (dual quaternion skinning) """ # TODO use masked arrays to accellerate? if method == 'lbs': transformed_pts = np.tensordot(V.hom(pts), rbms, axes=(1, 2)) if transformed_pts.shape[-1] == 4: transformed_pts = V.dehom(transformed_pts) return np.sum(BW[:,:,np.newaxis] * transformed_pts, axis=1) elif method == 'dq': rbms = np.asanyarray(rbms) dqs = np.array(list(map(rbm_to_dualquat, rbms))) return dq_skinning(pts, BW, dqs) else: raise ValueError("Unknown skinning method")
37.868852
104
0.515368
ef5cca29cfc460b593d8a2ef7fb0d7625f148237
2,214
py
Python
methods/self_attention.py
uyplayer/machine_learning_notice
9f6c4a9a5e278321611d9be1e8fa46bf9a1bd416
[ "Apache-2.0" ]
1
2019-12-10T12:27:33.000Z
2019-12-10T12:27:33.000Z
methods/self_attention.py
uyplayer/machine_learning_notice
9f6c4a9a5e278321611d9be1e8fa46bf9a1bd416
[ "Apache-2.0" ]
null
null
null
methods/self_attention.py
uyplayer/machine_learning_notice
9f6c4a9a5e278321611d9be1e8fa46bf9a1bd416
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # Team : uyplayer team # Author uyplayer # Date 2019/11/20 4:22 # Tool PyCharm ''' https://blog.csdn.net/c9Yv2cf9I06K2A9E/article/details/79739287 https://msd.misuland.com/pd/13340603045208861 '''
41.773585
88
0.653117
ef5e5867ee1d6b8b8d8f0bd5472d8f25ae61b5ab
497
py
Python
Aniyom Ebenezer/phase 1/python 2 basis/Day_21_Challenge_Solution/Question 6 Solution.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
6
2020-05-23T19:53:25.000Z
2021-05-08T20:21:30.000Z
Aniyom Ebenezer/phase 1/python 2 basis/Day_21_Challenge_Solution/Question 6 Solution.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
8
2020-05-14T18:53:12.000Z
2020-07-03T00:06:20.000Z
Aniyom Ebenezer/phase 1/python 2 basis/Day_21_Challenge_Solution/Question 6 Solution.py
CodedLadiesInnovateTech/-python-challenge-solutions
430cd3eb84a2905a286819eef384ee484d8eb9e7
[ "MIT" ]
39
2020-05-10T20:55:02.000Z
2020-09-12T17:40:59.000Z
""" Write a Python program that reads a date (from 2016/1/1 to 2016/12/31) and prints the day of the date. Jan. 1, 2016, is Friday. Note that 2016 is a leap year. """ from datetime import date print("Input month and date(separated by a single space): ") m, d = map(int, input().split()) weeks = {1: "Monday", 2: "Tuesday", 3: "Wednesday", 4:"Thursday", 5: "Friday", 6: "Saturday", 7: "sunday"} w = date.isoweekday(date(2016, m, d)) print("Name of the date: ", weeks[w]) #Reference: w3resources
33.133333
106
0.668008
ef5e8dee6b61a5247d6e4659a6ab926d4b74a1e7
347
py
Python
test15.py
cherytony/test1
506ce4cab6f641beff817c81d7a616db29a7131d
[ "Apache-2.0" ]
null
null
null
test15.py
cherytony/test1
506ce4cab6f641beff817c81d7a616db29a7131d
[ "Apache-2.0" ]
null
null
null
test15.py
cherytony/test1
506ce4cab6f641beff817c81d7a616db29a7131d
[ "Apache-2.0" ]
null
null
null
""" nn : n(1n1000),nn(100), : n 1 9 cap to cat card two too up boat boot boat boot cap card cat to too two up """ list = [] n = int(input()) for i in range(0, n): s = input() list.append(s) list.sort() for i in list: print(i)
8.069767
58
0.674352
ef5fbbee42c9df1a0ff003ab57c38b8bb1ccfe30
2,558
py
Python
0-EXP-TIRA-C10.py
webis-de/Luyckx2008
a7b2711a354a71ba326ddb1e495a8343091e4d8c
[ "Unlicense" ]
null
null
null
0-EXP-TIRA-C10.py
webis-de/Luyckx2008
a7b2711a354a71ba326ddb1e495a8343091e4d8c
[ "Unlicense" ]
null
null
null
0-EXP-TIRA-C10.py
webis-de/Luyckx2008
a7b2711a354a71ba326ddb1e495a8343091e4d8c
[ "Unlicense" ]
null
null
null
import jsonhandler from LuyckxFeatures import * import timblClassification as timbl import os import numpy as np from collections import Counter dictPath = "c10" jsonhandler.loadJson(dictPath) jsonhandler.loadTraining() candidates = jsonhandler.candidates unknowns = jsonhandler.unknowns authors = list() uAuthors = list() for cand in candidates: a = author(cand) for fileName in jsonhandler.trainings[cand]: fName = '%s/%s/%s' % (dictPath, cand, fileName) pName = '%s/%s/%s' % (dictPath, cand, os.path.splitext(fileName)[0] + '.mbsp') a.addDoc(fName, pName) authors.append(a) for unknown in unknowns: fName = '%s/unknown/%s' % (dictPath, unknown) pName = '%s/unknown/%s' % (dictPath, os.path.splitext(unknown)[0] + '.mbsp') a = author(os.path.splitext(unknown)[0]) a.addDoc(fName, pName) uAuthors.append(a) docs = getAllDocuments(authors + uAuthors) globalFeatures = dict.fromkeys((docs[0].features.keys())) accuracy = dict.fromkeys((docs[0].features.keys())) predict = dict.fromkeys((docs[0].features.keys())) for idk, key in enumerate(globalFeatures.keys()): globalFeatures[key] = globalFeature(key, docs) train_fName = '%s/%s_training.c5' % (dictPath, key) test_fName = '%s/%s_test.c5' % (dictPath, key) exportC5(getAllDocuments(authors), authors, globalFeatures[key], 50, train_fName) exportC5(getAllDocuments(uAuthors), uAuthors, globalFeatures[key], 50, test_fName) noFeatures = len(Counter(globalFeatures[key].chi2).most_common(50)) predict[key] = timbl.classify(train_fName, test_fName, noFeatures) os.remove(train_fName) os.remove(test_fName) # jsonhandler.storeJson(unknowns, predict) jsonhandler.loadGroundTruth() with open('%s/results' % dictPath, 'w') as rHandle: for key in globalFeatures.keys(): cMatrix = timbl.confusionMatrix(jsonhandler.trueAuthors, predict[key]) accuracy[key] = np.sum(np.diag(cMatrix)) / np.sum(cMatrix) rHandle.write('%s \t %.4f \n' % (key, accuracy[key]))
38.179104
86
0.670837
ef6043c616af761fa9470ba29ff276fd15c95e0d
3,133
py
Python
bus.py
resc863/Kakao_Chatbot
fe4a038de323ad733cd49e69c7ceb283a36bef0c
[ "MIT" ]
1
2020-08-01T13:42:26.000Z
2020-08-01T13:42:26.000Z
bus.py
resc863/Kakao_Chatbot
fe4a038de323ad733cd49e69c7ceb283a36bef0c
[ "MIT" ]
null
null
null
bus.py
resc863/Kakao_Chatbot
fe4a038de323ad733cd49e69c7ceb283a36bef0c
[ "MIT" ]
1
2021-08-24T14:02:32.000Z
2021-08-24T14:02:32.000Z
from bs4 import BeautifulSoup from multiprocessing import Pool import requests if __name__ == "__main__": print(bus())
27.243478
210
0.616981
ef60ce6fc063e157d7dfaad93f8114a633854b16
4,256
py
Python
model_training.py
PatriceC/MLProjectISDP2020
64e83824690ccde2714d915c70fb00b20aa66a42
[ "MIT" ]
1
2021-01-23T01:04:00.000Z
2021-01-23T01:04:00.000Z
model_training.py
cor3ntino/Time-Series-Prediction-with-Deep-Learning-for-Road-Trafic-Data
e8eefdf2e630a53e09f88550357b67732f2bccd0
[ "MIT" ]
null
null
null
model_training.py
cor3ntino/Time-Series-Prediction-with-Deep-Learning-for-Road-Trafic-Data
e8eefdf2e630a53e09f88550357b67732f2bccd0
[ "MIT" ]
1
2021-01-19T16:57:27.000Z
2021-01-19T16:57:27.000Z
# -*- coding: utf-8 -*- """ Created on Mon Nov 23 13:54:58 2020 @author: Patrice CHANOL & Corentin MORVAN--CHAUMEIL """ import numpy as np import torch import time import visualisation from datetime import datetime def main(model, criterion, optimizer, scheduler, data_train_loader, data_test_loader, num_epochs, input_window, output_window, batch_size): """ Entrainement du modle et Loss Test. Parameters ---------- model : TYPE DESCRIPTION. model to train criterion : TYPE DESCRIPTION. criterion to compute optimizer : TYPE DESCRIPTION. scheduler : TYPE DESCRIPTION. data_loader_train : TYPE DESCRIPTION. train set data_loader_test : TYPE DESCRIPTION. test set num_epochs : TYPE DESCRIPTION. number of epoch to compute input_window : TYPE DESCRIPTION. input windonw length output_window : TYPE DESCRIPTION. output windonw length batch_size : TYPE DESCRIPTION. batch_size Returns ------- model : TYPE DESCRIPTION. trained model test_loss_list : TYPE DESCRIPTION. test loss """ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") dateTimeObj = datetime.now() print('Dbut Entrainement : ', dateTimeObj.hour, 'H', dateTimeObj.minute) test_loss_list = [] n_batches = len(data_train_loader) # On va entrainer le modle num_epochs fois for epoch in range(1, num_epochs + 1): # Temps epoch epoch_start_time = time.time() dateTimeObj = datetime.now() print('Dbut epoch', epoch, ':', dateTimeObj.hour, 'H', dateTimeObj.minute) # Modle en mode entrainement model.train() # Pourcentage du Dataset raliser pourcentage = 0. # Loss du batch en cours test_loss_batch = [] # Temps pour raliser 10% start_time = time.time() for batch, ((day_of_week, serie_input), serie_output) in enumerate(data_train_loader): # Initializing a gradient as 0 so there is no mixing of gradient among the batches optimizer.zero_grad() # Forward pass output = model.forward(day_of_week.to(device), serie_input.float().to(device)) loss = criterion(output, serie_output.float().to(device)) # Propagating the error backward loss.backward() # Normalisation des gradients si Transformer if model.name_model == 'Transformer': torch.nn.utils.clip_grad_norm_(model.parameters(), 0.7) # Optimizing the parameters optimizer.step() # Pourcentage rel raliser count_pourcentage = batch / n_batches # Si on a ralis 10% nouveau du Dataset, on test if count_pourcentage >= pourcentage: # Temps des 10% T = time.time() - start_time # Evaluation du model model.eval() with torch.no_grad(): for ((day_of_week_t, serie_input_t), serie_output_t) in data_test_loader: output_t = model.forward(day_of_week_t.to(device), serie_input_t.float().to(device)) loss_t = criterion(output_t, serie_output_t.float().to(device)) test_loss_batch.append(loss_t.item()) test_loss = np.mean(test_loss_batch) test_loss_list.append(test_loss) print('-'*10) print("Pourcentage: {}%, Test Loss : {}, Epoch: {}, Temps : {}s".format(round(100*pourcentage), test_loss, epoch, round(T))) print('-'*10) # Visualisation visualisation.pred_vs_reality(model, input_window, output_window, epoch=epoch, pourcentage=round(100*pourcentage)) pourcentage += 0.1 start_time = time.time() model.train() print('Fin epoch : {}, Temps de l\'epoch : {}s'.format(epoch, round(time.time() - epoch_start_time))) visualisation.forecast(model, input_window, output_window, epoch=epoch) scheduler.step() model.save() return model, test_loss_list
34.322581
140
0.608083
ef61b3b08001b19237e5f7463a25cc96b621c9fe
3,679
py
Python
process_data.py
johnnyp2587/fx-drqn
0ea8a4ad673a1883dd4630a69629c75c8f49148c
[ "MIT" ]
1
2021-01-30T11:50:54.000Z
2021-01-30T11:50:54.000Z
process_data.py
johnnyp2587/fx-drqn
0ea8a4ad673a1883dd4630a69629c75c8f49148c
[ "MIT" ]
null
null
null
process_data.py
johnnyp2587/fx-drqn
0ea8a4ad673a1883dd4630a69629c75c8f49148c
[ "MIT" ]
2
2021-01-30T11:50:57.000Z
2021-02-04T15:43:54.000Z
import numpy as np import pandas as pd import datetime if __name__=='__main__': CreateFeature('EURUSD', 16, 1)
37.927835
113
0.580864
ef625fbf84f8e46aa31c085f3762960c2186790e
3,863
py
Python
benchmark.py
tgisaturday/minGPT
3ff862f7fac8adbc3dcdf0693d996468fd4c3f7b
[ "MIT" ]
null
null
null
benchmark.py
tgisaturday/minGPT
3ff862f7fac8adbc3dcdf0693d996468fd4c3f7b
[ "MIT" ]
null
null
null
benchmark.py
tgisaturday/minGPT
3ff862f7fac8adbc3dcdf0693d996468fd4c3f7b
[ "MIT" ]
null
null
null
import math import os from argparse import ArgumentParser import numpy as np import torch from pytorch_lightning import Trainer from pytorch_lightning import seed_everything from pytorch_lightning.utilities import rank_zero_info from pytorch_lightning.callbacks import XLAStatsMonitor from torch.utils.data import Dataset, DataLoader from pytorch_lightning import LightningDataModule from mingpt.lr_decay import LearningRateDecayCallback from mingpt.model import GPT if __name__ == '__main__': seed_everything(42) parser = ArgumentParser() parser = Trainer.add_argparse_args(parser) parser.add_argument('--n_layer', default=22, type=int) parser.add_argument('--n_head', default=16, type=int) parser.add_argument('--n_embd', default=720, type=int) parser.add_argument('--learning_rate', default=6e-4, type=float) parser.add_argument('--block_size', default=128, type=int) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--num_workers', default=16, type=int) args = parser.parse_args() if not os.path.exists("input.txt"): os.system("wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt") dm = CharDataModule(args.batch_size, args.num_workers, args.block_size) dm.setup() model = GPT( vocab_size=dm.train_dataset.vocab_size, block_size=dm.train_dataset.block_size, n_layer=args.n_layer, n_head=args.n_head, n_embd=args.n_embd, learning_rate=args.learning_rate ) lr_decay = LearningRateDecayCallback( learning_rate=6e-4, warmup_tokens=512 * 20, final_tokens=2 * len(dm.train_dataset) * args.block_size ) trainer = Trainer.from_argparse_args( args, max_epochs=5, tpu_cores=8, gradient_clip_val=1.0, callbacks=[lr_decay, XLAStatsMonitor()], ) trainer.fit(model, datamodule = dm )
36.443396
119
0.681077
ef62a93780f5d22fd2c5c963cb04b78649fda229
2,059
py
Python
weather.py
corgiclub/CorgiBot_telegram
a63d91a74ee497b9a405e93bd3b303367ef95268
[ "MIT" ]
null
null
null
weather.py
corgiclub/CorgiBot_telegram
a63d91a74ee497b9a405e93bd3b303367ef95268
[ "MIT" ]
null
null
null
weather.py
corgiclub/CorgiBot_telegram
a63d91a74ee497b9a405e93bd3b303367ef95268
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -* import requests import json
44.76087
112
0.594463
ef63d9fcd4c7ced9c5506a721a486919e70bacc7
2,536
py
Python
paz/datasets/ferplus.py
niqbal996/paz
f27205907367415d5b21f90e1a1d1d1ce598e889
[ "MIT" ]
300
2020-10-29T08:02:05.000Z
2022-03-30T21:47:32.000Z
paz/datasets/ferplus.py
albertofernandezvillan/paz
9fbd50b993f37e1e807297a29c6044c09967c9cc
[ "MIT" ]
30
2020-10-29T12:40:32.000Z
2022-03-31T14:06:35.000Z
paz/datasets/ferplus.py
albertofernandezvillan/paz
9fbd50b993f37e1e807297a29c6044c09967c9cc
[ "MIT" ]
62
2020-10-29T12:34:13.000Z
2022-03-29T05:21:45.000Z
import os import numpy as np from .utils import get_class_names from ..abstract import Loader from ..backend.image import resize_image # IMAGES_PATH = '../datasets/fer2013/fer2013.csv' # LABELS_PATH = '../datasets/fer2013/fer2013new.csv'
39.015385
79
0.613565
ef651d134e566a45ca23483fc6b3987d980d24af
863
py
Python
code/array/container-with-most-water.py
windsuzu/leetcode-python
240ca747d58eb78b08dedf4d5a1fdc0fe0b0c6bf
[ "MIT" ]
1
2021-09-29T11:05:07.000Z
2021-09-29T11:05:07.000Z
code/array/container-with-most-water.py
windsuzu/leetcode-python
240ca747d58eb78b08dedf4d5a1fdc0fe0b0c6bf
[ "MIT" ]
null
null
null
code/array/container-with-most-water.py
windsuzu/leetcode-python
240ca747d58eb78b08dedf4d5a1fdc0fe0b0c6bf
[ "MIT" ]
1
2021-09-29T11:06:32.000Z
2021-09-29T11:06:32.000Z
from typing import List
30.821429
74
0.468134
ef68897796bf15cfbe41f5e79ff37ee0aa7a33e6
3,578
py
Python
src/python/DipSimUtilities.py
ndeybach/DipSim
091f147f933b000b6ab829ec7d10eef985c260b2
[ "MIT" ]
null
null
null
src/python/DipSimUtilities.py
ndeybach/DipSim
091f147f933b000b6ab829ec7d10eef985c260b2
[ "MIT" ]
null
null
null
src/python/DipSimUtilities.py
ndeybach/DipSim
091f147f933b000b6ab829ec7d10eef985c260b2
[ "MIT" ]
null
null
null
# This Python file uses the following encoding: utf-8 """ MIT License Copyright (c) 2020 Nils DEYBACH & Lo OUDART Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ """ It serves as a containers for various utility functions. They can be useful in a multitude of cases. """ from math import cos, sin, radians, degrees, acos, atan2, pi from PySide2.QtCore import QRandomGenerator from PySide2.QtGui import QVector3D, QColor, QQuaternion ######## NUMBER GENERATION ######### """ Return randomly -1 or 1 as a random sign generator. """ ######## ANGLES CONVERTIONS ######### """ Returns rotated quaternion from a rotation (theta) applied to original direction around specified axis. """ """ Returns quaternion rotation from spherical position (following physics convention) with a (1,0,0) oriention initialy. phi, theta: angles in physics convention in degrees. """ """ Returns orientation (following physics convention) to a quaternion representing the rotation needed to get a vector to follow the orientation """ ######## COLORS ######### """ Returns a color from a 3D vector of angles. phi, theta: angles in physics convention in radians. """ """ Returns a random color. """
35.425743
149
0.734768
3226aa7f7ea523e5b462c538450fa0bfe4a22a9b
1,503
py
Python
clusterresults/rundr12xpdf10k.py
rohinkumar/CorrelCalc
d7887448af8d3dc3170c00c0aae6ee2561b8a3d5
[ "MIT" ]
null
null
null
clusterresults/rundr12xpdf10k.py
rohinkumar/CorrelCalc
d7887448af8d3dc3170c00c0aae6ee2561b8a3d5
[ "MIT" ]
null
null
null
clusterresults/rundr12xpdf10k.py
rohinkumar/CorrelCalc
d7887448af8d3dc3170c00c0aae6ee2561b8a3d5
[ "MIT" ]
null
null
null
from correlcalc import * bins = np.arange(0.002,0.062,0.002) #corrdr12flcdmls=tpcf('/usr3/vstr/yrohin/Downloads/galaxy_DR12v5_CMASS_North.fits',bins,randfile='/usr3/vstr/yrohin/randcat_dr12cmn_2x_pdf10k.dat',estimator='ls',cosmology='lcdm',weights='eq') print("--------------------------------------------") corrdr12flcls=tpcf('/usr3/vstr/yrohin/Downloads/galaxy_DR12v5_CMASS_North.fits',bins,randfile='/usr3/vstr/yrohin/randcat_dr12cmn_2x_pdf10k.dat',estimator='ls',cosmology='lcdm',weights=True) print("--------------------------------------------") #corrdr12flcls=tpcf('/usr3/vstr/yrohin/Downloads/galaxy_DR12v5_CMASS_North.fits',bins,randfile='/usr3/vstr/yrohin/randcat_dr12cmn_2x_pdf10k.dat',estimator='ls',cosmology='lc',weights='eq') #print("--------------------------------------------") #corrdr12olcls=tpcf('/usr3/vstr/yrohin/Downloads/galaxy_DR12v5_CMASS_North.fits',bins,randfile='/usr3/vstr/yrohin/randcat_dr12cmn_2x_pdf10k.dat',estimator='ls',cosmology='lc',weights='eq',geometry='open') print("--------------------------------------------") corrdr12flclsw=tpcf('/usr3/vstr/yrohin/Downloads/galaxy_DR12v5_CMASS_North.fits',bins,randfile='/usr3/vstr/yrohin/randcat_dr12cmn_2x_pdf10k.dat',estimator='ls',cosmology='lc',weights=True) print("--------------------------------------------") corrdr12flolsw=tpcf('/usr3/vstr/yrohin/Downloads/galaxy_DR12v5_CMASS_North.fits',bins,randfile='/usr3/vstr/yrohin/randcat_dr12cmn_2x_pdf10k.dat',estimator='ls',cosmology='lc',weights=True,geometry='open')
107.357143
204
0.685961
3227a055c835557ad7f0f841ab6676069d791695
10,965
py
Python
verify/imagenet.py
CAS-LRJ/DeepPAC
75059572c23474d32a762aca5640f4d799fd992a
[ "Apache-2.0" ]
null
null
null
verify/imagenet.py
CAS-LRJ/DeepPAC
75059572c23474d32a762aca5640f4d799fd992a
[ "Apache-2.0" ]
null
null
null
verify/imagenet.py
CAS-LRJ/DeepPAC
75059572c23474d32a762aca5640f4d799fd992a
[ "Apache-2.0" ]
null
null
null
import torch from torchvision import transforms from PIL import Image import numpy as np import math from sklearn.linear_model import LinearRegression from .grid import Grid, grid_split import torch.backends.cudnn as cudnn ''' Global Constants: TASK_NAME: Name of the verification task (deprecated) PATH: The path of the model file. (Initialized in imagenet_verify) mean, stdvar: The normalization parameters of the data. (Initialized in imagenet_verify, default mean=(0.4914,0.4822,0.4465) stdvar=(0.2023,0.1994,0.2010)) delta: The radius of the L-inf Ball. (Initialized in imagenet_verify, default 4/255) significance, error: The significance and the error rate of the PAC-Model. (Initialized in imagenet_verify, default 0.01 and 0.001) final_samples: The number of samples needed to calculate the final margin. (Initialized in imagenet_verify, default 1600, according to defualt error rate and significance) Batchsize: The batchsize of sampling procedure. (Initialized in imagenet_verify, defualt 200) device: Which device to be utilised by Pytorch. (Initialized in imagenet_verify, default 'cuda') model: The Pytorch Network to be verified. (Initialized in imagenet_verify) pretrans: The torchvision transform to process the image. (Resize and Tensorize) normalization_trans: The normalization transform to normalize the data. (Initialized in imagenet_verify) sampling_budget: The sampling limit for each stepwise splitting. (Initialized in imagenet_verify) init_grid: The Grid for Imagenet Data (224*224) Functions: grid_batch_sample: Grid-based Sampling for Scenario Optimization (Untargetted) scenario_optimization: Main Verification Function (Focused Learning, Stepwise-Splitting) imagenet_verify: Entry Function ''' pretrans = transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor(), ]) mean = (0.485, 0.456, 0.406) stdvar = (0.229, 0.224, 0.225) normalization_trans = transforms.Normalize(mean, stdvar) sampling_budget = 20000 delta = 4/255 error = 1e-2 significance = 1e-3 Batchsize = 200 device = 'cuda' init_grid = [Grid(0, 0, 224, 224)] PATH = './models/imagenet_linf_4.pth'
43.685259
188
0.639216
322854f1b6ad1bef2a63f035b0bf9ea507c22498
5,537
py
Python
src/main.py
ronikleyton/script-backup-switch-huawei
80c990afa3561c350823cb96e25174262d8d4ab1
[ "MIT" ]
null
null
null
src/main.py
ronikleyton/script-backup-switch-huawei
80c990afa3561c350823cb96e25174262d8d4ab1
[ "MIT" ]
null
null
null
src/main.py
ronikleyton/script-backup-switch-huawei
80c990afa3561c350823cb96e25174262d8d4ab1
[ "MIT" ]
null
null
null
from telnetlib import Telnet from exception.exceptions import * from datetime import date import time import os from dotenv import load_dotenv import json load_dotenv() ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) f = open(f'{ROOT_DIR}/equipamentos.json') equipamentos = json.load(f)['equipamentos'] for switch in equipamentos: try: USER = os.environ.get('USER') PASS = os.environ.get('PASS') PORT_TELNET = os.environ.get('PORT_TELNET') print(f"Iniciando Backup no Switch {switch['hostname']}") equipamento = Equipamento(switch['hostname'],switch['ip'],PORT_TELNET,USER,PASS) main(equipamento) except: pass
35.722581
106
0.641683
3228d6088055f54b7b82121a3d3e109e936942b3
1,623
py
Python
setup.py
cakebread/musubi
5b5f1bdf65fe07c14ff7bb2252c278f6ca0c903c
[ "BSD-2-Clause" ]
5
2015-05-18T13:18:26.000Z
2020-01-14T08:24:08.000Z
setup.py
cakebread/musubi
5b5f1bdf65fe07c14ff7bb2252c278f6ca0c903c
[ "BSD-2-Clause" ]
null
null
null
setup.py
cakebread/musubi
5b5f1bdf65fe07c14ff7bb2252c278f6ca0c903c
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python PROJECT = 'musubi' VERSION = '0.2' import distribute_setup distribute_setup.use_setuptools() from setuptools import setup, find_packages try: long_description = open('README.rst', 'rt').read() except IOError: long_description = 'Uh oh, we may need a new hard drive.' setup( name=PROJECT, version=VERSION, description='Musubi is a command-line DNSBL checker and MX toolkit.', long_description=long_description, author='Rob Cakebread', author_email='cakebread@gmail.com', url='https://github.com/cakebread/musubi', download_url='https://github.com/cakebread/musubi/tarball/master', classifiers=['Development Status :: 3 - Alpha', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Intended Audience :: Developers', 'Environment :: Console', ], platforms=['Any'], scripts=[], provides=[], install_requires=['requests', 'dnspython', 'IPy', 'distribute', 'cliff', 'cliff-tablib', 'gevent', 'greenlet'], namespace_packages=[], packages=find_packages(), include_package_data=True, entry_points={ 'console_scripts': [ 'musubi = musubi.main:main' ], 'musubi.cli': [ 'ips = musubi.ips:GetIPs', 'mx = musubi.mx:GetMX', 'spf = musubi.spf:GetSPF', 'scan = musubi.scan:Scan', ], }, zip_safe=False, )
29.509091
73
0.590265
3229164df79c432f6f7ad72e86350bc6d3ce6e18
1,048
py
Python
airflow_ml_dags/images/airflow-preprocess/preprocess.py
made-ml-in-prod-2021/holyketzer
f693f2d5fce8cced03873e2b89cbe10617996c64
[ "MIT" ]
null
null
null
airflow_ml_dags/images/airflow-preprocess/preprocess.py
made-ml-in-prod-2021/holyketzer
f693f2d5fce8cced03873e2b89cbe10617996c64
[ "MIT" ]
2
2021-05-21T09:09:23.000Z
2021-06-05T08:13:40.000Z
airflow_ml_dags/images/airflow-preprocess/preprocess.py
made-ml-in-prod-2021/holyketzer
f693f2d5fce8cced03873e2b89cbe10617996c64
[ "MIT" ]
null
null
null
import os import pandas as pd import click from datetime import date if __name__ == '__main__': preprocess()
29.942857
101
0.621183
32298c15e29bc9b924d33fac9a984d4c8170430a
581
py
Python
estrutura_while/barra-de-progresso.py
BEp0/Estudos_de_Python
da32a01d3f4462b3e6b1b6035106895afe9c7627
[ "MIT" ]
1
2021-02-15T19:14:44.000Z
2021-02-15T19:14:44.000Z
estrutura_while/barra-de-progresso.py
BEp0/Estudos_de_Python
da32a01d3f4462b3e6b1b6035106895afe9c7627
[ "MIT" ]
null
null
null
estrutura_while/barra-de-progresso.py
BEp0/Estudos_de_Python
da32a01d3f4462b3e6b1b6035106895afe9c7627
[ "MIT" ]
null
null
null
from time import sleep from sys import stdout if __name__ == "__main__": main()
17.088235
50
0.504303
3229bb9f7088946e3efcc3fcbb6cba8d90bd5930
4,329
py
Python
models/show.py
wanderindev/fyyur
acf3a44ce7fae6b24576a320afd447c0595d76e5
[ "MIT" ]
null
null
null
models/show.py
wanderindev/fyyur
acf3a44ce7fae6b24576a320afd447c0595d76e5
[ "MIT" ]
null
null
null
models/show.py
wanderindev/fyyur
acf3a44ce7fae6b24576a320afd447c0595d76e5
[ "MIT" ]
2
2020-07-16T22:02:13.000Z
2020-11-22T21:16:28.000Z
from datetime import datetime from sqlalchemy import or_ from app import db from .mixin import ModelMixin
30.921429
74
0.495033
322b0d39d0e86bb9ee65efcc180b2518cde85315
2,141
py
Python
backend/sponsors/migrations/0001_initial.py
marcoacierno/pycon
2b7b47598c4929769cc73e322b3fce2c89151e21
[ "MIT" ]
56
2018-01-20T17:18:40.000Z
2022-03-28T22:42:04.000Z
backend/sponsors/migrations/0001_initial.py
marcoacierno/pycon
2b7b47598c4929769cc73e322b3fce2c89151e21
[ "MIT" ]
2,029
2018-01-20T11:37:24.000Z
2022-03-31T04:10:51.000Z
backend/sponsors/migrations/0001_initial.py
marcoacierno/pycon
2b7b47598c4929769cc73e322b3fce2c89151e21
[ "MIT" ]
17
2018-03-17T09:44:28.000Z
2021-12-27T19:57:35.000Z
# Generated by Django 2.2.4 on 2019-08-30 21:56 from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import model_utils.fields
44.604167
182
0.611397
322bb384475b3968baa795c394e1297ef1e165d8
156
py
Python
__init__.py
sacherjj/python-AlienRFID
aaddd846d46cca533dca43c256890c072e8f5ec5
[ "MIT" ]
1
2021-03-21T13:52:00.000Z
2021-03-21T13:52:00.000Z
__init__.py
sacherjj/python-AlienRFID
aaddd846d46cca533dca43c256890c072e8f5ec5
[ "MIT" ]
null
null
null
__init__.py
sacherjj/python-AlienRFID
aaddd846d46cca533dca43c256890c072e8f5ec5
[ "MIT" ]
2
2015-10-12T10:02:50.000Z
2020-03-09T13:30:12.000Z
from .alien_config import AlienConfig from .alien_connection import AlienConnection from .alien_tag import AlienTag from .alien_tag_list import AlienTagList
39
45
0.878205
322bb4e6bc6b91b44404b73d00ac6be4830c39c7
658
py
Python
01_Hello_PGP/solution.py
3-24/id0-rsa.pub
633e974a330d0dc09d37e423168974b7fba69830
[ "MIT" ]
1
2020-03-29T16:10:54.000Z
2020-03-29T16:10:54.000Z
01_Hello_PGP/solution.py
3-24/id0-rsa.pub
633e974a330d0dc09d37e423168974b7fba69830
[ "MIT" ]
null
null
null
01_Hello_PGP/solution.py
3-24/id0-rsa.pub
633e974a330d0dc09d37e423168974b7fba69830
[ "MIT" ]
null
null
null
from subprocess import run, PIPE main()
24.37037
124
0.575988
322c0212f8148c0b38508aaf2672d99f9c4007b4
8,524
py
Python
src/apodeixi/text_layout/tests_unit/test_column_layout.py
ChateauClaudia-Labs/apodeixi
dd668e210e92cabc2682ad3049781c06e58e3101
[ "MIT" ]
null
null
null
src/apodeixi/text_layout/tests_unit/test_column_layout.py
ChateauClaudia-Labs/apodeixi
dd668e210e92cabc2682ad3049781c06e58e3101
[ "MIT" ]
null
null
null
src/apodeixi/text_layout/tests_unit/test_column_layout.py
ChateauClaudia-Labs/apodeixi
dd668e210e92cabc2682ad3049781c06e58e3101
[ "MIT" ]
null
null
null
import sys as _sys import pandas as _pd from apodeixi.testing_framework.a6i_unit_test import ApodeixiUnitTest from apodeixi.util.formatting_utils import DictionaryFormatter from apodeixi.util.a6i_error import ApodeixiError, FunctionalTrace from apodeixi.text_layout.column_layout import ColumnWidthCalculator if __name__ == "__main__": # execute only if run as a script main(_sys.argv)
51.660606
141
0.530737
322c5954da97025867a532a5c2f025836a221df3
944
py
Python
evolute/operators/mate.py
ysglh/evolute
ea868e5d04e6bb59760a9b6dec709303637b9f10
[ "MIT" ]
174
2018-08-15T21:48:30.000Z
2022-03-13T01:34:48.000Z
evolute/operators/mate.py
ysglh/evolute
ea868e5d04e6bb59760a9b6dec709303637b9f10
[ "MIT" ]
null
null
null
evolute/operators/mate.py
ysglh/evolute
ea868e5d04e6bb59760a9b6dec709303637b9f10
[ "MIT" ]
27
2018-05-16T16:25:36.000Z
2021-11-02T20:51:38.000Z
import numpy as np DefaultMate = RandomPickMate
20.977778
80
0.635593
322da51e0820f1bb72e55d0a9cb187b9bcde3c32
223
py
Python
LandingPage/forms.py
Mihai925/EduCoding-Legacy
7c6de105deb186c3442f8d7f9f1b9f99708f8fb6
[ "MIT" ]
null
null
null
LandingPage/forms.py
Mihai925/EduCoding-Legacy
7c6de105deb186c3442f8d7f9f1b9f99708f8fb6
[ "MIT" ]
null
null
null
LandingPage/forms.py
Mihai925/EduCoding-Legacy
7c6de105deb186c3442f8d7f9f1b9f99708f8fb6
[ "MIT" ]
null
null
null
__author__ = 'varun' from django import forms
22.3
52
0.713004
322e21d79121fc682dbbeaf19bfb0822ed607a7a
4,236
py
Python
pru/db/geo/geo_admin.py
euctrl-pru/rt-python
da5d0040e250bd159845a0d43bf0b73eab368863
[ "MIT" ]
null
null
null
pru/db/geo/geo_admin.py
euctrl-pru/rt-python
da5d0040e250bd159845a0d43bf0b73eab368863
[ "MIT" ]
null
null
null
pru/db/geo/geo_admin.py
euctrl-pru/rt-python
da5d0040e250bd159845a0d43bf0b73eab368863
[ "MIT" ]
null
null
null
# # Copyright (c) 2018 Via Technology Ltd. All Rights Reserved. # Consult your license regarding permissions and restrictions. # """ Administration operations for the geo db. """ import os import socket import time from pru.db.geo.geo_init import load_airspace, remove_all_sectors, tear_down from pru.db.geo.geo_init import load_airports, remove_all_airports from pru.db.geo.geo_init import load_user_airspace, remove_all_user_defined_sectors from pru.db.common_init import create as create_db, DB_TYPE_GEO from pru.db.geo.geo_init import create as create_geo_db from pru.logger import logger import pru.db.context as ctx log = logger(__name__) def remove_geo_db(): """ Remove the db """ remove_all_sectors() remove_all_airports() remove_all_user_defined_sectors() tear_down() def create_geo_database(): """ Create a geo db. """ log.info("Starting to create the geo db") log.info("Waiting for the database to be ready") log.info(f"Testing connection on host: {ctx.geo_db_hostname} and port {ctx.geo_db_port}") # We need to sleep and retry ubtil the db wakes up s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) while True: try: s.connect((ctx.geo_db_hostname, int(ctx.geo_db_port))) s.close() break except socket.error as ex: log.debug("Database not ready..") time.sleep(5) # 5 seconds between tests log.info("Geo database is now ready.") if create_db(DB_TYPE_GEO): if create_geo_db(): log.info("Geo database creation is complete.") return True else: log.info("Failed to make the airspace db, could not create the tables.") else: log.info("Failed to make the airspace db, could not create the database.") def initialise_airspace(sector_file_path, reset=False): """ Uses the provided file path to load the sectors file, may be csv or geojson. If no sectors file is found we return false. Reset=True Remove all and replace with this file. Reset=False Add these sectors to the sectors table. Note, this is not an update. return True if we succeeded A tuple of (False, message) if we fail """ connection = ctx.get_connection(ctx.CONTEXT, ctx.DB_USER) context = ctx.CONTEXT if os.path.exists(sector_file_path): if reset: remove_all_sectors() load_airspace(sector_file_path, context, connection) return True else: return (False, "Path not found " + sector_file_path) def initialise_airports(airports_file_path, reset=False): """ Uses the provided file path to load an airports file, must be csv. If no airports file is found we return false. Reset=True Remove all and replace with this file. Reset=False Add these airports to the sectors table. Note, this is not an update. return True if we succeeded A tuple of (False, message) if we fail """ connection = ctx.get_connection(ctx.CONTEXT, ctx.DB_USER) context = ctx.CONTEXT if os.path.exists(airports_file_path): if reset: remove_all_airports() load_airports(airports_file_path, context, connection) return True else: return (False, "Path not found " + airports_file_path) def initialise_user_airspace(user_sector_file_path, reset=False): """ Uses the provided file path to load the users sectors file, may be csv or geojson. If no sectors file is found we return false. Reset=True Remove all and replace with this file. Reset=False Add these sectors to the user sectors table. Note, this is not an update. return True if we succeeded A tuple of (False, message) if we fail """ connection = ctx.get_connection(ctx.CONTEXT, ctx.DB_USER) context = ctx.CONTEXT if os.path.exists(user_sector_file_path): if reset: remove_all_user_defined_sectors() load_user_airspace(user_sector_file_path, context, connection) return True else: return (False, "Path not found " + user_sector_file_path)
31.377778
93
0.674929
322f9af92fcd6688ac16683be314d7931fa1f2eb
4,040
py
Python
tests/test_autogeometry.py
fabiommendes/easymunk
420dfc4a006997c47887f6876876249674feb3cd
[ "MIT" ]
1
2021-07-02T11:59:07.000Z
2021-07-02T11:59:07.000Z
tests/test_autogeometry.py
fabiommendes/easymunk
420dfc4a006997c47887f6876876249674feb3cd
[ "MIT" ]
null
null
null
tests/test_autogeometry.py
fabiommendes/easymunk
420dfc4a006997c47887f6876876249674feb3cd
[ "MIT" ]
1
2022-01-14T20:18:35.000Z
2022-01-14T20:18:35.000Z
from typing import List, Tuple import easymunk as a from easymunk import BB, Vec2d
28.652482
87
0.366832
32306c14bb390e41af15482d3244081bad57ece0
13,144
py
Python
darshan-util/pydarshan/darshan/backend/cffi_backend.py
gaocegege/darshan
2d54cd8ec96d26db23e9ca421df48d2031a4c55e
[ "mpich2" ]
null
null
null
darshan-util/pydarshan/darshan/backend/cffi_backend.py
gaocegege/darshan
2d54cd8ec96d26db23e9ca421df48d2031a4c55e
[ "mpich2" ]
null
null
null
darshan-util/pydarshan/darshan/backend/cffi_backend.py
gaocegege/darshan
2d54cd8ec96d26db23e9ca421df48d2031a4c55e
[ "mpich2" ]
null
null
null
# -*- coding: utf-8 -*- import cffi import ctypes import numpy as np import pandas as pd from darshan.api_def_c import load_darshan_header from darshan.discover_darshan import find_utils from darshan.discover_darshan import check_version API_def_c = load_darshan_header() ffi = cffi.FFI() ffi.cdef(API_def_c) libdutil = None libdutil = find_utils(ffi, libdutil) def log_open(filename): """ Opens a darshan logfile. Args: filename (str): Path to a darshan log file Return: log handle """ b_fname = filename.encode() handle = libdutil.darshan_log_open(b_fname) log = {"handle": handle, 'modules': None, 'name_records': None} return log def log_close(log): """ Closes the logfile and releases allocated memory. """ libdutil.darshan_log_close(log['handle']) #modules = {} return def log_get_job(log): """ Returns a dictionary with information about the current job. """ job = {} jobrec = ffi.new("struct darshan_job *") libdutil.darshan_log_get_job(log['handle'], jobrec) job['uid'] = jobrec[0].uid job['start_time'] = jobrec[0].start_time job['end_time'] = jobrec[0].end_time job['nprocs'] = jobrec[0].nprocs job['jobid'] = jobrec[0].jobid mstr = ffi.string(jobrec[0].metadata).decode("utf-8") md = {} for kv in mstr.split('\n')[:-1]: k,v = kv.split('=', maxsplit=1) md[k] = v job['metadata'] = md return job def log_get_exe(log): """ Get details about the executable (path and arguments) Args: log: handle returned by darshan.open Return: string: executeable path and arguments """ exestr = ffi.new("char[]", 4096) libdutil.darshan_log_get_exe(log['handle'], exestr) return ffi.string(exestr).decode("utf-8") def log_get_mounts(log): """ Returns a list of available mounts recorded for the log. Args: log: handle returned by darshan.open """ mntlst = [] mnts = ffi.new("struct darshan_mnt_info **") cnt = ffi.new("int *") libdutil.darshan_log_get_mounts(log['handle'], mnts, cnt) for i in range(0, cnt[0]): mntlst.append((ffi.string(mnts[0][i].mnt_path).decode("utf-8"), ffi.string(mnts[0][i].mnt_type).decode("utf-8"))) return mntlst def log_get_modules(log): """ Return a dictionary containing available modules including information about the contents available for each module in the current log. Args: log: handle returned by darshan.open Return: dict: Modules with additional info for current log. """ # use cached module index if already present if log['modules'] != None: return log['modules'] modules = {} mods = ffi.new("struct darshan_mod_info **") cnt = ffi.new("int *") libdutil.darshan_log_get_modules(log['handle'], mods, cnt) for i in range(0, cnt[0]): modules[ffi.string(mods[0][i].name).decode("utf-8")] = \ {'len': mods[0][i].len, 'ver': mods[0][i].ver, 'idx': mods[0][i].idx} # add to cache log['modules'] = modules return modules def log_get_name_records(log): """ Return a dictionary resovling hash to string (typically a filepath). Args: log: handle returned by darshan.open hash: hash-value (a number) Return: dict: the name records """ # used cached name_records if already present if log['name_records'] != None: return log['name_records'] name_records = {} nrecs = ffi.new("struct darshan_name_record **") cnt = ffi.new("int *") libdutil.darshan_log_get_name_records(log['handle'], nrecs, cnt) for i in range(0, cnt[0]): name_records[nrecs[0][i].id] = ffi.string(nrecs[0][i].name).decode("utf-8") # add to cache log['name_records'] = name_records return name_records def log_lookup_name_records(log, ids=[]): """ Resolve a single hash to it's name record string (typically a filepath). Args: log: handle returned by darshan.open hash: hash-value (a number) Return: dict: the name records """ name_records = {} #cids = ffi.new("darshan_record_id *") * len(ids) whitelist = (ctypes.c_ulonglong * len(ids))(*ids) whitelist_cnt = len(ids) whitelistp = ffi.from_buffer(whitelist) nrecs = ffi.new("struct darshan_name_record **") cnt = ffi.new("int *") libdutil.darshan_log_get_filtered_name_records(log['handle'], nrecs, cnt, ffi.cast("darshan_record_id *", whitelistp), whitelist_cnt) for i in range(0, cnt[0]): name_records[nrecs[0][i].id] = ffi.string(nrecs[0][i].name).decode("utf-8") # add to cache log['name_records'] = name_records return name_records def log_get_dxt_record(log, mod_name, mod_type, reads=True, writes=True, mode='dict'): """ Returns a dictionary holding a dxt darshan log record. Args: log: Handle returned by darshan.open mod_name (str): Name of the Darshan module mod_type (str): String containing the C type Return: dict: generic log record Example: The typical darshan log record provides two arrays, on for integer counters and one for floating point counters: >>> darshan.log_get_dxt_record(log, "DXT_POSIX", "struct dxt_file_record **") {'rank': 0, 'read_count': 11, 'read_segments': array([...]), ...} """ modules = log_get_modules(log) #name_records = log_get_name_records(log) rec = {} buf = ffi.new("void **") r = libdutil.darshan_log_get_record(log['handle'], modules[mod_name]['idx'], buf) if r < 1: return None filerec = ffi.cast(mod_type, buf) clst = [] rec['id'] = filerec[0].base_rec.id rec['rank'] = filerec[0].base_rec.rank rec['hostname'] = ffi.string(filerec[0].hostname).decode("utf-8") #rec['filename'] = name_records[rec['id']] wcnt = filerec[0].write_count rcnt = filerec[0].read_count rec['write_count'] = wcnt rec['read_count'] = rcnt rec['write_segments'] = [] rec['read_segments'] = [] size_of = ffi.sizeof("struct dxt_file_record") segments = ffi.cast("struct segment_info *", buf[0] + size_of ) for i in range(wcnt): seg = { "offset": segments[i].offset, "length": segments[i].length, "start_time": segments[i].start_time, "end_time": segments[i].end_time } rec['write_segments'].append(seg) for i in range(rcnt): i = i + wcnt seg = { "offset": segments[i].offset, "length": segments[i].length, "start_time": segments[i].start_time, "end_time": segments[i].end_time } rec['read_segments'].append(seg) if mode == "pandas": rec['read_segments'] = pd.DataFrame(rec['read_segments']) rec['write_segments'] = pd.DataFrame(rec['write_segments']) return rec def log_get_generic_record(log, mod_name, mod_type, mode='numpy'): """ Returns a dictionary holding a generic darshan log record. Args: log: Handle returned by darshan.open mod_name (str): Name of the Darshan module mod_type (str): String containing the C type Return: dict: generic log record Example: The typical darshan log record provides two arrays, on for integer counters and one for floating point counters: >>> darshan.log_get_generic_record(log, "POSIX", "struct darshan_posix_file **") {'counters': array([...], dtype=int64), 'fcounters': array([...])} """ modules = log_get_modules(log) rec = {} buf = ffi.new("void **") r = libdutil.darshan_log_get_record(log['handle'], modules[mod_name]['idx'], buf) if r < 1: return None rbuf = ffi.cast(mod_type, buf) rec['id'] = rbuf[0].base_rec.id rec['rank'] = rbuf[0].base_rec.rank clst = [] for i in range(0, len(rbuf[0].counters)): clst.append(rbuf[0].counters[i]) rec['counters'] = np.array(clst, dtype=np.int64) cdict = dict(zip(counter_names(mod_name), rec['counters'])) flst = [] for i in range(0, len(rbuf[0].fcounters)): flst.append(rbuf[0].fcounters[i]) rec['fcounters'] = np.array(flst, dtype=np.float64) fcdict = dict(zip(fcounter_names(mod_name), rec['fcounters'])) if mode == "dict": rec = {'counters': cdict, 'fcounter': fcdict} if mode == "pandas": rec = { 'counters': pd.DataFrame(cdict, index=[0]), 'fcounters': pd.DataFrame(fcdict, index=[0]) } return rec def counter_names(mod_name, fcnts=False): """ Returns a list of available counter names for the module. By default only integer counter names are listed, unless fcnts is set to true in which case only the floating point counter names are listed. Args: mod_name (str): Name of the module to return counter names. fcnts (bool): Switch to request floating point counters instead of integer. (Default: False) Return: list: Counter names as strings. """ if mod_name == 'MPI-IO': mod_name = 'MPIIO' names = [] i = 0 if fcnts: F = "f_" else: F = "" end = "{0}_{1}NUM_INDICES".format(mod_name.upper(), F.upper()) var_name = "{0}_{1}counter_names".format(mod_name.lower(), F.lower()) while True: try: var = getattr(libdutil, var_name) except: var = None if not var: return None name = ffi.string(var[i]).decode("utf-8") if name == end: break names.append(name) i += 1 return names def fcounter_names(mod_name): """ Returns a list of available floating point counter names for the module. Args: mod_name (str): Name of the module to return counter names. Return: list: Available floiting point counter names as strings. """ return counter_names(mod_name, fcnts=True) def log_get_bgq_record(log): """ Returns a darshan log record for BG/Q. Args: log: handle returned by darshan.open """ return log_get_generic_record(log, "BG/Q", "struct darshan_bgq_record **") def log_get_hdf5_file_record(log): """ Returns a darshan log record for an HDF5 file. Args: log: handle returned by darshan.open """ return log_get_generic_record(log, "H5F", "struct darshan_hdf5_file **") def log_get_hdf5_dataset_record(log): """ Returns a darshan log record for an HDF5 dataset. Args: log: handle returned by darshan.open """ return log_get_generic_record(log, "H5D", "struct darshan_hdf5_dataset **") def log_get_lustre_record(log): """ Returns a darshan log record for Lustre. Args: log: handle returned by darshan.open """ modules = log_get_modules(log) rec = {} buf = ffi.new("void **") r = libdutil.darshan_log_get_record(log['handle'], modules['LUSTRE']['idx'], buf) if r < 1: return None rbuf = ffi.cast("struct darshan_lustre_record **", buf) rec['id'] = rbuf[0].base_rec.id rec['rank'] = rbuf[0].base_rec.rank clst = [] for i in range(0, len(rbuf[0].counters)): clst.append(rbuf[0].counters[i]) rec['counters'] = np.array(clst, dtype=np.int64) cdict = dict(zip(counter_names('LUSTRE'), rec['counters'])) # FIXME ostlst = [] for i in range(0, cdict['LUSTRE_STRIPE_WIDTH']): print(rbuf[0].ost_ids[i]) rec['ost_ids'] = np.array(ostlst, dtype=np.int64) print(rec['ost_ids']) sys.exit() if mode == "dict": rec = {'counters': cdict, 'fcounter': fcdict} if mode == "pandas": rec = { 'counters': pd.DataFrame(cdict, index=[0]), 'fcounters': pd.DataFrame(fcdict, index=[0]) } return rec def log_get_mpiio_record(log): """ Returns a darshan log record for MPI-IO. Args: log: handle returned by darshan.open Returns: dict: log record """ return log_get_generic_record(log, "MPI-IO", "struct darshan_mpiio_file **") def log_get_pnetcdf_record(log): """ Returns a darshan log record for PnetCDF. Args: log: handle returned by darshan.open Returns: dict: log record """ return log_get_generic_record(log, "PNETCDF", "struct darshan_pnetcdf_file **") def log_get_posix_record(log): """ Returns a darshan log record for Args: log: handle returned by darshan.open Returns: dict: log record """ return log_get_generic_record(log, "POSIX", "struct darshan_posix_file **") def log_get_stdio_record(log): """ Returns a darshan log record for STDIO. Args: log: handle returned by darshan.open Returns: dict: log record """ return log_get_generic_record(log, "STDIO", "struct darshan_stdio_file **")
24.295749
137
0.614197
32316e929a4d5ae59c28e0cfefeaa04b18e91623
1,017
py
Python
authApp/views/userDetailView.py
juan-skill/django_vue_bank
109f3b84086f4520a5220c311d9d3403a7adc3a2
[ "MIT" ]
null
null
null
authApp/views/userDetailView.py
juan-skill/django_vue_bank
109f3b84086f4520a5220c311d9d3403a7adc3a2
[ "MIT" ]
null
null
null
authApp/views/userDetailView.py
juan-skill/django_vue_bank
109f3b84086f4520a5220c311d9d3403a7adc3a2
[ "MIT" ]
null
null
null
from django.conf import settings from rest_framework import generics, status from rest_framework.response import Response from rest_framework_simplejwt.backends import TokenBackend from rest_framework.permissions import IsAuthenticated from authApp.models.user import User from authApp.serializers.userSerializer import UserSerializer
39.115385
80
0.738446
32363a369f2abd8123a3c352cf5267f2cd8f6e3e
882
py
Python
pluggklockan.py
Vforsh03/Pluggklockan
845dbe82476ad3ecd8664b7cd99ce74311b92830
[ "MIT" ]
null
null
null
pluggklockan.py
Vforsh03/Pluggklockan
845dbe82476ad3ecd8664b7cd99ce74311b92830
[ "MIT" ]
null
null
null
pluggklockan.py
Vforsh03/Pluggklockan
845dbe82476ad3ecd8664b7cd99ce74311b92830
[ "MIT" ]
null
null
null
import time if __name__ == "__main__": main()
25.941176
73
0.538549
32364b003eb60db5ffb76e4251c347561207ed8b
1,397
py
Python
gallery/views.py
mkbeh/Site-Nordic-Walking-
ba98f41db09ed448ecc4db175f65ef4fa2d64979
[ "MIT" ]
null
null
null
gallery/views.py
mkbeh/Site-Nordic-Walking-
ba98f41db09ed448ecc4db175f65ef4fa2d64979
[ "MIT" ]
8
2021-04-08T21:57:55.000Z
2022-03-12T00:50:38.000Z
gallery/views.py
mkbeh/Site-Nordic-Walking-
ba98f41db09ed448ecc4db175f65ef4fa2d64979
[ "MIT" ]
null
null
null
from django.shortcuts import render, get_object_or_404 from django.views.decorators.cache import cache_page from .models import PhotoAlbum, VideoAlbum from blog.utils import get_pagination_page
32.488372
105
0.689334
3236d1e8e71e93e12b492398d92736947474b9fb
2,134
py
Python
test/test_post.py
enjoy233/zhihu-py3
bcb4aa8325f8b54d3b44bd0bdc959edd9761fcfc
[ "MIT" ]
1,321
2015-02-16T13:19:42.000Z
2022-03-25T15:03:58.000Z
test/test_post.py
fru1tw4ter/zhihu-py3
bcb4aa8325f8b54d3b44bd0bdc959edd9761fcfc
[ "MIT" ]
64
2015-07-03T12:30:08.000Z
2022-03-01T00:55:50.000Z
test/test_post.py
fru1tw4ter/zhihu-py3
bcb4aa8325f8b54d3b44bd0bdc959edd9761fcfc
[ "MIT" ]
551
2015-02-22T11:21:40.000Z
2022-03-25T13:22:13.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from __future__ import print_function, division, unicode_literals import unittest import os import json from zhihu import Post from test_utils import TEST_DATA_PATH
34.419355
77
0.638238
32370b765a15f6662dcf75810cbf2bc84feab958
69
py
Python
tensorflow_toolkit/lpr/lpr/__init__.py
morkovka1337/openvino_training_extensions
846db45c264d6b061505213f51763520b9432ba9
[ "Apache-2.0" ]
256
2020-09-09T03:27:57.000Z
2022-03-30T10:06:06.000Z
tensorflow_toolkit/lpr/lpr/__init__.py
morkovka1337/openvino_training_extensions
846db45c264d6b061505213f51763520b9432ba9
[ "Apache-2.0" ]
604
2020-09-08T12:29:49.000Z
2022-03-31T21:51:08.000Z
tensorflow_toolkit/lpr/lpr/__init__.py
morkovka1337/openvino_training_extensions
846db45c264d6b061505213f51763520b9432ba9
[ "Apache-2.0" ]
160
2020-09-09T14:06:07.000Z
2022-03-30T14:50:48.000Z
from tfutils.helpers import import_transformer import_transformer()
17.25
46
0.869565
3239f81ec2f0770c90334bbc02e94fc7a5de13e9
354
py
Python
torch_lazy/nn/__init__.py
simaki/torch-lazy
e3ce23b118bdf36a019c029a67bf5ec84f89a4d7
[ "BSD-3-Clause" ]
null
null
null
torch_lazy/nn/__init__.py
simaki/torch-lazy
e3ce23b118bdf36a019c029a67bf5ec84f89a4d7
[ "BSD-3-Clause" ]
18
2021-04-01T08:24:48.000Z
2022-03-28T20:18:28.000Z
torch_lazy/nn/__init__.py
simaki/torch-lazy
e3ce23b118bdf36a019c029a67bf5ec84f89a4d7
[ "BSD-3-Clause" ]
1
2021-07-22T19:29:12.000Z
2021-07-22T19:29:12.000Z
from .modules.linear import LazyBilinear from .modules.mlp import MLP from .modules.mlp import LazyMLP from .modules.normalization import LazyBatchNorm from .modules.normalization import LazyBatchNorm1d from .modules.normalization import LazyBatchNorm2d from .modules.normalization import LazyBatchNorm3d from .modules.normalization import LazyLayerNorm
39.333333
50
0.864407
323a9cf1657540b38e66a69c1561146bd14bceb9
874
py
Python
functest/lmfunctest.py
mitsuba-rei/lightmetrica-v3
db5b7d5a9a245fb7c0d25124433c38d09b62813e
[ "MIT" ]
1
2019-11-20T13:24:58.000Z
2019-11-20T13:24:58.000Z
functest/lmfunctest.py
mitsuba-rei/lightmetrica-v3
db5b7d5a9a245fb7c0d25124433c38d09b62813e
[ "MIT" ]
null
null
null
functest/lmfunctest.py
mitsuba-rei/lightmetrica-v3
db5b7d5a9a245fb7c0d25124433c38d09b62813e
[ "MIT" ]
null
null
null
import sys import json import numpy as np import imageio from argparse import Namespace def loadenv(config_path): """Load configuration file of Lightmetrica environment""" # Open config file with open(config_path) as f: config = json.load(f) # Add root directory and binary directory to sys.path if config['path'] not in sys.path: sys.path.insert(0, config['path']) if config['bin_path'] not in sys.path: sys.path.insert(0, config['bin_path']) return Namespace(**config) # Environment configuration env = loadenv('.lmenv') def save(path, img): """Save image""" imageio.imwrite(path, np.clip(np.power(img, 1/2.2) * 256, 0, 255).astype(np.uint8))
26.484848
87
0.662471
323ae527f5aea6328f8ca830f729b3e6114a8c51
503
py
Python
algorithm implement (python)/mergesort.py
yedkk/algorithm-design
433b70e8302ec91b74542e9144dd93fdb5b0f8d3
[ "MIT" ]
2
2021-06-01T02:31:06.000Z
2021-06-01T02:39:45.000Z
algorithm implement (python)/mergesort.py
yedkk/algorithm-design
433b70e8302ec91b74542e9144dd93fdb5b0f8d3
[ "MIT" ]
null
null
null
algorithm implement (python)/mergesort.py
yedkk/algorithm-design
433b70e8302ec91b74542e9144dd93fdb5b0f8d3
[ "MIT" ]
null
null
null
s1 = getArray() s2 = getArray() s = merge(s1, s2) output(s)
13.236842
48
0.508946
323b7d2cb5ec3fee745d90ccfecbe50bdd67fcc2
1,276
py
Python
src/CSVtoJSON.py
CloudSevenConsulting/DustyDynamo
335e9a2efc71ccf42cf9dfc7c13fcf62cd5d9453
[ "MIT" ]
null
null
null
src/CSVtoJSON.py
CloudSevenConsulting/DustyDynamo
335e9a2efc71ccf42cf9dfc7c13fcf62cd5d9453
[ "MIT" ]
null
null
null
src/CSVtoJSON.py
CloudSevenConsulting/DustyDynamo
335e9a2efc71ccf42cf9dfc7c13fcf62cd5d9453
[ "MIT" ]
null
null
null
import csv import json from pprint import pprint import os stockData = ['RIO'] for i in range(0,len(stockData)): csvfile = open(stockData[i]+'.csv', 'r') fieldnames = ("NetworkTime","StockID","Open","High", "Low", "Close", "Adj Close", "Volume") reader = csv.DictReader( csvfile, fieldnames) data = open(stockData[i]+'.json', 'w') data.write('[\n') for row in reader: data.write('{ \n' \ + '"MoteTimestamp": "%s",' %row['NetworkTime'] \ + '\n"MoteID": %s,' %row['StockID'] \ + '\n "StockData":{' \ + '\n "OpenPrice": %s,' %row['Open'] \ + '\n "HighPrice": %s,' %row['High'] \ + '\n "LowPrice": %s,' %row['Low'] \ + '\n "ClosePrice": %s,' %row['Close'] \ + '\n "Adj Close": %s,' %row['Adj Close'] \ + '\n "VolumeNumber": %s' %row['Volume'] \ + '\n }' \ + '\n},\n' ) data.close() with open(stockData[i]+'.json', 'rb+') as filehandle: filehandle.seek(-3, os.SEEK_END) filehandle.truncate() filehandle.close() with open(stockData[i]+'.json', 'a') as filehandle: filehandle.write("\n]")
29.674419
95
0.462382
323d0642bd0b2e71b6ea4028021ab212c0e0889f
700
py
Python
core/api.py
rastos/Mi-Fit-and-Zepp-workout-exporter
e05dd7321b71dff6a4e2f4794d0d66d4eee2cbfa
[ "MIT" ]
13
2021-04-13T14:27:58.000Z
2022-02-09T18:32:37.000Z
core/api.py
rastos/Mi-Fit-and-Zepp-workout-exporter
e05dd7321b71dff6a4e2f4794d0d66d4eee2cbfa
[ "MIT" ]
3
2021-06-03T20:27:34.000Z
2021-06-04T06:24:18.000Z
core/api.py
rastos/Mi-Fit-and-Zepp-workout-exporter
e05dd7321b71dff6a4e2f4794d0d66d4eee2cbfa
[ "MIT" ]
2
2021-06-03T20:29:54.000Z
2021-08-13T22:28:59.000Z
import requests
24.137931
95
0.547143
323d1294966a8fc8cdc72a192c1cd2b6b80bbc84
1,431
py
Python
lib/tools/tools_watch_cub.py
galena503/SCR
d5b6581808b4f2fac775e7ff48b3eef548164ca1
[ "MIT" ]
null
null
null
lib/tools/tools_watch_cub.py
galena503/SCR
d5b6581808b4f2fac775e7ff48b3eef548164ca1
[ "MIT" ]
null
null
null
lib/tools/tools_watch_cub.py
galena503/SCR
d5b6581808b4f2fac775e7ff48b3eef548164ca1
[ "MIT" ]
null
null
null
import time,sys,os import subprocess st = 0 cmd = ['tasklist','/fo','csv'] subs = set('') # win proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE) while True: if st == 0: st = 1 time.sleep(1) #for sub_pid in subs: # ps_line = line.split(',').replace('\"','') # if str(sub_pid) == : # print(str(sub_pid) + '') #print(os.getpid()) # log = popen_obj.returncode #print(log) #print(type(popen_obj.communicate())) #print(popen_obj.communicate())
23.459016
81
0.533892
323de0cd069365ae5cc57c4534ae993e3a17cc39
7,616
py
Python
Server/Python/tests/dbsserver_t/unittests/web_t/DBSMigrateModel_t.py
vkuznet/DBS
14df8bbe8ee8f874fe423399b18afef911fe78c7
[ "Apache-2.0" ]
8
2015-08-14T04:01:32.000Z
2021-06-03T00:56:42.000Z
Server/Python/tests/dbsserver_t/unittests/web_t/DBSMigrateModel_t.py
yuyiguo/DBS
14df8bbe8ee8f874fe423399b18afef911fe78c7
[ "Apache-2.0" ]
162
2015-01-07T21:34:47.000Z
2021-10-13T09:42:41.000Z
Server/Python/tests/dbsserver_t/unittests/web_t/DBSMigrateModel_t.py
yuyiguo/DBS
14df8bbe8ee8f874fe423399b18afef911fe78c7
[ "Apache-2.0" ]
16
2015-01-22T15:27:29.000Z
2021-04-28T09:23:28.000Z
#!/usr/bin/env python """ DBS 3 Migrate REST model unittests The DBS3 Migration Service must be stopped before executing the unittest. In addition, take care that no instance is running on the same DB. Else the single unittests can happen to fail due to race conditions with DBS3 Migration Service. """ from dbsserver_t.utils.DBSRestApi import DBSRestApi from dbsserver_t.utils.DBSDataProvider import DBSBlockDataProvider, create_child_data_provider from dbsserver_t.utils.TestTools import expectedFailure from itertools import chain import os import socket import unittest if __name__ == "__main__": SUITE = unittest.TestLoader().loadTestsFromTestCase(DBSMigrateModel_t) unittest.TextTestRunner(verbosity=2).run(SUITE)
55.591241
125
0.689207
323e018247ff04ecd6fd2937c2a4145cd45afc55
844
py
Python
setup.py
sgang007/audio_chat_client
e2c1caf6ec1a781be0d22f516e55434099514da1
[ "MIT" ]
null
null
null
setup.py
sgang007/audio_chat_client
e2c1caf6ec1a781be0d22f516e55434099514da1
[ "MIT" ]
null
null
null
setup.py
sgang007/audio_chat_client
e2c1caf6ec1a781be0d22f516e55434099514da1
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages # from distutils.core import setup # import py2exe # import sys import os del os.link # sys.setrecursionlimit(5000) with open('requirements.txt') as f: required = f.read().splitlines() setup(name='varta-chat', version='1.0', description='Audio Chat framework', long_description=readme(), url='https://github.com/sgang007/audio_chat_client', author='Shubhojyoti Ganguly', author_email='shubho.important@gmail.com', license='MIT', packages=find_packages(), install_requires=required, entry_points={ 'console_scripts': [ 'varta = client.__main__:key_listener', ] }, include_package_data=True, zip_safe=True)
23.444444
58
0.64455
323e28eb5aa06c996913613c2bfc7c17a0e85d7c
2,334
py
Python
kglib/tests/end_to_end/kgcn/diagnosis_debug.py
graknlabs/research
ae3ee07106739efd10f0627058210038ab5956d3
[ "Apache-2.0" ]
13
2018-09-25T13:29:08.000Z
2018-12-10T11:04:38.000Z
kglib/tests/end_to_end/kgcn/diagnosis_debug.py
graknlabs/research
ae3ee07106739efd10f0627058210038ab5956d3
[ "Apache-2.0" ]
23
2018-09-17T20:31:44.000Z
2018-12-14T11:21:52.000Z
kglib/tests/end_to_end/kgcn/diagnosis_debug.py
graknlabs/research
ae3ee07106739efd10f0627058210038ab5956d3
[ "Apache-2.0" ]
1
2018-09-25T15:56:32.000Z
2018-09-25T15:56:32.000Z
# # Copyright (C) 2021 Vaticle # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import os import sys import unittest from kglib.kgcn_tensorflow.examples.diagnosis.diagnosis import diagnosis_example if __name__ == "__main__": # This handles the fact that additional arguments that are supplied by our py_test definition # https://stackoverflow.com/a/38012249 unittest.main(argv=['ignored-arg'])
42.436364
163
0.707798
324140adbf8ce6a27b7f51c371562021ff506dae
1,668
py
Python
python/math_utils.py
PROrock/codin-game-puzzles
a0444719f9a629fc97b1da6f175ecd462a9ff59b
[ "MIT" ]
1
2021-06-16T02:33:57.000Z
2021-06-16T02:33:57.000Z
python/math_utils.py
PROrock/codin-game-puzzles
a0444719f9a629fc97b1da6f175ecd462a9ff59b
[ "MIT" ]
null
null
null
python/math_utils.py
PROrock/codin-game-puzzles
a0444719f9a629fc97b1da6f175ecd462a9ff59b
[ "MIT" ]
null
null
null
# copy of Python 3.5 implementation - probably not needed def gcd(a, b): """Greatest common divisor""" return _gcd_internal(abs(a), abs(b)) def _gcd_internal(a, b): """Greatest common divisor internal""" # Impl. notes: Euler algorithm, both a and b are not negative # There exists faster algorithm (which uses division by 2, which is faster) # -> Stein's algorithm https://en.wikipedia.org/wiki/Binary_GCD_algorithm # print a, b if a == b: return a if b == 1: return 1 if a == 0 or b == 0: return max(a, b) return gcd(b, a % b)
32.076923
93
0.607914
32426c09b1bd20f92239fee3f6494dab7ae72789
2,477
py
Python
BASS_2_OM_testOnSyntheticData.py
oliviermirat/BASS
fe595fdc60795b09bb6c264b6da914a6e8e0c415
[ "MIT" ]
1
2020-10-10T11:20:32.000Z
2020-10-10T11:20:32.000Z
BASS_2_OM_testOnSyntheticData.py
oliviermirat/BASS
fe595fdc60795b09bb6c264b6da914a6e8e0c415
[ "MIT" ]
null
null
null
BASS_2_OM_testOnSyntheticData.py
oliviermirat/BASS
fe595fdc60795b09bb6c264b6da914a6e8e0c415
[ "MIT" ]
null
null
null
import sys sys.path.insert(1, './GR_BASS/BASS_only_original/') sys.path.insert(1, './GR_BASS/') import bass as md import numpy as np import sys import bassLibrary as bl # BASS algorithm parameters eps = 0.1 p_d = 0.2 Jthr = 0.15 seed = 0 # Creating synthetic data for process BASS on and to learn the GMM model nbClasses = 5 classNames = ['a', 'b', 'c', 'd', 'e'] nbInstDataAnalyze = 4000 probElemDictAppear = 0.05 [dataToAnalyze1, dataForLearn] = bl.createSyntheticDataSet(nbClasses, nbInstDataAnalyze, [[3, 2, 1, 0], [0, 1, 2, 3]], [probElemDictAppear, probElemDictAppear]) l = int(len(dataToAnalyze1)/4) lengths_data1 = np.array([l, l, l, l]) # Learning the model with the data previously created model_fit = md.GMM_model(nbClasses) model_fit.solve(dataForLearn) # Launch BASS on the synthetic data previously created posteriorProb1 = bl.getPosteriorProbabilities(dataToAnalyze1, lengths_data1, model_fit) [P_w1, nbInstances1, w_dict1] = bl.launchBASS(posteriorProb1, lengths_data1, model_fit, eps, p_d, Jthr, seed) [transmat_, stationary_probs_, a, b, c] = bl.launchMarkovianCompare(posteriorProb1, lengths_data1, model_fit, eps, p_d, Jthr, seed, w_dict1, classNames, 0, {'nameOfFile' : 'syntheticDataTest'}) # Comparing different dataset with different amounts of insertions for idx, probElemDictAppear2 in enumerate([0.1, 0.05]): print("Comparing two different dataset with SAME amounts of insertions. Probability: ", probElemDictAppear2) [dataToAnalyze2, dataForLearn2] = bl.createSyntheticDataSet(nbClasses, nbInstDataAnalyze, [[3, 2, 1, 0], [0, 1, 2, 3]], [probElemDictAppear2, probElemDictAppear2]) l = int(len(dataToAnalyze2)/4) lengths_data2 = np.array([l, l, l, l]) posteriorProb2 = bl.getPosteriorProbabilities(dataToAnalyze2, lengths_data2, model_fit) [P_w2, nbInstances2, w_dict2] = bl.launchBASS(posteriorProb2, lengths_data2, model_fit, eps, p_d, Jthr, seed) w_thr = 1e-4 p_ins = 0.2 mu = 1.0 H_beta_fac = 0 Sigma = dataToAnalyze1.shape[1] std = 0.05 params = np.array([eps,p_d,p_ins, mu, w_thr,H_beta_fac, Jthr, Sigma, std], dtype =float) bl.compareTwoBASSresults(w_dict1, w_dict2, params, model_fit, dataToAnalyze1, lengths_data1, dataToAnalyze2, lengths_data2, {'nameOfFile' : 'syntheticDataTest'}, classNames, str(idx)) # TODO: change compareTwoBASSresults for it to accept the posterior probabilities posteriorProb1 and posteriorProb2 instead of the data dataToAnalyze1 and dataToAnalyze2
43.45614
355
0.749697
3242f191734e1ec3faebeb7b0fb07f008db4254c
108
py
Python
auth/view/resource/create_reset_password_request.py
nicolaszein/auth
90112f1a4d6f368714b19daad7e8a4226594b383
[ "MIT" ]
null
null
null
auth/view/resource/create_reset_password_request.py
nicolaszein/auth
90112f1a4d6f368714b19daad7e8a4226594b383
[ "MIT" ]
null
null
null
auth/view/resource/create_reset_password_request.py
nicolaszein/auth
90112f1a4d6f368714b19daad7e8a4226594b383
[ "MIT" ]
null
null
null
from pydantic import BaseModel, EmailStr
18
44
0.814815
3247a207cdb1e57a605f9bb8949d6c37632fda73
3,707
py
Python
pymt/grids/map.py
mwtoews/pymt
81a8469b0d0d115d21186ec1d1c9575690d51850
[ "MIT" ]
null
null
null
pymt/grids/map.py
mwtoews/pymt
81a8469b0d0d115d21186ec1d1c9575690d51850
[ "MIT" ]
null
null
null
pymt/grids/map.py
mwtoews/pymt
81a8469b0d0d115d21186ec1d1c9575690d51850
[ "MIT" ]
null
null
null
#! /bin/env python """ Examples ======== **Rectilinear** Create a rectilinear grid that is 2x3:: (0) --- (1) --- (2) | | | | | | | [0] | [1] | | | | | | | (3) --- (4) --- (5) Numbers in parens are node IDs, and numbers in square brackets are cell IDs. >>> g = RectilinearMap ([0, 2], [0, 1, 2]) >>> g.get_x () array([ 0., 1., 2., 0., 1., 2.]) >>> g.get_y () array([ 0., 0., 0., 2., 2., 2.]) Node 1 is shared by both cell 0, and 1; node 5 only is part of cell 1. >>> g.get_shared_cells (1) [0, 1] >>> g.get_shared_cells (5) [1] Point (.5, 1.) is contained only within cell 0. >>> g.is_in_cell (.5, 1., 0) True >>> g.is_in_cell (.5, 1., 1) False Point (1., 1.) is on a border and so is contained by both cells. >>> g.is_in_cell (1, 1., 0) True >>> g.is_in_cell (1, 1., 1) True """ from shapely.geometry import Point, asLineString, asPoint, asPolygon from pymt.grids import ( Rectilinear, Structured, UniformRectilinear, Unstructured, UnstructuredPoints, ) if __name__ == "__main__": import doctest doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
23.916129
84
0.555705
3247e08ee12a7d9414679491f0b3e5ad060be2e8
27,447
py
Python
jogo.py
AdamastorLinsFrancaNetto/jogo-academic-journey
ad312d255abe23e243ba39732e972cf45f092b08
[ "MIT" ]
null
null
null
jogo.py
AdamastorLinsFrancaNetto/jogo-academic-journey
ad312d255abe23e243ba39732e972cf45f092b08
[ "MIT" ]
null
null
null
jogo.py
AdamastorLinsFrancaNetto/jogo-academic-journey
ad312d255abe23e243ba39732e972cf45f092b08
[ "MIT" ]
null
null
null
import pygame from conteudo import Conteudo, Nave, Tiro import random
47.651042
134
0.603709
32485d3d2f97d8719c9ad7891c585aced9f9c6ac
1,308
py
Python
xpresso/binders/dependants.py
adriangb/xpresso
43fcc360f7b19c00e0b78480f96390bcb4d28053
[ "MIT" ]
75
2022-01-18T02:17:57.000Z
2022-03-24T02:30:04.000Z
xpresso/binders/dependants.py
adriangb/xpresso
43fcc360f7b19c00e0b78480f96390bcb4d28053
[ "MIT" ]
73
2022-01-18T03:01:27.000Z
2022-03-27T16:41:38.000Z
xpresso/binders/dependants.py
adriangb/xpresso
43fcc360f7b19c00e0b78480f96390bcb4d28053
[ "MIT" ]
3
2022-01-18T22:47:06.000Z
2022-01-25T02:03:53.000Z
import inspect import typing from di.api.dependencies import CacheKey from di.dependant import Dependant, Marker from xpresso._utils.typing import Protocol from xpresso.binders.api import SupportsExtractor, SupportsOpenAPI T = typing.TypeVar("T", covariant=True)
26.693878
70
0.683486
3248e7edee7a47a71c97765cef8dd8859b78769c
3,698
py
Python
test/test_grid_to_triple.py
NCAR/geocat-f2py
fee07e680f61ca2ebfbb33f1554d9d85271fa32a
[ "Apache-2.0" ]
4
2021-02-20T20:02:11.000Z
2021-11-24T13:35:32.000Z
test/test_grid_to_triple.py
NCAR/geocat-f2py
fee07e680f61ca2ebfbb33f1554d9d85271fa32a
[ "Apache-2.0" ]
27
2020-12-07T17:00:05.000Z
2022-03-24T16:42:17.000Z
test/test_grid_to_triple.py
NCAR/geocat-f2py
fee07e680f61ca2ebfbb33f1554d9d85271fa32a
[ "Apache-2.0" ]
4
2021-01-07T01:50:11.000Z
2021-07-07T13:05:42.000Z
import sys import unittest as ut import numpy as np import xarray as xr # Import from directory structure if coverage test, or from installed # packages otherwise if "--cov" in str(sys.argv): from src.geocat.f2py import grid_to_triple else: from geocat.f2py import grid_to_triple # Size of the grids ny = 2 mx = 3 # Nominal input data = np.asarray([2.740655, 2.745848, 4.893587, 2.965059, 1.707929, 0.746007]).reshape((ny, mx)) # Missing value = np.nan input data_nan = data.copy() data_nan[0, 1] = np.nan data_nan[1, 2] = np.nan # Missing value = -99 input data_msg = data_nan.copy() data_msg[np.isnan(data_msg)] = -99 # Coordinates x = np.asarray([1.0, 3.0, 5.0]) y = np.asarray([2.0, 4.0]) # Expected output out_expected = np.asarray([1, 3, 5, 1, 3, 5, 2, 2, 2, 4, 4, 4, 2.740655, 2.745848, 4.893587, 2.965059, 1.707929, 0.746007])\ .reshape((3, ny * mx)) out_expected_msg = np.asarray([1, 5, 1, 3, 2, 2, 4, 4, 2.740655, 4.893587, 2.965059, 1.707929])\ .reshape((3, 4))
32.156522
124
0.635479
3249b98ec0603abf9f97a5033a897bd1e2965b76
440
py
Python
Cisco/Python/Modulo_3/for/exercicio1.py
ThiagoKS-7/Python_Essencials_1_cisco
a417747e873f69bb307c4d36205797b191b5b45a
[ "MIT" ]
null
null
null
Cisco/Python/Modulo_3/for/exercicio1.py
ThiagoKS-7/Python_Essencials_1_cisco
a417747e873f69bb307c4d36205797b191b5b45a
[ "MIT" ]
null
null
null
Cisco/Python/Modulo_3/for/exercicio1.py
ThiagoKS-7/Python_Essencials_1_cisco
a417747e873f69bb307c4d36205797b191b5b45a
[ "MIT" ]
null
null
null
if __name__ == '__main__': main()
27.5
89
0.584091
324db02ef7101b8e262f2ae0d6adf964eaf48e55
1,252
py
Python
scripts/pegasus/build_test_sample_spm_no_bos.py
liminghao1630/transformers
207594be81b8e5a8589c8b11c3b236924555d806
[ "Apache-2.0" ]
50,404
2019-09-26T09:55:55.000Z
2022-03-31T23:07:49.000Z
scripts/pegasus/build_test_sample_spm_no_bos.py
liminghao1630/transformers
207594be81b8e5a8589c8b11c3b236924555d806
[ "Apache-2.0" ]
13,179
2019-09-26T10:10:57.000Z
2022-03-31T23:17:08.000Z
scripts/pegasus/build_test_sample_spm_no_bos.py
liminghao1630/transformers
207594be81b8e5a8589c8b11c3b236924555d806
[ "Apache-2.0" ]
13,337
2019-09-26T10:49:38.000Z
2022-03-31T23:06:17.000Z
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script builds a small sample spm file tests/fixtures/test_sentencepiece_no_bos.model, with features needed by pegasus # 1. pip install sentencepiece # # 2. wget https://raw.githubusercontent.com/google/sentencepiece/master/data/botchan.txt # 3. build import sentencepiece as spm # pegasus: # 1. no bos # 2. eos_id is 1 # 3. unk_id is 2 # build a sample spm file accordingly spm.SentencePieceTrainer.train('--input=botchan.txt --model_prefix=test_sentencepiece_no_bos --bos_id=-1 --unk_id=2 --eos_id=1 --vocab_size=1000') # 4. now update the fixture # mv test_sentencepiece_no_bos.model ../../tests/fixtures/
36.823529
148
0.761182
3252c61f7a71dbc22f9e4a1f7ba0cf98c90f9ea0
8,931
py
Python
pytorch-transformers-extensions/examples/run_inference.py
deepchatterjeevns/nlp_projects
8ea4a846138da0bcee2970907ea3340b1cdc74cb
[ "MIT" ]
21
2019-07-25T08:39:56.000Z
2020-12-14T09:59:06.000Z
pytorch-transformers-extensions/examples/run_inference.py
deepchatterjeevns/nlp_projects
8ea4a846138da0bcee2970907ea3340b1cdc74cb
[ "MIT" ]
1
2019-08-05T03:23:54.000Z
2019-08-05T03:24:39.000Z
pytorch-transformers-extensions/examples/run_inference.py
deepchatterjeevns/nlp_projects
8ea4a846138da0bcee2970907ea3340b1cdc74cb
[ "MIT" ]
15
2019-07-31T13:37:14.000Z
2021-09-28T19:01:27.000Z
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Running inference for sequence classification on various datasets (Bert, XLM, XLNet).""" from __future__ import absolute_import, division, print_function import argparse import logging import os import numpy as np from scipy.special import softmax import torch from torch.utils.data import (DataLoader, SequentialSampler, TensorDataset) from tqdm import tqdm, trange from pytorch_transformers import (WEIGHTS_NAME, BertConfig, BertForSequenceClassification, BertTokenizer, XLMConfig, XLMForSequenceClassification, XLMTokenizer, XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer) from utils_dataset import (compute_metrics, convert_examples_to_features, output_modes, processors, InputExample) logger = logging.getLogger(__name__) ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig)), ()) MODEL_CLASSES = { 'bert': (BertConfig, BertForSequenceClassification, BertTokenizer), 'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer), 'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer), } if __name__ == "__main__": main()
46.759162
163
0.665659
3254729c0575b8bd980f42074c2cb939b0ad6cf0
1,382
py
Python
problems/p012.py
10jmellott/ProjectEuler
eb84d129bbc37ba10ad7814ad2138d81568e0085
[ "Unlicense" ]
null
null
null
problems/p012.py
10jmellott/ProjectEuler
eb84d129bbc37ba10ad7814ad2138d81568e0085
[ "Unlicense" ]
null
null
null
problems/p012.py
10jmellott/ProjectEuler
eb84d129bbc37ba10ad7814ad2138d81568e0085
[ "Unlicense" ]
null
null
null
"""<a href="https://projecteuler.net/problem=12" class="title-custom-link">Highly divisible triangular number</a> The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... Let us list the factors of the first seven triangle numbers: 1: 1 3: 1,3 6: 1,2,3,6 10: 1,2,5,10 15: 1,3,5,15 21: 1,3,7,21 28: 1,2,4,7,14,28 We can see that 28 is the first triangle number to have over five divisors. What is the value of the first triangle number to have over five hundred divisors? """ from utils.oeis import triangular_numbers from utils.fibonacci import trial_division from utils.fibonacci import factors_to_dictionary def main(): """Solves this problem Utilizes [A000005](http://oeis.org/A000005) which is solved via a lemma to Euler's Totient Function Returns: Integer: Solution to this problem """ i = 1 divisors = 0 while divisors <= 500: triangle = triangular_numbers(i) prime_factors = trial_division(triangle) prime_factors = factors_to_dictionary(prime_factors) divisors = 1 for k, v in prime_factors.items(): divisors = divisors * (v + 1) i = i + 1 return triangular_numbers(i - 1)
32.139535
113
0.664978
3255418e552bf21eec558aa0897845fa6583a29c
4,984
py
Python
u3s2m1ass1-pt6/code/rpg_queries.py
LambdaTheda/lambdata-Unit3
b44b20f2f3e28d2b17613660ddb562afe4825686
[ "MIT" ]
null
null
null
u3s2m1ass1-pt6/code/rpg_queries.py
LambdaTheda/lambdata-Unit3
b44b20f2f3e28d2b17613660ddb562afe4825686
[ "MIT" ]
null
null
null
u3s2m1ass1-pt6/code/rpg_queries.py
LambdaTheda/lambdata-Unit3
b44b20f2f3e28d2b17613660ddb562afe4825686
[ "MIT" ]
1
2020-05-11T04:33:24.000Z
2020-05-11T04:33:24.000Z
import sqlite3 import os #DB_FILEPATH = "data/chinook.db" DB_FILEPATH = os.path.join(os.path.dirname(__file__), "..", "data", "rpg_db.sqlite3") conn = sqlite3.connect(DB_FILEPATH) conn.row_factory = sqlite3.Row print(type(conn)) #> <class 'sqlite3.Connection'> curs = conn.cursor() print(type(curs)) #> <class 'sqlite3.Cursor'> query = """SELECT count(DISTINCT character_id) as character_count FROM charactercreator_character""" # query1 = """SELECT # count(DISTINCT character_ptr_id) as character_ptr_count # FROM charactercreator_cleric""" # query2 = """SELECT # count(DISTINCT character_ptr_id) as character_ptr_count # FROM charactercreator_fighter""" # query3 = """SELECT # count(DISTINCT character_ptr_id) as character_ptr_count # FROM charactercreator_mage""" # query4 = """SELECT # count(DISTINCT character_ptr_id) as character_ptr_count # FROM charactercreator_thief""" queries_combined = """SELECT count(distinct c.character_ptr_id) as total_clerics ,count(distinct f.character_ptr_id) as total_fighters ,count(distinct m.character_ptr_id) as total_mages ,count(distinct n.mage_ptr_id) as total_necromancers ,count(distinct t.character_ptr_id) as total_thieves FROM charactercreator_character ccc LEFT JOIN charactercreator_fighter f ON ccc.character_id = f.character_ptr_id LEFT JOIN charactercreator_cleric c ON ccc.character_id= c.character_ptr_id LEFT JOIN charactercreator_mage m ON ccc.character_id = m.character_ptr_id LEFT JOIN charactercreator_necromancer n ON ccc.character_id = n.mage_ptr_id LEFT JOIN charactercreator_thief t ON ccc.character_id = t.character_ptr_id""" query5 = """SELECT count(DISTINCT item_id ) as total_item FROM armory_item""" query6 = """SELECT count(DISTINCT item_ptr_id) as weapons FROM armory_weapon""" query7 = """SELECT count(DISTINCT item_id) - count(DISTINCT item_ptr_id) as total_non_weapons FROM armory_item, armory_weapon""" query8 = """SELECT item_id , count(DISTINCT item_id) as item FROM charactercreator_character_inventory GROUP BY character_id LIMIT 20 """ query9 = """SELECT cci.character_id , count(DISTINCT aw.item_ptr_id) as number_of_weapons FROM charactercreator_character_inventory as cci LEFT JOIN armory_item as ai ON cci.item_id = ai.item_id LEFT JOIN armory_weapon as aw ON ai.item_id = aw.item_ptr_id GROUP BY character_id LIMIT 20""" query10 = """SELECT avg(total_items) as avg_items FROM ( -- row per character = 302 SELECT c.character_id ,c.name --,ci.item_id ,count(distinct ci.item_id) as total_items FROM charactercreator_character c LEFT JOIN charactercreator_character_inventory ci ON c.character_id = ci.character_id GROUP BY c.character_id ) subz""" query11 = """SELECT avg(weapon_count) as avg_weapon FROM ( SELECT cci.character_id ,count(DISTINCT aw.item_ptr_id) as weapon_count FROM charactercreator_character_inventory cci LEFT JOIN armory_item ai ON cci.item_id = ai.item_id LEFT JOIN armory_weapon aw ON ai.item_id = aw.item_ptr_id GROUP BY 1 ) subz""" print("----------") result = curs.execute(query).fetchone() print("RESULTS FOR CHARACTERCREATOR_CHARACTER", result) print(result["character_count"]) # print("-------------") # result1 = curs.execute(query1).fetchone() # print("Results for charactercreator_cleric", result1) # print(result1["character_ptr_count"]) # print("---------") # result2 = curs.execute(query2).fetchone() # print("Results for charactercreator_fighter", result2) # print(result2["character_ptr_count"]) # print("---------") # result3 = curs.execute(query3).fetchone() # print("Results for charactercreator_mage", result3) # print(result3["character_ptr_count"]) # print('--------') # result4 = curs.execute(query4).fetchone() # print("Results for charactercreator_thief", result4) # print(result4["character_ptr_count"]) # print("-------------") # result5 = curs.execute(query5).fetchone() # print("Results for total Items", result5) # print(result5["total_item"]) result_queries = curs.execute(queries_combined).fetchall() print("Results of each specific subclass", result_queries) result6 = curs.execute(query6).fetchone() print("Results for total weapons", result6) print(result6["weapons"]) print("---------") result7 = curs.execute(query7).fetchone() print("Results for total non weapons", result7) print(result7["total_non_weapons"]) print("---------") result8 = curs.execute(query8).fetchall() for rw in result8: print(rw[0], rw[1]) print("---------") result9 = curs.execute(query9).fetchall() for rw in result9: print(rw['character_id'], rw['number_of_weapons']) print("---------") result10 = curs.execute(query10).fetchone() print("Average item per character", result10) print(result10["avg_items"]) print("---------") result11= curs.execute(query11).fetchone() print("Average weapon per character", result11) print(result11["avg_weapon"]) print("---------")
30.576687
85
0.731742
3256173ee4e9a424745cf36c9f1ac6cf9bf2bc08
7,872
py
Python
tools/table.py
asterick/minimon.js
4876544525eb1bfef1b81a12807e7ba37cdd4949
[ "0BSD" ]
5
2019-04-25T00:19:56.000Z
2020-09-02T01:24:40.000Z
tools/table.py
asterick/minimon.js
4876544525eb1bfef1b81a12807e7ba37cdd4949
[ "0BSD" ]
6
2020-05-23T23:17:59.000Z
2022-02-17T21:50:46.000Z
tools/table.py
asterick/minimon.js
4876544525eb1bfef1b81a12807e7ba37cdd4949
[ "0BSD" ]
null
null
null
#!/usr/bin/env python3 # ISC License # # Copyright (c) 2019, Bryon Vandiver # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. from json import dumps import os import csv CSV_LOCATION = os.path.join(os.path.abspath(os.path.dirname(__file__)), 's1c88.csv') op0s, op1s, op2s = [None] * 0x100, [None] * 0x100, [None] * 0x100 CONDITIONS = { 'C': 'cpu.reg.flag.c', 'NC': '!cpu.reg.flag.c', 'Z': 'cpu.reg.flag.z', 'NZ': '!cpu.reg.flag.z', 'V': 'cpu.reg.flag.v', 'NV': '!cpu.reg.flag.v', 'M': 'cpu.reg.flag.n', 'P': '!cpu.reg.flag.n', 'LT': 'cpu.reg.flag.n != cpu.reg.flag.v', 'LE': '(cpu.reg.flag.n != cpu.reg.flag.v) || cpu.reg.flag.z', 'GT': '(cpu.reg.flag.n == cpu.reg.flag.v) && !cpu.reg.flag.z', 'GE': 'cpu.reg.flag.n == cpu.reg.flag.v', 'F0': 'cpu.reg.flag.f0', 'F1': 'cpu.reg.flag.f1', 'F2': 'cpu.reg.flag.f2', 'F3': 'cpu.reg.flag.f3', 'NF0': '!cpu.reg.flag.f0', 'NF1': '!cpu.reg.flag.f1', 'NF2': '!cpu.reg.flag.f2', 'NF3': '!cpu.reg.flag.f3', } ARGUMENTS = { 'A': (8, False, False, 'a'), 'B': (8, False, False, 'b'), 'L': (8, False, False, 'l'), 'H': (8, False, False, 'h'), 'BR': (8, False, False, 'br'), 'SC': (8, False, False, 'sc'), 'EP': (8, False, False, 'ep'), 'XP': (8, False, False, 'xp'), 'YP': (8, False, False, 'yp'), 'NB': (8, False, False, 'nb'), 'BA': (16, False, False, 'ba'), 'HL': (16, False, False, 'hl'), 'IX': (16, False, False, 'ix'), 'IY': (16, False, False, 'iy'), 'SP': (16, False, False, 'sp'), 'PC': (16, False, False, 'pc'), '#nn': (8, True, False, 'imm8'), 'rr': (8, True, False, 'imm8'), '#mmnn': (16, True, False, 'imm16'), 'qqrr': (16, True, False, 'imm16'), '[kk]': (16, True, True, 'vect'), # Special '[hhll]': (-1, True, True, 'ind16'), '[HL]': (-1, True, True, 'absHL'), '[IX]': (-1, True, True, 'absIX'), '[IY]': (-1, True, True, 'absIY'), '[BR:ll]': (-1, True, True, 'absBR'), '[SP+dd]': (-1, True, True, 'indDSP'), '[IX+dd]': (-1, True, True, 'indDIX'), '[IY+dd]': (-1, True, True, 'indDIY'), '[IX+L]': (-1, True, True, 'indIIX'), '[IY+L]': (-1, True, True, 'indIIY'), } OPERATIONS = { 'INC': (8, 'ReadWrite'), 'DEC': (8, 'ReadWrite'), 'SLA': (8, 'ReadWrite'), 'SLL': (8, 'ReadWrite'), 'SRA': (8, 'ReadWrite'), 'SRL': (8, 'ReadWrite'), 'RL': (8, 'ReadWrite'), 'RLC': (8, 'ReadWrite'), 'RR': (8, 'ReadWrite'), 'RRC': (8, 'ReadWrite'), 'CPL': (8, 'ReadWrite'), 'NEG': (8, 'ReadWrite'), 'LD': (8, 'Write', 'Read'), 'ADD': (8, 'ReadWrite', 'Read'), 'ADC': (8, 'ReadWrite', 'Read'), 'SUB': (8, 'ReadWrite', 'Read'), 'SBC': (8, 'ReadWrite', 'Read'), 'AND': (8, 'ReadWrite', 'Read'), 'OR': (8, 'ReadWrite', 'Read'), 'XOR': (8, 'ReadWrite', 'Read'), 'CP': (8, 'Read', 'Read'), 'BIT': (8, 'Read', 'Read'), 'CALL': (16, 'Read'), 'CARS': (8, 'Read'), 'CARL': (16, 'Read'), 'JRS': (8, 'Read'), 'JRL': (16, 'Read'), 'JP': (8, 'Read'), 'INT': (8, 'Read'), 'RETE': (8,), 'PUSH': (-1, 'Read'), 'POP': (-1, 'Write'), 'EX': (-1, 'ReadWrite', 'ReadWrite'), 'SWAP': (8, 'ReadWrite') } # Generate switch table with open(CSV_LOCATION, 'r') as csvfile: spamreader = csv.reader(csvfile) next(spamreader) for row in spamreader: code, cycles0, op0, arg0_1, arg0_2, cycles1, op1, arg1_1, arg1_2, cycles2, op2, arg2_1, arg2_2 = row code = int(code, 16) if op0 != 'undefined': op0s[code] = format(cycles0, op0, arg0_1, arg0_2) if op1 != 'undefined': op1s[code] = format(cycles1, op1, arg1_1, arg1_2) if op2 != 'undefined': op2s[code] = format(cycles2, op2, arg2_1, arg2_2) print ("int inst_advance(Machine::State& cpu) {") print ("\tswitch (cpu_imm8(cpu)) {") dump_table(op0s, '\t') print ("\tcase 0xCE:") print ("\t\tswitch (cpu_imm8(cpu)) {") dump_table(op1s, '\t\t') print ("\t\t}") print ("\tcase 0xCF:") print ("\t\tswitch (cpu_imm8(cpu)) {") dump_table(op2s, '\t\t') print ("\t\t}") print ("\t}") print ("}")
32.528926
123
0.506225
325927f14aed5b03fe28e7161da22ac9db1b0f2b
15,364
py
Python
test_log.py
erkooi/desp_tools
2bea2e44591ceeeb62cbfe163b4635a3157f6582
[ "Apache-2.0" ]
null
null
null
test_log.py
erkooi/desp_tools
2bea2e44591ceeeb62cbfe163b4635a3157f6582
[ "Apache-2.0" ]
null
null
null
test_log.py
erkooi/desp_tools
2bea2e44591ceeeb62cbfe163b4635a3157f6582
[ "Apache-2.0" ]
null
null
null
############################################################################### # # Copyright (C) 2012 # ASTRON (Netherlands Institute for Radio Astronomy) <http://www.astron.nl/> # P.O.Box 2, 7990 AA Dwingeloo, The Netherlands # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################### """Test logging utilities * Provide logging with standardized prefixes: . time : self, if notime = 0 . verbosity level : self, if noVLevel = 0 . test case ID : self, if noTestId = 0 . message text : argument msgString, the actual text to log * All append_log statements that have verbosity level equal or lower than the test case verbosity level will get logged. * The logging gets output to the stdio and to a file if a file name is provided. * It is also possible to append other files to the test logging file. * Best practise is to use the following verbosity levels for the append_log argument: -v 0 Log test result -v 1 Log test title -v 2 Log errors -v 3 Log info -v 4 Log error details -v 5 Log info details -v 6 Log debug -v 7 Log debug details """ ################################################################################ # System imports import sys import time import common as cm ################################################################################ # Functions
48.466877
164
0.570034
325b56ca169aa22d3b3e5e502acb535b1e7a8a46
868
py
Python
subaudible/subparse.py
RobbieClarken/subaudible
f22bdec90693727b36eff426e96d6960387fb94d
[ "MIT" ]
null
null
null
subaudible/subparse.py
RobbieClarken/subaudible
f22bdec90693727b36eff426e96d6960387fb94d
[ "MIT" ]
null
null
null
subaudible/subparse.py
RobbieClarken/subaudible
f22bdec90693727b36eff426e96d6960387fb94d
[ "MIT" ]
null
null
null
import re
27.125
67
0.59447
325b89ab7374be326978f10a334f001191bd3ead
1,971
py
Python
application/models/basemodel.py
ahmedsadman/festive
e0e739f126de2e8368014398f5c928c410098da5
[ "MIT" ]
2
2020-10-19T23:26:23.000Z
2020-10-20T02:14:10.000Z
application/models/basemodel.py
ahmedsadman/fest-management-api
e0e739f126de2e8368014398f5c928c410098da5
[ "MIT" ]
null
null
null
application/models/basemodel.py
ahmedsadman/fest-management-api
e0e739f126de2e8368014398f5c928c410098da5
[ "MIT" ]
1
2021-08-04T15:45:29.000Z
2021-08-04T15:45:29.000Z
from sqlalchemy import func from application import db from application.helpers.error_handlers import ServerError
33.982759
78
0.597666
325ca5543e9808ec6039d4cf69192bb2bde47b8f
522
py
Python
tests/core/resource_test_base.py
alteia-ai/alteia-python-sdk
27ec7458334334ed6a1edae52cb25d5ce8734177
[ "MIT" ]
11
2020-12-22T14:39:21.000Z
2022-02-18T16:34:34.000Z
tests/core/resource_test_base.py
alteia-ai/alteia-python-sdk
27ec7458334334ed6a1edae52cb25d5ce8734177
[ "MIT" ]
1
2021-08-05T14:21:12.000Z
2021-08-09T13:22:55.000Z
tests/core/resource_test_base.py
alteia-ai/alteia-python-sdk
27ec7458334334ed6a1edae52cb25d5ce8734177
[ "MIT" ]
null
null
null
import os from unittest.mock import patch import alteia from tests.alteiatest import AlteiaTestBase
27.473684
89
0.726054
325dd1dcfd3afeca98237f91ac72ec8dacd09a26
137
py
Python
scripts/viterbi.py
Tereshchenkolab/digitize-ecg-cli
fa5a17c5390a11ce07e39e6a8eecb56ed38b16a1
[ "MIT" ]
6
2021-06-12T08:20:33.000Z
2022-03-01T15:32:35.000Z
scripts/viterbi.py
Tereshchenkolab/ecg-digitize
fa5a17c5390a11ce07e39e6a8eecb56ed38b16a1
[ "MIT" ]
null
null
null
scripts/viterbi.py
Tereshchenkolab/ecg-digitize
fa5a17c5390a11ce07e39e6a8eecb56ed38b16a1
[ "MIT" ]
null
null
null
from ecgdigitize.signal.extraction.viterbi import * if __name__ == "__main__": print(list(interpolate(Point(0,0), Point(5,5))))
27.4
56
0.70073
325fc49ee449fcf77d594c853f23436486f7b300
2,711
py
Python
tests/io/s3/test_s3_fetcher.py
ToucanToco/PeaKina
afaeec65d9b136d42331f140c3048d27bcddb6b1
[ "BSD-3-Clause" ]
null
null
null
tests/io/s3/test_s3_fetcher.py
ToucanToco/PeaKina
afaeec65d9b136d42331f140c3048d27bcddb6b1
[ "BSD-3-Clause" ]
null
null
null
tests/io/s3/test_s3_fetcher.py
ToucanToco/PeaKina
afaeec65d9b136d42331f140c3048d27bcddb6b1
[ "BSD-3-Clause" ]
null
null
null
from typing import Any, Dict import boto3 import pytest from s3fs import S3FileSystem from peakina.io.s3.s3_fetcher import S3Fetcher
33.8875
94
0.693471
3262d7cd59e5780cbf71323fcb7c77c193d6904e
324
py
Python
testemunhoweb/consulta/migrations/0002_auto_20191202_0219.py
danielcamilo13/testemunhoWEB
46825e31123058fa6ee21e4e71e9e0bedde32bb4
[ "bzip2-1.0.6" ]
1
2019-12-03T01:37:13.000Z
2019-12-03T01:37:13.000Z
testemunhoweb/consulta/migrations/0002_auto_20191202_0219.py
danielcamilo13/testemunhoWEB
46825e31123058fa6ee21e4e71e9e0bedde32bb4
[ "bzip2-1.0.6" ]
11
2020-06-06T01:28:35.000Z
2022-03-12T00:16:34.000Z
testemunhoweb/consulta/migrations/0002_auto_20191202_0219.py
danielcamilo13/testemunhoWEB
46825e31123058fa6ee21e4e71e9e0bedde32bb4
[ "bzip2-1.0.6" ]
null
null
null
# Generated by Django 2.2.7 on 2019-12-02 05:19 from django.db import migrations
18
47
0.58642