hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
11 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
251
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
251
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
251
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.05M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.04M
alphanum_fraction
float64
0
1
9a2736448f820e4e81087e8a5353235f998513f8
55,584
py
Python
fhir/resources/tests/test_claim.py
cstoltze/fhir.resources
52f99738935b7313089d89daf94d73ce7d167c9d
[ "BSD-3-Clause" ]
144
2019-05-08T14:24:43.000Z
2022-03-30T02:37:11.000Z
fhir/resources/tests/test_claim.py
cstoltze/fhir.resources
52f99738935b7313089d89daf94d73ce7d167c9d
[ "BSD-3-Clause" ]
82
2019-05-13T17:43:13.000Z
2022-03-30T16:45:17.000Z
fhir/resources/tests/test_claim.py
cstoltze/fhir.resources
52f99738935b7313089d89daf94d73ce7d167c9d
[ "BSD-3-Clause" ]
48
2019-04-04T14:14:53.000Z
2022-03-30T06:07:31.000Z
# -*- coding: utf-8 -*- """ Profile: http://hl7.org/fhir/StructureDefinition/Claim Release: R4 Version: 4.0.1 Build ID: 9346c8cc45 Last updated: 2019-11-01T09:29:23.356+11:00 """ from pydantic.validators import bytes_validator # noqa: F401 from .. import fhirtypes # noqa: F401 from .. import claim def test_claim_1(base_settings): """No. 1 tests collection for Claim. Test File: claim-example-institutional-rich.json """ filename = ( base_settings["unittest_data_dir"] / "claim-example-institutional-rich.json" ) inst = claim.Claim.parse_file( filename, content_type="application/json", encoding="utf-8" ) assert "Claim" == inst.resource_type impl_claim_1(inst) # testing reverse by generating data from itself and create again. data = inst.dict() assert "Claim" == data["resourceType"] inst2 = claim.Claim(**data) impl_claim_1(inst2) def test_claim_2(base_settings): """No. 2 tests collection for Claim. Test File: claim-example-professional.json """ filename = base_settings["unittest_data_dir"] / "claim-example-professional.json" inst = claim.Claim.parse_file( filename, content_type="application/json", encoding="utf-8" ) assert "Claim" == inst.resource_type impl_claim_2(inst) # testing reverse by generating data from itself and create again. data = inst.dict() assert "Claim" == data["resourceType"] inst2 = claim.Claim(**data) impl_claim_2(inst2) def test_claim_3(base_settings): """No. 3 tests collection for Claim. Test File: claim-example.json """ filename = base_settings["unittest_data_dir"] / "claim-example.json" inst = claim.Claim.parse_file( filename, content_type="application/json", encoding="utf-8" ) assert "Claim" == inst.resource_type impl_claim_3(inst) # testing reverse by generating data from itself and create again. data = inst.dict() assert "Claim" == data["resourceType"] inst2 = claim.Claim(**data) impl_claim_3(inst2) def test_claim_4(base_settings): """No. 4 tests collection for Claim. Test File: claim-example-vision.json """ filename = base_settings["unittest_data_dir"] / "claim-example-vision.json" inst = claim.Claim.parse_file( filename, content_type="application/json", encoding="utf-8" ) assert "Claim" == inst.resource_type impl_claim_4(inst) # testing reverse by generating data from itself and create again. data = inst.dict() assert "Claim" == data["resourceType"] inst2 = claim.Claim(**data) impl_claim_4(inst2) def test_claim_5(base_settings): """No. 5 tests collection for Claim. Test File: claim-example-vision-glasses-3tier.json """ filename = ( base_settings["unittest_data_dir"] / "claim-example-vision-glasses-3tier.json" ) inst = claim.Claim.parse_file( filename, content_type="application/json", encoding="utf-8" ) assert "Claim" == inst.resource_type impl_claim_5(inst) # testing reverse by generating data from itself and create again. data = inst.dict() assert "Claim" == data["resourceType"] inst2 = claim.Claim(**data) impl_claim_5(inst2) def test_claim_6(base_settings): """No. 6 tests collection for Claim. Test File: claim-example-institutional.json """ filename = base_settings["unittest_data_dir"] / "claim-example-institutional.json" inst = claim.Claim.parse_file( filename, content_type="application/json", encoding="utf-8" ) assert "Claim" == inst.resource_type impl_claim_6(inst) # testing reverse by generating data from itself and create again. data = inst.dict() assert "Claim" == data["resourceType"] inst2 = claim.Claim(**data) impl_claim_6(inst2) def test_claim_7(base_settings): """No. 7 tests collection for Claim. Test File: claim-example-oral-contained.json """ filename = base_settings["unittest_data_dir"] / "claim-example-oral-contained.json" inst = claim.Claim.parse_file( filename, content_type="application/json", encoding="utf-8" ) assert "Claim" == inst.resource_type impl_claim_7(inst) # testing reverse by generating data from itself and create again. data = inst.dict() assert "Claim" == data["resourceType"] inst2 = claim.Claim(**data) impl_claim_7(inst2) def test_claim_8(base_settings): """No. 8 tests collection for Claim. Test File: claim-example-pharmacy-medication.json """ filename = ( base_settings["unittest_data_dir"] / "claim-example-pharmacy-medication.json" ) inst = claim.Claim.parse_file( filename, content_type="application/json", encoding="utf-8" ) assert "Claim" == inst.resource_type impl_claim_8(inst) # testing reverse by generating data from itself and create again. data = inst.dict() assert "Claim" == data["resourceType"] inst2 = claim.Claim(**data) impl_claim_8(inst2) def test_claim_9(base_settings): """No. 9 tests collection for Claim. Test File: claim-example-oral-orthoplan.json """ filename = base_settings["unittest_data_dir"] / "claim-example-oral-orthoplan.json" inst = claim.Claim.parse_file( filename, content_type="application/json", encoding="utf-8" ) assert "Claim" == inst.resource_type impl_claim_9(inst) # testing reverse by generating data from itself and create again. data = inst.dict() assert "Claim" == data["resourceType"] inst2 = claim.Claim(**data) impl_claim_9(inst2) def test_claim_10(base_settings): """No. 10 tests collection for Claim. Test File: claim-example-cms1500-medical.json """ filename = base_settings["unittest_data_dir"] / "claim-example-cms1500-medical.json" inst = claim.Claim.parse_file( filename, content_type="application/json", encoding="utf-8" ) assert "Claim" == inst.resource_type impl_claim_10(inst) # testing reverse by generating data from itself and create again. data = inst.dict() assert "Claim" == data["resourceType"] inst2 = claim.Claim(**data) impl_claim_10(inst2)
43.527016
88
0.664904
9a27eb495106ade83e880e4a8a449d48c322f96d
2,708
py
Python
bin/main.py
ubern-mia/point-cloud-segmentation-miccai2019
b131b62dc5016de53611f3a743c56cc0061e050f
[ "MIT" ]
20
2019-10-14T06:03:10.000Z
2022-02-04T04:44:38.000Z
bin/main.py
ubern-mia/point-cloud-segmentation-miccai2019
b131b62dc5016de53611f3a743c56cc0061e050f
[ "MIT" ]
11
2019-06-10T12:31:23.000Z
2022-03-12T00:04:28.000Z
bin/main.py
fabianbalsiger/point-cloud-segmentation-miccai2019
b131b62dc5016de53611f3a743c56cc0061e050f
[ "MIT" ]
3
2019-11-06T14:06:44.000Z
2021-08-11T18:46:25.000Z
import argparse import os.path import sys sys.path.append( os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) import pymia.deeplearning.logging as log import tensorflow as tf import pc.configuration.config as cfg import pc.data.handler as hdlr import pc.data.split as split import pc.model.point_cnn as net import pc.utilities.filesystem as fs import pc.utilities.seeding as seed import pc.utilities.training as train if __name__ == '__main__': """The program's entry point. Parse the arguments and run the program. """ parser = argparse.ArgumentParser(description='Deep learning for shape learning on point clouds') parser.add_argument( '--config_file', type=str, default='./bin/config.json', help='Path to the configuration file.' ) args = parser.parse_args() main(args.config_file)
33.85
113
0.679838
9a285d7173b98f84f370605c57bfb8c26d5b2158
1,586
py
Python
spynoza/unwarping/topup/nodes.py
spinoza-centre/spynoza
d71d69e3ea60c9544f4e63940f053a2d1b3ac65f
[ "MIT" ]
7
2016-06-21T11:51:07.000Z
2018-08-10T15:41:37.000Z
spynoza/unwarping/topup/nodes.py
spinoza-centre/spynoza
d71d69e3ea60c9544f4e63940f053a2d1b3ac65f
[ "MIT" ]
12
2017-07-05T09:14:31.000Z
2018-09-13T12:19:14.000Z
spynoza/unwarping/topup/nodes.py
spinoza-centre/spynoza
d71d69e3ea60c9544f4e63940f053a2d1b3ac65f
[ "MIT" ]
8
2016-09-26T12:35:59.000Z
2021-06-05T05:50:23.000Z
from nipype.interfaces.utility import Function Topup_scan_params = Function(function=topup_scan_params, input_names=['pe_direction', 'te', 'epi_factor'], output_names=['fn']) Apply_scan_params = Function(function=apply_scan_params, input_names=['pe_direction', 'te', 'epi_factor', 'nr_trs'], output_names=['fn'])
33.041667
78
0.592686
9a287484855658cc91349375e1c4b8e475ab1fe0
1,317
py
Python
manage_env.py
sandeep-gh/OpenBSDRemoteIT
1690e67b6e2eb106c5350c75915065457fb1b9b2
[ "MIT" ]
null
null
null
manage_env.py
sandeep-gh/OpenBSDRemoteIT
1690e67b6e2eb106c5350c75915065457fb1b9b2
[ "MIT" ]
null
null
null
manage_env.py
sandeep-gh/OpenBSDRemoteIT
1690e67b6e2eb106c5350c75915065457fb1b9b2
[ "MIT" ]
null
null
null
import os import pickle from deployConfig import workDir import sys env_fp = f"{workDir}/env.pickle" if not os.path.exists(env_fp): env = {} with open(env_fp, "wb") as fh: pickle.dump(env, fh) # add_to_env("LD_LIBRARY_PATH", "/usr/local/lib/eopenssl11/") # add_to_env("LD_LIBRARY_PATH", f"{project_root}/Builds/Python-3.10.0/") # add_to_env("PATH", f"{project_root}/Builds/Python-3.10.0/bin") # add_to_env("PATH", f"{project_root}/Builds/postgresql-14.0/bin")
28.630435
90
0.59757
9a2921aafee477055d03e47abb30d023e2f9b7df
2,645
py
Python
2017/day06/redistribution.py
kmcginn/advent-of-code
96a8d7d723f6f222d431fd9ede88d0a303d86761
[ "MIT" ]
null
null
null
2017/day06/redistribution.py
kmcginn/advent-of-code
96a8d7d723f6f222d431fd9ede88d0a303d86761
[ "MIT" ]
null
null
null
2017/day06/redistribution.py
kmcginn/advent-of-code
96a8d7d723f6f222d431fd9ede88d0a303d86761
[ "MIT" ]
null
null
null
""" from: http://adventofcode.com/2017/day/6 --- Day 6: Memory Reallocation --- A debugger program here is having an issue: it is trying to repair a memory reallocation routine, but it keeps getting stuck in an infinite loop. In this area, there are sixteen memory banks; each memory bank can hold any number of blocks. The goal of the reallocation routine is to balance the blocks between the memory banks. The reallocation routine operates in cycles. In each cycle, it finds the memory bank with the most blocks (ties won by the lowest-numbered memory bank) and redistributes those blocks among the banks. To do this, it removes all of the blocks from the selected bank, then moves to the next (by index) memory bank and inserts one of the blocks. It continues doing this until it runs out of blocks; if it reaches the last memory bank, it wraps around to the first one. The debugger would like to know how many redistributions can be done before a blocks-in-banks configuration is produced that has been seen before. For example, imagine a scenario with only four memory banks: The banks start with 0, 2, 7, and 0 blocks. The third bank has the most blocks, so it is chosen for redistribution. Starting with the next bank (the fourth bank) and then continuing to the first bank, the second bank, and so on, the 7 blocks are spread out over the memory banks. The fourth, first, and second banks get two blocks each, and the third bank gets one back. The final result looks like this: 2 4 1 2. Next, the second bank is chosen because it contains the most blocks (four). Because there are four memory banks, each gets one block. The result is: 3 1 2 3. Now, there is a tie between the first and fourth memory banks, both of which have three blocks. The first bank wins the tie, and its three blocks are distributed evenly over the other three banks, leaving it with none: 0 2 3 4. The fourth bank is chosen, and its four blocks are distributed such that each of the four banks receives one: 1 3 4 1. The third bank is chosen, and the same thing happens: 2 4 1 2. At this point, we've reached a state we've seen before: 2 4 1 2 was already seen. The infinite loop is detected after the fifth block redistribution cycle, and so the answer in this example is 5. Given the initial block counts in your puzzle input, how many redistribution cycles must be completed before a configuration is produced that has been seen before? """ def main(): """Solve the problem!""" with open('input.txt') as input_file: data = input_file.read() banks = [int(x) for x in data.split()] print(banks) if __name__ == "__main__": main()
56.276596
100
0.761815
9a29485e3ae58c67b4c0c486240c276c76016ab2
3,328
py
Python
redress/tests/test_geometries.py
maximlamare/REDRESS
a6caa9924d0f6df7ed49f188b35a7743fde1486e
[ "MIT" ]
1
2021-09-16T08:03:31.000Z
2021-09-16T08:03:31.000Z
redress/tests/test_geometries.py
maximlamare/REDRESS
a6caa9924d0f6df7ed49f188b35a7743fde1486e
[ "MIT" ]
null
null
null
redress/tests/test_geometries.py
maximlamare/REDRESS
a6caa9924d0f6df7ed49f188b35a7743fde1486e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Unittests for the GDAl tools. This file is part of the REDRESS algorithm M. Lamare, M. Dumont, G. Picard (IGE, CEN). """ import pytest from geojson import Polygon, Feature, FeatureCollection, dump from redress.geospatial.gdal_ops import (build_poly_from_coords, build_poly_from_geojson, geom_contains)
36.571429
73
0.60607
9a2995b77fe8a7759abd5fe12be41e28897fa1b0
112
py
Python
output/models/ms_data/regex/letterlike_symbols_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/ms_data/regex/letterlike_symbols_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/ms_data/regex/letterlike_symbols_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from output.models.ms_data.regex.letterlike_symbols_xsd.letterlike_symbols import Doc __all__ = [ "Doc", ]
18.666667
85
0.776786
9a2ad5d8f34b4182942a86d8ef3f197c1b06c12e
1,296
py
Python
test.py
MarkMurillo/python_ctype_structure_example
9e889cc4cbdeab8433c396262f086071bb961e13
[ "MIT" ]
null
null
null
test.py
MarkMurillo/python_ctype_structure_example
9e889cc4cbdeab8433c396262f086071bb961e13
[ "MIT" ]
null
null
null
test.py
MarkMurillo/python_ctype_structure_example
9e889cc4cbdeab8433c396262f086071bb961e13
[ "MIT" ]
null
null
null
"""test.py Python3 Test script that demonstrates the passing of an initialized python structure to C and retrieving the structure back. """ import testMod from ctypes import * TESTSTRUCT._fields_ = [ ("name", c_char_p), ("next", POINTER(TESTSTRUCT), #We can use a structure pointer for a linked list. ("next2", c_void_p) #We can use void pointers for structures as well! ] struct1 = TESTSTRUCT(c_char_p("Hello!".encode()), None, None) struct2 = TESTSTRUCT(c_char_p("Goodbye!".encode()), None, None) struct22 = TESTSTRUCT(c_char_p("My Love!".encode()), None, None) struct1.next = pointer(struct2) #Must cast lp to void p before assigning it or it will complain... struct1.next2 = cast(pointer(struct22), c_void_p) outbytes = testMod.py_returnMe(struct1) #Must cast outbytes back into pointer for a struct and retrieve contents. struct3 = cast(outbytes, POINTER(TESTSTRUCT)).contents #Next is already a pointer so all we need are just the contents. nextStruct = struct3.next.contents #Next2 is a void p so we need to cast it back to TESTSTRUCT pointer and get #the contents. next2Struct = cast(struct3.next2, POINTER(TESTSTRUCT)).contents print ("Result: {}, {}, {}".format(struct3.name, nextStrut.name, next2Struct.name)
31.609756
88
0.73534
9a2cec396ceac73b9f9e17a3fefcecf0959ae15d
33,258
py
Python
utility/visualize.py
richban/behavioral.neuroevolution
bb850bda919a772538dc86a9624a6e86623f9b80
[ "Apache-2.0" ]
null
null
null
utility/visualize.py
richban/behavioral.neuroevolution
bb850bda919a772538dc86a9624a6e86623f9b80
[ "Apache-2.0" ]
2
2020-03-31T01:45:13.000Z
2020-09-25T23:39:43.000Z
utility/visualize.py
richban/behavioral.neuroevolution
bb850bda919a772538dc86a9624a6e86623f9b80
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import os import csv import graphviz import numpy as np import plotly.graph_objs as go import plotly import plotly.plotly as py import matplotlib.pyplot as plt import matplotlib.pylab as pylab import copy import warnings import matplotlib as mpl from plotly.offline import download_plotlyjs, plot, iplot mpl.use('TkAgg') plotly.tools.set_credentials_file(username=os.environ['PLOTLY_USERNAME'], api_key=os.environ['PLOTLY_API_KEY']) def plot_stats(statistics, ylog=False, view=False, filename='avg_fitness.svg'): """ Plots the population's average and best fitness. """ if plt is None: warnings.warn( "This display is not available due to a missing optional dependency (matplotlib)") return generation = range(len(statistics.most_fit_genomes)) best_fitness = [c.fitness for c in statistics.most_fit_genomes] avg_fitness = np.array(statistics.get_fitness_mean()) stdev_fitness = np.array(statistics.get_fitness_stdev()) median_fitness = np.array(statistics.get_fitness_median()) plt.figure(figsize=(12, 9)) ax = plt.subplot(111) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() plt.plot(generation, avg_fitness, 'b-', label="average") plt.plot(generation, avg_fitness - stdev_fitness, 'g-.', label="-1 sd") plt.plot(generation, avg_fitness + stdev_fitness, 'g-.', label="+1 sd") plt.plot(generation, best_fitness, 'r-', label="best") plt.plot(generation, median_fitness, 'y-', label="median") plt.title("Population's average and best fitness") plt.xlabel("Generations") plt.ylabel("Fitness") plt.grid() plt.legend(loc="best") if ylog: plt.gca().set_yscale('symlog') plt.savefig(filename) if view: plt.show() plt.close() def plot_spikes(spikes, view=False, filename=None, title=None): """ Plots the trains for a single spiking neuron. """ t_values = [t for t, I, v, u, f in spikes] v_values = [v for t, I, v, u, f in spikes] u_values = [u for t, I, v, u, f in spikes] I_values = [I for t, I, v, u, f in spikes] f_values = [f for t, I, v, u, f in spikes] fig = plt.figure() plt.subplot(4, 1, 1) plt.ylabel("Potential (mv)") plt.xlabel("Time (in ms)") plt.grid() plt.plot(t_values, v_values, "g-") if title is None: plt.title("Izhikevich's spiking neuron model") else: plt.title("Izhikevich's spiking neuron model ({0!s})".format(title)) plt.subplot(4, 1, 2) plt.ylabel("Fired") plt.xlabel("Time (in ms)") plt.grid() plt.plot(t_values, f_values, "r-") plt.subplot(4, 1, 3) plt.ylabel("Recovery (u)") plt.xlabel("Time (in ms)") plt.grid() plt.plot(t_values, u_values, "r-") plt.subplot(4, 1, 4) plt.ylabel("Current (I)") plt.xlabel("Time (in ms)") plt.grid() plt.plot(t_values, I_values, "r-o") if filename is not None: plt.savefig(filename) if view: plt.show() plt.close() fig = None plt.close() return fig def plot_species(statistics, view=False, filename='speciation.svg'): """ Visualizes speciation throughout evolution. """ if plt is None: warnings.warn( "This display is not available due to a missing optional dependency (matplotlib)") return species_sizes = statistics.get_species_sizes() num_generations = len(species_sizes) curves = np.array(species_sizes).T plt.figure(figsize=(12, 9)) _, ax = plt.subplots() ax.stackplot(range(num_generations), *curves) plt.title("Speciation") plt.ylabel("Size per Species") plt.xlabel("Generations") plt.savefig(filename) if view: plt.show() plt.close() def draw_net(config, genome, view=False, filename=None, node_names=None, show_disabled=True, prune_unused=False, node_colors=None, fmt='svg'): """ Receives a genome and draws a neural network with arbitrary topology. """ # Attributes for network nodes. if graphviz is None: warnings.warn( "This display is not available due to a missing optional dependency (graphviz)") return if node_names is None: node_names = {} assert type(node_names) is dict if node_colors is None: node_colors = {} assert type(node_colors) is dict node_attrs = { 'shape': 'circle', 'fontsize': '9', 'height': '0.2', 'width': '0.2'} dot = graphviz.Digraph(format=fmt, node_attr=node_attrs) inputs = set() for k in config.genome_config.input_keys: inputs.add(k) name = node_names.get(k, str(k)) input_attrs = {'style': 'filled', 'shape': 'box'} input_attrs['fillcolor'] = node_colors.get(k, 'lightgray') dot.node(name, _attributes=input_attrs) outputs = set() for k in config.genome_config.output_keys: outputs.add(k) name = node_names.get(k, str(k)) node_attrs = {'style': 'filled'} node_attrs['fillcolor'] = node_colors.get(k, 'lightblue') dot.node(name, _attributes=node_attrs) if prune_unused: connections = set() for cg in genome.connections.values(): if cg.enabled or show_disabled: connections.add((cg.in_node_id, cg.out_node_id)) used_nodes = copy.copy(outputs) pending = copy.copy(outputs) while pending: new_pending = set() for a, b in connections: if b in pending and a not in used_nodes: new_pending.add(a) used_nodes.add(a) pending = new_pending else: used_nodes = set(genome.nodes.keys()) for n in used_nodes: if n in inputs or n in outputs: continue attrs = {'style': 'filled', 'fillcolor': node_colors.get(n, 'white')} dot.node(str(n), _attributes=attrs) for cg in genome.connections.values(): if cg.enabled or show_disabled: # if cg.input not in used_nodes or cg.output not in used_nodes: # continue input, output = cg.key a = node_names.get(input, str(input)) b = node_names.get(output, str(output)) style = 'solid' if cg.enabled else 'dotted' color = 'green' if cg.weight > 0 else 'red' width = str(0.1 + abs(cg.weight / 5.0)) dot.edge(a, b, _attributes={ 'style': style, 'color': color, 'penwidth': width}) dot.render(filename, view=view) return dot def plot_single_run_scatter(scatter, dt, title): """Plots a single run with MAX, AVG, MEDIAN, All individuals""" l = [] y = [] N = len(scatter.gen.unique()) c = ['hsl('+str(h)+',50%'+',50%)' for h in np.linspace(0, 360, N)] for i in range(int(N)): subset = scatter.loc[scatter['gen'] == i] trace0 = go.Scatter( x=subset.loc[:, 'gen'], y=subset.loc[:, 'fitness'], mode='markers', marker=dict(size=7, line=dict(width=1), color=c[i], opacity=0.5 ), name='gen {}'.format(i), text=subset.loc[:, 'genome'] ) l.append(trace0) trace0 = go.Scatter( x=dt.loc[:, 'gen'], y=dt.loc[:, 'max'], mode='lines', name='Max', line=dict( color="rgb(204, 51, 51)", dash="solid", shape="spline", smoothing=1.0, width=2 ), ) trace1 = go.Scatter( x=dt.loc[:, 'gen'], y=dt.loc[:, 'median'], mode='lines', name='Median', line=dict( color="rgb(173, 181, 97)", shape="spline", dash="solid", smoothing=1.0, width=2 ) ) trace2 = go.Scatter( x=dt.loc[:, 'gen'], y=dt.loc[:, 'avg'], mode='lines', name='Average', line=dict( color="rgb(62, 173, 212)", shape="spline", dash="solid", smoothing=1.0, width=2 ) ) data = [trace0, trace1, trace2] layout = go.Layout( title='Fitness of Population Individuals - {}'.format(title), hovermode='closest', xaxis=dict( title='Generations', ticklen=5, zeroline=False, gridwidth=2, ), yaxis=dict( title='Fitness', ticklen=5, gridwidth=1, ), showlegend=False ) fig = go.Figure(data=data+l, layout=layout) return py.iplot(fig, filename='single-run-scater-line-plot', layout=layout) def plot_runs(dt, title, offline=True): """Plots the Max/Average/Median""" trace0 = go.Scatter( x=dt.index, y=dt.loc[:, 'max'], mode='lines', name='Max', line=dict( color="rgb(204, 51, 51)", dash="solid", shape="spline", smoothing=0.0, width=2 ), ) trace1 = go.Scatter( x=dt.index, y=dt.loc[:, 'median'], mode='lines', name='Median', line=dict( color="rgb(173, 181, 97)", shape="spline", dash="solid", smoothing=0.0, width=2 ) ) trace2 = go.Scatter( x=dt.index, y=dt.loc[:, 'avg'], mode='lines', name='Average', line=dict( color="rgb(62, 173, 212)", shape="spline", dash="solid", smoothing=0.0, width=2 ) ) layout = go.Layout( showlegend=True, hovermode='closest', title=title, xaxis=dict( autorange=False, range=[0, 20], showspikes=False, title="Generations", ticklen=5, gridwidth=1, ), yaxis=dict( autorange=True, title="Fitness", ticklen=5, gridwidth=1, ), ) data = [trace0, trace1, trace2] fig = go.Figure(data, layout=layout) return py.iplot(fig, filename=title) l = [] y = [] N = len(scatter.gen.unique()) c = ['hsl('+str(h)+',50%'+',50%)' for h in np.linspace(0, 360, N)] for i in range(int(N)): subset = scatter.loc[scatter['gen'] == i] trace0 = go.Scatter( x=subset.loc[:, 'gen'], y=subset.loc[:, 'fitness'], mode='markers', marker=dict(size=7, line=dict(width=1), color=c[i], opacity=0.5 ), name='gen {}'.format(i), text=subset.loc[:, 'genome'] ) l.append(trace0) trace0 = go.Scatter( x=dt.loc[:, 'gen'], y=dt.loc[:, 'max'], mode='lines', name='Max', line=dict( color="rgb(204, 51, 51)", dash="solid", shape="spline", smoothing=0.0, width=2 ), ) trace1 = go.Scatter( x=dt.loc[:, 'gen'], y=dt.loc[:, 'median'], mode='lines', name='Median', line=dict( color="rgb(173, 181, 97)", shape="spline", dash="solid", smoothing=0.0, width=2 ) ) trace2 = go.Scatter( x=dt.loc[:, 'gen'], y=dt.loc[:, 'avg'], mode='lines', name='Average', line=dict( color="rgb(62, 173, 212)", shape="spline", dash="solid", smoothing=0.0, width=2 ) ) data = [trace0, trace1, trace2] layout = go.Layout( title='Fitness of Population Individuals - {}'.format(title), hovermode='closest', xaxis=dict( title='Generations', ticklen=5, zeroline=False, gridwidth=2, ), yaxis=dict( title='Fitness', ticklen=5, gridwidth=1, ), showlegend=False ) fig = go.Figure(data=data+l, layout=layout) return py.iplot(fig, filename='fitness-average-n-runs', layout=layout) def plot_scatter(dt, title): """Plots a Scatter plot of each individual in the population""" l = [] y = [] N = len(dt.gen.unique()) c = ['hsl('+str(h)+',50%'+',50%)' for h in np.linspace(0, 360, N)] for i in range(int(N)): subset = dt.loc[dt['gen'] == i] trace0 = go.Scatter( x=subset.loc[:, 'gen'], y=subset.loc[:, 'fitness'], mode='markers', marker=dict(size=14, line=dict(width=1), color=c[i], opacity=0.3 ), name='gen {}'.format(i), text=subset.loc[:, 'genome'], ) l.append(trace0) layout = go.Layout( title='Fitness of Population Individuals - {}'.format(title), hovermode='closest', xaxis=dict( title='Generations', ticklen=5, zeroline=False, gridwidth=2, ), yaxis=dict( title='Fitness', ticklen=5, gridwidth=1, ), showlegend=False ) fig = go.Figure(data=l, layout=layout) return py.iplot(fig, filename='population-scatter')
25.7017
115
0.500992
9a2d4e4783b1e8d97223132070735cfa9ed1e2ca
1,683
py
Python
CUMCM2014/Problem-A/2014-A-Python_SC/梯度图.py
Amoiensis/Mathmatic_Modeling_CUMCM
c64ec097d764ec3ae14e26e840bf5642be372d7c
[ "Apache-2.0" ]
27
2019-08-30T07:09:53.000Z
2021-08-29T07:37:24.000Z
CUMCM2014/Problem-A/2014-A-Python_SC/梯度图.py
Amoiensis/Mathmatic_Modeling_CUMCM
c64ec097d764ec3ae14e26e840bf5642be372d7c
[ "Apache-2.0" ]
2
2020-08-10T03:11:32.000Z
2020-08-24T13:39:24.000Z
CUMCM2014/Problem-A/2014-A-Python_SC/梯度图.py
Amoiensis/Mathmatic_Modeling_CUMCM
c64ec097d764ec3ae14e26e840bf5642be372d7c
[ "Apache-2.0" ]
28
2019-12-14T03:54:42.000Z
2022-03-12T14:38:22.000Z
# -*- coding: utf-8 -*- """ --------------------------------------------- File Name: Desciption: Author: fanzhiwei date: 2019/9/5 9:58 --------------------------------------------- Change Activity: 2019/9/5 9:58 --------------------------------------------- """ import numpy as np import math import matplotlib.pyplot as plt from scipy import ndimage from PIL import Image LongRangeScanRaw = plt.imread("./1.tif") ShortRangeScanRaw = plt.imread("./2.tif") ShortRangeScanMean = ndimage.median_filter(ShortRangeScanRaw, 10) LongRangeScanMean = ndimage.median_filter(LongRangeScanRaw, 10) SizeLong = math.sqrt(LongRangeScanRaw.size) SizeShort = math.sqrt(ShortRangeScanRaw.size) if __name__ == "__main__": Longimage = Image.fromarray(ToBinary(LongRangeScanMean)) Shortimage = Image.fromarray(ToBinary(ShortRangeScanMean)) Longimage.save("new_1.bmp") Shortimage.save("new_2.bmp")
29.017241
65
0.633393
9a2d7ee04fd9497228365f3b015187758913933a
965
py
Python
models.py
curieos/Django-Blog-TDD
ba40b285d87c88aa33b1e2eb3d4bda014a88a319
[ "MIT" ]
null
null
null
models.py
curieos/Django-Blog-TDD
ba40b285d87c88aa33b1e2eb3d4bda014a88a319
[ "MIT" ]
8
2019-04-14T13:53:55.000Z
2019-07-11T18:06:57.000Z
models.py
curieos/Django-Blog-TDD
ba40b285d87c88aa33b1e2eb3d4bda014a88a319
[ "MIT" ]
null
null
null
from django.utils.text import slugify from django_extensions.db.fields import AutoSlugField from django.db import models from datetime import datetime # Create your models here.
29.242424
101
0.78342
9a2e437ae8b03063acc62700c14efeca6658092a
145
py
Python
brl_gym/estimators/learnable_bf/__init__.py
gilwoolee/brl_gym
9c0784e9928f12d2ee0528c79a533202d3afb640
[ "BSD-3-Clause" ]
2
2020-08-07T05:50:44.000Z
2022-03-03T08:46:10.000Z
brl_gym/estimators/learnable_bf/__init__.py
gilwoolee/brl_gym
9c0784e9928f12d2ee0528c79a533202d3afb640
[ "BSD-3-Clause" ]
null
null
null
brl_gym/estimators/learnable_bf/__init__.py
gilwoolee/brl_gym
9c0784e9928f12d2ee0528c79a533202d3afb640
[ "BSD-3-Clause" ]
null
null
null
from brl_gym.estimators.learnable_bf.learnable_bf import LearnableBF #from brl_gym.estimators.learnable_bf.bf_dataset import BayesFilterDataset
36.25
74
0.889655
9a337713256137d5fcba2e7758391c4a3d42f204
4,156
py
Python
scripts/figures/kernels.py
qbhan/sample_based_MCdenoising
92f5220802ef0668105cdee5fd7e2af8a66201db
[ "Apache-2.0" ]
78
2019-10-02T01:34:46.000Z
2022-03-21T11:18:04.000Z
scripts/figures/kernels.py
qbhan/sample_based_MCdenoising
92f5220802ef0668105cdee5fd7e2af8a66201db
[ "Apache-2.0" ]
17
2019-10-04T17:04:00.000Z
2021-05-17T19:02:12.000Z
scripts/figures/kernels.py
qbhan/sample_based_MCdenoising
92f5220802ef0668105cdee5fd7e2af8a66201db
[ "Apache-2.0" ]
18
2019-10-03T05:02:21.000Z
2021-06-22T15:54:15.000Z
import os import argparse import logging import numpy as np import torch as th from torch.utils.data import DataLoader from torchvision import transforms import ttools from ttools.modules.image_operators import crop_like import rendernet.dataset as dset import rendernet.modules.preprocessors as pre import rendernet.modules.models as models import rendernet.interfaces as interfaces import rendernet.callbacks as cb import rendernet.viz as viz from sbmc.utils import make_variable import skimage.io as skio log = logging.getLogger("rendernet") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--checkpoint", required=True) parser.add_argument("--data", required=True) parser.add_argument("--output", required=True) args = parser.parse_args() ttools.set_logger(True) main(args)
31.24812
113
0.677334
9a33a34b59f215b243d9da922749fa4b6ad17b64
1,002
py
Python
code/analytics/models.py
harryface/url-condenser
800b573a82f41dd4900c8264007c1a0260a1a8b4
[ "MIT" ]
null
null
null
code/analytics/models.py
harryface/url-condenser
800b573a82f41dd4900c8264007c1a0260a1a8b4
[ "MIT" ]
null
null
null
code/analytics/models.py
harryface/url-condenser
800b573a82f41dd4900c8264007c1a0260a1a8b4
[ "MIT" ]
null
null
null
from django.db import models # Create your models here. from shortener.models import CondenseURL
31.3125
69
0.653693
9a3726435cdad9b9e21619560262a26d9cbff99c
299
py
Python
scripts/alan/clean_pycache.py
Pix-00/olea
98bee1fd8866a3929f685a139255afb7b6813f31
[ "Apache-2.0" ]
2
2020-06-18T03:25:52.000Z
2020-06-18T07:33:45.000Z
scripts/alan/clean_pycache.py
Pix-00/olea
98bee1fd8866a3929f685a139255afb7b6813f31
[ "Apache-2.0" ]
15
2021-01-28T07:11:04.000Z
2021-05-24T07:11:37.000Z
scripts/alan/clean_pycache.py
Pix-00/olea
98bee1fd8866a3929f685a139255afb7b6813f31
[ "Apache-2.0" ]
null
null
null
if __name__ == "__main__": from pathlib import Path clean_pycache(Path(__file__).parents[2])
19.933333
44
0.638796
9a3a8f8810da891a7c03436b0f8a519f17f8d1e7
212
py
Python
orb_simulator/orbsim_language/orbsim_ast/tuple_creation_node.py
dmguezjaviersnet/IA-Sim-Comp-Project
8165b9546efc45f98091a3774e2dae4f45942048
[ "MIT" ]
1
2022-01-19T22:49:09.000Z
2022-01-19T22:49:09.000Z
orb_simulator/orbsim_language/orbsim_ast/tuple_creation_node.py
dmguezjaviersnet/IA-Sim-Comp-Project
8165b9546efc45f98091a3774e2dae4f45942048
[ "MIT" ]
15
2021-11-10T14:25:02.000Z
2022-02-12T19:17:11.000Z
orb_simulator/orbsim_language/orbsim_ast/tuple_creation_node.py
dmguezjaviersnet/IA-Sim-Comp-Project
8165b9546efc45f98091a3774e2dae4f45942048
[ "MIT" ]
null
null
null
from dataclasses import dataclass from typing import List from orbsim_language.orbsim_ast.expression_node import ExpressionNode
30.285714
69
0.858491
9a4004b98dc117b5e58a273f30a560e340d87721
1,345
py
Python
csv_merge_col.py
adrianpope/VelocityCompression
eb35f586b18890da93a7ad2e287437118c0327a2
[ "BSD-3-Clause" ]
null
null
null
csv_merge_col.py
adrianpope/VelocityCompression
eb35f586b18890da93a7ad2e287437118c0327a2
[ "BSD-3-Clause" ]
null
null
null
csv_merge_col.py
adrianpope/VelocityCompression
eb35f586b18890da93a7ad2e287437118c0327a2
[ "BSD-3-Clause" ]
null
null
null
import sys import numpy as np import pandas as pd if __name__ == '__main__': argv = sys.argv if len(argv) < 7: print('USAGE: %s <in1_name> <in1_suffix> <in2_name> <in2_suffix> <out_name> <add_keys>'%argv[0]) sys.exit(-1) in1_name = argv[1] in1_suffix = argv[2] in2_name = argv[3] in2_suffix = argv[4] out_name = argv[5] add_keys = int(argv[6]) in1 = pd.read_csv(in1_name) in2 = pd.read_csv(in2_name) if add_keys: df_add_keys(in1) df_add_keys(in2) merged = df_merge(in1, in1_suffix, in2, in2_suffix) merged.to_csv(out_name)
24.907407
104
0.594052
9a409844ea8ff87b62a343aba1bddbe1b4acc686
649
py
Python
Toolkits/VCS/mygulamali__repo-mine/mine/helpers.py
roscopecoltran/SniperKit-Core
4600dffe1cddff438b948b6c22f586d052971e04
[ "MIT" ]
null
null
null
Toolkits/VCS/mygulamali__repo-mine/mine/helpers.py
roscopecoltran/SniperKit-Core
4600dffe1cddff438b948b6c22f586d052971e04
[ "MIT" ]
null
null
null
Toolkits/VCS/mygulamali__repo-mine/mine/helpers.py
roscopecoltran/SniperKit-Core
4600dffe1cddff438b948b6c22f586d052971e04
[ "MIT" ]
null
null
null
from sys import stdout
27.041667
52
0.628659
9a4099a116dd4efb8f2b5619fb34ffe71a578a58
1,845
py
Python
scripts/check-silknow-urls.py
silknow/crawler
d2632cea9b98ab64a8bca56bc70b34edd3c2de31
[ "Apache-2.0" ]
1
2019-04-21T07:09:52.000Z
2019-04-21T07:09:52.000Z
scripts/check-silknow-urls.py
silknow/crawler
d2632cea9b98ab64a8bca56bc70b34edd3c2de31
[ "Apache-2.0" ]
35
2019-01-21T23:53:52.000Z
2022-02-12T04:28:17.000Z
scripts/check-silknow-urls.py
silknow/crawler
d2632cea9b98ab64a8bca56bc70b34edd3c2de31
[ "Apache-2.0" ]
null
null
null
import argparse import csv import os parser = argparse.ArgumentParser() parser.add_argument('-i', '--input', help="Input path of the missing urls CSV file") parser.add_argument('-o', '--output', help="Output directory where the new CSV files will be stored") parser.add_argument('-q', '--quiet', action='store_true', help="Do not print the list of missing files") args = parser.parse_args() with open(args.input) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') missing_urls_output = os.path.join(args.output, 'silknow-missing-urls.csv') missing_files_output = os.path.join(args.output, 'silknow-missing-files.csv') with open(missing_urls_output, mode='w') as missing_url: missing_url_writer = csv.writer(missing_url, delimiter=',', quotechar='"', quoting=csv.QUOTE_ALL) with open(missing_files_output, mode='w') as missing_file: missing_file_writer = csv.writer(missing_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_ALL) header = next(csv_reader) missing_file_writer.writerow(header); filepath_cache = [] for row in csv_reader: museum = row[3].split('/')[5] filename = os.path.basename(row[3]) filepath = os.path.normpath(os.path.join(museum, filename)) filepath_cache.append(filepath) if not os.path.exists(filepath): missing_file_writer.writerow(row) if not args.quiet: print(filepath + ' does not exist in files') for root, dirs, files in os.walk('./'): for file in files: if file.endswith('.jpg'): filepath = os.path.normpath(os.path.join(root, file)) if filepath not in filepath_cache: missing_url_writer.writerow([filepath]) if not args.quiet: print(filepath + ' does not exist in query result')
38.4375
105
0.666667
9a40c18aa2fcf755b162532d605ac1593ac74650
2,302
py
Python
Trabajo 3/auxFunc.py
francaracuel/UGR-GII-CCIA-4-VC-Vision_por_computador-17-18-Practicas
cb801eb5dfc4a8ea0300eae66a3b9bb2943fe8ab
[ "Apache-2.0" ]
1
2019-01-28T09:43:41.000Z
2019-01-28T09:43:41.000Z
Trabajo 3/auxFunc.py
francaracuel/UGR-GII-CCIA-4-VC-Vision_por_computador-17-18-Practicas
cb801eb5dfc4a8ea0300eae66a3b9bb2943fe8ab
[ "Apache-2.0" ]
null
null
null
Trabajo 3/auxFunc.py
francaracuel/UGR-GII-CCIA-4-VC-Vision_por_computador-17-18-Practicas
cb801eb5dfc4a8ea0300eae66a3b9bb2943fe8ab
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Nov 21 11:20:06 2017 @author: NPB """ import cv2 import pickle
26.45977
69
0.613814
9a417a0a839c157704c0bb9c7d9a86e16b358f3e
22,087
py
Python
pdb_profiling/processors/uniprot/api.py
NatureGeorge/pdb-profiling
b29f93f90fccf03869a7a294932f61d8e0b3470c
[ "MIT" ]
5
2020-10-27T12:02:00.000Z
2021-11-05T06:51:59.000Z
pdb_profiling/processors/uniprot/api.py
NatureGeorge/pdb-profiling
b29f93f90fccf03869a7a294932f61d8e0b3470c
[ "MIT" ]
9
2021-01-07T04:47:58.000Z
2021-09-22T13:20:35.000Z
pdb_profiling/processors/uniprot/api.py
NatureGeorge/pdb-profiling
b29f93f90fccf03869a7a294932f61d8e0b3470c
[ "MIT" ]
null
null
null
# @Created Date: 2019-12-08 06:46:49 pm # @Filename: api.py # @Email: 1730416009@stu.suda.edu.cn # @Author: ZeFeng Zhu # @Last Modified: 2020-02-16 10:54:32 am # @Copyright (c) 2020 MinghuiGroup, Soochow University from typing import Iterable, Iterator, Optional, Union, Generator, Dict, List from time import perf_counter from numpy import nan, array from pathlib import Path from unsync import unsync, Unfuture from copy import deepcopy from pdb_profiling.log import Abclog from pdb_profiling.utils import init_semaphore, init_folder_from_suffix, init_folder_from_suffixes, a_read_csv from pdb_profiling.fetcher.webfetch import UnsyncFetch from uuid import uuid4 from pdb_profiling.cif_gz_stream import iter_index from aiohttp import ClientSession from aiofiles import open as aiofiles_open from pdb_profiling.ensure import EnsureBase from tenacity import wait_random, stop_after_attempt ensure = EnsureBase() rt_kw = dict(wait=wait_random(max=20), stop=stop_after_attempt(6)) """QUERY_COLUMNS: List[str] = [ 'id', 'length', 'reviewed', 'comment(ALTERNATIVE%20PRODUCTS)', 'feature(ALTERNATIVE%20SEQUENCE)', 'genes', 'organism', 'protein%20names'] RESULT_COLUMNS: List[str] = [ 'Entry', 'Length', 'Status', 'Alternative products (isoforms)', 'Alternative sequence', 'Gene names', 'Organism', 'Protein names'] COLUMNS_DICT: Dict = dict(zip(QUERY_COLUMNS, RESULT_COLUMNS)) RESULT_NEW_COLUMN: List[str] = ['yourlist', 'isomap']""" BASE_URL: str = 'https://www.uniprot.org' """PARAMS: Dict = { # 'fil': 'organism%3A"Homo+sapiens+(Human)+[9606]"+AND+reviewed%3Ayes', # reviewed:yes+AND+organism:9606 'columns': None, 'query': None, 'from': None, 'to': 'ACC', 'format': 'tab'}""" """ class MapUniProtID(Abclog): ''' Implement UniProt Retrieve/ID Mapping API ''' def __init__(self, id_col: str, id_type: str, dfrm: Optional[DataFrame], ids: Optional[Iterable] = None, sites: Optional[Iterable] = None, genes: Optional[Iterable] = None, usecols: Optional[Iterable] = QUERY_COLUMNS, site_col: Optional[str] = None, gene_col: Optional[str] = None, logger: Optional[logging.Logger] = None, loggingPath: Optional[str] = None): self.init_logger(self.__class__.__name__, logger) if dfrm is not None: self.dfrm = dfrm.drop_duplicates().reset_index(drop=True) else: ''' the length of dataframe is based on: * the num of `ids` if there is more than one id * the num of `sites` if there is just one id with specified `sites` ''' if isinstance(ids, str): if sites is not None and not isinstance(sites, str): index_len = len(sites) else: index_len = 1 else: index_len = len(ids) self.dfrm = DataFrame(dict(zip( (col for col in (id_col, site_col, gene_col) if col is not None), (value for value in (ids, sites, genes) if value is not None))), index=list(range(index_len))) self.index = dfrm.index self.id_col = id_col self.id_type = id_type self.site_col = site_col self.gene_col = gene_col self.loggingPath = loggingPath if isinstance(usecols, str): PARAMS['columns'] = usecols usecols = usecols.split(',') elif isinstance(usecols, (Iterable, Iterator)): PARAMS['columns'] = ','.join(usecols) else: raise ValueError('Invalid usecols') self.usecols = usecols PARAMS['from'] = id_type if isinstance(loggingPath, (str, Path)): self.set_logging_fileHandler(loggingPath) @property def sites(self) -> Generator: if self.site_col is not None: for name, group in self.dfrm.groupby(by=self.id_col, sort=False): yield name, group[self.site_col] else: yield None @staticmethod def split_df(dfrm, colName, sep): '''Split DataFrame''' df = dfrm.copy() return df.drop([colName], axis=1).join(df[colName].str.split(sep, expand=True).stack().reset_index(level=1, drop=True).rename(colName)) def yieldTasks(self, lyst: Iterable, chunksize: int = 100, sep: str = ',') -> Generator: fileName = self.outputPath.stem for i in range(0, len(lyst), chunksize): cur_fileName = f'{fileName}+{i}' cur_params = deepcopy(PARAMS) cur_params['query'] = sep.join(lyst[i:i+chunksize]) # self.outputPath.suffix yield ('get', {'url': f'{BASE_URL}/uploadlists/', 'params': cur_params}, str(Path(self.outputPath.parent, cur_fileName+'.tsv'))) def retrieve(self, outputPath: Union[str, Path], finishedPath: Optional[str] = None, sep: str = '\t', chunksize: int = 100, concur_req: int = 20, rate: float = 1.5, ret_res: bool = True, semaphore = None): finish_id = list() self.outputPath = Path(outputPath) self.result_cols = [COLUMNS_DICT.get( i, i) for i in self.usecols] + RESULT_NEW_COLUMN if finishedPath is not None: try: target_col = RESULT_NEW_COLUMN[0] finish: Series = read_csv( finishedPath, sep=sep, usecols=[target_col], names=self.result_cols, skiprows=1, header=None)[target_col] except Exception as e: col_to_add = RESULT_NEW_COLUMN[1] self.logger.warning( f"{e}\nSomething wrong with finished raw file, probably without '{col_to_add}' column.") finish_df = read_csv( finishedPath, sep=sep, names=self.result_cols[:-1], skiprows=1, header=None) finish_df[col_to_add] = nan finish_df.to_csv(finishedPath, sep=sep, index=False) finish: Series = finish_df[target_col] for query_id in finish: if ',' in query_id: finish_id.extend(query_id.split(',')) else: finish_id.append(query_id) query_id: Series = self.dfrm[self.id_col] if finish_id: rest_id = list(set(query_id) - set(finish_id)) else: rest_id = query_id.unique() self.logger.info( f"Have finished {len(finish_id)} ids, {len(rest_id)} ids left.") res = UnsyncFetch.multi_tasks( tasks=self.yieldTasks(rest_id, chunksize), to_do_func=self.process, concur_req=concur_req, rate=rate, ret_res=ret_res, semaphore=semaphore) return res def getCanonicalInfo(self, dfrm: DataFrame): ''' Will Change the dfrm * Add new column (canonical_isoform) * Change the content of column (UniProt) ''' # Get info from Alt Product file if self.altProPath is None: dfrm['canonical_isoform'] = nan return dfrm else: usecols = ["IsoId", "Sequence", "Entry", "UniProt"] altPro_df = read_csv(self.altProPath, sep="\t", usecols=usecols) altPro_df = altPro_df[altPro_df["Sequence"] == "Displayed"].reset_index(drop=True) altPro_df.rename( columns={"IsoId": "canonical_isoform"}, inplace=True) # Modify dfrm dfrm = merge( dfrm, altPro_df[["canonical_isoform", "Entry"]], how="left") return dfrm def getGeneStatus(self, handled_df: DataFrame, colName: str = 'GENE_status'): ''' Will Change the dfrm, add Gene Status * Add new column (GENE) # if id_col != gene_col * Add new column (GENE_status) **About GENE_status** * ``False`` : First element of Gene names is not correspond with refSeq's GENE (e.g) * others(corresponding GENE) ''' self.gene_status_col = colName if self.id_type != 'GENENAME': if self.gene_col is None: handled_df[colName] = True return None gene_map = self.dfrm[[self.id_col, self.gene_col]].drop_duplicates() gene_map = gene_map.groupby(self.id_col)[self.gene_col].apply( lambda x: array(x) if len(x) > 1 else list(x)[0]) handled_df['GENE'] = handled_df.apply( lambda z: gene_map[z['yourlist']], axis=1) handled_df[colName] = handled_df.apply(lambda x: x['GENE'] == x['Gene names'].split( ' ')[0] if not isinstance(x['Gene names'], float) else False, axis=1) handled_df['GENE'] = handled_df['GENE'].apply( lambda x: ','.join(x) if not isinstance(x, str) else x) else: handled_df[colName] = handled_df.apply(lambda x: x['yourlist'] == x['Gene names'].split( ' ')[0] if not isinstance(x['Gene names'], float) else False, axis=1) def label_mapping_status(self, dfrm: DataFrame, colName: str = 'Mapping_status'): self.mapping_status_col = colName gene_status_col = self.gene_status_col dfrm[colName] = 'No' dfrm[gene_status_col] = dfrm[gene_status_col].apply( lambda x: x.any() if isinstance(x, Iterable) else x) if self.id_col == 'GENENAME': pass_df = dfrm[ (dfrm[gene_status_col] == True) & (dfrm['Status'] == 'reviewed') & (dfrm['unp_map_tage'] != 'Untrusted & No Isoform')] else: pass_df = dfrm[ (dfrm['Status'] == 'reviewed') & (dfrm['unp_map_tage'] != 'Untrusted & No Isoform')] pass_index = pass_df.index dfrm.loc[pass_index, colName] = 'Yes' # Deal with 'one to many' situation multipleCounter = Counter(dfrm.loc[pass_index, 'yourlist']) err_li = [i for i, j in multipleCounter.items() if j > 1] err_index = pass_df[pass_df['yourlist'].isin(err_li)].index dfrm.loc[err_index, colName] = 'Error' @unsync async def process(self, path: Union[str, Path, Unfuture], sep: str = '\t'): self.logger.debug("Start to handle id mapping result") if not isinstance(path, (Path, str)): path = await path # .result() if not Path(path).stat().st_size: return None self.altSeqPath, self.altProPath = ExtractIsoAlt.main(path=path) try: df = read_csv( path, sep='\t', names=self.result_cols, skiprows=1, header=None) except ValueError: df = read_csv( path, sep='\t', names=self.result_cols[:-1], skiprows=1, header=None) # Add New Column: canonical_isoform df = self.getCanonicalInfo(df) # Add New Column: unp_map_tage df['unp_map_tage'] = nan # Classification df_with_no_isomap = df[df['isomap'].isnull()] # Class A df_with_isomap = df[df['isomap'].notnull()] # Class B # ---------------------------------------------------------------------- # In Class A # ---------------------------------------------------------------------- if len(df_with_no_isomap) > 0: df_wni_split = self.split_df(df_with_no_isomap, 'yourlist', ',') df_wni_split.drop(columns=['isomap'], inplace=True) # [yourlist <-> UniProt] df_wni_split['UniProt'] = df_wni_split['Entry'] df_wni_split['unp_map_tage'] = 'Trusted & No Isoform' # Find out special cases 1 df_wni_split_warn = df_wni_split[df_wni_split['Alternative products (isoforms)'].notnull( )].index df_wni_split.loc[df_wni_split_warn, 'unp_map_tage'] = 'Untrusted & No Isoform' # 'Entry', 'Gene names', 'Status', 'Alternative products (isoforms)', 'Organism', 'yourlist', 'UniProt' # ---------------------------------------------------------------------- # In Class B # ---------------------------------------------------------------------- if len(df_with_isomap) > 0: wi_yourlist_count = df_with_isomap.apply( lambda x: x['yourlist'].count(','), axis=1) wi_isomap_count = df_with_isomap.apply( lambda x: x['isomap'].count(','), axis=1) # In subClass 1 df_wi_eq = df_with_isomap.loc[wi_yourlist_count[wi_yourlist_count == wi_isomap_count].index] if len(df_wi_eq) > 0: df_wi_eq_split = self.split_df( df_wi_eq.drop(columns=['yourlist']), 'isomap', ',') df_wi_eq_split[['yourlist', 'UniProt']] = df_wi_eq_split['isomap'].str.split( ' -> ', expand=True) # [yourlist <-> UniProt] df_wi_eq_split.drop(columns=['isomap'], inplace=True) df_wi_eq_split['unp_map_tage'] = 'Trusted & Isoform' # # 'Entry', 'Gene names', 'Status', 'Alternative products (isoforms)', 'Organism', 'yourlist', 'UniProt' # In subClass 2 df_wi_ne = df_with_isomap.loc[wi_yourlist_count[wi_yourlist_count != wi_isomap_count].index] if len(df_wi_ne) > 0: df_wi_ne_split = self.split_df(df_wi_ne, 'isomap', ',') df_wi_ne_split.rename( columns={'yourlist': 'checkinglist'}, inplace=True) df_wi_ne_split[['yourlist', 'UniProt']] = df_wi_ne_split['isomap'].str.split( ' -> ', expand=True) df_wi_ne_split.drop(columns=['isomap'], inplace=True) df_wi_ne_split['unp_map_tage'] = 'Trusted & Isoform & Contain Warnings' # 'Entry', 'Gene names', 'Status', 'Alternative products (isoforms)', 'Organism', 'yourlist', 'UniProt', 'checkinglist' # Find out special cases 2 usecols = Index(set(df_wi_ne_split.columns) - {'yourlist', 'UniProt'}) df_wi_ne_warn = self.split_df( df_wi_ne_split[usecols].drop_duplicates(), 'checkinglist', ',') df_wi_ne_warn = df_wi_ne_warn[~df_wi_ne_warn['checkinglist'].isin( df_wi_ne_split['yourlist'])].rename(columns={'checkinglist': 'yourlist'}) df_wi_ne_warn['UniProt'] = df_wi_ne_warn['Entry'] # sequence conflict df_wi_ne_warn['unp_map_tage'] = 'Untrusted & No Isoform' df_wi_ne_split.drop(columns=['checkinglist'], inplace=True) # Concat Dfrm variables = ["df_wni_split", "df_wi_eq_split", "df_wi_ne_split", "df_wi_ne_warn"] lvs = locals() varLyst = [lvs[variable] for variable in variables if variable in lvs] final_df = concat(varLyst, sort=False).reset_index(drop=True) cano_index = final_df[final_df["canonical_isoform"].notnull()].index if len(cano_index) > 0: final_df.loc[cano_index, "UniProt"] = final_df.loc[cano_index, ].apply( lambda x: x["Entry"] if x["UniProt"] in x["canonical_isoform"] else x["UniProt"], axis=1) # Add Gene Status self.getGeneStatus(final_df) # Label Mapping Status self.label_mapping_status(final_df) pathOb = Path(path) edPath = str(Path(pathOb.parent, f'{pathOb.stem}_ed.tsv')) # {pathOb.suffix} final_df.to_csv(edPath, sep=sep, index=False) self.logger.debug(f"Handled id mapping result saved in {edPath}") return edPath """ def task_unit(self, unp:str): cur_fileName = f'{unp}.{self.suffix}' return ('get', {'url': f'{BASE_URL}/uniprot/{cur_fileName}', 'params': self.params}, self.get_cur_folder()/cur_fileName) def single_retrieve(self, identifier: str, rate: float = 1.5): return UnsyncFetch.single_task( task=self.task_unit(identifier), semaphore=self.web_semaphore, rate=rate) def stream_retrieve_txt(self, identifier, name_suffix='VAR_SEQ', **kwargs): assert self.suffix == 'txt' return self.txt_writer(handle=self.txt_reader(f'{BASE_URL}/uniprot/{identifier}.{self.suffix}'), path=self.get_cur_folder()/f'{identifier}+{name_suffix}.{self.suffix}', **kwargs)
42.55684
186
0.55467
9a41e415317ae7c881f36ab4cbf51cbe613df940
9,409
py
Python
hep_spt/stats/poisson.py
mramospe/hepspt
11f74978a582ebc20e0a7765dafc78f0d1f1d5d5
[ "MIT" ]
null
null
null
hep_spt/stats/poisson.py
mramospe/hepspt
11f74978a582ebc20e0a7765dafc78f0d1f1d5d5
[ "MIT" ]
null
null
null
hep_spt/stats/poisson.py
mramospe/hepspt
11f74978a582ebc20e0a7765dafc78f0d1f1d5d5
[ "MIT" ]
1
2021-11-03T03:36:15.000Z
2021-11-03T03:36:15.000Z
''' Function and classes representing statistical tools. ''' __author__ = ['Miguel Ramos Pernas'] __email__ = ['miguel.ramos.pernas@cern.ch'] from hep_spt.stats.core import chi2_one_dof, one_sigma from hep_spt.core import decorate, taking_ndarray from hep_spt import PACKAGE_PATH import numpy as np import os from scipy.stats import poisson from scipy.optimize import fsolve import warnings __all__ = ['calc_poisson_fu', 'calc_poisson_llu', 'gauss_unc', 'poisson_fu', 'poisson_llu', 'sw2_unc' ] # Number after which the poisson uncertainty is considered to # be the same as that of a gaussian with "std = sqrt(lambda)". __poisson_to_gauss__ = 200 def _access_db(name): ''' Access a database table under 'data/'. :param name: name of the file holding the data. :type name: str :returns: Array holding the data. :rtype: numpy.ndarray ''' ifile = os.path.join(PACKAGE_PATH, 'data', name) table = np.loadtxt(ifile) return table def gauss_unc(s, cl=one_sigma): ''' Calculate the gaussian uncertainty for a given confidence level. :param s: standard deviation of the gaussian. :type s: float or numpy.ndarray(float) :param cl: confidence level. :type cl: float :returns: Gaussian uncertainty. :rtype: float or numpy.ndarray(float) .. seealso:: :func:`poisson_fu`, :func:`poisson_llu`, :func:`sw2_unc` ''' n = np.sqrt(chi2_one_dof.ppf(cl)) return n*s def poisson_fu(m): ''' Return the poisson frequentist uncertainty at one standard deviation of confidence level. :param m: measured value(s). :type m: int or numpy.ndarray(int) :returns: Lower and upper frequentist uncertainties. :rtype: numpy.ndarray(float, float) .. seealso:: :func:`gauss_unc`, :func:`poisson_llu`, :func:`sw2_unc` ''' return _poisson_unc_from_db(m, 'poisson_fu.dat') def poisson_llu(m): ''' Return the poisson uncertainty at one standard deviation of confidence level. The lower and upper uncertainties are defined by those two points with a variation of one in the value of the negative logarithm of the likelihood multiplied by two: .. math:: \\sigma_\\text{low} = n_\\text{obs} - \\lambda_\\text{low} .. math:: \\alpha - 2\\log P(n_\\text{obs}|\\lambda_\\text{low}) = 1 .. math:: \\sigma_\\text{up} = \\lambda_\\text{up} - n_\\text{obs} .. math:: \\alpha - 2\\log P(n_\\text{obs}|\\lambda_\\text{up}) = 1 where :math:`\\alpha = 2\\log P(n_\\text{obs}|n_\\text{obs})`. :param m: measured value(s). :type m: int or numpy.ndarray(int) :returns: Lower and upper frequentist uncertainties. :rtype: numpy.ndarray(float, float) .. seealso:: :func:`gauss_unc`, :func:`poisson_fu`, :func:`sw2_unc` ''' return _poisson_unc_from_db(m, 'poisson_llu.dat') def _poisson_unc_from_db(m, database): ''' Used in functions to calculate poissonian uncertainties, which are partially stored on databases. If "m" is above the maximum number stored in the database, the gaussian approximation is taken instead. :param m: measured value(s). :type m: int or numpy.ndarray(int) :param database: name of the database. :type database: str :returns: Lower and upper frequentist uncertainties. :rtype: (float, float) or numpy.ndarray(float, float) :raises TypeError: if the input is a (has) non-integer value(s). :raises ValueError: if the input value(s) is(are) not positive. ''' m = np.array(m) if not np.issubdtype(m.dtype, np.integer): raise TypeError('Calling function with a non-integer value') if np.any(m < 0): raise ValueError('Values must be positive') scalar_input = False if m.ndim == 0: m = m[None] scalar_input = True no_app = (m < __poisson_to_gauss__) if np.count_nonzero(no_app) == 0: # We can use the gaussian approximation in all out = np.array(2*[np.sqrt(m)]).T else: # Non-approximated uncertainties table = _access_db(database) out = np.zeros((len(m), 2), dtype=np.float64) out[no_app] = table[m[no_app]] mk_app = np.logical_not(no_app) if mk_app.any(): # Use the gaussian approximation for the rest out[mk_app] = np.array(2*[np.sqrt(m[mk_app])]).T if scalar_input: return np.squeeze(out) return out def _process_poisson_unc(m, lw, up): ''' Calculate the uncertainties and display an error if they have been incorrectly calculated. :param m: mean value. :type m: float :param lw: lower bound. :type lw: float :param up: upper bound. :type up: float :returns: Lower and upper uncertainties. :type: numpy.ndarray(float, float) ''' s_lw = m - lw s_up = up - m if any(s < 0 for s in (s_lw, s_up)): warnings.warn('Poisson uncertainties have been ' 'incorrectly calculated') # numpy.vectorize needs to know the exact type of the output return float(s_lw), float(s_up) def sw2_unc(arr, bins=20, range=None, weights=None): ''' Calculate the errors using the sum of squares of weights. The uncertainty is calculated as follows: .. math:: \\sigma_i = \\sqrt{\\sum_{j = 0}^{n - 1} \\omega_{i,j}^2} where *i* refers to the i-th bin and :math:`j \\in [0, n)` refers to each entry in that bin with weight :math:`\\omega_{i,j}`. If "weights" is None, then this coincides with the square root of the number of entries in each bin. :param arr: input array of data to process. :param bins: see :func:`numpy.histogram`. :type bins: int, sequence of scalars or str :param range: range to process in the input array. :type range: None or tuple(float, float) :param weights: possible weights for the histogram. :type weights: None or numpy.ndarray(value-type) :returns: Symmetric uncertainty. :rtype: numpy.ndarray .. seealso:: :func:`gauss_unc`, :func:`poisson_fu`, :func:`poisson_llu` ''' if weights is not None: values = np.histogram(arr, bins, range, weights=weights*weights)[0] else: values = np.histogram(arr, bins, range)[0] return np.sqrt(values) if __name__ == '__main__': ''' Generate the tables to store the pre-calculated values of some uncertainties. ''' m = np.arange(__poisson_to_gauss__) print('Creating databases:') for func in (calc_poisson_fu, calc_poisson_llu): ucts = np.array(func(m, one_sigma)).T name = func.__name__.replace('calc_', r'') + '.dat' fpath = os.path.join('data', name) print('- {}'.format(fpath)) np.savetxt(fpath, ucts)
27.755162
103
0.636199
9a43ea16514e92431028e9e426f7d3c0a8b72e9b
3,088
py
Python
src/octopus/core/framework/__init__.py
smaragden/OpenRenderManagement
cf3ab356f96969d7952b60417b48e941955e435c
[ "BSD-3-Clause" ]
35
2015-02-23T23:13:13.000Z
2021-01-03T05:56:39.000Z
src/octopus/core/framework/__init__.py
smaragden/OpenRenderManagement
cf3ab356f96969d7952b60417b48e941955e435c
[ "BSD-3-Clause" ]
15
2015-01-12T12:58:29.000Z
2016-03-30T13:10:19.000Z
src/octopus/core/framework/__init__.py
mikrosimage/OpenRenderManagement
6f9237a86cb8e4b206313f9c22424c8002fd5e4d
[ "BSD-3-Clause" ]
20
2015-03-18T06:57:13.000Z
2020-07-01T15:09:36.000Z
import tornado import logging import httplib try: import simplejson as json except ImportError: import json from octopus.core.framework.wsappframework import WSAppFramework, MainLoopApplication from octopus.core.framework.webservice import MappingSet from octopus.core.communication.http import Http400 from octopus.core.tools import Workload __all__ = ['WSAppFramework', 'MainLoopApplication'] __all__ += ['Controller', 'ControllerError', 'ResourceNotFoundErro', 'BaseResource'] logger = logging.getLogger('main.dispatcher.webservice')
29.409524
85
0.663536
9a4542a7758b9c15cb5e2c79c2e2a38319b81b96
127
py
Python
provstore/__init__.py
vinisalazar/provstore-api
0dd506b4f0e00623b95a52caa70debe758817179
[ "MIT" ]
5
2015-03-09T20:07:08.000Z
2018-07-26T19:59:11.000Z
provstore/__init__.py
vinisalazar/provstore-api
0dd506b4f0e00623b95a52caa70debe758817179
[ "MIT" ]
2
2016-03-16T06:13:59.000Z
2020-11-06T20:53:28.000Z
provstore/__init__.py
vinisalazar/provstore-api
0dd506b4f0e00623b95a52caa70debe758817179
[ "MIT" ]
2
2016-09-01T09:09:05.000Z
2020-11-06T22:13:58.000Z
from provstore.document import Document from provstore.bundle_manager import BundleManager from provstore.bundle import Bundle
31.75
50
0.88189
9a45c1430c4ad59b5117e98f3291087d7df4a619
834
py
Python
print-server/src/auth/Singleton.py
Multi-Agent-io/feecc-io-consolidated
9ba60176346ca9e15b22c09c2d5f1e1a5ac3ced6
[ "Apache-2.0" ]
null
null
null
print-server/src/auth/Singleton.py
Multi-Agent-io/feecc-io-consolidated
9ba60176346ca9e15b22c09c2d5f1e1a5ac3ced6
[ "Apache-2.0" ]
2
2021-11-27T09:31:12.000Z
2022-03-23T13:15:57.000Z
print-server/src/auth/Singleton.py
Multi-Agent-io/feecc-io-consolidated
9ba60176346ca9e15b22c09c2d5f1e1a5ac3ced6
[ "Apache-2.0" ]
2
2021-12-09T13:23:17.000Z
2022-03-23T13:04:41.000Z
from __future__ import annotations import typing as tp from loguru import logger
33.36
113
0.655875
9a467e6fc069bf386281b9a110e435f9e100a70b
139
py
Python
exercises/spotify/auth_data.py
introprogramming/exercises
8e52f3fa87d29a14ddcf00e8d87598d0721a41f6
[ "MIT" ]
2
2018-08-20T22:44:40.000Z
2018-09-14T17:03:35.000Z
exercises/spotify/auth_data.py
introprogramming/exercises
8e52f3fa87d29a14ddcf00e8d87598d0721a41f6
[ "MIT" ]
31
2015-08-06T16:25:57.000Z
2019-06-11T12:22:35.000Z
exercises/spotify/auth_data.py
introprogramming/exercises
8e52f3fa87d29a14ddcf00e8d87598d0721a41f6
[ "MIT" ]
1
2016-08-15T15:06:40.000Z
2016-08-15T15:06:40.000Z
# Login to https://developer.spotify.com/dashboard/, create an application and fill these out before use! client_id = "" client_secret = ""
46.333333
105
0.755396
9a47729e5dc9d9a2649d73a1b1f6d29309683f2b
7,871
py
Python
augmentation.py
Harlequln/C1M18X-Behavioural_Cloning
0c49ad2432b2694848a7b83fddeea04c3306aa80
[ "MIT" ]
null
null
null
augmentation.py
Harlequln/C1M18X-Behavioural_Cloning
0c49ad2432b2694848a7b83fddeea04c3306aa80
[ "MIT" ]
null
null
null
augmentation.py
Harlequln/C1M18X-Behavioural_Cloning
0c49ad2432b2694848a7b83fddeea04c3306aa80
[ "MIT" ]
null
null
null
import cv2 import numpy as np import matplotlib.image as mpimg from pathlib import Path from model import * CAMERA_STEERING_CORRECTION = 0.2 def image_path(sample, camera="center"): """ Transform the sample path to the repository structure. Args: sample: a sample (row) of the data dataframe. Usually drawn of a batch by the generator camera: the camera to extract the path for Returns: the converted image path string """ return str(Path(f"./data/{sample[camera].split('data')[-1]}")) def crop_image(image, top=60, bot=25): """ Crop the upper and lower borders of the given image. Args: image: the image to crop top: the pixels to crop from the upper part bot: the pixels to crop from the bottom part Returns: the cropped image """ return image[top:-bot, :, :] def resize_image(image, shape=NVIDIA_SHAPE[0:2]): """ Resize the image to shape. Args: image: input image shape: (height, width) tuple, defaults to Nvidia input shape (66, 200) Returns: the resized image """ h, w = shape return cv2.resize(image, dsize=(w, h), interpolation=cv2.INTER_AREA) def rgb2yuv(rgb_image): """ Convert the RGB image to YUV space. """ return cv2.cvtColor(rgb_image, cv2.COLOR_RGB2YUV) def rgb2hsv(rgb_image): """ Convert the RGB image to HSV space. """ return cv2.cvtColor(rgb_image, cv2.COLOR_RGB2HSV) def hsv2rgb(hsv_image): """ Convert the HSV image to RGB space. """ return cv2.cvtColor(hsv_image, cv2.COLOR_HSV2RGB) def choose_camera(sample, camera='random', probs=None): """ Choose an image for a specific camera and eventually adjust the steering. The steering of the left and right cameras is adjusted according to the defined constant CAMERA_STEERING_CONSTANT Args: sample: a sample (row) of the data dataframe. Usually drawn of a batch by the generator camera: 'random', 'left', 'center' or 'right'. If 'random' choose the camera with the given probabilities. probs: the probabilities to choose the left, center or right cameras. If None, the probabilities are uniform. Returns: a (image, steering) tuple """ if camera == 'random': camera = np.random.choice(["left", "center", "right"], p=probs) image = mpimg.imread(image_path(sample, camera=camera)) steering = sample["steer"] if camera == "left": steering += CAMERA_STEERING_CORRECTION elif camera == "right": steering -= CAMERA_STEERING_CORRECTION return image, steering def flip(image, steering, prob=0.5): """ Flip the image and steering with the given probability. Args: image: the image to flip steering: the steering corresponding to the image prob: the flip probability Returns: the augmented image """ if np.random.random() < prob: image = cv2.flip(image, 1) steering *= -1 return image, steering def shadow(rgb_image, prob=0.5): """ Add a shadow to the rgb image with the given probability. The shadow is created by converting the RGB image into HSV space and modifying the value channel in a random range. The area in which the value is modified is defined by a convex hull created for 6 randomly chosen points in the lower half of the image. Args: rgb_image: the image to add the shadow to. Has to be in RGB space. prob: the probability to add the shadow Returns: the augmented image """ if np.random.random() < prob: width, height = rgb_image.shape[1], rgb_image.shape[0] # Get 6 random vertices in the lower half of the image x = np.random.randint(-0.1 * width, 1.1 * width, 6) y = np.random.randint(height * 0.5, 1.1 * height, 6) vertices = np.column_stack((x, y)).astype(np.int32) vertices = cv2.convexHull(vertices).squeeze() # Intilialize mask mask = np.zeros((height, width), dtype=np.int32) # Create the polygon mask cv2.fillPoly(mask, [vertices], 1) # Adjust value hsv = rgb2hsv(rgb_image) v = hsv[:, :, 2] hsv[:, :, 2] = np.where(mask, v * np.random.uniform(0.5, 0.8), v) rgb_image = hsv2rgb(hsv) return rgb_image def brightness(rgb_image, low=0.6, high=1.4, prob=0.5): """ Modify the brighntess of the rgb image with the given probability. The brightness is modified by converting the RGB image into HSV space and adusting the value channel in a random range between the low and high bounds. Args: rgb_image: the image to modify the brightness. Has to be in RGB space. low: lower value bound high: upper value bound prob: the probability to modify the brightness Returns: the augmented image """ if np.random.random() < prob: hsv = rgb2hsv(rgb_image) value = hsv[:, :, 2] hsv[:, :, 2] = np.clip(value * np.random.uniform(low, high), 0, 255) rgb_image = hsv2rgb(hsv) return rgb_image def shift(image, steering, shiftx=60, shifty=20, prob=0.5): """ Shift the image and adjust the steering with the given probability. The steering of the shifted image is adjusted depending on the amount of pixels shifted in the width direction. Args: image: the image to shift. steering: the corresponding steering. shiftx: the upper bound of pixels to shift in the width direction shifty: the upper bound of pixels to shift in the height direction prob: the probability to shift the image Returns: the augmented image """ if np.random.random() < prob: # The angle correction per pixel is derived from the angle correction # specified for the side cameras. It is estimated that the images of two # adjacent cameras are shifted by 80 pixels (at the bottom of the image) angle_correction_per_pixel = CAMERA_STEERING_CORRECTION / 80 # Draw translations in x and y directions from a uniform distribution tx = int(np.random.uniform(-shiftx, shiftx)) ty = int(np.random.uniform(-shifty, shifty)) # Transformation matrix mat = np.float32([[1, 0, tx], [0, 1, ty]]) # Transform image and correct steering angle height, width, _ = image.shape image = cv2.warpAffine(image, mat, (width, height), borderMode=cv2.BORDER_REPLICATE) steering += tx * angle_correction_per_pixel return image, steering def augment(sample, camera_probs=None, flip_prob=0.5, shadow_prob=0.5, bright_prob=0.5, shift_prob=0.5, ): """ Augment the sample with the given probabilities. Args: sample: a sample (row) of the data dataframe. Usually drawn of a batch by the generator camera_probs: the probabilities to draw left, center or right camera images flip_prob: probability for an image to be flipped shadow_prob: probability of shadow additon to the image bright_prob: probability to modify the brightness of the image shift_prob: probability for and image to be shifed """ image, steering = choose_camera(sample, probs=camera_probs) image, steering = flip(image, steering, prob=flip_prob) image = shadow(image, prob=shadow_prob) image = brightness(image, prob=bright_prob) image, steering = shift(image, steering, prob=shift_prob) return image, steering
35.138393
81
0.632575
9a483acc0e1727f56a550dc2b790cfba50c01c45
4,848
py
Python
test_zeroshot.py
airbert-vln/airbert
a4f667db9fb4021094c738dd8d23739aee3785a5
[ "MIT" ]
17
2021-07-30T14:08:24.000Z
2022-03-30T13:57:02.000Z
test_zeroshot.py
airbert-vln/airbert
a4f667db9fb4021094c738dd8d23739aee3785a5
[ "MIT" ]
4
2021-09-09T03:02:18.000Z
2022-03-24T13:55:55.000Z
test_zeroshot.py
airbert-vln/airbert
a4f667db9fb4021094c738dd8d23739aee3785a5
[ "MIT" ]
2
2021-08-30T11:51:16.000Z
2021-09-03T09:18:50.000Z
import json import logging from typing import List import os import sys import numpy as np import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer, BertTokenizer from vilbert.vilbert import BertConfig from utils.cli import get_parser from utils.dataset.common import pad_packed, load_json_data from utils.dataset.zero_shot_dataset import ZeroShotDataset from utils.dataset import PanoFeaturesReader from airbert import Airbert from train import get_model_input, get_mask_options logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, stream=sys.stdout, ) logger = logging.getLogger(__name__) # ------------- # # batch parsing # # ------------- # if __name__ == "__main__": main()
27.545455
88
0.65821
9a49459be97466ed19cf1a661276df8eb41c082e
3,184
py
Python
refp.py
jon2718/ipycool_2.0
34cf74ee99f4a725b997c50a7742ba788ac2dacd
[ "MIT" ]
null
null
null
refp.py
jon2718/ipycool_2.0
34cf74ee99f4a725b997c50a7742ba788ac2dacd
[ "MIT" ]
null
null
null
refp.py
jon2718/ipycool_2.0
34cf74ee99f4a725b997c50a7742ba788ac2dacd
[ "MIT" ]
null
null
null
from modeledcommandparameter import * from pseudoregion import *
38.829268
139
0.451005
9a4a243b2c4f9a84354c254f16486d8c603e8178
10,620
py
Python
utils/dataloaders.py
sinahmr/parted-vae
261f0654de605c6a260784e47e9a17a737a1a985
[ "MIT" ]
5
2021-06-26T07:45:50.000Z
2022-03-31T11:41:29.000Z
utils/dataloaders.py
sinahmr/parted-vae
261f0654de605c6a260784e47e9a17a737a1a985
[ "MIT" ]
null
null
null
utils/dataloaders.py
sinahmr/parted-vae
261f0654de605c6a260784e47e9a17a737a1a985
[ "MIT" ]
1
2021-11-26T09:14:03.000Z
2021-11-26T09:14:03.000Z
import numpy as np import torch from torch.nn import functional as F from torch.utils.data import Dataset, DataLoader from torchvision import datasets, transforms from torchvision.utils import save_image from utils.fast_tensor_dataloader import FastTensorDataLoader
44.06639
177
0.645104
9a4a26f9a634d7ab72a8a79970898804d2a1b1c4
1,780
py
Python
posts.py
girish97115/anonymail
f2eb741464ce7b780e4de6de6043c6eed1e13b9a
[ "MIT" ]
null
null
null
posts.py
girish97115/anonymail
f2eb741464ce7b780e4de6de6043c6eed1e13b9a
[ "MIT" ]
null
null
null
posts.py
girish97115/anonymail
f2eb741464ce7b780e4de6de6043c6eed1e13b9a
[ "MIT" ]
null
null
null
from flask import ( Blueprint,session, flash, g, redirect, render_template, request, url_for ) from werkzeug.exceptions import abort from anonymail.auth import login_required from anonymail.db import get_db import datetime now = datetime.datetime.now() current_year = now.year bp = Blueprint('posts', __name__)
28.253968
78
0.580337
9a4a94c02a87e8e977bec5709e692ef62684b7c3
959
py
Python
app.py
pic-metric/data-science
89bf6e3733a3595220c945269b66befcaf82a3be
[ "MIT" ]
null
null
null
app.py
pic-metric/data-science
89bf6e3733a3595220c945269b66befcaf82a3be
[ "MIT" ]
null
null
null
app.py
pic-metric/data-science
89bf6e3733a3595220c945269b66befcaf82a3be
[ "MIT" ]
3
2020-01-31T22:34:00.000Z
2020-03-06T01:56:06.000Z
# from python-decouple import config from flask import Flask, request, jsonify from .obj_detector import object_detection # from flask_sqlalchemy import SQLAlchemy from dotenv import load_dotenv load_dotenv()
28.205882
78
0.607925
9a4bcff10fc3fa7d7e56bb3812a166c957678a62
2,579
py
Python
src/subroutines/array_subroutine.py
cyrilico/aoco-code-correction
3a780df31eea6caaa37213f6347fb71565ce11e8
[ "MIT" ]
4
2020-08-30T08:56:57.000Z
2020-08-31T21:32:03.000Z
src/subroutines/array_subroutine.py
cyrilico/aoco-code-correction
3a780df31eea6caaa37213f6347fb71565ce11e8
[ "MIT" ]
null
null
null
src/subroutines/array_subroutine.py
cyrilico/aoco-code-correction
3a780df31eea6caaa37213f6347fb71565ce11e8
[ "MIT" ]
1
2020-10-01T22:15:33.000Z
2020-10-01T22:15:33.000Z
from .subroutine import subroutine from parameters.string_parameter import string_parameter as String from parameters.numeric_parameter import numeric_parameter as Numeric from parameters.array_parameter import array_parameter as Array from ast import literal_eval
47.759259
154
0.606437
9a4cab617527bcae29b76af4b2c39e67572e4127
1,164
py
Python
auth.py
nivw/onna_test
518c726a656493a5efd7ed6f548f68b2f5350260
[ "BSD-2-Clause" ]
null
null
null
auth.py
nivw/onna_test
518c726a656493a5efd7ed6f548f68b2f5350260
[ "BSD-2-Clause" ]
null
null
null
auth.py
nivw/onna_test
518c726a656493a5efd7ed6f548f68b2f5350260
[ "BSD-2-Clause" ]
1
2020-06-24T16:52:59.000Z
2020-06-24T16:52:59.000Z
import requests import json from config import config from logbook import Logger, StreamHandler import sys StreamHandler(sys.stdout).push_application() log = Logger('auth')
31.459459
83
0.629725
9a4d61b4c436761ff6069be2e39ac836e18b0130
1,540
py
Python
tests/regressions/python/942_lazy_fmap.py
NanmiaoWu/phylanx
295b5f82cc39925a0d53e77ba3b6d02a65204535
[ "BSL-1.0" ]
83
2017-08-27T15:09:13.000Z
2022-01-18T17:03:41.000Z
tests/regressions/python/942_lazy_fmap.py
NanmiaoWu/phylanx
295b5f82cc39925a0d53e77ba3b6d02a65204535
[ "BSL-1.0" ]
808
2017-08-27T15:35:01.000Z
2021-12-14T17:30:50.000Z
tests/regressions/python/942_lazy_fmap.py
NanmiaoWu/phylanx
295b5f82cc39925a0d53e77ba3b6d02a65204535
[ "BSL-1.0" ]
55
2017-08-27T15:09:22.000Z
2022-03-25T12:07:34.000Z
# Copyright (c) 2019 Bita Hasheminezhad # # Distributed under the Boost Software License, Version 1.0. (See accompanying # file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) # #942: `fold_left`, `fold_right` and `fmap` do not work with a lazy function import numpy as np from phylanx import Phylanx, PhylanxSession, execution_tree PhylanxSession.init(1) sum = Phylanx.lazy(sum_eager) result = test_map(np.array([[1, 2, 3]])) assert(np.all(result == [6])), result result = test_map(np.array([1, 2, 3])) assert(np.all(result == [1, 2, 3])), result
24.0625
79
0.670779
9a4f44e640692a4adea1bc6d6ea01c4fe9188da3
644
py
Python
main.py
DanTheBow/Fibonacci
6b2b694174041c59c1cc151f775772056d88749b
[ "Unlicense" ]
1
2022-01-02T19:50:55.000Z
2022-01-02T19:50:55.000Z
main.py
DanTheBow/Fibonacci
6b2b694174041c59c1cc151f775772056d88749b
[ "Unlicense" ]
null
null
null
main.py
DanTheBow/Fibonacci
6b2b694174041c59c1cc151f775772056d88749b
[ "Unlicense" ]
null
null
null
# Die Fibonacci-Folge ist die unendliche Folge natrlicher Zahlen, die (ursprnglich) mit zweimal der Zahl 1 beginnt # oder (hufig, in moderner Schreibweise) zustzlich mit einer fhrenden Zahl 0 versehen ist. # Im Anschluss ergibt jeweils die Summe zweier aufeinanderfolgender Zahlen die unmittelbar danach folgende Zahl: # 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 -> Hier fangen wir mit der 0 an zu zhlen. # 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 -> Hier fangen wir mit der 1 an zu zhlen.
58.545455
116
0.706522
9a51a2dfb9ee0eb5c3e19b169561bb01b5b7ae90
4,063
py
Python
application/api/generate_label.py
Florian-Barthel/stylegan2
4ef87038bf9370596cf2b729e1d1a1bc3ebcddd8
[ "BSD-Source-Code" ]
null
null
null
application/api/generate_label.py
Florian-Barthel/stylegan2
4ef87038bf9370596cf2b729e1d1a1bc3ebcddd8
[ "BSD-Source-Code" ]
null
null
null
application/api/generate_label.py
Florian-Barthel/stylegan2
4ef87038bf9370596cf2b729e1d1a1bc3ebcddd8
[ "BSD-Source-Code" ]
null
null
null
import numpy as np import dnnlib.tflib as tflib from training import dataset tflib.init_tf()
35.330435
99
0.502092
9a51f5406e8b8b4afa3d8bc309049e92a8011b92
3,333
py
Python
tests/test_urls.py
LaudateCorpus1/apostello
1ace89d0d9e1f7a1760f6247d90a60a9787a4f12
[ "MIT" ]
69
2015-10-03T20:27:53.000Z
2021-04-06T05:26:18.000Z
tests/test_urls.py
LaudateCorpus1/apostello
1ace89d0d9e1f7a1760f6247d90a60a9787a4f12
[ "MIT" ]
73
2015-10-03T17:53:47.000Z
2020-10-01T03:08:01.000Z
tests/test_urls.py
LaudateCorpus1/apostello
1ace89d0d9e1f7a1760f6247d90a60a9787a4f12
[ "MIT" ]
29
2015-10-23T22:00:13.000Z
2021-11-30T04:48:06.000Z
from collections import namedtuple import pytest from rest_framework.authtoken.models import Token from tests.conftest import twilio_vcr from apostello import models StatusCode = namedtuple("StatusCode", "anon, user, staff")
40.646341
105
0.615362
9a52f446636c4417f93211b5960e9ec09c902310
2,491
py
Python
guestbook/main.py
bradmontgomery/mempy-flask-tutorial
8113562460cfa837e7b26df29998e0b6950dd46f
[ "MIT" ]
1
2018-01-10T17:54:18.000Z
2018-01-10T17:54:18.000Z
guestbook/main.py
bradmontgomery/mempy-flask-tutorial
8113562460cfa837e7b26df29998e0b6950dd46f
[ "MIT" ]
null
null
null
guestbook/main.py
bradmontgomery/mempy-flask-tutorial
8113562460cfa837e7b26df29998e0b6950dd46f
[ "MIT" ]
null
null
null
""" A *really* simple guestbook flask app. Data is stored in a SQLite database that looks something like the following: +------------+------------------+------------+ | Name | Email | signed_on | +============+==================+============+ | John Doe | jdoe@example.com | 2012-05-28 | +------------+------------------+------------+ | Jane Doe | jane@example.com | 2012-05-28 | +------------+------------------+------------+ This can be created with the following SQL (see bottom of this file): create table guestbook (name text, email text, signed_on date); Related Docs: * `sqlite3 <http://docs.python.org/library/sqlite3.html>`_ * `datetime <http://docs.python.org/library/datetime.html>`_ * `Flask <http://flask.pocoo.org/docs/>`_ """ from datetime import date from flask import Flask, redirect, request, url_for, render_template import sqlite3 app = Flask(__name__) # our Flask app DB_FILE = 'guestbook.db' # file for our Database def _select(): """ just pull all the results from the database """ connection = sqlite3.connect(DB_FILE) cursor = connection.cursor() cursor.execute("SELECT * FROM guestbook") return cursor.fetchall() def _insert(name, email): """ put a new entry in the database """ params = {'name':name, 'email':email, 'date':date.today()} connection = sqlite3.connect(DB_FILE) cursor = connection.cursor() cursor.execute("insert into guestbook (name, email, signed_on) VALUES (:name, :email, :date)", params) connection.commit() cursor.close() if __name__ == '__main__': # Make sure our database exists connection = sqlite3.connect(DB_FILE) cursor = connection.cursor() try: cursor.execute("select count(rowid) from guestbook") except sqlite3.OperationalError: cursor.execute("create table guestbook (name text, email text, signed_on date)") cursor.close() app.run(host='0.0.0.0', debug=True)
29.654762
106
0.609394
9a555159031db4d7f16f4b7224046ffb7dcc0810
25,673
py
Python
lingvodoc/scripts/lingvodoc_converter.py
SegFaulti4/lingvodoc
8b296b43453a46b814d3cd381f94382ebcb9c6a6
[ "Apache-2.0" ]
5
2017-03-30T18:02:11.000Z
2021-07-20T16:02:34.000Z
lingvodoc/scripts/lingvodoc_converter.py
SegFaulti4/lingvodoc
8b296b43453a46b814d3cd381f94382ebcb9c6a6
[ "Apache-2.0" ]
15
2016-02-24T13:16:59.000Z
2021-09-03T11:47:15.000Z
lingvodoc/scripts/lingvodoc_converter.py
Winking-maniac/lingvodoc
f037bf0e91ccdf020469037220a43e63849aa24a
[ "Apache-2.0" ]
22
2015-09-25T07:13:40.000Z
2021-08-04T18:08:26.000Z
import sqlite3 import base64 import requests import json import hashlib import logging from lingvodoc.queue.client import QueueClient #def change_dict_status(session, converting_status_url, status, task_id, progress): # def change_dict_status(task_id, progress): # #session.put(converting_status_url, json={'status': status}) # QueueClient.update_progress(task_id, progress) if __name__ == "__main__": log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) logging.basicConfig(format='%(asctime)s\t%(levelname)s\t[%(name)s]\t%(message)s') log.debug("!!!!!!!!!! YOU SHOULD NOT SEE IT !!!!!!!!") convert_one(filename="/home/student/dicts-current/nenets_kaninski.sqlite", login="Test", password_hash="$2a$12$zBMnhV9oUfKehlHJCHnsPuGM98Wwq/g9hlWWNqg8ZGDuLNyUSfxza", language_client_id=1, language_object_id=1, dictionary_client_id=None, dictionary_object_id=None, perspective_client_id=None, perspective_object_id=None, server_url="http://lingvodoc.ispras.ru/")
51.346
159
0.569158
9a56a9cb8a9973d77c62dc8bff13ecc6a5a858c1
1,550
py
Python
tests/test_all.py
euranova/DAEMA
29fec157c34afcc9abe95bc602a3012615b3c36b
[ "MIT" ]
6
2021-09-17T02:09:29.000Z
2022-03-20T04:15:15.000Z
tests/test_all.py
Jason-Xu-Ncepu/DAEMA
29fec157c34afcc9abe95bc602a3012615b3c36b
[ "MIT" ]
null
null
null
tests/test_all.py
Jason-Xu-Ncepu/DAEMA
29fec157c34afcc9abe95bc602a3012615b3c36b
[ "MIT" ]
4
2021-06-29T22:57:18.000Z
2022-03-09T09:19:17.000Z
""" Tests the code. """ from torch.utils.data import DataLoader from models import MODELS from pipeline import argument_parser from pipeline.datasets import DATASETS, get_dataset from run import main def test_datasets(): """ Tests all the datasets defined in pipeline.datasets.DATASETS. """ for ds_name in DATASETS: train_set, test_set, _ = get_dataset(ds_name, seed=42) for set_ in (train_set, test_set): dl = DataLoader(list(zip(*set_)), batch_size=5) for data, missing_data, mask in dl: assert len(data) == 5, f"The {ds_name} dataset has less than 5 samples." assert data.shape[1] > 1, f"The {ds_name} dataset has none or one column only." print("data:", data, "missing_data:", missing_data, "mask:", mask, sep="\n") break def test_general(capsys): """ Tests most of the code by checking it produces the expected result. """ main(argument_parser.get_args(["--metric_steps", "50", "--datasets", "Boston", "--seeds", "0", "1"])) captured = capsys.readouterr() with open("tests/current_output.txt", "w") as f: assert f.write(captured.out) with open("tests/gold_output.txt", "r") as f: assert captured.out == f.read() def test_models(): """ Tests all the models (only checks if these run). """ for model in MODELS: main(argument_parser.get_args(["--model", model, "--metric_steps", "0", "1", "5", "--datasets", "Boston", "--seeds", "0"]))
38.75
113
0.614839
9a586ac04d9d83458edb9f23d9cb90fb787462de
2,185
py
Python
src/preprocessing.py
Wisteria30/GIM-RL
085ba3b8c10590f82226cd1675ba96c5f90740f3
[ "Apache-2.0" ]
3
2021-10-15T00:57:05.000Z
2021-12-16T13:00:05.000Z
src/preprocessing.py
Wisteria30/GIM-RL
085ba3b8c10590f82226cd1675ba96c5f90740f3
[ "Apache-2.0" ]
null
null
null
src/preprocessing.py
Wisteria30/GIM-RL
085ba3b8c10590f82226cd1675ba96c5f90740f3
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import numpy as np import random import os import sys import torch from src.agent import ( EpsilonGreedyAgent, MaxAgent, RandomAgent, RandomCreateBVAgent, ProbabilityAgent, QAgent, QAndUtilityAgent, MultiEpsilonGreedyAgent, MultiMaxAgent, MultiProbabilityAgent, MultiQAgent, MultiQAndUtilityAgent, )
27.3125
74
0.644851
9a599c01b7e7a6eb5de9e8bf5a694c44420b04db
101
py
Python
python/testData/editing/spaceDocStringStubInFunction.after.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2019-04-28T07:48:50.000Z
2020-12-11T14:18:08.000Z
python/testData/editing/spaceDocStringStubInFunction.after.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
173
2018-07-05T13:59:39.000Z
2018-08-09T01:12:03.000Z
python/testData/editing/spaceDocStringStubInFunction.after.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2020-03-15T08:57:37.000Z
2020-04-07T04:48:14.000Z
def func(x, y, z): """ :param x: <caret> :param y: :param z: :return: """
14.428571
21
0.386139
9a5ad370a80119a4cd36243d371bcf4ccf37a3ae
1,439
py
Python
src/leaf/file_tools.py
Pix-00/olea-v2_flask_1_
7ddfa83a7a2a7dfbe55b78da002c1193f38781c0
[ "Apache-2.0" ]
null
null
null
src/leaf/file_tools.py
Pix-00/olea-v2_flask_1_
7ddfa83a7a2a7dfbe55b78da002c1193f38781c0
[ "Apache-2.0" ]
null
null
null
src/leaf/file_tools.py
Pix-00/olea-v2_flask_1_
7ddfa83a7a2a7dfbe55b78da002c1193f38781c0
[ "Apache-2.0" ]
null
null
null
from hashlib import sha3_256 import magic from enums import Dep, MangoType MIME_MTYPE = { 'text/plain': MangoType.text, 'audio/flac': MangoType.audio_flac, 'audio/wav': MangoType.audio_wav, 'image/png': MangoType.picture_png, 'image/jpeg': MangoType.picture_jpg, 'video/x-matroska': MangoType.video_mkv, 'video/mp4': MangoType.video_mp4 } TYPE_ALLOWED = { Dep.d51: (MangoType.audio_flac, ), Dep.d59: (MangoType.audio_flac, ), Dep.d60: (MangoType.picture_png, ), Dep.d71: (MangoType.audio_flac, ), Dep.d72: (MangoType.text, ), Dep.d73: (MangoType.video_mkv, MangoType.video_mp4) } EXTS = { MangoType.audio_flac: 'flac', MangoType.picture_png: 'png', MangoType.text: 'txt', MangoType.video_mkv: 'mkv', MangoType.video_mp4: 'mp4' }
24.810345
73
0.635858
9a5cc32eb8d423266537616c2fd2072b4114deb3
2,258
py
Python
fabric_cm/credmgr/swagger_server/__main__.py
fabric-testbed/CredentialManager
da8ce54ab78544ff907af81d8cd7723ff48f6652
[ "MIT" ]
1
2021-05-24T17:20:07.000Z
2021-05-24T17:20:07.000Z
fabric_cm/credmgr/swagger_server/__main__.py
fabric-testbed/CredentialManager
da8ce54ab78544ff907af81d8cd7723ff48f6652
[ "MIT" ]
4
2021-06-07T16:18:45.000Z
2021-06-29T20:13:21.000Z
fabric_cm/credmgr/swagger_server/__main__.py
fabric-testbed/CredentialManager
da8ce54ab78544ff907af81d8cd7723ff48f6652
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # MIT License # # Copyright (c) 2020 FABRIC Testbed # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Author Komal Thareja (kthare10@renci.org) """ Main Entry Point """ import os import signal import connexion import prometheus_client import waitress from flask import jsonify from fabric_cm.credmgr.swagger_server import encoder from fabric_cm.credmgr.config import CONFIG_OBJ from fabric_cm.credmgr.logging import LOG def main(): """ Main Entry Point """ log = LOG try: app = connexion.App(__name__, specification_dir='swagger/') app.app.json_encoder = encoder.JSONEncoder app.add_api('swagger.yaml', arguments={'title': 'Fabric Credential Manager API'}, pythonic_params=True) port = CONFIG_OBJ.get_rest_port() # prometheus server prometheus_port = CONFIG_OBJ.get_prometheus_port() prometheus_client.start_http_server(prometheus_port) # Start up the server to expose the metrics. waitress.serve(app, port=port) except Exception as ex: log.error("Exception occurred while starting Flask app") log.error(ex) raise ex if __name__ == '__main__': main()
32.724638
80
0.724978
9a5d1a5d6e04e787d275225f739fe6d7102b20fa
1,529
py
Python
backendapi/icon/migrations/0001_initial.py
fredblade/Pictogram
d5cc4a25f28b6d80facf51fa9528e8ff969f7c46
[ "MIT" ]
null
null
null
backendapi/icon/migrations/0001_initial.py
fredblade/Pictogram
d5cc4a25f28b6d80facf51fa9528e8ff969f7c46
[ "MIT" ]
null
null
null
backendapi/icon/migrations/0001_initial.py
fredblade/Pictogram
d5cc4a25f28b6d80facf51fa9528e8ff969f7c46
[ "MIT" ]
null
null
null
# Generated by Django 3.1.2 on 2022-02-27 17:59 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import versatileimagefield.fields
41.324324
177
0.646828
9a5f6f4fdf92f5d8e97feaed00a42aa430e9c51a
424,971
py
Python
src/fmiprot.py
tanisc/FMIPROT
9035b5f89768e1028edd08dc7568b3208552f164
[ "Apache-2.0" ]
4
2019-02-25T11:53:55.000Z
2021-03-16T20:16:56.000Z
src/fmiprot.py
tanisc/FMIPROT
9035b5f89768e1028edd08dc7568b3208552f164
[ "Apache-2.0" ]
2
2021-09-14T09:54:42.000Z
2021-11-12T13:30:10.000Z
src/fmiprot.py
tanisc/FMIPROT
9035b5f89768e1028edd08dc7568b3208552f164
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # python version 2.7 # Cemal Melih Tanis (C) ############################################################################### import os import shutil import datetime from pytz import timezone from uuid import uuid4 from definitions import * import fetchers import calculations from calculations import calcnames, calccommands, paramnames, paramdefs, paramopts, calcids, calcdescs,paramhelps, calcnames_en import maskers import parsers import sources from data import * import readers import calcfuncs import matplotlib, sys import numpy as np if sysargv['gui']: matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg import Tkinter, Tkconstants, tkFileDialog, tkMessageBox, tkSimpleDialog, tkFont import Tkinter as tk import ttk import matplotlib.dates as mdate import PIL from PIL import Image,ImageDraw, ImageFont if sysargv['gui']: from PIL import ImageTk if os.path.sep == '/': from PIL import _tkinter_finder import mahotas from copy import deepcopy import subprocess from auxdata import auxlist, auxnamelist import auxdata import comparators import webbrowser import h5py import textwrap import gc if sysargv['gui']: import FileDialog if not sysargv['gui']: Tkinter = None import noTk as Tkinter import noTk as tk import noTk as tkMessageBox import noTk as tkSimpleDialog import noTk as webbrowser import noTk as tkFont if __name__ == "__main__": app = monimet_gui(None) app.title('FMIPROT ' + sysargv['version']) if os.path.sep != "/": app.iconbitmap(os.path.join(ResourcesDir,'monimet.ico')) app.mainloop()
64.15625
917
0.714124
9a61264c94a41a473e6cc008dcf849ae78b0596c
898
py
Python
akamai/cache_buster/bust_cache.py
famartinrh/cloud-services-config
7dd4fe24fc09a62f360e3407629b1c2567a10260
[ "MIT" ]
11
2019-06-25T17:01:12.000Z
2022-01-21T18:53:13.000Z
akamai/cache_buster/bust_cache.py
famartinrh/cloud-services-config
7dd4fe24fc09a62f360e3407629b1c2567a10260
[ "MIT" ]
253
2019-05-24T12:48:32.000Z
2022-03-29T11:00:25.000Z
akamai/cache_buster/bust_cache.py
famartinrh/cloud-services-config
7dd4fe24fc09a62f360e3407629b1c2567a10260
[ "MIT" ]
93
2019-04-17T09:22:43.000Z
2022-03-21T18:53:28.000Z
import sys import subprocess if __name__ == "__main__": main()
30.965517
105
0.615813
9a61c54ca6366d9eef60d2491aa686f033543efd
3,261
py
Python
GAparsimony/util/config.py
misantam/GAparsimony
0241092dc5d7741b5546151ff829167588e4f703
[ "MIT" ]
null
null
null
GAparsimony/util/config.py
misantam/GAparsimony
0241092dc5d7741b5546151ff829167588e4f703
[ "MIT" ]
1
2021-12-05T10:24:55.000Z
2021-12-05T11:01:25.000Z
GAparsimony/util/config.py
misantam/GAparsimony
0241092dc5d7741b5546151ff829167588e4f703
[ "MIT" ]
null
null
null
################################################# #****************LINEAR MODELS******************# ################################################# CLASSIF_LOGISTIC_REGRESSION = {"C":{"range": (1., 100.), "type": 1}, "tol":{"range": (0.0001,0.9999), "type": 1}} CLASSIF_PERCEPTRON = {"tol":{"range": (0.0001,0.9999), "type": 1}, "alpha":{"range": (0.0001,0.9999), "type": 1}} REG_LASSO = {"tol":{"range": (0.0001,0.9999), "type": 1}, "alpha":{"range": (1., 100.), "type": 1}} REG_RIDGE = {"tol":{"range": (0.0001,0.9999), "type": 1}, "alpha":{"range": (1., 100.), "type": 1}} ################################################ #*****************SVM MODELS*******************# ################################################ CLASSIF_SVC = {"C":{"range": (1.,100.), "type": 1}, "alpha":{"range": (0.0001,0.9999), "type": 1}} REG_SVR = {"C":{"range": (1.,100.), "type": 1}, "alpha":{"range": (0.0001,0.9999), "type": 1}} ################################################## #******************KNN MODELS********************# ################################################## CLASSIF_KNEIGHBORSCLASSIFIER = {"n_neighbors":{"range": (2,11), "type": 0}, "p":{"range": (1, 3), "type": 0}} REG_KNEIGHBORSREGRESSOR = {"n_neighbors":{"range": (2,11), "type": 0}, "p":{"range": (1, 3), "type": 0}} ################################################## #******************MLP MODELS********************# ################################################## CLASSIF_MLPCLASSIFIER = {"tol":{"range": (0.0001,0.9999), "type": 1}, "alpha":{"range": (0.0001, 0.999), "type": 1}} REG_MLPREGRESSOR = {"tol":{"range": (0.0001,0.9999), "type": 1}, "alpha":{"range": (0.0001, 0.999), "type": 1}} ################################################## #*************Random Forest MODELS***************# ################################################## CLASSIF_RANDOMFORESTCLASSIFIER = {"n_estimators":{"range": (100,250), "type": 0}, "max_depth":{"range": (4, 20), "type": 0}, "min_samples_split":{"range": (2,25), "type": 0}} REG_RANDOMFORESTREGRESSOR = {"n_estimators":{"range": (100,250), "type": 0}, "max_depth":{"range": (4, 20), "type": 0}, "min_samples_split":{"range": (2,25), "type": 0}} ################################################## #*************Decision trees MODELS**************# ################################################## CLASSIF_DECISIONTREECLASSIFIER = {"min_weight_fraction_leaf":{"range": (0,20), "type": 0}, "max_depth":{"range": (4, 20), "type": 0}, "min_samples_split":{"range": (2,25), "type": 0}} REG_DECISIONTREEREGRESSOR = {"min_weight_fraction_leaf":{"range": (0,20), "type": 0}, "max_depth":{"range": (4, 20), "type": 0}, "min_samples_split":{"range": (2,25), "type": 0}}
40.259259
90
0.340693
9a620af02d14a583cea144484597abc9077f8497
6,300
py
Python
gryphon/dashboards/handlers/status.py
qiquanzhijia/gryphon
7bb2c646e638212bd1352feb1b5d21536a5b918d
[ "Apache-2.0" ]
1,109
2019-06-20T19:23:27.000Z
2022-03-20T14:03:43.000Z
gryphon/dashboards/handlers/status.py
qiquanzhijia/gryphon
7bb2c646e638212bd1352feb1b5d21536a5b918d
[ "Apache-2.0" ]
63
2019-06-21T05:36:17.000Z
2021-05-26T21:08:15.000Z
gryphon/dashboards/handlers/status.py
qiquanzhijia/gryphon
7bb2c646e638212bd1352feb1b5d21536a5b918d
[ "Apache-2.0" ]
181
2019-06-20T19:42:05.000Z
2022-03-21T13:05:13.000Z
# -*- coding: utf-8 -*- from datetime import timedelta import logging from delorean import Delorean import tornado.web from gryphon.dashboards.handlers.admin_base import AdminBaseHandler from gryphon.lib.exchange import exchange_factory from gryphon.lib.models.order import Order from gryphon.lib.models.exchange import Exchange as ExchangeData from gryphon.lib.models.exchange import Balance from gryphon.lib.models.transaction import Transaction from gryphon.lib.money import Money logger = logging.getLogger(__name__) BANK_ACCOUNT_HIGHLIGHT_THRESHOLD = 30000
33.157895
87
0.623968
9a63239cdeadf5547e515d79f10a494c6c3288e7
4,897
py
Python
setup.py
Hydar-Zartash/TF_regression
ac7cef4c1f248664b57139ae40c582ec80b2355f
[ "MIT" ]
null
null
null
setup.py
Hydar-Zartash/TF_regression
ac7cef4c1f248664b57139ae40c582ec80b2355f
[ "MIT" ]
null
null
null
setup.py
Hydar-Zartash/TF_regression
ac7cef4c1f248664b57139ae40c582ec80b2355f
[ "MIT" ]
null
null
null
import yfinance as yf import numpy as np import pandas as pd if __name__ == "__main__": stock = StockSetup('SPY', 3) print(stock.data.tail()) print(stock.data.isna().sum())
44.926606
195
0.596488
9a636c8c285701e4e227ff48aaa2926973c39b10
1,893
py
Python
netsuitesdk/api/custom_records.py
wolever/netsuite-sdk-py
1b1c21e2a8a532fdbf54915e7e9d30b8b5fc2d08
[ "MIT" ]
47
2019-08-15T21:36:36.000Z
2022-03-18T23:44:59.000Z
netsuitesdk/api/custom_records.py
wolever/netsuite-sdk-py
1b1c21e2a8a532fdbf54915e7e9d30b8b5fc2d08
[ "MIT" ]
52
2019-06-17T09:43:04.000Z
2022-03-22T05:00:53.000Z
netsuitesdk/api/custom_records.py
wolever/netsuite-sdk-py
1b1c21e2a8a532fdbf54915e7e9d30b8b5fc2d08
[ "MIT" ]
55
2019-06-02T22:18:01.000Z
2022-03-29T07:20:31.000Z
from collections import OrderedDict from .base import ApiBase import logging logger = logging.getLogger(__name__)
25.581081
77
0.59588
9a64215513cbe7b2b8f68643b42ce0ea2da19bba
147
py
Python
api/schema/__init__.py
wepickheroes/wepickheroes.github.io
032c2a75ef058aaceb795ce552c52fbcc4cdbba3
[ "MIT" ]
3
2018-02-15T20:04:23.000Z
2018-09-29T18:13:55.000Z
api/schema/__init__.py
wepickheroes/wepickheroes.github.io
032c2a75ef058aaceb795ce552c52fbcc4cdbba3
[ "MIT" ]
5
2018-01-31T02:01:15.000Z
2018-05-11T04:07:32.000Z
api/schema/__init__.py
prattl/wepickheroes
032c2a75ef058aaceb795ce552c52fbcc4cdbba3
[ "MIT" ]
null
null
null
import graphene from schema.queries import Query from schema.mutations import Mutations schema = graphene.Schema(query=Query, mutation=Mutations)
24.5
57
0.836735
9a6446896e65dc764ddad3e136039fc438fa2758
1,710
py
Python
airbox/commands/__init__.py
lewisjared/airbox
56bfdeb3e81bac47c80fbf249d9ead31c94a2139
[ "MIT" ]
null
null
null
airbox/commands/__init__.py
lewisjared/airbox
56bfdeb3e81bac47c80fbf249d9ead31c94a2139
[ "MIT" ]
null
null
null
airbox/commands/__init__.py
lewisjared/airbox
56bfdeb3e81bac47c80fbf249d9ead31c94a2139
[ "MIT" ]
null
null
null
""" This module contains a number of other commands that can be run via the cli. All classes in this submodule which inherit the baseclass `airbox.commands.base.Command` are automatically included in the possible commands to execute via the commandline. The commands can be called using their `name` property. """ from logging import getLogger from .backup import BackupCommand from .backup_sync import BackupSyncCommand from .basic_plot import BasicPlotCommand from .create_mounts import CreateMountsCommand from .install import InstallCommand from .print_fstab import PrintFstabCommand from .run_schedule import RunScheduleCommand from .spectronus_subset import SpectronusSubsetCommand from .subset import SubsetCommand logger = getLogger(__name__) # Commands are registered below _commands = [ BackupCommand(), BackupSyncCommand(), BasicPlotCommand(), CreateMountsCommand(), InstallCommand(), PrintFstabCommand(), RunScheduleCommand(), SpectronusSubsetCommand(), SubsetCommand() ] def find_commands(): """ Finds all the Commands in this package :return: List of Classes within """ # TODO: Make this actually do that. For now commands are manually registered pass def initialise_commands(parser): """ Initialise the parser with the commandline arguments for each parser :param parser: :return: """ find_commands() for c in _commands: p = parser.add_parser(c.name, help=c.help) c.initialise_parser(p) def run_command(cmd_name): """ Attempts to run a command :param config: Configuration data """ for c in _commands: if cmd_name == c.name: return c.run()
26.307692
118
0.729825
9a67bbeeb8843ddedf058092d195c66fcbe342a3
1,881
py
Python
waveguide/waveguide_test.py
DentonGentry/gfiber-platform
2ba5266103aad0b7b676555eebd3c2061ddb8333
[ "Apache-2.0" ]
8
2017-09-24T03:11:46.000Z
2021-08-24T04:29:14.000Z
waveguide/waveguide_test.py
DentonGentry/gfiber-platform
2ba5266103aad0b7b676555eebd3c2061ddb8333
[ "Apache-2.0" ]
null
null
null
waveguide/waveguide_test.py
DentonGentry/gfiber-platform
2ba5266103aad0b7b676555eebd3c2061ddb8333
[ "Apache-2.0" ]
1
2017-10-05T23:04:10.000Z
2017-10-05T23:04:10.000Z
#!/usr/bin/python # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import waveguide from wvtest import wvtest if __name__ == '__main__': wvtest.wvtest_main()
28.938462
74
0.696438
9a67d0c9f6bb396b9d590ca653e1ee83e64bff97
3,421
py
Python
ava/actives/shell_injection.py
indeedsecurity/ava-ce
4483b301034a096b716646a470a6642b3df8ce61
[ "Apache-2.0" ]
2
2019-03-26T15:37:48.000Z
2020-01-03T03:47:30.000Z
ava/actives/shell_injection.py
indeedsecurity/ava-ce
4483b301034a096b716646a470a6642b3df8ce61
[ "Apache-2.0" ]
2
2021-03-25T21:27:09.000Z
2021-06-01T21:20:04.000Z
ava/actives/shell_injection.py
indeedsecurity/ava-ce
4483b301034a096b716646a470a6642b3df8ce61
[ "Apache-2.0" ]
null
null
null
import re from ava.common.check import _ValueCheck, _TimingCheck from ava.common.exception import InvalidFormatException # metadata name = __name__ description = "checks for shell injection"
31.385321
117
0.501315
7bd4127115e5637b5b3d7a956f2d5a45c70e9ad5
5,536
py
Python
matlab/FRCNN/For_LOC/python/Generate_Trecvid_Data.py
xyt2008/frcnn
32a559e881cceeba09a90ff45ad4aae1dabf92a1
[ "BSD-2-Clause" ]
198
2018-01-07T13:44:29.000Z
2022-03-21T12:06:16.000Z
matlab/FRCNN/For_LOC/python/Generate_Trecvid_Data.py
xyt2008/frcnn
32a559e881cceeba09a90ff45ad4aae1dabf92a1
[ "BSD-2-Clause" ]
18
2018-02-01T13:24:53.000Z
2021-04-26T10:51:47.000Z
matlab/FRCNN/For_LOC/python/Generate_Trecvid_Data.py
xyt2008/frcnn
32a559e881cceeba09a90ff45ad4aae1dabf92a1
[ "BSD-2-Clause" ]
82
2018-01-06T14:21:43.000Z
2022-02-16T09:39:58.000Z
import os import xml.etree.ElementTree as ET import numpy as np import scipy.sparse import scipy.io as sio import cPickle import subprocess import uuid if __name__ == '__main__': #Save_Name = './dataset/8.train_val' ImageSets = ['../LOC/LOC_Split/trecvid_val_8.txt', '../LOC/LOC_Split/trecvid_train_8.txt'] ImageSets = ['../LOC/LOC_Split/trecvid_train_Animal_Music.txt', '../LOC/LOC_Split/trecvid_val_Animal_Music.txt'] ImageSets = ['../LOC/LOC_Split/trecvid_5_manual_train.txt'] ImageSets = ['../LOC/LOC_Split/trecvid_train_8.txt', '../LOC/LOC_Split/trecvid_val_8.txt', '../LOC/LOC_Split/trecvid_train_Animal_Music.txt', '../LOC/LOC_Split/trecvid_val_Animal_Music.txt'] num_cls = 10 Save_Name = '../dataset/{}.train_val'.format(num_cls) _wind_to_ind, _class_to_ind = Get_Class_Ind(num_cls) for ImageSet in ImageSets: if not os.path.isfile(ImageSet): print 'File({}) does not exist'.format(ImageSet) sys.exit(1) else: print 'Open File : {} '.format(ImageSet) print 'Save into : {} '.format(Save_Name) out_file = open(Save_Name, 'w') ids = 0 count_cls = np.zeros((num_cls+1), dtype=np.int32) assert count_cls.shape[0]-1 == len(_class_to_ind) for ImageSet in ImageSets: file = open(ImageSet, 'r') while True: line = file.readline() if line == '': break line = line.strip('\n') xml_path = '../LOC/BBOX/{}.xml'.format(line) rec = load_annotation(xml_path, _wind_to_ind) out_file.write('# {}\n'.format(ids)) ids = ids + 1 out_file.write('{}.JPEG\n'.format(line)) boxes = rec['boxes'] gt_classes = rec['gt_classes'] assert boxes.shape[0] == gt_classes.shape[0] out_file.write('{}\n'.format(boxes.shape[0])) for j in range(boxes.shape[0]): out_file.write('{} {} {} {} {} 0\n'.format(int(gt_classes[j]),int(boxes[j,0]),int(boxes[j,1]),int(boxes[j,2]),int(boxes[j,3]))) count_cls[ int(gt_classes[j]) ] = count_cls[ int(gt_classes[j]) ] + 1 if ids % 2000 == 0: print 'print {} image with recs into {}'.format(ids, Save_Name) file.close() for i in range(count_cls.shape[0]): print ('%2d th : %4d' % (i, count_cls[i])) i = i + 1 out_file.close()
37.659864
194
0.588873
7bd4c7d5599bd575e062c27d1c3e19928097f821
5,967
py
Python
train.py
ProfessorHuang/2D-UNet-Pytorch
b3941e8dc0ac3e76b6eedb656f943f1bd66fa799
[ "MIT" ]
11
2020-12-09T10:38:47.000Z
2022-03-07T13:12:48.000Z
train.py
lllllllllllll-llll/2D-UNet-Pytorch
b3941e8dc0ac3e76b6eedb656f943f1bd66fa799
[ "MIT" ]
3
2020-11-24T02:23:02.000Z
2021-04-18T15:31:51.000Z
train.py
ProfessorHuang/2D-UNet-Pytorch
b3941e8dc0ac3e76b6eedb656f943f1bd66fa799
[ "MIT" ]
2
2021-04-07T06:17:46.000Z
2021-11-11T07:41:46.000Z
import argparse import logging import os import sys import numpy as np from tqdm import tqdm import time import torch import torch.nn as nn from torch import optim from torch.utils.tensorboard import SummaryWriter from torch.utils.data import DataLoader from models.unet import UNet from models.nested_unet import NestedUNet from datasets.promise12 import Promise12 from datasets.chaos import Chaos from dice_loss import DiceBCELoss, dice_coeff from eval import eval_net torch.manual_seed(2020) if __name__ == '__main__': args = get_args() args.save = 'logs_train/{}-{}-{}'.format(args.model, args.dataset, time.strftime("%Y%m%d-%H%M%S")) if not os.path.exists(args.save): os.makedirs(args.save) log_format = '%(asctime)s %(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p') fh = logging.FileHandler(os.path.join(args.save, 'log.txt')) fh.setFormatter(logging.Formatter(log_format)) logging.getLogger().addHandler(fh) logging.info(f''' Model: {args.model} Dataset: {args.dataset} Total Epochs: {args.epochs} Batch size: {args.batch_size} Learning rate: {args.lr} Weight decay: {args.weight_decay} Device: GPU{args.gpu} Log name: {args.save} ''') torch.cuda.set_device(args.gpu) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # choose a model if args.model == 'unet': net = UNet() elif args.model == 'nestedunet': net = NestedUNet() net.to(device=device) # choose a dataset if args.dataset == 'promise12': dir_data = '../data/promise12' trainset = Promise12(dir_data, mode='train') valset = Promise12(dir_data, mode='val') elif args.dataset == 'chaos': dir_data = '../data/chaos' trainset = Chaos(dir_data, mode='train') valset = Chaos(dir_data, mode='val') try: train_net(net=net, trainset=trainset, valset=valset, epochs=args.epochs, batch_size=args.batch_size, lr=args.lr, weight_decay=args.weight_decay, device=device, log_save_path=args.save) except KeyboardInterrupt: try: sys.exit(0) except SystemExit: os._exit(0)
37.062112
121
0.622256
7bd5134da373e6ab71f1575fcac61884fd8fa7f9
41
py
Python
bot/run.py
anhhanuman/python-selenium
6dbb169282c44c50189447a1c9a303ae1a790a8b
[ "Apache-2.0" ]
null
null
null
bot/run.py
anhhanuman/python-selenium
6dbb169282c44c50189447a1c9a303ae1a790a8b
[ "Apache-2.0" ]
5
2021-09-02T13:02:25.000Z
2021-09-20T04:58:37.000Z
bot/run.py
anhhanuman/python-selenium
6dbb169282c44c50189447a1c9a303ae1a790a8b
[ "Apache-2.0" ]
null
null
null
from booking.constants import myConstant
20.5
40
0.878049
7bd7021be4efb1d2b67a9ea0b8c76a83b68b38ed
411
py
Python
geoxml.py
ssubramanian90/UMich-Python-coursera
35aa6b7d939852e7e9f1751d6a7b369910c5a572
[ "bzip2-1.0.6" ]
null
null
null
geoxml.py
ssubramanian90/UMich-Python-coursera
35aa6b7d939852e7e9f1751d6a7b369910c5a572
[ "bzip2-1.0.6" ]
null
null
null
geoxml.py
ssubramanian90/UMich-Python-coursera
35aa6b7d939852e7e9f1751d6a7b369910c5a572
[ "bzip2-1.0.6" ]
null
null
null
import urllib import xml.etree.ElementTree as ET address = raw_input('Enter location: ') url = address print 'Retrieving', url uh = urllib.urlopen(url) data = uh.read() print 'Retrieved',len(data),'characters' tree = ET.fromstring(data) sumcount=count=0 counts = tree.findall('.//count') for i in counts: count+=1 sumcount+= int(i.text) print 'Count: '+str(count) print 'Sum: '+str(sumcount)
17.125
40
0.690998
7bd7513f32c35775cd41faee3dba10cf9bfca50a
882
py
Python
app/mod_tweepy/controllers.py
cbll/SocialDigger
177a7b5bb1b295722e8d281a8f33678a02bd5ab0
[ "Apache-2.0" ]
3
2016-01-28T20:35:46.000Z
2020-03-08T08:49:07.000Z
app/mod_tweepy/controllers.py
cbll/SocialDigger
177a7b5bb1b295722e8d281a8f33678a02bd5ab0
[ "Apache-2.0" ]
null
null
null
app/mod_tweepy/controllers.py
cbll/SocialDigger
177a7b5bb1b295722e8d281a8f33678a02bd5ab0
[ "Apache-2.0" ]
null
null
null
from flask import Flask from flask.ext.tweepy import Tweepy app = Flask(__name__) app.config.setdefault('TWEEPY_CONSUMER_KEY', 'sve32G2LtUhvgyj64J0aaEPNk') app.config.setdefault('TWEEPY_CONSUMER_SECRET', '0z4NmfjET4BrLiOGsspTkVKxzDK1Qv6Yb2oiHpZC9Vi0T9cY2X') app.config.setdefault('TWEEPY_ACCESS_TOKEN_KEY', '1425531373-dvjiA55ApSFEnTAWPzzZAZLRoGDo3OTTtt4ER1W') app.config.setdefault('TWEEPY_ACCESS_TOKEN_SECRET', '357nVGYtynDtDBmqAZw2vxeXE3F8GbqBSqWInwStDluDX') tweepy = Tweepy(app)
38.347826
102
0.794785
7bd7c0bcead87f462866473027496b7fc3302170
128
py
Python
sftp_sync/__init__.py
bluec0re/python-sftpsync
f68a8cb47ff38cdf883d93c448cf1bcc9df7f532
[ "MIT" ]
3
2017-06-09T09:23:03.000Z
2021-12-10T00:52:27.000Z
sftp_sync/__init__.py
bluec0re/python-sftpsync
f68a8cb47ff38cdf883d93c448cf1bcc9df7f532
[ "MIT" ]
null
null
null
sftp_sync/__init__.py
bluec0re/python-sftpsync
f68a8cb47ff38cdf883d93c448cf1bcc9df7f532
[ "MIT" ]
null
null
null
from __future__ import absolute_import from .__main__ import main from .sftp import * from .sync import * __version__ = '0.6'
16
38
0.765625
7bd8ac16582450f85a23c7ef200dbfd91aa09837
2,636
py
Python
core/predictor/RF/rf_predict.py
LouisYZK/dds-avec2019
9a0ee86bddf6c23460a689bde8d75302f1d5aa45
[ "BSD-2-Clause" ]
8
2020-02-28T04:04:30.000Z
2021-12-28T07:06:06.000Z
core/predictor/RF/rf_predict.py
LouisYZK/dds-avec2019
9a0ee86bddf6c23460a689bde8d75302f1d5aa45
[ "BSD-2-Clause" ]
1
2021-04-18T09:35:13.000Z
2021-04-18T09:35:13.000Z
core/predictor/RF/rf_predict.py
LouisYZK/dds-avec2019
9a0ee86bddf6c23460a689bde8d75302f1d5aa45
[ "BSD-2-Clause" ]
2
2020-03-26T21:42:15.000Z
2021-09-09T12:50:41.000Z
"""Simple predictor using random forest """ import pandas as pd import numpy as np import math from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomForestClassifier from sklearn import preprocessing from sklearn.metrics import mean_absolute_error from sklearn.metrics import f1_score from sklearn.model_selection import cross_val_score from sklearn import metrics from core.predictor.predictor import Predictor from common.sql_handler import SqlHandler from common.metric import ccc_score import config from global_values import * from common.log_handler import get_logger logger = get_logger()
30.651163
90
0.638088
7bd8f52d214214860defef756924562c2d718956
2,135
py
Python
speed/__init__.py
Astrochamp/speed
e17b2d1de6590d08e5cfddf875b4445f20c1e08a
[ "MIT" ]
1
2022-02-12T18:43:43.000Z
2022-02-12T18:43:43.000Z
speed/__init__.py
Astrochamp/speed
e17b2d1de6590d08e5cfddf875b4445f20c1e08a
[ "MIT" ]
null
null
null
speed/__init__.py
Astrochamp/speed
e17b2d1de6590d08e5cfddf875b4445f20c1e08a
[ "MIT" ]
null
null
null
def showSpeed(func, r, *args): '''Usage: showSpeed(function, runs) You can also pass arguments into <function> like so: showSpeed(function, runs, <other>, <args>, <here> ...) showSpeed() prints the average execution time of <function> over <runs> runs ''' import os, sys, gc from time import perf_counter as pf garbage = gc.isenabled() gc.disable() start = pf() with noPrint(): for _ in range(r): func(*args) end = pf() if garbage: gc.enable() print(f'{formatted((end-start)/r)}') def getSpeed(func, r, *args): '''Usage: getSpeed(function, runs) You can also pass arguments into <function> like so: getSpeed(function, runs, <other>, <args>, <here> ...) getSpeed() returns the average execution time of <function> over <runs> runs, as a float ''' import os, sys, gc from time import perf_counter as pf garbage = gc.isenabled() gc.disable() start = pf() with noPrint(): for _ in range(r): func(*args) end = pf() if garbage: gc.enable() return (end-start)/r
31.865672
92
0.562061
7bd9a84e5c6f84dbd90d1bc72cc33fccf0f2c06c
9,106
py
Python
polygonize.py
yaramohajerani/GL_learning
aa8d644024e48ba3e68398050f259b61d0660a2e
[ "MIT" ]
7
2021-03-04T15:43:21.000Z
2021-07-08T08:42:23.000Z
polygonize.py
yaramohajerani/GL_learning
aa8d644024e48ba3e68398050f259b61d0660a2e
[ "MIT" ]
null
null
null
polygonize.py
yaramohajerani/GL_learning
aa8d644024e48ba3e68398050f259b61d0660a2e
[ "MIT" ]
2
2021-03-11T12:04:42.000Z
2021-04-20T16:33:31.000Z
#!/usr/bin/env python u""" polygonize.py Yara Mohajerani (Last update 09/2020) Read output predictions and convert to shapefile lines """ import os import sys import rasterio import numpy as np import getopt import shapefile from skimage.measure import find_contours from shapely.geometry import Polygon,LineString,Point #-- main function #-- run main program if __name__ == '__main__': main()
32.992754
121
0.647595
7bdb2f5c5a190e7161ceacb56d31dd8753fd3925
4,573
py
Python
test_autofit/graphical/regression/test_linear_regression.py
rhayes777/AutoFit
f5d769755b85a6188ec1736d0d754f27321c2f06
[ "MIT" ]
null
null
null
test_autofit/graphical/regression/test_linear_regression.py
rhayes777/AutoFit
f5d769755b85a6188ec1736d0d754f27321c2f06
[ "MIT" ]
null
null
null
test_autofit/graphical/regression/test_linear_regression.py
rhayes777/AutoFit
f5d769755b85a6188ec1736d0d754f27321c2f06
[ "MIT" ]
null
null
null
import numpy as np import pytest from autofit.graphical import ( EPMeanField, LaplaceOptimiser, EPOptimiser, Factor, ) from autofit.messages import FixedMessage, NormalMessage np.random.seed(1) prior_std = 10. error_std = 1. a = np.array([[-1.3], [0.7]]) b = np.array([-0.5]) n_obs = 100 n_features, n_dims = a.shape x = 5 * np.random.randn(n_obs, n_features) y = x.dot(a) + b + np.random.randn(n_obs, n_dims) def check_model_approx(mean_field, a_, b_, z_, x_, y_): X = np.c_[x, np.ones(len(x))] XTX = X.T.dot(X) + np.eye(3) * (error_std / prior_std)**2 cov = np.linalg.inv(XTX) * error_std**2 cov_a = cov[:2, :] cov_b = cov[2, :] # Analytic results mean_a = cov_a.dot(X.T.dot(y)) mean_b = cov_b.dot(X.T.dot(y)) a_std = cov_a.diagonal()[:, None] ** 0.5 b_std = cov_b[[-1]] ** 0.5 assert mean_field[a_].mean == pytest.approx(mean_a, rel=1e-2) assert mean_field[b_].mean == pytest.approx(mean_b, rel=1e-2) assert mean_field[a_].sigma == pytest.approx(a_std, rel=0.5) assert mean_field[b_].sigma == pytest.approx(b_std, rel=0.5)
26.9
84
0.659086
7bdbfbdb118df696ee04cd30b0904cea6a77354a
1,716
py
Python
src/linear/linear.py
RaulMurillo/cpp-torch
30d0ee38c20f389e4b996d821952a48cccc70789
[ "MIT" ]
null
null
null
src/linear/linear.py
RaulMurillo/cpp-torch
30d0ee38c20f389e4b996d821952a48cccc70789
[ "MIT" ]
null
null
null
src/linear/linear.py
RaulMurillo/cpp-torch
30d0ee38c20f389e4b996d821952a48cccc70789
[ "MIT" ]
null
null
null
import math from torch import nn import torch import torch.nn.functional as F import linear_cpu as linear
29.586207
79
0.666084
7bdf6ec04e7754ae150125e027e057b6d43b24d9
11,907
py
Python
object_files_api/files_api.py
ndlib/mellon-manifest-pipeline
aa90494e73fbc30ce701771ac653d28d533217db
[ "Apache-2.0" ]
1
2021-06-27T15:16:13.000Z
2021-06-27T15:16:13.000Z
object_files_api/files_api.py
ndlib/marble-manifest-pipeline
abc036e4c81a8a5e938373a43153e2492a17cbf8
[ "Apache-2.0" ]
8
2019-11-05T18:58:23.000Z
2021-09-03T14:54:42.000Z
object_files_api/files_api.py
ndlib/mellon-manifest-pipeline
aa90494e73fbc30ce701771ac653d28d533217db
[ "Apache-2.0" ]
null
null
null
""" Files API """ import boto3 import os import io from datetime import datetime, timedelta import json import time from s3_helpers import write_s3_json, read_s3_json, delete_s3_key from api_helpers import json_serial from search_files import crawl_available_files, update_pdf_fields from dynamo_helpers import add_file_to_process_keys, add_file_group_keys, get_iso_date_as_string, add_image_group_keys, add_media_group_keys, add_media_keys, add_image_keys from dynamo_save_functions import save_file_system_record from add_files_to_json_object import change_file_extensions_to_tif from pipelineutilities.dynamo_query_functions import get_all_file_to_process_records_by_storage_system
62.340314
259
0.646342
7be095f1c9c4b3f5f33d92d1c96cc497d62846c5
40,240
py
Python
sampledb/frontend/projects.py
NicolasCARPi/sampledb
d6fd0f4d28d05010d7e0c022fbf2576e25435077
[ "MIT" ]
null
null
null
sampledb/frontend/projects.py
NicolasCARPi/sampledb
d6fd0f4d28d05010d7e0c022fbf2576e25435077
[ "MIT" ]
null
null
null
sampledb/frontend/projects.py
NicolasCARPi/sampledb
d6fd0f4d28d05010d7e0c022fbf2576e25435077
[ "MIT" ]
null
null
null
# coding: utf-8 """ """ import flask import flask_login import json from flask_babel import _ from . import frontend from .. import logic from ..logic.object_permissions import Permissions from ..logic.security_tokens import verify_token from ..logic.languages import get_languages, get_language, get_language_by_lang_code from ..models.languages import Language from .projects_forms import CreateProjectForm, EditProjectForm, LeaveProjectForm, InviteUserToProjectForm, InviteGroupToProjectForm, AddSubprojectForm, RemoveSubprojectForm, DeleteProjectForm, RemoveProjectMemberForm, RemoveProjectGroupForm, ObjectLinkForm from .permission_forms import PermissionsForm from .utils import check_current_user_is_not_readonly from ..logic.utils import get_translated_text
56.437588
256
0.675149
7be58215b629ccdaed1b12b4ee8ac016d5bf374b
1,474
py
Python
setup.py
caalle/caaalle
3653155338fefde73579508ee83905a8ad8e3924
[ "Apache-2.0" ]
null
null
null
setup.py
caalle/caaalle
3653155338fefde73579508ee83905a8ad8e3924
[ "Apache-2.0" ]
4
2021-04-26T18:42:38.000Z
2021-04-26T18:42:41.000Z
setup.py
caalle/caaalle
3653155338fefde73579508ee83905a8ad8e3924
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import codecs import os import re from setuptools import setup with open('README.md', 'r') as f: readme = f.read() here = os.path.abspath(os.path.dirname(__file__)) _title = 'caaalle' _description = 'caaalle' _author = 'Carl Larsson' _author_email = 'example@gmail.com' _license = 'Apache 2.0' _url = 'https://github.com/caalle/caaalle' setup( name=_title, description=_description, long_description=readme, long_description_content_type='text/markdown', version=find_version("caaalle", "__init__.py"), author=_author, author_email=_author_email, url=_url, packages=['caaalle'], include_package_data=True, python_requires=">=3.5.*", install_requires=[], license=_license, zip_safe=False, classifiers=[ 'Intended Audience :: Developers', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.5' ], keywords='caaalle' )
26.321429
68
0.643148
7be827f0693117abffb3e3ef853dcd8e6d5807a0
10,522
py
Python
kevlar/tests/test_novel.py
johnsmith2077/kevlar
3ed06dae62479e89ccd200391728c416d4df8052
[ "MIT" ]
24
2016-12-07T07:59:09.000Z
2019-03-11T02:05:36.000Z
kevlar/tests/test_novel.py
johnsmith2077/kevlar
3ed06dae62479e89ccd200391728c416d4df8052
[ "MIT" ]
325
2016-12-07T07:37:17.000Z
2019-03-12T19:01:40.000Z
kevlar/tests/test_novel.py
standage/kevlar
622d1869266550422e91a60119ddc7261eea434a
[ "MIT" ]
8
2017-08-17T01:37:39.000Z
2019-03-01T16:17:44.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # ----------------------------------------------------------------------------- # Copyright (c) 2016 The Regents of the University of California # # This file is part of kevlar (http://github.com/dib-lab/kevlar) and is # licensed under the MIT license: see LICENSE. # ----------------------------------------------------------------------------- import filecmp import glob import json import pytest import re from tempfile import NamedTemporaryFile, mkdtemp import screed from shutil import rmtree import sys import kevlar from kevlar.tests import data_file, data_glob from khmer import Counttable def test_novel_two_cases(capsys): cases = kevlar.tests.data_glob('trio1/case6*.fq') controls = kevlar.tests.data_glob('trio1/ctrl[5,6].fq') with NamedTemporaryFile(suffix='.ct') as case1ct, \ NamedTemporaryFile(suffix='.ct') as case2ct, \ NamedTemporaryFile(suffix='.ct') as ctrl1ct, \ NamedTemporaryFile(suffix='.ct') as ctrl2ct: counttables = [case1ct, case2ct, ctrl1ct, ctrl2ct] seqfiles = cases + controls for ct, seqfile in zip(counttables, seqfiles): arglist = ['count', '--ksize', '19', '--memory', '1e7', ct.name, seqfile] print(arglist) args = kevlar.cli.parser().parse_args(arglist) kevlar.count.main(args) arglist = ['novel', '--ksize', '19', '--memory', '1e7', '--ctrl-max', '1', '--case-min', '7', '--case', cases[0], '--case', cases[1], '--case-counts', case1ct.name, case2ct.name, '--control-counts', ctrl1ct.name, ctrl2ct.name] args = kevlar.cli.parser().parse_args(arglist) kevlar.novel.main(args) out, err = capsys.readouterr() assert out.strip() != '' for line in out.split('\n'): if not line.endswith('#') or line.startswith('#mateseq'): continue abundmatch = re.search(r'(\d+) (\d+) (\d+) (\d+)#$', line) assert abundmatch, line case1 = int(abundmatch.group(1)) case2 = int(abundmatch.group(2)) ctl1 = int(abundmatch.group(3)) ctl2 = int(abundmatch.group(4)) assert case1 >= 7 and case2 >= 7 assert ctl1 <= 1 and ctl2 <= 1
37.180212
79
0.585535
7be972ac4586def48187bfcf50e95c9e16542c4d
361
py
Python
Python Advanced Retake Exam - 16 Dec 2020/Problem 3- Magic triangle - Pascal.py
DiyanKalaydzhiev23/Advanced---Python
ed2c60bb887c49e5a87624719633e2b8432f6f6b
[ "MIT" ]
null
null
null
Python Advanced Retake Exam - 16 Dec 2020/Problem 3- Magic triangle - Pascal.py
DiyanKalaydzhiev23/Advanced---Python
ed2c60bb887c49e5a87624719633e2b8432f6f6b
[ "MIT" ]
null
null
null
Python Advanced Retake Exam - 16 Dec 2020/Problem 3- Magic triangle - Pascal.py
DiyanKalaydzhiev23/Advanced---Python
ed2c60bb887c49e5a87624719633e2b8432f6f6b
[ "MIT" ]
null
null
null
get_magic_triangle(5)
21.235294
46
0.509695
7bea7db6a9ed79dea66853c2fd9ed8df8241cc8b
1,353
py
Python
bot.py
egor5q/pvp-combat
42d0f9df14e35c408deb7a360a9f7544ceae7dd7
[ "MIT" ]
null
null
null
bot.py
egor5q/pvp-combat
42d0f9df14e35c408deb7a360a9f7544ceae7dd7
[ "MIT" ]
null
null
null
bot.py
egor5q/pvp-combat
42d0f9df14e35c408deb7a360a9f7544ceae7dd7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import os import telebot import time import random import threading from emoji import emojize from telebot import types from pymongo import MongoClient import traceback token = os.environ['TELEGRAM_TOKEN'] bot = telebot.TeleBot(token) #client=MongoClient(os.environ['database']) #db=client. #users=db.users print('7777') bot.polling(none_stop=True,timeout=600)
22.932203
115
0.625277
7beab3658ca8052cfa8c2cfea3b8cd3bd3c9a157
262
py
Python
py4mc/__init__.py
capslock321/py4mc
aad43d33f2ab1d264f0b86a84c80823309677994
[ "MIT" ]
null
null
null
py4mc/__init__.py
capslock321/py4mc
aad43d33f2ab1d264f0b86a84c80823309677994
[ "MIT" ]
null
null
null
py4mc/__init__.py
capslock321/py4mc
aad43d33f2ab1d264f0b86a84c80823309677994
[ "MIT" ]
null
null
null
from .api import MojangApi from .dispatcher import Dispatch from .exceptions import ( ApiException, ResourceNotFound, InternalServerException, UserNotFound, ) __version__ = "0.0.1a" __license__ = "MIT" __author__ = "capslock321"
17.466667
33
0.698473
7bed1d2243d33ac3902ca09a4b56c1ae1c77465e
553
py
Python
server/players/query.py
kfields/django-arcade
24df3d43dde2d69df333529d8790507fb1f5fcf1
[ "MIT" ]
1
2021-10-03T05:44:32.000Z
2021-10-03T05:44:32.000Z
server/players/query.py
kfields/django-arcade
24df3d43dde2d69df333529d8790507fb1f5fcf1
[ "MIT" ]
null
null
null
server/players/query.py
kfields/django-arcade
24df3d43dde2d69df333529d8790507fb1f5fcf1
[ "MIT" ]
null
null
null
from loguru import logger from channels.db import database_sync_to_async from schema.base import query from .models import Player from .schemata import PlayerConnection
24.043478
74
0.755877
7bee6b98a8502317f53e2986edd1dc16f78c2ac7
50,039
py
Python
simleague/simleague.py
Kuro-Rui/flare-cogs
f739e3a4a8c65bf0e10945d242ba0b82f96c6d3d
[ "MIT" ]
38
2021-03-07T17:13:10.000Z
2022-02-28T19:50:00.000Z
simleague/simleague.py
Kuro-Rui/flare-cogs
f739e3a4a8c65bf0e10945d242ba0b82f96c6d3d
[ "MIT" ]
44
2021-03-12T19:13:32.000Z
2022-03-18T10:20:52.000Z
simleague/simleague.py
Kuro-Rui/flare-cogs
f739e3a4a8c65bf0e10945d242ba0b82f96c6d3d
[ "MIT" ]
33
2021-03-08T18:59:59.000Z
2022-03-23T10:57:46.000Z
import asyncio import logging import random import time from abc import ABC from typing import Literal, Optional import aiohttp import discord from redbot.core import Config, bank, checks, commands from redbot.core.utils.chat_formatting import box from redbot.core.utils.menus import DEFAULT_CONTROLS, menu from tabulate import tabulate from .core import SimHelper from .functions import WEATHER from .simset import SimsetMixin from .stats import StatsMixin from .teamset import TeamsetMixin # THANKS TO https://code.sololearn.com/ci42wd5h0UQX/#py FOR THE SIMULATION AND FIXATOR/AIKATERNA/STEVY FOR THE PILLOW HELP/LEVELER
43.85539
142
0.428846
7befce5f0d88c105c0447661c3338248d03f3ae9
2,118
py
Python
7_neural_networks/4_DeepLearning2.py
edrmonteiro/DataSciencePython
0a35fb085bc0b98b33e083d0e1b113a04caa3aac
[ "MIT" ]
null
null
null
7_neural_networks/4_DeepLearning2.py
edrmonteiro/DataSciencePython
0a35fb085bc0b98b33e083d0e1b113a04caa3aac
[ "MIT" ]
null
null
null
7_neural_networks/4_DeepLearning2.py
edrmonteiro/DataSciencePython
0a35fb085bc0b98b33e083d0e1b113a04caa3aac
[ "MIT" ]
null
null
null
""" Deep Learning """ import pandas as pd from keras.models import Sequential from keras.layers import Dense from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from sklearn.preprocessing import LabelEncoder, OneHotEncoder from sklearn.preprocessing import StandardScaler from sklearn.compose import make_column_transformer import os path = os.path.abspath(os.getcwd()) + r"/0_dataset/" dataset = pd.read_csv(path + "Credit2.csv", sep=";") dataset #separao dos variveis, ignoro primeira pois no tem valor semntico X = dataset.iloc[:,1:10].values y = dataset.iloc[:, 10].values #temos um arry e no mais um data frame X #label encoder coluna checking_status #atribui valores de zero a 3 labelencoder = LabelEncoder() X[:,0] = labelencoder.fit_transform(X[:,0]) X #one hot encoder coluna credit_history #deve adicionar 5 colunas onehotencoder = make_column_transformer((OneHotEncoder(categories='auto', sparse=False), [1]), remainder="passthrough") X = onehotencoder.fit_transform(X) X #Excluimos a varivel para evitar a dummy variable trap X = X:,1: X #Laber encoder com a classe labelencoder_Y = LabelEncoder() y = labelencoder_Y.fit_transform(y) y #separao em treino e teste X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) print(len(X_train),len(X_test),len(y_train),len(y_test)) #Feature Scalling, Padronizao z-score sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) X_test classifier = Sequential() classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 12)) classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu')) classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid')) classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) classifier.fit(X_train, y_train, batch_size = 10, epochs = 100) y_pred = classifier.predict(X_test) y_pred = (y_pred > 0.5) y_pred #matriz de confuso cm = confusion_matrix(y_test, y_pred) cm
29.830986
119
0.767705
7bf26d67b6d552692974b4958df2a46110802ae6
1,529
py
Python
src/python_settings/python_settings.py
tomatze/opendihu-webapp
0f08bdeb82348a1e30fa44db1ac3b9b1606f1da1
[ "MIT" ]
17
2018-11-25T19:29:34.000Z
2021-09-20T04:46:22.000Z
src/python_settings/python_settings.py
tomatze/opendihu-webapp
0f08bdeb82348a1e30fa44db1ac3b9b1606f1da1
[ "MIT" ]
1
2020-11-12T15:15:58.000Z
2020-12-29T15:29:24.000Z
src/python_settings/python_settings.py
tomatze/opendihu-webapp
0f08bdeb82348a1e30fa44db1ac3b9b1606f1da1
[ "MIT" ]
4
2018-10-17T12:18:10.000Z
2021-05-28T13:24:20.000Z
import re # import all settings-modules here, so we can only import this module to get them all from python_settings.settings_activatable import * from python_settings.settings_child_placeholder import * from python_settings.settings_choice import * from python_settings.settings_comment import * from python_settings.settings_conditional import * from python_settings.settings_container import * from python_settings.settings_dict_entry import * from python_settings.settings_empty_line import * from python_settings.settings_list_entry import * # this holds a complete settings.py by parsing its config-dict and storing the rest of the file in prefix and postfix
39.205128
120
0.695226
7bf3d0583faad7a302993fc30d577771cb1e654a
460
py
Python
titan/abstracts/decorator.py
DeSireFire/titans
9194950694084a7cbc6434dfec0ecb2e755f0cdf
[ "Apache-2.0" ]
17
2020-03-14T01:08:07.000Z
2020-12-26T08:20:14.000Z
titan/abstracts/decorator.py
DeSireFire/titans
9194950694084a7cbc6434dfec0ecb2e755f0cdf
[ "Apache-2.0" ]
4
2020-12-05T08:50:55.000Z
2022-02-27T06:48:21.000Z
titan/abstracts/decorator.py
DeSireFire/titans
9194950694084a7cbc6434dfec0ecb2e755f0cdf
[ "Apache-2.0" ]
1
2020-05-24T06:57:03.000Z
2020-05-24T06:57:03.000Z
# -*- coding: utf-8 -*- import timeit from functools import wraps from titan.manages.global_manager import GlobalManager
25.555556
70
0.630435
7bf5036dc7b11f3015385fa7ebed58f2c40e9c71
262
py
Python
src/cs2mako/patterns.py
eventbrite/cs2mako
163affcc764a574b4af543c3520b7f345992973a
[ "MIT" ]
null
null
null
src/cs2mako/patterns.py
eventbrite/cs2mako
163affcc764a574b4af543c3520b7f345992973a
[ "MIT" ]
null
null
null
src/cs2mako/patterns.py
eventbrite/cs2mako
163affcc764a574b4af543c3520b7f345992973a
[ "MIT" ]
2
2015-04-03T05:35:36.000Z
2021-09-08T11:48:27.000Z
# Copyright (c) 2014 Eventbrite, Inc. All rights reserved. # See "LICENSE" file for license. import re open_r_str = r'\<\?cs\s*([a-zA-Z]+)([:]|\s)' close_r_str = r'\<\?cs\s*/([a-zA-Z]+)\s*\?\>' open_r = re.compile(open_r_str) close_r = re.compile(close_r_str)
26.2
58
0.637405
7bf5401a73cd65b2b3dab4a303b9fc867d22f877
3,142
py
Python
presta_connect.py
subteno-it/presta_connect
7cc8f2f915b28ada40a03573651a3558e6503004
[ "MIT" ]
null
null
null
presta_connect.py
subteno-it/presta_connect
7cc8f2f915b28ada40a03573651a3558e6503004
[ "MIT" ]
null
null
null
presta_connect.py
subteno-it/presta_connect
7cc8f2f915b28ada40a03573651a3558e6503004
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2019 Subteno IT # License MIT License import requests import xmltodict import string import random import io
34.911111
131
0.579885
7bf8224c1d14572f51a3d9141d24b9fbd1be25c1
2,884
py
Python
blender/SCAFFOLDER_settings.py
nodtem66/Scaffolder
c2b89e981192f61b028e1e8780a01894b1e34494
[ "MIT" ]
8
2019-12-24T17:28:03.000Z
2022-03-23T02:49:28.000Z
blender/SCAFFOLDER_settings.py
nodtem66/Scaffolder
c2b89e981192f61b028e1e8780a01894b1e34494
[ "MIT" ]
9
2019-12-27T18:10:05.000Z
2021-08-04T15:18:47.000Z
blender/SCAFFOLDER_settings.py
nodtem66/Scaffolder
c2b89e981192f61b028e1e8780a01894b1e34494
[ "MIT" ]
null
null
null
import bpy from bpy.types import Panel from bpy.props import * import math default_surface_names = [ ("bcc", "bcc", "", 1), ("schwarzp", "schwarzp", "", 2), ("schwarzd", "schwarzd", "", 3), ("gyroid", "gyroid", "", 4), ("double-p", "double-p", "", 5), ("double-d", "double-d", "", 6), ("double-gyroid", "double-gyroid", "", 7), ("lidinoid", "lidinoid", "", 8), ("schoen_iwp", "schoen_iwp", "", 9), ("neovius", "neovius", "", 10), ("tubular_g_ab", "tubular_g_ab", "", 11), ("tubular_g_c", "tubular_g_c", "", 12) ] default_direction = [ ("X", "X", "", 0), ("Y", "Y", "", 1), ("Z", "Z", "", 2), ("All", "All", "", 3) ]
40.055556
106
0.645631
7bf8ba88150b609b31fa7978009e2b6cda410d96
1,702
py
Python
examples/run_burgers.py
s274001/PINA
beb33f0da20581338c46f0c525775904b35a1130
[ "MIT" ]
4
2022-02-16T14:52:55.000Z
2022-03-17T13:31:42.000Z
examples/run_burgers.py
s274001/PINA
beb33f0da20581338c46f0c525775904b35a1130
[ "MIT" ]
3
2022-02-17T08:57:42.000Z
2022-03-28T08:41:53.000Z
examples/run_burgers.py
s274001/PINA
beb33f0da20581338c46f0c525775904b35a1130
[ "MIT" ]
7
2022-02-13T14:35:00.000Z
2022-03-28T08:51:11.000Z
import argparse import torch from torch.nn import Softplus from pina import PINN, Plotter from pina.model import FeedForward from problems.burgers import Burgers1D if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run PINA") group = parser.add_mutually_exclusive_group(required=True) group.add_argument("-s", "-save", action="store_true") group.add_argument("-l", "-load", action="store_true") parser.add_argument("id_run", help="number of run", type=int) parser.add_argument("features", help="extra features", type=int) args = parser.parse_args() feat = [myFeature(0)] if args.features else [] burgers_problem = Burgers1D() model = FeedForward( layers=[30, 20, 10, 5], output_variables=burgers_problem.output_variables, input_variables=burgers_problem.input_variables, func=Softplus, extra_features=feat, ) pinn = PINN( burgers_problem, model, lr=0.006, error_norm='mse', regularizer=0, lr_accelerate=None) if args.s: pinn.span_pts(2000, 'latin', ['D']) pinn.span_pts(150, 'random', ['gamma1', 'gamma2', 't0']) pinn.train(5000, 100) pinn.save_state('pina.burger.{}.{}'.format(args.id_run, args.features)) else: pinn.load_state('pina.burger.{}.{}'.format(args.id_run, args.features)) plotter = Plotter() plotter.plot(pinn)
28.366667
79
0.636898
7bf92b8ac984ff1d4af8bc11028ce720f6dccb7d
2,072
py
Python
questions/cousins-in-binary-tree/Solution.py
marcus-aurelianus/leetcode-solutions
8b43e72fe1f51c84abc3e89b181ca51f09dc7ca6
[ "MIT" ]
141
2017-12-12T21:45:53.000Z
2022-03-25T07:03:39.000Z
questions/cousins-in-binary-tree/Solution.py
marcus-aurelianus/leetcode-solutions
8b43e72fe1f51c84abc3e89b181ca51f09dc7ca6
[ "MIT" ]
32
2015-10-05T14:09:52.000Z
2021-05-30T10:28:41.000Z
questions/cousins-in-binary-tree/Solution.py
marcus-aurelianus/leetcode-solutions
8b43e72fe1f51c84abc3e89b181ca51f09dc7ca6
[ "MIT" ]
56
2015-09-30T05:23:28.000Z
2022-03-08T07:57:11.000Z
""" In a binary tree, the root node is at depth 0, and children of each depth k node are at depth k+1. Two nodes of a binary tree are cousins if they have the same depth, but have different parents. We are given the root of a binary tree with unique values, and the values xand yof two different nodes in the tree. Returntrueif and only if the nodes corresponding to the values x and y are cousins. Example 1: Input: root = [1,2,3,4], x = 4, y = 3 Output: false Example 2: Input: root = [1,2,3,null,4,null,5], x = 5, y = 4 Output: true Example 3: Input: root = [1,2,3,null,4], x = 2, y = 3 Output: false Constraints: The number of nodes in the tree will be between 2 and 100. Each node has a unique integer value from 1 to 100. """ # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right
28
117
0.531853
7bfad01ae563f31b06389bcaffa8bf4fb786658a
456
py
Python
utility_ai/models/action.py
TomasMaciulis/Utility-AI-API
29144e4b5dc038854335bd11ed3b072ba1231ebc
[ "MIT" ]
null
null
null
utility_ai/models/action.py
TomasMaciulis/Utility-AI-API
29144e4b5dc038854335bd11ed3b072ba1231ebc
[ "MIT" ]
null
null
null
utility_ai/models/action.py
TomasMaciulis/Utility-AI-API
29144e4b5dc038854335bd11ed3b072ba1231ebc
[ "MIT" ]
null
null
null
from .configuration_entry import ConfigurationEntry from utility_ai.traits.utility_score_trait import UtilityScoreTrait
30.4
67
0.699561
7bfb0d85a9d2727156196fca82066ec05a53a3a0
1,119
py
Python
widdy/styles.py
ubunatic/widdy
1e5923d90010f27e352ad3eebb670c09752dd86b
[ "MIT" ]
2
2018-05-30T17:23:46.000Z
2019-08-29T20:32:27.000Z
widdy/styles.py
ubunatic/widdy
1e5923d90010f27e352ad3eebb670c09752dd86b
[ "MIT" ]
null
null
null
widdy/styles.py
ubunatic/widdy
1e5923d90010f27e352ad3eebb670c09752dd86b
[ "MIT" ]
null
null
null
from collections import namedtuple Style = namedtuple('Style', 'name fg bg') default_pal = { Style('inv-black', 'black', 'light gray'), Style('green-bold', 'dark green,bold', ''), Style('red-bold', 'dark red,bold', ''), Style('blue-bold', 'dark blue,bold', ''), Style('yellow-bold', 'yellow,bold', ''), Style('magenta-bold', 'dark magenta,bold', ''), Style('cyan-bold', 'dark cyan,bold', ''), Style('green', 'dark green', ''), Style('red', 'dark red', ''), Style('blue', 'dark blue', ''), Style('cyan', 'dark cyan', ''), Style('magenta', 'dark magenta', ''), Style('yellow', 'yellow', ''), } INV_BLACK = 'inv-black' RED_BOLD = 'red-bold' GREEN_BOLD = 'green-bold' BLUE_BOLD = 'blue-bold' MAGENTA_BOLD = 'magenta-bold' CYAN_BOLD = 'cyan-bold' YELLOW_BOLD = 'yellow-bold' BLUE = 'blue' GREEN = 'green' RED = 'red' MAGENTA = 'magenta' CYAN = 'cyan' YELLOW = 'yellow'
29.447368
61
0.489723
7bfb8c398b66afff9f9537190851684dffe009d8
189
py
Python
basics.py
c25l/longmont_data_science_tensorflow
78302ab5b76a1e4632deda164615b4861c21f534
[ "MIT" ]
null
null
null
basics.py
c25l/longmont_data_science_tensorflow
78302ab5b76a1e4632deda164615b4861c21f534
[ "MIT" ]
null
null
null
basics.py
c25l/longmont_data_science_tensorflow
78302ab5b76a1e4632deda164615b4861c21f534
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import tensorflow as tf x=tf.Variable(0.5) y = x*x sess = tf.Session() sess.run(tf.global_variables_initializer()) print("x =",sess.run(x)) print("y =",sess.run(y))
18.9
43
0.687831
7bfc0a90c6e361e602b8b4fb5d3bb23952ab70e8
3,468
py
Python
nist_tools/combine_images.py
Nepherhotep/roboarchive-broom
a60c6038a5506c19edc6b74dbb47de525b246d2a
[ "MIT" ]
null
null
null
nist_tools/combine_images.py
Nepherhotep/roboarchive-broom
a60c6038a5506c19edc6b74dbb47de525b246d2a
[ "MIT" ]
null
null
null
nist_tools/combine_images.py
Nepherhotep/roboarchive-broom
a60c6038a5506c19edc6b74dbb47de525b246d2a
[ "MIT" ]
null
null
null
import os import random import cv2 import numpy as np from gen_textures import add_noise, texture, blank_image from nist_tools.extract_nist_text import BaseMain, parse_args, display if __name__ == '__main__': random.seed(123) args = parse_args() CombineMain().main(args) print('done')
31.527273
94
0.625144
7bfe07fff56233f17c17498061812fd747efa684
1,205
py
Python
auto_funcs/look_for_date.py
rhysrushton/testauto
9c32f40640f58703a0d063afbb647855fb680a61
[ "MIT" ]
null
null
null
auto_funcs/look_for_date.py
rhysrushton/testauto
9c32f40640f58703a0d063afbb647855fb680a61
[ "MIT" ]
null
null
null
auto_funcs/look_for_date.py
rhysrushton/testauto
9c32f40640f58703a0d063afbb647855fb680a61
[ "MIT" ]
null
null
null
# this function looks for either the encounter date or the patient's date of birth # so that we can avoid duplicate encounters. import time #this will select element in div with relement div.
30.125
99
0.637344
7bfefe9a585dfb51817f970316b20305a606310a
1,047
py
Python
app/api/apis/token_api.py
boceckts/ideahub
fbd48c53a5aaf7252a5461d0c0d2fe9d4eef9aed
[ "BSD-3-Clause" ]
null
null
null
app/api/apis/token_api.py
boceckts/ideahub
fbd48c53a5aaf7252a5461d0c0d2fe9d4eef9aed
[ "BSD-3-Clause" ]
null
null
null
app/api/apis/token_api.py
boceckts/ideahub
fbd48c53a5aaf7252a5461d0c0d2fe9d4eef9aed
[ "BSD-3-Clause" ]
null
null
null
from flask import g from flask_restplus import Resource, marshal from app import db from app.api.namespaces.token_namespace import token_ns, token from app.api.security.authentication import basic_auth, token_auth
32.71875
67
0.700096
7bff9b4a9c838befc20c601a3d326698664e8b5d
1,025
py
Python
quickSort.py
pflun/learningAlgorithms
3101e989488dfc8a56f1bf256a1c03a837fe7d97
[ "MIT" ]
null
null
null
quickSort.py
pflun/learningAlgorithms
3101e989488dfc8a56f1bf256a1c03a837fe7d97
[ "MIT" ]
null
null
null
quickSort.py
pflun/learningAlgorithms
3101e989488dfc8a56f1bf256a1c03a837fe7d97
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # low --> Starting index, high --> Ending index test = Solution() print test.quickSort([10, 80, 30, 90, 40, 50, 70], 0, 6)
29.285714
66
0.520976
d0003ec058228de9777e23294e4fbffc93d7d212
4,816
py
Python
docker_multiarch/tool.py
CynthiaProtector/helo
ad9e22363a92389b3fa519ecae9061c6ead28b05
[ "Apache-2.0" ]
399
2017-05-30T05:12:48.000Z
2022-01-29T05:53:08.000Z
docker_multiarch/tool.py
greenpea0104/incubator-mxnet
fc9e70bf2d349ad4c6cb65ff3f0958e23a7410bf
[ "Apache-2.0" ]
58
2017-05-30T23:25:32.000Z
2019-11-18T09:30:54.000Z
docker_multiarch/tool.py
greenpea0104/incubator-mxnet
fc9e70bf2d349ad4c6cb65ff3f0958e23a7410bf
[ "Apache-2.0" ]
107
2017-05-30T05:53:22.000Z
2021-06-24T02:43:31.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Multi arch dockerized build tool. """ __author__ = 'Pedro Larroy' __version__ = '0.1' import os import sys import subprocess import logging import argparse from subprocess import check_call import glob import re def get_arches(): """Get a list of architectures given our dockerfiles""" dockerfiles = glob.glob("Dockerfile.build.*") dockerfiles = list(filter(lambda x: x[-1] != '~', dockerfiles)) arches = list(map(lambda x: re.sub(r"Dockerfile.build.(.*)", r"\1", x), dockerfiles)) arches.sort() return arches def build(arch): """Build the given architecture in the container""" assert arch in get_arches(), "No such architecture {0}, Dockerfile.build.{0} not found".format(arch) logging.info("Building for target platform {0}".format(arch)) check_call(["docker", "build", "-f", get_dockerfile(arch), "-t", get_docker_tag(arch), "."]) def collect_artifacts(arch): """Collects the artifacts built inside the docker container to the local fs""" logging.info("Collect artifacts from build in {0}".format(artifact_path(arch))) mkdir_p("build/{}".format(arch)) # Mount artifact_path on /$arch inside the container and copy the build output so we can access # locally from the host fs check_call(["docker","run", "-v", "{}:/{}".format(artifact_path(arch), arch), get_docker_tag(arch), "bash", "-c", "cp -r /work/build/* /{}".format(arch)]) if __name__ == '__main__': sys.exit(main())
30.871795
108
0.65054
d001b6743e397b1ed7c3a5a49549452902031c2c
150
py
Python
integrate/test/test_samples/sample_norun.py
Requirement-Engineers/default-coding-Bo2
f51e4e17af4fff077aebe2f3611c363da9ed9871
[ "Unlicense" ]
null
null
null
integrate/test/test_samples/sample_norun.py
Requirement-Engineers/default-coding-Bo2
f51e4e17af4fff077aebe2f3611c363da9ed9871
[ "Unlicense" ]
null
null
null
integrate/test/test_samples/sample_norun.py
Requirement-Engineers/default-coding-Bo2
f51e4e17af4fff077aebe2f3611c363da9ed9871
[ "Unlicense" ]
null
null
null
import json if __name__ == '__main__': test_norun()
11.538462
27
0.593333
d003fb1f6605d874e72c3a666281e62431d7b2a8
3,283
py
Python
02module/module_containers.py
mayi140611/szzy_pytorch
81978d75513bc9a1b85aec05023d14fa6f748674
[ "Apache-2.0" ]
null
null
null
02module/module_containers.py
mayi140611/szzy_pytorch
81978d75513bc9a1b85aec05023d14fa6f748674
[ "Apache-2.0" ]
null
null
null
02module/module_containers.py
mayi140611/szzy_pytorch
81978d75513bc9a1b85aec05023d14fa6f748674
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ # @file name : module_containers.py # @author : tingsongyu # @date : 2019-09-20 10:08:00 # @brief : Sequential, ModuleList, ModuleDict """ import torch import torchvision import torch.nn as nn from collections import OrderedDict # ============================ Sequential # net = LeNetSequential(classes=2) # net = LeNetSequentialOrderDict(classes=2) # # fake_img = torch.randn((4, 3, 32, 32), dtype=torch.float32) # # output = net(fake_img) # # print(net) # print(output) # ============================ ModuleList # net = ModuleList() # # print(net) # # fake_data = torch.ones((10, 10)) # # output = net(fake_data) # # print(output) # ============================ ModuleDict net = ModuleDict() fake_img = torch.randn((4, 10, 32, 32)) output = net(fake_img, 'conv', 'relu') print(output) # 4 AlexNet alexnet = torchvision.models.AlexNet()
22.486301
76
0.540664
d00408e74248e82eceb28ea83155d9b67a8bad9f
2,124
py
Python
tests/test_sample_images.py
olavosamp/semiauto-video-annotation
b1a46f9c0ad3bdcedab76b4cd730747ee2afd2fd
[ "MIT" ]
null
null
null
tests/test_sample_images.py
olavosamp/semiauto-video-annotation
b1a46f9c0ad3bdcedab76b4cd730747ee2afd2fd
[ "MIT" ]
20
2019-07-15T21:49:29.000Z
2020-01-09T14:35:03.000Z
tests/test_sample_images.py
olavosamp/semiauto-video-annotation
b1a46f9c0ad3bdcedab76b4cd730747ee2afd2fd
[ "MIT" ]
null
null
null
import pytest import shutil as sh import pandas as pd from pathlib import Path from glob import glob import libs.dirs as dirs from libs.iteration_manager import SampleImages from libs.utils import copy_files, replace_symbols
34.819672
91
0.677966
d0056587271ff8ce0d2628ab99ab1c7bc8e2f7e9
558
py
Python
data/Carp.py
shebang-sh/npb-ouenka-bot
6fc6f7c1717632c3845496c309560233a9c73d8e
[ "MIT" ]
null
null
null
data/Carp.py
shebang-sh/npb-ouenka-bot
6fc6f7c1717632c3845496c309560233a9c73d8e
[ "MIT" ]
14
2022-03-29T09:07:31.000Z
2022-03-30T02:37:07.000Z
data/Carp.py
shebang-sh/npb-ouenka-bot
6fc6f7c1717632c3845496c309560233a9c73d8e
[ "MIT" ]
null
null
null
data={ "":" ", "":" ", "":" ", "":" SHOW TIME!", "":" ", "":" \n ", "":" ", "":"! \n ", "":" ", "":" ", "":" ", }
42.923077
77
0.691756
d0057db4b4f167cbdeebfbc062e049713a913fcb
42
py
Python
source/constants.py
sideround/predict-revenue-new-releases
b6b597cfed328d6b7981917477ceb6f0630aee49
[ "MIT" ]
null
null
null
source/constants.py
sideround/predict-revenue-new-releases
b6b597cfed328d6b7981917477ceb6f0630aee49
[ "MIT" ]
11
2020-05-21T17:52:04.000Z
2020-06-08T03:33:28.000Z
source/constants.py
sideround/predict-revenue-new-releases
b6b597cfed328d6b7981917477ceb6f0630aee49
[ "MIT" ]
2
2020-06-02T13:14:16.000Z
2020-06-11T17:46:05.000Z
BASE_URL = 'https://api.themoviedb.org/3'
21
41
0.714286
d00676794b322b39517d8082c8b83c61f4836359
284
py
Python
Unit 2/2.16/2.16.5 Black and White Squares.py
shashwat73/cse
60e49307e57105cf9916c7329f53f891c5e81fdb
[ "MIT" ]
1
2021-04-08T14:02:49.000Z
2021-04-08T14:02:49.000Z
Unit 2/2.16/2.16.5 Black and White Squares.py
shashwat73/cse
60e49307e57105cf9916c7329f53f891c5e81fdb
[ "MIT" ]
null
null
null
Unit 2/2.16/2.16.5 Black and White Squares.py
shashwat73/cse
60e49307e57105cf9916c7329f53f891c5e81fdb
[ "MIT" ]
null
null
null
speed(0) penup() setposition(-100, 0) pendown() for i in range (6): pendown() make_square(i) penup() forward(35)
14.947368
23
0.503521
d0075df444476cd69e92bd3d5f61f5eff5a35b08
771
py
Python
Q1/read.py
arpanmangal/Regression
06969286d7db65a537e89ac37905310592542ca9
[ "MIT" ]
null
null
null
Q1/read.py
arpanmangal/Regression
06969286d7db65a537e89ac37905310592542ca9
[ "MIT" ]
null
null
null
Q1/read.py
arpanmangal/Regression
06969286d7db65a537e89ac37905310592542ca9
[ "MIT" ]
null
null
null
""" Module for reading data from 'linearX.csv' and 'linearY.csv' """ import numpy as np def loadData (x_file="ass1_data/linearX.csv", y_file="ass1_data/linearY.csv"): """ Loads the X, Y matrices. Splits into training, validation and test sets """ X = np.genfromtxt(x_file) Y = np.genfromtxt(y_file) Z = [X, Y] Z = np.c_[X.reshape(len(X), -1), Y.reshape(len(Y), -1)] np.random.shuffle(Z) # Partition the data into three sets size = len(Z) training_size = int(0.8 * size) validation_size = int(0.1 * size) test_size = int(0.1 * size) training_Z = Z[0:training_size] validation_Z = Z[training_size:training_size+validation_size] test_Z = Z[training_size+validation_size:] return (Z[:,0], Z[:,1])
25.7
78
0.639429
d00814276e589d5ea8bb86b5cdc709673c74e2be
331
py
Python
apps/experiments/forms.py
Intellia-SME/OptiPLANT
1d40b62f00b3fff940499fa27d0c2d59e7e6dd4c
[ "Apache-2.0" ]
1
2022-01-26T18:07:22.000Z
2022-01-26T18:07:22.000Z
apps/experiments/forms.py
Intellia-SME/OptiPLANT
1d40b62f00b3fff940499fa27d0c2d59e7e6dd4c
[ "Apache-2.0" ]
null
null
null
apps/experiments/forms.py
Intellia-SME/OptiPLANT
1d40b62f00b3fff940499fa27d0c2d59e7e6dd4c
[ "Apache-2.0" ]
1
2022-01-26T18:07:26.000Z
2022-01-26T18:07:26.000Z
from django import forms from .models import Experiment
23.642857
54
0.679758