hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
11 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
251
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
251
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
251
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.05M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.04M
alphanum_fraction
float64
0
1
47af52c1759d6ca7b81f36810e1191b6fa34e7eb
11,920
py
Python
non_local.py
yuxia201121/ADCTself-attention
77d32034854f64a7aa24d45ae2c4e18f7616cf48
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
non_local.py
yuxia201121/ADCTself-attention
77d32034854f64a7aa24d45ae2c4e18f7616cf48
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
non_local.py
yuxia201121/ADCTself-attention
77d32034854f64a7aa24d45ae2c4e18f7616cf48
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import tensorflow as tf import numpy as np import ops
40.27027
127
0.560906
47b3262789a56b500e24bd5503fa34b4ab5f6bca
1,031
py
Python
evaluation/eval_frames.py
suleymanaslan/generative-rainbow
9f8daac5e06565ef099c0913186f5a1d801ca52c
[ "MIT" ]
null
null
null
evaluation/eval_frames.py
suleymanaslan/generative-rainbow
9f8daac5e06565ef099c0913186f5a1d801ca52c
[ "MIT" ]
null
null
null
evaluation/eval_frames.py
suleymanaslan/generative-rainbow
9f8daac5e06565ef099c0913186f5a1d801ca52c
[ "MIT" ]
null
null
null
import numpy as np import imageio from evaluation.eval_utils import to_img_padded, format_img, init_evaluation main()
34.366667
87
0.681862
47b4d5911e43771cc3188d71f2b90fe1b6287fdc
22,950
py
Python
acme/HttpServer.py
ankraft/ACME-oneM2M-CSE
03c23ea19b35dd6e0aec752d9631e2a76778c61c
[ "BSD-3-Clause" ]
10
2020-09-25T08:49:19.000Z
2022-03-30T01:29:22.000Z
acme/HttpServer.py
ankraft/ACME-oneM2M-CSE
03c23ea19b35dd6e0aec752d9631e2a76778c61c
[ "BSD-3-Clause" ]
14
2020-05-22T08:00:32.000Z
2020-12-24T23:38:05.000Z
acme/HttpServer.py
ankraft/ACME-oneM2M-CSE
03c23ea19b35dd6e0aec752d9631e2a76778c61c
[ "BSD-3-Clause" ]
5
2020-05-22T03:43:20.000Z
2021-05-25T06:54:59.000Z
# # HttpServer.py # # (c) 2020 by Andreas Kraft # License: BSD 3-Clause License. See the LICENSE file for further details. # # Server to implement the http part of the oneM2M Mcx communication interface. # from __future__ import annotations import logging, sys, traceback, urllib3 from copy import deepcopy from typing import Any, Callable, Tuple, cast import flask from flask import Flask, Request, make_response, request from urllib3.exceptions import RequestError from Configuration import Configuration from Constants import Constants as C from Types import ReqResp, ResourceTypes as T, Result, ResponseCode as RC, JSON, Conditions from Types import Operation, CSERequest, RequestHeaders, ContentSerializationType, RequestHandler, Parameters, RequestArguments, FilterUsage, FilterOperation, DesiredIdentifierResultType, ResultContentType, ResponseType import CSE, Utils from Logging import Logging as L, LogLevel from resources.Resource import Resource from werkzeug.wrappers import Response from werkzeug.serving import WSGIRequestHandler from werkzeug.datastructures import MultiDict from webUI import WebUI from helpers.BackgroundWorker import * # # Types definitions for the http server # FlaskHandler = Callable[[str], Response] """ Type definition for flask handler. """ ########################################################################## # # Own request handler. # Actually only to redirect some logging of the http server. # This handler does NOT handle requests. #
39.43299
223
0.699695
47b6367947784f5f8c60ac4a630ae41b0271c546
2,855
py
Python
tests.py
dave-shawley/sprockets.mixins.statsd
98dcce37d275a3ab96ef618b4756d7c4618a550a
[ "BSD-3-Clause" ]
1
2016-04-18T14:43:28.000Z
2016-04-18T14:43:28.000Z
tests.py
dave-shawley/sprockets.mixins.statsd
98dcce37d275a3ab96ef618b4756d7c4618a550a
[ "BSD-3-Clause" ]
1
2015-03-19T20:09:31.000Z
2015-03-19T20:56:13.000Z
tests.py
dave-shawley/sprockets.mixins.statsd
98dcce37d275a3ab96ef618b4756d7c4618a550a
[ "BSD-3-Clause" ]
1
2021-07-21T16:45:20.000Z
2021-07-21T16:45:20.000Z
""" Tests for the sprockets.mixins.statsd package """ import mock import socket try: import unittest2 as unittest except ImportError: import unittest from tornado import httputil from tornado import web from sprockets.mixins import statsd as statsd
34.817073
77
0.633275
47bbb88fe7ad9a14195f7bde44006fac967ad0e2
2,044
py
Python
python/datadb2/core/svc/build_db2_url.py
jiportilla/ontology
8a66bb7f76f805c64fc76cfc40ab7dfbc1146f40
[ "MIT" ]
null
null
null
python/datadb2/core/svc/build_db2_url.py
jiportilla/ontology
8a66bb7f76f805c64fc76cfc40ab7dfbc1146f40
[ "MIT" ]
null
null
null
python/datadb2/core/svc/build_db2_url.py
jiportilla/ontology
8a66bb7f76f805c64fc76cfc40ab7dfbc1146f40
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: UTF-8 -*- import os from base import BaseObject from base import CryptoBase from base import FileIO from datadb2.core.dmo import BaseDB2Client def cendant(self) -> BaseDB2Client: """ :return: """ return self._connect(self._values(self._config['cendant'])) if __name__ == "__main__": # BuildDb2Url().wft_dev() # BuildDb2Url().wft_prod() BuildDb2Url().cendant()
28.788732
81
0.581703
47bbc3f593c6dfe99cc6291d9534d485f7b0f42d
3,462
py
Python
nussl/transformers/transformer_deep_clustering.py
KingStorm/nussl
78edfdaad16845fc705cefb336a7e6e5923fbcd4
[ "MIT" ]
1
2018-10-22T19:30:45.000Z
2018-10-22T19:30:45.000Z
dataHelper/nussl/transformers/transformer_deep_clustering.py
AleXander-Tsui/Audio-Localization-and-Seperation
17d40e72b406d62ca5cb695938b50c6412f9524a
[ "MIT" ]
null
null
null
dataHelper/nussl/transformers/transformer_deep_clustering.py
AleXander-Tsui/Audio-Localization-and-Seperation
17d40e72b406d62ca5cb695938b50c6412f9524a
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Deep Clustering modeller class """ from .. import torch_imported if torch_imported: import torch import torch.nn as nn import numpy as np
33.941176
94
0.625361
47bcdf89bfb403747fce6b37d8765b1f6f980172
431
py
Python
ex067 - Tabuada v3.0.py
marvincosmo/Python-Curso-em-Video
47ee3dd6423835e7bca159ffd7ee796423569176
[ "MIT" ]
null
null
null
ex067 - Tabuada v3.0.py
marvincosmo/Python-Curso-em-Video
47ee3dd6423835e7bca159ffd7ee796423569176
[ "MIT" ]
null
null
null
ex067 - Tabuada v3.0.py
marvincosmo/Python-Curso-em-Video
47ee3dd6423835e7bca159ffd7ee796423569176
[ "MIT" ]
null
null
null
""" 67 - Faa um programa que mostre a tabuada de vrios nmeros, um de cada vez, para cada valor digitado pelo usurio. O programa ser interrompido quando o nmero solicitado for negativo. """ while True: n = int(input('Informe um nmero para ver sua tabuada: ')) if n < 0: break print('-' * 13) for m in range(1, 11): print(f'{n} x {m} = {n*m}') print('-' * 13) print('Programa encerrado.')
33.153846
111
0.62645
47be1f989acf928be71983840ea1023cdafbcb67
1,569
py
Python
Gallery/views.py
munganyendesandrine/GalleryApp
cb17eca8b814f212c1b78925d957b40380830f9b
[ "Unlicense", "MIT" ]
null
null
null
Gallery/views.py
munganyendesandrine/GalleryApp
cb17eca8b814f212c1b78925d957b40380830f9b
[ "Unlicense", "MIT" ]
null
null
null
Gallery/views.py
munganyendesandrine/GalleryApp
cb17eca8b814f212c1b78925d957b40380830f9b
[ "Unlicense", "MIT" ]
null
null
null
from django.shortcuts import render from django.http import HttpResponse from .models import Image,Category,Location # def delete_image(request, pk): # gallery = get_object_or_404(Cat, pk=pk) # if request.method == 'POST': # gallery.delete() # return redirect('/') # return render(request, 'all-galleries/today-gallery.html', {"gallery": gallery})
34.108696
105
0.662843
47bf6e3c9c36dabf9fe1d3cb252c2d9d2f56f9af
843
py
Python
tests/tests_query_operations/table_models.py
Robinson04/StructNoSQL
335c63593025582336bb67ad0b0ed39d30800b74
[ "MIT" ]
3
2020-10-30T23:31:26.000Z
2022-03-30T21:48:40.000Z
tests/tests_query_operations/table_models.py
Robinson04/StructNoSQL
335c63593025582336bb67ad0b0ed39d30800b74
[ "MIT" ]
42
2020-09-16T15:23:11.000Z
2021-09-20T13:00:50.000Z
tests/tests_query_operations/table_models.py
Robinson04/StructNoSQL
335c63593025582336bb67ad0b0ed39d30800b74
[ "MIT" ]
2
2021-01-03T21:37:22.000Z
2021-08-12T20:28:52.000Z
from typing import Dict from StructNoSQL import TableDataModel, BaseField, MapModel
42.15
104
0.778173
47c00f796dfbf64fa498d1661e0430227f50240a
3,301
py
Python
__init__.py
mchorse/io_export_bobj
2de7a55c59a5e4ece5ae047cceaa16da94272685
[ "CNRI-Python" ]
2
2021-10-04T17:03:20.000Z
2021-12-07T20:20:49.000Z
__init__.py
mchorse/io_export_bobj
2de7a55c59a5e4ece5ae047cceaa16da94272685
[ "CNRI-Python" ]
null
null
null
__init__.py
mchorse/io_export_bobj
2de7a55c59a5e4ece5ae047cceaa16da94272685
[ "CNRI-Python" ]
null
null
null
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8-80 compliant> bl_info = { "name": "Blockbuster extended OBJ format", "author": "Campbell Barton, Bastien Montagne, McHorse", "version": (0, 1, 0), "blender": (2, 77, 0), "location": "File > Export", "description": "Export Blockbuster OBJ models (meshes, armatures and keyframes)", "warning": "", "category": "Export" } import bpy from bpy.props import (BoolProperty, FloatProperty, StringProperty, EnumProperty) from bpy_extras.io_utils import (ExportHelper, orientation_helper_factory, path_reference_mode, axis_conversion) IOOBJOrientationHelper = orientation_helper_factory("IOOBJOrientationHelper", axis_forward='Z', axis_up='Y') # Export panel # Register and stuff def menu_func_export(self, context): self.layout.operator(ExportOBJ.bl_idname, text="Blockbuster OBJ (.bobj)") def register(): bpy.utils.register_module(__name__) bpy.types.INFO_MT_file_export.append(menu_func_export) def unregister(): bpy.utils.unregister_module(__name__) bpy.types.INFO_MT_file_export.remove(menu_func_export) if "bpy" in locals(): import importlib if "export_bobj" in locals(): importlib.reload(export_bobj) if __name__ == "__main__": register()
39.771084
131
0.723417
47c2fc4cc67997a7602b32b94d673235ee2e4478
1,303
py
Python
dashboard/migrations/0010_auto_20191214_1611.py
BDALab/GENEActiv-sleep-analyses-system
f0458de041153f2dee240a53571149827de00a2e
[ "MIT" ]
null
null
null
dashboard/migrations/0010_auto_20191214_1611.py
BDALab/GENEActiv-sleep-analyses-system
f0458de041153f2dee240a53571149827de00a2e
[ "MIT" ]
null
null
null
dashboard/migrations/0010_auto_20191214_1611.py
BDALab/GENEActiv-sleep-analyses-system
f0458de041153f2dee240a53571149827de00a2e
[ "MIT" ]
null
null
null
# Generated by Django 2.2.5 on 2019-12-14 15:11 import django.utils.timezone from django.db import migrations, models
32.575
161
0.593246
47c5b5de088c43f83c5e3e066561ed05afd513fb
1,666
py
Python
select_language.py
zhangenter/tetris
300c668d9732cd037bfc6f47c289bd5ee4a009b2
[ "Apache-2.0" ]
3
2019-05-08T14:49:10.000Z
2021-01-20T13:22:45.000Z
select_language.py
zhangenter/tetris
300c668d9732cd037bfc6f47c289bd5ee4a009b2
[ "Apache-2.0" ]
null
null
null
select_language.py
zhangenter/tetris
300c668d9732cd037bfc6f47c289bd5ee4a009b2
[ "Apache-2.0" ]
2
2020-01-28T14:37:06.000Z
2020-04-03T13:37:14.000Z
# -*- coding=utf-8 -*- import pygame from bf_form import BFForm from bf_button import BFButton from globals import LanguageConfigParser, LanguageLib
35.446809
137
0.660264
47c64ebe5bf8c8e7b695f55fd8ecece7fcce4585
3,084
py
Python
SpellingCorrection/SpellingCorrection.py
kxu776/Natural-Langauge-Processing
61c863e6cccf6d745b7bfc630a803dcec89214a1
[ "MIT" ]
null
null
null
SpellingCorrection/SpellingCorrection.py
kxu776/Natural-Langauge-Processing
61c863e6cccf6d745b7bfc630a803dcec89214a1
[ "MIT" ]
null
null
null
SpellingCorrection/SpellingCorrection.py
kxu776/Natural-Langauge-Processing
61c863e6cccf6d745b7bfc630a803dcec89214a1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Thu Oct 4 14:09:44 2018 @author: VeNoMzZxHD """ import tkinter from tkinter.filedialog import askopenfilename from collections import Counter import re import string #Returns string of text file def readFile(): ''' tkinter.Tk().withdraw() inputfilename = askopenfilename() ''' inputfilename = 'big.txt' with open(inputfilename) as inputfile: return inputfile.read() #Returns Counter dictionary containing words and their number of occurences within the input file #Returns list of possible permutations of removing a single char from input word. countDict = countWords(readFile()) while True: inword = input("Type quit to exit, or input word: \n") if inword.lower() == 'quit': break correction = findCorrection(inword) if correction=="": print("No correction found") else: print(correction)
28.293578
97
0.648508
47c7ce2b3e6297aeb01c2a6dd339609f2dbc4c40
9,826
py
Python
src/derivation/FactNode.py
KDahlgren/orik
4e66107cf2dc2cd1a30ba4bfbe15c1ad1c176c0f
[ "MIT" ]
2
2018-01-23T22:08:32.000Z
2018-03-11T18:32:53.000Z
src/derivation/FactNode.py
KDahlgren/orik
4e66107cf2dc2cd1a30ba4bfbe15c1ad1c176c0f
[ "MIT" ]
4
2017-10-24T19:13:40.000Z
2018-06-05T22:16:45.000Z
src/derivation/FactNode.py
KDahlgren/orik
4e66107cf2dc2cd1a30ba4bfbe15c1ad1c176c0f
[ "MIT" ]
2
2017-10-24T18:55:45.000Z
2018-01-26T05:11:38.000Z
#!/usr/bin/env python # **************************************** # ############# # IMPORTS # ############# # standard python packages import ConfigParser, copy, inspect, logging, os, sys from Node import Node if not os.path.abspath( __file__ + "/../../../lib/iapyx/src" ) in sys.path : sys.path.append( os.path.abspath( __file__ + "/../../../lib/iapyx/src" ) ) from utils import tools # **************************************** # ######### # EOF # #########
32.006515
134
0.479849
47c7ee324c762d85e146cce680e1d27dab07ca7e
219
py
Python
freezegame/ladder.py
mattfister/pybacon
c864e5f5c872f92b3c694f0ef83feb0f20f93193
[ "MIT" ]
2
2017-02-06T14:49:48.000Z
2021-03-20T08:19:01.000Z
freezegame/ladder.py
mattfister/pybacon
c864e5f5c872f92b3c694f0ef83feb0f20f93193
[ "MIT" ]
null
null
null
freezegame/ladder.py
mattfister/pybacon
c864e5f5c872f92b3c694f0ef83feb0f20f93193
[ "MIT" ]
2
2017-11-04T10:13:59.000Z
2020-04-24T05:15:33.000Z
from freezegame.sprite import Sprite
31.285714
120
0.657534
47ca2154dad4d9f3a8ceb261cf0f46981b5b61af
2,656
py
Python
sector/models.py
uktrade/invest
15b84c511839b46e81608fca9762d2df3f6df16c
[ "MIT" ]
1
2019-01-18T03:50:46.000Z
2019-01-18T03:50:46.000Z
sector/models.py
uktrade/invest
15b84c511839b46e81608fca9762d2df3f6df16c
[ "MIT" ]
50
2018-01-24T18:04:08.000Z
2019-01-03T03:30:30.000Z
sector/models.py
uktrade/invest
15b84c511839b46e81608fca9762d2df3f6df16c
[ "MIT" ]
2
2018-02-12T15:20:52.000Z
2019-01-18T03:51:52.000Z
from django.db import models from wagtail.admin.edit_handlers import FieldPanel, StreamFieldPanel from wagtail.core.blocks import StructBlock, CharBlock from wagtail.core.fields import StreamField from wagtail.core.models import Page from wagtail.images.edit_handlers import ImageChooserPanel from wagtailmarkdown.blocks import MarkdownBlock from invest.blocks.location import LocationAccordionItemBlock from invest.blocks.markdown import MarkdownAccordionItemBlock
29.511111
73
0.657756
47ca616f814b4735648b4fa4271fc547d28d5fca
44
py
Python
serve.py
xsblanket/sweetie
cce71db39961fa017f888afef756f3522f549716
[ "MIT" ]
null
null
null
serve.py
xsblanket/sweetie
cce71db39961fa017f888afef756f3522f549716
[ "MIT" ]
2
2021-03-16T10:28:33.000Z
2021-03-17T09:11:37.000Z
serve.py
xsblanket/sweetie
cce71db39961fa017f888afef756f3522f549716
[ "MIT" ]
1
2021-03-16T10:03:19.000Z
2021-03-16T10:03:19.000Z
from utility.sweetie import serve serve()
14.666667
34
0.772727
47ca87bbbe5378196163b9f006e09077555d7b34
985
py
Python
output/models/nist_data/atomic/id/schema_instance/nistschema_sv_iv_atomic_id_enumeration_5_xsd/nistschema_sv_iv_atomic_id_enumeration_5.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/nist_data/atomic/id/schema_instance/nistschema_sv_iv_atomic_id_enumeration_5_xsd/nistschema_sv_iv_atomic_id_enumeration_5.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/nist_data/atomic/id/schema_instance/nistschema_sv_iv_atomic_id_enumeration_5_xsd/nistschema_sv_iv_atomic_id_enumeration_5.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from dataclasses import dataclass, field from enum import Enum from typing import Optional __NAMESPACE__ = "NISTSchema-SV-IV-atomic-ID-enumeration-5-NS"
22.906977
68
0.636548
47cc63cf4b5393de155d0003d5754fcb3e06068b
889
py
Python
tests/test_http_requests.py
andreygrechin/umbr_api
e9efd734a7395d25a1bab87c861b2cfee61e6a05
[ "MIT" ]
4
2021-01-11T02:14:59.000Z
2022-02-15T09:20:25.000Z
tests/test_http_requests.py
andreygrechin/umbr_api
e9efd734a7395d25a1bab87c861b2cfee61e6a05
[ "MIT" ]
null
null
null
tests/test_http_requests.py
andreygrechin/umbr_api
e9efd734a7395d25a1bab87c861b2cfee61e6a05
[ "MIT" ]
2
2021-12-14T10:20:00.000Z
2022-02-20T01:05:18.000Z
#!/usr/bin/env python3 # pylint: disable=no-self-use """Test unit.""" import unittest if __name__ == "__main__": unittest.main()
25.4
70
0.651294
47cd00f1c6e6fe88e15b29bda7971944f1ec4024
2,127
py
Python
mylast.py
JohnTocher/descrobbler
0bca4d05e0029b63d11fe615e933362cadb30c11
[ "Apache-2.0" ]
null
null
null
mylast.py
JohnTocher/descrobbler
0bca4d05e0029b63d11fe615e933362cadb30c11
[ "Apache-2.0" ]
null
null
null
mylast.py
JohnTocher/descrobbler
0bca4d05e0029b63d11fe615e933362cadb30c11
[ "Apache-2.0" ]
null
null
null
''' this file creates the objects used to access the scrobbling service api No actual creds should be stored here! This module will be imported and used by the main code ''' import os import sys import pylast try: API_KEY = os.environ["LASTFM_API_KEY"] API_SECRET = os.environ["LASTFM_API_SECRET"] except KeyError: API_KEY = "my_api_key" API_SECRET = "my_apy_secret" try: lastfm_username = os.environ["LASTFM_USERNAME"] lastfm_password_hash = os.environ["LASTFM_PASSWORD_HASH"] print("Environment variables for user OK") except KeyError: # In order to perform a write operation you need to authenticate yourself lastfm_username = "my_username" # You can use either use the password, or find the hash once and use that lastfm_password_hash = pylast.md5("my_password") print(lastfm_password_hash) # lastfm_password_hash = "my_password_hash" print("Environment variables for user missing! So far:") print(f"API_KEY: {API_KEY}") print(f"API_SECRET: {API_SECRET}") print(f"LFM USER: {lastfm_username}") print(f"LPW HASH: {lastfm_password_hash}") lastfm_network = pylast.LastFMNetwork( api_key=API_KEY, api_secret=API_SECRET, username=lastfm_username, password_hash=lastfm_password_hash, ) TRACK_SEPARATOR = " - "
29.136986
77
0.686883
47cd0ed87b30c0eeeb6aca7161bf214f8970893c
4,802
py
Python
sharpenCommander/dlgFind.py
cjng96/sharpenCommander
0d3a95dccc617481d9976789feffc115520243e6
[ "Apache-2.0" ]
null
null
null
sharpenCommander/dlgFind.py
cjng96/sharpenCommander
0d3a95dccc617481d9976789feffc115520243e6
[ "Apache-2.0" ]
null
null
null
sharpenCommander/dlgFind.py
cjng96/sharpenCommander
0d3a95dccc617481d9976789feffc115520243e6
[ "Apache-2.0" ]
null
null
null
import os import urwid from .globalBase import * from .urwidHelper import * from .tool import * #import dc from .myutil import *
27.44
106
0.659933
47cf4c7848eb2692961ae1f8fb2074a86bde0da7
8,595
py
Python
Code to apply on BS output/Python/makeTtests.py
albertocottica/community-management-simulator
e942f854f41705fcb114a79308536a2765896e60
[ "MIT" ]
null
null
null
Code to apply on BS output/Python/makeTtests.py
albertocottica/community-management-simulator
e942f854f41705fcb114a79308536a2765896e60
[ "MIT" ]
null
null
null
Code to apply on BS output/Python/makeTtests.py
albertocottica/community-management-simulator
e942f854f41705fcb114a79308536a2765896e60
[ "MIT" ]
null
null
null
# runs t-tests over the null hypothesis # avg_gini if (priority == "newer") == avg_gini if (priority == "more active") import csv import numpy as np from scipy.stats import ttest_ind from scipy.special import stdtr def readCsvFile(fileName): ''' (string) => list of dicts Read the file called fileName and put its content in computer memory ''' allData = [] # data go here as list of dicts with open(fileName) as csvfile: reader = csv.DictReader(csvfile) for row in reader: allData.append(row) return allData def computeTtests (data): ''' (list of dicts) => list of dicts Execute t-tests on data. Return results in an easy-to-read form, i.e.: [ { 'globalchattiness': value, 'intimacystrength': value, 'randomisedchattiness': value, 'policy': value, 'dropouts': value, 'totalmembershipstrength': value, 'totalcomments': value, 'managementeffort':value', 'ms_gini': value, 'nc_gini': value }, ... ] ''' results = [] # assign the parameter space in which we operate for globChat in [.1, .2, .4]: for intStren in [1, 5, 11]: for randChat in ["true", "false"]: for pol in ["engage", "both"]: # keep track of parameters' values result ={} result['globalchattiness'] = globChat result['intimacystrength'] = intStren result['randomisedchattiness'] = randChat result['policy'] = pol # take care of non-Gini variables first for nonGiniVar in ['dropouts', 'totalmembershipstrength', 'totalcomments', 'mgmteffort']: # accumulate in two lists the values, separated by priority moreActiveArray = [] newerArray = [] # read the data. for row in data: if ( float(row['globalchattiness']) == globChat and int(row['intimacystrength']) == intStren and row['randomisedchattiness'] == randChat and row['policy'] == pol): if row['priority'] == 'newer': newerArray.append(float(row[nonGiniVar])) elif row['priority'] == 'more active': moreActiveArray.append(float(row[nonGiniVar])) # save the means relative to the moreActive and newer cases result[nonGiniVar + '_n_mean'] = float(sum(newerArray))/len(newerArray) result[nonGiniVar + '_ma_mean'] = float(sum(moreActiveArray))/len(moreActiveArray) # compute the t-tests. When T is positive, moreActive > newer thisTest = ttest_ind(moreActiveArray, newerArray, equal_var = 'False') result[nonGiniVar + '_t'] = float(thisTest[0]) result[nonGiniVar + '_pVal'] = float(thisTest[1]) # now the two Ginis for giniVar in ['ms', 'nc']: # no need for lists, I have already calculated means and SEs # read the data. for row in data: if ( float(row['globalchattiness']) == globChat and int(row['intimacystrength']) == intStren and row['randomisedchattiness'] == randChat and row['policy'] == pol): if row['priority'] == 'newer': newerMean = float(row[giniVar + '_avg_gini']) newerSE = float(row[giniVar + '_inblockse']) elif row['priority'] == 'more active': moreActiveMean = float(row[giniVar + '_avg_gini']) moreActiveSE = float(row[giniVar + '_inblockse']) # save mean values result[giniVar + '_gini_n_mean'] = newerMean result[giniVar + '_gini_ma_mean'] = moreActiveMean # compute the t-tests. When T is positive, moreActive > newer tStat = (moreActiveMean - newerMean) / np.sqrt((moreActiveSE**2 + newerSE**2)/24) result[giniVar + '_gini_t'] = tStat dof = (moreActiveSE/24 + newerSE/24)**2 / (moreActiveSE**2/(24**2*23) + newerSE**2/(24**2*23)) result[giniVar + '_gini_pVal'] = 2*stdtr(dof, -np.abs(tStat)) results.append(result) return results def saveCsvFile(data, filename): ''' (list of dicts. str) => NoneType saves list of dicts into a CSV file called filename ''' # get the fieldnames from the data: with open (filename, 'w') as csvfile: fieldnames = sorted(data[0].keys()) writer = csv.DictWriter(csvfile, fieldnames = fieldnames) writer.writeheader() for row in data: writer.writerow(row) def findTrends(data): ''' (list of dicts) => NoneType prints some info to screen ''' moreActiveMoreInclusivity1 = 0 moreActiveMoreInclusivity2 = 0 moreActiveMoreActivity = 0 moreActiveMoreDiversity = 0 moreActiveMoreLoyalty = 0 for row in data: if row['dropouts_t'] < 0 and row['dropouts_pVal'] < .01: moreActiveMoreInclusivity1 += 1 if row['ms_gini_t'] < 0 and row['ms_gini_pVal'] < .01: moreActiveMoreInclusivity2 += 1 if row['totalcomments_t'] > 0 and row['totalcomments_pVal'] < .01: moreActiveMoreActivity += 1 if row['nc_gini_t'] < 0 and row['nc_gini_pVal'] < 0.1: moreActiveMoreDiversity += 1 if row['totalmembershipstrength_t'] > 0 and row['totalmembershipstrength_pVal'] < .01: moreActiveMoreLoyalty += 1 print 'Priority "more active" has FEWER dropouts: ' + str(moreActiveMoreInclusivity1) print 'Priority "more active" has MORE inclusivity (lower Gini on ms): ' + str(moreActiveMoreInclusivity2) print 'Priority "more active" has MORE comments: ' + str(moreActiveMoreActivity) print 'Priority "more active" has MORE diversity (lower gini on nc): ' + str(moreActiveMoreDiversity) print 'Priority "more active" has MORE loyalty (higher total membership strength): ' + str(moreActiveMoreLoyalty) newerMoreInclusivity1 = 0 newerMoreInclusivity2 = 0 newerMoreActivity = 0 newerMoreDiversity = 0 newerMoreLoyalty = 0 for row in data: if row['dropouts_t'] > 0 and row['dropouts_pVal'] < .01: newerMoreInclusivity1 += 1 if row['ms_gini_t'] > 0 and row['ms_gini_pVal'] < .01: newerMoreInclusivity2 += 1 if row['totalcomments_t'] < 0 and row['totalcomments_pVal'] < .01: newerMoreActivity += 1 if row['nc_gini_t'] > 0 and row['nc_gini_pVal'] < 0.1: newerMoreDiversity += 1 if row['totalmembershipstrength_t'] < 0 and row['totalmembershipstrength_pVal'] < .01: newerMoreLoyalty += 1 print 'Priority "newer" has FEWER dropouts: ' + str(newerMoreInclusivity1) print 'Priority "newer" has MORE inclusivity (lower Gini on ms): ' + str(newerMoreInclusivity2) print 'Priority "newer" has MORE comments: ' + str(newerMoreActivity) print 'Priority "newer" has MORE diversity (lower gini on nc): ' + str(newerMoreDiversity) print 'Priority "newer" has MORE loyalty (higher total membership strength): ' + str(newerMoreLoyalty) if __name__ == '__main__': dirPath = '/Users/albertocottica/github/local/community-management-simulator/Data/' allData = readCsvFile(dirPath + 'ready-4-tTest.csv') results = computeTtests(allData) saveCsvFile(results, dirPath + 'tTestsResults.csv') findTrends(results)
47.225275
118
0.532984
47d18703506147df7e77ebf700589e58f57e4508
350
py
Python
running_sum.py
erjan/coding_exercises
53ba035be85f1e7a12b4d4dbf546863324740467
[ "Apache-2.0" ]
null
null
null
running_sum.py
erjan/coding_exercises
53ba035be85f1e7a12b4d4dbf546863324740467
[ "Apache-2.0" ]
null
null
null
running_sum.py
erjan/coding_exercises
53ba035be85f1e7a12b4d4dbf546863324740467
[ "Apache-2.0" ]
null
null
null
''' Given an array nums. We define a running sum of an array as runningSum[i] = sum(nums[0]nums[i]). Return the running sum of nums. '''
21.875
97
0.58
47d20ca2d18b88c21b0a0f588589e8dcfe03114e
81
py
Python
examples/import.py
vic/typhon
72b8ceb34f431d93321fee6046b08094afbc213c
[ "BSD-3-Clause" ]
14
2015-01-06T10:59:09.000Z
2021-01-09T17:57:52.000Z
examples/import.py
vic/typhon
72b8ceb34f431d93321fee6046b08094afbc213c
[ "BSD-3-Clause" ]
1
2017-04-08T17:35:03.000Z
2017-04-08T17:35:03.000Z
examples/import.py
vic/typhon
72b8ceb34f431d93321fee6046b08094afbc213c
[ "BSD-3-Clause" ]
3
2015-05-09T15:16:37.000Z
2016-01-26T07:57:59.000Z
# -*- coding: utf-8 -*- import imported import foo.bar print(imported.__doc__)
11.571429
23
0.691358
47d397381f542a9f03743386be3039bce2cd0248
9,576
py
Python
participants_codes/konnectomics/utils/submission.py
orlandi/connectomicsPerspectivesPaper
98060e613d58c8e1ef9d14eb213439ae4cb8272b
[ "MIT" ]
null
null
null
participants_codes/konnectomics/utils/submission.py
orlandi/connectomicsPerspectivesPaper
98060e613d58c8e1ef9d14eb213439ae4cb8272b
[ "MIT" ]
null
null
null
participants_codes/konnectomics/utils/submission.py
orlandi/connectomicsPerspectivesPaper
98060e613d58c8e1ef9d14eb213439ae4cb8272b
[ "MIT" ]
null
null
null
# Copyright 2014 Alistair Muldal <alistair.muldal@pharm.ox.ac.uk> # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import numpy as np import warnings import datetime import subprocess from matplotlib import pyplot as plt from itertools import izip from sklearn import metrics def adjacency2vec(M): """ Unpack an n-by-n directed adjacency matrix to a 1D vector of connection weights Arguments ---------- M: 2D float array adjacency matrix, where: M[i, j] corresponds to w(i->j) Returns ---------- ij: 2D int array 2-by-npairs array of row/column indices w_ij: 1D int array corresponding weights, i.e. w(i->j) """ ncells = M.shape[0] ij = all_directed_connections(ncells) # sanity check # npairs = ncells * (ncells - 1) # assert ij.shape[1] == npairs i, j = ij w_ij = M[i, j] return ij, w_ij def vec2adjacency(ij, connected): """ Pack a 1D vector of connection weights into an n-by-n directed adjacency matrix Arguments ---------- ij: 2D int array 2-by-npairs array of row/column indices w_ij: 1D int array corresponding weights, i.e. w(i->j) Returns ---------- M: 2D float array adjacency matrix, where: M[i, j] corresponds to w(i->j) M[j, i] corresponds to w(j->i) """ npairs = connected.size # 0 = ncells**2 - ncells -npairs roots = np.roots((1, -1, -npairs)) ncells = int(roots[roots > 0]) M = np.zeros((ncells, ncells), dtype=connected.dtype) for (ii, jj), cc in izip(ij.T, connected): M[ii, jj] = cc return M def real2dense(real_connections, n=None, adj=False): """ The network data provided for the challenge lists connections weighted '-1' (which aren't actually present in the simulation), and does not list any weights for pairs of nodes that are not connected. This function converts the provided data into a more convenient dense vector format compatible with adjacency2vec and roc, where every possible directed pair of nodes has a True/False weight. Arguments: ----------- real_connections: 2D np.ndarray or tables.(C)Array npairs-by-3 array, whose columns represent (i, j, connected(i->j)). i, j are assumed to follow MATLAB indexing convenions (i.e. they start at 1). n: positive int, optional the total number of nodes (cells). if unspecified, this is taken to be the maximum index in the first two columns of real_connections plus 1. Returns: ---------- ij: 2D int array 2-by-npairs array of row/column indices connected: boolean vector, True where i->j is connected """ if n is None: n = int(real_connections[:, :2].max()) if np.any(real_connections[:, :2] > n): raise ValueError('real_connections contains indices > n') # handle CArrays real_connections = real_connections[:] # cast to integers real_connections = real_connections.astype(np.int) # find the indices of the cells that are genuinely connected ('1' means # connection, either '-1', '0' or omission means no connection). ij_con = real_connections[(real_connections[:, 2] == 1), :2].T # we subtract 1 from the indices because MATLAB-style indexing starts at 1, # whereas Python indexing starts at 0 ij_con -= 1 # we'll do this the lazy way - construct an adjacency matrix from the # connected indices ... M = np.zeros((n, n), dtype=np.bool) M[ij_con[0, :], ij_con[1, :]] = True if adj: return M else: # ... then convert this directly to the desired format ij, connected = adjacency2vec(M) return ij, connected def all_directed_connections(n): """ For an n-by-n adjacency matrix, return the indices of the nodes for every possible directed connection, i.e. (i->j) and (j->i), but not (i->i) or (j->j) Arguments: n: int number of nodes Returns: idx: 2D int array [2, n * (n - 1)] array of i, j indices """ # all possible pairs of indices (including repeated indices) all_idx = np.indices((n, n)).T.reshape(-1, 2).T # remove repeated indices repeats = (all_idx[0, :] == all_idx[1, :]) idx = all_idx[:, ~repeats] return idx def roc(weights, ground_truth, nsteps=None, do_plot=False, show_progress=True): """ Compute ROC curve and performance metrics for a given set of posterior connection probabilities and the set of ground-truth connections Arguments: ---------- weights: 1D float array vector of posterior probabilities for each possible pairwise connection ground_truth: 1D bool array vector of ground-truth connections nsteps: int, optional number of linear steps between the minimum and maximum values of weights at which to compute the FPR and TPR. if unspecified, every unique value of weights is used, so that the ROC curve is computed exactly do_plot: bool, optional make a pretty plot show_progress: bool, optional show a pretty progress bar Returns: --------- thresh: 1D float array vector of threshold values used for computing the ROC curve fpr: 1D float array false-positive rate at each threshold value tpr: 1D float array true-positive rate at each threshold value pl10: float 10% performance level (tpr at the threshold value that gives 10% false-positives) auc: float area under the ROC curve """ # make sure we're dealing with 1D arrays weights = weights.ravel() ground_truth = ground_truth.ravel() if weights.size != ground_truth.size: raise ValueError('Input vectors must have the same number of elements') fpr, tpr, thresh = metrics.roc_curve(ground_truth, weights, pos_label=True) auc = metrics.roc_auc_score(ground_truth, weights) # 'performance level' is defined as the fraction of true positives at 10% # false-positives pl10 = tpr[fpr.searchsorted(0.1, side='left')] if do_plot: fig, ax = plt.subplots(1, 1, figsize=(5, 5)) ax.hold(True) ax.set_xlim(0, 1) ax.set_ylim(0, 1) ax.set_aspect('equal') ax.plot(fpr, tpr, '-b', lw=2) ax.set_xlabel('False-positive rate') ax.set_ylabel('True-positive rate') ax.set_title('ROC') bbox_props = dict(boxstyle='round', fc='w', ec='0.5') arrow_props = dict(arrowstyle='->', color='k', linewidth=2) ax.annotate('AUC = %.4g' % auc, xy=(0.9, 0.1), xycoords='axes fraction', ha='right', va='bottom', bbox=bbox_props, fontsize=16) plt.show() return thresh, fpr, tpr, pl10, auc
29.018182
80
0.611529
47d3c6d2f3f9ad6b0e3ffc64b6de5590845ebff4
30,949
py
Python
MagiskPatcher.py
affggh/Magisk_patcher
77b7a90c821d45e0b090ee1905dfbca7028e9ac2
[ "Apache-2.0" ]
19
2022-01-27T11:12:43.000Z
2022-03-06T00:09:47.000Z
MagiskPatcher.py
affggh/Magisk_patcher
77b7a90c821d45e0b090ee1905dfbca7028e9ac2
[ "Apache-2.0" ]
null
null
null
MagiskPatcher.py
affggh/Magisk_patcher
77b7a90c821d45e0b090ee1905dfbca7028e9ac2
[ "Apache-2.0" ]
6
2022-01-28T15:51:19.000Z
2022-02-20T17:39:46.000Z
#!/usr/bin/env python3 # by affggh # Apcache 2.0 import os import sys import shutil import zipfile import subprocess import platform import requests if os.name == 'nt': import tkinter as tk if os.name == 'posix': from mttkinter import mtTkinter as tk # While Load some need thread funcion on Linux it will failed # Just use mttkinter replace regular tkinter from tkinter.filedialog import * from tkinter import ttk from tkinter import * #import ttkbootstrap as ttk import time import webbrowser import threading # Hide console , need ```pip install pywin32``` # import win32gui, win32con # the_program_to_hide = win32gui.GetForegroundWindow() # win32gui.ShowWindow(the_program_to_hide, win32con.SW_HIDE) if __name__=='__main__': main()
40.509162
267
0.534751
47d6eebb03b0ea6e42bdb7a3c49d5f0b5a409c1e
49
py
Python
__init__.py
faridfibrianto/pyrex
bedd088370e90bceefa45788cddf952c03bea945
[ "MIT" ]
null
null
null
__init__.py
faridfibrianto/pyrex
bedd088370e90bceefa45788cddf952c03bea945
[ "MIT" ]
null
null
null
__init__.py
faridfibrianto/pyrex
bedd088370e90bceefa45788cddf952c03bea945
[ "MIT" ]
1
2021-07-03T04:49:53.000Z
2021-07-03T04:49:53.000Z
from .helpers import * from .decorators import *
16.333333
25
0.755102
47d719fa6ddaa13236b1671d0f097880df05054a
3,010
py
Python
solvers/shortest_path.py
Psychofun/Snake-Gym
59646ef2213e4cc2a68e238d010f5e9f25826951
[ "MIT" ]
null
null
null
solvers/shortest_path.py
Psychofun/Snake-Gym
59646ef2213e4cc2a68e238d010f5e9f25826951
[ "MIT" ]
null
null
null
solvers/shortest_path.py
Psychofun/Snake-Gym
59646ef2213e4cc2a68e238d010f5e9f25826951
[ "MIT" ]
null
null
null
import sys sys.path.append("..") from gym_snake.envs.node import Node from gym_snake.envs.snake_env import action_to_vector from gym_snake.envs.snake_env import SnakeAction from gym_snake.envs.snake_env import SnakeCellState from gym_snake.envs.snake_env import rotate_action_clockwise from gym_snake.envs.snake_env import rotate_action_counter_clockwise from gym_snake.envs.snake_env import invert_action from gym_snake.queue import Queue
38.589744
168
0.639535
47d7a401f53299346b73e5c7c5fe542392290c13
22,070
py
Python
progressbot.py
tchapley/ProgressBot
60837055999cbddcad637a514dc8af2e748374a8
[ "MIT" ]
null
null
null
progressbot.py
tchapley/ProgressBot
60837055999cbddcad637a514dc8af2e748374a8
[ "MIT" ]
2
2021-03-31T18:38:57.000Z
2021-12-13T19:46:50.000Z
progressbot.py
tchapley/ProgressBot
60837055999cbddcad637a514dc8af2e748374a8
[ "MIT" ]
null
null
null
import discord from discord.ext import commands import asyncio import logging import sys import requests import datetime from bs4 import BeautifulSoup from util import * from wowapi import WowApi, WowApiException, WowApiConfigException from killpoints import KillPoints from math import ceil base_wow_progress = "http://www.wowprogress.com" base_wow_armory = "http://us.battle.net/wow/en/character/{0}/{1}/advanced" base_wc_logs = "https://www.warcraftlogs.com:443/v1" class_array = [ "Warrior", "Paladin", "Hunter", "Rogue", "Priest", "Death Knight", "Shaman", "Mage", "Warlock", "Monk", "Druid", "Demon Hunter" ] race_map = { 1: "Human", 2: "Orc", 3: "Dwarf", 4: "Night Elf", 5: "Undead", 6: "Tauren", 7: "Gnome", 8: "Troll", 9: "Goblin", 10: "Blood Elf", 11: "Draenei", 22: "Worgen", 24:"Pandaren", 25:"Pandaren", 26:"Pandaren" } artifactLevelCost = { 1: { "cost": 100, "total": 100 }, 2: { "cost": 300, "total": 400 }, 3: { "cost": 325, "total": 725 }, 4: { "cost": 350, "total": 1075 }, 5: { "cost": 375, "total": 1450 }, 6: { "cost": 400, "total": 1850 }, 7: { "cost": 425, "total": 2275 }, 8: { "cost": 450, "total": 3250 }, 9: { "cost": 525, "total": 3875 }, 10: { "cost": 625, "total": 4625 }, 11: { "cost": 750, "total": 4625 }, 12: { "cost": 875, "total": 5500 }, 13: { "cost": 1000, "total": 6500 }, 14: { "cost": 6840, "total": 13340 }, 15: { "cost": 8830, "total": 22170 }, 16: { "cost": 11280, "total": 33450 }, 17: { "cost": 14400, "total": 47850 }, 18: { "cost": 18620, "total": 66470 }, 19: { "cost": 24000, "total": 90470 }, 20: { "cost": 30600, "total": 121070 }, 21: { "cost": 39520, "total": 160590 }, 22: { "cost": 50880, "total": 211470 }, 23: { "cost": 64800, "total": 276270 }, 24: { "cost": 82500, "total": 358770 }, 25: { "cost": 105280, "total": 464050 }, 26: { "cost": 138650, "total": 602700 }, 27: { "cost": 182780, "total": 785480 }, 28: { "cost": 240870, "total": 1026350 }, 29: { "cost": 315520, "total": 1341870 }, 30: { "cost": 417560, "total": 1759430 }, 31: { "cost": 546000, "total": 2305430 }, 32: { "cost": 718200, "total": 3023630 }, 33: { "cost": 946660, "total": 3970290 }, 34: { "cost": 1245840, "total": 5216130 }, 35: { "cost": 1635200, "total": 6851330 }, 36: { "cost": 1915000, "total": 8766330 }, 37: { "cost": 2010000, "total": 10776330 }, 38: { "cost": 2110000, "total": 12886330 }, 39: { "cost": 2215000, "total": 15101330 }, 40: { "cost": 2325000, "total": 17426330 }, 41: { "cost": 2440000, "total": 19866330 }, 42: { "cost": 2560000, "total": 22426330 }, 43: { "cost": 2690000, "total": 25116330 }, 44: { "cost": 2825000, "total": 27941330 }, 45: { "cost": 2965000, "total": 30906330 }, 46: { "cost": 3115000, "total": 34021330 }, 47: { "cost": 3270000, "total": 37291330 }, 48: { "cost": 3435000, "total": 40726330 }, 49: { "cost": 3605000, "total": 44331330 }, 50: { "cost": 3785000, "total": 48116330 }, 51: { "cost": 3975000, "total": 52091330 }, 52: { "cost": 4175000, "total": 56266330 }, 53: { "cost": 4385000, "total": 60651330 }, 54: { "cost": 4605000, "total": 65256330 } } artifactKnowledge = { 0: 1, 1: 1.25, 2: 1.5, 3: 1.9, 4: 2.4, 5: 3, 6: 3.75, 7: 4.75, 8: 6, 9: 7.5, 10: 9.5, 11: 12, 12: 15, 13: 18.75, 14: 23.5, 15: 29.5, 16: 37, 17: 46.5, 18: 58, 19: 73, 20: 91, 21: 114, 22: 143, 23: 179, 24: 224, 25: 250 } apRewards = { "+2-3": 500, "+4-6": 800, "+7-9": 1000, "10+": 1200, } set_wow_api_key() set_wclogs_api_key() # Logger info discord_logger = logging.getLogger('discord') discord_logger.setLevel(logging.CRITICAL) bot = commands.Bot(command_prefix='!', description ='Progress Bot') """ Events Region """ """ Commands Region """ bot.run('MjczNTgyNTAwNTk1MzY3OTM2.C2lq3A.imEczu1BMAqrOYJfZEBTPJavOvc')
37.343486
161
0.631899
47d9292775bb73955a326acc7b317a3683aeeec2
10,974
py
Python
python_poc/adapters/fingrid_api_adapter.py
pervcomp/Procem
6cefbf6c81b51af948feb9510d39820f8e6f113e
[ "MIT" ]
1
2019-01-09T14:38:44.000Z
2019-01-09T14:38:44.000Z
python_poc/adapters/fingrid_api_adapter.py
pervcomp/Procem
6cefbf6c81b51af948feb9510d39820f8e6f113e
[ "MIT" ]
4
2021-03-09T00:03:21.000Z
2022-02-12T05:33:21.000Z
python_poc/adapters/fingrid_api_adapter.py
pervcomp/Procem
6cefbf6c81b51af948feb9510d39820f8e6f113e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Module for reading and parsing values from Fingrid APIs.""" # Copyright (c) TUT Tampere University of Technology 2015-2018. # This software has been developed in Procem-project funded by Business Finland. # This code is licensed under the MIT license. # See the LICENSE.txt in the project root for the license terms. # # Main author(s): Ville Heikkila, Otto Hylli, Pekka Itavuo, # Teemu Laukkarinen ja Ulla-Talvikki Virta import copy import csv import datetime import json import requests import time try: import adapters.common_utils as common_utils import adapters.rest_utils as rest_utils except: # used when running the module directly import common_utils import rest_utils
43.896
118
0.609714
47de6098d15918068f7f92c961c579b6396d5610
1,222
py
Python
scripts/acr_make_overview.py
vogelbac/LAB-QA2GO-
be434da7399d396413309f947f4b634d8fae9a17
[ "BSD-3-Clause" ]
14
2019-02-07T10:50:58.000Z
2021-09-03T16:11:00.000Z
scripts/acr_make_overview.py
vogelbac/LAB-QA2GO-
be434da7399d396413309f947f4b634d8fae9a17
[ "BSD-3-Clause" ]
6
2019-01-28T09:19:27.000Z
2021-09-09T06:56:42.000Z
scripts/acr_make_overview.py
vogelbac/LAB-QA2GO
be434da7399d396413309f947f4b634d8fae9a17
[ "BSD-3-Clause" ]
4
2019-01-28T09:00:58.000Z
2021-05-25T13:54:40.000Z
# script to generate an overview file of all measurentoverview files import os import sys
31.333333
504
0.720949
47de90ccb81d9e53366bae7e288742ccd559ea5d
328
py
Python
tests/test_protein.py
kalekundert/autosnapgene
cc019b89f7ab8842d95fd268c24987aabbe1c0b6
[ "MIT" ]
null
null
null
tests/test_protein.py
kalekundert/autosnapgene
cc019b89f7ab8842d95fd268c24987aabbe1c0b6
[ "MIT" ]
null
null
null
tests/test_protein.py
kalekundert/autosnapgene
cc019b89f7ab8842d95fd268c24987aabbe1c0b6
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import pytest import autosnapgene as snap
23.428571
49
0.707317
47e1291a9d383474886f3b6cb416cfcb840ff9bb
1,514
py
Python
containers/ice_block.py
craigtmoore/freezer_escape_room
813144641c079db9ab73c873e354ffc57200a3dd
[ "MIT" ]
null
null
null
containers/ice_block.py
craigtmoore/freezer_escape_room
813144641c079db9ab73c873e354ffc57200a3dd
[ "MIT" ]
null
null
null
containers/ice_block.py
craigtmoore/freezer_escape_room
813144641c079db9ab73c873e354ffc57200a3dd
[ "MIT" ]
null
null
null
from typing import Set, List from inspectable import Inspectable from interactable import Interactable from items import Batteries, Hammer from usable import Usable
36.926829
118
0.640687
47e13e680106c821ea95e6afefa8c3825aa0febc
97
py
Python
holagit.py
fvenya7/practica1
2c7084629f0c5e3788a377f8c9d916c28fe188f4
[ "MIT" ]
null
null
null
holagit.py
fvenya7/practica1
2c7084629f0c5e3788a377f8c9d916c28fe188f4
[ "MIT" ]
null
null
null
holagit.py
fvenya7/practica1
2c7084629f0c5e3788a377f8c9d916c28fe188f4
[ "MIT" ]
null
null
null
print("aprendiendo git") a=12 print("ya qued") print("actualizacion 1") print("catualizacion 2")
19.4
24
0.742268
47e169f6fbed0c98822c2408dc1e36d39f35b41d
463
py
Python
scripts/make_json_dataset.py
sethah/deeptennis
a689c5f1d6f5ff1d665aec99b8db6262d3442c3a
[ "MIT" ]
27
2018-11-23T21:37:14.000Z
2021-11-22T08:44:35.000Z
scripts/make_json_dataset.py
sethah/deeptennis
a689c5f1d6f5ff1d665aec99b8db6262d3442c3a
[ "MIT" ]
6
2019-07-09T16:26:56.000Z
2021-05-17T17:29:42.000Z
scripts/make_json_dataset.py
sethah/deeptennis
a689c5f1d6f5ff1d665aec99b8db6262d3442c3a
[ "MIT" ]
4
2019-06-11T06:44:30.000Z
2021-02-27T14:49:02.000Z
import argparse from pathlib import Path if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--frames-path", type=str) parser.add_argument("--output-path", type=str) args = parser.parse_args() frame_paths = [p for p in Path(args.frames_path).iterdir()] with open(args.output_path, "w") as f: for p in sorted(Path(args.frames_path).iterdir()): f.write('{"image_path": "%s"}\n' % str(p))
33.071429
63
0.652268
47e20a2e721763c69d92b54d367291736f3e69c7
26,979
py
Python
app/document/routes.py
DCGM/pero_ocr_web
e901027712827278f9ace914f6ccba16d3ac280f
[ "BSD-2-Clause" ]
2
2020-05-07T13:58:31.000Z
2021-01-27T09:33:07.000Z
app/document/routes.py
DCGM/pero_ocr_web
e901027712827278f9ace914f6ccba16d3ac280f
[ "BSD-2-Clause" ]
47
2019-09-17T19:20:07.000Z
2022-03-20T12:33:28.000Z
app/document/routes.py
DCGM/pero_ocr_web
e901027712827278f9ace914f6ccba16d3ac280f
[ "BSD-2-Clause" ]
1
2019-10-02T10:42:35.000Z
2019-10-02T10:42:35.000Z
import _thread import sqlalchemy from app.document import bp from flask_login import login_required, current_user from flask import render_template, redirect, url_for, request, send_file, flash, jsonify from flask import current_app from app.document.general import create_document, check_and_remove_document, save_image, \ get_collaborators_select_data, save_collaborators, is_document_owner, is_user_owner_or_collaborator,\ remove_image, get_document_images, get_page_layout, get_page_layout_text, update_confidences, is_user_trusted,\ is_granted_acces_for_page, is_granted_acces_for_document, get_line_image_by_id, get_sucpect_lines_ids, \ compute_scores_of_doc, skip_textline, get_line, is_granted_acces_for_line, create_string_response, \ update_baselines, make_image_preview, find_textlines, get_documents_with_granted_acces, \ check_and_change_public_document, is_document_public from werkzeug.exceptions import NotFound from app.db.general import get_requests from app.db.general import get_user_documents, get_document_by_id, get_user_by_email, get_all_documents,\ get_previews_for_documents, get_image_by_id, get_public_documents from app.document.forms import CreateDocumentForm from app.document.annotation_statistics import get_document_annotation_statistics, get_user_annotation_statistics, get_document_annotation_statistics_by_day from io import BytesIO import dateutil.parser import zipfile import time import os import json import re from natsort import natsorted def image_preview(image_id=None, public_access=False): if image_id is None: return send_file('static/img/missing_page.png', cache_timeout=10000000) try: db_image = get_image_by_id(image_id) except (sqlalchemy.exc.StatementError, sqlalchemy.orm.exc.NoResultFound): return "Image does not exist.", 404 document_id = db_image.document_id if public_access: db_document = get_document_by_id(db_image.document_id) if not db_document.is_public: return send_file('static/img/missing_page.png', cache_timeout=10000000) else: if not is_granted_acces_for_document(document_id, current_user): return send_file('static/img/missing_page.png', cache_timeout=10000000) image_preview_path = os.path.join(current_app.config['PREVIEW_IMAGES_FOLDER'], str(document_id), str(image_id) + '.jpg') if not os.path.isfile(image_preview_path): make_image_preview(db_image) return send_file(image_preview_path, cache_timeout=0) def get_image_common(image_id, public=False): try: image_db = get_image_by_id(image_id) except sqlalchemy.exc.StatementError: return "Image does not exist.", 404 if public: if not image_db.document.is_public: return "Image is not public.", 403 elif not is_granted_acces_for_page(image_id, current_user): return "You do not have access to the requested images.", 403 image_path = os.path.join(current_app.config['UPLOADED_IMAGES_FOLDER'], image_db.path) if not os.path.isfile(image_path): print("ERROR: Could not find image on disk. image id: {}, image path: {}.".format(image_id, image_path)) raise NotFound() return send_file(image_path, as_attachment=True, attachment_filename=image_db.filename, cache_timeout=10000000)
38.376956
156
0.725305
47e38cc73a4ca6342b90794377e31733e0fe8cef
4,898
py
Python
src/superdatabase3000/packet.py
JeanMax/SuperDatabase3000
836395c9b6ea2a5d53f81c22bb126e299f3e1bfc
[ "MIT" ]
1
2020-03-30T13:49:29.000Z
2020-03-30T13:49:29.000Z
src/superdatabase3000/packet.py
JeanMax/SuperDatabase3000
836395c9b6ea2a5d53f81c22bb126e299f3e1bfc
[ "MIT" ]
5
2020-03-30T14:32:48.000Z
2020-03-31T12:01:02.000Z
src/superdatabase3000/packet.py
JeanMax/SuperDatabase3000
836395c9b6ea2a5d53f81c22bb126e299f3e1bfc
[ "MIT" ]
null
null
null
""" This module defines a packet structure (composed of: canari, payload, payload_size, and eventually an extra payload). You'll find a 'pack' functions allowing you to create a packet from a payload (btyes object) you want to send, and an 'unpack' function that can extract a payload from a packet (as a bytes object too) after validating the packet structure (canari, checksum, length). packet[64]: abcd abcdefghabcdefghabcd abcdefgh ^ ^ ^ canari[4] checksum[20] payload_size[8] payload_size <-------------------------------------------> abcdefghabcdefghabcdefghabcdefgh [...] ^ ^ payload[32] extra_payload """ import collections import struct import hashlib CANARI = 0xdeadbeef CANARI_SIZE = 4 # unsigned int CHECKSUM_SIZE = 20 # sha1 INT_SIZE = 8 # unsigned long long PAYLOAD_MIN_SIZE = 32 # TODO: tweak me based on DbClient requests size: 256-32 PACKET_MIN_SIZE = ( CANARI_SIZE + CHECKSUM_SIZE + INT_SIZE + PAYLOAD_MIN_SIZE ) # 64 CHECKSUM_OFFSET = CANARI_SIZE + CHECKSUM_SIZE # we'll start hasing from there STRUCT_FORMAT = ( "!" "I" # canari f"{CHECKSUM_SIZE}s" # checksum "Q" # payload_size "{payload_size}s" # payload: complete its size using format ) Packet = collections.namedtuple( "Packet", ["canari", "checksum", "payload_size", "payload"] ) def _checksum(bytes_buf): """Return the sha1 digest of the given 'bytes_buf'.""" return hashlib.sha1(bytes_buf[CHECKSUM_OFFSET:]).digest() def _verify_checksum(ctrl_checksum, bytes_buf): """ Return True if the given 'ctrl_checksum' matches the checksum of 'bytes_buf', otherwise throw a ValueError. """ if ctrl_checksum != _checksum(bytes_buf): raise ValueError("packet: invalid checksum") return True def pack(payload, with_checksum=True): """ Create a packet from the given 'payload' byte object that you want to send. If the 'with_checksum' argument is True, the checksum of the payload will be calculated and inserted in the packet, otherwise the checksum will be set to zeros. Returns a bytes object of the created packet (ready to send). """ packet = Packet( canari=CANARI, checksum=b"\x00" * CHECKSUM_SIZE, payload_size=len(payload), payload=payload.ljust(PAYLOAD_MIN_SIZE, b"\x00") ) payload_size = max(packet.payload_size, PAYLOAD_MIN_SIZE) try: bytes_buf = struct.pack( STRUCT_FORMAT.format(payload_size=payload_size), *packet ) except struct.error as e: raise ValueError(f"packet: {e}") if with_checksum: packet = packet._replace(checksum=_checksum(bytes_buf)) bytes_buf = struct.pack( STRUCT_FORMAT.format(payload_size=payload_size), *packet ) return bytes_buf def unpack(bytes_buf, with_checksum=True): """ Extract the payload (as a bytes object) from the given 'bytes_buf' packet. If the 'with_checksum' argument is True, the checksum in the packet will be checked against a calculated checksum of the packet payload. Otherwise it will just be ignored. Returns a bytes object of the extracted payload. A ValueError will be thrown if an invalid packet is given as 'bytes_buf' (invalid canari, checksum, payload length) """ # first, we try to unpack as if it was a 64 bytes packet try: packet = struct.unpack( STRUCT_FORMAT.format(payload_size=PAYLOAD_MIN_SIZE), bytes_buf[:PACKET_MIN_SIZE] ) except struct.error as e: raise ValueError(f"packet: {e}") packet = Packet(*packet) if packet.canari != CANARI: raise ValueError("packet: the canari is dead") # payload can fit in a 64 bytes packet: just verify checksum, then job done if packet.payload_size <= PAYLOAD_MIN_SIZE: if with_checksum: _verify_checksum(packet.checksum, bytes_buf) packet = packet._replace( payload=packet.payload[:packet.payload_size] ) return packet # packet is actually bigger than 64 bytes (extra_payload) if len(bytes_buf) <= PACKET_MIN_SIZE: return packet # the payload is incomplete, and checksum not verified try: packet = struct.unpack( STRUCT_FORMAT.format(payload_size=packet.payload_size), bytes_buf ) except struct.error as e: raise ValueError(f"packet: {e}") packet = Packet(*packet) if with_checksum: _verify_checksum(packet.checksum, bytes_buf) return packet # complete packet with extra payload
32.223684
79
0.636178
47e43b3b4e3f0031df6f61702eae33c0a872be24
1,095
py
Python
microcosm_flask/swagger/api.py
Sinon/microcosm-flask
c1404ebc94459c8156b04f5e04490a330117524c
[ "Apache-2.0" ]
11
2017-01-30T21:53:20.000Z
2020-05-29T22:39:19.000Z
microcosm_flask/swagger/api.py
Sinon/microcosm-flask
c1404ebc94459c8156b04f5e04490a330117524c
[ "Apache-2.0" ]
139
2016-03-09T19:09:59.000Z
2021-09-03T17:14:00.000Z
microcosm_flask/swagger/api.py
Sinon/microcosm-flask
c1404ebc94459c8156b04f5e04490a330117524c
[ "Apache-2.0" ]
10
2016-12-19T22:39:42.000Z
2021-03-09T19:23:15.000Z
""" API interfaces for swagger operations. """ from typing import ( Any, Iterable, Mapping, Tuple, ) from marshmallow import Schema from marshmallow.fields import Field from microcosm_flask.swagger.parameters import Parameters from microcosm_flask.swagger.schemas import Schemas def build_schema(schema: Schema, strict_enums: bool = True) -> Mapping[str, Any]: """ Build JSON schema from a marshmallow schema. """ builder = Schemas(build_parameter=build_parameter, strict_enums=strict_enums) return builder.build(schema) def iter_schemas(schema: Schema, strict_enums: bool = True) -> Iterable[Tuple[str, Any]]: """ Build zero or more JSON schemas for a marshmallow schema. Generates: name, schema pairs. """ builder = Schemas(build_parameter=build_parameter, strict_enums=strict_enums) return builder.iter_schemas(schema) def build_parameter(field: Field, **kwargs) -> Mapping[str, Any]: """ Build JSON parameter from a marshmallow field. """ builder = Parameters(**kwargs) return builder.build(field)
23.804348
89
0.717808
47e4a20a59666f230f44fc593c648ca410af9651
1,286
py
Python
converter.py
GuzTech/uart_to_hdmi
b6ea4efa85a06e59406ffc3b034028f00d5a7cbf
[ "MIT" ]
1
2020-07-04T01:09:00.000Z
2020-07-04T01:09:00.000Z
converter.py
GuzTech/uart_to_hdmi
b6ea4efa85a06e59406ffc3b034028f00d5a7cbf
[ "MIT" ]
null
null
null
converter.py
GuzTech/uart_to_hdmi
b6ea4efa85a06e59406ffc3b034028f00d5a7cbf
[ "MIT" ]
null
null
null
import sys import struct if(len(sys.argv) != 5): print("Usage: python converter.py <num_pixels_x> <num_pixels_y> <input file> <output file>\n") else: num_pixels_x = int(sys.argv[1]) num_pixels_y = int(sys.argv[2]) print(num_pixels_x) has_alpha_channel = False infile = open(sys.argv[3], "rb") data = infile.read() data_len = len(data) if((data_len != (num_pixels_x * num_pixels_y * 4)) or (data_len != (num_pixels_x * num_pixels_y * 3))): AssertionError( "File size does not match given resolution, or does not use 8bpp.") if(data_len == (num_pixels_x * num_pixels_y * 4)): has_alpha_channel = True outfile = open(sys.argv[4], "wb") infile.seek(0) for y in range(num_pixels_y): for x in range(num_pixels_x): r = (int.from_bytes(infile.read(1), 'little') >> 5) & 0x7 g = (int.from_bytes(infile.read(1), 'little') >> 5) & 0x7 b = (int.from_bytes(infile.read(1), 'little') >> 6) & 0x3 if(has_alpha_channel): # Alpha channel, we don't use this _ = infile.read(1) pixel = (b << 6) | (g << 3) | r outfile.write(pixel.to_bytes(1, 'little')) infile.close() outfile.close()
30.619048
98
0.573872
47e4f4051c67291e2bfd6264123e2f3ba68f0903
319
py
Python
project_handwritten-character-recognition-with-convolutional-neural-network-master/Codes/remove_old_image.py
akash519-gif/Handwritten-letter-detection.
f49240bc3dcea5eb8f53bade66ccb49bf8809be6
[ "Apache-2.0" ]
null
null
null
project_handwritten-character-recognition-with-convolutional-neural-network-master/Codes/remove_old_image.py
akash519-gif/Handwritten-letter-detection.
f49240bc3dcea5eb8f53bade66ccb49bf8809be6
[ "Apache-2.0" ]
null
null
null
project_handwritten-character-recognition-with-convolutional-neural-network-master/Codes/remove_old_image.py
akash519-gif/Handwritten-letter-detection.
f49240bc3dcea5eb8f53bade66ccb49bf8809be6
[ "Apache-2.0" ]
null
null
null
# import require package import os upload_dir = './uploads' remove_content(upload_dir) images_dir = './static/images' remove_content(images_dir)
18.764706
44
0.705329
47e633e7aabb9cbd31dd0cb29459787e531f57cc
15,271
py
Python
src/scaffoldfitter/fitterstepfit.py
zekh167/scaffoldfitter
357a312948464399433f29f19cdac4d7fd6061ef
[ "Apache-2.0" ]
null
null
null
src/scaffoldfitter/fitterstepfit.py
zekh167/scaffoldfitter
357a312948464399433f29f19cdac4d7fd6061ef
[ "Apache-2.0" ]
null
null
null
src/scaffoldfitter/fitterstepfit.py
zekh167/scaffoldfitter
357a312948464399433f29f19cdac4d7fd6061ef
[ "Apache-2.0" ]
null
null
null
""" Fit step for gross alignment and scale. """ from opencmiss.utils.zinc.field import assignFieldParameters, createFieldsDisplacementGradients from opencmiss.utils.zinc.general import ChangeManager from opencmiss.zinc.field import Field, FieldFindMeshLocation from opencmiss.zinc.optimisation import Optimisation from opencmiss.zinc.result import RESULT_OK from scaffoldfitter.fitterstep import FitterStep
49.26129
185
0.71017
47e8c93b45a616423efc06f0610ea0b349b67a78
261
py
Python
src/structlog_to_seq/abs_processor.py
gjedlicska/structlog-to-seq
44d8eb536db2cf0a5bbd8561a545b39f7584f372
[ "MIT" ]
null
null
null
src/structlog_to_seq/abs_processor.py
gjedlicska/structlog-to-seq
44d8eb536db2cf0a5bbd8561a545b39f7584f372
[ "MIT" ]
null
null
null
src/structlog_to_seq/abs_processor.py
gjedlicska/structlog-to-seq
44d8eb536db2cf0a5bbd8561a545b39f7584f372
[ "MIT" ]
null
null
null
from abc import ABCMeta, abstractmethod from typing import Any
21.75
56
0.708812
47e9940c13fbcbe44daf1d6db6129df93471f1e5
2,965
py
Python
scripts/ch4_correlation_plot.py
mathkann/understanding-random-forests
d2c5e0174d1a778be37a495083d756b2829160ec
[ "BSD-3-Clause" ]
353
2015-01-03T13:34:03.000Z
2022-03-25T05:16:30.000Z
scripts/ch4_correlation_plot.py
mathkann/understanding-random-forests
d2c5e0174d1a778be37a495083d756b2829160ec
[ "BSD-3-Clause" ]
1
2016-06-29T05:43:41.000Z
2016-06-29T05:43:41.000Z
scripts/ch4_correlation_plot.py
mathkann/understanding-random-forests
d2c5e0174d1a778be37a495083d756b2829160ec
[ "BSD-3-Clause" ]
153
2015-01-14T03:46:42.000Z
2021-12-26T10:13:51.000Z
import numpy as np import matplotlib.pyplot as plt import pandas as pd blue = (0, 0, 1.0) green = (0, 0.8, 0) red = (1.0, 0, 0) red_alpha = (1.0, 0, 0, 0.001) gray = (0.7, 0.7, 0.7) results = [[],[], ["RandomForestRegressor-K=1",3.527128,2.820386,0.706743,0.063868,0.009973,0.286104,0.420639], ["RandomForestRegressor-K=2",3.036291,2.333874,0.702417,0.075537,0.011347,0.314841,0.387576], ["RandomForestRegressor-K=3",2.823907,2.109897,0.714009,0.087809,0.012335,0.349486,0.364523], ["RandomForestRegressor-K=4",2.715613,1.979086,0.736527,0.102472,0.014302,0.391750,0.344778], ["RandomForestRegressor-K=5",2.643232,1.887080,0.756151,0.111790,0.015411,0.421380,0.334772], ["RandomForestRegressor-K=6",2.642354,1.851498,0.790856,0.125342,0.016268,0.466556,0.324300], ["RandomForestRegressor-K=7",2.636296,1.822316,0.813980,0.134200,0.017159,0.495746,0.318234], ["RandomForestRegressor-K=8",2.623646,1.784344,0.839303,0.146081,0.018631,0.531100,0.308202], ["RandomForestRegressor-K=9",2.645439,1.780447,0.864992,0.152977,0.019492,0.558601,0.306390], ["RandomForestRegressor-K=10",2.638901,1.753437,0.885464,0.160371,0.020184,0.583494,0.301970], ["ExtraTreesRegressor-K=1",3.376099,2.723586,0.652514,0.051864,0.009532,0.230752,0.421761], ["ExtraTreesRegressor-K=2",2.801100,2.146534,0.654566,0.060858,0.011926,0.258086,0.396480], ["ExtraTreesRegressor-K=3",2.536644,1.886837,0.649807,0.067322,0.012756,0.273424,0.376383], ["ExtraTreesRegressor-K=4",2.409943,1.745583,0.664360,0.076519,0.016511,0.302962,0.361399], ["ExtraTreesRegressor-K=5",2.330165,1.651706,0.678459,0.086137,0.017063,0.331515,0.346944], ["ExtraTreesRegressor-K=6",2.285386,1.597063,0.688323,0.092147,0.019216,0.349667,0.338655], ["ExtraTreesRegressor-K=7",2.263983,1.553772,0.710211,0.100322,0.020510,0.378116,0.332094], ["ExtraTreesRegressor-K=8",2.246997,1.528167,0.718831,0.107167,0.021703,0.396323,0.322507], ["ExtraTreesRegressor-K=9",2.236845,1.495768,0.741077,0.115699,0.023020,0.423894,0.317183], ["ExtraTreesRegressor-K=10",2.232862,1.469781,0.763081,0.123849,0.024420,0.451778,0.311304]] max_features = range(1, 10+1) ax = plt.subplot(1, 2, 1) plt.plot(max_features, [results[1+k][1] for k in max_features], 'o-', color=blue, label='Random Forest') plt.plot(max_features, [results[1+k][2] for k in max_features], 'o--', color=blue) plt.plot(max_features, [results[1+k][3] for k in max_features], 'o:', color=blue) plt.plot(max_features, [results[11+k][1] for k in max_features], 'o-', color=red, label='Extremely Randomized Trees') plt.plot(max_features, [results[11+k][2] for k in max_features], 'o--', color=red) plt.plot(max_features, [results[11+k][3] for k in max_features], 'o:', color=red) plt.legend(loc="best") plt.xlabel("$K$") plt.subplot(1, 2, 2, sharex=ax) plt.plot(max_features, [results[1+k][4] for k in max_features], 'o-', color=blue) plt.plot(max_features, [results[11+k][4] for k in max_features], 'o-', color=red) plt.xlabel("$K$") plt.ylabel("$\\rho$") plt.show()
57.019231
117
0.725801
47e9c55cbdb85ad05b1bd86a08b95251624c0eb6
4,029
py
Python
Run_Vfree-Synthetic_Flat.py
Fernandez-Trincado/DataReductionPy
f06eb975067dc80cac038a47d3b9a9dde43bfdb6
[ "FSFAP" ]
1
2020-01-25T06:28:40.000Z
2020-01-25T06:28:40.000Z
Run_Vfree-Synthetic_Flat.py
Fernandez-Trincado/DataReductionPy
f06eb975067dc80cac038a47d3b9a9dde43bfdb6
[ "FSFAP" ]
null
null
null
Run_Vfree-Synthetic_Flat.py
Fernandez-Trincado/DataReductionPy
f06eb975067dc80cac038a47d3b9a9dde43bfdb6
[ "FSFAP" ]
null
null
null
#!/usr/bin/python # Created by: Jose G. Fernandez Trincado # Date: 2013 June 28 # Program: This program correct the imagen .fit (Science) by Syntethic Flat # 1 m Reflector telescope, National Astronomical Observatory of Venezuela # Mode f/5, 21 arcmin x 21 arcmin # Project: Omega Centauri, Tidal Tails. # The program Astrometry_V1.py defined was developed by J. G. Fernandez Trincado at the Centro de Investigaciones de Astronomia "Francisco J. Duarte". # If you have any problems, please contact J. G. Fernandez Trincado, jfernandez@cida.ve / jfernandezt87@gmail.com import numpy as np import scipy as sc import pyfits import sys, os from pyraf import iraf #run, program. #Example: # Next program: ./Run_Vfree-Synthetic_Flat.py GrupoX.dat # >>> GrupoX.dat/XXX.XX.XXX.XX.XXXX.hlv* location='/home/jfernandez/Escritorio/Tesis_2013-2014_CIDA_ULA/Data_Tesis_2013_2014_CIDA-ULA/Reflector/' if len(sys.argv[:]) < 2.: print '***************************************************' print 'Warning: ./Run_Vfree-Synthetic_Flat.py GrupoX.dat' print '***************************************************' else: #Combine images MEDIAN #TASK IRAF: images.immatch.imcombine #Function to combine images for generates Master Flat data=sc.genfromtxt(sys.argv[1],dtype=str) #Lee lista dentro de los directorios, estas listas contienen la ruta de las imagenes ya clasificadas por filtro y tiempo de exposicion. for i in np.arange(len(data)): temp='/Initial_list_Syntethic_flat_' os.system('ls '+data[i]+temp+'* >temporal_classified.dat') data_clas=sc.genfromtxt('temporal_classified.dat',dtype=str) for j in np.arange(len(data_clas)): if data_clas[j] == data[i]+temp+'I60': os.system('cat '+data[i]+temp+'I60 >> MasterFlat_I60_Good.dat') elif data_clas[j] == data[i]+temp+'I90': os.system('cat '+data[i]+temp+'I90 >> MasterFlat_I90_Good.dat') elif data_clas[j] == data[i]+temp+'V60': os.system('cat '+data[i]+temp+'V60 >> MasterFlat_V60_Good.dat') elif data_clas[j] == data[i]+temp+'V90': os.system('cat '+data[i]+temp+'V90 >> MasterFlat_V90_Good.dat') else: pass os.system('rm temporal_classified.dat') os.system('ls MasterFlat_*_Good.dat >list_temp_gen.dat') data_end=sc.genfromtxt('list_temp_gen.dat',dtype=str) for k in np.arange(len(data_end)): print 'Generating Master Flat: '+data_end[k] print '' Master_combina('@'+data_end[k],data_end[k]+'.fit') print 'End of the process' print '' for h in np.arange(len(data)): os.system('cp '+data_end[k]+'.fit '+data[h]+'/') os.system('rm '+data_end[k]+'.fit') os.system('rm list_temp_gen.dat MasterFlat_*_Good.dat') #END
28.778571
150
0.70489
47e9dce96f4661d34f10811dc840595ffed5833b
829
py
Python
abing/backend/abing/models/feature.py
dohyungp/abitrary
4dc3f4c79a433a2debe1f1e151d00400a2225e9c
[ "MIT" ]
5
2020-12-04T14:15:26.000Z
2020-12-30T09:11:09.000Z
abing/backend/abing/models/feature.py
dohyungp/abitrary
4dc3f4c79a433a2debe1f1e151d00400a2225e9c
[ "MIT" ]
8
2020-12-20T16:33:30.000Z
2021-01-06T01:56:55.000Z
abing/backend/abing/models/feature.py
dohyungp/abitrary
4dc3f4c79a433a2debe1f1e151d00400a2225e9c
[ "MIT" ]
1
2021-01-06T15:25:19.000Z
2021-01-06T15:25:19.000Z
from typing import TYPE_CHECKING from sqlalchemy import Column, Integer, String, Boolean, DateTime, ForeignKey from sqlalchemy.orm import relationship from sqlalchemy.sql import func from abing.db.base_class import Base if TYPE_CHECKING: from .arm import Arm # noqa: F401
30.703704
79
0.731001
47eb8cdb6e6b5599e5209b828d0aacfe3eb4df25
555
py
Python
Utilities/fe8_exp_test.py
Shahrose/lex-talionis
ef7e48124b36269f4212eb0e3a7747caf53bfadd
[ "MIT" ]
null
null
null
Utilities/fe8_exp_test.py
Shahrose/lex-talionis
ef7e48124b36269f4212eb0e3a7747caf53bfadd
[ "MIT" ]
null
null
null
Utilities/fe8_exp_test.py
Shahrose/lex-talionis
ef7e48124b36269f4212eb0e3a7747caf53bfadd
[ "MIT" ]
null
null
null
mlevel = 1 elevel = 1 mclass_bonus_a = 20 eclass_bonus_a = 0 mclass_bonus_b = 60 eclass_bonus_b = 0 mclass_power = 3 eclass_power = 2 print(damage_exp()) print(defeat_exp()) print(defeat_exp(2)) print(kill_exp())
24.130435
103
0.715315
47eb8f87adf534b765a9c50c9659d9424a7c2ade
1,315
py
Python
createDB.py
ansh-mehta/COVID-19-Vaccine-Slot-Notifier
b09d163ebee960089edbd8b894e3b956745504df
[ "Apache-2.0" ]
null
null
null
createDB.py
ansh-mehta/COVID-19-Vaccine-Slot-Notifier
b09d163ebee960089edbd8b894e3b956745504df
[ "Apache-2.0" ]
1
2021-09-11T18:06:33.000Z
2021-09-11T18:06:33.000Z
createDB.py
ansh-mehta/COVID-19-Vaccine-Slot-Notifier
b09d163ebee960089edbd8b894e3b956745504df
[ "Apache-2.0" ]
null
null
null
import requests import json from pymongo import MongoClient, collection client = MongoClient("mongodb://localhost:27017") database = client["temp"] states_districts = database["states_districts"] states_districts.remove({}) headers = { "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36" } response = requests.get( "https://cdn-api.co-vin.in/api/v2/admin/location/states", headers=headers ) states = json.loads(response.text)["states"] custom_state_id=1 for state in states: state_id = state["state_id"] state_name = state["state_name"].strip() print(state_name) response = requests.get( "https://cdn-api.co-vin.in/api/v2/admin/location/districts/" + str(state_id), headers=headers, ) custom_district_id=1 temp=[] districts = json.loads(response.text)["districts"] for district in districts: district_id = district["district_id"] district_name = district["district_name"].strip() data={"state_name":state_name,"custom_state_id":custom_state_id,"district_name":district_name,"custom_district_id":custom_district_id,"actual_district_id":district_id} states_districts.insert_one(data) custom_district_id+=1 custom_state_id+=1
35.540541
175
0.719392
47ecac75bfa5b5456323216191e97427a888010b
3,989
py
Python
model_conv.py
isn350/e_hir_GAN
53cc7530b1c4bb7ee5250d7fc057b71ceb5726b4
[ "MIT" ]
null
null
null
model_conv.py
isn350/e_hir_GAN
53cc7530b1c4bb7ee5250d7fc057b71ceb5726b4
[ "MIT" ]
null
null
null
model_conv.py
isn350/e_hir_GAN
53cc7530b1c4bb7ee5250d7fc057b71ceb5726b4
[ "MIT" ]
null
null
null
import tensorflow as tf
40.292929
124
0.552018
47ed721213e9d40abe12f67af339888e2d8b6e5e
12,488
py
Python
squad_utils.py
ashtonteng/squad_exp
0cdcb3e41783026e805fedbe671a9a69a90d8a86
[ "MIT" ]
1
2019-01-08T16:41:54.000Z
2019-01-08T16:41:54.000Z
squad_utils.py
ashtonteng/squad_exp
0cdcb3e41783026e805fedbe671a9a69a90d8a86
[ "MIT" ]
null
null
null
squad_utils.py
ashtonteng/squad_exp
0cdcb3e41783026e805fedbe671a9a69a90d8a86
[ "MIT" ]
null
null
null
import numpy as np # import matplotlib.pyplot as plt # import pylab import re import itertools import json import collections import multiprocessing as mp import random import sys #sys.path.append("./src/") #from proto import io as protoio #from utils.multiprocessor_cpu import MultiProcessorCPU ''' some general pre/post processing tips: 1. should strip the space at the begining or end 2. consider the influence of punctuation at the end 3. be careful about empty string when using lib re functions ''' def LoadJsonData(filePath): ''' Load the file. @param filePath: filePath string ''' with open(filePath) as dataFile: data = json.load(dataFile) return data def DumpJsonPrediction(filePath, predictions): ''' currently only support top 1 prediction. the output put goes in the following format: {id : answer string} ''' predDict = dict() for title in predictions.keys(): for pred in predictions[title]: if len(pred["prediction"] ) == 0: continue predDict[pred["id"] ] = pred["prediction"][0] with open(filePath, "w") as outFile: json.dump(predDict, outFile) def ParseJsonData(data): ''' @param data is a json object. This is the version before visualization functionality. ''' dataPerArticle = dict() for article in data: text = "" # process articles to a list of sentences represented by list of words for paragraph in article["paragraphs"]: text += paragraph["context"].strip() + " " textInSentences = TextToSentence(text) queries = list() answers = list() qaIds = list() for paragraph in article["paragraphs"]: for qaPair in paragraph["qas"]: # turn everything into lower cases queries.append(StripPunct(qaPair["question"].lower().strip() ) ) answers.append(StripPunct(qaPair["answers"][0]["text"].lower().strip() ) ) qaIds.append(qaPair["id"] ) dataPerArticle[article["title"] ] = { \ "textInSentences": textInSentences, "queries": queries, "answers": answers, "qaIds": qaIds } return dataPerArticle def TextToSentence(text): ''' cut document into sentences with the given delimiters @param delimiters: delimiters to cut doc to sentences as a list of char @return sentences: list of full string of sentences ''' caps = "([A-Z])" prefixes = "(Mr|St|Mrs|Ms|Dr)[.]" suffixes = "(Inc|Ltd|Jr|Sr|Co|Corp)" starters = "(Mr|Mrs|Ms|Dr|He\s|She\s|It\s|They\s|Their\s|Our\s|We\s|But\s|However\s|That\s|This\s|Wherever)" acronyms = "([A-Z][.][A-Z][.](?:[A-Z][.])?)" websites = "[.](com|net|org|io|gov)" numbers = "([-+]?)([0-9]+)(\.)([0-9]+)" text = " " + text + " " text = text.replace("\n"," ") text = re.sub(prefixes,"\\1<prd>",text) text = re.sub(websites,"<prd>\\1",text) if "Ph.D" in text: text = text.replace("Ph.D.","Ph<prd>D<prd>") text = re.sub("\s" + caps + "[.] "," \\1<prd> ",text) text = re.sub(acronyms+" "+starters,"\\1<stop> \\2",text) text = re.sub(caps + "[.]" + caps + "[.]" + caps + "[.]","\\1<prd>\\2<prd>\\3<prd>",text) text = re.sub(caps + "[.]" + caps + "[.]","\\1<prd>\\2<prd>",text) text = re.sub(caps + "[.] " + caps + "[.] " + caps + "[.] ","\\1<prd> \\2<prd> \\3<prd>",text) text = re.sub(caps + "[.] " + caps + "[.] ","\\1<prd> \\2<prd>",text) text = re.sub(" "+suffixes+"[.] "+starters," \\1<stop> \\2",text) text = re.sub(" "+suffixes+"[.]"," \\1<prd>",text) text = re.sub(" " + caps + "[.]"," \\1<prd>",text) text = re.sub(numbers, "\\g<1>\\g<2><prd>\\g<4>", text) # # specific to current SQUAD dataset text = text.lower() suffixesSupp = "(\.)([a-z]+)" text = re.sub(suffixesSupp,"<prd>\\2",text) text = text.replace("...", "<elli>") text = text.replace("i.e.", "i<prd>e<prd>") text = text.replace("etc.", "etc<prd>") text = text.replace("u.s.", "u<prd>s<prd>") text = text.replace("v.s.", "v<prd>s<prd>") text = text.replace("vs.", "vs<prd>") text = text.replace(" v. ", " v<prd> ") text = text.replace("med.sc.d", "med<prd>sc<prd>d") text = text.replace("ecl.", "ecl<prd>") text = text.replace("hma.", "hma<prd>") text = text.replace("(r.", "(r<prd>") # for some year related staff text = text.replace("(d.", "(d<prd>") if "\"" in text: text = text.replace(".\"","\".") if "!" in text: text = text.replace("!\"","\"!") if "?" in text: text = text.replace("?\"","\"?") text = text.replace(".",".<stop>") text = text.replace("?","?<stop>") text = text.replace("!","!<stop>") text = text.replace("<prd>",".") text = text.replace("<elli>", "...") sentences = text.split("<stop>") sentences = [s.strip() \ for s in sentences if s.strip() != ''] return sentences def SentenceToWord(sentences): ''' cut sentences to list of words @param sentences: a list of sentences @return sentencesInWords: a list containing list of words ''' delimiters = "[ ,;\"\n\(\)]+" sentencesInWords = list() for sentence in sentences: sentence = StripPunct(sentence) sentence = sentence.replace("...", " ...") sentencesInWords.append(re.split(delimiters, sentence) ) # omit the empty word produced by re.split sentencesInWords[-1] = [s.strip().lower() for s in sentencesInWords[-1] if s.strip() != ''] return sentencesInWords ############### helper to multiprocess per article task with MultiprocessorCPU def MultipleProcess(agent, titleList, targetFunc, conservative=True, debug=False): ''' target function is the one we want to execute for each article. When conservative == True, the num of threads is equal to the number of cores on the machine ''' procs = [] manager = mp.Manager() returnDict = manager.dict() if debug: for title in titleList: targetFunc(agent, title, returnDict) else: for title in titleList: p = mp.Process(target=targetFunc, args=(agent, title, returnDict) ) procs.append(p) processor = MultiProcessorCPU(procs) processor.run(conservative) return returnDict ################ helpers for protobuf based dataset################# def ReconstructStrFromSpan(tokens, span=None): ''' @param tokens: a protobuf object representing a list of tokens @param span: a pair (beginId, endId). Note endId is excluded. ''' if span is None: span = (0, len(tokens)) string = "" beginId, endId = span for i in range(beginId, endId): string += tokens[i].word + tokens[i].after string = string.strip() return string def GetContextBigram(article): ''' article is an protobuf object for apecific article ''' bigram = [] for paragraph in article.paragraphs: bigramByPara = list() for s in paragraph.context.sentence: bigramByPara.append(GetBigramBySentence(s.token) ) bigram.append(bigramByPara) return bigram def GetBigramBySentence(tokens): ''' tokens is a list of proto message object tokens ''' bigram = [] for i in range(len(tokens) - 1): bigram.append( (tokens[i].word.lower(), tokens[i + 1].word.lower() ) ) return bigram def GetContextConstituentSpan(article): ''' @return span: the spans are organized by the following hierarchy span = [spanByPara1, spanByPara2, ...] Where spanByPara1 = [spanBySentence1, spanBySentence2, ...] spanBySentence1 is a list of spans extracted from the parsing tree ''' span = [] for paragraph in article.paragraphs: spanByPara = list() for s in paragraph.context.sentence: # tokens = [token.word for token in s.token] spanBySentence = GetConstituentSpanBySentence(s.parseTree) spanByPara.append(spanBySentence) span.append(spanByPara) return span def GetConstituentSpanBySentence(parseTree): ''' @param parseTree: a protobuf object extract span represented by nodes in the parsing trees ''' def AddSpanToParseTree(parseTree, nextLeaf): ''' @param parseTree: a protobuf object fill in the yieldBeginIndex and yieldEndIndex fields for parsing trees ''' if len(parseTree.child) == 0: parseTree.yieldBeginIndex = nextLeaf parseTree.yieldEndIndex = nextLeaf + 1 return parseTree, nextLeaf + 1 else: for i in range(len(parseTree.child) ): child, nextLeaf = \ AddSpanToParseTree(parseTree.child[i], nextLeaf) parseTree.child[i].CopyFrom(child) parseTree.yieldBeginIndex = parseTree.child[0].yieldBeginIndex parseTree.yieldEndIndex = parseTree.child[-1].yieldEndIndex return parseTree, nextLeaf parseTree, _ = AddSpanToParseTree(parseTree, nextLeaf=0) spans = list() visitList = list() visitList.append(parseTree) tokenList = list() while len(visitList) != 0: node = visitList.pop(0) spans.append( (node.yieldBeginIndex, node.yieldEndIndex) ) for subTree in node.child: visitList.append(subTree) spansUniq = [] [spansUniq.append(span) for span in spans if span not in spansUniq] return spansUniq # some functions for debug def GetCandidateAnsListInStr(candDataPerArticle, origDataPerArtice, ids, predId): ''' for detailed use browse to prediction function of context rnn ''' ansList = list() for idx in ids: predInfo = candDataPerArticle.candidateAnswers[idx] predParaId = predInfo.paragraphIndex predSenId = predInfo.sentenceIndex predSpanStart = predInfo.spanBeginIndex predSpanEnd = predInfo.spanBeginIndex + predInfo.spanLength tokens = origDataPerArticle.paragraphs[predParaId].context.sentence[predSenId].token[predSpanStart:predSpanEnd] predStr = ReconstructStrFromSpan(tokens, (0, len(tokens) ) ) ansList.append(predStr) return ansList # for serializing complex results # display proto tokens # remove the and . from tokens def UnkrizeData(data, rate, padId, unkId): ''' artificially set non-<pad> tokens to <unk>. The portion of the artificial <unk> is indicated by rate. ''' mask = np.random.uniform(low=0.0, high=1.0, size=data.shape) mask = np.logical_and( (data != padId), (mask >= (1 - rate) ) ) data[mask] = unkId return data
32.605744
119
0.596493
47ee5fdbd7a2fd709f968f5597836efd8e182df3
207
py
Python
software/test/sample.py
technovus-sfu/swarmbots
6a50193a78056c0359c426b097b96e1c37678a55
[ "MIT" ]
null
null
null
software/test/sample.py
technovus-sfu/swarmbots
6a50193a78056c0359c426b097b96e1c37678a55
[ "MIT" ]
3
2018-02-05T23:21:02.000Z
2018-05-03T02:58:50.000Z
software/test/sample.py
technovus-sfu/swarmbots
6a50193a78056c0359c426b097b96e1c37678a55
[ "MIT" ]
null
null
null
# print("Hello World!") # sum = 2 + 2 # print(sum) # for i in range(10,-10,-1): # if i % 2 == 0: # print(i) # else: # pass # while(1): # val = input("Enter ") # print(val)
13.8
28
0.434783
47f00c4575c588196fb02578a13c75df9196c8ba
476
py
Python
super_nft/blueprints/datasprint/datasprint.py
Blockchain-Key/Super-NFT
3983621127636bf9d4da740a5ac60451a3e5bbe8
[ "MIT" ]
5
2021-05-02T00:06:41.000Z
2021-11-30T10:34:08.000Z
super_nft/blueprints/datasprint/datasprint.py
Blockchain-Key/Super-NFT
3983621127636bf9d4da740a5ac60451a3e5bbe8
[ "MIT" ]
3
2021-05-06T09:31:49.000Z
2021-05-11T05:14:32.000Z
super_nft/blueprints/datasprint/datasprint.py
Blockchain-Key/Super-NFT
3983621127636bf9d4da740a5ac60451a3e5bbe8
[ "MIT" ]
1
2021-05-06T15:34:24.000Z
2021-05-06T15:34:24.000Z
# -*- coding: utf-8 -*- """User views.""" from flask import Blueprint, render_template, jsonify from flask_login import login_required from super_nft.extensions import csrf_protect datasprint_bp = Blueprint("datasprint", __name__, url_prefix="/datasprint", static_folder="../static")
28
102
0.682773
47f07bbd0388ba3dd47eb8f252a382985372ec31
548
py
Python
CursoemVideoPython/Desafio 34.py
Beebruna/Python
bdbe10ea76acca1b417f5960db0aae8be44e0af3
[ "MIT" ]
null
null
null
CursoemVideoPython/Desafio 34.py
Beebruna/Python
bdbe10ea76acca1b417f5960db0aae8be44e0af3
[ "MIT" ]
null
null
null
CursoemVideoPython/Desafio 34.py
Beebruna/Python
bdbe10ea76acca1b417f5960db0aae8be44e0af3
[ "MIT" ]
null
null
null
''' Escreva um programa que pergunte o salrio de um funcionrio e calcule o valor do seu aumento. Para salrios superiores a R$1.250,00, calcule um aumento de 10% Para os inferiores ou iguais, o aumento de 15%. ''' salario = float(input('Digite o salrio: R$ ')) if salario < 0: print('Valor invlido!') else: if salario <= 1250: print(f'O aumento ser de R${salario*0.15} e passar a ser R${salario + salario*0.15}') else: print(f'O aumento ser de R${salario * 0.10} e passar a ser R${salario + salario * 0.10}')
34.25
99
0.669708
47f0f24b25872b88a91afd63b72991904ea663bc
658
py
Python
python/AULAS/aula20.py
Robert-Marchinhaki/primeiros-passos-Python
515c2c418bfb941bd9af14cf598eca7fe2985592
[ "MIT" ]
null
null
null
python/AULAS/aula20.py
Robert-Marchinhaki/primeiros-passos-Python
515c2c418bfb941bd9af14cf598eca7fe2985592
[ "MIT" ]
null
null
null
python/AULAS/aula20.py
Robert-Marchinhaki/primeiros-passos-Python
515c2c418bfb941bd9af14cf598eca7fe2985592
[ "MIT" ]
null
null
null
cores = {'vermelho': '\033[31m', 'azul': '\033[34m', 'amarelo': '\033[33m', 'branco': '\033[30m', 'roxo': '\033[35m', 'verde': '\033[32m', 'ciano': '\033[36m', 'limpa': '\033[m', 'preto e branco': '\033[7;30;m'} pintar = str(input('Deseja pintar o seu texto com qual cor? ')).lower() while pintar not in cores: pintar = str(input('Erro! Essa cor no existe. Tente novamente: ')) if pintar in cores: break texto = str(input('Digite seu texto: ')) linhas(cor=pintar, txt=texto)
26.32
71
0.542553
47f182f38e59b731af6d6326b1c317ab14b2b7e5
992
py
Python
FatherSon/HelloWorld2_source_code/Listing_20-2.py
axetang/AxePython
3b517fa3123ce2e939680ad1ae14f7e602d446a6
[ "Apache-2.0" ]
1
2019-01-04T05:47:50.000Z
2019-01-04T05:47:50.000Z
FatherSon/HelloWorld2_source_code/Listing_20-2.py
axetang/AxePython
3b517fa3123ce2e939680ad1ae14f7e602d446a6
[ "Apache-2.0" ]
null
null
null
FatherSon/HelloWorld2_source_code/Listing_20-2.py
axetang/AxePython
3b517fa3123ce2e939680ad1ae14f7e602d446a6
[ "Apache-2.0" ]
null
null
null
# Listing_20-2.py # Copyright Warren & Csrter Sande, 2013 # Released under MIT license http://www.opensource.org/licenses/mit-license.php # Version $version ---------------------------- # Adding an event handler for the button import sys from PyQt4 import QtCore, QtGui, uic form_class = uic.loadUiType("MyFirstGui.ui")[0] # Class definition for the main window app = QtGui.QApplication(sys.argv) myWindow = MyWindowClass() myWindow.show() app.exec_()
31
90
0.654234
47f231b8a668477769e2a9abd3723ae4eedc3e54
1,072
py
Python
raspberry/serial_stub.py
idf/Robot-In-Maze
2301021c39f36a01ff97af26c54d41fedbe1608c
[ "MIT" ]
16
2015-04-04T15:26:01.000Z
2019-10-15T16:13:03.000Z
raspberry/serial_stub.py
idf/Robot-In-Maze
2301021c39f36a01ff97af26c54d41fedbe1608c
[ "MIT" ]
null
null
null
raspberry/serial_stub.py
idf/Robot-In-Maze
2301021c39f36a01ff97af26c54d41fedbe1608c
[ "MIT" ]
7
2015-10-12T21:23:12.000Z
2021-10-13T02:41:25.000Z
from serial_comminication import * from utils.decorators import Override __author__ = 'Danyang'
38.285714
118
0.602612
47f249b23a7b5f7230bfbb222ddcb290a2a7adde
5,259
py
Python
boto3_type_annotations_with_docs/boto3_type_annotations/mobile/paginator.py
cowboygneox/boto3_type_annotations
450dce1de4e066b939de7eac2ec560ed1a7ddaa2
[ "MIT" ]
119
2018-12-01T18:20:57.000Z
2022-02-02T10:31:29.000Z
boto3_type_annotations_with_docs/boto3_type_annotations/mobile/paginator.py
cowboygneox/boto3_type_annotations
450dce1de4e066b939de7eac2ec560ed1a7ddaa2
[ "MIT" ]
15
2018-11-16T00:16:44.000Z
2021-11-13T03:44:18.000Z
boto3_type_annotations_with_docs/boto3_type_annotations/mobile/paginator.py
cowboygneox/boto3_type_annotations
450dce1de4e066b939de7eac2ec560ed1a7ddaa2
[ "MIT" ]
11
2019-05-06T05:26:51.000Z
2021-09-28T15:27:59.000Z
from typing import Dict from botocore.paginate import Paginator
40.145038
224
0.487165
47f2d05914db9e80d9759d21867bc5761abeee91
1,550
py
Python
algorithms/counting_sort.py
ArziPL/Other
1319ac85b19a5c49fb70e902e3e37f2e7a192d0b
[ "MIT" ]
null
null
null
algorithms/counting_sort.py
ArziPL/Other
1319ac85b19a5c49fb70e902e3e37f2e7a192d0b
[ "MIT" ]
null
null
null
algorithms/counting_sort.py
ArziPL/Other
1319ac85b19a5c49fb70e902e3e37f2e7a192d0b
[ "MIT" ]
null
null
null
# Best : O(n + k) # Avg : O(n + k) # Worst O(n + k) # Space worst : O(k) - CAN GET VERY BIG BIG # k - range of values in array # Take every number in arr then add += 1 to index of that number in temporary arrays, then # for every index in temporary arrays add to final_arr that amount of that index number of # how big number at that index is - if arr[23] = 3 then add 23 23 23 and same for negatives # 1. The whole thing can get very ineffective if numbers in arr are big # 2. Possibility of sorting negatives greatly increase time/space complexity # create array len of min(to_sort), do the same as positives, then for final result multiply by -1 to get negatives # and reverse them because we were counting them as positive => [1,5,10] => [-1,-5,-10] => [-10,-5,-1] and # add that array at beginning of positive_sorted to_sort = [52, 63, 12, 6, 631, 6, 24, 637, 64, 421, 74, 124, 0, -5, 523, -10, -529] print(counting_sort(to_sort))
34.444444
119
0.642581
47f4980d53b9e0ce1e873da3c9bbca1b3052a8de
5,881
py
Python
scheduler/notebooks/figures/evaluation/utils.py
akshayka/gavel
40a22a725f2e70478483e98c9b07c6fc588e0c40
[ "MIT" ]
67
2020-09-07T11:50:03.000Z
2022-03-31T04:09:08.000Z
scheduler/notebooks/figures/evaluation/utils.py
akshayka/gavel
40a22a725f2e70478483e98c9b07c6fc588e0c40
[ "MIT" ]
7
2020-09-27T01:41:59.000Z
2022-03-25T05:16:43.000Z
scheduler/notebooks/figures/evaluation/utils.py
akshayka/gavel
40a22a725f2e70478483e98c9b07c6fc588e0c40
[ "MIT" ]
12
2020-10-13T14:31:01.000Z
2022-02-14T05:44:38.000Z
import os import random import re import numpy as np np.set_printoptions(precision=3, suppress=True) import sys; sys.path.append("../../..") from job_table import JobTable
38.188312
100
0.550757
47f4fb021dc13ce9ce0d5ff354639ce8927eaf9b
883
py
Python
scripts/practice/FB-reRun/ MoveZeroesToEnd.py
bhimeshchauhan/competitive_programming
e0777bb0c425ffa03d8173a83e50ca55c4a3fcf5
[ "MIT" ]
null
null
null
scripts/practice/FB-reRun/ MoveZeroesToEnd.py
bhimeshchauhan/competitive_programming
e0777bb0c425ffa03d8173a83e50ca55c4a3fcf5
[ "MIT" ]
8
2020-09-05T16:04:31.000Z
2022-02-27T09:57:51.000Z
scripts/practice/FB-reRun/ MoveZeroesToEnd.py
bhimeshchauhan/competitive_programming
e0777bb0c425ffa03d8173a83e50ca55c4a3fcf5
[ "MIT" ]
null
null
null
""" Move Zeroes - https://leetcode.com/problems/move-zeroes/ Given an integer array nums, move all 0's to the end of it while maintaining the relative order of the non-zero elements. Note that you must do this in-place without making a copy of the array. Example 1: Input: nums = [0,1,0,3,12] Output: [1,3,12,0,0] Example 2: Input: nums = [0] Output: [0] Constraints: 1 <= nums.length <= 104 -231 <= nums[i] <= 231 - 1 Follow up: Could you minimize the total number of operations done? """
20.534884
121
0.583239
47f6c684577e0c1a7c425c6ef180e8ab456e667e
1,503
py
Python
django_stormpath/id_site.py
stormpath/stormpath-django
af60eb5da2115d94ac313613c5d4e6b9f3d16157
[ "Apache-2.0" ]
36
2015-01-13T00:21:07.000Z
2017-11-07T11:45:25.000Z
django_stormpath/id_site.py
stormpath/stormpath-django
af60eb5da2115d94ac313613c5d4e6b9f3d16157
[ "Apache-2.0" ]
55
2015-01-07T09:53:50.000Z
2017-02-07T00:31:20.000Z
django_stormpath/id_site.py
stormpath/stormpath-django
af60eb5da2115d94ac313613c5d4e6b9f3d16157
[ "Apache-2.0" ]
24
2015-01-06T16:17:33.000Z
2017-04-21T14:00:16.000Z
from django.contrib.auth import login as django_login from django.contrib.auth import logout as django_logout from django.http import HttpResponseRedirect from django.shortcuts import resolve_url from django.conf import settings from .backends import StormpathIdSiteBackend ID_SITE_STATUS_AUTHENTICATED = 'AUTHENTICATED' ID_SITE_STATUS_LOGOUT = 'LOGOUT' ID_SITE_STATUS_REGISTERED = 'REGISTERED' ID_SITE_AUTH_BACKEND = 'django_stormpath.backends.StormpathIdSiteBackend' _handle_registered = _handle_authenticated CALLBACK_ACTIONS = { ID_SITE_STATUS_AUTHENTICATED: _handle_authenticated, ID_SITE_STATUS_LOGOUT: _handle_logout, ID_SITE_STATUS_REGISTERED: _handle_registered, }
28.358491
73
0.809714
47f782c40ce2bf55510e810deac00bf9b89ac029
445
py
Python
dp/sequence/perfect-square.py
windowssocket/py_leetcode
241dbf8d7dab7db5215c2526321fcdb378b45492
[ "Apache-2.0" ]
3
2018-05-29T02:29:40.000Z
2020-02-05T03:28:16.000Z
dp/sequence/perfect-square.py
xidongc/py_leetcode
241dbf8d7dab7db5215c2526321fcdb378b45492
[ "Apache-2.0" ]
1
2019-03-08T13:22:32.000Z
2019-03-08T13:22:32.000Z
dp/sequence/perfect-square.py
xidongc/py_leetcode
241dbf8d7dab7db5215c2526321fcdb378b45492
[ "Apache-2.0" ]
3
2018-05-29T11:50:24.000Z
2018-11-27T12:31:01.000Z
# https://leetcode.com/problems/perfect-squares/description/ # dp alg, time complexity: O(n^2)
22.25
60
0.438202
47f8383750414c949b888bd3081dff4a804800b1
1,416
py
Python
Projetos_Pessoais/projeto_sorteio/sorteio.py
thiagomath/Python
dd73154e347c75a65a74e047ba880cc1f7dc1f91
[ "MIT" ]
null
null
null
Projetos_Pessoais/projeto_sorteio/sorteio.py
thiagomath/Python
dd73154e347c75a65a74e047ba880cc1f7dc1f91
[ "MIT" ]
null
null
null
Projetos_Pessoais/projeto_sorteio/sorteio.py
thiagomath/Python
dd73154e347c75a65a74e047ba880cc1f7dc1f91
[ "MIT" ]
null
null
null
# Programa para sorteio from tkinter import * '''import PySimpleGUI as sg''' ''' #Layout layout = [ [sg.Text('Nome:'), sg.Input()], [sg.Button('OK')] ] #Janela janela = sg.Window('Janela teste', layout) #Interao eventos, valores = janela.Read() #Mensagem print(f'Ol {valores[0]}, obrigado por usar PySimpleGUI!') #Encerramento da janela janela.close() ''' ''' cont = 0 participantes = dict() for cont in range(0, 2): participantes["nome"] = str(input('Digite o nome do participante: ')) participantes["numero"] = int(input('Digite o nmero do participante: ')) cont += 1 print(f'{cont} pessoas concorrendo ao sorteio!') print(participantes) ''' '''theme_name_list = sg.theme_list() print(theme_name_list)''' # Sempre inicia com: janela = Tk() janela.title('Sorteio T-force') janela.geometry("400x400") # Texto de orientao: texto_de_orientacao = Label(janela, text='Clique no boto para ver as cotaes das moedas') # Posio do texto: texto_de_orientacao.grid(column=0, row=0, padx=10, pady=10) # Boto + funo botao = Button(janela, text="Buscar cotaes Dlar, Euro e BTC", command=pegar_cotacoes) botao.grid(column=0, row=1, padx=10, pady=10) # Texto das cotaes: texto_cotacoes = Label(janela, text="") texto_cotacoes.grid(column=0, row=2, padx=10, pady=10) # Sempre termina com: janela.mainloop()
24.413793
91
0.699859
47fa30bd997d1a1670c7fee27600bd53764e519c
481
py
Python
flask_tutorial/flask_sqlite3/__init__.py
ftconan/python3
eb63ba33960072f792ecce6db809866b38c402f8
[ "MIT" ]
1
2018-12-19T22:07:56.000Z
2018-12-19T22:07:56.000Z
flask_tutorial/flask_sqlite3/__init__.py
ftconan/python3
eb63ba33960072f792ecce6db809866b38c402f8
[ "MIT" ]
12
2020-03-14T05:32:26.000Z
2022-03-12T00:08:49.000Z
flask_tutorial/flask_sqlite3/__init__.py
ftconan/python3
eb63ba33960072f792ecce6db809866b38c402f8
[ "MIT" ]
1
2018-12-19T22:08:00.000Z
2018-12-19T22:08:00.000Z
""" @author: magician @file: __init__.py.py @date: 2020/9/7 """ from flask import Flask from flask_tutorial.flask_sqlite3.flask_sqlite3 import SQLite3 app = Flask(__name__) app.config.from_pyfile('the-config.cfg') db = SQLite3(app)
17.814815
62
0.636175
47fd0f1fa3538b0a659731489a61f441085833ad
516
py
Python
str_to_ num.py
maiconloure/Learning_Python
2999508909ace5f8ca0708cdea93b82abaaeafb2
[ "MIT" ]
null
null
null
str_to_ num.py
maiconloure/Learning_Python
2999508909ace5f8ca0708cdea93b82abaaeafb2
[ "MIT" ]
null
null
null
str_to_ num.py
maiconloure/Learning_Python
2999508909ace5f8ca0708cdea93b82abaaeafb2
[ "MIT" ]
null
null
null
"""Transformando um string de numeros, em uma lista com conjunto de numeros separads por \n""" matrix = "1 2 3 4\n4 5 6 5\n7 8 9 6\n8 7 6 7" print(matrix) matrix = matrix.split("\n") print(matrix) matrix2 = [] for n in range(len(matrix)): matrix[n] = matrix[n].split() matrix[n] = list(map(int, matrix[n])) # EX: Tranforma a string '1' em um inteiro matrix2.append(matrix[n][0]) # Pegar o primeiro elemento/numero de cada indice for index in range(4): print(matrix[index]) print() print(matrix2)
28.666667
85
0.672481
47fd4fd6cf5d22ab4c0d8b28debf25aa2a0236a1
517
py
Python
Programs/__init__.py
el-vida/ITE_Classification_Using_GMMs
8c1e751fac2c0aa873d41dbae45776b540db0889
[ "MIT" ]
null
null
null
Programs/__init__.py
el-vida/ITE_Classification_Using_GMMs
8c1e751fac2c0aa873d41dbae45776b540db0889
[ "MIT" ]
null
null
null
Programs/__init__.py
el-vida/ITE_Classification_Using_GMMs
8c1e751fac2c0aa873d41dbae45776b540db0889
[ "MIT" ]
null
null
null
from A_1_Add_columns_participant_info_multiprocessing_new import * from A_2_Merge_new_logs import * from B_1_Add_columns_user_performance_multiprocessing_new import * from B_2_Merge_new_logs_with_user_groups import * from C_1_Post_processing_log_new import * from C_2_Merge_new_logs_post_processed import * from D_1_Recalculate_new_levenshtein import * from D_2_Merge_new_logs_new_levenshtein import * from E_1_Correct_ites_new import * from E_2_Merge_new_logs_corrected import * from F_Finalize_dataset_slim import *
47
66
0.895551
47fd66e778b3e447ec3e01b548b142f968b5fb7f
599
py
Python
setup.py
xebialabs-community/xld-install-helper
a61baa9fabc6484afa5fd287a25fc6fb88d84670
[ "MIT" ]
null
null
null
setup.py
xebialabs-community/xld-install-helper
a61baa9fabc6484afa5fd287a25fc6fb88d84670
[ "MIT" ]
null
null
null
setup.py
xebialabs-community/xld-install-helper
a61baa9fabc6484afa5fd287a25fc6fb88d84670
[ "MIT" ]
2
2016-12-27T12:12:09.000Z
2020-09-24T18:06:58.000Z
#!/usr/bin/env python from setuptools import setup, find_packages setup( name='xl-helper', version='1.0.5', description='XL Deploy helper', long_description='This tool helps with installation and upgrade of XL Deploy and plugins', author='Mike Kotsur', author_email='mkotsur@xebialabs.com', url='http://xebialabs.com/', packages=find_packages(where=".", exclude=["tests*"]), package_data={'xl_helper': ['deployit.conf', '.xl-helper.defaults']}, include_package_data=True, install_requires=['jenkinsapi', 'argparse', 'pytz'], scripts=['xl-helper'] )
31.526316
94
0.684474
47ff4464ecaa8b0b0480823b9cf4bf43b54abcec
3,520
py
Python
pdf_poc/search.py
cr0hn/TestingBench
37975343cf9ccb019e8dc42404b5b321285b04b3
[ "BSD-3-Clause" ]
5
2018-05-10T19:50:29.000Z
2018-05-10T20:07:08.000Z
pdf_poc/search.py
cr0hn/TestingBench
37975343cf9ccb019e8dc42404b5b321285b04b3
[ "BSD-3-Clause" ]
null
null
null
pdf_poc/search.py
cr0hn/TestingBench
37975343cf9ccb019e8dc42404b5b321285b04b3
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from collections import defaultdict from PyPDF2 import PdfFileReader from PyPDF2.pdf import PageObject, ContentStream, TextStringObject, u_, i, b_ PageObject.extractText_with_separator = extractText_with_separator KEYWORDS = ["procesos electorales"] def find_in_pdf(pdf_path, keywords): """ Try to find a word list into pdf file. .. note: The line number is approximately, not exactly. :param pdf_path: path to pdf :type pdf_path: str :param keywords: list of keyword to search :type keywords: list(str) :return: a structure like this: { PAGE_NUM: { LINE_NUM: TEXT_OF_LINE} :rtype: dict(str: dict(int: str)) """ pdf = PdfFileReader(open(pdf_path, 'rb')) matches = defaultdict(dict) for page_no, page in enumerate(pdf.pages, 1): text = page.extractText_with_separator() line_no = 1 # search for keyword in keywords: for line in text.split("\n"): if not line: continue line_no += 1 if keyword in line.lower(): matches["page_%s" % page_no][line_no] = line return matches if __name__ == '__main__': r = find_in_pdf("BOE.pdf", KEYWORDS) print(r)
23.311258
77
0.658523
9a003487767445f7e574b64c73392ed111a08837
493
py
Python
setup.py
hugorodgerbrown/django-netpromoterscore
f0a7ddc32fe942069abacfaa5a3220eaabe9e1db
[ "MIT" ]
8
2016-06-21T21:56:17.000Z
2021-10-06T17:28:00.000Z
setup.py
hugorodgerbrown/django-netpromoterscore
f0a7ddc32fe942069abacfaa5a3220eaabe9e1db
[ "MIT" ]
null
null
null
setup.py
hugorodgerbrown/django-netpromoterscore
f0a7ddc32fe942069abacfaa5a3220eaabe9e1db
[ "MIT" ]
1
2018-10-19T21:57:54.000Z
2018-10-19T21:57:54.000Z
from setuptools import setup, find_packages setup( name = "django-netpromoterscore", version = '0.0.2', description = "Model, Tests, and API for collecting promoter score from users.", author = "Austin Brennan", author_email = "ab@epantry.com", url = "https://github.com/epantry/django-netpromoterscore", keywords = ["promoter score", "net promoter score", "django"], install_requires = [], packages = find_packages(), include_package_data=True, )
32.866667
84
0.677485
9a0110a8361459c9dacb7bcdc22b39b60eeea30e
731
py
Python
DSC_Data_Exchange/dsc-text-node/src/state/configuration_state.py
ai4eu/tutorials
68eb2208716e655d2aa8b950a0d7d73bf6f20f3a
[ "Apache-2.0" ]
8
2020-04-21T13:29:04.000Z
2021-12-13T08:59:09.000Z
DSC_Data_Exchange/dsc-text-node/src/state/configuration_state.py
ai4eu/tutorials
68eb2208716e655d2aa8b950a0d7d73bf6f20f3a
[ "Apache-2.0" ]
3
2021-04-27T11:03:04.000Z
2021-05-24T18:22:57.000Z
DSC_Data_Exchange/dsc-text-node/src/state/configuration_state.py
ai4eu/tutorials
68eb2208716e655d2aa8b950a0d7d73bf6f20f3a
[ "Apache-2.0" ]
6
2020-07-06T08:23:25.000Z
2021-11-24T10:39:34.000Z
import flask
24.366667
65
0.653899
9a014ede8ba8180a42bf7abbdb2da472afc22d73
228
py
Python
pynemo/core/base/property/string.py
SSripilaipong/pynemo
f4dedd2599ec78b2ffe73f55b1d2b8b5da1b1e7f
[ "MIT" ]
null
null
null
pynemo/core/base/property/string.py
SSripilaipong/pynemo
f4dedd2599ec78b2ffe73f55b1d2b8b5da1b1e7f
[ "MIT" ]
null
null
null
pynemo/core/base/property/string.py
SSripilaipong/pynemo
f4dedd2599ec78b2ffe73f55b1d2b8b5da1b1e7f
[ "MIT" ]
null
null
null
from pynemo.core.base.abstract.property import Property
19
55
0.666667
9a0316a49bbe3e0c8ccbf65e47f3d0ad6d7d1eaf
6,299
py
Python
src/folio_migration_tools/folder_structure.py
chadmcinnis/folio_migration_tools
39ee044a713a34c323324a956e3e8b54ee05c194
[ "MIT" ]
1
2022-03-30T07:48:33.000Z
2022-03-30T07:48:33.000Z
src/folio_migration_tools/folder_structure.py
chadmcinnis/folio_migration_tools
39ee044a713a34c323324a956e3e8b54ee05c194
[ "MIT" ]
76
2022-02-04T16:36:49.000Z
2022-03-31T11:20:29.000Z
src/folio_migration_tools/folder_structure.py
chadmcinnis/folio_migration_tools
39ee044a713a34c323324a956e3e8b54ee05c194
[ "MIT" ]
1
2022-02-02T17:19:05.000Z
2022-02-02T17:19:05.000Z
import logging import sys from pathlib import Path import time from folio_uuid.folio_namespaces import FOLIONamespaces
42.275168
98
0.680743
9a03f4a30283fc5811ab209f5fab981571d780d6
6,064
py
Python
ftrl_noise.py
google-research/DP-FTRL
513500a8e31e412972a7d457e9c66756e4a48348
[ "Apache-2.0" ]
8
2021-04-09T18:00:18.000Z
2022-03-11T01:13:13.000Z
ftrl_noise.py
google-research/DP-FTRL
513500a8e31e412972a7d457e9c66756e4a48348
[ "Apache-2.0" ]
1
2021-08-18T04:59:42.000Z
2021-12-08T00:24:24.000Z
ftrl_noise.py
google-research/DP-FTRL
513500a8e31e412972a7d457e9c66756e4a48348
[ "Apache-2.0" ]
3
2021-11-05T15:42:31.000Z
2022-03-03T07:38:46.000Z
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The tree aggregation protocol for noise addition in DP-FTRL.""" import torch from collections import namedtuple from absl import app Element = namedtuple('Element', 'height value') if __name__ == '__main__': app.run(main)
32.956522
121
0.59812
9a04e9a41ace038d4a501f35036632f201b9f71d
2,782
py
Python
ladder/tests/test_models.py
jzahedieh/django-tennis-ladder
03a9fc9ec6d0830ac1d6648428eca11755eabb00
[ "MIT" ]
13
2015-04-30T21:07:20.000Z
2021-01-08T13:52:14.000Z
ladder/tests/test_models.py
jzahedieh/django-tennis-ladder
03a9fc9ec6d0830ac1d6648428eca11755eabb00
[ "MIT" ]
13
2015-04-05T22:48:14.000Z
2021-12-12T17:29:16.000Z
ladder/tests/test_models.py
jzahedieh/django-tennis-ladder
03a9fc9ec6d0830ac1d6648428eca11755eabb00
[ "MIT" ]
5
2016-10-12T16:24:09.000Z
2019-11-26T10:16:44.000Z
from django.test import TestCase from ladder.models import Player, Result, League, Season from django.db.models import Avg
36.605263
107
0.638749
9a06d9877e200d7e5cdcb16fe42f60b4884f0200
6,779
py
Python
src/authub/idp/google.py
fantix/authub
1f8a30fe32c579e556d2b962f258e0f99527a006
[ "BSD-3-Clause" ]
null
null
null
src/authub/idp/google.py
fantix/authub
1f8a30fe32c579e556d2b962f258e0f99527a006
[ "BSD-3-Clause" ]
null
null
null
src/authub/idp/google.py
fantix/authub
1f8a30fe32c579e556d2b962f258e0f99527a006
[ "BSD-3-Clause" ]
null
null
null
"""Google OpenID Connect identity provider.""" from uuid import UUID from fastapi import Depends, status, Request from pydantic import BaseModel from .base import IdPRouter, oauth from ..http import get_edgedb_pool from ..models import IdPClient, Identity as BaseIdentity, Href, User from ..orm import ExtendedComputableProperty, ExclusiveConstraint, with_block idp = IdPRouter("google") class IdentityOut(BaseModel): iss: str # "https://accounts.google.com" hd: str # "edgedb.com" email: str email_verified: bool name: str picture: str # URL given_name: str family_name: str locale: str # "en"
27.445344
95
0.621478
9a07ac994b1953108c37e98bccdd7052124320ff
1,192
py
Python
src/holocron/_processors/import_processors.py
ikalnytskyi/holocron
f0bda50f1aab7d1013fac5bd8fb01f7ebeb7bdc3
[ "BSD-3-Clause" ]
6
2016-11-27T11:53:18.000Z
2021-02-08T00:37:59.000Z
src/holocron/_processors/import_processors.py
ikalnytskyi/holocron
f0bda50f1aab7d1013fac5bd8fb01f7ebeb7bdc3
[ "BSD-3-Clause" ]
25
2017-04-12T15:27:55.000Z
2022-01-21T23:37:37.000Z
src/holocron/_processors/import_processors.py
ikalnytskyi/holocron
f0bda50f1aab7d1013fac5bd8fb01f7ebeb7bdc3
[ "BSD-3-Clause" ]
1
2020-11-15T17:49:36.000Z
2020-11-15T17:49:36.000Z
"""Import processors from 3rd party sources.""" import contextlib import sys import pkg_resources from ._misc import parameters
29.073171
79
0.64849
9a0859c884c636f6f47e39ee23feff85000d7d1d
656
py
Python
412.fizz-buzz.py
SprintGhost/LeetCode
cdf1a86c83f2daedf674a871c4161da7e8fad17c
[ "Unlicense" ]
1
2019-03-26T13:49:14.000Z
2019-03-26T13:49:14.000Z
412.fizz-buzz.py
SprintGhost/LeetCode
cdf1a86c83f2daedf674a871c4161da7e8fad17c
[ "Unlicense" ]
5
2020-01-04T15:13:06.000Z
2020-08-31T14:20:23.000Z
412.fizz-buzz.py
SprintGhost/LeetCode
cdf1a86c83f2daedf674a871c4161da7e8fad17c
[ "Unlicense" ]
null
null
null
# # @lc app=leetcode.cn id=412 lang=python3 # # [412] Fizz Buzz # # Accepted # 8/8 cases passed (48 ms) # Your runtime beats 76.37 % of python3 submissions # Your memory usage beats 25 % of python3 submissions (14.5 MB) # @lc code=start # @lc code=end
22.62069
63
0.532012
9a08f540ce3f12537d5b6d4be1caf8051f4c1c27
5,875
py
Python
selector/from_model.py
uberkinder/Robusta-AutoML
9faee4c17ad9f37b09760f9fffea715cdbf2d1fb
[ "MIT" ]
2
2019-04-26T19:40:31.000Z
2019-10-12T15:18:29.000Z
selector/from_model.py
uberkinder/Robusta-AutoML
9faee4c17ad9f37b09760f9fffea715cdbf2d1fb
[ "MIT" ]
null
null
null
selector/from_model.py
uberkinder/Robusta-AutoML
9faee4c17ad9f37b09760f9fffea715cdbf2d1fb
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np from sklearn.model_selection import check_cv from sklearn.exceptions import NotFittedError from sklearn.base import clone, is_classifier from robusta.importance import get_importance from robusta.crossval import crossval from .base import _Selector # Original: sklearn.feature_selection.SelectFromModel def _check_max_features(importances, max_features): """Interpret the max_features value""" n_features = len(importances) if max_features is None: max_features = n_features elif isinstance(max_features, int): max_features = min(n_features, max_features) elif isinstance(max_features, float): max_features = int(n_features * max_features) return max_features def _check_threshold(importances, threshold): """Interpret the threshold value""" if threshold is None: threshold = -np.inf elif isinstance(threshold, str): if "*" in threshold: scale, reference = threshold.split("*") scale = float(scale.strip()) reference = reference.strip() if reference == "median": reference = np.median(importances) elif reference == "mean": reference = np.mean(importances) else: raise ValueError("Unknown reference: " + reference) threshold = scale * reference elif threshold == "median": threshold = np.median(importances) elif threshold == "mean": threshold = np.mean(importances) else: raise ValueError("Expected threshold='mean' or threshold='median' " "got %s" % threshold) else: threshold = float(threshold) return threshold
30.440415
79
0.637787
9a0a7b6a486f4199dd2e8181f3e83788c1d07d18
1,875
py
Python
trainer.py
jinxixiang/PC-TMB
c6f2fc62629c7f026865774cdfb9d826464397ea
[ "MIT" ]
null
null
null
trainer.py
jinxixiang/PC-TMB
c6f2fc62629c7f026865774cdfb9d826464397ea
[ "MIT" ]
null
null
null
trainer.py
jinxixiang/PC-TMB
c6f2fc62629c7f026865774cdfb9d826464397ea
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch_optimizer as optim import pandas as pd # customized libs import criterions import models import datasets
29.296875
99
0.670933
9a0b750755a4f2eb69f71eb1f7890678edaaee12
1,733
py
Python
falmer/search/queries.py
sussexstudent/services-api
ae735bd9d6177002c3d986e5c19a78102233308f
[ "MIT" ]
2
2017-04-27T19:35:59.000Z
2017-06-13T16:19:33.000Z
falmer/search/queries.py
sussexstudent/falmer
ae735bd9d6177002c3d986e5c19a78102233308f
[ "MIT" ]
975
2017-04-13T11:31:07.000Z
2022-02-10T07:46:18.000Z
falmer/search/queries.py
sussexstudent/services-api
ae735bd9d6177002c3d986e5c19a78102233308f
[ "MIT" ]
3
2018-05-09T06:42:25.000Z
2020-12-10T18:29:30.000Z
import graphene from fuzzywuzzy import process from falmer.search.types import SearchQuery from falmer.search.utils import get_falmer_results_for_term, get_msl_results_for_term, \ SearchTermResponseData
28.883333
88
0.623774
9a0ef79b4f00de681e34f8ae67dfe78a084e7151
700
py
Python
SYMBOLS/heart.py
charansaim1819/Python_Patterns
02e636855003346ec84c3d69f2be174dc9e9e3cb
[ "MIT" ]
null
null
null
SYMBOLS/heart.py
charansaim1819/Python_Patterns
02e636855003346ec84c3d69f2be174dc9e9e3cb
[ "MIT" ]
null
null
null
SYMBOLS/heart.py
charansaim1819/Python_Patterns
02e636855003346ec84c3d69f2be174dc9e9e3cb
[ "MIT" ]
null
null
null
#Shape of heart: def for_heart(): """printing shape of'heart' using for loop""" for row in range(6): for col in range(7): if row-col==2 or row+col==8 or col%3!=0 and row==0 or col%3==0 and row==1: print("*",end=" ") else: print(" ",end=" ") print() def while_heart(): """printing shape of'heart' using while loop""" i=0 while i<6: j=0 while j<7: if i-j==2 or i+j==8 or j%3!=0 and i==0 or j%3==0 and i==1: print("*",end=" ") else: print(" ",end=" ") j+=1 print() i+=1
24.137931
87
0.4
9a0f75acc0d453f223e437b74a0cfe99d7909068
338
py
Python
test_core.py
DominikPutz/lecture-spring-2021
cce0970e261d45cbc16b3955d0659ca295ed8fc2
[ "Apache-2.0" ]
null
null
null
test_core.py
DominikPutz/lecture-spring-2021
cce0970e261d45cbc16b3955d0659ca295ed8fc2
[ "Apache-2.0" ]
null
null
null
test_core.py
DominikPutz/lecture-spring-2021
cce0970e261d45cbc16b3955d0659ca295ed8fc2
[ "Apache-2.0" ]
3
2021-03-23T14:48:38.000Z
2022-01-13T09:45:08.000Z
from core import add from core import sub def test_add(): """Check that `add()` works as expected""" assert add(2, 3) == 5 def test_add_z(): """Check that `add()` works as expected""" assert add(2, 3, 1) == 6 def test_sub(): """Check that `sub()` works as expected""" assert sub(3, 1) == 2
16.9
46
0.553254
9a1128153dbcf8a364098445381dc767e17a1621
73
py
Python
setup.py
AnnaUstiuzhanina/flake8_extension
4d3c4a7ac6b8af4d0ed62bbe42c897edabe93383
[ "MIT" ]
null
null
null
setup.py
AnnaUstiuzhanina/flake8_extension
4d3c4a7ac6b8af4d0ed62bbe42c897edabe93383
[ "MIT" ]
null
null
null
setup.py
AnnaUstiuzhanina/flake8_extension
4d3c4a7ac6b8af4d0ed62bbe42c897edabe93383
[ "MIT" ]
null
null
null
from __future__ import annotations from setuptools import setup setup()
14.6
34
0.835616
9a11a05b881b07a6c93ac169600004f78ada2754
434
py
Python
exercicios/Lista5/Q9.py
AlexandrePeBrito/CursoUdemyPython
3de58cb30c9f333b32078309847179ff3f9d7e22
[ "MIT" ]
null
null
null
exercicios/Lista5/Q9.py
AlexandrePeBrito/CursoUdemyPython
3de58cb30c9f333b32078309847179ff3f9d7e22
[ "MIT" ]
null
null
null
exercicios/Lista5/Q9.py
AlexandrePeBrito/CursoUdemyPython
3de58cb30c9f333b32078309847179ff3f9d7e22
[ "MIT" ]
null
null
null
#9. Faaumam funo que receba a altura e o raio de um cilindro circular e retorne o volume #do cilindro. O volume de um cilindro circular calculado por meio da seguinte frmula: #V =pi*raio^2 x altura, onde pi = 3.141592. r=float(input("Informe o raio do cilindro: ")) alt=float(input("Informe a altura do cilindro: ")) volume=volCilindro(3,2) print(volume)
43.4
91
0.751152
9a122e1fac70741e43cd706c1bfea367874d0fa7
1,714
py
Python
sachima/publish.py
gitter-badger/Sachima
76547fb6a21f1fea597994e6ee02c5db080d1e7a
[ "MIT" ]
null
null
null
sachima/publish.py
gitter-badger/Sachima
76547fb6a21f1fea597994e6ee02c5db080d1e7a
[ "MIT" ]
null
null
null
sachima/publish.py
gitter-badger/Sachima
76547fb6a21f1fea597994e6ee02c5db080d1e7a
[ "MIT" ]
null
null
null
import requests from bs4 import BeautifulSoup from sachima import conf
32.961538
78
0.449242
9a13bf9dda86cde96d1e704297f9ca1d15b1b6aa
3,254
pyw
Python
src/mediator/Main.pyw
fuqinshen/Python--
aaa5230354258e1bba761e483c8b9fb6be00402a
[ "MIT" ]
31
2018-10-19T15:28:36.000Z
2022-02-14T03:01:25.000Z
src/mediator/Main.pyw
fuqinshen/Python--
aaa5230354258e1bba761e483c8b9fb6be00402a
[ "MIT" ]
null
null
null
src/mediator/Main.pyw
fuqinshen/Python--
aaa5230354258e1bba761e483c8b9fb6be00402a
[ "MIT" ]
10
2019-01-10T04:02:12.000Z
2021-11-17T01:52:15.000Z
import tkinter if __name__ == '__main__': application = tkinter.Tk() application.title("Mediator Sample") window = Main(application) application.protocol("WM_DELETE_WINDOW", window.quit) application.mainloop()
39.682927
106
0.567609
9a14a2d004a0836d3daffc7ee2ad09d95986fb4d
2,190
py
Python
runtests.py
ojii/django-statictemplate
73a541b19ff39e92b02de5d2ee74e4df7d486d81
[ "BSD-3-Clause" ]
4
2015-09-28T10:06:45.000Z
2019-09-20T05:53:03.000Z
runtests.py
ojii/django-statictemplate
73a541b19ff39e92b02de5d2ee74e4df7d486d81
[ "BSD-3-Clause" ]
8
2015-06-15T13:06:43.000Z
2018-12-23T13:37:20.000Z
runtests.py
ojii/django-statictemplate
73a541b19ff39e92b02de5d2ee74e4df7d486d81
[ "BSD-3-Clause" ]
2
2015-09-23T05:07:00.000Z
2015-10-20T15:43:19.000Z
# !/usr/bin/env python # -*- coding: utf-8 -*- import sys urlpatterns = [ ] DEFAULT_SETTINGS = dict( INSTALLED_APPS=[ 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sites', 'statictemplate', ], DATABASES={ 'default': { 'ENGINE': 'django.db.backends.sqlite3' } }, LANGUAGES=( ('en-us', 'English'), ('it', 'Italian'), ), ROOT_URLCONF='runtests', SITE_ID=1, MIDDLEWARE_CLASSES=[ 'django.middleware.http.ConditionalGetMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', ], ) if __name__ == '__main__': runtests()
28.815789
70
0.622374
9a1583710b1d1ad4cc13f28020664d7f22387e1e
585
py
Python
Courses/YandexAlgo/1/petya_the_inventor.py
searayeah/sublime-snippets
deff53a06948691cd5e5d7dcfa85515ddd8fab0b
[ "MIT" ]
null
null
null
Courses/YandexAlgo/1/petya_the_inventor.py
searayeah/sublime-snippets
deff53a06948691cd5e5d7dcfa85515ddd8fab0b
[ "MIT" ]
null
null
null
Courses/YandexAlgo/1/petya_the_inventor.py
searayeah/sublime-snippets
deff53a06948691cd5e5d7dcfa85515ddd8fab0b
[ "MIT" ]
null
null
null
x = input() z = input() splitter = [x[i:] for i in range(len(x))] found_splitter = False next_z = "" for i in range(1, len(x) + 1): if z[:i] in splitter: found_splitter = True next_z = z[i:] if next_z[: len(x)] == x: break if i == len(z): break if next_z == "": if found_splitter is False: print(z) else: if found_splitter is True: while True: if next_z[0 : len(x)] == x: next_z = next_z.replace(x, "", 1) else: print(next_z) break
19.5
49
0.471795
9a163185c3befcd4de02a4c3e143213f59c12c77
117
py
Python
first_request.py
sgriffith3/2021_05_10_pyna
d732e1dd0fa03f1cef8f72fc9dcc09ec947f31a5
[ "MIT" ]
null
null
null
first_request.py
sgriffith3/2021_05_10_pyna
d732e1dd0fa03f1cef8f72fc9dcc09ec947f31a5
[ "MIT" ]
null
null
null
first_request.py
sgriffith3/2021_05_10_pyna
d732e1dd0fa03f1cef8f72fc9dcc09ec947f31a5
[ "MIT" ]
null
null
null
import urllib.request url = "https://google.com" data = urllib.request.urlopen(url) print(data) print(data.read())
14.625
34
0.726496
9a1676b9866c375100521ac48277fdcc219264ce
1,592
py
Python
datawinners/blue/urls.py
ICT4H/dcs-web
fb0f53fad4401cfac1c1789ff28b9d5bda40c975
[ "Apache-2.0" ]
1
2015-11-02T09:11:12.000Z
2015-11-02T09:11:12.000Z
datawinners/blue/urls.py
ICT4H/dcs-web
fb0f53fad4401cfac1c1789ff28b9d5bda40c975
[ "Apache-2.0" ]
null
null
null
datawinners/blue/urls.py
ICT4H/dcs-web
fb0f53fad4401cfac1c1789ff28b9d5bda40c975
[ "Apache-2.0" ]
null
null
null
from django.conf.urls.defaults import patterns, url from datawinners.blue import view from datawinners.blue.view import new_xform_submission_post, edit_xform_submission_post, get_attachment, attachment_download, guest_survey, public_survey from datawinners.blue.view import ProjectUpload, ProjectUpdate from datawinners.blue.view import new_xform_submission_get from datawinners.project.views.submission_views import edit_xform_submission_get urlpatterns = patterns('', url(r'^guest_survey/(?P<link_uid>.+?)/$', guest_survey, name='guest_survey'), url(r'^survey/(?P<org_id>.+?)/(?P<anonymous_link_id>.+?)/*$', public_survey, name='public_survey'), url(r'^xlsform/upload/$', ProjectUpload.as_view(), name="import_project"), url(r'^xlsform/download/$', view.project_download), url(r'^xlsform/upload/update/(?P<project_id>\w+?)/$', ProjectUpdate.as_view(), name="update_project"), url(r'^xlsform/(?P<project_id>.+?)/web_submission/(?P<survey_response_id>[^\\/]+?)/$', edit_xform_submission_get, name="edit_xform_submission"), url(r'^xlsform/(?P<project_id>\w+?)/web_submission/$', new_xform_submission_get, name="xform_web_questionnaire"), url(r'^xlsform/web_submission/(?P<survey_response_id>.+?)/$', edit_xform_submission_post, name="update_web_submission"), url(r'^xlsform/web_submission/$', new_xform_submission_post, name="new_web_submission"), url(r'^attachment/(?P<document_id>.+?)/(?P<attachment_name>[^\\/]+?)/$', get_attachment), url(r'^download/attachment/(?P<document_id>.+?)/(?P<attachment_name>[^\\/]+?)/$', attachment_download) )
61.230769
153
0.741834
9a16fe83f8b00c1ae4b19a89510efa6538193e44
95
py
Python
test2.py
marionettenspieler/pyneta
56a2dba736daf57464b06978c80383787a736ced
[ "Apache-2.0" ]
null
null
null
test2.py
marionettenspieler/pyneta
56a2dba736daf57464b06978c80383787a736ced
[ "Apache-2.0" ]
null
null
null
test2.py
marionettenspieler/pyneta
56a2dba736daf57464b06978c80383787a736ced
[ "Apache-2.0" ]
null
null
null
print('hello man') print('hello man') print('hello man') print('hello man') print('hello man')
15.833333
18
0.684211
9a1837e6b67fec245ab3af4f52d7d449ca21cff5
4,013
py
Python
nvtabular/ds_writer.py
benfred/NVTabular
5ab6d557868ac01eda26e9725a1a6e5bf7eda007
[ "Apache-2.0" ]
null
null
null
nvtabular/ds_writer.py
benfred/NVTabular
5ab6d557868ac01eda26e9725a1a6e5bf7eda007
[ "Apache-2.0" ]
null
null
null
nvtabular/ds_writer.py
benfred/NVTabular
5ab6d557868ac01eda26e9725a1a6e5bf7eda007
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2020, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import glob import os import cudf import numpy as np import pyarrow.parquet as pq try: import cupy as cp except ImportError: import numpy as cp
32.104
82
0.595315
9a18608a6d3310b926afa6ca71ff25504d52035f
481
py
Python
example/my_hook.py
Globidev/github-docker-hook
716de2f79ca30221edd2b70f3f7c85e5d033bae9
[ "MIT" ]
2
2015-09-24T07:38:07.000Z
2015-11-05T18:33:43.000Z
example/my_hook.py
Globidev/github-docker-hook
716de2f79ca30221edd2b70f3f7c85e5d033bae9
[ "MIT" ]
2
2015-11-04T17:34:14.000Z
2015-11-09T02:05:31.000Z
example/my_hook.py
Globidev/github-docker-hook
716de2f79ca30221edd2b70f3f7c85e5d033bae9
[ "MIT" ]
null
null
null
ROUTE = '/push' PORT = 4242 IMAGE_NAME = 'globidocker/github-hook' import docker cli = docker.Client() from lib.git import clone_tmp
19.24
58
0.634096
9a1861ac2df97b1bcfbdb3654e5d9c31f32e9e49
12,403
py
Python
scripts/TestSuite/run_tests.py
ghorwin/MasterSim
281b71e228435ca8fa02319bf2ce86b66b8b2b45
[ "BSD-3-Clause" ]
5
2021-11-17T07:12:54.000Z
2022-03-16T15:06:39.000Z
scripts/TestSuite/run_tests.py
ghorwin/MasterSim
281b71e228435ca8fa02319bf2ce86b66b8b2b45
[ "BSD-3-Clause" ]
25
2021-09-09T07:39:13.000Z
2022-01-23T13:00:19.000Z
scripts/TestSuite/run_tests.py
ghorwin/MasterSim
281b71e228435ca8fa02319bf2ce86b66b8b2b45
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # Solver test suite runner script, used for # * regression tests (default) # * test-init runs (with --test-init option) # * performance evaluation (with --performance option) # # 1. Regression tests (the default) # - runs set of projects and compares physical results and solver stats # - meant to be run with either sequential or parallel solver # - performance is monitored, but not so important (very short tests!) # - expects jobs to have reference result directory, otherwise warning is issued # and simulation is skipped (with --run-always option all simulations are done even without # reference result dirs) # - result of script: # for each job show old/new stats and metrics # show summary table with timings for all successful jobs # # 2. Initialization tests # - checks if solver can initialize set of project files # - script parses directory structure, generates list of test-init jobs # and executes test initialization # - result of script: # for each job result status and time needed for test init (only for information) # # 3. Performance tests # - collects list of jobs, runs each job 3 times and stores timings for all cases # - result of script: # for each job print individual timings and best evalualtion time in a table # # License: # BSD License # # Authors: # Andreas Nicolai <andreas.nicolai@tu-dresden.de> # # Syntax: # > python run_tests.py --path <path/to/testsuite> --solver <path/to/solver/binary> --extension <project file extension> # # Example: # > python run_tests.py --path ../../data/tests --solver ./DelphinSolver --extension d6p # > python run_tests.py -p ../../data/tests -s ./DelphinSolver -e d6p # # Returns: # 0 - if all tests could be simulated successfully and if all solver results/metrics match those of reference results # 1 - if anything failed # # Note: if run with --run-all option, test cases without reference results will always be accepted. # import subprocess # import the module for calling external programs (creating subprocesses) import sys import os import os.path import shutil import filecmp # for result file comparison import argparse import platform # to detect current OS from colorama import * from SolverStats import * from print_funcs import * from config import USE_COLORS def configCommandLineArguments(): """ This method sets the available input parameters and parses them. Returns a configured argparse.ArgumentParser object. """ parser = argparse.ArgumentParser("run_tests.py") parser.description = ''' Runs the regression test suite. Can be used for init-tests (--test-init) or performance evaluation (--performance) as well.''' parser.add_argument('-p', '--path', dest='path', required=True, type=str, help='Path to test suite root directory.') parser.add_argument('-s', '--solver', dest='solver', required=True, type=str, help='Path to solver binary.') parser.add_argument('-e', '--extension', dest="extension", required=True, type=str, help='Project file extension.') parser.add_argument('--no-colors', dest="no_colors", action='store_true', help='Disables colored console output.') parser.add_argument('--test-init', dest="test_init", action='store_true', help='Enables test-initialization mode (runs solvers with --test-init argument and ' 'skips result evaluation).') parser.add_argument('--performance', dest="performance", action='store_true', help='Enables performance evaluation mode (runs solvers three times ' 'without result evaluation and dumps timings of all cases and best-of-three timings).') parser.add_argument('--run-all', dest="run_all", action='store_true', help='If set (in regression test mode), also the test cases without reference results ' 'are simulated (can be used to generate reference results for all cases).') return parser.parse_args() def checkResults(dir1, dir2, evalTimes): """ Compares two result directories for equal contents. Compared are: - physical results - solver counters (/log/summary.txt) This function uses IBK.SolverStats Arguments: * dir1 (reference results) and dir2 (computed results) * evalTimes is a dictionary with filepath (key) and wall clock time (value), new entries are always added to the dictionary Returns: True on success, False on error """ try: # open stat files and compare them stats1 = SolverStats() if not stats1.read(dir1 + "/log/summary.txt"): return False stats2 = SolverStats() if not stats2.read(dir2 + "/log/summary.txt"): return False if not SolverStats.compareStats(stats1, stats2, []): printError("Mismatching statistics.") return False # compare all result files (d60, tsv), if any reference result files exist if os.path.exists(dir1 + "/results"): if not SolverStats.compareResults(dir1 + "/results", dir2 + "/results"): printError("Mismatching values.") return False evalTimes[dir2] = stats2.timers['WallClockTime'] except Exception as e: printError("Error comparing simulation results, error: {}".format(e)) return True # *** main script *** args = configCommandLineArguments() if not args.no_colors: init() # init ANSI code filtering for windows config.USE_COLORS = True printNotification("Enabling colored console output") if args.test_init and args.performance: printError("Either use --test-init or --performance, but not both together.") exit(1) # process all directories under test suite directory currentOS = platform.system() compilerID = None if currentOS == "Linux" : compilerID = "gcc_linux" elif currentOS == "Windows" : compilerID = "VC14_win64" elif currentOS == "Darwin" : compilerID = "gcc_mac" if compilerID == None: printError("Unknown/unsupported platform") exit(1) else: print("Compiler ID : " + compilerID) print("Test suite : " + args.path) print("Solver : " + args.solver) print("Project file extension : " + args.extension) # walk all subdirectories (except .svn) within testsuite and collect project file names projects = [] for root, dirs, files in os.walk(args.path, topdown=False): for name in files: if name.endswith('.'+args.extension): projectFilePath = os.path.join(root, name) projects.append(projectFilePath) projects.sort() print("Number of projects : {}\n".format(len(projects))) # performance tests? if args.performance: res = run_performance_evaluation(args, projects) exit(res) failed_projects = [] eval_times = dict() # key - file path to project, value - eval time in [s] for project in projects: print(project) path, fname = os.path.split(project) #print("Path : " + path) #print ("Project : " + fname) # compose path of result folder resultsFolder = project[:-(1+len(args.extension))] # remove entire directory with previous results if os.path.exists(resultsFolder): shutil.rmtree(resultsFolder) cmdline = [args.solver, project] # if in test-init mode, append --test-init to command line if args.test_init: cmdline.append("--test-init") skipResultCheck = True args.run_all = True else: skipResultCheck = False referenceFolder = resultsFolder + "." + compilerID if not os.path.exists(referenceFolder): if not args.run_all: failed_projects.append(project) printError("Missing reference data directory '{}'".format(os.path.split(referenceFolder)[1])) continue else: skipResultCheck = True try: # run solver FNULL = open(os.devnull, 'w') if platform.system() == "Windows": cmdline.append("-x") cmdline.append("--verbosity-level=0") retcode = subprocess.call(cmdline, creationflags=subprocess.CREATE_NEW_CONSOLE) else: if args.test_init: # in test-init mode we want to see the output retcode = subprocess.call(cmdline) else: retcode = subprocess.call(cmdline, stdout=FNULL, stderr=subprocess.STDOUT) # check return code if retcode == 0: # successful run if not skipResultCheck: # now check against reference results if not checkResults(referenceFolder, resultsFolder, eval_times): if not project in failed_projects: failed_projects.append(project) # mark as failed printError("Mismatching results.") else: # mark project as failed failed_projects.append(project) # and print error message printError("Simulation failed, see screenlog file {}".format(os.path.join(os.getcwd(), resultsFolder+"/log/screenlog.txt" ) ) ) except OSError as e: printError("Error starting solver executable '{}', error: {}".format(args.solver, e)) exit(1) print("\nSuccessful projects:\n") print("{:80s} {}".format("Project path", "Wall clock time [s]")) filenames = eval_times.keys() filenames = sorted(filenames) for filename in filenames: fname = os.path.basename(filename) onedir = os.path.join(os.path.basename(os.path.dirname(filename)), os.path.basename(filename)) printNotification("{:80s} {:>10.3f}".format(onedir, eval_times[filename])) if len(failed_projects) > 0: print("\nFailed projects:") for p in failed_projects: printError(p) print("\n") printError("*** Failure ***") exit(1) printNotification("*** Success ***") exit(0)
33.252011
120
0.689511
9a1b2360ed8259c0fd8d46c53ed3e0ed659879cf
4,815
py
Python
sigr/Anechoic.py
JerameyATyler/sigR
25c895648c5f90f57baa95f2cdd097cd33259a07
[ "MIT" ]
null
null
null
sigr/Anechoic.py
JerameyATyler/sigR
25c895648c5f90f57baa95f2cdd097cd33259a07
[ "MIT" ]
null
null
null
sigr/Anechoic.py
JerameyATyler/sigR
25c895648c5f90f57baa95f2cdd097cd33259a07
[ "MIT" ]
null
null
null
from torch.utils.data import Dataset
37.038462
119
0.627414
9a1b3e2dbb66fc996ec081ab5ef13e302246dd49
1,410
py
Python
scripts/update_covid_tracking_data.py
TomGoBravo/covid-data-public
76cdf384f4e6b5088f0a8105a4fabc37c899015c
[ "MIT" ]
null
null
null
scripts/update_covid_tracking_data.py
TomGoBravo/covid-data-public
76cdf384f4e6b5088f0a8105a4fabc37c899015c
[ "MIT" ]
null
null
null
scripts/update_covid_tracking_data.py
TomGoBravo/covid-data-public
76cdf384f4e6b5088f0a8105a4fabc37c899015c
[ "MIT" ]
null
null
null
import logging import datetime import pathlib import pytz import requests import pandas as pd DATA_ROOT = pathlib.Path(__file__).parent.parent / "data" _logger = logging.getLogger(__name__) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) CovidTrackingDataUpdater().update()
30
75
0.685816
9a1e2ae93bc1197259db93644405545d0b6670ce
1,100
py
Python
src/chatty/auth/auth.py
CITIZENSHIP-CHATTY/backend
8982a0f3cff8ba2efe6a903bb4ab47f9c6044487
[ "MIT" ]
null
null
null
src/chatty/auth/auth.py
CITIZENSHIP-CHATTY/backend
8982a0f3cff8ba2efe6a903bb4ab47f9c6044487
[ "MIT" ]
4
2020-04-19T09:25:46.000Z
2020-05-07T20:20:04.000Z
src/chatty/auth/auth.py
CITIZENSHIP-CHATTY/backend
8982a0f3cff8ba2efe6a903bb4ab47f9c6044487
[ "MIT" ]
null
null
null
from chatty import utils from aiohttp import web from chatty.auth.models import User
32.352941
99
0.708182
9a21fd4ed5ae1c86fb6e590a1edd2f37df8e132c
1,220
py
Python
CustomerProfiles/delete-customer-profile.py
adavidw/sample-code-python
e02f8856c11439cebd67d98fb43431cd4b95316e
[ "MIT" ]
36
2015-11-18T22:35:39.000Z
2022-03-21T10:13:23.000Z
CustomerProfiles/delete-customer-profile.py
adavidw/sample-code-python
e02f8856c11439cebd67d98fb43431cd4b95316e
[ "MIT" ]
23
2016-02-02T06:09:16.000Z
2020-03-06T22:54:55.000Z
CustomerProfiles/delete-customer-profile.py
adavidw/sample-code-python
e02f8856c11439cebd67d98fb43431cd4b95316e
[ "MIT" ]
82
2015-11-22T11:46:33.000Z
2022-03-18T02:46:48.000Z
import os, sys import imp from authorizenet import apicontractsv1 from authorizenet.apicontrollers import * constants = imp.load_source('modulename', 'constants.py') if(os.path.basename(__file__) == os.path.basename(sys.argv[0])): delete_customer_profile(constants.customerProfileId)
38.125
120
0.788525
9a25b6f7b3f250cb0ca3c95cee4acba5e53203f1
3,659
py
Python
python/xskipper/indexbuilder.py
guykhazma/xskipper
058712e744e912bd5b22bc337b9d9ff2fc6b1036
[ "Apache-2.0" ]
31
2021-01-27T15:03:18.000Z
2021-12-13T11:09:58.000Z
python/xskipper/indexbuilder.py
guykhazma/xskipper
058712e744e912bd5b22bc337b9d9ff2fc6b1036
[ "Apache-2.0" ]
20
2021-02-01T16:42:17.000Z
2022-01-26T10:48:59.000Z
python/xskipper/indexbuilder.py
guykhazma/xskipper
058712e744e912bd5b22bc337b9d9ff2fc6b1036
[ "Apache-2.0" ]
12
2021-01-27T14:50:11.000Z
2021-08-10T22:13:46.000Z
# Copyright 2021 IBM Corp. # SPDX-License-Identifier: Apache-2.0 from pyspark.sql.dataframe import DataFrame from py4j.java_collections import MapConverter
38.114583
108
0.625854
9a25e9fa72dd391d4676f6e0a6bb06f9710db5d6
1,837
py
Python
matilda/data_pipeline/data_streaming/consumer.py
AlainDaccache/Quantropy
6cfa06ed2b764471382ebf94d40af867f10433bb
[ "MIT" ]
45
2021-01-28T04:12:21.000Z
2022-02-24T13:15:50.000Z
matilda/data_pipeline/data_streaming/consumer.py
AlainDaccache/Quantropy
6cfa06ed2b764471382ebf94d40af867f10433bb
[ "MIT" ]
32
2021-03-02T18:45:16.000Z
2022-03-12T00:53:10.000Z
matilda/data_pipeline/data_streaming/consumer.py
AlainDaccache/Quantropy
6cfa06ed2b764471382ebf94d40af867f10433bb
[ "MIT" ]
10
2020-12-25T15:02:40.000Z
2021-12-30T11:40:15.000Z
from kafka.consumer import KafkaConsumer from json import loads from mongoengine import * from matilda.data_pipeline import object_model consumer = KafkaConsumer( 'numtest', # kafka topic bootstrap_servers=['localhost:9092'], # same as our producer # It handles where the consumer restarts reading after breaking down or being turned off and can be set either # to earliest or latest. When set to latest, the consumer starts reading at the end of the log. # When set to earliest, the consumer starts reading at the latest committed offset. auto_offset_reset='earliest', enable_auto_commit=True, # makes sure the consumer commits its read offset every interval. # join a consumer group for dynamic partition assignment and offset commits # a consumer needs to be part of a consumer group to make the auto commit work. # otherwise, need to do it manually i.e. consumer.assign([TopicPartition('foobar', 2)]); msg = next(consumer) group_id='my-group', # deserialize encoded values value_deserializer=lambda x: loads(x.decode('utf-8'))) atlas_url = get_atlas_db_url(username='AlainDaccache', password='qwerty98', dbname='matilda-db') db = connect(host=atlas_url) # The consumer iterator returns ConsumerRecords, which are simple namedtuples # that expose basic message attributes: topic, partition, offset, key, and value: for message in consumer: message = message.value print(message) object_model.Test(number=message['number']).save() print('{} added to db'.format(message)) # # Then to check whats in it: # for doc in object_model.Test.objects: # print(doc._data)
42.72093
116
0.740338
9a26ea77dac1512349aaac759f21f3e326122e27
746
py
Python
src/graphs/python/bfs/src/bfs.py
djeada/GraphAlgorithms
0961303ec20430f90053a4efb9074185f96dfddc
[ "MIT" ]
2
2021-05-31T13:01:33.000Z
2021-12-20T19:48:18.000Z
src/graphs/python/bfs/src/bfs.py
djeada/GraphAlgorithms
0961303ec20430f90053a4efb9074185f96dfddc
[ "MIT" ]
null
null
null
src/graphs/python/bfs/src/bfs.py
djeada/GraphAlgorithms
0961303ec20430f90053a4efb9074185f96dfddc
[ "MIT" ]
null
null
null
from graph import Graph
21.314286
69
0.548257