content
stringlengths 5
1.03M
| input_ids
sequencelengths 4
823k
| ratio_char_token
float64 0.4
12.5
| token_count
int64 4
823k
|
---|---|---|---|
############################################
################ Structures ################
############################################
function glb(types...)
# If a lower bound is in the types then it is greatest
# else we just return Unknown for now
for type in types
all(type <: t_ for t_ in types) && return type
end
return Unknown
end
function input_target_scitypes(models, metalearner)
# The target scitype is defined as the greatest lower bound of the
# metalearner and the base models in the library
all_tg_scitypes = [target_scitype(m) for m in models]
tg_scitype = glb(target_scitype(metalearner), all_tg_scitypes...)
# The input scitype is defined as the greatest lower bound of the
# base models in the library
inp_scitype = glb([input_scitype(m) for m in models]...)
return inp_scitype, tg_scitype
end
mutable struct DeterministicStack{modelnames, inp_scitype, tg_scitype} <: DeterministicComposite
models::Vector{Supervised}
metalearner::Deterministic
resampling
measures::Union{Nothing,AbstractVector}
function DeterministicStack(modelnames, models, metalearner, resampling, measures)
inp_scitype, tg_scitype = input_target_scitypes(models, metalearner)
return new{modelnames, inp_scitype, tg_scitype}(models, metalearner, resampling, measures)
end
end
mutable struct ProbabilisticStack{modelnames, inp_scitype, tg_scitype} <: ProbabilisticComposite
models::Vector{Supervised}
metalearner::Probabilistic
resampling
measures::Union{Nothing,AbstractVector}
function ProbabilisticStack(modelnames, models, metalearner, resampling, measures)
inp_scitype, tg_scitype = input_target_scitypes(models, metalearner)
return new{modelnames, inp_scitype, tg_scitype}(models, metalearner, resampling, measures)
end
end
const Stack{modelnames, inp_scitype, tg_scitype} =
Union{DeterministicStack{modelnames, inp_scitype, tg_scitype},
ProbabilisticStack{modelnames, inp_scitype, tg_scitype}}
"""
Stack(;metalearner=nothing, resampling=CV(), name1=model1, name2=model2, ...)
Implements the two-layer generalized stack algorithm introduced by
[Wolpert
(1992)](https://www.sciencedirect.com/science/article/abs/pii/S0893608005800231)
and generalized by [Van der Laan et al
(2007)](https://biostats.bepress.com/ucbbiostat/paper222/). Returns an
instance of type `ProbablisiticStack` or `DeterministicStack`,
depending on the prediction type of `metalearner`.
When training a machine bound to such an instance:
- The data is split into training/validation sets according to the
specified `resampling` strategy.
- Each base model `model1`, `model2`, ... is trained on each training
subset and outputs predictions on the corresponding validation
sets. The multi-fold predictions are spliced together into a
so-called out-of-sample prediction for each model.
- The adjudicating model, `metalearner`, is subsequently trained on
the out-of-sample predictions to learn the best combination of base
model predictions.
- Each base model is retrained on all supplied data for purposes of
passing on new production data onto the adjudicator for making new
predictions
### Arguments
- `metalearner::Supervised`: The model that will optimize the desired
criterion based on its internals. For instance, a LinearRegression
model will optimize the squared error.
- `resampling`: The resampling strategy used
to prepare out-of-sample predictions of the base learners.
It can be a user-defined strategy, the only
caveat being that it should have a `nfolds` attribute.
- `measures`: A measure or iterable over measures, to perform an internal
evaluation of the learners in the Stack while training. This is not for the
evaluation of the Stack itself.
- `name1=model1, name2=model2, ...`: the `Supervised` model instances
to be used as base learners. The provided names become properties
of the instance created to allow hyper-parameter access
### Example
The following code defines a `DeterministicStack` instance for
learning a `Continuous` target, and demonstrates that:
- Base models can be `Probabilistic` models even if the stack
itself is `Deterministic` (`predict_mean` is applied in such cases).
- As an alternative to hyperparameter optimization, one can stack
multiple copies of given model, mutating the hyper-parameter used in
each copy.
```julia
using MLJ
DecisionTreeRegressor = @load DecisionTreeRegressor pkg=DecisionTree
EvoTreeRegressor = @load EvoTreeRegressor
XGBoostRegressor = @load XGBoostRegressor
KNNRegressor = @load KNNRegressor pkg=NearestNeighborModels
LinearRegressor = @load LinearRegressor pkg=MLJLinearModels
X, y = make_regression(500, 5)
stack = Stack(;metalearner=LinearRegressor(),
resampling=CV(),
measures=rmse,
constant=ConstantRegressor(),
tree_2=DecisionTreeRegressor(max_depth=2),
tree_3=DecisionTreeRegressor(max_depth=3),
evo=EvoTreeRegressor(),
knn=KNNRegressor(),
xgb=XGBoostRegressor())
mach = machine(stack, X, y)
evaluate!(mach; resampling=Holdout(), measure=rmse)
```
The internal evaluation report can be accessed like this
and provides a PerformanceEvaluation object for each model:
```julia
report(mach).cv_report
```
"""
function Stack(;metalearner=nothing, resampling=CV(), measure=nothing, measures=measure, named_models...)
metalearner === nothing &&
throw(ArgumentError("No metalearner specified. Use Stack(metalearner=...)"))
nt = NamedTuple(named_models)
modelnames = keys(nt)
models = collect(nt)
if (measures !== nothing) && !(measures isa AbstractVector)
measures = [measures, ]
end
if metalearner isa Deterministic
stack = DeterministicStack(modelnames, models, metalearner, resampling, measures)
elseif metalearner isa Probabilistic
stack = ProbabilisticStack(modelnames, models, metalearner, resampling, measures)
else
throw(ArgumentError("The metalearner should be a subtype
of $(Union{Deterministic, Probabilistic})"))
end
# Issuing clean! statement
message = MMI.clean!(stack)
isempty(message) || @warn message
# Warning if either input_scitype/target_scitype is
# Unknown at construction time
params = typeof(stack).parameters
params[end-1] == Unknown && @warn "Could not infer input_scitype of the stack"
params[end] == Unknown && @warn "Could not infer target_scitype of the stack"
return stack
end
function MMI.clean!(stack::Stack{modelnames, inp_scitype, tg_scitype}) where {modelnames,inp_scitype,tg_scitype}
# We only carry checks and don't try to correct the arguments here
message = ""
# Checking target_scitype and input_scitype have not been changed from the original stack
glb_inp_scitype, glb_tg_scitype = input_target_scitypes(getfield(stack, :models), stack.metalearner)
glb_inp_scitype == inp_scitype ||
throw(DomainError(inp_scitype, "The newly inferred input_scitype of the stack doesn't
match its original one. You have probably changed one of the base models or the metalearner
to a non compatible type."))
glb_tg_scitype == tg_scitype ||
throw(DomainError(tg_scitype, "The newly inferred target_scitype of the stack doesn't
match its original one. You have probably changed one of the base model or the metalearner
to a non compatible type."))
# Checking the target scitype is consistent with either Probabilistic/Deterministic Stack
target_scitype(stack.metalearner) <: Union{AbstractArray{<:Continuous}, AbstractArray{<:Finite}} ||
throw(ArgumentError("The metalearner should have target_scitype:
$(Union{AbstractArray{<:Continuous}, AbstractArray{<:Finite}})"))
return message
end
Base.propertynames(::Stack{modelnames}) where modelnames = tuple(:resampling, :metalearner, modelnames...)
function Base.getproperty(stack::Stack{modelnames}, name::Symbol) where modelnames
name === :metalearner && return getfield(stack, :metalearner)
name === :resampling && return getfield(stack, :resampling)
name == :measures && return getfield(stack, :measures)
models = getfield(stack, :models)
for j in eachindex(modelnames)
name === modelnames[j] && return models[j]
end
error("type Stack has no property $name")
end
function Base.setproperty!(stack::Stack{modelnames}, _name::Symbol, val) where modelnames
_name === :metalearner && return setfield!(stack, :metalearner, val)
_name === :resampling && return setfield!(stack, :resampling, val)
_name === :measures && return setfield!(stack, :measures, val)
idx = findfirst(==(_name), modelnames)
idx isa Nothing || return getfield(stack, :models)[idx] = val
error("type Stack has no property $name")
end
MMI.target_scitype(::Type{<:Stack{modelnames, input_scitype, target_scitype}}) where
{modelnames, input_scitype, target_scitype} = target_scitype
MMI.input_scitype(::Type{<:Stack{modelnames, input_scitype, target_scitype}}) where
{modelnames, input_scitype, target_scitype} = input_scitype
MLJBase.load_path(::Type{<:ProbabilisticStack}) = "MLJBase.ProbabilisticStack"
MLJBase.load_path(::Type{<:DeterministicStack}) = "MLJBase.DeterministicStack"
MLJBase.package_name(::Type{<:Stack}) = "MLJBase"
MLJBase.package_uuid(::Type{<:Stack}) = "a7f614a8-145f-11e9-1d2a-a57a1082229d"
MLJBase.package_url(::Type{<:Stack}) = "https://github.com/alan-turing-institute/MLJBase.jl"
MLJBase.package_license(::Type{<:Stack}) = "MIT"
###########################################################
################# Node operations Methods #################
###########################################################
getfolds(y::AbstractNode, cv::CV, n::Int) =
source(train_test_pairs(cv, 1:n))
getfolds(y::AbstractNode, cv::StratifiedCV, n::Int) =
node(YY->train_test_pairs(cv, 1:n, YY), y)
trainrows(X::AbstractNode, folds::AbstractNode, nfold) =
node((XX, ff) -> selectrows(XX, ff[nfold][1]), X, folds)
testrows(X::AbstractNode, folds::AbstractNode, nfold) =
node((XX, ff) -> selectrows(XX, ff[nfold][2]), X, folds)
pre_judge_transform(ŷ::Node, ::Type{<:Probabilistic}, ::Type{<:AbstractArray{<:Finite}}) =
node(ŷ -> pdf(ŷ, levels(first(ŷ))), ŷ)
pre_judge_transform(ŷ::Node, ::Type{<:Probabilistic}, ::Type{<:AbstractArray{<:Continuous}}) =
node(ŷ->mean.(ŷ), ŷ)
pre_judge_transform(ŷ::Node, ::Type{<:Deterministic}, ::Type{<:AbstractArray{<:Continuous}}) =
ŷ
store_for_evaluation(mach::Machine, Xtest::AbstractNode, ytest::AbstractNode, measures::Nothing) = nothing
function store_for_evaluation(mach::Machine, Xtest::AbstractNode, ytest::AbstractNode, measures)
node((ytest, Xtest) -> [mach, Xtest, ytest], ytest, Xtest)
end
"""
internal_stack_report(m::Stack, verbosity::Int, y::AbstractNode, folds_evaluations::Vararg{Nothing})
When measure/measures is a Nothing, the folds_evaluation won't have been filled by `store_for_evaluation`
and we thus return an empty NamedTuple.
"""
internal_stack_report(m::Stack, verbosity::Int, y::AbstractNode, folds_evaluations::Vararg{Nothing}) = NamedTuple{}()
"""
internal_stack_report(m::Stack, verbosity::Int, y::AbstractNode, folds_evaluations::Vararg{AbstractNode})
When measure/measures is provided, the folds_evaluation will have been filled by `store_for_evaluation`. This function is
not doing any heavy work (not constructing nodes corresponding to measures) but just unpacking all the folds_evaluations in a single node that
can be evaluated later.
"""
function internal_stack_report(m::Stack, verbosity::Int, y::AbstractNode, folds_evaluations::Vararg{AbstractNode})
_internal_stack_report(y, folds_evaluations...) =
internal_stack_report(m, verbosity, y, folds_evaluations...)
return (report=(cv_report=node(_internal_stack_report, y, folds_evaluations...),),)
end
"""
internal_stack_report(stack::Stack{modelnames,}, verbosity::Int, y, folds_evaluations...) where modelnames
Returns a `NamedTuple` of `PerformanceEvaluation` objects, one for each model. The folds_evaluations
are built in a flatten array respecting the order given by:
(fold_1:(model_1:[mach, Xtest, ytest], model_2:[mach, Xtest, ytest], ...), fold_2:(model_1, model_2, ...), ...)
"""
function internal_stack_report(stack::Stack{modelnames,}, verbosity::Int, y, folds_evaluations...) where modelnames
n_measures = length(stack.measures)
nfolds = stack.resampling.nfolds
# For each model we record the results mimicking the fields PerformanceEvaluation
results = NamedTuple{modelnames}([
(measure=stack.measures,
measurement=Vector{Any}(undef, n_measures),
operation=_actual_operations(nothing, stack.measures, model, verbosity),
per_fold=[Vector{Any}(undef, nfolds) for _ in 1:n_measures],
per_observation=Vector{Union{Missing, Vector{Any}}}(missing, n_measures),
fitted_params_per_fold=[],
report_per_fold=[],
train_test_pairs=train_test_pairs(stack.resampling, 1:nrows(y), y)
)
for model in getfield(stack, :models)]
)
# Update the results
index = 1
for foldid in 1:nfolds
for modelname in modelnames
model_results = results[modelname]
mach, Xtest, ytest = folds_evaluations[index]
# Update report and fitted_params per fold
push!(model_results.fitted_params_per_fold, fitted_params(mach))
push!(model_results.report_per_fold, report(mach))
# Loop over measures to update per_observation and per_fold
for (i, (measure, operation)) in enumerate(zip(stack.measures, model_results.operation))
ypred = operation(mach, Xtest)
loss = measure(ypred, ytest)
# Update per_observation
if reports_each_observation(measure)
if model_results.per_observation[i] === missing
model_results.per_observation[i] = Vector{Any}(undef, nfolds)
end
model_results.per_observation[i][foldid] = loss
end
# Update per_fold
model_results.per_fold[i][foldid] =
reports_each_observation(measure) ? MLJBase.aggregate(loss, measure) : loss
end
index += 1
end
end
# Update measurement field by aggregation
for modelname in modelnames
for (i, measure) in enumerate(stack.measures)
model_results = results[modelname]
model_results.measurement[i] = MLJBase.aggregate(model_results.per_fold[i], measure)
end
end
return NamedTuple{modelnames}([PerformanceEvaluation(r...) for r in results])
end
check_stack_measures(stack, verbosity::Int, measures::Nothing, y) = nothing
"""
check_stack_measures(stack, measures, y)
Check the measures compatibility for each model in the Stack.
"""
function check_stack_measures(stack, verbosity::Int, measures, y)
for model in getfield(stack, :models)
operations = _actual_operations(nothing, measures, model, verbosity)
_check_measures(measures, operations, model, y)
end
end
"""
oos_set(m::Stack, folds::AbstractNode, Xs::Source, ys::Source)
This function is building the out-of-sample dataset that is later used by the `judge`
for its own training. It also returns the folds_evaluations object if internal
cross-validation results are requested.
"""
function oos_set(m::Stack, folds::AbstractNode, Xs::Source, ys::Source)
Zval = []
yval = []
folds_evaluations = []
# Loop over the cross validation folds to build a training set for the metalearner.
for nfold in 1:m.resampling.nfolds
Xtrain = trainrows(Xs, folds, nfold)
ytrain = trainrows(ys, folds, nfold)
Xtest = testrows(Xs, folds, nfold)
ytest = testrows(ys, folds, nfold)
# Train each model on the train fold and predict on the validation fold
# predictions are subsequently used as an input to the metalearner
Zfold = []
for model in getfield(m, :models)
mach = machine(model, Xtrain, ytrain)
ypred = predict(mach, Xtest)
# Internal evaluation on the fold if required
push!(folds_evaluations, store_for_evaluation(mach, Xtest, ytest, m.measures))
# Dispatch the computation of the expected mean based on
# the model type and target_scytype
ypred = pre_judge_transform(ypred, typeof(model), target_scitype(model))
push!(Zfold, ypred)
end
Zfold = hcat(Zfold...)
push!(Zval, Zfold)
push!(yval, ytest)
end
Zval = MLJBase.table(vcat(Zval...))
yval = vcat(yval...)
Zval, yval, folds_evaluations
end
#######################################
################# Fit #################
#######################################
"""
fit(m::Stack, verbosity::Int, X, y)
"""
function fit(m::Stack, verbosity::Int, X, y)
check_stack_measures(m, verbosity, m.measures, y)
n = nrows(y)
Xs = source(X)
ys = source(y)
folds = getfolds(ys, m.resampling, n)
Zval, yval, folds_evaluations = oos_set(m, folds, Xs, ys)
metamach = machine(m.metalearner, Zval, yval)
# Each model is retrained on the original full training set
Zpred = []
for model in getfield(m, :models)
mach = machine(model, Xs, ys)
ypred = predict(mach, Xs)
ypred = pre_judge_transform(ypred, typeof(model), target_scitype(model))
push!(Zpred, ypred)
end
Zpred = MLJBase.table(hcat(Zpred...))
ŷ = predict(metamach, Zpred)
internal_report = internal_stack_report(m, verbosity, ys, folds_evaluations...)
# We can infer the Surrogate by two calls to supertype
mach = machine(supertype(supertype(typeof(m)))(), Xs, ys; predict=ŷ, internal_report...)
return!(mach, m, verbosity)
end
| [
29113,
7804,
4242,
198,
14468,
32112,
942,
1303,
7804,
4242,
21017,
198,
29113,
7804,
4242,
628,
198,
8818,
1278,
65,
7,
19199,
23029,
198,
220,
220,
220,
1303,
1002,
257,
2793,
5421,
318,
287,
262,
3858,
788,
340,
318,
6000,
198,
220,
220,
220,
1303,
2073,
356,
655,
1441,
16185,
329,
783,
198,
220,
220,
220,
329,
2099,
287,
3858,
198,
220,
220,
220,
220,
220,
220,
220,
477,
7,
4906,
1279,
25,
256,
62,
329,
256,
62,
287,
3858,
8,
11405,
1441,
2099,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
16185,
198,
437,
628,
198,
8818,
5128,
62,
16793,
62,
1416,
414,
12272,
7,
27530,
11,
6147,
451,
1008,
8,
198,
220,
220,
220,
1303,
383,
2496,
629,
414,
431,
318,
5447,
355,
262,
6000,
2793,
5421,
286,
262,
198,
220,
220,
220,
1303,
6147,
451,
1008,
290,
262,
2779,
4981,
287,
262,
5888,
198,
220,
220,
220,
477,
62,
25297,
62,
1416,
414,
12272,
796,
685,
16793,
62,
1416,
414,
431,
7,
76,
8,
329,
285,
287,
4981,
60,
198,
220,
220,
220,
256,
70,
62,
1416,
414,
431,
796,
1278,
65,
7,
16793,
62,
1416,
414,
431,
7,
28469,
451,
1008,
828,
477,
62,
25297,
62,
1416,
414,
12272,
23029,
198,
220,
220,
220,
1303,
383,
5128,
629,
414,
431,
318,
5447,
355,
262,
6000,
2793,
5421,
286,
262,
198,
220,
220,
220,
1303,
2779,
4981,
287,
262,
5888,
198,
220,
220,
220,
287,
79,
62,
1416,
414,
431,
796,
1278,
65,
26933,
15414,
62,
1416,
414,
431,
7,
76,
8,
329,
285,
287,
4981,
60,
23029,
628,
220,
220,
220,
1441,
287,
79,
62,
1416,
414,
431,
11,
256,
70,
62,
1416,
414,
431,
198,
437,
628,
198,
76,
18187,
2878,
45559,
49228,
25896,
90,
19849,
14933,
11,
287,
79,
62,
1416,
414,
431,
11,
256,
70,
62,
1416,
414,
431,
92,
1279,
25,
45559,
49228,
5377,
1930,
578,
198,
220,
220,
4981,
3712,
38469,
90,
12442,
16149,
92,
198,
220,
220,
6147,
451,
1008,
3712,
35,
2357,
49228,
198,
220,
220,
581,
321,
11347,
198,
220,
220,
5260,
3712,
38176,
90,
18465,
11,
23839,
38469,
92,
198,
220,
220,
2163,
45559,
49228,
25896,
7,
19849,
14933,
11,
4981,
11,
6147,
451,
1008,
11,
581,
321,
11347,
11,
5260,
8,
198,
220,
220,
220,
220,
220,
220,
220,
287,
79,
62,
1416,
414,
431,
11,
256,
70,
62,
1416,
414,
431,
796,
5128,
62,
16793,
62,
1416,
414,
12272,
7,
27530,
11,
6147,
451,
1008,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
649,
90,
19849,
14933,
11,
287,
79,
62,
1416,
414,
431,
11,
256,
70,
62,
1416,
414,
431,
92,
7,
27530,
11,
6147,
451,
1008,
11,
581,
321,
11347,
11,
5260,
8,
198,
220,
220,
886,
198,
437,
198,
198,
76,
18187,
2878,
30873,
14991,
2569,
25896,
90,
19849,
14933,
11,
287,
79,
62,
1416,
414,
431,
11,
256,
70,
62,
1416,
414,
431,
92,
1279,
25,
30873,
14991,
2569,
5377,
1930,
578,
198,
220,
220,
220,
4981,
3712,
38469,
90,
12442,
16149,
92,
198,
220,
220,
220,
6147,
451,
1008,
3712,
2964,
65,
14991,
2569,
198,
220,
220,
220,
581,
321,
11347,
198,
220,
220,
220,
5260,
3712,
38176,
90,
18465,
11,
23839,
38469,
92,
198,
220,
220,
220,
2163,
30873,
14991,
2569,
25896,
7,
19849,
14933,
11,
4981,
11,
6147,
451,
1008,
11,
581,
321,
11347,
11,
5260,
8,
198,
220,
220,
220,
220,
220,
220,
220,
287,
79,
62,
1416,
414,
431,
11,
256,
70,
62,
1416,
414,
431,
796,
5128,
62,
16793,
62,
1416,
414,
12272,
7,
27530,
11,
6147,
451,
1008,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
649,
90,
19849,
14933,
11,
287,
79,
62,
1416,
414,
431,
11,
256,
70,
62,
1416,
414,
431,
92,
7,
27530,
11,
6147,
451,
1008,
11,
581,
321,
11347,
11,
5260,
8,
198,
220,
220,
220,
886,
198,
886,
628,
198,
9979,
23881,
90,
19849,
14933,
11,
287,
79,
62,
1416,
414,
431,
11,
256,
70,
62,
1416,
414,
431,
92,
796,
198,
220,
220,
220,
4479,
90,
35,
2357,
49228,
25896,
90,
19849,
14933,
11,
287,
79,
62,
1416,
414,
431,
11,
256,
70,
62,
1416,
414,
431,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
30873,
14991,
2569,
25896,
90,
19849,
14933,
11,
287,
79,
62,
1416,
414,
431,
11,
256,
70,
62,
1416,
414,
431,
11709,
198,
198,
37811,
198,
220,
220,
220,
23881,
7,
26,
28469,
451,
1008,
28,
22366,
11,
581,
321,
11347,
28,
33538,
22784,
1438,
16,
28,
19849,
16,
11,
1438,
17,
28,
19849,
17,
11,
2644,
8,
198,
198,
3546,
1154,
902,
262,
734,
12,
29289,
38284,
8931,
11862,
5495,
416,
198,
58,
54,
349,
11766,
198,
7,
23847,
15437,
7,
5450,
1378,
2503,
13,
36216,
5864,
1060,
13,
785,
14,
16801,
14,
20205,
14,
8937,
14,
79,
4178,
14,
50,
2919,
6052,
1899,
7410,
3365,
405,
25667,
8,
198,
392,
38284,
416,
685,
25298,
4587,
4689,
272,
2123,
435,
198,
7,
12726,
15437,
7,
5450,
1378,
8482,
455,
1381,
13,
65,
538,
601,
13,
785,
14,
1229,
65,
8482,
455,
265,
14,
20189,
23148,
14,
737,
16409,
281,
198,
39098,
286,
2099,
4600,
2964,
65,
23117,
271,
16233,
25896,
63,
393,
4600,
35,
2357,
49228,
25896,
47671,
198,
44023,
319,
262,
17724,
2099,
286,
4600,
28469,
451,
1008,
44646,
198,
198,
2215,
3047,
257,
4572,
5421,
284,
884,
281,
4554,
25,
198,
198,
12,
383,
1366,
318,
6626,
656,
3047,
14,
12102,
341,
5621,
1864,
284,
262,
198,
220,
7368,
4600,
411,
321,
11347,
63,
4811,
13,
198,
198,
12,
5501,
2779,
2746,
4600,
19849,
16,
47671,
4600,
19849,
17,
47671,
2644,
318,
8776,
319,
1123,
3047,
198,
220,
24637,
290,
23862,
16277,
319,
262,
11188,
21201,
198,
220,
5621,
13,
383,
5021,
12,
11379,
16277,
389,
4328,
3711,
1978,
656,
257,
198,
220,
523,
12,
7174,
503,
12,
1659,
12,
39873,
17724,
329,
1123,
2746,
13,
198,
198,
12,
383,
33719,
12364,
2746,
11,
4600,
28469,
451,
1008,
47671,
318,
12412,
8776,
319,
198,
220,
262,
503,
12,
1659,
12,
39873,
16277,
284,
2193,
262,
1266,
6087,
286,
2779,
198,
220,
2746,
16277,
13,
198,
198,
12,
5501,
2779,
2746,
318,
1005,
13363,
319,
477,
14275,
1366,
329,
4959,
286,
198,
220,
6427,
319,
649,
3227,
1366,
4291,
262,
33719,
26407,
329,
1642,
649,
198,
220,
16277,
198,
198,
21017,
20559,
2886,
198,
198,
12,
4600,
28469,
451,
1008,
3712,
12442,
16149,
63,
25,
383,
2746,
326,
481,
27183,
262,
10348,
198,
220,
34054,
1912,
319,
663,
1788,
874,
13,
220,
1114,
4554,
11,
257,
44800,
8081,
2234,
198,
220,
2746,
481,
27183,
262,
44345,
4049,
13,
198,
198,
12,
4600,
411,
321,
11347,
63,
25,
383,
581,
321,
11347,
4811,
973,
198,
220,
284,
8335,
503,
12,
1659,
12,
39873,
16277,
286,
262,
2779,
46184,
13,
220,
198,
220,
632,
460,
307,
257,
2836,
12,
23211,
4811,
11,
262,
691,
220,
198,
220,
36531,
852,
326,
340,
815,
423,
257,
4600,
77,
69,
10119,
63,
11688,
13,
198,
198,
12,
4600,
47336,
63,
25,
317,
3953,
393,
11629,
540,
625,
5260,
11,
284,
1620,
281,
5387,
220,
198,
220,
12660,
286,
262,
46184,
287,
262,
23881,
981,
3047,
13,
770,
318,
407,
329,
262,
198,
220,
12660,
286,
262,
23881,
2346,
13,
198,
198,
12,
4600,
3672,
16,
28,
19849,
16,
11,
1438,
17,
28,
19849,
17,
11,
2644,
63,
25,
262,
4600,
12442,
16149,
63,
2746,
10245,
198,
220,
284,
307,
973,
355,
2779,
46184,
13,
220,
383,
2810,
3891,
1716,
6608,
198,
220,
286,
262,
4554,
2727,
284,
1249,
8718,
12,
17143,
2357,
1895,
628,
198,
21017,
17934,
198,
198,
464,
1708,
2438,
15738,
257,
4600,
35,
2357,
49228,
25896,
63,
4554,
329,
198,
40684,
257,
4600,
17875,
5623,
63,
2496,
11,
290,
15687,
326,
25,
198,
198,
12,
7308,
4981,
460,
307,
4600,
2964,
65,
14991,
2569,
63,
4981,
772,
611,
262,
8931,
198,
220,
2346,
318,
4600,
35,
2357,
49228,
63,
357,
63,
79,
17407,
62,
32604,
63,
318,
5625,
287,
884,
2663,
737,
198,
198,
12,
1081,
281,
5559,
284,
8718,
17143,
2357,
23989,
11,
530,
460,
8931,
198,
220,
3294,
9088,
286,
1813,
2746,
11,
4517,
803,
262,
8718,
12,
17143,
2357,
973,
287,
198,
220,
1123,
4866,
13,
628,
198,
15506,
63,
73,
43640,
198,
3500,
10373,
41,
198,
198,
10707,
1166,
27660,
8081,
44292,
796,
2488,
2220,
26423,
27660,
8081,
44292,
279,
10025,
28,
10707,
1166,
27660,
198,
36,
13038,
27660,
8081,
44292,
796,
2488,
2220,
4319,
78,
27660,
8081,
44292,
198,
55,
4579,
78,
455,
8081,
44292,
796,
2488,
2220,
1395,
4579,
78,
455,
8081,
44292,
198,
42,
6144,
8081,
44292,
796,
2488,
2220,
509,
6144,
8081,
44292,
279,
10025,
28,
8199,
12423,
46445,
2865,
5841,
1424,
198,
14993,
451,
8081,
44292,
796,
2488,
2220,
44800,
8081,
44292,
279,
10025,
28,
5805,
41,
14993,
451,
5841,
1424,
198,
198,
55,
11,
331,
796,
787,
62,
2301,
2234,
7,
4059,
11,
642,
8,
198,
198,
25558,
796,
23881,
7,
26,
28469,
451,
1008,
28,
14993,
451,
8081,
44292,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
581,
321,
11347,
28,
33538,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5260,
28,
26224,
325,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6937,
28,
3103,
18797,
8081,
44292,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5509,
62,
17,
28,
10707,
1166,
27660,
8081,
44292,
7,
9806,
62,
18053,
28,
17,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5509,
62,
18,
28,
10707,
1166,
27660,
8081,
44292,
7,
9806,
62,
18053,
28,
18,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
819,
78,
28,
36,
13038,
27660,
8081,
44292,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
638,
77,
28,
42,
6144,
8081,
44292,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
22296,
28,
55,
4579,
78,
455,
8081,
44292,
28955,
198,
198,
76,
620,
796,
4572,
7,
25558,
11,
1395,
11,
331,
8,
198,
49786,
0,
7,
76,
620,
26,
581,
321,
11347,
28,
26807,
448,
22784,
3953,
28,
26224,
325,
8,
198,
198,
15506,
63,
198,
198,
464,
5387,
12660,
989,
460,
307,
17535,
588,
428,
220,
198,
392,
3769,
257,
15193,
36,
2100,
2288,
2134,
329,
1123,
2746,
25,
198,
198,
15506,
63,
73,
43640,
198,
13116,
7,
76,
620,
737,
33967,
62,
13116,
198,
15506,
63,
198,
198,
37811,
198,
8818,
23881,
7,
26,
28469,
451,
1008,
28,
22366,
11,
581,
321,
11347,
28,
33538,
22784,
3953,
28,
22366,
11,
5260,
28,
1326,
5015,
11,
3706,
62,
27530,
23029,
198,
220,
220,
220,
6147,
451,
1008,
24844,
2147,
11405,
198,
220,
220,
220,
220,
220,
220,
220,
3714,
7,
28100,
1713,
12331,
7203,
2949,
6147,
451,
1008,
7368,
13,
5765,
23881,
7,
28469,
451,
1008,
28,
986,
16725,
4008,
628,
220,
220,
220,
299,
83,
796,
34441,
51,
29291,
7,
13190,
62,
27530,
8,
198,
220,
220,
220,
2746,
14933,
796,
8251,
7,
429,
8,
198,
220,
220,
220,
4981,
796,
2824,
7,
429,
8,
198,
220,
220,
220,
611,
357,
47336,
5145,
855,
2147,
8,
11405,
5145,
7,
47336,
318,
64,
27741,
38469,
8,
198,
220,
220,
220,
220,
220,
220,
220,
5260,
796,
685,
47336,
11,
2361,
198,
220,
220,
220,
886,
628,
220,
220,
220,
611,
6147,
451,
1008,
318,
64,
45559,
49228,
198,
220,
220,
220,
220,
220,
220,
220,
8931,
796,
220,
45559,
49228,
25896,
7,
19849,
14933,
11,
4981,
11,
6147,
451,
1008,
11,
581,
321,
11347,
11,
5260,
8,
198,
220,
220,
220,
2073,
361,
6147,
451,
1008,
318,
64,
30873,
14991,
2569,
198,
220,
220,
220,
220,
220,
220,
220,
8931,
796,
30873,
14991,
2569,
25896,
7,
19849,
14933,
11,
4981,
11,
6147,
451,
1008,
11,
581,
321,
11347,
11,
5260,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
3714,
7,
28100,
1713,
12331,
7203,
464,
6147,
451,
1008,
815,
307,
257,
850,
4906,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
286,
29568,
38176,
90,
35,
2357,
49228,
11,
30873,
14991,
2569,
92,
16725,
4008,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1303,
1849,
27738,
4250,
3424,
0,
2643,
198,
220,
220,
220,
3275,
796,
337,
8895,
13,
27773,
0,
7,
25558,
8,
198,
220,
220,
220,
318,
28920,
7,
20500,
8,
8614,
2488,
40539,
3275,
628,
220,
220,
220,
1303,
15932,
611,
2035,
5128,
62,
1416,
414,
431,
14,
16793,
62,
1416,
414,
431,
318,
198,
220,
220,
220,
1303,
16185,
379,
5103,
640,
198,
220,
220,
220,
42287,
796,
2099,
1659,
7,
25558,
737,
17143,
7307,
198,
220,
220,
220,
42287,
58,
437,
12,
16,
60,
6624,
16185,
11405,
2488,
40539,
366,
23722,
407,
13249,
5128,
62,
1416,
414,
431,
286,
262,
8931,
1,
198,
220,
220,
220,
42287,
58,
437,
60,
6624,
16185,
11405,
2488,
40539,
366,
23722,
407,
13249,
2496,
62,
1416,
414,
431,
286,
262,
8931,
1,
628,
220,
220,
220,
1441,
8931,
198,
437,
628,
198,
8818,
337,
8895,
13,
27773,
0,
7,
25558,
3712,
25896,
90,
19849,
14933,
11,
287,
79,
62,
1416,
414,
431,
11,
256,
70,
62,
1416,
414,
431,
30072,
810,
1391,
19849,
14933,
11,
259,
79,
62,
1416,
414,
431,
11,
25297,
62,
1416,
414,
431,
92,
198,
220,
220,
220,
1303,
775,
691,
3283,
8794,
290,
836,
470,
1949,
284,
3376,
262,
7159,
994,
198,
220,
220,
220,
3275,
796,
13538,
198,
220,
220,
220,
1303,
39432,
2496,
62,
1416,
414,
431,
290,
5128,
62,
1416,
414,
431,
423,
407,
587,
3421,
422,
262,
2656,
8931,
198,
220,
220,
220,
1278,
65,
62,
259,
79,
62,
1416,
414,
431,
11,
1278,
65,
62,
25297,
62,
1416,
414,
431,
796,
5128,
62,
16793,
62,
1416,
414,
12272,
7,
1136,
3245,
7,
25558,
11,
1058,
27530,
828,
8931,
13,
28469,
451,
1008,
8,
198,
220,
220,
220,
1278,
65,
62,
259,
79,
62,
1416,
414,
431,
6624,
287,
79,
62,
1416,
414,
431,
8614,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3714,
7,
43961,
12331,
7,
259,
79,
62,
1416,
414,
431,
11,
366,
464,
8308,
41240,
5128,
62,
1416,
414,
431,
286,
262,
8931,
1595,
470,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2872,
663,
2656,
530,
13,
921,
423,
2192,
3421,
530,
286,
262,
2779,
4981,
393,
262,
6147,
451,
1008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
284,
257,
1729,
11670,
2099,
526,
4008,
198,
220,
220,
220,
1278,
65,
62,
25297,
62,
1416,
414,
431,
6624,
256,
70,
62,
1416,
414,
431,
8614,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3714,
7,
43961,
12331,
7,
25297,
62,
1416,
414,
431,
11,
366,
464,
8308,
41240,
2496,
62,
1416,
414,
431,
286,
262,
8931,
1595,
470,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2872,
663,
2656,
530,
13,
921,
423,
2192,
3421,
530,
286,
262,
2779,
2746,
393,
262,
6147,
451,
1008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
284,
257,
1729,
11670,
2099,
526,
4008,
198,
220,
220,
220,
1303,
39432,
262,
2496,
629,
414,
431,
318,
6414,
351,
2035,
30873,
14991,
2569,
14,
35,
2357,
49228,
23881,
198,
220,
220,
220,
2496,
62,
1416,
414,
431,
7,
25558,
13,
28469,
451,
1008,
8,
1279,
25,
4479,
90,
23839,
19182,
90,
27,
25,
17875,
5623,
5512,
27741,
19182,
90,
27,
25,
37,
9504,
11709,
8614,
198,
220,
220,
220,
220,
220,
220,
220,
3714,
7,
28100,
1713,
12331,
7203,
464,
6147,
451,
1008,
815,
423,
2496,
62,
1416,
414,
431,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
29568,
38176,
90,
23839,
19182,
90,
27,
25,
17875,
5623,
5512,
27741,
19182,
90,
27,
25,
37,
9504,
11709,
16725,
4008,
628,
220,
220,
220,
1441,
3275,
198,
437,
628,
198,
14881,
13,
26745,
14933,
7,
3712,
25896,
90,
19849,
14933,
30072,
810,
2746,
14933,
796,
46545,
7,
25,
411,
321,
11347,
11,
1058,
28469,
451,
1008,
11,
2746,
14933,
23029,
628,
198,
8818,
7308,
13,
1136,
26745,
7,
25558,
3712,
25896,
90,
19849,
14933,
5512,
1438,
3712,
13940,
23650,
8,
810,
2746,
14933,
198,
220,
220,
220,
1438,
24844,
1058,
28469,
451,
1008,
11405,
1441,
651,
3245,
7,
25558,
11,
1058,
28469,
451,
1008,
8,
198,
220,
220,
220,
1438,
24844,
1058,
411,
321,
11347,
11405,
1441,
651,
3245,
7,
25558,
11,
1058,
411,
321,
11347,
8,
198,
220,
220,
220,
1438,
6624,
1058,
47336,
11405,
1441,
651,
3245,
7,
25558,
11,
1058,
47336,
8,
198,
220,
220,
220,
4981,
796,
651,
3245,
7,
25558,
11,
1058,
27530,
8,
198,
220,
220,
220,
329,
474,
287,
1123,
9630,
7,
19849,
14933,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1438,
24844,
2746,
14933,
58,
73,
60,
11405,
1441,
4981,
58,
73,
60,
198,
220,
220,
220,
886,
198,
220,
220,
220,
4049,
7203,
4906,
23881,
468,
645,
3119,
720,
3672,
4943,
198,
437,
628,
198,
8818,
7308,
13,
2617,
26745,
0,
7,
25558,
3712,
25896,
90,
19849,
14933,
5512,
4808,
3672,
3712,
13940,
23650,
11,
1188,
8,
810,
2746,
14933,
198,
220,
220,
220,
4808,
3672,
24844,
1058,
28469,
451,
1008,
11405,
1441,
900,
3245,
0,
7,
25558,
11,
1058,
28469,
451,
1008,
11,
1188,
8,
198,
220,
220,
220,
4808,
3672,
24844,
1058,
411,
321,
11347,
11405,
1441,
900,
3245,
0,
7,
25558,
11,
1058,
411,
321,
11347,
11,
1188,
8,
198,
220,
220,
220,
4808,
3672,
24844,
1058,
47336,
11405,
1441,
900,
3245,
0,
7,
25558,
11,
1058,
47336,
11,
1188,
8,
198,
220,
220,
220,
4686,
87,
796,
1064,
11085,
7,
855,
28264,
3672,
828,
2746,
14933,
8,
198,
220,
220,
220,
4686,
87,
318,
64,
10528,
8614,
1441,
651,
3245,
7,
25558,
11,
1058,
27530,
38381,
312,
87,
60,
796,
1188,
198,
220,
220,
220,
4049,
7203,
4906,
23881,
468,
645,
3119,
720,
3672,
4943,
198,
437,
628,
198,
44,
8895,
13,
16793,
62,
1416,
414,
431,
7,
3712,
6030,
90,
27,
25,
25896,
90,
19849,
14933,
11,
5128,
62,
1416,
414,
431,
11,
2496,
62,
1416,
414,
431,
11709,
8,
810,
198,
220,
220,
220,
1391,
19849,
14933,
11,
5128,
62,
1416,
414,
431,
11,
2496,
62,
1416,
414,
431,
92,
796,
2496,
62,
1416,
414,
431,
628,
198,
44,
8895,
13,
15414,
62,
1416,
414,
431,
7,
3712,
6030,
90,
27,
25,
25896,
90,
19849,
14933,
11,
5128,
62,
1416,
414,
431,
11,
2496,
62,
1416,
414,
431,
11709,
8,
810,
198,
220,
220,
220,
1391,
19849,
14933,
11,
5128,
62,
1416,
414,
431,
11,
2496,
62,
1416,
414,
431,
92,
796,
5128,
62,
1416,
414,
431,
628,
198,
5805,
41,
14881,
13,
2220,
62,
6978,
7,
3712,
6030,
90,
27,
25,
2964,
65,
14991,
2569,
25896,
30072,
796,
366,
5805,
41,
14881,
13,
2964,
65,
14991,
2569,
25896,
1,
198,
5805,
41,
14881,
13,
2220,
62,
6978,
7,
3712,
6030,
90,
27,
25,
35,
2357,
49228,
25896,
30072,
796,
366,
5805,
41,
14881,
13,
35,
2357,
49228,
25896,
1,
198,
5805,
41,
14881,
13,
26495,
62,
3672,
7,
3712,
6030,
90,
27,
25,
25896,
30072,
796,
366,
5805,
41,
14881,
1,
198,
5805,
41,
14881,
13,
26495,
62,
12303,
312,
7,
3712,
6030,
90,
27,
25,
25896,
30072,
796,
366,
64,
22,
69,
46841,
64,
23,
12,
18781,
69,
12,
1157,
68,
24,
12,
16,
67,
17,
64,
12,
64,
3553,
64,
15711,
1828,
1959,
67,
1,
198,
5805,
41,
14881,
13,
26495,
62,
6371,
7,
3712,
6030,
90,
27,
25,
25896,
30072,
796,
366,
5450,
1378,
12567,
13,
785,
14,
25786,
12,
83,
870,
12,
8625,
3678,
14,
5805,
41,
14881,
13,
20362,
1,
198,
5805,
41,
14881,
13,
26495,
62,
43085,
7,
3712,
6030,
90,
27,
25,
25896,
30072,
796,
366,
36393,
1,
198,
198,
29113,
14468,
7804,
21017,
198,
14468,
2,
19081,
4560,
25458,
1303,
14468,
198,
29113,
14468,
7804,
21017,
628,
198,
1136,
69,
10119,
7,
88,
3712,
23839,
19667,
11,
269,
85,
3712,
33538,
11,
299,
3712,
5317,
8,
796,
198,
220,
220,
220,
2723,
7,
27432,
62,
9288,
62,
79,
3468,
7,
33967,
11,
352,
25,
77,
4008,
198,
198,
1136,
69,
10119,
7,
88,
3712,
23839,
19667,
11,
269,
85,
3712,
1273,
10366,
1431,
33538,
11,
299,
3712,
5317,
8,
796,
198,
220,
220,
220,
10139,
7,
26314,
3784,
27432,
62,
9288,
62,
79,
3468,
7,
33967,
11,
352,
25,
77,
11,
575,
56,
828,
331,
8,
198,
198,
27432,
8516,
7,
55,
3712,
23839,
19667,
11,
38744,
3712,
23839,
19667,
11,
299,
11379,
8,
796,
198,
220,
220,
220,
10139,
19510,
8051,
11,
31246,
8,
4613,
2922,
8516,
7,
8051,
11,
31246,
58,
77,
11379,
7131,
16,
46570,
1395,
11,
38744,
8,
198,
198,
9288,
8516,
7,
55,
3712,
23839,
19667,
11,
38744,
3712,
23839,
19667,
11,
299,
11379,
8,
796,
198,
220,
220,
220,
10139,
19510,
8051,
11,
31246,
8,
4613,
2922,
8516,
7,
8051,
11,
31246,
58,
77,
11379,
7131,
17,
46570,
1395,
11,
38744,
8,
628,
198,
3866,
62,
10456,
469,
62,
35636,
7,
88,
136,
224,
3712,
19667,
11,
7904,
6030,
90,
27,
25,
2964,
65,
14991,
2569,
5512,
7904,
6030,
90,
27,
25,
23839,
19182,
90,
27,
25,
37,
9504,
11709,
8,
796,
198,
220,
220,
220,
10139,
7,
88,
136,
224,
4613,
37124,
7,
88,
136,
224,
11,
2974,
7,
11085,
7,
88,
136,
224,
4008,
828,
331,
136,
224,
8,
198,
198,
3866,
62,
10456,
469,
62,
35636,
7,
88,
136,
224,
3712,
19667,
11,
7904,
6030,
90,
27,
25,
2964,
65,
14991,
2569,
5512,
7904,
6030,
90,
27,
25,
23839,
19182,
90,
27,
25,
17875,
5623,
11709,
8,
796,
198,
220,
220,
220,
10139,
7,
88,
136,
224,
3784,
32604,
12195,
88,
136,
224,
828,
331,
136,
224,
8,
198,
198,
3866,
62,
10456,
469,
62,
35636,
7,
88,
136,
224,
3712,
19667,
11,
7904,
6030,
90,
27,
25,
35,
2357,
49228,
5512,
7904,
6030,
90,
27,
25,
23839,
19182,
90,
27,
25,
17875,
5623,
11709,
8,
796,
198,
220,
220,
220,
331,
136,
224,
628,
198,
8095,
62,
1640,
62,
18206,
2288,
7,
76,
620,
3712,
37573,
11,
1395,
9288,
3712,
23839,
19667,
11,
331,
9288,
3712,
23839,
19667,
11,
5260,
3712,
18465,
8,
796,
2147,
198,
8818,
3650,
62,
1640,
62,
18206,
2288,
7,
76,
620,
3712,
37573,
11,
1395,
9288,
3712,
23839,
19667,
11,
331,
9288,
3712,
23839,
19667,
11,
5260,
8,
198,
220,
220,
220,
10139,
19510,
88,
9288,
11,
1395,
9288,
8,
4613,
685,
76,
620,
11,
1395,
9288,
11,
331,
9288,
4357,
331,
9288,
11,
1395,
9288,
8,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
5387,
62,
25558,
62,
13116,
7,
76,
3712,
25896,
11,
15942,
16579,
3712,
5317,
11,
331,
3712,
23839,
19667,
11,
38744,
62,
18206,
6055,
3712,
19852,
853,
90,
18465,
30072,
198,
198,
2215,
3953,
14,
47336,
318,
257,
10528,
11,
262,
38744,
62,
18206,
2288,
1839,
470,
423,
587,
5901,
416,
4600,
8095,
62,
1640,
62,
18206,
2288,
63,
198,
392,
356,
4145,
1441,
281,
6565,
34441,
51,
29291,
13,
198,
37811,
198,
32538,
62,
25558,
62,
13116,
7,
76,
3712,
25896,
11,
15942,
16579,
3712,
5317,
11,
331,
3712,
23839,
19667,
11,
38744,
62,
18206,
6055,
3712,
19852,
853,
90,
18465,
30072,
796,
34441,
51,
29291,
90,
92,
3419,
198,
198,
37811,
198,
220,
220,
220,
5387,
62,
25558,
62,
13116,
7,
76,
3712,
25896,
11,
15942,
16579,
3712,
5317,
11,
331,
3712,
23839,
19667,
11,
38744,
62,
18206,
6055,
3712,
19852,
853,
90,
23839,
19667,
30072,
198,
198,
2215,
3953,
14,
47336,
318,
2810,
11,
262,
38744,
62,
18206,
2288,
481,
423,
587,
5901,
416,
4600,
8095,
62,
1640,
62,
18206,
2288,
44646,
770,
2163,
318,
220,
198,
1662,
1804,
597,
4334,
670,
357,
1662,
30580,
13760,
11188,
284,
5260,
8,
475,
655,
8593,
5430,
477,
262,
38744,
62,
18206,
6055,
287,
257,
2060,
10139,
326,
198,
5171,
307,
16726,
1568,
13,
198,
37811,
198,
8818,
5387,
62,
25558,
62,
13116,
7,
76,
3712,
25896,
11,
15942,
16579,
3712,
5317,
11,
331,
3712,
23839,
19667,
11,
38744,
62,
18206,
6055,
3712,
19852,
853,
90,
23839,
19667,
30072,
198,
220,
220,
220,
4808,
32538,
62,
25558,
62,
13116,
7,
88,
11,
38744,
62,
18206,
6055,
23029,
796,
198,
220,
220,
220,
220,
220,
220,
220,
5387,
62,
25558,
62,
13116,
7,
76,
11,
15942,
16579,
11,
331,
11,
38744,
62,
18206,
6055,
23029,
198,
220,
220,
220,
1441,
357,
13116,
16193,
33967,
62,
13116,
28,
17440,
28264,
32538,
62,
25558,
62,
13116,
11,
331,
11,
38744,
62,
18206,
6055,
986,
828,
828,
8,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
5387,
62,
25558,
62,
13116,
7,
25558,
3712,
25896,
90,
19849,
14933,
11,
5512,
15942,
16579,
3712,
5317,
11,
331,
11,
38744,
62,
18206,
6055,
23029,
810,
2746,
14933,
198,
198,
35561,
257,
4600,
45,
2434,
51,
29291,
63,
286,
4600,
32273,
36,
2100,
2288,
63,
5563,
11,
530,
329,
1123,
2746,
13,
383,
38744,
62,
18206,
6055,
198,
533,
220,
3170,
287,
257,
27172,
268,
7177,
30796,
262,
1502,
1813,
416,
25,
198,
7,
11379,
62,
16,
37498,
19849,
62,
16,
33250,
76,
620,
11,
1395,
9288,
11,
331,
9288,
4357,
2746,
62,
17,
33250,
76,
620,
11,
1395,
9288,
11,
331,
9288,
4357,
2644,
828,
5591,
62,
17,
37498,
19849,
62,
16,
11,
2746,
62,
17,
11,
2644,
828,
2644,
8,
198,
37811,
198,
8818,
5387,
62,
25558,
62,
13116,
7,
25558,
3712,
25896,
90,
19849,
14933,
11,
5512,
15942,
16579,
3712,
5317,
11,
331,
11,
38744,
62,
18206,
6055,
23029,
810,
2746,
14933,
628,
220,
220,
220,
299,
62,
47336,
796,
4129,
7,
25558,
13,
47336,
8,
198,
220,
220,
220,
299,
69,
10119,
796,
8931,
13,
411,
321,
11347,
13,
77,
69,
10119,
628,
220,
220,
220,
1303,
1114,
1123,
2746,
356,
1700,
262,
2482,
17007,
7958,
262,
7032,
15193,
36,
2100,
2288,
198,
220,
220,
220,
2482,
796,
34441,
51,
29291,
90,
19849,
14933,
92,
26933,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
1326,
5015,
28,
25558,
13,
47336,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15558,
28,
38469,
90,
7149,
92,
7,
917,
891,
11,
299,
62,
47336,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4905,
28,
62,
50039,
62,
3575,
602,
7,
22366,
11,
8931,
13,
47336,
11,
2746,
11,
15942,
16579,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
583,
62,
11379,
41888,
38469,
90,
7149,
92,
7,
917,
891,
11,
299,
69,
10119,
8,
329,
4808,
287,
352,
25,
77,
62,
47336,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
583,
62,
672,
3168,
341,
28,
38469,
90,
38176,
90,
43730,
11,
20650,
90,
7149,
42535,
7,
45688,
11,
299,
62,
47336,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18235,
62,
37266,
62,
525,
62,
11379,
41888,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
989,
62,
525,
62,
11379,
41888,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
9288,
62,
79,
3468,
28,
27432,
62,
9288,
62,
79,
3468,
7,
25558,
13,
411,
321,
11347,
11,
352,
25,
77,
8516,
7,
88,
828,
331,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
220,
198,
220,
220,
220,
220,
220,
220,
220,
329,
2746,
287,
651,
3245,
7,
25558,
11,
1058,
27530,
15437,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
10133,
262,
2482,
198,
220,
220,
220,
6376,
796,
352,
198,
220,
220,
220,
329,
5591,
312,
287,
352,
25,
77,
69,
10119,
198,
220,
220,
220,
220,
220,
220,
220,
329,
2746,
3672,
287,
2746,
14933,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2746,
62,
43420,
796,
2482,
58,
19849,
3672,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3235,
11,
1395,
9288,
11,
331,
9288,
796,
38744,
62,
18206,
6055,
58,
9630,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10133,
989,
290,
18235,
62,
37266,
583,
5591,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
19849,
62,
43420,
13,
38631,
62,
37266,
62,
525,
62,
11379,
11,
18235,
62,
37266,
7,
76,
620,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
19849,
62,
43420,
13,
13116,
62,
525,
62,
11379,
11,
989,
7,
76,
620,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
26304,
625,
5260,
284,
4296,
583,
62,
672,
3168,
341,
290,
583,
62,
11379,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
357,
72,
11,
357,
1326,
5015,
11,
4905,
4008,
287,
27056,
378,
7,
13344,
7,
25558,
13,
47336,
11,
2746,
62,
43420,
13,
27184,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
28764,
796,
4905,
7,
76,
620,
11,
1395,
9288,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2994,
796,
3953,
7,
4464,
445,
11,
331,
9288,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10133,
583,
62,
672,
3168,
341,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3136,
62,
27379,
62,
672,
3168,
341,
7,
1326,
5015,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2746,
62,
43420,
13,
525,
62,
672,
3168,
341,
58,
72,
60,
24844,
4814,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2746,
62,
43420,
13,
525,
62,
672,
3168,
341,
58,
72,
60,
796,
20650,
90,
7149,
92,
7,
917,
891,
11,
299,
69,
10119,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2746,
62,
43420,
13,
525,
62,
672,
3168,
341,
58,
72,
7131,
11379,
312,
60,
796,
2994,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10133,
583,
62,
11379,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2746,
62,
43420,
13,
525,
62,
11379,
58,
72,
7131,
11379,
312,
60,
796,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3136,
62,
27379,
62,
672,
3168,
341,
7,
1326,
5015,
8,
5633,
10373,
41,
14881,
13,
9460,
49373,
7,
22462,
11,
3953,
8,
1058,
2994,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6376,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1303,
10133,
15558,
2214,
416,
46500,
198,
220,
220,
220,
329,
2746,
3672,
287,
2746,
14933,
198,
220,
220,
220,
220,
220,
220,
220,
329,
357,
72,
11,
3953,
8,
287,
27056,
378,
7,
25558,
13,
47336,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2746,
62,
43420,
796,
2482,
58,
19849,
3672,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2746,
62,
43420,
13,
1326,
5015,
434,
58,
72,
60,
796,
10373,
41,
14881,
13,
9460,
49373,
7,
19849,
62,
43420,
13,
525,
62,
11379,
58,
72,
4357,
3953,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1441,
34441,
51,
29291,
90,
19849,
14933,
92,
26933,
32273,
36,
2100,
2288,
7,
81,
23029,
329,
374,
287,
2482,
12962,
198,
437,
628,
198,
9122,
62,
25558,
62,
47336,
7,
25558,
11,
15942,
16579,
3712,
5317,
11,
5260,
3712,
18465,
11,
331,
8,
796,
2147,
198,
37811,
198,
220,
220,
220,
2198,
62,
25558,
62,
47336,
7,
25558,
11,
5260,
11,
331,
8,
198,
198,
9787,
262,
5260,
17764,
329,
1123,
2746,
287,
262,
23881,
13,
198,
37811,
198,
8818,
2198,
62,
25558,
62,
47336,
7,
25558,
11,
15942,
16579,
3712,
5317,
11,
5260,
11,
331,
8,
198,
220,
220,
220,
329,
2746,
287,
651,
3245,
7,
25558,
11,
1058,
27530,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4560,
796,
4808,
50039,
62,
3575,
602,
7,
22366,
11,
5260,
11,
2746,
11,
15942,
16579,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4808,
9122,
62,
47336,
7,
47336,
11,
4560,
11,
2746,
11,
331,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
267,
418,
62,
2617,
7,
76,
3712,
25896,
11,
38744,
3712,
23839,
19667,
11,
1395,
82,
3712,
7416,
11,
331,
82,
3712,
7416,
8,
198,
198,
1212,
2163,
318,
2615,
262,
503,
12,
1659,
12,
39873,
27039,
326,
318,
1568,
973,
416,
262,
4600,
10456,
469,
63,
198,
1640,
663,
898,
3047,
13,
632,
635,
5860,
262,
38744,
62,
18206,
6055,
2134,
611,
5387,
220,
198,
19692,
12,
12102,
341,
2482,
389,
9167,
13,
198,
37811,
198,
8818,
267,
418,
62,
2617,
7,
76,
3712,
25896,
11,
38744,
3712,
23839,
19667,
11,
1395,
82,
3712,
7416,
11,
331,
82,
3712,
7416,
8,
198,
220,
220,
220,
1168,
2100,
796,
17635,
198,
220,
220,
220,
331,
2100,
796,
17635,
198,
220,
220,
220,
38744,
62,
18206,
6055,
796,
17635,
198,
220,
220,
220,
1303,
26304,
625,
262,
3272,
21201,
38744,
284,
1382,
257,
3047,
900,
329,
262,
6147,
451,
1008,
13,
198,
220,
220,
220,
329,
299,
11379,
287,
352,
25,
76,
13,
411,
321,
11347,
13,
77,
69,
10119,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
27432,
796,
4512,
8516,
7,
55,
82,
11,
38744,
11,
299,
11379,
8,
198,
220,
220,
220,
220,
220,
220,
220,
331,
27432,
796,
4512,
8516,
7,
893,
11,
38744,
11,
299,
11379,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
9288,
796,
1332,
8516,
7,
55,
82,
11,
38744,
11,
299,
11379,
8,
198,
220,
220,
220,
220,
220,
220,
220,
331,
9288,
796,
1332,
8516,
7,
893,
11,
38744,
11,
299,
11379,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
1849,
44077,
1123,
2746,
319,
262,
4512,
5591,
290,
4331,
319,
262,
21201,
5591,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
16277,
389,
12412,
973,
355,
281,
5128,
284,
262,
6147,
451,
1008,
198,
220,
220,
220,
220,
220,
220,
220,
1168,
11379,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
329,
2746,
287,
651,
3245,
7,
76,
11,
1058,
27530,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3235,
796,
4572,
7,
19849,
11,
1395,
27432,
11,
331,
27432,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
28764,
796,
4331,
7,
76,
620,
11,
1395,
9288,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
18628,
12660,
319,
262,
5591,
611,
2672,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
69,
10119,
62,
18206,
6055,
11,
3650,
62,
1640,
62,
18206,
2288,
7,
76,
620,
11,
1395,
9288,
11,
331,
9288,
11,
285,
13,
47336,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
35934,
262,
29964,
286,
262,
2938,
1612,
1912,
319,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
262,
2746,
2099,
290,
2496,
62,
82,
948,
4906,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
28764,
796,
662,
62,
10456,
469,
62,
35636,
7,
4464,
445,
11,
2099,
1659,
7,
19849,
828,
2496,
62,
1416,
414,
431,
7,
19849,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
57,
11379,
11,
331,
28764,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
1168,
11379,
796,
289,
9246,
7,
57,
11379,
23029,
628,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
57,
2100,
11,
1168,
11379,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
88,
2100,
11,
331,
9288,
8,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1168,
2100,
796,
10373,
41,
14881,
13,
11487,
7,
85,
9246,
7,
57,
2100,
986,
4008,
198,
220,
220,
220,
331,
2100,
796,
410,
9246,
7,
88,
2100,
23029,
628,
220,
220,
220,
1168,
2100,
11,
331,
2100,
11,
38744,
62,
18206,
6055,
198,
437,
198,
198,
29113,
4242,
21017,
198,
14468,
2,
25048,
1303,
14468,
198,
29113,
4242,
21017,
198,
37811,
198,
220,
220,
220,
4197,
7,
76,
3712,
25896,
11,
15942,
16579,
3712,
5317,
11,
1395,
11,
331,
8,
198,
37811,
198,
8818,
4197,
7,
76,
3712,
25896,
11,
15942,
16579,
3712,
5317,
11,
1395,
11,
331,
8,
198,
220,
220,
220,
2198,
62,
25558,
62,
47336,
7,
76,
11,
15942,
16579,
11,
285,
13,
47336,
11,
331,
8,
628,
220,
220,
220,
299,
796,
299,
8516,
7,
88,
8,
628,
220,
220,
220,
1395,
82,
796,
2723,
7,
55,
8,
198,
220,
220,
220,
331,
82,
796,
2723,
7,
88,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
38744,
796,
651,
69,
10119,
7,
893,
11,
285,
13,
411,
321,
11347,
11,
299,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1168,
2100,
11,
331,
2100,
11,
38744,
62,
18206,
6055,
796,
267,
418,
62,
2617,
7,
76,
11,
38744,
11,
1395,
82,
11,
331,
82,
8,
628,
220,
220,
220,
1138,
321,
620,
796,
4572,
7,
76,
13,
28469,
451,
1008,
11,
1168,
2100,
11,
331,
2100,
8,
628,
220,
220,
220,
1303,
5501,
2746,
318,
1005,
13363,
319,
262,
2656,
1336,
3047,
900,
198,
220,
220,
220,
1168,
28764,
796,
17635,
198,
220,
220,
220,
329,
2746,
287,
651,
3245,
7,
76,
11,
1058,
27530,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3235,
796,
4572,
7,
19849,
11,
1395,
82,
11,
331,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
331,
28764,
796,
4331,
7,
76,
620,
11,
1395,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
331,
28764,
796,
662,
62,
10456,
469,
62,
35636,
7,
4464,
445,
11,
2099,
1659,
7,
19849,
828,
2496,
62,
1416,
414,
431,
7,
19849,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
57,
28764,
11,
331,
28764,
8,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1168,
28764,
796,
10373,
41,
14881,
13,
11487,
7,
71,
9246,
7,
57,
28764,
986,
4008,
198,
220,
220,
220,
331,
136,
224,
796,
4331,
7,
4164,
321,
620,
11,
1168,
28764,
8,
628,
220,
220,
220,
5387,
62,
13116,
796,
5387,
62,
25558,
62,
13116,
7,
76,
11,
15942,
16579,
11,
331,
82,
11,
38744,
62,
18206,
6055,
23029,
628,
220,
220,
220,
1303,
775,
460,
13249,
262,
4198,
3828,
378,
416,
734,
3848,
284,
2208,
4906,
198,
220,
220,
220,
3235,
796,
4572,
7,
16668,
4906,
7,
16668,
4906,
7,
4906,
1659,
7,
76,
4008,
5769,
828,
1395,
82,
11,
331,
82,
26,
4331,
28,
129,
115,
11,
5387,
62,
13116,
23029,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1441,
0,
7,
76,
620,
11,
285,
11,
15942,
16579,
8,
198,
437,
198
] | 2.708438 | 6,743 |
using .Abstract: returntype
using IRTools: Variable, returnvalue, blocks, isexpr
using IRTools.Inner: iscall
struct Trivial end
function infer(f, ::Trivial, tr = trace(typeof(f)))
r = returntype(tr)
r isa Abstract.Const && return Singleton(r.value)
any(((v, st),) -> iscall(st.expr, observe), tr) && return
r = returnvalue(blocks(tr)[end])
r isa Variable || return
ex = tr[r].expr
iscall(ex, rand) && ex.args[2] isa Distribution && return ex.args[2]
return
end
| [
3500,
764,
23839,
25,
1005,
333,
429,
2981,
198,
3500,
314,
14181,
10141,
25,
35748,
11,
1441,
8367,
11,
7021,
11,
318,
31937,
198,
3500,
314,
14181,
10141,
13,
818,
1008,
25,
318,
13345,
198,
198,
7249,
7563,
85,
498,
886,
198,
198,
8818,
13249,
7,
69,
11,
7904,
14824,
85,
498,
11,
491,
796,
12854,
7,
4906,
1659,
7,
69,
22305,
198,
220,
374,
796,
1005,
333,
429,
2981,
7,
2213,
8,
198,
220,
374,
318,
64,
27741,
13,
34184,
11405,
1441,
5573,
10565,
7,
81,
13,
8367,
8,
198,
220,
597,
19510,
7,
85,
11,
336,
828,
8,
4613,
318,
13345,
7,
301,
13,
31937,
11,
12414,
828,
491,
8,
11405,
1441,
198,
220,
374,
796,
1441,
8367,
7,
27372,
7,
2213,
38381,
437,
12962,
198,
220,
374,
318,
64,
35748,
8614,
1441,
198,
220,
409,
796,
491,
58,
81,
4083,
31937,
198,
220,
318,
13345,
7,
1069,
11,
43720,
8,
11405,
409,
13,
22046,
58,
17,
60,
318,
64,
27484,
11405,
1441,
409,
13,
22046,
58,
17,
60,
198,
220,
1441,
198,
437,
198
] | 2.706215 | 177 |
print("This host's word size is ", WORD_SIZE, ".")
if ENDIAN_BOM == 0x04030201
println("And it is a little-endian machine.")
elseif ENDIAN_BOM == 0x01020304
println("And it is a big-endian machine.")
else
println("ENDIAN_BOM = ", ENDIAN_BOM, ", which is confusing")
end
| [
4798,
7203,
1212,
2583,
338,
1573,
2546,
318,
33172,
370,
12532,
62,
33489,
11,
366,
19570,
198,
361,
23578,
16868,
62,
33,
2662,
6624,
657,
87,
36676,
1270,
1264,
198,
220,
220,
220,
44872,
7203,
1870,
340,
318,
257,
1310,
12,
437,
666,
4572,
19570,
198,
17772,
361,
23578,
16868,
62,
33,
2662,
6624,
657,
87,
20943,
1238,
21288,
198,
220,
220,
220,
44872,
7203,
1870,
340,
318,
257,
1263,
12,
437,
666,
4572,
19570,
198,
17772,
198,
220,
220,
220,
44872,
7203,
10619,
16868,
62,
33,
2662,
796,
33172,
23578,
16868,
62,
33,
2662,
11,
33172,
543,
318,
15337,
4943,
198,
437,
198
] | 2.711538 | 104 |
# This is a simple `@debug` macro that we can use in the code
# without it slowing the code down, unlike `Base.@debug`.
const DEBUG_LEVEL = Ref(0)
function setdebug!(level::Int)
DEBUG_LEVEL[] = level
return nothing
end
"""
withdebug(level::Int) do
func()
end
"""
function withdebug(f, level)
lvl = DEBUG_LEVEL[]
try
setdebug!(level)
f()
finally
setdebug!(lvl)
end
end
"""
@debug 1 "msg"
"""
macro debug(level, msg)
esc(quote
if DEBUG_LEVEL[] >= $level
println(string("DEBUG: ", $(QuoteNode(__source__.file)), ":", $(QuoteNode(__source__.line)), " ", $msg))
end
end)
end
| [
2,
770,
318,
257,
2829,
4600,
31,
24442,
63,
15021,
326,
356,
460,
779,
287,
262,
2438,
198,
2,
1231,
340,
21605,
262,
2438,
866,
11,
5023,
4600,
14881,
13,
31,
24442,
44646,
198,
198,
9979,
16959,
62,
2538,
18697,
796,
6524,
7,
15,
8,
198,
198,
8818,
900,
24442,
0,
7,
5715,
3712,
5317,
8,
198,
220,
220,
220,
16959,
62,
2538,
18697,
21737,
796,
1241,
198,
220,
220,
220,
1441,
2147,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
6681,
1765,
1018,
7,
5715,
3712,
5317,
8,
466,
198,
220,
220,
220,
220,
220,
220,
220,
25439,
3419,
198,
220,
220,
220,
886,
198,
37811,
198,
8818,
6681,
1765,
1018,
7,
69,
11,
1241,
8,
198,
220,
220,
220,
33309,
796,
16959,
62,
2538,
18697,
21737,
198,
220,
220,
220,
1949,
198,
220,
220,
220,
220,
220,
220,
220,
900,
24442,
0,
7,
5715,
8,
198,
220,
220,
220,
220,
220,
220,
220,
277,
3419,
198,
220,
220,
220,
3443,
198,
220,
220,
220,
220,
220,
220,
220,
900,
24442,
0,
7,
47147,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
2488,
24442,
352,
366,
19662,
1,
198,
37811,
198,
20285,
305,
14257,
7,
5715,
11,
31456,
8,
198,
220,
220,
220,
3671,
7,
22708,
198,
220,
220,
220,
220,
220,
220,
220,
611,
16959,
62,
2538,
18697,
21737,
18189,
720,
5715,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
8841,
7203,
30531,
25,
33172,
29568,
25178,
19667,
7,
834,
10459,
834,
13,
7753,
36911,
366,
25,
1600,
29568,
25178,
19667,
7,
834,
10459,
834,
13,
1370,
36911,
366,
33172,
720,
19662,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
8,
198,
437,
198
] | 2.282828 | 297 |
using DrWatson, GPUAcceleratedTracking, CUDA, Tracking, GNSSSignals, StructArrays, ProgressMeter;
import Tracking: Hz, ms;
@quickactivate "GPUAcceleratedTracking"
N = 2048:32:262_144
err_rel = zeros(length(N))
@showprogress 0.5 for (idx, num_samples) in enumerate(N)
# num_samples = 2_048
num_ants = 1
num_correlators = 3
enable_gpu = Val(true)
system = GPSL1(use_gpu = Val(true));
# system_h = GPSL1(use_gpu = Val(false));
codes = system.codes
# codes_text_mem_simple = CuTexture(
# CuTextureArray(codes)
# )
codes_text_mem = CuTexture(
CuTextureArray(codes),
address_mode = CUDA.ADDRESS_MODE_WRAP,
interpolation = CUDA.NearestNeighbour(),
normalized_coordinates = true
)
code_frequency = get_code_frequency(system)
code_length = get_code_length(system)
start_code_phase = 0.0f0
carrier_phase = 0.0f0
carrier_frequency = 1500Hz
prn = 1
# Generate the signal;
signal, sampling_frequency = gen_signal(system, prn, carrier_frequency, num_samples, num_ants = NumAnts(num_ants), start_code_phase = start_code_phase, start_carrier_phase = carrier_phase)
# Generate correlator;
correlator = EarlyPromptLateCorrelator(NumAnts(num_ants), NumAccumulators(num_correlators))
correlator_sample_shifts = get_correlator_sample_shifts(system, correlator, sampling_frequency, 0.5)
num_of_shifts = correlator_sample_shifts[end] - correlator_sample_shifts[1]
# Generate blank code and carrier replica, and downconverted signal;
# code_replica_cpu = zeros(Float32, num_samples + num_of_shifts)
code_replica = CUDA.zeros(Float32, num_samples + num_of_shifts)
code_replica_text_mem = CUDA.zeros(Float32, num_samples + num_of_shifts)
# Generate CUDA kernel tuning parameters;
threads_per_block = 768
blocks_per_grid = cld.(num_samples, threads_per_block)
@cuda threads=threads_per_block blocks=blocks_per_grid gen_code_replica_texture_mem_kernel!(
code_replica_text_mem,
codes_text_mem, # texture memory codes
code_frequency,
sampling_frequency,
start_code_phase,
prn,
num_samples + num_of_shifts,
correlator_sample_shifts[1],
code_length
)
@cuda threads=threads_per_block blocks=blocks_per_grid gen_code_replica_kernel!(
code_replica,
codes, # texture memory codes
code_frequency,
sampling_frequency,
start_code_phase,
prn,
num_samples + num_of_shifts,
correlator_sample_shifts[1],
code_length
)
# Tracking.gen_code_replica!(code_replica_cpu, system, code_frequency, sampling_frequency, start_code_phase, 1, num_samples, correlator_sample_shifts, prn)
# code_replica_h = Array(code_replica)
# code_replica_text_mem_h = Array(code_replica_text_mem)
# signal = StructArray{ComplexF32}((ones(Float32, num_samples), zeros(Float32, num_samples) ))
# code_phases = get_code_frequency(system) / sampling_frequency .* (0:num_samples-1) .+ start_code_phase
# spread_signal = StructArray(signal .* system_h.codes[1 .+ mod.(floor.(Int, code_phases), get_code_length(system)), prn])
# accums_true = Tracking.correlate(correlator, spread_signal, code_replica_cpu, correlator_sample_shifts, 1, num_samples)
# accums = Tracking.correlate(correlator, spread_signal, code_replica_h, correlator_sample_shifts, 1, num_samples)
# accums_text_mem = Tracking.correlate(correlator, spread_signal, code_replica_text_mem_h, correlator_sample_shifts, 1, num_samples)
# err_rel = sum(abs.(code_replica - code_replica_text_mem)) / num_samples
err_rel[idx] = sum(abs.(code_replica - code_replica_text_mem)) / num_samples
end
x = vec(collect(N / 0.001)) # convert to Hz
data = vec(100 .* err_rel)
data_bar = mean(data)
data_med = median(data)
data_max = maximum(data)
using CairoMakie
fig = Figure(font = "Times New Roman")
ax = Axis(
fig,
xlabel = "Sampling Frequency [Hz]",
ylabel = "Relative Code Phase Error [%]",
xscale = log10,
title = "Relative code phase error of the texture memory code replica generation for 1 ms GPS L1 C/A signal",
# xlim = [0 400_000],
xminorgridvisible = true,
xminorticksvisible = true,
xminorticks = IntervalsBetween(9),
# yticks = (10.0 .^(-5:1:-3)),
# yticks = (10.0 .^(-5:1:-3)),
xticklabelsize = 18,
yticklabelsize = 18
)
xlims!(ax, 10^6, 5*10^8)
# string_data_bar = "$(round(data_bar, sigdigits=3))%"
# string_data_max = "$(round(data_max, sigdigits=3))%"
# string_data_med = "$(round(data_med, sigdigits=3))%"
# # textmu = "μ = " * string_data_bar
# # textmax = "max = " * string_data_max
# textmed = "median = " * string_data_med
lines!(ax, x,data)
# hlines!(ax, data_bar, color = :dimgrey, linestyle = :dash)
# hlines!(ax, data_med, color = :dimgrey, linestyle = :dash)
# hlines!(ax, data_max, color = :dimgrey, linestyle = :dash)
# text!(textmu, position = (9*10^8, 0.1+data_bar), align = (:right, :baseline))
# text!(textmax, position = (9*10^8, data_max - 0.2), align = (:right, :baseline))
# text!(textmed, position = (5*10^8, 0.5+data_med), align = (:center, :baseline))
fig[1,1] = ax
fig
@quickactivate "GPUAcceleratedTracking"
raw_data_df = collect_results(datadir("benchmarks/codereplica"))
sort!(raw_data_df, :num_samples)
samples = unique(Vector{Int64}(raw_data_df[!, :num_samples]))
algorithm_names = unique(Vector{String}(raw_data_df[!, :algorithm]))
samples = unique(Vector{Int64}(raw_data_df[!, :num_samples]))
x = samples ./ 0.001 # convert to Hz
algorithm_names = unique(Vector{String}(raw_data_df[!, :algorithm]))
# fig = Figure(
# # resolution = (1000, 700),
# font = "Times New Roman"
# )
ax2 = Axis(
fig,
xlabel = "Sampling Frequency [Hz]",
ylabel = "Generation Time [s]",
xscale = log10,
yscale = log10,
title = "Comparison between global memory and texture memory code replica generation for 1 ms GPS L1 C/A signal",
xminorgridvisible = true,
xminorticksvisible = true,
xminorticks = IntervalsBetween(9),
# yticks = (10.0 .^(-5:1:-3)),
xticklabelsize = 18,
yticklabelsize = 18
)
xlims!(ax2, 10^6, 5*10^8)
ylims!(ax2, 1.0e-5, 3.0e-3)
lin = Array{Lines}(undef, length(algorithm_names));
sca = Array{Scatter}(undef, length(algorithm_names));
markers = [:circle, :rect]
for (idx, name) = enumerate(algorithm_names)
time = 10 ^ (-9) * vec((
raw_data_df |>
@filter(
_.algorithm == name
) |> DataFrame
).Minimum)
lin[idx] = lines!(
ax2,
x,
time
)
sca[idx] = scatter!(
ax2,
x,
time,
marker = markers[idx],
markersize = 15
)
end
realtime = lines!(ax2, [10^6, 5 * 10^8], [10 ^ (-3), 10 ^ (-3)], color=:grey, linestyle=:dashdot)
fig[2,1] = ax2
fig
elements = [[lin[1] sca[1]], [lin[2] sca[2]]]
labels = ["Global Memory", "Texture Memory"]
axislegend(ax2, elements, labels, "Code Replication Algorithms", position = :lt)
fig
# save( plotsdir("benchmark_textmem.pdf"), fig)
save(plotsdir("code_phase.pdf"), fig) | [
3500,
1583,
54,
13506,
11,
11362,
12832,
7015,
515,
2898,
5430,
11,
29369,
5631,
11,
37169,
11,
15484,
5432,
11712,
874,
11,
32112,
3163,
20477,
11,
18387,
44,
2357,
26,
198,
11748,
37169,
25,
26109,
11,
13845,
26,
198,
31,
24209,
39022,
366,
33346,
12832,
7015,
515,
2898,
5430,
1,
198,
198,
45,
796,
36117,
25,
2624,
25,
29119,
62,
18444,
198,
8056,
62,
2411,
220,
796,
1976,
27498,
7,
13664,
7,
45,
4008,
198,
31,
12860,
33723,
657,
13,
20,
329,
357,
312,
87,
11,
997,
62,
82,
12629,
8,
287,
27056,
378,
7,
45,
8,
198,
220,
220,
220,
1303,
997,
62,
82,
12629,
796,
362,
62,
47202,
198,
220,
220,
220,
997,
62,
1187,
796,
352,
198,
220,
220,
220,
997,
62,
10215,
2411,
2024,
796,
513,
198,
220,
220,
220,
7139,
62,
46999,
796,
3254,
7,
7942,
8,
198,
220,
220,
220,
1080,
796,
15472,
43,
16,
7,
1904,
62,
46999,
796,
3254,
7,
7942,
18125,
198,
220,
220,
220,
1303,
1080,
62,
71,
796,
15472,
43,
16,
7,
1904,
62,
46999,
796,
3254,
7,
9562,
18125,
198,
220,
220,
220,
12416,
796,
1080,
13,
40148,
198,
220,
220,
220,
1303,
12416,
62,
5239,
62,
11883,
62,
36439,
796,
14496,
32742,
7,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
14496,
32742,
19182,
7,
40148,
8,
198,
220,
220,
220,
1303,
1267,
198,
220,
220,
220,
12416,
62,
5239,
62,
11883,
796,
14496,
32742,
7,
198,
220,
220,
220,
220,
220,
220,
220,
14496,
32742,
19182,
7,
40148,
828,
198,
220,
220,
220,
220,
220,
220,
220,
2209,
62,
14171,
796,
29369,
5631,
13,
2885,
7707,
7597,
62,
49058,
62,
18564,
2969,
11,
198,
220,
220,
220,
220,
220,
220,
220,
39555,
341,
796,
29369,
5631,
13,
8199,
12423,
46445,
6084,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
39279,
62,
37652,
17540,
796,
2081,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
2438,
62,
35324,
796,
651,
62,
8189,
62,
35324,
7,
10057,
8,
198,
220,
220,
220,
2438,
62,
13664,
796,
651,
62,
8189,
62,
13664,
7,
10057,
8,
198,
220,
220,
220,
923,
62,
8189,
62,
40715,
796,
657,
13,
15,
69,
15,
198,
220,
220,
220,
11920,
62,
40715,
796,
657,
13,
15,
69,
15,
198,
220,
220,
220,
11920,
62,
35324,
796,
20007,
7399,
198,
220,
220,
220,
778,
77,
796,
352,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
2980,
378,
262,
6737,
26,
198,
220,
220,
220,
6737,
11,
19232,
62,
35324,
796,
2429,
62,
12683,
282,
7,
10057,
11,
778,
77,
11,
11920,
62,
35324,
11,
997,
62,
82,
12629,
11,
997,
62,
1187,
796,
31835,
13217,
82,
7,
22510,
62,
1187,
828,
923,
62,
8189,
62,
40715,
796,
923,
62,
8189,
62,
40715,
11,
923,
62,
7718,
5277,
62,
40715,
796,
11920,
62,
40715,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
2980,
378,
10895,
1352,
26,
198,
220,
220,
220,
10895,
1352,
796,
12556,
24129,
457,
26302,
10606,
2411,
1352,
7,
33111,
13217,
82,
7,
22510,
62,
1187,
828,
31835,
17320,
388,
24325,
7,
22510,
62,
10215,
2411,
2024,
4008,
198,
220,
220,
220,
10895,
1352,
62,
39873,
62,
1477,
19265,
796,
651,
62,
10215,
2411,
1352,
62,
39873,
62,
1477,
19265,
7,
10057,
11,
10895,
1352,
11,
19232,
62,
35324,
11,
657,
13,
20,
8,
198,
220,
220,
220,
997,
62,
1659,
62,
1477,
19265,
796,
10895,
1352,
62,
39873,
62,
1477,
19265,
58,
437,
60,
532,
10895,
1352,
62,
39873,
62,
1477,
19265,
58,
16,
60,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
2980,
378,
9178,
2438,
290,
11920,
30069,
11,
290,
866,
1102,
13658,
6737,
26,
198,
220,
220,
220,
1303,
2438,
62,
35666,
3970,
62,
36166,
796,
1976,
27498,
7,
43879,
2624,
11,
997,
62,
82,
12629,
1343,
997,
62,
1659,
62,
1477,
19265,
8,
198,
220,
220,
220,
2438,
62,
35666,
3970,
796,
29369,
5631,
13,
9107,
418,
7,
43879,
2624,
11,
997,
62,
82,
12629,
1343,
997,
62,
1659,
62,
1477,
19265,
8,
198,
220,
220,
220,
2438,
62,
35666,
3970,
62,
5239,
62,
11883,
796,
29369,
5631,
13,
9107,
418,
7,
43879,
2624,
11,
997,
62,
82,
12629,
1343,
997,
62,
1659,
62,
1477,
19265,
8,
628,
220,
220,
220,
1303,
2980,
378,
29369,
5631,
9720,
24549,
10007,
26,
198,
220,
220,
220,
14390,
62,
525,
62,
9967,
796,
46720,
198,
220,
220,
220,
7021,
62,
525,
62,
25928,
796,
269,
335,
12195,
22510,
62,
82,
12629,
11,
14390,
62,
525,
62,
9967,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
2488,
66,
15339,
14390,
28,
16663,
82,
62,
525,
62,
9967,
7021,
28,
27372,
62,
525,
62,
25928,
2429,
62,
8189,
62,
35666,
3970,
62,
41293,
62,
11883,
62,
33885,
0,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2438,
62,
35666,
3970,
62,
5239,
62,
11883,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12416,
62,
5239,
62,
11883,
11,
1303,
11743,
4088,
12416,
198,
220,
220,
220,
220,
220,
220,
220,
2438,
62,
35324,
11,
198,
220,
220,
220,
220,
220,
220,
220,
19232,
62,
35324,
11,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
8189,
62,
40715,
11,
198,
220,
220,
220,
220,
220,
220,
220,
778,
77,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
82,
12629,
1343,
997,
62,
1659,
62,
1477,
19265,
11,
198,
220,
220,
220,
220,
220,
220,
220,
10895,
1352,
62,
39873,
62,
1477,
19265,
58,
16,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
2438,
62,
13664,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
2488,
66,
15339,
14390,
28,
16663,
82,
62,
525,
62,
9967,
7021,
28,
27372,
62,
525,
62,
25928,
2429,
62,
8189,
62,
35666,
3970,
62,
33885,
0,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2438,
62,
35666,
3970,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12416,
11,
1303,
11743,
4088,
12416,
198,
220,
220,
220,
220,
220,
220,
220,
2438,
62,
35324,
11,
198,
220,
220,
220,
220,
220,
220,
220,
19232,
62,
35324,
11,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
8189,
62,
40715,
11,
198,
220,
220,
220,
220,
220,
220,
220,
778,
77,
11,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
82,
12629,
1343,
997,
62,
1659,
62,
1477,
19265,
11,
198,
220,
220,
220,
220,
220,
220,
220,
10895,
1352,
62,
39873,
62,
1477,
19265,
58,
16,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
2438,
62,
13664,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
1303,
37169,
13,
5235,
62,
8189,
62,
35666,
3970,
0,
7,
8189,
62,
35666,
3970,
62,
36166,
11,
1080,
11,
2438,
62,
35324,
11,
19232,
62,
35324,
11,
923,
62,
8189,
62,
40715,
11,
352,
11,
997,
62,
82,
12629,
11,
10895,
1352,
62,
39873,
62,
1477,
19265,
11,
778,
77,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
2438,
62,
35666,
3970,
62,
71,
796,
15690,
7,
8189,
62,
35666,
3970,
8,
198,
220,
220,
220,
1303,
2438,
62,
35666,
3970,
62,
5239,
62,
11883,
62,
71,
796,
15690,
7,
8189,
62,
35666,
3970,
62,
5239,
62,
11883,
8,
198,
220,
220,
220,
1303,
6737,
796,
32112,
19182,
90,
5377,
11141,
37,
2624,
92,
19510,
1952,
7,
43879,
2624,
11,
997,
62,
82,
12629,
828,
1976,
27498,
7,
43879,
2624,
11,
997,
62,
82,
12629,
8,
15306,
198,
220,
220,
220,
1303,
2438,
62,
746,
1386,
796,
651,
62,
8189,
62,
35324,
7,
10057,
8,
1220,
19232,
62,
35324,
764,
9,
357,
15,
25,
22510,
62,
82,
12629,
12,
16,
8,
764,
10,
923,
62,
8189,
62,
40715,
198,
220,
220,
220,
1303,
4104,
62,
12683,
282,
796,
32112,
19182,
7,
12683,
282,
764,
9,
1080,
62,
71,
13,
40148,
58,
16,
764,
10,
953,
12195,
28300,
12195,
5317,
11,
2438,
62,
746,
1386,
828,
651,
62,
8189,
62,
13664,
7,
10057,
36911,
778,
77,
12962,
198,
220,
220,
220,
1303,
697,
5700,
62,
7942,
796,
37169,
13,
10215,
2411,
378,
7,
10215,
2411,
1352,
11,
4104,
62,
12683,
282,
11,
2438,
62,
35666,
3970,
62,
36166,
11,
10895,
1352,
62,
39873,
62,
1477,
19265,
11,
352,
11,
997,
62,
82,
12629,
8,
198,
220,
220,
220,
1303,
697,
5700,
796,
37169,
13,
10215,
2411,
378,
7,
10215,
2411,
1352,
11,
4104,
62,
12683,
282,
11,
2438,
62,
35666,
3970,
62,
71,
11,
10895,
1352,
62,
39873,
62,
1477,
19265,
11,
352,
11,
997,
62,
82,
12629,
8,
198,
220,
220,
220,
1303,
697,
5700,
62,
5239,
62,
11883,
796,
37169,
13,
10215,
2411,
378,
7,
10215,
2411,
1352,
11,
4104,
62,
12683,
282,
11,
2438,
62,
35666,
3970,
62,
5239,
62,
11883,
62,
71,
11,
10895,
1352,
62,
39873,
62,
1477,
19265,
11,
352,
11,
997,
62,
82,
12629,
8,
628,
220,
220,
220,
1303,
11454,
62,
2411,
796,
2160,
7,
8937,
12195,
8189,
62,
35666,
3970,
532,
2438,
62,
35666,
3970,
62,
5239,
62,
11883,
4008,
1220,
997,
62,
82,
12629,
198,
220,
220,
220,
11454,
62,
2411,
58,
312,
87,
60,
796,
2160,
7,
8937,
12195,
8189,
62,
35666,
3970,
532,
2438,
62,
35666,
3970,
62,
5239,
62,
11883,
4008,
1220,
997,
62,
82,
12629,
198,
437,
628,
198,
87,
796,
43030,
7,
33327,
7,
45,
1220,
657,
13,
8298,
4008,
1303,
10385,
284,
26109,
198,
7890,
796,
43030,
7,
3064,
764,
9,
11454,
62,
2411,
8,
198,
7890,
62,
5657,
796,
1612,
7,
7890,
8,
198,
7890,
62,
1150,
796,
14288,
7,
7890,
8,
198,
7890,
62,
9806,
796,
5415,
7,
7890,
8,
198,
198,
3500,
23732,
44,
461,
494,
198,
5647,
796,
11291,
7,
10331,
796,
366,
28595,
968,
7993,
4943,
198,
897,
796,
38349,
7,
198,
220,
220,
220,
2336,
11,
198,
220,
220,
220,
2124,
18242,
796,
366,
16305,
11347,
31902,
685,
7399,
60,
1600,
198,
220,
220,
220,
331,
18242,
796,
366,
6892,
876,
6127,
18983,
13047,
685,
39850,
1600,
198,
220,
220,
220,
2124,
9888,
796,
2604,
940,
11,
198,
220,
220,
220,
3670,
796,
366,
6892,
876,
2438,
7108,
4049,
286,
262,
11743,
4088,
2438,
30069,
5270,
329,
352,
13845,
15472,
406,
16,
327,
14,
32,
6737,
1600,
198,
220,
220,
220,
1303,
2124,
2475,
796,
685,
15,
7337,
62,
830,
4357,
198,
220,
220,
220,
2124,
1084,
273,
25928,
23504,
796,
2081,
11,
198,
220,
220,
220,
2124,
1084,
419,
3378,
23504,
796,
2081,
11,
198,
220,
220,
220,
2124,
1084,
419,
3378,
796,
4225,
12786,
25262,
7,
24,
828,
198,
220,
220,
220,
1303,
331,
83,
3378,
796,
357,
940,
13,
15,
764,
61,
32590,
20,
25,
16,
21912,
18,
36911,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
331,
83,
3378,
796,
357,
940,
13,
15,
764,
61,
32590,
20,
25,
16,
21912,
18,
36911,
628,
220,
220,
220,
220,
742,
624,
23912,
1424,
1096,
796,
1248,
11,
198,
220,
220,
220,
331,
42298,
23912,
1424,
1096,
796,
1248,
198,
8,
198,
87,
2475,
82,
0,
7,
897,
11,
838,
61,
21,
11,
642,
9,
940,
61,
23,
8,
198,
2,
4731,
62,
7890,
62,
5657,
796,
17971,
7,
744,
7,
7890,
62,
5657,
11,
43237,
12894,
896,
28,
18,
4008,
39658,
198,
2,
4731,
62,
7890,
62,
9806,
796,
17971,
7,
744,
7,
7890,
62,
9806,
11,
43237,
12894,
896,
28,
18,
4008,
39658,
198,
2,
4731,
62,
7890,
62,
1150,
796,
17971,
7,
744,
7,
7890,
62,
1150,
11,
43237,
12894,
896,
28,
18,
4008,
39658,
198,
198,
2,
1303,
2420,
30300,
796,
366,
34703,
796,
366,
1635,
4731,
62,
7890,
62,
5657,
220,
198,
2,
1303,
2420,
9806,
796,
366,
9806,
796,
366,
1635,
4731,
62,
7890,
62,
9806,
198,
2,
2420,
1150,
796,
366,
1150,
666,
796,
366,
1635,
4731,
62,
7890,
62,
1150,
198,
6615,
0,
7,
897,
11,
2124,
11,
7890,
8,
198,
2,
289,
6615,
0,
7,
897,
11,
1366,
62,
5657,
11,
3124,
796,
1058,
67,
9600,
4364,
11,
9493,
10992,
796,
1058,
42460,
8,
198,
2,
289,
6615,
0,
7,
897,
11,
1366,
62,
1150,
11,
3124,
796,
1058,
67,
9600,
4364,
11,
9493,
10992,
796,
1058,
42460,
8,
198,
2,
289,
6615,
0,
7,
897,
11,
1366,
62,
9806,
11,
3124,
796,
1058,
67,
9600,
4364,
11,
9493,
10992,
796,
1058,
42460,
8,
198,
2,
2420,
0,
7,
5239,
30300,
11,
2292,
796,
357,
24,
9,
940,
61,
23,
11,
657,
13,
16,
10,
7890,
62,
5657,
828,
10548,
796,
357,
25,
3506,
11,
1058,
12093,
4470,
4008,
198,
2,
2420,
0,
7,
5239,
9806,
11,
2292,
796,
357,
24,
9,
940,
61,
23,
11,
1366,
62,
9806,
532,
657,
13,
17,
828,
10548,
796,
357,
25,
3506,
11,
1058,
12093,
4470,
4008,
198,
2,
2420,
0,
7,
5239,
1150,
11,
2292,
796,
357,
20,
9,
940,
61,
23,
11,
657,
13,
20,
10,
7890,
62,
1150,
828,
10548,
796,
357,
25,
16159,
11,
1058,
12093,
4470,
4008,
198,
198,
5647,
58,
16,
11,
16,
60,
796,
7877,
198,
5647,
198,
198,
31,
24209,
39022,
366,
33346,
12832,
7015,
515,
2898,
5430,
1,
198,
198,
1831,
62,
7890,
62,
7568,
796,
2824,
62,
43420,
7,
19608,
324,
343,
7203,
26968,
14306,
14,
19815,
567,
489,
3970,
48774,
198,
198,
30619,
0,
7,
1831,
62,
7890,
62,
7568,
11,
1058,
22510,
62,
82,
12629,
8,
198,
82,
12629,
796,
3748,
7,
38469,
90,
5317,
2414,
92,
7,
1831,
62,
7890,
62,
7568,
58,
28265,
1058,
22510,
62,
82,
12629,
60,
4008,
198,
282,
42289,
62,
14933,
796,
3748,
7,
38469,
90,
10100,
92,
7,
1831,
62,
7890,
62,
7568,
58,
28265,
1058,
282,
42289,
60,
4008,
198,
82,
12629,
796,
3748,
7,
38469,
90,
5317,
2414,
92,
7,
1831,
62,
7890,
62,
7568,
58,
28265,
1058,
22510,
62,
82,
12629,
60,
4008,
198,
87,
796,
8405,
24457,
657,
13,
8298,
1303,
10385,
284,
26109,
198,
282,
42289,
62,
14933,
796,
3748,
7,
38469,
90,
10100,
92,
7,
1831,
62,
7890,
62,
7568,
58,
28265,
1058,
282,
42289,
60,
4008,
198,
198,
2,
2336,
796,
11291,
7,
198,
2,
220,
220,
220,
220,
1303,
6323,
796,
357,
12825,
11,
13037,
828,
198,
2,
220,
220,
220,
220,
10369,
796,
366,
28595,
968,
7993,
1,
198,
2,
1267,
198,
897,
17,
796,
38349,
7,
198,
220,
220,
220,
2336,
11,
198,
220,
220,
220,
2124,
18242,
796,
366,
16305,
11347,
31902,
685,
7399,
60,
1600,
198,
220,
220,
220,
331,
18242,
796,
366,
8645,
341,
3862,
685,
82,
60,
1600,
198,
220,
220,
220,
2124,
9888,
796,
2604,
940,
11,
198,
220,
220,
220,
331,
9888,
796,
2604,
940,
11,
198,
220,
220,
220,
3670,
796,
366,
50249,
1653,
1022,
3298,
4088,
290,
11743,
4088,
2438,
30069,
5270,
329,
352,
13845,
15472,
406,
16,
327,
14,
32,
6737,
1600,
198,
220,
220,
220,
2124,
1084,
273,
25928,
23504,
796,
2081,
11,
198,
220,
220,
220,
2124,
1084,
419,
3378,
23504,
796,
2081,
11,
198,
220,
220,
220,
2124,
1084,
419,
3378,
796,
4225,
12786,
25262,
7,
24,
828,
198,
220,
220,
220,
1303,
331,
83,
3378,
796,
357,
940,
13,
15,
764,
61,
32590,
20,
25,
16,
21912,
18,
36911,
198,
220,
220,
220,
220,
742,
624,
23912,
1424,
1096,
796,
1248,
11,
198,
220,
220,
220,
331,
42298,
23912,
1424,
1096,
796,
1248,
198,
198,
8,
198,
87,
2475,
82,
0,
7,
897,
17,
11,
838,
61,
21,
11,
642,
9,
940,
61,
23,
8,
198,
88,
2475,
82,
0,
7,
897,
17,
11,
352,
13,
15,
68,
12,
20,
11,
513,
13,
15,
68,
12,
18,
8,
628,
198,
2815,
796,
15690,
90,
43,
1127,
92,
7,
917,
891,
11,
4129,
7,
282,
42289,
62,
14933,
18125,
220,
198,
1416,
64,
796,
15690,
90,
3351,
1436,
92,
7,
917,
891,
11,
4129,
7,
282,
42289,
62,
14933,
18125,
198,
4102,
364,
796,
685,
25,
45597,
11,
1058,
2554,
60,
198,
1640,
357,
312,
87,
11,
1438,
8,
796,
27056,
378,
7,
282,
42289,
62,
14933,
8,
198,
220,
220,
220,
640,
796,
838,
10563,
13841,
24,
8,
1635,
43030,
19510,
198,
220,
220,
220,
220,
220,
220,
220,
8246,
62,
7890,
62,
7568,
930,
29,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
24455,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
13,
282,
42289,
6624,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
930,
29,
6060,
19778,
198,
220,
220,
220,
6739,
44046,
8,
628,
220,
220,
220,
9493,
58,
312,
87,
60,
796,
3951,
0,
7,
198,
220,
220,
220,
220,
220,
220,
220,
7877,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
11,
198,
220,
220,
220,
220,
220,
220,
220,
640,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
629,
64,
58,
312,
87,
60,
796,
41058,
0,
7,
198,
220,
220,
220,
220,
220,
220,
220,
7877,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
11,
198,
220,
220,
220,
220,
220,
220,
220,
640,
11,
198,
220,
220,
220,
220,
220,
220,
220,
18364,
796,
19736,
58,
312,
87,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
19736,
1096,
796,
1315,
198,
220,
220,
220,
1267,
198,
437,
198,
5305,
2435,
796,
3951,
0,
7,
897,
17,
11,
685,
940,
61,
21,
11,
642,
1635,
838,
61,
23,
4357,
685,
940,
10563,
13841,
18,
828,
838,
10563,
13841,
18,
8,
4357,
3124,
28,
25,
49502,
11,
9493,
10992,
28,
25,
42460,
26518,
8,
628,
198,
198,
5647,
58,
17,
11,
16,
60,
796,
7877,
17,
198,
5647,
198,
68,
3639,
796,
16410,
2815,
58,
16,
60,
629,
64,
58,
16,
60,
4357,
685,
2815,
58,
17,
60,
629,
64,
58,
17,
11907,
60,
198,
23912,
1424,
796,
14631,
22289,
14059,
1600,
366,
32742,
14059,
8973,
198,
22704,
1455,
437,
7,
897,
17,
11,
4847,
11,
14722,
11,
366,
10669,
18407,
3299,
978,
7727,
907,
1600,
220,
2292,
796,
1058,
2528,
8,
198,
5647,
198,
2,
3613,
7,
21528,
15908,
7203,
26968,
4102,
62,
5239,
11883,
13,
12315,
12340,
2336,
8,
198,
198,
21928,
7,
489,
1747,
15908,
7203,
8189,
62,
40715,
13,
12315,
12340,
2336,
8
] | 2.365378 | 3,027 |
abstract type PMUType end
pmutype(::T) where {T} = error("`pmutype` not defined for arguments of type $T")
# Defaults
_unitstatus(x::PMUType, i...) = error("`unitstatus` undefined for $(typeof(x))")
_unitcontrol(x::PMUType, i...) = error("`unitcontrol` undefined for $(typeof(x))")
_counter(x::PMUType, i...) = error("`counter` undefined for $(typeof(x))")
_control(x::PMUType, i...) = error("`control` undefined for $(typeof(x))")
_extras(x::PMUType, i...) = error("`extras` undefined for $(typeof(x))")
writetype(::PMUType) = UInt32
numcounters(x::PMUType) = error("`numcounters` undefined for $(typeof(x))")
numbytes(x::PMUType) = sizeof(UInt64) * numcounters(x)
unpack(_) = ()
unitstatus(x, i...) = _unitstatus(pmutype(x), indexzero.((unpack(x)..., i...))...)
unitcontrol(x, i...) = _unitcontrol(pmutype(x), indexzero.((unpack(x)..., i...))...)
counter(x, i...) = _counter(pmutype(x), indexzero.((unpack(x)..., i...))...)
control(x, i...) = _control(pmutype(x), indexzero.((unpack(x)..., i...))...)
extras(x, i...) = _extras(pmutype(x), indexzero.((unpack(x)..., i...))...)
writetype(x) = writetype(pmutype(x))
numcounters(x) = numcounters(pmutype(x))
numbytes(x) = numbytes(pmutype(x))
### Integrated Memory Controller
struct IMC{T<:AbstractCPU} <: PMUType end
_unitstatus(::IMC{SkylakeServer}) = IndexZero(0xF8)
_unitcontrol(::IMC{SkylakeServer}) = IndexZero(0xF4)
_counter(::IMC{SkylakeServer}, i::IndexZero) = IndexZero(0xA0 + value(i) * 0x8)
_control(::IMC{SkylakeServer}, i::IndexZero) = IndexZero(0xD8 + value(i) * 0x4)
numcounters(::IMC) = 4
# For now, only read the fixed counters for IceLake servers.
# There are 4 such counters, starting at address 0x2290 and they are
# DRAM Read, DRAM Write, PM Read, and PM Write respectively
_counter(::IMC{IcelakeServer}, i) = IndexZero(0x2290 + value(i) * 0x8)
### CHA Counters
struct CHA <: PMUType end
_unitstatus(::CHA, i) = IndexZero(0xE07 + value(i) * 0x10)
_unitcontrol(::CHA, i) = IndexZero(0xE00 + value(i) * 0x10)
_counter(::CHA, cha, i) = IndexZero(0xE08 + value(cha) * 0x10 + value(i))
_control(::CHA, cha, i) = IndexZero(0xE01 + value(cha) * 0x10 + value(i))
_extras(::CHA, cha, i) = IndexZero(0xE05 + value(cha) * 0x10 + value(i))
writetype(::CHA) = UInt64
numcounters(::CHA) = 4
# Customize for various types Specialize
abstract type AbstractUncorePMU end
##### IMC Uncore PMU
# PMU implementation for monitoring the integrated memory controller
struct IMCUncorePMU <: AbstractUncorePMU
# A handle to the underlying
handle::Handle
end
unwrap(x::IMCUncorePMU) = x.handle
pmutype(::IMCUncorePMU) = IMC{SkylakeServer}()
Base.close(x::IMCUncorePMU) = close(x.handle)
# IceLake IMC PMU
# For now - only return the free-running counters
struct IMCUncoreICX <: AbstractUncorePMU
mmio::MMIO
end
unwrap(x::IMCUncoreICX) = x.mmio
pmutype(::IMCUncoreICX) = IMC{IcelakeServer}()
Base.close(::IMCUncoreICX) = nothing
##### CHA Uncore PMU
# PMU implementation for monitoring the CHA
struct CHAUncorePMU <: AbstractUncorePMU
# We hold on to a single handle for the MSR path, shared by all PMUs
handle::Handle
# The number of this CHA
cha::IndexZero{Int}
buffer::Vector{UInt8}
# Allow passing a buffer, or manually create one
function CHAUncorePMU(handle::Handle, cha, buffer = zeros(UInt8, numbytes(CHA())))
resize!(buffer, numbytes(CHA()))
return new(handle, indexzero(cha), buffer)
end
end
unwrap(x::CHAUncorePMU) = x.handle
pmutype(::CHAUncorePMU) = CHA()
unpack(x::CHAUncorePMU) = (x.cha,)
Base.close(x::CHAUncorePMU) = close(x.handle)
#####
##### Low level accessing functions
#####
function setunitstatus!(U::AbstractUncorePMU, v)
write(unwrap(U), convert(writetype(U), v), unitstatus(U))
end
function getunitstatus(U::AbstractUncorePMU)
return read(unwrap(U), UInt32, unitstatus(U))
end
function setunitcontrol!(U::AbstractUncorePMU, v)
write(unwrap(U), convert(writetype(U), v), unitcontrol(U))
end
function getunitcontrol(U::AbstractUncorePMU)
return read(unwrap(U), UInt32, unitcontrol(U))
end
function setcontrol!(U::AbstractUncorePMU, counter, v)
return write(unwrap(U), convert(writetype(U), v), control(U, counter))
end
function getcontrol(U::AbstractUncorePMU, i)
return read(unwrap(U), UInt32, control(U, i))
end
function getcounter(U::AbstractUncorePMU, i)
return CounterValue(read(unwrap(U), UInt64, counter(U, i)))
end
function setextra!(U::AbstractUncorePMU, i, v)
write(unwrap(U), convert(writetype(U), v), extras(U, i))
end
function getextra(U::AbstractUncorePMU, i)
return read(unwrap(U), UInt32, extras(U, i))
end
#####
##### Some higher level functions
#####
function getallcounters(U::AbstractUncorePMU)
return ntuple(i -> getcounter(U, i), Val(numcounters(U)))
end
function reset!(U::AbstractUncorePMU)
# Write to the unit control to clear all counters and control registers
val = setbits(zero(writetype(U)), (0, 1, 8, 16, 17))
setunitcontrol!(U, val)
end
function enable!(U::AbstractUncorePMU)
val = setbits(zero(writetype(U)), (16, 17))
setunitcontrol!(U, val)
end
| [
397,
8709,
2099,
3122,
3843,
2981,
886,
198,
198,
4426,
315,
2981,
7,
3712,
51,
8,
810,
1391,
51,
92,
796,
4049,
7203,
63,
4426,
315,
2981,
63,
407,
5447,
329,
7159,
286,
2099,
720,
51,
4943,
198,
198,
2,
2896,
13185,
198,
62,
20850,
13376,
7,
87,
3712,
5868,
3843,
2981,
11,
1312,
23029,
796,
4049,
7203,
63,
20850,
13376,
63,
28721,
329,
29568,
4906,
1659,
7,
87,
4008,
4943,
198,
62,
20850,
13716,
7,
87,
3712,
5868,
3843,
2981,
11,
1312,
23029,
796,
4049,
7203,
63,
20850,
13716,
63,
28721,
329,
29568,
4906,
1659,
7,
87,
4008,
4943,
198,
62,
24588,
7,
87,
3712,
5868,
3843,
2981,
11,
1312,
23029,
796,
4049,
7203,
63,
24588,
63,
28721,
329,
29568,
4906,
1659,
7,
87,
4008,
4943,
198,
62,
13716,
7,
87,
3712,
5868,
3843,
2981,
11,
1312,
23029,
796,
4049,
7203,
63,
13716,
63,
28721,
329,
29568,
4906,
1659,
7,
87,
4008,
4943,
198,
62,
2302,
8847,
7,
87,
3712,
5868,
3843,
2981,
11,
1312,
23029,
796,
4049,
7203,
63,
2302,
8847,
63,
28721,
329,
29568,
4906,
1659,
7,
87,
4008,
4943,
198,
198,
8933,
2963,
431,
7,
3712,
5868,
3843,
2981,
8,
796,
471,
5317,
2624,
198,
198,
22510,
66,
15044,
7,
87,
3712,
5868,
3843,
2981,
8,
796,
4049,
7203,
63,
22510,
66,
15044,
63,
28721,
329,
29568,
4906,
1659,
7,
87,
4008,
4943,
198,
22510,
33661,
7,
87,
3712,
5868,
3843,
2981,
8,
796,
39364,
7,
52,
5317,
2414,
8,
1635,
997,
66,
15044,
7,
87,
8,
198,
198,
403,
8002,
28264,
8,
796,
7499,
198,
20850,
13376,
7,
87,
11,
1312,
23029,
796,
4808,
20850,
13376,
7,
4426,
315,
2981,
7,
87,
828,
6376,
22570,
12195,
7,
403,
8002,
7,
87,
26513,
11,
1312,
986,
4008,
23029,
198,
20850,
13716,
7,
87,
11,
1312,
23029,
796,
4808,
20850,
13716,
7,
4426,
315,
2981,
7,
87,
828,
6376,
22570,
12195,
7,
403,
8002,
7,
87,
26513,
11,
1312,
986,
4008,
23029,
198,
24588,
7,
87,
11,
1312,
23029,
796,
4808,
24588,
7,
4426,
315,
2981,
7,
87,
828,
6376,
22570,
12195,
7,
403,
8002,
7,
87,
26513,
11,
1312,
986,
4008,
23029,
198,
13716,
7,
87,
11,
1312,
23029,
796,
4808,
13716,
7,
4426,
315,
2981,
7,
87,
828,
6376,
22570,
12195,
7,
403,
8002,
7,
87,
26513,
11,
1312,
986,
4008,
23029,
198,
2302,
8847,
7,
87,
11,
1312,
23029,
796,
4808,
2302,
8847,
7,
4426,
315,
2981,
7,
87,
828,
6376,
22570,
12195,
7,
403,
8002,
7,
87,
26513,
11,
1312,
986,
4008,
23029,
198,
8933,
2963,
431,
7,
87,
8,
796,
1991,
2963,
431,
7,
4426,
315,
2981,
7,
87,
4008,
198,
198,
22510,
66,
15044,
7,
87,
8,
796,
997,
66,
15044,
7,
4426,
315,
2981,
7,
87,
4008,
198,
22510,
33661,
7,
87,
8,
796,
997,
33661,
7,
4426,
315,
2981,
7,
87,
4008,
198,
198,
21017,
35432,
14059,
22741,
198,
7249,
8959,
34,
90,
51,
27,
25,
23839,
36037,
92,
1279,
25,
3122,
3843,
2981,
886,
198,
62,
20850,
13376,
7,
3712,
3955,
34,
90,
22308,
27180,
10697,
30072,
796,
12901,
28667,
7,
15,
87,
37,
23,
8,
198,
62,
20850,
13716,
7,
3712,
3955,
34,
90,
22308,
27180,
10697,
30072,
796,
12901,
28667,
7,
15,
87,
37,
19,
8,
198,
62,
24588,
7,
3712,
3955,
34,
90,
22308,
27180,
10697,
5512,
1312,
3712,
15732,
28667,
8,
796,
12901,
28667,
7,
15,
87,
32,
15,
1343,
1988,
7,
72,
8,
1635,
657,
87,
23,
8,
198,
62,
13716,
7,
3712,
3955,
34,
90,
22308,
27180,
10697,
5512,
1312,
3712,
15732,
28667,
8,
796,
12901,
28667,
7,
15,
87,
35,
23,
1343,
1988,
7,
72,
8,
1635,
657,
87,
19,
8,
198,
22510,
66,
15044,
7,
3712,
3955,
34,
8,
796,
604,
198,
198,
2,
1114,
783,
11,
691,
1100,
262,
5969,
21154,
329,
6663,
43035,
9597,
13,
198,
2,
1318,
389,
604,
884,
21154,
11,
3599,
379,
2209,
657,
87,
1828,
3829,
290,
484,
389,
198,
2,
10560,
2390,
4149,
11,
10560,
2390,
19430,
11,
3122,
4149,
11,
290,
3122,
19430,
8148,
198,
62,
24588,
7,
3712,
3955,
34,
90,
40,
5276,
539,
10697,
5512,
1312,
8,
796,
12901,
28667,
7,
15,
87,
1828,
3829,
1343,
1988,
7,
72,
8,
1635,
657,
87,
23,
8,
198,
198,
21017,
5870,
32,
3545,
1010,
198,
7249,
5870,
32,
1279,
25,
3122,
3843,
2981,
886,
198,
62,
20850,
13376,
7,
3712,
49285,
11,
1312,
8,
796,
12901,
28667,
7,
15,
87,
36,
2998,
1343,
1988,
7,
72,
8,
1635,
657,
87,
940,
8,
198,
62,
20850,
13716,
7,
3712,
49285,
11,
1312,
8,
796,
12901,
28667,
7,
15,
87,
36,
405,
1343,
1988,
7,
72,
8,
1635,
657,
87,
940,
8,
198,
62,
24588,
7,
3712,
49285,
11,
17792,
11,
1312,
8,
796,
12901,
28667,
7,
15,
87,
36,
2919,
1343,
1988,
7,
11693,
8,
1635,
657,
87,
940,
1343,
1988,
7,
72,
4008,
198,
62,
13716,
7,
3712,
49285,
11,
17792,
11,
1312,
8,
796,
12901,
28667,
7,
15,
87,
36,
486,
1343,
1988,
7,
11693,
8,
1635,
657,
87,
940,
1343,
1988,
7,
72,
4008,
198,
62,
2302,
8847,
7,
3712,
49285,
11,
17792,
11,
1312,
8,
796,
12901,
28667,
7,
15,
87,
36,
2713,
1343,
1988,
7,
11693,
8,
1635,
657,
87,
940,
1343,
1988,
7,
72,
4008,
198,
8933,
2963,
431,
7,
3712,
49285,
8,
796,
471,
5317,
2414,
198,
22510,
66,
15044,
7,
3712,
49285,
8,
796,
604,
198,
198,
2,
8562,
1096,
329,
2972,
3858,
6093,
1096,
198,
397,
8709,
2099,
27741,
3118,
7295,
5868,
52,
886,
198,
198,
4242,
2,
8959,
34,
791,
7295,
3122,
52,
198,
2,
3122,
52,
7822,
329,
9904,
262,
11521,
4088,
10444,
198,
7249,
8959,
34,
3118,
7295,
5868,
52,
1279,
25,
27741,
3118,
7295,
5868,
52,
198,
220,
220,
220,
1303,
317,
5412,
284,
262,
10238,
198,
220,
220,
220,
5412,
3712,
37508,
198,
437,
198,
403,
37150,
7,
87,
3712,
3955,
34,
3118,
7295,
5868,
52,
8,
796,
2124,
13,
28144,
198,
4426,
315,
2981,
7,
3712,
3955,
34,
3118,
7295,
5868,
52,
8,
796,
8959,
34,
90,
22308,
27180,
10697,
92,
3419,
198,
14881,
13,
19836,
7,
87,
3712,
3955,
34,
3118,
7295,
5868,
52,
8,
796,
1969,
7,
87,
13,
28144,
8,
198,
198,
2,
6663,
43035,
8959,
34,
3122,
52,
198,
2,
1114,
783,
532,
691,
1441,
262,
1479,
12,
20270,
21154,
198,
7249,
8959,
34,
3118,
7295,
2149,
55,
1279,
25,
27741,
3118,
7295,
5868,
52,
198,
220,
220,
220,
8085,
952,
3712,
44,
8895,
46,
198,
437,
198,
403,
37150,
7,
87,
3712,
3955,
34,
3118,
7295,
2149,
55,
8,
796,
2124,
13,
3020,
952,
198,
4426,
315,
2981,
7,
3712,
3955,
34,
3118,
7295,
2149,
55,
8,
796,
8959,
34,
90,
40,
5276,
539,
10697,
92,
3419,
198,
14881,
13,
19836,
7,
3712,
3955,
34,
3118,
7295,
2149,
55,
8,
796,
2147,
198,
198,
4242,
2,
5870,
32,
791,
7295,
3122,
52,
198,
2,
3122,
52,
7822,
329,
9904,
262,
5870,
32,
198,
7249,
5870,
32,
3118,
7295,
5868,
52,
1279,
25,
27741,
3118,
7295,
5868,
52,
198,
220,
220,
220,
1303,
775,
1745,
319,
284,
257,
2060,
5412,
329,
262,
6579,
49,
3108,
11,
4888,
416,
477,
3122,
5842,
198,
220,
220,
220,
5412,
3712,
37508,
198,
220,
220,
220,
1303,
383,
1271,
286,
428,
5870,
32,
198,
220,
220,
220,
17792,
3712,
15732,
28667,
90,
5317,
92,
198,
220,
220,
220,
11876,
3712,
38469,
90,
52,
5317,
23,
92,
628,
220,
220,
220,
1303,
22507,
6427,
257,
11876,
11,
393,
14500,
2251,
530,
198,
220,
220,
220,
2163,
5870,
32,
3118,
7295,
5868,
52,
7,
28144,
3712,
37508,
11,
17792,
11,
11876,
796,
1976,
27498,
7,
52,
5317,
23,
11,
997,
33661,
7,
49285,
3419,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
47558,
0,
7,
22252,
11,
997,
33661,
7,
49285,
3419,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
649,
7,
28144,
11,
6376,
22570,
7,
11693,
828,
11876,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
403,
37150,
7,
87,
3712,
49285,
3118,
7295,
5868,
52,
8,
796,
2124,
13,
28144,
198,
4426,
315,
2981,
7,
3712,
49285,
3118,
7295,
5868,
52,
8,
796,
5870,
32,
3419,
198,
403,
8002,
7,
87,
3712,
49285,
3118,
7295,
5868,
52,
8,
796,
357,
87,
13,
11693,
35751,
198,
14881,
13,
19836,
7,
87,
3712,
49285,
3118,
7295,
5868,
52,
8,
796,
1969,
7,
87,
13,
28144,
8,
198,
198,
4242,
2,
198,
4242,
2,
7754,
1241,
22534,
5499,
198,
4242,
2,
198,
198,
8818,
900,
20850,
13376,
0,
7,
52,
3712,
23839,
3118,
7295,
5868,
52,
11,
410,
8,
198,
220,
220,
220,
3551,
7,
403,
37150,
7,
52,
828,
10385,
7,
8933,
2963,
431,
7,
52,
828,
410,
828,
4326,
13376,
7,
52,
4008,
198,
437,
198,
198,
8818,
651,
20850,
13376,
7,
52,
3712,
23839,
3118,
7295,
5868,
52,
8,
198,
220,
220,
220,
1441,
1100,
7,
403,
37150,
7,
52,
828,
471,
5317,
2624,
11,
4326,
13376,
7,
52,
4008,
198,
437,
198,
198,
8818,
900,
20850,
13716,
0,
7,
52,
3712,
23839,
3118,
7295,
5868,
52,
11,
410,
8,
198,
220,
220,
220,
3551,
7,
403,
37150,
7,
52,
828,
10385,
7,
8933,
2963,
431,
7,
52,
828,
410,
828,
4326,
13716,
7,
52,
4008,
198,
437,
198,
198,
8818,
651,
20850,
13716,
7,
52,
3712,
23839,
3118,
7295,
5868,
52,
8,
198,
220,
220,
220,
1441,
1100,
7,
403,
37150,
7,
52,
828,
471,
5317,
2624,
11,
4326,
13716,
7,
52,
4008,
198,
437,
198,
198,
8818,
900,
13716,
0,
7,
52,
3712,
23839,
3118,
7295,
5868,
52,
11,
3753,
11,
410,
8,
198,
220,
220,
220,
1441,
3551,
7,
403,
37150,
7,
52,
828,
10385,
7,
8933,
2963,
431,
7,
52,
828,
410,
828,
1630,
7,
52,
11,
3753,
4008,
198,
437,
198,
198,
8818,
651,
13716,
7,
52,
3712,
23839,
3118,
7295,
5868,
52,
11,
1312,
8,
198,
220,
220,
220,
1441,
1100,
7,
403,
37150,
7,
52,
828,
471,
5317,
2624,
11,
1630,
7,
52,
11,
1312,
4008,
198,
437,
198,
198,
8818,
651,
24588,
7,
52,
3712,
23839,
3118,
7295,
5868,
52,
11,
1312,
8,
198,
220,
220,
220,
1441,
15034,
11395,
7,
961,
7,
403,
37150,
7,
52,
828,
471,
5317,
2414,
11,
3753,
7,
52,
11,
1312,
22305,
198,
437,
198,
198,
8818,
900,
26086,
0,
7,
52,
3712,
23839,
3118,
7295,
5868,
52,
11,
1312,
11,
410,
8,
198,
220,
220,
220,
3551,
7,
403,
37150,
7,
52,
828,
10385,
7,
8933,
2963,
431,
7,
52,
828,
410,
828,
33849,
7,
52,
11,
1312,
4008,
198,
437,
198,
198,
8818,
651,
26086,
7,
52,
3712,
23839,
3118,
7295,
5868,
52,
11,
1312,
8,
198,
220,
220,
220,
1441,
1100,
7,
403,
37150,
7,
52,
828,
471,
5317,
2624,
11,
33849,
7,
52,
11,
1312,
4008,
198,
437,
198,
198,
4242,
2,
198,
4242,
2,
2773,
2440,
1241,
5499,
198,
4242,
2,
198,
198,
8818,
651,
439,
66,
15044,
7,
52,
3712,
23839,
3118,
7295,
5868,
52,
8,
198,
220,
220,
220,
1441,
299,
83,
29291,
7,
72,
4613,
651,
24588,
7,
52,
11,
1312,
828,
3254,
7,
22510,
66,
15044,
7,
52,
22305,
198,
437,
198,
198,
8818,
13259,
0,
7,
52,
3712,
23839,
3118,
7295,
5868,
52,
8,
198,
220,
220,
220,
1303,
19430,
284,
262,
4326,
1630,
284,
1598,
477,
21154,
290,
1630,
28441,
198,
220,
220,
220,
1188,
796,
900,
9895,
7,
22570,
7,
8933,
2963,
431,
7,
52,
36911,
357,
15,
11,
352,
11,
807,
11,
1467,
11,
1596,
4008,
198,
220,
220,
220,
900,
20850,
13716,
0,
7,
52,
11,
1188,
8,
198,
437,
198,
198,
8818,
7139,
0,
7,
52,
3712,
23839,
3118,
7295,
5868,
52,
8,
198,
220,
220,
220,
1188,
796,
900,
9895,
7,
22570,
7,
8933,
2963,
431,
7,
52,
36911,
357,
1433,
11,
1596,
4008,
198,
220,
220,
220,
900,
20850,
13716,
0,
7,
52,
11,
1188,
8,
198,
437,
198
] | 2.563883 | 1,988 |
# Helper functions to read Harwell-Boeing and Rutherford-Boeing data.
function decode_int_fmt(fmt :: AbstractString)
if fmt[1] == '('
fmt = uppercase(fmt[2:end-1])
end
return map(s -> isempty(s) ? 1 : parse(Int, s), split(fmt, 'I'))
end
function decode_real_fmt(fmt :: AbstractString)
fmt = join(split(fmt)) # Remove all white spaces.
if fmt[1] == '('
fmt = uppercase(fmt[2:end-1])
end
scale = "0"
if (',' in fmt) # Process scale factor, e.g., 1P,5D16.9
scale, fmt = split(fmt, ',')
scale, _ = split(scale, 'P')
elseif ('P' in fmt)
scale, fmt = split(fmt, 'P')
end
scale = parse(Int, scale)
fmt1 = split(fmt, '.')[1]
if occursin('E', fmt1)
(npl, len) = map(s -> isempty(s) ? 1 : parse(Int, s), split(fmt1, 'E'))
elseif occursin('D', fmt1)
(npl, len) = map(s -> isempty(s) ? 1 : parse(Int, s), split(fmt1, 'D'))
elseif occursin('F', fmt1)
(npl, len) = map(s -> isempty(s) ? 1 : parse(Int, s), split(fmt1, 'F'))
else
error("Malformed real format")
end
return (npl, len, scale)
end
function standardize_real(number_as_str :: AbstractString)
s = join(split(number_as_str)) # for numbers in the form "0.24555165E 00".
# change ".16000000+006" to ".16000000e+006". The first char could be +/-.
if !any(occursin.(['E', 'D', 'e', 'd'], s))
if occursin('+', s[2:end])
s = s[1:1] * join(split(s[2:end], '+'), "e+")
elseif occursin('-', s[2:end])
s = s[1:1] * join(split(s[2:end], '-'), "e-")
end
end
return s
end
function read_array(io :: IO, n :: Int, fmt :: AbstractString; is_complex :: Bool=false)
if 'I' in fmt
scale = 0
(npl, len) = decode_int_fmt(fmt)
conv = s -> parse(Int, s)
typ = Int
else
(npl, len, scale) = decode_real_fmt(fmt)
conv = s -> parse(Float64, s)
typ = Float64
if is_complex
n *= 2
end
end
x = zeros(typ, n)
for j = 1 : div(n, npl)
if typ == Float64
line = join(split(uppercase(readline(io)), 'D'), 'e')
else
line = readline(io)
end
chunk = [line[len*(i-1)+1:len*i] for i = 1 : npl]
if typ == Float64
chunk = map(standardize_real, chunk)
end
x[npl * (j-1) + 1 : npl * j] = map(conv, chunk)
end
rem = mod(n, npl)
if rem > 0
if typ == Float64
line = join(split(uppercase(readline(io)), 'D'), 'e')
else
line = readline(io)
end
chunk = [line[len*(i-1)+1:len*i] for i = 1 : rem]
if typ == Float64
chunk = map(standardize_real, chunk)
end
x[end-rem+1 : end] = map(conv, chunk)
end
if scale != 0
x /= 10.0^scale
end
return is_complex ? [ComplexF64(x[i], x[i+1]) for i = 1 : 2 : n-1] : x
end
function sortsparse!(colptr :: Vector{Ti}, rowind :: Vector{Ti}, values :: Vector{Tf}) where {Ti <: Integer, Tf <: Number}
# ensure row indices are sorted in each column
ncol = length(colptr) - 1
for col = 1 : ncol
colbeg = colptr[col]
colend = colptr[col + 1] - 1
rows = rowind[colbeg:colend]
if !issorted(rows)
p = sortperm(rows)
rowind[colbeg:colend] = rows[p]
values[colbeg:colend] = values[colbeg:colend][p]
end
end
end
| [
2,
5053,
525,
5499,
284,
1100,
2113,
4053,
12,
33,
2577,
278,
290,
49767,
12,
33,
2577,
278,
1366,
13,
198,
198,
8818,
36899,
62,
600,
62,
69,
16762,
7,
69,
16762,
7904,
27741,
10100,
8,
198,
220,
611,
46996,
58,
16,
60,
6624,
705,
10786,
198,
220,
220,
220,
46996,
796,
334,
39921,
589,
7,
69,
16762,
58,
17,
25,
437,
12,
16,
12962,
198,
220,
886,
198,
220,
1441,
3975,
7,
82,
4613,
318,
28920,
7,
82,
8,
5633,
352,
1058,
21136,
7,
5317,
11,
264,
828,
6626,
7,
69,
16762,
11,
705,
40,
6,
4008,
198,
437,
628,
198,
8818,
36899,
62,
5305,
62,
69,
16762,
7,
69,
16762,
7904,
27741,
10100,
8,
198,
220,
46996,
796,
4654,
7,
35312,
7,
69,
16762,
4008,
220,
1303,
17220,
477,
2330,
9029,
13,
198,
220,
611,
46996,
58,
16,
60,
6624,
705,
10786,
198,
220,
220,
220,
46996,
796,
334,
39921,
589,
7,
69,
16762,
58,
17,
25,
437,
12,
16,
12962,
198,
220,
886,
198,
220,
5046,
796,
366,
15,
1,
198,
220,
611,
357,
41707,
287,
46996,
8,
220,
1303,
10854,
5046,
5766,
11,
304,
13,
70,
1539,
352,
47,
11,
20,
35,
1433,
13,
24,
198,
220,
220,
220,
5046,
11,
46996,
796,
6626,
7,
69,
16762,
11,
705,
4032,
8,
198,
220,
220,
220,
5046,
11,
4808,
796,
6626,
7,
9888,
11,
705,
47,
11537,
198,
220,
2073,
361,
19203,
47,
6,
287,
46996,
8,
198,
220,
220,
220,
5046,
11,
46996,
796,
6626,
7,
69,
16762,
11,
705,
47,
11537,
198,
220,
886,
198,
220,
5046,
796,
21136,
7,
5317,
11,
5046,
8,
628,
220,
46996,
16,
796,
6626,
7,
69,
16762,
11,
705,
2637,
38381,
16,
60,
198,
220,
611,
8833,
259,
10786,
36,
3256,
46996,
16,
8,
198,
220,
220,
220,
357,
77,
489,
11,
18896,
8,
796,
3975,
7,
82,
4613,
318,
28920,
7,
82,
8,
5633,
352,
1058,
21136,
7,
5317,
11,
264,
828,
6626,
7,
69,
16762,
16,
11,
705,
36,
6,
4008,
198,
220,
2073,
361,
8833,
259,
10786,
35,
3256,
46996,
16,
8,
198,
220,
220,
220,
357,
77,
489,
11,
18896,
8,
796,
3975,
7,
82,
4613,
318,
28920,
7,
82,
8,
5633,
352,
1058,
21136,
7,
5317,
11,
264,
828,
6626,
7,
69,
16762,
16,
11,
705,
35,
6,
4008,
198,
220,
2073,
361,
8833,
259,
10786,
37,
3256,
46996,
16,
8,
198,
220,
220,
220,
357,
77,
489,
11,
18896,
8,
796,
3975,
7,
82,
4613,
318,
28920,
7,
82,
8,
5633,
352,
1058,
21136,
7,
5317,
11,
264,
828,
6626,
7,
69,
16762,
16,
11,
705,
37,
6,
4008,
198,
220,
2073,
198,
220,
220,
220,
4049,
7203,
15029,
12214,
1103,
5794,
4943,
198,
220,
886,
628,
220,
1441,
357,
77,
489,
11,
18896,
11,
5046,
8,
198,
437,
628,
198,
8818,
3210,
1096,
62,
5305,
7,
17618,
62,
292,
62,
2536,
7904,
27741,
10100,
8,
198,
220,
264,
796,
4654,
7,
35312,
7,
17618,
62,
292,
62,
2536,
4008,
220,
1303,
329,
3146,
287,
262,
1296,
366,
15,
13,
1731,
31046,
20986,
36,
3571,
1911,
198,
220,
1303,
1487,
27071,
1433,
10535,
10,
28041,
1,
284,
27071,
1433,
10535,
68,
10,
28041,
1911,
383,
717,
1149,
714,
307,
29694,
13,
198,
220,
611,
5145,
1092,
7,
13966,
1834,
259,
12195,
17816,
36,
3256,
705,
35,
3256,
705,
68,
3256,
705,
67,
6,
4357,
264,
4008,
198,
220,
220,
220,
611,
8833,
259,
10786,
10,
3256,
264,
58,
17,
25,
437,
12962,
198,
220,
220,
220,
220,
220,
264,
796,
264,
58,
16,
25,
16,
60,
1635,
4654,
7,
35312,
7,
82,
58,
17,
25,
437,
4357,
705,
10,
33809,
366,
68,
10,
4943,
198,
220,
220,
220,
2073,
361,
8833,
259,
10786,
12,
3256,
264,
58,
17,
25,
437,
12962,
198,
220,
220,
220,
220,
220,
264,
796,
264,
58,
16,
25,
16,
60,
1635,
4654,
7,
35312,
7,
82,
58,
17,
25,
437,
4357,
705,
19355,
828,
366,
68,
12,
4943,
198,
220,
220,
220,
886,
198,
220,
886,
198,
220,
1441,
264,
198,
437,
628,
198,
8818,
1100,
62,
18747,
7,
952,
7904,
24418,
11,
299,
7904,
2558,
11,
46996,
7904,
27741,
10100,
26,
318,
62,
41887,
7904,
347,
970,
28,
9562,
8,
198,
220,
611,
705,
40,
6,
287,
46996,
198,
220,
220,
220,
5046,
796,
657,
198,
220,
220,
220,
357,
77,
489,
11,
18896,
8,
796,
36899,
62,
600,
62,
69,
16762,
7,
69,
16762,
8,
198,
220,
220,
220,
3063,
796,
264,
4613,
21136,
7,
5317,
11,
264,
8,
198,
220,
220,
220,
2170,
796,
2558,
198,
220,
2073,
198,
220,
220,
220,
357,
77,
489,
11,
18896,
11,
5046,
8,
796,
36899,
62,
5305,
62,
69,
16762,
7,
69,
16762,
8,
198,
220,
220,
220,
3063,
796,
264,
4613,
21136,
7,
43879,
2414,
11,
264,
8,
198,
220,
220,
220,
2170,
796,
48436,
2414,
198,
220,
220,
220,
611,
318,
62,
41887,
198,
220,
220,
220,
220,
220,
299,
1635,
28,
362,
198,
220,
220,
220,
886,
198,
220,
886,
628,
220,
2124,
796,
1976,
27498,
7,
28004,
11,
299,
8,
198,
220,
329,
474,
796,
352,
1058,
2659,
7,
77,
11,
299,
489,
8,
198,
220,
220,
220,
611,
2170,
6624,
48436,
2414,
198,
220,
220,
220,
220,
220,
1627,
796,
4654,
7,
35312,
7,
7211,
2798,
589,
7,
961,
1370,
7,
952,
36911,
705,
35,
33809,
705,
68,
11537,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
1627,
796,
1100,
1370,
7,
952,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
16058,
796,
685,
1370,
58,
11925,
9,
7,
72,
12,
16,
47762,
16,
25,
11925,
9,
72,
60,
329,
1312,
796,
352,
1058,
299,
489,
60,
198,
220,
220,
220,
611,
2170,
6624,
48436,
2414,
198,
220,
220,
220,
220,
220,
16058,
796,
3975,
7,
20307,
1096,
62,
5305,
11,
16058,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2124,
58,
77,
489,
1635,
357,
73,
12,
16,
8,
1343,
352,
1058,
299,
489,
1635,
474,
60,
796,
3975,
7,
42946,
11,
16058,
8,
198,
220,
886,
198,
220,
816,
796,
953,
7,
77,
11,
299,
489,
8,
198,
220,
611,
816,
1875,
657,
198,
220,
220,
220,
611,
2170,
6624,
48436,
2414,
198,
220,
220,
220,
220,
220,
1627,
796,
4654,
7,
35312,
7,
7211,
2798,
589,
7,
961,
1370,
7,
952,
36911,
705,
35,
33809,
705,
68,
11537,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
1627,
796,
1100,
1370,
7,
952,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
16058,
796,
685,
1370,
58,
11925,
9,
7,
72,
12,
16,
47762,
16,
25,
11925,
9,
72,
60,
329,
1312,
796,
352,
1058,
816,
60,
198,
220,
220,
220,
611,
2170,
6624,
48436,
2414,
198,
220,
220,
220,
220,
220,
16058,
796,
3975,
7,
20307,
1096,
62,
5305,
11,
16058,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2124,
58,
437,
12,
2787,
10,
16,
1058,
886,
60,
796,
3975,
7,
42946,
11,
16058,
8,
198,
220,
886,
198,
220,
611,
5046,
14512,
657,
198,
220,
220,
220,
2124,
1220,
28,
838,
13,
15,
61,
9888,
198,
220,
886,
198,
220,
1441,
318,
62,
41887,
5633,
685,
5377,
11141,
37,
2414,
7,
87,
58,
72,
4357,
2124,
58,
72,
10,
16,
12962,
329,
1312,
796,
352,
1058,
362,
1058,
299,
12,
16,
60,
1058,
2124,
198,
437,
628,
198,
8818,
10524,
29572,
0,
7,
4033,
20692,
7904,
20650,
90,
40533,
5512,
5752,
521,
7904,
20650,
90,
40533,
5512,
3815,
7904,
20650,
90,
51,
69,
30072,
810,
1391,
40533,
1279,
25,
34142,
11,
309,
69,
1279,
25,
7913,
92,
198,
220,
1303,
4155,
5752,
36525,
389,
23243,
287,
1123,
5721,
198,
220,
299,
4033,
796,
4129,
7,
4033,
20692,
8,
532,
352,
198,
220,
329,
951,
796,
352,
1058,
299,
4033,
198,
220,
220,
220,
951,
1350,
70,
796,
951,
20692,
58,
4033,
60,
198,
220,
220,
220,
951,
437,
796,
951,
20692,
58,
4033,
1343,
352,
60,
532,
352,
198,
220,
220,
220,
15274,
796,
5752,
521,
58,
4033,
1350,
70,
25,
4033,
437,
60,
198,
220,
220,
220,
611,
5145,
747,
9741,
7,
8516,
8,
198,
220,
220,
220,
220,
220,
279,
796,
3297,
16321,
7,
8516,
8,
198,
220,
220,
220,
220,
220,
5752,
521,
58,
4033,
1350,
70,
25,
4033,
437,
60,
796,
15274,
58,
79,
60,
198,
220,
220,
220,
220,
220,
3815,
58,
4033,
1350,
70,
25,
4033,
437,
60,
796,
3815,
58,
4033,
1350,
70,
25,
4033,
437,
7131,
79,
60,
198,
220,
220,
220,
886,
198,
220,
886,
198,
437,
198
] | 2.201117 | 1,432 |
using Test
using POMDPModels
# using POMDPSimulators
using POMDPTesting
using POMDPs
using POMDPModelTools
using BeliefUpdaters
using Random
let
problem = BabyPOMDP()
# starve policy
# when the baby is never fed, the reward for starting in the hungry state should be -100
sim = RolloutSimulator(eps=0.0001)
ib = nothing
policy = Starve()
r = simulate(sim, problem, policy, updater(policy), ib, true)
@test r ≈ -100.0 atol=0.01
# test gen(::o,...)
o = gen(DDNNode(:o), problem, true, MersenneTwister(1))
@test o == 1
# test vec
ov = convert_s(Array{Float64}, true, problem)
@test ov == [1.]
o = convert_s(Bool, ov, problem)
@test o == true
POMDPTesting.probability_check(problem)
bu = DiscreteUpdater(problem)
bp = update(bu,
initialize_belief(bu, BoolDistribution(0.0)),
false,
true)
@test pdf(bp, true) ≈ 0.47058823529411764 atol=0.0001
r = simulate(sim, problem, policy, DiscreteUpdater(problem), BoolDistribution(1.0))
@test r ≈ -100.0 atol=0.01
end
| [
3500,
6208,
198,
198,
3500,
350,
2662,
6322,
5841,
1424,
198,
2,
1262,
350,
2662,
35,
3705,
320,
24325,
198,
3500,
350,
2662,
6322,
44154,
198,
3500,
350,
2662,
6322,
82,
198,
3500,
350,
2662,
6322,
17633,
33637,
198,
3500,
49728,
4933,
67,
8605,
198,
3500,
14534,
198,
198,
1616,
198,
220,
220,
220,
1917,
796,
14801,
47,
2662,
6322,
3419,
628,
220,
220,
220,
1303,
47141,
2450,
198,
220,
220,
220,
1303,
618,
262,
5156,
318,
1239,
11672,
11,
262,
6721,
329,
3599,
287,
262,
14720,
1181,
815,
307,
532,
3064,
198,
220,
220,
220,
985,
796,
8299,
448,
8890,
8927,
7,
25386,
28,
15,
13,
18005,
8,
198,
220,
220,
220,
24283,
796,
2147,
198,
220,
220,
220,
2450,
796,
2907,
303,
3419,
198,
220,
220,
220,
374,
796,
29308,
7,
14323,
11,
1917,
11,
2450,
11,
2325,
729,
7,
30586,
828,
24283,
11,
2081,
8,
198,
220,
220,
220,
2488,
9288,
374,
15139,
230,
532,
3064,
13,
15,
379,
349,
28,
15,
13,
486,
628,
220,
220,
220,
1303,
1332,
2429,
7,
3712,
78,
11,
23029,
198,
220,
220,
220,
267,
796,
2429,
7,
16458,
6144,
1098,
7,
25,
78,
828,
1917,
11,
2081,
11,
337,
364,
29727,
5080,
1694,
7,
16,
4008,
198,
220,
220,
220,
2488,
9288,
267,
6624,
352,
198,
220,
220,
220,
1303,
1332,
43030,
198,
220,
220,
220,
19643,
796,
10385,
62,
82,
7,
19182,
90,
43879,
2414,
5512,
2081,
11,
1917,
8,
198,
220,
220,
220,
2488,
9288,
19643,
6624,
685,
16,
8183,
198,
220,
220,
220,
267,
796,
10385,
62,
82,
7,
33,
970,
11,
19643,
11,
1917,
8,
198,
220,
220,
220,
2488,
9288,
267,
6624,
2081,
628,
220,
220,
220,
350,
2662,
6322,
44154,
13,
1676,
65,
1799,
62,
9122,
7,
45573,
8,
628,
220,
220,
220,
809,
796,
8444,
8374,
4933,
67,
729,
7,
45573,
8,
198,
220,
220,
220,
275,
79,
796,
220,
4296,
7,
11110,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41216,
62,
6667,
2086,
7,
11110,
11,
347,
970,
20344,
3890,
7,
15,
13,
15,
36911,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3991,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2081,
8,
628,
220,
220,
220,
2488,
9288,
37124,
7,
46583,
11,
2081,
8,
15139,
230,
657,
13,
27790,
39118,
22370,
27696,
17657,
2414,
379,
349,
28,
15,
13,
18005,
198,
220,
220,
220,
374,
796,
29308,
7,
14323,
11,
1917,
11,
2450,
11,
8444,
8374,
4933,
67,
729,
7,
45573,
828,
347,
970,
20344,
3890,
7,
16,
13,
15,
4008,
198,
220,
220,
220,
2488,
9288,
374,
15139,
230,
532,
3064,
13,
15,
379,
349,
28,
15,
13,
486,
198,
437,
198
] | 2.325581 | 473 |
# byproducts.jl
"""
StartWorkers(nwrkrs::Int)
Start workers if needed.
"""
function StartWorkers(nwrkrs::Int)
set_workers = nwrkrs
nworkers() < set_workers ? addprocs(set_workers) : nothing
nworkers()
end
"""
TaskDriver(indx,fn)
Broacast / distribute task (fn; e.g. loop_task1) over indices (indx; e.g. file indices)
Examples:
```
using CbiomesProcessing, Distributed, SparseArrays
TaskDriver(1,CbiomesProcessing.loop_task1)
StartWorkers(4)
@everywhere using CbiomesProcessing, SparseArrays
TaskDriver(1:4,CbiomesProcessing.loop_task1)
```
Visualize results:
```
using FortranFiles, Plots
k=1
recl=720*360*4
fil="diags_interp/ETAN/ETAN.0000000732.data"
f = FortranFile(fil,"r",access="direct",recl=recl,convert="big-endian")
tmp=read(f,rec=k,(Float32,(720,360))); close(f)
heatmap(tmp)
```
"""
function TaskDriver(indx::Union{UnitRange{Int},Array{Int,1},Int},fn::Function)
i=collect(indx)
length(i)>1 ? i=distribute(i) : nothing
isa(i,DArray) ? println(i.indices) : nothing
fn.(i)
end
"""
MetaFileRead(filIn::String)
Reads a meta file generated by MITgcm
"""
function MetaFileRead(FileName::String)
MetaFile=FileName[1:end-5]*".meta"
f = open(MetaFile)
lines = readlines(f)
close(f)
MetaFile=Dict("MetaFile" => MetaFile)
while !isempty(lines)
line=popfirst!(lines)
i0=findfirst(isequal('='), line)
i1=findfirst(isequal(';'), line)
!isnothing(i0) ? nam=strip(line[1:i0-1]) : nam=""
val=nothing
#show(line)
if nam=="dimList"
#special case: dimList
val=fill(0.,(MetaFile["nDims"],3))
for ii=1:MetaFile["nDims"]
line=popfirst!(lines)
tmp1=split(line,",")
#tmp1=map(x->(v = tryparse(Int,x); ismissing(v) ? 0.0 : v),tmp1)
val[ii,:]=parse.(Int,tmp1[1:3])
end
line=popfirst!(lines)
elseif nam=="fldList"
#special case: fldList
line=popfirst!(lines)
tmp1=split(line,"'")
val=String.(tmp1[2:2:end])
line=popfirst!(lines)
elseif nam=="dataprec"
#sepcial case: dataprec
tmp1=split(line)
tmp1[4]=="'float32'" ? val=Float32 : val=Float64
elseif nam=="nDims"
#sepcial case: nDims
tmp1=split(line[i0+1:i1-1])
val=parse(Int64,tmp1[2])
end
#
if ~isnothing(val)
tmp2=Dict(nam => val)
MetaFile=merge(MetaFile,tmp2)
end
end
return MetaFile
end
"""
MatrixInterp(in::Array{T,N},MTRX,siz) where {T,N}
Interpolate `in` using `MTRX` to grid of size `siz`.
"""
function MatrixInterp(in::Array{T,N},MTRX::SparseMatrixCSC,siz) where {T,N}
#input
l=size(in,1)*size(in,2);
m=size(in,3);
tmp1=reshape(in,l,m)
tmp0=Float64.(.!(isnan.(tmp1)))
tmp1[isnan.(tmp1)].=0.
siz=siz[1],siz[2],m
#matrix product
tmp0=MTRX*tmp0
tmp1=MTRX*tmp1
tmp1=tmp1./tmp0
#this may be redundant:
tmp1[tmp0 .== 0.] .= NaN
#output
out=reshape(tmp1,siz)
m==1 ? out=dropdims(out,dims=3) : nothing
return out
end
| [
2,
416,
29498,
13,
20362,
198,
198,
37811,
198,
220,
220,
220,
7253,
12468,
364,
7,
77,
18351,
74,
3808,
3712,
5317,
8,
198,
198,
10434,
3259,
611,
2622,
13,
198,
37811,
198,
8818,
7253,
12468,
364,
7,
77,
18351,
74,
3808,
3712,
5317,
8,
198,
220,
220,
900,
62,
22896,
796,
299,
18351,
74,
3808,
198,
220,
220,
299,
22896,
3419,
1279,
900,
62,
22896,
5633,
751,
1676,
6359,
7,
2617,
62,
22896,
8,
1058,
2147,
198,
220,
220,
299,
22896,
3419,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
15941,
32103,
7,
521,
87,
11,
22184,
8,
198,
198,
15783,
330,
459,
1220,
14983,
4876,
357,
22184,
26,
304,
13,
70,
13,
9052,
62,
35943,
16,
8,
625,
36525,
357,
521,
87,
26,
304,
13,
70,
13,
2393,
36525,
8,
198,
198,
27730,
25,
198,
198,
15506,
63,
198,
3500,
327,
8482,
2586,
18709,
278,
11,
4307,
6169,
11,
1338,
17208,
3163,
20477,
198,
25714,
32103,
7,
16,
11,
34,
8482,
2586,
18709,
278,
13,
26268,
62,
35943,
16,
8,
198,
198,
10434,
12468,
364,
7,
19,
8,
198,
31,
16833,
3003,
1262,
327,
8482,
2586,
18709,
278,
11,
1338,
17208,
3163,
20477,
198,
25714,
32103,
7,
16,
25,
19,
11,
34,
8482,
2586,
18709,
278,
13,
26268,
62,
35943,
16,
8,
198,
15506,
63,
198,
198,
36259,
1096,
2482,
25,
198,
198,
15506,
63,
198,
3500,
6401,
2596,
25876,
11,
1345,
1747,
198,
74,
28,
16,
198,
260,
565,
28,
23906,
9,
15277,
9,
19,
198,
10379,
2625,
10989,
3775,
62,
3849,
79,
14,
2767,
1565,
14,
2767,
1565,
13,
24598,
22,
2624,
13,
7890,
1,
198,
69,
796,
220,
6401,
2596,
8979,
7,
10379,
553,
81,
1600,
15526,
2625,
12942,
1600,
260,
565,
28,
260,
565,
11,
1102,
1851,
2625,
14261,
12,
437,
666,
4943,
198,
22065,
28,
961,
7,
69,
11,
8344,
28,
74,
11,
7,
43879,
2624,
11,
7,
23906,
11,
15277,
4008,
1776,
1969,
7,
69,
8,
198,
25080,
8899,
7,
22065,
8,
198,
15506,
63,
198,
37811,
198,
8818,
15941,
32103,
7,
521,
87,
3712,
38176,
90,
26453,
17257,
90,
5317,
5512,
19182,
90,
5317,
11,
16,
5512,
5317,
5512,
22184,
3712,
22203,
8,
198,
220,
220,
220,
1312,
28,
33327,
7,
521,
87,
8,
198,
220,
220,
220,
4129,
7,
72,
8,
29,
16,
5633,
1312,
28,
17080,
4163,
7,
72,
8,
1058,
2147,
198,
220,
220,
220,
318,
64,
7,
72,
11,
35,
19182,
8,
5633,
44872,
7,
72,
13,
521,
1063,
8,
1058,
2147,
198,
220,
220,
220,
24714,
12195,
72,
8,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
30277,
8979,
5569,
7,
10379,
818,
3712,
10100,
8,
198,
198,
5569,
82,
257,
13634,
2393,
7560,
416,
17168,
70,
11215,
198,
37811,
198,
8818,
30277,
8979,
5569,
7,
8979,
5376,
3712,
10100,
8,
628,
220,
220,
220,
30277,
8979,
28,
8979,
5376,
58,
16,
25,
437,
12,
20,
60,
9,
1911,
28961,
1,
198,
220,
220,
220,
277,
796,
1280,
7,
48526,
8979,
8,
198,
220,
220,
220,
3951,
796,
1100,
6615,
7,
69,
8,
198,
220,
220,
220,
1969,
7,
69,
8,
628,
220,
220,
220,
30277,
8979,
28,
35,
713,
7203,
48526,
8979,
1,
5218,
30277,
8979,
8,
198,
220,
220,
220,
981,
5145,
271,
28920,
7,
6615,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1627,
28,
12924,
11085,
0,
7,
6615,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1312,
15,
28,
19796,
11085,
7,
786,
13255,
10786,
11639,
828,
1627,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1312,
16,
28,
19796,
11085,
7,
786,
13255,
10786,
26,
33809,
1627,
8,
198,
220,
220,
220,
220,
220,
220,
220,
5145,
271,
22366,
7,
72,
15,
8,
5633,
299,
321,
28,
36311,
7,
1370,
58,
16,
25,
72,
15,
12,
16,
12962,
1058,
299,
321,
33151,
198,
220,
220,
220,
220,
220,
220,
220,
1188,
28,
22366,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
12860,
7,
1370,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
299,
321,
855,
1,
27740,
8053,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
20887,
1339,
25,
5391,
8053,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1188,
28,
20797,
7,
15,
1539,
7,
48526,
8979,
14692,
77,
35,
12078,
33116,
18,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
21065,
28,
16,
25,
48526,
8979,
14692,
77,
35,
12078,
8973,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
28,
12924,
11085,
0,
7,
6615,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45218,
16,
28,
35312,
7,
1370,
553,
553,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
22065,
16,
28,
8899,
7,
87,
3784,
7,
85,
796,
1949,
29572,
7,
5317,
11,
87,
1776,
318,
45688,
7,
85,
8,
5633,
657,
13,
15,
1058,
410,
828,
22065,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1188,
58,
4178,
11,
25,
22241,
29572,
12195,
5317,
11,
22065,
16,
58,
16,
25,
18,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
28,
12924,
11085,
0,
7,
6615,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
361,
299,
321,
855,
1,
69,
335,
8053,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
20887,
1339,
25,
277,
335,
8053,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
28,
12924,
11085,
0,
7,
6615,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45218,
16,
28,
35312,
7,
1370,
553,
6,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1188,
28,
10100,
12195,
22065,
16,
58,
17,
25,
17,
25,
437,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
28,
12924,
11085,
0,
7,
6615,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
361,
299,
321,
855,
1,
19608,
499,
8344,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
325,
79,
2413,
1339,
25,
4818,
499,
8344,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45218,
16,
28,
35312,
7,
1370,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45218,
16,
58,
19,
60,
855,
30543,
22468,
2624,
29653,
5633,
1188,
28,
43879,
2624,
1058,
1188,
28,
43879,
2414,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
361,
299,
321,
855,
1,
77,
35,
12078,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
325,
79,
2413,
1339,
25,
299,
35,
12078,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45218,
16,
28,
35312,
7,
1370,
58,
72,
15,
10,
16,
25,
72,
16,
12,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1188,
28,
29572,
7,
5317,
2414,
11,
22065,
16,
58,
17,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
220,
220,
220,
220,
220,
220,
220,
611,
5299,
271,
22366,
7,
2100,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45218,
17,
28,
35,
713,
7,
7402,
5218,
1188,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
30277,
8979,
28,
647,
469,
7,
48526,
8979,
11,
22065,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1441,
30277,
8979,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
24936,
9492,
79,
7,
259,
3712,
19182,
90,
51,
11,
45,
5512,
44,
5446,
55,
11,
82,
528,
8,
810,
1391,
51,
11,
45,
92,
198,
198,
9492,
16104,
378,
4600,
259,
63,
1262,
4600,
44,
5446,
55,
63,
284,
10706,
286,
2546,
4600,
82,
528,
44646,
198,
37811,
198,
8818,
24936,
9492,
79,
7,
259,
3712,
19182,
90,
51,
11,
45,
5512,
44,
5446,
55,
3712,
50,
29572,
46912,
34,
6173,
11,
82,
528,
8,
810,
1391,
51,
11,
45,
92,
198,
220,
220,
220,
1303,
15414,
198,
220,
220,
220,
300,
28,
7857,
7,
259,
11,
16,
27493,
7857,
7,
259,
11,
17,
1776,
198,
220,
220,
220,
285,
28,
7857,
7,
259,
11,
18,
1776,
198,
220,
220,
220,
45218,
16,
28,
3447,
1758,
7,
259,
11,
75,
11,
76,
8,
198,
220,
220,
220,
45218,
15,
28,
43879,
2414,
12195,
13,
0,
7,
271,
12647,
12195,
22065,
16,
22305,
198,
220,
220,
220,
45218,
16,
58,
271,
12647,
12195,
22065,
16,
25295,
28,
15,
13,
198,
220,
220,
220,
264,
528,
28,
82,
528,
58,
16,
4357,
82,
528,
58,
17,
4357,
76,
198,
220,
220,
220,
1303,
6759,
8609,
1720,
198,
220,
220,
220,
45218,
15,
28,
44,
5446,
55,
9,
22065,
15,
198,
220,
220,
220,
45218,
16,
28,
44,
5446,
55,
9,
22065,
16,
198,
220,
220,
220,
45218,
16,
28,
22065,
16,
19571,
22065,
15,
198,
220,
220,
220,
1303,
5661,
743,
307,
30806,
25,
198,
220,
220,
220,
45218,
16,
58,
22065,
15,
764,
855,
657,
8183,
764,
28,
11013,
45,
198,
220,
220,
220,
1303,
22915,
198,
220,
220,
220,
503,
28,
3447,
1758,
7,
22065,
16,
11,
82,
528,
8,
198,
220,
220,
220,
285,
855,
16,
5633,
503,
28,
14781,
67,
12078,
7,
448,
11,
67,
12078,
28,
18,
8,
1058,
2147,
198,
220,
220,
220,
1441,
503,
198,
437,
198
] | 1.953602 | 1,638 |
#
# Example of a medium-scale graphene calculation. Only suitable for running
# on a cluster or machine with large memory.
#src tags: long
#
using DFTK
kgrid = [12, 12, 4]
Tsmear = 0.0009500431544769484
Ecut = 15
lattice = [4.659533614391621 -2.3297668071958104 0.0;
0.0 4.035274479829987 0.0;
0.0 0.0 15.117809010356462]
C = ElementPsp(:C, psp=load_psp("hgh/pbe/c-q4"))
atoms = [C => [[0.0, 0.0, 0.0], [0.33333333333, 0.66666666667, 0.0]]]
model = model_DFT(lattice, atoms, [:gga_x_pbe, :gga_c_pbe];
temperature=Tsmear, smearing=Smearing.Gaussian())
basis = PlaneWaveBasis(model, Ecut, kgrid=kgrid)
# Run SCF
n_bands = 6
scfres = self_consistent_field(basis; n_bands=n_bands)
# Print obtained energies
println()
display(scfres.energies)
| [
2,
198,
2,
17934,
286,
257,
7090,
12,
9888,
42463,
17952,
13,
5514,
11080,
329,
2491,
198,
2,
319,
257,
13946,
393,
4572,
351,
1588,
4088,
13,
198,
2,
10677,
15940,
25,
890,
198,
2,
198,
198,
3500,
360,
9792,
42,
198,
198,
74,
25928,
796,
685,
1065,
11,
1105,
11,
604,
60,
198,
51,
5796,
451,
796,
657,
13,
830,
3865,
405,
3559,
1314,
34825,
3388,
34137,
198,
36,
8968,
796,
1315,
198,
198,
75,
1078,
501,
796,
685,
19,
13,
2996,
3865,
29211,
1415,
2670,
1433,
2481,
532,
17,
13,
18,
26561,
2791,
36928,
1129,
3365,
13464,
657,
13,
15,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
15,
604,
13,
44215,
1983,
2598,
43240,
1959,
44183,
657,
13,
15,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
15,
657,
13,
15,
1315,
13,
17657,
34583,
20943,
2327,
2414,
5237,
60,
198,
34,
796,
11703,
47,
2777,
7,
25,
34,
11,
279,
2777,
28,
2220,
62,
862,
79,
7203,
71,
456,
14,
79,
1350,
14,
66,
12,
80,
19,
48774,
198,
265,
3150,
796,
685,
34,
5218,
16410,
15,
13,
15,
11,
657,
13,
15,
11,
657,
13,
15,
4357,
685,
15,
13,
24840,
24840,
20370,
11,
657,
13,
41977,
28933,
11,
657,
13,
15,
11907,
60,
198,
198,
19849,
796,
2746,
62,
8068,
51,
7,
75,
1078,
501,
11,
23235,
11,
685,
25,
1130,
64,
62,
87,
62,
79,
1350,
11,
1058,
1130,
64,
62,
66,
62,
79,
1350,
11208,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5951,
28,
51,
5796,
451,
11,
895,
6648,
28,
7556,
6648,
13,
35389,
31562,
28955,
198,
12093,
271,
796,
36829,
39709,
15522,
271,
7,
19849,
11,
412,
8968,
11,
479,
25928,
28,
74,
25928,
8,
198,
198,
2,
5660,
6374,
37,
198,
77,
62,
21397,
796,
718,
198,
1416,
69,
411,
796,
2116,
62,
5936,
7609,
62,
3245,
7,
12093,
271,
26,
299,
62,
21397,
28,
77,
62,
21397,
8,
198,
198,
2,
12578,
6492,
27598,
198,
35235,
3419,
198,
13812,
7,
1416,
69,
411,
13,
877,
70,
444,
8,
198
] | 2.153846 | 364 |
#!/usr/bin/env julia
#load path to qjulia home directory
push!(LOAD_PATH, joinpath(@__DIR__, "..", "core"))
push!(LOAD_PATH, joinpath(@__DIR__, "..", "libs/quda-routines"))
push!(LOAD_PATH, joinpath(@__DIR__, "..", "libs/scidac-routines"))
push!(LOAD_PATH, joinpath(@__DIR__, "..", "main/fields"))
import QJuliaBlas
import QJuliaReduce
import QJuliaUtils
import QJuliaEnums
import QJuliaInterface
import QJuliaGaugeUtils
import QJuliaComms
import QJuliaSolvers
import QUDARoutines
import SCIDACRoutines
using Random
using LinearAlgebra
using MPI
#create function/type alias
double = Float64
float = Float64
load_config_from_file = "/home/astrel/Configs/wl_5p5_x2p38_um0p4125_cfg_1000.lime"
##############################################################################################
[QJuliaUtils.gridsize_from_cmdline[i] = 1 for i = 1:length(QJuliaUtils.gridsize_from_cmdline)]
QJuliaUtils.get_rank_order("col")
#initialize MPI
MPI.Init()
QUDARoutines.initCommsGridQuda_qj(length(QJuliaUtils.gridsize_from_cmdline), QJuliaUtils.gridsize_from_cmdline, QJuliaUtils.lex_rank_from_coords_t_c, C_NULL)
QUDARoutines.initQuda_qj(0)
Random.seed!(2019)
solve_unit_source = true
const lx = 16
const ly = 16
const lz = 16
const lt = 64
const ls = 1
const dim = 4
const vol = lx*ly*lz*lt*ls
#field latt point sizes
const ssize = 12
const gsize = 9
const splen = vol*ssize
const gflen = vol*gsize
const sp_real_len = 2*vol*ssize
const sp_real_parity_len = Int(sp_real_len / 2)
sp_in = Vector{Complex{Float64}}(undef, splen)
sp_ou = Vector{Complex{Float64}}(undef, splen)
gauge = Matrix{Complex{Float64}}(undef, gflen, 4)
if solve_unit_source == false
QJuliaUtils.gen_random_spinor!(sp_in)
else
QJuliaUtils.gen_unit_spinor!(sp_ou)
end
gauge_param = QJuliaInterface.QJuliaGaugeParam_qj()
gauge_param.X = (lx, ly, lz, lt)
gauge_param.cpu_prec = QJuliaEnums.QJULIA_DOUBLE_PRECISION
gauge_param.t_boundary = QJuliaEnums.QJULIA_PERIODIC_T
gauge_param.gtype = QJuliaEnums.QJULIA_WILSON_LINKS
gauge_param.anisotropy = 2.38
gauge_param.cuda_prec = QJuliaEnums.QJULIA_DOUBLE_PRECISION
gauge_param.reconstruct = QJuliaEnums.QJULIA_RECONSTRUCT_12
gauge_param.cuda_prec_sloppy = QJuliaEnums.QJULIA_SINGLE_PRECISION
gauge_param.reconstruct_sloppy = QJuliaEnums.QJULIA_RECONSTRUCT_12
gauge_param.cuda_prec_precondition = QJuliaEnums.QJULIA_DOUBLE_PRECISION
gauge_param.reconstruct_precondition = QJuliaEnums.QJULIA_RECONSTRUCT_12
gauge_param.reconstruct_refinement_sloppy = QJuliaEnums.QJULIA_RECONSTRUCT_12
gauge_param.cuda_prec_refinement_sloppy = QJuliaEnums.QJULIA_HALF_PRECISION
#println("======= Gauge parameters =======")
#QJuliaInterface.printQudaGaugeParam_qj(gauge_param)
#load configuration from file or generate random one:
gauge_load_type = 1
if load_config_from_file != ""
Xdims = Vector{Cint}(undef, 4)
for i in 1:length(Xdims); Xdims[i] = gauge_param.X[i] ; end
qio_prec = Cint(8) #gauge_param.cuda_prec
SCIDACRoutines.QMPInitComms_qj(0, C_NULL, QJuliaUtils.gridsize_from_cmdline)
SCIDACRoutines.read_gauge_field_qj(load_config_from_file, gauge, qio_prec, Xdims, 0, C_NULL)
gauge_load_type = 2
end
QJuliaGaugeUtils.construct_gauge_field!(gauge, gauge_load_type, gauge_param)
gauge_param.gtype = QJuliaEnums.QJULIA_SU3_LINKS #currently cannot set QJULIA_WILSON_LINKS (=QJULIA_SU3_LINKS) for QUDA
x_face_size = gauge_param.X[2]*gauge_param.X[3]*Int(gauge_param.X[4]/2);
y_face_size = gauge_param.X[1]*gauge_param.X[3]*Int(gauge_param.X[4]/2);
z_face_size = gauge_param.X[1]*gauge_param.X[2]*Int(gauge_param.X[4]/2);
t_face_size = gauge_param.X[1]*gauge_param.X[2]*Int(gauge_param.X[3]/2);
gauge_param.ga_pad = max(x_face_size, y_face_size, z_face_size, t_face_size);
QUDARoutines.loadGaugeQuda_qj(gauge, gauge_param)
#Check plaquette
plaq = Array{Cdouble, 1}(undef, 3)
QUDARoutines.plaqQuda_qj(plaq)
println("Computed plaquette is ", plaq[1], ", (spatial = ", plaq[2], ", temporal = ", plaq[3], ")")
mass = -0.4125
#mass = -0.95
inv_param = QJuliaInterface.QJuliaInvertParam_qj()
inv_param.residual_type = QJuliaEnums.QJULIA_L2_RELATIVE_RESIDUAL
#println("======= Invert parameters =======")
#QJuliaInterface.printQudaInvertParam_qj(inv_param)
inv_param.mass = mass
inv_param.kappa = 1.0 / (2.0 * (1.0 + 3.0/gauge_param.anisotropy + mass))
inv_param.maxiter = 200
inv_param.tol = 1e-9
inv_param.cuda_prec = QJuliaEnums.QJULIA_DOUBLE_PRECISION
inv_param.cuda_prec_sloppy = QJuliaEnums.QJULIA_SINGLE_PRECISION
inv_param.cuda_prec_precondition = QJuliaEnums.QJULIA_HALF_PRECISION
inv_param.solution_type = QJuliaEnums.QJULIA_MATPC_SOLUTION
#inv_param.inv_type = QJuliaEnums.QJULIA_PIPEPCG_INVERTER
inv_param.inv_type = QJuliaEnums.QJULIA_FCG_INVERTER
println("Kappa = ", inv_param.kappa)
mdagm(out, inp) = QUDARoutines.MatDagMatQuda_qj(out, inp, inv_param)
mat(out, inp) = QUDARoutines.MatQuda_qj(out, inp, inv_param)
Doe(out, inp) = QUDARoutines.dslashQuda_qj(out, inp, inv_param, QJuliaEnums.QJULIA_EVEN_PARITY)
Deo(out, inp) = QUDARoutines.dslashQuda_qj(out, inp, inv_param, QJuliaEnums.QJULIA_ODD_PARITY )
# Setup preconditioner
precond_param = QJuliaInterface.QJuliaInvertParam_qj()
precond_param.residual_type = QJuliaEnums.QJULIA_L2_RELATIVE_RESIDUAL
#precond_param.inv_type = QJuliaEnums.QJULIA_PIPECG_INVERTER
#precond_param.inv_type = QJuliaEnums.QJULIA_INVALID_INVERTER
precond_param.inv_type = QJuliaEnums.QJULIA_LANMR_INVERTER #wroks for naive and fails for pipelined
precond_param.dslash_type_precondition = QJuliaEnums.QJULIA_WILSON_DSLASH
precond_param.kappa = 1.0 / (2.0 * (1 + 3/gauge_param.anisotropy + mass))
precond_param.cuda_prec = QJuliaEnums.QJULIA_DOUBLE_PRECISION
precond_param.cuda_prec_sloppy = QJuliaEnums.QJULIA_SINGLE_PRECISION
precond_param.cuda_prec_precondition = QJuliaEnums.QJULIA_DOUBLE_PRECISION
precond_param.solution_type = QJuliaEnums.QJULIA_MATPC_SOLUTION
precond_param.maxiter = precond_param.inv_type == QJuliaEnums.QJULIA_PCG_INVERTER ? 30 : 10
precond_param.Nsteps = 1
mdagmPre(out, inp) = QUDARoutines.MatDagMatQuda_qj(out, inp, precond_param)
pre_solv_param = QJuliaSolvers.QJuliaSolverParam_qj()
pre_solv_param.inv_type = precond_param.inv_type
pre_solv_param.tol = 1e-2
#
pre_solv_param.maxiter = precond_param.maxiter
pre_solv_param.Nsteps = 1
pre_solv_param.global_reduction = false
K(out, inp) = QJuliaSolvers.solve(out, inp, mdagmPre, mdagmPre, pre_solv_param)
x_even = view(reinterpret(double, sp_ou), 1:sp_real_parity_len)
x_odd = view(reinterpret(double, sp_ou), sp_real_parity_len+1:sp_real_len)
b_even = view(reinterpret(double, sp_in), 1:sp_real_parity_len)
b_odd = view(reinterpret(double, sp_in), sp_real_parity_len+1:sp_real_len)
tmpl_src_norm = norm(sp_ou)
if solve_unit_source == true
mat(sp_in, sp_ou)
sp_ou .=@. 0.0
end
init_src_norm = norm(sp_in)
println("Initial source norm:: ", init_src_norm, " , template src norm is: ", tmpl_src_norm)
#Auxiliary field
tmp = Vector{double}(undef, sp_real_len)
t_even = view(tmp, 1:sp_real_parity_len)
t_odd = view(tmp, sp_real_parity_len+1:sp_real_len)
#random intial guess
#QJuliaUtils.gen_random_spinor!(sp_ou, splen)
#prepare source/solution:
if inv_param.matpc_type == QJuliaEnums.QJULIA_MATPC_EVEN_EVEN
# src = b_e + k D_eo b_o
Deo(t_even, b_odd)
x_odd .=@. b_even + inv_param.kappa*t_even
end
#
init_prec_src_norm = norm(x_odd)
#
println("Initial precondtioned source norm:: ", init_prec_src_norm, " , requested tolerance: ", inv_param.tol)
solv_param = QJuliaSolvers.QJuliaSolverParam_qj()
# Set up parameters
solv_param.inv_type = inv_param.inv_type
solv_param.inv_type_precondition = precond_param.inv_type
solv_param.tol = inv_param.tol
#
solv_param.maxiter = inv_param.maxiter
solv_param.delta = 1e-2
solv_param.nKrylov = 4 #8 is very good for unit source
solv_param.Nsteps = 2
if precond_param.inv_type != QJuliaEnums.QJULIA_INVALID_INVERTER
QJuliaSolvers.solve(x_even, x_odd, mdagm, mdagm, solv_param, K)
else
QJuliaSolvers.solve(x_even, x_odd, mdagm, mdagm, solv_param)
end
#compute true residual:
r = t_odd
mdagm(r, x_even)
r .=@. x_odd - r
r2 = dot(r, r)
println("True residual norm: ", sqrt(r2))
#reconstruct source/solution:
if inv_param.matpc_type == QJuliaEnums.QJULIA_MATPC_EVEN_EVEN
# x_o = b_o + k D_oe x_e
Doe(t_odd, x_even)
x_odd .=@. b_odd + inv_param.kappa*t_odd
end
if solve_unit_source == true
QJuliaUtils.gen_unit_spinor!(sp_in)
sp_ou .=@. sp_in - sp_ou
error_norm = norm(sp_ou)
println("Solution error: ", error_norm)
end
QUDARoutines.endQuda_qj()
MPI.Finalize()
| [
2,
48443,
14629,
14,
8800,
14,
24330,
474,
43640,
198,
198,
2,
2220,
3108,
284,
10662,
73,
43640,
1363,
8619,
198,
14689,
0,
7,
35613,
62,
34219,
11,
4654,
6978,
7,
31,
834,
34720,
834,
11,
366,
492,
1600,
366,
7295,
48774,
198,
14689,
0,
7,
35613,
62,
34219,
11,
4654,
6978,
7,
31,
834,
34720,
834,
11,
366,
492,
1600,
366,
8019,
82,
14,
421,
6814,
12,
81,
448,
1127,
48774,
198,
14689,
0,
7,
35613,
62,
34219,
11,
4654,
6978,
7,
31,
834,
34720,
834,
11,
366,
492,
1600,
366,
8019,
82,
14,
1416,
312,
330,
12,
81,
448,
1127,
48774,
198,
14689,
0,
7,
35613,
62,
34219,
11,
4654,
6978,
7,
31,
834,
34720,
834,
11,
366,
492,
1600,
366,
12417,
14,
25747,
48774,
198,
198,
11748,
1195,
16980,
544,
3629,
292,
198,
11748,
1195,
16980,
544,
7738,
7234,
198,
11748,
1195,
16980,
544,
18274,
4487,
198,
11748,
1195,
16980,
544,
4834,
5700,
198,
11748,
1195,
16980,
544,
39317,
198,
11748,
1195,
16980,
544,
38,
559,
469,
18274,
4487,
198,
11748,
1195,
16980,
544,
5377,
907,
198,
11748,
1195,
16980,
544,
36949,
690,
198,
11748,
1195,
8322,
1503,
448,
1127,
198,
11748,
6374,
2389,
2246,
49,
448,
1127,
198,
198,
3500,
14534,
198,
3500,
44800,
2348,
29230,
198,
3500,
4904,
40,
198,
198,
2,
17953,
2163,
14,
4906,
16144,
198,
23352,
220,
796,
48436,
2414,
198,
22468,
220,
220,
796,
48436,
2414,
198,
198,
2220,
62,
11250,
62,
6738,
62,
7753,
796,
12813,
11195,
14,
459,
2411,
14,
16934,
82,
14,
40989,
62,
20,
79,
20,
62,
87,
17,
79,
2548,
62,
388,
15,
79,
19,
11623,
62,
37581,
62,
12825,
13,
27299,
1,
198,
198,
29113,
29113,
14468,
7804,
4242,
2235,
198,
198,
58,
48,
16980,
544,
18274,
4487,
13,
2164,
2340,
1096,
62,
6738,
62,
28758,
1370,
58,
72,
60,
796,
352,
329,
1312,
796,
352,
25,
13664,
7,
48,
16980,
544,
18274,
4487,
13,
2164,
2340,
1096,
62,
6738,
62,
28758,
1370,
15437,
198,
48,
16980,
544,
18274,
4487,
13,
1136,
62,
43027,
62,
2875,
7203,
4033,
4943,
198,
198,
2,
36733,
1096,
4904,
40,
198,
7378,
40,
13,
31768,
3419,
198,
198,
48,
8322,
1503,
448,
1127,
13,
15003,
5377,
907,
41339,
48,
15339,
62,
80,
73,
7,
13664,
7,
48,
16980,
544,
18274,
4487,
13,
2164,
2340,
1096,
62,
6738,
62,
28758,
1370,
828,
1195,
16980,
544,
18274,
4487,
13,
2164,
2340,
1096,
62,
6738,
62,
28758,
1370,
11,
1195,
16980,
544,
18274,
4487,
13,
2588,
62,
43027,
62,
6738,
62,
1073,
3669,
62,
83,
62,
66,
11,
327,
62,
33991,
8,
198,
198,
48,
8322,
1503,
448,
1127,
13,
15003,
48,
15339,
62,
80,
73,
7,
15,
8,
198,
198,
29531,
13,
28826,
0,
7,
23344,
8,
198,
198,
82,
6442,
62,
20850,
62,
10459,
796,
2081,
198,
198,
9979,
300,
87,
796,
1467,
198,
9979,
22404,
796,
1467,
198,
9979,
300,
89,
796,
1467,
198,
9979,
300,
83,
796,
5598,
198,
9979,
43979,
796,
352,
198,
198,
9979,
5391,
796,
604,
198,
9979,
2322,
796,
300,
87,
9,
306,
9,
75,
89,
9,
2528,
9,
7278,
198,
198,
2,
3245,
47240,
966,
10620,
198,
9979,
264,
7857,
796,
1105,
198,
9979,
308,
7857,
796,
860,
198,
198,
9979,
4328,
268,
796,
2322,
9,
824,
1096,
198,
9979,
308,
2704,
268,
796,
2322,
9,
70,
7857,
198,
198,
9979,
599,
62,
5305,
62,
11925,
796,
362,
9,
10396,
9,
824,
1096,
198,
9979,
599,
62,
5305,
62,
1845,
414,
62,
11925,
796,
2558,
7,
2777,
62,
5305,
62,
11925,
1220,
362,
8,
198,
198,
2777,
62,
259,
796,
20650,
90,
5377,
11141,
90,
43879,
2414,
11709,
7,
917,
891,
11,
4328,
268,
8,
198,
2777,
62,
280,
796,
20650,
90,
5377,
11141,
90,
43879,
2414,
11709,
7,
917,
891,
11,
4328,
268,
8,
198,
70,
559,
469,
796,
24936,
90,
5377,
11141,
90,
43879,
2414,
11709,
7,
917,
891,
11,
308,
2704,
268,
11,
604,
8,
198,
198,
361,
8494,
62,
20850,
62,
10459,
6624,
3991,
198,
220,
1195,
16980,
544,
18274,
4487,
13,
5235,
62,
25120,
62,
39706,
273,
0,
7,
2777,
62,
259,
8,
198,
17772,
198,
220,
1195,
16980,
544,
18274,
4487,
13,
5235,
62,
20850,
62,
39706,
273,
0,
7,
2777,
62,
280,
8,
198,
437,
198,
198,
70,
559,
469,
62,
17143,
796,
1195,
16980,
544,
39317,
13,
48,
16980,
544,
38,
559,
469,
22973,
62,
80,
73,
3419,
198,
70,
559,
469,
62,
17143,
13,
55,
796,
357,
75,
87,
11,
22404,
11,
300,
89,
11,
300,
83,
8,
198,
70,
559,
469,
62,
17143,
13,
36166,
62,
3866,
66,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
35,
2606,
19146,
62,
47,
38827,
42446,
198,
70,
559,
469,
62,
17143,
13,
83,
62,
7784,
560,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
18973,
40,
3727,
2149,
62,
51,
198,
70,
559,
469,
62,
17143,
13,
70,
4906,
220,
220,
220,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
54,
4146,
11782,
62,
43,
17248,
50,
198,
70,
559,
469,
62,
17143,
13,
272,
271,
313,
28338,
796,
362,
13,
2548,
198,
198,
70,
559,
469,
62,
17143,
13,
66,
15339,
62,
3866,
66,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
35,
2606,
19146,
62,
47,
38827,
42446,
198,
70,
559,
469,
62,
17143,
13,
260,
41571,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
2200,
10943,
46126,
62,
1065,
198,
70,
559,
469,
62,
17143,
13,
66,
15339,
62,
3866,
66,
62,
82,
5439,
14097,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
50,
2751,
2538,
62,
47,
38827,
42446,
198,
70,
559,
469,
62,
17143,
13,
260,
41571,
62,
82,
5439,
14097,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
2200,
10943,
46126,
62,
1065,
198,
70,
559,
469,
62,
17143,
13,
66,
15339,
62,
3866,
66,
62,
3866,
31448,
220,
220,
220,
220,
220,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
35,
2606,
19146,
62,
47,
38827,
42446,
198,
70,
559,
469,
62,
17143,
13,
260,
41571,
62,
3866,
31448,
220,
220,
220,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
2200,
10943,
46126,
62,
1065,
198,
70,
559,
469,
62,
17143,
13,
260,
41571,
62,
5420,
21828,
62,
82,
5439,
14097,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
2200,
10943,
46126,
62,
1065,
198,
70,
559,
469,
62,
17143,
13,
66,
15339,
62,
3866,
66,
62,
5420,
21828,
62,
82,
5439,
14097,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
39,
1847,
37,
62,
47,
38827,
42446,
198,
198,
2,
35235,
7203,
1421,
18604,
35094,
469,
10007,
29335,
855,
4943,
198,
2,
48,
16980,
544,
39317,
13,
4798,
48,
15339,
38,
559,
469,
22973,
62,
80,
73,
7,
70,
559,
469,
62,
17143,
8,
198,
198,
2,
2220,
8398,
422,
2393,
393,
7716,
4738,
530,
25,
198,
70,
559,
469,
62,
2220,
62,
4906,
796,
352,
198,
361,
3440,
62,
11250,
62,
6738,
62,
7753,
14512,
13538,
198,
220,
1395,
67,
12078,
796,
20650,
90,
34,
600,
92,
7,
917,
891,
11,
604,
8,
198,
220,
329,
1312,
287,
352,
25,
13664,
7,
55,
67,
12078,
1776,
1395,
67,
12078,
58,
72,
60,
796,
18266,
62,
17143,
13,
55,
58,
72,
60,
2162,
886,
198,
220,
10662,
952,
62,
3866,
66,
796,
327,
600,
7,
23,
8,
1303,
70,
559,
469,
62,
17143,
13,
66,
15339,
62,
3866,
66,
628,
220,
6374,
2389,
2246,
49,
448,
1127,
13,
48,
7378,
31768,
5377,
907,
62,
80,
73,
7,
15,
11,
327,
62,
33991,
11,
1195,
16980,
544,
18274,
4487,
13,
2164,
2340,
1096,
62,
6738,
62,
28758,
1370,
8,
198,
220,
6374,
2389,
2246,
49,
448,
1127,
13,
961,
62,
70,
559,
469,
62,
3245,
62,
80,
73,
7,
2220,
62,
11250,
62,
6738,
62,
7753,
11,
18266,
11,
10662,
952,
62,
3866,
66,
11,
1395,
67,
12078,
11,
657,
11,
327,
62,
33991,
8,
198,
220,
18266,
62,
2220,
62,
4906,
796,
362,
198,
437,
198,
48,
16980,
544,
38,
559,
469,
18274,
4487,
13,
41571,
62,
70,
559,
469,
62,
3245,
0,
7,
70,
559,
469,
11,
18266,
62,
2220,
62,
4906,
11,
18266,
62,
17143,
8,
198,
198,
70,
559,
469,
62,
17143,
13,
70,
4906,
220,
220,
220,
220,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
12564,
18,
62,
43,
17248,
50,
220,
197,
197,
2,
41745,
2314,
900,
1195,
41,
6239,
3539,
62,
54,
4146,
11782,
62,
43,
17248,
50,
46121,
48,
41,
6239,
3539,
62,
12564,
18,
62,
43,
17248,
50,
8,
220,
329,
19604,
5631,
198,
198,
87,
62,
2550,
62,
7857,
796,
18266,
62,
17143,
13,
55,
58,
17,
60,
9,
70,
559,
469,
62,
17143,
13,
55,
58,
18,
60,
9,
5317,
7,
70,
559,
469,
62,
17143,
13,
55,
58,
19,
60,
14,
17,
1776,
198,
88,
62,
2550,
62,
7857,
796,
18266,
62,
17143,
13,
55,
58,
16,
60,
9,
70,
559,
469,
62,
17143,
13,
55,
58,
18,
60,
9,
5317,
7,
70,
559,
469,
62,
17143,
13,
55,
58,
19,
60,
14,
17,
1776,
198,
89,
62,
2550,
62,
7857,
796,
18266,
62,
17143,
13,
55,
58,
16,
60,
9,
70,
559,
469,
62,
17143,
13,
55,
58,
17,
60,
9,
5317,
7,
70,
559,
469,
62,
17143,
13,
55,
58,
19,
60,
14,
17,
1776,
198,
83,
62,
2550,
62,
7857,
796,
18266,
62,
17143,
13,
55,
58,
16,
60,
9,
70,
559,
469,
62,
17143,
13,
55,
58,
17,
60,
9,
5317,
7,
70,
559,
469,
62,
17143,
13,
55,
58,
18,
60,
14,
17,
1776,
198,
198,
70,
559,
469,
62,
17143,
13,
4908,
62,
15636,
796,
3509,
7,
87,
62,
2550,
62,
7857,
11,
331,
62,
2550,
62,
7857,
11,
1976,
62,
2550,
62,
7857,
11,
256,
62,
2550,
62,
7857,
1776,
198,
198,
48,
8322,
1503,
448,
1127,
13,
2220,
38,
559,
469,
48,
15339,
62,
80,
73,
7,
70,
559,
469,
11,
18266,
62,
17143,
8,
198,
198,
2,
9787,
458,
36129,
5857,
198,
489,
30188,
796,
15690,
90,
34,
23352,
11,
352,
92,
7,
917,
891,
11,
513,
8,
198,
48,
8322,
1503,
448,
1127,
13,
489,
30188,
48,
15339,
62,
80,
73,
7,
489,
30188,
8,
198,
35235,
7203,
5377,
17128,
458,
36129,
5857,
318,
33172,
458,
30188,
58,
16,
4357,
33172,
357,
2777,
34961,
796,
33172,
220,
458,
30188,
58,
17,
4357,
33172,
21964,
796,
33172,
458,
30188,
58,
18,
4357,
366,
8,
4943,
198,
198,
22208,
796,
532,
15,
13,
19,
11623,
198,
2,
22208,
796,
532,
15,
13,
3865,
198,
198,
16340,
62,
17143,
796,
1195,
16980,
544,
39317,
13,
48,
16980,
544,
818,
1851,
22973,
62,
80,
73,
3419,
198,
16340,
62,
17143,
13,
411,
312,
723,
62,
4906,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
43,
17,
62,
16448,
37045,
62,
19535,
2389,
25620,
198,
2,
35235,
7203,
1421,
18604,
554,
1851,
10007,
29335,
855,
4943,
198,
2,
48,
16980,
544,
39317,
13,
4798,
48,
15339,
818,
1851,
22973,
62,
80,
73,
7,
16340,
62,
17143,
8,
198,
198,
16340,
62,
17143,
13,
22208,
796,
2347,
198,
16340,
62,
17143,
13,
74,
20975,
796,
352,
13,
15,
1220,
357,
17,
13,
15,
1635,
357,
16,
13,
15,
1343,
513,
13,
15,
14,
70,
559,
469,
62,
17143,
13,
272,
271,
313,
28338,
1343,
2347,
4008,
198,
16340,
62,
17143,
13,
9806,
2676,
796,
939,
198,
16340,
62,
17143,
13,
83,
349,
220,
796,
352,
68,
12,
24,
198,
198,
16340,
62,
17143,
13,
66,
15339,
62,
3866,
66,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
35,
2606,
19146,
62,
47,
38827,
42446,
198,
16340,
62,
17143,
13,
66,
15339,
62,
3866,
66,
62,
82,
5439,
14097,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
50,
2751,
2538,
62,
47,
38827,
42446,
198,
16340,
62,
17143,
13,
66,
15339,
62,
3866,
66,
62,
3866,
31448,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
39,
1847,
37,
62,
47,
38827,
42446,
198,
16340,
62,
17143,
13,
82,
2122,
62,
4906,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
41636,
5662,
62,
50,
3535,
35354,
198,
2,
16340,
62,
17143,
13,
16340,
62,
4906,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
47,
4061,
36,
5662,
38,
62,
1268,
5959,
5781,
198,
16340,
62,
17143,
13,
16340,
62,
4906,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
4851,
38,
62,
1268,
5959,
5781,
198,
198,
35235,
7203,
42,
20975,
796,
33172,
220,
800,
62,
17143,
13,
74,
20975,
8,
198,
198,
9132,
363,
76,
7,
448,
11,
287,
79,
8,
220,
220,
220,
796,
1195,
8322,
1503,
448,
1127,
13,
19044,
35,
363,
19044,
48,
15339,
62,
80,
73,
7,
448,
11,
287,
79,
11,
800,
62,
17143,
8,
198,
6759,
7,
448,
11,
287,
79,
8,
220,
220,
220,
796,
1195,
8322,
1503,
448,
1127,
13,
19044,
48,
15339,
62,
80,
73,
7,
448,
11,
287,
79,
11,
800,
62,
17143,
8,
198,
35,
2577,
7,
448,
11,
287,
79,
8,
220,
220,
220,
220,
220,
796,
1195,
8322,
1503,
448,
1127,
13,
67,
6649,
1077,
48,
15339,
62,
80,
73,
7,
448,
11,
287,
79,
11,
800,
62,
17143,
11,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
20114,
1677,
62,
27082,
9050,
8,
198,
5005,
78,
7,
448,
11,
287,
79,
8,
220,
220,
220,
220,
220,
796,
1195,
8322,
1503,
448,
1127,
13,
67,
6649,
1077,
48,
15339,
62,
80,
73,
7,
448,
11,
287,
79,
11,
800,
62,
17143,
11,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
3727,
35,
62,
27082,
9050,
1267,
198,
198,
2,
31122,
3718,
623,
653,
263,
198,
3866,
17561,
62,
17143,
796,
1195,
16980,
544,
39317,
13,
48,
16980,
544,
818,
1851,
22973,
62,
80,
73,
3419,
198,
198,
3866,
17561,
62,
17143,
13,
411,
312,
723,
62,
4906,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
43,
17,
62,
16448,
37045,
62,
19535,
2389,
25620,
198,
2,
3866,
17561,
62,
17143,
13,
16340,
62,
4906,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
47,
4061,
2943,
38,
62,
1268,
5959,
5781,
198,
2,
3866,
17561,
62,
17143,
13,
16340,
62,
4906,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
1268,
23428,
2389,
62,
1268,
5959,
5781,
198,
3866,
17561,
62,
17143,
13,
16340,
62,
4906,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
25697,
13599,
62,
1268,
5959,
5781,
1303,
86,
305,
591,
329,
24354,
290,
10143,
329,
7347,
417,
1389,
198,
3866,
17561,
62,
17143,
13,
67,
6649,
1077,
62,
4906,
62,
3866,
31448,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
54,
4146,
11782,
62,
5258,
43,
11211,
198,
3866,
17561,
62,
17143,
13,
74,
20975,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
352,
13,
15,
1220,
357,
17,
13,
15,
1635,
357,
16,
1343,
513,
14,
70,
559,
469,
62,
17143,
13,
272,
271,
313,
28338,
1343,
2347,
4008,
198,
3866,
17561,
62,
17143,
13,
66,
15339,
62,
3866,
66,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
35,
2606,
19146,
62,
47,
38827,
42446,
198,
3866,
17561,
62,
17143,
13,
66,
15339,
62,
3866,
66,
62,
82,
5439,
14097,
220,
220,
220,
220,
220,
220,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
50,
2751,
2538,
62,
47,
38827,
42446,
198,
3866,
17561,
62,
17143,
13,
66,
15339,
62,
3866,
66,
62,
3866,
31448,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
35,
2606,
19146,
62,
47,
38827,
42446,
198,
3866,
17561,
62,
17143,
13,
82,
2122,
62,
4906,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
41636,
5662,
62,
50,
3535,
35354,
198,
3866,
17561,
62,
17143,
13,
9806,
2676,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
3718,
623,
62,
17143,
13,
16340,
62,
4906,
6624,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
5662,
38,
62,
1268,
5959,
5781,
5633,
1542,
1058,
838,
198,
3866,
17561,
62,
17143,
13,
45,
20214,
220,
220,
220,
220,
197,
220,
220,
220,
220,
220,
220,
796,
352,
198,
198,
9132,
363,
76,
6719,
7,
448,
11,
287,
79,
8,
220,
796,
1195,
8322,
1503,
448,
1127,
13,
19044,
35,
363,
19044,
48,
15339,
62,
80,
73,
7,
448,
11,
287,
79,
11,
3718,
623,
62,
17143,
8,
198,
198,
3866,
62,
34453,
85,
62,
17143,
796,
1195,
16980,
544,
36949,
690,
13,
48,
16980,
544,
50,
14375,
22973,
62,
80,
73,
3419,
198,
198,
3866,
62,
34453,
85,
62,
17143,
13,
16340,
62,
4906,
220,
796,
3718,
623,
62,
17143,
13,
16340,
62,
4906,
198,
3866,
62,
34453,
85,
62,
17143,
13,
83,
349,
220,
220,
220,
220,
220,
220,
796,
352,
68,
12,
17,
198,
2,
198,
3866,
62,
34453,
85,
62,
17143,
13,
9806,
2676,
220,
220,
796,
3718,
623,
62,
17143,
13,
9806,
2676,
198,
3866,
62,
34453,
85,
62,
17143,
13,
45,
20214,
220,
220,
220,
796,
352,
198,
3866,
62,
34453,
85,
62,
17143,
13,
20541,
62,
445,
8110,
796,
3991,
198,
198,
42,
7,
448,
11,
287,
79,
8,
796,
1195,
16980,
544,
36949,
690,
13,
82,
6442,
7,
448,
11,
287,
79,
11,
45243,
363,
76,
6719,
11,
45243,
363,
76,
6719,
11,
662,
62,
34453,
85,
62,
17143,
8,
198,
198,
87,
62,
10197,
796,
1570,
7,
260,
27381,
7,
23352,
11,
599,
62,
280,
828,
352,
25,
2777,
62,
5305,
62,
1845,
414,
62,
11925,
8,
198,
87,
62,
5088,
220,
796,
1570,
7,
260,
27381,
7,
23352,
11,
599,
62,
280,
828,
599,
62,
5305,
62,
1845,
414,
62,
11925,
10,
16,
25,
2777,
62,
5305,
62,
11925,
8,
198,
198,
65,
62,
10197,
796,
1570,
7,
260,
27381,
7,
23352,
11,
599,
62,
259,
828,
352,
25,
2777,
62,
5305,
62,
1845,
414,
62,
11925,
8,
198,
65,
62,
5088,
220,
796,
1570,
7,
260,
27381,
7,
23352,
11,
599,
62,
259,
828,
599,
62,
5305,
62,
1845,
414,
62,
11925,
10,
16,
25,
2777,
62,
5305,
62,
11925,
8,
198,
198,
17209,
489,
62,
10677,
62,
27237,
796,
2593,
7,
2777,
62,
280,
8,
198,
198,
361,
8494,
62,
20850,
62,
10459,
6624,
2081,
198,
220,
2603,
7,
2777,
62,
259,
11,
599,
62,
280,
8,
198,
220,
599,
62,
280,
764,
28,
31,
13,
657,
13,
15,
198,
437,
198,
198,
15003,
62,
10677,
62,
27237,
796,
2593,
7,
2777,
62,
259,
8,
198,
35235,
7203,
24243,
2723,
2593,
3712,
33172,
2315,
62,
10677,
62,
27237,
11,
366,
837,
11055,
12351,
2593,
318,
25,
33172,
256,
76,
489,
62,
10677,
62,
27237,
8,
198,
198,
2,
32,
2821,
28129,
2214,
198,
22065,
796,
20650,
90,
23352,
92,
7,
917,
891,
11,
599,
62,
5305,
62,
11925,
8,
198,
198,
83,
62,
10197,
796,
1570,
7,
22065,
11,
352,
25,
2777,
62,
5305,
62,
1845,
414,
62,
11925,
8,
198,
83,
62,
5088,
220,
796,
1570,
7,
22065,
11,
599,
62,
5305,
62,
1845,
414,
62,
11925,
10,
16,
25,
2777,
62,
5305,
62,
11925,
8,
198,
198,
2,
25120,
493,
498,
4724,
198,
2,
48,
16980,
544,
18274,
4487,
13,
5235,
62,
25120,
62,
39706,
273,
0,
7,
2777,
62,
280,
11,
4328,
268,
8,
198,
198,
2,
46012,
533,
2723,
14,
82,
2122,
25,
198,
361,
800,
62,
17143,
13,
6759,
14751,
62,
4906,
6624,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
41636,
5662,
62,
20114,
1677,
62,
20114,
1677,
198,
220,
1303,
12351,
796,
275,
62,
68,
1343,
479,
360,
62,
68,
78,
275,
62,
78,
198,
220,
1024,
78,
7,
83,
62,
10197,
11,
275,
62,
5088,
8,
198,
220,
2124,
62,
5088,
764,
28,
31,
13,
275,
62,
10197,
1343,
800,
62,
17143,
13,
74,
20975,
9,
83,
62,
10197,
198,
437,
198,
198,
2,
198,
15003,
62,
3866,
66,
62,
10677,
62,
27237,
796,
2593,
7,
87,
62,
5088,
8,
198,
2,
198,
35235,
7203,
24243,
3718,
623,
5378,
276,
2723,
2593,
3712,
33172,
2315,
62,
3866,
66,
62,
10677,
62,
27237,
11,
366,
837,
9167,
15621,
25,
33172,
800,
62,
17143,
13,
83,
349,
8,
198,
198,
34453,
85,
62,
17143,
796,
1195,
16980,
544,
36949,
690,
13,
48,
16980,
544,
50,
14375,
22973,
62,
80,
73,
3419,
198,
2,
5345,
510,
10007,
198,
34453,
85,
62,
17143,
13,
16340,
62,
4906,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
800,
62,
17143,
13,
16340,
62,
4906,
198,
34453,
85,
62,
17143,
13,
16340,
62,
4906,
62,
3866,
31448,
220,
796,
3718,
623,
62,
17143,
13,
16340,
62,
4906,
198,
34453,
85,
62,
17143,
13,
83,
349,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
800,
62,
17143,
13,
83,
349,
198,
2,
198,
34453,
85,
62,
17143,
13,
9806,
2676,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
800,
62,
17143,
13,
9806,
2676,
198,
34453,
85,
62,
17143,
13,
67,
12514,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
352,
68,
12,
17,
198,
34453,
85,
62,
17143,
13,
77,
42,
563,
27086,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
604,
1303,
23,
318,
845,
922,
329,
4326,
2723,
198,
34453,
85,
62,
17143,
13,
45,
20214,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
362,
198,
198,
361,
3718,
623,
62,
17143,
13,
16340,
62,
4906,
14512,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
1268,
23428,
2389,
62,
1268,
5959,
5781,
198,
220,
1195,
16980,
544,
36949,
690,
13,
82,
6442,
7,
87,
62,
10197,
11,
2124,
62,
5088,
11,
45243,
363,
76,
11,
45243,
363,
76,
11,
1540,
85,
62,
17143,
11,
509,
8,
198,
17772,
198,
220,
1195,
16980,
544,
36949,
690,
13,
82,
6442,
7,
87,
62,
10197,
11,
2124,
62,
5088,
11,
45243,
363,
76,
11,
45243,
363,
76,
11,
1540,
85,
62,
17143,
8,
198,
437,
198,
198,
2,
5589,
1133,
2081,
29598,
25,
198,
81,
796,
256,
62,
5088,
198,
9132,
363,
76,
7,
81,
11,
2124,
62,
10197,
8,
198,
81,
220,
764,
28,
31,
13,
2124,
62,
5088,
532,
374,
198,
81,
17,
796,
16605,
7,
81,
11,
374,
8,
198,
35235,
7203,
17821,
29598,
2593,
25,
33172,
19862,
17034,
7,
81,
17,
4008,
198,
198,
2,
260,
41571,
2723,
14,
82,
2122,
25,
198,
361,
800,
62,
17143,
13,
6759,
14751,
62,
4906,
6624,
1195,
16980,
544,
4834,
5700,
13,
48,
41,
6239,
3539,
62,
41636,
5662,
62,
20114,
1677,
62,
20114,
1677,
198,
220,
1303,
2124,
62,
78,
796,
275,
62,
78,
1343,
479,
360,
62,
2577,
2124,
62,
68,
198,
220,
31780,
7,
83,
62,
5088,
11,
2124,
62,
10197,
8,
198,
220,
2124,
62,
5088,
764,
28,
31,
13,
275,
62,
5088,
1343,
800,
62,
17143,
13,
74,
20975,
9,
83,
62,
5088,
198,
437,
198,
198,
361,
8494,
62,
20850,
62,
10459,
6624,
2081,
198,
220,
1195,
16980,
544,
18274,
4487,
13,
5235,
62,
20850,
62,
39706,
273,
0,
7,
2777,
62,
259,
8,
198,
220,
599,
62,
280,
764,
28,
31,
13,
599,
62,
259,
532,
599,
62,
280,
198,
220,
4049,
62,
27237,
796,
2593,
7,
2777,
62,
280,
8,
198,
220,
44872,
7203,
46344,
4049,
25,
33172,
4049,
62,
27237,
8,
198,
437,
628,
198,
48,
8322,
1503,
448,
1127,
13,
437,
48,
15339,
62,
80,
73,
3419,
198,
7378,
40,
13,
19006,
1096,
3419,
198
] | 2.105038 | 4,208 |
logpdf0(x, P) = logdensity(Gaussian{(:Σ,)}(P), x)
struct Message{T,S}
q0::S
q::T
end
message(q0, q) = Message(q0, q)
message() = nothing
function backward(::BF, k::Union{AffineGaussianKernel,LinearGaussianKernel}, q::Gaussian{(:μ,:Σ)})
ν, Σ = q.μ, q.Σ
B, β, Q = params(k)
B⁻¹ = inv(B)
νp = B⁻¹*(ν - β)
Σp = B⁻¹*(Σ + Q)*B⁻¹'
q0 = Gaussian{(:μ,:Σ)}(νp, Σp)
message(q0, q), q0
end
function backward(::BF, k::ConstantGaussianKernel, q::Gaussian{(:F,:Γ)})
message(nothing, q), nothing
end
function backward(::BF, k::Union{AffineGaussianKernel,LinearGaussianKernel}, q::Gaussian{(:F,:Γ)})
@unpack F, Γ = q
# Theorem 7.1 [Automatic BFFG]
B, β, Q = params(k)
Σ = inv(Γ) # requires invertibility of Γ
K = B'*inv(Σ + Q)
ν̃ = Σ*F - β
Fp = K*ν̃
Γp = K*B
q0 = Gaussian{(:F,:Γ)}(Fp, Γp)
message(q0, q), q0
end
function backward(::BF, k::Union{AffineGaussianKernel,LinearGaussianKernel}, y)
# Theorem 7.1 [Automatic BFFG]
B, β, Q = params(k)
K = B'/Q
Fp = K*(y - β)
Γp = K*B
q0 = Gaussian{(:F,:Γ)}(Fp, Γp)
message(q0, Leaf(y)), q0
end
backward(method::BFFG, k::Union{AffineGaussianKernel,LinearGaussianKernel}, q::Leaf; kargs...) = backward(method, k, q[]; kargs...)
backward(method::BFFG, k, q::Leaf; kargs...) = backward(method, k, q[]; kargs...)
function backward(::BFFG, k::Union{AffineGaussianKernel,LinearGaussianKernel}, q::WGaussian{(:F,:Γ,:c)}; unfused=false)
@unpack F, Γ, c = q
# Theorem 7.1 [Automatic BFFG]
B, β, Q = params(k)
Σ = inv(Γ) # requires invertibility of Γ
K = B'/(Σ + Q)
ν̃ = Σ*F - β
Fp = K*ν̃
Γp = K*B
# Corollary 7.2 [Automatic BFFG]
if !unfused
cp = c - logdet(B)
else
cp = c - logdensity0(Gaussian{(:F,:Γ)}(Fp, Γp)) + logpdf0(ν̃, Σ + Q)
end
q0 = WGaussian{(:F,:Γ,:c)}(Fp, Γp, cp)
message(q0, q), q0
end
function backward(::BFFG, k::Union{AffineGaussianKernel,LinearGaussianKernel}, y; unfused=false)
# Theorem 7.1 [Automatic BFFG]
B, β, Q = params(k)
K = B'/Q
Fp = K*(y - β)
Γp = K*B
# Corollary 7.2 [Automatic BFFG]
if !unfused
cp = -logdet(B)
else
cp = logpdf0(y - β, Q)
end
q0 = WGaussian{(:F,:Γ,:c)}(Fp, Γp, cp)
message(q0, Leaf(y)), Leaf(q0)
end
function forward(::BF, k::Union{AffineGaussianKernel,LinearGaussianKernel}, m::Message{<:Gaussian{(:F,:Γ)}})
@unpack F, Γ = m.q
B, β, Q = params(k)
Q⁻ = inv(Q)
Qᵒ = inv(Q⁻ + Γ)
Bᵒ = Qᵒ*Q⁻*B
βᵒ = Qᵒ*(Q⁻*β + F)
kernel(Gaussian; μ=AffineMap(Bᵒ, βᵒ), Σ=ConstantMap(Qᵒ))
end
function forward(::BF, k::ConstantGaussianKernel, m::Message{<:Gaussian{(:F,:Γ)}})
@unpack F, Γ = m.q
β, Q = params(k)
Q⁻ = inv(Q)
Qᵒ = inv(Q⁻ + Γ)
βᵒ = Qᵒ*(Q⁻*β + F)
kernel(Gaussian; μ=ConstantMap(βᵒ), Σ=ConstantMap(Qᵒ))
end
function forward(::BFFG, k::Union{AffineGaussianKernel,LinearGaussianKernel}, m::Message{<:WGaussian{(:F,:Γ,:c)}})
@unpack F, Γ, c = m.q
B, β, Q = params(k)
Q⁻ = inv(Q)
Qᵒ = inv(Q⁻ + Γ)
#μᵒ = Qᵒ*(Q⁻*(B*x + β) + F )
Bᵒ = Qᵒ*Q⁻*B
βᵒ = Qᵒ*(Q⁻*β + F)
kernel(WGaussian; μ=AffineMap(Bᵒ, βᵒ), Σ=ConstantMap(Qᵒ), c=ConstantMap(0.0))
end
function forward(bffg::BFFG, k::Kernel, m::Message, x::Weighted)
p = forward_(bffg, k, m, x[])
weighted(p, x.ll)
end
forward(bffg::BFFG, k::Kernel, m::Message, x) = forward_(bffg, k, m, x)
function forward_(::BFFG, k::GaussKernel, m::Message{<:WGaussian{(:F,:Γ,:c)}}, x)
@unpack F, Γ, c = m.q
c1 = c
μ, Q = k.ops
# Proposition 7.3.
Q⁻ = inv(Q(x))
Qᵒ = inv(Q⁻ + Γ)
μᵒ = Qᵒ*(Q⁻*(μ(x)) + F)
# Q̃⁻ = inv(Q̃(x))
# Q̃ᵒ = inv(Q̃⁻ + Γ)
# μ̃ᵒ = Q̃ᵒ*(Q̃⁻*(μ̃(x)) + F)
# c = logpdf0(μ(x), Q(x)) - logpdf0(μ̃(x), Q̃(x))
# c += logpdf0(μ̃ᵒ, Q̃ᵒ) - logpdf0(μᵒ, Qᵒ)
# == logpdf0(μ(x) - Γ\F, Q(x) + inv(Γ)) - logpdf0(μ̃(x) - Γ\F, Q̃(x) + inv(Γ))
# logdensity(m.q0, x) - c1 == logpdf0(μ̃(x) - Γ\F, Q̃(x) + inv(Γ))
c = logpdf0(μ(x) - Γ\F, Q(x) + inv(Γ)) - logdensity(m.q0, x) + c1
WGaussian{(:μ,:Σ,:c)}(μᵒ, Qᵒ, c)
end
function backward(::BFFG, ::Copy, args::Union{Leaf{<:WGaussian{(:μ,:Σ,:c)}},WGaussian{(:μ,:Σ,:c)}}...; unfused=true)
unfused = false
F, H, c = params(convert(WGaussian{(:F,:Γ,:c)}, args[1]))
args[1] isa Leaf || (c += logdensity0(Gaussian{(:F,:Γ)}(F, H)))
for b in args[2:end]
F2, H2, c2 = params(convert(WGaussian{(:F,:Γ,:c)}, b))
F += F2
H += H2
c += c2
b isa Leaf|| (c += logdensity0(Gaussian{(:F,:Γ)}(F2, H2)))
end
Δ = -logdensity(Gaussian{(:F,:Γ)}(F, H), 0F)
message(), convert(WGaussian{(:μ,:Σ,:c)}, WGaussian{(:F,:Γ,:c)}(F, H, Δ + c))
end
function backward(::Union{BFFG,BF}, ::Copy, a::Gaussian{(:F,:Γ)}, args...)
F, H = params(a)
for b in args
F2, H2 = params(b::Gaussian{(:F,:Γ)})
F += F2
H += H2
end
message(), Gaussian{(:F,:Γ)}(F, H)
end
function backward(::BFFG, ::Copy, a::Union{Leaf{<:WGaussian{(:F,:Γ,:c)}}, WGaussian{(:F,:Γ,:c)}}, args...; unfused=true)
unfused = false
F, H, c = params(convert(WGaussian{(:F,:Γ,:c)}, a))
a isa Leaf || (c += logdensity(Gaussian{(:F,:Γ)}(F, H), 0F))
for b in args
F2, H2, c2 = params(convert(WGaussian{(:F,:Γ,:c)}, b))
F += F2
H += H2
c += c2
b isa Leaf || (c += logdensity(Gaussian{(:F,:Γ)}(F2, H2), 0F2))
end
Δ = -logdensity(Gaussian{(:F,:Γ)}(F, H), 0F)
message(), WGaussian{(:F,:Γ,:c)}(F, H, Δ + c)
end
function forward(::BFFG, k::Union{AffineGaussianKernel,LinearGaussianKernel}, m::Message{<:Leaf}, x::Weighted)
y = m.q
Dirac(weighted(y[], x.ll))
end
function forward(::BFFG, ::Copy{2}, _, x::Weighted)
MeasureTheory.Dirac((x, weighted(x[])))
end
| [
6404,
12315,
15,
7,
87,
11,
350,
8,
796,
2604,
43337,
7,
35389,
31562,
90,
7,
25,
138,
96,
35751,
92,
7,
47,
828,
2124,
8,
198,
198,
7249,
16000,
90,
51,
11,
50,
92,
198,
220,
220,
220,
10662,
15,
3712,
50,
198,
220,
220,
220,
10662,
3712,
51,
198,
437,
198,
20500,
7,
80,
15,
11,
10662,
8,
796,
16000,
7,
80,
15,
11,
10662,
8,
198,
20500,
3419,
796,
2147,
198,
198,
8818,
19528,
7,
3712,
29499,
11,
479,
3712,
38176,
90,
35191,
500,
35389,
31562,
42,
7948,
11,
14993,
451,
35389,
31562,
42,
7948,
5512,
10662,
3712,
35389,
31562,
90,
7,
25,
34703,
11,
25,
138,
96,
8,
30072,
198,
220,
220,
220,
7377,
121,
11,
7377,
96,
796,
10662,
13,
34703,
11,
10662,
13,
138,
96,
198,
220,
220,
220,
347,
11,
27169,
11,
1195,
796,
42287,
7,
74,
8,
198,
220,
220,
220,
347,
46256,
119,
126,
117,
796,
800,
7,
33,
8,
198,
220,
220,
220,
7377,
121,
79,
796,
347,
46256,
119,
126,
117,
9,
7,
26180,
532,
27169,
8,
198,
220,
220,
220,
7377,
96,
79,
796,
347,
46256,
119,
126,
117,
9,
7,
138,
96,
1343,
1195,
27493,
33,
46256,
119,
126,
117,
6,
198,
220,
220,
220,
10662,
15,
796,
12822,
31562,
90,
7,
25,
34703,
11,
25,
138,
96,
38165,
7,
26180,
79,
11,
7377,
96,
79,
8,
198,
220,
220,
220,
3275,
7,
80,
15,
11,
10662,
828,
10662,
15,
198,
437,
198,
198,
8818,
19528,
7,
3712,
29499,
11,
479,
3712,
3103,
18797,
35389,
31562,
42,
7948,
11,
10662,
3712,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
8,
30072,
198,
220,
220,
220,
3275,
7,
22366,
11,
10662,
828,
2147,
198,
437,
628,
198,
8818,
19528,
7,
3712,
29499,
11,
479,
3712,
38176,
90,
35191,
500,
35389,
31562,
42,
7948,
11,
14993,
451,
35389,
31562,
42,
7948,
5512,
10662,
3712,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
8,
30072,
198,
220,
220,
220,
2488,
403,
8002,
376,
11,
7377,
241,
796,
10662,
198,
220,
220,
220,
1303,
383,
29625,
767,
13,
16,
685,
16541,
13730,
347,
5777,
38,
60,
198,
220,
220,
220,
347,
11,
27169,
11,
1195,
796,
42287,
7,
74,
8,
198,
220,
220,
220,
7377,
96,
796,
800,
7,
138,
241,
8,
1303,
4433,
287,
1851,
2247,
286,
7377,
241,
198,
220,
220,
220,
509,
796,
347,
6,
9,
16340,
7,
138,
96,
1343,
1195,
8,
198,
220,
220,
220,
7377,
121,
136,
225,
796,
7377,
96,
9,
37,
532,
27169,
198,
220,
220,
220,
376,
79,
796,
509,
9,
26180,
136,
225,
198,
220,
220,
220,
7377,
241,
79,
796,
509,
9,
33,
198,
220,
220,
220,
10662,
15,
796,
12822,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
38165,
7,
37,
79,
11,
7377,
241,
79,
8,
198,
220,
220,
220,
3275,
7,
80,
15,
11,
10662,
828,
10662,
15,
198,
437,
628,
198,
8818,
19528,
7,
3712,
29499,
11,
479,
3712,
38176,
90,
35191,
500,
35389,
31562,
42,
7948,
11,
14993,
451,
35389,
31562,
42,
7948,
5512,
331,
8,
198,
220,
220,
220,
1303,
383,
29625,
767,
13,
16,
685,
16541,
13730,
347,
5777,
38,
60,
198,
220,
220,
220,
347,
11,
27169,
11,
1195,
796,
42287,
7,
74,
8,
198,
220,
220,
220,
509,
796,
347,
26488,
48,
198,
220,
220,
220,
376,
79,
796,
509,
9,
7,
88,
532,
27169,
8,
198,
220,
220,
220,
7377,
241,
79,
796,
509,
9,
33,
198,
220,
220,
220,
10662,
15,
796,
12822,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
38165,
7,
37,
79,
11,
7377,
241,
79,
8,
198,
220,
220,
220,
3275,
7,
80,
15,
11,
14697,
7,
88,
36911,
10662,
15,
198,
437,
198,
198,
1891,
904,
7,
24396,
3712,
33,
5777,
38,
11,
479,
3712,
38176,
90,
35191,
500,
35389,
31562,
42,
7948,
11,
14993,
451,
35389,
31562,
42,
7948,
5512,
10662,
3712,
3123,
1878,
26,
479,
22046,
23029,
796,
19528,
7,
24396,
11,
479,
11,
10662,
58,
11208,
479,
22046,
23029,
198,
1891,
904,
7,
24396,
3712,
33,
5777,
38,
11,
479,
11,
10662,
3712,
3123,
1878,
26,
479,
22046,
23029,
796,
19528,
7,
24396,
11,
479,
11,
10662,
58,
11208,
479,
22046,
23029,
628,
198,
8818,
19528,
7,
3712,
33,
5777,
38,
11,
479,
3712,
38176,
90,
35191,
500,
35389,
31562,
42,
7948,
11,
14993,
451,
35389,
31562,
42,
7948,
5512,
10662,
3712,
54,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
11,
25,
66,
8,
19629,
3684,
1484,
28,
9562,
8,
198,
220,
220,
220,
2488,
403,
8002,
376,
11,
7377,
241,
11,
269,
796,
10662,
198,
220,
220,
220,
1303,
383,
29625,
767,
13,
16,
685,
16541,
13730,
347,
5777,
38,
60,
198,
220,
220,
220,
347,
11,
27169,
11,
1195,
796,
42287,
7,
74,
8,
198,
220,
220,
220,
7377,
96,
796,
800,
7,
138,
241,
8,
1303,
4433,
287,
1851,
2247,
286,
7377,
241,
198,
220,
220,
220,
509,
796,
347,
26488,
7,
138,
96,
1343,
1195,
8,
198,
220,
220,
220,
7377,
121,
136,
225,
796,
7377,
96,
9,
37,
532,
27169,
198,
220,
220,
220,
376,
79,
796,
509,
9,
26180,
136,
225,
198,
220,
220,
220,
7377,
241,
79,
796,
509,
9,
33,
198,
220,
220,
220,
1303,
2744,
692,
560,
767,
13,
17,
685,
16541,
13730,
347,
5777,
38,
60,
198,
220,
220,
220,
611,
5145,
403,
69,
1484,
198,
220,
220,
220,
220,
220,
220,
220,
31396,
796,
269,
532,
2604,
15255,
7,
33,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
31396,
796,
269,
532,
2604,
43337,
15,
7,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
38165,
7,
37,
79,
11,
7377,
241,
79,
4008,
1343,
2604,
12315,
15,
7,
26180,
136,
225,
11,
7377,
96,
1343,
1195,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
10662,
15,
796,
370,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
11,
25,
66,
38165,
7,
37,
79,
11,
7377,
241,
79,
11,
31396,
8,
198,
220,
220,
220,
3275,
7,
80,
15,
11,
10662,
828,
10662,
15,
198,
437,
198,
198,
8818,
19528,
7,
3712,
33,
5777,
38,
11,
479,
3712,
38176,
90,
35191,
500,
35389,
31562,
42,
7948,
11,
14993,
451,
35389,
31562,
42,
7948,
5512,
331,
26,
3684,
1484,
28,
9562,
8,
198,
220,
220,
220,
1303,
383,
29625,
767,
13,
16,
685,
16541,
13730,
347,
5777,
38,
60,
198,
220,
220,
220,
347,
11,
27169,
11,
1195,
796,
42287,
7,
74,
8,
198,
220,
220,
220,
509,
796,
347,
26488,
48,
198,
220,
220,
220,
376,
79,
796,
509,
9,
7,
88,
532,
27169,
8,
198,
220,
220,
220,
7377,
241,
79,
796,
509,
9,
33,
198,
220,
220,
220,
1303,
2744,
692,
560,
767,
13,
17,
685,
16541,
13730,
347,
5777,
38,
60,
198,
220,
220,
220,
611,
5145,
403,
69,
1484,
198,
220,
220,
220,
220,
220,
220,
220,
31396,
796,
532,
6404,
15255,
7,
33,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
31396,
796,
2604,
12315,
15,
7,
88,
532,
27169,
11,
1195,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
10662,
15,
796,
370,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
11,
25,
66,
38165,
7,
37,
79,
11,
7377,
241,
79,
11,
31396,
8,
198,
220,
220,
220,
3275,
7,
80,
15,
11,
14697,
7,
88,
36911,
14697,
7,
80,
15,
8,
198,
437,
628,
198,
8818,
2651,
7,
3712,
29499,
11,
479,
3712,
38176,
90,
35191,
500,
35389,
31562,
42,
7948,
11,
14993,
451,
35389,
31562,
42,
7948,
5512,
285,
3712,
12837,
90,
27,
25,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
8,
11709,
8,
198,
220,
220,
220,
2488,
403,
8002,
376,
11,
7377,
241,
796,
285,
13,
80,
198,
220,
220,
220,
347,
11,
27169,
11,
1195,
796,
42287,
7,
74,
8,
628,
220,
220,
220,
1195,
46256,
119,
796,
800,
7,
48,
8,
198,
220,
220,
220,
1195,
39611,
240,
796,
800,
7,
48,
46256,
119,
1343,
7377,
241,
8,
198,
220,
220,
220,
347,
39611,
240,
796,
1195,
39611,
240,
9,
48,
46256,
119,
9,
33,
198,
220,
220,
220,
27169,
39611,
240,
796,
1195,
39611,
240,
9,
7,
48,
46256,
119,
9,
26638,
1343,
376,
8,
628,
220,
220,
220,
9720,
7,
35389,
31562,
26,
18919,
28,
35191,
500,
13912,
7,
33,
39611,
240,
11,
27169,
39611,
240,
828,
7377,
96,
28,
3103,
18797,
13912,
7,
48,
39611,
240,
4008,
198,
437,
198,
8818,
2651,
7,
3712,
29499,
11,
479,
3712,
3103,
18797,
35389,
31562,
42,
7948,
11,
285,
3712,
12837,
90,
27,
25,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
8,
11709,
8,
198,
220,
220,
220,
2488,
403,
8002,
376,
11,
7377,
241,
796,
285,
13,
80,
198,
220,
220,
220,
27169,
11,
1195,
796,
42287,
7,
74,
8,
628,
220,
220,
220,
1195,
46256,
119,
796,
800,
7,
48,
8,
198,
220,
220,
220,
1195,
39611,
240,
796,
800,
7,
48,
46256,
119,
1343,
7377,
241,
8,
198,
220,
220,
220,
27169,
39611,
240,
796,
1195,
39611,
240,
9,
7,
48,
46256,
119,
9,
26638,
1343,
376,
8,
628,
220,
220,
220,
9720,
7,
35389,
31562,
26,
18919,
28,
3103,
18797,
13912,
7,
26638,
39611,
240,
828,
7377,
96,
28,
3103,
18797,
13912,
7,
48,
39611,
240,
4008,
198,
437,
628,
198,
198,
8818,
2651,
7,
3712,
33,
5777,
38,
11,
479,
3712,
38176,
90,
35191,
500,
35389,
31562,
42,
7948,
11,
14993,
451,
35389,
31562,
42,
7948,
5512,
285,
3712,
12837,
90,
27,
25,
54,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
11,
25,
66,
8,
11709,
8,
198,
220,
220,
220,
2488,
403,
8002,
376,
11,
7377,
241,
11,
269,
796,
285,
13,
80,
198,
220,
220,
220,
347,
11,
27169,
11,
1195,
796,
42287,
7,
74,
8,
628,
220,
220,
220,
1195,
46256,
119,
796,
800,
7,
48,
8,
198,
220,
220,
220,
1195,
39611,
240,
796,
800,
7,
48,
46256,
119,
1343,
7377,
241,
8,
198,
220,
220,
220,
1303,
34703,
39611,
240,
796,
1195,
39611,
240,
9,
7,
48,
46256,
119,
9,
7,
33,
9,
87,
1343,
27169,
8,
1343,
376,
1267,
198,
220,
220,
220,
347,
39611,
240,
796,
1195,
39611,
240,
9,
48,
46256,
119,
9,
33,
198,
220,
220,
220,
27169,
39611,
240,
796,
1195,
39611,
240,
9,
7,
48,
46256,
119,
9,
26638,
1343,
376,
8,
628,
220,
220,
220,
9720,
7,
54,
35389,
31562,
26,
18919,
28,
35191,
500,
13912,
7,
33,
39611,
240,
11,
27169,
39611,
240,
828,
7377,
96,
28,
3103,
18797,
13912,
7,
48,
39611,
240,
828,
269,
28,
3103,
18797,
13912,
7,
15,
13,
15,
4008,
198,
437,
198,
198,
8818,
2651,
7,
65,
487,
70,
3712,
33,
5777,
38,
11,
479,
3712,
42,
7948,
11,
285,
3712,
12837,
11,
2124,
3712,
25844,
276,
8,
198,
220,
220,
220,
279,
796,
2651,
41052,
65,
487,
70,
11,
479,
11,
285,
11,
2124,
58,
12962,
198,
220,
220,
220,
26356,
7,
79,
11,
2124,
13,
297,
8,
198,
437,
198,
11813,
7,
65,
487,
70,
3712,
33,
5777,
38,
11,
479,
3712,
42,
7948,
11,
285,
3712,
12837,
11,
2124,
8,
796,
2651,
41052,
65,
487,
70,
11,
479,
11,
285,
11,
2124,
8,
198,
8818,
2651,
41052,
3712,
33,
5777,
38,
11,
479,
3712,
35389,
1046,
42,
7948,
11,
285,
3712,
12837,
90,
27,
25,
54,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
11,
25,
66,
38165,
5512,
2124,
8,
198,
220,
220,
220,
2488,
403,
8002,
376,
11,
7377,
241,
11,
269,
796,
285,
13,
80,
198,
220,
220,
220,
269,
16,
796,
269,
198,
220,
220,
220,
18919,
11,
1195,
796,
479,
13,
2840,
628,
198,
220,
220,
220,
1303,
44056,
767,
13,
18,
13,
198,
220,
220,
220,
1195,
46256,
119,
796,
800,
7,
48,
7,
87,
4008,
198,
220,
220,
220,
1195,
39611,
240,
796,
800,
7,
48,
46256,
119,
1343,
7377,
241,
8,
198,
220,
220,
220,
18919,
39611,
240,
796,
1195,
39611,
240,
9,
7,
48,
46256,
119,
9,
7,
34703,
7,
87,
4008,
1343,
376,
8,
628,
1303,
220,
220,
1195,
136,
225,
46256,
119,
796,
800,
7,
48,
136,
225,
7,
87,
4008,
198,
1303,
220,
220,
1195,
136,
225,
39611,
240,
796,
800,
7,
48,
136,
225,
46256,
119,
1343,
7377,
241,
8,
198,
1303,
220,
220,
18919,
136,
225,
39611,
240,
796,
1195,
136,
225,
39611,
240,
9,
7,
48,
136,
225,
46256,
119,
9,
7,
34703,
136,
225,
7,
87,
4008,
1343,
376,
8,
628,
1303,
220,
220,
269,
796,
2604,
12315,
15,
7,
34703,
7,
87,
828,
1195,
7,
87,
4008,
532,
2604,
12315,
15,
7,
34703,
136,
225,
7,
87,
828,
1195,
136,
225,
7,
87,
4008,
198,
1303,
220,
220,
269,
15853,
2604,
12315,
15,
7,
34703,
136,
225,
39611,
240,
11,
1195,
136,
225,
39611,
240,
8,
532,
2604,
12315,
15,
7,
34703,
39611,
240,
11,
1195,
39611,
240,
8,
198,
1303,
220,
220,
6624,
2604,
12315,
15,
7,
34703,
7,
87,
8,
532,
7377,
241,
59,
37,
11,
1195,
7,
87,
8,
1343,
800,
7,
138,
241,
4008,
532,
2604,
12315,
15,
7,
34703,
136,
225,
7,
87,
8,
220,
532,
7377,
241,
59,
37,
11,
1195,
136,
225,
7,
87,
8,
1343,
800,
7,
138,
241,
4008,
220,
198,
220,
220,
220,
220,
198,
1303,
220,
220,
2604,
43337,
7,
76,
13,
80,
15,
11,
2124,
8,
532,
269,
16,
6624,
2604,
12315,
15,
7,
34703,
136,
225,
7,
87,
8,
220,
532,
7377,
241,
59,
37,
11,
1195,
136,
225,
7,
87,
8,
1343,
800,
7,
138,
241,
4008,
220,
628,
220,
220,
220,
269,
796,
2604,
12315,
15,
7,
34703,
7,
87,
8,
532,
7377,
241,
59,
37,
11,
1195,
7,
87,
8,
1343,
800,
7,
138,
241,
4008,
532,
2604,
43337,
7,
76,
13,
80,
15,
11,
2124,
8,
1343,
269,
16,
198,
220,
220,
220,
370,
35389,
31562,
90,
7,
25,
34703,
11,
25,
138,
96,
11,
25,
66,
38165,
7,
34703,
39611,
240,
11,
1195,
39611,
240,
11,
269,
8,
198,
437,
628,
198,
8818,
19528,
7,
3712,
33,
5777,
38,
11,
7904,
29881,
11,
26498,
3712,
38176,
90,
3123,
1878,
90,
27,
25,
54,
35389,
31562,
90,
7,
25,
34703,
11,
25,
138,
96,
11,
25,
66,
38165,
5512,
54,
35389,
31562,
90,
7,
25,
34703,
11,
25,
138,
96,
11,
25,
66,
8,
11709,
986,
26,
3684,
1484,
28,
7942,
8,
198,
220,
220,
220,
3684,
1484,
796,
3991,
198,
220,
220,
220,
376,
11,
367,
11,
269,
796,
42287,
7,
1102,
1851,
7,
54,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
11,
25,
66,
8,
5512,
26498,
58,
16,
60,
4008,
198,
220,
220,
220,
26498,
58,
16,
60,
318,
64,
14697,
8614,
357,
66,
15853,
2604,
43337,
15,
7,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
38165,
7,
37,
11,
367,
22305,
198,
220,
220,
220,
329,
275,
287,
26498,
58,
17,
25,
437,
60,
198,
220,
220,
220,
220,
220,
220,
220,
376,
17,
11,
367,
17,
11,
269,
17,
796,
42287,
7,
1102,
1851,
7,
54,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
11,
25,
66,
8,
5512,
275,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
376,
15853,
376,
17,
198,
220,
220,
220,
220,
220,
220,
220,
367,
15853,
367,
17,
198,
220,
220,
220,
220,
220,
220,
220,
269,
15853,
269,
17,
198,
220,
220,
220,
220,
220,
220,
220,
275,
318,
64,
14697,
15886,
357,
66,
15853,
2604,
43337,
15,
7,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
38165,
7,
37,
17,
11,
367,
17,
22305,
198,
220,
220,
220,
886,
198,
220,
220,
220,
37455,
796,
532,
6404,
43337,
7,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
38165,
7,
37,
11,
367,
828,
657,
37,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
3275,
22784,
10385,
7,
54,
35389,
31562,
90,
7,
25,
34703,
11,
25,
138,
96,
11,
25,
66,
8,
5512,
370,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
11,
25,
66,
38165,
7,
37,
11,
367,
11,
37455,
1343,
269,
4008,
198,
437,
628,
198,
8818,
19528,
7,
3712,
38176,
90,
33,
5777,
38,
11,
29499,
5512,
7904,
29881,
11,
257,
3712,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
8,
5512,
26498,
23029,
198,
220,
220,
220,
376,
11,
367,
796,
42287,
7,
64,
8,
198,
220,
220,
220,
329,
275,
287,
26498,
198,
220,
220,
220,
220,
220,
220,
220,
376,
17,
11,
367,
17,
796,
42287,
7,
65,
3712,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
8,
30072,
198,
220,
220,
220,
220,
220,
220,
220,
376,
15853,
376,
17,
198,
220,
220,
220,
220,
220,
220,
220,
367,
15853,
367,
17,
198,
220,
220,
220,
886,
198,
220,
220,
220,
3275,
22784,
12822,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
38165,
7,
37,
11,
367,
8,
198,
437,
198,
198,
8818,
19528,
7,
3712,
33,
5777,
38,
11,
7904,
29881,
11,
257,
3712,
38176,
90,
3123,
1878,
90,
27,
25,
54,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
11,
25,
66,
38165,
5512,
370,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
11,
25,
66,
38165,
5512,
26498,
986,
26,
3684,
1484,
28,
7942,
8,
198,
220,
220,
220,
3684,
1484,
796,
3991,
198,
220,
220,
220,
376,
11,
367,
11,
269,
796,
42287,
7,
1102,
1851,
7,
54,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
11,
25,
66,
8,
5512,
257,
4008,
198,
220,
220,
220,
257,
318,
64,
14697,
8614,
357,
66,
15853,
2604,
43337,
7,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
38165,
7,
37,
11,
367,
828,
657,
37,
4008,
198,
220,
220,
220,
329,
275,
287,
26498,
198,
220,
220,
220,
220,
220,
220,
220,
376,
17,
11,
367,
17,
11,
269,
17,
796,
42287,
7,
1102,
1851,
7,
54,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
11,
25,
66,
8,
5512,
275,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
376,
15853,
376,
17,
198,
220,
220,
220,
220,
220,
220,
220,
367,
15853,
367,
17,
198,
220,
220,
220,
220,
220,
220,
220,
269,
15853,
269,
17,
198,
220,
220,
220,
220,
220,
220,
220,
275,
318,
64,
14697,
8614,
357,
66,
15853,
2604,
43337,
7,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
38165,
7,
37,
17,
11,
367,
17,
828,
657,
37,
17,
4008,
198,
220,
220,
220,
886,
198,
220,
220,
220,
37455,
796,
532,
6404,
43337,
7,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
38165,
7,
37,
11,
367,
828,
657,
37,
8,
198,
220,
220,
220,
3275,
22784,
370,
35389,
31562,
90,
7,
25,
37,
11,
25,
138,
241,
11,
25,
66,
38165,
7,
37,
11,
367,
11,
37455,
1343,
269,
8,
198,
437,
198,
198,
8818,
2651,
7,
3712,
33,
5777,
38,
11,
479,
3712,
38176,
90,
35191,
500,
35389,
31562,
42,
7948,
11,
14993,
451,
35389,
31562,
42,
7948,
5512,
285,
3712,
12837,
90,
27,
25,
3123,
1878,
5512,
2124,
3712,
25844,
276,
8,
198,
220,
220,
220,
331,
796,
285,
13,
80,
198,
220,
220,
220,
36202,
330,
7,
6551,
276,
7,
88,
58,
4357,
2124,
13,
297,
4008,
198,
437,
198,
8818,
2651,
7,
3712,
33,
5777,
38,
11,
7904,
29881,
90,
17,
5512,
4808,
11,
2124,
3712,
25844,
276,
8,
198,
220,
220,
220,
24291,
464,
652,
13,
35277,
330,
19510,
87,
11,
26356,
7,
87,
21737,
22305,
198,
437,
198
] | 1.76319 | 3,298 |
using NumericalMethodsforEngineers, DataFrames, Plots
pyplot(size=(700,700))
ProjDir = dirname(@__FILE__)
cd(ProjDir) #do
x = [1.0, 3.0, 6.0, 5.0]
y = [1.0, 5.0, 10.0, 9.0]
xi = [2.0, 4.5]
(dfin, dfxi) = lagrangianpolynomial(length(x), x, y, xi)
xint = 1:0.1:5
(dfin, dfxint) = lagrangianpolynomial(length(x), x, y, collect(xint))
dfin |> display
println()
dfxi |> display
println()
dfxint |> display
println()
p = plot(dfxint[:xi], dfxint[:yi], line=(:path, 1), label="interpolated curve")
scatter!(p, dfin[:x], dfin[:y], marker=(:circle, 4), label="input points", color=:blue)
scatter!(p, dfxi[:xi], dfxi[:yi], marker=(:star, 8), color=:red, label="interpolated points")
plot(p)
savefig("ex.5.1.png")
gui()
#end | [
3500,
399,
6975,
605,
46202,
1640,
28620,
11,
6060,
35439,
11,
1345,
1747,
198,
9078,
29487,
7,
7857,
16193,
9879,
11,
9879,
4008,
198,
198,
2964,
73,
35277,
796,
26672,
3672,
7,
31,
834,
25664,
834,
8,
198,
10210,
7,
2964,
73,
35277,
8,
1303,
4598,
198,
220,
220,
198,
220,
2124,
796,
685,
16,
13,
15,
11,
513,
13,
15,
11,
718,
13,
15,
11,
642,
13,
15,
60,
198,
220,
331,
796,
685,
16,
13,
15,
11,
642,
13,
15,
11,
838,
13,
15,
11,
860,
13,
15,
60,
198,
220,
2124,
72,
796,
685,
17,
13,
15,
11,
604,
13,
20,
60,
198,
220,
357,
7568,
259,
11,
288,
21373,
72,
8,
796,
19470,
36985,
666,
35428,
26601,
498,
7,
13664,
7,
87,
828,
2124,
11,
331,
11,
2124,
72,
8,
198,
220,
220,
198,
220,
2124,
600,
796,
352,
25,
15,
13,
16,
25,
20,
198,
220,
357,
7568,
259,
11,
288,
21373,
600,
8,
796,
19470,
36985,
666,
35428,
26601,
498,
7,
13664,
7,
87,
828,
2124,
11,
331,
11,
2824,
7,
87,
600,
4008,
198,
220,
220,
198,
220,
288,
15643,
930,
29,
3359,
198,
220,
44872,
3419,
198,
220,
220,
198,
220,
288,
21373,
72,
930,
29,
3359,
198,
220,
44872,
3419,
198,
220,
220,
198,
220,
288,
21373,
600,
930,
29,
3359,
198,
220,
44872,
3419,
198,
220,
220,
198,
220,
279,
796,
7110,
7,
48753,
600,
58,
25,
29992,
4357,
288,
21373,
600,
58,
25,
48111,
4357,
1627,
16193,
25,
6978,
11,
352,
828,
6167,
2625,
3849,
16104,
515,
12133,
4943,
198,
220,
41058,
0,
7,
79,
11,
288,
15643,
58,
25,
87,
4357,
288,
15643,
58,
25,
88,
4357,
18364,
16193,
25,
45597,
11,
604,
828,
6167,
2625,
15414,
2173,
1600,
3124,
28,
25,
17585,
8,
198,
220,
41058,
0,
7,
79,
11,
288,
21373,
72,
58,
25,
29992,
4357,
288,
21373,
72,
58,
25,
48111,
4357,
18364,
16193,
25,
7364,
11,
807,
828,
3124,
28,
25,
445,
11,
6167,
2625,
3849,
16104,
515,
2173,
4943,
198,
220,
220,
198,
220,
7110,
7,
79,
8,
198,
220,
3613,
5647,
7203,
1069,
13,
20,
13,
16,
13,
11134,
4943,
198,
220,
11774,
3419,
198,
220,
220,
198,
2,
437
] | 2.103261 | 368 |
function check(i, j)
id, im = div(i, 9), mod(i, 9)
jd, jm = div(j, 9), mod(j, 9)
jd == id && return true
jm == im && return true
div(id, 3) == div(jd, 3) &&
div(jm, 3) == div(im, 3)
end
const lookup = zeros(Bool, 81, 81)
for i in 1:81
for j in 1:81
lookup[i,j] = check(i-1, j-1)
end
end
function solve_sudoku(callback::Function, grid::Array{Int64})
(function solve()
for i in 1:81
if grid[i] == 0
t = Dict{Int64, Void}()
for j in 1:81
if lookup[i,j]
t[grid[j]] = nothing
end
end
for k in 1:9
if !haskey(t, k)
grid[i] = k
solve()
end
end
grid[i] = 0
return
end
end
callback(grid)
end)()
end
function display(grid)
for i in 1:length(grid)
print(grid[i], " ")
i % 3 == 0 && print(" ")
i % 9 == 0 && print("\n")
i % 27 == 0 && print("\n")
end
end
grid = Int64[5, 3, 0, 0, 2, 4, 7, 0, 0,
0, 0, 2, 0, 0, 0, 8, 0, 0,
1, 0, 0, 7, 0, 3, 9, 0, 2,
0, 0, 8, 0, 7, 2, 0, 4, 9,
0, 2, 0, 9, 8, 0, 0, 7, 0,
7, 9, 0, 0, 0, 0, 0, 8, 0,
0, 0, 0, 0, 3, 0, 5, 0, 6,
9, 6, 0, 0, 1, 0, 3, 0, 0,
0, 5, 0, 6, 9, 0, 0, 1, 0]
solve_sudoku(display, grid)
| [
8818,
2198,
7,
72,
11,
474,
8,
198,
220,
220,
220,
4686,
11,
545,
796,
2659,
7,
72,
11,
860,
828,
953,
7,
72,
11,
860,
8,
198,
220,
220,
220,
474,
67,
11,
474,
76,
796,
2659,
7,
73,
11,
860,
828,
953,
7,
73,
11,
860,
8,
628,
220,
220,
220,
474,
67,
6624,
4686,
11405,
1441,
2081,
198,
220,
220,
220,
474,
76,
6624,
545,
11405,
1441,
2081,
628,
220,
220,
220,
2659,
7,
312,
11,
513,
8,
6624,
2659,
7,
73,
67,
11,
513,
8,
11405,
198,
220,
220,
220,
2659,
7,
73,
76,
11,
513,
8,
6624,
2659,
7,
320,
11,
513,
8,
198,
437,
198,
198,
9979,
35847,
796,
1976,
27498,
7,
33,
970,
11,
9773,
11,
9773,
8,
198,
198,
1640,
1312,
287,
352,
25,
6659,
198,
220,
220,
220,
329,
474,
287,
352,
25,
6659,
198,
220,
220,
220,
220,
220,
220,
220,
35847,
58,
72,
11,
73,
60,
796,
2198,
7,
72,
12,
16,
11,
474,
12,
16,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
8494,
62,
82,
463,
11601,
7,
47423,
3712,
22203,
11,
10706,
3712,
19182,
90,
5317,
2414,
30072,
198,
220,
220,
220,
357,
8818,
8494,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
352,
25,
6659,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
10706,
58,
72,
60,
6624,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
796,
360,
713,
90,
5317,
2414,
11,
18331,
92,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
474,
287,
352,
25,
6659,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
35847,
58,
72,
11,
73,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
58,
25928,
58,
73,
11907,
796,
2147,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
479,
287,
352,
25,
24,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
5145,
10134,
2539,
7,
83,
11,
479,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10706,
58,
72,
60,
796,
479,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8494,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10706,
58,
72,
60,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
220,
220,
23838,
7,
25928,
8,
198,
220,
220,
220,
886,
8,
3419,
198,
437,
198,
198,
8818,
3359,
7,
25928,
8,
198,
220,
220,
220,
329,
1312,
287,
352,
25,
13664,
7,
25928,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
25928,
58,
72,
4357,
366,
366,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1312,
4064,
220,
513,
6624,
657,
11405,
3601,
7203,
366,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1312,
4064,
220,
860,
6624,
657,
11405,
3601,
7203,
59,
77,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
1312,
4064,
2681,
6624,
657,
11405,
3601,
7203,
59,
77,
4943,
198,
220,
220,
220,
886,
198,
437,
198,
198,
25928,
796,
2558,
2414,
58,
20,
11,
513,
11,
657,
11,
657,
11,
362,
11,
604,
11,
767,
11,
657,
11,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
11,
657,
11,
362,
11,
657,
11,
657,
11,
657,
11,
807,
11,
657,
11,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
352,
11,
657,
11,
657,
11,
767,
11,
657,
11,
513,
11,
860,
11,
657,
11,
362,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
11,
657,
11,
807,
11,
657,
11,
767,
11,
362,
11,
657,
11,
604,
11,
860,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
11,
362,
11,
657,
11,
860,
11,
807,
11,
657,
11,
657,
11,
767,
11,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
767,
11,
860,
11,
657,
11,
657,
11,
657,
11,
657,
11,
657,
11,
807,
11,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
11,
657,
11,
657,
11,
657,
11,
513,
11,
657,
11,
642,
11,
657,
11,
718,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
860,
11,
718,
11,
657,
11,
657,
11,
352,
11,
657,
11,
513,
11,
657,
11,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
11,
642,
11,
657,
11,
718,
11,
860,
11,
657,
11,
657,
11,
352,
11,
657,
60,
198,
198,
82,
6442,
62,
82,
463,
11601,
7,
13812,
11,
10706,
8,
198
] | 1.548096 | 998 |
using Distributions
using PyPlot
using LsqFit
using CSV, DataFrames, DataFramesMeta
using StatsBase
""" Functions for results of Fig. 2E """
# Run:
# mean_thrs_delay_1, mean_thrs_delay_3 = SinergiafMRI_datafit.get_state_visits_bootstrapped()
function get_state_visits_bootstrapped(;
# filestr = "_Sim_",
filestr = ""
)
# Real:
data_path = "./mcmc_rl_fit/projects/fmri/data/SARSPEICZVG_all_fMRI.csv"
# Simulated:
# data_path = "./mcmc_rl_fit/projects/fmri/data_sim/SARSPEICZVG_all_fMRI_Sim_exporder_SurpAC_run2.csv"
max_episodes_per_subj = 40
(all_data, all_stats) = RL_Fit.load_SARSPEI(data_path;max_episodes_per_subj=max_episodes_per_subj)
all_subject_ids = all_stats.all_subject_ids
println("all_subject_ids: $all_subject_ids")
nrOfBootstrapRounds = 200
threshold_delay_matrices_1 = Array{Array{Float64,1}, 1}(undef, nrOfBootstrapRounds)
[threshold_delay_matrices_1[i] = zeros(Float64, 7) for i in 1:nrOfBootstrapRounds]
threshold_delay_matrices_3 = Array{Array{Float64,1}, 1}(undef, nrOfBootstrapRounds)
[threshold_delay_matrices_3[i] = zeros(Float64, 7) for i in 1:nrOfBootstrapRounds]
#
# threshold_delay_matrices_nofitting_1 = Array{Array{Float64,1}, 1}(undef, nrOfBootstrapRounds)
# [threshold_delay_matrices_nofitting_1[i] = zeros(Float64, 7) for i in 1:nrOfBootstrapRounds]
# threshold_delay_matrices_nofitting_3 = Array{Array{Float64,1}, 1}(undef, nrOfBootstrapRounds)
# [threshold_delay_matrices_nofitting_3[i] = zeros(Float64, 7) for i in 1:nrOfBootstrapRounds]
graph_1_subjIDs = [4, 5, 6, 8, 10, 12, 15, 16, 19, 21]
graph_3_subjIDs = [1, 2, 3, 7, 9, 11, 13, 14, 17, 18, 20]
for i in 1:nrOfBootstrapRounds
# Sample with replacement
bootstrapped_subject_ids_graph_1 = sample(graph_1_subjIDs, length(graph_1_subjIDs), replace=true)
bootstrapped_subject_ids_graph_3 = sample(graph_3_subjIDs, length(graph_3_subjIDs), replace=true)
bootstrapped_subject_ids = vcat(bootstrapped_subject_ids_graph_1, bootstrapped_subject_ids_graph_3)
# Get graph_visits
graph_1_visits, graph_3_visits = get_state_visits_singleround(all_data,
bootstrapped_subject_ids, max_episodes_per_subj = max_episodes_per_subj)
threshold_delay_matrices_1[i] = get_state_fittedthreshold(1, graph_1_visits)
threshold_delay_matrices_3[i] = get_state_fittedthreshold(3, graph_3_visits)
# threshold_delay_matrices_nofitting_1[i] = get_state_threshold_nofitting(1, graph_1_visits)
# threshold_delay_matrices_nofitting_3[i] = get_state_threshold_nofitting(3, graph_3_visits)
end
mean_thrs_delay_1, std_thrs_delay_1, stderror_thrs_delay_1 = get_bootstrapped_stats(threshold_delay_matrices_1)
mean_thrs_delay_3, std_thrs_delay_3, stderror_thrs_delay_3 = get_bootstrapped_stats(threshold_delay_matrices_3)
write_bootstrapped_results_csv(1, mean_thrs_delay_1, std_thrs_delay_1, stderror_thrs_delay_1, filestr = filestr)
write_bootstrapped_results_csv(3, mean_thrs_delay_3, std_thrs_delay_3, stderror_thrs_delay_3, filestr = filestr)
# ------------------------------------------
# mean_thrs_delay_nofitting_1, std_thrs_delay_nofitting_1, stderror_thrs_delay_nofitting_1 = get_bootstrapped_stats(threshold_delay_matrices_nofitting_1)
# mean_thrs_delay_nofitting_3, std_thrs_delay_nofitting_3, stderror_thrs_delay_nofitting_3 = get_bootstrapped_stats(threshold_delay_matrices_nofitting_3)
#
# write_bootstrapped_results_csv(1, mean_thrs_delay_nofitting_1, std_thrs_delay_nofitting_1, stderror_thrs_delay_nofitting_1, filestr=filestr*"nofitting_")
# write_bootstrapped_results_csv(3, mean_thrs_delay_nofitting_3, std_thrs_delay_nofitting_3, stderror_thrs_delay_nofitting_3, filestr=filestr*"nofitting_")
mean_thrs_delay_1, mean_thrs_delay_3#, mean_thrs_delay_nofitting_1, mean_thrs_delay_nofitting_3
end
""" Similar to get_state_visits() """
function get_state_visits_singleround(all_data, subject_ids; max_episodes_per_subj = 40)
graph_1_visits = zeros(Int64, max_episodes_per_subj,7, 2)
graph_3_visits = zeros(Int64, max_episodes_per_subj,7, 2)
# @show subject_ids
for subj_id in subject_ids
# @show subj_id
subj_data = RL_Fit.filter_by_person(all_data, subj_id)
graph_id = subj_data[1,Int(RL_Fit.c_graph_version)]
all_episodes = unique(subj_data[:,Int(RL_Fit.c_episode)])
trajectory_count_per_state = zeros(Int64, 7) #count for each state individually how many times it participated in a rewarded episode
# per subject, do not count (sum), just set to 0 or 1.
state_action_indicator = zeros(Int64, max_episodes_per_subj, 7, 2)
for episode in all_episodes
for s in 2:7
# check if state s has "contributed" to the current episode. if yes, count this trajectory.
if any( (subj_data[:,Int(RL_Fit.c_episode)] .== episode) .& (subj_data[:,Int(RL_Fit.c_state)] .== s) )
trajectory_count_per_state[s] += 1
# now count the value of actions. distinguish two cases:
# for some states, the two actions are equally valid. In this case count the action
# for other states, there is a correct (1) and a wrong(-1) action
# action correct:
if any( (subj_data[:,Int(RL_Fit.c_episode)] .== episode) .& (subj_data[:,Int(RL_Fit.c_state)] .== s) .& (subj_data[:,Int(RL_Fit.c_action_value)] .== 0))
# action A or action B?
if any( (subj_data[:,Int(RL_Fit.c_episode)] .== episode) .& (subj_data[:,Int(RL_Fit.c_state)] .== s) .& (subj_data[:,Int(RL_Fit.c_action)] .== 1))
# A
state_action_indicator[trajectory_count_per_state[s], s, 1] = 1 # do not +=1
end
# note: it's not an ELSE here. we check for both and count both options at most once
if any( (subj_data[:,Int(RL_Fit.c_episode)] .== episode) .& (subj_data[:,Int(RL_Fit.c_state)] .== s) .& (subj_data[:,Int(RL_Fit.c_action)] .== 2))
# B
state_action_indicator[trajectory_count_per_state[s], s, 2] = 1 # do not +=1
end
else
# action correct or wrong?
if any( (subj_data[:,Int(RL_Fit.c_episode)] .== episode) .& (subj_data[:,Int(RL_Fit.c_state)] .== s) .& (subj_data[:,Int(RL_Fit.c_action_value)] .== +1))
# correct
state_action_indicator[trajectory_count_per_state[s], s, 2] = 1 # do not +=1
end
# note: it's not an ELSE here. we check for both and count both options at most once
if any( (subj_data[:,Int(RL_Fit.c_episode)] .== episode) .& (subj_data[:,Int(RL_Fit.c_state)] .== s) .& (subj_data[:,Int(RL_Fit.c_action_value)] .== -1))
# wrong
state_action_indicator[trajectory_count_per_state[s], s, 1] = 1 # do not +=1
end
end
end
end # end all states
end # end all episodes
# @show state_action_indicator
if graph_id == 1
graph_1_visits += state_action_indicator
elseif graph_id == 3
graph_3_visits += state_action_indicator
else
error("unknown graph id: $graph_id")
end
end # end all subject
graph_1_visits, graph_3_visits
end
function get_state_fittedthreshold(graph_id::Int,
graph_state_counts;
learning_threshold=0.8,
min_visits_requirement = 2,
savepath = "/Users/vasia/Desktop/")
dfresults = []
graph_info = get_graph_info()
states, minimal_dist, state_txt, graph = get_this_graph_info(graph_info, graph_id)
init_vals_exp = [0.5, 0.]
threshold_delay_matrix = zeros(length(states)+1)
for s = states
# println(s)
counts_per_episode_actionwrong = vec(graph_state_counts[:,s,1])
counts_per_episode_actioncorrect = vec(graph_state_counts[:,s,2])
summed_counts_per_episode = counts_per_episode_actionwrong.+counts_per_episode_actioncorrect
episodes_min_visits = findall(summed_counts_per_episode .>= min_visits_requirement)
# @show episodes_min_visits
ratio = counts_per_episode_actioncorrect[episodes_min_visits] ./ summed_counts_per_episode[episodes_min_visits]
weight = (summed_counts_per_episode[episodes_min_visits])
nr_x = length(ratio)
x_data = 1:nr_x
y_data = ratio
# markersize = 1+2*sqrt(weight[i]),
threshold_delay = 0.
weight = Float64.(weight)
if minimal_dist[1,s] != minimal_dist[2,s]
fit = curve_fit(model_exp, x_data, y_data, weight, init_vals_exp) # Weighted cost function
y_hat = model_exp(x_data, fit.param)
threshold_delay = inv_model_exp(learning_threshold, fit.param)
end
if threshold_delay < 0.
if fit.param[2] > 0.
threshold_delay = 0.
else
threshold_delay = Float64(episodes_min_visits[end])
end
# @show threshold_delay
# println("----------")
end
if threshold_delay > Float64(episodes_min_visits[end])
threshold_delay = Float64(episodes_min_visits[end])
end
threshold_delay_matrix[s] = threshold_delay
end
threshold_delay_matrix
end
# NOTE: NOT USED!!!
function get_state_threshold_nofitting(graph_id::Int,
graph_state_counts;
learning_threshold=0.8,
min_visits_requirement = 2,
savepath = "/Users/vasia/Desktop/")
dfresults = []
graph_info = get_graph_info()
states, minimal_dist, state_txt, graph = get_this_graph_info(graph_info, graph_id)
init_vals_exp = [0.5, 0.]
threshold_delay_matrix = zeros(length(states)+1)
for s = states
# println(s)
counts_per_episode_actionwrong = vec(graph_state_counts[:,s,1])
counts_per_episode_actioncorrect = vec(graph_state_counts[:,s,2])
summed_counts_per_episode = counts_per_episode_actionwrong.+counts_per_episode_actioncorrect
episodes_min_visits = findall(summed_counts_per_episode .>= min_visits_requirement)
# @show episodes_min_visits
ratio = counts_per_episode_actioncorrect[episodes_min_visits] ./ summed_counts_per_episode[episodes_min_visits]
weight = (summed_counts_per_episode[episodes_min_visits])
nr_x = length(ratio)
# markersize = 1+2*sqrt(weight[i]),
threshold_delay = 0.
weight = Float64.(weight)
if minimal_dist[1,s] != minimal_dist[2,s]
threshold_delay = findfirst(x-> x.>=0.8, ratio)
end
if isnothing(threshold_delay)
threshold_delay = Float64(episodes_min_visits[end])
end
threshold_delay_matrix[s] = threshold_delay
end
threshold_delay_matrix
end
function get_bootstrapped_stats(threshold_delay_matrices)
thrs_delay_cat = hcat(threshold_delay_matrices...)
mean_thrs_delay = mean(thrs_delay_cat, dims=2)
std_thrs_delay = std(thrs_delay_cat, dims=2)
@show size(threshold_delay_matrices,1)
stderror_thrs_delay = std(thrs_delay_cat, dims=2) ./ sqrt(size(threshold_delay_matrices,1))
mean_thrs_delay, std_thrs_delay, stderror_thrs_delay
end
function write_bootstrapped_results_csv(graph_id::Int64,
mean_thrs_delay,
std_thrs_delay,
stderror_thrs_delay;
filestr="",
# filestr = "_Sim_",
# savepath = "./"
)
savepath = makehomesavepath("learningcurvebars_bootstrap")
mkdir(savepath)
graph_info = get_graph_info()
states, minimal_dist, state_txt, graph = get_this_graph_info(graph_info, graph_id)
dfresults = DataFrame()
for s = states
min_dist = sort(minimal_dist[:,s] .- 1.)
dfresults[!, Symbol(string(s)*"_"*state_txt[s]*"_thresholddelay_mean")] = [mean_thrs_delay[s]]
dfresults[!, Symbol(string(s)*"_"*state_txt[s]*"_thresholddelay_std")] = [std_thrs_delay[s]]
dfresults[!, Symbol(string(s)*"_"*state_txt[s]*"_thresholddelay_stderror")] = [stderror_thrs_delay[s]]
dfresults[!, Symbol(string(s)*"_"*state_txt[s]*"_dist1vsdist2")] = [string(Int(min_dist[1]))*"-or-"*string(Int(min_dist[2]))]
dfresults[!, Symbol(string(s)*"_"*state_txt[s]*"_graphid")] = [graph_id]
end
CSV.write(joinpath(savepath, "learningcurvebar_bootstrap_"*filestr*"G" * string(graph_id) *".csv"), dfresults,
delim = " ");
# dfresults
end
| [
3500,
46567,
507,
198,
3500,
9485,
43328,
198,
3500,
406,
31166,
31805,
198,
3500,
44189,
11,
6060,
35439,
11,
6060,
35439,
48526,
198,
3500,
20595,
14881,
198,
198,
37811,
40480,
329,
2482,
286,
12138,
13,
362,
36,
37227,
198,
2,
5660,
25,
198,
2,
1612,
62,
400,
3808,
62,
40850,
62,
16,
11,
1612,
62,
400,
3808,
62,
40850,
62,
18,
796,
10884,
6422,
544,
69,
40952,
62,
7890,
11147,
13,
1136,
62,
5219,
62,
4703,
896,
62,
18769,
12044,
1496,
3419,
198,
8818,
651,
62,
5219,
62,
4703,
896,
62,
18769,
12044,
1496,
7,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1226,
395,
81,
796,
45434,
8890,
62,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1226,
395,
81,
796,
13538,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
1303,
6416,
25,
198,
220,
220,
220,
1366,
62,
6978,
796,
366,
19571,
76,
11215,
66,
62,
45895,
62,
11147,
14,
42068,
14,
38353,
380,
14,
7890,
14,
50,
1503,
4303,
36,
2149,
57,
43490,
62,
439,
62,
69,
40952,
13,
40664,
1,
198,
220,
220,
220,
1303,
3184,
4817,
25,
198,
220,
220,
220,
1303,
1366,
62,
6978,
796,
366,
19571,
76,
11215,
66,
62,
45895,
62,
11147,
14,
42068,
14,
38353,
380,
14,
7890,
62,
14323,
14,
50,
1503,
4303,
36,
2149,
57,
43490,
62,
439,
62,
69,
40952,
62,
8890,
62,
11201,
2875,
62,
14214,
79,
2246,
62,
5143,
17,
13,
40664,
1,
628,
220,
220,
220,
3509,
62,
538,
8052,
62,
525,
62,
7266,
73,
796,
2319,
198,
220,
220,
220,
357,
439,
62,
7890,
11,
477,
62,
34242,
8,
796,
45715,
62,
31805,
13,
2220,
62,
50,
1503,
4303,
36,
40,
7,
7890,
62,
6978,
26,
9806,
62,
538,
8052,
62,
525,
62,
7266,
73,
28,
9806,
62,
538,
8052,
62,
525,
62,
7266,
73,
8,
198,
220,
220,
220,
477,
62,
32796,
62,
2340,
796,
477,
62,
34242,
13,
439,
62,
32796,
62,
2340,
198,
220,
220,
220,
44872,
7203,
439,
62,
32796,
62,
2340,
25,
720,
439,
62,
32796,
62,
2340,
4943,
628,
220,
220,
220,
299,
81,
5189,
36476,
26418,
49,
3733,
796,
939,
628,
220,
220,
220,
11387,
62,
40850,
62,
6759,
45977,
62,
16,
796,
15690,
90,
19182,
90,
43879,
2414,
11,
16,
5512,
352,
92,
7,
917,
891,
11,
299,
81,
5189,
36476,
26418,
49,
3733,
8,
198,
220,
220,
220,
685,
400,
10126,
62,
40850,
62,
6759,
45977,
62,
16,
58,
72,
60,
796,
1976,
27498,
7,
43879,
2414,
11,
767,
8,
329,
1312,
287,
352,
25,
48624,
5189,
36476,
26418,
49,
3733,
60,
198,
220,
220,
220,
11387,
62,
40850,
62,
6759,
45977,
62,
18,
796,
15690,
90,
19182,
90,
43879,
2414,
11,
16,
5512,
352,
92,
7,
917,
891,
11,
299,
81,
5189,
36476,
26418,
49,
3733,
8,
198,
220,
220,
220,
685,
400,
10126,
62,
40850,
62,
6759,
45977,
62,
18,
58,
72,
60,
796,
1976,
27498,
7,
43879,
2414,
11,
767,
8,
329,
1312,
287,
352,
25,
48624,
5189,
36476,
26418,
49,
3733,
60,
198,
220,
220,
220,
1303,
198,
220,
220,
220,
1303,
11387,
62,
40850,
62,
6759,
45977,
62,
77,
1659,
2535,
62,
16,
796,
15690,
90,
19182,
90,
43879,
2414,
11,
16,
5512,
352,
92,
7,
917,
891,
11,
299,
81,
5189,
36476,
26418,
49,
3733,
8,
198,
220,
220,
220,
1303,
685,
400,
10126,
62,
40850,
62,
6759,
45977,
62,
77,
1659,
2535,
62,
16,
58,
72,
60,
796,
1976,
27498,
7,
43879,
2414,
11,
767,
8,
329,
1312,
287,
352,
25,
48624,
5189,
36476,
26418,
49,
3733,
60,
198,
220,
220,
220,
1303,
11387,
62,
40850,
62,
6759,
45977,
62,
77,
1659,
2535,
62,
18,
796,
15690,
90,
19182,
90,
43879,
2414,
11,
16,
5512,
352,
92,
7,
917,
891,
11,
299,
81,
5189,
36476,
26418,
49,
3733,
8,
198,
220,
220,
220,
1303,
685,
400,
10126,
62,
40850,
62,
6759,
45977,
62,
77,
1659,
2535,
62,
18,
58,
72,
60,
796,
1976,
27498,
7,
43879,
2414,
11,
767,
8,
329,
1312,
287,
352,
25,
48624,
5189,
36476,
26418,
49,
3733,
60,
628,
220,
220,
220,
4823,
62,
16,
62,
7266,
73,
47954,
796,
685,
19,
11,
642,
11,
718,
11,
807,
11,
838,
11,
1105,
11,
1315,
11,
1467,
11,
678,
11,
2310,
60,
198,
220,
220,
220,
4823,
62,
18,
62,
7266,
73,
47954,
796,
685,
16,
11,
362,
11,
513,
11,
767,
11,
860,
11,
1367,
11,
1511,
11,
1478,
11,
1596,
11,
1248,
11,
1160,
60,
198,
220,
220,
220,
329,
1312,
287,
352,
25,
48624,
5189,
36476,
26418,
49,
3733,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
27565,
351,
9014,
628,
220,
220,
220,
220,
220,
220,
220,
6297,
12044,
1496,
62,
32796,
62,
2340,
62,
34960,
62,
16,
796,
6291,
7,
34960,
62,
16,
62,
7266,
73,
47954,
11,
4129,
7,
34960,
62,
16,
62,
7266,
73,
47954,
828,
6330,
28,
7942,
8,
198,
220,
220,
220,
220,
220,
220,
220,
6297,
12044,
1496,
62,
32796,
62,
2340,
62,
34960,
62,
18,
796,
6291,
7,
34960,
62,
18,
62,
7266,
73,
47954,
11,
4129,
7,
34960,
62,
18,
62,
7266,
73,
47954,
828,
6330,
28,
7942,
8,
198,
220,
220,
220,
220,
220,
220,
220,
6297,
12044,
1496,
62,
32796,
62,
2340,
796,
410,
9246,
7,
18769,
12044,
1496,
62,
32796,
62,
2340,
62,
34960,
62,
16,
11,
6297,
12044,
1496,
62,
32796,
62,
2340,
62,
34960,
62,
18,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
3497,
4823,
62,
4703,
896,
198,
220,
220,
220,
220,
220,
220,
220,
4823,
62,
16,
62,
4703,
896,
11,
4823,
62,
18,
62,
4703,
896,
796,
651,
62,
5219,
62,
4703,
896,
62,
12215,
1754,
633,
7,
439,
62,
7890,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6297,
12044,
1496,
62,
32796,
62,
2340,
11,
3509,
62,
538,
8052,
62,
525,
62,
7266,
73,
796,
3509,
62,
538,
8052,
62,
525,
62,
7266,
73,
8,
628,
220,
220,
220,
220,
220,
220,
220,
11387,
62,
40850,
62,
6759,
45977,
62,
16,
58,
72,
60,
796,
651,
62,
5219,
62,
38631,
400,
10126,
7,
16,
11,
4823,
62,
16,
62,
4703,
896,
8,
198,
220,
220,
220,
220,
220,
220,
220,
11387,
62,
40850,
62,
6759,
45977,
62,
18,
58,
72,
60,
796,
651,
62,
5219,
62,
38631,
400,
10126,
7,
18,
11,
4823,
62,
18,
62,
4703,
896,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
11387,
62,
40850,
62,
6759,
45977,
62,
77,
1659,
2535,
62,
16,
58,
72,
60,
796,
651,
62,
5219,
62,
400,
10126,
62,
77,
1659,
2535,
7,
16,
11,
4823,
62,
16,
62,
4703,
896,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
11387,
62,
40850,
62,
6759,
45977,
62,
77,
1659,
2535,
62,
18,
58,
72,
60,
796,
651,
62,
5219,
62,
400,
10126,
62,
77,
1659,
2535,
7,
18,
11,
4823,
62,
18,
62,
4703,
896,
8,
628,
220,
220,
220,
886,
628,
220,
220,
220,
1612,
62,
400,
3808,
62,
40850,
62,
16,
11,
14367,
62,
400,
3808,
62,
40850,
62,
16,
11,
336,
1082,
1472,
62,
400,
3808,
62,
40850,
62,
16,
796,
220,
651,
62,
18769,
12044,
1496,
62,
34242,
7,
400,
10126,
62,
40850,
62,
6759,
45977,
62,
16,
8,
198,
220,
220,
220,
1612,
62,
400,
3808,
62,
40850,
62,
18,
11,
14367,
62,
400,
3808,
62,
40850,
62,
18,
11,
336,
1082,
1472,
62,
400,
3808,
62,
40850,
62,
18,
796,
220,
651,
62,
18769,
12044,
1496,
62,
34242,
7,
400,
10126,
62,
40850,
62,
6759,
45977,
62,
18,
8,
628,
220,
220,
220,
3551,
62,
18769,
12044,
1496,
62,
43420,
62,
40664,
7,
16,
11,
1612,
62,
400,
3808,
62,
40850,
62,
16,
11,
14367,
62,
400,
3808,
62,
40850,
62,
16,
11,
336,
1082,
1472,
62,
400,
3808,
62,
40850,
62,
16,
11,
1226,
395,
81,
796,
1226,
395,
81,
8,
198,
220,
220,
220,
3551,
62,
18769,
12044,
1496,
62,
43420,
62,
40664,
7,
18,
11,
1612,
62,
400,
3808,
62,
40850,
62,
18,
11,
14367,
62,
400,
3808,
62,
40850,
62,
18,
11,
336,
1082,
1472,
62,
400,
3808,
62,
40850,
62,
18,
11,
1226,
395,
81,
796,
1226,
395,
81,
8,
628,
220,
220,
220,
1303,
20368,
35937,
198,
220,
220,
220,
1303,
1612,
62,
400,
3808,
62,
40850,
62,
77,
1659,
2535,
62,
16,
11,
14367,
62,
400,
3808,
62,
40850,
62,
77,
1659,
2535,
62,
16,
11,
336,
1082,
1472,
62,
400,
3808,
62,
40850,
62,
77,
1659,
2535,
62,
16,
796,
220,
651,
62,
18769,
12044,
1496,
62,
34242,
7,
400,
10126,
62,
40850,
62,
6759,
45977,
62,
77,
1659,
2535,
62,
16,
8,
198,
220,
220,
220,
1303,
1612,
62,
400,
3808,
62,
40850,
62,
77,
1659,
2535,
62,
18,
11,
14367,
62,
400,
3808,
62,
40850,
62,
77,
1659,
2535,
62,
18,
11,
336,
1082,
1472,
62,
400,
3808,
62,
40850,
62,
77,
1659,
2535,
62,
18,
796,
220,
651,
62,
18769,
12044,
1496,
62,
34242,
7,
400,
10126,
62,
40850,
62,
6759,
45977,
62,
77,
1659,
2535,
62,
18,
8,
198,
220,
220,
220,
1303,
198,
220,
220,
220,
1303,
3551,
62,
18769,
12044,
1496,
62,
43420,
62,
40664,
7,
16,
11,
1612,
62,
400,
3808,
62,
40850,
62,
77,
1659,
2535,
62,
16,
11,
14367,
62,
400,
3808,
62,
40850,
62,
77,
1659,
2535,
62,
16,
11,
336,
1082,
1472,
62,
400,
3808,
62,
40850,
62,
77,
1659,
2535,
62,
16,
11,
1226,
395,
81,
28,
10379,
395,
81,
9,
1,
77,
1659,
2535,
62,
4943,
198,
220,
220,
220,
1303,
3551,
62,
18769,
12044,
1496,
62,
43420,
62,
40664,
7,
18,
11,
1612,
62,
400,
3808,
62,
40850,
62,
77,
1659,
2535,
62,
18,
11,
14367,
62,
400,
3808,
62,
40850,
62,
77,
1659,
2535,
62,
18,
11,
336,
1082,
1472,
62,
400,
3808,
62,
40850,
62,
77,
1659,
2535,
62,
18,
11,
1226,
395,
81,
28,
10379,
395,
81,
9,
1,
77,
1659,
2535,
62,
4943,
628,
220,
220,
220,
1612,
62,
400,
3808,
62,
40850,
62,
16,
11,
1612,
62,
400,
3808,
62,
40850,
62,
18,
2,
11,
220,
1612,
62,
400,
3808,
62,
40850,
62,
77,
1659,
2535,
62,
16,
11,
1612,
62,
400,
3808,
62,
40850,
62,
77,
1659,
2535,
62,
18,
198,
437,
198,
198,
37811,
11014,
284,
651,
62,
5219,
62,
4703,
896,
3419,
37227,
198,
8818,
651,
62,
5219,
62,
4703,
896,
62,
12215,
1754,
633,
7,
439,
62,
7890,
11,
2426,
62,
2340,
26,
3509,
62,
538,
8052,
62,
525,
62,
7266,
73,
796,
2319,
8,
628,
220,
220,
220,
4823,
62,
16,
62,
4703,
896,
796,
1976,
27498,
7,
5317,
2414,
11,
3509,
62,
538,
8052,
62,
525,
62,
7266,
73,
11,
22,
11,
362,
8,
198,
220,
220,
220,
4823,
62,
18,
62,
4703,
896,
796,
1976,
27498,
7,
5317,
2414,
11,
3509,
62,
538,
8052,
62,
525,
62,
7266,
73,
11,
22,
11,
362,
8,
198,
220,
220,
220,
1303,
2488,
12860,
2426,
62,
2340,
198,
220,
220,
220,
329,
850,
73,
62,
312,
287,
2426,
62,
2340,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2488,
12860,
850,
73,
62,
312,
198,
220,
220,
220,
220,
220,
220,
220,
850,
73,
62,
7890,
796,
45715,
62,
31805,
13,
24455,
62,
1525,
62,
6259,
7,
439,
62,
7890,
11,
850,
73,
62,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4823,
62,
312,
796,
850,
73,
62,
7890,
58,
16,
11,
5317,
7,
7836,
62,
31805,
13,
66,
62,
34960,
62,
9641,
15437,
198,
220,
220,
220,
220,
220,
220,
220,
477,
62,
538,
8052,
796,
3748,
7,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
38668,
8,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
22942,
62,
9127,
62,
525,
62,
5219,
796,
1976,
27498,
7,
5317,
2414,
11,
767,
8,
1303,
9127,
329,
1123,
1181,
17033,
703,
867,
1661,
340,
14888,
287,
257,
20945,
4471,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
583,
2426,
11,
466,
407,
954,
357,
16345,
828,
655,
900,
284,
657,
393,
352,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1181,
62,
2673,
62,
521,
26407,
796,
1976,
27498,
7,
5317,
2414,
11,
3509,
62,
538,
8052,
62,
525,
62,
7266,
73,
11,
767,
11,
362,
8,
628,
220,
220,
220,
220,
220,
220,
220,
329,
4471,
287,
477,
62,
538,
8052,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
264,
287,
362,
25,
22,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2198,
611,
1181,
264,
468,
366,
3642,
6169,
1,
284,
262,
1459,
4471,
13,
611,
3763,
11,
954,
428,
22942,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
597,
7,
357,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
38668,
15437,
764,
855,
4471,
8,
764,
5,
357,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
5219,
15437,
764,
855,
264,
8,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
22942,
62,
9127,
62,
525,
62,
5219,
58,
82,
60,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
783,
954,
262,
1988,
286,
4028,
13,
15714,
734,
2663,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
329,
617,
2585,
11,
262,
734,
4028,
389,
8603,
4938,
13,
554,
428,
1339,
954,
262,
2223,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
329,
584,
2585,
11,
612,
318,
257,
3376,
357,
16,
8,
290,
257,
2642,
32590,
16,
8,
2223,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2223,
3376,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
597,
7,
357,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
38668,
15437,
764,
855,
4471,
8,
764,
5,
357,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
5219,
15437,
764,
855,
264,
8,
764,
5,
357,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
2673,
62,
8367,
15437,
764,
855,
657,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2223,
317,
393,
2223,
347,
30,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
597,
7,
357,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
38668,
15437,
764,
855,
4471,
8,
764,
5,
357,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
5219,
15437,
764,
855,
264,
8,
764,
5,
357,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
2673,
15437,
764,
855,
352,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
317,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1181,
62,
2673,
62,
521,
26407,
58,
9535,
752,
652,
62,
9127,
62,
525,
62,
5219,
58,
82,
4357,
264,
11,
352,
60,
796,
352,
1303,
466,
407,
15853,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3465,
25,
340,
338,
407,
281,
17852,
5188,
994,
13,
356,
2198,
329,
1111,
290,
954,
1111,
3689,
379,
749,
1752,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
597,
7,
357,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
38668,
15437,
764,
855,
4471,
8,
764,
5,
357,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
5219,
15437,
764,
855,
264,
8,
764,
5,
357,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
2673,
15437,
764,
855,
362,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
347,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1181,
62,
2673,
62,
521,
26407,
58,
9535,
752,
652,
62,
9127,
62,
525,
62,
5219,
58,
82,
4357,
264,
11,
362,
60,
796,
352,
1303,
466,
407,
15853,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2223,
3376,
393,
2642,
30,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
597,
7,
357,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
38668,
15437,
764,
855,
4471,
8,
764,
5,
357,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
5219,
15437,
764,
855,
264,
8,
764,
5,
357,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
2673,
62,
8367,
15437,
764,
855,
1343,
16,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3376,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1181,
62,
2673,
62,
521,
26407,
58,
9535,
752,
652,
62,
9127,
62,
525,
62,
5219,
58,
82,
4357,
264,
11,
362,
60,
796,
352,
1303,
466,
407,
15853,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3465,
25,
340,
338,
407,
281,
17852,
5188,
994,
13,
356,
2198,
329,
1111,
290,
954,
1111,
3689,
379,
749,
1752,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
597,
7,
357,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
38668,
15437,
764,
855,
4471,
8,
764,
5,
357,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
5219,
15437,
764,
855,
264,
8,
764,
5,
357,
7266,
73,
62,
7890,
58,
45299,
5317,
7,
7836,
62,
31805,
13,
66,
62,
2673,
62,
8367,
15437,
764,
855,
532,
16,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2642,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1181,
62,
2673,
62,
521,
26407,
58,
9535,
752,
652,
62,
9127,
62,
525,
62,
5219,
58,
82,
4357,
264,
11,
352,
60,
796,
352,
1303,
466,
407,
15853,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
1303,
886,
477,
2585,
198,
220,
220,
220,
220,
220,
220,
220,
886,
1303,
886,
477,
8640,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2488,
12860,
1181,
62,
2673,
62,
521,
26407,
198,
220,
220,
220,
220,
220,
220,
220,
611,
4823,
62,
312,
6624,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4823,
62,
16,
62,
4703,
896,
15853,
1181,
62,
2673,
62,
521,
26407,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
361,
4823,
62,
312,
6624,
513,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4823,
62,
18,
62,
4703,
896,
15853,
1181,
62,
2673,
62,
521,
26407,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4049,
7203,
34680,
4823,
4686,
25,
720,
34960,
62,
312,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
1303,
886,
477,
2426,
198,
220,
220,
220,
4823,
62,
16,
62,
4703,
896,
11,
4823,
62,
18,
62,
4703,
896,
198,
437,
198,
198,
8818,
651,
62,
5219,
62,
38631,
400,
10126,
7,
34960,
62,
312,
3712,
5317,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4823,
62,
5219,
62,
9127,
82,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4673,
62,
400,
10126,
28,
15,
13,
23,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
949,
62,
4703,
896,
62,
8897,
24615,
796,
362,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3613,
6978,
796,
12813,
14490,
14,
11017,
544,
14,
36881,
14,
4943,
198,
220,
220,
220,
47764,
43420,
796,
17635,
198,
220,
220,
220,
4823,
62,
10951,
796,
651,
62,
34960,
62,
10951,
3419,
198,
220,
220,
220,
2585,
11,
10926,
62,
17080,
11,
1181,
62,
14116,
11,
4823,
796,
651,
62,
5661,
62,
34960,
62,
10951,
7,
34960,
62,
10951,
11,
4823,
62,
312,
8,
628,
220,
220,
220,
2315,
62,
12786,
62,
11201,
796,
685,
15,
13,
20,
11,
657,
8183,
198,
220,
220,
220,
11387,
62,
40850,
62,
6759,
8609,
796,
1976,
27498,
7,
13664,
7,
27219,
47762,
16,
8,
198,
220,
220,
220,
329,
264,
796,
2585,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
44872,
7,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
9853,
62,
525,
62,
38668,
62,
2673,
36460,
796,
43030,
7,
34960,
62,
5219,
62,
9127,
82,
58,
45299,
82,
11,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
9853,
62,
525,
62,
38668,
62,
2673,
30283,
796,
43030,
7,
34960,
62,
5219,
62,
9127,
82,
58,
45299,
82,
11,
17,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
32794,
62,
9127,
82,
62,
525,
62,
38668,
796,
9853,
62,
525,
62,
38668,
62,
2673,
36460,
13,
10,
9127,
82,
62,
525,
62,
38668,
62,
2673,
30283,
198,
220,
220,
220,
220,
220,
220,
220,
8640,
62,
1084,
62,
4703,
896,
796,
1064,
439,
7,
16345,
1150,
62,
9127,
82,
62,
525,
62,
38668,
764,
29,
28,
949,
62,
4703,
896,
62,
8897,
24615,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2488,
12860,
8640,
62,
1084,
62,
4703,
896,
198,
220,
220,
220,
220,
220,
220,
220,
8064,
796,
9853,
62,
525,
62,
38668,
62,
2673,
30283,
58,
538,
8052,
62,
1084,
62,
4703,
896,
60,
24457,
32794,
62,
9127,
82,
62,
525,
62,
38668,
58,
538,
8052,
62,
1084,
62,
4703,
896,
60,
198,
220,
220,
220,
220,
220,
220,
220,
3463,
796,
357,
16345,
1150,
62,
9127,
82,
62,
525,
62,
38668,
58,
538,
8052,
62,
1084,
62,
4703,
896,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
299,
81,
62,
87,
796,
4129,
7,
10366,
952,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
7890,
796,
352,
25,
48624,
62,
87,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
7890,
796,
8064,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
19736,
1096,
796,
352,
10,
17,
9,
31166,
17034,
7,
6551,
58,
72,
46570,
198,
220,
220,
220,
220,
220,
220,
220,
11387,
62,
40850,
796,
657,
13,
198,
220,
220,
220,
220,
220,
220,
220,
3463,
796,
48436,
2414,
12195,
6551,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
10926,
62,
17080,
58,
16,
11,
82,
60,
14512,
10926,
62,
17080,
58,
17,
11,
82,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4197,
796,
12133,
62,
11147,
7,
19849,
62,
11201,
11,
2124,
62,
7890,
11,
331,
62,
7890,
11,
3463,
11,
2315,
62,
12786,
62,
11201,
8,
1303,
14331,
276,
1575,
2163,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
62,
5183,
796,
2746,
62,
11201,
7,
87,
62,
7890,
11,
4197,
13,
17143,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11387,
62,
40850,
796,
800,
62,
19849,
62,
11201,
7,
40684,
62,
400,
10126,
11,
4197,
13,
17143,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
611,
11387,
62,
40850,
1279,
657,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4197,
13,
17143,
58,
17,
60,
1875,
657,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11387,
62,
40850,
796,
657,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11387,
62,
40850,
796,
48436,
2414,
7,
538,
8052,
62,
1084,
62,
4703,
896,
58,
437,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2488,
12860,
11387,
62,
40850,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
44872,
7203,
35937,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
611,
11387,
62,
40850,
1875,
48436,
2414,
7,
538,
8052,
62,
1084,
62,
4703,
896,
58,
437,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11387,
62,
40850,
796,
48436,
2414,
7,
538,
8052,
62,
1084,
62,
4703,
896,
58,
437,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
11387,
62,
40850,
62,
6759,
8609,
58,
82,
60,
796,
11387,
62,
40850,
198,
220,
220,
220,
886,
198,
220,
220,
220,
11387,
62,
40850,
62,
6759,
8609,
198,
437,
198,
198,
2,
24550,
25,
5626,
1294,
1961,
10185,
198,
8818,
651,
62,
5219,
62,
400,
10126,
62,
77,
1659,
2535,
7,
34960,
62,
312,
3712,
5317,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4823,
62,
5219,
62,
9127,
82,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4673,
62,
400,
10126,
28,
15,
13,
23,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
949,
62,
4703,
896,
62,
8897,
24615,
796,
362,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3613,
6978,
796,
12813,
14490,
14,
11017,
544,
14,
36881,
14,
4943,
198,
220,
220,
220,
47764,
43420,
796,
17635,
198,
220,
220,
220,
4823,
62,
10951,
796,
651,
62,
34960,
62,
10951,
3419,
198,
220,
220,
220,
2585,
11,
10926,
62,
17080,
11,
1181,
62,
14116,
11,
4823,
796,
651,
62,
5661,
62,
34960,
62,
10951,
7,
34960,
62,
10951,
11,
4823,
62,
312,
8,
628,
220,
220,
220,
2315,
62,
12786,
62,
11201,
796,
685,
15,
13,
20,
11,
657,
8183,
198,
220,
220,
220,
11387,
62,
40850,
62,
6759,
8609,
796,
1976,
27498,
7,
13664,
7,
27219,
47762,
16,
8,
198,
220,
220,
220,
329,
264,
796,
2585,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
44872,
7,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
9853,
62,
525,
62,
38668,
62,
2673,
36460,
796,
43030,
7,
34960,
62,
5219,
62,
9127,
82,
58,
45299,
82,
11,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
9853,
62,
525,
62,
38668,
62,
2673,
30283,
796,
43030,
7,
34960,
62,
5219,
62,
9127,
82,
58,
45299,
82,
11,
17,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
32794,
62,
9127,
82,
62,
525,
62,
38668,
796,
9853,
62,
525,
62,
38668,
62,
2673,
36460,
13,
10,
9127,
82,
62,
525,
62,
38668,
62,
2673,
30283,
198,
220,
220,
220,
220,
220,
220,
220,
8640,
62,
1084,
62,
4703,
896,
796,
1064,
439,
7,
16345,
1150,
62,
9127,
82,
62,
525,
62,
38668,
764,
29,
28,
949,
62,
4703,
896,
62,
8897,
24615,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2488,
12860,
8640,
62,
1084,
62,
4703,
896,
198,
220,
220,
220,
220,
220,
220,
220,
8064,
796,
9853,
62,
525,
62,
38668,
62,
2673,
30283,
58,
538,
8052,
62,
1084,
62,
4703,
896,
60,
24457,
32794,
62,
9127,
82,
62,
525,
62,
38668,
58,
538,
8052,
62,
1084,
62,
4703,
896,
60,
198,
220,
220,
220,
220,
220,
220,
220,
3463,
796,
357,
16345,
1150,
62,
9127,
82,
62,
525,
62,
38668,
58,
538,
8052,
62,
1084,
62,
4703,
896,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
299,
81,
62,
87,
796,
4129,
7,
10366,
952,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
19736,
1096,
796,
352,
10,
17,
9,
31166,
17034,
7,
6551,
58,
72,
46570,
198,
220,
220,
220,
220,
220,
220,
220,
11387,
62,
40850,
796,
657,
13,
198,
220,
220,
220,
220,
220,
220,
220,
3463,
796,
48436,
2414,
12195,
6551,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
10926,
62,
17080,
58,
16,
11,
82,
60,
14512,
10926,
62,
17080,
58,
17,
11,
82,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11387,
62,
40850,
796,
1064,
11085,
7,
87,
3784,
2124,
13,
29,
28,
15,
13,
23,
11,
8064,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
611,
318,
22366,
7,
400,
10126,
62,
40850,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11387,
62,
40850,
796,
48436,
2414,
7,
538,
8052,
62,
1084,
62,
4703,
896,
58,
437,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
11387,
62,
40850,
62,
6759,
8609,
58,
82,
60,
796,
11387,
62,
40850,
198,
220,
220,
220,
886,
198,
220,
220,
220,
11387,
62,
40850,
62,
6759,
8609,
198,
437,
628,
198,
8818,
651,
62,
18769,
12044,
1496,
62,
34242,
7,
400,
10126,
62,
40850,
62,
6759,
45977,
8,
198,
220,
220,
220,
294,
3808,
62,
40850,
62,
9246,
796,
289,
9246,
7,
400,
10126,
62,
40850,
62,
6759,
45977,
23029,
198,
220,
220,
220,
1612,
62,
400,
3808,
62,
40850,
796,
1612,
7,
400,
3808,
62,
40850,
62,
9246,
11,
5391,
82,
28,
17,
8,
198,
220,
220,
220,
14367,
62,
400,
3808,
62,
40850,
796,
14367,
7,
400,
3808,
62,
40850,
62,
9246,
11,
5391,
82,
28,
17,
8,
198,
220,
220,
220,
2488,
12860,
2546,
7,
400,
10126,
62,
40850,
62,
6759,
45977,
11,
16,
8,
198,
220,
220,
220,
336,
1082,
1472,
62,
400,
3808,
62,
40850,
796,
14367,
7,
400,
3808,
62,
40850,
62,
9246,
11,
5391,
82,
28,
17,
8,
24457,
19862,
17034,
7,
7857,
7,
400,
10126,
62,
40850,
62,
6759,
45977,
11,
16,
4008,
198,
220,
220,
220,
1612,
62,
400,
3808,
62,
40850,
11,
14367,
62,
400,
3808,
62,
40850,
11,
336,
1082,
1472,
62,
400,
3808,
62,
40850,
198,
437,
628,
198,
8818,
3551,
62,
18769,
12044,
1496,
62,
43420,
62,
40664,
7,
34960,
62,
312,
3712,
5317,
2414,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1612,
62,
400,
3808,
62,
40850,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14367,
62,
400,
3808,
62,
40850,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
336,
1082,
1472,
62,
400,
3808,
62,
40850,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1226,
395,
81,
2625,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1226,
395,
81,
796,
45434,
8890,
62,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3613,
6978,
796,
366,
19571,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
3613,
6978,
796,
787,
71,
2586,
1015,
6978,
7203,
40684,
22019,
303,
34046,
62,
18769,
26418,
4943,
198,
220,
220,
220,
33480,
15908,
7,
21928,
6978,
8,
628,
220,
220,
220,
4823,
62,
10951,
796,
651,
62,
34960,
62,
10951,
3419,
198,
220,
220,
220,
2585,
11,
10926,
62,
17080,
11,
1181,
62,
14116,
11,
4823,
796,
651,
62,
5661,
62,
34960,
62,
10951,
7,
34960,
62,
10951,
11,
4823,
62,
312,
8,
628,
220,
220,
220,
47764,
43420,
796,
6060,
19778,
3419,
198,
220,
220,
220,
329,
264,
796,
2585,
198,
220,
220,
220,
220,
220,
220,
220,
949,
62,
17080,
796,
3297,
7,
1084,
4402,
62,
17080,
58,
45299,
82,
60,
764,
12,
352,
2014,
198,
220,
220,
220,
220,
220,
220,
220,
47764,
43420,
58,
28265,
38357,
7,
8841,
7,
82,
27493,
1,
62,
1,
9,
5219,
62,
14116,
58,
82,
60,
9,
1,
62,
400,
10126,
40850,
62,
32604,
4943,
60,
796,
685,
32604,
62,
400,
3808,
62,
40850,
58,
82,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
47764,
43420,
58,
28265,
38357,
7,
8841,
7,
82,
27493,
1,
62,
1,
9,
5219,
62,
14116,
58,
82,
60,
9,
1,
62,
400,
10126,
40850,
62,
19282,
4943,
60,
796,
685,
19282,
62,
400,
3808,
62,
40850,
58,
82,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
47764,
43420,
58,
28265,
38357,
7,
8841,
7,
82,
27493,
1,
62,
1,
9,
5219,
62,
14116,
58,
82,
60,
9,
1,
62,
400,
10126,
40850,
62,
301,
1082,
1472,
4943,
60,
796,
685,
301,
1082,
1472,
62,
400,
3808,
62,
40850,
58,
82,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
47764,
43420,
58,
28265,
38357,
7,
8841,
7,
82,
27493,
1,
62,
1,
9,
5219,
62,
14116,
58,
82,
60,
9,
1,
62,
17080,
16,
14259,
17080,
17,
4943,
60,
796,
685,
8841,
7,
5317,
7,
1084,
62,
17080,
58,
16,
60,
4008,
9,
26793,
273,
21215,
9,
8841,
7,
5317,
7,
1084,
62,
17080,
58,
17,
60,
4008,
60,
198,
220,
220,
220,
220,
220,
220,
220,
47764,
43420,
58,
28265,
38357,
7,
8841,
7,
82,
27493,
1,
62,
1,
9,
5219,
62,
14116,
58,
82,
60,
9,
1,
62,
34960,
312,
4943,
60,
796,
685,
34960,
62,
312,
60,
198,
220,
220,
220,
886,
198,
220,
220,
220,
44189,
13,
13564,
7,
22179,
6978,
7,
21928,
6978,
11,
366,
40684,
22019,
303,
5657,
62,
18769,
26418,
62,
1,
9,
10379,
395,
81,
9,
1,
38,
1,
1635,
4731,
7,
34960,
62,
312,
8,
1635,
1911,
40664,
12340,
47764,
43420,
11,
198,
220,
220,
220,
220,
220,
220,
220,
46728,
796,
366,
366,
1776,
198,
220,
220,
220,
1303,
47764,
43420,
198,
437,
198
] | 2.041609 | 6,537 |
export JITEventListener, GDBRegistrationListener, IntelJITEventListener,
OProfileJITEventListener, PerfJITEventListener
@checked struct JITEventListener
ref::API.LLVMJITEventListenerRef
end
Base.unsafe_convert(::Type{API.LLVMJITEventListenerRef}, listener::JITEventListener) = listener.ref
GDBRegistrationListener() = JITEventListener(LLVM.API.LLVMCreateGDBRegistrationListener())
IntelJITEventListener() = JITEventListener(LLVM.API.LLVMCreateIntelJITEventListener())
OProfileJITEventListener() = JITEventListener(LLVM.API.LLVMCreateOProfileJITEventListener())
PerfJITEventListener() = JITEventListener(LLVM.API.LLVMCreatePerfJITEventListener())
| [
39344,
449,
2043,
9237,
33252,
11,
402,
11012,
47133,
33252,
11,
8180,
41,
2043,
9237,
33252,
11,
198,
220,
220,
220,
220,
220,
220,
440,
37046,
41,
2043,
9237,
33252,
11,
2448,
69,
41,
2043,
9237,
33252,
198,
198,
31,
26752,
2878,
449,
2043,
9237,
33252,
198,
220,
220,
220,
1006,
3712,
17614,
13,
3069,
15996,
41,
2043,
9237,
33252,
8134,
198,
437,
198,
14881,
13,
13271,
8635,
62,
1102,
1851,
7,
3712,
6030,
90,
17614,
13,
3069,
15996,
41,
2043,
9237,
33252,
8134,
5512,
24783,
3712,
41,
2043,
9237,
33252,
8,
796,
24783,
13,
5420,
198,
198,
38,
11012,
47133,
33252,
3419,
220,
796,
449,
2043,
9237,
33252,
7,
3069,
15996,
13,
17614,
13,
3069,
53,
9655,
260,
378,
38,
11012,
47133,
33252,
28955,
198,
24123,
41,
2043,
9237,
33252,
3419,
220,
220,
220,
796,
449,
2043,
9237,
33252,
7,
3069,
15996,
13,
17614,
13,
3069,
53,
9655,
260,
378,
24123,
41,
2043,
9237,
33252,
28955,
198,
46,
37046,
41,
2043,
9237,
33252,
3419,
796,
449,
2043,
9237,
33252,
7,
3069,
15996,
13,
17614,
13,
3069,
53,
9655,
260,
378,
46,
37046,
41,
2043,
9237,
33252,
28955,
198,
5990,
69,
41,
2043,
9237,
33252,
3419,
220,
220,
220,
220,
796,
449,
2043,
9237,
33252,
7,
3069,
15996,
13,
17614,
13,
3069,
53,
9655,
260,
378,
5990,
69,
41,
2043,
9237,
33252,
28955,
198
] | 2.977679 | 224 |
"""
hubbard_dispersion(k)
Dispersion relation for [`HubbardMom1D`](@ref). Returns `-2cos(k)`.
See also [`continuum_dispersion`](@ref).
"""
hubbard_dispersion(k) = -2cos(k)
"""
continuum_dispersion(k)
Dispersion relation for [`HubbardMom1D`](@ref). Returns `k^2`.
See also [`hubbard_dispersion`](@ref).
"""
continuum_dispersion(k) = k^2
"""
HubbardMom1D(address; u=1.0, t=1.0, dispersion=hubbard_dispersion)
Implements a one-dimensional Bose Hubbard chain in momentum space.
```math
\\hat{H} = \\sum_{k} ϵ_k n_k + \\frac{u}{M}\\sum_{kpqr} a^†_{r} a^†_{q} a_p a_k δ_{r+q,p+k}
```
# Arguments
* `address`: the starting address, defines number of particles and sites.
* `u`: the interaction parameter.
* `t`: the hopping strength.
* `dispersion`: defines ``ϵ_k =``` t*dispersion(k)`
- [`hubbard_dispersion`](@ref): ``ϵ_k = -2t \\cos(k)``
- [`continuum_dispersion`](@ref): ``ϵ_k = tk^2``
# See also
* [`HubbardReal1D`](@ref)
* [`ExtendedHubbardReal1D`](@ref)
"""
struct HubbardMom1D{TT,M,AD<:AbstractFockAddress,U,T} <: AbstractHamiltonian{TT}
add::AD # default starting address, should have N particles and M modes
ks::SVector{M,TT} # values for k
kes::SVector{M,TT} # values for kinetic energy
end
function HubbardMom1D(
add::Union{BoseFS,FermiFS2C};
u=1.0, t=1.0, dispersion = hubbard_dispersion,
)
M = num_modes(add)
U, T = promote(float(u), float(t))
step = 2π/M
if isodd(M)
start = -π*(1+1/M) + step
else
start = -π + step
end
kr = range(start; step = step, length = M)
ks = SVector{M}(kr)
# kes = SVector{M}(-2T*cos.(kr))
kes = SVector{M}(T .* dispersion.(kr))
return HubbardMom1D{typeof(U),M,typeof(add),U,T}(add, ks, kes)
end
function Base.show(io::IO, h::HubbardMom1D)
print(io, "HubbardMom1D($(h.add); u=$(h.u), t=$(h.t))")
end
function starting_address(h::HubbardMom1D)
return h.add
end
LOStructure(::Type{<:HubbardMom1D{<:Real}}) = IsHermitian()
Base.getproperty(h::HubbardMom1D, s::Symbol) = getproperty(h, Val(s))
Base.getproperty(h::HubbardMom1D, ::Val{:ks}) = getfield(h, :ks)
Base.getproperty(h::HubbardMom1D, ::Val{:kes}) = getfield(h, :kes)
Base.getproperty(h::HubbardMom1D, ::Val{:add}) = getfield(h, :add)
Base.getproperty(h::HubbardMom1D{<:Any,<:Any,<:Any,U}, ::Val{:u}) where {U} = U
Base.getproperty(h::HubbardMom1D{<:Any,<:Any,<:Any,<:Any,T}, ::Val{:t}) where {T} = T
ks(h::HubbardMom1D) = getfield(h, :ks)
"""
num_singly_doubly_occupied_sites(address)
Returns the number of singly and doubly occupied sites for a bosonic bit string address.
# Example
```jldoctest
julia> Hamiltonians.num_singly_doubly_occupied_sites(BoseFS{3,3}((1, 1, 1)))
(3, 0)
julia> Hamiltonians.num_singly_doubly_occupied_sites(BoseFS{3,3}((2, 0, 1)))
(2, 1)
```
"""
function num_singly_doubly_occupied_sites(b::BoseFS)
singlies = 0
doublies = 0
for (n, _, _) in occupied_modes(b)
singlies += 1
doublies += n > 1
end
return singlies, doublies
end
function num_singly_doubly_occupied_sites(onrep::AbstractArray)
# this one is faster by about a factor of 2 if you already have the onrep
# returns number of singly and doubly occupied sites
singlies = 0
doublies = 0
for n in onrep
singlies += n > 0
doublies += n > 1
end
return singlies, doublies
end
# standard interface function
function num_offdiagonals(ham::HubbardMom1D, add::BoseFS)
singlies, doublies = num_singly_doubly_occupied_sites(add)
return num_offdiagonals(ham, add, singlies, doublies)
end
# 4-argument version
@inline function num_offdiagonals(ham::HubbardMom1D, add::BoseFS, singlies, doublies)
M = num_modes(ham)
return singlies * (singlies - 1) * (M - 2) + doublies * (M - 1)
end
@inline function num_offdiagonals(ham::HubbardMom1D, add::FermiFS2C{N1,N2}) where {N1,N2}
M = num_modes(ham)
return N1 * N2 * (M - 1)
end
"""
momentum_transfer_diagonal(H, map::OccupiedModeMap)
Compute diagonal interaction energy term.
# Example
```jldoctest
julia> a = BoseFS{6,5}((1,2,3,0,0))
BoseFS{6,5}((1, 2, 3, 0, 0))
julia> H = HubbardMom1D(a);
julia> Hamiltonians.momentum_transfer_diagonal(H, OccupiedModeMap(a))
5.2
```
"""
@inline function momentum_transfer_diagonal(
h::HubbardMom1D{<:Any,M,<:BoseFS}, map
) where {M}
return h.u / 2M * momentum_transfer_diagonal(map)
end
@inline function momentum_transfer_diagonal(
h::HubbardMom1D{<:Any,M,<:FermiFS2C}, map_a, map_b
) where {M}
return h.u / 2M * momentum_transfer_diagonal(map_a, map_b)
end
@inline function diagonal_element(h::HubbardMom1D, add::BoseFS)
map = OccupiedModeMap(add)
return dot(h.kes, map) + momentum_transfer_diagonal(h, map)
end
@inline function diagonal_element(h::HubbardMom1D, add::FermiFS2C)
map_a = OccupiedModeMap(add.components[1])
map_b = OccupiedModeMap(add.components[2])
return dot(h.kes, map_a) + dot(h.kes, map_b) +
momentum_transfer_diagonal(h, map_a, map_b)
end
@inline function get_offdiagonal(
ham::HubbardMom1D{<:Any,M,A}, add::A, chosen, map=OccupiedModeMap(add)
) where {M,A<:BoseFS}
add, onproduct = momentum_transfer_excitation(add, chosen, map)
return add, ham.u/(2*M)*onproduct
end
@inline function get_offdiagonal(
ham::HubbardMom1D{<:Any,M,A}, add::A, chosen,
map_a=OccupiedModeMap(add.components[1]), map_b=OccupiedModeMap(add.components[2])
) where {M,A<:FermiFS2C}
add_a, add_b = add.components
new_add_a, new_add_b, onproduct = momentum_transfer_excitation(
add_a, add_b, chosen, map_a, map_b
)
return CompositeFS(new_add_a, new_add_b), ham.u/M * onproduct
end
###
### offdiagonals
###
"""
OffdiagonalsBoseMom1D
Specialized [`AbstractOffdiagonals`](@ref) that keeps track of singly and doubly occupied
sites in current address.
"""
struct OffdiagonalsBoseMom1D{
A<:BoseFS,T,H<:AbstractHamiltonian{T},O<:OccupiedModeMap
} <: AbstractOffdiagonals{A,T}
hamiltonian::H
address::A
length::Int
map::O
end
function offdiagonals(h::HubbardMom1D, a::BoseFS)
map = OccupiedModeMap(a)
singlies = length(map)
doublies = count(i -> i.occnum ≥ 2, map)
num = num_offdiagonals(h, a, singlies, doublies)
return OffdiagonalsBoseMom1D(h, a, num, map)
end
function Base.getindex(s::OffdiagonalsBoseMom1D{A,T}, i)::Tuple{A,T} where {A,T}
@boundscheck begin
1 ≤ i ≤ s.length || throw(BoundsError(s, i))
end
new_address, matrix_element = get_offdiagonal(s.hamiltonian, s.address, i, s.map)
return (new_address, matrix_element)
end
Base.size(s::OffdiagonalsBoseMom1D) = (s.length,)
struct OffdiagonalsFermiMom1D2C{
F<:FermiFS2C,T,H<:AbstractHamiltonian{T},O1,O2
} <: AbstractOffdiagonals{F,T}
hamiltonian::H
address::F
length::Int
map_a::O1
map_b::O2
end
function offdiagonals(h::HubbardMom1D, f::FermiFS2C)
comp_a, comp_b = f.components
map_a = OccupiedModeMap(comp_a)
map_b = OccupiedModeMap(comp_b)
num = num_offdiagonals(h, f)
return OffdiagonalsFermiMom1D2C(h, f, num, map_a, map_b)
end
Base.size(s::OffdiagonalsFermiMom1D2C) = (s.length,)
function Base.getindex(s::OffdiagonalsFermiMom1D2C{A,T}, i)::Tuple{A,T} where {A,T}
@boundscheck begin
i ≤ i ≤ s.length || throw(BoundsError(s, i))
end
new_address, matrix_element = get_offdiagonal(
s.hamiltonian, s.address, i, s.map_a, s.map_b
)
return (new_address, matrix_element)
end
###
### momentum
###
struct MomentumMom1D{T,H<:AbstractHamiltonian{T}} <: AbstractHamiltonian{T}
ham::H
end
LOStructure(::Type{MomentumMom1D{H,T}}) where {H,T <: Real} = IsHermitian()
num_offdiagonals(ham::MomentumMom1D, add) = 0
diagonal_element(mom::MomentumMom1D, add) = mod1(onr(add)⋅ks(mom.ham) + π, 2π) - π # fold into (-π, π]
momentum(ham::HubbardMom1D) = MomentumMom1D(ham)
| [
37811,
198,
220,
220,
220,
12575,
23024,
62,
6381,
79,
6900,
7,
74,
8,
198,
7279,
79,
6900,
8695,
329,
685,
63,
16066,
23024,
29252,
16,
35,
63,
16151,
31,
5420,
737,
16409,
4600,
12,
17,
6966,
7,
74,
8,
44646,
198,
198,
6214,
635,
685,
63,
18487,
13814,
62,
6381,
79,
6900,
63,
16151,
31,
5420,
737,
198,
37811,
198,
40140,
23024,
62,
6381,
79,
6900,
7,
74,
8,
796,
532,
17,
6966,
7,
74,
8,
198,
198,
37811,
198,
220,
220,
220,
44422,
62,
6381,
79,
6900,
7,
74,
8,
198,
7279,
79,
6900,
8695,
329,
685,
63,
16066,
23024,
29252,
16,
35,
63,
16151,
31,
5420,
737,
16409,
4600,
74,
61,
17,
44646,
198,
198,
6214,
635,
685,
63,
40140,
23024,
62,
6381,
79,
6900,
63,
16151,
31,
5420,
737,
198,
37811,
198,
18487,
13814,
62,
6381,
79,
6900,
7,
74,
8,
796,
479,
61,
17,
198,
198,
37811,
198,
220,
220,
220,
34342,
29252,
16,
35,
7,
21975,
26,
334,
28,
16,
13,
15,
11,
256,
28,
16,
13,
15,
11,
4596,
6900,
28,
40140,
23024,
62,
6381,
79,
6900,
8,
198,
198,
3546,
1154,
902,
257,
530,
12,
19577,
347,
577,
34342,
6333,
287,
12858,
2272,
13,
198,
198,
15506,
63,
11018,
198,
6852,
5183,
90,
39,
92,
796,
220,
26867,
16345,
23330,
74,
92,
18074,
113,
62,
74,
299,
62,
74,
1343,
26867,
31944,
90,
84,
18477,
44,
92,
6852,
16345,
23330,
74,
79,
80,
81,
92,
257,
61,
33912,
23330,
81,
92,
257,
61,
33912,
23330,
80,
92,
257,
62,
79,
257,
62,
74,
7377,
112,
23330,
81,
10,
80,
11,
79,
10,
74,
92,
198,
15506,
63,
198,
198,
2,
20559,
2886,
198,
198,
9,
4600,
21975,
63,
25,
262,
3599,
2209,
11,
15738,
1271,
286,
13166,
290,
5043,
13,
198,
9,
4600,
84,
63,
25,
262,
10375,
11507,
13,
198,
9,
4600,
83,
63,
25,
262,
47153,
4202,
13,
198,
9,
4600,
6381,
79,
6900,
63,
25,
15738,
7559,
139,
113,
62,
74,
796,
15506,
63,
256,
9,
6381,
79,
6900,
7,
74,
8,
63,
198,
220,
220,
220,
532,
685,
63,
40140,
23024,
62,
6381,
79,
6900,
63,
16151,
31,
5420,
2599,
7559,
139,
113,
62,
74,
796,
532,
17,
83,
26867,
6966,
7,
74,
8,
15506,
198,
220,
220,
220,
532,
685,
63,
18487,
13814,
62,
6381,
79,
6900,
63,
16151,
31,
5420,
2599,
7559,
139,
113,
62,
74,
796,
256,
74,
61,
17,
15506,
198,
198,
2,
4091,
635,
198,
198,
9,
685,
63,
16066,
23024,
15633,
16,
35,
63,
16151,
31,
5420,
8,
198,
9,
685,
63,
11627,
1631,
16066,
23024,
15633,
16,
35,
63,
16151,
31,
5420,
8,
198,
37811,
198,
7249,
34342,
29252,
16,
35,
90,
15751,
11,
44,
11,
2885,
27,
25,
23839,
37,
735,
20231,
11,
52,
11,
51,
92,
1279,
25,
27741,
45405,
666,
90,
15751,
92,
198,
220,
220,
220,
751,
3712,
2885,
1303,
4277,
3599,
2209,
11,
815,
423,
399,
13166,
290,
337,
12881,
198,
220,
220,
220,
479,
82,
3712,
50,
38469,
90,
44,
11,
15751,
92,
1303,
3815,
329,
479,
198,
220,
220,
220,
479,
274,
3712,
50,
38469,
90,
44,
11,
15751,
92,
1303,
3815,
329,
37892,
2568,
198,
437,
198,
198,
8818,
34342,
29252,
16,
35,
7,
198,
220,
220,
220,
751,
3712,
38176,
90,
33,
577,
10652,
11,
37,
7780,
72,
10652,
17,
34,
19629,
198,
220,
220,
220,
334,
28,
16,
13,
15,
11,
256,
28,
16,
13,
15,
11,
4596,
6900,
796,
12575,
23024,
62,
6381,
79,
6900,
11,
198,
8,
198,
220,
220,
220,
337,
796,
997,
62,
76,
4147,
7,
2860,
8,
198,
220,
220,
220,
471,
11,
309,
796,
7719,
7,
22468,
7,
84,
828,
12178,
7,
83,
4008,
198,
220,
220,
220,
2239,
796,
362,
46582,
14,
44,
198,
220,
220,
220,
611,
318,
5088,
7,
44,
8,
198,
220,
220,
220,
220,
220,
220,
220,
923,
796,
532,
46582,
9,
7,
16,
10,
16,
14,
44,
8,
1343,
2239,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
923,
796,
532,
46582,
1343,
2239,
198,
220,
220,
220,
886,
198,
220,
220,
220,
479,
81,
796,
2837,
7,
9688,
26,
2239,
796,
2239,
11,
4129,
796,
337,
8,
198,
220,
220,
220,
479,
82,
796,
20546,
9250,
90,
44,
92,
7,
38584,
8,
198,
220,
220,
220,
1303,
479,
274,
796,
20546,
9250,
90,
44,
92,
32590,
17,
51,
9,
6966,
12195,
38584,
4008,
198,
220,
220,
220,
479,
274,
796,
20546,
9250,
90,
44,
92,
7,
51,
764,
9,
4596,
6900,
12195,
38584,
4008,
198,
220,
220,
220,
1441,
34342,
29252,
16,
35,
90,
4906,
1659,
7,
52,
828,
44,
11,
4906,
1659,
7,
2860,
828,
52,
11,
51,
92,
7,
2860,
11,
479,
82,
11,
479,
274,
8,
198,
437,
198,
198,
8818,
7308,
13,
12860,
7,
952,
3712,
9399,
11,
289,
3712,
16066,
23024,
29252,
16,
35,
8,
198,
220,
220,
220,
3601,
7,
952,
11,
366,
16066,
23024,
29252,
16,
35,
16763,
7,
71,
13,
2860,
1776,
334,
43641,
7,
71,
13,
84,
828,
256,
43641,
7,
71,
13,
83,
4008,
4943,
198,
437,
198,
198,
8818,
3599,
62,
21975,
7,
71,
3712,
16066,
23024,
29252,
16,
35,
8,
198,
220,
220,
220,
1441,
289,
13,
2860,
198,
437,
198,
198,
21982,
1273,
5620,
7,
3712,
6030,
90,
27,
25,
16066,
23024,
29252,
16,
35,
90,
27,
25,
15633,
11709,
8,
796,
1148,
9360,
2781,
666,
3419,
198,
198,
14881,
13,
1136,
26745,
7,
71,
3712,
16066,
23024,
29252,
16,
35,
11,
264,
3712,
13940,
23650,
8,
796,
651,
26745,
7,
71,
11,
3254,
7,
82,
4008,
198,
14881,
13,
1136,
26745,
7,
71,
3712,
16066,
23024,
29252,
16,
35,
11,
7904,
7762,
90,
25,
591,
30072,
796,
651,
3245,
7,
71,
11,
1058,
591,
8,
198,
14881,
13,
1136,
26745,
7,
71,
3712,
16066,
23024,
29252,
16,
35,
11,
7904,
7762,
90,
25,
5209,
30072,
796,
651,
3245,
7,
71,
11,
1058,
5209,
8,
198,
14881,
13,
1136,
26745,
7,
71,
3712,
16066,
23024,
29252,
16,
35,
11,
7904,
7762,
90,
25,
2860,
30072,
796,
651,
3245,
7,
71,
11,
1058,
2860,
8,
198,
14881,
13,
1136,
26745,
7,
71,
3712,
16066,
23024,
29252,
16,
35,
90,
27,
25,
7149,
11,
27,
25,
7149,
11,
27,
25,
7149,
11,
52,
5512,
7904,
7762,
90,
25,
84,
30072,
810,
1391,
52,
92,
796,
471,
198,
14881,
13,
1136,
26745,
7,
71,
3712,
16066,
23024,
29252,
16,
35,
90,
27,
25,
7149,
11,
27,
25,
7149,
11,
27,
25,
7149,
11,
27,
25,
7149,
11,
51,
5512,
7904,
7762,
90,
25,
83,
30072,
810,
1391,
51,
92,
796,
309,
198,
198,
591,
7,
71,
3712,
16066,
23024,
29252,
16,
35,
8,
796,
651,
3245,
7,
71,
11,
1058,
591,
8,
198,
198,
37811,
198,
220,
220,
220,
997,
62,
82,
4420,
62,
67,
12944,
306,
62,
28756,
62,
49315,
7,
21975,
8,
198,
198,
35561,
262,
1271,
286,
1702,
306,
290,
3385,
306,
12030,
5043,
329,
257,
37284,
9229,
1643,
4731,
2209,
13,
198,
198,
2,
17934,
198,
198,
15506,
63,
73,
335,
38441,
395,
198,
73,
43640,
29,
11582,
1547,
13,
22510,
62,
82,
4420,
62,
67,
12944,
306,
62,
28756,
62,
49315,
7,
33,
577,
10652,
90,
18,
11,
18,
92,
19510,
16,
11,
352,
11,
352,
22305,
198,
7,
18,
11,
657,
8,
198,
73,
43640,
29,
11582,
1547,
13,
22510,
62,
82,
4420,
62,
67,
12944,
306,
62,
28756,
62,
49315,
7,
33,
577,
10652,
90,
18,
11,
18,
92,
19510,
17,
11,
657,
11,
352,
22305,
198,
7,
17,
11,
352,
8,
198,
15506,
63,
198,
37811,
198,
8818,
997,
62,
82,
4420,
62,
67,
12944,
306,
62,
28756,
62,
49315,
7,
65,
3712,
33,
577,
10652,
8,
198,
220,
220,
220,
1702,
13508,
796,
657,
198,
220,
220,
220,
2255,
2436,
444,
796,
657,
198,
220,
220,
220,
329,
357,
77,
11,
4808,
11,
4808,
8,
287,
12030,
62,
76,
4147,
7,
65,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1702,
13508,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
2255,
2436,
444,
15853,
299,
1875,
352,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
1702,
13508,
11,
2255,
2436,
444,
198,
437,
198,
198,
8818,
997,
62,
82,
4420,
62,
67,
12944,
306,
62,
28756,
62,
49315,
7,
261,
7856,
3712,
23839,
19182,
8,
198,
220,
220,
220,
1303,
428,
530,
318,
5443,
416,
546,
257,
5766,
286,
362,
611,
345,
1541,
423,
262,
319,
7856,
198,
220,
220,
220,
1303,
5860,
1271,
286,
1702,
306,
290,
3385,
306,
12030,
5043,
198,
220,
220,
220,
1702,
13508,
796,
657,
198,
220,
220,
220,
2255,
2436,
444,
796,
657,
198,
220,
220,
220,
329,
299,
287,
319,
7856,
198,
220,
220,
220,
220,
220,
220,
220,
1702,
13508,
15853,
299,
1875,
657,
198,
220,
220,
220,
220,
220,
220,
220,
2255,
2436,
444,
15853,
299,
1875,
352,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
1702,
13508,
11,
2255,
2436,
444,
198,
437,
198,
198,
2,
3210,
7071,
2163,
198,
8818,
997,
62,
2364,
10989,
1840,
874,
7,
2763,
3712,
16066,
23024,
29252,
16,
35,
11,
751,
3712,
33,
577,
10652,
8,
198,
220,
220,
220,
1702,
13508,
11,
2255,
2436,
444,
796,
997,
62,
82,
4420,
62,
67,
12944,
306,
62,
28756,
62,
49315,
7,
2860,
8,
198,
220,
220,
220,
1441,
997,
62,
2364,
10989,
1840,
874,
7,
2763,
11,
751,
11,
1702,
13508,
11,
2255,
2436,
444,
8,
198,
437,
198,
198,
2,
604,
12,
49140,
2196,
198,
31,
45145,
2163,
997,
62,
2364,
10989,
1840,
874,
7,
2763,
3712,
16066,
23024,
29252,
16,
35,
11,
751,
3712,
33,
577,
10652,
11,
1702,
13508,
11,
2255,
2436,
444,
8,
198,
220,
220,
220,
337,
796,
997,
62,
76,
4147,
7,
2763,
8,
198,
220,
220,
220,
1441,
1702,
13508,
1635,
357,
12215,
13508,
532,
352,
8,
1635,
357,
44,
532,
362,
8,
1343,
2255,
2436,
444,
1635,
357,
44,
532,
352,
8,
198,
437,
198,
31,
45145,
2163,
997,
62,
2364,
10989,
1840,
874,
7,
2763,
3712,
16066,
23024,
29252,
16,
35,
11,
751,
3712,
37,
7780,
72,
10652,
17,
34,
90,
45,
16,
11,
45,
17,
30072,
810,
1391,
45,
16,
11,
45,
17,
92,
198,
220,
220,
220,
337,
796,
997,
62,
76,
4147,
7,
2763,
8,
198,
220,
220,
220,
1441,
399,
16,
1635,
399,
17,
1635,
357,
44,
532,
352,
8,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
12858,
62,
39437,
62,
10989,
27923,
7,
39,
11,
3975,
3712,
47658,
798,
19076,
13912,
8,
198,
198,
7293,
1133,
40039,
10375,
2568,
3381,
13,
198,
198,
2,
17934,
198,
198,
15506,
63,
73,
335,
38441,
395,
198,
73,
43640,
29,
257,
796,
347,
577,
10652,
90,
21,
11,
20,
92,
19510,
16,
11,
17,
11,
18,
11,
15,
11,
15,
4008,
198,
33,
577,
10652,
90,
21,
11,
20,
92,
19510,
16,
11,
362,
11,
513,
11,
657,
11,
657,
4008,
198,
198,
73,
43640,
29,
367,
796,
34342,
29252,
16,
35,
7,
64,
1776,
198,
198,
73,
43640,
29,
11582,
1547,
13,
32542,
298,
388,
62,
39437,
62,
10989,
27923,
7,
39,
11,
15227,
798,
19076,
13912,
7,
64,
4008,
198,
20,
13,
17,
198,
15506,
63,
198,
37811,
198,
31,
45145,
2163,
12858,
62,
39437,
62,
10989,
27923,
7,
198,
220,
220,
220,
289,
3712,
16066,
23024,
29252,
16,
35,
90,
27,
25,
7149,
11,
44,
11,
27,
25,
33,
577,
10652,
5512,
3975,
198,
8,
810,
1391,
44,
92,
198,
220,
220,
220,
1441,
289,
13,
84,
1220,
362,
44,
1635,
12858,
62,
39437,
62,
10989,
27923,
7,
8899,
8,
198,
437,
198,
31,
45145,
2163,
12858,
62,
39437,
62,
10989,
27923,
7,
198,
220,
220,
220,
289,
3712,
16066,
23024,
29252,
16,
35,
90,
27,
25,
7149,
11,
44,
11,
27,
25,
37,
7780,
72,
10652,
17,
34,
5512,
3975,
62,
64,
11,
3975,
62,
65,
198,
8,
810,
1391,
44,
92,
198,
220,
220,
220,
1441,
289,
13,
84,
1220,
362,
44,
1635,
12858,
62,
39437,
62,
10989,
27923,
7,
8899,
62,
64,
11,
3975,
62,
65,
8,
198,
437,
198,
198,
31,
45145,
2163,
40039,
62,
30854,
7,
71,
3712,
16066,
23024,
29252,
16,
35,
11,
751,
3712,
33,
577,
10652,
8,
198,
220,
220,
220,
3975,
796,
15227,
798,
19076,
13912,
7,
2860,
8,
198,
220,
220,
220,
1441,
16605,
7,
71,
13,
5209,
11,
3975,
8,
1343,
12858,
62,
39437,
62,
10989,
27923,
7,
71,
11,
3975,
8,
198,
437,
198,
31,
45145,
2163,
40039,
62,
30854,
7,
71,
3712,
16066,
23024,
29252,
16,
35,
11,
751,
3712,
37,
7780,
72,
10652,
17,
34,
8,
198,
220,
220,
220,
3975,
62,
64,
796,
15227,
798,
19076,
13912,
7,
2860,
13,
5589,
3906,
58,
16,
12962,
198,
220,
220,
220,
3975,
62,
65,
796,
15227,
798,
19076,
13912,
7,
2860,
13,
5589,
3906,
58,
17,
12962,
198,
220,
220,
220,
1441,
16605,
7,
71,
13,
5209,
11,
3975,
62,
64,
8,
1343,
16605,
7,
71,
13,
5209,
11,
3975,
62,
65,
8,
1343,
198,
220,
220,
220,
220,
220,
220,
220,
12858,
62,
39437,
62,
10989,
27923,
7,
71,
11,
3975,
62,
64,
11,
3975,
62,
65,
8,
198,
437,
198,
198,
31,
45145,
2163,
651,
62,
2364,
10989,
27923,
7,
198,
220,
220,
220,
8891,
3712,
16066,
23024,
29252,
16,
35,
90,
27,
25,
7149,
11,
44,
11,
32,
5512,
751,
3712,
32,
11,
7147,
11,
3975,
28,
47658,
798,
19076,
13912,
7,
2860,
8,
198,
8,
810,
1391,
44,
11,
32,
27,
25,
33,
577,
10652,
92,
198,
220,
220,
220,
751,
11,
319,
11167,
796,
12858,
62,
39437,
62,
41194,
3780,
7,
2860,
11,
7147,
11,
3975,
8,
198,
220,
220,
220,
1441,
751,
11,
8891,
13,
84,
29006,
17,
9,
44,
27493,
261,
11167,
198,
437,
198,
31,
45145,
2163,
651,
62,
2364,
10989,
27923,
7,
198,
220,
220,
220,
8891,
3712,
16066,
23024,
29252,
16,
35,
90,
27,
25,
7149,
11,
44,
11,
32,
5512,
751,
3712,
32,
11,
7147,
11,
198,
220,
220,
220,
3975,
62,
64,
28,
47658,
798,
19076,
13912,
7,
2860,
13,
5589,
3906,
58,
16,
46570,
3975,
62,
65,
28,
47658,
798,
19076,
13912,
7,
2860,
13,
5589,
3906,
58,
17,
12962,
198,
8,
810,
1391,
44,
11,
32,
27,
25,
37,
7780,
72,
10652,
17,
34,
92,
198,
220,
220,
220,
751,
62,
64,
11,
751,
62,
65,
796,
751,
13,
5589,
3906,
198,
220,
220,
220,
649,
62,
2860,
62,
64,
11,
649,
62,
2860,
62,
65,
11,
319,
11167,
796,
12858,
62,
39437,
62,
41194,
3780,
7,
198,
220,
220,
220,
220,
220,
220,
220,
751,
62,
64,
11,
751,
62,
65,
11,
7147,
11,
3975,
62,
64,
11,
3975,
62,
65,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
1441,
49355,
10652,
7,
3605,
62,
2860,
62,
64,
11,
649,
62,
2860,
62,
65,
828,
8891,
13,
84,
14,
44,
1635,
319,
11167,
198,
437,
198,
198,
21017,
198,
21017,
572,
10989,
1840,
874,
198,
21017,
198,
37811,
198,
220,
220,
220,
3242,
10989,
1840,
874,
33,
577,
29252,
16,
35,
198,
198,
13409,
1143,
685,
63,
23839,
9362,
10989,
1840,
874,
63,
16151,
31,
5420,
8,
326,
7622,
2610,
286,
1702,
306,
290,
3385,
306,
12030,
198,
49315,
287,
1459,
2209,
13,
198,
37811,
198,
7249,
3242,
10989,
1840,
874,
33,
577,
29252,
16,
35,
90,
198,
220,
220,
220,
317,
27,
25,
33,
577,
10652,
11,
51,
11,
39,
27,
25,
23839,
45405,
666,
90,
51,
5512,
46,
27,
25,
47658,
798,
19076,
13912,
198,
92,
1279,
25,
27741,
9362,
10989,
1840,
874,
90,
32,
11,
51,
92,
198,
220,
220,
220,
8891,
9044,
666,
3712,
39,
198,
220,
220,
220,
2209,
3712,
32,
198,
220,
220,
220,
4129,
3712,
5317,
198,
220,
220,
220,
3975,
3712,
46,
198,
437,
198,
198,
8818,
572,
10989,
1840,
874,
7,
71,
3712,
16066,
23024,
29252,
16,
35,
11,
257,
3712,
33,
577,
10652,
8,
198,
220,
220,
220,
3975,
796,
15227,
798,
19076,
13912,
7,
64,
8,
198,
220,
220,
220,
1702,
13508,
796,
4129,
7,
8899,
8,
198,
220,
220,
220,
2255,
2436,
444,
796,
954,
7,
72,
4613,
1312,
13,
13966,
22510,
26870,
362,
11,
3975,
8,
198,
220,
220,
220,
997,
796,
997,
62,
2364,
10989,
1840,
874,
7,
71,
11,
257,
11,
1702,
13508,
11,
2255,
2436,
444,
8,
198,
220,
220,
220,
1441,
3242,
10989,
1840,
874,
33,
577,
29252,
16,
35,
7,
71,
11,
257,
11,
997,
11,
3975,
8,
198,
437,
198,
198,
8818,
7308,
13,
1136,
9630,
7,
82,
3712,
9362,
10989,
1840,
874,
33,
577,
29252,
16,
35,
90,
32,
11,
51,
5512,
1312,
2599,
25,
51,
29291,
90,
32,
11,
51,
92,
810,
1391,
32,
11,
51,
92,
198,
220,
220,
220,
2488,
7784,
15952,
694,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
352,
41305,
1312,
41305,
264,
13,
13664,
8614,
3714,
7,
33,
3733,
12331,
7,
82,
11,
1312,
4008,
198,
220,
220,
220,
886,
198,
220,
220,
220,
649,
62,
21975,
11,
17593,
62,
30854,
796,
651,
62,
2364,
10989,
27923,
7,
82,
13,
2763,
9044,
666,
11,
264,
13,
21975,
11,
1312,
11,
264,
13,
8899,
8,
198,
220,
220,
220,
1441,
357,
3605,
62,
21975,
11,
17593,
62,
30854,
8,
198,
437,
198,
198,
14881,
13,
7857,
7,
82,
3712,
9362,
10989,
1840,
874,
33,
577,
29252,
16,
35,
8,
796,
357,
82,
13,
13664,
35751,
198,
198,
7249,
3242,
10989,
1840,
874,
37,
7780,
72,
29252,
16,
35,
17,
34,
90,
198,
220,
220,
220,
376,
27,
25,
37,
7780,
72,
10652,
17,
34,
11,
51,
11,
39,
27,
25,
23839,
45405,
666,
90,
51,
5512,
46,
16,
11,
46,
17,
198,
92,
1279,
25,
27741,
9362,
10989,
1840,
874,
90,
37,
11,
51,
92,
198,
220,
220,
220,
8891,
9044,
666,
3712,
39,
198,
220,
220,
220,
2209,
3712,
37,
198,
220,
220,
220,
4129,
3712,
5317,
198,
220,
220,
220,
3975,
62,
64,
3712,
46,
16,
198,
220,
220,
220,
3975,
62,
65,
3712,
46,
17,
198,
437,
198,
198,
8818,
572,
10989,
1840,
874,
7,
71,
3712,
16066,
23024,
29252,
16,
35,
11,
277,
3712,
37,
7780,
72,
10652,
17,
34,
8,
198,
220,
220,
220,
552,
62,
64,
11,
552,
62,
65,
796,
277,
13,
5589,
3906,
198,
220,
220,
220,
3975,
62,
64,
796,
15227,
798,
19076,
13912,
7,
5589,
62,
64,
8,
198,
220,
220,
220,
3975,
62,
65,
796,
15227,
798,
19076,
13912,
7,
5589,
62,
65,
8,
198,
220,
220,
220,
997,
796,
997,
62,
2364,
10989,
1840,
874,
7,
71,
11,
277,
8,
198,
220,
220,
220,
1441,
3242,
10989,
1840,
874,
37,
7780,
72,
29252,
16,
35,
17,
34,
7,
71,
11,
277,
11,
997,
11,
3975,
62,
64,
11,
3975,
62,
65,
8,
198,
437,
198,
198,
14881,
13,
7857,
7,
82,
3712,
9362,
10989,
1840,
874,
37,
7780,
72,
29252,
16,
35,
17,
34,
8,
796,
357,
82,
13,
13664,
35751,
198,
198,
8818,
7308,
13,
1136,
9630,
7,
82,
3712,
9362,
10989,
1840,
874,
37,
7780,
72,
29252,
16,
35,
17,
34,
90,
32,
11,
51,
5512,
1312,
2599,
25,
51,
29291,
90,
32,
11,
51,
92,
810,
1391,
32,
11,
51,
92,
198,
220,
220,
220,
2488,
7784,
15952,
694,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
1312,
41305,
1312,
41305,
264,
13,
13664,
8614,
3714,
7,
33,
3733,
12331,
7,
82,
11,
1312,
4008,
198,
220,
220,
220,
886,
198,
220,
220,
220,
649,
62,
21975,
11,
17593,
62,
30854,
796,
651,
62,
2364,
10989,
27923,
7,
198,
220,
220,
220,
220,
220,
220,
220,
264,
13,
2763,
9044,
666,
11,
264,
13,
21975,
11,
1312,
11,
264,
13,
8899,
62,
64,
11,
264,
13,
8899,
62,
65,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
1441,
357,
3605,
62,
21975,
11,
17593,
62,
30854,
8,
198,
437,
198,
198,
21017,
198,
21017,
12858,
198,
21017,
198,
7249,
29278,
388,
29252,
16,
35,
90,
51,
11,
39,
27,
25,
23839,
45405,
666,
90,
51,
11709,
1279,
25,
27741,
45405,
666,
90,
51,
92,
198,
220,
220,
220,
8891,
3712,
39,
198,
437,
198,
21982,
1273,
5620,
7,
3712,
6030,
90,
29252,
298,
388,
29252,
16,
35,
90,
39,
11,
51,
11709,
8,
810,
1391,
39,
11,
51,
1279,
25,
6416,
92,
796,
1148,
9360,
2781,
666,
3419,
198,
22510,
62,
2364,
10989,
1840,
874,
7,
2763,
3712,
29252,
298,
388,
29252,
16,
35,
11,
751,
8,
796,
657,
198,
10989,
27923,
62,
30854,
7,
32542,
3712,
29252,
298,
388,
29252,
16,
35,
11,
751,
8,
796,
953,
16,
7,
261,
81,
7,
2860,
8,
158,
233,
227,
591,
7,
32542,
13,
2763,
8,
1343,
18074,
222,
11,
362,
46582,
8,
532,
18074,
222,
1303,
5591,
656,
13841,
46582,
11,
18074,
222,
60,
198,
198,
32542,
298,
388,
7,
2763,
3712,
16066,
23024,
29252,
16,
35,
8,
796,
29278,
388,
29252,
16,
35,
7,
2763,
8,
198
] | 2.239726 | 3,504 |
module AtomicLevels
using UnicodeFun
using Formatting
using Parameters
using BlockBandedMatrices
using WignerSymbols
using HalfIntegers
using Combinatorics
include("common.jl")
include("unicode.jl")
include("parity.jl")
include("orbitals.jl")
include("relativistic_orbitals.jl")
include("spin_orbitals.jl")
include("configurations.jl")
include("excited_configurations.jl")
include("terms.jl")
include("allchoices.jl")
include("jj_terms.jl")
include("intermediate_terms.jl")
include("couple_terms.jl")
include("csfs.jl")
include("jj2lsj.jl")
include("levels.jl")
module Utils
include("utils/print_states.jl")
end
# Deprecations
@deprecate jj2lsj(args...) jj2ℓsj(args...)
end # module
| [
21412,
28976,
4971,
82,
198,
198,
3500,
34371,
24629,
198,
3500,
18980,
889,
198,
3500,
40117,
198,
3500,
9726,
33,
12249,
19044,
45977,
198,
3500,
370,
570,
263,
13940,
2022,
10220,
198,
3500,
13139,
34500,
364,
198,
3500,
955,
8800,
1352,
873,
198,
198,
17256,
7203,
11321,
13,
20362,
4943,
198,
17256,
7203,
46903,
1098,
13,
20362,
4943,
198,
17256,
7203,
1845,
414,
13,
20362,
4943,
198,
17256,
7203,
42594,
874,
13,
20362,
4943,
198,
17256,
7203,
2411,
265,
452,
2569,
62,
42594,
874,
13,
20362,
4943,
198,
17256,
7203,
39706,
62,
42594,
874,
13,
20362,
4943,
198,
17256,
7203,
11250,
20074,
13,
20362,
4943,
198,
17256,
7203,
41194,
863,
62,
11250,
20074,
13,
20362,
4943,
198,
17256,
7203,
38707,
13,
20362,
4943,
198,
17256,
7203,
439,
6679,
1063,
13,
20362,
4943,
198,
17256,
7203,
41098,
62,
38707,
13,
20362,
4943,
198,
17256,
7203,
3849,
13857,
62,
38707,
13,
20362,
4943,
198,
17256,
7203,
66,
43846,
62,
38707,
13,
20362,
4943,
198,
17256,
7203,
6359,
9501,
13,
20362,
4943,
198,
17256,
7203,
41098,
17,
7278,
73,
13,
20362,
4943,
198,
17256,
7203,
46170,
13,
20362,
4943,
198,
198,
21412,
7273,
4487,
198,
17256,
7203,
26791,
14,
4798,
62,
27219,
13,
20362,
4943,
198,
437,
198,
198,
2,
2129,
8344,
602,
198,
31,
10378,
8344,
378,
474,
73,
17,
7278,
73,
7,
22046,
23029,
474,
73,
17,
158,
226,
241,
82,
73,
7,
22046,
23029,
198,
198,
437,
1303,
8265,
198
] | 2.866667 | 240 |
module ARCSolver
export main, simple
using Reexport
include("grids.jl")
@reexport using .Grids
include("render.jl")
@reexport using .Render
include("solve.jl")
@reexport using .Solve
include("diff.jl")
@reexport using .Diff
using Images, ImageView
function main()
tasks = load_tasks()
# warmstart
print("warmstarting...")
to_img(diff_grids(tasks[14].ios[1]...))
println("done")
diffgrids = Vector{ARCDiffGrid}(undef, length(tasks))
@time for i in 1:length(tasks)
println(i)
diffgrids[i] = diff_grids(tasks[i].ios[1]...)
end
@time for (i,(grid,task)) in enumerate(zip(diffgrids,tasks))
println(i)
Images.save("out/diffs/$(splitpath(task.path)[end]).png",to_img(grid))
end
println(sizeof(diffgrids))
println(sizeof(tasks))
end
function simple()
task = load_tasks(n=20)[14]
dg = diff_grids(task.ios[1]...)
to_img(dg)
end
end
| [
21412,
5923,
7902,
14375,
198,
198,
39344,
1388,
11,
2829,
198,
198,
3500,
797,
39344,
198,
17256,
7203,
2164,
2340,
13,
20362,
4943,
198,
31,
631,
87,
634,
1262,
764,
8642,
2340,
198,
198,
17256,
7203,
13287,
13,
20362,
4943,
198,
31,
631,
87,
634,
1262,
764,
45819,
198,
198,
17256,
7203,
82,
6442,
13,
20362,
4943,
198,
31,
631,
87,
634,
1262,
764,
50,
6442,
198,
198,
17256,
7203,
26069,
13,
20362,
4943,
198,
31,
631,
87,
634,
1262,
764,
28813,
198,
198,
3500,
5382,
11,
7412,
7680,
198,
198,
8818,
1388,
3419,
198,
220,
220,
220,
8861,
796,
3440,
62,
83,
6791,
3419,
628,
220,
220,
220,
1303,
5814,
9688,
198,
220,
220,
220,
3601,
7203,
31975,
38690,
9313,
8,
198,
220,
220,
220,
284,
62,
9600,
7,
26069,
62,
2164,
2340,
7,
83,
6791,
58,
1415,
4083,
4267,
58,
16,
60,
986,
4008,
198,
220,
220,
220,
44872,
7203,
28060,
4943,
628,
220,
220,
220,
814,
2164,
2340,
796,
20650,
90,
1503,
8610,
733,
41339,
92,
7,
917,
891,
11,
4129,
7,
83,
6791,
4008,
198,
220,
220,
220,
2488,
2435,
329,
1312,
287,
352,
25,
13664,
7,
83,
6791,
8,
198,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
72,
8,
198,
220,
220,
220,
220,
220,
220,
220,
814,
2164,
2340,
58,
72,
60,
796,
814,
62,
2164,
2340,
7,
83,
6791,
58,
72,
4083,
4267,
58,
16,
60,
23029,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
2435,
329,
357,
72,
11,
7,
25928,
11,
35943,
4008,
287,
27056,
378,
7,
13344,
7,
26069,
2164,
2340,
11,
83,
6791,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
72,
8,
198,
220,
220,
220,
220,
220,
220,
220,
5382,
13,
21928,
7203,
448,
14,
67,
10203,
32624,
7,
35312,
6978,
7,
35943,
13,
6978,
38381,
437,
35944,
11134,
1600,
1462,
62,
9600,
7,
25928,
4008,
198,
220,
220,
220,
886,
198,
220,
220,
220,
44872,
7,
7857,
1659,
7,
26069,
2164,
2340,
4008,
198,
220,
220,
220,
44872,
7,
7857,
1659,
7,
83,
6791,
4008,
198,
437,
198,
198,
8818,
2829,
3419,
198,
220,
220,
220,
4876,
796,
3440,
62,
83,
6791,
7,
77,
28,
1238,
38381,
1415,
60,
198,
220,
220,
220,
288,
70,
796,
814,
62,
2164,
2340,
7,
35943,
13,
4267,
58,
16,
60,
23029,
198,
220,
220,
220,
284,
62,
9600,
7,
67,
70,
8,
198,
437,
198,
198,
437,
198
] | 2.280788 | 406 |
int_rules_9_2 = @theory begin
#= ::Subsection::Closed:: =#
#= 9.2*Derivative*integration*rules =#
@apply_utils Antiderivative(((Derivative(~n))(~f))(~x), ~x) => ((Derivative(~n - 1))(~f))(~x) <-- FreeQ([~f, ~n], ~x)
@apply_utils Antiderivative((~(c') * (~F) ^ (~(a') + ~(b') * ~x)) ^ ~(p') * ((Derivative(~n))(~f))(~x), ~x) => (~c * (~F) ^ (~a + ~b * ~x)) ^ ~p * ((Derivative(~n - 1))(~f))(~x) - ~b * ~p * log(~F) * Antiderivative((~c * (~F) ^ (~a + ~b * ~x)) ^ ~p * ((Derivative(~n - 1))(~f))(~x), ~x) <-- FreeQ([~a, ~b, ~c, ~f, ~F, ~p], ~x) && IGtQ(~n, 0)
@apply_utils Antiderivative((~(c') * (~F) ^ (~(a') + ~(b') * ~x)) ^ ~(p') * ((Derivative(~n))(~f))(~x), ~x) => ((~c * (~F) ^ (~a + ~b * ~x)) ^ ~p * ((Derivative(~n))(~f))(~x)) / (~b * ~p * log(~F)) - (1 / (~b * ~p * log(~F))) * Antiderivative((~c * (~F) ^ (~a + ~b * ~x)) ^ ~p * ((Derivative(~n + 1))(~f))(~x), ~x) <-- FreeQ([~a, ~b, ~c, ~f, ~F, ~p], ~x) && ILtQ(~n, 0)
@apply_utils Antiderivative(sin(~(a') + ~(b') * ~x) * ((Derivative(~n))(~f))(~x), ~x) => sin(~a + ~b * ~x) * ((Derivative(~n - 1))(~f))(~x) - ~b * Antiderivative(cos(~a + ~b * ~x) * ((Derivative(~n - 1))(~f))(~x), ~x) <-- FreeQ([~a, ~b, ~f], ~x) && IGtQ(~n, 0)
@apply_utils Antiderivative(cos(~(a') + ~(b') * ~x) * ((Derivative(~n))(~f))(~x), ~x) => cos(~a + ~b * ~x) * ((Derivative(~n - 1))(~f))(~x) + ~b * Antiderivative(sin(~a + ~b * ~x) * ((Derivative(~n - 1))(~f))(~x), ~x) <-- FreeQ([~a, ~b, ~f], ~x) && IGtQ(~n, 0)
@apply_utils Antiderivative(sin(~(a') + ~(b') * ~x) * ((Derivative(~n))(~f))(~x), ~x) => (-(cos(~a + ~b * ~x)) * ((Derivative(~n))(~f))(~x)) / ~b + (1 / ~b) * Antiderivative(cos(~a + ~b * ~x) * ((Derivative(~n + 1))(~f))(~x), ~x) <-- FreeQ([~a, ~b, ~f], ~x) && ILtQ(~n, 0)
@apply_utils Antiderivative(cos(~(a') + ~(b') * ~x) * ((Derivative(~n))(~f))(~x), ~x) => (sin(~a + ~b * ~x) * ((Derivative(~n))(~f))(~x)) / ~b - (1 / ~b) * Antiderivative(sin(~a + ~b * ~x) * ((Derivative(~n + 1))(~f))(~x), ~x) <-- FreeQ([~a, ~b, ~f], ~x) && ILtQ(~n, 0)
@apply_utils Antiderivative(~u * ((Derivative(~n))(~f))(~x), ~x) => Subst(Antiderivative(SimplifyIntegrand(SubstFor(((Derivative(~n - 1))(~f))(~x), ~u, ~x), ~x), ~x), ~x, ((Derivative(~n - 1))(~f))(~x)) <-- FreeQ([~f, ~n], ~x) && FunctionOfQ(((Derivative(~n - 1))(~f))(~x), ~u, ~x)
@apply_utils Antiderivative(~u * (~(a') * ((Derivative(1))(~f))(~x) * (~g)(~x) + ~(a') * (~f)(~x) * ((Derivative(1))(~g))(~x)), ~x) => ~a * Subst(Antiderivative(SimplifyIntegrand(SubstFor((~f)(~x) * (~g)(~x), ~u, ~x), ~x), ~x), ~x, (~f)(~x) * (~g)(~x)) <-- FreeQ([~a, ~f, ~g], ~x) && FunctionOfQ((~f)(~x) * (~g)(~x), ~u, ~x)
@apply_utils Antiderivative(~u * (~(a') * ((Derivative(~m))(~f))(~x) * (~g)(~x) + ~(a') * ((Derivative(~m1))(~f))(~x) * ((Derivative(1))(~g))(~x)), ~x) => ~a * Subst(Antiderivative(SimplifyIntegrand(SubstFor(((Derivative(~m - 1))(~f))(~x) * (~g)(~x), ~u, ~x), ~x), ~x), ~x, ((Derivative(~m - 1))(~f))(~x) * (~g)(~x)) <-- FreeQ([~a, ~f, ~g, ~m], ~x) && (EqQ(~m1, ~m - 1) && FunctionOfQ(((Derivative(~m - 1))(~f))(~x) * (~g)(~x), ~u, ~x))
@apply_utils Antiderivative(~u * (~(a') * ((Derivative(~m))(~f))(~x) * ((Derivative(~n1))(~g))(~x) + ~(a') * ((Derivative(~m1))(~f))(~x) * ((Derivative(~n))(~g))(~x)), ~x) => ~a * Subst(Antiderivative(SimplifyIntegrand(SubstFor(((Derivative(~m - 1))(~f))(~x) * ((Derivative(~n - 1))(~g))(~x), ~u, ~x), ~x), ~x), ~x, ((Derivative(~m - 1))(~f))(~x) * ((Derivative(~n - 1))(~g))(~x)) <-- FreeQ([~a, ~f, ~g, ~m, ~n], ~x) && (EqQ(~m1, ~m - 1) && (EqQ(~n1, ~n - 1) && FunctionOfQ(((Derivative(~m - 1))(~f))(~x) * ((Derivative(~n - 1))(~g))(~x), ~u, ~x)))
@apply_utils Antiderivative(~u * (~f)(~x) ^ ~(p') * (~(a') * ((Derivative(1))(~f))(~x) * (~g)(~x) + ~(b') * (~f)(~x) * ((Derivative(1))(~g))(~x)), ~x) => ~b * Subst(Antiderivative(SimplifyIntegrand(SubstFor((~f)(~x) ^ (~p + 1) * (~g)(~x), ~u, ~x), ~x), ~x), ~x, (~f)(~x) ^ (~p + 1) * (~g)(~x)) <-- FreeQ([~a, ~b, ~f, ~g, ~p], ~x) && (EqQ(~a, ~b * (~p + 1)) && FunctionOfQ((~f)(~x) ^ (~p + 1) * (~g)(~x), ~u, ~x))
@apply_utils Antiderivative(~u * ((Derivative(~m1))(~f))(~x) ^ ~(p') * (~(a') * ((Derivative(~m))(~f))(~x) * (~g)(~x) + ~(b') * ((Derivative(~m1))(~f))(~x) * ((Derivative(1))(~g))(~x)), ~x) => ~b * Subst(Antiderivative(SimplifyIntegrand(SubstFor(((Derivative(~m - 1))(~f))(~x) ^ (~p + 1) * (~g)(~x), ~u, ~x), ~x), ~x), ~x, ((Derivative(~m - 1))(~f))(~x) ^ (~p + 1) * (~g)(~x)) <-- FreeQ([~a, ~b, ~f, ~g, ~m, ~p], ~x) && (EqQ(~m1, ~m - 1) && (EqQ(~a, ~b * (~p + 1)) && FunctionOfQ(((Derivative(~m - 1))(~f))(~x) ^ (~p + 1) * (~g)(~x), ~u, ~x)))
@apply_utils Antiderivative(~u * (~g)(~x) ^ ~(q') * (~(a') * ((Derivative(~m))(~f))(~x) * (~g)(~x) + ~(b') * ((Derivative(~m1))(~f))(~x) * ((Derivative(1))(~g))(~x)), ~x) => ~a * Subst(Antiderivative(SimplifyIntegrand(SubstFor(((Derivative(~m - 1))(~f))(~x) * (~g)(~x) ^ (~q + 1), ~u, ~x), ~x), ~x), ~x, ((Derivative(~m - 1))(~f))(~x) * (~g)(~x) ^ (~q + 1)) <-- FreeQ([~a, ~b, ~f, ~g, ~m, ~q], ~x) && (EqQ(~m1, ~m - 1) && (EqQ(~a * (~q + 1), ~b) && FunctionOfQ(((Derivative(~m - 1))(~f))(~x) * (~g)(~x) ^ (~q + 1), ~u, ~x)))
@apply_utils Antiderivative(~u * ((Derivative(~m1))(~f))(~x) ^ ~(p') * (~(a') * ((Derivative(~m))(~f))(~x) * ((Derivative(~n1))(~g))(~x) + ~(b') * ((Derivative(~m1))(~f))(~x) * ((Derivative(~n))(~g))(~x)), ~x) => ~b * Subst(Antiderivative(SimplifyIntegrand(SubstFor(((Derivative(~m - 1))(~f))(~x) ^ (~p + 1) * ((Derivative(~n - 1))(~g))(~x), ~u, ~x), ~x), ~x), ~x, ((Derivative(~m - 1))(~f))(~x) ^ (~p + 1) * ((Derivative(~n - 1))(~g))(~x)) <-- FreeQ([~a, ~b, ~f, ~g, ~m, ~n, ~p], ~x) && (EqQ(~m1, ~m - 1) && (EqQ(~n1, ~n - 1) && (EqQ(~a, ~b * (~p + 1)) && FunctionOfQ(((Derivative(~m - 1))(~f))(~x) ^ (~p + 1) * ((Derivative(~n - 1))(~g))(~x), ~u, ~x))))
@apply_utils Antiderivative(~u * (~f)(~x) ^ ~(p') * (~g)(~x) ^ ~(q') * (~(a') * ((Derivative(1))(~f))(~x) * (~g)(~x) + ~(b') * (~f)(~x) * ((Derivative(1))(~g))(~x)), ~x) => (~a / (~p + 1)) * Subst(Antiderivative(SimplifyIntegrand(SubstFor((~f)(~x) ^ (~p + 1) * (~g)(~x) ^ (~q + 1), ~u, ~x), ~x), ~x), ~x, (~f)(~x) ^ (~p + 1) * (~g)(~x) ^ (~q + 1)) <-- FreeQ([~a, ~b, ~f, ~g, ~p, ~q], ~x) && (EqQ(~a * (~q + 1), ~b * (~p + 1)) && FunctionOfQ((~f)(~x) ^ (~p + 1) * (~g)(~x) ^ (~q + 1), ~u, ~x))
@apply_utils Antiderivative(~u * ((Derivative(~m1))(~f))(~x) ^ ~(p') * (~g)(~x) ^ ~(q') * (~(a') * ((Derivative(~m))(~f))(~x) * (~g)(~x) + ~(b') * ((Derivative(~m1))(~f))(~x) * ((Derivative(1))(~g))(~x)), ~x) => (~a / (~p + 1)) * Subst(Antiderivative(SimplifyIntegrand(SubstFor(((Derivative(~m - 1))(~f))(~x) ^ (~p + 1) * (~g)(~x) ^ (~q + 1), ~u, ~x), ~x), ~x), ~x, ((Derivative(~m - 1))(~f))(~x) ^ (~p + 1) * (~g)(~x) ^ (~q + 1)) <-- FreeQ([~a, ~b, ~f, ~g, ~m, ~p, ~q], ~x) && (EqQ(~m1, ~m - 1) && (EqQ(~a * (~q + 1), ~b * (~p + 1)) && FunctionOfQ(((Derivative(~m - 1))(~f))(~x) ^ (~p + 1) * (~g)(~x) ^ (~q + 1), ~u, ~x)))
@apply_utils Antiderivative(~u * ((Derivative(~m1))(~f))(~x) ^ ~(p') * ((Derivative(~n1))(~g))(~x) ^ ~(q') * (~(a') * ((Derivative(~m))(~f))(~x) * ((Derivative(~n1))(~g))(~x) + ~(b') * ((Derivative(~m1))(~f))(~x) * ((Derivative(~n))(~g))(~x)), ~x) => (~a / (~p + 1)) * Subst(Antiderivative(SimplifyIntegrand(SubstFor(((Derivative(~m - 1))(~f))(~x) ^ (~p + 1) * ((Derivative(~n - 1))(~g))(~x) ^ (~q + 1), ~u, ~x), ~x), ~x), ~x, ((Derivative(~m - 1))(~f))(~x) ^ (~p + 1) * ((Derivative(~n - 1))(~g))(~x) ^ (~q + 1)) <-- FreeQ([~a, ~b, ~f, ~g, ~m, ~n, ~p, ~q], ~x) && (EqQ(~m1, ~m - 1) && (EqQ(~n1, ~n - 1) && (EqQ(~a * (~q + 1), ~b * (~p + 1)) && FunctionOfQ(((Derivative(~m - 1))(~f))(~x) ^ (~p + 1) * ((Derivative(~n - 1))(~g))(~x) ^ (~q + 1), ~u, ~x))))
@apply_utils Antiderivative(((~f)')(~x) * (~g)(~x) + (~f)(~x) * ((~g)')(~x), ~x) => (~f)(~x) * (~g)(~x) <-- FreeQ([~f, ~g], ~x)
@apply_utils Antiderivative((((~f)')(~x) * (~g)(~x) - (~f)(~x) * ((~g)')(~x)) / (~g)(~x) ^ 2, ~x) => (~f)(~x) / (~g)(~x) <-- FreeQ([~f, ~g], ~x)
@apply_utils Antiderivative((((~f)')(~x) * (~g)(~x) - (~f)(~x) * ((~g)')(~x)) / ((~f)(~x) * (~g)(~x)), ~x) => log((~f)(~x) / (~g)(~x)) <-- FreeQ([~f, ~g], ~x)
end
| [
600,
62,
38785,
62,
24,
62,
17,
796,
2488,
1169,
652,
2221,
628,
220,
220,
220,
1303,
28,
7904,
7004,
5458,
3712,
2601,
1335,
3712,
796,
2,
198,
220,
220,
220,
1303,
28,
860,
13,
17,
9,
28532,
452,
876,
9,
18908,
1358,
9,
38785,
796,
2,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
19510,
7,
28532,
452,
876,
7,
93,
77,
4008,
7,
93,
69,
4008,
7,
93,
87,
828,
5299,
87,
8,
5218,
14808,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1279,
438,
3232,
48,
26933,
93,
69,
11,
5299,
77,
4357,
5299,
87,
8,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
19510,
93,
7,
66,
11537,
1635,
31034,
37,
8,
10563,
31034,
7,
64,
11537,
1343,
5299,
7,
65,
11537,
1635,
5299,
87,
4008,
10563,
5299,
7,
79,
11537,
1635,
14808,
28532,
452,
876,
7,
93,
77,
4008,
7,
93,
69,
4008,
7,
93,
87,
828,
5299,
87,
8,
5218,
31034,
66,
1635,
31034,
37,
8,
10563,
31034,
64,
1343,
5299,
65,
1635,
5299,
87,
4008,
10563,
5299,
79,
1635,
14808,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
532,
5299,
65,
1635,
5299,
79,
1635,
2604,
7,
93,
37,
8,
1635,
3738,
1304,
452,
876,
19510,
93,
66,
1635,
31034,
37,
8,
10563,
31034,
64,
1343,
5299,
65,
1635,
5299,
87,
4008,
10563,
5299,
79,
1635,
14808,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
828,
5299,
87,
8,
1279,
438,
3232,
48,
26933,
93,
64,
11,
5299,
65,
11,
5299,
66,
11,
5299,
69,
11,
5299,
37,
11,
5299,
79,
4357,
5299,
87,
8,
11405,
35336,
83,
48,
7,
93,
77,
11,
657,
8,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
19510,
93,
7,
66,
11537,
1635,
31034,
37,
8,
10563,
31034,
7,
64,
11537,
1343,
5299,
7,
65,
11537,
1635,
5299,
87,
4008,
10563,
5299,
7,
79,
11537,
1635,
14808,
28532,
452,
876,
7,
93,
77,
4008,
7,
93,
69,
4008,
7,
93,
87,
828,
5299,
87,
8,
5218,
14808,
93,
66,
1635,
31034,
37,
8,
10563,
31034,
64,
1343,
5299,
65,
1635,
5299,
87,
4008,
10563,
5299,
79,
1635,
14808,
28532,
452,
876,
7,
93,
77,
4008,
7,
93,
69,
4008,
7,
93,
87,
4008,
1220,
31034,
65,
1635,
5299,
79,
1635,
2604,
7,
93,
37,
4008,
532,
357,
16,
1220,
31034,
65,
1635,
5299,
79,
1635,
2604,
7,
93,
37,
22305,
1635,
3738,
1304,
452,
876,
19510,
93,
66,
1635,
31034,
37,
8,
10563,
31034,
64,
1343,
5299,
65,
1635,
5299,
87,
4008,
10563,
5299,
79,
1635,
14808,
28532,
452,
876,
7,
93,
77,
1343,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
828,
5299,
87,
8,
1279,
438,
3232,
48,
26933,
93,
64,
11,
5299,
65,
11,
5299,
66,
11,
5299,
69,
11,
5299,
37,
11,
5299,
79,
4357,
5299,
87,
8,
11405,
14639,
83,
48,
7,
93,
77,
11,
657,
8,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
7,
31369,
7,
93,
7,
64,
11537,
1343,
5299,
7,
65,
11537,
1635,
5299,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
4008,
7,
93,
69,
4008,
7,
93,
87,
828,
5299,
87,
8,
5218,
7813,
7,
93,
64,
1343,
5299,
65,
1635,
5299,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
532,
5299,
65,
1635,
3738,
1304,
452,
876,
7,
6966,
7,
93,
64,
1343,
5299,
65,
1635,
5299,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
828,
5299,
87,
8,
1279,
438,
3232,
48,
26933,
93,
64,
11,
5299,
65,
11,
5299,
69,
4357,
5299,
87,
8,
11405,
35336,
83,
48,
7,
93,
77,
11,
657,
8,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
7,
6966,
7,
93,
7,
64,
11537,
1343,
5299,
7,
65,
11537,
1635,
5299,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
4008,
7,
93,
69,
4008,
7,
93,
87,
828,
5299,
87,
8,
5218,
8615,
7,
93,
64,
1343,
5299,
65,
1635,
5299,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1343,
5299,
65,
1635,
3738,
1304,
452,
876,
7,
31369,
7,
93,
64,
1343,
5299,
65,
1635,
5299,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
828,
5299,
87,
8,
1279,
438,
3232,
48,
26933,
93,
64,
11,
5299,
65,
11,
5299,
69,
4357,
5299,
87,
8,
11405,
35336,
83,
48,
7,
93,
77,
11,
657,
8,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
7,
31369,
7,
93,
7,
64,
11537,
1343,
5299,
7,
65,
11537,
1635,
5299,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
4008,
7,
93,
69,
4008,
7,
93,
87,
828,
5299,
87,
8,
5218,
13841,
7,
6966,
7,
93,
64,
1343,
5299,
65,
1635,
5299,
87,
4008,
1635,
14808,
28532,
452,
876,
7,
93,
77,
4008,
7,
93,
69,
4008,
7,
93,
87,
4008,
1220,
5299,
65,
1343,
357,
16,
1220,
5299,
65,
8,
1635,
3738,
1304,
452,
876,
7,
6966,
7,
93,
64,
1343,
5299,
65,
1635,
5299,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
1343,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
828,
5299,
87,
8,
1279,
438,
3232,
48,
26933,
93,
64,
11,
5299,
65,
11,
5299,
69,
4357,
5299,
87,
8,
11405,
14639,
83,
48,
7,
93,
77,
11,
657,
8,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
7,
6966,
7,
93,
7,
64,
11537,
1343,
5299,
7,
65,
11537,
1635,
5299,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
4008,
7,
93,
69,
4008,
7,
93,
87,
828,
5299,
87,
8,
5218,
357,
31369,
7,
93,
64,
1343,
5299,
65,
1635,
5299,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
4008,
7,
93,
69,
4008,
7,
93,
87,
4008,
1220,
5299,
65,
532,
357,
16,
1220,
5299,
65,
8,
1635,
3738,
1304,
452,
876,
7,
31369,
7,
93,
64,
1343,
5299,
65,
1635,
5299,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
1343,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
828,
5299,
87,
8,
1279,
438,
3232,
48,
26933,
93,
64,
11,
5299,
65,
11,
5299,
69,
4357,
5299,
87,
8,
11405,
14639,
83,
48,
7,
93,
77,
11,
657,
8,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
7,
93,
84,
1635,
14808,
28532,
452,
876,
7,
93,
77,
4008,
7,
93,
69,
4008,
7,
93,
87,
828,
5299,
87,
8,
5218,
24944,
7,
13217,
1304,
452,
876,
7,
8890,
489,
1958,
34500,
25192,
7,
7004,
301,
1890,
19510,
7,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
828,
5299,
84,
11,
5299,
87,
828,
5299,
87,
828,
5299,
87,
828,
5299,
87,
11,
14808,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
4008,
1279,
438,
3232,
48,
26933,
93,
69,
11,
5299,
77,
4357,
5299,
87,
8,
11405,
15553,
5189,
48,
19510,
7,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
828,
5299,
84,
11,
5299,
87,
8,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
7,
93,
84,
1635,
31034,
7,
64,
11537,
1635,
14808,
28532,
452,
876,
7,
16,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
8,
1343,
5299,
7,
64,
11537,
1635,
31034,
69,
5769,
93,
87,
8,
1635,
14808,
28532,
452,
876,
7,
16,
4008,
7,
93,
70,
4008,
7,
93,
87,
36911,
5299,
87,
8,
5218,
5299,
64,
1635,
24944,
7,
13217,
1304,
452,
876,
7,
8890,
489,
1958,
34500,
25192,
7,
7004,
301,
1890,
19510,
93,
69,
5769,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
828,
5299,
84,
11,
5299,
87,
828,
5299,
87,
828,
5299,
87,
828,
5299,
87,
11,
31034,
69,
5769,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
4008,
1279,
438,
3232,
48,
26933,
93,
64,
11,
5299,
69,
11,
5299,
70,
4357,
5299,
87,
8,
11405,
15553,
5189,
48,
19510,
93,
69,
5769,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
828,
5299,
84,
11,
5299,
87,
8,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
7,
93,
84,
1635,
31034,
7,
64,
11537,
1635,
14808,
28532,
452,
876,
7,
93,
76,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
8,
1343,
5299,
7,
64,
11537,
1635,
14808,
28532,
452,
876,
7,
93,
76,
16,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
14808,
28532,
452,
876,
7,
16,
4008,
7,
93,
70,
4008,
7,
93,
87,
36911,
5299,
87,
8,
5218,
5299,
64,
1635,
24944,
7,
13217,
1304,
452,
876,
7,
8890,
489,
1958,
34500,
25192,
7,
7004,
301,
1890,
19510,
7,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
828,
5299,
84,
11,
5299,
87,
828,
5299,
87,
828,
5299,
87,
828,
5299,
87,
11,
14808,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
4008,
1279,
438,
3232,
48,
26933,
93,
64,
11,
5299,
69,
11,
5299,
70,
11,
5299,
76,
4357,
5299,
87,
8,
11405,
357,
36,
80,
48,
7,
93,
76,
16,
11,
5299,
76,
532,
352,
8,
11405,
15553,
5189,
48,
19510,
7,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
828,
5299,
84,
11,
5299,
87,
4008,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
7,
93,
84,
1635,
31034,
7,
64,
11537,
1635,
14808,
28532,
452,
876,
7,
93,
76,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
16,
4008,
7,
93,
70,
4008,
7,
93,
87,
8,
1343,
5299,
7,
64,
11537,
1635,
14808,
28532,
452,
876,
7,
93,
76,
16,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
4008,
7,
93,
70,
4008,
7,
93,
87,
36911,
5299,
87,
8,
5218,
5299,
64,
1635,
24944,
7,
13217,
1304,
452,
876,
7,
8890,
489,
1958,
34500,
25192,
7,
7004,
301,
1890,
19510,
7,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
70,
4008,
7,
93,
87,
828,
5299,
84,
11,
5299,
87,
828,
5299,
87,
828,
5299,
87,
828,
5299,
87,
11,
14808,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
70,
4008,
7,
93,
87,
4008,
1279,
438,
3232,
48,
26933,
93,
64,
11,
5299,
69,
11,
5299,
70,
11,
5299,
76,
11,
5299,
77,
4357,
5299,
87,
8,
11405,
357,
36,
80,
48,
7,
93,
76,
16,
11,
5299,
76,
532,
352,
8,
11405,
357,
36,
80,
48,
7,
93,
77,
16,
11,
5299,
77,
532,
352,
8,
11405,
15553,
5189,
48,
19510,
7,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
70,
4008,
7,
93,
87,
828,
5299,
84,
11,
5299,
87,
22305,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
7,
93,
84,
1635,
31034,
69,
5769,
93,
87,
8,
10563,
5299,
7,
79,
11537,
1635,
31034,
7,
64,
11537,
1635,
14808,
28532,
452,
876,
7,
16,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
8,
1343,
5299,
7,
65,
11537,
1635,
31034,
69,
5769,
93,
87,
8,
1635,
14808,
28532,
452,
876,
7,
16,
4008,
7,
93,
70,
4008,
7,
93,
87,
36911,
5299,
87,
8,
5218,
5299,
65,
1635,
24944,
7,
13217,
1304,
452,
876,
7,
8890,
489,
1958,
34500,
25192,
7,
7004,
301,
1890,
19510,
93,
69,
5769,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
31034,
70,
5769,
93,
87,
828,
5299,
84,
11,
5299,
87,
828,
5299,
87,
828,
5299,
87,
828,
5299,
87,
11,
31034,
69,
5769,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
31034,
70,
5769,
93,
87,
4008,
1279,
438,
3232,
48,
26933,
93,
64,
11,
5299,
65,
11,
5299,
69,
11,
5299,
70,
11,
5299,
79,
4357,
5299,
87,
8,
11405,
357,
36,
80,
48,
7,
93,
64,
11,
5299,
65,
1635,
31034,
79,
1343,
352,
4008,
11405,
15553,
5189,
48,
19510,
93,
69,
5769,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
31034,
70,
5769,
93,
87,
828,
5299,
84,
11,
5299,
87,
4008,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
7,
93,
84,
1635,
14808,
28532,
452,
876,
7,
93,
76,
16,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
10563,
5299,
7,
79,
11537,
1635,
31034,
7,
64,
11537,
1635,
14808,
28532,
452,
876,
7,
93,
76,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
8,
1343,
5299,
7,
65,
11537,
1635,
14808,
28532,
452,
876,
7,
93,
76,
16,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
14808,
28532,
452,
876,
7,
16,
4008,
7,
93,
70,
4008,
7,
93,
87,
36911,
5299,
87,
8,
5218,
5299,
65,
1635,
24944,
7,
13217,
1304,
452,
876,
7,
8890,
489,
1958,
34500,
25192,
7,
7004,
301,
1890,
19510,
7,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
31034,
70,
5769,
93,
87,
828,
5299,
84,
11,
5299,
87,
828,
5299,
87,
828,
5299,
87,
828,
5299,
87,
11,
14808,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
31034,
70,
5769,
93,
87,
4008,
1279,
438,
3232,
48,
26933,
93,
64,
11,
5299,
65,
11,
5299,
69,
11,
5299,
70,
11,
5299,
76,
11,
5299,
79,
4357,
5299,
87,
8,
11405,
357,
36,
80,
48,
7,
93,
76,
16,
11,
5299,
76,
532,
352,
8,
11405,
357,
36,
80,
48,
7,
93,
64,
11,
5299,
65,
1635,
31034,
79,
1343,
352,
4008,
11405,
15553,
5189,
48,
19510,
7,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
31034,
70,
5769,
93,
87,
828,
5299,
84,
11,
5299,
87,
22305,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
7,
93,
84,
1635,
31034,
70,
5769,
93,
87,
8,
10563,
5299,
7,
80,
11537,
1635,
31034,
7,
64,
11537,
1635,
14808,
28532,
452,
876,
7,
93,
76,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
8,
1343,
5299,
7,
65,
11537,
1635,
14808,
28532,
452,
876,
7,
93,
76,
16,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
14808,
28532,
452,
876,
7,
16,
4008,
7,
93,
70,
4008,
7,
93,
87,
36911,
5299,
87,
8,
5218,
5299,
64,
1635,
24944,
7,
13217,
1304,
452,
876,
7,
8890,
489,
1958,
34500,
25192,
7,
7004,
301,
1890,
19510,
7,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
8,
10563,
31034,
80,
1343,
352,
828,
5299,
84,
11,
5299,
87,
828,
5299,
87,
828,
5299,
87,
828,
5299,
87,
11,
14808,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
8,
10563,
31034,
80,
1343,
352,
4008,
1279,
438,
3232,
48,
26933,
93,
64,
11,
5299,
65,
11,
5299,
69,
11,
5299,
70,
11,
5299,
76,
11,
5299,
80,
4357,
5299,
87,
8,
11405,
357,
36,
80,
48,
7,
93,
76,
16,
11,
5299,
76,
532,
352,
8,
11405,
357,
36,
80,
48,
7,
93,
64,
1635,
31034,
80,
1343,
352,
828,
5299,
65,
8,
11405,
15553,
5189,
48,
19510,
7,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
8,
10563,
31034,
80,
1343,
352,
828,
5299,
84,
11,
5299,
87,
22305,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
7,
93,
84,
1635,
14808,
28532,
452,
876,
7,
93,
76,
16,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
10563,
5299,
7,
79,
11537,
1635,
31034,
7,
64,
11537,
1635,
14808,
28532,
452,
876,
7,
93,
76,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
16,
4008,
7,
93,
70,
4008,
7,
93,
87,
8,
1343,
5299,
7,
65,
11537,
1635,
14808,
28532,
452,
876,
7,
93,
76,
16,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
4008,
7,
93,
70,
4008,
7,
93,
87,
36911,
5299,
87,
8,
5218,
5299,
65,
1635,
24944,
7,
13217,
1304,
452,
876,
7,
8890,
489,
1958,
34500,
25192,
7,
7004,
301,
1890,
19510,
7,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
70,
4008,
7,
93,
87,
828,
5299,
84,
11,
5299,
87,
828,
5299,
87,
828,
5299,
87,
828,
5299,
87,
11,
14808,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
70,
4008,
7,
93,
87,
4008,
1279,
438,
3232,
48,
26933,
93,
64,
11,
5299,
65,
11,
5299,
69,
11,
5299,
70,
11,
5299,
76,
11,
5299,
77,
11,
5299,
79,
4357,
5299,
87,
8,
11405,
357,
36,
80,
48,
7,
93,
76,
16,
11,
5299,
76,
532,
352,
8,
11405,
357,
36,
80,
48,
7,
93,
77,
16,
11,
5299,
77,
532,
352,
8,
11405,
357,
36,
80,
48,
7,
93,
64,
11,
5299,
65,
1635,
31034,
79,
1343,
352,
4008,
11405,
15553,
5189,
48,
19510,
7,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
70,
4008,
7,
93,
87,
828,
5299,
84,
11,
5299,
87,
35514,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
7,
93,
84,
1635,
31034,
69,
5769,
93,
87,
8,
10563,
5299,
7,
79,
11537,
1635,
31034,
70,
5769,
93,
87,
8,
10563,
5299,
7,
80,
11537,
1635,
31034,
7,
64,
11537,
1635,
14808,
28532,
452,
876,
7,
16,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
8,
1343,
5299,
7,
65,
11537,
1635,
31034,
69,
5769,
93,
87,
8,
1635,
14808,
28532,
452,
876,
7,
16,
4008,
7,
93,
70,
4008,
7,
93,
87,
36911,
5299,
87,
8,
5218,
31034,
64,
1220,
31034,
79,
1343,
352,
4008,
1635,
24944,
7,
13217,
1304,
452,
876,
7,
8890,
489,
1958,
34500,
25192,
7,
7004,
301,
1890,
19510,
93,
69,
5769,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
31034,
70,
5769,
93,
87,
8,
10563,
31034,
80,
1343,
352,
828,
5299,
84,
11,
5299,
87,
828,
5299,
87,
828,
5299,
87,
828,
5299,
87,
11,
31034,
69,
5769,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
31034,
70,
5769,
93,
87,
8,
10563,
31034,
80,
1343,
352,
4008,
1279,
438,
3232,
48,
26933,
93,
64,
11,
5299,
65,
11,
5299,
69,
11,
5299,
70,
11,
5299,
79,
11,
5299,
80,
4357,
5299,
87,
8,
11405,
357,
36,
80,
48,
7,
93,
64,
1635,
31034,
80,
1343,
352,
828,
5299,
65,
1635,
31034,
79,
1343,
352,
4008,
11405,
15553,
5189,
48,
19510,
93,
69,
5769,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
31034,
70,
5769,
93,
87,
8,
10563,
31034,
80,
1343,
352,
828,
5299,
84,
11,
5299,
87,
4008,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
7,
93,
84,
1635,
14808,
28532,
452,
876,
7,
93,
76,
16,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
10563,
5299,
7,
79,
11537,
1635,
31034,
70,
5769,
93,
87,
8,
10563,
5299,
7,
80,
11537,
1635,
31034,
7,
64,
11537,
1635,
14808,
28532,
452,
876,
7,
93,
76,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
8,
1343,
5299,
7,
65,
11537,
1635,
14808,
28532,
452,
876,
7,
93,
76,
16,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
14808,
28532,
452,
876,
7,
16,
4008,
7,
93,
70,
4008,
7,
93,
87,
36911,
5299,
87,
8,
5218,
31034,
64,
1220,
31034,
79,
1343,
352,
4008,
1635,
24944,
7,
13217,
1304,
452,
876,
7,
8890,
489,
1958,
34500,
25192,
7,
7004,
301,
1890,
19510,
7,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
31034,
70,
5769,
93,
87,
8,
10563,
31034,
80,
1343,
352,
828,
5299,
84,
11,
5299,
87,
828,
5299,
87,
828,
5299,
87,
828,
5299,
87,
11,
14808,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
31034,
70,
5769,
93,
87,
8,
10563,
31034,
80,
1343,
352,
4008,
1279,
438,
3232,
48,
26933,
93,
64,
11,
5299,
65,
11,
5299,
69,
11,
5299,
70,
11,
5299,
76,
11,
5299,
79,
11,
5299,
80,
4357,
5299,
87,
8,
11405,
357,
36,
80,
48,
7,
93,
76,
16,
11,
5299,
76,
532,
352,
8,
11405,
357,
36,
80,
48,
7,
93,
64,
1635,
31034,
80,
1343,
352,
828,
5299,
65,
1635,
31034,
79,
1343,
352,
4008,
11405,
15553,
5189,
48,
19510,
7,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
31034,
70,
5769,
93,
87,
8,
10563,
31034,
80,
1343,
352,
828,
5299,
84,
11,
5299,
87,
22305,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
7,
93,
84,
1635,
14808,
28532,
452,
876,
7,
93,
76,
16,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
10563,
5299,
7,
79,
11537,
1635,
14808,
28532,
452,
876,
7,
93,
77,
16,
4008,
7,
93,
70,
4008,
7,
93,
87,
8,
10563,
5299,
7,
80,
11537,
1635,
31034,
7,
64,
11537,
1635,
14808,
28532,
452,
876,
7,
93,
76,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
16,
4008,
7,
93,
70,
4008,
7,
93,
87,
8,
1343,
5299,
7,
65,
11537,
1635,
14808,
28532,
452,
876,
7,
93,
76,
16,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
4008,
7,
93,
70,
4008,
7,
93,
87,
36911,
5299,
87,
8,
5218,
31034,
64,
1220,
31034,
79,
1343,
352,
4008,
1635,
24944,
7,
13217,
1304,
452,
876,
7,
8890,
489,
1958,
34500,
25192,
7,
7004,
301,
1890,
19510,
7,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
70,
4008,
7,
93,
87,
8,
10563,
31034,
80,
1343,
352,
828,
5299,
84,
11,
5299,
87,
828,
5299,
87,
828,
5299,
87,
828,
5299,
87,
11,
14808,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
70,
4008,
7,
93,
87,
8,
10563,
31034,
80,
1343,
352,
4008,
1279,
438,
3232,
48,
26933,
93,
64,
11,
5299,
65,
11,
5299,
69,
11,
5299,
70,
11,
5299,
76,
11,
5299,
77,
11,
5299,
79,
11,
5299,
80,
4357,
5299,
87,
8,
11405,
357,
36,
80,
48,
7,
93,
76,
16,
11,
5299,
76,
532,
352,
8,
11405,
357,
36,
80,
48,
7,
93,
77,
16,
11,
5299,
77,
532,
352,
8,
11405,
357,
36,
80,
48,
7,
93,
64,
1635,
31034,
80,
1343,
352,
828,
5299,
65,
1635,
31034,
79,
1343,
352,
4008,
11405,
15553,
5189,
48,
19510,
7,
28532,
452,
876,
7,
93,
76,
532,
352,
4008,
7,
93,
69,
4008,
7,
93,
87,
8,
10563,
31034,
79,
1343,
352,
8,
1635,
14808,
28532,
452,
876,
7,
93,
77,
532,
352,
4008,
7,
93,
70,
4008,
7,
93,
87,
8,
10563,
31034,
80,
1343,
352,
828,
5299,
84,
11,
5299,
87,
35514,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
19510,
7,
93,
69,
33047,
5769,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
8,
1343,
31034,
69,
5769,
93,
87,
8,
1635,
14808,
93,
70,
33047,
5769,
93,
87,
828,
5299,
87,
8,
5218,
31034,
69,
5769,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
8,
1279,
438,
3232,
48,
26933,
93,
69,
11,
5299,
70,
4357,
5299,
87,
8,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
19510,
19510,
93,
69,
33047,
5769,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
8,
532,
31034,
69,
5769,
93,
87,
8,
1635,
14808,
93,
70,
33047,
5769,
93,
87,
4008,
1220,
31034,
70,
5769,
93,
87,
8,
10563,
362,
11,
5299,
87,
8,
5218,
31034,
69,
5769,
93,
87,
8,
1220,
31034,
70,
5769,
93,
87,
8,
1279,
438,
3232,
48,
26933,
93,
69,
11,
5299,
70,
4357,
5299,
87,
8,
198,
220,
220,
220,
2488,
39014,
62,
26791,
3738,
1304,
452,
876,
19510,
19510,
93,
69,
33047,
5769,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
8,
532,
31034,
69,
5769,
93,
87,
8,
1635,
14808,
93,
70,
33047,
5769,
93,
87,
4008,
1220,
14808,
93,
69,
5769,
93,
87,
8,
1635,
31034,
70,
5769,
93,
87,
36911,
5299,
87,
8,
5218,
2604,
19510,
93,
69,
5769,
93,
87,
8,
1220,
31034,
70,
5769,
93,
87,
4008,
1279,
438,
3232,
48,
26933,
93,
69,
11,
5299,
70,
4357,
5299,
87,
8,
198,
437,
198
] | 1.801952 | 4,509 |
# Model
include_model("hopper")
mb = 3.0 # body mass
ml = 0.3 # leg mass
Jb = 0.75 # body inertia
Jl = 0.075 # leg inertia
model = Hopper{Discrete, FixedTime}(n, m, d,
mb, ml, Jb, Jl,
0.25, g,
qL, qU,
uL, uU,
nq,
nu,
nc,
nf,
nb,
ns,
idx_u,
idx_λ,
idx_b,
idx_ψ,
idx_η,
idx_s)
model_ft = free_time_model(model)
# stair traj
@load joinpath(@__DIR__, "hopper_stair.jld2") qm um γm bm ψm ηm μm hm
# Stair
function ϕ_func(model::Hopper, q)
k = kinematics(model, q)
if k[1] < 0.125
return @SVector [k[2] - 3 * 0.25]
else
return @SVector [k[2]]
end
end
# Horizon
T = 80
# Time step
# tf = 0.75
h = hm #tf / (T - 1)
# Bounds
_uu = Inf * ones(model_ft.m)
_uu[model_ft.idx_u] .= Inf#10.0#model_ft.uU
_uu[end] = h#3.0 * h
_ul = zeros(model_ft.m)
_ul[model_ft.idx_u] .= -Inf#10.0 #model_ft.uL
_ul[end] = h#0.2 * h
ul, uu = control_bounds(model_ft, T, _ul, _uu)
# Initial and final states
z_h = 3 * 0.25
q1 = [0.0, 0.5 + z_h, 0.0, 0.5]
q11 = [0.0, 0.5 + z_h + 0.125, 0.0, 0.25]
qm1 = [0.125, 0.5 + z_h + 0.25, -0.5 * π, 0.25]
qm2 = [0.25, 0.5 + z_h + 0.125, -1.5 * π, 0.25]
qm3 = [0.375, 0.5 + z_h + 0.0625, -2.0 * π, 0.5]
qT = [0.5, 0.5, -2.0 * π, 0.5]
ql1 = linear_interpolation(q1, q11, 14)
ql2 = linear_interpolation(q11, qm1, 15)
ql3 = linear_interpolation(qm1, qm2, 15)
ql4 = linear_interpolation(qm2, qm3, 15)
ql5 = linear_interpolation(qm3, qT, 14)
ql6 = linear_interpolation(qT, qT, 14)
q_ref = [ql1...,
ql2[2:end]...,
ql3[2:end]...,
ql4[2:end]...,
ql5[2:end]...,
ql6[2:end]...]
θr = range(0.0, stop = -2.0 * π, length = (58 - 14))
for (i, t) = enumerate(15:58)
q_ref[t][3] = θr[i]
end
# model_ft.qU[2] = 2.5
xl, xu = state_bounds(model_ft, T,
[model_ft.qL; model_ft.qL],
[model_ft.qU; model_ft.qU],
x1 = [q1; q1],
xT = [qT; qT])
# Objective
include_objective(["velocity", "nonlinear_stage", "control_velocity"])
qp = 0.0 * [0.01; 0.01; 1.0; 1.0]
obj_tracking = quadratic_time_tracking_objective(
[Diagonal([qp; qp]) for t = 1:T],
[Diagonal([1.0e-1, 1.0e-2,
1.0e-5 * ones(model_ft.nc)..., 1.0e-5 * ones(model_ft.nb)...,
zeros(model_ft.m - model_ft.nu - model_ft.nc - model_ft.nb - 1)..., 0.0])
for t = 1:T-1],
[[qT; qT] for t = 1:T],
[zeros(model_ft.m) for t = 1:T],
1.0)
obj_contact_penalty = PenaltyObjective(1.0e5, model_ft.m - 1)
obj_velocity = velocity_objective(
[(t > 20 && t < 60) ? Diagonal(1.0e-2 * [1.0; 1.0; 100.0; 100.0]) : Diagonal(1.0e-2 * [1.0; 1.0; 1.0; 1.0]) for t = 1:T-1],
model_ft.nq,
h = h,
idx_angle = collect([3]))
obj_ctrl_vel = control_velocity_objective(Diagonal([1.0e-1 * ones(model_ft.nu);
1.0e-3 * ones(model_ft.nc + model_ft.nb);
zeros(model_ft.m - model_ft.nu - model_ft.nc - model_ft.nb)]))
function l_stage(x, u, t)
J = 0.0
_q1 = view(x, 1:4)
p1 = kinematics(model, _q1)
_q2 = view(x, 4 .+ (1:4))
p2 = kinematics(model, _q2)
v = (p2 - p1) ./ h
if t < 40
J += 1000.0 * v[1]^2.0
end
if t > 60
J += 1000.0 * v[1]^2.0
end
if true#t > 5 #|| (t > 20 && t < T)
J += (_q1 - q_ref[t])' * Diagonal([100.0; 100.0; 1000.0; 1000.0]) * (_q1 - q_ref[t])
end
return J
end
l_stage(x) = l_stage(x, nothing, T)
obj_stage = nonlinear_stage_objective(l_stage, l_stage)
obj = MultiObjective([obj_tracking,
obj_contact_penalty,
obj_velocity,
obj_stage,
obj_ctrl_vel])
# Constraints
include_constraints(["free_time", "contact", "stage"])
con_free_time = free_time_constraints(T)
con_contact = contact_constraints(model_ft, T)
p1_ref = kinematics(model, q1)
pT_ref = kinematics(model, qT)
function pinned1!(c, x, u, t)
q = view(x, 1:4)
c[1:2] = p1_ref - kinematics(model, q)
nothing
end
function pinnedT!(c, x, u, t)
q = view(x, 4 .+ (1:4))
c[1:2] = pT_ref - kinematics(model, q)
nothing
end
function no_foot_slip!(c, x, u, t)
q = view(x, 1:4)
c[1] = kinematics(model, q)[1]
end
n_stage = 2
t_idx1 = vcat([t for t = 1:10]...)
t_idxT = vcat([(T - 10 + 1):T]...)
con_pinned1 = stage_constraints(pinned1!, 2, (1:0), t_idx1)
con_pinnedT = stage_constraints(pinnedT!, 2, (1:0), t_idxT)
con_no_slip = stage_constraints(no_foot_slip!, 1, (1:1), collect(1:40))
con = multiple_constraints([con_free_time, con_contact, con_pinned1, con_pinnedT, con_no_slip])#, con_loop])
# Problem
prob = trajectory_optimization_problem(model_ft,
obj,
T,
xl = xl,
xu = xu,
ul = ul,
uu = uu,
con = con)
# Trajectory initialization
x0 = configuration_to_state(q_ref) # linear interpolation on state
u0 = [[1.0e-2 * rand(model_ft.m-1); h] for t = 1:T-1] # random controls
# Pack trajectories into vector
z0 = pack(x0, u0, prob)
#NOTE: may need to run examples multiple times to get good trajectories
# Solve nominal problem
@time z̄, info = solve(prob, copy(z0),
nlp = :ipopt,
tol = 1.0e-3, c_tol = 1.0e-3, mapl = 5,
time_limit = 60)
@show check_slack(z̄, prob)
x̄, ū = unpack(z̄, prob)
tf, t, h̄ = get_time(ū)
q = state_to_configuration(x̄)
u = [u[model.idx_u] for u in ū]
γ = [u[model.idx_λ] for u in ū]
b = [u[model.idx_b] for u in ū]
ψ = [u[model.idx_ψ] for u in ū]
η = [u[model.idx_η] for u in ū]
h̄ = mean(h̄)
# @save joinpath(pwd(), "examples/trajectories/hopper_vertical_gait.jld2") z̄ x̄ ū h̄ q u γ b
include(joinpath(pwd(), "models/visualize.jl"))
vis = Visualizer()
open(vis)
visualize!(vis, model_ft,
q,
Δt = h̄[1],
scenario = :vertical)
setobject!(vis["box"], GeometryBasics.HyperRectangle(Vec(0.0, 0.0, 0.0),
Vec(0.25, 0.5, 3 * 0.25)), MeshPhongMaterial(color = RGBA(0.5, 0.5, 0.5, 1.0)))
settransform!(vis["box"], Translation(-0.125, -0.25, 0))
using Plots
plot(hcat(q_ref...)[1:4, :]', color = :black , width = 2.0)
plot!(hcat(q...)[1:4, :]', color = :red, width = 1.0)
plot(hcat(u...)', linetype = :steppost)
# Save
hm = h̄
μm = model.μ
qm, um, γm, bm, ψm, ηm = q, u, γ, b, ψ, η
@save joinpath(@__DIR__, "hopper_tall_flip.jld2") qm um γm bm ψm ηm μm hm
# composite stairs + flip
@load joinpath(@__DIR__, "hopper_stair.jld2") qm um γm bm ψm ηm μm hm
function step_repeat(q, u, γ, b, ψ, η, T; steps = 2)
qm = [deepcopy(q)...]
um = [deepcopy(u)...]
γm = [deepcopy(γ)...]
bm = [deepcopy(b)...]
ψm = [deepcopy(ψ)...]
ηm = [deepcopy(η)...]
stride = zero(qm[1])
for i = 1:(steps-1)
@show stride[1] += q[T+1][1] - q[2][1]
@show stride[2] += 0.25
for t = 1:T-1
push!(qm, q[t+2] + stride)
push!(um, u[t])
push!(γm, γ[t])
push!(bm, b[t])
push!(ψm, ψ[t])
push!(ηm, η[t])
end
end
return qm, um, γm, bm, ψm, ηm
end
qm, um, γm, bm, ψm, ηm = step_repeat(qm, um, γm, bm, ψm, ηm, T, steps = 3)
@save joinpath(@__DIR__, "hopper_stairs_3.jld2") qm um γm bm ψm ηm μm hm
# @load joinpath(@__DIR__, "hopper_stairs_3.jld2") qm um γm bm ψm ηm μm hm
setobject!(vis["box1"], GeometryBasics.HyperRectangle(Vec(0.0, 0.0, 0.0),
Vec(0.25, 0.5, 0.25)), MeshPhongMaterial(color = RGBA(0.5, 0.5, 0.5, 1.0)))
settransform!(vis["box1"], Translation(0.125, -0.25, 0))
setobject!(vis["box2"], GeometryBasics.HyperRectangle(Vec(0.0, 0.0, 0.0),
Vec(0.25, 0.5, 2 * 0.25)), MeshPhongMaterial(color = RGBA(0.5, 0.5, 0.5, 1.0)))
settransform!(vis["box2"], Translation(0.125 + 0.25, -0.25, 0))
setobject!(vis["box3"], GeometryBasics.HyperRectangle(Vec(0.0, 0.0, 0.0),
Vec(0.25, 0.5, 3 * 0.25)), MeshPhongMaterial(color = RGBA(0.5, 0.5, 0.5, 1.0)))
settransform!(vis["box3"], Translation(0.125 + 2 * 0.25, -0.25, 0))
tall_flip = load(joinpath(@__DIR__, "hopper_tall_flip.jld2"))
qm_f, um_f, γm_f, bm_f, ψm_f, ηm_f, μm_f, hm_f = tall_flip["qm"], tall_flip["um"], tall_flip["γm"], tall_flip["bm"], tall_flip["ψm"], tall_flip["ηm"], tall_flip["μm"], tall_flip["hm"]
str = zero(qm[1])
str[1] = qm[end][1]
for i = 1:10
t = 1
push!(qm, qm_f[t+2] + str)
push!(um, um_f[t])
push!(γm, γm_f[t])
push!(bm, bm_f[t])
push!(ψm, ψm_f[t])
push!(ηm, ηm_f[t])
end
for t = 1:length(um_f)
push!(qm, qm_f[t+2] + str)
push!(um, um_f[t])
push!(γm, γm_f[t])
push!(bm, bm_f[t])
push!(ψm, ψm_f[t])
push!(ηm, ηm_f[t])
end
@save joinpath(@__DIR__, "hopper_stairs_3_flip.jld2") qm um γm bm ψm ηm μm hm
visualize!(vis, model_ft,
qm,
Δt = h̄[1],
scenario = :stairs)
setprop!(vis["/Cameras/default/rotated/<object>"], "zoom", 20)
settransform!(vis["/Cameras/default"],
compose(Translation(0.0, -90.0, -1.0),LinearMap(RotZ(-0.5 * π))))
| [
2,
9104,
198,
17256,
62,
19849,
7203,
8873,
2848,
4943,
198,
198,
2022,
796,
513,
13,
15,
1303,
1767,
2347,
198,
4029,
796,
657,
13,
18,
220,
1303,
1232,
2347,
198,
41,
65,
796,
657,
13,
2425,
1303,
1767,
48482,
198,
41,
75,
796,
657,
13,
46396,
1303,
1232,
48482,
198,
198,
19849,
796,
9544,
2848,
90,
15642,
8374,
11,
10832,
7575,
92,
7,
77,
11,
285,
11,
288,
11,
198,
197,
197,
197,
220,
220,
285,
65,
11,
25962,
11,
449,
65,
11,
449,
75,
11,
198,
197,
197,
197,
220,
220,
657,
13,
1495,
11,
308,
11,
198,
197,
197,
197,
220,
220,
10662,
43,
11,
10662,
52,
11,
198,
197,
197,
197,
220,
220,
334,
43,
11,
334,
52,
11,
198,
197,
197,
197,
220,
220,
299,
80,
11,
198,
197,
197,
220,
220,
220,
220,
220,
220,
14364,
11,
198,
197,
197,
220,
220,
220,
220,
220,
220,
299,
66,
11,
198,
197,
197,
220,
220,
220,
220,
220,
220,
299,
69,
11,
198,
197,
197,
220,
220,
220,
220,
220,
220,
299,
65,
11,
198,
197,
197,
220,
220,
220,
197,
220,
220,
36545,
11,
198,
197,
197,
220,
220,
220,
220,
220,
220,
4686,
87,
62,
84,
11,
198,
197,
197,
220,
220,
220,
220,
220,
220,
4686,
87,
62,
39377,
11,
198,
197,
197,
220,
220,
220,
220,
220,
220,
4686,
87,
62,
65,
11,
198,
197,
197,
220,
220,
220,
220,
220,
220,
4686,
87,
62,
139,
230,
11,
198,
197,
197,
220,
220,
220,
220,
220,
220,
4686,
87,
62,
138,
115,
11,
198,
197,
197,
220,
220,
220,
220,
220,
220,
4686,
87,
62,
82,
8,
198,
198,
19849,
62,
701,
796,
1479,
62,
2435,
62,
19849,
7,
19849,
8,
198,
198,
2,
18761,
1291,
73,
198,
31,
2220,
4654,
6978,
7,
31,
834,
34720,
834,
11,
366,
8873,
2848,
62,
301,
958,
13,
73,
335,
17,
4943,
10662,
76,
23781,
7377,
111,
76,
275,
76,
18074,
230,
76,
7377,
115,
76,
18919,
76,
289,
76,
198,
198,
2,
520,
958,
198,
8818,
18074,
243,
62,
20786,
7,
19849,
3712,
28900,
2848,
11,
10662,
8,
198,
197,
74,
796,
479,
7749,
23372,
7,
19849,
11,
10662,
8,
198,
197,
361,
479,
58,
16,
60,
1279,
657,
13,
11623,
198,
220,
220,
220,
220,
197,
7783,
2488,
50,
38469,
685,
74,
58,
17,
60,
532,
513,
1635,
657,
13,
1495,
60,
198,
197,
17772,
198,
197,
197,
7783,
2488,
50,
38469,
685,
74,
58,
17,
11907,
198,
197,
437,
198,
437,
198,
198,
2,
22776,
198,
51,
796,
4019,
198,
198,
2,
3862,
2239,
198,
2,
48700,
796,
657,
13,
2425,
198,
71,
796,
289,
76,
1303,
27110,
1220,
357,
51,
532,
352,
8,
198,
198,
2,
347,
3733,
198,
62,
12303,
796,
4806,
1635,
3392,
7,
19849,
62,
701,
13,
76,
8,
198,
62,
12303,
58,
19849,
62,
701,
13,
312,
87,
62,
84,
60,
764,
28,
4806,
2,
940,
13,
15,
2,
19849,
62,
701,
13,
84,
52,
198,
62,
12303,
58,
437,
60,
796,
289,
2,
18,
13,
15,
1635,
289,
198,
62,
377,
796,
1976,
27498,
7,
19849,
62,
701,
13,
76,
8,
198,
62,
377,
58,
19849,
62,
701,
13,
312,
87,
62,
84,
60,
764,
28,
532,
18943,
2,
940,
13,
15,
1303,
19849,
62,
701,
13,
84,
43,
198,
62,
377,
58,
437,
60,
796,
289,
2,
15,
13,
17,
1635,
289,
198,
377,
11,
334,
84,
796,
1630,
62,
65,
3733,
7,
19849,
62,
701,
11,
309,
11,
4808,
377,
11,
4808,
12303,
8,
198,
198,
2,
20768,
290,
2457,
2585,
198,
89,
62,
71,
796,
513,
1635,
657,
13,
1495,
198,
198,
80,
16,
796,
685,
15,
13,
15,
11,
657,
13,
20,
1343,
1976,
62,
71,
11,
657,
13,
15,
11,
657,
13,
20,
60,
198,
80,
1157,
796,
685,
15,
13,
15,
11,
657,
13,
20,
1343,
1976,
62,
71,
1343,
657,
13,
11623,
11,
657,
13,
15,
11,
657,
13,
1495,
60,
198,
80,
76,
16,
796,
685,
15,
13,
11623,
11,
657,
13,
20,
1343,
1976,
62,
71,
1343,
657,
13,
1495,
11,
532,
15,
13,
20,
1635,
18074,
222,
11,
657,
13,
1495,
60,
198,
80,
76,
17,
796,
685,
15,
13,
1495,
11,
657,
13,
20,
1343,
1976,
62,
71,
1343,
657,
13,
11623,
11,
532,
16,
13,
20,
1635,
18074,
222,
11,
657,
13,
1495,
60,
198,
80,
76,
18,
796,
685,
15,
13,
22318,
11,
657,
13,
20,
1343,
1976,
62,
71,
1343,
657,
13,
3312,
1495,
11,
532,
17,
13,
15,
1635,
18074,
222,
11,
657,
13,
20,
60,
198,
80,
51,
796,
685,
15,
13,
20,
11,
657,
13,
20,
11,
532,
17,
13,
15,
1635,
18074,
222,
11,
657,
13,
20,
60,
198,
198,
13976,
16,
796,
14174,
62,
3849,
16104,
341,
7,
80,
16,
11,
10662,
1157,
11,
1478,
8,
198,
13976,
17,
796,
14174,
62,
3849,
16104,
341,
7,
80,
1157,
11,
10662,
76,
16,
11,
1315,
8,
198,
13976,
18,
796,
14174,
62,
3849,
16104,
341,
7,
80,
76,
16,
11,
10662,
76,
17,
11,
1315,
8,
198,
13976,
19,
796,
14174,
62,
3849,
16104,
341,
7,
80,
76,
17,
11,
10662,
76,
18,
11,
1315,
8,
198,
13976,
20,
796,
14174,
62,
3849,
16104,
341,
7,
80,
76,
18,
11,
10662,
51,
11,
1478,
8,
198,
13976,
21,
796,
14174,
62,
3849,
16104,
341,
7,
80,
51,
11,
10662,
51,
11,
1478,
8,
198,
198,
80,
62,
5420,
796,
685,
13976,
16,
986,
11,
198,
197,
197,
10662,
75,
17,
58,
17,
25,
437,
60,
986,
11,
198,
197,
197,
10662,
75,
18,
58,
17,
25,
437,
60,
986,
11,
198,
197,
197,
10662,
75,
19,
58,
17,
25,
437,
60,
986,
11,
198,
197,
197,
10662,
75,
20,
58,
17,
25,
437,
60,
986,
11,
198,
197,
197,
10662,
75,
21,
58,
17,
25,
437,
60,
22345,
198,
198,
138,
116,
81,
796,
2837,
7,
15,
13,
15,
11,
2245,
796,
532,
17,
13,
15,
1635,
18074,
222,
11,
4129,
796,
357,
3365,
532,
1478,
4008,
198,
1640,
357,
72,
11,
256,
8,
796,
27056,
378,
7,
1314,
25,
3365,
8,
198,
197,
80,
62,
5420,
58,
83,
7131,
18,
60,
796,
7377,
116,
81,
58,
72,
60,
198,
437,
198,
2,
2746,
62,
701,
13,
80,
52,
58,
17,
60,
796,
362,
13,
20,
198,
87,
75,
11,
2124,
84,
796,
1181,
62,
65,
3733,
7,
19849,
62,
701,
11,
309,
11,
198,
197,
197,
58,
19849,
62,
701,
13,
80,
43,
26,
2746,
62,
701,
13,
80,
43,
4357,
198,
197,
197,
58,
19849,
62,
701,
13,
80,
52,
26,
2746,
62,
701,
13,
80,
52,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
16,
796,
685,
80,
16,
26,
10662,
16,
4357,
198,
197,
197,
87,
51,
796,
685,
80,
51,
26,
10662,
51,
12962,
198,
198,
2,
37092,
198,
17256,
62,
15252,
425,
7,
14692,
626,
11683,
1600,
366,
13159,
29127,
62,
14247,
1600,
366,
13716,
62,
626,
11683,
8973,
8,
198,
80,
79,
796,
657,
13,
15,
1635,
685,
15,
13,
486,
26,
657,
13,
486,
26,
352,
13,
15,
26,
352,
13,
15,
60,
198,
26801,
62,
36280,
796,
15094,
81,
1512,
62,
2435,
62,
36280,
62,
15252,
425,
7,
198,
220,
220,
220,
685,
18683,
27923,
26933,
80,
79,
26,
10662,
79,
12962,
329,
256,
796,
352,
25,
51,
4357,
198,
220,
220,
220,
685,
18683,
27923,
26933,
16,
13,
15,
68,
12,
16,
11,
352,
13,
15,
68,
12,
17,
11,
198,
197,
197,
16,
13,
15,
68,
12,
20,
1635,
3392,
7,
19849,
62,
701,
13,
10782,
26513,
11,
352,
13,
15,
68,
12,
20,
1635,
3392,
7,
19849,
62,
701,
13,
46803,
26513,
11,
198,
197,
197,
9107,
418,
7,
19849,
62,
701,
13,
76,
532,
2746,
62,
701,
13,
28803,
532,
2746,
62,
701,
13,
10782,
532,
2746,
62,
701,
13,
46803,
532,
352,
26513,
11,
657,
13,
15,
12962,
198,
197,
197,
1640,
256,
796,
352,
25,
51,
12,
16,
4357,
198,
220,
220,
220,
16410,
80,
51,
26,
10662,
51,
60,
329,
256,
796,
352,
25,
51,
4357,
198,
220,
220,
220,
685,
9107,
418,
7,
19849,
62,
701,
13,
76,
8,
329,
256,
796,
352,
25,
51,
4357,
198,
220,
220,
220,
352,
13,
15,
8,
198,
198,
26801,
62,
32057,
62,
3617,
6017,
796,
41676,
10267,
425,
7,
16,
13,
15,
68,
20,
11,
2746,
62,
701,
13,
76,
532,
352,
8,
198,
198,
26801,
62,
626,
11683,
796,
15432,
62,
15252,
425,
7,
198,
220,
220,
220,
47527,
83,
1875,
1160,
11405,
256,
1279,
3126,
8,
5633,
6031,
27923,
7,
16,
13,
15,
68,
12,
17,
1635,
685,
16,
13,
15,
26,
352,
13,
15,
26,
1802,
13,
15,
26,
1802,
13,
15,
12962,
1058,
6031,
27923,
7,
16,
13,
15,
68,
12,
17,
1635,
685,
16,
13,
15,
26,
352,
13,
15,
26,
352,
13,
15,
26,
352,
13,
15,
12962,
329,
256,
796,
352,
25,
51,
12,
16,
4357,
198,
220,
220,
220,
2746,
62,
701,
13,
77,
80,
11,
198,
220,
220,
220,
289,
796,
289,
11,
198,
220,
220,
220,
4686,
87,
62,
9248,
796,
2824,
26933,
18,
60,
4008,
198,
198,
26801,
62,
44755,
62,
626,
796,
1630,
62,
626,
11683,
62,
15252,
425,
7,
18683,
27923,
26933,
16,
13,
15,
68,
12,
16,
1635,
3392,
7,
19849,
62,
701,
13,
28803,
1776,
198,
197,
16,
13,
15,
68,
12,
18,
1635,
3392,
7,
19849,
62,
701,
13,
10782,
1343,
2746,
62,
701,
13,
46803,
1776,
198,
197,
9107,
418,
7,
19849,
62,
701,
13,
76,
532,
2746,
62,
701,
13,
28803,
532,
2746,
62,
701,
13,
10782,
532,
2746,
62,
701,
13,
46803,
15437,
4008,
198,
198,
8818,
300,
62,
14247,
7,
87,
11,
334,
11,
256,
8,
198,
197,
41,
796,
657,
13,
15,
628,
197,
62,
80,
16,
796,
1570,
7,
87,
11,
352,
25,
19,
8,
198,
197,
79,
16,
796,
479,
7749,
23372,
7,
19849,
11,
4808,
80,
16,
8,
628,
197,
62,
80,
17,
796,
1570,
7,
87,
11,
604,
764,
10,
357,
16,
25,
19,
4008,
198,
197,
79,
17,
796,
479,
7749,
23372,
7,
19849,
11,
4808,
80,
17,
8,
628,
197,
85,
796,
357,
79,
17,
532,
279,
16,
8,
24457,
289,
628,
197,
361,
256,
1279,
2319,
198,
197,
197,
41,
15853,
8576,
13,
15,
1635,
410,
58,
16,
60,
61,
17,
13,
15,
198,
197,
437,
628,
197,
361,
256,
1875,
3126,
198,
197,
197,
41,
15853,
8576,
13,
15,
1635,
410,
58,
16,
60,
61,
17,
13,
15,
198,
197,
437,
628,
197,
361,
2081,
2,
83,
1875,
642,
1303,
15886,
357,
83,
1875,
1160,
11405,
256,
1279,
309,
8,
198,
197,
197,
41,
15853,
44104,
80,
16,
532,
10662,
62,
5420,
58,
83,
12962,
6,
1635,
6031,
27923,
26933,
3064,
13,
15,
26,
1802,
13,
15,
26,
8576,
13,
15,
26,
8576,
13,
15,
12962,
1635,
44104,
80,
16,
532,
10662,
62,
5420,
58,
83,
12962,
198,
197,
437,
628,
197,
7783,
449,
198,
437,
198,
198,
75,
62,
14247,
7,
87,
8,
796,
300,
62,
14247,
7,
87,
11,
2147,
11,
309,
8,
198,
198,
26801,
62,
14247,
796,
1729,
29127,
62,
14247,
62,
15252,
425,
7,
75,
62,
14247,
11,
300,
62,
14247,
8,
198,
26801,
796,
15237,
10267,
425,
26933,
26801,
62,
36280,
11,
198,
197,
26801,
62,
32057,
62,
3617,
6017,
11,
198,
197,
26801,
62,
626,
11683,
11,
198,
197,
26801,
62,
14247,
11,
198,
197,
26801,
62,
44755,
62,
626,
12962,
198,
198,
2,
1482,
2536,
6003,
198,
17256,
62,
1102,
2536,
6003,
7,
14692,
5787,
62,
2435,
1600,
366,
32057,
1600,
366,
14247,
8973,
8,
198,
1102,
62,
5787,
62,
2435,
796,
1479,
62,
2435,
62,
1102,
2536,
6003,
7,
51,
8,
198,
1102,
62,
32057,
796,
2800,
62,
1102,
2536,
6003,
7,
19849,
62,
701,
11,
309,
8,
198,
198,
79,
16,
62,
5420,
796,
479,
7749,
23372,
7,
19849,
11,
10662,
16,
8,
198,
79,
51,
62,
5420,
796,
479,
7749,
23372,
7,
19849,
11,
10662,
51,
8,
198,
198,
8818,
25711,
16,
0,
7,
66,
11,
2124,
11,
334,
11,
256,
8,
198,
220,
220,
220,
10662,
796,
1570,
7,
87,
11,
352,
25,
19,
8,
198,
220,
220,
220,
269,
58,
16,
25,
17,
60,
796,
279,
16,
62,
5420,
532,
479,
7749,
23372,
7,
19849,
11,
10662,
8,
198,
197,
22366,
198,
437,
198,
198,
8818,
25711,
51,
0,
7,
66,
11,
2124,
11,
334,
11,
256,
8,
198,
220,
220,
220,
10662,
796,
1570,
7,
87,
11,
604,
764,
10,
357,
16,
25,
19,
4008,
198,
197,
66,
58,
16,
25,
17,
60,
796,
279,
51,
62,
5420,
532,
479,
7749,
23372,
7,
19849,
11,
10662,
8,
198,
197,
22366,
198,
437,
198,
198,
8818,
645,
62,
5898,
62,
6649,
541,
0,
7,
66,
11,
2124,
11,
334,
11,
256,
8,
198,
197,
80,
796,
1570,
7,
87,
11,
352,
25,
19,
8,
628,
197,
66,
58,
16,
60,
796,
479,
7749,
23372,
7,
19849,
11,
10662,
38381,
16,
60,
198,
437,
198,
198,
77,
62,
14247,
796,
362,
198,
83,
62,
312,
87,
16,
796,
410,
9246,
26933,
83,
329,
256,
796,
352,
25,
940,
60,
23029,
198,
83,
62,
312,
87,
51,
796,
410,
9246,
26933,
7,
51,
532,
838,
1343,
352,
2599,
51,
60,
23029,
198,
198,
1102,
62,
11635,
2817,
16,
796,
3800,
62,
1102,
2536,
6003,
7,
11635,
2817,
16,
28265,
362,
11,
357,
16,
25,
15,
828,
256,
62,
312,
87,
16,
8,
198,
1102,
62,
11635,
2817,
51,
796,
3800,
62,
1102,
2536,
6003,
7,
11635,
2817,
51,
28265,
362,
11,
357,
16,
25,
15,
828,
256,
62,
312,
87,
51,
8,
198,
1102,
62,
3919,
62,
6649,
541,
796,
3800,
62,
1102,
2536,
6003,
7,
3919,
62,
5898,
62,
6649,
541,
28265,
352,
11,
357,
16,
25,
16,
828,
2824,
7,
16,
25,
1821,
4008,
198,
198,
1102,
796,
3294,
62,
1102,
2536,
6003,
26933,
1102,
62,
5787,
62,
2435,
11,
369,
62,
32057,
11,
369,
62,
11635,
2817,
16,
11,
369,
62,
11635,
2817,
51,
11,
369,
62,
3919,
62,
6649,
541,
12962,
2,
11,
369,
62,
26268,
12962,
198,
198,
2,
20647,
198,
1676,
65,
796,
22942,
62,
40085,
1634,
62,
45573,
7,
19849,
62,
701,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26181,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
309,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
75,
796,
2124,
75,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
84,
796,
2124,
84,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14856,
796,
14856,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
334,
84,
796,
334,
84,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
369,
796,
369,
8,
198,
198,
2,
4759,
752,
652,
37588,
198,
87,
15,
796,
8398,
62,
1462,
62,
5219,
7,
80,
62,
5420,
8,
1303,
14174,
39555,
341,
319,
1181,
198,
84,
15,
796,
16410,
16,
13,
15,
68,
12,
17,
1635,
43720,
7,
19849,
62,
701,
13,
76,
12,
16,
1776,
289,
60,
329,
256,
796,
352,
25,
51,
12,
16,
60,
1303,
4738,
6973,
198,
198,
2,
6400,
20134,
1749,
656,
15879,
198,
89,
15,
796,
2353,
7,
87,
15,
11,
334,
15,
11,
1861,
8,
198,
198,
2,
16580,
25,
743,
761,
284,
1057,
6096,
3294,
1661,
284,
651,
922,
20134,
1749,
198,
2,
4294,
303,
26934,
1917,
198,
31,
2435,
1976,
136,
226,
11,
7508,
796,
8494,
7,
1676,
65,
11,
4866,
7,
89,
15,
828,
198,
197,
21283,
79,
796,
1058,
541,
8738,
11,
198,
197,
83,
349,
796,
352,
13,
15,
68,
12,
18,
11,
269,
62,
83,
349,
796,
352,
13,
15,
68,
12,
18,
11,
17266,
489,
796,
642,
11,
198,
197,
2435,
62,
32374,
796,
3126,
8,
198,
31,
12860,
2198,
62,
6649,
441,
7,
89,
136,
226,
11,
1861,
8,
198,
87,
136,
226,
11,
334,
136,
226,
796,
555,
8002,
7,
89,
136,
226,
11,
1861,
8,
198,
27110,
11,
256,
11,
289,
136,
226,
796,
651,
62,
2435,
7,
84,
136,
226,
8,
198,
198,
80,
796,
1181,
62,
1462,
62,
11250,
3924,
7,
87,
136,
226,
8,
198,
84,
796,
685,
84,
58,
19849,
13,
312,
87,
62,
84,
60,
329,
334,
287,
334,
136,
226,
60,
198,
42063,
796,
685,
84,
58,
19849,
13,
312,
87,
62,
39377,
60,
329,
334,
287,
334,
136,
226,
60,
198,
65,
796,
685,
84,
58,
19849,
13,
312,
87,
62,
65,
60,
329,
334,
287,
334,
136,
226,
60,
198,
139,
230,
796,
685,
84,
58,
19849,
13,
312,
87,
62,
139,
230,
60,
329,
334,
287,
334,
136,
226,
60,
198,
138,
115,
796,
685,
84,
58,
19849,
13,
312,
87,
62,
138,
115,
60,
329,
334,
287,
334,
136,
226,
60,
198,
71,
136,
226,
796,
1612,
7,
71,
136,
226,
8,
198,
2,
2488,
21928,
4654,
6978,
7,
79,
16993,
22784,
366,
1069,
12629,
14,
9535,
752,
1749,
14,
8873,
2848,
62,
1851,
605,
62,
70,
4548,
13,
73,
335,
17,
4943,
1976,
136,
226,
2124,
136,
226,
334,
136,
226,
289,
136,
226,
10662,
334,
7377,
111,
275,
198,
198,
17256,
7,
22179,
6978,
7,
79,
16993,
22784,
366,
27530,
14,
41464,
1096,
13,
20362,
48774,
198,
4703,
796,
15612,
7509,
3419,
198,
9654,
7,
4703,
8,
198,
198,
41464,
1096,
0,
7,
4703,
11,
2746,
62,
701,
11,
198,
197,
80,
11,
198,
197,
138,
242,
83,
796,
289,
136,
226,
58,
16,
4357,
198,
197,
1416,
39055,
796,
1058,
1851,
605,
8,
198,
198,
2617,
15252,
0,
7,
4703,
14692,
3524,
33116,
2269,
15748,
15522,
873,
13,
38197,
45474,
9248,
7,
53,
721,
7,
15,
13,
15,
11,
657,
13,
15,
11,
657,
13,
15,
828,
198,
197,
53,
721,
7,
15,
13,
1495,
11,
657,
13,
20,
11,
513,
1635,
657,
13,
1495,
36911,
47529,
2725,
506,
17518,
7,
8043,
796,
34359,
4339,
7,
15,
13,
20,
11,
657,
13,
20,
11,
657,
13,
20,
11,
352,
13,
15,
22305,
198,
2617,
35636,
0,
7,
4703,
14692,
3524,
33116,
33322,
32590,
15,
13,
11623,
11,
532,
15,
13,
1495,
11,
657,
4008,
198,
198,
3500,
1345,
1747,
198,
29487,
7,
71,
9246,
7,
80,
62,
5420,
23029,
58,
16,
25,
19,
11,
1058,
60,
3256,
3124,
796,
1058,
13424,
837,
9647,
796,
362,
13,
15,
8,
198,
29487,
0,
7,
71,
9246,
7,
80,
23029,
58,
16,
25,
19,
11,
1058,
60,
3256,
3124,
796,
1058,
445,
11,
9647,
796,
352,
13,
15,
8,
198,
198,
29487,
7,
71,
9246,
7,
84,
23029,
3256,
9493,
2963,
431,
796,
1058,
4169,
381,
455,
8,
628,
198,
2,
12793,
198,
23940,
796,
289,
136,
226,
198,
34703,
76,
796,
2746,
13,
34703,
198,
80,
76,
11,
23781,
11,
7377,
111,
76,
11,
275,
76,
11,
18074,
230,
76,
11,
7377,
115,
76,
796,
10662,
11,
334,
11,
7377,
111,
11,
275,
11,
18074,
230,
11,
7377,
115,
198,
198,
31,
21928,
4654,
6978,
7,
31,
834,
34720,
834,
11,
366,
8873,
2848,
62,
35429,
62,
2704,
541,
13,
73,
335,
17,
4943,
10662,
76,
23781,
7377,
111,
76,
275,
76,
18074,
230,
76,
7377,
115,
76,
18919,
76,
289,
76,
198,
198,
2,
24185,
16046,
1343,
14283,
198,
31,
2220,
4654,
6978,
7,
31,
834,
34720,
834,
11,
366,
8873,
2848,
62,
301,
958,
13,
73,
335,
17,
4943,
10662,
76,
23781,
7377,
111,
76,
275,
76,
18074,
230,
76,
7377,
115,
76,
18919,
76,
289,
76,
198,
198,
8818,
2239,
62,
44754,
7,
80,
11,
334,
11,
7377,
111,
11,
275,
11,
18074,
230,
11,
7377,
115,
11,
309,
26,
4831,
796,
362,
8,
198,
197,
80,
76,
796,
685,
22089,
30073,
7,
80,
8,
22345,
198,
197,
388,
796,
685,
22089,
30073,
7,
84,
8,
22345,
198,
197,
42063,
76,
796,
685,
22089,
30073,
7,
42063,
8,
22345,
198,
197,
20475,
796,
685,
22089,
30073,
7,
65,
8,
22345,
198,
197,
139,
230,
76,
796,
685,
22089,
30073,
7,
139,
230,
8,
22345,
198,
197,
138,
115,
76,
796,
685,
22089,
30073,
7,
138,
115,
8,
22345,
628,
197,
2536,
485,
796,
6632,
7,
80,
76,
58,
16,
12962,
198,
197,
1640,
1312,
796,
352,
37498,
20214,
12,
16,
8,
198,
197,
197,
31,
12860,
33769,
58,
16,
60,
15853,
10662,
58,
51,
10,
16,
7131,
16,
60,
532,
10662,
58,
17,
7131,
16,
60,
198,
197,
197,
31,
12860,
33769,
58,
17,
60,
15853,
657,
13,
1495,
198,
197,
197,
1640,
256,
796,
352,
25,
51,
12,
16,
198,
197,
197,
197,
14689,
0,
7,
80,
76,
11,
10662,
58,
83,
10,
17,
60,
1343,
33769,
8,
198,
197,
197,
197,
14689,
0,
7,
388,
11,
334,
58,
83,
12962,
198,
197,
197,
197,
14689,
0,
7,
42063,
76,
11,
7377,
111,
58,
83,
12962,
198,
197,
197,
197,
14689,
0,
7,
20475,
11,
275,
58,
83,
12962,
198,
197,
197,
197,
14689,
0,
7,
139,
230,
76,
11,
18074,
230,
58,
83,
12962,
198,
197,
197,
197,
14689,
0,
7,
138,
115,
76,
11,
7377,
115,
58,
83,
12962,
198,
197,
197,
437,
198,
197,
437,
628,
197,
7783,
10662,
76,
11,
23781,
11,
7377,
111,
76,
11,
275,
76,
11,
18074,
230,
76,
11,
7377,
115,
76,
198,
437,
198,
198,
80,
76,
11,
23781,
11,
7377,
111,
76,
11,
275,
76,
11,
18074,
230,
76,
11,
7377,
115,
76,
796,
2239,
62,
44754,
7,
80,
76,
11,
23781,
11,
7377,
111,
76,
11,
275,
76,
11,
18074,
230,
76,
11,
7377,
115,
76,
11,
309,
11,
4831,
796,
513,
8,
198,
198,
31,
21928,
4654,
6978,
7,
31,
834,
34720,
834,
11,
366,
8873,
2848,
62,
17617,
62,
18,
13,
73,
335,
17,
4943,
10662,
76,
23781,
7377,
111,
76,
275,
76,
18074,
230,
76,
7377,
115,
76,
18919,
76,
289,
76,
198,
2,
2488,
2220,
4654,
6978,
7,
31,
834,
34720,
834,
11,
366,
8873,
2848,
62,
17617,
62,
18,
13,
73,
335,
17,
4943,
10662,
76,
23781,
7377,
111,
76,
275,
76,
18074,
230,
76,
7377,
115,
76,
18919,
76,
289,
76,
198,
198,
2617,
15252,
0,
7,
4703,
14692,
3524,
16,
33116,
2269,
15748,
15522,
873,
13,
38197,
45474,
9248,
7,
53,
721,
7,
15,
13,
15,
11,
657,
13,
15,
11,
657,
13,
15,
828,
198,
197,
53,
721,
7,
15,
13,
1495,
11,
657,
13,
20,
11,
657,
13,
1495,
36911,
47529,
2725,
506,
17518,
7,
8043,
796,
34359,
4339,
7,
15,
13,
20,
11,
657,
13,
20,
11,
657,
13,
20,
11,
352,
13,
15,
22305,
198,
2617,
35636,
0,
7,
4703,
14692,
3524,
16,
33116,
33322,
7,
15,
13,
11623,
11,
532,
15,
13,
1495,
11,
657,
4008,
198,
198,
2617,
15252,
0,
7,
4703,
14692,
3524,
17,
33116,
2269,
15748,
15522,
873,
13,
38197,
45474,
9248,
7,
53,
721,
7,
15,
13,
15,
11,
657,
13,
15,
11,
657,
13,
15,
828,
198,
197,
53,
721,
7,
15,
13,
1495,
11,
657,
13,
20,
11,
362,
1635,
657,
13,
1495,
36911,
47529,
2725,
506,
17518,
7,
8043,
796,
34359,
4339,
7,
15,
13,
20,
11,
657,
13,
20,
11,
657,
13,
20,
11,
352,
13,
15,
22305,
198,
2617,
35636,
0,
7,
4703,
14692,
3524,
17,
33116,
33322,
7,
15,
13,
11623,
1343,
657,
13,
1495,
11,
532,
15,
13,
1495,
11,
657,
4008,
198,
198,
2617,
15252,
0,
7,
4703,
14692,
3524,
18,
33116,
2269,
15748,
15522,
873,
13,
38197,
45474,
9248,
7,
53,
721,
7,
15,
13,
15,
11,
657,
13,
15,
11,
657,
13,
15,
828,
198,
197,
53,
721,
7,
15,
13,
1495,
11,
657,
13,
20,
11,
513,
1635,
657,
13,
1495,
36911,
47529,
2725,
506,
17518,
7,
8043,
796,
34359,
4339,
7,
15,
13,
20,
11,
657,
13,
20,
11,
657,
13,
20,
11,
352,
13,
15,
22305,
198,
2617,
35636,
0,
7,
4703,
14692,
3524,
18,
33116,
33322,
7,
15,
13,
11623,
1343,
362,
1635,
657,
13,
1495,
11,
532,
15,
13,
1495,
11,
657,
4008,
198,
198,
35429,
62,
2704,
541,
796,
3440,
7,
22179,
6978,
7,
31,
834,
34720,
834,
11,
366,
8873,
2848,
62,
35429,
62,
2704,
541,
13,
73,
335,
17,
48774,
198,
198,
80,
76,
62,
69,
11,
23781,
62,
69,
11,
7377,
111,
76,
62,
69,
11,
275,
76,
62,
69,
11,
18074,
230,
76,
62,
69,
11,
7377,
115,
76,
62,
69,
11,
18919,
76,
62,
69,
11,
289,
76,
62,
69,
796,
7331,
62,
2704,
541,
14692,
80,
76,
33116,
7331,
62,
2704,
541,
14692,
388,
33116,
7331,
62,
2704,
541,
14692,
42063,
76,
33116,
7331,
62,
2704,
541,
14692,
20475,
33116,
7331,
62,
2704,
541,
14692,
139,
230,
76,
33116,
7331,
62,
2704,
541,
14692,
138,
115,
76,
33116,
7331,
62,
2704,
541,
14692,
34703,
76,
33116,
7331,
62,
2704,
541,
14692,
23940,
8973,
198,
198,
2536,
796,
6632,
7,
80,
76,
58,
16,
12962,
198,
2536,
58,
16,
60,
796,
10662,
76,
58,
437,
7131,
16,
60,
198,
198,
1640,
1312,
796,
352,
25,
940,
198,
197,
83,
796,
352,
198,
197,
14689,
0,
7,
80,
76,
11,
10662,
76,
62,
69,
58,
83,
10,
17,
60,
1343,
965,
8,
198,
197,
14689,
0,
7,
388,
11,
23781,
62,
69,
58,
83,
12962,
198,
197,
14689,
0,
7,
42063,
76,
11,
7377,
111,
76,
62,
69,
58,
83,
12962,
198,
197,
14689,
0,
7,
20475,
11,
275,
76,
62,
69,
58,
83,
12962,
198,
197,
14689,
0,
7,
139,
230,
76,
11,
18074,
230,
76,
62,
69,
58,
83,
12962,
198,
197,
14689,
0,
7,
138,
115,
76,
11,
7377,
115,
76,
62,
69,
58,
83,
12962,
198,
437,
198,
198,
1640,
256,
796,
352,
25,
13664,
7,
388,
62,
69,
8,
198,
197,
14689,
0,
7,
80,
76,
11,
10662,
76,
62,
69,
58,
83,
10,
17,
60,
1343,
965,
8,
198,
197,
14689,
0,
7,
388,
11,
23781,
62,
69,
58,
83,
12962,
198,
197,
14689,
0,
7,
42063,
76,
11,
7377,
111,
76,
62,
69,
58,
83,
12962,
198,
197,
14689,
0,
7,
20475,
11,
275,
76,
62,
69,
58,
83,
12962,
198,
197,
14689,
0,
7,
139,
230,
76,
11,
18074,
230,
76,
62,
69,
58,
83,
12962,
198,
197,
14689,
0,
7,
138,
115,
76,
11,
7377,
115,
76,
62,
69,
58,
83,
12962,
198,
437,
198,
198,
31,
21928,
4654,
6978,
7,
31,
834,
34720,
834,
11,
366,
8873,
2848,
62,
17617,
62,
18,
62,
2704,
541,
13,
73,
335,
17,
4943,
10662,
76,
23781,
7377,
111,
76,
275,
76,
18074,
230,
76,
7377,
115,
76,
18919,
76,
289,
76,
198,
198,
41464,
1096,
0,
7,
4703,
11,
2746,
62,
701,
11,
198,
197,
80,
76,
11,
198,
197,
138,
242,
83,
796,
289,
136,
226,
58,
16,
4357,
198,
197,
1416,
39055,
796,
1058,
17617,
8,
198,
198,
2617,
22930,
0,
7,
4703,
14692,
14,
34,
2382,
292,
14,
12286,
14,
10599,
515,
14,
27,
15252,
24618,
4357,
366,
89,
4207,
1600,
1160,
8,
198,
198,
2617,
35636,
0,
7,
4703,
14692,
14,
34,
2382,
292,
14,
12286,
33116,
198,
197,
785,
3455,
7,
48313,
7,
15,
13,
15,
11,
532,
3829,
13,
15,
11,
532,
16,
13,
15,
828,
14993,
451,
13912,
7,
24864,
57,
32590,
15,
13,
20,
1635,
18074,
222,
35514,
198
] | 1.831924 | 4,611 |
function makealltrans(N,n,Ω,basis="Hermite")
dim=length(N)
if dim==1
Nx = N[1]
ωx = Ω[1]
#n-field transforms for PGPE
x,wx,Tx = nfieldtrans(Nx,n,ω=ωx,basis=basis)
return x,wx,Tx
elseif dim==2
Nx,Ny = N
ωx,ωy = Ω
#n-field transforms for PGPE
x,wx,Tx = nfieldtrans(Nx,n,ω=ωx,basis=basis)
y,wy,Ty = nfieldtrans(Ny,n,ω=ωy,basis=basis)
return x,wx,Tx,y,wy,Ty
elseif dim==3
Nx,Ny,Nz = N
ωx,ωy,ωz = Ω
#n-field transforms for PGPE
x,wx,Tx = nfieldtrans(Nx,n,ω=ωx,basis=basis)
y,wy,Ty = nfieldtrans(Ny,n,ω=ωy,basis=basis)
z,wz,Tz = nfieldtrans(Nz,n,ω=ωz,basis=basis)
return x,wx,Tx,y,wy,Ty,z,wz,Tz
end
end
| [
8818,
787,
439,
7645,
7,
45,
11,
77,
11,
138,
102,
11,
12093,
271,
2625,
48523,
578,
4943,
198,
27740,
28,
13664,
7,
45,
8,
198,
361,
5391,
855,
16,
198,
220,
399,
87,
796,
399,
58,
16,
60,
198,
220,
18074,
231,
87,
796,
7377,
102,
58,
16,
60,
198,
220,
1303,
77,
12,
3245,
31408,
329,
23842,
11401,
198,
220,
2124,
11,
49345,
11,
46047,
796,
299,
3245,
7645,
7,
45,
87,
11,
77,
11,
49535,
28,
49535,
87,
11,
12093,
271,
28,
12093,
271,
8,
198,
220,
1441,
2124,
11,
49345,
11,
46047,
198,
17772,
361,
5391,
855,
17,
198,
220,
399,
87,
11,
45,
88,
796,
399,
198,
220,
18074,
231,
87,
11,
49535,
88,
796,
7377,
102,
198,
220,
1303,
77,
12,
3245,
31408,
329,
23842,
11401,
198,
220,
2124,
11,
49345,
11,
46047,
796,
299,
3245,
7645,
7,
45,
87,
11,
77,
11,
49535,
28,
49535,
87,
11,
12093,
271,
28,
12093,
271,
8,
198,
220,
331,
11,
21768,
11,
25492,
796,
299,
3245,
7645,
7,
45,
88,
11,
77,
11,
49535,
28,
49535,
88,
11,
12093,
271,
28,
12093,
271,
8,
198,
220,
1441,
2124,
11,
49345,
11,
46047,
11,
88,
11,
21768,
11,
25492,
198,
17772,
361,
5391,
855,
18,
198,
220,
399,
87,
11,
45,
88,
11,
45,
89,
796,
399,
198,
220,
18074,
231,
87,
11,
49535,
88,
11,
49535,
89,
796,
7377,
102,
198,
220,
1303,
77,
12,
3245,
31408,
329,
23842,
11401,
198,
220,
2124,
11,
49345,
11,
46047,
796,
299,
3245,
7645,
7,
45,
87,
11,
77,
11,
49535,
28,
49535,
87,
11,
12093,
271,
28,
12093,
271,
8,
198,
220,
331,
11,
21768,
11,
25492,
796,
299,
3245,
7645,
7,
45,
88,
11,
77,
11,
49535,
28,
49535,
88,
11,
12093,
271,
28,
12093,
271,
8,
198,
220,
1976,
11,
86,
89,
11,
51,
89,
796,
299,
3245,
7645,
7,
45,
89,
11,
77,
11,
49535,
28,
49535,
89,
11,
12093,
271,
28,
12093,
271,
8,
198,
220,
1441,
2124,
11,
49345,
11,
46047,
11,
88,
11,
21768,
11,
25492,
11,
89,
11,
86,
89,
11,
51,
89,
198,
437,
198,
437,
198
] | 1.773109 | 357 |
import Distributions: logpdf, pdf
struct SDT{T1,T2} <: ContinuousUnivariateDistribution
d::T1
c::T2
end
logpdf(d::SDT, data::Vector{Int64}) = logpdf(d, data...)
logpdf(d::SDT, data::Tuple{Vararg{Int64}}) = logpdf(d, data...)
function logpdf(d::SDT, hits, fas, Nd)
@unpack d,c = d
θhit = cdf(Normal(0, 1), d/2-c)
θfa = cdf(Normal(0, 1), -d/2-c)
loghits = logpdf(Binomial(Nd, θhit), hits)
logfas = logpdf(Binomial(Nd, θfa), fas)
return loghits + logfas
end
pdf(d::SDT, data::Vector{Int64}) = exp(logpdf(d, data...))
| [
11748,
46567,
507,
25,
2604,
12315,
11,
37124,
198,
198,
7249,
9834,
51,
90,
51,
16,
11,
51,
17,
92,
1279,
25,
45012,
3118,
42524,
20344,
3890,
198,
220,
220,
220,
288,
3712,
51,
16,
198,
220,
220,
220,
269,
3712,
51,
17,
198,
437,
198,
198,
6404,
12315,
7,
67,
3712,
10305,
51,
11,
1366,
3712,
38469,
90,
5317,
2414,
30072,
796,
2604,
12315,
7,
67,
11,
1366,
23029,
198,
198,
6404,
12315,
7,
67,
3712,
10305,
51,
11,
1366,
3712,
51,
29291,
90,
19852,
853,
90,
5317,
2414,
11709,
8,
796,
2604,
12315,
7,
67,
11,
1366,
23029,
198,
198,
8818,
2604,
12315,
7,
67,
3712,
10305,
51,
11,
7127,
11,
277,
292,
11,
399,
67,
8,
198,
220,
220,
220,
2488,
403,
8002,
288,
11,
66,
796,
288,
198,
220,
220,
220,
7377,
116,
17945,
796,
269,
7568,
7,
26447,
7,
15,
11,
352,
828,
288,
14,
17,
12,
66,
8,
198,
220,
220,
220,
7377,
116,
13331,
796,
269,
7568,
7,
26447,
7,
15,
11,
352,
828,
532,
67,
14,
17,
12,
66,
8,
198,
220,
220,
220,
2376,
456,
896,
796,
2604,
12315,
7,
33,
259,
49070,
7,
45,
67,
11,
7377,
116,
17945,
828,
7127,
8,
198,
220,
220,
220,
2604,
69,
292,
796,
2604,
12315,
7,
33,
259,
49070,
7,
45,
67,
11,
7377,
116,
13331,
828,
277,
292,
8,
198,
220,
220,
220,
1441,
2376,
456,
896,
1343,
2604,
69,
292,
198,
437,
198,
198,
12315,
7,
67,
3712,
10305,
51,
11,
1366,
3712,
38469,
90,
5317,
2414,
30072,
796,
1033,
7,
6404,
12315,
7,
67,
11,
1366,
986,
4008,
198
] | 2.048327 | 269 |
# This code is based on the gridap hyperelasticity demo: https://gridap.github.io/Tutorials/dev/pages/t005_hyperelasticity/
# Here I expanded it to 3D and added Makie based model visualisation.
# Note this code currently requires: ] add Makie@0.15.2 GLMakie@0.4.6
using Gridap
using Gridap.Visualization
using Gridap.ReferenceFEs
using Gridap.Geometry
using FileIO
using LineSearches: BackTracking
using GLMakie, GeometryBasics
using Colors, ColorSchemes
# Geometry and BC parameters
sample_dim = [1,1,1] #Sample dimensions
numElem = [5,5,5] #Number of elements in each direction
disp_max = 0.3 #Maximum displacement
disp_inc = disp_max/10 #Desired displacement increment per step
degree = 2 #Mesh order
# Material parameters
const λ = 100.0
const μ = 1.0
# Deformation Gradient
F(∇u) = one(∇u) + ∇u'
#Jacobian = volume ratio
J(F) = sqrt(det(C(F)))
#Green-Lagrange strain
#E(F) = 0.5*( F'*F - one(F) ) #Green-Lagrange strain
dE(∇du,∇u) = 0.5*( ∇du⋅F(∇u) + (∇du⋅F(∇u))' )
# Right Cauchy-green deformation tensor
C(F) = (F')⋅F
# Hyperelastic constitutive law for the Neo hookean material
function S(∇u)
Cinv = inv(C(F(∇u))) #Inverse of C i.e. B
μ*(one(∇u)-Cinv) + λ*log(J(F(∇u)))*Cinv
end
function dS(∇du,∇u)
Cinv = inv(C(F(∇u)))
_dE = dE(∇du,∇u)
λ*(Cinv⊙_dE)*Cinv + 2*(μ-λ*log(J(F(∇u))))*Cinv⋅_dE⋅(Cinv')
end
# Cauchy stress tensor
σ(∇u) = (1.0/J(F(∇u)))*F(∇u)⋅S(∇u)⋅(F(∇u))'
# Model
domain = (0,sample_dim[1],0,sample_dim[2],0,sample_dim[3])
partition = (numElem[1],numElem[2],numElem[3])
model = CartesianDiscreteModel(domain,partition)
# Define new boundaries
labels = get_face_labeling(model)
add_tag_from_tags!(labels,"diri_0",[1,3,5,7,13,15,17,19,25])
add_tag_from_tags!(labels,"diri_1",[2,4,6,8,14,16,18,20,26])
# Setup integration
Ω = Triangulation(model)
dΩ = Measure(Ω,degree)
# Weak form
res(u,v) = ∫( (dE∘(∇(v),∇(u))) ⊙ (S∘∇(u)) )*dΩ
jac_mat(u,du,v) = ∫( (dE∘(∇(v),∇(u))) ⊙ (dS∘(∇(du),∇(u))) )*dΩ
jac_geo(u,du,v) = ∫( ∇(v) ⊙ ( (S∘∇(u))⋅∇(du) ) )*dΩ
jac(u,du,v) = jac_mat(u,du,v) + jac_geo(u,du,v)
# Construct the FEspace
reffe = ReferenceFE(lagrangian,VectorValue{3,Float64},1)
V = TestFESpace(model,reffe,conformity=:H1,dirichlet_tags = ["diri_0", "diri_1"])
# Setup non-linear solver
nls = NLSolver(show_trace=true,method=:newton,linesearch=BackTracking())
solver = FESolver(nls)
function run(x0,disp_x,step,nsteps,cache)
g0 = VectorValue(0.0,0.0,0.0)
g1 = VectorValue(disp_x,0.0,0.0)
U = TrialFESpace(V,[g0,g1])
#FE problem
op = FEOperator(res,jac,U,V)
println("\n+++ Solving for disp_x $disp_x in step $step of $nsteps +++\n")
uh = FEFunction(U,x0)
uh, cache = solve!(uh,solver,op,cache)
return get_free_dof_values(uh), uh, cache
end
function runs(disp_max,disp_inc)
nsteps = ceil(Int,abs(disp_max)/disp_inc)
x0 = zeros(Float64,num_free_dofs(V))
nodalDisplacements = Vector{Vector{VectorValue{3, Float64}}}(undef,nsteps+1)
cache = nothing
for step in 1:nsteps
disp_x = step * disp_max / nsteps
x0, uh, cache = run(x0,disp_x,step,nsteps,cache)
vd = visualization_data(Ω,"",cellfields=["u"=>uh])
nodalDisplacements[step+1] = vd[1].nodaldata["u"]
end
nodalDisplacements[1]=nodalDisplacements[2].*0 #Add zeros for initial state
return nodalDisplacements
end
function nodesToPointset(V)
#Convert gridap coordinate type to Makie Point3f type
P=Vector{GeometryBasics.Point{3, Float32}}(undef,size(V,1))
for q=1:1:size(V,1)
P[q]=convert(GeometryBasics.Point,convert(Tuple{Float64, Float64, Float64},V[q]))
end
return P
end
function convertToFacePointSet(Ω)
#TO DO: Implement other element types, hex->quads only shown here
#Get gridap element and node descriptions
# E=Ω.cell_node_ids[:] #Elements
# V=Ω.node_coords[:] #Nodes/Vertices
vd=visualization_data(Ω,"");
grid = vd[1].grid
E = get_cell_node_ids(grid)
V = get_node_coordinates(grid)
#Get faces and convert to QuadFace type
F=Vector{QuadFace{Int64}}(undef,size(E,1)*6)
for q=1:1:size(E,1)
F[q]=convert(QuadFace{Int64},E[q][[1,2,4,3],1]) #top
F[q+size(E,1)*1]=convert(QuadFace{Int64},E[q][[5,6,8,7],1]) #bottom
F[q+size(E,1)*2]=convert(QuadFace{Int64},E[q][[1,2,6,5],1]) #side 1
F[q+size(E,1)*3]=convert(QuadFace{Int64},E[q][[4,3,7,8],1]) #side 2
F[q+size(E,1)*4]=convert(QuadFace{Int64},E[q][[2,4,8,6],1]) #front
F[q+size(E,1)*5]=convert(QuadFace{Int64},E[q][[3,1,5,7],1]) #back
end
#Create face type labels
faceTypeLabel=[ones(Int64,size(E,1))*1;
ones(Int64,size(E,1))*2;
ones(Int64,size(E,1))*3;
ones(Int64,size(E,1))*4;
ones(Int64,size(E,1))*5;
ones(Int64,size(E,1))*6;]
P=nodesToPointset(V)
return P,F, faceTypeLabel
end
#Do the work!
nodalDisplacements = runs(disp_max,disp_inc)
#Create makie compatible face and point set
pointSet,faceSet,faceTypeLabel=convertToFacePointSet(Ω)
function getCoordStep(Ω,nodalDisplacement)
vd = visualization_data(Ω,"")
grid = vd[1].grid
V = get_node_coordinates(grid)
V2= V + nodalDisplacement
pointSet2=nodesToPointset(V2)
return pointSet2
end
function getMagnitude(U)
M=zeros(size(U,1))
for q=1:1:size(U,1)
M[q]=sqrt(U[q][1]^2 + U[q][2]^2 + U[q][3]^2)
end
return M
end
pointSet=getCoordStep(Ω,nodalDisplacements[1])
#Gather face and point set as GeometryBasics mesh
M=GeometryBasics.Mesh(pointSet,faceSet)
nodalColor=getMagnitude(nodalDisplacements[1])
#Visualize mesh
fig = Figure()
sl_step = Slider(fig[2, 1], range = 1:1:size(nodalDisplacements,1), startvalue = size(nodalDisplacements,1))
nodalColor = lift(sl_step.value) do stepIndex
getMagnitude(nodalDisplacements[stepIndex])
end
M = lift(sl_step.value) do stepIndex
GeometryBasics.Mesh(getCoordStep(Ω,nodalDisplacements[stepIndex]),faceSet)
end
titleString = lift(sl_step.value) do stepIndex
"Step: "*string(stepIndex-1)
end
ax=Axis3(fig[1, 1], aspect = :data, xlabel = "X", ylabel = "Y", zlabel = "Z", title = titleString)
hp=poly!(M, strokewidth=1,shading=false,color=nodalColor, transparency=false, overdraw=false,
colormap = (RGB(255.0, 215.0, 0.0)/255,RGB(0.0, 87.0, 183.0)/255),colorrange=(0,disp_max))
Colorbar(fig[1, 2],hp.plots[1],label = "Displacement magnitude [mm]")
fig
# ax=Axis3(fig[1, 1], aspect = :data, xlabel = "X", ylabel = "Y", zlabel = "Z", title = titleString)
# hp=poly!(M, strokewidth=3,shading=true,color=nodalColor, transparency=false, overdraw=false
# ,colormap = Reverse(:Spectral),colorrange=(0,0.8))
# Colorbar(fig[1, 2],hp.plots[1],label = "Displacement magnitude [mm]")
# fig
| [
2,
770,
2438,
318,
1912,
319,
262,
10706,
499,
20606,
2411,
3477,
414,
13605,
25,
3740,
1378,
25928,
499,
13,
12567,
13,
952,
14,
51,
44917,
82,
14,
7959,
14,
31126,
14,
83,
22544,
62,
71,
2981,
2411,
3477,
414,
14,
198,
2,
3423,
314,
9902,
340,
284,
513,
35,
290,
2087,
15841,
494,
1912,
2746,
5874,
5612,
13,
220,
198,
198,
2,
5740,
428,
2438,
3058,
4433,
25,
2361,
751,
15841,
494,
31,
15,
13,
1314,
13,
17,
10188,
44,
461,
494,
31,
15,
13,
19,
13,
21,
198,
198,
3500,
24846,
499,
220,
198,
3500,
24846,
499,
13,
36259,
1634,
198,
3500,
24846,
499,
13,
26687,
15112,
82,
198,
3500,
24846,
499,
13,
10082,
15748,
198,
3500,
9220,
9399,
198,
3500,
6910,
50,
451,
2052,
25,
5157,
2898,
5430,
198,
3500,
10188,
44,
461,
494,
11,
2269,
15748,
15522,
873,
198,
3500,
29792,
11,
5315,
27054,
6880,
198,
198,
2,
2269,
15748,
290,
11843,
10007,
198,
39873,
62,
27740,
796,
685,
16,
11,
16,
11,
16,
60,
1303,
36674,
15225,
198,
22510,
36,
10671,
220,
220,
220,
796,
685,
20,
11,
20,
11,
20,
60,
1303,
15057,
286,
4847,
287,
1123,
4571,
198,
6381,
79,
62,
9806,
220,
220,
796,
657,
13,
18,
1303,
40541,
29358,
198,
6381,
79,
62,
1939,
220,
220,
796,
4596,
62,
9806,
14,
940,
1303,
5960,
1202,
29358,
18703,
583,
2239,
198,
16863,
220,
220,
220,
220,
796,
362,
1303,
37031,
1502,
198,
198,
2,
14633,
10007,
198,
9979,
7377,
119,
796,
1802,
13,
15,
198,
9979,
18919,
796,
352,
13,
15,
198,
198,
2,
1024,
1161,
17701,
1153,
198,
37,
7,
24861,
229,
84,
8,
796,
530,
7,
24861,
229,
84,
8,
1343,
18872,
229,
84,
6,
198,
198,
2,
46751,
666,
796,
6115,
8064,
198,
41,
7,
37,
8,
796,
19862,
17034,
7,
15255,
7,
34,
7,
37,
22305,
220,
198,
198,
2,
13719,
12,
43,
363,
9521,
14022,
198,
2,
36,
7,
37,
8,
796,
657,
13,
20,
9,
7,
376,
6,
9,
37,
532,
530,
7,
37,
8,
1267,
1303,
13719,
12,
43,
363,
9521,
14022,
198,
67,
36,
7,
24861,
229,
646,
11,
24861,
229,
84,
8,
796,
657,
13,
20,
9,
7,
18872,
229,
646,
158,
233,
227,
37,
7,
24861,
229,
84,
8,
1343,
357,
24861,
229,
646,
158,
233,
227,
37,
7,
24861,
229,
84,
4008,
6,
1267,
198,
198,
2,
6498,
327,
559,
29658,
12,
14809,
390,
1161,
11192,
273,
198,
34,
7,
37,
8,
796,
357,
37,
11537,
158,
233,
227,
37,
198,
198,
2,
367,
2981,
2411,
3477,
7892,
8827,
1099,
329,
262,
21227,
8169,
2088,
272,
2587,
198,
8818,
311,
7,
24861,
229,
84,
8,
198,
220,
327,
16340,
796,
800,
7,
34,
7,
37,
7,
24861,
229,
84,
22305,
1303,
818,
4399,
286,
327,
1312,
13,
68,
13,
347,
198,
220,
18919,
9,
7,
505,
7,
24861,
229,
84,
13219,
34,
16340,
8,
1343,
7377,
119,
9,
6404,
7,
41,
7,
37,
7,
24861,
229,
84,
22305,
9,
34,
16340,
198,
437,
198,
198,
8818,
288,
50,
7,
24861,
229,
646,
11,
24861,
229,
84,
8,
198,
220,
327,
16340,
796,
800,
7,
34,
7,
37,
7,
24861,
229,
84,
22305,
198,
220,
4808,
67,
36,
796,
288,
36,
7,
24861,
229,
646,
11,
24861,
229,
84,
8,
198,
220,
7377,
119,
9,
7,
34,
16340,
158,
232,
247,
62,
67,
36,
27493,
34,
16340,
1343,
362,
9,
7,
34703,
12,
39377,
9,
6404,
7,
41,
7,
37,
7,
24861,
229,
84,
35514,
9,
34,
16340,
158,
233,
227,
62,
67,
36,
158,
233,
227,
7,
34,
16340,
11537,
198,
437,
198,
198,
2,
327,
559,
29658,
5503,
11192,
273,
198,
38392,
7,
24861,
229,
84,
8,
796,
357,
16,
13,
15,
14,
41,
7,
37,
7,
24861,
229,
84,
22305,
9,
37,
7,
24861,
229,
84,
8,
158,
233,
227,
50,
7,
24861,
229,
84,
8,
158,
233,
227,
7,
37,
7,
24861,
229,
84,
4008,
6,
198,
198,
2,
9104,
198,
27830,
796,
357,
15,
11,
39873,
62,
27740,
58,
16,
4357,
15,
11,
39873,
62,
27740,
58,
17,
4357,
15,
11,
39873,
62,
27740,
58,
18,
12962,
198,
3911,
653,
796,
357,
22510,
36,
10671,
58,
16,
4357,
22510,
36,
10671,
58,
17,
4357,
22510,
36,
10671,
58,
18,
12962,
198,
19849,
796,
13690,
35610,
15642,
8374,
17633,
7,
27830,
11,
3911,
653,
8,
198,
198,
2,
2896,
500,
649,
13215,
198,
23912,
1424,
796,
651,
62,
2550,
62,
18242,
278,
7,
19849,
8,
198,
2860,
62,
12985,
62,
6738,
62,
31499,
0,
7,
23912,
1424,
553,
67,
14783,
62,
15,
1600,
58,
16,
11,
18,
11,
20,
11,
22,
11,
1485,
11,
1314,
11,
1558,
11,
1129,
11,
1495,
12962,
198,
2860,
62,
12985,
62,
6738,
62,
31499,
0,
7,
23912,
1424,
553,
67,
14783,
62,
16,
1600,
58,
17,
11,
19,
11,
21,
11,
23,
11,
1415,
11,
1433,
11,
1507,
11,
1238,
11,
2075,
12962,
198,
198,
2,
31122,
11812,
198,
138,
102,
796,
7563,
648,
1741,
7,
19849,
8,
198,
67,
138,
102,
796,
24291,
7,
138,
102,
11,
16863,
8,
198,
198,
2,
28788,
1296,
198,
411,
7,
84,
11,
85,
8,
796,
18872,
104,
7,
357,
67,
36,
24861,
246,
7,
24861,
229,
7,
85,
828,
24861,
229,
7,
84,
22305,
2343,
232,
247,
357,
50,
24861,
246,
24861,
229,
7,
84,
4008,
1267,
9,
67,
138,
102,
198,
198,
30482,
62,
6759,
7,
84,
11,
646,
11,
85,
8,
796,
220,
18872,
104,
7,
357,
67,
36,
24861,
246,
7,
24861,
229,
7,
85,
828,
24861,
229,
7,
84,
22305,
2343,
232,
247,
357,
67,
50,
24861,
246,
7,
24861,
229,
7,
646,
828,
24861,
229,
7,
84,
22305,
1267,
9,
67,
138,
102,
198,
198,
30482,
62,
469,
78,
7,
84,
11,
646,
11,
85,
8,
796,
18872,
104,
7,
18872,
229,
7,
85,
8,
2343,
232,
247,
357,
357,
50,
24861,
246,
24861,
229,
7,
84,
4008,
158,
233,
227,
24861,
229,
7,
646,
8,
1267,
1267,
9,
67,
138,
102,
198,
198,
30482,
7,
84,
11,
646,
11,
85,
8,
796,
474,
330,
62,
6759,
7,
84,
11,
646,
11,
85,
8,
1343,
474,
330,
62,
469,
78,
7,
84,
11,
646,
11,
85,
8,
198,
198,
2,
28407,
262,
18630,
13200,
198,
260,
16658,
796,
20984,
15112,
7,
30909,
36985,
666,
11,
38469,
11395,
90,
18,
11,
43879,
2414,
5512,
16,
8,
198,
53,
796,
6208,
37,
1546,
10223,
7,
19849,
11,
260,
16658,
11,
1102,
687,
414,
28,
25,
39,
16,
11,
15908,
488,
1616,
62,
31499,
796,
14631,
67,
14783,
62,
15,
1600,
366,
67,
14783,
62,
16,
8973,
8,
198,
198,
2,
31122,
1729,
12,
29127,
1540,
332,
198,
77,
7278,
796,
399,
6561,
14375,
7,
12860,
62,
40546,
28,
7942,
11,
24396,
28,
25,
3605,
1122,
11,
6615,
3679,
28,
7282,
2898,
5430,
28955,
198,
82,
14375,
796,
376,
1546,
14375,
7,
77,
7278,
8,
198,
198,
8818,
1057,
7,
87,
15,
11,
6381,
79,
62,
87,
11,
9662,
11,
77,
20214,
11,
23870,
8,
628,
220,
308,
15,
796,
20650,
11395,
7,
15,
13,
15,
11,
15,
13,
15,
11,
15,
13,
15,
8,
198,
220,
308,
16,
796,
20650,
11395,
7,
6381,
79,
62,
87,
11,
15,
13,
15,
11,
15,
13,
15,
8,
198,
220,
471,
796,
21960,
37,
1546,
10223,
7,
53,
17414,
70,
15,
11,
70,
16,
12962,
628,
220,
1303,
15112,
1917,
198,
220,
1034,
796,
376,
4720,
525,
1352,
7,
411,
11,
30482,
11,
52,
11,
53,
8,
628,
220,
44872,
7203,
59,
77,
45340,
4294,
1075,
329,
4596,
62,
87,
720,
6381,
79,
62,
87,
287,
2239,
720,
9662,
286,
720,
77,
20214,
49954,
59,
77,
4943,
628,
220,
21480,
796,
18630,
22203,
7,
52,
11,
87,
15,
8,
628,
220,
21480,
11,
12940,
796,
8494,
0,
7,
7456,
11,
82,
14375,
11,
404,
11,
23870,
8,
628,
220,
1441,
651,
62,
5787,
62,
67,
1659,
62,
27160,
7,
7456,
828,
21480,
11,
12940,
198,
198,
437,
198,
198,
8818,
4539,
7,
6381,
79,
62,
9806,
11,
6381,
79,
62,
1939,
8,
628,
299,
20214,
796,
2906,
346,
7,
5317,
11,
8937,
7,
6381,
79,
62,
9806,
20679,
6381,
79,
62,
1939,
8,
628,
2124,
15,
796,
1976,
27498,
7,
43879,
2414,
11,
22510,
62,
5787,
62,
67,
1659,
82,
7,
53,
4008,
198,
18666,
282,
7279,
489,
28613,
796,
20650,
90,
38469,
90,
38469,
11395,
90,
18,
11,
48436,
2414,
42535,
7,
917,
891,
11,
77,
20214,
10,
16,
8,
628,
12940,
796,
2147,
198,
329,
2239,
287,
352,
25,
77,
20214,
198,
220,
4596,
62,
87,
796,
2239,
1635,
4596,
62,
9806,
1220,
299,
20214,
198,
220,
2124,
15,
11,
21480,
11,
12940,
796,
1057,
7,
87,
15,
11,
6381,
79,
62,
87,
11,
9662,
11,
77,
20214,
11,
23870,
8,
628,
220,
410,
67,
796,
32704,
62,
7890,
7,
138,
102,
553,
1600,
3846,
25747,
28,
14692,
84,
1,
14804,
7456,
12962,
198,
220,
18666,
282,
7279,
489,
28613,
58,
9662,
10,
16,
60,
796,
410,
67,
58,
16,
4083,
77,
375,
1940,
1045,
14692,
84,
8973,
198,
886,
198,
220,
198,
18666,
282,
7279,
489,
28613,
58,
16,
22241,
77,
375,
282,
7279,
489,
28613,
58,
17,
4083,
9,
15,
1303,
4550,
1976,
27498,
329,
4238,
1181,
628,
1441,
18666,
282,
7279,
489,
28613,
198,
437,
628,
198,
8818,
13760,
2514,
12727,
2617,
7,
53,
8,
198,
220,
1303,
3103,
1851,
10706,
499,
20435,
2099,
284,
15841,
494,
6252,
18,
69,
2099,
198,
220,
350,
28,
38469,
90,
10082,
15748,
15522,
873,
13,
12727,
90,
18,
11,
48436,
2624,
11709,
7,
917,
891,
11,
7857,
7,
53,
11,
16,
4008,
198,
220,
329,
10662,
28,
16,
25,
16,
25,
7857,
7,
53,
11,
16,
8,
198,
220,
220,
220,
350,
58,
80,
22241,
1102,
1851,
7,
10082,
15748,
15522,
873,
13,
12727,
11,
1102,
1851,
7,
51,
29291,
90,
43879,
2414,
11,
48436,
2414,
11,
48436,
2414,
5512,
53,
58,
80,
60,
4008,
198,
220,
886,
198,
220,
1441,
350,
198,
437,
198,
198,
8818,
10385,
2514,
32388,
12727,
7248,
7,
138,
102,
8,
198,
220,
1303,
10468,
8410,
25,
48282,
584,
5002,
3858,
11,
17910,
3784,
421,
5643,
691,
3402,
994,
628,
220,
1303,
3855,
10706,
499,
5002,
290,
10139,
16969,
198,
220,
1303,
412,
28,
138,
102,
13,
3846,
62,
17440,
62,
2340,
58,
47715,
1303,
36,
3639,
198,
220,
1303,
569,
28,
138,
102,
13,
17440,
62,
1073,
3669,
58,
47715,
1303,
45,
4147,
14,
42369,
1063,
198,
220,
410,
67,
28,
41464,
1634,
62,
7890,
7,
138,
102,
553,
15341,
198,
220,
10706,
796,
410,
67,
58,
16,
4083,
25928,
198,
220,
412,
796,
651,
62,
3846,
62,
17440,
62,
2340,
7,
25928,
8,
198,
220,
569,
796,
651,
62,
17440,
62,
37652,
17540,
7,
25928,
8,
628,
220,
1303,
3855,
6698,
290,
10385,
284,
20648,
32388,
2099,
198,
220,
376,
28,
38469,
90,
4507,
324,
32388,
90,
5317,
2414,
11709,
7,
917,
891,
11,
7857,
7,
36,
11,
16,
27493,
21,
8,
198,
220,
329,
10662,
28,
16,
25,
16,
25,
7857,
7,
36,
11,
16,
8,
220,
220,
220,
220,
198,
220,
220,
220,
376,
58,
80,
22241,
1102,
1851,
7,
4507,
324,
32388,
90,
5317,
2414,
5512,
36,
58,
80,
7131,
58,
16,
11,
17,
11,
19,
11,
18,
4357,
16,
12962,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
4852,
198,
220,
220,
220,
376,
58,
80,
10,
7857,
7,
36,
11,
16,
27493,
16,
22241,
1102,
1851,
7,
4507,
324,
32388,
90,
5317,
2414,
5512,
36,
58,
80,
7131,
58,
20,
11,
21,
11,
23,
11,
22,
4357,
16,
12962,
1303,
22487,
198,
220,
220,
220,
376,
58,
80,
10,
7857,
7,
36,
11,
16,
27493,
17,
22241,
1102,
1851,
7,
4507,
324,
32388,
90,
5317,
2414,
5512,
36,
58,
80,
7131,
58,
16,
11,
17,
11,
21,
11,
20,
4357,
16,
12962,
1303,
1589,
352,
198,
220,
220,
220,
376,
58,
80,
10,
7857,
7,
36,
11,
16,
27493,
18,
22241,
1102,
1851,
7,
4507,
324,
32388,
90,
5317,
2414,
5512,
36,
58,
80,
7131,
58,
19,
11,
18,
11,
22,
11,
23,
4357,
16,
12962,
1303,
1589,
362,
198,
220,
220,
220,
376,
58,
80,
10,
7857,
7,
36,
11,
16,
27493,
19,
22241,
1102,
1851,
7,
4507,
324,
32388,
90,
5317,
2414,
5512,
36,
58,
80,
7131,
58,
17,
11,
19,
11,
23,
11,
21,
4357,
16,
12962,
1303,
8534,
198,
220,
220,
220,
376,
58,
80,
10,
7857,
7,
36,
11,
16,
27493,
20,
22241,
1102,
1851,
7,
4507,
324,
32388,
90,
5317,
2414,
5512,
36,
58,
80,
7131,
58,
18,
11,
16,
11,
20,
11,
22,
4357,
16,
12962,
1303,
1891,
198,
220,
886,
628,
220,
1303,
16447,
1986,
2099,
14722,
198,
220,
1986,
6030,
33986,
41888,
1952,
7,
5317,
2414,
11,
7857,
7,
36,
11,
16,
4008,
9,
16,
26,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3392,
7,
5317,
2414,
11,
7857,
7,
36,
11,
16,
4008,
9,
17,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3392,
7,
5317,
2414,
11,
7857,
7,
36,
11,
16,
4008,
9,
18,
26,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3392,
7,
5317,
2414,
11,
7857,
7,
36,
11,
16,
4008,
9,
19,
26,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3392,
7,
5317,
2414,
11,
7857,
7,
36,
11,
16,
4008,
9,
20,
26,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3392,
7,
5317,
2414,
11,
7857,
7,
36,
11,
16,
4008,
9,
21,
26,
60,
628,
220,
350,
28,
77,
4147,
2514,
12727,
2617,
7,
53,
8,
628,
220,
1441,
350,
11,
37,
11,
1986,
6030,
33986,
198,
437,
628,
198,
2,
5211,
262,
670,
0,
198,
77,
375,
282,
7279,
489,
28613,
796,
4539,
7,
6381,
79,
62,
9806,
11,
6381,
79,
62,
1939,
8,
198,
198,
2,
16447,
285,
461,
494,
11670,
1986,
290,
966,
900,
198,
4122,
7248,
11,
2550,
7248,
11,
2550,
6030,
33986,
28,
1102,
1851,
2514,
32388,
12727,
7248,
7,
138,
102,
8,
628,
198,
8818,
651,
7222,
585,
8600,
7,
138,
102,
11,
77,
375,
282,
7279,
489,
5592,
8,
198,
220,
410,
67,
796,
32704,
62,
7890,
7,
138,
102,
553,
4943,
198,
220,
10706,
796,
410,
67,
58,
16,
4083,
25928,
198,
220,
569,
796,
651,
62,
17440,
62,
37652,
17540,
7,
25928,
8,
198,
220,
569,
17,
28,
569,
1343,
18666,
282,
7279,
489,
5592,
198,
220,
966,
7248,
17,
28,
77,
4147,
2514,
12727,
2617,
7,
53,
17,
8,
198,
220,
1441,
966,
7248,
17,
198,
437,
198,
198,
8818,
651,
48017,
3984,
7,
52,
8,
198,
220,
337,
28,
9107,
418,
7,
7857,
7,
52,
11,
16,
4008,
198,
220,
329,
10662,
28,
16,
25,
16,
25,
7857,
7,
52,
11,
16,
8,
198,
220,
220,
220,
337,
58,
80,
22241,
31166,
17034,
7,
52,
58,
80,
7131,
16,
60,
61,
17,
1343,
471,
58,
80,
7131,
17,
60,
61,
17,
1343,
471,
58,
80,
7131,
18,
60,
61,
17,
8,
198,
220,
886,
198,
220,
1441,
337,
198,
437,
198,
198,
4122,
7248,
28,
1136,
7222,
585,
8600,
7,
138,
102,
11,
77,
375,
282,
7279,
489,
28613,
58,
16,
12962,
198,
198,
2,
38,
1032,
1986,
290,
966,
900,
355,
2269,
15748,
15522,
873,
19609,
198,
44,
28,
10082,
15748,
15522,
873,
13,
37031,
7,
4122,
7248,
11,
2550,
7248,
8,
198,
198,
77,
375,
282,
10258,
28,
1136,
48017,
3984,
7,
77,
375,
282,
7279,
489,
28613,
58,
16,
12962,
198,
198,
2,
36259,
1096,
19609,
198,
5647,
796,
11291,
3419,
198,
198,
6649,
62,
9662,
796,
3454,
1304,
7,
5647,
58,
17,
11,
352,
4357,
2837,
796,
352,
25,
16,
25,
7857,
7,
77,
375,
282,
7279,
489,
28613,
11,
16,
828,
923,
8367,
796,
2546,
7,
77,
375,
282,
7279,
489,
28613,
11,
16,
4008,
198,
198,
77,
375,
282,
10258,
796,
10303,
7,
6649,
62,
9662,
13,
8367,
8,
466,
2239,
15732,
198,
220,
651,
48017,
3984,
7,
77,
375,
282,
7279,
489,
28613,
58,
9662,
15732,
12962,
198,
437,
198,
198,
44,
796,
10303,
7,
6649,
62,
9662,
13,
8367,
8,
466,
2239,
15732,
198,
220,
2269,
15748,
15522,
873,
13,
37031,
7,
1136,
7222,
585,
8600,
7,
138,
102,
11,
77,
375,
282,
7279,
489,
28613,
58,
9662,
15732,
46570,
2550,
7248,
8,
198,
437,
198,
198,
7839,
10100,
796,
10303,
7,
6649,
62,
9662,
13,
8367,
8,
466,
2239,
15732,
198,
220,
366,
8600,
25,
366,
9,
8841,
7,
9662,
15732,
12,
16,
8,
198,
437,
198,
198,
897,
28,
31554,
271,
18,
7,
5647,
58,
16,
11,
352,
4357,
4843,
796,
1058,
7890,
11,
2124,
18242,
796,
366,
55,
1600,
331,
18242,
796,
366,
56,
1600,
1976,
18242,
796,
366,
57,
1600,
3670,
796,
3670,
10100,
8,
198,
24831,
28,
35428,
0,
7,
44,
11,
14000,
10394,
28,
16,
11,
1477,
4980,
28,
9562,
11,
8043,
28,
77,
375,
282,
10258,
11,
13902,
28,
9562,
11,
14904,
1831,
28,
9562,
11,
198,
4033,
579,
499,
796,
357,
36982,
7,
13381,
13,
15,
11,
22951,
13,
15,
11,
657,
13,
15,
20679,
13381,
11,
36982,
7,
15,
13,
15,
11,
10083,
13,
15,
11,
28551,
13,
15,
20679,
13381,
828,
8043,
9521,
16193,
15,
11,
6381,
79,
62,
9806,
4008,
198,
10258,
5657,
7,
5647,
58,
16,
11,
362,
4357,
24831,
13,
489,
1747,
58,
16,
4357,
18242,
796,
366,
7279,
489,
5592,
14735,
685,
3020,
60,
4943,
198,
5647,
198,
198,
2,
7877,
28,
31554,
271,
18,
7,
5647,
58,
16,
11,
352,
4357,
4843,
796,
1058,
7890,
11,
2124,
18242,
796,
366,
55,
1600,
331,
18242,
796,
366,
56,
1600,
1976,
18242,
796,
366,
57,
1600,
3670,
796,
3670,
10100,
8,
198,
2,
27673,
28,
35428,
0,
7,
44,
11,
14000,
10394,
28,
18,
11,
1477,
4980,
28,
7942,
11,
8043,
28,
77,
375,
282,
10258,
11,
13902,
28,
9562,
11,
14904,
1831,
28,
9562,
198,
2,
837,
4033,
579,
499,
796,
31849,
7,
25,
49738,
1373,
828,
8043,
9521,
16193,
15,
11,
15,
13,
23,
4008,
198,
2,
5315,
5657,
7,
5647,
58,
16,
11,
362,
4357,
24831,
13,
489,
1747,
58,
16,
4357,
18242,
796,
366,
7279,
489,
5592,
14735,
685,
3020,
60,
4943,
198,
2,
2336,
198
] | 2.127701 | 3,101 |
{"score": 8.04, "timestamp": 1580207216.0, "score_count": 256261}
{"score": 8.06, "timestamp": 1567156859.0, "score_count": 246192}
{"score": 8.06, "timestamp": 1566888606.0, "score_count": 245781}
{"score": 8.06, "timestamp": 1565672254.0, "score_count": 244871}
{"score": 8.06, "timestamp": 1565469084.0, "score_count": 244871}
{"score": 8.06, "timestamp": 1565467411.0, "score_count": 244871}
{"score": 8.06, "timestamp": 1565143938.0, "score_count": 244453}
{"score": 8.06, "timestamp": 1565141737.0, "score_count": 244453}
{"score": 8.06, "timestamp": 1565136435.0, "score_count": 244453}
{"score": 8.06, "timestamp": 1565087565.0, "score_count": 244453}
{"score": 8.06, "timestamp": 1564853335.0, "score_count": 244453}
{"score": 8.06, "timestamp": 1564844609.0, "score_count": 244453}
{"score": 8.06, "timestamp": 1564796503.0, "score_count": 244453}
{"score": 8.06, "timestamp": 1564529822.0, "score_count": 244155}
{"score": 8.06, "timestamp": 1564455235.0, "score_count": 244155}
{"score": 8.07, "timestamp": 1561629271.0, "score_count": 242413}
{"score": 8.07, "timestamp": 1553317857.0, "score_count": 237858}
{"score": 8.11, "timestamp": 1516251698.0, "score_count": 213492}
{"score": 8.18, "timestamp": 1475839536.0, "score_count": 179925}
{"score": 8.18, "timestamp": 1475839535.0, "score_count": 179925}
{"score": 8.18, "timestamp": 1475839530.0, "score_count": 179925}
{"score": 8.18, "timestamp": 1475839525.0, "score_count": 179925}
{"score": 8.18, "timestamp": 1475839521.0, "score_count": 179925}
{"score": 8.18, "timestamp": 1475839515.0, "score_count": 179925}
{"score": 8.18, "timestamp": 1475839516.0, "score_count": 179925}
{"score": 8.21, "timestamp": 1462139731.0, "score_count": 166609}
{"score": 8.21, "timestamp": 1460755342.0, "score_count": 165208}
{"score": 8.25, "timestamp": 1444982827.0, "score_count": 150171}
{"score": 8.25, "timestamp": 1442286846.0, "score_count": 147979}
{"score": 8.25, "timestamp": 1441705769.0, "score_count": 147531}
{"score": 8.26, "timestamp": 1439553727.0, "score_count": 145625}
{"score": 8.06, "timestamp": 1564357491.0, "score_count": 244155}
{"score": 8.06, "timestamp": 1563037380.0, "score_count": 243384}
{"score": 8.06, "timestamp": 1562902104.0, "score_count": 243384}
{"score": 8.06, "timestamp": 1562190526.0, "score_count": 242743}
{"score": 8.06, "timestamp": 1561844942.0, "score_count": 242743}
{"score": 8.06, "timestamp": 1561836533.0, "score_count": 242743}
{"score": 8.07, "timestamp": 1561523365.0, "score_count": 242413}
{"score": 8.07, "timestamp": 1561253409.0, "score_count": 242413}
{"score": 8.07, "timestamp": 1561164753.0, "score_count": 242103}
{"score": 8.07, "timestamp": 1560997683.0, "score_count": 242103}
{"score": 8.07, "timestamp": 1560892794.0, "score_count": 242103}
{"score": 8.07, "timestamp": 1560828587.0, "score_count": 242103}
{"score": 8.07, "timestamp": 1560817712.0, "score_count": 242103}
{"score": 8.07, "timestamp": 1560545428.0, "score_count": 241838}
{"score": 8.07, "timestamp": 1560398612.0, "score_count": 241838}
{"score": 8.07, "timestamp": 1560290569.0, "score_count": 241838}
{"score": 8.07, "timestamp": 1560246048.0, "score_count": 241838}
{"score": 8.07, "timestamp": 1560193280.0, "score_count": 241838}
{"score": 8.07, "timestamp": 1560056740.0, "score_count": 241711}
{"score": 8.07, "timestamp": 1560031181.0, "score_count": 241711}
{"score": 8.07, "timestamp": 1560019574.0, "score_count": 241711}
{"score": 8.07, "timestamp": 1559962538.0, "score_count": 241711}
{"score": 8.07, "timestamp": 1559956315.0, "score_count": 241711}
{"score": 8.07, "timestamp": 1559953411.0, "score_count": 241711}
{"score": 8.07, "timestamp": 1559946789.0, "score_count": 241711}
{"score": 8.07, "timestamp": 1559943966.0, "score_count": 241711}
{"score": 8.07, "timestamp": 1559940608.0, "score_count": 241711}
{"score": 8.07, "timestamp": 1559869766.0, "score_count": 241418}
{"score": 8.07, "timestamp": 1559843427.0, "score_count": 241418}
{"score": 8.07, "timestamp": 1559838796.0, "score_count": 241418}
{"score": 8.07, "timestamp": 1559785813.0, "score_count": 241418}
{"score": 8.07, "timestamp": 1559773367.0, "score_count": 241418}
{"score": 8.07, "timestamp": 1559760117.0, "score_count": 241418}
{"score": 8.07, "timestamp": 1559701080.0, "score_count": 241418}
{"score": 8.07, "timestamp": 1559678935.0, "score_count": 241418}
{"score": 8.07, "timestamp": 1559626276.0, "score_count": 241418}
{"score": 8.07, "timestamp": 1559620876.0, "score_count": 241418}
{"score": 8.07, "timestamp": 1559404640.0, "score_count": 241418}
{"score": 8.07, "timestamp": 1559323906.0, "score_count": 241207}
{"score": 8.07, "timestamp": 1559259561.0, "score_count": 241207}
{"score": 8.07, "timestamp": 1559185494.0, "score_count": 241207}
{"score": 8.07, "timestamp": 1559064963.0, "score_count": 241207}
{"score": 8.07, "timestamp": 1559003064.0, "score_count": 241027}
{"score": 8.07, "timestamp": 1558980303.0, "score_count": 241027}
{"score": 8.07, "timestamp": 1558883092.0, "score_count": 241027}
{"score": 8.07, "timestamp": 1558826329.0, "score_count": 241027}
{"score": 8.07, "timestamp": 1558803746.0, "score_count": 241027}
{"score": 8.07, "timestamp": 1558710714.0, "score_count": 240893}
{"score": 8.07, "timestamp": 1558567358.0, "score_count": 240893}
{"score": 8.07, "timestamp": 1558464124.0, "score_count": 240703}
{"score": 8.07, "timestamp": 1558463519.0, "score_count": 240703}
{"score": 8.07, "timestamp": 1558457680.0, "score_count": 240703}
{"score": 8.07, "timestamp": 1558047513.0, "score_count": 240579}
{"score": 8.07, "timestamp": 1557581323.0, "score_count": 240309}
{"score": 8.07, "timestamp": 1557518565.0, "score_count": 240309}
{"score": 8.07, "timestamp": 1557369276.0, "score_count": 240186}
{"score": 8.07, "timestamp": 1557282456.0, "score_count": 240186}
{"score": 8.07, "timestamp": 1557100566.0, "score_count": 239873}
{"score": 8.07, "timestamp": 1557097815.0, "score_count": 239873}
{"score": 8.07, "timestamp": 1557077344.0, "score_count": 239873}
{"score": 8.07, "timestamp": 1557019008.0, "score_count": 239873}
{"score": 8.07, "timestamp": 1556833177.0, "score_count": 239873}
{"score": 8.07, "timestamp": 1556832100.0, "score_count": 239873}
{"score": 8.07, "timestamp": 1556655929.0, "score_count": 239729}
{"score": 8.07, "timestamp": 1556638052.0, "score_count": 239729}
{"score": 8.07, "timestamp": 1556632641.0, "score_count": 239729}
{"score": 8.07, "timestamp": 1556508052.0, "score_count": 239729}
{"score": 8.07, "timestamp": 1556396947.0, "score_count": 239609}
{"score": 8.07, "timestamp": 1556311418.0, "score_count": 239609}
{"score": 8.07, "timestamp": 1556236238.0, "score_count": 239609}
{"score": 8.07, "timestamp": 1556141272.0, "score_count": 239444}
{"score": 8.07, "timestamp": 1556057467.0, "score_count": 239444}
{"score": 8.07, "timestamp": 1555967573.0, "score_count": 239444}
{"score": 8.07, "timestamp": 1555446393.0, "score_count": 239162}
{"score": 8.07, "timestamp": 1555378287.0, "score_count": 238978}
{"score": 8.07, "timestamp": 1555205983.0, "score_count": 238978}
{"score": 8.07, "timestamp": 1555017773.0, "score_count": 238832}
{"score": 8.07, "timestamp": 1554949617.0, "score_count": 238832}
{"score": 8.07, "timestamp": 1554929234.0, "score_count": 238832}
{"score": 8.07, "timestamp": 1554586524.0, "score_count": 238529}
{"score": 8.07, "timestamp": 1554413105.0, "score_count": 238529}
{"score": 8.07, "timestamp": 1554412442.0, "score_count": 238529}
{"score": 8.07, "timestamp": 1554392756.0, "score_count": 238529}
{"score": 8.07, "timestamp": 1554059339.0, "score_count": 238316}
{"score": 8.07, "timestamp": 1553975343.0, "score_count": 238180}
{"score": 8.07, "timestamp": 1553969103.0, "score_count": 238180}
{"score": 8.07, "timestamp": 1553823754.0, "score_count": 238180}
{"score": 8.07, "timestamp": 1553805854.0, "score_count": 238180}
{"score": 8.07, "timestamp": 1553634444.0, "score_count": 238023}
{"score": 8.07, "timestamp": 1553633529.0, "score_count": 238023}
{"score": 8.07, "timestamp": 1553557633.0, "score_count": 238023}
{"score": 8.07, "timestamp": 1553402886.0, "score_count": 237858}
{"score": 8.07, "timestamp": 1553319046.0, "score_count": 237858}
{"score": 8.07, "timestamp": 1553317869.0, "score_count": 237858}
{"score": 8.07, "timestamp": 1553313735.0, "score_count": 237858}
{"score": 8.07, "timestamp": 1553289134.0, "score_count": 237858}
{"score": 8.07, "timestamp": 1553216620.0, "score_count": 237690}
{"score": 8.07, "timestamp": 1553135565.0, "score_count": 237690}
{"score": 8.07, "timestamp": 1553130946.0, "score_count": 237690}
{"score": 8.07, "timestamp": 1553128587.0, "score_count": 237690}
{"score": 8.07, "timestamp": 1552987210.0, "score_count": 237543}
{"score": 8.07, "timestamp": 1552782150.0, "score_count": 237543}
{"score": 8.07, "timestamp": 1552773730.0, "score_count": 237543}
{"score": 8.07, "timestamp": 1552747773.0, "score_count": 237543}
{"score": 8.07, "timestamp": 1552680529.0, "score_count": 237422}
{"score": 8.07, "timestamp": 1552599311.0, "score_count": 237422}
{"score": 8.07, "timestamp": 1552528857.0, "score_count": 237422}
{"score": 8.07, "timestamp": 1552508398.0, "score_count": 237422}
{"score": 8.07, "timestamp": 1552421589.0, "score_count": 237260}
{"score": 8.07, "timestamp": 1552363442.0, "score_count": 237260}
{"score": 8.07, "timestamp": 1552339350.0, "score_count": 237260}
{"score": 8.07, "timestamp": 1552254323.0, "score_count": 237260}
{"score": 8.07, "timestamp": 1552230176.0, "score_count": 237260}
{"score": 8.07, "timestamp": 1552184939.0, "score_count": 237067}
{"score": 8.07, "timestamp": 1552147466.0, "score_count": 237067}
{"score": 8.07, "timestamp": 1552100757.0, "score_count": 237067}
{"score": 8.07, "timestamp": 1552091195.0, "score_count": 237067}
{"score": 8.07, "timestamp": 1552012358.0, "score_count": 237067}
{"score": 8.07, "timestamp": 1551907103.0, "score_count": 236892}
{"score": 8.07, "timestamp": 1551580898.0, "score_count": 236688}
{"score": 8.07, "timestamp": 1551313462.0, "score_count": 236533}
{"score": 8.07, "timestamp": 1551224789.0, "score_count": 236533}
{"score": 8.07, "timestamp": 1551221944.0, "score_count": 236533}
{"score": 8.07, "timestamp": 1551215674.0, "score_count": 236533}
{"score": 8.07, "timestamp": 1551139812.0, "score_count": 236533}
{"score": 8.07, "timestamp": 1551128162.0, "score_count": 236533}
{"score": 8.07, "timestamp": 1551061505.0, "score_count": 236317}
{"score": 8.07, "timestamp": 1551059095.0, "score_count": 236317}
{"score": 8.07, "timestamp": 1551045165.0, "score_count": 236317}
{"score": 8.07, "timestamp": 1551025052.0, "score_count": 236317}
{"score": 8.07, "timestamp": 1551019828.0, "score_count": 236317}
{"score": 8.07, "timestamp": 1550977088.0, "score_count": 236317}
{"score": 8.07, "timestamp": 1550944896.0, "score_count": 236317}
{"score": 8.07, "timestamp": 1550697923.0, "score_count": 236101}
{"score": 8.07, "timestamp": 1550696168.0, "score_count": 236101}
{"score": 8.07, "timestamp": 1550627487.0, "score_count": 236101}
{"score": 8.07, "timestamp": 1550621987.0, "score_count": 236101}
{"score": 8.07, "timestamp": 1550618620.0, "score_count": 236101}
{"score": 8.07, "timestamp": 1550539980.0, "score_count": 236101}
{"score": 8.07, "timestamp": 1550511362.0, "score_count": 236101}
{"score": 8.07, "timestamp": 1550450092.0, "score_count": 236101}
{"score": 8.07, "timestamp": 1550448923.0, "score_count": 236101}
{"score": 8.07, "timestamp": 1550425432.0, "score_count": 236101}
{"score": 8.07, "timestamp": 1550283921.0, "score_count": 235909}
{"score": 8.07, "timestamp": 1550272963.0, "score_count": 235909}
{"score": 8.07, "timestamp": 1550193416.0, "score_count": 235909}
{"score": 8.08, "timestamp": 1550017054.0, "score_count": 235703}
{"score": 8.08, "timestamp": 1550006592.0, "score_count": 235703}
{"score": 8.08, "timestamp": 1550005032.0, "score_count": 235703}
{"score": 8.08, "timestamp": 1549945599.0, "score_count": 235703}
{"score": 8.08, "timestamp": 1549930154.0, "score_count": 235703}
{"score": 8.08, "timestamp": 1549925479.0, "score_count": 235703}
{"score": 8.08, "timestamp": 1549907089.0, "score_count": 235703}
{"score": 8.08, "timestamp": 1549846558.0, "score_count": 235703}
{"score": 8.08, "timestamp": 1549752038.0, "score_count": 235703}
{"score": 8.08, "timestamp": 1548612648.0, "score_count": 234973}
{"score": 8.08, "timestamp": 1547324635.0, "score_count": 234000}
{"score": 8.08, "timestamp": 1545418256.0, "score_count": 232888}
{"score": 8.08, "timestamp": 1545349675.0, "score_count": 232677}
{"score": 8.08, "timestamp": 1545087179.0, "score_count": 232677}
{"score": 8.08, "timestamp": 1539895330.0, "score_count": 229769}
{"score": 8.09, "timestamp": 1536798557.0, "score_count": 227840}
{"score": 8.09, "timestamp": 1534942311.0, "score_count": 226665}
{"score": 8.09, "timestamp": 1530985863.0, "score_count": 224287}
{"score": 8.09, "timestamp": 1529074145.0, "score_count": 223706}
{"score": 8.09, "timestamp": 1528939429.0, "score_count": 223665}
{"score": 8.09, "timestamp": 1528923676.0, "score_count": 223665}
{"score": 8.1, "timestamp": 1526547588.0, "score_count": 222352}
{"score": 8.1, "timestamp": 1525237024.0, "score_count": 221360}
{"score": 8.1, "timestamp": 1522273227.0, "score_count": 218643}
{"score": 8.11, "timestamp": 1520558798.0, "score_count": 217156}
{"score": 8.15, "timestamp": 1492438459.0, "score_count": 193604}
{"score": 8.15, "timestamp": 1492432480.0, "score_count": 193604}
{"score": 8.16, "timestamp": 1487116102.0, "score_count": 189287}
{"score": 8.16, "timestamp": 1485886390.0, "score_count": 188256}
{"score": 8.16, "timestamp": 1484582824.0, "score_count": 187070}
{"score": 8.16, "timestamp": 1484582656.0, "score_count": 187070}
{"score": 8.19, "timestamp": 1472985550.0, "score_count": 177231}
{"score": 8.19, "timestamp": 1472985549.0, "score_count": 177231}
{"score": 8.19, "timestamp": 1471570309.0, "score_count": 175883}
{"score": 8.19, "timestamp": 1468025360.0, "score_count": 172390}
{"score": 8.2, "timestamp": 1466066175.0, "score_count": 170252}
{"score": 8.2, "timestamp": 1465515181.0, "score_count": 169701}
{"score": 8.2, "timestamp": 1464843282.0, "score_count": 169062}
{"score": 8.21, "timestamp": 1463801656.0, "score_count": 168059}
{"score": 8.21, "timestamp": 1461846842.0, "score_count": 166352}
{"score": 8.21, "timestamp": 1461581561.0, "score_count": 166105}
{"score": 8.21, "timestamp": 1461255784.0, "score_count": 165782}
{"score": 8.21, "timestamp": 1460535721.0, "score_count": 165024}
{"score": 8.21, "timestamp": 1459930972.0, "score_count": 164366}
{"score": 8.21, "timestamp": 1459324804.0, "score_count": 163636}
{"score": 8.22, "timestamp": 1458292227.0, "score_count": 162454}
{"score": 8.22, "timestamp": 1458175372.0, "score_count": 162332}
{"score": 8.22, "timestamp": 1458121649.0, "score_count": 162292}
{"score": 8.22, "timestamp": 1457606419.0, "score_count": 161708}
{"score": 8.22, "timestamp": 1457499231.0, "score_count": 161534}
{"score": 8.22, "timestamp": 1456808459.0, "score_count": 160941}
{"score": 8.22, "timestamp": 1455635742.0, "score_count": 159820}
{"score": 8.22, "timestamp": 1454983486.0, "score_count": 159250}
{"score": 8.22, "timestamp": 1454372576.0, "score_count": 158720}
{"score": 8.23, "timestamp": 1453763673.0, "score_count": 158171}
{"score": 8.23, "timestamp": 1453156506.0, "score_count": 157575}
{"score": 8.23, "timestamp": 1452411517.0, "score_count": 156753}
{"score": 8.23, "timestamp": 1452983213.0, "score_count": 157398}
{"score": 8.23, "timestamp": 1452077136.0, "score_count": 156348}
{"score": 8.23, "timestamp": 1451761815.0, "score_count": 155917}
{"score": 8.23, "timestamp": 1451612800.0, "score_count": 155774}
{"score": 8.23, "timestamp": 1451035607.0, "score_count": 155138}
{"score": 8.24, "timestamp": 1450404652.0, "score_count": 154564}
{"score": 8.24, "timestamp": 1449791564.0, "score_count": 153961}
{"score": 8.24, "timestamp": 1448603222.0, "score_count": 153050}
{"score": 8.24, "timestamp": 1448598965.0, "score_count": 153047}
{"score": 8.24, "timestamp": 1447988532.0, "score_count": 152602}
{"score": 8.24, "timestamp": 1446774591.0, "score_count": 151652}
{"score": 8.24, "timestamp": 1446153694.0, "score_count": 151152}
{"score": 8.25, "timestamp": 1445549203.0, "score_count": 150651}
{"score": 8.25, "timestamp": 1444934965.0, "score_count": 150121}
{"score": 8.25, "timestamp": 1443245388.0, "score_count": 148725}
{"score": 8.25, "timestamp": 1441518519.0, "score_count": 147377}
{"score": 8.25, "timestamp": 1440160182.0, "score_count": 146200}
{"score": 8.26, "timestamp": 1439549050.0, "score_count": 145619}
| [
4895,
26675,
1298,
807,
13,
3023,
11,
366,
16514,
27823,
1298,
1315,
1795,
1238,
4761,
1433,
13,
15,
11,
366,
26675,
62,
9127,
1298,
17759,
30057,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
1315,
3134,
1314,
3104,
3270,
13,
15,
11,
366,
26675,
62,
9127,
1298,
34951,
17477,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
1315,
2791,
28011,
33206,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
3553,
6659,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
1315,
2996,
3134,
18182,
19,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
2780,
4869,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
1315,
39111,
3388,
2919,
19,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
2780,
4869,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
1315,
2996,
24669,
42224,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
2780,
4869,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
1315,
2996,
1415,
2670,
2548,
13,
15,
11,
366,
26675,
62,
9127,
1298,
35264,
36625,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
1315,
2996,
1415,
1558,
2718,
13,
15,
11,
366,
26675,
62,
9127,
1298,
35264,
36625,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
1315,
2996,
1485,
2414,
2327,
13,
15,
11,
366,
26675,
62,
9127,
1298,
35264,
36625,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
1315,
17544,
31360,
2996,
13,
15,
11,
366,
26675,
62,
9127,
1298,
35264,
36625,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
1315,
2414,
5332,
2091,
2327,
13,
15,
11,
366,
26675,
62,
9127,
1298,
35264,
36625,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
1315,
34287,
2598,
31751,
13,
15,
11,
366,
26675,
62,
9127,
1298,
35264,
36625,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
1315,
2414,
3720,
17544,
18,
13,
15,
11,
366,
26675,
62,
9127,
1298,
35264,
36625,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
23871,
2231,
27728,
1828,
13,
15,
11,
366,
26675,
62,
9127,
1298,
35264,
18742,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
1315,
2414,
30505,
22370,
13,
15,
11,
366,
26675,
62,
9127,
1298,
35264,
18742,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
23871,
1433,
1959,
28977,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1731,
1485,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2091,
23188,
3553,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
3695,
3365,
92,
198,
4895,
26675,
1298,
807,
13,
1157,
11,
366,
16514,
27823,
1298,
1315,
1433,
1495,
1433,
4089,
13,
15,
11,
366,
26675,
62,
9127,
1298,
28658,
40256,
92,
198,
4895,
26675,
1298,
807,
13,
1507,
11,
366,
16514,
27823,
1298,
1478,
38569,
31010,
2623,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1596,
2079,
1495,
92,
198,
4895,
26675,
1298,
807,
13,
1507,
11,
366,
16514,
27823,
1298,
1478,
38569,
31010,
2327,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1596,
2079,
1495,
92,
198,
4895,
26675,
1298,
807,
13,
1507,
11,
366,
16514,
27823,
1298,
1478,
38569,
31010,
1270,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1596,
2079,
1495,
92,
198,
4895,
26675,
1298,
807,
13,
1507,
11,
366,
16514,
27823,
1298,
1478,
38569,
31010,
1495,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1596,
2079,
1495,
92,
198,
4895,
26675,
1298,
807,
13,
1507,
11,
366,
16514,
27823,
1298,
1478,
38569,
31010,
2481,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1596,
2079,
1495,
92,
198,
4895,
26675,
1298,
807,
13,
1507,
11,
366,
16514,
27823,
1298,
1478,
38569,
31010,
1314,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1596,
2079,
1495,
92,
198,
4895,
26675,
1298,
807,
13,
1507,
11,
366,
16514,
27823,
1298,
1478,
38569,
31010,
1433,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1596,
2079,
1495,
92,
198,
4895,
26675,
1298,
807,
13,
2481,
11,
366,
16514,
27823,
1298,
1478,
5237,
1485,
5607,
3132,
13,
15,
11,
366,
26675,
62,
9127,
1298,
26753,
31751,
92,
198,
4895,
26675,
1298,
807,
13,
2481,
11,
366,
16514,
27823,
1298,
1478,
1899,
38172,
31575,
13,
15,
11,
366,
26675,
62,
9127,
1298,
21409,
21315,
92,
198,
4895,
26675,
1298,
807,
13,
1495,
11,
366,
16514,
27823,
1298,
1478,
2598,
4089,
2078,
1983,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1315,
486,
4869,
92,
198,
4895,
26675,
1298,
807,
13,
1495,
11,
366,
16514,
27823,
1298,
20224,
23815,
3104,
3510,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1478,
3720,
3720,
92,
198,
4895,
26675,
1298,
807,
13,
1495,
11,
366,
16514,
27823,
1298,
20224,
1558,
43526,
3388,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1478,
2425,
3132,
92,
198,
4895,
26675,
1298,
807,
13,
2075,
11,
366,
16514,
27823,
1298,
1478,
2670,
2816,
2718,
1983,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1478,
3980,
1495,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
1315,
2414,
27277,
41289,
13,
15,
11,
366,
26675,
62,
9127,
1298,
35264,
18742,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
23871,
1270,
2718,
23734,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
2091,
5705,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
23871,
1959,
2999,
13464,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
2091,
5705,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
1315,
5237,
1129,
2713,
2075,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1983,
3559,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
23871,
1507,
31911,
3682,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1983,
3559,
92,
198,
4895,
26675,
1298,
807,
13,
3312,
11,
366,
16514,
27823,
1298,
23871,
1507,
24760,
2091,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1983,
3559,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
23871,
1314,
1954,
24760,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1731,
1485,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
23871,
1065,
4310,
29416,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1731,
1485,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
23871,
1157,
2414,
44550,
13,
15,
11,
366,
26675,
62,
9127,
1298,
34353,
15197,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
1899,
2079,
30610,
18,
13,
15,
11,
366,
26675,
62,
9127,
1298,
34353,
15197,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
1899,
4531,
1983,
5824,
13,
15,
11,
366,
26675,
62,
9127,
1298,
34353,
15197,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
28688,
2078,
44617,
13,
15,
11,
366,
26675,
62,
9127,
1298,
34353,
15197,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
28688,
22413,
1065,
13,
15,
11,
366,
26675,
62,
9127,
1298,
34353,
15197,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
32417,
34229,
2078,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1507,
2548,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
1899,
2670,
4521,
1065,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1507,
2548,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
1899,
1959,
2713,
3388,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1507,
2548,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
1899,
1731,
1899,
2780,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1507,
2548,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
23871,
30484,
2624,
1795,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1507,
2548,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
8054,
20,
3134,
1821,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1558,
1157,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
8054,
36244,
6659,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1558,
1157,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
8054,
1129,
46900,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1558,
1157,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2079,
26704,
2548,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1558,
1157,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2079,
3980,
27936,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1558,
1157,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
33438,
2682,
1157,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1558,
1157,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2079,
24669,
4531,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1558,
1157,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
42691,
2670,
2791,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1558,
1157,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2079,
1821,
28688,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1558,
1157,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
41292,
40035,
2791,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1415,
1507,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3270,
5705,
2682,
1983,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1415,
1507,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
41292,
2548,
41060,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1415,
1507,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3270,
3695,
3365,
1485,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1415,
1507,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3270,
3324,
2091,
3134,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1415,
1507,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3270,
42752,
1558,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1415,
1507,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
43239,
20943,
1795,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1415,
1507,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3270,
3134,
4531,
2327,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1415,
1507,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3270,
45191,
27988,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1415,
1507,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
45734,
21315,
4304,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1415,
1507,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3270,
1821,
3510,
1821,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1415,
1507,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
49051,
23516,
3312,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1065,
2998,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3270,
1495,
3865,
5333,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1065,
2998,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3270,
21652,
39449,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1065,
2998,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
36993,
2414,
4846,
18,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
1065,
2998,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3270,
405,
1270,
2414,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
40403,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3365,
40022,
22572,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
40403,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3365,
3459,
1270,
5892,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
40403,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
39118,
29558,
1959,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
40403,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3365,
1795,
2718,
3510,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
40403,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
44617,
15982,
1415,
13,
15,
11,
366,
26675,
62,
9127,
1298,
14956,
49682,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
38905,
3134,
31128,
13,
15,
11,
366,
26675,
62,
9127,
1298,
14956,
49682,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3365,
44578,
17464,
13,
15,
11,
366,
26675,
62,
9127,
1298,
14956,
36809,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3365,
3510,
2327,
1129,
13,
15,
11,
366,
26675,
62,
9127,
1298,
14956,
36809,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3365,
2231,
4304,
1795,
13,
15,
11,
366,
26675,
62,
9127,
1298,
14956,
36809,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1795,
32576,
1485,
13,
15,
11,
366,
26675,
62,
9127,
1298,
14956,
41734,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
38569,
1485,
1954,
13,
15,
11,
366,
26675,
62,
9127,
1298,
14956,
26895,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2425,
21652,
2996,
13,
15,
11,
366,
26675,
62,
9127,
1298,
14956,
26895,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3553,
30803,
27988,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
486,
4521,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3553,
2078,
1731,
3980,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1987,
486,
4521,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3553,
3064,
20,
2791,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
4089,
4790,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
31495,
3695,
1314,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
4089,
4790,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2154,
3324,
33535,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
4089,
4790,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3553,
486,
12865,
23,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
4089,
4790,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
3104,
2091,
22413,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
4089,
4790,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
3104,
36453,
405,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
4089,
4790,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2791,
38605,
1959,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5607,
1959,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2791,
23734,
4309,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5607,
1959,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2791,
39195,
3901,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5607,
1959,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3980,
1120,
1795,
4309,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5607,
1959,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3980,
2670,
3388,
2857,
13,
15,
11,
366,
26675,
62,
9127,
1298,
32817,
31751,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
46572,
16562,
1507,
13,
15,
11,
366,
26675,
62,
9127,
1298,
32817,
31751,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3980,
24940,
23721,
13,
15,
11,
366,
26675,
62,
9127,
1298,
32817,
31751,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
3980,
1415,
1065,
4761,
13,
15,
11,
366,
26675,
62,
9127,
1298,
32817,
30272,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1899,
3553,
24669,
13,
15,
11,
366,
26675,
62,
9127,
1298,
32817,
30272,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
2816,
4846,
2425,
4790,
13,
15,
11,
366,
26675,
62,
9127,
1298,
32817,
30272,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
2816,
27260,
26007,
13,
15,
11,
366,
26675,
62,
9127,
1298,
32817,
25061,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
2816,
30695,
27800,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
4531,
3695,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
2816,
1238,
3270,
5999,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
4531,
3695,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
2816,
486,
3324,
4790,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
3459,
2624,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2920,
37747,
1558,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
3459,
2624,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2920,
1959,
24409,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
3459,
2624,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
29334,
2996,
1731,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5332,
1959,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2598,
1485,
13348,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5332,
1959,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2598,
1065,
39506,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5332,
1959,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
4051,
2670,
1983,
3980,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5332,
1959,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1821,
3270,
29626,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5999,
1433,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2670,
2425,
32118,
13,
15,
11,
366,
26675,
62,
9127,
1298,
32544,
15259,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2670,
3388,
15197,
13,
15,
11,
366,
26675,
62,
9127,
1298,
32544,
15259,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2548,
1954,
41874,
13,
15,
11,
366,
26675,
62,
9127,
1298,
32544,
15259,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
4310,
1795,
3365,
4051,
13,
15,
11,
366,
26675,
62,
9127,
1298,
32544,
15259,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2623,
33535,
2598,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
1795,
1954,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2623,
27326,
1959,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
1795,
1954,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2327,
37452,
2091,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
1795,
1954,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
4310,
1821,
2078,
4521,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
3695,
3365,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2091,
1129,
45438,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
3695,
3365,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2091,
23188,
3388,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
3695,
3365,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2091,
19708,
2327,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
3695,
3365,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
4310,
27693,
19880,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
3695,
3365,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2624,
23055,
1238,
13,
15,
11,
366,
26675,
62,
9127,
1298,
34385,
35844,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
4310,
1485,
2816,
2996,
13,
15,
11,
366,
26675,
62,
9127,
1298,
34385,
35844,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
3132,
26895,
3510,
13,
15,
11,
366,
26675,
62,
9127,
1298,
34385,
35844,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
4310,
12762,
44617,
13,
15,
11,
366,
26675,
62,
9127,
1298,
34385,
35844,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
27728,
4761,
940,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2425,
3559,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
25870,
2481,
1120,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2425,
3559,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
27019,
2718,
1270,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2425,
3559,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1983,
2857,
46871,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2425,
3559,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2075,
28256,
1959,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
4524,
1828,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1495,
2079,
36244,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
4524,
1828,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1495,
25270,
3553,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
4524,
1828,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
4309,
33042,
31952,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
4524,
1828,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1731,
23349,
4531,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
4761,
1899,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1954,
5066,
39506,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
4761,
1899,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1954,
2670,
14877,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
4761,
1899,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
4309,
1495,
3559,
1954,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
4761,
1899,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1828,
18938,
4304,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
4761,
1899,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
4309,
1507,
2920,
2670,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2154,
3134,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
4309,
1415,
4524,
2791,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2154,
3134,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
2481,
405,
39251,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2154,
3134,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1238,
6420,
22186,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2154,
3134,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1264,
1954,
3365,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2154,
3134,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1129,
2998,
15197,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
3104,
5892,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1314,
28362,
4089,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2791,
3459,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1485,
1485,
39997,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2996,
2091,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1065,
1731,
40401,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2996,
2091,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
18376,
1129,
2598,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2996,
2091,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1065,
1314,
45385,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2996,
2091,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
1157,
31952,
1065,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2996,
2091,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
4349,
12762,
25061,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2996,
2091,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
940,
5333,
31654,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5066,
1558,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
940,
3270,
2931,
20,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5066,
1558,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
940,
2231,
20986,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5066,
1558,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
940,
9031,
4309,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5066,
1558,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
4349,
486,
4089,
2078,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5066,
1558,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
1120,
5607,
2154,
3459,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5066,
1558,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
29022,
2598,
48712,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5066,
1558,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
1120,
3388,
3720,
1954,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5333,
486,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
1120,
38205,
14656,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5333,
486,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
35638,
1983,
35133,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5333,
486,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
1120,
5237,
27301,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5333,
486,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
35638,
25096,
1238,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5333,
486,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
1120,
4310,
2079,
1795,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5333,
486,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
31654,
1157,
35667,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5333,
486,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
1120,
2231,
405,
5892,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5333,
486,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
1120,
2598,
4531,
1954,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5333,
486,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
33580,
24970,
2624,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
5333,
486,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
1120,
2078,
2670,
2481,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
3270,
2931,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
1315,
1120,
1983,
1959,
5066,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
3270,
2931,
92,
198,
4895,
26675,
1298,
807,
13,
2998,
11,
366,
16514,
27823,
1298,
20708,
30484,
2682,
1433,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
3270,
2931,
92,
198,
4895,
26675,
1298,
807,
13,
2919,
11,
366,
16514,
27823,
1298,
1315,
4059,
1558,
2713,
19,
13,
15,
11,
366,
26675,
62,
9127,
1298,
28878,
36809,
92,
198,
4895,
26675,
1298,
807,
13,
2919,
11,
366,
16514,
27823,
1298,
20708,
830,
2996,
5892,
13,
15,
11,
366,
26675,
62,
9127,
1298,
28878,
36809,
92,
198,
4895,
26675,
1298,
807,
13,
2919,
11,
366,
16514,
27823,
1298,
20708,
830,
1120,
2624,
13,
15,
11,
366,
26675,
62,
9127,
1298,
28878,
36809,
92,
198,
4895,
26675,
1298,
807,
13,
2919,
11,
366,
16514,
27823,
1298,
24235,
2079,
30505,
2079,
13,
15,
11,
366,
26675,
62,
9127,
1298,
28878,
36809,
92,
198,
4895,
26675,
1298,
807,
13,
2919,
11,
366,
16514,
27823,
1298,
24235,
2079,
18938,
4051,
13,
15,
11,
366,
26675,
62,
9127,
1298,
28878,
36809,
92,
198,
4895,
26675,
1298,
807,
13,
2919,
11,
366,
16514,
27823,
1298,
24235,
2079,
1495,
31714,
13,
15,
11,
366,
26675,
62,
9127,
1298,
28878,
36809,
92,
198,
4895,
26675,
1298,
807,
13,
2919,
11,
366,
16514,
27823,
1298,
24235,
34155,
2154,
4531,
13,
15,
11,
366,
26675,
62,
9127,
1298,
28878,
36809,
92,
198,
4895,
26675,
1298,
807,
13,
2919,
11,
366,
16514,
27823,
1298,
1315,
36260,
3510,
40486,
13,
15,
11,
366,
26675,
62,
9127,
1298,
28878,
36809,
92,
198,
4895,
26675,
1298,
807,
13,
2919,
11,
366,
16514,
27823,
1298,
1315,
2920,
2425,
1238,
2548,
13,
15,
11,
366,
26675,
62,
9127,
1298,
28878,
36809,
92,
198,
4895,
26675,
1298,
807,
13,
2919,
11,
366,
16514,
27823,
1298,
1315,
34251,
1065,
34287,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2920,
4790,
92,
198,
4895,
26675,
1298,
807,
13,
2919,
11,
366,
16514,
27823,
1298,
1315,
37804,
26912,
2327,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
27559,
92,
198,
4895,
26675,
1298,
807,
13,
2919,
11,
366,
16514,
27823,
1298,
1315,
34229,
1507,
11645,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2078,
3459,
92,
198,
4895,
26675,
1298,
807,
13,
2919,
11,
366,
16514,
27823,
1298,
1315,
2231,
2682,
4846,
2425,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2075,
3324,
92,
198,
4895,
26675,
1298,
807,
13,
2919,
11,
366,
16514,
27823,
1298,
1315,
17885,
5774,
21738,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2242,
2075,
3324,
92,
198,
4895,
26675,
1298,
807,
13,
2919,
11,
366,
16514,
27823,
1298,
1315,
31952,
3865,
26073,
13,
15,
11,
366,
26675,
62,
9127,
1298,
362,
26561,
3388,
92,
198,
4895,
26675,
1298,
807,
13,
2931,
11,
366,
16514,
27823,
1298,
1315,
2623,
43240,
41948,
13,
15,
11,
366,
26675,
62,
9127,
1298,
362,
25870,
1821,
92,
198,
4895,
26675,
1298,
807,
13,
2931,
11,
366,
16514,
27823,
1298,
1315,
2682,
5824,
1954,
1157,
13,
15,
11,
366,
26675,
62,
9127,
1298,
31510,
36879,
92,
198,
4895,
26675,
1298,
807,
13,
2931,
11,
366,
16514,
27823,
1298,
1315,
1270,
4089,
3365,
5066,
13,
15,
11,
366,
26675,
62,
9127,
1298,
26063,
27800,
92,
198,
4895,
26675,
1298,
807,
13,
2931,
11,
366,
16514,
27823,
1298,
1315,
1959,
2998,
19,
18781,
13,
15,
11,
366,
26675,
62,
9127,
1298,
30299,
35402,
92,
198,
4895,
26675,
1298,
807,
13,
2931,
11,
366,
16514,
27823,
1298,
1315,
27693,
2670,
11785,
13,
15,
11,
366,
26675,
62,
9127,
1298,
30299,
36879,
92,
198,
4895,
26675,
1298,
807,
13,
2931,
11,
366,
16514,
27823,
1298,
1315,
27693,
1954,
42548,
13,
15,
11,
366,
26675,
62,
9127,
1298,
30299,
36879,
92,
198,
4895,
26675,
1298,
807,
13,
16,
11,
366,
16514,
27823,
1298,
1315,
2075,
4051,
2425,
3459,
13,
15,
11,
366,
26675,
62,
9127,
1298,
27795,
33394,
92,
198,
4895,
26675,
1298,
807,
13,
16,
11,
366,
16514,
27823,
1298,
1315,
1495,
1954,
2154,
1731,
13,
15,
11,
366,
26675,
62,
9127,
1298,
2534,
1485,
1899,
92,
198,
4895,
26675,
1298,
807,
13,
16,
11,
366,
16514,
27823,
1298,
1315,
1828,
27367,
24403,
13,
15,
11,
366,
26675,
62,
9127,
1298,
29217,
41813,
92,
198,
4895,
26675,
1298,
807,
13,
1157,
11,
366,
16514,
27823,
1298,
1315,
1238,
40486,
43240,
13,
15,
11,
366,
26675,
62,
9127,
1298,
24894,
21599,
92,
198,
4895,
26675,
1298,
807,
13,
1314,
11,
366,
16514,
27823,
1298,
24041,
1731,
2548,
33459,
13,
15,
11,
366,
26675,
62,
9127,
1298,
678,
15277,
19,
92,
198,
4895,
26675,
1298,
807,
13,
1314,
11,
366,
16514,
27823,
1298,
24041,
26660,
1731,
1795,
13,
15,
11,
366,
26675,
62,
9127,
1298,
678,
15277,
19,
92,
198,
4895,
26675,
1298,
807,
13,
1433,
11,
366,
16514,
27823,
1298,
1478,
5774,
18298,
15377,
13,
15,
11,
366,
26675,
62,
9127,
1298,
27230,
27800,
92,
198,
4895,
26675,
1298,
807,
13,
1433,
11,
366,
16514,
27823,
1298,
22613,
3365,
4521,
25964,
13,
15,
11,
366,
26675,
62,
9127,
1298,
27778,
11645,
92,
198,
4895,
26675,
1298,
807,
13,
1433,
11,
366,
16514,
27823,
1298,
22613,
29334,
2078,
1731,
13,
15,
11,
366,
26675,
62,
9127,
1298,
37667,
2154,
92,
198,
4895,
26675,
1298,
807,
13,
1433,
11,
366,
16514,
27823,
1298,
22613,
29334,
2075,
3980,
13,
15,
11,
366,
26675,
62,
9127,
1298,
37667,
2154,
92,
198,
4895,
26675,
1298,
807,
13,
1129,
11,
366,
16514,
27823,
1298,
22909,
27728,
2816,
1120,
13,
15,
11,
366,
26675,
62,
9127,
1298,
26607,
25667,
92,
198,
4895,
26675,
1298,
807,
13,
1129,
11,
366,
16514,
27823,
1298,
22909,
27728,
2816,
2920,
13,
15,
11,
366,
26675,
62,
9127,
1298,
26607,
25667,
92,
198,
4895,
26675,
1298,
807,
13,
1129,
11,
366,
16514,
27823,
1298,
22909,
1314,
2154,
26895,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1596,
3365,
5999,
92,
198,
4895,
26675,
1298,
807,
13,
1129,
11,
366,
16514,
27823,
1298,
22986,
1795,
1495,
15277,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1596,
1954,
3829,
92,
198,
4895,
26675,
1298,
807,
13,
17,
11,
366,
16514,
27823,
1298,
22986,
1899,
2791,
17430,
13,
15,
11,
366,
26675,
62,
9127,
1298,
16677,
22800,
92,
198,
4895,
26675,
1298,
807,
13,
17,
11,
366,
16514,
27823,
1298,
22986,
2816,
1314,
27057,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1467,
5607,
486,
92,
198,
4895,
26675,
1298,
807,
13,
17,
11,
366,
16514,
27823,
1298,
1478,
34287,
3559,
32568,
13,
15,
11,
366,
26675,
62,
9127,
1298,
27191,
3312,
17,
92,
198,
4895,
26675,
1298,
807,
13,
2481,
11,
366,
16514,
27823,
1298,
22986,
2548,
486,
37466,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1467,
1795,
3270,
92,
198,
4895,
26675,
1298,
807,
13,
2481,
11,
366,
16514,
27823,
1298,
22986,
22883,
3104,
3682,
13,
15,
11,
366,
26675,
62,
9127,
1298,
26753,
33394,
92,
198,
4895,
26675,
1298,
807,
13,
2481,
11,
366,
16514,
27823,
1298,
22986,
21273,
1314,
5333,
13,
15,
11,
366,
26675,
62,
9127,
1298,
26753,
13348,
92,
198,
4895,
26675,
1298,
807,
13,
2481,
11,
366,
16514,
27823,
1298,
22986,
1065,
2816,
37688,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1467,
3553,
6469,
92,
198,
4895,
26675,
1298,
807,
13,
2481,
11,
366,
16514,
27823,
1298,
1478,
32417,
27277,
2481,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1467,
1120,
1731,
92,
198,
4895,
26675,
1298,
807,
13,
2481,
11,
366,
16514,
27823,
1298,
20299,
2079,
26895,
4761,
13,
15,
11,
366,
26675,
62,
9127,
1298,
25307,
32459,
92,
198,
4895,
26675,
1298,
807,
13,
2481,
11,
366,
16514,
27823,
1298,
1478,
3270,
33916,
36088,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1467,
2623,
2623,
92,
198,
4895,
26675,
1298,
807,
13,
1828,
11,
366,
16514,
27823,
1298,
1478,
3365,
1959,
1828,
1983,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1467,
1731,
4051,
92,
198,
4895,
26675,
1298,
807,
13,
1828,
11,
366,
16514,
27823,
1298,
1478,
3365,
17430,
36720,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1467,
1954,
2624,
92,
198,
4895,
26675,
1298,
807,
13,
1828,
11,
366,
16514,
27823,
1298,
1478,
3365,
1065,
1433,
2920,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1467,
1828,
5892,
92,
198,
4895,
26675,
1298,
807,
13,
1828,
11,
366,
16514,
27823,
1298,
1478,
3553,
1899,
2414,
1129,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1467,
1558,
2919,
92,
198,
4895,
26675,
1298,
807,
13,
1828,
11,
366,
16514,
27823,
1298,
1478,
3553,
28324,
25667,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1467,
1314,
2682,
92,
198,
4895,
26675,
1298,
807,
13,
1828,
11,
366,
16514,
27823,
1298,
1478,
3980,
28362,
33459,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1467,
2931,
3901,
92,
198,
4895,
26675,
1298,
807,
13,
1828,
11,
366,
16514,
27823,
1298,
1478,
37864,
27277,
3682,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1315,
4089,
1238,
92,
198,
4895,
26675,
1298,
807,
13,
1828,
11,
366,
16514,
27823,
1298,
20299,
36260,
2682,
4521,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1315,
5892,
1120,
92,
198,
4895,
26675,
1298,
807,
13,
1828,
11,
366,
16514,
27823,
1298,
1478,
4051,
2718,
1495,
4304,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1315,
5774,
1238,
92,
198,
4895,
26675,
1298,
807,
13,
1954,
11,
366,
16514,
27823,
1298,
20299,
32128,
2623,
4790,
13,
15,
11,
366,
26675,
62,
9127,
1298,
24063,
27192,
92,
198,
4895,
26675,
1298,
807,
13,
1954,
11,
366,
16514,
27823,
1298,
1478,
4310,
1314,
17544,
21,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1315,
2425,
2425,
92,
198,
4895,
26675,
1298,
807,
13,
1954,
11,
366,
16514,
27823,
1298,
20299,
1731,
15363,
1558,
13,
15,
11,
366,
26675,
62,
9127,
1298,
23871,
44550,
92,
198,
4895,
26675,
1298,
807,
13,
1954,
11,
366,
16514,
27823,
1298,
20299,
27728,
2624,
1485,
13,
15,
11,
366,
26675,
62,
9127,
1298,
23313,
31952,
92,
198,
4895,
26675,
1298,
807,
13,
1954,
11,
366,
16514,
27823,
1298,
20299,
1238,
3324,
20809,
13,
15,
11,
366,
26675,
62,
9127,
1298,
23871,
28978,
92,
198,
4895,
26675,
1298,
807,
13,
1954,
11,
366,
16514,
27823,
1298,
20299,
24096,
1507,
1314,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1315,
3270,
1558,
92,
198,
4895,
26675,
1298,
807,
13,
1954,
11,
366,
16514,
27823,
1298,
20299,
1433,
1065,
7410,
13,
15,
11,
366,
26675,
62,
9127,
1298,
20708,
47582,
92,
198,
4895,
26675,
1298,
807,
13,
1954,
11,
366,
16514,
27823,
1298,
20299,
940,
2327,
31980,
13,
15,
11,
366,
26675,
62,
9127,
1298,
20708,
20107,
92,
198,
4895,
26675,
1298,
807,
13,
1731,
11,
366,
16514,
27823,
1298,
1478,
1120,
26429,
43193,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1315,
2231,
2414,
92,
198,
4895,
26675,
1298,
807,
13,
1731,
11,
366,
16514,
27823,
1298,
1478,
2920,
3720,
1314,
2414,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1315,
2670,
5333,
92,
198,
4895,
26675,
1298,
807,
13,
1731,
11,
366,
16514,
27823,
1298,
1478,
2780,
35642,
23148,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1315,
1270,
1120,
92,
198,
4895,
26675,
1298,
807,
13,
1731,
11,
366,
16514,
27823,
1298,
1478,
2780,
3270,
4531,
2996,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1315,
1270,
2857,
92,
198,
4895,
26675,
1298,
807,
13,
1731,
11,
366,
16514,
27823,
1298,
1478,
31714,
44230,
2624,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1315,
21719,
17,
92,
198,
4895,
26675,
1298,
807,
13,
1731,
11,
366,
16514,
27823,
1298,
20224,
40179,
2231,
6420,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1315,
1433,
4309,
92,
198,
4895,
26675,
1298,
807,
13,
1731,
11,
366,
16514,
27823,
1298,
1478,
3510,
1314,
2623,
5824,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1315,
1157,
4309,
92,
198,
4895,
26675,
1298,
807,
13,
1495,
11,
366,
16514,
27823,
1298,
1478,
30505,
2920,
22416,
13,
15,
11,
366,
26675,
62,
9127,
1298,
6640,
40639,
92,
198,
4895,
26675,
1298,
807,
13,
1495,
11,
366,
16514,
27823,
1298,
1478,
31911,
27371,
2996,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1315,
486,
2481,
92,
198,
4895,
26675,
1298,
807,
13,
1495,
11,
366,
16514,
27823,
1298,
1478,
3559,
22995,
30460,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1478,
5774,
1495,
92,
198,
4895,
26675,
1298,
807,
13,
1495,
11,
366,
16514,
27823,
1298,
20224,
1314,
21652,
1129,
13,
15,
11,
366,
26675,
62,
9127,
1298,
22909,
26514,
92,
198,
4895,
26675,
1298,
807,
13,
1495,
11,
366,
16514,
27823,
1298,
20224,
27037,
486,
6469,
13,
15,
11,
366,
26675,
62,
9127,
1298,
22986,
2167,
92,
198,
4895,
26675,
1298,
807,
13,
2075,
11,
366,
16514,
27823,
1298,
1478,
31010,
2920,
28669,
13,
15,
11,
366,
26675,
62,
9127,
1298,
1478,
3980,
1129,
92,
198
] | 2.360307 | 7,044 |
import UUIDs
# This function is based off of a similar function here:
# https://github.com/JuliaRegistries/RegistryCI.jl/blob/master/src/RegistryCI.jl
function gather_stdlib_uuids()
return Set{UUIDs.UUID}(x for x in keys(Pkg.Types.stdlib()))
end
| [
11748,
471,
27586,
82,
198,
198,
2,
770,
2163,
318,
1912,
572,
286,
257,
2092,
2163,
994,
25,
198,
2,
3740,
1378,
12567,
13,
785,
14,
16980,
544,
8081,
32995,
14,
8081,
4592,
25690,
13,
20362,
14,
2436,
672,
14,
9866,
14,
10677,
14,
8081,
4592,
25690,
13,
20362,
198,
8818,
6431,
62,
19282,
8019,
62,
12303,
2340,
3419,
198,
220,
220,
220,
1441,
5345,
90,
52,
27586,
82,
13,
52,
27586,
92,
7,
87,
329,
2124,
287,
8251,
7,
47,
10025,
13,
31431,
13,
19282,
8019,
3419,
4008,
198,
437,
198
] | 2.728261 | 92 |
module HiveLoader
# https://github.com/JuliaDatabases/Hive.jl v0.3.0
using Hive # HiveSession HiveAuth
using Octo.Repo: ExecuteResult
const current = Dict{Symbol, Any}(
:sess => nothing,
)
current_sess() = current[:sess]
# db_connect
function db_connect(; host::String="localhost", port::Integer=10000, auth::HiveAuth=HiveAuth(), tprotocol::Symbol=:binary)
sess = HiveSession(host, port, auth; tprotocol=tprotocol)
current[:sess] = sess
end
# db_disconnect
function db_disconnect()
sess = current_sess()
if sess isa HiveSession
Hive.close(sess)
current[:sess] = nothing
end
end
# query
function query(sql::String)
sess = current_sess()
pending = Hive.execute(sess, sql)
rs = Hive.result(pending)
sch = Hive.schema(rs)
column_names = tuple(Symbol.(getproperty.(sch.columns, :columnName))...)
df = reduce(vcat, Hive.records(rs))
nts = NamedTuple{column_names}.(df)
Hive.close(rs)
nts
end
function query(prepared::String, vals::Vector) # throw UnsupportedError
throw(UnsupportedError("needs to be implemented"))
end
# execute
function execute(sql::String)::ExecuteResult
sess = current_sess()
result = Hive.execute(sess, sql)
ExecuteResult()
end
function execute(prepared::String, vals::Vector)::ExecuteResult # throw UnsupportedError
throw(UnsupportedError("needs to be implemented"))
end
function execute(prepared::String, nts::Vector{<:NamedTuple})::ExecuteResult # throw UnsupportedError
throw(UnsupportedError("needs to be implemented"))
end
end # module Octo.Backends.HiveLoader
| [
21412,
33235,
17401,
198,
198,
2,
3740,
1378,
12567,
13,
785,
14,
16980,
544,
27354,
18826,
14,
39,
425,
13,
20362,
410,
15,
13,
18,
13,
15,
198,
3500,
33235,
1303,
33235,
36044,
33235,
30515,
198,
3500,
2556,
78,
13,
6207,
78,
25,
8393,
1133,
23004,
198,
198,
9979,
1459,
796,
360,
713,
90,
13940,
23650,
11,
4377,
92,
7,
198,
220,
220,
220,
1058,
82,
408,
5218,
2147,
11,
198,
8,
198,
198,
14421,
62,
82,
408,
3419,
796,
1459,
58,
25,
82,
408,
60,
198,
198,
2,
20613,
62,
8443,
198,
8818,
20613,
62,
8443,
7,
26,
2583,
3712,
10100,
2625,
36750,
1600,
2493,
3712,
46541,
28,
49388,
11,
6284,
3712,
39,
425,
30515,
28,
39,
425,
30515,
22784,
256,
11235,
4668,
3712,
13940,
23650,
28,
25,
39491,
8,
198,
220,
220,
220,
264,
408,
796,
33235,
36044,
7,
4774,
11,
2493,
11,
6284,
26,
256,
11235,
4668,
28,
83,
11235,
4668,
8,
198,
220,
220,
220,
1459,
58,
25,
82,
408,
60,
796,
264,
408,
198,
437,
198,
198,
2,
20613,
62,
6381,
8443,
198,
8818,
20613,
62,
6381,
8443,
3419,
198,
220,
220,
220,
264,
408,
796,
1459,
62,
82,
408,
3419,
198,
220,
220,
220,
611,
264,
408,
318,
64,
33235,
36044,
198,
220,
220,
220,
220,
220,
220,
220,
33235,
13,
19836,
7,
82,
408,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1459,
58,
25,
82,
408,
60,
796,
2147,
198,
220,
220,
220,
886,
198,
437,
198,
198,
2,
12405,
198,
8818,
12405,
7,
25410,
3712,
10100,
8,
198,
220,
220,
220,
264,
408,
796,
1459,
62,
82,
408,
3419,
198,
220,
220,
220,
13310,
796,
33235,
13,
41049,
7,
82,
408,
11,
44161,
8,
198,
220,
220,
220,
44608,
796,
33235,
13,
20274,
7,
79,
1571,
8,
198,
220,
220,
220,
5513,
796,
33235,
13,
15952,
2611,
7,
3808,
8,
198,
220,
220,
220,
5721,
62,
14933,
796,
46545,
7,
13940,
23650,
12195,
1136,
26745,
12195,
20601,
13,
28665,
82,
11,
1058,
28665,
5376,
4008,
23029,
198,
220,
220,
220,
47764,
796,
4646,
7,
85,
9246,
11,
33235,
13,
8344,
3669,
7,
3808,
4008,
198,
220,
220,
220,
299,
912,
796,
34441,
51,
29291,
90,
28665,
62,
14933,
92,
12195,
7568,
8,
198,
220,
220,
220,
33235,
13,
19836,
7,
3808,
8,
198,
220,
220,
220,
299,
912,
198,
437,
198,
198,
8818,
12405,
7,
3866,
29190,
3712,
10100,
11,
410,
874,
3712,
38469,
8,
1303,
3714,
791,
15999,
12331,
198,
220,
220,
220,
3714,
7,
3118,
15999,
12331,
7203,
50032,
284,
307,
9177,
48774,
198,
437,
198,
198,
2,
12260,
198,
8818,
12260,
7,
25410,
3712,
10100,
2599,
25,
23002,
1133,
23004,
198,
220,
220,
220,
264,
408,
796,
1459,
62,
82,
408,
3419,
198,
220,
220,
220,
1255,
796,
33235,
13,
41049,
7,
82,
408,
11,
44161,
8,
198,
220,
220,
220,
8393,
1133,
23004,
3419,
198,
437,
198,
198,
8818,
12260,
7,
3866,
29190,
3712,
10100,
11,
410,
874,
3712,
38469,
2599,
25,
23002,
1133,
23004,
1303,
3714,
791,
15999,
12331,
198,
220,
220,
220,
3714,
7,
3118,
15999,
12331,
7203,
50032,
284,
307,
9177,
48774,
198,
437,
198,
198,
8818,
12260,
7,
3866,
29190,
3712,
10100,
11,
299,
912,
3712,
38469,
90,
27,
25,
45,
2434,
51,
29291,
92,
2599,
25,
23002,
1133,
23004,
1303,
3714,
791,
15999,
12331,
198,
220,
220,
220,
3714,
7,
3118,
15999,
12331,
7203,
50032,
284,
307,
9177,
48774,
198,
437,
198,
198,
437,
1303,
8265,
2556,
78,
13,
7282,
2412,
13,
39,
425,
17401,
198
] | 2.723077 | 585 |
function _permute_front(t::AbstractTensorMap) # make TensorMap{S,N₁+N₂-1,1}
I = TensorKit.allind(t) # = (1:N₁+N₂...,)
if BraidingStyle(sectortype(t)) isa SymmetricBraiding
permute(t, Base.front(I), (I[end],))
else
levels = I
braid(t, levels, Base.front(I), (I[end],))
end
end
function _permute_tail(t::AbstractTensorMap) # make TensorMap{S,1,N₁+N₂-1}
I = TensorKit.allind(t) # = (1:N₁+N₂...,)
if BraidingStyle(sectortype(t)) isa SymmetricBraiding
permute(t, (I[1],), Base.tail(I))
else
levels = I
braid(t, levels, (I[1],), Base.tail(I))
end
end
function _permute_as(t1::AbstractTensorMap, t2::AbstractTensorMap)
if BraidingStyle(sectortype(t1)) isa SymmetricBraiding
permute(t1, TensorKit.codomainind(t2), TensorKit.domainind(t2))
else
levels = allind(t1)
braid(t1, TensorKit.codomainind(t2), TensorKit.domainind(t2))
end
end
_firstspace(t::AbstractTensorMap) = space(t, 1)
_lastspace(t::AbstractTensorMap) = space(t, numind(t))
"
Returns spin operators Sx,Sy,Sz,Id for spin s
"
function spinmatrices(s::Union{Rational{Int},Int})
N = Int(2*s)
Sx=zeros(Defaults.eltype,N+1,N+1)
Sy=zeros(Defaults.eltype,N+1,N+1)
Sz=zeros(Defaults.eltype,N+1,N+1)
for row=1:(N+1)
for col=1:(N+1)
term=sqrt((s+1)*(row+col-1)-row*col)/2.0
if (row+1==col)
Sx[row,col]+=term
Sy[row,col]-=1im*term
end
if(row==col+1)
Sx[row,col]+=term
Sy[row,col]+=1im*term
end
if(row==col)
Sz[row,col]+=s+1-row
end
end
end
return Sx,Sy,Sz,one(Sx)
end
function nonsym_spintensors(s)
(Sxd,Syd,Szd) = spinmatrices(s)
sp = ComplexSpace(size(Sxd,1))
Sx = TensorMap(Sxd,sp,sp);
Sy = TensorMap(Syd,sp,sp);
Sz = TensorMap(Szd,sp,sp);
return Sx,Sy,Sz,one(Sx)
end
#given a hamiltonian with unit legs on the side, decompose it using svds to form a "localmpo"
function decompose_localmpo(inpmpo::AbstractTensorMap{PS,N1,N2}) where {PS,N1,N2}
numind=N1+N2
if(numind==4)
return [permute(inpmpo,(1,2),(4,3))]
end
leftind=(1,2,Int(numind/2+1))
otherind=(ntuple(x->x+2,Val{Int((N1+N2)/2)-2}())..., ntuple(x->x+Int(numind/2+1),Val{Int((N1+N2)/2)-1}())...)
(U,S,V) = tsvd(inpmpo,leftind,otherind)
T=U*S
T=permute(T,(1,2),(4,3))
return [T;decompose_localmpo(V)]
end
function add_util_leg(tensor::AbstractTensorMap{S,N1,N2}) where {S,N1,N2}
#ntuple(x->x,Val{3+4}())
util=Tensor(ones,eltype(tensor),oneunit(space(tensor,1)))
tensor1=util*permute(tensor,(),ntuple(x->x,Val{N1+N2}()))
return permute(tensor1,ntuple(x->x,Val{N1+N2+1}()),())*util'
end
| [
8818,
4808,
16321,
1133,
62,
8534,
7,
83,
3712,
23839,
51,
22854,
13912,
8,
1303,
787,
309,
22854,
13912,
90,
50,
11,
45,
158,
224,
223,
10,
45,
158,
224,
224,
12,
16,
11,
16,
92,
198,
220,
220,
220,
314,
796,
309,
22854,
20827,
13,
439,
521,
7,
83,
8,
1303,
796,
357,
16,
25,
45,
158,
224,
223,
10,
45,
158,
224,
224,
986,
35751,
198,
220,
220,
220,
611,
9718,
2530,
21466,
7,
8831,
419,
2981,
7,
83,
4008,
318,
64,
1632,
3020,
19482,
42333,
2530,
198,
220,
220,
220,
220,
220,
220,
220,
9943,
1133,
7,
83,
11,
7308,
13,
8534,
7,
40,
828,
357,
40,
58,
437,
4357,
4008,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
2974,
796,
314,
198,
220,
220,
220,
220,
220,
220,
220,
275,
7086,
7,
83,
11,
2974,
11,
7308,
13,
8534,
7,
40,
828,
357,
40,
58,
437,
4357,
4008,
198,
220,
220,
220,
886,
198,
437,
198,
8818,
4808,
16321,
1133,
62,
13199,
7,
83,
3712,
23839,
51,
22854,
13912,
8,
1303,
787,
309,
22854,
13912,
90,
50,
11,
16,
11,
45,
158,
224,
223,
10,
45,
158,
224,
224,
12,
16,
92,
198,
220,
220,
220,
314,
796,
309,
22854,
20827,
13,
439,
521,
7,
83,
8,
1303,
796,
357,
16,
25,
45,
158,
224,
223,
10,
45,
158,
224,
224,
986,
35751,
198,
220,
220,
220,
611,
9718,
2530,
21466,
7,
8831,
419,
2981,
7,
83,
4008,
318,
64,
1632,
3020,
19482,
42333,
2530,
198,
220,
220,
220,
220,
220,
220,
220,
9943,
1133,
7,
83,
11,
357,
40,
58,
16,
4357,
828,
7308,
13,
13199,
7,
40,
4008,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
2974,
796,
314,
198,
220,
220,
220,
220,
220,
220,
220,
275,
7086,
7,
83,
11,
2974,
11,
357,
40,
58,
16,
4357,
828,
7308,
13,
13199,
7,
40,
4008,
198,
220,
220,
220,
886,
198,
437,
198,
8818,
4808,
16321,
1133,
62,
292,
7,
83,
16,
3712,
23839,
51,
22854,
13912,
11,
256,
17,
3712,
23839,
51,
22854,
13912,
8,
198,
220,
220,
220,
611,
9718,
2530,
21466,
7,
8831,
419,
2981,
7,
83,
16,
4008,
318,
64,
1632,
3020,
19482,
42333,
2530,
198,
220,
220,
220,
220,
220,
220,
220,
9943,
1133,
7,
83,
16,
11,
309,
22854,
20827,
13,
19815,
296,
391,
521,
7,
83,
17,
828,
309,
22854,
20827,
13,
27830,
521,
7,
83,
17,
4008,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
2974,
796,
477,
521,
7,
83,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
275,
7086,
7,
83,
16,
11,
309,
22854,
20827,
13,
19815,
296,
391,
521,
7,
83,
17,
828,
309,
22854,
20827,
13,
27830,
521,
7,
83,
17,
4008,
198,
220,
220,
220,
886,
198,
437,
198,
62,
11085,
13200,
7,
83,
3712,
23839,
51,
22854,
13912,
8,
796,
2272,
7,
83,
11,
352,
8,
198,
62,
12957,
13200,
7,
83,
3712,
23839,
51,
22854,
13912,
8,
796,
2272,
7,
83,
11,
997,
521,
7,
83,
4008,
198,
198,
1,
198,
220,
220,
220,
16409,
7906,
12879,
311,
87,
11,
13940,
11,
50,
89,
11,
7390,
329,
7906,
264,
198,
1,
198,
8818,
7906,
6759,
45977,
7,
82,
3712,
38176,
90,
49,
864,
90,
5317,
5512,
5317,
30072,
198,
220,
220,
220,
399,
796,
2558,
7,
17,
9,
82,
8,
628,
220,
220,
220,
311,
87,
28,
9107,
418,
7,
7469,
13185,
13,
417,
4906,
11,
45,
10,
16,
11,
45,
10,
16,
8,
198,
220,
220,
220,
1632,
28,
9107,
418,
7,
7469,
13185,
13,
417,
4906,
11,
45,
10,
16,
11,
45,
10,
16,
8,
198,
220,
220,
220,
27974,
28,
9107,
418,
7,
7469,
13185,
13,
417,
4906,
11,
45,
10,
16,
11,
45,
10,
16,
8,
628,
220,
220,
220,
329,
5752,
28,
16,
37498,
45,
10,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
329,
951,
28,
16,
37498,
45,
10,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3381,
28,
31166,
17034,
19510,
82,
10,
16,
27493,
7,
808,
10,
4033,
12,
16,
13219,
808,
9,
4033,
20679,
17,
13,
15,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
357,
808,
10,
16,
855,
4033,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
311,
87,
58,
808,
11,
4033,
60,
47932,
4354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1632,
58,
808,
11,
4033,
45297,
28,
16,
320,
9,
4354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
7,
808,
855,
4033,
10,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
311,
87,
58,
808,
11,
4033,
60,
47932,
4354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1632,
58,
808,
11,
4033,
60,
47932,
16,
320,
9,
4354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
7,
808,
855,
4033,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27974,
58,
808,
11,
4033,
60,
47932,
82,
10,
16,
12,
808,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
311,
87,
11,
13940,
11,
50,
89,
11,
505,
7,
50,
87,
8,
198,
437,
198,
198,
8818,
14011,
4948,
62,
2777,
600,
641,
669,
7,
82,
8,
198,
220,
220,
220,
357,
50,
24954,
11,
50,
5173,
11,
50,
89,
67,
8,
796,
7906,
6759,
45977,
7,
82,
8,
198,
220,
220,
220,
599,
796,
19157,
14106,
7,
7857,
7,
50,
24954,
11,
16,
4008,
628,
220,
220,
220,
311,
87,
796,
309,
22854,
13912,
7,
50,
24954,
11,
2777,
11,
2777,
1776,
198,
220,
220,
220,
1632,
796,
309,
22854,
13912,
7,
50,
5173,
11,
2777,
11,
2777,
1776,
198,
220,
220,
220,
27974,
796,
309,
22854,
13912,
7,
50,
89,
67,
11,
2777,
11,
2777,
1776,
628,
220,
220,
220,
1441,
311,
87,
11,
13940,
11,
50,
89,
11,
505,
7,
50,
87,
8,
198,
437,
198,
198,
2,
35569,
257,
8891,
9044,
666,
351,
4326,
7405,
319,
262,
1735,
11,
26969,
3455,
340,
1262,
38487,
9310,
284,
1296,
257,
366,
12001,
3149,
78,
1,
198,
8818,
26969,
3455,
62,
12001,
3149,
78,
7,
259,
79,
3149,
78,
3712,
23839,
51,
22854,
13912,
90,
3705,
11,
45,
16,
11,
45,
17,
30072,
810,
1391,
3705,
11,
45,
16,
11,
45,
17,
92,
198,
220,
220,
220,
997,
521,
28,
45,
16,
10,
45,
17,
198,
220,
220,
220,
611,
7,
22510,
521,
855,
19,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
685,
16321,
1133,
7,
259,
79,
3149,
78,
11,
7,
16,
11,
17,
828,
7,
19,
11,
18,
4008,
60,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1364,
521,
16193,
16,
11,
17,
11,
5317,
7,
22510,
521,
14,
17,
10,
16,
4008,
198,
220,
220,
220,
584,
521,
16193,
429,
29291,
7,
87,
3784,
87,
10,
17,
11,
7762,
90,
5317,
19510,
45,
16,
10,
45,
17,
20679,
17,
13219,
17,
92,
3419,
26513,
11,
299,
83,
29291,
7,
87,
3784,
87,
10,
5317,
7,
22510,
521,
14,
17,
10,
16,
828,
7762,
90,
5317,
19510,
45,
16,
10,
45,
17,
20679,
17,
13219,
16,
92,
28955,
23029,
628,
220,
220,
220,
357,
52,
11,
50,
11,
53,
8,
796,
40379,
20306,
7,
259,
79,
3149,
78,
11,
9464,
521,
11,
847,
521,
8,
628,
220,
220,
220,
309,
28,
52,
9,
50,
628,
220,
220,
220,
309,
28,
16321,
1133,
7,
51,
11,
7,
16,
11,
17,
828,
7,
19,
11,
18,
4008,
628,
198,
220,
220,
220,
1441,
685,
51,
26,
12501,
3361,
577,
62,
12001,
3149,
78,
7,
53,
15437,
198,
437,
198,
198,
8818,
751,
62,
22602,
62,
1455,
7,
83,
22854,
3712,
23839,
51,
22854,
13912,
90,
50,
11,
45,
16,
11,
45,
17,
30072,
810,
1391,
50,
11,
45,
16,
11,
45,
17,
92,
198,
220,
220,
220,
1303,
429,
29291,
7,
87,
3784,
87,
11,
7762,
90,
18,
10,
19,
92,
28955,
628,
220,
220,
220,
7736,
28,
51,
22854,
7,
1952,
11,
417,
4906,
7,
83,
22854,
828,
505,
20850,
7,
13200,
7,
83,
22854,
11,
16,
22305,
198,
220,
220,
220,
11192,
273,
16,
28,
22602,
9,
16321,
1133,
7,
83,
22854,
11,
22784,
429,
29291,
7,
87,
3784,
87,
11,
7762,
90,
45,
16,
10,
45,
17,
92,
3419,
4008,
198,
220,
220,
220,
1441,
9943,
1133,
7,
83,
22854,
16,
11,
429,
29291,
7,
87,
3784,
87,
11,
7762,
90,
45,
16,
10,
45,
17,
10,
16,
92,
3419,
828,
3419,
27493,
22602,
6,
198,
437,
198
] | 1.839974 | 1,531 |
function train!(agent::AbstractAgent, game::SnakeAI.Game)
# Get the current step
old_state = SnakeAI.get_state(game)
# Get the predicted move for the state
move = get_action(agent, old_state)
SnakeAI.send_inputs!(game, move)
# Play the step
reward, done, score = SnakeAI.play_step!(game)
new_state = SnakeAI.get_state(game)
# Train the short memory
train_short_memory(agent, old_state, move, reward, new_state, done)
# Remember
remember(agent, old_state, move, reward, new_state, done)
if done
# Reset the game
train_long_memory(agent)
SnakeAI.reset!(game)
agent.n_games += 1
if score > agent.record
agent.record = score
# save_model(joinpath(MODELS_PATH, "model_$(agent.n_games).bson"), agent.model)
end
end
return done
end
function remember(
agent::AbstractAgent,
state::S,
action::S,
reward::T,
next_state::S,
done::Bool
) where {T<:Integer,S<:AbstractArray{<:T}}
push!(agent.memory.data, (state, action, [reward], next_state, convert.(Int, [done])))
end
function train_short_memory(
agent::AbstractAgent,
state::S,
action::S,
reward::T,
next_state::S,
done::Bool
) where {T<:Integer,S<:AbstractArray{<:T}}
update!(agent, state, action, reward, next_state, done)
end
function train_long_memory(agent::AbstractAgent)
if length(agent.memory.data) > BATCH_SIZE
mini_sample = sample(agent.memory.data, BATCH_SIZE)
else
mini_sample = agent.memory.data
end
states, actions, rewards, next_states, dones = map(x -> getfield.(mini_sample, x), fieldnames(eltype(mini_sample)))
update!(agent, states, actions, rewards, next_states, dones)
end
function get_action(agent::SnakeAgent, state::AbstractArray{<:Integer}; rand_range=1:200)
agent.ϵ = 80 - agent.n_games
final_move = zeros(Int, 3)
if rand(rand_range) < agent.ϵ
move = rand(1:3)
final_move[move] = 1
else
pred = agent.model(state)
final_move[Flux.onecold(pred)] = 1
end
return final_move
end
function update!(
agent::SnakeAgent,
state::Union{A,AA},
action::Union{A,AA},
reward::Union{T,AA},
next_state::Union{A,AA},
done::Union{Bool,AA};
α::Float32=0.9f0 # Step size
) where {T<:Integer,A<:AbstractArray{<:T},AA<:AbstractArray{A}}
# Batching the states and converting data to Float32 (done implicitly otherwise)
state = Flux.batch(state) |> x -> convert.(Float32, x)
next_state = Flux.batch(next_state) |> x -> convert.(Float32, x)
action = Flux.batch(action) |> x -> convert.(Float32, x)
reward = Flux.batch(reward) |> x -> convert.(Float32, x)
done = Flux.batch(done)
# Model's prediction for next state
y = agent.model(next_state)
# Get the model's params for back propagation
ps = Flux.params(agent.model)
# Calculate the gradients
gs = Flux.gradient(ps) do
# Forward pass
ŷ = agent.model(state)
# Creating buffer to allow mutability when calculating gradients
Rₙ = Buffer(ŷ, size(ŷ))
# Adjusting values of current state with next state's knowledge
for idx in 1:length(done)
# Copy preds into buffer
Rₙ[:, idx] = ŷ[:, idx]
Qₙ = reward[idx]
if done[idx] == false
Qₙ += α * maximum(y[:, idx])
end
# Adjusting the expected reward for selected move
Rₙ[argmax(action[:, idx]), idx] = Qₙ
end
# Calculate the loss
agent.criterion(ŷ, copy(Rₙ))
end
# Update model weights
Flux.Optimise.update!(agent.opt, ps, gs)
end
| [
8818,
4512,
0,
7,
25781,
3712,
23839,
36772,
11,
983,
3712,
49795,
20185,
13,
8777,
8,
198,
220,
220,
220,
1303,
3497,
262,
1459,
2239,
198,
220,
220,
220,
1468,
62,
5219,
796,
16705,
20185,
13,
1136,
62,
5219,
7,
6057,
8,
628,
220,
220,
220,
1303,
3497,
262,
11001,
1445,
329,
262,
1181,
198,
220,
220,
220,
1445,
796,
651,
62,
2673,
7,
25781,
11,
1468,
62,
5219,
8,
198,
220,
220,
220,
16705,
20185,
13,
21280,
62,
15414,
82,
0,
7,
6057,
11,
1445,
8,
628,
220,
220,
220,
1303,
3811,
262,
2239,
198,
220,
220,
220,
6721,
11,
1760,
11,
4776,
796,
16705,
20185,
13,
1759,
62,
9662,
0,
7,
6057,
8,
198,
220,
220,
220,
649,
62,
5219,
796,
16705,
20185,
13,
1136,
62,
5219,
7,
6057,
8,
628,
220,
220,
220,
1303,
16835,
262,
1790,
4088,
198,
220,
220,
220,
4512,
62,
19509,
62,
31673,
7,
25781,
11,
1468,
62,
5219,
11,
1445,
11,
6721,
11,
649,
62,
5219,
11,
1760,
8,
628,
220,
220,
220,
1303,
11436,
198,
220,
220,
220,
3505,
7,
25781,
11,
1468,
62,
5219,
11,
1445,
11,
6721,
11,
649,
62,
5219,
11,
1760,
8,
628,
220,
220,
220,
611,
1760,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
30027,
262,
983,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
6511,
62,
31673,
7,
25781,
8,
198,
220,
220,
220,
220,
220,
220,
220,
16705,
20185,
13,
42503,
0,
7,
6057,
8,
198,
220,
220,
220,
220,
220,
220,
220,
5797,
13,
77,
62,
19966,
15853,
352,
628,
220,
220,
220,
220,
220,
220,
220,
611,
4776,
1875,
5797,
13,
22105,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5797,
13,
22105,
796,
4776,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3613,
62,
19849,
7,
22179,
6978,
7,
33365,
37142,
62,
34219,
11,
366,
19849,
62,
3,
7,
25781,
13,
77,
62,
19966,
737,
1443,
261,
12340,
5797,
13,
19849,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1441,
1760,
198,
437,
198,
198,
8818,
3505,
7,
198,
220,
220,
220,
5797,
3712,
23839,
36772,
11,
198,
220,
220,
220,
1181,
3712,
50,
11,
198,
220,
220,
220,
2223,
3712,
50,
11,
198,
220,
220,
220,
6721,
3712,
51,
11,
198,
220,
220,
220,
1306,
62,
5219,
3712,
50,
11,
198,
220,
220,
220,
1760,
3712,
33,
970,
198,
8,
810,
1391,
51,
27,
25,
46541,
11,
50,
27,
25,
23839,
19182,
90,
27,
25,
51,
11709,
198,
220,
220,
220,
4574,
0,
7,
25781,
13,
31673,
13,
7890,
11,
357,
5219,
11,
2223,
11,
685,
260,
904,
4357,
1306,
62,
5219,
11,
10385,
12195,
5317,
11,
685,
28060,
60,
22305,
198,
437,
198,
198,
8818,
4512,
62,
19509,
62,
31673,
7,
198,
220,
220,
220,
5797,
3712,
23839,
36772,
11,
198,
220,
220,
220,
1181,
3712,
50,
11,
198,
220,
220,
220,
2223,
3712,
50,
11,
198,
220,
220,
220,
6721,
3712,
51,
11,
198,
220,
220,
220,
1306,
62,
5219,
3712,
50,
11,
198,
220,
220,
220,
1760,
3712,
33,
970,
198,
8,
810,
1391,
51,
27,
25,
46541,
11,
50,
27,
25,
23839,
19182,
90,
27,
25,
51,
11709,
198,
220,
220,
220,
4296,
0,
7,
25781,
11,
1181,
11,
2223,
11,
6721,
11,
1306,
62,
5219,
11,
1760,
8,
198,
437,
198,
198,
8818,
4512,
62,
6511,
62,
31673,
7,
25781,
3712,
23839,
36772,
8,
198,
220,
220,
220,
611,
4129,
7,
25781,
13,
31673,
13,
7890,
8,
1875,
347,
11417,
62,
33489,
198,
220,
220,
220,
220,
220,
220,
220,
9927,
62,
39873,
796,
6291,
7,
25781,
13,
31673,
13,
7890,
11,
347,
11417,
62,
33489,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
9927,
62,
39873,
796,
5797,
13,
31673,
13,
7890,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2585,
11,
4028,
11,
11530,
11,
1306,
62,
27219,
11,
836,
274,
796,
3975,
7,
87,
4613,
651,
3245,
12195,
45313,
62,
39873,
11,
2124,
828,
2214,
14933,
7,
417,
4906,
7,
45313,
62,
39873,
22305,
628,
220,
220,
220,
4296,
0,
7,
25781,
11,
2585,
11,
4028,
11,
11530,
11,
1306,
62,
27219,
11,
836,
274,
8,
198,
437,
198,
198,
8818,
651,
62,
2673,
7,
25781,
3712,
49795,
36772,
11,
1181,
3712,
23839,
19182,
90,
27,
25,
46541,
19629,
43720,
62,
9521,
28,
16,
25,
2167,
8,
198,
220,
220,
220,
5797,
13,
139,
113,
796,
4019,
532,
5797,
13,
77,
62,
19966,
198,
220,
220,
220,
2457,
62,
21084,
796,
1976,
27498,
7,
5317,
11,
513,
8,
628,
220,
220,
220,
611,
43720,
7,
25192,
62,
9521,
8,
1279,
5797,
13,
139,
113,
198,
220,
220,
220,
220,
220,
220,
220,
1445,
796,
43720,
7,
16,
25,
18,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2457,
62,
21084,
58,
21084,
60,
796,
352,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
2747,
796,
5797,
13,
19849,
7,
5219,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2457,
62,
21084,
58,
37,
22564,
13,
505,
36673,
7,
28764,
15437,
796,
352,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1441,
2457,
62,
21084,
198,
437,
198,
198,
8818,
4296,
0,
7,
198,
220,
220,
220,
5797,
3712,
49795,
36772,
11,
198,
220,
220,
220,
1181,
3712,
38176,
90,
32,
11,
3838,
5512,
198,
220,
220,
220,
2223,
3712,
38176,
90,
32,
11,
3838,
5512,
198,
220,
220,
220,
6721,
3712,
38176,
90,
51,
11,
3838,
5512,
198,
220,
220,
220,
1306,
62,
5219,
3712,
38176,
90,
32,
11,
3838,
5512,
198,
220,
220,
220,
1760,
3712,
38176,
90,
33,
970,
11,
3838,
19629,
198,
220,
220,
220,
26367,
3712,
43879,
2624,
28,
15,
13,
24,
69,
15,
220,
220,
220,
1303,
5012,
2546,
198,
8,
810,
1391,
51,
27,
25,
46541,
11,
32,
27,
25,
23839,
19182,
90,
27,
25,
51,
5512,
3838,
27,
25,
23839,
19182,
90,
32,
11709,
198,
220,
220,
220,
1303,
347,
19775,
262,
2585,
290,
23202,
1366,
284,
48436,
2624,
357,
28060,
31821,
4306,
8,
198,
220,
220,
220,
1181,
796,
1610,
2821,
13,
43501,
7,
5219,
8,
930,
29,
2124,
4613,
10385,
12195,
43879,
2624,
11,
2124,
8,
198,
220,
220,
220,
1306,
62,
5219,
796,
1610,
2821,
13,
43501,
7,
19545,
62,
5219,
8,
930,
29,
2124,
4613,
10385,
12195,
43879,
2624,
11,
2124,
8,
198,
220,
220,
220,
2223,
796,
1610,
2821,
13,
43501,
7,
2673,
8,
930,
29,
2124,
4613,
10385,
12195,
43879,
2624,
11,
2124,
8,
198,
220,
220,
220,
6721,
796,
1610,
2821,
13,
43501,
7,
260,
904,
8,
930,
29,
2124,
4613,
10385,
12195,
43879,
2624,
11,
2124,
8,
198,
220,
220,
220,
1760,
796,
1610,
2821,
13,
43501,
7,
28060,
8,
628,
220,
220,
220,
1303,
9104,
338,
17724,
329,
1306,
1181,
198,
220,
220,
220,
331,
796,
5797,
13,
19849,
7,
19545,
62,
5219,
8,
628,
220,
220,
220,
1303,
3497,
262,
2746,
338,
42287,
329,
736,
43594,
198,
220,
220,
220,
26692,
796,
1610,
2821,
13,
37266,
7,
25781,
13,
19849,
8,
628,
220,
220,
220,
1303,
27131,
378,
262,
3915,
2334,
198,
220,
220,
220,
308,
82,
796,
1610,
2821,
13,
49607,
7,
862,
8,
466,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
19530,
1208,
198,
220,
220,
220,
220,
220,
220,
220,
331,
136,
224,
796,
5797,
13,
19849,
7,
5219,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
30481,
11876,
284,
1249,
4517,
1799,
618,
26019,
3915,
2334,
198,
220,
220,
220,
220,
220,
220,
220,
371,
158,
224,
247,
796,
47017,
7,
88,
136,
224,
11,
2546,
7,
88,
136,
224,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
20292,
278,
3815,
286,
1459,
1181,
351,
1306,
1181,
338,
3725,
198,
220,
220,
220,
220,
220,
220,
220,
329,
4686,
87,
287,
352,
25,
13664,
7,
28060,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
17393,
2747,
82,
656,
11876,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
371,
158,
224,
247,
58,
45299,
4686,
87,
60,
796,
331,
136,
224,
58,
45299,
4686,
87,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1195,
158,
224,
247,
796,
6721,
58,
312,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1760,
58,
312,
87,
60,
6624,
3991,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1195,
158,
224,
247,
15853,
26367,
1635,
5415,
7,
88,
58,
45299,
4686,
87,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
20292,
278,
262,
2938,
6721,
329,
6163,
1445,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
371,
158,
224,
247,
58,
853,
9806,
7,
2673,
58,
45299,
4686,
87,
46570,
4686,
87,
60,
796,
1195,
158,
224,
247,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
27131,
378,
262,
2994,
198,
220,
220,
220,
220,
220,
220,
220,
5797,
13,
22213,
28019,
7,
88,
136,
224,
11,
4866,
7,
49,
158,
224,
247,
4008,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1303,
10133,
2746,
19590,
198,
220,
220,
220,
1610,
2821,
13,
27871,
320,
786,
13,
19119,
0,
7,
25781,
13,
8738,
11,
26692,
11,
308,
82,
8,
198,
437,
198
] | 2.325857 | 1,605 |
using VLConstraintBasedModelGenerationUtilities
# setup path to protein sequence file -
path_to_vff_file = "/Users/jeffreyvarner/Desktop/julia_work/VLConstraintBasedModelGenerationUtilities.jl/test/data/Test.vff"
path_to_system_model_file = "/Users/jeffreyvarner/Desktop/julia_work/VLConstraintBasedModelGenerationUtilities.jl/test/data/Test.bson"
# let's build the reaction table -
metabolic_reaction_table = build_metabolic_reaction_table(path_to_vff_file) |> check
# build the stm -
stm = build_stoichiometric_matrix(metabolic_reaction_table) |> check
# build the species bounds array -
species_table = build_species_table(metabolic_reaction_table) |> check
species_bounds_array = build_species_bounds_array(species_table) |> check
# build the flux bounds array -
flux_bounds_array = build_flux_bounds_array(metabolic_reaction_table) |> check
# write the system model file -
result = write_system_model_file(path=path_to_system_model_file, stoichiometric_matrix=stm,
flux_bounds_array=flux_bounds_array, species_bounds_array=species_bounds_array)
| [
3500,
569,
43,
3103,
2536,
2913,
15001,
17633,
8645,
341,
18274,
2410,
198,
198,
2,
9058,
3108,
284,
7532,
8379,
2393,
532,
198,
6978,
62,
1462,
62,
85,
487,
62,
7753,
796,
12813,
14490,
14,
73,
14822,
4364,
7785,
1008,
14,
36881,
14,
73,
43640,
62,
1818,
14,
47468,
3103,
2536,
2913,
15001,
17633,
8645,
341,
18274,
2410,
13,
20362,
14,
9288,
14,
7890,
14,
14402,
13,
85,
487,
1,
198,
6978,
62,
1462,
62,
10057,
62,
19849,
62,
7753,
796,
12813,
14490,
14,
73,
14822,
4364,
7785,
1008,
14,
36881,
14,
73,
43640,
62,
1818,
14,
47468,
3103,
2536,
2913,
15001,
17633,
8645,
341,
18274,
2410,
13,
20362,
14,
9288,
14,
7890,
14,
14402,
13,
1443,
261,
1,
198,
198,
2,
1309,
338,
1382,
262,
6317,
3084,
532,
198,
4164,
29304,
62,
260,
2673,
62,
11487,
796,
1382,
62,
4164,
29304,
62,
260,
2673,
62,
11487,
7,
6978,
62,
1462,
62,
85,
487,
62,
7753,
8,
930,
29,
2198,
198,
198,
2,
1382,
262,
336,
76,
532,
198,
301,
76,
796,
1382,
62,
301,
78,
16590,
16996,
62,
6759,
8609,
7,
4164,
29304,
62,
260,
2673,
62,
11487,
8,
930,
29,
2198,
198,
198,
2,
1382,
262,
4693,
22303,
7177,
532,
198,
35448,
62,
11487,
796,
1382,
62,
35448,
62,
11487,
7,
4164,
29304,
62,
260,
2673,
62,
11487,
8,
930,
29,
2198,
198,
35448,
62,
65,
3733,
62,
18747,
796,
1382,
62,
35448,
62,
65,
3733,
62,
18747,
7,
35448,
62,
11487,
8,
930,
29,
2198,
198,
198,
2,
1382,
262,
28462,
22303,
7177,
532,
198,
69,
22564,
62,
65,
3733,
62,
18747,
796,
1382,
62,
69,
22564,
62,
65,
3733,
62,
18747,
7,
4164,
29304,
62,
260,
2673,
62,
11487,
8,
930,
29,
2198,
198,
198,
2,
3551,
262,
1080,
2746,
2393,
532,
198,
20274,
796,
3551,
62,
10057,
62,
19849,
62,
7753,
7,
6978,
28,
6978,
62,
1462,
62,
10057,
62,
19849,
62,
7753,
11,
3995,
16590,
16996,
62,
6759,
8609,
28,
301,
76,
11,
220,
198,
220,
220,
220,
28462,
62,
65,
3733,
62,
18747,
28,
69,
22564,
62,
65,
3733,
62,
18747,
11,
4693,
62,
65,
3733,
62,
18747,
28,
35448,
62,
65,
3733,
62,
18747,
8,
628
] | 2.917582 | 364 |
using Printf
using BenchmarkTools
function heat()
N = 1001
T0 = Matrix{Float64}(undef,N,N)
T1 = Matrix{Float64}(undef,N,N)
x = Matrix{Float64}(undef,N,N)
y = Matrix{Float64}(undef,N,N)
a = 0
b = π;
dx = (b-a)/(N-1)
for j=1:N
for i=1:N
x[i,j] = (i-1)*dx
end
end
for j=1:N
for i=1:N
y[i,j] = (j-1)*dx
end
end
dt = dx
tmax = (10-mod(10,dt))/dt
k = 0.25*dx
alpha = k*dt/dx^2
for i=1:N
T1[1,i] = 1.0
T1[N,i] = 1.0
T1[i,1] = 1.0
T1[i,N] = 1.0
end
for i=1:N
T0[1,i] = 1.0
T0[N,i] = 1.0
T0[i,1] = 1.0
T0[i,N] = 1.0
end
t = 0*dt
vel = open("Julia.dat", "w")
write(vel, "title =\"ZoneTime_",string(t),"\""," \n")
write(vel, "variables = \"x\", \"y\", \"T\""," \n")
write(vel, "zone T=\"Zone_"*string(t)*"\" i=",@sprintf("%d",N)," j=",@sprintf("%d",N)," \n")
for j=1:N
for i=1:N
write(vel, @sprintf("%1.9e",x[i,j])," ",@sprintf("%1.9e",y[i,j])," ",@sprintf("%1.9e",T0[i,j])," \n")
end
end
for k=1:tmax
for j=2:N-1
for i=2:N-1
T1[i,j] = T0[i,j]+alpha*((T0[i+1,j]-2*T0[i,j]+T0[i-1,j])+(T0[i,j+1]-2*T0[i,j]+T0[i,j-1]))
end
end
T0 .= T1
if mod(k,500)==0
write(vel, "title =\"ZoneTime_",string(t),"\""," \n")
write(vel, "variables = \"x\", \"y\", \"T\""," \n")
write(vel, "zone T=\"Zone_"*string(t)*"\" i=",@sprintf("%d",N)," j=",@sprintf("%d",N)," \n")
for j=1:N
for i=1:N
write(vel, @sprintf("%1.9e",x[i,j])," ",@sprintf("%1.9e",y[i,j])," ",@sprintf("%1.9e",T0[i,j])," \n")
end
end
end
end
t = tmax*dt
write(vel, "title =\"ZoneTime_",string(t),"\""," \n")
write(vel, "variables = \"x\", \"y\", \"T\""," \n")
write(vel, "zone T=\"Zone_"*string(t)*"\" i=",@sprintf("%d",N)," j=",@sprintf("%d",N)," \n")
for j=1:N
for i=1:N
write(vel, @sprintf("%1.9e",x[i,j])," ",@sprintf("%1.9e",y[i,j])," ",@sprintf("%1.9e",T0[i,j])," \n")
end
end
close(vel)
end
function heat_Vec()
N = 1001
T0 = Matrix{Float64}(undef,N,N)
T1 = Matrix{Float64}(undef,N,N)
x = Matrix{Float64}(undef,N,N)
y = Matrix{Float64}(undef,N,N)
a = 0
b = π;
dx = (b-a)/(N-1)
x[:,1] = (0:N-1)*dx
x[:,:] .= x[:,1]
y[1,:] = (0:N-1)*dx
y[:,:] .= y[1,:]
dt = dx
tmax = (10-mod(10,dt))/dt
k = 0.25*dx
alpha = k*dt/dx^2
T1[1,:] .= 1.0
T1[N,:] .= 1.0
T1[:,1] .= 1.0
T1[:,N] .= 1.0
T0[1,:] .= 1.0
T0[N,:] .= 1.0
T0[:,1] .= 1.0
T0[:,N] .= 1.0
t = 0*dt
vel = open("Julia.dat", "w")
write(vel, "title =\"ZoneTime_",string(t),"\""," \n")
write(vel, "variables = \"x\", \"y\", \"T\""," \n")
write(vel, "zone T=\"Zone_"*string(t)*"\" i=",@sprintf("%d",N)," j=",@sprintf("%d",N)," \n")
for j=1:N
for i=1:N
write(vel, @sprintf("%1.9e",x[i,j])," ",@sprintf("%1.9e",y[i,j])," ",@sprintf("%1.9e",T0[i,j])," \n")
end
end
for k=1:tmax
T1[2:N-1,2:N-1] .= T0[2:N-1,2:N-1].+alpha.*((T0[3:N,2:N-1].-2 .*T0[2:N-1,2:N-1].+T0[1:N-2,2:N-1]).+
(T0[2:N-1,3:N].-2 .*T0[2:N-1,2:N-1].+T0[2:N-1,1:N-2]))
T0 .= T1
if mod(k,500)==0
write(vel, "title =\"ZoneTime_",string(t),"\""," \n")
write(vel, "variables = \"x\", \"y\", \"T\""," \n")
write(vel, "zone T=\"Zone_"*string(t)*"\" i=",@sprintf("%d",N)," j=",@sprintf("%d",N)," \n")
for j=1:N
for i=1:N
write(vel, @sprintf("%1.9e",x[i,j])," ",@sprintf("%1.9e",y[i,j])," ",@sprintf("%1.9e",T0[i,j])," \n")
end
end
end
end
t = tmax*dt
write(vel, "title =\"ZoneTime_",string(t),"\""," \n")
write(vel, "variables = \"x\", \"y\", \"T\""," \n")
write(vel, "zone T=\"Zone_"*string(t)*"\" i=",@sprintf("%d",N)," j=",@sprintf("%d",N)," \n")
for j=1:N
for i=1:N
write(vel, @sprintf("%1.9e",x[i,j])," ",@sprintf("%1.9e",y[i,j])," ",@sprintf("%1.9e",T0[i,j])," \n")
end
end
close(vel)
end
function heat_wof()
N = 1001
T0 = Matrix{Float64}(undef,N,N)
T1 = Matrix{Float64}(undef,N,N)
x = Matrix{Float64}(undef,N,N)
y = Matrix{Float64}(undef,N,N)
a = 0
b = π;
dx = (b-a)/(N-1)
for j=1:N
for i=1:N
x[i,j] = (i-1)*dx
end
end
for j=1:N
for i=1:N
y[i,j] = (j-1)*dx
end
end
dt = dx
tmax = (10-mod(10,dt))/dt
k = 0.25*dx
alpha = k*dt/dx^2
for i=1:N
T1[1,i] = 1.0
T1[N,i] = 1.0
T1[i,1] = 1.0
T1[i,N] = 1.0
end
for i=1:N
T0[1,i] = 1.0
T0[N,i] = 1.0
T0[i,1] = 1.0
T0[i,N] = 1.0
end
for k=1:tmax
for j=2:N-1
for i=2:N-1
T1[i,j] = T0[i,j]+alpha*((T0[i+1,j]-2*T0[i,j]+T0[i-1,j])+(T0[i,j+1]-2*T0[i,j]+T0[i,j-1]))
end
end
T0 .= T1
end
end
function heat_Vec_wof()
N = 1001
T0 = Matrix{Float64}(undef,N,N)
T1 = Matrix{Float64}(undef,N,N)
x = Matrix{Float64}(undef,N,N)
y = Matrix{Float64}(undef,N,N)
a = 0
b = π;
dx = (b-a)/(N-1)
x[:,1] = (0:N-1)*dx
x[:,:] .= x[:,1]
y[1,:] = (0:N-1)*dx
y[:,:] .= y[1,:]
dt = dx
tmax = (10-mod(10,dt))/dt
k = 0.25*dx
alpha = k*dt/dx^2
T1[1,:] .= 1.0
T1[N,:] .= 1.0
T1[:,1] .= 1.0
T1[:,N] .= 1.0
T0[1,:] .= 1.0
T0[N,:] .= 1.0
T0[:,1] .= 1.0
T0[:,N] .= 1.0
for k=1:tmax
T1[2:N-1,2:N-1] .= T0[2:N-1,2:N-1].+alpha.*((T0[3:N,2:N-1].-2 .*T0[2:N-1,2:N-1].+T0[1:N-2,2:N-1]).+
(T0[2:N-1,3:N].-2 .*T0[2:N-1,2:N-1].+T0[2:N-1,1:N-2]))
T0 .= T1
end
end
results1 = @benchmark heat()
results2 = @benchmark heat_Vec()
results3 = @benchmark heat_wof()
results4 = @benchmark heat_Vec_wof()
| [
3500,
12578,
69,
201,
198,
3500,
25187,
4102,
33637,
201,
198,
8818,
4894,
3419,
201,
198,
220,
220,
220,
399,
796,
1802,
16,
201,
198,
220,
220,
220,
309,
15,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
45,
11,
45,
8,
201,
198,
220,
220,
220,
309,
16,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
45,
11,
45,
8,
201,
198,
220,
220,
220,
2124,
220,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
45,
11,
45,
8,
201,
198,
220,
220,
220,
331,
220,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
45,
11,
45,
8,
201,
198,
220,
220,
220,
257,
796,
657,
201,
198,
220,
220,
220,
275,
796,
18074,
222,
26,
201,
198,
220,
220,
220,
44332,
796,
357,
65,
12,
64,
20679,
7,
45,
12,
16,
8,
201,
198,
220,
220,
220,
329,
474,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
58,
72,
11,
73,
60,
796,
357,
72,
12,
16,
27493,
34350,
201,
198,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
886,
201,
198,
220,
220,
220,
329,
474,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
58,
72,
11,
73,
60,
796,
357,
73,
12,
16,
27493,
34350,
201,
198,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
886,
201,
198,
201,
198,
220,
220,
220,
288,
83,
796,
44332,
201,
198,
220,
220,
220,
256,
9806,
796,
357,
940,
12,
4666,
7,
940,
11,
28664,
4008,
14,
28664,
201,
198,
220,
220,
220,
479,
796,
657,
13,
1495,
9,
34350,
201,
198,
220,
220,
220,
17130,
796,
479,
9,
28664,
14,
34350,
61,
17,
201,
198,
220,
220,
220,
329,
1312,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
16,
58,
16,
11,
72,
60,
796,
352,
13,
15,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
16,
58,
45,
11,
72,
60,
796,
352,
13,
15,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
16,
58,
72,
11,
16,
60,
796,
352,
13,
15,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
16,
58,
72,
11,
45,
60,
796,
352,
13,
15,
201,
198,
220,
220,
220,
886,
201,
198,
220,
220,
220,
329,
1312,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
15,
58,
16,
11,
72,
60,
796,
352,
13,
15,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
15,
58,
45,
11,
72,
60,
796,
352,
13,
15,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
15,
58,
72,
11,
16,
60,
796,
352,
13,
15,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
15,
58,
72,
11,
45,
60,
796,
352,
13,
15,
201,
198,
220,
220,
220,
886,
201,
198,
220,
220,
220,
256,
796,
657,
9,
28664,
201,
198,
220,
220,
220,
11555,
796,
1280,
7203,
16980,
544,
13,
19608,
1600,
366,
86,
4943,
201,
198,
220,
220,
220,
3551,
7,
626,
11,
366,
7839,
796,
7879,
26961,
7575,
62,
1600,
8841,
7,
83,
27267,
7879,
2430,
3467,
77,
4943,
201,
198,
220,
220,
220,
3551,
7,
626,
11,
366,
25641,
2977,
796,
19990,
87,
34607,
19990,
88,
34607,
19990,
51,
7879,
2430,
3467,
77,
4943,
201,
198,
220,
220,
220,
3551,
7,
626,
11,
366,
11340,
309,
17553,
26961,
62,
1,
9,
8841,
7,
83,
27493,
1,
7879,
1312,
28,
1600,
31,
82,
37435,
7203,
4,
67,
1600,
45,
27267,
474,
28,
1600,
31,
82,
37435,
7203,
4,
67,
1600,
45,
27267,
3467,
77,
4943,
201,
198,
220,
220,
220,
329,
474,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3551,
7,
626,
11,
2488,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
87,
58,
72,
11,
73,
12962,
553,
33172,
31,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
88,
58,
72,
11,
73,
12962,
553,
33172,
31,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
51,
15,
58,
72,
11,
73,
12962,
553,
3467,
77,
4943,
201,
198,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
886,
201,
198,
201,
198,
220,
220,
220,
329,
479,
28,
16,
25,
83,
9806,
201,
198,
220,
220,
220,
220,
220,
220,
220,
329,
474,
28,
17,
25,
45,
12,
16,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
28,
17,
25,
45,
12,
16,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
309,
16,
58,
72,
11,
73,
60,
796,
309,
15,
58,
72,
11,
73,
48688,
26591,
9,
19510,
51,
15,
58,
72,
10,
16,
11,
73,
45297,
17,
9,
51,
15,
58,
72,
11,
73,
48688,
51,
15,
58,
72,
12,
16,
11,
73,
12962,
33747,
51,
15,
58,
72,
11,
73,
10,
16,
45297,
17,
9,
51,
15,
58,
72,
11,
73,
48688,
51,
15,
58,
72,
11,
73,
12,
16,
60,
4008,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
15,
764,
28,
309,
16,
201,
198,
220,
220,
220,
220,
220,
220,
220,
611,
953,
7,
74,
11,
4059,
8,
855,
15,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3551,
7,
626,
11,
366,
7839,
796,
7879,
26961,
7575,
62,
1600,
8841,
7,
83,
27267,
7879,
2430,
3467,
77,
4943,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3551,
7,
626,
11,
366,
25641,
2977,
796,
19990,
87,
34607,
19990,
88,
34607,
19990,
51,
7879,
2430,
3467,
77,
4943,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3551,
7,
626,
11,
366,
11340,
309,
17553,
26961,
62,
1,
9,
8841,
7,
83,
27493,
1,
7879,
1312,
28,
1600,
31,
82,
37435,
7203,
4,
67,
1600,
45,
27267,
474,
28,
1600,
31,
82,
37435,
7203,
4,
67,
1600,
45,
27267,
3467,
77,
4943,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
474,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3551,
7,
626,
11,
2488,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
87,
58,
72,
11,
73,
12962,
553,
33172,
31,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
88,
58,
72,
11,
73,
12962,
553,
33172,
31,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
51,
15,
58,
72,
11,
73,
12962,
553,
3467,
77,
4943,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
886,
201,
198,
220,
220,
220,
256,
796,
256,
9806,
9,
28664,
201,
198,
220,
220,
220,
3551,
7,
626,
11,
366,
7839,
796,
7879,
26961,
7575,
62,
1600,
8841,
7,
83,
27267,
7879,
2430,
3467,
77,
4943,
201,
198,
220,
220,
220,
3551,
7,
626,
11,
366,
25641,
2977,
796,
19990,
87,
34607,
19990,
88,
34607,
19990,
51,
7879,
2430,
3467,
77,
4943,
201,
198,
220,
220,
220,
3551,
7,
626,
11,
366,
11340,
309,
17553,
26961,
62,
1,
9,
8841,
7,
83,
27493,
1,
7879,
1312,
28,
1600,
31,
82,
37435,
7203,
4,
67,
1600,
45,
27267,
474,
28,
1600,
31,
82,
37435,
7203,
4,
67,
1600,
45,
27267,
3467,
77,
4943,
201,
198,
220,
220,
220,
329,
474,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3551,
7,
626,
11,
2488,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
87,
58,
72,
11,
73,
12962,
553,
33172,
31,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
88,
58,
72,
11,
73,
12962,
553,
33172,
31,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
51,
15,
58,
72,
11,
73,
12962,
553,
3467,
77,
4943,
201,
198,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
886,
201,
198,
220,
220,
220,
1969,
7,
626,
8,
201,
198,
437,
201,
198,
201,
198,
8818,
4894,
62,
53,
721,
3419,
201,
198,
220,
220,
220,
399,
796,
1802,
16,
201,
198,
220,
220,
220,
309,
15,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
45,
11,
45,
8,
201,
198,
220,
220,
220,
309,
16,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
45,
11,
45,
8,
201,
198,
220,
220,
220,
2124,
220,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
45,
11,
45,
8,
201,
198,
220,
220,
220,
331,
220,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
45,
11,
45,
8,
201,
198,
220,
220,
220,
257,
796,
657,
201,
198,
220,
220,
220,
275,
796,
18074,
222,
26,
201,
198,
220,
220,
220,
44332,
796,
357,
65,
12,
64,
20679,
7,
45,
12,
16,
8,
201,
198,
220,
220,
220,
2124,
58,
45299,
16,
60,
796,
357,
15,
25,
45,
12,
16,
27493,
34350,
201,
198,
220,
220,
220,
2124,
58,
45299,
47715,
764,
28,
2124,
58,
45299,
16,
60,
201,
198,
220,
220,
220,
331,
58,
16,
11,
47715,
796,
357,
15,
25,
45,
12,
16,
27493,
34350,
201,
198,
220,
220,
220,
331,
58,
45299,
47715,
764,
28,
331,
58,
16,
11,
47715,
201,
198,
201,
198,
220,
220,
220,
288,
83,
796,
44332,
201,
198,
220,
220,
220,
256,
9806,
796,
357,
940,
12,
4666,
7,
940,
11,
28664,
4008,
14,
28664,
201,
198,
220,
220,
220,
479,
796,
657,
13,
1495,
9,
34350,
201,
198,
220,
220,
220,
17130,
796,
479,
9,
28664,
14,
34350,
61,
17,
201,
198,
220,
220,
220,
309,
16,
58,
16,
11,
47715,
764,
28,
352,
13,
15,
201,
198,
220,
220,
220,
309,
16,
58,
45,
11,
47715,
764,
28,
352,
13,
15,
201,
198,
220,
220,
220,
309,
16,
58,
45299,
16,
60,
764,
28,
352,
13,
15,
201,
198,
220,
220,
220,
309,
16,
58,
45299,
45,
60,
764,
28,
352,
13,
15,
201,
198,
201,
198,
220,
220,
220,
309,
15,
58,
16,
11,
47715,
764,
28,
352,
13,
15,
201,
198,
220,
220,
220,
309,
15,
58,
45,
11,
47715,
764,
28,
352,
13,
15,
201,
198,
220,
220,
220,
309,
15,
58,
45299,
16,
60,
764,
28,
352,
13,
15,
201,
198,
220,
220,
220,
309,
15,
58,
45299,
45,
60,
764,
28,
352,
13,
15,
201,
198,
220,
220,
220,
256,
796,
657,
9,
28664,
201,
198,
220,
220,
220,
11555,
796,
1280,
7203,
16980,
544,
13,
19608,
1600,
366,
86,
4943,
201,
198,
220,
220,
220,
3551,
7,
626,
11,
366,
7839,
796,
7879,
26961,
7575,
62,
1600,
8841,
7,
83,
27267,
7879,
2430,
3467,
77,
4943,
201,
198,
220,
220,
220,
3551,
7,
626,
11,
366,
25641,
2977,
796,
19990,
87,
34607,
19990,
88,
34607,
19990,
51,
7879,
2430,
3467,
77,
4943,
201,
198,
220,
220,
220,
3551,
7,
626,
11,
366,
11340,
309,
17553,
26961,
62,
1,
9,
8841,
7,
83,
27493,
1,
7879,
1312,
28,
1600,
31,
82,
37435,
7203,
4,
67,
1600,
45,
27267,
474,
28,
1600,
31,
82,
37435,
7203,
4,
67,
1600,
45,
27267,
3467,
77,
4943,
201,
198,
220,
220,
220,
329,
474,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3551,
7,
626,
11,
2488,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
87,
58,
72,
11,
73,
12962,
553,
33172,
31,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
88,
58,
72,
11,
73,
12962,
553,
33172,
31,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
51,
15,
58,
72,
11,
73,
12962,
553,
3467,
77,
4943,
201,
198,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
886,
201,
198,
201,
198,
220,
220,
220,
329,
479,
28,
16,
25,
83,
9806,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
16,
58,
17,
25,
45,
12,
16,
11,
17,
25,
45,
12,
16,
60,
764,
28,
309,
15,
58,
17,
25,
45,
12,
16,
11,
17,
25,
45,
12,
16,
4083,
10,
26591,
15885,
19510,
51,
15,
58,
18,
25,
45,
11,
17,
25,
45,
12,
16,
4083,
12,
17,
764,
9,
51,
15,
58,
17,
25,
45,
12,
16,
11,
17,
25,
45,
12,
16,
4083,
10,
51,
15,
58,
16,
25,
45,
12,
17,
11,
17,
25,
45,
12,
16,
35944,
10,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
51,
15,
58,
17,
25,
45,
12,
16,
11,
18,
25,
45,
4083,
12,
17,
764,
9,
51,
15,
58,
17,
25,
45,
12,
16,
11,
17,
25,
45,
12,
16,
4083,
10,
51,
15,
58,
17,
25,
45,
12,
16,
11,
16,
25,
45,
12,
17,
60,
4008,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
15,
764,
28,
309,
16,
201,
198,
220,
220,
220,
220,
220,
220,
220,
611,
953,
7,
74,
11,
4059,
8,
855,
15,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3551,
7,
626,
11,
366,
7839,
796,
7879,
26961,
7575,
62,
1600,
8841,
7,
83,
27267,
7879,
2430,
3467,
77,
4943,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3551,
7,
626,
11,
366,
25641,
2977,
796,
19990,
87,
34607,
19990,
88,
34607,
19990,
51,
7879,
2430,
3467,
77,
4943,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3551,
7,
626,
11,
366,
11340,
309,
17553,
26961,
62,
1,
9,
8841,
7,
83,
27493,
1,
7879,
1312,
28,
1600,
31,
82,
37435,
7203,
4,
67,
1600,
45,
27267,
474,
28,
1600,
31,
82,
37435,
7203,
4,
67,
1600,
45,
27267,
3467,
77,
4943,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
474,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3551,
7,
626,
11,
2488,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
87,
58,
72,
11,
73,
12962,
553,
33172,
31,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
88,
58,
72,
11,
73,
12962,
553,
33172,
31,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
51,
15,
58,
72,
11,
73,
12962,
553,
3467,
77,
4943,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
886,
201,
198,
220,
220,
220,
256,
796,
256,
9806,
9,
28664,
201,
198,
220,
220,
220,
3551,
7,
626,
11,
366,
7839,
796,
7879,
26961,
7575,
62,
1600,
8841,
7,
83,
27267,
7879,
2430,
3467,
77,
4943,
201,
198,
220,
220,
220,
3551,
7,
626,
11,
366,
25641,
2977,
796,
19990,
87,
34607,
19990,
88,
34607,
19990,
51,
7879,
2430,
3467,
77,
4943,
201,
198,
220,
220,
220,
3551,
7,
626,
11,
366,
11340,
309,
17553,
26961,
62,
1,
9,
8841,
7,
83,
27493,
1,
7879,
1312,
28,
1600,
31,
82,
37435,
7203,
4,
67,
1600,
45,
27267,
474,
28,
1600,
31,
82,
37435,
7203,
4,
67,
1600,
45,
27267,
3467,
77,
4943,
201,
198,
220,
220,
220,
329,
474,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3551,
7,
626,
11,
2488,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
87,
58,
72,
11,
73,
12962,
553,
33172,
31,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
88,
58,
72,
11,
73,
12962,
553,
33172,
31,
82,
37435,
7203,
4,
16,
13,
24,
68,
1600,
51,
15,
58,
72,
11,
73,
12962,
553,
3467,
77,
4943,
201,
198,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
886,
201,
198,
220,
220,
220,
1969,
7,
626,
8,
201,
198,
437,
201,
198,
201,
198,
8818,
4894,
62,
86,
1659,
3419,
201,
198,
220,
220,
220,
399,
796,
1802,
16,
201,
198,
220,
220,
220,
309,
15,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
45,
11,
45,
8,
201,
198,
220,
220,
220,
309,
16,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
45,
11,
45,
8,
201,
198,
220,
220,
220,
2124,
220,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
45,
11,
45,
8,
201,
198,
220,
220,
220,
331,
220,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
45,
11,
45,
8,
201,
198,
220,
220,
220,
257,
796,
657,
201,
198,
220,
220,
220,
275,
796,
18074,
222,
26,
201,
198,
220,
220,
220,
44332,
796,
357,
65,
12,
64,
20679,
7,
45,
12,
16,
8,
201,
198,
220,
220,
220,
329,
474,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
58,
72,
11,
73,
60,
796,
357,
72,
12,
16,
27493,
34350,
201,
198,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
886,
201,
198,
220,
220,
220,
329,
474,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
58,
72,
11,
73,
60,
796,
357,
73,
12,
16,
27493,
34350,
201,
198,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
886,
201,
198,
201,
198,
220,
220,
220,
288,
83,
796,
44332,
201,
198,
220,
220,
220,
256,
9806,
796,
357,
940,
12,
4666,
7,
940,
11,
28664,
4008,
14,
28664,
201,
198,
220,
220,
220,
479,
796,
657,
13,
1495,
9,
34350,
201,
198,
220,
220,
220,
17130,
796,
479,
9,
28664,
14,
34350,
61,
17,
201,
198,
220,
220,
220,
329,
1312,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
16,
58,
16,
11,
72,
60,
796,
352,
13,
15,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
16,
58,
45,
11,
72,
60,
796,
352,
13,
15,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
16,
58,
72,
11,
16,
60,
796,
352,
13,
15,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
16,
58,
72,
11,
45,
60,
796,
352,
13,
15,
201,
198,
220,
220,
220,
886,
201,
198,
220,
220,
220,
329,
1312,
28,
16,
25,
45,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
15,
58,
16,
11,
72,
60,
796,
352,
13,
15,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
15,
58,
45,
11,
72,
60,
796,
352,
13,
15,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
15,
58,
72,
11,
16,
60,
796,
352,
13,
15,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
15,
58,
72,
11,
45,
60,
796,
352,
13,
15,
201,
198,
220,
220,
220,
886,
201,
198,
201,
198,
220,
220,
220,
329,
479,
28,
16,
25,
83,
9806,
201,
198,
220,
220,
220,
220,
220,
220,
220,
329,
474,
28,
17,
25,
45,
12,
16,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
28,
17,
25,
45,
12,
16,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
309,
16,
58,
72,
11,
73,
60,
796,
309,
15,
58,
72,
11,
73,
48688,
26591,
9,
19510,
51,
15,
58,
72,
10,
16,
11,
73,
45297,
17,
9,
51,
15,
58,
72,
11,
73,
48688,
51,
15,
58,
72,
12,
16,
11,
73,
12962,
33747,
51,
15,
58,
72,
11,
73,
10,
16,
45297,
17,
9,
51,
15,
58,
72,
11,
73,
48688,
51,
15,
58,
72,
11,
73,
12,
16,
60,
4008,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
220,
220,
220,
220,
886,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
15,
764,
28,
309,
16,
201,
198,
220,
220,
220,
886,
201,
198,
437,
201,
198,
201,
198,
8818,
4894,
62,
53,
721,
62,
86,
1659,
3419,
201,
198,
220,
220,
220,
399,
796,
1802,
16,
201,
198,
220,
220,
220,
309,
15,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
45,
11,
45,
8,
201,
198,
220,
220,
220,
309,
16,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
45,
11,
45,
8,
201,
198,
220,
220,
220,
2124,
220,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
45,
11,
45,
8,
201,
198,
220,
220,
220,
331,
220,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
45,
11,
45,
8,
201,
198,
220,
220,
220,
257,
796,
657,
201,
198,
220,
220,
220,
275,
796,
18074,
222,
26,
201,
198,
220,
220,
220,
44332,
796,
357,
65,
12,
64,
20679,
7,
45,
12,
16,
8,
201,
198,
220,
220,
220,
2124,
58,
45299,
16,
60,
796,
357,
15,
25,
45,
12,
16,
27493,
34350,
201,
198,
220,
220,
220,
2124,
58,
45299,
47715,
764,
28,
2124,
58,
45299,
16,
60,
201,
198,
220,
220,
220,
331,
58,
16,
11,
47715,
796,
357,
15,
25,
45,
12,
16,
27493,
34350,
201,
198,
220,
220,
220,
331,
58,
45299,
47715,
764,
28,
331,
58,
16,
11,
47715,
201,
198,
201,
198,
220,
220,
220,
288,
83,
796,
44332,
201,
198,
220,
220,
220,
256,
9806,
796,
357,
940,
12,
4666,
7,
940,
11,
28664,
4008,
14,
28664,
201,
198,
220,
220,
220,
479,
796,
657,
13,
1495,
9,
34350,
201,
198,
220,
220,
220,
17130,
796,
479,
9,
28664,
14,
34350,
61,
17,
201,
198,
220,
220,
220,
309,
16,
58,
16,
11,
47715,
764,
28,
352,
13,
15,
201,
198,
220,
220,
220,
309,
16,
58,
45,
11,
47715,
764,
28,
352,
13,
15,
201,
198,
220,
220,
220,
309,
16,
58,
45299,
16,
60,
764,
28,
352,
13,
15,
201,
198,
220,
220,
220,
309,
16,
58,
45299,
45,
60,
764,
28,
352,
13,
15,
201,
198,
201,
198,
220,
220,
220,
309,
15,
58,
16,
11,
47715,
764,
28,
352,
13,
15,
201,
198,
220,
220,
220,
309,
15,
58,
45,
11,
47715,
764,
28,
352,
13,
15,
201,
198,
220,
220,
220,
309,
15,
58,
45299,
16,
60,
764,
28,
352,
13,
15,
201,
198,
220,
220,
220,
309,
15,
58,
45299,
45,
60,
764,
28,
352,
13,
15,
201,
198,
201,
198,
220,
220,
220,
329,
479,
28,
16,
25,
83,
9806,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
16,
58,
17,
25,
45,
12,
16,
11,
17,
25,
45,
12,
16,
60,
764,
28,
309,
15,
58,
17,
25,
45,
12,
16,
11,
17,
25,
45,
12,
16,
4083,
10,
26591,
15885,
19510,
51,
15,
58,
18,
25,
45,
11,
17,
25,
45,
12,
16,
4083,
12,
17,
764,
9,
51,
15,
58,
17,
25,
45,
12,
16,
11,
17,
25,
45,
12,
16,
4083,
10,
51,
15,
58,
16,
25,
45,
12,
17,
11,
17,
25,
45,
12,
16,
35944,
10,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
51,
15,
58,
17,
25,
45,
12,
16,
11,
18,
25,
45,
4083,
12,
17,
764,
9,
51,
15,
58,
17,
25,
45,
12,
16,
11,
17,
25,
45,
12,
16,
4083,
10,
51,
15,
58,
17,
25,
45,
12,
16,
11,
16,
25,
45,
12,
17,
60,
4008,
201,
198,
220,
220,
220,
220,
220,
220,
220,
309,
15,
764,
28,
309,
16,
201,
198,
220,
220,
220,
886,
201,
198,
201,
198,
437,
201,
198,
201,
198,
43420,
16,
796,
2488,
26968,
4102,
4894,
3419,
201,
198,
43420,
17,
796,
2488,
26968,
4102,
4894,
62,
53,
721,
3419,
201,
198,
43420,
18,
796,
2488,
26968,
4102,
4894,
62,
86,
1659,
3419,
201,
198,
43420,
19,
796,
2488,
26968,
4102,
4894,
62,
53,
721,
62,
86,
1659,
3419,
201,
198
] | 1.486057 | 4,339 |
######################### Global Time Stepping ###########################
function forwardEuler(mesh::Mesh, fluxResidualFn, sln::SolutionState, boundaryConditions, fluid::Fluid, dt)
sln.fluxResiduals = fluxResidualFn(mesh, sln, boundaryConditions, fluid)
@fastmath sln.cellState .+= sln.fluxResiduals.*dt
@fastmath decodeSolution_3D(sln, fluid)
return sln
end
function RK2_Mid(mesh, fluxResidualFn, sln, boundaryConditions, fluid::Fluid, dt)
fluxResiduals1 = fluxResidualFn(mesh, sln, boundaryConditions, fluid)
halfwayEstimate = sln.cellState .+ fluxResiduals1.*dt/2
solutionState2 = SolutionState(halfwayEstimate, sln.cellFluxes, sln.cellPrimitives, sln.fluxResiduals, sln.faceFluxes)
decodeSolution_3D(solutionState2, fluid)
sln.fluxResiduals = fluxResidualFn(mesh, solutionState2, boundaryConditions, fluid)
sln.cellState .+= sln.fluxResiduals.*dt
decodeSolution_3D(sln, fluid)
return sln
end
function RK4(mesh, fluxResidualFn, sln, boundaryConditions, fluid::Fluid, dt)
fluxResiduals1 = fluxResidualFn(mesh, sln, boundaryConditions, fluid)
halfwayEstimate = sln.cellState .+ fluxResiduals1*dt/2
lastSolutionState = SolutionState(halfwayEstimate, sln.cellFluxes, sln.cellPrimitives, sln.fluxResiduals, sln.faceFluxes)
decodeSolution_3D(lastSolutionState, fluid)
fluxResiduals2 = fluxResidualFn(mesh, lastSolutionState, boundaryConditions, fluid)
halfwayEstimate2 = sln.cellState .+ fluxResiduals2*dt/2
lastSolutionState.cellState = halfwayEstimate2
decodeSolution_3D(lastSolutionState, fluid)
fluxResiduals3 = fluxResidualFn(mesh, lastSolutionState, boundaryConditions, fluid)
finalEstimate1 = sln.cellState .+ fluxResiduals3*dt
lastSolutionState.cellState = finalEstimate1
decodeSolution_3D(lastSolutionState, fluid)
fluxResiduals4 = fluxResidualFn(mesh, lastSolutionState, boundaryConditions, fluid)
sln.cellState .+= (fluxResiduals1 .+ 2*fluxResiduals2 .+ 2*fluxResiduals3 .+ fluxResiduals4 )*(dt/6)
decodeSolution_3D(sln, fluid)
return sln
end
function ShuOsher(mesh, fluxResidualFn, sln, boundaryConditions, fluid::Fluid, dt)
fluxResiduals1 = fluxResidualFn(mesh, sln, boundaryConditions, fluid)
endEstimate = sln.cellState .+ fluxResiduals1.*dt
lastSolutionState = SolutionState(endEstimate, sln.cellFluxes, sln.cellPrimitives, sln.fluxResiduals, sln.faceFluxes)
decodeSolution_3D(lastSolutionState, fluid)
fluxResiduals2 = fluxResidualFn(mesh, lastSolutionState, boundaryConditions, fluid)
estimate2 = (3/4).*sln.cellState .+ (1/4).*(endEstimate .+ fluxResiduals2.*dt)
lastSolutionState.cellState = estimate2
decodeSolution_3D(lastSolutionState, fluid)
fluxResiduals3 = fluxResidualFn(mesh, lastSolutionState, boundaryConditions, fluid)
sln.cellState .= (1/3).*sln.cellState .+ (2/3).*(estimate2 .+ dt.*fluxResiduals3)
decodeSolution_3D(sln, fluid)
return sln
end
######################### Local Time Stepping ###########################
# Incomplete, will be commented more fully once it produces nice solutions and the implementation is finalized
function LTSEuler(mesh, fluxResidualFn, sln, boundaryConditions, fluid::Fluid, dt)
targetCFL = dt[1]
fluxResiduals = fluxResidualFn(mesh, sln, boundaryConditions, fluid)
CFL!(dt, mesh, sln, fluid, 1)
dt .= targetCFL ./ dt
smoothTimeStep!(dt, mesh, 0.1)
smoothTimeStep!(dt, mesh, 0.1)
sln.cellState .+= fluxResiduals .* dt
decodeSolution_3D(sln, fluid)
return sln
end
function smoothTimeStep!(dt, mesh::Mesh, diffusionCoefficient=0.2)
nCells, nFaces, nBoundaries, nBdryFaces = unstructuredMeshInfo(mesh)
timeFluxes = zeros(nCells)
surfaceAreas = zeros(nCells)
for f in 1:nFaces-nBdryFaces
ownerCell = mesh.faces[f][1]
neighbourCell = mesh.faces[f][2]
timeFlux = (dt[ownerCell] - dt[neighbourCell]) * mag(mesh.fAVecs[f])
surfaceAreas[ownerCell] += mag(mesh.fAVecs[f])
surfaceAreas[neighbourCell] += mag(mesh.fAVecs[f])
timeFluxes[ownerCell] -= timeFlux
timeFluxes[neighbourCell] += timeFlux
end
timeFluxes .*= (diffusionCoefficient ./ surfaceAreas)
for i in eachindex(timeFluxes)
timeFluxes[i] = min(0, timeFluxes[i])
end
dt .+= timeFluxes
end
#TODO: For implicit methods, need to compute the flux Jacobians at each edge, instead of just the fluxes
# Use Jacobians as coefficients in matrix representing timestepping equations
# Then solve with GMRES or some other matrix solver
| [
14468,
7804,
2,
8060,
3862,
2441,
2105,
1303,
14468,
7804,
2235,
198,
8818,
2651,
36,
18173,
7,
76,
5069,
3712,
37031,
11,
28462,
4965,
312,
723,
37,
77,
11,
1017,
77,
3712,
46344,
9012,
11,
18645,
25559,
1756,
11,
11711,
3712,
37,
2290,
312,
11,
288,
83,
8,
198,
220,
220,
220,
1017,
77,
13,
69,
22564,
4965,
312,
723,
82,
796,
28462,
4965,
312,
723,
37,
77,
7,
76,
5069,
11,
1017,
77,
11,
18645,
25559,
1756,
11,
11711,
8,
198,
220,
220,
220,
2488,
7217,
11018,
1017,
77,
13,
3846,
9012,
764,
47932,
1017,
77,
13,
69,
22564,
4965,
312,
723,
82,
15885,
28664,
198,
220,
220,
220,
2488,
7217,
11018,
36899,
46344,
62,
18,
35,
7,
6649,
77,
11,
11711,
8,
628,
220,
220,
220,
1441,
1017,
77,
198,
437,
198,
198,
8818,
371,
42,
17,
62,
22622,
7,
76,
5069,
11,
28462,
4965,
312,
723,
37,
77,
11,
1017,
77,
11,
18645,
25559,
1756,
11,
11711,
3712,
37,
2290,
312,
11,
288,
83,
8,
198,
220,
220,
220,
28462,
4965,
312,
723,
82,
16,
796,
28462,
4965,
312,
723,
37,
77,
7,
76,
5069,
11,
1017,
77,
11,
18645,
25559,
1756,
11,
11711,
8,
198,
220,
220,
220,
19487,
22362,
1920,
796,
1017,
77,
13,
3846,
9012,
764,
10,
28462,
4965,
312,
723,
82,
16,
15885,
28664,
14,
17,
198,
220,
220,
220,
4610,
9012,
17,
796,
28186,
9012,
7,
13959,
1014,
22362,
1920,
11,
1017,
77,
13,
3846,
37,
22564,
274,
11,
1017,
77,
13,
3846,
23828,
20288,
11,
1017,
77,
13,
69,
22564,
4965,
312,
723,
82,
11,
1017,
77,
13,
2550,
37,
22564,
274,
8,
198,
220,
220,
220,
36899,
46344,
62,
18,
35,
7,
82,
2122,
9012,
17,
11,
11711,
8,
628,
220,
220,
220,
1017,
77,
13,
69,
22564,
4965,
312,
723,
82,
796,
28462,
4965,
312,
723,
37,
77,
7,
76,
5069,
11,
4610,
9012,
17,
11,
18645,
25559,
1756,
11,
11711,
8,
198,
220,
220,
220,
1017,
77,
13,
3846,
9012,
764,
47932,
1017,
77,
13,
69,
22564,
4965,
312,
723,
82,
15885,
28664,
198,
220,
220,
220,
36899,
46344,
62,
18,
35,
7,
6649,
77,
11,
11711,
8,
628,
220,
220,
220,
1441,
1017,
77,
198,
437,
198,
198,
8818,
371,
42,
19,
7,
76,
5069,
11,
28462,
4965,
312,
723,
37,
77,
11,
1017,
77,
11,
18645,
25559,
1756,
11,
11711,
3712,
37,
2290,
312,
11,
288,
83,
8,
628,
220,
220,
220,
28462,
4965,
312,
723,
82,
16,
796,
28462,
4965,
312,
723,
37,
77,
7,
76,
5069,
11,
1017,
77,
11,
18645,
25559,
1756,
11,
11711,
8,
198,
220,
220,
220,
19487,
22362,
1920,
796,
1017,
77,
13,
3846,
9012,
764,
10,
28462,
4965,
312,
723,
82,
16,
9,
28664,
14,
17,
198,
220,
220,
220,
938,
46344,
9012,
796,
28186,
9012,
7,
13959,
1014,
22362,
1920,
11,
1017,
77,
13,
3846,
37,
22564,
274,
11,
1017,
77,
13,
3846,
23828,
20288,
11,
1017,
77,
13,
69,
22564,
4965,
312,
723,
82,
11,
1017,
77,
13,
2550,
37,
22564,
274,
8,
198,
220,
220,
220,
36899,
46344,
62,
18,
35,
7,
12957,
46344,
9012,
11,
11711,
8,
628,
220,
220,
220,
28462,
4965,
312,
723,
82,
17,
796,
28462,
4965,
312,
723,
37,
77,
7,
76,
5069,
11,
938,
46344,
9012,
11,
18645,
25559,
1756,
11,
11711,
8,
198,
220,
220,
220,
19487,
22362,
1920,
17,
796,
1017,
77,
13,
3846,
9012,
764,
10,
28462,
4965,
312,
723,
82,
17,
9,
28664,
14,
17,
198,
220,
220,
220,
938,
46344,
9012,
13,
3846,
9012,
796,
19487,
22362,
1920,
17,
198,
220,
220,
220,
36899,
46344,
62,
18,
35,
7,
12957,
46344,
9012,
11,
11711,
8,
628,
220,
220,
220,
28462,
4965,
312,
723,
82,
18,
796,
28462,
4965,
312,
723,
37,
77,
7,
76,
5069,
11,
938,
46344,
9012,
11,
18645,
25559,
1756,
11,
11711,
8,
198,
220,
220,
220,
2457,
22362,
1920,
16,
796,
1017,
77,
13,
3846,
9012,
764,
10,
28462,
4965,
312,
723,
82,
18,
9,
28664,
198,
220,
220,
220,
938,
46344,
9012,
13,
3846,
9012,
796,
2457,
22362,
1920,
16,
198,
220,
220,
220,
36899,
46344,
62,
18,
35,
7,
12957,
46344,
9012,
11,
11711,
8,
628,
220,
220,
220,
28462,
4965,
312,
723,
82,
19,
796,
28462,
4965,
312,
723,
37,
77,
7,
76,
5069,
11,
938,
46344,
9012,
11,
18645,
25559,
1756,
11,
11711,
8,
198,
220,
220,
220,
1017,
77,
13,
3846,
9012,
764,
47932,
357,
69,
22564,
4965,
312,
723,
82,
16,
764,
10,
362,
9,
69,
22564,
4965,
312,
723,
82,
17,
764,
10,
362,
9,
69,
22564,
4965,
312,
723,
82,
18,
764,
10,
28462,
4965,
312,
723,
82,
19,
1267,
9,
7,
28664,
14,
21,
8,
198,
220,
220,
220,
36899,
46344,
62,
18,
35,
7,
6649,
77,
11,
11711,
8,
628,
220,
220,
220,
1441,
1017,
77,
198,
437,
198,
198,
8818,
32344,
16748,
372,
7,
76,
5069,
11,
28462,
4965,
312,
723,
37,
77,
11,
1017,
77,
11,
18645,
25559,
1756,
11,
11711,
3712,
37,
2290,
312,
11,
288,
83,
8,
628,
220,
220,
220,
28462,
4965,
312,
723,
82,
16,
796,
28462,
4965,
312,
723,
37,
77,
7,
76,
5069,
11,
1017,
77,
11,
18645,
25559,
1756,
11,
11711,
8,
198,
220,
220,
220,
886,
22362,
1920,
796,
1017,
77,
13,
3846,
9012,
764,
10,
28462,
4965,
312,
723,
82,
16,
15885,
28664,
198,
220,
220,
220,
938,
46344,
9012,
796,
28186,
9012,
7,
437,
22362,
1920,
11,
1017,
77,
13,
3846,
37,
22564,
274,
11,
1017,
77,
13,
3846,
23828,
20288,
11,
1017,
77,
13,
69,
22564,
4965,
312,
723,
82,
11,
1017,
77,
13,
2550,
37,
22564,
274,
8,
198,
220,
220,
220,
36899,
46344,
62,
18,
35,
7,
12957,
46344,
9012,
11,
11711,
8,
628,
220,
220,
220,
28462,
4965,
312,
723,
82,
17,
796,
28462,
4965,
312,
723,
37,
77,
7,
76,
5069,
11,
938,
46344,
9012,
11,
18645,
25559,
1756,
11,
11711,
8,
198,
220,
220,
220,
8636,
17,
796,
357,
18,
14,
19,
737,
9,
6649,
77,
13,
3846,
9012,
764,
10,
357,
16,
14,
19,
737,
9,
7,
437,
22362,
1920,
764,
10,
28462,
4965,
312,
723,
82,
17,
15885,
28664,
8,
198,
220,
220,
220,
938,
46344,
9012,
13,
3846,
9012,
796,
8636,
17,
198,
220,
220,
220,
36899,
46344,
62,
18,
35,
7,
12957,
46344,
9012,
11,
11711,
8,
628,
220,
220,
220,
28462,
4965,
312,
723,
82,
18,
796,
28462,
4965,
312,
723,
37,
77,
7,
76,
5069,
11,
938,
46344,
9012,
11,
18645,
25559,
1756,
11,
11711,
8,
198,
220,
220,
220,
1017,
77,
13,
3846,
9012,
764,
28,
357,
16,
14,
18,
737,
9,
6649,
77,
13,
3846,
9012,
764,
10,
357,
17,
14,
18,
737,
9,
7,
395,
1920,
17,
764,
10,
288,
83,
15885,
69,
22564,
4965,
312,
723,
82,
18,
8,
198,
220,
220,
220,
36899,
46344,
62,
18,
35,
7,
6649,
77,
11,
11711,
8,
628,
220,
220,
220,
1441,
1017,
77,
198,
437,
198,
198,
14468,
7804,
2,
10714,
3862,
2441,
2105,
1303,
14468,
7804,
2235,
198,
2,
554,
20751,
11,
481,
307,
16476,
517,
3938,
1752,
340,
11073,
3621,
8136,
290,
262,
7822,
318,
32013,
198,
8818,
406,
4694,
36,
18173,
7,
76,
5069,
11,
28462,
4965,
312,
723,
37,
77,
11,
1017,
77,
11,
18645,
25559,
1756,
11,
11711,
3712,
37,
2290,
312,
11,
288,
83,
8,
198,
220,
220,
220,
2496,
34,
3697,
796,
288,
83,
58,
16,
60,
628,
220,
220,
220,
28462,
4965,
312,
723,
82,
796,
28462,
4965,
312,
723,
37,
77,
7,
76,
5069,
11,
1017,
77,
11,
18645,
25559,
1756,
11,
11711,
8,
628,
220,
220,
220,
45239,
0,
7,
28664,
11,
19609,
11,
1017,
77,
11,
11711,
11,
352,
8,
198,
220,
220,
220,
288,
83,
764,
28,
2496,
34,
3697,
24457,
288,
83,
198,
220,
220,
220,
7209,
7575,
8600,
0,
7,
28664,
11,
19609,
11,
657,
13,
16,
8,
198,
220,
220,
220,
7209,
7575,
8600,
0,
7,
28664,
11,
19609,
11,
657,
13,
16,
8,
198,
220,
220,
220,
1017,
77,
13,
3846,
9012,
764,
47932,
28462,
4965,
312,
723,
82,
764,
9,
288,
83,
198,
220,
220,
220,
36899,
46344,
62,
18,
35,
7,
6649,
77,
11,
11711,
8,
628,
220,
220,
220,
1441,
1017,
77,
198,
437,
198,
198,
8818,
7209,
7575,
8600,
0,
7,
28664,
11,
19609,
3712,
37031,
11,
44258,
34,
2577,
5632,
28,
15,
13,
17,
8,
198,
220,
220,
220,
299,
34,
19187,
11,
299,
37,
2114,
11,
299,
49646,
3166,
11,
299,
33,
39140,
37,
2114,
796,
555,
7249,
1522,
37031,
12360,
7,
76,
5069,
8,
628,
220,
220,
220,
640,
37,
22564,
274,
796,
1976,
27498,
7,
77,
34,
19187,
8,
198,
220,
220,
220,
4417,
8491,
292,
796,
1976,
27498,
7,
77,
34,
19187,
8,
198,
220,
220,
220,
329,
277,
287,
352,
25,
77,
37,
2114,
12,
77,
33,
39140,
37,
2114,
198,
220,
220,
220,
220,
220,
220,
220,
4870,
28780,
796,
19609,
13,
32186,
58,
69,
7131,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
12250,
28780,
796,
19609,
13,
32186,
58,
69,
7131,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
640,
37,
22564,
796,
357,
28664,
58,
18403,
28780,
60,
532,
288,
83,
58,
710,
394,
6084,
28780,
12962,
1635,
2153,
7,
76,
5069,
13,
69,
10116,
721,
82,
58,
69,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
4417,
8491,
292,
58,
18403,
28780,
60,
15853,
2153,
7,
76,
5069,
13,
69,
10116,
721,
82,
58,
69,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
4417,
8491,
292,
58,
710,
394,
6084,
28780,
60,
15853,
2153,
7,
76,
5069,
13,
69,
10116,
721,
82,
58,
69,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
640,
37,
22564,
274,
58,
18403,
28780,
60,
48185,
640,
37,
22564,
198,
220,
220,
220,
220,
220,
220,
220,
640,
37,
22564,
274,
58,
710,
394,
6084,
28780,
60,
15853,
640,
37,
22564,
198,
220,
220,
220,
886,
628,
220,
220,
220,
640,
37,
22564,
274,
764,
9,
28,
357,
26069,
4241,
34,
2577,
5632,
24457,
4417,
8491,
292,
8,
628,
220,
220,
220,
329,
1312,
287,
1123,
9630,
7,
2435,
37,
22564,
274,
8,
198,
220,
220,
220,
220,
220,
220,
220,
640,
37,
22564,
274,
58,
72,
60,
796,
949,
7,
15,
11,
640,
37,
22564,
274,
58,
72,
12962,
198,
220,
220,
220,
886,
628,
220,
220,
220,
288,
83,
764,
47932,
640,
37,
22564,
274,
198,
437,
198,
198,
2,
51,
3727,
46,
25,
1114,
16992,
5050,
11,
761,
284,
24061,
262,
28462,
12806,
1547,
379,
1123,
5743,
11,
2427,
286,
655,
262,
28462,
274,
198,
220,
220,
220,
1303,
5765,
12806,
1547,
355,
44036,
287,
17593,
10200,
4628,
29872,
2105,
27490,
198,
220,
220,
220,
1303,
3244,
8494,
351,
6951,
19535,
393,
617,
584,
17593,
1540,
332,
198
] | 2.524599 | 1,809 |
################################################################################
#
# AlgAssRelOrd
#
################################################################################
# S is the element type of the base field of the algebra, T the fractional ideal
# type of this field
mutable struct AlgAssRelOrd{S, T, U} <: Ring
algebra::U
dim::Int
pseudo_basis#::Vector{Tuple{AbsAlgAssElem{S}, T}}
basis_matrix::Generic.MatSpaceElem{S}
basis_mat_inv::Generic.MatSpaceElem{S}
basis_pmatrix::PMat{S, T}
disc # an integral ideal in the base field
ismaximal::Int # 0 Not known
# 1 Known to be maximal
# 2 Known to not be maximal
trred_matrix::Generic.MatSpaceElem{S}
inv_coeff_ideals::Vector{T}
isnice::Bool
nice_order#Tuple{AlgAssAbsOrd, T}
nice_order_ideal::T
function AlgAssRelOrd{S, T, U}(A::AbsAlgAss{S}) where {S, T, U}
z = new{S, T, U}()
z.algebra = A
z.dim = dim(A)
z.ismaximal = 0
z.isnice = false
return z
end
function AlgAssRelOrd{S, T, U}(A::U, M::PMat{S, T}) where {S, T, U}
z = AlgAssRelOrd{S, T, U}(A)
z.basis_pmatrix = M
z.basis_matrix = M.matrix
return z
end
function AlgAssRelOrd{S, T, U}(A::U, M::Generic.MatSpaceElem{S}) where {S, T, U}
z = AlgAssRelOrd{S, T, U}(A)
z.basis_matrix = M
z.basis_pmatrix = pseudo_matrix(M)
return z
end
end
################################################################################
#
# AlgAssRelOrdElem
#
################################################################################
mutable struct AlgAssRelOrdElem{S, T, U} <: RingElem
parent::AlgAssRelOrd{S, T, U}
elem_in_algebra::AbsAlgAssElem{S}
coordinates::Vector{S}
has_coord::Bool
function AlgAssRelOrdElem{S, T, U}(O::AlgAssRelOrd{S, T, U}) where {S, T, U}
z = new{S, T, U}()
z.parent = O
z.elem_in_algebra = zero(algebra(O))
z.coordinates = Vector{S}(undef, degree(O))
z.has_coord = false
return z
end
function AlgAssRelOrdElem{S, T, U}(O::AlgAssRelOrd{S, T, U}, a::AbsAlgAssElem{S}) where {S, T, U}
z = new{S, T, U}()
z.parent = O
z.elem_in_algebra = a
z.coordinates = Vector{S}(undef, degree(O))
z.has_coord = false
return z
end
function AlgAssRelOrdElem{S, T, U}(O::AlgAssRelOrd{S, T, U}, a::AbsAlgAssElem{S}, arr::Vector{S}) where {S, T, U}
z = new{S, T, U}()
z.parent = O
z.elem_in_algebra = a
z.coordinates = arr
z.has_coord = true
return z
end
end
################################################################################
#
# AlgAssRelOrdIdl
#
################################################################################
mutable struct AlgAssRelOrdIdl{S, T, U}
algebra::U
pseudo_basis::Vector{Tuple{AbsAlgAssElem{S}, T}}
# The basis matrices are in the BASIS of the ALGEBRA!
basis_pmatrix::PMat{S, T}
basis_matrix::Generic.MatSpaceElem{S}
basis_mat_inv::Generic.MatSpaceElem{S}
# Basis pseudo-matrices with respect to orders
basis_pmatrix_wrt::Dict{AlgAssRelOrd{S, T}, PMat{S, T}}
# Left and right order:
# The largest orders of which the ideal is a left resp. right ideal.
left_order::AlgAssRelOrd{S, T, U}
right_order::AlgAssRelOrd{S, T, U}
# Any order contained in the left or right order, that is, an order of which
# the ideal is a (possibly fractional) ideal.
order::AlgAssRelOrd{S, T, U}
# isleft and isright with respect to `order`
isleft::Int # 0 Not known
# 1 Known to be a left ideal
# 2 Known not to be a left ideal
isright::Int # as for isleft
iszero::Int # 0: don't know, 1: known to be zero, 2: known to be not zero
norm::Dict{AlgAssRelOrd{S, T, U}, T} # The ideal has different norms with respect
# to different orders
normred::Dict{AlgAssRelOrd{S, T, U}, T}
function AlgAssRelOrdIdl{S, T, U}(A::AbsAlgAss{S}) where {S, T, U}
z = new{S, T, U}()
z.algebra = A
z.isleft = 0
z.isright = 0
z.iszero = 0
z.basis_pmatrix_wrt = Dict{AlgAssRelOrd{S, T, U}, PMat{S, T}}()
z.norm = Dict{AlgAssRelOrd{S, T, U}, T}()
z.normred = Dict{AlgAssRelOrd{S, T, U}, T}()
return z
end
function AlgAssRelOrdIdl{S, T, U}(A::AbsAlgAss{S}, M::PMat{S, T}) where {S, T, U}
z = AlgAssRelOrdIdl{S, T, U}(A)
z.basis_pmatrix = M
z.basis_matrix = M.matrix
return z
end
end
| [
29113,
29113,
14468,
198,
2,
198,
2,
220,
978,
70,
8021,
6892,
35422,
198,
2,
198,
29113,
29113,
14468,
198,
198,
2,
311,
318,
262,
5002,
2099,
286,
262,
2779,
2214,
286,
262,
37139,
11,
309,
262,
13390,
282,
7306,
198,
2,
2099,
286,
428,
2214,
198,
76,
18187,
2878,
978,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
92,
1279,
25,
12569,
198,
220,
37139,
3712,
52,
198,
220,
5391,
3712,
5317,
198,
220,
24543,
62,
12093,
271,
2,
3712,
38469,
90,
51,
29291,
90,
24849,
2348,
70,
8021,
36,
10671,
90,
50,
5512,
309,
11709,
198,
220,
4308,
62,
6759,
8609,
3712,
46189,
13,
19044,
14106,
36,
10671,
90,
50,
92,
198,
220,
4308,
62,
6759,
62,
16340,
3712,
46189,
13,
19044,
14106,
36,
10671,
90,
50,
92,
198,
220,
4308,
62,
4426,
265,
8609,
3712,
5868,
265,
90,
50,
11,
309,
92,
628,
220,
1221,
1303,
281,
19287,
7306,
287,
262,
2779,
2214,
628,
220,
318,
9806,
4402,
3712,
5317,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
657,
1892,
1900,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
352,
29454,
284,
307,
40708,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
362,
29454,
284,
407,
307,
40708,
628,
220,
491,
445,
62,
6759,
8609,
3712,
46189,
13,
19044,
14106,
36,
10671,
90,
50,
92,
628,
220,
800,
62,
1073,
14822,
62,
485,
874,
3712,
38469,
90,
51,
92,
628,
220,
2125,
501,
3712,
33,
970,
198,
220,
3621,
62,
2875,
2,
51,
29291,
90,
2348,
70,
8021,
24849,
35422,
11,
309,
92,
198,
220,
3621,
62,
2875,
62,
485,
282,
3712,
51,
628,
220,
2163,
978,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
92,
7,
32,
3712,
24849,
2348,
70,
8021,
90,
50,
30072,
810,
1391,
50,
11,
309,
11,
471,
92,
198,
220,
220,
220,
1976,
796,
649,
90,
50,
11,
309,
11,
471,
92,
3419,
198,
220,
220,
220,
1976,
13,
282,
29230,
796,
317,
198,
220,
220,
220,
1976,
13,
27740,
796,
5391,
7,
32,
8,
198,
220,
220,
220,
1976,
13,
1042,
897,
4402,
796,
657,
198,
220,
220,
220,
1976,
13,
271,
44460,
796,
3991,
198,
220,
220,
220,
1441,
1976,
198,
220,
886,
628,
220,
2163,
978,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
92,
7,
32,
3712,
52,
11,
337,
3712,
5868,
265,
90,
50,
11,
309,
30072,
810,
1391,
50,
11,
309,
11,
471,
92,
198,
220,
220,
220,
1976,
796,
978,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
92,
7,
32,
8,
198,
220,
220,
220,
1976,
13,
12093,
271,
62,
4426,
265,
8609,
796,
337,
198,
220,
220,
220,
1976,
13,
12093,
271,
62,
6759,
8609,
796,
337,
13,
6759,
8609,
198,
220,
220,
220,
1441,
1976,
198,
220,
886,
628,
220,
2163,
978,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
92,
7,
32,
3712,
52,
11,
337,
3712,
46189,
13,
19044,
14106,
36,
10671,
90,
50,
30072,
810,
1391,
50,
11,
309,
11,
471,
92,
198,
220,
220,
220,
1976,
796,
978,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
92,
7,
32,
8,
198,
220,
220,
220,
1976,
13,
12093,
271,
62,
6759,
8609,
796,
337,
198,
220,
220,
220,
1976,
13,
12093,
271,
62,
4426,
265,
8609,
796,
24543,
62,
6759,
8609,
7,
44,
8,
198,
220,
220,
220,
1441,
1976,
198,
220,
886,
198,
437,
198,
198,
29113,
29113,
14468,
198,
2,
198,
2,
220,
978,
70,
8021,
6892,
35422,
36,
10671,
198,
2,
198,
29113,
29113,
14468,
198,
198,
76,
18187,
2878,
978,
70,
8021,
6892,
35422,
36,
10671,
90,
50,
11,
309,
11,
471,
92,
1279,
25,
12569,
36,
10671,
198,
220,
2560,
3712,
2348,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
92,
198,
220,
9766,
76,
62,
259,
62,
282,
29230,
3712,
24849,
2348,
70,
8021,
36,
10671,
90,
50,
92,
198,
220,
22715,
3712,
38469,
90,
50,
92,
198,
220,
468,
62,
37652,
3712,
33,
970,
628,
220,
2163,
978,
70,
8021,
6892,
35422,
36,
10671,
90,
50,
11,
309,
11,
471,
92,
7,
46,
3712,
2348,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
30072,
810,
1391,
50,
11,
309,
11,
471,
92,
198,
220,
220,
220,
1976,
796,
649,
90,
50,
11,
309,
11,
471,
92,
3419,
198,
220,
220,
220,
1976,
13,
8000,
796,
440,
198,
220,
220,
220,
1976,
13,
68,
10671,
62,
259,
62,
282,
29230,
796,
6632,
7,
282,
29230,
7,
46,
4008,
198,
220,
220,
220,
1976,
13,
37652,
17540,
796,
20650,
90,
50,
92,
7,
917,
891,
11,
4922,
7,
46,
4008,
198,
220,
220,
220,
1976,
13,
10134,
62,
37652,
796,
3991,
198,
220,
220,
220,
1441,
1976,
198,
220,
886,
628,
220,
2163,
978,
70,
8021,
6892,
35422,
36,
10671,
90,
50,
11,
309,
11,
471,
92,
7,
46,
3712,
2348,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
5512,
257,
3712,
24849,
2348,
70,
8021,
36,
10671,
90,
50,
30072,
810,
1391,
50,
11,
309,
11,
471,
92,
198,
220,
220,
220,
1976,
796,
649,
90,
50,
11,
309,
11,
471,
92,
3419,
198,
220,
220,
220,
1976,
13,
8000,
796,
440,
198,
220,
220,
220,
1976,
13,
68,
10671,
62,
259,
62,
282,
29230,
796,
257,
198,
220,
220,
220,
1976,
13,
37652,
17540,
796,
20650,
90,
50,
92,
7,
917,
891,
11,
4922,
7,
46,
4008,
198,
220,
220,
220,
1976,
13,
10134,
62,
37652,
796,
3991,
198,
220,
220,
220,
1441,
1976,
198,
220,
886,
628,
220,
2163,
978,
70,
8021,
6892,
35422,
36,
10671,
90,
50,
11,
309,
11,
471,
92,
7,
46,
3712,
2348,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
5512,
257,
3712,
24849,
2348,
70,
8021,
36,
10671,
90,
50,
5512,
5240,
3712,
38469,
90,
50,
30072,
810,
1391,
50,
11,
309,
11,
471,
92,
198,
220,
220,
220,
1976,
796,
649,
90,
50,
11,
309,
11,
471,
92,
3419,
198,
220,
220,
220,
1976,
13,
8000,
796,
440,
198,
220,
220,
220,
1976,
13,
68,
10671,
62,
259,
62,
282,
29230,
796,
257,
198,
220,
220,
220,
1976,
13,
37652,
17540,
796,
5240,
198,
220,
220,
220,
1976,
13,
10134,
62,
37652,
796,
2081,
198,
220,
220,
220,
1441,
1976,
198,
220,
886,
198,
437,
198,
198,
29113,
29113,
14468,
198,
2,
198,
2,
220,
978,
70,
8021,
6892,
35422,
7390,
75,
198,
2,
198,
29113,
29113,
14468,
198,
198,
76,
18187,
2878,
978,
70,
8021,
6892,
35422,
7390,
75,
90,
50,
11,
309,
11,
471,
92,
198,
220,
37139,
3712,
52,
628,
220,
24543,
62,
12093,
271,
3712,
38469,
90,
51,
29291,
90,
24849,
2348,
70,
8021,
36,
10671,
90,
50,
5512,
309,
11709,
198,
220,
1303,
383,
4308,
2603,
45977,
389,
287,
262,
29809,
1797,
286,
262,
8355,
8264,
33,
3861,
0,
198,
220,
4308,
62,
4426,
265,
8609,
3712,
5868,
265,
90,
50,
11,
309,
92,
198,
220,
4308,
62,
6759,
8609,
3712,
46189,
13,
19044,
14106,
36,
10671,
90,
50,
92,
198,
220,
4308,
62,
6759,
62,
16340,
3712,
46189,
13,
19044,
14106,
36,
10671,
90,
50,
92,
628,
220,
1303,
6455,
271,
24543,
12,
6759,
45977,
351,
2461,
284,
6266,
198,
220,
4308,
62,
4426,
265,
8609,
62,
86,
17034,
3712,
35,
713,
90,
2348,
70,
8021,
6892,
35422,
90,
50,
11,
309,
5512,
3122,
265,
90,
50,
11,
309,
11709,
628,
220,
1303,
9578,
290,
826,
1502,
25,
198,
220,
1303,
383,
4387,
6266,
286,
543,
262,
7306,
318,
257,
1364,
1217,
13,
826,
7306,
13,
198,
220,
1364,
62,
2875,
3712,
2348,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
92,
198,
220,
826,
62,
2875,
3712,
2348,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
92,
628,
220,
1303,
4377,
1502,
7763,
287,
262,
1364,
393,
826,
1502,
11,
326,
318,
11,
281,
1502,
286,
543,
198,
220,
1303,
262,
7306,
318,
257,
357,
39363,
13390,
282,
8,
7306,
13,
198,
220,
1502,
3712,
2348,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
92,
628,
220,
1303,
318,
9464,
290,
318,
3506,
351,
2461,
284,
4600,
2875,
63,
198,
220,
318,
9464,
3712,
5317,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
657,
1892,
1900,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
352,
29454,
284,
307,
257,
1364,
7306,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
362,
29454,
407,
284,
307,
257,
1364,
7306,
198,
220,
318,
3506,
3712,
5317,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
355,
329,
318,
9464,
628,
220,
318,
22570,
3712,
5317,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
657,
25,
836,
470,
760,
11,
352,
25,
1900,
284,
307,
6632,
11,
362,
25,
1900,
284,
307,
407,
6632,
628,
220,
2593,
3712,
35,
713,
90,
2348,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
5512,
309,
92,
1303,
383,
7306,
468,
1180,
19444,
351,
2461,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
284,
1180,
6266,
198,
220,
2593,
445,
3712,
35,
713,
90,
2348,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
5512,
309,
92,
628,
220,
2163,
978,
70,
8021,
6892,
35422,
7390,
75,
90,
50,
11,
309,
11,
471,
92,
7,
32,
3712,
24849,
2348,
70,
8021,
90,
50,
30072,
810,
1391,
50,
11,
309,
11,
471,
92,
198,
220,
220,
220,
1976,
796,
649,
90,
50,
11,
309,
11,
471,
92,
3419,
198,
220,
220,
220,
1976,
13,
282,
29230,
796,
317,
198,
220,
220,
220,
1976,
13,
271,
9464,
796,
657,
198,
220,
220,
220,
1976,
13,
271,
3506,
796,
657,
198,
220,
220,
220,
1976,
13,
271,
22570,
796,
657,
198,
220,
220,
220,
1976,
13,
12093,
271,
62,
4426,
265,
8609,
62,
86,
17034,
796,
360,
713,
90,
2348,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
5512,
3122,
265,
90,
50,
11,
309,
11709,
3419,
198,
220,
220,
220,
1976,
13,
27237,
796,
360,
713,
90,
2348,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
5512,
309,
92,
3419,
198,
220,
220,
220,
1976,
13,
27237,
445,
796,
360,
713,
90,
2348,
70,
8021,
6892,
35422,
90,
50,
11,
309,
11,
471,
5512,
309,
92,
3419,
198,
220,
220,
220,
1441,
1976,
198,
220,
886,
628,
220,
2163,
978,
70,
8021,
6892,
35422,
7390,
75,
90,
50,
11,
309,
11,
471,
92,
7,
32,
3712,
24849,
2348,
70,
8021,
90,
50,
5512,
337,
3712,
5868,
265,
90,
50,
11,
309,
30072,
810,
1391,
50,
11,
309,
11,
471,
92,
198,
220,
220,
220,
1976,
796,
978,
70,
8021,
6892,
35422,
7390,
75,
90,
50,
11,
309,
11,
471,
92,
7,
32,
8,
198,
220,
220,
220,
1976,
13,
12093,
271,
62,
4426,
265,
8609,
796,
337,
198,
220,
220,
220,
1976,
13,
12093,
271,
62,
6759,
8609,
796,
337,
13,
6759,
8609,
198,
220,
220,
220,
1441,
1976,
198,
220,
886,
198,
437,
198
] | 2.262766 | 2,017 |
"
Iterating over an AbstractGroup is the same as iterating over the set.
"
abstract type AbstractGroup end
# TODO: convert `Set` to `AbstractSet` where possible to support OrderedSets et al
"""
Stucture consisting of a set and a binary operation. No constraints are put on either expression.
"""
struct Groupoid{T} <: AbstractGroup
set::Set{T}
operation::Function
end
"""
Group.
The following axioms must hold. Assuming a group G = (S, ∘), then
- Closure: the group must be closed under the binary operation.
∀x,y ∈ S: x ∘ y ∈ S
- Associativity:
∀x,y,z ∈ S: x ∘ (y ∘ z) = (x ∘ y) ∘ z
- Identity:
∃e ∈ S: ∀x ∈ S, x ∘ e = x = e ∘ x
- Inverses:
∀x ∈ S, ∃ x⁻¹ ∈ S : x ∘ x⁻¹ = e = x⁻¹ ∘ x
"""
struct Group{T} <: AbstractGroup where {T}
set::Set{T}
operation::Function
Group{T}(set, operation) where T = if _validate_group(Groupoid(set, operation)) new(set, operation) end
end
Group(set::Set{T}, operation::Function) where {T} = Group{T}(set, operation)
"""
Subgroup of a group.
Create using SubGroup(group, subset).
Must be closed under the group operation, include the identity element and include inverses for each element.
"""
struct SubGroup{T} <: AbstractGroup where {T}
group::Group{T}
set::Set{T}
operation::Function
end
function SubGroup(group::Group{T}, subset::Set{<:T})::SubGroup{T} where {T}
@assert subset ⊆ group.set
g = Groupoid(subset, group.operation)
assert_closure(g)
_assert_inverses(get_identity_element(g), g.set, g.operation)
return SubGroup(group, subset, group.operation)
end
abstract type AbstractGroupAction end
struct _GroupActionLike{T} <: AbstractGroupAction where {T}
group::Group{<:T}
set::Set{<:T}
action::Function
end
struct GroupAction{T} <: AbstractGroupAction where {T}
group::Group{<:T}
set::Set{<:T}
action::Function
#GroupAction{T}
end
# TODO: fix convert below, then simplify code as necessary
# import Base: convert
# convert(T::Set{S}, x::Array{S, 1}) where {S} = T(_ for _ in x)
# convert(Set, Array{Int, 1}([1]))
function coset(left::T, set::Set{T}, operation::Function)::Set{T} where {T}
#Set(x for x in operation.(left, set))
Set(operation(left, right) for right in set)
end
function coset(set::Set{T}, right::T, operation::Function)::Set{T} where {T}
# Set(x for x in operation.(set, right))
Set(operation(left, right) for left in set)
end
function coset(left, group::AbstractGroup)
coset(left, group.set, group.operation)
end
function coset(group::AbstractGroup, right)
coset(group.set, right, group.operation)
end
function set_composition(left_set::Set{<:T}, right_set::Set{<:T}, operation::Function)::Set where {T}
# `map` is not defined on sets
# reduce(union, coset(left, right_set, operation) for left in left_set)
Set(operation(left, right) for left in left_set for right in right_set)
end
function assert_closure(set::Set, closed_in_set::Set, operation::Function)::Nothing
# We only check left closure.
@assert set_composition(set, closed_in_set, operation) ⊆ closed_in_set
end
function assert_closure(group::AbstractGroup)::Nothing
assert_closure(group.set, group.set, group.operation)
end
function assert_closure(ga::AbstractGroupAction)::Nothing
assert_closure(ga.group.set, ga.set, ga.action)
end
function assert_associativity(set::Set, operation::Function)::Nothing
for x in set
for y in set
for z in set
a = operation(x, operation(y, z))
b = operation(operation(x, y), z)
@assert a == b "$x ∘ ($y ∘ $z) = $a ≠ $b = ($x ∘ $y) ∘ $z"
end
end
end
end
function assert_associativity(group::AbstractGroup)::Nothing
assert_associativity(group.set, group.operation)
end
function _assert_identity_element(element::T, set::Set{T}, operation::Function)::Nothing where {T}
# we assume broadcasting works on the operation
# @assert operation.(element, set) == set # should be using ordered sets or vectors here
for x in set
@assert x == operation(element, x) == operation(x, element)
end
end
function get_identity_element(group::AbstractGroup) # TODO: return type
for x in group.set
try
_assert_identity_element(x, group.set, group.operation)
return x
catch AssertionError
continue
end
end
throw(AssertionError("No identity element found"))
end
function _assert_inverses(identity_element::T, set::Set{T}, operation::Function)::Nothing where {T}
for item in set
@assert identity_element in coset(item, set, operation)
@assert identity_element in coset(set, item, operation)
end
end
function _validate_group(group::AbstractGroup)::Bool
# Validation
assert_closure(group)
assert_associativity(group)
e = get_identity_element(group) # This raises on failure
_assert_inverses(e, group.set, group.operation)
return true
end
function naive_isequal(x::T, y::T) where T
for f in fieldnames(T)
if getfield(x, f) != getfield(y, f)
return false
end
end
return true
end
import Base: ==
==(x::T, y::T) where T<:AbstractGroup = naive_isequal(x, y)
# ==(x::Group, y::Group) = naive_isequal(x, y)
# ==(x::SubGroup, y::SubGroup) = naive_isequal(x, y)
function ==(x::AbstractGroup, y::SubGroup)::Bool
if y.set == x.set && x.operation == y.operation
return true
end
return false
end
==(x::SubGroup, y::AbstractGroup) = ==(y, x)
# Prevent `MethodError: ==(::SubGroup{Int64}, ::SubGroup{Int64}) is ambiguous`
==(x::SubGroup, y::SubGroup) = naive_isequal(x, y)
import Base: iterate
iterate(group::AbstractGroup) = iterate(group.set)
iterate(group::AbstractGroup, t::T) where {T} = iterate(group.set, t)
import Base: length
length(x::AbstractGroup) = length(x.set)
"""
N is a _normal_ subgroup of G if ∀g ∈ G, gN = Ng
N is a normal subgroup of G iff N is a subgroup of G and N is a union of conjugacy classes of G
"""
function isnormal(subgroup::SubGroup)
for g in subgroup.group
left_coset = coset(g, subgroup)
right_coset = coset(subgroup, g)
if coset(g, subgroup) != coset(subgroup, g)
return false
end
end
return true
end
function iscyclic(group::AbstractGroup)
if length(find_generators(group)) > 0
return true
end
return false
end
function quotient_group(subgroup::SubGroup)
@assert isnormal(subgroup) "Subgroup must be normal"
# The set here is equal to the "partition" of the group into cosets created by group elements with the subgroup
f(x::Set, y::Set) = set_composition(x, y, subgroup.operation)
return Group(Set(coset(g, subgroup) for g in subgroup.group), f)
end
function generate_subgroup(group::AbstractGroup, generator)::SubGroup
e = get_identity_element(group)
generated_set = Set([e generator])
p = group.operation(generator, generator)
while p != e
push!(generated_set, p)
p = group.operation(p, generator)
end
SubGroup(group, generated_set, group.operation)
end
function find_generators(group::AbstractGroup)::Set
filter(g->generate_subgroup(group, g) == group, group.set)
end
function _cayley_table(group::AbstractGroup) # TODO: move to utils
elements = [x for x in group.set]
inside = map(x->
map(y->group.operation(x, y),
elements
), elements)
return elements, inside
end
# _cayley_table((generate_subgroup(G, 6) |> quotient_group))[2]
"""
Conjugate x by g, i.e. perform gxg⁻¹
"""
function conjugate(group::AbstractGroup, x::T, g::T) where {T}
group.operation(group.operation(g, x), inv(group, g))
end
"""
Return { gxg⁻¹: ∀g ∈ G}
"""
function conjugacy_class(group::AbstractGroup, x)::Set
Set(conjugate(group, x, g) for g in group)
end
"""
Return the distinct conjugacy classes in `group`.
The set of distinct conjugacy classes forms a partition of the group.
"""
function conjugacy_classes(group::AbstractGroup)::Set
Set(conjugacy_class(group, x) for x in group)
end
"""
Obtain the inverse of `x` in `group`.
"""
function inv(group::AbstractGroup, x)
e = get_identity_element(group)
for h in group
if group.operation(x, h) == group.operation(h, x) == e
return h
end
end
return missing # TODO: missing or nothing?
end
abstract type AbstractHomomorphism end
"""
An isomorphism ϕ: (G, ∘) → (H, ⋆) is a mapping which satisfies the following properties
- ϕ is one-to-one and onto
See also: Homomorphism
"""
struct Isomorphism <: AbstractHomomorphism
from_group::AbstractGroup
to_group::AbstractGroup
mapping::Dict
end
"""
An isomorphism ϕ: (G, ∘) → (H, ⋆) is a mapping which satisfies the following property:
∀x,y ∈ G, ϕ(x ∘ y) = ϕ(x) ⋆ ϕ(y) (i.e. it preserves composites)
"""
struct Homomorphism <: AbstractHomomorphism
from_group::AbstractGroup
to_group::AbstractGroup
mapping::Dict
end
function order(group::AbstractGroup)
return length(group.set)
end
function order(group::AbstractGroup, x)
return length(generate_subgroup(group, x))
end
function get_isomorphism(a::AbstractGroup, b::AbstractGroup)
if a == b # Automorphism
return Dict(k=>k for k in a)
end
if iscyclic(a) && iscyclic(b) && order(a) == order(b) # Cyclic subgroups of the same order
gen_a, gen_b = find_generators(a) |> first, find_generators(b) |> first
mapping = Dict(gen_a => gen_b)
p_a = gen_a
p_b = gen_b
for i in 1:order(a)
p_a = a.operation(p_a, gen_a)
p_b = b.operation(p_b, gen_b)
mapping[p_a] = p_b
end
return mapping
end
throw("Not implemented")
end
"""
Assert the following property, where mapping=ϕ, from=(G, ∘), to=(H, ⋆)
∀ x,y ∈ G; ϕ(x, y) = ϕ(x) ⋆ ϕ(y)
"""
function _assert_homomorphism_property(mapping::Dict, from::AbstractGroup, to::AbstractGroup)
for x in from
for y in from
@assert mapping[from.operation(x, y)] == to.operation(mapping[x], mapping[y])
end
end
end
"""
Let (G, ∘) be a group, X be a set and ^ be a group action.
∀ g,h ∈ G; ∀x in X; g ^ (h ^ x) = (g ∘ h) ^ x
"""
function _assert_homomorphism_property(ga::AbstractGroupAction)
for g in ga.group
for h in ga.group
for x in ga.set
@assert ga.action(g, ga.action(h, x)) == ga.action(ga.group.operation(g, h), x)
end
end
end
end
function _transform(ϕ::Function, arr::Union{Vector, AbstractSet})::Union{Vector, AbstractSet}
return ϕ.(arr)
end
function _transform(ϕ::Dict, arr::Union{Vector, AbstractSet})::Union{Vector, AbstractSet}
return _transform(x-> ϕ[x], arr)
end
"""
Let G be a group and ϕ: G → H be a homomorphism. Then,
Ker ϕ = {g ∈ G: ϕ(g) = e_H}
Let V, W be vector subspaces and t: V → W be a linear transfomation. Then,
Ker t = {v⃗ ∈ V: ϕ(v⃗) = 0⃗}
"""
function kernel(transformation::Union{Function, Dict}, from::Union{AbstractSet, AbstractGroup}, identity)
v = [g for g in from]
t = _transform(transformation, v)
mask = t .== identity
return Set(v[mask])
end
function image(transformation, from::AbstractSet)::Set
_transform(transformation, from) |> Set
end
function image(transformation, from::AbstractGroup)::Set
_transform(transformation, from.set) |> Set
end
function GroupAction(group::Group{<:T}, set::Set{<:T}, action::Function)::GroupAction{T} where {T}
ga = _GroupActionLike(group, set, action)
assert_closure(ga)
e = get_identity_element(ga.group)
for x in ga.set
@assert ga.action(e, x) == x
end
_assert_homomorphism_property(ga)
return GroupAction{T}(group, set, action)
end
"""
Orb x = {∀g ∈ G, g ^ x}
"""
function orbit(ga::AbstractGroupAction, x)::Set # TODO: define type
@assert x in ga.set
return ga.action.(ga.group, x) |> Set
end
"""
Get the set of all orbits for the group action
"""
function orbits(ga::AbstractGroupAction)::Set
return Set(orbit(ga, x) for x in ga.set)
end
"""
Stab x = {g ∈ G: g^x = x}
"""
function stabilizer(ga::AbstractGroupAction, x)
@assert x in ga.set
v = [g for g in ga.group.set]
t = ga.action.(v, x)
stable_mask = t .== x
return Set(v[stable_mask])
end
# function stabilizers(ga::AbstractGroupAction)
# return Set(stabilizer(ga, x) for x in ga.set)
# end
"""
Fix g = {x ∈ X: g^x = x}
"""
function fixed_set(ga::AbstractGroupAction, g)
@assert g in ga.group.set
v = [x for x in ga.set]
t = ga.action.(g, v)
return Set(v[t .== v])
end
| [
198,
1,
198,
220,
220,
220,
40806,
803,
625,
281,
27741,
13247,
318,
262,
976,
355,
11629,
803,
625,
262,
900,
13,
198,
1,
198,
397,
8709,
2099,
27741,
13247,
886,
198,
198,
2,
16926,
46,
25,
10385,
4600,
7248,
63,
284,
4600,
23839,
7248,
63,
810,
1744,
284,
1104,
14230,
1068,
50,
1039,
2123,
435,
198,
37811,
198,
220,
220,
220,
520,
4782,
495,
17747,
286,
257,
900,
290,
257,
13934,
4905,
13,
1400,
17778,
389,
1234,
319,
2035,
5408,
13,
198,
37811,
198,
7249,
4912,
1868,
90,
51,
92,
1279,
25,
27741,
13247,
198,
220,
220,
220,
900,
3712,
7248,
90,
51,
92,
198,
220,
220,
220,
4905,
3712,
22203,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
4912,
13,
198,
220,
220,
220,
383,
1708,
7877,
72,
3150,
1276,
1745,
13,
33238,
257,
1448,
402,
796,
357,
50,
11,
18872,
246,
828,
788,
198,
220,
220,
220,
220,
220,
532,
1012,
4567,
25,
262,
1448,
1276,
307,
4838,
739,
262,
13934,
4905,
13,
198,
220,
220,
220,
220,
220,
220,
220,
18872,
222,
87,
11,
88,
18872,
230,
311,
25,
2124,
18872,
246,
331,
18872,
230,
311,
198,
220,
220,
220,
220,
220,
532,
3928,
22055,
25,
198,
220,
220,
220,
220,
220,
220,
220,
18872,
222,
87,
11,
88,
11,
89,
18872,
230,
311,
25,
2124,
18872,
246,
357,
88,
18872,
246,
1976,
8,
796,
220,
357,
87,
18872,
246,
331,
8,
18872,
246,
1976,
198,
220,
220,
220,
220,
220,
532,
27207,
25,
198,
220,
220,
220,
220,
220,
220,
220,
18872,
225,
68,
18872,
230,
311,
25,
18872,
222,
87,
18872,
230,
311,
11,
2124,
18872,
246,
304,
796,
2124,
796,
304,
18872,
246,
2124,
198,
220,
220,
220,
220,
220,
532,
554,
690,
274,
25,
198,
220,
220,
220,
220,
220,
220,
220,
18872,
222,
87,
18872,
230,
311,
11,
18872,
225,
2124,
46256,
119,
126,
117,
18872,
230,
311,
1058,
2124,
18872,
246,
2124,
46256,
119,
126,
117,
796,
304,
796,
2124,
46256,
119,
126,
117,
18872,
246,
2124,
198,
37811,
198,
7249,
4912,
90,
51,
92,
1279,
25,
27741,
13247,
810,
1391,
51,
92,
198,
220,
220,
220,
900,
3712,
7248,
90,
51,
92,
198,
220,
220,
220,
4905,
3712,
22203,
198,
220,
220,
220,
4912,
90,
51,
92,
7,
2617,
11,
4905,
8,
810,
309,
796,
611,
4808,
12102,
378,
62,
8094,
7,
13247,
1868,
7,
2617,
11,
4905,
4008,
649,
7,
2617,
11,
4905,
8,
886,
198,
437,
198,
13247,
7,
2617,
3712,
7248,
90,
51,
5512,
4905,
3712,
22203,
8,
810,
1391,
51,
92,
796,
4912,
90,
51,
92,
7,
2617,
11,
4905,
8,
198,
198,
37811,
198,
220,
220,
220,
3834,
8094,
286,
257,
1448,
13,
198,
220,
220,
220,
13610,
1262,
3834,
13247,
7,
8094,
11,
24637,
737,
198,
220,
220,
220,
12039,
307,
4838,
739,
262,
1448,
4905,
11,
2291,
262,
5369,
5002,
290,
2291,
287,
690,
274,
329,
1123,
5002,
13,
198,
37811,
198,
7249,
3834,
13247,
90,
51,
92,
1279,
25,
27741,
13247,
810,
1391,
51,
92,
198,
220,
220,
220,
1448,
3712,
13247,
90,
51,
92,
198,
220,
220,
220,
900,
3712,
7248,
90,
51,
92,
198,
220,
220,
220,
4905,
3712,
22203,
198,
437,
198,
198,
8818,
3834,
13247,
7,
8094,
3712,
13247,
90,
51,
5512,
24637,
3712,
7248,
90,
27,
25,
51,
92,
2599,
25,
7004,
13247,
90,
51,
92,
810,
1391,
51,
92,
198,
220,
220,
220,
2488,
30493,
24637,
2343,
232,
228,
1448,
13,
2617,
198,
220,
220,
220,
308,
796,
4912,
1868,
7,
7266,
2617,
11,
1448,
13,
27184,
8,
198,
220,
220,
220,
6818,
62,
17966,
7,
70,
8,
198,
220,
220,
220,
4808,
30493,
62,
259,
690,
274,
7,
1136,
62,
738,
414,
62,
30854,
7,
70,
828,
308,
13,
2617,
11,
308,
13,
27184,
8,
198,
220,
220,
220,
1441,
3834,
13247,
7,
8094,
11,
24637,
11,
1448,
13,
27184,
8,
198,
437,
198,
198,
397,
8709,
2099,
27741,
13247,
12502,
886,
198,
198,
7249,
4808,
13247,
12502,
7594,
90,
51,
92,
1279,
25,
27741,
13247,
12502,
810,
1391,
51,
92,
198,
220,
220,
220,
1448,
3712,
13247,
90,
27,
25,
51,
92,
198,
220,
220,
220,
900,
3712,
7248,
90,
27,
25,
51,
92,
198,
220,
220,
220,
2223,
3712,
22203,
198,
437,
198,
198,
7249,
4912,
12502,
90,
51,
92,
1279,
25,
27741,
13247,
12502,
810,
1391,
51,
92,
198,
220,
220,
220,
1448,
3712,
13247,
90,
27,
25,
51,
92,
198,
220,
220,
220,
900,
3712,
7248,
90,
27,
25,
51,
92,
198,
220,
220,
220,
2223,
3712,
22203,
198,
220,
220,
220,
1303,
13247,
12502,
90,
51,
92,
198,
437,
628,
198,
2,
16926,
46,
25,
4259,
10385,
2174,
11,
788,
30276,
2438,
355,
3306,
198,
2,
1330,
7308,
25,
10385,
198,
2,
10385,
7,
51,
3712,
7248,
90,
50,
5512,
2124,
3712,
19182,
90,
50,
11,
352,
30072,
810,
1391,
50,
92,
796,
309,
28264,
329,
4808,
287,
2124,
8,
198,
2,
10385,
7,
7248,
11,
15690,
90,
5317,
11,
352,
92,
26933,
16,
60,
4008,
198,
8818,
8615,
316,
7,
9464,
3712,
51,
11,
900,
3712,
7248,
90,
51,
5512,
4905,
3712,
22203,
2599,
25,
7248,
90,
51,
92,
810,
1391,
51,
92,
198,
220,
220,
220,
1303,
7248,
7,
87,
329,
2124,
287,
4905,
12195,
9464,
11,
900,
4008,
198,
220,
220,
220,
5345,
7,
27184,
7,
9464,
11,
826,
8,
329,
826,
287,
900,
8,
198,
437,
198,
198,
8818,
8615,
316,
7,
2617,
3712,
7248,
90,
51,
5512,
826,
3712,
51,
11,
4905,
3712,
22203,
2599,
25,
7248,
90,
51,
92,
810,
1391,
51,
92,
198,
2,
220,
220,
220,
5345,
7,
87,
329,
2124,
287,
4905,
12195,
2617,
11,
826,
4008,
198,
220,
220,
220,
5345,
7,
27184,
7,
9464,
11,
826,
8,
329,
1364,
287,
900,
8,
198,
198,
437,
198,
198,
8818,
8615,
316,
7,
9464,
11,
1448,
3712,
23839,
13247,
8,
198,
220,
220,
220,
8615,
316,
7,
9464,
11,
1448,
13,
2617,
11,
1448,
13,
27184,
8,
198,
437,
198,
198,
8818,
8615,
316,
7,
8094,
3712,
23839,
13247,
11,
826,
8,
198,
220,
220,
220,
8615,
316,
7,
8094,
13,
2617,
11,
826,
11,
1448,
13,
27184,
8,
198,
437,
628,
198,
8818,
900,
62,
785,
9150,
7,
9464,
62,
2617,
3712,
7248,
90,
27,
25,
51,
5512,
826,
62,
2617,
3712,
7248,
90,
27,
25,
51,
5512,
4905,
3712,
22203,
2599,
25,
7248,
220,
810,
1391,
51,
92,
198,
220,
220,
220,
1303,
4600,
8899,
63,
318,
407,
5447,
319,
5621,
198,
220,
220,
220,
1303,
4646,
7,
24592,
11,
8615,
316,
7,
9464,
11,
826,
62,
2617,
11,
4905,
8,
329,
1364,
287,
1364,
62,
2617,
8,
198,
220,
220,
220,
5345,
7,
27184,
7,
9464,
11,
826,
8,
329,
1364,
287,
1364,
62,
2617,
329,
826,
287,
826,
62,
2617,
8,
198,
437,
628,
198,
8818,
6818,
62,
17966,
7,
2617,
3712,
7248,
11,
4838,
62,
259,
62,
2617,
3712,
7248,
11,
4905,
3712,
22203,
2599,
25,
18465,
198,
220,
220,
220,
1303,
775,
691,
2198,
1364,
16512,
13,
198,
220,
220,
220,
2488,
30493,
900,
62,
785,
9150,
7,
2617,
11,
4838,
62,
259,
62,
2617,
11,
4905,
8,
2343,
232,
228,
4838,
62,
259,
62,
2617,
198,
437,
198,
198,
8818,
6818,
62,
17966,
7,
8094,
3712,
23839,
13247,
2599,
25,
18465,
198,
220,
220,
220,
6818,
62,
17966,
7,
8094,
13,
2617,
11,
1448,
13,
2617,
11,
1448,
13,
27184,
8,
198,
437,
198,
198,
8818,
6818,
62,
17966,
7,
4908,
3712,
23839,
13247,
12502,
2599,
25,
18465,
198,
220,
220,
220,
6818,
62,
17966,
7,
4908,
13,
8094,
13,
2617,
11,
31986,
13,
2617,
11,
31986,
13,
2673,
8,
198,
437,
198,
198,
8818,
6818,
62,
562,
1733,
22055,
7,
2617,
3712,
7248,
11,
4905,
3712,
22203,
2599,
25,
18465,
198,
220,
220,
220,
329,
2124,
287,
900,
198,
220,
220,
220,
220,
220,
220,
220,
329,
331,
287,
900,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1976,
287,
900,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
257,
796,
4905,
7,
87,
11,
4905,
7,
88,
11,
1976,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
796,
4905,
7,
27184,
7,
87,
11,
331,
828,
1976,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
30493,
257,
6624,
275,
17971,
87,
18872,
246,
7198,
88,
18872,
246,
720,
89,
8,
796,
720,
64,
15139,
254,
720,
65,
796,
7198,
87,
18872,
246,
720,
88,
8,
18872,
246,
720,
89,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
6818,
62,
562,
1733,
22055,
7,
8094,
3712,
23839,
13247,
2599,
25,
18465,
198,
220,
220,
220,
6818,
62,
562,
1733,
22055,
7,
8094,
13,
2617,
11,
1448,
13,
27184,
8,
198,
437,
198,
8818,
4808,
30493,
62,
738,
414,
62,
30854,
7,
30854,
3712,
51,
11,
900,
3712,
7248,
90,
51,
5512,
4905,
3712,
22203,
2599,
25,
18465,
810,
1391,
51,
92,
198,
220,
220,
220,
1303,
356,
7048,
22978,
2499,
319,
262,
4905,
198,
220,
220,
220,
1303,
2488,
30493,
4905,
12195,
30854,
11,
900,
8,
6624,
900,
220,
1303,
815,
307,
1262,
6149,
5621,
393,
30104,
994,
198,
220,
220,
220,
329,
2124,
287,
900,
198,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
30493,
2124,
6624,
4905,
7,
30854,
11,
2124,
8,
6624,
4905,
7,
87,
11,
5002,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
651,
62,
738,
414,
62,
30854,
7,
8094,
3712,
23839,
13247,
8,
1303,
16926,
46,
25,
1441,
2099,
198,
220,
220,
220,
329,
2124,
287,
1448,
13,
2617,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
30493,
62,
738,
414,
62,
30854,
7,
87,
11,
1448,
13,
2617,
11,
1448,
13,
27184,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
2124,
198,
220,
220,
220,
220,
220,
220,
220,
4929,
2195,
861,
295,
12331,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
3714,
7,
8021,
861,
295,
12331,
7203,
2949,
5369,
5002,
1043,
48774,
198,
437,
198,
198,
8818,
4808,
30493,
62,
259,
690,
274,
7,
738,
414,
62,
30854,
3712,
51,
11,
900,
3712,
7248,
90,
51,
5512,
4905,
3712,
22203,
2599,
25,
18465,
810,
1391,
51,
92,
198,
220,
220,
220,
329,
2378,
287,
900,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
30493,
5369,
62,
30854,
287,
8615,
316,
7,
9186,
11,
900,
11,
4905,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
30493,
5369,
62,
30854,
287,
8615,
316,
7,
2617,
11,
2378,
11,
4905,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
4808,
12102,
378,
62,
8094,
7,
8094,
3712,
23839,
13247,
2599,
25,
33,
970,
198,
220,
220,
220,
1303,
3254,
24765,
198,
220,
220,
220,
6818,
62,
17966,
7,
8094,
8,
198,
220,
220,
220,
6818,
62,
562,
1733,
22055,
7,
8094,
8,
198,
220,
220,
220,
304,
796,
651,
62,
738,
414,
62,
30854,
7,
8094,
8,
220,
1303,
770,
12073,
319,
5287,
198,
220,
220,
220,
4808,
30493,
62,
259,
690,
274,
7,
68,
11,
1448,
13,
2617,
11,
1448,
13,
27184,
8,
198,
220,
220,
220,
1441,
2081,
198,
437,
198,
198,
8818,
24354,
62,
786,
13255,
7,
87,
3712,
51,
11,
331,
3712,
51,
8,
810,
309,
198,
220,
220,
220,
329,
277,
287,
2214,
14933,
7,
51,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
651,
3245,
7,
87,
11,
277,
8,
14512,
651,
3245,
7,
88,
11,
277,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
3991,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
2081,
198,
437,
198,
198,
11748,
7308,
25,
6624,
198,
855,
7,
87,
3712,
51,
11,
331,
3712,
51,
8,
810,
309,
27,
25,
23839,
13247,
796,
24354,
62,
786,
13255,
7,
87,
11,
331,
8,
198,
2,
6624,
7,
87,
3712,
13247,
11,
331,
3712,
13247,
8,
796,
24354,
62,
786,
13255,
7,
87,
11,
331,
8,
198,
2,
6624,
7,
87,
3712,
7004,
13247,
11,
331,
3712,
7004,
13247,
8,
796,
24354,
62,
786,
13255,
7,
87,
11,
331,
8,
198,
8818,
6624,
7,
87,
3712,
23839,
13247,
11,
331,
3712,
7004,
13247,
2599,
25,
33,
970,
198,
220,
220,
220,
611,
331,
13,
2617,
6624,
2124,
13,
2617,
11405,
2124,
13,
27184,
6624,
331,
13,
27184,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2081,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
3991,
198,
437,
198,
855,
7,
87,
3712,
7004,
13247,
11,
331,
3712,
23839,
13247,
8,
796,
6624,
7,
88,
11,
2124,
8,
198,
2,
31572,
4600,
17410,
12331,
25,
6624,
7,
3712,
7004,
13247,
90,
5317,
2414,
5512,
7904,
7004,
13247,
90,
5317,
2414,
30072,
318,
27102,
63,
198,
855,
7,
87,
3712,
7004,
13247,
11,
331,
3712,
7004,
13247,
8,
796,
24354,
62,
786,
13255,
7,
87,
11,
331,
8,
198,
198,
11748,
7308,
25,
11629,
378,
198,
2676,
378,
7,
8094,
3712,
23839,
13247,
8,
796,
11629,
378,
7,
8094,
13,
2617,
8,
198,
2676,
378,
7,
8094,
3712,
23839,
13247,
11,
256,
3712,
51,
8,
810,
1391,
51,
92,
796,
11629,
378,
7,
8094,
13,
2617,
11,
256,
8,
198,
11748,
7308,
25,
4129,
198,
13664,
7,
87,
3712,
23839,
13247,
8,
796,
4129,
7,
87,
13,
2617,
8,
628,
198,
37811,
198,
220,
220,
220,
399,
318,
257,
4808,
11265,
62,
850,
8094,
286,
402,
611,
18872,
222,
70,
18872,
230,
402,
11,
308,
45,
796,
34786,
198,
220,
220,
220,
399,
318,
257,
3487,
850,
8094,
286,
402,
611,
69,
399,
318,
257,
850,
8094,
286,
402,
290,
399,
318,
257,
6441,
286,
11644,
1018,
1590,
6097,
286,
402,
198,
37811,
198,
8818,
2125,
6636,
7,
7266,
8094,
3712,
7004,
13247,
8,
198,
220,
220,
220,
329,
308,
287,
850,
8094,
13,
8094,
198,
220,
220,
220,
220,
220,
220,
220,
1364,
62,
6966,
316,
796,
8615,
316,
7,
70,
11,
850,
8094,
8,
198,
220,
220,
220,
220,
220,
220,
220,
826,
62,
6966,
316,
796,
8615,
316,
7,
7266,
8094,
11,
308,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
8615,
316,
7,
70,
11,
850,
8094,
8,
14512,
8615,
316,
7,
7266,
8094,
11,
308,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
3991,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
2081,
198,
437,
198,
198,
8818,
318,
15539,
291,
7,
8094,
3712,
23839,
13247,
8,
198,
220,
220,
220,
611,
4129,
7,
19796,
62,
8612,
2024,
7,
8094,
4008,
1875,
657,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2081,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
3991,
198,
437,
198,
198,
8818,
23611,
1153,
62,
8094,
7,
7266,
8094,
3712,
7004,
13247,
8,
198,
220,
220,
220,
2488,
30493,
2125,
6636,
7,
7266,
8094,
8,
366,
7004,
8094,
1276,
307,
3487,
1,
198,
220,
220,
220,
1303,
383,
900,
994,
318,
4961,
284,
262,
366,
3911,
653,
1,
286,
262,
1448,
656,
8615,
1039,
2727,
416,
1448,
4847,
351,
262,
850,
8094,
198,
220,
220,
220,
277,
7,
87,
3712,
7248,
11,
331,
3712,
7248,
8,
796,
900,
62,
785,
9150,
7,
87,
11,
331,
11,
850,
8094,
13,
27184,
8,
198,
220,
220,
220,
1441,
4912,
7,
7248,
7,
6966,
316,
7,
70,
11,
850,
8094,
8,
329,
308,
287,
850,
8094,
13,
8094,
828,
277,
8,
198,
437,
628,
198,
198,
8818,
7716,
62,
7266,
8094,
7,
8094,
3712,
23839,
13247,
11,
17301,
2599,
25,
7004,
13247,
198,
220,
220,
220,
304,
796,
651,
62,
738,
414,
62,
30854,
7,
8094,
8,
198,
220,
220,
220,
7560,
62,
2617,
796,
5345,
26933,
68,
17301,
12962,
198,
220,
220,
220,
279,
796,
1448,
13,
27184,
7,
8612,
1352,
11,
17301,
8,
198,
220,
220,
220,
981,
279,
14512,
304,
198,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
27568,
62,
2617,
11,
279,
8,
198,
220,
220,
220,
220,
220,
220,
220,
279,
796,
1448,
13,
27184,
7,
79,
11,
17301,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
3834,
13247,
7,
8094,
11,
7560,
62,
2617,
11,
1448,
13,
27184,
8,
198,
437,
198,
198,
8818,
1064,
62,
8612,
2024,
7,
8094,
3712,
23839,
13247,
2599,
25,
7248,
198,
220,
220,
220,
8106,
7,
70,
3784,
8612,
378,
62,
7266,
8094,
7,
8094,
11,
308,
8,
6624,
1448,
11,
1448,
13,
2617,
8,
198,
437,
198,
198,
8818,
4808,
66,
323,
1636,
62,
11487,
7,
8094,
3712,
23839,
13247,
8,
1303,
16926,
46,
25,
1445,
284,
3384,
4487,
198,
220,
220,
220,
4847,
796,
685,
87,
329,
2124,
287,
1448,
13,
2617,
60,
198,
220,
220,
220,
2641,
796,
3975,
7,
87,
3784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3975,
7,
88,
3784,
8094,
13,
27184,
7,
87,
11,
331,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4847,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10612,
4847,
8,
628,
220,
220,
220,
1441,
4847,
11,
2641,
198,
437,
198,
2,
4808,
66,
323,
1636,
62,
11487,
19510,
8612,
378,
62,
7266,
8094,
7,
38,
11,
718,
8,
930,
29,
23611,
1153,
62,
8094,
4008,
58,
17,
60,
628,
198,
37811,
198,
198,
3103,
31761,
378,
2124,
416,
308,
11,
1312,
13,
68,
13,
1620,
308,
87,
70,
46256,
119,
126,
117,
198,
198,
37811,
198,
8818,
11644,
1018,
378,
7,
8094,
3712,
23839,
13247,
11,
2124,
3712,
51,
11,
308,
3712,
51,
8,
810,
1391,
51,
92,
198,
220,
220,
220,
1448,
13,
27184,
7,
8094,
13,
27184,
7,
70,
11,
2124,
828,
800,
7,
8094,
11,
308,
4008,
198,
437,
198,
198,
37811,
198,
13615,
1391,
308,
87,
70,
46256,
119,
126,
117,
25,
18872,
222,
70,
18872,
230,
402,
92,
198,
37811,
198,
8818,
11644,
1018,
1590,
62,
4871,
7,
8094,
3712,
23839,
13247,
11,
2124,
2599,
25,
7248,
198,
220,
220,
220,
5345,
7,
1102,
31761,
378,
7,
8094,
11,
2124,
11,
308,
8,
329,
308,
287,
1448,
8,
198,
437,
198,
198,
37811,
198,
13615,
262,
7310,
11644,
1018,
1590,
6097,
287,
4600,
8094,
44646,
198,
464,
900,
286,
7310,
11644,
1018,
1590,
6097,
5107,
257,
18398,
286,
262,
1448,
13,
198,
37811,
198,
8818,
11644,
1018,
1590,
62,
37724,
7,
8094,
3712,
23839,
13247,
2599,
25,
7248,
198,
220,
220,
220,
5345,
7,
1102,
31761,
1590,
62,
4871,
7,
8094,
11,
2124,
8,
329,
2124,
287,
1448,
8,
198,
437,
198,
198,
37811,
198,
5944,
3153,
262,
34062,
286,
4600,
87,
63,
287,
4600,
8094,
44646,
198,
37811,
198,
8818,
800,
7,
8094,
3712,
23839,
13247,
11,
2124,
8,
198,
220,
220,
220,
304,
796,
651,
62,
738,
414,
62,
30854,
7,
8094,
8,
198,
220,
220,
220,
329,
289,
287,
1448,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1448,
13,
27184,
7,
87,
11,
289,
8,
6624,
1448,
13,
27184,
7,
71,
11,
2124,
8,
6624,
304,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
289,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
4814,
220,
1303,
16926,
46,
25,
4814,
393,
2147,
30,
198,
437,
198,
198,
397,
8709,
2099,
27741,
28718,
25831,
1042,
886,
198,
37811,
198,
2025,
318,
25831,
1042,
18074,
243,
25,
357,
38,
11,
18872,
246,
8,
15168,
357,
39,
11,
2343,
233,
228,
8,
318,
257,
16855,
543,
45104,
262,
1708,
6608,
198,
12,
18074,
243,
318,
530,
12,
1462,
12,
505,
290,
4291,
198,
198,
6214,
635,
25,
8074,
25831,
1042,
198,
37811,
198,
7249,
1148,
25831,
1042,
1279,
25,
27741,
28718,
25831,
1042,
198,
220,
220,
220,
422,
62,
8094,
3712,
23839,
13247,
198,
220,
220,
220,
284,
62,
8094,
3712,
23839,
13247,
198,
220,
220,
220,
16855,
3712,
35,
713,
198,
437,
198,
198,
37811,
198,
2025,
318,
25831,
1042,
18074,
243,
25,
357,
38,
11,
18872,
246,
8,
15168,
357,
39,
11,
2343,
233,
228,
8,
318,
257,
16855,
543,
45104,
262,
1708,
3119,
25,
198,
220,
220,
220,
18872,
222,
87,
11,
88,
18872,
230,
402,
11,
18074,
243,
7,
87,
18872,
246,
331,
8,
796,
18074,
243,
7,
87,
8,
2343,
233,
228,
18074,
243,
7,
88,
8,
220,
220,
357,
72,
13,
68,
13,
340,
43759,
18882,
2737,
8,
198,
37811,
198,
7249,
8074,
25831,
1042,
1279,
25,
27741,
28718,
25831,
1042,
198,
220,
220,
220,
422,
62,
8094,
3712,
23839,
13247,
198,
220,
220,
220,
284,
62,
8094,
3712,
23839,
13247,
198,
220,
220,
220,
16855,
3712,
35,
713,
198,
437,
628,
198,
8818,
1502,
7,
8094,
3712,
23839,
13247,
8,
198,
220,
220,
220,
1441,
4129,
7,
8094,
13,
2617,
8,
198,
437,
198,
198,
8818,
1502,
7,
8094,
3712,
23839,
13247,
11,
2124,
8,
198,
220,
220,
220,
1441,
4129,
7,
8612,
378,
62,
7266,
8094,
7,
8094,
11,
2124,
4008,
198,
437,
198,
198,
8818,
651,
62,
271,
25831,
1042,
7,
64,
3712,
23839,
13247,
11,
275,
3712,
23839,
13247,
8,
198,
220,
220,
220,
611,
257,
6624,
275,
220,
1303,
17406,
13425,
1042,
198,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
360,
713,
7,
74,
14804,
74,
329,
479,
287,
257,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
611,
318,
15539,
291,
7,
64,
8,
11405,
318,
15539,
291,
7,
65,
8,
11405,
1502,
7,
64,
8,
6624,
1502,
7,
65,
8,
220,
1303,
28007,
291,
850,
24432,
286,
262,
976,
1502,
198,
220,
220,
220,
220,
220,
220,
220,
2429,
62,
64,
11,
2429,
62,
65,
796,
1064,
62,
8612,
2024,
7,
64,
8,
930,
29,
717,
11,
1064,
62,
8612,
2024,
7,
65,
8,
930,
29,
717,
198,
220,
220,
220,
220,
220,
220,
220,
16855,
796,
360,
713,
7,
5235,
62,
64,
5218,
2429,
62,
65,
8,
198,
220,
220,
220,
220,
220,
220,
220,
279,
62,
64,
796,
2429,
62,
64,
198,
220,
220,
220,
220,
220,
220,
220,
279,
62,
65,
796,
2429,
62,
65,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
352,
25,
2875,
7,
64,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
62,
64,
796,
257,
13,
27184,
7,
79,
62,
64,
11,
2429,
62,
64,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
62,
65,
796,
275,
13,
27184,
7,
79,
62,
65,
11,
2429,
62,
65,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16855,
58,
79,
62,
64,
60,
796,
279,
62,
65,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
16855,
198,
220,
220,
220,
886,
198,
220,
220,
220,
3714,
7203,
3673,
9177,
4943,
198,
437,
198,
198,
37811,
198,
8021,
861,
262,
1708,
3119,
11,
810,
16855,
28,
139,
243,
11,
422,
16193,
38,
11,
18872,
246,
828,
284,
16193,
39,
11,
2343,
233,
228,
8,
198,
220,
220,
220,
18872,
222,
2124,
11,
88,
18872,
230,
402,
26,
18074,
243,
7,
87,
11,
331,
8,
796,
18074,
243,
7,
87,
8,
2343,
233,
228,
18074,
243,
7,
88,
8,
198,
37811,
198,
8818,
4808,
30493,
62,
26452,
25831,
1042,
62,
26745,
7,
76,
5912,
3712,
35,
713,
11,
422,
3712,
23839,
13247,
11,
284,
3712,
23839,
13247,
8,
198,
220,
220,
329,
2124,
287,
422,
198,
220,
220,
220,
220,
220,
220,
220,
329,
331,
287,
422,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
30493,
16855,
58,
6738,
13,
27184,
7,
87,
11,
331,
15437,
6624,
284,
13,
27184,
7,
76,
5912,
58,
87,
4357,
16855,
58,
88,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
437,
198,
198,
37811,
198,
5756,
357,
38,
11,
18872,
246,
8,
307,
257,
1448,
11,
1395,
307,
257,
900,
290,
10563,
307,
257,
1448,
2223,
13,
198,
220,
220,
220,
18872,
222,
308,
11,
71,
18872,
230,
402,
26,
18872,
222,
87,
287,
1395,
26,
308,
10563,
357,
71,
10563,
2124,
8,
796,
357,
70,
18872,
246,
289,
8,
10563,
2124,
198,
37811,
198,
8818,
4808,
30493,
62,
26452,
25831,
1042,
62,
26745,
7,
4908,
3712,
23839,
13247,
12502,
8,
198,
220,
220,
220,
329,
308,
287,
31986,
13,
8094,
198,
220,
220,
220,
220,
220,
220,
220,
329,
289,
287,
31986,
13,
8094,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
2124,
287,
31986,
13,
2617,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
30493,
31986,
13,
2673,
7,
70,
11,
31986,
13,
2673,
7,
71,
11,
2124,
4008,
6624,
31986,
13,
2673,
7,
4908,
13,
8094,
13,
27184,
7,
70,
11,
289,
828,
2124,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
4808,
35636,
7,
139,
243,
3712,
22203,
11,
5240,
3712,
38176,
90,
38469,
11,
27741,
7248,
92,
2599,
25,
38176,
90,
38469,
11,
27741,
7248,
92,
198,
220,
220,
220,
1441,
18074,
243,
12195,
3258,
8,
198,
437,
198,
198,
8818,
4808,
35636,
7,
139,
243,
3712,
35,
713,
11,
5240,
3712,
38176,
90,
38469,
11,
27741,
7248,
92,
2599,
25,
38176,
90,
38469,
11,
27741,
7248,
92,
198,
220,
220,
220,
1441,
4808,
35636,
7,
87,
3784,
18074,
243,
58,
87,
4357,
5240,
8,
198,
437,
198,
198,
37811,
198,
5756,
402,
307,
257,
1448,
290,
18074,
243,
25,
402,
15168,
367,
307,
257,
3488,
25831,
1042,
13,
3244,
11,
198,
220,
220,
220,
17337,
18074,
243,
796,
1391,
70,
18872,
230,
402,
25,
18074,
243,
7,
70,
8,
796,
304,
62,
39,
92,
198,
198,
5756,
569,
11,
370,
307,
15879,
850,
2777,
2114,
290,
256,
25,
569,
15168,
370,
307,
257,
14174,
13501,
296,
341,
13,
3244,
11,
198,
220,
220,
220,
17337,
256,
796,
1391,
85,
158,
225,
245,
18872,
230,
569,
25,
18074,
243,
7,
85,
158,
225,
245,
8,
796,
657,
158,
225,
245,
92,
198,
37811,
198,
8818,
9720,
7,
7645,
1161,
3712,
38176,
90,
22203,
11,
360,
713,
5512,
422,
3712,
38176,
90,
23839,
7248,
11,
27741,
13247,
5512,
5369,
8,
198,
220,
220,
220,
410,
796,
685,
70,
329,
308,
287,
422,
60,
198,
220,
220,
220,
256,
796,
4808,
35636,
7,
7645,
1161,
11,
410,
8,
198,
220,
220,
220,
9335,
796,
256,
764,
855,
5369,
198,
220,
220,
220,
1441,
5345,
7,
85,
58,
27932,
12962,
198,
437,
198,
198,
8818,
2939,
7,
7645,
1161,
11,
422,
3712,
23839,
7248,
2599,
25,
7248,
198,
220,
220,
4808,
35636,
7,
7645,
1161,
11,
422,
8,
930,
29,
5345,
198,
437,
198,
8818,
2939,
7,
7645,
1161,
11,
422,
3712,
23839,
13247,
2599,
25,
7248,
198,
220,
220,
4808,
35636,
7,
7645,
1161,
11,
422,
13,
2617,
8,
930,
29,
5345,
198,
437,
628,
198,
8818,
4912,
12502,
7,
8094,
3712,
13247,
90,
27,
25,
51,
5512,
900,
3712,
7248,
90,
27,
25,
51,
5512,
2223,
3712,
22203,
2599,
25,
13247,
12502,
90,
51,
92,
810,
1391,
51,
92,
198,
220,
220,
220,
31986,
796,
4808,
13247,
12502,
7594,
7,
8094,
11,
900,
11,
2223,
8,
198,
220,
220,
220,
6818,
62,
17966,
7,
4908,
8,
628,
220,
220,
220,
304,
796,
651,
62,
738,
414,
62,
30854,
7,
4908,
13,
8094,
8,
198,
220,
220,
220,
329,
2124,
287,
31986,
13,
2617,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
30493,
31986,
13,
2673,
7,
68,
11,
2124,
8,
6624,
2124,
198,
220,
220,
220,
886,
628,
220,
220,
220,
4808,
30493,
62,
26452,
25831,
1042,
62,
26745,
7,
4908,
8,
628,
220,
220,
220,
1441,
4912,
12502,
90,
51,
92,
7,
8094,
11,
900,
11,
2223,
8,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
15839,
2124,
796,
1391,
24861,
222,
70,
18872,
230,
402,
11,
308,
10563,
2124,
92,
198,
37811,
198,
8818,
13066,
7,
4908,
3712,
23839,
13247,
12502,
11,
2124,
2599,
25,
7248,
220,
1303,
16926,
46,
25,
8160,
2099,
198,
220,
220,
220,
2488,
30493,
2124,
287,
31986,
13,
2617,
198,
220,
220,
220,
1441,
31986,
13,
2673,
12195,
4908,
13,
8094,
11,
2124,
8,
930,
29,
5345,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
3497,
262,
900,
286,
477,
37015,
329,
262,
1448,
2223,
198,
37811,
198,
8818,
37015,
7,
4908,
3712,
23839,
13247,
12502,
2599,
25,
7248,
198,
220,
220,
220,
1441,
5345,
7,
42594,
7,
4908,
11,
2124,
8,
329,
2124,
287,
31986,
13,
2617,
8,
198,
437,
628,
198,
37811,
198,
220,
220,
220,
49726,
2124,
796,
1391,
70,
18872,
230,
402,
25,
308,
61,
87,
796,
2124,
92,
198,
37811,
198,
8818,
14349,
7509,
7,
4908,
3712,
23839,
13247,
12502,
11,
2124,
8,
198,
220,
220,
220,
2488,
30493,
2124,
287,
31986,
13,
2617,
198,
220,
220,
220,
410,
796,
685,
70,
329,
308,
287,
31986,
13,
8094,
13,
2617,
60,
198,
220,
220,
220,
256,
796,
31986,
13,
2673,
12195,
85,
11,
2124,
8,
198,
220,
220,
220,
8245,
62,
27932,
796,
256,
764,
855,
2124,
198,
220,
220,
220,
1441,
5345,
7,
85,
58,
31284,
62,
27932,
12962,
198,
437,
198,
198,
2,
2163,
14349,
11341,
7,
4908,
3712,
23839,
13247,
12502,
8,
198,
2,
220,
220,
220,
220,
1441,
5345,
7,
301,
14991,
7509,
7,
4908,
11,
2124,
8,
329,
2124,
287,
31986,
13,
2617,
8,
198,
2,
886,
198,
198,
37811,
198,
220,
220,
220,
13268,
308,
796,
1391,
87,
18872,
230,
1395,
25,
308,
61,
87,
796,
2124,
92,
198,
37811,
198,
8818,
5969,
62,
2617,
7,
4908,
3712,
23839,
13247,
12502,
11,
308,
8,
198,
220,
220,
220,
2488,
30493,
308,
287,
31986,
13,
8094,
13,
2617,
198,
220,
220,
220,
410,
796,
685,
87,
329,
2124,
287,
31986,
13,
2617,
60,
198,
220,
220,
220,
256,
796,
31986,
13,
2673,
12195,
70,
11,
410,
8,
198,
220,
220,
220,
1441,
5345,
7,
85,
58,
83,
764,
855,
410,
12962,
198,
437,
198
] | 2.477052 | 5,142 |
# Ospa dist
function ospa_dist(pca1::Vector{Pointcloud},
pca2::Vector{Pointcloud},
c::S
) where {S <: Real}
#dmat = Matrix{Float64}(length(pca1), length(pca2))
dmat = Matrix{Float64}(undef, length(pca1), length(pca2))
for i=1:length(pca1)
for j=1:length(pca2)
dmat[i,j] = ospa_dist(pca1[i],pca2[j],c)
end
end
dmat
end
function ospa_dist(pc1::Pointcloud,
pc2::Pointcloud,
c::S
) where {S <: Real}
if size(pc1)[1] > size(pc2)[1]
return ospa_dist(pc2, pc1, c)
end
dmat = p2dist(pc1, pc2)
assignments = hungarian(dmat)[1]
cost = sum([min(dmat[i, assignments[i]], c) for i=1:size(pc1)[1] if assignments[i] != 0])
1/size(pc2)[1]*(cost + c*(size(pc2)[1] - size(pc1)[1])) |> sqrt
end
function optimal_assignments(barycenter::Pointcloud,
measurements::Vector{Pointcloud}
)
map(x -> hungarian(p2dist(barycenter, measurements[x]))[1], 1:length(measurements))
end
function p2dist(x,y)
[sqrt.(sum((x[i,:] .- y[j,:]).^2)) for i=1:size(x)[1], j=1:size(y)[1]]
end
function p2dist(x)
p2dist(x,x)
end
| [
2,
440,
2777,
64,
1233,
198,
198,
8818,
267,
2777,
64,
62,
17080,
7,
79,
6888,
16,
3712,
38469,
90,
12727,
17721,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
6888,
17,
3712,
38469,
90,
12727,
17721,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
269,
3712,
50,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
810,
1391,
50,
1279,
25,
6416,
92,
198,
220,
220,
220,
1303,
67,
6759,
796,
24936,
90,
43879,
2414,
92,
7,
13664,
7,
79,
6888,
16,
828,
4129,
7,
79,
6888,
17,
4008,
198,
220,
220,
220,
288,
6759,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
4129,
7,
79,
6888,
16,
828,
4129,
7,
79,
6888,
17,
4008,
198,
220,
220,
220,
329,
1312,
28,
16,
25,
13664,
7,
79,
6888,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
329,
474,
28,
16,
25,
13664,
7,
79,
6888,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
6759,
58,
72,
11,
73,
60,
796,
267,
2777,
64,
62,
17080,
7,
79,
6888,
16,
58,
72,
4357,
79,
6888,
17,
58,
73,
4357,
66,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
288,
6759,
198,
437,
198,
198,
8818,
267,
2777,
64,
62,
17080,
7,
14751,
16,
3712,
12727,
17721,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40653,
17,
3712,
12727,
17721,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
269,
3712,
50,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
810,
1391,
50,
1279,
25,
6416,
92,
198,
220,
220,
220,
611,
2546,
7,
14751,
16,
38381,
16,
60,
1875,
2546,
7,
14751,
17,
38381,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
267,
2777,
64,
62,
17080,
7,
14751,
17,
11,
40653,
16,
11,
269,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
288,
6759,
796,
279,
17,
17080,
7,
14751,
16,
11,
40653,
17,
8,
198,
220,
220,
220,
25815,
796,
9174,
3699,
7,
67,
6759,
38381,
16,
60,
198,
220,
220,
220,
1575,
796,
2160,
26933,
1084,
7,
67,
6759,
58,
72,
11,
25815,
58,
72,
60,
4357,
269,
8,
329,
1312,
28,
16,
25,
7857,
7,
14751,
16,
38381,
16,
60,
611,
25815,
58,
72,
60,
14512,
657,
12962,
198,
220,
220,
220,
352,
14,
7857,
7,
14751,
17,
38381,
16,
60,
9,
7,
15805,
1343,
269,
9,
7,
7857,
7,
14751,
17,
38381,
16,
60,
532,
2546,
7,
14751,
16,
38381,
16,
60,
4008,
930,
29,
19862,
17034,
198,
437,
198,
198,
8818,
16586,
62,
562,
570,
902,
7,
65,
560,
16159,
3712,
12727,
17721,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13871,
3712,
38469,
90,
12727,
17721,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
3975,
7,
87,
4613,
9174,
3699,
7,
79,
17,
17080,
7,
65,
560,
16159,
11,
13871,
58,
87,
60,
4008,
58,
16,
4357,
352,
25,
13664,
7,
1326,
5015,
902,
4008,
198,
437,
198,
198,
8818,
279,
17,
17080,
7,
87,
11,
88,
8,
198,
220,
220,
220,
685,
31166,
17034,
12195,
16345,
19510,
87,
58,
72,
11,
47715,
764,
12,
331,
58,
73,
11,
25,
35944,
61,
17,
4008,
329,
1312,
28,
16,
25,
7857,
7,
87,
38381,
16,
4357,
474,
28,
16,
25,
7857,
7,
88,
38381,
16,
11907,
198,
437,
198,
198,
8818,
279,
17,
17080,
7,
87,
8,
198,
220,
220,
220,
279,
17,
17080,
7,
87,
11,
87,
8,
198,
437,
198
] | 1.779202 | 702 |
using Catalyst
rn = @reaction_network begin
α, S + I --> 2I
β, I --> R
S^2, R --> 0
end α β
# check can make a graph
gr = Graph(rn)
# check can save a graph
fname = Base.Filesystem.tempname()
savegraph(gr, fname, "png")
| [
3500,
48238,
198,
35906,
796,
2488,
260,
2673,
62,
27349,
2221,
198,
220,
220,
220,
26367,
11,
311,
1343,
314,
14610,
362,
40,
198,
220,
220,
220,
27169,
11,
314,
14610,
371,
198,
220,
220,
220,
311,
61,
17,
11,
371,
14610,
657,
198,
437,
26367,
27169,
198,
198,
2,
2198,
460,
787,
257,
4823,
198,
2164,
796,
29681,
7,
35906,
8,
198,
198,
2,
2198,
460,
3613,
257,
4823,
198,
69,
3672,
796,
7308,
13,
25876,
6781,
13,
29510,
3672,
3419,
198,
21928,
34960,
7,
2164,
11,
277,
3672,
11,
366,
11134,
4943,
628
] | 2.473684 | 95 |
import ..UncertainValues: UncertainScalarPopulation
using RecipesBase
#@recipe f(::Type{UncertainScalarPopulation{T}}, x::UncertainScalarPopulation{T}) where {T} =
# rand(x, 10000)
@recipe function f(p::UncertainScalarPopulation{T}) where T
@series begin
rand(p, 10000)
end
end
@recipe function f(populations::Vector{UncertainScalarPopulation{T}}) where {T}
for p in populations
@series begin
p
end
end
end | [
11748,
11485,
3118,
39239,
40161,
25,
28304,
1425,
3351,
282,
283,
45251,
198,
198,
3500,
44229,
14881,
628,
198,
2,
31,
29102,
431,
277,
7,
3712,
6030,
90,
3118,
39239,
3351,
282,
283,
45251,
90,
51,
92,
5512,
2124,
3712,
3118,
39239,
3351,
282,
283,
45251,
90,
51,
30072,
810,
1391,
51,
92,
796,
198,
2,
220,
220,
220,
43720,
7,
87,
11,
33028,
8,
628,
198,
31,
29102,
431,
2163,
277,
7,
79,
3712,
3118,
39239,
3351,
282,
283,
45251,
90,
51,
30072,
810,
309,
198,
220,
220,
220,
2488,
25076,
2221,
220,
198,
220,
220,
220,
220,
220,
220,
220,
43720,
7,
79,
11,
33028,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
31,
29102,
431,
2163,
277,
7,
12924,
5768,
3712,
38469,
90,
3118,
39239,
3351,
282,
283,
45251,
90,
51,
11709,
8,
810,
1391,
51,
92,
198,
220,
220,
220,
220,
198,
220,
220,
220,
329,
279,
287,
9684,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
25076,
2221,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
437
] | 2.418367 | 196 |
export pointwise_log_likelihoods
const ARRAY_DIMS_WARNING = "The supplied array of mcmc samples indicates you have more
parameters than mcmc samples.This is possible, but highly unusual. Please check that your
array of mcmc samples has the following dimensions: [n_samples,n_parms,n_chains]."
"""
pointwise_log_likelihoods(
ll_fun::Function,
samples::AbstractArray{<:Real,3},
data;
splat::Bool=true
)
Compute the pointwise log likelihood.
# Arguments
- $LIKELIHOOD_FUNCTION_ARG
- `samples::AbstractArray`: A three dimensional array of MCMC samples. Here, the first
dimension should indicate the iteration of the MCMC ; the second dimension should
indicate the parameter ; and the third dimension represents the chains.
- `data`: A vector of data used to estimate the parameters of the model.
- `splat`: If `true` (default), `f` must be a function of `n` different parameters.
Otherwise, `f` is assumed to be a function of a single parameter vector.
# Returns
- `Array`: A three dimensional array of pointwise log-likelihoods.
"""
function pointwise_log_likelihoods(
ll_fun::Function,
samples::AbstractArray{<:Union{Real, Missing}, 3},
data;
splat::Bool=true,
)
n_posterior, n_parms, n_chains = size(samples)
if n_parms > n_posterior
@info ARRAY_DIMS_WARNING
end
if splat
fun = (p, d) -> ll_fun(p..., d)
else
fun = (p, d) -> ll_fun(p, d)
end
n_posterior, _, n_chains = size(samples)
n_data = length(data)
pointwise_lls = similar(samples, n_data, n_posterior, n_chains)
for index in CartesianIndices(pointwise_lls)
datum, iteration, chain = Tuple(index)
pointwise_lls[datum, iteration, chain] = fun(
samples[iteration, :, chain], data[datum]
)
end
return pointwise_lls
end
function pointwise_log_likelihoods(
ll_fun::Function,
samples::AbstractMatrix{<:Union{Real, Missing}},
data;
chain_index::AbstractVector{<:Integer}=_assume_one_chain(samples),
kwargs...,
)
samples = _convert_to_array(samples, chain_index)
return pointwise_log_likelihoods(ll_fun, samples, data)
end
| [
39344,
966,
3083,
62,
6404,
62,
2339,
11935,
82,
198,
198,
9979,
5923,
30631,
62,
35,
3955,
50,
62,
31502,
796,
366,
464,
14275,
7177,
286,
285,
11215,
66,
8405,
9217,
345,
423,
517,
220,
198,
17143,
7307,
621,
285,
11215,
66,
8405,
13,
1212,
318,
1744,
11,
475,
4047,
8468,
13,
4222,
2198,
326,
534,
198,
18747,
286,
285,
11215,
66,
8405,
468,
262,
1708,
15225,
25,
685,
77,
62,
82,
12629,
11,
77,
62,
1845,
907,
11,
77,
62,
38861,
29225,
198,
198,
37811,
198,
220,
220,
220,
966,
3083,
62,
6404,
62,
2339,
11935,
82,
7,
198,
220,
220,
220,
220,
220,
220,
220,
32660,
62,
12543,
3712,
22203,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
8405,
3712,
23839,
19182,
90,
27,
25,
15633,
11,
18,
5512,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
26,
198,
220,
220,
220,
220,
220,
220,
220,
4328,
265,
3712,
33,
970,
28,
7942,
198,
220,
220,
220,
1267,
220,
198,
198,
7293,
1133,
262,
966,
3083,
2604,
14955,
13,
198,
198,
2,
20559,
2886,
198,
220,
532,
720,
43,
18694,
3698,
40,
39,
22808,
62,
42296,
4177,
2849,
62,
1503,
38,
198,
220,
532,
4600,
82,
12629,
3712,
23839,
19182,
63,
25,
317,
1115,
38517,
7177,
286,
13122,
9655,
8405,
13,
3423,
11,
262,
717,
198,
220,
220,
220,
15793,
815,
7603,
262,
24415,
286,
262,
13122,
9655,
2162,
262,
1218,
15793,
815,
198,
220,
220,
220,
7603,
262,
11507,
2162,
290,
262,
2368,
15793,
6870,
262,
14659,
13,
220,
198,
220,
532,
4600,
7890,
63,
25,
317,
15879,
286,
1366,
973,
284,
8636,
262,
10007,
286,
262,
2746,
13,
198,
220,
532,
4600,
22018,
265,
63,
25,
1002,
4600,
7942,
63,
357,
12286,
828,
4600,
69,
63,
1276,
307,
257,
2163,
286,
4600,
77,
63,
1180,
10007,
13,
220,
198,
220,
220,
220,
15323,
11,
4600,
69,
63,
318,
9672,
284,
307,
257,
2163,
286,
257,
2060,
11507,
15879,
13,
198,
198,
2,
16409,
198,
220,
532,
4600,
19182,
63,
25,
317,
1115,
38517,
7177,
286,
966,
3083,
2604,
12,
2339,
11935,
82,
13,
198,
37811,
198,
8818,
966,
3083,
62,
6404,
62,
2339,
11935,
82,
7,
198,
220,
220,
220,
32660,
62,
12543,
3712,
22203,
11,
198,
220,
220,
220,
8405,
3712,
23839,
19182,
90,
27,
25,
38176,
90,
15633,
11,
25639,
5512,
513,
5512,
198,
220,
220,
220,
1366,
26,
198,
220,
220,
220,
4328,
265,
3712,
33,
970,
28,
7942,
11,
198,
8,
198,
220,
220,
220,
299,
62,
79,
6197,
1504,
11,
299,
62,
1845,
907,
11,
299,
62,
38861,
796,
2546,
7,
82,
12629,
8,
198,
220,
220,
220,
611,
299,
62,
1845,
907,
1875,
299,
62,
79,
6197,
1504,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
5923,
30631,
62,
35,
3955,
50,
62,
31502,
198,
220,
220,
220,
886,
198,
220,
220,
220,
611,
4328,
265,
198,
220,
220,
220,
220,
220,
220,
220,
1257,
796,
357,
79,
11,
288,
8,
4613,
32660,
62,
12543,
7,
79,
986,
11,
288,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
1257,
796,
357,
79,
11,
288,
8,
4613,
32660,
62,
12543,
7,
79,
11,
288,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
299,
62,
79,
6197,
1504,
11,
4808,
11,
299,
62,
38861,
796,
2546,
7,
82,
12629,
8,
198,
220,
220,
220,
299,
62,
7890,
796,
4129,
7,
7890,
8,
198,
220,
220,
220,
966,
3083,
62,
297,
82,
796,
2092,
7,
82,
12629,
11,
299,
62,
7890,
11,
299,
62,
79,
6197,
1504,
11,
299,
62,
38861,
8,
198,
220,
220,
220,
329,
6376,
287,
13690,
35610,
5497,
1063,
7,
4122,
3083,
62,
297,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4818,
388,
11,
24415,
11,
6333,
796,
309,
29291,
7,
9630,
8,
198,
220,
220,
220,
220,
220,
220,
220,
966,
3083,
62,
297,
82,
58,
19608,
388,
11,
24415,
11,
6333,
60,
796,
1257,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8405,
58,
2676,
341,
11,
1058,
11,
6333,
4357,
1366,
58,
19608,
388,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
966,
3083,
62,
297,
82,
198,
437,
628,
198,
8818,
966,
3083,
62,
6404,
62,
2339,
11935,
82,
7,
198,
220,
220,
220,
32660,
62,
12543,
3712,
22203,
11,
198,
220,
220,
220,
8405,
3712,
23839,
46912,
90,
27,
25,
38176,
90,
15633,
11,
25639,
92,
5512,
198,
220,
220,
220,
1366,
26,
198,
220,
220,
220,
6333,
62,
9630,
3712,
23839,
38469,
90,
27,
25,
46541,
92,
28,
62,
562,
2454,
62,
505,
62,
7983,
7,
82,
12629,
828,
198,
220,
220,
220,
479,
86,
22046,
986,
11,
198,
8,
198,
220,
220,
220,
8405,
796,
4808,
1102,
1851,
62,
1462,
62,
18747,
7,
82,
12629,
11,
6333,
62,
9630,
8,
198,
220,
220,
220,
1441,
966,
3083,
62,
6404,
62,
2339,
11935,
82,
7,
297,
62,
12543,
11,
8405,
11,
1366,
8,
198,
437,
628
] | 2.595041 | 847 |
import FinanceLib
import Dates
@testset "FinanceLib " begin
@testset "tv" begin
@test FinanceLib.yearFrac(Dates.Date(2027,2,12), Dates.Date(2018,2,12)) ≈ -8.999315537303216
@test FinanceLib.invYearFrac(Dates.Date(2027,2,12), -8.999315537303216) == Dates.Date(2018,2,12)
@test FinanceLib.disFactAnnual(0.07) == 0.9345794392523364
@test FinanceLib.disFact(0.09, 3) == 0.7721834800610642
@test FinanceLib.fwdDisFact((0.07, 1), (0.09, 3)) == 0.8262363236653387
@test FinanceLib.xdisFact(0.09, Dates.Date(2015,3,15), Dates.Date(2018,10,8)) == 0.7353328680759499
@test FinanceLib.tMul(0.06/12, -120.0) == 0.5496327333641637
@test FinanceLib.tMul(0.06, -10.0, 12.0) == 0.5496327333641637
@test FinanceLib.rateGwth(7.35, 8.52, 5.0) == -0.029111071029244595
@test FinanceLib.periodGwth(100.0,50.0,0.07) == 10.244768351058712
end
@testset "pv" begin
@test FinanceLib.pv(10_000_000., 0.09, 5.0) == 6_499_313.862983453
@test FinanceLib.pv(12_704_891.6109538, 0.06, 4.0, 12.0) ≈ 10_000_000.
@test FinanceLib.pvr(10_000_000., 1.09, 5.0) == 6_499_313.862983453
@test FinanceLib.pvc(11_735.108709918102, 0.08, 2.0) == 10_000
end
@testset "fv" begin
@test FinanceLib.fv(6_499_313.862983453, 0.09, 5.0) == 10_000_000.0
@test FinanceLib.fv(10_000_000.0, 0.06, 4.0, 12.0) ≈ 12_704_891.6109538
@test FinanceLib.fvc(10_000., 0.08, 2.0) == 11_735.108709918102
end
@testset "annuity" begin
@test FinanceLib.pvAnnuity(1000.0, 0.12, 5.0) == 3_604.776202345007
@test FinanceLib.pvAnnuity(7.33764573879378, 0.08, 30.0, 12.0) == 1000
@test FinanceLib.pvAnnuity(100.0, 0.05) == 2000.0
@test FinanceLib.fvAnnuity(1000.0, 0.05, 5.0) == 5_525.631250000007
@test FinanceLib.fvAnnuity(2000.0, 0.24, 5.0, 3.0) == 54_304.2278549568
@test FinanceLib.pmt(3_604.776202345007, 0.12, 5.0) == 1000.0
@test FinanceLib.pmt(1000.0, 0.08, 30.0, 12.0) == 7.33764573879378
@test FinanceLib.fmt(5_525.631250000007, 0.05, 5.0) == 1000
@test FinanceLib.fmt(54_304.2278549568, 0.24, 5.0, 3.0) == 2000
@test FinanceLib.pv(FinanceLib.pvAnnuity(10.0^6,.05,30.0),0.05,9.0) == 9_909_218.99605011
end
@testset "effective rates" begin
@test FinanceLib.effR(0.08, 2.0) ≈ 0.0816
@test FinanceLib.expR(0.08, 2.0) == 0.07844142630656266
@test FinanceLib.expR(0.08) == 0.0769610411361284
@test FinanceLib.nomR(FinanceLib.effR(0.08, 4), 4) ≈ 0.08
FinanceLib.pvc(20,FinanceLib.expR(0.07,4),4.25) == FinanceLib.pvr(20,1+FinanceLib.effR(0.07,4),4.25)
eT = FinanceLib.RateCurve{FinanceLib.NomRate}([0.0016, 0.0021, 0.0027, 0.0033, 0.0037, 0.0041], 2)
eR = FinanceLib.effR(eT)
@test eR.rate[1] ≈ 0.0016006400
@test eR.rate[2] ≈ 0.0021011025
@test eR.rate[3] ≈ 0.0027018225
@test eR.rate[4] ≈ 0.0033027225
@test eR.rate[5] ≈ 0.0037034225
@test eR.rate[6] ≈ 0.0041042025
eN = FinanceLib.nomR(eR)
@test eN.rate[1] ≈ 0.0016
@test eN.rate[2] ≈ 0.0021
@test eN.rate[3] ≈ 0.0027
@test eN.rate[4] ≈ 0.0033
@test eN.rate[5] ≈ 0.0037
@test eN.rate[6] ≈ 0.0041
eZ = FinanceLib.nomR(FinanceLib.effR(FinanceLib.expR(eT))) # N - X - E - N
eY = FinanceLib.nomR(FinanceLib.expR(FinanceLib.effR(eT))) # N - E - X - N
eW = FinanceLib.nomR(FinanceLib.expR(eT)) # N - X - N
@test eZ.rate[3] == eW.rate[3]
@test eY.rate[4] == eW.rate[4]
@test eZ.rate[2] == eY.rate[2]
@test eZ.rate[5] == eY.rate[5]
@test eZ.rate[1] == eW.rate[1]
end
@testset "npv" begin
@test FinanceLib.npv(0.05, [0.0:1.0:4.0;],[1000.,2000.0,4000.0,5000.0,6000.0],-1.45)==14709.923338335731
@test FinanceLib.npv(0.08, [0.25,6.25,3.5,4.5,1.25], [-6.25,1.2,1.25,3.6,2.5], -0.45) == 0.36962283798505946
@test FinanceLib.npv(0.08, zip([0.25,6.25,3.5,4.5,1.25],[-6.25,1.2,1.25,3.6,2.5]), -0.45) == 0.36962283798505946
@test FinanceLib.npv(0.08, [0.25,6.25,3.5,4.5,1.25], [-6.25,1.2,1.25,3.6,2.5], 6.25) == 0.619010419015909
@test FinanceLib.irr([0.125,0.29760274,0.49760274,0.55239726,0.812671233], [-10.25,-2.5,3.5,9.5,1.25]) ≈ 0.31813386476788824
ts = collect(zip([0.125,0.29760274,0.49760274,0.55239726,0.812671233], [-10.25,-2.5,3.5,9.5,1.25])) :: FinanceLib.PeriodSeries
@test FinanceLib.irr(ts) ≈ 0.31813386476788824
@test FinanceLib.irr(zip([0.125,0.29760274,0.49760274,0.55239726,0.812671233], [-10.25,-2.5,3.5,9.5,1.25])) ≈ 0.31813386476788824
@test FinanceLib.xnpv(0.08, [Dates.Date(2012,2,25), Dates.Date(2012,6,28),
Dates.Date(2013,2,15), Dates.Date(2014,9,18), Dates.Date(2015,2,20)],
[-15, 5, 25, -10, 50], Dates.Date(2012,1,10) ) == 44.15557928534869
@test FinanceLib.xnpv(0.08, zip([Dates.Date(2012,2,25), Dates.Date(2012,6,28),
Dates.Date(2013,2,15), Dates.Date(2014,9,18), Dates.Date(2015,2,20)],
[-15, 5, 25, -10, 50.]), Dates.Date(2012,1,10) ) == 44.15557928534869
@test FinanceLib.xirr([Dates.Date(2012,2,25), Dates.Date(2012,6,28),
Dates.Date(2013,2,15), Dates.Date(2014,9,18), Dates.Date(2015,2,20)],
[-115, 5, 25, -10, 200] ) == 0.2783166029306355
td = collect(zip([Dates.Date(2012,2,25), Dates.Date(2012,6,28),
Dates.Date(2013,2,15), Dates.Date(2014,9,18), Dates.Date(2015,2,20)],
[-115, 5, 25, -10, 200]))
td1 = FinanceLib.dateToPeriodSeries(Dates.Date(2010,05,12), td)
@test td1[3][1] == 2.7652292950034223
@test FinanceLib.irr(td1) == 0.2783166029306353
@test FinanceLib.xirr(td) == 0.2783166029306355
@test FinanceLib.xirr(zip([Dates.Date(2012,2,25), Dates.Date(2012,6,28),
Dates.Date(2013,2,15), Dates.Date(2014,9,18), Dates.Date(2015,2,20)],
[-115, 5, 25, -10, 200]) ) == 0.2783166029306355
@test FinanceLib.npv(FinanceLib.PeriodSeries([(0.5,0.05), (1.25, 0.0575), (2, 0.0485), (3.5, 0.0625), (4.25, 0.055)]), [-150, 20, 15, 80, 100], 0.3) == 31.530253870718543
@test FinanceLib.xnpv(FinanceLib.DateSeries([(Dates.Date(2014,9,20),0.05), (Dates.Date(2015,2,1), 0.0575), (Dates.Date(2016,10,5), 0.0485), (Dates.Date(2017,12,5), 0.0625), (Dates.Date(2019,1,5), 0.055)]), [-150, 20, 15, 80, 100], Dates.Date(2014,2,15)) == 29.323165765999597
end
@testset "Sharpe" begin
@test FinanceLib.sharpe(1.58,9.26,22.36) ≈ 0.3434704830053667
end
@testset "Rates" begin
@test FinanceLib.discFactorToNominalRate(FinanceLib.DiscountFactor([0.9524, 0.89, 0.8163, 0.735],1)).rate[3] == 0.0699990723472752
dsc = FinanceLib.discFactorToNominalRate(FinanceLib.DiscountFactor([ 0.99920063949, 0.99790330288, 0.99596091045, 0.99342713542, 0.99080111671, 0.98778777227 ],2)).rate
@test dsc[1] ≈ 0.0016
@test dsc[2] ≈ 0.0021
@test dsc[3] ≈ 0.0027
@test dsc[4] ≈ 0.0033
@test dsc[5] ≈ 0.0037
@test dsc[6] ≈ 0.0041
@test FinanceLib.estimR(FinanceLib.RateCurve{FinanceLib.NomRate}([0.05, 0.06, 0.07, 0.08], 2), 1.5) == 0.07
@test FinanceLib.estimR(FinanceLib.RateCurve{FinanceLib.NomRate}([0.05, 0.06, 0.07, 0.08], 2), 1.2) == 0.064
end
end
include("FixedIncomes/runtests.jl")
include("Derivatives/runtests.jl")
include("Statements/runtests.jl")
| [
11748,
15007,
25835,
198,
11748,
44712,
198,
198,
31,
9288,
2617,
366,
37,
14149,
25835,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
2221,
628,
220,
2488,
9288,
2617,
366,
14981,
1,
2221,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
1941,
6732,
330,
7,
35,
689,
13,
10430,
7,
1238,
1983,
11,
17,
11,
1065,
828,
44712,
13,
10430,
7,
7908,
11,
17,
11,
1065,
4008,
15139,
230,
532,
23,
13,
2079,
6052,
18742,
2718,
1270,
2624,
1433,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
16340,
17688,
6732,
330,
7,
35,
689,
13,
10430,
7,
1238,
1983,
11,
17,
11,
1065,
828,
532,
23,
13,
2079,
6052,
18742,
2718,
1270,
2624,
1433,
8,
6624,
44712,
13,
10430,
7,
7908,
11,
17,
11,
1065,
8,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
6381,
29054,
18858,
723,
7,
15,
13,
2998,
8,
6624,
657,
13,
6052,
2231,
3720,
47106,
1495,
25429,
2414,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
6381,
29054,
7,
15,
13,
2931,
11,
513,
8,
6624,
657,
13,
3324,
28727,
2682,
7410,
39132,
41290,
220,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
69,
16993,
7279,
29054,
19510,
15,
13,
2998,
11,
352,
828,
357,
15,
13,
2931,
11,
513,
4008,
6624,
657,
13,
23,
2075,
1954,
5066,
1954,
36879,
2091,
5774,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
87,
6381,
29054,
7,
15,
13,
2931,
11,
44712,
13,
10430,
7,
4626,
11,
18,
11,
1314,
828,
44712,
13,
10430,
7,
7908,
11,
940,
11,
23,
4008,
6624,
657,
13,
22,
2327,
2091,
27033,
1795,
2425,
5824,
2079,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
83,
44,
377,
7,
15,
13,
3312,
14,
1065,
11,
532,
10232,
13,
15,
8,
6624,
657,
13,
44966,
5066,
1983,
20370,
2414,
1433,
2718,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
83,
44,
377,
7,
15,
13,
3312,
11,
532,
940,
13,
15,
11,
1105,
13,
15,
8,
6624,
657,
13,
44966,
5066,
1983,
20370,
2414,
1433,
2718,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
4873,
38,
86,
400,
7,
22,
13,
2327,
11,
807,
13,
4309,
11,
642,
13,
15,
8,
6624,
532,
15,
13,
48891,
1157,
15982,
940,
1959,
1731,
2231,
3865,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
41007,
38,
86,
400,
7,
3064,
13,
15,
11,
1120,
13,
15,
11,
15,
13,
2998,
8,
6624,
838,
13,
1731,
2857,
3104,
2327,
940,
44617,
1065,
628,
220,
886,
628,
220,
2488,
9288,
2617,
366,
79,
85,
1,
2221,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
79,
85,
7,
940,
62,
830,
62,
830,
1539,
657,
13,
2931,
11,
642,
13,
15,
8,
6624,
718,
62,
28324,
62,
25838,
13,
4521,
1959,
5999,
36625,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
79,
85,
7,
1065,
62,
32869,
62,
4531,
16,
13,
39132,
3865,
2548,
11,
657,
13,
3312,
11,
604,
13,
15,
11,
1105,
13,
15,
8,
15139,
230,
838,
62,
830,
62,
830,
13,
220,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
79,
37020,
7,
940,
62,
830,
62,
830,
1539,
352,
13,
2931,
11,
642,
13,
15,
8,
6624,
718,
62,
28324,
62,
25838,
13,
4521,
1959,
5999,
36625,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
79,
28435,
7,
1157,
62,
22,
2327,
13,
15711,
2154,
2079,
1507,
15377,
11,
657,
13,
2919,
11,
362,
13,
15,
8,
6624,
838,
62,
830,
198,
220,
886,
628,
220,
2488,
9288,
2617,
366,
69,
85,
1,
2221,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
69,
85,
7,
21,
62,
28324,
62,
25838,
13,
4521,
1959,
5999,
36625,
11,
657,
13,
2931,
11,
642,
13,
15,
8,
6624,
838,
62,
830,
62,
830,
13,
15,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
69,
85,
7,
940,
62,
830,
62,
830,
13,
15,
11,
657,
13,
3312,
11,
604,
13,
15,
11,
1105,
13,
15,
8,
15139,
230,
1105,
62,
32869,
62,
4531,
16,
13,
39132,
3865,
2548,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
69,
28435,
7,
940,
62,
830,
1539,
657,
13,
2919,
11,
362,
13,
15,
8,
6624,
1367,
62,
22,
2327,
13,
15711,
2154,
2079,
1507,
15377,
198,
220,
886,
628,
220,
2488,
9288,
2617,
366,
1236,
14834,
1,
2221,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
79,
85,
18858,
14834,
7,
12825,
13,
15,
11,
657,
13,
1065,
11,
642,
13,
15,
8,
6624,
513,
62,
31916,
13,
3324,
38850,
1954,
2231,
25816,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
79,
85,
18858,
14834,
7,
22,
13,
2091,
4304,
33032,
2548,
3720,
30695,
11,
657,
13,
2919,
11,
1542,
13,
15,
11,
1105,
13,
15,
8,
6624,
8576,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
79,
85,
18858,
14834,
7,
3064,
13,
15,
11,
657,
13,
2713,
8,
6624,
4751,
13,
15,
198,
220,
220,
220,
220,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
69,
85,
18858,
14834,
7,
12825,
13,
15,
11,
657,
13,
2713,
11,
642,
13,
15,
8,
6624,
642,
62,
39088,
13,
5066,
11623,
10535,
22,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
69,
85,
18858,
14834,
7,
11024,
13,
15,
11,
657,
13,
1731,
11,
642,
13,
15,
11,
513,
13,
15,
8,
6624,
7175,
62,
21288,
13,
1828,
41172,
33781,
3104,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
4426,
83,
7,
18,
62,
31916,
13,
3324,
38850,
1954,
2231,
25816,
11,
657,
13,
1065,
11,
642,
13,
15,
8,
6624,
8576,
13,
15,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
4426,
83,
7,
12825,
13,
15,
11,
657,
13,
2919,
11,
1542,
13,
15,
11,
1105,
13,
15,
8,
6624,
767,
13,
2091,
4304,
33032,
2548,
3720,
30695,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
69,
16762,
7,
20,
62,
39088,
13,
5066,
11623,
10535,
22,
11,
657,
13,
2713,
11,
642,
13,
15,
8,
6624,
8576,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
69,
16762,
7,
4051,
62,
21288,
13,
1828,
41172,
33781,
3104,
11,
657,
13,
1731,
11,
642,
13,
15,
11,
513,
13,
15,
8,
6624,
4751,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
79,
85,
7,
37,
14149,
25835,
13,
79,
85,
18858,
14834,
7,
940,
13,
15,
61,
21,
38508,
2713,
11,
1270,
13,
15,
828,
15,
13,
2713,
11,
24,
13,
15,
8,
6624,
860,
62,
44675,
62,
28727,
13,
2079,
32417,
28555,
198,
220,
886,
628,
220,
2488,
9288,
2617,
366,
16803,
3965,
1,
2221,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
14822,
49,
7,
15,
13,
2919,
11,
362,
13,
15,
8,
15139,
230,
657,
13,
2919,
1433,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
11201,
49,
7,
15,
13,
2919,
11,
362,
13,
15,
8,
6624,
657,
13,
2998,
23,
2598,
1415,
2075,
1270,
37466,
25540,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
11201,
49,
7,
15,
13,
2919,
8,
6624,
657,
13,
2998,
38205,
13464,
1157,
2623,
1065,
5705,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
26601,
49,
7,
37,
14149,
25835,
13,
14822,
49,
7,
15,
13,
2919,
11,
604,
828,
604,
8,
15139,
230,
657,
13,
2919,
628,
220,
220,
220,
15007,
25835,
13,
79,
28435,
7,
1238,
11,
37,
14149,
25835,
13,
11201,
49,
7,
15,
13,
2998,
11,
19,
828,
19,
13,
1495,
8,
6624,
15007,
25835,
13,
79,
37020,
7,
1238,
11,
16,
10,
37,
14149,
25835,
13,
14822,
49,
7,
15,
13,
2998,
11,
19,
828,
19,
13,
1495,
8,
628,
220,
220,
220,
304,
51,
796,
15007,
25835,
13,
32184,
26628,
303,
90,
37,
14149,
25835,
13,
45,
296,
32184,
92,
26933,
15,
13,
405,
1433,
11,
657,
13,
405,
2481,
11,
657,
13,
405,
1983,
11,
657,
13,
405,
2091,
11,
657,
13,
405,
2718,
11,
657,
13,
405,
3901,
4357,
362,
8,
628,
220,
220,
220,
304,
49,
796,
15007,
25835,
13,
14822,
49,
7,
68,
51,
8,
628,
220,
220,
220,
2488,
9288,
304,
49,
13,
4873,
58,
16,
60,
15139,
230,
657,
13,
405,
36150,
2414,
405,
198,
220,
220,
220,
2488,
9288,
304,
49,
13,
4873,
58,
17,
60,
15139,
230,
657,
13,
405,
2481,
486,
940,
1495,
198,
220,
220,
220,
2488,
9288,
304,
49,
13,
4873,
58,
18,
60,
15139,
230,
657,
13,
405,
1983,
486,
6469,
1495,
198,
220,
220,
220,
2488,
9288,
304,
49,
13,
4873,
58,
19,
60,
15139,
230,
657,
13,
11245,
1270,
1983,
18182,
198,
220,
220,
220,
2488,
9288,
304,
49,
13,
4873,
58,
20,
60,
15139,
230,
657,
13,
11245,
2154,
2682,
18182,
198,
220,
220,
220,
2488,
9288,
304,
49,
13,
4873,
58,
21,
60,
15139,
230,
657,
13,
22914,
13464,
1238,
1495,
628,
220,
220,
220,
304,
45,
796,
15007,
25835,
13,
26601,
49,
7,
68,
49,
8,
198,
220,
220,
198,
220,
220,
220,
2488,
9288,
304,
45,
13,
4873,
58,
16,
60,
15139,
230,
657,
13,
405,
1433,
198,
220,
220,
220,
2488,
9288,
304,
45,
13,
4873,
58,
17,
60,
15139,
230,
657,
13,
405,
2481,
198,
220,
220,
220,
2488,
9288,
304,
45,
13,
4873,
58,
18,
60,
15139,
230,
657,
13,
405,
1983,
198,
220,
220,
220,
2488,
9288,
304,
45,
13,
4873,
58,
19,
60,
15139,
230,
657,
13,
405,
2091,
198,
220,
220,
220,
2488,
9288,
304,
45,
13,
4873,
58,
20,
60,
15139,
230,
657,
13,
405,
2718,
198,
220,
220,
220,
2488,
9288,
304,
45,
13,
4873,
58,
21,
60,
15139,
230,
657,
13,
405,
3901,
628,
220,
220,
220,
304,
57,
796,
15007,
25835,
13,
26601,
49,
7,
37,
14149,
25835,
13,
14822,
49,
7,
37,
14149,
25835,
13,
11201,
49,
7,
68,
51,
22305,
1303,
399,
532,
1395,
532,
412,
532,
399,
198,
220,
220,
220,
304,
56,
796,
15007,
25835,
13,
26601,
49,
7,
37,
14149,
25835,
13,
11201,
49,
7,
37,
14149,
25835,
13,
14822,
49,
7,
68,
51,
22305,
1303,
399,
532,
412,
532,
1395,
532,
399,
198,
220,
220,
220,
304,
54,
796,
15007,
25835,
13,
26601,
49,
7,
37,
14149,
25835,
13,
11201,
49,
7,
68,
51,
4008,
1303,
399,
532,
1395,
532,
399,
628,
220,
220,
220,
2488,
9288,
304,
57,
13,
4873,
58,
18,
60,
6624,
304,
54,
13,
4873,
58,
18,
60,
198,
220,
220,
220,
2488,
9288,
304,
56,
13,
4873,
58,
19,
60,
6624,
304,
54,
13,
4873,
58,
19,
60,
198,
220,
220,
220,
2488,
9288,
304,
57,
13,
4873,
58,
17,
60,
6624,
304,
56,
13,
4873,
58,
17,
60,
198,
220,
220,
220,
2488,
9288,
304,
57,
13,
4873,
58,
20,
60,
6624,
304,
56,
13,
4873,
58,
20,
60,
198,
220,
220,
220,
2488,
9288,
304,
57,
13,
4873,
58,
16,
60,
6624,
304,
54,
13,
4873,
58,
16,
60,
628,
198,
220,
886,
628,
198,
220,
2488,
9288,
2617,
366,
37659,
85,
1,
2221,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
37659,
85,
7,
15,
13,
2713,
11,
685,
15,
13,
15,
25,
16,
13,
15,
25,
19,
13,
15,
26,
38430,
12825,
1539,
11024,
13,
15,
11,
27559,
13,
15,
11,
27641,
13,
15,
11,
43434,
13,
15,
4357,
12,
16,
13,
2231,
8,
855,
1415,
31495,
13,
24,
1954,
28460,
2091,
3553,
3132,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
37659,
85,
7,
15,
13,
2919,
11,
685,
15,
13,
1495,
11,
21,
13,
1495,
11,
18,
13,
20,
11,
19,
13,
20,
11,
16,
13,
1495,
4357,
25915,
21,
13,
1495,
11,
16,
13,
17,
11,
16,
13,
1495,
11,
18,
13,
21,
11,
17,
13,
20,
4357,
532,
15,
13,
2231,
8,
6624,
657,
13,
2623,
4846,
23815,
2718,
4089,
1120,
3270,
3510,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
37659,
85,
7,
15,
13,
2919,
11,
19974,
26933,
15,
13,
1495,
11,
21,
13,
1495,
11,
18,
13,
20,
11,
19,
13,
20,
11,
16,
13,
1495,
38430,
12,
21,
13,
1495,
11,
16,
13,
17,
11,
16,
13,
1495,
11,
18,
13,
21,
11,
17,
13,
20,
46570,
532,
15,
13,
2231,
8,
6624,
657,
13,
2623,
4846,
23815,
2718,
4089,
1120,
3270,
3510,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
37659,
85,
7,
15,
13,
2919,
11,
685,
15,
13,
1495,
11,
21,
13,
1495,
11,
18,
13,
20,
11,
19,
13,
20,
11,
16,
13,
1495,
4357,
25915,
21,
13,
1495,
11,
16,
13,
17,
11,
16,
13,
1495,
11,
18,
13,
21,
11,
17,
13,
20,
4357,
718,
13,
1495,
8,
6624,
657,
13,
21,
1129,
486,
3023,
1129,
486,
3270,
2931,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
343,
81,
26933,
15,
13,
11623,
11,
15,
13,
26561,
1899,
28857,
11,
15,
13,
38073,
1899,
28857,
11,
15,
13,
2816,
1954,
5607,
2075,
11,
15,
13,
23,
1065,
3134,
1065,
2091,
4357,
25915,
940,
13,
1495,
12095,
17,
13,
20,
11,
18,
13,
20,
11,
24,
13,
20,
11,
16,
13,
1495,
12962,
15139,
230,
657,
13,
36042,
1485,
2548,
2414,
32059,
28011,
1731,
628,
220,
220,
220,
40379,
796,
2824,
7,
13344,
26933,
15,
13,
11623,
11,
15,
13,
26561,
1899,
28857,
11,
15,
13,
38073,
1899,
28857,
11,
15,
13,
2816,
1954,
5607,
2075,
11,
15,
13,
23,
1065,
3134,
1065,
2091,
4357,
25915,
940,
13,
1495,
12095,
17,
13,
20,
11,
18,
13,
20,
11,
24,
13,
20,
11,
16,
13,
1495,
60,
4008,
7904,
15007,
25835,
13,
5990,
2101,
27996,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
343,
81,
7,
912,
8,
15139,
230,
657,
13,
36042,
1485,
2548,
2414,
32059,
28011,
1731,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
343,
81,
7,
13344,
26933,
15,
13,
11623,
11,
15,
13,
26561,
1899,
28857,
11,
15,
13,
38073,
1899,
28857,
11,
15,
13,
2816,
1954,
5607,
2075,
11,
15,
13,
23,
1065,
3134,
1065,
2091,
4357,
25915,
940,
13,
1495,
12095,
17,
13,
20,
11,
18,
13,
20,
11,
24,
13,
20,
11,
16,
13,
1495,
60,
4008,
15139,
230,
657,
13,
36042,
1485,
2548,
2414,
32059,
28011,
1731,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
87,
37659,
85,
7,
15,
13,
2919,
11,
685,
35,
689,
13,
10430,
7,
6999,
11,
17,
11,
1495,
828,
44712,
13,
10430,
7,
6999,
11,
21,
11,
2078,
828,
220,
198,
220,
220,
220,
220,
220,
44712,
13,
10430,
7,
6390,
11,
17,
11,
1314,
828,
44712,
13,
10430,
7,
4967,
11,
24,
11,
1507,
828,
44712,
13,
10430,
7,
4626,
11,
17,
11,
1238,
8,
4357,
198,
220,
220,
220,
220,
220,
25915,
1314,
11,
642,
11,
1679,
11,
532,
940,
11,
2026,
4357,
44712,
13,
10430,
7,
6999,
11,
16,
11,
940,
8,
1267,
6624,
220,
5846,
13,
1314,
2816,
3720,
26279,
28978,
3388,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
87,
37659,
85,
7,
15,
13,
2919,
11,
19974,
26933,
35,
689,
13,
10430,
7,
6999,
11,
17,
11,
1495,
828,
44712,
13,
10430,
7,
6999,
11,
21,
11,
2078,
828,
220,
198,
220,
220,
220,
220,
220,
44712,
13,
10430,
7,
6390,
11,
17,
11,
1314,
828,
44712,
13,
10430,
7,
4967,
11,
24,
11,
1507,
828,
44712,
13,
10430,
7,
4626,
11,
17,
11,
1238,
8,
4357,
198,
220,
220,
220,
220,
220,
25915,
1314,
11,
642,
11,
1679,
11,
532,
940,
11,
2026,
8183,
828,
44712,
13,
10430,
7,
6999,
11,
16,
11,
940,
8,
1267,
6624,
220,
5846,
13,
1314,
2816,
3720,
26279,
28978,
3388,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
87,
343,
81,
26933,
35,
689,
13,
10430,
7,
6999,
11,
17,
11,
1495,
828,
44712,
13,
10430,
7,
6999,
11,
21,
11,
2078,
828,
220,
198,
220,
220,
220,
220,
220,
44712,
13,
10430,
7,
6390,
11,
17,
11,
1314,
828,
44712,
13,
10430,
7,
4967,
11,
24,
11,
1507,
828,
44712,
13,
10430,
7,
4626,
11,
17,
11,
1238,
8,
4357,
198,
220,
220,
220,
220,
220,
25915,
15363,
11,
642,
11,
1679,
11,
532,
940,
11,
939,
60,
1267,
6624,
220,
657,
13,
1983,
5999,
1433,
1899,
1959,
20548,
28567,
628,
220,
220,
220,
41560,
796,
2824,
7,
13344,
26933,
35,
689,
13,
10430,
7,
6999,
11,
17,
11,
1495,
828,
44712,
13,
10430,
7,
6999,
11,
21,
11,
2078,
828,
220,
198,
220,
220,
220,
44712,
13,
10430,
7,
6390,
11,
17,
11,
1314,
828,
44712,
13,
10430,
7,
4967,
11,
24,
11,
1507,
828,
44712,
13,
10430,
7,
4626,
11,
17,
11,
1238,
8,
4357,
198,
220,
220,
220,
25915,
15363,
11,
642,
11,
1679,
11,
532,
940,
11,
939,
60,
4008,
198,
220,
220,
220,
220,
198,
220,
220,
220,
41560,
16,
796,
15007,
25835,
13,
4475,
2514,
5990,
2101,
27996,
7,
35,
689,
13,
10430,
7,
10333,
11,
2713,
11,
1065,
828,
41560,
8,
198,
220,
220,
220,
2488,
9288,
41560,
16,
58,
18,
7131,
16,
60,
6624,
362,
13,
29143,
23539,
1959,
4059,
2682,
22047,
220,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
343,
81,
7,
8671,
16,
8,
6624,
220,
657,
13,
1983,
5999,
1433,
1899,
1959,
20548,
33319,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
87,
343,
81,
7,
8671,
8,
6624,
220,
657,
13,
1983,
5999,
1433,
1899,
1959,
20548,
28567,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
87,
343,
81,
7,
13344,
26933,
35,
689,
13,
10430,
7,
6999,
11,
17,
11,
1495,
828,
44712,
13,
10430,
7,
6999,
11,
21,
11,
2078,
828,
220,
198,
220,
220,
220,
220,
220,
44712,
13,
10430,
7,
6390,
11,
17,
11,
1314,
828,
44712,
13,
10430,
7,
4967,
11,
24,
11,
1507,
828,
44712,
13,
10430,
7,
4626,
11,
17,
11,
1238,
8,
4357,
198,
220,
220,
220,
220,
220,
25915,
15363,
11,
642,
11,
1679,
11,
532,
940,
11,
939,
12962,
1267,
6624,
220,
657,
13,
1983,
5999,
1433,
1899,
1959,
20548,
28567,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
37659,
85,
7,
37,
14149,
25835,
13,
5990,
2101,
27996,
26933,
7,
15,
13,
20,
11,
15,
13,
2713,
828,
357,
16,
13,
1495,
11,
657,
13,
2713,
2425,
828,
357,
17,
11,
657,
13,
15,
32642,
828,
357,
18,
13,
20,
11,
657,
13,
3312,
1495,
828,
357,
19,
13,
1495,
11,
657,
13,
47838,
15437,
828,
25915,
8628,
11,
1160,
11,
1315,
11,
4019,
11,
1802,
4357,
657,
13,
18,
8,
6624,
3261,
13,
38612,
1495,
2548,
24038,
21652,
3559,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
87,
37659,
85,
7,
37,
14149,
25835,
13,
10430,
27996,
26933,
7,
35,
689,
13,
10430,
7,
4967,
11,
24,
11,
1238,
828,
15,
13,
2713,
828,
357,
35,
689,
13,
10430,
7,
4626,
11,
17,
11,
16,
828,
657,
13,
2713,
2425,
828,
357,
35,
689,
13,
10430,
7,
5304,
11,
940,
11,
20,
828,
657,
13,
15,
32642,
828,
357,
35,
689,
13,
10430,
7,
5539,
11,
1065,
11,
20,
828,
657,
13,
3312,
1495,
828,
357,
35,
689,
13,
10430,
7,
23344,
11,
16,
11,
20,
828,
657,
13,
47838,
15437,
828,
25915,
8628,
11,
1160,
11,
1315,
11,
4019,
11,
1802,
4357,
44712,
13,
10430,
7,
4967,
11,
17,
11,
1314,
4008,
6624,
220,
2808,
13,
32637,
1433,
3553,
2996,
17032,
43239,
220,
628,
198,
220,
886,
628,
220,
2488,
9288,
2617,
366,
40201,
431,
1,
2221,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
1477,
283,
431,
7,
16,
13,
3365,
11,
24,
13,
2075,
11,
1828,
13,
2623,
8,
15139,
230,
657,
13,
2682,
2682,
2154,
2780,
6200,
44468,
3134,
220,
198,
220,
886,
628,
220,
2488,
9288,
2617,
366,
49,
689,
1,
2221,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
15410,
41384,
2514,
45,
296,
1292,
32184,
7,
37,
14149,
25835,
13,
15642,
608,
41384,
26933,
15,
13,
3865,
1731,
11,
657,
13,
4531,
11,
657,
13,
23,
24136,
11,
657,
13,
22,
2327,
4357,
16,
29720,
4873,
58,
18,
60,
6624,
657,
13,
3312,
24214,
2998,
1954,
2857,
1983,
4309,
628,
220,
220,
220,
288,
1416,
796,
15007,
25835,
13,
15410,
41384,
2514,
45,
296,
1292,
32184,
7,
37,
14149,
25835,
13,
15642,
608,
41384,
26933,
657,
13,
17032,
13330,
2670,
2920,
11,
657,
13,
2079,
3720,
3070,
1270,
25270,
11,
657,
13,
2079,
3270,
31751,
940,
2231,
11,
657,
13,
2079,
2682,
1983,
17059,
3682,
11,
657,
13,
2079,
2919,
486,
1157,
46250,
11,
657,
13,
4089,
39761,
29331,
24403,
16589,
17,
29720,
4873,
628,
220,
220,
220,
2488,
9288,
288,
1416,
58,
16,
60,
15139,
230,
657,
13,
405,
1433,
198,
220,
220,
220,
2488,
9288,
288,
1416,
58,
17,
60,
15139,
230,
657,
13,
405,
2481,
198,
220,
220,
220,
2488,
9288,
288,
1416,
58,
18,
60,
15139,
230,
657,
13,
405,
1983,
198,
220,
220,
220,
2488,
9288,
288,
1416,
58,
19,
60,
15139,
230,
657,
13,
405,
2091,
198,
220,
220,
220,
2488,
9288,
288,
1416,
58,
20,
60,
15139,
230,
657,
13,
405,
2718,
198,
220,
220,
220,
2488,
9288,
288,
1416,
58,
21,
60,
15139,
230,
657,
13,
405,
3901,
628,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
395,
320,
49,
7,
37,
14149,
25835,
13,
32184,
26628,
303,
90,
37,
14149,
25835,
13,
45,
296,
32184,
92,
26933,
15,
13,
2713,
11,
657,
13,
3312,
11,
657,
13,
2998,
11,
657,
13,
2919,
4357,
362,
828,
352,
13,
20,
8,
6624,
657,
13,
2998,
198,
220,
220,
220,
2488,
9288,
15007,
25835,
13,
395,
320,
49,
7,
37,
14149,
25835,
13,
32184,
26628,
303,
90,
37,
14149,
25835,
13,
45,
296,
32184,
92,
26933,
15,
13,
2713,
11,
657,
13,
3312,
11,
657,
13,
2998,
11,
657,
13,
2919,
4357,
362,
828,
352,
13,
17,
8,
6624,
657,
13,
15,
2414,
628,
220,
886,
198,
198,
437,
198,
198,
17256,
7203,
13715,
818,
8988,
14,
81,
2797,
3558,
13,
20362,
4943,
198,
17256,
7203,
28532,
452,
2929,
14,
81,
2797,
3558,
13,
20362,
4943,
198,
17256,
7203,
17126,
3196,
14,
81,
2797,
3558,
13,
20362,
4943,
198
] | 1.925141 | 3,727 |
# .-'''-. _..._
# ' _ \ _______ .-'_..._''.
# /| / /` '. \ \ ___ `'. .' .' '.\
# || . | \ ' ' |--.\ \ / .'
# || .-,.--. | ' | ' | | \ ' . ' .|
# || __ | .-. |\ \ / / __ | | | '| | __ .' |_
# ||/'__ '. | | | | `. ` ..' /.:--.'. | | | || | .:--.'. _ .' |
# |:/` '. '| | | | '-...-'`/ | \ | | | ' .'. ' / | \ | .' |'--. .-'
# || | || | '- `" __ | | | |___.' /' \ '. .`" __ | | . | / | |
# ||\ / '| | .'.''| | /_______.'/ '. `._____.-'/ .'.''| | .'.'| |// | |
# |/\'..' / | | / / | |_\_______|/ `-.______ / / / | |_.'.'.-' / | '.'
# ' `'-'` |_| \ \._,\ '/ ` \ \._,\ '/.' \_.' | /
# `--' `" `--' `" `'-'
using Base.Broadcast
using Base.Broadcast: Broadcasted, AbstractArrayStyle, DefaultArrayStyle, broadcasted,
instantiate, materialize, flatten, combine_eltypes, _broadcast_getindex
using ForwardDiff: Dual
trim(x, Δ) = reshape(Δ, ntuple(i -> size(Δ, i), Val(ndims(x))))
unbroadcast(x::AbstractArray, Δ) =
size(x) == size(Δ) ? Δ :
length(x) == length(Δ) ? trim(x, Δ) :
trim(x, sum(Δ, dims = ntuple(i -> size(x, i) == 1 ? i : ndims(Δ)+1, Val(ndims(Δ)))))
unbroadcast(x::Number, Δ) = sum(Δ)
dual(x, p) = x
dual(x::Real, p) = Dual(x, p)
dualtype(::Type{Dual{G,T,P}}) where {G,T,P} = T
function dual_function(f::F) where F
function (args::Vararg{Any,N}) where N
ds = map(args, ntuple(identity,Val(N))) do x, i
dual(x, ntuple(j -> i==j, Val(N)))
end
return f(ds...)
end
end
dualify(bc::Broadcasted{S}) where S = Broadcasted{S}(dual_function(bc.f), bc.args, bc.axes)
function broadcast_gradient!(bc::Broadcasted, dest::AbstractArray, grads::Vararg{Any})
@simd for I in eachindex(bc)
@inbounds begin
out = bc[I]
dest[I] = out.value
map((g, p) -> g[I] = p, grads, out.partials.values)
end
end
end
function broadcast_gradient(bc::Broadcasted, ::Type{T}) where T
dest = similar(bc, T)
grads = map(_ -> similar(bc, T), bc.args)
broadcast_gradient!(bc, dest, grads...)
return dest, grads
end
@inline function ∇broadcast(bc′::Broadcasted) where {F,N}
bc = dualify(instantiate(flatten(bc′)))
T = combine_eltypes(bc.f, bc.args)
y, gs = broadcast_gradient(bc, dualtype(T))
back(Δ) = map((x, d) -> unbroadcast(x, Δ.*d), bc.args, gs)
return y, back
end
function ∇broadcast(bc::Broadcasted{<:AbstractArrayStyle{0}})
out = dualify(instantiate(flatten(bc)))[]
return out.value, Δ -> map(x -> x*Δ, out.partials.values)
end
using Base: tail
_unflatten(x, xs) = first(xs), tail(xs)
_unflatten(x::Tuple{}, xs) = (), xs
function _unflatten(x::Tuple, xs)
t1, xs1 = _unflatten(first(x), xs)
t2, xs2 = _unflatten(tail(x), xs1)
(t1, t2...), xs2
end
function _unflatten(bc::Broadcasted, xs)
t, xs′ = _unflatten(bc.args, xs)
(args=t,f=nothing,axes=nothing), xs′
end
unflatten(x, xs) = _unflatten(x, xs)[1]
@grad function broadcasted(f, args...)
broadcasted(f, args...), Δ -> (nothing, Δ.args...)
end
@grad function materialize(bc::Broadcasted{<:DefaultArrayStyle})
let (y, back) = ∇broadcast(bc)
y, Δ -> (unflatten(bc, back(Δ)),)
end
end
| [
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
12,
7061,
29001,
13,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
986,
62,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
220,
220,
4808,
220,
220,
220,
3467,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37405,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
19355,
62,
986,
62,
35384,
198,
2,
220,
1220,
91,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1220,
220,
220,
1220,
63,
45302,
220,
220,
3467,
220,
220,
220,
220,
220,
220,
220,
3467,
220,
46444,
4600,
4458,
220,
220,
220,
220,
764,
6,
764,
6,
220,
220,
220,
220,
220,
45302,
59,
198,
2,
220,
8614,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
220,
220,
930,
220,
220,
220,
220,
3467,
220,
705,
220,
220,
220,
220,
220,
220,
220,
220,
705,
44233,
13,
59,
220,
3467,
220,
220,
1220,
764,
6,
198,
2,
220,
8614,
220,
220,
220,
220,
220,
220,
220,
764,
20995,
9816,
13,
930,
220,
220,
705,
220,
220,
220,
220,
220,
930,
220,
705,
220,
220,
220,
220,
220,
220,
220,
930,
930,
220,
220,
220,
3467,
220,
705,
764,
705,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
91,
198,
2,
220,
8614,
220,
11593,
220,
220,
220,
930,
220,
764,
34507,
930,
59,
220,
220,
220,
3467,
220,
220,
220,
220,
1220,
1220,
220,
11593,
220,
220,
220,
220,
930,
930,
220,
220,
220,
220,
930,
220,
705,
91,
930,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11593,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
6,
930,
62,
198,
2,
220,
8614,
14,
6,
834,
45302,
930,
930,
220,
930,
930,
4600,
13,
220,
220,
4600,
11485,
6,
1220,
11207,
438,
2637,
13,
220,
220,
930,
930,
220,
220,
220,
220,
930,
220,
8614,
930,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
25,
438,
2637,
13,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
220,
764,
6,
220,
220,
220,
220,
930,
198,
2,
220,
930,
14079,
63,
220,
45302,
705,
91,
930,
220,
930,
930,
220,
220,
220,
705,
12,
986,
19355,
63,
14,
930,
220,
220,
3467,
930,
220,
930,
930,
220,
220,
220,
220,
705,
764,
4458,
705,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1220,
930,
220,
220,
3467,
930,
220,
220,
220,
220,
220,
764,
6,
930,
6,
438,
13,
220,
764,
19355,
198,
2,
220,
8614,
220,
220,
220,
220,
930,
8614,
930,
220,
705,
12,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4600,
1,
11593,
930,
930,
220,
930,
930,
17569,
2637,
1220,
6,
220,
3467,
45302,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
63,
1,
11593,
930,
930,
220,
220,
220,
220,
764,
220,
220,
930,
1220,
930,
220,
930,
198,
2,
220,
8614,
59,
220,
220,
220,
1220,
705,
91,
930,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
6,
13531,
91,
930,
1220,
37405,
2637,
14,
220,
220,
220,
45302,
4600,
13,
29343,
7874,
26488,
764,
6,
13531,
91,
930,
220,
220,
764,
6,
2637,
91,
930,
1003,
930,
220,
930,
198,
2,
220,
930,
14,
43054,
492,
6,
1220,
930,
930,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1220,
1220,
220,
220,
930,
930,
62,
59,
37405,
91,
14,
220,
220,
220,
220,
220,
220,
4600,
34507,
25947,
1220,
1220,
1220,
220,
220,
930,
930,
62,
2637,
2637,
7874,
6,
220,
1220,
220,
930,
220,
705,
2637,
198,
2,
220,
705,
220,
4600,
6,
19355,
63,
220,
930,
62,
91,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3467,
3467,
13557,
11,
59,
31051,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4600,
220,
3467,
3467,
13557,
11,
59,
31051,
2637,
220,
220,
3467,
62,
2637,
220,
220,
930,
220,
220,
1220,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4600,
438,
6,
220,
4600,
1,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4600,
438,
6,
220,
4600,
1,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4600,
6,
19355,
198,
198,
3500,
7308,
13,
30507,
2701,
198,
3500,
7308,
13,
30507,
2701,
25,
44244,
276,
11,
27741,
19182,
21466,
11,
15161,
19182,
21466,
11,
7025,
276,
11,
198,
220,
9113,
9386,
11,
2587,
1096,
11,
27172,
268,
11,
12082,
62,
417,
19199,
11,
4808,
36654,
2701,
62,
1136,
9630,
198,
3500,
19530,
28813,
25,
20446,
198,
198,
2213,
320,
7,
87,
11,
37455,
8,
796,
27179,
1758,
7,
138,
242,
11,
299,
83,
29291,
7,
72,
4613,
2546,
7,
138,
242,
11,
1312,
828,
3254,
7,
358,
12078,
7,
87,
35514,
198,
198,
403,
36654,
2701,
7,
87,
3712,
23839,
19182,
11,
37455,
8,
796,
198,
220,
2546,
7,
87,
8,
6624,
2546,
7,
138,
242,
8,
5633,
37455,
1058,
198,
220,
4129,
7,
87,
8,
6624,
4129,
7,
138,
242,
8,
5633,
15797,
7,
87,
11,
37455,
8,
1058,
198,
220,
220,
220,
15797,
7,
87,
11,
2160,
7,
138,
242,
11,
5391,
82,
796,
299,
83,
29291,
7,
72,
4613,
2546,
7,
87,
11,
1312,
8,
6624,
352,
5633,
1312,
1058,
299,
67,
12078,
7,
138,
242,
47762,
16,
11,
3254,
7,
358,
12078,
7,
138,
242,
4008,
22305,
198,
198,
403,
36654,
2701,
7,
87,
3712,
15057,
11,
37455,
8,
796,
2160,
7,
138,
242,
8,
198,
198,
646,
282,
7,
87,
11,
279,
8,
796,
2124,
198,
646,
282,
7,
87,
3712,
15633,
11,
279,
8,
796,
20446,
7,
87,
11,
279,
8,
198,
198,
646,
282,
4906,
7,
3712,
6030,
90,
36248,
90,
38,
11,
51,
11,
47,
11709,
8,
810,
1391,
38,
11,
51,
11,
47,
92,
796,
309,
198,
198,
8818,
10668,
62,
8818,
7,
69,
3712,
37,
8,
810,
376,
198,
220,
2163,
357,
22046,
3712,
19852,
853,
90,
7149,
11,
45,
30072,
810,
399,
198,
220,
220,
220,
288,
82,
796,
3975,
7,
22046,
11,
299,
83,
29291,
7,
738,
414,
11,
7762,
7,
45,
22305,
466,
2124,
11,
1312,
198,
220,
220,
220,
220,
220,
10668,
7,
87,
11,
299,
83,
29291,
7,
73,
4613,
1312,
855,
73,
11,
3254,
7,
45,
22305,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
277,
7,
9310,
23029,
198,
220,
886,
198,
437,
198,
198,
646,
282,
1958,
7,
15630,
3712,
30507,
2701,
276,
90,
50,
30072,
810,
311,
796,
44244,
276,
90,
50,
92,
7,
646,
282,
62,
8818,
7,
15630,
13,
69,
828,
47125,
13,
22046,
11,
47125,
13,
897,
274,
8,
198,
198,
8818,
7025,
62,
49607,
0,
7,
15630,
3712,
30507,
2701,
276,
11,
2244,
3712,
23839,
19182,
11,
3915,
82,
3712,
19852,
853,
90,
7149,
30072,
198,
220,
2488,
14323,
67,
329,
314,
287,
1123,
9630,
7,
15630,
8,
198,
220,
220,
220,
2488,
259,
65,
3733,
2221,
198,
220,
220,
220,
220,
220,
503,
796,
47125,
58,
40,
60,
198,
220,
220,
220,
220,
220,
2244,
58,
40,
60,
796,
503,
13,
8367,
198,
220,
220,
220,
220,
220,
3975,
19510,
70,
11,
279,
8,
4613,
308,
58,
40,
60,
796,
279,
11,
3915,
82,
11,
503,
13,
3911,
8231,
13,
27160,
8,
198,
220,
220,
220,
886,
198,
220,
886,
198,
437,
198,
198,
8818,
7025,
62,
49607,
7,
15630,
3712,
30507,
2701,
276,
11,
7904,
6030,
90,
51,
30072,
810,
309,
198,
220,
2244,
796,
2092,
7,
15630,
11,
309,
8,
198,
220,
3915,
82,
796,
3975,
28264,
4613,
2092,
7,
15630,
11,
309,
828,
47125,
13,
22046,
8,
198,
220,
7025,
62,
49607,
0,
7,
15630,
11,
2244,
11,
3915,
82,
23029,
198,
220,
1441,
2244,
11,
3915,
82,
198,
437,
198,
198,
31,
45145,
2163,
18872,
229,
36654,
2701,
7,
15630,
17478,
3712,
30507,
2701,
276,
8,
810,
1391,
37,
11,
45,
92,
198,
220,
47125,
796,
10668,
1958,
7,
8625,
415,
9386,
7,
2704,
41769,
7,
15630,
17478,
22305,
198,
220,
309,
796,
12082,
62,
417,
19199,
7,
15630,
13,
69,
11,
47125,
13,
22046,
8,
198,
220,
331,
11,
308,
82,
796,
7025,
62,
49607,
7,
15630,
11,
10668,
4906,
7,
51,
4008,
198,
220,
736,
7,
138,
242,
8,
796,
3975,
19510,
87,
11,
288,
8,
4613,
22619,
6344,
2701,
7,
87,
11,
37455,
15885,
67,
828,
47125,
13,
22046,
11,
308,
82,
8,
198,
220,
1441,
331,
11,
736,
198,
437,
198,
198,
8818,
18872,
229,
36654,
2701,
7,
15630,
3712,
30507,
2701,
276,
90,
27,
25,
23839,
19182,
21466,
90,
15,
11709,
8,
198,
220,
503,
796,
10668,
1958,
7,
8625,
415,
9386,
7,
2704,
41769,
7,
15630,
22305,
21737,
198,
220,
1441,
503,
13,
8367,
11,
37455,
4613,
3975,
7,
87,
4613,
2124,
9,
138,
242,
11,
503,
13,
3911,
8231,
13,
27160,
8,
198,
437,
198,
198,
3500,
7308,
25,
7894,
198,
198,
62,
403,
2704,
41769,
7,
87,
11,
2124,
82,
8,
796,
717,
7,
34223,
828,
7894,
7,
34223,
8,
198,
198,
62,
403,
2704,
41769,
7,
87,
3712,
51,
29291,
90,
5512,
2124,
82,
8,
796,
29994,
2124,
82,
198,
198,
8818,
4808,
403,
2704,
41769,
7,
87,
3712,
51,
29291,
11,
2124,
82,
8,
198,
220,
256,
16,
11,
2124,
82,
16,
796,
4808,
403,
2704,
41769,
7,
11085,
7,
87,
828,
2124,
82,
8,
198,
220,
256,
17,
11,
2124,
82,
17,
796,
4808,
403,
2704,
41769,
7,
13199,
7,
87,
828,
2124,
82,
16,
8,
198,
220,
357,
83,
16,
11,
256,
17,
986,
828,
2124,
82,
17,
198,
437,
198,
198,
8818,
4808,
403,
2704,
41769,
7,
15630,
3712,
30507,
2701,
276,
11,
2124,
82,
8,
198,
220,
256,
11,
2124,
82,
17478,
796,
4808,
403,
2704,
41769,
7,
15630,
13,
22046,
11,
2124,
82,
8,
198,
220,
357,
22046,
28,
83,
11,
69,
28,
22366,
11,
897,
274,
28,
22366,
828,
2124,
82,
17478,
198,
437,
198,
198,
403,
2704,
41769,
7,
87,
11,
2124,
82,
8,
796,
4808,
403,
2704,
41769,
7,
87,
11,
2124,
82,
38381,
16,
60,
198,
198,
31,
9744,
2163,
7025,
276,
7,
69,
11,
26498,
23029,
198,
220,
7025,
276,
7,
69,
11,
26498,
986,
828,
37455,
4613,
357,
22366,
11,
37455,
13,
22046,
23029,
198,
437,
198,
198,
31,
9744,
2163,
2587,
1096,
7,
15630,
3712,
30507,
2701,
276,
90,
27,
25,
19463,
19182,
21466,
30072,
198,
220,
1309,
357,
88,
11,
736,
8,
796,
18872,
229,
36654,
2701,
7,
15630,
8,
198,
220,
220,
220,
331,
11,
37455,
4613,
357,
403,
2704,
41769,
7,
15630,
11,
736,
7,
138,
242,
36911,
8,
198,
220,
886,
198,
437,
198
] | 1.831215 | 1,967 |
""" The category of finite sets and functions, and its skeleton.
"""
module FinSets
export FinSet, FinFunction, FinDomFunction, TabularSet, TabularLimit,
force, is_indexed, preimage,
JoinAlgorithm, SmartJoin, NestedLoopJoin, SortMergeJoin, HashJoin,
SubFinSet, SubOpBoolean
using AutoHashEquals
using DataStructures: OrderedDict, IntDisjointSets, union!, find_root!
using Reexport
import StaticArrays
using StaticArrays: StaticVector, SVector, SizedVector, similar_type
import Tables, PrettyTables
@reexport using ..Sets
using ...GAT, ...Theories, ...CSetDataStructures, ...Graphs
using ..FinCats, ..FreeDiagrams, ..Limits, ..Subobjects
import ...Theories: Ob, meet, ∧, join, ∨, top, ⊤, bottom, ⊥
import ..Categories: ob, hom, dom, codom, compose, id, ob_map, hom_map
import ..FinCats: force, ob_generators, hom_generators, graph, is_discrete
using ..FinCats: dicttype
import ..Limits: limit, colimit, universal, pushout_complement,
can_pushout_complement
import ..Subobjects: Subobject, SubobjectLattice
using ..Sets: IdentityFunction, SetFunctionCallable
# Finite sets
#############
""" Finite set.
A finite set has abstract type `FinSet{S,T}`. The second type parameter `T` is
the element type of the set and the first parameter `S` is the collection type,
which can be a subtype of `AbstractSet` or another Julia collection type. In
addition, the skeleton of the category **FinSet** is the important special case
`S = Int`. The set ``{1,…,n}`` is represented by the object `FinSet(n)` of type
`FinSet{Int,Int}`.
"""
abstract type FinSet{S,T} <: SetOb{T} end
FinSet(set::FinSet) = set
""" Finite set of the form ``{1,…,n}`` for some number ``n ≥ 0``.
"""
@auto_hash_equals struct FinSetInt <: FinSet{Int,Int}
n::Int
end
FinSet{Int,Int}(n::Int) = FinSetInt(n)
FinSet(n::Int) = FinSetInt(n)
Base.iterate(set::FinSetInt, args...) = iterate(1:set.n, args...)
Base.length(set::FinSetInt) = set.n
Base.in(set::FinSetInt, elem) = in(elem, 1:set.n)
Base.show(io::IO, set::FinSetInt) = print(io, "FinSet($(set.n))")
""" Finite set given by Julia collection.
The underlying collection should be a Julia iterable of definite length. It may
be, but is not required to be, set-like (a subtype of `AbstractSet`).
"""
@auto_hash_equals struct FinSetCollection{S,T} <: FinSet{S,T}
collection::S
end
FinSetCollection(collection::S) where S =
FinSetCollection{S,eltype(collection)}(collection)
FinSet(collection::S) where {T, S<:Union{AbstractVector{T},AbstractSet{T}}} =
FinSetCollection{S,T}(collection)
Base.iterate(set::FinSetCollection, args...) = iterate(set.collection, args...)
Base.length(set::FinSetCollection) = length(set.collection)
Base.in(set::FinSetCollection, elem) = in(elem, set.collection)
function Base.show(io::IO, set::FinSetCollection)
print(io, "FinSet(")
show(io, set.collection)
print(io, ")")
end
""" Finite set whose elements are rows of a table.
The underlying table should be compliant with Tables.jl. For the sake of
uniformity, the rows are provided as named tuples, which assumes that the table
is not "extremely wide". This should not be a major limitation in practice but
see the Tables.jl documentation for further discussion.
"""
@auto_hash_equals struct TabularSet{Table,Row} <: FinSet{Table,Row}
table::Table
function TabularSet(table::Table) where Table
schema = Tables.schema(table)
new{Table,NamedTuple{schema.names,Tuple{schema.types...}}}(table)
end
end
FinSet(nt::NamedTuple) = TabularSet(nt)
Base.iterate(set::TabularSet, args...) =
iterate(Tables.namedtupleiterator(set.table), args...)
Base.length(set::TabularSet) = Tables.rowcount(set.table)
Base.collect(set::TabularSet) = Tables.rowtable(set.table)
function Base.show(io::IO, set::TabularSet)
print(io, "TabularSet(")
show(io, set.table)
print(io, ")")
end
function Base.show(io::IO, ::MIME"text/plain", set::TabularSet{T}) where T
print(io, "$(length(set))-element TabularSet{$T}")
if !get(io, :compact, false)
println(io, ":")
PrettyTables.pretty_table(io, set.table, nosubheader=true)
end
end
function Base.show(io::IO, ::MIME"text/html", set::TabularSet)
println(io, "<div class=\"tabular-set\">")
println(io, "$(length(set))-element TabularSet")
PrettyTables.pretty_table(io, set.table, backend=Val(:html), standalone=false,
nosubheader=true)
println(io, "</div>")
end
# Discrete categories
#--------------------
""" Discrete category on a finite set.
The only morphisms in a discrete category are the identities, which are here
identified with the objects.
"""
@auto_hash_equals struct DiscreteCat{Ob,S<:FinSet{<:Any,Ob}} <: FinCat{Ob,Ob}
set::S
end
DiscreteCat(n::Integer) = DiscreteCat(FinSet(n))
FinCat(s::Union{FinSet,Integer}) = DiscreteCat(s)
ob_generators(C::DiscreteCat) = C.set
hom_generators(::DiscreteCat) = ()
is_discrete(::DiscreteCat) = true
graph(C::DiscreteCat{Int,FinSetInt}) = Graph(length(C.set))
dom(C::DiscreteCat{T}, f) where T = f::T
codom(C::DiscreteCat{T}, f) where T = f::T
id(C::DiscreteCat{T}, x) where T = x::T
compose(C::DiscreteCat{T}, f, g) where T = (f::T == g::T) ? f :
error("Nontrivial composite in discrete category: $f != $g")
hom_map(F::FinDomFunctor{<:DiscreteCat}, x) = id(codom(F), ob_map(F, x))
Base.show(io::IO, C::DiscreteCat{Int,FinSetInt}) =
print(io, "FinCat($(length(C.set)))")
# Finite functions
##################
""" Function between finite sets.
The function can be defined implicitly by an arbitrary Julia function, in which
case it is evaluated lazily, or explictly by a vector of integers. In the vector
representation, the function (1↦1, 2↦3, 3↦2, 4↦3), for example, is represented
by the vector [1,3,2,3].
This type is mildly generalized by [`FinDomFunction`](@ref).
"""
const FinFunction{S, S′, Dom <: FinSet{S}, Codom <: FinSet{S′}} =
SetFunction{Dom,Codom}
FinFunction(f::Function, dom, codom) =
SetFunctionCallable(f, FinSet(dom), FinSet(codom))
FinFunction(::typeof(identity), args...) =
IdentityFunction((FinSet(arg) for arg in args)...)
FinFunction(f::AbstractDict, args...) =
FinFunctionDict(f, (FinSet(arg) for arg in args)...)
function FinFunction(f::AbstractVector{Int}, args...; index=false)
if index == false
FinDomFunctionVector(f, (FinSet(arg) for arg in args)...)
else
index = index == true ? nothing : index
IndexedFinFunctionVector(f, args...; index=index)
end
end
FinFunction(f::AbstractVector{Int}; kw...) =
FinFunction(f, FinSet(isempty(f) ? 0 : maximum(f)); kw...)
Sets.show_type_constructor(io::IO, ::Type{<:FinFunction}) =
print(io, "FinFunction")
""" Function out of a finite set.
This class of functions is convenient because it is exactly the class that can
be represented explicitly by a vector of values from the codomain.
"""
const FinDomFunction{S, Dom<:FinSet{S}, Codom<:SetOb} = SetFunction{Dom,Codom}
FinDomFunction(f::Function, dom, codom) =
SetFunctionCallable(f, FinSet(dom), codom)
FinDomFunction(::typeof(identity), args...) =
IdentityFunction((FinSet(arg) for arg in args)...)
FinDomFunction(f::AbstractDict, args...) = FinDomFunctionDict(f, args...)
function FinDomFunction(f::AbstractVector, args...; index=false)
if index == false
FinDomFunctionVector(f, args...)
else
index = index == true ? nothing : index
IndexedFinDomFunctionVector(f, args...; index=index)
end
end
Sets.show_type_constructor(io::IO, ::Type{<:FinDomFunction}) =
print(io, "FinDomFunction")
# Note: Cartesian monoidal structure is implemented generically for Set but
# cocartesian only for FinSet.
@cocartesian_monoidal_instance FinSet FinFunction
Ob(C::FinCat{Int}) = FinSet(length(ob_generators(C)))
Ob(F::Functor{<:FinCat{Int}}) = FinDomFunction(collect_ob(F), Ob(codom(F)))
# Vector-based functions
#-----------------------
""" Function in **Set** represented by a vector.
The domain of this function is always of type `FinSet{Int}`, with elements of
the form ``{1,...,n}``.
"""
struct FinDomFunctionVector{T,V<:AbstractVector{T}, Codom<:SetOb{T}} <:
FinDomFunction{Int,FinSetInt,Codom}
func::V
codom::Codom
end
FinDomFunctionVector(f::AbstractVector{T}) where T =
FinDomFunctionVector(f, TypeSet{T}())
function FinDomFunctionVector(f::AbstractVector, dom::FinSet{Int}, codom)
length(f) == length(dom) ||
error("Length of vector $f does not match domain $dom")
FinDomFunctionVector(f, codom)
end
dom(f::FinDomFunctionVector) = FinSet(length(f.func))
(f::FinDomFunctionVector)(x) = f.func[x]
function Base.show(io::IO, f::FinDomFunctionVector)
print(io, "FinDomFunction($(f.func), ")
Sets.show_domains(io, f)
print(io, ")")
end
force(f::FinDomFunction{Int}) = FinDomFunctionVector(map(f, dom(f)), codom(f))
force(f::FinDomFunctionVector) = f
Base.collect(f::SetFunction) = force(f).func
""" Function in **FinSet** represented explicitly by a vector.
"""
const FinFunctionVector{S,T,V<:AbstractVector{T}} =
FinDomFunctionVector{T,V,<:FinSet{S,T}}
Base.show(io::IO, f::FinFunctionVector) =
print(io, "FinFunction($(f.func), $(length(dom(f))), $(length(codom(f))))")
Sets.do_compose(f::FinFunctionVector, g::FinDomFunctionVector) =
FinDomFunctionVector(g.func[f.func], codom(g))
# Indexed vector-based functions
#-------------------------------
""" Indexed function out of a finite set of type `FinSet{Int}`.
Works in the same way as the special case of [`IndexedFinFunctionVector`](@ref),
except that the index is typically a dictionary, not a vector.
"""
struct IndexedFinDomFunctionVector{T,V<:AbstractVector{T},Index,Codom<:SetOb{T}} <:
FinDomFunction{Int,FinSetInt,Codom}
func::V
index::Index
codom::Codom
end
IndexedFinDomFunctionVector(f::AbstractVector{T}; kw...) where T =
IndexedFinDomFunctionVector(f, TypeSet{T}(); kw...)
function IndexedFinDomFunctionVector(f::AbstractVector{T}, codom::SetOb{T};
index=nothing) where T
if isnothing(index)
index = Dict{T,Vector{Int}}()
for (i, x) in enumerate(f)
push!(get!(index, x) do; Int[] end, i)
end
end
IndexedFinDomFunctionVector(f, index, codom)
end
Base.:(==)(f::Union{FinDomFunctionVector,IndexedFinDomFunctionVector},
g::Union{FinDomFunctionVector,IndexedFinDomFunctionVector}) =
# Ignore index when comparing for equality.
f.func == g.func && codom(f) == codom(g)
function Base.show(io::IO, f::IndexedFinDomFunctionVector)
print(io, "FinDomFunction($(f.func), ")
Sets.show_domains(io, f)
print(io, ", index=true)")
end
dom(f::IndexedFinDomFunctionVector) = FinSet(length(f.func))
force(f::IndexedFinDomFunctionVector) = f
(f::IndexedFinDomFunctionVector)(x) = f.func[x]
""" Whether the given function is indexed, i.e., supports efficient preimages.
"""
is_indexed(f::SetFunction) = false
is_indexed(f::IdentityFunction) = true
is_indexed(f::IndexedFinDomFunctionVector) = true
is_indexed(f::FinDomFunctionVector{T,<:AbstractRange{T}}) where T = true
""" The preimage (inverse image) of the value y in the codomain.
"""
preimage(f::IdentityFunction, y) = SVector(y)
preimage(f::FinDomFunction, y) = [ x for x in dom(f) if f(x) == y ]
preimage(f::IndexedFinDomFunctionVector, y) = get_preimage_index(f.index, y)
@inline get_preimage_index(index::AbstractDict, y) = get(index, y, 1:0)
@inline get_preimage_index(index::AbstractVector, y) = index[y]
preimage(f::FinDomFunctionVector{T,<:AbstractRange{T}}, y::T) where T =
# Both `in` and `searchsortedfirst` are specialized for AbstractRange.
y ∈ f.func ? SVector(searchsortedfirst(f.func, y)) : SVector{0,Int}()
""" Indexed function between finite sets of type `FinSet{Int}`.
Indexed functions store both the forward map ``f: X → Y``, as a vector of
integers, and the backward map ``f: Y → X⁻¹``, as a vector of vectors of
integers, accessible through the [`preimage`](@ref) function. The backward map
is called the *index*. If it is not supplied through the keyword argument
`index`, it is computed when the object is constructed.
This type is mildly generalized by [`IndexedFinDomFunctionVector`](@ref).
"""
const IndexedFinFunctionVector{V,Index} =
IndexedFinDomFunctionVector{Int,V,Index,FinSetInt}
function IndexedFinFunctionVector(f::AbstractVector{Int}; index=nothing)
codom = isnothing(index) ? (isempty(f) ? 0 : maximum(f)) : length(index)
IndexedFinFunctionVector(f, codom; index=index)
end
function IndexedFinFunctionVector(f::AbstractVector{Int}, codom; index=nothing)
codom = FinSet(codom)
if isnothing(index)
index = [ Int[] for j in codom ]
for (i, j) in enumerate(f)
push!(index[j], i)
end
elseif length(index) != length(codom)
error("Index length $(length(index)) does not match codomain $codom")
end
IndexedFinDomFunctionVector(f, index, codom)
end
Base.show(io::IO, f::IndexedFinFunctionVector) =
print(io, "FinFunction($(f.func), $(length(dom(f))), $(length(codom(f))), index=true)")
# For now, we do not preserve or compose indices, only the function vectors.
Sets.do_compose(f::Union{FinFunctionVector,IndexedFinFunctionVector},
g::Union{FinDomFunctionVector,IndexedFinDomFunctionVector}) =
FinDomFunctionVector(g.func[f.func], codom(g))
# Dict-based functions
#---------------------
""" Function in **Set** represented by a dictionary.
The domain is a `FinSet{S}` where `S` is the type of the dictionary's `keys`
collection.
"""
@auto_hash_equals struct FinDomFunctionDict{K,D<:AbstractDict{K},Codom<:SetOb} <:
FinDomFunction{D,FinSet{AbstractSet{K},K},Codom}
func::D
codom::Codom
end
FinDomFunctionDict(d::AbstractDict{K,V}) where {K,V} =
FinDomFunctionDict(d, TypeSet{V}())
dom(f::FinDomFunctionDict) = FinSet(keys(f.func))
(f::FinDomFunctionDict)(x) = f.func[x]
function Base.show(io::IO, f::F) where F <: FinDomFunctionDict
Sets.show_type_constructor(io, F)
print(io, "(")
show(io, f.func)
print(io, ", ")
Sets.show_domains(io, f, domain=false)
print(io, ")")
end
force(f::FinDomFunction) =
FinDomFunctionDict(Dict(x => f(x) for x in dom(f)), codom(f))
force(f::FinDomFunctionDict) = f
""" Function in **FinSet** represented by a dictionary.
"""
const FinFunctionDict{K,D<:AbstractDict{K},Codom<:FinSet} =
FinDomFunctionDict{K,D,Codom}
FinFunctionDict(d::AbstractDict, codom::FinSet) = FinDomFunctionDict(d, codom)
FinFunctionDict(d::AbstractDict{K,V}) where {K,V} =
FinDomFunctionDict(d, FinSet(Set(values(d))))
Sets.do_compose(f::FinFunctionDict{K,D}, g::FinDomFunctionDict) where {K,D} =
FinDomFunctionDict(dicttype(D)(x => g.func[y] for (x,y) in pairs(f.func)),
codom(g))
# Limits
########
limit(Xs::EmptyDiagram{<:FinSet{Int}}) = Limit(Xs, SMultispan{0}(FinSet(1)))
universal(lim::Limit{<:FinSet{Int},<:EmptyDiagram}, cone::SMultispan{0}) =
ConstantFunction(1, apex(cone), FinSet(1))
limit(Xs::SingletonDiagram{<:FinSet{Int}}) = limit(Xs, SpecializeLimit())
function limit(Xs::ObjectPair{<:FinSet{Int}})
m, n = length.(Xs)
indices = CartesianIndices((m, n))
π1 = FinFunction(i -> indices[i][1], m*n, m)
π2 = FinFunction(i -> indices[i][2], m*n, n)
Limit(Xs, Span(π1, π2))
end
function universal(lim::Limit{<:FinSet{Int},<:ObjectPair}, cone::Span)
f, g = cone
m, n = length.(codom.(cone))
indices = LinearIndices((m, n))
FinFunction(i -> indices[f(i),g(i)], apex(cone), ob(lim))
end
function limit(Xs::DiscreteDiagram{<:FinSet{Int}})
ns = length.(Xs)
indices = CartesianIndices(Tuple(ns))
n = prod(ns)
πs = [FinFunction(i -> indices[i][j], n, ns[j]) for j in 1:length(ns)]
Limit(Xs, Multispan(FinSet(n), πs))
end
function universal(lim::Limit{<:FinSet{Int},<:DiscreteDiagram}, cone::Multispan)
ns = length.(codom.(cone))
indices = LinearIndices(Tuple(ns))
FinFunction(i -> indices[(f(i) for f in cone)...], apex(cone), ob(lim))
end
function limit(pair::ParallelPair{<:FinSet{Int}})
f, g = pair
m = length(dom(pair))
eq = FinFunction(filter(i -> f(i) == g(i), 1:m), m)
Limit(pair, SMultispan{1}(eq))
end
function limit(para::ParallelMorphisms{<:FinSet{Int}})
@assert !isempty(para)
f1, frest = para[1], para[2:end]
m = length(dom(para))
eq = FinFunction(filter(i -> all(f1(i) == f(i) for f in frest), 1:m), m)
Limit(para, SMultispan{1}(eq))
end
function universal(lim::Limit{<:FinSet{Int},<:ParallelMorphisms},
cone::SMultispan{1})
ι = collect(incl(lim))
h = only(cone)
FinFunction(Int[only(searchsorted(ι, h(i))) for i in dom(h)], length(ι))
end
""" Limit of finite sets with a reverse mapping or index into the limit set.
This type provides a fallback for limit algorithms that do not come with a
specialized algorithm to apply the universal property of the limit. In such
cases, you can explicitly construct a mapping from tuples of elements in the
feet of the limit cone to elements in the apex of the cone.
The index is constructed the first time it is needed. Thus there is no extra
cost to using this type if the universal property will not be invoked.
"""
mutable struct FinSetIndexedLimit{Ob<:FinSet,Diagram,Cone<:Multispan{Ob}} <:
AbstractLimit{Ob,Diagram}
diagram::Diagram
cone::Cone
index::Union{AbstractDict,Nothing}
end
FinSetIndexedLimit(diagram, cone::Multispan) =
FinSetIndexedLimit(diagram, cone, nothing)
function make_limit_index(cone::Multispan{<:FinSet})
πs = Tuple(legs(cone))
index = Dict{Tuple{map(eltype∘codom, πs)...}, eltype(apex(cone))}()
for x in apex(cone)
index[map(π -> π(x), πs)] = x
end
return index
end
function universal(lim::FinSetIndexedLimit, cone::Multispan)
if isnothing(lim.index)
lim.index = make_limit_index(lim.cone)
end
fs = Tuple(legs(cone))
FinFunction(Int[lim.index[map(f -> f(x), fs)] for x in apex(cone)],
apex(cone), ob(lim))
end
""" Algorithm for limit of cospan or multicospan with feet being finite sets.
In the context of relational databases, such limits are called *joins*. The
trivial join algorithm is [`NestedLoopJoin`](@ref), which is algorithmically
equivalent to the generic algorithm `ComposeProductEqualizer`. The algorithms
[`HashJoin`](@ref) and [`SortMergeJoin`](@ref) are usually much faster. If you
are unsure what algorithm to pick, use [`SmartJoin`](@ref).
"""
abstract type JoinAlgorithm <: LimitAlgorithm end
""" Meta-algorithm for joins that attempts to pick an appropriate algorithm.
"""
struct SmartJoin <: JoinAlgorithm end
function limit(cospan::Multicospan{<:SetOb,<:FinDomFunction{Int}};
alg::LimitAlgorithm=ComposeProductEqualizer())
limit(cospan, alg)
end
function limit(cospan::Multicospan{<:SetOb,<:FinDomFunction{Int}}, ::SmartJoin)
# Handle the important special case where one of the legs is a constant
# (function out of a singleton set). In this case, we just need to take a
# product of preimages of the constant value.
funcs = legs(cospan)
i = findfirst(f -> length(dom(f)) == 1, funcs)
if !isnothing(i)
c = funcs[i](1)
ιs = map(deleteat(funcs, i)) do f
FinFunction(preimage(f, c), dom(f))
end
x, πs = if length(ιs) == 1
dom(only(ιs)), ιs
else
prod = product(map(dom, ιs))
ob(prod), map(compose, legs(prod), ιs)
end
πs = insert(πs, i, ConstantFunction(1, x, FinSet(1)))
return FinSetIndexedLimit(cospan, Multispan(πs))
end
# In the general case, for now we always just do a hash join, although
# sort-merge joins can sometimes be faster.
limit(cospan, HashJoin())
end
deleteat(vec::StaticVector, i) = StaticArrays.deleteat(vec, i)
deleteat(vec::Vector, i) = deleteat!(copy(vec), i)
insert(vec::StaticVector{N,T}, i, x::S) where {N,T,S} =
StaticArrays.insert(similar_type(vec, typejoin(T,S))(vec), i, x)
insert(vec::Vector{T}, i, x::S) where {T,S} =
insert!(collect(typejoin(T,S), vec), i, x)
""" [Nested-loop join](https://en.wikipedia.org/wiki/Nested_loop_join) algorithm.
This is the naive algorithm for computing joins.
"""
struct NestedLoopJoin <: JoinAlgorithm end
function limit(cospan::Multicospan{<:SetOb,<:FinDomFunction{Int}},
::NestedLoopJoin)
# A nested-loop join is algorithmically the same as `ComposeProductEqualizer`,
# but for completeness and performance we give a direct implementation here.
funcs = legs(cospan)
ns = map(length, feet(cospan))
πs = map(_ -> Int[], funcs)
for I in CartesianIndices(Tuple(ns))
values = map((f, i) -> f(I[i]), funcs, eachindex(funcs))
if all(==(values[1]), values)
for i in eachindex(πs)
push!(πs[i], I[i])
end
end
end
cone = Multispan(map((π,f) -> FinFunction(π, dom(f)), πs, funcs))
FinSetIndexedLimit(cospan, cone)
end
""" [Sort-merge join](https://en.wikipedia.org/wiki/Sort-merge_join) algorithm.
"""
struct SortMergeJoin <: JoinAlgorithm end
function limit(cospan::Multicospan{<:SetOb,<:FinDomFunction{Int}},
::SortMergeJoin)
funcs = map(collect, legs(cospan))
sorts = map(sortperm, funcs)
values = similar_mutable(funcs, eltype(apex(cospan)))
ranges = similar_mutable(funcs, UnitRange{Int})
function next_range!(i::Int)
f, sort = funcs[i], sorts[i]
n = length(f)
start = last(ranges[i]) + 1
ranges[i] = if start <= n
val = values[i] = f[sort[start]]
stop = start + 1
while stop <= n && f[sort[stop]] == val; stop += 1 end
start:(stop - 1)
else
start:n
end
end
πs = map(_ -> Int[], funcs)
for i in eachindex(ranges)
ranges[i] = 0:0
next_range!(i)
end
while !any(isempty, ranges)
if all(==(values[1]), values)
indices = CartesianIndices(Tuple(ranges))
for i in eachindex(πs)
append!(πs[i], (sorts[i][I[i]] for I in indices))
next_range!(i)
end
else
next_range!(argmin(values))
end
end
cone = Multispan(map((π,f) -> FinFunction(π, length(f)), πs, funcs))
FinSetIndexedLimit(cospan, cone)
end
similar_mutable(x::AbstractVector, T::Type) = similar(x, T)
function similar_mutable(x::StaticVector{N}, T::Type) where N
# `similar` always returns an `MVector` but `setindex!(::MVector, args...)`
# only works when the element type is a bits-type.
isbitstype(T) ? similar(x, T) : SizedVector{N}(Vector{T}(undef, N))
end
""" [Hash join](https://en.wikipedia.org/wiki/Hash_join) algorithm.
"""
struct HashJoin <: JoinAlgorithm end
function limit(cospan::Multicospan{<:SetOb,<:FinDomFunction{Int}}, ::HashJoin)
# We follow the standard terminology for hash joins: in a multiway hash join,
# one function, called the *probe*, will be iterated over and need not be
# indexed, whereas the other functions, call *build* inputs, must be indexed.
#
# We choose as probe the unindexed function with largest domain. If all
# functions are already indexed, we arbitrarily choose the first one.
i = argmax(map(legs(cospan)) do f
is_indexed(f) ? -1 : length(dom(f))
end)
probe = legs(cospan)[i]
builds = map(ensure_indexed, deleteat(legs(cospan), i))
πs_build, π_probe = hash_join(builds, probe)
FinSetIndexedLimit(cospan, Multispan(insert(πs_build, i, π_probe)))
end
function hash_join(builds::AbstractVector{<:FinDomFunction{Int}},
probe::FinDomFunction{Int})
π_builds, πp = map(_ -> Int[], builds), Int[]
for y in dom(probe)
val = probe(y)
preimages = map(build -> preimage(build, val), builds)
n_preimages = Tuple(map(length, preimages))
n = prod(n_preimages)
if n > 0
indices = CartesianIndices(n_preimages)
for j in eachindex(π_builds)
πb, xs = π_builds[j], preimages[j]
append!(πb, (xs[I[j]] for I in indices))
end
append!(πp, (y for i in 1:n))
end
end
(map(FinFunction, π_builds, map(dom, builds)), FinFunction(πp, dom(probe)))
end
function hash_join(builds::StaticVector{1,<:FinDomFunction{Int}},
probe::FinDomFunction{Int})
πb, πp = hash_join(builds[1], probe)
(SVector((πb,)), πp)
end
function hash_join(build::FinDomFunction{Int}, probe::FinDomFunction{Int})
πb, πp = Int[], Int[]
for y in dom(probe)
xs = preimage(build, probe(y))
n = length(xs)
if n > 0
append!(πb, xs)
append!(πp, (y for i in 1:n))
end
end
(FinFunction(πb, dom(build)), FinFunction(πp, dom(probe)))
end
ensure_indexed(f::FinFunction{Int,Int}) = is_indexed(f) ? f :
FinFunction(collect(f), codom(f), index=true)
ensure_indexed(f::FinDomFunction{Int}) = is_indexed(f) ? f :
FinDomFunction(collect(f), index=true)
function limit(d::BipartiteFreeDiagram{Ob,Hom}) where
{Ob<:SetOb, Hom<:FinDomFunction{Int}}
# As in a pullback, this method assumes that all objects in layer 2 have
# incoming morphisms.
@assert !any(isempty(incident(d, v, :tgt)) for v in vertices₂(d))
d_original = d
# For uniformity, e.g. when pairing below, ensure that all objects in layer 2
# are type sets.
if !all(x isa TypeSet for x in ob₂(d))
d = map(d, ob₁=identity, ob₂=ensure_type_set, hom=ensure_type_set_codom)
end
# It is generally optimal to compute all equalizers (self joins) first, so as
# to reduce the sizes of later pullbacks (joins) and products (cross joins).
d, ιs = equalize_all(d)
rem_vertices₂!(d, [v for v in vertices₂(d) if
length(incident(d, v, :tgt)) == 1])
# Perform all pairings before computing any joins.
d = pair_all(d)
# Having done this preprocessing, if there are any nontrivial joins, perform
# one of them and recurse; otherwise, we have at most a product to compute.
#
# In the binary case (`nv₁(d) == 2`), the preprocessing guarantees that there
# is at most one nontrivial join, so there are no choices to make. When there
# are multiple possible joins, do the one with smallest base cardinality
# (product of sizes of relations to join). This is a simple greedy heuristic.
# For more control over the order of the joins, create a UWD schedule.
if nv₂(d) == 0
# FIXME: Shouldn't need FinSetIndexedLimit in these special cases.
if nv₁(d) == 1
FinSetIndexedLimit(d_original, SMultispan{1}(ιs[1]))
else
πs = legs(product(SVector(ob₁(d)...)))
FinSetIndexedLimit(d_original, Multispan(map(compose, πs, ιs)))
end
else
# Select the join to perform.
v = argmin(map(vertices₂(d)) do v
edges = incident(d, v, :tgt)
@assert length(edges) >= 2
prod(e -> length(dom(hom(d, e))), edges)
end)
# Compute the pullback (inner join).
join_edges = incident(d, v, :tgt)
to_join = src(d, join_edges)
to_keep = setdiff(vertices₁(d), to_join)
pb = pullback(SVector(hom(d, join_edges)...), alg=SmartJoin())
# Create a new bipartite diagram with joined vertices.
d_joined = BipartiteFreeDiagram{Ob,Hom}()
copy_parts!(d_joined, d, V₁=to_keep, V₂=setdiff(vertices₂(d),v), E=edges(d))
joined = add_vertex₁!(d_joined, ob₁=apex(pb))
for (u, π) in zip(to_join, legs(pb))
for e in setdiff(incident(d, u, :src), join_edges)
set_subparts!(d_joined, e, src=joined, hom=π⋅hom(d,e))
end
end
rem_edges!(d_joined, join_edges)
# Recursively compute the limit of the new diagram.
lim = limit(d_joined)
# Assemble limit cone from cones for pullback and reduced limit.
πs = Vector{Hom}(undef, nv₁(d))
for (i, u) in enumerate(to_join)
πs[u] = compose(last(legs(lim)), legs(pb)[i], ιs[u])
end
for (i, u) in enumerate(to_keep)
πs[u] = compose(legs(lim)[i], ιs[u])
end
FinSetIndexedLimit(d_original, Multispan(πs))
end
end
ensure_type_set(s::FinSet) = TypeSet(eltype(s))
ensure_type_set(s::TypeSet) = s
ensure_type_set_codom(f::FinFunction) =
SetFunctionCallable(f, dom(f), TypeSet(eltype(codom(f))))
ensure_type_set_codom(f::IndexedFinFunctionVector) =
IndexedFinDomFunctionVector(f.func, index=f.index)
ensure_type_set_codom(f::FinDomFunction) = f
""" Compute all possible equalizers in a bipartite free diagram.
The result is a new bipartite free diagram that has the same vertices but is
*simple*, i.e., has no multiple edges. The list of inclusion morphisms into
layer 1 of the original diagram is also returned.
"""
function equalize_all(d::BipartiteFreeDiagram{Ob,Hom}) where {Ob,Hom}
d_simple = BipartiteFreeDiagram{Ob,Hom}()
copy_parts!(d_simple, d, V₂=vertices₂(d))
ιs = map(vertices₁(d)) do u
# Collect outgoing edges of u, key-ed by target vertex.
out_edges = OrderedDict{Int,Vector{Int}}()
for e in incident(d, u, :src)
push!(get!(out_edges, tgt(d,e)) do; Int[] end, e)
end
# Equalize all sets of parallel edges out of u.
ι = id(ob₁(d, u))
for es in values(out_edges)
if length(es) > 1
fs = SVector((ι⋅f for f in hom(d, es))...)
ι = incl(equalizer(fs)) ⋅ ι
end
end
add_vertex₁!(d_simple, ob₁=dom(ι)) # == u
for (v, es) in pairs(out_edges)
add_edge!(d_simple, u, v, hom=ι⋅hom(d, first(es)))
end
ι
end
(d_simple, ιs)
end
""" Perform all possible pairings in a bipartite free diagram.
The resulting diagram has the same layer 1 vertices but a possibly reduced set
of layer 2 vertices. Layer 2 vertices are merged when they have exactly the same
multiset of adjacent vertices.
"""
function pair_all(d::BipartiteFreeDiagram{Ob,Hom}) where {Ob,Hom}
d_paired = BipartiteFreeDiagram{Ob,Hom}()
copy_parts!(d_paired, d, V₁=vertices₁(d))
# Construct mapping to V₂ vertices from multisets of adjacent V₁ vertices.
outmap = OrderedDict{Vector{Int},Vector{Int}}()
for v in vertices₂(d)
push!(get!(outmap, sort(inneighbors(d, v))) do; Int[] end, v)
end
for (srcs, tgts) in pairs(outmap)
in_edges = map(tgts) do v
sort(incident(d, v, :tgt), by=e->src(d,e))
end
if length(tgts) == 1
v = add_vertex₂!(d_paired, ob₂=ob₂(d, only(tgts)))
add_edges!(d_paired, srcs, fill(v, length(srcs)),
hom=hom(d, only(in_edges)))
else
prod = product(SVector(ob₂(d, tgts)...))
v = add_vertex₂!(d_paired, ob₂=ob(prod))
for (i,u) in enumerate(srcs)
f = pair(prod, hom(d, getindex.(in_edges, i)))
add_edge!(d_paired, u, v, hom=f)
end
end
end
d_paired
end
""" Limit of general diagram of FinSets computed by product-then-filter.
See `Limits.CompositePullback` for a very similar construction.
"""
struct FinSetCompositeLimit{Ob<:FinSet, Diagram,
Cone<:Multispan{Ob}, Prod<:Product{Ob},
Incl<:FinFunction} <: AbstractLimit{Ob,Diagram}
diagram::Diagram
cone::Cone
prod::Prod
incl::Incl # Inclusion for the "multi-equalizer" in general formula.
end
limit(d::FreeDiagram{<:FinSet{Int}}) = limit(FinDomFunctor(d))
function limit(F::Functor{<:FinCat{Int},<:TypeCat{<:FinSet{Int}}})
# Uses the general formula for limits in Set (Leinster, 2014, Basic Category
# Theory, Example 5.1.22 / Equation 5.16). This method is simple and direct,
# but extremely inefficient!
J = dom(F)
prod = product(map(x -> ob_map(F, x), ob_generators(J)))
n, πs = length(ob(prod)), legs(prod)
ι = FinFunction(filter(1:n) do i
all(hom_generators(J)) do f
s, t, h = dom(J, f), codom(J, f), hom_map(F, f)
h(πs[s](i)) == πs[t](i)
end
end, n)
cone = Multispan(dom(ι), map(x -> ι⋅πs[x], ob_generators(J)))
FinSetCompositeLimit(F, cone, prod, ι)
end
function universal(lim::FinSetCompositeLimit, cone::Multispan{<:FinSet{Int}})
ι = collect(lim.incl)
h = universal(lim.prod, cone)
FinFunction(Int[only(searchsorted(ι, h(i))) for i in dom(h)],
apex(cone), ob(lim))
end
""" Limit of finite sets viewed as a table.
Any limit of finite sets can be canonically viewed as a table
([`TabularSet`](@ref)) whose columns are the legs of the limit cone and whose
rows correspond to elements of the limit object. To construct this table from an
already computed limit, call `TabularLimit(::AbstractLimit; ...)`. The column
names of the table are given by the optional argument `names`.
In this tabular form, applying the universal property of the limit is trivial
since it is just tupling. Thus, this representation can be useful when the
original limit algorithm does not support efficient application of the universal
property. On the other hand, this representation has the disadvantage of
generally making the element type of the limit set more complicated.
"""
const TabularLimit = Limit{<:TabularSet}
function TabularLimit(lim::AbstractLimit; names=nothing)
πs = legs(lim)
names = isnothing(names) ? (1:length(πs)) : names
names = Tuple(column_name(name) for name in names)
table = TabularSet(NamedTuple{names}(Tuple(map(collect, πs))))
cone = Multispan(table, map(πs, eachindex(πs)) do π, i
FinFunction(row -> Tables.getcolumn(row, i), table, codom(π))
end)
Limit(lim.diagram, cone)
end
function universal(lim::Limit{<:TabularSet{Table,Row}},
cone::Multispan) where {Table,Row}
fs = Tuple(legs(cone))
FinFunction(x -> Row(map(f -> f(x), fs)), apex(cone), ob(lim))
end
column_name(name) = Symbol(name)
column_name(i::Integer) = Symbol("x$i") # Same default as DataFrames.jl.
# Colimits
##########
# Colimits in Skel(FinSet)
#-------------------------
colimit(Xs::EmptyDiagram{<:FinSet{Int}}) = Colimit(Xs, SMulticospan{0}(FinSet(0)))
function universal(colim::Initial{<:FinSet{Int}}, cocone::SMulticospan{0})
cod = apex(cocone)
FinDomFunction(SVector{0,eltype(cod)}(), cod)
end
colimit(Xs::SingletonDiagram{<:FinSet{Int}}) = colimit(Xs, SpecializeColimit())
function colimit(Xs::ObjectPair{<:FinSet{Int}})
m, n = length.(Xs)
ι1 = FinFunction(1:m, m, m+n)
ι2 = FinFunction(m+1:m+n, n, m+n)
Colimit(Xs, Cospan(ι1, ι2))
end
function universal(colim::BinaryCoproduct{<:FinSet{Int}}, cocone::Cospan)
f, g = cocone
FinDomFunction(vcat(collect(f), collect(g)), ob(colim), apex(cocone))
end
function colimit(Xs::DiscreteDiagram{<:FinSet{Int}})
ns = length.(Xs)
n = sum(ns)
offsets = [0,cumsum(ns)...]
ιs = [FinFunction((1:ns[j]) .+ offsets[j],ns[j],n) for j in 1:length(ns)]
Colimit(Xs, Multicospan(FinSet(n), ιs))
end
function universal(colim::Coproduct{<:FinSet{Int}}, cocone::Multicospan)
cod = apex(cocone)
FinDomFunction(mapreduce(collect, vcat, cocone, init=eltype(cod)[]),
ob(colim), cod)
end
function colimit(pair::ParallelPair{<:FinSet{Int}})
f, g = pair
m, n = length(dom(pair)), length(codom(pair))
sets = IntDisjointSets(n)
for i in 1:m
union!(sets, f(i), g(i))
end
Colimit(pair, SMulticospan{1}(quotient_projection(sets)))
end
function colimit(para::ParallelMorphisms{<:FinSet{Int}})
@assert !isempty(para)
f1, frest = para[1], para[2:end]
m, n = length(dom(para)), length(codom(para))
sets = IntDisjointSets(n)
for i in 1:m
for f in frest
union!(sets, f1(i), f(i))
end
end
Colimit(para, SMulticospan{1}(quotient_projection(sets)))
end
function universal(coeq::Coequalizer{<:FinSet{Int}}, cocone::SMulticospan{1})
pass_to_quotient(proj(coeq), only(cocone))
end
""" Create projection map π: X → X/∼ from partition of X.
"""
function quotient_projection(sets::IntDisjointSets)
h = [ find_root!(sets, i) for i in 1:length(sets) ]
roots = unique!(sort(h))
FinFunction([ searchsortedfirst(roots, r) for r in h ], length(roots))
end
""" Given h: X → Y, pass to quotient q: X/~ → Y under projection π: X → X/~.
"""
function pass_to_quotient(π::FinFunction{Int,Int}, h::FinFunction{Int,Int})
@assert dom(π) == dom(h)
q = zeros(Int, length(codom(π)))
for i in dom(h)
j = π(i)
if q[j] == 0
q[j] = h(i)
else
q[j] == h(i) || error("Quotient map of colimit is ill-defined")
end
end
any(==(0), q) && error("Projection map is not surjective")
FinFunction(q, codom(h))
end
function pass_to_quotient(π::FinFunction{Int,Int}, h::FinDomFunction{Int})
@assert dom(π) == dom(h)
q = Vector{Union{Some{eltype(codom(h))},Nothing}}(nothing, length(codom(π)))
for i in dom(h)
j = π(i)
if isnothing(q[j])
q[j] = Some(h(i))
else
something(q[j]) == h(i) || error("Quotient map of colimit is ill-defined")
end
end
any(isnothing, q) && error("Projection map is not surjective")
FinDomFunction(map(something, q), codom(h))
end
function colimit(span::Multispan{<:FinSet{Int}})
colimit(span, ComposeCoproductCoequalizer())
end
""" Colimit of general diagram of FinSets computed by coproduct-then-quotient.
See `Limits.CompositePushout` for a very similar construction.
"""
struct FinSetCompositeColimit{Ob<:FinSet, Diagram,
Cocone<:Multicospan{Ob}, Coprod<:Coproduct{Ob},
Proj<:FinFunction} <: AbstractColimit{Ob,Diagram}
diagram::Diagram
cocone::Cocone
coprod::Coprod
proj::Proj # Projection for the "multi-coequalizer" in general formula.
end
function colimit(d::BipartiteFreeDiagram{<:FinSet{Int}})
# As in a pushout, this method assume that all objects in layer 1 have
# outgoing morphisms so that they can be excluded from the coproduct.
@assert !any(isempty(incident(d, u, :src)) for u in vertices₁(d))
coprod = coproduct(ob₂(d))
n, ιs = length(ob(coprod)), legs(coprod)
sets = IntDisjointSets(n)
for u in vertices₁(d)
out_edges = incident(d, u, :src)
for (e1, e2) in zip(out_edges[1:end-1], out_edges[2:end])
h1, h2 = hom(d, e1), hom(d, e2)
ι1, ι2 = ιs[tgt(d, e1)], ιs[tgt(d, e2)]
for i in ob₁(d, u)
union!(sets, ι1(h1(i)), ι2(h2(i)))
end
end
end
π = quotient_projection(sets)
cocone = Multicospan(codom(π), [ ιs[i]⋅π for i in vertices₂(d) ])
FinSetCompositeColimit(d, cocone, coprod, π)
end
colimit(d::FreeDiagram{<:FinSet{Int}}) = colimit(FinDomFunctor(d))
function colimit(F::Functor{<:FinCat{Int},<:TypeCat{<:FinSet{Int}}})
# Uses the general formula for colimits in Set (Leinster, 2014, Basic Category
# Theory, Example 5.2.16).
J = dom(F)
coprod = coproduct(map(x -> ob_map(F, x), ob_generators(J)))
n, ιs = length(ob(coprod)), legs(coprod)
sets = IntDisjointSets(n)
for f in hom_generators(J)
s, t, h = dom(J, f), codom(J, f), hom_map(F, f)
for i in dom(h)
union!(sets, ιs[s](i), ιs[t](h(i)))
end
end
π = quotient_projection(sets)
cocone = Multicospan(codom(π), map(x -> ιs[x]⋅π, ob_generators(J)))
FinSetCompositeColimit(F, cocone, coprod, π)
end
function universal(colim::FinSetCompositeColimit, cocone::Multicospan)
h = universal(colim.coprod, cocone)
pass_to_quotient(colim.proj, h)
end
# Colimits with names
#--------------------
""" Compute colimit of finite sets whose elements are meaningfully named.
This situation seems to be mathematically uninteresting but is practically
important. The colimit is computed by reduction to the skeleton of **FinSet**
(`FinSet{Int}`) and the names are assigned afterwards, following some reasonable
conventions and add tags where necessary to avoid name clashes.
"""
struct NamedColimit <: ColimitAlgorithm end
function colimit(::Type{<:Tuple{<:FinSet{<:Any,T},<:FinFunction}}, d) where
{T <: Union{Symbol,AbstractString}}
colimit(d, NamedColimit())
end
function colimit(d::FixedShapeFreeDiagram{<:FinSet{<:Any,T},Hom},
alg::NamedColimit) where {T,Hom}
# Reducing to the case of bipartite free diagrams is a bit lazy, but at least
# using `SpecializeColimit` below should avoid some gross inefficiencies.
colimit(BipartiteFreeDiagram{FinSet{<:Any,T},Hom}(d), alg)
end
function colimit(d::BipartiteFreeDiagram{<:FinSet{<:Any,T}}, ::NamedColimit) where T
# Compute colimit of diagram in the skeleton of FinSet (`FinSet{Int}`).
# Note: no performance would be gained by using `DisjointSets{T}` from
# DataStructures.jl because it is just a wrapper around `IntDisjointSets` that
# internally builds the very same indices that we use below.
sets₁_skel = map(set -> skeletize(set, index=false), ob₁(d))
sets₂_skel = map(set -> skeletize(set, index=true), ob₂(d))
funcs = map(edges(d)) do e
skeletize(hom(d,e), sets₁_skel[src(d,e)], sets₂_skel[tgt(d,e)])
end
d_skel = BipartiteFreeDiagram{FinSetInt,eltype(funcs)}()
add_vertices₁!(d_skel, nv₁(d), ob₁=dom.(sets₁_skel))
add_vertices₂!(d_skel, nv₂(d), ob₂=dom.(sets₂_skel))
add_edges!(d_skel, src(d), tgt(d), hom=funcs)
colim_skel = colimit(d_skel, SpecializeColimit())
# Assign elements/names to the colimit set.
elems = Vector{T}(undef, length(apex(colim_skel)))
for (ι, Y) in zip(colim_skel, sets₂_skel)
for i in dom(Y)
elems[ι(i)] = Y(i)
end
end
# The vector should already be filled, but to reduce arbitrariness we prefer
# names from the layer 1 sets whenever possible. For example, when computing a
# pushout, we prefer names from the apex of cospan to names from the feet.
for (u, X) in zip(vertices₁(d_skel), sets₁_skel)
e = first(incident(d_skel, u, :src))
f, ι = hom(d_skel, e), legs(colim_skel)[tgt(d_skel, e)]
for i in dom(X)
elems[ι(f(i))] = X(i)
end
end
# Eliminate clashes in provisional list of names.
unique_by_tagging!(elems)
ιs = map(colim_skel, sets₂_skel) do ι, Y
FinFunction(Dict(Y(i) => elems[ι(i)] for i in dom(Y)), FinSet(elems))
end
Colimit(d, Multicospan(FinSet(elems), ιs))
end
function skeletize(set::FinSet; index::Bool=false)
# FIXME: We should support `unique_index` and it should be used here.
FinDomFunction(collect(set), set, index=index)
end
function skeletize(f::FinFunction, X, Y)
FinFunction(i -> only(preimage(Y, f(X(i)))), dom(X), dom(Y))
end
""" Make list of elements unique by adding tags if necessary.
If the elements are already unique, they will not be mutated.
"""
function unique_by_tagging!(elems::AbstractVector{T}; tag=default_tag) where T
tag_count = Dict{T,Int}()
for x in elems
tag_count[x] = haskey(tag_count, x) ? 1 : 0
end
for (i, x) in enumerate(elems)
(j = tag_count[x]) > 0 || continue
tagged = tag(x, j)
@assert !haskey(tag_count, tagged) # Don't conflict with original elems!
elems[i] = tagged
tag_count[x] += 1
end
elems
end
default_tag(x::Symbol, t) = Symbol(x, "#", t)
default_tag(x::AbstractString, t) = string(x, "#", t)
# Pushout complements
#--------------------
""" Compute a pushout complement of finite sets, if possible.
Given functions ``l: I → L`` and ``m: L → G`` to form a pushout square
l
L ← I
m ↓ ↓k
G ← K
g
define the set ``K := G / m(L / l(I))`` and take ``g: K ↪ G`` to be the
inclusion. Then the map ``k: I → K`` is determined by the map ``l⋅m: I → G``
from the requirement that the square commutes.
Pushout complements exist only if the identification condition is satisfied. An
error will be raised if the pushout complement cannot be constructed. To check
this in advance, use [`can_pushout_complement`](@ref).
"""
function pushout_complement(pair::ComposablePair{<:FinSet{Int}})
l, m = pair
I, L, G = dom(l), codom(l), codom(m)
# Construct inclusion g: K ↪ G.
l_image = Set(collect(l))
m_image = Set([ m(x) for x in L if x ∉ l_image ])
g = FinFunction([x for x in G if x ∉ m_image], G)
K = dom(g)
# Construct morphism k: I → K using partial inverse of g.
g_inv = Dict{Int,Int}(zip(collect(g), K))
k = FinFunction(map(I) do x
y = m(l(x))
get(g_inv, y) do; error("Identification failed for domain element $x") end
end, I, K)
return ComposablePair(k, g)
end
can_pushout_complement(pair::ComposablePair{<:FinSet{Int}}) =
all(isempty, id_condition(pair))
""" Check identification condition for pushout complement of finite sets.
The identification condition says that the functions do not map (1) both a
deleted item and a preserved item in L to the same item in G or (2) two distinct
deleted items to the same item. It is trivially satisfied for injective functions.
Returns pair of iterators of
(1) a nondeleted item that maps to a deleted item in G
(2) a pair of distinct items in L that are deleted yet mapped to the same
item in G.
"""
function id_condition(pair::ComposablePair{<:FinSet{Int}})
l, m = pair
l_image = Set(collect(l))
l_imageᶜ = [ x for x in codom(l) if x ∉ l_image ]
m_image = Set(map(m, l_imageᶜ))
((i for i in l_image if m(i) ∈ m_image),
((i, j) for i in eachindex(l_imageᶜ)
for j in i+1:length(l_imageᶜ)
if m(l_imageᶜ[i]) == m(l_imageᶜ[j])))
end
# Subsets
#########
""" Subset of a finite set.
"""
const SubFinSet{S,T} = Subobject{<:FinSet{S,T}}
Subobject(X::FinSet, f) = Subobject(FinFunction(f, X))
SubFinSet(X, f) = Subobject(FinFunction(f, X))
force(A::SubFinSet{Int}) = Subobject(force(hom(A)))
Base.collect(A::SubFinSet) = collect(hom(A))
Base.sort(A::SubFinSet) = SubFinSet(ob(A), sort(collect(A)))
const AbstractBoolVector = Union{AbstractVector{Bool},BitVector}
""" Subset of a finite set represented as a boolean vector.
This is the subobject classifier representation since `Bool` is the subobject
classifier for `Set`.
"""
@auto_hash_equals struct SubFinSetVector{S<:FinSet} <: Subobject{S}
set::S
predicate::AbstractBoolVector
function SubFinSetVector(X::S, pred::AbstractBoolVector) where S<:FinSet
length(pred) == length(X) ||
error("Size of predicate $pred does not equal size of object $X")
new{S}(X, pred)
end
end
Subobject(X::FinSet, pred::AbstractBoolVector) = SubFinSetVector(X, pred)
SubFinSet(pred::AbstractBoolVector) = Subobject(FinSet(length(pred)), pred)
ob(A::SubFinSetVector) = A.set
hom(A::SubFinSetVector) = FinFunction(findall(A.predicate), A.set)
predicate(A::SubFinSetVector) = A.predicate
function predicate(A::SubFinSet)
f = hom(A)
pred = falses(length(codom(f)))
for x in dom(f)
pred[f(x)] = true
end
pred
end
@instance SubobjectLattice{FinSet,SubFinSet} begin
@import ob
meet(A::SubFinSet, B::SubFinSet) = meet(A, B, SubOpBoolean())
join(A::SubFinSet, B::SubFinSet) = join(A, B, SubOpBoolean())
top(X::FinSet) = top(X, SubOpWithLimits())
bottom(X::FinSet) = bottom(X, SubOpWithLimits())
end
""" Algorithm to compute subobject operations using elementwise boolean logic.
"""
struct SubOpBoolean <: SubOpAlgorithm end
meet(A::SubFinSet{Int}, B::SubFinSet{Int}, ::SubOpBoolean) =
SubFinSet(predicate(A) .& predicate(B))
join(A::SubFinSet{Int}, B::SubFinSet{Int}, ::SubOpBoolean) =
SubFinSet(predicate(A) .| predicate(B))
top(X::FinSet{Int}, ::SubOpBoolean) = SubFinSet(trues(length(X)))
bottom(X::FinSet{Int}, ::SubOpBoolean) = SubFinSet(falses(length(X)))
end
| [
37811,
383,
6536,
286,
27454,
5621,
290,
5499,
11,
290,
663,
18328,
13,
198,
37811,
198,
21412,
4463,
50,
1039,
198,
39344,
4463,
7248,
11,
4463,
22203,
11,
4463,
24510,
22203,
11,
16904,
934,
7248,
11,
16904,
934,
39184,
11,
198,
220,
2700,
11,
318,
62,
9630,
276,
11,
662,
9060,
11,
198,
220,
15251,
2348,
42289,
11,
10880,
18234,
11,
399,
7287,
39516,
18234,
11,
33947,
13102,
469,
18234,
11,
21059,
18234,
11,
198,
220,
3834,
18467,
7248,
11,
3834,
18257,
46120,
13087,
198,
198,
3500,
11160,
26257,
23588,
874,
198,
3500,
6060,
44909,
942,
25,
14230,
1068,
35,
713,
11,
2558,
7279,
73,
1563,
50,
1039,
11,
6441,
28265,
1064,
62,
15763,
0,
198,
3500,
797,
39344,
198,
11748,
36125,
3163,
20477,
198,
3500,
36125,
3163,
20477,
25,
36125,
38469,
11,
20546,
9250,
11,
311,
1143,
38469,
11,
2092,
62,
4906,
198,
11748,
33220,
11,
20090,
51,
2977,
198,
198,
31,
631,
87,
634,
1262,
11485,
50,
1039,
198,
3500,
2644,
38,
1404,
11,
2644,
464,
1749,
11,
2644,
34,
7248,
6601,
44909,
942,
11,
2644,
37065,
82,
198,
3500,
11485,
18467,
34,
1381,
11,
11485,
11146,
18683,
6713,
82,
11,
11485,
19352,
896,
11,
11485,
7004,
48205,
198,
11748,
2644,
464,
1749,
25,
1835,
11,
1826,
11,
18872,
100,
11,
4654,
11,
18872,
101,
11,
1353,
11,
2343,
232,
97,
11,
4220,
11,
2343,
232,
98,
198,
11748,
11485,
34,
26129,
25,
909,
11,
3488,
11,
2401,
11,
14873,
296,
11,
36664,
11,
4686,
11,
909,
62,
8899,
11,
3488,
62,
8899,
198,
11748,
11485,
18467,
34,
1381,
25,
2700,
11,
909,
62,
8612,
2024,
11,
3488,
62,
8612,
2024,
11,
4823,
11,
318,
62,
15410,
8374,
198,
3500,
11485,
18467,
34,
1381,
25,
8633,
4906,
198,
11748,
11485,
19352,
896,
25,
4179,
11,
951,
320,
270,
11,
10112,
11,
4574,
448,
62,
785,
26908,
11,
198,
220,
460,
62,
14689,
448,
62,
785,
26908,
198,
11748,
11485,
7004,
48205,
25,
3834,
15252,
11,
3834,
15252,
43,
1078,
501,
198,
3500,
11485,
50,
1039,
25,
27207,
22203,
11,
5345,
22203,
14134,
540,
198,
198,
2,
4463,
578,
5621,
198,
7804,
4242,
2,
198,
198,
37811,
4463,
578,
900,
13,
198,
198,
32,
27454,
900,
468,
12531,
2099,
4600,
18467,
7248,
90,
50,
11,
51,
92,
44646,
383,
1218,
2099,
11507,
4600,
51,
63,
318,
198,
1169,
5002,
2099,
286,
262,
900,
290,
262,
717,
11507,
4600,
50,
63,
318,
262,
4947,
2099,
11,
198,
4758,
460,
307,
257,
850,
4906,
286,
4600,
23839,
7248,
63,
393,
1194,
22300,
4947,
2099,
13,
554,
198,
2860,
653,
11,
262,
18328,
286,
262,
6536,
12429,
18467,
7248,
1174,
318,
262,
1593,
2041,
1339,
198,
63,
50,
796,
2558,
44646,
383,
900,
7559,
90,
16,
11,
1399,
11,
77,
92,
15506,
318,
7997,
416,
262,
2134,
4600,
18467,
7248,
7,
77,
8,
63,
286,
2099,
198,
63,
18467,
7248,
90,
5317,
11,
5317,
92,
44646,
198,
37811,
198,
397,
8709,
2099,
4463,
7248,
90,
50,
11,
51,
92,
1279,
25,
5345,
5944,
90,
51,
92,
886,
198,
198,
18467,
7248,
7,
2617,
3712,
18467,
7248,
8,
796,
900,
198,
198,
37811,
4463,
578,
900,
286,
262,
1296,
7559,
90,
16,
11,
1399,
11,
77,
92,
15506,
329,
617,
1271,
7559,
77,
26870,
657,
15506,
13,
198,
37811,
198,
31,
23736,
62,
17831,
62,
4853,
874,
2878,
4463,
7248,
5317,
1279,
25,
4463,
7248,
90,
5317,
11,
5317,
92,
198,
220,
299,
3712,
5317,
198,
437,
198,
198,
18467,
7248,
90,
5317,
11,
5317,
92,
7,
77,
3712,
5317,
8,
796,
4463,
7248,
5317,
7,
77,
8,
198,
18467,
7248,
7,
77,
3712,
5317,
8,
796,
4463,
7248,
5317,
7,
77,
8,
198,
198,
14881,
13,
2676,
378,
7,
2617,
3712,
18467,
7248,
5317,
11,
26498,
23029,
796,
11629,
378,
7,
16,
25,
2617,
13,
77,
11,
26498,
23029,
198,
14881,
13,
13664,
7,
2617,
3712,
18467,
7248,
5317,
8,
796,
900,
13,
77,
198,
14881,
13,
259,
7,
2617,
3712,
18467,
7248,
5317,
11,
9766,
76,
8,
796,
287,
7,
68,
10671,
11,
352,
25,
2617,
13,
77,
8,
198,
198,
14881,
13,
12860,
7,
952,
3712,
9399,
11,
900,
3712,
18467,
7248,
5317,
8,
796,
3601,
7,
952,
11,
366,
18467,
7248,
16763,
7,
2617,
13,
77,
4008,
4943,
198,
198,
37811,
4463,
578,
900,
1813,
416,
22300,
4947,
13,
198,
198,
464,
10238,
4947,
815,
307,
257,
22300,
11629,
540,
286,
21892,
4129,
13,
632,
743,
198,
1350,
11,
475,
318,
407,
2672,
284,
307,
11,
900,
12,
2339,
357,
64,
850,
4906,
286,
4600,
23839,
7248,
63,
737,
198,
37811,
198,
31,
23736,
62,
17831,
62,
4853,
874,
2878,
4463,
7248,
36307,
90,
50,
11,
51,
92,
1279,
25,
4463,
7248,
90,
50,
11,
51,
92,
198,
220,
4947,
3712,
50,
198,
437,
198,
18467,
7248,
36307,
7,
43681,
3712,
50,
8,
810,
311,
796,
198,
220,
4463,
7248,
36307,
90,
50,
11,
417,
4906,
7,
43681,
38165,
7,
43681,
8,
198,
198,
18467,
7248,
7,
43681,
3712,
50,
8,
810,
1391,
51,
11,
311,
27,
25,
38176,
90,
23839,
38469,
90,
51,
5512,
23839,
7248,
90,
51,
42535,
796,
198,
220,
4463,
7248,
36307,
90,
50,
11,
51,
92,
7,
43681,
8,
198,
198,
14881,
13,
2676,
378,
7,
2617,
3712,
18467,
7248,
36307,
11,
26498,
23029,
796,
11629,
378,
7,
2617,
13,
43681,
11,
26498,
23029,
198,
14881,
13,
13664,
7,
2617,
3712,
18467,
7248,
36307,
8,
796,
4129,
7,
2617,
13,
43681,
8,
198,
14881,
13,
259,
7,
2617,
3712,
18467,
7248,
36307,
11,
9766,
76,
8,
796,
287,
7,
68,
10671,
11,
900,
13,
43681,
8,
198,
198,
8818,
7308,
13,
12860,
7,
952,
3712,
9399,
11,
900,
3712,
18467,
7248,
36307,
8,
198,
220,
3601,
7,
952,
11,
366,
18467,
7248,
7,
4943,
198,
220,
905,
7,
952,
11,
900,
13,
43681,
8,
198,
220,
3601,
7,
952,
11,
366,
8,
4943,
198,
437,
198,
198,
37811,
4463,
578,
900,
3025,
4847,
389,
15274,
286,
257,
3084,
13,
198,
198,
464,
10238,
3084,
815,
307,
31332,
351,
33220,
13,
20362,
13,
1114,
262,
11060,
286,
198,
403,
6933,
414,
11,
262,
15274,
389,
2810,
355,
3706,
12777,
2374,
11,
543,
18533,
326,
262,
3084,
198,
271,
407,
366,
41073,
3094,
1911,
770,
815,
407,
307,
257,
1688,
17385,
287,
3357,
475,
198,
3826,
262,
33220,
13,
20362,
10314,
329,
2252,
5114,
13,
198,
37811,
198,
31,
23736,
62,
17831,
62,
4853,
874,
2878,
16904,
934,
7248,
90,
10962,
11,
25166,
92,
1279,
25,
4463,
7248,
90,
10962,
11,
25166,
92,
198,
220,
3084,
3712,
10962,
628,
220,
2163,
16904,
934,
7248,
7,
11487,
3712,
10962,
8,
810,
8655,
198,
220,
220,
220,
32815,
796,
33220,
13,
15952,
2611,
7,
11487,
8,
198,
220,
220,
220,
649,
90,
10962,
11,
45,
2434,
51,
29291,
90,
15952,
2611,
13,
14933,
11,
51,
29291,
90,
15952,
2611,
13,
19199,
986,
42535,
7,
11487,
8,
198,
220,
886,
198,
437,
198,
198,
18467,
7248,
7,
429,
3712,
45,
2434,
51,
29291,
8,
796,
16904,
934,
7248,
7,
429,
8,
198,
198,
14881,
13,
2676,
378,
7,
2617,
3712,
33349,
934,
7248,
11,
26498,
23029,
796,
198,
220,
11629,
378,
7,
51,
2977,
13,
13190,
83,
29291,
48727,
7,
2617,
13,
11487,
828,
26498,
23029,
198,
14881,
13,
13664,
7,
2617,
3712,
33349,
934,
7248,
8,
796,
33220,
13,
808,
9127,
7,
2617,
13,
11487,
8,
198,
14881,
13,
33327,
7,
2617,
3712,
33349,
934,
7248,
8,
796,
33220,
13,
808,
11487,
7,
2617,
13,
11487,
8,
198,
198,
8818,
7308,
13,
12860,
7,
952,
3712,
9399,
11,
900,
3712,
33349,
934,
7248,
8,
198,
220,
3601,
7,
952,
11,
366,
33349,
934,
7248,
7,
4943,
198,
220,
905,
7,
952,
11,
900,
13,
11487,
8,
198,
220,
3601,
7,
952,
11,
366,
8,
4943,
198,
437,
198,
198,
8818,
7308,
13,
12860,
7,
952,
3712,
9399,
11,
7904,
44,
12789,
1,
5239,
14,
25638,
1600,
900,
3712,
33349,
934,
7248,
90,
51,
30072,
810,
309,
198,
220,
3601,
7,
952,
11,
17971,
7,
13664,
7,
2617,
4008,
12,
30854,
16904,
934,
7248,
90,
3,
51,
92,
4943,
198,
220,
611,
5145,
1136,
7,
952,
11,
1058,
5589,
529,
11,
3991,
8,
198,
220,
220,
220,
44872,
7,
952,
11,
366,
25,
4943,
198,
220,
220,
220,
20090,
51,
2977,
13,
37784,
62,
11487,
7,
952,
11,
900,
13,
11487,
11,
43630,
549,
25677,
28,
7942,
8,
198,
220,
886,
198,
437,
198,
198,
8818,
7308,
13,
12860,
7,
952,
3712,
9399,
11,
7904,
44,
12789,
1,
5239,
14,
6494,
1600,
900,
3712,
33349,
934,
7248,
8,
198,
220,
44872,
7,
952,
11,
33490,
7146,
1398,
17553,
8658,
934,
12,
2617,
38214,
4943,
198,
220,
44872,
7,
952,
11,
17971,
7,
13664,
7,
2617,
4008,
12,
30854,
16904,
934,
7248,
4943,
198,
220,
20090,
51,
2977,
13,
37784,
62,
11487,
7,
952,
11,
900,
13,
11487,
11,
30203,
28,
7762,
7,
25,
6494,
828,
27669,
28,
9562,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
43630,
549,
25677,
28,
7942,
8,
198,
220,
44872,
7,
952,
11,
366,
3556,
7146,
29,
4943,
198,
437,
198,
198,
2,
8444,
8374,
9376,
198,
2,
19351,
198,
198,
37811,
8444,
8374,
6536,
319,
257,
27454,
900,
13,
198,
198,
464,
691,
17488,
6583,
287,
257,
28810,
6536,
389,
262,
18413,
11,
543,
389,
994,
198,
19107,
351,
262,
5563,
13,
198,
37811,
198,
31,
23736,
62,
17831,
62,
4853,
874,
2878,
8444,
8374,
21979,
90,
5944,
11,
50,
27,
25,
18467,
7248,
90,
27,
25,
7149,
11,
5944,
11709,
1279,
25,
4463,
21979,
90,
5944,
11,
5944,
92,
198,
220,
900,
3712,
50,
198,
437,
198,
15642,
8374,
21979,
7,
77,
3712,
46541,
8,
796,
8444,
8374,
21979,
7,
18467,
7248,
7,
77,
4008,
198,
198,
18467,
21979,
7,
82,
3712,
38176,
90,
18467,
7248,
11,
46541,
30072,
796,
8444,
8374,
21979,
7,
82,
8,
198,
198,
672,
62,
8612,
2024,
7,
34,
3712,
15642,
8374,
21979,
8,
796,
327,
13,
2617,
198,
26452,
62,
8612,
2024,
7,
3712,
15642,
8374,
21979,
8,
796,
7499,
198,
271,
62,
15410,
8374,
7,
3712,
15642,
8374,
21979,
8,
796,
2081,
198,
34960,
7,
34,
3712,
15642,
8374,
21979,
90,
5317,
11,
18467,
7248,
5317,
30072,
796,
29681,
7,
13664,
7,
34,
13,
2617,
4008,
198,
198,
3438,
7,
34,
3712,
15642,
8374,
21979,
90,
51,
5512,
277,
8,
810,
309,
796,
277,
3712,
51,
198,
19815,
296,
7,
34,
3712,
15642,
8374,
21979,
90,
51,
5512,
277,
8,
810,
309,
796,
277,
3712,
51,
198,
312,
7,
34,
3712,
15642,
8374,
21979,
90,
51,
5512,
2124,
8,
810,
309,
796,
2124,
3712,
51,
198,
785,
3455,
7,
34,
3712,
15642,
8374,
21979,
90,
51,
5512,
277,
11,
308,
8,
810,
309,
796,
357,
69,
3712,
51,
6624,
308,
3712,
51,
8,
5633,
277,
1058,
198,
220,
4049,
7203,
45,
756,
15104,
498,
24185,
287,
28810,
6536,
25,
720,
69,
14512,
720,
70,
4943,
198,
198,
26452,
62,
8899,
7,
37,
3712,
18467,
24510,
24629,
2715,
90,
27,
25,
15642,
8374,
21979,
5512,
2124,
8,
796,
4686,
7,
19815,
296,
7,
37,
828,
909,
62,
8899,
7,
37,
11,
2124,
4008,
198,
198,
14881,
13,
12860,
7,
952,
3712,
9399,
11,
327,
3712,
15642,
8374,
21979,
90,
5317,
11,
18467,
7248,
5317,
30072,
796,
198,
220,
3601,
7,
952,
11,
366,
18467,
21979,
16763,
7,
13664,
7,
34,
13,
2617,
22305,
4943,
198,
198,
2,
4463,
578,
5499,
198,
14468,
2235,
198,
198,
37811,
15553,
1022,
27454,
5621,
13,
198,
198,
464,
2163,
460,
307,
5447,
31821,
416,
281,
14977,
22300,
2163,
11,
287,
543,
198,
7442,
340,
318,
16726,
37296,
813,
11,
393,
1193,
713,
306,
416,
257,
15879,
286,
37014,
13,
554,
262,
15879,
198,
15603,
341,
11,
262,
2163,
357,
16,
29705,
99,
16,
11,
362,
29705,
99,
18,
11,
513,
29705,
99,
17,
11,
604,
29705,
99,
18,
828,
329,
1672,
11,
318,
7997,
198,
1525,
262,
15879,
685,
16,
11,
18,
11,
17,
11,
18,
4083,
198,
198,
1212,
2099,
318,
33544,
38284,
416,
685,
63,
18467,
24510,
22203,
63,
16151,
31,
5420,
737,
198,
37811,
198,
9979,
4463,
22203,
90,
50,
11,
311,
17478,
11,
9666,
1279,
25,
4463,
7248,
90,
50,
5512,
18720,
296,
1279,
25,
4463,
7248,
90,
50,
17478,
11709,
796,
198,
220,
5345,
22203,
90,
24510,
11,
43806,
296,
92,
198,
198,
18467,
22203,
7,
69,
3712,
22203,
11,
2401,
11,
14873,
296,
8,
796,
198,
220,
5345,
22203,
14134,
540,
7,
69,
11,
4463,
7248,
7,
3438,
828,
4463,
7248,
7,
19815,
296,
4008,
198,
18467,
22203,
7,
3712,
4906,
1659,
7,
738,
414,
828,
26498,
23029,
796,
198,
220,
27207,
22203,
19510,
18467,
7248,
7,
853,
8,
329,
1822,
287,
26498,
8,
23029,
198,
18467,
22203,
7,
69,
3712,
23839,
35,
713,
11,
26498,
23029,
796,
198,
220,
4463,
22203,
35,
713,
7,
69,
11,
357,
18467,
7248,
7,
853,
8,
329,
1822,
287,
26498,
8,
23029,
198,
198,
8818,
4463,
22203,
7,
69,
3712,
23839,
38469,
90,
5317,
5512,
26498,
986,
26,
6376,
28,
9562,
8,
198,
220,
611,
6376,
6624,
3991,
198,
220,
220,
220,
4463,
24510,
22203,
38469,
7,
69,
11,
357,
18467,
7248,
7,
853,
8,
329,
1822,
287,
26498,
8,
23029,
198,
220,
2073,
198,
220,
220,
220,
6376,
796,
6376,
6624,
2081,
5633,
2147,
1058,
6376,
198,
220,
220,
220,
12901,
276,
18467,
22203,
38469,
7,
69,
11,
26498,
986,
26,
6376,
28,
9630,
8,
198,
220,
886,
198,
437,
198,
18467,
22203,
7,
69,
3712,
23839,
38469,
90,
5317,
19629,
479,
86,
23029,
796,
198,
220,
4463,
22203,
7,
69,
11,
4463,
7248,
7,
271,
28920,
7,
69,
8,
5633,
657,
1058,
5415,
7,
69,
18125,
479,
86,
23029,
198,
198,
50,
1039,
13,
12860,
62,
4906,
62,
41571,
273,
7,
952,
3712,
9399,
11,
7904,
6030,
90,
27,
25,
18467,
22203,
30072,
796,
198,
220,
3601,
7,
952,
11,
366,
18467,
22203,
4943,
198,
198,
37811,
15553,
503,
286,
257,
27454,
900,
13,
198,
198,
1212,
1398,
286,
5499,
318,
11282,
780,
340,
318,
3446,
262,
1398,
326,
460,
198,
1350,
7997,
11777,
416,
257,
15879,
286,
3815,
422,
262,
14873,
296,
391,
13,
198,
37811,
198,
9979,
4463,
24510,
22203,
90,
50,
11,
9666,
27,
25,
18467,
7248,
90,
50,
5512,
18720,
296,
27,
25,
7248,
5944,
92,
796,
5345,
22203,
90,
24510,
11,
43806,
296,
92,
198,
198,
18467,
24510,
22203,
7,
69,
3712,
22203,
11,
2401,
11,
14873,
296,
8,
796,
198,
220,
5345,
22203,
14134,
540,
7,
69,
11,
4463,
7248,
7,
3438,
828,
14873,
296,
8,
198,
18467,
24510,
22203,
7,
3712,
4906,
1659,
7,
738,
414,
828,
26498,
23029,
796,
198,
220,
27207,
22203,
19510,
18467,
7248,
7,
853,
8,
329,
1822,
287,
26498,
8,
23029,
198,
18467,
24510,
22203,
7,
69,
3712,
23839,
35,
713,
11,
26498,
23029,
796,
4463,
24510,
22203,
35,
713,
7,
69,
11,
26498,
23029,
198,
198,
8818,
4463,
24510,
22203,
7,
69,
3712,
23839,
38469,
11,
26498,
986,
26,
6376,
28,
9562,
8,
198,
220,
611,
6376,
6624,
3991,
198,
220,
220,
220,
4463,
24510,
22203,
38469,
7,
69,
11,
26498,
23029,
198,
220,
2073,
198,
220,
220,
220,
6376,
796,
6376,
6624,
2081,
5633,
2147,
1058,
6376,
198,
220,
220,
220,
12901,
276,
18467,
24510,
22203,
38469,
7,
69,
11,
26498,
986,
26,
6376,
28,
9630,
8,
198,
220,
886,
198,
437,
198,
198,
50,
1039,
13,
12860,
62,
4906,
62,
41571,
273,
7,
952,
3712,
9399,
11,
7904,
6030,
90,
27,
25,
18467,
24510,
22203,
30072,
796,
198,
220,
3601,
7,
952,
11,
366,
18467,
24510,
22203,
4943,
198,
198,
2,
5740,
25,
13690,
35610,
937,
47502,
4645,
318,
9177,
1152,
1146,
329,
5345,
475,
198,
2,
8954,
433,
35610,
691,
329,
4463,
7248,
13,
198,
31,
66,
420,
433,
35610,
62,
2144,
47502,
62,
39098,
4463,
7248,
4463,
22203,
198,
198,
5944,
7,
34,
3712,
18467,
21979,
90,
5317,
30072,
796,
4463,
7248,
7,
13664,
7,
672,
62,
8612,
2024,
7,
34,
22305,
198,
5944,
7,
37,
3712,
24629,
2715,
90,
27,
25,
18467,
21979,
90,
5317,
11709,
8,
796,
4463,
24510,
22203,
7,
33327,
62,
672,
7,
37,
828,
1835,
7,
19815,
296,
7,
37,
22305,
198,
198,
2,
20650,
12,
3106,
5499,
198,
2,
19351,
6329,
198,
198,
37811,
15553,
287,
12429,
7248,
1174,
7997,
416,
257,
15879,
13,
198,
198,
464,
7386,
286,
428,
2163,
318,
1464,
286,
2099,
4600,
18467,
7248,
90,
5317,
92,
47671,
351,
4847,
286,
198,
1169,
1296,
7559,
90,
16,
42303,
11,
77,
92,
15506,
13,
198,
37811,
198,
7249,
4463,
24510,
22203,
38469,
90,
51,
11,
53,
27,
25,
23839,
38469,
90,
51,
5512,
18720,
296,
27,
25,
7248,
5944,
90,
51,
11709,
1279,
25,
198,
220,
220,
220,
4463,
24510,
22203,
90,
5317,
11,
18467,
7248,
5317,
11,
43806,
296,
92,
198,
220,
25439,
3712,
53,
198,
220,
14873,
296,
3712,
43806,
296,
198,
437,
198,
198,
18467,
24510,
22203,
38469,
7,
69,
3712,
23839,
38469,
90,
51,
30072,
810,
309,
796,
198,
220,
4463,
24510,
22203,
38469,
7,
69,
11,
5994,
7248,
90,
51,
92,
28955,
198,
198,
8818,
4463,
24510,
22203,
38469,
7,
69,
3712,
23839,
38469,
11,
2401,
3712,
18467,
7248,
90,
5317,
5512,
14873,
296,
8,
198,
220,
4129,
7,
69,
8,
6624,
4129,
7,
3438,
8,
8614,
198,
220,
220,
220,
4049,
7203,
24539,
286,
15879,
720,
69,
857,
407,
2872,
7386,
720,
3438,
4943,
198,
220,
4463,
24510,
22203,
38469,
7,
69,
11,
14873,
296,
8,
198,
437,
198,
198,
3438,
7,
69,
3712,
18467,
24510,
22203,
38469,
8,
796,
4463,
7248,
7,
13664,
7,
69,
13,
20786,
4008,
198,
198,
7,
69,
3712,
18467,
24510,
22203,
38469,
5769,
87,
8,
796,
277,
13,
20786,
58,
87,
60,
198,
198,
8818,
7308,
13,
12860,
7,
952,
3712,
9399,
11,
277,
3712,
18467,
24510,
22203,
38469,
8,
198,
220,
3601,
7,
952,
11,
366,
18467,
24510,
22203,
16763,
7,
69,
13,
20786,
828,
366,
8,
198,
220,
21394,
13,
12860,
62,
3438,
1299,
7,
952,
11,
277,
8,
198,
220,
3601,
7,
952,
11,
366,
8,
4943,
198,
437,
198,
198,
3174,
7,
69,
3712,
18467,
24510,
22203,
90,
5317,
30072,
796,
4463,
24510,
22203,
38469,
7,
8899,
7,
69,
11,
2401,
7,
69,
36911,
14873,
296,
7,
69,
4008,
198,
3174,
7,
69,
3712,
18467,
24510,
22203,
38469,
8,
796,
277,
198,
198,
14881,
13,
33327,
7,
69,
3712,
7248,
22203,
8,
796,
2700,
7,
69,
737,
20786,
198,
198,
37811,
15553,
287,
12429,
18467,
7248,
1174,
7997,
11777,
416,
257,
15879,
13,
198,
37811,
198,
9979,
4463,
22203,
38469,
90,
50,
11,
51,
11,
53,
27,
25,
23839,
38469,
90,
51,
11709,
796,
198,
220,
4463,
24510,
22203,
38469,
90,
51,
11,
53,
11,
27,
25,
18467,
7248,
90,
50,
11,
51,
11709,
198,
198,
14881,
13,
12860,
7,
952,
3712,
9399,
11,
277,
3712,
18467,
22203,
38469,
8,
796,
198,
220,
3601,
7,
952,
11,
366,
18467,
22203,
16763,
7,
69,
13,
20786,
828,
29568,
13664,
7,
3438,
7,
69,
4008,
828,
29568,
13664,
7,
19815,
296,
7,
69,
35514,
4943,
198,
198,
50,
1039,
13,
4598,
62,
785,
3455,
7,
69,
3712,
18467,
22203,
38469,
11,
308,
3712,
18467,
24510,
22203,
38469,
8,
796,
198,
220,
4463,
24510,
22203,
38469,
7,
70,
13,
20786,
58,
69,
13,
20786,
4357,
14873,
296,
7,
70,
4008,
198,
198,
2,
12901,
276,
15879,
12,
3106,
5499,
198,
2,
1783,
24305,
198,
198,
37811,
12901,
276,
2163,
503,
286,
257,
27454,
900,
286,
2099,
4600,
18467,
7248,
90,
5317,
92,
44646,
198,
198,
23044,
287,
262,
976,
835,
355,
262,
2041,
1339,
286,
685,
63,
15732,
276,
18467,
22203,
38469,
63,
16151,
31,
5420,
828,
198,
16341,
326,
262,
6376,
318,
6032,
257,
22155,
11,
407,
257,
15879,
13,
198,
37811,
198,
7249,
12901,
276,
18467,
24510,
22203,
38469,
90,
51,
11,
53,
27,
25,
23839,
38469,
90,
51,
5512,
15732,
11,
43806,
296,
27,
25,
7248,
5944,
90,
51,
11709,
1279,
25,
198,
220,
220,
220,
4463,
24510,
22203,
90,
5317,
11,
18467,
7248,
5317,
11,
43806,
296,
92,
198,
220,
25439,
3712,
53,
198,
220,
6376,
3712,
15732,
198,
220,
14873,
296,
3712,
43806,
296,
198,
437,
198,
198,
15732,
276,
18467,
24510,
22203,
38469,
7,
69,
3712,
23839,
38469,
90,
51,
19629,
479,
86,
23029,
810,
309,
796,
198,
220,
12901,
276,
18467,
24510,
22203,
38469,
7,
69,
11,
5994,
7248,
90,
51,
92,
9783,
479,
86,
23029,
198,
198,
8818,
12901,
276,
18467,
24510,
22203,
38469,
7,
69,
3712,
23839,
38469,
90,
51,
5512,
14873,
296,
3712,
7248,
5944,
90,
51,
19629,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6376,
28,
22366,
8,
810,
309,
198,
220,
611,
318,
22366,
7,
9630,
8,
198,
220,
220,
220,
6376,
796,
360,
713,
90,
51,
11,
38469,
90,
5317,
11709,
3419,
198,
220,
220,
220,
329,
357,
72,
11,
2124,
8,
287,
27056,
378,
7,
69,
8,
198,
220,
220,
220,
220,
220,
4574,
0,
7,
1136,
0,
7,
9630,
11,
2124,
8,
466,
26,
2558,
21737,
886,
11,
1312,
8,
198,
220,
220,
220,
886,
198,
220,
886,
198,
220,
12901,
276,
18467,
24510,
22203,
38469,
7,
69,
11,
6376,
11,
14873,
296,
8,
198,
437,
198,
198,
14881,
11207,
7,
855,
5769,
69,
3712,
38176,
90,
18467,
24510,
22203,
38469,
11,
15732,
276,
18467,
24510,
22203,
38469,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
3712,
38176,
90,
18467,
24510,
22203,
38469,
11,
15732,
276,
18467,
24510,
22203,
38469,
30072,
796,
198,
220,
1303,
41032,
6376,
618,
14176,
329,
10537,
13,
198,
220,
277,
13,
20786,
6624,
308,
13,
20786,
11405,
14873,
296,
7,
69,
8,
6624,
14873,
296,
7,
70,
8,
198,
198,
8818,
7308,
13,
12860,
7,
952,
3712,
9399,
11,
277,
3712,
15732,
276,
18467,
24510,
22203,
38469,
8,
198,
220,
3601,
7,
952,
11,
366,
18467,
24510,
22203,
16763,
7,
69,
13,
20786,
828,
366,
8,
198,
220,
21394,
13,
12860,
62,
3438,
1299,
7,
952,
11,
277,
8,
198,
220,
3601,
7,
952,
11,
33172,
6376,
28,
7942,
8,
4943,
198,
437,
198,
198,
3438,
7,
69,
3712,
15732,
276,
18467,
24510,
22203,
38469,
8,
796,
4463,
7248,
7,
13664,
7,
69,
13,
20786,
4008,
198,
3174,
7,
69,
3712,
15732,
276,
18467,
24510,
22203,
38469,
8,
796,
277,
198,
198,
7,
69,
3712,
15732,
276,
18467,
24510,
22203,
38469,
5769,
87,
8,
796,
277,
13,
20786,
58,
87,
60,
198,
198,
37811,
10127,
262,
1813,
2163,
318,
41497,
11,
1312,
13,
68,
1539,
6971,
6942,
662,
17566,
13,
198,
37811,
198,
271,
62,
9630,
276,
7,
69,
3712,
7248,
22203,
8,
796,
3991,
198,
271,
62,
9630,
276,
7,
69,
3712,
7390,
26858,
22203,
8,
796,
2081,
198,
271,
62,
9630,
276,
7,
69,
3712,
15732,
276,
18467,
24510,
22203,
38469,
8,
796,
2081,
198,
271,
62,
9630,
276,
7,
69,
3712,
18467,
24510,
22203,
38469,
90,
51,
11,
27,
25,
23839,
17257,
90,
51,
11709,
8,
810,
309,
796,
2081,
198,
198,
37811,
383,
662,
9060,
357,
259,
4399,
2939,
8,
286,
262,
1988,
331,
287,
262,
14873,
296,
391,
13,
198,
37811,
198,
3866,
9060,
7,
69,
3712,
7390,
26858,
22203,
11,
331,
8,
796,
20546,
9250,
7,
88,
8,
198,
3866,
9060,
7,
69,
3712,
18467,
24510,
22203,
11,
331,
8,
796,
685,
2124,
329,
2124,
287,
2401,
7,
69,
8,
611,
277,
7,
87,
8,
6624,
331,
2361,
198,
3866,
9060,
7,
69,
3712,
15732,
276,
18467,
24510,
22203,
38469,
11,
331,
8,
796,
651,
62,
3866,
9060,
62,
9630,
7,
69,
13,
9630,
11,
331,
8,
198,
198,
31,
45145,
651,
62,
3866,
9060,
62,
9630,
7,
9630,
3712,
23839,
35,
713,
11,
331,
8,
796,
651,
7,
9630,
11,
331,
11,
352,
25,
15,
8,
198,
31,
45145,
651,
62,
3866,
9060,
62,
9630,
7,
9630,
3712,
23839,
38469,
11,
331,
8,
796,
6376,
58,
88,
60,
198,
198,
3866,
9060,
7,
69,
3712,
18467,
24510,
22203,
38469,
90,
51,
11,
27,
25,
23839,
17257,
90,
51,
92,
5512,
331,
3712,
51,
8,
810,
309,
796,
198,
220,
1303,
5747,
4600,
259,
63,
290,
4600,
12947,
82,
9741,
11085,
63,
389,
16976,
329,
27741,
17257,
13,
198,
220,
331,
18872,
230,
277,
13,
20786,
5633,
20546,
9250,
7,
12947,
82,
9741,
11085,
7,
69,
13,
20786,
11,
331,
4008,
1058,
20546,
9250,
90,
15,
11,
5317,
92,
3419,
198,
198,
37811,
12901,
276,
2163,
1022,
27454,
5621,
286,
2099,
4600,
18467,
7248,
90,
5317,
92,
44646,
198,
198,
15732,
276,
5499,
3650,
1111,
262,
2651,
3975,
7559,
69,
25,
1395,
15168,
575,
15506,
11,
355,
257,
15879,
286,
198,
18908,
364,
11,
290,
262,
19528,
3975,
7559,
69,
25,
575,
15168,
1395,
46256,
119,
126,
117,
15506,
11,
355,
257,
15879,
286,
30104,
286,
198,
18908,
364,
11,
9857,
832,
262,
685,
63,
3866,
9060,
63,
16151,
31,
5420,
8,
2163,
13,
383,
19528,
3975,
198,
271,
1444,
262,
1635,
9630,
24620,
1002,
340,
318,
407,
14275,
832,
262,
21179,
4578,
198,
63,
9630,
47671,
340,
318,
29231,
618,
262,
2134,
318,
12006,
13,
198,
198,
1212,
2099,
318,
33544,
38284,
416,
685,
63,
15732,
276,
18467,
24510,
22203,
38469,
63,
16151,
31,
5420,
737,
198,
37811,
198,
9979,
12901,
276,
18467,
22203,
38469,
90,
53,
11,
15732,
92,
796,
198,
220,
12901,
276,
18467,
24510,
22203,
38469,
90,
5317,
11,
53,
11,
15732,
11,
18467,
7248,
5317,
92,
198,
198,
8818,
12901,
276,
18467,
22203,
38469,
7,
69,
3712,
23839,
38469,
90,
5317,
19629,
6376,
28,
22366,
8,
198,
220,
14873,
296,
796,
318,
22366,
7,
9630,
8,
5633,
357,
271,
28920,
7,
69,
8,
5633,
657,
1058,
5415,
7,
69,
4008,
1058,
4129,
7,
9630,
8,
198,
220,
12901,
276,
18467,
22203,
38469,
7,
69,
11,
14873,
296,
26,
6376,
28,
9630,
8,
198,
437,
198,
198,
8818,
12901,
276,
18467,
22203,
38469,
7,
69,
3712,
23839,
38469,
90,
5317,
5512,
14873,
296,
26,
6376,
28,
22366,
8,
198,
220,
14873,
296,
796,
4463,
7248,
7,
19815,
296,
8,
198,
220,
611,
318,
22366,
7,
9630,
8,
198,
220,
220,
220,
6376,
796,
685,
2558,
21737,
329,
474,
287,
14873,
296,
2361,
198,
220,
220,
220,
329,
357,
72,
11,
474,
8,
287,
27056,
378,
7,
69,
8,
198,
220,
220,
220,
220,
220,
4574,
0,
7,
9630,
58,
73,
4357,
1312,
8,
198,
220,
220,
220,
886,
198,
220,
2073,
361,
4129,
7,
9630,
8,
14512,
4129,
7,
19815,
296,
8,
198,
220,
220,
220,
4049,
7203,
15732,
4129,
29568,
13664,
7,
9630,
4008,
857,
407,
2872,
14873,
296,
391,
720,
19815,
296,
4943,
198,
220,
886,
198,
220,
12901,
276,
18467,
24510,
22203,
38469,
7,
69,
11,
6376,
11,
14873,
296,
8,
198,
437,
198,
198,
14881,
13,
12860,
7,
952,
3712,
9399,
11,
277,
3712,
15732,
276,
18467,
22203,
38469,
8,
796,
198,
220,
3601,
7,
952,
11,
366,
18467,
22203,
16763,
7,
69,
13,
20786,
828,
29568,
13664,
7,
3438,
7,
69,
4008,
828,
29568,
13664,
7,
19815,
296,
7,
69,
4008,
828,
6376,
28,
7942,
8,
4943,
198,
198,
2,
1114,
783,
11,
356,
466,
407,
12201,
393,
36664,
36525,
11,
691,
262,
2163,
30104,
13,
198,
50,
1039,
13,
4598,
62,
785,
3455,
7,
69,
3712,
38176,
90,
18467,
22203,
38469,
11,
15732,
276,
18467,
22203,
38469,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
3712,
38176,
90,
18467,
24510,
22203,
38469,
11,
15732,
276,
18467,
24510,
22203,
38469,
30072,
796,
198,
220,
4463,
24510,
22203,
38469,
7,
70,
13,
20786,
58,
69,
13,
20786,
4357,
14873,
296,
7,
70,
4008,
198,
198,
2,
360,
713,
12,
3106,
5499,
198,
2,
19351,
12,
198,
198,
37811,
15553,
287,
12429,
7248,
1174,
7997,
416,
257,
22155,
13,
198,
198,
464,
7386,
318,
257,
4600,
18467,
7248,
90,
50,
92,
63,
810,
4600,
50,
63,
318,
262,
2099,
286,
262,
22155,
338,
4600,
13083,
63,
198,
43681,
13,
198,
37811,
198,
31,
23736,
62,
17831,
62,
4853,
874,
2878,
4463,
24510,
22203,
35,
713,
90,
42,
11,
35,
27,
25,
23839,
35,
713,
90,
42,
5512,
43806,
296,
27,
25,
7248,
5944,
92,
1279,
25,
198,
220,
220,
220,
4463,
24510,
22203,
90,
35,
11,
18467,
7248,
90,
23839,
7248,
90,
42,
5512,
42,
5512,
43806,
296,
92,
198,
220,
25439,
3712,
35,
198,
220,
14873,
296,
3712,
43806,
296,
198,
437,
198,
198,
18467,
24510,
22203,
35,
713,
7,
67,
3712,
23839,
35,
713,
90,
42,
11,
53,
30072,
810,
1391,
42,
11,
53,
92,
796,
198,
220,
4463,
24510,
22203,
35,
713,
7,
67,
11,
5994,
7248,
90,
53,
92,
28955,
198,
198,
3438,
7,
69,
3712,
18467,
24510,
22203,
35,
713,
8,
796,
4463,
7248,
7,
13083,
7,
69,
13,
20786,
4008,
198,
198,
7,
69,
3712,
18467,
24510,
22203,
35,
713,
5769,
87,
8,
796,
277,
13,
20786,
58,
87,
60,
198,
198,
8818,
7308,
13,
12860,
7,
952,
3712,
9399,
11,
277,
3712,
37,
8,
810,
376,
1279,
25,
4463,
24510,
22203,
35,
713,
198,
220,
21394,
13,
12860,
62,
4906,
62,
41571,
273,
7,
952,
11,
376,
8,
198,
220,
3601,
7,
952,
11,
30629,
4943,
198,
220,
905,
7,
952,
11,
277,
13,
20786,
8,
198,
220,
3601,
7,
952,
11,
33172,
366,
8,
198,
220,
21394,
13,
12860,
62,
3438,
1299,
7,
952,
11,
277,
11,
7386,
28,
9562,
8,
198,
220,
3601,
7,
952,
11,
366,
8,
4943,
198,
437,
198,
198,
3174,
7,
69,
3712,
18467,
24510,
22203,
8,
796,
198,
220,
4463,
24510,
22203,
35,
713,
7,
35,
713,
7,
87,
5218,
277,
7,
87,
8,
329,
2124,
287,
2401,
7,
69,
36911,
14873,
296,
7,
69,
4008,
198,
3174,
7,
69,
3712,
18467,
24510,
22203,
35,
713,
8,
796,
277,
198,
198,
37811,
15553,
287,
12429,
18467,
7248,
1174,
7997,
416,
257,
22155,
13,
198,
37811,
198,
9979,
4463,
22203,
35,
713,
90,
42,
11,
35,
27,
25,
23839,
35,
713,
90,
42,
5512,
43806,
296,
27,
25,
18467,
7248,
92,
796,
198,
220,
4463,
24510,
22203,
35,
713,
90,
42,
11,
35,
11,
43806,
296,
92,
198,
198,
18467,
22203,
35,
713,
7,
67,
3712,
23839,
35,
713,
11,
14873,
296,
3712,
18467,
7248,
8,
796,
4463,
24510,
22203,
35,
713,
7,
67,
11,
14873,
296,
8,
198,
18467,
22203,
35,
713,
7,
67,
3712,
23839,
35,
713,
90,
42,
11,
53,
30072,
810,
1391,
42,
11,
53,
92,
796,
198,
220,
4463,
24510,
22203,
35,
713,
7,
67,
11,
4463,
7248,
7,
7248,
7,
27160,
7,
67,
35514,
198,
198,
50,
1039,
13,
4598,
62,
785,
3455,
7,
69,
3712,
18467,
22203,
35,
713,
90,
42,
11,
35,
5512,
308,
3712,
18467,
24510,
22203,
35,
713,
8,
810,
1391,
42,
11,
35,
92,
796,
198,
220,
4463,
24510,
22203,
35,
713,
7,
11600,
4906,
7,
35,
5769,
87,
5218,
308,
13,
20786,
58,
88,
60,
329,
357,
87,
11,
88,
8,
287,
14729,
7,
69,
13,
20786,
36911,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14873,
296,
7,
70,
4008,
198,
198,
2,
44943,
198,
7804,
198,
198,
32374,
7,
55,
82,
3712,
40613,
18683,
6713,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
796,
27272,
7,
55,
82,
11,
9447,
586,
271,
6839,
90,
15,
92,
7,
18467,
7248,
7,
16,
22305,
198,
198,
40082,
7,
2475,
3712,
39184,
90,
27,
25,
18467,
7248,
90,
5317,
5512,
27,
25,
40613,
18683,
6713,
5512,
27763,
3712,
12310,
586,
271,
6839,
90,
15,
30072,
796,
198,
220,
20217,
22203,
7,
16,
11,
40167,
7,
49180,
828,
4463,
7248,
7,
16,
4008,
198,
198,
32374,
7,
55,
82,
3712,
29974,
10565,
18683,
6713,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
796,
4179,
7,
55,
82,
11,
6093,
1096,
39184,
28955,
198,
198,
8818,
4179,
7,
55,
82,
3712,
10267,
47,
958,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
198,
220,
285,
11,
299,
796,
4129,
12195,
55,
82,
8,
198,
220,
36525,
796,
13690,
35610,
5497,
1063,
19510,
76,
11,
299,
4008,
198,
220,
18074,
222,
16,
796,
4463,
22203,
7,
72,
4613,
36525,
58,
72,
7131,
16,
4357,
285,
9,
77,
11,
285,
8,
198,
220,
18074,
222,
17,
796,
4463,
22203,
7,
72,
4613,
36525,
58,
72,
7131,
17,
4357,
285,
9,
77,
11,
299,
8,
198,
220,
27272,
7,
55,
82,
11,
49101,
7,
46582,
16,
11,
18074,
222,
17,
4008,
198,
437,
198,
198,
8818,
10112,
7,
2475,
3712,
39184,
90,
27,
25,
18467,
7248,
90,
5317,
5512,
27,
25,
10267,
47,
958,
5512,
27763,
3712,
4561,
272,
8,
198,
220,
277,
11,
308,
796,
27763,
198,
220,
285,
11,
299,
796,
4129,
12195,
19815,
296,
12195,
49180,
4008,
198,
220,
36525,
796,
44800,
5497,
1063,
19510,
76,
11,
299,
4008,
198,
220,
4463,
22203,
7,
72,
4613,
36525,
58,
69,
7,
72,
828,
70,
7,
72,
8,
4357,
40167,
7,
49180,
828,
909,
7,
2475,
4008,
198,
437,
198,
198,
8818,
4179,
7,
55,
82,
3712,
15642,
8374,
18683,
6713,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
198,
220,
36545,
796,
4129,
12195,
55,
82,
8,
198,
220,
36525,
796,
13690,
35610,
5497,
1063,
7,
51,
29291,
7,
5907,
4008,
198,
220,
299,
796,
40426,
7,
5907,
8,
198,
220,
18074,
222,
82,
796,
685,
18467,
22203,
7,
72,
4613,
36525,
58,
72,
7131,
73,
4357,
299,
11,
36545,
58,
73,
12962,
329,
474,
287,
352,
25,
13664,
7,
5907,
15437,
198,
220,
27272,
7,
55,
82,
11,
7854,
271,
6839,
7,
18467,
7248,
7,
77,
828,
18074,
222,
82,
4008,
198,
437,
198,
198,
8818,
10112,
7,
2475,
3712,
39184,
90,
27,
25,
18467,
7248,
90,
5317,
5512,
27,
25,
15642,
8374,
18683,
6713,
5512,
27763,
3712,
15205,
271,
6839,
8,
198,
220,
36545,
796,
4129,
12195,
19815,
296,
12195,
49180,
4008,
198,
220,
36525,
796,
44800,
5497,
1063,
7,
51,
29291,
7,
5907,
4008,
198,
220,
4463,
22203,
7,
72,
4613,
36525,
58,
7,
69,
7,
72,
8,
329,
277,
287,
27763,
26513,
4357,
40167,
7,
49180,
828,
909,
7,
2475,
4008,
198,
437,
198,
198,
8818,
4179,
7,
24874,
3712,
10044,
29363,
47,
958,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
198,
220,
277,
11,
308,
796,
5166,
198,
220,
285,
796,
4129,
7,
3438,
7,
24874,
4008,
198,
220,
37430,
796,
4463,
22203,
7,
24455,
7,
72,
4613,
277,
7,
72,
8,
6624,
308,
7,
72,
828,
352,
25,
76,
828,
285,
8,
198,
220,
27272,
7,
24874,
11,
9447,
586,
271,
6839,
90,
16,
92,
7,
27363,
4008,
198,
437,
198,
198,
8818,
4179,
7,
1845,
64,
3712,
10044,
29363,
44,
13425,
6583,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
198,
220,
2488,
30493,
5145,
271,
28920,
7,
1845,
64,
8,
198,
220,
277,
16,
11,
2030,
301,
796,
31215,
58,
16,
4357,
31215,
58,
17,
25,
437,
60,
198,
220,
285,
796,
4129,
7,
3438,
7,
1845,
64,
4008,
198,
220,
37430,
796,
4463,
22203,
7,
24455,
7,
72,
4613,
477,
7,
69,
16,
7,
72,
8,
6624,
277,
7,
72,
8,
329,
277,
287,
2030,
301,
828,
352,
25,
76,
828,
285,
8,
198,
220,
27272,
7,
1845,
64,
11,
9447,
586,
271,
6839,
90,
16,
92,
7,
27363,
4008,
198,
437,
198,
198,
8818,
10112,
7,
2475,
3712,
39184,
90,
27,
25,
18467,
7248,
90,
5317,
5512,
27,
25,
10044,
29363,
44,
13425,
6583,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27763,
3712,
12310,
586,
271,
6839,
90,
16,
30072,
198,
220,
7377,
117,
796,
2824,
7,
259,
565,
7,
2475,
4008,
198,
220,
289,
796,
691,
7,
49180,
8,
198,
220,
4463,
22203,
7,
5317,
58,
8807,
7,
12947,
82,
9741,
7,
29945,
11,
289,
7,
72,
22305,
329,
1312,
287,
2401,
7,
71,
8,
4357,
4129,
7,
29945,
4008,
198,
437,
198,
198,
37811,
27272,
286,
27454,
5621,
351,
257,
9575,
16855,
393,
6376,
656,
262,
4179,
900,
13,
198,
198,
1212,
2099,
3769,
257,
2121,
1891,
329,
4179,
16113,
326,
466,
407,
1282,
351,
257,
198,
20887,
1143,
11862,
284,
4174,
262,
10112,
3119,
286,
262,
4179,
13,
554,
884,
198,
33964,
11,
345,
460,
11777,
5678,
257,
16855,
422,
12777,
2374,
286,
4847,
287,
262,
198,
39690,
286,
262,
4179,
27763,
284,
4847,
287,
262,
40167,
286,
262,
27763,
13,
198,
198,
464,
6376,
318,
12006,
262,
717,
640,
340,
318,
2622,
13,
6660,
612,
318,
645,
3131,
198,
15805,
284,
1262,
428,
2099,
611,
262,
10112,
3119,
481,
407,
307,
24399,
13,
198,
37811,
198,
76,
18187,
2878,
4463,
7248,
15732,
276,
39184,
90,
5944,
27,
25,
18467,
7248,
11,
18683,
6713,
11,
34,
505,
27,
25,
15205,
271,
6839,
90,
5944,
11709,
1279,
25,
198,
220,
220,
220,
27741,
39184,
90,
5944,
11,
18683,
6713,
92,
198,
220,
16362,
3712,
18683,
6713,
198,
220,
27763,
3712,
34,
505,
198,
220,
6376,
3712,
38176,
90,
23839,
35,
713,
11,
18465,
92,
198,
437,
198,
18467,
7248,
15732,
276,
39184,
7,
10989,
6713,
11,
27763,
3712,
15205,
271,
6839,
8,
796,
198,
220,
4463,
7248,
15732,
276,
39184,
7,
10989,
6713,
11,
27763,
11,
2147,
8,
198,
198,
8818,
787,
62,
32374,
62,
9630,
7,
49180,
3712,
15205,
271,
6839,
90,
27,
25,
18467,
7248,
30072,
198,
220,
18074,
222,
82,
796,
309,
29291,
7,
1455,
82,
7,
49180,
4008,
198,
220,
6376,
796,
360,
713,
90,
51,
29291,
90,
8899,
7,
417,
4906,
24861,
246,
19815,
296,
11,
18074,
222,
82,
26513,
5512,
1288,
4906,
7,
1758,
87,
7,
49180,
4008,
92,
3419,
198,
220,
329,
2124,
287,
40167,
7,
49180,
8,
198,
220,
220,
220,
6376,
58,
8899,
7,
46582,
4613,
18074,
222,
7,
87,
828,
18074,
222,
82,
15437,
796,
2124,
198,
220,
886,
198,
220,
1441,
6376,
198,
437,
198,
198,
8818,
10112,
7,
2475,
3712,
18467,
7248,
15732,
276,
39184,
11,
27763,
3712,
15205,
271,
6839,
8,
198,
220,
611,
318,
22366,
7,
2475,
13,
9630,
8,
198,
220,
220,
220,
1761,
13,
9630,
796,
787,
62,
32374,
62,
9630,
7,
2475,
13,
49180,
8,
198,
220,
886,
198,
220,
43458,
796,
309,
29291,
7,
1455,
82,
7,
49180,
4008,
198,
220,
4463,
22203,
7,
5317,
58,
2475,
13,
9630,
58,
8899,
7,
69,
4613,
277,
7,
87,
828,
43458,
15437,
329,
2124,
287,
40167,
7,
49180,
8,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40167,
7,
49180,
828,
909,
7,
2475,
4008,
198,
437,
198,
198,
37811,
978,
42289,
329,
4179,
286,
269,
2117,
272,
393,
47368,
2117,
272,
351,
3625,
852,
27454,
5621,
13,
198,
198,
818,
262,
4732,
286,
50126,
20083,
11,
884,
7095,
389,
1444,
1635,
7639,
1040,
24620,
383,
198,
83,
15104,
498,
4654,
11862,
318,
685,
63,
45,
7287,
39516,
18234,
63,
16151,
31,
5420,
828,
543,
318,
11862,
1146,
198,
4853,
29540,
284,
262,
14276,
11862,
4600,
7293,
577,
15667,
36,
13255,
7509,
44646,
383,
16113,
198,
58,
63,
26257,
18234,
63,
16151,
31,
5420,
8,
290,
685,
63,
42758,
13102,
469,
18234,
63,
16151,
31,
5420,
8,
389,
3221,
881,
5443,
13,
1002,
345,
198,
533,
22147,
644,
11862,
284,
2298,
11,
779,
685,
63,
25610,
18234,
63,
16151,
31,
5420,
737,
198,
37811,
198,
397,
8709,
2099,
15251,
2348,
42289,
1279,
25,
27272,
2348,
42289,
886,
198,
198,
37811,
30277,
12,
282,
42289,
329,
15449,
326,
6370,
284,
2298,
281,
5035,
11862,
13,
198,
37811,
198,
7249,
10880,
18234,
1279,
25,
15251,
2348,
42289,
886,
198,
198,
8818,
4179,
7,
66,
2117,
272,
3712,
15205,
291,
2117,
272,
90,
27,
25,
7248,
5944,
11,
27,
25,
18467,
24510,
22203,
90,
5317,
11709,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
435,
70,
3712,
39184,
2348,
42289,
28,
7293,
577,
15667,
36,
13255,
7509,
28955,
198,
220,
4179,
7,
66,
2117,
272,
11,
435,
70,
8,
198,
437,
198,
198,
8818,
4179,
7,
66,
2117,
272,
3712,
15205,
291,
2117,
272,
90,
27,
25,
7248,
5944,
11,
27,
25,
18467,
24510,
22203,
90,
5317,
92,
5512,
7904,
25610,
18234,
8,
198,
220,
1303,
33141,
262,
1593,
2041,
1339,
810,
530,
286,
262,
7405,
318,
257,
6937,
198,
220,
1303,
357,
8818,
503,
286,
257,
2060,
1122,
900,
737,
554,
428,
1339,
11,
356,
655,
761,
284,
1011,
257,
198,
220,
1303,
1720,
286,
662,
17566,
286,
262,
6937,
1988,
13,
198,
220,
1257,
6359,
796,
7405,
7,
66,
2117,
272,
8,
198,
220,
1312,
796,
1064,
11085,
7,
69,
4613,
4129,
7,
3438,
7,
69,
4008,
6624,
352,
11,
1257,
6359,
8,
198,
220,
611,
5145,
271,
22366,
7,
72,
8,
198,
220,
220,
220,
269,
796,
1257,
6359,
58,
72,
16151,
16,
8,
198,
220,
220,
220,
7377,
117,
82,
796,
3975,
7,
33678,
265,
7,
12543,
6359,
11,
1312,
4008,
466,
277,
198,
220,
220,
220,
220,
220,
4463,
22203,
7,
3866,
9060,
7,
69,
11,
269,
828,
2401,
7,
69,
4008,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2124,
11,
18074,
222,
82,
796,
611,
4129,
7,
29945,
82,
8,
6624,
352,
198,
220,
220,
220,
220,
220,
2401,
7,
8807,
7,
29945,
82,
36911,
7377,
117,
82,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
40426,
796,
1720,
7,
8899,
7,
3438,
11,
7377,
117,
82,
4008,
198,
220,
220,
220,
220,
220,
909,
7,
1676,
67,
828,
3975,
7,
785,
3455,
11,
7405,
7,
1676,
67,
828,
7377,
117,
82,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
18074,
222,
82,
796,
7550,
7,
46582,
82,
11,
1312,
11,
20217,
22203,
7,
16,
11,
2124,
11,
4463,
7248,
7,
16,
22305,
198,
220,
220,
220,
1441,
4463,
7248,
15732,
276,
39184,
7,
66,
2117,
272,
11,
7854,
271,
6839,
7,
46582,
82,
4008,
198,
220,
886,
628,
220,
1303,
554,
262,
2276,
1339,
11,
329,
783,
356,
1464,
655,
466,
257,
12234,
4654,
11,
3584,
198,
220,
1303,
3297,
12,
647,
469,
15449,
460,
3360,
307,
5443,
13,
198,
220,
4179,
7,
66,
2117,
272,
11,
21059,
18234,
28955,
198,
437,
198,
198,
33678,
265,
7,
35138,
3712,
45442,
38469,
11,
1312,
8,
796,
36125,
3163,
20477,
13,
33678,
265,
7,
35138,
11,
1312,
8,
198,
33678,
265,
7,
35138,
3712,
38469,
11,
1312,
8,
796,
12233,
265,
0,
7,
30073,
7,
35138,
828,
1312,
8,
198,
198,
28463,
7,
35138,
3712,
45442,
38469,
90,
45,
11,
51,
5512,
1312,
11,
2124,
3712,
50,
8,
810,
1391,
45,
11,
51,
11,
50,
92,
796,
198,
220,
36125,
3163,
20477,
13,
28463,
7,
38610,
62,
4906,
7,
35138,
11,
2099,
22179,
7,
51,
11,
50,
4008,
7,
35138,
828,
1312,
11,
2124,
8,
198,
28463,
7,
35138,
3712,
38469,
90,
51,
5512,
1312,
11,
2124,
3712,
50,
8,
810,
1391,
51,
11,
50,
92,
796,
198,
220,
7550,
0,
7,
33327,
7,
4906,
22179,
7,
51,
11,
50,
828,
43030,
828,
1312,
11,
2124,
8,
198,
198,
37811,
685,
45,
7287,
12,
26268,
4654,
16151,
5450,
1378,
268,
13,
31266,
13,
2398,
14,
15466,
14,
45,
7287,
62,
26268,
62,
22179,
8,
11862,
13,
198,
198,
1212,
318,
262,
24354,
11862,
329,
14492,
15449,
13,
198,
37811,
198,
7249,
399,
7287,
39516,
18234,
1279,
25,
15251,
2348,
42289,
886,
198,
198,
8818,
4179,
7,
66,
2117,
272,
3712,
15205,
291,
2117,
272,
90,
27,
25,
7248,
5944,
11,
27,
25,
18467,
24510,
22203,
90,
5317,
92,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7904,
45,
7287,
39516,
18234,
8,
198,
220,
1303,
317,
28376,
12,
26268,
4654,
318,
11862,
1146,
262,
976,
355,
4600,
7293,
577,
15667,
36,
13255,
7509,
47671,
198,
220,
1303,
475,
329,
1224,
43205,
290,
2854,
356,
1577,
257,
1277,
7822,
994,
13,
198,
220,
1257,
6359,
796,
7405,
7,
66,
2117,
272,
8,
198,
220,
36545,
796,
3975,
7,
13664,
11,
3625,
7,
66,
2117,
272,
4008,
198,
220,
18074,
222,
82,
796,
3975,
28264,
4613,
2558,
58,
4357,
1257,
6359,
8,
198,
220,
329,
314,
287,
13690,
35610,
5497,
1063,
7,
51,
29291,
7,
5907,
4008,
198,
220,
220,
220,
3815,
796,
3975,
19510,
69,
11,
1312,
8,
4613,
277,
7,
40,
58,
72,
46570,
1257,
6359,
11,
1123,
9630,
7,
12543,
6359,
4008,
198,
220,
220,
220,
611,
477,
7,
855,
7,
27160,
58,
16,
46570,
3815,
8,
198,
220,
220,
220,
220,
220,
329,
1312,
287,
1123,
9630,
7,
46582,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
46582,
82,
58,
72,
4357,
314,
58,
72,
12962,
198,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
886,
198,
220,
27763,
796,
7854,
271,
6839,
7,
8899,
19510,
46582,
11,
69,
8,
4613,
4463,
22203,
7,
46582,
11,
2401,
7,
69,
36911,
18074,
222,
82,
11,
1257,
6359,
4008,
198,
220,
4463,
7248,
15732,
276,
39184,
7,
66,
2117,
272,
11,
27763,
8,
198,
437,
198,
198,
37811,
685,
42758,
12,
647,
469,
4654,
16151,
5450,
1378,
268,
13,
31266,
13,
2398,
14,
15466,
14,
42758,
12,
647,
469,
62,
22179,
8,
11862,
13,
198,
37811,
198,
7249,
33947,
13102,
469,
18234,
1279,
25,
15251,
2348,
42289,
886,
198,
198,
8818,
4179,
7,
66,
2117,
272,
3712,
15205,
291,
2117,
272,
90,
27,
25,
7248,
5944,
11,
27,
25,
18467,
24510,
22203,
90,
5317,
92,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7904,
42758,
13102,
469,
18234,
8,
198,
220,
1257,
6359,
796,
3975,
7,
33327,
11,
7405,
7,
66,
2117,
272,
4008,
198,
220,
10524,
796,
3975,
7,
30619,
16321,
11,
1257,
6359,
8,
198,
220,
3815,
796,
2092,
62,
76,
18187,
7,
12543,
6359,
11,
1288,
4906,
7,
1758,
87,
7,
66,
2117,
272,
22305,
198,
220,
16069,
796,
2092,
62,
76,
18187,
7,
12543,
6359,
11,
11801,
17257,
90,
5317,
30072,
628,
220,
2163,
1306,
62,
9521,
0,
7,
72,
3712,
5317,
8,
198,
220,
220,
220,
277,
11,
3297,
796,
1257,
6359,
58,
72,
4357,
10524,
58,
72,
60,
198,
220,
220,
220,
299,
796,
4129,
7,
69,
8,
198,
220,
220,
220,
923,
796,
938,
7,
81,
6231,
58,
72,
12962,
1343,
352,
198,
220,
220,
220,
16069,
58,
72,
60,
796,
611,
923,
19841,
299,
198,
220,
220,
220,
220,
220,
1188,
796,
3815,
58,
72,
60,
796,
277,
58,
30619,
58,
9688,
11907,
198,
220,
220,
220,
220,
220,
2245,
796,
923,
1343,
352,
198,
220,
220,
220,
220,
220,
981,
2245,
19841,
299,
11405,
277,
58,
30619,
58,
11338,
11907,
6624,
1188,
26,
2245,
15853,
352,
886,
198,
220,
220,
220,
220,
220,
923,
37498,
11338,
532,
352,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
923,
25,
77,
198,
220,
220,
220,
886,
198,
220,
886,
628,
220,
18074,
222,
82,
796,
3975,
28264,
4613,
2558,
58,
4357,
1257,
6359,
8,
198,
220,
329,
1312,
287,
1123,
9630,
7,
81,
6231,
8,
198,
220,
220,
220,
16069,
58,
72,
60,
796,
657,
25,
15,
198,
220,
220,
220,
1306,
62,
9521,
0,
7,
72,
8,
198,
220,
886,
198,
220,
981,
5145,
1092,
7,
271,
28920,
11,
16069,
8,
198,
220,
220,
220,
611,
477,
7,
855,
7,
27160,
58,
16,
46570,
3815,
8,
198,
220,
220,
220,
220,
220,
36525,
796,
13690,
35610,
5497,
1063,
7,
51,
29291,
7,
81,
6231,
4008,
198,
220,
220,
220,
220,
220,
329,
1312,
287,
1123,
9630,
7,
46582,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
24443,
0,
7,
46582,
82,
58,
72,
4357,
357,
82,
2096,
58,
72,
7131,
40,
58,
72,
11907,
329,
314,
287,
36525,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1306,
62,
9521,
0,
7,
72,
8,
198,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
1306,
62,
9521,
0,
7,
853,
1084,
7,
27160,
4008,
198,
220,
220,
220,
886,
198,
220,
886,
198,
220,
27763,
796,
7854,
271,
6839,
7,
8899,
19510,
46582,
11,
69,
8,
4613,
4463,
22203,
7,
46582,
11,
4129,
7,
69,
36911,
18074,
222,
82,
11,
1257,
6359,
4008,
198,
220,
4463,
7248,
15732,
276,
39184,
7,
66,
2117,
272,
11,
27763,
8,
198,
437,
198,
198,
38610,
62,
76,
18187,
7,
87,
3712,
23839,
38469,
11,
309,
3712,
6030,
8,
796,
2092,
7,
87,
11,
309,
8,
198,
198,
8818,
2092,
62,
76,
18187,
7,
87,
3712,
45442,
38469,
90,
45,
5512,
309,
3712,
6030,
8,
810,
399,
198,
220,
1303,
4600,
38610,
63,
1464,
5860,
281,
4600,
44,
38469,
63,
475,
4600,
2617,
9630,
0,
7,
3712,
44,
38469,
11,
26498,
23029,
63,
198,
220,
1303,
691,
2499,
618,
262,
5002,
2099,
318,
257,
10340,
12,
4906,
13,
198,
220,
318,
2545,
301,
2981,
7,
51,
8,
5633,
2092,
7,
87,
11,
309,
8,
1058,
311,
1143,
38469,
90,
45,
92,
7,
38469,
90,
51,
92,
7,
917,
891,
11,
399,
4008,
198,
437,
198,
198,
37811,
685,
26257,
4654,
16151,
5450,
1378,
268,
13,
31266,
13,
2398,
14,
15466,
14,
26257,
62,
22179,
8,
11862,
13,
198,
37811,
198,
7249,
21059,
18234,
1279,
25,
15251,
2348,
42289,
886,
198,
198,
8818,
4179,
7,
66,
2117,
272,
3712,
15205,
291,
2117,
272,
90,
27,
25,
7248,
5944,
11,
27,
25,
18467,
24510,
22203,
90,
5317,
92,
5512,
7904,
26257,
18234,
8,
198,
220,
1303,
775,
1061,
262,
3210,
29191,
329,
12234,
15449,
25,
287,
257,
5021,
1014,
12234,
4654,
11,
198,
220,
1303,
530,
2163,
11,
1444,
262,
1635,
1676,
1350,
25666,
481,
307,
11629,
515,
625,
290,
761,
407,
307,
198,
220,
1303,
41497,
11,
9472,
262,
584,
5499,
11,
869,
1635,
11249,
9,
17311,
11,
1276,
307,
41497,
13,
198,
220,
1303,
198,
220,
1303,
775,
3853,
355,
12774,
262,
555,
9630,
276,
2163,
351,
4387,
7386,
13,
1002,
477,
198,
220,
1303,
5499,
389,
1541,
41497,
11,
356,
40647,
3853,
262,
717,
530,
13,
198,
220,
1312,
796,
1822,
9806,
7,
8899,
7,
1455,
82,
7,
66,
2117,
272,
4008,
466,
277,
198,
220,
220,
220,
318,
62,
9630,
276,
7,
69,
8,
5633,
532,
16,
1058,
4129,
7,
3438,
7,
69,
4008,
198,
220,
886,
8,
198,
220,
12774,
796,
7405,
7,
66,
2117,
272,
38381,
72,
60,
198,
220,
12188,
796,
3975,
7,
641,
495,
62,
9630,
276,
11,
12233,
265,
7,
1455,
82,
7,
66,
2117,
272,
828,
1312,
4008,
198,
220,
18074,
222,
82,
62,
11249,
11,
18074,
222,
62,
1676,
1350,
796,
12234,
62,
22179,
7,
11249,
82,
11,
12774,
8,
198,
220,
4463,
7248,
15732,
276,
39184,
7,
66,
2117,
272,
11,
7854,
271,
6839,
7,
28463,
7,
46582,
82,
62,
11249,
11,
1312,
11,
18074,
222,
62,
1676,
1350,
22305,
198,
437,
198,
198,
8818,
12234,
62,
22179,
7,
11249,
82,
3712,
23839,
38469,
90,
27,
25,
18467,
24510,
22203,
90,
5317,
92,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12774,
3712,
18467,
24510,
22203,
90,
5317,
30072,
198,
220,
18074,
222,
62,
11249,
82,
11,
18074,
222,
79,
796,
3975,
28264,
4613,
2558,
58,
4357,
12188,
828,
2558,
21737,
198,
220,
329,
331,
287,
2401,
7,
1676,
1350,
8,
198,
220,
220,
220,
1188,
796,
12774,
7,
88,
8,
198,
220,
220,
220,
662,
17566,
796,
3975,
7,
11249,
4613,
662,
9060,
7,
11249,
11,
1188,
828,
12188,
8,
198,
220,
220,
220,
299,
62,
3866,
17566,
796,
309,
29291,
7,
8899,
7,
13664,
11,
662,
17566,
4008,
198,
220,
220,
220,
299,
796,
40426,
7,
77,
62,
3866,
17566,
8,
198,
220,
220,
220,
611,
299,
1875,
657,
198,
220,
220,
220,
220,
220,
36525,
796,
13690,
35610,
5497,
1063,
7,
77,
62,
3866,
17566,
8,
198,
220,
220,
220,
220,
220,
329,
474,
287,
1123,
9630,
7,
46582,
62,
11249,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
18074,
222,
65,
11,
2124,
82,
796,
18074,
222,
62,
11249,
82,
58,
73,
4357,
662,
17566,
58,
73,
60,
198,
220,
220,
220,
220,
220,
220,
220,
24443,
0,
7,
46582,
65,
11,
357,
34223,
58,
40,
58,
73,
11907,
329,
314,
287,
36525,
4008,
198,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
24443,
0,
7,
46582,
79,
11,
357,
88,
329,
1312,
287,
352,
25,
77,
4008,
198,
220,
220,
220,
886,
198,
220,
886,
198,
220,
357,
8899,
7,
18467,
22203,
11,
18074,
222,
62,
11249,
82,
11,
3975,
7,
3438,
11,
12188,
36911,
4463,
22203,
7,
46582,
79,
11,
2401,
7,
1676,
1350,
22305,
198,
437,
198,
198,
8818,
12234,
62,
22179,
7,
11249,
82,
3712,
45442,
38469,
90,
16,
11,
27,
25,
18467,
24510,
22203,
90,
5317,
92,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12774,
3712,
18467,
24510,
22203,
90,
5317,
30072,
198,
220,
18074,
222,
65,
11,
18074,
222,
79,
796,
12234,
62,
22179,
7,
11249,
82,
58,
16,
4357,
12774,
8,
198,
220,
357,
50,
38469,
19510,
46582,
65,
35751,
828,
18074,
222,
79,
8,
198,
437,
198,
8818,
12234,
62,
22179,
7,
11249,
3712,
18467,
24510,
22203,
90,
5317,
5512,
12774,
3712,
18467,
24510,
22203,
90,
5317,
30072,
198,
220,
18074,
222,
65,
11,
18074,
222,
79,
796,
2558,
58,
4357,
2558,
21737,
198,
220,
329,
331,
287,
2401,
7,
1676,
1350,
8,
198,
220,
220,
220,
2124,
82,
796,
662,
9060,
7,
11249,
11,
12774,
7,
88,
4008,
198,
220,
220,
220,
299,
796,
4129,
7,
34223,
8,
198,
220,
220,
220,
611,
299,
1875,
657,
198,
220,
220,
220,
220,
220,
24443,
0,
7,
46582,
65,
11,
2124,
82,
8,
198,
220,
220,
220,
220,
220,
24443,
0,
7,
46582,
79,
11,
357,
88,
329,
1312,
287,
352,
25,
77,
4008,
198,
220,
220,
220,
886,
198,
220,
886,
198,
220,
357,
18467,
22203,
7,
46582,
65,
11,
2401,
7,
11249,
36911,
4463,
22203,
7,
46582,
79,
11,
2401,
7,
1676,
1350,
22305,
198,
437,
198,
198,
641,
495,
62,
9630,
276,
7,
69,
3712,
18467,
22203,
90,
5317,
11,
5317,
30072,
796,
318,
62,
9630,
276,
7,
69,
8,
5633,
277,
1058,
198,
220,
4463,
22203,
7,
33327,
7,
69,
828,
14873,
296,
7,
69,
828,
6376,
28,
7942,
8,
198,
641,
495,
62,
9630,
276,
7,
69,
3712,
18467,
24510,
22203,
90,
5317,
30072,
796,
318,
62,
9630,
276,
7,
69,
8,
5633,
277,
1058,
198,
220,
4463,
24510,
22203,
7,
33327,
7,
69,
828,
6376,
28,
7942,
8,
198,
198,
8818,
4179,
7,
67,
3712,
33,
541,
433,
578,
11146,
18683,
6713,
90,
5944,
11,
28718,
30072,
810,
198,
220,
220,
220,
1391,
5944,
27,
25,
7248,
5944,
11,
8074,
27,
25,
18467,
24510,
22203,
90,
5317,
11709,
198,
220,
1303,
1081,
287,
257,
2834,
1891,
11,
428,
2446,
18533,
326,
477,
5563,
287,
7679,
362,
423,
198,
220,
1303,
15619,
17488,
6583,
13,
198,
220,
2488,
30493,
5145,
1092,
7,
271,
28920,
7,
1939,
738,
7,
67,
11,
410,
11,
1058,
83,
13655,
4008,
329,
410,
287,
9421,
1063,
158,
224,
224,
7,
67,
4008,
198,
220,
288,
62,
14986,
796,
288,
628,
220,
1303,
1114,
8187,
414,
11,
304,
13,
70,
13,
618,
27356,
2174,
11,
4155,
326,
477,
5563,
287,
7679,
362,
198,
220,
1303,
389,
2099,
5621,
13,
198,
220,
611,
5145,
439,
7,
87,
318,
64,
5994,
7248,
329,
2124,
287,
909,
158,
224,
224,
7,
67,
4008,
198,
220,
220,
220,
288,
796,
3975,
7,
67,
11,
909,
158,
224,
223,
28,
738,
414,
11,
909,
158,
224,
224,
28,
641,
495,
62,
4906,
62,
2617,
11,
3488,
28,
641,
495,
62,
4906,
62,
2617,
62,
19815,
296,
8,
198,
220,
886,
628,
220,
1303,
632,
318,
4143,
16586,
284,
24061,
477,
4961,
11341,
357,
944,
15449,
8,
717,
11,
523,
355,
198,
220,
1303,
284,
4646,
262,
10620,
286,
1568,
2834,
10146,
357,
7639,
1040,
8,
290,
3186,
357,
19692,
15449,
737,
198,
220,
288,
11,
7377,
117,
82,
796,
4961,
1096,
62,
439,
7,
67,
8,
198,
220,
816,
62,
1851,
1063,
158,
224,
224,
0,
7,
67,
11,
685,
85,
329,
410,
287,
9421,
1063,
158,
224,
224,
7,
67,
8,
611,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4129,
7,
1939,
738,
7,
67,
11,
410,
11,
1058,
83,
13655,
4008,
6624,
352,
12962,
628,
220,
1303,
35006,
477,
5166,
654,
878,
14492,
597,
15449,
13,
198,
220,
288,
796,
5166,
62,
439,
7,
67,
8,
628,
220,
1303,
11136,
1760,
428,
662,
36948,
11,
611,
612,
389,
597,
45930,
15104,
498,
15449,
11,
1620,
198,
220,
1303,
530,
286,
606,
290,
664,
12321,
26,
4306,
11,
356,
423,
379,
749,
257,
1720,
284,
24061,
13,
198,
220,
1303,
198,
220,
1303,
554,
262,
13934,
1339,
357,
63,
48005,
158,
224,
223,
7,
67,
8,
6624,
362,
63,
828,
262,
662,
36948,
19026,
326,
612,
198,
220,
1303,
318,
379,
749,
530,
45930,
15104,
498,
4654,
11,
523,
612,
389,
645,
7747,
284,
787,
13,
1649,
612,
198,
220,
1303,
389,
3294,
1744,
15449,
11,
466,
262,
530,
351,
18197,
2779,
38691,
414,
198,
220,
1303,
357,
11167,
286,
10620,
286,
2316,
284,
4654,
737,
770,
318,
257,
2829,
31828,
339,
27915,
13,
198,
220,
1303,
1114,
517,
1630,
625,
262,
1502,
286,
262,
15449,
11,
2251,
257,
471,
22332,
7269,
13,
198,
220,
611,
299,
85,
158,
224,
224,
7,
67,
8,
6624,
657,
198,
220,
220,
220,
1303,
44855,
11682,
25,
10358,
77,
470,
761,
4463,
7248,
15732,
276,
39184,
287,
777,
2041,
2663,
13,
198,
220,
220,
220,
611,
299,
85,
158,
224,
223,
7,
67,
8,
6624,
352,
198,
220,
220,
220,
220,
220,
4463,
7248,
15732,
276,
39184,
7,
67,
62,
14986,
11,
9447,
586,
271,
6839,
90,
16,
92,
7,
29945,
82,
58,
16,
60,
4008,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
18074,
222,
82,
796,
7405,
7,
11167,
7,
50,
38469,
7,
672,
158,
224,
223,
7,
67,
26513,
22305,
198,
220,
220,
220,
220,
220,
4463,
7248,
15732,
276,
39184,
7,
67,
62,
14986,
11,
7854,
271,
6839,
7,
8899,
7,
785,
3455,
11,
18074,
222,
82,
11,
7377,
117,
82,
22305,
198,
220,
220,
220,
886,
198,
220,
2073,
198,
220,
220,
220,
1303,
9683,
262,
4654,
284,
1620,
13,
198,
220,
220,
220,
410,
796,
1822,
1084,
7,
8899,
7,
1851,
1063,
158,
224,
224,
7,
67,
4008,
466,
410,
198,
220,
220,
220,
220,
220,
13015,
796,
4519,
7,
67,
11,
410,
11,
1058,
83,
13655,
8,
198,
220,
220,
220,
220,
220,
2488,
30493,
4129,
7,
276,
3212,
8,
18189,
362,
198,
220,
220,
220,
220,
220,
40426,
7,
68,
4613,
4129,
7,
3438,
7,
26452,
7,
67,
11,
304,
4008,
828,
13015,
8,
198,
220,
220,
220,
886,
8,
628,
220,
220,
220,
1303,
3082,
1133,
262,
2834,
1891,
357,
5083,
4654,
737,
198,
220,
220,
220,
4654,
62,
276,
3212,
796,
4519,
7,
67,
11,
410,
11,
1058,
83,
13655,
8,
198,
220,
220,
220,
284,
62,
22179,
796,
12351,
7,
67,
11,
4654,
62,
276,
3212,
8,
198,
220,
220,
220,
284,
62,
14894,
796,
900,
26069,
7,
1851,
1063,
158,
224,
223,
7,
67,
828,
284,
62,
22179,
8,
198,
220,
220,
220,
279,
65,
796,
2834,
1891,
7,
50,
38469,
7,
26452,
7,
67,
11,
4654,
62,
276,
3212,
26513,
828,
435,
70,
28,
25610,
18234,
28955,
628,
220,
220,
220,
1303,
13610,
257,
649,
14141,
433,
578,
16362,
351,
5399,
9421,
1063,
13,
198,
220,
220,
220,
288,
62,
46416,
796,
347,
541,
433,
578,
11146,
18683,
6713,
90,
5944,
11,
28718,
92,
3419,
198,
220,
220,
220,
4866,
62,
42632,
0,
7,
67,
62,
46416,
11,
288,
11,
569,
158,
224,
223,
28,
1462,
62,
14894,
11,
569,
158,
224,
224,
28,
2617,
26069,
7,
1851,
1063,
158,
224,
224,
7,
67,
828,
85,
828,
412,
28,
276,
3212,
7,
67,
4008,
198,
220,
220,
220,
5399,
796,
751,
62,
332,
16886,
158,
224,
223,
0,
7,
67,
62,
46416,
11,
909,
158,
224,
223,
28,
1758,
87,
7,
40842,
4008,
198,
220,
220,
220,
329,
357,
84,
11,
18074,
222,
8,
287,
19974,
7,
1462,
62,
22179,
11,
7405,
7,
40842,
4008,
198,
220,
220,
220,
220,
220,
329,
304,
287,
900,
26069,
7,
1939,
738,
7,
67,
11,
334,
11,
1058,
10677,
828,
4654,
62,
276,
3212,
8,
198,
220,
220,
220,
220,
220,
220,
220,
900,
62,
7266,
42632,
0,
7,
67,
62,
46416,
11,
304,
11,
12351,
28,
46416,
11,
3488,
28,
46582,
158,
233,
227,
26452,
7,
67,
11,
68,
4008,
198,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
816,
62,
276,
3212,
0,
7,
67,
62,
46416,
11,
4654,
62,
276,
3212,
8,
628,
220,
220,
220,
1303,
3311,
1834,
2280,
24061,
262,
4179,
286,
262,
649,
16362,
13,
198,
220,
220,
220,
1761,
796,
4179,
7,
67,
62,
46416,
8,
628,
220,
220,
220,
1303,
1081,
15140,
4179,
27763,
422,
47314,
329,
2834,
1891,
290,
5322,
4179,
13,
198,
220,
220,
220,
18074,
222,
82,
796,
20650,
90,
28718,
92,
7,
917,
891,
11,
299,
85,
158,
224,
223,
7,
67,
4008,
198,
220,
220,
220,
329,
357,
72,
11,
334,
8,
287,
27056,
378,
7,
1462,
62,
22179,
8,
198,
220,
220,
220,
220,
220,
18074,
222,
82,
58,
84,
60,
796,
36664,
7,
12957,
7,
1455,
82,
7,
2475,
36911,
7405,
7,
40842,
38381,
72,
4357,
7377,
117,
82,
58,
84,
12962,
198,
220,
220,
220,
886,
198,
220,
220,
220,
329,
357,
72,
11,
334,
8,
287,
27056,
378,
7,
1462,
62,
14894,
8,
198,
220,
220,
220,
220,
220,
18074,
222,
82,
58,
84,
60,
796,
36664,
7,
1455,
82,
7,
2475,
38381,
72,
4357,
7377,
117,
82,
58,
84,
12962,
198,
220,
220,
220,
886,
198,
220,
220,
220,
4463,
7248,
15732,
276,
39184,
7,
67,
62,
14986,
11,
7854,
271,
6839,
7,
46582,
82,
4008,
198,
220,
886,
198,
437,
198,
198,
641,
495,
62,
4906,
62,
2617,
7,
82,
3712,
18467,
7248,
8,
796,
5994,
7248,
7,
417,
4906,
7,
82,
4008,
198,
641,
495,
62,
4906,
62,
2617,
7,
82,
3712,
6030,
7248,
8,
796,
264,
198,
641,
495,
62,
4906,
62,
2617,
62,
19815,
296,
7,
69,
3712,
18467,
22203,
8,
796,
198,
220,
5345,
22203,
14134,
540,
7,
69,
11,
2401,
7,
69,
828,
5994,
7248,
7,
417,
4906,
7,
19815,
296,
7,
69,
35514,
198,
641,
495,
62,
4906,
62,
2617,
62,
19815,
296,
7,
69,
3712,
15732,
276,
18467,
22203,
38469,
8,
796,
198,
220,
12901,
276,
18467,
24510,
22203,
38469,
7,
69,
13,
20786,
11,
6376,
28,
69,
13,
9630,
8,
198,
641,
495,
62,
4906,
62,
2617,
62,
19815,
296,
7,
69,
3712,
18467,
24510,
22203,
8,
796,
277,
198,
198,
37811,
3082,
1133,
477,
1744,
4961,
11341,
287,
257,
14141,
433,
578,
1479,
16362,
13,
198,
198,
464,
1255,
318,
257,
649,
14141,
433,
578,
1479,
16362,
326,
468,
262,
976,
9421,
1063,
475,
318,
198,
9,
36439,
25666,
1312,
13,
68,
1539,
468,
645,
3294,
13015,
13,
383,
1351,
286,
14900,
17488,
6583,
656,
198,
29289,
352,
286,
262,
2656,
16362,
318,
635,
4504,
13,
198,
37811,
198,
8818,
4961,
1096,
62,
439,
7,
67,
3712,
33,
541,
433,
578,
11146,
18683,
6713,
90,
5944,
11,
28718,
30072,
810,
1391,
5944,
11,
28718,
92,
198,
220,
288,
62,
36439,
796,
347,
541,
433,
578,
11146,
18683,
6713,
90,
5944,
11,
28718,
92,
3419,
198,
220,
4866,
62,
42632,
0,
7,
67,
62,
36439,
11,
288,
11,
569,
158,
224,
224,
28,
1851,
1063,
158,
224,
224,
7,
67,
4008,
198,
220,
7377,
117,
82,
796,
3975,
7,
1851,
1063,
158,
224,
223,
7,
67,
4008,
466,
334,
198,
220,
220,
220,
1303,
9745,
28181,
13015,
286,
334,
11,
1994,
12,
276,
416,
2496,
37423,
13,
198,
220,
220,
220,
503,
62,
276,
3212,
796,
14230,
1068,
35,
713,
90,
5317,
11,
38469,
90,
5317,
11709,
3419,
198,
220,
220,
220,
329,
304,
287,
4519,
7,
67,
11,
334,
11,
1058,
10677,
8,
198,
220,
220,
220,
220,
220,
4574,
0,
7,
1136,
0,
7,
448,
62,
276,
3212,
11,
256,
13655,
7,
67,
11,
68,
4008,
466,
26,
2558,
21737,
886,
11,
304,
8,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1303,
28701,
1096,
477,
5621,
286,
10730,
13015,
503,
286,
334,
13,
198,
220,
220,
220,
7377,
117,
796,
4686,
7,
672,
158,
224,
223,
7,
67,
11,
334,
4008,
198,
220,
220,
220,
329,
1658,
287,
3815,
7,
448,
62,
276,
3212,
8,
198,
220,
220,
220,
220,
220,
611,
4129,
7,
274,
8,
1875,
352,
198,
220,
220,
220,
220,
220,
220,
220,
43458,
796,
20546,
9250,
19510,
29945,
158,
233,
227,
69,
329,
277,
287,
3488,
7,
67,
11,
1658,
4008,
23029,
198,
220,
220,
220,
220,
220,
220,
220,
7377,
117,
796,
13358,
7,
40496,
7509,
7,
9501,
4008,
2343,
233,
227,
7377,
117,
198,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
751,
62,
332,
16886,
158,
224,
223,
0,
7,
67,
62,
36439,
11,
909,
158,
224,
223,
28,
3438,
7,
29945,
4008,
1303,
6624,
334,
198,
220,
220,
220,
329,
357,
85,
11,
1658,
8,
287,
14729,
7,
448,
62,
276,
3212,
8,
198,
220,
220,
220,
220,
220,
751,
62,
14907,
0,
7,
67,
62,
36439,
11,
334,
11,
410,
11,
3488,
28,
29945,
158,
233,
227,
26452,
7,
67,
11,
717,
7,
274,
22305,
198,
220,
220,
220,
886,
198,
220,
220,
220,
7377,
117,
198,
220,
886,
198,
220,
357,
67,
62,
36439,
11,
7377,
117,
82,
8,
198,
437,
198,
198,
37811,
35006,
477,
1744,
5166,
654,
287,
257,
14141,
433,
578,
1479,
16362,
13,
198,
198,
464,
7186,
16362,
468,
262,
976,
7679,
352,
9421,
1063,
475,
257,
5457,
5322,
900,
198,
1659,
7679,
362,
9421,
1063,
13,
34398,
362,
9421,
1063,
389,
23791,
618,
484,
423,
3446,
262,
976,
198,
16680,
271,
316,
286,
15909,
9421,
1063,
13,
198,
37811,
198,
8818,
5166,
62,
439,
7,
67,
3712,
33,
541,
433,
578,
11146,
18683,
6713,
90,
5944,
11,
28718,
30072,
810,
1391,
5944,
11,
28718,
92,
198,
220,
288,
62,
8957,
1202,
796,
347,
541,
433,
578,
11146,
18683,
6713,
90,
5944,
11,
28718,
92,
3419,
198,
220,
4866,
62,
42632,
0,
7,
67,
62,
8957,
1202,
11,
288,
11,
569,
158,
224,
223,
28,
1851,
1063,
158,
224,
223,
7,
67,
4008,
628,
220,
1303,
28407,
16855,
284,
569,
158,
224,
224,
9421,
1063,
422,
1963,
271,
1039,
286,
15909,
569,
158,
224,
223,
9421,
1063,
13,
198,
220,
503,
8899,
796,
14230,
1068,
35,
713,
90,
38469,
90,
5317,
5512,
38469,
90,
5317,
11709,
3419,
198,
220,
329,
410,
287,
9421,
1063,
158,
224,
224,
7,
67,
8,
198,
220,
220,
220,
4574,
0,
7,
1136,
0,
7,
448,
8899,
11,
3297,
7,
259,
710,
394,
32289,
7,
67,
11,
410,
22305,
466,
26,
2558,
21737,
886,
11,
410,
8,
198,
220,
886,
628,
220,
329,
357,
10677,
82,
11,
256,
70,
912,
8,
287,
14729,
7,
448,
8899,
8,
198,
220,
220,
220,
287,
62,
276,
3212,
796,
3975,
7,
25297,
912,
8,
466,
410,
198,
220,
220,
220,
220,
220,
3297,
7,
1939,
738,
7,
67,
11,
410,
11,
1058,
83,
13655,
828,
416,
28,
68,
3784,
10677,
7,
67,
11,
68,
4008,
198,
220,
220,
220,
886,
198,
220,
220,
220,
611,
4129,
7,
25297,
912,
8,
6624,
352,
198,
220,
220,
220,
220,
220,
410,
796,
751,
62,
332,
16886,
158,
224,
224,
0,
7,
67,
62,
8957,
1202,
11,
909,
158,
224,
224,
28,
672,
158,
224,
224,
7,
67,
11,
691,
7,
25297,
912,
22305,
198,
220,
220,
220,
220,
220,
751,
62,
276,
3212,
0,
7,
67,
62,
8957,
1202,
11,
12351,
82,
11,
6070,
7,
85,
11,
4129,
7,
10677,
82,
36911,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3488,
28,
26452,
7,
67,
11,
691,
7,
259,
62,
276,
3212,
22305,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
40426,
796,
1720,
7,
50,
38469,
7,
672,
158,
224,
224,
7,
67,
11,
256,
70,
912,
26513,
4008,
198,
220,
220,
220,
220,
220,
410,
796,
751,
62,
332,
16886,
158,
224,
224,
0,
7,
67,
62,
8957,
1202,
11,
909,
158,
224,
224,
28,
672,
7,
1676,
67,
4008,
198,
220,
220,
220,
220,
220,
329,
357,
72,
11,
84,
8,
287,
27056,
378,
7,
10677,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
277,
796,
5166,
7,
1676,
67,
11,
3488,
7,
67,
11,
651,
9630,
12195,
259,
62,
276,
3212,
11,
1312,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
751,
62,
14907,
0,
7,
67,
62,
8957,
1202,
11,
334,
11,
410,
11,
3488,
28,
69,
8,
198,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
886,
198,
220,
288,
62,
8957,
1202,
198,
437,
198,
198,
37811,
27272,
286,
2276,
16362,
286,
4463,
50,
1039,
29231,
416,
1720,
12,
8524,
12,
24455,
13,
198,
198,
6214,
4600,
19352,
896,
13,
5377,
1930,
578,
42940,
1891,
63,
329,
257,
845,
2092,
5103,
13,
198,
37811,
198,
7249,
4463,
7248,
5377,
1930,
578,
39184,
90,
5944,
27,
25,
18467,
7248,
11,
6031,
6713,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
327,
505,
27,
25,
15205,
271,
6839,
90,
5944,
5512,
1041,
67,
27,
25,
15667,
90,
5944,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
554,
565,
27,
25,
18467,
22203,
92,
1279,
25,
27741,
39184,
90,
5944,
11,
18683,
6713,
92,
198,
220,
16362,
3712,
18683,
6713,
198,
220,
27763,
3712,
34,
505,
198,
220,
40426,
3712,
2964,
67,
198,
220,
13358,
3712,
818,
565,
1303,
554,
4717,
329,
262,
366,
41684,
12,
40496,
7509,
1,
287,
2276,
10451,
13,
198,
437,
198,
198,
32374,
7,
67,
3712,
11146,
18683,
6713,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
796,
4179,
7,
18467,
24510,
24629,
2715,
7,
67,
4008,
198,
198,
8818,
4179,
7,
37,
3712,
24629,
2715,
90,
27,
25,
18467,
21979,
90,
5317,
5512,
27,
25,
6030,
21979,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
30072,
198,
220,
1303,
36965,
262,
2276,
10451,
329,
7095,
287,
5345,
357,
3123,
259,
1706,
11,
1946,
11,
14392,
21743,
198,
220,
1303,
17003,
11,
17934,
642,
13,
16,
13,
1828,
1220,
7889,
341,
642,
13,
1433,
737,
770,
2446,
318,
2829,
290,
1277,
11,
198,
220,
1303,
475,
4457,
30904,
0,
198,
220,
449,
796,
2401,
7,
37,
8,
198,
220,
40426,
796,
1720,
7,
8899,
7,
87,
4613,
909,
62,
8899,
7,
37,
11,
2124,
828,
909,
62,
8612,
2024,
7,
41,
22305,
198,
220,
299,
11,
18074,
222,
82,
796,
4129,
7,
672,
7,
1676,
67,
36911,
7405,
7,
1676,
67,
8,
198,
220,
7377,
117,
796,
4463,
22203,
7,
24455,
7,
16,
25,
77,
8,
466,
1312,
198,
220,
220,
220,
477,
7,
26452,
62,
8612,
2024,
7,
41,
4008,
466,
277,
198,
220,
220,
220,
220,
220,
264,
11,
256,
11,
289,
796,
2401,
7,
41,
11,
277,
828,
14873,
296,
7,
41,
11,
277,
828,
3488,
62,
8899,
7,
37,
11,
277,
8,
198,
220,
220,
220,
220,
220,
289,
7,
46582,
82,
58,
82,
16151,
72,
4008,
6624,
18074,
222,
82,
58,
83,
16151,
72,
8,
198,
220,
220,
220,
886,
198,
220,
886,
11,
299,
8,
198,
220,
27763,
796,
7854,
271,
6839,
7,
3438,
7,
29945,
828,
3975,
7,
87,
4613,
7377,
117,
158,
233,
227,
46582,
82,
58,
87,
4357,
909,
62,
8612,
2024,
7,
41,
22305,
198,
220,
4463,
7248,
5377,
1930,
578,
39184,
7,
37,
11,
27763,
11,
40426,
11,
7377,
117,
8,
198,
437,
198,
198,
8818,
10112,
7,
2475,
3712,
18467,
7248,
5377,
1930,
578,
39184,
11,
27763,
3712,
15205,
271,
6839,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
198,
220,
7377,
117,
796,
2824,
7,
2475,
13,
259,
565,
8,
198,
220,
289,
796,
10112,
7,
2475,
13,
1676,
67,
11,
27763,
8,
198,
220,
4463,
22203,
7,
5317,
58,
8807,
7,
12947,
82,
9741,
7,
29945,
11,
289,
7,
72,
22305,
329,
1312,
287,
2401,
7,
71,
8,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40167,
7,
49180,
828,
909,
7,
2475,
4008,
198,
437,
198,
198,
37811,
27272,
286,
27454,
5621,
9569,
355,
257,
3084,
13,
198,
198,
7149,
4179,
286,
27454,
5621,
460,
307,
18061,
1146,
9569,
355,
257,
3084,
198,
26933,
63,
33349,
934,
7248,
63,
16151,
31,
5420,
4008,
3025,
15180,
389,
262,
7405,
286,
262,
4179,
27763,
290,
3025,
198,
8516,
6053,
284,
4847,
286,
262,
4179,
2134,
13,
1675,
5678,
428,
3084,
422,
281,
198,
282,
1493,
29231,
4179,
11,
869,
4600,
33349,
934,
39184,
7,
3712,
23839,
39184,
26,
2644,
8,
44646,
383,
5721,
198,
14933,
286,
262,
3084,
389,
1813,
416,
262,
11902,
4578,
4600,
14933,
44646,
198,
198,
818,
428,
7400,
934,
1296,
11,
11524,
262,
10112,
3119,
286,
262,
4179,
318,
20861,
198,
20777,
340,
318,
655,
12777,
11347,
13,
6660,
11,
428,
10552,
460,
307,
4465,
618,
262,
198,
14986,
4179,
11862,
857,
407,
1104,
6942,
3586,
286,
262,
10112,
198,
26745,
13,
1550,
262,
584,
1021,
11,
428,
10552,
468,
262,
21407,
286,
198,
8612,
453,
1642,
262,
5002,
2099,
286,
262,
4179,
900,
517,
8253,
13,
198,
37811,
198,
9979,
16904,
934,
39184,
796,
27272,
90,
27,
25,
33349,
934,
7248,
92,
198,
198,
8818,
16904,
934,
39184,
7,
2475,
3712,
23839,
39184,
26,
3891,
28,
22366,
8,
198,
220,
18074,
222,
82,
796,
7405,
7,
2475,
8,
198,
220,
3891,
796,
318,
22366,
7,
14933,
8,
5633,
357,
16,
25,
13664,
7,
46582,
82,
4008,
1058,
3891,
198,
220,
3891,
796,
309,
29291,
7,
28665,
62,
3672,
7,
3672,
8,
329,
1438,
287,
3891,
8,
198,
220,
3084,
796,
16904,
934,
7248,
7,
45,
2434,
51,
29291,
90,
14933,
92,
7,
51,
29291,
7,
8899,
7,
33327,
11,
18074,
222,
82,
35514,
198,
220,
27763,
796,
7854,
271,
6839,
7,
11487,
11,
3975,
7,
46582,
82,
11,
1123,
9630,
7,
46582,
82,
4008,
466,
18074,
222,
11,
1312,
198,
220,
220,
220,
4463,
22203,
7,
808,
4613,
33220,
13,
1136,
28665,
7,
808,
11,
1312,
828,
3084,
11,
14873,
296,
7,
46582,
4008,
198,
220,
886,
8,
198,
220,
27272,
7,
2475,
13,
10989,
6713,
11,
27763,
8,
198,
437,
198,
198,
8818,
10112,
7,
2475,
3712,
39184,
90,
27,
25,
33349,
934,
7248,
90,
10962,
11,
25166,
92,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27763,
3712,
15205,
271,
6839,
8,
810,
1391,
10962,
11,
25166,
92,
198,
220,
43458,
796,
309,
29291,
7,
1455,
82,
7,
49180,
4008,
198,
220,
4463,
22203,
7,
87,
4613,
11314,
7,
8899,
7,
69,
4613,
277,
7,
87,
828,
43458,
36911,
40167,
7,
49180,
828,
909,
7,
2475,
4008,
198,
437,
198,
198,
28665,
62,
3672,
7,
3672,
8,
796,
38357,
7,
3672,
8,
198,
28665,
62,
3672,
7,
72,
3712,
46541,
8,
796,
38357,
7203,
87,
3,
72,
4943,
1303,
16766,
4277,
355,
6060,
35439,
13,
20362,
13,
198,
198,
2,
1623,
320,
896,
198,
7804,
2235,
198,
198,
2,
1623,
320,
896,
287,
311,
7750,
7,
18467,
7248,
8,
198,
2,
22369,
12,
198,
198,
4033,
320,
270,
7,
55,
82,
3712,
40613,
18683,
6713,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
796,
1623,
320,
270,
7,
55,
82,
11,
9447,
586,
291,
2117,
272,
90,
15,
92,
7,
18467,
7248,
7,
15,
22305,
198,
198,
8818,
10112,
7,
4033,
320,
3712,
24243,
90,
27,
25,
18467,
7248,
90,
5317,
92,
5512,
8954,
505,
3712,
12310,
586,
291,
2117,
272,
90,
15,
30072,
198,
220,
14873,
796,
40167,
7,
66,
420,
505,
8,
198,
220,
4463,
24510,
22203,
7,
50,
38469,
90,
15,
11,
417,
4906,
7,
19815,
38165,
22784,
14873,
8,
198,
437,
198,
198,
4033,
320,
270,
7,
55,
82,
3712,
29974,
10565,
18683,
6713,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
796,
951,
320,
270,
7,
55,
82,
11,
6093,
1096,
5216,
320,
270,
28955,
198,
198,
8818,
951,
320,
270,
7,
55,
82,
3712,
10267,
47,
958,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
198,
220,
285,
11,
299,
796,
4129,
12195,
55,
82,
8,
198,
220,
7377,
117,
16,
796,
4463,
22203,
7,
16,
25,
76,
11,
285,
11,
285,
10,
77,
8,
198,
220,
7377,
117,
17,
796,
4463,
22203,
7,
76,
10,
16,
25,
76,
10,
77,
11,
299,
11,
285,
10,
77,
8,
198,
220,
1623,
320,
270,
7,
55,
82,
11,
327,
2117,
272,
7,
29945,
16,
11,
7377,
117,
17,
4008,
198,
437,
198,
198,
8818,
10112,
7,
4033,
320,
3712,
33,
3219,
13379,
2076,
310,
90,
27,
25,
18467,
7248,
90,
5317,
92,
5512,
8954,
505,
3712,
34,
2117,
272,
8,
198,
220,
277,
11,
308,
796,
8954,
505,
198,
220,
4463,
24510,
22203,
7,
85,
9246,
7,
33327,
7,
69,
828,
2824,
7,
70,
36911,
909,
7,
4033,
320,
828,
40167,
7,
66,
420,
505,
4008,
198,
437,
198,
198,
8818,
951,
320,
270,
7,
55,
82,
3712,
15642,
8374,
18683,
6713,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
198,
220,
36545,
796,
4129,
12195,
55,
82,
8,
198,
220,
299,
796,
2160,
7,
5907,
8,
198,
220,
49005,
796,
685,
15,
11,
66,
5700,
388,
7,
5907,
8,
22345,
198,
220,
7377,
117,
82,
796,
685,
18467,
22203,
19510,
16,
25,
5907,
58,
73,
12962,
764,
10,
49005,
58,
73,
4357,
5907,
58,
73,
4357,
77,
8,
329,
474,
287,
352,
25,
13664,
7,
5907,
15437,
198,
220,
1623,
320,
270,
7,
55,
82,
11,
7854,
291,
2117,
272,
7,
18467,
7248,
7,
77,
828,
7377,
117,
82,
4008,
198,
437,
198,
198,
8818,
10112,
7,
4033,
320,
3712,
13379,
2076,
310,
90,
27,
25,
18467,
7248,
90,
5317,
92,
5512,
8954,
505,
3712,
15205,
291,
2117,
272,
8,
198,
220,
14873,
796,
40167,
7,
66,
420,
505,
8,
198,
220,
4463,
24510,
22203,
7,
8899,
445,
7234,
7,
33327,
11,
410,
9246,
11,
8954,
505,
11,
2315,
28,
417,
4906,
7,
19815,
8,
21737,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
909,
7,
4033,
320,
828,
14873,
8,
198,
437,
198,
198,
8818,
951,
320,
270,
7,
24874,
3712,
10044,
29363,
47,
958,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
198,
220,
277,
11,
308,
796,
5166,
198,
220,
285,
11,
299,
796,
4129,
7,
3438,
7,
24874,
36911,
4129,
7,
19815,
296,
7,
24874,
4008,
198,
220,
5621,
796,
2558,
7279,
73,
1563,
50,
1039,
7,
77,
8,
198,
220,
329,
1312,
287,
352,
25,
76,
198,
220,
220,
220,
6441,
0,
7,
28709,
11,
277,
7,
72,
828,
308,
7,
72,
4008,
198,
220,
886,
198,
220,
1623,
320,
270,
7,
24874,
11,
9447,
586,
291,
2117,
272,
90,
16,
92,
7,
421,
313,
1153,
62,
16302,
295,
7,
28709,
22305,
198,
437,
198,
198,
8818,
951,
320,
270,
7,
1845,
64,
3712,
10044,
29363,
44,
13425,
6583,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
198,
220,
2488,
30493,
5145,
271,
28920,
7,
1845,
64,
8,
198,
220,
277,
16,
11,
2030,
301,
796,
31215,
58,
16,
4357,
31215,
58,
17,
25,
437,
60,
198,
220,
285,
11,
299,
796,
4129,
7,
3438,
7,
1845,
64,
36911,
4129,
7,
19815,
296,
7,
1845,
64,
4008,
198,
220,
5621,
796,
2558,
7279,
73,
1563,
50,
1039,
7,
77,
8,
198,
220,
329,
1312,
287,
352,
25,
76,
198,
220,
220,
220,
329,
277,
287,
2030,
301,
198,
220,
220,
220,
220,
220,
6441,
0,
7,
28709,
11,
277,
16,
7,
72,
828,
277,
7,
72,
4008,
198,
220,
220,
220,
886,
198,
220,
886,
198,
220,
1623,
320,
270,
7,
1845,
64,
11,
9447,
586,
291,
2117,
272,
90,
16,
92,
7,
421,
313,
1153,
62,
16302,
295,
7,
28709,
22305,
198,
437,
198,
198,
8818,
10112,
7,
1073,
27363,
3712,
34,
2577,
13255,
7509,
90,
27,
25,
18467,
7248,
90,
5317,
92,
5512,
8954,
505,
3712,
12310,
586,
291,
2117,
272,
90,
16,
30072,
198,
220,
1208,
62,
1462,
62,
421,
313,
1153,
7,
1676,
73,
7,
1073,
27363,
828,
691,
7,
66,
420,
505,
4008,
198,
437,
198,
198,
37811,
13610,
20128,
3975,
18074,
222,
25,
1395,
15168,
1395,
14,
24861,
120,
422,
18398,
286,
1395,
13,
198,
37811,
198,
8818,
23611,
1153,
62,
16302,
295,
7,
28709,
3712,
5317,
7279,
73,
1563,
50,
1039,
8,
198,
220,
289,
796,
685,
1064,
62,
15763,
0,
7,
28709,
11,
1312,
8,
329,
1312,
287,
352,
25,
13664,
7,
28709,
8,
2361,
198,
220,
11135,
796,
3748,
0,
7,
30619,
7,
71,
4008,
198,
220,
4463,
22203,
26933,
2989,
82,
9741,
11085,
7,
19150,
11,
374,
8,
329,
374,
287,
289,
16589,
4129,
7,
19150,
4008,
198,
437,
198,
198,
37811,
11259,
289,
25,
1395,
15168,
575,
11,
1208,
284,
23611,
1153,
10662,
25,
1395,
14,
93,
15168,
575,
739,
20128,
18074,
222,
25,
1395,
15168,
1395,
14,
93,
13,
198,
37811,
198,
8818,
1208,
62,
1462,
62,
421,
313,
1153,
7,
46582,
3712,
18467,
22203,
90,
5317,
11,
5317,
5512,
289,
3712,
18467,
22203,
90,
5317,
11,
5317,
30072,
198,
220,
2488,
30493,
2401,
7,
46582,
8,
6624,
2401,
7,
71,
8,
198,
220,
10662,
796,
1976,
27498,
7,
5317,
11,
4129,
7,
19815,
296,
7,
46582,
22305,
198,
220,
329,
1312,
287,
2401,
7,
71,
8,
198,
220,
220,
220,
474,
796,
18074,
222,
7,
72,
8,
198,
220,
220,
220,
611,
10662,
58,
73,
60,
6624,
657,
198,
220,
220,
220,
220,
220,
10662,
58,
73,
60,
796,
289,
7,
72,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
10662,
58,
73,
60,
6624,
289,
7,
72,
8,
8614,
4049,
7203,
4507,
313,
1153,
3975,
286,
951,
320,
270,
318,
2801,
12,
23211,
4943,
198,
220,
220,
220,
886,
198,
220,
886,
198,
220,
597,
7,
855,
7,
15,
828,
10662,
8,
11405,
4049,
7203,
16775,
295,
3975,
318,
407,
969,
752,
425,
4943,
198,
220,
4463,
22203,
7,
80,
11,
14873,
296,
7,
71,
4008,
198,
437,
198,
198,
8818,
1208,
62,
1462,
62,
421,
313,
1153,
7,
46582,
3712,
18467,
22203,
90,
5317,
11,
5317,
5512,
289,
3712,
18467,
24510,
22203,
90,
5317,
30072,
198,
220,
2488,
30493,
2401,
7,
46582,
8,
6624,
2401,
7,
71,
8,
198,
220,
10662,
796,
20650,
90,
38176,
90,
4366,
90,
417,
4906,
7,
19815,
296,
7,
71,
4008,
5512,
18465,
11709,
7,
22366,
11,
4129,
7,
19815,
296,
7,
46582,
22305,
198,
220,
329,
1312,
287,
2401,
7,
71,
8,
198,
220,
220,
220,
474,
796,
18074,
222,
7,
72,
8,
198,
220,
220,
220,
611,
318,
22366,
7,
80,
58,
73,
12962,
198,
220,
220,
220,
220,
220,
10662,
58,
73,
60,
796,
2773,
7,
71,
7,
72,
4008,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
1223,
7,
80,
58,
73,
12962,
6624,
289,
7,
72,
8,
8614,
4049,
7203,
4507,
313,
1153,
3975,
286,
951,
320,
270,
318,
2801,
12,
23211,
4943,
198,
220,
220,
220,
886,
198,
220,
886,
198,
220,
597,
7,
271,
22366,
11,
10662,
8,
11405,
4049,
7203,
16775,
295,
3975,
318,
407,
969,
752,
425,
4943,
198,
220,
4463,
24510,
22203,
7,
8899,
7,
18927,
11,
10662,
828,
14873,
296,
7,
71,
4008,
198,
437,
198,
198,
8818,
951,
320,
270,
7,
12626,
3712,
15205,
271,
6839,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
198,
220,
951,
320,
270,
7,
12626,
11,
3082,
577,
13379,
2076,
310,
34,
2577,
13255,
7509,
28955,
198,
437,
198,
198,
37811,
1623,
320,
270,
286,
2276,
16362,
286,
4463,
50,
1039,
29231,
416,
2243,
2076,
310,
12,
8524,
12,
421,
313,
1153,
13,
198,
198,
6214,
4600,
19352,
896,
13,
5377,
1930,
578,
49222,
448,
63,
329,
257,
845,
2092,
5103,
13,
198,
37811,
198,
7249,
4463,
7248,
5377,
1930,
578,
5216,
320,
270,
90,
5944,
27,
25,
18467,
7248,
11,
6031,
6713,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18490,
505,
27,
25,
15205,
291,
2117,
272,
90,
5944,
5512,
6955,
14892,
27,
25,
13379,
2076,
310,
90,
5944,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1041,
73,
27,
25,
18467,
22203,
92,
1279,
25,
27741,
5216,
320,
270,
90,
5944,
11,
18683,
6713,
92,
198,
220,
16362,
3712,
18683,
6713,
198,
220,
8954,
505,
3712,
34,
420,
505,
198,
220,
2243,
14892,
3712,
13379,
14892,
198,
220,
386,
73,
3712,
2964,
73,
1303,
4935,
295,
329,
262,
366,
41684,
12,
1073,
40496,
7509,
1,
287,
2276,
10451,
13,
198,
437,
198,
198,
8818,
951,
320,
270,
7,
67,
3712,
33,
541,
433,
578,
11146,
18683,
6713,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
198,
220,
1303,
1081,
287,
257,
4574,
448,
11,
428,
2446,
7048,
326,
477,
5563,
287,
7679,
352,
423,
198,
220,
1303,
28181,
17488,
6583,
523,
326,
484,
460,
307,
15009,
422,
262,
2243,
2076,
310,
13,
198,
220,
2488,
30493,
5145,
1092,
7,
271,
28920,
7,
1939,
738,
7,
67,
11,
334,
11,
1058,
10677,
4008,
329,
334,
287,
9421,
1063,
158,
224,
223,
7,
67,
4008,
198,
220,
2243,
14892,
796,
2243,
2076,
310,
7,
672,
158,
224,
224,
7,
67,
4008,
198,
220,
299,
11,
7377,
117,
82,
796,
4129,
7,
672,
7,
22163,
14892,
36911,
7405,
7,
22163,
14892,
8,
198,
220,
5621,
796,
2558,
7279,
73,
1563,
50,
1039,
7,
77,
8,
198,
220,
329,
334,
287,
9421,
1063,
158,
224,
223,
7,
67,
8,
198,
220,
220,
220,
503,
62,
276,
3212,
796,
4519,
7,
67,
11,
334,
11,
1058,
10677,
8,
198,
220,
220,
220,
329,
357,
68,
16,
11,
304,
17,
8,
287,
19974,
7,
448,
62,
276,
3212,
58,
16,
25,
437,
12,
16,
4357,
503,
62,
276,
3212,
58,
17,
25,
437,
12962,
198,
220,
220,
220,
220,
220,
289,
16,
11,
289,
17,
796,
3488,
7,
67,
11,
304,
16,
828,
3488,
7,
67,
11,
304,
17,
8,
198,
220,
220,
220,
220,
220,
7377,
117,
16,
11,
7377,
117,
17,
796,
7377,
117,
82,
58,
83,
13655,
7,
67,
11,
304,
16,
8,
4357,
7377,
117,
82,
58,
83,
13655,
7,
67,
11,
304,
17,
15437,
198,
220,
220,
220,
220,
220,
329,
1312,
287,
909,
158,
224,
223,
7,
67,
11,
334,
8,
198,
220,
220,
220,
220,
220,
220,
220,
6441,
0,
7,
28709,
11,
7377,
117,
16,
7,
71,
16,
7,
72,
36911,
7377,
117,
17,
7,
71,
17,
7,
72,
22305,
198,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
886,
198,
220,
18074,
222,
796,
23611,
1153,
62,
16302,
295,
7,
28709,
8,
198,
220,
8954,
505,
796,
7854,
291,
2117,
272,
7,
19815,
296,
7,
46582,
828,
685,
7377,
117,
82,
58,
72,
60,
158,
233,
227,
46582,
329,
1312,
287,
9421,
1063,
158,
224,
224,
7,
67,
8,
33761,
198,
220,
4463,
7248,
5377,
1930,
578,
5216,
320,
270,
7,
67,
11,
8954,
505,
11,
2243,
14892,
11,
18074,
222,
8,
198,
437,
198,
198,
4033,
320,
270,
7,
67,
3712,
11146,
18683,
6713,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
796,
951,
320,
270,
7,
18467,
24510,
24629,
2715,
7,
67,
4008,
198,
198,
8818,
951,
320,
270,
7,
37,
3712,
24629,
2715,
90,
27,
25,
18467,
21979,
90,
5317,
5512,
27,
25,
6030,
21979,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
30072,
198,
220,
1303,
36965,
262,
2276,
10451,
329,
951,
320,
896,
287,
5345,
357,
3123,
259,
1706,
11,
1946,
11,
14392,
21743,
198,
220,
1303,
17003,
11,
17934,
642,
13,
17,
13,
1433,
737,
198,
220,
449,
796,
2401,
7,
37,
8,
198,
220,
2243,
14892,
796,
2243,
2076,
310,
7,
8899,
7,
87,
4613,
909,
62,
8899,
7,
37,
11,
2124,
828,
909,
62,
8612,
2024,
7,
41,
22305,
198,
220,
299,
11,
7377,
117,
82,
796,
4129,
7,
672,
7,
22163,
14892,
36911,
7405,
7,
22163,
14892,
8,
198,
220,
5621,
796,
2558,
7279,
73,
1563,
50,
1039,
7,
77,
8,
198,
220,
329,
277,
287,
3488,
62,
8612,
2024,
7,
41,
8,
198,
220,
220,
220,
264,
11,
256,
11,
289,
796,
2401,
7,
41,
11,
277,
828,
14873,
296,
7,
41,
11,
277,
828,
3488,
62,
8899,
7,
37,
11,
277,
8,
198,
220,
220,
220,
329,
1312,
287,
2401,
7,
71,
8,
198,
220,
220,
220,
220,
220,
6441,
0,
7,
28709,
11,
7377,
117,
82,
58,
82,
16151,
72,
828,
7377,
117,
82,
58,
83,
16151,
71,
7,
72,
22305,
198,
220,
220,
220,
886,
198,
220,
886,
198,
220,
18074,
222,
796,
23611,
1153,
62,
16302,
295,
7,
28709,
8,
198,
220,
8954,
505,
796,
7854,
291,
2117,
272,
7,
19815,
296,
7,
46582,
828,
3975,
7,
87,
4613,
7377,
117,
82,
58,
87,
60,
158,
233,
227,
46582,
11,
909,
62,
8612,
2024,
7,
41,
22305,
198,
220,
4463,
7248,
5377,
1930,
578,
5216,
320,
270,
7,
37,
11,
8954,
505,
11,
2243,
14892,
11,
18074,
222,
8,
198,
437,
198,
198,
8818,
10112,
7,
4033,
320,
3712,
18467,
7248,
5377,
1930,
578,
5216,
320,
270,
11,
8954,
505,
3712,
15205,
291,
2117,
272,
8,
198,
220,
289,
796,
10112,
7,
4033,
320,
13,
22163,
14892,
11,
8954,
505,
8,
198,
220,
1208,
62,
1462,
62,
421,
313,
1153,
7,
4033,
320,
13,
1676,
73,
11,
289,
8,
198,
437,
198,
198,
2,
1623,
320,
896,
351,
3891,
198,
2,
19351,
198,
198,
37811,
3082,
1133,
951,
320,
270,
286,
27454,
5621,
3025,
4847,
389,
3616,
2759,
3706,
13,
198,
198,
1212,
3074,
2331,
284,
307,
2603,
46558,
555,
47914,
475,
318,
14547,
198,
18049,
13,
383,
951,
320,
270,
318,
29231,
416,
7741,
284,
262,
18328,
286,
12429,
18467,
7248,
1174,
198,
7,
63,
18467,
7248,
90,
5317,
92,
63,
8,
290,
262,
3891,
389,
8686,
12979,
11,
1708,
617,
6397,
198,
1102,
16593,
290,
751,
15940,
810,
3306,
284,
3368,
1438,
21022,
13,
198,
37811,
198,
7249,
34441,
5216,
320,
270,
1279,
25,
1623,
320,
270,
2348,
42289,
886,
198,
198,
8818,
951,
320,
270,
7,
3712,
6030,
90,
27,
25,
51,
29291,
90,
27,
25,
18467,
7248,
90,
27,
25,
7149,
11,
51,
5512,
27,
25,
18467,
22203,
92,
5512,
288,
8,
810,
198,
220,
220,
220,
1391,
51,
1279,
25,
4479,
90,
13940,
23650,
11,
23839,
10100,
11709,
198,
220,
951,
320,
270,
7,
67,
11,
34441,
5216,
320,
270,
28955,
198,
437,
198,
198,
8818,
951,
320,
270,
7,
67,
3712,
13715,
33383,
11146,
18683,
6713,
90,
27,
25,
18467,
7248,
90,
27,
25,
7149,
11,
51,
5512,
28718,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
435,
70,
3712,
45,
2434,
5216,
320,
270,
8,
810,
1391,
51,
11,
28718,
92,
198,
220,
1303,
2297,
25648,
284,
262,
1339,
286,
14141,
433,
578,
1479,
37067,
318,
257,
1643,
16931,
11,
475,
379,
1551,
198,
220,
1303,
1262,
4600,
13409,
1096,
5216,
320,
270,
63,
2174,
815,
3368,
617,
10319,
287,
24531,
22139,
13,
198,
220,
951,
320,
270,
7,
33,
541,
433,
578,
11146,
18683,
6713,
90,
18467,
7248,
90,
27,
25,
7149,
11,
51,
5512,
28718,
92,
7,
67,
828,
435,
70,
8,
198,
437,
198,
8818,
951,
320,
270,
7,
67,
3712,
33,
541,
433,
578,
11146,
18683,
6713,
90,
27,
25,
18467,
7248,
90,
27,
25,
7149,
11,
51,
92,
5512,
7904,
45,
2434,
5216,
320,
270,
8,
810,
309,
198,
220,
1303,
3082,
1133,
951,
320,
270,
286,
16362,
287,
262,
18328,
286,
4463,
7248,
357,
63,
18467,
7248,
90,
5317,
92,
63,
737,
198,
220,
1303,
5740,
25,
645,
2854,
561,
307,
8618,
416,
1262,
4600,
7279,
73,
1563,
50,
1039,
90,
51,
92,
63,
422,
198,
220,
1303,
6060,
44909,
942,
13,
20362,
780,
340,
318,
655,
257,
29908,
1088,
4600,
5317,
7279,
73,
1563,
50,
1039,
63,
326,
198,
220,
1303,
20947,
12188,
262,
845,
976,
36525,
326,
356,
779,
2174,
13,
198,
220,
5621,
158,
224,
223,
62,
82,
7750,
796,
3975,
7,
2617,
4613,
17773,
1096,
7,
2617,
11,
6376,
28,
9562,
828,
909,
158,
224,
223,
7,
67,
4008,
198,
220,
5621,
158,
224,
224,
62,
82,
7750,
796,
3975,
7,
2617,
4613,
17773,
1096,
7,
2617,
11,
6376,
28,
7942,
828,
909,
158,
224,
224,
7,
67,
4008,
198,
220,
1257,
6359,
796,
3975,
7,
276,
3212,
7,
67,
4008,
466,
304,
198,
220,
220,
220,
17773,
1096,
7,
26452,
7,
67,
11,
68,
828,
5621,
158,
224,
223,
62,
82,
7750,
58,
10677,
7,
67,
11,
68,
8,
4357,
5621,
158,
224,
224,
62,
82,
7750,
58,
83,
13655,
7,
67,
11,
68,
8,
12962,
198,
220,
886,
198,
220,
288,
62,
82,
7750,
796,
347,
541,
433,
578,
11146,
18683,
6713,
90,
18467,
7248,
5317,
11,
417,
4906,
7,
12543,
6359,
38165,
3419,
198,
220,
751,
62,
1851,
1063,
158,
224,
223,
0,
7,
67,
62,
82,
7750,
11,
299,
85,
158,
224,
223,
7,
67,
828,
909,
158,
224,
223,
28,
3438,
12195,
28709,
158,
224,
223,
62,
82,
7750,
4008,
198,
220,
751,
62,
1851,
1063,
158,
224,
224,
0,
7,
67,
62,
82,
7750,
11,
299,
85,
158,
224,
224,
7,
67,
828,
909,
158,
224,
224,
28,
3438,
12195,
28709,
158,
224,
224,
62,
82,
7750,
4008,
198,
220,
751,
62,
276,
3212,
0,
7,
67,
62,
82,
7750,
11,
12351,
7,
67,
828,
256,
13655,
7,
67,
828,
3488,
28,
12543,
6359,
8,
198,
220,
951,
320,
62,
82,
7750,
796,
951,
320,
270,
7,
67,
62,
82,
7750,
11,
6093,
1096,
5216,
320,
270,
28955,
628,
220,
1303,
2195,
570,
4847,
14,
14933,
284,
262,
951,
320,
270,
900,
13,
198,
220,
9766,
907,
796,
20650,
90,
51,
92,
7,
917,
891,
11,
4129,
7,
1758,
87,
7,
4033,
320,
62,
82,
7750,
22305,
198,
220,
329,
357,
29945,
11,
575,
8,
287,
19974,
7,
4033,
320,
62,
82,
7750,
11,
5621,
158,
224,
224,
62,
82,
7750,
8,
198,
220,
220,
220,
329,
1312,
287,
2401,
7,
56,
8,
198,
220,
220,
220,
220,
220,
9766,
907,
58,
29945,
7,
72,
15437,
796,
575,
7,
72,
8,
198,
220,
220,
220,
886,
198,
220,
886,
198,
220,
1303,
383,
15879,
815,
1541,
307,
5901,
11,
475,
284,
4646,
9277,
20040,
1272,
356,
4702,
198,
220,
1303,
3891,
422,
262,
7679,
352,
5621,
8797,
1744,
13,
1114,
1672,
11,
618,
14492,
257,
198,
220,
1303,
4574,
448,
11,
356,
4702,
3891,
422,
262,
40167,
286,
269,
2117,
272,
284,
3891,
422,
262,
3625,
13,
198,
220,
329,
357,
84,
11,
1395,
8,
287,
19974,
7,
1851,
1063,
158,
224,
223,
7,
67,
62,
82,
7750,
828,
5621,
158,
224,
223,
62,
82,
7750,
8,
198,
220,
220,
220,
304,
796,
717,
7,
1939,
738,
7,
67,
62,
82,
7750,
11,
334,
11,
1058,
10677,
4008,
198,
220,
220,
220,
277,
11,
7377,
117,
796,
3488,
7,
67,
62,
82,
7750,
11,
304,
828,
7405,
7,
4033,
320,
62,
82,
7750,
38381,
83,
13655,
7,
67,
62,
82,
7750,
11,
304,
15437,
198,
220,
220,
220,
329,
1312,
287,
2401,
7,
55,
8,
198,
220,
220,
220,
220,
220,
9766,
907,
58,
29945,
7,
69,
7,
72,
4008,
60,
796,
1395,
7,
72,
8,
198,
220,
220,
220,
886,
198,
220,
886,
198,
220,
1303,
27405,
4559,
21022,
287,
37042,
1351,
286,
3891,
13,
198,
220,
3748,
62,
1525,
62,
12985,
2667,
0,
7,
11129,
907,
8,
628,
220,
7377,
117,
82,
796,
3975,
7,
4033,
320,
62,
82,
7750,
11,
5621,
158,
224,
224,
62,
82,
7750,
8,
466,
7377,
117,
11,
575,
198,
220,
220,
220,
4463,
22203,
7,
35,
713,
7,
56,
7,
72,
8,
5218,
9766,
907,
58,
29945,
7,
72,
15437,
329,
1312,
287,
2401,
7,
56,
36911,
4463,
7248,
7,
11129,
907,
4008,
198,
220,
886,
198,
220,
1623,
320,
270,
7,
67,
11,
7854,
291,
2117,
272,
7,
18467,
7248,
7,
11129,
907,
828,
7377,
117,
82,
4008,
198,
437,
198,
198,
8818,
17773,
1096,
7,
2617,
3712,
18467,
7248,
26,
6376,
3712,
33,
970,
28,
9562,
8,
198,
220,
1303,
44855,
11682,
25,
775,
815,
1104,
4600,
34642,
62,
9630,
63,
290,
340,
815,
307,
973,
994,
13,
198,
220,
4463,
24510,
22203,
7,
33327,
7,
2617,
828,
900,
11,
6376,
28,
9630,
8,
198,
437,
198,
8818,
17773,
1096,
7,
69,
3712,
18467,
22203,
11,
1395,
11,
575,
8,
198,
220,
4463,
22203,
7,
72,
4613,
691,
7,
3866,
9060,
7,
56,
11,
277,
7,
55,
7,
72,
22305,
828,
2401,
7,
55,
828,
2401,
7,
56,
4008,
198,
437,
198,
198,
37811,
6889,
1351,
286,
4847,
3748,
416,
4375,
15940,
611,
3306,
13,
198,
198,
1532,
262,
4847,
389,
1541,
3748,
11,
484,
481,
407,
307,
48865,
13,
198,
37811,
198,
8818,
3748,
62,
1525,
62,
12985,
2667,
0,
7,
11129,
907,
3712,
23839,
38469,
90,
51,
19629,
7621,
28,
12286,
62,
12985,
8,
810,
309,
198,
220,
7621,
62,
9127,
796,
360,
713,
90,
51,
11,
5317,
92,
3419,
198,
220,
329,
2124,
287,
9766,
907,
198,
220,
220,
220,
7621,
62,
9127,
58,
87,
60,
796,
468,
2539,
7,
12985,
62,
9127,
11,
2124,
8,
5633,
352,
1058,
657,
198,
220,
886,
198,
220,
329,
357,
72,
11,
2124,
8,
287,
27056,
378,
7,
11129,
907,
8,
198,
220,
220,
220,
357,
73,
796,
7621,
62,
9127,
58,
87,
12962,
1875,
657,
8614,
2555,
198,
220,
220,
220,
30509,
796,
7621,
7,
87,
11,
474,
8,
198,
220,
220,
220,
2488,
30493,
5145,
10134,
2539,
7,
12985,
62,
9127,
11,
30509,
8,
1303,
2094,
470,
5358,
351,
2656,
9766,
907,
0,
198,
220,
220,
220,
9766,
907,
58,
72,
60,
796,
30509,
198,
220,
220,
220,
7621,
62,
9127,
58,
87,
60,
15853,
352,
198,
220,
886,
198,
220,
9766,
907,
198,
437,
198,
198,
12286,
62,
12985,
7,
87,
3712,
13940,
23650,
11,
256,
8,
796,
38357,
7,
87,
11,
25113,
1600,
256,
8,
198,
12286,
62,
12985,
7,
87,
3712,
23839,
10100,
11,
256,
8,
796,
4731,
7,
87,
11,
25113,
1600,
256,
8,
198,
198,
2,
23691,
448,
1224,
902,
198,
2,
19351,
198,
198,
37811,
3082,
1133,
257,
4574,
448,
16829,
286,
27454,
5621,
11,
611,
1744,
13,
198,
198,
15056,
5499,
7559,
75,
25,
314,
15168,
406,
15506,
290,
7559,
76,
25,
406,
15168,
402,
15506,
284,
1296,
257,
4574,
448,
6616,
628,
220,
220,
220,
300,
198,
220,
406,
17804,
238,
314,
198,
76,
17804,
241,
220,
220,
17804,
241,
74,
198,
220,
402,
17804,
238,
509,
198,
220,
220,
220,
308,
198,
198,
13086,
262,
900,
7559,
42,
19039,
402,
1220,
285,
7,
43,
1220,
300,
7,
40,
4008,
15506,
290,
1011,
7559,
70,
25,
509,
17804,
103,
402,
15506,
284,
307,
262,
198,
259,
4717,
13,
3244,
262,
3975,
7559,
74,
25,
314,
15168,
509,
15506,
318,
5295,
416,
262,
3975,
7559,
75,
158,
233,
227,
76,
25,
314,
15168,
402,
15506,
198,
6738,
262,
9079,
326,
262,
6616,
725,
1769,
13,
198,
198,
49222,
448,
1224,
902,
2152,
691,
611,
262,
11795,
4006,
318,
11378,
13,
1052,
198,
18224,
481,
307,
4376,
611,
262,
4574,
448,
16829,
2314,
307,
12006,
13,
1675,
2198,
198,
5661,
287,
5963,
11,
779,
685,
63,
5171,
62,
14689,
448,
62,
785,
26908,
63,
16151,
31,
5420,
737,
198,
37811,
198,
8818,
4574,
448,
62,
785,
26908,
7,
24874,
3712,
5377,
1930,
540,
47,
958,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
198,
220,
300,
11,
285,
796,
5166,
198,
220,
314,
11,
406,
11,
402,
796,
2401,
7,
75,
828,
14873,
296,
7,
75,
828,
14873,
296,
7,
76,
8,
628,
220,
1303,
28407,
14900,
308,
25,
509,
17804,
103,
402,
13,
198,
220,
300,
62,
9060,
796,
5345,
7,
33327,
7,
75,
4008,
198,
220,
285,
62,
9060,
796,
5345,
26933,
285,
7,
87,
8,
329,
2124,
287,
406,
611,
2124,
18872,
231,
300,
62,
9060,
33761,
198,
220,
308,
796,
4463,
22203,
26933,
87,
329,
2124,
287,
402,
611,
2124,
18872,
231,
285,
62,
9060,
4357,
402,
8,
198,
220,
509,
796,
2401,
7,
70,
8,
628,
220,
1303,
28407,
17488,
1042,
479,
25,
314,
15168,
509,
1262,
13027,
34062,
286,
308,
13,
198,
220,
308,
62,
16340,
796,
360,
713,
90,
5317,
11,
5317,
92,
7,
13344,
7,
33327,
7,
70,
828,
509,
4008,
198,
220,
479,
796,
4463,
22203,
7,
8899,
7,
40,
8,
466,
2124,
198,
220,
220,
220,
331,
796,
285,
7,
75,
7,
87,
4008,
198,
220,
220,
220,
651,
7,
70,
62,
16340,
11,
331,
8,
466,
26,
4049,
7203,
33234,
2649,
4054,
329,
7386,
5002,
720,
87,
4943,
886,
198,
220,
886,
11,
314,
11,
509,
8,
628,
220,
1441,
29936,
540,
47,
958,
7,
74,
11,
308,
8,
198,
437,
198,
198,
5171,
62,
14689,
448,
62,
785,
26908,
7,
24874,
3712,
5377,
1930,
540,
47,
958,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
796,
198,
220,
477,
7,
271,
28920,
11,
4686,
62,
31448,
7,
24874,
4008,
198,
198,
37811,
6822,
11795,
4006,
329,
4574,
448,
16829,
286,
27454,
5621,
13,
198,
198,
464,
11795,
4006,
1139,
326,
262,
5499,
466,
407,
3975,
357,
16,
8,
1111,
257,
198,
2934,
33342,
2378,
290,
257,
17232,
2378,
287,
406,
284,
262,
976,
2378,
287,
402,
393,
357,
17,
8,
734,
7310,
198,
2934,
33342,
3709,
284,
262,
976,
2378,
13,
632,
318,
19876,
1927,
11378,
329,
8677,
425,
5499,
13,
198,
198,
35561,
5166,
286,
11629,
2024,
286,
628,
220,
357,
16,
8,
257,
30745,
11129,
1513,
2378,
326,
8739,
284,
257,
13140,
2378,
287,
402,
198,
220,
357,
17,
8,
257,
5166,
286,
7310,
3709,
287,
406,
326,
389,
13140,
1865,
27661,
284,
262,
976,
198,
220,
220,
220,
220,
220,
2378,
287,
402,
13,
198,
37811,
198,
8818,
4686,
62,
31448,
7,
24874,
3712,
5377,
1930,
540,
47,
958,
90,
27,
25,
18467,
7248,
90,
5317,
11709,
8,
198,
220,
300,
11,
285,
796,
5166,
198,
220,
300,
62,
9060,
796,
5345,
7,
33327,
7,
75,
4008,
198,
220,
300,
62,
9060,
157,
114,
250,
796,
685,
2124,
329,
2124,
287,
14873,
296,
7,
75,
8,
611,
2124,
18872,
231,
300,
62,
9060,
2361,
198,
220,
285,
62,
9060,
796,
5345,
7,
8899,
7,
76,
11,
300,
62,
9060,
157,
114,
250,
4008,
198,
220,
14808,
72,
329,
1312,
287,
300,
62,
9060,
611,
285,
7,
72,
8,
18872,
230,
285,
62,
9060,
828,
198,
220,
220,
14808,
72,
11,
474,
8,
329,
1312,
287,
1123,
9630,
7,
75,
62,
9060,
157,
114,
250,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
474,
287,
1312,
10,
16,
25,
13664,
7,
75,
62,
9060,
157,
114,
250,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
285,
7,
75,
62,
9060,
157,
114,
250,
58,
72,
12962,
6624,
285,
7,
75,
62,
9060,
157,
114,
250,
58,
73,
60,
22305,
198,
437,
198,
198,
2,
3834,
28709,
198,
7804,
2,
198,
198,
37811,
3834,
2617,
286,
257,
27454,
900,
13,
198,
37811,
198,
9979,
3834,
18467,
7248,
90,
50,
11,
51,
92,
796,
3834,
15252,
90,
27,
25,
18467,
7248,
90,
50,
11,
51,
11709,
198,
198,
7004,
15252,
7,
55,
3712,
18467,
7248,
11,
277,
8,
796,
3834,
15252,
7,
18467,
22203,
7,
69,
11,
1395,
4008,
198,
7004,
18467,
7248,
7,
55,
11,
277,
8,
796,
3834,
15252,
7,
18467,
22203,
7,
69,
11,
1395,
4008,
198,
198,
3174,
7,
32,
3712,
7004,
18467,
7248,
90,
5317,
30072,
796,
3834,
15252,
7,
3174,
7,
26452,
7,
32,
22305,
198,
14881,
13,
33327,
7,
32,
3712,
7004,
18467,
7248,
8,
796,
2824,
7,
26452,
7,
32,
4008,
198,
14881,
13,
30619,
7,
32,
3712,
7004,
18467,
7248,
8,
796,
3834,
18467,
7248,
7,
672,
7,
32,
828,
3297,
7,
33327,
7,
32,
22305,
198,
198,
9979,
27741,
33,
970,
38469,
796,
4479,
90,
23839,
38469,
90,
33,
970,
5512,
13128,
38469,
92,
198,
198,
37811,
3834,
2617,
286,
257,
27454,
900,
7997,
355,
257,
25131,
15879,
13,
198,
198,
1212,
318,
262,
850,
15252,
1398,
7483,
10552,
1201,
4600,
33,
970,
63,
318,
262,
850,
15252,
198,
4871,
7483,
329,
4600,
7248,
44646,
198,
37811,
198,
31,
23736,
62,
17831,
62,
4853,
874,
2878,
3834,
18467,
7248,
38469,
90,
50,
27,
25,
18467,
7248,
92,
1279,
25,
3834,
15252,
90,
50,
92,
198,
220,
900,
3712,
50,
198,
220,
44010,
3712,
23839,
33,
970,
38469,
628,
220,
2163,
3834,
18467,
7248,
38469,
7,
55,
3712,
50,
11,
2747,
3712,
23839,
33,
970,
38469,
8,
810,
311,
27,
25,
18467,
7248,
198,
220,
220,
220,
4129,
7,
28764,
8,
6624,
4129,
7,
55,
8,
8614,
198,
220,
220,
220,
220,
220,
4049,
7203,
10699,
286,
44010,
720,
28764,
857,
407,
4961,
2546,
286,
2134,
720,
55,
4943,
198,
220,
220,
220,
649,
90,
50,
92,
7,
55,
11,
2747,
8,
198,
220,
886,
198,
437,
198,
198,
7004,
15252,
7,
55,
3712,
18467,
7248,
11,
2747,
3712,
23839,
33,
970,
38469,
8,
796,
3834,
18467,
7248,
38469,
7,
55,
11,
2747,
8,
198,
7004,
18467,
7248,
7,
28764,
3712,
23839,
33,
970,
38469,
8,
796,
3834,
15252,
7,
18467,
7248,
7,
13664,
7,
28764,
36911,
2747,
8,
198,
198,
672,
7,
32,
3712,
7004,
18467,
7248,
38469,
8,
796,
317,
13,
2617,
198,
26452,
7,
32,
3712,
7004,
18467,
7248,
38469,
8,
796,
4463,
22203,
7,
19796,
439,
7,
32,
13,
28764,
5344,
828,
317,
13,
2617,
8,
198,
28764,
5344,
7,
32,
3712,
7004,
18467,
7248,
38469,
8,
796,
317,
13,
28764,
5344,
198,
198,
8818,
44010,
7,
32,
3712,
7004,
18467,
7248,
8,
198,
220,
277,
796,
3488,
7,
32,
8,
198,
220,
2747,
796,
27807,
274,
7,
13664,
7,
19815,
296,
7,
69,
22305,
198,
220,
329,
2124,
287,
2401,
7,
69,
8,
198,
220,
220,
220,
2747,
58,
69,
7,
87,
15437,
796,
2081,
198,
220,
886,
198,
220,
2747,
198,
437,
198,
198,
31,
39098,
3834,
15252,
43,
1078,
501,
90,
18467,
7248,
11,
7004,
18467,
7248,
92,
2221,
198,
220,
2488,
11748,
909,
198,
220,
1826,
7,
32,
3712,
7004,
18467,
7248,
11,
347,
3712,
7004,
18467,
7248,
8,
796,
1826,
7,
32,
11,
347,
11,
3834,
18257,
46120,
13087,
28955,
198,
220,
4654,
7,
32,
3712,
7004,
18467,
7248,
11,
347,
3712,
7004,
18467,
7248,
8,
796,
4654,
7,
32,
11,
347,
11,
3834,
18257,
46120,
13087,
28955,
198,
220,
1353,
7,
55,
3712,
18467,
7248,
8,
796,
1353,
7,
55,
11,
3834,
18257,
3152,
19352,
896,
28955,
198,
220,
4220,
7,
55,
3712,
18467,
7248,
8,
796,
4220,
7,
55,
11,
3834,
18257,
3152,
19352,
896,
28955,
198,
437,
198,
198,
37811,
978,
42289,
284,
24061,
850,
15252,
4560,
1262,
5002,
3083,
25131,
9156,
13,
198,
37811,
198,
7249,
3834,
18257,
46120,
13087,
1279,
25,
3834,
18257,
2348,
42289,
886,
198,
198,
47745,
7,
32,
3712,
7004,
18467,
7248,
90,
5317,
5512,
347,
3712,
7004,
18467,
7248,
90,
5317,
5512,
7904,
7004,
18257,
46120,
13087,
8,
796,
198,
220,
3834,
18467,
7248,
7,
28764,
5344,
7,
32,
8,
764,
5,
44010,
7,
33,
4008,
198,
22179,
7,
32,
3712,
7004,
18467,
7248,
90,
5317,
5512,
347,
3712,
7004,
18467,
7248,
90,
5317,
5512,
7904,
7004,
18257,
46120,
13087,
8,
796,
198,
220,
3834,
18467,
7248,
7,
28764,
5344,
7,
32,
8,
764,
91,
44010,
7,
33,
4008,
198,
4852,
7,
55,
3712,
18467,
7248,
90,
5317,
5512,
7904,
7004,
18257,
46120,
13087,
8,
796,
3834,
18467,
7248,
7,
83,
622,
274,
7,
13664,
7,
55,
22305,
198,
22487,
7,
55,
3712,
18467,
7248,
90,
5317,
5512,
7904,
7004,
18257,
46120,
13087,
8,
796,
3834,
18467,
7248,
7,
69,
874,
274,
7,
13664,
7,
55,
22305,
198,
198,
437,
198
] | 2.538183 | 18,254 |
"""
ForceDirectedLayout
The fields are, in order:
- `move`, a tuple to specify whether moves on the x and y axes are allowed
- `k`, a tuple (kₐ,kᵣ) giving the strength of attraction and repulsion
- `exponents`, a tuple (a,b,c,d) giving the exponents for the attraction and
repulsion functions
- `gravity`, the strength of attraction towards the center, set to `0.0` as a
default
- `δ`, a floating point constant regulating the attractive force of interaction
strength -- when set to its default value of 0.0, all edges have the same
attraction
- `degree`, a boolean to specificy whether the nodes repel one another according
to their degree
The various coefficients are used to decide how strongly nodes will *attract* or
*repel* one another, as a function of their distance Δ. Specifically, the
default is that connected nodes will attract one another proportionally to
(Δᵃ)×(kₐᵇ), with a=2 and b=-1, and all nodes repel one another proportionally to
(Δᶜ)×(kᵣᵈ) with c=-1 and d=2.
The parameterization for the Fruchterman-Rheingold layout is the default one,
particularly if kₐ=kᵣ. The Force Atlas 2 parameters are kₐ=1 (or b=0), kᵣ set to
any value, a=1, c=-1, d=1. Note that in all cases, the gravity is a multiplying
constant of the resulting attraction force, so it will also be sensitive to
these choices. The `FruchtermanRheingold` and `ForceAtlas2` functions will
return a `ForceDirectedLayout` -- as this object is mutable, you can replace the
exponents at any time.
The δ parameter is particularly important for probabilistic networks, as these
tend to have *all* their interactions set to non-zero values. As such, setting a
value of δ=1 means that the interactions only attract as much as they are
probable.
"""
mutable struct ForceDirectedLayout
move::Tuple{Bool,Bool}
k::Tuple{Float64,Float64}
exponents::Tuple{Float64,Float64,Float64,Float64}
gravity::Float64
δ::Float64
degree::Bool
end
"""
ForceDirectedLayout(ka::Float64, kr::Float64; gravity::Float64=0.75)
TODO
"""
ForceDirectedLayout(ka::Float64, kr::Float64; gravity::Float64=0.75) = ForceDirectedLayout((true,true), (ka,kr), (2.0, -1.0, -1.0, 2.0), gravity, 0.0, true)
"""
FruchtermanRheingold(k::Float64; gravity::Float64=0.75)
The default `ForceDirectedLayout` uses the Fruchterman-Rheingold parameters -
this function is simply here to make the code more explicity, and to use a
"strict" version where kᵣ=kₐ.
"""
FruchtermanRheingold(k::Float64; gravity::Float64=0.75) = ForceDirectedLayout(k, k; gravity=gravity)
"""
ForceAtlas2(k::Float64; gravity::Float64=0.75)
In the Force Atlas 2 layout, the attraction is proportional to the distance, and
the repulsion to the inverse of the distance. Note that kₐ in this layout is set
to 1, so kᵣ is the *relative* repulsion.
"""
ForceAtlas2(k::Float64; gravity::Float64=0.75) = ForceDirectedLayout((true, true), (1.0, k), (1.0, 0.0, -1.0, 1.0), gravity, 0.0, true)
"""
SpringElectric(k::Float64; gravity::Float64=0.75)
In the spring electric layout, attraction is proportional to distance, and
repulsion to the inverse of the distance squared.
"""
SpringElectric(k::Float64; gravity::Float64=0.75) = ForceDirectedLayout((true,true), (k, k), (1.0, 1.0, -2.0, 1.0), gravity, 0.0, true)
"""
Stops the movement of a node position.
"""
function stop!(n::NodePosition)
n.vx = 0.0
n.vy = 0.0
end
"""
Repel two nodes
"""
function repel!(LA::T, n1::NodePosition, n2::NodePosition, fr) where {T <: ForceDirectedLayout}
δx = n1.x - n2.x
δy = n1.y - n2.y
Δ = sqrt(δx^2.0+δy^2.0)
Δ = Δ == 0.0 ? 0.0001 : Δ
if LA.move[1]
n1.vx += δx/Δ*fr(Δ)
n2.vx -= δx/Δ*fr(Δ)
end
if LA.move[2]
n1.vy += δy/Δ*fr(Δ)
n2.vy -= δy/Δ*fr(Δ)
end
end
"""
Attract two connected nodes
"""
function attract!(LA::T, n1::NodePosition, n2::NodePosition, fa) where {T <: ForceDirectedLayout}
δx = n1.x - n2.x
δy = n1.y - n2.y
Δ = sqrt(δx^2.0+δy^2.0)
if !iszero(Δ)
if LA.move[1]
n1.vx -= δx/Δ*fa(Δ)
n2.vx += δx/Δ*fa(Δ)
end
if LA.move[2]
n1.vy -= δy/Δ*fa(Δ)
n2.vy += δy/Δ*fa(Δ)
end
end
end
"""
Update the position of a node
"""
function update!(n::NodePosition)
Δ = sqrt(n.vx^2.0+n.vy^2.0)
if !iszero(Δ)
n.x += n.vx/Δ*min(Δ, 0.01)
n.y += n.vy/Δ*min(Δ, 0.01)
end
stop!(n)
end
"""
position!(LA::ForceDirectedLayout, L::Dict{K,NodePosition}, N::T) where {T <: EcologicalNetworks.AbstractEcologicalNetwork} where {K}
One iteration of the force-directed layout routine. Because these algorithms can
take some time to converge, it may be useful to stop every 500 iterations to
have a look at the results. Note that to avoid oscillations, the maximum
displacement at any given time is set to 0.01 units.
These layouts tend to have O(N³) complexity, where N is the number of nodes in
the network. This is because repulsion required to do (N×(N-1))/2 visits on
pairs of nodes, and an optimal layout usually requires s×N steps to converge.
With the maximal displacement set to 0.01, we have found that k ≈ 100 gives
acceptable results. This will depend on the complexity of the network, and its
connectance, as well as the degree and edge strengths distributions.
"""
function position!(LA::ForceDirectedLayout, L::Dict{K,NodePosition}, N::T) where {T <: EcologicalNetworks.AbstractEcologicalNetwork} where {K}
degdistr = degree(N)
# Exponents and forces - the attraction and repulsion functions are
# (Δᵃ)×(kₐᵇ) and (Δᶜ)×(kᵣᵈ)
a,b,c,d = LA.exponents
ka, kr = LA.k
fa(x) = (x^a)*(ka^b)
fr(x) = (x^c)*(kr^d)
plotcenter = NodePosition(0.0, 0.0, 0.0, 0.0)
for (i, s1) in enumerate(species(N))
attract!(LA, L[s1], plotcenter, (x) -> LA.gravity*fa(x))
for (j, s2) in enumerate(species(N))
if j > i
if LA.degree
repel!(LA, L[s1], L[s2], (x) -> (degdistr[s1]+1)*(degdistr[s2]+1)*fr(x))
else
repel!(LA, L[s1], L[s2], fr)
end
end
end
end
for int in interactions(N)
# We can do Bool^δ and it returns the Bool, so that's tight
attract!(LA, L[int.from], L[int.to], (x) -> N[int.from, int.to]^LA.δ*fa(x))
end
for s in species(N)
update!(L[s])
end
end
| [
37811,
198,
220,
220,
220,
5221,
13470,
276,
32517,
198,
198,
464,
7032,
389,
11,
287,
1502,
25,
198,
198,
12,
4600,
21084,
47671,
257,
46545,
284,
11986,
1771,
6100,
319,
262,
2124,
290,
331,
34197,
389,
3142,
198,
12,
4600,
74,
47671,
257,
46545,
357,
74,
158,
224,
238,
11,
74,
39611,
96,
8,
3501,
262,
4202,
286,
17416,
290,
1128,
15204,
198,
12,
4600,
11201,
3906,
47671,
257,
46545,
357,
64,
11,
65,
11,
66,
11,
67,
8,
3501,
262,
1033,
3906,
329,
262,
17416,
290,
198,
220,
1128,
15204,
5499,
198,
12,
4600,
46453,
47671,
262,
4202,
286,
17416,
3371,
262,
3641,
11,
900,
284,
4600,
15,
13,
15,
63,
355,
257,
198,
220,
4277,
198,
12,
4600,
138,
112,
47671,
257,
12462,
966,
6937,
26379,
262,
10966,
2700,
286,
10375,
198,
220,
4202,
1377,
618,
900,
284,
663,
4277,
1988,
286,
657,
13,
15,
11,
477,
13015,
423,
262,
976,
198,
220,
17416,
198,
12,
4600,
16863,
47671,
257,
25131,
284,
2176,
88,
1771,
262,
13760,
1128,
417,
530,
1194,
1864,
198,
220,
284,
511,
4922,
198,
198,
464,
2972,
44036,
389,
973,
284,
5409,
703,
7634,
13760,
481,
1635,
1078,
974,
9,
393,
198,
9,
7856,
417,
9,
530,
1194,
11,
355,
257,
2163,
286,
511,
5253,
37455,
13,
22426,
11,
262,
198,
12286,
318,
326,
5884,
13760,
481,
4729,
530,
1194,
9823,
453,
284,
198,
7,
138,
242,
39611,
225,
8,
12906,
7,
74,
158,
224,
238,
39611,
229,
828,
351,
257,
28,
17,
290,
275,
10779,
16,
11,
290,
477,
13760,
1128,
417,
530,
1194,
9823,
453,
284,
198,
7,
138,
242,
157,
114,
250,
8,
12906,
7,
74,
39611,
96,
39611,
230,
8,
351,
269,
10779,
16,
290,
288,
28,
17,
13,
198,
198,
464,
11507,
1634,
329,
262,
376,
622,
354,
353,
805,
12,
49,
258,
278,
727,
12461,
318,
262,
4277,
530,
11,
198,
31722,
611,
479,
158,
224,
238,
28,
74,
39611,
96,
13,
383,
5221,
22494,
362,
10007,
389,
479,
158,
224,
238,
28,
16,
357,
273,
275,
28,
15,
828,
479,
39611,
96,
900,
284,
198,
1092,
1988,
11,
257,
28,
16,
11,
269,
10779,
16,
11,
288,
28,
16,
13,
5740,
326,
287,
477,
2663,
11,
262,
13522,
318,
257,
48816,
198,
9979,
415,
286,
262,
7186,
17416,
2700,
11,
523,
340,
481,
635,
307,
8564,
284,
198,
27218,
7747,
13,
383,
4600,
37,
622,
354,
353,
805,
49,
258,
278,
727,
63,
290,
4600,
10292,
2953,
21921,
17,
63,
5499,
481,
198,
7783,
257,
4600,
10292,
13470,
276,
32517,
63,
1377,
355,
428,
2134,
318,
4517,
540,
11,
345,
460,
6330,
262,
198,
11201,
3906,
379,
597,
640,
13,
198,
198,
464,
7377,
112,
11507,
318,
3573,
1593,
329,
1861,
14991,
2569,
7686,
11,
355,
777,
198,
83,
437,
284,
423,
1635,
439,
9,
511,
12213,
900,
284,
1729,
12,
22570,
3815,
13,
1081,
884,
11,
4634,
257,
198,
8367,
286,
7377,
112,
28,
16,
1724,
326,
262,
12213,
691,
4729,
355,
881,
355,
484,
389,
198,
1676,
33460,
13,
198,
37811,
198,
76,
18187,
2878,
5221,
13470,
276,
32517,
198,
220,
220,
220,
1445,
3712,
51,
29291,
90,
33,
970,
11,
33,
970,
92,
198,
220,
220,
220,
479,
3712,
51,
29291,
90,
43879,
2414,
11,
43879,
2414,
92,
198,
220,
220,
220,
1033,
3906,
3712,
51,
29291,
90,
43879,
2414,
11,
43879,
2414,
11,
43879,
2414,
11,
43879,
2414,
92,
198,
220,
220,
220,
13522,
3712,
43879,
2414,
198,
220,
220,
220,
7377,
112,
3712,
43879,
2414,
198,
220,
220,
220,
4922,
3712,
33,
970,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
5221,
13470,
276,
32517,
7,
4914,
3712,
43879,
2414,
11,
479,
81,
3712,
43879,
2414,
26,
13522,
3712,
43879,
2414,
28,
15,
13,
2425,
8,
198,
198,
51,
3727,
46,
198,
37811,
198,
10292,
13470,
276,
32517,
7,
4914,
3712,
43879,
2414,
11,
479,
81,
3712,
43879,
2414,
26,
13522,
3712,
43879,
2414,
28,
15,
13,
2425,
8,
796,
5221,
13470,
276,
32517,
19510,
7942,
11,
7942,
828,
357,
4914,
11,
38584,
828,
357,
17,
13,
15,
11,
532,
16,
13,
15,
11,
532,
16,
13,
15,
11,
362,
13,
15,
828,
13522,
11,
657,
13,
15,
11,
2081,
8,
198,
198,
37811,
198,
220,
220,
220,
376,
622,
354,
353,
805,
49,
258,
278,
727,
7,
74,
3712,
43879,
2414,
26,
13522,
3712,
43879,
2414,
28,
15,
13,
2425,
8,
198,
198,
464,
4277,
4600,
10292,
13470,
276,
32517,
63,
3544,
262,
376,
622,
354,
353,
805,
12,
49,
258,
278,
727,
10007,
532,
198,
5661,
2163,
318,
2391,
994,
284,
787,
262,
2438,
517,
1193,
8467,
11,
290,
284,
779,
257,
198,
1,
301,
2012,
1,
2196,
810,
479,
39611,
96,
28,
74,
158,
224,
238,
13,
220,
198,
37811,
198,
37,
622,
354,
353,
805,
49,
258,
278,
727,
7,
74,
3712,
43879,
2414,
26,
13522,
3712,
43879,
2414,
28,
15,
13,
2425,
8,
796,
5221,
13470,
276,
32517,
7,
74,
11,
479,
26,
13522,
28,
46453,
8,
198,
198,
37811,
198,
220,
220,
220,
5221,
2953,
21921,
17,
7,
74,
3712,
43879,
2414,
26,
13522,
3712,
43879,
2414,
28,
15,
13,
2425,
8,
198,
198,
818,
262,
5221,
22494,
362,
12461,
11,
262,
17416,
318,
27111,
284,
262,
5253,
11,
290,
198,
1169,
1128,
15204,
284,
262,
34062,
286,
262,
5253,
13,
5740,
326,
479,
158,
224,
238,
287,
428,
12461,
318,
900,
198,
1462,
352,
11,
523,
479,
39611,
96,
318,
262,
1635,
43762,
9,
1128,
15204,
13,
198,
37811,
198,
10292,
2953,
21921,
17,
7,
74,
3712,
43879,
2414,
26,
13522,
3712,
43879,
2414,
28,
15,
13,
2425,
8,
796,
5221,
13470,
276,
32517,
19510,
7942,
11,
2081,
828,
357,
16,
13,
15,
11,
479,
828,
357,
16,
13,
15,
11,
657,
13,
15,
11,
532,
16,
13,
15,
11,
352,
13,
15,
828,
13522,
11,
657,
13,
15,
11,
2081,
8,
198,
198,
37811,
198,
220,
220,
220,
8225,
44132,
7,
74,
3712,
43879,
2414,
26,
13522,
3712,
43879,
2414,
28,
15,
13,
2425,
8,
198,
198,
818,
262,
6076,
5186,
12461,
11,
17416,
318,
27111,
284,
5253,
11,
290,
198,
7856,
15204,
284,
262,
34062,
286,
262,
5253,
44345,
13,
198,
37811,
198,
30387,
44132,
7,
74,
3712,
43879,
2414,
26,
13522,
3712,
43879,
2414,
28,
15,
13,
2425,
8,
796,
5221,
13470,
276,
32517,
19510,
7942,
11,
7942,
828,
357,
74,
11,
479,
828,
357,
16,
13,
15,
11,
352,
13,
15,
11,
532,
17,
13,
15,
11,
352,
13,
15,
828,
13522,
11,
657,
13,
15,
11,
2081,
8,
198,
198,
37811,
198,
1273,
2840,
262,
3356,
286,
257,
10139,
2292,
13,
198,
37811,
198,
8818,
2245,
0,
7,
77,
3712,
19667,
26545,
8,
198,
220,
220,
220,
299,
13,
85,
87,
796,
657,
13,
15,
198,
220,
220,
220,
299,
13,
7670,
796,
657,
13,
15,
198,
437,
198,
198,
37811,
198,
6207,
417,
734,
13760,
198,
37811,
198,
8818,
1128,
417,
0,
7,
13534,
3712,
51,
11,
299,
16,
3712,
19667,
26545,
11,
299,
17,
3712,
19667,
26545,
11,
1216,
8,
810,
1391,
51,
1279,
25,
5221,
13470,
276,
32517,
92,
198,
220,
220,
220,
7377,
112,
87,
796,
299,
16,
13,
87,
532,
299,
17,
13,
87,
198,
220,
220,
220,
7377,
112,
88,
796,
299,
16,
13,
88,
532,
299,
17,
13,
88,
198,
220,
220,
220,
37455,
796,
19862,
17034,
7,
138,
112,
87,
61,
17,
13,
15,
10,
138,
112,
88,
61,
17,
13,
15,
8,
198,
220,
220,
220,
37455,
796,
37455,
6624,
657,
13,
15,
5633,
657,
13,
18005,
1058,
37455,
198,
220,
220,
220,
611,
9131,
13,
21084,
58,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
299,
16,
13,
85,
87,
15853,
7377,
112,
87,
14,
138,
242,
9,
8310,
7,
138,
242,
8,
198,
220,
220,
220,
220,
220,
220,
220,
299,
17,
13,
85,
87,
48185,
7377,
112,
87,
14,
138,
242,
9,
8310,
7,
138,
242,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
611,
9131,
13,
21084,
58,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
299,
16,
13,
7670,
15853,
7377,
112,
88,
14,
138,
242,
9,
8310,
7,
138,
242,
8,
198,
220,
220,
220,
220,
220,
220,
220,
299,
17,
13,
7670,
48185,
7377,
112,
88,
14,
138,
242,
9,
8310,
7,
138,
242,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
37811,
198,
8086,
974,
734,
5884,
13760,
198,
37811,
198,
8818,
4729,
0,
7,
13534,
3712,
51,
11,
299,
16,
3712,
19667,
26545,
11,
299,
17,
3712,
19667,
26545,
11,
24685,
8,
810,
1391,
51,
1279,
25,
5221,
13470,
276,
32517,
92,
198,
220,
220,
220,
7377,
112,
87,
796,
299,
16,
13,
87,
532,
299,
17,
13,
87,
198,
220,
220,
220,
7377,
112,
88,
796,
299,
16,
13,
88,
532,
299,
17,
13,
88,
198,
220,
220,
220,
37455,
796,
19862,
17034,
7,
138,
112,
87,
61,
17,
13,
15,
10,
138,
112,
88,
61,
17,
13,
15,
8,
198,
220,
220,
220,
611,
5145,
271,
22570,
7,
138,
242,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
9131,
13,
21084,
58,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
16,
13,
85,
87,
48185,
7377,
112,
87,
14,
138,
242,
9,
13331,
7,
138,
242,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
17,
13,
85,
87,
15853,
7377,
112,
87,
14,
138,
242,
9,
13331,
7,
138,
242,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
611,
9131,
13,
21084,
58,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
16,
13,
7670,
48185,
7377,
112,
88,
14,
138,
242,
9,
13331,
7,
138,
242,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
17,
13,
7670,
15853,
7377,
112,
88,
14,
138,
242,
9,
13331,
7,
138,
242,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
437,
198,
198,
37811,
198,
10260,
262,
2292,
286,
257,
10139,
198,
37811,
198,
8818,
4296,
0,
7,
77,
3712,
19667,
26545,
8,
198,
220,
220,
220,
37455,
796,
19862,
17034,
7,
77,
13,
85,
87,
61,
17,
13,
15,
10,
77,
13,
7670,
61,
17,
13,
15,
8,
198,
220,
220,
220,
611,
5145,
271,
22570,
7,
138,
242,
8,
198,
220,
220,
220,
220,
220,
220,
220,
299,
13,
87,
15853,
299,
13,
85,
87,
14,
138,
242,
9,
1084,
7,
138,
242,
11,
657,
13,
486,
8,
198,
220,
220,
220,
220,
220,
220,
220,
299,
13,
88,
15853,
299,
13,
7670,
14,
138,
242,
9,
1084,
7,
138,
242,
11,
657,
13,
486,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2245,
0,
7,
77,
8,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
2292,
0,
7,
13534,
3712,
10292,
13470,
276,
32517,
11,
406,
3712,
35,
713,
90,
42,
11,
19667,
26545,
5512,
399,
3712,
51,
8,
810,
1391,
51,
1279,
25,
14003,
2770,
7934,
5225,
13,
23839,
49136,
2770,
26245,
92,
810,
1391,
42,
92,
198,
198,
3198,
24415,
286,
262,
2700,
12,
34762,
12461,
8027,
13,
4362,
777,
16113,
460,
198,
20657,
617,
640,
284,
47873,
11,
340,
743,
307,
4465,
284,
2245,
790,
5323,
34820,
284,
198,
14150,
257,
804,
379,
262,
2482,
13,
5740,
326,
284,
3368,
24969,
602,
11,
262,
5415,
198,
6381,
489,
5592,
379,
597,
1813,
640,
318,
900,
284,
657,
13,
486,
4991,
13,
198,
198,
4711,
38489,
4327,
284,
423,
440,
7,
45,
126,
111,
8,
13357,
11,
810,
399,
318,
262,
1271,
286,
13760,
287,
198,
1169,
3127,
13,
770,
318,
780,
1128,
15204,
2672,
284,
466,
357,
45,
12906,
7,
45,
12,
16,
4008,
14,
17,
11864,
319,
198,
79,
3468,
286,
13760,
11,
290,
281,
16586,
12461,
3221,
4433,
264,
12906,
45,
4831,
284,
47873,
13,
198,
3152,
262,
40708,
29358,
900,
284,
657,
13,
486,
11,
356,
423,
1043,
326,
479,
15139,
230,
1802,
3607,
198,
16037,
2482,
13,
770,
481,
4745,
319,
262,
13357,
286,
262,
3127,
11,
290,
663,
198,
8443,
590,
11,
355,
880,
355,
262,
4922,
290,
5743,
18929,
24570,
13,
198,
37811,
198,
8818,
2292,
0,
7,
13534,
3712,
10292,
13470,
276,
32517,
11,
406,
3712,
35,
713,
90,
42,
11,
19667,
26545,
5512,
399,
3712,
51,
8,
810,
1391,
51,
1279,
25,
14003,
2770,
7934,
5225,
13,
23839,
49136,
2770,
26245,
92,
810,
1391,
42,
92,
198,
220,
220,
220,
220,
198,
220,
220,
220,
3396,
17080,
81,
796,
4922,
7,
45,
8,
628,
220,
220,
220,
1303,
5518,
3906,
290,
3386,
532,
262,
17416,
290,
1128,
15204,
5499,
389,
198,
220,
220,
220,
1303,
357,
138,
242,
39611,
225,
8,
12906,
7,
74,
158,
224,
238,
39611,
229,
8,
290,
357,
138,
242,
157,
114,
250,
8,
12906,
7,
74,
39611,
96,
39611,
230,
8,
198,
220,
220,
220,
257,
11,
65,
11,
66,
11,
67,
796,
9131,
13,
11201,
3906,
198,
220,
220,
220,
38387,
11,
479,
81,
796,
9131,
13,
74,
198,
220,
220,
220,
24685,
7,
87,
8,
796,
357,
87,
61,
64,
27493,
7,
4914,
61,
65,
8,
198,
220,
220,
220,
1216,
7,
87,
8,
796,
357,
87,
61,
66,
27493,
7,
38584,
61,
67,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
7110,
16159,
796,
19081,
26545,
7,
15,
13,
15,
11,
657,
13,
15,
11,
657,
13,
15,
11,
657,
13,
15,
8,
628,
220,
220,
220,
329,
357,
72,
11,
264,
16,
8,
287,
27056,
378,
7,
35448,
7,
45,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
4729,
0,
7,
13534,
11,
406,
58,
82,
16,
4357,
7110,
16159,
11,
357,
87,
8,
4613,
9131,
13,
46453,
9,
13331,
7,
87,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
329,
357,
73,
11,
264,
17,
8,
287,
27056,
378,
7,
35448,
7,
45,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
474,
1875,
1312,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
9131,
13,
16863,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1128,
417,
0,
7,
13534,
11,
406,
58,
82,
16,
4357,
406,
58,
82,
17,
4357,
357,
87,
8,
4613,
357,
13500,
17080,
81,
58,
82,
16,
48688,
16,
27493,
7,
13500,
17080,
81,
58,
82,
17,
48688,
16,
27493,
8310,
7,
87,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1128,
417,
0,
7,
13534,
11,
406,
58,
82,
16,
4357,
406,
58,
82,
17,
4357,
1216,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
220,
198,
220,
220,
220,
329,
493,
287,
12213,
7,
45,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
775,
460,
466,
347,
970,
61,
138,
112,
290,
340,
5860,
262,
347,
970,
11,
523,
326,
338,
5381,
198,
220,
220,
220,
220,
220,
220,
220,
4729,
0,
7,
13534,
11,
406,
58,
600,
13,
6738,
4357,
406,
58,
600,
13,
1462,
4357,
357,
87,
8,
4613,
399,
58,
600,
13,
6738,
11,
493,
13,
1462,
60,
61,
13534,
13,
138,
112,
9,
13331,
7,
87,
4008,
198,
220,
220,
220,
886,
628,
220,
220,
220,
329,
264,
287,
4693,
7,
45,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4296,
0,
7,
43,
58,
82,
12962,
198,
220,
220,
220,
886,
198,
220,
220,
220,
220,
198,
437,
198
] | 2.401645 | 2,674 |
type GMR{M<:MvNormal}
# μ₁₋₂ = μ₁ + Σ₁₂ * Σ₂₂⁻¹ * (x₂ - μ₂) = A*x₂ + b
vec_A::Vector{Matrix{Float64}} # [n_components [ntargets×nindicators]]
vec_b::Vector{Vector{Float64}} # [n_components [ntargets]]
# pdf(p), all pre-computed. Used to compute βⱼ(p)
mixture_Obs::MixtureModel{Multivariate,Continuous,M} # p(obs), all pre-computed, should never be edited
# pdf(a|p), means μⱼ_ₚ and weights βⱼ(p) are functions of p and must be updated every time, covariance is constant
mixture_Act_given_Obs::MixtureModel{Multivariate,Continuous,M}
end
function GMR{M<:MvNormal}(mix::MixtureModel{Multivariate,Continuous,M}, n_targets::Int=2)
#=
Construct a Gaussian Mixture Regressor using a Gaussian mixture over both
the features and the actions, and the features are at the end of the input
=#
weights = probs(mix.prior) # [n_components]
n_components = length(weights)
n_indicators = length(mix) - n_targets
vec_A = Array(Matrix{Float64}, n_components) # μ₁₋₂ = μ₁ + Σ₁₂ * Σ₂₂⁻¹ * (x₂ - μ₂) = A*x₂ + b
vec_b = Array(Vector{Float64}, n_components)
vec_G = Array(MvNormal, n_components)
vec_H = Array(MvNormal, n_components)
for i = 1 : n_components
μ = mix.components[i].μ
μₐ = μ[1:n_targets]
μₚ = μ[n_targets+1:end]
Σ = full(mix.components[i].Σ)
Σₐₐ = Σ[1:n_targets,1:n_targets]
Σₐₚ = Σ[1:n_targets,n_targets+1:end]
Σₚₚ = nearestSPD(Σ[n_targets+1:end,n_targets+1:end])
iΣₚₚ = inv(Σₚₚ)
A = Σₐₚ * iΣₚₚ
vec_A[i] = A
vec_b[i] = vec(μₐ - A*μₚ)
C = nearestSPD(Σₐₐ - Σₐₚ * iΣₚₚ * ((Σₐₚ)'))
vec_G[i] = MvNormal(Array(Float64, n_targets), C) # p(action|obs), mean and weighting must be updated with each observation, cov is pre-computed
vec_H[i] = MvNormal(μₚ, Σₚₚ) # p(obs), all pre-computed, should never be edited
end
mixture_Act_given_Obs = MixtureModel(vec_G) # p(action|obs), mean and weighting must be updated with each observation, cov is pre-computed
mixture_Obs = MixtureModel(vec_H, weights) # p(obs), all pre-computed, should never be edited
GMR(vec_A, vec_b, mixture_Obs, mixture_Act_given_Obs)
end
function Base.print(model::GMR)
println("GMR:")
for (i, mat) in enumerate(model.vec_A)
println(i)
print("\t[")
for j in 1:size(mat,2)
@printf(" %10.6f", mat[1,j])
end
@printf("] + [ %10.6f]\n", model.vec_b[i][1])
print("\t[")
for j in 1:size(mat,2)
@printf(" %10.6f", mat[2,j])
end
@printf("] + [ %10.6f]\n", model.vec_b[i][2])
end
println("\tmixture_Obs: ")
println("\t\tprior: ", model.mixture_Obs.prior)
end
n_targets(gmr::GMR) = size(gmr.vec_A[1], 1)
n_features(gmr::GMR) = size(gmr.vec_A[1], 2)
n_components(gmr::GMR) = length(gmr.vec_A)
function nsuffstats(gmr::GMR)
dimA = length(gmr.vec_A[1])
n_components(gmr) * (2*dimA + 2 # bias
+ 3 # covariance in mixture_Act_given_Obs
+ div(dimA*dimA,2)) # covariance for mixture_Obs
end
function nearestSPD(A::Matrix{Float64})
# see http://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd
# output:
# α, β ≥ 0.0 such that
# α ≤ δ₂(A) ≤ β ≤ α + 2 max(fα, tol)
# and a PSD matrix X such that |A - X|₂ = β
n = size(A, 1)
@assert(n == size(A, 2)) # ensure it is square
I = eye(n)
# symmetrize A into B
B = (A+A')./2
# Compute the symmetric polar factor of B. Call it H.
# Clearly H is itself SPD.
U, σ, V = svd(B)
H = V*diagm(σ)*V'
# get Ahat in the above formula
Ahat = (B+H)/2
# ensure symmetry
Ahat = (Ahat + Ahat')/2;
# test that Ahat is in fact PD. if it is not so, then tweak it just a bit.
worked = false
iteration_count = 0
while !worked && iteration_count < 100
iteration_count += 1
try
chol(Ahat)
worked = true
catch
# do nothing
end
if !worked
# Ahat failed the chol test. It must have been just a hair off,
# due to floating point trash, so it is simplest now just to
# tweak by adding a tiny multiple of an identity matrix.
min_eig = minimum(eigvals(Ahat))
Ahat = Ahat + (-min_eig*iteration_count.^2 + eps(Float32))*I
end
end
Ahat
end
@compat function (gmr::GMR)(features::Vector{Float64})
mixture_Act_given_Obs = gmr.mixture_Act_given_Obs
mixture_Obs = gmr.mixture_Obs
nc = n_components(gmr)
for j in 1 : nc
# compute the β value, unweighted
# βⱼ(f) ∝ wⱼ Nⱼ(μₚ, Σₚ)
wⱼ = mixture_Obs.prior.p[j]
Nⱼ = mixture_Obs.components[j]
mixture_Act_given_Obs.prior.p[j] = wⱼ * pdf(Nⱼ, features)
# compute the conditional mean
# μₐ_ₚ = A⋅f + b
A = gmr.vec_A[j]
b = gmr.vec_b[j]
copy!(mixture_Act_given_Obs.components[j].μ, A*features + b)
end
# normalize the β values
sum_β = sum(mixture_Act_given_Obs.prior.p)
if sum_β > 0.0 && !isnan(sum_β) && !isinf(sum_β)
for i in 1 : nc
mixture_Act_given_Obs.prior.p[i] /= sum_β
end
else
fill!(mixture_Act_given_Obs.prior.p, 1/nc) # set all to equal weight
for i in 1 : nc
fill!(mixture_Act_given_Obs.components[i].μ, 0.0) # set mean to zero
end
end
mixture_Act_given_Obs
end
| [
4906,
6951,
49,
90,
44,
27,
25,
44,
85,
26447,
92,
628,
220,
220,
220,
1303,
18919,
158,
224,
223,
158,
224,
233,
158,
224,
224,
796,
18919,
158,
224,
223,
1343,
7377,
96,
158,
224,
223,
158,
224,
224,
1635,
7377,
96,
158,
224,
224,
158,
224,
224,
46256,
119,
126,
117,
1635,
357,
87,
158,
224,
224,
532,
18919,
158,
224,
224,
8,
796,
317,
9,
87,
158,
224,
224,
1343,
275,
198,
220,
220,
220,
43030,
62,
32,
3712,
38469,
90,
46912,
90,
43879,
2414,
11709,
1303,
685,
77,
62,
5589,
3906,
685,
429,
853,
1039,
12906,
77,
521,
44549,
11907,
198,
220,
220,
220,
43030,
62,
65,
3712,
38469,
90,
38469,
90,
43879,
2414,
11709,
1303,
685,
77,
62,
5589,
3906,
685,
429,
853,
1039,
11907,
628,
220,
220,
220,
1303,
37124,
7,
79,
828,
477,
662,
12,
785,
17128,
13,
16718,
284,
24061,
27169,
158,
109,
120,
7,
79,
8,
198,
220,
220,
220,
11710,
62,
31310,
3712,
44,
9602,
17633,
90,
15205,
42524,
11,
17875,
5623,
11,
44,
92,
1303,
279,
7,
8158,
828,
477,
662,
12,
785,
17128,
11,
815,
1239,
307,
13012,
628,
220,
220,
220,
1303,
37124,
7,
64,
91,
79,
828,
1724,
18919,
158,
109,
120,
62,
158,
224,
248,
290,
19590,
27169,
158,
109,
120,
7,
79,
8,
389,
5499,
286,
279,
290,
1276,
307,
6153,
790,
640,
11,
44829,
590,
318,
6937,
198,
220,
220,
220,
11710,
62,
6398,
62,
35569,
62,
31310,
3712,
44,
9602,
17633,
90,
15205,
42524,
11,
17875,
5623,
11,
44,
92,
198,
437,
198,
8818,
6951,
49,
90,
44,
27,
25,
44,
85,
26447,
92,
7,
19816,
3712,
44,
9602,
17633,
90,
15205,
42524,
11,
17875,
5623,
11,
44,
5512,
299,
62,
83,
853,
1039,
3712,
5317,
28,
17,
8,
628,
220,
220,
220,
1303,
28,
198,
220,
220,
220,
28407,
257,
12822,
31562,
337,
9602,
3310,
44292,
1262,
257,
12822,
31562,
11710,
625,
1111,
198,
220,
220,
220,
262,
3033,
290,
262,
4028,
11,
290,
262,
3033,
389,
379,
262,
886,
286,
262,
5128,
198,
220,
220,
220,
796,
2,
628,
220,
220,
220,
19590,
796,
386,
1443,
7,
19816,
13,
3448,
273,
8,
1303,
685,
77,
62,
5589,
3906,
60,
198,
220,
220,
220,
299,
62,
5589,
3906,
796,
4129,
7,
43775,
8,
198,
220,
220,
220,
299,
62,
521,
44549,
796,
4129,
7,
19816,
8,
532,
299,
62,
83,
853,
1039,
628,
220,
220,
220,
43030,
62,
32,
796,
15690,
7,
46912,
90,
43879,
2414,
5512,
299,
62,
5589,
3906,
8,
1303,
18919,
158,
224,
223,
158,
224,
233,
158,
224,
224,
796,
18919,
158,
224,
223,
1343,
7377,
96,
158,
224,
223,
158,
224,
224,
1635,
7377,
96,
158,
224,
224,
158,
224,
224,
46256,
119,
126,
117,
1635,
357,
87,
158,
224,
224,
532,
18919,
158,
224,
224,
8,
796,
317,
9,
87,
158,
224,
224,
1343,
275,
198,
220,
220,
220,
43030,
62,
65,
796,
15690,
7,
38469,
90,
43879,
2414,
5512,
299,
62,
5589,
3906,
8,
198,
220,
220,
220,
43030,
62,
38,
796,
15690,
7,
44,
85,
26447,
11,
299,
62,
5589,
3906,
8,
198,
220,
220,
220,
43030,
62,
39,
796,
15690,
7,
44,
85,
26447,
11,
299,
62,
5589,
3906,
8,
628,
220,
220,
220,
329,
1312,
796,
352,
1058,
299,
62,
5589,
3906,
628,
220,
220,
220,
220,
220,
220,
220,
18919,
796,
5022,
13,
5589,
3906,
58,
72,
4083,
34703,
198,
220,
220,
220,
220,
220,
220,
220,
18919,
158,
224,
238,
796,
18919,
58,
16,
25,
77,
62,
83,
853,
1039,
60,
198,
220,
220,
220,
220,
220,
220,
220,
18919,
158,
224,
248,
796,
18919,
58,
77,
62,
83,
853,
1039,
10,
16,
25,
437,
60,
628,
220,
220,
220,
220,
220,
220,
220,
7377,
96,
796,
1336,
7,
19816,
13,
5589,
3906,
58,
72,
4083,
138,
96,
8,
198,
220,
220,
220,
220,
220,
220,
220,
7377,
96,
158,
224,
238,
158,
224,
238,
796,
7377,
96,
58,
16,
25,
77,
62,
83,
853,
1039,
11,
16,
25,
77,
62,
83,
853,
1039,
60,
198,
220,
220,
220,
220,
220,
220,
220,
7377,
96,
158,
224,
238,
158,
224,
248,
796,
7377,
96,
58,
16,
25,
77,
62,
83,
853,
1039,
11,
77,
62,
83,
853,
1039,
10,
16,
25,
437,
60,
198,
220,
220,
220,
220,
220,
220,
220,
7377,
96,
158,
224,
248,
158,
224,
248,
796,
16936,
4303,
35,
7,
138,
96,
58,
77,
62,
83,
853,
1039,
10,
16,
25,
437,
11,
77,
62,
83,
853,
1039,
10,
16,
25,
437,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1312,
138,
96,
158,
224,
248,
158,
224,
248,
796,
800,
7,
138,
96,
158,
224,
248,
158,
224,
248,
8,
628,
220,
220,
220,
220,
220,
220,
220,
317,
796,
7377,
96,
158,
224,
238,
158,
224,
248,
1635,
1312,
138,
96,
158,
224,
248,
158,
224,
248,
198,
220,
220,
220,
220,
220,
220,
220,
43030,
62,
32,
58,
72,
60,
796,
317,
198,
220,
220,
220,
220,
220,
220,
220,
43030,
62,
65,
58,
72,
60,
796,
43030,
7,
34703,
158,
224,
238,
532,
317,
9,
34703,
158,
224,
248,
8,
198,
220,
220,
220,
220,
220,
220,
220,
327,
796,
16936,
4303,
35,
7,
138,
96,
158,
224,
238,
158,
224,
238,
532,
7377,
96,
158,
224,
238,
158,
224,
248,
1635,
1312,
138,
96,
158,
224,
248,
158,
224,
248,
1635,
14808,
138,
96,
158,
224,
238,
158,
224,
248,
33047,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
43030,
62,
38,
58,
72,
60,
796,
337,
85,
26447,
7,
19182,
7,
43879,
2414,
11,
299,
62,
83,
853,
1039,
828,
327,
8,
1303,
279,
7,
2673,
91,
8158,
828,
1612,
290,
3463,
278,
1276,
307,
6153,
351,
1123,
13432,
11,
39849,
318,
662,
12,
785,
17128,
198,
220,
220,
220,
220,
220,
220,
220,
43030,
62,
39,
58,
72,
60,
796,
337,
85,
26447,
7,
34703,
158,
224,
248,
11,
7377,
96,
158,
224,
248,
158,
224,
248,
8,
1303,
279,
7,
8158,
828,
477,
662,
12,
785,
17128,
11,
815,
1239,
307,
13012,
198,
220,
220,
220,
886,
628,
220,
220,
220,
11710,
62,
6398,
62,
35569,
62,
31310,
796,
337,
9602,
17633,
7,
35138,
62,
38,
8,
1303,
279,
7,
2673,
91,
8158,
828,
1612,
290,
3463,
278,
1276,
307,
6153,
351,
1123,
13432,
11,
39849,
318,
662,
12,
785,
17128,
198,
220,
220,
220,
11710,
62,
31310,
796,
337,
9602,
17633,
7,
35138,
62,
39,
11,
19590,
8,
1303,
279,
7,
8158,
828,
477,
662,
12,
785,
17128,
11,
815,
1239,
307,
13012,
198,
220,
220,
220,
6951,
49,
7,
35138,
62,
32,
11,
43030,
62,
65,
11,
11710,
62,
31310,
11,
11710,
62,
6398,
62,
35569,
62,
31310,
8,
198,
437,
198,
198,
8818,
7308,
13,
4798,
7,
19849,
3712,
38,
13599,
8,
198,
220,
220,
220,
44872,
7203,
38,
13599,
25,
4943,
198,
220,
220,
220,
329,
357,
72,
11,
2603,
8,
287,
27056,
378,
7,
19849,
13,
35138,
62,
32,
8,
198,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
72,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
59,
83,
58,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
329,
474,
287,
352,
25,
7857,
7,
6759,
11,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
37435,
7203,
220,
4064,
940,
13,
21,
69,
1600,
2603,
58,
16,
11,
73,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
37435,
7203,
60,
1343,
685,
220,
4064,
940,
13,
21,
69,
60,
59,
77,
1600,
2746,
13,
35138,
62,
65,
58,
72,
7131,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
59,
83,
58,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
329,
474,
287,
352,
25,
7857,
7,
6759,
11,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
37435,
7203,
220,
4064,
940,
13,
21,
69,
1600,
2603,
58,
17,
11,
73,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
37435,
7203,
60,
1343,
685,
220,
4064,
940,
13,
21,
69,
60,
59,
77,
1600,
2746,
13,
35138,
62,
65,
58,
72,
7131,
17,
12962,
198,
220,
220,
220,
886,
198,
220,
220,
220,
44872,
7203,
59,
17209,
9602,
62,
31310,
25,
366,
8,
198,
220,
220,
220,
44872,
7203,
59,
83,
59,
83,
3448,
273,
25,
33172,
2746,
13,
76,
9602,
62,
31310,
13,
3448,
273,
8,
198,
437,
198,
198,
77,
62,
83,
853,
1039,
7,
39870,
81,
3712,
38,
13599,
8,
796,
2546,
7,
39870,
81,
13,
35138,
62,
32,
58,
16,
4357,
352,
8,
198,
77,
62,
40890,
7,
39870,
81,
3712,
38,
13599,
8,
796,
2546,
7,
39870,
81,
13,
35138,
62,
32,
58,
16,
4357,
362,
8,
198,
77,
62,
5589,
3906,
7,
39870,
81,
3712,
38,
13599,
8,
796,
4129,
7,
39870,
81,
13,
35138,
62,
32,
8,
198,
8818,
36545,
1648,
34242,
7,
39870,
81,
3712,
38,
13599,
8,
198,
220,
220,
220,
5391,
32,
796,
4129,
7,
39870,
81,
13,
35138,
62,
32,
58,
16,
12962,
198,
220,
220,
220,
299,
62,
5589,
3906,
7,
39870,
81,
8,
1635,
357,
17,
9,
27740,
32,
1343,
362,
1303,
10690,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
513,
1303,
44829,
590,
287,
11710,
62,
6398,
62,
35569,
62,
31310,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1343,
2659,
7,
27740,
32,
9,
27740,
32,
11,
17,
4008,
1303,
44829,
590,
329,
11710,
62,
31310,
198,
437,
198,
8818,
16936,
4303,
35,
7,
32,
3712,
46912,
90,
43879,
2414,
30072,
628,
220,
220,
220,
1303,
766,
2638,
1378,
2503,
13,
11018,
5225,
13,
785,
14,
6759,
23912,
31463,
14,
7753,
1069,
3803,
14,
40173,
5332,
12,
710,
12423,
2777,
67,
628,
220,
220,
220,
1303,
5072,
25,
198,
220,
220,
220,
1303,
220,
26367,
11,
27169,
26870,
657,
13,
15,
884,
326,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
26367,
41305,
7377,
112,
158,
224,
224,
7,
32,
8,
41305,
27169,
41305,
26367,
1343,
362,
3509,
7,
69,
17394,
11,
284,
75,
8,
198,
220,
220,
220,
1303,
220,
290,
257,
6599,
35,
17593,
1395,
884,
326,
930,
32,
532,
1395,
91,
158,
224,
224,
796,
27169,
628,
220,
220,
220,
299,
796,
2546,
7,
32,
11,
352,
8,
198,
220,
220,
220,
2488,
30493,
7,
77,
6624,
2546,
7,
32,
11,
362,
4008,
1303,
4155,
340,
318,
6616,
628,
220,
220,
220,
314,
796,
4151,
7,
77,
8,
628,
220,
220,
220,
1303,
23606,
316,
380,
2736,
317,
656,
347,
198,
220,
220,
220,
347,
796,
357,
32,
10,
32,
27691,
14,
17,
628,
220,
220,
220,
1303,
3082,
1133,
262,
23606,
19482,
13559,
5766,
286,
347,
13,
4889,
340,
367,
13,
198,
220,
220,
220,
1303,
23730,
367,
318,
2346,
30628,
13,
198,
220,
220,
220,
471,
11,
18074,
225,
11,
569,
796,
264,
20306,
7,
33,
8,
198,
220,
220,
220,
367,
796,
569,
9,
10989,
363,
76,
7,
38392,
27493,
53,
6,
628,
220,
220,
220,
1303,
651,
317,
5183,
287,
262,
2029,
10451,
198,
220,
220,
220,
317,
5183,
796,
357,
33,
10,
39,
20679,
17,
628,
220,
220,
220,
1303,
4155,
40686,
198,
220,
220,
220,
317,
5183,
796,
357,
32,
5183,
1343,
317,
5183,
11537,
14,
17,
26,
628,
220,
220,
220,
1303,
1332,
326,
317,
5183,
318,
287,
1109,
14340,
13,
611,
340,
318,
407,
523,
11,
788,
25393,
340,
655,
257,
1643,
13,
198,
220,
220,
220,
3111,
796,
3991,
198,
220,
220,
220,
24415,
62,
9127,
796,
657,
198,
220,
220,
220,
981,
5145,
32931,
11405,
24415,
62,
9127,
1279,
1802,
628,
220,
220,
220,
220,
220,
220,
220,
24415,
62,
9127,
15853,
352,
628,
220,
220,
220,
220,
220,
220,
220,
1949,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
442,
349,
7,
32,
5183,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3111,
796,
2081,
198,
220,
220,
220,
220,
220,
220,
220,
4929,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
466,
2147,
198,
220,
220,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
220,
220,
611,
5145,
32931,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
317,
5183,
4054,
262,
442,
349,
1332,
13,
632,
1276,
423,
587,
655,
257,
4190,
572,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2233,
284,
12462,
966,
13913,
11,
523,
340,
318,
24043,
783,
655,
284,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
25393,
416,
4375,
257,
7009,
3294,
286,
281,
5369,
17593,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
949,
62,
68,
328,
796,
5288,
7,
68,
328,
12786,
7,
32,
5183,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
5183,
796,
317,
5183,
1343,
13841,
1084,
62,
68,
328,
9,
2676,
341,
62,
9127,
13,
61,
17,
1343,
304,
862,
7,
43879,
2624,
4008,
9,
40,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
317,
5183,
198,
437,
198,
198,
31,
5589,
265,
2163,
357,
39870,
81,
3712,
38,
13599,
5769,
40890,
3712,
38469,
90,
43879,
2414,
30072,
628,
220,
220,
220,
11710,
62,
6398,
62,
35569,
62,
31310,
796,
308,
43395,
13,
76,
9602,
62,
6398,
62,
35569,
62,
31310,
198,
220,
220,
220,
11710,
62,
31310,
796,
308,
43395,
13,
76,
9602,
62,
31310,
198,
220,
220,
220,
299,
66,
796,
299,
62,
5589,
3906,
7,
39870,
81,
8,
628,
220,
220,
220,
329,
474,
287,
352,
1058,
299,
66,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
24061,
262,
27169,
1988,
11,
555,
6551,
276,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
27169,
158,
109,
120,
7,
69,
8,
18872,
251,
266,
158,
109,
120,
399,
158,
109,
120,
7,
34703,
158,
224,
248,
11,
7377,
96,
158,
224,
248,
8,
198,
220,
220,
220,
220,
220,
220,
220,
266,
158,
109,
120,
796,
11710,
62,
31310,
13,
3448,
273,
13,
79,
58,
73,
60,
198,
220,
220,
220,
220,
220,
220,
220,
399,
158,
109,
120,
796,
11710,
62,
31310,
13,
5589,
3906,
58,
73,
60,
198,
220,
220,
220,
220,
220,
220,
220,
11710,
62,
6398,
62,
35569,
62,
31310,
13,
3448,
273,
13,
79,
58,
73,
60,
796,
266,
158,
109,
120,
1635,
37124,
7,
45,
158,
109,
120,
11,
3033,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
24061,
262,
26340,
1612,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
18919,
158,
224,
238,
62,
158,
224,
248,
796,
317,
158,
233,
227,
69,
1343,
275,
198,
220,
220,
220,
220,
220,
220,
220,
317,
796,
308,
43395,
13,
35138,
62,
32,
58,
73,
60,
198,
220,
220,
220,
220,
220,
220,
220,
275,
796,
308,
43395,
13,
35138,
62,
65,
58,
73,
60,
198,
220,
220,
220,
220,
220,
220,
220,
4866,
0,
7,
76,
9602,
62,
6398,
62,
35569,
62,
31310,
13,
5589,
3906,
58,
73,
4083,
34703,
11,
317,
9,
40890,
1343,
275,
8,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1303,
3487,
1096,
262,
27169,
3815,
198,
220,
220,
220,
2160,
62,
26638,
796,
2160,
7,
76,
9602,
62,
6398,
62,
35569,
62,
31310,
13,
3448,
273,
13,
79,
8,
628,
220,
220,
220,
611,
2160,
62,
26638,
1875,
657,
13,
15,
11405,
5145,
271,
12647,
7,
16345,
62,
26638,
8,
11405,
5145,
271,
10745,
7,
16345,
62,
26638,
8,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
352,
1058,
299,
66,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11710,
62,
6398,
62,
35569,
62,
31310,
13,
3448,
273,
13,
79,
58,
72,
60,
1220,
28,
2160,
62,
26638,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
6070,
0,
7,
76,
9602,
62,
6398,
62,
35569,
62,
31310,
13,
3448,
273,
13,
79,
11,
352,
14,
10782,
8,
1303,
900,
477,
284,
4961,
3463,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
352,
1058,
299,
66,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6070,
0,
7,
76,
9602,
62,
6398,
62,
35569,
62,
31310,
13,
5589,
3906,
58,
72,
4083,
34703,
11,
657,
13,
15,
8,
1303,
900,
1612,
284,
6632,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
11710,
62,
6398,
62,
35569,
62,
31310,
198,
437,
198
] | 1.929293 | 2,871 |
import Base: position
using FFTW
"""
PositionBasis(xmin, xmax, Npoints)
PositionBasis(b::MomentumBasis)
Basis for a particle in real space.
For simplicity periodic boundaries are assumed which means that
the rightmost point defined by `xmax` is not included in the basis
but is defined to be the same as `xmin`.
When a [`MomentumBasis`](@ref) is given as argument the exact values
of ``x_{min}`` and ``x_{max}`` are due to the periodic boundary conditions
more or less arbitrary and are chosen to be
``-\\pi/dp`` and ``\\pi/dp`` with ``dp=(p_{max}-p_{min})/N``.
"""
struct PositionBasis{T,X1,X2} <: Basis
shape::Vector{T}
xmin::Float64
xmax::Float64
N::T
function PositionBasis{X1,X2}(xmin::Real, xmax::Real, N::T) where {X1,X2,T<:Int}
@assert isa(X1, Real) && isa(X2, Real)
new{T,X1,X2}([N], xmin, xmax, N)
end
end
PositionBasis(xmin::Real, xmax::Real, N::Int) = PositionBasis{xmin,xmax}(xmin,xmax,N)
"""
MomentumBasis(pmin, pmax, Npoints)
MomentumBasis(b::PositionBasis)
Basis for a particle in momentum space.
For simplicity periodic boundaries are assumed which means that
`pmax` is not included in the basis but is defined to be the same as `pmin`.
When a [`PositionBasis`](@ref) is given as argument the exact values
of ``p_{min}`` and ``p_{max}`` are due to the periodic boundary conditions
more or less arbitrary and are chosen to be
``-\\pi/dx`` and ``\\pi/dx`` with ``dx=(x_{max}-x_{min})/N``.
"""
struct MomentumBasis{P1,P2} <: Basis
shape::Vector{Int}
pmin::Float64
pmax::Float64
N::Int
function MomentumBasis{P1,P2}(pmin::Real, pmax::Real, N::Int) where {P1,P2}
@assert isa(P1, Real) && isa(P2, Real)
new([N], pmin, pmax, N)
end
end
MomentumBasis(pmin::Real, pmax::Real, N::Int) = MomentumBasis{pmin,pmax}(pmin, pmax, N)
PositionBasis(b::MomentumBasis) = (dp = (b.pmax - b.pmin)/b.N; PositionBasis(-pi/dp, pi/dp, b.N))
MomentumBasis(b::PositionBasis) = (dx = (b.xmax - b.xmin)/b.N; MomentumBasis(-pi/dx, pi/dx, b.N))
==(b1::PositionBasis, b2::PositionBasis) = b1.xmin==b2.xmin && b1.xmax==b2.xmax && b1.N==b2.N
==(b1::MomentumBasis, b2::MomentumBasis) = b1.pmin==b2.pmin && b1.pmax==b2.pmax && b1.N==b2.N
"""
gaussianstate(b::PositionBasis, x0, p0, sigma)
gaussianstate(b::MomentumBasis, x0, p0, sigma)
Create a Gaussian state around `x0` and` p0` with width `sigma`.
In real space the gaussian state is defined as
```math
\\Psi(x) = \\frac{1}{\\pi^{1/4}\\sqrt{\\sigma}}
e^{i p_0 (x-\\frac{x_0}{2}) - \\frac{(x-x_0)^2}{2 \\sigma^2}}
```
and is connected to the momentum space definition
```math
\\Psi(p) = \\frac{\\sqrt{\\sigma}}{\\pi^{1/4}}
e^{-i x_0 (p-\\frac{p_0}{2}) - \\frac{1}{2}(p-p_0)^2 \\sigma^2}
```
via a Fourier-transformation
```math
\\Psi(p) = \\frac{1}{\\sqrt{2\\pi}}
\\int_{-\\infty}^{\\infty} e^{-ipx}\\Psi(x) \\mathrm{d}x
```
The state has the properties
* ``⟨p⟩ = p_0``
* ``⟨x⟩ = x_0``
* ``\\mathrm{Var}(x) = \\frac{σ^2}{2}``
* ``\\mathrm{Var}(p) = \\frac{1}{2 σ^2}``
Due to the numerically necessary discretization additional scaling
factors ``\\sqrt{Δx}`` and ``\\sqrt{Δp}`` are used so that
``\\langle x_i|Ψ\\rangle = \\sqrt{Δ x} Ψ(x_i)`` and ``\\langle p_i|Ψ\\rangle = \\sqrt{Δ p} Ψ(p_i)`` so
that the resulting Ket state is normalized.
"""
function gaussianstate(b::PositionBasis, x0::Real, p0::Real, sigma::Real)
psi = Ket(b)
dx = spacing(b)
alpha = 1.0/(pi^(1/4)*sqrt(sigma))*sqrt(dx)
x = b.xmin
for i=1:b.N
psi.data[i] = alpha*exp(1im*p0*(x-x0/2) - (x-x0)^2/(2*sigma^2))
x += dx
end
return psi
end
function gaussianstate(b::MomentumBasis, x0::Real, p0::Real, sigma::Real)
psi = Ket(b)
dp = spacing(b)
alpha = sqrt(sigma)/pi^(1/4)*sqrt(dp)
p = b.pmin
for i=1:b.N
psi.data[i] = alpha*exp(-1im*x0*(p-p0/2) - (p-p0)^2/2*sigma^2)
p += dp
end
return psi
end
"""
spacing(b::PositionBasis)
Difference between two adjacent points of the real space basis.
"""
spacing(b::PositionBasis) = (b.xmax - b.xmin)/b.N
"""
spacing(b::MomentumBasis)
Momentum difference between two adjacent points of the momentum basis.
"""
spacing(b::MomentumBasis) = (b.pmax - b.pmin)/b.N
"""
samplepoints(b::PositionBasis)
x values of the real space basis.
"""
samplepoints(b::PositionBasis) = (dx = spacing(b); Float64[b.xmin + i*dx for i=0:b.N-1])
"""
samplepoints(b::MomentumBasis)
p values of the momentum basis.
"""
samplepoints(b::MomentumBasis) = (dp = spacing(b); Float64[b.pmin + i*dp for i=0:b.N-1])
"""
position(b::PositionBasis)
Position operator in real space.
"""
position(b::PositionBasis) = SparseOperator(b, sparse(Diagonal(complex(samplepoints(b)))))
"""
position(b:MomentumBasis)
Position operator in momentum space.
"""
function position(b::MomentumBasis)
b_pos = PositionBasis(b)
transform(b, b_pos)*dense(position(b_pos))*transform(b_pos, b)
end
"""
momentum(b:MomentumBasis)
Momentum operator in momentum space.
"""
momentum(b::MomentumBasis) = SparseOperator(b, sparse(Diagonal(complex(samplepoints(b)))))
"""
momentum(b::PositionBasis)
Momentum operator in real space.
"""
function momentum(b::PositionBasis)
b_mom = MomentumBasis(b)
transform(b, b_mom)*dense(momentum(b_mom))*transform(b_mom, b)
end
"""
potentialoperator(b::PositionBasis, V(x))
Operator representing a potential ``V(x)`` in real space.
"""
function potentialoperator(b::PositionBasis, V::Function)
x = samplepoints(b)
diagonaloperator(b, V.(x))
end
"""
potentialoperator(b::MomentumBasis, V(x))
Operator representing a potential ``V(x)`` in momentum space.
"""
function potentialoperator(b::MomentumBasis, V::Function)
b_pos = PositionBasis(b)
transform(b, b_pos)*dense(potentialoperator(b_pos, V))*transform(b_pos, b)
end
"""
potentialoperator(b::CompositeBasis, V(x, y, z, ...))
Operator representing a potential ``V`` in more than one dimension.
# Arguments
* `b`: Composite basis consisting purely either of `PositionBasis` or
`MomentumBasis`. Note, that calling this with a composite basis in
momentum space might consume a large amount of memory.
* `V`: Function describing the potential. ATTENTION: The number of arguments
accepted by `V` must match the spatial dimension. Furthermore, the order
of the arguments has to match that of the order of the tensor product of
bases (e.g. if `b=bx⊗by⊗bz`, then `V(x,y,z)`).
"""
function potentialoperator(b::CompositeBasis, V::Function)
if isa(b.bases[1], PositionBasis)
potentialoperator_position(b, V)
elseif isa(b.bases[1], MomentumBasis)
potentialoperator_momentum(b, V)
else
throw(IncompatibleBases())
end
end
function potentialoperator_position(b::CompositeBasis, V::Function)
for base=b.bases
@assert isa(base, PositionBasis)
end
points = [samplepoints(b1) for b1=b.bases]
dims = length.(points)
n = length(b.bases)
data = Array{ComplexF64}(undef, dims...)
@inbounds for i=1:length(data)
index = Tuple(CartesianIndices(data)[i])
args = (points[j][index[j]] for j=1:n)
data[i] = V(args...)
end
diagonaloperator(b, data[:])
end
function potentialoperator_momentum(b::CompositeBasis, V::Function)
bases_pos = []
for base=b.bases
@assert isa(base, MomentumBasis)
push!(bases_pos, PositionBasis(base))
end
b_pos = tensor(bases_pos...)
transform(b, b_pos)*dense(potentialoperator_position(b_pos, V))*transform(b_pos, b)
end
"""
FFTOperator
Abstract type for all implementations of FFT operators.
"""
abstract type FFTOperator{BL<:Basis, BR<:Basis, T} <: AbstractOperator{BL,BR} end
Base.eltype(x::FFTOperator) = promote_type(eltype(x.mul_before), eltype(x.mul_after))
"""
FFTOperators
Operator performing a fast fourier transformation when multiplied with a state
that is a Ket or an Operator.
"""
mutable struct FFTOperators{BL<:Basis,BR<:Basis,T<:Array,P1,P2,P3,P4} <: FFTOperator{BL, BR, T}
basis_l::BL
basis_r::BR
fft_l!::P1
fft_r!::P2
fft_l2!::P3
fft_r2!::P4
mul_before::T
mul_after::T
function FFTOperators(b1::BL, b2::BR,
fft_l!::P1,
fft_r!::P2,
fft_l2!::P3,
fft_r2!::P4,
mul_before::T,
mul_after::T) where {BL<:Basis,BR<:Basis,T,P1,P2,P3,P4}
new{BL,BR,T,P1,P2,P3,P4}(b1, b2, fft_l!, fft_r!, fft_l2!, fft_r2!, mul_before, mul_after)
end
end
"""
FFTKets
Operator that can only perform fast fourier transformations on Kets.
This is much more memory efficient when only working with Kets.
"""
mutable struct FFTKets{BL<:Basis,BR<:Basis,T<:Array,P1,P2} <: FFTOperator{BL, BR, T}
basis_l::BL
basis_r::BR
fft_l!::P1
fft_r!::P2
mul_before::T
mul_after::T
function FFTKets(b1::BL, b2::BR,
fft_l!::P1,
fft_r!::P2,
mul_before::T,
mul_after::T) where {BL<:Basis,BR<:Basis, T, P1, P2}
new{BL, BR, T, P1, P2}(b1, b2, fft_l!, fft_r!, mul_before, mul_after)
end
end
"""
transform(b1::MomentumBasis, b2::PositionBasis)
transform(b1::PositionBasis, b2::MomentumBasis)
Transformation operator between position basis and momentum basis.
"""
function transform(basis_l::MomentumBasis, basis_r::PositionBasis; ket_only::Bool=false)
Lx = (basis_r.xmax - basis_r.xmin)
dp = spacing(basis_l)
dx = spacing(basis_r)
if basis_l.N != basis_r.N || abs(2*pi/dp - Lx)/Lx > 1e-12
throw(IncompatibleBases())
end
mul_before = exp.(-1im*basis_l.pmin*(samplepoints(basis_r) .- basis_r.xmin))
mul_after = exp.(-1im*basis_r.xmin*samplepoints(basis_l))/sqrt(basis_r.N)
x = Vector{ComplexF64}(undef, length(basis_r))
if ket_only
FFTKets(basis_l, basis_r, plan_bfft!(x), plan_fft!(x), mul_before, mul_after)
else
A = Matrix{ComplexF64}(undef, length(basis_r), length(basis_r))
FFTOperators(basis_l, basis_r, plan_bfft!(x), plan_fft!(x), plan_bfft!(A, 2), plan_fft!(A, 1), mul_before, mul_after)
end
end
"""
transform(b1::CompositeBasis, b2::CompositeBasis)
Transformation operator between two composite bases. Each of the bases
has to contain bases of type PositionBasis and the other one a corresponding
MomentumBasis.
"""
function transform(basis_l::PositionBasis, basis_r::MomentumBasis; ket_only::Bool=false)
Lx = (basis_l.xmax - basis_l.xmin)
dp = spacing(basis_r)
dx = spacing(basis_l)
if basis_l.N != basis_r.N || abs(2*pi/dp - Lx)/Lx > 1e-12
throw(IncompatibleBases())
end
mul_before = exp.(1im*basis_l.xmin*(samplepoints(basis_r) .- basis_r.pmin))
mul_after = exp.(1im*basis_r.pmin*samplepoints(basis_l))/sqrt(basis_r.N)
x = Vector{ComplexF64}(undef, length(basis_r))
if ket_only
FFTKets(basis_l, basis_r, plan_fft!(x), plan_bfft!(x), mul_before, mul_after)
else
A = Matrix{ComplexF64}(undef, length(basis_r), length(basis_r))
FFTOperators(basis_l, basis_r, plan_fft!(x), plan_bfft!(x), plan_fft!(A, 2), plan_bfft!(A, 1), mul_before, mul_after)
end
end
function transform(basis_l::CompositeBasis, basis_r::CompositeBasis; ket_only::Bool=false, index::Vector{Int}=Int[])
@assert length(basis_l.bases) == length(basis_r.bases)
if length(index) == 0
check_pos = [isa.(basis_l.bases, PositionBasis)...]
check_mom = [isa.(basis_l.bases, MomentumBasis)...]
if any(check_pos) && !any(check_mom)
index = [1:length(basis_l.bases);][check_pos]
elseif any(check_mom) && !any(check_pos)
index = [1:length(basis_l.bases);][check_mom]
else
throw(IncompatibleBases())
end
end
if all(isa.(basis_l.bases[index], PositionBasis))
@assert all(isa.(basis_r.bases[index], MomentumBasis))
transform_xp(basis_l, basis_r, index; ket_only=ket_only)
elseif all(isa.(basis_l.bases[index], MomentumBasis))
@assert all(isa.(basis_r.bases[index], PositionBasis))
transform_px(basis_l, basis_r, index; ket_only=ket_only)
else
throw(IncompatibleBases())
end
end
function transform_xp(basis_l::CompositeBasis, basis_r::CompositeBasis, index::Vector{Int}; ket_only::Bool=false)
n = length(basis_l.bases)
Lx = [(b.xmax - b.xmin) for b=basis_l.bases[index]]
dp = [spacing(b) for b=basis_r.bases[index]]
dx = [spacing(b) for b=basis_l.bases[index]]
N = [length(b) for b=basis_l.bases]
for i=1:n
if N[i] != length(basis_r.bases[i])
throw(IncompatibleBases())
end
end
for i=1:length(index)
if abs(2*pi/dp[i] - Lx[i])/Lx[i] > 1e-12
throw(IncompatibleBases())
end
end
if index[1] == 1
mul_before = exp.(1im*basis_l.bases[1].xmin*(samplepoints(basis_r.bases[1]) .- basis_r.bases[1].pmin))
mul_after = exp.(1im*basis_r.bases[1].pmin*samplepoints(basis_l.bases[1]))/sqrt(basis_r.bases[1].N)
else
mul_before = ones(N[1])
mul_after = ones(N[1])
end
for i=2:n
if any(i .== index)
mul_before = kron(exp.(1im*basis_l.bases[i].xmin*(samplepoints(basis_r.bases[i]) .- basis_r.bases[i].pmin)), mul_before)
mul_after = kron(exp.(1im*basis_r.bases[i].pmin*samplepoints(basis_l.bases[i]))/sqrt(basis_r.bases[i].N), mul_after)
else
mul_before = kron(ones(N[i]), mul_before)
mul_after = kron(ones(N[i]), mul_after)
end
end
mul_before = reshape(mul_before, (N...,))
mul_after = reshape(mul_after, (N...,))
x = Array{ComplexF64}(undef, N...)
if ket_only
FFTKets(basis_l, basis_r, plan_fft!(x, index), plan_bfft!(x, index), mul_before, mul_after)
else
A = Array{ComplexF64}(undef, [N; N]...)
FFTOperators(basis_l, basis_r, plan_fft!(x, index), plan_bfft!(x, index), plan_fft!(A, [n + 1:2n;][index]), plan_bfft!(A, [1:n;][index]), mul_before, mul_after)
end
end
function transform_px(basis_l::CompositeBasis, basis_r::CompositeBasis, index::Vector{Int}; ket_only::Bool=false)
n = length(basis_l.bases)
Lx = [(b.xmax - b.xmin) for b=basis_r.bases[index]]
dp = [spacing(b) for b=basis_l.bases[index]]
dx = [spacing(b) for b=basis_r.bases[index]]
N = [length(b) for b=basis_l.bases]
for i=1:n
if N[i] != length(basis_r.bases[i])
throw(IncompatibleBases())
end
end
for i=1:length(index)
if abs(2*pi/dp[i] - Lx[i])/Lx[i] > 1e-12
throw(IncompatibleBases())
end
end
if index[1] == 1
mul_before = exp.(-1im*basis_l.bases[1].pmin*(samplepoints(basis_r.bases[1]) .- basis_r.bases[1].xmin))
mul_after = exp.(-1im*basis_r.bases[1].xmin*samplepoints(basis_l.bases[1]))/sqrt(N[1])
else
mul_before = ones(N[1])
mul_after = ones(N[1])
end
for i=2:n
if i in index
mul_before = kron(exp.(-1im*basis_l.bases[i].pmin*(samplepoints(basis_r.bases[i]) .- basis_r.bases[i].xmin)), mul_before)
mul_after = kron(exp.(-1im*basis_r.bases[i].xmin*samplepoints(basis_l.bases[i]))/sqrt(N[i]), mul_after)
else
mul_before = kron(ones(N[i]), mul_before)
mul_after = kron(ones(N[i]), mul_after)
end
end
mul_before = reshape(mul_before, (N...,))
mul_after = reshape(mul_after, (N...,))
x = Array{ComplexF64}(undef, N...)
if ket_only
FFTKets(basis_l, basis_r, plan_bfft!(x, index), plan_fft!(x, index), mul_before, mul_after)
else
A = Array{ComplexF64}(undef, [N; N]...)
FFTOperators(basis_l, basis_r, plan_bfft!(x, index), plan_fft!(x, index), plan_bfft!(A, [n + 1:2n;][index]), plan_fft!(A, [1:n;][index]), mul_before, mul_after)
end
end
DenseOperator(op::FFTOperator) = op*identityoperator(DenseOpType, op.basis_r)
dagger(op::FFTOperators) = transform(op.basis_r, op.basis_l)
dagger(op::FFTKets) = transform(op.basis_r, op.basis_l; ket_only=true)
tensor(A::FFTOperators, B::FFTOperators) = transform(tensor(A.basis_l, B.basis_l), tensor(A.basis_r, B.basis_r))
tensor(A::FFTKets, B::FFTKets) = transform(tensor(A.basis_l, B.basis_l), tensor(A.basis_r, B.basis_r); ket_only=true)
function mul!(result::Ket{B1},M::FFTOperator{B1,B2},b::Ket{B2},alpha_,beta_) where {B1<:Basis,B2<:Basis}
alpha = convert(ComplexF64, alpha_)
beta = convert(ComplexF64, beta_)
N::Int = length(M.basis_r)
if beta==Complex(0.)
@inbounds for i=1:N
result.data[i] = M.mul_before[i] * b.data[i]
end
M.fft_r! * reshape(result.data, size(M.mul_before))
@inbounds for i=1:N
result.data[i] *= M.mul_after[i] * alpha
end
else
psi_ = Ket(M.basis_l, copy(b.data))
@inbounds for i=1:N
psi_.data[i] *= M.mul_before[i]
end
M.fft_r! * reshape(psi_.data, size(M.mul_before))
@inbounds for i=1:N
result.data[i] = beta*result.data[i] + alpha * psi_.data[i] * M.mul_after[i]
end
end
result
end
function mul!(result::Bra{B2},b::Bra{B1},M::FFTOperator{B1,B2},alpha_,beta_) where {B1<:Basis,B2<:Basis}
alpha = convert(ComplexF64, alpha_)
beta = convert(ComplexF64, beta_)
N::Int = length(M.basis_l)
if beta==Complex(0.)
@inbounds for i=1:N
result.data[i] = conj(M.mul_after[i]) * conj(b.data[i])
end
M.fft_l! * reshape(result.data, size(M.mul_after))
@inbounds for i=1:N
result.data[i] = conj(result.data[i]) * M.mul_before[i] * alpha
end
else
psi_ = Bra(M.basis_r, conj(b.data))
@inbounds for i=1:N
psi_.data[i] *= conj(M.mul_after[i])
end
M.fft_l! * reshape(psi_.data, size(M.mul_after))
@inbounds for i=1:N
result.data[i] = beta*result.data[i] + alpha * conj(psi_.data[i]) * M.mul_before[i]
end
end
result
end
function mul!(result::Operator{B1,B3,T},A::Operator{B1,B2},B::FFTOperators{B2,B3},alpha_,beta_) where {B1<:Basis,B2<:Basis,B3<:Basis,T}
alpha = convert(ComplexF64, alpha_)
beta = convert(ComplexF64, beta_)
if beta != Complex(0.)
data = similar(result.data, size(result.data, 1), size(result.data, 2))
else
data = result.data
end
copyto!(data, A.data)
@inbounds for j=1:length(B.mul_after), i=1:length(B.mul_after)
data[i, j] *= B.mul_after[j]
end
conj!(data)
n = size(B.mul_after)
B.fft_l2! * reshape(data, n..., n...)
conj!(data)
N = prod(n)
@inbounds for j=1:N, i=1:N
data[i, j] *= B.mul_before[j]
end
if alpha != Complex(1.)
lmul!(alpha, data)
end
if beta != Complex(0.)
rmul!(result.data, beta)
result.data += data
end
result
end
function mul!(result::Operator{B1,B3,T},A::FFTOperators{B1,B2},B::Operator{B2,B3},alpha_,beta_) where {B1<:Basis,B2<:Basis,B3<:Basis,T}
alpha = convert(ComplexF64, alpha_)
beta = convert(ComplexF64, beta_)
if beta != Complex(0.)
data = similar(result.data, size(result.data, 1), size(result.data, 2))
else
data = result.data
end
copyto!(data, B.data)
@inbounds for j=1:length(A.mul_before), i=1:length(A.mul_before)
data[i, j] *= A.mul_before[i]
end
n = size(A.mul_before)
A.fft_r2! * reshape(data, n...,n...)
N = prod(n)
@inbounds for j=1:N, i=1:N
data[i, j] *= A.mul_after[i]
end
if alpha != Complex(1.)
lmul!(alpha, data)
end
if beta != Complex(0.)
rmul!(result.data, beta)
result.data += data
end
result
end
| [
11748,
7308,
25,
2292,
198,
3500,
376,
9792,
54,
198,
198,
37811,
198,
220,
220,
220,
23158,
15522,
271,
7,
87,
1084,
11,
2124,
9806,
11,
399,
13033,
8,
198,
220,
220,
220,
23158,
15522,
271,
7,
65,
3712,
29252,
298,
388,
15522,
271,
8,
198,
198,
15522,
271,
329,
257,
18758,
287,
1103,
2272,
13,
198,
198,
1890,
21654,
27458,
13215,
389,
9672,
543,
1724,
326,
198,
1169,
826,
1712,
966,
5447,
416,
4600,
87,
9806,
63,
318,
407,
3017,
287,
262,
4308,
198,
4360,
318,
5447,
284,
307,
262,
976,
355,
4600,
87,
1084,
44646,
198,
198,
2215,
257,
685,
63,
29252,
298,
388,
15522,
271,
63,
16151,
31,
5420,
8,
318,
1813,
355,
4578,
262,
2748,
3815,
198,
1659,
7559,
87,
23330,
1084,
92,
15506,
290,
7559,
87,
23330,
9806,
92,
15506,
389,
2233,
284,
262,
27458,
18645,
3403,
198,
3549,
393,
1342,
14977,
290,
389,
7147,
284,
307,
198,
15506,
12,
6852,
14415,
14,
26059,
15506,
290,
7559,
6852,
14415,
14,
26059,
15506,
351,
7559,
26059,
16193,
79,
23330,
9806,
92,
12,
79,
23330,
1084,
92,
20679,
45,
15506,
13,
198,
37811,
198,
7249,
23158,
15522,
271,
90,
51,
11,
55,
16,
11,
55,
17,
92,
1279,
25,
6455,
271,
198,
220,
220,
220,
5485,
3712,
38469,
90,
51,
92,
198,
220,
220,
220,
2124,
1084,
3712,
43879,
2414,
198,
220,
220,
220,
2124,
9806,
3712,
43879,
2414,
198,
220,
220,
220,
399,
3712,
51,
198,
220,
220,
220,
2163,
23158,
15522,
271,
90,
55,
16,
11,
55,
17,
92,
7,
87,
1084,
3712,
15633,
11,
2124,
9806,
3712,
15633,
11,
399,
3712,
51,
8,
810,
1391,
55,
16,
11,
55,
17,
11,
51,
27,
25,
5317,
92,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
30493,
318,
64,
7,
55,
16,
11,
6416,
8,
11405,
318,
64,
7,
55,
17,
11,
6416,
8,
198,
220,
220,
220,
220,
220,
220,
220,
649,
90,
51,
11,
55,
16,
11,
55,
17,
92,
26933,
45,
4357,
2124,
1084,
11,
2124,
9806,
11,
399,
8,
198,
220,
220,
220,
886,
198,
437,
198,
26545,
15522,
271,
7,
87,
1084,
3712,
15633,
11,
2124,
9806,
3712,
15633,
11,
399,
3712,
5317,
8,
796,
23158,
15522,
271,
90,
87,
1084,
11,
87,
9806,
92,
7,
87,
1084,
11,
87,
9806,
11,
45,
8,
198,
198,
37811,
198,
220,
220,
220,
29278,
388,
15522,
271,
7,
79,
1084,
11,
9114,
897,
11,
399,
13033,
8,
198,
220,
220,
220,
29278,
388,
15522,
271,
7,
65,
3712,
26545,
15522,
271,
8,
198,
198,
15522,
271,
329,
257,
18758,
287,
12858,
2272,
13,
198,
198,
1890,
21654,
27458,
13215,
389,
9672,
543,
1724,
326,
198,
63,
4426,
897,
63,
318,
407,
3017,
287,
262,
4308,
475,
318,
5447,
284,
307,
262,
976,
355,
4600,
79,
1084,
44646,
198,
198,
2215,
257,
685,
63,
26545,
15522,
271,
63,
16151,
31,
5420,
8,
318,
1813,
355,
4578,
262,
2748,
3815,
198,
1659,
7559,
79,
23330,
1084,
92,
15506,
290,
7559,
79,
23330,
9806,
92,
15506,
389,
2233,
284,
262,
27458,
18645,
3403,
198,
3549,
393,
1342,
14977,
290,
389,
7147,
284,
307,
198,
15506,
12,
6852,
14415,
14,
34350,
15506,
290,
7559,
6852,
14415,
14,
34350,
15506,
351,
7559,
34350,
16193,
87,
23330,
9806,
92,
12,
87,
23330,
1084,
92,
20679,
45,
15506,
13,
198,
37811,
198,
7249,
29278,
388,
15522,
271,
90,
47,
16,
11,
47,
17,
92,
1279,
25,
6455,
271,
198,
220,
220,
220,
5485,
3712,
38469,
90,
5317,
92,
198,
220,
220,
220,
279,
1084,
3712,
43879,
2414,
198,
220,
220,
220,
9114,
897,
3712,
43879,
2414,
198,
220,
220,
220,
399,
3712,
5317,
198,
220,
220,
220,
2163,
29278,
388,
15522,
271,
90,
47,
16,
11,
47,
17,
92,
7,
79,
1084,
3712,
15633,
11,
9114,
897,
3712,
15633,
11,
399,
3712,
5317,
8,
810,
1391,
47,
16,
11,
47,
17,
92,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
30493,
318,
64,
7,
47,
16,
11,
6416,
8,
11405,
318,
64,
7,
47,
17,
11,
6416,
8,
198,
220,
220,
220,
220,
220,
220,
220,
649,
26933,
45,
4357,
279,
1084,
11,
9114,
897,
11,
399,
8,
198,
220,
220,
220,
886,
198,
437,
198,
29252,
298,
388,
15522,
271,
7,
79,
1084,
3712,
15633,
11,
9114,
897,
3712,
15633,
11,
399,
3712,
5317,
8,
796,
29278,
388,
15522,
271,
90,
79,
1084,
11,
4426,
897,
92,
7,
79,
1084,
11,
9114,
897,
11,
399,
8,
198,
198,
26545,
15522,
271,
7,
65,
3712,
29252,
298,
388,
15522,
271,
8,
796,
357,
26059,
796,
357,
65,
13,
4426,
897,
532,
275,
13,
79,
1084,
20679,
65,
13,
45,
26,
23158,
15522,
271,
32590,
14415,
14,
26059,
11,
31028,
14,
26059,
11,
275,
13,
45,
4008,
198,
29252,
298,
388,
15522,
271,
7,
65,
3712,
26545,
15522,
271,
8,
796,
357,
34350,
796,
357,
65,
13,
87,
9806,
532,
275,
13,
87,
1084,
20679,
65,
13,
45,
26,
29278,
388,
15522,
271,
32590,
14415,
14,
34350,
11,
31028,
14,
34350,
11,
275,
13,
45,
4008,
198,
198,
855,
7,
65,
16,
3712,
26545,
15522,
271,
11,
275,
17,
3712,
26545,
15522,
271,
8,
796,
275,
16,
13,
87,
1084,
855,
65,
17,
13,
87,
1084,
11405,
275,
16,
13,
87,
9806,
855,
65,
17,
13,
87,
9806,
11405,
275,
16,
13,
45,
855,
65,
17,
13,
45,
198,
855,
7,
65,
16,
3712,
29252,
298,
388,
15522,
271,
11,
275,
17,
3712,
29252,
298,
388,
15522,
271,
8,
796,
275,
16,
13,
79,
1084,
855,
65,
17,
13,
79,
1084,
11405,
275,
16,
13,
4426,
897,
855,
65,
17,
13,
4426,
897,
11405,
275,
16,
13,
45,
855,
65,
17,
13,
45,
628,
198,
37811,
198,
220,
220,
220,
31986,
31562,
5219,
7,
65,
3712,
26545,
15522,
271,
11,
2124,
15,
11,
279,
15,
11,
264,
13495,
8,
198,
220,
220,
220,
31986,
31562,
5219,
7,
65,
3712,
29252,
298,
388,
15522,
271,
11,
2124,
15,
11,
279,
15,
11,
264,
13495,
8,
198,
198,
16447,
257,
12822,
31562,
1181,
1088,
4600,
87,
15,
63,
290,
63,
279,
15,
63,
351,
9647,
4600,
82,
13495,
44646,
198,
198,
818,
1103,
2272,
262,
31986,
31562,
1181,
318,
5447,
355,
198,
198,
15506,
63,
11018,
198,
6852,
12016,
72,
7,
87,
8,
796,
26867,
31944,
90,
16,
18477,
6852,
14415,
36796,
16,
14,
19,
92,
6852,
31166,
17034,
90,
6852,
82,
13495,
11709,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
304,
36796,
72,
279,
62,
15,
357,
87,
12,
6852,
31944,
90,
87,
62,
15,
18477,
17,
30072,
532,
26867,
31944,
90,
7,
87,
12,
87,
62,
15,
8,
61,
17,
18477,
17,
26867,
82,
13495,
61,
17,
11709,
198,
15506,
63,
198,
198,
392,
318,
5884,
284,
262,
12858,
2272,
6770,
198,
198,
15506,
63,
11018,
198,
6852,
12016,
72,
7,
79,
8,
796,
26867,
31944,
90,
6852,
31166,
17034,
90,
6852,
82,
13495,
11709,
90,
6852,
14415,
36796,
16,
14,
19,
11709,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
304,
36796,
12,
72,
2124,
62,
15,
357,
79,
12,
6852,
31944,
90,
79,
62,
15,
18477,
17,
30072,
532,
26867,
31944,
90,
16,
18477,
17,
92,
7,
79,
12,
79,
62,
15,
8,
61,
17,
26867,
82,
13495,
61,
17,
92,
198,
15506,
63,
198,
198,
8869,
257,
34296,
5277,
12,
7645,
1161,
198,
198,
15506,
63,
11018,
198,
6852,
12016,
72,
7,
79,
8,
796,
26867,
31944,
90,
16,
18477,
6852,
31166,
17034,
90,
17,
6852,
14415,
11709,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26867,
600,
23330,
12,
6852,
259,
19628,
92,
36796,
6852,
259,
19628,
92,
304,
36796,
12,
541,
87,
92,
6852,
12016,
72,
7,
87,
8,
26867,
11018,
26224,
90,
67,
92,
87,
198,
15506,
63,
198,
198,
464,
1181,
468,
262,
6608,
198,
198,
9,
7559,
158,
253,
101,
79,
158,
253,
102,
796,
279,
62,
15,
15506,
198,
9,
7559,
158,
253,
101,
87,
158,
253,
102,
796,
2124,
62,
15,
15506,
198,
9,
7559,
6852,
11018,
26224,
90,
19852,
92,
7,
87,
8,
796,
26867,
31944,
90,
38392,
61,
17,
18477,
17,
92,
15506,
198,
9,
7559,
6852,
11018,
26224,
90,
19852,
92,
7,
79,
8,
796,
26867,
31944,
90,
16,
18477,
17,
18074,
225,
61,
17,
92,
15506,
198,
198,
22229,
284,
262,
5470,
1146,
3306,
1221,
1186,
1634,
3224,
20796,
198,
22584,
669,
7559,
6852,
31166,
17034,
90,
138,
242,
87,
92,
15506,
290,
7559,
6852,
31166,
17034,
90,
138,
242,
79,
92,
15506,
389,
973,
523,
326,
198,
15506,
6852,
75,
9248,
2124,
62,
72,
91,
138,
101,
6852,
81,
9248,
796,
26867,
31166,
17034,
90,
138,
242,
2124,
92,
7377,
101,
7,
87,
62,
72,
8,
15506,
290,
7559,
6852,
75,
9248,
279,
62,
72,
91,
138,
101,
6852,
81,
9248,
796,
26867,
31166,
17034,
90,
138,
242,
279,
92,
7377,
101,
7,
79,
62,
72,
8,
15506,
523,
198,
5562,
262,
7186,
43092,
1181,
318,
39279,
13,
198,
37811,
198,
8818,
31986,
31562,
5219,
7,
65,
3712,
26545,
15522,
271,
11,
2124,
15,
3712,
15633,
11,
279,
15,
3712,
15633,
11,
264,
13495,
3712,
15633,
8,
198,
220,
220,
220,
46231,
796,
43092,
7,
65,
8,
198,
220,
220,
220,
44332,
796,
31050,
7,
65,
8,
198,
220,
220,
220,
17130,
796,
352,
13,
15,
29006,
14415,
61,
7,
16,
14,
19,
27493,
31166,
17034,
7,
82,
13495,
4008,
9,
31166,
17034,
7,
34350,
8,
198,
220,
220,
220,
2124,
796,
275,
13,
87,
1084,
198,
220,
220,
220,
329,
1312,
28,
16,
25,
65,
13,
45,
198,
220,
220,
220,
220,
220,
220,
220,
46231,
13,
7890,
58,
72,
60,
796,
17130,
9,
11201,
7,
16,
320,
9,
79,
15,
9,
7,
87,
12,
87,
15,
14,
17,
8,
532,
357,
87,
12,
87,
15,
8,
61,
17,
29006,
17,
9,
82,
13495,
61,
17,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
15853,
44332,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
46231,
198,
437,
198,
198,
8818,
31986,
31562,
5219,
7,
65,
3712,
29252,
298,
388,
15522,
271,
11,
2124,
15,
3712,
15633,
11,
279,
15,
3712,
15633,
11,
264,
13495,
3712,
15633,
8,
198,
220,
220,
220,
46231,
796,
43092,
7,
65,
8,
198,
220,
220,
220,
288,
79,
796,
31050,
7,
65,
8,
198,
220,
220,
220,
17130,
796,
19862,
17034,
7,
82,
13495,
20679,
14415,
61,
7,
16,
14,
19,
27493,
31166,
17034,
7,
26059,
8,
198,
220,
220,
220,
279,
796,
275,
13,
79,
1084,
198,
220,
220,
220,
329,
1312,
28,
16,
25,
65,
13,
45,
198,
220,
220,
220,
220,
220,
220,
220,
46231,
13,
7890,
58,
72,
60,
796,
17130,
9,
11201,
32590,
16,
320,
9,
87,
15,
9,
7,
79,
12,
79,
15,
14,
17,
8,
532,
357,
79,
12,
79,
15,
8,
61,
17,
14,
17,
9,
82,
13495,
61,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
279,
15853,
288,
79,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
46231,
198,
437,
628,
198,
37811,
198,
220,
220,
220,
31050,
7,
65,
3712,
26545,
15522,
271,
8,
198,
198,
28813,
1945,
1022,
734,
15909,
2173,
286,
262,
1103,
2272,
4308,
13,
198,
37811,
198,
2777,
4092,
7,
65,
3712,
26545,
15522,
271,
8,
796,
357,
65,
13,
87,
9806,
532,
275,
13,
87,
1084,
20679,
65,
13,
45,
198,
37811,
198,
220,
220,
220,
31050,
7,
65,
3712,
29252,
298,
388,
15522,
271,
8,
198,
198,
29252,
298,
388,
3580,
1022,
734,
15909,
2173,
286,
262,
12858,
4308,
13,
198,
37811,
198,
2777,
4092,
7,
65,
3712,
29252,
298,
388,
15522,
271,
8,
796,
357,
65,
13,
4426,
897,
532,
275,
13,
79,
1084,
20679,
65,
13,
45,
198,
198,
37811,
198,
220,
220,
220,
6291,
13033,
7,
65,
3712,
26545,
15522,
271,
8,
198,
198,
87,
3815,
286,
262,
1103,
2272,
4308,
13,
198,
37811,
198,
39873,
13033,
7,
65,
3712,
26545,
15522,
271,
8,
796,
357,
34350,
796,
31050,
7,
65,
1776,
48436,
2414,
58,
65,
13,
87,
1084,
1343,
1312,
9,
34350,
329,
1312,
28,
15,
25,
65,
13,
45,
12,
16,
12962,
198,
37811,
198,
220,
220,
220,
6291,
13033,
7,
65,
3712,
29252,
298,
388,
15522,
271,
8,
198,
198,
79,
3815,
286,
262,
12858,
4308,
13,
198,
37811,
198,
39873,
13033,
7,
65,
3712,
29252,
298,
388,
15522,
271,
8,
796,
357,
26059,
796,
31050,
7,
65,
1776,
48436,
2414,
58,
65,
13,
79,
1084,
1343,
1312,
9,
26059,
329,
1312,
28,
15,
25,
65,
13,
45,
12,
16,
12962,
198,
198,
37811,
198,
220,
220,
220,
2292,
7,
65,
3712,
26545,
15522,
271,
8,
198,
198,
26545,
10088,
287,
1103,
2272,
13,
198,
37811,
198,
9150,
7,
65,
3712,
26545,
15522,
271,
8,
796,
1338,
17208,
18843,
1352,
7,
65,
11,
29877,
7,
18683,
27923,
7,
41887,
7,
39873,
13033,
7,
65,
4008,
22305,
628,
198,
37811,
198,
220,
220,
220,
2292,
7,
65,
25,
29252,
298,
388,
15522,
271,
8,
198,
198,
26545,
10088,
287,
12858,
2272,
13,
198,
37811,
198,
8818,
2292,
7,
65,
3712,
29252,
298,
388,
15522,
271,
8,
198,
220,
220,
220,
275,
62,
1930,
796,
23158,
15522,
271,
7,
65,
8,
198,
220,
220,
220,
6121,
7,
65,
11,
275,
62,
1930,
27493,
67,
1072,
7,
9150,
7,
65,
62,
1930,
4008,
9,
35636,
7,
65,
62,
1930,
11,
275,
8,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
12858,
7,
65,
25,
29252,
298,
388,
15522,
271,
8,
198,
198,
29252,
298,
388,
10088,
287,
12858,
2272,
13,
198,
37811,
198,
32542,
298,
388,
7,
65,
3712,
29252,
298,
388,
15522,
271,
8,
796,
1338,
17208,
18843,
1352,
7,
65,
11,
29877,
7,
18683,
27923,
7,
41887,
7,
39873,
13033,
7,
65,
4008,
22305,
198,
198,
37811,
198,
220,
220,
220,
12858,
7,
65,
3712,
26545,
15522,
271,
8,
198,
198,
29252,
298,
388,
10088,
287,
1103,
2272,
13,
198,
37811,
198,
8818,
12858,
7,
65,
3712,
26545,
15522,
271,
8,
198,
220,
220,
220,
275,
62,
32542,
796,
29278,
388,
15522,
271,
7,
65,
8,
198,
220,
220,
220,
6121,
7,
65,
11,
275,
62,
32542,
27493,
67,
1072,
7,
32542,
298,
388,
7,
65,
62,
32542,
4008,
9,
35636,
7,
65,
62,
32542,
11,
275,
8,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
2785,
46616,
7,
65,
3712,
26545,
15522,
271,
11,
569,
7,
87,
4008,
198,
198,
18843,
1352,
10200,
257,
2785,
7559,
53,
7,
87,
8,
15506,
287,
1103,
2272,
13,
198,
37811,
198,
8818,
2785,
46616,
7,
65,
3712,
26545,
15522,
271,
11,
569,
3712,
22203,
8,
198,
220,
220,
220,
2124,
796,
6291,
13033,
7,
65,
8,
198,
220,
220,
220,
40039,
46616,
7,
65,
11,
569,
12195,
87,
4008,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
2785,
46616,
7,
65,
3712,
29252,
298,
388,
15522,
271,
11,
569,
7,
87,
4008,
198,
198,
18843,
1352,
10200,
257,
2785,
7559,
53,
7,
87,
8,
15506,
287,
12858,
2272,
13,
198,
37811,
198,
8818,
2785,
46616,
7,
65,
3712,
29252,
298,
388,
15522,
271,
11,
569,
3712,
22203,
8,
198,
220,
220,
220,
275,
62,
1930,
796,
23158,
15522,
271,
7,
65,
8,
198,
220,
220,
220,
6121,
7,
65,
11,
275,
62,
1930,
27493,
67,
1072,
7,
13059,
1843,
46616,
7,
65,
62,
1930,
11,
569,
4008,
9,
35636,
7,
65,
62,
1930,
11,
275,
8,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
2785,
46616,
7,
65,
3712,
5377,
1930,
578,
15522,
271,
11,
569,
7,
87,
11,
331,
11,
1976,
11,
2644,
4008,
198,
198,
18843,
1352,
10200,
257,
2785,
7559,
53,
15506,
287,
517,
621,
530,
15793,
13,
198,
198,
2,
20559,
2886,
198,
9,
4600,
65,
63,
25,
49355,
4308,
17747,
14177,
2035,
286,
4600,
26545,
15522,
271,
63,
393,
198,
220,
220,
220,
4600,
29252,
298,
388,
15522,
271,
44646,
5740,
11,
326,
4585,
428,
351,
257,
24185,
4308,
287,
198,
220,
220,
220,
12858,
2272,
1244,
15000,
257,
1588,
2033,
286,
4088,
13,
198,
9,
4600,
53,
63,
25,
15553,
12059,
262,
2785,
13,
26195,
45589,
25,
383,
1271,
286,
7159,
198,
220,
220,
220,
6292,
416,
4600,
53,
63,
1276,
2872,
262,
21739,
15793,
13,
11399,
11,
262,
1502,
198,
220,
220,
220,
286,
262,
7159,
468,
284,
2872,
326,
286,
262,
1502,
286,
262,
11192,
273,
1720,
286,
198,
220,
220,
220,
12536,
357,
68,
13,
70,
13,
611,
4600,
65,
28,
65,
87,
158,
232,
245,
1525,
158,
232,
245,
65,
89,
47671,
788,
4600,
53,
7,
87,
11,
88,
11,
89,
8,
63,
737,
198,
37811,
198,
8818,
2785,
46616,
7,
65,
3712,
5377,
1930,
578,
15522,
271,
11,
569,
3712,
22203,
8,
198,
220,
220,
220,
611,
318,
64,
7,
65,
13,
65,
1386,
58,
16,
4357,
23158,
15522,
271,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2785,
46616,
62,
9150,
7,
65,
11,
569,
8,
198,
220,
220,
220,
2073,
361,
318,
64,
7,
65,
13,
65,
1386,
58,
16,
4357,
29278,
388,
15522,
271,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2785,
46616,
62,
32542,
298,
388,
7,
65,
11,
569,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
3714,
7,
818,
38532,
33,
1386,
28955,
198,
220,
220,
220,
886,
198,
437,
198,
8818,
2785,
46616,
62,
9150,
7,
65,
3712,
5377,
1930,
578,
15522,
271,
11,
569,
3712,
22203,
8,
198,
220,
220,
220,
329,
2779,
28,
65,
13,
65,
1386,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
30493,
318,
64,
7,
8692,
11,
23158,
15522,
271,
8,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2173,
796,
685,
39873,
13033,
7,
65,
16,
8,
329,
275,
16,
28,
65,
13,
65,
1386,
60,
198,
220,
220,
220,
5391,
82,
796,
4129,
12195,
13033,
8,
198,
220,
220,
220,
299,
796,
4129,
7,
65,
13,
65,
1386,
8,
198,
220,
220,
220,
1366,
796,
15690,
90,
5377,
11141,
37,
2414,
92,
7,
917,
891,
11,
5391,
82,
23029,
198,
220,
220,
220,
2488,
259,
65,
3733,
329,
1312,
28,
16,
25,
13664,
7,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
6376,
796,
309,
29291,
7,
43476,
35610,
5497,
1063,
7,
7890,
38381,
72,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
26498,
796,
357,
13033,
58,
73,
7131,
9630,
58,
73,
11907,
329,
474,
28,
16,
25,
77,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
58,
72,
60,
796,
569,
7,
22046,
23029,
198,
220,
220,
220,
886,
628,
220,
220,
220,
40039,
46616,
7,
65,
11,
1366,
58,
25,
12962,
198,
437,
198,
8818,
2785,
46616,
62,
32542,
298,
388,
7,
65,
3712,
5377,
1930,
578,
15522,
271,
11,
569,
3712,
22203,
8,
198,
220,
220,
220,
12536,
62,
1930,
796,
17635,
198,
220,
220,
220,
329,
2779,
28,
65,
13,
65,
1386,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
30493,
318,
64,
7,
8692,
11,
29278,
388,
15522,
271,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
65,
1386,
62,
1930,
11,
23158,
15522,
271,
7,
8692,
4008,
198,
220,
220,
220,
886,
198,
220,
220,
220,
275,
62,
1930,
796,
11192,
273,
7,
65,
1386,
62,
1930,
23029,
198,
220,
220,
220,
6121,
7,
65,
11,
275,
62,
1930,
27493,
67,
1072,
7,
13059,
1843,
46616,
62,
9150,
7,
65,
62,
1930,
11,
569,
4008,
9,
35636,
7,
65,
62,
1930,
11,
275,
8,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
376,
9792,
18843,
1352,
198,
198,
23839,
2099,
329,
477,
25504,
286,
376,
9792,
12879,
13,
198,
37811,
198,
397,
8709,
2099,
376,
9792,
18843,
1352,
90,
9148,
27,
25,
15522,
271,
11,
11177,
27,
25,
15522,
271,
11,
309,
92,
1279,
25,
27741,
18843,
1352,
90,
9148,
11,
11473,
92,
886,
198,
198,
14881,
13,
417,
4906,
7,
87,
3712,
5777,
10468,
525,
1352,
8,
796,
7719,
62,
4906,
7,
417,
4906,
7,
87,
13,
76,
377,
62,
19052,
828,
1288,
4906,
7,
87,
13,
76,
377,
62,
8499,
4008,
198,
198,
37811,
198,
220,
220,
220,
376,
9792,
18843,
2024,
198,
198,
18843,
1352,
9489,
257,
3049,
46287,
5277,
13389,
618,
33096,
351,
257,
1181,
198,
5562,
318,
257,
43092,
393,
281,
35946,
13,
198,
37811,
198,
76,
18187,
2878,
376,
9792,
18843,
2024,
90,
9148,
27,
25,
15522,
271,
11,
11473,
27,
25,
15522,
271,
11,
51,
27,
25,
19182,
11,
47,
16,
11,
47,
17,
11,
47,
18,
11,
47,
19,
92,
1279,
25,
376,
9792,
18843,
1352,
90,
9148,
11,
11177,
11,
309,
92,
198,
220,
220,
220,
4308,
62,
75,
3712,
9148,
198,
220,
220,
220,
4308,
62,
81,
3712,
11473,
198,
220,
220,
220,
277,
701,
62,
75,
0,
3712,
47,
16,
198,
220,
220,
220,
277,
701,
62,
81,
0,
3712,
47,
17,
198,
220,
220,
220,
277,
701,
62,
75,
17,
0,
3712,
47,
18,
198,
220,
220,
220,
277,
701,
62,
81,
17,
0,
3712,
47,
19,
198,
220,
220,
220,
35971,
62,
19052,
3712,
51,
198,
220,
220,
220,
35971,
62,
8499,
3712,
51,
198,
220,
220,
220,
2163,
376,
9792,
18843,
2024,
7,
65,
16,
3712,
9148,
11,
275,
17,
3712,
11473,
11,
198,
220,
220,
220,
220,
220,
220,
220,
277,
701,
62,
75,
0,
3712,
47,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
277,
701,
62,
81,
0,
3712,
47,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
277,
701,
62,
75,
17,
0,
3712,
47,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
277,
701,
62,
81,
17,
0,
3712,
47,
19,
11,
198,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
19052,
3712,
51,
11,
198,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
8499,
3712,
51,
8,
810,
1391,
9148,
27,
25,
15522,
271,
11,
11473,
27,
25,
15522,
271,
11,
51,
11,
47,
16,
11,
47,
17,
11,
47,
18,
11,
47,
19,
92,
198,
220,
220,
220,
220,
220,
220,
220,
649,
90,
9148,
11,
11473,
11,
51,
11,
47,
16,
11,
47,
17,
11,
47,
18,
11,
47,
19,
92,
7,
65,
16,
11,
275,
17,
11,
277,
701,
62,
75,
28265,
277,
701,
62,
81,
28265,
277,
701,
62,
75,
17,
28265,
277,
701,
62,
81,
17,
28265,
35971,
62,
19052,
11,
35971,
62,
8499,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
376,
9792,
42,
1039,
198,
198,
18843,
1352,
326,
460,
691,
1620,
3049,
46287,
5277,
38226,
319,
509,
1039,
13,
198,
1212,
318,
881,
517,
4088,
6942,
618,
691,
1762,
351,
509,
1039,
13,
198,
37811,
198,
76,
18187,
2878,
376,
9792,
42,
1039,
90,
9148,
27,
25,
15522,
271,
11,
11473,
27,
25,
15522,
271,
11,
51,
27,
25,
19182,
11,
47,
16,
11,
47,
17,
92,
1279,
25,
376,
9792,
18843,
1352,
90,
9148,
11,
11177,
11,
309,
92,
198,
220,
220,
220,
4308,
62,
75,
3712,
9148,
198,
220,
220,
220,
4308,
62,
81,
3712,
11473,
198,
220,
220,
220,
277,
701,
62,
75,
0,
3712,
47,
16,
198,
220,
220,
220,
277,
701,
62,
81,
0,
3712,
47,
17,
198,
220,
220,
220,
35971,
62,
19052,
3712,
51,
198,
220,
220,
220,
35971,
62,
8499,
3712,
51,
198,
220,
220,
220,
2163,
376,
9792,
42,
1039,
7,
65,
16,
3712,
9148,
11,
275,
17,
3712,
11473,
11,
198,
220,
220,
220,
220,
220,
220,
220,
277,
701,
62,
75,
0,
3712,
47,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
277,
701,
62,
81,
0,
3712,
47,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
19052,
3712,
51,
11,
198,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
8499,
3712,
51,
8,
810,
1391,
9148,
27,
25,
15522,
271,
11,
11473,
27,
25,
15522,
271,
11,
309,
11,
350,
16,
11,
350,
17,
92,
198,
220,
220,
220,
220,
220,
220,
220,
649,
90,
9148,
11,
11177,
11,
309,
11,
350,
16,
11,
350,
17,
92,
7,
65,
16,
11,
275,
17,
11,
277,
701,
62,
75,
28265,
277,
701,
62,
81,
28265,
35971,
62,
19052,
11,
35971,
62,
8499,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
6121,
7,
65,
16,
3712,
29252,
298,
388,
15522,
271,
11,
275,
17,
3712,
26545,
15522,
271,
8,
198,
220,
220,
220,
6121,
7,
65,
16,
3712,
26545,
15522,
271,
11,
275,
17,
3712,
29252,
298,
388,
15522,
271,
8,
198,
198,
8291,
1161,
10088,
1022,
2292,
4308,
290,
12858,
4308,
13,
198,
37811,
198,
8818,
6121,
7,
12093,
271,
62,
75,
3712,
29252,
298,
388,
15522,
271,
11,
4308,
62,
81,
3712,
26545,
15522,
271,
26,
22354,
62,
8807,
3712,
33,
970,
28,
9562,
8,
198,
220,
220,
220,
406,
87,
796,
357,
12093,
271,
62,
81,
13,
87,
9806,
532,
4308,
62,
81,
13,
87,
1084,
8,
198,
220,
220,
220,
288,
79,
796,
31050,
7,
12093,
271,
62,
75,
8,
198,
220,
220,
220,
44332,
796,
31050,
7,
12093,
271,
62,
81,
8,
198,
220,
220,
220,
611,
4308,
62,
75,
13,
45,
14512,
4308,
62,
81,
13,
45,
8614,
2352,
7,
17,
9,
14415,
14,
26059,
532,
406,
87,
20679,
43,
87,
1875,
352,
68,
12,
1065,
198,
220,
220,
220,
220,
220,
220,
220,
3714,
7,
818,
38532,
33,
1386,
28955,
198,
220,
220,
220,
886,
198,
220,
220,
220,
35971,
62,
19052,
796,
1033,
12195,
12,
16,
320,
9,
12093,
271,
62,
75,
13,
79,
1084,
9,
7,
39873,
13033,
7,
12093,
271,
62,
81,
8,
764,
12,
4308,
62,
81,
13,
87,
1084,
4008,
198,
220,
220,
220,
35971,
62,
8499,
796,
1033,
12195,
12,
16,
320,
9,
12093,
271,
62,
81,
13,
87,
1084,
9,
39873,
13033,
7,
12093,
271,
62,
75,
4008,
14,
31166,
17034,
7,
12093,
271,
62,
81,
13,
45,
8,
198,
220,
220,
220,
2124,
796,
20650,
90,
5377,
11141,
37,
2414,
92,
7,
917,
891,
11,
4129,
7,
12093,
271,
62,
81,
4008,
198,
220,
220,
220,
611,
22354,
62,
8807,
198,
220,
220,
220,
220,
220,
220,
220,
376,
9792,
42,
1039,
7,
12093,
271,
62,
75,
11,
4308,
62,
81,
11,
1410,
62,
65,
487,
83,
0,
7,
87,
828,
1410,
62,
487,
83,
0,
7,
87,
828,
35971,
62,
19052,
11,
35971,
62,
8499,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
317,
796,
24936,
90,
5377,
11141,
37,
2414,
92,
7,
917,
891,
11,
4129,
7,
12093,
271,
62,
81,
828,
4129,
7,
12093,
271,
62,
81,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
376,
9792,
18843,
2024,
7,
12093,
271,
62,
75,
11,
4308,
62,
81,
11,
1410,
62,
65,
487,
83,
0,
7,
87,
828,
1410,
62,
487,
83,
0,
7,
87,
828,
1410,
62,
65,
487,
83,
0,
7,
32,
11,
362,
828,
1410,
62,
487,
83,
0,
7,
32,
11,
352,
828,
35971,
62,
19052,
11,
35971,
62,
8499,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
6121,
7,
65,
16,
3712,
5377,
1930,
578,
15522,
271,
11,
275,
17,
3712,
5377,
1930,
578,
15522,
271,
8,
198,
198,
8291,
1161,
10088,
1022,
734,
24185,
12536,
13,
5501,
286,
262,
12536,
198,
10134,
284,
3994,
12536,
286,
2099,
23158,
15522,
271,
290,
262,
584,
530,
257,
11188,
198,
29252,
298,
388,
15522,
271,
13,
198,
37811,
198,
8818,
6121,
7,
12093,
271,
62,
75,
3712,
26545,
15522,
271,
11,
4308,
62,
81,
3712,
29252,
298,
388,
15522,
271,
26,
22354,
62,
8807,
3712,
33,
970,
28,
9562,
8,
198,
220,
220,
220,
406,
87,
796,
357,
12093,
271,
62,
75,
13,
87,
9806,
532,
4308,
62,
75,
13,
87,
1084,
8,
198,
220,
220,
220,
288,
79,
796,
31050,
7,
12093,
271,
62,
81,
8,
198,
220,
220,
220,
44332,
796,
31050,
7,
12093,
271,
62,
75,
8,
198,
220,
220,
220,
611,
4308,
62,
75,
13,
45,
14512,
4308,
62,
81,
13,
45,
8614,
2352,
7,
17,
9,
14415,
14,
26059,
532,
406,
87,
20679,
43,
87,
1875,
352,
68,
12,
1065,
198,
220,
220,
220,
220,
220,
220,
220,
3714,
7,
818,
38532,
33,
1386,
28955,
198,
220,
220,
220,
886,
198,
220,
220,
220,
35971,
62,
19052,
796,
1033,
12195,
16,
320,
9,
12093,
271,
62,
75,
13,
87,
1084,
9,
7,
39873,
13033,
7,
12093,
271,
62,
81,
8,
764,
12,
4308,
62,
81,
13,
79,
1084,
4008,
198,
220,
220,
220,
35971,
62,
8499,
796,
1033,
12195,
16,
320,
9,
12093,
271,
62,
81,
13,
79,
1084,
9,
39873,
13033,
7,
12093,
271,
62,
75,
4008,
14,
31166,
17034,
7,
12093,
271,
62,
81,
13,
45,
8,
198,
220,
220,
220,
2124,
796,
20650,
90,
5377,
11141,
37,
2414,
92,
7,
917,
891,
11,
4129,
7,
12093,
271,
62,
81,
4008,
198,
220,
220,
220,
611,
22354,
62,
8807,
198,
220,
220,
220,
220,
220,
220,
220,
376,
9792,
42,
1039,
7,
12093,
271,
62,
75,
11,
4308,
62,
81,
11,
1410,
62,
487,
83,
0,
7,
87,
828,
1410,
62,
65,
487,
83,
0,
7,
87,
828,
35971,
62,
19052,
11,
35971,
62,
8499,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
317,
796,
24936,
90,
5377,
11141,
37,
2414,
92,
7,
917,
891,
11,
4129,
7,
12093,
271,
62,
81,
828,
4129,
7,
12093,
271,
62,
81,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
376,
9792,
18843,
2024,
7,
12093,
271,
62,
75,
11,
4308,
62,
81,
11,
1410,
62,
487,
83,
0,
7,
87,
828,
1410,
62,
65,
487,
83,
0,
7,
87,
828,
1410,
62,
487,
83,
0,
7,
32,
11,
362,
828,
1410,
62,
65,
487,
83,
0,
7,
32,
11,
352,
828,
35971,
62,
19052,
11,
35971,
62,
8499,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
6121,
7,
12093,
271,
62,
75,
3712,
5377,
1930,
578,
15522,
271,
11,
4308,
62,
81,
3712,
5377,
1930,
578,
15522,
271,
26,
22354,
62,
8807,
3712,
33,
970,
28,
9562,
11,
6376,
3712,
38469,
90,
5317,
92,
28,
5317,
58,
12962,
198,
220,
220,
220,
2488,
30493,
4129,
7,
12093,
271,
62,
75,
13,
65,
1386,
8,
6624,
4129,
7,
12093,
271,
62,
81,
13,
65,
1386,
8,
198,
220,
220,
220,
611,
4129,
7,
9630,
8,
6624,
657,
198,
220,
220,
220,
220,
220,
220,
220,
2198,
62,
1930,
796,
685,
9160,
12195,
12093,
271,
62,
75,
13,
65,
1386,
11,
23158,
15522,
271,
8,
22345,
198,
220,
220,
220,
220,
220,
220,
220,
2198,
62,
32542,
796,
685,
9160,
12195,
12093,
271,
62,
75,
13,
65,
1386,
11,
29278,
388,
15522,
271,
8,
22345,
198,
220,
220,
220,
220,
220,
220,
220,
611,
597,
7,
9122,
62,
1930,
8,
11405,
5145,
1092,
7,
9122,
62,
32542,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6376,
796,
685,
16,
25,
13664,
7,
12093,
271,
62,
75,
13,
65,
1386,
1776,
7131,
9122,
62,
1930,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
361,
597,
7,
9122,
62,
32542,
8,
11405,
5145,
1092,
7,
9122,
62,
1930,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6376,
796,
685,
16,
25,
13664,
7,
12093,
271,
62,
75,
13,
65,
1386,
1776,
7131,
9122,
62,
32542,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3714,
7,
818,
38532,
33,
1386,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
611,
477,
7,
9160,
12195,
12093,
271,
62,
75,
13,
65,
1386,
58,
9630,
4357,
23158,
15522,
271,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
30493,
477,
7,
9160,
12195,
12093,
271,
62,
81,
13,
65,
1386,
58,
9630,
4357,
29278,
388,
15522,
271,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
6121,
62,
42372,
7,
12093,
271,
62,
75,
11,
4308,
62,
81,
11,
6376,
26,
22354,
62,
8807,
28,
7126,
62,
8807,
8,
198,
220,
220,
220,
2073,
361,
477,
7,
9160,
12195,
12093,
271,
62,
75,
13,
65,
1386,
58,
9630,
4357,
29278,
388,
15522,
271,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
30493,
477,
7,
9160,
12195,
12093,
271,
62,
81,
13,
65,
1386,
58,
9630,
4357,
23158,
15522,
271,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
6121,
62,
8416,
7,
12093,
271,
62,
75,
11,
4308,
62,
81,
11,
6376,
26,
22354,
62,
8807,
28,
7126,
62,
8807,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
3714,
7,
818,
38532,
33,
1386,
28955,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
6121,
62,
42372,
7,
12093,
271,
62,
75,
3712,
5377,
1930,
578,
15522,
271,
11,
4308,
62,
81,
3712,
5377,
1930,
578,
15522,
271,
11,
6376,
3712,
38469,
90,
5317,
19629,
22354,
62,
8807,
3712,
33,
970,
28,
9562,
8,
198,
220,
220,
220,
299,
796,
4129,
7,
12093,
271,
62,
75,
13,
65,
1386,
8,
198,
220,
220,
220,
406,
87,
796,
47527,
65,
13,
87,
9806,
532,
275,
13,
87,
1084,
8,
329,
275,
28,
12093,
271,
62,
75,
13,
65,
1386,
58,
9630,
11907,
198,
220,
220,
220,
288,
79,
796,
685,
2777,
4092,
7,
65,
8,
329,
275,
28,
12093,
271,
62,
81,
13,
65,
1386,
58,
9630,
11907,
198,
220,
220,
220,
44332,
796,
685,
2777,
4092,
7,
65,
8,
329,
275,
28,
12093,
271,
62,
75,
13,
65,
1386,
58,
9630,
11907,
198,
220,
220,
220,
399,
796,
685,
13664,
7,
65,
8,
329,
275,
28,
12093,
271,
62,
75,
13,
65,
1386,
60,
198,
220,
220,
220,
329,
1312,
28,
16,
25,
77,
198,
220,
220,
220,
220,
220,
220,
220,
611,
399,
58,
72,
60,
14512,
4129,
7,
12093,
271,
62,
81,
13,
65,
1386,
58,
72,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3714,
7,
818,
38532,
33,
1386,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
329,
1312,
28,
16,
25,
13664,
7,
9630,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2352,
7,
17,
9,
14415,
14,
26059,
58,
72,
60,
532,
406,
87,
58,
72,
12962,
14,
43,
87,
58,
72,
60,
1875,
352,
68,
12,
1065,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3714,
7,
818,
38532,
33,
1386,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
611,
6376,
58,
16,
60,
6624,
352,
198,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
19052,
796,
1033,
12195,
16,
320,
9,
12093,
271,
62,
75,
13,
65,
1386,
58,
16,
4083,
87,
1084,
9,
7,
39873,
13033,
7,
12093,
271,
62,
81,
13,
65,
1386,
58,
16,
12962,
764,
12,
4308,
62,
81,
13,
65,
1386,
58,
16,
4083,
79,
1084,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
8499,
796,
1033,
12195,
16,
320,
9,
12093,
271,
62,
81,
13,
65,
1386,
58,
16,
4083,
79,
1084,
9,
39873,
13033,
7,
12093,
271,
62,
75,
13,
65,
1386,
58,
16,
60,
4008,
14,
31166,
17034,
7,
12093,
271,
62,
81,
13,
65,
1386,
58,
16,
4083,
45,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
19052,
796,
3392,
7,
45,
58,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
8499,
796,
3392,
7,
45,
58,
16,
12962,
198,
220,
220,
220,
886,
198,
220,
220,
220,
329,
1312,
28,
17,
25,
77,
198,
220,
220,
220,
220,
220,
220,
220,
611,
597,
7,
72,
764,
855,
6376,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
19052,
796,
479,
1313,
7,
11201,
12195,
16,
320,
9,
12093,
271,
62,
75,
13,
65,
1386,
58,
72,
4083,
87,
1084,
9,
7,
39873,
13033,
7,
12093,
271,
62,
81,
13,
65,
1386,
58,
72,
12962,
764,
12,
4308,
62,
81,
13,
65,
1386,
58,
72,
4083,
79,
1084,
36911,
35971,
62,
19052,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
8499,
796,
479,
1313,
7,
11201,
12195,
16,
320,
9,
12093,
271,
62,
81,
13,
65,
1386,
58,
72,
4083,
79,
1084,
9,
39873,
13033,
7,
12093,
271,
62,
75,
13,
65,
1386,
58,
72,
60,
4008,
14,
31166,
17034,
7,
12093,
271,
62,
81,
13,
65,
1386,
58,
72,
4083,
45,
828,
35971,
62,
8499,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
19052,
796,
479,
1313,
7,
1952,
7,
45,
58,
72,
46570,
35971,
62,
19052,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
8499,
796,
479,
1313,
7,
1952,
7,
45,
58,
72,
46570,
35971,
62,
8499,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
35971,
62,
19052,
796,
27179,
1758,
7,
76,
377,
62,
19052,
11,
357,
45,
986,
11,
4008,
198,
220,
220,
220,
35971,
62,
8499,
796,
27179,
1758,
7,
76,
377,
62,
8499,
11,
357,
45,
986,
11,
4008,
628,
220,
220,
220,
2124,
796,
15690,
90,
5377,
11141,
37,
2414,
92,
7,
917,
891,
11,
399,
23029,
198,
220,
220,
220,
611,
22354,
62,
8807,
198,
220,
220,
220,
220,
220,
220,
220,
376,
9792,
42,
1039,
7,
12093,
271,
62,
75,
11,
4308,
62,
81,
11,
1410,
62,
487,
83,
0,
7,
87,
11,
6376,
828,
1410,
62,
65,
487,
83,
0,
7,
87,
11,
6376,
828,
35971,
62,
19052,
11,
35971,
62,
8499,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
317,
796,
15690,
90,
5377,
11141,
37,
2414,
92,
7,
917,
891,
11,
685,
45,
26,
399,
60,
23029,
198,
220,
220,
220,
220,
220,
220,
220,
376,
9792,
18843,
2024,
7,
12093,
271,
62,
75,
11,
4308,
62,
81,
11,
1410,
62,
487,
83,
0,
7,
87,
11,
6376,
828,
1410,
62,
65,
487,
83,
0,
7,
87,
11,
6376,
828,
1410,
62,
487,
83,
0,
7,
32,
11,
685,
77,
1343,
352,
25,
17,
77,
26,
7131,
9630,
46570,
1410,
62,
65,
487,
83,
0,
7,
32,
11,
685,
16,
25,
77,
26,
7131,
9630,
46570,
35971,
62,
19052,
11,
35971,
62,
8499,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
6121,
62,
8416,
7,
12093,
271,
62,
75,
3712,
5377,
1930,
578,
15522,
271,
11,
4308,
62,
81,
3712,
5377,
1930,
578,
15522,
271,
11,
6376,
3712,
38469,
90,
5317,
19629,
22354,
62,
8807,
3712,
33,
970,
28,
9562,
8,
198,
220,
220,
220,
299,
796,
4129,
7,
12093,
271,
62,
75,
13,
65,
1386,
8,
198,
220,
220,
220,
406,
87,
796,
47527,
65,
13,
87,
9806,
532,
275,
13,
87,
1084,
8,
329,
275,
28,
12093,
271,
62,
81,
13,
65,
1386,
58,
9630,
11907,
198,
220,
220,
220,
288,
79,
796,
685,
2777,
4092,
7,
65,
8,
329,
275,
28,
12093,
271,
62,
75,
13,
65,
1386,
58,
9630,
11907,
198,
220,
220,
220,
44332,
796,
685,
2777,
4092,
7,
65,
8,
329,
275,
28,
12093,
271,
62,
81,
13,
65,
1386,
58,
9630,
11907,
198,
220,
220,
220,
399,
796,
685,
13664,
7,
65,
8,
329,
275,
28,
12093,
271,
62,
75,
13,
65,
1386,
60,
198,
220,
220,
220,
329,
1312,
28,
16,
25,
77,
198,
220,
220,
220,
220,
220,
220,
220,
611,
399,
58,
72,
60,
14512,
4129,
7,
12093,
271,
62,
81,
13,
65,
1386,
58,
72,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3714,
7,
818,
38532,
33,
1386,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
329,
1312,
28,
16,
25,
13664,
7,
9630,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2352,
7,
17,
9,
14415,
14,
26059,
58,
72,
60,
532,
406,
87,
58,
72,
12962,
14,
43,
87,
58,
72,
60,
1875,
352,
68,
12,
1065,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3714,
7,
818,
38532,
33,
1386,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
611,
6376,
58,
16,
60,
6624,
352,
198,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
19052,
796,
1033,
12195,
12,
16,
320,
9,
12093,
271,
62,
75,
13,
65,
1386,
58,
16,
4083,
79,
1084,
9,
7,
39873,
13033,
7,
12093,
271,
62,
81,
13,
65,
1386,
58,
16,
12962,
764,
12,
4308,
62,
81,
13,
65,
1386,
58,
16,
4083,
87,
1084,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
8499,
796,
1033,
12195,
12,
16,
320,
9,
12093,
271,
62,
81,
13,
65,
1386,
58,
16,
4083,
87,
1084,
9,
39873,
13033,
7,
12093,
271,
62,
75,
13,
65,
1386,
58,
16,
60,
4008,
14,
31166,
17034,
7,
45,
58,
16,
12962,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
19052,
796,
3392,
7,
45,
58,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
8499,
796,
3392,
7,
45,
58,
16,
12962,
198,
220,
220,
220,
886,
198,
220,
220,
220,
329,
1312,
28,
17,
25,
77,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
287,
6376,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
19052,
796,
479,
1313,
7,
11201,
12195,
12,
16,
320,
9,
12093,
271,
62,
75,
13,
65,
1386,
58,
72,
4083,
79,
1084,
9,
7,
39873,
13033,
7,
12093,
271,
62,
81,
13,
65,
1386,
58,
72,
12962,
764,
12,
4308,
62,
81,
13,
65,
1386,
58,
72,
4083,
87,
1084,
36911,
35971,
62,
19052,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
8499,
796,
479,
1313,
7,
11201,
12195,
12,
16,
320,
9,
12093,
271,
62,
81,
13,
65,
1386,
58,
72,
4083,
87,
1084,
9,
39873,
13033,
7,
12093,
271,
62,
75,
13,
65,
1386,
58,
72,
60,
4008,
14,
31166,
17034,
7,
45,
58,
72,
46570,
35971,
62,
8499,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
19052,
796,
479,
1313,
7,
1952,
7,
45,
58,
72,
46570,
35971,
62,
19052,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35971,
62,
8499,
796,
479,
1313,
7,
1952,
7,
45,
58,
72,
46570,
35971,
62,
8499,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
35971,
62,
19052,
796,
27179,
1758,
7,
76,
377,
62,
19052,
11,
357,
45,
986,
11,
4008,
198,
220,
220,
220,
35971,
62,
8499,
796,
27179,
1758,
7,
76,
377,
62,
8499,
11,
357,
45,
986,
11,
4008,
628,
220,
220,
220,
2124,
796,
15690,
90,
5377,
11141,
37,
2414,
92,
7,
917,
891,
11,
399,
23029,
198,
220,
220,
220,
611,
22354,
62,
8807,
198,
220,
220,
220,
220,
220,
220,
220,
376,
9792,
42,
1039,
7,
12093,
271,
62,
75,
11,
4308,
62,
81,
11,
1410,
62,
65,
487,
83,
0,
7,
87,
11,
6376,
828,
1410,
62,
487,
83,
0,
7,
87,
11,
6376,
828,
35971,
62,
19052,
11,
35971,
62,
8499,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
317,
796,
15690,
90,
5377,
11141,
37,
2414,
92,
7,
917,
891,
11,
685,
45,
26,
399,
60,
23029,
198,
220,
220,
220,
220,
220,
220,
220,
376,
9792,
18843,
2024,
7,
12093,
271,
62,
75,
11,
4308,
62,
81,
11,
1410,
62,
65,
487,
83,
0,
7,
87,
11,
6376,
828,
1410,
62,
487,
83,
0,
7,
87,
11,
6376,
828,
1410,
62,
65,
487,
83,
0,
7,
32,
11,
685,
77,
1343,
352,
25,
17,
77,
26,
7131,
9630,
46570,
1410,
62,
487,
83,
0,
7,
32,
11,
685,
16,
25,
77,
26,
7131,
9630,
46570,
35971,
62,
19052,
11,
35971,
62,
8499,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
35,
1072,
18843,
1352,
7,
404,
3712,
5777,
10468,
525,
1352,
8,
796,
1034,
9,
738,
414,
46616,
7,
35,
1072,
18257,
6030,
11,
1034,
13,
12093,
271,
62,
81,
8,
198,
198,
67,
7928,
7,
404,
3712,
5777,
10468,
525,
2024,
8,
796,
6121,
7,
404,
13,
12093,
271,
62,
81,
11,
1034,
13,
12093,
271,
62,
75,
8,
198,
67,
7928,
7,
404,
3712,
5777,
51,
42,
1039,
8,
796,
6121,
7,
404,
13,
12093,
271,
62,
81,
11,
1034,
13,
12093,
271,
62,
75,
26,
22354,
62,
8807,
28,
7942,
8,
198,
198,
83,
22854,
7,
32,
3712,
5777,
10468,
525,
2024,
11,
347,
3712,
5777,
10468,
525,
2024,
8,
796,
6121,
7,
83,
22854,
7,
32,
13,
12093,
271,
62,
75,
11,
347,
13,
12093,
271,
62,
75,
828,
11192,
273,
7,
32,
13,
12093,
271,
62,
81,
11,
347,
13,
12093,
271,
62,
81,
4008,
198,
83,
22854,
7,
32,
3712,
5777,
51,
42,
1039,
11,
347,
3712,
5777,
51,
42,
1039,
8,
796,
6121,
7,
83,
22854,
7,
32,
13,
12093,
271,
62,
75,
11,
347,
13,
12093,
271,
62,
75,
828,
11192,
273,
7,
32,
13,
12093,
271,
62,
81,
11,
347,
13,
12093,
271,
62,
81,
1776,
22354,
62,
8807,
28,
7942,
8,
198,
198,
8818,
35971,
0,
7,
20274,
3712,
42,
316,
90,
33,
16,
5512,
44,
3712,
5777,
10468,
525,
1352,
90,
33,
16,
11,
33,
17,
5512,
65,
3712,
42,
316,
90,
33,
17,
5512,
26591,
62,
11,
31361,
62,
8,
810,
1391,
33,
16,
27,
25,
15522,
271,
11,
33,
17,
27,
25,
15522,
271,
92,
198,
220,
220,
220,
17130,
796,
10385,
7,
5377,
11141,
37,
2414,
11,
17130,
62,
8,
198,
220,
220,
220,
12159,
796,
10385,
7,
5377,
11141,
37,
2414,
11,
12159,
62,
8,
198,
220,
220,
220,
399,
3712,
5317,
796,
4129,
7,
44,
13,
12093,
271,
62,
81,
8,
198,
220,
220,
220,
611,
12159,
855,
5377,
11141,
7,
15,
2014,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
259,
65,
3733,
329,
1312,
28,
16,
25,
45,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
13,
7890,
58,
72,
60,
796,
337,
13,
76,
377,
62,
19052,
58,
72,
60,
1635,
275,
13,
7890,
58,
72,
60,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
337,
13,
487,
83,
62,
81,
0,
1635,
27179,
1758,
7,
20274,
13,
7890,
11,
2546,
7,
44,
13,
76,
377,
62,
19052,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
259,
65,
3733,
329,
1312,
28,
16,
25,
45,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
13,
7890,
58,
72,
60,
1635,
28,
337,
13,
76,
377,
62,
8499,
58,
72,
60,
1635,
17130,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
46231,
62,
796,
43092,
7,
44,
13,
12093,
271,
62,
75,
11,
4866,
7,
65,
13,
7890,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
259,
65,
3733,
329,
1312,
28,
16,
25,
45,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
46231,
44807,
7890,
58,
72,
60,
1635,
28,
337,
13,
76,
377,
62,
19052,
58,
72,
60,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
337,
13,
487,
83,
62,
81,
0,
1635,
27179,
1758,
7,
862,
72,
44807,
7890,
11,
2546,
7,
44,
13,
76,
377,
62,
19052,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
259,
65,
3733,
329,
1312,
28,
16,
25,
45,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
13,
7890,
58,
72,
60,
796,
12159,
9,
20274,
13,
7890,
58,
72,
60,
1343,
17130,
1635,
46231,
44807,
7890,
58,
72,
60,
1635,
337,
13,
76,
377,
62,
8499,
58,
72,
60,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1255,
198,
437,
198,
198,
8818,
35971,
0,
7,
20274,
3712,
42333,
90,
33,
17,
5512,
65,
3712,
42333,
90,
33,
16,
5512,
44,
3712,
5777,
10468,
525,
1352,
90,
33,
16,
11,
33,
17,
5512,
26591,
62,
11,
31361,
62,
8,
810,
1391,
33,
16,
27,
25,
15522,
271,
11,
33,
17,
27,
25,
15522,
271,
92,
198,
220,
220,
220,
17130,
796,
10385,
7,
5377,
11141,
37,
2414,
11,
17130,
62,
8,
198,
220,
220,
220,
12159,
796,
10385,
7,
5377,
11141,
37,
2414,
11,
12159,
62,
8,
198,
220,
220,
220,
399,
3712,
5317,
796,
4129,
7,
44,
13,
12093,
271,
62,
75,
8,
198,
220,
220,
220,
611,
12159,
855,
5377,
11141,
7,
15,
2014,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
259,
65,
3733,
329,
1312,
28,
16,
25,
45,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
13,
7890,
58,
72,
60,
796,
11644,
7,
44,
13,
76,
377,
62,
8499,
58,
72,
12962,
1635,
11644,
7,
65,
13,
7890,
58,
72,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
337,
13,
487,
83,
62,
75,
0,
1635,
27179,
1758,
7,
20274,
13,
7890,
11,
2546,
7,
44,
13,
76,
377,
62,
8499,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
259,
65,
3733,
329,
1312,
28,
16,
25,
45,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
13,
7890,
58,
72,
60,
796,
11644,
7,
20274,
13,
7890,
58,
72,
12962,
1635,
337,
13,
76,
377,
62,
19052,
58,
72,
60,
1635,
17130,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
46231,
62,
796,
9718,
7,
44,
13,
12093,
271,
62,
81,
11,
11644,
7,
65,
13,
7890,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
259,
65,
3733,
329,
1312,
28,
16,
25,
45,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
46231,
44807,
7890,
58,
72,
60,
1635,
28,
11644,
7,
44,
13,
76,
377,
62,
8499,
58,
72,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
337,
13,
487,
83,
62,
75,
0,
1635,
27179,
1758,
7,
862,
72,
44807,
7890,
11,
2546,
7,
44,
13,
76,
377,
62,
8499,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
259,
65,
3733,
329,
1312,
28,
16,
25,
45,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1255,
13,
7890,
58,
72,
60,
796,
12159,
9,
20274,
13,
7890,
58,
72,
60,
1343,
17130,
1635,
11644,
7,
862,
72,
44807,
7890,
58,
72,
12962,
1635,
337,
13,
76,
377,
62,
19052,
58,
72,
60,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1255,
198,
437,
198,
198,
8818,
35971,
0,
7,
20274,
3712,
18843,
1352,
90,
33,
16,
11,
33,
18,
11,
51,
5512,
32,
3712,
18843,
1352,
90,
33,
16,
11,
33,
17,
5512,
33,
3712,
5777,
10468,
525,
2024,
90,
33,
17,
11,
33,
18,
5512,
26591,
62,
11,
31361,
62,
8,
810,
1391,
33,
16,
27,
25,
15522,
271,
11,
33,
17,
27,
25,
15522,
271,
11,
33,
18,
27,
25,
15522,
271,
11,
51,
92,
198,
220,
220,
220,
17130,
796,
10385,
7,
5377,
11141,
37,
2414,
11,
17130,
62,
8,
198,
220,
220,
220,
12159,
796,
10385,
7,
5377,
11141,
37,
2414,
11,
12159,
62,
8,
198,
220,
220,
220,
611,
12159,
14512,
19157,
7,
15,
2014,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
2092,
7,
20274,
13,
7890,
11,
2546,
7,
20274,
13,
7890,
11,
352,
828,
2546,
7,
20274,
13,
7890,
11,
362,
4008,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
1255,
13,
7890,
198,
220,
220,
220,
886,
198,
220,
220,
220,
4866,
1462,
0,
7,
7890,
11,
317,
13,
7890,
8,
198,
220,
220,
220,
2488,
259,
65,
3733,
329,
474,
28,
16,
25,
13664,
7,
33,
13,
76,
377,
62,
8499,
828,
1312,
28,
16,
25,
13664,
7,
33,
13,
76,
377,
62,
8499,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
58,
72,
11,
474,
60,
1635,
28,
347,
13,
76,
377,
62,
8499,
58,
73,
60,
198,
220,
220,
220,
886,
198,
220,
220,
220,
11644,
0,
7,
7890,
8,
198,
220,
220,
220,
299,
796,
2546,
7,
33,
13,
76,
377,
62,
8499,
8,
198,
220,
220,
220,
347,
13,
487,
83,
62,
75,
17,
0,
1635,
27179,
1758,
7,
7890,
11,
299,
986,
11,
299,
23029,
198,
220,
220,
220,
11644,
0,
7,
7890,
8,
198,
220,
220,
220,
399,
796,
40426,
7,
77,
8,
198,
220,
220,
220,
2488,
259,
65,
3733,
329,
474,
28,
16,
25,
45,
11,
1312,
28,
16,
25,
45,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
58,
72,
11,
474,
60,
1635,
28,
347,
13,
76,
377,
62,
19052,
58,
73,
60,
198,
220,
220,
220,
886,
198,
220,
220,
220,
611,
17130,
14512,
19157,
7,
16,
2014,
198,
220,
220,
220,
220,
220,
220,
220,
300,
76,
377,
0,
7,
26591,
11,
1366,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
611,
12159,
14512,
19157,
7,
15,
2014,
198,
220,
220,
220,
220,
220,
220,
220,
42721,
377,
0,
7,
20274,
13,
7890,
11,
12159,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1255,
13,
7890,
15853,
1366,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1255,
198,
437,
198,
198,
8818,
35971,
0,
7,
20274,
3712,
18843,
1352,
90,
33,
16,
11,
33,
18,
11,
51,
5512,
32,
3712,
5777,
10468,
525,
2024,
90,
33,
16,
11,
33,
17,
5512,
33,
3712,
18843,
1352,
90,
33,
17,
11,
33,
18,
5512,
26591,
62,
11,
31361,
62,
8,
810,
1391,
33,
16,
27,
25,
15522,
271,
11,
33,
17,
27,
25,
15522,
271,
11,
33,
18,
27,
25,
15522,
271,
11,
51,
92,
198,
220,
220,
220,
17130,
796,
10385,
7,
5377,
11141,
37,
2414,
11,
17130,
62,
8,
198,
220,
220,
220,
12159,
796,
10385,
7,
5377,
11141,
37,
2414,
11,
12159,
62,
8,
198,
220,
220,
220,
611,
12159,
14512,
19157,
7,
15,
2014,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
2092,
7,
20274,
13,
7890,
11,
2546,
7,
20274,
13,
7890,
11,
352,
828,
2546,
7,
20274,
13,
7890,
11,
362,
4008,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
1255,
13,
7890,
198,
220,
220,
220,
886,
198,
220,
220,
220,
4866,
1462,
0,
7,
7890,
11,
347,
13,
7890,
8,
198,
220,
220,
220,
2488,
259,
65,
3733,
329,
474,
28,
16,
25,
13664,
7,
32,
13,
76,
377,
62,
19052,
828,
1312,
28,
16,
25,
13664,
7,
32,
13,
76,
377,
62,
19052,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
58,
72,
11,
474,
60,
1635,
28,
317,
13,
76,
377,
62,
19052,
58,
72,
60,
198,
220,
220,
220,
886,
198,
220,
220,
220,
299,
796,
2546,
7,
32,
13,
76,
377,
62,
19052,
8,
198,
220,
220,
220,
317,
13,
487,
83,
62,
81,
17,
0,
1635,
27179,
1758,
7,
7890,
11,
299,
986,
11,
77,
23029,
198,
220,
220,
220,
399,
796,
40426,
7,
77,
8,
198,
220,
220,
220,
2488,
259,
65,
3733,
329,
474,
28,
16,
25,
45,
11,
1312,
28,
16,
25,
45,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
58,
72,
11,
474,
60,
1635,
28,
317,
13,
76,
377,
62,
8499,
58,
72,
60,
198,
220,
220,
220,
886,
198,
220,
220,
220,
611,
17130,
14512,
19157,
7,
16,
2014,
198,
220,
220,
220,
220,
220,
220,
220,
300,
76,
377,
0,
7,
26591,
11,
1366,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
611,
12159,
14512,
19157,
7,
15,
2014,
198,
220,
220,
220,
220,
220,
220,
220,
42721,
377,
0,
7,
20274,
13,
7890,
11,
12159,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1255,
13,
7890,
15853,
1366,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1255,
198,
437,
198
] | 2.07227 | 9,506 |
#Constant mean function
"""
MeanConst <: Mean
Constant mean function
```math
m(x) = β
```
with constant ``β``.
"""
mutable struct MeanConst <: Mean
"Constant"
β::Float64
"Priors for mean parameters"
priors::Array
"""
MeanConst(β::Float64)
Create `MeanConst` with constant `β`.
"""
MeanConst(β::Float64) = new(β, [])
end
mean(mConst::MeanConst, x::AbstractVector) = mConst.β
mean(mConst::MeanConst, X::AbstractMatrix) = fill(mConst.β, size(X,2))
get_params(mConst::MeanConst) = Float64[mConst.β]
get_param_names(::MeanConst) = [:β]
num_params(mConst::MeanConst) = 1
function set_params!(mConst::MeanConst, hyp::AbstractVector)
length(hyp) == 1 || throw(ArgumentError("Constant mean function only has 1 parameter"))
mConst.β = hyp[1]
end
function grad_mean(mConst::MeanConst, x::AbstractVector)
dM_theta = ones(1)
return dM_theta
end
| [
2,
3103,
18797,
1612,
2163,
198,
198,
37811,
198,
220,
220,
220,
22728,
34184,
1279,
25,
22728,
198,
198,
3103,
18797,
1612,
2163,
198,
15506,
63,
11018,
198,
76,
7,
87,
8,
796,
27169,
198,
15506,
63,
198,
4480,
6937,
7559,
26638,
15506,
13,
198,
37811,
198,
76,
18187,
2878,
22728,
34184,
1279,
25,
22728,
198,
220,
220,
220,
366,
3103,
18797,
1,
198,
220,
220,
220,
27169,
3712,
43879,
2414,
198,
220,
220,
220,
366,
47,
8657,
329,
1612,
10007,
1,
198,
220,
220,
220,
1293,
669,
3712,
19182,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
22728,
34184,
7,
26638,
3712,
43879,
2414,
8,
628,
220,
220,
220,
13610,
4600,
5308,
272,
34184,
63,
351,
6937,
4600,
26638,
44646,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
22728,
34184,
7,
26638,
3712,
43879,
2414,
8,
796,
649,
7,
26638,
11,
685,
12962,
198,
437,
198,
198,
32604,
7,
76,
34184,
3712,
5308,
272,
34184,
11,
2124,
3712,
23839,
38469,
8,
796,
285,
34184,
13,
26638,
198,
32604,
7,
76,
34184,
3712,
5308,
272,
34184,
11,
1395,
3712,
23839,
46912,
8,
796,
6070,
7,
76,
34184,
13,
26638,
11,
2546,
7,
55,
11,
17,
4008,
198,
198,
1136,
62,
37266,
7,
76,
34184,
3712,
5308,
272,
34184,
8,
796,
48436,
2414,
58,
76,
34184,
13,
26638,
60,
198,
1136,
62,
17143,
62,
14933,
7,
3712,
5308,
272,
34184,
8,
796,
685,
25,
26638,
60,
198,
22510,
62,
37266,
7,
76,
34184,
3712,
5308,
272,
34184,
8,
796,
352,
198,
8818,
900,
62,
37266,
0,
7,
76,
34184,
3712,
5308,
272,
34184,
11,
5328,
3712,
23839,
38469,
8,
198,
220,
220,
220,
4129,
7,
36362,
8,
6624,
352,
8614,
3714,
7,
28100,
1713,
12331,
7203,
3103,
18797,
1612,
2163,
691,
468,
352,
11507,
48774,
198,
220,
220,
220,
285,
34184,
13,
26638,
796,
5328,
58,
16,
60,
198,
437,
198,
8818,
3915,
62,
32604,
7,
76,
34184,
3712,
5308,
272,
34184,
11,
2124,
3712,
23839,
38469,
8,
198,
220,
220,
220,
288,
44,
62,
1169,
8326,
796,
3392,
7,
16,
8,
198,
220,
220,
220,
1441,
288,
44,
62,
1169,
8326,
198,
437,
198
] | 2.494444 | 360 |
# __BEGIN_LICENSE__
#
# ThreeDeconv.jl
#
# Copyright (c) 2018, Stanford University
#
# All rights reserved.
#
# Redistribution and use in source and binary forms for academic and other
# non-commercial purposes with or without modification, are permitted provided
# that the following conditions are met:
#
# * Redistributions of source code, including modified source code, must retain
# the above copyright notice, this list of conditions and the following
# disclaimer.
#
# * Redistributions in binary form or a modified form of the source code must
# reproduce the above copyright notice, this list of conditions and the
# following disclaimer in the documentation and/or other materials provided with
# the distribution.
#
# * Neither the name of The Leland Stanford Junior University, any of its
# trademarks, the names of its employees, nor contributors to the source code
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# * Where a modified version of the source code is redistributed publicly in
# source or binary forms, the modified source code must be published in a freely
# accessible manner, or otherwise redistributed at no charge to anyone
# requesting a copy of the modified source code, subject to the same terms as
# this agreement.
#
# THIS SOFTWARE IS PROVIDED BY THE TRUSTEES OF THE LELAND STANFORD JUNIOR
# UNIVERSITY "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE LELAND STANFORD JUNIOR
# UNIVERSITY OR ITS TRUSTEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
# BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
# IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
# OF SUCH DAMAGE.
#
# __END_LICENSE__
using QuadGK
import Optim
const ϵ_reg = 1e-6
struct ParametricNoiseModel
m_hat::Vector{Float64}
σ_hat::Vector{Float64}
model::Function
model_init::Function
params
params_init
end
struct localEstimation{T<:AbstractFloat}
y::T
σ::T
κ::T
n::Int
end
function foi_noiseestimation(z::AbstractArray{Float32}; τ=0.2, maxnum_pairs::Int, verbose::Bool=false)
# τ = 0.2 is good to reject a lot of outliers.
@assert maximum(z) <= 1.0
@assert minimum(z) >= 0.0
# Compute the local sample mean and standard deviation over a smooth region
println("Computing local noise variance.")
num_imgs = size(z,3)
z_stack = (z[:,:,i] for i in 1:num_imgs)
est_pairs_array = map(x->localnoiseestimation(x, τ)[1], z_stack)
est_pairs = vcat(est_pairs_array...)
println("Initializing parameters by least-squares.")
ab_init, y_hat, σ_hat = initialize_parameters(est_pairs)
num_pairs = length(est_pairs)
if num_pairs > maxnum_pairs
idx = rand(1:num_pairs, maxnum_pairs)
est_pairs = est_pairs[idx]
end
println("Initialization done.")
println("Starting likelihood maximization.")
likelihood0(x::Vector{Float64}) = nonclipped_negloglikelihood(x, est_pairs)
result = Optim.optimize(likelihood0, ab_init, Optim.NelderMead(), Optim.Options(show_trace = verbose))
println("Finished the maximization.")
ab_hat = Optim.minimizer(result)
@assert Optim.converged(result)
return ab_hat
end
function localnoiseestimation(z::AbstractArray{Float32,2}, τ)
# Wavelet and scaling functions used in the original paper are the followings:
# ψ = Array{Float32}([0.035, 0.085, -0.135, -0.460, 0.807, -0.333])
# ϕ = Array{Float32}([0.025, -0.060, -0.095, 0.325, 0.571, 0.235])
ϕ = [0.035226291882100656f0, -0.08544127388224149f0, -0.13501102001039084f0, 0.4598775021193313f0, 0.8068915093133388f0, 0.3326705529509569f0]
ϕ ./= sum(ϕ)
ψ = [-0.3326705529509569f0, 0.8068915093133388f0, -0.4598775021193313f0, -0.13501102001039084f0, 0.08544127388224149f0, 0.035226291882100656f0]
ψ ./= norm(ψ)
σ_gauss = 1.2f0
gauss = [exp(-x^2 / (2.0f0 * σ_gauss^2)) for x in -10.f0:10.f0]
gauss ./= sum(gauss)
z_wdet = circconv(z, ψ)[1:2:end, 1:2:end]
z_wapp = circconv(z, ϕ)[1:2:end, 1:2:end]
ω = ones(Float32, 7) ./ 7.0f0
z_smo = circconv(z_wapp, ω, ω)
s = sqrt(0.5 * π) .* circconv(abs.(z_wdet), ω, ω)
g = [-0.5f0, 0.0f0, 0.5f0]
smoothed_zwapp = circconv(z_wapp, gauss, gauss)
dx_wapp = circconv(smoothed_zwapp, [1.0f0], g)
dy_wapp = circconv(smoothed_zwapp, g, [1.0f0])
x_smo = sqrt.(dx_wapp.^2 .+ dy_wapp.^2) .< τ .* s
N = length(z_smo)
num_bins = 300
histogram_zwapp = [Vector{Float32}() for _ in 1:num_bins]
histogram_zwdet = [Vector{Float32}() for _ in 1:num_bins]
min_wapp = sum(ϕ[ϕ .< 0.f0])
max_wapp = sum(ϕ[ϕ .>= 0.f0])
Δ = (max_wapp - min_wapp) / num_bins
for i in 1:N
if x_smo[i]
idx = floor(Int, (z_smo[i] - min_wapp) / Δ)
push!(histogram_zwapp[idx], z_wapp[i])
push!(histogram_zwdet[idx], z_wdet[i])
end
end
est_pairs = Vector{localEstimation{Float64}}()
for i in 1:num_bins
if histogram_zwdet[i] != []
n = length(histogram_zwdet[i])
κ = madBiasFactor(n)
σ = sqrt(max(Float64(mad(histogram_zwdet[i], κ))^2, .0))
y = Float64(mean(histogram_zwapp[i]))
push!(est_pairs, localEstimation(y, σ, κ, n))
end
end
return est_pairs, x_smo
end
function initialize_parameters(est_pairs::Vector{localEstimation{T}}) where T
num_pairs = length(est_pairs)
y_hat = zeros(num_pairs)
σ_hat = zeros(num_pairs)
Φ_tmp = Vector{Float64}()
v = Vector{Float64}()
for i = 1:num_pairs
tmp = est_pairs[i]
y_hat[i] = tmp.y
σ_hat[i] = tmp.σ
push!(Φ_tmp, tmp.y)
push!(v, tmp.σ^2)
end
Φ = hcat(Φ_tmp, ones(length(Φ_tmp)))
ab0 = Φ \ v
return ab0, y_hat, σ_hat
end
function nonclipped_negloglikelihood(ab::Vector{Float64}, est_pairs::Vector{localEstimation{T}}) where T
Δ = .1
total_val = .0
for l in est_pairs
c_i = 1.0 / l.n
d_i = 1.35 / (l.n + 1.5)
y_i = l.y
σ_i = l.σ
# This integrand is sometimes a very sharp peak-like function like a Dirac funciton.
# Therefore, the direct numerical integration over [0.0, 1.0] is realatively difficult
# because the algorithm may not evaluate the integrand around the peak.
# To avoid this issue, the integration interval is separated into multiple intervals.
# Since the peak is known to be close to y_i, the function value at y_i should be enough large than zero.
integrand(y::Float64)::Float64 = 1.0 / σsq_reg(y, ab) *
exp(-1.0 / (2.0 * σsq_reg(y, ab)) * ( (y_i - y)^2 / c_i + (σ_i - sqrt(σsq_reg(y, ab)) )^2 / d_i))
val = .0
if y_i - Δ > .0
val += quadgk(integrand, .0, y_i - Δ)[1]
end
val += quadgk(integrand, max(.0, y_i - Δ), y_i)[1]
val += quadgk(integrand, y_i, min(1.0, y_i + Δ))[1]
if y_i + Δ < 1.0
val += quadgk(integrand, y_i + Δ, 1.0)[1]
end
total_val -= log(1 / (2π * sqrt(c_i * d_i) ) * abs(val) + ϵ_reg)
end
return total_val
end
σsq_reg(y::Float64, ab::Vector{Float64}) = max(ϵ_reg^2, σsq(y, ab))
σsq(y::Float64, ab::Vector{Float64}) = ab[1] * y + ab[2]
| [
2,
11593,
33,
43312,
62,
43,
2149,
24290,
834,
198,
2,
198,
2,
7683,
10707,
261,
85,
13,
20362,
198,
2,
198,
2,
15069,
357,
66,
8,
2864,
11,
13863,
2059,
198,
2,
198,
2,
1439,
2489,
10395,
13,
198,
2,
198,
2,
2297,
396,
3890,
290,
779,
287,
2723,
290,
13934,
5107,
329,
8233,
290,
584,
198,
2,
1729,
12,
36313,
4959,
351,
393,
1231,
17613,
11,
389,
10431,
2810,
198,
2,
326,
262,
1708,
3403,
389,
1138,
25,
198,
2,
198,
2,
1635,
2297,
396,
2455,
507,
286,
2723,
2438,
11,
1390,
9518,
2723,
2438,
11,
1276,
12377,
198,
2,
220,
220,
262,
2029,
6634,
4003,
11,
428,
1351,
286,
3403,
290,
262,
1708,
198,
2,
220,
220,
37592,
13,
198,
2,
198,
2,
1635,
2297,
396,
2455,
507,
287,
13934,
1296,
393,
257,
9518,
1296,
286,
262,
2723,
2438,
1276,
198,
2,
220,
220,
22919,
262,
2029,
6634,
4003,
11,
428,
1351,
286,
3403,
290,
262,
198,
2,
220,
220,
1708,
37592,
287,
262,
10314,
290,
14,
273,
584,
5696,
2810,
351,
198,
2,
220,
220,
262,
6082,
13,
198,
2,
198,
2,
1635,
16126,
262,
1438,
286,
383,
406,
8822,
13863,
20000,
2059,
11,
597,
286,
663,
198,
2,
220,
220,
27346,
11,
262,
3891,
286,
663,
4409,
11,
4249,
20420,
284,
262,
2723,
2438,
198,
2,
220,
220,
743,
307,
973,
284,
11438,
393,
7719,
3186,
10944,
422,
428,
3788,
1231,
198,
2,
220,
220,
2176,
3161,
3194,
7170,
13,
198,
2,
198,
2,
1635,
6350,
257,
9518,
2196,
286,
262,
2723,
2438,
318,
38913,
7271,
287,
198,
2,
220,
220,
2723,
393,
13934,
5107,
11,
262,
9518,
2723,
2438,
1276,
307,
3199,
287,
257,
12748,
198,
2,
220,
220,
9857,
5642,
11,
393,
4306,
38913,
379,
645,
3877,
284,
2687,
198,
2,
220,
220,
20623,
257,
4866,
286,
262,
9518,
2723,
2438,
11,
2426,
284,
262,
976,
2846,
355,
198,
2,
220,
220,
428,
4381,
13,
198,
2,
198,
2,
12680,
47466,
3180,
36592,
2389,
1961,
11050,
3336,
7579,
7759,
36,
1546,
3963,
3336,
406,
3698,
6981,
3563,
1565,
37,
12532,
449,
4944,
41254,
198,
2,
49677,
9050,
366,
1921,
3180,
1,
5357,
15529,
7788,
32761,
6375,
8959,
49094,
34764,
11015,
11,
47783,
2751,
11,
21728,
5626,
198,
2,
40880,
5390,
11,
3336,
8959,
49094,
34764,
11015,
3963,
34482,
3398,
1565,
5603,
25382,
5357,
376,
46144,
7473,
317,
198,
2,
16652,
2149,
37232,
33079,
48933,
15986,
13954,
48778,
1961,
13,
3268,
8005,
49261,
50163,
3336,
406,
3698,
6981,
3563,
1565,
37,
12532,
449,
4944,
41254,
198,
2,
49677,
9050,
6375,
42437,
7579,
7759,
36,
1546,
9348,
43031,
19146,
7473,
15529,
42242,
11,
3268,
17931,
23988,
11,
19387,
25256,
1847,
11,
198,
2,
38846,
11,
7788,
3620,
6489,
13153,
11,
6375,
7102,
5188,
10917,
3525,
12576,
29506,
25552,
357,
1268,
39149,
2751,
11,
21728,
5626,
40880,
5390,
11,
198,
2,
41755,
11335,
10979,
3963,
28932,
2257,
2043,
37780,
21090,
50,
6375,
49254,
26,
406,
18420,
3963,
23210,
11,
42865,
11,
6375,
4810,
19238,
29722,
26,
6375,
198,
2,
43949,
44180,
23255,
49,
8577,
24131,
8,
29630,
36,
5959,
7257,
2937,
1961,
5357,
6177,
15529,
3336,
15513,
3963,
43031,
25382,
11,
7655,
2767,
16879,
3268,
198,
2,
27342,
10659,
11,
19269,
18379,
43031,
25382,
11,
6375,
309,
9863,
357,
1268,
39149,
2751,
399,
7156,
43,
3528,
18310,
6375,
25401,
54,
24352,
8,
5923,
1797,
2751,
198,
2,
3268,
15529,
34882,
16289,
3963,
3336,
23210,
3963,
12680,
47466,
11,
45886,
16876,
5984,
29817,
1961,
3963,
3336,
28069,
11584,
25382,
198,
2,
3963,
13558,
3398,
29506,
11879,
13,
198,
2,
198,
2,
11593,
10619,
62,
43,
2149,
24290,
834,
628,
198,
3500,
20648,
38,
42,
198,
11748,
30011,
198,
198,
9979,
18074,
113,
62,
2301,
796,
352,
68,
12,
21,
198,
198,
7249,
25139,
19482,
2949,
786,
17633,
198,
220,
220,
220,
285,
62,
5183,
3712,
38469,
90,
43879,
2414,
92,
198,
220,
220,
220,
18074,
225,
62,
5183,
3712,
38469,
90,
43879,
2414,
92,
198,
220,
220,
220,
2746,
3712,
22203,
198,
220,
220,
220,
2746,
62,
15003,
3712,
22203,
198,
220,
220,
220,
42287,
198,
220,
220,
220,
42287,
62,
15003,
198,
437,
198,
198,
7249,
1957,
22362,
18991,
90,
51,
27,
25,
23839,
43879,
92,
198,
220,
220,
220,
331,
3712,
51,
198,
220,
220,
220,
18074,
225,
3712,
51,
198,
220,
220,
220,
7377,
118,
3712,
51,
198,
220,
220,
220,
299,
3712,
5317,
198,
437,
198,
198,
8818,
11511,
72,
62,
3919,
786,
395,
18991,
7,
89,
3712,
23839,
19182,
90,
43879,
2624,
19629,
46651,
28,
15,
13,
17,
11,
3509,
22510,
62,
79,
3468,
3712,
5317,
11,
15942,
577,
3712,
33,
970,
28,
9562,
8,
198,
220,
220,
220,
1303,
46651,
796,
657,
13,
17,
318,
922,
284,
4968,
257,
1256,
286,
41528,
3183,
13,
628,
220,
220,
220,
2488,
30493,
5415,
7,
89,
8,
19841,
352,
13,
15,
198,
220,
220,
220,
2488,
30493,
5288,
7,
89,
8,
18189,
657,
13,
15,
628,
220,
220,
220,
1303,
3082,
1133,
262,
1957,
6291,
1612,
290,
3210,
28833,
625,
257,
7209,
3814,
198,
220,
220,
220,
44872,
7203,
5377,
48074,
1957,
7838,
24198,
19570,
198,
220,
220,
220,
997,
62,
9600,
82,
796,
2546,
7,
89,
11,
18,
8,
198,
220,
220,
220,
1976,
62,
25558,
796,
357,
89,
58,
45299,
45299,
72,
60,
329,
1312,
287,
352,
25,
22510,
62,
9600,
82,
8,
198,
220,
220,
220,
1556,
62,
79,
3468,
62,
18747,
796,
3975,
7,
87,
3784,
12001,
3919,
786,
395,
18991,
7,
87,
11,
46651,
38381,
16,
4357,
1976,
62,
25558,
8,
198,
220,
220,
220,
1556,
62,
79,
3468,
796,
410,
9246,
7,
395,
62,
79,
3468,
62,
18747,
23029,
628,
220,
220,
220,
44872,
7203,
24243,
2890,
10007,
416,
1551,
12,
16485,
3565,
19570,
198,
220,
220,
220,
450,
62,
15003,
11,
331,
62,
5183,
11,
18074,
225,
62,
5183,
796,
41216,
62,
17143,
7307,
7,
395,
62,
79,
3468,
8,
628,
220,
220,
220,
997,
62,
79,
3468,
796,
4129,
7,
395,
62,
79,
3468,
8,
198,
220,
220,
220,
611,
997,
62,
79,
3468,
1875,
3509,
22510,
62,
79,
3468,
198,
220,
220,
220,
220,
220,
220,
220,
4686,
87,
796,
43720,
7,
16,
25,
22510,
62,
79,
3468,
11,
3509,
22510,
62,
79,
3468,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1556,
62,
79,
3468,
796,
1556,
62,
79,
3468,
58,
312,
87,
60,
198,
220,
220,
220,
886,
628,
220,
220,
220,
44872,
7203,
24243,
1634,
1760,
19570,
198,
220,
220,
220,
44872,
7203,
22851,
14955,
12991,
1634,
19570,
628,
220,
220,
220,
14955,
15,
7,
87,
3712,
38469,
90,
43879,
2414,
30072,
796,
1729,
565,
3949,
62,
710,
4743,
519,
2339,
11935,
7,
87,
11,
1556,
62,
79,
3468,
8,
198,
220,
220,
220,
1255,
796,
30011,
13,
40085,
1096,
7,
2339,
11935,
15,
11,
450,
62,
15003,
11,
30011,
13,
8199,
6499,
44,
1329,
22784,
30011,
13,
29046,
7,
12860,
62,
40546,
796,
15942,
577,
4008,
628,
220,
220,
220,
44872,
7203,
18467,
1348,
262,
12991,
1634,
19570,
628,
220,
220,
220,
450,
62,
5183,
796,
30011,
13,
1084,
320,
7509,
7,
20274,
8,
198,
220,
220,
220,
2488,
30493,
30011,
13,
1102,
332,
2004,
7,
20274,
8,
628,
220,
220,
220,
1441,
450,
62,
5183,
198,
437,
628,
198,
8818,
1957,
3919,
786,
395,
18991,
7,
89,
3712,
23839,
19182,
90,
43879,
2624,
11,
17,
5512,
46651,
8,
198,
220,
220,
220,
1303,
17084,
1616,
290,
20796,
5499,
973,
287,
262,
2656,
3348,
389,
262,
1061,
654,
25,
198,
220,
220,
220,
1303,
18074,
230,
796,
15690,
90,
43879,
2624,
92,
26933,
15,
13,
44215,
11,
657,
13,
2919,
20,
11,
532,
15,
13,
17059,
11,
532,
15,
13,
34716,
11,
657,
13,
36928,
11,
532,
15,
13,
20370,
12962,
198,
220,
220,
220,
1303,
18074,
243,
796,
15690,
90,
43879,
2624,
92,
26933,
15,
13,
36629,
11,
532,
15,
13,
41322,
11,
532,
15,
13,
2931,
20,
11,
657,
13,
26582,
11,
657,
13,
42875,
11,
657,
13,
22370,
12962,
198,
220,
220,
220,
18074,
243,
796,
685,
15,
13,
44215,
24909,
1959,
20356,
2481,
405,
37466,
69,
15,
11,
532,
15,
13,
2919,
47576,
16799,
2548,
6469,
1731,
19442,
69,
15,
11,
532,
15,
13,
17059,
486,
940,
2167,
940,
2670,
2919,
19,
69,
15,
11,
657,
13,
2231,
4089,
3324,
1120,
2481,
1129,
2091,
1485,
69,
15,
11,
657,
13,
1795,
3104,
6420,
1120,
6052,
1485,
2091,
3459,
69,
15,
11,
657,
13,
2091,
2075,
2154,
2816,
1959,
1120,
3865,
3388,
69,
15,
60,
198,
220,
220,
220,
18074,
243,
24457,
28,
2160,
7,
139,
243,
8,
628,
220,
220,
220,
18074,
230,
796,
25915,
15,
13,
2091,
2075,
2154,
2816,
1959,
1120,
3865,
3388,
69,
15,
11,
657,
13,
1795,
3104,
6420,
1120,
6052,
1485,
2091,
3459,
69,
15,
11,
532,
15,
13,
2231,
4089,
3324,
1120,
2481,
1129,
2091,
1485,
69,
15,
11,
532,
15,
13,
17059,
486,
940,
2167,
940,
2670,
2919,
19,
69,
15,
11,
657,
13,
2919,
47576,
16799,
2548,
6469,
1731,
19442,
69,
15,
11,
657,
13,
44215,
24909,
1959,
20356,
2481,
405,
37466,
69,
15,
60,
198,
220,
220,
220,
18074,
230,
24457,
28,
2593,
7,
139,
230,
8,
628,
220,
220,
220,
18074,
225,
62,
4908,
1046,
796,
352,
13,
17,
69,
15,
198,
220,
220,
220,
31986,
1046,
796,
685,
11201,
32590,
87,
61,
17,
1220,
357,
17,
13,
15,
69,
15,
1635,
18074,
225,
62,
4908,
1046,
61,
17,
4008,
329,
2124,
287,
532,
940,
13,
69,
15,
25,
940,
13,
69,
15,
60,
198,
220,
220,
220,
31986,
1046,
24457,
28,
2160,
7,
4908,
1046,
8,
628,
220,
220,
220,
1976,
62,
86,
15255,
796,
10774,
535,
261,
85,
7,
89,
11,
18074,
230,
38381,
16,
25,
17,
25,
437,
11,
352,
25,
17,
25,
437,
60,
198,
220,
220,
220,
1976,
62,
86,
1324,
796,
10774,
535,
261,
85,
7,
89,
11,
18074,
243,
38381,
16,
25,
17,
25,
437,
11,
352,
25,
17,
25,
437,
60,
628,
220,
220,
220,
18074,
231,
796,
3392,
7,
43879,
2624,
11,
767,
8,
24457,
767,
13,
15,
69,
15,
198,
220,
220,
220,
1976,
62,
5796,
78,
796,
10774,
535,
261,
85,
7,
89,
62,
86,
1324,
11,
18074,
231,
11,
18074,
231,
8,
198,
220,
220,
220,
264,
796,
19862,
17034,
7,
15,
13,
20,
1635,
18074,
222,
8,
764,
9,
10774,
535,
261,
85,
7,
8937,
12195,
89,
62,
86,
15255,
828,
18074,
231,
11,
18074,
231,
8,
628,
220,
220,
220,
308,
796,
25915,
15,
13,
20,
69,
15,
11,
657,
13,
15,
69,
15,
11,
657,
13,
20,
69,
15,
60,
198,
220,
220,
220,
32746,
704,
62,
89,
86,
1324,
796,
10774,
535,
261,
85,
7,
89,
62,
86,
1324,
11,
31986,
1046,
11,
31986,
1046,
8,
198,
220,
220,
220,
44332,
62,
86,
1324,
796,
10774,
535,
261,
85,
7,
5796,
1025,
704,
62,
89,
86,
1324,
11,
685,
16,
13,
15,
69,
15,
4357,
308,
8,
198,
220,
220,
220,
20268,
62,
86,
1324,
796,
10774,
535,
261,
85,
7,
5796,
1025,
704,
62,
89,
86,
1324,
11,
308,
11,
685,
16,
13,
15,
69,
15,
12962,
628,
220,
220,
220,
2124,
62,
5796,
78,
796,
19862,
17034,
12195,
34350,
62,
86,
1324,
13,
61,
17,
764,
10,
20268,
62,
86,
1324,
13,
61,
17,
8,
764,
27,
46651,
764,
9,
264,
198,
220,
220,
220,
399,
796,
4129,
7,
89,
62,
5796,
78,
8,
198,
220,
220,
220,
997,
62,
65,
1040,
796,
5867,
198,
220,
220,
220,
1554,
21857,
62,
89,
86,
1324,
796,
685,
38469,
90,
43879,
2624,
92,
3419,
329,
4808,
287,
352,
25,
22510,
62,
65,
1040,
60,
198,
220,
220,
220,
1554,
21857,
62,
89,
86,
15255,
796,
685,
38469,
90,
43879,
2624,
92,
3419,
329,
4808,
287,
352,
25,
22510,
62,
65,
1040,
60,
198,
220,
220,
220,
949,
62,
86,
1324,
796,
2160,
7,
139,
243,
58,
139,
243,
764,
27,
220,
657,
13,
69,
15,
12962,
198,
220,
220,
220,
3509,
62,
86,
1324,
796,
2160,
7,
139,
243,
58,
139,
243,
764,
29,
28,
657,
13,
69,
15,
12962,
198,
220,
220,
220,
37455,
796,
357,
9806,
62,
86,
1324,
532,
949,
62,
86,
1324,
8,
1220,
997,
62,
65,
1040,
628,
220,
220,
220,
329,
1312,
287,
352,
25,
45,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
62,
5796,
78,
58,
72,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4686,
87,
796,
4314,
7,
5317,
11,
357,
89,
62,
5796,
78,
58,
72,
60,
532,
949,
62,
86,
1324,
8,
1220,
37455,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
10034,
21857,
62,
89,
86,
1324,
58,
312,
87,
4357,
1976,
62,
86,
1324,
58,
72,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
10034,
21857,
62,
89,
86,
15255,
58,
312,
87,
4357,
1976,
62,
86,
15255,
58,
72,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1556,
62,
79,
3468,
796,
20650,
90,
12001,
22362,
18991,
90,
43879,
2414,
11709,
3419,
198,
220,
220,
220,
329,
1312,
287,
352,
25,
22510,
62,
65,
1040,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1554,
21857,
62,
89,
86,
15255,
58,
72,
60,
14512,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
796,
4129,
7,
10034,
21857,
62,
89,
86,
15255,
58,
72,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7377,
118,
796,
8805,
33,
4448,
41384,
7,
77,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18074,
225,
796,
19862,
17034,
7,
9806,
7,
43879,
2414,
7,
9937,
7,
10034,
21857,
62,
89,
86,
15255,
58,
72,
4357,
7377,
118,
4008,
61,
17,
11,
764,
15,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
796,
48436,
2414,
7,
32604,
7,
10034,
21857,
62,
89,
86,
1324,
58,
72,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
395,
62,
79,
3468,
11,
1957,
22362,
18991,
7,
88,
11,
18074,
225,
11,
7377,
118,
11,
299,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1441,
1556,
62,
79,
3468,
11,
2124,
62,
5796,
78,
198,
437,
628,
198,
8818,
41216,
62,
17143,
7307,
7,
395,
62,
79,
3468,
3712,
38469,
90,
12001,
22362,
18991,
90,
51,
11709,
8,
810,
309,
198,
220,
220,
220,
997,
62,
79,
3468,
796,
4129,
7,
395,
62,
79,
3468,
8,
628,
220,
220,
220,
331,
62,
5183,
796,
1976,
27498,
7,
22510,
62,
79,
3468,
8,
198,
220,
220,
220,
18074,
225,
62,
5183,
796,
1976,
27498,
7,
22510,
62,
79,
3468,
8,
628,
220,
220,
220,
7377,
99,
62,
22065,
796,
20650,
90,
43879,
2414,
92,
3419,
198,
220,
220,
220,
410,
796,
20650,
90,
43879,
2414,
92,
3419,
628,
220,
220,
220,
329,
1312,
796,
352,
25,
22510,
62,
79,
3468,
198,
220,
220,
220,
220,
220,
220,
220,
45218,
796,
1556,
62,
79,
3468,
58,
72,
60,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
5183,
58,
72,
60,
796,
45218,
13,
88,
198,
220,
220,
220,
220,
220,
220,
220,
18074,
225,
62,
5183,
58,
72,
60,
796,
45218,
13,
38392,
198,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
138,
99,
62,
22065,
11,
45218,
13,
88,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
85,
11,
45218,
13,
38392,
61,
17,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
7377,
99,
796,
289,
9246,
7,
138,
99,
62,
22065,
11,
3392,
7,
13664,
7,
138,
99,
62,
22065,
22305,
198,
220,
220,
220,
450,
15,
796,
220,
7377,
99,
3467,
410,
198,
220,
220,
220,
1441,
450,
15,
11,
331,
62,
5183,
11,
18074,
225,
62,
5183,
198,
437,
628,
198,
8818,
1729,
565,
3949,
62,
710,
4743,
519,
2339,
11935,
7,
397,
3712,
38469,
90,
43879,
2414,
5512,
220,
1556,
62,
79,
3468,
3712,
38469,
90,
12001,
22362,
18991,
90,
51,
11709,
8,
810,
309,
628,
220,
220,
220,
37455,
796,
764,
16,
198,
220,
220,
220,
2472,
62,
2100,
796,
764,
15,
628,
220,
220,
220,
329,
300,
287,
1556,
62,
79,
3468,
198,
220,
220,
220,
220,
220,
220,
220,
269,
62,
72,
796,
352,
13,
15,
1220,
300,
13,
77,
198,
220,
220,
220,
220,
220,
220,
220,
288,
62,
72,
796,
352,
13,
2327,
1220,
357,
75,
13,
77,
1343,
352,
13,
20,
8,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
72,
796,
300,
13,
88,
198,
220,
220,
220,
220,
220,
220,
220,
18074,
225,
62,
72,
796,
300,
13,
38392,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
770,
4132,
25192,
318,
3360,
257,
845,
7786,
9103,
12,
2339,
2163,
588,
257,
36202,
330,
25439,
37752,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
8447,
11,
262,
1277,
29052,
11812,
625,
685,
15,
13,
15,
11,
352,
13,
15,
60,
318,
1103,
9404,
2408,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
780,
262,
11862,
743,
407,
13446,
262,
4132,
25192,
1088,
262,
9103,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1675,
3368,
428,
2071,
11,
262,
11812,
16654,
318,
11266,
656,
3294,
20016,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4619,
262,
9103,
318,
1900,
284,
307,
1969,
284,
331,
62,
72,
11,
262,
2163,
1988,
379,
331,
62,
72,
815,
307,
1576,
1588,
621,
6632,
13,
198,
220,
220,
220,
220,
220,
220,
220,
4132,
25192,
7,
88,
3712,
43879,
2414,
2599,
25,
43879,
2414,
796,
352,
13,
15,
1220,
18074,
225,
31166,
62,
2301,
7,
88,
11,
450,
8,
1635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1033,
32590,
16,
13,
15,
1220,
357,
17,
13,
15,
1635,
18074,
225,
31166,
62,
2301,
7,
88,
11,
450,
4008,
1635,
357,
357,
88,
62,
72,
532,
331,
8,
61,
17,
1220,
269,
62,
72,
1343,
357,
38392,
62,
72,
532,
19862,
17034,
7,
38392,
31166,
62,
2301,
7,
88,
11,
450,
4008,
1267,
61,
17,
1220,
288,
62,
72,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
1188,
796,
764,
15,
198,
220,
220,
220,
220,
220,
220,
220,
611,
331,
62,
72,
532,
37455,
1875,
764,
15,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1188,
15853,
15094,
70,
74,
7,
18908,
25192,
11,
764,
15,
11,
331,
62,
72,
532,
37455,
38381,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
1188,
15853,
15094,
70,
74,
7,
18908,
25192,
11,
3509,
7,
13,
15,
11,
331,
62,
72,
532,
37455,
828,
331,
62,
72,
38381,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1188,
15853,
15094,
70,
74,
7,
18908,
25192,
11,
331,
62,
72,
11,
949,
7,
16,
13,
15,
11,
331,
62,
72,
1343,
37455,
4008,
58,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
331,
62,
72,
1343,
37455,
1279,
352,
13,
15,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1188,
15853,
15094,
70,
74,
7,
18908,
25192,
11,
331,
62,
72,
1343,
37455,
11,
352,
13,
15,
38381,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
220,
220,
2472,
62,
2100,
48185,
2604,
7,
16,
1220,
357,
17,
46582,
1635,
19862,
17034,
7,
66,
62,
72,
1635,
288,
62,
72,
8,
1267,
1635,
2352,
7,
2100,
8,
1343,
18074,
113,
62,
2301,
8,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1441,
2472,
62,
2100,
198,
437,
628,
198,
38392,
31166,
62,
2301,
7,
88,
3712,
43879,
2414,
11,
450,
3712,
38469,
90,
43879,
2414,
30072,
796,
3509,
7,
139,
113,
62,
2301,
61,
17,
11,
18074,
225,
31166,
7,
88,
11,
450,
4008,
198,
38392,
31166,
7,
88,
3712,
43879,
2414,
11,
450,
3712,
38469,
90,
43879,
2414,
30072,
796,
450,
58,
16,
60,
1635,
331,
1343,
450,
58,
17,
60,
198
] | 2.277254 | 3,394 |
{"score": 7.47, "score_count": 105041, "timestamp": 1567156691.0}
{"score": 7.47, "score_count": 104512, "timestamp": 1565255920.0}
{"score": 7.48, "score_count": 103497, "timestamp": 1560521897.0}
{"score": 7.48, "score_count": 103335, "timestamp": 1559873532.0}
{"score": 7.48, "score_count": 103198, "timestamp": 1559003157.0}
{"score": 7.48, "score_count": 103052, "timestamp": 1558463581.0}
{"score": 7.48, "score_count": 102789, "timestamp": 1557516079.0}
{"score": 7.48, "score_count": 101524, "timestamp": 1552987254.0}
{"score": 7.49, "score_count": 100705, "timestamp": 1550375712.0}
{"score": 7.49, "score_count": 99947, "timestamp": 1547695191.0}
{"score": 7.49, "score_count": 99947, "timestamp": 1547687718.0}
{"score": 7.51, "score_count": 95020, "timestamp": 1529254514.0}
{"score": 7.51, "score_count": 92899, "timestamp": 1522339580.0}
{"score": 7.52, "score_count": 91002, "timestamp": 1516872218.0}
{"score": 7.53, "score_count": 89448, "timestamp": 1513059306.0}
{"score": 7.48, "score_count": 103721, "timestamp": 1561629302.0}
{"score": 7.52, "score_count": 91002, "timestamp": 1516872202.0}
{"score": 7.53, "score_count": 89161, "timestamp": 1512000427.0}
{"score": 7.61, "score_count": 68355, "timestamp": 1460091010.0}
{"score": 7.63, "score_count": 63191, "timestamp": 1448940393.0}
{"score": 7.64, "score_count": 60580, "timestamp": 1441778723.0}
{"score": 7.53, "score_count": 89161, "timestamp": 1512000504.0}
{"score": 7.57, "score_count": 78551, "timestamp": 1484614279.0}
{"score": 7.57, "score_count": 78551, "timestamp": 1484614083.0}
{"score": 7.57, "score_count": 77762, "timestamp": 1483740846.0}
{"score": 7.57, "score_count": 77762, "timestamp": 1483740565.0}
{"score": 7.57, "score_count": 76955, "timestamp": 1482315429.0}
{"score": 7.59, "score_count": 73055, "timestamp": 1471569583.0}
{"score": 7.59, "score_count": 71544, "timestamp": 1467977324.0}
{"score": 7.6, "score_count": 69360, "timestamp": 1462469333.0}
{"score": 7.6, "score_count": 69086, "timestamp": 1461802266.0}
{"score": 7.6, "score_count": 68917, "timestamp": 1461442258.0}
{"score": 7.61, "score_count": 67692, "timestamp": 1458728550.0}
{"score": 7.61, "score_count": 67553, "timestamp": 1458389046.0}
{"score": 7.61, "score_count": 67425, "timestamp": 1458105758.0}
{"score": 7.61, "score_count": 67038, "timestamp": 1457206805.0}
{"score": 7.62, "score_count": 66676, "timestamp": 1456247903.0}
{"score": 7.62, "score_count": 66396, "timestamp": 1455586820.0}
{"score": 7.62, "score_count": 65922, "timestamp": 1454420322.0}
{"score": 7.62, "score_count": 64558, "timestamp": 1451761564.0}
{"score": 7.62, "score_count": 64111, "timestamp": 1451038037.0}
{"score": 7.63, "score_count": 63703, "timestamp": 1450143738.0}
{"score": 7.63, "score_count": 63545, "timestamp": 1449791766.0}
{"score": 7.63, "score_count": 62257, "timestamp": 1446153782.0}
| [
4895,
26675,
1298,
767,
13,
2857,
11,
366,
26675,
62,
9127,
1298,
47235,
3901,
11,
366,
16514,
27823,
1298,
1315,
3134,
1314,
2791,
6420,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
2857,
11,
366,
26675,
62,
9127,
1298,
838,
2231,
1065,
11,
366,
16514,
27823,
1298,
1315,
2996,
1495,
3270,
1238,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
2780,
11,
366,
26675,
62,
9127,
1298,
838,
2682,
5607,
11,
366,
16514,
27823,
1298,
1315,
1899,
4309,
1507,
5607,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
2780,
11,
366,
26675,
62,
9127,
1298,
838,
2091,
2327,
11,
366,
16514,
27823,
1298,
1315,
3270,
5774,
2327,
2624,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
2780,
11,
366,
26675,
62,
9127,
1298,
15349,
22337,
11,
366,
16514,
27823,
1298,
1315,
3270,
11245,
18458,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
2780,
11,
366,
26675,
62,
9127,
1298,
838,
1270,
4309,
11,
366,
16514,
27823,
1298,
1315,
3365,
3510,
2327,
6659,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
2780,
11,
366,
26675,
62,
9127,
1298,
838,
1983,
4531,
11,
366,
16514,
27823,
1298,
20708,
2425,
1433,
2998,
24,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
2780,
11,
366,
26675,
62,
9127,
1298,
8949,
48057,
11,
366,
16514,
27823,
1298,
20708,
1959,
5774,
24970,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
2920,
11,
366,
26675,
62,
9127,
1298,
1802,
34801,
11,
366,
16514,
27823,
1298,
1315,
1120,
22318,
49517,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
2920,
11,
366,
26675,
62,
9127,
1298,
36006,
2857,
11,
366,
16514,
27823,
1298,
1315,
2857,
37381,
26492,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
2920,
11,
366,
26675,
62,
9127,
1298,
36006,
2857,
11,
366,
16514,
27823,
1298,
1315,
2857,
3104,
3324,
1507,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
4349,
11,
366,
26675,
62,
9127,
1298,
38384,
1238,
11,
366,
16514,
27823,
1298,
1315,
1959,
1495,
2231,
1415,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
4349,
11,
366,
26675,
62,
9127,
1298,
860,
2078,
2079,
11,
366,
16514,
27823,
1298,
1315,
1828,
2091,
3865,
1795,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
4309,
11,
366,
26675,
62,
9127,
1298,
860,
3064,
17,
11,
366,
16514,
27823,
1298,
1315,
1433,
5774,
1828,
1507,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
4310,
11,
366,
26675,
62,
9127,
1298,
9919,
31115,
11,
366,
16514,
27823,
1298,
1315,
12952,
3270,
20548,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
2780,
11,
366,
26675,
62,
9127,
1298,
838,
2718,
2481,
11,
366,
16514,
27823,
1298,
23871,
1433,
1959,
22709,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
4309,
11,
366,
26675,
62,
9127,
1298,
860,
3064,
17,
11,
366,
16514,
27823,
1298,
1315,
14656,
4761,
19004,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
4310,
11,
366,
26675,
62,
9127,
1298,
9919,
25948,
11,
366,
16514,
27823,
1298,
1315,
1065,
830,
42363,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
5333,
11,
366,
26675,
62,
9127,
1298,
8257,
28567,
11,
366,
16514,
27823,
1298,
1478,
8054,
6420,
20943,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
5066,
11,
366,
26675,
62,
9127,
1298,
8093,
26492,
11,
366,
16514,
27823,
1298,
1478,
35890,
1821,
26007,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
2414,
11,
366,
26675,
62,
9127,
1298,
718,
2713,
1795,
11,
366,
16514,
27823,
1298,
20224,
1558,
41019,
1954,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
4310,
11,
366,
26675,
62,
9127,
1298,
9919,
25948,
11,
366,
16514,
27823,
1298,
1315,
1065,
830,
33580,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
3553,
11,
366,
26675,
62,
9127,
1298,
8699,
43697,
11,
366,
16514,
27823,
1298,
22613,
3510,
1415,
26050,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
3553,
11,
366,
26675,
62,
9127,
1298,
8699,
43697,
11,
366,
16514,
27823,
1298,
22613,
3510,
1415,
48290,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
3553,
11,
366,
26675,
62,
9127,
1298,
35534,
5237,
11,
366,
16514,
27823,
1298,
22613,
2718,
26200,
3510,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
3553,
11,
366,
26675,
62,
9127,
1298,
35534,
5237,
11,
366,
16514,
27823,
1298,
22613,
2718,
26598,
2996,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
3553,
11,
366,
26675,
62,
9127,
1298,
767,
3388,
2816,
11,
366,
16514,
27823,
1298,
22613,
1954,
1314,
11785,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
3270,
11,
366,
26675,
62,
9127,
1298,
767,
1270,
2816,
11,
366,
16514,
27823,
1298,
22909,
1314,
3388,
46239,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
3270,
11,
366,
26675,
62,
9127,
1298,
767,
1314,
2598,
11,
366,
16514,
27823,
1298,
1478,
37601,
3324,
33916,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
21,
11,
366,
26675,
62,
9127,
1298,
718,
6052,
1899,
11,
366,
16514,
27823,
1298,
22986,
1731,
3388,
20370,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
21,
11,
366,
26675,
62,
9127,
1298,
8644,
2919,
21,
11,
366,
16514,
27823,
1298,
22986,
15259,
1828,
2791,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
21,
11,
366,
26675,
62,
9127,
1298,
718,
4531,
1558,
11,
366,
16514,
27823,
1298,
22986,
1415,
3682,
25600,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
5333,
11,
366,
26675,
62,
9127,
1298,
8275,
46589,
11,
366,
16514,
27823,
1298,
1478,
44617,
2078,
22730,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
5333,
11,
366,
26675,
62,
9127,
1298,
718,
2425,
4310,
11,
366,
16514,
27823,
1298,
1478,
3365,
29769,
45438,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
5333,
11,
366,
26675,
62,
9127,
1298,
718,
4524,
1495,
11,
366,
16514,
27823,
1298,
1478,
3365,
13348,
38569,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
5333,
11,
366,
26675,
62,
9127,
1298,
48136,
2548,
11,
366,
16514,
27823,
1298,
1478,
3553,
22136,
28256,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
5237,
11,
366,
26675,
62,
9127,
1298,
43364,
4304,
11,
366,
16514,
27823,
1298,
1478,
3980,
1731,
3720,
3070,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
5237,
11,
366,
26675,
62,
9127,
1298,
7930,
34107,
11,
366,
16514,
27823,
1298,
1478,
2816,
3365,
3104,
1238,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
5237,
11,
366,
26675,
62,
9127,
1298,
718,
3270,
1828,
11,
366,
16514,
27823,
1298,
20299,
2598,
22416,
1828,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
5237,
11,
366,
26675,
62,
9127,
1298,
718,
2231,
3365,
11,
366,
16514,
27823,
1298,
20299,
24096,
1314,
2414,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
5237,
11,
366,
26675,
62,
9127,
1298,
5598,
16243,
11,
366,
16514,
27823,
1298,
20299,
15197,
1795,
2718,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
5066,
11,
366,
26675,
62,
9127,
1298,
8093,
36809,
11,
366,
16514,
27823,
1298,
20299,
28645,
2718,
2548,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
5066,
11,
366,
26675,
62,
9127,
1298,
718,
2327,
2231,
11,
366,
16514,
27823,
1298,
1478,
2920,
3720,
1558,
2791,
13,
15,
92,
198,
4895,
26675,
1298,
767,
13,
5066,
11,
366,
26675,
62,
9127,
1298,
8190,
28676,
11,
366,
16514,
27823,
1298,
1478,
3510,
1314,
2718,
6469,
13,
15,
92,
198
] | 2.344235 | 1,223 |
@testset "isconvex" begin
m = JuMP.Model()
JuMP.@variables m begin
x
y
z
end
# AffExpr
@test MultilinearOpt.isconvex(x + y)
@test MultilinearOpt.isconvex(x - z - 3)
# QuadExpr
@test MultilinearOpt.isconvex(x^2)
@test MultilinearOpt.isconvex(x^2 + 0 * z^2) # test positive semidefinite gramian
@test MultilinearOpt.isconvex(x^2 + 3 * y - z + 5)
@test !MultilinearOpt.isconvex(-x^2)
@test !MultilinearOpt.isconvex(x + y - z ^2 + x^2 + y^2)
G = rand(3, 3)
G = G * G'
vars = [x, y, z]
expr = dot(vars, G * vars)
G_back, vars_back = MultilinearOpt.gramian(expr)
@test vars_back == vars
@test G_back ≈ G atol=1e-10
@test MultilinearOpt.isconvex(expr)
# LinearConstraint
@test MultilinearOpt.isconvex(JuMP.constraint_object(JuMP.@constraint(m, x + 3 * y == 0)))
@test MultilinearOpt.isconvex(JuMP.constraint_object(JuMP.@constraint(m, 2 * x - y >= z)))
@test MultilinearOpt.isconvex(JuMP.constraint_object(JuMP.@constraint(m, 2 * x - y <= z)))
# QuadConstr
@test !MultilinearOpt.isconvex(JuMP.constraint_object(JuMP.@constraint(m, x == y * z)))
@test MultilinearOpt.isconvex(JuMP.constraint_object(JuMP.@constraint(m, x^2 + y^2 <= z)))
@test !MultilinearOpt.isconvex(JuMP.constraint_object(JuMP.@constraint(m, x^2 + y^2 <= z^2)))
@test MultilinearOpt.isconvex(JuMP.constraint_object(JuMP.@constraint(m, -x^2 - y^2 >= -z)))
end
| [
31,
9288,
2617,
366,
271,
1102,
303,
87,
1,
2221,
198,
220,
220,
220,
285,
796,
12585,
7378,
13,
17633,
3419,
628,
220,
220,
220,
12585,
7378,
13,
31,
25641,
2977,
285,
2221,
198,
220,
220,
220,
220,
220,
220,
2124,
198,
220,
220,
220,
220,
220,
220,
331,
198,
220,
220,
220,
220,
220,
220,
1976,
198,
220,
220,
886,
628,
220,
220,
1303,
6708,
3109,
1050,
198,
220,
220,
2488,
9288,
7854,
346,
259,
451,
27871,
13,
271,
1102,
303,
87,
7,
87,
1343,
331,
8,
198,
220,
220,
2488,
9288,
7854,
346,
259,
451,
27871,
13,
271,
1102,
303,
87,
7,
87,
532,
1976,
532,
513,
8,
628,
220,
220,
1303,
20648,
3109,
1050,
198,
220,
220,
2488,
9288,
7854,
346,
259,
451,
27871,
13,
271,
1102,
303,
87,
7,
87,
61,
17,
8,
198,
220,
220,
2488,
9288,
7854,
346,
259,
451,
27871,
13,
271,
1102,
303,
87,
7,
87,
61,
17,
1343,
657,
1635,
1976,
61,
17,
8,
1303,
1332,
3967,
5026,
485,
69,
9504,
14599,
666,
198,
220,
220,
2488,
9288,
7854,
346,
259,
451,
27871,
13,
271,
1102,
303,
87,
7,
87,
61,
17,
1343,
513,
1635,
331,
532,
1976,
1343,
642,
8,
198,
220,
220,
2488,
9288,
5145,
15205,
346,
259,
451,
27871,
13,
271,
1102,
303,
87,
32590,
87,
61,
17,
8,
198,
220,
220,
2488,
9288,
5145,
15205,
346,
259,
451,
27871,
13,
271,
1102,
303,
87,
7,
87,
1343,
331,
532,
1976,
10563,
17,
1343,
2124,
61,
17,
1343,
331,
61,
17,
8,
198,
220,
220,
402,
796,
43720,
7,
18,
11,
513,
8,
198,
220,
220,
402,
796,
402,
1635,
402,
6,
198,
220,
220,
410,
945,
796,
685,
87,
11,
331,
11,
1976,
60,
198,
220,
220,
44052,
796,
16605,
7,
85,
945,
11,
402,
1635,
410,
945,
8,
198,
220,
220,
402,
62,
1891,
11,
410,
945,
62,
1891,
796,
7854,
346,
259,
451,
27871,
13,
4546,
666,
7,
31937,
8,
198,
220,
220,
2488,
9288,
410,
945,
62,
1891,
6624,
410,
945,
198,
220,
220,
2488,
9288,
402,
62,
1891,
15139,
230,
402,
379,
349,
28,
16,
68,
12,
940,
198,
220,
220,
2488,
9288,
7854,
346,
259,
451,
27871,
13,
271,
1102,
303,
87,
7,
31937,
8,
628,
220,
220,
1303,
44800,
3103,
2536,
2913,
198,
220,
220,
2488,
9288,
7854,
346,
259,
451,
27871,
13,
271,
1102,
303,
87,
7,
33018,
7378,
13,
1102,
2536,
2913,
62,
15252,
7,
33018,
7378,
13,
31,
1102,
2536,
2913,
7,
76,
11,
2124,
1343,
513,
1635,
331,
6624,
657,
22305,
198,
220,
220,
2488,
9288,
7854,
346,
259,
451,
27871,
13,
271,
1102,
303,
87,
7,
33018,
7378,
13,
1102,
2536,
2913,
62,
15252,
7,
33018,
7378,
13,
31,
1102,
2536,
2913,
7,
76,
11,
362,
1635,
2124,
532,
331,
18189,
1976,
22305,
198,
220,
220,
2488,
9288,
7854,
346,
259,
451,
27871,
13,
271,
1102,
303,
87,
7,
33018,
7378,
13,
1102,
2536,
2913,
62,
15252,
7,
33018,
7378,
13,
31,
1102,
2536,
2913,
7,
76,
11,
362,
1635,
2124,
532,
331,
19841,
1976,
22305,
628,
220,
220,
1303,
20648,
3103,
2536,
198,
220,
220,
2488,
9288,
5145,
15205,
346,
259,
451,
27871,
13,
271,
1102,
303,
87,
7,
33018,
7378,
13,
1102,
2536,
2913,
62,
15252,
7,
33018,
7378,
13,
31,
1102,
2536,
2913,
7,
76,
11,
2124,
6624,
331,
1635,
1976,
22305,
628,
220,
220,
2488,
9288,
7854,
346,
259,
451,
27871,
13,
271,
1102,
303,
87,
7,
33018,
7378,
13,
1102,
2536,
2913,
62,
15252,
7,
33018,
7378,
13,
31,
1102,
2536,
2913,
7,
76,
11,
2124,
61,
17,
1343,
331,
61,
17,
19841,
1976,
22305,
628,
220,
220,
2488,
9288,
5145,
15205,
346,
259,
451,
27871,
13,
271,
1102,
303,
87,
7,
33018,
7378,
13,
1102,
2536,
2913,
62,
15252,
7,
33018,
7378,
13,
31,
1102,
2536,
2913,
7,
76,
11,
2124,
61,
17,
1343,
331,
61,
17,
19841,
1976,
61,
17,
22305,
628,
220,
220,
2488,
9288,
7854,
346,
259,
451,
27871,
13,
271,
1102,
303,
87,
7,
33018,
7378,
13,
1102,
2536,
2913,
62,
15252,
7,
33018,
7378,
13,
31,
1102,
2536,
2913,
7,
76,
11,
532,
87,
61,
17,
532,
331,
61,
17,
18189,
532,
89,
22305,
198,
437,
198
] | 2.048433 | 702 |
module FullRegisterGate
export expandGateToFullRegister
# expandGateToFullRegister expands the given gate with optional control qubits to entire quantum register with the given size.
function expandGateToFullRegister(register_size::Integer,
gate::AbstractMatrix{Complex{Float64}},
gate_lowest_index::Integer,
control_bit_indexes::AbstractArray{Int64,1} = Array{Int64,1}([])
)::AbstractMatrix{Complex{Float64}}
small_gate_size = size(gate)[1]
small_gate_qubit_count = Int(log2(small_gate_size))
gate_bitmask = gate_full_register_bitmask(small_gate_qubit_count, gate_lowest_index)
if gate_bitmask == 0
error("gate_bitmask cannot be 0")
end
n = 2 ^ register_size
big_gate = zeros(Complex{Float64}, n, n)
control_bitmask = control_full_register_bitmask(control_bit_indexes)
for big_gate_column_index ∈ 0:n-1
if !all_control_bits_set(big_gate_column_index, control_bitmask)
big_gate[big_gate_column_index+1, big_gate_column_index+1] = Complex(1)
continue
end
target_bits = (big_gate_column_index & gate_bitmask) >>> gate_lowest_index
output_state = gate[:,target_bits+1] # Selecting a column here yields the result of matrix-vector multiplication.
for state_index ∈ 0:small_gate_size-1
big_gate_row_index = (big_gate_column_index & ~gate_bitmask) | (state_index << gate_lowest_index)
big_gate[big_gate_row_index+1, big_gate_column_index+1] = Complex(output_state[state_index+1])
end
end
return big_gate
end
function gate_full_register_bitmask(gate_qubit_count::Integer, gate_lowest_index::Integer)::UInt64
bitmask = zero(UInt64)
for _ ∈ 1:gate_qubit_count
bitmask <<= 1
bitmask |= 1
end
return bitmask << gate_lowest_index
end
function control_full_register_bitmask(control_bit_indexes::AbstractArray{Int64,1})::UInt64
bitmask = zero(UInt64)
for i ∈ control_bit_indexes
bitmask |= one(UInt64) << i
end
return bitmask
end
@inline function all_control_bits_set(i::Integer, control_bitmask::Integer)
return i & control_bitmask == control_bitmask
end
end # module
| [
21412,
6462,
38804,
22628,
198,
198,
39344,
4292,
22628,
2514,
13295,
38804,
198,
198,
2,
4292,
22628,
2514,
13295,
38804,
27513,
262,
1813,
8946,
351,
11902,
1630,
627,
9895,
284,
2104,
14821,
7881,
351,
262,
1813,
2546,
13,
198,
8818,
4292,
22628,
2514,
13295,
38804,
7,
30238,
62,
7857,
3712,
46541,
11,
198,
197,
10494,
3712,
23839,
46912,
90,
5377,
11141,
90,
43879,
2414,
92,
5512,
198,
197,
10494,
62,
9319,
395,
62,
9630,
3712,
46541,
11,
198,
197,
13716,
62,
2545,
62,
9630,
274,
3712,
23839,
19182,
90,
5317,
2414,
11,
16,
92,
796,
15690,
90,
5317,
2414,
11,
16,
92,
26933,
12962,
198,
197,
2599,
25,
23839,
46912,
90,
5377,
11141,
90,
43879,
2414,
11709,
628,
197,
17470,
62,
10494,
62,
7857,
796,
2546,
7,
10494,
38381,
16,
60,
198,
197,
17470,
62,
10494,
62,
421,
2545,
62,
9127,
796,
2558,
7,
6404,
17,
7,
17470,
62,
10494,
62,
7857,
4008,
198,
197,
10494,
62,
2545,
27932,
796,
8946,
62,
12853,
62,
30238,
62,
2545,
27932,
7,
17470,
62,
10494,
62,
421,
2545,
62,
9127,
11,
8946,
62,
9319,
395,
62,
9630,
8,
198,
197,
361,
8946,
62,
2545,
27932,
6624,
657,
198,
197,
197,
18224,
7203,
10494,
62,
2545,
27932,
2314,
307,
657,
4943,
198,
197,
437,
198,
197,
77,
796,
362,
10563,
7881,
62,
7857,
198,
197,
14261,
62,
10494,
796,
1976,
27498,
7,
5377,
11141,
90,
43879,
2414,
5512,
299,
11,
299,
8,
198,
197,
13716,
62,
2545,
27932,
796,
1630,
62,
12853,
62,
30238,
62,
2545,
27932,
7,
13716,
62,
2545,
62,
9630,
274,
8,
198,
197,
1640,
1263,
62,
10494,
62,
28665,
62,
9630,
18872,
230,
657,
25,
77,
12,
16,
198,
197,
197,
361,
5145,
439,
62,
13716,
62,
9895,
62,
2617,
7,
14261,
62,
10494,
62,
28665,
62,
9630,
11,
1630,
62,
2545,
27932,
8,
198,
197,
197,
197,
14261,
62,
10494,
58,
14261,
62,
10494,
62,
28665,
62,
9630,
10,
16,
11,
1263,
62,
10494,
62,
28665,
62,
9630,
10,
16,
60,
796,
19157,
7,
16,
8,
198,
197,
197,
197,
43043,
198,
197,
197,
437,
198,
197,
197,
16793,
62,
9895,
796,
357,
14261,
62,
10494,
62,
28665,
62,
9630,
1222,
8946,
62,
2545,
27932,
8,
13163,
8946,
62,
9319,
395,
62,
9630,
198,
197,
197,
22915,
62,
5219,
796,
8946,
58,
45299,
16793,
62,
9895,
10,
16,
60,
1303,
9683,
278,
257,
5721,
994,
19299,
262,
1255,
286,
17593,
12,
31364,
48473,
13,
198,
197,
197,
1640,
1181,
62,
9630,
18872,
230,
657,
25,
17470,
62,
10494,
62,
7857,
12,
16,
198,
197,
197,
197,
14261,
62,
10494,
62,
808,
62,
9630,
796,
357,
14261,
62,
10494,
62,
28665,
62,
9630,
1222,
5299,
10494,
62,
2545,
27932,
8,
930,
357,
5219,
62,
9630,
9959,
8946,
62,
9319,
395,
62,
9630,
8,
198,
197,
197,
197,
14261,
62,
10494,
58,
14261,
62,
10494,
62,
808,
62,
9630,
10,
16,
11,
1263,
62,
10494,
62,
28665,
62,
9630,
10,
16,
60,
796,
19157,
7,
22915,
62,
5219,
58,
5219,
62,
9630,
10,
16,
12962,
198,
197,
197,
437,
198,
197,
437,
198,
197,
7783,
1263,
62,
10494,
198,
437,
198,
198,
8818,
8946,
62,
12853,
62,
30238,
62,
2545,
27932,
7,
10494,
62,
421,
2545,
62,
9127,
3712,
46541,
11,
8946,
62,
9319,
395,
62,
9630,
3712,
46541,
2599,
25,
52,
5317,
2414,
198,
197,
2545,
27932,
796,
6632,
7,
52,
5317,
2414,
8,
198,
197,
1640,
4808,
18872,
230,
352,
25,
10494,
62,
421,
2545,
62,
9127,
198,
197,
197,
2545,
27932,
9959,
28,
352,
198,
197,
197,
2545,
27932,
930,
28,
352,
198,
197,
437,
198,
197,
7783,
1643,
27932,
9959,
8946,
62,
9319,
395,
62,
9630,
198,
437,
198,
198,
8818,
1630,
62,
12853,
62,
30238,
62,
2545,
27932,
7,
13716,
62,
2545,
62,
9630,
274,
3712,
23839,
19182,
90,
5317,
2414,
11,
16,
92,
2599,
25,
52,
5317,
2414,
198,
197,
2545,
27932,
796,
6632,
7,
52,
5317,
2414,
8,
198,
197,
1640,
1312,
18872,
230,
1630,
62,
2545,
62,
9630,
274,
198,
197,
197,
2545,
27932,
930,
28,
530,
7,
52,
5317,
2414,
8,
9959,
1312,
198,
197,
437,
198,
197,
7783,
1643,
27932,
198,
437,
198,
198,
31,
45145,
2163,
477,
62,
13716,
62,
9895,
62,
2617,
7,
72,
3712,
46541,
11,
1630,
62,
2545,
27932,
3712,
46541,
8,
198,
197,
7783,
1312,
1222,
1630,
62,
2545,
27932,
6624,
1630,
62,
2545,
27932,
198,
437,
198,
198,
437,
1303,
8265,
198
] | 2.738128 | 737 |
# ---
# layout: post
# title: "π day"
# date: 2019-03-13 00:00:00 +0000
# categories: blog
# mathjax: true
# ---
# >In the UK we have started to celebrate π day (the 3rd month's 14th day) every year, even though we don't use the USA's date formatting convention of `monthnumber` followed by `daynumber`. But we can't really celebrate the 31st of April (31/4) or the 3rd of Quatember (?) (3/14), so we'll happily celebrate π day on 14/3 along with everyone else!
# >I set myself a challenge at the beginning of March: make a π-related image using Julia and the Luxor.jl package every day until π day. Some days it worked out well, others didn't, but I've gathered them all here anyway. This post has a fair few images, but not very much code or mathematical content.
# The images here are in low-resolution: they should be available on my [Flickr page](https://www.flickr.com/photos/153311384@N03/) at their full resolution if you want to download or re-use them.
# ### Day 1: Circle packing
# Circle packing may be a well-trodden path, but it always looks neat, and it's a nice easy start. You maintain a list of circles (center point and radius). Then you create a random circle, check it against all the other ones, draw it if it doesn't overlap, or reduce the radius and try again. It's not very efficient but you can set it going and go and make some coffee.
# To make the π shape appear, the code creates a path:
#md fontsize(480)
#md textoutlines("π", O, :path, halign=:center, valign=:middle)
#md πoutline = first(pathtopoly())
# then checks whether each circle's centerpoint is inside or outside the outline of the π shape:
#md isinside(pt, πoutline)
# and colors it accordingly.
# ![image label](IMAGEFOLDER/t-800.png)
# ### Day 2: Dry and wet
# I repeated myself today, thinking I could develop the circles a bit more, and ended up with this glossier wet-look version. The apparently random-looking shapes in the background are Bézier splodges that are supposed to be splashes...
# ![image label](IMAGEFOLDER/pi-reds-balls-wet-800.png)
# ### Day 3: π packing
# This is π packing rather than circle packing, although the code is again quite similar in outline: choose a point at random, find the largest font size at which the π character fits without overlapping others in the list, and then place it and add it to the list. The colors are a bit murky though.
# ![image label](IMAGEFOLDER/pi-swarm-3-800.png)
# ### Day 4: Rainbow
# Combining concentric circles and rainbow colors, this image shows about 350 digits of π.
# ![image label](IMAGEFOLDER/digits-of-pi-avenir-800.png)
# To generate the digits of π, I use this function:
function pidigits(n)
result = BigInt[]
k, a, b, a1, b1 = big.([2, 4, 1, 12, 4])
while n > 0
p, q, k = k^2, 2k + 1, k + 1
a, b, a1, b1 = a1, b1, p * a + q * a1, p * b + q * b1
d, d1 = a ÷ b, a1 ÷ b1
while d == d1
push!(result, d)
n -= 1
a, a1 = 10(a % b), 10(a1 % b1)
d, d1 = a ÷ b, a1 ÷ b1
end
end
return result
end
# It looks like witchcraft to me, but I understand that it's a "spigot" algorithm. I was hoping for a while that it was named after a Professor Spigot, but in fact it's describing the way the digits trickle out one by one like drops of water. It's quick enough for a thousand digits or so, but slows down a lot when you ask for 100_000 or more, probably due to the hard work that the big integer library has to do: even when you're just calculating the first 15 digits of π, the values of `a1` and `b1` are way over the limits of Int64s.
#md julia-1.1> @time pidigits(1000);
#md 0.014522 seconds (44.90 k allocations: 9.425 MiB, 28.97% gc time)
# The image might work better on white:
# ![image label](IMAGEFOLDER/digits-of-pi-avenir-on-white-800.png)
# Sometimes I wanted to check where certain sequences of digits appeared. I couldn't find a built-in function that looked for a sequence of digits in an array, but this worked well enough for my purposes:
function findsubsequence(needle, haystack)
result = Int64[]
for k in 1:length(haystack) - length(needle)
if needle == view(haystack, k:k + length(needle) - 1)
push!(result, k)
end
end
return result
end
findsubsequence(str::String, digits) =
findsubsequence(map(x -> parse(Int, x), split(str, "")), digits)
findsubsequence("999999", pidigits(2000)) # => [763]
# ### Day 5: Low-fat
# A chunky typeface like the Avenir Heavy I used yesterday is good for masking and clipping. But I wondered how the narrowest typeface would look. I found Briem Akademi, designed by Gunnlaugur Briem at the Royal Academy of Fine Arts in Copenhagen. Adobe's description says:
# >The most compressed version works best where legibility is less important than dramatic visual effect.
# and I like the abstract look even though it's almost illegible... Would this make nice bathroom tiles?
# ![image label](IMAGEFOLDER/many-digits-of-pi-briem-800.png)
# ### Day 6 Breakfast and Tiffany
# I'm still thinking about using typefaces. I'm a fan of Ed Benguiat's ITC Tiffany font, his nostalgic look back from the 1970s to the age of Edwardian elegance.
# ![image label](IMAGEFOLDER/pi-digits-appearing-800.png)
# It's easy to do this with tables. Like the circle packing, the code checks whether the coordinates of each table cell fall within a given perimeter, and changes the font accordingly.
# ### Day 7 Distinguished
# The excellent Colors.jl package has a function called `distinguishable_colors()` (which fortunately tab-completes). The help text says:
# > This uses a greedy brute-force approach to choose `n` colors that are maximally distinguishable. Given `seed` color(s), and a set of possible hue, chroma, and lightness values (in LCHab space), it repeatedly chooses the next color as the one that maximizes the minimum pairwise distance to any of the colors already in the palette.
# Much to do with color depends on the viewer's perception, but I think it works well here. It starts at the top left, and works from left to right. (That pesky decimal point defaults to using the previous color...) You can spot the Feynman point (`999999`) halfway down on the left (look for the six consecutive sandy brown squares), or the four purple sevens on the bottom row.
# ![image label](IMAGEFOLDER/pi-distinguishable_colors-800.png)
# I remembered to try to choose the color for the small labels (probably unreadable in the low-resolution PNG you see here) so that they're either light on dark, or dark on light.
#md ... r, g, b = color of square
#md gamma = 2.2
#md luminance = 0.2126 * r^gamma + 0.7152 * g^gamma + 0.0722 * b^gamma
#md (luminance > 0.5^gamma) ? sethue("black") : sethue("white")
# ### Day 8 Candy crush edition
# ![image label](IMAGEFOLDER/candy-crush.png)
# I must have seen an advert for CandyCrush yesterday, or perhaps all that talk of gamma and LCHab spaces caused a reaction, but this sugar rush of an image was the result. The SVG version looks tasty but is too big for this web page.
# ### Day 9 Like a circle in a spiral, a wheel within a wheel
# Arranging the sweets in a spiral looks tidy.
# ![image label](IMAGEFOLDER/pi-digits-in-spiral-balls-800.png)
# ### Day 10 π into circumference
# Luxor's `polysample()` function takes a polygon and samples it at regular intervals. This allows the following idea, where each point on a shape (here, the outline of the π character) is slowly moved to a matching location on the circular shape around the outside.
# ![image label](IMAGEFOLDER/pi-to-circle-800.png)
# For a point on the π border `p1`, and a matching point on the circumference polygon `p2`, the intermediate point is given by `between(p1, p2, n)`, where `n` is between 0 and 1.
# I like the almost 3D effect you get from this.
# ### Day 11 Charcoal
# Time for a charcoal sketch:
# ![image label](IMAGEFOLDER/pi-charcoal-1-800.png)
# The crinkly edges of the paper are made by the `polysample()` function on a rectangle then applying simplex-`noise()`-y nudges to the vertices. The paper is textured with `rule()`d lines, and there's some very low values for `setopacity()` smudges. Shifting the Bézier curve handles slightly for each iteration gives a brushy/sketchy feel. (It's fortunate I can copy and paste some of this code from drawings I've made before: I've learnt the hard way that it's better keep things than throw them away...)
# ### Day 12
# I ran out of time on this one, and there are still some problems with the text spacing. The idea is to have the infinite digits of π spiral into some fiery star with some space-y stuff. Probably not the sort of image I should be attempting at all with simple vector-based 2D graphics tools, but it feels like a challenge. Those wispy trails are the same as yesterday's brush strokes, but using custom `setdash()` dashing patterns.
# ![image label](IMAGEFOLDER/pi cosmic spiral-800.png)
# ### Day 13
# The idea here is to show which digit of π is the current leader, in terms of how many times that digit has appeared already. (Yes, a stupid idea, I know!) Then I couldn't decide on how many digits to show, so it's going to be an animated GIF showing the first 1000 digits. At the 200 digit mark poor old "7" is struggling at the back of the field, but the glory days are ahead - after 1000 digits, it's overtaken 0, 4, and 6.
# ![image label](IMAGEFOLDER/200-digits-of-pi-800.png)
# The animation turned into a video rather than a GIF, because I don't like the low resolution of GIFs today.
# And now of course I have to add a suitable audio soundtrack. Luckily I've recently been playing with George Datseris' [MIDI interface for Julia](https://github.com/JuliaMusic), so it was easy enough to make a musical version of the first 1000 digits of π, where the digits from 0 to 9 choose the appropriate note from a reasonably harmonious scale.
using MIDI
function savetrack(track, notes)
file = MIDIFile()
addnotes!(track, notes)
addtrackname!(track, "a track")
push!(file.tracks, track)
writeMIDIFile("/tmp/sound-of-pi.mid", file)
end
scales = [46, 48, 51, 53, 55, 57, 58, 60, 62, 65, 67]
function generatetune!(notes)
pos = 1
dur = 80
k = 1
manypidigits = pidigits(1000)
for i in manypidigits
dur = k * 960
pos += k * 960
n = scales[i + 1]
note = Note(n, 76, pos, dur)
push!(notes, note)
end
end
notes = Notes()
track = MIDITrack()
generatetune!(notes)
savetrack(track, notes)
# ![image label](IMAGEFOLDER/music-credits.png)
# This "sonification" (or "audification") is just for fun. For a more convincing critique of these sonifications than I can provide, watch the always entertaining [Tantacrul](https://www.youtube.com/watch?v=Ocq3NeudsVk)'s presentation on YouTube.
# And while you're on YouTube, the π video is on [my YouTube channel](https://www.youtube.com/channel/UCfd52kTA5JpzOEItSqXLQxg), and it's my entry for YouTube's Most Boring Video of 2019 competition, but I suspect it won't do very well—competition in this category is fierce, even if sometimes the contestants are unwilling participants.
# Happy π day!
# [2019-03-13]
# ![cormullion signing off](http://steampiano.net/cormullionknot.gif?piday){: .center-image}
using Literate #src
# preprocess for notebooks #src
function setimagefolder(content) #src
content = replace(content, "IMAGEFOLDER" => "$IMAGEFOLDER") #src
return content #src
end #src
# for Jupyter notebook, put images in subfolder #src
#IMAGEFOLDER = "images/piday" #src
#Literate.notebook("source/piday.jl", "notebooks", preprocess = setimagefolder) #src
# for Markdown/Jekyll notebook, put images in "/images" #src
IMAGEFOLDER = "/images/piday" #src
Literate.markdown("source/piday.jl", ".", name="_posts/2019-03-13-piday", #src
preprocess = setimagefolder, #src
codefence = "{% highlight julia %}" => "{% endhighlight julia %}", #src
documenter=false) #src
#src
| [
2,
11420,
198,
2,
12461,
25,
1281,
198,
2,
3670,
25,
366,
46582,
1110,
1,
198,
2,
3128,
25,
13130,
12,
3070,
12,
1485,
3571,
25,
405,
25,
405,
1343,
2388,
198,
2,
9376,
25,
4130,
198,
2,
10688,
73,
897,
25,
2081,
198,
2,
11420,
198,
198,
2,
1875,
818,
262,
3482,
356,
423,
2067,
284,
10648,
18074,
222,
1110,
357,
1169,
513,
4372,
1227,
338,
1478,
400,
1110,
8,
790,
614,
11,
772,
996,
356,
836,
470,
779,
262,
4916,
338,
3128,
33313,
9831,
286,
4600,
8424,
17618,
63,
3940,
416,
4600,
820,
17618,
44646,
887,
356,
460,
470,
1107,
10648,
262,
3261,
301,
286,
3035,
357,
3132,
14,
19,
8,
393,
262,
513,
4372,
286,
2264,
265,
1491,
357,
10091,
357,
18,
14,
1415,
828,
523,
356,
1183,
18177,
10648,
18074,
222,
1110,
319,
1478,
14,
18,
1863,
351,
2506,
2073,
0,
198,
198,
2,
1875,
40,
900,
3589,
257,
4427,
379,
262,
3726,
286,
2805,
25,
787,
257,
18074,
222,
12,
5363,
2939,
1262,
22300,
290,
262,
17145,
273,
13,
20362,
5301,
790,
1110,
1566,
18074,
222,
1110,
13,
2773,
1528,
340,
3111,
503,
880,
11,
1854,
1422,
470,
11,
475,
314,
1053,
9272,
606,
477,
994,
6949,
13,
770,
1281,
468,
257,
3148,
1178,
4263,
11,
475,
407,
845,
881,
2438,
393,
18069,
2695,
13,
198,
198,
2,
383,
4263,
994,
389,
287,
1877,
12,
29268,
25,
484,
815,
307,
1695,
319,
616,
685,
47250,
2443,
16151,
5450,
1378,
2503,
13,
2704,
18994,
13,
785,
14,
24729,
14,
1314,
2091,
1157,
22842,
31,
45,
3070,
34729,
379,
511,
1336,
6323,
611,
345,
765,
284,
4321,
393,
302,
12,
1904,
606,
13,
198,
198,
2,
44386,
3596,
352,
25,
16291,
24157,
198,
198,
2,
16291,
24157,
743,
307,
257,
880,
12,
23528,
4742,
3108,
11,
475,
340,
1464,
3073,
15049,
11,
290,
340,
338,
257,
3621,
2562,
923,
13,
921,
5529,
257,
1351,
286,
13332,
357,
16159,
966,
290,
16874,
737,
3244,
345,
2251,
257,
4738,
9197,
11,
2198,
340,
1028,
477,
262,
584,
3392,
11,
3197,
340,
611,
340,
1595,
470,
21721,
11,
393,
4646,
262,
16874,
290,
1949,
757,
13,
632,
338,
407,
845,
6942,
475,
345,
460,
900,
340,
1016,
290,
467,
290,
787,
617,
6891,
13,
198,
198,
2,
1675,
787,
262,
18074,
222,
5485,
1656,
11,
262,
2438,
8075,
257,
3108,
25,
198,
198,
2,
9132,
10369,
7857,
7,
22148,
8,
198,
2,
9132,
2420,
448,
6615,
7203,
46582,
1600,
440,
11,
1058,
6978,
11,
10284,
570,
28,
25,
16159,
11,
1188,
570,
28,
25,
27171,
8,
198,
2,
9132,
18074,
222,
448,
1370,
796,
717,
7,
6978,
4852,
3366,
28955,
198,
198,
2,
788,
8794,
1771,
1123,
9197,
338,
3641,
4122,
318,
2641,
393,
2354,
262,
19001,
286,
262,
18074,
222,
5485,
25,
198,
198,
2,
9132,
318,
48787,
7,
457,
11,
18074,
222,
448,
1370,
8,
198,
198,
2,
290,
7577,
340,
16062,
13,
198,
198,
2,
5145,
58,
9060,
6167,
16151,
3955,
11879,
37,
3535,
14418,
14,
83,
12,
7410,
13,
11134,
8,
198,
198,
2,
44386,
3596,
362,
25,
22408,
290,
9583,
198,
198,
2,
314,
5100,
3589,
1909,
11,
3612,
314,
714,
1205,
262,
13332,
257,
1643,
517,
11,
290,
4444,
510,
351,
428,
21194,
959,
9583,
12,
5460,
2196,
13,
383,
5729,
4738,
12,
11534,
15268,
287,
262,
4469,
389,
347,
2634,
89,
959,
4328,
375,
3212,
326,
389,
4385,
284,
307,
4328,
7465,
986,
198,
198,
2,
5145,
58,
9060,
6167,
16151,
3955,
11879,
37,
3535,
14418,
14,
14415,
12,
445,
82,
12,
21591,
12,
86,
316,
12,
7410,
13,
11134,
8,
198,
198,
2,
44386,
3596,
513,
25,
18074,
222,
24157,
198,
198,
2,
770,
318,
18074,
222,
24157,
2138,
621,
9197,
24157,
11,
3584,
262,
2438,
318,
757,
2407,
2092,
287,
19001,
25,
3853,
257,
966,
379,
4738,
11,
1064,
262,
4387,
10369,
2546,
379,
543,
262,
18074,
222,
2095,
11414,
1231,
32997,
1854,
287,
262,
1351,
11,
290,
788,
1295,
340,
290,
751,
340,
284,
262,
1351,
13,
383,
7577,
389,
257,
1643,
39574,
996,
13,
198,
198,
2,
5145,
58,
9060,
6167,
16151,
3955,
11879,
37,
3535,
14418,
14,
14415,
12,
2032,
1670,
12,
18,
12,
7410,
13,
11134,
8,
198,
198,
2,
44386,
3596,
604,
25,
19909,
198,
198,
2,
14336,
3191,
5280,
1173,
13332,
290,
27223,
7577,
11,
428,
2939,
2523,
546,
13803,
19561,
286,
18074,
222,
13,
198,
198,
2,
5145,
58,
9060,
6167,
16151,
3955,
11879,
37,
3535,
14418,
14,
12894,
896,
12,
1659,
12,
14415,
12,
4005,
343,
12,
7410,
13,
11134,
8,
198,
198,
2,
1675,
7716,
262,
19561,
286,
18074,
222,
11,
314,
779,
428,
2163,
25,
198,
198,
8818,
46514,
328,
896,
7,
77,
8,
198,
220,
220,
220,
1255,
796,
4403,
5317,
21737,
198,
220,
220,
220,
479,
11,
257,
11,
275,
11,
257,
16,
11,
275,
16,
796,
1263,
12195,
58,
17,
11,
604,
11,
352,
11,
1105,
11,
604,
12962,
198,
220,
220,
220,
981,
299,
1875,
657,
198,
220,
220,
220,
220,
220,
220,
220,
279,
11,
10662,
11,
479,
796,
479,
61,
17,
11,
362,
74,
1343,
352,
11,
479,
1343,
352,
198,
220,
220,
220,
220,
220,
220,
220,
257,
11,
275,
11,
257,
16,
11,
275,
16,
796,
257,
16,
11,
275,
16,
11,
279,
1635,
257,
220,
1343,
220,
10662,
1635,
257,
16,
11,
279,
1635,
275,
220,
1343,
220,
10662,
1635,
275,
16,
198,
220,
220,
220,
220,
220,
220,
220,
288,
11,
288,
16,
796,
257,
6184,
115,
275,
11,
257,
16,
6184,
115,
275,
16,
198,
220,
220,
220,
220,
220,
220,
220,
981,
288,
6624,
288,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
20274,
11,
288,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
48185,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
257,
11,
257,
16,
796,
838,
7,
64,
4064,
275,
828,
838,
7,
64,
16,
4064,
275,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
11,
288,
16,
796,
257,
6184,
115,
275,
11,
257,
16,
6184,
115,
275,
16,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
1255,
198,
437,
198,
198,
2,
632,
3073,
588,
48646,
284,
502,
11,
475,
314,
1833,
326,
340,
338,
257,
366,
2777,
328,
313,
1,
11862,
13,
314,
373,
7725,
329,
257,
981,
326,
340,
373,
3706,
706,
257,
8129,
1338,
328,
313,
11,
475,
287,
1109,
340,
338,
12059,
262,
835,
262,
19561,
41854,
503,
530,
416,
530,
588,
10532,
286,
1660,
13,
632,
338,
2068,
1576,
329,
257,
7319,
19561,
393,
523,
11,
475,
33019,
866,
257,
1256,
618,
345,
1265,
329,
1802,
62,
830,
393,
517,
11,
2192,
2233,
284,
262,
1327,
670,
326,
262,
1263,
18253,
5888,
468,
284,
466,
25,
772,
618,
345,
821,
655,
26019,
262,
717,
1315,
19561,
286,
18074,
222,
11,
262,
3815,
286,
4600,
64,
16,
63,
290,
4600,
65,
16,
63,
389,
835,
625,
262,
7095,
286,
2558,
2414,
82,
13,
198,
198,
2,
9132,
474,
43640,
12,
16,
13,
16,
29,
2488,
2435,
46514,
328,
896,
7,
12825,
1776,
198,
2,
9132,
220,
657,
13,
486,
2231,
1828,
4201,
357,
2598,
13,
3829,
479,
49157,
25,
860,
13,
32114,
13756,
33,
11,
2579,
13,
5607,
4,
308,
66,
640,
8,
198,
198,
2,
383,
2939,
1244,
670,
1365,
319,
2330,
25,
198,
198,
2,
5145,
58,
9060,
6167,
16151,
3955,
11879,
37,
3535,
14418,
14,
12894,
896,
12,
1659,
12,
14415,
12,
4005,
343,
12,
261,
12,
11186,
12,
7410,
13,
11134,
8,
198,
198,
2,
8975,
314,
2227,
284,
2198,
810,
1728,
16311,
286,
19561,
4120,
13,
314,
3521,
470,
1064,
257,
3170,
12,
259,
2163,
326,
3114,
329,
257,
8379,
286,
19561,
287,
281,
7177,
11,
475,
428,
3111,
880,
1576,
329,
616,
4959,
25,
198,
198,
8818,
7228,
549,
43167,
7,
31227,
293,
11,
27678,
25558,
8,
198,
220,
220,
220,
1255,
796,
2558,
2414,
21737,
198,
220,
220,
220,
329,
479,
287,
352,
25,
13664,
7,
71,
323,
25558,
8,
532,
4129,
7,
31227,
293,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
17598,
6624,
1570,
7,
71,
323,
25558,
11,
479,
25,
74,
1343,
4129,
7,
31227,
293,
8,
532,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
20274,
11,
479,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
1255,
198,
437,
198,
198,
19796,
7266,
43167,
7,
2536,
3712,
10100,
11,
19561,
8,
796,
198,
220,
220,
220,
7228,
549,
43167,
7,
8899,
7,
87,
4613,
21136,
7,
5317,
11,
2124,
828,
6626,
7,
2536,
11,
366,
4943,
828,
19561,
8,
198,
198,
19796,
7266,
43167,
7203,
24214,
2079,
1600,
46514,
328,
896,
7,
11024,
4008,
1303,
5218,
685,
49641,
60,
198,
198,
2,
44386,
3596,
642,
25,
7754,
12,
17359,
198,
198,
2,
317,
442,
28898,
2099,
2550,
588,
262,
15053,
343,
14089,
314,
973,
7415,
318,
922,
329,
9335,
278,
290,
45013,
13,
887,
314,
14028,
703,
262,
7135,
395,
2099,
2550,
561,
804,
13,
314,
1043,
25866,
368,
9084,
36920,
72,
11,
3562,
416,
6748,
21283,
7493,
333,
25866,
368,
379,
262,
8111,
8581,
286,
17867,
11536,
287,
31104,
13,
21771,
338,
6764,
1139,
25,
198,
198,
2,
1875,
464,
749,
25388,
2196,
2499,
1266,
810,
1232,
2247,
318,
1342,
1593,
621,
10092,
5874,
1245,
13,
198,
198,
2,
290,
314,
588,
262,
12531,
804,
772,
996,
340,
338,
2048,
4416,
856,
986,
10928,
428,
787,
3621,
12436,
19867,
30,
198,
198,
2,
5145,
58,
9060,
6167,
16151,
3955,
11879,
37,
3535,
14418,
14,
21834,
12,
12894,
896,
12,
1659,
12,
14415,
12,
65,
380,
368,
12,
7410,
13,
11134,
8,
198,
198,
2,
44386,
3596,
718,
32175,
290,
40928,
198,
198,
2,
314,
1101,
991,
3612,
546,
1262,
2099,
32186,
13,
314,
1101,
257,
4336,
286,
1717,
347,
13561,
5375,
338,
314,
4825,
40928,
10369,
11,
465,
40459,
804,
736,
422,
262,
8069,
82,
284,
262,
2479,
286,
10443,
666,
49198,
13,
198,
198,
2,
5145,
58,
9060,
6167,
16151,
3955,
11879,
37,
3535,
14418,
14,
14415,
12,
12894,
896,
12,
1324,
6648,
12,
7410,
13,
11134,
8,
198,
198,
2,
632,
338,
2562,
284,
466,
428,
351,
8893,
13,
4525,
262,
9197,
24157,
11,
262,
2438,
8794,
1771,
262,
22715,
286,
1123,
3084,
2685,
2121,
1626,
257,
1813,
25317,
11,
290,
2458,
262,
10369,
16062,
13,
198,
198,
2,
44386,
3596,
767,
4307,
46709,
198,
198,
2,
383,
6275,
29792,
13,
20362,
5301,
468,
257,
2163,
1444,
4600,
17080,
41726,
62,
4033,
669,
3419,
63,
357,
4758,
39955,
7400,
12,
785,
1154,
4879,
737,
383,
1037,
2420,
1139,
25,
198,
198,
2,
1875,
770,
3544,
257,
31828,
33908,
12,
3174,
3164,
284,
3853,
4600,
77,
63,
7577,
326,
389,
12991,
453,
15714,
540,
13,
11259,
4600,
28826,
63,
3124,
7,
82,
828,
290,
257,
900,
286,
1744,
37409,
11,
15358,
64,
11,
290,
1657,
1108,
3815,
357,
259,
406,
3398,
397,
2272,
828,
340,
7830,
19769,
262,
1306,
3124,
355,
262,
530,
326,
12991,
4340,
262,
5288,
5166,
3083,
5253,
284,
597,
286,
262,
7577,
1541,
287,
262,
27043,
13,
198,
198,
2,
13111,
284,
466,
351,
3124,
8338,
319,
262,
19091,
338,
11202,
11,
475,
314,
892,
340,
2499,
880,
994,
13,
632,
4940,
379,
262,
1353,
1364,
11,
290,
2499,
422,
1364,
284,
826,
13,
357,
2504,
49109,
32465,
966,
26235,
284,
1262,
262,
2180,
3124,
23029,
921,
460,
4136,
262,
5452,
2047,
805,
966,
357,
63,
24214,
2079,
63,
8,
19487,
866,
319,
262,
1364,
357,
5460,
329,
262,
2237,
12785,
44039,
7586,
24438,
828,
393,
262,
1440,
14032,
3598,
82,
319,
262,
4220,
5752,
13,
198,
198,
2,
5145,
58,
9060,
6167,
16151,
3955,
11879,
37,
3535,
14418,
14,
14415,
12,
17080,
41726,
62,
4033,
669,
12,
7410,
13,
11134,
8,
198,
198,
2,
314,
12086,
284,
1949,
284,
3853,
262,
3124,
329,
262,
1402,
14722,
357,
26949,
555,
46155,
287,
262,
1877,
12,
29268,
36182,
345,
766,
994,
8,
523,
326,
484,
821,
2035,
1657,
319,
3223,
11,
393,
3223,
319,
1657,
13,
198,
198,
2,
9132,
2644,
374,
11,
308,
11,
275,
796,
3124,
286,
6616,
198,
2,
9132,
34236,
796,
362,
13,
17,
198,
2,
9132,
29763,
590,
796,
657,
13,
17,
19420,
1635,
374,
61,
28483,
2611,
1343,
657,
13,
22,
17827,
1635,
308,
61,
28483,
2611,
1343,
657,
13,
2998,
1828,
1635,
275,
61,
28483,
2611,
198,
2,
9132,
357,
75,
7230,
590,
1875,
657,
13,
20,
61,
28483,
2611,
8,
5633,
900,
71,
518,
7203,
13424,
4943,
1058,
900,
71,
518,
7203,
11186,
4943,
198,
198,
2,
44386,
3596,
807,
24680,
19813,
8313,
198,
198,
2,
5145,
58,
9060,
6167,
16151,
3955,
11879,
37,
3535,
14418,
14,
66,
10757,
12,
6098,
1530,
13,
11134,
8,
198,
198,
2,
314,
1276,
423,
1775,
281,
6728,
329,
24680,
13916,
1530,
7415,
11,
393,
3737,
477,
326,
1561,
286,
34236,
290,
406,
3398,
397,
9029,
4073,
257,
6317,
11,
475,
428,
7543,
10484,
286,
281,
2939,
373,
262,
1255,
13,
383,
45809,
2196,
3073,
25103,
475,
318,
1165,
1263,
329,
428,
3992,
2443,
13,
198,
198,
2,
44386,
3596,
860,
4525,
257,
9197,
287,
257,
23642,
11,
257,
7825,
1626,
257,
7825,
198,
198,
2,
943,
32319,
262,
42402,
287,
257,
23642,
3073,
43044,
13,
198,
198,
2,
5145,
58,
9060,
6167,
16151,
3955,
11879,
37,
3535,
14418,
14,
14415,
12,
12894,
896,
12,
259,
12,
2777,
21093,
12,
21591,
12,
7410,
13,
11134,
8,
198,
198,
2,
44386,
3596,
838,
18074,
222,
656,
38447,
198,
198,
2,
17145,
273,
338,
4600,
35428,
39873,
3419,
63,
2163,
2753,
257,
7514,
14520,
290,
8405,
340,
379,
3218,
20016,
13,
770,
3578,
262,
1708,
2126,
11,
810,
1123,
966,
319,
257,
5485,
357,
1456,
11,
262,
19001,
286,
262,
18074,
222,
2095,
8,
318,
6364,
3888,
284,
257,
12336,
4067,
319,
262,
18620,
5485,
1088,
262,
2354,
13,
198,
198,
2,
5145,
58,
9060,
6167,
16151,
3955,
11879,
37,
3535,
14418,
14,
14415,
12,
1462,
12,
45597,
12,
7410,
13,
11134,
8,
198,
198,
2,
1114,
257,
966,
319,
262,
18074,
222,
4865,
4600,
79,
16,
47671,
290,
257,
12336,
966,
319,
262,
38447,
7514,
14520,
4600,
79,
17,
47671,
262,
19898,
966,
318,
1813,
416,
4600,
23395,
7,
79,
16,
11,
279,
17,
11,
299,
8,
47671,
810,
4600,
77,
63,
318,
1022,
657,
290,
352,
13,
198,
198,
2,
314,
588,
262,
2048,
513,
35,
1245,
345,
651,
422,
428,
13,
198,
198,
2,
44386,
3596,
1367,
3178,
25140,
198,
198,
2,
3862,
329,
257,
33512,
17548,
25,
198,
198,
2,
5145,
58,
9060,
6167,
16151,
3955,
11879,
37,
3535,
14418,
14,
14415,
12,
10641,
25140,
12,
16,
12,
7410,
13,
11134,
8,
198,
198,
2,
383,
1067,
676,
306,
13015,
286,
262,
3348,
389,
925,
416,
262,
4600,
35428,
39873,
3419,
63,
2163,
319,
257,
35991,
788,
11524,
2829,
87,
12,
63,
3919,
786,
3419,
63,
12,
88,
26731,
3212,
284,
262,
9421,
1063,
13,
383,
3348,
318,
2420,
1522,
351,
4600,
25135,
3419,
63,
67,
3951,
11,
290,
612,
338,
617,
845,
1877,
3815,
329,
4600,
2617,
404,
4355,
3419,
63,
895,
463,
3212,
13,
911,
13309,
262,
347,
2634,
89,
959,
12133,
17105,
4622,
329,
1123,
24415,
3607,
257,
14093,
88,
14,
82,
7126,
29658,
1254,
13,
357,
1026,
338,
20200,
314,
460,
4866,
290,
17008,
617,
286,
428,
2438,
422,
23388,
314,
1053,
925,
878,
25,
314,
1053,
26338,
262,
1327,
835,
326,
340,
338,
1365,
1394,
1243,
621,
3714,
606,
1497,
23029,
198,
198,
2,
44386,
3596,
1105,
198,
198,
2,
314,
4966,
503,
286,
640,
319,
428,
530,
11,
290,
612,
389,
991,
617,
2761,
351,
262,
2420,
31050,
13,
383,
2126,
318,
284,
423,
262,
15541,
19561,
286,
18074,
222,
23642,
656,
617,
27810,
3491,
351,
617,
2272,
12,
88,
3404,
13,
18578,
407,
262,
3297,
286,
2939,
314,
815,
307,
9361,
379,
477,
351,
2829,
15879,
12,
3106,
362,
35,
9382,
4899,
11,
475,
340,
5300,
588,
257,
4427,
13,
5845,
266,
8802,
88,
19196,
389,
262,
976,
355,
7415,
338,
14093,
29483,
11,
475,
1262,
2183,
4600,
2617,
42460,
3419,
63,
288,
2140,
7572,
13,
198,
198,
2,
5145,
58,
9060,
6167,
16151,
3955,
11879,
37,
3535,
14418,
14,
14415,
23464,
23642,
12,
7410,
13,
11134,
8,
198,
198,
2,
44386,
3596,
1511,
198,
198,
2,
383,
2126,
994,
318,
284,
905,
543,
16839,
286,
18074,
222,
318,
262,
1459,
3554,
11,
287,
2846,
286,
703,
867,
1661,
326,
16839,
468,
4120,
1541,
13,
357,
5297,
11,
257,
8531,
2126,
11,
314,
760,
8133,
3244,
314,
3521,
470,
5409,
319,
703,
867,
19561,
284,
905,
11,
523,
340,
338,
1016,
284,
307,
281,
15108,
24984,
4478,
262,
717,
8576,
19561,
13,
1629,
262,
939,
16839,
1317,
3595,
1468,
366,
22,
1,
318,
9648,
379,
262,
736,
286,
262,
2214,
11,
475,
262,
13476,
1528,
389,
4058,
532,
706,
8576,
19561,
11,
340,
338,
9929,
1685,
657,
11,
604,
11,
290,
718,
13,
198,
198,
2,
5145,
58,
9060,
6167,
16151,
3955,
11879,
37,
3535,
14418,
14,
2167,
12,
12894,
896,
12,
1659,
12,
14415,
12,
7410,
13,
11134,
8,
198,
198,
2,
383,
11034,
2900,
656,
257,
2008,
2138,
621,
257,
24984,
11,
780,
314,
836,
470,
588,
262,
1877,
6323,
286,
24984,
82,
1909,
13,
198,
198,
2,
843,
783,
286,
1781,
314,
423,
284,
751,
257,
11080,
6597,
21751,
13,
24262,
314,
1053,
2904,
587,
2712,
351,
4502,
360,
1381,
263,
271,
6,
685,
44,
2389,
40,
7071,
329,
22300,
16151,
5450,
1378,
12567,
13,
785,
14,
16980,
544,
22648,
828,
523,
340,
373,
2562,
1576,
284,
787,
257,
10530,
2196,
286,
262,
717,
8576,
19561,
286,
18074,
222,
11,
810,
262,
19561,
422,
657,
284,
860,
3853,
262,
5035,
3465,
422,
257,
13025,
25625,
699,
5046,
13,
198,
198,
3500,
33439,
198,
198,
8818,
3613,
11659,
7,
11659,
11,
4710,
8,
198,
220,
220,
220,
2393,
796,
25269,
5064,
576,
3419,
198,
220,
220,
220,
751,
17815,
0,
7,
11659,
11,
4710,
8,
198,
220,
220,
220,
751,
11659,
3672,
0,
7,
11659,
11,
366,
64,
2610,
4943,
198,
220,
220,
220,
4574,
0,
7,
7753,
13,
46074,
11,
2610,
8,
198,
220,
220,
220,
3551,
44,
2389,
5064,
576,
7203,
14,
22065,
14,
23661,
12,
1659,
12,
14415,
13,
13602,
1600,
2393,
8,
198,
437,
198,
198,
1416,
2040,
796,
685,
3510,
11,
4764,
11,
6885,
11,
7192,
11,
5996,
11,
7632,
11,
7618,
11,
3126,
11,
8190,
11,
6135,
11,
8275,
60,
198,
198,
8818,
1152,
265,
316,
1726,
0,
7,
17815,
8,
198,
220,
220,
220,
1426,
796,
352,
198,
220,
220,
220,
22365,
796,
4019,
198,
220,
220,
220,
479,
796,
352,
198,
220,
220,
220,
867,
35317,
328,
896,
796,
46514,
328,
896,
7,
12825,
8,
198,
220,
220,
220,
329,
1312,
287,
867,
35317,
328,
896,
198,
220,
220,
220,
220,
220,
220,
220,
22365,
796,
479,
1635,
41263,
198,
220,
220,
220,
220,
220,
220,
220,
1426,
15853,
479,
1635,
41263,
198,
220,
220,
220,
220,
220,
220,
220,
299,
796,
16252,
58,
72,
1343,
352,
60,
198,
220,
220,
220,
220,
220,
220,
220,
3465,
796,
5740,
7,
77,
11,
8684,
11,
1426,
11,
22365,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
17815,
11,
3465,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
17815,
796,
11822,
3419,
198,
11659,
796,
25269,
2043,
39638,
3419,
198,
8612,
265,
316,
1726,
0,
7,
17815,
8,
198,
21928,
11659,
7,
11659,
11,
4710,
8,
198,
198,
2,
5145,
58,
9060,
6167,
16151,
3955,
11879,
37,
3535,
14418,
14,
28965,
12,
66,
20696,
13,
11134,
8,
198,
198,
2,
770,
366,
1559,
2649,
1,
357,
273,
366,
3885,
2649,
4943,
318,
655,
329,
1257,
13,
1114,
257,
517,
17101,
19976,
286,
777,
3367,
6637,
621,
314,
460,
2148,
11,
2342,
262,
1464,
17774,
685,
51,
415,
330,
81,
377,
16151,
5450,
1378,
2503,
13,
11604,
13,
785,
14,
8340,
30,
85,
28,
46,
66,
80,
18,
8199,
24786,
53,
74,
33047,
82,
10470,
319,
7444,
13,
198,
198,
2,
843,
981,
345,
821,
319,
7444,
11,
262,
18074,
222,
2008,
318,
319,
685,
1820,
7444,
6518,
16151,
5450,
1378,
2503,
13,
11604,
13,
785,
14,
17620,
14,
9598,
16344,
4309,
74,
5603,
20,
41,
79,
89,
27799,
1026,
50,
80,
32457,
48,
87,
70,
828,
290,
340,
338,
616,
5726,
329,
7444,
338,
4042,
347,
3255,
7623,
286,
13130,
5449,
11,
475,
314,
4099,
340,
1839,
470,
466,
845,
880,
960,
5589,
15620,
287,
428,
6536,
318,
14800,
11,
772,
611,
3360,
262,
37851,
389,
19084,
6809,
13,
198,
198,
2,
14628,
18074,
222,
1110,
0,
198,
198,
2,
685,
23344,
12,
3070,
12,
1485,
60,
198,
198,
2,
5145,
58,
66,
579,
724,
295,
8415,
572,
16151,
4023,
1378,
4169,
696,
10115,
13,
3262,
14,
66,
579,
724,
295,
74,
1662,
13,
27908,
30,
79,
2567,
19953,
25,
764,
16159,
12,
9060,
92,
198,
198,
3500,
17667,
378,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10677,
198,
2,
662,
14681,
329,
43935,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10677,
198,
8818,
900,
9060,
43551,
7,
11299,
8,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10677,
198,
220,
220,
220,
2695,
796,
6330,
7,
11299,
11,
366,
3955,
11879,
37,
3535,
14418,
1,
5218,
17971,
3955,
11879,
37,
3535,
14418,
4943,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10677,
198,
220,
220,
220,
1441,
2695,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10677,
198,
437,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10677,
198,
198,
2,
329,
449,
929,
88,
353,
20922,
11,
1234,
4263,
287,
850,
43551,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10677,
198,
2,
3955,
11879,
37,
3535,
14418,
796,
366,
17566,
14,
79,
2567,
1,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10677,
198,
198,
2,
43460,
378,
13,
11295,
2070,
7203,
10459,
14,
79,
2567,
13,
20362,
1600,
366,
11295,
12106,
1600,
662,
14681,
796,
900,
9060,
43551,
8,
1303,
10677,
198,
198,
2,
329,
2940,
2902,
14,
41,
988,
25727,
20922,
11,
1234,
4263,
287,
12813,
17566,
1,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10677,
198,
198,
3955,
11879,
37,
3535,
14418,
796,
12813,
17566,
14,
79,
2567,
1,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10677,
198,
198,
43460,
378,
13,
4102,
2902,
7203,
10459,
14,
79,
2567,
13,
20362,
1600,
366,
33283,
1438,
2625,
62,
24875,
14,
23344,
12,
3070,
12,
1485,
12,
79,
2567,
1600,
220,
220,
220,
220,
220,
1303,
10677,
198,
662,
14681,
796,
900,
9060,
43551,
11,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10677,
198,
14873,
891,
594,
796,
45144,
4,
7238,
474,
43640,
4064,
36786,
5218,
45144,
4,
886,
8929,
2971,
474,
43640,
4064,
92,
1600,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10677,
198,
3188,
263,
28,
9562,
8,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10677,
198,
198,
2,
10677,
198
] | 2.886067 | 4,371 |
typealias ReComp Union{Real,Complex}
immutable Dual{T<:ReComp} <: Number
value::T
epsilon::T
end
Dual{S<:ReComp,T<:ReComp}(x::S, y::T) = Dual(promote(x,y)...)
Dual(x::ReComp) = Dual(x, zero(x))
const ɛ = Dual(false, true)
const imɛ = Dual(Complex(false, false), Complex(false, true))
typealias Dual128 Dual{Float64}
typealias Dual64 Dual{Float32}
typealias Dual32 Dual{Float16}
typealias DualComplex256 Dual{Complex128}
typealias DualComplex128 Dual{Complex64}
typealias DualComplex64 Dual{Complex32}
convert{T<:ReComp}(::Type{Dual{T}}, z::Dual{T}) = z
convert{T<:ReComp}(::Type{Dual{T}}, z::Dual) = Dual{T}(convert(T, value(z)), convert(T, epsilon(z)))
convert{T<:ReComp}(::Type{Dual{T}}, x::Number) = Dual{T}(convert(T, x), convert(T, 0))
convert{T<:ReComp}(::Type{T}, z::Dual) = (epsilon(z)==0 ? convert(T, value(z)) : throw(InexactError()))
promote_rule{T<:ReComp, S<:ReComp}(::Type{Dual{T}}, ::Type{Dual{S}}) = Dual{promote_type(T, S)}
promote_rule{T<:ReComp, S<:ReComp}(::Type{Dual{T}}, ::Type{S}) = Dual{promote_type(T, S)}
promote_rule{T<:ReComp}(::Type{Dual{T}}, ::Type{T}) = Dual{T}
widen{T}(::Type{Dual{T}}) = Dual{widen(T)}
value(z::Dual) = z.value
epsilon(z::Dual) = z.epsilon
dual(x::ReComp, y::ReComp) = Dual(x, y)
dual(x::ReComp) = Dual(x)
dual(z::Dual) = z
Compat.@dep_vectorize_1arg ReComp dual
Compat.@dep_vectorize_2arg ReComp dual
Compat.@dep_vectorize_1arg Dual dual
Compat.@dep_vectorize_1arg Dual value
Compat.@dep_vectorize_1arg Dual epsilon
const realpart = value
const dualpart = epsilon
isnan(z::Dual) = isnan(value(z))
isinf(z::Dual) = isinf(value(z))
isfinite(z::Dual) = isfinite(value(z))
isdual(x::Dual) = true
isdual(x::Number) = false
eps(z::Dual) = eps(value(z))
eps{T}(::Type{Dual{T}}) = eps(T)
function dual_show{T<:Real}(io::IO, z::Dual{T}, compact::Bool)
x, y = value(z), epsilon(z)
if isnan(x) || isfinite(y)
compact ? showcompact(io,x) : show(io,x)
if signbit(y)==1 && !isnan(y)
y = -y
print(io, compact ? "-" : " - ")
else
print(io, compact ? "+" : " + ")
end
compact ? showcompact(io, y) : show(io, y)
printtimes(io, y)
print(io, "ɛ")
else
print(io, "Dual{",T,"}(", x, ",", y, ")")
end
end
function dual_show{T<:Complex}(io::IO, z::Dual{T}, compact::Bool)
x, y = value(z), epsilon(z)
xr, xi = reim(x)
yr, yi = reim(y)
if isnan(x) || isfinite(y)
compact ? showcompact(io,x) : show(io,x)
if signbit(yr)==1 && !isnan(y)
yr = -yr
print(io, " - ")
else
print(io, " + ")
end
if compact
if signbit(yi)==1 && !isnan(y)
yi = -yi
showcompact(io, yr)
printtimes(io, yr)
print(io, "ɛ-")
showcompact(io, yi)
else
showcompact(io, yr)
print(io, "ɛ+")
showcompact(io, yi)
end
else
if signbit(yi)==1 && !isnan(y)
yi = -yi
show(io, yr)
printtimes(io, yr)
print(io, "ɛ - ")
show(io, yi)
else
show(io, yr)
print(io, "ɛ + ")
show(io, yi)
end
end
printtimes(io, yi)
print(io, "imɛ")
else
print(io, "Dual{",T,"}(", x, ",", y, ")")
end
end
function dual_show{T<:Bool}(io::IO, z::Dual{T}, compact::Bool)
x, y = value(z), epsilon(z)
if !value(z) && epsilon(z)
print(io, "ɛ")
else
print(io, "Dual{",T,"}(", x, ",", y, ")")
end
end
function dual_show{T<:Bool}(io::IO, z::Dual{Complex{T}}, compact::Bool)
x, y = value(z), epsilon(z)
xr, xi = reim(x)
yr, yi = reim(y)
if !xr
if xi*!yr*!yi
print(io, "im")
elseif !xi*yr*!yi
print(io, "ɛ")
elseif !xi*!yr*yi
print(io, "imɛ")
end
else
print(io, "Dual{",T,"}(", x, ",", y, ")")
end
end
function printtimes(io::IO, x::Real)
if !(isa(x,Integer) || isa(x,Rational) ||
isa(x,AbstractFloat) && isfinite(x))
print(io, "*")
end
end
show(io::IO, z::Dual) = dual_show(io, z, false)
showcompact(io::IO, z::Dual) = dual_show(io, z, true)
function read{T<:ReComp}(s::IO, ::Type{Dual{T}})
x = read(s, T)
y = read(s, T)
Dual{T}(x, y)
end
function write(s::IO, z::Dual)
write(s, value(z))
write(s, epsilon(z))
end
## Generic functions of dual numbers ##
convert(::Type{Dual}, z::Dual) = z
convert(::Type{Dual}, x::Number) = Dual(x)
==(z::Dual, w::Dual) = value(z) == value(w)
==(z::Dual, x::Number) = value(z) == x
==(x::Number, z::Dual) = value(z) == x
isequal(z::Dual, w::Dual) = isequal(value(z),value(w)) && isequal(epsilon(z), epsilon(w))
isequal(z::Dual, x::Number) = isequal(value(z), x) && isequal(epsilon(z), zero(x))
isequal(x::Number, z::Dual) = isequal(z, x)
isless{T<:Real}(z::Dual{T},w::Dual{T}) = value(z) < value(w)
isless{T<:Real}(z::Real,w::Dual{T}) = z < value(w)
isless{T<:Real}(z::Dual{T},w::Real) = value(z) < w
hash(z::Dual) = (x = hash(value(z)); epsilon(z)==0 ? x : bitmix(x,hash(epsilon(z))))
float{T<:AbstractFloat}(z::Union{Dual{T},Dual{Complex{T}}})=z
complex{T<:Real}(z::Dual{Complex{T}})=z
floor{T<:Real}(::Type{T}, z::Dual) = floor(T, value(z))
ceil{ T<:Real}(::Type{T}, z::Dual) = ceil( T, value(z))
trunc{T<:Real}(::Type{T}, z::Dual) = trunc(T, value(z))
round{T<:Real}(::Type{T}, z::Dual) = round(T, value(z))
for op in (:real,:imag,:conj,:float,:complex)
@eval begin
$op(z::Dual) = Dual($op(value(z)),$op(epsilon(z)))
end
end
abs(z::Dual) = sqrt(abs2(z))
abs2(z::Dual) = real(conj(z)*z)
real{T<:Real}(z::Dual{T}) = z
abs{T<:Real}(z::Dual{T}) = z ≥ 0 ? z : -z
angle{T<:Real}(z::Dual{T}) = z ≥ 0 ? zero(z) : one(z)*π
angle{T<:Real}(z::Dual{Complex{T}}) = z == 0 ? (imag(epsilon(z)) == 0 ? Dual(zero(T),zero(T)) : Dual(zero(T),convert(T, Inf))) : real(log(sign(z))/im)
# algebraic definitions
conjdual(z::Dual) = Dual(value(z),-epsilon(z))
absdual(z::Dual) = abs(value(z))
abs2dual(z::Dual) = abs2(value(z))
# algebra
+(z::Dual, w::Dual) = Dual(value(z)+value(w), epsilon(z)+epsilon(w))
+(z::Number, w::Dual) = Dual(z+value(w), epsilon(w))
+(z::Dual, w::Number) = Dual(value(z)+w, epsilon(z))
-(z::Dual) = Dual(-value(z), -epsilon(z))
-(z::Dual, w::Dual) = Dual(value(z)-value(w), epsilon(z)-epsilon(w))
-(z::Number, w::Dual) = Dual(z-value(w), -epsilon(w))
-(z::Dual, w::Number) = Dual(value(z)-w, epsilon(z))
# avoid ambiguous definition with Bool*Number
*(x::Bool, z::Dual) = ifelse(x, z, ifelse(signbit(real(value(z)))==0, zero(z), -zero(z)))
*(x::Dual, z::Bool) = z*x
*(z::Dual, w::Dual) = Dual(value(z)*value(w), epsilon(z)*value(w)+value(z)*epsilon(w))
*(x::Number, z::Dual) = Dual(x*value(z), x*epsilon(z))
*(z::Dual, x::Number) = Dual(x*value(z), x*epsilon(z))
/(z::Dual, w::Dual) = Dual(value(z)/value(w), (epsilon(z)*value(w)-value(z)*epsilon(w))/(value(w)*value(w)))
/(z::Number, w::Dual) = Dual(z/value(w), -z*epsilon(w)/value(w)^2)
/(z::Dual, x::Number) = Dual(value(z)/x, epsilon(z)/x)
for f in [:^, :(NaNMath.pow)]
@eval function ($f)(z::Dual, w::Dual)
if epsilon(w) == 0.0
return $f(z,value(w))
end
val = $f(value(z),value(w))
du =
epsilon(z)*value(w)*(($f)(value(z),value(w)-1))+epsilon(w)*($f)(value(z),value(w))*log(value(z))
Dual(val, du)
end
end
mod(z::Dual, n::Number) = Dual(mod(value(z), n), epsilon(z))
# these two definitions are needed to fix ambiguity warnings
^(z::Dual, n::Integer) = Dual(value(z)^n, epsilon(z)*n*value(z)^(n-1))
^(z::Dual, n::Rational) = Dual(value(z)^n, epsilon(z)*n*value(z)^(n-1))
^(z::Dual, n::Number) = Dual(value(z)^n, epsilon(z)*n*value(z)^(n-1))
NaNMath.pow(z::Dual, n::Number) = Dual(NaNMath.pow(value(z),n), epsilon(z)*n*NaNMath.pow(value(z),n-1))
NaNMath.pow(z::Number, w::Dual) = Dual(NaNMath.pow(z,value(w)), epsilon(w)*NaNMath.pow(z,value(w))*log(z))
# force use of NaNMath functions in derivative calculations
function to_nanmath(x::Expr)
if x.head == :call
funsym = Expr(:.,:NaNMath,Base.Meta.quot(x.args[1]))
return Expr(:call,funsym,[to_nanmath(z) for z in x.args[2:end]]...)
else
return Expr(:call,[to_nanmath(z) for z in x.args]...)
end
end
to_nanmath(x) = x
for (funsym, exp) in Calculus.symbolic_derivatives_1arg()
funsym == :exp && continue
funsym == :abs2 && continue
@eval function $(funsym)(z::Dual)
x = value(z)
xp = epsilon(z)
Dual($(funsym)(x),xp*$exp)
end
# extend corresponding NaNMath methods
if funsym in (:sin, :cos, :tan, :asin, :acos, :acosh, :atanh, :log, :log2, :log10,
:lgamma, :log1p)
funsym = Expr(:.,:NaNMath,Base.Meta.quot(funsym))
@eval function $(funsym)(z::Dual)
x = value(z)
xp = epsilon(z)
Dual($(funsym)(x),xp*$(to_nanmath(exp)))
end
end
end
# only need to compute exp/cis once
exp(z::Dual) = (expval = exp(value(z)); Dual(expval, epsilon(z)*expval))
cis(z::Dual) = (cisval = cis(value(z)); Dual(cisval, im*epsilon(z)*cisval))
## TODO: should be generated in Calculus
sinpi(z::Dual) = Dual(sinpi(value(z)),epsilon(z)*cospi(value(z))*π)
cospi(z::Dual) = Dual(cospi(value(z)),-epsilon(z)*sinpi(value(z))*π)
| [
4906,
26011,
797,
7293,
4479,
90,
15633,
11,
5377,
11141,
92,
198,
198,
8608,
18187,
20446,
90,
51,
27,
25,
3041,
7293,
92,
1279,
25,
7913,
198,
220,
220,
220,
1988,
3712,
51,
198,
220,
220,
220,
304,
862,
33576,
3712,
51,
198,
437,
198,
36248,
90,
50,
27,
25,
3041,
7293,
11,
51,
27,
25,
3041,
7293,
92,
7,
87,
3712,
50,
11,
331,
3712,
51,
8,
796,
20446,
7,
16963,
1258,
7,
87,
11,
88,
8,
23029,
198,
36248,
7,
87,
3712,
3041,
7293,
8,
796,
20446,
7,
87,
11,
6632,
7,
87,
4008,
198,
198,
9979,
220,
133,
249,
796,
20446,
7,
9562,
11,
2081,
8,
198,
9979,
545,
133,
249,
796,
20446,
7,
5377,
11141,
7,
9562,
11,
3991,
828,
19157,
7,
9562,
11,
2081,
4008,
198,
198,
4906,
26011,
20446,
12762,
20446,
90,
43879,
2414,
92,
198,
4906,
26011,
20446,
2414,
220,
20446,
90,
43879,
2624,
92,
198,
4906,
26011,
20446,
2624,
220,
20446,
90,
43879,
1433,
92,
198,
4906,
26011,
20446,
5377,
11141,
11645,
20446,
90,
5377,
11141,
12762,
92,
198,
4906,
26011,
20446,
5377,
11141,
12762,
20446,
90,
5377,
11141,
2414,
92,
198,
4906,
26011,
20446,
5377,
11141,
2414,
220,
20446,
90,
5377,
11141,
2624,
92,
198,
198,
1102,
1851,
90,
51,
27,
25,
3041,
7293,
92,
7,
3712,
6030,
90,
36248,
90,
51,
92,
5512,
1976,
3712,
36248,
90,
51,
30072,
796,
1976,
198,
1102,
1851,
90,
51,
27,
25,
3041,
7293,
92,
7,
3712,
6030,
90,
36248,
90,
51,
92,
5512,
1976,
3712,
36248,
8,
796,
20446,
90,
51,
92,
7,
1102,
1851,
7,
51,
11,
1988,
7,
89,
36911,
10385,
7,
51,
11,
304,
862,
33576,
7,
89,
22305,
198,
1102,
1851,
90,
51,
27,
25,
3041,
7293,
92,
7,
3712,
6030,
90,
36248,
90,
51,
92,
5512,
2124,
3712,
15057,
8,
796,
20446,
90,
51,
92,
7,
1102,
1851,
7,
51,
11,
2124,
828,
10385,
7,
51,
11,
657,
4008,
198,
1102,
1851,
90,
51,
27,
25,
3041,
7293,
92,
7,
3712,
6030,
90,
51,
5512,
1976,
3712,
36248,
8,
796,
357,
538,
18217,
261,
7,
89,
8,
855,
15,
5633,
10385,
7,
51,
11,
1988,
7,
89,
4008,
1058,
3714,
7,
40,
12413,
529,
12331,
3419,
4008,
198,
198,
16963,
1258,
62,
25135,
90,
51,
27,
25,
3041,
7293,
11,
311,
27,
25,
3041,
7293,
92,
7,
3712,
6030,
90,
36248,
90,
51,
92,
5512,
7904,
6030,
90,
36248,
90,
50,
11709,
8,
796,
20446,
90,
16963,
1258,
62,
4906,
7,
51,
11,
311,
38165,
198,
16963,
1258,
62,
25135,
90,
51,
27,
25,
3041,
7293,
11,
311,
27,
25,
3041,
7293,
92,
7,
3712,
6030,
90,
36248,
90,
51,
92,
5512,
7904,
6030,
90,
50,
30072,
796,
20446,
90,
16963,
1258,
62,
4906,
7,
51,
11,
311,
38165,
198,
16963,
1258,
62,
25135,
90,
51,
27,
25,
3041,
7293,
92,
7,
3712,
6030,
90,
36248,
90,
51,
92,
5512,
7904,
6030,
90,
51,
30072,
796,
20446,
90,
51,
92,
198,
198,
86,
14029,
90,
51,
92,
7,
3712,
6030,
90,
36248,
90,
51,
11709,
8,
796,
20446,
90,
86,
14029,
7,
51,
38165,
198,
198,
8367,
7,
89,
3712,
36248,
8,
796,
1976,
13,
8367,
198,
538,
18217,
261,
7,
89,
3712,
36248,
8,
796,
1976,
13,
538,
18217,
261,
198,
198,
646,
282,
7,
87,
3712,
3041,
7293,
11,
331,
3712,
3041,
7293,
8,
796,
20446,
7,
87,
11,
331,
8,
198,
646,
282,
7,
87,
3712,
3041,
7293,
8,
796,
20446,
7,
87,
8,
198,
646,
282,
7,
89,
3712,
36248,
8,
796,
1976,
198,
198,
40073,
13,
31,
10378,
62,
31364,
1096,
62,
16,
853,
797,
7293,
10668,
198,
40073,
13,
31,
10378,
62,
31364,
1096,
62,
17,
853,
797,
7293,
10668,
198,
40073,
13,
31,
10378,
62,
31364,
1096,
62,
16,
853,
20446,
10668,
198,
40073,
13,
31,
10378,
62,
31364,
1096,
62,
16,
853,
20446,
1988,
198,
40073,
13,
31,
10378,
62,
31364,
1096,
62,
16,
853,
20446,
304,
862,
33576,
198,
198,
9979,
1103,
3911,
796,
1988,
198,
9979,
10668,
3911,
796,
304,
862,
33576,
198,
198,
271,
12647,
7,
89,
3712,
36248,
8,
796,
2125,
272,
7,
8367,
7,
89,
4008,
198,
271,
10745,
7,
89,
3712,
36248,
8,
796,
318,
10745,
7,
8367,
7,
89,
4008,
198,
4468,
9504,
7,
89,
3712,
36248,
8,
796,
318,
69,
9504,
7,
8367,
7,
89,
4008,
198,
271,
646,
282,
7,
87,
3712,
36248,
8,
796,
2081,
198,
271,
646,
282,
7,
87,
3712,
15057,
8,
796,
3991,
198,
25386,
7,
89,
3712,
36248,
8,
796,
304,
862,
7,
8367,
7,
89,
4008,
198,
25386,
90,
51,
92,
7,
3712,
6030,
90,
36248,
90,
51,
11709,
8,
796,
304,
862,
7,
51,
8,
198,
198,
8818,
10668,
62,
12860,
90,
51,
27,
25,
15633,
92,
7,
952,
3712,
9399,
11,
1976,
3712,
36248,
90,
51,
5512,
16001,
3712,
33,
970,
8,
198,
220,
220,
220,
2124,
11,
331,
796,
1988,
7,
89,
828,
304,
862,
33576,
7,
89,
8,
198,
220,
220,
220,
611,
2125,
272,
7,
87,
8,
8614,
318,
69,
9504,
7,
88,
8,
198,
220,
220,
220,
220,
220,
220,
220,
16001,
5633,
905,
5589,
529,
7,
952,
11,
87,
8,
1058,
905,
7,
952,
11,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1051,
2545,
7,
88,
8,
855,
16,
11405,
5145,
271,
12647,
7,
88,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
796,
532,
88,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
16001,
5633,
366,
21215,
1058,
366,
532,
366,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
16001,
5633,
43825,
1,
1058,
366,
1343,
366,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
16001,
5633,
905,
5589,
529,
7,
952,
11,
331,
8,
1058,
905,
7,
952,
11,
331,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
22355,
7,
952,
11,
331,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
366,
133,
249,
4943,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
366,
36248,
90,
1600,
51,
553,
92,
7,
1600,
2124,
11,
366,
553,
11,
331,
11,
366,
8,
4943,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
10668,
62,
12860,
90,
51,
27,
25,
5377,
11141,
92,
7,
952,
3712,
9399,
11,
1976,
3712,
36248,
90,
51,
5512,
16001,
3712,
33,
970,
8,
198,
220,
220,
220,
2124,
11,
331,
796,
1988,
7,
89,
828,
304,
862,
33576,
7,
89,
8,
198,
220,
220,
220,
2124,
81,
11,
2124,
72,
796,
21123,
7,
87,
8,
198,
220,
220,
220,
42635,
11,
331,
72,
796,
21123,
7,
88,
8,
198,
220,
220,
220,
611,
2125,
272,
7,
87,
8,
8614,
318,
69,
9504,
7,
88,
8,
198,
220,
220,
220,
220,
220,
220,
220,
16001,
5633,
905,
5589,
529,
7,
952,
11,
87,
8,
1058,
905,
7,
952,
11,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1051,
2545,
7,
2417,
8,
855,
16,
11405,
5145,
271,
12647,
7,
88,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
42635,
796,
532,
2417,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
366,
532,
366,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
366,
1343,
366,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
611,
16001,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1051,
2545,
7,
48111,
8,
855,
16,
11405,
5145,
271,
12647,
7,
88,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
72,
796,
532,
48111,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
5589,
529,
7,
952,
11,
42635,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
22355,
7,
952,
11,
42635,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
366,
133,
249,
12,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
5589,
529,
7,
952,
11,
331,
72,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
5589,
529,
7,
952,
11,
42635,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
366,
133,
249,
10,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
5589,
529,
7,
952,
11,
331,
72,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1051,
2545,
7,
48111,
8,
855,
16,
11405,
5145,
271,
12647,
7,
88,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
331,
72,
796,
532,
48111,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
7,
952,
11,
42635,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
22355,
7,
952,
11,
42635,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
366,
133,
249,
532,
366,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
7,
952,
11,
331,
72,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
7,
952,
11,
42635,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
366,
133,
249,
1343,
366,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
905,
7,
952,
11,
331,
72,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
22355,
7,
952,
11,
331,
72,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
366,
320,
133,
249,
4943,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
366,
36248,
90,
1600,
51,
553,
92,
7,
1600,
2124,
11,
366,
553,
11,
331,
11,
366,
8,
4943,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
10668,
62,
12860,
90,
51,
27,
25,
33,
970,
92,
7,
952,
3712,
9399,
11,
1976,
3712,
36248,
90,
51,
5512,
16001,
3712,
33,
970,
8,
198,
220,
220,
220,
2124,
11,
331,
796,
1988,
7,
89,
828,
304,
862,
33576,
7,
89,
8,
198,
220,
220,
220,
611,
5145,
8367,
7,
89,
8,
11405,
304,
862,
33576,
7,
89,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
366,
133,
249,
4943,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
366,
36248,
90,
1600,
51,
553,
92,
7,
1600,
2124,
11,
366,
553,
11,
331,
11,
366,
8,
4943,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
10668,
62,
12860,
90,
51,
27,
25,
33,
970,
92,
7,
952,
3712,
9399,
11,
1976,
3712,
36248,
90,
5377,
11141,
90,
51,
92,
5512,
16001,
3712,
33,
970,
8,
198,
220,
220,
220,
2124,
11,
331,
796,
1988,
7,
89,
828,
304,
862,
33576,
7,
89,
8,
198,
220,
220,
220,
2124,
81,
11,
2124,
72,
796,
21123,
7,
87,
8,
198,
220,
220,
220,
42635,
11,
331,
72,
796,
21123,
7,
88,
8,
198,
220,
220,
220,
611,
5145,
87,
81,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
72,
9,
0,
2417,
9,
0,
48111,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
366,
320,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
361,
5145,
29992,
9,
2417,
9,
0,
48111,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
366,
133,
249,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
361,
5145,
29992,
9,
0,
2417,
9,
48111,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
366,
320,
133,
249,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
366,
36248,
90,
1600,
51,
553,
92,
7,
1600,
2124,
11,
366,
553,
11,
331,
11,
366,
8,
4943,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
3601,
22355,
7,
952,
3712,
9399,
11,
2124,
3712,
15633,
8,
198,
220,
220,
220,
611,
5145,
7,
9160,
7,
87,
11,
46541,
8,
8614,
318,
64,
7,
87,
11,
49,
864,
8,
8614,
198,
220,
220,
220,
220,
220,
220,
220,
220,
318,
64,
7,
87,
11,
23839,
43879,
8,
11405,
318,
69,
9504,
7,
87,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
366,
9,
4943,
198,
220,
220,
220,
886,
198,
437,
198,
198,
12860,
7,
952,
3712,
9399,
11,
1976,
3712,
36248,
8,
796,
10668,
62,
12860,
7,
952,
11,
1976,
11,
3991,
8,
198,
12860,
5589,
529,
7,
952,
3712,
9399,
11,
1976,
3712,
36248,
8,
796,
10668,
62,
12860,
7,
952,
11,
1976,
11,
2081,
8,
198,
198,
8818,
1100,
90,
51,
27,
25,
3041,
7293,
92,
7,
82,
3712,
9399,
11,
7904,
6030,
90,
36248,
90,
51,
11709,
8,
198,
220,
220,
220,
2124,
796,
1100,
7,
82,
11,
309,
8,
198,
220,
220,
220,
331,
796,
1100,
7,
82,
11,
309,
8,
198,
220,
220,
220,
20446,
90,
51,
92,
7,
87,
11,
331,
8,
198,
437,
198,
8818,
3551,
7,
82,
3712,
9399,
11,
1976,
3712,
36248,
8,
198,
220,
220,
220,
3551,
7,
82,
11,
1988,
7,
89,
4008,
198,
220,
220,
220,
3551,
7,
82,
11,
304,
862,
33576,
7,
89,
4008,
198,
437,
628,
198,
2235,
42044,
5499,
286,
10668,
3146,
22492,
198,
198,
1102,
1851,
7,
3712,
6030,
90,
36248,
5512,
1976,
3712,
36248,
8,
796,
1976,
198,
1102,
1851,
7,
3712,
6030,
90,
36248,
5512,
2124,
3712,
15057,
8,
796,
20446,
7,
87,
8,
198,
198,
855,
7,
89,
3712,
36248,
11,
266,
3712,
36248,
8,
796,
1988,
7,
89,
8,
6624,
1988,
7,
86,
8,
198,
855,
7,
89,
3712,
36248,
11,
2124,
3712,
15057,
8,
796,
1988,
7,
89,
8,
6624,
2124,
198,
855,
7,
87,
3712,
15057,
11,
1976,
3712,
36248,
8,
796,
1988,
7,
89,
8,
6624,
2124,
198,
198,
786,
13255,
7,
89,
3712,
36248,
11,
266,
3712,
36248,
8,
796,
318,
40496,
7,
8367,
7,
89,
828,
8367,
7,
86,
4008,
11405,
318,
40496,
7,
538,
18217,
261,
7,
89,
828,
304,
862,
33576,
7,
86,
4008,
198,
786,
13255,
7,
89,
3712,
36248,
11,
2124,
3712,
15057,
8,
796,
318,
40496,
7,
8367,
7,
89,
828,
2124,
8,
11405,
318,
40496,
7,
538,
18217,
261,
7,
89,
828,
6632,
7,
87,
4008,
198,
786,
13255,
7,
87,
3712,
15057,
11,
1976,
3712,
36248,
8,
796,
318,
40496,
7,
89,
11,
2124,
8,
198,
198,
271,
1203,
90,
51,
27,
25,
15633,
92,
7,
89,
3712,
36248,
90,
51,
5512,
86,
3712,
36248,
90,
51,
30072,
796,
1988,
7,
89,
8,
1279,
1988,
7,
86,
8,
198,
271,
1203,
90,
51,
27,
25,
15633,
92,
7,
89,
3712,
15633,
11,
86,
3712,
36248,
90,
51,
30072,
796,
1976,
1279,
1988,
7,
86,
8,
198,
271,
1203,
90,
51,
27,
25,
15633,
92,
7,
89,
3712,
36248,
90,
51,
5512,
86,
3712,
15633,
8,
796,
1988,
7,
89,
8,
1279,
266,
198,
198,
17831,
7,
89,
3712,
36248,
8,
796,
357,
87,
796,
12234,
7,
8367,
7,
89,
18125,
304,
862,
33576,
7,
89,
8,
855,
15,
5633,
2124,
1058,
1643,
19816,
7,
87,
11,
17831,
7,
538,
18217,
261,
7,
89,
35514,
198,
198,
22468,
90,
51,
27,
25,
23839,
43879,
92,
7,
89,
3712,
38176,
90,
36248,
90,
51,
5512,
36248,
90,
5377,
11141,
90,
51,
11709,
30072,
28,
89,
198,
41887,
90,
51,
27,
25,
15633,
92,
7,
89,
3712,
36248,
90,
5377,
11141,
90,
51,
11709,
47505,
89,
198,
198,
28300,
90,
51,
27,
25,
15633,
92,
7,
3712,
6030,
90,
51,
5512,
1976,
3712,
36248,
8,
796,
4314,
7,
51,
11,
1988,
7,
89,
4008,
198,
344,
346,
90,
309,
27,
25,
15633,
92,
7,
3712,
6030,
90,
51,
5512,
1976,
3712,
36248,
8,
796,
2906,
346,
7,
309,
11,
1988,
7,
89,
4008,
198,
2213,
19524,
90,
51,
27,
25,
15633,
92,
7,
3712,
6030,
90,
51,
5512,
1976,
3712,
36248,
8,
796,
40122,
7,
51,
11,
1988,
7,
89,
4008,
198,
744,
90,
51,
27,
25,
15633,
92,
7,
3712,
6030,
90,
51,
5512,
1976,
3712,
36248,
8,
796,
2835,
7,
51,
11,
1988,
7,
89,
4008,
198,
198,
1640,
1034,
287,
357,
25,
5305,
11,
25,
48466,
11,
25,
1102,
73,
11,
25,
22468,
11,
25,
41887,
8,
198,
220,
220,
220,
2488,
18206,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
720,
404,
7,
89,
3712,
36248,
8,
796,
20446,
16763,
404,
7,
8367,
7,
89,
36911,
3,
404,
7,
538,
18217,
261,
7,
89,
22305,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8937,
7,
89,
3712,
36248,
8,
796,
19862,
17034,
7,
8937,
17,
7,
89,
4008,
198,
8937,
17,
7,
89,
3712,
36248,
8,
796,
1103,
7,
1102,
73,
7,
89,
27493,
89,
8,
198,
198,
5305,
90,
51,
27,
25,
15633,
92,
7,
89,
3712,
36248,
90,
51,
30072,
796,
1976,
198,
8937,
90,
51,
27,
25,
15633,
92,
7,
89,
3712,
36248,
90,
51,
30072,
796,
1976,
26870,
657,
5633,
1976,
1058,
532,
89,
198,
198,
9248,
90,
51,
27,
25,
15633,
92,
7,
89,
3712,
36248,
90,
51,
30072,
796,
1976,
26870,
657,
5633,
6632,
7,
89,
8,
1058,
530,
7,
89,
27493,
46582,
198,
9248,
90,
51,
27,
25,
15633,
92,
7,
89,
3712,
36248,
90,
5377,
11141,
90,
51,
11709,
8,
796,
1976,
6624,
657,
5633,
357,
48466,
7,
538,
18217,
261,
7,
89,
4008,
6624,
657,
5633,
20446,
7,
22570,
7,
51,
828,
22570,
7,
51,
4008,
1058,
20446,
7,
22570,
7,
51,
828,
1102,
1851,
7,
51,
11,
4806,
22305,
1058,
1103,
7,
6404,
7,
12683,
7,
89,
4008,
14,
320,
8,
198,
198,
2,
37139,
291,
17336,
198,
1102,
73,
646,
282,
7,
89,
3712,
36248,
8,
796,
20446,
7,
8367,
7,
89,
828,
12,
538,
18217,
261,
7,
89,
4008,
198,
8937,
646,
282,
7,
89,
3712,
36248,
8,
796,
2352,
7,
8367,
7,
89,
4008,
198,
8937,
17,
646,
282,
7,
89,
3712,
36248,
8,
796,
2352,
17,
7,
8367,
7,
89,
4008,
198,
198,
2,
37139,
198,
198,
33747,
89,
3712,
36248,
11,
266,
3712,
36248,
8,
796,
20446,
7,
8367,
7,
89,
47762,
8367,
7,
86,
828,
304,
862,
33576,
7,
89,
47762,
538,
18217,
261,
7,
86,
4008,
198,
33747,
89,
3712,
15057,
11,
266,
3712,
36248,
8,
796,
20446,
7,
89,
10,
8367,
7,
86,
828,
304,
862,
33576,
7,
86,
4008,
198,
33747,
89,
3712,
36248,
11,
266,
3712,
15057,
8,
796,
20446,
7,
8367,
7,
89,
47762,
86,
11,
304,
862,
33576,
7,
89,
4008,
198,
198,
30420,
89,
3712,
36248,
8,
796,
20446,
32590,
8367,
7,
89,
828,
532,
538,
18217,
261,
7,
89,
4008,
198,
30420,
89,
3712,
36248,
11,
266,
3712,
36248,
8,
796,
20446,
7,
8367,
7,
89,
13219,
8367,
7,
86,
828,
304,
862,
33576,
7,
89,
13219,
538,
18217,
261,
7,
86,
4008,
198,
30420,
89,
3712,
15057,
11,
266,
3712,
36248,
8,
796,
20446,
7,
89,
12,
8367,
7,
86,
828,
532,
538,
18217,
261,
7,
86,
4008,
198,
30420,
89,
3712,
36248,
11,
266,
3712,
15057,
8,
796,
20446,
7,
8367,
7,
89,
13219,
86,
11,
304,
862,
33576,
7,
89,
4008,
198,
198,
2,
3368,
27102,
6770,
351,
347,
970,
9,
15057,
198,
9,
7,
87,
3712,
33,
970,
11,
1976,
3712,
36248,
8,
796,
611,
17772,
7,
87,
11,
1976,
11,
611,
17772,
7,
12683,
2545,
7,
5305,
7,
8367,
7,
89,
22305,
855,
15,
11,
6632,
7,
89,
828,
532,
22570,
7,
89,
22305,
198,
9,
7,
87,
3712,
36248,
11,
1976,
3712,
33,
970,
8,
796,
1976,
9,
87,
198,
198,
9,
7,
89,
3712,
36248,
11,
266,
3712,
36248,
8,
796,
20446,
7,
8367,
7,
89,
27493,
8367,
7,
86,
828,
304,
862,
33576,
7,
89,
27493,
8367,
7,
86,
47762,
8367,
7,
89,
27493,
538,
18217,
261,
7,
86,
4008,
198,
9,
7,
87,
3712,
15057,
11,
1976,
3712,
36248,
8,
796,
20446,
7,
87,
9,
8367,
7,
89,
828,
2124,
9,
538,
18217,
261,
7,
89,
4008,
198,
9,
7,
89,
3712,
36248,
11,
2124,
3712,
15057,
8,
796,
20446,
7,
87,
9,
8367,
7,
89,
828,
2124,
9,
538,
18217,
261,
7,
89,
4008,
198,
198,
29006,
89,
3712,
36248,
11,
266,
3712,
36248,
8,
796,
20446,
7,
8367,
7,
89,
20679,
8367,
7,
86,
828,
357,
538,
18217,
261,
7,
89,
27493,
8367,
7,
86,
13219,
8367,
7,
89,
27493,
538,
18217,
261,
7,
86,
4008,
29006,
8367,
7,
86,
27493,
8367,
7,
86,
22305,
198,
29006,
89,
3712,
15057,
11,
266,
3712,
36248,
8,
796,
20446,
7,
89,
14,
8367,
7,
86,
828,
532,
89,
9,
538,
18217,
261,
7,
86,
20679,
8367,
7,
86,
8,
61,
17,
8,
198,
29006,
89,
3712,
36248,
11,
2124,
3712,
15057,
8,
796,
20446,
7,
8367,
7,
89,
20679,
87,
11,
304,
862,
33576,
7,
89,
20679,
87,
8,
198,
198,
1640,
277,
287,
685,
25,
61,
11,
36147,
26705,
32755,
776,
13,
79,
322,
15437,
198,
220,
220,
220,
2488,
18206,
2163,
7198,
69,
5769,
89,
3712,
36248,
11,
266,
3712,
36248,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
304,
862,
33576,
7,
86,
8,
6624,
657,
13,
15,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
720,
69,
7,
89,
11,
8367,
7,
86,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
1188,
796,
720,
69,
7,
8367,
7,
89,
828,
8367,
7,
86,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
7043,
796,
198,
220,
220,
220,
220,
220,
220,
220,
304,
862,
33576,
7,
89,
27493,
8367,
7,
86,
27493,
7,
16763,
69,
5769,
8367,
7,
89,
828,
8367,
7,
86,
13219,
16,
4008,
10,
538,
18217,
261,
7,
86,
27493,
16763,
69,
5769,
8367,
7,
89,
828,
8367,
7,
86,
4008,
9,
6404,
7,
8367,
7,
89,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
20446,
7,
2100,
11,
7043,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
4666,
7,
89,
3712,
36248,
11,
299,
3712,
15057,
8,
796,
20446,
7,
4666,
7,
8367,
7,
89,
828,
299,
828,
304,
862,
33576,
7,
89,
4008,
198,
198,
2,
777,
734,
17336,
389,
2622,
284,
4259,
33985,
14601,
198,
61,
7,
89,
3712,
36248,
11,
299,
3712,
46541,
8,
796,
20446,
7,
8367,
7,
89,
8,
61,
77,
11,
304,
862,
33576,
7,
89,
27493,
77,
9,
8367,
7,
89,
8,
61,
7,
77,
12,
16,
4008,
198,
61,
7,
89,
3712,
36248,
11,
299,
3712,
49,
864,
8,
796,
20446,
7,
8367,
7,
89,
8,
61,
77,
11,
304,
862,
33576,
7,
89,
27493,
77,
9,
8367,
7,
89,
8,
61,
7,
77,
12,
16,
4008,
198,
198,
61,
7,
89,
3712,
36248,
11,
299,
3712,
15057,
8,
796,
20446,
7,
8367,
7,
89,
8,
61,
77,
11,
304,
862,
33576,
7,
89,
27493,
77,
9,
8367,
7,
89,
8,
61,
7,
77,
12,
16,
4008,
198,
26705,
32755,
776,
13,
79,
322,
7,
89,
3712,
36248,
11,
299,
3712,
15057,
8,
796,
20446,
7,
26705,
32755,
776,
13,
79,
322,
7,
8367,
7,
89,
828,
77,
828,
304,
862,
33576,
7,
89,
27493,
77,
9,
26705,
32755,
776,
13,
79,
322,
7,
8367,
7,
89,
828,
77,
12,
16,
4008,
198,
26705,
32755,
776,
13,
79,
322,
7,
89,
3712,
15057,
11,
266,
3712,
36248,
8,
796,
20446,
7,
26705,
32755,
776,
13,
79,
322,
7,
89,
11,
8367,
7,
86,
36911,
304,
862,
33576,
7,
86,
27493,
26705,
32755,
776,
13,
79,
322,
7,
89,
11,
8367,
7,
86,
4008,
9,
6404,
7,
89,
4008,
198,
198,
2,
2700,
779,
286,
11013,
32755,
776,
5499,
287,
27255,
16765,
198,
8818,
284,
62,
12647,
11018,
7,
87,
3712,
3109,
1050,
8,
198,
220,
220,
220,
611,
2124,
13,
2256,
6624,
1058,
13345,
198,
220,
220,
220,
220,
220,
220,
220,
1257,
37047,
796,
1475,
1050,
7,
25,
1539,
25,
26705,
32755,
776,
11,
14881,
13,
48526,
13,
421,
313,
7,
87,
13,
22046,
58,
16,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1475,
1050,
7,
25,
13345,
11,
12543,
37047,
17414,
1462,
62,
12647,
11018,
7,
89,
8,
329,
1976,
287,
2124,
13,
22046,
58,
17,
25,
437,
11907,
23029,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1475,
1050,
7,
25,
13345,
17414,
1462,
62,
12647,
11018,
7,
89,
8,
329,
1976,
287,
2124,
13,
22046,
60,
23029,
198,
220,
220,
220,
886,
198,
437,
198,
1462,
62,
12647,
11018,
7,
87,
8,
796,
2124,
198,
198,
1640,
357,
12543,
37047,
11,
1033,
8,
287,
2199,
17576,
13,
1837,
2022,
4160,
62,
1082,
452,
2929,
62,
16,
853,
3419,
198,
220,
220,
220,
1257,
37047,
6624,
1058,
11201,
11405,
2555,
198,
220,
220,
220,
1257,
37047,
6624,
1058,
8937,
17,
11405,
2555,
198,
220,
220,
220,
2488,
18206,
2163,
29568,
12543,
37047,
5769,
89,
3712,
36248,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
796,
1988,
7,
89,
8,
198,
220,
220,
220,
220,
220,
220,
220,
36470,
796,
304,
862,
33576,
7,
89,
8,
198,
220,
220,
220,
220,
220,
220,
220,
20446,
16763,
7,
12543,
37047,
5769,
87,
828,
42372,
9,
3,
11201,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1303,
9117,
11188,
11013,
32755,
776,
5050,
198,
220,
220,
220,
611,
1257,
37047,
287,
357,
25,
31369,
11,
1058,
6966,
11,
1058,
38006,
11,
1058,
47337,
11,
1058,
330,
418,
11,
1058,
330,
3768,
11,
1058,
39036,
71,
11,
1058,
6404,
11,
1058,
6404,
17,
11,
1058,
6404,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1058,
75,
28483,
2611,
11,
1058,
6404,
16,
79,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1257,
37047,
796,
1475,
1050,
7,
25,
1539,
25,
26705,
32755,
776,
11,
14881,
13,
48526,
13,
421,
313,
7,
12543,
37047,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
18206,
2163,
29568,
12543,
37047,
5769,
89,
3712,
36248,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
796,
1988,
7,
89,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36470,
796,
304,
862,
33576,
7,
89,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20446,
16763,
7,
12543,
37047,
5769,
87,
828,
42372,
9,
3,
7,
1462,
62,
12647,
11018,
7,
11201,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
437,
198,
198,
2,
691,
761,
284,
24061,
1033,
14,
66,
271,
1752,
198,
11201,
7,
89,
3712,
36248,
8,
796,
357,
11201,
2100,
796,
1033,
7,
8367,
7,
89,
18125,
20446,
7,
11201,
2100,
11,
304,
862,
33576,
7,
89,
27493,
11201,
2100,
4008,
198,
66,
271,
7,
89,
3712,
36248,
8,
796,
357,
66,
271,
2100,
796,
33325,
7,
8367,
7,
89,
18125,
20446,
7,
66,
271,
2100,
11,
545,
9,
538,
18217,
261,
7,
89,
27493,
66,
271,
2100,
4008,
198,
198,
2235,
16926,
46,
25,
815,
307,
7560,
287,
2199,
17576,
198,
31369,
14415,
7,
89,
3712,
36248,
8,
796,
20446,
7,
31369,
14415,
7,
8367,
7,
89,
36911,
538,
18217,
261,
7,
89,
27493,
66,
2117,
72,
7,
8367,
7,
89,
4008,
9,
46582,
8,
198,
66,
2117,
72,
7,
89,
3712,
36248,
8,
796,
20446,
7,
66,
2117,
72,
7,
8367,
7,
89,
36911,
12,
538,
18217,
261,
7,
89,
27493,
31369,
14415,
7,
8367,
7,
89,
4008,
9,
46582,
8,
198
] | 1.935233 | 4,879 |
using Plots
using MCMCChain
n_iter = 500
n_name = 3
n_chain = 2
val = randn(n_iter, n_name, n_chain) .+ [1, 2, 3]'
val = hcat(val, rand(1:2, n_iter, 1, n_chain))
chn = Chains(val)
# plotting singe plotting types
ps_trace = plot(chn, :trace)
ps_mean = plot(chn, :mean)
ps_density = plot(chn, :density)
ps_autocor = plot(chn, :autocor)
#ps_contour = plot(chn, :contour)
ps_hist = plot(chn, :histogram)
ps_mixed = plot(chn, :mixeddensity)
# plotting combinations
ps_trace_mean = plot(chn, [:trace, :mean])
ps_mixed_auto = plot(chn, [:mixeddensity, :autocor])
| [
3500,
1345,
1747,
198,
3500,
13122,
9655,
35491,
198,
198,
77,
62,
2676,
796,
5323,
198,
77,
62,
3672,
796,
513,
198,
77,
62,
7983,
796,
362,
198,
198,
2100,
796,
43720,
77,
7,
77,
62,
2676,
11,
299,
62,
3672,
11,
299,
62,
7983,
8,
764,
10,
685,
16,
11,
362,
11,
513,
49946,
198,
2100,
796,
289,
9246,
7,
2100,
11,
43720,
7,
16,
25,
17,
11,
299,
62,
2676,
11,
352,
11,
299,
62,
7983,
4008,
198,
198,
1349,
796,
34950,
7,
2100,
8,
198,
198,
2,
29353,
1702,
68,
29353,
3858,
198,
862,
62,
40546,
796,
7110,
7,
1349,
11,
1058,
40546,
8,
198,
862,
62,
32604,
796,
7110,
7,
1349,
11,
1058,
32604,
8,
198,
862,
62,
43337,
796,
7110,
7,
1349,
11,
1058,
43337,
8,
198,
862,
62,
2306,
420,
273,
796,
7110,
7,
1349,
11,
1058,
2306,
420,
273,
8,
198,
2,
862,
62,
3642,
454,
796,
7110,
7,
1349,
11,
1058,
3642,
454,
8,
198,
862,
62,
10034,
796,
7110,
7,
1349,
11,
1058,
10034,
21857,
8,
198,
862,
62,
76,
2966,
796,
7110,
7,
1349,
11,
1058,
76,
2966,
43337,
8,
198,
198,
2,
29353,
17790,
198,
862,
62,
40546,
62,
32604,
796,
7110,
7,
1349,
11,
685,
25,
40546,
11,
1058,
32604,
12962,
198,
862,
62,
76,
2966,
62,
23736,
796,
7110,
7,
1349,
11,
685,
25,
76,
2966,
43337,
11,
1058,
2306,
420,
273,
12962,
198
] | 2.367089 | 237 |
using Test
using TightlyBound
using Suppressor
#include("../includes_laguerre.jl")
#include("../Ewald.jl")
TESTDIR=TightlyBound.TESTDIR
function loaddata(dirs; scf=true)
tbc_list = []
dft_list = []
for t in dirs
# println(t*"/qe.save")
tfull = "$TESTDIR/"*t
dft = TightlyBound.QE.loadXML(tfull*"/qe.save")
tbc = []
tbc_scf = []
try
if scf
tbc_scf = TightlyBound.TB.read_tb_crys("projham_scf.xml.gz", directory=tfull)
else
tbc_scf = TightlyBound.TB.read_tb_crys("projham.xml.gz", directory=tfull)
end
catch
tbc = TightlyBound.AtomicProj.projwfx_workf(dft, directory=tfull, writefile="projham.xml", skip_og=true, skip_proj=true, freeze=true, localized_factor = 0.15)
if scf
tbc_scf = TightlyBound.SCF.remove_scf_from_tbc(tbc)
TightlyBound.TB.write_tb_crys(t*"/projham_scf.xml.gz", tbc_scf)
else
tbc_scf = tbc
end
end
push!(dft_list, dft)
push!(tbc_list, tbc_scf)
end
return tbc_list, dft_list
end
function test_force()
@testset "testing force dimer" begin
if true
# @suppress begin
ft = open("$TESTDIR/data_forces/fil_MgS_dimer", "r");
dirst = readlines(ft);
close(ft);
# println(dirst)
# for scf = [false true]
f_cart = zeros(2,3)
f_cartFD = 0.0
for scf = [false, true]
@suppress begin
tbc_list, dft_list = loaddata(dirst, scf=scf);
database_rec = TightlyBound.FitTB.do_fitting_recursive(tbc_list,dft_list = dft_list, fit_threebody=false, fit_threebody_onsite=false);
x = 4;
smearing = 0.01;
#en, tbc_x, flag = scf_energy(tbc_list[x].crys, database = database_rec)
#en, f_cart,stress = TightlyBound.Force_Stress.get_energy_force_stress(tbc_x, database_rec, smearing = smearing);
en, f_cart,stress = TightlyBound.Force_Stress.get_energy_force_stress(tbc_list[x].crys, database_rec, smearing = smearing);
enFD, f_cartFD = TightlyBound.Force_Stress.finite_diff(tbc_list[x].crys, database_rec,1, 3, smearing = smearing);
end
# println(scf, " xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ", f_cartFD, " ", f_cart[1,3])
@test abs(f_cartFD - f_cart[1,3]) < 1e-3
# @test abs(f_cartFD - f_cart_fft[1,3]) < 1e-3
# println("SCF $scf TEST1 finite diff: ", f_cartFD , " autodiff: ", f_cart[1,3], " xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")
# println("TEST1 dft ref ", dft_list[x].forces[1,3])
end
# x = 3;
# smearing = 0.01;
# en, f_cart,stress = Force_Stress.get_energy_force_stress(tbc_list[x].crys, database_rec, smearing = smearing);
# enFD, f_cartFD = Force_Stress.finite_diff(tbc_list[x].crys, database_rec,1, 3, smearing = smearing);
# @test abs(f_cartFD - f_cart[1,3]) < 1e-3
# println("TEST3 finite diff: ", f_cartFD , " autodiff: ", f_cart[1,3], " xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")
# println("TEST3 dft ref ", dft_list[x].forces[1,3])
end
end
end
function test_stress()
@testset "testing force znse" begin
@suppress begin
ft = open("$TESTDIR/data_forces/fil_MgS_znse", "r");
dirst = readlines(ft);
close(ft);
# println(dirst)
tbc_list, dft_list = loaddata(dirst, scf=false);
database = TightlyBound.FitTB.do_fitting(tbc_list, fit_threebody=false, fit_threebody_onsite=false, do_plot=false);
# database = FitTB.do_fitting_recursive(tbc_list,dft_list = dft_list, fit_threebody=true, fit_threebody_onsite=false);
x = 1;
smearing = 0.01;
en, f_cart, stress = TightlyBound.Force_Stress.get_energy_force_stress(tbc_list[x].crys, database, smearing = smearing);
enFD, f_cartFD = TightlyBound.Force_Stress.finite_diff(tbc_list[x].crys, database,1, 3, smearing = smearing);
# println("TEST force finite diff: ", f_cartFD , " autodiff: ", f_cart[1,3], " xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")
# println("TEST dft ref ", dft_list[x].forces[1,3])
@test abs(f_cartFD - f_cart[1,3]) < 1e-4
x=1
enFD, stressFD = TightlyBound.Force_Stress.finite_diff(tbc_list[x].crys, database,1, 1, stress_mode=true, smearing = smearing);
# println("TEST stress11 finite diff: ", stressFD , " autodiff: ", stress[1,1], " xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")
# println("TEST dft ref ", dft_list[x].stress[1,1])
@test abs(stressFD - stress[1,1]) < 1e-5
x=1
enFD, stressFD = TightlyBound.Force_Stress.finite_diff(tbc_list[x].crys, database,1, 2, stress_mode=true, smearing = smearing);
# println("TEST stress12 finite diff: ", stressFD , " autodiff: ", stress[1,2], " xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")
# println("TEST dft ref ", dft_list[x].stress[1,2])
@test abs(stressFD - stress[1,2]) < 1e-5
# println("done")
end
end
end
test_force()
#println("sleep ")
#sleep(3)
test_stress()
| [
3500,
6208,
198,
3500,
44643,
306,
49646,
198,
3500,
8105,
44292,
198,
198,
2,
17256,
7203,
40720,
42813,
62,
75,
11433,
263,
260,
13,
20362,
4943,
198,
2,
17256,
7203,
40720,
36,
21667,
13,
20362,
4943,
198,
198,
51,
6465,
34720,
28,
51,
432,
306,
49646,
13,
51,
6465,
34720,
198,
198,
8818,
3440,
7890,
7,
15908,
82,
26,
629,
69,
28,
7942,
8,
198,
220,
220,
220,
256,
15630,
62,
4868,
220,
796,
17635,
198,
220,
220,
220,
288,
701,
62,
4868,
796,
17635,
628,
220,
220,
220,
329,
256,
287,
288,
17062,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
83,
9,
1,
14,
80,
68,
13,
21928,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
256,
12853,
796,
17971,
51,
6465,
34720,
30487,
9,
83,
198,
220,
220,
220,
220,
220,
220,
220,
288,
701,
796,
44643,
306,
49646,
13,
48,
36,
13,
2220,
55,
5805,
7,
83,
12853,
9,
1,
14,
80,
68,
13,
21928,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
256,
15630,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
256,
15630,
62,
1416,
69,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
629,
69,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
15630,
62,
1416,
69,
796,
44643,
306,
49646,
13,
22737,
13,
961,
62,
83,
65,
62,
66,
19753,
7203,
1676,
73,
2763,
62,
1416,
69,
13,
19875,
13,
34586,
1600,
8619,
28,
83,
12853,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
15630,
62,
1416,
69,
796,
44643,
306,
49646,
13,
22737,
13,
961,
62,
83,
65,
62,
66,
19753,
7203,
1676,
73,
2763,
13,
19875,
13,
34586,
1600,
8619,
28,
83,
12853,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
4929,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
15630,
796,
44643,
306,
49646,
13,
2953,
10179,
2964,
73,
13,
1676,
73,
86,
21373,
62,
1818,
69,
7,
67,
701,
11,
8619,
28,
83,
12853,
11,
3551,
7753,
2625,
1676,
73,
2763,
13,
19875,
1600,
14267,
62,
519,
28,
7942,
11,
14267,
62,
1676,
73,
28,
7942,
11,
16611,
28,
7942,
11,
36618,
62,
31412,
796,
657,
13,
1314,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
629,
69,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
15630,
62,
1416,
69,
796,
44643,
306,
49646,
13,
6173,
37,
13,
28956,
62,
1416,
69,
62,
6738,
62,
83,
15630,
7,
83,
15630,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
44643,
306,
49646,
13,
22737,
13,
13564,
62,
83,
65,
62,
66,
19753,
7,
83,
9,
1,
14,
1676,
73,
2763,
62,
1416,
69,
13,
19875,
13,
34586,
1600,
256,
15630,
62,
1416,
69,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
15630,
62,
1416,
69,
796,
256,
15630,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
67,
701,
62,
4868,
11,
288,
701,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
83,
15630,
62,
4868,
11,
256,
15630,
62,
1416,
69,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
220,
220,
220,
220,
256,
15630,
62,
4868,
11,
288,
701,
62,
4868,
198,
437,
628,
198,
8818,
1332,
62,
3174,
3419,
628,
220,
220,
220,
2488,
9288,
2617,
366,
33407,
2700,
5391,
263,
1,
2221,
628,
220,
220,
220,
220,
220,
220,
220,
611,
2081,
198,
2,
220,
220,
220,
220,
220,
220,
220,
2488,
18608,
601,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10117,
796,
1280,
7203,
3,
51,
6465,
34720,
14,
7890,
62,
27087,
14,
10379,
62,
44,
70,
50,
62,
67,
22723,
1600,
366,
81,
15341,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
667,
796,
1100,
6615,
7,
701,
1776,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1969,
7,
701,
1776,
220,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
67,
667,
8,
628,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
629,
69,
796,
685,
9562,
2081,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
62,
26674,
796,
1976,
27498,
7,
17,
11,
18,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
62,
26674,
26009,
796,
657,
13,
15,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
629,
69,
796,
685,
9562,
11,
2081,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
18608,
601,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
15630,
62,
4868,
11,
288,
701,
62,
4868,
796,
3440,
7890,
7,
67,
667,
11,
629,
69,
28,
1416,
69,
1776,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6831,
62,
8344,
796,
44643,
306,
49646,
13,
31805,
22737,
13,
4598,
62,
32232,
62,
8344,
30753,
7,
83,
15630,
62,
4868,
11,
67,
701,
62,
4868,
796,
288,
701,
62,
4868,
11,
220,
4197,
62,
15542,
2618,
28,
9562,
11,
4197,
62,
15542,
2618,
62,
684,
578,
28,
9562,
1776,
628,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
796,
604,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
895,
6648,
796,
657,
13,
486,
26,
220,
220,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
268,
11,
256,
15630,
62,
87,
11,
6056,
796,
629,
69,
62,
22554,
7,
83,
15630,
62,
4868,
58,
87,
4083,
66,
19753,
11,
6831,
796,
6831,
62,
8344,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
268,
11,
277,
62,
26674,
11,
41494,
796,
44643,
306,
49646,
13,
10292,
62,
1273,
601,
13,
1136,
62,
22554,
62,
3174,
62,
41494,
7,
83,
15630,
62,
87,
11,
6831,
62,
8344,
11,
220,
220,
895,
6648,
796,
895,
6648,
1776,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
551,
11,
277,
62,
26674,
11,
41494,
796,
44643,
306,
49646,
13,
10292,
62,
1273,
601,
13,
1136,
62,
22554,
62,
3174,
62,
41494,
7,
83,
15630,
62,
4868,
58,
87,
4083,
66,
19753,
11,
6831,
62,
8344,
11,
220,
220,
895,
6648,
796,
895,
6648,
1776,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
551,
26009,
11,
277,
62,
26674,
26009,
796,
44643,
306,
49646,
13,
10292,
62,
1273,
601,
13,
69,
9504,
62,
26069,
7,
83,
15630,
62,
4868,
58,
87,
4083,
66,
19753,
11,
6831,
62,
8344,
11,
16,
11,
513,
11,
220,
220,
895,
6648,
796,
895,
6648,
1776,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
1416,
69,
11,
366,
2124,
24223,
24223,
24223,
24223,
12343,
87,
220,
33172,
277,
62,
26674,
26009,
11,
366,
220,
33172,
277,
62,
26674,
58,
16,
11,
18,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
2352,
7,
69,
62,
26674,
26009,
532,
277,
62,
26674,
58,
16,
11,
18,
12962,
1279,
352,
68,
12,
18,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
2352,
7,
69,
62,
26674,
26009,
532,
277,
62,
26674,
62,
487,
83,
58,
16,
11,
18,
12962,
1279,
352,
68,
12,
18,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
44872,
7203,
6173,
37,
720,
1416,
69,
43001,
16,
27454,
814,
25,
33172,
277,
62,
26674,
26009,
837,
366,
1960,
375,
733,
25,
220,
220,
33172,
277,
62,
26674,
58,
16,
11,
18,
4357,
366,
2124,
24223,
24223,
24223,
24223,
24223,
24223,
24223,
24223,
24223,
12343,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
44872,
7203,
51,
6465,
16,
288,
701,
1006,
33172,
288,
701,
62,
4868,
58,
87,
4083,
27087,
58,
16,
11,
18,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
2124,
796,
513,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
895,
6648,
796,
657,
13,
486,
26,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
551,
11,
277,
62,
26674,
11,
41494,
796,
5221,
62,
1273,
601,
13,
1136,
62,
22554,
62,
3174,
62,
41494,
7,
83,
15630,
62,
4868,
58,
87,
4083,
66,
19753,
11,
6831,
62,
8344,
11,
220,
220,
895,
6648,
796,
895,
6648,
1776,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
551,
26009,
11,
277,
62,
26674,
26009,
796,
5221,
62,
1273,
601,
13,
69,
9504,
62,
26069,
7,
83,
15630,
62,
4868,
58,
87,
4083,
66,
19753,
11,
6831,
62,
8344,
11,
16,
11,
513,
11,
220,
220,
895,
6648,
796,
895,
6648,
1776,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
2352,
7,
69,
62,
26674,
26009,
532,
277,
62,
26674,
58,
16,
11,
18,
12962,
1279,
352,
68,
12,
18,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
44872,
7203,
51,
6465,
18,
27454,
814,
25,
33172,
277,
62,
26674,
26009,
837,
366,
1960,
375,
733,
25,
220,
220,
33172,
277,
62,
26674,
58,
16,
11,
18,
4357,
366,
2124,
24223,
24223,
24223,
24223,
24223,
24223,
24223,
24223,
24223,
12343,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
44872,
7203,
51,
6465,
18,
288,
701,
1006,
33172,
288,
701,
62,
4868,
58,
87,
4083,
27087,
58,
16,
11,
18,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
1332,
62,
41494,
3419,
628,
220,
220,
220,
2488,
9288,
2617,
366,
33407,
2700,
1976,
77,
325,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
18608,
601,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10117,
796,
1280,
7203,
3,
51,
6465,
34720,
14,
7890,
62,
27087,
14,
10379,
62,
44,
70,
50,
62,
47347,
325,
1600,
366,
81,
15341,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
667,
796,
1100,
6615,
7,
701,
1776,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1969,
7,
701,
1776,
220,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
67,
667,
8,
628,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
15630,
62,
4868,
11,
288,
701,
62,
4868,
796,
3440,
7890,
7,
67,
667,
11,
629,
69,
28,
9562,
1776,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6831,
796,
44643,
306,
49646,
13,
31805,
22737,
13,
4598,
62,
32232,
7,
83,
15630,
62,
4868,
11,
4197,
62,
15542,
2618,
28,
9562,
11,
4197,
62,
15542,
2618,
62,
684,
578,
28,
9562,
11,
466,
62,
29487,
28,
9562,
1776,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
6831,
796,
25048,
22737,
13,
4598,
62,
32232,
62,
8344,
30753,
7,
83,
15630,
62,
4868,
11,
67,
701,
62,
4868,
796,
288,
701,
62,
4868,
11,
220,
4197,
62,
15542,
2618,
28,
7942,
11,
4197,
62,
15542,
2618,
62,
684,
578,
28,
9562,
1776,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
796,
352,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
895,
6648,
796,
657,
13,
486,
26,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
551,
11,
277,
62,
26674,
11,
5503,
796,
44643,
306,
49646,
13,
10292,
62,
1273,
601,
13,
1136,
62,
22554,
62,
3174,
62,
41494,
7,
83,
15630,
62,
4868,
58,
87,
4083,
66,
19753,
11,
6831,
11,
220,
220,
895,
6648,
796,
895,
6648,
1776,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
551,
26009,
11,
277,
62,
26674,
26009,
796,
44643,
306,
49646,
13,
10292,
62,
1273,
601,
13,
69,
9504,
62,
26069,
7,
83,
15630,
62,
4868,
58,
87,
4083,
66,
19753,
11,
6831,
11,
16,
11,
513,
11,
220,
220,
895,
6648,
796,
895,
6648,
1776,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
44872,
7203,
51,
6465,
2700,
27454,
814,
25,
33172,
277,
62,
26674,
26009,
837,
366,
1960,
375,
733,
25,
220,
220,
33172,
277,
62,
26674,
58,
16,
11,
18,
4357,
366,
2124,
24223,
24223,
24223,
24223,
24223,
24223,
24223,
24223,
24223,
12343,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
44872,
7203,
51,
6465,
288,
701,
1006,
33172,
288,
701,
62,
4868,
58,
87,
4083,
27087,
58,
16,
11,
18,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
2352,
7,
69,
62,
26674,
26009,
532,
277,
62,
26674,
58,
16,
11,
18,
12962,
1279,
352,
68,
12,
19,
628,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
28,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
551,
26009,
11,
5503,
26009,
796,
44643,
306,
49646,
13,
10292,
62,
1273,
601,
13,
69,
9504,
62,
26069,
7,
83,
15630,
62,
4868,
58,
87,
4083,
66,
19753,
11,
6831,
11,
16,
11,
352,
11,
5503,
62,
14171,
28,
7942,
11,
220,
895,
6648,
796,
895,
6648,
1776,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
44872,
7203,
51,
6465,
5503,
1157,
27454,
814,
25,
33172,
5503,
26009,
837,
366,
1960,
375,
733,
25,
220,
220,
33172,
5503,
58,
16,
11,
16,
4357,
366,
2124,
24223,
24223,
24223,
24223,
24223,
24223,
24223,
24223,
24223,
12343,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
44872,
7203,
51,
6465,
288,
701,
1006,
33172,
288,
701,
62,
4868,
58,
87,
4083,
41494,
58,
16,
11,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
2352,
7,
41494,
26009,
532,
5503,
58,
16,
11,
16,
12962,
1279,
352,
68,
12,
20,
628,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
28,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
551,
26009,
11,
5503,
26009,
796,
44643,
306,
49646,
13,
10292,
62,
1273,
601,
13,
69,
9504,
62,
26069,
7,
83,
15630,
62,
4868,
58,
87,
4083,
66,
19753,
11,
6831,
11,
16,
11,
362,
11,
5503,
62,
14171,
28,
7942,
11,
220,
895,
6648,
796,
895,
6648,
1776,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
44872,
7203,
51,
6465,
5503,
1065,
27454,
814,
25,
33172,
5503,
26009,
837,
366,
1960,
375,
733,
25,
220,
220,
33172,
5503,
58,
16,
11,
17,
4357,
366,
2124,
24223,
24223,
24223,
24223,
24223,
24223,
24223,
24223,
24223,
12343,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
44872,
7203,
51,
6465,
288,
701,
1006,
33172,
288,
701,
62,
4868,
58,
87,
4083,
41494,
58,
16,
11,
17,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
2352,
7,
41494,
26009,
532,
5503,
58,
16,
11,
17,
12962,
1279,
352,
68,
12,
20,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
44872,
7203,
28060,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
437,
628,
198,
9288,
62,
3174,
3419,
198,
198,
2,
35235,
7203,
42832,
366,
8,
198,
2,
42832,
7,
18,
8,
198,
198,
9288,
62,
41494,
3419,
198
] | 1.919845 | 3,094 |
struct Match
rule::AbstractRule
# the rhs pattern to instantiate
pat_to_inst::Union{Nothing,Pattern}
# the substitution
sub::Sub
# the id the matched the lhs
id::EClassId
end
const MatchesBuf = Vector{Match}
function cached_ids(g::EGraph, p::Pattern)# ::Vector{Int64}
collect(keys(g.classes))
end
# FIXME
function cached_ids(g::EGraph, p::PatTerm)
# println("pattern $p, $(p.head)")
# println("all ids")
# keys(g.classes) |> println
# println("cached symbols")
# cached = get(g.symcache, p.head, Set{Int64}())
# println("symbols where $(p.head) appears")
# appears = Set{Int64}()
# for (id, class) ∈ g.classes
# for n ∈ class
# if n.head == p.head
# push!(appears, id)
# end
# end
# end
# # println(appears)
# if !(cached == appears)
# @show cached
# @show appears
# end
collect(keys(g.classes))
# cached
# get(g.symcache, p.head, [])
end
# function cached_ids(g::EGraph, p::PatLiteral)
# get(g.symcache, p.val, [])
# end
function (r::SymbolicRule)(g::EGraph, id::EClassId)
ematch(g, r.ematch_program, id) .|> sub -> Match(r, r.right, sub, id)
end
function (r::DynamicRule)(g::EGraph, id::EClassId)
ematch(g, r.ematch_program, id) .|> sub -> Match(r, nothing, sub, id)
end
function (r::BidirRule)(g::EGraph, id::EClassId)
vcat(ematch(g, r.ematch_program_l, id) .|> sub -> Match(r, r.right, sub, id),
ematch(g, r.ematch_program_r, id) .|> sub -> Match(r, r.left, sub, id))
end
macro maybethreaded(x, body)
esc(quote
if $x
Threads.@threads $body
else
$body
end
end)
end
"""
Returns an iterator of `Match`es.
"""
function eqsat_search!(egraph::EGraph, theory::Vector{<:AbstractRule},
scheduler::AbstractScheduler, report; threaded=false)
match_groups = Vector{Match}[]
function pmap(f, xs)
# const propagation should be able to optimze one of the branch away
if threaded
# # try to divide the work evenly between threads without adding much overhead
# chunks = Threads.nthreads() * 10
# basesize = max(length(xs) ÷ chunks, 1)
# ThreadsX.mapi(f, xs; basesize=basesize)
ThreadsX.map(f, xs)
else
map(f, xs)
end
end
inequalities = filter(Base.Fix2(isa, UnequalRule), theory)
# never skip contradiction checks
append_time = TimerOutput()
for rule ∈ inequalities
@timeit report.to repr(rule) begin
ids = cached_ids(egraph, rule.left)
rule_matches = pmap(i -> rule(egraph, i), ids)
@timeit append_time "appending matches" begin
append!(match_groups, rule_matches)
end
end
end
other_rules = filter(theory) do rule
!(rule isa UnequalRule)
end
for rule ∈ other_rules
@timeit report.to repr(rule) begin
# don't apply banned rules
if !cansearch(scheduler, rule)
# println("skipping banned rule $rule")
continue
end
ids = cached_ids(egraph, rule.left)
rule_matches = pmap(i -> rule(egraph, i), ids)
n_matches = sum(length, rule_matches)
can_yield = inform!(scheduler, rule, n_matches)
if can_yield
@timeit append_time "appending matches" begin
append!(match_groups, rule_matches)
end
end
end
end
# @timeit append_time "appending matches" begin
# result = reduce(vcat, match_groups) # this should be more efficient than multiple appends
# end
merge!(report.to, append_time, tree_point=["Search"])
return Iterators.flatten(match_groups)
# return result
end
| [
7249,
13225,
198,
220,
220,
220,
3896,
3712,
23839,
31929,
220,
198,
220,
220,
220,
1303,
262,
9529,
82,
3912,
284,
9113,
9386,
220,
198,
220,
220,
220,
1458,
62,
1462,
62,
8625,
3712,
38176,
90,
18465,
11,
47546,
92,
198,
220,
220,
220,
1303,
262,
32097,
198,
220,
220,
220,
850,
3712,
7004,
220,
198,
220,
220,
220,
1303,
262,
4686,
262,
14451,
262,
300,
11994,
220,
220,
198,
220,
220,
220,
4686,
3712,
36,
9487,
7390,
198,
437,
198,
198,
9979,
6550,
2052,
33,
3046,
796,
20650,
90,
23850,
92,
198,
198,
8818,
39986,
62,
2340,
7,
70,
3712,
7156,
1470,
11,
279,
3712,
47546,
8,
2,
7904,
38469,
90,
5317,
2414,
92,
198,
220,
220,
220,
2824,
7,
13083,
7,
70,
13,
37724,
4008,
198,
437,
198,
198,
2,
44855,
11682,
220,
198,
8818,
39986,
62,
2340,
7,
70,
3712,
7156,
1470,
11,
279,
3712,
12130,
40596,
8,
198,
220,
220,
220,
1303,
44872,
7203,
33279,
720,
79,
11,
29568,
79,
13,
2256,
8,
4943,
198,
220,
220,
220,
1303,
44872,
7203,
439,
220,
2340,
4943,
198,
220,
220,
220,
1303,
8251,
7,
70,
13,
37724,
8,
930,
29,
44872,
198,
220,
220,
220,
1303,
44872,
7203,
66,
2317,
14354,
4943,
198,
220,
220,
220,
1303,
39986,
796,
651,
7,
70,
13,
1837,
23209,
4891,
11,
279,
13,
2256,
11,
5345,
90,
5317,
2414,
92,
28955,
198,
220,
220,
220,
1303,
44872,
7203,
1837,
2022,
10220,
810,
29568,
79,
13,
2256,
8,
3568,
4943,
198,
220,
220,
220,
1303,
3568,
796,
5345,
90,
5317,
2414,
92,
3419,
220,
198,
220,
220,
220,
1303,
329,
357,
312,
11,
1398,
8,
18872,
230,
308,
13,
37724,
220,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
329,
299,
18872,
230,
1398,
220,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
611,
299,
13,
2256,
6624,
279,
13,
2256,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
1324,
4127,
11,
4686,
8,
220,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
886,
198,
220,
220,
220,
1303,
886,
198,
220,
220,
220,
1303,
1303,
44872,
7,
1324,
4127,
8,
198,
220,
220,
220,
1303,
611,
5145,
7,
66,
2317,
6624,
3568,
8,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
2488,
12860,
39986,
220,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
2488,
12860,
3568,
198,
220,
220,
220,
1303,
886,
628,
220,
220,
220,
2824,
7,
13083,
7,
70,
13,
37724,
4008,
198,
220,
220,
220,
1303,
39986,
198,
220,
220,
220,
1303,
651,
7,
70,
13,
1837,
23209,
4891,
11,
279,
13,
2256,
11,
685,
12962,
198,
437,
198,
198,
2,
2163,
39986,
62,
2340,
7,
70,
3712,
7156,
1470,
11,
279,
3712,
12130,
43,
270,
1691,
8,
198,
2,
220,
220,
220,
220,
651,
7,
70,
13,
1837,
23209,
4891,
11,
279,
13,
2100,
11,
685,
12962,
198,
2,
886,
198,
198,
8818,
357,
81,
3712,
13940,
2022,
4160,
31929,
5769,
70,
3712,
7156,
1470,
11,
4686,
3712,
36,
9487,
7390,
8,
198,
220,
220,
220,
795,
963,
7,
70,
11,
374,
13,
368,
963,
62,
23065,
11,
4686,
8,
764,
91,
29,
850,
4613,
13225,
7,
81,
11,
374,
13,
3506,
11,
850,
11,
4686,
8,
198,
437,
198,
198,
8818,
357,
81,
3712,
44090,
31929,
5769,
70,
3712,
7156,
1470,
11,
4686,
3712,
36,
9487,
7390,
8,
198,
220,
220,
220,
795,
963,
7,
70,
11,
374,
13,
368,
963,
62,
23065,
11,
4686,
8,
764,
91,
29,
850,
4613,
13225,
7,
81,
11,
2147,
11,
850,
11,
4686,
8,
198,
437,
198,
198,
8818,
357,
81,
3712,
33,
312,
343,
31929,
5769,
70,
3712,
7156,
1470,
11,
4686,
3712,
36,
9487,
7390,
8,
198,
220,
220,
220,
410,
9246,
7,
368,
963,
7,
70,
11,
374,
13,
368,
963,
62,
23065,
62,
75,
11,
4686,
8,
764,
91,
29,
850,
4613,
13225,
7,
81,
11,
374,
13,
3506,
11,
850,
11,
4686,
828,
198,
220,
220,
220,
220,
220,
220,
220,
795,
963,
7,
70,
11,
374,
13,
368,
963,
62,
23065,
62,
81,
11,
4686,
8,
764,
91,
29,
850,
4613,
13225,
7,
81,
11,
374,
13,
9464,
11,
850,
11,
4686,
4008,
198,
437,
628,
198,
20285,
305,
743,
65,
2788,
961,
276,
7,
87,
11,
1767,
8,
198,
220,
220,
220,
3671,
7,
22708,
220,
198,
220,
220,
220,
220,
220,
220,
220,
611,
720,
87,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14122,
82,
13,
31,
16663,
82,
720,
2618,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
720,
2618,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
8,
198,
437,
198,
198,
37811,
198,
35561,
281,
41313,
286,
4600,
23850,
63,
274,
13,
198,
37811,
198,
8818,
37430,
49720,
62,
12947,
0,
7,
1533,
1470,
3712,
7156,
1470,
11,
4583,
3712,
38469,
90,
27,
25,
23839,
31929,
5512,
198,
220,
220,
220,
6038,
18173,
3712,
23839,
50,
1740,
18173,
11,
989,
26,
40945,
28,
9562,
8,
198,
220,
220,
220,
2872,
62,
24432,
796,
20650,
90,
23850,
92,
21737,
198,
220,
220,
220,
2163,
279,
8899,
7,
69,
11,
2124,
82,
8,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1500,
43594,
815,
307,
1498,
284,
6436,
2736,
530,
286,
262,
8478,
1497,
198,
220,
220,
220,
220,
220,
220,
220,
611,
40945,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1303,
1949,
284,
14083,
262,
670,
21894,
1022,
14390,
1231,
4375,
881,
16965,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
22716,
796,
14122,
82,
13,
77,
16663,
82,
3419,
1635,
838,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
12536,
1096,
796,
3509,
7,
13664,
7,
34223,
8,
6184,
115,
22716,
11,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
14122,
82,
55,
13,
8899,
72,
7,
69,
11,
2124,
82,
26,
12536,
1096,
28,
65,
1386,
1096,
8,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14122,
82,
55,
13,
8899,
7,
69,
11,
2124,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3975,
7,
69,
11,
2124,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
45460,
796,
8106,
7,
14881,
13,
22743,
17,
7,
9160,
11,
471,
710,
13255,
31929,
828,
4583,
8,
198,
220,
220,
220,
1303,
1239,
14267,
25741,
8794,
198,
220,
220,
220,
24443,
62,
2435,
796,
5045,
263,
26410,
3419,
198,
220,
220,
220,
329,
3896,
18872,
230,
45460,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
2435,
270,
989,
13,
1462,
41575,
7,
25135,
8,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2340,
796,
39986,
62,
2340,
7,
1533,
1470,
11,
3896,
13,
9464,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3896,
62,
6759,
2052,
796,
279,
8899,
7,
72,
4613,
3896,
7,
1533,
1470,
11,
1312,
828,
220,
2340,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
2435,
270,
24443,
62,
2435,
366,
1324,
1571,
7466,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24443,
0,
7,
15699,
62,
24432,
11,
3896,
62,
6759,
2052,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
584,
62,
38785,
796,
8106,
7,
1169,
652,
8,
466,
3896,
220,
198,
220,
220,
220,
220,
220,
220,
220,
5145,
7,
25135,
318,
64,
471,
710,
13255,
31929,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
329,
3896,
18872,
230,
584,
62,
38785,
220,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
2435,
270,
989,
13,
1462,
41575,
7,
25135,
8,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
836,
470,
4174,
9301,
3173,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
5145,
5171,
12947,
7,
1416,
704,
18173,
11,
3896,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
44872,
7203,
20545,
2105,
9301,
3896,
720,
25135,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2340,
796,
39986,
62,
2340,
7,
1533,
1470,
11,
3896,
13,
9464,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3896,
62,
6759,
2052,
796,
279,
8899,
7,
72,
4613,
3896,
7,
1533,
1470,
11,
1312,
828,
220,
2340,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
6759,
2052,
796,
2160,
7,
13664,
11,
3896,
62,
6759,
2052,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
460,
62,
88,
1164,
796,
4175,
0,
7,
1416,
704,
18173,
11,
3896,
11,
299,
62,
6759,
2052,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
460,
62,
88,
1164,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
2435,
270,
24443,
62,
2435,
366,
1324,
1571,
7466,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24443,
0,
7,
15699,
62,
24432,
11,
3896,
62,
6759,
2052,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1303,
2488,
2435,
270,
24443,
62,
2435,
366,
1324,
1571,
7466,
1,
2221,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
1255,
796,
4646,
7,
85,
9246,
11,
2872,
62,
24432,
8,
1303,
428,
815,
307,
517,
6942,
621,
3294,
598,
2412,
198,
220,
220,
220,
1303,
886,
198,
220,
220,
220,
20121,
0,
7,
13116,
13,
1462,
11,
24443,
62,
2435,
11,
5509,
62,
4122,
28,
14692,
18243,
8973,
8,
628,
220,
220,
220,
1441,
40806,
2024,
13,
2704,
41769,
7,
15699,
62,
24432,
8,
198,
220,
220,
220,
1303,
1441,
1255,
198,
437,
198,
220,
220,
220,
220
] | 2.135194 | 1,827 |
import Knet.Ops20: rnnforw
using Knet.Ops20: RNN
using Knet.KnetArrays: DevArray, KnetArray, Cptr
using CUDA: CuArray, CUDNN, CU_NULL
using AutoGrad: AutoGrad, @primitive1, value, recording, Param, Value
"RNN descriptor"
mutable struct RD; ptr; end
"Dropout descriptor"
mutable struct DD; ptr; states; end
"Keeps an array of 3D tensor descriptors"
mutable struct TDs; pvec::Vector{Cptr}; xDesc::Vector{TD}; end # Keep xDesc in TDs so it does not get gc'ed
Base.unsafe_convert(::Type{Cptr}, dd::DD)=dd.ptr
Base.unsafe_convert(::Type{Cptr}, rd::RD)=rd.ptr
Base.unsafe_convert(::Type{Ptr{Cptr}}, tds::TDs)=pointer(tds.pvec)
function DD(; atype, handle=CUDNN.handle(), dropout=0.0, seed=0, o...)
if seed==0; seed=floor(Culonglong,time()); end
d = Cptr[0]; s = Csize_t[0] # TODO: Can multiple RNNs share dropout descriptors? Can dropout probability be changed?
CUDNN.cudnnCreateDropoutDescriptor(d)
CUDNN.cudnnDropoutGetStatesSize(handle,s)
states = rnnworkspace(s[1], atype)
@cudnn_retry CUDNN.unsafe_cudnnSetDropoutDescriptor(d[1],handle,dropout,states,bytes(states),seed)
dd = DD(d[1],states)
finalizer(x->CUDNN.cudnnDestroyDropoutDescriptor(x.ptr),dd)
return dd
end
function RD()
d = Cptr[0]
@cudnn_retry CUDNN.unsafe_cudnnCreateRNNDescriptor(d)
rd = RD(d[1])
finalizer(x->CUDNN.cudnnDestroyRNNDescriptor(x.ptr),rd)
return rd
end
function RD(hiddenSize,numLayers,dropoutDesc,inputMode,direction,mode,algo,dataType; handle=CUDNN.handle())
rnnDesc = RD()
inputMode = CUDNN.cudnnRNNInputMode_t(inputMode)
direction = CUDNN.cudnnDirectionMode_t(direction)
mode = CUDNN.cudnnRNNMode_t(mode)
algo = CUDNN.cudnnRNNAlgo_t(algo)
dt = CUDNN.cudnnDataType_t(DT(dataType))
if CUDNN.version() < v"8"
CUDNN.cudnnSetRNNDescriptor(handle,rnnDesc,hiddenSize,numLayers,dropoutDesc,inputMode,direction,mode,algo,dt)
else
CUDNN.cudnnSetRNNDescriptor_v6(handle,rnnDesc,hiddenSize,numLayers,dropoutDesc,inputMode,direction,mode,algo,dt)
end
return rnnDesc
end
Base.length(tds::TDs)=length(tds.pvec)
function TDs(x::DevArray{A},::Nothing) where {A} # Treat x: (X,B?,T?) as a 4D array: (1,X,B,T)
xDesc = TD(A,1,size(x,1),size(x,2)) # we can use a single xDesc
pvec = Vector{Cptr}(undef, size(x,3))
pvec[:] .= xDesc.ptr
return TDs(pvec, [xDesc])
end
function TDs(x::DevArray{A},batchSizes) where {A} # x: (X,B*), batchSizes gives us Bt sizes
@assert sum(batchSizes) == div(length(x),size(x,1))
X = size(x,1)
xs = [ TD(A,1,X,B) for B in batchSizes ]
ps = [ xd.ptr for xd in xs ]
return TDs(ps,xs)
end
function TD3(a::DevArray) # Treat a as a 3D array, pad from right
n = ndims(a)
if n==3; TD(a)
elseif n==2; TD(reshape(a, size(a,1), size(a,2), 1))
elseif n==1; TD(reshape(a, size(a,1), 1, 1))
else; throw(DimensionMismatch())
end
end
function FD3(a::DevArray) # Treat a as a 3D array, pad from left
n = ndims(a)
if n==3; FD(a)
elseif n==2; FD(reshape(a, 1, size(a,1), size(a,2)))
elseif n==1; FD(reshape(a, 1, 1, size(a,1)))
else; throw(DimensionMismatch())
end
end
function rnnforw(r::RNN, w, x::Union{DevArray{T},Value{<:DevArray{T}}}, hx=nothing, cx=nothing;
handle=CUDNN.handle(), batchSizes=nothing, hy = (hx != nothing), cy = (cx != nothing && r.mode == 2)) where T
@assert value(w) === value(r.w)
@assert size(x,1) == r.inputSize
x3 = reshape(value(x), size(x,1), size(x,2), size(x,3))
@assert typeof(x3) == typeof(value(w)) "$(typeof(value(w))) weights do not match $(typeof(x)) input. Please use RNN(;atype) option."
if r.rnnDesc === nothing # initialize rnn for gpu with first input
r.dataType = eltype(x3)
r.dropoutDesc = DD(handle=CUDNN.handle(),dropout=r.dropout,seed=r.seed,atype=typeof(x3))
r.rnnDesc = RD(r.hiddenSize,r.numLayers,r.dropoutDesc,r.inputMode,r.direction,r.mode,r.algo,r.dataType)
end
_rnnforw(w,x,hx,cx; rnn=r,handle=handle,batchSizes=batchSizes,hy=hy,cy=cy)
end
function _rnnforw(w, x, hx, cx; rnn, handle, batchSizes, hy, cy)
# Input descriptors
seqLength = batchSizes==nothing ? size(x,3) : length(batchSizes) # (X,B,T) or (X,B+) with batchSizes
wDesc = FD3(w) # (1,1,W)
xtds = TDs(x,batchSizes) # (1,X,Bt) x T
isnothing(a) = a === nothing || a === C_NULL || a === CU_NULL
if hx==nothing; hx=CU_NULL; hxDesc=C_NULL; else; hxDesc=TD3(hx); end # (H,B,L/2L)
if cx==nothing || rnn.mode != 2; cx=CU_NULL; cxDesc=C_NULL; else; cxDesc=TD3(cx); end
# Output arrays and descriptors
ysize = collect(size(x))
ysize[1] = rnn.hiddenSize * (rnn.direction == 1 ? 2 : 1)
y = similar(x, ysize...) # (H/2H,B,T) or (H/2H,B+) -- y mirrors x except for the first dimension
ytds = TDs(y,batchSizes) # (1,H/2H,Bt) x T
# Optionally output hidden and cell of last step
hyout = cyout = CU_NULL
hyDesc = cyDesc = C_NULL
if hy || cy
firstBatchSize = batchSizes==nothing ? size(x,2) : batchSizes[1]
hsize = (Int(rnn.hiddenSize), Int(firstBatchSize), Int(rnn.numLayers * (rnn.direction == 1 ? 2 : 1))) # (H,B,L/2L)
if hy; hyout=similar(y,hsize); hyDesc=TD3(hyout); end
if cy && rnn.mode==2; cyout=similar(y,hsize); cyDesc=TD3(cyout); end
if !isnothing(hx) && any(size(hx,i)!=hsize[i] for i=1:3) # compare one by one in case hx is 1-D or 2-D
throw(DimensionMismatch("size(hx)=$(size(hx)) does not match hsize=$(hsize)"))
end
if !isnothing(cx) && rnn.mode == 2 && any(size(cx,i)!=hsize[i] for i=1:3)
throw(DimensionMismatch("size(cx)=$(size(cx)) does not match hsize=$(hsize)"))
end
end
# workSpace and reserveSpace
wss = cudnnGetRNNWorkspaceSize(rnn.rnnDesc, xtds; handle=handle)
ws = rnnworkspace(wss, typeof(value(w)))
if AutoGrad.recording()
rss = cudnnGetRNNTrainingReserveSize(rnn.rnnDesc, xtds; handle=handle)
rs = rnnworkspace(rss, typeof(value(w)))
@cudnn_retry CUDNN.unsafe_cudnnRNNForwardTraining(handle, rnn.rnnDesc, seqLength, xtds, x, hxDesc, hx, cxDesc, cx, wDesc, w, ytds, y, hyDesc, hyout, cyDesc, cyout, ws, wss, rs, rss)
else
rs = nothing
@cudnn_retry CUDNN.unsafe_cudnnRNNForwardInference(handle, rnn.rnnDesc, seqLength, xtds, x, hxDesc, hx, cxDesc, cx, wDesc, w, ytds, y, hyDesc, hyout, cyDesc, cyout, ws, wss)
end
if hyout === CU_NULL; hyout = nothing; end
if cyout === CU_NULL; cyout = nothing; end
return y, hyout, cyout, rs, ws
end
function _rnnback(dt, t, w, x, hx, cx; rnn, o...)
@assert value(rnn.w) === value(w)
y,hy,cy,rs,ws = value(t)
dy,dhy,dcy,drs,dws = value(dt)
rnn=value(rnn); w=value(w); x=value(x); hx=value(hx); cx=value(cx)
# To prevent dependencies to next iteration we need to clear the Result type from rnn.h,rnn.c
# We can't do this during forward, because another forward may be run within the same iteration.
# Doing it here is safe, means the iteration is done and we are taking gradients.
# Note that this does not work on the cpu and these have to be cleaned by hand.
# The cpu version is not a primitive and has no back function. (TODO: find better solution)
rnn.h = value(rnn.h); rnn.c = value(rnn.c)
_rnnback2(rnn, w, x, y, dy, hx, cx, dhy, dcy, rs, ws; o...)
end
function _rnnback2(r, w, x, y, dy, hx, cx, dhy, dcy, rs, ws;
handle=CUDNN.handle(), batchSizes=nothing, o...)
@assert value(r.w) === value(w)
# Input descriptors:
seqLength = batchSizes==nothing ? size(x,3) : length(batchSizes) # (X,B,T) or (X,B+) with batchSizes
wDesc = FD3(w) # (1,1,W)
xtds = TDs(x,batchSizes) # (X,B,T) -> (1,X,B) x T
ytds = TDs(y,batchSizes) # (H/2H,B,T) -> (1,H/2H,B) x T
# dytds = TDs(dy,batchSizes) # we use ytds for dytds
if dy == nothing; dy=zero(y); end
if hx == nothing; hx=CU_NULL; hxDesc=C_NULL; else; hxDesc=TD3(hx); end
if cx == nothing || r.mode != 2; cx=CU_NULL; cxDesc=C_NULL; else; cxDesc=TD3(cx); end
if dhy == nothing; dhy=CU_NULL; dhyDesc=C_NULL; else; dhyDesc=TD3(dhy); end
if dcy == nothing || r.mode != 2; dcy=CU_NULL; dcyDesc=C_NULL; else; dcyDesc=TD3(dcy); end
# Output arrays and descriptors:
dx = similar(x) # (X,B,T) or (X,B+) with batchSizes
# dxtds = TDs(dx,batchSizes) # we use xtds here
dw = zero(w) # dw is used additively, so we need zero
dwDesc = FD3(dw)
if hx === CU_NULL; dhx=CU_NULL; dhxDesc=C_NULL; else; dhx=similar(hx); dhxDesc=TD3(dhx); end
if cx === CU_NULL; dcx=CU_NULL; dcxDesc=C_NULL; else; dcx=similar(cx); dcxDesc=TD3(dcx); end
# workSpace and reserveSpace
# ws = cudnnWorkSpace()
wss = bytes(ws)
rss = bytes(rs)
@cudnn_retry CUDNN.unsafe_cudnnRNNBackwardData(handle, r.rnnDesc, seqLength, ytds, y, ytds, dy, dhyDesc, dhy, dcyDesc, dcy, wDesc, w, hxDesc, hx, cxDesc, cx, xtds, dx, dhxDesc, dhx, dcxDesc, dcx, ws, wss, rs, rss)
@cudnn_retry CUDNN.unsafe_cudnnRNNBackwardWeights(handle, r.rnnDesc, seqLength, xtds, x, hxDesc, hx, ytds, y, ws, wss, dwDesc, dw, rs, rss)
# Update the cache
if dhx===CU_NULL; dhx=nothing; end
if dcx===CU_NULL; dcx=nothing; end
r.dx, r.dhx, r.dcx = dx, dhx, dcx
return dw
end
@primitive1 _rnnforw(w,x,hx,cx; rnn, o...),dy,y _rnnback(dy,y,w,x,hx,cx; rnn=rnn, o...) value(rnn).dx value(rnn).dhx value(rnn).dcx
#506: Because r.dx,dhx,dcx may be freed by gcnode, their C_NULL pointers cause trouble in deepcopy.
import Base: deepcopy_internal
function deepcopy_internal(x::RNN, s::IdDict)
if !haskey(s,x)
s[x] = RNN(deepcopy_internal(x.w,s), deepcopy_internal(x.h,s), deepcopy_internal(x.c,s), x.inputSize, x.hiddenSize, x.numLayers, x.dropout, x.seed, x.inputMode, x.direction, x.mode, x.algo, x.dataType, deepcopy_internal(x.rnnDesc,s), deepcopy_internal(x.dropoutDesc,s), nothing, nothing, nothing)
end
return s[x]
end
function rnnworkspace(n, type)
n8 = (n-1)÷sizeof(Int)+1
if type <: KnetArray
buf = KnetArray{Int}(undef, n8)
elseif type <: CuArray
buf = CuArray{Int}(undef, n8)
else
error("$type not a known GPU array type.")
end
return buf
end
function cudnnGetRNNParamsSize(r::RNN)
res = Csize_t[0]
xDesc = TD(r.dataType, 1, r.inputSize, 1) # xDesc: (1,X,B) where X = inputSize, B is ignored, so assume 1
dt = CUDNN.cudnnDataType_t(DT(r.dataType))
CUDNN.cudnnGetRNNParamsSize(CUDNN.handle(), r.rnnDesc, xDesc, res, dt)
div(res[1], sizeof(r.dataType))
end
# This is buggy, why?
# X,H,L,I = r.inputSize, r.hiddenSize, r.numLayers, rnnids(r)
# biases = L*I
# inputMatrices = (r.inputMode == 1 ? 0 : r.direction == 1 ? I : div(I,2))
# hiddenMatrices = (r.direction == 1 ? (L-1)*I : (L-1)*I + div(I,2))
# biases * H + inputMatrices * X * H + hiddenMatrices * H * H
function cudnnGetRNNWorkspaceSize(rd::RD, tds::TDs; handle=CUDNN.handle())
res = Csize_t[1]
CUDNN.cudnnGetRNNWorkspaceSize(handle, rd, length(tds), tds, res)
return Int(res[1])
end
function cudnnGetRNNTrainingReserveSize(rd::RD, tds::TDs; handle=CUDNN.handle())
res = Csize_t[1]
CUDNN.cudnnGetRNNTrainingReserveSize(handle, rd, length(tds), tds, res)
return Int(res[1])
end
# Return eltype,size
function cudnnGetFilterNdDescriptor(wDesc::FD; nbDimsRequested = 8)
dataType = Cint[0]
format = Cint[0]
nbDims = Cint[0]
filterDimA = Vector{Cint}(undef,nbDimsRequested)
CUDNN.cudnnGetFilterNdDescriptor(wDesc, nbDimsRequested, dataType, format, nbDims, filterDimA)
if nbDims[1] > nbDimsRequested
cudnnGetFilterNdDescriptor(wDesc::FD; nbDimsRequested = nbDims[1])
else
(Float32,Float64,Float16)[1+dataType[1]],
(filterDimA[nbDims[1]:-1:1]...,)
end
end
function cudnnGetRNNParam(r::RNN, layer::Integer, id::Integer, par::Integer; useview=false)
params_are_good =
((1 <= par <= 2) &&
((r.direction == 0 && 1 <= layer <= r.numLayers) ||
(r.direction == 1 && 1 <= layer <= 2*r.numLayers)) &&
((r.mode == 0 && 1 <= id <= 2) ||
(r.mode == 1 && 1 <= id <= 2) ||
(r.mode == 2 && 1 <= id <= 8) ||
(r.mode == 3 && 1 <= id <= 6)))
params_are_good || throw(ArgumentError("Bad arguments for rnnparam, please see doc."))
should_return_nothing =
((r.inputMode == 1) &&
(par == 1) &&
((r.mode == 0 && id == 1) ||
(r.mode == 1 && id == 1) ||
(r.mode == 2 && 1 <= id <= 4) ||
(r.mode == 3 && 1 <= id <= 3)) &&
((layer == 1) ||
(r.direction == 1 && layer == 2)))
i1 = i2 = len = 0
w = value(r.w)
@assert isa(w, DevArray)
T = eltype(w)
xDesc = TD(T,1,r.inputSize,1)
wDesc = FD(T,1,1,length(w))
paramDesc = FD(T,1,1,1,1)
param = Cptr[0]
if par == 1 # matrix
CUDNN.cudnnGetRNNLinLayerMatrixParams(handle, r.rnnDesc, layer-1, xDesc, wDesc, w, id-1, paramDesc, param)
else # bias
CUDNN.cudnnGetRNNLinLayerBiasParams(handle, r.rnnDesc, layer-1, xDesc, wDesc, w, id-1, paramDesc, param)
end
dt,sz = cudnnGetFilterNdDescriptor(paramDesc)
if should_return_nothing
@assert param[1] === C_NULL
@assert sz == ()
return nothing
end
len = prod(sz)
i1 = 1 + div(Int(param[1] - pointer(w)), sizeof(T))
i2 = i1 + len - 1
if i1 > i2
@assert should_return_nothing
nothing
elseif par == 1 # matrix; weights are transposed
h = Int(r.hiddenSize)
reshape(view(r.w, i1:i2),:,h)
else # bias
view(r.w, i1:i2)
end
end
# CuArray specific support: should move this to cuarrays
TD(a::CuArray{T}) where {T} = TD(T, size(a))
FD(a::CuArray{T}) where {T} = FD(T, size(a))
bytes(x::CuArray{T}) where T = length(x)*sizeof(T)
# KnetArray getindex contiguous indices already returns a view.
# We need the following for rnnparam/rnntest to work:
Base.view(A::KnetArray, I::AbstractUnitRange{Int}) = getindex(A, I)
# This supports cpucopy/gpucopy:
import Knet.KnetArrays: _ser
function _ser(x::RNN, s::IdDict, m::Val)
if !haskey(s,x)
# we need rd,dd only if there is a gpu, we are not in cpumode,
# and if we are in jldmode we are loading, not saving
# if (CUDA.functional() && m != CPUMODE && !(m == JLDMODE && x.rnnDesc != nothing))
# dd = DD(dropout=x.dropout,seed=x.seed)
# rd = RD(x.hiddenSize,x.numLayers,dd,x.inputMode,x.direction,x.mode,x.algo,x.dataType)
# else
# rd = dd = nothing
# end
# 20200806: We no longer need to load/save rd/dd: rnnforw will construct as needed.
rd = dd = nothing
# dx, dhx, dcx are temporary fields used by rnnback, they do not need to be copied
# gcnode sets dx.ptr to C_NULL which breaks serialize, best not to try
s[x] = RNN(_ser(x.w,s,m), _ser(x.h,s,m), _ser(x.c,s,m), x.inputSize, x.hiddenSize, x.numLayers, x.dropout, x.seed, x.inputMode, x.direction, x.mode, x.algo, x.dataType, rd, dd, nothing, nothing, nothing)
end
return s[x]
end
import JLD2
struct JLD2RNN; w; h; c; inputSize; hiddenSize; numLayers; dropout; seed; inputMode; direction; mode; algo; dataType; end
JLD2RNN(x::RNN) = JLD2RNN(x.w, x.h, x.c, x.inputSize, x.hiddenSize, x.numLayers, x.dropout, x.seed, x.inputMode, x.direction, x.mode, x.algo, x.dataType)
RNN(x::JLD2RNN) = RNN(x.w, x.h, x.c, x.inputSize, x.hiddenSize, x.numLayers, x.dropout, x.seed, x.inputMode, x.direction, x.mode, x.algo, x.dataType, nothing, nothing, nothing, nothing, nothing)
JLD2.writeas(::Type{RNN}) = JLD2RNN
JLD2.wconvert(::Type{JLD2RNN}, x::RNN) = JLD2RNN(x)
JLD2.rconvert(::Type{RNN}, x::JLD2RNN) = RNN(x)
| [
11748,
509,
3262,
13,
41472,
1238,
25,
374,
20471,
1640,
86,
198,
3500,
509,
3262,
13,
41472,
1238,
25,
371,
6144,
198,
3500,
509,
3262,
13,
42,
3262,
3163,
20477,
25,
6245,
19182,
11,
509,
3262,
19182,
11,
327,
20692,
198,
3500,
29369,
5631,
25,
14496,
19182,
11,
327,
8322,
6144,
11,
29369,
62,
33991,
198,
3500,
11160,
42731,
25,
11160,
42731,
11,
2488,
19795,
1800,
16,
11,
1988,
11,
8296,
11,
25139,
11,
11052,
198,
198,
1,
49,
6144,
43087,
1,
198,
76,
18187,
2878,
31475,
26,
50116,
26,
886,
198,
198,
1,
26932,
448,
43087,
1,
198,
76,
18187,
2878,
20084,
26,
50116,
26,
2585,
26,
886,
198,
198,
1,
15597,
82,
281,
7177,
286,
513,
35,
11192,
273,
12145,
669,
1,
198,
76,
18187,
2878,
42873,
26,
279,
35138,
3712,
38469,
90,
34,
20692,
19629,
2124,
24564,
3712,
38469,
90,
21016,
19629,
886,
220,
220,
220,
220,
1303,
9175,
2124,
24564,
287,
42873,
523,
340,
857,
407,
651,
308,
66,
6,
276,
198,
198,
14881,
13,
13271,
8635,
62,
1102,
1851,
7,
3712,
6030,
90,
34,
20692,
5512,
49427,
3712,
16458,
47505,
1860,
13,
20692,
198,
14881,
13,
13271,
8635,
62,
1102,
1851,
7,
3712,
6030,
90,
34,
20692,
5512,
374,
67,
3712,
35257,
47505,
4372,
13,
20692,
198,
14881,
13,
13271,
8635,
62,
1102,
1851,
7,
3712,
6030,
90,
46745,
90,
34,
20692,
92,
5512,
256,
9310,
3712,
21016,
82,
47505,
29536,
7,
8671,
82,
13,
79,
35138,
8,
198,
198,
8818,
20084,
7,
26,
379,
2981,
11,
5412,
28,
34,
8322,
6144,
13,
28144,
22784,
4268,
448,
28,
15,
13,
15,
11,
9403,
28,
15,
11,
267,
23029,
198,
220,
220,
220,
611,
9403,
855,
15,
26,
9403,
28,
28300,
7,
34,
377,
506,
6511,
11,
2435,
35430,
886,
198,
220,
220,
220,
288,
796,
327,
20692,
58,
15,
11208,
264,
796,
327,
7857,
62,
83,
58,
15,
60,
1303,
16926,
46,
25,
1680,
3294,
371,
6144,
82,
2648,
4268,
448,
12145,
669,
30,
1680,
4268,
448,
12867,
307,
3421,
30,
198,
220,
220,
220,
327,
8322,
6144,
13,
66,
463,
20471,
16447,
26932,
448,
24564,
1968,
273,
7,
67,
8,
198,
220,
220,
220,
327,
8322,
6144,
13,
66,
463,
20471,
26932,
448,
3855,
42237,
10699,
7,
28144,
11,
82,
8,
198,
220,
220,
220,
2585,
796,
374,
20471,
5225,
10223,
7,
82,
58,
16,
4357,
379,
2981,
8,
198,
220,
220,
220,
2488,
66,
463,
20471,
62,
1186,
563,
327,
8322,
6144,
13,
13271,
8635,
62,
66,
463,
20471,
7248,
26932,
448,
24564,
1968,
273,
7,
67,
58,
16,
4357,
28144,
11,
14781,
448,
11,
27219,
11,
33661,
7,
27219,
828,
28826,
8,
198,
220,
220,
220,
49427,
796,
20084,
7,
67,
58,
16,
4357,
27219,
8,
198,
220,
220,
220,
2457,
7509,
7,
87,
3784,
34,
8322,
6144,
13,
66,
463,
20471,
49174,
26932,
448,
24564,
1968,
273,
7,
87,
13,
20692,
828,
1860,
8,
198,
220,
220,
220,
1441,
49427,
198,
437,
198,
198,
8818,
31475,
3419,
198,
220,
220,
220,
288,
796,
327,
20692,
58,
15,
60,
198,
220,
220,
220,
2488,
66,
463,
20471,
62,
1186,
563,
327,
8322,
6144,
13,
13271,
8635,
62,
66,
463,
20471,
16447,
49,
6144,
24564,
1968,
273,
7,
67,
8,
198,
220,
220,
220,
374,
67,
796,
31475,
7,
67,
58,
16,
12962,
198,
220,
220,
220,
2457,
7509,
7,
87,
3784,
34,
8322,
6144,
13,
66,
463,
20471,
49174,
49,
6144,
24564,
1968,
273,
7,
87,
13,
20692,
828,
4372,
8,
198,
220,
220,
220,
1441,
374,
67,
198,
437,
198,
198,
8818,
31475,
7,
30342,
10699,
11,
22510,
43,
6962,
11,
14781,
448,
24564,
11,
15414,
19076,
11,
37295,
11,
14171,
11,
282,
2188,
11,
7890,
6030,
26,
5412,
28,
34,
8322,
6144,
13,
28144,
28955,
198,
220,
220,
220,
374,
20471,
24564,
796,
31475,
3419,
198,
220,
220,
220,
5128,
19076,
796,
327,
8322,
6144,
13,
66,
463,
20471,
49,
6144,
20560,
19076,
62,
83,
7,
15414,
19076,
8,
198,
220,
220,
220,
4571,
796,
327,
8322,
6144,
13,
66,
463,
20471,
35,
4154,
19076,
62,
83,
7,
37295,
8,
198,
220,
220,
220,
4235,
796,
327,
8322,
6144,
13,
66,
463,
20471,
49,
6144,
19076,
62,
83,
7,
14171,
8,
198,
220,
220,
220,
435,
2188,
796,
327,
8322,
6144,
13,
66,
463,
20471,
49,
6144,
2348,
2188,
62,
83,
7,
282,
2188,
8,
198,
220,
220,
220,
288,
83,
796,
327,
8322,
6144,
13,
66,
463,
20471,
6601,
6030,
62,
83,
7,
24544,
7,
7890,
6030,
4008,
198,
220,
220,
220,
611,
327,
8322,
6144,
13,
9641,
3419,
1279,
410,
1,
23,
1,
198,
220,
220,
220,
220,
220,
220,
220,
327,
8322,
6144,
13,
66,
463,
20471,
7248,
49,
6144,
24564,
1968,
273,
7,
28144,
11,
81,
20471,
24564,
11,
30342,
10699,
11,
22510,
43,
6962,
11,
14781,
448,
24564,
11,
15414,
19076,
11,
37295,
11,
14171,
11,
282,
2188,
11,
28664,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
327,
8322,
6144,
13,
66,
463,
20471,
7248,
49,
6144,
24564,
1968,
273,
62,
85,
21,
7,
28144,
11,
81,
20471,
24564,
11,
30342,
10699,
11,
22510,
43,
6962,
11,
14781,
448,
24564,
11,
15414,
19076,
11,
37295,
11,
14171,
11,
282,
2188,
11,
28664,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
374,
20471,
24564,
198,
437,
198,
198,
14881,
13,
13664,
7,
8671,
82,
3712,
21016,
82,
47505,
13664,
7,
8671,
82,
13,
79,
35138,
8,
198,
198,
8818,
42873,
7,
87,
3712,
13603,
19182,
90,
32,
5512,
3712,
18465,
8,
810,
1391,
32,
92,
1303,
11217,
2124,
25,
357,
55,
11,
33,
21747,
51,
10091,
355,
257,
604,
35,
7177,
25,
357,
16,
11,
55,
11,
33,
11,
51,
8,
198,
220,
220,
220,
2124,
24564,
796,
13320,
7,
32,
11,
16,
11,
7857,
7,
87,
11,
16,
828,
7857,
7,
87,
11,
17,
4008,
1303,
356,
460,
779,
257,
2060,
2124,
24564,
198,
220,
220,
220,
279,
35138,
796,
20650,
90,
34,
20692,
92,
7,
917,
891,
11,
2546,
7,
87,
11,
18,
4008,
198,
220,
220,
220,
279,
35138,
58,
47715,
764,
28,
2124,
24564,
13,
20692,
198,
220,
220,
220,
1441,
42873,
7,
79,
35138,
11,
685,
87,
24564,
12962,
198,
437,
198,
198,
8818,
42873,
7,
87,
3712,
13603,
19182,
90,
32,
5512,
43501,
50,
4340,
8,
810,
1391,
32,
92,
1303,
2124,
25,
357,
55,
11,
33,
9,
828,
15458,
50,
4340,
3607,
514,
347,
83,
10620,
198,
220,
220,
220,
2488,
30493,
2160,
7,
43501,
50,
4340,
8,
6624,
2659,
7,
13664,
7,
87,
828,
7857,
7,
87,
11,
16,
4008,
198,
220,
220,
220,
1395,
796,
2546,
7,
87,
11,
16,
8,
198,
220,
220,
220,
2124,
82,
796,
685,
13320,
7,
32,
11,
16,
11,
55,
11,
33,
8,
329,
347,
287,
15458,
50,
4340,
2361,
198,
220,
220,
220,
26692,
796,
685,
2124,
67,
13,
20692,
329,
2124,
67,
287,
2124,
82,
2361,
198,
220,
220,
220,
1441,
42873,
7,
862,
11,
34223,
8,
198,
437,
198,
198,
8818,
13320,
18,
7,
64,
3712,
13603,
19182,
8,
1303,
11217,
257,
355,
257,
513,
35,
7177,
11,
14841,
422,
826,
198,
220,
220,
220,
299,
796,
299,
67,
12078,
7,
64,
8,
198,
220,
220,
220,
611,
299,
855,
18,
26,
13320,
7,
64,
8,
198,
220,
220,
220,
2073,
361,
299,
855,
17,
26,
13320,
7,
3447,
1758,
7,
64,
11,
2546,
7,
64,
11,
16,
828,
2546,
7,
64,
11,
17,
828,
352,
4008,
198,
220,
220,
220,
2073,
361,
299,
855,
16,
26,
13320,
7,
3447,
1758,
7,
64,
11,
2546,
7,
64,
11,
16,
828,
352,
11,
352,
4008,
198,
220,
220,
220,
2073,
26,
3714,
7,
29271,
3004,
44,
1042,
963,
28955,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
30002,
18,
7,
64,
3712,
13603,
19182,
8,
1303,
11217,
257,
355,
257,
513,
35,
7177,
11,
14841,
422,
1364,
198,
220,
220,
220,
299,
796,
299,
67,
12078,
7,
64,
8,
198,
220,
220,
220,
611,
299,
855,
18,
26,
30002,
7,
64,
8,
198,
220,
220,
220,
2073,
361,
299,
855,
17,
26,
30002,
7,
3447,
1758,
7,
64,
11,
352,
11,
2546,
7,
64,
11,
16,
828,
2546,
7,
64,
11,
17,
22305,
198,
220,
220,
220,
2073,
361,
299,
855,
16,
26,
30002,
7,
3447,
1758,
7,
64,
11,
352,
11,
352,
11,
2546,
7,
64,
11,
16,
22305,
198,
220,
220,
220,
2073,
26,
3714,
7,
29271,
3004,
44,
1042,
963,
28955,
198,
220,
220,
220,
886,
198,
437,
628,
198,
8818,
374,
20471,
1640,
86,
7,
81,
3712,
49,
6144,
11,
266,
11,
2124,
3712,
38176,
90,
13603,
19182,
90,
51,
5512,
11395,
90,
27,
25,
13603,
19182,
90,
51,
11709,
5512,
289,
87,
28,
22366,
11,
43213,
28,
22366,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5412,
28,
34,
8322,
6144,
13,
28144,
22784,
15458,
50,
4340,
28,
22366,
11,
2537,
796,
357,
71,
87,
14512,
2147,
828,
3075,
796,
357,
66,
87,
14512,
2147,
11405,
374,
13,
14171,
6624,
362,
4008,
810,
309,
198,
220,
220,
220,
2488,
30493,
1988,
7,
86,
8,
24844,
1988,
7,
81,
13,
86,
8,
198,
220,
220,
220,
2488,
30493,
2546,
7,
87,
11,
16,
8,
6624,
374,
13,
15414,
10699,
198,
220,
220,
220,
2124,
18,
796,
27179,
1758,
7,
8367,
7,
87,
828,
2546,
7,
87,
11,
16,
828,
2546,
7,
87,
11,
17,
828,
2546,
7,
87,
11,
18,
4008,
198,
220,
220,
220,
2488,
30493,
2099,
1659,
7,
87,
18,
8,
6624,
2099,
1659,
7,
8367,
7,
86,
4008,
17971,
7,
4906,
1659,
7,
8367,
7,
86,
22305,
19590,
466,
407,
2872,
29568,
4906,
1659,
7,
87,
4008,
5128,
13,
4222,
779,
371,
6144,
7,
26,
265,
2981,
8,
3038,
526,
198,
220,
220,
220,
611,
374,
13,
81,
20471,
24564,
24844,
2147,
220,
220,
220,
1303,
41216,
374,
20471,
329,
308,
19944,
351,
717,
5128,
198,
220,
220,
220,
220,
220,
220,
220,
374,
13,
7890,
6030,
796,
1288,
4906,
7,
87,
18,
8,
198,
220,
220,
220,
220,
220,
220,
220,
374,
13,
14781,
448,
24564,
796,
20084,
7,
28144,
28,
34,
8322,
6144,
13,
28144,
22784,
14781,
448,
28,
81,
13,
14781,
448,
11,
28826,
28,
81,
13,
28826,
11,
265,
2981,
28,
4906,
1659,
7,
87,
18,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
374,
13,
81,
20471,
24564,
796,
31475,
7,
81,
13,
30342,
10699,
11,
81,
13,
22510,
43,
6962,
11,
81,
13,
14781,
448,
24564,
11,
81,
13,
15414,
19076,
11,
81,
13,
37295,
11,
81,
13,
14171,
11,
81,
13,
282,
2188,
11,
81,
13,
7890,
6030,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
4808,
81,
20471,
1640,
86,
7,
86,
11,
87,
11,
71,
87,
11,
66,
87,
26,
374,
20471,
28,
81,
11,
28144,
28,
28144,
11,
43501,
50,
4340,
28,
43501,
50,
4340,
11,
12114,
28,
12114,
11,
948,
28,
948,
8,
198,
437,
628,
198,
8818,
4808,
81,
20471,
1640,
86,
7,
86,
11,
2124,
11,
289,
87,
11,
43213,
26,
374,
20471,
11,
5412,
11,
15458,
50,
4340,
11,
2537,
11,
3075,
8,
198,
220,
220,
220,
1303,
23412,
12145,
669,
198,
220,
220,
220,
33756,
24539,
796,
15458,
50,
4340,
855,
22366,
5633,
2546,
7,
87,
11,
18,
8,
1058,
4129,
7,
43501,
50,
4340,
8,
1303,
357,
55,
11,
33,
11,
51,
8,
393,
357,
55,
11,
33,
28988,
351,
15458,
50,
4340,
198,
220,
220,
220,
266,
24564,
796,
30002,
18,
7,
86,
8,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
357,
16,
11,
16,
11,
54,
8,
198,
220,
220,
220,
220,
742,
9310,
796,
42873,
7,
87,
11,
43501,
50,
4340,
8,
220,
220,
220,
1303,
357,
16,
11,
55,
11,
33,
83,
8,
2124,
309,
198,
220,
220,
220,
318,
22366,
7,
64,
8,
796,
257,
24844,
2147,
8614,
257,
24844,
327,
62,
33991,
8614,
257,
24844,
29369,
62,
33991,
198,
220,
220,
220,
611,
289,
87,
855,
22366,
26,
289,
87,
28,
43633,
62,
33991,
26,
289,
87,
24564,
28,
34,
62,
33991,
26,
2073,
26,
289,
87,
24564,
28,
21016,
18,
7,
71,
87,
1776,
886,
1303,
357,
39,
11,
33,
11,
43,
14,
17,
43,
8,
198,
220,
220,
220,
611,
43213,
855,
22366,
8614,
374,
20471,
13,
14171,
14512,
362,
26,
43213,
28,
43633,
62,
33991,
26,
43213,
24564,
28,
34,
62,
33991,
26,
2073,
26,
43213,
24564,
28,
21016,
18,
7,
66,
87,
1776,
886,
628,
220,
220,
220,
1303,
25235,
26515,
290,
12145,
669,
198,
220,
220,
220,
331,
7857,
796,
2824,
7,
7857,
7,
87,
4008,
198,
220,
220,
220,
331,
7857,
58,
16,
60,
796,
374,
20471,
13,
30342,
10699,
1635,
357,
81,
20471,
13,
37295,
6624,
352,
5633,
362,
1058,
352,
8,
198,
220,
220,
220,
331,
796,
2092,
7,
87,
11,
331,
7857,
23029,
220,
220,
220,
1303,
357,
39,
14,
17,
39,
11,
33,
11,
51,
8,
393,
357,
39,
14,
17,
39,
11,
33,
28988,
1377,
331,
22353,
2124,
2845,
329,
262,
717,
15793,
198,
220,
220,
220,
331,
8671,
82,
796,
42873,
7,
88,
11,
43501,
50,
4340,
8,
220,
220,
220,
1303,
357,
16,
11,
39,
14,
17,
39,
11,
33,
83,
8,
2124,
309,
628,
220,
220,
220,
1303,
16018,
453,
5072,
7104,
290,
2685,
286,
938,
2239,
198,
220,
220,
220,
2537,
448,
796,
3075,
448,
796,
29369,
62,
33991,
198,
220,
220,
220,
2537,
24564,
796,
3075,
24564,
796,
327,
62,
33991,
198,
220,
220,
220,
611,
2537,
8614,
3075,
198,
220,
220,
220,
220,
220,
220,
220,
717,
33,
963,
10699,
796,
15458,
50,
4340,
855,
22366,
5633,
2546,
7,
87,
11,
17,
8,
1058,
15458,
50,
4340,
58,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
289,
7857,
796,
357,
5317,
7,
81,
20471,
13,
30342,
10699,
828,
2558,
7,
11085,
33,
963,
10699,
828,
2558,
7,
81,
20471,
13,
22510,
43,
6962,
1635,
357,
81,
20471,
13,
37295,
6624,
352,
5633,
362,
1058,
352,
22305,
1303,
357,
39,
11,
33,
11,
43,
14,
17,
43,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2537,
26,
2537,
448,
28,
38610,
7,
88,
11,
71,
7857,
1776,
2537,
24564,
28,
21016,
18,
7,
12114,
448,
1776,
886,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3075,
11405,
374,
20471,
13,
14171,
855,
17,
26,
3075,
448,
28,
38610,
7,
88,
11,
71,
7857,
1776,
3075,
24564,
28,
21016,
18,
7,
948,
448,
1776,
886,
198,
220,
220,
220,
220,
220,
220,
220,
611,
5145,
271,
22366,
7,
71,
87,
8,
11405,
597,
7,
7857,
7,
71,
87,
11,
72,
31520,
28,
71,
7857,
58,
72,
60,
329,
1312,
28,
16,
25,
18,
8,
1303,
8996,
530,
416,
530,
287,
1339,
289,
87,
318,
352,
12,
35,
393,
362,
12,
35,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3714,
7,
29271,
3004,
44,
1042,
963,
7203,
7857,
7,
71,
87,
8,
43641,
7,
7857,
7,
71,
87,
4008,
857,
407,
2872,
289,
7857,
43641,
7,
71,
7857,
16725,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
611,
5145,
271,
22366,
7,
66,
87,
8,
11405,
374,
20471,
13,
14171,
6624,
362,
11405,
597,
7,
7857,
7,
66,
87,
11,
72,
31520,
28,
71,
7857,
58,
72,
60,
329,
1312,
28,
16,
25,
18,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3714,
7,
29271,
3004,
44,
1042,
963,
7203,
7857,
7,
66,
87,
8,
43641,
7,
7857,
7,
66,
87,
4008,
857,
407,
2872,
289,
7857,
43641,
7,
71,
7857,
16725,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1303,
670,
14106,
290,
11515,
14106,
198,
220,
220,
220,
266,
824,
796,
269,
463,
20471,
3855,
49,
6144,
23044,
10223,
10699,
7,
81,
20471,
13,
81,
20471,
24564,
11,
220,
742,
9310,
26,
5412,
28,
28144,
8,
198,
220,
220,
220,
266,
82,
796,
374,
20471,
5225,
10223,
7,
86,
824,
11,
2099,
1659,
7,
8367,
7,
86,
22305,
628,
220,
220,
220,
611,
11160,
42731,
13,
8344,
1284,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
374,
824,
796,
269,
463,
20471,
3855,
49,
6144,
44357,
4965,
3760,
10699,
7,
81,
20471,
13,
81,
20471,
24564,
11,
220,
742,
9310,
26,
5412,
28,
28144,
8,
198,
220,
220,
220,
220,
220,
220,
220,
44608,
796,
374,
20471,
5225,
10223,
7,
42216,
11,
2099,
1659,
7,
8367,
7,
86,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
66,
463,
20471,
62,
1186,
563,
327,
8322,
6144,
13,
13271,
8635,
62,
66,
463,
20471,
49,
6144,
39746,
44357,
7,
28144,
11,
374,
20471,
13,
81,
20471,
24564,
11,
33756,
24539,
11,
220,
742,
9310,
11,
2124,
11,
289,
87,
24564,
11,
289,
87,
11,
43213,
24564,
11,
43213,
11,
266,
24564,
11,
266,
11,
331,
8671,
82,
11,
331,
11,
2537,
24564,
11,
2537,
448,
11,
3075,
24564,
11,
3075,
448,
11,
266,
82,
11,
266,
824,
11,
44608,
11,
374,
824,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
44608,
796,
2147,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
66,
463,
20471,
62,
1186,
563,
327,
8322,
6144,
13,
13271,
8635,
62,
66,
463,
20471,
49,
6144,
39746,
818,
4288,
7,
28144,
11,
374,
20471,
13,
81,
20471,
24564,
11,
33756,
24539,
11,
220,
742,
9310,
11,
2124,
11,
289,
87,
24564,
11,
289,
87,
11,
43213,
24564,
11,
43213,
11,
266,
24564,
11,
266,
11,
331,
8671,
82,
11,
331,
11,
2537,
24564,
11,
2537,
448,
11,
3075,
24564,
11,
3075,
448,
11,
266,
82,
11,
266,
824,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
611,
2537,
448,
24844,
29369,
62,
33991,
26,
2537,
448,
796,
2147,
26,
886,
198,
220,
220,
220,
611,
3075,
448,
24844,
29369,
62,
33991,
26,
3075,
448,
796,
2147,
26,
886,
198,
220,
220,
220,
1441,
331,
11,
2537,
448,
11,
3075,
448,
11,
44608,
11,
266,
82,
198,
437,
198,
198,
8818,
4808,
81,
20471,
1891,
7,
28664,
11,
256,
11,
266,
11,
2124,
11,
289,
87,
11,
43213,
26,
374,
20471,
11,
267,
23029,
198,
220,
220,
220,
2488,
30493,
1988,
7,
81,
20471,
13,
86,
8,
24844,
1988,
7,
86,
8,
198,
220,
220,
220,
331,
11,
12114,
11,
948,
11,
3808,
11,
18504,
796,
1988,
7,
83,
8,
198,
220,
220,
220,
20268,
11,
67,
12114,
11,
67,
948,
11,
67,
3808,
11,
67,
18504,
796,
1988,
7,
28664,
8,
198,
220,
220,
220,
374,
20471,
28,
8367,
7,
81,
20471,
1776,
266,
28,
8367,
7,
86,
1776,
2124,
28,
8367,
7,
87,
1776,
289,
87,
28,
8367,
7,
71,
87,
1776,
43213,
28,
8367,
7,
66,
87,
8,
198,
220,
220,
220,
1303,
1675,
2948,
20086,
284,
1306,
24415,
356,
761,
284,
1598,
262,
25414,
2099,
422,
374,
20471,
13,
71,
11,
81,
20471,
13,
66,
198,
220,
220,
220,
1303,
775,
460,
470,
466,
428,
1141,
2651,
11,
780,
1194,
2651,
743,
307,
1057,
1626,
262,
976,
24415,
13,
198,
220,
220,
220,
1303,
25327,
340,
994,
318,
3338,
11,
1724,
262,
24415,
318,
1760,
290,
356,
389,
2263,
3915,
2334,
13,
198,
220,
220,
220,
1303,
5740,
326,
428,
857,
407,
670,
319,
262,
42804,
290,
777,
423,
284,
307,
20750,
416,
1021,
13,
198,
220,
220,
220,
1303,
383,
42804,
2196,
318,
407,
257,
20049,
290,
468,
645,
736,
2163,
13,
357,
51,
3727,
46,
25,
1064,
1365,
4610,
8,
198,
220,
220,
220,
374,
20471,
13,
71,
796,
1988,
7,
81,
20471,
13,
71,
1776,
374,
20471,
13,
66,
796,
1988,
7,
81,
20471,
13,
66,
8,
220,
198,
220,
220,
220,
4808,
81,
20471,
1891,
17,
7,
81,
20471,
11,
266,
11,
2124,
11,
331,
11,
20268,
11,
289,
87,
11,
43213,
11,
288,
12114,
11,
288,
948,
11,
44608,
11,
266,
82,
26,
267,
23029,
198,
437,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
8818,
4808,
81,
20471,
1891,
17,
7,
81,
11,
266,
11,
2124,
11,
331,
11,
20268,
11,
289,
87,
11,
43213,
11,
288,
12114,
11,
288,
948,
11,
44608,
11,
266,
82,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5412,
28,
34,
8322,
6144,
13,
28144,
22784,
15458,
50,
4340,
28,
22366,
11,
267,
23029,
220,
198,
220,
220,
220,
2488,
30493,
1988,
7,
81,
13,
86,
8,
24844,
1988,
7,
86,
8,
198,
220,
220,
220,
1303,
23412,
12145,
669,
25,
198,
220,
220,
220,
33756,
24539,
796,
15458,
50,
4340,
855,
22366,
5633,
2546,
7,
87,
11,
18,
8,
1058,
4129,
7,
43501,
50,
4340,
8,
1303,
357,
55,
11,
33,
11,
51,
8,
393,
357,
55,
11,
33,
28988,
351,
15458,
50,
4340,
198,
220,
220,
220,
266,
24564,
796,
30002,
18,
7,
86,
8,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
357,
16,
11,
16,
11,
54,
8,
198,
220,
220,
220,
220,
742,
9310,
796,
42873,
7,
87,
11,
43501,
50,
4340,
8,
220,
220,
220,
1303,
357,
55,
11,
33,
11,
51,
8,
4613,
357,
16,
11,
55,
11,
33,
8,
2124,
309,
198,
220,
220,
220,
331,
8671,
82,
796,
42873,
7,
88,
11,
43501,
50,
4340,
8,
220,
220,
220,
1303,
357,
39,
14,
17,
39,
11,
33,
11,
51,
8,
4613,
357,
16,
11,
39,
14,
17,
39,
11,
33,
8,
2124,
309,
198,
220,
220,
220,
1303,
20268,
8671,
82,
796,
42873,
7,
9892,
11,
43501,
50,
4340,
8,
220,
1303,
356,
779,
331,
8671,
82,
329,
20268,
8671,
82,
198,
220,
220,
220,
611,
20268,
6624,
2147,
26,
20268,
28,
22570,
7,
88,
1776,
886,
198,
220,
220,
220,
611,
289,
87,
6624,
2147,
26,
289,
87,
28,
43633,
62,
33991,
26,
289,
87,
24564,
28,
34,
62,
33991,
26,
2073,
26,
289,
87,
24564,
28,
21016,
18,
7,
71,
87,
1776,
886,
198,
220,
220,
220,
611,
43213,
6624,
2147,
8614,
374,
13,
14171,
14512,
362,
26,
43213,
28,
43633,
62,
33991,
26,
43213,
24564,
28,
34,
62,
33991,
26,
2073,
26,
43213,
24564,
28,
21016,
18,
7,
66,
87,
1776,
886,
198,
220,
220,
220,
611,
288,
12114,
6624,
2147,
26,
288,
12114,
28,
43633,
62,
33991,
26,
288,
12114,
24564,
28,
34,
62,
33991,
26,
2073,
26,
288,
12114,
24564,
28,
21016,
18,
7,
67,
12114,
1776,
886,
198,
220,
220,
220,
611,
288,
948,
6624,
2147,
8614,
374,
13,
14171,
14512,
362,
26,
288,
948,
28,
43633,
62,
33991,
26,
288,
948,
24564,
28,
34,
62,
33991,
26,
2073,
26,
288,
948,
24564,
28,
21016,
18,
7,
67,
948,
1776,
886,
628,
220,
220,
220,
1303,
25235,
26515,
290,
12145,
669,
25,
198,
220,
220,
220,
44332,
796,
2092,
7,
87,
8,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
357,
55,
11,
33,
11,
51,
8,
393,
357,
55,
11,
33,
28988,
351,
15458,
50,
4340,
198,
220,
220,
220,
1303,
288,
742,
9310,
796,
42873,
7,
34350,
11,
43501,
50,
4340,
8,
220,
1303,
356,
779,
220,
742,
9310,
994,
198,
220,
220,
220,
43756,
796,
6632,
7,
86,
8,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
43756,
318,
973,
38298,
306,
11,
523,
356,
761,
6632,
198,
220,
220,
220,
43756,
24564,
796,
30002,
18,
7,
67,
86,
8,
198,
220,
220,
220,
611,
289,
87,
24844,
29369,
62,
33991,
26,
34590,
87,
28,
43633,
62,
33991,
26,
34590,
87,
24564,
28,
34,
62,
33991,
26,
2073,
26,
34590,
87,
28,
38610,
7,
71,
87,
1776,
34590,
87,
24564,
28,
21016,
18,
7,
34985,
87,
1776,
886,
198,
220,
220,
220,
611,
43213,
24844,
29369,
62,
33991,
26,
30736,
87,
28,
43633,
62,
33991,
26,
30736,
87,
24564,
28,
34,
62,
33991,
26,
2073,
26,
30736,
87,
28,
38610,
7,
66,
87,
1776,
30736,
87,
24564,
28,
21016,
18,
7,
17896,
87,
1776,
886,
628,
220,
220,
220,
1303,
670,
14106,
290,
11515,
14106,
198,
220,
220,
220,
1303,
266,
82,
796,
269,
463,
20471,
12468,
14106,
3419,
198,
220,
220,
220,
266,
824,
796,
9881,
7,
18504,
8,
198,
220,
220,
220,
374,
824,
796,
9881,
7,
3808,
8,
198,
220,
220,
220,
2488,
66,
463,
20471,
62,
1186,
563,
327,
8322,
6144,
13,
13271,
8635,
62,
66,
463,
20471,
49,
6144,
7282,
904,
6601,
7,
28144,
11,
374,
13,
81,
20471,
24564,
11,
33756,
24539,
11,
331,
8671,
82,
11,
331,
11,
331,
8671,
82,
11,
20268,
11,
288,
12114,
24564,
11,
288,
12114,
11,
288,
948,
24564,
11,
288,
948,
11,
266,
24564,
11,
266,
11,
289,
87,
24564,
11,
289,
87,
11,
43213,
24564,
11,
43213,
11,
220,
742,
9310,
11,
44332,
11,
34590,
87,
24564,
11,
34590,
87,
11,
30736,
87,
24564,
11,
30736,
87,
11,
266,
82,
11,
266,
824,
11,
44608,
11,
374,
824,
8,
198,
220,
220,
220,
2488,
66,
463,
20471,
62,
1186,
563,
327,
8322,
6144,
13,
13271,
8635,
62,
66,
463,
20471,
49,
6144,
7282,
904,
1135,
2337,
7,
28144,
11,
374,
13,
81,
20471,
24564,
11,
33756,
24539,
11,
220,
742,
9310,
11,
2124,
11,
289,
87,
24564,
11,
289,
87,
11,
331,
8671,
82,
11,
331,
11,
266,
82,
11,
266,
824,
11,
43756,
24564,
11,
43756,
11,
44608,
11,
374,
824,
8,
198,
220,
220,
220,
1303,
10133,
262,
12940,
198,
220,
220,
220,
611,
34590,
87,
18604,
43633,
62,
33991,
26,
34590,
87,
28,
22366,
26,
886,
198,
220,
220,
220,
611,
30736,
87,
18604,
43633,
62,
33991,
26,
30736,
87,
28,
22366,
26,
886,
198,
220,
220,
220,
374,
13,
34350,
11,
374,
13,
34985,
87,
11,
374,
13,
17896,
87,
796,
44332,
11,
34590,
87,
11,
30736,
87,
198,
220,
220,
220,
1441,
43756,
198,
437,
198,
198,
31,
19795,
1800,
16,
4808,
81,
20471,
1640,
86,
7,
86,
11,
87,
11,
71,
87,
11,
66,
87,
26,
374,
20471,
11,
267,
986,
828,
9892,
11,
88,
220,
4808,
81,
20471,
1891,
7,
9892,
11,
88,
11,
86,
11,
87,
11,
71,
87,
11,
66,
87,
26,
374,
20471,
28,
81,
20471,
11,
267,
23029,
1988,
7,
81,
20471,
737,
34350,
1988,
7,
81,
20471,
737,
34985,
87,
1988,
7,
81,
20471,
737,
17896,
87,
198,
198,
2,
35638,
25,
4362,
374,
13,
34350,
11,
34985,
87,
11,
17896,
87,
743,
307,
13459,
416,
308,
66,
17440,
11,
511,
327,
62,
33991,
32007,
2728,
5876,
287,
2769,
30073,
13,
198,
11748,
7308,
25,
2769,
30073,
62,
32538,
198,
8818,
2769,
30073,
62,
32538,
7,
87,
3712,
49,
6144,
11,
264,
3712,
7390,
35,
713,
8,
198,
220,
220,
220,
611,
5145,
10134,
2539,
7,
82,
11,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
264,
58,
87,
60,
796,
371,
6144,
7,
22089,
30073,
62,
32538,
7,
87,
13,
86,
11,
82,
828,
2769,
30073,
62,
32538,
7,
87,
13,
71,
11,
82,
828,
2769,
30073,
62,
32538,
7,
87,
13,
66,
11,
82,
828,
2124,
13,
15414,
10699,
11,
2124,
13,
30342,
10699,
11,
2124,
13,
22510,
43,
6962,
11,
2124,
13,
14781,
448,
11,
2124,
13,
28826,
11,
2124,
13,
15414,
19076,
11,
2124,
13,
37295,
11,
2124,
13,
14171,
11,
2124,
13,
282,
2188,
11,
2124,
13,
7890,
6030,
11,
2769,
30073,
62,
32538,
7,
87,
13,
81,
20471,
24564,
11,
82,
828,
2769,
30073,
62,
32538,
7,
87,
13,
14781,
448,
24564,
11,
82,
828,
2147,
11,
2147,
11,
2147,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
264,
58,
87,
60,
198,
437,
198,
198,
8818,
374,
20471,
5225,
10223,
7,
77,
11,
2099,
8,
198,
220,
220,
220,
299,
23,
796,
357,
77,
12,
16,
8,
127,
115,
7857,
1659,
7,
5317,
47762,
16,
198,
220,
220,
220,
611,
2099,
1279,
25,
509,
3262,
19182,
198,
220,
220,
220,
220,
220,
220,
220,
42684,
796,
509,
3262,
19182,
90,
5317,
92,
7,
917,
891,
11,
299,
23,
8,
198,
220,
220,
220,
2073,
361,
2099,
1279,
25,
14496,
19182,
198,
220,
220,
220,
220,
220,
220,
220,
42684,
796,
14496,
19182,
90,
5317,
92,
7,
917,
891,
11,
299,
23,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
4049,
7203,
3,
4906,
407,
257,
1900,
11362,
7177,
2099,
19570,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
42684,
198,
437,
198,
198,
8818,
269,
463,
20471,
3855,
49,
6144,
10044,
4105,
10699,
7,
81,
3712,
49,
6144,
8,
198,
220,
220,
220,
581,
796,
327,
7857,
62,
83,
58,
15,
60,
198,
220,
220,
220,
2124,
24564,
796,
13320,
7,
81,
13,
7890,
6030,
11,
352,
11,
374,
13,
15414,
10699,
11,
352,
8,
220,
220,
220,
1303,
2124,
24564,
25,
357,
16,
11,
55,
11,
33,
8,
810,
1395,
796,
5128,
10699,
11,
347,
318,
9514,
11,
523,
7048,
352,
198,
220,
220,
220,
288,
83,
796,
327,
8322,
6144,
13,
66,
463,
20471,
6601,
6030,
62,
83,
7,
24544,
7,
81,
13,
7890,
6030,
4008,
198,
220,
220,
220,
327,
8322,
6144,
13,
66,
463,
20471,
3855,
49,
6144,
10044,
4105,
10699,
7,
34,
8322,
6144,
13,
28144,
22784,
374,
13,
81,
20471,
24564,
11,
2124,
24564,
11,
581,
11,
288,
83,
8,
198,
220,
220,
220,
2659,
7,
411,
58,
16,
4357,
39364,
7,
81,
13,
7890,
6030,
4008,
198,
437,
198,
198,
2,
770,
318,
46542,
11,
1521,
30,
198,
2,
1395,
11,
39,
11,
43,
11,
40,
796,
374,
13,
15414,
10699,
11,
374,
13,
30342,
10699,
11,
374,
13,
22510,
43,
6962,
11,
374,
20471,
2340,
7,
81,
8,
198,
2,
29275,
796,
406,
9,
40,
198,
2,
5128,
19044,
45977,
796,
357,
81,
13,
15414,
19076,
6624,
352,
5633,
657,
1058,
374,
13,
37295,
6624,
352,
5633,
314,
1058,
2659,
7,
40,
11,
17,
4008,
198,
2,
7104,
19044,
45977,
796,
357,
81,
13,
37295,
6624,
352,
5633,
357,
43,
12,
16,
27493,
40,
1058,
357,
43,
12,
16,
27493,
40,
1343,
2659,
7,
40,
11,
17,
4008,
198,
2,
29275,
1635,
367,
1343,
5128,
19044,
45977,
1635,
1395,
1635,
367,
1343,
7104,
19044,
45977,
1635,
367,
1635,
367,
198,
198,
8818,
269,
463,
20471,
3855,
49,
6144,
23044,
10223,
10699,
7,
4372,
3712,
35257,
11,
256,
9310,
3712,
21016,
82,
26,
5412,
28,
34,
8322,
6144,
13,
28144,
28955,
198,
220,
220,
220,
581,
796,
327,
7857,
62,
83,
58,
16,
60,
198,
220,
220,
220,
327,
8322,
6144,
13,
66,
463,
20471,
3855,
49,
6144,
23044,
10223,
10699,
7,
28144,
11,
374,
67,
11,
4129,
7,
8671,
82,
828,
256,
9310,
11,
581,
8,
198,
220,
220,
220,
1441,
2558,
7,
411,
58,
16,
12962,
198,
437,
198,
198,
8818,
269,
463,
20471,
3855,
49,
6144,
44357,
4965,
3760,
10699,
7,
4372,
3712,
35257,
11,
256,
9310,
3712,
21016,
82,
26,
5412,
28,
34,
8322,
6144,
13,
28144,
28955,
198,
220,
220,
220,
581,
796,
327,
7857,
62,
83,
58,
16,
60,
198,
220,
220,
220,
327,
8322,
6144,
13,
66,
463,
20471,
3855,
49,
6144,
44357,
4965,
3760,
10699,
7,
28144,
11,
374,
67,
11,
4129,
7,
8671,
82,
828,
256,
9310,
11,
581,
8,
198,
220,
220,
220,
1441,
2558,
7,
411,
58,
16,
12962,
198,
437,
198,
198,
2,
8229,
1288,
4906,
11,
7857,
198,
8818,
269,
463,
20471,
3855,
22417,
45,
67,
24564,
1968,
273,
7,
86,
24564,
3712,
26009,
26,
299,
65,
35,
12078,
18453,
276,
796,
807,
8,
198,
220,
220,
220,
1366,
6030,
796,
327,
600,
58,
15,
60,
198,
220,
220,
220,
5794,
796,
327,
600,
58,
15,
60,
198,
220,
220,
220,
299,
65,
35,
12078,
796,
327,
600,
58,
15,
60,
198,
220,
220,
220,
8106,
29271,
32,
796,
20650,
90,
34,
600,
92,
7,
917,
891,
11,
46803,
35,
12078,
18453,
276,
8,
198,
220,
220,
220,
327,
8322,
6144,
13,
66,
463,
20471,
3855,
22417,
45,
67,
24564,
1968,
273,
7,
86,
24564,
11,
299,
65,
35,
12078,
18453,
276,
11,
1366,
6030,
11,
5794,
11,
299,
65,
35,
12078,
11,
8106,
29271,
32,
8,
198,
220,
220,
220,
611,
299,
65,
35,
12078,
58,
16,
60,
1875,
299,
65,
35,
12078,
18453,
276,
198,
220,
220,
220,
220,
220,
220,
220,
269,
463,
20471,
3855,
22417,
45,
67,
24564,
1968,
273,
7,
86,
24564,
3712,
26009,
26,
299,
65,
35,
12078,
18453,
276,
796,
299,
65,
35,
12078,
58,
16,
12962,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
357,
43879,
2624,
11,
43879,
2414,
11,
43879,
1433,
38381,
16,
10,
7890,
6030,
58,
16,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
357,
24455,
29271,
32,
58,
46803,
35,
12078,
58,
16,
5974,
12,
16,
25,
16,
60,
986,
35751,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
269,
463,
20471,
3855,
49,
6144,
22973,
7,
81,
3712,
49,
6144,
11,
7679,
3712,
46541,
11,
4686,
3712,
46541,
11,
1582,
3712,
46541,
26,
779,
1177,
28,
9562,
8,
198,
220,
220,
220,
42287,
62,
533,
62,
11274,
796,
220,
198,
220,
220,
220,
14808,
16,
19841,
1582,
19841,
362,
8,
11405,
198,
220,
220,
220,
220,
14808,
81,
13,
37295,
6624,
657,
11405,
352,
19841,
7679,
19841,
374,
13,
22510,
43,
6962,
8,
8614,
198,
220,
220,
220,
220,
220,
357,
81,
13,
37295,
6624,
352,
11405,
352,
19841,
7679,
19841,
362,
9,
81,
13,
22510,
43,
6962,
4008,
11405,
198,
220,
220,
220,
220,
14808,
81,
13,
14171,
6624,
657,
11405,
352,
19841,
4686,
19841,
362,
8,
8614,
198,
220,
220,
220,
220,
220,
357,
81,
13,
14171,
6624,
352,
11405,
352,
19841,
4686,
19841,
362,
8,
8614,
198,
220,
220,
220,
220,
220,
357,
81,
13,
14171,
6624,
362,
11405,
352,
19841,
4686,
19841,
807,
8,
8614,
198,
220,
220,
220,
220,
220,
357,
81,
13,
14171,
6624,
513,
11405,
352,
19841,
4686,
19841,
718,
22305,
198,
220,
220,
220,
42287,
62,
533,
62,
11274,
8614,
3714,
7,
28100,
1713,
12331,
7203,
22069,
7159,
329,
374,
20471,
17143,
11,
3387,
766,
2205,
526,
4008,
198,
220,
220,
220,
815,
62,
7783,
62,
22366,
796,
198,
220,
220,
220,
220,
220,
220,
220,
14808,
81,
13,
15414,
19076,
6624,
352,
8,
11405,
198,
220,
220,
220,
220,
220,
220,
220,
220,
357,
1845,
6624,
352,
8,
11405,
198,
220,
220,
220,
220,
220,
220,
220,
220,
14808,
81,
13,
14171,
6624,
657,
11405,
4686,
6624,
352,
8,
8614,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
81,
13,
14171,
6624,
352,
11405,
4686,
6624,
352,
8,
8614,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
81,
13,
14171,
6624,
362,
11405,
352,
19841,
4686,
19841,
604,
8,
8614,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
81,
13,
14171,
6624,
513,
11405,
352,
19841,
4686,
19841,
513,
4008,
11405,
198,
220,
220,
220,
220,
220,
220,
220,
220,
14808,
29289,
6624,
352,
8,
8614,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
81,
13,
37295,
6624,
352,
11405,
7679,
6624,
362,
22305,
628,
220,
220,
220,
1312,
16,
796,
1312,
17,
796,
18896,
796,
657,
198,
220,
220,
220,
266,
796,
1988,
7,
81,
13,
86,
8,
198,
220,
220,
220,
2488,
30493,
318,
64,
7,
86,
11,
6245,
19182,
8,
198,
220,
220,
220,
309,
796,
1288,
4906,
7,
86,
8,
198,
220,
220,
220,
2124,
24564,
796,
13320,
7,
51,
11,
16,
11,
81,
13,
15414,
10699,
11,
16,
8,
198,
220,
220,
220,
266,
24564,
796,
30002,
7,
51,
11,
16,
11,
16,
11,
13664,
7,
86,
4008,
198,
220,
220,
220,
5772,
24564,
796,
30002,
7,
51,
11,
16,
11,
16,
11,
16,
11,
16,
8,
198,
220,
220,
220,
5772,
796,
327,
20692,
58,
15,
60,
198,
220,
220,
220,
611,
1582,
6624,
352,
1303,
17593,
198,
220,
220,
220,
220,
220,
220,
220,
327,
8322,
6144,
13,
66,
463,
20471,
3855,
49,
6144,
14993,
49925,
46912,
10044,
4105,
7,
28144,
11,
374,
13,
81,
20471,
24564,
11,
7679,
12,
16,
11,
2124,
24564,
11,
266,
24564,
11,
266,
11,
4686,
12,
16,
11,
5772,
24564,
11,
5772,
8,
198,
220,
220,
220,
2073,
1303,
10690,
198,
220,
220,
220,
220,
220,
220,
220,
327,
8322,
6144,
13,
66,
463,
20471,
3855,
49,
6144,
14993,
49925,
33,
4448,
10044,
4105,
7,
28144,
11,
374,
13,
81,
20471,
24564,
11,
7679,
12,
16,
11,
2124,
24564,
11,
266,
24564,
11,
266,
11,
4686,
12,
16,
11,
5772,
24564,
11,
5772,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
288,
83,
11,
82,
89,
796,
269,
463,
20471,
3855,
22417,
45,
67,
24564,
1968,
273,
7,
17143,
24564,
8,
198,
220,
220,
220,
611,
815,
62,
7783,
62,
22366,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
30493,
5772,
58,
16,
60,
24844,
327,
62,
33991,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
30493,
264,
89,
6624,
7499,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2147,
198,
220,
220,
220,
886,
198,
220,
220,
220,
18896,
796,
40426,
7,
82,
89,
8,
198,
220,
220,
220,
1312,
16,
796,
352,
1343,
2659,
7,
5317,
7,
17143,
58,
16,
60,
532,
17562,
7,
86,
36911,
39364,
7,
51,
4008,
198,
220,
220,
220,
1312,
17,
796,
1312,
16,
1343,
18896,
532,
352,
198,
220,
220,
220,
611,
1312,
16,
1875,
1312,
17,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
30493,
815,
62,
7783,
62,
22366,
198,
220,
220,
220,
220,
220,
220,
220,
2147,
198,
220,
220,
220,
2073,
361,
1582,
6624,
352,
1303,
17593,
26,
19590,
389,
1007,
29813,
198,
220,
220,
220,
220,
220,
220,
220,
289,
796,
2558,
7,
81,
13,
30342,
10699,
8,
198,
220,
220,
220,
220,
220,
220,
220,
27179,
1758,
7,
1177,
7,
81,
13,
86,
11,
1312,
16,
25,
72,
17,
828,
45299,
71,
8,
198,
220,
220,
220,
2073,
1303,
10690,
198,
220,
220,
220,
220,
220,
220,
220,
1570,
7,
81,
13,
86,
11,
1312,
16,
25,
72,
17,
8,
198,
220,
220,
220,
886,
198,
437,
628,
198,
2,
14496,
19182,
2176,
1104,
25,
815,
1445,
428,
284,
18912,
3258,
592,
198,
21016,
7,
64,
3712,
46141,
19182,
90,
51,
30072,
810,
1391,
51,
92,
796,
13320,
7,
51,
11,
2546,
7,
64,
4008,
198,
26009,
7,
64,
3712,
46141,
19182,
90,
51,
30072,
810,
1391,
51,
92,
796,
30002,
7,
51,
11,
2546,
7,
64,
4008,
198,
33661,
7,
87,
3712,
46141,
19182,
90,
51,
30072,
810,
309,
796,
4129,
7,
87,
27493,
7857,
1659,
7,
51,
8,
628,
198,
2,
509,
3262,
19182,
651,
9630,
48627,
36525,
1541,
5860,
257,
1570,
13,
198,
2,
775,
761,
262,
1708,
329,
374,
20471,
17143,
14,
35906,
429,
395,
284,
670,
25,
220,
220,
220,
220,
220,
220,
220,
220,
198,
14881,
13,
1177,
7,
32,
3712,
42,
3262,
19182,
11,
314,
3712,
23839,
26453,
17257,
90,
5317,
30072,
796,
651,
9630,
7,
32,
11,
314,
8,
198,
198,
2,
770,
6971,
31396,
1229,
11081,
14,
31197,
1229,
11081,
25,
198,
11748,
509,
3262,
13,
42,
3262,
3163,
20477,
25,
4808,
2655,
198,
8818,
4808,
2655,
7,
87,
3712,
49,
6144,
11,
264,
3712,
7390,
35,
713,
11,
285,
3712,
7762,
8,
198,
220,
220,
220,
611,
5145,
10134,
2539,
7,
82,
11,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
356,
761,
374,
67,
11,
1860,
691,
611,
612,
318,
257,
308,
19944,
11,
356,
389,
407,
287,
31396,
388,
1098,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
290,
611,
356,
389,
287,
474,
335,
14171,
356,
389,
11046,
11,
407,
8914,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
357,
43633,
5631,
13,
45124,
3419,
11405,
285,
14512,
9135,
49058,
11405,
5145,
7,
76,
6624,
449,
11163,
49058,
11405,
2124,
13,
81,
20471,
24564,
14512,
2147,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
49427,
796,
20084,
7,
14781,
448,
28,
87,
13,
14781,
448,
11,
28826,
28,
87,
13,
28826,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
374,
67,
796,
31475,
7,
87,
13,
30342,
10699,
11,
87,
13,
22510,
43,
6962,
11,
1860,
11,
87,
13,
15414,
19076,
11,
87,
13,
37295,
11,
87,
13,
14171,
11,
87,
13,
282,
2188,
11,
87,
13,
7890,
6030,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
374,
67,
796,
49427,
796,
2147,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
886,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
1160,
2167,
37988,
25,
775,
645,
2392,
761,
284,
3440,
14,
21928,
374,
67,
14,
1860,
25,
374,
20471,
1640,
86,
481,
5678,
355,
2622,
13,
198,
220,
220,
220,
220,
220,
220,
220,
374,
67,
796,
49427,
796,
2147,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
44332,
11,
34590,
87,
11,
30736,
87,
389,
8584,
7032,
973,
416,
374,
20471,
1891,
11,
484,
466,
407,
761,
284,
307,
18984,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
308,
66,
17440,
5621,
44332,
13,
20692,
284,
327,
62,
33991,
543,
9457,
11389,
1096,
11,
1266,
407,
284,
1949,
198,
220,
220,
220,
220,
220,
220,
220,
264,
58,
87,
60,
796,
371,
6144,
28264,
2655,
7,
87,
13,
86,
11,
82,
11,
76,
828,
4808,
2655,
7,
87,
13,
71,
11,
82,
11,
76,
828,
4808,
2655,
7,
87,
13,
66,
11,
82,
11,
76,
828,
2124,
13,
15414,
10699,
11,
2124,
13,
30342,
10699,
11,
2124,
13,
22510,
43,
6962,
11,
2124,
13,
14781,
448,
11,
2124,
13,
28826,
11,
2124,
13,
15414,
19076,
11,
2124,
13,
37295,
11,
2124,
13,
14171,
11,
2124,
13,
282,
2188,
11,
2124,
13,
7890,
6030,
11,
374,
67,
11,
49427,
11,
2147,
11,
2147,
11,
2147,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
264,
58,
87,
60,
198,
437,
198,
198,
11748,
449,
11163,
17,
198,
198,
7249,
449,
11163,
17,
49,
6144,
26,
266,
26,
289,
26,
269,
26,
5128,
10699,
26,
7104,
10699,
26,
997,
43,
6962,
26,
4268,
448,
26,
9403,
26,
5128,
19076,
26,
4571,
26,
4235,
26,
435,
2188,
26,
1366,
6030,
26,
886,
198,
41,
11163,
17,
49,
6144,
7,
87,
3712,
49,
6144,
8,
796,
449,
11163,
17,
49,
6144,
7,
87,
13,
86,
11,
2124,
13,
71,
11,
2124,
13,
66,
11,
2124,
13,
15414,
10699,
11,
2124,
13,
30342,
10699,
11,
2124,
13,
22510,
43,
6962,
11,
2124,
13,
14781,
448,
11,
2124,
13,
28826,
11,
2124,
13,
15414,
19076,
11,
2124,
13,
37295,
11,
2124,
13,
14171,
11,
2124,
13,
282,
2188,
11,
2124,
13,
7890,
6030,
8,
198,
49,
6144,
7,
87,
3712,
41,
11163,
17,
49,
6144,
8,
796,
371,
6144,
7,
87,
13,
86,
11,
2124,
13,
71,
11,
2124,
13,
66,
11,
2124,
13,
15414,
10699,
11,
2124,
13,
30342,
10699,
11,
2124,
13,
22510,
43,
6962,
11,
2124,
13,
14781,
448,
11,
2124,
13,
28826,
11,
2124,
13,
15414,
19076,
11,
2124,
13,
37295,
11,
2124,
13,
14171,
11,
2124,
13,
282,
2188,
11,
2124,
13,
7890,
6030,
11,
2147,
11,
2147,
11,
2147,
11,
2147,
11,
2147,
8,
198,
198,
41,
11163,
17,
13,
13564,
292,
7,
3712,
6030,
90,
49,
6144,
30072,
796,
449,
11163,
17,
49,
6144,
198,
41,
11163,
17,
13,
86,
1102,
1851,
7,
3712,
6030,
90,
41,
11163,
17,
49,
6144,
5512,
2124,
3712,
49,
6144,
8,
796,
449,
11163,
17,
49,
6144,
7,
87,
8,
198,
41,
11163,
17,
13,
81,
1102,
1851,
7,
3712,
6030,
90,
49,
6144,
5512,
2124,
3712,
41,
11163,
17,
49,
6144,
8,
796,
371,
6144,
7,
87,
8,
198
] | 2.143206 | 7,367 |
"""
critic(decisionMat, fns)
Apply CRITIC (Combined Compromise Solution) method for a given matrix and criteria types.
# Arguments:
- `decisionMat::DataFrame`: n × m matrix of objective values for n alternatives and m criteria
- `fns::Array{Function, 1}`: m-vector of functions to be applied on the columns.
# Description
critic() applies the CRITIC method to rank n alterntives subject to m criteria which are supposed to be
either maximized or minimized.
# Output
- `::CRITICResult`: CRITICResult object that holds multiple outputs including weighting and best index.
# Examples
```julia-repl
julia> decmat
3×4 Array{Float64,2}:
12.9918 0.7264 -1.1009 1.59814
4.1201 5.8824 3.4483 1.02156
4.1039 0.0 -0.5076 0.984469
julia> df = makeDecisionMatrix(decmat)
3×4 DataFrame
Row │ Crt1 Crt2 Crt3 Crt4
│ Float64 Float64 Float64 Float64
─────┼─────────────────────────────────────
1 │ 12.9918 0.7264 -1.1009 1.59814
2 │ 4.1201 5.8824 3.4483 1.02156
3 │ 4.1039 0.0 -0.5076 0.984469
julia> fns = [maximum, maximum, minimum, maximum];
julia> result = critic(df, fns);
julia> result.w
4-element Array{Float64,1}:
0.16883905506169491
0.41844653698732126
0.24912338769165807
0.16359102025932576
julia> result.bestIndex
2
```
# References
Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763–770. doi:10.1016/0305-0548(94)00059-h
Akçakanat, Ö., Aksoy, E., Teker, T. (2018). CRITIC ve MDL Temelli EDAS Yöntemi ile TR-61 Bölgesi Bankalarının Performans Değerlendirmesi. Süleyman Demirel Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 1 (32), 1-24.
"""
function critic(decisionMat::DataFrame, fns::Array{Function,1})::CRITICResult
row, col = size(decisionMat)
colMax = colmaxs(decisionMat)
colMin = colmins(decisionMat)
A = similar(decisionMat)
for i in 1:row
for j in 1:col
if fns[j] == maximum
@inbounds A[i, j] = (decisionMat[i, j] - colMin[j]) / (colMax[j] - colMin[j])
elseif fns[j] == minimum
@inbounds A[i, j] = (colMax[j] - decisionMat[i, j]) / (colMax[j] - colMin[j])
end
end
end
# normalizedMat = convert(Matrix, A)
normalizedMat = Matrix(A)
corMat = 1 .- cor(normalizedMat)
scores = zeros(Float64, col)
for i in 1:col
scores[i] = sum(corMat[:, i]) .* std(normalizedMat[:, i])
end
w = zeros(Float64, col)
for i in 1:col
w[i] = scores[i] ./ sum(scores)
end
rankings = sortperm(w)
bestIndex = rankings |> last
result = CRITICResult(
decisionMat,
w,
rankings,
bestIndex
)
return result
end
"""
critic(setting)
Apply CRITIC (Combined Compromise Solution) method for a given matrix and criteria types.
# Arguments:
- `setting::MCDMSetting`: MCDMSetting object.
# Description
critic() applies the CRITIC method to rank n alterntives subject to m criteria which are supposed to be
either maximized or minimized.
# Output
- `::CRITICResult`: CRITICResult object that holds multiple outputs including weighting and best index.
"""
function critic(setting::MCDMSetting)::CRITICResult
critic(
setting.df,
setting.fns
)
end | [
37811,
198,
220,
220,
220,
220,
220,
220,
220,
4014,
7,
12501,
1166,
19044,
11,
277,
5907,
8,
198,
198,
44836,
8740,
2043,
2149,
357,
20575,
1389,
3082,
398,
786,
28186,
8,
2446,
329,
257,
1813,
17593,
290,
9987,
3858,
13,
198,
198,
2,
20559,
2886,
25,
198,
532,
4600,
12501,
1166,
19044,
3712,
6601,
19778,
63,
25,
299,
13958,
285,
17593,
286,
9432,
3815,
329,
299,
14693,
290,
285,
9987,
220,
198,
532,
4600,
69,
5907,
3712,
19182,
90,
22203,
11,
352,
92,
63,
25,
285,
12,
31364,
286,
5499,
284,
307,
5625,
319,
262,
15180,
13,
198,
198,
2,
12489,
220,
198,
22213,
291,
3419,
8991,
262,
8740,
2043,
2149,
2446,
284,
4279,
299,
8343,
429,
1083,
2426,
284,
285,
9987,
543,
389,
4385,
284,
307,
220,
198,
31336,
12991,
1143,
393,
49491,
13,
198,
198,
2,
25235,
220,
198,
12,
4600,
3712,
9419,
2043,
2149,
23004,
63,
25,
8740,
2043,
2149,
23004,
2134,
326,
6622,
3294,
23862,
1390,
3463,
278,
290,
1266,
6376,
13,
198,
198,
2,
21066,
198,
15506,
63,
73,
43640,
12,
35666,
198,
198,
73,
43640,
29,
875,
6759,
198,
18,
12906,
19,
15690,
90,
43879,
2414,
11,
17,
38362,
198,
1105,
13,
2079,
1507,
220,
657,
13,
22,
18897,
220,
532,
16,
13,
3064,
24,
220,
352,
13,
41292,
1415,
198,
220,
604,
13,
1065,
486,
220,
642,
13,
3459,
1731,
220,
220,
513,
13,
2598,
5999,
220,
352,
13,
2999,
21599,
198,
220,
604,
13,
940,
2670,
220,
657,
13,
15,
220,
220,
220,
220,
532,
15,
13,
1120,
4304,
220,
657,
13,
4089,
2598,
3388,
198,
198,
73,
43640,
29,
47764,
796,
787,
10707,
1166,
46912,
7,
12501,
6759,
8,
198,
198,
18,
12906,
19,
6060,
19778,
198,
11314,
19421,
3864,
83,
16,
220,
220,
220,
220,
3864,
83,
17,
220,
220,
220,
220,
3864,
83,
18,
220,
220,
220,
220,
3864,
83,
19,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
19421,
48436,
2414,
220,
48436,
2414,
220,
48436,
2414,
220,
48436,
2414,
220,
220,
198,
16068,
7280,
6552,
120,
28542,
28542,
28542,
28542,
16068,
7280,
198,
220,
220,
352,
19421,
1105,
13,
2079,
1507,
220,
220,
657,
13,
22,
18897,
220,
532,
16,
13,
3064,
24,
220,
352,
13,
41292,
1415,
198,
220,
220,
362,
19421,
220,
604,
13,
1065,
486,
220,
220,
642,
13,
3459,
1731,
220,
220,
513,
13,
2598,
5999,
220,
352,
13,
2999,
21599,
198,
220,
220,
513,
19421,
220,
604,
13,
940,
2670,
220,
220,
657,
13,
15,
220,
220,
220,
220,
532,
15,
13,
1120,
4304,
220,
657,
13,
4089,
2598,
3388,
198,
198,
73,
43640,
29,
277,
5907,
796,
685,
47033,
11,
5415,
11,
5288,
11,
5415,
11208,
198,
198,
73,
43640,
29,
1255,
796,
4014,
7,
7568,
11,
277,
5907,
1776,
198,
198,
73,
43640,
29,
1255,
13,
86,
198,
19,
12,
30854,
15690,
90,
43879,
2414,
11,
16,
38362,
198,
657,
13,
1433,
3459,
2670,
2713,
35638,
22172,
41289,
198,
657,
13,
39667,
2598,
2996,
2623,
44183,
2624,
19420,
198,
657,
13,
21626,
1065,
2091,
5774,
3388,
20986,
36928,
198,
657,
13,
1433,
30743,
940,
1238,
1495,
6052,
1495,
4304,
198,
198,
73,
43640,
29,
1255,
13,
13466,
15732,
198,
17,
198,
15506,
63,
198,
2,
31458,
198,
198,
18683,
461,
2852,
8182,
11,
360,
1539,
337,
615,
10599,
292,
11,
402,
1539,
1222,
14185,
323,
1236,
27321,
11,
406,
13,
357,
21908,
737,
360,
13221,
278,
9432,
19590,
287,
3294,
9987,
2761,
25,
383,
4014,
2446,
13,
22476,
364,
1222,
16205,
4992,
11,
2534,
7,
22,
828,
767,
5066,
1906,
41820,
13,
23899,
25,
940,
13,
27956,
14,
15,
22515,
12,
2713,
2780,
7,
5824,
8,
830,
3270,
12,
71,
220,
198,
33901,
16175,
461,
272,
265,
11,
43307,
1539,
9084,
568,
88,
11,
412,
1539,
309,
28233,
11,
309,
13,
357,
7908,
737,
8740,
2043,
2149,
1569,
10670,
43,
5825,
23225,
8392,
1921,
575,
9101,
429,
43967,
220,
576,
7579,
12,
5333,
347,
9101,
75,
3212,
72,
5018,
282,
283,
30102,
77,
30102,
77,
35006,
504,
1024,
33133,
263,
75,
437,
2533,
46551,
13,
311,
9116,
1636,
805,
1897,
557,
75,
49363,
77,
1191,
2737,
72,
311,
418,
88,
282,
24207,
320,
1754,
2039,
301,
270,
9116,
82,
9116,
360,
6422,
23267,
11,
352,
357,
2624,
828,
352,
12,
1731,
13,
198,
198,
37811,
198,
8818,
4014,
7,
12501,
1166,
19044,
3712,
6601,
19778,
11,
277,
5907,
3712,
19182,
90,
22203,
11,
16,
92,
2599,
25,
9419,
2043,
2149,
23004,
198,
220,
220,
220,
220,
198,
220,
220,
220,
5752,
11,
951,
796,
2546,
7,
12501,
1166,
19044,
8,
198,
220,
220,
220,
951,
11518,
796,
951,
9806,
82,
7,
12501,
1166,
19044,
8,
198,
220,
220,
220,
951,
9452,
796,
951,
42951,
7,
12501,
1166,
19044,
8,
628,
220,
220,
220,
317,
796,
2092,
7,
12501,
1166,
19044,
8,
628,
220,
220,
220,
329,
1312,
287,
352,
25,
808,
198,
220,
220,
220,
220,
220,
220,
220,
329,
474,
287,
352,
25,
4033,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
277,
5907,
58,
73,
60,
6624,
5415,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
259,
65,
3733,
317,
58,
72,
11,
474,
60,
796,
357,
12501,
1166,
19044,
58,
72,
11,
474,
60,
532,
951,
9452,
58,
73,
12962,
1220,
357,
4033,
11518,
58,
73,
60,
532,
951,
9452,
58,
73,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
361,
277,
5907,
58,
73,
60,
6624,
5288,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
259,
65,
3733,
317,
58,
72,
11,
474,
60,
796,
357,
4033,
11518,
58,
73,
60,
532,
2551,
19044,
58,
72,
11,
474,
12962,
1220,
357,
4033,
11518,
58,
73,
60,
532,
951,
9452,
58,
73,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1303,
39279,
19044,
796,
10385,
7,
46912,
11,
317,
8,
198,
220,
220,
220,
39279,
19044,
796,
24936,
7,
32,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1162,
19044,
796,
352,
764,
12,
1162,
7,
11265,
1143,
19044,
8,
628,
220,
220,
220,
8198,
796,
1976,
27498,
7,
43879,
2414,
11,
951,
8,
198,
220,
220,
220,
329,
1312,
287,
352,
25,
4033,
198,
220,
220,
220,
220,
220,
220,
220,
8198,
58,
72,
60,
796,
2160,
7,
10215,
19044,
58,
45299,
1312,
12962,
764,
9,
14367,
7,
11265,
1143,
19044,
58,
45299,
1312,
12962,
198,
220,
220,
220,
886,
628,
220,
220,
220,
266,
796,
1976,
27498,
7,
43879,
2414,
11,
951,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
329,
1312,
287,
352,
25,
4033,
198,
220,
220,
220,
220,
220,
220,
220,
266,
58,
72,
60,
796,
8198,
58,
72,
60,
24457,
2160,
7,
1416,
2850,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
220,
198,
220,
220,
220,
16905,
796,
3297,
16321,
7,
86,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1266,
15732,
796,
16905,
930,
29,
938,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1255,
796,
8740,
2043,
2149,
23004,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2551,
19044,
11,
198,
220,
220,
220,
220,
220,
220,
220,
266,
11,
198,
220,
220,
220,
220,
220,
220,
220,
16905,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1266,
15732,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
1441,
1255,
198,
437,
628,
198,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
4014,
7,
33990,
8,
198,
198,
44836,
8740,
2043,
2149,
357,
20575,
1389,
3082,
398,
786,
28186,
8,
2446,
329,
257,
1813,
17593,
290,
9987,
3858,
13,
198,
198,
2,
20559,
2886,
25,
198,
532,
4600,
33990,
3712,
44,
8610,
5653,
35463,
63,
25,
337,
8610,
5653,
35463,
2134,
13,
220,
198,
220,
198,
2,
12489,
220,
198,
22213,
291,
3419,
8991,
262,
8740,
2043,
2149,
2446,
284,
4279,
299,
8343,
429,
1083,
2426,
284,
285,
9987,
543,
389,
4385,
284,
307,
220,
198,
31336,
12991,
1143,
393,
49491,
13,
198,
198,
2,
25235,
220,
198,
12,
4600,
3712,
9419,
2043,
2149,
23004,
63,
25,
8740,
2043,
2149,
23004,
2134,
326,
6622,
3294,
23862,
1390,
3463,
278,
290,
1266,
6376,
13,
198,
37811,
198,
8818,
4014,
7,
33990,
3712,
44,
8610,
5653,
35463,
2599,
25,
9419,
2043,
2149,
23004,
198,
220,
220,
220,
4014,
7,
198,
220,
220,
220,
220,
220,
220,
220,
4634,
13,
7568,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
4634,
13,
69,
5907,
198,
220,
220,
220,
1267,
198,
437,
220
] | 2.334459 | 1,480 |
using InfrastructureSystems
using PowerSystems
using InteractiveUtils
const IS = InfrastructureSystems
const PSY = PowerSystems
IS.strip_module_name
function _check_exception(T, exceptions::Vector)
for type_exception in exceptions
if T <: type_exception
return true
end
end
return false
end
function _write_first_level_markdown(c::String)
file_name = "model_library/generated_$(c).md"
open(joinpath("docs/src", file_name), "w") do io
print(
io,
"""
# $(c)
```@autodocs
Modules = [PowerSystems]
Pages = ["generated/$(c).jl"]
Order = [:type, :function]
Public = true
```
""",
)
end
return file_name
end
function _write_second_level_markdown(input::DataType, subtypes::Vector{DataType}, exceptions)
c = IS.strip_module_name(input)
file_name = "model_library/generated_$(c).md"
open(joinpath("docs/src", file_name), "w") do io
print(io, "# $input\n\n")
for T_ in subtypes
_check_exception(T_, exceptions) && continue
T = IS.strip_module_name(T_)
print(
io,
"""
## $(T)
```@autodocs
Modules = [PowerSystems]
Pages = ["/$(T).jl"]
Order = [:type, :function]
Public = true
```
""",
)
end
end
return file_name
end
function make_dynamics_library!(model_library;
dyn_categories =[
PSY.DynamicGeneratorComponent,
PSY.DynamicInverterComponent,
],
exceptions = [PSY.OuterControl,
PSY.ActivePowerControl,
PSY.ReactivePowerControl,],
manual_additions = Dict{String, Any}("DynamicInverterComponent" => Any["OuterControl" => "model_library/outer_control.md"])
)
for abstract_type in dyn_categories
@info "Making entries for subtypes of $abstract_type"
abstract_type_string = IS.strip_module_name(abstract_type)
addition = Dict{String, Any}()
internal_index = Any[]
for c_ in subtypes(abstract_type)
c_string = IS.strip_module_name(c_)
_check_exception(c_, exceptions) && continue
concretes = IS.get_all_concrete_subtypes(c_)
file_name = _write_second_level_markdown(c_,
concretes, exceptions)
push!(internal_index, c_string => file_name)
end
push!(model_library, abstract_type_string => internal_index)
if haskey(manual_additions, abstract_type_string)
addition = get(manual_additions, abstract_type_string, nothing)
push!(model_library[abstract_type_string], addition...)
end
end
end
function make_model_library(;
categories = [],
exceptions = [],
manual_additions = Dict{String, Any}()
)
model_library = Dict{String, Any}()
for abstract_type in categories
@info "Making entries for subtypes of $abstract_type"
internal_index = Any[]
concrete = IS.get_all_concrete_subtypes(abstract_type)
for c_ in concrete
_check_exception(c_, exceptions) && continue
c = IS.strip_module_name(c_)
file_name = _write_first_level_markdown(c)
push!(internal_index, c => file_name)
end
isempty(internal_index) && continue
model_library[IS.strip_module_name(abstract_type)] = internal_index
end
make_dynamics_library!(model_library)
for (k, v) in manual_additions
if haskey(model_library, k)
push!(model_library[k], v...)
else
model_library[k] = v
end
end
return Any[p for p in model_library]
end
| [
3500,
33709,
11964,
82,
198,
3500,
4333,
11964,
82,
198,
3500,
21365,
18274,
4487,
198,
9979,
3180,
796,
33709,
11964,
82,
198,
9979,
6599,
56,
796,
4333,
11964,
82,
198,
198,
1797,
13,
36311,
62,
21412,
62,
3672,
198,
198,
8818,
4808,
9122,
62,
1069,
4516,
7,
51,
11,
13269,
3712,
38469,
8,
198,
220,
220,
220,
329,
2099,
62,
1069,
4516,
287,
13269,
198,
220,
220,
220,
220,
220,
220,
220,
611,
309,
1279,
25,
2099,
62,
1069,
4516,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
2081,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
3991,
198,
437,
198,
198,
8818,
4808,
13564,
62,
11085,
62,
5715,
62,
4102,
2902,
7,
66,
3712,
10100,
8,
198,
220,
220,
220,
2393,
62,
3672,
796,
366,
19849,
62,
32016,
14,
27568,
62,
3,
7,
66,
737,
9132,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1280,
7,
22179,
6978,
7203,
31628,
14,
10677,
1600,
2393,
62,
3672,
828,
366,
86,
4943,
466,
33245,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33245,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
29568,
66,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7559,
63,
31,
2306,
375,
420,
82,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3401,
5028,
796,
685,
13434,
11964,
82,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28221,
220,
220,
796,
14631,
27568,
32624,
7,
66,
737,
20362,
8973,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8284,
796,
685,
25,
4906,
11,
1058,
8818,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5094,
796,
2081,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7559,
63,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13538,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
2393,
62,
3672,
198,
437,
198,
198,
8818,
4808,
13564,
62,
12227,
62,
5715,
62,
4102,
2902,
7,
15414,
3712,
6601,
6030,
11,
850,
19199,
3712,
38469,
90,
6601,
6030,
5512,
13269,
8,
198,
220,
220,
220,
269,
796,
3180,
13,
36311,
62,
21412,
62,
3672,
7,
15414,
8,
198,
220,
220,
220,
2393,
62,
3672,
796,
366,
19849,
62,
32016,
14,
27568,
62,
3,
7,
66,
737,
9132,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1280,
7,
22179,
6978,
7203,
31628,
14,
10677,
1600,
2393,
62,
3672,
828,
366,
86,
4943,
466,
33245,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
25113,
720,
15414,
59,
77,
59,
77,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
309,
62,
287,
850,
19199,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
9122,
62,
1069,
4516,
7,
51,
62,
11,
13269,
8,
11405,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
309,
796,
3180,
13,
36311,
62,
21412,
62,
3672,
7,
51,
62,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
33245,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
22492,
29568,
51,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7559,
63,
31,
2306,
375,
420,
82,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3401,
5028,
796,
685,
13434,
11964,
82,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28221,
220,
220,
796,
14631,
32624,
7,
51,
737,
20362,
8973,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8284,
796,
685,
25,
4906,
11,
1058,
8818,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5094,
796,
2081,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7559,
63,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13538,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
2393,
62,
3672,
198,
437,
198,
198,
8818,
787,
62,
67,
4989,
873,
62,
32016,
0,
7,
19849,
62,
32016,
26,
198,
67,
2047,
62,
66,
26129,
796,
58,
198,
220,
220,
220,
6599,
56,
13,
44090,
8645,
1352,
21950,
11,
198,
220,
220,
220,
6599,
56,
13,
44090,
818,
332,
353,
21950,
11,
198,
4357,
198,
1069,
11755,
796,
685,
3705,
56,
13,
7975,
263,
15988,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6599,
56,
13,
13739,
13434,
15988,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6599,
56,
13,
3041,
5275,
13434,
15988,
11,
4357,
198,
198,
805,
723,
62,
2860,
1756,
796,
360,
713,
90,
10100,
11,
4377,
92,
7203,
44090,
818,
332,
353,
21950,
1,
5218,
4377,
14692,
7975,
263,
15988,
1,
5218,
366,
19849,
62,
32016,
14,
39605,
62,
13716,
13,
9132,
8973,
8,
198,
8,
198,
220,
220,
220,
329,
12531,
62,
4906,
287,
37860,
62,
66,
26129,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
23874,
12784,
329,
850,
19199,
286,
720,
397,
8709,
62,
4906,
1,
198,
220,
220,
220,
220,
220,
220,
220,
12531,
62,
4906,
62,
8841,
796,
3180,
13,
36311,
62,
21412,
62,
3672,
7,
397,
8709,
62,
4906,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3090,
796,
360,
713,
90,
10100,
11,
4377,
92,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
5387,
62,
9630,
796,
4377,
21737,
198,
220,
220,
220,
220,
220,
220,
220,
329,
269,
62,
287,
850,
19199,
7,
397,
8709,
62,
4906,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
269,
62,
8841,
796,
3180,
13,
36311,
62,
21412,
62,
3672,
7,
66,
62,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
9122,
62,
1069,
4516,
7,
66,
62,
11,
13269,
8,
11405,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1673,
1186,
274,
796,
3180,
13,
1136,
62,
439,
62,
1102,
38669,
62,
7266,
19199,
7,
66,
62,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
62,
3672,
796,
4808,
13564,
62,
12227,
62,
5715,
62,
4102,
2902,
7,
66,
62,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1673,
1186,
274,
11,
13269,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
32538,
62,
9630,
11,
269,
62,
8841,
5218,
2393,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
19849,
62,
32016,
11,
12531,
62,
4906,
62,
8841,
5218,
5387,
62,
9630,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
468,
2539,
7,
805,
723,
62,
2860,
1756,
11,
12531,
62,
4906,
62,
8841,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3090,
796,
651,
7,
805,
723,
62,
2860,
1756,
11,
12531,
62,
4906,
62,
8841,
11,
2147,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
19849,
62,
32016,
58,
397,
8709,
62,
4906,
62,
8841,
4357,
3090,
23029,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
787,
62,
19849,
62,
32016,
7,
26,
198,
220,
220,
220,
9376,
796,
685,
4357,
198,
220,
220,
220,
13269,
796,
685,
4357,
198,
220,
220,
220,
10107,
62,
2860,
1756,
796,
360,
713,
90,
10100,
11,
4377,
92,
3419,
198,
8,
628,
220,
220,
220,
2746,
62,
32016,
796,
360,
713,
90,
10100,
11,
4377,
92,
3419,
628,
220,
220,
220,
329,
12531,
62,
4906,
287,
9376,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
23874,
12784,
329,
850,
19199,
286,
720,
397,
8709,
62,
4906,
1,
198,
220,
220,
220,
220,
220,
220,
220,
5387,
62,
9630,
796,
4377,
21737,
198,
220,
220,
220,
220,
220,
220,
220,
10017,
796,
3180,
13,
1136,
62,
439,
62,
1102,
38669,
62,
7266,
19199,
7,
397,
8709,
62,
4906,
8,
198,
220,
220,
220,
220,
220,
220,
220,
329,
269,
62,
287,
10017,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
9122,
62,
1069,
4516,
7,
66,
62,
11,
13269,
8,
11405,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
269,
796,
3180,
13,
36311,
62,
21412,
62,
3672,
7,
66,
62,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
62,
3672,
796,
4808,
13564,
62,
11085,
62,
5715,
62,
4102,
2902,
7,
66,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
32538,
62,
9630,
11,
269,
5218,
2393,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
318,
28920,
7,
32538,
62,
9630,
8,
11405,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
2746,
62,
32016,
58,
1797,
13,
36311,
62,
21412,
62,
3672,
7,
397,
8709,
62,
4906,
15437,
796,
5387,
62,
9630,
198,
220,
220,
220,
886,
628,
220,
220,
220,
787,
62,
67,
4989,
873,
62,
32016,
0,
7,
19849,
62,
32016,
8,
628,
220,
220,
220,
329,
357,
74,
11,
410,
8,
287,
10107,
62,
2860,
1756,
198,
220,
220,
220,
220,
220,
220,
220,
611,
468,
2539,
7,
19849,
62,
32016,
11,
479,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
19849,
62,
32016,
58,
74,
4357,
410,
23029,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2746,
62,
32016,
58,
74,
60,
796,
410,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1441,
4377,
58,
79,
329,
279,
287,
2746,
62,
32016,
60,
198,
437,
198
] | 1.971566 | 2,075 |
# create Vec
@testset "Vec{$ST}" begin
vtype = PETSc.C.VECMPI
vec = PETSc.Vec(ST, vtype)
resize!(vec, 4)
@test_throws ArgumentError resize!(vec)
len_ret = length(vec)
@test length(vec) == 4
@test size(vec) == (4,)
@test lengthlocal(vec) == 4
@test sizelocal(vec) == (4,)
@test PETSc.gettype(vec) == PETSc.C.VECMPI
vt = complex(2.,2) # use vt to hold temporary values
vec[1] = RC(vt)
val_ret = vec[1]
@test vec[1] == RC(vt)
vec2 = similar(vec,ST)
PETSc.AssemblyBegin(vec2)
PETSc.AssemblyEnd(vec2)
@test isassembled(vec2)
val2_ret = vec2[1]
@test val2_ret != val_ret
if gettype(vec2) == PETSc.C.VECSEQ
lv2 = localpart(vec2)
@test lv2 == vec2
end
vec_tmp = Vec([1., 2, 3])
@test PETSc.isfinalized(vec_tmp) == false
PETSc.PetscDestroy(vec_tmp)
@test PETSc.isfinalized(vec_tmp) == true
vec3 = similar(vec, ST, 5)
@test length(vec3) == 5
vec4 = copy(vec)
@test vec4 ≈ vec
idx = [1,3, 4]
vt = RC(complex(2.,2))
vec4[idx] = vt
vals_ret = vec4[idx]
@test vals_ret == fill(vt,length(idx))
vt = RC(complex(3.,3))
fill!(vec4, vt)
@test vec4 ≈ fill(vt,length(vec4))
vt = RC(complex( 4.,4))
vec4[1:2] = vt
@test vec4[1:2] == [vt, vt]
vals = [RC(complex(1,1.)), RC(complex(3.,3)), RC(complex(4., 3))]
vec4[idx] = vals
@test vec4[idx] == vals
vec5 = Vec(Float64, 4)
varr = LocalVector(vec5)
@test length(vec5) == 4
@test length(varr) == length(vec5)
@test stride(varr, 1) == 1
vec5j = [1., 2, 3, 4]
for i=1:length(vec5) varr[i] = vec5j[i] end
@test varr[1] == vec5j[1]
@test varr == vec5j
varr2 = similar(varr)
T2 = eltype(varr)
@test typeof(varr2) == Array{eltype(T2), 1}
ptr = Base.unsafe_convert(Ptr{T2}, varr)
@test ptr == varr.ref[]
restore(varr)
@test vec5 == vec5j
varr = LocalVector_readonly(vec5)
for i=1:length(vec5) @test varr[i] == vec5[i] end
restore(varr)
# test mlocal constructor
vec5 = Vec(ST, mlocal=3)
@test length(vec5) == 3
@testset "testing logical indexing" begin
logicals = Array(Bool, length(vec4))
for i=eachindex(logicals)
logicals[i] = false
end
logicals[2] = true
vt = RC(complex(5,5.))
vec4[logicals] = vt
@test vec4[2] ≈ vt
@test vec4[1] != vt
vt = RC(complex(rand(), rand()))
vals = [vt]
vec4[logicals] = vals
@test vec4[2] ≈ vals[1]
@test vec4[1] != vals[1]
# reset vec4
vec4_j = zeros(ST, length(vec4))
for i=1:length(vec4)
vec4[i] = RC(complex(Float64(-i), Float64(-i)))
vec4_j[i] = RC(complex(Float64(-i), Float64(-i)))
end
end
@testset "testing math functions" begin
@testset "testin chop" begin
jvec = RC([complex(1.0, 1.0), complex(2.0, 2.0), complex(3.0, 3.0)])
pvec = Vec(jvec)
chop!(pvec, RT(1.5))
jvec[1] = 0.0
@test pvec ≈ jvec
end
vec4_j = zeros(ST, length(vec4))
for i=1:length(vec4)
vec4[i] = RC(complex(Float64(-i), Float64(-i)))
vec4_j[i] = RC(complex(Float64(-i), Float64(-i)))
end
@testset "testing abs" begin
vec4_j = abs(vec4_j)
absv4 = abs(vec4)
abs!(vec4)
if VERSION >= v"0.5.0-dev+0"
@test real(vec4) ≈ vec4_j
@test real(absv4) ≈ vec4_j
@test imag(vec4) ≈ zeros(vec4_j)
@test imag(absv4) ≈ zeros(vec4_j)
else
@test vec4 == vec4_j
@test absv4 == vec4_j
end
end
@testset "testing exp" begin
vec4_j = exp(vec4_j)
exp!(vec4)
@test vec4 ≈ vec4_j
end
@testset "testing log" begin
vec4_j = log(vec4_j)
log!(vec4)
@test vec4 ≈ vec4_j
end
onevec = PETSc.Vec(ST, vtype)
resize!(onevec, 4)
PETSc.AssemblyBegin(onevec)
PETSc.AssemblyEnd(onevec)
for i=1:length(onevec)
onevec[i] = one(ST)
end
@testset "testing norm" begin
@test_throws ArgumentError norm(onevec,3)
@test norm(onevec,Inf) == 1
normvec = copy(onevec)
PETSc.normalize!(normvec)
@test norm(normvec,2) == one(ST)
end
if ST <: Real
@testset "testing max and min" begin
maxvec = copy(onevec)
maxvec[1] = ST(2)
@test maximum(maxvec) == 2
@test findmax(maxvec) == (2.0,1)
minvec = copy(onevec)
minvec[1] = ST(0)
@test minimum(minvec) == 0
@test findmin(minvec) == (0.0,1)
end
end
@testset "testing pointwise max, min, /" begin
div1vec = 2*copy(onevec)
div2vec = 4*copy(onevec)
@test max(div1vec,div2vec) == div2vec
@test min(div1vec,div2vec) == div1vec
@test div1vec .* div2vec == 8*onevec
@test div2vec ./ div1vec == div1vec
end
@testset "testing scale! and negation" begin
scalevec = scale!(copy(onevec),2)
@test scalevec == fill(2,length(onevec))
minusvec = -onevec
@test minusvec == -onevec
end
@testset "testing sum, +, -, *, and /" begin
@test sum(onevec) == length(onevec)
multvec = copy(onevec)
multvec = multvec * 2 * 3 * 4
@test multvec == 24*onevec
multvec = copy(onevec)
multvec = 2 .* multvec
@test multvec == 2*onevec
divvec = copy(onevec)
divvec = divvec * 2 * 3
divvec = divvec ./ 2
@test divvec == 3*onevec
divvec = 3 .\ divvec
@test divvec == onevec
divvec = 2*copy(onevec)
divvec = 2 ./ divvec
@test divvec == onevec
addvec = copy(onevec)
addvec = addvec + 2
addvec = addvec - 2
@test addvec == onevec
addvec = copy(onevec)
addvec = 2 - addvec
addvec = 2 + addvec
@test addvec == 3*onevec
end
end
@testset "testing dot product" begin
val = dot(vec4, vec)
val_j = dot(vec4, vec)
@test val == val_j
end
# make copies of vecs 1 2 4
@testset "testing level 1 Blas" begin
vecj = zeros(ST, length(vec))
vec2j = zeros(ST, length(vec))
vec4j = zeros(ST, length(vec))
for i=1:length(vec)
vecj[i] = vec[i]
vec2j[i] = vec2[i]
vec4j[i] = vec4[i]
end
@testset "testing axpy" begin
vt = RC(complex(2.,2))
axpy!(vt, vec, vec2)
vec2j = vt*vecj + vec2j
@test vec2j == vec2
@testset "testing 4 argument axpy" begin
axpy!(vt, vec, vec2, vec4)
vec4j = vt*vecj + vec2j
@test vec2j == vec2
end
@testset "testing aypx" begin
aypx!(vec, vt, vec2)
vec2j = vt*vec2j + vec
@test vec2j == vec2
end
vt2 = RC(complex(3.,3))
vt3 = RC(complex(4.,4))
@testset "testing axpby" begin
axpby!(vt, vec, vt2, vec2)
vec2j = vt*vecj + vt2*vec2j
@test vec2j == vec2
axpbypcz!(vt, vec, vt2, vec2, vt3, vec4)
vec4j = vt*vecj + vt2*vec2j + vt3*vec4j
@test vec4j == vec4
end
vecs = Array(typeof(vec), 2)
vecs[1] = vec
vecs[2] = vec2
alphas = [vt2, vt3]
axpy!(vec4, alphas, vecs)
vec4j = vec4j + vt2*vecj + vt3*vec2j
@test vec4j == vec4
end
@testset "testing .*, ./, .^" begin
vec5 = Vec(ST, 3, vtype=PETSc.C.VECMPI)
vec6 = similar(vec5)
vec5j = zeros(ST, 3)
vec6j = zeros(ST, 3)
for i=1:3
i_float = Float64(i)
vec5[i] = RC(complex(i_float, i_float))
vec6[i] = RC(complex(i_float+3, i_float+3))
vec5j[i] = RC(complex(i_float, i_float))
vec6j[i] = RC(complex(i_float +3, i_float+3))
end
vec7 = vec5.*vec6
vec7j = vec5j.*vec6j
@test vec7 ≈ vec7j
vec8 = vec5./vec6
vec8j = vec5j./vec6j
@test vec8 ≈ vec8j
vec9 = vec5.^3
vec9j = vec5j.^3
@test vec9 ≈ vec9j
vec10 = vec5 + vec6
vec10j = vec5j + vec6j
@test vec10 ≈ vec10j
vec11 = vec5 - vec6
vec11j = vec5j - vec6j
@test vec11 ≈ vec11j
end
@testset "test unconjugated dot product" begin
x = Vec(ST, 2)
y = Vec(ST, 2)
copy!(y, [1, 1])
if ST <: Complex
copy!(x, [1, im])
@test (x'*y)[1] == 1-im
@test (x.'*y)[1] == 1+im
else
copy!(x, [2, 3])
@test (x'*y)[1] == 5
@test (x.'*y)[1] == 5
end
end
end
let x = rand(ST, 7)
@test Vec(x) == x
end
@testset "map" begin
x = rand(3)
y = Vec(x)
map!(sin, x)
map!(sin, y)
@test x ≈ y
x2 = map(sin, x)
y2 = map(sin, y)
@test x2 ≈ y2
function myfunc(a, b)
return a + b
end
x3 = copy(x2)
y3 = copy(y2)
map!(myfunc, x3, x2, x)
map!(myfunc, y3, y2, y)
@test x3 ≈ y3
end
@testset "advanced indexing" begin
x = zeros(ST, 5)
y = Vec(ST, 5)
idxs = Int32[0, 1]
vals = ST[1, 2]
set_values!(x, idxs, vals)
set_values!(y, idxs, vals)
assemble(x)
assemble(y)
for i=1:length(idxs)
@test x[idxs[i]+1] ≈ vals[i]
@test y[idxs[i]+1] ≈ vals[i]
end
vals = ST[2,3]
ltog = local_to_global_mapping(y)
set_local_to_global_mapping(y, ltog)
set_values_local!(x, idxs, vals)
set_values_local!(y, idxs, vals)
assemble(x)
assemble(y)
for i=1:length(idxs)
@test x[idxs[i]+1] ≈ vals[i]
@test y[idxs[i]+1] ≈ vals[i]
end
y2 = Vec(ST, 4, bs=2)
@test get_blocksize(y2) == 2
idxs = Int32[0]
vals = ST[1, 2]
set_values_blocked!(y2, idxs, vals)
@test y2[idxs[1]+1] ≈ vals[1]
@test y2[idxs[1]+2] ≈ vals[2]
rng = localpart(y2)
ltog = local_to_global_mapping(y2)
set_local_to_global_mapping(y2, ltog)
idx = Int32[1]
vals = ST[2,3]
set_values_blocked_local!(y2, idxs, vals)
@test y2[idxs[1]+1] ≈ vals[1]
@test y2[idxs[1]+2] ≈ vals[2]
end
end
| [
2,
2251,
38692,
198,
31,
9288,
2617,
366,
53,
721,
90,
3,
2257,
36786,
2221,
198,
220,
410,
4906,
796,
32043,
3351,
13,
34,
13,
53,
2943,
7378,
40,
198,
220,
43030,
796,
32043,
3351,
13,
53,
721,
7,
2257,
11,
410,
4906,
8,
198,
220,
47558,
0,
7,
35138,
11,
604,
8,
198,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
47558,
0,
7,
35138,
8,
198,
220,
18896,
62,
1186,
796,
4129,
7,
35138,
8,
628,
220,
2488,
9288,
4129,
7,
35138,
8,
6624,
604,
198,
220,
2488,
9288,
2546,
7,
35138,
8,
6624,
357,
19,
35751,
198,
220,
2488,
9288,
4129,
12001,
7,
35138,
8,
6624,
604,
198,
220,
2488,
9288,
264,
528,
417,
4374,
7,
35138,
8,
6624,
357,
19,
35751,
198,
220,
2488,
9288,
32043,
3351,
13,
1136,
4906,
7,
35138,
8,
6624,
32043,
3351,
13,
34,
13,
53,
2943,
7378,
40,
628,
198,
220,
410,
83,
796,
3716,
7,
17,
1539,
17,
8,
220,
1303,
779,
410,
83,
284,
1745,
8584,
3815,
198,
220,
43030,
58,
16,
60,
796,
13987,
7,
36540,
8,
198,
220,
1188,
62,
1186,
796,
43030,
58,
16,
60,
198,
220,
2488,
9288,
43030,
58,
16,
60,
6624,
13987,
7,
36540,
8,
628,
220,
43030,
17,
796,
2092,
7,
35138,
11,
2257,
8,
198,
220,
32043,
3351,
13,
49670,
44140,
7,
35138,
17,
8,
198,
220,
32043,
3351,
13,
49670,
12915,
7,
35138,
17,
8,
628,
220,
2488,
9288,
318,
46826,
7,
35138,
17,
8,
198,
220,
1188,
17,
62,
1186,
796,
43030,
17,
58,
16,
60,
628,
220,
2488,
9288,
1188,
17,
62,
1186,
14512,
1188,
62,
1186,
628,
220,
611,
651,
4906,
7,
35138,
17,
8,
6624,
32043,
3351,
13,
34,
13,
53,
2943,
5188,
48,
198,
220,
220,
220,
300,
85,
17,
796,
1957,
3911,
7,
35138,
17,
8,
198,
220,
220,
220,
2488,
9288,
300,
85,
17,
6624,
43030,
17,
198,
220,
886,
628,
220,
43030,
62,
22065,
796,
38692,
26933,
16,
1539,
362,
11,
513,
12962,
198,
220,
2488,
9288,
32043,
3351,
13,
4468,
1292,
1143,
7,
35138,
62,
22065,
8,
6624,
3991,
198,
220,
32043,
3351,
13,
47,
1039,
66,
49174,
7,
35138,
62,
22065,
8,
198,
220,
2488,
9288,
32043,
3351,
13,
4468,
1292,
1143,
7,
35138,
62,
22065,
8,
6624,
2081,
628,
220,
43030,
18,
796,
2092,
7,
35138,
11,
3563,
11,
642,
8,
198,
220,
2488,
9288,
4129,
7,
35138,
18,
8,
6624,
642,
628,
220,
43030,
19,
796,
4866,
7,
35138,
8,
198,
220,
2488,
9288,
43030,
19,
15139,
230,
43030,
628,
220,
4686,
87,
796,
685,
16,
11,
18,
11,
604,
60,
198,
220,
410,
83,
796,
13987,
7,
41887,
7,
17,
1539,
17,
4008,
198,
220,
43030,
19,
58,
312,
87,
60,
796,
410,
83,
198,
220,
410,
874,
62,
1186,
796,
43030,
19,
58,
312,
87,
60,
198,
220,
2488,
9288,
410,
874,
62,
1186,
6624,
6070,
7,
36540,
11,
13664,
7,
312,
87,
4008,
628,
220,
410,
83,
796,
13987,
7,
41887,
7,
18,
1539,
18,
4008,
198,
220,
6070,
0,
7,
35138,
19,
11,
410,
83,
8,
628,
220,
2488,
9288,
43030,
19,
15139,
230,
6070,
7,
36540,
11,
13664,
7,
35138,
19,
4008,
628,
220,
410,
83,
796,
13987,
7,
41887,
7,
604,
1539,
19,
4008,
198,
220,
43030,
19,
58,
16,
25,
17,
60,
796,
410,
83,
628,
220,
2488,
9288,
43030,
19,
58,
16,
25,
17,
60,
6624,
685,
36540,
11,
410,
83,
60,
628,
220,
410,
874,
796,
685,
7397,
7,
41887,
7,
16,
11,
16,
2014,
828,
13987,
7,
41887,
7,
18,
1539,
18,
36911,
13987,
7,
41887,
7,
19,
1539,
513,
4008,
60,
198,
220,
43030,
19,
58,
312,
87,
60,
796,
410,
874,
628,
220,
2488,
9288,
43030,
19,
58,
312,
87,
60,
6624,
410,
874,
628,
198,
220,
43030,
20,
796,
38692,
7,
43879,
2414,
11,
604,
8,
198,
220,
1401,
81,
796,
10714,
38469,
7,
35138,
20,
8,
198,
220,
2488,
9288,
4129,
7,
35138,
20,
8,
6624,
604,
198,
220,
2488,
9288,
4129,
7,
85,
3258,
8,
6624,
4129,
7,
35138,
20,
8,
198,
220,
2488,
9288,
33769,
7,
85,
3258,
11,
352,
8,
6624,
352,
198,
220,
43030,
20,
73,
796,
685,
16,
1539,
362,
11,
513,
11,
604,
60,
198,
220,
329,
1312,
28,
16,
25,
13664,
7,
35138,
20,
8,
220,
1401,
81,
58,
72,
60,
796,
43030,
20,
73,
58,
72,
60,
886,
198,
220,
220,
198,
220,
2488,
9288,
1401,
81,
58,
16,
60,
6624,
43030,
20,
73,
58,
16,
60,
198,
220,
2488,
9288,
1401,
81,
6624,
43030,
20,
73,
628,
220,
1401,
81,
17,
796,
2092,
7,
85,
3258,
8,
198,
220,
309,
17,
796,
1288,
4906,
7,
85,
3258,
8,
198,
220,
2488,
9288,
2099,
1659,
7,
85,
3258,
17,
8,
6624,
15690,
90,
417,
4906,
7,
51,
17,
828,
352,
92,
198,
220,
50116,
796,
7308,
13,
13271,
8635,
62,
1102,
1851,
7,
46745,
90,
51,
17,
5512,
1401,
81,
8,
220,
198,
220,
2488,
9288,
50116,
6624,
1401,
81,
13,
5420,
21737,
628,
220,
11169,
7,
85,
3258,
8,
628,
220,
2488,
9288,
43030,
20,
6624,
43030,
20,
73,
628,
220,
1401,
81,
796,
10714,
38469,
62,
961,
8807,
7,
35138,
20,
8,
198,
220,
329,
1312,
28,
16,
25,
13664,
7,
35138,
20,
8,
2488,
9288,
1401,
81,
58,
72,
60,
6624,
220,
43030,
20,
58,
72,
60,
886,
198,
220,
11169,
7,
85,
3258,
8,
198,
220,
220,
628,
220,
1303,
1332,
285,
12001,
23772,
198,
220,
43030,
20,
796,
38692,
7,
2257,
11,
285,
12001,
28,
18,
8,
198,
220,
2488,
9288,
4129,
7,
35138,
20,
8,
6624,
513,
628,
220,
2488,
9288,
2617,
366,
33407,
12219,
6376,
278,
1,
2221,
198,
220,
220,
220,
220,
220,
12219,
82,
796,
15690,
7,
33,
970,
11,
4129,
7,
35138,
19,
4008,
198,
220,
220,
220,
220,
220,
329,
1312,
28,
27379,
9630,
7,
6404,
20155,
8,
198,
220,
220,
220,
220,
220,
220,
220,
12219,
82,
58,
72,
60,
796,
3991,
198,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
12219,
82,
58,
17,
60,
796,
2081,
628,
220,
220,
220,
220,
220,
410,
83,
796,
13987,
7,
41887,
7,
20,
11,
20,
2014,
8,
198,
220,
220,
220,
220,
220,
43030,
19,
58,
6404,
20155,
60,
796,
410,
83,
628,
220,
220,
220,
220,
220,
2488,
9288,
43030,
19,
58,
17,
60,
15139,
230,
410,
83,
198,
220,
220,
220,
220,
220,
2488,
9288,
43030,
19,
58,
16,
60,
14512,
410,
83,
628,
220,
220,
220,
220,
220,
410,
83,
796,
13987,
7,
41887,
7,
25192,
22784,
43720,
3419,
4008,
198,
220,
220,
220,
220,
220,
410,
874,
796,
685,
36540,
60,
198,
220,
220,
220,
220,
220,
43030,
19,
58,
6404,
20155,
60,
796,
410,
874,
198,
220,
220,
220,
220,
220,
2488,
9288,
43030,
19,
58,
17,
60,
15139,
230,
410,
874,
58,
16,
60,
198,
220,
220,
220,
220,
220,
2488,
9288,
43030,
19,
58,
16,
60,
14512,
410,
874,
58,
16,
60,
628,
220,
220,
220,
220,
220,
1303,
13259,
43030,
19,
198,
220,
220,
220,
220,
220,
43030,
19,
62,
73,
796,
1976,
27498,
7,
2257,
11,
4129,
7,
35138,
19,
4008,
198,
220,
220,
220,
220,
220,
329,
1312,
28,
16,
25,
13664,
7,
35138,
19,
8,
198,
220,
220,
220,
220,
220,
220,
220,
43030,
19,
58,
72,
60,
796,
13987,
7,
41887,
7,
43879,
2414,
32590,
72,
828,
48436,
2414,
32590,
72,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
43030,
19,
62,
73,
58,
72,
60,
796,
13987,
7,
41887,
7,
43879,
2414,
32590,
72,
828,
48436,
2414,
32590,
72,
22305,
198,
220,
220,
220,
220,
220,
886,
198,
220,
886,
198,
220,
2488,
9288,
2617,
366,
33407,
10688,
5499,
1,
2221,
628,
220,
220,
220,
2488,
9288,
2617,
366,
9288,
259,
30506,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
474,
35138,
796,
13987,
26933,
41887,
7,
16,
13,
15,
11,
352,
13,
15,
828,
3716,
7,
17,
13,
15,
11,
362,
13,
15,
828,
3716,
7,
18,
13,
15,
11,
513,
13,
15,
8,
12962,
198,
220,
220,
220,
220,
220,
220,
279,
35138,
796,
38692,
7,
73,
35138,
8,
198,
220,
220,
220,
220,
220,
220,
30506,
0,
7,
79,
35138,
11,
11923,
7,
16,
13,
20,
4008,
198,
220,
220,
220,
220,
220,
220,
474,
35138,
58,
16,
60,
796,
657,
13,
15,
198,
220,
220,
220,
220,
220,
220,
2488,
9288,
279,
35138,
15139,
230,
474,
35138,
198,
220,
220,
220,
886,
220,
628,
220,
220,
220,
43030,
19,
62,
73,
796,
1976,
27498,
7,
2257,
11,
4129,
7,
35138,
19,
4008,
198,
220,
220,
220,
329,
1312,
28,
16,
25,
13664,
7,
35138,
19,
8,
198,
220,
220,
220,
220,
220,
43030,
19,
58,
72,
60,
796,
13987,
7,
41887,
7,
43879,
2414,
32590,
72,
828,
48436,
2414,
32590,
72,
22305,
198,
220,
220,
220,
220,
220,
43030,
19,
62,
73,
58,
72,
60,
796,
13987,
7,
41887,
7,
43879,
2414,
32590,
72,
828,
48436,
2414,
32590,
72,
22305,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
9288,
2617,
366,
33407,
2352,
1,
2221,
198,
220,
220,
220,
220,
220,
43030,
19,
62,
73,
796,
2352,
7,
35138,
19,
62,
73,
8,
198,
220,
220,
220,
220,
220,
2352,
85,
19,
220,
796,
2352,
7,
35138,
19,
8,
198,
220,
220,
220,
220,
220,
2352,
0,
7,
35138,
19,
8,
198,
220,
220,
220,
220,
220,
611,
44156,
2849,
18189,
410,
1,
15,
13,
20,
13,
15,
12,
7959,
10,
15,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
1103,
7,
35138,
19,
8,
15139,
230,
43030,
19,
62,
73,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
1103,
7,
8937,
85,
19,
8,
15139,
230,
43030,
19,
62,
73,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
3590,
7,
35138,
19,
8,
15139,
230,
1976,
27498,
7,
35138,
19,
62,
73,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
3590,
7,
8937,
85,
19,
8,
15139,
230,
1976,
27498,
7,
35138,
19,
62,
73,
8,
198,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
43030,
19,
6624,
43030,
19,
62,
73,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
2352,
85,
19,
6624,
43030,
19,
62,
73,
198,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
9288,
2617,
366,
33407,
1033,
1,
2221,
198,
220,
220,
220,
220,
220,
43030,
19,
62,
73,
796,
1033,
7,
35138,
19,
62,
73,
8,
198,
220,
220,
220,
220,
220,
1033,
0,
7,
35138,
19,
8,
198,
220,
220,
220,
220,
220,
2488,
9288,
43030,
19,
15139,
230,
43030,
19,
62,
73,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
9288,
2617,
366,
33407,
2604,
1,
2221,
198,
220,
220,
220,
220,
220,
43030,
19,
62,
73,
796,
2604,
7,
35138,
19,
62,
73,
8,
198,
220,
220,
220,
220,
220,
2604,
0,
7,
35138,
19,
8,
198,
220,
220,
220,
220,
220,
2488,
9288,
43030,
19,
15139,
230,
43030,
19,
62,
73,
198,
220,
220,
220,
886,
198,
220,
220,
220,
530,
35138,
796,
32043,
3351,
13,
53,
721,
7,
2257,
11,
410,
4906,
8,
198,
220,
220,
220,
47558,
0,
7,
505,
35138,
11,
604,
8,
198,
220,
220,
220,
32043,
3351,
13,
49670,
44140,
7,
505,
35138,
8,
198,
220,
220,
220,
32043,
3351,
13,
49670,
12915,
7,
505,
35138,
8,
198,
220,
220,
220,
329,
1312,
28,
16,
25,
13664,
7,
505,
35138,
8,
198,
220,
220,
220,
220,
220,
220,
220,
530,
35138,
58,
72,
60,
796,
530,
7,
2257,
8,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
33407,
2593,
1,
2221,
198,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
2593,
7,
505,
35138,
11,
18,
8,
198,
220,
220,
220,
220,
220,
2488,
9288,
2593,
7,
505,
35138,
11,
18943,
8,
6624,
352,
198,
220,
220,
220,
220,
220,
2593,
35138,
796,
4866,
7,
505,
35138,
8,
198,
220,
220,
220,
220,
220,
32043,
3351,
13,
11265,
1096,
0,
7,
27237,
35138,
8,
198,
220,
220,
220,
220,
220,
2488,
9288,
2593,
7,
27237,
35138,
11,
17,
8,
6624,
530,
7,
2257,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
611,
3563,
1279,
25,
6416,
198,
220,
220,
220,
220,
220,
2488,
9288,
2617,
366,
33407,
3509,
290,
949,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
35138,
796,
4866,
7,
505,
35138,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
35138,
58,
16,
60,
796,
3563,
7,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
5415,
7,
9806,
35138,
8,
6624,
362,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
1064,
9806,
7,
9806,
35138,
8,
6624,
357,
17,
13,
15,
11,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
949,
35138,
796,
4866,
7,
505,
35138,
8,
198,
220,
220,
220,
220,
220,
220,
220,
949,
35138,
58,
16,
60,
796,
3563,
7,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
5288,
7,
1084,
35138,
8,
6624,
657,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
1064,
1084,
7,
1084,
35138,
8,
6624,
357,
15,
13,
15,
11,
16,
8,
198,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
33407,
966,
3083,
3509,
11,
949,
11,
1220,
1,
2221,
198,
220,
220,
220,
220,
220,
2659,
16,
35138,
796,
362,
9,
30073,
7,
505,
35138,
8,
198,
220,
220,
220,
220,
220,
2659,
17,
35138,
796,
604,
9,
30073,
7,
505,
35138,
8,
198,
220,
220,
220,
220,
220,
2488,
9288,
3509,
7,
7146,
16,
35138,
11,
7146,
17,
35138,
8,
6624,
2659,
17,
35138,
198,
220,
220,
220,
220,
220,
2488,
9288,
949,
7,
7146,
16,
35138,
11,
7146,
17,
35138,
8,
6624,
2659,
16,
35138,
198,
220,
220,
220,
220,
220,
2488,
9288,
2659,
16,
35138,
764,
9,
2659,
17,
35138,
6624,
807,
9,
505,
35138,
198,
220,
220,
220,
220,
220,
2488,
9288,
2659,
17,
35138,
24457,
2659,
16,
35138,
6624,
2659,
16,
35138,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
9288,
2617,
366,
33407,
5046,
0,
290,
2469,
341,
1,
2221,
198,
220,
220,
220,
220,
220,
5046,
35138,
796,
5046,
0,
7,
30073,
7,
505,
35138,
828,
17,
8,
198,
220,
220,
220,
220,
220,
2488,
9288,
5046,
35138,
6624,
6070,
7,
17,
11,
13664,
7,
505,
35138,
4008,
198,
220,
220,
220,
220,
220,
20208,
35138,
796,
532,
505,
35138,
198,
220,
220,
220,
220,
220,
2488,
9288,
20208,
35138,
6624,
532,
505,
35138,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
33407,
2160,
11,
1343,
11,
532,
11,
1635,
11,
290,
1220,
1,
2221,
198,
220,
220,
220,
220,
220,
2488,
9288,
2160,
7,
505,
35138,
8,
6624,
4129,
7,
505,
35138,
8,
198,
220,
220,
220,
220,
220,
1963,
35138,
796,
4866,
7,
505,
35138,
8,
198,
220,
220,
220,
220,
220,
1963,
35138,
796,
1963,
35138,
1635,
362,
1635,
513,
1635,
604,
198,
220,
220,
220,
220,
220,
2488,
9288,
1963,
35138,
6624,
1987,
9,
505,
35138,
198,
220,
220,
220,
220,
220,
1963,
35138,
796,
4866,
7,
505,
35138,
8,
198,
220,
220,
220,
220,
220,
1963,
35138,
796,
362,
764,
9,
1963,
35138,
198,
220,
220,
220,
220,
220,
2488,
9288,
1963,
35138,
6624,
362,
9,
505,
35138,
198,
220,
220,
220,
220,
220,
2659,
35138,
796,
4866,
7,
505,
35138,
8,
198,
220,
220,
220,
220,
220,
2659,
35138,
796,
2659,
35138,
1635,
362,
1635,
513,
198,
220,
220,
220,
220,
220,
2659,
35138,
796,
2659,
35138,
24457,
362,
198,
220,
220,
220,
220,
220,
2488,
9288,
2659,
35138,
6624,
513,
9,
505,
35138,
198,
220,
220,
220,
220,
220,
2659,
35138,
796,
513,
764,
59,
2659,
35138,
198,
220,
220,
220,
220,
220,
2488,
9288,
2659,
35138,
6624,
530,
35138,
628,
220,
220,
220,
220,
220,
2659,
35138,
796,
362,
9,
30073,
7,
505,
35138,
8,
198,
220,
220,
220,
220,
220,
2659,
35138,
796,
362,
24457,
2659,
35138,
198,
220,
220,
220,
220,
220,
2488,
9288,
2659,
35138,
6624,
530,
35138,
198,
220,
220,
220,
220,
220,
751,
35138,
796,
4866,
7,
505,
35138,
8,
198,
220,
220,
220,
220,
220,
751,
35138,
796,
751,
35138,
1343,
362,
198,
220,
220,
220,
220,
220,
751,
35138,
796,
751,
35138,
532,
362,
198,
220,
220,
220,
220,
220,
2488,
9288,
751,
35138,
6624,
530,
35138,
198,
220,
220,
220,
220,
220,
751,
35138,
796,
4866,
7,
505,
35138,
8,
198,
220,
220,
220,
220,
220,
751,
35138,
796,
362,
532,
751,
35138,
198,
220,
220,
220,
220,
220,
751,
35138,
796,
362,
1343,
751,
35138,
198,
220,
220,
220,
220,
220,
2488,
9288,
751,
35138,
6624,
513,
9,
505,
35138,
198,
220,
220,
220,
886,
198,
220,
886,
628,
220,
2488,
9288,
2617,
366,
33407,
16605,
1720,
1,
2221,
198,
220,
220,
220,
1188,
796,
16605,
7,
35138,
19,
11,
43030,
8,
198,
220,
220,
220,
1188,
62,
73,
796,
16605,
7,
35138,
19,
11,
43030,
8,
198,
220,
220,
220,
2488,
9288,
1188,
6624,
1188,
62,
73,
198,
220,
886,
198,
220,
1303,
787,
9088,
286,
1569,
6359,
352,
362,
604,
628,
220,
2488,
9288,
2617,
366,
33407,
1241,
352,
1086,
292,
1,
2221,
628,
220,
220,
220,
43030,
73,
796,
1976,
27498,
7,
2257,
11,
4129,
7,
35138,
4008,
198,
220,
220,
220,
43030,
17,
73,
796,
1976,
27498,
7,
2257,
11,
4129,
7,
35138,
4008,
198,
220,
220,
220,
43030,
19,
73,
796,
1976,
27498,
7,
2257,
11,
4129,
7,
35138,
4008,
628,
220,
220,
220,
329,
1312,
28,
16,
25,
13664,
7,
35138,
8,
198,
220,
220,
220,
220,
220,
43030,
73,
58,
72,
60,
796,
43030,
58,
72,
60,
198,
220,
220,
220,
220,
220,
43030,
17,
73,
58,
72,
60,
796,
43030,
17,
58,
72,
60,
198,
220,
220,
220,
220,
220,
43030,
19,
73,
58,
72,
60,
796,
43030,
19,
58,
72,
60,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
33407,
7877,
9078,
1,
2221,
198,
220,
220,
220,
220,
220,
410,
83,
796,
13987,
7,
41887,
7,
17,
1539,
17,
4008,
198,
220,
220,
220,
220,
220,
7877,
9078,
0,
7,
36540,
11,
43030,
11,
43030,
17,
8,
198,
220,
220,
220,
220,
220,
43030,
17,
73,
796,
410,
83,
9,
35138,
73,
1343,
43030,
17,
73,
198,
220,
220,
220,
220,
220,
2488,
9288,
43030,
17,
73,
6624,
43030,
17,
628,
220,
220,
220,
220,
220,
2488,
9288,
2617,
366,
33407,
604,
4578,
7877,
9078,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
7877,
9078,
0,
7,
36540,
11,
43030,
11,
43030,
17,
11,
43030,
19,
8,
198,
220,
220,
220,
220,
220,
220,
220,
43030,
19,
73,
796,
410,
83,
9,
35138,
73,
1343,
43030,
17,
73,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
43030,
17,
73,
6624,
43030,
17,
198,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
2488,
9288,
2617,
366,
33407,
257,
4464,
87,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
257,
4464,
87,
0,
7,
35138,
11,
410,
83,
11,
43030,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
43030,
17,
73,
796,
410,
83,
9,
35138,
17,
73,
1343,
43030,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
43030,
17,
73,
6624,
43030,
17,
198,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
410,
83,
17,
796,
13987,
7,
41887,
7,
18,
1539,
18,
4008,
198,
220,
220,
220,
220,
220,
410,
83,
18,
796,
13987,
7,
41887,
7,
19,
1539,
19,
4008,
198,
220,
220,
220,
220,
220,
2488,
9288,
2617,
366,
33407,
7877,
79,
1525,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
7877,
79,
1525,
0,
7,
36540,
11,
43030,
11,
410,
83,
17,
11,
43030,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
43030,
17,
73,
796,
410,
83,
9,
35138,
73,
1343,
410,
83,
17,
9,
35138,
17,
73,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
43030,
17,
73,
6624,
43030,
17,
628,
220,
220,
220,
220,
220,
220,
220,
7877,
79,
1525,
14751,
89,
0,
7,
36540,
11,
43030,
11,
410,
83,
17,
11,
43030,
17,
11,
410,
83,
18,
11,
43030,
19,
8,
198,
220,
220,
220,
220,
220,
220,
220,
43030,
19,
73,
796,
410,
83,
9,
35138,
73,
1343,
410,
83,
17,
9,
35138,
17,
73,
1343,
410,
83,
18,
9,
35138,
19,
73,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
43030,
19,
73,
6624,
43030,
19,
198,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
1569,
6359,
796,
15690,
7,
4906,
1659,
7,
35138,
828,
362,
8,
198,
220,
220,
220,
220,
220,
1569,
6359,
58,
16,
60,
796,
43030,
198,
220,
220,
220,
220,
220,
1569,
6359,
58,
17,
60,
796,
43030,
17,
198,
220,
220,
220,
220,
220,
435,
5902,
796,
685,
36540,
17,
11,
410,
83,
18,
60,
198,
220,
220,
220,
220,
220,
7877,
9078,
0,
7,
35138,
19,
11,
435,
5902,
11,
1569,
6359,
8,
198,
220,
220,
220,
220,
220,
43030,
19,
73,
796,
43030,
19,
73,
1343,
410,
83,
17,
9,
35138,
73,
1343,
410,
83,
18,
9,
35138,
17,
73,
198,
220,
220,
220,
220,
220,
2488,
9288,
43030,
19,
73,
6624,
43030,
19,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
9288,
2617,
366,
33407,
764,
25666,
24457,
11,
764,
61,
1,
2221,
198,
220,
220,
220,
220,
220,
43030,
20,
796,
38692,
7,
2257,
11,
513,
11,
410,
4906,
28,
47731,
3351,
13,
34,
13,
53,
2943,
7378,
40,
8,
198,
220,
220,
220,
220,
220,
43030,
21,
796,
2092,
7,
35138,
20,
8,
198,
220,
220,
220,
220,
220,
43030,
20,
73,
796,
1976,
27498,
7,
2257,
11,
513,
8,
198,
220,
220,
220,
220,
220,
43030,
21,
73,
796,
1976,
27498,
7,
2257,
11,
513,
8,
628,
220,
220,
220,
220,
220,
329,
1312,
28,
16,
25,
18,
198,
220,
220,
220,
220,
220,
220,
220,
1312,
62,
22468,
796,
48436,
2414,
7,
72,
8,
628,
220,
220,
220,
220,
220,
220,
220,
43030,
20,
58,
72,
60,
796,
13987,
7,
41887,
7,
72,
62,
22468,
11,
1312,
62,
22468,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
43030,
21,
58,
72,
60,
796,
13987,
7,
41887,
7,
72,
62,
22468,
10,
18,
11,
1312,
62,
22468,
10,
18,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
43030,
20,
73,
58,
72,
60,
796,
13987,
7,
41887,
7,
72,
62,
22468,
11,
1312,
62,
22468,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
43030,
21,
73,
58,
72,
60,
796,
13987,
7,
41887,
7,
72,
62,
22468,
1343,
18,
11,
1312,
62,
22468,
10,
18,
4008,
198,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
43030,
22,
796,
43030,
20,
15885,
35138,
21,
198,
220,
220,
220,
220,
220,
43030,
22,
73,
796,
43030,
20,
73,
15885,
35138,
21,
73,
198,
220,
220,
220,
220,
220,
2488,
9288,
43030,
22,
15139,
230,
43030,
22,
73,
628,
220,
220,
220,
220,
220,
43030,
23,
796,
43030,
20,
19571,
35138,
21,
198,
220,
220,
220,
220,
220,
43030,
23,
73,
796,
43030,
20,
73,
19571,
35138,
21,
73,
198,
220,
220,
220,
220,
220,
2488,
9288,
43030,
23,
15139,
230,
43030,
23,
73,
628,
220,
220,
220,
220,
220,
43030,
24,
796,
43030,
20,
13,
61,
18,
198,
220,
220,
220,
220,
220,
43030,
24,
73,
796,
43030,
20,
73,
13,
61,
18,
198,
220,
220,
220,
220,
220,
2488,
9288,
43030,
24,
15139,
230,
43030,
24,
73,
628,
220,
220,
220,
220,
220,
43030,
940,
796,
43030,
20,
1343,
43030,
21,
198,
220,
220,
220,
220,
220,
43030,
940,
73,
796,
43030,
20,
73,
1343,
43030,
21,
73,
198,
220,
220,
220,
220,
220,
2488,
9288,
43030,
940,
15139,
230,
43030,
940,
73,
628,
220,
220,
220,
220,
220,
43030,
1157,
796,
43030,
20,
532,
43030,
21,
198,
220,
220,
220,
220,
220,
43030,
1157,
73,
796,
43030,
20,
73,
532,
43030,
21,
73,
198,
220,
220,
220,
220,
220,
2488,
9288,
43030,
1157,
15139,
230,
43030,
1157,
73,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
9288,
2617,
366,
9288,
21254,
31761,
515,
16605,
1720,
1,
2221,
198,
220,
220,
220,
220,
220,
2124,
796,
38692,
7,
2257,
11,
362,
8,
198,
220,
220,
220,
220,
220,
331,
796,
38692,
7,
2257,
11,
362,
8,
198,
220,
220,
220,
220,
220,
4866,
0,
7,
88,
11,
685,
16,
11,
352,
12962,
198,
220,
220,
220,
220,
220,
611,
3563,
1279,
25,
19157,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4866,
0,
7,
87,
11,
685,
16,
11,
545,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
357,
87,
6,
9,
88,
38381,
16,
60,
6624,
352,
12,
320,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
357,
87,
2637,
9,
88,
38381,
16,
60,
6624,
352,
10,
320,
198,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4866,
0,
7,
87,
11,
685,
17,
11,
513,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
357,
87,
6,
9,
88,
38381,
16,
60,
6624,
642,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
357,
87,
2637,
9,
88,
38381,
16,
60,
6624,
642,
198,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
886,
198,
220,
1309,
2124,
796,
43720,
7,
2257,
11,
767,
8,
198,
220,
220,
220,
2488,
9288,
38692,
7,
87,
8,
6624,
2124,
198,
220,
886,
628,
220,
2488,
9288,
2617,
366,
8899,
1,
2221,
198,
220,
220,
220,
2124,
796,
43720,
7,
18,
8,
198,
220,
220,
220,
331,
796,
38692,
7,
87,
8,
198,
220,
220,
220,
3975,
0,
7,
31369,
11,
2124,
8,
198,
220,
220,
220,
3975,
0,
7,
31369,
11,
331,
8,
198,
220,
220,
220,
2488,
9288,
2124,
15139,
230,
331,
198,
220,
220,
220,
2124,
17,
796,
3975,
7,
31369,
11,
2124,
8,
198,
220,
220,
220,
331,
17,
796,
3975,
7,
31369,
11,
331,
8,
198,
220,
220,
220,
2488,
9288,
2124,
17,
15139,
230,
331,
17,
628,
220,
220,
220,
2163,
616,
20786,
7,
64,
11,
275,
8,
198,
220,
220,
220,
220,
220,
1441,
257,
1343,
275,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2124,
18,
796,
4866,
7,
87,
17,
8,
198,
220,
220,
220,
331,
18,
796,
4866,
7,
88,
17,
8,
198,
220,
220,
220,
3975,
0,
7,
1820,
20786,
11,
2124,
18,
11,
2124,
17,
11,
2124,
8,
198,
220,
220,
220,
3975,
0,
7,
1820,
20786,
11,
331,
18,
11,
331,
17,
11,
331,
8,
198,
220,
220,
220,
2488,
9288,
2124,
18,
15139,
230,
331,
18,
198,
220,
886,
628,
220,
2488,
9288,
2617,
366,
32225,
2903,
6376,
278,
1,
2221,
198,
220,
220,
220,
2124,
796,
1976,
27498,
7,
2257,
11,
642,
8,
198,
220,
220,
220,
331,
796,
38692,
7,
2257,
11,
642,
8,
198,
220,
220,
220,
4686,
34223,
796,
2558,
2624,
58,
15,
11,
352,
60,
198,
220,
220,
220,
410,
874,
796,
3563,
58,
16,
11,
362,
60,
198,
220,
220,
220,
900,
62,
27160,
0,
7,
87,
11,
4686,
34223,
11,
410,
874,
8,
198,
220,
220,
220,
900,
62,
27160,
0,
7,
88,
11,
4686,
34223,
11,
410,
874,
8,
198,
220,
220,
220,
25432,
7,
87,
8,
198,
220,
220,
220,
25432,
7,
88,
8,
198,
220,
220,
220,
329,
1312,
28,
16,
25,
13664,
7,
312,
34223,
8,
198,
220,
220,
220,
220,
220,
2488,
9288,
2124,
58,
312,
34223,
58,
72,
48688,
16,
60,
15139,
230,
410,
874,
58,
72,
60,
198,
220,
220,
220,
220,
220,
2488,
9288,
331,
58,
312,
34223,
58,
72,
48688,
16,
60,
15139,
230,
410,
874,
58,
72,
60,
198,
220,
220,
220,
886,
628,
220,
220,
220,
410,
874,
796,
3563,
58,
17,
11,
18,
60,
198,
220,
220,
220,
300,
83,
519,
796,
1957,
62,
1462,
62,
20541,
62,
76,
5912,
7,
88,
8,
198,
220,
220,
220,
900,
62,
12001,
62,
1462,
62,
20541,
62,
76,
5912,
7,
88,
11,
300,
83,
519,
8,
198,
220,
220,
220,
900,
62,
27160,
62,
12001,
0,
7,
87,
11,
4686,
34223,
11,
410,
874,
8,
198,
220,
220,
220,
900,
62,
27160,
62,
12001,
0,
7,
88,
11,
4686,
34223,
11,
410,
874,
8,
198,
220,
220,
220,
25432,
7,
87,
8,
198,
220,
220,
220,
25432,
7,
88,
8,
198,
220,
220,
220,
329,
1312,
28,
16,
25,
13664,
7,
312,
34223,
8,
198,
220,
220,
220,
220,
220,
2488,
9288,
2124,
58,
312,
34223,
58,
72,
48688,
16,
60,
15139,
230,
410,
874,
58,
72,
60,
198,
220,
220,
220,
220,
220,
2488,
9288,
331,
58,
312,
34223,
58,
72,
48688,
16,
60,
15139,
230,
410,
874,
58,
72,
60,
198,
220,
220,
220,
886,
628,
220,
220,
220,
331,
17,
796,
38692,
7,
2257,
11,
604,
11,
275,
82,
28,
17,
8,
198,
220,
220,
220,
2488,
9288,
651,
62,
27372,
1096,
7,
88,
17,
8,
6624,
362,
198,
220,
220,
220,
4686,
34223,
796,
2558,
2624,
58,
15,
60,
198,
220,
220,
220,
410,
874,
796,
3563,
58,
16,
11,
362,
60,
198,
220,
220,
220,
900,
62,
27160,
62,
2436,
3543,
0,
7,
88,
17,
11,
4686,
34223,
11,
410,
874,
8,
198,
220,
220,
220,
2488,
9288,
331,
17,
58,
312,
34223,
58,
16,
48688,
16,
60,
15139,
230,
410,
874,
58,
16,
60,
198,
220,
220,
220,
2488,
9288,
331,
17,
58,
312,
34223,
58,
16,
48688,
17,
60,
15139,
230,
410,
874,
58,
17,
60,
628,
198,
220,
220,
220,
374,
782,
796,
1957,
3911,
7,
88,
17,
8,
198,
220,
220,
220,
300,
83,
519,
796,
1957,
62,
1462,
62,
20541,
62,
76,
5912,
7,
88,
17,
8,
198,
220,
220,
220,
900,
62,
12001,
62,
1462,
62,
20541,
62,
76,
5912,
7,
88,
17,
11,
300,
83,
519,
8,
198,
220,
220,
220,
4686,
87,
796,
2558,
2624,
58,
16,
60,
198,
220,
220,
220,
410,
874,
796,
3563,
58,
17,
11,
18,
60,
198,
220,
220,
220,
900,
62,
27160,
62,
2436,
3543,
62,
12001,
0,
7,
88,
17,
11,
4686,
34223,
11,
410,
874,
8,
198,
220,
220,
220,
2488,
9288,
331,
17,
58,
312,
34223,
58,
16,
48688,
16,
60,
15139,
230,
410,
874,
58,
16,
60,
198,
220,
220,
220,
2488,
9288,
331,
17,
58,
312,
34223,
58,
16,
48688,
17,
60,
15139,
230,
410,
874,
58,
17,
60,
628,
628,
628,
628,
220,
886,
198,
198,
437,
198
] | 1.88146 | 5,205 |
export SymbolContext, ContextualSymbol, show
import Base.show, Base.show_unquoted
import Crayons: CrayonStack, Crayon
"""
SymbolContext(syms, function [,display_expression])
A symbol context is a special function, evaluating symbols within the body of
the function within the context of a single argument. Generally, these are
constructed with the `@syms` macro, which will modify an expression, replacing
any unescaped symbols in the expression with calls to `sym(<obj>, :symbol)`
This allows contexts to be described for arbitrary objects and for better
extension of symbols as a domain-specific abstraction to arbitrary data.
### Arguments
* `syms` : An `Array` of `Symbol`s, itemizing which symbols are represented
contextually.
* `function` : A unary function which is to be called with the contextual data,
or alternatively with keyworded arguments for each of the symbols.
* `display_expression` : An optional argument used to store a cleaned expression
for printing the symbolic expression that was used to generate the contextual
function.
### Examples
Creating a symbol context from a hand-crafted function, representing symbols
as calls to `sym`. Generally, creating a context in this way is only done
by developers.
```
julia> SymbolContext([:x, :y], x -> sym(x, :x) + sym(x, :y))
```
More commonly a symbol context is created using the `@syms` macro
```
julia> @syms begin
:x + :y
end
```
"""
struct SymbolContext
syms::AbstractArray
f::Function
display_expr
end
SymbolContext(syms, f) = SymbolContext(syms, f, nothing)
(x::SymbolContext)(; kwargs...) = x(kwargs)
function (x::SymbolContext)(arg)
found, miss = match_syms(arg, setdiff(x.syms, [:.]))
@assert(length(miss) == 0,
"Context of type `$(type_pretty(typeof(arg)))` cannot find " *
"representation for symbol(s) " *
join(":" .* string.(miss[1:(end-1)]), ", ") *
(length(miss) > 1 ? " and " : "") *
":" * string(miss[end]))
x.f(arg)
end
function show(io::IO, x::SymbolContext)
stack = CrayonStack(incremental = true)
print("SymbolContext[")
for (i, sym)=enumerate(x.syms)
print(i == 1 ? "" : ",")
print(io, push!(stack, Crayon(foreground = :blue)))
print(":")
show_unquoted(io, sym)
print(io, pop!(stack))
end
print("] ")
if !(x.display_expr isa Expr && x.display_expr.head == :block)
println()
end
Base.show_unquoted(io, x.display_expr)
end
struct Highlighted{T}
x::T
end
function show(io::IO, x::Highlighted{<:Number})
stack = CrayonStack(incremental = true)
print(io, push!(stack, Crayon(foreground = :blue)))
print(":")
show(io, x.x)
print(io, pop!(stack))
end
function show(io::IO, x::Highlighted{<:Symbol})
stack = CrayonStack(incremental = true)
print(io, push!(stack, Crayon(foreground = :blue)))
if x.x == :.; print(":.")
else; show(io, x.x)
end
print(io, pop!(stack))
end
| [
39344,
38357,
21947,
11,
30532,
723,
13940,
23650,
11,
905,
198,
198,
11748,
7308,
13,
12860,
11,
7308,
13,
12860,
62,
403,
421,
5191,
198,
11748,
327,
2433,
684,
25,
327,
2433,
261,
25896,
11,
327,
2433,
261,
628,
198,
198,
37811,
198,
220,
220,
220,
38357,
21947,
7,
1837,
907,
11,
2163,
685,
11,
13812,
62,
38011,
12962,
198,
198,
32,
6194,
4732,
318,
257,
2041,
2163,
11,
22232,
14354,
1626,
262,
1767,
286,
220,
198,
1169,
2163,
1626,
262,
4732,
286,
257,
2060,
4578,
13,
23904,
11,
777,
389,
220,
198,
1102,
16242,
351,
262,
4600,
31,
1837,
907,
63,
15021,
11,
543,
481,
13096,
281,
5408,
11,
13586,
198,
1092,
555,
3798,
5813,
14354,
287,
262,
5408,
351,
3848,
284,
4600,
37047,
7,
27,
26801,
22330,
1058,
1837,
23650,
8,
63,
220,
198,
1212,
3578,
26307,
284,
307,
3417,
329,
14977,
5563,
290,
329,
1365,
220,
198,
2302,
3004,
286,
14354,
355,
257,
7386,
12,
11423,
34651,
284,
14977,
1366,
13,
220,
198,
198,
21017,
20559,
2886,
220,
198,
198,
9,
4600,
1837,
907,
63,
1058,
1052,
4600,
19182,
63,
286,
4600,
13940,
23650,
63,
82,
11,
2378,
2890,
543,
14354,
389,
7997,
198,
220,
220,
220,
4732,
935,
13,
198,
9,
4600,
8818,
63,
1058,
317,
555,
560,
2163,
543,
318,
284,
307,
1444,
351,
262,
38356,
1366,
11,
220,
198,
220,
220,
220,
393,
46596,
351,
21179,
276,
7159,
329,
1123,
286,
262,
14354,
13,
198,
9,
4600,
13812,
62,
38011,
63,
1058,
1052,
11902,
4578,
973,
284,
3650,
257,
20750,
5408,
198,
220,
220,
220,
329,
13570,
262,
18975,
5408,
326,
373,
973,
284,
7716,
262,
38356,
198,
220,
220,
220,
2163,
13,
198,
198,
21017,
21066,
198,
198,
32071,
257,
6194,
4732,
422,
257,
1021,
12,
39160,
2163,
11,
10200,
14354,
198,
292,
3848,
284,
4600,
37047,
44646,
23904,
11,
4441,
257,
4732,
287,
428,
835,
318,
691,
1760,
198,
1525,
6505,
13,
220,
198,
198,
15506,
63,
198,
73,
43640,
29,
38357,
21947,
26933,
25,
87,
11,
1058,
88,
4357,
2124,
4613,
5659,
7,
87,
11,
1058,
87,
8,
1343,
5659,
7,
87,
11,
1058,
88,
4008,
198,
15506,
63,
198,
198,
5167,
8811,
257,
6194,
4732,
318,
2727,
1262,
262,
4600,
31,
1837,
907,
63,
15021,
198,
198,
15506,
63,
198,
73,
43640,
29,
2488,
1837,
907,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1058,
87,
1343,
1058,
88,
198,
220,
220,
220,
220,
220,
220,
886,
198,
15506,
63,
198,
37811,
198,
7249,
38357,
21947,
198,
220,
220,
220,
827,
907,
3712,
23839,
19182,
198,
220,
220,
220,
277,
3712,
22203,
198,
220,
220,
220,
3359,
62,
31937,
198,
437,
198,
198,
13940,
23650,
21947,
7,
1837,
907,
11,
277,
8,
796,
38357,
21947,
7,
1837,
907,
11,
277,
11,
2147,
8,
198,
198,
7,
87,
3712,
13940,
23650,
21947,
5769,
26,
479,
86,
22046,
23029,
796,
2124,
7,
46265,
22046,
8,
198,
8818,
357,
87,
3712,
13940,
23650,
21947,
5769,
853,
8,
198,
220,
220,
220,
1043,
11,
2051,
796,
2872,
62,
1837,
907,
7,
853,
11,
900,
26069,
7,
87,
13,
1837,
907,
11,
685,
25,
8183,
4008,
628,
220,
220,
220,
2488,
30493,
7,
13664,
7,
3927,
8,
6624,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
21947,
286,
2099,
4600,
3,
7,
4906,
62,
37784,
7,
4906,
1659,
7,
853,
22305,
63,
2314,
1064,
366,
1635,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15603,
341,
329,
6194,
7,
82,
8,
366,
1635,
198,
220,
220,
220,
220,
220,
220,
220,
4654,
7,
2404,
764,
9,
4731,
12195,
3927,
58,
16,
37498,
437,
12,
16,
15437,
828,
33172,
366,
8,
1635,
220,
198,
220,
220,
220,
220,
220,
220,
220,
357,
13664,
7,
3927,
8,
1875,
352,
5633,
366,
290,
366,
1058,
366,
4943,
1635,
220,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11097,
1635,
4731,
7,
3927,
58,
437,
60,
4008,
628,
220,
220,
220,
2124,
13,
69,
7,
853,
8,
198,
437,
628,
198,
198,
8818,
905,
7,
952,
3712,
9399,
11,
2124,
3712,
13940,
23650,
21947,
8,
220,
198,
220,
220,
220,
8931,
796,
327,
2433,
261,
25896,
7,
24988,
37098,
796,
2081,
8,
198,
220,
220,
220,
3601,
7203,
13940,
23650,
21947,
58,
4943,
198,
220,
220,
220,
329,
357,
72,
11,
5659,
47505,
268,
6975,
378,
7,
87,
13,
1837,
907,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
72,
6624,
352,
5633,
13538,
1058,
366,
553,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
4574,
0,
7,
25558,
11,
327,
2433,
261,
7,
754,
2833,
796,
1058,
17585,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
2404,
8,
198,
220,
220,
220,
220,
220,
220,
220,
905,
62,
403,
421,
5191,
7,
952,
11,
5659,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
952,
11,
1461,
0,
7,
25558,
4008,
198,
220,
220,
220,
886,
220,
198,
220,
220,
220,
3601,
7203,
60,
366,
8,
198,
220,
220,
220,
611,
5145,
7,
87,
13,
13812,
62,
31937,
318,
64,
1475,
1050,
11405,
2124,
13,
13812,
62,
31937,
13,
2256,
6624,
1058,
9967,
8,
198,
220,
220,
220,
220,
220,
220,
220,
44872,
3419,
198,
220,
220,
220,
886,
198,
220,
220,
220,
7308,
13,
12860,
62,
403,
421,
5191,
7,
952,
11,
2124,
13,
13812,
62,
31937,
8,
198,
437,
628,
198,
198,
7249,
3334,
2971,
276,
90,
51,
92,
198,
220,
220,
220,
2124,
3712,
51,
198,
437,
198,
198,
8818,
905,
7,
952,
3712,
9399,
11,
2124,
3712,
11922,
2971,
276,
90,
27,
25,
15057,
30072,
198,
220,
220,
220,
8931,
796,
327,
2433,
261,
25896,
7,
24988,
37098,
796,
2081,
8,
198,
220,
220,
220,
3601,
7,
952,
11,
4574,
0,
7,
25558,
11,
327,
2433,
261,
7,
754,
2833,
796,
1058,
17585,
22305,
198,
220,
220,
220,
3601,
7,
2404,
8,
198,
220,
220,
220,
905,
7,
952,
11,
2124,
13,
87,
8,
198,
220,
220,
220,
3601,
7,
952,
11,
1461,
0,
7,
25558,
4008,
198,
437,
198,
198,
8818,
905,
7,
952,
3712,
9399,
11,
2124,
3712,
11922,
2971,
276,
90,
27,
25,
13940,
23650,
30072,
198,
220,
220,
220,
8931,
796,
327,
2433,
261,
25896,
7,
24988,
37098,
796,
2081,
8,
198,
220,
220,
220,
3601,
7,
952,
11,
4574,
0,
7,
25558,
11,
327,
2433,
261,
7,
754,
2833,
796,
1058,
17585,
22305,
628,
220,
220,
220,
611,
2124,
13,
87,
6624,
1058,
15089,
3601,
7,
1298,
19570,
198,
220,
220,
220,
2073,
26,
905,
7,
952,
11,
2124,
13,
87,
8,
198,
220,
220,
220,
886,
628,
220,
220,
220,
3601,
7,
952,
11,
1461,
0,
7,
25558,
4008,
198,
437,
628
] | 2.682948 | 1,126 |
using Logging
function log_test()
debug("debug message")
info("info message")
warn("warning message")
err("error message")
critical("critical message")
end
println("Setting level=DEBUG")
Logging.configure(level=DEBUG)
log_test()
println()
println("Setting level=INFO")
Logging.configure(level=INFO)
log_test()
println()
println("Setting level=WARNING")
Logging.configure(level=WARNING)
log_test()
println()
println("Setting level=ERROR")
Logging.configure(level=ERROR)
log_test()
println()
println("Setting level=CRITICAL")
Logging.configure(level=CRITICAL)
log_test()
| [
3500,
5972,
2667,
198,
198,
8818,
2604,
62,
9288,
3419,
198,
220,
220,
220,
14257,
7203,
24442,
3275,
4943,
198,
220,
220,
220,
7508,
7203,
10951,
3275,
4943,
198,
220,
220,
220,
9828,
7203,
43917,
3275,
4943,
198,
220,
220,
220,
11454,
7203,
18224,
3275,
4943,
198,
220,
220,
220,
4688,
7203,
34666,
3275,
4943,
198,
437,
198,
198,
35235,
7203,
34149,
1241,
28,
30531,
4943,
198,
11187,
2667,
13,
11250,
495,
7,
5715,
28,
30531,
8,
198,
6404,
62,
9288,
3419,
198,
198,
35235,
3419,
198,
35235,
7203,
34149,
1241,
28,
10778,
4943,
198,
11187,
2667,
13,
11250,
495,
7,
5715,
28,
10778,
8,
198,
6404,
62,
9288,
3419,
198,
198,
35235,
3419,
198,
35235,
7203,
34149,
1241,
28,
31502,
4943,
198,
11187,
2667,
13,
11250,
495,
7,
5715,
28,
31502,
8,
198,
6404,
62,
9288,
3419,
198,
198,
35235,
3419,
198,
35235,
7203,
34149,
1241,
28,
24908,
4943,
198,
11187,
2667,
13,
11250,
495,
7,
5715,
28,
24908,
8,
198,
6404,
62,
9288,
3419,
198,
198,
35235,
3419,
198,
35235,
7203,
34149,
1241,
28,
9419,
2043,
20151,
4943,
198,
11187,
2667,
13,
11250,
495,
7,
5715,
28,
9419,
2043,
20151,
8,
198,
6404,
62,
9288,
3419,
628
] | 2.994975 | 199 |
#######################################################################
#
# An example of creating an Excel charts with a date axis using
# XlsxWriter.
#
# Original Python Copyright 2013-2016, John McNamara, jmcnamara@cpan.org
# https://github.com/jmcnamara/XlsxWriter
using Dates
using XlsxWriter
function test()
wb = Workbook("chart_date_axis.xlsx")
ws = add_worksheet!(wb)
# Add a format for the headings.
chart = add_chart!(wb, Dict("type"=> "line"))
date_format = add_format!(wb, Dict("num_format"=> "dd/mm/yyyy"))
# Widen the first column to display the dates.
set_column!(ws, "A:A", 12)
# Some data to be plotted in the worksheet.
dates = [Date(2013, 1, 1),
Date(2013, 1, 2),
Date(2013, 1, 3),
Date(2013, 1, 4),
Date(2013, 1, 5),
Date(2013, 1, 6),
Date(2013, 1, 7),
Date(2013, 1, 8),
Date(2013, 1, 9),
Date(2013, 1, 10)]
values = [10, 30, 20, 40, 20, 60, 50, 40, 30, 30]
# Write the date to the worksheet.
write_column!(ws, "A1", dates, fmt=date_format)
write_column!(ws, "B1", values)
# Add a series to the chart.
add_series!(chart, Dict(
"categories"=> "=Sheet1!\$A\$1:\$A\$10",
"values"=> "=Sheet1!\$B\$1:\$B\$10",
))
# Configure the X axis as a Date axis and set the max and min limits.
set_x_axis!(chart, Dict(
"date_axis"=> true,
"min"=> Date(2013, 1, 2),
"max"=> Date(2013, 1, 9),
))
# Turn off the legend.
set_legend!(chart, Dict("none"=> true))
# Insert the chart into the worksheet.
insert_chart!(ws, "D2", chart)
close(wb)
isfile("chart_date_axis.xlsx")
end
test()
| [
29113,
29113,
4242,
21017,
198,
2,
198,
2,
1052,
1672,
286,
4441,
281,
24134,
15907,
351,
257,
3128,
16488,
1262,
198,
2,
1395,
7278,
87,
34379,
13,
198,
2,
198,
2,
13745,
11361,
15069,
2211,
12,
5304,
11,
1757,
22586,
47848,
11,
474,
23209,
7402,
3301,
31,
66,
6839,
13,
2398,
198,
2,
3740,
1378,
12567,
13,
785,
14,
73,
23209,
7402,
3301,
14,
55,
7278,
87,
34379,
198,
198,
3500,
44712,
198,
3500,
1395,
7278,
87,
34379,
198,
198,
8818,
1332,
3419,
628,
197,
39346,
796,
5521,
2070,
7203,
40926,
62,
4475,
62,
22704,
13,
87,
7278,
87,
4943,
198,
197,
18504,
796,
751,
62,
5225,
25473,
0,
7,
39346,
8,
628,
197,
2,
3060,
257,
5794,
329,
262,
1182,
654,
13,
628,
197,
40926,
796,
751,
62,
40926,
0,
7,
39346,
11,
360,
713,
7203,
4906,
1,
14804,
366,
1370,
48774,
198,
197,
4475,
62,
18982,
796,
751,
62,
18982,
0,
7,
39346,
11,
360,
713,
7203,
22510,
62,
18982,
1,
14804,
366,
1860,
14,
3020,
14,
22556,
22556,
48774,
628,
197,
2,
370,
14029,
262,
717,
5721,
284,
3359,
262,
9667,
13,
198,
197,
2617,
62,
28665,
0,
7,
18504,
11,
366,
32,
25,
32,
1600,
1105,
8,
628,
197,
2,
2773,
1366,
284,
307,
37515,
287,
262,
2499,
25473,
13,
198,
197,
19581,
796,
685,
10430,
7,
6390,
11,
352,
11,
352,
828,
198,
197,
197,
197,
7536,
7,
6390,
11,
352,
11,
362,
828,
198,
197,
197,
197,
7536,
7,
6390,
11,
352,
11,
513,
828,
198,
197,
197,
197,
7536,
7,
6390,
11,
352,
11,
604,
828,
198,
197,
197,
197,
7536,
7,
6390,
11,
352,
11,
642,
828,
198,
197,
197,
197,
7536,
7,
6390,
11,
352,
11,
718,
828,
198,
197,
197,
197,
7536,
7,
6390,
11,
352,
11,
767,
828,
198,
197,
197,
197,
7536,
7,
6390,
11,
352,
11,
807,
828,
198,
197,
197,
197,
7536,
7,
6390,
11,
352,
11,
860,
828,
198,
197,
197,
197,
7536,
7,
6390,
11,
352,
11,
838,
15437,
628,
197,
27160,
796,
685,
940,
11,
1542,
11,
1160,
11,
2319,
11,
1160,
11,
3126,
11,
2026,
11,
2319,
11,
1542,
11,
1542,
60,
628,
197,
2,
19430,
262,
3128,
284,
262,
2499,
25473,
13,
198,
197,
13564,
62,
28665,
0,
7,
18504,
11,
366,
32,
16,
1600,
9667,
11,
46996,
28,
4475,
62,
18982,
8,
198,
197,
13564,
62,
28665,
0,
7,
18504,
11,
366,
33,
16,
1600,
3815,
8,
628,
197,
2,
3060,
257,
2168,
284,
262,
8262,
13,
198,
197,
2860,
62,
25076,
0,
7,
40926,
11,
360,
713,
7,
198,
197,
197,
1,
66,
26129,
1,
14804,
366,
28,
3347,
316,
16,
0,
59,
3,
32,
59,
3,
16,
7479,
3,
32,
59,
3,
940,
1600,
198,
197,
197,
1,
27160,
1,
14804,
366,
28,
3347,
316,
16,
0,
59,
3,
33,
59,
3,
16,
7479,
3,
33,
59,
3,
940,
1600,
198,
197,
4008,
628,
197,
2,
17056,
495,
262,
1395,
16488,
355,
257,
7536,
16488,
290,
900,
262,
3509,
290,
949,
7095,
13,
198,
197,
2617,
62,
87,
62,
22704,
0,
7,
40926,
11,
360,
713,
7,
198,
197,
197,
1,
4475,
62,
22704,
1,
14804,
2081,
11,
198,
197,
197,
1,
1084,
1,
14804,
7536,
7,
6390,
11,
352,
11,
362,
828,
198,
197,
197,
1,
9806,
1,
14804,
7536,
7,
6390,
11,
352,
11,
860,
828,
198,
197,
4008,
628,
197,
2,
6756,
572,
262,
8177,
13,
198,
197,
2617,
62,
1455,
437,
0,
7,
40926,
11,
360,
713,
7203,
23108,
1,
14804,
2081,
4008,
628,
197,
2,
35835,
262,
8262,
656,
262,
2499,
25473,
13,
198,
197,
28463,
62,
40926,
0,
7,
18504,
11,
366,
35,
17,
1600,
8262,
8,
628,
197,
19836,
7,
39346,
8,
198,
197,
4468,
576,
7203,
40926,
62,
4475,
62,
22704,
13,
87,
7278,
87,
4943,
198,
437,
198,
198,
9288,
3419,
198
] | 2.440124 | 643 |
module julia_sets
using PyPlot
export gen_jset,show_jset
function gen_jset{T<:Real,U<:Real}(R::Function,x::Array{T,1},y::Array{T,1},n_iter::Int64,escape_tol::U)
A = zeros(length(x),length(y));
for i=1:length(x)
for j=1:length(y)
z = Complex(x[i],y[j])
for k = 1:n_iter
z = R(z)
if abs(z) > escape_tol
A[i,j] = k
break;
end
end
if A[i,j]==0
A[i,j] = escape_tol+1;
end
end
end
return A
end
function show_jset{T<:Real}(A::Array{T,2})
matshow(A)
end
end
| [
21412,
474,
43640,
62,
28709,
198,
3500,
9485,
43328,
198,
39344,
2429,
62,
73,
2617,
11,
12860,
62,
73,
2617,
198,
198,
8818,
2429,
62,
73,
2617,
90,
51,
27,
25,
15633,
11,
52,
27,
25,
15633,
92,
7,
49,
3712,
22203,
11,
87,
3712,
19182,
90,
51,
11,
16,
5512,
88,
3712,
19182,
90,
51,
11,
16,
5512,
77,
62,
2676,
3712,
5317,
2414,
11,
41915,
62,
83,
349,
3712,
52,
8,
198,
220,
220,
198,
220,
317,
796,
1976,
27498,
7,
13664,
7,
87,
828,
13664,
7,
88,
18125,
198,
220,
329,
1312,
28,
16,
25,
13664,
7,
87,
8,
198,
220,
220,
220,
329,
474,
28,
16,
25,
13664,
7,
88,
8,
198,
220,
220,
220,
220,
220,
1976,
796,
19157,
7,
87,
58,
72,
4357,
88,
58,
73,
12962,
198,
220,
220,
220,
220,
220,
329,
479,
796,
352,
25,
77,
62,
2676,
198,
220,
220,
220,
220,
220,
220,
220,
1976,
796,
371,
7,
89,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2352,
7,
89,
8,
1875,
6654,
62,
83,
349,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
58,
72,
11,
73,
60,
796,
479,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
26,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
611,
317,
58,
72,
11,
73,
60,
855,
15,
198,
220,
220,
220,
220,
220,
220,
220,
317,
58,
72,
11,
73,
60,
796,
6654,
62,
83,
349,
10,
16,
26,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
886,
198,
220,
220,
198,
220,
1441,
317,
198,
437,
198,
198,
8818,
905,
62,
73,
2617,
90,
51,
27,
25,
15633,
92,
7,
32,
3712,
19182,
90,
51,
11,
17,
30072,
198,
46054,
4919,
7,
32,
8,
198,
437,
198,
198,
437,
628,
198
] | 1.739938 | 323 |
using DataFrames
using CSV
data = CSV.read("data/multilane_Saturday_28_Apr_16_17.csv")
means = by(data, :solver) do df
n = size(df, 1)
return DataFrame(reward=mean(df[:reward]),
reward_sem=std(df[:reward])/sqrt(n)
)
end
println(means)
| [
3500,
6060,
35439,
198,
3500,
44189,
198,
198,
7890,
796,
44189,
13,
961,
7203,
7890,
14,
16680,
346,
1531,
62,
19844,
62,
2078,
62,
13680,
62,
1433,
62,
1558,
13,
40664,
4943,
198,
198,
1326,
504,
796,
416,
7,
7890,
11,
1058,
82,
14375,
8,
466,
47764,
198,
220,
220,
220,
299,
796,
2546,
7,
7568,
11,
352,
8,
198,
220,
220,
220,
1441,
6060,
19778,
7,
260,
904,
28,
32604,
7,
7568,
58,
25,
260,
904,
46570,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6721,
62,
43616,
28,
19282,
7,
7568,
58,
25,
260,
904,
12962,
14,
31166,
17034,
7,
77,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
437,
198,
198,
35235,
7,
1326,
504,
8,
198
] | 1.939189 | 148 |
# Routines related to fragmenting CAD entities in gmsh, while preserving physical groups
function process_material_hierarchy!(
new_physical_groups::Dict{String, Vector{Tuple{Int32,Int32}}},
material_hierarchy::Vector{String})
# Get the material groups and the entities in each group
groups = collect(keys(new_physical_groups))
material_indices = findall(x->occursin("MATERIAL", x), groups)
material_groups = groups[material_indices]
# Ensure each material group is present in the hierarchy and warn now if it's not.
# Otherwise the error that occurs later is not as easy to decipher
for material in material_groups
@assert material ∈ material_hierarchy "material_hierarchy does not contain: '$material'"
end
material_dict = Dict{String, Vector{Tuple{Int32,Int32}}}()
all_material_entities = Tuple{Int32,Int32}[]
for material in material_groups
# Note that this is assignment by reference. Changes to material_dict are reflected
# in new_physical_groups
material_dict[material] = new_physical_groups[material]
append!(all_material_entities, new_physical_groups[material])
end
# Remove duplicates
all_material_entities = collect(Set(all_material_entities))
# For each entity with a material, ensure that it only exists in one of material groups.
# If it exists in more than one material group, apply the material hierarchy so that the
# entity only has one material.
numerical_material_hierarchy = Dict{String,Int32}()
i = 1
for material in material_hierarchy
numerical_material_hierarchy[material] = i
i += 1
end
for ent in all_material_entities
materials = String[]
for material in material_groups
if ent ∈ material_dict[material]
push!(materials, material)
end
end
if 1 < length(materials)
# Get the highest priority material
mat_num = minimum([numerical_material_hierarchy[mat] for mat in materials])
priority_mat = material_hierarchy[mat_num]
# Pop ent from all other materials in dict
deleteat!(materials, materials .== priority_mat)
for material in materials
deleteat!(material_dict[material], findfirst(x-> x == ent, material_dict[material]))
end
end
end
end
function gmsh_group_preserving_fragment(object_dim_tags::Vector{Tuple{Signed,Int32}},
tool_dim_tags::Vector{Tuple{Signed,Int32}};
material_hierarchy::Vector{String} = String[])
# Get all the physical groups
old_physical_groups = Dict{String,Array{Tuple{Int32,Int32},1}}()
groups = gmsh.model.get_physical_groups()
names = [gmsh.model.get_physical_name(grp[1], grp[2]) for grp in groups]
for (i, name) in enumerate(names)
ents = gmsh.model.get_entities_for_physical_group(groups[i][1], groups[i][2])
dim = groups[i][1]
old_physical_groups[name] = [(dim, ent) for ent in ents]
end
# Fragment
nents = length(object_dim_tags) + length(tool_dim_tags)
@info "Fragmenting $nents entities"
out_dim_tags, out_dim_tags_map = gmsh.model.occ.fragment(object_dim_tags, tool_dim_tags)
# Create a dictionary of new physical groups using the parent child relationship
# between input_dim_tags and out_dim_tags_map. The parent at index i of input_dim_tags
# has children out_dim_tags_map[i]
new_physical_groups = Dict{String, Vector{Tuple{Int32,Int32}}}()
input_dim_tags = vcat(object_dim_tags, tool_dim_tags)
# For each physical group
for name in names
new_physical_groups[name] = Tuple{Int32, Int32}[]
# For each of the dim tags in the physical group
for dim_tag in old_physical_groups[name]
# If the dim_tag was one of the entities in the fragment
if dim_tag ∈ input_dim_tags
# Get its children
index = findfirst(x->x == dim_tag, input_dim_tags)
children = out_dim_tags_map[index]
# Add the children to the new physical group
for child in children
if child ∉ new_physical_groups[name]
push!(new_physical_groups[name], child)
end
end
else
# If it wasn't in the fragment, no changes necessary.
push!(new_physical_groups[name], dim_tag)
end
end
end
# Remove old groups and synchronize
for name in names
gmsh.model.remove_physical_name(name)
end
@debug "Synchronizing model"
gmsh.model.occ.synchronize()
# Process the material hierarchy if it exists so that each entity has one
# or less material physical groups
if 0 < length(material_hierarchy)
process_material_hierarchy!(new_physical_groups, material_hierarchy)
end
# Create new physical groups
for (i, name) in enumerate(names)
dim = groups[i][1]
tags = [dim_tag[2] for dim_tag in new_physical_groups[name]]
ptag = gmsh.model.add_physical_group(dim, tags)
gmsh.model.set_physical_name(dim, ptag, name)
end
return out_dim_tags
end
function gmsh_group_preserving_fragment(object_dim_tags::Vector{Tuple{Int32,Int32}},
tool_dim_tags::Vector{Tuple{Int32,Int32}};
material_hierarchy::Vector{String} = String[])
# Get all the physical groups
old_physical_groups = Dict{String, Vector{Tuple{Int32,Int32}}}()
groups = gmsh.model.get_physical_groups()
names = [gmsh.model.get_physical_name(grp[1], grp[2]) for grp in groups]
for (i, name) in enumerate(names)
ents = gmsh.model.get_entities_for_physical_group(groups[i][1], groups[i][2])
dim = groups[i][1]
old_physical_groups[name] = [(dim, ent) for ent in ents]
end
# Fragment
nents = length(object_dim_tags) + length(tool_dim_tags)
@info "Fragmenting $nents entities"
out_dim_tags, out_dim_tags_map = gmsh.model.occ.fragment(object_dim_tags, tool_dim_tags)
# Create a dictionary of new physical groups using the parent child relationship
# between input_dim_tags and out_dim_tags_map. The parent at index i of input_dim_tags
# has children out_dim_tags_map[i]
new_physical_groups = Dict{String, Vector{Tuple{Int32,Int32}}}()
input_dim_tags = vcat(object_dim_tags, tool_dim_tags)
# For each physical group
for name in names
new_physical_groups[name] = Tuple{Int32,Int32}[]
# For each of the dim tags in the physical group
for dim_tag in old_physical_groups[name]
# If the dim_tag was one of the entities in the fragment
if dim_tag ∈ input_dim_tags
# Get its children
index = findfirst(x->x == dim_tag, input_dim_tags)
children = out_dim_tags_map[index]
# Add the children to the new physical group
for child in children
if child ∉ new_physical_groups[name]
push!(new_physical_groups[name], child)
end
end
else
# If it wasn't in the fragment, no changes necessary.
push!(new_physical_groups[name], dim_tag)
end
end
end
# Remove old groups and synchronize
for name in names
gmsh.model.remove_physical_name(name)
end
@debug "Synchronizing model"
gmsh.model.occ.synchronize()
# Process the material hierarchy if it exists so that each entity has one
# or less material physical groups
if 0 < length(material_hierarchy)
process_material_hierarchy!(new_physical_groups, material_hierarchy)
end
# Create new physical groups
for (i, name) in enumerate(names)
dim = groups[i][1]
tags = [dim_tag[2] for dim_tag in new_physical_groups[name]]
ptag = gmsh.model.add_physical_group(dim, tags)
gmsh.model.set_physical_name(dim, ptag, name)
end
return out_dim_tags
end
| [
2,
39602,
1127,
3519,
284,
24225,
278,
37292,
12066,
287,
308,
907,
71,
11,
981,
23934,
3518,
2628,
198,
198,
8818,
1429,
62,
33665,
62,
71,
959,
9282,
0,
7,
198,
220,
220,
220,
220,
220,
220,
220,
649,
62,
42854,
62,
24432,
3712,
35,
713,
90,
10100,
11,
20650,
90,
51,
29291,
90,
5317,
2624,
11,
5317,
2624,
11709,
5512,
220,
198,
220,
220,
220,
220,
220,
220,
220,
2587,
62,
71,
959,
9282,
3712,
38469,
90,
10100,
30072,
198,
220,
220,
220,
1303,
3497,
262,
2587,
2628,
290,
262,
12066,
287,
1123,
1448,
198,
220,
220,
220,
2628,
796,
2824,
7,
13083,
7,
3605,
62,
42854,
62,
24432,
4008,
198,
220,
220,
220,
2587,
62,
521,
1063,
796,
1064,
439,
7,
87,
3784,
13966,
1834,
259,
7203,
44,
23261,
12576,
1600,
2124,
828,
2628,
8,
198,
220,
220,
220,
2587,
62,
24432,
796,
2628,
58,
33665,
62,
521,
1063,
60,
198,
220,
220,
220,
1303,
48987,
1123,
2587,
1448,
318,
1944,
287,
262,
18911,
290,
9828,
783,
611,
340,
338,
407,
13,
220,
198,
220,
220,
220,
1303,
15323,
262,
4049,
326,
8833,
1568,
318,
407,
355,
2562,
284,
42790,
198,
220,
220,
220,
329,
2587,
287,
2587,
62,
24432,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
30493,
2587,
18872,
230,
2587,
62,
71,
959,
9282,
366,
33665,
62,
71,
959,
9282,
857,
407,
3994,
25,
705,
3,
33665,
29653,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2587,
62,
11600,
796,
360,
713,
90,
10100,
11,
20650,
90,
51,
29291,
90,
5317,
2624,
11,
5317,
2624,
42535,
3419,
198,
220,
220,
220,
477,
62,
33665,
62,
298,
871,
796,
309,
29291,
90,
5317,
2624,
11,
5317,
2624,
92,
21737,
198,
220,
220,
220,
329,
2587,
287,
2587,
62,
24432,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
5740,
326,
428,
318,
16237,
416,
4941,
13,
19179,
284,
2587,
62,
11600,
389,
12548,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
287,
649,
62,
42854,
62,
24432,
198,
220,
220,
220,
220,
220,
220,
220,
2587,
62,
11600,
58,
33665,
60,
796,
649,
62,
42854,
62,
24432,
58,
33665,
60,
198,
220,
220,
220,
220,
220,
220,
220,
24443,
0,
7,
439,
62,
33665,
62,
298,
871,
11,
649,
62,
42854,
62,
24432,
58,
33665,
12962,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1303,
17220,
14184,
16856,
198,
220,
220,
220,
477,
62,
33665,
62,
298,
871,
796,
2824,
7,
7248,
7,
439,
62,
33665,
62,
298,
871,
4008,
198,
220,
220,
220,
1303,
1114,
1123,
9312,
351,
257,
2587,
11,
4155,
326,
340,
691,
7160,
287,
530,
286,
2587,
2628,
13,
198,
220,
220,
220,
1303,
1002,
340,
7160,
287,
517,
621,
530,
2587,
1448,
11,
4174,
262,
2587,
18911,
523,
326,
262,
220,
198,
220,
220,
220,
1303,
9312,
691,
468,
530,
2587,
13,
198,
220,
220,
220,
29052,
62,
33665,
62,
71,
959,
9282,
796,
360,
713,
90,
10100,
11,
5317,
2624,
92,
3419,
198,
220,
220,
220,
1312,
796,
352,
198,
220,
220,
220,
329,
2587,
287,
2587,
62,
71,
959,
9282,
198,
220,
220,
220,
220,
220,
220,
220,
29052,
62,
33665,
62,
71,
959,
9282,
58,
33665,
60,
796,
1312,
198,
220,
220,
220,
220,
220,
220,
220,
1312,
15853,
352,
198,
220,
220,
220,
886,
198,
220,
220,
220,
329,
920,
287,
477,
62,
33665,
62,
298,
871,
198,
220,
220,
220,
220,
220,
220,
220,
5696,
796,
10903,
21737,
198,
220,
220,
220,
220,
220,
220,
220,
329,
2587,
287,
2587,
62,
24432,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
920,
18872,
230,
220,
2587,
62,
11600,
58,
33665,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
33665,
82,
11,
2587,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
611,
352,
1279,
4129,
7,
33665,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3497,
262,
4511,
8475,
2587,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2603,
62,
22510,
796,
5288,
26933,
77,
6975,
605,
62,
33665,
62,
71,
959,
9282,
58,
6759,
60,
329,
2603,
287,
5696,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8475,
62,
6759,
796,
2587,
62,
71,
959,
9282,
58,
6759,
62,
22510,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
8099,
920,
422,
477,
584,
5696,
287,
8633,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12233,
265,
0,
7,
33665,
82,
11,
5696,
764,
855,
8475,
62,
6759,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
2587,
287,
5696,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12233,
265,
0,
7,
33665,
62,
11600,
58,
33665,
4357,
1064,
11085,
7,
87,
3784,
2124,
6624,
920,
11,
2587,
62,
11600,
58,
33665,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
308,
907,
71,
62,
8094,
62,
18302,
14344,
62,
8310,
363,
434,
7,
15252,
62,
27740,
62,
31499,
3712,
38469,
90,
51,
29291,
90,
50,
3916,
11,
5317,
2624,
92,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2891,
62,
27740,
62,
31499,
3712,
38469,
90,
51,
29291,
90,
50,
3916,
11,
5317,
2624,
11709,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2587,
62,
71,
959,
9282,
3712,
38469,
90,
10100,
92,
796,
10903,
58,
12962,
198,
220,
220,
220,
1303,
3497,
477,
262,
3518,
2628,
198,
220,
220,
220,
1468,
62,
42854,
62,
24432,
796,
360,
713,
90,
10100,
11,
19182,
90,
51,
29291,
90,
5317,
2624,
11,
5317,
2624,
5512,
16,
11709,
3419,
198,
220,
220,
220,
2628,
796,
308,
907,
71,
13,
19849,
13,
1136,
62,
42854,
62,
24432,
3419,
198,
220,
220,
220,
3891,
796,
685,
70,
907,
71,
13,
19849,
13,
1136,
62,
42854,
62,
3672,
7,
2164,
79,
58,
16,
4357,
1036,
79,
58,
17,
12962,
329,
1036,
79,
287,
2628,
60,
198,
220,
220,
220,
329,
357,
72,
11,
1438,
8,
287,
27056,
378,
7,
14933,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
658,
796,
308,
907,
71,
13,
19849,
13,
1136,
62,
298,
871,
62,
1640,
62,
42854,
62,
8094,
7,
24432,
58,
72,
7131,
16,
4357,
2628,
58,
72,
7131,
17,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
5391,
796,
2628,
58,
72,
7131,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1468,
62,
42854,
62,
24432,
58,
3672,
60,
796,
47527,
27740,
11,
920,
8,
329,
920,
287,
220,
658,
60,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1303,
24229,
434,
198,
220,
220,
220,
299,
658,
796,
4129,
7,
15252,
62,
27740,
62,
31499,
8,
1343,
4129,
7,
25981,
62,
27740,
62,
31499,
8,
198,
220,
220,
220,
2488,
10951,
366,
42974,
434,
278,
720,
77,
658,
12066,
1,
198,
220,
220,
220,
503,
62,
27740,
62,
31499,
11,
503,
62,
27740,
62,
31499,
62,
8899,
796,
308,
907,
71,
13,
19849,
13,
13966,
13,
8310,
363,
434,
7,
15252,
62,
27740,
62,
31499,
11,
2891,
62,
27740,
62,
31499,
8,
628,
220,
220,
220,
1303,
13610,
257,
22155,
286,
649,
3518,
2628,
1262,
262,
2560,
1200,
2776,
198,
220,
220,
220,
1303,
1022,
5128,
62,
27740,
62,
31499,
290,
503,
62,
27740,
62,
31499,
62,
8899,
13,
383,
2560,
379,
6376,
1312,
286,
5128,
62,
27740,
62,
31499,
220,
198,
220,
220,
220,
1303,
468,
1751,
503,
62,
27740,
62,
31499,
62,
8899,
58,
72,
60,
198,
220,
220,
220,
649,
62,
42854,
62,
24432,
796,
360,
713,
90,
10100,
11,
20650,
90,
51,
29291,
90,
5317,
2624,
11,
5317,
2624,
42535,
3419,
198,
220,
220,
220,
5128,
62,
27740,
62,
31499,
796,
410,
9246,
7,
15252,
62,
27740,
62,
31499,
11,
2891,
62,
27740,
62,
31499,
8,
198,
220,
220,
220,
1303,
1114,
1123,
3518,
1448,
198,
220,
220,
220,
329,
1438,
287,
3891,
198,
220,
220,
220,
220,
220,
220,
220,
649,
62,
42854,
62,
24432,
58,
3672,
60,
796,
309,
29291,
90,
5317,
2624,
11,
2558,
2624,
92,
21737,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1114,
1123,
286,
262,
5391,
15940,
287,
262,
3518,
1448,
198,
220,
220,
220,
220,
220,
220,
220,
329,
5391,
62,
12985,
287,
1468,
62,
42854,
62,
24432,
58,
3672,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1002,
262,
5391,
62,
12985,
373,
530,
286,
262,
12066,
287,
262,
24225,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
5391,
62,
12985,
18872,
230,
220,
5128,
62,
27740,
62,
31499,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3497,
663,
1751,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6376,
796,
1064,
11085,
7,
87,
3784,
87,
6624,
5391,
62,
12985,
11,
5128,
62,
27740,
62,
31499,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1751,
796,
503,
62,
27740,
62,
31499,
62,
8899,
58,
9630,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3060,
262,
1751,
284,
262,
649,
3518,
1448,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1200,
287,
1751,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1200,
18872,
231,
220,
649,
62,
42854,
62,
24432,
58,
3672,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
3605,
62,
42854,
62,
24432,
58,
3672,
4357,
1200,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1002,
340,
2492,
470,
287,
262,
24225,
11,
645,
2458,
3306,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
3605,
62,
42854,
62,
24432,
58,
3672,
4357,
5391,
62,
12985,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1303,
17220,
1468,
2628,
290,
18305,
1096,
198,
220,
220,
220,
329,
1438,
287,
3891,
198,
220,
220,
220,
220,
220,
220,
220,
308,
907,
71,
13,
19849,
13,
28956,
62,
42854,
62,
3672,
7,
3672,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
24442,
366,
50,
24871,
2890,
2746,
1,
198,
220,
220,
220,
308,
907,
71,
13,
19849,
13,
13966,
13,
28869,
11413,
1096,
3419,
628,
220,
220,
220,
1303,
10854,
262,
2587,
18911,
611,
340,
7160,
523,
326,
1123,
9312,
468,
530,
198,
220,
220,
220,
1303,
393,
1342,
2587,
3518,
2628,
198,
220,
220,
220,
611,
657,
1279,
4129,
7,
33665,
62,
71,
959,
9282,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1429,
62,
33665,
62,
71,
959,
9282,
0,
7,
3605,
62,
42854,
62,
24432,
11,
2587,
62,
71,
959,
9282,
8,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1303,
13610,
649,
3518,
2628,
198,
220,
220,
220,
329,
357,
72,
11,
1438,
8,
287,
27056,
378,
7,
14933,
8,
198,
220,
220,
220,
220,
220,
220,
220,
5391,
796,
2628,
58,
72,
7131,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
15940,
796,
685,
27740,
62,
12985,
58,
17,
60,
329,
5391,
62,
12985,
287,
649,
62,
42854,
62,
24432,
58,
3672,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
279,
12985,
796,
308,
907,
71,
13,
19849,
13,
2860,
62,
42854,
62,
8094,
7,
27740,
11,
15940,
8,
198,
220,
220,
220,
220,
220,
220,
220,
308,
907,
71,
13,
19849,
13,
2617,
62,
42854,
62,
3672,
7,
27740,
11,
279,
12985,
11,
1438,
8,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1441,
503,
62,
27740,
62,
31499,
198,
437,
198,
198,
8818,
308,
907,
71,
62,
8094,
62,
18302,
14344,
62,
8310,
363,
434,
7,
15252,
62,
27740,
62,
31499,
3712,
38469,
90,
51,
29291,
90,
5317,
2624,
11,
5317,
2624,
92,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2891,
62,
27740,
62,
31499,
3712,
38469,
90,
51,
29291,
90,
5317,
2624,
11,
5317,
2624,
11709,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2587,
62,
71,
959,
9282,
3712,
38469,
90,
10100,
92,
796,
10903,
58,
12962,
198,
220,
220,
220,
1303,
3497,
477,
262,
3518,
2628,
198,
220,
220,
220,
1468,
62,
42854,
62,
24432,
796,
360,
713,
90,
10100,
11,
20650,
90,
51,
29291,
90,
5317,
2624,
11,
5317,
2624,
42535,
3419,
198,
220,
220,
220,
2628,
796,
308,
907,
71,
13,
19849,
13,
1136,
62,
42854,
62,
24432,
3419,
198,
220,
220,
220,
3891,
796,
685,
70,
907,
71,
13,
19849,
13,
1136,
62,
42854,
62,
3672,
7,
2164,
79,
58,
16,
4357,
1036,
79,
58,
17,
12962,
329,
1036,
79,
287,
2628,
60,
198,
220,
220,
220,
329,
357,
72,
11,
1438,
8,
287,
27056,
378,
7,
14933,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
658,
796,
308,
907,
71,
13,
19849,
13,
1136,
62,
298,
871,
62,
1640,
62,
42854,
62,
8094,
7,
24432,
58,
72,
7131,
16,
4357,
2628,
58,
72,
7131,
17,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
5391,
796,
2628,
58,
72,
7131,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1468,
62,
42854,
62,
24432,
58,
3672,
60,
796,
47527,
27740,
11,
920,
8,
329,
920,
287,
220,
658,
60,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1303,
24229,
434,
198,
220,
220,
220,
299,
658,
796,
4129,
7,
15252,
62,
27740,
62,
31499,
8,
1343,
4129,
7,
25981,
62,
27740,
62,
31499,
8,
198,
220,
220,
220,
2488,
10951,
366,
42974,
434,
278,
720,
77,
658,
12066,
1,
198,
220,
220,
220,
503,
62,
27740,
62,
31499,
11,
503,
62,
27740,
62,
31499,
62,
8899,
796,
308,
907,
71,
13,
19849,
13,
13966,
13,
8310,
363,
434,
7,
15252,
62,
27740,
62,
31499,
11,
2891,
62,
27740,
62,
31499,
8,
628,
220,
220,
220,
1303,
13610,
257,
22155,
286,
649,
3518,
2628,
1262,
262,
2560,
1200,
2776,
198,
220,
220,
220,
1303,
1022,
5128,
62,
27740,
62,
31499,
290,
503,
62,
27740,
62,
31499,
62,
8899,
13,
383,
2560,
379,
6376,
1312,
286,
5128,
62,
27740,
62,
31499,
220,
198,
220,
220,
220,
1303,
468,
1751,
503,
62,
27740,
62,
31499,
62,
8899,
58,
72,
60,
198,
220,
220,
220,
649,
62,
42854,
62,
24432,
796,
360,
713,
90,
10100,
11,
20650,
90,
51,
29291,
90,
5317,
2624,
11,
5317,
2624,
42535,
3419,
198,
220,
220,
220,
5128,
62,
27740,
62,
31499,
796,
410,
9246,
7,
15252,
62,
27740,
62,
31499,
11,
2891,
62,
27740,
62,
31499,
8,
198,
220,
220,
220,
1303,
1114,
1123,
3518,
1448,
198,
220,
220,
220,
329,
1438,
287,
3891,
198,
220,
220,
220,
220,
220,
220,
220,
649,
62,
42854,
62,
24432,
58,
3672,
60,
796,
309,
29291,
90,
5317,
2624,
11,
5317,
2624,
92,
21737,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1114,
1123,
286,
262,
5391,
15940,
287,
262,
3518,
1448,
198,
220,
220,
220,
220,
220,
220,
220,
329,
5391,
62,
12985,
287,
1468,
62,
42854,
62,
24432,
58,
3672,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1002,
262,
5391,
62,
12985,
373,
530,
286,
262,
12066,
287,
262,
24225,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
5391,
62,
12985,
18872,
230,
220,
5128,
62,
27740,
62,
31499,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3497,
663,
1751,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6376,
796,
1064,
11085,
7,
87,
3784,
87,
6624,
5391,
62,
12985,
11,
5128,
62,
27740,
62,
31499,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1751,
796,
503,
62,
27740,
62,
31499,
62,
8899,
58,
9630,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3060,
262,
1751,
284,
262,
649,
3518,
1448,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
1200,
287,
1751,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1200,
18872,
231,
220,
649,
62,
42854,
62,
24432,
58,
3672,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
3605,
62,
42854,
62,
24432,
58,
3672,
4357,
1200,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1002,
340,
2492,
470,
287,
262,
24225,
11,
645,
2458,
3306,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
3605,
62,
42854,
62,
24432,
58,
3672,
4357,
5391,
62,
12985,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1303,
17220,
1468,
2628,
290,
18305,
1096,
198,
220,
220,
220,
329,
1438,
287,
3891,
198,
220,
220,
220,
220,
220,
220,
220,
308,
907,
71,
13,
19849,
13,
28956,
62,
42854,
62,
3672,
7,
3672,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
24442,
366,
50,
24871,
2890,
2746,
1,
198,
220,
220,
220,
308,
907,
71,
13,
19849,
13,
13966,
13,
28869,
11413,
1096,
3419,
628,
220,
220,
220,
1303,
10854,
262,
2587,
18911,
611,
340,
7160,
523,
326,
1123,
9312,
468,
530,
198,
220,
220,
220,
1303,
393,
1342,
2587,
3518,
2628,
198,
220,
220,
220,
611,
657,
1279,
4129,
7,
33665,
62,
71,
959,
9282,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1429,
62,
33665,
62,
71,
959,
9282,
0,
7,
3605,
62,
42854,
62,
24432,
11,
2587,
62,
71,
959,
9282,
8,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1303,
13610,
649,
3518,
2628,
198,
220,
220,
220,
329,
357,
72,
11,
1438,
8,
287,
27056,
378,
7,
14933,
8,
198,
220,
220,
220,
220,
220,
220,
220,
5391,
796,
2628,
58,
72,
7131,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
15940,
796,
685,
27740,
62,
12985,
58,
17,
60,
329,
5391,
62,
12985,
287,
649,
62,
42854,
62,
24432,
58,
3672,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
279,
12985,
796,
308,
907,
71,
13,
19849,
13,
2860,
62,
42854,
62,
8094,
7,
27740,
11,
15940,
8,
198,
220,
220,
220,
220,
220,
220,
220,
308,
907,
71,
13,
19849,
13,
2617,
62,
42854,
62,
3672,
7,
27740,
11,
279,
12985,
11,
1438,
8,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1441,
503,
62,
27740,
62,
31499,
198,
437,
198
] | 2.352891 | 3,511 |
using Test;
using AdalmPluto;
@testset "libIIO/scan.jl" begin
# disable the assertions
toggleNoAssertions(true);
C_iio_has_backend("usb") || (@error "Library doesn't have the USB backend available. Skipping tests."; return;)
@testset "Scan context" begin
# C_iio_create_scan_context
@test (global scan_context = C_iio_create_scan_context("usb")) != C_NULL;
if scan_context == C_NULL
@error "C_iio_create_scan_context failed, skipping the remaining tests";
else
info = Ref{Ptr{Ptr{iio_context_info}}}(0);
# C_iio_scan_context_get_info_list
@test (global nb_contexts = C_iio_scan_context_get_info_list(scan_context, info)) > 0;
if nb_contexts < 0
@error "C_iio_scan_context_get_info_list failed, skipping the remaining tests";
C_iio_scan_context_destroy(scan_context);
elseif nb_contexts == 0
@warn "0 contexts found, skipping the remaining tests";
C_iio_context_info_list_free(info[]);
C_iio_scan_context_destroy(scan_context);
else
loaded_info = unsafe_load(info[], 1);
# C_iio_context_info_get_description
@test C_iio_context_info_get_description(loaded_info) != "";
# C_iio_context_info_get_uri
@test C_iio_context_info_get_uri(loaded_info) != "";
# C_iio_context_info_list_free
@test C_iio_context_info_list_free(info[]) === nothing;
# C_iio_scan_context_destroy
@test C_iio_scan_context_destroy(scan_context) === nothing;
end
end
end
# @testset "Scan block" begin
# # C_iio_create_scan_block
# @test (global scan_block = C_iio_create_scan_block("usb")) != C_NULL;
# if scan_block == C_NULL
# @error "C_iio_create_scan_block failed, skipping the remaining tests.";
# else
# # C_iio_scan_block_scan
# @test (global nb_contexts = C_iio_scan_block_scan(scan_block)) > 0;
# if nb_contexts < 0
# @error "C_iio_scan_block_scan failed, skipping the remaining tests";
# C_iio_scan_block_destroy(scan_block);
# elseif nb_contexts == 0
# @warn "0 contexts found, skipping the remaining tests";
# C_iio_scan_block_destroy(scan_block);
# else
# # C_iio_scan_block_get_info
# @test C_iio_scan_block_get_info(scan_block, UInt32(0)) != C_NULL;
# # C_iio_scan_block_destroy
# @test C_iio_scan_block_destroy(scan_block) === nothing;
# end
# end
# end
end
| [
3500,
6208,
26,
198,
198,
3500,
1215,
38182,
3646,
9390,
26,
198,
198,
31,
9288,
2617,
366,
8019,
3978,
46,
14,
35836,
13,
20362,
1,
2221,
198,
220,
220,
220,
1303,
15560,
262,
29965,
198,
220,
220,
220,
19846,
2949,
8021,
861,
507,
7,
7942,
1776,
198,
220,
220,
220,
327,
62,
72,
952,
62,
10134,
62,
1891,
437,
7203,
43319,
4943,
8614,
4275,
18224,
366,
23377,
1595,
470,
423,
262,
8450,
30203,
1695,
13,
3661,
4501,
5254,
526,
26,
1441,
26,
8,
628,
220,
220,
220,
2488,
9288,
2617,
366,
33351,
4732,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
327,
62,
72,
952,
62,
17953,
62,
35836,
62,
22866,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
357,
20541,
9367,
62,
22866,
796,
327,
62,
72,
952,
62,
17953,
62,
35836,
62,
22866,
7203,
43319,
48774,
14512,
327,
62,
33991,
26,
628,
220,
220,
220,
220,
220,
220,
220,
611,
9367,
62,
22866,
6624,
327,
62,
33991,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
18224,
366,
34,
62,
72,
952,
62,
17953,
62,
35836,
62,
22866,
4054,
11,
31017,
262,
5637,
5254,
8172,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
796,
6524,
90,
46745,
90,
46745,
90,
72,
952,
62,
22866,
62,
10951,
42535,
7,
15,
1776,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
327,
62,
72,
952,
62,
35836,
62,
22866,
62,
1136,
62,
10951,
62,
4868,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
357,
20541,
299,
65,
62,
22866,
82,
796,
327,
62,
72,
952,
62,
35836,
62,
22866,
62,
1136,
62,
10951,
62,
4868,
7,
35836,
62,
22866,
11,
7508,
4008,
1875,
657,
26,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
299,
65,
62,
22866,
82,
1279,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
18224,
366,
34,
62,
72,
952,
62,
35836,
62,
22866,
62,
1136,
62,
10951,
62,
4868,
4054,
11,
31017,
262,
5637,
5254,
8172,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
327,
62,
72,
952,
62,
35836,
62,
22866,
62,
41659,
7,
35836,
62,
22866,
1776,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
361,
299,
65,
62,
22866,
82,
6624,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
40539,
366,
15,
26307,
1043,
11,
31017,
262,
5637,
5254,
8172,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
327,
62,
72,
952,
62,
22866,
62,
10951,
62,
4868,
62,
5787,
7,
10951,
21737,
1776,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
327,
62,
72,
952,
62,
35836,
62,
22866,
62,
41659,
7,
35836,
62,
22866,
1776,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9639,
62,
10951,
796,
21596,
62,
2220,
7,
10951,
58,
4357,
352,
1776,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
327,
62,
72,
952,
62,
22866,
62,
10951,
62,
1136,
62,
11213,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
327,
62,
72,
952,
62,
22866,
62,
10951,
62,
1136,
62,
11213,
7,
14578,
62,
10951,
8,
14512,
366,
8172,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
327,
62,
72,
952,
62,
22866,
62,
10951,
62,
1136,
62,
9900,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
327,
62,
72,
952,
62,
22866,
62,
10951,
62,
1136,
62,
9900,
7,
14578,
62,
10951,
8,
14512,
366,
8172,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
327,
62,
72,
952,
62,
22866,
62,
10951,
62,
4868,
62,
5787,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
327,
62,
72,
952,
62,
22866,
62,
10951,
62,
4868,
62,
5787,
7,
10951,
58,
12962,
24844,
2147,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
327,
62,
72,
952,
62,
35836,
62,
22866,
62,
41659,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
327,
62,
72,
952,
62,
35836,
62,
22866,
62,
41659,
7,
35836,
62,
22866,
8,
24844,
2147,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1303,
2488,
9288,
2617,
366,
33351,
2512,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1303,
327,
62,
72,
952,
62,
17953,
62,
35836,
62,
9967,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2488,
9288,
357,
20541,
9367,
62,
9967,
796,
327,
62,
72,
952,
62,
17953,
62,
35836,
62,
9967,
7203,
43319,
48774,
14512,
327,
62,
33991,
26,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
9367,
62,
9967,
6624,
327,
62,
33991,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2488,
18224,
366,
34,
62,
72,
952,
62,
17953,
62,
35836,
62,
9967,
4054,
11,
31017,
262,
5637,
5254,
526,
26,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1303,
327,
62,
72,
952,
62,
35836,
62,
9967,
62,
35836,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2488,
9288,
357,
20541,
299,
65,
62,
22866,
82,
796,
327,
62,
72,
952,
62,
35836,
62,
9967,
62,
35836,
7,
35836,
62,
9967,
4008,
1875,
657,
26,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
299,
65,
62,
22866,
82,
1279,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2488,
18224,
366,
34,
62,
72,
952,
62,
35836,
62,
9967,
62,
35836,
4054,
11,
31017,
262,
5637,
5254,
8172,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
327,
62,
72,
952,
62,
35836,
62,
9967,
62,
41659,
7,
35836,
62,
9967,
1776,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2073,
361,
299,
65,
62,
22866,
82,
6624,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2488,
40539,
366,
15,
26307,
1043,
11,
31017,
262,
5637,
5254,
8172,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
327,
62,
72,
952,
62,
35836,
62,
9967,
62,
41659,
7,
35836,
62,
9967,
1776,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1303,
327,
62,
72,
952,
62,
35836,
62,
9967,
62,
1136,
62,
10951,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2488,
9288,
327,
62,
72,
952,
62,
35836,
62,
9967,
62,
1136,
62,
10951,
7,
35836,
62,
9967,
11,
471,
5317,
2624,
7,
15,
4008,
14512,
327,
62,
33991,
26,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1303,
327,
62,
72,
952,
62,
35836,
62,
9967,
62,
41659,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2488,
9288,
327,
62,
72,
952,
62,
35836,
62,
9967,
62,
41659,
7,
35836,
62,
9967,
8,
24844,
2147,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
886,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
886,
198,
220,
220,
220,
1303,
886,
628,
198,
437,
198
] | 1.997143 | 1,400 |
# check speed of new and old sparse filter
using Revise
using LarSurf
using LinearAlgebraicRepresentation
Lar = LinearAlgebraicRepresentation
using Plasm, SparseArrays
using Pandas
using Seaborn
using Dates
using Logging
using Profile
using ProfileView
b3, something = LarSurf.get_boundary3([30,30,30])
LarSurf.sparse_filter!(b3, 1, 1, 0)
LarSurf.sparse_filter_old!(b3, 1, 1, 0)
println("start")
@time LarSurf.sparse_filter!(b3, 1, 1, 0)
@time LarSurf.sparse_filter!(b3, 1, 1, 0)
@time LarSurf.sparse_filter!(b3, 1, 1, 0)
@time LarSurf.sparse_filter!(b3, 1, 1, 0)
@time LarSurf.sparse_filter!(b3, 1, 1, 0)
println("asdf")
# b3 = LarSurf.get_boundary3([30,30,30])
@time LarSurf.sparse_filter_old!(b3, 1, 1, 0)
# b3 = LarSurf.get_boundary3([30,30,30])
@time LarSurf.sparse_filter_old!(b3, 1, 1, 0)
@time LarSurf.sparse_filter_old!(b3, 1, 1, 0)
@time LarSurf.sparse_filter_old!(b3, 1, 1, 0)
@time LarSurf.sparse_filter_old!(b3, 1, 1, 0)
| [
2,
2198,
2866,
286,
649,
290,
1468,
29877,
8106,
198,
198,
3500,
5416,
786,
198,
3500,
25577,
14214,
69,
198,
3500,
44800,
2348,
29230,
291,
40171,
341,
198,
43,
283,
796,
44800,
2348,
29230,
291,
40171,
341,
198,
3500,
1345,
8597,
11,
1338,
17208,
3163,
20477,
198,
3500,
16492,
292,
198,
3500,
1001,
397,
1211,
198,
3500,
44712,
198,
3500,
5972,
2667,
198,
198,
3500,
13118,
198,
3500,
13118,
7680,
628,
198,
65,
18,
11,
1223,
796,
25577,
14214,
69,
13,
1136,
62,
7784,
560,
18,
26933,
1270,
11,
1270,
11,
1270,
12962,
198,
43,
283,
14214,
69,
13,
82,
29572,
62,
24455,
0,
7,
65,
18,
11,
352,
11,
352,
11,
657,
8,
198,
43,
283,
14214,
69,
13,
82,
29572,
62,
24455,
62,
727,
0,
7,
65,
18,
11,
352,
11,
352,
11,
657,
8,
198,
35235,
7203,
9688,
4943,
198,
31,
2435,
25577,
14214,
69,
13,
82,
29572,
62,
24455,
0,
7,
65,
18,
11,
352,
11,
352,
11,
657,
8,
198,
31,
2435,
25577,
14214,
69,
13,
82,
29572,
62,
24455,
0,
7,
65,
18,
11,
352,
11,
352,
11,
657,
8,
198,
31,
2435,
25577,
14214,
69,
13,
82,
29572,
62,
24455,
0,
7,
65,
18,
11,
352,
11,
352,
11,
657,
8,
198,
31,
2435,
25577,
14214,
69,
13,
82,
29572,
62,
24455,
0,
7,
65,
18,
11,
352,
11,
352,
11,
657,
8,
198,
31,
2435,
25577,
14214,
69,
13,
82,
29572,
62,
24455,
0,
7,
65,
18,
11,
352,
11,
352,
11,
657,
8,
198,
198,
35235,
7203,
292,
7568,
4943,
198,
2,
275,
18,
796,
25577,
14214,
69,
13,
1136,
62,
7784,
560,
18,
26933,
1270,
11,
1270,
11,
1270,
12962,
198,
31,
2435,
25577,
14214,
69,
13,
82,
29572,
62,
24455,
62,
727,
0,
7,
65,
18,
11,
352,
11,
352,
11,
657,
8,
198,
2,
275,
18,
796,
25577,
14214,
69,
13,
1136,
62,
7784,
560,
18,
26933,
1270,
11,
1270,
11,
1270,
12962,
198,
31,
2435,
25577,
14214,
69,
13,
82,
29572,
62,
24455,
62,
727,
0,
7,
65,
18,
11,
352,
11,
352,
11,
657,
8,
198,
31,
2435,
25577,
14214,
69,
13,
82,
29572,
62,
24455,
62,
727,
0,
7,
65,
18,
11,
352,
11,
352,
11,
657,
8,
198,
31,
2435,
25577,
14214,
69,
13,
82,
29572,
62,
24455,
62,
727,
0,
7,
65,
18,
11,
352,
11,
352,
11,
657,
8,
198,
31,
2435,
25577,
14214,
69,
13,
82,
29572,
62,
24455,
62,
727,
0,
7,
65,
18,
11,
352,
11,
352,
11,
657,
8,
198
] | 2.225118 | 422 |
module PySCF
using PyCall: pyimport
pyscf = pyimport("pyscf")
mp = pyimport("pyscf.mp") # Had to import mp alone ??!
cc = pyimport("pyscf.cc") # Had to import mp alone ??!
# Utilities
function pyscf_atom_from_xyz(fpath::String)
join(split(read(open(fpath),String),"\n")[3:end],"\n")
end
function index(i::Int,j::Int)
m,M = minmax(i-1,j-1)
M*(M+1)÷2 + m + 1
end
# Compound indices ijkl
function get_4idx(i::Int,j::Int,k::Int,l::Int)
ij = index(i,j)
kl = index(k,l)
index(ij,kl)
end
# Calculation of the electronic structure of a molecule
# with the help of PySCF to calculate AO integrals and hold molecular data
# * Restricted Hartree-Fock
# * Møller-Plesset order 2
# * Coupled Cluster Singles and Doubles
# Calculates the energy of any molecule.
# Instructions at https://github.com/CrawfordGroup/ProgrammingProjects
# may be of interest.
using Formatting: printfmt
using LinearAlgebra: Diagonal, Hermitian, eigen, norm, tr, diag, dot
include("diis.jl")
include("scf.jl")
include("mp2.jl")
include("ccsd.jl")
include("properties.jl")
end
| [
198,
21412,
9485,
6173,
37,
198,
198,
3500,
9485,
14134,
25,
12972,
11748,
198,
198,
79,
893,
12993,
796,
12972,
11748,
7203,
79,
893,
12993,
4943,
198,
3149,
796,
12972,
11748,
7203,
79,
893,
12993,
13,
3149,
4943,
220,
220,
1303,
11161,
284,
1330,
29034,
3436,
19153,
0,
198,
535,
796,
12972,
11748,
7203,
79,
893,
12993,
13,
535,
4943,
1303,
11161,
284,
1330,
29034,
3436,
19153,
0,
198,
198,
2,
41086,
198,
8818,
279,
893,
12993,
62,
37696,
62,
6738,
62,
5431,
89,
7,
69,
6978,
3712,
10100,
8,
198,
220,
220,
4654,
7,
35312,
7,
961,
7,
9654,
7,
69,
6978,
828,
10100,
27267,
59,
77,
4943,
58,
18,
25,
437,
17241,
59,
77,
4943,
198,
437,
198,
198,
8818,
6376,
7,
72,
3712,
5317,
11,
73,
3712,
5317,
8,
198,
220,
220,
285,
11,
44,
796,
949,
9806,
7,
72,
12,
16,
11,
73,
12,
16,
8,
198,
220,
220,
337,
9,
7,
44,
10,
16,
8,
127,
115,
17,
1343,
285,
1343,
352,
198,
437,
198,
198,
2,
3082,
633,
36525,
1312,
73,
41582,
198,
8818,
651,
62,
19,
312,
87,
7,
72,
3712,
5317,
11,
73,
3712,
5317,
11,
74,
3712,
5317,
11,
75,
3712,
5317,
8,
198,
220,
220,
1312,
73,
796,
6376,
7,
72,
11,
73,
8,
198,
220,
220,
479,
75,
796,
6376,
7,
74,
11,
75,
8,
198,
220,
220,
6376,
7,
2926,
11,
41582,
8,
198,
437,
198,
198,
2,
2199,
14902,
286,
262,
7914,
4645,
286,
257,
27756,
198,
2,
351,
262,
1037,
286,
9485,
6173,
37,
284,
15284,
317,
46,
4132,
30691,
290,
1745,
18955,
1366,
198,
2,
1635,
8324,
20941,
11345,
631,
12,
37,
735,
198,
2,
1635,
337,
24172,
6051,
12,
47,
1203,
316,
1502,
362,
198,
2,
1635,
15062,
10137,
38279,
5573,
829,
290,
5728,
7689,
198,
2,
27131,
689,
262,
2568,
286,
597,
27756,
13,
198,
2,
27759,
379,
3740,
1378,
12567,
13,
785,
14,
34,
1831,
3841,
13247,
14,
15167,
2229,
16775,
82,
198,
2,
743,
307,
286,
1393,
13,
198,
198,
3500,
18980,
889,
25,
30812,
16762,
198,
3500,
44800,
2348,
29230,
25,
6031,
27923,
11,
2332,
2781,
666,
11,
304,
9324,
11,
2593,
11,
491,
11,
2566,
363,
11,
16605,
198,
198,
17256,
7203,
10989,
271,
13,
20362,
4943,
198,
17256,
7203,
1416,
69,
13,
20362,
4943,
198,
17256,
7203,
3149,
17,
13,
20362,
4943,
198,
17256,
7203,
535,
21282,
13,
20362,
4943,
198,
17256,
7203,
48310,
13,
20362,
4943,
198,
198,
437,
198
] | 2.590799 | 413 |
# Code used for latency profiling
using StatsBase, Statistics, Dates
struct ProfilerInput
worker::Int
θ::Float64
q::Float64
timestamp::Time
comp_delay::Float64
comm_delay::Float64
end
struct ProfilerOutput
worker::Int # worker index
θ::Float64 # fraction of the dataset stored by this worker, averaged over all input samples that make up this output
q::Float64 # fraction of local data processed per iteration, averaged over all input samples that make up this output
comp_mc::Float64 # = (mean comp. delay) / (θ*q)
comp_vc::Float64 # = (var of comp. delay) / (θ*q)
comm_mc::Float64 # = mean comm. delay
comm_vc::Float64 # = var of comm. delay
end
Base.isless(p::Pair{Time, CodedComputing.ProfilerInput}, q::Pair{Time, CodedComputing.ProfilerInput}) = isless(first(p), first(q))
function setup_profiler_channels(;chin_size=200, chout_size=200)
chin = ConcurrentCircularBuffer{ProfilerInput}(chin_size)
chout = ConcurrentCircularBuffer{ProfilerOutput}(chout_size)
chin, chout
end
function StatsBase.var(f::Function, itr)
g = (x) -> f(x)^2
mean(g, itr) - mean(f, itr)^2
end
"""
Remove all values at the end of the window older than windowsize, and return the number of
elements removed.
"""
function Base.filter!(w::CircularBuffer{ProfilerInput}; windowsize)
rv = 0
while length(w) > 0 && (w[1].timestamp - w[end].timestamp) > windowsize
pop!(w)
rv += 1
end
rv
end
"""
Return a view into the elements of w in beween the qlower and qupper quantiles.
"""
function comp_quantile_view(w::CircularBuffer{ProfilerInput}, buffer::Vector{ProfilerInput}, qlower::Real, qupper::Real)
0 <= qlower <= qupper <= 1.0 || throw(ArgumentError("qlower is $qlower and qupper is $qupper"))
n = length(w)
for i in 1:n
buffer[i] = w[i]
end
@views sort!(buffer[1:n], by=(x)->getfield(x, :comp_delay), alg=QuickSort)
il = max(1, ceil(Int, n*qlower))
iu = min(length(buffer), floor(Int, n*qupper))
view(buffer, il:iu)
end
"""
Return a view into the elements of w in beween the qlower and qupper quantiles.
"""
function comm_quantile_view(w::CircularBuffer{ProfilerInput}, buffer::Vector{ProfilerInput}, qlower::Real, qupper::Real)
0 <= qlower <= qupper <= 1.0 || throw(ArgumentError("qlower is $qlower and qupper is $qupper"))
n = length(w)
for i in 1:n
buffer[i] = w[i]
end
@views sort!(buffer[1:n], by=(x)->getfield(x, :comm_delay), alg=QuickSort)
il = max(1, ceil(Int, n*qlower))
iu = min(length(buffer), floor(Int, n*qupper))
view(buffer, il:iu)
end
function comp_mean_var(w::CircularBuffer{ProfilerInput}; buffer::Vector{ProfilerInput}, qlower::Real, qupper::Real, minsamples::Integer)
vs = comp_quantile_view(w, buffer, qlower, qupper)
if length(vs) < minsamples
return NaN, NaN
end
m = mean((x)->getfield(x, :comp_delay) / (getfield(x, :θ) * getfield(x, :q)), vs)
v = var((x)->getfield(x, :comp_delay) / (getfield(x, :θ) * getfield(x, :q)), vs)
m, v
end
function comm_mean_var(w::CircularBuffer{ProfilerInput}; buffer::Vector{ProfilerInput}, qlower::Real, qupper::Real, minsamples::Integer)
vs = comm_quantile_view(w, buffer, qlower, qupper)
if length(vs) < minsamples
return NaN, NaN
end
m = mean((x)->getfield(x, :comm_delay), vs)
v = var((x)->getfield(x, :comm_delay), vs)
m, v
end
function process_window(w::CircularBuffer{ProfilerInput}, i::Integer; buffer::Vector{ProfilerInput}, qlower::Real, qupper::Real, minsamples::Integer)::ProfilerOutput
length(w) > 0 || throw(ArgumentError("window must not be empty"))
θ = mean((x)->getfield(x, :θ), w)
q = mean((x)->getfield(x, :q), w)
comp_mc, comp_vc = comp_mean_var(w; buffer, qlower, qupper, minsamples)
comm_mc, comm_vc = comm_mean_var(w; buffer, qlower, qupper, minsamples)
ProfilerOutput(i, θ, q, comp_mc, comp_vc, comm_mc, comm_vc)
end
"""
Latency profiling sub-system. Receives latency observations on `chin`, computes the mean and
variance over a moving time window of length `windowsize`, and sends the results on `chout`.
"""
function latency_profiler(chin::ConcurrentCircularBuffer{ProfilerInput}, chout::ConcurrentCircularBuffer{ProfilerOutput}; nworkers::Integer, qlower::Real=0.1, qupper::Real=0.9, buffersize::Integer=1000, minsamples::Integer=10, windowsize::Dates.AbstractTime=Second(60))
0 < nworkers || throw(ArgumentError("nworkers is $nworkers"))
0 <= qlower <= qupper <= 1.0 || throw(ArgumentError("qlower is $qlower and qupper is $qupper"))
@info "latency_profiler task started with windowsize $windowsize and minsamples $minsamples on thread $(Threads.threadid())"
# maintain a window of latency samples for each worker
ws = [CircularBuffer{CodedComputing.ProfilerInput}(buffersize) for _ in 1:nworkers]
buffer = Vector{ProfilerInput}(undef, buffersize)
# process incoming latency samples
while isopen(chin)
# consume all values currently in the channel
try
vin::ProfilerInput = take!(chin)
if !isnan(vin.comp_delay) && !isnan(vin.comm_delay)
pushfirst!(ws[vin.worker], vin)
end
catch e
if e isa InvalidStateException
@info "error taking value from input channel" e
break
else
rethrow()
end
end
while isready(chin)
try
vin::ProfilerInput = take!(chin)
if !isnan(vin.comp_delay) && !isnan(vin.comm_delay)
pushfirst!(ws[vin.worker], vin)
end
catch e
if e isa InvalidStateException
@info "error taking value from input channel" e
break
else
rethrow()
end
end
end
# filter out values older than windowsize
for i in 1:nworkers
filter!(ws[i]; windowsize)
end
# compute updated statistics for all workers
for i in 1:nworkers
if length(ws[i]) == 0
continue
end
vout = process_window(ws[i], i; buffer, qlower, qupper, minsamples)
if isnan(vout.θ) || isnan(vout.q) || isnan(vout.comp_mc) || isnan(vout.comp_vc) || isnan(vout.comm_mc) || isnan(vout.comm_vc)
continue
end
if vout.comp_mc < 0 || vout.comp_vc < 0 || vout.comm_mc < 0 || vout.comm_vc < 0
continue
end
if isapprox(vout.comp_mc, 0) || isapprox(vout.comp_vc, 0) || isapprox(vout.comm_mc, 0) || isapprox(vout.comm_vc, 0)
continue
end
try
push!(chout, vout)
catch e
if e isa InvalidStateException
@info "error pushing value into output channel" e
break
else
rethrow()
end
end
end
end
@info "latency_profiler task finished"
end | [
2,
6127,
973,
329,
24812,
31582,
198,
3500,
20595,
14881,
11,
14370,
11,
44712,
198,
198,
7249,
4415,
5329,
20560,
198,
220,
220,
220,
8383,
3712,
5317,
198,
220,
220,
220,
7377,
116,
3712,
43879,
2414,
198,
220,
220,
220,
10662,
3712,
43879,
2414,
198,
220,
220,
220,
41033,
3712,
7575,
220,
220,
220,
220,
198,
220,
220,
220,
552,
62,
40850,
3712,
43879,
2414,
198,
220,
220,
220,
725,
62,
40850,
3712,
43879,
2414,
220,
220,
220,
220,
198,
437,
198,
198,
7249,
4415,
5329,
26410,
198,
220,
220,
220,
8383,
3712,
5317,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
8383,
6376,
198,
220,
220,
220,
7377,
116,
3712,
43879,
2414,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
13390,
286,
262,
27039,
8574,
416,
428,
8383,
11,
16449,
625,
477,
5128,
8405,
326,
787,
510,
428,
5072,
198,
220,
220,
220,
10662,
3712,
43879,
2414,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
13390,
286,
1957,
1366,
13686,
583,
24415,
11,
16449,
625,
477,
5128,
8405,
326,
787,
510,
428,
5072,
198,
220,
220,
220,
552,
62,
23209,
3712,
43879,
2414,
220,
220,
220,
1303,
796,
357,
32604,
552,
13,
5711,
8,
1220,
357,
138,
116,
9,
80,
8,
198,
220,
220,
220,
552,
62,
28435,
3712,
43879,
2414,
220,
220,
220,
1303,
796,
357,
7785,
286,
552,
13,
5711,
8,
1220,
357,
138,
116,
9,
80,
8,
198,
220,
220,
220,
725,
62,
23209,
3712,
43879,
2414,
220,
220,
220,
1303,
796,
1612,
725,
13,
5711,
198,
220,
220,
220,
725,
62,
28435,
3712,
43879,
2414,
220,
220,
220,
1303,
796,
1401,
286,
725,
13,
5711,
198,
437,
198,
198,
14881,
13,
271,
1203,
7,
79,
3712,
47,
958,
90,
7575,
11,
327,
9043,
5377,
48074,
13,
15404,
5329,
20560,
5512,
10662,
3712,
47,
958,
90,
7575,
11,
327,
9043,
5377,
48074,
13,
15404,
5329,
20560,
30072,
796,
318,
1203,
7,
11085,
7,
79,
828,
717,
7,
80,
4008,
198,
198,
8818,
9058,
62,
5577,
5329,
62,
354,
8961,
7,
26,
24658,
62,
7857,
28,
2167,
11,
442,
448,
62,
7857,
28,
2167,
8,
198,
220,
220,
220,
22531,
796,
13223,
6657,
31560,
934,
28632,
90,
15404,
5329,
20560,
92,
7,
24658,
62,
7857,
8,
198,
220,
220,
220,
442,
448,
796,
13223,
6657,
31560,
934,
28632,
90,
15404,
5329,
26410,
92,
7,
354,
448,
62,
7857,
8,
198,
220,
220,
220,
22531,
11,
442,
448,
198,
437,
198,
198,
8818,
20595,
14881,
13,
7785,
7,
69,
3712,
22203,
11,
340,
81,
8,
198,
220,
220,
220,
308,
796,
357,
87,
8,
4613,
277,
7,
87,
8,
61,
17,
198,
220,
220,
220,
1612,
7,
70,
11,
340,
81,
8,
532,
1612,
7,
69,
11,
340,
81,
8,
61,
17,
198,
437,
198,
198,
37811,
198,
198,
27914,
477,
3815,
379,
262,
886,
286,
262,
4324,
4697,
621,
9168,
1096,
11,
290,
1441,
262,
1271,
286,
220,
198,
68,
3639,
4615,
13,
198,
37811,
198,
8818,
7308,
13,
24455,
0,
7,
86,
3712,
31560,
934,
28632,
90,
15404,
5329,
20560,
19629,
9168,
1096,
8,
198,
220,
220,
220,
374,
85,
796,
657,
198,
220,
220,
220,
981,
4129,
7,
86,
8,
1875,
657,
11405,
357,
86,
58,
16,
4083,
16514,
27823,
532,
266,
58,
437,
4083,
16514,
27823,
8,
1875,
9168,
1096,
198,
220,
220,
220,
220,
220,
220,
220,
1461,
0,
7,
86,
8,
198,
220,
220,
220,
220,
220,
220,
220,
374,
85,
15853,
352,
198,
220,
220,
220,
886,
198,
220,
220,
220,
374,
85,
198,
437,
198,
198,
37811,
198,
198,
13615,
257,
1570,
656,
262,
4847,
286,
266,
287,
307,
975,
262,
10662,
21037,
290,
627,
2848,
5554,
2915,
13,
198,
37811,
198,
8818,
552,
62,
40972,
576,
62,
1177,
7,
86,
3712,
31560,
934,
28632,
90,
15404,
5329,
20560,
5512,
11876,
3712,
38469,
90,
15404,
5329,
20560,
5512,
10662,
21037,
3712,
15633,
11,
627,
2848,
3712,
15633,
8,
198,
220,
220,
220,
657,
19841,
10662,
21037,
19841,
627,
2848,
19841,
352,
13,
15,
8614,
3714,
7,
28100,
1713,
12331,
7203,
13976,
789,
318,
720,
13976,
789,
290,
627,
2848,
318,
720,
421,
2848,
48774,
198,
220,
220,
220,
299,
796,
4129,
7,
86,
8,
198,
220,
220,
220,
329,
1312,
287,
352,
25,
77,
198,
220,
220,
220,
220,
220,
220,
220,
11876,
58,
72,
60,
796,
266,
58,
72,
60,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
33571,
3297,
0,
7,
22252,
58,
16,
25,
77,
4357,
416,
16193,
87,
8,
3784,
1136,
3245,
7,
87,
11,
1058,
5589,
62,
40850,
828,
435,
70,
28,
21063,
42758,
8,
198,
220,
220,
220,
4229,
796,
3509,
7,
16,
11,
2906,
346,
7,
5317,
11,
299,
9,
13976,
789,
4008,
198,
220,
220,
220,
1312,
84,
796,
949,
7,
13664,
7,
22252,
828,
4314,
7,
5317,
11,
299,
9,
421,
2848,
4008,
198,
220,
220,
220,
1570,
7,
22252,
11,
4229,
25,
16115,
8,
198,
437,
198,
198,
37811,
198,
198,
13615,
257,
1570,
656,
262,
4847,
286,
266,
287,
307,
975,
262,
10662,
21037,
290,
627,
2848,
5554,
2915,
13,
198,
37811,
198,
8818,
725,
62,
40972,
576,
62,
1177,
7,
86,
3712,
31560,
934,
28632,
90,
15404,
5329,
20560,
5512,
11876,
3712,
38469,
90,
15404,
5329,
20560,
5512,
10662,
21037,
3712,
15633,
11,
627,
2848,
3712,
15633,
8,
198,
220,
220,
220,
657,
19841,
10662,
21037,
19841,
627,
2848,
19841,
352,
13,
15,
8614,
3714,
7,
28100,
1713,
12331,
7203,
13976,
789,
318,
720,
13976,
789,
290,
627,
2848,
318,
720,
421,
2848,
48774,
198,
220,
220,
220,
299,
796,
4129,
7,
86,
8,
198,
220,
220,
220,
329,
1312,
287,
352,
25,
77,
198,
220,
220,
220,
220,
220,
220,
220,
11876,
58,
72,
60,
796,
266,
58,
72,
60,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
33571,
3297,
0,
7,
22252,
58,
16,
25,
77,
4357,
416,
16193,
87,
8,
3784,
1136,
3245,
7,
87,
11,
1058,
9503,
62,
40850,
828,
435,
70,
28,
21063,
42758,
8,
198,
220,
220,
220,
4229,
796,
3509,
7,
16,
11,
2906,
346,
7,
5317,
11,
299,
9,
13976,
789,
4008,
198,
220,
220,
220,
1312,
84,
796,
949,
7,
13664,
7,
22252,
828,
4314,
7,
5317,
11,
299,
9,
421,
2848,
4008,
198,
220,
220,
220,
1570,
7,
22252,
11,
4229,
25,
16115,
8,
198,
437,
198,
198,
8818,
552,
62,
32604,
62,
7785,
7,
86,
3712,
31560,
934,
28632,
90,
15404,
5329,
20560,
19629,
11876,
3712,
38469,
90,
15404,
5329,
20560,
5512,
10662,
21037,
3712,
15633,
11,
627,
2848,
3712,
15633,
11,
23550,
12629,
3712,
46541,
8,
198,
220,
220,
220,
3691,
796,
552,
62,
40972,
576,
62,
1177,
7,
86,
11,
11876,
11,
10662,
21037,
11,
627,
2848,
8,
198,
220,
220,
220,
611,
4129,
7,
14259,
8,
1279,
23550,
12629,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
11013,
45,
11,
11013,
45,
198,
220,
220,
220,
886,
198,
220,
220,
220,
285,
796,
1612,
19510,
87,
8,
3784,
1136,
3245,
7,
87,
11,
1058,
5589,
62,
40850,
8,
1220,
357,
1136,
3245,
7,
87,
11,
1058,
138,
116,
8,
1635,
651,
3245,
7,
87,
11,
1058,
80,
36911,
3691,
8,
198,
220,
220,
220,
410,
796,
1401,
19510,
87,
8,
3784,
1136,
3245,
7,
87,
11,
1058,
5589,
62,
40850,
8,
1220,
357,
1136,
3245,
7,
87,
11,
1058,
138,
116,
8,
1635,
651,
3245,
7,
87,
11,
1058,
80,
36911,
3691,
8,
198,
220,
220,
220,
285,
11,
410,
198,
437,
198,
198,
8818,
725,
62,
32604,
62,
7785,
7,
86,
3712,
31560,
934,
28632,
90,
15404,
5329,
20560,
19629,
11876,
3712,
38469,
90,
15404,
5329,
20560,
5512,
10662,
21037,
3712,
15633,
11,
627,
2848,
3712,
15633,
11,
23550,
12629,
3712,
46541,
8,
198,
220,
220,
220,
3691,
796,
725,
62,
40972,
576,
62,
1177,
7,
86,
11,
11876,
11,
10662,
21037,
11,
627,
2848,
8,
198,
220,
220,
220,
611,
4129,
7,
14259,
8,
1279,
23550,
12629,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
11013,
45,
11,
11013,
45,
198,
220,
220,
220,
886,
198,
220,
220,
220,
285,
796,
1612,
19510,
87,
8,
3784,
1136,
3245,
7,
87,
11,
1058,
9503,
62,
40850,
828,
3691,
8,
198,
220,
220,
220,
410,
796,
1401,
19510,
87,
8,
3784,
1136,
3245,
7,
87,
11,
1058,
9503,
62,
40850,
828,
3691,
8,
198,
220,
220,
220,
285,
11,
410,
198,
437,
198,
198,
8818,
1429,
62,
17497,
7,
86,
3712,
31560,
934,
28632,
90,
15404,
5329,
20560,
5512,
1312,
3712,
46541,
26,
11876,
3712,
38469,
90,
15404,
5329,
20560,
5512,
10662,
21037,
3712,
15633,
11,
627,
2848,
3712,
15633,
11,
23550,
12629,
3712,
46541,
2599,
25,
15404,
5329,
26410,
198,
220,
220,
220,
4129,
7,
86,
8,
1875,
657,
8614,
3714,
7,
28100,
1713,
12331,
7203,
17497,
1276,
407,
307,
6565,
48774,
198,
220,
220,
220,
7377,
116,
796,
1612,
19510,
87,
8,
3784,
1136,
3245,
7,
87,
11,
1058,
138,
116,
828,
266,
8,
198,
220,
220,
220,
10662,
796,
1612,
19510,
87,
8,
3784,
1136,
3245,
7,
87,
11,
1058,
80,
828,
266,
8,
198,
220,
220,
220,
552,
62,
23209,
11,
552,
62,
28435,
796,
552,
62,
32604,
62,
7785,
7,
86,
26,
11876,
11,
10662,
21037,
11,
627,
2848,
11,
23550,
12629,
8,
198,
220,
220,
220,
725,
62,
23209,
11,
725,
62,
28435,
796,
725,
62,
32604,
62,
7785,
7,
86,
26,
11876,
11,
10662,
21037,
11,
627,
2848,
11,
23550,
12629,
8,
198,
220,
220,
220,
4415,
5329,
26410,
7,
72,
11,
7377,
116,
11,
10662,
11,
552,
62,
23209,
11,
552,
62,
28435,
11,
725,
62,
23209,
11,
725,
62,
28435,
8,
198,
437,
198,
198,
37811,
198,
198,
24220,
1387,
31582,
850,
12,
10057,
13,
19520,
1083,
24812,
13050,
319,
4600,
24658,
47671,
552,
1769,
262,
1612,
290,
220,
198,
25641,
590,
625,
257,
3867,
640,
4324,
286,
4129,
4600,
28457,
1096,
47671,
290,
12800,
262,
2482,
319,
4600,
354,
448,
44646,
198,
37811,
198,
8818,
24812,
62,
5577,
5329,
7,
24658,
3712,
3103,
14421,
31560,
934,
28632,
90,
15404,
5329,
20560,
5512,
442,
448,
3712,
3103,
14421,
31560,
934,
28632,
90,
15404,
5329,
26410,
19629,
299,
22896,
3712,
46541,
11,
10662,
21037,
3712,
15633,
28,
15,
13,
16,
11,
627,
2848,
3712,
15633,
28,
15,
13,
24,
11,
39334,
1096,
3712,
46541,
28,
12825,
11,
23550,
12629,
3712,
46541,
28,
940,
11,
9168,
1096,
3712,
35,
689,
13,
23839,
7575,
28,
12211,
7,
1899,
4008,
198,
220,
220,
220,
657,
1279,
299,
22896,
8614,
3714,
7,
28100,
1713,
12331,
7203,
77,
22896,
318,
720,
77,
22896,
48774,
198,
220,
220,
220,
657,
19841,
10662,
21037,
19841,
627,
2848,
19841,
352,
13,
15,
8614,
3714,
7,
28100,
1713,
12331,
7203,
13976,
789,
318,
720,
13976,
789,
290,
627,
2848,
318,
720,
421,
2848,
48774,
198,
220,
220,
220,
2488,
10951,
366,
15460,
1387,
62,
5577,
5329,
4876,
2067,
351,
9168,
1096,
720,
28457,
1096,
290,
23550,
12629,
720,
42951,
12629,
319,
4704,
29568,
16818,
82,
13,
16663,
312,
3419,
16725,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
5529,
257,
4324,
286,
24812,
8405,
329,
1123,
8383,
198,
220,
220,
220,
266,
82,
796,
685,
31560,
934,
28632,
90,
34,
9043,
5377,
48074,
13,
15404,
5329,
20560,
92,
7,
36873,
364,
1096,
8,
329,
4808,
287,
352,
25,
77,
22896,
60,
198,
220,
220,
220,
11876,
796,
20650,
90,
15404,
5329,
20560,
92,
7,
917,
891,
11,
39334,
1096,
8,
628,
220,
220,
220,
1303,
1429,
15619,
24812,
8405,
198,
220,
220,
220,
981,
318,
9654,
7,
24658,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
15000,
477,
3815,
3058,
287,
262,
6518,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
410,
259,
3712,
15404,
5329,
20560,
796,
1011,
0,
7,
24658,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
5145,
271,
12647,
7,
7114,
13,
5589,
62,
40850,
8,
11405,
5145,
271,
12647,
7,
7114,
13,
9503,
62,
40850,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
11085,
0,
7,
18504,
58,
7114,
13,
28816,
4357,
410,
259,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
4929,
304,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
304,
318,
64,
17665,
9012,
16922,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
18224,
2263,
1988,
422,
5128,
6518,
1,
304,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
302,
16939,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
886,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
981,
318,
1493,
7,
24658,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
410,
259,
3712,
15404,
5329,
20560,
796,
1011,
0,
7,
24658,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
5145,
271,
12647,
7,
7114,
13,
5589,
62,
40850,
8,
11405,
5145,
271,
12647,
7,
7114,
13,
9503,
62,
40850,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
11085,
0,
7,
18504,
58,
7114,
13,
28816,
4357,
410,
259,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4929,
304,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
304,
318,
64,
17665,
9012,
16922,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
18224,
2263,
1988,
422,
5128,
6518,
1,
304,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
302,
16939,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
8106,
503,
3815,
4697,
621,
9168,
1096,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
352,
25,
77,
22896,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8106,
0,
7,
18504,
58,
72,
11208,
9168,
1096,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
24061,
6153,
7869,
329,
477,
3259,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
352,
25,
77,
22896,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4129,
7,
18504,
58,
72,
12962,
6624,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
410,
448,
796,
1429,
62,
17497,
7,
18504,
58,
72,
4357,
1312,
26,
11876,
11,
10662,
21037,
11,
627,
2848,
11,
23550,
12629,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2125,
272,
7,
85,
448,
13,
138,
116,
8,
8614,
2125,
272,
7,
85,
448,
13,
80,
8,
8614,
2125,
272,
7,
85,
448,
13,
5589,
62,
23209,
8,
8614,
2125,
272,
7,
85,
448,
13,
5589,
62,
28435,
8,
8614,
2125,
272,
7,
85,
448,
13,
9503,
62,
23209,
8,
8614,
2125,
272,
7,
85,
448,
13,
9503,
62,
28435,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
410,
448,
13,
5589,
62,
23209,
1279,
657,
8614,
410,
448,
13,
5589,
62,
28435,
1279,
657,
8614,
410,
448,
13,
9503,
62,
23209,
1279,
657,
8614,
410,
448,
13,
9503,
62,
28435,
1279,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
1324,
13907,
7,
85,
448,
13,
5589,
62,
23209,
11,
657,
8,
8614,
318,
1324,
13907,
7,
85,
448,
13,
5589,
62,
28435,
11,
657,
8,
8614,
318,
1324,
13907,
7,
85,
448,
13,
9503,
62,
23209,
11,
657,
8,
8614,
318,
1324,
13907,
7,
85,
448,
13,
9503,
62,
28435,
11,
657,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
354,
448,
11,
410,
448,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4929,
304,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
304,
318,
64,
17665,
9012,
16922,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
18224,
7796,
1988,
656,
5072,
6518,
1,
304,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
302,
16939,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
10951,
366,
15460,
1387,
62,
5577,
5329,
4876,
5201,
1,
198,
437
] | 2.246359 | 3,227 |
# Names follow:
# https://draculatheme.com/contribute#color-palette
dracula_palette = [
colorant"#8be9fd" # Cyan
colorant"#ff79c6" # Pink
colorant"#50fa7b" # Green
colorant"#bd93f9" # Purple
colorant"#ffb86c" # Orange
colorant"#ff5555" # Red
colorant"#f1fa8c" # Yellow
colorant"#6272a4" # Comment
]
dracula_bg = colorant"#282a36"
dracula_fg = colorant"#f8f8f2"
_themes[:dracula] = PlotTheme(
bg = dracula_bg,
bginside = colorant"#30343B",
fg = dracula_fg,
fgtext = dracula_fg,
fgguide = dracula_fg,
fglegend = dracula_fg,
legendfontcolor = dracula_fg,
legendtitlefontcolor = dracula_fg,
titlefontcolor = dracula_fg,
palette = expand_palette(dracula_bg, dracula_palette),
colorgradient = :viridis
)
| [
2,
28531,
1061,
25,
198,
2,
3740,
1378,
7109,
330,
377,
26221,
1326,
13,
785,
14,
3642,
4163,
2,
8043,
12,
18596,
5857,
198,
7109,
330,
4712,
62,
18596,
5857,
796,
685,
198,
220,
220,
220,
3124,
415,
1,
2,
23,
1350,
24,
16344,
1,
1303,
41025,
198,
220,
220,
220,
3124,
415,
1,
2,
487,
3720,
66,
21,
1,
1303,
14657,
198,
220,
220,
220,
3124,
415,
1,
2,
1120,
13331,
22,
65,
1,
1303,
3469,
198,
220,
220,
220,
3124,
415,
1,
2,
17457,
6052,
69,
24,
1,
1303,
17265,
198,
220,
220,
220,
3124,
415,
1,
2,
487,
65,
4521,
66,
1,
1303,
11942,
198,
220,
220,
220,
3124,
415,
1,
2,
487,
2816,
2816,
1,
1303,
2297,
198,
220,
220,
220,
3124,
415,
1,
2,
69,
16,
13331,
23,
66,
1,
1303,
12550,
198,
220,
220,
220,
3124,
415,
1,
2,
21,
29807,
64,
19,
1,
1303,
18957,
198,
60,
198,
7109,
330,
4712,
62,
35904,
796,
3124,
415,
1,
2,
32568,
64,
2623,
1,
198,
7109,
330,
4712,
62,
40616,
796,
3124,
415,
1,
2,
69,
23,
69,
23,
69,
17,
1,
198,
198,
62,
1169,
6880,
58,
25,
7109,
330,
4712,
60,
796,
28114,
47863,
7,
198,
220,
220,
220,
275,
70,
796,
1553,
330,
4712,
62,
35904,
11,
198,
220,
220,
220,
275,
29878,
485,
796,
3124,
415,
1,
2,
1270,
32118,
33,
1600,
198,
220,
220,
220,
277,
70,
796,
1553,
330,
4712,
62,
40616,
11,
198,
220,
220,
220,
277,
70,
5239,
796,
1553,
330,
4712,
62,
40616,
11,
198,
220,
220,
220,
277,
1130,
84,
485,
796,
1553,
330,
4712,
62,
40616,
11,
198,
220,
220,
220,
277,
70,
1455,
437,
796,
1553,
330,
4712,
62,
40616,
11,
198,
220,
220,
220,
8177,
10331,
8043,
796,
1553,
330,
4712,
62,
40616,
11,
198,
220,
220,
220,
8177,
7839,
10331,
8043,
796,
1553,
330,
4712,
62,
40616,
11,
198,
220,
220,
220,
3670,
10331,
8043,
796,
1553,
330,
4712,
62,
40616,
11,
198,
220,
220,
220,
27043,
796,
4292,
62,
18596,
5857,
7,
7109,
330,
4712,
62,
35904,
11,
1553,
330,
4712,
62,
18596,
5857,
828,
198,
220,
220,
220,
3124,
49607,
796,
1058,
37040,
29207,
198,
8,
198
] | 2.105978 | 368 |
# Reexport SinkingParticles as they are useful outside too
#@reexport module SinkingParticles
using Unitful
using LinearAlgebra, SparseArrays
using OceanGrids
"""
PFDO(grd; w_top)
Builds the particle-flux-divergence operator `PFDO` for a given particle sinking speed
(`w_top`).
Schematic of a grid cell:
```
top ┌─────────────────────────────────┐ ┬
│ ↓ w_top ↓ Φ_top │ │
│ (settling velovity) (flux) │ │
│ │ │
│ x │ δz
│ (particle conc.) │ │
│ │ │
│ │ │
bottom └─────────────────────────────────┘ ┴
```
- `δz` is the height of grid cell [m]
- `w_top` is the particle sinking speed at the top of the grid cell [m s⁻¹]
- `Φ_top` is the flux at the top of the grid cell [mol m⁻² s⁻¹]
- `x` is the particle concentration of the cell [mol m⁻³]
The PFDO is defined by
PFDO * x = δΦ/δz ≈ dΦ/dz,
i.e., so that applied to `x` it approximates the flux divergence of `x`, dΦ/δz.
It is calculated as the matrix product of DIVO and FATO:
PFDO = DIVO * FATO.
where the divergence operator `DIVO`, is defined by (`z` increasing downward)
DIVO * ϕ_top = 1/δz * (ϕ_top[below] - ϕ_top) = δϕ/δz ≈ dΦ/δz.
and FATO, the flux-at-top operator, is defined by
FATO * x = w_top * x[above] ≈ ϕ_top.
# Example
```julia-repl
julia> PFDO(grd, w_top=1.0) # 1.0 m/s (SI units assumed)
```
"""
function PFDO(grd; w_top)
iwet = findall(vec(grd.wet3D))
DIVO = DIVO(grd)
Iabove = buildIabove(grd.wet3D, iwet)
w_top = ustrip.(upreferred.(w_top))
return PFDO(w_top, DIVO, Iabove)
end
"""
PFDO(w, DIVO, Iabove)
Returns `DIVO * FATO(w, Iabove)`
This function is useful to avoid reconstructing `DIVO` and `Iabove` every time.
It should allow for faster runs.
"""
PFDO(w_top, DIVO, Iabove) = DIVO * FATO(w_top, Iabove)
"""
PFDO(grd, δz, w_top, w_bot, frac_seafloor, cumfrac_seafloor, fsedremin, Iabove)
Returns the particle-flux-divergence operator for a given sinking speed as a function of depth.
This is a slightly different construction where I take in top and bottom settling velocities,
and where the bottom one can be modified to further allow a fraction of particles to sink through
(buried into) the sea floor.
Below is a detailed explanation of how this function computes the particle-flux divergence.
Take these 3 boxes on top of each other:
```
┌──────────────────┐
│ water │
│←----c----→ │
├───────────┲━━━━━━┥ ←- Φ_top
│ ┃⣿⣿⣿⣿⣿⣿│
│ ┃⣿⣿⣿⣿⣿⣿│
│←-d-→ ←-a-→┃⣿⣿⣿⣿⣿⣿│
├─────┲━━━━━┹──────┤ ←- Φ_bot
│ ┃←----b-----→│
│ ┃⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿│
│ ┃⣿⣿⣿ land ⣿⣿⣿│
│ ┃⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿│
└━━━━━┹────────────┘
```
A part of each of these boxes is water, while the rest is land. For the middle box,
we will use the fractional area `a = frac_seafloor` of seafloor,
and the cumulated fractional area `b = cumfrac_seafloor` of seafloor, to determine the
flux of particles at the top `ϕ_top` and bottom `ϕ_bot`.
From the top box, only the particles in the water can enter the middle box. So the flux
at the top of the middle box, `ϕ_top`, is proportional to `c = 1 - Iabove * b`.
At the bottom of the middle box, we have to take care of the case of particles hitting
the sediments and potentially buried there, or kept in the water.
For the part going through the area `d`, the flux is proportional to `d = 1 - b`.
For the part going through `a` (hitting the sediments), the flux is proportional to
`a * (1 - f)` where `f` is the fraction of particles forcibly kept in the water.
(So if `f = 0`, the particles appear to move out of the middle box, but are not carried
into the bottom one, and thus are removed from the system / buried.)
"""
function PFDO(grd, δz, w_top, w_bot, frac_seafloor, cumfrac_seafloor, fsedremin, Iabove)
fw_bot = @. (1.0 - cumfrac_seafloor + (1.0 - fsedremin) * frac_seafloor) * w_bot
fw_top = (1.0 .- Iabove * cumfrac_seafloor) .* w_top
return sparse(Diagonal(fw_bot ./ δz)) - sparse(Diagonal(fw_top ./ δz)) * Iabove
end
"""
DIVO(grd)
Build the `DIVO` operator such that
DIVO * ϕ_top = 1/δz * (ϕ_top - ϕ_top[below]) ≈ dΦ/δz.
"""
function DIVO(grd)
Ibelow = buildIbelow(grd)
iwet = indices_of_wet_boxes(grd)
δz = ustrip.(grd.δz_3D[iwet])
return sparse(Diagonal(1 ./ δz)) * (Ibelow - I) # divergence with positive downwards
end
"""
FATO(w_top, Iabove)
Build the `FATO` operator for a particle sinking speed `w_top`
(`w_top` is the sinking speed at the top of each grid cell.)
The `FATO` operator is defined by
FATO * x = w_top * x(above) ≈ ϕ_top.
"""
FATO(w_top::Vector, Iabove) = sparse(Diagonal(w_top)) * Iabove
FATO(w_top::Number, Iabove) = w_top * Iabove
export DIVO, PFDO, FATO
#end # module
"""
transportoperator(grd, w)
Returns the transportoperator for the given settling velocity `w`.
The settling velocity can be provided as either a scalar
(e.g., `w = 100.0` in units of meters per second)
or as a function of depth
(e.g., `w(z) = 2z + 1`).
# Examples
Create the particle flux divergence with settling velocity of 100m/s
```julia-repl
julia> T = transportoperator(grd, 100.0)
```
Or with settling velocity function w(z) = 2z + 1
```julia-repl
julia> T = transportoperator(grd, z -> 2z + 1)
```
By default, the seafloor flux is set to zero, so that all the particles
that reach it are remineralized there. You can let particles go through
by setting `fsedremin=0.0`, via, e.g.,
```julia-repl
julia> T = transportoperator(grd, z -> 2z + 1; fsedremin=0.0)
```
For finer control and advanced use, see the particle-flux divergence
operator function, `PFDO`.
"""
transportoperator(grd, w_top; DIVop=DIVO(grd), Iabove=buildIabove(grd)) = PFDO(w_top, DIVop, Iabove)
function transportoperator(grd, w::Function;
δz = ustrip.(grd.δz_3D[iswet(grd)]),
Iabove = buildIabove(grd),
fsedremin = 1.0,
z_top = topdepthvec(grd),
z_bot = bottomdepthvec(grd),
frac_seafloor = float.(isseafloorvec(grd)),
cumfrac_seafloor = zcumsum(frac_seafloor, grd))
return PFDO(grd, δz, ustrip.(upreferred.(w.(z_top))), ustrip.(upreferred.(w.(z_bot))), frac_seafloor, cumfrac_seafloor, fsedremin, Iabove)
end
export transportoperator
| [
2,
797,
39344,
311,
8040,
7841,
2983,
355,
484,
389,
4465,
2354,
1165,
198,
2,
31,
631,
87,
634,
8265,
311,
8040,
7841,
2983,
198,
198,
3500,
11801,
913,
198,
3500,
44800,
2348,
29230,
11,
1338,
17208,
3163,
20477,
198,
3500,
10692,
8642,
2340,
628,
198,
37811,
198,
220,
220,
220,
28223,
18227,
7,
2164,
67,
26,
266,
62,
4852,
8,
198,
198,
15580,
82,
262,
18758,
12,
69,
22564,
12,
67,
1428,
12745,
10088,
4600,
42668,
18227,
63,
329,
257,
1813,
18758,
27141,
2866,
198,
7,
63,
86,
62,
4852,
63,
737,
198,
198,
27054,
13849,
286,
257,
10706,
2685,
25,
198,
15506,
63,
198,
220,
220,
220,
220,
1353,
220,
13305,
234,
28542,
28542,
28542,
28542,
7280,
6552,
238,
220,
220,
13305,
105,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19421,
220,
220,
220,
220,
220,
17804,
241,
266,
62,
4852,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17804,
241,
7377,
99,
62,
4852,
220,
220,
19421,
220,
220,
19421,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19421,
357,
17744,
1359,
11555,
709,
414,
8,
220,
220,
220,
357,
69,
22564,
8,
220,
220,
19421,
220,
220,
19421,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19421,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19421,
220,
220,
19421,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19421,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19421,
220,
220,
7377,
112,
89,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19421,
220,
220,
220,
220,
220,
357,
3911,
1548,
1673,
2014,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19421,
220,
220,
19421,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19421,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19421,
220,
220,
19421,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19421,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19421,
220,
220,
19421,
198,
220,
4220,
220,
13305,
242,
28542,
28542,
28542,
28542,
7280,
6552,
246,
220,
220,
13305,
112,
198,
15506,
63,
198,
198,
12,
4600,
138,
112,
89,
63,
318,
262,
6001,
286,
10706,
2685,
685,
76,
60,
198,
12,
4600,
86,
62,
4852,
63,
318,
262,
18758,
27141,
2866,
379,
262,
1353,
286,
262,
10706,
2685,
685,
76,
264,
46256,
119,
126,
117,
60,
198,
12,
4600,
138,
99,
62,
4852,
63,
318,
262,
28462,
379,
262,
1353,
286,
262,
10706,
2685,
685,
43132,
285,
46256,
119,
31185,
264,
46256,
119,
126,
117,
60,
198,
12,
4600,
87,
63,
318,
262,
18758,
10368,
286,
262,
2685,
685,
43132,
285,
46256,
119,
126,
111,
60,
198,
198,
464,
28223,
18227,
318,
5447,
416,
628,
220,
220,
220,
28223,
18227,
1635,
2124,
796,
7377,
112,
138,
99,
14,
138,
112,
89,
15139,
230,
288,
138,
99,
14,
67,
89,
11,
198,
198,
72,
13,
68,
1539,
523,
326,
5625,
284,
4600,
87,
63,
340,
5561,
26748,
262,
28462,
43366,
286,
4600,
87,
47671,
288,
138,
99,
14,
138,
112,
89,
13,
198,
1026,
318,
10488,
355,
262,
17593,
1720,
286,
360,
3824,
46,
290,
47200,
46,
25,
628,
220,
220,
220,
28223,
18227,
796,
360,
3824,
46,
1635,
47200,
46,
13,
198,
198,
3003,
262,
43366,
10088,
4600,
33569,
46,
47671,
318,
5447,
416,
357,
63,
89,
63,
3649,
20841,
8,
628,
220,
220,
220,
360,
3824,
46,
1635,
18074,
243,
62,
4852,
796,
352,
14,
138,
112,
89,
1635,
357,
139,
243,
62,
4852,
58,
35993,
60,
532,
18074,
243,
62,
4852,
8,
796,
7377,
112,
139,
243,
14,
138,
112,
89,
15139,
230,
288,
138,
99,
14,
138,
112,
89,
13,
198,
198,
392,
47200,
46,
11,
262,
28462,
12,
265,
12,
4852,
10088,
11,
318,
5447,
416,
628,
220,
220,
220,
47200,
46,
1635,
2124,
796,
266,
62,
4852,
1635,
2124,
58,
29370,
60,
15139,
230,
18074,
243,
62,
4852,
13,
198,
198,
2,
17934,
198,
198,
15506,
63,
73,
43640,
12,
35666,
198,
73,
43640,
29,
28223,
18227,
7,
2164,
67,
11,
266,
62,
4852,
28,
16,
13,
15,
8,
1303,
352,
13,
15,
285,
14,
82,
357,
11584,
4991,
9672,
8,
198,
15506,
63,
198,
37811,
198,
8818,
28223,
18227,
7,
2164,
67,
26,
266,
62,
4852,
8,
198,
220,
220,
220,
1312,
86,
316,
796,
1064,
439,
7,
35138,
7,
2164,
67,
13,
86,
316,
18,
35,
4008,
198,
220,
220,
220,
360,
3824,
46,
796,
360,
3824,
46,
7,
2164,
67,
8,
198,
220,
220,
220,
314,
29370,
796,
1382,
40,
29370,
7,
2164,
67,
13,
86,
316,
18,
35,
11,
1312,
86,
316,
8,
198,
220,
220,
220,
266,
62,
4852,
796,
334,
36311,
12195,
929,
260,
18186,
12195,
86,
62,
4852,
4008,
198,
220,
220,
220,
1441,
28223,
18227,
7,
86,
62,
4852,
11,
360,
3824,
46,
11,
314,
29370,
8,
198,
437,
198,
37811,
198,
220,
220,
220,
28223,
18227,
7,
86,
11,
360,
3824,
46,
11,
314,
29370,
8,
198,
198,
35561,
4600,
33569,
46,
1635,
47200,
46,
7,
86,
11,
314,
29370,
8,
63,
198,
198,
1212,
2163,
318,
4465,
284,
3368,
31081,
278,
4600,
33569,
46,
63,
290,
4600,
40,
29370,
63,
790,
640,
13,
198,
1026,
815,
1249,
329,
5443,
4539,
13,
198,
37811,
198,
42668,
18227,
7,
86,
62,
4852,
11,
360,
3824,
46,
11,
314,
29370,
8,
796,
360,
3824,
46,
1635,
47200,
46,
7,
86,
62,
4852,
11,
314,
29370,
8,
198,
198,
37811,
198,
220,
220,
220,
28223,
18227,
7,
2164,
67,
11,
7377,
112,
89,
11,
266,
62,
4852,
11,
266,
62,
13645,
11,
1216,
330,
62,
325,
1878,
75,
2675,
11,
10973,
31944,
62,
325,
1878,
75,
2675,
11,
277,
36622,
260,
1084,
11,
314,
29370,
8,
198,
198,
35561,
262,
18758,
12,
69,
22564,
12,
67,
1428,
12745,
10088,
329,
257,
1813,
27141,
2866,
355,
257,
2163,
286,
6795,
13,
198,
198,
1212,
318,
257,
4622,
1180,
5103,
810,
314,
1011,
287,
1353,
290,
4220,
25446,
11555,
420,
871,
11,
198,
392,
810,
262,
4220,
530,
460,
307,
9518,
284,
2252,
1249,
257,
13390,
286,
13166,
284,
14595,
832,
198,
7,
6236,
798,
656,
8,
262,
5417,
4314,
13,
198,
198,
21106,
318,
257,
6496,
7468,
286,
703,
428,
2163,
552,
1769,
262,
18758,
12,
69,
22564,
43366,
13,
198,
12322,
777,
513,
10559,
319,
1353,
286,
1123,
584,
25,
198,
198,
15506,
63,
198,
6552,
234,
28542,
28542,
8418,
6552,
238,
198,
6552,
224,
1660,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19421,
198,
6552,
224,
29705,
238,
650,
66,
650,
39310,
220,
220,
220,
220,
220,
220,
19421,
198,
6552,
250,
28542,
8418,
7280,
6552,
110,
47486,
47486,
47486,
47486,
47486,
47486,
6552,
98,
17804,
238,
12,
7377,
99,
62,
4852,
198,
6552,
224,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13305,
225,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
6552,
224,
198,
6552,
224,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13305,
225,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
6552,
224,
198,
6552,
224,
29705,
238,
12,
67,
12,
39310,
17804,
238,
12,
64,
12,
39310,
6552,
225,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
6552,
224,
198,
6552,
250,
16068,
7280,
6552,
110,
47486,
47486,
47486,
47486,
47486,
6552,
117,
16068,
8418,
6552,
97,
17804,
238,
12,
7377,
99,
62,
13645,
198,
6552,
224,
220,
220,
220,
220,
13305,
225,
29705,
238,
650,
65,
30934,
39310,
6552,
224,
198,
6552,
224,
220,
220,
220,
220,
13305,
225,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
6552,
224,
198,
6552,
224,
220,
220,
220,
220,
13305,
225,
158,
96,
123,
158,
96,
123,
158,
96,
123,
1956,
2343,
96,
123,
158,
96,
123,
158,
96,
123,
6552,
224,
198,
6552,
224,
220,
220,
220,
220,
13305,
225,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
158,
96,
123,
6552,
224,
198,
6552,
242,
47486,
47486,
47486,
47486,
47486,
6552,
117,
28542,
16068,
6552,
246,
198,
15506,
63,
198,
198,
32,
636,
286,
1123,
286,
777,
10559,
318,
1660,
11,
981,
262,
1334,
318,
1956,
13,
1114,
262,
3504,
3091,
11,
198,
732,
481,
779,
262,
13390,
282,
1989,
4600,
64,
796,
1216,
330,
62,
325,
1878,
75,
2675,
63,
286,
25127,
75,
2675,
11,
198,
392,
262,
10973,
4817,
13390,
282,
1989,
4600,
65,
796,
10973,
31944,
62,
325,
1878,
75,
2675,
63,
286,
25127,
75,
2675,
11,
284,
5004,
262,
198,
69,
22564,
286,
13166,
379,
262,
1353,
4600,
139,
243,
62,
4852,
63,
290,
4220,
4600,
139,
243,
62,
13645,
44646,
198,
198,
4863,
262,
1353,
3091,
11,
691,
262,
13166,
287,
262,
1660,
460,
3802,
262,
3504,
3091,
13,
1406,
262,
28462,
198,
265,
262,
1353,
286,
262,
3504,
3091,
11,
4600,
139,
243,
62,
4852,
47671,
318,
27111,
284,
4600,
66,
796,
352,
532,
314,
29370,
1635,
275,
44646,
198,
2953,
262,
4220,
286,
262,
3504,
3091,
11,
356,
423,
284,
1011,
1337,
286,
262,
1339,
286,
13166,
9008,
198,
1169,
10081,
6800,
290,
6196,
11694,
612,
11,
393,
4030,
287,
262,
1660,
13,
198,
1890,
262,
636,
1016,
832,
262,
1989,
4600,
67,
47671,
262,
28462,
318,
27111,
284,
4600,
67,
796,
352,
532,
275,
44646,
198,
1890,
262,
636,
1016,
832,
4600,
64,
63,
357,
48320,
262,
10081,
6800,
828,
262,
28462,
318,
27111,
284,
198,
63,
64,
1635,
357,
16,
532,
277,
8,
63,
810,
4600,
69,
63,
318,
262,
13390,
286,
13166,
30522,
4030,
287,
262,
1660,
13,
198,
7,
2396,
611,
4600,
69,
796,
657,
47671,
262,
13166,
1656,
284,
1445,
503,
286,
262,
3504,
3091,
11,
475,
389,
407,
5281,
198,
20424,
262,
4220,
530,
11,
290,
4145,
389,
4615,
422,
262,
1080,
1220,
11694,
2014,
198,
37811,
198,
8818,
28223,
18227,
7,
2164,
67,
11,
7377,
112,
89,
11,
266,
62,
4852,
11,
266,
62,
13645,
11,
1216,
330,
62,
325,
1878,
75,
2675,
11,
10973,
31944,
62,
325,
1878,
75,
2675,
11,
277,
36622,
260,
1084,
11,
314,
29370,
8,
198,
220,
220,
220,
277,
86,
62,
13645,
796,
2488,
13,
357,
16,
13,
15,
532,
10973,
31944,
62,
325,
1878,
75,
2675,
1343,
357,
16,
13,
15,
532,
277,
36622,
260,
1084,
8,
1635,
1216,
330,
62,
325,
1878,
75,
2675,
8,
1635,
266,
62,
13645,
198,
220,
220,
220,
277,
86,
62,
4852,
796,
357,
16,
13,
15,
764,
12,
314,
29370,
1635,
10973,
31944,
62,
325,
1878,
75,
2675,
8,
764,
9,
266,
62,
4852,
198,
220,
220,
220,
1441,
29877,
7,
18683,
27923,
7,
44482,
62,
13645,
24457,
7377,
112,
89,
4008,
532,
29877,
7,
18683,
27923,
7,
44482,
62,
4852,
24457,
7377,
112,
89,
4008,
1635,
314,
29370,
198,
437,
628,
628,
198,
198,
37811,
198,
220,
220,
220,
360,
3824,
46,
7,
2164,
67,
8,
198,
198,
15580,
262,
4600,
33569,
46,
63,
10088,
884,
326,
628,
220,
220,
220,
360,
3824,
46,
1635,
18074,
243,
62,
4852,
796,
352,
14,
138,
112,
89,
1635,
357,
139,
243,
62,
4852,
532,
18074,
243,
62,
4852,
58,
35993,
12962,
15139,
230,
288,
138,
99,
14,
138,
112,
89,
13,
198,
37811,
198,
8818,
360,
3824,
46,
7,
2164,
67,
8,
198,
220,
220,
220,
314,
35993,
796,
1382,
40,
35993,
7,
2164,
67,
8,
198,
220,
220,
220,
1312,
86,
316,
796,
36525,
62,
1659,
62,
86,
316,
62,
29305,
7,
2164,
67,
8,
198,
220,
220,
220,
7377,
112,
89,
796,
334,
36311,
12195,
2164,
67,
13,
138,
112,
89,
62,
18,
35,
58,
14246,
316,
12962,
198,
220,
220,
220,
1441,
29877,
7,
18683,
27923,
7,
16,
24457,
7377,
112,
89,
4008,
1635,
357,
40,
35993,
532,
314,
8,
1303,
43366,
351,
3967,
44890,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
47200,
46,
7,
86,
62,
4852,
11,
314,
29370,
8,
198,
198,
15580,
262,
4600,
37,
1404,
46,
63,
10088,
329,
257,
18758,
27141,
2866,
4600,
86,
62,
4852,
63,
198,
198,
7,
63,
86,
62,
4852,
63,
318,
262,
27141,
2866,
379,
262,
1353,
286,
1123,
10706,
2685,
2014,
198,
198,
464,
4600,
37,
1404,
46,
63,
10088,
318,
5447,
416,
628,
220,
220,
220,
47200,
46,
1635,
2124,
796,
266,
62,
4852,
1635,
2124,
7,
29370,
8,
15139,
230,
18074,
243,
62,
4852,
13,
198,
37811,
198,
37,
1404,
46,
7,
86,
62,
4852,
3712,
38469,
11,
314,
29370,
8,
796,
29877,
7,
18683,
27923,
7,
86,
62,
4852,
4008,
1635,
314,
29370,
198,
37,
1404,
46,
7,
86,
62,
4852,
3712,
15057,
11,
314,
29370,
8,
796,
266,
62,
4852,
1635,
314,
29370,
198,
198,
39344,
360,
3824,
46,
11,
28223,
18227,
11,
47200,
46,
198,
2,
437,
1303,
8265,
198,
198,
37811,
198,
220,
220,
220,
4839,
46616,
7,
2164,
67,
11,
266,
8,
198,
198,
35561,
262,
4839,
46616,
329,
262,
1813,
25446,
15432,
4600,
86,
44646,
198,
198,
464,
25446,
15432,
460,
307,
2810,
355,
2035,
257,
16578,
283,
198,
7,
68,
13,
70,
1539,
4600,
86,
796,
1802,
13,
15,
63,
287,
4991,
286,
10700,
583,
1218,
8,
198,
273,
355,
257,
2163,
286,
6795,
198,
7,
68,
13,
70,
1539,
4600,
86,
7,
89,
8,
796,
362,
89,
1343,
352,
63,
737,
198,
198,
2,
21066,
198,
198,
16447,
262,
18758,
28462,
43366,
351,
25446,
15432,
286,
1802,
76,
14,
82,
198,
198,
15506,
63,
73,
43640,
12,
35666,
198,
73,
43640,
29,
309,
796,
4839,
46616,
7,
2164,
67,
11,
1802,
13,
15,
8,
198,
15506,
63,
198,
198,
5574,
351,
25446,
15432,
2163,
266,
7,
89,
8,
796,
362,
89,
1343,
352,
198,
198,
15506,
63,
73,
43640,
12,
35666,
198,
73,
43640,
29,
309,
796,
4839,
46616,
7,
2164,
67,
11,
1976,
4613,
362,
89,
1343,
352,
8,
198,
15506,
63,
198,
198,
3886,
4277,
11,
262,
25127,
75,
2675,
28462,
318,
900,
284,
6632,
11,
523,
326,
477,
262,
13166,
198,
5562,
3151,
340,
389,
816,
259,
1691,
1143,
612,
13,
921,
460,
1309,
13166,
467,
832,
198,
1525,
4634,
4600,
9501,
276,
260,
1084,
28,
15,
13,
15,
47671,
2884,
11,
304,
13,
70,
1539,
198,
198,
15506,
63,
73,
43640,
12,
35666,
198,
73,
43640,
29,
309,
796,
4839,
46616,
7,
2164,
67,
11,
1976,
4613,
362,
89,
1343,
352,
26,
277,
36622,
260,
1084,
28,
15,
13,
15,
8,
198,
15506,
63,
198,
198,
1890,
38575,
1630,
290,
6190,
779,
11,
766,
262,
18758,
12,
69,
22564,
43366,
198,
46616,
2163,
11,
4600,
42668,
18227,
44646,
198,
37811,
198,
7645,
634,
46616,
7,
2164,
67,
11,
266,
62,
4852,
26,
360,
3824,
404,
28,
33569,
46,
7,
2164,
67,
828,
314,
29370,
28,
11249,
40,
29370,
7,
2164,
67,
4008,
796,
28223,
18227,
7,
86,
62,
4852,
11,
360,
3824,
404,
11,
314,
29370,
8,
198,
8818,
4839,
46616,
7,
2164,
67,
11,
266,
3712,
22203,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7377,
112,
89,
796,
334,
36311,
12195,
2164,
67,
13,
138,
112,
89,
62,
18,
35,
58,
271,
86,
316,
7,
2164,
67,
15437,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
314,
29370,
796,
1382,
40,
29370,
7,
2164,
67,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
36622,
260,
1084,
796,
352,
13,
15,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1976,
62,
4852,
796,
1353,
18053,
35138,
7,
2164,
67,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1976,
62,
13645,
796,
4220,
18053,
35138,
7,
2164,
67,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1216,
330,
62,
325,
1878,
75,
2675,
796,
12178,
12195,
20782,
1878,
75,
2675,
35138,
7,
2164,
67,
36911,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10973,
31944,
62,
325,
1878,
75,
2675,
796,
1976,
66,
5700,
388,
7,
31944,
62,
325,
1878,
75,
2675,
11,
1036,
67,
4008,
198,
220,
220,
220,
1441,
28223,
18227,
7,
2164,
67,
11,
7377,
112,
89,
11,
334,
36311,
12195,
929,
260,
18186,
12195,
86,
12195,
89,
62,
4852,
4008,
828,
334,
36311,
12195,
929,
260,
18186,
12195,
86,
12195,
89,
62,
13645,
4008,
828,
1216,
330,
62,
325,
1878,
75,
2675,
11,
10973,
31944,
62,
325,
1878,
75,
2675,
11,
277,
36622,
260,
1084,
11,
314,
29370,
8,
198,
437,
628,
198,
39344,
4839,
46616,
628
] | 2.19959 | 2,926 |
@testset "Nodes initialization algorithm n=3 entry = 3 output = 2" begin
M = 1 # Constante para la función rampa
# Bien definido para tamaño n = 2 y salida de dimensión 1
f_regression(x,y,z)=[x*y-z,x]
data_set_size = 6
entry_dimension = 3
output_dimension = 2
# Número de neuronas
n = data_set_size # Debe de ser mayor que 1 para que no de error
X_train= rand(Float32, data_set_size, entry_dimension)
Y_train::Matrix = mapreduce(permutedims, vcat, map(x->f_regression(x...), eachrow(X_train)))
h = nn_from_data(X_train, Y_train, n, M)
# veamos que el tamaño de la salida es la adecuada
@test size(h.W1) == (n,entry_dimension+1)
@test size(h.W2) == (output_dimension,n)
# Si ha sido bien construida:
# Evaluar la red neuronal en los datos con los que se construyó
# debería de resultar el valor de Y_train respectivo
evaluar(x)=forward_propagation(h,
RampFunction,x)
for i in 1:n
@test evaluar(X_train[i,:]) ≈ Y_train[i,:]
end
end
| [
2488,
9288,
2617,
366,
45,
4147,
37588,
11862,
299,
28,
18,
5726,
796,
513,
5072,
796,
362,
1,
2221,
198,
220,
220,
220,
337,
796,
352,
1303,
4757,
12427,
31215,
8591,
1257,
979,
18840,
10454,
64,
198,
220,
220,
220,
1303,
347,
2013,
2730,
17305,
31215,
256,
1689,
31329,
299,
796,
362,
331,
3664,
3755,
390,
5391,
641,
72,
18840,
352,
198,
220,
220,
220,
277,
62,
2301,
2234,
7,
87,
11,
88,
11,
89,
8,
41888,
87,
9,
88,
12,
89,
11,
87,
60,
198,
220,
220,
220,
1366,
62,
2617,
62,
7857,
796,
220,
718,
198,
220,
220,
220,
5726,
62,
46156,
796,
513,
198,
220,
220,
220,
5072,
62,
46156,
796,
362,
198,
220,
220,
220,
1303,
399,
21356,
647,
78,
390,
43164,
292,
220,
198,
220,
220,
220,
299,
796,
1366,
62,
2617,
62,
7857,
1303,
1024,
1350,
390,
1055,
9591,
8358,
352,
31215,
8358,
645,
390,
4049,
198,
220,
220,
220,
1395,
62,
27432,
28,
43720,
7,
43879,
2624,
11,
1366,
62,
2617,
62,
7857,
11,
5726,
62,
46156,
8,
198,
220,
220,
220,
575,
62,
27432,
3712,
46912,
796,
220,
3975,
445,
7234,
7,
16321,
7241,
12078,
11,
410,
9246,
11,
3975,
7,
87,
3784,
69,
62,
2301,
2234,
7,
87,
986,
828,
1123,
808,
7,
55,
62,
27432,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
289,
796,
299,
77,
62,
6738,
62,
7890,
7,
55,
62,
27432,
11,
575,
62,
27432,
11,
299,
11,
337,
8,
628,
220,
220,
220,
1303,
1569,
321,
418,
8358,
1288,
256,
1689,
31329,
390,
8591,
3664,
3755,
1658,
8591,
512,
721,
84,
4763,
198,
220,
220,
220,
2488,
9288,
2546,
7,
71,
13,
54,
16,
8,
6624,
357,
77,
11,
13000,
62,
46156,
10,
16,
8,
198,
220,
220,
220,
2488,
9288,
2546,
7,
71,
13,
54,
17,
8,
6624,
357,
22915,
62,
46156,
11,
77,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
15638,
387,
9785,
78,
275,
2013,
1500,
622,
3755,
25,
198,
220,
220,
220,
1303,
26439,
84,
283,
8591,
2266,
36347,
551,
22346,
4818,
418,
369,
22346,
8358,
384,
1500,
622,
88,
10205,
220,
198,
220,
220,
220,
1303,
390,
527,
29690,
390,
1255,
283,
1288,
1188,
273,
390,
575,
62,
27432,
2461,
23593,
198,
220,
220,
220,
5418,
84,
283,
7,
87,
47505,
11813,
62,
22930,
363,
341,
7,
71,
11,
198,
220,
220,
220,
220,
26882,
22203,
11,
87,
8,
628,
220,
220,
220,
329,
1312,
287,
352,
25,
77,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
5418,
84,
283,
7,
55,
62,
27432,
58,
72,
11,
25,
12962,
15139,
230,
575,
62,
27432,
58,
72,
11,
47715,
198,
220,
220,
220,
886,
198,
220,
220,
220,
220,
198,
437,
220,
628,
198
] | 2.22547 | 479 |
@testset "operations.jl" begin
@testset "ewise" begin
m = GBMatrix([[1,2,3] [4,5,6]])
n = GBMatrix([1,2,3,2], [1,2,2,1], [1,2,3,4])
#eadd correctness
@test eadd(m, n) == GBMatrix([1,1,2,2,3,3], [1,2,1,2,1,2], [2,4,6,7,3,9])
@test eadd(m, n, BinaryOps.GT)[1, 1] == 0
#check that the (+) op is being picked up from the semiring.
@test eadd(m, n, Semirings.PLUS_MAX) == eadd(m, n, BinaryOps.PLUS)
#emul correctness
@test emul(m, n, BinaryOps.POW)[3, 2] == m[3,2] ^ n[3,2]
#check that the (*) op is being picked up from the semiring
@test emul(m, n, Semirings.MAX_PLUS) == emul(m, n, BinaryOps.PLUS)
@test eltype(m .== n) == Bool
end
@testset "kron" begin
m1 = GBMatrix(UInt64[1, 2, 3, 5], UInt64[1, 3, 1, 2], Int8[1, 2, 3, 5])
n1 = GBMatrix(ones(UInt32, 4, 4))
m2 = sparse([1, 2, 3, 5], [1, 3, 1, 2], Int8[1, 2, 3, 5])
n2 = ones(Int32, 4, 4)
o1 = kron(m1, n1)
@test o1 == GBMatrix(kron(m2, n2)) #basic kron is equivalent
mask = GBMatrix{Bool}(20, 12)
mask[17:20, 5:8] = false #don't care value, using structural
#mask out bottom chunk using structural complement
o2 = kron(m1, n1; mask, desc=SC)
@test o2[20, 5] === nothing #We don't want values in masked out area
@test o2[1:2:15, :] == o1[1:2:15, :] #The rest should match, test indexing too.
end
@testset "map" begin
m = sprand(5, 5, 0.25)
n = GBMatrix(m)
@test map(UnaryOps.LOG, n)[1,1] == map(log, m)[1,1]
o = map!(BinaryOps.GT, GBMatrix{Bool}(5, 5), 0.1, n)
@test o[1,4] == (0.1 > m[1,4])
@test map(BinaryOps.SECOND, n, 1.5)[1,1] == 1.5
@test (n .* 10)[1,1] == n[1,1] * 10
end
@testset "mul" begin
m = rand(10, 10)
n = rand(10, 100)
#NOTE: Can someone check this, not sure if that's fine, or egregious.
@test isapprox(Matrix(mul(GBMatrix(m), GBMatrix(n))), m * n, atol=8e-15)
m = GBMatrix([1,3,5,7], [7,5,3,1], [1,2,3,4])
n = GBMatrix{Int8}(7, 1)
n[1:2:7, 1] = [1, 10, 20, 30]
o = mul(m, n)
@test size(o) == (7,1)
@test eltype(o) == Int64
@test o[7, 1] == 4 && o[5, 1] == 30
o = GBMatrix(ones(Int64, 7, 1))
mask = GBMatrix(ones(Bool, 7, 1))
mask[3,1] = false
@test mul!(o, m, n; mask, accum=BinaryOps.PLUS) ==
GBMatrix([31,1,1,1,31,1,5])
m = GBMatrix([[1,2,3] [4,5,6]])
n = GBVector([10,20,30])
@test_throws DimensionMismatch m * n
@test m' * n == GBVector([140, 320]) == n * m
end
@testset "reduce" begin
m = GBMatrix([[1,2,3] [4,5,6] [7,8,9]])
reduce(max, m, dims=2) == reduce(Monoids.MAX_MONOID, m) #this only works for dense
reduce(Monoids.MAX_MONOID, m, dims=(1,2)) == 9
@test_throws ArgumentError reduce(BinaryOps.TIMES, m)
end
@testset "select" begin
m = GBMatrix([[1,2,3] [4,5,6] [7,8,9]])
s = select(tril, m)
@test s[1,2] === nothing && s[3,1] == 3
s = select(<, m, 6)
@test s[2,2] == 5 && s[3,3] === nothing
end
@testset "transpose" begin
m = GBMatrix(sprand(3, 3, 0.5))
@test gbtranspose(m') == m
@test m[1,2] == m'[2,1]
@test m[1,2] == gbtranspose(m)[2,1]
end
end
| [
31,
9288,
2617,
366,
3575,
602,
13,
20362,
1,
2221,
198,
220,
220,
220,
2488,
9288,
2617,
366,
413,
786,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
285,
796,
402,
12261,
265,
8609,
26933,
58,
16,
11,
17,
11,
18,
60,
685,
19,
11,
20,
11,
21,
11907,
8,
198,
220,
220,
220,
220,
220,
220,
220,
299,
796,
402,
12261,
265,
8609,
26933,
16,
11,
17,
11,
18,
11,
17,
4357,
685,
16,
11,
17,
11,
17,
11,
16,
4357,
685,
16,
11,
17,
11,
18,
11,
19,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1329,
67,
29409,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
304,
2860,
7,
76,
11,
299,
8,
6624,
402,
12261,
265,
8609,
26933,
16,
11,
16,
11,
17,
11,
17,
11,
18,
11,
18,
4357,
685,
16,
11,
17,
11,
16,
11,
17,
11,
16,
11,
17,
4357,
685,
17,
11,
19,
11,
21,
11,
22,
11,
18,
11,
24,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
304,
2860,
7,
76,
11,
299,
11,
45755,
41472,
13,
19555,
38381,
16,
11,
352,
60,
6624,
657,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
9122,
326,
262,
11502,
8,
1034,
318,
852,
6497,
510,
422,
262,
5026,
3428,
13,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
304,
2860,
7,
76,
11,
299,
11,
12449,
343,
654,
13,
6489,
2937,
62,
22921,
8,
6624,
304,
2860,
7,
76,
11,
299,
11,
45755,
41472,
13,
6489,
2937,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
368,
377,
29409,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
795,
377,
7,
76,
11,
299,
11,
45755,
41472,
13,
47,
3913,
38381,
18,
11,
362,
60,
6624,
285,
58,
18,
11,
17,
60,
10563,
299,
58,
18,
11,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
9122,
326,
262,
20789,
8,
1034,
318,
852,
6497,
510,
422,
262,
5026,
3428,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
795,
377,
7,
76,
11,
299,
11,
12449,
343,
654,
13,
22921,
62,
6489,
2937,
8,
6624,
795,
377,
7,
76,
11,
299,
11,
45755,
41472,
13,
6489,
2937,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
1288,
4906,
7,
76,
764,
855,
299,
8,
6624,
347,
970,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
9288,
2617,
366,
74,
1313,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
285,
16,
796,
402,
12261,
265,
8609,
7,
52,
5317,
2414,
58,
16,
11,
362,
11,
513,
11,
642,
4357,
471,
5317,
2414,
58,
16,
11,
513,
11,
352,
11,
362,
4357,
2558,
23,
58,
16,
11,
362,
11,
513,
11,
642,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
299,
16,
796,
402,
12261,
265,
8609,
7,
1952,
7,
52,
5317,
2624,
11,
604,
11,
604,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
285,
17,
796,
29877,
26933,
16,
11,
362,
11,
513,
11,
642,
4357,
685,
16,
11,
513,
11,
352,
11,
362,
4357,
2558,
23,
58,
16,
11,
362,
11,
513,
11,
642,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
299,
17,
796,
3392,
7,
5317,
2624,
11,
604,
11,
604,
8,
198,
220,
220,
220,
220,
220,
220,
220,
267,
16,
796,
479,
1313,
7,
76,
16,
11,
299,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
267,
16,
6624,
402,
12261,
265,
8609,
7,
74,
1313,
7,
76,
17,
11,
299,
17,
4008,
1303,
35487,
479,
1313,
318,
7548,
198,
220,
220,
220,
220,
220,
220,
220,
9335,
796,
402,
12261,
265,
8609,
90,
33,
970,
92,
7,
1238,
11,
1105,
8,
198,
220,
220,
220,
220,
220,
220,
220,
9335,
58,
1558,
25,
1238,
11,
642,
25,
23,
60,
796,
3991,
1303,
9099,
470,
1337,
1988,
11,
1262,
13204,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
27932,
503,
4220,
16058,
1262,
13204,
16829,
198,
220,
220,
220,
220,
220,
220,
220,
267,
17,
796,
479,
1313,
7,
76,
16,
11,
299,
16,
26,
9335,
11,
1715,
28,
6173,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
267,
17,
58,
1238,
11,
642,
60,
24844,
2147,
1303,
1135,
836,
470,
765,
3815,
287,
29229,
503,
1989,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
267,
17,
58,
16,
25,
17,
25,
1314,
11,
1058,
60,
6624,
267,
16,
58,
16,
25,
17,
25,
1314,
11,
1058,
60,
1303,
464,
1334,
815,
2872,
11,
1332,
6376,
278,
1165,
13,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
9288,
2617,
366,
8899,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
285,
796,
7500,
392,
7,
20,
11,
642,
11,
657,
13,
1495,
8,
198,
220,
220,
220,
220,
220,
220,
220,
299,
796,
402,
12261,
265,
8609,
7,
76,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
3975,
7,
3118,
560,
41472,
13,
25294,
11,
299,
38381,
16,
11,
16,
60,
6624,
3975,
7,
6404,
11,
285,
38381,
16,
11,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
267,
796,
3975,
0,
7,
33,
3219,
41472,
13,
19555,
11,
402,
12261,
265,
8609,
90,
33,
970,
92,
7,
20,
11,
642,
828,
220,
657,
13,
16,
11,
299,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
267,
58,
16,
11,
19,
60,
6624,
357,
15,
13,
16,
1875,
285,
58,
16,
11,
19,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
3975,
7,
33,
3219,
41472,
13,
23683,
18672,
11,
299,
11,
352,
13,
20,
38381,
16,
11,
16,
60,
6624,
352,
13,
20,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
357,
77,
764,
9,
838,
38381,
16,
11,
16,
60,
6624,
299,
58,
16,
11,
16,
60,
1635,
838,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
9288,
2617,
366,
76,
377,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
285,
796,
43720,
7,
940,
11,
838,
8,
198,
220,
220,
220,
220,
220,
220,
220,
299,
796,
43720,
7,
940,
11,
1802,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
16580,
25,
1680,
2130,
2198,
428,
11,
407,
1654,
611,
326,
338,
3734,
11,
393,
34372,
13,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
46912,
7,
76,
377,
7,
4579,
46912,
7,
76,
828,
402,
12261,
265,
8609,
7,
77,
4008,
828,
285,
1635,
299,
11,
379,
349,
28,
23,
68,
12,
1314,
8,
198,
220,
220,
220,
220,
220,
220,
220,
285,
796,
402,
12261,
265,
8609,
26933,
16,
11,
18,
11,
20,
11,
22,
4357,
685,
22,
11,
20,
11,
18,
11,
16,
4357,
685,
16,
11,
17,
11,
18,
11,
19,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
299,
796,
402,
12261,
265,
8609,
90,
5317,
23,
92,
7,
22,
11,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
299,
58,
16,
25,
17,
25,
22,
11,
352,
60,
796,
685,
16,
11,
838,
11,
1160,
11,
1542,
60,
198,
220,
220,
220,
220,
220,
220,
220,
267,
796,
35971,
7,
76,
11,
299,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
2546,
7,
78,
8,
6624,
357,
22,
11,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
1288,
4906,
7,
78,
8,
6624,
2558,
2414,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
267,
58,
22,
11,
352,
60,
6624,
604,
11405,
267,
58,
20,
11,
352,
60,
6624,
1542,
198,
220,
220,
220,
220,
220,
220,
220,
267,
796,
402,
12261,
265,
8609,
7,
1952,
7,
5317,
2414,
11,
767,
11,
352,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
9335,
796,
402,
12261,
265,
8609,
7,
1952,
7,
33,
970,
11,
767,
11,
352,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
9335,
58,
18,
11,
16,
60,
796,
3991,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
35971,
0,
7,
78,
11,
285,
11,
299,
26,
9335,
11,
10507,
28,
33,
3219,
41472,
13,
6489,
2937,
8,
6624,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
402,
12261,
265,
8609,
26933,
3132,
11,
16,
11,
16,
11,
16,
11,
3132,
11,
16,
11,
20,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
285,
796,
402,
12261,
265,
8609,
26933,
58,
16,
11,
17,
11,
18,
60,
685,
19,
11,
20,
11,
21,
11907,
8,
198,
220,
220,
220,
220,
220,
220,
220,
299,
796,
13124,
38469,
26933,
940,
11,
1238,
11,
1270,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
34024,
44,
1042,
963,
285,
1635,
299,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
285,
6,
1635,
299,
6624,
13124,
38469,
26933,
15187,
11,
20959,
12962,
6624,
299,
1635,
285,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
9288,
2617,
366,
445,
7234,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
285,
796,
402,
12261,
265,
8609,
26933,
58,
16,
11,
17,
11,
18,
60,
685,
19,
11,
20,
11,
21,
60,
685,
22,
11,
23,
11,
24,
11907,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4646,
7,
9806,
11,
285,
11,
5391,
82,
28,
17,
8,
6624,
4646,
7,
9069,
10994,
13,
22921,
62,
27857,
46,
2389,
11,
285,
8,
1303,
5661,
691,
2499,
329,
15715,
198,
220,
220,
220,
220,
220,
220,
220,
4646,
7,
9069,
10994,
13,
22921,
62,
27857,
46,
2389,
11,
285,
11,
5391,
82,
16193,
16,
11,
17,
4008,
6624,
860,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
4646,
7,
33,
3219,
41472,
13,
51,
3955,
1546,
11,
285,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
9288,
2617,
366,
19738,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
285,
796,
402,
12261,
265,
8609,
26933,
58,
16,
11,
17,
11,
18,
60,
685,
19,
11,
20,
11,
21,
60,
685,
22,
11,
23,
11,
24,
11907,
8,
198,
220,
220,
220,
220,
220,
220,
220,
264,
796,
2922,
7,
2213,
346,
11,
285,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
264,
58,
16,
11,
17,
60,
24844,
2147,
11405,
264,
58,
18,
11,
16,
60,
6624,
513,
198,
220,
220,
220,
220,
220,
220,
220,
264,
796,
2922,
7,
27,
11,
285,
11,
718,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
264,
58,
17,
11,
17,
60,
6624,
642,
11405,
264,
58,
18,
11,
18,
60,
24844,
2147,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
9288,
2617,
366,
7645,
3455,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
285,
796,
402,
12261,
265,
8609,
7,
34975,
392,
7,
18,
11,
513,
11,
657,
13,
20,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
308,
65,
7645,
3455,
7,
76,
11537,
6624,
285,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
285,
58,
16,
11,
17,
60,
6624,
285,
6,
58,
17,
11,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
285,
58,
16,
11,
17,
60,
6624,
308,
65,
7645,
3455,
7,
76,
38381,
17,
11,
16,
60,
198,
220,
220,
220,
886,
198,
437,
198
] | 1.777952 | 1,914 |
using SimpleTest
using YAML
println("Enter two numbers")
num1 = parse(Float64, readline())
num2 = parse(Float64, readline())
result = simple_operation(num1, num2)
println("The sum is ", result)
sep = "/"
working_path = pwd()
settings_path = joinpath(working_path, "settings.yml")
testpath = joinpath(pwd(), "src")
push!(LOAD_PATH, testpath)
settings = YAML.load(open(settings_path))
output_path = joinpath(working_path, "output")
start_of_opt(settings, sep, output_path) | [
3500,
17427,
14402,
198,
3500,
575,
2390,
43,
198,
35235,
7203,
17469,
734,
3146,
4943,
198,
22510,
16,
796,
21136,
7,
43879,
2414,
11,
1100,
1370,
28955,
198,
22510,
17,
796,
21136,
7,
43879,
2414,
11,
1100,
1370,
28955,
198,
20274,
796,
2829,
62,
27184,
7,
22510,
16,
11,
997,
17,
8,
198,
35235,
7203,
464,
2160,
318,
33172,
1255,
8,
198,
325,
79,
796,
12813,
1,
198,
16090,
62,
6978,
796,
279,
16993,
3419,
198,
33692,
62,
6978,
796,
4654,
6978,
7,
16090,
62,
6978,
11,
366,
33692,
13,
88,
4029,
4943,
198,
9288,
6978,
796,
4654,
6978,
7,
79,
16993,
22784,
366,
10677,
4943,
198,
14689,
0,
7,
35613,
62,
34219,
11,
1332,
6978,
8,
198,
33692,
796,
575,
2390,
43,
13,
2220,
7,
9654,
7,
33692,
62,
6978,
4008,
198,
22915,
62,
6978,
796,
4654,
6978,
7,
16090,
62,
6978,
11,
366,
22915,
4943,
198,
9688,
62,
1659,
62,
8738,
7,
33692,
11,
41767,
11,
5072,
62,
6978,
8
] | 2.901235 | 162 |
@testset "fsm_active_close.jl" begin
base_seq = WrappingInt32(1 << 31)
DEFAULT_CAPACITY = 64000
TIMEOUT_DFLT = 1000
@testset "start in TIME_WAIT, timeout" begin
conn = TCPConnection()
#Listen will do nothing
expect_state(conn, JLSponge.LISTEN)
tick!(conn, 1)
expect_state(conn, JLSponge.LISTEN)
send_syn!(conn, WrappingInt32(0))
tick!(conn, 1)
seg = expect_one_seg(conn; ack=true, syn=true, ackno=WrappingInt32(1))
expect_state(conn, JLSponge.SYN_RCVD)
send_ack!(conn, WrappingInt32(1), seg.header.seqno + 1)
tick!(conn, 1)
expect_no_seg(conn)
expect_state(conn, JLSponge.ESTABLISHED)
end
end | [
31,
9288,
2617,
366,
69,
5796,
62,
5275,
62,
19836,
13,
20362,
1,
2221,
198,
220,
220,
220,
2779,
62,
41068,
796,
27323,
2105,
5317,
2624,
7,
16,
9959,
3261,
8,
198,
220,
220,
220,
5550,
38865,
62,
33177,
2246,
9050,
796,
5598,
830,
198,
220,
220,
220,
20460,
12425,
62,
35,
3697,
51,
796,
8576,
198,
220,
220,
220,
2488,
9288,
2617,
366,
9688,
287,
20460,
62,
15543,
2043,
11,
26827,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
48260,
796,
23633,
32048,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
23061,
481,
466,
2147,
198,
220,
220,
220,
220,
220,
220,
220,
1607,
62,
5219,
7,
37043,
11,
449,
43,
4561,
14220,
13,
45849,
1677,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4378,
0,
7,
37043,
11,
352,
8,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1607,
62,
5219,
7,
37043,
11,
449,
43,
4561,
14220,
13,
45849,
1677,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
3758,
62,
28869,
0,
7,
37043,
11,
27323,
2105,
5317,
2624,
7,
15,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
4378,
0,
7,
37043,
11,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
384,
70,
796,
1607,
62,
505,
62,
325,
70,
7,
37043,
26,
257,
694,
28,
7942,
11,
6171,
28,
7942,
11,
257,
694,
3919,
28,
36918,
2105,
5317,
2624,
7,
16,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1607,
62,
5219,
7,
37043,
11,
449,
43,
4561,
14220,
13,
23060,
45,
62,
7397,
8898,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3758,
62,
441,
0,
7,
37043,
11,
27323,
2105,
5317,
2624,
7,
16,
828,
384,
70,
13,
25677,
13,
41068,
3919,
1343,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4378,
0,
7,
37043,
11,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1607,
62,
3919,
62,
325,
70,
7,
37043,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1607,
62,
5219,
7,
37043,
11,
449,
43,
4561,
14220,
13,
1546,
5603,
9148,
18422,
1961,
8,
198,
220,
220,
220,
886,
198,
437
] | 1.97035 | 371 |
using Test
@testset "config" begin
include("config.jl")
end
@testset "fileio" begin
include("fileio.jl")
end
@testset "json" begin
include("json.jl")
end | [
3500,
6208,
198,
198,
31,
9288,
2617,
366,
11250,
1,
2221,
198,
220,
220,
220,
2291,
7203,
11250,
13,
20362,
4943,
198,
437,
198,
198,
31,
9288,
2617,
366,
7753,
952,
1,
2221,
198,
220,
220,
220,
2291,
7203,
7753,
952,
13,
20362,
4943,
198,
437,
198,
198,
31,
9288,
2617,
366,
17752,
1,
2221,
198,
220,
220,
220,
2291,
7203,
17752,
13,
20362,
4943,
198,
437
] | 2.507463 | 67 |
module LifeContingencies
using ActuaryUtilities
using MortalityTables
using Transducers
using Dates
using Yields
const mt = MortalityTables
export LifeContingency,
Insurance, AnnuityDue, AnnuityImmediate,
APV,
SingleLife, Frasier, JointLife,
LastSurvivor,
survival,
reserve_premium_net,
insurance,
annuity_due,
annuity_immediate,
premium_net,
omega,
survival,
discount,
benefit,
probability,
cashflows,
cashflows,
timepoints,
present_value
# 'actuarial objects' that combine multiple forms of decrements (lapse, interest, death, etc)
abstract type Life end
"""
struct SingleLife
mort
issue_age::Int
alive::Bool
fractional_assump::MortalityTables.DeathDistribution
end
A `Life` object containing the necessary assumptions for contingent maths related to a single life. Use with a `LifeContingency` to do many actuarial present value calculations.
Keyword arguments:
- `mort` pass a mortality vector, which is an array of applicable mortality rates indexed by attained age
- `issue_age` is the assumed issue age for the `SingleLife` and is the basis of many contingency calculations.
- `alive` Default value is `true`. Useful for joint insurances with different status on the lives insured.
- `fractional_assump`. Default value is `Uniform()`. This is a `DeathDistribution` from the `MortalityTables.jl` package and is the assumption to use for non-integer ages/times.
# Examples
using MortalityTables
mort = MortalityTables.table("2001 VBT Residual Standard Select and Ultimate - Male Nonsmoker, ANB")
SingleLife(
mort = mort.select[30],
issue_age = 30
)
"""
struct SingleLife <: Life
mort
issue_age
alive
fractional_assump
end
function SingleLife(;mort,issue_age=nothing,alive=true,fractional_assump = mt.Uniform())
return SingleLife(mort;issue_age,alive,fractional_assump)
end
function SingleLife(mort;issue_age=nothing,alive=true,fractional_assump = mt.Uniform())
if isnothing(issue_age)
issue_age = firstindex(mort)
end
if !(eltype(mort) <: Real)
# most likely case is that mort is an array of vectors
# use issue age to select the right one (assuming indexed with issue age
return SingleLife(mort[issue_age],issue_age,alive,fractional_assump)
else
return SingleLife(mort,issue_age,alive,fractional_assump)
end
end
"""
JointAssumption()
An abstract type representing the different assumed relationship between the survival of the lives on a JointLife. Available options to use include:
- `Frasier()`
"""
abstract type JointAssumption end
"""
Frasier()
The assumption of independnt lives in a joint life calculation.
Is a subtype of `JointAssumption`.
"""
struct Frasier <: JointAssumption end
"""
Contingency()
An abstract type representing the different triggers for contingent benefits. Available options to use include:
- `LastSurvivor()`
"""
abstract type Contingency end
"""
LastSurvivor()
The contingency whereupon benefits are payable upon both lives passing.
Is a subtype of `Contingency`
"""
struct LastSurvivor <: Contingency end
# TODO: Not Implemented
# """
# FirstToDie()
# The contingency whereupon benefits are payable upon the first life passing.
# Is a subtype of `Contingency`
# """
# struct FirstToDie <: Contingency end
"""
struct JointLife
lives
contingency
joint_assumption
end
A `Life` object containing the necessary assumptions for contingent maths related to a joint life insurance. Use with a `LifeContingency` to do many actuarial present value calculations.
Keyword arguments:
- `lives` is a tuple of two `SingleLife`s
- `contingency` default is `LastSurvivor()`. It is the trigger for contingent benefits. See `?Contingency`.
- `joint_assumption` Default value is `Frasier()`. It is the assumed relationship between the mortality of the two lives. See `?JointAssumption`.
# Examples
using MortalityTables
mort = MortalityTables.table("2001 VBT Residual Standard Select and Ultimate - Male Nonsmoker, ANB")
l1 = SingleLife(
mort = mort.select[30],
issue_age = 30
)
l2 = SingleLife(
mort = mort.select[30],
issue_age = 30
)
jl = JointLife(
lives = (l1,l2),
contingency = LastSurvivor(),
joint_assumption = Frasier()
)
"""
Base.@kwdef struct JointLife <: Life
lives::Tuple{SingleLife,SingleLife}
contingency::Contingency = LastSurvivor()
joint_assumption::JointAssumption = Frasier()
end
"""
struct LifeContingency
life::Life
"""
struct LifeContingency
life::Life
int
end
Base.broadcastable(lc::LifeContingency) = Ref(lc)
"""
omega(lc::LifeContingency)
omega(l::Life)
omega(i::InterestRate)
# `Life`s and `LifeContingency`s
Returns the last defined time_period for both the interest rate and mortality table.
Note that this is *different* than calling `omega` on a `MortalityTable`, which will give you the last `attained_age`.
Example: if the `LifeContingency` has issue age 60, and the last defined attained age for the `MortalityTable` is 100, then `omega` of the `MortalityTable` will be `100` and `omega` of the
`LifeContingency` will be `40`.
# `InterestRate`s
The last period that the interest rate is defined for. Assumed to be infinite (`Inf`) for
functional and constant interest rate types. Returns the `lastindex` of the vector if
a vector type.
"""
function mt.omega(lc::LifeContingency)
# if one of the omegas is infinity, that's a Float so we need
# to narrow the type with Int
return Int(omega(lc.life))
end
function mt.omega(l::SingleLife)
return mt.omega(l.mort) - l.issue_age + 1
end
function mt.omega(l::JointLife)
return minimum( omega.(l.lives) )
end
###################
## COMMUTATIONS ###
###################
"""
D(lc::LifeContingency, to_time)
``D_x`` is a retrospective actuarial commutation function which is the product of the survival and discount factor.
"""
function D(lc::LifeContingency, to_time)
return discount(lc.int, to_time) * survival(lc,to_time)
end
"""
l(lc::LifeContingency, to_time)
``l_x`` is a retrospective actuarial commutation function which is the survival up to a certain point in time. By default, will have a unitary basis (ie `1.0`), but you can specify `basis` keyword argument to use something different (e.g. `1000` is common in the literature.)
"""
function l(lc::LifeContingency, to_time; basis=1.0)
return survival(lc.life,to_time) * basis
end
"""
C(lc::LifeContingency, to_time)
``C_x`` is a retrospective actuarial commutation function which is the product of the discount factor and the difference in `l` (``l_x``).
"""
function C(lc::LifeContingency, to_time)
discount(lc.int, to_time+1) * (l(lc,to_time) - l(lc, to_time+1))
end
"""
N(lc::LifeContingency, from_time)
``N_x`` is a prospective actuarial commutation function which is the sum of the `D` (``D_x``) values from the given time to the end of the mortality table.
"""
function N(lc::LifeContingency, from_time)
range = from_time:(omega(lc)-1)
return foldxt(+,Map(from_time->D(lc, from_time)), range)
end
"""
M(lc::LifeContingency, from_time)
The ``M_x`` actuarial commutation function where the `from_time` argument is `x`.
Issue age is based on the issue_age in the LifeContingency `lc`.
"""
function M(lc::LifeContingency, from_time)
range = from_time:omega(lc)-1
return foldxt(+,Map(from_time->C(lc, from_time)), range)
end
E(lc::LifeContingency, t, x) = D(lc,x + t) / D(lc,x)
##################
### Insurances ###
##################
abstract type Insurance end
LifeContingency(ins::Insurance) = LifeContingency(ins.life,ins.int)
struct WholeLife <: Insurance
life
int
end
struct Term <: Insurance
life
int
n
end
"""
Insurance(lc::LifeContingency; n=nothing)
Insurance(life,interest; n=nothing)
Life insurance with a term period of `n`. If `n` is `nothing`, then whole life insurance.
Issue age is based on the `issue_age` in the LifeContingency `lc`.
# Examples
```
ins = Insurance(
SingleLife(mort = UltimateMortality([0.5,0.5]),issue_age = 0),
Yields.Constant(0.05),
n = 1
)
```
"""
Insurance(lc::LifeContingency; n=nothing) = Insurance(lc.life,lc.int;n)
function Insurance(lc,int;n=nothing)
if isnothing(n)
return WholeLife(lc,int)
elseif n < 1
return ZeroBenefit(lc,int)
else
Term(lc,int,n)
end
end
struct Due end
struct Immediate end
struct Annuity <: Insurance
life
int
payable
n
start_time
certain
frequency
end
struct ZeroBenefit <: Insurance
life
int
end
function ZeroBenefit(lc::LifeContingency)
return ZeroBenefit(lc.life,lc.int)
end
"""
AnnuityDue(lc::LifeContingency; n=nothing, start_time=0; certain=nothing,frequency=1)
AnnuityDue(life, interest; n=nothing, start_time=0; certain=nothing,frequency=1)
Annuity due with the benefit period starting at `start_time` and ending after `n` periods with `frequency` payments per year of `1/frequency` amount and a `certain` period with non-contingent payments.
# Examples
```
ins = AnnuityDue(
SingleLife(mort = UltimateMortality([0.5,0.5]),issue_age = 0),
Yields.Constant(0.05),
n = 1
)
```
"""
function AnnuityDue(life, int; n=nothing,start_time=0,certain=nothing,frequency=1)
if ~isnothing(n) && n < 1
return ZeroBenefit(life,int)
else
Annuity(life,int,Due(),n,start_time,certain,frequency)
end
end
function AnnuityDue(lc::LifeContingency; n=nothing,start_time=0,certain=nothing,frequency=1)
return AnnuityDue(lc.life,lc.int;n,start_time,certain,frequency)
end
"""
AnnuityImmediate(lc::LifeContingency; n=nothing, start_time=0; certain=nothing,frequency=1)
AnnuityImmediate(life, interest; n=nothing, start_time=0; certain=nothing,frequency=1)
Annuity immediate with the benefit period starting at `start_time` and ending after `n` periods with `frequency` payments per year of `1/frequency` amount and a `certain` period with non-contingent payments.
# Examples
```
ins = AnnuityImmediate(
SingleLife(mort = UltimateMortality([0.5,0.5]),issue_age = 0),
Yields.Constant(0.05),
n = 1
)
```
"""
function AnnuityImmediate(life, int; n=nothing,start_time=0,certain=nothing,frequency=1)
if ~isnothing(n) && n < 1
return ZeroBenefit(life,int)
else
return Annuity(life,int,Immediate(),n,start_time,certain,frequency)
end
end
function AnnuityImmediate(lc::LifeContingency; n=nothing,start_time=0,certain=nothing,frequency=1)
return AnnuityImmediate(lc.life,lc.int;n,start_time,certain,frequency)
end
"""
survival(Insurance)
The survorship vector for the given insurance.
"""
function MortalityTables.survival(ins::Insurance)
return [survival(ins.life,t-1) for t in timepoints(ins)]
end
function MortalityTables.survival(ins::Annuity)
return [survival(ins.life,t) for t in timepoints(ins)]
end
"""
discount(Insurance)
The discount vector for the given insurance.
"""
function Yields.discount(ins::Insurance)
return Yields.discount.(ins.int,timepoints(ins))
end
"""
benefit(Insurance)
The unit benefit vector for the given insurance.
"""
function benefit(ins::Insurance)
return ones(length(timepoints(ins)))
end
function benefit(ins::ZeroBenefit)
return zeros(length(timepoints(ins)))
end
function benefit(ins::Annuity)
return ones(length(timepoints(ins))) ./ ins.frequency
end
"""
probability(Insurance)
The vector of contingent benefit probabilities for the given insurance.
"""
function probability(ins::Insurance)
return [survival(ins.life,t-1) * decrement(ins.life,t-1,t) for t in timepoints(ins)]
end
function probability(ins::ZeroBenefit)
return ones(length(timepoints(ins)))
end
function probability(ins::Annuity)
if isnothing(ins.certain)
return [survival(ins.life,t) for t in timepoints(ins)]
else
return [t <= ins.certain + ins.start_time ? 1.0 : survival(ins.life,t) for t in timepoints(ins)]
end
end
"""
cashflows(Insurance)
The vector of decremented benefit cashflows for the given insurance.
"""
function cashflows(ins::Insurance)
return probability(ins) .* benefit(ins)
end
"""
timepoints(Insurance)
The vector of times corresponding to the cashflow vector for the given insurance.
"""
function timepoints(ins::Insurance)
return collect(1:omega(ins.life))
end
function timepoints(ins::Term)
return collect(1:min(omega(ins.life),ins.n))
end
function timepoints(ins::ZeroBenefit)
return [0.]
end
function timepoints(ins::Annuity)
return timepoints(ins,ins.payable)
end
function timepoints(ins::Annuity,payable::Due)
if isnothing(ins.n)
end_time = omega(ins.life)
else
end_time = ins.n + ins.start_time - 1 / ins.frequency
end
timestep = 1 / ins.frequency
collect(ins.start_time:timestep:end_time)
end
function timepoints(ins::Annuity,payable::Immediate)
if isnothing(ins.n)
end_time = omega(ins.life)
else
end_time = ins.n + ins.start_time
end
timestep = 1 / ins.frequency
end_time = max(ins.start_time + timestep,end_time) # return at least one timepoint to avoid returning empty array
collect((ins.start_time + timestep):timestep:end_time)
end
"""
present_value(Insurance)
The actuarial present value of the given insurance.
"""
function ActuaryUtilities.present_value(ins)
return present_value(ins.int,cashflows(ins),timepoints(ins))
end
"""
premium_net(lc::LifeContingency)
premium_net(lc::LifeContingency,to_time)
The net premium for a whole life insurance (without second argument) or a term life insurance through `to_time`.
The net premium is based on 1 unit of insurance with the death benfit payable at the end of the year and assuming annual net premiums.
"""
premium_net(lc::LifeContingency) = A(lc) / ä(lc)
premium_net(lc::LifeContingency,to_time) = A(lc,to_time) / ä(lc,to_time)
"""
reserve_premium_net(lc::LifeContingency,time)
The net premium reserve at the end of year `time`.
"""
function reserve_premium_net(lc::LifeContingency, time)
PVFB = A(lc) - A(lc,n=time)
PVFP = premium_net(lc) * (ä(lc) - ä(lc,n=time))
return (PVFB - PVFP) / APV(lc,time)
end
"""
APV(lc::LifeContingency,to_time)
The **actuarial present value** which is the survival times the discount factor for the life contingency.
"""
function APV(lc::LifeContingency,to_time)
return survival(lc,to_time) * discount(lc.int,to_time)
end
"""
decrement(lc::LifeContingency,to_time)
decrement(lc::LifeContingency,from_time,to_time)
Return the probablity of death for the given LifeContingency.
"""
mt.decrement(lc::LifeContingency,from_time,to_time) = 1 - survival(lc.life,from_time,to_time)
"""
survival(lc::LifeContingency,from_time,to_time)
survival(lc::LifeContingency,to_time)
Return the probablity of survival for the given LifeContingency.
"""
mt.survival(lc::LifeContingency,to_time) = survival(lc.life, 0, to_time)
mt.survival(lc::LifeContingency,from_time,to_time) = survival(lc.life, from_time, to_time)
mt.survival(l::SingleLife,to_time) = survival(l,0,to_time)
mt.survival(l::SingleLife,from_time,to_time) =survival(l.mort,l.issue_age + from_time,l.issue_age + to_time, l.fractional_assump)
"""
surival(life)
Return a survival vector for the given life.
"""
function mt.survival(l::Life)
ω = omega(l)
return [survival(l,t) for t in 0:ω]
end
mt.survival(l::JointLife,to_time) = survival(l::JointLife,0,to_time)
function mt.survival(l::JointLife,from_time,to_time)
return survival(l.contingency,l.joint_assumption,l::JointLife,from_time,to_time)
end
function mt.survival(ins::LastSurvivor,assump::JointAssumption,l::JointLife,from_time,to_time)
to_time == 0 && return 1.0
l1,l2 = l.lives
ₜpₓ = survival(l1.mort,l1.issue_age + from_time,l1.issue_age + to_time,l1.fractional_assump)
ₜpᵧ = survival(l2.mort,l2.issue_age + from_time,l2.issue_age + to_time,l2.fractional_assump)
return ₜpₓ + ₜpᵧ - ₜpₓ * ₜpᵧ
end
Yields.discount(lc::LifeContingency,t) = discount(lc.int,t)
Yields.discount(lc::LifeContingency,t1,t2) = discount(lc.int,t1,t2)
# function compostion with kwargs.
# https://stackoverflow.com/questions/64740010/how-to-alias-composite-function-with-keyword-arguments
⋄(f, g) = (x...; kw...)->f(g(x...; kw...))
# unexported aliases
const V = reserve_premium_net
const v = Yields.discount
const A = present_value ⋄ Insurance
const a = present_value ⋄ AnnuityImmediate
const ä = present_value ⋄ AnnuityDue
const P = premium_net
const ω = omega
end # module
| [
21412,
5155,
4264,
278,
3976,
198,
198,
3500,
2191,
2838,
18274,
2410,
198,
3500,
10788,
1483,
51,
2977,
198,
3500,
3602,
41213,
198,
3500,
44712,
198,
3500,
575,
1164,
82,
198,
220,
220,
220,
220,
198,
9979,
45079,
796,
10788,
1483,
51,
2977,
198,
198,
39344,
5155,
4264,
278,
1387,
11,
198,
220,
220,
220,
17541,
11,
5506,
14834,
22229,
11,
5506,
14834,
3546,
13857,
11,
198,
220,
220,
220,
3486,
53,
11,
198,
220,
220,
220,
14206,
14662,
11,
1305,
292,
959,
11,
16798,
14662,
11,
198,
220,
220,
220,
4586,
34652,
452,
273,
11,
198,
220,
220,
220,
9441,
11,
198,
220,
220,
220,
11515,
62,
31605,
1505,
62,
3262,
11,
198,
220,
220,
220,
5096,
11,
198,
220,
220,
220,
1529,
14834,
62,
23301,
11,
198,
220,
220,
220,
1529,
14834,
62,
320,
13857,
11,
198,
220,
220,
220,
8683,
62,
3262,
11,
198,
220,
220,
220,
37615,
11,
198,
220,
220,
220,
9441,
11,
198,
220,
220,
220,
9780,
11,
198,
220,
220,
220,
4414,
11,
198,
220,
220,
220,
12867,
11,
198,
220,
220,
220,
5003,
44041,
11,
198,
220,
220,
220,
5003,
44041,
11,
198,
220,
220,
220,
640,
13033,
11,
198,
220,
220,
220,
1944,
62,
8367,
628,
628,
198,
198,
2,
705,
529,
84,
36098,
5563,
6,
326,
12082,
3294,
5107,
286,
5255,
902,
357,
75,
7512,
11,
1393,
11,
1918,
11,
3503,
8,
198,
397,
8709,
2099,
5155,
886,
628,
198,
37811,
198,
220,
220,
220,
2878,
14206,
14662,
198,
220,
220,
220,
220,
220,
220,
220,
5596,
198,
220,
220,
220,
220,
220,
220,
220,
2071,
62,
496,
3712,
5317,
198,
220,
220,
220,
220,
220,
220,
220,
6776,
3712,
33,
970,
198,
220,
220,
220,
220,
220,
220,
220,
13390,
282,
62,
562,
931,
3712,
44,
28337,
51,
2977,
13,
20148,
20344,
3890,
198,
220,
220,
220,
886,
198,
198,
32,
4600,
14662,
63,
2134,
7268,
262,
3306,
14895,
329,
25477,
47761,
3519,
284,
257,
2060,
1204,
13,
5765,
351,
257,
4600,
14662,
4264,
278,
1387,
63,
284,
466,
867,
43840,
36098,
1944,
1988,
16765,
13,
220,
198,
198,
9218,
4775,
7159,
25,
198,
12,
4600,
30171,
63,
1208,
257,
12430,
15879,
11,
543,
318,
281,
7177,
286,
9723,
12430,
3965,
41497,
416,
28681,
2479,
198,
12,
4600,
21949,
62,
496,
63,
318,
262,
9672,
2071,
2479,
329,
262,
4600,
28008,
14662,
63,
290,
318,
262,
4308,
286,
867,
38820,
16765,
13,
198,
12,
4600,
282,
425,
63,
15161,
1988,
318,
4600,
7942,
44646,
49511,
329,
6466,
1035,
31741,
351,
1180,
3722,
319,
262,
3160,
31977,
13,
198,
12,
4600,
69,
7861,
282,
62,
562,
931,
44646,
15161,
1988,
318,
4600,
3118,
6933,
3419,
44646,
770,
318,
257,
4600,
20148,
20344,
3890,
63,
422,
262,
4600,
44,
28337,
51,
2977,
13,
20362,
63,
5301,
290,
318,
262,
13196,
284,
779,
329,
1729,
12,
41433,
9337,
14,
22355,
13,
198,
198,
2,
21066,
198,
220,
220,
220,
1262,
10788,
1483,
51,
2977,
198,
220,
220,
220,
5596,
796,
10788,
1483,
51,
2977,
13,
11487,
7203,
14585,
569,
19313,
1874,
312,
723,
8997,
9683,
290,
11165,
532,
12674,
399,
684,
76,
11020,
11,
3537,
33,
4943,
628,
220,
220,
220,
14206,
14662,
7,
198,
220,
220,
220,
220,
220,
220,
220,
5596,
220,
220,
220,
220,
220,
220,
796,
5596,
13,
19738,
58,
1270,
4357,
220,
198,
220,
220,
220,
220,
220,
220,
220,
2071,
62,
496,
220,
796,
1542,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
1267,
198,
37811,
198,
7249,
14206,
14662,
1279,
25,
5155,
198,
220,
220,
220,
5596,
198,
220,
220,
220,
2071,
62,
496,
198,
220,
220,
220,
6776,
198,
220,
220,
220,
13390,
282,
62,
562,
931,
198,
437,
198,
198,
8818,
14206,
14662,
7,
26,
30171,
11,
21949,
62,
496,
28,
22366,
11,
282,
425,
28,
7942,
11,
69,
7861,
282,
62,
562,
931,
796,
45079,
13,
3118,
6933,
28955,
198,
220,
220,
220,
1441,
14206,
14662,
7,
30171,
26,
21949,
62,
496,
11,
282,
425,
11,
69,
7861,
282,
62,
562,
931,
8,
198,
437,
198,
198,
8818,
14206,
14662,
7,
30171,
26,
21949,
62,
496,
28,
22366,
11,
282,
425,
28,
7942,
11,
69,
7861,
282,
62,
562,
931,
796,
45079,
13,
3118,
6933,
28955,
198,
220,
220,
220,
611,
318,
22366,
7,
21949,
62,
496,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2071,
62,
496,
796,
717,
9630,
7,
30171,
8,
198,
220,
220,
220,
886,
628,
220,
220,
220,
611,
5145,
7,
417,
4906,
7,
30171,
8,
1279,
25,
6416,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
749,
1884,
1339,
318,
326,
5596,
318,
281,
7177,
286,
30104,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
779,
2071,
2479,
284,
2922,
262,
826,
530,
357,
32935,
41497,
351,
2071,
2479,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
14206,
14662,
7,
30171,
58,
21949,
62,
496,
4357,
21949,
62,
496,
11,
282,
425,
11,
69,
7861,
282,
62,
562,
931,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
14206,
14662,
7,
30171,
11,
21949,
62,
496,
11,
282,
425,
11,
69,
7861,
282,
62,
562,
931,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
437,
198,
198,
37811,
220,
198,
220,
220,
220,
16798,
8021,
24098,
3419,
198,
198,
2025,
12531,
2099,
10200,
262,
1180,
9672,
2776,
1022,
262,
9441,
286,
262,
3160,
319,
257,
16798,
14662,
13,
14898,
3689,
284,
779,
2291,
25,
198,
12,
4600,
6732,
292,
959,
3419,
63,
198,
37811,
198,
397,
8709,
2099,
16798,
8021,
24098,
886,
198,
198,
37811,
220,
198,
220,
220,
220,
1305,
292,
959,
3419,
198,
198,
464,
13196,
286,
3485,
429,
3160,
287,
257,
6466,
1204,
17952,
13,
198,
3792,
257,
850,
4906,
286,
4600,
41,
1563,
8021,
24098,
44646,
198,
37811,
198,
7249,
1305,
292,
959,
1279,
25,
16798,
8021,
24098,
886,
198,
198,
37811,
220,
198,
220,
220,
220,
2345,
278,
1387,
3419,
198,
198,
2025,
12531,
2099,
10200,
262,
1180,
20022,
329,
25477,
4034,
13,
14898,
3689,
284,
779,
2291,
25,
198,
12,
4600,
5956,
34652,
452,
273,
3419,
63,
198,
37811,
198,
397,
8709,
2099,
2345,
278,
1387,
886,
198,
198,
37811,
198,
220,
220,
220,
4586,
34652,
452,
273,
3419,
198,
464,
38820,
810,
27287,
4034,
389,
28538,
2402,
1111,
3160,
6427,
13,
198,
3792,
257,
850,
4906,
286,
4600,
4264,
278,
1387,
63,
198,
37811,
198,
7249,
4586,
34652,
452,
273,
1279,
25,
2345,
278,
1387,
886,
198,
198,
2,
16926,
46,
25,
1892,
1846,
1154,
12061,
198,
2,
37227,
198,
2,
220,
220,
220,
220,
3274,
2514,
32423,
3419,
198,
2,
383,
38820,
810,
27287,
4034,
389,
28538,
2402,
262,
717,
1204,
6427,
13,
198,
198,
2,
1148,
257,
850,
4906,
286,
4600,
4264,
278,
1387,
63,
198,
2,
37227,
198,
2,
2878,
3274,
2514,
32423,
1279,
25,
2345,
278,
1387,
886,
198,
198,
37811,
198,
220,
220,
220,
2878,
16798,
14662,
198,
220,
220,
220,
220,
220,
220,
220,
3160,
198,
220,
220,
220,
220,
220,
220,
220,
38820,
198,
220,
220,
220,
220,
220,
220,
220,
6466,
62,
562,
24098,
198,
220,
220,
220,
886,
628,
220,
220,
220,
317,
4600,
14662,
63,
2134,
7268,
262,
3306,
14895,
329,
25477,
47761,
3519,
284,
257,
6466,
1204,
5096,
13,
5765,
351,
257,
4600,
14662,
4264,
278,
1387,
63,
284,
466,
867,
43840,
36098,
1944,
1988,
16765,
13,
220,
198,
198,
9218,
4775,
7159,
25,
198,
12,
4600,
75,
1083,
63,
318,
257,
46545,
286,
734,
4600,
28008,
14662,
63,
82,
198,
12,
4600,
3642,
278,
1387,
63,
4277,
318,
4600,
5956,
34652,
452,
273,
3419,
44646,
632,
318,
262,
7616,
329,
25477,
4034,
13,
4091,
4600,
30,
4264,
278,
1387,
44646,
220,
198,
12,
4600,
73,
1563,
62,
562,
24098,
63,
15161,
1988,
318,
4600,
6732,
292,
959,
3419,
44646,
632,
318,
262,
9672,
2776,
1022,
262,
12430,
286,
262,
734,
3160,
13,
4091,
4600,
30,
41,
1563,
8021,
24098,
44646,
220,
198,
198,
2,
21066,
198,
220,
220,
220,
1262,
10788,
1483,
51,
2977,
198,
220,
220,
220,
5596,
796,
10788,
1483,
51,
2977,
13,
11487,
7203,
14585,
569,
19313,
1874,
312,
723,
8997,
9683,
290,
11165,
532,
12674,
399,
684,
76,
11020,
11,
3537,
33,
4943,
628,
220,
220,
220,
300,
16,
796,
14206,
14662,
7,
198,
220,
220,
220,
220,
220,
220,
220,
5596,
220,
220,
220,
220,
220,
220,
796,
5596,
13,
19738,
58,
1270,
4357,
220,
198,
220,
220,
220,
220,
220,
220,
220,
2071,
62,
496,
220,
796,
1542,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
300,
17,
796,
14206,
14662,
7,
198,
220,
220,
220,
220,
220,
220,
220,
5596,
220,
220,
220,
220,
220,
220,
796,
5596,
13,
19738,
58,
1270,
4357,
220,
198,
220,
220,
220,
220,
220,
220,
220,
2071,
62,
496,
220,
796,
1542,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
474,
75,
796,
16798,
14662,
7,
198,
220,
220,
220,
220,
220,
220,
220,
3160,
796,
357,
75,
16,
11,
75,
17,
828,
198,
220,
220,
220,
220,
220,
220,
220,
38820,
796,
4586,
34652,
452,
273,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
6466,
62,
562,
24098,
796,
1305,
292,
959,
3419,
198,
220,
220,
220,
1267,
198,
37811,
198,
14881,
13,
31,
46265,
4299,
2878,
16798,
14662,
1279,
25,
5155,
198,
220,
220,
220,
3160,
3712,
51,
29291,
90,
28008,
14662,
11,
28008,
14662,
92,
198,
220,
220,
220,
38820,
3712,
4264,
278,
1387,
796,
4586,
34652,
452,
273,
3419,
198,
220,
220,
220,
6466,
62,
562,
24098,
3712,
41,
1563,
8021,
24098,
796,
1305,
292,
959,
3419,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
2878,
5155,
4264,
278,
1387,
198,
220,
220,
220,
220,
220,
220,
220,
1204,
3712,
14662,
198,
37811,
198,
7249,
5155,
4264,
278,
1387,
198,
220,
220,
220,
1204,
3712,
14662,
198,
220,
220,
220,
493,
198,
437,
198,
198,
14881,
13,
36654,
2701,
540,
7,
44601,
3712,
14662,
4264,
278,
1387,
8,
796,
6524,
7,
44601,
8,
198,
198,
37811,
198,
220,
220,
220,
37615,
7,
44601,
3712,
14662,
4264,
278,
1387,
8,
198,
220,
220,
220,
37615,
7,
75,
3712,
14662,
8,
198,
220,
220,
220,
37615,
7,
72,
3712,
19302,
32184,
8,
198,
198,
2,
4600,
14662,
63,
82,
290,
4600,
14662,
4264,
278,
1387,
63,
82,
198,
198,
35561,
262,
938,
5447,
640,
62,
41007,
329,
1111,
262,
1393,
2494,
290,
12430,
3084,
13,
198,
6425,
326,
428,
318,
1635,
39799,
9,
621,
4585,
4600,
462,
4908,
63,
319,
257,
4600,
44,
28337,
10962,
47671,
543,
481,
1577,
345,
262,
938,
4600,
1078,
1328,
62,
496,
44646,
198,
198,
16281,
25,
611,
262,
4600,
14662,
4264,
278,
1387,
63,
468,
2071,
2479,
3126,
11,
290,
262,
938,
5447,
28681,
2479,
329,
262,
4600,
44,
28337,
10962,
63,
318,
1802,
11,
788,
4600,
462,
4908,
63,
286,
262,
4600,
44,
28337,
10962,
63,
481,
307,
4600,
3064,
63,
290,
4600,
462,
4908,
63,
286,
262,
220,
198,
63,
14662,
4264,
278,
1387,
63,
481,
307,
4600,
1821,
44646,
198,
198,
2,
4600,
19302,
32184,
63,
82,
198,
198,
464,
938,
2278,
326,
262,
1393,
2494,
318,
5447,
329,
13,
2195,
18940,
284,
307,
15541,
357,
63,
18943,
63,
8,
329,
220,
198,
220,
220,
220,
10345,
290,
6937,
1393,
2494,
3858,
13,
16409,
262,
4600,
12957,
9630,
63,
286,
262,
15879,
611,
220,
198,
220,
220,
220,
257,
15879,
2099,
13,
198,
37811,
198,
8818,
45079,
13,
462,
4908,
7,
44601,
3712,
14662,
4264,
278,
1387,
8,
198,
220,
220,
220,
1303,
611,
530,
286,
262,
267,
1326,
22649,
318,
37174,
11,
326,
338,
257,
48436,
523,
356,
761,
198,
220,
220,
220,
1303,
284,
7135,
262,
2099,
351,
2558,
198,
220,
220,
220,
1441,
2558,
7,
462,
4908,
7,
44601,
13,
6042,
4008,
198,
437,
198,
198,
8818,
45079,
13,
462,
4908,
7,
75,
3712,
28008,
14662,
8,
198,
220,
220,
220,
1441,
45079,
13,
462,
4908,
7,
75,
13,
30171,
8,
532,
300,
13,
21949,
62,
496,
1343,
352,
220,
220,
220,
220,
198,
437,
198,
198,
8818,
45079,
13,
462,
4908,
7,
75,
3712,
41,
1563,
14662,
8,
198,
220,
220,
220,
1441,
5288,
7,
37615,
12195,
75,
13,
75,
1083,
8,
1267,
220,
220,
220,
220,
198,
437,
628,
198,
14468,
21017,
198,
2235,
22240,
3843,
18421,
44386,
198,
14468,
21017,
198,
198,
37811,
198,
220,
220,
220,
360,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
284,
62,
2435,
8,
198,
198,
15506,
35,
62,
87,
15506,
318,
257,
41432,
43840,
36098,
725,
7094,
2163,
543,
318,
262,
1720,
286,
262,
9441,
290,
9780,
5766,
13,
198,
37811,
198,
8818,
360,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
284,
62,
2435,
8,
198,
220,
220,
220,
1441,
9780,
7,
44601,
13,
600,
11,
284,
62,
2435,
8,
1635,
9441,
7,
44601,
11,
1462,
62,
2435,
8,
198,
437,
628,
198,
37811,
198,
220,
220,
220,
300,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
284,
62,
2435,
8,
198,
198,
15506,
75,
62,
87,
15506,
318,
257,
41432,
43840,
36098,
725,
7094,
2163,
543,
318,
262,
9441,
510,
284,
257,
1728,
966,
287,
640,
13,
2750,
4277,
11,
481,
423,
257,
4326,
560,
4308,
357,
494,
4600,
16,
13,
15,
63,
828,
475,
345,
460,
11986,
4600,
12093,
271,
63,
21179,
4578,
284,
779,
1223,
1180,
357,
68,
13,
70,
13,
4600,
12825,
63,
318,
2219,
287,
262,
9285,
2014,
198,
37811,
198,
8818,
300,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
284,
62,
2435,
26,
4308,
28,
16,
13,
15,
8,
198,
220,
220,
220,
1441,
9441,
7,
44601,
13,
6042,
11,
1462,
62,
2435,
8,
1635,
4308,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
327,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
284,
62,
2435,
8,
198,
198,
15506,
34,
62,
87,
15506,
318,
257,
41432,
43840,
36098,
725,
7094,
2163,
543,
318,
262,
1720,
286,
262,
9780,
5766,
290,
262,
3580,
287,
4600,
75,
63,
357,
15506,
75,
62,
87,
15506,
737,
198,
37811,
198,
8818,
327,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
284,
62,
2435,
8,
198,
220,
220,
220,
9780,
7,
44601,
13,
600,
11,
284,
62,
2435,
10,
16,
8,
1635,
357,
75,
7,
44601,
11,
1462,
62,
2435,
8,
532,
300,
7,
44601,
11,
284,
62,
2435,
10,
16,
4008,
198,
220,
220,
220,
220,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
399,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
422,
62,
2435,
8,
198,
198,
15506,
45,
62,
87,
15506,
318,
257,
17530,
43840,
36098,
725,
7094,
2163,
543,
318,
262,
2160,
286,
262,
4600,
35,
63,
357,
15506,
35,
62,
87,
15506,
8,
3815,
422,
262,
1813,
640,
284,
262,
886,
286,
262,
12430,
3084,
13,
198,
37811,
198,
8818,
399,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
422,
62,
2435,
8,
198,
220,
220,
220,
2837,
796,
422,
62,
2435,
37498,
462,
4908,
7,
44601,
13219,
16,
8,
198,
220,
220,
220,
1441,
5591,
742,
7,
28200,
13912,
7,
6738,
62,
2435,
3784,
35,
7,
44601,
11,
422,
62,
2435,
36911,
2837,
8,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
337,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
422,
62,
2435,
8,
198,
198,
464,
7559,
44,
62,
87,
15506,
43840,
36098,
725,
7094,
2163,
810,
262,
4600,
6738,
62,
2435,
63,
4578,
318,
4600,
87,
44646,
198,
45147,
2479,
318,
1912,
319,
262,
2071,
62,
496,
287,
262,
5155,
4264,
278,
1387,
4600,
44601,
44646,
198,
37811,
198,
8818,
337,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
422,
62,
2435,
8,
198,
220,
220,
220,
2837,
796,
422,
62,
2435,
25,
462,
4908,
7,
44601,
13219,
16,
198,
220,
220,
220,
1441,
5591,
742,
7,
28200,
13912,
7,
6738,
62,
2435,
3784,
34,
7,
44601,
11,
422,
62,
2435,
36911,
2837,
8,
198,
437,
198,
198,
36,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
256,
11,
2124,
8,
796,
360,
7,
44601,
11,
87,
1343,
256,
8,
1220,
360,
7,
44601,
11,
87,
8,
628,
198,
14468,
2235,
198,
21017,
7088,
31741,
44386,
198,
14468,
2235,
198,
198,
397,
8709,
2099,
17541,
886,
198,
198,
14662,
4264,
278,
1387,
7,
1040,
3712,
20376,
3874,
8,
796,
5155,
4264,
278,
1387,
7,
1040,
13,
6042,
11,
1040,
13,
600,
8,
198,
198,
7249,
23431,
14662,
1279,
25,
17541,
198,
220,
220,
220,
1204,
198,
220,
220,
220,
493,
198,
437,
198,
198,
7249,
35118,
1279,
25,
17541,
198,
220,
220,
220,
1204,
198,
220,
220,
220,
493,
198,
220,
220,
220,
299,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
17541,
7,
44601,
3712,
14662,
4264,
278,
1387,
26,
299,
28,
22366,
8,
198,
220,
220,
220,
17541,
7,
6042,
11,
9446,
26,
299,
28,
22366,
8,
198,
198,
14662,
5096,
351,
257,
3381,
2278,
286,
4600,
77,
44646,
1002,
4600,
77,
63,
318,
4600,
22366,
47671,
788,
2187,
1204,
5096,
13,
198,
198,
45147,
2479,
318,
1912,
319,
262,
4600,
21949,
62,
496,
63,
287,
262,
5155,
4264,
278,
1387,
4600,
44601,
44646,
198,
198,
2,
21066,
198,
198,
15506,
63,
198,
1040,
796,
17541,
7,
198,
220,
220,
220,
14206,
14662,
7,
30171,
796,
11165,
44,
28337,
26933,
15,
13,
20,
11,
15,
13,
20,
46570,
21949,
62,
496,
796,
657,
828,
198,
220,
220,
220,
575,
1164,
82,
13,
3103,
18797,
7,
15,
13,
2713,
828,
198,
220,
220,
220,
299,
796,
352,
198,
8,
220,
198,
15506,
63,
198,
37811,
198,
20376,
3874,
7,
44601,
3712,
14662,
4264,
278,
1387,
26,
299,
28,
22366,
8,
796,
17541,
7,
44601,
13,
6042,
11,
44601,
13,
600,
26,
77,
8,
198,
198,
8818,
17541,
7,
44601,
11,
600,
26,
77,
28,
22366,
8,
198,
220,
220,
220,
611,
318,
22366,
7,
77,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
23431,
14662,
7,
44601,
11,
600,
8,
198,
220,
220,
220,
2073,
361,
299,
1279,
352,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
12169,
42166,
270,
7,
44601,
11,
600,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
35118,
7,
44601,
11,
600,
11,
77,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
7249,
14444,
886,
198,
7249,
1846,
13857,
886,
198,
198,
7249,
5506,
14834,
1279,
25,
17541,
198,
220,
220,
220,
1204,
198,
220,
220,
220,
493,
198,
220,
220,
220,
28538,
198,
220,
220,
220,
299,
198,
220,
220,
220,
923,
62,
2435,
198,
220,
220,
220,
1728,
198,
220,
220,
220,
8373,
198,
437,
198,
198,
7249,
12169,
42166,
270,
1279,
25,
17541,
198,
220,
220,
220,
1204,
198,
220,
220,
220,
493,
198,
437,
198,
198,
8818,
12169,
42166,
270,
7,
44601,
3712,
14662,
4264,
278,
1387,
8,
220,
198,
220,
220,
220,
1441,
12169,
42166,
270,
7,
44601,
13,
6042,
11,
44601,
13,
600,
8,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
5506,
14834,
22229,
7,
44601,
3712,
14662,
4264,
278,
1387,
26,
299,
28,
22366,
11,
923,
62,
2435,
28,
15,
26,
1728,
28,
22366,
11,
35324,
28,
16,
8,
198,
220,
220,
220,
5506,
14834,
22229,
7,
6042,
11,
1393,
26,
299,
28,
22366,
11,
923,
62,
2435,
28,
15,
26,
1728,
28,
22366,
11,
35324,
28,
16,
8,
198,
198,
18858,
14834,
2233,
351,
262,
4414,
2278,
3599,
379,
4600,
9688,
62,
2435,
63,
290,
7464,
706,
4600,
77,
63,
9574,
351,
4600,
35324,
63,
7524,
583,
614,
286,
4600,
16,
14,
35324,
63,
2033,
290,
257,
4600,
39239,
63,
2278,
351,
1729,
12,
3642,
278,
298,
7524,
13,
220,
198,
198,
2,
21066,
198,
198,
15506,
63,
198,
1040,
796,
5506,
14834,
22229,
7,
198,
220,
220,
220,
14206,
14662,
7,
30171,
796,
11165,
44,
28337,
26933,
15,
13,
20,
11,
15,
13,
20,
46570,
21949,
62,
496,
796,
657,
828,
198,
220,
220,
220,
575,
1164,
82,
13,
3103,
18797,
7,
15,
13,
2713,
828,
198,
220,
220,
220,
299,
796,
352,
198,
8,
220,
198,
15506,
63,
198,
198,
37811,
198,
8818,
5506,
14834,
22229,
7,
6042,
11,
493,
26,
299,
28,
22366,
11,
9688,
62,
2435,
28,
15,
11,
39239,
28,
22366,
11,
35324,
28,
16,
8,
220,
198,
220,
220,
220,
611,
5299,
271,
22366,
7,
77,
8,
11405,
299,
1279,
352,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
12169,
42166,
270,
7,
6042,
11,
600,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
5506,
14834,
7,
6042,
11,
600,
11,
22229,
22784,
77,
11,
9688,
62,
2435,
11,
39239,
11,
35324,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
5506,
14834,
22229,
7,
44601,
3712,
14662,
4264,
278,
1387,
26,
299,
28,
22366,
11,
9688,
62,
2435,
28,
15,
11,
39239,
28,
22366,
11,
35324,
28,
16,
8,
220,
198,
220,
220,
220,
1441,
5506,
14834,
22229,
7,
44601,
13,
6042,
11,
44601,
13,
600,
26,
77,
11,
9688,
62,
2435,
11,
39239,
11,
35324,
8,
198,
437,
628,
198,
37811,
198,
220,
220,
220,
5506,
14834,
3546,
13857,
7,
44601,
3712,
14662,
4264,
278,
1387,
26,
299,
28,
22366,
11,
923,
62,
2435,
28,
15,
26,
1728,
28,
22366,
11,
35324,
28,
16,
8,
198,
220,
220,
220,
5506,
14834,
3546,
13857,
7,
6042,
11,
1393,
26,
299,
28,
22366,
11,
923,
62,
2435,
28,
15,
26,
1728,
28,
22366,
11,
35324,
28,
16,
8,
198,
198,
18858,
14834,
7103,
351,
262,
4414,
2278,
3599,
379,
4600,
9688,
62,
2435,
63,
290,
7464,
706,
4600,
77,
63,
9574,
351,
4600,
35324,
63,
7524,
583,
614,
286,
4600,
16,
14,
35324,
63,
2033,
290,
257,
4600,
39239,
63,
2278,
351,
1729,
12,
3642,
278,
298,
7524,
13,
220,
198,
198,
2,
21066,
198,
198,
15506,
63,
198,
1040,
796,
5506,
14834,
3546,
13857,
7,
198,
220,
220,
220,
14206,
14662,
7,
30171,
796,
11165,
44,
28337,
26933,
15,
13,
20,
11,
15,
13,
20,
46570,
21949,
62,
496,
796,
657,
828,
198,
220,
220,
220,
575,
1164,
82,
13,
3103,
18797,
7,
15,
13,
2713,
828,
198,
220,
220,
220,
299,
796,
352,
198,
8,
220,
198,
15506,
63,
198,
198,
37811,
198,
8818,
5506,
14834,
3546,
13857,
7,
6042,
11,
493,
26,
299,
28,
22366,
11,
9688,
62,
2435,
28,
15,
11,
39239,
28,
22366,
11,
35324,
28,
16,
8,
220,
198,
220,
220,
220,
611,
5299,
271,
22366,
7,
77,
8,
11405,
299,
1279,
352,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
12169,
42166,
270,
7,
6042,
11,
600,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
5506,
14834,
7,
6042,
11,
600,
11,
3546,
13857,
22784,
77,
11,
9688,
62,
2435,
11,
39239,
11,
35324,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
8818,
5506,
14834,
3546,
13857,
7,
44601,
3712,
14662,
4264,
278,
1387,
26,
299,
28,
22366,
11,
9688,
62,
2435,
28,
15,
11,
39239,
28,
22366,
11,
35324,
28,
16,
8,
220,
220,
198,
220,
220,
220,
1441,
5506,
14834,
3546,
13857,
7,
44601,
13,
6042,
11,
44601,
13,
600,
26,
77,
11,
9688,
62,
2435,
11,
39239,
11,
35324,
8,
198,
437,
628,
198,
37811,
198,
220,
220,
220,
9441,
7,
20376,
3874,
8,
198,
198,
464,
3343,
11094,
15879,
329,
262,
1813,
5096,
13,
198,
37811,
198,
8818,
10788,
1483,
51,
2977,
13,
48846,
2473,
7,
1040,
3712,
20376,
3874,
8,
198,
220,
220,
220,
1441,
685,
48846,
2473,
7,
1040,
13,
6042,
11,
83,
12,
16,
8,
329,
256,
287,
640,
13033,
7,
1040,
15437,
198,
437,
198,
198,
8818,
10788,
1483,
51,
2977,
13,
48846,
2473,
7,
1040,
3712,
18858,
14834,
8,
198,
220,
220,
220,
1441,
685,
48846,
2473,
7,
1040,
13,
6042,
11,
83,
8,
329,
256,
287,
640,
13033,
7,
1040,
15437,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
9780,
7,
20376,
3874,
8,
198,
198,
464,
9780,
15879,
329,
262,
1813,
5096,
13,
198,
37811,
198,
8818,
575,
1164,
82,
13,
15410,
608,
7,
1040,
3712,
20376,
3874,
8,
198,
220,
220,
220,
1441,
575,
1164,
82,
13,
15410,
608,
12195,
1040,
13,
600,
11,
2435,
13033,
7,
1040,
4008,
198,
437,
628,
198,
37811,
198,
220,
220,
220,
4414,
7,
20376,
3874,
8,
198,
198,
464,
4326,
4414,
15879,
329,
262,
1813,
5096,
13,
198,
37811,
198,
8818,
4414,
7,
1040,
3712,
20376,
3874,
8,
198,
220,
220,
220,
1441,
3392,
7,
13664,
7,
2435,
13033,
7,
1040,
22305,
198,
437,
198,
198,
8818,
4414,
7,
1040,
3712,
28667,
42166,
270,
8,
198,
220,
220,
220,
1441,
1976,
27498,
7,
13664,
7,
2435,
13033,
7,
1040,
22305,
198,
437,
198,
198,
8818,
4414,
7,
1040,
3712,
18858,
14834,
8,
198,
220,
220,
220,
1441,
3392,
7,
13664,
7,
2435,
13033,
7,
1040,
22305,
24457,
1035,
13,
35324,
198,
437,
628,
198,
37811,
198,
220,
220,
220,
12867,
7,
20376,
3874,
8,
198,
198,
464,
15879,
286,
25477,
4414,
39522,
329,
262,
1813,
5096,
13,
198,
37811,
198,
8818,
12867,
7,
1040,
3712,
20376,
3874,
8,
198,
220,
220,
220,
1441,
685,
48846,
2473,
7,
1040,
13,
6042,
11,
83,
12,
16,
8,
1635,
5255,
434,
7,
1040,
13,
6042,
11,
83,
12,
16,
11,
83,
8,
329,
256,
287,
640,
13033,
7,
1040,
15437,
198,
437,
198,
198,
8818,
12867,
7,
1040,
3712,
28667,
42166,
270,
8,
198,
220,
220,
220,
1441,
3392,
7,
13664,
7,
2435,
13033,
7,
1040,
22305,
198,
437,
198,
198,
8818,
12867,
7,
1040,
3712,
18858,
14834,
8,
198,
220,
220,
220,
611,
318,
22366,
7,
1040,
13,
39239,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
220,
685,
48846,
2473,
7,
1040,
13,
6042,
11,
83,
8,
329,
256,
287,
640,
13033,
7,
1040,
15437,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
685,
83,
19841,
1035,
13,
39239,
1343,
1035,
13,
9688,
62,
2435,
5633,
352,
13,
15,
1058,
9441,
7,
1040,
13,
6042,
11,
83,
8,
329,
256,
287,
640,
13033,
7,
1040,
15437,
198,
220,
220,
220,
886,
198,
437,
628,
198,
37811,
198,
220,
220,
220,
5003,
44041,
7,
20376,
3874,
8,
198,
198,
464,
15879,
286,
5255,
12061,
4414,
5003,
44041,
329,
262,
1813,
5096,
13,
198,
37811,
198,
8818,
5003,
44041,
7,
1040,
3712,
20376,
3874,
8,
198,
220,
220,
1441,
12867,
7,
1040,
8,
764,
9,
4414,
7,
1040,
8,
198,
437,
628,
198,
37811,
198,
220,
220,
220,
640,
13033,
7,
20376,
3874,
8,
198,
198,
464,
15879,
286,
1661,
11188,
284,
262,
5003,
11125,
15879,
329,
262,
1813,
5096,
13,
198,
37811,
198,
8818,
640,
13033,
7,
1040,
3712,
20376,
3874,
8,
198,
220,
220,
220,
1441,
2824,
7,
16,
25,
462,
4908,
7,
1040,
13,
6042,
4008,
198,
437,
198,
198,
8818,
640,
13033,
7,
1040,
3712,
40596,
8,
198,
220,
220,
220,
1441,
2824,
7,
16,
25,
1084,
7,
462,
4908,
7,
1040,
13,
6042,
828,
1040,
13,
77,
4008,
198,
437,
198,
198,
8818,
640,
13033,
7,
1040,
3712,
28667,
42166,
270,
8,
198,
220,
220,
220,
1441,
685,
15,
8183,
198,
437,
198,
198,
8818,
640,
13033,
7,
1040,
3712,
18858,
14834,
8,
198,
220,
220,
220,
1441,
640,
13033,
7,
1040,
11,
1040,
13,
15577,
540,
8,
198,
437,
198,
198,
8818,
640,
13033,
7,
1040,
3712,
18858,
14834,
11,
15577,
540,
3712,
22229,
8,
198,
220,
220,
220,
611,
318,
22366,
7,
1040,
13,
77,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
2435,
796,
37615,
7,
1040,
13,
6042,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
2435,
796,
1035,
13,
77,
1343,
1035,
13,
9688,
62,
2435,
532,
352,
1220,
1035,
13,
35324,
198,
220,
220,
220,
886,
198,
220,
220,
220,
4628,
395,
538,
796,
352,
1220,
1035,
13,
35324,
198,
220,
220,
220,
2824,
7,
1040,
13,
9688,
62,
2435,
25,
16514,
395,
538,
25,
437,
62,
2435,
8,
198,
437,
198,
198,
8818,
640,
13033,
7,
1040,
3712,
18858,
14834,
11,
15577,
540,
3712,
3546,
13857,
8,
198,
220,
220,
220,
611,
318,
22366,
7,
1040,
13,
77,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
2435,
796,
37615,
7,
1040,
13,
6042,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
2435,
796,
1035,
13,
77,
1343,
1035,
13,
9688,
62,
2435,
198,
220,
220,
220,
886,
198,
220,
220,
220,
4628,
395,
538,
796,
352,
1220,
1035,
13,
35324,
198,
220,
220,
220,
886,
62,
2435,
796,
3509,
7,
1040,
13,
9688,
62,
2435,
1343,
4628,
395,
538,
11,
437,
62,
2435,
8,
1303,
1441,
379,
1551,
530,
640,
4122,
284,
3368,
8024,
6565,
7177,
198,
220,
220,
220,
2824,
19510,
1040,
13,
9688,
62,
2435,
1343,
4628,
395,
538,
2599,
16514,
395,
538,
25,
437,
62,
2435,
8,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
1944,
62,
8367,
7,
20376,
3874,
8,
198,
198,
464,
43840,
36098,
1944,
1988,
286,
262,
1813,
5096,
13,
198,
37811,
198,
8818,
2191,
2838,
18274,
2410,
13,
25579,
62,
8367,
7,
1040,
8,
198,
220,
220,
220,
1441,
1944,
62,
8367,
7,
1040,
13,
600,
11,
30350,
44041,
7,
1040,
828,
2435,
13033,
7,
1040,
4008,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
8683,
62,
3262,
7,
44601,
3712,
14662,
4264,
278,
1387,
8,
198,
220,
220,
220,
8683,
62,
3262,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
1462,
62,
2435,
8,
198,
198,
464,
2010,
8683,
329,
257,
2187,
1204,
5096,
357,
19419,
1218,
4578,
8,
393,
257,
3381,
1204,
5096,
832,
4600,
1462,
62,
2435,
44646,
198,
198,
464,
2010,
8683,
318,
1912,
319,
352,
4326,
286,
5096,
351,
262,
1918,
1888,
11147,
28538,
379,
262,
886,
286,
262,
614,
290,
13148,
5079,
2010,
21884,
13,
198,
37811,
198,
31605,
1505,
62,
3262,
7,
44601,
3712,
14662,
4264,
278,
1387,
8,
796,
317,
7,
44601,
8,
1220,
257,
136,
230,
7,
44601,
8,
198,
31605,
1505,
62,
3262,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
1462,
62,
2435,
8,
796,
317,
7,
44601,
11,
1462,
62,
2435,
8,
1220,
257,
136,
230,
7,
44601,
11,
1462,
62,
2435,
8,
198,
198,
37811,
198,
220,
220,
220,
220,
11515,
62,
31605,
1505,
62,
3262,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
2435,
8,
198,
198,
464,
2010,
8683,
11515,
379,
262,
886,
286,
614,
4600,
2435,
44646,
198,
37811,
198,
8818,
220,
11515,
62,
31605,
1505,
62,
3262,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
640,
8,
198,
220,
220,
220,
31392,
26001,
796,
317,
7,
44601,
8,
532,
317,
7,
44601,
11,
77,
28,
2435,
8,
198,
220,
220,
220,
31392,
5837,
796,
8683,
62,
3262,
7,
44601,
8,
1635,
357,
64,
136,
230,
7,
44601,
8,
532,
257,
136,
230,
7,
44601,
11,
77,
28,
2435,
4008,
198,
220,
220,
220,
1441,
357,
47,
53,
26001,
532,
31392,
5837,
8,
1220,
3486,
53,
7,
44601,
11,
2435,
8,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
3486,
53,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
1462,
62,
2435,
8,
198,
198,
464,
12429,
529,
84,
36098,
1944,
1988,
1174,
543,
318,
262,
9441,
1661,
262,
9780,
5766,
329,
262,
1204,
38820,
13,
198,
37811,
198,
8818,
3486,
53,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
1462,
62,
2435,
8,
198,
220,
220,
220,
1441,
9441,
7,
44601,
11,
1462,
62,
2435,
8,
1635,
9780,
7,
44601,
13,
600,
11,
1462,
62,
2435,
8,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
5255,
434,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
1462,
62,
2435,
8,
198,
220,
220,
220,
5255,
434,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
6738,
62,
2435,
11,
1462,
62,
2435,
8,
198,
198,
13615,
262,
1861,
23117,
414,
286,
1918,
329,
262,
1813,
5155,
4264,
278,
1387,
13,
220,
198,
37811,
198,
16762,
13,
12501,
260,
434,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
6738,
62,
2435,
11,
1462,
62,
2435,
8,
796,
352,
532,
9441,
7,
44601,
13,
6042,
11,
6738,
62,
2435,
11,
1462,
62,
2435,
8,
628,
198,
37811,
198,
220,
220,
220,
9441,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
6738,
62,
2435,
11,
1462,
62,
2435,
8,
198,
220,
220,
220,
9441,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
1462,
62,
2435,
8,
198,
198,
13615,
262,
1861,
23117,
414,
286,
9441,
329,
262,
1813,
5155,
4264,
278,
1387,
13,
220,
198,
37811,
198,
16762,
13,
48846,
2473,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
1462,
62,
2435,
8,
796,
9441,
7,
44601,
13,
6042,
11,
657,
11,
284,
62,
2435,
8,
198,
16762,
13,
48846,
2473,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
6738,
62,
2435,
11,
1462,
62,
2435,
8,
796,
9441,
7,
44601,
13,
6042,
11,
422,
62,
2435,
11,
284,
62,
2435,
8,
198,
198,
16762,
13,
48846,
2473,
7,
75,
3712,
28008,
14662,
11,
1462,
62,
2435,
8,
796,
9441,
7,
75,
11,
15,
11,
1462,
62,
2435,
8,
198,
16762,
13,
48846,
2473,
7,
75,
3712,
28008,
14662,
11,
6738,
62,
2435,
11,
1462,
62,
2435,
8,
796,
48846,
2473,
7,
75,
13,
30171,
11,
75,
13,
21949,
62,
496,
1343,
422,
62,
2435,
11,
75,
13,
21949,
62,
496,
1343,
284,
62,
2435,
11,
300,
13,
69,
7861,
282,
62,
562,
931,
8,
198,
198,
37811,
198,
220,
220,
220,
969,
2473,
7,
6042,
8,
198,
198,
13615,
257,
9441,
15879,
329,
262,
1813,
1204,
13,
198,
37811,
198,
8818,
45079,
13,
48846,
2473,
7,
75,
3712,
14662,
8,
220,
198,
220,
220,
220,
18074,
231,
796,
220,
220,
37615,
7,
75,
8,
198,
220,
220,
220,
1441,
685,
48846,
2473,
7,
75,
11,
83,
8,
329,
256,
287,
657,
25,
49535,
60,
198,
437,
198,
198,
16762,
13,
48846,
2473,
7,
75,
3712,
41,
1563,
14662,
11,
1462,
62,
2435,
8,
796,
9441,
7,
75,
3712,
41,
1563,
14662,
11,
15,
11,
1462,
62,
2435,
8,
198,
8818,
45079,
13,
48846,
2473,
7,
75,
3712,
41,
1563,
14662,
11,
6738,
62,
2435,
11,
1462,
62,
2435,
8,
220,
198,
220,
220,
220,
1441,
9441,
7,
75,
13,
3642,
278,
1387,
11,
75,
13,
73,
1563,
62,
562,
24098,
11,
75,
3712,
41,
1563,
14662,
11,
6738,
62,
2435,
11,
1462,
62,
2435,
8,
198,
437,
198,
198,
8818,
45079,
13,
48846,
2473,
7,
1040,
3712,
5956,
34652,
452,
273,
11,
562,
931,
3712,
41,
1563,
8021,
24098,
11,
75,
3712,
41,
1563,
14662,
11,
6738,
62,
2435,
11,
1462,
62,
2435,
8,
198,
220,
220,
220,
284,
62,
2435,
6624,
657,
11405,
1441,
352,
13,
15,
198,
220,
220,
220,
220,
198,
220,
220,
220,
300,
16,
11,
75,
17,
796,
300,
13,
75,
1083,
198,
220,
220,
220,
2343,
224,
250,
79,
158,
224,
241,
796,
9441,
7,
75,
16,
13,
30171,
11,
75,
16,
13,
21949,
62,
496,
1343,
422,
62,
2435,
11,
75,
16,
13,
21949,
62,
496,
1343,
284,
62,
2435,
11,
75,
16,
13,
69,
7861,
282,
62,
562,
931,
8,
198,
220,
220,
220,
2343,
224,
250,
79,
39611,
100,
796,
9441,
7,
75,
17,
13,
30171,
11,
75,
17,
13,
21949,
62,
496,
1343,
422,
62,
2435,
11,
75,
17,
13,
21949,
62,
496,
1343,
284,
62,
2435,
11,
75,
17,
13,
69,
7861,
282,
62,
562,
931,
8,
198,
220,
220,
220,
1441,
2343,
224,
250,
79,
158,
224,
241,
1343,
2343,
224,
250,
79,
39611,
100,
532,
2343,
224,
250,
79,
158,
224,
241,
1635,
2343,
224,
250,
79,
39611,
100,
198,
437,
198,
198,
56,
1164,
82,
13,
15410,
608,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
83,
8,
796,
9780,
7,
44601,
13,
600,
11,
83,
8,
198,
56,
1164,
82,
13,
15410,
608,
7,
44601,
3712,
14662,
4264,
278,
1387,
11,
83,
16,
11,
83,
17,
8,
796,
9780,
7,
44601,
13,
600,
11,
83,
16,
11,
83,
17,
8,
198,
198,
2,
2163,
36541,
295,
351,
479,
86,
22046,
13,
220,
198,
2,
3740,
1378,
25558,
2502,
11125,
13,
785,
14,
6138,
507,
14,
2414,
4524,
37187,
14,
4919,
12,
1462,
12,
26011,
12,
785,
1930,
578,
12,
8818,
12,
4480,
12,
2539,
4775,
12,
853,
2886,
198,
158,
233,
226,
7,
69,
11,
308,
8,
796,
357,
87,
986,
26,
479,
86,
23029,
3784,
69,
7,
70,
7,
87,
986,
26,
479,
86,
986,
4008,
198,
198,
2,
8522,
9213,
47217,
198,
9979,
569,
796,
11515,
62,
31605,
1505,
62,
3262,
198,
9979,
410,
796,
575,
1164,
82,
13,
15410,
608,
198,
9979,
317,
796,
1944,
62,
8367,
2343,
233,
226,
17541,
198,
9979,
257,
796,
1944,
62,
8367,
2343,
233,
226,
5506,
14834,
3546,
13857,
198,
9979,
257,
136,
230,
796,
1944,
62,
8367,
2343,
233,
226,
5506,
14834,
22229,
198,
9979,
350,
796,
8683,
62,
3262,
198,
9979,
18074,
231,
796,
37615,
198,
198,
437,
1303,
8265,
198
] | 2.724505 | 6,207 |
include("orderbook.jl")
include("blotter.jl")
include("trades.jl")
include("portfolio.jl")
include("account.jl")
include("utilities.jl")
| [
17256,
7203,
2875,
2070,
13,
20362,
4943,
198,
17256,
7203,
2436,
313,
353,
13,
20362,
4943,
198,
17256,
7203,
2213,
2367,
13,
20362,
4943,
198,
17256,
7203,
634,
13652,
13,
20362,
4943,
198,
17256,
7203,
23317,
13,
20362,
4943,
198,
17256,
7203,
315,
2410,
13,
20362,
4943,
198
] | 2.854167 | 48 |
using StanSample, DataFrames
model = "
data {
int<lower=0> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
";
sm = SampleModel("bernoulli", model);
data = Dict("N" => 10, "y" => [0, 1, 0, 1, 0, 0, 0, 0, 0, 1]);
rc = stan_sample(sm; num_chains=4, data);
if success(rc)
df = read_samples(sm, :dataframe);
df |> display
end
| [
3500,
7299,
36674,
11,
6060,
35439,
198,
198,
19849,
796,
366,
198,
7890,
1391,
220,
198,
220,
493,
27,
21037,
28,
15,
29,
399,
26,
220,
198,
220,
493,
27,
21037,
28,
15,
11,
45828,
28,
16,
29,
331,
58,
45,
11208,
198,
92,
220,
198,
17143,
7307,
1391,
198,
220,
1103,
27,
21037,
28,
15,
11,
45828,
28,
16,
29,
262,
8326,
26,
198,
92,
220,
198,
19849,
1391,
198,
220,
262,
8326,
5299,
12159,
7,
16,
11,
16,
1776,
198,
220,
220,
220,
331,
5299,
275,
1142,
280,
15516,
7,
1169,
8326,
1776,
198,
92,
198,
8172,
198,
198,
5796,
796,
27565,
17633,
7203,
33900,
280,
15516,
1600,
2746,
1776,
198,
198,
7890,
796,
360,
713,
7203,
45,
1,
5218,
838,
11,
366,
88,
1,
5218,
685,
15,
11,
352,
11,
657,
11,
352,
11,
657,
11,
657,
11,
657,
11,
657,
11,
657,
11,
352,
36563,
198,
198,
6015,
796,
336,
272,
62,
39873,
7,
5796,
26,
997,
62,
38861,
28,
19,
11,
1366,
1776,
198,
198,
361,
1943,
7,
6015,
8,
198,
220,
47764,
796,
1100,
62,
82,
12629,
7,
5796,
11,
1058,
7890,
14535,
1776,
198,
220,
47764,
930,
29,
3359,
198,
437,
198
] | 2.135678 | 199 |
###Define functions to be used in testing below
###Test functions for TargetModel
function targetsin!(r::Vector,t::AbstractVector,paras::Vector)
for i=1:length(t)
r[i] = sin(paras[1]*t[i])
end
r
end
targetsin(t::AbstractVector,paras::Vector) = targetsin!(zeros(eltype(t),length(t)),t,paras)
###Test function for ODEModel
function odesin(t,y,ydot,paras)
ydot[1] = paras[1]*cos(paras[1]*t)
end
#########################################################################################################
### Test model creation and evaluation functions
timepoints1 = linspace(0.0,10.0,100)
parameters1 = parameters([:a],[1.0],[5.0],[3.0])
measurements1 = data(:function,timepoints1,targetsin,timepoints1,[3.0])
measurements2 = data(:function,timepoints1,targetsin,timepoints1,[2.5])
measurements3 = data(:function,timepoints1,targetsin,timepoints1,[2.0])
noisemodel1 = noise(:gaussian,[0.01])
initial1 = [0.0]
model1 = model(:target,parameters1,measurements1,noisemodel1,targetsin;name="Test")
model2 = model(:target!,parameters1,measurements1,noisemodel1,targetsin!;name="Test!")
model3 = model(:ode,parameters1,measurements1,noisemodel1,odesin,initial1,1,[1];name="Test")
@test_approx_eq_eps evaluate!(model1,[3.0]) measurements(model1) 1e-4
@test_approx_eq_eps evaluate!(model2,[3.0]) measurements(model2) 1e-4
@test_approx_eq_eps evaluate!(model3,[3.0]) measurements(model3) 1e-4
#########################################################################################################
### Test the common initialize! function
s0 = samples(:base,1,1,Float64,Float64)
@test initialize!(trait(:initialize,:default),model1,s0).values == [3.0]
@test (srand(345) ; initialize!(trait(:initialize,:prior),model1,s0).values) == (srand(345) ; [rand(parameters1[1].prior)])
### Test the common interface functions
type TestModel <: AbstractModel
parameters::Vector
end
@test numparas(TestModel(parameters1)) == 1
@test parameters(TestModel(parameters1)) == parameters1
@test_throws MethodError evaluate!(TestModel(parameters1),[1.0])
@test_throws MethodError dataindex(TestModel(parameters1))
@test_throws MethodError measurements(TestModel(parameters1))
@test_throws MethodError noisemodel(TestModel(parameters1))
########################################################################################################
### Test the geometry calculations
r1 = copy(evaluate!(model1,[3.0]))
r2 = copy(evaluate!(model2,[2.5]))
r3 = copy(evaluate!(model3,[2.0]))
@test_approx_eq loglikelihood(model1,r1) loglikelihood(noisemodel1,datavalues(measurements1),r1)
@test_approx_eq loglikelihood(model2,r2) loglikelihood(noisemodel1,datavalues(measurements1),r2)
@test_approx_eq loglikelihood(model3,r3) loglikelihood(noisemodel1,datavalues(measurements1),r3)
### Test the geometry function for zero-order samples
for m in [model1,model2,model3]
s = samples(:base,1,3,Float64,Float64)
copy!(s.values,[3.0,2.0,0.0])
geometry!(m,s)
ll = [loglikelihood(m,evaluate!(m,[3.0])) loglikelihood(m,evaluate!(m,[2.0])) -Inf]
@test_approx_eq s.logprior logprior(parameters1,s.values,Float64)
@test_approx_eq s.loglikelihood ll
end
###test the show functions
println()
println("====================")
println("Test show() function")
println("====================")
show(model1)
show(model2)
show(model3)
println("====================")
println("End show() function")
println("====================")
println()
| [
21017,
7469,
500,
5499,
284,
307,
973,
287,
4856,
2174,
198,
198,
21017,
14402,
5499,
329,
12744,
17633,
198,
8818,
6670,
259,
0,
7,
81,
3712,
38469,
11,
83,
3712,
23839,
38469,
11,
1845,
292,
3712,
38469,
8,
198,
220,
220,
220,
329,
1312,
28,
16,
25,
13664,
7,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
374,
58,
72,
60,
796,
7813,
7,
1845,
292,
58,
16,
60,
9,
83,
58,
72,
12962,
198,
220,
220,
220,
886,
198,
220,
220,
220,
374,
198,
437,
198,
198,
83,
853,
1039,
259,
7,
83,
3712,
23839,
38469,
11,
1845,
292,
3712,
38469,
8,
796,
6670,
259,
0,
7,
9107,
418,
7,
417,
4906,
7,
83,
828,
13664,
7,
83,
36911,
83,
11,
1845,
292,
8,
198,
198,
21017,
14402,
2163,
329,
31245,
3620,
375,
417,
198,
8818,
267,
8906,
259,
7,
83,
11,
88,
11,
5173,
313,
11,
1845,
292,
8,
198,
220,
220,
220,
331,
26518,
58,
16,
60,
796,
17850,
58,
16,
60,
9,
6966,
7,
1845,
292,
58,
16,
60,
9,
83,
8,
198,
437,
198,
198,
29113,
29113,
29113,
7804,
2,
198,
198,
21017,
6208,
2746,
6282,
290,
12660,
5499,
198,
198,
2435,
13033,
16,
796,
300,
1040,
10223,
7,
15,
13,
15,
11,
940,
13,
15,
11,
3064,
8,
198,
17143,
7307,
16,
796,
10007,
26933,
25,
64,
38430,
16,
13,
15,
38430,
20,
13,
15,
38430,
18,
13,
15,
12962,
198,
1326,
5015,
902,
16,
796,
1366,
7,
25,
8818,
11,
2435,
13033,
16,
11,
83,
853,
1039,
259,
11,
2435,
13033,
16,
17414,
18,
13,
15,
12962,
198,
1326,
5015,
902,
17,
796,
1366,
7,
25,
8818,
11,
2435,
13033,
16,
11,
83,
853,
1039,
259,
11,
2435,
13033,
16,
17414,
17,
13,
20,
12962,
198,
1326,
5015,
902,
18,
796,
1366,
7,
25,
8818,
11,
2435,
13033,
16,
11,
83,
853,
1039,
259,
11,
2435,
13033,
16,
17414,
17,
13,
15,
12962,
198,
3919,
271,
368,
375,
417,
16,
796,
7838,
7,
25,
4908,
31562,
17414,
15,
13,
486,
12962,
198,
36733,
16,
796,
685,
15,
13,
15,
60,
198,
198,
19849,
16,
796,
2746,
7,
25,
16793,
11,
17143,
7307,
16,
11,
1326,
5015,
902,
16,
11,
3919,
271,
368,
375,
417,
16,
11,
83,
853,
1039,
259,
26,
3672,
2625,
14402,
4943,
198,
19849,
17,
796,
2746,
7,
25,
16793,
28265,
17143,
7307,
16,
11,
1326,
5015,
902,
16,
11,
3919,
271,
368,
375,
417,
16,
11,
83,
853,
1039,
259,
0,
26,
3672,
2625,
14402,
2474,
8,
198,
19849,
18,
796,
2746,
7,
25,
1098,
11,
17143,
7307,
16,
11,
1326,
5015,
902,
16,
11,
3919,
271,
368,
375,
417,
16,
11,
4147,
259,
11,
36733,
16,
11,
16,
17414,
16,
11208,
3672,
2625,
14402,
4943,
198,
198,
31,
9288,
62,
1324,
13907,
62,
27363,
62,
25386,
13446,
0,
7,
19849,
16,
17414,
18,
13,
15,
12962,
13871,
7,
19849,
16,
8,
352,
68,
12,
19,
198,
31,
9288,
62,
1324,
13907,
62,
27363,
62,
25386,
13446,
0,
7,
19849,
17,
17414,
18,
13,
15,
12962,
13871,
7,
19849,
17,
8,
352,
68,
12,
19,
198,
31,
9288,
62,
1324,
13907,
62,
27363,
62,
25386,
13446,
0,
7,
19849,
18,
17414,
18,
13,
15,
12962,
13871,
7,
19849,
18,
8,
352,
68,
12,
19,
198,
198,
29113,
29113,
29113,
7804,
2,
198,
198,
21017,
6208,
262,
2219,
41216,
0,
2163,
198,
82,
15,
796,
8405,
7,
25,
8692,
11,
16,
11,
16,
11,
43879,
2414,
11,
43879,
2414,
8,
198,
31,
9288,
41216,
0,
7,
9535,
270,
7,
25,
36733,
1096,
11,
25,
12286,
828,
19849,
16,
11,
82,
15,
737,
27160,
6624,
685,
18,
13,
15,
60,
198,
31,
9288,
357,
82,
25192,
7,
27712,
8,
2162,
41216,
0,
7,
9535,
270,
7,
25,
36733,
1096,
11,
25,
3448,
273,
828,
19849,
16,
11,
82,
15,
737,
27160,
8,
6624,
357,
82,
25192,
7,
27712,
8,
2162,
685,
25192,
7,
17143,
7307,
16,
58,
16,
4083,
3448,
273,
8,
12962,
198,
198,
21017,
6208,
262,
2219,
7071,
5499,
198,
4906,
6208,
17633,
1279,
25,
27741,
17633,
198,
220,
220,
220,
10007,
3712,
38469,
198,
437,
198,
198,
31,
9288,
299,
931,
283,
292,
7,
14402,
17633,
7,
17143,
7307,
16,
4008,
6624,
352,
198,
31,
9288,
10007,
7,
14402,
17633,
7,
17143,
7307,
16,
4008,
6624,
10007,
16,
198,
198,
31,
9288,
62,
400,
8516,
11789,
12331,
13446,
0,
7,
14402,
17633,
7,
17143,
7307,
16,
828,
58,
16,
13,
15,
12962,
198,
31,
9288,
62,
400,
8516,
11789,
12331,
4818,
391,
67,
1069,
7,
14402,
17633,
7,
17143,
7307,
16,
4008,
198,
31,
9288,
62,
400,
8516,
11789,
12331,
13871,
7,
14402,
17633,
7,
17143,
7307,
16,
4008,
198,
31,
9288,
62,
400,
8516,
11789,
12331,
645,
271,
368,
375,
417,
7,
14402,
17633,
7,
17143,
7307,
16,
4008,
198,
198,
29113,
29113,
29113,
7804,
198,
198,
21017,
6208,
262,
22939,
16765,
198,
81,
16,
796,
4866,
7,
49786,
0,
7,
19849,
16,
17414,
18,
13,
15,
60,
4008,
198,
81,
17,
796,
4866,
7,
49786,
0,
7,
19849,
17,
17414,
17,
13,
20,
60,
4008,
198,
81,
18,
796,
4866,
7,
49786,
0,
7,
19849,
18,
17414,
17,
13,
15,
60,
4008,
198,
198,
31,
9288,
62,
1324,
13907,
62,
27363,
2604,
2339,
11935,
7,
19849,
16,
11,
81,
16,
8,
2604,
2339,
11935,
7,
3919,
271,
368,
375,
417,
16,
11,
19608,
9226,
947,
7,
1326,
5015,
902,
16,
828,
81,
16,
8,
198,
31,
9288,
62,
1324,
13907,
62,
27363,
2604,
2339,
11935,
7,
19849,
17,
11,
81,
17,
8,
2604,
2339,
11935,
7,
3919,
271,
368,
375,
417,
16,
11,
19608,
9226,
947,
7,
1326,
5015,
902,
16,
828,
81,
17,
8,
198,
31,
9288,
62,
1324,
13907,
62,
27363,
2604,
2339,
11935,
7,
19849,
18,
11,
81,
18,
8,
2604,
2339,
11935,
7,
3919,
271,
368,
375,
417,
16,
11,
19608,
9226,
947,
7,
1326,
5015,
902,
16,
828,
81,
18,
8,
198,
198,
21017,
6208,
262,
22939,
2163,
329,
6632,
12,
2875,
8405,
198,
1640,
285,
287,
685,
19849,
16,
11,
19849,
17,
11,
19849,
18,
60,
198,
220,
220,
220,
264,
796,
8405,
7,
25,
8692,
11,
16,
11,
18,
11,
43879,
2414,
11,
43879,
2414,
8,
198,
220,
220,
220,
4866,
0,
7,
82,
13,
27160,
17414,
18,
13,
15,
11,
17,
13,
15,
11,
15,
13,
15,
12962,
198,
220,
220,
220,
22939,
0,
7,
76,
11,
82,
8,
198,
220,
220,
220,
32660,
796,
685,
6404,
2339,
11935,
7,
76,
11,
49786,
0,
7,
76,
17414,
18,
13,
15,
60,
4008,
2604,
2339,
11935,
7,
76,
11,
49786,
0,
7,
76,
17414,
17,
13,
15,
60,
4008,
532,
18943,
60,
198,
220,
220,
220,
2488,
9288,
62,
1324,
13907,
62,
27363,
264,
13,
6404,
3448,
273,
2604,
3448,
273,
7,
17143,
7307,
16,
11,
82,
13,
27160,
11,
43879,
2414,
8,
198,
220,
220,
220,
2488,
9288,
62,
1324,
13907,
62,
27363,
264,
13,
6404,
2339,
11935,
32660,
198,
437,
198,
198,
21017,
9288,
262,
905,
5499,
198,
35235,
3419,
198,
35235,
7203,
4770,
1421,
4943,
198,
35235,
7203,
14402,
905,
3419,
2163,
4943,
198,
35235,
7203,
4770,
1421,
4943,
198,
12860,
7,
19849,
16,
8,
198,
12860,
7,
19849,
17,
8,
198,
12860,
7,
19849,
18,
8,
198,
35235,
7203,
4770,
1421,
4943,
198,
35235,
7203,
12915,
220,
905,
3419,
2163,
4943,
198,
35235,
7203,
4770,
1421,
4943,
198,
35235,
3419,
628,
628,
628,
628,
628,
628,
628,
628,
628
] | 2.779294 | 1,246 |
using Plots
@testset "plotting" begin
@testset "plotsdf" begin
@test_throws ArgumentError plotsdf(1.0)
@test_throws ArgumentError plotsdf(OU,1:2)
@test_throws ArgumentError plotsdf(1.0,1:2)
@test_throws ArgumentError plotsdf(OU(1.0,1.0),1)
@test_throws ArgumentError plotsdf(OU(1.0,1.0),1:2,1)
end
@testset "plotasdf" begin
@test_throws ArgumentError plotasdf(1.0)
@test_throws ArgumentError plotasdf(OU,1:2,1)
@test_throws ArgumentError plotasdf(OU(1.0,1.0),1:2)
@test_throws ArgumentError plotasdf(OU(1.0,1.0),1:2,-1)
@test_throws ArgumentError plotasdf(OU(1.0,1.0),1:2,-1,1)
end
@testset "plotacv" begin
@test_throws ArgumentError plotacv(1.0)
@test_throws ArgumentError plotacv(OU,1:2)
@test_throws ArgumentError plotacv(OUUnknown{1}(1.0,1.0),1:2)
@test_throws ArgumentError plotacv(OU,10,1)
@test_throws ArgumentError plotacv(OU(1.0,1.0),1:2,1)
@test_throws ArgumentError plotacv(OU(1.0,1.0),10,-1)
@test_throws ArgumentError plotacv(OU(1.0,1.0),-10,1)
@test_throws ArgumentError plotacv(OU(1.0,1.0),10,1im)
@test_throws ArgumentError plotacv(OU(1.0,1.0),10,1,1)
end
@testset "plotei" begin
@test_throws ArgumentError plotei(1.0)
@test_throws ArgumentError plotei(OU,10,1)
@test_throws ArgumentError plotei(OU(1.0,1.0),10)
@test_throws ArgumentError plotei(OU(1.0,1.0),1:2,1)
@test_throws ArgumentError plotei(OU(1.0,1.0),10,-1)
@test_throws ArgumentError plotei(OU(1.0,1.0),-10,1)
@test_throws ArgumentError plotei(OU(1.0,1.0),10,1im)
@test_throws ArgumentError plotei(OU(1.0,1.0),10,1,1)
end
end | [
3500,
1345,
1747,
198,
31,
9288,
2617,
366,
29487,
889,
1,
2221,
198,
220,
220,
220,
2488,
9288,
2617,
366,
489,
1747,
7568,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
21528,
7568,
7,
16,
13,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
21528,
7568,
7,
2606,
11,
16,
25,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
21528,
7568,
7,
16,
13,
15,
11,
16,
25,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
21528,
7568,
7,
2606,
7,
16,
13,
15,
11,
16,
13,
15,
828,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
21528,
7568,
7,
2606,
7,
16,
13,
15,
11,
16,
13,
15,
828,
16,
25,
17,
11,
16,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
9288,
2617,
366,
29487,
292,
7568,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
7110,
292,
7568,
7,
16,
13,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
7110,
292,
7568,
7,
2606,
11,
16,
25,
17,
11,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
7110,
292,
7568,
7,
2606,
7,
16,
13,
15,
11,
16,
13,
15,
828,
16,
25,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
7110,
292,
7568,
7,
2606,
7,
16,
13,
15,
11,
16,
13,
15,
828,
16,
25,
17,
12095,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
7110,
292,
7568,
7,
2606,
7,
16,
13,
15,
11,
16,
13,
15,
828,
16,
25,
17,
12095,
16,
11,
16,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
9288,
2617,
366,
29487,
330,
85,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
7110,
330,
85,
7,
16,
13,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
7110,
330,
85,
7,
2606,
11,
16,
25,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
7110,
330,
85,
7,
2606,
20035,
90,
16,
92,
7,
16,
13,
15,
11,
16,
13,
15,
828,
16,
25,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
7110,
330,
85,
7,
2606,
11,
940,
11,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
7110,
330,
85,
7,
2606,
7,
16,
13,
15,
11,
16,
13,
15,
828,
16,
25,
17,
11,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
7110,
330,
85,
7,
2606,
7,
16,
13,
15,
11,
16,
13,
15,
828,
940,
12095,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
7110,
330,
85,
7,
2606,
7,
16,
13,
15,
11,
16,
13,
15,
828,
12,
940,
11,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
7110,
330,
85,
7,
2606,
7,
16,
13,
15,
11,
16,
13,
15,
828,
940,
11,
16,
320,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
7110,
330,
85,
7,
2606,
7,
16,
13,
15,
11,
16,
13,
15,
828,
940,
11,
16,
11,
16,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2488,
9288,
2617,
366,
489,
1258,
72,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
458,
1258,
72,
7,
16,
13,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
458,
1258,
72,
7,
2606,
11,
940,
11,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
458,
1258,
72,
7,
2606,
7,
16,
13,
15,
11,
16,
13,
15,
828,
940,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
458,
1258,
72,
7,
2606,
7,
16,
13,
15,
11,
16,
13,
15,
828,
16,
25,
17,
11,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
458,
1258,
72,
7,
2606,
7,
16,
13,
15,
11,
16,
13,
15,
828,
940,
12095,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
458,
1258,
72,
7,
2606,
7,
16,
13,
15,
11,
16,
13,
15,
828,
12,
940,
11,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
458,
1258,
72,
7,
2606,
7,
16,
13,
15,
11,
16,
13,
15,
828,
940,
11,
16,
320,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
9288,
62,
400,
8516,
45751,
12331,
458,
1258,
72,
7,
2606,
7,
16,
13,
15,
11,
16,
13,
15,
828,
940,
11,
16,
11,
16,
8,
198,
220,
220,
220,
886,
198,
437
] | 1.927313 | 908 |
# Visualization
function plot_state_city(state)
qiskit.visualization.plot_state_city(state)
end
function plot_histogram(data)
qiskit.visualization.plot_histogram(data)
end
| [
2,
15612,
1634,
198,
198,
8818,
7110,
62,
5219,
62,
19205,
7,
5219,
8,
198,
220,
220,
220,
10662,
1984,
270,
13,
41464,
1634,
13,
29487,
62,
5219,
62,
19205,
7,
5219,
8,
198,
437,
198,
198,
8818,
7110,
62,
10034,
21857,
7,
7890,
8,
198,
220,
220,
220,
10662,
1984,
270,
13,
41464,
1634,
13,
29487,
62,
10034,
21857,
7,
7890,
8,
198,
437,
198
] | 2.757576 | 66 |
# AbstractBandedMatrix must implement
# A BlockBandedMatrix is a BlockMatrix, but is not a BandedMatrix
abstract type AbstractBlockBandedMatrix{T} <: AbstractBlockMatrix{T} end
"""
blockbandwidths(A)
Returns a tuple containing the upper and lower blockbandwidth of `A`.
"""
blockbandwidths(A::AbstractMatrix) = (nblocks(A,1)-1 , nblocks(A,2)-1)
"""
blockbandwidth(A,i)
Returns the lower blockbandwidth (`i==1`) or the upper blockbandwidth (`i==2`).
"""
blockbandwidth(A::AbstractMatrix, k::Integer) = blockbandwidths(A)[k]
"""
bandrange(A)
Returns the range `-blockbandwidth(A,1):blockbandwidth(A,2)`.
"""
blockbandrange(A::AbstractMatrix) = -blockbandwidth(A,1):blockbandwidth(A,2)
# start/stop indices of the i-th column/row, bounded by actual matrix size
@inline blockcolstart(A::AbstractVecOrMat, i::Integer) = Block(max(i-colblockbandwidth(A,2)[i], 1))
@inline blockcolstop(A::AbstractVecOrMat, i::Integer) = Block(max(min(i+colblockbandwidth(A,1)[i], nblocks(A, 1)), 0))
@inline blockrowstart(A::AbstractVecOrMat, i::Integer) = Block(max(i-rowblockbandwidth(A,1)[i], 1))
@inline blockrowstop(A::AbstractVecOrMat, i::Integer) = Block(max(min(i+rowblockbandwidth(A,2)[i], nblocks(A, 2)), 0))
for Func in (:blockcolstart, :blockcolstop, :blockrowstart, :blockrowstop)
@eval $Func(A, i::Block{1}) = $Func(A, Int(i))
end
@inline blockcolrange(A::AbstractVecOrMat, i) = blockcolstart(A,i):blockcolstop(A,i)
@inline blockrowrange(A::AbstractVecOrMat, i) = blockrowstart(A,i):blockrowstop(A,i)
# length of i-the column/row
@inline blockcollength(A::AbstractVecOrMat, i) = max(Int(blockcolstop(A, i)) - Int(blockcolstart(A, i)) + 1, 0)
@inline blockrowlength(A::AbstractVecOrMat, i) = max(Int(blockrowstop(A, i)) - Int(blockrowstart(A, i)) + 1, 0)
# this gives the block bandwidth in each block column/row
@inline colblockbandwidths(A::AbstractMatrix) = Fill.(blockbandwidths(A), nblocks(A,2))
@inline rowblockbandwidths(A::AbstractMatrix) = Fill.(blockbandwidths(A), nblocks(A,1))
@inline colblockbandwidth(bs, i::Int) = colblockbandwidths(bs)[i]
@inline rowblockbandwidth(bs, i::Int) = rowblockbandwidths(bs)[i]
"""
isblockbanded(A)
returns true if a matrix implements the block banded interface.
"""
isblockbanded(::AbstractBlockBandedMatrix) = true
isblockbanded(_) = false
# override bandwidth(A,k) for each AbstractBandedMatrix
# override inbands_getindex(A,k,j)
# return id of first empty diagonal intersected along row k
function _firstblockdiagrow(A::AbstractMatrix, k::Int)
a, b = blockrowstart(A, k), blockrowstop(A, k)
c = a == 1 ? b+1 : a-1
c-k
end
# return id of first empty diagonal intersected along column j
function _firstblockdiagcol(A::AbstractMatrix, j::Int)
a, b = blockcolstart(A, j), blockcolstop(A, j)
r = a == 1 ? b+1 : a-1
j-r
end
## BlockSlice1 is a conveneience for views
const BlockSlice1 = BlockSlice{Block{1,Int}}
######################################
# RaggedMatrix interface
######################################
@inline function colstart(A::AbstractBlockBandedMatrix, i::Integer)
bs = A.block_sizes.block_sizes
bs.cumul_sizes[1][Int(blockcolstart(A, _find_block(bs, 2, i)[1]))]
end
@inline function colstop(A::AbstractBlockBandedMatrix, i::Integer)
bs = A.block_sizes.block_sizes
bs.cumul_sizes[1][Int(blockcolstop(A, _find_block(bs, 2, i)[1]))+1]-1
end
@inline function rowstart(A::AbstractBlockBandedMatrix, i::Integer)
bs = A.block_sizes.block_sizes
bs.cumul_sizes[2][Int(blockrowstart(A, _find_block(bs, 1, i)[1]))]
end
@inline function rowstop(A::AbstractBlockBandedMatrix, i::Integer)
bs = A.block_sizes.block_sizes
bs.cumul_sizes[2][Int(blockrowstop(A, _find_block(bs, 1, i)[1]))+1]-1
end
# default implementation loops over all indices, including zeros
function fill!(A::AbstractBlockBandedMatrix, val::Any)
iszero(val) || throw(BandError(A))
fill!(A.data, val)
A
end
| [
2,
27741,
33,
12249,
46912,
1276,
3494,
198,
198,
2,
317,
9726,
33,
12249,
46912,
318,
257,
9726,
46912,
11,
475,
318,
407,
257,
10243,
276,
46912,
198,
397,
8709,
2099,
27741,
12235,
33,
12249,
46912,
90,
51,
92,
1279,
25,
27741,
12235,
46912,
90,
51,
92,
886,
628,
198,
37811,
198,
220,
220,
220,
2512,
3903,
10394,
82,
7,
32,
8,
198,
198,
35561,
257,
46545,
7268,
262,
6727,
290,
2793,
2512,
3903,
10394,
286,
4600,
32,
44646,
198,
37811,
198,
9967,
3903,
10394,
82,
7,
32,
3712,
23839,
46912,
8,
796,
357,
77,
27372,
7,
32,
11,
16,
13219,
16,
837,
299,
27372,
7,
32,
11,
17,
13219,
16,
8,
198,
198,
37811,
198,
220,
220,
220,
2512,
3903,
10394,
7,
32,
11,
72,
8,
198,
198,
35561,
262,
2793,
2512,
3903,
10394,
357,
63,
72,
855,
16,
63,
8,
393,
262,
6727,
2512,
3903,
10394,
357,
63,
72,
855,
17,
63,
737,
198,
37811,
198,
9967,
3903,
10394,
7,
32,
3712,
23839,
46912,
11,
479,
3712,
46541,
8,
796,
2512,
3903,
10394,
82,
7,
32,
38381,
74,
60,
198,
198,
37811,
198,
220,
220,
220,
4097,
9521,
7,
32,
8,
198,
198,
35561,
262,
2837,
4600,
12,
9967,
3903,
10394,
7,
32,
11,
16,
2599,
9967,
3903,
10394,
7,
32,
11,
17,
8,
44646,
198,
37811,
198,
9967,
3903,
9521,
7,
32,
3712,
23839,
46912,
8,
796,
532,
9967,
3903,
10394,
7,
32,
11,
16,
2599,
9967,
3903,
10394,
7,
32,
11,
17,
8,
628,
198,
198,
2,
923,
14,
11338,
36525,
286,
262,
1312,
12,
400,
5721,
14,
808,
11,
49948,
416,
4036,
17593,
2546,
198,
31,
45145,
2512,
4033,
9688,
7,
32,
3712,
23839,
53,
721,
5574,
19044,
11,
1312,
3712,
46541,
8,
796,
9726,
7,
9806,
7,
72,
12,
4033,
9967,
3903,
10394,
7,
32,
11,
17,
38381,
72,
4357,
352,
4008,
198,
31,
45145,
220,
2512,
4033,
11338,
7,
32,
3712,
23839,
53,
721,
5574,
19044,
11,
1312,
3712,
46541,
8,
796,
9726,
7,
9806,
7,
1084,
7,
72,
10,
4033,
9967,
3903,
10394,
7,
32,
11,
16,
38381,
72,
4357,
299,
27372,
7,
32,
11,
352,
36911,
657,
4008,
198,
31,
45145,
2512,
808,
9688,
7,
32,
3712,
23839,
53,
721,
5574,
19044,
11,
1312,
3712,
46541,
8,
796,
9726,
7,
9806,
7,
72,
12,
808,
9967,
3903,
10394,
7,
32,
11,
16,
38381,
72,
4357,
352,
4008,
198,
31,
45145,
220,
2512,
808,
11338,
7,
32,
3712,
23839,
53,
721,
5574,
19044,
11,
1312,
3712,
46541,
8,
796,
9726,
7,
9806,
7,
1084,
7,
72,
10,
808,
9967,
3903,
10394,
7,
32,
11,
17,
38381,
72,
4357,
299,
27372,
7,
32,
11,
362,
36911,
657,
4008,
198,
198,
1640,
11138,
66,
287,
357,
25,
9967,
4033,
9688,
11,
1058,
9967,
4033,
11338,
11,
1058,
9967,
808,
9688,
11,
1058,
9967,
808,
11338,
8,
198,
220,
220,
220,
2488,
18206,
720,
37,
19524,
7,
32,
11,
1312,
3712,
12235,
90,
16,
30072,
796,
720,
37,
19524,
7,
32,
11,
2558,
7,
72,
4008,
198,
437,
198,
198,
31,
45145,
2512,
4033,
9521,
7,
32,
3712,
23839,
53,
721,
5574,
19044,
11,
1312,
8,
796,
2512,
4033,
9688,
7,
32,
11,
72,
2599,
9967,
4033,
11338,
7,
32,
11,
72,
8,
198,
31,
45145,
2512,
808,
9521,
7,
32,
3712,
23839,
53,
721,
5574,
19044,
11,
1312,
8,
796,
2512,
808,
9688,
7,
32,
11,
72,
2599,
9967,
808,
11338,
7,
32,
11,
72,
8,
628,
198,
2,
4129,
286,
1312,
12,
1169,
5721,
14,
808,
198,
31,
45145,
2512,
26000,
3286,
7,
32,
3712,
23839,
53,
721,
5574,
19044,
11,
1312,
8,
796,
3509,
7,
5317,
7,
9967,
4033,
11338,
7,
32,
11,
1312,
4008,
532,
2558,
7,
9967,
4033,
9688,
7,
32,
11,
1312,
4008,
1343,
352,
11,
657,
8,
198,
31,
45145,
2512,
808,
13664,
7,
32,
3712,
23839,
53,
721,
5574,
19044,
11,
1312,
8,
796,
3509,
7,
5317,
7,
9967,
808,
11338,
7,
32,
11,
1312,
4008,
532,
2558,
7,
9967,
808,
9688,
7,
32,
11,
1312,
4008,
1343,
352,
11,
657,
8,
198,
198,
2,
428,
3607,
262,
2512,
19484,
287,
1123,
2512,
5721,
14,
808,
198,
31,
45145,
951,
9967,
3903,
10394,
82,
7,
32,
3712,
23839,
46912,
8,
796,
27845,
12195,
9967,
3903,
10394,
82,
7,
32,
828,
299,
27372,
7,
32,
11,
17,
4008,
198,
31,
45145,
5752,
9967,
3903,
10394,
82,
7,
32,
3712,
23839,
46912,
8,
796,
27845,
12195,
9967,
3903,
10394,
82,
7,
32,
828,
299,
27372,
7,
32,
11,
16,
4008,
198,
198,
31,
45145,
951,
9967,
3903,
10394,
7,
1443,
11,
1312,
3712,
5317,
8,
796,
951,
9967,
3903,
10394,
82,
7,
1443,
38381,
72,
60,
198,
31,
45145,
5752,
9967,
3903,
10394,
7,
1443,
11,
1312,
3712,
5317,
8,
796,
5752,
9967,
3903,
10394,
82,
7,
1443,
38381,
72,
60,
198,
198,
37811,
198,
220,
220,
220,
318,
9967,
3903,
276,
7,
32,
8,
198,
198,
7783,
82,
2081,
611,
257,
17593,
23986,
262,
2512,
4097,
276,
7071,
13,
198,
37811,
198,
271,
9967,
3903,
276,
7,
3712,
23839,
12235,
33,
12249,
46912,
8,
796,
2081,
198,
271,
9967,
3903,
276,
28264,
8,
796,
3991,
198,
198,
2,
20957,
19484,
7,
32,
11,
74,
8,
329,
1123,
27741,
33,
12249,
46912,
198,
2,
20957,
287,
21397,
62,
1136,
9630,
7,
32,
11,
74,
11,
73,
8,
628,
198,
2,
1441,
4686,
286,
717,
6565,
40039,
36177,
276,
1863,
5752,
479,
198,
8818,
4808,
11085,
9967,
10989,
363,
808,
7,
32,
3712,
23839,
46912,
11,
479,
3712,
5317,
8,
198,
220,
220,
220,
257,
11,
275,
796,
2512,
808,
9688,
7,
32,
11,
479,
828,
2512,
808,
11338,
7,
32,
11,
479,
8,
198,
220,
220,
220,
269,
796,
257,
6624,
352,
5633,
275,
10,
16,
1058,
257,
12,
16,
198,
220,
220,
220,
269,
12,
74,
198,
437,
198,
198,
2,
1441,
4686,
286,
717,
6565,
40039,
36177,
276,
1863,
5721,
474,
198,
8818,
4808,
11085,
9967,
10989,
363,
4033,
7,
32,
3712,
23839,
46912,
11,
474,
3712,
5317,
8,
198,
220,
220,
220,
257,
11,
275,
796,
2512,
4033,
9688,
7,
32,
11,
474,
828,
2512,
4033,
11338,
7,
32,
11,
474,
8,
198,
220,
220,
220,
374,
796,
257,
6624,
352,
5633,
275,
10,
16,
1058,
257,
12,
16,
198,
220,
220,
220,
474,
12,
81,
198,
437,
628,
198,
2235,
9726,
11122,
501,
16,
318,
257,
7292,
68,
1240,
329,
5009,
198,
198,
9979,
9726,
11122,
501,
16,
796,
9726,
11122,
501,
90,
12235,
90,
16,
11,
5317,
11709,
628,
198,
29113,
4242,
2235,
198,
2,
220,
371,
14655,
46912,
7071,
198,
29113,
4242,
2235,
628,
198,
198,
31,
45145,
2163,
951,
9688,
7,
32,
3712,
23839,
12235,
33,
12249,
46912,
11,
1312,
3712,
46541,
8,
198,
220,
220,
220,
275,
82,
796,
317,
13,
9967,
62,
82,
4340,
13,
9967,
62,
82,
4340,
198,
220,
220,
220,
275,
82,
13,
36340,
377,
62,
82,
4340,
58,
16,
7131,
5317,
7,
9967,
4033,
9688,
7,
32,
11,
4808,
19796,
62,
9967,
7,
1443,
11,
362,
11,
1312,
38381,
16,
60,
4008,
60,
198,
437,
198,
31,
45145,
2163,
951,
11338,
7,
32,
3712,
23839,
12235,
33,
12249,
46912,
11,
1312,
3712,
46541,
8,
198,
220,
220,
220,
275,
82,
796,
317,
13,
9967,
62,
82,
4340,
13,
9967,
62,
82,
4340,
198,
220,
220,
220,
275,
82,
13,
36340,
377,
62,
82,
4340,
58,
16,
7131,
5317,
7,
9967,
4033,
11338,
7,
32,
11,
4808,
19796,
62,
9967,
7,
1443,
11,
362,
11,
1312,
38381,
16,
60,
4008,
10,
16,
45297,
16,
198,
437,
198,
31,
45145,
2163,
5752,
9688,
7,
32,
3712,
23839,
12235,
33,
12249,
46912,
11,
1312,
3712,
46541,
8,
198,
220,
220,
220,
275,
82,
796,
317,
13,
9967,
62,
82,
4340,
13,
9967,
62,
82,
4340,
198,
220,
220,
220,
275,
82,
13,
36340,
377,
62,
82,
4340,
58,
17,
7131,
5317,
7,
9967,
808,
9688,
7,
32,
11,
4808,
19796,
62,
9967,
7,
1443,
11,
352,
11,
1312,
38381,
16,
60,
4008,
60,
198,
437,
198,
31,
45145,
2163,
5752,
11338,
7,
32,
3712,
23839,
12235,
33,
12249,
46912,
11,
1312,
3712,
46541,
8,
198,
220,
220,
220,
275,
82,
796,
317,
13,
9967,
62,
82,
4340,
13,
9967,
62,
82,
4340,
198,
220,
220,
220,
275,
82,
13,
36340,
377,
62,
82,
4340,
58,
17,
7131,
5317,
7,
9967,
808,
11338,
7,
32,
11,
4808,
19796,
62,
9967,
7,
1443,
11,
352,
11,
1312,
38381,
16,
60,
4008,
10,
16,
45297,
16,
198,
437,
198,
198,
2,
4277,
7822,
23607,
625,
477,
36525,
11,
1390,
1976,
27498,
198,
8818,
6070,
0,
7,
32,
3712,
23839,
12235,
33,
12249,
46912,
11,
1188,
3712,
7149,
8,
198,
220,
318,
22570,
7,
2100,
8,
8614,
3714,
7,
31407,
12331,
7,
32,
4008,
198,
220,
6070,
0,
7,
32,
13,
7890,
11,
1188,
8,
198,
220,
317,
198,
437,
198
] | 2.656969 | 1,478 |
function [D,J,JInv,X]=JacobiSphere(ksi,F,Grid)
Rad=Grid.Rad;
X1=Grid.Nodes(F.N(1)).P(1)...
+(Grid.Nodes(F.N(2)).P(1)-Grid.Nodes(F.N(1)).P(1))*ksi(1)...
+(Grid.Nodes(F.N(4)).P(1)-Grid.Nodes(F.N(1)).P(1))*ksi(2)...
+(Grid.Nodes(F.N(3)).P(1)-Grid.Nodes(F.N(4)).P(1)-Grid.Nodes(F.N(2)).P(1)+Grid.Nodes(F.N(1)).P(1))*ksi(1)*ksi(2);
X2=Grid.Nodes(F.N(1)).P(2)...
+(Grid.Nodes(F.N(2)).P(2)-Grid.Nodes(F.N(1)).P(2))*ksi(1)...
+(Grid.Nodes(F.N(4)).P(2)-Grid.Nodes(F.N(1)).P(2))*ksi(2)...
+(Grid.Nodes(F.N(3)).P(2)-Grid.Nodes(F.N(4)).P(2)-Grid.Nodes(F.N(2)).P(2)+Grid.Nodes(F.N(1)).P(2))*ksi(1)*ksi(2);
X3=Grid.Nodes(F.N(1)).P(3)...
+(Grid.Nodes(F.N(2)).P(3)-Grid.Nodes(F.N(1)).P(3))*ksi(1)...
+(Grid.Nodes(F.N(4)).P(3)-Grid.Nodes(F.N(1)).P(3))*ksi(2)...
+(Grid.Nodes(F.N(3)).P(3)-Grid.Nodes(F.N(4)).P(3)-Grid.Nodes(F.N(2)).P(3)+Grid.Nodes(F.N(1)).P(3))*ksi(1)*ksi(2);
f=Rad*(X1^2+X2^2+X3^2)^(-3/2);
dx1dX1=f*(X2^2+X3^2);
dx1dX2=-f*X1*X2;
dx1dX3=-f*X1*X3;
dx2dX1=dx1dX2;
dx2dX2=f*(X1^2+X3^2);
dx2dX3=-f*X2*X3;
dx3dX1=dx1dX3;
dx3dX2=dx2dX3;
dx3dX3=f*(X1^2+X2^2);
% dx1dX1=1;
% dx1dX2=-0;
% dx1dX3=0;
% dx2dX1=0;
% dx2dX2=1;
% dx2dX3=0;
% dx3dX1=0;
% dx3dX2=0;
% dx3dX3=1;
dX1dksi1=(Grid.Nodes(F.N(2)).P(1)-Grid.Nodes(F.N(1)).P(1))...
+(Grid.Nodes(F.N(3)).P(1)-Grid.Nodes(F.N(4)).P(1)...
-Grid.Nodes(F.N(2)).P(1)+Grid.Nodes(F.N(1)).P(1))*ksi(2);
dX1dksi2=(Grid.Nodes(F.N(4)).P(1)-Grid.Nodes(F.N(1)).P(1))...
+(Grid.Nodes(F.N(3)).P(1)-Grid.Nodes(F.N(4)).P(1)...
-Grid.Nodes(F.N(2)).P(1)+Grid.Nodes(F.N(1)).P(1))*ksi(1);
dX2dksi1=(Grid.Nodes(F.N(2)).P(2)-Grid.Nodes(F.N(1)).P(2))...
+(Grid.Nodes(F.N(3)).P(2)-Grid.Nodes(F.N(4)).P(2)...
-Grid.Nodes(F.N(2)).P(2)+Grid.Nodes(F.N(1)).P(2))*ksi(2);
dX2dksi2=(Grid.Nodes(F.N(4)).P(2)-Grid.Nodes(F.N(1)).P(2))...
+(Grid.Nodes(F.N(3)).P(2)-Grid.Nodes(F.N(4)).P(2)...
-Grid.Nodes(F.N(2)).P(2)+Grid.Nodes(F.N(1)).P(2))*ksi(1);
dX3dksi1=(Grid.Nodes(F.N(2)).P(3)-Grid.Nodes(F.N(1)).P(3))...
+(Grid.Nodes(F.N(3)).P(3)-Grid.Nodes(F.N(4)).P(3)...
-Grid.Nodes(F.N(2)).P(3)+Grid.Nodes(F.N(1)).P(3))*ksi(2);
dX3dksi2=(Grid.Nodes(F.N(4)).P(3)-Grid.Nodes(F.N(1)).P(3))...
+(Grid.Nodes(F.N(3)).P(3)-Grid.Nodes(F.N(4)).P(3)...
-Grid.Nodes(F.N(2)).P(3)+Grid.Nodes(F.N(1)).P(3))*ksi(1);
J=zeros(3,2);
J(1,1)=dx1dX1*dX1dksi1+dx1dX2*dX2dksi1+dx1dX3*dX3dksi1;
J(2,1)=dx2dX1*dX1dksi1+dx2dX2*dX2dksi1+dx2dX3*dX3dksi1;
J(3,1)=dx3dX1*dX1dksi1+dx3dX2*dX2dksi1+dx3dX3*dX3dksi1;
J(1,2)=dx1dX1*dX1dksi2+dx1dX2*dX2dksi2+dx1dX3*dX3dksi2;
J(2,2)=dx2dX1*dX1dksi2+dx2dX2*dX2dksi2+dx2dX3*dX3dksi2;
J(3,2)=dx3dX1*dX1dksi2+dx3dX2*dX2dksi2+dx3dX3*dX3dksi2;
D=norm(cross(J(:,1),J(:,2)),2);
if nargout > 2
X=[X1 X2 X3]*(Rad/sqrt((X1^2+X2^2+X3^2))); X=[X1 X2 X3];
end
JInv=inv(J'*J)*J'*sqrt(det(J'*J));
end
| [
8818,
685,
35,
11,
41,
11,
41,
19904,
11,
55,
22241,
28821,
13411,
38882,
7,
591,
72,
11,
37,
11,
41339,
8,
198,
15546,
28,
41339,
13,
15546,
26,
198,
55,
16,
28,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
16,
26513,
198,
220,
1343,
7,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
17,
29720,
47,
7,
16,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
16,
4008,
9,
591,
72,
7,
16,
26513,
198,
220,
1343,
7,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
19,
29720,
47,
7,
16,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
16,
4008,
9,
591,
72,
7,
17,
26513,
198,
220,
1343,
7,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
18,
29720,
47,
7,
16,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
19,
29720,
47,
7,
16,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
17,
29720,
47,
7,
16,
47762,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
16,
4008,
9,
591,
72,
7,
16,
27493,
591,
72,
7,
17,
1776,
198,
55,
17,
28,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
17,
26513,
198,
220,
1343,
7,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
17,
29720,
47,
7,
17,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
17,
4008,
9,
591,
72,
7,
16,
26513,
198,
220,
1343,
7,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
19,
29720,
47,
7,
17,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
17,
4008,
9,
591,
72,
7,
17,
26513,
198,
220,
1343,
7,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
18,
29720,
47,
7,
17,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
19,
29720,
47,
7,
17,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
17,
29720,
47,
7,
17,
47762,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
17,
4008,
9,
591,
72,
7,
16,
27493,
591,
72,
7,
17,
1776,
198,
55,
18,
28,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
18,
26513,
198,
220,
1343,
7,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
17,
29720,
47,
7,
18,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
18,
4008,
9,
591,
72,
7,
16,
26513,
198,
220,
1343,
7,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
19,
29720,
47,
7,
18,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
18,
4008,
9,
591,
72,
7,
17,
26513,
198,
220,
1343,
7,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
18,
29720,
47,
7,
18,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
19,
29720,
47,
7,
18,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
17,
29720,
47,
7,
18,
47762,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
18,
4008,
9,
591,
72,
7,
16,
27493,
591,
72,
7,
17,
1776,
198,
69,
28,
15546,
9,
7,
55,
16,
61,
17,
10,
55,
17,
61,
17,
10,
55,
18,
61,
17,
8,
61,
32590,
18,
14,
17,
1776,
198,
198,
34350,
16,
67,
55,
16,
28,
69,
9,
7,
55,
17,
61,
17,
10,
55,
18,
61,
17,
1776,
198,
34350,
16,
67,
55,
17,
10779,
69,
9,
55,
16,
9,
55,
17,
26,
220,
198,
34350,
16,
67,
55,
18,
10779,
69,
9,
55,
16,
9,
55,
18,
26,
198,
34350,
17,
67,
55,
16,
28,
34350,
16,
67,
55,
17,
26,
220,
198,
34350,
17,
67,
55,
17,
28,
69,
9,
7,
55,
16,
61,
17,
10,
55,
18,
61,
17,
1776,
220,
198,
34350,
17,
67,
55,
18,
10779,
69,
9,
55,
17,
9,
55,
18,
26,
198,
34350,
18,
67,
55,
16,
28,
34350,
16,
67,
55,
18,
26,
220,
198,
34350,
18,
67,
55,
17,
28,
34350,
17,
67,
55,
18,
26,
220,
198,
34350,
18,
67,
55,
18,
28,
69,
9,
7,
55,
16,
61,
17,
10,
55,
17,
61,
17,
1776,
198,
198,
4,
44332,
16,
67,
55,
16,
28,
16,
26,
198,
4,
44332,
16,
67,
55,
17,
10779,
15,
26,
220,
198,
4,
44332,
16,
67,
55,
18,
28,
15,
26,
198,
4,
44332,
17,
67,
55,
16,
28,
15,
26,
220,
198,
4,
44332,
17,
67,
55,
17,
28,
16,
26,
220,
198,
4,
44332,
17,
67,
55,
18,
28,
15,
26,
198,
4,
44332,
18,
67,
55,
16,
28,
15,
26,
220,
198,
4,
44332,
18,
67,
55,
17,
28,
15,
26,
220,
198,
4,
44332,
18,
67,
55,
18,
28,
16,
26,
198,
198,
67,
55,
16,
67,
591,
72,
16,
16193,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
17,
29720,
47,
7,
16,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
16,
4008,
986,
198,
220,
1343,
7,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
18,
29720,
47,
7,
16,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
19,
29720,
47,
7,
16,
26513,
198,
220,
532,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
17,
29720,
47,
7,
16,
47762,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
16,
4008,
9,
591,
72,
7,
17,
1776,
198,
67,
55,
16,
67,
591,
72,
17,
16193,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
19,
29720,
47,
7,
16,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
16,
4008,
986,
198,
220,
1343,
7,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
18,
29720,
47,
7,
16,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
19,
29720,
47,
7,
16,
26513,
198,
220,
532,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
17,
29720,
47,
7,
16,
47762,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
16,
4008,
9,
591,
72,
7,
16,
1776,
198,
67,
55,
17,
67,
591,
72,
16,
16193,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
17,
29720,
47,
7,
17,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
17,
4008,
986,
198,
220,
1343,
7,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
18,
29720,
47,
7,
17,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
19,
29720,
47,
7,
17,
26513,
198,
220,
532,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
17,
29720,
47,
7,
17,
47762,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
17,
4008,
9,
591,
72,
7,
17,
1776,
198,
67,
55,
17,
67,
591,
72,
17,
16193,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
19,
29720,
47,
7,
17,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
17,
4008,
986,
198,
220,
1343,
7,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
18,
29720,
47,
7,
17,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
19,
29720,
47,
7,
17,
26513,
198,
220,
532,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
17,
29720,
47,
7,
17,
47762,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
17,
4008,
9,
591,
72,
7,
16,
1776,
198,
67,
55,
18,
67,
591,
72,
16,
16193,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
17,
29720,
47,
7,
18,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
18,
4008,
986,
198,
220,
1343,
7,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
18,
29720,
47,
7,
18,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
19,
29720,
47,
7,
18,
26513,
198,
220,
532,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
17,
29720,
47,
7,
18,
47762,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
18,
4008,
9,
591,
72,
7,
17,
1776,
198,
67,
55,
18,
67,
591,
72,
17,
16193,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
19,
29720,
47,
7,
18,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
18,
4008,
986,
198,
220,
1343,
7,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
18,
29720,
47,
7,
18,
13219,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
19,
29720,
47,
7,
18,
26513,
198,
220,
532,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
17,
29720,
47,
7,
18,
47762,
41339,
13,
45,
4147,
7,
37,
13,
45,
7,
16,
29720,
47,
7,
18,
4008,
9,
591,
72,
7,
16,
1776,
198,
198,
41,
28,
9107,
418,
7,
18,
11,
17,
1776,
198,
198,
41,
7,
16,
11,
16,
47505,
34350,
16,
67,
55,
16,
9,
67,
55,
16,
67,
591,
72,
16,
10,
34350,
16,
67,
55,
17,
9,
67,
55,
17,
67,
591,
72,
16,
10,
34350,
16,
67,
55,
18,
9,
67,
55,
18,
67,
591,
72,
16,
26,
198,
41,
7,
17,
11,
16,
47505,
34350,
17,
67,
55,
16,
9,
67,
55,
16,
67,
591,
72,
16,
10,
34350,
17,
67,
55,
17,
9,
67,
55,
17,
67,
591,
72,
16,
10,
34350,
17,
67,
55,
18,
9,
67,
55,
18,
67,
591,
72,
16,
26,
198,
41,
7,
18,
11,
16,
47505,
34350,
18,
67,
55,
16,
9,
67,
55,
16,
67,
591,
72,
16,
10,
34350,
18,
67,
55,
17,
9,
67,
55,
17,
67,
591,
72,
16,
10,
34350,
18,
67,
55,
18,
9,
67,
55,
18,
67,
591,
72,
16,
26,
198,
41,
7,
16,
11,
17,
47505,
34350,
16,
67,
55,
16,
9,
67,
55,
16,
67,
591,
72,
17,
10,
34350,
16,
67,
55,
17,
9,
67,
55,
17,
67,
591,
72,
17,
10,
34350,
16,
67,
55,
18,
9,
67,
55,
18,
67,
591,
72,
17,
26,
198,
41,
7,
17,
11,
17,
47505,
34350,
17,
67,
55,
16,
9,
67,
55,
16,
67,
591,
72,
17,
10,
34350,
17,
67,
55,
17,
9,
67,
55,
17,
67,
591,
72,
17,
10,
34350,
17,
67,
55,
18,
9,
67,
55,
18,
67,
591,
72,
17,
26,
198,
41,
7,
18,
11,
17,
47505,
34350,
18,
67,
55,
16,
9,
67,
55,
16,
67,
591,
72,
17,
10,
34350,
18,
67,
55,
17,
9,
67,
55,
17,
67,
591,
72,
17,
10,
34350,
18,
67,
55,
18,
9,
67,
55,
18,
67,
591,
72,
17,
26,
198,
198,
35,
28,
27237,
7,
19692,
7,
41,
7,
45299,
16,
828,
41,
7,
45299,
17,
36911,
17,
1776,
198,
361,
299,
853,
448,
1875,
362,
198,
220,
1395,
41888,
55,
16,
1395,
17,
1395,
18,
60,
9,
7,
15546,
14,
31166,
17034,
19510,
55,
16,
61,
17,
10,
55,
17,
61,
17,
10,
55,
18,
61,
17,
4008,
1776,
220,
220,
1395,
41888,
55,
16,
1395,
17,
1395,
18,
11208,
198,
437,
198,
41,
19904,
28,
16340,
7,
41,
6,
9,
41,
27493,
41,
6,
9,
31166,
17034,
7,
15255,
7,
41,
6,
9,
41,
18125,
198,
437,
628
] | 1.444503 | 1,910 |
module JungleHelperSpiderBoss
using ..Ahorn, Maple
@mapdef Entity "JungleHelper/SpiderBoss" SpiderBoss(x::Integer, y::Integer, color::String="Blue", sprite::String="", webSprite::String="", flag::String="")
const bossColors = String["Blue", "Purple", "Red"]
const bossSprites = Dict{String, String}(
"Blue" => "JungleHelper/SpiderBoss/spider_b_00",
"Purple" => "JungleHelper/SpiderBoss/spider_p_00",
"Red" => "JungleHelper/SpiderBoss/spider_r_00"
)
const placements = Ahorn.PlacementDict(
"Spider Boss ($(color)) (Jungle Helper)" => Ahorn.EntityPlacement(
SpiderBoss,
"point",
Dict{String, Any}(
"color" => color
)
) for color in bossColors
)
Ahorn.editingOptions(entity::SpiderBoss) = Dict{String, Any}(
"color" => bossColors
)
function Ahorn.selection(entity::SpiderBoss)
x, y = Ahorn.position(entity)
return Ahorn.Rectangle(x - 9, y - 9, 17, 17)
end
function Ahorn.render(ctx::Ahorn.Cairo.CairoContext, entity::SpiderBoss, room::Maple.Room)
color = get(entity.data, "color", "Blue")
Ahorn.drawSprite(ctx, bossSprites[color], 0, 0)
end
end
| [
21412,
26411,
47429,
41294,
37310,
198,
198,
3500,
11485,
10910,
1211,
11,
21249,
198,
198,
31,
8899,
4299,
20885,
366,
41,
13687,
47429,
14,
41294,
37310,
1,
12648,
37310,
7,
87,
3712,
46541,
11,
331,
3712,
46541,
11,
3124,
3712,
10100,
2625,
14573,
1600,
33810,
3712,
10100,
2625,
1600,
3992,
38454,
578,
3712,
10100,
2625,
1600,
6056,
3712,
10100,
2625,
4943,
198,
198,
9979,
6478,
5216,
669,
796,
10903,
14692,
14573,
1600,
366,
30026,
1154,
1600,
366,
7738,
8973,
198,
198,
9979,
6478,
4561,
23156,
796,
360,
713,
90,
10100,
11,
10903,
92,
7,
198,
197,
1,
14573,
1,
5218,
366,
41,
13687,
47429,
14,
41294,
37310,
14,
2777,
1304,
62,
65,
62,
405,
1600,
198,
197,
1,
30026,
1154,
1,
5218,
366,
41,
13687,
47429,
14,
41294,
37310,
14,
2777,
1304,
62,
79,
62,
405,
1600,
198,
197,
1,
7738,
1,
5218,
366,
41,
13687,
47429,
14,
41294,
37310,
14,
2777,
1304,
62,
81,
62,
405,
1,
198,
8,
198,
198,
9979,
21957,
3196,
796,
7900,
1211,
13,
3646,
5592,
35,
713,
7,
198,
197,
1,
41294,
15718,
7198,
7,
8043,
4008,
357,
41,
13687,
5053,
525,
16725,
5218,
7900,
1211,
13,
32398,
3646,
5592,
7,
198,
197,
197,
41294,
37310,
11,
198,
197,
197,
1,
4122,
1600,
198,
197,
197,
35,
713,
90,
10100,
11,
4377,
92,
7,
198,
197,
197,
197,
1,
8043,
1,
5218,
3124,
198,
197,
197,
8,
198,
197,
8,
329,
3124,
287,
6478,
5216,
669,
198,
8,
198,
198,
10910,
1211,
13,
276,
1780,
29046,
7,
26858,
3712,
41294,
37310,
8,
796,
360,
713,
90,
10100,
11,
4377,
92,
7,
198,
197,
1,
8043,
1,
5218,
6478,
5216,
669,
198,
8,
198,
198,
8818,
7900,
1211,
13,
49283,
7,
26858,
3712,
41294,
37310,
8,
198,
220,
220,
220,
2124,
11,
331,
796,
7900,
1211,
13,
9150,
7,
26858,
8,
198,
220,
220,
220,
1441,
7900,
1211,
13,
45474,
9248,
7,
87,
532,
860,
11,
331,
532,
860,
11,
1596,
11,
1596,
8,
198,
437,
198,
198,
8818,
7900,
1211,
13,
13287,
7,
49464,
3712,
10910,
1211,
13,
34,
18131,
13,
34,
18131,
21947,
11,
9312,
3712,
41294,
37310,
11,
2119,
3712,
13912,
293,
13,
41178,
8,
198,
197,
8043,
796,
651,
7,
26858,
13,
7890,
11,
366,
8043,
1600,
366,
14573,
4943,
198,
197,
10910,
1211,
13,
19334,
38454,
578,
7,
49464,
11,
6478,
4561,
23156,
58,
8043,
4357,
657,
11,
657,
8,
198,
437,
198,
198,
437,
198
] | 2.655172 | 406 |
import ONNXRunTime
function onnxruntime_infer(f, inputs...)
reversedims(a::AbstractArray{T,N}) where {T, N} = permutedims(a, N:-1:1)
mktempdir() do dir
modelfile = joinpath(dir, "model.onnx")
save(modelfile, f, size.(inputs)...)
model = ONNXRunTime.load_inference(modelfile)
return model(Dict(ONNXRunTime.input_names(model) .=> reversedims.(inputs))) |> values .|> reversedims |> Tuple
end
end
| [
198,
11748,
440,
6144,
55,
10987,
7575,
198,
8818,
319,
77,
87,
43282,
62,
259,
2232,
7,
69,
11,
17311,
23029,
628,
197,
260,
690,
276,
12078,
7,
64,
3712,
23839,
19182,
90,
51,
11,
45,
30072,
810,
1391,
51,
11,
399,
92,
796,
9943,
7241,
12078,
7,
64,
11,
399,
21912,
16,
25,
16,
8,
198,
197,
198,
197,
28015,
29510,
15908,
3419,
466,
26672,
198,
197,
197,
4666,
7046,
576,
796,
4654,
6978,
7,
15908,
11,
366,
19849,
13,
261,
77,
87,
4943,
198,
197,
197,
21928,
7,
4666,
7046,
576,
11,
277,
11,
2546,
12195,
15414,
82,
8,
23029,
628,
197,
197,
19849,
796,
440,
6144,
55,
10987,
7575,
13,
2220,
62,
259,
4288,
7,
4666,
7046,
576,
8,
198,
197,
197,
7783,
2746,
7,
35,
713,
7,
1340,
45,
55,
10987,
7575,
13,
15414,
62,
14933,
7,
19849,
8,
764,
14804,
17687,
12078,
12195,
15414,
82,
22305,
930,
29,
3815,
764,
91,
29,
17687,
12078,
930,
29,
309,
29291,
198,
197,
437,
198,
198,
437,
198
] | 2.417647 | 170 |
#Load the Distributions package. Use `Pkg.install("Distributions")` to install first time.
using Distributions: TDist, ccdf
type regress_results
coefs
yhat
res
vcv
tstat
pval
end
# Keyword arguments are placed after semicolon.
# Symbols start with colon, e.g. `:symbol`.
function ols(y, X; corr=:none, lags::Int=Int(floor(size(X,1)^(1/4))))
# β̂ = X \ y is more stable than β̂ = inv(X'*X) * X' \ y
# see notes at bottom of case 1 notebook
β̂ = X \ y
ŷ = X * β̂
μ̂ = y - ŷ
T, K = size(X)
σ̂² = dot(μ̂, μ̂) / (T - K)
#use correction for variance covariance
if corr == :none
vcv = σ̂² * inv(X'*X)
elseif corr == :white
vcv = newey_west(X, μ̂, 0)
elseif corr == :newey_west
vcv = newey_west(X, μ̂, lags)
else
error("wrong argument for correction keyword")
end
# T statistics for H₀: βᵢ = 0
tstat = β̂ ./ sqrt(diag(vcv))
# absolute value and times two for double sided test
pval = 2 * ccdf(TDist(T-K), abs(tstat))
regress_results(β̂, ŷ, μ̂, vcv, tstat, pval)
end
function newey_west(X, μ̂, lags::Integer)
XtXInv = inv(X'*X)
T, K = size(X)
if lags==0 # White estimator
return XtXInv * X' * diagm(μ̂.^2) * X * XtXInv
end
vcv = zeros(K, K)
for t = 1:T
vcv += μ̂[t]^2 * (X[t,:] * X[t,:]')
end
for lag in 1:lags
w = 1 - lag / (lags + 1)
for t in (lag + 1):T # Calculates the off-diagonal terms
vcv += w * μ̂[t] * μ̂[t-lag] * (X[t-lag,:]*X[t,:]' + X[t,:]*X[t-lag,:]')
end
end
vcv = XtXInv * vcv * XtXInv
end
function gls(y, X, Ω)
P = chol(inv(Ω))
return ols(P*y, P*X)
end
function gmm(y, X, Z; corr=:none, lags=nothing)
T, Kx = size(X)
T, Kz = size(Z)
if corr==:none
# Generalized 1-step IV estimator
W = inv(Z'*Z)
elseif corr==:white | corr==:newey_west
if corr==:white
lags=0
end
gmm1_res = gmm(y,X,Z;corr=:none)
μ̂ = gmm1_res.res
W = zeros(Kz, Kz)
for lag in 0:lags
w = 1 - lag / (lags + 1)
for t in (lag + 1):T
# Calculates the off-diagonal terms
update = w * μ̂[t] * μ̂[t-lag] * (Z[t-lag,:]*Z[t,:]' + Z[t,:]*Z[t-lag,:]')
W = W + update
end
end
else
error("wrong argument for correction keyword")
end
ZtX = Z'*X
XtZ = X'*Z
XtZ_W_ZtXInv = inv(XtZ*W*ZtX)
β̂ = XtZ_W_ZtXInv*(XtZ*W*Z'*y)
ŷ = X * β̂
μ̂ = y - ŷ
σ̂² = dot(μ̂, μ̂) / (T - Kz)
vcv = σ̂² * XtZ_W_ZtXInv
# T statistics for H₀: β₀ = 0
tstat = β̂ ./ sqrt(diag(vcv))
# absolute value and times two for double sided test
pval = 2 * ccdf(TDist(T-K), abs(tstat))
return regress_results(β̂, ŷ, μ̂, vcv, tstat, pval)
end
| [
2,
8912,
262,
46567,
507,
5301,
13,
5765,
4600,
47,
10025,
13,
17350,
7203,
20344,
2455,
507,
4943,
63,
284,
2721,
717,
640,
13,
198,
3500,
46567,
507,
25,
13320,
396,
11,
36624,
7568,
198,
198,
4906,
50252,
62,
43420,
198,
220,
220,
220,
763,
891,
82,
198,
220,
220,
220,
331,
5183,
198,
220,
220,
220,
581,
198,
220,
220,
220,
410,
33967,
198,
220,
220,
220,
256,
14269,
198,
220,
220,
220,
279,
2100,
198,
437,
198,
198,
2,
7383,
4775,
7159,
389,
4624,
706,
5026,
27045,
261,
13,
198,
2,
41327,
10220,
923,
351,
7633,
11,
304,
13,
70,
13,
4600,
25,
1837,
23650,
44646,
198,
8818,
267,
7278,
7,
88,
11,
1395,
26,
1162,
81,
28,
25,
23108,
11,
300,
3775,
3712,
5317,
28,
5317,
7,
28300,
7,
7857,
7,
55,
11,
16,
8,
61,
7,
16,
14,
19,
35514,
628,
220,
220,
220,
1303,
27169,
136,
224,
796,
1395,
3467,
331,
318,
517,
8245,
621,
27169,
136,
224,
796,
800,
7,
55,
6,
9,
55,
8,
1635,
1395,
6,
3467,
331,
220,
198,
220,
220,
220,
1303,
766,
4710,
379,
4220,
286,
1339,
352,
20922,
198,
220,
220,
220,
27169,
136,
224,
796,
1395,
3467,
331,
198,
220,
220,
220,
331,
136,
224,
796,
1395,
1635,
27169,
136,
224,
198,
220,
220,
220,
18919,
136,
224,
796,
331,
532,
331,
136,
224,
628,
220,
220,
220,
309,
11,
509,
796,
2546,
7,
55,
8,
198,
220,
220,
220,
18074,
225,
136,
224,
31185,
796,
16605,
7,
34703,
136,
224,
11,
18919,
136,
224,
8,
1220,
357,
51,
532,
509,
8,
628,
220,
220,
220,
1303,
1904,
17137,
329,
24198,
44829,
590,
198,
220,
220,
220,
611,
1162,
81,
6624,
1058,
23108,
198,
220,
220,
220,
220,
220,
220,
220,
410,
33967,
796,
18074,
225,
136,
224,
31185,
1635,
800,
7,
55,
6,
9,
55,
8,
198,
220,
220,
220,
2073,
361,
1162,
81,
6624,
1058,
11186,
198,
220,
220,
220,
220,
220,
220,
220,
410,
33967,
796,
649,
2959,
62,
7038,
7,
55,
11,
18919,
136,
224,
11,
657,
8,
198,
220,
220,
220,
2073,
361,
1162,
81,
6624,
1058,
3605,
2959,
62,
7038,
198,
220,
220,
220,
220,
220,
220,
220,
410,
33967,
796,
649,
2959,
62,
7038,
7,
55,
11,
18919,
136,
224,
11,
300,
3775,
8,
198,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
4049,
7203,
36460,
4578,
329,
17137,
21179,
4943,
198,
220,
220,
220,
886,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
309,
7869,
329,
367,
158,
224,
222,
25,
27169,
39611,
95,
796,
657,
198,
220,
220,
220,
256,
14269,
796,
27169,
136,
224,
24457,
19862,
17034,
7,
10989,
363,
7,
28435,
85,
4008,
628,
220,
220,
220,
1303,
4112,
1988,
290,
1661,
734,
329,
4274,
34384,
1332,
198,
220,
220,
220,
279,
2100,
220,
796,
362,
1635,
36624,
7568,
7,
51,
20344,
7,
51,
12,
42,
828,
2352,
7,
83,
14269,
4008,
628,
220,
220,
220,
50252,
62,
43420,
7,
26638,
136,
224,
11,
331,
136,
224,
11,
18919,
136,
224,
11,
410,
33967,
11,
256,
14269,
11,
279,
2100,
8,
198,
437,
628,
198,
8818,
649,
2959,
62,
7038,
7,
55,
11,
18919,
136,
224,
11,
300,
3775,
3712,
46541,
8,
628,
220,
220,
220,
1395,
83,
55,
19904,
796,
800,
7,
55,
6,
9,
55,
8,
198,
220,
220,
220,
309,
11,
509,
796,
2546,
7,
55,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
611,
300,
3775,
855,
15,
1303,
2635,
3959,
1352,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1395,
83,
55,
19904,
1635,
1395,
6,
1635,
2566,
363,
76,
7,
34703,
136,
224,
13,
61,
17,
8,
1635,
1395,
1635,
1395,
83,
55,
19904,
198,
220,
220,
220,
886,
628,
220,
220,
220,
410,
33967,
796,
1976,
27498,
7,
42,
11,
509,
8,
198,
220,
220,
220,
329,
256,
796,
352,
25,
51,
198,
220,
220,
220,
220,
220,
220,
220,
410,
33967,
15853,
18919,
136,
224,
58,
83,
60,
61,
17,
1635,
357,
55,
58,
83,
11,
47715,
1635,
1395,
58,
83,
11,
47715,
11537,
198,
220,
220,
220,
886,
198,
220,
220,
220,
329,
19470,
287,
352,
25,
75,
3775,
198,
220,
220,
220,
220,
220,
220,
220,
266,
796,
352,
532,
19470,
1220,
357,
75,
3775,
1343,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
329,
256,
287,
357,
30909,
1343,
352,
2599,
51,
1303,
27131,
689,
262,
572,
12,
10989,
27923,
2846,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
410,
33967,
15853,
266,
1635,
18919,
136,
224,
58,
83,
60,
1635,
18919,
136,
224,
58,
83,
12,
30909,
60,
1635,
357,
55,
58,
83,
12,
30909,
11,
47715,
9,
55,
58,
83,
11,
47715,
6,
1343,
1395,
58,
83,
11,
47715,
9,
55,
58,
83,
12,
30909,
11,
47715,
11537,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
198,
220,
220,
220,
410,
33967,
796,
1395,
83,
55,
19904,
1635,
410,
33967,
1635,
1395,
83,
55,
19904,
198,
437,
198,
198,
8818,
1278,
82,
7,
88,
11,
1395,
11,
7377,
102,
8,
628,
220,
350,
796,
442,
349,
7,
16340,
7,
138,
102,
4008,
198,
220,
1441,
267,
7278,
7,
47,
9,
88,
11,
350,
9,
55,
8,
198,
198,
437,
198,
198,
8818,
308,
3020,
7,
88,
11,
1395,
11,
1168,
26,
1162,
81,
28,
25,
23108,
11,
300,
3775,
28,
22366,
8,
628,
220,
309,
11,
509,
87,
796,
2546,
7,
55,
8,
198,
220,
309,
11,
509,
89,
796,
2546,
7,
57,
8,
628,
220,
611,
1162,
81,
855,
25,
23108,
628,
220,
220,
220,
1303,
3611,
1143,
352,
12,
9662,
8363,
3959,
1352,
198,
220,
220,
220,
370,
796,
800,
7,
57,
6,
9,
57,
8,
628,
220,
2073,
361,
1162,
81,
855,
25,
11186,
930,
1162,
81,
855,
25,
3605,
2959,
62,
7038,
628,
220,
220,
220,
611,
1162,
81,
855,
25,
11186,
198,
220,
220,
220,
220,
220,
300,
3775,
28,
15,
198,
220,
220,
220,
886,
628,
220,
220,
220,
308,
3020,
16,
62,
411,
796,
308,
3020,
7,
88,
11,
55,
11,
57,
26,
10215,
81,
28,
25,
23108,
8,
198,
220,
220,
220,
18919,
136,
224,
796,
308,
3020,
16,
62,
411,
13,
411,
628,
220,
220,
220,
370,
796,
1976,
27498,
7,
42,
89,
11,
509,
89,
8,
198,
220,
220,
220,
329,
19470,
287,
657,
25,
75,
3775,
198,
220,
220,
220,
220,
220,
220,
220,
266,
796,
352,
532,
19470,
1220,
357,
75,
3775,
1343,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
329,
256,
287,
357,
30909,
1343,
352,
2599,
51,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
27131,
689,
262,
572,
12,
10989,
27923,
2846,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4296,
796,
266,
1635,
18919,
136,
224,
58,
83,
60,
1635,
18919,
136,
224,
58,
83,
12,
30909,
60,
1635,
357,
57,
58,
83,
12,
30909,
11,
47715,
9,
57,
58,
83,
11,
47715,
6,
1343,
1168,
58,
83,
11,
47715,
9,
57,
58,
83,
12,
30909,
11,
47715,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
370,
796,
370,
1343,
4296,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
2073,
198,
220,
220,
220,
220,
220,
4049,
7203,
36460,
4578,
329,
17137,
21179,
4943,
198,
220,
886,
628,
220,
1168,
83,
55,
796,
1168,
6,
9,
55,
198,
220,
1395,
83,
57,
796,
1395,
6,
9,
57,
628,
220,
1395,
83,
57,
62,
54,
62,
57,
83,
55,
19904,
796,
800,
7,
55,
83,
57,
9,
54,
9,
57,
83,
55,
8,
198,
220,
27169,
136,
224,
220,
796,
1395,
83,
57,
62,
54,
62,
57,
83,
55,
19904,
9,
7,
55,
83,
57,
9,
54,
9,
57,
6,
9,
88,
8,
198,
220,
331,
136,
224,
796,
1395,
1635,
27169,
136,
224,
198,
220,
18919,
136,
224,
796,
331,
532,
331,
136,
224,
198,
220,
18074,
225,
136,
224,
31185,
796,
16605,
7,
34703,
136,
224,
11,
18919,
136,
224,
8,
1220,
357,
51,
532,
509,
89,
8,
198,
220,
410,
33967,
796,
18074,
225,
136,
224,
31185,
1635,
1395,
83,
57,
62,
54,
62,
57,
83,
55,
19904,
628,
220,
1303,
309,
7869,
329,
367,
158,
224,
222,
25,
27169,
158,
224,
222,
796,
657,
198,
220,
256,
14269,
796,
27169,
136,
224,
24457,
19862,
17034,
7,
10989,
363,
7,
28435,
85,
4008,
628,
220,
1303,
4112,
1988,
290,
1661,
734,
329,
4274,
34384,
1332,
198,
220,
279,
2100,
220,
796,
362,
1635,
36624,
7568,
7,
51,
20344,
7,
51,
12,
42,
828,
2352,
7,
83,
14269,
4008,
628,
220,
1441,
50252,
62,
43420,
7,
26638,
136,
224,
11,
331,
136,
224,
11,
18919,
136,
224,
11,
410,
33967,
11,
256,
14269,
11,
279,
2100,
8,
198,
198,
437,
198
] | 1.852048 | 1,514 |
"""
grd2kml(cmd0::String="", arg1=nothing, kwargs...)
Reads a 2-D grid file and makes a quadtree of PNG images and KML wrappers for Google Earth
using the selected tile size [256x256 pixels].
Full option list at [`grd2kml`]($(GMTdoc)grd2kml.html)
Parameters
----------
- $(GMT.opt_C)
- **E** | **url** :: [Type => Str] `Arg = url`
Instead of hosting the files locally, prepend a site URL. The top-level prefix.kml file
will then use this URL to find the other files it references.``
($(GMTdoc)grd2kml.html#e)
- **F** | **filter** :: [Type => Str]
Specifies the filter to use for the downsampling of the grid for more distant viewing.
Choose among boxcar, cosine arch, gaussian, or median [Gaussian].
($(GMTdoc)grd2kml.html#e)
- **H** | **sub_pixel** :: [Type => Int] `Arg = factor`
Improve the quality of rasterization by passing the sub-pixel smoothing factor to psconvert.
($(GMTdoc)grd2kml.html#h)
- **I** | **shade** | **shading** | **intensity** :: [Type => Str | GMTgrid]
Gives the name of a grid file or GMTgrid with intensities in the (-1,+1) range,
or a grdgradient shading flags.
($(GMTdoc)grd2kml.html#i)
- **L** | **tile_size** :: [Type => Number] `Arg = tilesize`
Sets the fixed size of the image building blocks. Must be an integer that is radix 2.
Typical values are 256 or 512 [256].
($(GMTdoc)grd2kml.html#l)
- **N** | **prefix** [Type => Str] `Arg = prefix`
Sets a unique name prefixed used for the top-level KML filename and the directory where all
referenced KML files and PNG images will be written [GMT_Quadtree].
($(GMTdoc)grd2kml.html#n)
- **Q** | **nan_t** | **nan_alpha** :: [Type => Bool]
Make grid nodes with z = NaN transparent, using the color-masking feature in PostScript Level 3.
($(GMTdoc)grd2kml.html#q)
- **T** | **title** :: [Type => Str] `Arg = title`
Sets the title of the top-level document (i.e., its description).
($(GMTdoc)grd2kml.html#t)
- $(GMT.opt_V)
- $(GMT.opt_write)
- $(GMT.opt_append)
- $(GMT.opt_f)
"""
function grd2kml(cmd0::String="", arg1=nothing; kwargs...)
arg2 = nothing; arg3 = nothing; # for CPT and/or illum
length(kwargs) == 0 && occursin(" -", cmd0) && return monolitic("grd2kml", cmd0, arg1, arg2)
d = init_module(false, kwargs...)[1] # Also checks if the user wants ONLY the HELP mode
cmd, = parse_common_opts(d, "", [:V_params :f])
cmd = parse_these_opts(cmd, d, [[:E :url], [:F :filter], [:H :sub_pixel], [:L :tile_size],
[:N :prefix], [:Q :nan_t :nan_alpha], [:T :title]])
cmd, got_fname, arg1 = find_data(d, cmd0, cmd, arg1) # Find how data was transmitted
cmd, N_used, arg1, arg2, = get_cpt_set_R(d, cmd0, cmd, opt_R, got_fname, arg1, arg2)
cmd, arg1, arg2, arg3 = common_shade(d, cmd, arg1, arg2, arg3, nothing, "grd2kml")
common_grd(d, "grd2kml " * cmd, arg1, arg2, arg3) # Finish build cmd and run it
end
# ---------------------------------------------------------------------------------------------------
grd2kml(arg1, cmd0::String=""; kw...) = grd2kml(cmd0, arg1; kw...) | [
37811,
198,
197,
2164,
67,
17,
74,
4029,
7,
28758,
15,
3712,
10100,
2625,
1600,
1822,
16,
28,
22366,
11,
479,
86,
22046,
23029,
198,
198,
5569,
82,
257,
362,
12,
35,
10706,
2393,
290,
1838,
257,
15094,
21048,
286,
36182,
4263,
290,
509,
5805,
7917,
11799,
329,
3012,
3668,
198,
3500,
262,
6163,
17763,
2546,
685,
11645,
87,
11645,
17848,
4083,
198,
198,
13295,
3038,
1351,
379,
685,
63,
2164,
67,
17,
74,
4029,
63,
16151,
3,
7,
49424,
15390,
8,
2164,
67,
17,
74,
4029,
13,
6494,
8,
198,
198,
48944,
198,
35937,
198,
198,
12,
29568,
49424,
13,
8738,
62,
34,
8,
198,
12,
12429,
36,
1174,
930,
12429,
6371,
1174,
7904,
685,
6030,
5218,
4285,
60,
197,
197,
63,
28100,
796,
19016,
63,
628,
220,
220,
220,
5455,
286,
13662,
262,
3696,
15726,
11,
3143,
437,
257,
2524,
10289,
13,
383,
1353,
12,
5715,
21231,
13,
74,
4029,
2393,
198,
220,
220,
220,
481,
788,
779,
428,
10289,
284,
1064,
262,
584,
3696,
340,
10288,
13,
15506,
198,
220,
220,
220,
7198,
7,
49424,
15390,
8,
2164,
67,
17,
74,
4029,
13,
6494,
2,
68,
8,
198,
12,
12429,
37,
1174,
930,
12429,
24455,
1174,
7904,
685,
6030,
5218,
4285,
60,
628,
220,
220,
220,
18291,
6945,
262,
8106,
284,
779,
329,
262,
21838,
321,
11347,
286,
262,
10706,
329,
517,
12899,
11681,
13,
198,
220,
220,
220,
17489,
1871,
3091,
7718,
11,
8615,
500,
3934,
11,
31986,
31562,
11,
393,
14288,
685,
35389,
31562,
4083,
198,
220,
220,
220,
7198,
7,
49424,
15390,
8,
2164,
67,
17,
74,
4029,
13,
6494,
2,
68,
8,
198,
12,
12429,
39,
1174,
930,
12429,
7266,
62,
32515,
1174,
7904,
685,
6030,
5218,
2558,
60,
220,
220,
220,
220,
220,
220,
220,
220,
4600,
28100,
796,
5766,
63,
628,
220,
220,
220,
20580,
262,
3081,
286,
374,
1603,
1634,
416,
6427,
262,
850,
12,
32515,
32746,
722,
5766,
284,
26692,
1102,
1851,
13,
198,
220,
220,
220,
7198,
7,
49424,
15390,
8,
2164,
67,
17,
74,
4029,
13,
6494,
2,
71,
8,
198,
12,
12429,
40,
1174,
930,
12429,
1477,
671,
1174,
930,
12429,
1477,
4980,
1174,
930,
12429,
47799,
1174,
7904,
685,
6030,
5218,
4285,
930,
16987,
25928,
60,
628,
220,
220,
220,
402,
1083,
262,
1438,
286,
257,
10706,
2393,
393,
16987,
25928,
351,
17509,
871,
287,
262,
13841,
16,
11,
10,
16,
8,
2837,
11,
198,
220,
220,
220,
393,
257,
1036,
67,
49607,
49065,
9701,
13,
198,
220,
220,
220,
7198,
7,
49424,
15390,
8,
2164,
67,
17,
74,
4029,
13,
6494,
2,
72,
8,
198,
12,
12429,
43,
1174,
930,
12429,
40927,
62,
7857,
1174,
7904,
685,
6030,
5218,
7913,
60,
197,
197,
197,
63,
28100,
796,
19867,
1096,
63,
628,
220,
220,
220,
21394,
262,
5969,
2546,
286,
262,
2939,
2615,
7021,
13,
12039,
307,
281,
18253,
326,
318,
2511,
844,
362,
13,
198,
220,
220,
220,
48752,
3815,
389,
17759,
393,
22243,
685,
11645,
4083,
198,
220,
220,
220,
7198,
7,
49424,
15390,
8,
2164,
67,
17,
74,
4029,
13,
6494,
2,
75,
8,
198,
12,
12429,
45,
1174,
930,
12429,
40290,
1174,
685,
6030,
5218,
4285,
60,
197,
197,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4600,
28100,
796,
21231,
63,
628,
220,
220,
220,
21394,
257,
3748,
1438,
7694,
2966,
973,
329,
262,
1353,
12,
5715,
509,
5805,
29472,
290,
262,
8619,
810,
477,
198,
220,
220,
220,
20717,
509,
5805,
3696,
290,
36182,
4263,
481,
307,
3194,
685,
49424,
62,
4507,
324,
21048,
4083,
198,
220,
220,
220,
7198,
7,
49424,
15390,
8,
2164,
67,
17,
74,
4029,
13,
6494,
2,
77,
8,
198,
12,
12429,
48,
1174,
930,
12429,
12647,
62,
83,
1174,
930,
12429,
12647,
62,
26591,
1174,
7904,
685,
6030,
5218,
347,
970,
60,
628,
220,
220,
220,
6889,
10706,
13760,
351,
1976,
796,
11013,
45,
13245,
11,
1262,
262,
3124,
12,
27932,
278,
3895,
287,
2947,
7391,
5684,
513,
13,
198,
220,
220,
220,
7198,
7,
49424,
15390,
8,
2164,
67,
17,
74,
4029,
13,
6494,
2,
80,
8,
198,
12,
12429,
51,
1174,
930,
12429,
7839,
1174,
7904,
685,
6030,
5218,
4285,
60,
197,
197,
220,
220,
220,
220,
220,
220,
220,
4600,
28100,
796,
3670,
63,
628,
220,
220,
220,
21394,
262,
3670,
286,
262,
1353,
12,
5715,
3188,
357,
72,
13,
68,
1539,
663,
6764,
737,
198,
220,
220,
220,
7198,
7,
49424,
15390,
8,
2164,
67,
17,
74,
4029,
13,
6494,
2,
83,
8,
198,
12,
29568,
49424,
13,
8738,
62,
53,
8,
198,
12,
29568,
49424,
13,
8738,
62,
13564,
8,
198,
12,
29568,
49424,
13,
8738,
62,
33295,
8,
198,
12,
29568,
49424,
13,
8738,
62,
69,
8,
198,
37811,
198,
8818,
1036,
67,
17,
74,
4029,
7,
28758,
15,
3712,
10100,
2625,
1600,
1822,
16,
28,
22366,
26,
479,
86,
22046,
23029,
628,
197,
853,
17,
796,
2147,
26,
220,
220,
220,
220,
1822,
18,
796,
2147,
26,
220,
220,
220,
220,
1303,
329,
327,
11571,
290,
14,
273,
16116,
198,
197,
13664,
7,
46265,
22046,
8,
6624,
657,
11405,
8833,
259,
7203,
532,
1600,
23991,
15,
8,
11405,
1441,
937,
6212,
291,
7203,
2164,
67,
17,
74,
4029,
1600,
23991,
15,
11,
1822,
16,
11,
1822,
17,
8,
628,
197,
67,
796,
2315,
62,
21412,
7,
9562,
11,
479,
86,
22046,
23029,
58,
16,
60,
197,
197,
2,
4418,
8794,
611,
262,
2836,
3382,
22224,
262,
49944,
4235,
628,
197,
28758,
11,
796,
21136,
62,
11321,
62,
404,
912,
7,
67,
11,
366,
1600,
685,
25,
53,
62,
37266,
1058,
69,
12962,
198,
197,
28758,
220,
796,
21136,
62,
27218,
62,
404,
912,
7,
28758,
11,
288,
11,
16410,
25,
36,
1058,
6371,
4357,
685,
25,
37,
1058,
24455,
4357,
685,
25,
39,
1058,
7266,
62,
32515,
4357,
685,
25,
43,
1058,
40927,
62,
7857,
4357,
198,
197,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
25,
45,
1058,
40290,
4357,
685,
25,
48,
1058,
12647,
62,
83,
1058,
12647,
62,
26591,
4357,
685,
25,
51,
1058,
7839,
11907,
8,
628,
197,
28758,
11,
1392,
62,
69,
3672,
11,
1822,
16,
796,
1064,
62,
7890,
7,
67,
11,
23991,
15,
11,
23991,
11,
1822,
16,
8,
197,
197,
2,
9938,
703,
1366,
373,
18307,
198,
197,
28758,
11,
399,
62,
1484,
11,
1822,
16,
11,
1822,
17,
11,
796,
651,
62,
66,
457,
62,
2617,
62,
49,
7,
67,
11,
23991,
15,
11,
23991,
11,
2172,
62,
49,
11,
1392,
62,
69,
3672,
11,
1822,
16,
11,
1822,
17,
8,
198,
197,
28758,
11,
1822,
16,
11,
1822,
17,
11,
1822,
18,
796,
2219,
62,
1477,
671,
7,
67,
11,
23991,
11,
1822,
16,
11,
1822,
17,
11,
1822,
18,
11,
2147,
11,
366,
2164,
67,
17,
74,
4029,
4943,
198,
197,
11321,
62,
2164,
67,
7,
67,
11,
366,
2164,
67,
17,
74,
4029,
366,
1635,
23991,
11,
1822,
16,
11,
1822,
17,
11,
1822,
18,
8,
197,
197,
2,
32585,
1382,
23991,
290,
1057,
340,
198,
437,
198,
198,
2,
16529,
3880,
6329,
198,
2164,
67,
17,
74,
4029,
7,
853,
16,
11,
23991,
15,
3712,
10100,
2625,
8172,
479,
86,
23029,
796,
1036,
67,
17,
74,
4029,
7,
28758,
15,
11,
1822,
16,
26,
479,
86,
23029
] | 2.545455 | 1,232 |
using SimLynx
using Test
@testset "SimLynx.jl" begin
@test greet() == "Hello World!"
end
| [
3500,
3184,
37207,
87,
198,
3500,
6208,
198,
198,
31,
9288,
2617,
366,
8890,
37207,
87,
13,
20362,
1,
2221,
198,
220,
220,
220,
2488,
9288,
12589,
3419,
6624,
366,
15496,
2159,
2474,
198,
437,
198
] | 2.611111 | 36 |
# Note that this script can accept some limited command-line arguments, run
# `julia build_tarballs.jl --help` to see a usage message.
using BinaryBuilder
# Collection of sources required to build LCIOWrapBuilder
sources = [
"LCIOWrapBuilder"
]
# Bash recipe for building across all platforms
function getscript(version)
shortversion = version[1:3]
return """
cd \$WORKSPACE/srcdir
mkdir build && cd build
cmake -DCMAKE_INSTALL_PREFIX=\$prefix -DCMAKE_TOOLCHAIN_FILE=/opt/\$target/\$target.toolchain -DCMAKE_FIND_ROOT_PATH=\$prefix -DJulia_PREFIX=\$prefix ..
VERBOSE=ON cmake --build . --config Release --target install
"""
end
# These are the platforms we will build for by default, unless further
# platforms are passed in on the command line
platforms = Platform[
Linux(:x86_64, libc=:glibc, compiler_abi=CompilerABI(:gcc7, :cxx11)),
Linux(:x86_64, libc=:glibc, compiler_abi=CompilerABI(:gcc8, :cxx11)),
MacOS(:x86_64, compiler_abi=CompilerABI(:gcc7)),
MacOS(:x86_64, compiler_abi=CompilerABI(:gcc8)),
]
# The products that we will ensure are always built
products(prefix) = [
LibraryProduct(prefix, "liblciowrap", :lciowrap)
]
# Dependencies that must be installed before this package can be built
dependencies = [
"https://github.com/JuliaInterop/libcxxwrap-julia/releases/download/v0.6.2/build_libcxxwrap-julia-1.0.v0.6.2.jl"
"https://github.com/JuliaPackaging/JuliaBuilder/releases/download/v1.0.0-2/build_Julia.v1.0.0.jl"
"https://github.com/jstrube/LCIOBuilder/releases/download/v2.12.1-4/build_LCIOBuilder.v2.12.1-4.jl"
]
# Build the tarballs, and possibly a `build.jl` as well.
version_number = get(ENV, "TRAVIS_TAG", "")
if version_number == ""
version_number = "v0.99"
end
build_tarballs(ARGS, "LCIOWrapBuilder-1.0", VersionNumber(version_number), sources, getscript("1.0.0"), platforms, products, dependencies)
| [
2,
5740,
326,
428,
4226,
460,
2453,
617,
3614,
3141,
12,
1370,
7159,
11,
1057,
198,
2,
4600,
73,
43640,
1382,
62,
18870,
21591,
13,
20362,
1377,
16794,
63,
284,
766,
257,
8748,
3275,
13,
198,
3500,
45755,
32875,
198,
198,
2,
12251,
286,
4237,
2672,
284,
1382,
22228,
40,
3913,
2416,
32875,
198,
82,
2203,
796,
685,
198,
220,
220,
220,
366,
5639,
40,
3913,
2416,
32875,
1,
198,
60,
198,
198,
2,
15743,
8364,
329,
2615,
1973,
477,
9554,
198,
8818,
651,
12048,
7,
9641,
8,
198,
197,
19509,
9641,
796,
2196,
58,
16,
25,
18,
60,
198,
197,
7783,
37227,
198,
197,
10210,
3467,
3,
33249,
4303,
11598,
14,
10677,
15908,
198,
197,
28015,
15908,
1382,
11405,
22927,
1382,
198,
197,
11215,
539,
532,
9697,
5673,
7336,
62,
38604,
7036,
62,
47,
31688,
10426,
28,
59,
3,
40290,
532,
9697,
5673,
7336,
62,
10468,
3535,
3398,
29833,
62,
25664,
33223,
8738,
14,
59,
3,
16793,
14,
59,
3,
16793,
13,
25981,
7983,
532,
9697,
5673,
7336,
62,
37,
12115,
62,
13252,
2394,
62,
34219,
28,
59,
3,
40290,
532,
35,
16980,
544,
62,
47,
31688,
10426,
28,
59,
3,
40290,
11485,
198,
197,
5959,
33,
14058,
28,
1340,
12067,
539,
1377,
11249,
764,
1377,
11250,
13868,
1377,
16793,
2721,
198,
197,
37811,
198,
437,
198,
198,
2,
2312,
389,
262,
9554,
356,
481,
1382,
329,
416,
4277,
11,
4556,
2252,
198,
2,
9554,
389,
3804,
287,
319,
262,
3141,
1627,
198,
24254,
82,
796,
19193,
58,
198,
220,
220,
220,
7020,
7,
25,
87,
4521,
62,
2414,
11,
9195,
66,
28,
25,
4743,
571,
66,
11,
17050,
62,
17914,
28,
7293,
5329,
32,
3483,
7,
25,
70,
535,
22,
11,
1058,
66,
5324,
1157,
36911,
198,
220,
220,
220,
7020,
7,
25,
87,
4521,
62,
2414,
11,
9195,
66,
28,
25,
4743,
571,
66,
11,
17050,
62,
17914,
28,
7293,
5329,
32,
3483,
7,
25,
70,
535,
23,
11,
1058,
66,
5324,
1157,
36911,
198,
220,
220,
220,
4100,
2640,
7,
25,
87,
4521,
62,
2414,
11,
17050,
62,
17914,
28,
7293,
5329,
32,
3483,
7,
25,
70,
535,
22,
36911,
198,
220,
220,
220,
4100,
2640,
7,
25,
87,
4521,
62,
2414,
11,
17050,
62,
17914,
28,
7293,
5329,
32,
3483,
7,
25,
70,
535,
23,
36911,
198,
60,
198,
198,
2,
383,
3186,
326,
356,
481,
4155,
389,
1464,
3170,
198,
29498,
7,
40290,
8,
796,
685,
198,
220,
220,
220,
10074,
15667,
7,
40290,
11,
366,
8019,
75,
979,
322,
2416,
1600,
1058,
75,
979,
322,
2416,
8,
198,
60,
198,
198,
2,
37947,
3976,
326,
1276,
307,
6589,
878,
428,
5301,
460,
307,
3170,
198,
45841,
3976,
796,
685,
198,
197,
1,
5450,
1378,
12567,
13,
785,
14,
16980,
544,
9492,
404,
14,
8019,
66,
5324,
37150,
12,
73,
43640,
14,
260,
29329,
14,
15002,
14,
85,
15,
13,
21,
13,
17,
14,
11249,
62,
8019,
66,
5324,
37150,
12,
73,
43640,
12,
16,
13,
15,
13,
85,
15,
13,
21,
13,
17,
13,
20362,
1,
198,
197,
1,
5450,
1378,
12567,
13,
785,
14,
16980,
544,
11869,
3039,
14,
16980,
544,
32875,
14,
260,
29329,
14,
15002,
14,
85,
16,
13,
15,
13,
15,
12,
17,
14,
11249,
62,
16980,
544,
13,
85,
16,
13,
15,
13,
15,
13,
20362,
1,
198,
197,
1,
5450,
1378,
12567,
13,
785,
14,
73,
2536,
3266,
14,
5639,
9399,
32875,
14,
260,
29329,
14,
15002,
14,
85,
17,
13,
1065,
13,
16,
12,
19,
14,
11249,
62,
5639,
9399,
32875,
13,
85,
17,
13,
1065,
13,
16,
12,
19,
13,
20362,
1,
198,
60,
198,
198,
2,
10934,
262,
13422,
21591,
11,
290,
5457,
257,
4600,
11249,
13,
20362,
63,
355,
880,
13,
198,
9641,
62,
17618,
796,
651,
7,
1677,
53,
11,
366,
51,
3861,
29817,
62,
42197,
1600,
366,
4943,
198,
361,
2196,
62,
17618,
6624,
13538,
198,
220,
220,
220,
2196,
62,
17618,
796,
366,
85,
15,
13,
2079,
1,
198,
437,
198,
11249,
62,
18870,
21591,
7,
1503,
14313,
11,
366,
5639,
40,
3913,
2416,
32875,
12,
16,
13,
15,
1600,
10628,
15057,
7,
9641,
62,
17618,
828,
4237,
11,
651,
12048,
7203,
16,
13,
15,
13,
15,
12340,
9554,
11,
3186,
11,
20086,
8,
628
] | 2.652482 | 705 |
const CuDense{ElT,VecT} = Dense{ElT,VecT} where {VecT<:CuVector}
const CuDenseTensor{ElT,N,StoreT,IndsT} = Tensor{ElT,N,StoreT,IndsT} where {StoreT<:CuDense}
Dense{T, SA}(x::Dense{T, SB}) where {T<:Number, SA<:CuArray, SB<:Array} = Dense{T, SA}(CuArray(x))
Dense{T, SA}(x::Dense{T, SB}) where {T<:Number, SA<:Array, SB<:CuArray} = Dense{T, SA}(collect(x.data))
Dense{T, S}(size::Integer) where {T, S<:CuArray{<:T}} = Dense{T, S}(CuArrays.zeros(T, size))
function Dense{T, S}(x::T, size::Integer) where {T, S<:CuArray{<:T}}
arr = CuArray{T}(undef, size)
fill!(arr, x)
Dense{T, S}(arr)
end
Base.collect(x::CuDense{T}) where {T<:Number} = Dense(collect(x.data))
Base.complex(::Type{Dense{ElT, VT}}) where {ElT, VT<:CuArray} = Dense{complex(ElT),CuVector{complex(ElT), Nothing}}
CuArrays.CuArray(x::CuDense{ElT}) where {ElT} = CuVector{ElT}(data(x))
CuArrays.CuArray{ElT, N}(x::CuDenseTensor{ElT, N}) where {ElT, N} = CuArray{ElT, N}(reshape(data(store(x)), dims(inds(x))))
CuArrays.CuArray(x::CuDenseTensor{ElT, N}) where {ElT, N} = CuArray{ElT, N}(x)
*(D::Dense{T, AT},x::S) where {T,AT<:CuArray,S<:Number} = Dense(x .* data(D))
Base.:(==)(::Type{<:CuDense{ElT1,CVec1}}, ::Type{<:CuDense{ElT2,CVec2}}) where {ElT1,ElT2,CVec1,CVec2} = (ElT1 == ElT2)
Base.getindex(D::CuDense{<:Number}) = collect(data(D))[]
Base.getindex(D::CuDenseTensor{<:Number, 0}) = store(D)[]
LinearAlgebra.norm(T::CuDenseTensor) = norm(data(store(T)))
# This is for type promotion for Scalar*Dense
function Base.promote_rule(::Type{<:Dense{ElT1,CuVector{ElT1}}},
::Type{ElT2}) where {ElT1,
ElT2<:Number}
ElR = promote_type(ElT1,ElT2)
VecR = CuVector{ElR}
return Dense{ElR,VecR}
end
function Base.permutedims(T::CuDenseTensor{<:Number,N},
perm::NTuple{N,Int}) where {N}
Tp = similar(T,permute(inds(T),perm))
permute!(Tp,T)
return Tp
end
function Base.permutedims!(R::CuDenseTensor{<:Number,N},
T::CuDenseTensor{<:Number,N},
perm::NTuple{N,Int}) where {N}
return permutedims!!(R, T, perm)
end
function permutedims!!(B::Tensor{ElT,N,StoreT,IndsB},
A::Tensor{ElT,N,StoreT,IndsA},
perm::NTuple{N,Int},
f::Function=(r,t)->permute!(r,t)) where {N,ElT,IndsB,IndsA,StoreT<:CuDense{ElT}}
Ais = inds(A)
Bis = permute(inds(A), perm)
B = f(B, A)
return B
end
function Base.similar(::Type{<:CuDenseTensor{ElT}},
inds) where {ElT}
storage_arr = CuVector{ElT}(undef,dim(inds))
return Tensor(Dense(storage_arr),inds)
end
function outer!(R::CuDenseTensor,
T1::CuDenseTensor,
T2::CuDenseTensor)
R_dat = vec(array(T1))*transpose(vec(array(T2)))
copyto!(data(store(R)), vec(R_dat))
inds_outer = unioninds(inds(T1),inds(T2))
return R
end
function contract!!(R::CuDenseTensor{<:Number,NR},
labelsR::NTuple{NR},
T1::CuDenseTensor{<:Number,N1},
labelsT1::NTuple{N1},
T2::CuDenseTensor{<:Number,N2},
labelsT2::NTuple{N2}) where {NR,N1,N2}
if N1==0
# TODO: replace with an add! function?
# What about doing `R .= T1[] .* PermutedDimsArray(T2,perm)`?
perm = getperm(labelsR,labelsT2)
newT2 = Tensor(Dense(data(store(T1)).*data(store(T2))), inds(T2))
permute!(R,newT2)
elseif N2==0
perm = getperm(labelsR,labelsT1)
newT1 = Tensor(Dense(data(store(T2)).*data(store(T1))), inds(T1))
permute!(R,newT1)
elseif N1+N2==NR
# TODO: permute T1 and T2 appropriately first (can be more efficient
# then permuting the result of T1⊗T2)
# TODO: implement the in-place version directly
R = outer!!(R,T1,T2)
inds_outer = unioninds(inds(T1),inds(T2))
R = Tensor(store(R), inds_outer)
else
R = _contract!!(R,labelsR,T1,labelsT1,T2,labelsT2)
end
return R
end
function permutedims!!(B::CuDenseTensor{ElT,0},
A::CuDenseTensor{ElT,0},
perm::NTuple{0,Int},
f=(r,t)->permute!(r,t)) where {ElT<:Number}
Cs = f(B, A)
return Tensor(Dense(vec(Cs)), IndexSet{0}())
end
function permutedims!!(B::CuDenseTensor{ElT,N},
A::CuDenseTensor{ElT,0},
perm::NTuple{N,Int},
f=(r,t)->permute!(r,t)) where {N, ElT<:Number}
Cis = permute(inds(B), perm)
Cs = f(B, A)
return Tensor(Dense(vec(Cs)), Cis)
end
function _contract!(CT::CuDenseTensor{El,NC},
AT::CuDenseTensor{El,NA},
BT::CuDenseTensor{El,NB},
props::ContractionProperties,
α::Number=one(El),β::Number=zero(El)) where {El,NC,NA,NB}
Ainds = inds(AT)
Adims = dims(Ainds)
Binds = inds(BT)
Bdims = dims(Binds)
Cinds = inds(CT)
Cdims = dims(Cinds)
Adata = reshape(data(store(AT)),Adims)
Bdata = reshape(data(store(BT)),Bdims)
Cdata = reshape(data(store(CT)),Cdims)
contracted = commoninds(Ainds, Binds)
A_only = uniqueinds(Ainds, Binds)
B_only = uniqueinds(Binds, Ainds)
ind_dict = Vector{Index}()
for (idx, i) in enumerate(contracted)
push!(ind_dict, i)
end
if length(A_only) > 0
for (idx, i) in enumerate(A_only)
push!(ind_dict, i)
end
end
if length(B_only) > 0
for (idx, i) in enumerate(B_only)
push!(ind_dict, i)
end
end
ctainds = zeros(Int, length(Ainds))
ctbinds = zeros(Int, length(Binds))
ctcinds = zeros(Int, length(Cinds))
for (ii, ia) in enumerate(Ainds)
ctainds[ii] = findfirst(x->x==ia, ind_dict)
end
for (ii, ib) in enumerate(Binds)
ctbinds[ii] = findfirst(x->x==ib, ind_dict)
end
for (ii, ic) in enumerate(Cinds)
ctcinds[ii] = findfirst(x->x==ic, ind_dict)
end
id_op = CuArrays.CUTENSOR.CUTENSOR_OP_IDENTITY
dict_key = ""
for cc in zip(ctcinds, Cdims)
dict_key *= string(cc[1]) * "," * string(cc[2]) * ","
end
for aa in zip(ctainds, Adims)
dict_key *= string(aa[1]) * "," * string(aa[2]) * ","
end
for bb in zip(ctbinds, Bdims)
dict_key *= string(bb[1]) * "," * string(bb[2]) * ","
end
if haskey(ENV, "CUTENSOR_AUTOTUNE") && tryparse(Int, ENV["CUTENSOR_AUTOTUNE"]) == 1
if haskey(ContractionPlans, dict_key)
dict_val = ContractionPlans[dict_key]
algo = dict_val
#plan = dict_val[2]
Cdata = CuArrays.CUTENSOR.contraction!(α, Adata, Vector{Char}(ctainds), id_op, Bdata, Vector{Char}(ctbinds), id_op, β, Cdata, Vector{Char}(ctcinds), id_op, id_op; algo=algo)
else
# loop through all algos
# pick the fastest one
# store that plan!
best_time = 1e6
best_plan = nothing
best_algo = nothing
max_algos = Ref{Int32}(C_NULL)
CuArrays.CUTENSOR.cutensorContractionMaxAlgos(max_algos)
# fix once the other options are documented
#algos = collect(Cint(CuArrays.CUTENSOR.CUTENSOR_ALGO_GETT):Cint(max_algos[] - 1))
algos = collect(Cint(CuArrays.CUTENSOR.CUTENSOR_ALGO_GETT):Cint(-1))
for algo in reverse(algos)
try
#this_plan = CuArrays.CUTENSOR.contraction_plan(Adata, Vector{Char}(ctainds), id_op, Bdata, Vector{Char}(ctbinds), id_op, Cdata, Vector{Char}(ctcinds), id_op, id_op; algo=CuArrays.CUTENSOR.cutensorAlgo_t(algo), pref=CuArrays.CUTENSOR.CUTENSOR_WORKSPACE_MAX)
Cdata, this_time, bytes, gctime, memallocs = @timed CuArrays.CUTENSOR.contraction!(α, Adata, Vector{Char}(ctainds), id_op, Bdata, Vector{Char}(ctbinds), id_op, β, Cdata, Vector{Char}(ctcinds), id_op, id_op; algo=CuArrays.CUTENSOR.cutensorAlgo_t(algo))
if this_time < best_time
best_time = this_time
#best_plan = this_plan
best_algo = CuArrays.CUTENSOR.cutensorAlgo_t(algo)
end
catch err
@warn "Algorithm $algo not supported"
end
end
ContractionPlans[dict_key] = best_algo
end
else
Cdata = CuArrays.CUTENSOR.contraction!(α, Adata, Vector{Char}(ctainds), id_op, Bdata, Vector{Char}(ctbinds), id_op, β, Cdata, Vector{Char}(ctcinds), id_op, id_op)
end
return parent(Cdata)
end
function Base.:+(B::CuDenseTensor, A::CuDenseTensor)
opC = CUTENSOR.CUTENSOR_OP_IDENTITY
opA = CUTENSOR.CUTENSOR_OP_IDENTITY
opAC = CUTENSOR.CUTENSOR_OP_ADD
Ais = inds(A)
Bis = inds(B)
ind_dict = Vector{Index}()
for (idx, i) in enumerate(inds(A))
push!(ind_dict, i)
end
Adata = data(store(A))
Bdata = data(store(B))
reshapeBdata = reshape(Bdata,dims(Bis))
reshapeAdata = reshape(Adata,dims(Ais))
ctainds = zeros(Int, length(Ais))
ctbinds = zeros(Int, length(Bis))
for (ii, ia) in enumerate(Ais)
ctainds[ii] = findfirst(x->x==ia, ind_dict)
end
for (ii, ib) in enumerate(Bis)
ctbinds[ii] = findfirst(x->x==ib, ind_dict)
end
ctcinds = copy(ctbinds)
C = CuArrays.zeros(eltype(Bdata), dims(Bis))
CUTENSOR.elementwiseBinary!(one(eltype(Adata)), reshapeAdata, ctainds, opA, one(eltype(Bdata)), reshapeBdata, ctbinds, opC, C, ctcinds, opAC)
copyto!(data(store(B)), vec(C))
return B
end
function Base.:+(B::CuDense, Bis::IndexSet, A::CuDense, Ais::IndexSet)
opA = CUTENSOR.CUTENSOR_OP_IDENTITY
opC = CUTENSOR.CUTENSOR_OP_IDENTITY
opAC = CUTENSOR.CUTENSOR_OP_ADD
ind_dict = Vector{Index}()
for (idx, i) in enumerate(Ais)
push!(ind_dict, i)
end
Adata = data(A)
Bdata = data(B)
reshapeBdata = reshape(Bdata,dims(Bis))
reshapeAdata = reshape(Adata,dims(Ais))
ctainds = zeros(Int, length(Ais))
ctbinds = zeros(Int, length(Bis))
for (ii, ia) in enumerate(Ais)
ctainds[ii] = findfirst(x->x==ia, ind_dict)
end
for (ii, ib) in enumerate(Bis)
ctbinds[ii] = findfirst(x->x==ib, ind_dict)
end
ctcinds = copy(ctbinds)
C = CuArrays.zeros(eltype(Bdata), dims(Bis))
Cis = Bis
C = CUTENSOR.elementwiseBinary!(1, reshapeAdata, ctainds, opA, 1, reshapeBdata, ctbinds, opC, C, ctcinds, opAC)
copyto!(data(B), vec(C))
return C
end
function Base.:-(B::CuDenseTensor, A::CuDenseTensor)
opC = CUTENSOR.CUTENSOR_OP_IDENTITY
opA = CUTENSOR.CUTENSOR_OP_IDENTITY
opAC = CUTENSOR.CUTENSOR_OP_ADD
Ais = inds(A)
Bis = inds(B)
ind_dict = Vector{Index}()
for (idx, i) in enumerate(inds(A))
push!(ind_dict, i)
end
Adata = data(store(A))
Bdata = data(store(B))
reshapeBdata = reshape(Bdata,dims(Bis))
reshapeAdata = reshape(Adata,dims(Ais))
ctainds = zeros(Int, length(Ais))
ctbinds = zeros(Int, length(Bis))
for (ii, ia) in enumerate(Ais)
ctainds[ii] = findfirst(x->x==ia, ind_dict)
end
for (ii, ib) in enumerate(Bis)
ctbinds[ii] = findfirst(x->x==ib, ind_dict)
end
ctcinds = copy(ctbinds)
C = CuArrays.zeros(eltype(Bdata), dims(Bis))
CUTENSOR.elementwiseBinary!(one(eltype(Adata)), reshapeAdata, ctainds, opA, -one(eltype(Bdata)), reshapeBdata, ctbinds, opC, C, ctcinds, opAC)
copyto!(data(store(B)), vec(C))
return B
end
function Base.:-(A::CuDense, Ais::IndexSet, B::CuDense, Bis::IndexSet)
opA = CUTENSOR.CUTENSOR_OP_IDENTITY
opC = CUTENSOR.CUTENSOR_OP_IDENTITY
opAC = CUTENSOR.CUTENSOR_OP_ADD
ind_dict = Vector{Index}()
for (idx, i) in enumerate(Ais)
push!(ind_dict, i)
end
Adata = data(A)
Bdata = data(B)
reshapeBdata = reshape(Bdata,dims(Bis))
reshapeAdata = reshape(Adata,dims(Ais))
ctainds = zeros(Int, length(Ais))
ctbinds = zeros(Int, length(Bis))
for (ii, ia) in enumerate(Ais)
ctainds[ii] = findfirst(x->x==ia, ind_dict)
end
for (ii, ib) in enumerate(Bis)
ctbinds[ii] = findfirst(x->x==ib, ind_dict)
end
ctcinds = copy(ctbinds)
C = CuArrays.zeros(eltype(Bdata), dims(Bis))
Cis = Bis
C = CUTENSOR.elementwiseBinary!(one(eltype(Adata)), reshapeAdata, ctainds, opA, -one(eltype(Bdata)), reshapeBdata, ctbinds, opC, C, ctcinds, opAC)
copyto!(data(B), vec(C))
return C
end
function Base.permute!(B::CuDenseTensor, A::CuDenseTensor)
Ais = inds(A)
Bis = inds(B)
ind_dict = Vector{Index}()
for (idx, i) in enumerate(Ais)
push!(ind_dict, i)
end
Adata = data(store(A))
Bdata = data(store(B))
reshapeBdata = reshape(Bdata,dims(Bis))
reshapeAdata = reshape(Adata,dims(Ais))
ctainds = zeros(Int, length(Ais))
ctbinds = zeros(Int, length(Bis))
for (ii, ia) in enumerate(Ais)
ctainds[ii] = findfirst(x->x==ia, ind_dict)
end
for (ii, ib) in enumerate(Bis)
ctbinds[ii] = findfirst(x->x==ib, ind_dict)
end
CuArrays.CUTENSOR.permutation!(one(eltype(Adata)), reshapeAdata, Vector{Char}(ctainds), reshapeBdata, Vector{Char}(ctbinds))
return vec(reshapeBdata)
end
function Base.permute!(B::CuDense, Bis::IndexSet, A::CuDense, Ais::IndexSet)
ind_dict = Vector{Index}()
for (idx, i) in enumerate(Ais)
push!(ind_dict, i)
end
Adata = data(A)
Bdata = data(B)
reshapeBdata = reshape(Bdata,dims(Bis))
reshapeAdata = reshape(Adata,dims(Ais))
ctainds = zeros(Int, length(Ais))
ctbinds = zeros(Int, length(Bis))
for (ii, ia) in enumerate(Ais)
ctainds[ii] = findfirst(x->x==ia, ind_dict)
end
for (ii, ib) in enumerate(Bis)
ctbinds[ii] = findfirst(x->x==ib, ind_dict)
end
CuArrays.CUTENSOR.permutation!(one(eltype(Adata)), reshapeAdata, Vector{Char}(ctainds), reshapeBdata, Vector{Char}(ctbinds))
return vec(reshapeBdata)
end
| [
9979,
14496,
35,
1072,
90,
9527,
51,
11,
53,
721,
51,
92,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
360,
1072,
90,
9527,
51,
11,
53,
721,
51,
92,
810,
1391,
53,
721,
51,
27,
25,
46141,
38469,
92,
198,
9979,
14496,
35,
1072,
51,
22854,
90,
9527,
51,
11,
45,
11,
22658,
51,
11,
5497,
82,
51,
92,
796,
309,
22854,
90,
9527,
51,
11,
45,
11,
22658,
51,
11,
5497,
82,
51,
92,
810,
1391,
22658,
51,
27,
25,
46141,
35,
1072,
92,
198,
198,
35,
1072,
90,
51,
11,
14719,
92,
7,
87,
3712,
35,
1072,
90,
51,
11,
18056,
30072,
810,
1391,
51,
27,
25,
15057,
11,
14719,
27,
25,
46141,
19182,
11,
18056,
27,
25,
19182,
92,
796,
360,
1072,
90,
51,
11,
14719,
92,
7,
46141,
19182,
7,
87,
4008,
198,
35,
1072,
90,
51,
11,
14719,
92,
7,
87,
3712,
35,
1072,
90,
51,
11,
18056,
30072,
810,
1391,
51,
27,
25,
15057,
11,
14719,
27,
25,
19182,
11,
18056,
27,
25,
46141,
19182,
92,
796,
360,
1072,
90,
51,
11,
14719,
92,
7,
33327,
7,
87,
13,
7890,
4008,
198,
35,
1072,
90,
51,
11,
311,
92,
7,
7857,
3712,
46541,
8,
810,
1391,
51,
11,
311,
27,
25,
46141,
19182,
90,
27,
25,
51,
11709,
796,
360,
1072,
90,
51,
11,
311,
92,
7,
46141,
3163,
20477,
13,
9107,
418,
7,
51,
11,
2546,
4008,
198,
8818,
360,
1072,
90,
51,
11,
311,
92,
7,
87,
3712,
51,
11,
2546,
3712,
46541,
8,
810,
1391,
51,
11,
311,
27,
25,
46141,
19182,
90,
27,
25,
51,
11709,
198,
220,
220,
220,
5240,
796,
14496,
19182,
90,
51,
92,
7,
917,
891,
11,
2546,
8,
198,
220,
220,
220,
6070,
0,
7,
3258,
11,
2124,
8,
198,
220,
220,
220,
360,
1072,
90,
51,
11,
311,
92,
7,
3258,
8,
198,
437,
198,
14881,
13,
33327,
7,
87,
3712,
46141,
35,
1072,
90,
51,
30072,
810,
1391,
51,
27,
25,
15057,
92,
796,
360,
1072,
7,
33327,
7,
87,
13,
7890,
4008,
198,
14881,
13,
41887,
7,
3712,
6030,
90,
35,
1072,
90,
9527,
51,
11,
32751,
11709,
8,
810,
1391,
9527,
51,
11,
32751,
27,
25,
46141,
19182,
92,
796,
360,
1072,
90,
41887,
7,
9527,
51,
828,
46141,
38469,
90,
41887,
7,
9527,
51,
828,
10528,
11709,
198,
198,
46141,
3163,
20477,
13,
46141,
19182,
7,
87,
3712,
46141,
35,
1072,
90,
9527,
51,
30072,
810,
1391,
9527,
51,
92,
796,
14496,
38469,
90,
9527,
51,
92,
7,
7890,
7,
87,
4008,
198,
46141,
3163,
20477,
13,
46141,
19182,
90,
9527,
51,
11,
399,
92,
7,
87,
3712,
46141,
35,
1072,
51,
22854,
90,
9527,
51,
11,
399,
30072,
810,
1391,
9527,
51,
11,
399,
92,
796,
14496,
19182,
90,
9527,
51,
11,
399,
92,
7,
3447,
1758,
7,
7890,
7,
8095,
7,
87,
36911,
5391,
82,
7,
521,
82,
7,
87,
35514,
198,
46141,
3163,
20477,
13,
46141,
19182,
7,
87,
3712,
46141,
35,
1072,
51,
22854,
90,
9527,
51,
11,
399,
30072,
810,
1391,
9527,
51,
11,
399,
92,
796,
14496,
19182,
90,
9527,
51,
11,
399,
92,
7,
87,
8,
198,
198,
9,
7,
35,
3712,
35,
1072,
90,
51,
11,
5161,
5512,
87,
3712,
50,
8,
810,
1391,
51,
11,
1404,
27,
25,
46141,
19182,
11,
50,
27,
25,
15057,
92,
796,
360,
1072,
7,
87,
764,
9,
1366,
7,
35,
4008,
198,
198,
14881,
11207,
7,
855,
5769,
3712,
6030,
90,
27,
25,
46141,
35,
1072,
90,
9527,
51,
16,
11,
33538,
721,
16,
92,
5512,
7904,
6030,
90,
27,
25,
46141,
35,
1072,
90,
9527,
51,
17,
11,
33538,
721,
17,
11709,
8,
810,
1391,
9527,
51,
16,
11,
9527,
51,
17,
11,
33538,
721,
16,
11,
33538,
721,
17,
92,
796,
357,
9527,
51,
16,
6624,
2574,
51,
17,
8,
198,
14881,
13,
1136,
9630,
7,
35,
3712,
46141,
35,
1072,
90,
27,
25,
15057,
30072,
220,
220,
220,
220,
220,
220,
796,
2824,
7,
7890,
7,
35,
4008,
21737,
198,
14881,
13,
1136,
9630,
7,
35,
3712,
46141,
35,
1072,
51,
22854,
90,
27,
25,
15057,
11,
657,
30072,
796,
3650,
7,
35,
8,
21737,
198,
14993,
451,
2348,
29230,
13,
27237,
7,
51,
3712,
46141,
35,
1072,
51,
22854,
8,
796,
2593,
7,
7890,
7,
8095,
7,
51,
22305,
198,
198,
2,
770,
318,
329,
2099,
12148,
329,
34529,
283,
9,
35,
1072,
198,
8818,
7308,
13,
16963,
1258,
62,
25135,
7,
3712,
6030,
90,
27,
25,
35,
1072,
90,
9527,
51,
16,
11,
46141,
38469,
90,
9527,
51,
16,
11709,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7904,
6030,
90,
9527,
51,
17,
30072,
810,
1391,
9527,
51,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2574,
51,
17,
27,
25,
15057,
92,
198,
220,
2574,
49,
220,
796,
7719,
62,
4906,
7,
9527,
51,
16,
11,
9527,
51,
17,
8,
198,
220,
38692,
49,
796,
14496,
38469,
90,
9527,
49,
92,
198,
220,
1441,
360,
1072,
90,
9527,
49,
11,
53,
721,
49,
92,
198,
437,
198,
198,
8818,
7308,
13,
16321,
7241,
12078,
7,
51,
3712,
46141,
35,
1072,
51,
22854,
90,
27,
25,
15057,
11,
45,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9943,
3712,
11251,
29291,
90,
45,
11,
5317,
30072,
810,
1391,
45,
92,
198,
220,
309,
79,
796,
2092,
7,
51,
11,
16321,
1133,
7,
521,
82,
7,
51,
828,
16321,
4008,
198,
220,
9943,
1133,
0,
7,
51,
79,
11,
51,
8,
198,
220,
1441,
309,
79,
198,
437,
198,
198,
8818,
7308,
13,
16321,
7241,
12078,
0,
7,
49,
3712,
46141,
35,
1072,
51,
22854,
90,
27,
25,
15057,
11,
45,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
309,
3712,
46141,
35,
1072,
51,
22854,
90,
27,
25,
15057,
11,
45,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9943,
3712,
11251,
29291,
90,
45,
11,
5317,
30072,
810,
1391,
45,
92,
198,
220,
220,
220,
1441,
9943,
7241,
12078,
3228,
7,
49,
11,
309,
11,
9943,
8,
198,
437,
198,
198,
8818,
9943,
7241,
12078,
3228,
7,
33,
3712,
51,
22854,
90,
9527,
51,
11,
45,
11,
22658,
51,
11,
5497,
82,
33,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
3712,
51,
22854,
90,
9527,
51,
11,
45,
11,
22658,
51,
11,
5497,
82,
32,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9943,
3712,
11251,
29291,
90,
45,
11,
5317,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
3712,
22203,
16193,
81,
11,
83,
8,
3784,
16321,
1133,
0,
7,
81,
11,
83,
4008,
810,
1391,
45,
11,
9527,
51,
11,
5497,
82,
33,
11,
5497,
82,
32,
11,
22658,
51,
27,
25,
46141,
35,
1072,
90,
9527,
51,
11709,
198,
220,
317,
271,
796,
773,
82,
7,
32,
8,
198,
220,
38045,
796,
9943,
1133,
7,
521,
82,
7,
32,
828,
9943,
8,
198,
220,
347,
796,
277,
7,
33,
11,
317,
8,
198,
220,
1441,
347,
198,
437,
198,
198,
8818,
7308,
13,
38610,
7,
3712,
6030,
90,
27,
25,
46141,
35,
1072,
51,
22854,
90,
9527,
51,
92,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
773,
82,
8,
810,
1391,
9527,
51,
92,
198,
220,
220,
220,
6143,
62,
3258,
796,
14496,
38469,
90,
9527,
51,
92,
7,
917,
891,
11,
27740,
7,
521,
82,
4008,
220,
198,
220,
220,
220,
1441,
309,
22854,
7,
35,
1072,
7,
35350,
62,
3258,
828,
521,
82,
8,
198,
437,
628,
198,
8818,
12076,
0,
7,
49,
3712,
46141,
35,
1072,
51,
22854,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
309,
16,
3712,
46141,
35,
1072,
51,
22854,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
309,
17,
3712,
46141,
35,
1072,
51,
22854,
8,
198,
220,
371,
62,
19608,
796,
43030,
7,
18747,
7,
51,
16,
4008,
9,
7645,
3455,
7,
35138,
7,
18747,
7,
51,
17,
22305,
198,
220,
4866,
1462,
0,
7,
7890,
7,
8095,
7,
49,
36911,
43030,
7,
49,
62,
19608,
4008,
220,
198,
220,
773,
82,
62,
39605,
796,
6441,
521,
82,
7,
521,
82,
7,
51,
16,
828,
521,
82,
7,
51,
17,
4008,
198,
220,
1441,
371,
198,
437,
198,
198,
8818,
2775,
3228,
7,
49,
3712,
46141,
35,
1072,
51,
22854,
90,
27,
25,
15057,
11,
24723,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14722,
49,
3712,
11251,
29291,
90,
24723,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
309,
16,
3712,
46141,
35,
1072,
51,
22854,
90,
27,
25,
15057,
11,
45,
16,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14722,
51,
16,
3712,
11251,
29291,
90,
45,
16,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
309,
17,
3712,
46141,
35,
1072,
51,
22854,
90,
27,
25,
15057,
11,
45,
17,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14722,
51,
17,
3712,
11251,
29291,
90,
45,
17,
30072,
810,
1391,
24723,
11,
45,
16,
11,
45,
17,
92,
198,
220,
611,
399,
16,
855,
15,
198,
220,
220,
220,
1303,
16926,
46,
25,
6330,
351,
281,
751,
0,
2163,
30,
198,
220,
220,
220,
1303,
1867,
546,
1804,
4600,
49,
764,
28,
309,
16,
21737,
764,
9,
2448,
76,
7241,
35,
12078,
19182,
7,
51,
17,
11,
16321,
8,
63,
30,
198,
220,
220,
220,
9943,
796,
651,
16321,
7,
23912,
1424,
49,
11,
23912,
1424,
51,
17,
8,
198,
220,
220,
220,
649,
51,
17,
796,
309,
22854,
7,
35,
1072,
7,
7890,
7,
8095,
7,
51,
16,
29720,
9,
7890,
7,
8095,
7,
51,
17,
4008,
828,
773,
82,
7,
51,
17,
4008,
198,
220,
220,
220,
9943,
1133,
0,
7,
49,
11,
3605,
51,
17,
8,
198,
220,
2073,
361,
399,
17,
855,
15,
198,
220,
220,
220,
9943,
796,
651,
16321,
7,
23912,
1424,
49,
11,
23912,
1424,
51,
16,
8,
198,
220,
220,
220,
649,
51,
16,
796,
309,
22854,
7,
35,
1072,
7,
7890,
7,
8095,
7,
51,
17,
29720,
9,
7890,
7,
8095,
7,
51,
16,
4008,
828,
773,
82,
7,
51,
16,
4008,
198,
220,
220,
220,
9943,
1133,
0,
7,
49,
11,
3605,
51,
16,
8,
198,
220,
2073,
361,
399,
16,
10,
45,
17,
855,
24723,
198,
220,
220,
220,
1303,
16926,
46,
25,
9943,
1133,
309,
16,
290,
309,
17,
20431,
717,
357,
5171,
307,
517,
6942,
198,
220,
220,
220,
1303,
788,
9943,
15129,
262,
1255,
286,
309,
16,
158,
232,
245,
51,
17,
8,
198,
220,
220,
220,
1303,
16926,
46,
25,
3494,
262,
287,
12,
5372,
2196,
3264,
198,
220,
220,
220,
371,
796,
12076,
3228,
7,
49,
11,
51,
16,
11,
51,
17,
8,
198,
220,
220,
220,
773,
82,
62,
39605,
796,
6441,
521,
82,
7,
521,
82,
7,
51,
16,
828,
521,
82,
7,
51,
17,
4008,
198,
220,
220,
220,
371,
796,
309,
22854,
7,
8095,
7,
49,
828,
773,
82,
62,
39605,
8,
198,
220,
2073,
198,
220,
220,
220,
371,
796,
4808,
28484,
3228,
7,
49,
11,
23912,
1424,
49,
11,
51,
16,
11,
23912,
1424,
51,
16,
11,
51,
17,
11,
23912,
1424,
51,
17,
8,
198,
220,
886,
198,
220,
1441,
371,
198,
437,
198,
198,
8818,
9943,
7241,
12078,
3228,
7,
33,
3712,
46141,
35,
1072,
51,
22854,
90,
9527,
51,
11,
15,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
3712,
46141,
35,
1072,
51,
22854,
90,
9527,
51,
11,
15,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9943,
3712,
11251,
29291,
90,
15,
11,
5317,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
16193,
81,
11,
83,
8,
3784,
16321,
1133,
0,
7,
81,
11,
83,
4008,
810,
1391,
9527,
51,
27,
25,
15057,
92,
198,
220,
220,
220,
327,
82,
796,
277,
7,
33,
11,
317,
8,
198,
220,
220,
220,
1441,
309,
22854,
7,
35,
1072,
7,
35138,
7,
32274,
36911,
12901,
7248,
90,
15,
92,
28955,
220,
198,
437,
198,
198,
8818,
9943,
7241,
12078,
3228,
7,
33,
3712,
46141,
35,
1072,
51,
22854,
90,
9527,
51,
11,
45,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
3712,
46141,
35,
1072,
51,
22854,
90,
9527,
51,
11,
15,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9943,
3712,
11251,
29291,
90,
45,
11,
5317,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
16193,
81,
11,
83,
8,
3784,
16321,
1133,
0,
7,
81,
11,
83,
4008,
810,
1391,
45,
11,
2574,
51,
27,
25,
15057,
92,
198,
220,
220,
220,
327,
271,
796,
9943,
1133,
7,
521,
82,
7,
33,
828,
9943,
8,
198,
220,
220,
220,
327,
82,
796,
277,
7,
33,
11,
317,
8,
198,
220,
220,
220,
1441,
309,
22854,
7,
35,
1072,
7,
35138,
7,
32274,
36911,
327,
271,
8,
220,
198,
437,
198,
198,
8818,
4808,
28484,
0,
7,
4177,
3712,
46141,
35,
1072,
51,
22854,
90,
9527,
11,
7792,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5161,
3712,
46141,
35,
1072,
51,
22854,
90,
9527,
11,
4535,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
22205,
3712,
46141,
35,
1072,
51,
22854,
90,
9527,
11,
32819,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25744,
3712,
4264,
7861,
2964,
18200,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26367,
3712,
15057,
28,
505,
7,
9527,
828,
26638,
3712,
15057,
28,
22570,
7,
9527,
4008,
810,
1391,
9527,
11,
7792,
11,
4535,
11,
32819,
92,
198,
220,
317,
521,
82,
796,
773,
82,
7,
1404,
8,
198,
220,
1215,
12078,
796,
5391,
82,
7,
32,
521,
82,
8,
198,
220,
41211,
82,
796,
773,
82,
7,
19313,
8,
198,
220,
347,
67,
12078,
796,
5391,
82,
7,
36180,
82,
8,
198,
220,
24445,
82,
796,
773,
82,
7,
4177,
8,
198,
220,
327,
67,
12078,
796,
5391,
82,
7,
34,
521,
82,
8,
198,
220,
1215,
1045,
796,
27179,
1758,
7,
7890,
7,
8095,
7,
1404,
36911,
2782,
12078,
8,
198,
220,
347,
7890,
796,
27179,
1758,
7,
7890,
7,
8095,
7,
19313,
36911,
33,
67,
12078,
8,
198,
220,
327,
7890,
796,
27179,
1758,
7,
7890,
7,
8095,
7,
4177,
36911,
34,
67,
12078,
8,
198,
220,
23407,
796,
2219,
521,
82,
7,
32,
521,
82,
11,
41211,
82,
8,
198,
220,
317,
62,
8807,
796,
3748,
521,
82,
7,
32,
521,
82,
11,
41211,
82,
8,
198,
220,
347,
62,
8807,
796,
3748,
521,
82,
7,
36180,
82,
11,
317,
521,
82,
8,
198,
220,
773,
62,
11600,
796,
20650,
90,
15732,
92,
3419,
198,
220,
329,
357,
312,
87,
11,
1312,
8,
287,
27056,
378,
7,
3642,
20216,
8,
198,
220,
220,
220,
220,
220,
4574,
0,
7,
521,
62,
11600,
11,
1312,
8,
198,
220,
886,
198,
220,
611,
4129,
7,
32,
62,
8807,
8,
1875,
657,
198,
220,
220,
220,
220,
220,
329,
357,
312,
87,
11,
1312,
8,
287,
27056,
378,
7,
32,
62,
8807,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
521,
62,
11600,
11,
1312,
8,
198,
220,
220,
220,
220,
220,
886,
198,
220,
886,
198,
220,
611,
4129,
7,
33,
62,
8807,
8,
1875,
657,
198,
220,
220,
220,
220,
220,
329,
357,
312,
87,
11,
1312,
8,
287,
27056,
378,
7,
33,
62,
8807,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
521,
62,
11600,
11,
1312,
8,
198,
220,
220,
220,
220,
220,
886,
198,
220,
886,
198,
220,
269,
3153,
9310,
796,
1976,
27498,
7,
5317,
11,
4129,
7,
32,
521,
82,
4008,
198,
220,
269,
83,
21653,
82,
796,
1976,
27498,
7,
5317,
11,
4129,
7,
36180,
82,
4008,
198,
220,
269,
23047,
521,
82,
796,
1976,
27498,
7,
5317,
11,
4129,
7,
34,
521,
82,
4008,
198,
220,
329,
357,
4178,
11,
220,
544,
8,
287,
27056,
378,
7,
32,
521,
82,
8,
198,
220,
220,
220,
220,
220,
269,
3153,
9310,
58,
4178,
60,
796,
1064,
11085,
7,
87,
3784,
87,
855,
544,
11,
773,
62,
11600,
8,
198,
220,
886,
198,
220,
329,
357,
4178,
11,
24283,
8,
287,
27056,
378,
7,
36180,
82,
8,
198,
220,
220,
220,
220,
220,
269,
83,
21653,
82,
58,
4178,
60,
796,
1064,
11085,
7,
87,
3784,
87,
855,
571,
11,
773,
62,
11600,
8,
198,
220,
886,
198,
220,
329,
357,
4178,
11,
14158,
8,
287,
27056,
378,
7,
34,
521,
82,
8,
198,
220,
220,
220,
220,
220,
269,
23047,
521,
82,
58,
4178,
60,
796,
1064,
11085,
7,
87,
3784,
87,
855,
291,
11,
773,
62,
11600,
8,
198,
220,
886,
198,
220,
4686,
62,
404,
220,
220,
220,
796,
14496,
3163,
20477,
13,
34,
3843,
16938,
1581,
13,
34,
3843,
16938,
1581,
62,
3185,
62,
25256,
9050,
198,
220,
8633,
62,
2539,
796,
13538,
198,
220,
329,
36624,
287,
19974,
7,
310,
66,
521,
82,
11,
327,
67,
12078,
8,
198,
220,
220,
220,
220,
220,
8633,
62,
2539,
1635,
28,
4731,
7,
535,
58,
16,
12962,
1635,
366,
553,
1635,
4731,
7,
535,
58,
17,
12962,
1635,
366,
553,
198,
220,
886,
220,
198,
220,
329,
257,
64,
287,
19974,
7,
310,
391,
9310,
11,
1215,
12078,
8,
198,
220,
220,
220,
220,
220,
8633,
62,
2539,
1635,
28,
4731,
7,
7252,
58,
16,
12962,
1635,
366,
553,
1635,
4731,
7,
7252,
58,
17,
12962,
1635,
366,
553,
198,
220,
886,
220,
198,
220,
329,
275,
65,
287,
19974,
7,
310,
21653,
82,
11,
347,
67,
12078,
8,
198,
220,
220,
220,
220,
220,
8633,
62,
2539,
1635,
28,
4731,
7,
11848,
58,
16,
12962,
1635,
366,
553,
1635,
4731,
7,
11848,
58,
17,
12962,
1635,
366,
553,
198,
220,
886,
198,
220,
611,
468,
2539,
7,
1677,
53,
11,
366,
34,
3843,
16938,
1581,
62,
39371,
2394,
41884,
4943,
11405,
1949,
29572,
7,
5317,
11,
12964,
53,
14692,
34,
3843,
16938,
1581,
62,
39371,
2394,
41884,
8973,
8,
6624,
352,
198,
220,
220,
220,
220,
220,
611,
468,
2539,
7,
4264,
7861,
3646,
504,
11,
8633,
62,
2539,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8633,
62,
2100,
796,
2345,
7861,
3646,
504,
58,
11600,
62,
2539,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
435,
2188,
220,
796,
8633,
62,
2100,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
11578,
220,
796,
8633,
62,
2100,
58,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
327,
7890,
796,
14496,
3163,
20477,
13,
34,
3843,
16938,
1581,
13,
3642,
7861,
0,
7,
17394,
11,
1215,
1045,
11,
20650,
90,
12441,
92,
7,
310,
391,
9310,
828,
4686,
62,
404,
11,
347,
7890,
11,
20650,
90,
12441,
92,
7,
310,
21653,
82,
828,
4686,
62,
404,
11,
27169,
11,
327,
7890,
11,
20650,
90,
12441,
92,
7,
310,
66,
521,
82,
828,
4686,
62,
404,
11,
4686,
62,
404,
26,
435,
2188,
28,
282,
2188,
8,
198,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
9052,
832,
477,
435,
70,
418,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2298,
262,
14162,
530,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3650,
326,
1410,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1266,
62,
2435,
796,
352,
68,
21,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1266,
62,
11578,
796,
2147,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1266,
62,
282,
2188,
796,
2147,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
14016,
418,
796,
6524,
90,
5317,
2624,
92,
7,
34,
62,
33991,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14496,
3163,
20477,
13,
34,
3843,
16938,
1581,
13,
8968,
22854,
4264,
7861,
11518,
2348,
70,
418,
7,
9806,
62,
14016,
418,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
4259,
1752,
262,
584,
3689,
389,
12395,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
14016,
418,
796,
2824,
7,
34,
600,
7,
46141,
3163,
20477,
13,
34,
3843,
16938,
1581,
13,
34,
3843,
16938,
1581,
62,
1847,
11230,
62,
18851,
51,
2599,
34,
600,
7,
9806,
62,
14016,
418,
21737,
532,
352,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
435,
70,
418,
796,
2824,
7,
34,
600,
7,
46141,
3163,
20477,
13,
34,
3843,
16938,
1581,
13,
34,
3843,
16938,
1581,
62,
1847,
11230,
62,
18851,
51,
2599,
34,
600,
32590,
16,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
435,
2188,
287,
9575,
7,
14016,
418,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
5661,
62,
11578,
796,
14496,
3163,
20477,
13,
34,
3843,
16938,
1581,
13,
3642,
7861,
62,
11578,
7,
2782,
1045,
11,
20650,
90,
12441,
92,
7,
310,
391,
9310,
828,
4686,
62,
404,
11,
347,
7890,
11,
20650,
90,
12441,
92,
7,
310,
21653,
82,
828,
4686,
62,
404,
11,
327,
7890,
11,
20650,
90,
12441,
92,
7,
310,
66,
521,
82,
828,
4686,
62,
404,
11,
4686,
62,
404,
26,
435,
2188,
28,
46141,
3163,
20477,
13,
34,
3843,
16938,
1581,
13,
8968,
22854,
2348,
2188,
62,
83,
7,
282,
2188,
828,
7694,
28,
46141,
3163,
20477,
13,
34,
3843,
16938,
1581,
13,
34,
3843,
16938,
1581,
62,
33249,
4303,
11598,
62,
22921,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
327,
7890,
11,
428,
62,
2435,
11,
9881,
11,
308,
310,
524,
11,
1066,
32332,
82,
796,
2488,
16514,
276,
14496,
3163,
20477,
13,
34,
3843,
16938,
1581,
13,
3642,
7861,
0,
7,
17394,
11,
1215,
1045,
11,
20650,
90,
12441,
92,
7,
310,
391,
9310,
828,
4686,
62,
404,
11,
347,
7890,
11,
20650,
90,
12441,
92,
7,
310,
21653,
82,
828,
4686,
62,
404,
11,
27169,
11,
327,
7890,
11,
20650,
90,
12441,
92,
7,
310,
66,
521,
82,
828,
4686,
62,
404,
11,
4686,
62,
404,
26,
435,
2188,
28,
46141,
3163,
20477,
13,
34,
3843,
16938,
1581,
13,
8968,
22854,
2348,
2188,
62,
83,
7,
282,
2188,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
428,
62,
2435,
1279,
1266,
62,
2435,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1266,
62,
2435,
796,
428,
62,
2435,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
13466,
62,
11578,
796,
428,
62,
11578,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1266,
62,
282,
2188,
796,
14496,
3163,
20477,
13,
34,
3843,
16938,
1581,
13,
8968,
22854,
2348,
2188,
62,
83,
7,
282,
2188,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4929,
11454,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
40539,
366,
2348,
42289,
720,
282,
2188,
407,
4855,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2345,
7861,
3646,
504,
58,
11600,
62,
2539,
60,
796,
1266,
62,
282,
2188,
198,
220,
220,
220,
220,
220,
886,
198,
220,
2073,
198,
220,
220,
220,
220,
220,
327,
7890,
796,
14496,
3163,
20477,
13,
34,
3843,
16938,
1581,
13,
3642,
7861,
0,
7,
17394,
11,
1215,
1045,
11,
20650,
90,
12441,
92,
7,
310,
391,
9310,
828,
4686,
62,
404,
11,
347,
7890,
11,
20650,
90,
12441,
92,
7,
310,
21653,
82,
828,
4686,
62,
404,
11,
27169,
11,
327,
7890,
11,
20650,
90,
12441,
92,
7,
310,
66,
521,
82,
828,
4686,
62,
404,
11,
4686,
62,
404,
8,
198,
220,
886,
198,
220,
1441,
2560,
7,
34,
7890,
8,
198,
437,
198,
198,
8818,
7308,
11207,
33747,
33,
3712,
46141,
35,
1072,
51,
22854,
11,
317,
3712,
46141,
35,
1072,
51,
22854,
8,
198,
220,
1034,
34,
220,
796,
327,
3843,
16938,
1581,
13,
34,
3843,
16938,
1581,
62,
3185,
62,
25256,
9050,
198,
220,
1034,
32,
220,
796,
327,
3843,
16938,
1581,
13,
34,
3843,
16938,
1581,
62,
3185,
62,
25256,
9050,
198,
220,
1034,
2246,
796,
327,
3843,
16938,
1581,
13,
34,
3843,
16938,
1581,
62,
3185,
62,
29266,
198,
220,
317,
271,
796,
773,
82,
7,
32,
8,
198,
220,
38045,
796,
773,
82,
7,
33,
8,
198,
220,
773,
62,
11600,
796,
20650,
90,
15732,
92,
3419,
198,
220,
329,
357,
312,
87,
11,
1312,
8,
287,
27056,
378,
7,
521,
82,
7,
32,
4008,
198,
220,
220,
220,
220,
220,
4574,
0,
7,
521,
62,
11600,
11,
1312,
8,
198,
220,
886,
198,
220,
1215,
1045,
796,
1366,
7,
8095,
7,
32,
4008,
198,
220,
347,
7890,
796,
1366,
7,
8095,
7,
33,
4008,
198,
220,
27179,
1758,
33,
7890,
796,
27179,
1758,
7,
33,
7890,
11,
67,
12078,
7,
33,
271,
4008,
198,
220,
27179,
1758,
2782,
1045,
796,
27179,
1758,
7,
2782,
1045,
11,
67,
12078,
7,
32,
271,
4008,
198,
220,
269,
3153,
9310,
796,
1976,
27498,
7,
5317,
11,
4129,
7,
32,
271,
4008,
198,
220,
269,
83,
21653,
82,
796,
1976,
27498,
7,
5317,
11,
4129,
7,
33,
271,
4008,
198,
220,
329,
357,
4178,
11,
220,
544,
8,
287,
27056,
378,
7,
32,
271,
8,
198,
220,
220,
220,
220,
220,
269,
3153,
9310,
58,
4178,
60,
796,
1064,
11085,
7,
87,
3784,
87,
855,
544,
11,
773,
62,
11600,
8,
198,
220,
886,
198,
220,
329,
357,
4178,
11,
24283,
8,
287,
27056,
378,
7,
33,
271,
8,
198,
220,
220,
220,
220,
220,
269,
83,
21653,
82,
58,
4178,
60,
796,
1064,
11085,
7,
87,
3784,
87,
855,
571,
11,
773,
62,
11600,
8,
198,
220,
886,
198,
220,
269,
23047,
521,
82,
796,
4866,
7,
310,
21653,
82,
8,
198,
220,
327,
796,
14496,
3163,
20477,
13,
9107,
418,
7,
417,
4906,
7,
33,
7890,
828,
5391,
82,
7,
33,
271,
4008,
198,
220,
327,
3843,
16938,
1581,
13,
30854,
3083,
33,
3219,
0,
7,
505,
7,
417,
4906,
7,
2782,
1045,
36911,
27179,
1758,
2782,
1045,
11,
269,
3153,
9310,
11,
1034,
32,
11,
530,
7,
417,
4906,
7,
33,
7890,
36911,
27179,
1758,
33,
7890,
11,
269,
83,
21653,
82,
11,
1034,
34,
11,
327,
11,
269,
23047,
521,
82,
11,
1034,
2246,
8,
198,
220,
4866,
1462,
0,
7,
7890,
7,
8095,
7,
33,
36911,
43030,
7,
34,
4008,
198,
220,
1441,
347,
198,
437,
198,
198,
8818,
7308,
11207,
33747,
33,
3712,
46141,
35,
1072,
11,
38045,
3712,
15732,
7248,
11,
317,
3712,
46141,
35,
1072,
11,
317,
271,
3712,
15732,
7248,
8,
198,
220,
1034,
32,
220,
796,
327,
3843,
16938,
1581,
13,
34,
3843,
16938,
1581,
62,
3185,
62,
25256,
9050,
198,
220,
1034,
34,
220,
796,
327,
3843,
16938,
1581,
13,
34,
3843,
16938,
1581,
62,
3185,
62,
25256,
9050,
198,
220,
1034,
2246,
796,
327,
3843,
16938,
1581,
13,
34,
3843,
16938,
1581,
62,
3185,
62,
29266,
198,
220,
773,
62,
11600,
796,
20650,
90,
15732,
92,
3419,
198,
220,
329,
357,
312,
87,
11,
1312,
8,
287,
27056,
378,
7,
32,
271,
8,
198,
220,
220,
220,
220,
220,
4574,
0,
7,
521,
62,
11600,
11,
1312,
8,
198,
220,
886,
198,
220,
1215,
1045,
796,
1366,
7,
32,
8,
198,
220,
347,
7890,
796,
1366,
7,
33,
8,
198,
220,
27179,
1758,
33,
7890,
796,
27179,
1758,
7,
33,
7890,
11,
67,
12078,
7,
33,
271,
4008,
198,
220,
27179,
1758,
2782,
1045,
796,
27179,
1758,
7,
2782,
1045,
11,
67,
12078,
7,
32,
271,
4008,
198,
220,
269,
3153,
9310,
796,
1976,
27498,
7,
5317,
11,
4129,
7,
32,
271,
4008,
198,
220,
269,
83,
21653,
82,
796,
1976,
27498,
7,
5317,
11,
4129,
7,
33,
271,
4008,
198,
220,
329,
357,
4178,
11,
220,
544,
8,
287,
27056,
378,
7,
32,
271,
8,
198,
220,
220,
220,
220,
220,
269,
3153,
9310,
58,
4178,
60,
796,
1064,
11085,
7,
87,
3784,
87,
855,
544,
11,
773,
62,
11600,
8,
198,
220,
886,
198,
220,
329,
357,
4178,
11,
24283,
8,
287,
27056,
378,
7,
33,
271,
8,
198,
220,
220,
220,
220,
220,
269,
83,
21653,
82,
58,
4178,
60,
796,
1064,
11085,
7,
87,
3784,
87,
855,
571,
11,
773,
62,
11600,
8,
198,
220,
886,
198,
220,
269,
23047,
521,
82,
796,
4866,
7,
310,
21653,
82,
8,
198,
220,
327,
796,
14496,
3163,
20477,
13,
9107,
418,
7,
417,
4906,
7,
33,
7890,
828,
5391,
82,
7,
33,
271,
4008,
198,
220,
327,
271,
796,
38045,
198,
220,
327,
796,
327,
3843,
16938,
1581,
13,
30854,
3083,
33,
3219,
0,
7,
16,
11,
27179,
1758,
2782,
1045,
11,
269,
3153,
9310,
11,
1034,
32,
11,
352,
11,
27179,
1758,
33,
7890,
11,
269,
83,
21653,
82,
11,
1034,
34,
11,
327,
11,
269,
23047,
521,
82,
11,
1034,
2246,
8,
198,
220,
4866,
1462,
0,
7,
7890,
7,
33,
828,
43030,
7,
34,
4008,
198,
220,
1441,
327,
198,
437,
198,
198,
8818,
7308,
11207,
30420,
33,
3712,
46141,
35,
1072,
51,
22854,
11,
317,
3712,
46141,
35,
1072,
51,
22854,
8,
198,
220,
1034,
34,
220,
796,
327,
3843,
16938,
1581,
13,
34,
3843,
16938,
1581,
62,
3185,
62,
25256,
9050,
198,
220,
1034,
32,
220,
796,
327,
3843,
16938,
1581,
13,
34,
3843,
16938,
1581,
62,
3185,
62,
25256,
9050,
198,
220,
1034,
2246,
796,
327,
3843,
16938,
1581,
13,
34,
3843,
16938,
1581,
62,
3185,
62,
29266,
198,
220,
317,
271,
796,
773,
82,
7,
32,
8,
198,
220,
38045,
796,
773,
82,
7,
33,
8,
198,
220,
773,
62,
11600,
796,
20650,
90,
15732,
92,
3419,
198,
220,
329,
357,
312,
87,
11,
1312,
8,
287,
27056,
378,
7,
521,
82,
7,
32,
4008,
198,
220,
220,
220,
220,
220,
4574,
0,
7,
521,
62,
11600,
11,
1312,
8,
198,
220,
886,
198,
220,
1215,
1045,
796,
1366,
7,
8095,
7,
32,
4008,
198,
220,
347,
7890,
796,
1366,
7,
8095,
7,
33,
4008,
198,
220,
27179,
1758,
33,
7890,
796,
27179,
1758,
7,
33,
7890,
11,
67,
12078,
7,
33,
271,
4008,
198,
220,
27179,
1758,
2782,
1045,
796,
27179,
1758,
7,
2782,
1045,
11,
67,
12078,
7,
32,
271,
4008,
198,
220,
269,
3153,
9310,
796,
1976,
27498,
7,
5317,
11,
4129,
7,
32,
271,
4008,
198,
220,
269,
83,
21653,
82,
796,
1976,
27498,
7,
5317,
11,
4129,
7,
33,
271,
4008,
198,
220,
329,
357,
4178,
11,
220,
544,
8,
287,
27056,
378,
7,
32,
271,
8,
198,
220,
220,
220,
220,
220,
269,
3153,
9310,
58,
4178,
60,
796,
1064,
11085,
7,
87,
3784,
87,
855,
544,
11,
773,
62,
11600,
8,
198,
220,
886,
198,
220,
329,
357,
4178,
11,
24283,
8,
287,
27056,
378,
7,
33,
271,
8,
198,
220,
220,
220,
220,
220,
269,
83,
21653,
82,
58,
4178,
60,
796,
1064,
11085,
7,
87,
3784,
87,
855,
571,
11,
773,
62,
11600,
8,
198,
220,
886,
198,
220,
269,
23047,
521,
82,
796,
4866,
7,
310,
21653,
82,
8,
198,
220,
327,
796,
14496,
3163,
20477,
13,
9107,
418,
7,
417,
4906,
7,
33,
7890,
828,
5391,
82,
7,
33,
271,
4008,
198,
220,
327,
3843,
16938,
1581,
13,
30854,
3083,
33,
3219,
0,
7,
505,
7,
417,
4906,
7,
2782,
1045,
36911,
27179,
1758,
2782,
1045,
11,
269,
3153,
9310,
11,
1034,
32,
11,
532,
505,
7,
417,
4906,
7,
33,
7890,
36911,
27179,
1758,
33,
7890,
11,
269,
83,
21653,
82,
11,
1034,
34,
11,
327,
11,
269,
23047,
521,
82,
11,
1034,
2246,
8,
198,
220,
4866,
1462,
0,
7,
7890,
7,
8095,
7,
33,
36911,
43030,
7,
34,
4008,
198,
220,
1441,
347,
198,
437,
198,
198,
8818,
7308,
11207,
30420,
32,
3712,
46141,
35,
1072,
11,
317,
271,
3712,
15732,
7248,
11,
347,
3712,
46141,
35,
1072,
11,
38045,
3712,
15732,
7248,
8,
198,
220,
1034,
32,
220,
796,
327,
3843,
16938,
1581,
13,
34,
3843,
16938,
1581,
62,
3185,
62,
25256,
9050,
198,
220,
1034,
34,
220,
796,
327,
3843,
16938,
1581,
13,
34,
3843,
16938,
1581,
62,
3185,
62,
25256,
9050,
198,
220,
1034,
2246,
796,
327,
3843,
16938,
1581,
13,
34,
3843,
16938,
1581,
62,
3185,
62,
29266,
198,
220,
773,
62,
11600,
796,
20650,
90,
15732,
92,
3419,
198,
220,
329,
357,
312,
87,
11,
1312,
8,
287,
27056,
378,
7,
32,
271,
8,
198,
220,
220,
220,
220,
220,
4574,
0,
7,
521,
62,
11600,
11,
1312,
8,
198,
220,
886,
198,
220,
1215,
1045,
796,
1366,
7,
32,
8,
198,
220,
347,
7890,
796,
1366,
7,
33,
8,
198,
220,
27179,
1758,
33,
7890,
796,
27179,
1758,
7,
33,
7890,
11,
67,
12078,
7,
33,
271,
4008,
198,
220,
27179,
1758,
2782,
1045,
796,
27179,
1758,
7,
2782,
1045,
11,
67,
12078,
7,
32,
271,
4008,
198,
220,
269,
3153,
9310,
796,
1976,
27498,
7,
5317,
11,
4129,
7,
32,
271,
4008,
198,
220,
269,
83,
21653,
82,
796,
1976,
27498,
7,
5317,
11,
4129,
7,
33,
271,
4008,
198,
220,
329,
357,
4178,
11,
220,
544,
8,
287,
27056,
378,
7,
32,
271,
8,
198,
220,
220,
220,
220,
220,
269,
3153,
9310,
58,
4178,
60,
796,
1064,
11085,
7,
87,
3784,
87,
855,
544,
11,
773,
62,
11600,
8,
198,
220,
886,
198,
220,
329,
357,
4178,
11,
24283,
8,
287,
27056,
378,
7,
33,
271,
8,
198,
220,
220,
220,
220,
220,
269,
83,
21653,
82,
58,
4178,
60,
796,
1064,
11085,
7,
87,
3784,
87,
855,
571,
11,
773,
62,
11600,
8,
198,
220,
886,
198,
220,
269,
23047,
521,
82,
796,
4866,
7,
310,
21653,
82,
8,
198,
220,
327,
796,
14496,
3163,
20477,
13,
9107,
418,
7,
417,
4906,
7,
33,
7890,
828,
5391,
82,
7,
33,
271,
4008,
198,
220,
327,
271,
796,
38045,
198,
220,
327,
796,
327,
3843,
16938,
1581,
13,
30854,
3083,
33,
3219,
0,
7,
505,
7,
417,
4906,
7,
2782,
1045,
36911,
27179,
1758,
2782,
1045,
11,
269,
3153,
9310,
11,
1034,
32,
11,
532,
505,
7,
417,
4906,
7,
33,
7890,
36911,
27179,
1758,
33,
7890,
11,
269,
83,
21653,
82,
11,
1034,
34,
11,
327,
11,
269,
23047,
521,
82,
11,
1034,
2246,
8,
198,
220,
4866,
1462,
0,
7,
7890,
7,
33,
828,
43030,
7,
34,
4008,
198,
220,
1441,
327,
198,
437,
198,
198,
8818,
7308,
13,
16321,
1133,
0,
7,
33,
3712,
46141,
35,
1072,
51,
22854,
11,
317,
3712,
46141,
35,
1072,
51,
22854,
8,
198,
220,
317,
271,
796,
773,
82,
7,
32,
8,
198,
220,
38045,
796,
773,
82,
7,
33,
8,
198,
220,
773,
62,
11600,
796,
20650,
90,
15732,
92,
3419,
198,
220,
329,
357,
312,
87,
11,
1312,
8,
287,
27056,
378,
7,
32,
271,
8,
198,
220,
220,
220,
220,
220,
4574,
0,
7,
521,
62,
11600,
11,
1312,
8,
198,
220,
886,
198,
220,
1215,
1045,
796,
1366,
7,
8095,
7,
32,
4008,
198,
220,
347,
7890,
796,
1366,
7,
8095,
7,
33,
4008,
198,
220,
27179,
1758,
33,
7890,
796,
27179,
1758,
7,
33,
7890,
11,
67,
12078,
7,
33,
271,
4008,
198,
220,
27179,
1758,
2782,
1045,
796,
27179,
1758,
7,
2782,
1045,
11,
67,
12078,
7,
32,
271,
4008,
198,
220,
269,
3153,
9310,
796,
1976,
27498,
7,
5317,
11,
4129,
7,
32,
271,
4008,
198,
220,
269,
83,
21653,
82,
796,
1976,
27498,
7,
5317,
11,
4129,
7,
33,
271,
4008,
198,
220,
329,
357,
4178,
11,
220,
544,
8,
287,
27056,
378,
7,
32,
271,
8,
198,
220,
220,
220,
220,
220,
269,
3153,
9310,
58,
4178,
60,
796,
1064,
11085,
7,
87,
3784,
87,
855,
544,
11,
773,
62,
11600,
8,
198,
220,
886,
198,
220,
329,
357,
4178,
11,
24283,
8,
287,
27056,
378,
7,
33,
271,
8,
198,
220,
220,
220,
220,
220,
269,
83,
21653,
82,
58,
4178,
60,
796,
1064,
11085,
7,
87,
3784,
87,
855,
571,
11,
773,
62,
11600,
8,
198,
220,
886,
198,
220,
220,
198,
220,
14496,
3163,
20477,
13,
34,
3843,
16938,
1581,
13,
16321,
7094,
0,
7,
505,
7,
417,
4906,
7,
2782,
1045,
36911,
27179,
1758,
2782,
1045,
11,
20650,
90,
12441,
92,
7,
310,
391,
9310,
828,
27179,
1758,
33,
7890,
11,
20650,
90,
12441,
92,
7,
310,
21653,
82,
4008,
220,
198,
220,
1441,
43030,
7,
3447,
1758,
33,
7890,
8,
220,
198,
437,
198,
198,
8818,
7308,
13,
16321,
1133,
0,
7,
33,
3712,
46141,
35,
1072,
11,
38045,
3712,
15732,
7248,
11,
317,
3712,
46141,
35,
1072,
11,
317,
271,
3712,
15732,
7248,
8,
198,
220,
773,
62,
11600,
796,
20650,
90,
15732,
92,
3419,
198,
220,
329,
357,
312,
87,
11,
1312,
8,
287,
27056,
378,
7,
32,
271,
8,
198,
220,
220,
220,
220,
220,
4574,
0,
7,
521,
62,
11600,
11,
1312,
8,
198,
220,
886,
198,
220,
1215,
1045,
796,
1366,
7,
32,
8,
198,
220,
347,
7890,
796,
1366,
7,
33,
8,
198,
220,
27179,
1758,
33,
7890,
796,
27179,
1758,
7,
33,
7890,
11,
67,
12078,
7,
33,
271,
4008,
198,
220,
27179,
1758,
2782,
1045,
796,
27179,
1758,
7,
2782,
1045,
11,
67,
12078,
7,
32,
271,
4008,
198,
220,
269,
3153,
9310,
796,
1976,
27498,
7,
5317,
11,
4129,
7,
32,
271,
4008,
198,
220,
269,
83,
21653,
82,
796,
1976,
27498,
7,
5317,
11,
4129,
7,
33,
271,
4008,
198,
220,
329,
357,
4178,
11,
220,
544,
8,
287,
27056,
378,
7,
32,
271,
8,
198,
220,
220,
220,
220,
220,
269,
3153,
9310,
58,
4178,
60,
796,
1064,
11085,
7,
87,
3784,
87,
855,
544,
11,
773,
62,
11600,
8,
198,
220,
886,
198,
220,
329,
357,
4178,
11,
24283,
8,
287,
27056,
378,
7,
33,
271,
8,
198,
220,
220,
220,
220,
220,
269,
83,
21653,
82,
58,
4178,
60,
796,
1064,
11085,
7,
87,
3784,
87,
855,
571,
11,
773,
62,
11600,
8,
198,
220,
886,
198,
220,
220,
198,
220,
14496,
3163,
20477,
13,
34,
3843,
16938,
1581,
13,
16321,
7094,
0,
7,
505,
7,
417,
4906,
7,
2782,
1045,
36911,
27179,
1758,
2782,
1045,
11,
20650,
90,
12441,
92,
7,
310,
391,
9310,
828,
27179,
1758,
33,
7890,
11,
20650,
90,
12441,
92,
7,
310,
21653,
82,
4008,
220,
198,
220,
1441,
43030,
7,
3447,
1758,
33,
7890,
8,
220,
198,
437,
628
] | 1.967434 | 6,909 |
using FEMBase, Test
# From the beginning of a project we had a clear concept in our mind: "everything
# is a field". That is, everything can vary temporally and spatially. We think
# that constant is just a special case of field which does not vary in temporal
# nor spatial direction. Fields can vary in spatial direction, i.e. can be either
# constant or variable, and in temporal direction, i.e. can be time variant or
# time invariant. From this pondering we can think that there exists four kind of
# (discrete) fields:
# - discrete, constant, time invariant (DCTI)
# - discrete, variable, time invariant (DVTI)
# - discrete, constant, time variant (DCTV)
# - discrete, variable, time variant (DVTV)
# Discrete, in this context, means that field is defined in point-wise in
# $1 \ldots n$ locations, from where it is then interpolated to whole domain
# using some interpolation polynomials, i.e.
# ```math
# u(\xi, t) = \sum_{i} u_i[t] N_{i}(\xi,t),
# ```math
# where
# $N_{i}(\xi, t)$
# is the basis function or interpolation polymial corresponding to $i$^{th}
# discrete value and
# $u_{i}$
# is the discrete value.
# Then we have continuous fields, which are defined in whole domain, or at least
# not point-wise. By following the already used abbreviations, we have four more
# fields:
# - continuous, constant, time invariant (CCTI)
# - continuous, variable, time invariant (CVTI)
# - continuous, constant, time variant (DCTV)
# - continuous, variable, time variant (CVTV)
# Continuous, again in this context, does not mean that field has to be defined
# everywhere. It's enough that it's defined in function of spatial and/or temporal
# coordinates, i.e. we have $u \equiv u(\xi, t)$, without a some spesific basis
# needed to interpolate from discrete values.
# Field itself can be in principle anything. However, usually either scalar,
# vector or tensor (matrix). Time does not to have be real, it can be for example
# angle of some rotating machine or even complex value.
# From these starting points, we assume that the mentioned field system can
# describe all imaginable situations.
# ## Creating new fields
# For discrete fields that are varying in spatial direction, value for each
# discrete point is defined using NTuple. The order of points is implicitly
# assumed to be same than node ordering in ABAQUS. That is, first corner nodes
# in anti-clockwise direction and after that middle nodes.
# For example, `(1, 2, 3, 4)` is a scalar field having length of 4 and
# `([1,2],[2,3],[3,4],[4,5])` is a vector field having length of 4.
# For fields that are varying in temporal direction, `time => value` syntax is
# used. The first item in pair is time (or similar) and second item is value
# assigned to that time. For example, `0.0 => 1.0` is a time-dependent scalar
# field having value 1.0 at time 0.0.
# ## Dicrete, constant, time invariant field (DCTI)
# The most simple field is a field that is constant in both time and spatial
# direction. Discrete, constant, time invariant field. For example, youngs
# modulus could be this kind of field.
a = DCTI(1)
# Accessing data is done using `interpolate`. In FEM codes, we try to hide the
# actual type of the field, so for example interpolating constant field works,
# but the result is quite unsuprising.
@test interpolate(a, 0.0) == 1
# Field value value can be updated with `update!` function:
update!(a, 2)
@test a == 2
# Constant field of course doesn't have to be scalar field. It can be e.g.
# vector field. I use here packate Tensors.jl because of its excellent
# performance and other features, but normal `Vector` would work just fine
# also:
using Tensors
b = DCTI(Vec(1, 2))
# Interpolation, again, returns just the original data:
@test interpolate(b, 0.0) == [1, 2]
# Updating field is done using `update!`-function:
update!(b, Vec(2, 3))
@test interpolate(b, 0.0) == [2, 3]
# Constant tensor field:
c = DCTI(Tensor{2,2}((1.0, 2.0, 3.0, 4.0)))
# Data can be accessed also using `getindex`. Also things like `length` and
# `size` are defined.
@test interpolate(c, 0.0) == [1 3; 2 4]
@test c[1] == [1 3; 2 4]
@test length(c) == 4
@test size(c) == (2, 2)
# For now everything might look like extra complexity, but later on we see how
# to combine field with some basis functions in order to interpolate in element
# domain. Another nice feature is that we can interpolate fields in time. In this
# particular case of time invariant fields it of course doesn't give anything
# extra.
# ## Dicrete, variable, time invariant fields (DVTI)
@testset "DVTI field" begin
# scalar field
a = DVTI((1, 2))
@test a[1] == 1
@test a[2] == 2
@test interpolate(a, 0.0) == (1, 2)
update!(a, (2, 3))
@test a == (2, 3)
@test (2, 3) == a
# vector field
b = DVTI(([1, 2], [2, 3]))
@test b[1] == [1, 2]
@test b[2] == [2, 3]
@test interpolate(b, 0.0) == ([1, 2], [2, 3])
update!(b, ([2, 3], [4, 5]))
@test b == ([2, 3], [4, 5])
# tensor field
c = DVTI(([1 2; 3 4], [2 3; 4 5]))
@test c[1] == [1 2; 3 4]
@test c[2] == [2 3; 4 5]
@test interpolate(c, 0.0) == ([1 2; 3 4], [2 3; 4 5])
update!(c, ([2 3; 4 5], [5 6; 7 8]))
@test c == ([2 3; 4 5], [5 6; 7 8])
d = DVTI(2, 3)
@test a == d
end
@testset "DCTV field" begin
# scalar field
a = DCTV(0.0 => 0.0, 1.0 => 1.0)
@test isapprox(interpolate(a, -1.0), 0.0)
@test isapprox(interpolate(a, 0.0), 0.0)
@test isapprox(interpolate(a, 0.5), 0.5)
@test isapprox(interpolate(a, 1.0), 1.0)
update!(a, 1.0 => 2.0)
@test isapprox(interpolate(a, 0.5), 1.0)
update!(a, 2.0 => 1.0)
@test isapprox(interpolate(a, 1.5), 1.5)
# vector field
b = DCTV(0.0 => [1.0, 2.0], 1.0 => [2.0, 3.0])
@test isapprox(interpolate(b, 0.5), [1.5, 2.5])
# tensor field
c = DCTV(0.0 => [1.0 2.0; 3.0 4.0], 1.0 => [2.0 3.0; 4.0 5.0])
@test isapprox(interpolate(c, 0.5), [1.5 2.5; 3.5 4.5])
end
@testset "DVTV field" begin
# scalar field
a = DVTV(0.0 => (0.0, 1.0), 1.0 => (1.0, 0.0))
update!(a, 2.0 => (2.0, 0.0))
r = interpolate(a, 0.5)
@test isapprox(r[1], 0.5)
@test isapprox(r[2], 0.5)
update!(a, 2.0 => (4.0, 0.0))
end
@testset "CVTV field" begin
f = CVTV((xi, t) -> xi[1] * xi[2] * t)
@test isapprox(f([1.0, 2.0], 3.0), 6.0)
end
@testset "Dictionary fields" begin
X = Dict(1 => [0.0, 0.0], 1000 => [1.0, 0.0], 100000 => [1.0, 1.0])
G = DVTId(X)
@test isapprox(G[1], X[1])
@test isapprox(G[1000], X[1000])
@test isapprox(G[100000], X[100000])
Y = Dict(1 => [2.0, 2.0], 1000 => [3.0, 2.0], 100000 => [3.0, 3.0])
F = DVTVd(0.0 => X, 1.0 => Y)
@test isapprox(interpolate(F, 0.5)[100000], [2.0, 2.0])
end
@testset "update dictionary field" begin
f1 = Dict(1 => 1.0, 2 => 2.0, 3 => 3.0)
f2 = Dict(1 => 2.0, 2 => 3.0, 3 => 4.0)
fld = DVTVd(0.0 => f1)
update!(fld, 1.0 => f2)
@test isapprox(interpolate(fld, 0.5)[1], 1.5)
update!(fld, 1.0 => f1)
@test isapprox(interpolate(fld, 0.5)[1], 1.0)
end
@testset "use of common constructor field" begin
@test isa(field(1.0), DCTI)
@test isa(field(1.0 => 1.0), DCTV)
@test isa(field((1.0, 2.0)), DVTI)
@test isa(field(1, 2), DVTI)
@test isa(field(1.0 => (1.0, 2.0)), DVTV)
@test isa(field((xi, t) -> xi[1] * t), CVTV)
@test isa(field(1 => [1.0, 2.0], 10 => [2.0, 3.0]), DVTId)
@test isa(field(0.0 => (1 => 1.0, 10 => 2.0), 1.0 => (1 => 2.0, 10 => 3.0)), DVTVd)
X = Dict(1 => [0.0, 0.0], 2 => [1.0, 0.0])
X1 = field(X)
X2 = field(0.0 => X)
@test isa(X1, DVTId)
@test isa(X2, DVTVd)
end
@testset "general interpolation" begin
a = [1, 2, 3]
b = (2, 3, 4)
@test interpolate(a, b) == 2 + 6 + 12
a = (1, 2)
b = (2, 3, 4)
@test interpolate(a, b) == 2 + 6
@test_throws AssertionError interpolate(b, a)
end
| [
3500,
376,
3620,
14881,
11,
6208,
198,
198,
2,
3574,
262,
3726,
286,
257,
1628,
356,
550,
257,
1598,
3721,
287,
674,
2000,
25,
366,
37814,
198,
2,
318,
257,
2214,
1911,
1320,
318,
11,
2279,
460,
7565,
10042,
453,
290,
15246,
1927,
13,
775,
892,
198,
2,
326,
6937,
318,
655,
257,
2041,
1339,
286,
2214,
543,
857,
407,
7565,
287,
21964,
198,
2,
4249,
21739,
4571,
13,
23948,
460,
7565,
287,
21739,
4571,
11,
1312,
13,
68,
13,
460,
307,
2035,
198,
2,
6937,
393,
7885,
11,
290,
287,
21964,
4571,
11,
1312,
13,
68,
13,
460,
307,
640,
15304,
393,
198,
2,
640,
25275,
415,
13,
3574,
428,
16723,
1586,
356,
460,
892,
326,
612,
7160,
1440,
1611,
286,
198,
2,
357,
15410,
8374,
8,
7032,
25,
198,
198,
2,
532,
28810,
11,
6937,
11,
640,
25275,
415,
357,
35,
4177,
40,
8,
198,
2,
532,
28810,
11,
7885,
11,
640,
25275,
415,
357,
35,
53,
25621,
8,
198,
2,
532,
28810,
11,
6937,
11,
640,
15304,
357,
35,
30428,
8,
198,
2,
532,
28810,
11,
7885,
11,
640,
15304,
357,
35,
53,
6849,
8,
198,
198,
2,
8444,
8374,
11,
287,
428,
4732,
11,
1724,
326,
2214,
318,
5447,
287,
966,
12,
3083,
287,
198,
2,
720,
16,
3467,
335,
1747,
299,
3,
7064,
11,
422,
810,
340,
318,
788,
39555,
515,
284,
2187,
7386,
198,
2,
1262,
617,
39555,
341,
745,
6213,
296,
8231,
11,
1312,
13,
68,
13,
198,
2,
7559,
63,
11018,
198,
2,
334,
38016,
29992,
11,
256,
8,
796,
3467,
16345,
23330,
72,
92,
334,
62,
72,
58,
83,
60,
399,
23330,
72,
92,
38016,
29992,
11,
83,
828,
198,
2,
7559,
63,
11018,
198,
2,
810,
198,
2,
220,
220,
220,
220,
720,
45,
23330,
72,
92,
38016,
29992,
11,
256,
8,
3,
198,
2,
318,
262,
4308,
2163,
393,
39555,
341,
7514,
76,
498,
11188,
284,
720,
72,
3,
36796,
400,
92,
198,
2,
28810,
1988,
290,
220,
198,
2,
220,
220,
220,
220,
720,
84,
23330,
72,
92,
3,
198,
2,
318,
262,
28810,
1988,
13,
198,
198,
2,
3244,
356,
423,
12948,
7032,
11,
543,
389,
5447,
287,
2187,
7386,
11,
393,
379,
1551,
198,
2,
407,
966,
12,
3083,
13,
2750,
1708,
262,
1541,
973,
37640,
602,
11,
356,
423,
1440,
517,
198,
2,
7032,
25,
198,
198,
2,
532,
12948,
11,
6937,
11,
640,
25275,
415,
357,
4093,
25621,
8,
198,
2,
532,
12948,
11,
7885,
11,
640,
25275,
415,
357,
33538,
25621,
8,
198,
2,
532,
12948,
11,
6937,
11,
640,
15304,
357,
35,
30428,
8,
198,
2,
532,
12948,
11,
7885,
11,
640,
15304,
357,
33538,
6849,
8,
198,
198,
2,
45012,
11,
757,
287,
428,
4732,
11,
857,
407,
1612,
326,
2214,
468,
284,
307,
5447,
198,
2,
8347,
13,
632,
338,
1576,
326,
340,
338,
5447,
287,
2163,
286,
21739,
290,
14,
273,
21964,
198,
2,
22715,
11,
1312,
13,
68,
13,
356,
423,
720,
84,
3467,
4853,
452,
334,
38016,
29992,
11,
256,
8,
47113,
1231,
257,
617,
599,
274,
811,
4308,
198,
2,
2622,
284,
39555,
378,
422,
28810,
3815,
13,
220,
198,
198,
2,
7663,
2346,
460,
307,
287,
7989,
1997,
13,
2102,
11,
3221,
2035,
16578,
283,
11,
198,
2,
15879,
393,
11192,
273,
357,
6759,
8609,
737,
3862,
857,
407,
284,
423,
307,
1103,
11,
340,
460,
307,
329,
1672,
198,
2,
9848,
286,
617,
24012,
4572,
393,
772,
3716,
1988,
13,
220,
198,
198,
2,
3574,
777,
3599,
2173,
11,
356,
7048,
326,
262,
4750,
2214,
1080,
460,
198,
2,
6901,
477,
40758,
7445,
13,
198,
198,
2,
22492,
30481,
649,
7032,
198,
198,
2,
1114,
28810,
7032,
326,
389,
15874,
287,
21739,
4571,
11,
1988,
329,
1123,
198,
2,
28810,
966,
318,
5447,
1262,
24563,
29291,
13,
383,
1502,
286,
2173,
318,
31821,
198,
2,
9672,
284,
307,
976,
621,
10139,
16216,
287,
317,
4339,
48,
2937,
13,
1320,
318,
11,
717,
5228,
13760,
198,
2,
287,
3098,
12,
15750,
3083,
4571,
290,
706,
326,
3504,
13760,
13,
198,
198,
2,
1114,
1672,
11,
4600,
7,
16,
11,
362,
11,
513,
11,
604,
8,
63,
318,
257,
16578,
283,
2214,
1719,
4129,
286,
604,
290,
198,
2,
4600,
26933,
16,
11,
17,
38430,
17,
11,
18,
38430,
18,
11,
19,
38430,
19,
11,
20,
12962,
63,
318,
257,
15879,
2214,
1719,
4129,
286,
604,
13,
198,
198,
2,
1114,
7032,
326,
389,
15874,
287,
21964,
4571,
11,
4600,
2435,
5218,
1988,
63,
15582,
318,
198,
2,
973,
13,
383,
717,
2378,
287,
5166,
318,
640,
357,
273,
2092,
8,
290,
1218,
2378,
318,
1988,
220,
198,
2,
8686,
284,
326,
640,
13,
1114,
1672,
11,
4600,
15,
13,
15,
5218,
352,
13,
15,
63,
318,
257,
640,
12,
21186,
16578,
283,
198,
2,
2214,
1719,
1988,
352,
13,
15,
379,
640,
657,
13,
15,
13,
198,
198,
2,
22492,
360,
291,
8374,
11,
6937,
11,
640,
25275,
415,
2214,
357,
35,
4177,
40,
8,
198,
198,
2,
383,
749,
2829,
2214,
318,
257,
2214,
326,
318,
6937,
287,
1111,
640,
290,
21739,
198,
2,
4571,
13,
8444,
8374,
11,
6937,
11,
640,
25275,
415,
2214,
13,
1114,
1672,
11,
1862,
82,
198,
2,
953,
23515,
714,
307,
428,
1611,
286,
2214,
13,
198,
198,
64,
796,
360,
4177,
40,
7,
16,
8,
198,
198,
2,
8798,
278,
1366,
318,
1760,
1262,
4600,
3849,
16104,
378,
44646,
554,
376,
3620,
12416,
11,
356,
1949,
284,
7808,
262,
198,
2,
4036,
2099,
286,
262,
2214,
11,
523,
329,
1672,
39555,
803,
6937,
2214,
2499,
11,
198,
2,
475,
262,
1255,
318,
2407,
5576,
929,
22610,
13,
198,
198,
31,
9288,
39555,
378,
7,
64,
11,
657,
13,
15,
8,
6624,
352,
198,
198,
2,
7663,
1988,
1988,
460,
307,
6153,
351,
4600,
19119,
0,
63,
2163,
25,
198,
198,
19119,
0,
7,
64,
11,
362,
8,
198,
31,
9288,
257,
6624,
362,
198,
198,
2,
20217,
2214,
286,
1781,
1595,
470,
423,
284,
307,
16578,
283,
2214,
13,
632,
460,
307,
304,
13,
70,
13,
198,
2,
15879,
2214,
13,
314,
779,
994,
2353,
378,
40280,
669,
13,
20362,
780,
286,
663,
6275,
198,
2,
2854,
290,
584,
3033,
11,
475,
3487,
4600,
38469,
63,
561,
670,
655,
3734,
198,
2,
635,
25,
198,
198,
3500,
40280,
669,
198,
198,
65,
796,
360,
4177,
40,
7,
53,
721,
7,
16,
11,
362,
4008,
198,
198,
2,
4225,
16104,
341,
11,
757,
11,
5860,
655,
262,
2656,
1366,
25,
198,
198,
31,
9288,
39555,
378,
7,
65,
11,
657,
13,
15,
8,
6624,
685,
16,
11,
362,
60,
198,
198,
2,
3205,
38734,
2214,
318,
1760,
1262,
4600,
19119,
0,
63,
12,
8818,
25,
198,
198,
19119,
0,
7,
65,
11,
38692,
7,
17,
11,
513,
4008,
198,
31,
9288,
39555,
378,
7,
65,
11,
657,
13,
15,
8,
6624,
685,
17,
11,
513,
60,
198,
198,
2,
20217,
11192,
273,
2214,
25,
198,
198,
66,
796,
360,
4177,
40,
7,
51,
22854,
90,
17,
11,
17,
92,
19510,
16,
13,
15,
11,
362,
13,
15,
11,
513,
13,
15,
11,
604,
13,
15,
22305,
198,
198,
2,
6060,
460,
307,
17535,
635,
1262,
4600,
1136,
9630,
44646,
4418,
1243,
588,
4600,
13664,
63,
290,
198,
2,
4600,
7857,
63,
389,
5447,
13,
198,
198,
31,
9288,
39555,
378,
7,
66,
11,
657,
13,
15,
8,
6624,
685,
16,
513,
26,
362,
604,
60,
198,
31,
9288,
269,
58,
16,
60,
6624,
685,
16,
513,
26,
362,
604,
60,
198,
31,
9288,
4129,
7,
66,
8,
6624,
604,
198,
31,
9288,
2546,
7,
66,
8,
6624,
357,
17,
11,
362,
8,
198,
198,
2,
1114,
783,
2279,
1244,
804,
588,
3131,
13357,
11,
475,
1568,
319,
356,
766,
703,
198,
2,
284,
12082,
2214,
351,
617,
4308,
5499,
287,
1502,
284,
39555,
378,
287,
5002,
198,
2,
7386,
13,
6023,
3621,
3895,
318,
326,
356,
460,
39555,
378,
7032,
287,
640,
13,
554,
428,
198,
2,
1948,
1339,
286,
640,
25275,
415,
7032,
340,
286,
1781,
1595,
470,
1577,
1997,
198,
2,
3131,
13,
198,
198,
2,
22492,
360,
291,
8374,
11,
7885,
11,
640,
25275,
415,
7032,
357,
35,
53,
25621,
8,
198,
198,
31,
9288,
2617,
366,
35,
53,
25621,
2214,
1,
2221,
628,
220,
220,
220,
1303,
16578,
283,
2214,
198,
220,
220,
220,
257,
796,
29854,
25621,
19510,
16,
11,
362,
4008,
198,
220,
220,
220,
2488,
9288,
257,
58,
16,
60,
6624,
352,
198,
220,
220,
220,
2488,
9288,
257,
58,
17,
60,
6624,
362,
198,
220,
220,
220,
2488,
9288,
39555,
378,
7,
64,
11,
657,
13,
15,
8,
6624,
357,
16,
11,
362,
8,
198,
220,
220,
220,
4296,
0,
7,
64,
11,
357,
17,
11,
513,
4008,
198,
220,
220,
220,
2488,
9288,
257,
6624,
357,
17,
11,
513,
8,
198,
220,
220,
220,
2488,
9288,
357,
17,
11,
513,
8,
6624,
257,
628,
220,
220,
220,
1303,
15879,
2214,
198,
220,
220,
220,
275,
796,
29854,
25621,
19510,
58,
16,
11,
362,
4357,
685,
17,
11,
513,
60,
4008,
198,
220,
220,
220,
2488,
9288,
275,
58,
16,
60,
6624,
685,
16,
11,
362,
60,
198,
220,
220,
220,
2488,
9288,
275,
58,
17,
60,
6624,
685,
17,
11,
513,
60,
198,
220,
220,
220,
2488,
9288,
39555,
378,
7,
65,
11,
657,
13,
15,
8,
6624,
29565,
16,
11,
362,
4357,
685,
17,
11,
513,
12962,
198,
220,
220,
220,
4296,
0,
7,
65,
11,
29565,
17,
11,
513,
4357,
685,
19,
11,
642,
60,
4008,
198,
220,
220,
220,
2488,
9288,
275,
6624,
29565,
17,
11,
513,
4357,
685,
19,
11,
642,
12962,
628,
220,
220,
220,
1303,
11192,
273,
2214,
198,
220,
220,
220,
269,
796,
29854,
25621,
19510,
58,
16,
362,
26,
513,
604,
4357,
685,
17,
513,
26,
604,
642,
60,
4008,
198,
220,
220,
220,
2488,
9288,
269,
58,
16,
60,
6624,
685,
16,
362,
26,
513,
604,
60,
198,
220,
220,
220,
2488,
9288,
269,
58,
17,
60,
6624,
685,
17,
513,
26,
604,
642,
60,
198,
220,
220,
220,
2488,
9288,
39555,
378,
7,
66,
11,
657,
13,
15,
8,
6624,
29565,
16,
362,
26,
513,
604,
4357,
685,
17,
513,
26,
604,
642,
12962,
198,
220,
220,
220,
4296,
0,
7,
66,
11,
29565,
17,
513,
26,
604,
642,
4357,
685,
20,
718,
26,
767,
807,
60,
4008,
198,
220,
220,
220,
2488,
9288,
269,
6624,
29565,
17,
513,
26,
604,
642,
4357,
685,
20,
718,
26,
767,
807,
12962,
628,
220,
220,
220,
288,
796,
29854,
25621,
7,
17,
11,
513,
8,
198,
220,
220,
220,
2488,
9288,
257,
6624,
288,
198,
437,
198,
198,
31,
9288,
2617,
366,
35,
30428,
2214,
1,
2221,
628,
220,
220,
220,
1303,
16578,
283,
2214,
198,
220,
220,
220,
257,
796,
360,
30428,
7,
15,
13,
15,
5218,
657,
13,
15,
11,
352,
13,
15,
5218,
352,
13,
15,
8,
198,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
3849,
16104,
378,
7,
64,
11,
532,
16,
13,
15,
828,
657,
13,
15,
8,
198,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
3849,
16104,
378,
7,
64,
11,
657,
13,
15,
828,
657,
13,
15,
8,
198,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
3849,
16104,
378,
7,
64,
11,
657,
13,
20,
828,
657,
13,
20,
8,
198,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
3849,
16104,
378,
7,
64,
11,
352,
13,
15,
828,
352,
13,
15,
8,
198,
220,
220,
220,
4296,
0,
7,
64,
11,
352,
13,
15,
5218,
362,
13,
15,
8,
198,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
3849,
16104,
378,
7,
64,
11,
657,
13,
20,
828,
352,
13,
15,
8,
198,
220,
220,
220,
4296,
0,
7,
64,
11,
362,
13,
15,
5218,
352,
13,
15,
8,
198,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
3849,
16104,
378,
7,
64,
11,
352,
13,
20,
828,
352,
13,
20,
8,
628,
220,
220,
220,
1303,
15879,
2214,
198,
220,
220,
220,
275,
796,
360,
30428,
7,
15,
13,
15,
5218,
685,
16,
13,
15,
11,
362,
13,
15,
4357,
352,
13,
15,
5218,
685,
17,
13,
15,
11,
513,
13,
15,
12962,
198,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
3849,
16104,
378,
7,
65,
11,
657,
13,
20,
828,
685,
16,
13,
20,
11,
362,
13,
20,
12962,
628,
220,
220,
220,
1303,
11192,
273,
2214,
198,
220,
220,
220,
269,
796,
360,
30428,
7,
15,
13,
15,
5218,
685,
16,
13,
15,
362,
13,
15,
26,
513,
13,
15,
604,
13,
15,
4357,
352,
13,
15,
5218,
685,
17,
13,
15,
513,
13,
15,
26,
604,
13,
15,
642,
13,
15,
12962,
198,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
3849,
16104,
378,
7,
66,
11,
657,
13,
20,
828,
685,
16,
13,
20,
362,
13,
20,
26,
513,
13,
20,
604,
13,
20,
12962,
198,
437,
198,
198,
31,
9288,
2617,
366,
35,
53,
6849,
2214,
1,
2221,
198,
220,
220,
220,
1303,
16578,
283,
2214,
198,
220,
220,
220,
257,
796,
29854,
6849,
7,
15,
13,
15,
5218,
357,
15,
13,
15,
11,
352,
13,
15,
828,
352,
13,
15,
5218,
357,
16,
13,
15,
11,
657,
13,
15,
4008,
198,
220,
220,
220,
4296,
0,
7,
64,
11,
362,
13,
15,
5218,
357,
17,
13,
15,
11,
657,
13,
15,
4008,
198,
220,
220,
220,
374,
796,
39555,
378,
7,
64,
11,
657,
13,
20,
8,
198,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
81,
58,
16,
4357,
657,
13,
20,
8,
198,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
81,
58,
17,
4357,
657,
13,
20,
8,
198,
220,
220,
220,
4296,
0,
7,
64,
11,
362,
13,
15,
5218,
357,
19,
13,
15,
11,
657,
13,
15,
4008,
198,
437,
198,
198,
31,
9288,
2617,
366,
33538,
6849,
2214,
1,
2221,
198,
220,
220,
220,
277,
796,
26196,
6849,
19510,
29992,
11,
256,
8,
4613,
2124,
72,
58,
16,
60,
1635,
2124,
72,
58,
17,
60,
1635,
256,
8,
198,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
69,
26933,
16,
13,
15,
11,
362,
13,
15,
4357,
513,
13,
15,
828,
718,
13,
15,
8,
198,
437,
198,
198,
31,
9288,
2617,
366,
35,
14188,
7032,
1,
2221,
198,
220,
220,
220,
1395,
796,
360,
713,
7,
16,
5218,
685,
15,
13,
15,
11,
657,
13,
15,
4357,
8576,
5218,
685,
16,
13,
15,
11,
657,
13,
15,
4357,
1802,
830,
5218,
685,
16,
13,
15,
11,
352,
13,
15,
12962,
198,
220,
220,
220,
402,
796,
29854,
51,
7390,
7,
55,
8,
198,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
38,
58,
16,
4357,
1395,
58,
16,
12962,
198,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
38,
58,
12825,
4357,
1395,
58,
12825,
12962,
198,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
38,
58,
3064,
830,
4357,
1395,
58,
3064,
830,
12962,
198,
220,
220,
220,
575,
796,
360,
713,
7,
16,
5218,
685,
17,
13,
15,
11,
362,
13,
15,
4357,
8576,
5218,
685,
18,
13,
15,
11,
362,
13,
15,
4357,
1802,
830,
5218,
685,
18,
13,
15,
11,
513,
13,
15,
12962,
198,
220,
220,
220,
376,
796,
29854,
6849,
67,
7,
15,
13,
15,
5218,
1395,
11,
352,
13,
15,
5218,
575,
8,
198,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
3849,
16104,
378,
7,
37,
11,
657,
13,
20,
38381,
3064,
830,
4357,
685,
17,
13,
15,
11,
362,
13,
15,
12962,
198,
437,
198,
198,
31,
9288,
2617,
366,
19119,
22155,
2214,
1,
2221,
198,
220,
220,
220,
277,
16,
796,
360,
713,
7,
16,
5218,
352,
13,
15,
11,
362,
5218,
362,
13,
15,
11,
513,
5218,
513,
13,
15,
8,
198,
220,
220,
220,
277,
17,
796,
360,
713,
7,
16,
5218,
362,
13,
15,
11,
362,
5218,
513,
13,
15,
11,
513,
5218,
604,
13,
15,
8,
198,
220,
220,
220,
277,
335,
796,
29854,
6849,
67,
7,
15,
13,
15,
5218,
277,
16,
8,
198,
220,
220,
220,
4296,
0,
7,
69,
335,
11,
352,
13,
15,
5218,
277,
17,
8,
198,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
3849,
16104,
378,
7,
69,
335,
11,
657,
13,
20,
38381,
16,
4357,
352,
13,
20,
8,
198,
220,
220,
220,
4296,
0,
7,
69,
335,
11,
352,
13,
15,
5218,
277,
16,
8,
198,
220,
220,
220,
2488,
9288,
318,
1324,
13907,
7,
3849,
16104,
378,
7,
69,
335,
11,
657,
13,
20,
38381,
16,
4357,
352,
13,
15,
8,
198,
437,
198,
198,
31,
9288,
2617,
366,
1904,
286,
2219,
23772,
2214,
1,
2221,
198,
220,
220,
220,
2488,
9288,
318,
64,
7,
3245,
7,
16,
13,
15,
828,
360,
4177,
40,
8,
198,
220,
220,
220,
2488,
9288,
318,
64,
7,
3245,
7,
16,
13,
15,
5218,
352,
13,
15,
828,
360,
30428,
8,
198,
220,
220,
220,
2488,
9288,
318,
64,
7,
3245,
19510,
16,
13,
15,
11,
362,
13,
15,
36911,
29854,
25621,
8,
198,
220,
220,
220,
2488,
9288,
318,
64,
7,
3245,
7,
16,
11,
362,
828,
29854,
25621,
8,
198,
220,
220,
220,
2488,
9288,
318,
64,
7,
3245,
7,
16,
13,
15,
5218,
357,
16,
13,
15,
11,
362,
13,
15,
36911,
29854,
6849,
8,
198,
220,
220,
220,
2488,
9288,
318,
64,
7,
3245,
19510,
29992,
11,
256,
8,
4613,
2124,
72,
58,
16,
60,
1635,
256,
828,
26196,
6849,
8,
198,
220,
220,
220,
2488,
9288,
318,
64,
7,
3245,
7,
16,
5218,
685,
16,
13,
15,
11,
362,
13,
15,
4357,
838,
5218,
685,
17,
13,
15,
11,
513,
13,
15,
46570,
29854,
51,
7390,
8,
198,
220,
220,
220,
2488,
9288,
318,
64,
7,
3245,
7,
15,
13,
15,
5218,
357,
16,
5218,
352,
13,
15,
11,
838,
5218,
362,
13,
15,
828,
352,
13,
15,
5218,
357,
16,
5218,
362,
13,
15,
11,
838,
5218,
513,
13,
15,
36911,
29854,
6849,
67,
8,
198,
220,
220,
220,
1395,
796,
360,
713,
7,
16,
5218,
685,
15,
13,
15,
11,
657,
13,
15,
4357,
362,
5218,
685,
16,
13,
15,
11,
657,
13,
15,
12962,
198,
220,
220,
220,
1395,
16,
796,
2214,
7,
55,
8,
198,
220,
220,
220,
1395,
17,
796,
2214,
7,
15,
13,
15,
5218,
1395,
8,
198,
220,
220,
220,
2488,
9288,
318,
64,
7,
55,
16,
11,
29854,
51,
7390,
8,
198,
220,
220,
220,
2488,
9288,
318,
64,
7,
55,
17,
11,
29854,
6849,
67,
8,
198,
437,
198,
198,
31,
9288,
2617,
366,
24622,
39555,
341,
1,
2221,
198,
220,
220,
220,
257,
796,
685,
16,
11,
362,
11,
513,
60,
198,
220,
220,
220,
275,
796,
357,
17,
11,
513,
11,
604,
8,
198,
220,
220,
220,
2488,
9288,
39555,
378,
7,
64,
11,
275,
8,
6624,
362,
1343,
718,
1343,
1105,
198,
220,
220,
220,
257,
796,
357,
16,
11,
362,
8,
198,
220,
220,
220,
275,
796,
357,
17,
11,
513,
11,
604,
8,
198,
220,
220,
220,
2488,
9288,
39555,
378,
7,
64,
11,
275,
8,
6624,
362,
1343,
718,
198,
220,
220,
220,
2488,
9288,
62,
400,
8516,
2195,
861,
295,
12331,
39555,
378,
7,
65,
11,
257,
8,
198,
437,
198
] | 2.452063 | 3,223 |
# This file contains a function
# to write input data to a file
"""
write(input::InputStruct, file::AbstractString)
Write input data from an instance of [`InputStruct`](@ref) to a file.
# Usage
```jldoctest; output = false
using Scats
s = Scats.API()
file, _ = mktemp()
s.Input.write(file)
# output
```
"""
function write(input::InputStruct, file::AbstractString)
open(file, "w") do f
# Print
println(f, "Sample size")
println(f, input.N)
println(f, "\nSample step")
println(f, input.Δt)
println(f, "\nSignificance level")
println(f, input.q)
println(f, "\nTime array")
println(f, input.t)
println(f, "\nValues array")
println(f, input.x)
end
end
| [
2,
770,
2393,
4909,
257,
2163,
198,
2,
284,
3551,
5128,
1366,
284,
257,
2393,
198,
198,
37811,
198,
220,
220,
220,
3551,
7,
15414,
3712,
20560,
44909,
11,
2393,
3712,
23839,
10100,
8,
198,
198,
16594,
5128,
1366,
422,
281,
4554,
286,
685,
63,
20560,
44909,
63,
16151,
31,
5420,
8,
284,
257,
2393,
13,
198,
198,
2,
29566,
198,
198,
15506,
63,
73,
335,
38441,
395,
26,
5072,
796,
3991,
198,
3500,
1446,
1381,
198,
82,
796,
1446,
1381,
13,
17614,
3419,
198,
7753,
11,
4808,
796,
33480,
29510,
3419,
198,
82,
13,
20560,
13,
13564,
7,
7753,
8,
198,
198,
2,
5072,
628,
198,
15506,
63,
198,
37811,
198,
8818,
3551,
7,
15414,
3712,
20560,
44909,
11,
2393,
3712,
23839,
10100,
8,
628,
220,
220,
220,
1280,
7,
7753,
11,
366,
86,
4943,
466,
277,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
12578,
198,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
69,
11,
366,
36674,
2546,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
69,
11,
5128,
13,
45,
8,
198,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
69,
11,
37082,
77,
36674,
2239,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
69,
11,
5128,
13,
138,
242,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
69,
11,
37082,
77,
11712,
811,
590,
1241,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
69,
11,
5128,
13,
80,
8,
198,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
69,
11,
37082,
77,
7575,
7177,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
69,
11,
5128,
13,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
69,
11,
37082,
77,
40161,
7177,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
44872,
7,
69,
11,
5128,
13,
87,
8,
198,
220,
220,
220,
886,
198,
198,
437,
198
] | 2.326154 | 325 |
module TreeTools
using FastaIO
using JSON
using Dates
## Includes
include("objects.jl")
include("objectsmethods.jl")
include("mutations.jl")
include("prunegraft.jl")
include("datamethods.jl")
include("reading.jl")
include("writing.jl")
include("misc.jl")
include("lbi.jl")
end
## Todo
# the child field of `TreeNode` should be a set and not an array since ordering is not relevant? Howver it makes accessing more difficult. For now, giving up on this idea since I do not benefit from `Set` specific function implemented in Julia: they ultimately fall back to `===` which will consider equal nodes to be different.
| [
21412,
12200,
33637,
628,
198,
3500,
12549,
64,
9399,
198,
3500,
19449,
198,
3500,
44712,
198,
2235,
29581,
198,
17256,
7203,
48205,
13,
20362,
4943,
198,
17256,
7203,
48205,
24396,
82,
13,
20362,
4943,
198,
17256,
7203,
21973,
602,
13,
20362,
4943,
198,
17256,
7203,
1050,
403,
1533,
1617,
13,
20362,
4943,
198,
17256,
7203,
19608,
321,
316,
2065,
82,
13,
20362,
4943,
198,
17256,
7203,
25782,
13,
20362,
4943,
198,
17256,
7203,
16502,
13,
20362,
4943,
198,
17256,
7203,
44374,
13,
20362,
4943,
198,
17256,
7203,
75,
8482,
13,
20362,
4943,
198,
198,
437,
198,
198,
2235,
309,
24313,
198,
2,
262,
1200,
2214,
286,
4600,
27660,
19667,
63,
815,
307,
257,
900,
290,
407,
281,
7177,
1201,
16216,
318,
407,
5981,
30,
1374,
332,
340,
1838,
22534,
517,
2408,
13,
1114,
783,
11,
3501,
510,
319,
428,
2126,
1201,
314,
466,
407,
4414,
422,
4600,
7248,
63,
2176,
2163,
9177,
287,
22300,
25,
484,
6165,
2121,
736,
284,
4600,
18604,
63,
543,
481,
2074,
4961,
13760,
284,
307,
1180,
13,
220,
628,
198
] | 3.548571 | 175 |
function maxpool2x2relu!(B, A)
@avx for i₁ ∈ axes(B,1), i₂ ∈ axes(B,2), i₃ ∈ axes(B,3), i₄ ∈ axes(B,4)
A₁ = A[2i₁-1,2i₂-1,i₃,i₄]
A₂ = A[2i₁-1,2i₂ ,i₃,i₄]
A₃ = A[2i₁ ,2i₂-1,i₃,i₄]
A₄ = A[2i₁ ,2i₂ ,i₃,i₄]
B[i₁,i₂,i₃,i₄] = max(max(max(A₁, A₂), max(A₃, A₄)), zero(eltype(A)))
end
B
end
function maxpool2x2relureverse!(A, B̄, B)
@avx unroll=(1,1) for i₁ ∈ axes(B,1), i₂ ∈ axes(B,2), i₃ ∈ axes(B,3), i₄ ∈ axes(B,4)
Bₘ = B[i₁,i₂,i₃,i₄]
B̄ᵢ = B̄[i₁,i₂,i₃,i₄]
A[2i₁-1,2i₂-1,i₃,i₄] = (A[2i₁-1,2i₂-1,i₃,i₄] == Bₘ) * B̄ᵢ
A[2i₁-1,2i₂ ,i₃,i₄] = (A[2i₁-1,2i₂ ,i₃,i₄] == Bₘ) * B̄ᵢ
A[2i₁ ,2i₂-1,i₃,i₄] = (A[2i₁ ,2i₂-1,i₃,i₄] == Bₘ) * B̄ᵢ
A[2i₁ ,2i₂ ,i₃,i₄] = (A[2i₁ ,2i₂ ,i₃,i₄] == Bₘ) * B̄ᵢ
end
end
function maxpool2x2relureversev2!(A, B̄)
@avx unroll=(1,1) for i₁ ∈ axes(B̄,1), i₂ ∈ axes(B̄,2), i₃ ∈ axes(B̄,3), i₄ ∈ axes(B̄,4)
A₁ = A[2i₁-1,2i₂-1,i₃,i₄]
A₂ = A[2i₁-1,2i₂ ,i₃,i₄]
A₃ = A[2i₁ ,2i₂-1,i₃,i₄]
A₄ = A[2i₁ ,2i₂ ,i₃,i₄]
Bₘ = max(max(max(A₁, A₂), max(A₃, A₄)), zero(eltype(A)))
B̄ᵢ = B̄[i₁,i₂,i₃,i₄]
A[2i₁-1,2i₂-1,i₃,i₄] = (A₁ == Bₘ) * B̄ᵢ
A[2i₁-1,2i₂ ,i₃,i₄] = (A₂ == Bₘ) * B̄ᵢ
A[2i₁ ,2i₂-1,i₃,i₄] = (A₃ == Bₘ) * B̄ᵢ
A[2i₁ ,2i₂ ,i₃,i₄] = (A₄ == Bₘ) * B̄ᵢ
end
end
@generated function halve12(x::Tuple{Vararg{<:Any,N}}) where {N}
out = Expr(:tuple)
for n in 1:N
r = Expr(:ref, :x, n)
if n ≤ 2
r = Expr(:call, :>>>, r, Expr(:call, Expr(:curly, :Static, 1)))
end
push!(out.args, r)
end
out
end
function default_alloc_maxpool(mp::MaxPool2x2Layer, img::AbstractArray{T}) where {T}
s = halve12(maybestaticsize(img))
_, p = PaddedMatrices.size_permute_tuples(img)
B = allocarray(T, s)
PermutedDimsArray(B, p)
end
function (sp::StatckPointer)(::typeof(default_alloc_maxpool), mp::MaxPool2x2Layer, img::AbstractArray{T}) where {T}
s = halve12(maybestaticsize(img))
_, p = PaddedMatrices.size_permute_tuples(img)
sp, B = PtrArray{T}(sp, s)
sp, PermutedDimsArray(B, p)
end
function alloc_maxpool_pad12(mp::MaxPool2x2Layer, img::AbstractArray{T,4}) where {T}
strunc = halve12(maybestaticsize(img))
s = (vadd(strunc[1], Static{2}()), vadd(strunc[2], Static{2}()), strunc[3], strunc[4])
_, p = PaddedMatrices.size_permute_tuples(img)
B = allocarray(T, s)
PermutedDimsArray(B, p)
end
function (sp::StatckPointer)(::typeof(default_alloc_maxpool), mp::MaxPool2x2Layer, img::AbstractArray{T,4}) where {T}
s = halve12(maybestaticsize(img))
_, p = PaddedMatrices.size_permute_tuples(img)
sp, B = PtrArray{T}(sp, s)
sp, PermutedDimsArray(B, p)
end
struct MaxPool2x2Layer{F} <: AbstractLayer
f::F
end
MaxPool2x2Layer() = MaxPool2x2Layer(default_alloc_maxpool)
parameters(::MaxPool2x2Layer) = nothing
grad(::MaxPool2x2Layer) = nothing
returns(mp::MaxPool2x2Layer) = mp.o
function forward(sp::StackPointer, mp::MaxPool2x2Layer, img)
sp, out = stack_pointer_call(mp.f, sp, img)
maxpool2x2relu!(out, img)
out, pb, out
end
forward!(mp::MaxPool2x2Layer, img) = (maxpool2x2relu!(returns(mp), img), img)
reverse_grad!(::MaxPool2x2Layer) = nothing
function reverse_chain!(mp::MaxPool2x2Layer, img, ōūt̄)
maxpool2x2relureversev2!(img, ōūt̄)
end
# function maxpool2x2relureversev3!(A, B̄)
# for i₁ ∈ axes(B̄,1), i₂ ∈ axes(B̄,2), i₄ ∈ axes(B̄,4)
# @inbounds @simd ivdep for i₃ ∈ axes(B̄,3)
# A₁ = A[2i₁-1,2i₂-1,i₃,i₄]
# A₂ = A[2i₁-1,2i₂ ,i₃,i₄]
# A₃ = A[2i₁ ,2i₂-1,i₃,i₄]
# A₄ = A[2i₁ ,2i₂ ,i₃,i₄]
# Bₘ = max(max(max(A₁, A₂), max(A₃, A₄)), zero(eltype(A)))
# B̄ᵢ = B̄[i₁,i₂,i₃,i₄]
# A[2i₁-1,2i₂-1,i₃,i₄] = (A₁ == Bₘ) * B̄ᵢ
# A[2i₁-1,2i₂ ,i₃,i₄] = (A₂ == Bₘ) * B̄ᵢ
# A[2i₁ ,2i₂-1,i₃,i₄] = (A₃ == Bₘ) * B̄ᵢ
# A[2i₁ ,2i₂ ,i₃,i₄] = (A₄ == Bₘ) * B̄ᵢ
# end
# end
# end
| [
8818,
3509,
7742,
17,
87,
17,
260,
2290,
0,
7,
33,
11,
317,
8,
198,
220,
220,
220,
2488,
615,
87,
329,
1312,
158,
224,
223,
18872,
230,
34197,
7,
33,
11,
16,
828,
1312,
158,
224,
224,
18872,
230,
34197,
7,
33,
11,
17,
828,
1312,
158,
224,
225,
18872,
230,
34197,
7,
33,
11,
18,
828,
1312,
158,
224,
226,
18872,
230,
34197,
7,
33,
11,
19,
8,
198,
220,
220,
220,
220,
220,
220,
220,
317,
158,
224,
223,
796,
317,
58,
17,
72,
158,
224,
223,
12,
16,
11,
17,
72,
158,
224,
224,
12,
16,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
198,
220,
220,
220,
220,
220,
220,
220,
317,
158,
224,
224,
796,
317,
58,
17,
72,
158,
224,
223,
12,
16,
11,
17,
72,
158,
224,
224,
220,
837,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
198,
220,
220,
220,
220,
220,
220,
220,
317,
158,
224,
225,
796,
317,
58,
17,
72,
158,
224,
223,
220,
837,
17,
72,
158,
224,
224,
12,
16,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
198,
220,
220,
220,
220,
220,
220,
220,
317,
158,
224,
226,
796,
317,
58,
17,
72,
158,
224,
223,
220,
837,
17,
72,
158,
224,
224,
220,
837,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
198,
220,
220,
220,
220,
220,
220,
220,
347,
58,
72,
158,
224,
223,
11,
72,
158,
224,
224,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
796,
3509,
7,
9806,
7,
9806,
7,
32,
158,
224,
223,
11,
317,
158,
224,
224,
828,
3509,
7,
32,
158,
224,
225,
11,
317,
158,
224,
226,
36911,
6632,
7,
417,
4906,
7,
32,
22305,
198,
220,
220,
220,
886,
198,
220,
220,
220,
347,
198,
437,
198,
8818,
3509,
7742,
17,
87,
17,
2411,
495,
4399,
0,
7,
32,
11,
347,
136,
226,
11,
347,
8,
198,
220,
220,
220,
2488,
615,
87,
555,
2487,
16193,
16,
11,
16,
8,
329,
1312,
158,
224,
223,
18872,
230,
34197,
7,
33,
11,
16,
828,
1312,
158,
224,
224,
18872,
230,
34197,
7,
33,
11,
17,
828,
1312,
158,
224,
225,
18872,
230,
34197,
7,
33,
11,
18,
828,
1312,
158,
224,
226,
18872,
230,
34197,
7,
33,
11,
19,
8,
198,
220,
220,
220,
220,
220,
220,
220,
347,
158,
224,
246,
796,
347,
58,
72,
158,
224,
223,
11,
72,
158,
224,
224,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
198,
220,
220,
220,
220,
220,
220,
220,
347,
136,
226,
39611,
95,
796,
347,
136,
226,
58,
72,
158,
224,
223,
11,
72,
158,
224,
224,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
198,
220,
220,
220,
220,
220,
220,
220,
317,
58,
17,
72,
158,
224,
223,
12,
16,
11,
17,
72,
158,
224,
224,
12,
16,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
796,
357,
32,
58,
17,
72,
158,
224,
223,
12,
16,
11,
17,
72,
158,
224,
224,
12,
16,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
6624,
347,
158,
224,
246,
8,
1635,
347,
136,
226,
39611,
95,
198,
220,
220,
220,
220,
220,
220,
220,
317,
58,
17,
72,
158,
224,
223,
12,
16,
11,
17,
72,
158,
224,
224,
220,
837,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
796,
357,
32,
58,
17,
72,
158,
224,
223,
12,
16,
11,
17,
72,
158,
224,
224,
220,
837,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
6624,
347,
158,
224,
246,
8,
1635,
347,
136,
226,
39611,
95,
198,
220,
220,
220,
220,
220,
220,
220,
317,
58,
17,
72,
158,
224,
223,
220,
837,
17,
72,
158,
224,
224,
12,
16,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
796,
357,
32,
58,
17,
72,
158,
224,
223,
220,
837,
17,
72,
158,
224,
224,
12,
16,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
6624,
347,
158,
224,
246,
8,
1635,
347,
136,
226,
39611,
95,
198,
220,
220,
220,
220,
220,
220,
220,
317,
58,
17,
72,
158,
224,
223,
220,
837,
17,
72,
158,
224,
224,
220,
837,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
796,
357,
32,
58,
17,
72,
158,
224,
223,
220,
837,
17,
72,
158,
224,
224,
220,
837,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
6624,
347,
158,
224,
246,
8,
1635,
347,
136,
226,
39611,
95,
198,
220,
220,
220,
886,
198,
437,
198,
8818,
3509,
7742,
17,
87,
17,
2411,
495,
4399,
85,
17,
0,
7,
32,
11,
347,
136,
226,
8,
198,
220,
220,
220,
2488,
615,
87,
555,
2487,
16193,
16,
11,
16,
8,
329,
1312,
158,
224,
223,
18872,
230,
34197,
7,
33,
136,
226,
11,
16,
828,
1312,
158,
224,
224,
18872,
230,
34197,
7,
33,
136,
226,
11,
17,
828,
1312,
158,
224,
225,
18872,
230,
34197,
7,
33,
136,
226,
11,
18,
828,
1312,
158,
224,
226,
18872,
230,
34197,
7,
33,
136,
226,
11,
19,
8,
198,
220,
220,
220,
220,
220,
220,
220,
317,
158,
224,
223,
796,
317,
58,
17,
72,
158,
224,
223,
12,
16,
11,
17,
72,
158,
224,
224,
12,
16,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
198,
220,
220,
220,
220,
220,
220,
220,
317,
158,
224,
224,
796,
317,
58,
17,
72,
158,
224,
223,
12,
16,
11,
17,
72,
158,
224,
224,
220,
837,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
198,
220,
220,
220,
220,
220,
220,
220,
317,
158,
224,
225,
796,
317,
58,
17,
72,
158,
224,
223,
220,
837,
17,
72,
158,
224,
224,
12,
16,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
198,
220,
220,
220,
220,
220,
220,
220,
317,
158,
224,
226,
796,
317,
58,
17,
72,
158,
224,
223,
220,
837,
17,
72,
158,
224,
224,
220,
837,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
198,
220,
220,
220,
220,
220,
220,
220,
347,
158,
224,
246,
796,
3509,
7,
9806,
7,
9806,
7,
32,
158,
224,
223,
11,
317,
158,
224,
224,
828,
3509,
7,
32,
158,
224,
225,
11,
317,
158,
224,
226,
36911,
6632,
7,
417,
4906,
7,
32,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
347,
136,
226,
39611,
95,
796,
347,
136,
226,
58,
72,
158,
224,
223,
11,
72,
158,
224,
224,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
198,
220,
220,
220,
220,
220,
220,
220,
317,
58,
17,
72,
158,
224,
223,
12,
16,
11,
17,
72,
158,
224,
224,
12,
16,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
796,
357,
32,
158,
224,
223,
6624,
347,
158,
224,
246,
8,
1635,
347,
136,
226,
39611,
95,
198,
220,
220,
220,
220,
220,
220,
220,
317,
58,
17,
72,
158,
224,
223,
12,
16,
11,
17,
72,
158,
224,
224,
220,
837,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
796,
357,
32,
158,
224,
224,
6624,
347,
158,
224,
246,
8,
1635,
347,
136,
226,
39611,
95,
198,
220,
220,
220,
220,
220,
220,
220,
317,
58,
17,
72,
158,
224,
223,
220,
837,
17,
72,
158,
224,
224,
12,
16,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
796,
357,
32,
158,
224,
225,
6624,
347,
158,
224,
246,
8,
1635,
347,
136,
226,
39611,
95,
198,
220,
220,
220,
220,
220,
220,
220,
317,
58,
17,
72,
158,
224,
223,
220,
837,
17,
72,
158,
224,
224,
220,
837,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
796,
357,
32,
158,
224,
226,
6624,
347,
158,
224,
246,
8,
1635,
347,
136,
226,
39611,
95,
198,
220,
220,
220,
886,
198,
437,
198,
198,
31,
27568,
2163,
10284,
303,
1065,
7,
87,
3712,
51,
29291,
90,
19852,
853,
90,
27,
25,
7149,
11,
45,
11709,
8,
810,
1391,
45,
92,
198,
220,
220,
220,
503,
796,
1475,
1050,
7,
25,
83,
29291,
8,
198,
220,
220,
220,
329,
299,
287,
352,
25,
45,
198,
220,
220,
220,
220,
220,
220,
220,
374,
796,
1475,
1050,
7,
25,
5420,
11,
1058,
87,
11,
299,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
299,
41305,
362,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
374,
796,
1475,
1050,
7,
25,
13345,
11,
1058,
4211,
22330,
374,
11,
1475,
1050,
7,
25,
13345,
11,
1475,
1050,
7,
25,
22019,
306,
11,
1058,
45442,
11,
352,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
4574,
0,
7,
448,
13,
22046,
11,
374,
8,
198,
220,
220,
220,
886,
198,
220,
220,
220,
503,
198,
437,
198,
8818,
4277,
62,
32332,
62,
9806,
7742,
7,
3149,
3712,
11518,
27201,
17,
87,
17,
49925,
11,
33705,
3712,
23839,
19182,
90,
51,
30072,
810,
1391,
51,
92,
198,
220,
220,
220,
264,
796,
10284,
303,
1065,
7,
11261,
13466,
23372,
1096,
7,
9600,
4008,
198,
220,
220,
220,
4808,
11,
279,
796,
350,
29373,
19044,
45977,
13,
7857,
62,
16321,
1133,
62,
28047,
2374,
7,
9600,
8,
198,
220,
220,
220,
347,
796,
36836,
18747,
7,
51,
11,
264,
8,
198,
220,
220,
220,
2448,
76,
7241,
35,
12078,
19182,
7,
33,
11,
279,
8,
198,
437,
198,
8818,
357,
2777,
3712,
17126,
694,
18833,
3849,
5769,
3712,
4906,
1659,
7,
12286,
62,
32332,
62,
9806,
7742,
828,
29034,
3712,
11518,
27201,
17,
87,
17,
49925,
11,
33705,
3712,
23839,
19182,
90,
51,
30072,
810,
1391,
51,
92,
198,
220,
220,
220,
264,
796,
10284,
303,
1065,
7,
11261,
13466,
23372,
1096,
7,
9600,
4008,
198,
220,
220,
220,
4808,
11,
279,
796,
350,
29373,
19044,
45977,
13,
7857,
62,
16321,
1133,
62,
28047,
2374,
7,
9600,
8,
198,
220,
220,
220,
599,
11,
347,
796,
350,
2213,
19182,
90,
51,
92,
7,
2777,
11,
264,
8,
198,
220,
220,
220,
599,
11,
2448,
76,
7241,
35,
12078,
19182,
7,
33,
11,
279,
8,
198,
437,
198,
8818,
36836,
62,
9806,
7742,
62,
15636,
1065,
7,
3149,
3712,
11518,
27201,
17,
87,
17,
49925,
11,
33705,
3712,
23839,
19182,
90,
51,
11,
19,
30072,
810,
1391,
51,
92,
198,
220,
220,
220,
965,
19524,
796,
10284,
303,
1065,
7,
11261,
13466,
23372,
1096,
7,
9600,
4008,
198,
220,
220,
220,
264,
796,
357,
85,
2860,
7,
2536,
19524,
58,
16,
4357,
36125,
90,
17,
92,
3419,
828,
410,
2860,
7,
2536,
19524,
58,
17,
4357,
36125,
90,
17,
92,
3419,
828,
965,
19524,
58,
18,
4357,
965,
19524,
58,
19,
12962,
198,
220,
220,
220,
4808,
11,
279,
796,
350,
29373,
19044,
45977,
13,
7857,
62,
16321,
1133,
62,
28047,
2374,
7,
9600,
8,
198,
220,
220,
220,
347,
796,
36836,
18747,
7,
51,
11,
264,
8,
198,
220,
220,
220,
2448,
76,
7241,
35,
12078,
19182,
7,
33,
11,
279,
8,
198,
437,
198,
8818,
357,
2777,
3712,
17126,
694,
18833,
3849,
5769,
3712,
4906,
1659,
7,
12286,
62,
32332,
62,
9806,
7742,
828,
29034,
3712,
11518,
27201,
17,
87,
17,
49925,
11,
33705,
3712,
23839,
19182,
90,
51,
11,
19,
30072,
810,
1391,
51,
92,
198,
220,
220,
220,
264,
796,
10284,
303,
1065,
7,
11261,
13466,
23372,
1096,
7,
9600,
4008,
198,
220,
220,
220,
4808,
11,
279,
796,
350,
29373,
19044,
45977,
13,
7857,
62,
16321,
1133,
62,
28047,
2374,
7,
9600,
8,
198,
220,
220,
220,
599,
11,
347,
796,
350,
2213,
19182,
90,
51,
92,
7,
2777,
11,
264,
8,
198,
220,
220,
220,
599,
11,
2448,
76,
7241,
35,
12078,
19182,
7,
33,
11,
279,
8,
198,
437,
198,
198,
7249,
5436,
27201,
17,
87,
17,
49925,
90,
37,
92,
1279,
25,
27741,
49925,
198,
220,
220,
220,
277,
3712,
37,
198,
437,
198,
11518,
27201,
17,
87,
17,
49925,
3419,
796,
5436,
27201,
17,
87,
17,
49925,
7,
12286,
62,
32332,
62,
9806,
7742,
8,
198,
198,
17143,
7307,
7,
3712,
11518,
27201,
17,
87,
17,
49925,
8,
796,
2147,
198,
9744,
7,
3712,
11518,
27201,
17,
87,
17,
49925,
8,
796,
2147,
198,
7783,
82,
7,
3149,
3712,
11518,
27201,
17,
87,
17,
49925,
8,
796,
29034,
13,
78,
628,
198,
198,
8818,
2651,
7,
2777,
3712,
25896,
18833,
3849,
11,
29034,
3712,
11518,
27201,
17,
87,
17,
49925,
11,
33705,
8,
628,
220,
220,
220,
599,
11,
503,
796,
8931,
62,
29536,
62,
13345,
7,
3149,
13,
69,
11,
599,
11,
33705,
8,
628,
220,
220,
220,
3509,
7742,
17,
87,
17,
260,
2290,
0,
7,
448,
11,
33705,
8,
198,
220,
220,
220,
503,
11,
279,
65,
11,
503,
198,
437,
198,
11813,
0,
7,
3149,
3712,
11518,
27201,
17,
87,
17,
49925,
11,
33705,
8,
796,
357,
9806,
7742,
17,
87,
17,
260,
2290,
0,
7,
7783,
82,
7,
3149,
828,
33705,
828,
33705,
8,
198,
50188,
62,
9744,
0,
7,
3712,
11518,
27201,
17,
87,
17,
49925,
8,
796,
2147,
198,
8818,
9575,
62,
7983,
0,
7,
3149,
3712,
11518,
27201,
17,
87,
17,
49925,
11,
33705,
11,
267,
136,
226,
84,
136,
226,
83,
136,
226,
8,
198,
220,
220,
220,
3509,
7742,
17,
87,
17,
2411,
495,
4399,
85,
17,
0,
7,
9600,
11,
267,
136,
226,
84,
136,
226,
83,
136,
226,
8,
198,
437,
198,
198,
2,
2163,
3509,
7742,
17,
87,
17,
2411,
495,
4399,
85,
18,
0,
7,
32,
11,
347,
136,
226,
8,
198,
2,
220,
220,
220,
220,
329,
1312,
158,
224,
223,
18872,
230,
34197,
7,
33,
136,
226,
11,
16,
828,
1312,
158,
224,
224,
18872,
230,
34197,
7,
33,
136,
226,
11,
17,
828,
1312,
158,
224,
226,
18872,
230,
34197,
7,
33,
136,
226,
11,
19,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
2488,
259,
65,
3733,
2488,
14323,
67,
21628,
10378,
329,
1312,
158,
224,
225,
18872,
230,
34197,
7,
33,
136,
226,
11,
18,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
158,
224,
223,
796,
317,
58,
17,
72,
158,
224,
223,
12,
16,
11,
17,
72,
158,
224,
224,
12,
16,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
158,
224,
224,
796,
317,
58,
17,
72,
158,
224,
223,
12,
16,
11,
17,
72,
158,
224,
224,
220,
837,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
158,
224,
225,
796,
317,
58,
17,
72,
158,
224,
223,
220,
837,
17,
72,
158,
224,
224,
12,
16,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
158,
224,
226,
796,
317,
58,
17,
72,
158,
224,
223,
220,
837,
17,
72,
158,
224,
224,
220,
837,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
347,
158,
224,
246,
796,
3509,
7,
9806,
7,
9806,
7,
32,
158,
224,
223,
11,
317,
158,
224,
224,
828,
3509,
7,
32,
158,
224,
225,
11,
317,
158,
224,
226,
36911,
6632,
7,
417,
4906,
7,
32,
22305,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
347,
136,
226,
39611,
95,
796,
347,
136,
226,
58,
72,
158,
224,
223,
11,
72,
158,
224,
224,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
58,
17,
72,
158,
224,
223,
12,
16,
11,
17,
72,
158,
224,
224,
12,
16,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
796,
357,
32,
158,
224,
223,
6624,
347,
158,
224,
246,
8,
1635,
347,
136,
226,
39611,
95,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
58,
17,
72,
158,
224,
223,
12,
16,
11,
17,
72,
158,
224,
224,
220,
837,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
796,
357,
32,
158,
224,
224,
6624,
347,
158,
224,
246,
8,
1635,
347,
136,
226,
39611,
95,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
58,
17,
72,
158,
224,
223,
220,
837,
17,
72,
158,
224,
224,
12,
16,
11,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
796,
357,
32,
158,
224,
225,
6624,
347,
158,
224,
246,
8,
1635,
347,
136,
226,
39611,
95,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
58,
17,
72,
158,
224,
223,
220,
837,
17,
72,
158,
224,
224,
220,
837,
72,
158,
224,
225,
11,
72,
158,
224,
226,
60,
796,
357,
32,
158,
224,
226,
6624,
347,
158,
224,
246,
8,
1635,
347,
136,
226,
39611,
95,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
2,
220,
220,
220,
220,
886,
198,
2,
886,
628,
198
] | 1.394836 | 2,905 |
# functions related to negative binomial distribution
# R implementations
using .RFunctions:
nbinompdf,
nbinomlogpdf,
nbinomcdf,
nbinomccdf,
nbinomlogcdf,
nbinomlogccdf,
nbinominvcdf,
nbinominvccdf,
nbinominvlogcdf,
nbinominvlogccdf
| [
2,
5499,
3519,
284,
4633,
9874,
49070,
6082,
198,
198,
2,
371,
25504,
198,
3500,
764,
49,
24629,
2733,
25,
198,
220,
220,
220,
299,
8800,
3361,
7568,
11,
198,
220,
220,
220,
299,
8800,
296,
6404,
12315,
11,
198,
220,
220,
220,
299,
8800,
296,
66,
7568,
11,
198,
220,
220,
220,
299,
8800,
296,
535,
7568,
11,
198,
220,
220,
220,
299,
8800,
296,
6404,
66,
7568,
11,
198,
220,
220,
220,
299,
8800,
296,
6404,
535,
7568,
11,
198,
220,
220,
220,
299,
8800,
6351,
28435,
7568,
11,
198,
220,
220,
220,
299,
8800,
6351,
85,
535,
7568,
11,
198,
220,
220,
220,
299,
8800,
6351,
85,
6404,
66,
7568,
11,
198,
220,
220,
220,
299,
8800,
6351,
85,
6404,
535,
7568,
198
] | 2.174603 | 126 |
if haskey(ENV, "CI")
ENV["PLOTS_TEST"] = "true"
ENV["GKSwstype"] = "100" # gr segfault workaround
end
using Plots
using RobustAndOptimalControl
using LinearAlgebra
using Test
@testset "RobustAndOptimalControl.jl" begin
@testset "extendedstatespace" begin
@info "Testing extendedstatespace"
include("test_extendedstatespace.jl")
end
@testset "utils" begin
@info "Testing utils"
include("test_utils.jl")
end
@testset "descriptor" begin
@info "Testing descriptor"
include("test_descriptor.jl")
end
@testset "uncertainty" begin
@info "Testing uncertainty"
include("test_uncertainty.jl")
end
@testset "diskmargin" begin
@info "Testing diskmargin"
include("test_diskmargin.jl")
end
@testset "weights" begin
@info "Testing weights"
include("test_weights.jl")
end
@testset "hinfpartition" begin
@info "Testing hinfpartition"
include("test_hinfpartition.jl")
end
@testset "H∞ design" begin
@info "Testing hinf_design"
include("test_hinf_design.jl")
end
@testset "H2 design" begin
@info "Testing H2 design"
include("test_h2_design.jl")
end
@testset "LQG" begin
@info "Testing LQG"
include("test_lqg.jl")
end
@testset "Named systems" begin
@info "Testing Named systems"
include("test_named_systems2.jl")
end
@testset "find_lft" begin
@info "Testing find_lft"
include("test_find_lft.jl")
end
@testset "reduction" begin
@info "Testing test_reduction"
include("test_reduction.jl")
end
@testset "augmentation" begin
@info "Testing augmentation"
include("test_augmentation.jl")
end
@testset "glover_mcfarlane" begin
@info "Testing glover_mcfarlane"
include("test_glover_mcfarlane.jl")
end
@testset "hinfgrad" begin
@info "Testing hinfgrad"
include("test_hinfgrad.jl")
end
end
| [
361,
468,
2539,
7,
1677,
53,
11,
366,
25690,
4943,
198,
220,
220,
220,
12964,
53,
14692,
6489,
33472,
62,
51,
6465,
8973,
796,
366,
7942,
1,
198,
220,
220,
220,
12964,
53,
14692,
38,
42,
10462,
301,
2981,
8973,
796,
366,
3064,
1,
1303,
1036,
384,
70,
69,
1721,
46513,
198,
437,
198,
3500,
1345,
1747,
198,
3500,
3851,
436,
1870,
27871,
4402,
15988,
198,
3500,
44800,
2348,
29230,
198,
3500,
6208,
628,
198,
31,
9288,
2617,
366,
14350,
436,
1870,
27871,
4402,
15988,
13,
20362,
1,
2221,
628,
220,
220,
220,
2488,
9288,
2617,
366,
2302,
1631,
27219,
10223,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
44154,
7083,
27219,
10223,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
7203,
9288,
62,
2302,
1631,
27219,
10223,
13,
20362,
4943,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
26791,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
44154,
3384,
4487,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
7203,
9288,
62,
26791,
13,
20362,
4943,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
20147,
1968,
273,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
44154,
43087,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
7203,
9288,
62,
20147,
1968,
273,
13,
20362,
4943,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
19524,
1425,
774,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
44154,
13479,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
7203,
9288,
62,
19524,
1425,
774,
13,
20362,
4943,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
39531,
36153,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
44154,
11898,
36153,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
7203,
9288,
62,
39531,
36153,
13,
20362,
4943,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
43775,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
44154,
19590,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
7203,
9288,
62,
43775,
13,
20362,
4943,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
71,
10745,
3911,
653,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
44154,
289,
10745,
3911,
653,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
7203,
9288,
62,
71,
10745,
3911,
653,
13,
20362,
4943,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
39,
24861,
252,
1486,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
44154,
289,
10745,
62,
26124,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
7203,
9288,
62,
71,
10745,
62,
26124,
13,
20362,
4943,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
39,
17,
1486,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
44154,
367,
17,
1486,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
7203,
9288,
62,
71,
17,
62,
26124,
13,
20362,
4943,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
43,
48,
38,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
44154,
406,
48,
38,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
7203,
9288,
62,
75,
80,
70,
13,
20362,
4943,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
45,
2434,
3341,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
44154,
34441,
3341,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
7203,
9288,
62,
13190,
62,
10057,
82,
17,
13,
20362,
4943,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
19796,
62,
75,
701,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
44154,
1064,
62,
75,
701,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
7203,
9288,
62,
19796,
62,
75,
701,
13,
20362,
4943,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
445,
8110,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
44154,
1332,
62,
445,
8110,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
7203,
9288,
62,
445,
8110,
13,
20362,
4943,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
559,
5154,
341,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
44154,
16339,
14374,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
7203,
9288,
62,
559,
5154,
341,
13,
20362,
4943,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
4743,
2502,
62,
76,
12993,
49344,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
44154,
1278,
2502,
62,
76,
12993,
49344,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
7203,
9288,
62,
4743,
2502,
62,
76,
12993,
49344,
13,
20362,
4943,
198,
220,
220,
220,
886,
628,
220,
220,
220,
2488,
9288,
2617,
366,
71,
10745,
9744,
1,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
10951,
366,
44154,
289,
10745,
9744,
1,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
7203,
9288,
62,
71,
10745,
9744,
13,
20362,
4943,
198,
220,
220,
220,
886,
198,
198,
437,
198
] | 2.234088 | 927 |
################################################################################
# Augmented Gradient Search ARS
################################################################################
using LinearAlgebra
using Statistics
import LinearAlgebra.normalize
import GeometryBasics.update
function train(env::Environment, policy::Policy{T}, normalizer::Normalizer{T}, hp::HyperParameters{T}) where T
envs = [deepcopy(env) for i = 1:Threads.nthreads()]
output_size, input_size = size(policy.θ)
nx = input_size
nu = output_size
nθ = output_size * input_size
# Rollout data
X = [zeros(nx) for k = 1:hp.horizon+1]
A = [zeros(nu) for k = 1:hp.horizon]
fx = [zeros(nx,nx) for k = 1:hp.horizon]
fu = [zeros(nx,nu) for k = 1:hp.horizon]
# Gradient data
∇θ = zeros(1,nθ)
∂x∂θ = [zeros(nx, nθ) for k = 1:hp.horizon]
for episode = 1:hp.main_loop_size
# Stem
state = reset(env)
X[1] .= copy(state)
done = false
sum_reward = 0
num_plays = 0
for k = 1:hp.horizon
done && break
observe(normalizer, state)
state = normalize(normalizer, state)
action = evaluate(policy, state)
A[k] .= copy(action)
state, reward, done, _ = step(env, action, diff = true)
X[k+1] .= copy(state)
fx[k] .= copy(env.dynamics_jacobian_state)
fu[k] .= copy(env.dynamics_jacobian_input)
reward = max(min(reward, 1), -1)
sum_reward += reward
num_plays += 1
end
∇θ .= 0.0
∂u∂θ = [cat([X[k]' for i = 1:output_size]..., dims = (1,2)) for k = 1:num_plays]
∂r∂x = [FiniteDiff.finite_difference_jacobian(x -> [-cost(env, x, A[k])], X[k]) for k = 1:num_plays]
∂r∂u = [FiniteDiff.finite_difference_jacobian(u -> [-cost(env, X[k], u)], A[k]) for k = 1:num_plays]
for k = 2:num_plays
∂x∂θ[k] .= fx[k-1] * ∂x∂θ[k-1] + fu[k-1] * ∂u∂θ[k-1] #TODO
end
for k = 1:num_plays
if norm(∇θ, Inf) > 8e2
println("grad up to step $k")
break
end
∇θ += ∂r∂x[k] * ∂x∂θ[k] + ∂r∂u[k] * ∂u∂θ[k]
end
∇ = transpose(reshape(∇θ, (input_size, output_size)))
(norm(∇, Inf) < 1e3) && gradient_update(policy, ∇)
# finish, print:
println("episode $episode ∇∞ $(scn(norm(∇, Inf))) r $sum_reward")
end
return nothing
end
function gradient_update(policy::Policy, ∇)
policy.θ += policy.hp.step_size * ∇ ./ norm(∇, Inf)
return nothing
end
| [
29113,
29113,
14468,
198,
2,
2447,
12061,
17701,
1153,
11140,
5923,
50,
198,
29113,
29113,
14468,
198,
3500,
44800,
2348,
29230,
198,
3500,
14370,
198,
198,
11748,
44800,
2348,
29230,
13,
11265,
1096,
198,
11748,
2269,
15748,
15522,
873,
13,
19119,
198,
198,
8818,
4512,
7,
24330,
3712,
31441,
11,
2450,
3712,
36727,
90,
51,
5512,
3487,
7509,
3712,
26447,
7509,
90,
51,
5512,
27673,
3712,
38197,
48944,
90,
51,
30072,
810,
309,
198,
220,
220,
220,
551,
14259,
796,
685,
22089,
30073,
7,
24330,
8,
329,
1312,
796,
352,
25,
16818,
82,
13,
77,
16663,
82,
3419,
60,
628,
220,
220,
220,
5072,
62,
7857,
11,
5128,
62,
7857,
796,
2546,
7,
30586,
13,
138,
116,
8,
198,
220,
220,
220,
299,
87,
796,
5128,
62,
7857,
198,
220,
220,
220,
14364,
796,
5072,
62,
7857,
198,
220,
220,
220,
299,
138,
116,
796,
5072,
62,
7857,
1635,
5128,
62,
7857,
198,
220,
220,
220,
1303,
8299,
448,
1366,
198,
220,
220,
220,
1395,
796,
685,
9107,
418,
7,
77,
87,
8,
329,
479,
796,
352,
25,
24831,
13,
17899,
8637,
10,
16,
60,
198,
220,
220,
220,
317,
796,
685,
9107,
418,
7,
28803,
8,
329,
479,
796,
352,
25,
24831,
13,
17899,
8637,
60,
198,
220,
220,
220,
277,
87,
796,
685,
9107,
418,
7,
77,
87,
11,
77,
87,
8,
329,
479,
796,
352,
25,
24831,
13,
17899,
8637,
60,
198,
220,
220,
220,
14035,
796,
685,
9107,
418,
7,
77,
87,
11,
28803,
8,
329,
479,
796,
352,
25,
24831,
13,
17899,
8637,
60,
198,
220,
220,
220,
1303,
17701,
1153,
1366,
198,
220,
220,
220,
18872,
229,
138,
116,
796,
1976,
27498,
7,
16,
11,
77,
138,
116,
8,
198,
220,
220,
220,
18872,
224,
87,
24861,
224,
138,
116,
796,
685,
9107,
418,
7,
77,
87,
11,
299,
138,
116,
8,
329,
479,
796,
352,
25,
24831,
13,
17899,
8637,
60,
628,
220,
220,
220,
329,
4471,
796,
352,
25,
24831,
13,
12417,
62,
26268,
62,
7857,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
520,
368,
198,
220,
220,
220,
220,
220,
220,
220,
1181,
796,
13259,
7,
24330,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
58,
16,
60,
764,
28,
4866,
7,
5219,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1760,
796,
3991,
198,
220,
220,
220,
220,
220,
220,
220,
2160,
62,
260,
904,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
26024,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
329,
479,
796,
352,
25,
24831,
13,
17899,
8637,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1760,
11405,
2270,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12414,
7,
11265,
7509,
11,
1181,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1181,
796,
3487,
1096,
7,
11265,
7509,
11,
1181,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2223,
796,
13446,
7,
30586,
11,
1181,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
58,
74,
60,
764,
28,
4866,
7,
2673,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1181,
11,
6721,
11,
1760,
11,
4808,
796,
2239,
7,
24330,
11,
2223,
11,
814,
796,
2081,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1395,
58,
74,
10,
16,
60,
764,
28,
4866,
7,
5219,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
87,
58,
74,
60,
764,
28,
4866,
7,
24330,
13,
67,
4989,
873,
62,
30482,
672,
666,
62,
5219,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14035,
58,
74,
60,
764,
28,
4866,
7,
24330,
13,
67,
4989,
873,
62,
30482,
672,
666,
62,
15414,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6721,
796,
3509,
7,
1084,
7,
260,
904,
11,
352,
828,
532,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2160,
62,
260,
904,
15853,
6721,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
26024,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
220,
220,
18872,
229,
138,
116,
764,
28,
657,
13,
15,
198,
220,
220,
220,
220,
220,
220,
220,
18872,
224,
84,
24861,
224,
138,
116,
796,
685,
9246,
26933,
55,
58,
74,
49946,
329,
1312,
796,
352,
25,
22915,
62,
7857,
60,
986,
11,
5391,
82,
796,
357,
16,
11,
17,
4008,
329,
479,
796,
352,
25,
22510,
62,
26024,
60,
198,
220,
220,
220,
220,
220,
220,
220,
18872,
224,
81,
24861,
224,
87,
796,
685,
37,
9504,
28813,
13,
69,
9504,
62,
26069,
1945,
62,
30482,
672,
666,
7,
87,
4613,
25915,
15805,
7,
24330,
11,
2124,
11,
317,
58,
74,
12962,
4357,
1395,
58,
74,
12962,
329,
479,
796,
352,
25,
22510,
62,
26024,
60,
198,
220,
220,
220,
220,
220,
220,
220,
18872,
224,
81,
24861,
224,
84,
796,
685,
37,
9504,
28813,
13,
69,
9504,
62,
26069,
1945,
62,
30482,
672,
666,
7,
84,
4613,
25915,
15805,
7,
24330,
11,
1395,
58,
74,
4357,
334,
8,
4357,
317,
58,
74,
12962,
329,
479,
796,
352,
25,
22510,
62,
26024,
60,
198,
220,
220,
220,
220,
220,
220,
220,
329,
479,
796,
362,
25,
22510,
62,
26024,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18872,
224,
87,
24861,
224,
138,
116,
58,
74,
60,
764,
28,
277,
87,
58,
74,
12,
16,
60,
1635,
18872,
224,
87,
24861,
224,
138,
116,
58,
74,
12,
16,
60,
1343,
14035,
58,
74,
12,
16,
60,
1635,
18872,
224,
84,
24861,
224,
138,
116,
58,
74,
12,
16,
60,
1303,
51,
3727,
46,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
329,
479,
796,
352,
25,
22510,
62,
26024,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2593,
7,
24861,
229,
138,
116,
11,
4806,
8,
1875,
807,
68,
17,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
44872,
7203,
9744,
510,
284,
2239,
720,
74,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18872,
229,
138,
116,
15853,
18872,
224,
81,
24861,
224,
87,
58,
74,
60,
1635,
18872,
224,
87,
24861,
224,
138,
116,
58,
74,
60,
1343,
18872,
224,
81,
24861,
224,
84,
58,
74,
60,
1635,
18872,
224,
84,
24861,
224,
138,
116,
58,
74,
60,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
220,
220,
220,
220,
18872,
229,
796,
1007,
3455,
7,
3447,
1758,
7,
24861,
229,
138,
116,
11,
357,
15414,
62,
7857,
11,
5072,
62,
7857,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
357,
27237,
7,
24861,
229,
11,
4806,
8,
1279,
352,
68,
18,
8,
11405,
31312,
62,
19119,
7,
30586,
11,
18872,
229,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
5461,
11,
3601,
25,
198,
220,
220,
220,
220,
220,
220,
220,
44872,
7203,
38668,
720,
38668,
18872,
229,
24861,
252,
29568,
1416,
77,
7,
27237,
7,
24861,
229,
11,
4806,
22305,
374,
720,
16345,
62,
260,
904,
4943,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
2147,
198,
437,
198,
198,
8818,
31312,
62,
19119,
7,
30586,
3712,
36727,
11,
18872,
229,
8,
198,
220,
220,
220,
2450,
13,
138,
116,
15853,
2450,
13,
24831,
13,
9662,
62,
7857,
1635,
18872,
229,
24457,
2593,
7,
24861,
229,
11,
4806,
8,
198,
220,
220,
220,
1441,
2147,
198,
437,
198
] | 1.96544 | 1,331 |
using GadgetUnits
using GadgetIO
function readSingleCRShockDataFromOutputFile(file::String)
# read file into memory
f = open(file)
lines = readlines(f)
close(f)
# filter only relevant lines. Output of every line starts with "CR DATA".
g = occursin.("CR DATA", lines)
lines = lines[g]
# get number of output lines
N = length(lines)
# init datatype for analyze
cr = CRShockData(N)
for i ∈ 1:N
line_content = split(lines[i])
cr.dt[i] = parse(Float64,line_content[3])
cr.Mach[i] = parse(Float64,line_content[4])
cr.Shock_Speed[i] = parse(Float64,line_content[5])
cr.Shock_Compress[i] = parse(Float64,line_content[6])
cr.Shock_Energy_In[i] = parse(Float64,line_content[7])
cr.Shock_Energy_Real[i] = parse(Float64,line_content[8])
cr.Energy_P[i] = parse(Float64,line_content[9])
cr.Energy_e[i] = parse(Float64,line_content[10])
end
return cr
end
"""
getCRMomentumDistributionFromPartID( snap_file::String, ID::Integer;
pmin::Real=1.0, pmax::Real=1.0e6,
Nbins::Integer=0, mode::Int64=3)
Reads the spectra from a single SPH particle via the particle ID.
"""
function getCRMomentumDistributionFromPartID(snap_file::String, ID::Integer;
pmin::Real=1.0, pmax::Real=1.0e6,
Nbins::Integer=0, mode::Int64=3,
protons::Bool=true, electrons::Bool=true)
h = head_to_obj(snap_file)
info = read_info(snap_file)
if info == 1
if Nbins == 0
error("Can't read spectrum! No info block present!\nSupply number of momentum bins to proceed!")
else
info = Array{InfoLine,1}(undef,7)
info[1] = InfoLine("ID", UInt32, Int32(1), [1, 0, 0, 0, 0, 0])
info[2] = InfoLine("CRpN", Float32, Int32(Nbins), [1, 0, 0, 0, 0, 0])
info[3] = InfoLine("CRpS", Float32, Int32(Nbins), [1, 0, 0, 0, 0, 0])
info[4] = InfoLine("CRpC", Float32, Int32(1), [1, 0, 0, 0, 0, 0])
info[5] = InfoLine("CReN", Float32, Int32(Nbins), [1, 0, 0, 0, 0, 0])
info[6] = InfoLine("CReS", Float32, Int32(Nbins), [1, 0, 0, 0, 0, 0])
info[7] = InfoLine("CReC", Float32, Int32(1), [1, 0, 0, 0, 0, 0])
end
end
# read block positions to speed up IO
block_positions = GadgetIO.get_block_positions(snap_file)
id = read_block(snap_file, "ID",
info=info[getfield.(info, :block_name) .== "ID"][1],
parttype=0, block_position=block_positions["ID"])
# select the position of the requested ID
part = findfirst( id .== UInt32(ID) )[1]
# protons
if protons
CRpN = Float64.(
read_block(snap_file, "CRpN",
info=info[getfield.(info, :block_name) .== "CRpN"][1],
parttype=0, block_position=block_positions["CRpN"])[:,part]
)
CRpS = read_block(snap_file, "CRpS",
info=info[getfield.(info, :block_name) .== "CRpS"][1],
parttype=0, block_position=block_positions["CRpS"])[:,part]
CRpC = read_block(snap_file, "CRpC",
info=info[getfield.(info, :block_name) .== "CRpC"][1],
parttype=0, block_position=block_positions["CRpC"])[part]
Nbins = size(CRpS,1)
end
# electrons
if electrons
CReN = Float64.(
read_block(snap_file, "CReN",
info=info[getfield.(info, :block_name) .== "CReN"][1],
parttype=0, block_position=block_positions["CReN"])[:,part]
)
CReS = read_block(snap_file, "CReS",
info=info[getfield.(info, :block_name) .== "CReS"][1],
parttype=0, block_position=block_positions["CReS"])[:,part]
CReC = read_block(snap_file, "CReC",
info=info[getfield.(info, :block_name) .== "CReC"][1],
parttype=0, block_position=block_positions["CReC"])[part]
Nbins = size(CReS,1)
end
par = CRMomentumDistributionConfig(pmin, pmax, Nbins, mode)
if protons && electrons
return CRMomentumDistribution( CRpN, CRpS, CRpC, par.pmin, par.pmax, par.mc_e ),
CRMomentumDistribution( CReN, CReS, CReC, par.pmin, par.pmax, par.mc_p )
elseif protons
return CRMomentumDistribution( CRpN, CRpS, CRpC, par.pmin, par.pmax, par.mc_e )
elseif electrons
return CRMomentumDistribution( CReN, CReS, CReC, par.pmin, par.pmax, par.mc_p )
end
end
"""
write_crp_cre_to_txt( t::Vector{<:Real}, CRp::CRMomentumDistribution, CRe::CRMomentumDistribution,
output_file::String )
Write CR Proton and Electron spectra for a series of time steps `t` to a txt file.
"""
function write_crp_cre_to_txt(t::Vector{<:Real}, CRp::CRMomentumDistribution, CRe::CRMomentumDistribution,
output_file::String)
data = Matrix{Float64}(undef, length(t), 1+4*length(CRp[1].norm))
for i = 1:length(t)
data[i,:] = [t[i] CRp[i].bound[1:end-1]' CRp[i].norm' CRe[i].bound[1:end-1]' CRe[i].norm' ]
end
writedlm(output_file, data)
end
"""
read_crp_cre_from_txt(filename::String)
Read CR Proton and Electron spectra from a txt file.
"""
function read_crp_cre_from_txt(filename::String)
data = readdlm(filename)
N = size(data,1)
Nbins = Int64((size(data,2) - 1) / 8)
CRp = Array{CRMomentumDistribution,1}(undef,N)
CRe = Array{CRMomentumDistribution,1}(undef,N)
t = data[:,1]
for i = 1:N
CRp[i] = CRMomentumDistribution([data[i,2:2Nbins+1]; data[i,2Nbins+1]], data[i,2Nbins+2:4Nbins+1])
CRe[i] = CRMomentumDistribution([data[i,4Nbins+2:6Nbins+1]; data[i,6Nbins+1]], data[i,6Nbins+2:8Nbins+1])
end
return t, CRp, CRe
end
function write_cr_to_txt(t::Vector{<:Real}, CR::Vector{CRMomentumDistribution}, output_file::String)
data = Matrix{Float64}(undef, length(t), 1+2*length(CR[1].norm))
for i = 1:length(t)
data[i,:] = [t[i] CR[i].bound[1:end-1]' CR[i].norm' ]
end
writedlm(output_file, data)
end
function read_cr_from_txt(fi)
data = readdlm(fi)
N = size(data,1)
Nbins = Int64((size(data,2) - 1) / 4)
CR = Array{CRMomentumDistribution,1}(undef,N)
t = data[:,1]
for i = 1:N
CR[i] = CRMomentumDistribution([data[i,2:2Nbins+1]; data[i,2Nbins+1]], data[i,2Nbins+2:4Nbins+1])
end
return t, CR
end | [
3500,
39266,
3118,
896,
198,
3500,
39266,
9399,
198,
198,
8818,
1100,
28008,
9419,
31646,
6601,
4863,
26410,
8979,
7,
7753,
3712,
10100,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
1100,
2393,
656,
4088,
198,
220,
220,
220,
220,
220,
220,
220,
277,
796,
1280,
7,
7753,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3951,
796,
1100,
6615,
7,
69,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1969,
7,
69,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
8106,
691,
5981,
3951,
13,
25235,
286,
790,
1627,
4940,
351,
366,
9419,
42865,
1911,
198,
220,
220,
220,
220,
220,
220,
220,
308,
796,
8833,
259,
13,
7203,
9419,
42865,
1600,
3951,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3951,
796,
3951,
58,
70,
60,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
651,
1271,
286,
5072,
3951,
198,
220,
220,
220,
220,
220,
220,
220,
399,
796,
4129,
7,
6615,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
2315,
4818,
265,
2981,
329,
16602,
198,
220,
220,
220,
220,
220,
220,
220,
1067,
796,
8740,
31646,
6601,
7,
45,
8,
628,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
18872,
230,
352,
25,
45,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1627,
62,
11299,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
6626,
7,
6615,
58,
72,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1067,
13,
28664,
58,
72,
60,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
21136,
7,
43879,
2414,
11,
1370,
62,
11299,
58,
18,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1067,
13,
49999,
58,
72,
60,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
21136,
7,
43879,
2414,
11,
1370,
62,
11299,
58,
19,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1067,
13,
31646,
62,
22785,
58,
72,
60,
220,
220,
220,
220,
220,
220,
796,
21136,
7,
43879,
2414,
11,
1370,
62,
11299,
58,
20,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1067,
13,
31646,
62,
7293,
601,
58,
72,
60,
220,
220,
220,
796,
21136,
7,
43879,
2414,
11,
1370,
62,
11299,
58,
21,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1067,
13,
31646,
62,
28925,
62,
818,
58,
72,
60,
220,
220,
796,
21136,
7,
43879,
2414,
11,
1370,
62,
11299,
58,
22,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1067,
13,
31646,
62,
28925,
62,
15633,
58,
72,
60,
796,
21136,
7,
43879,
2414,
11,
1370,
62,
11299,
58,
23,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1067,
13,
28925,
62,
47,
58,
72,
60,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
21136,
7,
43879,
2414,
11,
1370,
62,
11299,
58,
24,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1067,
13,
28925,
62,
68,
58,
72,
60,
220,
220,
220,
220,
220,
220,
220,
220,
220,
796,
21136,
7,
43879,
2414,
11,
1370,
62,
11299,
58,
940,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
886,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
1067,
198,
437,
628,
198,
198,
37811,
198,
220,
220,
220,
651,
9419,
29252,
298,
388,
20344,
3890,
4863,
7841,
2389,
7,
11495,
62,
7753,
3712,
10100,
11,
4522,
3712,
46541,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
1084,
3712,
15633,
28,
16,
13,
15,
11,
9114,
897,
3712,
15633,
28,
16,
13,
15,
68,
21,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
399,
65,
1040,
3712,
46541,
28,
15,
11,
4235,
3712,
5317,
2414,
28,
18,
8,
198,
198,
5569,
82,
262,
5444,
430,
422,
257,
2060,
6226,
39,
18758,
2884,
262,
18758,
4522,
13,
198,
37811,
198,
8818,
651,
9419,
29252,
298,
388,
20344,
3890,
4863,
7841,
2389,
7,
45380,
62,
7753,
3712,
10100,
11,
4522,
3712,
46541,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
1084,
3712,
15633,
28,
16,
13,
15,
11,
9114,
897,
3712,
15633,
28,
16,
13,
15,
68,
21,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
399,
65,
1040,
3712,
46541,
28,
15,
11,
4235,
3712,
5317,
2414,
28,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1237,
684,
3712,
33,
970,
28,
7942,
11,
28722,
3712,
33,
970,
28,
7942,
8,
628,
220,
220,
220,
289,
796,
1182,
62,
1462,
62,
26801,
7,
45380,
62,
7753,
8,
198,
220,
220,
220,
7508,
796,
1100,
62,
10951,
7,
45380,
62,
7753,
8,
628,
220,
220,
220,
611,
7508,
6624,
352,
198,
220,
220,
220,
220,
220,
220,
220,
611,
399,
65,
1040,
6624,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4049,
7203,
6090,
470,
1100,
10958,
0,
1400,
7508,
2512,
1944,
0,
59,
77,
15979,
306,
1271,
286,
12858,
41701,
284,
5120,
2474,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
796,
15690,
90,
12360,
13949,
11,
16,
92,
7,
917,
891,
11,
22,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
58,
16,
60,
796,
14151,
13949,
7203,
2389,
1600,
220,
220,
220,
471,
5317,
2624,
11,
2558,
2624,
7,
16,
828,
220,
220,
220,
220,
685,
16,
11,
657,
11,
657,
11,
657,
11,
657,
11,
657,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
58,
17,
60,
796,
14151,
13949,
7203,
9419,
79,
45,
1600,
48436,
2624,
11,
2558,
2624,
7,
45,
65,
1040,
828,
685,
16,
11,
657,
11,
657,
11,
657,
11,
657,
11,
657,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
58,
18,
60,
796,
14151,
13949,
7203,
9419,
79,
50,
1600,
48436,
2624,
11,
2558,
2624,
7,
45,
65,
1040,
828,
685,
16,
11,
657,
11,
657,
11,
657,
11,
657,
11,
657,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
58,
19,
60,
796,
14151,
13949,
7203,
9419,
79,
34,
1600,
48436,
2624,
11,
2558,
2624,
7,
16,
828,
220,
220,
220,
220,
685,
16,
11,
657,
11,
657,
11,
657,
11,
657,
11,
657,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
58,
20,
60,
796,
14151,
13949,
7203,
34,
3041,
45,
1600,
48436,
2624,
11,
2558,
2624,
7,
45,
65,
1040,
828,
685,
16,
11,
657,
11,
657,
11,
657,
11,
657,
11,
657,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
58,
21,
60,
796,
14151,
13949,
7203,
34,
3041,
50,
1600,
48436,
2624,
11,
2558,
2624,
7,
45,
65,
1040,
828,
685,
16,
11,
657,
11,
657,
11,
657,
11,
657,
11,
657,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
58,
22,
60,
796,
14151,
13949,
7203,
34,
3041,
34,
1600,
48436,
2624,
11,
2558,
2624,
7,
16,
828,
220,
220,
220,
220,
685,
16,
11,
657,
11,
657,
11,
657,
11,
657,
11,
657,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
886,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1303,
1100,
2512,
6116,
284,
2866,
510,
24418,
198,
220,
220,
220,
2512,
62,
1930,
1756,
796,
39266,
9399,
13,
1136,
62,
9967,
62,
1930,
1756,
7,
45380,
62,
7753,
8,
628,
220,
220,
220,
4686,
796,
1100,
62,
9967,
7,
45380,
62,
7753,
11,
366,
2389,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
28,
10951,
58,
1136,
3245,
12195,
10951,
11,
1058,
9967,
62,
3672,
8,
764,
855,
366,
2389,
1,
7131,
16,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
636,
4906,
28,
15,
11,
2512,
62,
9150,
28,
9967,
62,
1930,
1756,
14692,
2389,
8973,
8,
628,
220,
220,
220,
1303,
2922,
262,
2292,
286,
262,
9167,
4522,
198,
220,
220,
220,
636,
796,
1064,
11085,
7,
4686,
764,
855,
471,
5317,
2624,
7,
2389,
8,
1267,
58,
16,
60,
628,
220,
220,
220,
1303,
1237,
684,
198,
220,
220,
220,
611,
1237,
684,
198,
220,
220,
220,
220,
220,
220,
220,
8740,
79,
45,
796,
48436,
2414,
12195,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1100,
62,
9967,
7,
45380,
62,
7753,
11,
366,
9419,
79,
45,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
28,
10951,
58,
1136,
3245,
12195,
10951,
11,
1058,
9967,
62,
3672,
8,
764,
855,
366,
9419,
79,
45,
1,
7131,
16,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
636,
4906,
28,
15,
11,
2512,
62,
9150,
28,
9967,
62,
1930,
1756,
14692,
9419,
79,
45,
8973,
38381,
45299,
3911,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
8740,
79,
50,
796,
1100,
62,
9967,
7,
45380,
62,
7753,
11,
366,
9419,
79,
50,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
28,
10951,
58,
1136,
3245,
12195,
10951,
11,
1058,
9967,
62,
3672,
8,
764,
855,
366,
9419,
79,
50,
1,
7131,
16,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
636,
4906,
28,
15,
11,
2512,
62,
9150,
28,
9967,
62,
1930,
1756,
14692,
9419,
79,
50,
8973,
38381,
45299,
3911,
60,
198,
220,
220,
220,
220,
220,
220,
220,
8740,
79,
34,
796,
1100,
62,
9967,
7,
45380,
62,
7753,
11,
366,
9419,
79,
34,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
28,
10951,
58,
1136,
3245,
12195,
10951,
11,
1058,
9967,
62,
3672,
8,
764,
855,
366,
9419,
79,
34,
1,
7131,
16,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
636,
4906,
28,
15,
11,
2512,
62,
9150,
28,
9967,
62,
1930,
1756,
14692,
9419,
79,
34,
8973,
38381,
3911,
60,
628,
220,
220,
220,
220,
220,
220,
220,
399,
65,
1040,
796,
2546,
7,
9419,
79,
50,
11,
16,
8,
628,
220,
220,
220,
886,
628,
220,
220,
220,
1303,
28722,
198,
220,
220,
220,
611,
28722,
198,
220,
220,
220,
220,
220,
220,
220,
327,
3041,
45,
796,
48436,
2414,
12195,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1100,
62,
9967,
7,
45380,
62,
7753,
11,
366,
34,
3041,
45,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
28,
10951,
58,
1136,
3245,
12195,
10951,
11,
1058,
9967,
62,
3672,
8,
764,
855,
366,
34,
3041,
45,
1,
7131,
16,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
636,
4906,
28,
15,
11,
2512,
62,
9150,
28,
9967,
62,
1930,
1756,
14692,
34,
3041,
45,
8973,
38381,
45299,
3911,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
327,
3041,
50,
796,
1100,
62,
9967,
7,
45380,
62,
7753,
11,
366,
34,
3041,
50,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
28,
10951,
58,
1136,
3245,
12195,
10951,
11,
1058,
9967,
62,
3672,
8,
764,
855,
366,
34,
3041,
50,
1,
7131,
16,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
636,
4906,
28,
15,
11,
2512,
62,
9150,
28,
9967,
62,
1930,
1756,
14692,
34,
3041,
50,
8973,
38381,
45299,
3911,
60,
198,
220,
220,
220,
220,
220,
220,
220,
327,
3041,
34,
796,
1100,
62,
9967,
7,
45380,
62,
7753,
11,
366,
34,
3041,
34,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7508,
28,
10951,
58,
1136,
3245,
12195,
10951,
11,
1058,
9967,
62,
3672,
8,
764,
855,
366,
34,
3041,
34,
1,
7131,
16,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
636,
4906,
28,
15,
11,
2512,
62,
9150,
28,
9967,
62,
1930,
1756,
14692,
34,
3041,
34,
8973,
38381,
3911,
60,
628,
220,
220,
220,
220,
220,
220,
220,
399,
65,
1040,
796,
2546,
7,
34,
3041,
50,
11,
16,
8,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1582,
796,
8740,
29252,
298,
388,
20344,
3890,
16934,
7,
79,
1084,
11,
9114,
897,
11,
399,
65,
1040,
11,
4235,
8,
628,
220,
220,
220,
611,
1237,
684,
11405,
28722,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
8740,
29252,
298,
388,
20344,
3890,
7,
8740,
79,
45,
11,
8740,
79,
50,
11,
8740,
79,
34,
11,
1582,
13,
79,
1084,
11,
1582,
13,
4426,
897,
11,
1582,
13,
23209,
62,
68,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8740,
29252,
298,
388,
20344,
3890,
7,
327,
3041,
45,
11,
327,
3041,
50,
11,
327,
3041,
34,
11,
1582,
13,
79,
1084,
11,
1582,
13,
4426,
897,
11,
1582,
13,
23209,
62,
79,
1267,
198,
220,
220,
220,
2073,
361,
1237,
684,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
8740,
29252,
298,
388,
20344,
3890,
7,
8740,
79,
45,
11,
8740,
79,
50,
11,
8740,
79,
34,
11,
1582,
13,
79,
1084,
11,
1582,
13,
4426,
897,
11,
1582,
13,
23209,
62,
68,
1267,
198,
220,
220,
220,
2073,
361,
28722,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
8740,
29252,
298,
388,
20344,
3890,
7,
327,
3041,
45,
11,
327,
3041,
50,
11,
327,
3041,
34,
11,
1582,
13,
79,
1084,
11,
1582,
13,
4426,
897,
11,
1582,
13,
23209,
62,
79,
1267,
198,
220,
220,
220,
886,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
3551,
62,
6098,
79,
62,
7513,
62,
1462,
62,
14116,
7,
256,
3712,
38469,
90,
27,
25,
15633,
5512,
8740,
79,
3712,
9419,
29252,
298,
388,
20344,
3890,
11,
327,
3041,
3712,
9419,
29252,
298,
388,
20344,
3890,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5072,
62,
7753,
3712,
10100,
1267,
198,
198,
16594,
8740,
1041,
1122,
290,
5903,
1313,
5444,
430,
329,
257,
2168,
286,
640,
4831,
4600,
83,
63,
284,
257,
256,
742,
2393,
13,
198,
37811,
198,
8818,
3551,
62,
6098,
79,
62,
7513,
62,
1462,
62,
14116,
7,
83,
3712,
38469,
90,
27,
25,
15633,
5512,
8740,
79,
3712,
9419,
29252,
298,
388,
20344,
3890,
11,
327,
3041,
3712,
9419,
29252,
298,
388,
20344,
3890,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5072,
62,
7753,
3712,
10100,
8,
628,
220,
220,
220,
1366,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
4129,
7,
83,
828,
352,
10,
19,
9,
13664,
7,
9419,
79,
58,
16,
4083,
27237,
4008,
628,
220,
220,
220,
329,
1312,
796,
352,
25,
13664,
7,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
58,
72,
11,
47715,
796,
685,
83,
58,
72,
60,
8740,
79,
58,
72,
4083,
7784,
58,
16,
25,
437,
12,
16,
49946,
8740,
79,
58,
72,
4083,
27237,
6,
327,
3041,
58,
72,
4083,
7784,
58,
16,
25,
437,
12,
16,
49946,
327,
3041,
58,
72,
4083,
27237,
6,
2361,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1991,
276,
75,
76,
7,
22915,
62,
7753,
11,
1366,
8,
198,
437,
198,
198,
37811,
198,
220,
220,
220,
1100,
62,
6098,
79,
62,
7513,
62,
6738,
62,
14116,
7,
34345,
3712,
10100,
8,
198,
198,
5569,
8740,
1041,
1122,
290,
5903,
1313,
5444,
430,
422,
257,
256,
742,
2393,
13,
198,
37811,
198,
8818,
1100,
62,
6098,
79,
62,
7513,
62,
6738,
62,
14116,
7,
34345,
3712,
10100,
8,
628,
220,
220,
220,
1366,
796,
1100,
25404,
76,
7,
34345,
8,
628,
220,
220,
220,
399,
796,
2546,
7,
7890,
11,
16,
8,
198,
220,
220,
220,
399,
65,
1040,
796,
2558,
2414,
19510,
7857,
7,
7890,
11,
17,
8,
532,
352,
8,
1220,
807,
8,
628,
220,
220,
220,
8740,
79,
796,
15690,
90,
9419,
29252,
298,
388,
20344,
3890,
11,
16,
92,
7,
917,
891,
11,
45,
8,
198,
220,
220,
220,
327,
3041,
796,
15690,
90,
9419,
29252,
298,
388,
20344,
3890,
11,
16,
92,
7,
917,
891,
11,
45,
8,
628,
220,
220,
220,
256,
796,
1366,
58,
45299,
16,
60,
628,
220,
220,
220,
329,
1312,
796,
352,
25,
45,
198,
220,
220,
220,
220,
220,
220,
220,
8740,
79,
58,
72,
60,
796,
8740,
29252,
298,
388,
20344,
3890,
26933,
7890,
58,
72,
11,
17,
25,
17,
45,
65,
1040,
10,
16,
11208,
1366,
58,
72,
11,
17,
45,
65,
1040,
10,
16,
60,
4357,
1366,
58,
72,
11,
17,
45,
65,
1040,
10,
17,
25,
19,
45,
65,
1040,
10,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
327,
3041,
58,
72,
60,
796,
8740,
29252,
298,
388,
20344,
3890,
26933,
7890,
58,
72,
11,
19,
45,
65,
1040,
10,
17,
25,
21,
45,
65,
1040,
10,
16,
11208,
1366,
58,
72,
11,
21,
45,
65,
1040,
10,
16,
60,
4357,
1366,
58,
72,
11,
21,
45,
65,
1040,
10,
17,
25,
23,
45,
65,
1040,
10,
16,
12962,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1441,
256,
11,
8740,
79,
11,
327,
3041,
198,
437,
628,
198,
8818,
3551,
62,
6098,
62,
1462,
62,
14116,
7,
83,
3712,
38469,
90,
27,
25,
15633,
5512,
8740,
3712,
38469,
90,
9419,
29252,
298,
388,
20344,
3890,
5512,
5072,
62,
7753,
3712,
10100,
8,
628,
220,
220,
220,
1366,
796,
24936,
90,
43879,
2414,
92,
7,
917,
891,
11,
4129,
7,
83,
828,
352,
10,
17,
9,
13664,
7,
9419,
58,
16,
4083,
27237,
4008,
628,
220,
220,
220,
329,
1312,
796,
352,
25,
13664,
7,
83,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
58,
72,
11,
47715,
796,
685,
83,
58,
72,
60,
8740,
58,
72,
4083,
7784,
58,
16,
25,
437,
12,
16,
49946,
8740,
58,
72,
4083,
27237,
6,
2361,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1991,
276,
75,
76,
7,
22915,
62,
7753,
11,
1366,
8,
198,
437,
198,
198,
8818,
1100,
62,
6098,
62,
6738,
62,
14116,
7,
12463,
8,
628,
220,
220,
220,
1366,
796,
1100,
25404,
76,
7,
12463,
8,
628,
220,
220,
220,
399,
796,
2546,
7,
7890,
11,
16,
8,
198,
220,
220,
220,
399,
65,
1040,
796,
2558,
2414,
19510,
7857,
7,
7890,
11,
17,
8,
532,
352,
8,
1220,
604,
8,
628,
220,
220,
220,
8740,
796,
15690,
90,
9419,
29252,
298,
388,
20344,
3890,
11,
16,
92,
7,
917,
891,
11,
45,
8,
628,
220,
220,
220,
256,
796,
1366,
58,
45299,
16,
60,
628,
220,
220,
220,
329,
1312,
796,
352,
25,
45,
198,
220,
220,
220,
220,
220,
220,
220,
8740,
58,
72,
60,
796,
8740,
29252,
298,
388,
20344,
3890,
26933,
7890,
58,
72,
11,
17,
25,
17,
45,
65,
1040,
10,
16,
11208,
1366,
58,
72,
11,
17,
45,
65,
1040,
10,
16,
60,
4357,
1366,
58,
72,
11,
17,
45,
65,
1040,
10,
17,
25,
19,
45,
65,
1040,
10,
16,
12962,
198,
220,
220,
220,
886,
628,
220,
220,
220,
1441,
256,
11,
8740,
198,
437
] | 1.885839 | 3,679 |
import Base.CoreLogging:
AbstractLogger,
LogLevel,
handle_message,
min_enabled_level,
shouldlog,
global_logger
struct BaseLogger <: AbstractLogger
min_level::LogLevel
end
min_enabled_level(logger::BaseLogger) = logger.min_level
shouldlog(logger::BaseLogger, args...) = true
function handle_message(::BaseLogger, cl_level, msg, mod, group, id, filepath, line; kwargs...)
logger = getlogger(mod)
level = lowercase(string(cl_level))
log(logger, logger.record(logger.name, level, getlevels(logger)[level], msg))
end
function substitute!(level::LogLevel=min_enabled_level(global_logger()))
global_logger(BaseLogger(level))
notice(getlogger(@__MODULE__), "Substituting global logging with Memento")
end
| [
11748,
7308,
13,
14055,
11187,
2667,
25,
198,
220,
220,
220,
27741,
11187,
1362,
11,
198,
220,
220,
220,
5972,
4971,
11,
198,
220,
220,
220,
5412,
62,
20500,
11,
198,
220,
220,
220,
949,
62,
25616,
62,
5715,
11,
198,
220,
220,
220,
815,
6404,
11,
198,
220,
220,
220,
3298,
62,
6404,
1362,
198,
198,
7249,
7308,
11187,
1362,
1279,
25,
27741,
11187,
1362,
198,
220,
220,
220,
949,
62,
5715,
3712,
11187,
4971,
198,
437,
198,
198,
1084,
62,
25616,
62,
5715,
7,
6404,
1362,
3712,
14881,
11187,
1362,
8,
796,
49706,
13,
1084,
62,
5715,
198,
21754,
6404,
7,
6404,
1362,
3712,
14881,
11187,
1362,
11,
26498,
23029,
796,
2081,
198,
198,
8818,
5412,
62,
20500,
7,
3712,
14881,
11187,
1362,
11,
537,
62,
5715,
11,
31456,
11,
953,
11,
1448,
11,
4686,
11,
2393,
6978,
11,
1627,
26,
479,
86,
22046,
23029,
198,
220,
220,
220,
49706,
796,
651,
6404,
1362,
7,
4666,
8,
198,
220,
220,
220,
1241,
796,
2793,
7442,
7,
8841,
7,
565,
62,
5715,
4008,
198,
220,
220,
220,
2604,
7,
6404,
1362,
11,
49706,
13,
22105,
7,
6404,
1362,
13,
3672,
11,
1241,
11,
651,
46170,
7,
6404,
1362,
38381,
5715,
4357,
31456,
4008,
198,
437,
198,
198,
8818,
15373,
0,
7,
5715,
3712,
11187,
4971,
28,
1084,
62,
25616,
62,
5715,
7,
20541,
62,
6404,
1362,
3419,
4008,
198,
220,
220,
220,
3298,
62,
6404,
1362,
7,
14881,
11187,
1362,
7,
5715,
4008,
198,
220,
220,
220,
4003,
7,
1136,
6404,
1362,
7,
31,
834,
33365,
24212,
834,
828,
366,
7004,
301,
270,
15129,
3298,
18931,
351,
337,
972,
78,
4943,
198,
437,
198
] | 2.723636 | 275 |
using CUDA
using MOCNeutronTransport
using BenchmarkTools
using Test
# Number of points to use in vectors
N = 2^20
println("Using Point arrays of length $N")
# Check num threads and give warning
nthreads = Threads.nthreads()
if nthreads === 1
@warn "Only using single-thread for cpu. Try restarting julia with 'julia --threads n'"
else
println("Using $nthreads threads for CPU multi-threading")
end
# Single threads CPU add
function sequential_add!(x, y, z)
for i in eachindex(x, y)
@inbounds z[i] = x[i] + y[i]
end
return nothing
end
# Multithreaded CPU add
function parallel_add!(x, y, z)
Threads.@threads for i in eachindex(x, y)
@inbounds z[i] = y[i] + x[i]
end
return nothing
end
# Single threaded GPU add
function gpu_1_thread_add!(x, y, z)
for i = 1:length(x)
@inbounds z[i] = x[i] + y[i]
end
return nothing
end
function bench_gpu_1_thread_add!(x, y, z)
CUDA.@sync begin
@cuda gpu_1_thread_add!(x, y, z)
end
end
# Single block GPU add
function gpu_1_block_add!(x, y, z)
index = threadIdx().x # this example only requires linear indexing, so just use `x`
stride = blockDim().x
for i = index:stride:length(x)
@inbounds z[i] = x[i] + y[i]
end
return nothing
end
function bench_gpu_1_block_add!(x, y, z)
CUDA.@sync begin
@cuda threads=512 gpu_1_block_add!(x, y, z)
end
end
# Multiple blocks GPU add
function gpu_multiblock_add!(x, y, z)
index = (blockIdx().x - 1) * blockDim().x + threadIdx().x
stride = gridDim().x * blockDim().x
for i = index:stride:length(y)
@inbounds z[index] = x[index] + y[index]
end
return nothing
end
function bench_gpu_multiblock_add!(x, y, z)
numblocks = ceil(Int, length(x)/512)
CUDA.@sync begin
@cuda threads=512 blocks=numblocks gpu_multiblock_add!(x, y, z)
end
end
# Use the occupancy API to determine threads and blocks to saturate the GPU
function bench_gpu_multiblock_autooccupancy!(x, y, z)
kernel = @cuda launch=false gpu_multiblock_add!(x, y, z)
config = launch_configuration(kernel.fun)
threads = min(length(y), config.threads)
blocks = cld(length(y), threads)
CUDA.@sync begin
kernel(x, y, z; threads, blocks)
end
end
cpu_time = 0.0
for T = [Float64, Float32]
println("Using Point of type $T")
x = fill(Point_2D{T}(1, 1), N)
y = fill(Point_2D{T}(2, 2), N)
z = fill(Point_2D{T}(0, 0), N)
time = @belapsed sequential_add!($x, $y, $z)
μs = 1e6*time
if T == Float64
global cpu_time = μs
end
speedup = cpu_time/μs
println(" CPU: single-thread = $μs μs")
println(" Speed up compared to single-thread CPU & Float64 Points = $speedup")
@test all(z .== Point_2D{T}(3, 3))
fill!(z, Point_2D{T}(0, 0))
time = @belapsed parallel_add!($x, $y, $z)
μs = 1e6*time
speedup = cpu_time/μs
println(" CPU: $nthreads threads = $μs μs.")
println(" Speed up compared to single-thread CPU & Float64 Points = $speedup")
@test all(z .== Point_2D{T}(3, 3))
x_d = CUDA.fill(Point_2D{T}(1, 1), N)
y_d = CUDA.fill(Point_2D{T}(2, 2), N)
z_d = CUDA.fill(Point_2D{T}(0, 0), N)
time = @belapsed bench_gpu_1_thread_add!($x_d, $y_d, $z_d)
μs = 1e6*time
speedup = cpu_time/μs
println(" GPU: single-thread/block, 1 blocks = $μs μs.")
println(" Speed up compared to single-thread CPU & Float64 Points = $speedup")
@test all(Array(z_d) .== Point_2D{T}(3, 3))
fill!(z_d, Point_2D{T}(0, 0))
time = @belapsed bench_gpu_1_block_add!($x_d, $y_d, $z_d)
μs = 1e6*time
speedup = cpu_time/μs
println(" GPU: 512 threads/block, 1 blocks = $μs μs.")
println(" Speed up compared to single-thread CPU & Float64 Points = $speedup")
@test all(Array(z_d) .== Point_2D{T}(3, 3))
fill!(z_d, Point_2D{T}(0, 0))
time = @belapsed bench_gpu_multiblock_add!($x_d, $y_d, $z_d)
μs = 1e6*time
speedup = cpu_time/μs
numblocks = ceil(Int64, N/512)
println(" GPU: 512 threads/block, $numblocks blocks = $μs μs.")
println(" Speed up compared to single-thread CPU & Float64 Points = $speedup")
@test all(Array(z_d) .== Point_2D{T}(3, 3))
fill!(z_d, Point_2D{T}(0, 0))
time = @belapsed bench_gpu_multiblock_autooccupancy!($x_d, $y_d, $z_d)
μs = 1e6*time
speedup = cpu_time/μs
kernel = @cuda launch=false gpu_multiblock_add!(x_d, y_d, z_d)
config = launch_configuration(kernel.fun)
threads = min(N, config.threads)
blocks = cld(N, threads)
println(" GPU: $threads threads/block, $blocks blocks = $μs μs.")
println(" Speed up compared to single-thread CPU & Float64 Points = $speedup")
@test all(Array(z_d) .== Point_2D{T}(3, 3))
end
| [
3500,
29369,
5631,
198,
3500,
337,
4503,
8199,
315,
1313,
8291,
634,
198,
3500,
25187,
4102,
33637,
198,
3500,
6208,
198,
198,
2,
7913,
286,
2173,
284,
779,
287,
30104,
198,
45,
796,
362,
61,
1238,
198,
35235,
7203,
12814,
6252,
26515,
286,
4129,
720,
45,
4943,
198,
198,
2,
6822,
997,
14390,
290,
1577,
6509,
198,
77,
16663,
82,
796,
14122,
82,
13,
77,
16663,
82,
3419,
198,
361,
299,
16663,
82,
24844,
352,
198,
220,
220,
220,
2488,
40539,
366,
10049,
1262,
2060,
12,
16663,
329,
42804,
13,
9993,
15765,
278,
474,
43640,
351,
705,
73,
43640,
1377,
16663,
82,
299,
29653,
198,
17772,
198,
220,
220,
220,
44872,
7203,
12814,
720,
77,
16663,
82,
14390,
329,
9135,
5021,
12,
16663,
278,
4943,
198,
437,
198,
198,
2,
14206,
14390,
9135,
751,
198,
8818,
35582,
62,
2860,
0,
7,
87,
11,
331,
11,
1976,
8,
198,
220,
220,
220,
329,
1312,
287,
1123,
9630,
7,
87,
11,
331,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
259,
65,
3733,
1976,
58,
72,
60,
796,
2124,
58,
72,
60,
1343,
331,
58,
72,
60,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
2147,
198,
437,
198,
198,
2,
7854,
342,
961,
276,
9135,
751,
198,
8818,
10730,
62,
2860,
0,
7,
87,
11,
331,
11,
1976,
8,
198,
220,
220,
220,
14122,
82,
13,
31,
16663,
82,
329,
1312,
287,
1123,
9630,
7,
87,
11,
331,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
259,
65,
3733,
1976,
58,
72,
60,
796,
331,
58,
72,
60,
1343,
2124,
58,
72,
60,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
2147,
198,
437,
198,
198,
2,
14206,
40945,
11362,
751,
198,
8818,
308,
19944,
62,
16,
62,
16663,
62,
2860,
0,
7,
87,
11,
331,
11,
1976,
8,
198,
220,
220,
220,
329,
1312,
796,
352,
25,
13664,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
259,
65,
3733,
1976,
58,
72,
60,
796,
2124,
58,
72,
60,
1343,
331,
58,
72,
60,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
2147,
198,
437,
198,
198,
8818,
7624,
62,
46999,
62,
16,
62,
16663,
62,
2860,
0,
7,
87,
11,
331,
11,
1976,
8,
198,
220,
220,
220,
29369,
5631,
13,
31,
27261,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
66,
15339,
308,
19944,
62,
16,
62,
16663,
62,
2860,
0,
7,
87,
11,
331,
11,
1976,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
2,
14206,
2512,
11362,
751,
198,
8818,
308,
19944,
62,
16,
62,
9967,
62,
2860,
0,
7,
87,
11,
331,
11,
1976,
8,
198,
220,
220,
220,
6376,
796,
4704,
7390,
87,
22446,
87,
220,
220,
220,
1303,
428,
1672,
691,
4433,
14174,
6376,
278,
11,
523,
655,
779,
4600,
87,
63,
198,
220,
220,
220,
33769,
796,
2512,
29271,
22446,
87,
198,
220,
220,
220,
329,
1312,
796,
6376,
25,
2536,
485,
25,
13664,
7,
87,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
259,
65,
3733,
1976,
58,
72,
60,
796,
2124,
58,
72,
60,
1343,
331,
58,
72,
60,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
2147,
198,
437,
198,
198,
8818,
7624,
62,
46999,
62,
16,
62,
9967,
62,
2860,
0,
7,
87,
11,
331,
11,
1976,
8,
198,
220,
220,
220,
29369,
5631,
13,
31,
27261,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
66,
15339,
14390,
28,
25836,
308,
19944,
62,
16,
62,
9967,
62,
2860,
0,
7,
87,
11,
331,
11,
1976,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
2,
20401,
7021,
11362,
751,
198,
8818,
308,
19944,
62,
16680,
571,
5354,
62,
2860,
0,
7,
87,
11,
331,
11,
1976,
8,
198,
220,
220,
220,
6376,
796,
357,
9967,
7390,
87,
22446,
87,
532,
352,
8,
1635,
2512,
29271,
22446,
87,
1343,
4704,
7390,
87,
22446,
87,
198,
220,
220,
220,
33769,
796,
10706,
29271,
22446,
87,
1635,
2512,
29271,
22446,
87,
198,
220,
220,
220,
329,
1312,
796,
6376,
25,
2536,
485,
25,
13664,
7,
88,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
259,
65,
3733,
1976,
58,
9630,
60,
796,
2124,
58,
9630,
60,
1343,
331,
58,
9630,
60,
198,
220,
220,
220,
886,
198,
220,
220,
220,
1441,
2147,
198,
437,
198,
198,
8818,
7624,
62,
46999,
62,
16680,
571,
5354,
62,
2860,
0,
7,
87,
11,
331,
11,
1976,
8,
198,
220,
220,
220,
997,
27372,
796,
2906,
346,
7,
5317,
11,
4129,
7,
87,
20679,
25836,
8,
198,
220,
220,
220,
29369,
5631,
13,
31,
27261,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
66,
15339,
14390,
28,
25836,
7021,
28,
77,
2178,
28860,
308,
19944,
62,
16680,
571,
5354,
62,
2860,
0,
7,
87,
11,
331,
11,
1976,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
2,
5765,
262,
42498,
7824,
284,
5004,
14390,
290,
7021,
284,
17373,
378,
262,
11362,
198,
8818,
7624,
62,
46999,
62,
16680,
571,
5354,
62,
23736,
19596,
3883,
0,
7,
87,
11,
331,
11,
1976,
8,
198,
220,
220,
220,
9720,
796,
2488,
66,
15339,
4219,
28,
9562,
308,
19944,
62,
16680,
571,
5354,
62,
2860,
0,
7,
87,
11,
331,
11,
1976,
8,
198,
220,
220,
220,
4566,
796,
4219,
62,
11250,
3924,
7,
33885,
13,
12543,
8,
198,
220,
220,
220,
14390,
796,
949,
7,
13664,
7,
88,
828,
4566,
13,
16663,
82,
8,
198,
220,
220,
220,
7021,
796,
269,
335,
7,
13664,
7,
88,
828,
14390,
8,
628,
220,
220,
220,
29369,
5631,
13,
31,
27261,
2221,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
7,
87,
11,
331,
11,
1976,
26,
14390,
11,
7021,
8,
198,
220,
220,
220,
886,
198,
437,
198,
198,
36166,
62,
2435,
796,
657,
13,
15,
198,
1640,
309,
796,
685,
43879,
2414,
11,
48436,
2624,
60,
198,
220,
220,
220,
44872,
7203,
12814,
6252,
286,
2099,
720,
51,
4943,
198,
220,
220,
220,
2124,
796,
6070,
7,
12727,
62,
17,
35,
90,
51,
92,
7,
16,
11,
352,
828,
399,
8,
198,
220,
220,
220,
331,
796,
6070,
7,
12727,
62,
17,
35,
90,
51,
92,
7,
17,
11,
362,
828,
399,
8,
198,
220,
220,
220,
1976,
796,
6070,
7,
12727,
62,
17,
35,
90,
51,
92,
7,
15,
11,
657,
828,
399,
8,
198,
220,
220,
220,
640,
796,
2488,
6667,
28361,
35582,
62,
2860,
0,
16763,
87,
11,
720,
88,
11,
720,
89,
8,
198,
220,
220,
220,
18919,
82,
796,
352,
68,
21,
9,
2435,
198,
220,
220,
220,
611,
309,
6624,
48436,
2414,
220,
198,
220,
220,
220,
220,
220,
220,
220,
3298,
42804,
62,
2435,
796,
18919,
82,
198,
220,
220,
220,
886,
198,
220,
220,
220,
2866,
929,
796,
42804,
62,
2435,
14,
34703,
82,
198,
220,
220,
220,
44872,
7203,
220,
220,
220,
9135,
25,
2060,
12,
16663,
796,
720,
34703,
82,
18919,
82,
4943,
198,
220,
220,
220,
44872,
7203,
220,
220,
220,
220,
220,
220,
220,
220,
8729,
510,
3688,
284,
2060,
12,
16663,
9135,
1222,
48436,
2414,
11045,
796,
720,
12287,
929,
4943,
198,
220,
220,
220,
2488,
9288,
477,
7,
89,
764,
855,
6252,
62,
17,
35,
90,
51,
92,
7,
18,
11,
513,
4008,
628,
220,
220,
220,
220,
198,
220,
220,
220,
6070,
0,
7,
89,
11,
6252,
62,
17,
35,
90,
51,
92,
7,
15,
11,
657,
4008,
198,
220,
220,
220,
640,
796,
2488,
6667,
28361,
10730,
62,
2860,
0,
16763,
87,
11,
720,
88,
11,
720,
89,
8,
198,
220,
220,
220,
18919,
82,
796,
352,
68,
21,
9,
2435,
198,
220,
220,
220,
2866,
929,
796,
42804,
62,
2435,
14,
34703,
82,
198,
220,
220,
220,
44872,
7203,
220,
220,
220,
9135,
25,
720,
77,
16663,
82,
14390,
796,
720,
34703,
82,
18919,
82,
19570,
198,
220,
220,
220,
44872,
7203,
220,
220,
220,
220,
220,
220,
220,
220,
8729,
510,
3688,
284,
2060,
12,
16663,
9135,
1222,
48436,
2414,
11045,
796,
720,
12287,
929,
4943,
198,
220,
220,
220,
2488,
9288,
477,
7,
89,
764,
855,
6252,
62,
17,
35,
90,
51,
92,
7,
18,
11,
513,
4008,
220,
220,
220,
198,
220,
220,
220,
220,
198,
220,
220,
220,
2124,
62,
67,
796,
29369,
5631,
13,
20797,
7,
12727,
62,
17,
35,
90,
51,
92,
7,
16,
11,
352,
828,
399,
8,
198,
220,
220,
220,
331,
62,
67,
796,
29369,
5631,
13,
20797,
7,
12727,
62,
17,
35,
90,
51,
92,
7,
17,
11,
362,
828,
399,
8,
198,
220,
220,
220,
1976,
62,
67,
796,
29369,
5631,
13,
20797,
7,
12727,
62,
17,
35,
90,
51,
92,
7,
15,
11,
657,
828,
399,
8,
198,
220,
220,
220,
220,
220,
198,
220,
220,
220,
640,
796,
2488,
6667,
28361,
7624,
62,
46999,
62,
16,
62,
16663,
62,
2860,
0,
16763,
87,
62,
67,
11,
720,
88,
62,
67,
11,
720,
89,
62,
67,
8,
198,
220,
220,
220,
18919,
82,
796,
352,
68,
21,
9,
2435,
198,
220,
220,
220,
2866,
929,
796,
42804,
62,
2435,
14,
34703,
82,
198,
220,
220,
220,
44872,
7203,
220,
220,
220,
11362,
25,
2060,
12,
16663,
14,
9967,
11,
352,
7021,
796,
720,
34703,
82,
18919,
82,
19570,
198,
220,
220,
220,
44872,
7203,
220,
220,
220,
220,
220,
220,
220,
220,
8729,
510,
3688,
284,
2060,
12,
16663,
9135,
1222,
48436,
2414,
11045,
796,
720,
12287,
929,
4943,
198,
220,
220,
220,
2488,
9288,
477,
7,
19182,
7,
89,
62,
67,
8,
764,
855,
6252,
62,
17,
35,
90,
51,
92,
7,
18,
11,
513,
4008,
198,
220,
220,
220,
220,
198,
220,
220,
220,
6070,
0,
7,
89,
62,
67,
11,
6252,
62,
17,
35,
90,
51,
92,
7,
15,
11,
657,
4008,
198,
220,
220,
220,
640,
796,
2488,
6667,
28361,
7624,
62,
46999,
62,
16,
62,
9967,
62,
2860,
0,
16763,
87,
62,
67,
11,
720,
88,
62,
67,
11,
720,
89,
62,
67,
8,
198,
220,
220,
220,
18919,
82,
796,
352,
68,
21,
9,
2435,
198,
220,
220,
220,
2866,
929,
796,
42804,
62,
2435,
14,
34703,
82,
198,
220,
220,
220,
44872,
7203,
220,
220,
220,
11362,
25,
22243,
14390,
14,
9967,
11,
352,
7021,
796,
720,
34703,
82,
18919,
82,
19570,
198,
220,
220,
220,
44872,
7203,
220,
220,
220,
220,
220,
220,
220,
220,
8729,
510,
3688,
284,
2060,
12,
16663,
9135,
1222,
48436,
2414,
11045,
796,
720,
12287,
929,
4943,
198,
220,
220,
220,
2488,
9288,
477,
7,
19182,
7,
89,
62,
67,
8,
764,
855,
6252,
62,
17,
35,
90,
51,
92,
7,
18,
11,
513,
4008,
198,
220,
220,
220,
220,
198,
220,
220,
220,
6070,
0,
7,
89,
62,
67,
11,
6252,
62,
17,
35,
90,
51,
92,
7,
15,
11,
657,
4008,
198,
220,
220,
220,
640,
796,
2488,
6667,
28361,
7624,
62,
46999,
62,
16680,
571,
5354,
62,
2860,
0,
16763,
87,
62,
67,
11,
720,
88,
62,
67,
11,
720,
89,
62,
67,
8,
198,
220,
220,
220,
18919,
82,
796,
352,
68,
21,
9,
2435,
198,
220,
220,
220,
2866,
929,
796,
42804,
62,
2435,
14,
34703,
82,
198,
220,
220,
220,
997,
27372,
796,
2906,
346,
7,
5317,
2414,
11,
399,
14,
25836,
8,
198,
220,
220,
220,
44872,
7203,
220,
220,
220,
11362,
25,
22243,
14390,
14,
9967,
11,
720,
77,
2178,
28860,
7021,
796,
720,
34703,
82,
18919,
82,
19570,
198,
220,
220,
220,
44872,
7203,
220,
220,
220,
220,
220,
220,
220,
220,
8729,
510,
3688,
284,
2060,
12,
16663,
9135,
1222,
48436,
2414,
11045,
796,
720,
12287,
929,
4943,
198,
220,
220,
220,
2488,
9288,
477,
7,
19182,
7,
89,
62,
67,
8,
764,
855,
6252,
62,
17,
35,
90,
51,
92,
7,
18,
11,
513,
4008,
628,
220,
220,
220,
6070,
0,
7,
89,
62,
67,
11,
6252,
62,
17,
35,
90,
51,
92,
7,
15,
11,
657,
4008,
198,
220,
220,
220,
640,
796,
2488,
6667,
28361,
7624,
62,
46999,
62,
16680,
571,
5354,
62,
23736,
19596,
3883,
0,
16763,
87,
62,
67,
11,
720,
88,
62,
67,
11,
720,
89,
62,
67,
8,
198,
220,
220,
220,
18919,
82,
796,
352,
68,
21,
9,
2435,
198,
220,
220,
220,
2866,
929,
796,
42804,
62,
2435,
14,
34703,
82,
198,
220,
220,
220,
9720,
796,
2488,
66,
15339,
4219,
28,
9562,
308,
19944,
62,
16680,
571,
5354,
62,
2860,
0,
7,
87,
62,
67,
11,
331,
62,
67,
11,
1976,
62,
67,
8,
198,
220,
220,
220,
4566,
796,
4219,
62,
11250,
3924,
7,
33885,
13,
12543,
8,
198,
220,
220,
220,
14390,
796,
949,
7,
45,
11,
4566,
13,
16663,
82,
8,
198,
220,
220,
220,
7021,
796,
269,
335,
7,
45,
11,
14390,
8,
198,
220,
220,
220,
44872,
7203,
220,
220,
220,
11362,
25,
720,
16663,
82,
14390,
14,
9967,
11,
720,
27372,
7021,
796,
720,
34703,
82,
18919,
82,
19570,
198,
220,
220,
220,
44872,
7203,
220,
220,
220,
220,
220,
220,
220,
220,
8729,
510,
3688,
284,
2060,
12,
16663,
9135,
1222,
48436,
2414,
11045,
796,
720,
12287,
929,
4943,
198,
220,
220,
220,
2488,
9288,
477,
7,
19182,
7,
89,
62,
67,
8,
764,
855,
6252,
62,
17,
35,
90,
51,
92,
7,
18,
11,
513,
4008,
198,
437,
628
] | 2.181368 | 2,222 |