code
stringlengths
1
5.19M
package
stringlengths
1
81
path
stringlengths
9
304
filename
stringlengths
4
145
from distutils.core import setup setup( name = '101703087-topsis', # How you named your package folder (MyLib) packages = ['topsis'], # Chose the same as "name" version = '2.0.1', # Start with a small number and increase it with every change you make license='MIT', # Chose a license from here: https://help.github.com/articles/licensing-a-repository description = 'A Python package to choose the best alternative from a finite set of decision alternatives.', # Give a short description about your library author = 'Anukriti Garg', # Type in your name author_email = 'anukritigarg13@gmail.com', # Type in your E-Mail url = 'https://github.com/user/101703087-topsis', # Provide either the link to your github or to your website download_url = 'https://github.com/anukritigarg13/101703087-topsis/archive/v_2.0.1.tar.gz', # I explain this later on #keywords = ['SOME', 'MEANINGFULL', 'KEYWORDS'], # Keywords that define your package best install_requires=[ # I get to this in a second "pandas","numpy" ], classifiers=[ 'Development Status :: 3 - Alpha', # Chose either "3 - Alpha", "4 - Beta" or "5 - Production/Stable" as the current state of your package 'Intended Audience :: Developers', # Define that your audience are developers 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', # Again, pick a license 'Programming Language :: Python :: 3', #Specify which pyhton versions that you want to support 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], )
101703087-topsis
/101703087-topsis-2.0.1.tar.gz/101703087-topsis-2.0.1/setup.py
setup.py
import sys import os import pandas as pd import math import numpy as np class Topsis: def _init_(self,filename): if os.path.isdir(filename): head_tail = os.path.split(filename) data = pd.read_csv(head_tail[1]) if os.path.isfile(filename): data = pd.read_csv(filename) self.d = data.iloc[1:,1:].values self.features = len(self.d[0]) self.samples = len(self.d) def fun(self,a): return a[1] def fun2(self,a): return a[0] def evaluate(self,w = None,im = None): d = self.d features = self.features samples = self.samples if w==None: w=[1]*features if im==None: im=["+"]*features ideal_best=[] ideal_worst=[] for i in range(0,features): k = math.sqrt(sum(d[:,i]*d[:,i])) maxx = 0 minn = 1 for j in range(0,samples): d[j,i] = (d[j,i]/k)*w[i] if d[j,i]>maxx: maxx = d[j,i] if d[j,i]<minn: minn = d[j,i] if im[i] == "+": ideal_best.append(maxx) ideal_worst.append(minn) else: ideal_best.append(minn) ideal_worst.append(maxx) p = [] for i in range(0,samples): a = math.sqrt(sum((d[i]-ideal_worst)*(d[i]-ideal_worst))) b = math.sqrt(sum((d[i]-ideal_best)*(d[i]-ideal_best))) lst = [] lst.append(i) lst.append(a/(a+b)) p.append(lst) p.sort(key=self.fun) rank = 1 for i in range(samples-1,-1,-1): p[i].append(rank) rank+=1 p.sort(key=self.fun2) return p def findTopsis(filename,w,i): ob = Topsis(filename) res = ob.evaluate(w,i) print(res) def main(): lst = sys.argv length = len(lst) if length > 4 or length< 4: print("wrong Parameters") else: w = list(map(int,lst[2].split(','))) i = lst[3].split(',') ob = Topsis(lst[1]) res = ob.evaluate(w,i) print (res) if _name_ == '_main_': main()
101703087-topsis
/101703087-topsis-2.0.1.tar.gz/101703087-topsis-2.0.1/topsis/topsis.py
topsis.py
from 101703087-topsis.topsis import Topsis
101703087-topsis
/101703087-topsis-2.0.1.tar.gz/101703087-topsis-2.0.1/topsis/__init__.py
__init__.py
Outliers Z-scores(threshold) are the number of standard deviations above and below the mean that each value falls. For example, a Z-score of 2 indicates that an observation is two standard deviations above the average while a Z-score of -2 signifies it is two standard deviations below the mean.For our code , we have selected 3 as Z-score so anything obove it will be considered as an outlier. This package has been created based on Project 2 of course UCS633. Anurag Aggarwal COE-4 101703088
101703088-outlier
/101703088-outlier-1.0.0.tar.gz/101703088-outlier-1.0.0/README.md
README.md
from distutils.core import setup setup( name = '101703088-outlier', # How you named your package folder (MyLib) packages = ['outliers'], # Chose the same as "name" version = '1.0.0', # Start with a small number and increase it with every change you make license='MIT', # Chose a license from here: https://help.github.com/articles/licensing-a-repository description = 'A Python package to detect outliers.', # Give a short description about your library author = 'Anurag Aggarwal', # Type in your name author_email = 'agrawalanurag321@gmail.com', # Type in your E-Mail url = 'https://github.com/Anurag-Aggarwal/Outliers', # Provide either the link to your github or to your website download_url = 'https://github.com/Anurag-Aggarwal/Outliers/archive/V-1.0.0.tar.gz', # I explain this later on install_requires=[ # I get to this in a second "numpy" ], classifiers=[ 'Development Status :: 3 - Alpha', # Chose either "3 - Alpha", "4 - Beta" or "5 - Production/Stable" as the current state of your package 'Intended Audience :: Developers', # Define that your audience are developers 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', # Again, pick a license 'Programming Language :: Python :: 3', #Specify which pyhton versions that you want to support 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], )
101703088-outlier
/101703088-outlier-1.0.0.tar.gz/101703088-outlier-1.0.0/setup.py
setup.py
#!/usr/bin/python import sys import numpy as np data = np.genfromtxt(sys.argv[1], delimiter=',') outliers=[] def detect_outliers(data): threshold=3 mean = np.mean(data) std =np.std(data) c=0 for i in data: z_score= (i - mean)/std if np.abs(z_score) > threshold: outliers.append(c) c=c+1 return outliers out_pt=detect_outliers(data) print(len(out_pt)) data_o = np.delete(data, out_pt, axis=None) np.savetxt('data_o.csv', data_o, delimiter=',',fmt='%d')
101703088-outlier
/101703088-outlier-1.0.0.tar.gz/101703088-outlier-1.0.0/outliers/Outliers.py
Outliers.py
TOPSIS Package TOPSIS stands for Technique for Oder Preference by Similarity to Ideal Solution. It is a method of compensatory aggregation that compares a set of alternatives by identifying weights for each criterion, normalising scores for each criterion and calculating the geometric distance between each alternative and the ideal alternative, which is the best score in each criterion. An assumption of TOPSIS is that the criteria are monotonically increasing or decreasing. In this Python package Vector Normalization has been implemented. This package has been created based on Project 1 of course UCS633. Anurag Aggarwal COE-4 101703088 In Command Prompt >topsis data.csv "1,1,1,1" "+,+,-,+"
101703088-topsis
/101703088-topsis-2.0.2.tar.gz/101703088-topsis-2.0.2/README.md
README.md
from distutils.core import setup setup( name = '101703088-topsis', # How you named your package folder (MyLib) packages = ['topsis'], # Chose the same as "name" version = '2.0.2', # Start with a small number and increase it with every change you make license='MIT', # Chose a license from here: https://help.github.com/articles/licensing-a-repository description = 'A Python package to choose the best alternative from a finite set of decision alternatives.', # Give a short description about your library author = 'Anurag Aggarwal', # Type in your name author_email = 'agrawalanurag321@gmail.com', # Type in your E-Mail url = 'https://github.com/user/101703088-topsis', # Provide either the link to your github or to your website download_url = 'https://github.com/Anurag-Aggarwal/101703088-topsis/archive/v_2.0.2.tar.gz', # I explain this later on #keywords = ['SOME', 'MEANINGFULL', 'KEYWORDS'], # Keywords that define your package best install_requires=[ # I get to this in a second "pandas","numpy" ], classifiers=[ 'Development Status :: 3 - Alpha', # Chose either "3 - Alpha", "4 - Beta" or "5 - Production/Stable" as the current state of your package 'Intended Audience :: Developers', # Define that your audience are developers 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', # Again, pick a license 'Programming Language :: Python :: 3', #Specify which pyhton versions that you want to support 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], )
101703088-topsis
/101703088-topsis-2.0.2.tar.gz/101703088-topsis-2.0.2/setup.py
setup.py
import sys import os import pandas as pd import math import numpy as np class Topsis: def _init_(self,filename): if os.path.isdir(filename): head_tail = os.path.split(filename) data = pd.read_csv(head_tail[1]) if os.path.isfile(filename): data = pd.read_csv(filename) self.d = data.iloc[1:,1:].values self.features = len(self.d[0]) self.samples = len(self.d) def fun(self,a): return a[1] def fun2(self,a): return a[0] def evaluate(self,w = None,im = None): d = self.d features = self.features samples = self.samples if w==None: w=[1]*features if im==None: im=["+"]*features ideal_best=[] ideal_worst=[] for i in range(0,features): k = math.sqrt(sum(d[:,i]*d[:,i])) maxx = 0 minn = 1 for j in range(0,samples): d[j,i] = (d[j,i]/k)*w[i] if d[j,i]>maxx: maxx = d[j,i] if d[j,i]<minn: minn = d[j,i] if im[i] == "+": ideal_best.append(maxx) ideal_worst.append(minn) else: ideal_best.append(minn) ideal_worst.append(maxx) p = [] for i in range(0,samples): a = math.sqrt(sum((d[i]-ideal_worst)*(d[i]-ideal_worst))) b = math.sqrt(sum((d[i]-ideal_best)*(d[i]-ideal_best))) lst = [] lst.append(i) lst.append(a/(a+b)) p.append(lst) p.sort(key=self.fun) rank = 1 for i in range(samples-1,-1,-1): p[i].append(rank) rank+=1 p.sort(key=self.fun2) return p def findTopsis(filename,w,i): ob = Topsis(filename) res = ob.evaluate(w,i) print(res) def main(): lst = sys.argv length = len(lst) if length > 4 or length< 4: print("wrong Parameters") else: w = list(map(int,lst[2].split(','))) i = lst[3].split(',') ob = Topsis(lst[1]) res = ob.evaluate(w,i) print (res) if _name_ == '_main_': main()
101703088-topsis
/101703088-topsis-2.0.2.tar.gz/101703088-topsis-2.0.2/topsis/topsis.py
topsis.py
from 101703088-topsis.topsis import Topsis
101703088-topsis
/101703088-topsis-2.0.2.tar.gz/101703088-topsis-2.0.2/topsis/__init__.py
__init__.py
from distutils.core import setup setup( name = '101703105', # How you named your package folder (MyLib) packages = ['101703105'], # Chose the same as "name" version = '0.1', # Start with a small number and increase it with every change you make license='MIT', # Chose a license from here: https://help.github.com/articles/licensing-a-repository description = 'Missing', # Give a short description about your library author = 'Arushi', # Type in your name author_email = 'arushi0830@gmail.com', # Type in your E-Mail url = 'https://github.com/arushi0830?tab=repositories', # Provide either the link to your github or to your website download_url = 'https://github.com/arushi0830/missing/archive/v_01.tar.gz', # I explain this later on keywords = ['missing', 'values','dataframe'], # Keywords that define your package best install_requires=[ # I get to this in a second 'numpy', 'pandas', ], classifiers=[ 'Development Status :: 3 - Alpha', # Chose either "3 - Alpha", "4 - Beta" or "5 - Production/Stable" as the current state of your package 'Intended Audience :: Developers', # Define that your audience are developers 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', # Again, pick a license 'Programming Language :: Python :: 3', #Specify which pyhton versions that you want to support 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], )
101703105
/101703105-0.1.tar.gz/101703105-0.1/setup.py
setup.py
#Topsis Package A Python package to implement topsis on a given dataset. ##Usage Following query on terminal will provide you the best and worst decisions for the dataset. ``` python topsis.py dataset_sample.csv 1,1,1,1 0,1,1,0 ```
101703196-topsis
/101703196_topsis-1.0.0.tar.gz/101703196_topsis-1.0.0/README.md
README.md
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="101703196_topsis", # Replace with your own username version="1.0.0", author="Guneesha Sehgal", author_email="guneeshasehgal@gmail.com", description="topsis implementation", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/guneesha12/101703196_topsis/tree/v_1.0.0", download_url="https://github.com/guneesha12/101703196_topsis/archive/v_1.0.0.tar.gz", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', )
101703196-topsis
/101703196_topsis-1.0.0.tar.gz/101703196_topsis-1.0.0/setup.py
setup.py
# -*- coding: utf-8 -*- """ Created on Fri Jan 10 19:57:33 2020 @author: hp """ import sys import os import pandas as pd import math import numpy as np class Topsis: def __init__(self,filename): if os.path.isdir(filename): head_tail = os.path.split(filename) data = pd.read_csv(head_tail[1]) if os.path.isfile(filename): data = pd.read_csv(filename) self.d = data.iloc[1:,1:].values self.features = len(self.d[0]) self.samples = len(self.d) def fun(self,a): return a[1] def fun2(self,a): return a[0] def evaluate(self,w = None,im = None): d = self.d features = self.features samples = self.samples if w==None: w=[1]*features if im==None: im=["+"]*features ideal_best=[] ideal_worst=[] for i in range(0,features): k = math.sqrt(sum(d[:,i]*d[:,i])) maxx = 0 minn = 1 for j in range(0,samples): d[j,i] = (d[j,i]/k)*w[i] if d[j,i]>maxx: maxx = d[j,i] if d[j,i]<minn: minn = d[j,i] if im[i] == "+": ideal_best.append(maxx) ideal_worst.append(minn) else: ideal_best.append(minn) ideal_worst.append(maxx) p = [] for i in range(0,samples): a = math.sqrt(sum((d[i]-ideal_worst)*(d[i]-ideal_worst))) b = math.sqrt(sum((d[i]-ideal_best)*(d[i]-ideal_best))) lst = [] lst.append(i) lst.append(a/(a+b)) p.append(lst) p.sort(key=self.fun) rank = 1 for i in range(samples-1,-1,-1): p[i].append(rank) rank+=1 p.sort(key=self.fun2) return p def findTopsis(filename,w,i): ob = Topsis(filename) res = ob.evaluate(w,i) print(res) def main(): lst = sys.argv length = len(lst) if length > 4 or length< 4: print("wrong Parameters") else: w = list(map(int,lst[2].split(','))) i = lst[3].split(',') ob = Topsis(lst[1]) res = ob.evaluate(w,i) print (res) if __name__ == '__main__': main()
101703196-topsis
/101703196_topsis-1.0.0.tar.gz/101703196_topsis-1.0.0/topsis/topsis.py
topsis.py
from topsis.topsis import Topsis
101703196-topsis
/101703196_topsis-1.0.0.tar.gz/101703196_topsis-1.0.0/topsis/__init__.py
__init__.py
# -*- coding: utf-8 -*- """ Created on Sun Jan 19 14:11:37 2020 @author: Harmeet Kaur """ from distutils.core import setup setup( name = '101703214_assign1_UCS633', # How you named your package folder (MyLib) packages = ['101703214_assign1_UCS633'], # Chose the same as "name" version = '0.1', # Start with a small number and increase it with every change you make license='mit', # Chose a license from here: https://help.github.com/articles/licensing-a-repository description = 'TYPE YOUR DESCRIPTION HERE', # Give a short description about your library author = 'Harmeet kaur', # Type in your name author_email = 'kaur.harmeet511@gmail.com', # Type in your E-Mail url = 'https://github.com/harmeet511/101703214_assign1_UCS633', # Provide either the link to your github or to your website download_url = 'https://github.com/harmeet511/101703214_assign1_UCS633/archive/v_01.tar.gz', # I explain this later on keywords = ['topsis', 'ucs633'], # Keywords that define your package best install_requires=['numpy' ], # I get to this in a second classifiers=[ 'Development Status :: 3 - Alpha', # Chose either "3 - Alpha", "4 - Beta" or "5 - Production/Stable" as the current state of your package 'Intended Audience :: Developers', # Define that your audience are developers 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', # Again, pick a license 'Programming Language :: Python :: 3', #Specify which pyhton versions that you want to support 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], )
101703214-assign1-UCS633
/101703214_assign1_UCS633-0.1.tar.gz/101703214_assign1_UCS633-0.1/setup.py
setup.py
# -*- coding: utf-8 -*- """ Created on Sun Jan 19 12:52:19 2020 @author: Harmeet Kaur """ """n=int(input()) m=int(input()) a=[[int(input()) for x in range(m)] for y in range (n)] w=[float(input()) for x in range(m)] need=[int(input()) for x in range(m)]""" import numy as np def normalized_matrix(a): sum1=[] attributes=len(a) models=len(a[0]) for i in range(models): sum2=0 for j in range(attributes): sum2+=a[j][i]*a[j][i] sum1.append(sum2) for i in range(models): for j in range(attributes): a[j][i]=a[j][i]/sum1[j] return a def setting_weights(a,w): attributes=len(a) models=len(a[0]) for i in range(attributes): for j in range(models): a[i][j]=a[i][j]*w[j] return a def cal_ideal_post(a,req_class): attributes=len(a) models=len(a[0]) v_positive=[] maxi=0 mini=1e9 for i in range(models): for j in range(attributes): if(req_class[i]==1): maxi=max(maxi,a[j][i]) else: mini=min(mini,a[j][i]) if(req_class[i]==1): v_positive.append(maxi) else: v_positive.append(mini) return v_positive def cal_ideal_neg(a,req_class): attributes=len(a) models=len(a[0]) v_neg=[] maxi=0 mini=1e9 for i in range(models): for j in range(attributes): if(req_class[i]==0): maxi=max(maxi,a[j][i]) else: mini=min(mini,a[j][i]) if(req_class[i]==1): v_neg.append(mini) else: v_neg.append(maxi) return v_neg def separation_positive(a,vg): attributes=len(a) models=len(a[0]) sg=[] for i in range(attributes): sum1=0 for j in range(models): sum1+=(vg[i]-a[i][j])**2 sg.append(sum1**0.5) return sg def separation_negative(a,vb): attributes=len(a) models=len(a[0]) sb=[] for i in range(attributes): sum1=0 for j in range(models): sum1+=(vb[i]-a[i][j])**2 sb.append(sum1**0.5) return sb def relative_closeness(sg,sb): n1=len(sg) p=[] for i in range(n1): p.append(sb[i]/(sg[i]+sb[i])) return p def final_ranking(p): n1=len(p) k=p k.sort() dicti={} for i in range(0,n1): dicti[k[i]]=n1-i for j in range(n1): p[j]=dicti[p[j]] return p def topsis(a,w,req_class): a=normalized_matrix(a) a=setting_weights(a,w) vg=cal_ideal_post(a,req_class) vb=cal_ideal_neg(a,req_class) sg=separation_positive(a,vg) sb=separation_negative(a,vb) p=relative_closeness(sg,sb) ranking=final_ranking(p) return ranking
101703214-assign1-UCS633
/101703214_assign1_UCS633-0.1.tar.gz/101703214_assign1_UCS633-0.1/101703214_assign1_UCS633/assign1.py
assign1.py
# -*- coding: utf-8 -*- """ Created on Sun Jan 19 13:44:56 2020 @author: Harmeet Kaur """ from 101703214_assign1_UCS633.assign1 import normalized_matrix,setting_weights,cal_ideal_post,cal_ideal_neg\ separation_positive,separation_negative,relative_closeness,final_ranking
101703214-assign1-UCS633
/101703214_assign1_UCS633-0.1.tar.gz/101703214_assign1_UCS633-0.1/101703214_assign1_UCS633/__init__.py
__init__.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import pandas as pd import numpy as np from sklearn.impute import SimpleImputer import sys def file(input_file): try: return pd.read_csv(input_file) except IOError: raise Exception("Data file doesn't exist\n") def main(): filename = sys.argv[1] data=file(filename) imputer=SimpleImputer(missing_values=np.nan,strategy='mean') data=pd.DataFrame(imputer.fit_transform(data)) data.to_csv('new_data.csv',index=False) print("New data is saved to file 'new_data.csv'.")
101703235-missing-val
/101703235_missing_val-0.0.1-py3-none-any.whl/hit_miss/hit_val.py
hit_val.py
#
101703235-missing-val
/101703235_missing_val-0.0.1-py3-none-any.whl/hit_miss/__init__.py
__init__.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import pandas as pd import numpy as np from sklearn.impute import SimpleImputer import sys def file(input_file): try: return pd.read_csv(input_file) except IOError: raise Exception("Data file doesn't exist\n") def main(): filename = sys.argv[1] data=file(filename) imputer=SimpleImputer(missing_values=np.nan,strategy='mean') data=pd.DataFrame(imputer.fit_transform(data)) data.to_csv('new_data.csv',index=False) print("New data is saved to file 'new_data.csv'.")
101703272-missing-val
/101703272_missing_val-0.0.1-py3-none-any.whl/jyot_val/val_miss.py
val_miss.py
#
101703272-missing-val
/101703272_missing_val-0.0.1-py3-none-any.whl/jyot_val/__init__.py
__init__.py
import sys import numpy as np import pandas as pd import os import csv from sklearn.linear_model import LinearRegression def helper(): path_file = os.getcwd() + '/' + sys.argv[1] data = pd.read_csv(path_file) def f1(s): if s == "male": return 0 elif s == "female": return 1 else: return np.nan def f2(s): if s == "S": return 0 elif s == "Q": return 1 elif s == "C": return 2 else: return np.nan data["Sex_numeric"] = data.Sex.apply(f1) data["Embarked_numeric"] = data.Embarked.apply(f2) del data["Sex"] del data["Embarked"] del data["Cabin"] del data["PassengerId"] del data["Ticket"] del data["Name"] data2 = data.copy() a = data2.isnull().sum() l = data2.isnull().sum()[a > 0].index#Null Columns nl = data2.isnull().sum()[a == 0].index#Non Null Columns selected_rows = data2.loc[:,"Age"].isnull() == False x_train = data2.loc[selected_rows, nl].values y_train = data2.loc[selected_rows, "Age"].values selected_rows = (selected_rows == False)#This is way of taking negation x_test = data2.loc[selected_rows, nl].values lr = LinearRegression() lr.fit(x_train, y_train) data2.loc[selected_rows, "Age"] = lr.predict(x_test) print(data2.isnull().sum()) a = data2.isnull().sum() l = data2.isnull().sum()[a > 0].index nl = data2.isnull().sum()[a == 0].index selected_rows = data2.loc[:, "Embarked_numeric"].isnull() == False x_train = data2.loc[selected_rows,nl].values y_train = data2.loc[selected_rows, "Embarked_numeric"].values selected_rows = (selected_rows == False) x_test = data2.loc[selected_rows, nl].values lr = LinearRegression() lr.fit(x_train, y_train) data2.loc[selected_rows,"Embarked_numeric"] = lr.predict(x_test) #Undo the operations def f11(s): if s == 0.0: return "male" else: return "female" def f22(s): if s == 0.0: return "S" elif s == 1.0: return "Q" else: return "C" data2["Sex"] = data2.Sex_numeric.apply(f11) data2["Embarked"] = data2.Embarked_numeric.apply(f22) del data2["Embarked_numeric"] del data2["Sex_numeric"] final_path = os.getcwd() + '/' + 'Missing.csv' data2.to_csv(final_path) return 1; def main(): if(len(sys.argv) != 2): print("Operation failed") return sys.exit(1) else: a = helper() if(a == 1): print("Task Complete") if __name__ == '__main__': main()
101703311-Missing-Data
/101703311_Missing_Data-1.0.1-py3-none-any.whl/data/handledata.py
handledata.py
# -*- coding: utf-8 -*- """ Created on Mon Jan 20 16:06:07 2020 @author: Lokesh Arora """ import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="101703311_OUTLIERS", version="1.0.2", author="Lokesh Arora", author_email="3lokesharora@gmail.com", description="A python package for removing outliers from a dataset using InterQuartile Range (IQR)", long_description=long_description, long_description_content_type="text/markdown", url="", License="MIT", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', packages=["Outliers"], include_package_data=True, install_requires=["requests"], entry_points={"console_scripts":["outlierRemoval=Outliers.outlierRemoval:main"]}, )
101703311-OUTLIERS
/101703311_OUTLIERS-1.0.2.tar.gz/101703311_OUTLIERS-1.0.2/setup.py
setup.py
# -*- coding: utf-8 -*- """ Created on Tue Feb 11 22:14:38 2020 @author: Lokesh Arora """ import sys import pandas as pd import numpy as np def remove_outlier(dataset,file="Final.csv"): data=pd.read_csv(dataset) X=data.iloc[:,:-1].values Y=data.iloc[:,-1].values numOutliers=0 outliers=[] initialRows=X.shape[0] for i in range(np.shape(X)[1]): temp=[] for j in range(np.shape(X)[0]): temp.append(X[j][i]) Q1,Q3=np.percentile(temp,[25,75]) IQR=Q3-Q1 MIN=Q1-(1.5*IQR) MAX=Q3+(1.5*IQR) for j in range(0,np.shape(X)[0]): if(X[j][i]<MIN or X[j][i]>MAX): numOutliers+=1 outliers.append(j) X=np.delete(X,outliers,axis=0) Y=np.delete(Y,outliers,axis=0) finalRows=X.shape[0] deleted=initialRows - finalRows col=list(data.columns) print('Rows removed={}'.format(deleted)) newdata={} j=0 for i in range(len(col)-1): newdata[col[i]]=X[:,j] j+=1 newdata[col[len(col)-1]]=Y new=pd.DataFrame(newdata) new.to_csv(file,index=False) def main(): if len (sys.argv) <2 : print("Arguements not valid") sys.exit (1) if len(sys.argv)>3: print("Arguments not valid") sys.exit(1) file1=sys.argv[1] final="" if len(sys.argv)==3: final=sys.argv[2] else: final="OutlierRemoved"+file1 if(remove_outlier(file1,final)==None): print("Successfully executed") if __name__=='__main__': main()
101703311-OUTLIERS
/101703311_OUTLIERS-1.0.2.tar.gz/101703311_OUTLIERS-1.0.2/Outliers/outlierRemoval.py
outlierRemoval.py
import sys import pandas as pd import numpy as np def remove_outlier(dataset,file="Final.csv"): data=pd.read_csv(dataset) X=data.iloc[:,:-1].values Y=data.iloc[:,-1].values numOutliers=0 outliers=[] initialRows=X.shape[0] for i in range(np.shape(X)[1]): temp=[] for j in range(np.shape(X)[0]): temp.append(X[j][i]) Q1,Q3=np.percentile(temp,[25,75]) IQR=Q3-Q1 MIN=Q1-(1.5*IQR) MAX=Q3+(1.5*IQR) for j in range(0,np.shape(X)[0]): if(X[j][i]<MIN or X[j][i]>MAX): numOutliers+=1 outliers.append(j) X=np.delete(X,outliers,axis=0) Y=np.delete(Y,outliers,axis=0) finalRows=X.shape[0] deleted=initialRows - finalRows col=list(data.columns) print('Rows removed={}'.format(deleted)) newdata={} j=0 for i in range(len(col)-1): newdata[col[i]]=X[:,j] j+=1 newdata[col[len(col)-1]]=Y new=pd.DataFrame(newdata) new.to_csv(file,index=False) def main(): if len (sys.argv) <2 : print("Invalid number of arguements passed:atleast 1(source file name) and atmost two(source file name, destination file name) arguements are permitted") sys.exit (1) if len(sys.argv)>3: print("Invalid number of arguements passed:atleast 1(source file name) and atmost two(source file name, destination file name) arguements are permitted") sys.exit(1) file1=sys.argv[1] final="" if len(sys.argv)==3: final=sys.argv[2] else: final="OutlierRemoved"+file1 if(remove_outlier(file1,final)==None): print("Successfully executed") if __name__=='__main__': main()
101703312-outlierRemoval
/101703312_outlierRemoval-1.0.0-py3-none-any.whl/outlier_python/outlierRemoval.py
outlierRemoval.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import pandas as pd import numpy as np from sklearn.impute import SimpleImputer import sys def file(input_file): try: return pd.read_csv(input_file) except IOError: raise Exception("Data file doesn't exist\n") def main(): filename = sys.argv[1] data=file(filename) imputer=SimpleImputer(missing_values=np.nan,strategy='mean') data=pd.DataFrame(imputer.fit_transform(data)) data.to_csv('new_data.csv',index=False) print("New data is saved to file 'new_data.csv'.")
101703322-missing-val
/101703322_missing_val-0.0.1-py3-none-any.whl/manav_val/val_manav.py
val_manav.py
#
101703322-missing-val
/101703322_missing_val-0.0.1-py3-none-any.whl/manav_val/__init__.py
__init__.py
Outliers Z-scores(threshold) are the number of standard deviations above and below the mean that each value falls. For example, a Z-score of 2 indicates that an observation is two standard deviations above the average while a Z-score of -2 signifies it is two standard deviations below the mean.For our code , we have selected 3 as Z-score so anything obove it will be considered as an outlier. This package has been created based on Project 2 of course UCS633. Nikhil Vyas COE-17 101703373
101703373-outlier
/101703373-outlier-1.0.0.tar.gz/101703373-outlier-1.0.0/README.md
README.md
from distutils.core import setup setup( name = '101703373-outlier', # How you named your package folder (MyLib) packages = ['outliers'], # Chose the same as "name" version = '1.0.0', # Start with a small number and increase it with every change you make license='MIT', # Chose a license from here: https://help.github.com/articles/licensing-a-repository description = 'A Python package to detect outliers.', # Give a short description about your library author = 'Nikhil Vyas', # Type in your name author_email = 'vyasnikhil30@gmail.com', # Type in your E-Mail url = 'https://github.com/vyasnikhil/Outliers-10173373', # Provide either the link to your github or to your website download_url = 'https://github.com/vyasnikhil/Outliers-10173373/archive/V_1.0.0.tar.gz', # I explain this later on install_requires=[ # I get to this in a second "numpy" ], classifiers=[ 'Development Status :: 3 - Alpha', # Chose either "3 - Alpha", "4 - Beta" or "5 - Production/Stable" as the current state of your package 'Intended Audience :: Developers', # Define that your audience are developers 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', # Again, pick a license 'Programming Language :: Python :: 3', #Specify which pyhton versions that you want to support 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], )
101703373-outlier
/101703373-outlier-1.0.0.tar.gz/101703373-outlier-1.0.0/setup.py
setup.py
#!/usr/bin/python import sys import numpy as np data = np.genfromtxt(sys.argv[1], delimiter=',') outliers=[] def detect_outliers(data): threshold=3 mean = np.mean(data) std =np.std(data) c=0 for i in data: z_score= (i - mean)/std if np.abs(z_score) > threshold: outliers.append(c) c=c+1 return outliers out_pt=detect_outliers(data) print(len(out_pt)) data_o = np.delete(data, out_pt, axis=None) np.savetxt('data_o.csv', data_o, delimiter=',',fmt='%d')
101703373-outlier
/101703373-outlier-1.0.0.tar.gz/101703373-outlier-1.0.0/outliers/Outliers.py
Outliers.py
import sys import os import pandas as pd import math import numpy as np class Topsis: def _init_(self,filename): if os.path.isdir(filename): head_tail = os.path.split(filename) data = pd.read_csv(head_tail[1]) if os.path.isfile(filename): data = pd.read_csv(filename) self.d = data.iloc[1:,1:].values self.features = len(self.d[0]) self.samples = len(self.d) def fun(self,a): return a[1] def fun2(self,a): return a[0] def evaluate(self,w = None,im = None): d = self.d features = self.features samples = self.samples if w==None: w=[1]*features if im==None: im=["+"]*features ideal_best=[] ideal_worst=[] for i in range(0,features): k = math.sqrt(sum(d[:,i]*d[:,i])) maxx = 0 minn = 1 for j in range(0,samples): d[j,i] = (d[j,i]/k)*w[i] if d[j,i]>maxx: maxx = d[j,i] if d[j,i]<minn: minn = d[j,i] if im[i] == "+": ideal_best.append(maxx) ideal_worst.append(minn) else: ideal_best.append(minn) ideal_worst.append(maxx) p = [] for i in range(0,samples): a = math.sqrt(sum((d[i]-ideal_worst)*(d[i]-ideal_worst))) b = math.sqrt(sum((d[i]-ideal_best)*(d[i]-ideal_best))) lst = [] lst.append(i) lst.append(a/(a+b)) p.append(lst) p.sort(key=self.fun) rank = 1 for i in range(samples-1,-1,-1): p[i].append(rank) rank+=1 p.sort(key=self.fun2) return p def findTopsis(filename,w,i): ob = Topsis(filename) res = ob.evaluate(w,i) print(res) def main(): lst = sys.argv length = len(lst) if length > 4 or length< 4: print("wrong Parameters") else: w = list(map(int,lst[2].split(','))) i = lst[3].split(',') ob = Topsis(lst[1]) res = ob.evaluate(w,i) print (res) if _name_ == '_main_': main()
101703373-topsis
/101703373_topsis-1.0.0-py3-none-any.whl/topsis/101703373-topsis.py
101703373-topsis.py
# A library capable of removing outliers from a pandas dataframe ``` PROJECT 2, UCS633 - Data Analysis and Visualization Nishant Dhanda COE17 Roll number: 101703375 ```
101703375-p2
/101703375_p2-0.1.0.tar.gz/101703375_p2-0.1.0/README.md
README.md
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="101703375_p2", version="0.1.0", author="Nishant Dhanda", author_email="ndhanda_be17@thapar.edu", description="Removal of outliers using pandas", url='https://github.com/NishantDhanda/101703375_p2/', long_description=long_description, long_description_content_type="text/markdown", packages=setuptools.find_packages(), scripts=['bin/outcli'], keywords = ['CLI', 'OUTLIER', 'Data'], python_requires='>=3.6', )
101703375-p2
/101703375_p2-0.1.0.tar.gz/101703375_p2-0.1.0/setup.py
setup.py
# -*- coding: utf-8 -*- """ Created on Thu Feb 6 19:27:00 2020 @author: Nishant """ import numpy as np import pandas as pd def outliers_detection(input_csv_file, output_csv_file): dataset1 = pd.read_csv(input_csv_file) dataset2 = dataset1.iloc[:,1:] for ind, row in dataset2.iterrows(): threshold = 3 mean = np.mean(row) std_dev = np.std(row) for value in row: z_score = (value-mean)/std_dev if np.abs(z_score)>threshold: dataset1 = dataset1.drop(dataset2.index[ind]) break dataset1.to_csv(output_csv_file, index=False) print('Number of rows removed are :',len(dataset2) - len(dataset1))
101703375-p2
/101703375_p2-0.1.0.tar.gz/101703375_p2-0.1.0/outlib/p2.py
p2.py
import sys from pro2.models import outliers def main(): sysarglist = sys.argv sysarglist.pop(0) assert len(sysarglist) == 2, "Insufficient number of arguments provided" filename_in = sysarglist[0] filename_out = sysarglist[1] assert filename_in, "Input CSV filename must be provided" assert filename_out, "Output CSV filename must be provided" outliers(filename_in, filename_out)
101703378-project2
/101703378_project2-0.0.2-py3-none-any.whl/pro2/outcli.py
outcli.py
import numpy as np import pandas as pd def outliers(incsv_file, outcsv_file): dataset = pd.read_csv(incsv_file) Q1 = dataset.quantile(0.25) Q3 = dataset.quantile(0.75) IQR = Q3 - Q1 new_dataset = dataset[((dataset >= (Q1 - 1.5 * IQR)) &(dataset <= (Q3 + 1.5 * IQR))).all(axis=1)] new_dataset.to_csv(outcsv_file, index=False) print('The no of rows removed:',len(dataset) - len(new_dataset))
101703378-project2
/101703378_project2-0.0.2-py3-none-any.whl/pro2/models.py
models.py
from distutils.core import setup setup( name = '101703381-outlier', # How you named your package folder (MyLib) packages = ['101703381-outlier'], # Chose the same as "name" version = '0.1', # Start with a small number and increase it with every change you make license='MIT', # Chose a license from here: https://help.github.com/articles/licensing-a-repository description = 'outlier removal using z score', # Give a short description about your library author = 'palki', # Type in your name author_email = 'palkipb@gmail.com', # Type in your E-Mail url = 'https://github.com/palkibansal31/Z_Score', # Provide either the link to your github or to your website download_url = 'https://github.com/palkibansal31/Z_Score/archive/v_01.tar.gz', # I explain this later on keywords = ['outlier'], # Keywords that define your package best install_requires=[ # I get to this in a second 'numpy', 'pandas', ], classifiers=[ 'Development Status :: 3 - Alpha', # Chose either "3 - Alpha", "4 - Beta" or "5 - Production/Stable" as the current state of your package 'Intended Audience :: Developers', # Define that your audience are developers 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', # Again, pick a license 'Programming Language :: Python :: 3', #Specify which pyhton versions that you want to support 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], )
101703381-outlier
/101703381-outlier-0.1.tar.gz/101703381-outlier-0.1/setup.py
setup.py
#importing libraries import numpy as np import pandas as pd def outliers_removal(in_file, out_file): dataset = pd.read_csv(in_file) #calculating 25th and 75th percentile Q1 = dataset.quantile(0.25) Q3 = dataset.quantile(0.75) #calculating Inter Quartile range IQR = Q3 - Q1 new_dataset = dataset[((dataset >= (Q1 - 1.5 * IQR)) &(dataset <= (Q3 + 1.5 * IQR))).all(axis=1)] new_dataset.to_csv(out_file, index=False) print('The no of rows removed:',len(dataset) - len(new_dataset))
101703383-python-package2
/101703383_python_package2-0.0.3-py3-none-any.whl/package/code_file.py
code_file.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jan 20 02:30:00 2020 @author: samikshakapoor """ from distutils.core import setup setup( name = '101703476_samiksha', # How you named your package folder (MyLib) packages = ['101703476_samiksha'], # Chose the same as "name" version = '0.1', # Start with a small number and increase it with every change you make license='MIT', # Chose a license from here: https://help.github.com/articles/licensing-a-repository description = 'topsis', # Give a short description about your library author = 'samiksha kapoor', # Type in your name author_email = 'samiksha9914@gmail.com', # Type in your E-Mail url = 'https://github.com/samii9914/TOPSIS', # Provide either the link to your github or to your website download_url = 'https://github.com/user/reponame/archive/v_01.tar.gz', # I explain this later on keywords = ['python', 'topsis', 'KEYWORDS'], # Keywords that define your package best install_requires=[ # I get to this in a second 'validators', 'beautifulsoup4', ], classifiers=[ 'Development Status :: 3 - Alpha', # Chose either "3 - Alpha", "4 - Beta" or "5 - Production/Stable" as the current state of your package 'Intended Audience :: Developers', # Define that your audience are developers 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', # Again, pick a license 'Programming Language :: Python :: 3', #Specify which pyhton versions that you want to support 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], )
101703476-samiksha
/101703476_samiksha-0.1.tar.gz/101703476_samiksha-0.1/setup.py
setup.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jan 19 18:08:36 2020 @author: samikshakapoor """ import pandas as pd import sys import numpy as np def main(): dataset = pd.read_csv(sys.argv[1]).values #import the dataset weights = [int(i) for i in sys.argv[2].split(',')] #initalize the weights array entered by user impacts = sys.argv[3].split(',') topsis(dataset , weights , impacts) #initalize impacts array entered by user #dataset = [[250,16,12,5],[200,16,8,3],[300,32,16,4],[275,32,8,4],[225,16,16,2]] #output = pd.DataFrame(dataset) #w = [.25,.25,.25,.25] #beni = ['-','+','+','+'] def topsis(dataset,weights,benificiary): #importing libraries import math # print(dataset) output=pd.DataFrame(dataset) a = (output.shape) #print(output) rows = a[0] columns = a[1] # print(a) #normalizing the dataset # dataset = pd.DataFrame(dataset) # dataset.astype('float') # dataset.to_numpy() dataset=np.array(dataset).astype('float32') for i in range(0,columns): Fsum=0 for j in range(0,rows): Fsum += dataset[j][i]*dataset[j][i] Fsum = math.sqrt(Fsum) for j in range(0,rows): dataset[j][i] = dataset[j][i]/Fsum # print(dataset) # print(Fsum) #multipling with weights for x in range(0,columns): for y in range(0,rows): dataset[y][x] *= weights[x] #finding worst and best of each column #print(dataset) vPlus = [] vMinus = [] def findMin(x,rows): m = 100 for i in range(0,rows): if(dataset[i][x]<m): m=dataset[i][x] return m def findMax(x,rows): m = -1 for i in range(0,rows): if(dataset[i][x]>m): m=dataset[i][x] return m for x in range(0,columns): if(benificiary[x]=='+'): vPlus.append(findMax(x,rows)) vMinus.append(findMin(x,rows)) else: vPlus.append(findMin(x,rows)) vMinus.append(findMax(x,rows)) #calculatind the s+ and s- values #computing the performance score for each row def svalue(a,b): sub = a-b ans = sub**2 return ans p = [] #print(vPlus) #print(vMinus) for i in range(0,rows): sum1 = 0 sum2 = 0 for j in range(0,columns): sum1 = sum1+svalue(dataset[i][j],vPlus[j]) sum2 = sum2+svalue(dataset[i][j],vMinus[j]) sum1 = math.sqrt(sum1) sum2 = math.sqrt(sum2) # print(sum1) # print(sum2) # print("*****") p.append(sum2/(sum1+sum2)) output['performance score'] = p rank = [0 for x in range(rows)] count=1 q = p.copy() for i in range(0,rows): maxpos = q.index(max(q)) rank[maxpos] = count count=count+1 q[maxpos]=-1 output['rank'] = rank print(output) return output if __name__=="__main__": main()
101703476-samiksha
/101703476_samiksha-0.1.tar.gz/101703476_samiksha-0.1/101703476_samiksha/topsis.py
topsis.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jan 26 21:05:33 2020 @author: samikshakapoor """ from 101703476_samiksha.topsis import topsis
101703476-samiksha
/101703476_samiksha-0.1.tar.gz/101703476_samiksha-0.1/101703476_samiksha/__init__.py
__init__.py
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import pandas as pd import numpy as np from sklearn.impute import SimpleImputer import sys def file(input_file): try: return pd.read_csv(input_file) except IOError: raise Exception("Data file doesn't exist\n") def main(): filename = sys.argv[1] data=file(filename) imputer=SimpleImputer(missing_values=np.nan,strategy='mean') data=pd.DataFrame(imputer.fit_transform(data)) data.to_csv('new_data.csv',index=False) print("New data is saved to file 'new_data.csv'.")
101703549-missing-val
/101703549_missing_val-0.0.1-py3-none-any.whl/sin_miss/miss_val.py
miss_val.py
#
101703549-missing-val
/101703549_missing_val-0.0.1-py3-none-any.whl/sin_miss/__init__.py
__init__.py
# Filling Missing Values Missing Data can occur when no information is provided for one or more items or for a whole unit. Missing Data is a very big problem in real life scenario. Missing Data can also refer to as `NA`(Not Available) values in pandas. In DataFrame sometimes many datasets simply arrive with missing data, either because it exists and was not collected or it never existed. In this package, the missing values in a csv file are filled using the fillna function in pandas. For this the statistical model of mean is used. ## Usage $ python3 missing.py filename
101703573-Missing-pkg-suruchipundir
/101703573_Missing-pkg-suruchipundir-0.0.1.tar.gz/101703573_Missing-pkg-suruchipundir-0.0.1/README.md
README.md
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="101703573_Missing-pkg-suruchipundir", version="0.0.1", author="Suruchi Pundir", author_email="suruchipundir@gmail.com", description="Python package to handle missing data", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/suruchipundir/missing-data", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", ], python_requires='>=3.6', )
101703573-Missing-pkg-suruchipundir
/101703573_Missing-pkg-suruchipundir-0.0.1.tar.gz/101703573_Missing-pkg-suruchipundir-0.0.1/setup.py
setup.py
from distutils.core import setup setup( name = '101703604_topsis', # How you named your package folder (MyLib) packages = ['101703604_topsis'], # Chose the same as "name" version = '0.1', # Start with a small number and increase it with every change you make license='MIT', # Chose a license from here: https://help.github.com/articles/licensing-a-repository description = 'A Python package to get the best out of various features.', # Give a short description about your library author = 'Vanshika Chowdhary', # Type in your name author_email = 'vchowdhary_be17@thapar.edu', # Type in your E-Mail url = 'https://github.com/vchowdhary21', # Provide either the link to your github or to your website download_url = 'https://github.com/user/reponame/archive/v_01.tar.gz', # I explain this later on keywords = ['SOME', 'MEANINGFULL', 'KEYWORDS'], # Keywords that define your package best install_requires=[ 'numpy', 'pandas', # I get to this in a second 'validators', 'beautifulsoup4', ], classifiers=[ 'Development Status :: 3 - Alpha', # Chose either "3 - Alpha", "4 - Beta" or "5 - Production/Stable" as the current state of your package 'Intended Audience :: Developers', # Define that your audience are developers 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', # Again, pick a license 'Programming Language :: Python :: 3', #Specify which pyhton versions that you want to support 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], )
101703604-topsis
/101703604_topsis-0.1.tar.gz/101703604_topsis-0.1/setup.py
setup.py
import numpy as np import pd as pd def topsis(d,w,t): fd = d.copy() n = len(d.axes[0]) m = len(d.axes[1]) d = d.astype(dtype='float') d=d.values for j in range(m): s=0 for i in range(n): s+=d[i][j]*d[i][j] s = s**0.5 for i in range(n): d[i][j]=float(d[i][j])/float(s) for j in range(m): for i in range(n): d[i][j]=d[i][j]*w[j] v1=[] v2=[] for j in range(m): if t[j]=='+': v1.append(max(d[:,j])) v2.append(min(d[:,j])) else: v1.append(min(d[:,j])) v2.append(max(d[:,j])) p1=[] p2=[] for i in range(n): s1=0 s2=0 for j in range(m): s1+=(d[i][j]-v1[j])*(d[i][j]-v1[j]) s2+=(d[i][j]-v2[j])*(d[i][j]-v2[j]) s1 = s1**0.5 s2 = s2**0.5 p1.append(s1) p2.append(s2) r = [] for i in range(n): k = p2[i]/(p1[i]+p2[i]) r.append(k) fd['Performance'] = r fd['Rank'] = fd['Performance'].rank(ascending=False) print(fd)
101703604-topsis
/101703604_topsis-0.1.tar.gz/101703604_topsis-0.1/101703604_topsis/101703604_topsis.py
101703604_topsis.py
from distutils.core import setup setup( name = '101903683_kunal_topsis', packages = ['101903683_kunal_topsis'], version = 'v1.2', license='MIT', description = '', author = 'Kunal Garg', author_email = 'kgarg2_be19@thapar.edu', url = 'https://github.com/Gargkunal02/101903683_kunal_topsis', download_url = '', keywords = ['topsis','topsis score','rank','Thapar'], install_requires=['numpy','pandas' ], classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], )
101903683-kunal-topsis
/101903683_kunal_topsis-v1.2.tar.gz/101903683_kunal_topsis-v1.2/setup.py
setup.py
import sys import pandas as pd import numpy as np def normalized_matrix(filename): '''To normalize each of the values in the csv file''' try: dataset = pd.read_csv(filename) #loading the csv file into dataset if len(dataset.axes[1])<3: print("Number of columns should be greater than 3") sys.exit(1) attributes = dataset.iloc[:,1:].values '''the attributes and alternatives are 2-D numpy arrays''' sum_cols=[0]*len(attributes[0]) #1-D array with size equal to the nummber of columns in the attributes array for i in range(len(attributes)): for j in range(len(attributes[i])): sum_cols[j]+=np.square(attributes[i][j]) for i in range(len(sum_cols)): sum_cols[i]=np.sqrt(sum_cols[i]) for i in range(len(attributes)): for j in range(len(attributes[i])): attributes[i][j]=attributes[i][j]/sum_cols[j] return (attributes) except Exception as e: print(e) def weighted_matrix(attributes,weights): ''' To multiply each of the values in the attributes array with the corresponding weights of the particular attribute''' try: weights=weights.split(',') for i in range(len(weights)): weights[i]=float(weights[i]) weighted_attributes=[] for i in range(len(attributes)): temp=[] for j in range(len(attributes[i])): temp.append(attributes[i][j]*weights[j]) weighted_attributes.append(temp) return(weighted_attributes) except Exception as e: print(e) def impact_matrix(weighted_attributes,impacts): try: impacts=impacts.split(',') Vjpositive=[] Vjnegative=[] for i in range(len(weighted_attributes[0])): Vjpositive.append(weighted_attributes[0][i]) Vjnegative.append(weighted_attributes[0][i]) for i in range(1,len(weighted_attributes)): for j in range(len(weighted_attributes[i])): if impacts[j]=='+': if weighted_attributes[i][j]>Vjpositive[j]: Vjpositive[j]=weighted_attributes[i][j] elif weighted_attributes[i][j]<Vjnegative[j]: Vjnegative[j]=weighted_attributes[i][j] elif impacts[j]=='-': if weighted_attributes[i][j]<Vjpositive[j]: Vjpositive[j]=weighted_attributes[i][j] elif weighted_attributes[i][j]>Vjnegative[j]: Vjnegative[j]=weighted_attributes[i][j] Sjpositive=[0]*len(weighted_attributes) Sjnegative=[0]*len(weighted_attributes) for i in range(len(weighted_attributes)): for j in range(len(weighted_attributes[i])): Sjpositive[i]+=np.square(weighted_attributes[i][j]-Vjpositive[j]) Sjnegative[i]+=np.square(weighted_attributes[i][j]-Vjnegative[j]) for i in range(len(Sjpositive)): Sjpositive[i]=np.sqrt(Sjpositive[i]) Sjnegative[i]=np.sqrt(Sjnegative[i]) Performance_score=[0]*len(weighted_attributes) for i in range(len(weighted_attributes)): Performance_score[i]=Sjnegative[i]/(Sjnegative[i]+Sjpositive[i]) return(Performance_score) except Exception as e: print(e) def rank(filename,weights,impacts,resultfilename): try: a = normalized_matrix(filename) c = weighted_matrix(a,weights) d = impact_matrix(c,impacts) dataset = pd.read_csv(filename) dataset['topsis score']="" dataset['topsis score']=d copi=d.copy() copi.sort(reverse=True) Rank=[] for i in range(0,len(d)): temp=d[i] for j in range(0,len(copi)): if temp==copi[j]: Rank.append(j+1) break dataset['Rank']="" dataset['Rank']=Rank dataset.to_csv(resultfilename,index=False) except Exception as e: print(e)
101903683-kunal-topsis
/101903683_kunal_topsis-v1.2.tar.gz/101903683_kunal_topsis-v1.2/101903683_kunal_topsis/topsis.py
topsis.py
from Topsis_Harsimran_101903288.topsis import rank __version__='v1.2'
101903683-kunal-topsis
/101903683_kunal_topsis-v1.2.tar.gz/101903683_kunal_topsis-v1.2/101903683_kunal_topsis/__init__.py
__init__.py
from setuptools import setup, find_packages import codecs import os VERSION = '0.0.1' DESCRIPTION = 'Calculating topsis' # LONG_DESCRIPTION = 'A package that allows to build simple streams of video, audio and camera data.'/ # Setting up setup( name="101903688", version=VERSION, author="Harindham", author_email="<harindamsharma18@gmail.com>", description=DESCRIPTION, # long_description_content_type="text/markdown", # long_description=long_description, packages=find_packages(), install_requires=['pandas', 'numpy'], keywords=['python', 'video', 'stream', 'video stream', 'camera stream', 'sockets'], classifiers=[ "Development Status :: 1 - Planning", "Intended Audience :: Developers", "Programming Language :: Python :: 3", "Operating System :: Unix", "Operating System :: MacOS :: MacOS X", "Operating System :: Microsoft :: Windows", ] )
101903688
/101903688-0.0.1.tar.gz/101903688-0.0.1/setup.py
setup.py
import numpy as np import pandas as pd import sys def create_matrix(matrix): matrix=matrix[:,1:] return matrix def normalize(matrix,weight): column_squared_sum=np.zeros(matrix.shape[1]) for j in range(matrix.shape[1]): for i in range(matrix.shape[0]): column_squared_sum[j]+=matrix[i][j]*matrix[i][j] column_squared_sum[j]=np.sqrt(column_squared_sum[j]) matrix[:,j:j+1]=matrix[:,j:j+1]/column_squared_sum[j] return normailze_matrix(matrix,weight=np.asarray(weight)) def normailze_matrix( matrix,weight): totalweight=np.sum(weight) weight=weight/totalweight normailze_matrix=weight*matrix return normailze_matrix def cases(normailze_matrix,is_max_the_most_desired): ideal_best=np.zeros(normailze_matrix.shape[1]) ideal_worst = np.zeros(normailze_matrix.shape[1]) for j in range(normailze_matrix.shape[1]): if is_max_the_most_desired[j]==1: ideal_best[j]=np.max(normailze_matrix[:,j]) ideal_worst[j] = np.min(normailze_matrix[:, j]) else: ideal_worst[j] = np.max(normailze_matrix[:, j]) ideal_best[j] = np.min(normailze_matrix[:, j]) return Euclidean(normailze_matrix,ideal_best,ideal_worst) def Euclidean(matrix, ideal_best,ideal_worst): euclidean_best=np.zeros(matrix.shape[0]) euclidean_worst=np.zeros(matrix.shape[0]) for i in range(matrix.shape[0]): eachrowBest=0 eachRowWorst=0 for j in range(matrix.shape[1]): eachrowBest+=(matrix[i][j]-ideal_best[j])**2 eachRowWorst+= (matrix[i][j] - ideal_worst[j])**2 euclidean_best[i]=np.sqrt(eachrowBest) euclidean_worst[i]=np.sqrt(eachRowWorst) return performance_score(matrix,euclidean_best,euclidean_worst) def performance_score(matrix,euclidean_best,euclidean_worst): performance=np.zeros(matrix.shape[0]) for i in range( matrix.shape[0]): performance[i]=euclidean_worst[i]/(euclidean_best[i]+euclidean_worst[i]) return performance def topsis(): try: filename=sys.argv[1] except: print('please provide 4 arguements as inputData.csv weights impacts outputFile.csv') sys.exit(1) try: weight_input = sys.argv[2] except: print('please provide 3 more arguement') sys.exit(1) try: impacts = sys.argv[3] except: print('please provide 2 more arguement') sys.exit(1) try: impacts = sys.argv[3] except: print('please provide 1 more arguement') sys.exit(1) try: df = pd.read_csv(filename) except: print('Could not read the file given by you') number_columns=len(df.columns) if number_columns<3: raise Exception("Less Col") if len(sys.argv)!=5: raise Exception("WrongInput") if df.isnull().sum().sum()>0: raise Exception("Blank") outputFileName = sys.argv[4] matrix = df.values original_matrix=matrix try: impacts_1=list(e for e in impacts.split(',')) impact_final =[] for i in impacts_1 : if(i=='+'): impact_final.append(1) elif(i=='-'): impact_final.append(0) else: raise Exception('Impacts must be + or -') except: print('could not correctly parse correctly impacts arguement ') try: weights=list(float(w) for w in weight_input.split(',')) except: print(" could not correctly parse weigths argument") matrix=create_matrix(matrix) normailze_matrix=normalize(matrix,weights) performance=cases(normailze_matrix,np.asarray(impact_final)) l = list(performance) rank = [sorted(l, reverse=True).index(x) for x in l] df['Score'] = performance df['Rank'] = rank df['Rank'] = df['Rank'] + 1 df.to_csv(outputFileName) topsis()
101903697-Topsis-code
/101903697_Topsis_code-0.0.1-py3-none-any.whl/New folder/101903697.py.py
101903697.py.py
from setuptools import setup, find_packages import codecs import os VERSION = '0.0.1' DESCRIPTION = 'Topsis_code' LONG_DESCRIPTION = 'A Python package implementing Topsis method sed for multi-criteria decision analysis. Topsis stands for Technique for Order of Preference by Similarity to Ideal Solution' # Setting up setup( name="101903700-Topsis-code", version=VERSION, author="Bhavy Garg", author_email="bgarg1_be19@thapar.edu", description=DESCRIPTION, long_description_content_type="text/markdown", long_description=LONG_DESCRIPTION, packages=find_packages(), install_requires=[], keywords=['topsis','Topsis'], classifiers=[ "Development Status :: 1 - Planning", "Intended Audience :: Developers", "Programming Language :: Python :: 3", "Operating System :: Unix", "Operating System :: MacOS :: MacOS X", "Operating System :: Microsoft :: Windows", ] )
101903700-Topsis-code
/101903700-Topsis-code-0.0.1.tar.gz/101903700-Topsis-code-0.0.1/setup.py
setup.py
import numpy as np import pandas as pd import sys def create_matrix(matrix): matrix=matrix[:,1:] return matrix def normalize(matrix,weight): column_squared_sum=np.zeros(matrix.shape[1]) for j in range(matrix.shape[1]): for i in range(matrix.shape[0]): column_squared_sum[j]+=matrix[i][j]*matrix[i][j] column_squared_sum[j]=np.sqrt(column_squared_sum[j]) matrix[:,j:j+1]=matrix[:,j:j+1]/column_squared_sum[j] return normailze_matrix(matrix,weight=np.asarray(weight)) def normailze_matrix( matrix,weight): totalweight=np.sum(weight) weight=weight/totalweight normailze_matrix=weight*matrix return normailze_matrix def cases(normailze_matrix,is_max_the_most_desired): ideal_best=np.zeros(normailze_matrix.shape[1]) ideal_worst = np.zeros(normailze_matrix.shape[1]) for j in range(normailze_matrix.shape[1]): if is_max_the_most_desired[j]==1: ideal_best[j]=np.max(normailze_matrix[:,j]) ideal_worst[j] = np.min(normailze_matrix[:, j]) else: ideal_worst[j] = np.max(normailze_matrix[:, j]) ideal_best[j] = np.min(normailze_matrix[:, j]) return Euclidean(normailze_matrix,ideal_best,ideal_worst) def Euclidean(matrix, ideal_best,ideal_worst): euclidean_best=np.zeros(matrix.shape[0]) euclidean_worst=np.zeros(matrix.shape[0]) for i in range(matrix.shape[0]): eachrowBest=0 eachRowWorst=0 for j in range(matrix.shape[1]): eachrowBest+=(matrix[i][j]-ideal_best[j])**2 eachRowWorst+= (matrix[i][j] - ideal_worst[j])**2 euclidean_best[i]=np.sqrt(eachrowBest) euclidean_worst[i]=np.sqrt(eachRowWorst) return performance_score(matrix,euclidean_best,euclidean_worst) def performance_score(matrix,euclidean_best,euclidean_worst): performance=np.zeros(matrix.shape[0]) for i in range( matrix.shape[0]): performance[i]=euclidean_worst[i]/(euclidean_best[i]+euclidean_worst[i]) return performance def topsis(): try: filename=sys.argv[1] except: print('please provide 4 arguements as inputData.csv weights impacts outputFile.csv') sys.exit(1) try: weight_input = sys.argv[2] except: print('please provide 3 more arguement') sys.exit(1) try: impacts = sys.argv[3] except: print('please provide 2 more arguement') sys.exit(1) try: impacts = sys.argv[3] except: print('please provide 1 more arguement') sys.exit(1) try: df = pd.read_csv(filename) except: print('Could not read the file given by you') number_columns=len(df.columns) if number_columns<3: raise Exception("Less Col") if len(sys.argv)!=5: raise Exception("WrongInput") if df.isnull().sum().sum()>0: raise Exception("Blank") outputFileName = sys.argv[4] matrix = df.values original_matrix=matrix try: impacts_1=list(e for e in impacts.split(',')) impact_final =[] for i in impacts_1 : if(i=='+'): impact_final.append(1) elif(i=='-'): impact_final.append(0) else: raise Exception('Impacts must be + or -') except: print('could not correctly parse correctly impacts arguement ') try: weights=list(float(w) for w in weight_input.split(',')) except: print(" could not correctly parse weigths argument") matrix=create_matrix(matrix) normailze_matrix=normalize(matrix,weights) performance=cases(normailze_matrix,np.asarray(impact_final)) l = list(performance) rank = [sorted(l, reverse=True).index(x) for x in l] df['Score'] = performance df['Rank'] = rank df['Rank'] = df['Rank'] + 1 df.to_csv(outputFileName) topsis()
101903700-Topsis-code
/101903700-Topsis-code-0.0.1.tar.gz/101903700-Topsis-code-0.0.1/code_topsis/101903700.py
101903700.py
MOKSHIT GOGIA ASSIGNMENT 4 101903751
101903751-topsis
/101903751-topsis-.tar.gz/101903751-topsis-1.0.0/README.md
README.md
import pathlib from setuptools import setup # The directory containing this file HERE = pathlib.Path(__file__).parent # The text of the README file README = (HERE / "README.md").read_text() # This call to setup() does all the work setup( name="101903751-topsis", version="1.0.0", description="Assignment-4", long_description=README, long_description_content_type="text/markdown", author="MOKSHIT GOGIA", author_email="gogiamokshit16@gmail.com", license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], packages=["project"], include_package_data=True, install_requires=[], entry_points={ "console_scripts": [ "square=square.__main__:main", ] }, )
101903751-topsis
/101903751-topsis-.tar.gz/101903751-topsis-1.0.0/setup.py
setup.py
import sys import pandas as pd import math import copy n = len(sys.argv) if n == 5: if sys.argv[1] == "file name": try: top = pd.read_csv(sys.argv[1]) finl = copy.deepcopy(top) except: print('Error! File not Found') sys.exit() if top.shape[1] >= 3: for col in top.columns[1:]: try: pd.to_numeric(top[col]) except: print("Error! Not all the columns after 2nd are numeric") we = list(sys.argv[2].split(',')) I = list(sys.argv[3].split(',')) w = [] for i in we: w.append(float(i)) if top.shape[1]-1 == len(w) and top.shape[1]-1 == len(I): list1 = [] for col in top.columns[1:]: num = 0 for row in top[col]: num = num + row * row list1.append(num) k = 1 for i in range(top.shape[0]): for j in range(1, top.shape[1]): top.iloc[i, j] = top.iloc[i, j] / list1[j - 1] for i in range(top.shape[0]): for j in range(1, top.shape[1]): top.iloc[i, j] = top.iloc[i, j] * w[j - 1] best = [] worst = [] k = 0 for col in top.columns[1:]: if I[k] == '-': best.append(top[col].min()) worst.append(top[col].max()) else: best.append(top[col].max()) worst.append(top[col].min()) k = k + 1 E_best = [] E_worst = [] for i in range(top.shape[0]): sq_best = 0 sq_worst = 0 diff = 0 diff_best = 0 diff_worst = 0 for j in range(1, top.shape[1]): diff = top.iloc[i, j] - best[j-1] diff_best = diff * diff diff = top.iloc[i, j] - worst[j - 1] diff_worst = diff * diff sq_best = sq_best + diff_best sq_worst = sq_worst + diff_worst E_best.append(math.sqrt(sq_best)) E_worst.append(math.sqrt(sq_worst)) P_score = [] for i in range(top.shape[0]): P_score.append(E_worst[i] / (E_worst[i] + E_best[i])) finl['Topsis Score'] = P_score finl['Rank'] = finl['Topsis Score'].rank(ascending=False) finl.to_csv(sys.argv[4]) print("Output file successfully created.") else: print("Error! Impacts and weights must be separated by ‘,’ (comma).") sys.exit() else: print("Error! Input file must have more than 3 columns.") sys.exit() else: print("Error! File not found") sys.exit() else: print("Error! Arguments passed are either more or less than 4.")
101903751-topsis
/101903751-topsis-.tar.gz/101903751-topsis-1.0.0/project/__main__.py
__main__.py
__version__="1.0.0"
101903751-topsis
/101903751-topsis-.tar.gz/101903751-topsis-1.0.0/project/__init__.py
__init__.py
from setuptools import setup, find_packages import codecs import os VERSION = '0.0.1' DESCRIPTION = 'Calculating topsis Score' # LONG_DESCRIPTION = 'A package that allows to build simple streams of video, audio and camera data.'/ # Setting up setup( name="101903762", version=VERSION, author="Divyanshu", author_email="<djindal1_be19@thapar.edu>", description=DESCRIPTION, # long_description_content_type="text/markdown", # long_description=long_description, packages=find_packages(), install_requires=['pandas', 'numpy'], keywords=['python', 'video', 'stream', 'video stream', 'camera stream', 'sockets'], classifiers=[ "Development Status :: 1 - Planning", "Intended Audience :: Developers", "Programming Language :: Python :: 3", "Operating System :: Unix", "Operating System :: MacOS :: MacOS X", "Operating System :: Microsoft :: Windows", ] )
101903762
/101903762-0.0.1.tar.gz/101903762-0.0.1/setup.py
setup.py
from distutils.core import setup setup( name = '101917149-topsis', # How you named your package folder (MyLib) packages = ['101917149-topsis'], # Chose the same as "name" version = '0.3', # Start with a small number and increase it with every change you make license='MIT', # Chose a license from here: https://help.github.com/articles/licensing-a-repository description = 'topsis', # Give a short description about your library author = 'Daksh Arora', # Type in your name author_email = 'Daksharora79@gmail.com', # Type in your E-Mail url = 'https://github.com/DAKSH1-HUB/101917149-TOPSIS.git', # Provide either the link to your github or to your website download_url = 'https://github.com/DAKSH1-HUB/101917149-TOPSIS/archive/refs/tags/0.3.tar.gz', # I explain this later on keywords = ['101917149', 'topsis', 'Topsis'], # Keywords that define your package best install_requires=[ # I get to this in a second 'numpy', 'pandas', ], classifiers=[ 'Development Status :: 3 - Alpha', # Chose either "3 - Alpha", "4 - Beta" or "5 - Production/Stable" as the current state of your package 'Intended Audience :: Developers', # Define that your audience are developers 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', # Again, pick a license 'Programming Language :: Python :: 3', #Specify which pyhton versions that you want to support 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], )
101917149-topsis
/101917149-topsis-0.3.tar.gz/101917149-topsis-0.3/setup.py
setup.py
## README.md It's a example pack
101hello-0.0.1-redish101
/101hello-0.0.1-redish101-0.0.1.tar.gz/101hello-0.0.1-redish101-0.0.1/README.md
README.md
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="101hello-0.0.1-redish101", version="0.0.1", author="Redish101", author_email="jiayunluo@yeah.net", description="A small example package", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/pypa/sampleproject", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], package_dir={"": "src"}, packages=setuptools.find_packages(where="src"), python_requires=">=3.6", )
101hello-0.0.1-redish101
/101hello-0.0.1-redish101-0.0.1.tar.gz/101hello-0.0.1-redish101-0.0.1/setup.py
setup.py
def 101helloworld(): print("hello,world!")
101hello-0.0.1-redish101
/101hello-0.0.1-redish101-0.0.1.tar.gz/101hello-0.0.1-redish101-0.0.1/src/101helloworld/101helloworld.py
101helloworld.py
"""这是一个nester模块,定义了一个名为print_lol的函数,这个函数的作用 是用于打印列表,列表中可能包含嵌套列表""" def print_lol(the_list): """这个函数取一个位置参数名为the_list,这可以是任何一个列表,所指定的列表中的每个数据都会输出到屏幕上,各数据占据一行""" for each_item in the_list: if isinstance(each_item,list): print_lol(each_item) else: print(each_item)
1020-nester
/1020-nester-1.00.zip/1020-nester-1.00/1020-nester.py
1020-nester.py
from distutils.core import setup setup( name ="1020-nester", version ="1.00", py_modules=["1020-nester"], author ="treeee", author_email="429669469@qq.com", url="lll.com", description="a simple printer of nested lists", )
1020-nester
/1020-nester-1.00.zip/1020-nester-1.00/setup.py
setup.py
## 102003017 ### It finds topsis Score and based on that calculates the rank. ### Installation ## pip install 102003017 ## License ### © 2023 Srishti Sharma ### This repository is licensed under the MIT license. See LICENSE for details.
102003017
/102003017-1.0.0.tar.gz/102003017-1.0.0/README.md
README.md
import pathlib from setuptools import setup # The directory containing this file HERE = pathlib.Path(__file__).parent # The text of the README file README = (HERE / "README.md").read_text() # This call to setup() does all the work setup( name="102003017", version="1.0.0", description="It finds topsis Score and based on that calculates the rank", long_description=README, long_description_content_type="text/markdown", author="Srishti Sharma", author_email="ssharma5_be20@thapar.edu", license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], packages=["102003017"], include_package_data=True, install_requires=["pandas", "numpy", "math", "logging", "sys"], entry_points={ "console_scripts": [ "topsis=topsis.__main__:main", ] }, )
102003017
/102003017-1.0.0.tar.gz/102003017-1.0.0/setup.py
setup.py
# 102003037 TOPSIS PACKAGE HIMANGI SHARMA Roll Number : 102003037 <br> Subgroup : 3COE18 <br> The program takes csv file containing our data to be ranked, weights and impacts in the form of "+" or "-", seperated by commas as inputs and then outputs a resultant csv file with two additional columns of performance score and Ranks. # What is TOPSIS TOPSIS, Technique of Order Preference Similarity to the Ideal Solution, is a multi-criteria decision analysis method (MCDA). <br> It chooses the alternative of shortest the Euclidean distance from the ideal solution and greatest distance from the negative ideal solution. <br> ## Installation ### How to install the TOPSIS package <br> using pip install:-<br> ``` pip install 102003037-topsis-Himangi ``` ## For Calculating the TOPSIS Score Open terminal and type <br> ``` 102003037 102003037-data.csv "1,1,1,1" "+,+,-,+" 102003037-output.csv ``` The output will then be saved in a newly created CSV file whose name will be provided in the command line by the user. ## Input File [102003037-data.csv]: Topsis mathematical operations to be performed on the input file which contains a dataset having different fields. ## Weights ["1,1,1,1"] The weights to assigned to the different parameters in the dataset should be passed in the argument, seperated by commas. ## Impacts ["+,+,-,+"]: The impacts are passed to consider which parameters have a positive impact on the decision and which one have the negative impact. Only '+' and '-' values should be passed and should be seperated with ',' only. ## Output File [102003037-output.csv]: This argument is used to pass the path of the result file where we want the rank and performance score to be stored.
102003037-topsis
/102003037-topsis-0.0.1.tar.gz/102003037-topsis-0.0.1/README.md
README.md
from setuptools import setup, find_packages import codecs import os here = os.path.abspath(os.path.dirname(__file__)) with codecs.open(os.path.join(here, "README.md"), encoding="utf-8") as fh: long_description = "\n" + fh.read() VERSION = '0.0.1' DESCRIPTION = 'Topsis' LONG_DESCRIPTION = 'A package for the implementation of TOPSIS used for MCDM' # Setting up setup( name="102003037-topsis", version=VERSION, author="Himangi Sharma", author_email="hsharma1_be20@thapar.edu", description=DESCRIPTION, long_description_content_type="text/markdown", long_description=long_description, packages=find_packages(), install_requires=['numpy', 'pandas'], keywords=['python','topsis'], classifiers=[ "Development Status :: 1 - Planning", "Intended Audience :: Developers", "Programming Language :: Python :: 3", "Operating System :: Microsoft :: Windows", ] )
102003037-topsis
/102003037-topsis-0.0.1.tar.gz/102003037-topsis-0.0.1/setup.py
setup.py
import setuptools from setuptools import setup setup( name = '102003050_topsis', packages = ['102003050_topsis'], version = '0.1', license='MIT', description = 'Calculate Topsis score and save it in a csv file', author = 'Inaayat Goyal', author_email = 'igoyal1_be20@thapar.edu', url = 'https://github.com/Inaayat12/Topsis-102003050', download_url = '', keywords = ['TOPSISSCORE', 'RANK', 'DATAFRAME'], install_requires=[ 'numpy', 'pandas', 'DateTime', 'isqrt' ], classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], )
102003050-topsis
/102003050_topsis-0.1.tar.gz/102003050_topsis-0.1/setup.py
setup.py
import sys import os import pandas as pd from datetime import datetime from math import sqrt import numpy as np def sorter(x): return int(x[1]) class Error(Exception): pass class MoreArgumentsError(Error): pass class NoArgumentsError(Error): pass class InvalidDataError(Error): pass class NumericError(Error): pass class ImpactsError(Error): pass class WeightsError(Error): pass class ImpactsTypeError(Error): pass class CommaError(Error): pass def TOPSIS(): """This function returns a file by the name specified by the user in the command line arguments which contains the TOPSIS score as well as rank for the different records being compared. Usage: 1) Create a script by importing the package and just calling the TOPSIS function. import importlib topsis=importlib.import_module("Topsis-Inaayat-102003050") topsis.TOPSIS() 2) Run the script from terminal with command line arguments: C:/Users/admin> python myscript.py <Data_File_csv> <Weights(Comma_seperated)> <Impacts(Comma_seperated)> <Result_file_csv> """ args=sys.argv try: if len(args)<5: raise(NoArgumentsError) elif len(args)>5: raise(MoreArgumentsError) df=pd.read_csv(args[1]) if len(list(df.columns))<3: raise(InvalidDataError) d=pd.read_csv(args[1]) for i in df.columns[1:]: if not(np.issubdtype(df[i].dtype, np.number)): raise(NumericError) sums=[np.sum(df.iloc[:,i].values**2) for i in range(1,len(df.columns))] sums=[i**0.5 for i in sums] sums=np.array(sums) if(args[2].count(",")!=len(df.columns)-2 or args[3].count(",")!=len(df.columns)-2): raise(CommaError) weights=[ int(i) for i in args[2].split(",")] impacts=args[3].split(",") for i in impacts: if( i!="+" and i!="-"): print((i)) raise(ImpactsTypeError) if(len(impacts)!=len(df.columns)-1): raise(ImpactsError) if(len(weights)!=len(df.columns)-1): raise(WeightsError) for i in range(len(df)): df.iloc[i,1:]=(df.iloc[i,1:]/sums)*weights ibest=[] iworst=[] #print(df) for i in range(1,len(df.columns)): if impacts[i-1]=="+": ibest.append(max(df[df.columns[i]].values)) iworst.append(min(df[df.columns[i]].values)) elif impacts[i-1]=="-": iworst.append(max(df[df.columns[i]].values)) ibest.append(min(df[df.columns[i]].values)) #print(ibest,iworst) ibest=np.array(ibest) iworst=np.array(iworst) disbest=[sqrt(np.sum(np.square(ibest-df.iloc[i,1:].values))) for i in range(len(df))] disworst=[sqrt(np.sum(np.square(iworst-df.iloc[i,1:].values))) for i in range(len(df))] topsis=[disworst[i]/(disworst[i]+disbest[i]) for i in range(len(disbest))] d["TOPSIS"]=topsis d["Rank"]=d["TOPSIS"].rank(method="max",ascending=False) d.to_csv(args[4],index=False) except FileNotFoundError: print("[",datetime.now(),"]","File Not Found: Cannot find the file",args[1],"at specified path") except MoreArgumentsError: print("[",datetime.now(),"]","Too Many Arguments Supplied for Runtime") except NoArgumentsError: print("[",datetime.now(),"]","Insufficient Arguments Supplied for Runtime") except InvalidDataError: print("[",datetime.now(),"]","File",args[1],"cannot be processed due to invalid structure(More Columns Required)") except NumericError: print("[",datetime.now(),"]","File",args[1],"cannot be processed due to invalid structure( 2nd to last columns must be numeric)") except CommaError: print("[",datetime.now(),"]","File",args[1],"cannot be processed due to invalid imput(Impacts and Weights must be seperated by comma)") except ImpactsTypeError: print("[",datetime.now(),"]","File",args[1],"cannot be processed due to invalid imput(Impacts must be either + or -)") except ImpactsError: print("[",datetime.now(),"]","File",args[1],"cannot be processed due to invalid imput(Impacts are not equal to features)") except WeightsError: print("[",datetime.now(),"]","File",args[1],"cannot be processed due to invalid imput(Weights are not equal to features)")
102003050-topsis
/102003050_topsis-0.1.tar.gz/102003050_topsis-0.1/102003050_topsis/topsis.py
topsis.py
from .topsis import TOPSIS
102003050-topsis
/102003050_topsis-0.1.tar.gz/102003050_topsis-0.1/102003050_topsis/__init__.py
__init__.py
## 102003053 ### It calculates topsis for a given data in csv file. ### Installation ## pip install 102003053 ## License ### © 2023 Amit Kumar ### This repository is licensed under the MIT license. See LICENSE for details.
102003053
/102003053-1.1.0.tar.gz/102003053-1.1.0/README.md
README.md
import pathlib from setuptools import setup # The directory containing this file HERE = pathlib.Path(__file__).parent # The text of the README file README = (HERE / "README.md").read_text() # This call to setup() does all the work setup( name="102003053", version="1.1.0", description="It finds topsis for the given data in csv file", long_description=README, long_description_content_type="text/markdown", author="Amit Kumar", author_email="akumar9_be20@thapar.edu", license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], packages=["102003053"], include_package_data=True, install_requires=["pandas", "numpy"], entry_points={ "console_scripts": [ "topsis=topsis.__main__:main", ] }, )
102003053
/102003053-1.1.0.tar.gz/102003053-1.1.0/setup.py
setup.py
from distutils.core import setup with open("README.md", "r") as fh: long_description = fh.read() setup( name = '102003105', # How you named your package folder (MyLib) packages = ['102003105'], # Chose the same as "name" version = '1.0.5', # Start with a small number and increase it with every change you make license='MIT', # Chose a license from here: https://help.github.com/articles/licensing-a-repository description = 'A Python package to find TOPSIS for Multi-Criteria Decision Analysis Method', # Give a short description about your library long_description=long_description, long_description_content_type='text/markdown', author = 'Aditya Kuthiala', # Type in your name author_email = 'adityakuthiala1806@gmail.com', # Type in your E-Mail url = 'https://github.com/AdiK1806/Topsis-Aditya-102003105', # Provide either the link to your github or to your website keywords=['topsis', 'TIET' ,'Thapar'], include_package_data=True, install_requires=['pandas', 'tabulate'], classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Operating System :: Microsoft :: Windows :: Windows 10', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3' ], )
102003105
/102003105-1.0.5.tar.gz/102003105-1.0.5/setup.py
setup.py
def add_numbers(a,b): return a+b def mul_numbers(a,b): return a*b def div_numbers(a,b): return a/b def sub_numbers(a,b): return a-b
102003171-Calc
/102003171_Calc-0.2-py3-none-any.whl/mybasiccalculator/__init__.py
__init__.py
import pandas as pd import sys import math # read_file.to_csv("102003712-data.csv", # index = None, # header=True) def main(): try: read_file = pd.read_csv(sys.argv[1]) df = pd.DataFrame(read_file) df1 = df.drop(df.columns[0], axis=1) w = sys.argv[2] weight = w.split(",") weight = [eval(i) for i in weight] i = sys.argv[3] impact1 = i.split(",") impact = [] for i in impact1: if i == '+': impact.append(1) elif (i == '-'): impact.append(0) # print(impact) rows = df1.shape[0] cols = df1.shape[1] ss = [] for j in range(0, cols): sum = 0 for i in range(0, rows): sum = sum+(df1.iloc[i, j]*df1.iloc[i, j]) sum = math.sqrt(sum) ss.append(sum) # print(ss) for j in range(0, cols): for i in range(0, rows): df1.iloc[i, j] = (df1.iloc[i, j]/ss[j])*weight[j] best = [] worst = [] for j in range(0, cols): max = -1 min = 10000 for i in range(0, rows): if (df1.iloc[i, j] > max): max = df1.iloc[i, j] if (df1.iloc[i, j] < min): min2 = df1.iloc[i, j] if (impact[j] == 1): best.append(max) worst.append(min) elif (impact[j] == 0): best.append(min) worst.append(max) ed_b = [] ed_w = [] for i in range(0, rows): sum_b = 0 sum_w = 0 for j in range(0, cols): sum_b = sum_b+((df1.iloc[i, j]-best[j]) * (df1.iloc[i, j]-best[j])) sum_w = sum_w+((df1.iloc[i, j]-worst[j]) * (df1.iloc[i, j]-worst[j])) ed_b.append(math.sqrt(sum_b)) ed_w.append(math.sqrt(sum_w)) p = [] for i in range(0, rows): p.append(ed_w[i]/(ed_b[i]+ed_w[i])) df["score"] = p df["Rank"] = df["score"].rank() df.to_csv(sys.argv[4], index=False) except FileNotFoundError: print('file not found') except: if (len(sys.argv) != 5): print('ERROR: Please provide four arguments') elif (len(weight) != len(impact) or len(weight) != cols or len(impact) != cols): print('ERROR: incorrect arguments') else: print('ERROR') if __name__ == '__main__': main()
102003712
/102003712-0.0.6-py3-none-any.whl/topsisLibrary/topsis.py
topsis.py
import pandas as pd import sys import math # read_file.to_csv("102003712-data.csv", # index = None, # header=True) def main(): try: read_file = pd.read_csv(sys.argv[1]) df = pd.DataFrame(read_file) df1 = df.drop(df.columns[0], axis=1) w = sys.argv[2] weight = w.split(",") weight = [eval(i) for i in weight] i = sys.argv[3] impact1 = i.split(",") impact = [] for i in impact1: if i == '+': impact.append(1) elif (i == '-'): impact.append(0) # print(impact) rows = df1.shape[0] cols = df1.shape[1] ss = [] for j in range(0, cols): sum = 0 for i in range(0, rows): sum = sum+(df1.iloc[i, j]*df1.iloc[i, j]) sum = math.sqrt(sum) ss.append(sum) # print(ss) for j in range(0, cols): for i in range(0, rows): df1.iloc[i, j] = (df1.iloc[i, j]/ss[j])*weight[j] best = [] worst = [] for j in range(0, cols): max = -1 min = 10000 for i in range(0, rows): if (df1.iloc[i, j] > max): max = df1.iloc[i, j] if (df1.iloc[i, j] < min): min2 = df1.iloc[i, j] if (impact[j] == 1): best.append(max) worst.append(min) elif (impact[j] == 0): best.append(min) worst.append(max) ed_b = [] ed_w = [] for i in range(0, rows): sum_b = 0 sum_w = 0 for j in range(0, cols): sum_b = sum_b+((df1.iloc[i, j]-best[j]) * (df1.iloc[i, j]-best[j])) sum_w = sum_w+((df1.iloc[i, j]-worst[j]) * (df1.iloc[i, j]-worst[j])) ed_b.append(math.sqrt(sum_b)) ed_w.append(math.sqrt(sum_w)) p = [] for i in range(0, rows): p.append(ed_w[i]/(ed_b[i]+ed_w[i])) df["score"] = p df["Rank"] = df["score"].rank() df.to_csv(sys.argv[4], index=False) except FileNotFoundError: print('file not found') except: if (len(sys.argv) != 5): print('ERROR: Please provide four arguments') elif (len(weight) != len(impact) or len(weight) != cols or len(impact) != cols): print('ERROR: incorrect arguments') else: print('ERROR') if __name__ == '__main__': main()
102003759
/102003759-0.0.1-py3-none-any.whl/Topsis/topsis.py
topsis.py
import pandas as pd import sys import math # author : Sahil Chhabra # email : sahil.chh718@gmail.com def main(): try: read_file = pd.read_csv(sys.argv[1]) print(sys.argv) df = pd.DataFrame(read_file) df1 = df.drop(df.columns[0], axis=1) w = sys.argv[2] weight = w.split(",") weight = [eval(i) for i in weight] i = sys.argv[3] impact1 = i.split(",") impact = [] for i in impact1: if i == '+': impact.append(1) elif (i == '-'): impact.append(0) # print(impact) rows = df1.shape[0] cols = df1.shape[1] ss = [] for j in range(0, cols): sum = 0 for i in range(0, rows): sum = sum+(df1.iloc[i, j]*df1.iloc[i, j]) sum = math.sqrt(sum) ss.append(sum) # print(ss) for j in range(0, cols): for i in range(0, rows): df1.iloc[i, j] = (df1.iloc[i, j]/ss[j])*weight[j] best = [] worst = [] for j in range(0, cols): max = -1 min = 10000 for i in range(0, rows): if (df1.iloc[i, j] > max): max = df1.iloc[i, j] if (df1.iloc[i, j] < min): min2 = df1.iloc[i, j] if (impact[j] == 1): best.append(max) worst.append(min) elif (impact[j] == 0): best.append(min) worst.append(max) ed_b = [] ed_w = [] for i in range(0, rows): sum_b = 0 sum_w = 0 for j in range(0, cols): sum_b = sum_b+((df1.iloc[i, j]-best[j]) * (df1.iloc[i, j]-best[j])) sum_w = sum_w+((df1.iloc[i, j]-worst[j]) * (df1.iloc[i, j]-worst[j])) ed_b.append(math.sqrt(sum_b)) ed_w.append(math.sqrt(sum_w)) p = [] for i in range(0, rows): p.append(ed_w[i]/(ed_b[i]+ed_w[i])) df["score"] = p df["Rank"] = df["score"].rank() df.to_csv(sys.argv[4], index=False) except FileNotFoundError: print('file not found') except: if (len(sys.argv) != 5): print('ERROR: Please provide four arguments') elif (len(weight) != len(impact) or len(weight) != cols or len(impact) != cols): print('ERROR: incorrect arguments') else: print('ERROR') if __name__ == '__main__': main()
102003766-topsis
/102003766_topsis-0.0.1-py3-none-any.whl/topsis.py
topsis.py
# 102017059_Aakanksha_Topsis This package is implementation of multi-criteria decision analysis using topsis. This package will accept three arguments during file execution: dataset.csv //file which contains the models and parameters string of weights separated by commas(,) string of requirements (+/-) separated by commas(,) // important install pandas,sys,operator and math libraries before installing this // You can install this package using following command pip install 102017059_Aakanksha_Topsis
102017059-Aakanksha-Topsis
/102017059_Aakanksha_Topsis-0.0.0.tar.gz/102017059_Aakanksha_Topsis-0.0.0/README.md
README.md
import pathlib from setuptools import setup # The directory containing this file HERE = pathlib.Path(__file__).parent # The text of the README file README = (HERE / "README.md").read_text() # This call to setup() does all the work setup( name="102017059_Aakanksha_Topsis", version="0.0.0", description="Topsis Implementation", long_description=README, long_description_content_type="text/markdown", url="https://github.com/aakanksha-17/102017059_Aakanksha_Topsis.git", author="Aakanksha Pandey", author_email="apandey1_be20@thapar.edu", license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], packages=["topsis"], include_package_data=True, install_requires=[], entry_points={ "console_scripts": [ "topsis=topsis.__main__:main", ] }, )
102017059-Aakanksha-Topsis
/102017059_Aakanksha_Topsis-0.0.0.tar.gz/102017059_Aakanksha_Topsis-0.0.0/setup.py
setup.py
import numpy as np import pandas as pd import math as math import operator import sys def main(): if(len(sys.argv)!=5): print("Wrong arguments") exit(0) df=pd.read_csv(sys.argv[1]) wt=[float(w) for w in sys.argv[2].split(',')] bt=[i for i in sys.argv[3].split(',')] if(len(wt)!=df.shape[1]-1): print("Incorrect weights") exit(0) if(len(bt)!=df.shape[1]-1): print("Incorrect impacts") exit(0) # new data set will copy values one by one df1=df.iloc[:,1:].values try: wt=[w/sum(wt) for w in wt] except: print("exception 1 raised") for i in range(df1.shape[1]): dmn=math.sqrt(sum(df1[:,i]**2)) for j in range(df1.shape[0]): try: df1[j][i]= (df1[j][i])/dmn except: print("exception 2 raised") for i in range(df1.shape[1]): df1[:,i]=df1[:,i]*wt[i] ibestv=[] iworstv=[] for i in range(len(bt)): if(bt[i]=='+'): ibestv.append(max(df1[:,i])) iworstv.append(min(df1[:,i])) else: ibestv.append(min(df1[:,i])) iworstv.append(max(df1[:,i])) good=[] bad=[] for i in range(df1.shape[0]): sum1=0 sum2=0 for j in range(df1.shape[1]): sum1=sum1+ (df1[i][j]-ibestv[j])**2 sum1=math.sqrt(sum1) sum2=sum2+ (df1[i][j]-iworstv[j])**2 sum2=math.sqrt(sum2) good.append(sum1) bad.append(sum2) performance=[] for i in range(len(good)): try: performance.append(bad[i]/(bad[i]+good[i])) except: print("exception 3 raised") mat=[] for i in range(len(performance)): mat.append([i+1, df.iloc[i,0], performance[i],0]) mat.sort(key=operator.itemgetter(2)) for i in range(len(mat)): mat[i][3]=len(mat)-i mat.sort(key=operator.itemgetter(0)) df['Performance']=performance rank=[] for i in range(len(mat)): rank.append(mat[i][3]) df['Rank']=rank of=sys.argv[4] df.to_csv(of) print("DONE") if __name__=="__main__": main()
102017059-Aakanksha-Topsis
/102017059_Aakanksha_Topsis-0.0.0.tar.gz/102017059_Aakanksha_Topsis-0.0.0/topsis/__main__.py
__main__.py
version= '0.0.0'
102017059-Aakanksha-Topsis
/102017059_Aakanksha_Topsis-0.0.0.tar.gz/102017059_Aakanksha_Topsis-0.0.0/topsis/__init__.py
__init__.py
TOPSIS Package TOPSIS stands for Technique for Oder Preference by Similarity to Ideal Solution. It is a method of compensatory aggregation that compares a set of alternatives by identifying weights for each criterion, normalising scores for each criterion and calculating the geometric distance between each alternative and the ideal alternative, which is the best score in each criterion. An assumption of TOPSIS is that the criteria are monotonically increasing or decreasing. In this Python package Vector Normalization has been implemented. This package has been created based on Project 1 of course UCS633. Tarandeep Singh 102017067 In Command Prompt >topsis data.csv "1,1,1,1" "+,+,-,+"
102017067-topsis
/102017067-topsis-1.0.0.tar.gz/102017067-topsis-1.0.0/README.md
README.md
from setuptools import setup def readme(): with open('README.md') as f: README = f.read() return README setup( name="102017067-topsis", version="1.0.0", description="A Python package to get optimal solutiion.", long_description=readme(), long_description_content_type="text/markdown", author="Tarandeep Singh", author_email="tarandeep293@gmail.com", license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", ], packages=["topsis"], include_package_data=True, install_requires=["sys","os","pandas","math","numpy"], entry_points={ "console_scripts": [ "102017067-topsis=topsis.102017067_topsis:main", ] }, )
102017067-topsis
/102017067-topsis-1.0.0.tar.gz/102017067-topsis-1.0.0/setup.py
setup.py
# -*- coding: utf-8 -*- import sys import os import pandas as pd import math import numpy as np class Topsis: def __init__(self,filename): if os.path.isdir(filename): head_tails = os.path.split(filename) data = pd.read_csv(head_tails[1]) if os.path.isfile(filename): data = pd.read_csv(filename) self.d = data.iloc[1:,1:].values self.features = len(self.d[0]) self.samples = len(self.d) def fun(self,a): return a[1] def fun2(self,a): return a[0] def evaluate(self,w = None,im = None): d = self.d features = self.features samples = self.samples if w==None: w=[1]*features if im==None: im=["+"]*features ideal_best=[] ideal_worst=[] for i in range(0,features): k = math.sqrt(sum(d[:,i]*d[:,i])) maxx = 0 minn = 1 for j in range(0,samples): d[j,i] = (d[j,i]/k)*w[i] if d[j,i]>maxx: maxx = d[j,i] if d[j,i]<minn: minn = d[j,i] if im[i] == "+": ideal_best.append(maxx) ideal_worst.append(minn) else: ideal_best.append(minn) ideal_worst.append(maxx) plt = [] for i in range(0,samples): a = math.sqrt(sum((d[i]-ideal_worst)*(d[i]-ideal_worst))) b = math.sqrt(sum((d[i]-ideal_best)*(d[i]-ideal_best))) lst = [] lst.append(i) lst.append(a/(a+b)) plt.append(lst) plt.sort(key=self.fun) rank = 1 for i in range(samples-1,-1,-1): plt[i].append(rank) rank+=1 plt.sort(key=self.fun2) return plt def findTopsis(filename,w,i): observations = Topsis(filename) result = observations.evaluate(w,i) print(result) def main(): lst = sys.argv length = len(lst) if length > 4 or length< 4: print("wrong Parameters") else: w = list(map(int,lst[2].split(','))) i = lst[3].split(',') observations = Topsis(lst[1]) result = observations.evaluate(w,i) # print (res) # print(type(res)) # df = pd.DataFrame(res) # df.to_csv('EmployeeData.csv') # res.to_csv("output.csv") dataframe = pd.DataFrame(result) dataframe.to_csv("output.csv") if __name__ == '__main__': main()
102017067-topsis
/102017067-topsis-1.0.0.tar.gz/102017067-topsis-1.0.0/topsis/102017067.py
102017067.py
TOPSIS Package TOPSIS stands for Technique for Oder Preference by Similarity to Ideal Solution. It is a method of compensatory aggregation that compares a set of alternatives by identifying weights for each criterion, normalising scores for each criterion and calculating the geometric distance between each alternative and the ideal alternative, which is the best score in each criterion. An assumption of TOPSIS is that the criteria are monotonically increasing or decreasing. In this Python package Vector Normalization has been implemented. This package has been created based on Assignment 1 of course UCS654. Prince Sharma 102017119 In Command Prompt >topsis data.csv "1,1,1,1" "+,+,-,+"
102017119-topsis
/102017119-topsis-1.0.0.tar.gz/102017119-topsis-1.0.0/README.md
README.md
from setuptools import setup def readme(): with open('README.md') as f: README = f.read() return README setup( name="102017119-topsis", version="1.0.0", description="A Python package to get optimal solutiion.", long_description=readme(), long_description_content_type="text/markdown", author="Prince Sharma", author_email="sharmajhonny15@gmail.com", license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", ], packages=["topsis"], include_package_data=True, install_requires=["sys","os","pandas","math","numpy"], entry_points={ "console_scripts": [ "102017119-topsis=topsis.102017119_topsis:main", ] }, )
102017119-topsis
/102017119-topsis-1.0.0.tar.gz/102017119-topsis-1.0.0/setup.py
setup.py
# -*- coding: utf-8 -*- import sys import os import pandas as pd import math import numpy as np class Topsis: def __init__(self,filename): if os.path.isdir(filename): head_tails = os.path.split(filename) data = pd.read_csv(head_tails[1]) if os.path.isfile(filename): data = pd.read_csv(filename) self.d = data.iloc[1:,1:].values self.features = len(self.d[0]) self.samples = len(self.d) def fun(self,a): return a[1] def fun2(self,a): return a[0] def evaluate(self,w = None,im = None): d = self.d features = self.features samples = self.samples if w==None: w=[1]*features if im==None: im=["+"]*features ideal_best=[] ideal_worst=[] for i in range(0,features): k = math.sqrt(sum(d[:,i]*d[:,i])) maxx = 0 minn = 1 for j in range(0,samples): d[j,i] = (d[j,i]/k)*w[i] if d[j,i]>maxx: maxx = d[j,i] if d[j,i]<minn: minn = d[j,i] if im[i] == "+": ideal_best.append(maxx) ideal_worst.append(minn) else: ideal_best.append(minn) ideal_worst.append(maxx) plt = [] for i in range(0,samples): a = math.sqrt(sum((d[i]-ideal_worst)*(d[i]-ideal_worst))) b = math.sqrt(sum((d[i]-ideal_best)*(d[i]-ideal_best))) lst = [] lst.append(i) lst.append(a/(a+b)) plt.append(lst) plt.sort(key=self.fun) rank = 1 for i in range(samples-1,-1,-1): plt[i].append(rank) rank+=1 plt.sort(key=self.fun2) return plt def findTopsis(filename,w,i): observations = Topsis(filename) result = observations.evaluate(w,i) print(result) def main(): lst = sys.argv length = len(lst) if length > 4 or length< 4: print("wrong Parameters") else: w = list(map(int,lst[2].split(','))) i = lst[3].split(',') observations = Topsis(lst[1]) result = observations.evaluate(w,i) # print (res) # print(type(res)) # df = pd.DataFrame(res) # df.to_csv('EmployeeData.csv') # res.to_csv("output.csv") dataframe = pd.DataFrame(result) dataframe.to_csv("output.csv") if __name__ == '__main__': main()
102017119-topsis
/102017119-topsis-1.0.0.tar.gz/102017119-topsis-1.0.0/topsis/102017119.py
102017119.py
import pandas as pd import sys import os def main() : if len(sys.argv) != 5 : #for the proper usage print("ERROR : NUMBER OF PARAMETERS") print("USAGE : python <filename>.py inputfile.csv '1,1,1,1' '+,+,-,+' result.csv ") exit(1) elif not os.path.isfile(sys.argv[1]): #for file not found print(f"ERROR : {sys.argv[1]} Doesn't exist, Please check if you have entered the right file") exit(1) elif ".csv" != (os.path.splitext(sys.argv[1]))[1]: #for csv format print(f"ERROR : Please enter {sys.argv[1]} in csv format") exit(1) else : dataset = pd.read_csv(sys.argv[1]) ncol = len(dataset.columns.values) if ncol < 3 : print("ERROR : Minimum Number of Columns should be 3") exit(1) for i in range(1,ncol) : pd.to_numeric(dataset.iloc[:,i],errors='coerce') #if there are missing values #dataset.iloc[:,i].fillna((dataset[:,i].values.mean()),inplace=True) try : weights = [int(i) for i in sys.argv[2].split(',')] except : print('ERROR : Weights array not input properly') exit(1) #checking impact array for i in sys.argv[3].split(',') : if i not in ['+','-'] : print('Error : Impacts can only be + or -') exit(1) impact = sys.argv[3].split(',') if ncol != len(weights) + 1 or ncol != len(impact) : print("ERROR : The lenghts of either weights or impact doesn't match with the dataset length") print('Length of dataset : ',ncol-1,'\n Length of weights :',len(weights),'\nLenght of imapcts :',len(impact)) exit(1) if('.csv' != (os.path.splitext(sys.argv[4]))[1]) : print('ERROR : output file should be in csv form') exit(1) topsis = Topsis() topsis.topsis(dataset,weights,impact,ncol) class Topsis : def __Normalize(self,dataset,nCol,weight) : for i in range(1,nCol) : temp = 0 for j in range(len(dataset)) : temp = temp + dataset.iloc[j,i] ** 2 #sum of squares temp = temp ** 0.5 for j in range(len(dataset)) : dataset.iat[j,i] = (dataset.iloc[j,i] / temp) * weight[i-1] #adjusting according to weights #print(dataset) return dataset def __ideal_best_worst(self,dataset,ncol,impact) : ideal_best_values = (dataset.max().values)[1:] ideal_worst_values = (dataset.min().values)[1:] #print(ncol,len(impact)) for i in range(1,ncol) : if impact[i-1] == '-' : ideal_best_values[i-1],ideal_worst_values[i-1] = ideal_worst_values[i-1],ideal_best_values[i-1] return ideal_best_values, ideal_worst_values def topsis(self,dataset,weights,impact,ncol) : #ncol = len(dataset.axes[1]) dataset = self.__Normalize(dataset,ncol,weights) p_sln , n_sln = self.__ideal_best_worst(dataset,ncol,impact) score = [] pp = [] #positive distances nn = [] #negative distances for i in range(len(dataset)) : temp_p,temp_n = 0,0 for j in range(1,ncol) : temp_p += (p_sln[j-1] - dataset.iloc[i,j])**2 temp_n += (n_sln[j-1] - dataset.iloc[i,j])**2 temp_p,temp_n = temp_p**0.5,temp_n**0.5 score.append(temp_n/(temp_p+temp_n)) nn.append(temp_n) pp.append(temp_p) # dataset['positive distance'] = pp # dataset['negative distance'] = nn #print(score) dataset['Topsis Score'] = score dataset['Rank'] = (dataset['Topsis Score'].rank(method = 'max',ascending = False)) dataset = dataset.astype({"Rank" : int}) dataset.to_csv(sys.argv[4],index = False) if __name__ == '__main__' : main()
102053005-Aditya-Topsis
/102053005_Aditya_Topsis-0.11-py3-none-any.whl/102053005_Aditya_Topsis/102053005.py
102053005.py
import pandas as pd result_file = input("Enter output file: ") data_file = input("Enter csv data file: ") data = pd.read_csv(data_file, header=None) print(data) #apply vector normalization #multiply weights
102053010
/102053010-0.0.1-py3-none-any.whl/src/topsis.py
topsis.py
import pandas as pd result_file = input("Enter output file: ") data_file = input("Enter csv data file: ") data = pd.read_csv(data_file, header=None) print(data) #apply vector normalization #multiply weights
102053010
/102053010-0.0.1-py3-none-any.whl/src/102053010.py
102053010.py
from setuptools import setup, find_packages classifiers = [ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Education', 'Operating System :: Microsoft :: Windows :: Windows 10', #'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3' ] setup( name='102053024', version='0.0.1', description='Topsis Code', long_description=open('readme.txt').read() + '\n\n' + open('changelog.txt').read(), url='', author='Khushi Bathla', author_email='kbathla_be20@thapar.edu', #license='MIT', classifiers=classifiers, keywords='topsis', packages=find_packages(), install_requires=[''] )
102053024
/102053024-0.0.1.tar.gz/102053024-0.0.1/setup.py
setup.py
import pandas as pd import numpy as np import sys def topsis(): if len(sys.argv)!=5: print("Wrong command line input") exit() try: with open(sys.argv[1], 'r') as filee: df=pd.read_csv(filee) except FileNotFoundError: print("File not found") exit() punctuation_dictionary = {'.':True,'@': True, '^': True, '!': True, ' ': True, '#': True, '%': True,'$': True, '&': True, ')': True, '(': True, '+': True, '*': True,'-': True, '=': True} punctuation_dictionary2 = {'.':True,'@': True, '^': True, '!': True, ' ': True, '#': True, '%': True,'$': True, '&': True, ')': True, '(': True, '*': True, '=': True} def char_check(new_list, punct_dict): for item in new_list: for char in item: if char in punct_dict: return False def string_check(comma_check_list, punct_dict): for string in comma_check_list: new_list = string.split(",") if char_check(new_list, punct_dict) == False: print("Invalid input or Values not comma separated") exit() string_check(sys.argv[2], punctuation_dictionary) string_check(sys.argv[3], punctuation_dictionary2) nCol=len(df.columns) weights1 = list(sys.argv[2].split(",")) impacts = list(sys.argv[3].split(",")) weights = [eval(i) for i in weights1] if nCol<3: print("No of columns are less than 3.") exit() if len(impacts) != (nCol-1): print("No of values in impacts should be same as the number of columns.") exit() if len(weights) != (nCol-1): print("No of values in weights should be same as the number of columns.") exit() for i in range(len(impacts)): if(impacts[i]!="+" and impacts[i]!="-"): print("Impacts should be either '+' or '-'.") exit() for index,row in df.iterrows(): try: float(row['P1']) float(row['P2']) float(row['P3']) float(row['P4']) float(row['P5']) except: df.drop(index,inplace=True) df["P1"] = pd.to_numeric(df["P1"], downcast="float") df["P2"] = pd.to_numeric(df["P2"], downcast="float") df["P3"] = pd.to_numeric(df["P3"], downcast="float") df["P4"] = pd.to_numeric(df["P4"], downcast="float") df["P5"] = pd.to_numeric(df["P5"], downcast="float") df = df.copy(deep=True) for i in range(1,nCol): temp=0 for j in range(len(df)): temp=temp+df.iloc[j,i]**2 temp=temp**0.5 for j in range(len(df)): df.iat[j, i] = (df.iloc[j, i] / temp)*weights[i-1] ideal_best=(df.max().values)[1:] ideal_worst=(df.min().values)[1:] for i in range(1,nCol): if(impacts[i-1]=='-'): ideal_best[i-1],ideal_worst[i-1]=ideal_worst[i-1],ideal_best[i-1] score=[] distance_positive=[] distance_negative=[] for i in range(len(df)): temp_p,temp_n=0,0 for j in range(1,nCol): temp_p=temp_p + (ideal_best[j-1]-df.iloc[i,j])**2 temp_n=temp_n + (ideal_worst[j-1]-df.iloc[i,j])**2 temp_p=temp_p**0.5 temp_n=temp_n**0.5 score.append(temp_n/(temp_p + temp_n)) distance_negative.append(temp_n) distance_positive.append(temp_p) df['distance negative']=distance_negative df['distance positive']=distance_positive df['Topsis Score']=score df['Rank'] = (df['Topsis Score'].rank(method='max', ascending=False)) df = df.astype({"Rank": int}) print(df) df.to_csv(sys.argv[4],index=False)
102053042TOPSIS
/102053042TOPSIS-0.0.1-py3-none-any.whl/Topsis_102053042/Topsis_102053042.py
Topsis_102053042.py
from Topsis_102053042 import topsis
102053042TOPSIS
/102053042TOPSIS-0.0.1-py3-none-any.whl/Topsis_102053042/__init__.py
__init__.py
# -*- coding: utf-8 -*- from setuptools import setup packages = \ ['1082_msr_bhp'] package_data = \ {'': ['*']} install_requires = \ ['click>=8.0.3,<9.0.0'] setup_kwargs = { 'name': '1082-msr-bhp', 'version': '0.1.0', 'description': '', 'long_description': None, 'author': 'Lucas Selfslagh', 'author_email': 'lucas.selfslagh@gmail.com', 'maintainer': None, 'maintainer_email': None, 'url': None, 'packages': packages, 'package_data': package_data, 'install_requires': install_requires, 'python_requires': '>=3.10,<4.0', } setup(**setup_kwargs)
1082-msr-bhp
/1082-msr-bhp-0.1.0.tar.gz/1082-msr-bhp-0.1.0/setup.py
setup.py
# src/hypermodern_python/console.py import os import click from . import __version__ @click.command() @click.version_option(version=__version__) def main(): click.echo("Hello, world!") click.echo(os.getcwd())
1082-msr-bhp
/1082-msr-bhp-0.1.0.tar.gz/1082-msr-bhp-0.1.0/1082_msr_bhp/console.py
console.py
__version__ = '0.1.0'
1082-msr-bhp
/1082-msr-bhp-0.1.0.tar.gz/1082-msr-bhp-0.1.0/1082_msr_bhp/__init__.py
__init__.py
# 10EngineeringProblems Programs designed to Solve Engineering Problems To run each program just import the module using `import 10EngrProblems` Then to run each block of code just call *HW* then the number of the problem you are working on. As seen below this is how you would run HW1() `HW1()`
10EngrProblems
/10EngrProblems-1.0.tar.gz/10EngrProblems-1.0/README.md
README.md