code
stringlengths
1
5.19M
package
stringlengths
1
81
path
stringlengths
9
304
filename
stringlengths
4
145
import io from pathlib import Path import re import numpy as np import pandas as pd from scipy import signal from abr.datatype import ABRWaveform, ABRSeries def load(filename, filter_settings=None, frequencies=None): filename = Path(filename) with filename.open(encoding='ISO-8859-1') as f: line = f.readline() if not line.startswith(':RUN-'): raise IOError('Unsupported file format') p_level = re.compile(':LEVELS:([0-9;]+)') p_fs = re.compile('SAMPLE \(.sec\): ([0-9]+)') p_freq = re.compile('FREQ: ([0-9\.]+)') abr_window = 8500 # usec try: with filename.open(encoding='ISO-8859-1') as f: header, data = f.read().split('DATA') # Extract data from header levelstring = p_level.search(header).group(1).strip(';').split(';') levels = np.array(levelstring).astype(np.float32) sampling_period = float(p_fs.search(header).group(1)) frequency = float(p_freq.search(header).group(1)) # Convert text representation of data to Numpy array fs = 1e6/sampling_period cutoff = int(abr_window / sampling_period) data = np.array(data.split()).astype(np.float32) data.shape = -1, len(levels) data = data.T[:, :cutoff] t = np.arange(data.shape[-1]) / fs * 1e3 t = pd.Index(t, name='time') if filter_settings is not None: Wn = filter_settings['highpass'], filter_settings['lowpass'] N = filter_settings['order'] b, a = signal.iirfilter(N, Wn, fs=fs) data = signal.filtfilt(b, a, data, axis=-1) waveforms = [] for s, level in zip(data, levels): # Checks for a ABR I-O bug that sometimes saves zeroed waveforms if not (s == 0).all(): w = pd.Series(s, index=t) waveform = ABRWaveform(fs, w, level) waveforms.append(waveform) series = ABRSeries(waveforms, frequency) series.filename = filename return [series] except (AttributeError, ValueError): msg = 'Could not parse %s. Most likely not a valid ABR file.' % fname raise IOError(msg)
ABR
/ABR-0.0.10.tar.gz/ABR-0.0.10/abr/parsers/EPL.py
EPL.py
from __future__ import division import pandas as pd import numpy as np from abr.datatype import ABRWaveform, ABRSeries ################################################################################ # Utility functions ################################################################################ def _parse_line(line): ''' Parse list of comma-separated values from line Parameters ---------- line : string Line containing the values that need to be parsed Returns ------- tokens : list List of values found in line. If values are numeric, they will be converted to floats. Otherwise they will be returned as strings. ''' tokens = line.strip().split(',')[1:] try: return [float(t) for t in tokens if t] except ValueError: return [t for t in tokens if t] def load_metadata(filename): ''' Load the metadata stored in the ABR file Parameters: ----------- filename : string Filename to load Returns ------- info : pandas.DataFrame Dataframe containing information on each waveform ''' info = {} with open(filename, 'r') as fh: for i, line in enumerate(fh): if i == 20: break name = line.split(',', 1)[0].strip(':').lower() info[name] = _parse_line(line) info = pd.DataFrame(info) # Number the trials. We will use this number later to look up which column # contains the ABR waveform for corresponding parameter. info['waveform'] = np.arange(len(info)) info.set_index('waveform', inplace=True) # Convert the intensity to the actual level in dB SPL info['level'] = np.round(info.intensity/10)*10 # Store the scaling factor for the waveform so we can recover this when # loading. By default the scaling factor is 674. For 110 dB SPL, the # scaling factor is 337. The statistician uses 6.74 and 3.37, but he # includes a division of 100 elsewhere in his code to correct. info['waveform_sf'] = 6.74e2 # The rows where level is 110 dB SPL have a different scaling factor. info.loc[info.level == 110, 'waveform_sf'] = 3.37e2 # Start time of stimulus in usec (since sampling period is reported in usec, # we should try to be consistent with all time units). info['stimulus_start'] = 12.5e3 return info def load_waveforms(filename, info): ''' Load the waveforms stored in the ABR file Only the waveforms specified in info will be loaded. For example, if you have filtered the info DataFrame to only contain waveforms from channel 1, only those waveforms will be loaded. Parameters: ----------- filename : string Filename to load info : pandas.DataFrame Waveform metadata (see `load_metadata`) Returns ------- info : pandas.DataFrame Dataframe containing waveforms ''' # Read the waveform table into a dataframe df = pd.io.parsers.read_csv(filename, skiprows=20) # Keep only the columns containing the signal of interest. There are six # columns for each trial. We only want the column containing the raw # average (i.e., not converted to uV). df = df[[c for c in df.columns if c.startswith('Average:')]] # Renumber them so we can look them up by number. The numbers should # correspond to the trial number we generated in `load_metadata`. df.columns = np.arange(len(df.columns)) # Loop through the entries in the info DataFrame. This dataframe contains # metadata needed for processing the waveform (e.g., it tells us which # waveforms to keep, the scaling factor to use, etc.). signals = [] for w_index, w_info in info.iterrows(): # Compute time of each point. Currently in usec because smp. period is # in usec. t = np.arange(len(df), dtype=np.float32)*w_info['smp. period'] # Subtract stimulus start so that t=0 is when stimulus begins. Convert # to msec. t = (t-w_info['stimulus_start'])*1e-3 time = pd.Index(t, name='time') # Divide by the scaling factor and convert from nV to uV s = df[w_index]/w_info['waveform_sf']*1e-3 s.index = time signals.append(s) # Merge together the waveforms into a single DataFrame waveforms = pd.concat(signals, keys=info.index, names=['waveform']) waveforms = waveforms.unstack(level='waveform') return waveforms ################################################################################ # API ################################################################################ # Minimum wave 1 latencies latencies = { 1000: 3.1, 3000: 2.1, 4000: 2.3, 6000: 1.8, } def load(fname, filter=None, abr_window=8.5e-3): with open(fname) as fh: line = fh.readline() if not line.startswith('Identifier:'): raise IOError('Unsupported file format') info = load_metadata(fname) info = info[info.channel == 1] fs = 1/(info.iloc[0]['smp. period']*1e-6) series = [] for frequency, f_info in info.groupby('stim. freq.'): signal = load_waveforms(fname, f_info) signal = signal[signal.index >= 0] waveforms = [] min_latency = latencies.get(frequency) for i, row in f_info.iterrows(): s = signal[i].values[np.newaxis] waveform = ABRWaveform(fs, s, row['level'], min_latency=min_latency, filter=filter) waveforms.append(waveform) s = ABRSeries(waveforms, frequency/1e3) s.filename = fname series.append(s) return series
ABR
/ABR-0.0.10.tar.gz/ABR-0.0.10/abr/parsers/NCRAR.py
NCRAR.py
from functools import cached_property, lru_cache import glob import json import os.path from pathlib import Path import numpy as np import pandas as pd from scipy import signal from abr.datatype import ABRWaveform, ABRSeries from .dataset import DataCollection, Dataset def get_filename(pathname, suffix='ABR average waveforms.csv'): if pathname.is_file(): if pathname.name.endswith(suffix): return pathname else: raise IOError('Invalid ABR file') filename = pathname / suffix if filename.exists(): return filename filename = pathname / f'{pathname.stem} {suffix}' if filename.exists(): return filename raise IOError(f'Could not find average waveforms file for {pathname}') @lru_cache(maxsize=64) def read_file(filename): with filename.open() as fh: # This supports a variable-length header where we may not have included # some levels (e.g., epoch_n and epoch_reject_ratio). header = {} while True: line = fh.readline() if line.startswith('time'): break name, *keys = line.split(',') header[name] = np.array(keys).astype('f') data = pd.read_csv(fh, index_col=0, header=None) header = pd.MultiIndex.from_arrays(list(header.values()), names=list(header.keys())) data.index.name = 'time' data.index *= 1e3 data.columns = header return data.T class PSIDataCollection(DataCollection): def __init__(self, filename): filename = Path(filename) self.filename = get_filename(filename) @cached_property def fs(self): settings_file = get_filename(self.filename.parent, 'ABR processing settings.json') if settings_file.exists(): fs = json.loads(settings_file.read_text())['actual_fs'] else: fs = np.mean(np.diff(data.columns.values)**-1) return fs @cached_property def data(self): data = read_file(self.filename) keep = ['frequency', 'level'] drop = [c for c in data.index.names if c not in keep] return data.reset_index(drop, drop=True) @cached_property def frequencies(self): return self.data.index.unique('frequency').values @property def name(self): return self.filename.parent.stem def iter_frequencies(self): for frequency in self.frequencies: yield PSIDataset(self, frequency) class PSIDataset(Dataset): def __init__(self, parent, frequency): self.parent = parent self.frequency = frequency @property def filename(self): return self.parent.filename @property def fs(self): return self.parent.fs def get_series(self, filter_settings=None): data = self.parent.data.loc[self.frequency] if filter_settings is not None: Wn = filter_settings['highpass'], filter_settings['lowpass'] N = filter_settings['order'] b, a = signal.iirfilter(N, Wn, fs=self.fs) data_filt = signal.filtfilt(b, a, data.values, axis=-1) data = pd.DataFrame(data_filt, columns=data.columns, index=data.index) waveforms = [] for level, w in data.iterrows(): level = float(level) waveforms.append(ABRWaveform(self.fs, w, level)) series = ABRSeries(waveforms, self.frequency) series.filename = self.parent.filename series.id = self.parent.filename.parent.name return series def iter_all(path): results = [] path = Path(path) if path.stem.endswith('abr_io'): yield from PSIDataCollection(path).iter_frequencies() else: for subpath in path.glob('**/*abr_io'): yield from PSIDataCollection(subpath).iter_frequencies()
ABR
/ABR-0.0.10.tar.gz/ABR-0.0.10/abr/parsers/PSI.py
PSI.py
''' This module defines the import/export routines for interacting with the data store. If you wish to customize this, simply define the load() function. load(run_location, invert, filter) -- When the program needs a run loaded, it will pass the run_location provided by list(). Invert is a boolean flag indicating whether waveform polarity should be flipped. Filter is a dictionary containing the following keys: 1. ftype: any of None, butterworth, bessel, etc. 2. fh: highpass cutoff (integer in Hz) 3. fl: lowpass cutoff (integer in Hz) All objects of the epl.datatype.Waveform class will accept the filter dictionary and perform the appropriate filtering. It is recommended you use the filtering provided by the Waveform class as the parameters of the filter will also be recorded. This function must return an object of the epl.datatype.ABRSeries class. See this class for appropriate documentation. The save function must return a message. If there is an error in saving, throw the appropriate exception. ''' import importlib import re from glob import glob import os from pathlib import Path import time import pandas as pd import numpy as np import abr from ..datatype import Point P_ANALYZER = re.compile('.*kHz(?:-(\w+))?-analyzed.txt') def get_analyzer(filename): return P_ANALYZER.match(filename.name).group(1) def waveform_string(waveform): data = [f'{waveform.level:.2f}'] data.append(f'{waveform.mean(0, 1)}') data.append(f'{waveform.std(0, 1)}') for _, point in sorted(waveform.points.items()): data.append(f'{point.latency:.8f}') data.append(f'{point.amplitude:.8f}') return '\t'.join(data) def filter_string(waveform): if getattr(waveform, '_zpk', None) is None: return 'No filtering' t = 'Pass %d -- z: %r, p: %r, k: %r' filt = [t % (i, z, p, k) for i, (z, p, k) in enumerate(waveform._zpk)] return '\n' + '\n'.join(filt) def load_analysis(fname): th_match = re.compile('Threshold \(dB SPL\): ([\w.-]+)') freq_match = re.compile('Frequency \(kHz\): ([\d.]+)') with open(fname) as fh: text = fh.readline() th = th_match.search(text).group(1) th = None if th == 'None' else float(th) text = fh.readline() freq = float(freq_match.search(text).group(1)) for line in fh: if line.startswith('NOTE'): break data = pd.io.parsers.read_csv(fh, sep='\t', index_col='Level') return (freq, th, data) def parse_peaks(peaks, threshold): # Convert the peaks dataframe to a format that can be used by _set_points. p_pattern = re.compile('P(\d) Latency') n_pattern = re.compile('N(\d) Latency') p_latencies = {} n_latencies = {} for c in peaks: match = p_pattern.match(c) if match: wave = int(match.group(1)) p_latencies[wave] = pd.DataFrame({'x': peaks[c]}) match = n_pattern.match(c) if match: wave = int(match.group(1)) n_latencies[wave] = pd.DataFrame({'x': peaks[c]}) p_latencies = pd.concat(p_latencies.values(), keys=p_latencies.keys(), names=['wave']) p_latencies = {g: df.reset_index('Level', drop=True) \ for g, df in p_latencies.groupby('Level')} n_latencies = pd.concat(n_latencies.values(), keys=n_latencies.keys(), names=['wave']) n_latencies = {g: df.reset_index('Level', drop=True) \ for g, df in n_latencies.groupby('Level')} for level, df in p_latencies.items(): if level < threshold: df[:] = -df[:] for level, df in n_latencies.items(): if level < threshold: df[:] = -df[:] return p_latencies, n_latencies class Parser(object): filename_template = '{filename}-{frequency}kHz-{user}analyzed.txt' def __init__(self, file_format, filter_settings, user=None): ''' Parameters ---------- file_format : string File format that will be loaded. filter_settings : {None, dict} If None, no filtering is applied. If dict, must contain ftype, lowpass, highpass and order as keys. user : {None, string} Person analyzing the data. ''' self._file_format = file_format self._filter_settings = filter_settings self._user = user self._module_name = f'abr.parsers.{file_format}' self._module = importlib.import_module(self._module_name) def load(self, fs): return fs.get_series(self._filter_settings) def load_analysis(self, series, filename): freq, th, peaks = load_analysis(filename) series.load_analysis(th, peaks) def find_analyzed_files(self, filename, frequency): frequency = round(frequency * 1e-3, 8) glob_pattern = self.filename_template.format( filename=filename.with_suffix(''), frequency=frequency, user='*') path = Path(glob_pattern) return list(path.parent.glob(path.name)) def get_save_filename(self, filename, frequency): # Round frequency to nearest 8 places to minimize floating-point # errors. user_name = self._user + '-' if self._user else '' frequency = round(frequency * 1e-3, 8) save_filename = self.filename_template.format( filename=filename.with_suffix(''), frequency=frequency, user=user_name) return Path(save_filename) def save(self, model): # Assume that all waveforms were filtered identically filter_history = filter_string(model.waveforms[-1]) # Generate list of columns columns = ['Level', '1msec Avg', '1msec StDev'] point_keys = sorted(model.waveforms[0].points) for point_number, point_type in point_keys: point_type_code = 'P' if point_type == Point.PEAK else 'N' for measure in ('Latency', 'Amplitude'): columns.append(f'{point_type_code}{point_number} {measure}') columns = '\t'.join(columns) spreadsheet = '\n'.join(waveform_string(w) \ for w in reversed(model.waveforms)) content = CONTENT.format(threshold=model.threshold, frequency=model.freq*1e-3, filter_history=filter_history, columns=columns, spreadsheet=spreadsheet, version=abr.__version__) filename = self.get_save_filename(model.filename, model.freq) with open(filename, 'w') as fh: fh.writelines(content) def iter_all(self, path): yield from self._module.iter_all(path) def find_processed(self, path): for ds in self.iter_all(path): if self.get_save_filename(ds.filename, ds.frequency).exists(): yield ds def find_unprocessed(self, path): for ds in self.iter_all(path): if not self.get_save_filename(ds.filename, ds.frequency).exists(): yield ds def find_analyses(self, dirname, frequencies=None): analyzed = {} for p, f in self.find_all(dirname, frequencies): analyzed[p, f] = self.find_analyzed_files(p, f) return analyzed def load_analyses(self, dirname, frequencies=None): analyzed = self.find_analyses(dirname, frequencies) keys = [] thresholds = [] for (raw_file, frequency), analyzed_files in analyzed.items(): for analyzed_file in analyzed_files: user = get_analyzer(analyzed_file) keys.append((raw_file, frequency, analyzed_file, user)) _, threshold, _ = load_analysis(analyzed_file) thresholds.append(threshold) cols = ['raw_file', 'frequency', 'analyzed_file', 'user'] index = pd.MultiIndex.from_tuples(keys, names=cols) return pd.Series(thresholds, index=index) CONTENT = ''' Threshold (dB SPL): {threshold:.2f} Frequency (kHz): {frequency:.2f} Filter history (zpk format): {filter_history} file_format_version: 0.0.2 code_version: {version} NOTE: Negative latencies indicate no peak. NaN for amplitudes indicate peak was unscorable. {columns} {spreadsheet} '''.strip() PARSER_MAP = { 'PSI': 'psiexperiment', 'NCRAR': 'IHS text export', 'EPL': 'EPL CFTS', }
ABR
/ABR-0.0.10.tar.gz/ABR-0.0.10/abr/parsers/__init__.py
__init__.py
# Pacote principal Absolute Investimentos Pacote principal com funções básicas para uso interno na Absolute Investimentos ## Instalando pacote no Windows - Substituir arquivos na rede, na pasta `P:/sistemas/Python` - Alterar versão no setup.py para a data da publicação - Caso necessário, incluir novas dependências no requirements.txt - Enviar email respondendo "Documentação Pacote ABS (python)" avisando que há uma nova versão disponível ## Instalando pacote no linux Para instalação do pacote, é recomendado ter o conda configurado na máquina. Também é necessário instalar os drivers compatíveis do [Microsoft ODBC](https://bit.ly/3Bsn0Pz). Depois de ambos instalados, em um terminal, navegue para a pasta raiz deste projeto, `PackageABS`, e digite: ```bash > sudo apt-get install unixodbc-dev > conda install pyodbc > cd Pacotes/ > pip install -r requirements.txt > pip install . > python -c "import ABS; print(ABS.__name__)" ```
ABS-95i943594
/ABS_95i943594-2023.5.4.tar.gz/ABS_95i943594-2023.5.4/README.md
README.md
import pytest from absql import Runner @pytest.fixture() def runner(): return Runner(greeting="Hello") def test_set_context(runner): assert runner.extra_context["greeting"] == "Hello" runner.set_context(greeting="Hey") assert runner.extra_context["greeting"] == "Hey"
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/tests/test_set.py
test_set.py
import pytest from absql import Runner @pytest.fixture() def planet(): def planet(planet_name): return planet_name return planet def test_render_text_extra_partial(planet): got = Runner.render_text( "Hello {{planet()}}", planet=planet, planet_name="Earth", partial_kwargs=["planet_name"], ) want = "Hello Earth" assert got == want def test_default_render_text_extra_partial_fails(planet): with pytest.raises(TypeError): Runner.render_text("Hello {{planet()}}", planet=planet, planet_name="Earth") def test_render_file_extra_partial(planet): got = Runner.render_file( "tests/files/partial_planet.sql", planet=planet, planet_name="Earth", partial_kwargs=["planet_name"], ) want = "Hello Earth, Goodbye Earth" assert got == want def test_render_runner_extra_partial(planet): r = Runner(planet=planet, planet_name="Earth", partial_kwargs=["planet_name"]) text_got = r.render("Hello {{planet()}}") text_want = "Hello Earth" assert text_got == text_want file_got = r.render("tests/files/partial_planet.sql") file_want = "Hello Earth, Goodbye Earth" assert file_got == file_want
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/tests/test_partial_kwargs.py
test_partial_kwargs.py
from absql.text import clean_spacing, create_replacements def test_clean_spaces(): text = "{{ hello }} world" got = clean_spacing(text) want = "{{ hello }} world" assert got == want def test_clean_spaces_2(): want = "{{ hello }} world" text = "{{hello }} world" got = clean_spacing(text) assert got == want text = "{{ hello}} world" got = clean_spacing(text) assert got == want def test_clean_tabs(): text = "{{ hello }} world" got = clean_spacing(text) want = "{{ hello }} world" assert got == want def test_replacements(): got = create_replacements(foo="bar") want = {"{{foo}}": "bar", "{{ foo }}": "bar"} assert got == want
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/tests/test_text.py
test_text.py
import pytest import mock import os from absql import Runner @pytest.fixture(autouse=True) def mock_settings_env_vars(): with mock.patch.dict(os.environ, {"name": "Bob"}): yield @pytest.fixture() def runner(): def double_it(x): return x + x return Runner(extra_constructors={"double_it": double_it}, greeting="Hello") @pytest.fixture() def contextless_runner(): return Runner() @pytest.fixture def simple_sql_path(): return "tests/files/simple.sql" @pytest.fixture def no_frontmatter_path(): return "tests/files/no_frontmatter.sql" def test_render_simple_sql(runner, simple_sql_path): sql = runner.render(simple_sql_path) assert sql == "SELECT * FROM my_table" def test_render_no_frontmatter(runner, no_frontmatter_path): sql = runner.render(no_frontmatter_path) assert sql == "SELECT * FROM Hello" def test_render_text_only(runner): got = runner.render("{{greeting}}, {{env_var('name')}}!") want = "Hello, Bob!" assert got == want def test_render_extra_context(runner): got = runner.render("{{new_greeting}}, {{env_var('name')}}!", new_greeting="Hey") want = "Hey, Bob!" assert got == want def test_contextless_runner(contextless_runner): got = contextless_runner.render("{{no_greeting}}, Bill!") want = "{{ no_greeting }}, Bill!" assert got == want def test_replace_only_changes(runner): original = runner.render("{{env_switch(foo='address')}} and {{greeting}}") assert original == "value_unspecified and Hello" replaced_only = runner.render( "{{env_switch(foo='address')}} and {{greeting}}", replace_only=True ) assert replaced_only == "{{ env_switch(foo='address') }} and Hello" original_2 = runner.render("{{env_switch(foo='address')}} and {{greeting}}") assert original_2 == "value_unspecified and Hello" def test_runner_renders_yaml(runner): got = runner.render("tests/files/constructor.yml") want = "SELECT * FROM tabletable" assert got == want
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/tests/test_render.py
test_render.py
import pytest import datetime from absql import Runner from copy import copy @pytest.fixture(scope="function") def r_original(): # dt because I am scared to copy modules return Runner(f="foo", dt=datetime) @pytest.fixture(scope="function") def r_copy(r_original): return copy(r_original) def test_copy_set_context(r_original, r_copy): r_copy.set_context(f="bar") assert r_original.render("{{f}}") == "foo" assert r_copy.render("{{f}}") == "bar" def test_copy_set_attr(r_original, r_copy): r_original.partial_kwargs = ["a"] r_copy.partial_kwargs = ["b"] assert r_original.partial_kwargs == ["a"] assert r_copy.partial_kwargs == ["b"] r_copy.extra_context = {"f": "buzz"} assert r_original.render("{{f}}") == "foo" assert r_copy.render("{{f}}") == "buzz"
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/tests/test_copy.py
test_copy.py
from absql import Runner def test_loader_always_new(): runner_a = Runner(extra_constructors={"f": lambda: "a"}) runner_a_want = "SELECT * FROM a" render_a_got_1 = runner_a.render("tests/files/loader_test.sql") assert render_a_got_1 == runner_a_want runner_b = Runner(extra_constructors={"f": lambda: "b"}) runner_b_want = "SELECT * FROM b" runner_b_got = runner_b.render("tests/files/loader_test.sql") assert runner_b_got == runner_b_want render_a_got_2 = runner_a.render("tests/files/loader_test.sql") assert render_a_got_2 == runner_a_want
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/tests/test_loader.py
test_loader.py
import pytest from absql.files import parse @pytest.fixture def simple_sql_path(): return "tests/files/simple.sql" @pytest.fixture def simple_yml_path(): return "tests/files/simple.yml" def test_simple_sql(simple_sql_path): res = parse(simple_sql_path) assert "sql" in res.keys() assert "my_table_placeholder" in res.keys() assert res["my_table_placeholder"] == "my_table" assert res["sql"] == "SELECT * FROM {{my_table_placeholder}}" def test_simple_yml(simple_yml_path): res = parse(simple_yml_path) assert "sql" in res.keys() assert "my_table_placeholder" in res.keys() assert res["my_table_placeholder"] == "my_table" assert res["sql"] == "SELECT * FROM {{my_table_placeholder}}"
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/tests/test_parse_file.py
test_parse_file.py
import pytest import mock import os from absql import Runner as r from absql.functions.time import previous_date @pytest.fixture(autouse=True) def mock_settings_env_vars(): with mock.patch.dict( os.environ, {"name": "Bob", "ENV": "dev", "my_env_var": "foo", "my_timezone": "EST"}, ): yield @pytest.fixture def extra_sql_path(): return "tests/files/extra.sql" @pytest.fixture def simple_sql_path(): return "tests/files/simple.sql" @pytest.fixture def simple_yml_path(): return "tests/files/simple.yml" @pytest.fixture def constructor_sql_path(): return "tests/files/constructor.sql" @pytest.fixture def constructor_plus_function_sql_path(): return "tests/files/constructors_plus_functions.sql" @pytest.fixture def jinja_frontmatter_path(): return "tests/files/jinja_frontmatter.sql" @pytest.fixture def nested_constructors_path(): return "tests/files/nested_constructors.sql" def test_nested_constructors(nested_constructors_path): sql = r.render_file(nested_constructors_path) assert sql == "SELECT * FROM foo WHERE bar AND {previous}".format( previous=previous_date("EST") ) def test_render_simple_sql(simple_sql_path): sql = r.render_file(simple_sql_path) assert sql == "SELECT * FROM my_table" def test_render_simple_yml(simple_yml_path): sql = r.render_file(simple_yml_path) assert sql == "SELECT * FROM my_table" def test_render_additional_sql(extra_sql_path): sql = r.render_file(extra_sql_path, extra="my_extra_context") assert sql == "SELECT * FROM my_table WHERE my_extra_context" def test_render_constructor_sql(constructor_sql_path): def add(*nums): x = 0 for n in nums: x += n return x def first(**kwargs): for i in range(len(kwargs)): if i == 0: return kwargs[list(kwargs.keys())[0]] def get_table(): return "my_constructor_table" runner = r(extra_constructors=[get_table, add, first]) sql = runner.render(constructor_sql_path) assert sql == "SELECT * FROM my_constructor_table WHERE '6' and 'this'" def test_render_jinja_frontmatter(jinja_frontmatter_path): def provide_table(): return "my_func_table" sql = r.render_file(jinja_frontmatter_path, get_table=provide_table) assert sql == "SELECT * FROM my_func_table WHERE name = 'Bob'" def test_render_jinja_frontmatter_instantiated(jinja_frontmatter_path): def provide_table(): return "my_func_table" runner = r(get_table=provide_table) sql = runner.render(jinja_frontmatter_path) assert sql == "SELECT * FROM my_func_table WHERE name = 'Bob'" def test_var_dict(extra_sql_path): want = "SELECT * FROM my_table WHERE something different!" got = r.render_file(extra_sql_path, file_context_from="my_var_dict") assert got == want runner = r(file_context_from="my_var_dict") got = runner.render(extra_sql_path) assert got == want def test_constructor_plus_function(constructor_plus_function_sql_path): got = r.render_file(constructor_plus_function_sql_path) want = "SELECT * FROM somewhere_else" assert got == want
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/tests/test_render_file.py
test_render_file.py
from absql.utils import ( nested_apply, get_function_arg_names, partialize_function, load_body, ) def test_simple_apply(): d = {"a": "a", "b": "b", "c": 5} got = nested_apply(d, lambda x: x + "zzz") want = {"a": "azzz", "b": "bzzz", "c": 5} assert got == want def test_nested_list(): d = {"a": "a", "b": "b", "c": [5, "d"]} got = nested_apply(d, lambda x: x + "zzz") want = {"a": "azzz", "b": "bzzz", "c": [5, "dzzz"]} assert got == want def test_nested_dict(): d = {"a": "a", "b": "b", "c": {5: "d"}} got = nested_apply(d, lambda x: x + "zzz") want = {"a": "azzz", "b": "bzzz", "c": {5: "dzzz"}} assert got == want def test_get_function_arg_names(): def func(a, b): return a + b got = get_function_arg_names(func) want = ["a", "b"] assert got == want def test_partialize_function(): def simple_func(a, engine): return a + engine simple_func = partialize_function(simple_func, engine=7) got = simple_func(3) want = 10 assert got == want def test_load_body_frontmatter(): assert ( load_body("tests/files/simple.sql") == "\nSELECT * FROM {{my_table_placeholder}}\n" ) def test_load_body_no_frontmatter(): assert ( load_body("tests/files/no_frontmatter.sql") == "{% set cols='*' %}\n\nSELECT {{cols}} FROM {{greeting}}\n" )
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/tests/test_utils.py
test_utils.py
from absql import Runner as r def test_render_text(): template = "SELECT * FROM {{my_table_placeholder}}" result = r.render_text(template, my_table_placeholder="my_table") assert result == "SELECT * FROM my_table" def test_leave_unknown_vars_alone(): template = "SELECT * FROM {{my_table_placeholder}} WHERE date = '{{my_date}}'" result = r.render_text(template, my_table_placeholder="my_table") assert result == "SELECT * FROM my_table WHERE date = '{{ my_date }}'" # Would be nice to just use jinja for this # https://stackoverflow.com/questions/71374498/ignore-unknown-functions-in-jinja2 def test_leave_unknown_functions_alone(): template = "SELECT * FROM {{my_table_placeholder}} WHERE date = '{{ get_date() }}'" result = r.render_text(template, my_table_placeholder="my_table", replace_only=True) assert result == "SELECT * FROM my_table WHERE date = '{{ get_date() }}'" def test_nested_replace(): context = {"params": {"foo": "bar", "biz": "baz"}} template = "{{ params.foo }} and {{ params.biz }}" got = r.render_text(template, replace_only=True, **context) want = "bar and baz" assert got == want def test_pretty_encode(): got = r.render_text( """SELECT * FROM "my_schema"."my_table" WHERE my_col = 'my_value'""", pretty_encode=True, ) want = """\x1b[1m\x1b[96mSELECT\x1b[0m * \x1b[1m\x1b[96mFROM\x1b[0m \x1b[95m"my_schema"\x1b[39m.\x1b[95m"my_table"\x1b[39m \x1b[1m\x1b[96mWHERE\x1b[0m my_col = \x1b[95m\'my_value\'\x1b[39m""" # noqa assert got == want def test_filters(): def alter_text(x, upper=True): if upper: return x.upper() return x.lower() you = "yOu" upper_want = "hey YOU" upper_got = r.render_text( "hey {{person | case_it}}", person=you, case_it=alter_text ) assert upper_got == upper_want lower_want = "hey you" lower_got = r.render_text( "hey {{person | case_it(upper=False)}}", person=you, case_it=alter_text ) assert lower_want == lower_got partial_want = "hey you" partial_got = r.render_text( "hey {{person | case_it}}", person=you, case_it=alter_text, upper=False, partial_kwargs=["upper"], ) assert partial_want == partial_got pipeline_want = "hey YOU" pipeline_got = r.render_text( "hey {{person | case_it(upper=False) | case_it}}", person=you, case_it=alter_text, ) assert pipeline_want == pipeline_got
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/tests/test_render_text.py
test_render_text.py
from absql.files import accepted_file_types from absql.files.loader import generate_loader from absql.render import render_text, render_context, render_file class Runner: def __init__( self, extra_constructors=None, replace_only=False, file_context_from=None, partial_kwargs=None, **extra_context, ): self.extra_context = dict(extra_context) self.loader = generate_loader(extra_constructors or []) self.replace_only = replace_only self.file_context_from = file_context_from self.partial_kwargs = partial_kwargs or ["engine"] @staticmethod def render_text( text, replace_only=False, pretty_encode=False, partial_kwargs=None, **vars ): return render_text( text=text, replace_only=replace_only, pretty_encode=pretty_encode, partial_kwargs=partial_kwargs, **vars, ) @staticmethod def render_context(extra_context=None, file_contents=None, partial_kwargs=None): return render_context( extra_context=extra_context, file_contents=file_contents, partial_kwargs=partial_kwargs, ) @staticmethod def render_file( file_path, loader=None, replace_only=False, extra_constructors=None, file_context_from=None, pretty_encode=False, partial_kwargs=None, **extra_context, ): return render_file( file_path=file_path, loader=loader, replace_only=replace_only, extra_constructors=extra_constructors, file_context_from=file_context_from, pretty_encode=pretty_encode, partial_kwargs=partial_kwargs, **extra_context, ) def render(self, text, pretty_encode=False, replace_only=None, **extra_context): """ Given text or a file path, render SQL with the a combination of the vars in the file and any extras passed to extra_context during the instantiation of the runner. """ current_context = self.extra_context.copy() current_context.update(extra_context) if text.endswith(accepted_file_types): rendered = render_file( file_path=text, loader=self.loader, replace_only=replace_only or self.replace_only, file_context_from=self.file_context_from, pretty_encode=pretty_encode, partial_kwargs=self.partial_kwargs, **current_context, ) else: rendered = render_text( text=text, replace_only=replace_only or self.replace_only, pretty_encode=pretty_encode, partial_kwargs=self.partial_kwargs, **render_context(current_context, partial_kwargs=self.partial_kwargs), ) return rendered def set_context(self, **context): self.extra_context = self.extra_context.copy() self.extra_context.update(context)
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/absql/__init__.py
__init__.py
import yaml from absql.functions import default_constructors def scalar_to_value(scalar, constructor_dict): """ Converts a YAML ScalarNode to its underlying Python value """ type = scalar.tag.split(":")[-1] val = scalar.value if isinstance(scalar, yaml.MappingNode): val = node_converter(scalar, constructor_dict) func = constructor_dict.get(type) return func(**val) if isinstance(scalar, yaml.SequenceNode): val = node_converter(scalar, constructor_dict) func = constructor_dict.get(type) return func(*val) if type.startswith("!"): func = constructor_dict.get(type) return func(val) # Handle null type - https://yaml.org/type/null.html if type == "null": return None return eval('{type}("""{val}""")'.format(type=type, val=val)) def node_converter(x, constructor_dict): """ Converts YAML nodes of varying types into Python values, lists, and dictionaries """ if isinstance(x, yaml.ScalarNode): # "I am an atomic value" return yaml.load(x.value, yaml.SafeLoader) if isinstance(x, yaml.SequenceNode): # "I am a list" return [scalar_to_value(v, constructor_dict) for v in x.value] if isinstance(x, yaml.MappingNode): # "I am a dict" return { scalar_to_value(v[0], constructor_dict): scalar_to_value( v[1], constructor_dict ) for v in x.value } def wrap_yaml(func, constructor_dict): """Turn a function into one that can be run on a YAML input""" def ret(loader, x): value = node_converter(x, constructor_dict) if value is not None: if isinstance(value, list): return func(*value) if isinstance(value, dict): return func(**value) return func(value) else: return func() return ret def generate_loader(extra_constructors=None): """Generates a SafeLoader with both default and custom constructors""" class Loader(yaml.SafeLoader): # ensures a new Loader is returned # every time the function is called pass extra_constructors = extra_constructors or [] unchecked_constructors = default_constructors.copy() if isinstance(extra_constructors, list) and len(extra_constructors) > 0: extra_constructors = { ("!" + func.__name__): func for func in extra_constructors } if len(extra_constructors) > 0: unchecked_constructors.update(extra_constructors) # Ensure all tags start with "!" checked_constructors = {} for tag, func in unchecked_constructors.items(): if not tag.startswith("!"): tag = "!" + tag checked_constructors[tag] = func for tag, func in checked_constructors.items(): Loader.add_constructor(tag, wrap_yaml(func, checked_constructors)) return Loader
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/absql/files/loader.py
loader.py
import re import yaml from absql.files.loader import generate_loader FM_BOUNDARY = re.compile(r"^-{3,}\s*$", re.MULTILINE) def frontmatter_load(file_path, loader=None): """ Loads YAML frontmatter. Expects a YAML block at the top of the file that starts and ends with "---". In use in favor of frontmatter.load so that custom dag_constructors (via PyYaml) can be used uniformly across all file types. """ if loader is None: loader = generate_loader() with open(file_path, "r") as file: text = "".join(file.readlines()) if text.startswith("---"): _, metadata, content = FM_BOUNDARY.split(text, 2) metadata = yaml.load(metadata, Loader=loader) content = content.strip("\n") elif text.startswith("{"): tmp_header = "/*ABSQLQSBA*/ " text = tmp_header + text metadata = {} content = yaml.load(text, Loader=loader) content = content.replace(tmp_header, "") else: metadata = {} content = yaml.load(text, Loader=loader) return {"metadata": metadata, "content": content} def parse_generic(file_path, loader=None): if loader is None: loader = generate_loader() raw_content = frontmatter_load(file_path, loader=loader) file_content = raw_content["metadata"] or raw_content["content"] return file_content def parse_sql(file_path, loader=None): if loader is None: loader = generate_loader() raw_content = frontmatter_load(file_path, loader=loader) file_content = raw_content["metadata"] file_content["sql"] = raw_content["content"] return file_content
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/absql/files/parsers.py
parsers.py
import os from absql.utils import get_function_arg_names from absql.files.loader import generate_loader from absql.files.parsers import parse_generic, parse_sql default_parsers = { ".yml": parse_generic, ".yaml": parse_generic, ".sql": parse_sql, } accepted_file_types = tuple(default_parsers.keys()) def parse(file_path, parse_dict=default_parsers, loader=None): """ Load a file. """ if loader is None: loader = generate_loader() path, extension = os.path.splitext(file_path) parser = parse_dict[extension] if "loader" in get_function_arg_names(parser): file_parsed = parser(file_path, loader=loader) else: file_parsed = parser(file_path) return file_parsed
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/absql/files/__init__.py
__init__.py
from pendulum import now from datetime import timedelta def previous_date(tz="utc", days=1): return (now(tz=tz) - timedelta(days=days)).to_date_string() def previous_hour(tz="utc", hours=1, days=0): return ( (now(tz=tz) - timedelta(hours=hours, days=days)) .replace(minute=0, second=0) .to_datetime_string() )
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/absql/functions/time.py
time.py
from absql.functions.env import env_var from sqlalchemy import create_engine, text from sqlalchemy.engine.base import Engine def table_exists(table_location, engine_env="AB__URI", engine=None): table_parts = split_parts(table_location) engine = ( handle_engine(env_var(engine_env)) if engine is None else handle_engine(engine) ) if hasattr(engine, "has_table"): return engine.has_table( table_name=table_parts["target"], schema=table_parts["namespace"] ) else: return engine.reflection.Inspector.has_table( table_name=table_parts["target"], schema=table_parts["namespace"] ) def query_db(query, engine_env="AB__URI", engine=None): engine = ( handle_engine(env_var(engine_env)) if engine is None else handle_engine(engine) ) with engine.connect() as connection: return connection.execute(text(query)).fetchall() def handle_engine(engine): if isinstance(engine, Engine): return engine else: return create_engine(engine) def get_max_value(field_location, engine_env="AB__URI", engine=None): field_parts = split_parts(field_location) query = "SELECT MAX({field}) AS value FROM {table}".format( field=field_parts["target"], table=field_parts["namespace"] ) try: return query_db(query, engine_env, engine)[0].value except Exception: return None def get_min_value(field_location, engine_env="AB__URI", engine=None): field_parts = split_parts(field_location) query = "SELECT MIN({field}) AS value FROM {table}".format( field=field_parts["target"], table=field_parts["namespace"] ) try: return query_db(query, engine_env, engine)[0].value except Exception: return None def split_parts(location): parts = {} location_parts = location.split(".") target = location_parts[-1] namespace = ( None if len(location_parts) == 1 else ".".join(location_parts[: len(location_parts) - 1]) ) parts["target"] = target parts["namespace"] = namespace return parts
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/absql/functions/db.py
db.py
from .env import env_var, env_switch from .db import table_exists, query_db, get_max_value, get_min_value from .time import previous_date, previous_hour from datetime import datetime, timedelta default_functions = { "datetime": datetime, "env_switch": env_switch, "env_var": env_var, "get_max_value": get_max_value, "get_min_value": get_min_value, "previous_date": previous_date, "previous_hour": previous_hour, "table_exists": table_exists, "timedelta": timedelta, "query_db": query_db, } default_constructors = { "!" + k: v for k, v in default_functions.items() if k in ( "datetime", "env_switch", "env_var", "previous_date", "previous_hour", "timedelta", ) }
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/absql/functions/__init__.py
__init__.py
import os def env_var(var, default=None): return os.environ.get(var, default) def env_switch(default=None, **kwargs): value_unspecified = "value_unspecified" if default is None: default = value_unspecified # What is the environment variable that # tells us what environment we are in? env_env_var = env_var("AB__ENV", "ENV") # What environment are we in? env = env_var(env_env_var, value_unspecified) # What is the value that corresponds to the environment? value = kwargs.get(env, default) return value
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/absql/functions/env.py
env.py
from inspect import cleandoc from jinja2 import Environment, DebugUndefined from absql.text import ( clean_spacing, create_replacements, flatten_inputs, pretty_encode_sql, ) from absql.files import parse from absql.files.loader import generate_loader from absql.functions import default_functions from absql.utils import nested_apply, partialize_function def render_text( text, replace_only=False, pretty_encode=False, partial_kwargs=None, **vars ): """ Given some text, render the template with the vars. If a templated variable is unknown, leave it alone. """ if replace_only: text = clean_spacing(text) flat_vars = flatten_inputs(**vars) replacements = create_replacements(**flat_vars) for k, v in replacements.items(): text = text.replace(k, str(v)) text = cleandoc(text) else: env = Environment(undefined=DebugUndefined) for k, v in vars.items(): if v.__class__.__name__ == "function": vars[k] = partialize_function(v, partial_kwargs=partial_kwargs, **vars) env.filters[k] = vars[k] template = env.from_string(text) text = cleandoc(template.render(**vars)) if pretty_encode: return pretty_encode_sql(text) else: return text def render_context(extra_context=None, file_contents=None, partial_kwargs=None): """ Render context dictionaries passed through a function call or file frontmatter (file_contents), with file_contents taking precedence over other all other provided context. """ rendered_context = default_functions.copy() if extra_context: rendered_context.update(**extra_context) if file_contents: rendered_context.update(**file_contents) rendered_context = nested_apply( rendered_context, lambda x: render_text(x, partial_kwargs=partial_kwargs, **rendered_context), ) return rendered_context def render_file( file_path, loader=None, replace_only=False, extra_constructors=None, file_context_from=None, pretty_encode=False, partial_kwargs=None, **extra_context, ): """ Given a file path, render SQL with a combination of the vars in the file and any extras passed to extra_context. """ if loader is None: loader = generate_loader(extra_constructors or []) file_contents = parse(file_path, loader=loader) sql = file_contents["sql"] file_contents.pop("sql") if file_context_from: file_contents.update(file_contents.get(file_context_from, {})) file_contents.pop(file_context_from, {}) rendered_context = render_context(extra_context, file_contents, partial_kwargs) rendered = render_text( text=sql, replace_only=replace_only, pretty_encode=pretty_encode, partial_kwargs=partial_kwargs, **rendered_context, ) return rendered
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/absql/render/__init__.py
__init__.py
from absql.files.parsers import FM_BOUNDARY from inspect import signature from functools import partial def nested_apply(x, f): if x.__class__.__name__ in ["dict", "list", "str"]: if isinstance(x, str): x = f(x) elif isinstance(x, list): x = [nested_apply(i, f) for i in x] elif isinstance(x, dict): for k in x: x[k] = nested_apply(x[k], f) else: return x return x def get_function_arg_names(func): return list(signature(func).parameters.keys()) def partialize_function(func, partial_kwargs=None, **kwargs): partial_kwargs = partial_kwargs or ["engine"] function_args = get_function_arg_names(func) kwargs_to_partialize = { k: v for k, v in kwargs.items() if k in function_args and k in partial_kwargs } if kwargs_to_partialize: return partial(func, **kwargs_to_partialize) else: return func def load_body(file_path): with open(file_path, "r") as file: text = "".join(file.readlines()) if text.startswith("---"): _, metadata, content = FM_BOUNDARY.split(text, 2) return content else: return text
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/absql/utils/__init__.py
__init__.py
import re from flatdict import FlatDict from sql_metadata import Parser from colorama import Fore def clean_spacing(text): text = re.sub("\\{\\{", "{{ ", text) text = re.sub("\\}\\}", " }}", text) text = re.sub("\\{\\{\\s+", "{{ ", text) text = re.sub("\\s+\\}\\}", " }}", text) return text def create_replacements(**kwargs): replacements = {} for k, v in kwargs.items(): replacement = {"{{{{{k}}}}}".format(k=k): v, "{{{{ {k} }}}}".format(k=k): v} replacements.update(replacement) return replacements def flatten_inputs(**kwargs): flattened = FlatDict(kwargs, delimiter=".") return flattened def pretty_encode_sql( query, keyword_color=Fore.LIGHTCYAN_EX, quote_color=Fore.LIGHTMAGENTA_EX ): p = Parser(query) keywords = list(set([t.value for t in p.tokens if t.is_keyword])) bold_start = "\033[1m" bold_end = "\033[0m" replacements = {k: bold_start + keyword_color + k + bold_end for k in keywords} for keyword, formatted_keyword in replacements.items(): query = re.sub(r"\b{k}\b".format(k=keyword), formatted_keyword, query) quotes = [ # single_quotes "'{t}'".format(t=text) for text in list(set(re.findall("'([^']*)'", query))) ] + [ # double quotes '"{t}"'.format(t=text) for text in list(set(re.findall('"([^"]*)"', query))) ] replacements = {q: quote_color + q + Fore.RESET for q in quotes} for quote, formatted_quote in replacements.items(): query = re.sub(quote, formatted_quote, query) return query
ABSQL
/ABSQL-0.4.2-py3-none-any.whl/absql/text/__init__.py
__init__.py
from typing import Optional from sdk.context_event_logger import ContextEventLogger class ContextConfig: refresh_interval: int = 50 publish_delay: int = 50 # seconds event_logger: Optional[ContextEventLogger] = None cassigmnents: {} = None overrides: {} = None attributes: {} = None units: {} = None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/context_config.py
context_config.py
import base64 import collections import hashlib import threading from concurrent.futures import Future from typing import Optional from sdk.audience_matcher import AudienceMatcher from sdk.context_config import ContextConfig from sdk.context_data_provider import ContextDataProvider from sdk.context_event_handler import ContextEventHandler from sdk.context_event_logger import ContextEventLogger, EventType from sdk.internal.lock.atomic_bool import AtomicBool from sdk.internal.lock.atomic_int import AtomicInt from sdk.internal.lock.concurrency import Concurrency from sdk.internal.lock.read_write_lock import ReadWriteLock from sdk.internal.variant_assigner import VariantAssigner from sdk.json.attribute import Attribute from sdk.json.context_data import ContextData from sdk.json.experiment import Experiment from sdk.json.exposure import Exposure from sdk.json.goal_achievement import GoalAchievement from sdk.json.publish_event import PublishEvent from sdk.json.unit import Unit from sdk.time.clock import Clock from sdk.variable_parser import VariableParser class Assignment: def __init__(self): self.id: Optional[int] = 0 self.iteration: Optional[int] = 0 self.full_on_variant: Optional[int] = 0 self.name: Optional[str] = None self.unit_type: Optional[str] = None self.traffic_split: list[int] = [] self.variant: Optional[int] = 0 self.assigned: Optional[bool] = False self.overridden: Optional[bool] = False self.eligible: Optional[bool] = False self.full_on: Optional[bool] = False self.custom: Optional[bool] = False self.audience_mismatch: Optional[bool] = False self.variables: dict = {} self.exposed = AtomicBool() class ExperimentVariables: data: Optional[Experiment] variables: Optional[list[dict]] def experiment_matches(experiment: Experiment, assignment: Assignment): return experiment.id == assignment.id and \ experiment.unitType == assignment.unit_type and \ experiment.iteration == assignment.iteration and \ experiment.fullOnVariant == assignment.full_on_variant and \ collections.Counter(experiment.trafficSplit) == \ collections.Counter(assignment.traffic_split) class Context: def __init__(self, clock: Clock, config: ContextConfig, data_future: Future, data_provider: ContextDataProvider, event_handler: ContextEventHandler, event_logger: ContextEventLogger, variable_parser: VariableParser, audience_matcher: AudienceMatcher): self.clock = clock self.publish_delay = config.publish_delay self.refresh_interval = config.refresh_interval self.event_handler = event_handler self.event_logger = event_logger self.data_provider = data_provider self.variable_parser = variable_parser self.audience_matcher = audience_matcher self.units = {} self.index = {} self.index_variables = {} self.assignment_cache = {} self.cassignments = {} self.overrides = {} self.exposures = [] self.achievements = [] self.data: Optional[ContextData] = None self.failed = False self.closed = AtomicBool() self.closing = AtomicBool() self.refreshing = AtomicBool() self.pending_count = AtomicInt() self.context_lock = ReadWriteLock() self.data_lock = ReadWriteLock() self.timeout_lock = ReadWriteLock() self.event_lock = ReadWriteLock() self.refresh_future: Optional[Future] = None self.closing_future: Optional[Future] = None self.refresh_timer: Optional[threading.Timer] = None self.timeout: Optional[threading.Timer] = None if config.units is not None: self.set_units(config.units) self.assigners = dict.fromkeys((range(len(self.units)))) self.hashed_units = dict.fromkeys((range(len(self.units)))) self.attributes: list[Attribute] = [] if config.attributes is not None: self.set_attributes(config.attributes) if config.overrides is not None: self.overrides = dict(config.overrides) else: self.overrides = {} if config.cassigmnents is not None: self.cassignments = dict(config.cassigmnents) else: self.cassignments = {} if data_future.done(): def when_finished(data: Future): if data.done() and data.cancelled() is False and \ data.exception() is None: self.set_data(data.result()) self.log_event(EventType.READY, data.result()) elif data.cancelled() is False and \ data.exception() is not None: self.set_data_failed(data.exception()) self.log_error(data.exception()) data_future.add_done_callback(when_finished) else: self.ready_future = Future() def when_finished(data: Future): if data.done() and data.cancelled() is False and \ data.exception() is None: self.set_data(data.result()) self.ready_future.set_result(None) self.ready_future = None self.log_event(EventType.READY, data.result()) if self.get_pending_count() > 0: self.set_timeout() elif data.cancelled() is False and \ data.exception() is not None: self.set_data_failed(data.exception()) self.ready_future.set_result(None) self.ready_future = None self.log_error(data.exception()) data_future.add_done_callback(when_finished) def set_units(self, units: dict): for key, value in units.items(): self.set_unit(key, value) def set_unit(self, unit_type: str, uid: str): self.check_not_closed() try: self.context_lock.acquire_write() if unit_type in self.units.keys() and self.units[unit_type] != uid: raise ValueError("Unit already set.") trimmed = uid.strip() if len(trimmed) == 0: raise ValueError("Unit UID must not be blank.") self.units[unit_type] = trimmed finally: self.context_lock.release_write() def set_attributes(self, attributes: dict): for key, value in attributes.items(): self.set_attribute(key, value) def set_attribute(self, name: str, value: object): self.check_not_closed() attribute = Attribute() attribute.name = name attribute.value = value attribute.setAt = self.clock.millis() Concurrency.add_rw(self.context_lock, self.attributes, attribute) def check_not_closed(self): if self.closed.value: raise RuntimeError('ABSmartly Context is closed') elif self.closing.value: raise RuntimeError('ABSmartly Context is closing') def set_data(self, data: ContextData): index = {} index_variables = {} for experiment in data.experiments: experiment_variables = ExperimentVariables() experiment_variables.data = experiment experiment_variables.variables = [] for variant in experiment.variants: if variant.config is not None and len(variant.config) > 0: variables = self.variable_parser.parse( self, experiment.name, variant.name, variant.config) for key, value in variables.items(): index_variables[key] = experiment_variables experiment_variables.variables.append(variables) else: experiment_variables.variables.append({}) index[experiment.name] = experiment_variables try: self.data_lock.acquire_write() self.index = index self.index_variables = index_variables self.data = data self.set_refresh_timer() finally: self.data_lock.release_write() def set_refresh_timer(self): if self.refresh_interval > 0 and self.refresh_timer is None and not self.is_closing() and not self.is_closed(): def ref(): self.refresh_async() self.refresh_timer = threading.Timer( self.refresh_interval, ref) self.refresh_timer.start() self.refresh_timer = threading.Timer( self.refresh_interval, ref) self.refresh_timer.start() def set_timeout(self): if self.is_ready(): if self.timeout is None: try: self.timeout_lock.acquire_write() def flush(): self.flush() self.timeout = threading.Timer(self.publish_delay, flush) self.timeout.start() finally: self.timeout_lock.release_write() def is_ready(self): return self.data is not None def is_failed(self): return self.failed def is_closed(self): return self.closed.value def is_closing(self): return not self.closed.value and self.closing.value def refresh_async(self): self.check_not_closed() if self.refreshing.compare_and_set(False, True): self.refresh_future = Future() def when_ready(data): if data.done() and data.cancelled() is False and \ data.exception() is None: self.set_data(data.result()) self.refreshing.set(False) self.refresh_future.set_result(None) self.log_event(EventType.REFRESH, data.result()) elif data.cancelled() is False and \ data.exception() is not None: self.refreshing.set(False) self.refresh_future.set_exception(data.exception()) self.log_error(data.exception()) self.data_provider\ .get_context_data()\ .add_done_callback(when_ready) if self.refresh_future is not None: return self.refresh_future else: result = Future() result.set_result(None) return result def set_data_failed(self, exception): try: self.data_lock.acquire_write() self.index = {} self.index_variables = {} self.data = ContextData() self.failed = True finally: self.data_lock.release_write() def log_error(self, exception): if self.event_logger is not None: self.event_logger.handle_event(EventType.ERROR, exception) def log_event(self, event: EventType, data: object): if self.event_logger is not None: self.event_logger.handle_event(event, data) def get_pending_count(self): return self.pending_count.get() def flush(self): self.clear_timeout() if self.failed is False: if self.pending_count.get() > 0: exposures = None achievements = None event_count = 0 try: self.event_lock.acquire_write() event_count = self.pending_count.get() if event_count > 0: if len(self.exposures) > 0: exposures = list(self.exposures) self.exposures.clear() if len(self.achievements) > 0: achievements = list(self.achievements) self.achievements.clear() self.pending_count.set(0) finally: self.event_lock.release_write() if event_count > 0: event = PublishEvent() event.hashed = True event.publishedAt = self.clock.millis() event.units = [] for key, value in self.units.items(): unit = Unit() unit.type = key unit.uid = str( self.get_unit_hash(key, value), encoding='ascii')\ .encode('ascii', errors='ignore')\ .decode() event.units.append(unit) if len(self.attributes) > 0: event.attributes = list(self.attributes) else: event.attributes = None event.exposures = exposures event.goals = achievements result = Future() def run(data): if data.done() and \ data.cancelled() is False and \ data.exception() is None: self.log_event(EventType.PUBLISH, event) result.set_result(None) elif data.cancelled() is False and \ data.exception() is not None: self.log_error(data.exception()) result.set_exception(data.exception()) self.event_handler\ .publish(self, event)\ .add_done_callback(run) return result else: try: self.event_lock.acquire_write() self.exposures.clear() self.achievements.clear() self.pending_count.set(0) finally: self.event_lock.release_write() result = Future() result.set_result(None) return result def close(self): self.close_async().result() def refresh(self): self.refresh_async().result() def publish(self): self.publish_async().result() def publish_async(self): self.check_not_closed() return self.flush() def track(self, goal_name: str, properties: dict): self.check_not_closed() achievement = GoalAchievement() achievement.achievedAt = self.clock.millis() achievement.name = goal_name if properties is None: achievement.properties = None else: achievement.properties = dict(properties) try: self.event_lock.acquire_write() self.pending_count.increment_and_get() self.achievements.append(achievement) finally: self.event_lock.release_write() self.log_event(EventType.GOAL, achievement) self.set_timeout() def wait_until_ready(self): if self.data is None: if self.ready_future is not None and not self.ready_future.done(): self.ready_future.result() return self def wait_until_ready_async(self): if self.data is not None: result = Future() result.set_result(self) return result else: def apply(fut: Future): return self self.ready_future.add_done_callback(apply) return self.ready_future def clear_timeout(self): if self.timeout is not None: try: self.timeout_lock.acquire_write() if self.timeout is not None: self.timeout.cancel() self.timeout = None finally: self.timeout_lock.release_write() def clear_refresh_timer(self): if self.refresh_timer is not None: self.refresh_timer.cancel() self.refresh_timer = None def get_variable_value(self, key: str, default_value: object): self.check_ready(True) assignment = self.get_variable_assignment(key) if assignment is not None: if assignment.variables is not None: if not assignment.exposed.value: self.queue_exposure(assignment) if key in assignment.variables: return assignment.variables[key] return default_value def peek_variable_value(self, key: str, default_value: object): self.check_ready(True) assignment = self.get_variable_assignment(key) if assignment is not None: if assignment.variables is not None: if key in assignment.variables: return assignment.variables[key] return default_value def peek_treatment(self, experiment_name: str): self.check_ready(True) return self.get_assignment(experiment_name).variant def get_unit_hash(self, unit_type: str, unit_uid: str): def computer(key: str): dig = hashlib.md5(unit_uid.encode('utf-8')).digest() unithash = base64.urlsafe_b64encode(dig).rstrip(b'=') return unithash return Concurrency.compute_if_absent_rw( self.context_lock, self.hashed_units, unit_type, computer) def get_treatment(self, experiment_name: str): self.check_ready(True) assignment = self.get_assignment(experiment_name) if not assignment.exposed.value: self.queue_exposure(assignment) return assignment.variant def get_variable_keys(self): self.check_ready(True) variable_keys = {} try: self.data_lock.acquire_read() for key, value in self.index_variables.items(): expr_var: ExperimentVariables = value variable_keys[key] = expr_var.data.name finally: self.data_lock.release_write() return variable_keys def get_assignment(self, experiment_name: str): try: self.context_lock.acquire_read() if experiment_name in self.assignment_cache: assignment: Assignment = self.assignment_cache[experiment_name] experiment: ExperimentVariables = \ self.get_experiment(experiment_name) if experiment_name in self.overrides: override = self.overrides[experiment_name] if assignment.overridden and \ assignment.variant == override: return assignment elif experiment is None: if assignment.assigned is False: return assignment elif experiment_name not in self.cassignments or \ self.cassignments[experiment_name] == \ assignment.variant: if experiment_matches(experiment.data, assignment): return assignment finally: self.context_lock.release_read() try: self.context_lock.acquire_write() experiment: ExperimentVariables = \ self.get_experiment(experiment_name) assignment = Assignment() assignment.name = experiment_name assignment.eligible = True if experiment_name in self.overrides: if experiment is not None: assignment.id = experiment.data.id assignment.unit_type = experiment.data.unitType assignment.overridden = True assignment.variant = self.overrides[experiment_name] else: if experiment is not None: unit_type = experiment.data.unitType if experiment.data.audience is not None and \ len(experiment.data.audience) > 0: attrs = {} for attr in self.attributes: attrs[attr.name] = attr.value match = self.audience_matcher.evaluate( experiment.data.audience, attrs) if match is not None: assignment.audience_mismatch = not match.result if experiment.data.audienceStrict and \ assignment.audience_mismatch: assignment.variant = 0 elif experiment.data.fullOnVariant == 0: if experiment.data.unitType in self.units: uid = self.units[experiment.data.unitType] unit_hash = self.get_unit_hash(unit_type, uid) assigner: VariantAssigner = \ self.get_variant_assigner(unit_type, unit_hash) eligible = \ assigner.assign( experiment.data.trafficSplit, experiment.data.trafficSeedHi, experiment.data.trafficSeedLo) == 1 if eligible: if experiment_name in self.cassignments: custom = self.cassignments[experiment_name] assignment.variant = custom assignment.custom = True else: assignment.variant = \ assigner.assign(experiment.data.split, experiment.data.seedHi, experiment.data.seedLo) else: assignment.eligible = False assignment.variant = 0 assignment.assigned = True else: assignment.assigned = True assignment.variant = experiment.data.fullOnVariant assignment.full_on = True assignment.unit_type = unit_type assignment.id = experiment.data.id assignment.iteration = experiment.data.iteration assignment.traffic_split = experiment.data.trafficSplit assignment.full_on_variant = experiment.data.fullOnVariant if experiment is not None and \ (assignment.variant < len(experiment.data.variants)): assignment.variables = experiment.variables[assignment.variant] self.assignment_cache[experiment_name] = assignment return assignment finally: self.context_lock.release_write() def check_ready(self, expect_not_closed: bool): if not self.is_ready(): raise RuntimeError('ABSmartly Context is not yet ready') elif expect_not_closed: self.check_not_closed() def get_experiment(self, experiment_name: str): try: self.data_lock.acquire_read() return self.index.get(experiment_name, None) finally: self.data_lock.release_read() def get_experiments(self): self.check_ready(True) try: self.data_lock.acquire_read() experiment_names = [] for experiment in self.data.experiments: experiment_names.append(experiment.name) return experiment_names finally: self.data_lock.release_read() def get_data(self): self.check_ready(True) try: self.data_lock.acquire_read() return self.data finally: self.data_lock.release_read() def set_override(self, experiment_name: str, variant: int): self.check_not_closed() return Concurrency.put_rw(self.context_lock, self.overrides, experiment_name, variant) def get_override(self, experiment_name: str): return Concurrency.get_rw(self.context_lock, self.overrides, experiment_name) def set_overrides(self, overrides: dict): for key, value in overrides.items(): self.set_override(key, value) def set_custom_assignment(self, experiment_name: str, variant: int): self.check_not_closed() Concurrency.put_rw(self.context_lock, self.cassignments, experiment_name, variant) def get_custom_assignment(self, experiment_name: str): return Concurrency.get_rw(self.context_lock, self.cassignments, experiment_name) def set_custom_assignments(self, custom_assignments: dict): for key, value in custom_assignments.items(): self.set_custom_assignment(key, value) def get_variant_assigner(self, unit_type: str, unit_hash: bytes): def apply(key: str): return VariantAssigner(bytearray(unit_hash)) return Concurrency.compute_if_absent_rw(self.context_lock, self.assigners, unit_type, apply) def get_variable_experiment(self, key: str): return Concurrency.get_rw(self.data_lock, self.index_variables, key) def get_variable_assignment(self, key: str): experiment: ExperimentVariables = self.get_variable_experiment(key) if experiment is not None: return self.get_assignment(experiment.data.name) return None def close_async(self): if not self.closed.value: if self.closing.compare_and_set(False, True): self.clear_refresh_timer() if self.pending_count.get() > 0: self.closing_future = Future() def accept(res: Future): if res.done() and res.cancelled() is False \ and res.exception() is None: self.closed.set(True) self.closing.set(False) self.closing_future.set_result(None) self.log_event(EventType.CLOSE, None) elif res.cancelled() is False \ and res.exception() is not None: self.closed.set(True) self.closing.set(False) self.closing_future.exception(res.exception()) self.flush().add_done_callback(accept) return self.closing_future else: self.closed.set(True) self.closing.set(False) self.log_event(EventType.CLOSE, None) if self.closing_future is not None: return self.closing_future result = Future() result.set_result(None) return result def queue_exposure(self, assignment: Assignment): if assignment.exposed.compare_and_set(False, True): exposure = Exposure() exposure.id = assignment.id exposure.name = assignment.name exposure.unit = assignment.unit_type exposure.variant = assignment.variant exposure.exposedAt = self.clock.millis() exposure.assigned = assignment.assigned exposure.eligible = assignment.eligible exposure.overridden = assignment.overridden exposure.fullOn = assignment.full_on exposure.custom = assignment.custom exposure.audienceMismatch = assignment.audience_mismatch try: self.event_lock.acquire_write() self.pending_count.increment_and_get() self.exposures.append(exposure) finally: self.event_lock.release_write() self.log_event(EventType.EXPOSURE, exposure) self.set_timeout()
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/context.py
context.py
from abc import abstractmethod from typing import Optional class AudienceDeserializer: @abstractmethod def deserialize(self, bytes_: bytes, offset: int, length: int) -> Optional[dict]: raise NotImplementedError
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/audience_deserializer.py
audience_deserializer.py
import jsons from sdk.context_event_serializer import ContextEventSerializer from sdk.json.publish_event import PublishEvent class DefaultContextEventSerializer(ContextEventSerializer): def serialize(self, publish_event: PublishEvent) -> bytearray: str_result = jsons.dumps(publish_event, strip_nulls=True) return bytearray(str_result, encoding='utf-8')
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/default_context_event_serializer.py
default_context_event_serializer.py
class DefaultHTTPClientConfig: def __init__(self): self.connection_timeout = 3 # seconds self.connection_request_timeout = 1 self.retry_interval = 0.3 self.max_retries = 5
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/default_http_client_config.py
default_http_client_config.py
from typing import Optional import jsons from jsons import DeserializationError from sdk.context import Context from sdk.variable_parser import VariableParser class DefaultVariableParser(VariableParser): def parse(self, context: Context, experiment_name: str, variant_name: str, config: str) -> Optional[dict]: try: return jsons.loads(config, dict) except DeserializationError: return None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/default_variable_parser.py
default_variable_parser.py
from concurrent.futures import Future from typing import Optional from sdk.client import Client from sdk.context_data_provider import ContextDataProvider from sdk.json.context_data import ContextData class DefaultContextDataProvider(ContextDataProvider): def __init__(self, client: Client): self.client = client def get_context_data(self) -> Future[Optional[ContextData]]: return self.client.get_context_data()
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/default_context_data_provider.py
default_context_data_provider.py
import os from concurrent.futures import ThreadPoolExecutor from sdk.default_context_data_deserializer import \ DefaultContextDataDeserializer from sdk.default_context_event_serializer import \ DefaultContextEventSerializer class ClientConfig: def __init__(self, prefix=""): self.executor = ThreadPoolExecutor() self.endpoint = os.environ.get(prefix + "endpoint") self.environment = os.environ.get(prefix + "environment") self.application = os.environ.get(prefix + "application") self.api_key = os.environ.get(prefix + "api_key") self.serializer = DefaultContextEventSerializer() self.deserializer = DefaultContextDataDeserializer()
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/client_config.py
client_config.py
from abc import abstractmethod from enum import Enum class EventType(Enum): ERROR = "error" READY = "ready" REFRESH = "refresh" PUBLISH = "publish" EXPOSURE = "exposure" GOAL = "goal" CLOSE = "close" class ContextEventLogger: @abstractmethod def handle_event(self, event_type: EventType, data: object): raise NotImplementedError
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/context_event_logger.py
context_event_logger.py
from typing import Optional from sdk.audience_deserializer import AudienceDeserializer from sdk.client import Client from sdk.context_data_provider import ContextDataProvider from sdk.context_event_handler import ContextEventHandler from sdk.context_event_logger import ContextEventLogger from sdk.variable_parser import VariableParser class ABSmartlyConfig: context_data_provider: Optional[ContextDataProvider] = None context_event_handler: Optional[ContextEventHandler] = None context_event_logger: Optional[ContextEventLogger] = None audience_deserializer: Optional[AudienceDeserializer] = None client: Optional[Client] = None variable_parser: Optional[VariableParser] = None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/absmartly_config.py
absmartly_config.py
from sdk.client_config import ClientConfig from sdk.http_client import HTTPClient from sdk.json.publish_event import PublishEvent class Client: def __init__(self, config: ClientConfig, http_client: HTTPClient): self.serializer = config.serializer self.deserializer = config.deserializer self.executor = config.executor endpoint = config.endpoint api_key = config.api_key application = config.application environment = config.environment self.url = endpoint + "/context" self.http_client = http_client self.headers = {"X-API-Key": api_key, "X-Application": application, "X-Environment": environment, "X-Application-Version": '0', "X-Agent": "absmartly-python-sdk"} self.query = {"application": application, "environment": environment} def get_context_data(self): return self.executor.submit(self.send_get, self.url, self.query, {}) def send_get(self, url: str, query: dict, headers: dict): response = self.http_client.get(url, query, headers) if response.status_code // 100 == 2: content = response.content return self.deserializer.deserialize(content, 0, len(content)) return response.raise_for_status() def publish(self, event: PublishEvent): return self.executor.submit( self.send_put, self.url, {}, self.headers, event) def send_put(self, url: str, query: dict, headers: dict, event: PublishEvent): content = self.serializer.serialize(event) response = self.http_client.put(url, query, headers, content) if response.status_code // 100 == 2: content = response.content return self.deserializer.deserialize(content, 0, len(content)) return response.raise_for_status()
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/client.py
client.py
from abc import abstractmethod from sdk.json.context_data import ContextData class ContextDataDeserializer: @abstractmethod def deserialize(self, bytes_: bytearray, offset: int, length: int) -> ContextData: raise NotImplementedError
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/context_data_deserializer.py
context_data_deserializer.py
from typing import Optional import jsons from jsons import DeserializationError from sdk.context_data_deserializer import ContextDataDeserializer from sdk.json.context_data import ContextData class DefaultContextDataDeserializer(ContextDataDeserializer): def deserialize(self, bytes_: bytes, offset: int, length: int) -> Optional[ContextData]: try: return jsons.loadb(bytes_, ContextData) except DeserializationError: return None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/default_context_data_deserializer.py
default_context_data_deserializer.py
import requests as req from requests.adapters import HTTPAdapter, Response from urllib3 import Retry from sdk.default_http_client_config import DefaultHTTPClientConfig from sdk.http_client import HTTPClient class DefaultHTTPClient(HTTPClient): def __init__(self, config: DefaultHTTPClientConfig): self.http_client = req.Session() retry = Retry(total=config.max_retries, read=config.max_retries, connect=config.max_retries, backoff_factor=config.retry_interval, status_forcelist=(502, 503), allowed_methods=frozenset(['GET', 'POST'])) self.http_client.mount( 'http://', HTTPAdapter(max_retries=retry, pool_maxsize=200, pool_connections=20)) self.http_client.mount( 'https://', HTTPAdapter(max_retries=retry, pool_maxsize=200, pool_connections=20)) self.timeout = config.connection_timeout self.request_timeout = config.connection_request_timeout def get(self, url: str, query: dict, headers: dict) -> Response: return self.http_client.get(url, params=query, headers=headers, timeout=(self.timeout, self.request_timeout)) def put(self, url: str, query: dict, headers: dict, body: bytearray) -> Response: headers.update({'Content-type': 'application/json'}) return self.http_client.put(url, data=bytes(body), params=query, headers=headers, timeout=(self.timeout, self.request_timeout)) def post(self, url: str, query: dict, headers: dict, body: bytearray) -> Response: headers.update({'Content-type': 'application/json'}) return self.http_client.put(url, data=bytes(body), params=query, headers=headers, timeout=(self.timeout, self.request_timeout))
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/default_http_client.py
default_http_client.py
from abc import abstractmethod from concurrent.futures import Future from typing import Optional from sdk.json.context_data import ContextData from sdk.json.publish_event import PublishEvent class ContextEventHandler: @abstractmethod def publish(self, context, event: PublishEvent) -> \ Future[Optional[ContextData]]: raise NotImplementedError
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/context_event_handler.py
context_event_handler.py
from typing import Optional import jsons from jsons import DeserializationError from sdk.audience_deserializer import AudienceDeserializer class DefaultAudienceDeserializer(AudienceDeserializer): def deserialize(self, bytes_: bytes, offset: int, length: int) -> Optional[dict]: try: return jsons.loadb(bytes_, dict) except DeserializationError: return None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/default_audience_deserializer.py
default_audience_deserializer.py
from concurrent.futures import Future from typing import Optional from sdk.client import Client from sdk.context import Context from sdk.context_event_handler import ContextEventHandler from sdk.json.context_data import ContextData from sdk.json.publish_event import PublishEvent class DefaultContextEventHandler(ContextEventHandler): def __init__(self, client: Client): self.client = client def publish(self, context: Context, event: PublishEvent) -> Future[Optional[ContextData]]: return self.client.publish(event)
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/default_context_event_handler.py
default_context_event_handler.py
from abc import abstractmethod from sdk.json.publish_event import PublishEvent class ContextEventSerializer: @abstractmethod def serialize(self, publish_event: PublishEvent) -> bytearray: raise NotImplementedError
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/context_event_serializer.py
context_event_serializer.py
from abc import abstractmethod from concurrent.futures import Future from typing import Optional from sdk.json.context_data import ContextData class ContextDataProvider: @abstractmethod def get_context_data(self) -> Future[Optional[ContextData]]: raise NotImplementedError
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/context_data_provider.py
context_data_provider.py
from abc import abstractmethod from requests.adapters import Response class HTTPClient: @abstractmethod def get(self, url: str, query: dict, headers: dict) -> Response: raise NotImplementedError @abstractmethod def put(self, url: str, query: dict, headers: dict, body: bytearray) -> Response: raise NotImplementedError @abstractmethod def post(self, url: str, query: dict, headers: dict, body: bytearray) -> Response: raise NotImplementedError
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/http_client.py
http_client.py
from concurrent.futures import Future from typing import Optional from sdk.absmartly_config import ABSmartlyConfig from sdk.audience_matcher import AudienceMatcher from sdk.context import Context from sdk.context_config import ContextConfig from sdk.default_audience_deserializer import DefaultAudienceDeserializer from sdk.default_context_data_provider import DefaultContextDataProvider from sdk.default_context_event_handler import DefaultContextEventHandler from sdk.default_variable_parser import DefaultVariableParser from sdk.json.context_data import ContextData from sdk.time.system_clock_utc import SystemClockUTC class ABSmartly: def __init__(self, config: ABSmartlyConfig): self.context_data_provider = config.context_data_provider self.context_event_handler = config.context_event_handler self.context_event_logger = config.context_event_logger self.variable_parser = config.variable_parser self.audience_deserializer = config.audience_deserializer if self.context_data_provider is None or \ self.context_event_handler is None: self.client = config.client if self.context_data_provider is None: self.context_data_provider = \ DefaultContextDataProvider(self.client) if self.context_event_handler is None: self.context_event_handler = \ DefaultContextEventHandler(self.client) if self.variable_parser is None: self.variable_parser = DefaultVariableParser() if self.audience_deserializer is None: self.audience_deserializer = DefaultAudienceDeserializer() def get_context_data(self) -> Future[Optional[ContextData]]: return self.context_data_provider.get_context_data() def create_context(self, config: ContextConfig) -> Context: return Context(SystemClockUTC(), config, self.context_data_provider.get_context_data(), self.context_data_provider, self.context_event_handler, self.context_event_logger, self.variable_parser, AudienceMatcher(self.audience_deserializer)) def create_context_with(self, config: ContextConfig, data: ContextData) -> Context: future_data = Future() future_data.set_result(data) return Context(SystemClockUTC(), config, future_data, self.context_data_provider, self.context_event_handler, self.context_event_logger, self.variable_parser, AudienceMatcher(self.audience_deserializer))
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/absmartly.py
absmartly.py
from typing import Optional from sdk.audience_deserializer import AudienceDeserializer from sdk.jsonexpr.json_expr import JsonExpr class Result: def __init__(self, result: bool): self.result = result class AudienceMatcher: def __init__(self, deserializer: AudienceDeserializer): self.deserializer = deserializer self.json_expr = JsonExpr() def evaluate(self, audience: str, attributes: dict) -> Optional[Result]: bytes_arr = bytes(audience, encoding="utf-8") audience_map = self.deserializer.deserialize(bytes_arr, 0, len(bytes_arr)) if audience_map is not None: if "filter" in audience_map: fl = audience_map["filter"] if type(fl) is dict or type(fl) is list: expr = self.json_expr.evaluate_boolean_expr(fl, attributes) return Result(expr) return None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/audience_matcher.py
audience_matcher.py
from abc import abstractmethod from typing import Optional class VariableParser: @abstractmethod def parse(self, context, experiment_name: str, variant_name: str, variable_value: str) -> Optional[dict]: raise NotImplementedError
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/variable_parser.py
variable_parser.py
def put_uint32(buf: bytearray, offset: int, x: int): buf[offset] = x & 0xff buf[offset + 1] = (x >> 8) & 0xff buf[offset + 2] = (x >> 16) & 0xff buf[offset + 3] = (x >> 24) & 0xff def get_uint32(buf: bytearray, offset: int): return (buf[offset] & 0xff) \ | ((buf[offset + 1] & 0xff) << 8) \ | ((buf[offset + 2] & 0xff) << 16) \ | ((buf[offset + 3] & 0xff) << 24) def get_uint24(buf: bytearray, offset: int): return (buf[offset] & 0xff) \ | ((buf[offset + 1] & 0xff) << 8) \ | ((buf[offset + 2] & 0xff) << 16) def get_uint16(buf: bytearray, offset: int): return (buf[offset] & 0xff) \ | ((buf[offset + 1] & 0xff) << 8) def get_uint8(buf: bytearray, offset: int): return buf[offset] & 0xff
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/internal/buffers.py
buffers.py
import sys as _sys if _sys.version_info > (3, 0): def xrange(a, b, c): return range(a, b, c) def xencode(x): if isinstance(x, bytes) or isinstance(x, bytearray): return x else: return x.encode() else: def xencode(x): return x del _sys def digest(key, seed): key = bytearray(xencode(key)) length = len(key) nblocks = int(length / 4) h1 = seed c1 = 0xcc9e2d51 c2 = 0x1b873593 for block_start in xrange(0, nblocks * 4, 4): k1 = key[block_start + 3] << 24 | \ key[block_start + 2] << 16 | \ key[block_start + 1] << 8 | \ key[block_start + 0] k1 = (c1 * k1) & 0xFFFFFFFF k1 = rotate_right(k1, 15) k1 = (c2 * k1) & 0xFFFFFFFF h1 ^= k1 h1 = rotate_right(h1, 13) h1 = (h1 * 5 + 0xe6546b64) & 0xFFFFFFFF tail_index = nblocks * 4 k1 = 0 tail_size = length & 3 if tail_size >= 3: k1 ^= key[tail_index + 2] << 16 if tail_size >= 2: k1 ^= key[tail_index + 1] << 8 if tail_size >= 1: k1 ^= key[tail_index + 0] if tail_size > 0: k1 = (k1 * c1) & 0xFFFFFFFF k1 = rotate_right(k1, 15) k1 = (k1 * c2) & 0xFFFFFFFF h1 ^= k1 unsigned_val = fmix(h1 ^ length) if unsigned_val & 0x80000000 == 0: return unsigned_val else: return -((unsigned_val ^ 0xFFFFFFFF) + 1) def fmix(h: int): h ^= h >> 16 h = (h * 0x85ebca6b) & 0xFFFFFFFF h ^= h >> 13 h = (h * 0xc2b2ae35) & 0xFFFFFFFF h ^= h >> 16 return h def rotate_right(n, d): return (n << d) | (n >> (32 - d)) & 0xFFFFFFFF def to_signed32(n): n = n & 0xffffffff return (n ^ 0x80000000) - 0x80000000
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/internal/murmur32.py
murmur32.py
import threading from sdk.internal import murmur32, buffers class VariantAssigner: def __init__(self, unithash: bytearray): self.unitHash_ = murmur32.digest(unithash, 0) self.threadBuffer = threading.local() self.threadBuffer.value = bytearray(12) def assign(self, split: list, seed_hi: int, seed_lo: int): prob = self.probability(seed_hi, seed_lo) return self.choose_variant(split, prob) @staticmethod def choose_variant(split: list, prob: float): cum_sum = 0.0 for index, item in enumerate(split): cum_sum += item if prob < cum_sum: return index return len(split) - 1 def probability(self, seed_hi: int, seed_lo: int): buff = self.threadBuffer.value buffers.put_uint32(buff, 0, seed_lo) buffers.put_uint32(buff, 4, seed_hi) buffers.put_uint32(buff, 8, self.unitHash_) hashing = murmur32.digest(buff, 0) return (hashing & 0xffffffff) * VariantAssigner.__normalizer __normalizer = 1.0 / 0xffffffff
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/internal/variant_assigner.py
variant_assigner.py
import threading class ReadWriteLock: def __init__(self): self.w_lock = threading.RLock() self.num_r_lock = threading.RLock() self.num_r = 0 def acquire_read(self): self.num_r_lock.acquire() self.num_r += 1 if self.num_r == 1: self.w_lock.acquire() self.num_r_lock.release() def release_read(self): assert self.num_r > 0 self.num_r_lock.acquire() self.num_r -= 1 if self.num_r == 0: self.w_lock.release() self.num_r_lock.release() def acquire_write(self): self.w_lock.acquire() def release_write(self): self.w_lock.release()
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/internal/lock/read_write_lock.py
read_write_lock.py
from sdk.internal.lock.read_write_lock import ReadWriteLock class Concurrency: @staticmethod def add_rw(lock: ReadWriteLock, lst: list, value: object): try: lock.acquire_write() lst.append(value) finally: lock.release_write() @staticmethod def compute_if_absent_rw(lock: ReadWriteLock, mp: dict, key: object, computer): try: lock.acquire_read() if key in mp: return mp[key] finally: lock.release_read() try: lock.acquire_write() if key in mp: return mp[key] new_value = computer(key) mp[key] = new_value return new_value finally: lock.release_write() @staticmethod def get_rw(lock: ReadWriteLock, mp: dict, key: object): try: lock.acquire_write() if key not in mp: return None else: return mp[key] finally: lock.release_write() @staticmethod def put_rw(lock: ReadWriteLock, mp: dict, key: object, value: object): try: lock.acquire_write() previous = None if key in mp: previous = mp[key] mp[key] = value return previous finally: lock.release_write()
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/internal/lock/concurrency.py
concurrency.py
import threading class AtomicInt(object): def __init__(self): self.value = 0 self._lock = threading.Lock() def set(self, value: int): with self._lock: self.value = value def increment(self): with self._lock: self.value += 1 def increment_and_get(self): with self._lock: self.value += 1 return self.value def get(self): with self._lock: return self.value
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/internal/lock/atomic_int.py
atomic_int.py
import threading class AtomicBool(object): def __init__(self): self.value = False self._lock = threading.Lock() def set(self, value: bool): with self._lock: self.value = value def compare_and_set(self, expected_value: bool, new_value: bool): with self._lock: result = expected_value == self.value if result: self.value = new_value return result
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/internal/lock/atomic_bool.py
atomic_bool.py
import decimal from decimal import Decimal from sdk.jsonexpr.evaluator import Evaluator def compare_to(this, that): if this > that: return 1 elif this < that: return -1 elif this == that: return 0 class ExprEvaluator(Evaluator): def __init__(self, operators: dict, vars: dict): self.vars = vars self.operators = operators def evaluate(self, expr: object): if type(expr) is list: return self.operators["and"].evaluate(self, expr) elif type(expr) is dict: for key, value in expr.items(): if key not in self.operators: return None op = self.operators[key] if op is not None: res = op.evaluate(self, value) return res break return None def boolean_convert(self, x: object): if type(x) is bool: return x elif type(x) is str: return x != "False" and x != "0" and x != "" elif type(x) is int or type(x) is float or type(x) is complex: return x != 0 return x is not None def number_convert(self, x: object): if type(x) is int or type(x) is float or type(x) is complex: return x elif type(x) is bool: return 1.0 if x is True else 0.0 elif type(x) is str: try: return Decimal(x) except decimal.InvalidOperation: return None return None def string_convert(self, x: object): if type(x) is str: return x elif type(x) is bool: return str(x) elif type(x) is int or type(x) is float or type(x) is complex: return str(x) return None def extract_var(self, path: str): frags = path.split("/") target = self.vars if self.vars is not None else {} for frag in frags: value = None if type(target) is list: try: value = target[int(frag)] except BaseException as err: print(err) elif type(target) is dict: if frag not in target: return None value = target[frag] if value is not None: target = value continue return None return target def compare(self, lhs: object, rhs: object): if lhs is None: return 0 if rhs is None else None elif rhs is None: return None if type(lhs) is int or type(lhs) is float or type(lhs) is complex: rvalue = self.number_convert(rhs) if rvalue is not None: return compare_to(lhs, rvalue) elif type(lhs) is str: rvalue = self.string_convert(rhs) if rvalue is not None: return compare_to(lhs, rvalue) elif type(lhs) is bool: rvalue = self.boolean_convert(rhs) if rvalue is not None: return compare_to(lhs, rvalue) elif type(lhs) == type(rhs) and lhs == rhs: return 0 return None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/expr_evaluator.py
expr_evaluator.py
from abc import abstractmethod class Evaluator: @abstractmethod def evaluate(self, expr: object): raise NotImplementedError @abstractmethod def boolean_convert(self, x: object): raise NotImplementedError @abstractmethod def number_convert(self, x: object): raise NotImplementedError @abstractmethod def string_convert(self, x: object): raise NotImplementedError @abstractmethod def extract_var(self, path: str): raise NotImplementedError # returns # -1 -> lesser, 0 -> equals, 1 -> greater, null -> undefined comparison @abstractmethod def compare(self, lhs: object, rhs: object): raise NotImplementedError
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/evaluator.py
evaluator.py
from sdk.jsonexpr.expr_evaluator import ExprEvaluator from sdk.jsonexpr.operators.and_combinator import AndCombinator from sdk.jsonexpr.operators.equals_operator import EqualsOperator from sdk.jsonexpr.operators.greater_than_operator import GreaterThanOperator from sdk.jsonexpr.operators.greater_than_or_equal_operator \ import GreaterThanOrEqualOperator from sdk.jsonexpr.operators.in_operator import InOperator from sdk.jsonexpr.operators.less_than_operator import LessThanOperator from sdk.jsonexpr.operators.less_than_or_equal_operator \ import LessThanOrEqualOperator from sdk.jsonexpr.operators.match_operator import MatchOperator from sdk.jsonexpr.operators.not_operator import NotOperator from sdk.jsonexpr.operators.null_operator import NullOperator from sdk.jsonexpr.operators.or_combinator import OrCombinator from sdk.jsonexpr.operators.value_operator import ValueOperator from sdk.jsonexpr.operators.var_operator import VarOperator class JsonExpr: operators = { "and": AndCombinator(), "or": OrCombinator(), "value": ValueOperator(), "var": VarOperator(), "null": NullOperator(), "not": NotOperator(), "in": InOperator(), "match": MatchOperator(), "eq": EqualsOperator(), "gt": GreaterThanOperator(), "gte": GreaterThanOrEqualOperator(), "lt": LessThanOperator(), "lte": LessThanOrEqualOperator() } def evaluate_boolean_expr(self, expr: object, var: dict): evaluator = ExprEvaluator(self.operators, var) return evaluator.boolean_convert(evaluator.evaluate(expr)) def evaluate_expr(self, expr: object, var: dict): evaluator = ExprEvaluator(self.operators, var) return evaluator.evaluate(expr)
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/json_expr.py
json_expr.py
from abc import abstractmethod from sdk.jsonexpr.evaluator import Evaluator class Operator: @abstractmethod def evaluate(self, evaluator: Evaluator, args: object): raise NotImplementedError
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/operator.py
operator.py
from sdk.jsonexpr.evaluator import Evaluator from sdk.jsonexpr.operators.boolean_combinator import BooleanCombinator class OrCombinator(BooleanCombinator): def combine(self, evaluator: Evaluator, args: list): for item in args: if evaluator.boolean_convert(evaluator.evaluate(item)): return True return len(args) == 0
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/operators/or_combinator.py
or_combinator.py
from sdk.jsonexpr.evaluator import Evaluator from sdk.jsonexpr.operators.unary_operator import UnaryOperator class NullOperator(UnaryOperator): def unary(self, evaluator: Evaluator, arg: object): return arg is None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/operators/null_operator.py
null_operator.py
import re from sdk.jsonexpr.evaluator import Evaluator from sdk.jsonexpr.operators.binary_operator import BinaryOperator class MatchOperator(BinaryOperator): def binary(self, evaluator: Evaluator, lhs: object, rhs: object): text = evaluator.string_convert(lhs) if text is not None: pattern = evaluator.string_convert(rhs) if pattern is not None: compiled = re.compile(pattern) return bool(compiled.match(text)) return None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/operators/match_operator.py
match_operator.py
from sdk.jsonexpr.evaluator import Evaluator from sdk.jsonexpr.operators.unary_operator import UnaryOperator class NotOperator(UnaryOperator): def unary(self, evaluator: Evaluator, arg: object): evaluator.boolean_convert(arg) return evaluator.boolean_convert(arg) is not True
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/operators/not_operator.py
not_operator.py
from abc import abstractmethod from sdk.jsonexpr.evaluator import Evaluator from sdk.jsonexpr.operator import Operator class BinaryOperator(Operator): def evaluate(self, evaluator: Evaluator, args: object): if type(args) is list: lhs = evaluator.evaluate(args[0]) if len(args) > 0 else None if lhs is not None: rhs = evaluator.evaluate(args[1]) if len(args) > 1 else None if rhs is not None: return self.binary(evaluator, lhs, rhs) return None @abstractmethod def binary(self, evaluator: Evaluator, lhs: object, rhs: object): raise NotImplementedError
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/operators/binary_operator.py
binary_operator.py
from sdk.jsonexpr.evaluator import Evaluator from sdk.jsonexpr.operators.binary_operator import BinaryOperator class LessThanOrEqualOperator(BinaryOperator): def binary(self, evaluator: Evaluator, lhs: object, rhs: object): result = evaluator.compare(lhs, rhs) return result <= 0 if result is not None else None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/operators/less_than_or_equal_operator.py
less_than_or_equal_operator.py
from sdk.jsonexpr.evaluator import Evaluator from sdk.jsonexpr.operators.binary_operator import BinaryOperator class InOperator(BinaryOperator): def binary(self, evaluator: Evaluator, haystack: object, needle: object): if type(haystack) is list: for item in haystack: if evaluator.compare(item, needle) == 0: return True return False elif type(haystack) is str or type(haystack) is dict: needle_str = evaluator.string_convert(needle) return needle_str is not None and needle_str in haystack else: return None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/operators/in_operator.py
in_operator.py
from sdk.jsonexpr.evaluator import Evaluator from sdk.jsonexpr.operators.binary_operator import BinaryOperator class EqualsOperator(BinaryOperator): def binary(self, evaluator: Evaluator, lhs: object, rhs: object): result = evaluator.compare(lhs, rhs) if result is not None: return result == 0 else: return None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/operators/equals_operator.py
equals_operator.py
from sdk.jsonexpr.evaluator import Evaluator from sdk.jsonexpr.operators.binary_operator import BinaryOperator class GreaterThanOrEqualOperator(BinaryOperator): def binary(self, evaluator: Evaluator, lhs: object, rhs: object): result = evaluator.compare(lhs, rhs) return result >= 0 if result is not None else None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/operators/greater_than_or_equal_operator.py
greater_than_or_equal_operator.py
from sdk.jsonexpr.evaluator import Evaluator from sdk.jsonexpr.operator import Operator class VarOperator(Operator): def evaluate(self, evaluator: Evaluator, path: object): if type(path) is dict: if "path" not in path: path = None else: path = path["path"] return evaluator.extract_var(path) if type(path) is str else None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/operators/var_operator.py
var_operator.py
from sdk.jsonexpr.evaluator import Evaluator from sdk.jsonexpr.operators.binary_operator import BinaryOperator class LessThanOperator(BinaryOperator): def binary(self, evaluator: Evaluator, lhs: object, rhs: object): result = evaluator.compare(lhs, rhs) return result < 0 if result is not None else None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/operators/less_than_operator.py
less_than_operator.py
from sdk.jsonexpr.evaluator import Evaluator from sdk.jsonexpr.operators.binary_operator import BinaryOperator class GreaterThanOperator(BinaryOperator): def binary(self, evaluator: Evaluator, lhs: object, rhs: object): result = evaluator.compare(lhs, rhs) return result > 0 if result is not None else None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/operators/greater_than_operator.py
greater_than_operator.py
from sdk.jsonexpr.evaluator import Evaluator from sdk.jsonexpr.operator import Operator class ValueOperator(Operator): def evaluate(self, evaluator: Evaluator, value: object): return value
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/operators/value_operator.py
value_operator.py
from abc import abstractmethod from sdk.jsonexpr.evaluator import Evaluator from sdk.jsonexpr.operator import Operator class BooleanCombinator(Operator): def evaluate(self, evaluator: Evaluator, args: object): if type(args) is list: return self.combine(evaluator, args) else: return None @abstractmethod def combine(self, evaluator: Evaluator, args: list): raise NotImplementedError
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/operators/boolean_combinator.py
boolean_combinator.py
from sdk.jsonexpr.evaluator import Evaluator from sdk.jsonexpr.operators.boolean_combinator import BooleanCombinator class AndCombinator(BooleanCombinator): def combine(self, evaluator: Evaluator, exprs: list): for item in exprs: if not evaluator.boolean_convert(evaluator.evaluate(item)): return False return True
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/operators/and_combinator.py
and_combinator.py
from abc import abstractmethod from sdk.jsonexpr.evaluator import Evaluator from sdk.jsonexpr.operator import Operator class UnaryOperator(Operator): def evaluate(self, evaluator: Evaluator, args: object): arg = evaluator.evaluate(args) return self.unary(evaluator, arg) @abstractmethod def unary(self, evaluator: Evaluator, arg: object): raise NotImplementedError
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/jsonexpr/operators/unary_operator.py
unary_operator.py
import time from sdk.time.clock import Clock class SystemClockUTC(Clock): def millis(self): return round(time.mktime(time.gmtime()) * 1000)
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/time/system_clock_utc.py
system_clock_utc.py
from abc import abstractmethod class Clock: @abstractmethod def millis(self): raise NotImplementedError
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/time/clock.py
clock.py
from sdk.time.clock import Clock class FixedClock(Clock): def __init__(self, millis: int): self.value = millis def millis(self): return self.value
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/time/fixed_clock.py
fixed_clock.py
import typing from sdk.json.experiement_application import ExperimentApplication from sdk.json.experiment_variant import ExperimentVariant class Experiment: id: typing.Optional[int] = 0 name: typing.Optional[str] = None unitType: typing.Optional[str] = None iteration: typing.Optional[int] = 0 seedHi: typing.Optional[int] = 0 seedLo: typing.Optional[int] = 0 split: typing.Optional[list[float]] = None trafficSeedHi: typing.Optional[int] = 0 trafficSeedLo: typing.Optional[int] = 0 trafficSplit: typing.Optional[list[float]] = None fullOnVariant: typing.Optional[int] = 0 applications: typing.Optional[list[ExperimentApplication]] = None variants: typing.Optional[list[ExperimentVariant]] = None audienceStrict: typing.Optional[bool] = False audience: typing.Optional[str] = None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/json/experiment.py
experiment.py
import typing class ExperimentVariant: name: typing.Optional[str] = None config: typing.Optional[str] = None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/json/experiment_variant.py
experiment_variant.py
import typing from sdk.json.experiment import Experiment class ContextData: experiments: typing.Optional[list[Experiment]] = None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/json/context_data.py
context_data.py
import typing class GoalAchievement: name: typing.Optional[str] = None achievedAt: typing.Optional[int] = 0 properties: {}
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/json/goal_achievement.py
goal_achievement.py
import typing from sdk.json.attribute import Attribute from sdk.json.exposure import Exposure from sdk.json.goal_achievement import GoalAchievement from sdk.json.unit import Unit class PublishEvent: hashed: typing.Optional[bool] = False units: typing.Optional[list[Unit]] = None publishedAt: typing.Optional[int] = 0 exposures: typing.Optional[list[Exposure]] = None goals: typing.Optional[list[GoalAchievement]] = None attributes: typing.Optional[list[Attribute]] = None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/json/publish_event.py
publish_event.py
import typing class Unit: type: typing.Optional[str] = None uid: typing.Optional[str] = None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/json/unit.py
unit.py
import typing class Attribute: name: typing.Optional[str] = None value: {} setAt: typing.Optional[int] = 0
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/json/attribute.py
attribute.py
import typing class ExperimentApplication: name: typing.Optional[str] = None
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/json/experiement_application.py
experiement_application.py
import typing class Exposure: id: typing.Optional[int] = 0 name: typing.Optional[str] = None unit: typing.Optional[str] = None variant: typing.Optional[int] = 0 exposedAt: typing.Optional[int] = 0 assigned: typing.Optional[bool] = False eligible: typing.Optional[bool] = False overridden: typing.Optional[bool] = False fullOn: typing.Optional[bool] = False custom: typing.Optional[bool] = False audienceMismatch: typing.Optional[bool] = False
ABSmartly
/ABSmartly-0.1.4-py3-none-any.whl/sdk/json/exposure.py
exposure.py
"""This module contains ABC class Author: Jalil Nourisa """ import time import numpy as np import os from pprogress import ProgressBar import json from diversipy import lhd_matrix from diversipy import transform_spread_out import plotly.graph_objects as go import plotly.offline class clock: start_t = 0 end_t = 0 @staticmethod def start(): clock.start_t = time.time() @staticmethod def end(): clock.end_t = time.time() print('Elapsed time: ',clock.end_t - clock.start_t) def box_plot(scalled_posteriors,path_to_save): fig = go.Figure() ii = 0 for key,value in scalled_posteriors.items(): fig.add_trace(go.Box( y=value, name=key, boxpoints='all', jitter=0, marker_size=5, whiskerwidth=0.2, line_width=2) ) ii += 1 fig.update_layout(yaxis=dict( # autorange=True, # showgrid=False, dtick=0.2, zeroline = False,range= [-0.1,1.1] ), margin=dict( l=40, r=30, b=80, t=100 ), showlegend=False, paper_bgcolor='rgb(243, 243, 243)', plot_bgcolor='rgb(243, 243, 243)', ) fig.write_html(path_to_save+'/box_plot.html') class ABC: """ Contains essential function for ABC Attributes: comm : MPI communication object rank (int): ID of each processor free_params (dict): Content of free parameteres including their tags and bounds free_params_bounds (narray): Bounds for each free parameter free_params_keys (array): Names of free parameters param_sets (list): The list of pararameter sets created during sampling settings (dict): Settings of the analysis """ def __init__(self,free_params,settings): """Generates ABM object. Receives free paramatere lists and settings. Args: free_params (dict): Content of free parameteres including their tags and bounds settings (dict): Settings of the analysis """ self.settings = settings if self.settings["MPI_flag"]: from mpi4py import MPI self.comm = MPI.COMM_WORLD self.rank = self.comm.Get_rank() else: self.rank = 0 if self.rank == 0: print("Number of CPUs assigned: ",self.comm.Get_size()) print("Sample number: ",settings['sample_n']) self.free_params = free_params self.free_params_keys = list(free_params.keys()) self.free_params_bounds = list(free_params.values()) print("The list of free parameters: ",self.free_params_keys) try: os.makedirs(self.settings["output_path"]) except OSError: print("Creation of the directory %s failed" % self.settings["output_path"]) else: print("Successfully created the directory %s " % self.settings["output_path"]) def sample(self): """Conducts - Uniform sampling from n-dimensional space of parameters within the bounds given as ABC.free_params. - Creates parameter sets and outputs them """ if self.rank == 0: # python version > 3.6 non_scalled_samples = transform_spread_out(lhd_matrix(self.settings["sample_n"], len(self.free_params))).transpose() scaled_samples = [] ii = 0 for bounds in self.free_params_bounds: low = bounds[0] high = bounds[1] pre_samples_param = non_scalled_samples[ii] samples_param = list(map(lambda x:x*(high-low)+low ,pre_samples_param)) scaled_samples.append(samples_param) ii+=1 priors = {key:value for key,value in zip(self.free_params_keys,scaled_samples)} samples = np.array(scaled_samples).transpose() np.savetxt(self.settings["output_path"]+'/samples.txt', samples, fmt='%f') ##### create parameter sets param_sets = [] for sample in samples: param_set = {} for i in range(len(sample)): sample_p = sample[i] key = self.free_params_keys[i] param_set.update({key:sample_p}) param_sets.append(param_set) with open(self.settings["output_path"]+'/param_sets.json','w') as file: file.write(json.dumps({"param_sets":param_sets})) self.param_sets = param_sets def run(self): """Runs the user given model for the parameter sets. """ if self.rank == 0: # reload with open(self.settings["output_path"]+'/param_sets.json') as file: self.param_sets = json.load(file)["param_sets"] CPU_n = self.comm.Get_size() shares = np.ones(CPU_n,dtype=int)*int(len(self.param_sets)/CPU_n) plus = len(self.param_sets)%CPU_n for i in range(plus): shares[i]+=1 portions = [] for i in range(CPU_n): start = i*shares[i-1] end = start + shares[i] portions.append([start,end]) paramsets = self.param_sets else: portions = None paramsets = None portion = self.comm.scatter(portions,root = 0) paramsets = self.comm.bcast(paramsets,root = 0) def run_model(start,end): pb = ProgressBar(end-start) distances = [] for i in range(start,end): distance = self.settings["run_func"](paramsets[i],self.settings["args"]) distances.append(distance) pb.update() pb.done() return distances distances_perCore = run_model(portion[0],portion[1]) distances_stacks = self.comm.gather(distances_perCore,root = 0) if self.rank == 0: distances = np.array([]) for stack in distances_stacks: distances = np.concatenate([distances,stack],axis = 0) np.savetxt(self.settings["output_path"]+'/distances.txt',np.array(distances),fmt='%s') def postprocessing(self): """Conducts post processing tasks. Currently it extracts top fits and posteriors and also plots scaled posteriors. """ if self.rank == 0: # reload distances = [] with open(self.settings["output_path"]+'/distances.txt') as file: for line in file: line.strip() try: value = float(line) except: value = None distances.append(value) samples = np.loadtxt(self.settings["output_path"]+'/samples.txt', dtype=float) # top fitnesses top_n = self.settings["top_n"] fitness_values = np.array([]) for item in distances: if item == None: fitness = 0 else: fitness = 1 - item fitness_values = np.append(fitness_values,fitness) top_ind = np.argpartition(fitness_values, -top_n)[-top_n:] top_fitess_values = fitness_values[top_ind] np.savetxt(self.settings["output_path"]+'/top_fitness.txt',top_fitess_values,fmt='%f') # extract posteriors top_fit_samples = samples[top_ind].transpose() try: posteriors = {key:list(value) for key,value in zip(self.free_params_keys,top_fit_samples)} except TypeError: posteriors = {self.free_params_keys[0]:list(top_fit_samples)} with open(self.settings["output_path"]+'/posterior.json', 'w') as file: file.write(json.dumps({'posteriors': posteriors})) # box plot scalled_posteriors = {} for key,values in posteriors.items(): min_v = self.free_params[key][0] max_v = self.free_params[key][1] scalled = list(map(lambda x: (x-min_v)/(max_v-min_v),values)) scalled_posteriors.update({key:scalled}) box_plot(scalled_posteriors,self.settings["output_path"]) settings = 0 comm = 0 rank = 0 param_sets = 0
ABayesianC
/ABayesianC-1.0.7-py3-none-any.whl/ABC/tools.py
tools.py
__version__ = "1.0.7"
ABayesianC
/ABayesianC-1.0.7-py3-none-any.whl/ABC/__init__.py
__init__.py
# ABlooper Antibodies are a key component of the immune system and have been extensively used as biotherapeutics. Accurate knowledge of their structure is central to understanding their antigen binding function. The key area for antigen binding and the main area of structural variation in antibodies is concentrated in the six complementarity determining regions (CDRs), with the most important for binding and most variable being the CDR-H3 loop. The sequence and structural variability of CDR-H3 make it particularly challenging to model. Recently deep learning methods have offered a step change in our ability to predict protein structures. In this work we present ABlooper, an end-to-end equivariant deep-learning based CDR loop structure prediction tool. ABlooper rapidly predicts the structure of CDR loops with high accuracy and provides a confidence estimate for each of its predictions. On the models of the Rosetta Antibody Benchmark, ABlooper makes predictions with an average CDR-H3 RMSD of 2.49Å, which drops to 2.05Å when considering only its 76% most confident predictions. ## Install To install via PyPi: ```bash $ pip install ABlooper ``` To download and install the latest version from github: ```bash $ git clone https://github.com/brennanaba/ABlooper.git $ pip install ABlooper/ ``` This package requires PyTorch. If you do not already have PyTorch installed, you can do so following these <a href="https://pytorch.org/get-started/locally/">instructions</a>. Either OpenMM or PyRosetta are required for the optional refinement and side-chain prediction steps. OpenMM and pdbfixer can be installed via conda using: ```bash $ conda install -c conda-forge openmm pdbfixer ``` If you want to use PyRosetta for refinement and do not have it installed, it can be obtained from <a href="https://www.pyrosetta.org/">here</a>. ## Usage To use ABlooper, you will need an IMGT numbered antibody model. If you do not already have an antibody model, you can generate one using <a href="http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/abodybuilder/">ABodyBuilder</a>. To remodel the CDRs of an existing antibody model using the command line: ```bash $ ABlooper my_antibody_model.pdb --output ABlooper_model.pdb --heavy_chain H --light_chain L ``` To remodel the CDRs of an existing model using the python API: ```python from ABlooper import CDR_Predictor input_path = "my_antibody_model.pdb" output_path = "ABlooper_model.pdb" pred = CDR_Predictor(input_path, chains = ("H", "L")) pred.write_predictions_in_pdb_format(output_path) ``` Two pretrained models are available. The default predicts CDRs defined by the Chothia numbering scheme (This is the model described in the paper). To get predictions of CDRs defined by the IMGT numbering scheme use: ```python pred = CDR_Predictor(input_path, chains = ("H", "L"), model = 'imgt') pred.write_predictions_in_pdb_format(output_path) ``` I would recommend using the command line if you just want a quick antibody model. If speed is a priority, it is probably best to just use the trained pytorch model. The python class will work best if you want to incorporate CDR prediction into a pipeline or access other details such as confidence score or RMSD to original model. Both of which can be obtained as follows: ```python rmsd_from_input = pred.calculate_BB_rmsd_wrt_input() confidence_score = pred.decoy_diversity ``` I have been made aware that ABlooper will occasionally generate abnormal geometries. To fix this, and to generate side-chains you can do (Only works if you have PyRosetta or OpenMM installed): ```bash $ ABlooper my_antibody_model.pdb --output ABlooper_model.pdb --model chothia --side_chains ``` As a default this will use OpenMM if it is installed. ## Citing this work The code and data in this package is based on the following paper <a href="https://academic.oup.com/bioinformatics/article/38/7/1877/6517780">ABlooper</a>. If you use it, please cite: ```tex @article{10.1093/bioinformatics/btac016, author = {Abanades, Brennan and Georges, Guy and Bujotzek, Alexander and Deane, Charlotte M}, title = {ABlooper: fast accurate antibody CDR loop structure prediction with accuracy estimation}, journal = {Bioinformatics}, volume = {38}, number = {7}, pages = {1877-1880}, year = {2022}, month = {01}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btac016}, url = {https://doi.org/10.1093/bioinformatics/btac016}, ```
ABlooper
/ABlooper-1.1.2.tar.gz/ABlooper-1.1.2/README.md
README.md
from setuptools import setup, find_packages with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setup( name='ABlooper', version='1.1.2', description='Set of functions to predict CDR structure', license='BSD 3-clause license', maintainer='Brennan Abanades', long_description=long_description, long_description_content_type='text/markdown', maintainer_email='brennan.abanadeskenyon@stx.ox.ac.uk', include_package_data=True, packages=find_packages(include=('ABlooper', 'ABlooper.*')), entry_points={'console_scripts': ['ABlooper=ABlooper.command_line:main']}, install_requires=[ 'numpy', 'einops>=0.3', 'torch>=1.6', ], )
ABlooper
/ABlooper-1.1.2.tar.gz/ABlooper-1.1.2/setup.py
setup.py
# What is this? A Python [Flask](http://flask.pocoo.org/)-based library for building [HipChat Connect add-ons](https://www.hipchat.com/docs/apiv2/addons). This is an early, alpha-quality release, but can be used to build real add-ons today. Future versions may include backward-incompatible changes. # Getting started For a simple alternative to the following set up instructions, you may consider using the [Vagrant starter project](https://bitbucket.org/atlassianlabs/ac-flask-hipchat-vagrant) to get up and running quickly. ## Dependencies In addition to Python 2.7 or later, `ac-flask-hipchat` expects Redis to be available for temporary persistence of authentication tokens, and MongoDB for a permanent data store. ## A first add-on Writing basic HipChat add-ons with `ac-flask-hipchat` requires very little code to get up and running. Here's an example of a simple yet complete add-on, in two files: ### web.py ``` from ac_flask.hipchat import Addon, room_client, sender from flask import Flask addon = Addon(app=Flask(__name__), key="ac-flask-hipchat-greeter", name="HipChat Greeter Example Add-on", allow_room=True, scopes=['send_notification']) @addon.webhook(event="room_enter") def room_entered(): room_client.send_notification('hi: %s' % sender.name) return '', 204 if __name__ == '__main__': addon.run() ``` ### requirements.txt ``` AC-Flask-HipChat ``` ## Running the server To run this example yourself, add these files to a new directory and run the following commands there: ``` $ pip install -r requirements.txt $ python web.py ``` If the server started as expected, you'll see something like the following emitted: ``` -------------------------------------- Public descriptor base URL: http://localhost:5000 -------------------------------------- INFO:werkzeug: * Running on http://127.0.0.1:5000/ INFO:werkzeug: * Restarting with reloader ``` To double check that the server is running correctly, try requesting it's add-on descriptor: ``` $ curl http://localhost:5000/ ``` A successful request will return a HipChat descriptor for the add-on. ## Preparing the add-on for installation Now that you have a server running, you'll want to try it somehow. The next step is different depending on whether you're going to be developing with hipchat.com or a private HipChat instance being hosted behind your corporate firewall. ### Developing with HipChat.com The easiest way to test with hipchat.com while developing on your local machine is to use [ngrok](https://ngrok.com). Download and install it now if you need to -- it's an amazing tool that will change the way you develop and share web applications. Start the ngrok tunnel in another terminal window or if using the [Vagrant starter project](https://bitbucket.org/atlassianlabs/ac-flask-hipchat-vagrant), you should already have ngrok running, and the URL should be printed to the screen when starting the VM. For the purposes of this tutorial, we'll assume your domain is `https://asdf123.ngrok.com`. While ngrok will forward both HTTP and HTTPS, for the protection of you and your HipChat group members, you should always use HTTPS when running your add-on on the public internet. ### Developing with a private server To install your add-on on a private HipChat server, both the add-on server and HipChat server need to be able to connect to each other via HTTP or HTTPS on your local network. Simply determine an HTTP url that your HipChat server can use to connect to your locally running add-on, and use that as the value of your "local base url" needed by the Installation step. If all goes well, you won't have to change anything from the defaults, as `ac-flask-hipchat` will simply attempt to use the OS's hostname to build the local base url, which may already be good enough for your private network. ## Installation ### Configuring the add-on's local base url Now, we need to tell the add-on server where it's running so that it can successfully be installed. By default, it'll assume your local computer name, but for installation into HipChat, especially if using ngrok, you'll likely want to set it explicitly. You can do that by setting the `AC_BASE_URL` environment variable when you start the server: ``` $ AC_BASE_URL=https://asdf123.ngrok.com python web.py ``` When properly configured, you'll see the server report the new local base url when it starts up: ``` -------------------------------------- Public descriptor base URL: https://asdf123.ngrok.com -------------------------------------- INFO:werkzeug: * Running on http://127.0.0.1:5000/ INFO:werkzeug: * Restarting with reloader ``` __Note__: by signing up for an ngrok account, you can specify a generally stable, custom subdomain for even easier iterative development. See [ngrok](http://ngrok.com) for more information. ### Manually installing the add-on using HipChat's admin UI To install your add-on into HipChat, you have to register your addon's descriptor. HipChat add-ons can operate inside a room or within the entire account. When developing, you should probably register your add-on inside a room you've created just for testing. Also, you can only register add-ons inside a room where you are an administrator. To register your add-on descriptor, navigate to the rooms administration page at `https://www.hipchat.com/rooms` (or whatever url your private server is running at, if appropriate). Then select one of your rooms in the list. In the following page, select `Integrations` in the sidebar, and then click the "Build and install your own integration" link at the bottom of the page: ![Installation Screenshot](https://s3.amazonaws.com/uploads.hipchat.com/10804/124261/ujDtrkh5UBsKs2Y/upload.png) Paste your descriptor url in the `Integration URL` field of the opened dialog and then click `Add integration`. This will initiate the installation of your add-on for that room. # Library Features This library provides help with many aspects of add-on development, such as: * Choice of programmatic HipChat add-on descriptor builder or providing a full or partial descriptor object literal * High-level conveniences for mounting webhook handlers and configuration pages * A REST API client with built-in OAuth2 token acquisition and refresh * JWT authentication validation, refresh, and token generation for web UI routes (e.g. the `configurable` capability) See `test.py` for a very simple example add-on. ### Authenticating requests from the iframe to the add-on Add-ons typically can't use sessions, because browsers treat cookies set by the add-on as third-party cookies. You can still make an authenticated call to an endpoint in your add-on, however: Say there is an endpoint like this: ``` @addon.route(rule='/data') @addon.json_output def data(): return {'some': 'data'} ``` You want to call this endpoint from the iframe with the full authentication context. This can be done by rendering a token into the iframe: ``` @addon.webpanel(key='webpanel.key', name='Panel') def web_panel(): token = tenant.sign_jwt(sender.id) return render_template('panel.html', token=token) ``` The template can then render the token into the desired location: ``` var url = '/data?signed_request={{ token }}' ``` or ``` <meta name='token' content='{{ token }}'> ``` You can also include the full context of the original request from HipChat by using: ``` token = tenant.sign_jwt(sender.id, { 'context': dict(context) }) ```
AC-Flask-HipChat
/AC-Flask-HipChat-0.2.12.tar.gz/AC-Flask-HipChat-0.2.12/readme.md
readme.md
""" AC-Flask-HipChat ------------- A library to help write a Flask-based HipChat add-on """ from setuptools import setup setup( name='AC-Flask-HipChat', version='0.2.12', url='https://bitbucket.org/atlassianlabs/ac-flask-hipchat', license='APLv2', author='Don Brown', author_email='mrdon@twdata.org', description='Atlassian Connect library based on Flask for HipChat', long_description=__doc__, packages=['ac_flask', 'ac_flask.hipchat'], zip_safe=False, include_package_data=True, platforms='any', install_requires=[ 'Flask', 'pymongo', 'redis', 'requests', 'PyJWT' ], classifiers=[ 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Software Development :: Libraries :: Python Modules' ] )
AC-Flask-HipChat
/AC-Flask-HipChat-0.2.12.tar.gz/AC-Flask-HipChat-0.2.12/setup.py
setup.py
import json import logging from ac_flask.hipchat.events import events from ac_flask.hipchat.db import mongo, redis from .tenant import Tenant from flask import request import requests _log = logging.getLogger(__name__) def _invalid_install(msg): _log.error("Installation failed: %s" % msg) return msg, 400 def init(addon, allow_global, allow_room, send_events=True, db_name='clients', require_group_id=False): # noinspection PyUnusedLocal @addon.app.route('/addon/installable', methods=['POST']) def on_install(): clients = mongo[db_name] data = json.loads(request.data) if not data.get('roomId', None) and not allow_global: return _invalid_install("This add-on can only be installed in individual rooms. Please visit the " + "'Add-ons' link in a room's administration area and install from there.") if data.get('roomId', None) and not allow_room: return _invalid_install("This add-on cannot be installed in an individual room. Please visit the " + "'Add-ons' tab in the 'Group Admin' area and install from there.") _log.info("Retrieving capabilities doc at %s" % data['capabilitiesUrl']) capdoc = requests.get(data['capabilitiesUrl'], timeout=10).json() if capdoc['links'].get('self', None) != data['capabilitiesUrl']: return _invalid_install("The capabilities URL %s doesn't match the resource's self link %s" % (data['capabilitiesUrl'], capdoc['links'].get('self', None))) client = Tenant(data['oauthId'], data['oauthSecret'], room_id=data.get('roomId', None), capdoc=capdoc) try: session = client.get_token(redis, token_only=False, scopes=addon.descriptor['capabilities']['hipchatApiConsumer']['scopes']) except Exception as e: _log.warn("Error validating installation by receiving token: %s" % e) return _invalid_install("Unable to retrieve token using the new OAuth information") _log.info("session: %s" % json.dumps(session)) if require_group_id and int(require_group_id) != int(session['group_id']): _log.error("Attempted to install for group %s when group %s is only allowed" % (session['group_id'], require_group_id)) return _invalid_install("Only group %s is allowed to install this add-on" % require_group_id) client.group_id = session['group_id'] client.group_name = session['group_name'] clients.remove(client.id_query) clients.insert(client.to_map()) if send_events: events.fire_event('install', {"client": client}) return '', 201 # noinspection PyUnusedLocal @addon.app.route('/addon/installable/<string:oauth_id>', methods=['DELETE']) def on_uninstall(oauth_id): uninstall_client(oauth_id, db_name, send_events) return '', 204 addon.descriptor['capabilities']['installable']['callbackUrl'] = "{base}/addon/installable".format( base=addon.app.config['BASE_URL'] ) def uninstall_client(oauth_id, db_name='clients', send_events=True): client = Tenant.load(oauth_id) clients = mongo[db_name] client_filter = {"id": oauth_id} clients.remove(client_filter) if send_events: events.fire_event('uninstall', {"client": client})
AC-Flask-HipChat
/AC-Flask-HipChat-0.2.12.tar.gz/AC-Flask-HipChat-0.2.12/ac_flask/hipchat/installable.py
installable.py
import json from ac_flask.hipchat.auth import tenant from ac_flask.hipchat.db import redis import requests def post(url, data, token): return requests.post(url, headers={ "authorization": "Bearer %s" % token, "content-type": "application/json" }, data=json.dumps(data), timeout=10) class RoomClient(object): @staticmethod def send_notification(message): token = tenant.get_token(redis) return post("%s/room/%s/notification" % (tenant.api_base_url, tenant.room_id), {"message": message}, token) room_client = RoomClient() class AddOnClient(object): @staticmethod def update_global_glance(glance_key, glance_data): token = tenant.get_token(redis, scopes=['view_group']) return post("%s/addon/ui" % tenant.api_base_url, { "glance": [ {"content": glance_data, "key": glance_key} ] }, token) @staticmethod def update_room_glance(glance_key, glance_data, room_id): token = tenant.get_token(redis, scopes=['view_room']) return post("%s/addon/ui/room/%s" % (tenant.api_base_url, room_id), { "glance": [ {"content": glance_data, "key": glance_key} ] }, token) @staticmethod def update_user_glance(glance_key, glance_data, user_id): token = tenant.get_token(redis, scopes=['view_group']) return post("%s/addon/ui/user/%s" % (tenant.api_base_url, user_id), { "glance": [ {"content": glance_data, "key": glance_key} ] }, token) addon_client = AddOnClient()
AC-Flask-HipChat
/AC-Flask-HipChat-0.2.12.tar.gz/AC-Flask-HipChat-0.2.12/ac_flask/hipchat/clients.py
clients.py
BASE_URL = "http://localhost:5000" DEBUG = True CORS_WHITELIST = ('.hipchat.com',)
AC-Flask-HipChat
/AC-Flask-HipChat-0.2.12.tar.gz/AC-Flask-HipChat-0.2.12/ac_flask/hipchat/default_settings.py
default_settings.py
from ac_flask.hipchat.tenant import Tenant from flask import _request_ctx_stack as stack, request from flask import abort import jwt from werkzeug.local import LocalProxy from functools import wraps def require_tenant(func): @wraps(func) def inner(*args, **kwargs): if not tenant: abort(401) return func(*args, **kwargs) return inner def _validate_jwt(req): if 'signed_request' in req.form: jwt_data = req.form['signed_request'] else: jwt_data = req.args.get('signed_request', None) if not jwt_data: header = req.headers.get('authorization', '') jwt_data = header[4:] if header.startswith('JWT ') else None if not jwt_data: abort(401) try: oauth_id = jwt.decode(jwt_data, verify=False)['iss'] client = Tenant.load(oauth_id) data = jwt.decode(jwt_data, client.secret, leeway=10) return client, data except jwt.DecodeError: abort(400) except jwt.ExpiredSignature: abort(401) def _get_tenant(): ctx = stack.top if ctx is not None: if not hasattr(ctx, 'tenant'): body = request.json cur_sender = cur_context = None if request.args.get('signed_request', None) or 'authorization' in request.headers: cur_tenant, data = _validate_jwt(request) cur_sender = User(data['sub']) cur_context = data.get('context', None) elif body and 'oauth_client_id' in body: tenant_id = body['oauth_client_id'] cur_tenant = Tenant.load(tenant_id) else: cur_tenant = None if body and 'item' in body: sent_by = _extract_sender(body['item']) if sent_by: user = User(user_id=sent_by['id'], name=sent_by['name'], mention_name=sent_by['mention_name']) # Check if the sender in the webhook matches the one provided in the JWT if cur_sender and str(cur_sender.id) != str(user.id): abort(400) cur_sender = user ctx.tenant = cur_tenant ctx.sender = cur_sender ctx.context = cur_context return ctx.tenant def _extract_sender(item): if 'sender' in item: return item['sender'] if 'message' in item and 'from' in item['message']: return item['message']['from'] return None def _get_sender(): _get_tenant() if hasattr(stack.top, 'sender'): return stack.top.sender else: return None def _get_context(): _get_tenant() if hasattr(stack.top, 'context'): return stack.top.context else: return None tenant = LocalProxy(_get_tenant) sender = LocalProxy(_get_sender) context = LocalProxy(_get_context) class User(object): def __init__(self, user_id, name=None, mention_name=None): super(User, self).__init__() self.id = user_id self.name = name self.mention_name = mention_name
AC-Flask-HipChat
/AC-Flask-HipChat-0.2.12.tar.gz/AC-Flask-HipChat-0.2.12/ac_flask/hipchat/auth.py
auth.py
from flask import _app_ctx_stack as stack import os from pymongo import MongoClient import redis as redispy from werkzeug.local import LocalProxy def _connect_mongo_db(): if os.environ.get('MONGOHQ_URL'): c = MongoClient(os.environ['MONGOHQ_URL']) db = c.get_default_database() else: c = MongoClient() db = c.test return db def _connect_redis(): redis_url = os.getenv('REDISTOGO_URL', 'redis://localhost:6379') return redispy.from_url(redis_url) def _get_mongo_db(): ctx = stack.top if ctx is not None: if not hasattr(ctx, 'mongo_db'): ctx.mongo_db = _connect_mongo_db() return ctx.mongo_db def _get_redis(): ctx = stack.top if ctx is not None: if not hasattr(ctx, 'redis'): ctx.redis = _connect_redis() return ctx.redis redis = LocalProxy(_get_redis) mongo = LocalProxy(_get_mongo_db)
AC-Flask-HipChat
/AC-Flask-HipChat-0.2.12.tar.gz/AC-Flask-HipChat-0.2.12/ac_flask/hipchat/db.py
db.py
import logging _log = logging.getLogger(__name__) class EventBus(object): def __init__(self): super(EventBus, self).__init__() self.events = {} def fire_event(self, name, obj): listeners = self.events.get(name, []) _log.debug("Firing event %s for %s listeners" % (name, len(listeners))) for listener in listeners: listener(obj) def register_event(self, name, func): _log.debug("Registering event: " + name) self.events.setdefault(name, []).append(func) def unregister_event(self, name, func): del self.events.setdefault(name, [])[func] def event_listener(self, func): self.register_event(func.__name__, func) return func events = EventBus()
AC-Flask-HipChat
/AC-Flask-HipChat-0.2.12.tar.gz/AC-Flask-HipChat-0.2.12/ac_flask/hipchat/events.py
events.py