code
stringlengths
501
5.19M
package
stringlengths
2
81
path
stringlengths
9
304
filename
stringlengths
4
145
import os import sys import shutil from subprocess import call from annogesiclib.multiparser import Multiparser from annogesiclib.helper import Helper from annogesiclib.gff3 import Gff3Parser from annogesiclib.get_Rfam_ribo import rbs_from_rfam from annogesiclib.extract_RBS import extract_potential_rbs from annogesiclib.recompute_RBS import regenerate_seq, reextract_rbs from annogesiclib.ribo_gff import stat_and_covert2gff from annogesiclib.modify_rbs_table import modify_table from annogesiclib.map_ribos import mapping_ribos from annogesiclib.rbs_overlap import rbs_overlap class Ribos(object): '''detection of riboswitch and RNA thermometer''' def __init__(self, args_ribo): self.multiparser = Multiparser() self.helper = Helper() self.gff_parser = Gff3Parser() self.gff_path = os.path.join(args_ribo.gffs, "tmp") if args_ribo.tsss is not None: self.tss_path = os.path.join(args_ribo.tsss, "tmp") else: self.tss_path = None self.tran_path = os.path.join(args_ribo.trans, "tmp") self.fasta_path = os.path.join(args_ribo.fastas, "tmp") if (args_ribo.program == "both") or ( args_ribo.program == "riboswitch"): (self.ribos_stat_folder, self.ribos_gff_outfolder, self.ribos_table_folder, self.ribos_scan_folder, self.ribos_tmp_files, self.ribos_rfam, self.ribos_suffixs) = self._create_out_folders( args_ribo.ribos_out_folder, "riboswitch", args_ribo.database) if (args_ribo.program == "both") or ( args_ribo.program == "thermometer"): (self.thermo_stat_folder, self.thermo_gff_outfolder, self.thermo_table_folder, self.thermo_scan_folder, self.thermo_tmp_files, self.thermo_rfam, self.thermo_suffixs) = self._create_out_folders( args_ribo.thermo_out_folder, "RNA_thermometer", args_ribo.database) def _create_out_folders(self, out_folder, feature, database): stat_folder = os.path.join(out_folder, "statistics") gff_outfolder = os.path.join(out_folder, "gffs") table_folder = os.path.join(out_folder, "tables") scan_folder = os.path.join(out_folder, "scan_Rfam_results") tmp_files = {"fasta": os.path.join( out_folder, "tmp_fasta"), "scan": os.path.join( out_folder, "tmp_scan"), "table": os.path.join( out_folder, "tmp_table")} rfam = os.path.join(database, "Rfam_" + feature + ".cm") suffixs = {"csv": feature + ".csv", "txt": feature + "_prescan.txt", "re_txt": feature + "_scan.txt", "re_csv": feature + "_scan.csv"} return (stat_folder, gff_outfolder, table_folder, scan_folder, tmp_files, rfam, suffixs) def _run_cmscan(self, args_ribo, seq, type_, prefix, tmp_files, suffixs, rfam, log): scan_file = os.path.join(tmp_files["scan"], "_".join([prefix, suffixs[type_]])) scan = open(scan_file, "w") if args_ribo.cutoff.split("_")[0] == "e": value = args_ribo.cutoff.split("_")[-1] log.write(" ".join([args_ribo.cmscan_path, "--incE", value, "--acc", rfam, seq]) + "\n") call([args_ribo.cmscan_path, "--incE", value, "--acc", rfam, seq], stdout=scan) elif args_ribo.cutoff.split("_")[0] == "s": value = args_ribo.cutoff.split("_")[-1] log.write(" ".join([args_ribo.cmscan_path, "--incT", value, "--acc", rfam, seq]) + "\n") call([args_ribo.cmscan_path, "--incT", value, "--acc", rfam, seq], stdout=scan) else: print("Error: the --cutoff needs to start from 'e' " "(e value) or 's' (score)!") log.write("the --cutoff needs to start from 'e' " "(e value) or 's' (score).\n") sys.exit() scan.close() log.write("Done!\n") log.write("\t" + scan_file + " is temporary generated.\n") return scan_file def _scan_extract_rfam(self, prefixs, args_ribo, tmp_files, suffixs, feature, rfam, log): '''extract the seq of candidates and scanning the candidates''' for gff in os.listdir(self.gff_path): if gff.endswith(".gff"): prefix = gff.replace(".gff", "") tran_file = os.path.join(self.tran_path, prefix + "_transcript.gff") first_seq = os.path.join(tmp_files["fasta"], prefix + ".fa") if (os.path.exists(tran_file)): first_seq = os.path.join(tmp_files["fasta"], prefix + ".fa") print("Extracting sequences of candidates for {0}".format( prefix)) if self.tss_path is not None: tss_file = os.path.join(self.tss_path, prefix + "_TSS.gff") else: tss_file = None log.write("Running extract_RBS.py to extract potential " "sequences of riboswitches/RNA thermometers for " "{0}.\n".format(prefix)) extract_potential_rbs( os.path.join(self.fasta_path, prefix + ".fa"), os.path.join(self.gff_path, gff), tss_file, tran_file, first_seq, args_ribo, feature) log.write("\t" + first_seq + " is temporary generated.\n") print("Pre-scanning of {0}".format(prefix)) log.write("Using Infernal to pre-scan riboswitches/RNA " "thermometers for {0}.\n".format(prefix)) log.write("Please make sure the version of Infernal is at least 1.1.1.\n") if (os.stat(first_seq).st_size != 0): prefixs.append(prefix) first_scan_file = self._run_cmscan( args_ribo, first_seq, "txt", prefix, tmp_files, suffixs, rfam, log) sec_seq = os.path.join(tmp_files["fasta"], "_".join([prefix, "regenerate.fa"])) first_table = os.path.join( tmp_files["table"], "_".join([prefix, suffixs["csv"]])) log.write("Running recompute_RBS.py to update the " "potential sequences of riboswitches/RNA " "thermometers for {0} based on the " "pre-scanning results.\n".format(prefix)) regenerate_seq(first_scan_file, first_seq, first_table, sec_seq) log.write("\t" + sec_seq + " is temporary generated.\n") print("Scanning of {0}".format(prefix)) log.write("Using Infernal to scan riboswitches/RNA " "thermometers for {0}.\n".format(prefix)) log.write("Please make sure the version of Infernal " "is at least 1.1.1.\n") if (os.stat(sec_seq).st_size != 0): sec_scan_file = self._run_cmscan( args_ribo, sec_seq, "re_txt", prefix, tmp_files, suffixs, rfam, log) sec_table = os.path.join( tmp_files["table"], "_".join([prefix, suffixs["re_csv"]])) log.write("Running recompute_RBS.py and modify_rbs_table.py " "to generate tables for {0} " "based on the scanning results.\n".format(prefix)) reextract_rbs(sec_scan_file, first_table, sec_table, args_ribo.cutoff) shutil.move(sec_table, first_table) modify_table(first_table, args_ribo.output_all) return prefixs def _merge_results(self, args_ribo, scan_folder, suffixs, tmp_files, table_folder, stat_folder, feature_id, gff_outfolder, feature, log, prefixs): '''merge the results from the results of two searching''' for gff in os.listdir(args_ribo.gffs): if gff.endswith(".gff"): prefix = gff.replace(".gff", "") print("Merging results of {0}".format(prefix)) pre_strain = "" self.helper.check_make_folder(os.path.join( scan_folder, prefix)) fh = open(os.path.join(args_ribo.gffs, gff)) log.write("Merging the results from Infernal to generate " "tables for {0}.\n".format(prefix)) for entry in self.gff_parser.entries(fh): if (entry.seq_id != pre_strain) and (entry.seq_id in prefixs): if len(pre_strain) == 0: shutil.copyfile(os.path.join( tmp_files["table"], "_".join([entry.seq_id, suffixs["csv"]])), os.path.join( table_folder, "_".join([prefix, suffixs["csv"]]))) else: self.helper.merge_file(os.path.join( tmp_files["table"], "_".join([entry.seq_id, suffixs["csv"]])), os.path.join( table_folder, "_".join([prefix, suffixs["csv"]]))) shutil.copy(os.path.join( tmp_files["scan"], "_".join([entry.seq_id, suffixs["txt"]])), os.path.join(scan_folder, prefix)) sec_scan = os.path.join( tmp_files["scan"], "_".join([entry.seq_id, suffixs["re_txt"]])) if os.path.exists(sec_scan): shutil.copy(sec_scan, os.path.join(scan_folder, prefix)) pre_strain = entry.seq_id log.write("The following files are generated.\n") for folder in (table_folder, scan_folder): for file_ in os.listdir(folder): log.write("\t" + os.path.join(folder, file_) + "\n") out_stat = os.path.join( stat_folder, "_".join(["stat", prefix, feature + ".txt"])) print("Computing statistics of {0}".format(prefix)) log.write("Running ribo_gff.py to do statistics and generate " "gff files for {0}.\n".format(prefix)) log.write("The following files are generated:\n") out_gff = os.path.join(gff_outfolder, "_".join([ prefix, feature + ".gff"])) stat_and_covert2gff(os.path.join( table_folder, "_".join([prefix, suffixs["csv"]])), feature_id, out_gff, args_ribo.fuzzy, out_stat, feature) log.write("\t" + out_gff + "\n") log.write("\t" + out_stat + "\n") fh.close() def _remove_tmp(self, args_ribo): self.helper.remove_tmp_dir(args_ribo.gffs) self.helper.remove_tmp_dir(args_ribo.fastas) self.helper.remove_tmp_dir(args_ribo.trans) self.helper.remove_tmp_dir(args_ribo.tsss) def _remove_overlap(self, gff_path, tmp_files, suffixs, type_, fuzzy, log, prefixs): log.write("Running rbs_overlap.py to remove the overlapping " "riboswitches/RNA thermometers.\n") for gff in os.listdir(gff_path): if gff.endswith(".gff") and (gff.replace(".gff", "") in prefixs): tmp_table = os.path.join(os.path.join( tmp_files["table"], "_".join([ gff.replace(".gff", ""), suffixs["csv"]]))) rbs_overlap(tmp_table, os.path.join(gff_path, gff), type_, fuzzy) log.write("\t" + tmp_table + " is updated.\n") def _core_prediction(self, args_ribo, feature_id, rfam, tmp_files, table_folder, feature, scan_folder, suffixs, stat_folder, gff_outfolder, out_folder, type_, log): '''main part of detection''' log.write("Running get_Rfam_ribo.py to get the information of " "riboswitches/RNA thermometers from Rfam.\n") rbs_from_rfam(feature_id, args_ribo.rfam, rfam) log.write("Using Infernal to compress the Rfam data of " "riboswitches/RNA thermometers.\n") log.write("Please make sure the version of Infernal is at least 1.1.1.\n") print("Compressing Rfam of " + feature) log.write(" ".join([args_ribo.cmpress_path, "-F", rfam]) + "\n") call([args_ribo.cmpress_path, "-F", rfam]) log.write("Done!\n") prefixs = [] self.helper.check_make_folder(tmp_files["fasta"]) self.helper.check_make_folder(tmp_files["scan"]) self.helper.check_make_folder(tmp_files["table"]) prefixs = self._scan_extract_rfam( prefixs, args_ribo, tmp_files, suffixs, feature, rfam, log) self._remove_overlap(self.gff_path, tmp_files, suffixs, type_, args_ribo.fuzzy, log, prefixs) self._merge_results(args_ribo, scan_folder, suffixs, tmp_files, table_folder, stat_folder, feature_id, gff_outfolder, feature, log, prefixs) log.write("Running map_ribos.py to extract all the details from Rfam.\n") mapping_ribos(table_folder, feature_id, feature) log.write("The following files are updated:\n") for file_ in os.listdir(table_folder): log.write("\t" + os.path.join(table_folder, file_) + "\n") self.helper.remove_all_content(out_folder, "tmp", "dir") def run_ribos(self, args_ribo, log_t, log_r): if args_ribo.fuzzy_rbs > 6: if log_t is not None: log_t.write("--fuzzy_rbs should be equal or less than 6!\n") if log_r is not None: log_r.write("--fuzzy_rbs should be equal or less than 6!\n") print("Error: --fuzzy_rbs should be equal or less than 6!") sys.exit() self.multiparser.parser_gff(args_ribo.gffs, None) self.multiparser.parser_fasta(args_ribo.fastas) self.multiparser.parser_gff(args_ribo.trans, "transcript") if args_ribo.tsss is not None: self.multiparser.parser_gff(args_ribo.tsss, "TSS") for gff in os.listdir(args_ribo.gffs): if gff.endswith(".gff"): self.helper.check_uni_attributes(os.path.join( args_ribo.gffs, gff)) if (args_ribo.program.lower() == "both") or ( args_ribo.program.lower() == "riboswitch"): print("Detecting riboswtiches now") self._core_prediction( args_ribo, args_ribo.ribos_id, self.ribos_rfam, self.ribos_tmp_files, self.ribos_table_folder, "riboswitch", self.ribos_scan_folder, self.ribos_suffixs, self.ribos_stat_folder, self.ribos_gff_outfolder, args_ribo.ribos_out_folder, "riboswitch", log_r) if (args_ribo.program.lower() == "both") or ( args_ribo.program.lower() == "thermometer"): print("Detecting RNA thermometers now") self._core_prediction( args_ribo, args_ribo.thermo_id, self.thermo_rfam, self.thermo_tmp_files, self.thermo_table_folder, "RNA_thermometer", self.thermo_scan_folder, self.thermo_suffixs, self.thermo_stat_folder, self.thermo_gff_outfolder, args_ribo.thermo_out_folder, "thermometer", log_t) self._remove_tmp(args_ribo)
ANNOgesic
/ANNOgesic-1.1.14.linux-x86_64.tar.gz/usr/local/lib/python3.10/dist-packages/annogesiclib/ribos.py
ribos.py
import os import sys import shutil from annogesiclib.multiparser import Multiparser from annogesiclib.helper import Helper from annogesiclib.sORF_intergenic import get_intergenic from annogesiclib.sORF_detection import sorf_detection from annogesiclib.stat_sorf import stat from annogesiclib.reorganize_table import reorganize_table class sORFDetection(object): '''detection of sORF''' def __init__(self, args_sorf): self.multiparser = Multiparser() self.helper = Helper() if args_sorf.tsss is not None: self.tss_path = os.path.join(args_sorf.tsss, "tmp") else: self.tss_path = None if args_sorf.srnas is not None: self.srna_path = os.path.join(args_sorf.srnas, "tmp") else: self.srna_path = None self.gff_output = os.path.join(args_sorf.out_folder, "gffs") self.table_output = os.path.join(args_sorf.out_folder, "tables") self.tran_path = os.path.join(args_sorf.trans, "tmp") self.fasta_path = os.path.join(args_sorf.fastas, "tmp") self.all_cand = "all_candidates" self.best = "best_candidates" def _check_gff(self, gffs): for gff in os.listdir(gffs): if gff.endswith(".gff"): self.helper.check_uni_attributes(os.path.join(gffs, gff)) def _check_necessary_files(self, args_sorf, log): if (args_sorf.gffs is None) or (args_sorf.trans is None) or ( (args_sorf.tex_wigs is None) and (args_sorf.frag_wigs is None)): print("Error: lack required files!") log.write("genome annotation, transcript file or wiggle files " "are not assigned.\n") sys.exit() if args_sorf.utr_detect: if (args_sorf.tsss is None): print("Error: TSS files are required for UTR derived" " sORF detection!") log.write("TSS files are required for UTR derived" " sORF detection!\n") sys.exit() self._check_gff(args_sorf.gffs) self.multiparser.parser_gff(args_sorf.gffs, None) if args_sorf.tsss is not None: self._check_gff(args_sorf.tsss) self.multiparser.parser_gff(args_sorf.tsss, "TSS") self.multiparser.combine_gff(args_sorf.gffs, self.tss_path, None, "TSS") self._check_gff(args_sorf.trans) if args_sorf.srnas is not None: self._check_gff(args_sorf.srnas) self.multiparser.parser_gff(args_sorf.srnas, "sRNA") self.multiparser.combine_gff(args_sorf.gffs, self.srna_path, None, "sRNA") def _start_stop_codon(self, prefixs, args_sorf, log): '''detect the sORF based on start and stop codon and ribosome binding site''' log.write("Running sORF_detection.py for detecting sORFs.\n") log.write("The following files are generated:\n") for prefix in prefixs: print("Searching sORFs of {0}".format(prefix)) if self.srna_path is not None: srna_file = os.path.join(self.srna_path, "_".join([prefix, "sRNA.gff"])) else: srna_file = None if self.tss_path is not None: tss_file = os.path.join(self.tss_path, "_".join([prefix, "TSS.gff"])) else: tss_file = None sorf_detection(os.path.join(self.fasta_path, prefix + ".fa"), srna_file, os.path.join(args_sorf.out_folder, "_".join([prefix, "inter.gff"])), tss_file, os.path.join(args_sorf.wig_path, "_".join([prefix, "forward.wig"])), os.path.join(args_sorf.wig_path, "_".join([prefix, "reverse.wig"])), os.path.join(self.gff_output, self.all_cand, "_".join([prefix, "sORF"])), args_sorf) if "_".join([prefix, "sORF_all.gff"]) in os.listdir( os.path.join(self.gff_output, self.all_cand)): gff_all = os.path.join(self.gff_output, self.all_cand, "_".join([prefix, "sORF.gff"])) gff_best = os.path.join(self.gff_output, self.best, "_".join([prefix, "sORF.gff"])) csv_all = os.path.join(self.table_output, self.all_cand, "_".join([prefix, "sORF.csv"])) csv_best = os.path.join(self.table_output, self.best, "_".join([prefix, "sORF.csv"])) shutil.move(os.path.join(self.gff_output, self.all_cand, "_".join([prefix, "sORF_all.gff"])), gff_all) shutil.move(os.path.join(self.gff_output, self.all_cand, "_".join([prefix, "sORF_best.gff"])), gff_best) shutil.move(os.path.join(self.gff_output, self.all_cand, "_".join([prefix, "sORF_all.csv"])), csv_all) shutil.move(os.path.join(self.gff_output, self.all_cand, "_".join([prefix, "sORF_best.csv"])), csv_best) log.write("\t" + gff_all + "\n") log.write("\t" + gff_best + "\n") log.write("\t" + csv_all + "\n") log.write("\t" + csv_best + "\n") def _remove_tmp(self, args_sorf): self.helper.remove_all_content(args_sorf.out_folder, ".gff", "file") self.helper.remove_tmp_dir(args_sorf.fastas) self.helper.remove_tmp_dir(args_sorf.gffs) self.helper.remove_tmp_dir(args_sorf.tsss) self.helper.remove_tmp_dir(args_sorf.trans) self.helper.remove_tmp_dir(args_sorf.srnas) if "temp_wig" in os.listdir(args_sorf.out_folder): shutil.rmtree(os.path.join(args_sorf.out_folder, "temp_wig")) if "merge_wigs" in os.listdir(args_sorf.out_folder): shutil.rmtree(os.path.join(args_sorf.out_folder, "merge_wigs")) def _compare_tran_cds(self, args_sorf, log): '''compare transcript and CDS to find the intergenic region''' prefixs = [] log.write("Running sORF_intergenic.py to extract the sequences of " "potential sORFs\n") for gff in os.listdir(args_sorf.gffs): if gff.endswith(".gff"): prefix = gff.replace(".gff", "") prefixs.append(prefix) print("Comparing transcripts and CDSs of {0}".format(prefix)) get_intergenic(os.path.join(args_sorf.gffs, gff), os.path.join(self.tran_path, "_".join([prefix, "transcript.gff"])), os.path.join(args_sorf.out_folder, "_".join([prefix, "inter.gff"])), args_sorf.utr_detect, args_sorf.hypo, args_sorf.extend_5, args_sorf.extend_3) log.write("\t" + os.path.join(args_sorf.out_folder, "_".join([prefix, "inter.gff"])) + " is generated to temporary store the sequences.\n") return prefixs def _re_table(self, args_sorf, prefixs, log): log.write("Running re_table.py for generating coverage information.\n") log.write("The following files are updated:\n") for type_ in ["all_candidates", "best_candidates"]: for prefix in prefixs: table_file = os.path.join(args_sorf.out_folder, "tables", type_, "_".join([ prefix, "sORF.csv"])) reorganize_table(args_sorf.libs, args_sorf.merge_wigs, "Track_detail", table_file) log.write("\t" + table_file + "\n") def run_sorf_detection(self, args_sorf, log): if args_sorf.fuzzy_rbs > 6: log.write("--fuzzy_rbs should be equal or less than 6!\n") print("Error: --fuzzy_rbs should be equal or less than 6!") sys.exit() self._check_necessary_files(args_sorf, log) self.multiparser.parser_gff(args_sorf.trans, "transcript") self.multiparser.combine_gff(args_sorf.gffs, self.tran_path, None, "transcript") self.multiparser.parser_fasta(args_sorf.fastas) self.multiparser.combine_fasta(args_sorf.gffs, self.fasta_path, None) prefixs = self._compare_tran_cds(args_sorf, log) self._start_stop_codon(prefixs, args_sorf, log) log.write("Running stat_sorf.py to do statistics.\n") for sorf in os.listdir(os.path.join(self.gff_output, self.all_cand)): print("Running statistics of {0}".format(sorf)) if sorf.endswith("_sORF.gff"): stat_file = os.path.join(args_sorf.out_folder, "statistics", "_".join(["stat", sorf.replace(".gff", ".csv")])) stat(os.path.join(self.gff_output, self.all_cand, sorf), os.path.join(self.gff_output, self.best, sorf), stat_file, args_sorf.utr_detect) log.write("\t" + stat_file + " is generated.\n") self._re_table(args_sorf, prefixs, log) self._remove_tmp(args_sorf)
ANNOgesic
/ANNOgesic-1.1.14.linux-x86_64.tar.gz/usr/local/lib/python3.10/dist-packages/annogesiclib/sorf.py
sorf.py
import os import networkx as nx import matplotlib matplotlib.use('Agg') from matplotlib.offsetbox import AnchoredText import matplotlib.pyplot as plt plt.rcParams['image.cmap'] = 'RdBu_r' def node(item, nodes, center, colors, labels1, labels2): if item not in nodes: nodes.append(item) if len(item) > 5: labels2[item] = item labels1[item] = "" else: labels1[item] = item labels2[item] = "" if (center["locus_tag"] == item) or \ (center["gene_name"] == item): colors[item] = '#FFFF66' else: colors[item] = '#CCFFCC' def get_largest_compare(tick, score): same = True if (score >= 20) and tick >= 20: pass else: if score != tick: same = False if score > tick: if score >= 20: tick = 20 else: tick = score return (tick, same) def add_edge(G, ppi, style, weight, colorppi): G.add_edge(ppi["item_a"], ppi["item_b"], color=float(colorppi), style=style, weight=weight) def add_node(G, nodes): G.add_nodes_from(nodes) def best_assign_attributes(check_na, G, ppi, pre_ppi, first, style): check_na["best"] = True if ppi["score"] == 0: if ppi["below"] >= 20: weight = 22 else: weight = ppi["below"] + 1 else: if ppi["score"] >= 20: weight = 22 else: weight = ppi["score"] + ppi["below"] + 1 add_edge(G, ppi, style, weight, ppi["best"]) if not first: if pre_ppi["best"] != ppi["best"]: check_na["same_best"] = True def create_node(ppis, scores, nodes, center, colors, labels1, labels2, edges, G, cutoff_score, check_na, pre_ppi): first = True for ppi in ppis: scores.append(ppi["score"]) node(ppi["item_a"], nodes, center, colors, labels1, labels2) node(ppi["item_b"], nodes, center, colors, labels1, labels2) if ((ppi["item_a"], ppi["item_b"]) not in edges) or \ ((ppi["item_b"], ppi["item_a"]) not in edges): edges.append((ppi["item_a"], ppi["item_b"])) if ppi["best"] == "NA": add_edge(G, ppi, 'dashed', 1, -1) elif float(ppi["best"]) <= cutoff_score: best_assign_attributes(check_na, G, ppi, pre_ppi, first, "dashdot") else: best_assign_attributes(check_na, G, ppi, pre_ppi, first, "solid") pre_ppi = ppi first = False add_node(G, nodes) return pre_ppi def modify_label(labels2, new_labels): for key, value in labels2.items(): if "_" in value: new_labels[key] = value.replace("_", "\n") else: new_labels[key] = value def plot_text(check_na, plt, ppis, ppi, color_edge): na = False if check_na["na"]: na = True elif check_na["best"]: if len(ppis) < 2: na = True else: cbar = plt.colorbar(color_edge) cbar.ax.tick_params(labelsize=16) return na def nx_node(G, pos, node_size, colors, color_list): '''draw the node''' nx.draw_networkx_nodes(G, pos, node_size=node_size, node_shape='o', nodelist=colors.keys(), node_color=color_list, linewidths=1) def nx_edge(G, pos, edges, colors, styles, weights): '''draw the edge''' color_edge = (nx.draw_networkx_edges(G, pos, edgelist=edges, edge_color=colors, style=styles, width=weights, edge_vmin=-1, edge_vmax=1)) return color_edge def nx_label(G, pos, labels, size): '''setup the label of network''' nx.draw_networkx_labels(G, pos, labels, font_size=size, font_weight='bold') def nx_color_style(G, edges): '''setup the color of network''' colors = [] styles = [] check_na = True for u, v in edges: colors.append(G[u][v]['color']) styles.append(G[u][v]['style']) if (G[u][v]['style'] == "solid") or ( G[u][v]['style'] == "dashdot"): check_na = False return colors, styles, check_na def print_title(plt, na, center): if not na: plt.title("|".join([center["locus_tag"], " ".join([center["gene_name"], "(based on the score of best literature)"])]), fontsize="16") else: plt.title("|".join([center["locus_tag"], " ".join([center["gene_name"], "(based on the score of best literature)"])]) + \ "\n the numbers of supported literatures in all interactions are 0", fontsize="16") def plot(ppis, center, strain, cutoff_score, node_size, out_folder): nodes = [] edges = [] labels1 = {} labels2 = {} colors = {} check_na = {"number": False, "best": False, "na": False, "same_number": False, "same_best": False} pre_ppi = "" scores = [] weights = [] plt.figure(figsize=(15, 15)) G = nx.Graph() pre_ppi = create_node(ppis, scores, nodes, center, colors, labels1, labels2, edges, G, cutoff_score, check_na, pre_ppi) pos = nx.spring_layout(G, k=2, scale=3, iterations=20) color_list = [] for color in colors.values(): color_list.append(color) nx_node(G, pos, node_size, colors, color_list) connects = G.edges() for weight in G.edges(data=True): if weight[2]["weight"] <= 30: weights.append(weight[2]["weight"]) else: weights.append(30) colors, styles, check_na["na"] = nx_color_style(G, connects) color_edge = nx_edge(G, pos, connects, colors, styles, weights) nx_label(G, pos, labels1, 12) new_labels = {} modify_label(labels2, new_labels) nx_label(G, pos, new_labels, 10) na = plot_text(check_na, plt, ppis, pre_ppi, color_edge) print_title(plt, na, center) plt.axis('off') if strain not in os.listdir(out_folder): os.mkdir(os.path.join(out_folder, strain)) plt.savefig(os.path.join(out_folder, strain, "_".join([center["locus_tag"], center["gene_name"] + ".png"])), bbox_inches="tight") plt.clf() plt.close('all') return check_na def score_compare(score, scores, cutoff_score, ppi): '''check the number of literatures which are pass the cutoff''' if score == "NA": ppi["score"] = 0 ppi["below"] = 0 elif float(score) >= cutoff_score: scores["score"] += 1 else: scores["below"] += 1 def assign_score_below(pre_ppi, scores, ppis): if "score" not in pre_ppi.keys(): pre_ppi["score"] = scores["score"] if "below" not in pre_ppi.keys(): pre_ppi["below"] = scores["below"] ppis.append(pre_ppi) def get_best(pre_ppi, ppi, row): '''get the best score of PPI''' if "best" not in pre_ppi.keys(): ppi["best"] = row[8] else: if pre_ppi["best"] == "NA": ppi["best"] = row[8] else: if float(pre_ppi["best"]) < float(row[8]): ppi["best"] = row[8] else: ppi["best"] = pre_ppi["best"] def interaction(first, pre_ppi, scores, ppis, match, center, cutoff_score, node_size, out_folder): '''check the interaction of two proteins''' if first: pass else: assign_score_below(pre_ppi, scores, ppis) if match: plot(ppis, center, pre_ppi["strain"], cutoff_score, node_size, out_folder) match = False else: print("No interacted partner with {0} | {1}".format( center["locus_tag"], center["gene_name"])) scores = {"score": 0, "below": 0} ppis = [] first = True return first, scores, match, ppis def plot_ppi(PPI_file, cutoff_score, out_folder, node_size): '''plot the network of PPI''' ppis = [] first = True pre_ppi = None scores = {"score": 0, "below": 0} center = {} start = False match = False with open(PPI_file) as fh: for line in fh: line = line.strip() row = line.split("\t") start = True if row[0].startswith("Interaction"): first, scores, match, ppis = interaction( first, pre_ppi, scores, ppis, match, center, cutoff_score, node_size, out_folder) datas = row[0].split(" | ") center["locus_tag"] = datas[0].split(" ")[-1] center["gene_name"] = datas[-1] print("Plotting {0}".format(center["gene_name"])) elif row[0] == "Genome": pass else: ppi = {"strain": row[0], "item_a": row[1], "item_b": row[2]} if (ppi["item_a"] == center["locus_tag"]) or ( ppi["item_a"] == center["gene_name"]) or ( ppi["item_b"] == center["locus_tag"]) or ( ppi["item_b"] == center["gene_name"]): match = True if first: first = False score_compare(row[8], scores, cutoff_score, ppi) ppi["best"] = row[8] else: if (ppi["strain"] == pre_ppi["strain"]) and ( ppi["item_a"] == pre_ppi["item_a"]) and ( ppi["item_b"] == pre_ppi["item_b"]): get_best(pre_ppi, ppi, row) score_compare(row[8], scores, cutoff_score, ppi) else: assign_score_below(pre_ppi, scores, ppis) scores = {"score": 0, "below": 0} score_compare(row[8], scores, cutoff_score, ppi) ppi["best"] = row[8] pre_ppi = ppi if start and match: assign_score_below(pre_ppi, scores, ppis) plot(ppis, center, pre_ppi["strain"], cutoff_score, node_size, out_folder) elif not start: print("No proper result can be retrieved in " + PPI_file) elif not match: print("No interacted partner with {0} | {1}".format( center["locus_tag"], center["gene_name"]))
ANNOgesic
/ANNOgesic-1.1.14.linux-x86_64.tar.gz/usr/local/lib/python3.10/dist-packages/annogesiclib/plot_PPI.py
plot_PPI.py
import os import sys import shutil from subprocess import call, DEVNULL from annogesiclib.multiparser import Multiparser from annogesiclib.converter import Converter from annogesiclib.format_fixer import FormatFixer from annogesiclib.helper import Helper class RATT(object): '''annotation transfer''' def __init__(self, args_ratt): self.multiparser = Multiparser() self.converter = Converter() self.format_fixer = FormatFixer() self.helper = Helper() if args_ratt.ref_gbk: self.gbk = os.path.join(args_ratt.ref_gbk, "gbk_tmp") self.gbk_tmp = os.path.join(self.gbk, "tmp") self.embl = os.path.join(args_ratt.ref_gbk, "embls") if args_ratt.ref_embls: self.embl = args_ratt.ref_embls self.ratt_log = os.path.join(args_ratt.output_path, "ratt_log.txt") self.tmp_files = {"tar": os.path.join(args_ratt.tar_fastas, "tmp"), "ref": os.path.join(args_ratt.ref_fastas, "tmp"), "out_gff": os.path.join(args_ratt.gff_outfolder, "tmp"), "gff": os.path.join(args_ratt.gff_outfolder, "tmp.gff"), "ptt": os.path.join(args_ratt.gff_outfolder, "tmp.ptt"), "rnt": os.path.join(args_ratt.gff_outfolder, "tmp.rnt")} def _convert_to_pttrnt(self, gffs, files, log): for gff in files: if gff.endswith(".gff"): gff = os.path.join(gffs, gff) filename = gff.split("/") prefix = filename[-1][:-4] rnt = gff[:-3] + "rnt" ptt = gff[:-3] + "ptt" fasta = self.helper.get_correct_file(self.tmp_files["tar"], ".fa", prefix, None, None) if fasta: self.converter.convert_gff2rntptt(gff, prefix, fasta, ptt, rnt, None, None) log.write("\t" + ptt + " is generated.\n") log.write("\t" + rnt + " is generated.\n") def _remove_files(self, args_ratt, out_gbk, log): self.helper.remove_all_content(args_ratt.gff_outfolder, ".gff", "file") self.helper.remove_all_content(args_ratt.gff_outfolder, ".ptt", "file") self.helper.remove_all_content(args_ratt.gff_outfolder, ".rnt", "file") log.write("Moving the final output files to {0}.\n".format(args_ratt.gff_outfolder)) self.helper.move_all_content(self.tmp_files["out_gff"], args_ratt.gff_outfolder, None) log.write("Remove the temperary files.\n") shutil.rmtree(self.tmp_files["out_gff"]) shutil.rmtree(self.tmp_files["tar"]) shutil.rmtree(self.tmp_files["ref"]) self.helper.remove_tmp_dir(args_ratt.tar_fastas) self.helper.remove_tmp_dir(args_ratt.ref_fastas) self.helper.remove_tmp_dir(args_ratt.ref_embls) self.helper.remove_tmp_dir(args_ratt.ref_gbk) def _convert_to_gff(self, ratt_result, args_ratt, files, log): name = ratt_result.split(".") filename = ".".join(name[1:-2]) + ".gff" output_file = os.path.join(args_ratt.output_path, filename) self.converter.convert_embl2gff( os.path.join(args_ratt.output_path, ratt_result), output_file) self.format_fixer.fix_ratt(output_file, ".".join(name[1:-2]), "tmp_gff") shutil.move("tmp_gff", output_file) shutil.copy(output_file, os.path.join(args_ratt.gff_outfolder, filename)) log.write("\t" + os.path.join(args_ratt.gff_outfolder, filename) + " is generated.\n") files.append(filename) def _parser_embl_gbk(self, files): self.helper.check_make_folder(self.gbk) for file_ in files: close = False with open(file_, "r") as f_h: for line in f_h: if (line.startswith("LOCUS")): out = open(self.gbk_tmp, "w") datas = line.split(" ") for data in datas: if (len(data) != 0) and (data != "LOCUS"): filename = ".".join([data.strip(), "gbk"]) break elif (line.startswith("VERSION")): datas = line.split(" ") for data in datas: if (len(data) != 0) and (data != "VERSION"): new_filename = ".".join([data.strip(), "gbk"]) break if new_filename.find(filename): filename = new_filename if out: out.write(line) if line.startswith("//"): out.close() close = True shutil.move(self.gbk_tmp, os.path.join(self.gbk, filename)) if not close: out.close() return self.gbk def _convert_embl(self, ref_embls, log): '''convert gbk to embl''' detect_gbk = False gbks = [] out_gbk = None for embl in os.listdir(ref_embls): if (embl.endswith(".gbk")) or ( embl.endswith(".gbff")) or ( embl.endswith(".gb")): detect_gbk = True gbks.append(os.path.join(ref_embls, embl)) if not detect_gbk: log.write("--related_gbk_files is assigned, but not gbk files are detected.\n" "The gbk file names need to be ended at .gbk, .gb, or .gbff. \n") print("Error: Please assign proper Genebank files!") sys.exit() elif detect_gbk: out_gbk = self._parser_embl_gbk(gbks) log.write("Running converter.py to convert gbk file to embl format.\n") self.converter.convert_gbk2embl(out_gbk) self.helper.check_make_folder(self.embl) self.helper.move_all_content(out_gbk, self.embl, [".embl"]) log.write("\t" + self.embl + " is generated and the embl files are stored in it.\n") return out_gbk def _run_ratt(self, args_ratt, tar, ref, out, log): if (not os.path.exists(self.embl)) or ( not os.path.exists(os.path.join( self.tmp_files["tar"], tar + ".fa"))) or ( not os.path.exists(os.path.join( self.tmp_files["ref"], ref + ".fa"))): print("Error: Please check --compare_pair, the strain names " "should be the same as the strain names in fasta, " "genbank or embl files!") log.write("The strain names in --compare_pair should be the same " "as the strain names in fasta, genbank, or embl files.\n") sys.exit() log.write("Make sure your RATT version is at least 1.64.\n") log.write("If the RATT can not run properly, please check the " "RATT_HOME and PAGIT_HOME is assigned correctly.\n") temp_embl_folder = os.path.join(self.embl, ref) os.mkdir(temp_embl_folder) shutil.copy(os.path.join(self.embl, ref + ".embl"), os.path.join(self.embl, ref)) log.write(" ".join([args_ratt.ratt_path, self.embl, os.path.join(self.tmp_files["tar"], tar + ".fa"), args_ratt.element, args_ratt.transfer_type, os.path.join(self.tmp_files["ref"], ref + ".fa")]) + "\n") call([args_ratt.ratt_path, temp_embl_folder, os.path.join(self.tmp_files["tar"], tar + ".fa"), args_ratt.element, args_ratt.transfer_type, os.path.join(self.tmp_files["ref"], ref + ".fa")], stdout=out, stderr=DEVNULL) shutil.rmtree(temp_embl_folder) # call([args_ratt.ratt_path, self.embl, # os.path.join(self.tmp_files["tar"], tar + ".fa"), # args_ratt.element, args_ratt.transfer_type, # os.path.join(self.tmp_files["ref"], ref + ".fa")], # stdout=out, stderr=DEVNULL) log.write("Done!\n") def _format_and_run(self, args_ratt, log): print("Running RATT") for pair in args_ratt.pairs: ref = pair.split(":")[0] tar = pair.split(":")[1] out = open(self.ratt_log, "w+") self._run_ratt(args_ratt, tar, ref, out, log) log.write("The following files are generatd:\n") for filename in os.listdir(): if ("final" in filename): log.write("\t" + filename + "\n") shutil.move(filename, os.path.join(args_ratt.output_path, filename)) elif (args_ratt.element in filename) or ( "query" in filename) or ( "Reference" in filename) or ( "Query" in filename) or ( "Sequences" in filename): log.write("\t" + filename + "\n") if os.path.isfile(filename): os.remove(filename) if os.path.isdir(filename): shutil.rmtree(filename) out.close() def annotation_transfer(self, args_ratt, log): self.multiparser.parser_fasta(args_ratt.tar_fastas) self.multiparser.parser_fasta(args_ratt.ref_fastas) out_gbk = None if args_ratt.ref_embls is None: out_gbk = self._convert_embl(args_ratt.ref_gbk, log) self._format_and_run(args_ratt, log) files = [] for data in os.listdir(args_ratt.output_path): if "final.embl" in data: log.write("Running converter.py to convert embl " "files in {0} to gff, ptt, and rnt format.\n".format(data)) self._convert_to_gff(data, args_ratt, files, log) self._convert_to_pttrnt(args_ratt.gff_outfolder, files, log) self.helper.check_make_folder(self.tmp_files["out_gff"]) log.write("Merging the output of {0}.\n".format(data)) for folder in os.listdir(args_ratt.tar_fastas): files = [] if "_folder" in folder: datas = folder.split("_folder") prefix = ".".join(datas[0].split(".")[:-1]) for file_ in os.listdir(os.path.join(args_ratt.tar_fastas, folder)): files.append(file_[:-3]) for gff in os.listdir(args_ratt.gff_outfolder): for file_ in files: if (".gff" in gff) and (file_ == gff[:-4]): self.helper.merge_file(os.path.join( args_ratt.gff_outfolder, gff), self.tmp_files["gff"]) if (".ptt" in gff) and (file_ == gff[:-4]): self.helper.merge_file(os.path.join( args_ratt.gff_outfolder, gff), self.tmp_files["ptt"]) if (".rnt" in gff) and (file_ == gff[:-4]): self.helper.merge_file(os.path.join( args_ratt.gff_outfolder, gff), self.tmp_files["rnt"]) if os.path.exists(self.tmp_files["gff"]): shutil.move(self.tmp_files["gff"], os.path.join( self.tmp_files["out_gff"], prefix + ".gff")) shutil.move(self.tmp_files["ptt"], os.path.join( self.tmp_files["out_gff"], prefix + ".ptt")) shutil.move(self.tmp_files["rnt"], os.path.join( self.tmp_files["out_gff"], prefix + ".rnt")) else: print("Error: Please check your fasta or " "annotation files, they should only contain " "the query genome. And make sure your RATT can " "work properly (check $ANNOgesic/output/" "annotation_transfer/ratt_log.txt).") log.write("Please check your fasta or " "annotation files, they should only contain " "the query genome. And make sure your RATT can " "work properly (check $ANNOgesic/output/" "annotation_transfer/ratt_log.txt).\n") self._remove_files(args_ratt, out_gbk, log)
ANNOgesic
/ANNOgesic-1.1.14.linux-x86_64.tar.gz/usr/local/lib/python3.10/dist-packages/annogesiclib/ratt.py
ratt.py
import os import csv import shutil from annogesiclib.gff3 import Gff3Parser from annogesiclib.helper import Helper def read_gff(gff_file, type_): cdss = [] g_h = open(gff_file) for entry in Gff3Parser().entries(g_h): if (Helper().feature_without_notgene(entry)): if (type_ == "riboswitch") and (entry.feature != "riboswitch"): cdss.append(entry) elif (type_ == "thermometer") and ( entry.feature != "RNA_thermometer"): cdss.append(entry) cdss = sorted(cdss, key=lambda k: (k.seq_id, k.start, k.end, k.strand)) g_h.close() return cdss def check_repeat(tab, strain, strand, start, end, fuzzy): start = start + fuzzy end = end - fuzzy if (tab["strain"] == strain) and ( tab["strand"] == strand): if ((tab["start"] <= start) and ( tab["end"] >= end)) or ( (tab["start"] >= start) and ( tab["end"] <= end)) or ( (tab["start"] <= start) and ( tab["end"] <= end) and ( tab["end"] >= start)) or ( (tab["start"] >= start) and ( tab["start"] <= end) and ( tab["end"] >= end)): return True return False def rbs_overlap(table_file, gff_file, type_, fuzzy): tmp_tab = table_file + "_tmp" cdss = read_gff(gff_file, type_) out = open(tmp_tab, "w") fh = open(table_file, "r") tables = [] for row in csv.reader(fh, delimiter='\t'): if not row[0].startswith("#"): tables.append({"strain": row[1], "strand": row[2], "start": int(row[4]), "end": int(row[5]), "info": "\t".join(row)}) fh.close() for tab in tables: overlap = False for cds in cdss: overlap = check_repeat(tab, cds.seq_id, cds.strand, cds.start, cds.end, fuzzy) if overlap: break for com in tables: if tab != com: repeat = check_repeat(tab, com["strain"], com["strand"], com["start"], com["end"], 0) if (not overlap): if ((repeat) and ( "print" not in tab.keys()) and ( "print" not in com.keys())) or ( not repeat): overlap = False else: overlap = True if not overlap: tab["print"] = True out.write(tab["info"] + "\n") out.close() os.remove(table_file) shutil.move(tmp_tab, table_file)
ANNOgesic
/ANNOgesic-1.1.14.linux-x86_64.tar.gz/usr/local/lib/python3.10/dist-packages/annogesiclib/rbs_overlap.py
rbs_overlap.py
from annogesiclib.gff3 import Gff3Parser def read_file(filename): datas = [] f_h = open(filename, "r") for entry in Gff3Parser().entries(f_h): datas.append(entry) datas = sorted(datas, key=lambda k: (k.seq_id, k.start, k.end, k.strand)) f_h.close() return datas def del_attributes(entry): '''delete the feature (besides genome annotation) which already has Parent''' if (entry.feature == "CDS") or ( entry.feature == "tRNA") or ( entry.feature == "rRNA") or ( entry.feature == "exon"): pass else: if "Parent" in entry.attributes.keys(): del entry.attributes["Parent"] def print_file(entry, tran, out): if "Parent" in entry.attributes.keys(): if str(tran.attributes["ID"]) not in entry.attributes["Parent"]: entry.attributes["Parent"] = ",".join([ entry.attributes["Parent"], str(tran.attributes["ID"])]) else: entry.attributes["Parent"] = str(tran.attributes["ID"]) attributes = {} for key, value in entry.attributes.items(): if (key != "print") and (key != "parent_tran"): attributes[key] = value attribute_string = ";".join( ["=".join(items) for items in attributes.items()]) out.write("".join([entry.info_without_attributes, "\t", attribute_string, "\n"])) entry.attributes["print"] = True def compare_tran(datas, tran, out): '''comare transcript and 5UTR, 3UTR, gene/CDS for merging''' for data in datas: del_attributes(data) if (data.seq_id == tran.seq_id) and ( data.strand == tran.strand): if (data.start >= tran.start) and ( data.end <= tran.end): print_file(data, tran, out) def print_rest(datas, out): '''print the rest data which is not related to operon''' for data in datas: if "print" not in data.attributes.keys(): out.write(data.info + "\n") def compare_tran_term(term, tran, out, fuzzy_term): '''compare transcript and terminator for merging''' if (term.seq_id == tran.seq_id) and ( term.strand == tran.strand): if (term.start >= tran.start) and ( term.end <= tran.end): print_file(term, tran, out) else: if term.strand == "+": if ((term.start - fuzzy_term) <= tran.end) and ( term.end + fuzzy_term >= tran.end): print_file(term, tran, out) elif (term.start <= tran.end) and ( term.end >= tran.end): print_file(term, tran, out) else: if (term.end + fuzzy_term >= tran.start) and ( term.start - fuzzy_term <= tran.start): print_file(term, tran, out) elif (term.start <= tran.start) and ( term.end >= tran.start): print_file(term, tran, out) def combine_gff(gff_file, ta_file, tss_file, utr5_file, utr3_file, term_file, fuzzy_tss, fuzzy_term, out_file): '''combine the features which related to operon to form a operon gff file''' gffs = read_file(gff_file) trans = read_file(ta_file) if tss_file is not None: tsss = read_file(tss_file) if utr5_file is not None: utr5s = read_file(utr5_file) if utr3_file is not None: utr3s = read_file(utr3_file) out = open(out_file, "w") out.write("##gff-version 3\n") if term_file is not None: terms = read_file(term_file) for tran in trans: out.write(tran.info + "\n") if tss_file is not None: for tss in tsss: del_attributes(tss) if (tss.seq_id == tran.seq_id) and (tss.strand == tran.strand): if tss.strand == "+": if ((tss.start + fuzzy_tss) >= tran.start) and ( tss.start <= tran.end): print_file(tss, tran, out) else: if (tss.start >= tran.start) and ( tss.end - fuzzy_tss <= tran.end): print_file(tss, tran, out) if utr5_file is not None: compare_tran(utr5s, tran, out) compare_tran(gffs, tran, out) if utr3_file is not None: compare_tran(utr3s, tran, out) if term_file is not None: for term in terms: del_attributes(term) compare_tran_term(term, tran, out, fuzzy_term) if tss_file is not None: print_rest(tsss, out) if utr5_file is not None: print_rest(utr5s, out) print_rest(gffs, out) if utr3_file is not None: print_rest(utr3s, out) if term_file is not None: print_rest(terms, out) out.close()
ANNOgesic
/ANNOgesic-1.1.14.linux-x86_64.tar.gz/usr/local/lib/python3.10/dist-packages/annogesiclib/combine_gff.py
combine_gff.py
import os import sys import shutil from glob import glob from annogesiclib.multiparser import Multiparser from annogesiclib.helper import Helper from contextlib import redirect_stdout class ArgsContainer(object): def __init__(self): self.multiparser = Multiparser() self.helper = Helper() def _check_strain_length(self, strain_lens, flag): lengths = {} for m_l in strain_lens: if ":" not in m_l: print("Error: The assignment of {0} needs to contain " "genome names and their length " "of checked region!".format(flag)) sys.exit() else: if m_l.split(":")[-1] == "all": lengths[m_l.split(":")[0]] = m_l.split(":")[-1] else: lengths[m_l.split(":")[0]] = int(m_l.split(":")[-1]) return lengths def _check_track_name(self, lib, tracks, strand): if lib.split("/")[-1] in tracks["file"]: print("Error: {0} of the wiggle files is repeated!".format( lib.split("/")[-1])) sys.exit() else: tracks["file"].append(lib.split("/")[-1]) with open(lib) as fh: for line in fh: line = line.strip() if line.startswith("track"): track_name = line.split(" ")[-1] if track_name in tracks["track"][strand]: print("Error: {0} of the tracks in the " "wiggle files is repeated!".format(track_name)) sys.exit() else: tracks["track"][strand].append(track_name) def _create_working_wigs(self, out_folder, libs, wig_folder, tracks): new_libs = [] if libs is not None: self.helper.check_make_folder(wig_folder) for lib in libs: if not os.path.exists(lib.split(":")[0]): print("Error: {0} of the wiggle files is not found!".format( lib.split(":")[0])) sys.exit() self._check_track_name(lib.split(":")[0], tracks, lib.split(":")[-1]) shutil.copy(lib.split(":")[0], wig_folder) wig = lib.split(":")[0].split("/")[-1] new_libs.append(":".join([wig, ":".join(lib.split(":")[1:])])) else: new_libs = None return new_libs def _check_replicates(self, replicates_tex, replicates_frag, tex_lib, frag_lib): '''Check the replicate of frag and tex libs''' if (tex_lib is not None) and (replicates_tex is None): print("Error: No replicates numbers for " "TEX treated libraries are assigned!") sys.exit() if (frag_lib is not None) and (replicates_frag is None): print("Error: No replicates numbers for " "fragmented libraries are assigned!") sys.exit() if (replicates_tex is not None) and (replicates_frag is not None): replicates = {"tex": replicates_tex, "frag": replicates_frag} elif replicates_tex is not None: replicates = {"tex": replicates_tex, "frag": -1} elif replicates_frag is not None: replicates = {"tex": -1, "frag": replicates_frag} else: print("Error: No replicates number was assigned!") sys.exit() if replicates["tex"] != -1: for rep in replicates["tex"]: if ("_" not in rep): print("Error: Please check the input format of replicate_tex! " "It should also contain condition name.") sys.exit() if replicates["frag"] != -1: for rep in replicates["frag"]: if ("_" not in rep): print("Error: Please check the input format of replicate_frag! " "It should also contain condition name.") sys.exit() return replicates def _check_assign_info(self, infos, file_type, wig_type): if file_type == "cond": index = 1 elif file_type == "rep": index = 97 for info, num in sorted(infos.items()): if (file_type == "cond") or (file_type == "rep"): if file_type == "cond": if info != index: print("Error: The condition number and order " "of --tex_notex_libs should follow 1, 2, 3.") sys.exit() elif file_type == "rep": if ord(info) != index: print("Error: The replicate index and order " "of --tex_notex_libs should follow a, b, c.") sys.exit() if (wig_type == "tex") and (num % 4 != 0): print("Error: The --tex_notex_libs was assinged incorrectly. " "Please check it again.") sys.exit() elif (wig_type == "frag") and (num % 2 != 0): print("Error: The --frag_libs was assinged incorrectly. " "Please check it again.") sys.exit() index += 1 elif file_type == "strand": if wig_type == "frag": if (infos["+"] != infos["-"]): print("Error: The --frag_libs was assinged incorrectly. " "Please check it again.") sys.exit() if wig_type == "tex": if (num % 2 != 0) and (infos["+"] != infos["-"]): print("Error: The --tex_notex_libs was assinged incorrectly. " "Please check it again.") sys.exit() def _check_tex_frag(self, libs, wig_type): conds = {} reps = {} strands = {} for lib in libs: datas = lib.split(":") if not datas[0].endswith(".wig"): print("Error: {0} should end with .wig!".format(datas[0])) sys.exit() if (datas[1] != "notex") and ( datas[1] != "tex") and ( datas[1] != "frag"): print("Error: Please assign \"tex\", \"notex\" or " "\"frag\" to your input libraries.") sys.exit() try: if int(datas[2]) not in conds.keys(): conds[int(datas[2])] = 0 conds[int(datas[2])] += 1 except ValueError: print("Error: Condition of libs should be assigned by integers!") sys.exit() if datas[3] not in reps.keys(): reps[datas[3]] = 0 reps[datas[3]] += 1 datas[4] = datas[4].strip() if (datas[4] != "+") and (datas[4] != "-"): print("Error: Strand of libs should be assigned as + or -") sys.exit() if datas[4] not in strands.keys(): strands[datas[4]] = 0 strands[datas[4]] += 1 self._check_assign_info(conds, "cond", wig_type) self._check_assign_info(reps, "rep", wig_type) self._check_assign_info(strands, "strand", wig_type) def _check_libs(self, tex_notex_libs, frag_libs): '''Check the libs of frag and tex''' if (tex_notex_libs is None) and (frag_libs is None): print("Error: No libraries assigned!!") sys.exit() elif (tex_notex_libs is not None) and (frag_libs is not None): libs = tex_notex_libs + frag_libs self._check_tex_frag(tex_notex_libs, "tex") self._check_tex_frag(frag_libs, "frag") elif (tex_notex_libs is not None): libs = tex_notex_libs self._check_tex_frag(tex_notex_libs, "tex") elif (frag_libs is not None): libs = frag_libs self._check_tex_frag(frag_libs, "frag") return libs def _check_condition_num(self, out_prefix, libs): high = 0 for lib in libs: datas = lib.split(":") if int(datas[2]) > high: high = int(datas[2]) if len(out_prefix) != high: print("Error: The number of --condition_names should be " "the same to the condition of input libraries!") sys.exit() def _combine_files(self, ref_files, out_folder, filename): if ref_files is not None: tar_file = os.path.join(out_folder, filename) if os.path.exists(tar_file): os.remove(tar_file) for files in ref_files: for file_ in glob(files): self.helper.merge_file(file_, tar_file) return tar_file else: return None def _merge_by_strain(self, wig_path, libs): strains = [] merge_folder = os.path.join(wig_path, "merge_tmp") self.helper.check_make_folder(merge_folder) for wig in os.listdir(wig_path): if "_STRAIN_" in wig: strain = wig.split("_STRAIN_")[-1].replace(".wig", "") if strain not in strains: strains.append(strain) for strain in strains: change_f = False change_r = False for wig in os.listdir(wig_path): filename = wig.split("_STRAIN_") if ("_STRAIN_" in wig) and ( filename[-1].replace( ".wig", "") == strain): for lib in libs: if (filename[0] in lib) and (lib[-1] == "+"): self.helper.merge_file( os.path.join(wig_path, wig), os.path.join(merge_folder, "tmp_forward.wig")) change_f = True elif (filename[0] in lib) and (lib[-1] == "-"): self.helper.merge_file( os.path.join(wig_path, wig), os.path.join(merge_folder, "tmp_reverse.wig")) change_r = True if change_f and change_r: change_f = False change_r = False shutil.move(os.path.join(merge_folder, "tmp_forward.wig"), os.path.join(merge_folder, strain + "_forward.wig")) shutil.move(os.path.join(merge_folder, "tmp_reverse.wig"), os.path.join(merge_folder, strain + "_reverse.wig")) else: print("Error: comparing input files of {0} failed. " "Please check the seq IDs of all gff and fasta " "files, they should be the same.\nPlease also " "check the wiggle files which should contain " "forward and reverse files.".format(strain)) sys.exit() self.helper.remove_all_content(wig_path, ".wig", "file") self.helper.move_all_content(merge_folder, wig_path, None) shutil.rmtree(merge_folder) def _parser_combine_wigs(self, subcommand): '''Check the wig folders of frag and tex, then merge them''' self.tex_path = None self.frag_path = None if subcommand == "transcript": if self.gffs is not None: self.multiparser.parser_gff(self.gffs, None) gff_path = self.gffs elif subcommand == "terminator": self.multiparser.parser_gff(self.gffs, None) gff_path = os.path.join(self.gffs, "tmp") tmp_file = os.path.join(self.out_folder, "tmp.txt") with open(tmp_file, 'w') as fh: with redirect_stdout(fh): self.multiparser.parser_gff(gff_path, None) os.remove(tmp_file) else: self.multiparser.parser_gff(self.gffs, None) gff_path = self.gffs if self.tex_wigs is not None: self.tex_path = os.path.join(self.tex_wigs, "tmp") self.multiparser.parser_wig(self.tex_wigs) if self.gffs is not None: self.multiparser.combine_wig(gff_path, self.tex_path, None, self.libs) else: self._merge_by_strain(self.tex_path, self.libs) self.merge_wigs = self.tex_wigs self.wig_path = self.tex_path if self.frag_wigs is not None: self.frag_path = os.path.join(self.frag_wigs, "tmp") self.multiparser.parser_wig(self.frag_wigs) if self.gffs is not None: self.multiparser.combine_wig(gff_path, self.frag_path, None, self.libs) else: self._merge_by_strain(self.frag_path, self.libs) self.merge_wigs = self.frag_wigs self.wig_path = self.frag_path if (self.tex_path is not None) and ( self.frag_path is not None): self = self._merge_wig() if (self.tex_path is None) and ( self.frag_path is None): print("Error: There is no proper wig files assigned!!") sys.exit() return self def _merge_wig(self): '''Copy the wig files to one folder''' self.merge_wigs = os.path.join(self.out_folder, "merge_wigs") if (self.tex_wigs is not None) and ( self.frag_wigs is not None): self.helper.check_make_folder(self.merge_wigs) self.wig_path = os.path.join(self.merge_wigs, "tmp") self.helper.check_make_folder(self.wig_path) for wig in os.listdir(self.tex_wigs): if os.path.isfile(os.path.join(self.tex_wigs, wig)): shutil.copy(os.path.join(self.tex_wigs, wig), self.merge_wigs) for wig in os.listdir(self.frag_wigs): if os.path.isfile(os.path.join(self.frag_wigs, wig)): shutil.copy(os.path.join(self.frag_wigs, wig), self.merge_wigs) for wig in os.listdir(self.tex_path): if os.path.isfile(os.path.join(self.tex_path, wig)): shutil.copy(os.path.join(self.tex_path, wig), self.wig_path) for wig in os.listdir(self.frag_path): if os.path.isfile(os.path.join(self.frag_path, wig)): self.helper.merge_file(os.path.join(self.frag_path, wig), os.path.join(self.wig_path, wig)) elif (self.tex_wigs is not None): self.merge_wigs = self.tex_wigs elif (self.frag_wigs is not None): self.merge_wigs = self.frag_wigs return self def _deal_multi_inputs(self, inputs, file_type, num, command): '''It is for split the input if it is assigned to multiple factors''' if inputs is not None: datas = inputs.split(",") if num is not None: if (len(datas) != num): print("Error: the amount of {0} is not correct!!".format( command)) new_inputs = [] for data in datas: if file_type == "float": new_inputs.append(float(data.strip())) elif file_type == "int": new_inputs.append(int(data.strip())) else: new_inputs.append(data) return new_inputs else: return inputs def _gen_copy_new_folder(self, file_types, out_folder, folder_name, ref_files, flag): if ref_files is not None: new_ref_folder = os.path.join(out_folder, folder_name) self.helper.check_make_folder(new_ref_folder) for files in ref_files: detect = False for file_ in glob(files): for type_ in file_types: if file_.endswith(type_): detect = True if not detect: print("Error: {0} doesn't exist or " "the {0} is/are not ended with {1}!".format( files, " ".join(file_types))) sys.exit() shutil.copy(file_, new_ref_folder) if (file_.endswith(".gff3")): new_name = os.path.basename(file_)[:-1] shutil.move(os.path.join(new_ref_folder, os.path.basename(file_)), os.path.join(new_ref_folder, new_name)) return new_ref_folder else: return None def _check_tss_parameter_setting( self, auto_load, genome_order, height, height_reduction, factor, factor_reduction, base_height, enrichment_factor, processing_factor): if auto_load: if not os.path.exists(auto_load): print("Error: {0} is not found. Please assign proper folder to " "--auto_load_optimized_parameters!".format(auto_load)) sys.exit() else: para_lists = [height, height_reduction, factor, factor_reduction, base_height, enrichment_factor, processing_factor] para_names = ["--height", "--height_reduction", "--factor", "--factor_reduction", "--base_height", "--enrichment_factor", "--processing_factor"] if (genome_order is not None): for para_list, para_name in zip(para_lists, para_names): if len(genome_order) != len(para_list): print("Error: --genome_order and {0} have different number of " "of genomes!".format(para_name)) sys.exit() else: for para_list, para_name in zip(para_lists, para_names): if len(para_list) != 1: print("Error: --genome_order is default (using one " "parameter set to all genomes) but {0} has more " "than 1 input values!".format(para_name)) sys.exit() def container_ratt(self, ratt_path, element, transfer_type, ref_embl, ref_gbk, target_fasta, ref_fasta, ratt_folder, tar_annotation_folder, compare_pair): self.ratt_path = ratt_path self.element = element self.transfer_type = transfer_type self.ref_embls = self._gen_copy_new_folder( [".embl"], ratt_folder, "temp_embl", ref_embl, ["--ref_embl_files"]) self.ref_gbk = self._gen_copy_new_folder( [".gbk", ".gbff", ".gb"], ratt_folder, "temp_gbk", ref_gbk, ["--ref_gbk_files"]) file_types = [".fa", ".fna", ".fasta"] self.tar_fastas = self._gen_copy_new_folder( file_types, ratt_folder, "temp_tar", target_fasta, ["--ref_fasta_files"]) self.ref_fastas = self._gen_copy_new_folder( file_types, ratt_folder, "temp_ref", ref_fasta, ["--target_fasta_files"]) self.output_path = ratt_folder self.gff_outfolder = tar_annotation_folder self.pairs = compare_pair return self def container_tsspredator(self, TSSpredator_path, compute_program, fasta_files, annotation_files, lib, output_prefix, output_id, auto_load, genome_order, height, height_reduction, factor, factor_reduction, base_height, enrichment_factor, processing_factor, replicate_match, out_folder, validate_gene, merge_manual, strain_lengths, compare_transcript_assembly, fuzzy, utr_length, cluster, re_check_orphan, overlap_feature, overlap_gff, remove_low_expression): if strain_lengths is not None: nt_lengths = self._check_strain_length( strain_lengths, "--genome_lengths") self.strain_lengths = nt_lengths else: self.strain_lengths = strain_lengths if merge_manual is not None: self.strain_lengths = {"all": "all"} self.tsspredator_path = TSSpredator_path self.program = compute_program self._check_tss_parameter_setting( auto_load, genome_order, height, height_reduction, factor, factor_reduction, base_height, enrichment_factor, processing_factor) self.fastas = self._gen_copy_new_folder( [".fa", ".fna", ".fasta"], out_folder, "tmp_fasta", fasta_files, ["--fasta_files"]) self.gffs = self._gen_copy_new_folder( [".gff", ".gff3"], out_folder, "tmp_anno", annotation_files, ["--annotation_files"]) self.wig_folder = os.path.join(out_folder, "tmp_wig") self.helper.check_make_folder(self.wig_folder) tracks = {"file": [], "track": {"+": [], "-": []}} self.libs = self._create_working_wigs(out_folder, lib, self.wig_folder, tracks) self.libs = self._check_libs(self.libs, None) self._check_condition_num(output_prefix, self.libs) self.output_prefixs = output_prefix self.output_id = output_id self.auto_load = auto_load self.genome_order = genome_order self.height = height self.height_reduction = height_reduction self.factor = factor self.factor_reduction = factor_reduction self.base_height = base_height self.enrichment_factor = enrichment_factor self.processing_factor = processing_factor self.repmatch = replicate_match self.out_folder = out_folder self.validate = validate_gene self.manual = self._gen_copy_new_folder( [".gff", ".gff3"], out_folder, "tmp_manual", merge_manual, ["--manual_files_lengths"]) self.ta_files = self._gen_copy_new_folder( [".gff", ".gff3"], out_folder, "tmp_ta", compare_transcript_assembly, ["--compare_transcript_assembly"]) self.fuzzy = fuzzy self.utr_length = utr_length self.cluster = cluster self.check_orphan = re_check_orphan self.overlap_feature = overlap_feature self.overlap_gffs = self._gen_copy_new_folder( [".gff", ".gff3"], out_folder, "tmp_reference", overlap_gff, ["--compare_overlap_gff"]) self.remove_low_expression = remove_low_expression return self def container_optimize(self, TSSpredator_path, fasta_file, annotation_file, manual, out_folder, max_height, max_height_reduction, max_factor, max_factor_reduction, max_base_height, max_enrichment_factor, max_processing_factor, utr_length, lib, output_prefix, output_id, cluster, strain_lengths, core, program, replicate_match, steps): self.tsspredator_path = TSSpredator_path if strain_lengths is not None: nt_lengths = self._check_strain_length( strain_lengths, "--genome_lengths") self.strain_lengths = nt_lengths else: self.strain_lengths = strain_lengths if manual is not None: self.strain_lengths = {"all": "all"} self.fastas = self._gen_copy_new_folder( [".fa", ".fna", ".fasta"], out_folder, "tmp_fasta", fasta_file, ["--fasta_files"]) self.manuals = self._gen_copy_new_folder( [".gff", ".gff3"], out_folder, "tmp_manual", manual, ["--manual_files"]) self.gffs = self._gen_copy_new_folder( [".gff", ".gff3"], out_folder, "tmp_anno", annotation_file, ["--annotation_files"]) self.wigs = os.path.join(out_folder, "tmp_wig") self.helper.check_make_folder(self.wigs) tracks = {"file": [], "track": {"+": [], "-": []}} self.libs = self._create_working_wigs(out_folder, lib, self.wigs, tracks) self.libs = self._check_libs(self.libs, None) self.output_folder = out_folder self.height = max_height self.height_reduction = max_height_reduction self.factor = max_factor self.factor_reduction = max_factor_reduction self.base_height = max_base_height self.enrichment = max_enrichment_factor self.processing = max_processing_factor self.utr = utr_length self._check_condition_num(output_prefix, self.libs) self.replicate_name = output_prefix self.output_id = output_id self.cluster = cluster self.cores = core self.program = program self.replicate = replicate_match self.steps = steps return self def _create_wig_folder(self, folder, libs): if libs is not None: self.helper.check_make_folder(folder) return folder else: return None def container_terminator( self, TransTermHP_path, expterm_path, RNAfold_path, out_folder, fasta_files, annotation_files, transcript_files, srna, decrease, highest_coverage, fuzzy_detect_coverage, fuzzy_within_transcript, fuzzy_downstream_transcript, fuzzy_within_gene, fuzzy_downstream_gene, transtermhp_folder, tex_notex_libs, frag_libs, tex_notex, replicates_tex, replicates_frag, min_loop_length, max_loop_length, min_stem_length, max_stem_length, min_AT_tail, miss_rate, mut_u, keep_multi, window, shift): self.TransTermHP_path = TransTermHP_path self.expterm_path = expterm_path self.RNAfold_path = RNAfold_path self.out_folder = out_folder self.fastas = self._gen_copy_new_folder( [".fa", ".fna", ".fasta"], out_folder, "tmp_fasta", fasta_files, ["--fasta_files"]) self.gffs = self._gen_copy_new_folder( [".gff", ".gff3"], out_folder, "tmp_anno", annotation_files, ["--annotation_files"]) self.trans = self._gen_copy_new_folder( [".gff", ".gff3"], out_folder, "tmp_ta", transcript_files, ["--transcript_files"]) self.srnas = self._gen_copy_new_folder( [".gff", ".gff3"], out_folder, "tmp_srna", srna, ["srna_files"]) self.helper.check_make_folder(os.path.join(out_folder, "tmp_wig")) self.tex_wigs = self._create_wig_folder( os.path.join(out_folder, "tmp_wig", "tex_notex"), tex_notex_libs) self.frag_wigs = self._create_wig_folder( os.path.join(out_folder, "tmp_wig", "frag"), frag_libs) self.decrease = decrease self.cutoff_coverage = highest_coverage self.fuzzy = fuzzy_detect_coverage self.fuzzy_up_ta = fuzzy_within_transcript self.fuzzy_down_ta = fuzzy_downstream_transcript self.fuzzy_up_gene = fuzzy_within_gene self.fuzzy_down_gene = fuzzy_downstream_gene self.hp_folder = transtermhp_folder tracks = {"file": [], "track": {"+": [], "-": []}} self.tlibs = self._create_working_wigs( out_folder, tex_notex_libs, self.tex_wigs, tracks) self.flibs = self._create_working_wigs( out_folder, frag_libs, self.frag_wigs, tracks) self.libs = self._check_libs(self.tlibs, self.flibs) self.tex_notex = tex_notex self.replicates_tex = replicates_tex self.replicates_frag = replicates_frag self.replicates = self._check_replicates( replicates_tex, replicates_frag, tex_notex_libs, frag_libs) self.min_loop = min_loop_length self.max_loop = max_loop_length self.min_stem = min_stem_length self.max_stem = max_stem_length self.at_tail = min_AT_tail self.miss_rate = miss_rate self.mut_u = mut_u self.keep_multi = keep_multi self.window = window self.shift = shift self = self._parser_combine_wigs("terminator") return self def container_transcript(self, tex_notex, modifys, length, annotation_files, height, width, tolerance, tolerance_coverage, replicates_tex, replicates_frag, out_folder, tss_files, TSS_fuzzy, tex_treated_libs, fragmented_libs, compare_feature_genome, terminator_files, fuzzy_term, max_dist): if (compare_feature_genome is not None) and (annotation_files is None): print("Error: --annotation_files needs to be assigned if " "--compare_feature_genome is assigned.") sys.exit() for modify in modifys: if (modify != "merge_overlap") and ( modify != "extend_5end") and ( modify != "extend_3end") and ( modify != "within_extend_ends") and ( modify != "none"): print("Error: --modify_transcript need to be assign as " "\"merge_overlap\", \"extend_5end\", \"extend_3end\", " "\"within_extend_ends\" or \"none\". " "The assignment is wrong!") sys.exit() self.modify = modifys self.helper.check_make_folder(os.path.join(out_folder, "tmp_wig")) self.tex_wigs = self._create_wig_folder( os.path.join(out_folder, "tmp_wig", "tex_notex"), tex_treated_libs) self.frag_wigs = self._create_wig_folder( os.path.join(out_folder, "tmp_wig", "frag"), fragmented_libs) self.tex = tex_notex self.length = length self.gffs = self._gen_copy_new_folder( [".gff", ".gff3"], out_folder, "tmp_anno", annotation_files, ["--annotation_files"]) self.height = height self.width = width self.tolerance = tolerance self.low_cutoff = tolerance_coverage self.replicates_tex = replicates_tex self.replicates_frag = replicates_frag self.replicates = self._check_replicates( replicates_tex, replicates_frag, tex_treated_libs, fragmented_libs) self.out_folder = out_folder self.compare_tss = self._gen_copy_new_folder( [".gff", ".gff3"], out_folder, "tmp_tss", tss_files, ["--tss_files"]) self.fuzzy = TSS_fuzzy tracks = {"file": [], "track": {"+": [], "-": []}} self.tlibs = self._create_working_wigs( out_folder, tex_treated_libs, self.tex_wigs, tracks) self.flibs = self._create_working_wigs( out_folder, fragmented_libs, self.frag_wigs, tracks) self.libs = self._check_libs(self.tlibs, self.flibs) self.c_feature = compare_feature_genome self.terms = self._gen_copy_new_folder( [".gff", ".gff3"], out_folder, "tmp_term", terminator_files, ["--terminator_files"]) self.fuzzy_term = fuzzy_term self.max_dist = max_dist self = self._parser_combine_wigs("transcript") return self def container_utr(self, tss_files, annotation_files, transcript_assembly_files, terminator_files, terminator_fuzzy, utr_folder, tss_source, base_5utr, length, base_3utr): self.tsss = self._gen_copy_new_folder( [".gff", ".gff3"], utr_folder, "tmp_tss", tss_files, ["--tss_files"]) self.gffs = self._gen_copy_new_folder( [".gff", ".gff3"], utr_folder, "tmp_anno", annotation_files, ["--annotation_files"]) self.trans = self._gen_copy_new_folder( [".gff", ".gff3"], utr_folder, "tmp_ta", transcript_assembly_files, ["--transcript_files"]) self.terms = self._gen_copy_new_folder( [".gff", ".gff3"], utr_folder, "tmp_term", terminator_files, ["--terminator_files"]) self.fuzzy = terminator_fuzzy self.out_folder = utr_folder self.source = tss_source self.base_5utr = base_5utr self.base_3utr = base_3utr self.length = length return self def container_srna(self, rnafold, relplot_pl, mountain_pl, blastn, blastx, blastdb, srna_folder, UTR_derived_sRNA, annotation_files, TSS_files, transcript_files, TSS_intergenic_fuzzy, TSS_5UTR_fuzzy, TSS_3UTR_fuzzy, TSS_interCDS_fuzzy, import_info, processing_site_files, fasta_files, mountain_plot, nr_format, srna_format, sRNA_database_path, nr_database_path, cutoff_energy, para_blast, blast_score_s, blast_score_n, run_intergenic_TEX_coverage, run_intergenic_noTEX_coverage, run_intergenic_fragmented_coverage, break_tran, run_antisense_TEX_coverage, run_antisense_noTEX_coverage, run_antisense_fragmented_coverage, run_utr_TEX_coverage, run_utr_noTEX_coverage, run_utr_fragmented_coverage, max_length, min_length, tex_notex_libs, frag_libs, replicates_tex, replicates_frag, tex_notex, blast_e_nr, blast_e_srna, detect_sRNA_in_CDS, decrease_intergenic, decrease_utr, fuzzy_intergenic, fuzzy_utr, cutoff_nr_hit, sORF, overlap_percent_CDS, terminator_files, terminator_fuzzy_in_sRNA, terminator_fuzzy_out_sRNA, ignore_hypothetical_protein, TSS_source, min_utr_coverage, promoter_tables, ranking_promoter, promoter_name, compute_sec_str, len_u, num_u, mut_u, ex_srna): self.rnafold = rnafold self.ex_srna = ex_srna self.compute_sec_str = compute_sec_str self.para_blast = para_blast self.relplot_pl = relplot_pl self.mountain_pl = mountain_pl self.blastx = blastx self.blastn = blastn self.blastdb = blastdb self.out_folder = srna_folder self.utr_srna = UTR_derived_sRNA self.len_u = len_u self.num_u = num_u self.mut_u = mut_u self.blast_score_s = blast_score_s if (promoter_tables is not None) and (promoter_name is None): print("Error: No promoter names are assigned!\n") sys.exit() if blast_score_n is None: self.blast_score_n = 0 else: self.blast_score_n = blast_score_n self.gffs = self._gen_copy_new_folder( [".gff", ".gff3"], srna_folder, "temp_anno", annotation_files, ["--annotation_files"]) self.tss_folder = self._gen_copy_new_folder( [".gff", ".gff3"], srna_folder, "temp_tss", TSS_files, ["--tss_files"]) self.trans = self._gen_copy_new_folder( [".gff", ".gff3"], srna_folder, "temp_ta", transcript_files, ["--transcript_files"]) self.fuzzy_inter_tss = TSS_intergenic_fuzzy self.fuzzy_5utr_tss = TSS_5UTR_fuzzy self.fuzzy_3utr_tss = TSS_3UTR_fuzzy self.fuzzy_intercds_tss = TSS_interCDS_fuzzy self.fuzzy_tsss = {"5utr": self.fuzzy_5utr_tss, "3utr": self.fuzzy_3utr_tss, "interCDS": self.fuzzy_intercds_tss, "inter": self.fuzzy_inter_tss} self.import_info = import_info self.helper.check_make_folder(os.path.join(srna_folder, "temp_wig")) self.tex_wigs = self._create_wig_folder( os.path.join(srna_folder, "temp_wig", "tex_notex"), tex_notex_libs) self.frag_wigs = self._create_wig_folder( os.path.join(srna_folder, "temp_wig", "frag"), frag_libs) self.pro_folder = self._gen_copy_new_folder( [".gff", ".gff3"], srna_folder, "temp_pro", processing_site_files, ["--processing_site_files"]) self.fastas = self._gen_copy_new_folder( [".fa", ".fna", ".fasta"], srna_folder, "temp_fasta", fasta_files, ["--fasta_files"]) self.mountain = mountain_plot self.nr_format = nr_format self.srna_format = srna_format self.srna_database = sRNA_database_path self.nr_database = nr_database_path self.energy = cutoff_energy self.coverage_tex = self._deal_multi_inputs( run_intergenic_TEX_coverage, "float", 5, "--run_intergenic_TEX_coverage") self.coverage_notex = self._deal_multi_inputs( run_intergenic_noTEX_coverage, "float", 5, "--run_intergenic_noTEX_coverage") self.coverage_frag = self._deal_multi_inputs( run_intergenic_fragmented_coverage, "float", 5, "--run_intergenic_fragmented_coverage") self.anti_cover_tex = self._deal_multi_inputs( run_antisense_TEX_coverage, "float", 5, "--run_antisense_TEX_coverage") self.anti_cover_notex = self._deal_multi_inputs( run_antisense_noTEX_coverage, "float", 5, "--run_antisense_noTEX_coverage") self.anti_cover_frag = self._deal_multi_inputs( run_antisense_fragmented_coverage, "float", 5, "--run_antisense_fragmented_coverage") self.break_tran = self._deal_multi_inputs( break_tran, "float", 3, "--run_break_transcript") self.utr_tex_cover = self._deal_multi_inputs( run_utr_TEX_coverage, "str", 3, "--run_utr_TEX_coverage") self.utr_notex_cover = self._deal_multi_inputs( run_utr_noTEX_coverage, "str", 3, "--run_utr_TEX_coverage") self.utr_frag_cover = self._deal_multi_inputs( run_utr_fragmented_coverage, "str", 3, "--run_utr_fragmented_coverage") self.max_len = max_length self.min_len = min_length tracks = {"file": [], "track": {"+": [], "-": []}} self.tlibs = self._create_working_wigs( srna_folder, tex_notex_libs, self.tex_wigs, tracks) self.flibs = self._create_working_wigs( srna_folder, frag_libs, self.frag_wigs, tracks) self.libs = self._check_libs(self.tlibs, self.flibs) self.replicates_tex = replicates_tex self.replicates_frag = replicates_frag self.replicates = self._check_replicates( replicates_tex, replicates_frag, tex_notex_libs, frag_libs) self.tex_notex = tex_notex self.e_nr = blast_e_nr self.e_srna = blast_e_srna self.in_cds = detect_sRNA_in_CDS self.decrease_inter = decrease_intergenic self.decrease_utr = decrease_utr self.fuzzy_inter = fuzzy_intergenic self.fuzzy_utr = fuzzy_utr self.nr_hits_num = cutoff_nr_hit self.sorf_file = self._gen_copy_new_folder( [".gff", ".gff3"], srna_folder, "temp_sorf", sORF, ["--sorf_files"]) self.cutoff_overlap = overlap_percent_CDS self.terms = self._gen_copy_new_folder( [".gff", ".gff3"], srna_folder, "temp_term", terminator_files, ["--terminator_files"]) self.fuzzy_b = terminator_fuzzy_in_sRNA self.fuzzy_a = terminator_fuzzy_out_sRNA self.hypo = ignore_hypothetical_protein self.source = TSS_source self.min_utr = min_utr_coverage self.promoter_table = self._combine_files( promoter_tables, srna_folder, "tmp_promoter_table") if ranking_promoter < 1: print("Error: --ranking_time_promoter must larger than 1...") sys.exit() self.rank_promoter = ranking_promoter self.promoter_name = promoter_name self = self._parser_combine_wigs("srna") if (not TSS_source) and (tex_notex_libs is not None): self.input_libs = self.tlibs return self def container_intersrna(self, file_type, files, args_srna, prefix, gff_file, tran_file, tss_file, pro_file, fuzzy): '''Especially for intergenic and antisense sRNA''' args_srna.file_type = file_type args_srna.gff_file = gff_file args_srna.tran_file = tran_file args_srna.tss_file = tss_file args_srna.pro_file = pro_file args_srna.fuzzy = fuzzy args_srna.prefix = prefix if file_type == "frag": args_srna.wig_f_file = os.path.join( args_srna.frag_path, "_".join([prefix, "forward.wig"])) args_srna.wig_r_file = os.path.join( args_srna.frag_path, "_".join([prefix, "reverse.wig"])) args_srna.wig_folder = args_srna.frag_wigs args_srna.input_libs = args_srna.flibs args_srna.output_file = files["frag_gff"] args_srna.output_table = files["frag_csv"] args_srna.cutoffs = args_srna.coverage_frag args_srna.source = args_srna.source args_srna.cut_notex = args_srna.coverage_frag args_srna.anti_notex_cutoff = None else: args_srna.wig_f_file = os.path.join( args_srna.tex_path, "_".join([prefix, "forward.wig"])) args_srna.wig_r_file = os.path.join( args_srna.tex_path, "_".join([prefix, "reverse.wig"])) args_srna.wig_folder = args_srna.tex_wigs args_srna.input_libs = args_srna.tlibs args_srna.output_file = files["tex_gff"] args_srna.output_table = files["tex_csv"] args_srna.cutoffs = args_srna.coverage_tex args_srna.source = args_srna.source args_srna.cut_notex = args_srna.coverage_notex args_srna.anti_notex_cutoff = args_srna.anti_cover_notex return args_srna def container_utrsrna(self, gff, tran, tss, files, pro, fasta, file_type, prefix, args_srna): '''Especially for UTR-derived sRNA''' args_srna.file_type = file_type args_srna.gff_file = gff args_srna.ta_file = tran args_srna.tss_file = tss args_srna.pro_file = pro args_srna.prefix = prefix args_srna.seq_file = fasta if file_type == "frag": args_srna.wig_f_file = os.path.join( args_srna.frag_path, "_".join([prefix, "forward.wig"])) args_srna.wig_r_file = os.path.join( args_srna.frag_path, "_".join([prefix, "reverse.wig"])) args_srna.wig_folder = args_srna.frag_wigs args_srna.input_libs = args_srna.flibs args_srna.output_file = files["frag_gff"] args_srna.output_table = files["frag_csv"] args_srna.utr_coverages = args_srna.utr_frag_cover args_srna.notex = None else: args_srna.wig_f_file = os.path.join( args_srna.tex_path, "_".join([prefix, "forward.wig"])) args_srna.wig_r_file = os.path.join( args_srna.tex_path, "_".join([prefix, "reverse.wig"])) args_srna.wig_folder = args_srna.tex_wigs args_srna.input_libs = args_srna.tlibs args_srna.output_file = files["tex_gff"] args_srna.output_table = files["tex_csv"] args_srna.utr_coverages = args_srna.utr_tex_cover args_srna.notex = args_srna.utr_notex_cover args_srna.coverages = {"5utr": args_srna.utr_coverages[0], "3utr": args_srna.utr_coverages[1], "interCDS": args_srna.utr_coverages[2]} if args_srna.notex is not None: args_srna.cover_notex = {"5utr": args_srna.notex[0], "3utr": args_srna.notex[1], "interCDS": args_srna.notex[2]} else: args_srna.cover_notex = None return args_srna def extend_inter_container(self, args_srna, tsss, pros, nums, output, out_table, texs, detects, cutoff_coverage, notex): '''Especially for intergenic and antisense sRNA''' args_srna.tsss = tsss args_srna.pros = pros args_srna.nums = nums args_srna.output = output args_srna.out_table = out_table args_srna.texs = texs args_srna.detects = detects args_srna.cutoff_coverage = cutoff_coverage args_srna.notex = notex return args_srna def extend_utr_container(self, args_srna, cdss, tsss, pros, out, out_t, texs): '''Especially for UTR-derived sRNA''' args_srna.cdss = cdss args_srna.tsss = tsss args_srna.pros = pros args_srna.out = out args_srna.out_t = out_t args_srna.texs = texs args_srna.utrs = [] args_srna.srnas = [] return args_srna def container_sorf(self, sorf_folder, UTR_derived_sORF, transcript_files, annotation_files, TSS_files, utr_length, min_length, max_length, cutoff_intergenic_coverage, cutoff_antisense_coverage, cutoff_5utr_coverage, cutoff_3utr_coverage, cutoff_interCDS_coverage, fasta_files, tex_notex_libs, frag_libs, tex_notex, replicates_tex, replicates_frag, sRNA_files, start_codon, stop_codon, cutoff_background, rbs_seq, fuzzy_rbs, rbs_not_after_TSS, print_all_combination, best_no_sRNA, best_no_TSS, ignore_hypothetical_protein, min_rbs_distance, max_rbs_distance, extend_3, extend_5, multi_stop): self.multi_stop = multi_stop self.out_folder = sorf_folder self.rbs_seq = rbs_seq self.extend_3 = extend_3 self.extend_5 = extend_5 self.utr_detect = UTR_derived_sORF self.trans = self._gen_copy_new_folder( [".gff", ".gff3"], sorf_folder, "temp_ta", transcript_files, ["--transcript_files"]) self.gffs = self._gen_copy_new_folder( [".gff", ".gff3"], sorf_folder, "temp_anno", annotation_files, ["--annotation_files"]) self.tsss = self._gen_copy_new_folder( [".gff", ".gff3"], sorf_folder, "temp_tss", TSS_files, ["--tss_files"]) self.utr_length = utr_length self.min_len = min_length self.max_len = max_length self.helper.check_make_folder(os.path.join(sorf_folder, "temp_wig")) self.tex_wigs = self._create_wig_folder( os.path.join(sorf_folder, "temp_wig", "tex_notex"), tex_notex_libs) self.frag_wigs = self._create_wig_folder( os.path.join(sorf_folder, "temp_wig", "frag"), frag_libs) self.cutoff_inter = cutoff_intergenic_coverage self.cutoff_anti = cutoff_antisense_coverage self.cutoff_5utr = cutoff_5utr_coverage self.cutoff_3utr = cutoff_3utr_coverage self.cutoff_intercds = cutoff_interCDS_coverage self.fastas = self._gen_copy_new_folder( [".fa", ".fna", ".fasta"], sorf_folder, "temp_fasta", fasta_files, ["--fasta_files"]) tracks = {"file": [], "track": {"+": [], "-": []}} self.tlibs = self._create_working_wigs( sorf_folder, tex_notex_libs, self.tex_wigs, tracks) self.flibs = self._create_working_wigs( sorf_folder, frag_libs, self.frag_wigs, tracks) self.libs = self._check_libs(self.tlibs, self.flibs) self.tex_notex = tex_notex self.replicates_tex = replicates_tex self.replicates_frag = replicates_frag self.replicates = self._check_replicates( replicates_tex, replicates_frag, tex_notex_libs, frag_libs) self.srnas = self._gen_copy_new_folder( [".gff", ".gff3"], sorf_folder, "temp_srna", sRNA_files, ["--srna_files"]) self.start_codon = start_codon self.stop_codon = stop_codon self.background = cutoff_background self.fuzzy_rbs = fuzzy_rbs self.noafter_tss = rbs_not_after_TSS self.print_all = print_all_combination self.no_srna = best_no_sRNA self.no_tss = best_no_TSS self.hypo = ignore_hypothetical_protein self.min_rbs = min_rbs_distance self.max_rbs = max_rbs_distance self = self._parser_combine_wigs("sorf") return self def container_srna_target( self, rnaplfold_path, rnaplex_path, rnaup_path, intarna_path, annotation_files, fasta_files, sRNA_files, query_sRNA, program, interaction_length, window_size_target, span_target, window_size_srna, span_srna, unstructured_region_RNAplex_target, unstructured_region_RNAplex_srna, unstructured_region_RNAup, energy_threshold, duplex_distance, top, starget_output_folder, process_rnaplex, process_rnaup, process_intarna, continue_rnaup, slide_win_srna_intarna, max_loop_srna, slide_win_target_intarna, max_loop_target, mode_intarna, potential_target_start, potential_target_end, target_feature): self.rnaplfold_path = rnaplfold_path self.rnaplex_path = rnaplex_path self.rnaup_path = rnaup_path self.intarna_path = intarna_path self.gffs = self._gen_copy_new_folder( [".gff", ".gff3"], starget_output_folder, "tmp_anno", annotation_files, ["--annotation_files"]) self.fastas = self._gen_copy_new_folder( [".fa", ".fna", ".fasta"], starget_output_folder, "tmp_fasta", fasta_files, ["--fasta_files"]) self.srnas = self._gen_copy_new_folder( [".gff", ".gff3"], starget_output_folder, "tmp_srna", sRNA_files, ["--srna_files"]) if "all" not in query_sRNA: for q in query_sRNA: data = q.split(":") if (len(data) == 4) and (data[1].isdigit()) and ( data[2].isdigit()): pass else: print("Error: the --query_srna does not be assigned properly!\n") sys.exit() self.query = query_sRNA self.program = program self.inter_length = interaction_length self.win_size_t = window_size_target self.span_t = span_target self.win_size_s = window_size_srna self.span_s = span_srna self.unstr_region_rnaplex_t = unstructured_region_RNAplex_target self.unstr_region_rnaplex_s = unstructured_region_RNAplex_srna self.unstr_region_rnaup = unstructured_region_RNAup self.energy = energy_threshold self.duplex_dist = duplex_distance self.top = top self.out_folder = starget_output_folder self.core_plex = process_rnaplex self.core_up = process_rnaup self.core_inta = process_intarna self.slide_win_srna = slide_win_srna_intarna self.slide_win_target = slide_win_target_intarna self.max_loop_srna = max_loop_srna self.max_loop_target = max_loop_target self.mode_intarna = mode_intarna self.continue_rnaup = continue_rnaup self.tar_start = potential_target_start self.tar_end = potential_target_end self.features = target_feature return self def container_goterm(self, annotation_files, goterm_output_folder, UniProt_id, go_obo, goslim_obo, transcript_files): self.gffs = self._gen_copy_new_folder( [".gff", ".gff3"], goterm_output_folder, "tmp_anno", annotation_files, ["--annotation_files"]) self.out_folder = goterm_output_folder self.uniprot = UniProt_id self.go = go_obo self.goslim = goslim_obo self.trans = self._gen_copy_new_folder( [".gff", ".gff3"], goterm_output_folder, "tmp_ta", transcript_files, ["--transcript_files"]) return self def container_sublocal(self, Psortb_path, annotation_files, fasta_files, bacteria_type, difference_multi, sublocal_output_folder, transcript_files): self.psortb_path = Psortb_path self.gffs = self._gen_copy_new_folder( [".gff", ".gff3"], sublocal_output_folder, "tmp_anno", annotation_files, ["--annotation_files"]) self.fastas = self._gen_copy_new_folder( [".fa", ".fna", ".fasta"], sublocal_output_folder, "tmp_fa", fasta_files, ["--fasta_files"]) self.gram = bacteria_type self.fuzzy = difference_multi self.out_folder = sublocal_output_folder self.trans = self._gen_copy_new_folder( [".gff", ".gff3"], sublocal_output_folder, "tmp_ta", transcript_files, ["--transcript_files"]) return self def container_ppi(self, annotation_files, proteinID_strains, without_strain_pubmed, species_STRING, score, ppi_output_folder, node_size, query): self.ptts = self._gen_copy_new_folder( [".gff", ".gff3"], ppi_output_folder, "temp_anno", annotation_files, ["--annotation_files"]) self.strains = proteinID_strains self.no_specific = without_strain_pubmed self.species = species_STRING self.score = score self.out_folder = ppi_output_folder self.size = node_size self.querys = query return self def container_promoter(self, MEME_path, GLAM2_path, out_folder, tex_libs, TSS_files, fasta_files, num_motif, nt_before_TSS, motif_width, TSS_source, annotation_files, end_run, combine_all, e_value, para, program, use_tss_type): self.meme_path = MEME_path self.glam2_path = GLAM2_path self.program = program self.end_run = end_run if (program.lower() != "both") and ( program.lower() != "meme") and ( program.lower() != "glam2"): print("Error: Please assign meme or glam2 or both to --program.") sys.exit() self.output_folder = out_folder self.tsss = self._gen_copy_new_folder( [".gff", ".gff3"], out_folder, "tmp_tss", TSS_files, ["--tss_files"]) self.fastas = self._gen_copy_new_folder( [".fa", ".fna", ".fasta"], out_folder, "tmp_fasta", fasta_files, ["--fasta_files"]) self.num_motif = num_motif self.nt_before = nt_before_TSS self.widths = motif_width self.source = TSS_source self.tex_wigs = None self.frag_wigs = None self.gffs = self._gen_copy_new_folder( [".gff", ".gff3"], out_folder, "tmp_anno", annotation_files, ["--annotation_files"]) self.combine = combine_all self.e_value = e_value self.para = para self.use_tss = use_tss_type if not TSS_source: if annotation_files is None: print("Error: if --tss_source is False, please assign " "--annotation_files as well!") sys.exit() if tex_libs is not None: self.helper.check_make_folder(os.path.join( out_folder, "tmp_wig")) self.tex_wigs = self._create_wig_folder( os.path.join(out_folder, "tmp_wig", "tex_notex"), tex_libs) tracks = {"file": [], "track": {"+": [], "-": []}} self.input_libs = self._create_working_wigs( out_folder, tex_libs, self.tex_wigs, tracks) self.libs = self.input_libs self = self._parser_combine_wigs("promoter") return self def container_operon(self, TSS_files, annotation_files, transcript_files, term_files, TSS_fuzzy, term_fuzzy, min_length, operon_output_folder, operon_statistics_folder): self.tsss = self._gen_copy_new_folder( [".gff", ".gff3"], operon_output_folder, "tmp_tss", TSS_files, ["--tss_files"]) self.gffs = self._gen_copy_new_folder( [".gff", ".gff3"], operon_output_folder, "tmp_anno", annotation_files, ["--annotation_files"]) self.trans = self._gen_copy_new_folder( [".gff", ".gff3"], operon_output_folder, "tmp_ta", transcript_files, ["--transcript_files"]) self.terms = self._gen_copy_new_folder( [".gff", ".gff3"], operon_output_folder, "tmp_term", term_files, ["--term_files"]) self.tss_fuzzy = TSS_fuzzy self.term_fuzzy = term_fuzzy self.length = min_length self.output_folder = operon_output_folder self.stat_folder = operon_statistics_folder return self def container_snp(self, samtools_path, bcftools_path, bam_type, program, fasta_files, bam_files, quality, read_depth_range, snp_output_folder, indel_fraction, chrom, rg, caller, filters, DP4_cutoff): self.samtools_path = samtools_path self.bcftools_path = bcftools_path self.types = bam_type self.program = program self.fastas = self._gen_copy_new_folder( [".fa", ".fna", ".fasta"], snp_output_folder, "tmp_fa", fasta_files, ["--fasta_files"]) self.bams = bam_files self.quality = quality self.depth_s = read_depth_range.split(",")[0] self.depth_b = read_depth_range.split(",")[-1] self.out_folder = snp_output_folder self.idv = indel_fraction.split(",")[0] self.imf = indel_fraction.split(",")[-1] if chrom == "haploid": chrom = "1" elif chrom == "diploid": chrom = "2" self.chrom = chrom self.rg = rg self.caller = caller self.filters = filters self.dp4_sum = DP4_cutoff.split(",")[0] self.dp4_frac = DP4_cutoff.split(",")[-1] return self def container_circrna(self, process, fasta_files, annotation_files, bam_files, read_files, circrna_stat_folder, support_reads, segemehl_path, testrealign, samtools_path, start_ratio, end_ratio, ignore_hypothetical_protein, out_folder): self.cores = process self.fastas = self._gen_copy_new_folder( [".fa", ".fna", ".fasta"], out_folder, "tmp_fa", fasta_files, ["--fasta_files"]) self.gffs = self._gen_copy_new_folder( [".gff", ".gff3"], out_folder, "tmp_anno", annotation_files, ["--annotation_files"]) self.bams = bam_files self.read_files = read_files self.stat_folder = circrna_stat_folder self.support = support_reads self.segemehl_path = segemehl_path self.testrealign_path = testrealign self.samtools_path = samtools_path self.start_ratio = start_ratio self.end_ratio = end_ratio self.hypo = ignore_hypothetical_protein self.output_folder = out_folder return self def container_ribos(self, program, thermo_ID, cmscan_path, cmpress_path, riboswitch_ID, annotation_files, fasta_files, tss_files, transcript_files, Rfam, ribos_output_folder, thermo_output_folder, cutoff, output_all, database_folder, fuzzy, without_rbs, rbs_seq, fuzzy_rbs, UTR_length): self.program = program self.without_rbs = without_rbs self.rbs_seq = rbs_seq if (program.lower() == "riboswitch") or ( program.lower() == "both"): output = ribos_output_folder elif (program.lower() == "thermometer"): output = thermo_output_folder self.thermo_id = thermo_ID self.cmscan_path = cmscan_path self.cmpress_path = cmpress_path self.ribos_id = riboswitch_ID self.gffs = self._gen_copy_new_folder( [".gff", ".gff3"], output, "temp_anno", annotation_files, ["--annotation_files"]) self.fastas = self._gen_copy_new_folder( [".fa", ".fna", ".fasta"], output, "temp_fa", fasta_files, ["--fasta_files"]) self.tsss = self._gen_copy_new_folder( [".gff", ".gff3"], output, "temp_tss", tss_files, ["--tss_files"]) self.trans = self._gen_copy_new_folder( [".gff", ".gff3"], output, "temp_ta", transcript_files, ["--transcript_files"]) self.rfam = Rfam self.ribos_out_folder = ribos_output_folder self.thermo_out_folder = thermo_output_folder self.cutoff = cutoff self.output_all = output_all self.database = database_folder self.fuzzy = fuzzy self.fuzzy_rbs = fuzzy_rbs self.utr = UTR_length return self def container_cris(self, fasta_files, annotation_files, CRT_path, window_size, min_number_repeat, min_length_repeat, Max_length_repeat, min_length_spacer, Max_length_spacer, cris_out_folder, ignore_hypo): self.gffs = self._gen_copy_new_folder( [".gff", ".gff3"], cris_out_folder, "tmp_anno", annotation_files, ["--annotation_files"]) self.fastas = self._gen_copy_new_folder( [".fa", ".fna", ".fasta"], cris_out_folder, "tmp_fa", fasta_files, ["--fasta_files"]) self.crt_path = CRT_path self.win_size = window_size self.out_folder = cris_out_folder self.min_num_r = min_number_repeat self.min_len_r = min_length_repeat self.max_len_r = Max_length_repeat self.min_len_s = min_length_spacer self.max_len_s = Max_length_spacer self.ignore_hypo = ignore_hypo return self def container_screen(self, main_gff, side_gffs, fasta, height, tex_libs, frag_libs, present, output_folder): self.main_gff = main_gff self.side_gffs = side_gffs self.fasta = fasta self.height = height self.tlibs = tex_libs self.flibs = frag_libs self.present = present self.output_folder = output_folder return self
ANNOgesic
/ANNOgesic-1.1.14.linux-x86_64.tar.gz/usr/local/lib/python3.10/dist-packages/annogesiclib/args_container.py
args_container.py
import os import sys import shutil from subprocess import call from annogesiclib.helper import Helper from annogesiclib.multiparser import Multiparser from annogesiclib.converter import Converter from annogesiclib.get_inter_seq import intergenic_seq from annogesiclib.extract_sec_info import extract_info_sec from annogesiclib.get_polyT import poly_t from annogesiclib.detect_coverage_term import detect_coverage from annogesiclib.gff3 import Gff3Parser from annogesiclib.stat_term import stat_term from annogesiclib.compare_tran_term import compare_term_tran from annogesiclib.reorganize_table import reorganize_table class Terminator(object): '''detection of terminator''' def __init__(self, args_term): self.multiparser = Multiparser() self.helper = Helper() self.converter = Converter() self.gff_parser = Gff3Parser() self.gff_path = os.path.join(args_term.gffs, "tmp") self.fasta_path = os.path.join(args_term.fastas, "tmp") self.tran_path = os.path.join(args_term.trans, "tmp") self.outfolder = {"term": os.path.join(args_term.out_folder, "gffs"), "csv": os.path.join(args_term.out_folder, "tables")} self.terms = {"all": os.path.join(self.outfolder["term"], "all_candidates"), "express": os.path.join(self.outfolder["term"], "expressed_candidates"), "best": os.path.join(self.outfolder["term"], "best_candidates"), "non": os.path.join(self.outfolder["term"], "non_expressed_candidates")} self.csvs = {"all": os.path.join(self.outfolder["csv"], "all_candidates"), "express": os.path.join(self.outfolder["csv"], "expressed_candidates"), "best": os.path.join(self.outfolder["csv"], "best_candidates"), "non": os.path.join(self.outfolder["csv"], "non_expressed_candidates")} self.combine_path = os.path.join(self.gff_path, "combine") self.tmps = {"transterm": os.path.join(os.getcwd(), "tmp_transterm"), "hp": "transtermhp", "hp_gff": "transtermhp.gff", "hp_path": "tmp_transterm/tmp", "term_table": os.path.join(os.getcwd(), "tmp_term_table"), "merge": os.path.join(os.getcwd(), "tmp_merge_gff"), "gff": "tmp.gff", "folder": os.path.join(os.getcwd(), "tmp")} self.suffixs = {"gff": "term.gff", "csv": "term.csv", "allgff": "term_all.gff"} if args_term.srnas: self.srna_path = os.path.join(args_term.srnas, "tmp") else: self.srna_path = None self._make_gff_folder() def _combine_annotation(self, combine_file, files): with open(combine_file, 'w') as result: for file_ in files: if (file_.endswith(".ptt")) and (os.stat(file_).st_size == 0): print("Warning: No CDS information, " "TransTermHP can not work!") return "NO_CDS" if os.path.exists(file_) and ( os.stat(file_).st_size != 0): check_start = False fh = open(file_, 'r') for line in fh: if check_start: result.write(line) if "Location" in line: check_start = True if "\n" not in line: result.write("\n") fh.close() return "Normal" def _make_gff_folder(self): self.helper.check_make_folder(self.terms["all"]) self.helper.check_make_folder(self.csvs["all"]) self.helper.check_make_folder(self.terms["best"]) self.helper.check_make_folder(self.csvs["best"]) self.helper.check_make_folder(self.terms["express"]) self.helper.check_make_folder(self.csvs["express"]) self.helper.check_make_folder(self.terms["non"]) self.helper.check_make_folder(self.csvs["non"]) def _convert_gff2rntptt(self, gff_path, fasta_path, sRNAs, log): file_types = {} prefixs = [] for gff in os.listdir(gff_path): if gff.endswith(".gff"): filename = gff.split("/") prefix = filename[-1][:-4] prefixs.append(prefix) gff_file = os.path.join(gff_path, gff) rnt_file = os.path.join(gff_path, gff.replace(".gff", ".rnt")) ptt_file = os.path.join(gff_path, gff.replace(".gff", ".ptt")) fasta = self.helper.get_correct_file( fasta_path, ".fa", prefix, None, None) if not fasta: log.write("{0}.fa can not be found.\n".format(prefix)) print("Error: {0}.fa can not be found!".format(prefix)) sys.exit() if sRNAs: self.multiparser.parser_gff(sRNAs, "sRNA") srna = self.helper.get_correct_file( self.srna_path, "_sRNA.gff", prefix, None, None) if (srna) and (fasta): log.write("Running converter.py to convert {0} and " "{1} to {2}, {3}, and {4}.\n".format( gff_file, srna, ptt_file, rnt_file, srna.replace(".gff", ".rnt"))) self.converter.convert_gff2rntptt( gff_file, prefix, fasta, ptt_file, rnt_file, srna, srna.replace(".gff", ".rnt")) file_types[prefix] = "srna" log.write("The following files are generated:\n") log.write("\t{0}\n\t{1}\n\t{2}\n".format( ptt_file, rnt_file, srna.replace(".gff", ".rnt"))) if (not srna) and (fasta): log.write("Running converter.py to convert {0} " "to {1}, and {2}.\n".format( gff_file, ptt_file, rnt_file)) self.converter.convert_gff2rntptt( gff_file, prefix, fasta, ptt_file, rnt_file, None, None) file_types[prefix] = "normal" log.write("The following files are generated:\n") log.write("\t{0}\n\t{1}\n".format(ptt_file, rnt_file)) else: log.write("Running converter.py to convert {0} " "to {1}, and {2}.\n".format( gff_file, ptt_file, rnt_file)) self.converter.convert_gff2rntptt( gff_file, prefix, fasta, ptt_file, rnt_file, None, None) file_types[prefix] = "normal" log.write("The following files are generated:\n") log.write("\t{0}\n\t{1}\n".format(ptt_file, rnt_file)) return file_types, prefixs def _combine_ptt_rnt(self, gff_path, file_types, srna_path): self.helper.check_make_folder(self.combine_path) for prefix, file_type in file_types.items(): combine_file = os.path.join(self.combine_path, prefix + '.ptt') if file_type == "normal": files = [os.path.join(gff_path, prefix + ".ptt"), os.path.join(gff_path, prefix + ".rnt")] check = self._combine_annotation(combine_file, files) elif file_type == "srna": files = [os.path.join(gff_path, prefix + ".ptt"), os.path.join(gff_path, prefix + ".rnt"), os.path.join(srna_path, "_".join([prefix, "sRNA.rnt"]))] check = self._combine_annotation(combine_file, files) return check def _TransTermHP(self, fasta, file_, out_path, prefix, out, args_term, log): call([args_term.TransTermHP_path, "-p", args_term.expterm_path, fasta, os.path.join(self.combine_path, file_), "--t2t-perf", os.path.join(out_path, "_".join([ prefix, "terminators_within_robust_tail-to-tail_regions.t2t"])), "--bag-output", os.path.join(out_path, "_".join([ prefix, "best_terminator_after_gene.bag"]))], stdout=out) log.write(" ".join([args_term.TransTermHP_path, "-p", args_term.expterm_path, fasta, os.path.join(self.combine_path, file_), "--t2t-perf", os.path.join(out_path, "_".join([ prefix, "terminators_within_robust_tail-to-tail_regions.t2t"])), "--bag-output", os.path.join(out_path, "_".join([ prefix, "best_terminator_after_gene.bag"]))]) + "\n") def _run_TransTermHP(self, args_term, log): self.helper.check_make_folder(self.tmps["transterm"]) log.write("Running TransTermHP.\n") log.write("Make sure the version is at least 2.09.\n") for file_ in os.listdir(self.combine_path): if ".ptt" in file_: prefix = file_.replace(".ptt", "") fasta = self.helper.get_correct_file( self.fasta_path, ".fa", prefix, None, None) if not fasta: log.write("{0}.fa can not be found!.\n".format(prefix)) print("Error: {0}.fa can not be found!".format(prefix)) sys.exit() out_path = os.path.join(args_term.hp_folder, prefix) self.helper.check_make_folder(out_path) out = open(os.path.join(out_path, "_".join([prefix, "terminators.txt"])), "w") self._TransTermHP(fasta, file_, out_path, prefix, out, args_term, log) log.write("Done!\n") log.write("The following files are generated in {0}.\n".format( out_path)) for file_ in os.listdir(out_path): log.write("\t" + file_ + "\n") out.close() shutil.rmtree(self.combine_path) def _convert_to_gff(self, prefixs, args_term, log): log.write("Running coverter.py to convert the results of TransTermHP " "to gff3 format.\n") for prefix in prefixs: for folder in os.listdir(args_term.hp_folder): if prefix == folder: out_path = os.path.join(args_term.hp_folder, folder) for file_ in os.listdir(out_path): if file_.endswith(".bag"): out_file = os.path.join( self.tmps["transterm"], "_".join([prefix, self.tmps["hp_gff"]])) self.converter.convert_transtermhp2gff( os.path.join(out_path, file_), out_file) log.write("\t" + out_file + " is generated.\n") self.multiparser.combine_gff(args_term.gffs, self.tmps["transterm"], None, self.tmps["hp"]) def _combine_wigs(self, args_term): if (args_term.tex_wigs is not None) and ( args_term.frag_wigs is not None): folder = args_term.tex_wigs.split("/") folder = "/".join(folder[:-1]) merge_wigs = os.path.join(folder, "merge_wigs") self.helper.check_make_folder(merge_wigs) for wig in os.listdir(args_term.tex_wigs): if os.path.isdir(os.path.join(args_term.tex_wigs, wig)): pass else: shutil.copy(os.path.join(args_term.tex_wigs, wig), merge_wigs) for wig in os.listdir(args_term.frag_wigs): if os.path.isdir(os.path.join(args_term.frag_wigs, wig)): pass else: shutil.copy(os.path.join(args_term.frag_wigs, wig), merge_wigs) elif (args_term.tex_wigs is not None): merge_wigs = args_term.tex_wigs elif (args_term.frag_wigs is not None): merge_wigs = args_term.frag_wigs else: print("Error: Wiggle files are not assigned!") sys.exit() return merge_wigs def _merge_sRNA(self, sRNAs, prefixs, gff_path): '''searching the terminator with sRNA information''' if sRNAs is not None: self.multiparser.parser_gff(sRNAs, "sRNA") self.helper.check_make_folder(self.tmps["merge"]) for prefix in prefixs: tmp_gff = os.path.join(self.tmps["merge"], self.tmps["gff"]) if self.tmps["gff"] in os.listdir(self.tmps["merge"]): os.remove(tmp_gff) self.helper.merge_file(os.path.join(gff_path, prefix + ".gff"), tmp_gff) self.helper.merge_file(os.path.join( self.srna_path, "_".join([prefix, "sRNA.gff"])), tmp_gff) self.helper.sort_gff(tmp_gff, os.path.join( self.tmps["merge"], prefix + ".gff")) os.remove(tmp_gff) merge_path = self.tmps["merge"] else: merge_path = gff_path return merge_path def _move_file(self, term_outfolder, csv_outfolder): for gff in os.listdir(term_outfolder): if gff.endswith("_term.gff"): self.helper.sort_gff(os.path.join(term_outfolder, gff), self.tmps["gff"]) shutil.move(self.tmps["gff"], os.path.join(term_outfolder, gff)) prefix = gff.replace("_term.gff", "") new_gff = os.path.join(self.terms["all"], "_".join([ prefix, self.suffixs["allgff"]])) csv_file = os.path.join( os.path.join(self.csvs["all"], "_".join([ prefix, self.suffixs["csv"]]))) out = open(new_gff, "w") out.write("##gff-version 3\n") out.close() self.helper.merge_file( os.path.join(term_outfolder, gff), os.path.join( self.terms["all"], "_".join([ prefix, self.suffixs["allgff"]]))) os.remove(os.path.join(term_outfolder, gff)) pre_strain = "" if ("_".join([prefix, self.suffixs["csv"]]) in os.listdir(self.csvs["all"])): os.remove(csv_file) out_csv = open(csv_file, "w") out_csv.write("\t".join(["Genome", "Name", "Start", "End", "Strand", "Detect", "Coverage_decrease", "Coverage_detail"]) + "\n") out_csv.close() fh = open(new_gff) for entry in self.gff_parser.entries(fh): if entry.seq_id != pre_strain: self.helper.merge_file(os.path.join( self.tmps["term_table"], "_".join([ entry.seq_id, "term_raw.csv"])), os.path.join(self.csvs["all"], "_".join([ prefix, self.suffixs["csv"]]))) pre_strain = entry.seq_id fh.close() def _run_rnafold(self, RNAfold_path, tmp_seq, tmp_sec, prefix, log): log.write("Computing secondray structures of {0}.\n".format(prefix)) log.write("Make sure the version of Vienna RNA package is at least 2.3.2.\n") print("Computing secondray structures of {0}".format(prefix)) self.helper.check_make_folder(self.tmps["folder"]) pre_cwd = os.getcwd() os.chdir(self.tmps["folder"]) log.write(" ".join([RNAfold_path, "<", os.path.join("..", tmp_seq), ">", os.path.join("..", tmp_sec)]) + "\n") os.system(" ".join([RNAfold_path, "<", os.path.join("..", tmp_seq), ">", os.path.join("..", tmp_sec)])) log.write("Done!\n") log.write("\t" + tmp_sec + " is generated for storing secondary " "structure.\n") os.chdir(pre_cwd) shutil.rmtree(self.tmps["folder"]) def _compute_intersection_forward_reverse( self, prefixs, merge_path, wig_path, merge_wigs, args_term, log): '''the approach for searching gene converged region terminator''' log.write("Searching terminators which located in gene converged " "region.\n") for prefix in prefixs: tmp_seq = os.path.join(args_term.out_folder, "_".join(["inter_seq", prefix])) tmp_index = os.path.join(args_term.out_folder, "_".join(["inter_index", prefix])) tmp_sec = os.path.join(args_term.out_folder, "_".join(["inter_sec", prefix])) tran_file = os.path.join(self.tran_path, "_".join([prefix, "transcript.gff"])) gff_file = os.path.join(merge_path, prefix + ".gff") tmp_cand = tmp_cand = os.path.join(args_term.out_folder, "_".join(["term_candidates", prefix])) if os.path.exists(tran_file): print("Extracting sequences of {0}".format(prefix)) log.write("Running get_inter_seq.py to extract the potential " "sequences from {0}.\n".format(prefix)) intergenic_seq(os.path.join(self.fasta_path, prefix + ".fa"), tran_file, gff_file, tmp_seq, tmp_index, args_term) log.write("\t" + tmp_seq + " is generated for storing the " "potential sequences.\n") self._run_rnafold(args_term.RNAfold_path, tmp_seq, tmp_sec, prefix, log) log.write("Running extract_sec_info.py to extract the " "information of secondary structure from {0}.\n".format( prefix)) extract_info_sec(tmp_sec, tmp_seq, tmp_index) os.remove(tmp_index) log.write("Running get_polyT.py to detect the " "terminator candidates for {0}.\n".format(prefix)) poly_t(tmp_seq, tmp_sec, gff_file, tran_file, tmp_cand, args_term) log.write("\t" + tmp_cand + " which temporary stores terminator " "candidates is generated.\n") print("Detecting terminators for " + prefix) log.write("Running detect_coverage_term.py to gain " "high-confidence terminators for {0}.\n".format(prefix)) detect_coverage( tmp_cand, os.path.join(merge_path, prefix + ".gff"), os.path.join(self.tran_path, "_".join([ prefix, "transcript.gff"])), os.path.join(self.fasta_path, prefix + ".fa"), os.path.join(wig_path, "_".join([prefix, "forward.wig"])), os.path.join(wig_path, "_".join([prefix, "reverse.wig"])), os.path.join(self.tmps["hp_path"], "_".join([ prefix, self.tmps["hp_gff"]])), merge_wigs, os.path.join(self.outfolder["term"], "_".join([ prefix, self.suffixs["gff"]])), os.path.join(self.tmps["term_table"], "_".join([ prefix, "term_raw.csv"])), args_term) self.multiparser.combine_gff(args_term.gffs, self.outfolder["term"], None, "term") self._move_file(self.outfolder["term"], self.outfolder["csv"]) def _remove_tmp_file(self, merge_wigs, args_term): self.helper.remove_tmp_dir(args_term.gffs) self.helper.remove_tmp_dir(args_term.fastas) if args_term.srnas is not None: self.helper.remove_tmp(args_term.srnas) shutil.rmtree(self.tmps["merge"]) if (args_term.tex_wigs is not None) and ( args_term.frag_wigs is not None): shutil.rmtree(merge_wigs) self.helper.remove_tmp_dir(args_term.trans) if "tmp_wig" in os.listdir(args_term.out_folder): shutil.rmtree(os.path.join(args_term.out_folder, "tmp_wig")) self.helper.remove_tmp(self.outfolder["term"]) shutil.rmtree(self.tmps["transterm"]) shutil.rmtree(self.tmps["term_table"]) self.helper.remove_all_content(args_term.out_folder, "inter_seq_", "file") self.helper.remove_all_content(self.outfolder["term"], "_term.gff", "file") self.helper.remove_all_content(args_term.out_folder, "inter_sec_", "file") self.helper.remove_all_content(args_term.out_folder, "term_candidates_", "file") def _compute_stat(self, args_term, log): new_prefixs = [] for gff in os.listdir(self.terms["all"]): if gff.endswith("_term_all.gff"): out_tmp = open(self.tmps["gff"], "w") out_tmp.write("##gff-version 3\n") new_prefix = gff.replace("_term_all.gff", "") new_prefixs.append(gff.replace("_term_all.gff", "")) num = 0 fh = open(os.path.join(self.terms["all"], gff)) for entry in self.gff_parser.entries(fh): name = '%0*d' % (5, num) entry.attributes["ID"] = ( entry.seq_id + "_terminator" + str(num)) entry.attributes["Name"] = "_".join(["terminator_" + name]) entry.attribute_string = ";".join([ "=".join(items) for items in entry.attributes.items()]) out_tmp.write("\t".join([entry.info_without_attributes, entry.attribute_string]) + "\n") num += 1 out_tmp.close() fh.close() shutil.move(self.tmps["gff"], os.path.join(self.terms["all"], "_".join([new_prefix, self.suffixs["gff"]]))) log.write("Running stat_term.py to do statistics.\n") stat_path = os.path.join(args_term.out_folder, "statistics") log.write("The following files are generated:\n") for prefix in new_prefixs: stat_term(os.path.join(self.terms["all"], "_".join([prefix, self.suffixs["gff"]])), os.path.join(self.csvs["all"], "_".join([prefix, self.suffixs["csv"]])), os.path.join(stat_path, "_".join(["stat", prefix + ".csv"])), os.path.join(self.terms["best"], "_".join([prefix, "term"])), os.path.join(self.terms["express"], "_".join([prefix, "term"])), os.path.join(self.terms["non"], "_".join([prefix, "term"]))) shutil.move(os.path.join(self.terms["best"], "_".join([prefix, self.suffixs["csv"]])), os.path.join(self.csvs["best"], "_".join([prefix, self.suffixs["csv"]]))) shutil.move(os.path.join(self.terms["express"], "_".join([prefix, self.suffixs["csv"]])), os.path.join(self.csvs["express"], "_".join([prefix, self.suffixs["csv"]]))) shutil.move(os.path.join(self.terms["non"], "_".join([prefix, self.suffixs["csv"]])), os.path.join(self.csvs["non"], "_".join([prefix, self.suffixs["csv"]]))) os.remove(os.path.join(self.terms["all"], "_".join([prefix, self.suffixs["allgff"]]))) log.write("\t" + os.path.join(self.terms["all"], "_".join([prefix, self.suffixs["gff"]])) + "\n") log.write("\t" + os.path.join(self.terms["best"], "_".join([prefix, self.suffixs["gff"]])) + "\n") log.write("\t" + os.path.join(self.terms["express"], "_".join([prefix, self.suffixs["gff"]])) + "\n") log.write("\t" + os.path.join(self.terms["non"], "_".join([prefix, self.suffixs["gff"]])) + "\n") log.write("\t" + os.path.join(self.csvs["all"], "_".join([prefix, self.suffixs["csv"]])) + "\n") log.write("\t" + os.path.join(stat_path, "_".join(["stat", prefix + ".csv"])) + "\n") log.write("\t" + os.path.join(self.csvs["best"], "_".join([prefix, self.suffixs["csv"]])) + "\n") log.write("\t" + os.path.join(self.csvs["express"], "_".join([prefix, self.suffixs["csv"]])) + "\n") log.write("\t" + os.path.join(self.csvs["non"], "_".join([prefix, self.suffixs["csv"]])) + "\n") def _check_gff_file(self, folder): for file_ in os.listdir(folder): if file_.endswith(".gff"): self.helper.check_uni_attributes(os.path.join(folder, file_)) def _compare_term_tran(self, args_term, prefixs, log): '''searching the associated terminator to transcript''' self.multiparser.combine_gff(args_term.gffs, self.tran_path, None, "transcript") prefixs = [] print("Comparing terminators with transcripts now") for file_ in os.listdir(self.tran_path): if file_.endswith("_transcript.gff"): prefixs.append(file_.replace("_transcript.gff", "")) log.write("Running compare_tran_term.py for comparing transcripts " "and terminators.\n") log.write("The following files are generated:\n") for type_ in ("best_candidates", "expressed_candidates", "all_candidates"): compare_term_tran(self.tran_path, os.path.join(self.outfolder["term"], type_), args_term.fuzzy_up_ta, args_term.fuzzy_down_ta, args_term.out_folder, "terminator", self.outfolder["term"], args_term.trans) for prefix in prefixs: shutil.move( os.path.join( args_term.out_folder, "statistics", "stat_compare_transcript_terminator_" + prefix + ".csv"), os.path.join( args_term.out_folder, "statistics", "_".join(["stat_compare_terminator_transcript", prefix, type_ + ".csv"]))) log.write("\t" + os.path.join( args_term.out_folder, "statistics", "_".join(["stat_compare_terminator_transcript", prefix, type_ + ".csv"])) + "\n") def _re_table(self, args_term, prefixs, log): log.write("Running re_table.py to generate coverage information.\n") log.write("The following files are updated:\n") for type_ in ["all_candidates", "best_candidates", "expressed_candidates", "non_expressed_candidates"]: for table in os.listdir(os.path.join( args_term.out_folder, "tables", type_)): term_table = os.path.join(args_term.out_folder, "tables", type_, table) reorganize_table(args_term.libs, args_term.merge_wigs, "Coverage_detail", term_table) log.write("\t" + term_table + "\n") def run_terminator(self, args_term, log): self._check_gff_file(args_term.gffs) self._check_gff_file(args_term.trans) self.multiparser.parser_fasta(args_term.fastas) if (not args_term.gffs) or (not args_term.fastas): print("Error: Please assign gff files " "and fasta files!") sys.exit() file_types, prefixs = self._convert_gff2rntptt( self.gff_path, self.fasta_path, args_term.srnas, log) check = self._combine_ptt_rnt(self.gff_path, file_types, self.srna_path) self._run_TransTermHP(args_term, log) self._convert_to_gff(prefixs, args_term, log) self.helper.remove_tmp(self.gff_path) self.multiparser.parser_gff(args_term.trans, "transcript") self.helper.check_make_folder(self.tmps["term_table"]) if check != "NO_CDS": self.multiparser.parser_gff(self.tmps["transterm"], self.tmps["hp"]) merge_path = self._merge_sRNA(args_term.srnas, prefixs, self.gff_path) self._compute_intersection_forward_reverse( prefixs, merge_path, args_term.wig_path, args_term.merge_wigs, args_term, log) self._compute_stat(args_term, log) self._compare_term_tran(args_term, prefixs, log) self._re_table(args_term, prefixs, log) self._remove_tmp_file(args_term.merge_wigs, args_term)
ANNOgesic
/ANNOgesic-1.1.14.linux-x86_64.tar.gz/usr/local/lib/python3.10/dist-packages/annogesiclib/terminator.py
terminator.py
import os import sys from glob import glob from annogesiclib.gff3 import Gff3Parser from annogesiclib.parser_wig import WigParser def load_wigs(out, lib_t, lib_n, lib_f): if lib_t and lib_n: for index in range(len(lib_t)): out.write("load {0}\n".format( os.path.join(os.getcwd(), lib_t[index]))) out.write("load {0}\n".format( os.path.join(os.getcwd(), lib_n[index]))) elif lib_t: for lib in lib_t: out.write("load {0}\n".format(os.path.join(os.getcwd(), lib))) elif lib_n: for lib in lib_n: out.write("load {0}\n".format(os.path.join(os.getcwd(), lib))) if lib_f: for lib in lib_f: out.write("load {0}\n".format(os.path.join(os.getcwd(), lib))) def set_data_range(out, gff, wigs, strand): '''set and print the DataRange''' max_range = 0 for strains in wigs.values(): for strain, wig_datas in strains.items(): if strain == gff.seq_id: for wig in wig_datas[(gff.start - 1): gff.end]: if max_range < wig.coverage: max_range = wig.coverage max_range = int(max_range / 1) + 10 if strand == "+": out.write("setDataRange 0,{0}\n".format(max_range)) else: max_range = max_range * -1 out.write("setDataRange 0,{0}\n".format(max_range)) def print_batch(args_sc, out, strand, lib_t, lib_n, lib_f, strain): '''print the batch file''' out.write("new\n") out.write("genome {0}\n".format(os.path.join(os.getcwd(), args_sc.fasta))) out.write("load {0}\n".format(os.path.join(os.getcwd(), args_sc.main_gff))) gff = args_sc.main_gff.split("/") out.write("{0} {1}\n".format(args_sc.present, gff[-1])) if args_sc.side_gffs is not None: for files in args_sc.side_gffs: for filename in glob(files): out.write("load {0}\n".format(os.path.join(os.getcwd(), filename))) gff = filename.split("/") out.write("{0} {1}\n".format(args_sc.present, gff[-1])) load_wigs(out, lib_t, lib_n, lib_f) out.write("maxPanelHeight {0}\n".format(args_sc.height)) if strand == "+": out.write("snapshotDirectory {0}\n".format( os.path.join(os.getcwd(), args_sc.output_folder, strain, "forward"))) else: out.write("snapshotDirectory {0}\n".format( os.path.join(os.getcwd(), args_sc.output_folder, strain, "reverse"))) def import_wig(lib, wigs, strand): wig_parser = WigParser() for wig in lib: wigs[wig] = {} strain = "" wig_fh = open(wig) for entry in wig_parser.parser(wig_fh, strand): if strain != entry.strain: wigs[wig][entry.strain] = [] strain = entry.strain wigs[wig][strain].append(entry) wig_fh.close() def gen_batch(lib_t, lib_n, lib_f, strand, gffs, out, seq): '''generate the batch file''' wigs = {} if lib_t and lib_n: import_wig(lib_t, wigs, strand) import_wig(lib_n, wigs, strand) elif lib_t: import_wig(lib_t, wigs, strand) elif lib_n: import_wig(lib_n, wigs, strand) if lib_f: import_wig(lib_f, wigs, strand) if strand == "+": print("Printing the forward batch files...") else: print("Printing the reverse batch files...") for gff in gffs: if gff.seq_id not in seq.keys(): print("Error: The genome names in fasta file " "and gff file are different!!") sys.exit() if (gff.start - 200) <= 0: start = 1 else: start = gff.start - 200 if (gff.end + 200) >= len(seq[gff.seq_id]): end = len(seq[gff.seq_id]) else: end = gff.end + 200 out.write("goto {0}:{1}-{2}\n".format( gff.seq_id, start, end)) set_data_range(out, gff, wigs, strand) out.write("snapshot {0}:{1}-{2}.png\n".format( gff.seq_id, gff.start, gff.end)) def get_length(fasta_file): '''get sequence information and we can know the length of seq''' seq = {} with open(fasta_file) as fh: for line in fh: line = line.strip() if line.startswith(">"): strain = line[1:] seq[strain] = "" else: seq[strain] = seq[strain] + line return seq def gen_screenshot(args_sc, libs, forward_file, reverse_file, strain): '''Generation of screenshot of IGV for reveiwing of user''' gffs_f = [] gffs_r = [] fh = open(args_sc.main_gff) for entry in Gff3Parser().entries(fh): if entry.strand == "+": gffs_f.append(entry) else: gffs_r.append(entry) gffs_f = sorted(gffs_f, key=lambda k: (k.seq_id, k.start, k.end, k.strand)) gffs_r = sorted(gffs_r, key=lambda k: (k.seq_id, k.start, k.end, k.strand)) out_f = open(forward_file, "w") print_batch(args_sc, out_f, "+", libs["ft"], libs["fn"], libs["ff"], strain) out_r = open(reverse_file, "w") print_batch(args_sc, out_r, "-", libs["rt"], libs["rn"], libs["rf"], strain) seq = get_length(args_sc.fasta) gen_batch(libs["ft"], libs["fn"], libs["ff"], "+", gffs_f, out_f, seq) gen_batch(libs["rt"], libs["rn"], libs["rf"], "-", gffs_r, out_r, seq) fh.close() out_f.close() out_r.close()
ANNOgesic
/ANNOgesic-1.1.14.linux-x86_64.tar.gz/usr/local/lib/python3.10/dist-packages/annogesiclib/gen_screenshots.py
gen_screenshots.py
import csv import numpy as np import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt plt.style.use('ggplot') def plot(subs, total, unknown, strain, prefix_name): nums = [] nums_no_unknown = [] classes = [] classes_no_unknown = [] width = 0.4 tmp_unknown = ["Unknown", 0] sort_subs = sorted(subs.items(), key=lambda x: (x[1]), reverse=True) for datas in sort_subs: if datas[0] == "Unknown": tmp_unknown = datas else: nums.append(datas[1]) nums_no_unknown.append(datas[1]) classes.append(datas[0]) classes_no_unknown.append(datas[0]) nums.append(tmp_unknown[1]) classes.append(tmp_unknown[0]) plt.figure(figsize=(12, 16)) plt.subplot(211) ind = np.arange(len(nums)) plt.bar(ind, nums, width, color='#FF9999') plt.title('Subcellular localization including Unknown\n', fontsize=24) plt.ylabel('Amount', fontsize=20) plt.yticks(fontsize=16) plt.xlim([0, len(nums) + 1]) plt.xticks(ind+width, classes, rotation=40, fontsize=20, ha='right') plt.tight_layout(2, None, None, None) plt.subplot(212) ind = np.arange(len(nums_no_unknown)) plt.bar(ind, nums_no_unknown, width, color='#FF9999') plt.title('Subcellular localization excluding Unknown\n', fontsize=24) plt.ylabel('Amount', fontsize=20) plt.xlim([0, len(nums_no_unknown) + 1]) plt.xticks(ind+width, classes_no_unknown, rotation=40, fontsize=20, ha='right') plt.yticks(fontsize=16) plt.tight_layout(2, None, None, None) plt.savefig("_".join([prefix_name, strain, "sublocal.png"])) def read_table(psortb_file): subs = {} subs["all_genome"] = {} total_nums = {} total_nums["all_genome"] = 0 unknown_nums = {} unknown_nums["all_genome"] = 0 pre_strain = "" f_h = open(psortb_file, "r") for row in csv.reader(f_h, delimiter="\t"): if not row[0].startswith("#"): if pre_strain != row[0]: subs[row[0]] = {} pre_strain = row[0] total_nums[row[0]] = 0 unknown_nums[row[0]] = 0 if row[5] not in subs[row[0]].keys(): if row[5] == "Unknown": unknown_nums[row[0]] += 1 subs[row[0]][row[5]] = 1 total_nums[row[0]] += 1 else: if row[5] == "Unknown": unknown_nums[row[0]] += 1 subs[row[0]][row[5]] += 1 total_nums[row[0]] += 1 if row[5] not in subs["all_genome"].keys(): if row[5] == "Unknown": unknown_nums["all_genome"] += 1 subs["all_genome"][row[5]] = 1 total_nums["all_genome"] += 1 else: if row[5] == "Unknown": unknown_nums["all_genome"] += 1 subs["all_genome"][row[5]] += 1 total_nums["all_genome"] += 1 f_h.close() return subs, total_nums, unknown_nums def print_file_and_plot(sub, total_nums, unknown_nums, strain, out_stat, prefix_name): plot(sub, total_nums[strain], unknown_nums[strain], strain, prefix_name) out_stat.write(strain + ":\n") out_stat.write("Total including Unknown is {0}; " "Total excluding Unknown is {1}\n".format( total_nums[strain], total_nums[strain] - unknown_nums[strain])) for local, num in sub.items(): if local != "Unknown": out_stat.write( "\t{0}\t{1}(including Unknown {2}; " "excluding Unknonwn {3})\n".format( local, num, float(num) / float(total_nums[strain]), float(num) / (float(total_nums[strain]) - float( unknown_nums[strain])))) else: out_stat.write("\t{0}\t{1}(including Unknown {2})\n".format( local, num, float(num) / float(total_nums[strain]))) def stat_sublocal(psortb_file, prefix_name, stat_file): subs, total_nums, unknown_nums = read_table(psortb_file) out_stat = open(stat_file, "w") if len(subs) > 2: print_file_and_plot(subs["all_genome"], total_nums, unknown_nums, "all_genome", out_stat, prefix_name) for strain, sub in subs.items(): if strain != "all_genome": print_file_and_plot(sub, total_nums, unknown_nums, strain, out_stat, prefix_name)
ANNOgesic
/ANNOgesic-1.1.14.linux-x86_64.tar.gz/usr/local/lib/python3.10/dist-packages/annogesiclib/stat_sublocal.py
stat_sublocal.py
import csv import shutil from annogesiclib.helper import Helper from annogesiclib.gff3 import Gff3Parser def import_cds(gff): if "Name" in gff.attributes.keys(): return gff.attributes["Name"] elif "ID" in gff.attributes.keys(): return gff.attributes["ID"] else: name = "".join([gff.feature, ":", str(gff.start), "-", str(gff.end), "_", gff.strand]) return name def check_overlap(table_file, gff_file): out = open(table_file + "tmp", "w") gffs = [] gff_f = open(gff_file, "r") for entry in Gff3Parser().entries(gff_f): if Helper().feature_without_notgene(entry): gffs.append(entry) fh = open(table_file, "r") out.write("\t".join([ "Rank", "Genome", "Name", "Start", "End", "Strand", "Start_with_TSS/Cleavage_site", "End_with_cleavage", "Candidates", "Lib_type", "Best_avg_coverage", "Track/Coverage", "Normalized_secondary_energy_change(by_length)", "sRNA_types", "Conflict_sORF", "nr_hit_number", "sRNA_hit_number", "nr_hit_top3|ID|e-value|score", "sRNA_hit|e-value|score", "Overlap_CDS_forward", "Overlap_nts_forward", "Overlap_CDS_reverse", "Overlap_nts_reverse","End_with_terminator", "Associated_promoter", "sRNA_length"]) + "\n") for row in csv.reader(fh, delimiter='\t'): if row[3] != "Start": overlaps = {"forward": [], "reverse": [], "CDS_f": [], "CDS_r": []} start = int(row[3]) end = int(row[4]) for gff in gffs: if ((gff.end < end) and ( gff.end > start) and ( gff.start <= start)) or ( (gff.start > start) and ( gff.start < end) and ( gff.end >= end)) or ( (gff.end >= end) and ( gff.start <= start)) or ( (gff.end <= end) and ( gff.start >= start)): overlap = min(gff.end, end) - max(gff.start, start) + 1 percent = "{0:.0f}%".format((float(overlap) / float(end - start + 1)) * 100) if gff.strand == "+": overlaps["forward"].append(str(overlap) + "(" + str(percent) + ")") overlaps["CDS_f"].append(import_cds(gff)) else: overlaps["reverse"].append(str(overlap) + "(" + str(percent) + ")") overlaps["CDS_r"].append(import_cds(gff)) if len(overlaps["forward"]) == 0: overlaps["forward"] = ["NA"] overlaps["CDS_f"] = ["NA"] if len(overlaps["reverse"]) == 0: overlaps["reverse"] = ["NA"] overlaps["CDS_r"] = ["NA"] out.write("\t".join(row[0:19] + [";".join(overlaps["CDS_f"]), ";".join(overlaps["forward"]), ";".join(overlaps["CDS_r"]), ";".join(overlaps["reverse"])] + row[21:]) + "\n") shutil.move(table_file + "tmp", table_file)
ANNOgesic
/ANNOgesic-1.1.14.linux-x86_64.tar.gz/usr/local/lib/python3.10/dist-packages/annogesiclib/check_srna_overlap.py
check_srna_overlap.py
import os import sys import numpy as np from annogesiclib.lib_reader import read_wig, read_libs from annogesiclib.coverage_detection import get_repmatch def check_tex_conds(tracks, libs, texs, check_tex, conds, tex_notex): for track in tracks: for lib in libs: if lib["name"] == track: if "tex" in lib["type"]: type_ = "tex" else: type_ = "frag" index = "_".join([lib["cond"]]) if len(texs) != 0: for key, num in texs.items(): if track in key: if (texs[key] >= tex_notex) and ( key not in check_tex): check_tex.append(key) if index not in conds.keys(): conds[index] = 1 else: conds[index] += 1 else: if index not in conds.keys(): conds[index] = 1 else: conds[index] += 1 def detect_hight_toler(cover, height, tmp_covers, tracks, lib_track): if cover > height: if tmp_covers["best"] < cover: tmp_covers["best"] = cover tracks.append(lib_track) else: if cover > tmp_covers["toler"]: tmp_covers["toler"] = cover def elongation(lib_conds, template_texs, libs, strand, trans, args_tran, strain, tolers): '''check coverage and replicate match to form transcript''' first = True pre_pos = -1 check_tex = [] tracks = [] conds = {} pre_wig = None detect = False texs = template_texs.copy() tmp_covers = {"best": 0, "toler": -1} for cond, lib_tracks in lib_conds.items(): for lib_name, covers in lib_tracks.items(): index_pos = 0 for cover in covers: for cond, lib_tracks in lib_conds.items(): for lib_track in lib_tracks.keys(): real_track = lib_track.split("|")[-3] if index_pos < len(lib_tracks[lib_track]): compare_cover = lib_tracks[lib_track][index_pos] else: compare_cover = 0 detect_hight_toler( compare_cover, args_tran.height, tmp_covers, tracks, real_track) for track in tracks: if len(texs) != 0: for key, num in texs.items(): if track in key: texs[key] += 1 check_tex_conds(tracks, libs, texs, check_tex, conds, args_tran.tex) for cond, detect_num in conds.items(): if ("tex" in cond): tex_rep = get_repmatch(args_tran.replicates["tex"], cond) if detect_num >= tex_rep: detect = True elif ("frag" in cond): frag_rep = get_repmatch(args_tran.replicates["frag"], cond) if detect_num >= frag_rep: detect = True if detect: detect = False trans[strain].append(tmp_covers["best"]) else: trans[strain].append(-1) if (tmp_covers["toler"] != -1): tolers.append(tmp_covers["toler"]) else: tolers.append(args_tran.height + 10) tmp_covers = {"best": 0, "toler": -1} tracks = [] conds = {} check_tex = [] texs = template_texs.copy() index_pos += 1 break break def transfer_to_tran(wigs, libs, template_texs, strand, args_tran): '''check coverage and replicate match to form transcript''' tolers = {} trans = {} detect = False for strain, lib_conds in wigs.items(): if strain not in trans: trans[strain] = [] tolers[strain] = [] elongation(lib_conds, template_texs, libs, strand, trans, args_tran, strain, tolers[strain]) return tolers, trans def print_transcript(finals, out): for strain, datas in finals.items(): num = 0 datas = sorted(datas, key=lambda x: ( x["start"], x["end"], x["strand"])) for data in datas: name = '%0*d' % (5, num) attribute = ";".join(["=".join(items) for items in ([ ("ID", strain + "_transcript" + str(num)), ("Name", "transcript_" + name), ("high_coverage", str(data["high"])), ("low_coverage", str(data["low"])), ("detect_lib", data["wig"])])]) out.write("\t".join([str(field) for field in [ strain, "ANNOgesic", "transcript", str(data["start"]), str(data["end"]), ".", data["strand"], ".", attribute]]) + "\n") num += 1 def fill_gap_and_print(trans, strand, finals, tolers, wig_type, args_tran): '''compare transcript with CDS to modify transcript(merge mutliple transcript based on overlap with the same CDS)''' for strain, covers in trans.items(): if strain not in finals: finals[strain] = [] first = True start = -1 end = -1 pre_cover = None cover_pos = 1 for cover in covers: fit = True if cover != -1: if first: first = False start = cover_pos high_cover = cover low_cover = cover else: if (cover_pos - pre_pos) <= args_tran.tolerance: if cover_pos - pre_pos > 1: for toler_strain, toler_datas in tolers.items(): if toler_strain == strain: toler_covers = toler_datas[ (pre_pos - 1): cover_pos] for toler_cover in toler_covers: if (toler_cover < args_tran.low_cutoff): fit = False break if fit: end = cover_pos if high_cover < cover: high_cover = cover if low_cover > cover: low_cover = cover if ((cover_pos - pre_pos) > args_tran.tolerance) or (not fit): if (start != -1) and (end != -1) and ( (end - start) >= args_tran.width): finals[strain].append({ "start": start, "end": end, "strand": strand, "high": high_cover, "low": low_cover, "wig": wig_type}) start = cover_pos end = -1 high_cover = cover low_cover = cover pre_cover = cover pre_pos = cover_pos cover_pos += 1 if (len(covers) != 0) and (not first) and ( (start != -1) and (end != -1) and ( (end - start) >= args_tran.width)): finals[strain].append({ "start": start, "end": end, "strand": strand, "high": high_cover, "low": low_cover, "wig": wig_type}) return finals def detect_transcript(wig_f_file, wig_r_file, wig_folder, input_lib, out_file, wig_type, args_tran): out = open(out_file, "w") out.write("##gff-version 3\n") finals = {} libs, texs = read_libs(input_lib, wig_folder) wig_fs = read_wig(wig_f_file, "+", libs) wig_rs = read_wig(wig_r_file, "-", libs) tolers_f, tran_fs = transfer_to_tran(wig_fs, libs, texs, "+", args_tran) tolers_r, tran_rs = transfer_to_tran(wig_rs, libs, texs, "-", args_tran) fill_gap_and_print(tran_fs, "+", finals, tolers_f, wig_type, args_tran) fill_gap_and_print(tran_rs, "-", finals, tolers_r, wig_type, args_tran) print_transcript(finals, out) out.close() del wig_fs del wig_rs
ANNOgesic
/ANNOgesic-1.1.14.linux-x86_64.tar.gz/usr/local/lib/python3.10/dist-packages/annogesiclib/transcript_detection.py
transcript_detection.py
import os import csv import shutil from annogesiclib.helper import Helper from annogesiclib.multiparser import Multiparser from annogesiclib.gene_ontology import retrieve_uniprot, map2goslim class GoTermFinding(object): '''Retrieving the GO term''' def __init__(self, args_go): self.multiparser = Multiparser() self.helper = Helper() self.out_all = os.path.join(args_go.out_folder, "all_CDSs") self.out_express = os.path.join(args_go.out_folder, "expressed_CDSs") self.result_all_path = os.path.join(self.out_all, "GO_term_results") self.result_express_path = os.path.join(self.out_express, "GO_term_results") self.gff_path = os.path.join(args_go.gffs, "tmp") if args_go.trans is not None: self.tran_path = os.path.join(args_go.trans, "tmp") else: self.tran_path = None self.stat_all_path = os.path.join(self.out_all, "statistics") self.stat_express_path = os.path.join(self.out_express, "statistics") self.all_strain = "all_genomes_uniprot.csv" def _retrieve_go(self, uniprot, out_path, type_, log): prefixs = [] log.write("Running gene_ontology.py to retrieve GO terms.\n") for gff in os.listdir(self.gff_path): prefix = gff.replace(".gff", "") prefixs.append(prefix) self.helper.check_make_folder(os.path.join(out_path, prefix)) out_file = os.path.join(out_path, prefix, "_".join([prefix, "uniprot.csv"])) print("Extracting GO terms of {0} from UniProt".format(prefix)) if self.tran_path is not None: tran_file = os.path.join(self.tran_path, "_".join([prefix, "transcript.gff"])) if not os.path.exists(tran_file): tran_file = None else: tran_file = None retrieve_uniprot(uniprot, os.path.join(self.gff_path, gff), out_file, tran_file, type_) log.write("\t" + out_file + " is generated.\n") def _remove_header(self, out_all): out = open(out_all + "_tmp", "w") fh = open(out_all, "r") out.write("\t".join(["Genome", "Strand", "Start", "End", "Protein_id", "Go_term"]) + "\n") for row in csv.reader(fh, delimiter='\t'): if row[0] != "Genome": out.write("\t".join(row) + "\n") out.close() fh.close() shutil.move(out_all + "_tmp", out_all) def _merge_files(self, gffs, out_path, out_folder, log): '''merge the files according to the input genome folder''' folders = [] log.write("Merging the output files based on the input genome " "information.\n") for folder in os.listdir(gffs): if folder.endswith("gff_folder"): folder_prefix = folder.replace(".gff_folder", "") folder_path = os.path.join(out_folder, folder_prefix) self.helper.check_make_folder(folder_path) folders.append(folder_path) filenames = [] for gff in os.listdir(os.path.join(gffs, folder)): if gff.endswith(".gff"): filenames.append(gff.replace(".gff", "")) out_all = os.path.join(folder_path, self.all_strain) if len(filenames) > 1: if self.all_strain in os.listdir(folder_path): os.remove(out_all) for filename in filenames: csv_file = "_".join([filename, "uniprot.csv"]) self.helper.merge_file(os.path.join(out_path, filename, csv_file), out_all) self._remove_header(out_all) shutil.copy(os.path.join(out_path, filename, csv_file), folder_path) else: shutil.copyfile(os.path.join(out_path, filenames[0], "_".join([filenames[0], "uniprot.csv"])), out_all) self.helper.remove_all_content(out_path, None, "dir") self.helper.remove_all_content(out_path, None, "file") for folder in folders: folder_prefix = folder.split("/")[-1] shutil.move(folder, os.path.join(out_path, folder_prefix)) for file_ in os.listdir(os.path.join(out_path, folder_prefix)): log.write("\t" + os.path.join(out_path, folder_prefix, file_) + " is generated.\n") def _stat(self, out_path, stat_path, go, goslim, out_folder, log): log.write("Running gene_ontology.py to Retrieve GOslim terms and " "do statistics.\n") log.write("The following files are generated:\n") for folder in os.listdir(out_path): strain_stat_path = os.path.join(stat_path, folder) self.helper.check_make_folder(strain_stat_path) fig_path = os.path.join(strain_stat_path, "figs") if "fig" not in os.listdir(strain_stat_path): os.mkdir(fig_path) stat_file = os.path.join(strain_stat_path, "_".join(["stat", folder + ".csv"])) map2goslim(goslim, go, os.path.join(out_path, folder, self.all_strain), stat_file, out_folder) log.write("\t" + stat_file + "\n") self.helper.move_all_content(out_folder, fig_path, ["_three_roots.png"]) self.helper.move_all_content(out_folder, fig_path, ["_molecular_function.png"]) self.helper.move_all_content(out_folder, fig_path, ["_cellular_component.png"]) self.helper.move_all_content(out_folder, fig_path, ["_biological_process.png"]) for file_ in os.listdir(fig_path): log.write("\t" + os.path.join(fig_path, file_) + "\n") def run_go_term(self, args_go, log): for gff in os.listdir(args_go.gffs): if gff.endswith(".gff"): self.helper.check_uni_attributes(os.path.join( args_go.gffs, gff)) self.multiparser.parser_gff(args_go.gffs, None) if args_go.trans is not None: self.multiparser.parser_gff(args_go.trans, "transcript") print("Computing all CDSs") log.write("Retrieving GO terms for all CDSs.\n") self._retrieve_go(args_go.uniprot, self.result_all_path, "all", log) self._merge_files(args_go.gffs, self.result_all_path, self.out_all, log) self._stat(self.result_all_path, self.stat_all_path, args_go.go, args_go.goslim, self.out_all, log) if args_go.trans is not None: log.write("Retrieving GO terms only for expressed CDSs.\n") print("Computing express CDSs") self._retrieve_go(args_go.uniprot, self.result_express_path, "express", log) self._merge_files(args_go.gffs, self.result_express_path, self.out_express, log) self._stat(self.result_express_path, self.stat_express_path, args_go.go, args_go.goslim, self.out_express, log) self.helper.remove_tmp_dir(args_go.gffs) if args_go.trans is not None: self.helper.remove_tmp_dir(args_go.trans)
ANNOgesic
/ANNOgesic-1.1.14.linux-x86_64.tar.gz/usr/local/lib/python3.10/dist-packages/annogesiclib/goterm.py
goterm.py
import os import sys import time import shutil import copy from glob import glob from subprocess import call, Popen from annogesiclib.multiparser import Multiparser from annogesiclib.helper import Helper from annogesiclib.converter import Converter from annogesiclib.circRNA_detection import detect_circrna class CircRNADetection(object): '''Detection of circRNA''' def __init__(self, args_circ): self.multiparser = Multiparser() self.helper = Helper() self.converter = Converter() self.alignment_path = os.path.join(args_circ.output_folder, "segemehl_alignment_files") self.splice_path = os.path.join(args_circ.output_folder, "segemehl_splice_results") self.candidate_path = os.path.join(args_circ.output_folder, "circRNA_tables") self.gff_folder = os.path.join(args_circ.output_folder, "gffs") self.gff_path = os.path.join(args_circ.gffs, "tmp") self.splices = {"file": "splicesites.bed", "splice": "splicesites"} self.trans = {"file": "transrealigned.bed", "trans": "transrealigned"} self.fasta_path = os.path.join(args_circ.fastas, "tmp") def _wait_process(self, processes): '''wait for the parallels to finish the process''' for p in processes: p.wait() if p.stdout: p.stdout.close() if p.stdin: p.stdin.close() if p.stderr: p.stderr.close() try: p.kill() except OSError: pass time.sleep(5) def _deal_zip_file(self, read_files, log): tmp_datas = [] tmp_reads = [] for reads in read_files: zips = [] tmp_datas = reads["files"] for read in reads["files"]: if read.endswith(".bz2"): mod_read = read.replace(".bz2", "") if (".fa" not in mod_read) and ( ".fasta" not in mod_read) and ( ".fna" not in mod_read) and ( ".fq" not in mod_read) and ( ".fastq" not in mod_read): mod_read = mod_read + ".fa" read_out = open(mod_read, "w") tmp_datas.append(mod_read) zips.append(mod_read) print(" ".join(["Uncompressing", read])) log.write(" ".join(["bzcat", read]) + "\n") call(["bzcat", read], stdout=read_out) log.write("\t" + mod_read + " is generated.\n") read_out.close() elif read.endswith(".gz"): mod_read = read.replace(".gz", "") if (".fa" not in mod_read) and ( ".fasta" not in mod_read) and ( ".fna" not in mod_read) and ( ".fq" not in mod_read) and ( ".fastq" not in mod_read): mod_read = mod_read + ".fa" read_out = open(mod_read, "w") tmp_datas.append(mod_read) zips.append(mod_read) print(" ".join(["Uncompressing", read])) log.write(" ".join(["zcat", read]) + "\n") call(["zcat", read], stdout=read_out) read_out.close() log.write("\t" + mod_read + " is generated.\n") tmp_reads.append({"sample": reads["sample"], "files": tmp_datas, "zips": zips}) return tmp_reads def _run_segemehl_fasta_index(self, segemehl_path, fasta_path, index, fasta, log): log.write(" ".join([segemehl_path, "-x", os.path.join(fasta_path, index), "-d", os.path.join(fasta_path, fasta)]) + "\n") call([segemehl_path, "-x", os.path.join(fasta_path, index), "-d", os.path.join(fasta_path, fasta)]) def _run_segemehl_align(self, args_circ, index, fasta, read, sam_file, log_file, fasta_prefix, log): out = open(os.path.join(self.alignment_path, fasta_prefix, sam_file), "w") log = open(os.path.join(self.alignment_path, fasta_prefix, log_file), "w") log.write(" ".join([args_circ.segemehl_path, "-i", os.path.join(self.fasta_path, index), "-d", os.path.join(self.fasta_path, fasta), "-q", read, "-S"]) + "\n") p = Popen([args_circ.segemehl_path, "-i", os.path.join(self.fasta_path, index), "-d", os.path.join(self.fasta_path, fasta), "-q", read, "-S"], stdout=out, stderr=log) return p def _align(self, args_circ, read_datas, log): '''align the read. if the bam files are provided, it can be skipped.''' prefixs = [] align_files = [] log.write("Using segemehl to align the read.\n") log.write("Please make sure the version of segemehl is at least 0.1.9.\n") for fasta in os.listdir(self.fasta_path): index = fasta.replace(".fa", ".idx") self._run_segemehl_fasta_index(args_circ.segemehl_path, self.fasta_path, index, fasta, log) processes = [] num_process = 0 fasta_prefix = fasta.replace(".fa", "") prefixs.append(fasta_prefix) self.helper.check_make_folder(os.path.join( self.alignment_path, fasta_prefix)) log.write("Running for {0}.\n".format(fasta_prefix)) for reads in read_datas: for read in reads["files"]: num_process += 1 read_name = read.split("/")[-1] if read_name.endswith(".fa") or \ read_name.endswith(".fna") or \ read_name.endswith(".fasta") or \ read_name.endswith(".fq") or \ read_name.endswith(".fastq"): filename = read_name.split(".") read_prefix = ".".join(filename[:-1]) sam_file = "_".join([read_prefix, fasta_prefix + ".sam"]) log_file = "_".join([read_prefix, fasta_prefix + ".log"]) align_files.append("_".join([read_prefix, fasta_prefix])) print("Mapping {0}".format(sam_file)) p = self._run_segemehl_align( args_circ, index, fasta, read, sam_file, log_file, fasta_prefix, log) processes.append(p) if num_process == args_circ.cores: self._wait_process(processes) num_process = 0 self._wait_process(processes) log.write("Done!\n") log.write("The following files are generated in {0}:\n".format( os.path.join(self.alignment_path, fasta_prefix))) for file_ in os.listdir(os.path.join( self.alignment_path, fasta_prefix)): log.write("\t" + file_ + "\n") return align_files, prefixs def _run_samtools_convert_bam(self, samtools_path, pre_sam, out_bam, log): log.write(" ".join([samtools_path, "view", "-bS", pre_sam, "-o", out_bam]) + "\n") call([samtools_path, "view", "-bS", pre_sam, "-o", out_bam]) def _convert_sam2bam(self, sub_alignment_path, samtools_path, align_files, log): bam_files = [] convert_ones = [] remove_ones = [] log.write("Using Samtools to convert SAM files to BAM files.\n") log.write("Please make sure the version of Samtools is at least 1.3.1.\n") for sam in os.listdir(sub_alignment_path): pre_sam = os.path.join(sub_alignment_path, sam) if sam.endswith(".sam"): bam_file = sam.replace(".sam", ".bam") print("Converting {0} to {1}".format(sam, bam_file)) out_bam = os.path.join(sub_alignment_path, bam_file) self._run_samtools_convert_bam(samtools_path, pre_sam, out_bam, log) bam_files.append(out_bam) if align_files: if bam_file.replace(".bam", "") not in align_files: convert_ones.append(out_bam) else: remove_ones.append(pre_sam) elif sam.endswith(".bam"): if (pre_sam not in convert_ones) and ( pre_sam not in remove_ones): bam_files.append(pre_sam) elif sam.endswith(".log"): os.remove(pre_sam) log.write("Done!\n") log.write("The following files are generated:\n") for file_ in os.listdir(sub_alignment_path): if file_.endswith(".bam"): log.write("\t" + os.path.join(sub_alignment_path, file_) + "\n") return bam_files, convert_ones, remove_ones def _run_samtools_merge_sort(self, samtools_path, prefix, out_folder, bam_datas, log): log.write("Using Samtools for merging, sorting and converting " "the BAM files.\n") log.write("Make sure the version Samtools is at least 1.3.1.\n") for bam_data in bam_datas: print("Merging bam files for {0} of {1}".format( prefix, bam_data["sample"])) sample_bam = os.path.join(out_folder, "_".join([ prefix, bam_data["sample"] + ".bam"])) if len(bam_data["files"]) <= 1: shutil.copyfile(bam_data["files"][0], sample_bam) else: file_line = " ".join(bam_data["files"]) log.write(" ".join([samtools_path, "merge", sample_bam, file_line]) + "\n") os.system(" ".join([samtools_path, "merge", sample_bam, file_line])) print("Sorting bam files for {0} of {1}".format( prefix, bam_data["sample"])) sort_sample = os.path.join(out_folder, "_".join([prefix, bam_data["sample"] + "_sort.bam"])) log.write(" ".join([samtools_path, "sort", "-o", sort_sample, sample_bam]) + "\n") call([samtools_path, "sort", "-o", sort_sample, sample_bam]) os.remove(sample_bam) print("Converting bam files to sam files for {0} of {1}".format( prefix, bam_data["sample"])) log.write(" ".join([samtools_path, "view", "-h", "-o", sort_sample.replace(".bam", ".sam"), sort_sample]) + "\n") call([samtools_path, "view", "-h", "-o", sort_sample.replace(".bam", ".sam"), sort_sample]) log.write("Done!\n") log.write("\t" + sort_sample.replace(".bam", ".sam") + " is generated.\n") def _merge_sort_aligment_file( self, bam_datas, read_datas, samtools_path, out_folder, convert_ones, tmp_reads, remove_ones, prefix, log): if bam_datas is None: merge_bam_datas = [] for read_data in read_datas: bam_files = [] for read in read_data["files"]: if read.endswith(".gz") or read.endswith(".bz2"): read = ".".join( read.split("/")[-1].split(".")[:-1]) read_prefix = ".".join( read.split("/")[-1].split(".")[:-1]) bam_files.append(os.path.join( self.alignment_path, prefix, "_".join([read_prefix, prefix + ".bam"]))) merge_bam_datas.append({"sample": read_data["sample"], "files": bam_files}) elif (bam_datas is not None) and (read_datas is not None): merge_bam_datas = copy.deepcopy(bam_datas) for bam_data in merge_bam_datas: for read_data in read_datas: if bam_data["sample"] == read_data["sample"]: for read in read_data["files"]: read_prefix = ".".join( read.split("/")[-1].split(".")[:-1]) bam = os.path.join( self.alignment_path, prefix, "_".join([read_prefix, prefix + ".bam"])) if (bam not in bam_data["files"]): bam_data["files"].append(bam) else: merge_bam_datas = copy.deepcopy(bam_datas) self._run_samtools_merge_sort(samtools_path, prefix, out_folder, merge_bam_datas, log) for bam in convert_ones: os.remove(bam) for sam in remove_ones: os.remove(sam) def _run_testrealign(self, prefix, testrealign_path, out_folder, log): log.write("Using Segemehl to detect circular RNAs.\n") log.write("Please make sure the version of Segemehl is at least 0.1.9.\n") log.write("Please make sure your testrealign.x exists. If it does not " "exists, please reinstall your Segemehl via using make all.\n") sub_splice_path = os.path.join(self.splice_path, prefix) if not os.path.exists(sub_splice_path): os.mkdir(sub_splice_path) err_log = os.path.join(sub_splice_path, prefix + ".log") print("Running testrealign.x for {0}".format(prefix)) for sam_file in os.listdir(out_folder): if sam_file.endswith("sort.sam"): sample_prefix = sam_file.replace("_sort.sam", "") command = " ".join([ testrealign_path, "-d", os.path.join(self.fasta_path, prefix + ".fa"), "-q", os.path.join(out_folder, sam_file), "-n", "-U", os.path.join(sub_splice_path, sample_prefix + "_splicesites.bed"), "-T", os.path.join(sub_splice_path, sample_prefix + "_transrealigned.bed")]) log.write(command + " 2>" + err_log + "\n") os.system(command + " 2>" + err_log) log.write("Done!\n") log.write("The following files are generated:\n") for file_ in os.listdir(sub_splice_path): log.write("\t" + os.path.join(sub_splice_path, file_) + "\n") self.helper.remove_all_content(out_folder, ".sam", "file") def _merge_bed(self, fastas, splice_path, output_folder): '''Merge the bed files for analysis''' fa_prefixs = [] for fasta in os.listdir(fastas): headers = [] if (fasta.endswith(".fa") or fasta.endswith(".fna") or fasta.endswith(".fasta")): with open(os.path.join(fastas, fasta), "r") as f_h: for line in f_h: line = line.strip() if line.startswith(">"): headers.append(line[1:]) filename = fasta.split(".") fasta_prefix = ".".join(filename[:-1]) fa_prefixs.append(fasta_prefix) bed_folder = os.path.join( output_folder, fasta_prefix) self.helper.check_make_folder(bed_folder) samples = [] for header in headers: for splice in os.listdir(os.path.join( splice_path, header)): if splice.endswith(".bed"): if self.splices["file"] in splice: sample = splice.replace(header, "") sample = sample.replace( self.splices["file"], "") if sample not in samples: samples.append(sample) shutil.copyfile( os.path.join( splice_path, header, splice), os.path.join( bed_folder, "tmp_" + splice)) for sample in samples: out_splice = os.path.join(bed_folder, "".join([ fasta_prefix + sample + self.splices["file"]])) out_trans = os.path.join(bed_folder, "".join([ fasta_prefix + sample + self.trans["file"]])) if os.path.exists(out_splice): os.remove(out_splice) if os.path.exists(out_trans): os.remove(out_trans) for file_ in os.listdir(bed_folder): if (self.splices["splice"] in file_) and ( sample in file_): self.helper.merge_file(os.path.join( bed_folder, file_), out_splice) elif (self.trans["trans"] in file_) and ( sample in file_): self.helper.merge_file(os.path.join( bed_folder, file_), out_trans) self.helper.remove_all_content(splice_path, None, "dir") return samples, fa_prefixs def _stat_and_gen_gff(self, prefixs, samples, args_circ, log): '''do statistics and print the result to gff file''' log.write("Running circRNA.py to do statistics and generate gff files.\n") log.write("The following files are generated:\n") for prefix in prefixs: self.helper.check_make_folder(os.path.join(self.gff_folder, prefix)) self.helper.check_make_folder(os.path.join(self.splice_path, prefix)) for bed in os.listdir(os.path.join( args_circ.output_folder, prefix)): if (bed.split("_")[0] != "tmp") and (bed.endswith(".bed")): shutil.copy( os.path.join(args_circ.output_folder, prefix, bed), os.path.join(self.splice_path, prefix)) self.helper.check_make_folder(os.path.join( self.candidate_path, prefix)) print("Comparing circular RNAs with annotations of {0}".format( prefix)) for sample in samples: splice_file = os.path.join( self.splice_path, prefix, "".join([prefix, sample, self.splices["file"]])) stat_file = os.path.join(args_circ.stat_folder, "".join(["stat_", prefix, sample, "circRNA.csv"])) csv_all = os.path.join(self.candidate_path, prefix, "".join([prefix, sample, "circRNA_all.csv"])) csv_best = os.path.join(self.candidate_path, prefix, "".join([prefix, sample, "circRNA_best.csv"])) gff_all = os.path.join(self.gff_folder, prefix, "".join([prefix, sample, "circRNA_all.gff"])) gff_best = os.path.join(self.gff_folder, prefix, "".join([prefix, sample, "circRNA_best.gff"])) detect_circrna(splice_file, os.path.join( self.gff_path, prefix + ".gff"), csv_all, args_circ, stat_file) self.converter.convert_circ2gff( os.path.join(self.candidate_path, prefix, "".join([prefix, sample, "circRNA_all.csv"])), args_circ, gff_all, gff_best) log.write("\t" + stat_file + "\n") log.write("\t" + csv_all + "\n") log.write("\t" + csv_best + "\n") log.write("\t" + gff_all + "\n") log.write("\t" + gff_best + "\n") def _extract_input_files(self, inputs): input_datas = [] for input_ in inputs: datas = input_.split(":") if len(datas) != 2: print("Error: the format of --bam_files or " "--read_files is wrong!") sys.exit() for file_ in datas[-1].split(","): if not os.path.exists(file_): print("Error: some files in --bam_files or " "--read_files do not exist!") sys.exit() input_datas.append({"sample": datas[0], "files": datas[-1].split(",")}) return input_datas def _combine_read_bam(self, bam_files, bam_datas, read_datas): if bam_datas is not None: for bam_data in bam_datas: for read_data in read_datas: if bam_data["sample"] == read_data["sample"]: for read in read_data["files"]: prefix = ".".join( read.split("/")[-1].split(".")[:-1]) bam = os.path.join(self.alignment_path, prefix + ".bam") if (bam in bam_files) and ( bam not in bam_data["files"]): bam_data["files"].append(bam) else: bam_datas = [] for read_data in read_datas: bam_files = [] for read in read_data["files"]: prefix = ".".join( read.split("/")[-1].split(".")[:-1]) bam_files.append(os.path.join( self.alignment_path, prefix + ".bam")) bam_datas.append({"sample": read_data["sample"], "files": bam_files}) return bam_datas def _remove_tmp_files(self, args_circ, fa_prefixs): self.helper.remove_tmp_dir(args_circ.fastas) self.helper.remove_tmp_dir(args_circ.gffs) self.helper.remove_all_content(args_circ.output_folder, ".bam", "file") for prefix in fa_prefixs: shutil.rmtree(os.path.join(args_circ.output_folder, prefix)) def run_circrna(self, args_circ, log): '''detection of circRNA''' bam_datas = None read_datas = None if (args_circ.bams is None) and (args_circ.read_files is None): log.write("--bam_files and --read_files can not be both emtpy.\n") print("Error: --bam_files or --read_files should be assigned.") sys.exit() if args_circ.bams is not None: bam_datas = self._extract_input_files(args_circ.bams) if args_circ.read_files is not None: read_datas = self._extract_input_files(args_circ.read_files) for gff in os.listdir(args_circ.gffs): if gff.endswith(".gff"): self.helper.check_uni_attributes(os.path.join( args_circ.gffs, gff)) if args_circ.segemehl_path is None: log.write("segemehl does not exists.\n") print("Error: please assign segemehl path!!") sys.exit() self.multiparser.parser_fasta(args_circ.fastas) self.multiparser.parser_gff(args_circ.gffs, None) self.multiparser.combine_gff(args_circ.fastas, self.gff_path, "fasta", None) tmp_reads = [] if args_circ.read_files: log.write("Raw read files are found.\n") tmp_reads = self._deal_zip_file(read_datas, log) align_files, prefixs = self._align(args_circ, tmp_reads, log) else: align_files = None prefixs = [] for fasta in os.listdir(self.fasta_path): if fasta.endswith(".fa"): fasta_prefix = fasta.replace(".fa", "") prefixs.append(fasta_prefix) for prefix in prefixs: if args_circ.read_files: sub_alignment_path = os.path.join(self.alignment_path, prefix) bam_files, convert_ones, remove_ones = self._convert_sam2bam( sub_alignment_path, args_circ.samtools_path, align_files, log) else: convert_ones = [] remove_ones = [] self._merge_sort_aligment_file( bam_datas, read_datas, args_circ.samtools_path, args_circ.output_folder, convert_ones, tmp_reads, remove_ones, prefix, log) self._run_testrealign(prefix, args_circ.testrealign_path, args_circ.output_folder, log) samples, fa_prefixs = self._merge_bed( args_circ.fastas, self.splice_path, args_circ.output_folder) self._stat_and_gen_gff(fa_prefixs, samples, args_circ, log) if len(tmp_reads) != 0: for reads in tmp_reads: for read in reads["zips"]: os.remove(read) self._remove_tmp_files(args_circ, fa_prefixs)
ANNOgesic
/ANNOgesic-1.1.14.linux-x86_64.tar.gz/usr/local/lib/python3.10/dist-packages/annogesiclib/circrna.py
circrna.py
import shutil import csv def import_data(row): return{"strain": row[1], "strand": row[2], "associate": row[3], "start_seq": int(row[4]), "end_seq": int(row[5]), "rfam": row[6], "e": row[7], "score": row[8], "start_align": int(row[9]), "end_align": int(row[10]), "info": row[0:6], "ID": row[0]} def modify_table(table, output_all): first = True rbss = [] out = open("tmp.csv", "w") out.write("#ID\tGenome\tStrand\tAssociated_CDS\tStart_genome\t" "End_genome\tRfam\tE_value\tScore\tStart_align\tEnd_align\n") if output_all: with open(table) as fh: for line in fh: line = line.strip() if first: first = False rbss.append(line) out.write(line + "\n") else: if line not in rbss: rbss.append(line) out.write(line + "\n") else: fh = open(table, "r") for row in csv.reader(fh, delimiter='\t'): rbss.append(import_data(row)) ids = [] for rbs1 in rbss: repeat = False if "print" not in rbs1.keys(): rbs1["print"] = True for rbs2 in rbss: if (rbs1["strain"] == rbs2["strain"]) and \ (rbs1["strand"] == rbs2["strand"]) and \ (rbs1["ID"] == rbs2["ID"]): if "print" not in rbs2.keys(): rbs2["print"] = True repeat = True if (not repeat) or (rbs1["ID"] not in ids): ids.append(rbs1["ID"]) out.write("\t".join(rbs1["info"] + [rbs1["rfam"], rbs1["e"], rbs1["score"], str(rbs1["start_align"]), str(rbs1["end_align"])]) + "\n") fh.close() out.close() shutil.move("tmp.csv", table)
ANNOgesic
/ANNOgesic-1.1.14.linux-x86_64.tar.gz/usr/local/lib/python3.10/dist-packages/annogesiclib/modify_rbs_table.py
modify_rbs_table.py
import os import csv import sys import shutil from subprocess import call from annogesiclib.helper import Helper from annogesiclib.multiparser import Multiparser from annogesiclib.converter import Converter from annogesiclib.merge_manual import merge_manual_predict_tss from annogesiclib.stat_TSSpredator import stat_tsspredator from annogesiclib.plot_TSS_venn import plot_venn from annogesiclib.validate_gene import validate_gff from annogesiclib.stat_TA_comparison import stat_ta_tss from annogesiclib.check_orphan import check_orphan from annogesiclib.filter_TSS_pro import filter_tss_pro from annogesiclib.filter_low_expression import filter_low_expression class TSSpredator(object): def __init__(self, args_tss): self.multiparser = Multiparser() self.helper = Helper() self.converter = Converter() self.master = os.path.join(args_tss.out_folder, "MasterTables") self.tmps = {"tss": "tmp_TSS", "ta_tss": "tmp_ta_tss", "tss_ta": "tmp_tss", "tmp": "tmp"} if args_tss.ta_files is not None: self.tmps["ta"] = os.path.join(args_tss.ta_files, "tmp") else: self.tmps["ta"] = None self.gff_path = os.path.join(args_tss.gffs, "tmp") if args_tss.manual is not None: self.manual_path = os.path.join(args_tss.manual, "tmp") self.wig_path = os.path.join(args_tss.wig_folder, "tmp") self.fasta_path = os.path.join(args_tss.fastas, "tmp") self.stat_outfolder = os.path.join(args_tss.out_folder, "statistics") self.gff_outfolder = os.path.join(args_tss.out_folder, "gffs") def _assign_dict(self, lib_datas): return {"wig": lib_datas[0], "tex": lib_datas[1], "condition": int(lib_datas[2]), "replicate": lib_datas[3], "strand": lib_datas[4]} def _print_lib(self, lib_num, lib_list, out, wig_folder, prefix, rep_set): for num_id in range(1, lib_num+1): cond_list = [] for lib in lib_list: if num_id == lib["condition"]: cond_list.append(lib) cond_sort_list = sorted(cond_list, key=lambda k: k['replicate']) reps = [] for cond in cond_sort_list: out.write("{0}_{1}{2} = {3}\n".format( prefix, cond["condition"], cond["replicate"], os.path.join(wig_folder, cond["wig"]))) reps.append(cond["replicate"]) for rep in sorted(rep_set): if rep not in reps: out.write("{0}_{1}{2} = \n".format( prefix, cond["condition"], rep)) def _start_to_run(self, tsspredator_path, config_file, out_path, prefix, log): print("Running TSSpredator for " + prefix) log.write("Make sure the version of TSSpredator is at least 1.06.\n") out = open(os.path.join(out_path, "log.txt"), "w") err = open(os.path.join(out_path, "err.txt"), "w") log.write(" ".join(["java", "-jar", tsspredator_path, config_file]) + "\n") call(["java", "-jar", tsspredator_path, config_file], stdout=out, stderr=err) out.close() err.close() log.write("Done!\n") log.write("The following files are generated in {0}:\n".format(out_path)) for file_ in os.listdir(out_path): log.write("\t" + file_ + "\n") def _import_lib(self, libs, wig_folder, project_strain_name, out, gff, program, fasta): lib_dict = {"fp": [], "fm": [], "nm": [], "np": []} lib_num = 0 rep_set = set() list_num_id = [] for lib in libs: lib_datas = lib.split(":") if not lib_datas[0].endswith(".wig"): print("Error: Wiggle files are not end with .wig!") sys.exit() for wig in os.listdir(wig_folder): filename = wig.split("_STRAIN_") if (filename[0] == lib_datas[0][:-4]) and ( filename[1][:-4] == project_strain_name): lib_datas[0] = wig if int(lib_datas[2]) > lib_num: lib_num = int(lib_datas[2]) if lib_datas[3] not in rep_set: rep_set.add(lib_datas[3]) if (lib_datas[1] == "tex") and (lib_datas[4] == "+"): lib_dict["fp"].append(self._assign_dict(lib_datas)) elif (lib_datas[1] == "tex") and (lib_datas[4] == "-"): lib_dict["fm"].append(self._assign_dict(lib_datas)) elif (lib_datas[1] == "notex") and (lib_datas[4] == "+"): lib_dict["np"].append(self._assign_dict(lib_datas)) elif (lib_datas[1] == "notex") and (lib_datas[4] == "-"): lib_dict["nm"].append(self._assign_dict(lib_datas)) for num_id in range(1, lib_num+1): os.system("echo '##gff-version 3' > tmp") g = open(gff, "r") for row in csv.reader(g, delimiter='\t'): if not row[0].startswith("#"): seq_name = row[0] break os.system("echo '##sequence-region '" + seq_name + " >> tmp") os.system("cat " + gff + ">> tmp") g.close() shutil.move("tmp", gff) out.write("annotation_{0} = {1}\n".format(num_id, gff)) if program.lower() == "tss": self._print_lib(lib_num, lib_dict["fm"], out, wig_folder, "fivePrimeMinus", rep_set) self._print_lib(lib_num, lib_dict["fp"], out, wig_folder, "fivePrimePlus", rep_set) elif program.lower() == "ps": self._print_lib(lib_num, lib_dict["nm"], out, wig_folder, "fivePrimeMinus", rep_set) self._print_lib(lib_num, lib_dict["np"], out, wig_folder, "fivePrimePlus", rep_set) else: print("Error: Wrong program name! Please assing tss " "or processing_site.") sys.exit() for num_id in range(1, lib_num+1): out.write("genome_{0} = {1}\n".format(num_id, fasta)) for num_id in range(1, lib_num+1): list_num_id.append(str(num_id)) return lib_num, num_id, rep_set, lib_dict, list_num_id def _print_repmatch(self, args_tss, out): '''check replicate match''' detect_all = False for rep in args_tss.repmatch: if "all" in rep: detect_all = True match = rep.split("_")[-1] out.write("minNumRepMatches = {0}\n".format(match)) break if not detect_all: nums = {} matchs = {} for match in args_tss.repmatch: lib = match.split("_")[0] rep = match.split("_")[-1] matchs[lib] = rep if rep not in nums.keys(): nums[rep] = 1 else: nums[rep] += 1 for rep, num in nums.items(): if num == max(nums.values()): out.write("minNumRepMatches = {0}\n".format(rep)) max_rep = rep break for lib, rep in matchs.items(): if rep != max_rep: out.write("minNumRepMatches_{0} = {1}\n".format( lib, rep)) def _extract_best_para(self, args_tss, prefix, log): detect = False for best_file in os.listdir(args_tss.auto_load): if best_file == "_".join(["best", prefix + ".csv"]): bh = open(os.path.join(args_tss.auto_load, best_file),"r" ) lines = bh.readlines() bh.close() if len(lines[len(lines)-1].split("\t")) < 8: print("Error: some information in {0} is missing. " "It may be due to that \"optimize_tss_ps\" did " "not finish successfully.".format(best_file)) log.write("Error: some information in {0} is missing. " "It may be due to that \"optimize_tss_ps\" did " "not finish successfully.\n".format(best_file)) sys.exit() else: para_info = lines[len(lines)-1].split("\t")[1].split("_") detect_all = all(elem in para_info for elem in ["he", "rh", "fa", "rf", "bh", "ef", "pf"]) if (not detect_all) or (len(para_info) != 14): print("Error: {0} is complete. Some parameters are " "missing!".format(best_file)) log.write("Error: {0} is complete. Some parameters " "are missing!\n".format(best_file)) sys.exit() else: detect = True height = para_info[para_info.index("he") + 1] height_reduction = para_info[ para_info.index("rh") + 1] factor = para_info[para_info.index("fa") + 1] factor_reduction = para_info[ para_info.index("rf") + 1] base_height = para_info[ para_info.index("bh") + 1] enrichment_factor = para_info[ para_info.index("ef") + 1] processing_factor = para_info[ para_info.index("pf") + 1] if detect: return height, height_reduction, factor, factor_reduction, \ base_height, enrichment_factor, processing_factor else: print("Error: No best_{0}.csv can be found in {1}! ".format( prefix, args_tss.auto_load)) log.write("Error: No best_{0}.csv can be found in {1}\n".format( prefix, args_tss.auto_load)) sys.exit() def _get_input_para(self, args_tss, prefix, log): if args_tss.genome_order is None: height = args_tss.height[0] height_reduction = args_tss.height_reduction[0] factor = args_tss.factor[0] factor_reduction = args_tss.factor_reduction[0] base_height = args_tss.base_height[0] enrichment_factor = args_tss.enrichment_factor[0] processing_factor = args_tss.processing_factor[0] else: if prefix not in args_tss.genome_order: print("Error: the parameters for {0} were not assigned!".format( prefix)) log.write("Error: the parameters for {0} were not assigned!\n".format( prefix)) sys.exit() else: index = args_tss.genome_order.index(prefix) height = args_tss.height[index] height_reduction = args_tss.height_reduction[index] factor = args_tss.factor[index] factor_reduction = args_tss.factor_reduction[index] base_height = args_tss.base_height[index] enrichment_factor = args_tss.enrichment_factor[index] processing_factor = args_tss.processing_factor[index] return height, height_reduction, factor, factor_reduction, \ base_height, enrichment_factor, processing_factor def _gen_config(self, project_strain_name, args_tss, gff, wig_folder, fasta, config_file, log): '''generation of config files''' log.write("Generating config files for TSSpredator.\n") if args_tss.auto_load is not None: height, height_reduction, factor, factor_reduction, \ base_height, enrichment_factor, processing_factor = \ self._extract_best_para(args_tss, project_strain_name, log) else: height, height_reduction, factor, factor_reduction, \ base_height, enrichment_factor, processing_factor = \ self._get_input_para(args_tss, project_strain_name, log) master_folder = "MasterTable_" + project_strain_name out_path = os.path.join(self.master, master_folder) self.helper.check_make_folder(out_path) out = open(config_file, "w") out.write("TSSinClusterSelectionMethod = HIGHEST\n") out.write("allowedCompareShift = 1\n") out.write("allowedRepCompareShift = 1\n") lib_num, num_id, rep_set, lib_dict, list_num_id = \ self._import_lib(args_tss.libs, wig_folder, project_strain_name, out, gff, args_tss.program, fasta) out.write("idList = ") out.write(",".join(list_num_id) + "\n") out.write("maxASutrLength = 100\n") out.write("maxGapLengthInGene = 500\n") out.write("maxNormalTo5primeFactor = {0}\n".format( processing_factor)) out.write("maxTSSinClusterDistance = {0}\n".format( args_tss.cluster + 1)) out.write("maxUTRlength = {0}\n".format(args_tss.utr_length)) out.write("min5primeToNormalFactor = {0}\n".format( enrichment_factor)) out.write("minCliffFactor = {0}\n".format(factor)) out.write("minCliffFactorDiscount = {0}\n".format( factor_reduction)) out.write("minCliffHeight = {0}\n".format(height)) out.write("minCliffHeightDiscount = {0}\n".format( height_reduction)) out.write("minNormalHeight = {0}\n".format(base_height)) self._print_repmatch(args_tss, out) out.write("minPlateauLength = 0\n") out.write("mode = cond\n") out.write("normPercentile = 0.9\n") if args_tss.program.lower() == "tss": self._print_lib(lib_num, lib_dict["nm"], out, wig_folder, "normalMinus", rep_set) self._print_lib(lib_num, lib_dict["np"], out, wig_folder, "normalPlus", rep_set) else: self._print_lib(lib_num, lib_dict["fm"], out, wig_folder, "normalMinus", rep_set) self._print_lib(lib_num, lib_dict["fp"], out, wig_folder, "normalPlus", rep_set) out.write("numReplicates = {0}\n".format(len(rep_set))) out.write("numberOfDatasets = {0}\n".format(lib_num)) out.write("outputDirectory = {0}\n".format(out_path)) for prefix_id in range(len(args_tss.output_prefixs)): out.write("outputPrefix_{0} = {1}\n".format( prefix_id + 1, args_tss.output_prefixs[prefix_id])) out.write("outputID_{0} = {1}\n".format( prefix_id + 1, args_tss.output_id)) out.write("projectName = {0}\n".format(project_strain_name)) out.write("projectName = {0}\n".format(project_strain_name)) out.write("superGraphCompatibility = igb\n") out.write("texNormPercentile = 0.5\n") out.write("writeGraphs = 0\n") out.write("writeNocornacFiles = 0\n") log.write("\t" + config_file + " is generated.\n") out.close() def _convert_gff(self, prefixs, args_tss, log): for prefix in prefixs: out_file = os.path.join(self.gff_outfolder, "_".join([ prefix, args_tss.program]) + ".gff") gff_f = open(out_file, "w") out_path = os.path.join(self.master, "_".join([ "MasterTable", prefix])) if "MasterTable.tsv" not in os.listdir(out_path): print("Error: There is not MasterTable file in {0} ".format( out_path)) print("Please check configuration file.") log.write("not MasterTable file is found in {0}\n".format( out_path)) else: if args_tss.program.lower() == "processing": feature = "processing_site" elif args_tss.program.lower() == "tss": feature = "TSS" self.converter.convert_mastertable2gff( os.path.join(out_path, "MasterTable.tsv"), "ANNOgesic", feature, prefix, out_file) log.write("\t" + out_file + "is generated.\n") gff_f.close() def _merge_manual(self, tsss, args_tss): '''if manual detected TSS is provided, it can merge manual detected TSS and TSSpredator predicted TSS''' self.helper.check_make_folder(os.path.join(os.getcwd(), self.tmps["tss"])) for tss in tsss: for gff in os.listdir(args_tss.gffs): if (gff[:-4] == tss) and (".gff" in gff): break filename = "_".join([tss, args_tss.program]) + ".gff" predict = os.path.join(self.gff_outfolder, filename) manual = os.path.join(self.manual_path, tss + ".gff") fasta = os.path.join(self.fasta_path, tss + ".fa") stat_file = "stat_compare_TSSpredator_manual_{0}.csv".format(tss) if os.path.exists(manual): print("Merging and classiflying manually-detected " "TSSs for {0}".format(tss)) merge_manual_predict_tss( predict, stat_file, os.path.join(self.tmps["tss"], filename), os.path.join(args_tss.gffs, gff), args_tss, manual, fasta) if os.path.exists(stat_file): shutil.move(stat_file, os.path.join( args_tss.out_folder, "statistics", tss, stat_file)) self.helper.move_all_content(self.tmps["tss"], self.gff_outfolder, [".gff"]) shutil.rmtree(self.tmps["tss"]) def _validate(self, tsss, args_tss, log): '''validate TSS with genome annotation''' print("Validating TSSs with genome annotations") log.write("Running validate_gene.py to compare genome " "annotations and TSSs/PSs.\n") for tss in tsss: for gff in os.listdir(args_tss.gffs): if (gff[:-4] == tss) and (".gff" in gff): break stat_file = os.path.join( self.stat_outfolder, tss, "".join(["stat_gene_vali_", tss, ".csv"])) out_cds_file = os.path.join(args_tss.out_folder, "tmp.gff") if args_tss.program.lower() == "tss": compare_file = os.path.join(self.gff_outfolder, "_".join([tss, "TSS.gff"])) elif args_tss.program.lower() == "processing": compare_file = os.path.join(self.gff_outfolder, "_".join([tss, "processing.gff"])) validate_gff(compare_file, os.path.join(args_tss.gffs, gff), stat_file, out_cds_file, args_tss.utr_length, args_tss.program.lower()) log.write("\t" + stat_file + " is generated.\n") shutil.move(out_cds_file, os.path.join(args_tss.gffs, gff)) def _compare_ta(self, tsss, args_tss, log): '''compare TSS with transcript''' detect = False log.write("Running stat_TA_comparison to compare transcripts " "and TSSs/PSs.\n") print("Comparing transcripts and TSSs") self.multiparser.parser_gff(args_tss.ta_files, "transcript") self.multiparser.combine_gff(args_tss.gffs, self.tmps["ta"], None, "transcript") for tss in tsss: stat_out = os.path.join( self.stat_outfolder, tss, "".join([ "stat_compare_TSS_transcript_", tss, ".csv"])) for ta in os.listdir(self.tmps["ta"]): filename = ta.split("_transcript") if (filename[0] == tss) and (filename[1] == ".gff"): detect = True break compare_file = os.path.join(self.gff_outfolder, "_".join([tss, "TSS.gff"])) if detect: stat_ta_tss(os.path.join(self.tmps["ta"], ta), compare_file, stat_out, self.tmps["ta_tss"], self.tmps["tss_ta"], args_tss.fuzzy) self.helper.sort_gff(self.tmps["tss_ta"], compare_file) self.helper.sort_gff(self.tmps["ta_tss"], os.path.join(args_tss.ta_files, ta)) os.remove(self.tmps["tss_ta"]) os.remove(self.tmps["ta_tss"]) detect = False log.write("\t" + stat_out + " is generated.\n") def _stat_tss(self, tsss, feature, log): print("Running statistaics") for tss in tsss: compare_file = os.path.join(self.gff_outfolder, "_".join([tss, feature]) + ".gff") stat_tsspredator( compare_file, feature, os.path.join(self.stat_outfolder, tss, "_".join([ "stat", feature, "class", tss]) + ".csv"), os.path.join(self.stat_outfolder, tss, "_".join([ "stat", feature, "libs", tss]) + ".csv")) self.helper.move_all_content(os.getcwd(), os.path.join( self.stat_outfolder, tss), ["_class", ".png"]) for file_ in os.listdir(self.stat_outfolder): if file_.startswith("TSSstatistics_"): shutil.move( os.path.join( self.stat_outfolder, file_), os.path.join( self.stat_outfolder, tss, file_)) plot_venn(compare_file, feature) self.helper.move_all_content(os.getcwd(), os.path.join( self.stat_outfolder, tss), ["_venn", ".png"]) log.write("The following files in {0} are generated:\n".format( (os.path.join(self.stat_outfolder, tss)))) for file_ in os.listdir(os.path.join( self.stat_outfolder, tss)): log.write("\t" + file_ + "\n") def _get_prefixs(self, args_tss): prefixs = [] detect = False for fasta in os.listdir(self.fasta_path): run = False for gff in os.listdir(self.gff_path): if fasta[:-3] == gff[:-4]: prefix = fasta[:-3] for wig in os.listdir(self.wig_path): filename = wig.split("_STRAIN_") if filename[1][:-4] == prefix: detect = True break if detect: prefixs.append(prefix) return prefixs def _merge_wigs(self, wig_folder, prefix, libs): self.helper.check_make_folder(os.path.join(os.getcwd(), self.tmps["tmp"])) for wig_file in os.listdir(wig_folder): for lib in libs: info = lib.split(":") if (info[0][:-4] in wig_file) and (info[-1] == "+") and ( prefix in wig_file) and ( os.path.isfile(os.path.join(wig_folder, wig_file))): Helper().merge_file( os.path.join(wig_folder, wig_file), os.path.join("tmp", "merge_forward.wig")) if (info[0][:-4] in wig_file) and (info[-1] == "-") and ( prefix in wig_file) and ( os.path.isfile(os.path.join(wig_folder, wig_file))): Helper().merge_file( os.path.join(wig_folder, wig_file), os.path.join("tmp", "merge_reverse.wig")) def _check_orphan(self, prefixs, wig_folder, args_tss): '''if genome has no locus tag, it can use for classify the TSS''' for prefix in prefixs: self._merge_wigs(wig_folder, prefix, args_tss.libs) tmp_tss = os.path.join(self.tmps["tmp"], "_".join([ prefix, args_tss.program + ".gff"])) pre_tss = os.path.join(self.gff_outfolder, "_".join([ prefix, args_tss.program + ".gff"])) check_orphan(pre_tss, os.path.join( args_tss.gffs, prefix + ".gff"), "tmp/merge_forward.wig", "tmp/merge_reverse.wig", tmp_tss) shutil.move(tmp_tss, pre_tss) shutil.rmtree("tmp") def _remove_files(self, args_tss): print("Remove temperary files and folders") self.helper.remove_tmp_dir(args_tss.fastas) self.helper.remove_tmp_dir(args_tss.gffs) self.helper.remove_tmp_dir(args_tss.ta_files) if "merge_forward.wig" in os.listdir(os.getcwd()): os.remove("merge_forward.wig") if "merge_reverse.wig" in os.listdir(os.getcwd()): os.remove("merge_reverse.wig") shutil.rmtree(args_tss.wig_folder) if args_tss.manual is not None: shutil.rmtree(args_tss.manual) def _deal_with_overlap(self, out_folder, args_tss): '''deal with the situation that TSS and processing site at the same position''' if not args_tss.overlap_feature: pass else: print("Comparing TSSs and Processing sites") if args_tss.program.lower() == "tss": for tss in os.listdir(out_folder): if tss.endswith("_TSS.gff"): ref = self.helper.get_correct_file( args_tss.overlap_gffs, "_processing.gff", tss.replace("_TSS.gff", ""), None, None) filter_tss_pro(os.path.join(out_folder, tss), ref, args_tss.program, args_tss.cluster) elif args_tss.program.lower() == "processing": for tss in os.listdir(out_folder): if tss.endswith("_processing.gff"): ref = self.helper.get_correct_file( args_tss.overlap_gffs, "_TSS.gff", tss.replace("_processing.gff", ""), None, None) filter_tss_pro(os.path.join(out_folder, tss), ref, args_tss.program, args_tss.cluster) def _remove_re_hash(self, out_folder, args_tss): out = open("tmp_re", "w") if args_tss.program.lower() == "tss": for tss in os.listdir(out_folder): if tss.endswith("_TSS.gff"): hash_num = 0 with open(os.path.join(out_folder, tss)) as fh: for line in fh: line = line.strip() if line.startswith("#"): if hash_num == 0: out.write(line + "\n") hash_num += 1 else: out.write(line + "\n") elif args_tss.program.lower() == "processing": for tss in os.listdir(out_folder): if tss.endswith("_processing.gff"): hash_num = 0 with open(os.path.join(out_folder, tss)) as fh: for line in fh: line = line.strip() if line.startswith("#"): if hash_num == 0: out.write(line + "\n") hash_num += 1 else: out.write(line + "\n") out.close() shutil.move("tmp_re", os.path.join(out_folder, tss)) def _low_expression(self, args_tss, gff_folder): '''deal with the low expressed TSS''' prefix = None self._merge_wigs(args_tss.wig_folder, "wig", args_tss.libs) for gff in os.listdir(gff_folder): if (args_tss.program.lower() == "tss") and ( gff.endswith("_TSS.gff")): prefix = gff.replace("_TSS.gff", "") elif (args_tss.program.lower() == "processing") and ( gff.endswith("_processing.gff")): prefix = gff.replace("_processing.gff", "") if prefix: out = open(os.path.join( self.stat_outfolder, prefix, "_".join([ "stat", prefix, "low_expression_cutoff.csv"])), "w") out.write("\t".join(["Genome", "Cutoff_coverage"]) + "\n") cutoff = filter_low_expression( os.path.join(gff_folder, gff), args_tss, "tmp/merge_forward.wig", "tmp/merge_reverse.wig", "tmp/without_low_expression.gff") out.write("\t".join([prefix, str(cutoff)]) + "\n") os.remove(os.path.join(gff_folder, gff)) shutil.move("tmp/without_low_expression.gff", os.path.join(gff_folder, gff)) prefix = None out.close() def _check_output_id(self, gff, output_id): g = open(gff, "r") for row in csv.reader(g, delimiter='\t'): if len(row) != 0: if (not row[0].startswith("#")): tags = row[-1].split(";") detect = False for tag in tags: if tag.startswith(output_id): detect = True if (not detect) and (row[2] == "gene"): print("Warning: --output_id does not exist in " "all genes of annotation gff files.") def run_tsspredator(self, args_tss, log): input_folder = os.path.join(args_tss.out_folder, "configs") for gff in os.listdir(args_tss.gffs): if gff.endswith(".gff"): self.helper.check_uni_attributes(os.path.join( args_tss.gffs, gff)) self._check_output_id(os.path.join( args_tss.gffs, gff), args_tss.output_id) self.helper.check_make_folder(self.gff_outfolder) self.multiparser.parser_fasta(args_tss.fastas) self.multiparser.parser_gff(args_tss.gffs, None) self.multiparser.parser_wig(args_tss.wig_folder) prefixs = self._get_prefixs(args_tss) for prefix in prefixs: config = os.path.join(input_folder, "_".join(["config", prefix]) + ".ini") self._gen_config( prefix, args_tss, os.path.join(self.gff_path, prefix + ".gff"), self.wig_path, os.path.join(self.fasta_path, prefix + ".fa"), config, log) out_path = os.path.join( self.master, "_".join(["MasterTable", prefix])) config_file = os.path.join( input_folder, "_".join(["config", prefix]) + ".ini") self._start_to_run(args_tss.tsspredator_path, config_file, out_path, prefix, log) if os.path.exists(os.path.join(out_path, "TSSstatistics.tsv")): shutil.move(os.path.join(out_path, "TSSstatistics.tsv"), os.path.join( self.stat_outfolder, "TSSstatistics_" + prefix + ".tsv")) if args_tss.program.lower() == "ps": args_tss.program = "processing" self._convert_gff(prefixs, args_tss, log) if args_tss.check_orphan: print("checking the orphan TSSs") log.write("Running check_orphan.py to re-check orphan TSSs.\n") self._check_orphan(prefixs, os.path.join(args_tss.wig_folder, "tmp"), args_tss) self.multiparser.combine_gff(args_tss.gffs, self.gff_outfolder, None, args_tss.program) datas = [] for gff in os.listdir(self.gff_outfolder): if gff.endswith(".gff"): gff_folder = gff.replace("".join(["_", args_tss.program, ".gff"]), "") self.helper.check_make_folder( os.path.join(self.stat_outfolder, gff_folder)) datas.append(gff_folder) if args_tss.remove_low_expression is not None: log.write("Running filter_low_expression.py to filter out " "low expressed TSS/PS.\n") self._low_expression(args_tss, self.gff_outfolder) if args_tss.manual is not None: self.multiparser.parser_gff(args_tss.manual, None) self.multiparser.combine_gff(args_tss.gffs, self.manual_path, None, None) self.multiparser.combine_fasta(args_tss.gffs, self.fasta_path, None) self.multiparser.combine_wig(args_tss.gffs, self.wig_path, None, args_tss.libs) log.write("Running merge_manual.py to merge the manual TSSs.\n") self._merge_manual(datas, args_tss) log.write("Running filter_TSS_pro.py to deal with the overlap " "position between TSS and PS.\n") self._remove_re_hash(self.gff_outfolder, args_tss) self._deal_with_overlap(self.gff_outfolder, args_tss) log.write("Running stat_TSSpredator.py to do statistics.\n") self._stat_tss(datas, args_tss.program, log) if args_tss.validate: self._validate(datas, args_tss, log) if args_tss.ta_files is not None: self._compare_ta(datas, args_tss, log) self._remove_files(args_tss)
ANNOgesic
/ANNOgesic-1.1.14.linux-x86_64.tar.gz/usr/local/lib/python3.10/dist-packages/annogesiclib/tsspredator.py
tsspredator.py
<h1 align = "center">:rocket: ANN :facepunch:</h1> --- # Install `pip install fast-ann` # Usage ```python from ann import ANN import numpy as np data = np.random.random((1000, 128)).astype('float32') ann = ANN() ann.train(data, index_factory='IVF4000, Flat', noramlize=True) dis, idx = ann.search(data[:10]) print(dis) print(idx) ``` --- # milvus镜像 ``` yum -y install python3 # ln -sf /usr/bin/python3 /usr/bin/python # ln -sf /usr/bin/pip3 /usr/bin/pip pip3 install -U --no-cache-dir -i https://mirror.baidu.com/pypi/simple pip meutils pymilvus rm -rf /tmp/* rm -rf /root/.cache/pip* ``` --- - faiss不同量级对应的训练时间及内存测试 - 压缩方式测试 - 四种组合:默认是查向量返回 distance与index - id => id/vector - vector => id/vector - push场景需要 docid => title_vector => docid - 线上服务 - id2word - id2vector
ANNZOO
/ANNZOO-2021.2.5.19.21.41.tar.gz/ANNZOO-2021.2.5.19.21.41/README.md
README.md
from meutils.pipe import * from milvus import Milvus, DataType # from milvus.client.exceptions import CollectionNotExistException """ client.drop_index client.get_config client.list_id_in_segment client.load_collection??? """ class ANN(object): def __init__(self, host='10.46.221.49', port='19530', show_info=False): self.client = Milvus(host, port) # 线程池 if show_info: logger.info( { "ClientVersion": self.client.client_version(), "ServerVersion": self.client.server_version() } ) def __getattr__(self, collection_name): return Collection(collection_name, self.client) def create_collection(self, collection_name, fields, auto_id=True, segment_row_limit=4096): """ :param collection_name: :param fields: # type: BOOL INT32 INT64 FLOAT BINARY_VECTOR FLOAT_VECTOR fields = [ { "name": "scalar", "type": 'INT32', "params": {}, "indexes": [{}] }, { "name": "vector", "type": 'FLOAT_VECTOR', "params": {"dim": 768}, "indexes": [{"index_type": 'IVF_FLAT', 'metric_type': 'IP', 'params': {'nlist': 1024}, 'index_file_size': 1024}] } ] # index_file_size不确定放在哪生效 :param auto_id: :param segment_row_limit: range 4096 ~ 4194304 :return: """ if self.client.has_collection(collection_name): logger.warning(f"{collection_name} already exists! to drop.") self.client.drop_collection(collection_name) vec_field = [_ for _ in fields if _.get('type', '').__contains__('VECTOR')][0] # assert len(vec_fields) > 0, "至少有一个矢量" for _ in fields: if 'type' in _: _['type'] = DataType.__getattr__(_['type']) collection_param = { "fields": fields, "auto_id": auto_id, "segment_row_limit": segment_row_limit, } # collection vector index self.client.create_collection(collection_name, fields=collection_param) self.client.create_index(collection_name, vec_field['name'], vec_field['indexes'][0]) logger.info(f"{self.client.get_collection_info(collection_name)}") @property def collection_names(self): return self.client.list_collections() def __create_index(self, collection_name, field_name, index_type='IVF_FLAT', metric_type='IP', index_params=None): if index_params is None: index_params = {'nlist': 1024} params = { 'index_type': index_type, # 'index_file_size': 1024, # TODO: 不确定放在哪生效 'params': index_params, 'metric_type': metric_type, } self.client.create_index(collection_name, field_name, params) # field_name='embedding' class Collection(object): def __init__(self, name=None, client=None): self.name = name self.client = client self.count_entities = self.count self.count_documents = self.count self.vector_name = self.get_vec_field_name() def __str__(self): has_collection = self.client.has_collection(self.name) if not has_collection: logger.warning(f"{self.name} doesn't exist") return f"Collection({self.name})" def batch_insert(self, df_entity: pd.DataFrame, batch_size=100000): """ :param df_entity: id, vec, part 与 collection 字段一致 :param batch_size: :return: """ entity_names = [_['name'] for _ in self.collection_info['fields']] logger.warning(f"EntityNames: {entity_names}") # 分区 df_entity = df_entity.reset_index(drop=True) n = len(df_entity) num_part = n // batch_size + 1 if n % batch_size else n // batch_size ids = [] for i in tqdm(range(num_part), desc='BatchInsert'): df = df_entity.iloc[i * batch_size:(i + 1) * batch_size, :] entities = [] for record in self.collection_info['fields']: entities.append({ 'name': record['name'], 'type': record['type'], 'values': df[record['name']].values }) ids += self.client.insert(self.name, entities, ids=None) # todo: ids time.sleep(1) return ids # 启服务 def search(self, vectors=np.random.random((1, 256)), topk=10, nprobe=1, scalar_list: List[dict] = None): q = self.get_search_query(vectors, topk, nprobe, scalar_list) entities = self.client.search(self.name, q)[0] return entities # entities = ann.client.search("demo", query_hybrid)[0] # id2score = dict(zip(entities.ids, entities.distances)) # # docs = mongo_collection.find({"xindaoid": {'$in': entities.ids}}) # df = pd.DataFrame(list(docs)).drop(['_id', 'category_', 'vector'], 1) # df['distance'] = df['xindaoid'].map(id2score) def get_entity_by_id(self, ids, fields=None): return self.client.get_entity_by_id(self.name, ids, fields) def delete_entity_by_id(self, ids): self.client.delete_entity_by_id(self.name, ids) @property def count(self): return self.client.count_entities(self.name) @property def collection_info(self): return self.client.get_collection_info(self.name) @property def collection_stats(self): return self.client.get_collection_stats(self.name) def get_vec_field_name(self): fields = self.collection_info['fields'] vec_field = [_ for _ in fields if str(_.get('type', '')).__contains__('VECTOR')][0] return vec_field['name'] def get_search_query(self, vectors, topk=10, nprobe=1, scalar_list: List[dict] = None): q = { "bool": { "must": [ { "vector": { self.vector_name: { "topk": topk, "query": vectors, "metric_type": "IP", "params": { "nprobe": nprobe } } } }, ] } } if scalar_list is not None: # {"term": {"标量字段": [1,2,3]}} for _ in scalar_list: q['bool']['must'].append(_) return q if __name__ == '__main__': ann = ANN(show_info=True) fields = [ { "name": "scalar", "type": 'INT32', "params": {}, "indexes": [{}] }, { "name": "vector", "type": 'FLOAT_VECTOR', "params": {"dim": 256}, "indexes": [ {"index_type": 'IVF_FLAT', 'metric_type': 'IP', 'params': {'nlist': 1024}, 'index_file_size': 1024}] } ] ann.create_collection('demo', fields) print(ann.demo) print(ann.demo.collection_info) print(ann.demo.vec_field) # print(ann.demo.collection_stats) # entities = [ # {"name": "vec", "type": DataType.FLOAT_VECTOR, "values": vecs}, # {"name": "part", "type": DataType.INT32, "values": [i] * len(df)}, # ]
ANNZOO
/ANNZOO-2021.2.5.19.21.41.tar.gz/ANNZOO-2021.2.5.19.21.41/annzoo/ann.py
ann.py
import faiss import numpy as np class ANN(object): """Flat支持: https://github.com/Jie-Yuan/faiss_note/blob/master/4.Faiss%20indexes%20%E8%BF%9B%E9%98%B6%E6%93%8D%E4%BD%9C.ipynb 恢复原数据 从index中移除向量 搜索距离范围内的向量 拆分/合并index cpu_index.make_direct_map() cpu_index.reconstruct(0) ann.index.reconstruct ann.index.reconstruct_c ann.index.reconstruct_n ann.index.reconstruct_n_c ann.index.search_and_reconstruct ann.index.search_and_reconstruct_c 数据集的大小 在高效检索的index中,聚类是其中的基础操作,数据量的大小主要影响聚类过程。 如果小于1M, 使用"...,IVFx,..." N是数据集中向量个数,x一般取值[4sqrt(N),16sqrt(N)],需要30x ~ 256x个向量的数据集去训练。 如果在1M-10M,使用"...,IMI2x10,..." 使用k-means将训练集聚类为2^10个类,但是执行过程是在数据集的两半部分独立执行,即聚类中心有2^(2*10)个。 如果在10M-100M,使用"...,IMI2x12,..." 一个簇至少39个样本:一般2的N次方,我们一般用2**14或者更小一点 >> topk 经验公式 2 ** (np.log2(n) // 2 + 2) """ def __init__(self): self.nogpu_index_factory = {'HNSW', 'SQ'} def train(self, data, index_factory='Flat', metric=None, noramlize=False): """ :param data: :param index_factory: https://www.cnblogs.com/houkai/p/9316172.html https://blog.csdn.net/xiaoxu2050/article/details/84982478 https://github.com/facebookresearch/faiss/wiki/Faiss-indexes https://github.com/liqima/faiss_note/blob/master/4.Faiss%20indexes%20IO%E5%92%8Cindex%20factory.ipynb :param metric: faiss.METRIC_BrayCurtis faiss.METRIC_Canberra faiss.METRIC_INNER_PRODUCT: L2之后内积≈cosine faiss.METRIC_JensenShannon faiss.METRIC_L1 faiss.METRIC_L2 faiss.METRIC_Linf faiss.METRIC_Lp :return: """ if noramlize: data = self.noramlize(data) assert data.dtype == 'float32', "TODO: np.array([]).astype('float32')" dim = data.shape[1] args = [dim, index_factory, metric] if metric else [dim, index_factory] self.index = faiss.index_factory(*args) if faiss.get_num_gpus() > 0: if any(index_factory.__contains__(i) for i in self.nogpu_index_factory): pass print(f"Donot Support GPU: {index_factory}") else: # gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index_flat) self.index = faiss.index_cpu_to_all_gpus(self.index) print(f"Train ...") self.index.train(data) self.index.add(data) print(f"Ntotal: {self.index.ntotal}") def search(self, data, topK=10, nprobe=1, k_factor=1): """ :param data: :param topK: :param nprobe: nprobe参数始终是调整速度和结果精度之间权衡的一种方式。 :param k_factor: :return: """ self.index.k_factor = k_factor # 搜索阶段会首先选取 k_factor*topK,重排序 self.index.nprobe = nprobe # default nprobe is 1, try a few more return self.index.search(data, topK) def write_index(self, file_name="index_file.index"): # faiss.index_cpu_to_all_gpus(index) if faiss.get_num_gpus() > 0: index = faiss.index_gpu_to_cpu(self.index) faiss.write_index(index, str(file_name)) else: faiss.write_index(self.index, str(file_name)) def read_index(self, file_name="index_file.index"): index = faiss.read_index(str(file_name)) # if faiss.get_num_gpus() > 0: # index = faiss.index_cpu_to_gpu() # index_new = faiss.clone_index(index) # 复制索引 return index def noramlize(self, x): if len(x.shape) > 1: return x / np.clip(x ** 2, 1e-12, None).sum(axis=1).reshape((-1, 1) + x.shape[2:]) ** 0.5 else: return x / np.clip(x ** 2, 1e-12, None).sum() ** 0.5
ANNZOO
/ANNZOO-2021.2.5.19.21.41.tar.gz/ANNZOO-2021.2.5.19.21.41/annzoo/faiss.py
faiss.py
# ANNarchy [![DOI](https://zenodo.org/badge/57382690.svg)](https://zenodo.org/badge/latestdoi/57382690) ANNarchy (Artificial Neural Networks architect) is a parallel and hybrid simulator for distributed rate-coded or spiking neural networks. The core of the library is written in C++ and distributed using openMP or CUDA. It provides an interface in Python for the definition of the networks. It is released under the [GNU GPL v2 or later](http://www.gnu.org/licenses/gpl.html). The source code is available at: <https://github.com/ANNarchy/ANNarchy> The documentation is available online at: <https://annarchy.github.io/> A forum for discussion is set at: <https://groups.google.com/forum/#!forum/annarchy> Bug reports should be done through the [Issue Tracker](https://github.com/ANNarchy/ANNarchy/issues) of ANNarchy on Github. ### Citation If you use ANNarchy for your research, we would appreciate if you cite the following paper: > Vitay J, Dinkelbach HÜ and Hamker FH (2015). ANNarchy: a code generation approach to neural simulations on parallel hardware. *Frontiers in Neuroinformatics* 9:19. [doi:10.3389/fninf.2015.00019](http://dx.doi.org/10.3389/fninf.2015.00019) ### Authors * Julien Vitay (julien.vitay@informatik.tu-chemnitz.de). * Helge Ülo Dinkelbach (helge-uelo.dinkelbach@informatik.tu-chemnitz.de). * Fred Hamker (fred.hamker@informatik.tu-chemnitz.de). ## Installation Using pip, you can install the latest stable release: ``` pip install ANNarchy ``` ## Platforms * GNU/Linux * MacOS X ## Dependencies * g++ >= 6.1 ( >= 7.4 recommended ) or clang++ >= 3.4 * python >= 3.7 with development files * cython >= 0.20 * setuptools >= 40.0 * numpy >= 1.13 * sympy >= 1.6 * scipy >= 0.19 Recommended: * matplotlib * lxml * PyQtGraph * pandoc * tensorboardX
ANNarchy
/ANNarchy-4.7.2.6.tar.gz/ANNarchy-4.7.2.6/README.md
README.md
from __future__ import print_function from ANNarchy import * import random from time import time # Parameters nb_neuron = 4 # Number of exc and inh neurons size = (32, 32) # input size freq = 1.2 # nb_cycles/half-image nb_stim = 40 # Number of grating per epoch nb_epochs = 20 # Number of epochs max_freq = 28. # Max frequency of the poisson neurons T = 10000. # Period for averaging the firing rate # Izhikevich Coba neuron with AMPA, NMDA and GABA receptors RSNeuron = Neuron( parameters = """ a = 0.02 : population b = 0.2 : population c = -65. : population d = 8. : population tau_ampa = 5. : population tau_nmda = 150. : population tau_gabaa = 6. : population tau_gabab = 150. : population vrev_ampa = 0.0 : population vrev_nmda = 0.0 : population vrev_gabaa = -70.0 : population vrev_gabab = -90.0 : population """ , equations=""" # Inputs I = g_ampa * (vrev_ampa - v) + g_nmda * nmda(v, -80.0, 60.0) * (vrev_nmda -v) + g_gabaa * (vrev_gabaa - v) + g_gabab * (vrev_gabab -v) # Midpoint scheme dv/dt = (0.04 * v + 5.0) * v + 140.0 - u + I : init=-65., min=-90., midpoint du/dt = a * (b*v - u) : init=-13., midpoint # Conductances tau_ampa * dg_ampa/dt = -g_ampa : exponential tau_nmda * dg_nmda/dt = -g_nmda : exponential tau_gabaa * dg_gabaa/dt = -g_gabaa : exponential tau_gabab * dg_gabab/dt = -g_gabab : exponential """ , spike = """ v >= 30. """, reset = """ v = c u += d g_ampa = 0.0 g_nmda = 0.0 g_gabaa = 0.0 g_gabab = 0.0 """, functions = """ nmda(v, t, s) = ((v-t)/(s))^2 / (1.0 + ((v-t)/(s))^2) """, refractory=1.0 ) # STDP with homeostatic regulation homeo_stdp = Synapse( parameters=""" # STDP tau_plus = 60. : projection tau_minus = 90. : projection A_plus = 0.000045 : projection A_minus = 0.00003 : projection # Homeostatic regulation alpha = 0.1 : projection beta = 50.0 : projection # <- Difference with the original implementation gamma = 50.0 : projection Rtarget = 10. : projection T = 10000. : projection """, equations = """ # Homeostatic values R = post.r : postsynaptic K = R/(T*(1.+fabs(1. - R/Rtarget) * gamma)) : postsynaptic # Nearest-neighbour stdp = if t_post >= t_pre: ltp else: - ltd w += (alpha * w * (1- R/Rtarget) + beta * stdp ) * K : min=0.0, max=10.0 # Traces tau_plus * dltp/dt = -ltp : exponential tau_minus * dltd/dt = -ltd : exponential """, pre_spike=""" g_target += w ltp = A_plus """, post_spike=""" ltd = A_minus """ ) # Input population OnPoiss = PoissonPopulation(size, rates=1.0) OffPoiss = PoissonPopulation(size, rates=1.0) # RS neuron for the input buffers OnBuffer = Population(size, RSNeuron) OffBuffer = Population(size, RSNeuron) # Connect the buffers OnPoissBuffer = Projection(OnPoiss, OnBuffer, ['ampa', 'nmda']) OnPoissBuffer.connect_one_to_one(Uniform(0.2, 0.6)) OffPoissBuffer = Projection(OffPoiss, OffBuffer, ['ampa', 'nmda']) OffPoissBuffer.connect_one_to_one(Uniform(0.2, 0.6)) # Excitatory and inhibitory neurons Exc = Population(nb_neuron, RSNeuron) Inh = Population(nb_neuron, RSNeuron) Exc.compute_firing_rate(T) Inh.compute_firing_rate(T) # Input connections OnBufferExc = Projection(OnBuffer, Exc, ['ampa', 'nmda'], homeo_stdp) OnBufferExc.connect_all_to_all(Uniform(0.004, 0.015)) OffBufferExc = Projection(OffBuffer, Exc, ['ampa', 'nmda'], homeo_stdp) OffBufferExc.connect_all_to_all(Uniform(0.004, 0.015)) # Competition ExcInh = Projection(Exc, Inh, ['ampa', 'nmda'], homeo_stdp) ExcInh.connect_all_to_all(Uniform(0.116, 0.403)) ExcInh.Rtarget = 75. ExcInh.tau_plus = 51. ExcInh.tau_minus = 78. ExcInh.A_plus = -0.000041 ExcInh.A_minus = -0.000015 InhExc = Projection(Inh, Exc, ['gabaa', 'gabab']) InhExc.connect_all_to_all(Uniform(0.065, 0.259)) compile() # Inputs def get_grating(theta): x = np.linspace(-1., 1., size[0]) y = np.linspace(-1., 1., size[1]) xx, yy = np.meshgrid(x, y) z = np.sin(2.*np.pi*(np.cos(theta)*xx + np.sin(theta)*yy)*freq) return np.maximum(z, 0.), -np.minimum(z, 0.0) # Initial weights w_on_start = OnBufferExc.w w_off_start = OffBufferExc.w # Monitors m = Monitor(Exc, 'r') n = Monitor(Inh, 'r') o = Monitor(OnBufferExc[0], 'w', period=1000.) p = Monitor(ExcInh[0], 'w', period=1000.) # Learning procedure tstart = time() stim_order = list(range(nb_stim)) try: for epoch in range(nb_epochs): random.shuffle(stim_order) for stim in stim_order: # Generate a grating randomly rates_on, rates_off = get_grating(np.pi*stim/float(nb_stim)) # Set it as input to the poisson neurons OnPoiss.rates = max_freq * rates_on OffPoiss.rates = max_freq * rates_off # Simulate for 2s simulate(2000.) # Relax the Poisson inputs OnPoiss.rates = 1. OffPoiss.rates = 1. # Simulate for 500ms simulate(500.) print('Epoch', epoch+1, 'done.') except KeyboardInterrupt: print('Simulation stopped') print('Done in ', time()-tstart) # Recordings datae = m.get('r') datai = n.get('r') dataw = o.get('w') datal = p.get('w') # Final weights w_on_end = OnBufferExc.w w_off_end = OffBufferExc.w # Save recordings np.savez("weights.npz", ff_on=w_on_end, ff_off=w_off_end, ff_on_time=dataw, inh_time=datal) # Plot import matplotlib.pyplot as plt plt.figure() plt.title('Feedforward weights before and after learning') for i in range(nb_neuron): plt.subplot(3, nb_neuron, i+1) plt.imshow((np.array(w_on_start[i])).reshape((32,32)), aspect='auto', cmap='hot') plt.subplot(3, nb_neuron, nb_neuron + i +1) plt.imshow((np.array(w_on_end[i])).reshape((32,32)), aspect='auto', cmap='hot') plt.subplot(3, nb_neuron, 2*nb_neuron + i +1) plt.imshow((np.array(w_off_end[i])).reshape((32,32)), aspect='auto', cmap='hot') plt.figure() plt.plot(datae[:, 0], label='Exc') plt.plot(datai[:, 0], label='Inh') plt.title('Mean FR of the Exc and Inh neurons') plt.legend() plt.figure() plt.subplot(121) plt.imshow(dataw.T, aspect='auto', cmap='hot') plt.title('Timecourse of feedforward weights') plt.colorbar() plt.subplot(122) plt.imshow(datal.T, aspect='auto', cmap='hot') plt.title('Timecourse of inhibitory weights') plt.colorbar() plt.show()
ANNarchy
/ANNarchy-4.7.2.6.tar.gz/ANNarchy-4.7.2.6/examples/homeostatic_stdp/SORF.py
SORF.py
from __future__ import print_function from ANNarchy import * # Izhikevich RS neuron RSNeuron = Neuron( parameters = """ a = 0.02 : population b = 0.2 : population c = -65. : population d = 8. : population tau_ampa = 5. : population tau_nmda = 150. : population vrev = 0.0 : population """ , equations=""" # Inputs I = g_ampa * (vrev - v) + g_nmda * nmda(v, -80.0, 60.0) * (vrev -v) # Midpoint scheme dv/dt = (0.04 * v + 5.0) * v + 140.0 - u + I : init=-65., midpoint du/dt = a * (b*v - u) : init=-13., midpoint # Izhikevich scheme # new_v = v + 0.5*(0.04 * v^2 + 5.0 * v + 140.0 - u + I) : init=-65. # v = new_v + 0.5*(0.04 * new_v^2 + 5.0 * new_v + 140.0 - u + I) : init=-65. # u += a * (b*v - u) : init=-13. # Conductances tau_ampa * dg_ampa/dt = -g_ampa : exponential tau_nmda * dg_nmda/dt = -g_nmda : exponential """ , spike = """ v >= 30. """, reset = """ v = c u += d """, functions = """ nmda(v, t, s) = ((v-t)/(s))^2 / (1.0 + ((v-t)/(s))^2) """ ) # Input population inp = PoissonPopulation(100, rates=np.linspace(0.2, 20., 100)) # RS neuron without homeostatic mechanism pop1 = Population(1, RSNeuron) pop1.compute_firing_rate(5000.) # RS neuron with homeostatic mechanism pop2 = Population(1, RSNeuron) pop2.compute_firing_rate(5000.) # Nearest Neighbour STDP nearest_neighbour_stdp = Synapse( parameters=""" tau_plus = 20. : projection tau_minus = 60. : projection A_plus = 0.0002 : projection A_minus = 0.000066 : projection w_max = 0.03 : projection """, equations = """ # Traces tau_plus * dltp/dt = -ltp : exponential tau_minus * dltd/dt = -ltd : exponential # Nearest-neighbour w += if t_post >= t_pre: ltp else: - ltd : min=0.0, max=w_max """, pre_spike=""" g_target += w ltp = A_plus """, post_spike=""" ltd = A_minus """ ) # STDP with homeostatic regulation homeo_stdp = Synapse( parameters=""" # STDP tau_plus = 20. : projection tau_minus = 60. : projection A_plus = 0.0002 : projection A_minus = 0.000066 : projection w_min = 0.0 : projection w_max = 0.03 : projection # Homeostatic regulation alpha = 0.1 : projection beta = 1.0 : projection gamma = 50. : projection Rtarget = 35. : projection T = 5000. : projection """, equations = """ # Traces tau_plus * dltp/dt = -ltp : exponential tau_minus * dltd/dt = -ltd : exponential # Homeostatic values R = post.r : postsynaptic K = R/(T*(1.+fabs(1. - R/Rtarget) * gamma)) : postsynaptic # Nearest-neighbour stdp = if t_post >= t_pre: ltp else: - ltd w += (alpha * w * (1- R/Rtarget) + beta * stdp ) * K : min=w_min, max=w_max """, pre_spike=""" g_target += w ltp = A_plus """, post_spike=""" ltd = A_minus """ ) # Projection without homeostatic mechanism proj1 = Projection(inp, pop1, ['ampa', 'nmda'], synapse=nearest_neighbour_stdp) proj1.connect_all_to_all(Uniform(0.01, 0.03)) # Projection with homeostatic mechanism proj2 = Projection(inp, pop2, ['ampa', 'nmda'], synapse=homeo_stdp) proj2.connect_all_to_all(weights=Uniform(0.01, 0.03)) compile() # Record m1 = Monitor(pop1, 'r') m2 = Monitor(pop2, 'r') m3 = Monitor(proj1[0], 'w', period=1000.) m4 = Monitor(proj2[0], 'w', period=1000.) # Simulate T = 1000 # 1000s simulate(T*1000., True) # Get the data data1 = m1.get('r') data2 = m2.get('r') data3 = m3.get('w') data4 = m4.get('w') print('Mean Firing Rate without homeostasis:', np.mean(data1[:, 0])) print('Mean Firing Rate with homeostasis:', np.mean(data2[:, 0])) import matplotlib.pyplot as plt plt.subplot(311) plt.plot(np.linspace(0, T, len(data1[:, 0])), data1[:, 0], 'r-', label="Without homeostasis") plt.plot(np.linspace(0, T, len(data2[:, 0])), data2[:, 0], 'b-', label="With homeostasis") plt.xlabel('Time (s)') plt.ylabel('Firing rate (Hz)') plt.subplot(312) plt.plot(data3[-1, :], 'r-') plt.plot(data4[-1, :], 'bx') axes = plt.gca() axes.set_ylim([0., 0.035]) plt.xlabel('# neuron') plt.ylabel('Weights after 1000s') plt.subplot(313) plt.imshow(data4.T, aspect='auto', cmap='hot') plt.xlabel('Time (s)') plt.ylabel('# neuron') plt.show()
ANNarchy
/ANNarchy-4.7.2.6.tar.gz/ANNarchy-4.7.2.6/examples/homeostatic_stdp/Ramp.py
Ramp.py
from ANNarchy import * setup(paradigm="cuda", sparse_matrix_format="dense") # Input neuron: r is set externally InputNeuron = Neuron(parameters="r = 0.0") # Leaky neuron LeakyNeuron = Neuron( parameters=""" tau = 10.0 : population """, equations=""" tau * dr/dt + r = sum(exc) - sum(inh) : min=0.0 """ ) # Oja synapse Oja = Synapse( parameters=""" tau = 2000.0 : postsynaptic alpha = 8.0 : postsynaptic min_w = 0.0 : postsynaptic """, equations=""" tau * dw/dt = pre.r * post.r - alpha * post.r^2 * w : min=min_w """ ) # Creating the populations Input = Population(geometry=(8, 8), neuron=InputNeuron) Feature = Population(geometry=(8, 4), neuron=LeakyNeuron) # Creating the projections ff = Projection( pre=Input, post=Feature, target='exc', synapse = Oja ) ff.connect_all_to_all(weights = Uniform(-0.5, 0.5)) ff.min_w = -10.0 lat = Projection( pre=Feature, post=Feature, target='inh', synapse = Oja ) lat.connect_all_to_all(weights = Uniform(0.0, 1.0)) lat.alpha = 0.3 # every 200 trials we update # the receptive fields period = 200 count = 0 # Definition of the environment def trial(): global count count+=1 # Reset the firing rate for all neurons Input.r = 0.0 # Clamp horizontal bars randomly for h in range(Input.geometry[0]): if np.random.random() < 1.0/ float(Input.geometry[0]): Input[h, :].r = 1.0 # Clamp vertical bars randomly for w in range(Input.geometry[1]): if np.random.random() < 1.0/ float(Input.geometry[1]): Input[:, w].r = 1.0 # Simulate for 50ms simulate(50.) # Return firing rates and receptive fields if count < period: return Input.r, Feature.r, None else: count = 0 return Input.r, Feature.r, ff.receptive_fields() if __name__=='__main__': compile() # Create and launch the GUI from Viz import Viewer view = Viewer(func=trial) view.run()
ANNarchy
/ANNarchy-4.7.2.6.tar.gz/ANNarchy-4.7.2.6/examples/bar_learning/BarLearningGPU.py
BarLearningGPU.py
from ANNarchy import * dt = 0.02 setup(dt=dt) HH = Neuron( parameters = """ C = 1.0 # Capacitance VL = -59.387 # Leak voltage VK = -82.0 # Potassium reversal voltage VNa = 45.0 # Sodium reveral voltage gK = 36.0 # Maximal Potassium conductance gNa = 120.0 # Maximal Sodium conductance gL = 0.3 # Leak conductance vt = 30.0 # Threshold for spike emission I = 0.0 # External current """, equations = """ # Previous membrane potential prev_V = V # Voltage-dependency parameters an = 0.01 * (V + 60.0) / (1.0 - exp(-0.1* (V + 60.0) ) ) am = 0.1 * (V + 45.0) / (1.0 - exp (- 0.1 * ( V + 45.0 ))) ah = 0.07 * exp(- 0.05 * ( V + 70.0 )) bn = 0.125 * exp (- 0.0125 * (V + 70.0)) bm = 4.0 * exp (- (V + 70.0) / 80.0) bh = 1.0/(1.0 + exp (- 0.1 * ( V + 40.0 )) ) # Alpha/Beta functions dn/dt = an * (1.0 - n) - bn * n : init = 0.3, midpoint dm/dt = am * (1.0 - m) - bm * m : init = 0.0, midpoint dh/dt = ah * (1.0 - h) - bh * h : init = 0.6, midpoint # Membrane equation C * dV/dt = gL * (VL - V ) + gK * n**4 * (VK - V) + gNa * m**3 * h * (VNa - V) + I : midpoint """, spike = """ # Spike is emitted when the membrane potential crosses the threshold from below (V > vt) and (prev_V <= vt) """, reset = """ # Nothing to do, it is built-in... """ ) pop = Population(neuron=HH, geometry=1) pop.V = -50.0 compile() m = Monitor(pop, ['spike', 'V', 'n', 'm', 'h']) # Preparation simulate(100.0) # Current impulse for 1 ms pop.I = 200.0 simulate(1.0) # Reset pop.I = 0.0 simulate(100.0) data = m.get() tstart = int(90.0/dt) tstop = int(120.0/dt) import matplotlib.pyplot as plt plt.subplot(2,2,1) plt.plot(90.0 + dt*np.arange(tstop-tstart), data['V'][tstart:tstop, 0]) plt.title('V') plt.subplot(2,2,2) plt.plot(90.0 + dt*np.arange(tstop-tstart), data['n'][tstart:tstop, 0]) plt.title('n') plt.ylim((0.0, 1.0)) plt.subplot(2,2,3) plt.plot(90.0 + dt*np.arange(tstop-tstart), data['m'][tstart:tstop, 0]) plt.title('m') plt.ylim((0.0, 1.0)) plt.subplot(2,2,4) plt.plot(90.0 + dt*np.arange(tstop-tstart), data['h'][tstart:tstop, 0]) plt.title('h') plt.ylim((0.0, 1.0)) plt.show()
ANNarchy
/ANNarchy-4.7.2.6.tar.gz/ANNarchy-4.7.2.6/examples/hodgkin_huxley/HodgkinHuxley.py
HodgkinHuxley.py
from ANNarchy import * dt=0.25 setup(dt=dt) # Leaky integrator neuron LIF = Neuron( parameters = """ tau = 30.0 : population I = 15.0 tau_I = 3.0 : population """, equations = """ tau * dv/dt = -v + g_exc - g_inh + I : init=13.5 tau_I * dg_exc/dt = -g_exc tau_I * dg_inh/dt = -g_inh """, spike = "v > 15.0", reset = "v = 13.5", refractory = 3.0 ) # Short-term plasticity synapse STP = Synapse( parameters = """ w=0.0 tau_rec = 1.0 tau_facil = 1.0 U = 0.1 """, equations = """ dx/dt = (1 - x)/tau_rec : init = 1.0, event-driven du/dt = (U - u)/tau_facil : init = 0.1, event-driven """, pre_spike=""" g_target += w * u * x x *= (1 - u) u += U * (1 - u) """ ) # Create populations P = Population(geometry=500, neuron=LIF) P.I = np.sort(Uniform(14.625, 15.375).get_values(500)) P.v = Uniform(0.0, 15.0) Exc = P[:400] Inh = P[400:] # Parameters for the synapses Aee = 1.8 Aei = 5.4 Aie = 7.2 Aii = 7.2 Uee = 0.5 Uei = 0.5 Uie = 0.04 Uii = 0.04 tau_rec_ee = 800.0 tau_rec_ei = 800.0 tau_rec_ie = 100.0 tau_rec_ii = 100.0 tau_facil_ie = 1000.0 tau_facil_ii = 1000.0 # Create projections proj_ee = Projection(pre=Exc, post=Exc, target='exc', synapse=STP) proj_ee.connect_fixed_probability(probability=0.1, weights=Normal(Aee, (Aee/2.0), min=0.2*Aee, max=2.0*Aee)) proj_ee.U = Normal(Uee, (Uee/2.0), min=0.1, max=0.9) proj_ee.tau_rec = Normal(tau_rec_ee, (tau_rec_ee/2.0), min=5.0) proj_ee.tau_facil = dt # Cannot be 0! proj_ei = Projection(pre=Inh, post=Exc, target='inh', synapse=STP) proj_ei.connect_fixed_probability(probability=0.1, weights=Normal(Aei, (Aei/2.0), min=0.2*Aei, max=2.0*Aei)) proj_ei.U = Normal(Uei, (Uei/2.0), min=0.1, max=0.9) proj_ei.tau_rec = Normal(tau_rec_ei, (tau_rec_ei/2.0), min=5.0) proj_ei.tau_facil = dt # Cannot be 0! proj_ie = Projection(pre=Exc, post=Inh, target='exc', synapse=STP) proj_ie.connect_fixed_probability(probability=0.1, weights=Normal(Aie, (Aie/2.0), min=0.2*Aie, max=2.0*Aie)) proj_ie.U = Normal(Uie, (Uie/2.0), min=0.001, max=0.07) proj_ie.tau_rec = Normal(tau_rec_ie, (tau_rec_ie/2.0), min=5.0) proj_ie.tau_facil = Normal(tau_facil_ie, (tau_facil_ie/2.0), min=5.0) proj_ii = Projection(pre=Inh, post=Inh, target='inh', synapse=STP) proj_ii.connect_fixed_probability(probability=0.1, weights=Normal(Aii, (Aii/2.0), min=0.2*Aii, max=2.0*Aii)) proj_ii.U = Normal(Uii, (Uii/2.0), min=0.001, max=0.07) proj_ii.tau_rec = Normal(tau_rec_ii, (tau_rec_ii/2.0), min=5.0) proj_ii.tau_facil = Normal(tau_facil_ii, (tau_facil_ii/2.0), min=5.0) compile() # Record Me = Monitor(Exc, 'spike') Mi = Monitor(Inh, 'spike') # Simulate duration = 10000.0 simulate(duration, measure_time=True) # Retrieve recordings data_exc = Me.get() data_inh = Mi.get() te, ne = Me.raster_plot(data_exc['spike']) ti, ni = Mi.raster_plot(data_inh['spike']) # Histogramm of the exc population h = Me.histogram(data_exc['spike'], bins=1.0) # Mean firing rate of each excitatory neuron rates = [] for neur in data_exc['spike'].keys(): rates.append(len(data_exc['spike'][neur])/duration*1000.0) # Plot import matplotlib.pyplot as plt plt.subplot(3,1,1) plt.plot(te, ne, 'b.', markersize=1.0) plt.plot(ti, ni, 'b.', markersize=1.0) plt.xlim((0, duration)); plt.ylim((0,500)) plt.xlabel('Time (ms)') plt.ylabel('# neuron') plt.subplot(3,1,2) plt.plot(h/400.) plt.xlabel('Time (ms)') plt.ylabel('Net activity') plt.subplot(3,1,3) plt.plot(sorted(rates)) plt.ylabel('Spikes / sec') plt.xlabel('# neuron') plt.show()
ANNarchy
/ANNarchy-4.7.2.6.tar.gz/ANNarchy-4.7.2.6/examples/tsodyks_markram/TsodyksMarkram.py
TsodyksMarkram.py
from ANNarchy import * from ANNarchy.extensions.image import * from ANNarchy.extensions.convolution import Convolution, Pooling # Definition of the neurons Linear = Neuron(equations="r=sum(exc): min=0.0") DNF = Neuron(parameters="tau=10.0", equations="tau*dr/dt + r = sum(exc) + sum(inh): min=0.0, max=1.0") # Population getting the video stream width = 640 height = 480 video = VideoPopulation(geometry=(height, width, 3)) # Define a normalizedred filter with dimensions 10*10*3 extent = 10 red_filter = [[ [2.0/extent**2, -1.0/extent**2, -1.0/extent**2] for j in range(extent) ] for i in range(extent)] # Create a population of DNF neurons downscaling the image with a factor 10 dnf = Population(geometry=(height/extent, width/extent), neuron = DNF) # Create the convolution usinf the red filter ff = Convolution(pre=video, post=dnf, target='exc').connect_filter(weights=red_filter) # Create difference of Gaussians lateral connections for denoising/competition lat = Projection(pre=dnf, post=dnf, target='inh').connect_dog(amp_pos = 0.15, sigma_pos = 0.05, amp_neg = 0.1, sigma_neg = 0.5, limit=0.1) # Compile compile() # Start the camera video.start_camera(0) # Visualize the images using PyQtGraph try: from pyqtgraph.Qt import QtGui, QtCore import pyqtgraph as pg except: print('PyQtGraph is not installed, can not visualize the network.') exit(0) # Wrapping class class Viewer(object): " Class to visualize the network activity using PyQtGraph." def __init__(self, video, result): self.video = video self.result = result app = pg.mkQApp() self.win = pg.GraphicsWindow(title="Live webcam") self.win.resize(640,480) box = self.win.addViewBox(lockAspect=True) box.invertY() self.vis = pg.ImageItem() box.addItem(self.vis) box = self.win.addViewBox(lockAspect=True) box.invertY() self.res = pg.ImageItem() box.addItem(self.res) self.win.show() self.lastUpdate = pg.ptime.time() self.avgFps = 0.0 def update(self): # Set the input self.video.grab_image() # Simulate for 10 ms with a new input simulate(5.0) # Refresh the GUI self.vis.setImage(np.swapaxes(self.video.r,0,1)) self.res.setImage(np.swapaxes(self.result.r,0,1)) # Listen to mouse/keyboard events QtGui.QApplication.processEvents() # FPS now = pg.ptime.time() fps = 1.0 / (now - self.lastUpdate) self.lastUpdate = now self.avgFps = self.avgFps * 0.8 + fps * 0.2 print(self.avgFps) def run(self): timer = QtCore.QTimer() timer.timeout.connect(self.update) timer.start(0) QtGui.QApplication.instance().exec_() timer.stop() # Start the GUI view = Viewer(video, dnf) view.run()
ANNarchy
/ANNarchy-4.7.2.6.tar.gz/ANNarchy-4.7.2.6/examples/image/Webcam.py
Webcam.py
# # Image Processing # This simple example in `examples/image` demonstrates how to load images directly into the firing rates of a population and apply basic linear filters on it. # # It relies on the ANNarchy extensions `image` and `convolution` which must be explicitly imported: from ANNarchy import * from ANNarchy.extensions.image import * from ANNarchy.extensions.convolution import Convolution, Pooling clear() # `ANNarchy.extensions.image` depends on the Python bindings of OpenCV, they must be installed before running the script. # # We first create an `ImagePopulation` that will load images: image = ImagePopulation(geometry=(480, 640, 3)) # Its geometry specifies the size of the images that can be loaded, here 640x480 RGB images. Note the geometry must be of the form (height, width, channels), where channels is 1 for grayscale images and 3 for color images. # # The next step is to reduce the size of the image, what can be done by using the `Pooling` class of the `convolution` extension. # # We define a dummy artificial neuron, whose firing rate `r` will simply be the sum of excitatory connections /ensured to be positive, but this should always be the case). We then create a smaller population `pooled` with this neuron type, and connect it to the `ImagePopulation` using mean-pooling: # Simple ANN LinearNeuron = Neuron(equations="r=sum(exc): min=0.0") # Subsampling population pooled = Population(geometry=(48, 64, 3), neuron = LinearNeuron) # Mean-pooling projection pool_proj = Pooling(pre=image, post=pooled, target='exc', operation='mean') pool_proj.connect_pooling() # The `pooled` population reduces the size of the image by a factor ten (defined by the size of the population) by averaging the pixels values over 10x10 regions (`operation` is set to `'mean'`, but one could use `'max'` or `'min'`). The `connect_pooling()` connector creates the "fake" connection pattern (as no weights are involved). # # Let's apply now a 3x3 box filter on each channel of the pooled population: # Smoothing population smoothed = Population(geometry=(48, 64, 3), neuron = LinearNeuron) # Box filter projection box_filter = np.ones((3, 3, 1))/9. smooth_proj = Convolution(pre=pooled, post=smoothed, target='exc') smooth_proj.connect_filter(weights=box_filter) # To perform a convolution operation on the population (or more precisely a cross-correlation), we call the `connect_filter()` connector method of the `Convolution` projection. It requires to define a kernel (`weights`) that will be convolved over the input population. Here we use a simple box filter, but any filter can be used. # # As the `pooled` population has three dimensions and we want to smooth the activities per color channel, we need to define a (3, 3, 1) kernel. If we wanted to smooth also over the color channels, we could have used a (3, 3) filter: the resulting population would have the shape (48, 64). # # We now apply a bank of three filters, each selective to a particular color (red/green/blue). This filters do not have a spatial extent (1x1 convolution), but sum over the third dimension (the color channels): # Convolution population filtered = Population(geometry=(48, 64, 3), neuron = LinearNeuron) # Red/Green/Blue filter bank filter_bank = np.array([ [[ [2.0, -1.0, -1.0] ]] , # Red filter [[ [-1.0, 2.0, -1.0] ]] , # Blue filter [[ [-1.0, -1.0, 2.0] ]] # Green filter ]) filter_proj = Convolution(pre=smoothed, post=filtered, target='exc') filter_proj.connect_filters(weights=filter_bank) # Each of the three filter has the shape (1, 1, 3). The result of each convolution would then be (48, 64), but as there are three filters, the output population is (48, 64, 3). The last dimension does not correspond to the number of color channels, but to the number of filters in the bank: if you add a filter, the population will have to be (48, 64, 4). # # Banks of filters require to use `connect_filters()` instead of `connect_filter()`. compile() # After compilation, we can load an image into the input population: image.set_image('test.jpg') # To see the result, we need to simulate for four time steps (4 milliseconds, as `dt=1.0`). # # 1. Step 1: The `image` population loads the image. # 2. Step 2: The `pooled` population subsamples the image. # 3. Step 3: The `smoothed` population filters the pooled image. # 4. Step 4: The bank of filters are applied by `filtered`. simulate(4.0) import matplotlib.pyplot as plt fig = plt.figure(figsize=(20.0, 20.0)) plt.subplot(532) plt.imshow(image.r) plt.title('Original') plt.subplot(534) plt.imshow(image.r[:,:,0], cmap='gray', interpolation='nearest', vmin= 0.0, vmax=1.0) plt.title('image R') plt.subplot(535) plt.imshow(image.r[:,:,1], cmap='gray', interpolation='nearest', vmin= 0.0, vmax=1.0) plt.title('image G') plt.subplot(536) plt.imshow(image.r[:,:,2], cmap='gray', interpolation='nearest', vmin= 0.0, vmax=1.0) plt.title('image B') plt.subplot(537) plt.imshow(pooled.r[:,:,0], cmap='gray', interpolation='nearest', vmin= 0.0, vmax=1.0) plt.title('pooled R') plt.subplot(538) plt.imshow(pooled.r[:,:,1], cmap='gray', interpolation='nearest', vmin= 0.0, vmax=1.0) plt.title('pooled G') plt.subplot(539) plt.imshow(pooled.r[:,:,2], cmap='gray', interpolation='nearest', vmin= 0.0, vmax=1.0) plt.title('pooled B') plt.subplot(5, 3, 10) plt.imshow(smoothed.r[:,:,0], cmap='gray', interpolation='nearest', vmin= 0.0, vmax=1.0) plt.title('smoothed R') plt.subplot(5, 3, 11) plt.imshow(smoothed.r[:,:,1], cmap='gray', interpolation='nearest', vmin= 0.0, vmax=1.0) plt.title('smoothed G') plt.subplot(5, 3, 12) plt.imshow(smoothed.r[:,:,2], cmap='gray', interpolation='nearest', vmin= 0.0, vmax=1.0) plt.title('smoothed B') plt.subplot(5, 3, 13) plt.imshow(filtered.r[:,:,0], cmap='gray', interpolation='nearest', vmin= 0.0, vmax=1.0) plt.title('filtered R') plt.subplot(5, 3, 14) plt.imshow(filtered.r[:,:,1], cmap='gray', interpolation='nearest', vmin= 0.0, vmax=1.0) plt.title('filtered G') plt.subplot(5, 3, 15) plt.imshow(filtered.r[:,:,2], cmap='gray', interpolation='nearest', vmin= 0.0, vmax=1.0) plt.title('filtered B') plt.show()
ANNarchy
/ANNarchy-4.7.2.6.tar.gz/ANNarchy-4.7.2.6/examples/image/Image.py
Image.py
# Webcam The script `examples/image/Webcam.py` applies a red filter on the input from the webcam, and isolates one mode using a dynamical neural field. Most of the concepts are similar to the Image Processing example. The `VideoPopulation` object also requires the Python bindings to OpenCV. ``` from ANNarchy import * from ANNarchy.extensions.image import * from ANNarchy.extensions.convolution import Convolution, Pooling clear() # Definition of the neurons LinearNeuron = Neuron(equations="r=sum(exc): min=0.0") DNF = Neuron(parameters="tau=10.0", equations="tau*dr/dt + r = sum(exc) + sum(inh): min=0.0, max=1.0") # Population getting the video stream width = 640 height = 480 video = VideoPopulation(geometry=(height, width, 3)) # Subsampling population pooled = Population(geometry=(48, 64, 3), neuron = LinearNeuron) # Mean-pooling projection pool_proj = Pooling(pre=video, post=pooled, target='exc', operation='mean') pool_proj.connect_pooling() # Define a red filter with no spatial extent red_filter = [[ [2.0, -1.0, -1.0] ]] # Create a population of DNF neurons downscaling the image with a factor 10 dnf = Population(geometry=(48, 64), neuron = DNF) # Create the convolution using the red filter ff = Convolution(pre=pooled, post=dnf, target='exc') ff.connect_filter(weights=red_filter) # Create difference of Gaussians lateral connections for denoising/competition lat = Projection(pre=dnf, post=dnf, target='inh') lat.connect_dog(amp_pos=0.2, sigma_pos=0.1, amp_neg=0.1, sigma_neg=0.7) ``` The `VideoPopulation` acquires images from the webcam: here the webcam should be able to deliver 640x480 colored images. The corresponding population is then subsampled with a factor 10, and a red filter is applied on it. This feeds a DNF (see the Neural Field" example) which selects the region with the highest density. ``` compile() ``` We can now start the camera 0 (`/dev/video0`, adapt it to your machine): ``` video.start_camera(0) ``` A simple GUI based on PyQtGraph allows to display the input and output of the network: ``` try: from pyqtgraph.Qt import QtGui, QtCore import pyqtgraph as pg except: print('PyQtGraph is not installed, can not visualize the network.') exit(0) # Wrapping class class Viewer(object): " Class to visualize the network activity using PyQtGraph." def __init__(self, video, result): self.video = video self.result = result app = pg.mkQApp() self.win = pg.GraphicsWindow(title="Live webcam") self.win.resize(640,480) box = self.win.addViewBox(lockAspect=True) box.invertY() self.vis = pg.ImageItem() box.addItem(self.vis) box = self.win.addViewBox(lockAspect=True) box.invertY() self.res = pg.ImageItem() box.addItem(self.res) self.win.show() self.lastUpdate = pg.ptime.time() self.avgFps = 0.0 def update(self): # Set the input self.video.grab_image() # Simulate for 10 ms with a new input simulate(5.0) # Refresh the GUI self.vis.setImage(np.swapaxes(self.video.r,0,1)) self.res.setImage(np.swapaxes(self.result.r,0,1)) # Listen to mouse/keyboard events QtGui.QApplication.processEvents() # FPS now = pg.ptime.time() fps = 1.0 / (now - self.lastUpdate) self.lastUpdate = now self.avgFps = self.avgFps * 0.8 + fps * 0.2 # print(self.avgFps) def run(self): timer = QtCore.QTimer() timer.timeout.connect(self.update) timer.start(0) QtGui.QApplication.instance().exec_() timer.stop() # Start the GUI view = Viewer(video, dnf) view.run() video.release() ```
ANNarchy
/ANNarchy-4.7.2.6.tar.gz/ANNarchy-4.7.2.6/examples/image/Webcam.ipynb
Webcam.ipynb
try: from pyqtgraph.Qt import QtGui, QtCore import pyqtgraph as pg except: print('PyQtGraph is not installed on your system, can not visualize the network.') exit(0) try: import pyqtgraph.opengl as gl except: print('OpenGL is not installed on your system, can not visualize the network.') exit(0) import numpy as np class GLViewer(object): " Class to visualize the network activity using PyQtGraph and openGL." def __init__(self, populations, func, update_rate): # Parameters self.populations = populations self.func = func self.update_rate = update_rate # Window self.win = gl.GLViewWidget() self.win.show() self.win.setCameraPosition(distance=40) # Prepare the plots self.plots = [] shift = 0 for pop in self.populations: p = gl.GLSurfacePlotItem( x = np.linspace(0, pop.geometry[0]-1, pop.geometry[0]), y = np.linspace(0, pop.geometry[1]-1, pop.geometry[1]), shader='heightColor', computeNormals=False, smooth=False ) p.translate(shift, -10, -1) self.win.addItem(p) self.plots.append(p) shift -= 25 def scale(self, data): " Colors are shown in the range [-1, 1] per default." return 1.8 * data -0.9 def update(self): "Callback" # Simulate for 200ms self.func(self.update_rate) # Refresh the GUI for i in range(len(self.populations)): self.plots[i].setData(z=self.scale(self.populations[i].r)) # Listen to mouse/keyboard events QtGui.QApplication.processEvents() def run(self): "Infinite loop" timer = QtCore.QTimer() timer.timeout.connect(self.update) timer.start(0) QtGui.QApplication.instance().exec() def loop_bubbles(populations, func, update_rate): "Launches the GL GUI and rotates the bubble infinitely." # Create the GUI using PyQtGraph app = QtGui.QApplication([]) viewer = GLViewer(populations, func, update_rate) # Start the simulation forever viewer.run()
ANNarchy
/ANNarchy-4.7.2.6.tar.gz/ANNarchy-4.7.2.6/examples/neural_field/Viz.py
Viz.py
from ANNarchy import * setup(dt=0.1) # Rate-coded input neuron input_neuron = Neuron( parameters = "baseline = 0.0", equations = "r = baseline" ) # Rate-coded output neuron simple_neuron = Neuron( equations = "r = sum(exc)" ) # Rate-coded population for input pop1 = Population(geometry=1, neuron=input_neuron) # Poisson Population to encode pop2 = PoissonPopulation(geometry=1000, target="exc") proj = Projection(pop1, pop2, 'exc').connect_all_to_all(weights=1.) # Rate-coded population to decode pop3 = Population(geometry=1000, neuron =simple_neuron) proj = DecodingProjection(pop2, pop3, 'exc', window=10.0) def diagonal(pre, post, weights): "Simple connector pattern to progressively connect each post-synaptic neuron to a growing number of pre-synaptic neurons" lil = CSR() for rk_post in range(post.size): lil.add(rk_post, range((rk_post+1)), [weights], [0] ) return lil proj.connect_with_func(method=diagonal, weights=1.) compile() # Monitors m1 = Monitor(pop1, 'r') m2 = Monitor(pop2, 'spike') m3 = Monitor(pop3, 'r') # Simulate duration = 250. # 0 Hz pop1.baseline = 0.0 simulate(duration) # 10 Hz pop1.baseline = 10.0 simulate(duration) # 50 Hz pop1.baseline = 50.0 simulate(duration) # 100 Hz pop1.baseline = 100.0 simulate(duration) # Get recordings data1 = m1.get() data2 = m2.get() data3 = m3.get() # Raster plot of the spiking population t, n = m2.raster_plot(data2['spike']) # Variance of the the decoded firing rate data_10 = data3['r'][int(1.0*duration/dt()):int(2*duration/dt()), :] data_50 = data3['r'][int(2.0*duration/dt()):int(3*duration/dt()), :] data_100 = data3['r'][int(3.0*duration/dt()):int(4*duration/dt()), :] var_10 = np.mean(np.abs((data_10 - 10.)/10.), axis=0) var_50 = np.mean(np.abs((data_50 - 50.)/50.), axis=0) var_100 = np.mean(np.abs((data_100 - 100.)/100.), axis=0) ### Plot the results import matplotlib.pyplot as plt plt.subplot(3,1,1) plt.plot(t, n, '.', markersize=0.5) plt.title('a) Raster plot') plt.xlabel('Time (ms)') plt.ylabel('# neurons') plt.xlim((0, 4*duration)) plt.subplot(3,1,2) plt.plot(np.arange(0, 4*duration, 0.1), data1['r'][:, 0], label='Original firing rate') plt.plot(np.arange(0, 4*duration, 0.1), data3['r'][:, 999], label='Decoded firing rate') plt.legend(frameon=False, loc=2) plt.title('b) Decoded firing rate') plt.xlabel('Time (ms)') plt.ylabel('Activity (Hz)') plt.subplot(3,1,3) plt.plot(var_10, label='10 Hz') plt.plot(var_50, label='50 Hz') plt.plot(var_100, label='100 Hz') plt.legend(frameon=False) plt.title('c) Precision') plt.xlabel('# neurons used for decoding') plt.ylabel('Normalized error') plt.ylim((0,1)) plt.show()
ANNarchy
/ANNarchy-4.7.2.6.tar.gz/ANNarchy-4.7.2.6/examples/hybrid/Hybrid.py
Hybrid.py
from ANNarchy import * from ANNarchy.extensions.bold import * import matplotlib.pyplot as plt # A population of 100 izhikevich neurons pop0 = Population(100, neuron=Izhikevich) pop1 = Population(100, neuron=Izhikevich) # Set noise to create some baseline activity pop0.noise = 5.0; pop1.noise = 5.0 # Compute mean firing rate in Hz on 100ms window pop0.compute_firing_rate(window=100.0) pop1.compute_firing_rate(window=100.0) # Create required monitors mon_pop0 = Monitor(pop0, ["r"], start=False) mon_pop1 = Monitor(pop1, ["r"], start=False) m_bold = BoldMonitor( populations = [pop0, pop1], # recorded populations bold_model = balloon_RN(), # BOLD model to use (default is balloon_RN) mapping = {'I_CBF': 'r'}, # from pop.r to I_CBF normalize_input = 2000, # time window to compute the baseline activity recorded_variables = ["I_CBF", "BOLD"] # variables to be recorded ) # Compile and initialize the network compile() # Ramp up time simulate(1000) # Start recording mon_pop0.start() mon_pop1.start() m_bold.start() # we manipulate the noise for the half of the neurons simulate(5000) # 5s with low noise pop0.noise = 7.5 simulate(5000) # 5s with higher noise (one population) pop0.noise = 5 simulate(10000) # 10s with low noise # retrieve recordings mean_fr1 = np.mean(mon_pop0.get("r"), axis=1) mean_fr2 = np.mean(mon_pop1.get("r"), axis=1) input_data = m_bold.get("I_CBF") bold_data = m_bold.get("BOLD") # An example evaluation, which consists of: # A) the mean firing activity # B) the recorded activity which serves as input to BOLD # C) the resulting BOLD signal plt.figure(figsize=(20,6)) grid = plt.GridSpec(1, 3, left=0.05, right=0.95) # mean firing rate ax1 = plt.subplot(grid[0, 0]) ax1.plot(mean_fr1, label="pop0") ax1.plot(mean_fr2, label="pop1") plt.legend() ax1.set_ylabel("average mean firing rate [Hz]", fontweight="bold", fontsize=18) # BOLD input signal ax2 = plt.subplot(grid[0, 1]) ax2.plot(input_data) ax2.set_ylabel("BOLD input I_CBF", fontweight="bold", fontsize=18) # BOLD input signal ax3 = plt.subplot(grid[0, 2]) ax3.plot(bold_data*100.0) ax3.set_ylabel("BOLD [%]", fontweight="bold", fontsize=18) # x-axis labels as seconds for ax in [ax1, ax2, ax3]: ax.set_xticks(np.arange(0,21,2)*1000) ax.set_xticklabels(np.arange(0,21,2)) ax.set_xlabel("time [s]", fontweight="bold", fontsize=18) plt.show()
ANNarchy
/ANNarchy-4.7.2.6.tar.gz/ANNarchy-4.7.2.6/examples/bold_monitor/BOLD.py
BOLD.py
from ANNarchy import * from ANNarchy.extensions.bold import * import matplotlib.pyplot as plt # Two populations of 100 izhikevich neurons pop0 = Population(100, neuron=Izhikevich) pop1 = Population(100, neuron=Izhikevich) # Set noise to create some baseline activity pop0.noise = 5.0; pop1.noise = 5.0 # Compute mean firing rate in Hz on 100ms window pop0.compute_firing_rate(window=100.0) pop1.compute_firing_rate(window=100.0) # Create required monitors mon_pop0 = Monitor(pop0, ["r"], start=False) mon_pop1 = Monitor(pop1, ["r"], start=False) m_bold = BoldMonitor( populations = [pop0, pop1], # recorded populations bold_model = balloon_two_inputs(), # BOLD model to use # mean firing rate as source variable coupled to the input variable I_CBF # membrane potential as source variable coupled to the input variable I_CMRO2 mapping={'I_CBF': 'r','I_CMRO2': 'v'}, normalize_input=2000, # time window to compute the baseline recorded_variables=["I_CBF", "I_CMRO2", "BOLD"] ) # Compile and initialize the network compile() # Ramp up time simulate(1000) # Start recording mon_pop0.start() mon_pop1.start() m_bold.start() # we manipulate the noise for the half of the neurons simulate(5000) # 5s with low noise pop0.noise = 7.5 simulate(5000) # 5s with higher noise (one population) pop0.noise = 5 simulate(10000) # 10s with low noise # retrieve the recordings mean_fr1 = np.mean(mon_pop0.get("r"), axis=1) mean_fr2 = np.mean(mon_pop1.get("r"), axis=1) If_data = m_bold.get("I_CBF") Ir_data = m_bold.get("I_CMRO2") bold_data = m_bold.get("BOLD") # An example evaluation, which consists of: # A) the mean firing activity # B) the recorded activity which serves as input to BOLD # C) the resulting BOLD signal plt.figure(figsize=(20,6)) grid = plt.GridSpec(1, 3, left=0.05, right=0.95) # mean firing rate ax1 = plt.subplot(grid[0, 0]) ax1.plot(mean_fr1, label="pop0") ax1.plot(mean_fr2, label="pop1") plt.legend() ax1.set_ylabel("average mean firing rate [Hz]", fontweight="bold", fontsize=18) # BOLD input signal ax2 = plt.subplot(grid[0, 1]) ax2.plot(If_data, label='I_CBF') ax2.plot(Ir_data, label='I_CMRO2') ax2.set_ylabel("BOLD input variables", fontweight="bold", fontsize=18) ax2.legend() # BOLD input signal as percent ax3 = plt.subplot(grid[0, 2]) ax3.plot(bold_data*100.0) ax3.set_ylabel("BOLD [%]", fontweight="bold", fontsize=18) # x-axis labels as seconds for ax in [ax1, ax2, ax3]: ax.set_xticks(np.arange(0,21,2)*1000) ax.set_xticklabels(np.arange(0,21,2)) ax.set_xlabel("time [s]", fontweight="bold", fontsize=18) plt.show()
ANNarchy
/ANNarchy-4.7.2.6.tar.gz/ANNarchy-4.7.2.6/examples/bold_monitor/BOLD_two_inputs.py
BOLD_two_inputs.py
from ANNarchy import * duration = 1000.0 setup(dt=0.1) # ########################################### # Define the neurons # ########################################### LIF = Neuron( parameters = """ tau_m = 20.0 : population tau_e = 5.0 : population tau_i = 10.0 : population E_rest = -49.0 : population E_thresh = -50.0 : population E_reset = -60.0 : population """, equations = """ tau_m * dv/dt = E_rest -v + g_exc - g_inh tau_e * dg_exc/dt = -g_exc tau_i * dg_inh/dt = -g_inh """, spike = "v > E_thresh", reset = "v = E_reset" ) # ########################################### # Define the synapse # ########################################### STP = Synapse( parameters = """ tau_rec = 200.0 : projection tau_facil = 20.0 : projection U = 0.2 : projection """, equations = """ dx/dt = (1 - x)/tau_rec : init = 1.0, event-driven du/dt = (U - u)/tau_facil : init = 0.2, event-driven """, pre_spike=""" g_target += w * u * x x *= (1 - u) u += U * (1 - u) """ ) # ########################################### # Create the populations # ########################################### P = Population(geometry=4000, neuron=LIF) P.v = Uniform(-60.0, -50.0) Pe = P[:3200] Pi = P[3200:] # ########################################### # Create the projections # ########################################### con_e = Projection(pre=Pe, post=P, target='exc', synapse = STP).connect_fixed_probability(weights=1.62, probability=0.02) con_i = Projection(pre=Pi, post=P, target='inh').connect_fixed_probability(weights=9.0, probability=0.02) # ########################################### # Compile the network # ########################################### compile() # ########################################### # Run without plasticity # ########################################### m = Monitor(P, 'spike') simulate(duration, measure_time=True) data = m.get() # ########################################### # Make plots # ########################################### t, n = m.raster_plot(data['spike']) rates = m.population_rate(data['spike'], 5.0) print('Total number of spikes: ' + str(len(t))) import matplotlib.pyplot as plt plt.subplot(211) plt.plot(t, n, '.') plt.xlabel('Time (ms)') plt.ylabel('Neuron number') plt.subplot(212) plt.plot(np.arange(rates.size)*dt(), rates) plt.show()
ANNarchy
/ANNarchy-4.7.2.6.tar.gz/ANNarchy-4.7.2.6/examples/pyNN/short_term_plasticity2.py
short_term_plasticity2.py
from __future__ import print_function import os __author__ = 'naitiz' class Fore: BLACK = 30 RED = 31 GREEN = 32 YELLOW = 33 BLUE = 34 MAGENTA = 35 CYAN = 36 WHITE = 37 RESET = 39 # These are fairly well supported, but not part of the standard. LIGHTBLACK_EX = 90 LIGHTRED_EX = 91 LIGHTGREEN_EX = 92 LIGHTYELLOW_EX = 93 LIGHTBLUE_EX = 94 LIGHTMAGENTA_EX = 95 LIGHTCYAN_EX = 96 LIGHTWHITE_EX = 97 class Back: BLACK = 40 RED = 41 GREEN = 42 YELLOW = 43 BLUE = 44 MAGENTA = 45 CYAN = 46 WHITE = 47 RESET = 49 # These are fairly well supported, but not part of the standard. LIGHTBLACK_EX = 100 LIGHTRED_EX = 101 LIGHTGREEN_EX = 102 LIGHTYELLOW_EX = 103 LIGHTBLUE_EX = 104 LIGHTMAGENTA_EX = 105 LIGHTCYAN_EX = 106 LIGHTWHITE_EX = 107 class Style: BOLD = 1 FAINT = 2 ITALIC = 3 UNDERLINE = 4 BLINK = 5 REVERSE = 7 CONCEALED = 8 CROSSED = 9 NORMAL = 22 RESET = '\033[0m' def colored(text, fg=None, bg=None, st=None): """Colorize text. See https://en.wikipedia.org/wiki/ANSI_escape_code Available text foreground: red, green, yellow, blue, magenta, cyan, white. Available text background: red, green, yellow, blue, magenta, cyan, white. Available style: bold, dark, underline, blink, reverse, concealed. Terminal properties: Terminal bold dark underline blink reverse concealed xterm yes no yes bold yes yes linux yes yes bold yes yes no rxvt yes no yes bold/black yes no dtterm yes yes yes reverse yes yes teraterm reverse no yes rev/red yes no aixterm normal no yes no yes yes PuTTY color no yes no yes no Windows no no no no yes no Cygwin SSH yes no color color color yes Mac Terminal yes no yes yes yes yes Example: colored('Hello, World!', 'red', 'grey', ['blue', 'blink']) colored('Hello, World!', 'green') """ if os.getenv('ANSI_COLORS_DISABLED') is None: fmt_str = '\033[%dm%s' if fg is not None: text = fmt_str % (fg, text) if bg is not None: text = fmt_str % (bg, text) if st is not None: from collections import Iterable if isinstance(st, Iterable): for s in st: text = fmt_str % (s, text) else: text = fmt_str % (st, text) text += RESET return text def cprint(text, fg=None, bg=None, st=None, **kwargs): """Print colorize text. It accepts arguments of print function. """ print((colored(text, fg, bg, st)), **kwargs) pass def print_format_table(): """ prints table of formatted text format options """ for style in dir(Style): if not str(style).startswith('_'): for fg in dir(Fore): if not str(fg).startswith('_'): s1 = '' for bg in dir(Back): if not str(bg).startswith('_'): format = ';'.join( [str(getattr(Style, style)), str(getattr(Fore, fg)), str(getattr(Back, bg))]) s1 += '\033[%sm %s \033[0m' % (format, format) print(s1) print('\n') if __name__ == '__main__': print_format_table() cprint("fuck egg", Fore.GREEN, Back.BLUE, Style.UNDERLINE)
ANSI-Color
/ANSI-Color-1.0.2.tar.gz/ANSI-Color-1.0.2/ansicolor/termcolor.py
termcolor.py
ANSI Colors =========== A Python script and module to simply use ANSI Colors in a terminal. ![Screenshot of the doc, colored with the script](http://perso.crans.org/~besson/publis/ansi-colors/example1.png "Screenshot of the doc, colored with the script") ---- ### Author: Lilian Besson. ### Language: Python v2.7+ (but *not* v3). A P3K compatible version is in progress ! This project is now hosted on [Pypi module repository](<https://pypi.python.org/pypi/ANSIColors-balises> "Pypi !"). Documentation ------------- The complete documentation of the module is available, see [here on pythonhosted.org](<http://pythonhosted.org/ANSIColors-balises/> "on-line"). **All the details (installation, options, etc) are in the doc**. Anyway, here are somes infos. ---- Installation ============ The project is just the main script **ANSIColors.py**. How to install it ----------------- Download or copy it from this *git* repository, then launch ``python setup.py install``. More details can be found in the **INSTALL** file. Dependencies ------------ The project is *entirely written in Python*, version *2.7.3*. For more details about the **Python** language, see [the official site](<http://www.python.org> "Python power !"). Python 2.7.1 or higher is **required**. Plateform(s) ------------ The project have been *developped* on *GNU/Linux* (Ubuntu 11.10). #### Warning (Windows) It also have been quickly tested on *Windows 7* **with the Cygwin environment** and Python 2.7. #### Warning (Mac OS X) It shall also work on *Mac OS X*, but **not been tested**. Any suggestion or returns is welcome ! About the project ================= This project was part of my work realised for the MPRI 1-21 **net programming lesson**. The MPRI is the **Parisian Master for Research in Computer Science** (*Master Parisien de Recherche en Informatique* in French). About the doc ============= The documentation is produced mainly with **Sphinx**, the Python's documentation generator. I wrote a few scripts to help *Sphinx* to do what I wanted, and to generate a *PyDoc* version of the doc too. Those scripts constitute now an independant and a powerful project. It is hosted [here on my Google Site](https://sites.google.com/site/naereencorp/liste-des-projets/makepydoc "check this out too ;) !") Contact me ---------- Feel free to contact me, either with a bitbucket message (my profile is [lbesson](https://bitbucket.org/lbesson/ "here")), or via an email at **lilian DOT besson AT ens-cachan DOT fr**. License ------- This project is released under the **GPLv3 license**, for more details, take a look at the LICENSE file in the source. *Basically, that allow you to use all or part of the project for you own business.*
ANSIColors-balises
/ANSIColors-balises-1.9.9.public.tar.gz/ANSIColors-balises-1.9.9.public/README
README
######################### ##### Program part ###### ######################### """\n\ List of all colours: ================== black, red, green, yellow, blue, magenta, cyan, white: Bold colours. Bblack, Bred, Bgreen, Byellow, Bblue, Bmagenta, Bcyan, Bwhite: Normal colours (no bold). Black, Red, Green, Yellow, Blue, Magenta, Cyan, White: Background colours. blink, Blink: Blink special caracters (Blink is faster than blink). .. warning:: Those are **not supported by all terminal emulator**. For example, gnome-terminal and terminator **doesn't** support it, but mintty.exe (Cygwin Windows terminal) support it. reset, nocolors: Special caracters to reinitialized ANSI codes buffer, or to do nothing. default, Default: default foreground colour, default background colour. italic, Italic : italic on, off. **Not always supported**. b, B : bold on, off, u, U : underline on, off, neg, Neg : reverse video on, off. **Not always supported**. clear: try to clear the screen. **Not always supported**. el: try to erase the current line. **Not always supported**. Usefull to use with ``sys.stdout.write`` and make the current printed line change ! bell: try to make an alarm sound. Also used to end the *xtitle* sequence. warning, question, WARNING, INFO, ERROR: aliases for classic markup (/!\\, /?\\, 'WARNING', 'INFO' and 'ERROR'). """ __author__='Lilian BESSON (mailto:lilian.besson@normale.fr)' __version__='1.9.9.public' __date__='mar. 19/03/2013 at 12h:25m:49s' #1############### # Usual Modules # import os, sys, subprocess ################################################################################ # TODO: arrange this. # TODO: make them hidden from the interface of the script # idea: remove from __all__. ######################################## #### Default values for new parsers #### def _default_epilog(version, date, author): """ This return the default epilog used to new parsers, which contains a copyright paragraph, determined by the three arguments version, date, author. """ return """\n\ <yellow>Copyrigths: ===========<reset> Version %s, (c) 2012-2013 (last modif: %s). Written in Python 2.7.3 (<u>http://www.python.org<U>). The parser of command line arguments is generated with the argparse module. By %s, ENS de Cachan (M1 Mathematics & M1 Computer Science MPRI). For Naereen Corp., <u>mailto:naereen-corporation@laposte.net<U>. <u>https://sites.google.com/site/naereencorp<U>.""" % (version, date, author) #: The default description, used when generate a parser by _parser_default function ! _default_description = "WARNING: No description had been given to _parser_default..." def _add_default_options(parser, version=__version__, date=__date__, author=__author__): """ _parser_default(parser, version, date, author) -> argparse.ArgumentParser instance. Return the parser *parser*, modified by adding default options for the project, which put the options : --version, --verbose, --noANSI and --noUTF and others basic options.""" parser.add_argument('--version', action='version', version='%(prog)s '+version) ################################################# #: Let those two lines, just to remember that others stuffs. parser.add_argument('--noANSI', help="If present, ANSI escape code from ANSIColors are *disable*.", action='store_true', default=False) parser.add_argument('--ANSI', help="If present, ANSI escape code from ANSIColors are *forced* to be printed (even if the output is detected to be a pipe).", action='store_true', default=False) return parser # To make a default parser. def _parser_default(description=_default_description, \ epilog="WARNING: No extra epilog had been given to _parser_default...", \ version=__version__, date=__date__, author=__author__, \ preprocessor = str): """ _parser_default(parser, version, date, author) -> argparse.ArgumentParser instance. Make a new *parser*, initialized by adding default options for the project (with _add_default_options) The default description is *_default_description*, The epilog will *epilog*, then _default_epilog(version, date, author). preprocessor can be ANSIColors.sprint or __builtin__.str (default value) (*i.e.* a string -> string function), and it will be used as a **preprocessor** for *description* and *epilog* value. Example: >>> parser = _parser_default(description='<DELETE>A description.',\ epilog='The description will no begin by the balise DELETE, thanks to sprint preprocessing.',\ preprocessor=lambda s: s.replace('<DELETE>', '')) """ # Passing RawDescriptionHelpFormatter as formatter_class= indicates that description and epilog are already correctly formatted and should not be line-wrapped: # RawTextHelpFormatter maintains whitespace for all sorts of help text, including argument descriptions. # The other formatter class available, ArgumentDefaultsHelpFormatter, will add information about the default value of each of the arguments: try: import argparse parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,\ description=preprocessor(description), prefix_chars='-+',\ epilog=preprocessor(epilog + _default_epilog(version, date, author))) # change the function *_add_default_options*, not this one. parser = _add_default_options(parser, version, date, author) return parser except ImportError: sys.stderr.write("""ERROR : when I tried to import the 'argparse' module. The first possible reason is that you are using a version of Python too old (< 2.7). The other possible reason is a other version of Python that the usual CPython : * Jython, * IronPython, * PyPy, for instance, are not supported. """) sys.stderr.flush() sys.exit(1) ################################################################################ ANSISupported = True try: #: If false, the module do almost NOTHING ANSISupported='TERM' in os.environ and os.environ['TERM'] != 'unknown' if ('--noANSI' in sys.argv) or (not sys.stdout.isatty()): ANSISupported = False if '--ANSI' in sys.argv: ANSISupported = True except Exception as e: print "I failed badly when trying to detect if ANSIColors are supported, reason = %s" % e ANSISupported = False # colours bold black="\033[01;30m" #: Black and bold. red="\033[01;31m" #: Red and bold. green="\033[01;32m" #: Green and bold. yellow="\033[01;33m" #: Yellow and bold. blue="\033[01;34m" #: Blue and bold. magenta="\033[01;35m" #: Magenta and bold. cyan="\033[01;36m" #: Cyan and bold. white="\033[01;37m" #: White and bold. # colours not bold Bblack="\033[02;30m" #: Black and not bold. Bred="\033[02;31m" #: Red and not bold. Bgreen="\033[02;32m" #: Green and not bold. Byellow="\033[02;33m" #: Yellow and not bold. Bblue="\033[02;34m" #: Blue and not bold. Bmagenta="\033[02;35m" #: Magenta and not bold. Bcyan="\033[02;36m" #: Cyan and not bold. Bwhite="\033[02;37m" #: White and not bold. # Background colours : not very usefull Black="\033[40m" #: Black background Red="\033[41m" #: Red background Green="\033[42m" #: Green background Yellow="\033[43m" #: Yellow background Blue="\033[44m" #: Blue background Magenta="\033[45m" #: Magenta background Cyan="\033[46m" #: Cyan background White="\033[47m" #: White background # Others : blink and Blink are NOT SUPPORTED BY ALL TERMINAL blink="\033[05m" #: Make the text blink. NOT SUPPORTED BY ALL TERMINAL. On Windows (with mintty) it's ok. On Linux (with ttys, gnome-terminal or pyterminal, it's not). Blink="\033[06m" #: Make the text not blink (*i.e.* stop blinking). # nocolors, then default, then Default nocolors="\033[0m" default="\033[39m" #: default foreground Default="\033[49m" #: default background italic="\033[3m" #: italic Italic="\033[23m" #: no italic b="\033[1m" #: bold B="\033[2m" #: no bold u="\033[4m" #: underline U="\033[24m" #: no underline neg="\033[7m" #: negative Neg="\033[27m" #: no negative # New ones clear="\033[2J" #: Clear the screen. el="\r\033[K" #: Clear the current line. reset="\033[0;39;49m" #: Reset the current foreground and background values to default, and disable all effects. bell="\007" #: BEL is the bell character (\007). It *might* be interpreted and a sonor signal might be heard (but not with every terminals). title="\033]0;" #: Use it like : writec("<title>.: My title :.<bell>"), **and only** with ending the sequence with <bell>. # Not specially balises, but aliases. warning = "%s%s/!\\%s%s" % (red, u, U, default) #: A well colored Warning symbol (/!\\) question = "%s%s/?\\%s%s" % (yellow, u, U, default) #: A well colored question symbol (/?\\) ERROR = "%s%sERROR%s" % (reset, red, default) #: A well colored ERROR word. WARNING = "%s%sWARNING%s" % (reset, yellow, default) #: A well colored WARNING word. INFO = "%s%sINFO%s" % (reset, blue, default) #: A well colored INFO word. ############################################################# #: List of all authorized colours. colorList=['black', 'red', 'green', 'yellow', 'blue', 'magenta', 'cyan', 'white', 'Bblack', 'Bred', 'Bgreen', 'Byellow', 'Bblue', 'Bmagenta', 'Bcyan', 'Bwhite', 'Black', 'Red', 'Green', 'Yellow', 'Blue', 'Magenta', 'Cyan', 'White', 'Blink', 'blink', 'nocolors', 'default', 'Default', 'italic', 'Italic', 'b', 'B', 'u', 'U', 'neg', 'Neg', 'clear', 'el', 'reset', 'bell', 'title', 'warning', 'question', 'ERROR', 'WARNING', 'INFO'] #: List of all simple colours simpleColorList=['black', 'red', 'green', 'yellow', 'blue', 'magenta', 'cyan', 'white'] # backup all colours for n in colorList: exec('_%s=%s' % (n, n)) # Turn off colour balises interpretation if they are not supported if not(ANSISupported): for n in colorList: exec('%s=\"\"' % n) def tocolor(string): """tocolor(string) -> string Convert a string to a colour. [string] **have** to be in [colorList] to be recognized (and interpreted). Default value if [string] is not one of the colour name is "" the empty string.""" if string in colorList: res="" exec('res=%s' % string) return res else: return "" def sprint(chainWithBalises, left='<', right='>', verbose=False): """ sprint(chainWithBalises, left='<', right='>', verbose=False) -> string Parse a string containing colour balises, when colour is one of the previous define name, and then return it, with colour balises changed to concrete ANSI colour codes. **Balises are delimited** by [left] and [right]. By default, it's Pango style whit '<' and '>', but you can change them. For example, a HTML style like : left='<span colour=' and right='>' is also possible. (But, without closing '</span', this is a stupid example. Sorry I didn't find anything else...) .. warning:: It is more prudent to put nothing else than ANSI Colors (*i.e.* values in colorList) between '<' and '>' in [chainWithBalises]. The comportement of the function in case of false balises **is not perfect**. Moreover, a good idea could be to don't try to use '<' or '>' for anything else than balises. I know, it's not perfect. But, the syntax of color balises is so simple and se beautiful with this limitation that you will surely forgive me this, *won't you* ;) ? Example: :: >>> print sprint("<blue>this is blue.<white>And <this> is white.<red>Now this is red because I am <angry> !<green><white>") this is blue.And <this> is white.Now this is red because I am <angry> ! *About:* This function is used in all the following, so all other function can also used *left* and *right* arguments. """ ls = chainWithBalises.split(left) if verbose: print "\tls", ls lls = list() for s2 in ls: if verbose: print "\ts2", s2 inte=s2.split(right) if verbose: print "\tinte", inte if inte[0] in colorList: inte[0]=tocolor(inte[0]) else: if len(inte)>1: inte[0]=left+inte[0]+right if verbose: print "\tinte", inte lls.append(inte) if verbose: print "\t", lls res="" for ii in range(len(lls)): for j in range(len(lls[ii])): res+=lls[ii][j] return res def erase(chainWithBalises, left='<', right='>', verbose=False): """ erase(chainWithBalises, left='<', right='>', verbose=False) -> string Parse a string containing colour balises, when colour is one of the previous define name, and then return it, with colour balises **erased**. Example: This example seems exactly the same that the previous in the documentation, but it's not (**again**: it is hard and painful (and maybe impossible) to put colour in Sphinx RST files, so there is **no colour in output** in the examples... but be sure there is the real output !). >>> print erase("<blue>This is blue.<white>And <this> is white.<red>Now this is red because I am <angry> !<reset>") This is blue.And <this> is white.Now this is red because I am <angry> ! """ ls = chainWithBalises.split(left) if verbose: print "\tls", ls lls = list() for s2 in ls: if verbose: print "\ts2", s2 inte=s2.split(right) if verbose: print "\tinte", inte if inte[0] in colorList: inte[0]='' #: Here the 'erasure' is made. else: if len(inte)>1: inte[0]=left+inte[0]+right if verbose: print "\tinte", inte lls.append(inte) if verbose: print "\t", lls res="" for ii in range(len(lls)): for j in range(len(lls[ii])): res+=lls[ii][j] return res def printc(chainWithBalises, left='<', right='>'): """ printc(chainWithBalises, left='<', right='>') -> unit A shortcut to print sprint(chainWithBalises) : analyse all balises, and print the result.""" print sprint(chainWithBalises, left=left, right=right) def writec(chainWithBalises="", file=sys.stdout, left='<', right='>', flush=True): """ writec(chainWithBalises="", file=sys.stdout, left='<', right='>', flush=True) -> unit Usefud to print colored text **to a file**, represented by the object *file*. Also usefull to print colored text, but without an ending '\\n' caracter. Example: In this example, before the long calcul begin, it print 'Computing 2**(2**(2**4)).....', and when the computation is done, erase the current line (with <el> balise), and print ' Done !' in green, and the result of the computation: :: >>> writec("<red>Computing<reset> 2**(2**(2**4))....."); tmp=2**(2**(2**4)); writec("<el><green>Done !<reset>") This example show how to use ANSIColors module to put colored data in a file. Be aware that this file now contains ANSI escape sequences. For example, *$ cat /tmp/colored-text.txt * will well print the colours, but editing the file will show *hard values* of escape code (*you know, the stuff that you typically don't want to know anything, the **dirty stuff** !*): :: >>> my_file = open('/tmp/colored-text.txt', mode='w') # Open an adhoc file. >>> write("<blue>this is blue.<white>And <this> is white.<red>Now this is red because I am <angry> !<green><white>", file=my_file) Remark: Can also be used to simply reinitialize the ANSI colors buffer, but the function *Reset* is here for this: :: >>> writec("<reset>") .. warning:: The file *file* **will be flushed** by this function if *flush* is set to True (this is default comportement). If you prefer no to, use flush=False option: :: >>> writec(chainWithBalises_1), file=my_file, flush=False) >>> # many things. >>> writec(chainWithBalises_n), file=my_file, flush=False) >>> my_file.flush() # only flush *here*. """ file.write(sprint(chainWithBalises, left=left, right=right)) if flush: file.flush() def clearScreen(): """ clearScreen() -> unit Try to clear the screen using ANSI code [clear].""" writec("<clear>") def clearLine(): """ clearLine() -> unit Try to clear the current line using ANSI code [el].""" writec("<el>") def Reset(): """ Reset() -> unit Try to reset the current ANSI codes buffer, using [reset].""" writec("<reset>") #################################### # Other tools for the interface def notify(msg="", obj=".: Notification sent by ANSIColors.notify :.", icon=None, verb=False): """ notify(msg='', obj='.: Notification sent by ANSIColors.notify :.', icon=None, verb=False) -> bool Notification using subprocess and notify-send. Also print the informations directly to the screen (only if verb=True). .. warning:: This doesn't use any *ANSI escape* codes, but the common *notify-send* **linux** program. It shall fails (but not durty) on Windows or Mac OS X. Return True iff the title have been correctly changed. Fails simply if *notify-send* is not found. """ try: if icon: subprocess.Popen(['notify-send', obj, msg, "--icon=%s/%s" % (os.getcwd(), icon)]) if verb: print "/notify/ A notification have been sent, with obj=%s, msg=%s, and icon=%s." % (obj, msg, icon) else: subprocess.Popen(['notify-send', obj, msg]) if verb: print "/notify/ A notification have been sent, with obj=%s, and msg=%s." % (obj, msg) return 0 except Exception as e: if verb: print "/notify/ notify-send : not-found ! Returned exception is %s." % e return -1 def xtitle(new_title="", verb=False): """ xtitle(new_title="", verb=False) -> 0|1 **Modify the current terminal title**. Returns 0 if one of the two solutions worked, 1 otherwise. An experimental try is with **ANSI escape code**, if the simple way by *invoking* the **xtitle** program doesn't work (or if it is not installed). .. note:: The second solution used the two *ANSI* Balises <title> and <bell>. So, you can also do it with : :: >>> ANSIColors.writec("<title>.: This is the new title of the terminal :.<bell>") But this function *xtitle* is better : it tries two ways, and returns a signal to inform about his success. """ try: subprocess.Popen(['xtitle', new_title]) if verb: print "/xtitle/ The title of the current terminal has been set to '%s'." % new_title return 0 except Exception as e: if verb: print "/xtitle/ xtitle : not-found ! Returned exception is %s." % e try: writec("<title>%s<bell>" % new_title) except Exception as e: if verb: print "/xtitle/ With ANSI escape code <title> and <bell> : failed. ! Returned exception is %s." % e return 2 return 0 ######################## ##### Script part ###### ######################## # To generate ~/.color.sh with this script, # use ./ANSIColors.py -g, def _Generate_color_sh(file_name=None): """ _Generate_color_sh(file_name=None) -> string | unit. Used to print or generate (if file_name is present and is a valid URI address) a profile of all the colours *here* defined. Print all ANSI Colors as 'export name=value'. Usefull to auto generate a ~/.color.sh to be used with Bash, use the command './ANSIColors.sh --generate --file ~/.color.sh', and now you can simply colorized your Bash script with '. ~/.color.sh' to import all colours. The file is a list of 'export NAME="VALUE"', to be used with GNU Bash. """ from time import sleep if file_name: writec("<green> The file %s is creating.<reset> (c) Naereen CORP. 2013.\t" % file_name) writec("<blue><u>Listing of all ANSI Colors...<reset>") sleep(0.9) writec("<el>...") for s in colorList: writec("<green><u>%s<reset>..." % s) sleep(0.1) writec("<el>...") writec("<reset>Listing of all ANSI Colors...><red><u> DONE !<reset>...") sleep(0.9) writec("<el>") if file_name: mfile=open(file_name, 'w') else: mfile=sys.stdout mfile.write("""#!/bin/sh # From ANSIColors.py module, auto generated with -g option. (*i.e.* the command './ANSIColors.py --generate') #About the convention for the names of the colours : # * for the eight colours black, red, green, yellow, blue, magenta, cyan, white: # * the name in minuscule is for colour **with bold** (example 'yellow'), # * the name starting with 'B' is for colour **without bold** (example 'Byellow'), # * the name starting with a capital letter is for the background colour (example 'Yellow'). # * for the special effects (blink, italic, bold, underline, negative), **not always supported** : # * the name in minuscule is for **activate** the effect, # * the name starting in capital letter is for **desactivate** the effect. # * for the other special effects (nocolors, default, Default, clear, el), the effect is **immediate** (and seems to be well supported). #About: #====== # Use this script with other GNU Bash scripts, simply by importing him with # $ . ~/.color.sh #Copyrigths: #=========== # (c) 01/2013 # By Lilian BESSON, # ENS de Cachan (M1 Mathematics & M1 Computer Science MPRI) # mailto:lbesson@ens-cachan.fr # # For Naereen Corp. # mailto:naereen-corporation@laposte.net # https:sites.google.com/site/naereencorp # #List of colors: #=============== """) res = "" for s in colorList: exec("res=('%%s' %% %s)" % s.replace('\x1b', '\\\\x1b')) #: Un excaping special caracters. res=res.replace('\x1b', '\\033') res=res.replace('\r', '\\r') mfile.write("export %s=\"%s\"\n" % (s, (r"%s" % res))) mfile.write("#DONE\n\n") if file_name: writec("<green> The file %s have been creating.<reset> (c) Naereen CORP. 2013.\n" % file_name) sys.exit(0) def _run_complete_tests(color_list_tested=colorList): """ _run_complete_tests(color_list_tested=colorList) -> unit. Launch a complete test of all ANSI Colors code in the list *color_list_tested*. """ printc("Launching full test for ANSI Colors.<default><Default><nocolors> now the text is printed with default value of the terminal...") for s in color_list_tested: printc("The colour '%s'\t is used to make the following effect : <%s>!! This is a sample text for '%s' !!<default><Default><nocolors>..." % (s, s, s)) ############### ##### End ##### if __name__ == '__main__': #: Generate the parser, with another module. #: This variable is the preprocessor, given to description and epilog by ParseCommandArgs, #: * erase: to print with no colours. #: * sprint: to print with colours. preprocessor = sprint if ANSISupported else erase #:preprocessor = __builtin__.str, if you wanna to *see* the balises. #: Generate the parser, with another module. parser = _parser_default(\ description='<green>ANSI Colors utility <red>module<reset> and <blue>script<reset>.',\ epilog="""\n\ <yellow>About: ======<reset> This module is <blue>still in development<reset>. Last version of this project can be found <green>on-line<reset> : * here on <neg>BitBucket<Neg> : <u>https://bitbucket.org/lbesson/ansi-colors<U>, * here on <neg>PyPi<Neg> : <u>https://pypi.python.org/pypi/ANSIColors-balises<U>, * and his documentation can be found here on <neg>Python Hosted<Neg> : <u>http://pythonhosted.org/ANSIColors-balises/<U>. The reference page for ANSI code is : <u>http://en.wikipedia.org/wiki/ANSI_escape_code<U>.""", \ version=__version__, date=__date__, author=__author__, \ preprocessor=preprocessor) #: So, here become the intersting part. group = parser.add_mutually_exclusive_group() group.add_argument("-t","--test", help="Launch a complete test of all ANSI Colors code defined here.", action="store_true") #: Description for the part with '--file' and '--generate' options. group = parser.add_argument_group('Generation of a GNU Bash colour aliases file', preprocessor("""\ <b>About the <u>convention<U> for the names of the colours :<reset> * for the eight colours black, red, green, yellow, blue, magenta, cyan, white: * the name in minuscule is for colour **with bold** (example <yellow>'yellow'<reset>), * the name starting with 'B' is for colour **without bold** (example <Byellow>'Byellow'<reset>), * the name starting with a capital letter is for the background colour (example <Yellow>'Yellow'<reset>); * for the special effects (blink, italic (i), bold (b), underline (u), negative), <u>**not always supported**<reset> : * the name in minuscule is for <u>**activate**<reset> the effect (example 'u' to <u>underline<U>), * the name starting in capital letter is for <u>**desactivate**<reset> the effect (example 'U' to stop underline); * for the other special effects (nocolors, default, Default, clear, el), the effect is <u>**immediate**<reset> (and seems to be well supported). Use this script with other GNU Bash scripts, simply by importing him with <b><black> . ~/.color.sh<reset>""")) group.add_argument("-g","--generate", help="Print all ANSI Colors as 'export name=value'.", action="store_true") #:, required=True) group.add_argument("-f","--file", help="If present, and with --generate option, don't print the values, but export them in the file FILE.", default=None) #: The parser is done, #: Use it to extract the args from the command line. args = parser.parse_args() #: Use those args. if args.generate: if args.file: _Generate_color_sh(args.file) else: _Generate_color_sh() sys.exit(0) if args.test: _run_complete_tests() sys.exit(0) parser.print_help() sys.exit(1) ############################################################################## # remove the scripts values here # FIXME: be sure we removed exactly the good ones else: del(_Generate_color_sh) del(_run_complete_tests) del(_parser_default) del(_default_description) del(_default_epilog) del(_add_default_options)
ANSIColors-balises
/ANSIColors-balises-1.9.9.public.tar.gz/ANSIColors-balises-1.9.9.public/ANSIColors.py
ANSIColors.py
```sh # d8888 888b 888 .d8888b. 8888888 # d88888 8888b 888 d88P Y88b 888 # d88P888 88888b 888 Y88b. 888 # d88P 888 888Y88b 888 "Y888b. 888 # d88P 888 888 Y88b888 "Y88b. 888 # d88P 888 888 Y88888 "888 888 # d8888888888 888 Y8888 Y88b d88P 888 # d88P 888 888 Y888 "Y8888P" 8888888 # # # # .d8888b. 888 888 888 # d88P Y88b 888 888 888 # 888 888 888 888 888 # 888 .d88b. 88888b. 888888 888d888 .d88b. 888 888 .d88b. 888d888 # 888 d88""88b 888 "88b 888 888P" d88""88b 888 888 d8P Y8b 888P" # 888 888 888 888 888 888 888 888 888 888 888 888 88888888 888 # Y88b d88P Y88..88P 888 888 Y88b. 888 Y88..88P 888 888 Y8b. 888 # "Y8888P" "Y88P" 888 888 "Y888 888 "Y88P" 888 888 "Y8888 888 # ``` # ANSI Controller > Basic Python Script to control cursor postion in terminal > and colorize any text in terminal , add any style to graphic mode in terminal <div style=" color: white; background-color: #8B0000; padding: 10px; alignment: center; text-align: center; "> <b>Note</b><br> ! This Module work Depends of Terminal Type of support ANSI escape characters or not ! <hr> if u face any issue write it </div> <br> # Note: > #### The Goal of writing this script is to make it easier to control the terminal by simply writing the name of the color or the name of the style of the text or moving the cursor by calling a function or deleting the text in the window, use it to learn how much it will make it easier for you if you are always using the command window [![PyPi](https://img.shields.io/badge/-PyPi-blue.svg?logo=pypi&labelColor=555555&style=for-the-badge)](https://pypi.org/project/ANSIController "PyPi") [![License: license](https://img.shields.io/badge/-license-blue.svg?style=for-the-badge)](LICENSE "License") [More Info About ANSI Escape Codes](`https://gist.github.com/fnky/458719343aabd01cfb17a3a4f7296797#escape`) ## Tool Snap _______________ ![Alt Text](https://raw.githubusercontent.com/Jo0X01/ANSIController/main/tests/tool.png) ## Features ------------------------------ `ANSI Controller` Features: - Move Cursor Right or left or top or down or postion in terminal screen - Colorize any text u want in terminal - Change Style of terminal printing text , bold ,italic , etc... - MultiProgress in same time ## Tech ------------------------------ `ANSI Controller` uses a number of open source projects to work properly: - [keyboard] - pypi module `https://pypi.org/project/keyboard/` - `ANSI Controller` itself is open source on GitHub. - `More Info About ANSI Escape Codes: `https://gist.github.com/fnky/458719343aabd01cfb17a3a4f7296797#escape ## Installation ------------------------------ `ANSI Controller` requires [pip](https://pypi.org/) to install. Install the dependencies and devDependencies and start the script. ### Windows ```bash pip install --upgrade ANSIController ``` ### Linux && Termux ```bash pip3 install --upgrade ANSIController ``` # Table of colors & style - #### if terminal not support colorize the string will just remove from string - ### Note: Add Custom Values, to string to colorize the output > - ### [ID Colors](https://robotmoon.com/256-colors/): `<{id}>` from 0 to 255 , `<255>` , `<15>` > - ### [RGB Colors](https://www.rapidtables.com/web/color/RGB_Color.html): `(red_value,green_value,blue_value)` from 0 to 255 , `(213,201,250)` > - ### [Hex RGB](https://www.rapidtables.com/web/color/RGB_Color.html): `#FFFFFF` using hex , `#4affa1` - #### Background: `X,x` - #### Reset: `Z,0,reset,Reset` - #### Colors: - [+] `black:` `b,black,30` - [+] `red:` `r,red,31` - [+] `green:` `g,green,32` - [+] `yellow:` `y,yellow,33` - [+] `blue:` `l,blue,34` - [+] `magenta:` `m,magenta,35` - [+] `cyan:` `c,cyan,36` - [+] `white:` `w,white,37` - [+] `default:` `d,default,39` - [+] `bright black:` `bb,bblack,90` - [+] `bright red:` `br,bred,91` - [+] `bright green:` `bg,bgreen,92` - [+] `bright yellow:` `by,byellow,93` - [+] `bright blue:` `bl,bblue,94` - [+] `bright magenta` `bm,bmagenta,95` - [+] `bright cyan:` `bc,bcyan,96` - [+] `bright white:` `bw,bwhite,97` - #### Styles: - [+] `bold:` `B,bold,1` - [+] `dim:` `D,dim,2` - [+] `italic:` `I,italic,3` - [+] `underline:` `U,underline,4` - [+] `blinking:` `L,blinking,5` - [+] `reverse:` `R,reverse,7` - [+] `hidden:` `H,hidden,8` - [+] `strikethrough:` `S,strikethrough,9` - #### ProgressBar: add `%{char}%` - [+] `c:` `current progress value` - [+] `m:` `max progress value` - [+] `p:` `percent progress value` - [+] `b:` `bar progress value` - [+] `f:` `print full bar with all info` - [+] `e:` `Elapsed Time` - [+] `r:` `Remaining Time` - [+] `s:` `Speed` - [+] `your_custom_key:` `your_custom_value` - #### More Control in ProgressBar: - [+] `txt:` `key of string value inside` - [+] `mx:` `max value default is 100` - [+] `inc:` `increamnt value defualt is 1` - [+] `bopen:` `bar open char default '|'` - [+] `bfill:` `bar filled char default '█'` - [+] `bafill:` `bar after filled char default ''` - [+] `bempty:` `bar empty char default ' '` - [+] `bclose:` `bar close char default ' '` - [+] `custom:` `dict object with custom keys` ## Examples & Usage ____________ > Terminal Execute ### windows ```shell python -m ANSIController ``` > OR ```shell ansicontroller ``` ### Linux && Termux ```shell python3 -m ANSIController ``` > OR ```shell ansicontroller ``` > Python Code ``` python from ANSIController import Terminal # Import Needed Class terminal_control = Terminal() # Create Object From Class Terminal ``` > To see all test ```python # print all styles with test example Terminal.print_styles() # print all colors with test example for background too and codes Terminal.print_colors() # print all colors & styles with codes Terminal.print_colors_styles() # print ids colors background and normal from 0 to 255 Terminal.print_id_colors() # will print all pervious in same time Terminal.print_test() # Try it Terminal.game() ``` ## Output: ![Alt Text](https://raw.githubusercontent.com/Jo0X01/ANSIController/main/tests/test_styles.png) ![Alt Text](https://raw.githubusercontent.com/Jo0X01/ANSIController/main/tests/test_colors.png) ![Alt Text](https://raw.githubusercontent.com/Jo0X01/ANSIController/main/tests/test_ids.png) ### to move cursor ```python # this will make cursor move to up 3 lines terminal_control.move_to_up(steps=3) # After move to up 3 lines , cursor will start from 0 postion of line terminal_control.move_to_up(steps=3,start_line=True) # this will make cursor move to down 1 line terminal_control.move_to_down(steps=1) # sometimes terminal not accept to move to up this function will force terminal to move up 1 line terminal_control.force_move_to_up() # move cursor to home postion , make cursor in row 0 and col 0 terminal_control.move_to_home_postion() # move cursor to custom postion row {num} col {num} in terminal screen # here the cursor will move to row 14 ,column 20 terminal_control.move_to_line(row=14,col=20) ``` ### to hide cursor ```python # hide cursor , try it terminal_control.hide_cursor() # show cursor if hidden terminal_control.show_cursor() # show cursor if hidden and hide if showen terminal_control.toggle_cursor() ``` ### To save cursor postion or restore cursror postion ```python terminal_control.save_cursor_postion() # Save Current Cursor postion row , column # Restore Last Saved Cursor postion terminal_control.restor_cursor_postion() # cursor will move auto to saved postion ``` ### lets say i want to clear some text from terminal `\r no` ```python terminal_control.clear_screen() # Clear Terminal Screen it close to command `cls` and `clear` terminal_control.clear_after_cursor() # Clear Terminal Screen all text after cursor postion terminal_control.clear_before_cursor() # Clear Terminal Screen all text after cursor postion terminal_control.clear_line() # Clear Current line, of cursor postion row and start from first line terminal_control.clear_line_after_cursor() # Clear Current line, all text after cursor postion in same line terminal_control.clear_line_before_cursor() # Clear Current line, all text before cursor postion in same line ``` ### lets say i want to colorize some text `By Using Concept of - Table of colors & style` > Using Colors only no styles or background > Colorize function take : text and seprator > > syntax: > > `sep some_style_codes_or_color_code sep` > > for example `sep is []` > > syntax will be: `[some_style_codes_or_color_code]` > ```python sep = "[]" colorize_texts_using_color_char = [ "[r]This is Red[0]", "[g]This is Green[0]", "[y]This is Yellow[0]", "[b]This is Black[0]", "[l]This is Blue[0]", "[m]This is Megenta[0]", "[c]This is Cyan[0]", "[w]This is White[0]", "[d]This is default[0]", "[bb]This is Bright Black[0]", "[br]This is Bright Red[0]", ] for text in colorize_texts_using_color_char: print(terminal_control.colorize(text,sep)) ``` ## Output: ![Alt Text](https://raw.githubusercontent.com/Jo0X01/ANSIController/main/tests/test_colors_out.png) > Now Using style only > ```python sep = "[]" colorize_texts_using_style_char = [ "[B]This is Bold[0]", "[D]This is Dim[0]", "[I]This is Italic[0]", "[U]This is Underline[0]", "[L]This is Blinking[0]", "[R]This is reverse[0]", "[H]This is Hidden[0]", "[S]This is Strikethrogh[0]", ] for text in colorize_texts_using_style_char: print(terminal_control.colorize(text,sep)) ``` ## Output: ![Alt Text](https://raw.githubusercontent.com/Jo0X01/ANSIController/main/tests/test_styles_out.png) > Now Using Colors & style > ```python sep = "[]" colorize_texts_using_style_color_char = [ "[Br]This is Bold and Red[0]", "[Dy]This is Dim and Yellow[0]", "[Il]This is Italic and Blue[0]", "[Ug]This is Underline and Green[0]", "[Lb]This is Blinking and black[0]", "[Rbr]This is reverse and Bright Red[0]", "[Hby]This is Hidden and Bright Yellow[0]", "[Sbc]This is Strikethrogh and Bright Cyan[0]", ] for text in colorize_texts_using_style_color_char: print(terminal_control.colorize(text,sep)) ``` ## Output: ![Alt Text](https://raw.githubusercontent.com/Jo0X01/ANSIController/main/tests/test_colors_style_out.png) > To add Background just add `X,x` to the block `[xrB]` i want background red and bold style > > Note: you can use `terminal_control.print_colorize` without print > > `[0],[z],[Z],[Reset]` is to reset to default color&style in terminal > > ### - Using multiprogressbar ```python # add_progress: take list of text # take too dict #example with list terminal_control.add_progress([ "[rB]test1[0]", "[w]test2[0]", "[cI]test3[0]", "[yD]test4[0]", ]) # example with dict # take `progress_name`` to access later # `txt` key is the progress text terminal_control.add_progress({ "progress1":{"txt": "[rB]test1[0]"}, "progress2":{"txt": "[w]test2[0]"}, "progress3":{"txt": "[cI]test3[0]"}, "progress4":{"txt": "[yD]test4[0]"}, }) # now if i want to add progress value and update values #example with list # access by index terminal_control.add_progress([ "[rB]test1: (%c%/%m%)[0]", "[w]test2: %b% (%c%/%m%)[0]", "[cI]test3: %b% %p% (%c%/%m%)[0]", "[yD]test4: %f% [0]", ]) #example with more control dict terminal_control.add_progress({ "progress1":{ "txt": "[rB]test1: (%c%/%m%) - (%key1%,%key2%,%status_test%)[0]", "mx":200, "inc":5, "custom":{ "key1":10, "key2":"test", "status_test":"Good" } }, # sometimes no need for `mx` or `inc` "progress2":{ "txt": "[w]test2: %b% (%c%/%m%)- (%key1%,%key2%)[0]", "custom":{ "key1":10, "key2":"test", "status_test":"Good" } }, 'progress_key1'|progress_key_integar:{ 'txt':string..., 'mx':100, 'inc':1, 'custom':{}, 'bopen':'|', 'bfill':'█', 'bafill':'', 'bempty':' ' 'bclose':'|', } }) #---------------------------------------- # now to update progress bar values # progress_key = `if list will be index` # progress_key = `if dict will be name` # `all` argument mean if u want to change in all texts # default of all is False # to change max value of custom texts terminal_control.set_progress_max_value(150,"progress_key") terminal_control.set_progress_max_value(150,all=True) # to change auto increment value of custom texts terminal_control.set_progress_inc_value(5,"progress_key") terminal_control.set_progress_inc_value(5,all=True) # to change text value of custom texts terminal_control.set_progress_text("[rD]This is Text[0]","progress_key") terminal_control.set_progress_text("[rD]This is Text[0]",all=True) # to change or add custom value of custom texts terminal_control.set_custom_value("key1","value1","progress_key") terminal_control.set_custom_value("key1","value1",all=True) #---------------------------------------- # now to update progress value # this function more control in update terminal_control.update( value = 13, # if no progress value, leave it progress_key="progress_key", # if no all, leave it all=True or False, custom_values={ "key1":"value1", "key2":"value2" } ) # if u want to auto update using `inc` value just call this terminal_control.increase_progress("progress_key") terminal_control.increase_progress(all=True) #---------------------------------------- # now to print & check progress value # to print all progress text with colorize mode terminal_control.print_progress() # to check is progress finish or not terminal_control.is_progress_finish("progress_key") terminal_control.is_progress_finish(all=True) ``` ## Output: ![ProgressBar GIF](https://raw.githubusercontent.com/Jo0X01/ANSIController/main/tests/test_progress.gif) ## Ref ________________ - https://gist.github.com/fnky/458719343aabd01cfb17a3a4f7296797#escape ________________ ## Tests * ✅ `Windows 11 & 10 & 7` * work with no issue * 👍 `Linux` * work but , maybe issue appear * Still Work on it * 🔧 `Termux` * Some Features Need Rooted Device * Still Work on it ________________ ### `if u face any issue dont be shy , say it` ## License **MIT License** **Copyright (c) 2023 [JoOx01]** `Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.`
ANSIController
/ANSIController-1.1.1.tar.gz/ANSIController-1.1.1/README.md
README.md
# ANSIEnum: *Python + ANSI = easy!* Q) Want a simple way to put ANSI escape codes in your project? A) Yes? So did I! Here is my solution... ## Description Allows inline adding of [ANSI escape codes](https://en.wikipedia.org/wiki/ANSI_escape_code) for color and cursor manipulation. ## Features - [SGR](https://en.wikipedia.org/wiki/ANSI_escape_code#CSI_(Control_Sequence_Introducer)_sequences) properties for setting text **FG**/**BG** color (incl **BR**ight) plus effects (these can also be added together): - FG_* - FG_BR_* - BG_* - BG_BR_* - UL_, ITAL_, STRIKE_, INVERT_and BLINK_ control - [CSI](https://en.wikipedia.org/wiki/ANSI_escape_code#SGR_(Select_Graphic_Rendition)_parameters) properties for clearing screen: - ERASE_DISP_* - ERASE_LINE_* - CSI functions for cursor control (complete list [below](#Cursor functions)): - cursor_* *Note:* Complete property (upper case) names are available from the enum with `dir(ANSI)` ## Installation ```shell $ pip install ANSIEnum ``` ## Usage ```python from ansienum import ANSI # Simple text color with f-strings: print(f"{ANSI.FG_RED}Red text!{ANSI.RESET}") # Codes of the same type can be added: my_color = ANSI.FG_RED + ANSI.BG_BLUE print(f"{my_color}Red on blue text!{ANSI.RESET}") # Move cursor: print(f"{ANSI.cursor_up(2)}Moved text") ``` ### Cursor functions ```python ANSI.cursor_at(n, m) ANSI.cursor_up(n) ANSI.cursor_down(n) ANSI.cursor_right(n) ANSI.cursor_left(n) ANSI.cursor_next_line(n) ANSI.cursor_prev_line(n) ANSI.cursor_horiz_abs(n) ``` ## Contributing If you are reading this and want to contribute, please feel free to create an issue. Note that it is a work in progress and things probably will change, but I intend to keep backward compatibility where possible. ## License This project is under an [MIT license](LICENSE) #### (c) 2021 Paul Taylor   @paulyt
ANSIEnum
/ANSIEnum-0.2.3.tar.gz/ANSIEnum-0.2.3/README.md
README.md
from enum import Enum from typing import Union __all__ = ["ANSI"] VERSION = "0.2.3" class ANSIEnum(Enum): def __init__(self, n: Union[int, list[int]], control_byte: str, abbr: str = None, description: str = None): self._n = n if type(self._n) is list: for i, t in enumerate(self._n): if type(t) is not int: raise TypeError( "%s sequence item %d: expected int instance, %s found" % ( n, i, type(t).__name__)) elif type(self._n) is not int: raise TypeError("'%s': expected int instance, %s found" % (self._n, type(self._n).__name__)) self._control_byte = control_byte self._abbr = None if abbr is not None: self._abbr = abbr if control_byte == "m": self._abbr = "SGR" elif self._abbr is None: self._abbr = "CSI" self._description = description @property def _n_str(self): if type(self._n) is list: return ';'.join([str(n) for n in self._n]) else: return str(self._n) @property def info(self): info = "%s (%s): 'ESC[%s%s'" % (self.name, self._abbr, self._n_str, self._control_byte) if self._description: info += " | %s" % self._description return info def __add__(self, other): if self.value[1] != "m" or other.value[1] != "m": raise TypeError( "unsupported operand code(s) for +: '%s' and '%s'" % (self.value[1], other.value[1])) self_n, self_code = self.value other_n, other_code = other.value new_name = "%s+%s" % (self.name, other.name) if type(self_n) is list: new_n = self_n if other_n not in self_n: new_n.append(other_n) else: new_n = [self_n, other_n] return getattr(ANSIEnum("ANSI", {new_name: (new_n, self._control_byte)}), new_name) def __str__(self): return "\x1b[%s%s" % (self._n_str, self._control_byte) def __repr__(self): return "%s%s" % (self._n_str, self._control_byte) ANSI = ANSIEnum("ANSI", { # CSI (Control Sequence Introducer) sequences "CUR_UP_1": (1, "A", "CUU"), "cursor_up": lambda n=1: getattr( ANSIEnum("ANSI", {"CUR_UP_%d" % n: (n, "A", "CUU", "Move cursor up %d line(s)" % n)}), "CUR_UP_%d" % n), "CUR_DOWN_1": (1, "B", "CUD"), "cursor_down": lambda n=1: getattr( ANSIEnum("ANSI", {"CUR_DOWN_%d" % n: (n, "B", "CUD", "Move cursor down %d line(s)" % n)}), "CUR_DOWN_%d" % n), "CUR_FWD_1": (1, "C", "CUF"), "cursor_right": lambda n=1: getattr( ANSIEnum("ANSI", {"CUR_FWD_%d" % n: (n, "C", "CUF", "Move cursor right %d column(s)" % n)}), "CUR_FWD_%d" % n), "CUR_BACK_1": (1, "D", "CUB"), "cursor_left": lambda n=1: getattr( ANSIEnum("ANSI", {"CUR_BACK_%d" % n: (n, "D", "CUB", "Move cursor left %d column(s)" % n)}), "CUR_BACK_%d" % n), "CUR_NEXT_LINE": (1, "E", "CNL"), "cursor_next_line": lambda n=1: getattr( ANSIEnum("ANSI", {"CUR_NEXT_LINE_%d" % n: (n, "E", "CNL", "Move cursor to first column, %d line(s) down" % n)}), "CUR_NEXT_LINE_%d" % n), "CUR_PREV_LINE": (1, "F", "CPL"), "cursor_prev_line": lambda n=1: getattr( ANSIEnum("ANSI", {"CUR_PREV_%d" % n: (n, "F", "CPL", "Move cursor to first column, %d line(s) up" % n)}), "CUR_PREV_%d" % n), "CUR_HOR_ABS": (1, "G", "CHA", "Cursor Horizontal Absolute, column 1"), "cursor_horiz_abs": lambda n=1: getattr( ANSIEnum("ANSI", {"CUR_HOR_ABS_%d" % n: (n, "G", "CHA", "Move cursor to column %d" % n)}), "CUR_HOR_ABS_%d" % n), "cursor_at": lambda n=1, m=1: getattr( ANSIEnum("ANSI", {"CUR_AT_%d_%d" % (n, m): ([n, m], "H", "CUP", "Move cursor to row %d, column %d" % (n, m))}), "CUR_AT_%d_%d" % (n, m)), "ERASE_DISP_RIGHT": (0, "J", "EID", "Erase in Display, Cursor to end of screen"), "ERASE_DISP_LEFT": (1, "J", "EID", "Erase in Display, Start of screen to cursor"), "ERASE_DISP_ALL": (2, "J", "EID", "Erase in Display, Entire screen (preserve scrollback)"), "ERASE_DISP_ALLSB": (3, "J", "EID", "Erase in Display, Entire screen including scrollback"), "ERASE_LINE_RIGHT": (0, "K", "EIL", "Erase in Line, Cursor up to end"), "ERASE_LINE_LEFT": (1, "K", "EIL", "Erase in Line, Start up to cursor"), "ERASE_LINE_ALL": (2, "K", "EIL", "Erase in Line, Entire line"), # SGR (Select Graphic Rendition) parameters "RESET": (0, "m"), "ITAL_ON": (3, "m"), "UL_ON": (4, "m"), "BLINK_SLOW": (5, "m"), "BLINK_FAST": (6, "m"), "INVERT_ON": (7, "m"), "STRIKE_ON": (9, "m"), "ITAL_OFF": (23, "m"), "UL_OFF": (24, "m"), "BLINK_OFF": (25, "m"), "INVERT_OFF": (27, "m"), "STRIKE_OFF": (29, "m"), "FG_BLACK": (30, "m"), "FG_RED": (31, "m"), "FG_GREEN": (32, "m"), "FG_YELLOW": (33, "m"), "FG_BLUE": (34, "m"), "FG_MAGENTA": (35, "m"), "FG_CYAN": (36, "m"), "FG_WHITE": (37, "m"), "FG_DEFAULT": (39, "m"), "FG_GRAY": (90, "m"), "FG_BR_RED": (91, "m"), "FG_BR_GREEN": (92, "m"), "FG_BR_YELLOW": (93, "m"), "FG_BR_BLUE": (94, "m"), "FG_BR_MAGENTA": (95, "m"), "FG_BR_CYAN": (96, "m"), "FG_BR_WHITE": (97, "m"), "BG_BLACK": (40, "m"), "BG_RED": (41, "m"), "BG_GREEN": (42, "m"), "BG_YELLOW": (43, "m"), "BG_BLUE": (44, "m"), "BG_MAGENTA": (45, "m"), "BG_CYAN": (46, "m"), "BG_WHITE": (47, "m"), "BG_DEFAULT": (49, "m"), "BG_GRAY": (100, "m"), "BG_BR_RED": (101, "m"), "BG_BR_GREEN": (102, "m"), "BG_BR_YELLOW": (103, "m"), "BG_BR_BLUE": (104, "m"), "BG_BR_MAGENTA": (105, "m"), "BG_BR_CYAN": (106, "m"), "BG_BR_WHITE": (107, "m"), })
ANSIEnum
/ANSIEnum-0.2.3.tar.gz/ANSIEnum-0.2.3/src/ansienum/__init__.py
__init__.py
# ANTConnect Provides access to an ANT CDE For more details, visit [docs.antcde.io](https://docs.antcde.io/) ## Release notes ### Version 2021.05.1 - Updates Tasks API Calls and includes download files ### Version 2021.04 - Adds Tasks API calls to the SDK ### Version 2020.20.5 - Adds multiple options in column create and column update ### Version 2020.20.2 - Complements update of API on ANTCDE ### Version 2020.18.1 - Added more consistancy ### Version 0.1.3 - Bugfix ### Version 0.1.2 - Bugfix Column Create ### Version 0.1.0 - Initial version
ANTConnect
/ANTConnect-2023.9.3.tar.gz/ANTConnect-2023.9.3/README.md
README.md
import chunk from getpass import getuser import time import codecs import json import base64 # import sys from datetime import datetime, timedelta import requests # from .logger import Logger class API: _host = "" _access_token = "" _api_version = "1.0" _authenticated = False _logger = None def __init__(self, host: str = "https://api.antcde.io/", logging: bool = False): self._host = host self._logging = logging self._remainingRequests = 10 def login(self, client_id: str, client_secret: str, username: str, password: str) -> bool: """ Login into ANT""" self._authenticated = False self._client_id = client_id self._client_secret = client_secret response = self._make_request('oauth/token', 'POST', { "grant_type": "password", "username": username, "password": password, "client_id": client_id, "client_secret": client_secret }) if self._logging: print('New login call at {}, returned with code {}'.format(datetime.now(), response.status_code)) if response.status_code != 200: print("The response was: {}".format(response.reason)) return False else: parsed_response = response.json() # print(parsed_response) if 'access_token' not in parsed_response: raise SystemError("Please check credentials") now = datetime.now() self._access_token = parsed_response['access_token'] self._refresh_token = parsed_response['refresh_token'] self._expires_at = now + timedelta(seconds=parsed_response['expires_in']) self._authenticated = True user = self.getUserInfo() self._licenses = user['licenses'] if user['two_factor_enabled']: two_fa_validated = False while not two_fa_validated: code = input("Provide your 2FA code: ") two_fa_validated = self.twoFactor(code) return True def twoFactor(self, code: str): body = {"code": str(code)} response = self._make_api_request('2fa/verify', 'POST', body) validated = False try: validated = response['status'] == 'success' except ValueError: print("Your code was invalid, try it again") except: print("Your code was invalid, try it again") return validated def getUserInfo(self): return self._make_api_request('user', 'GET') def _make_api_request(self, path: str, method: str, parameters: dict = None, delete_data: dict = None) -> dict: parameters = {} if parameters is None else parameters if not self._authenticated: raise SystemError("You are not authenticated, please use login first.") if datetime.now() >= self._expires_at: print('Unauthorised, we try to refresh token') self.refresh_token() if not self._authenticated: return False data = parameters if method in ['GET', 'DELETE'] else json.dumps( parameters) url = 'api/{}/{}'.format(self._api_version, path) # If rate limit is not reached if self._remainingRequests == 0: remaining_seconds = (self._RateLimitRefreshAt - datetime.now()).total_seconds() if remaining_seconds > 0: if self._logging: print('Sleeping {} seconds, API rate limit reached'.format(remaining_seconds)) time.sleep(remaining_seconds) response = self._make_request( url, method, data, { "Content-Type": "application/json", "Accept": "application/json", "Authorization": "Bearer {}".format( self._access_token) }, delete_data) # Check if still authenticated if response.status_code == 401: self._authenticated = False self._access_token = "" self._refresh_token = "" self._expires_at = "" return False if response.status_code == 500: return False if response.status_code == 400: print("An error occured: {}".format(response.json()['message'])) return False # set new time if not 'x-ratelimit-remaining' in response.headers: response.headers[ 'x-ratelimit-remaining'] = 40 # Set the value to a fictional number to continue with the loop print('x-ratelimit-remainig not found in API call: {}'.format(url)) if int(self._remainingRequests) < int(response.headers['x-ratelimit-remaining']): self._RateLimitRefreshAt = datetime.now() + timedelta(seconds=60) print('Reset time to: {}'.format(self._RateLimitRefreshAt)) self._remainingRequests = int(response.headers['x-ratelimit-remaining']) if self._logging: print('New API call at {}, returned with code {}'.format(datetime.now(), response.status_code)) if int(response.headers['x-ratelimit-remaining']) < 10: print('Warning, you are reaching the API_rate_limit, {} calls left this minute'.format( response.headers['x-ratelimit-remaining'])) if response.status_code == 401: print('You are not authenticated for this API call') return False if response.text == '': print("response was empty") return '' # print(response.text) parsed_response = response.json() if 'message' in parsed_response: if parsed_response['message'] == 'Unauthenticated.': raise PermissionError('Unauthenticated') if parsed_response['message'] == "Too Many Attempts.": raise ProcessLookupError("Too many requests attempted") return parsed_response def _make_request(self, path: str, method: str, parameters: dict = None, headers: dict = None, data: dict = None) -> requests.Response: parameters = {} if parameters is None else parameters headers = {} if headers is None else headers url = '{}{}'.format(self._host, path) if method == 'GET': return requests.get( url, params=parameters, headers=headers, verify=True) if method == 'PUT': return requests.put( url, data=parameters, headers=headers, verify=True) if method == 'DELETE': return requests.delete( url, data=json.dumps(data), params=parameters, headers=headers, verify=True) if method == 'POST': return requests.post( url, data=parameters, headers=headers, verify=True) raise NotImplementedError("http method not implemented") def refresh_token(self): body = {'grant_type': 'refresh_token', 'refresh_token': self._refresh_token, 'client_id': self._client_id, 'client_secret': self._client_secret, 'scope': ''} url = '{}oauth/token'.format(self._host) response = requests.post(url, data=body) if self._logging: print('New login call at {}, returned with code {}'.format(datetime.now(), response.status_code)) if response.status_code != 200: print('something went wrong with receiving new access_token') self._authenticated = False else: now = datetime.now() parsed_response = response.json() self._access_token = parsed_response['access_token'] self._refresh_token = parsed_response['refresh_token'] self._expires_at = now + timedelta(seconds=parsed_response['expires_in']) print('token successfully refreshed') def projects_read(self): """ List all your projects""" path = 'projects' return self._make_api_request(path, 'GET') def project_create(self, licenseid: str, name: str, number: str = '', description: str = '', imageName: str = '', imageExtension: str = '', imageData: str = '') -> dict: """ Create a new project """ path = 'project' if (imageExtension == ''): project = { "name": name, "number": number, "description": description, "license": licenseid, } else: project = { "name": name, "number": number, "description": description, "license": licenseid, "image": { "name": imageName, "extension": imageExtension, "data": imageData } } return self._make_api_request(path, 'POST', project) def project_read(self, project_id: str) -> dict: """ Get project details """ path = 'project/{}'.format(project_id) return self._make_api_request(path, 'GET') def project_Update(self, project_id: str, name: str) -> dict: """ Get project update """ path = 'project/{}'.format(project_id) return self._make_api_request(path, 'PUT', { "name": name }) def project_delete(self, project_id: str) -> dict: """ Get project delete """ path = 'project/{}'.format(project_id) return self._make_api_request(path, 'DELETE') def tables_read(self, project_id: str): """ Get tables in a project """ path = 'tables' return self._make_api_request(path, 'GET', { "project[id]": project_id }) def table_create(self, project_id: str, name: str) -> dict: """ Create a table in a project """ path = 'table' return self._make_api_request(path, 'POST', { "project": {"id": project_id}, "name": name }) def table_read(self, project_id: str, table_id: str) -> dict: """ Get details of a table in a project """ path = 'table/{}'.format(table_id) return self._make_api_request(path, 'GET', { "project[id]": project_id }) def table_update(self, project_id: str, table_id: str, name: str) -> dict: """ Update a table in a project """ path = 'table/{}'.format(table_id) return self._make_api_request(path, 'PUT', { "project": {"id": project_id}, "name": name }) def table_delete(self, project_id: str, table_id: str) -> dict: """ Delete a table in a project """ path = 'table/{}'.format(table_id) return self._make_api_request(path, 'DELETE', { "project[id]": project_id }) def tables_query(self, project_id: str, queryBody): """ Get all columns in a table """ path = 'project/{}/tables/query'.format(project_id) return self._make_api_request(path, 'POST', queryBody) def columns_read(self, project_id: str, table_id: str): """ Get all columns in a table """ path = 'columns' return self._make_api_request(path, 'GET', { "project[id]": project_id, "table[id]": table_id }) def column_create(self, project_id: str, table_id: str, name: str, fieldType: str, defaultValue: str = "", options: list = None, required: bool = True, ordinal: int = "") -> dict: """ Create a column in a table """ options = [] if options is None else options path = 'column' return self._make_api_request(path, 'POST', { "project": {"id": project_id}, "table": {"id": table_id}, "name": name, "type": fieldType, "options_value": options, "default": defaultValue, "required": required, "ordinal": ordinal }) def column_read(self, project_id: str, table_id: str, column_id): """ Get details for a specific column in a table """ path = 'column/{}'.format(column_id) return self._make_api_request(path, 'GET', { "project[id]": project_id, "table[id]": table_id }) def column_update(self, project_id: str, table_id: str, column_id: str, name: str, defaultValue: str = "", options: list = None, required: bool = True, ordinal: int = 0) -> dict: """ Update details for a specific column in a table """ path = 'column/{}'.format(column_id) return self._make_api_request(path, 'PUT', { "project": {"id": project_id}, "table": {"id": table_id}, "name": name, "required": required, "options": options, "default": defaultValue, "ordinal": ordinal }) def column_delete(self, project_id: str, table_id: str, column_id: str) -> dict: """ Delete column in a table """ path = 'column/{}'.format(column_id) return self._make_api_request(path, 'DELETE', { "project[id]": project_id, "table[id]": table_id }) def records_create_csv(self, project_id: str, table_id: str, records_csv: str, session: str = ""): """ Import a csv file into a table """ path = 'records/import' with codecs.open(records_csv, mode="r", encoding='utf-8') as csv_file: encoded_csv = base64.b64encode(str.encode(csv_file.read())) result = self._make_api_request(path, 'POST', { "project": {"id": project_id}, "table": {"id": table_id}, "session": {"id": session}, "records": encoded_csv.decode("utf-8") }) return result def records_create(self, project_id: str, table_id: str, records: list, session: str = ""): """ Create multiple records into a table """ path = 'records/import' encoded_csv = base64.b64encode(self.create_virtual_csv(records).encode("utf-8")) result = self._make_api_request(path, 'POST', { "project": {"id": project_id}, "table": {"id": table_id}, "session": {"id": session}, "records": encoded_csv.decode("utf-8") }) return result def records_import(self, project_id: str, table_id: str, records: list, session: str = ""): """ Create multiple records into a table """ path = 'records/import' encoded_csv = base64.b64encode(self.create_virtual_csv_Addid(records).encode("utf-8")) result = self._make_api_request(path, 'POST', { "project": {"id": project_id}, "table": {"id": table_id}, "session": {"id": session}, "records": encoded_csv.decode("utf-8") }) return result def records_read_chunk(self, project_id: str, table_id: str, limit: int = 0, offset: int = 0, session: str = "") -> dict: """ Get reords of table """ path = 'records' record_data = self._make_api_request(path, 'GET', { "project[id]": project_id, "table[id]": table_id, "filter[limit]": limit, "filter[offset]": offset, "filter[session]": session, }) return record_data def records_read(self, project_id: str, table_id: str, limit: int = 0, offset: int = 0, session: str = "", chunk_size: int = 10000) -> dict: """ Get reords of table """ record_data = self.records_read_chunk(project_id, table_id, chunk_size, offset, session) if (limit == 0 or limit > chunk_size): temp_limit = chunk_size if len(record_data['records']) < temp_limit: return record_data['records'] else: if 'metadata' in record_data: chunks = (record_data['metadata']['count'] - offset) // temp_limit if self._logging: print( "Total table is bigger ({}) than chunksize({}), splitting up in: {} additional calls".format( record_data['metadata']['count'] - offset, temp_limit, chunks)) all_records = record_data['records'] for i in range(1, chunks + 1): temp_offset = offset + (i * temp_limit) record_data = self.records_read_chunk(project_id, table_id, temp_limit, temp_offset, session) if 'message' in record_data.keys(): print(record_data['message']) else: all_records = all_records + record_data['records'] return all_records else: temp_limit = limit return record_data['records'] def records_search(self, projectId: str, tableId: str, searchFields: list, searchPrase: str = "", offset: int = 0, limit: int = 0, session: str = "", chunk_size: int = 10000): """Search in the records""" body = { "project": {"id": projectId}, "table": {"id": tableId}, "search": {"phrase": searchPrase}, "searchfields": searchFields, "session": {"id": session}, } record_data = self.search_chunk(body, chunk_size, offset) if (limit == 0 or limit > chunk_size): temp_limit = chunk_size if len(record_data['records']) < temp_limit: return record_data['records'] else: if 'metadata' in record_data: chunks = (record_data['metadata']['count'] - offset) // temp_limit if self._logging: print( "Total table is bigger ({}) than chunksize({}), splitting up in: {} additional calls".format( record_data['metadata']['count'] - offset, temp_limit, chunks)) all_records = record_data['records'] for i in range(1, chunks + 1): temp_offset = offset + (i * temp_limit) record_data = self.search_chunk(body, chunk_size, temp_offset) all_records = all_records + record_data['records'] return all_records else: temp_limit = limit return record_data['records'] def records_at_moment(self, projectId: str, tableId: str, timestamp: int, session: str = "", offset: int = 0, limit: int = 0, chunk_size: int = 10000): """Search in the records""" body = { "project": {"id": projectId}, "table": {"id": tableId}, "timestamp": timestamp, "session": {"id": session}, } record_data = self.search_chunk(body, chunk_size, offset) if (limit == 0 or limit > chunk_size): temp_limit = chunk_size if len(record_data['records']) < temp_limit: return record_data['records'] else: if 'metadata' in record_data: chunks = (record_data['metadata']['count'] - offset) // temp_limit if self._logging: print( "Total table is bigger ({}) than chunksize({}), splitting up in: {} additional calls".format( record_data['metadata']['count'] - offset, temp_limit, chunks)) all_records = record_data['records'] for i in range(1, chunks + 1): temp_offset = offset + (i * temp_limit) record_data = self.search_chunk(body, chunk_size, temp_offset) all_records = all_records + record_data['records'] return all_records else: temp_limit = limit return record_data['records'] def records_search_exact(self, projectId: str, tableId: str, searchFields: list, searchExact: str = "", limit: int = 0, offset: int = 0, session: str = "", chunk_size: int = 10000): """Search in the records""" body = { "project": {"id": projectId}, "table": {"id": tableId}, "search": {"exact": searchExact}, "searchfields": searchFields, "session": {"id": session} } record_data = self.search_chunk(body, chunk_size, offset) if (limit == 0 or limit > chunk_size): temp_limit = chunk_size if len(record_data['records']) < temp_limit: return record_data['records'] else: if 'metadata' in record_data: chunks = (record_data['metadata']['count'] - offset) // temp_limit if self._logging: print( "Total table is bigger ({}) than chunksize({}), splitting up in: {} additional calls".format( record_data['metadata']['count'] - offset, temp_limit, chunks)) all_records = record_data['records'] for i in range(1, chunks + 1): temp_offset = offset + (i * temp_limit) record_data = self.search_chunk(body, chunk_size, temp_offset) all_records = all_records + record_data['records'] return all_records else: temp_limit = limit return record_data['records'] def records_search_by_range(self, projectId: str, tableId: str, searchFields: list, min: int = None, max: int = None, limit: int = 0, offset: int = 0, session: str = "", chunk_size: int = 10000): """Search in the records""" search = {} if min is not None and max is not None: search = {"min": min, "max": max} if min is not None and max is None: search = {"min": min} if max is not None and min is None: search = {"max": max} body = { "project": {"id": projectId}, "table": {"id": tableId}, "search": search, "searchfields": searchFields, "session": {"id": session}, } record_data = self.search_chunk(body, chunk_size, offset) if (limit == 0 or limit > chunk_size): temp_limit = chunk_size if len(record_data['records']) < temp_limit: return record_data['records'] else: if 'metadata' in record_data: chunks = (record_data['metadata']['count'] - offset) // temp_limit if self._logging: print( "Total table is bigger ({}) than chunksize({}), splitting up in: {} additional calls".format( record_data['metadata']['count'] - offset, temp_limit, chunks)) all_records = record_data['records'] for i in range(1, chunks + 1): temp_offset = offset + (i * temp_limit) record_data = self.search_chunk(body, chunk_size, temp_offset) all_records = all_records + record_data['records'] return all_records else: temp_limit = limit return record_data['records'] def search_chunk(self, body, chunk_size, offset): body['filter'] = object() body['filter'] = {"limit": chunk_size, "offset": offset} # print(body) return self._make_api_request('search', 'POST', body) def records_by_revision(self, projectId: str, tableId: str, revisionId: str): """Get records of revision""" path = 'search' package = { "project": {"id": projectId}, "table": {"id": tableId}, "revision": revisionId } return self._make_api_request(path, 'POST', package) def records_delete(self, project_id: str, table_id: str, records_ids: list) -> dict: """ Delete records in table """ path = 'records' data = { "project": { "id": project_id }, "table": { "id": table_id }, "records": records_ids } return self._make_api_request(path, 'DELETE', delete_data=data) def records_verify_csv(self, project_id: str, table_id: str, records_csv: str) -> dict: """ Verify structure of CSV file against a table """ path = 'records/verify' with codecs.open(records_csv, mode="r", encoding='utf-8') as csv_file: encoded_csv = base64.b64encode(str.encode(csv_file.read())) result = self._make_api_request(path, 'POST', { "project": {"id": project_id}, "table": {"id": table_id}, "records": encoded_csv.decode("utf-8") }) return result def records_verify(self, project_id: str, table_id: str, records: list) -> dict: """ Verify structure of records against a table """ path = 'records/verify' encoded_csv = base64.b64encode(self.create_virtual_csv(records).encode("utf-8")) result = self._make_api_request(path, 'POST', { "project": {"id": project_id}, "table": {"id": table_id}, "records": encoded_csv.decode("utf-8") }) return result def record_create(self, project_id: str, table_id: str, record_values: dict, session: str = "") -> dict: """ Create a single record into a table """ path = 'record' return self._make_api_request(path, 'POST', { "project": {"id": project_id}, "table": {"id": table_id}, "session": {"id": session}, "record": record_values }) def record_read(self, project_id: str, table_id: str, record_id: str) -> dict: """ Read a specific record of a table """ path = 'record/{}'.format(record_id) return self._make_api_request(path, 'GET', { "project[id]": project_id, "table[id]": table_id }) def record_update(self, project_id: str, table_id: str, record_id: str, updated_record_values: dict, session: str = "") -> dict: """ Update a specific record of a table """ path = 'record/{}'.format(record_id) return self._make_api_request(path, 'PUT', { "project": {"id": project_id}, "table": {"id": table_id}, "session": {"id": session}, "record": updated_record_values }) def record_delete(self, project_id: str, table_id: str, record_id: str) -> dict: """ Delete a specific record of a table """ path = 'record/{}'.format(record_id) return self._make_api_request(path, 'DELETE', { "project[id]": project_id, "table[id]": table_id }) def record_history(self, project_id: str, table_id: str, record_id: str) -> dict: """ Get change record history a specific record of a table """ path = 'record/history/{}'.format(record_id) return self._make_api_request(path, 'GET', { "project[id]": project_id, "table[id]": table_id }) def revisions_read(self, project_id: str, table_id: str) -> dict: """ Get all revisions of a table """ path = 'revisions' return self._make_api_request(path, 'GET', { "project[id]": project_id, "table[id]": table_id }) def revision_create(self, project_id: str, table_id: str, reason: str) -> dict: """ Create a new revisions for a table """ path = 'revision' return self._make_api_request(path, 'POST', { "project": {"id": project_id}, "table": {"id": table_id}, "reason": reason, "timestamp": time.time() }) def revision_read(self, project_id: str, table_id: str, revision_id: str) -> dict: """ Get details of a revisions for a table """ path = 'revision/{}'.format(revision_id) return self._make_api_request(path, 'GET', { "project[id]": project_id, "table[id]": table_id }) def revision_update(self, project_id: str, table_id: str, revision_id: str, reason: str) -> dict: """ Update a revision for a table """ path = 'revision/{}'.format(revision_id) return self._make_api_request(path, 'PUT', { "project": {"id": project_id}, "table": {"id": table_id}, "reason": reason, "timestamp": time.time() }) def revision_delete(self: str, project_id: str, table_id: str, revision_id: str) -> dict: """ Delete a revision for a table """ path = 'revision/{}'.format(revision_id) return self._make_api_request(path, 'DELETE', { "project[id]": project_id, "table[id]": table_id }) def upload_document(self, project_id: str, table_id: str, column_name: str, document_location, document_title: str = None, session: str = ""): """ Upload a document to a table. Creates a new record """ if document_title is None: document_title = document_location.split("/")[-1] ext = document_title.split(".")[-1] path = 'record' with open(document_location, "rb") as image_file: encoded_file = base64.b64encode(image_file.read()) dataset = { "project": {"id": project_id}, "table": {"id": table_id}, "record": { column_name: { "name": document_title, "extension": ext, "data": encoded_file.decode("utf-8") } }, "session": {"id": session} } res = self._make_api_request(path, 'POST', dataset) if 'id' in res: return res else: return "Error" def attach_document(self, project_id: str, table_id: str, column_name: str, record_id: str, document_location, document_title: str = None, session: str = ""): """ Upload a document to an existing record. """ if document_title is None: document_title = document_location.split("/")[-1] ext = document_location.split(".")[-1] path = 'record/{}'.format(record_id) with open(document_location, "rb") as image_file: encoded_file = base64.b64encode(image_file.read()) dataset = { "project": {"id": project_id}, "table": {"id": table_id}, "record": { column_name: { "name": document_title, "extension": ext, "data": encoded_file.decode("utf-8") } }, "session": {"id": session} } # print(dataset) res = self._make_api_request(path, 'PUT', dataset) # print(res) if 'id' in res: return res elif 'message' in res: return res['message'] else: return "Error" def download_document(self, project_id: str, table_id: str, document_id: str, file_location: str, file_name: str = None): """ Download a document. Specify save location and filename """ path = 'record/document/{}'.format(document_id) response = self._make_api_request(path, 'GET', { "project[id]": project_id, "table[id]": table_id }, '') if 'file' in response: if file_name is None: file_name = '{}.{}'.format(response['name'], response['extension']) content = base64.b64decode(response['file']) try: file = open('{}/{}'.format(file_location, file_name), 'wb+') file.write(content) file.close() except Exception as ex: print('Error saving file: {}'.format(ex)) # tasks ## new -> license recommended def tasks_read(self, license: str = "", project_id: str = "", status: str = "", user: str = "", today: bool = False) -> list: """ Get tasks""" depreciationMessage("param", "status", "01-02-2023", "taken") # license = selectLicense(license, self._licenses) path = 'tasks?filter[license]={}&filter[today]={}'.format(license, int(today)) filters = [] if project_id != "": filters.append({"column": "project", "operator": "=", "values": [project_id]}) if status != "": filters.append({"column": "status", "operator": "=", "values": [status]}) if user != "": filters.append({"column": "assigned_to", "operator": "=", "values": [user]}) return self._make_api_request(path, 'POST', { "advanced_filters": filters }) def task_create(self, project_id: str, name: str, description: str, status: str, due_date: str, assigned_user: str, start_date: str = "", appendix: object = {}, license: str = "", end_date: str = "") -> dict: """ Create a task in a project """ path = 'task-create' license = selectLicense(license, self._licenses) depreciationMessage("param", "status", "01-02-2023", "taken") body = { # required "license": license, "project": project_id, "title": name, "assigned_to": assigned_user, "due": due_date, # optional "description": description, "planned_start": start_date, "planned_end": end_date, } if appendix != {}: print("add appendix") return self._make_api_request(path, 'POST', body) def task_read(self, task_id: str) -> dict: """ Get details of a task""" path = 'tasks/{}'.format(task_id) return self._make_api_request(path, 'GET', {}) def task_update_name(self, task_id: str, name: str) -> dict: """ Update a task name""" path = 'tasks/{}'.format(task_id) return self._make_api_request(path, 'PUT', { "title": name }) def task_respond(self, task_id: str, response: str, assigned_user: str = "", status: str = "", due_date: str = "", appendix: object = {}) -> dict: """ Respond to a task""" path = 'tasks/{}/message'.format(task_id) # Depreciation messages -> Moved to update_task if assigned_user != "": depreciationMessage("param", "assigned_user", "01-03-2023", "taken") self.update_task(assigned_to=assigned_user) if status != "": # Status = closed? depreciationMessage("param", "status", "01-02-2023", "taken") # self.update_task(assigned_user=assigned_user) if due_date != "": depreciationMessage("param", "due_date", "01-03-2023", "taken") self.update_task(due_date=due_date) if appendix != {}: depreciationMessage("param", "due_date", "01-03-2023", "taken") return self._make_api_request(path, 'POST', {"message": response}) def task_close(self, task_id: str): path = 'tasks/{}/close'.format(task_id) return self._make_api_request(path, 'POST') def task_cancel(self, task_id: str): path = 'tasks/{}/cancel'.format(task_id) return self._make_api_request(path, 'POST') def update_task(self, task_id: str, title: str = "", description: str = "", priority: str = "", planned_start: str = "", planned_end: str = "", assigned_to: str = "", due_date: str = "", sbs_code: str = "") -> dict: """ update a task info""" path = "tasks/{}".format(task_id) body = {} if title != "": body['title'] = title if description != "": body['description'] = description if priority != "": body['priority'] = priority if planned_start != "": body['planned_start'] = planned_start if planned_end != "": body['planned_end'] = planned_end if assigned_to != "": body['assigned_to'] = assigned_to if due_date != "": body['due_date'] = due_date if sbs_code != "": body['sbs_code'] = sbs_code return self._make_api_request(path, 'PUT', body) def task_upload_appendix(self, task_id: str, appendix: dict): path = "tasks/{}/appendixes".format(task_id) return self._make_api_request(path, 'POST', appendix) def task_message_create(self, task_id: str, message: str): path = "tasks/{}/messages".format(task_id) return self._make_api_request(path, 'POST', {"message": message}) def task_delete(self, task_id: str) -> dict: """ Delete a task""" path = 'tasks/{}'.format(task_id) return self._make_api_request(path, 'DELETE', {}) def task_getJob(self, project_id: str, task_id: str) -> dict: """Get the job associated to the given task""" path = 'project/{}/task/{}/job'.format(project_id, task_id) return self._make_api_request(path, 'GET', {}) ## CustomFunctions def record_update_withdocument(self, project_id: str, table_id: str, record_id: str, updated_record_values: dict, document_column_name: str, document_location, document_title: str = None) -> dict: """Update record with a document""" path = 'record/{}'.format(record_id) if document_title is None: document_title = document_location.split("/")[-1] ext = document_location.split(".")[-1] with open(document_location, "rb") as image_file: encoded_file = base64.b64encode(image_file.read()) updated_record_values[document_column_name] = { "name": document_title, "extension": ext, "data": encoded_file.decode("utf-8") } return self._make_api_request(path, 'PUT', { "project": {"id": project_id}, "table": {"id": table_id}, "record": updated_record_values }) def create_virtual_csv(self, records: list): """Not for use. Create a virtual CSV of records""" encoded_csv = ",".join(records[0].keys()) + "\n" for record in records: recs = [] for key in record.keys(): recs.append(record[key]) encoded_csv += "\"" + "\",\"".join(recs) + "\"\n" return encoded_csv def create_virtual_csv_Addid(self, records: list): """Not for use. Create a virtual CSV of records""" encoded_csv = "id," + ",".join(records[0].keys()) + "\n" for record in records: recs = [] for key in record.keys(): recs.append(record[key]) encoded_csv += "," + ",".join(recs) + "\n" return encoded_csv def parse_document(self, documentLocation, documentTitle: str = None): """Parse a document to the ANT Format.""" if documentTitle is None: documentTitle = documentLocation.split("/")[-1] ext = documentTitle.split(".")[-1] with open(documentLocation, "rb") as image_file: encoded_file = base64.b64encode(image_file.read()) document = { "name": documentTitle.replace(f'.{ext}', ''), "extension": ext, "data": encoded_file.decode('utf-8') } return document def parse_date(self, year: int, month: int, day: int, hour: int, minute: int, seconds: int): """Parse a date to the ANT Format.""" date = str(year + "-" + month + "-" + day + " " + hour + ":" + minute + ":" + seconds) return date def task_download(self, task_id: str, document_id: str, file_location: str, file_name: str = None): """ Download a document. Specify save location and filename """ path = 'task/document/{}'.format(document_id) response = self._make_api_request(path, 'GET', {"task[id]": task_id}) if 'file' in response[0]: if file_name is None: file_name = '{}.{}'.format(response[0]['name'], response[0]['extension']) content = base64.b64decode(response[0]['file']) try: file = open('{}/{}'.format(file_location, file_name), 'wb+') file.write(content) file.close() return True except Exception as ex: print('Error saving file: {}'.format(ex)) return False def job_finish(self, project_id: str, job_id: str) -> dict: """ Finish job (workflow task)""" path = 'project/{}/job/{}/finish'.format(project_id, job_id) return self._make_api_request(path, 'POST', {}) # SBS Codes def sbs_codes(self, project_id: str) -> dict: """ Get all SBS codes """ path = 'project/{}/sbs'.format(project_id) return self._make_api_request(path, 'GET', {}) def sbs_getTree(self, project_id: str) -> dict: """ Get SBS first objects in tree""" path = 'project/{}/sbs-tree'.format(project_id) return self._make_api_request(path, 'GET', {}) def sbs_search(self, project_id: str, value: str) -> dict: """ Search sbs objects by code or label """ path = 'project/{}/sbs-search?value={}'.format(project_id, value) return self._make_api_request(path, 'GET', {}) def sbs_addCode(self, project_id: str, code: str, parentCode: str = "", label: str = "") -> dict: """ Add SBS Code """ path = 'project/{}/sbs'.format(project_id) return self._make_api_request(path, 'POST', { "code": code, "parent": parentCode, "label": label}) def sbs_updateParent(self, project_id: str, sbsId: str, parent: str) -> dict: """ Update the parent of the SBSCode """ path = 'project/{}/sbs/{}'.format(project_id, sbsId) return self._make_api_request(path, 'PUT', { "parent": parent}) def sbs_updateLabel(self, project_id: str, sbsId: str, label: str) -> dict: """ Update the label of the SBS Code """ path = 'project/{}/sbs/{}'.format(project_id, sbsId) return self._make_api_request(path, 'PUT', { "label": label}) def sbs_removeCode(self, project_id: str, sbsId: str) -> dict: """ Remove the SBSCode """ path = 'project/{}/sbs/{}'.format(project_id, sbsId) return self._make_api_request(path, 'DELETE', {}) def sbs_import(self, project_id: str, records: list) -> dict: """ Create multiple sbs records into a table """ path = 'project/{}/sbs-import'.format(project_id) encoded_csv = base64.b64encode(self.create_virtual_csv_Addid(records).encode("utf-8")) result = self._make_api_request(path, 'POST', { "records": encoded_csv.decode("utf-8") }) return result def sbs_children(self, project_id: str, sbs_id: str) -> dict: """ Get SBS Object children """ path = 'project/{}/sbs/{}/children'.format(project_id, sbs_id) return self._make_api_request(path, 'GET', {}) def sbs_multi_delete(self, project_id: str, records: list) -> dict: """ Delete multiple sbs records from table """ path = 'project/{}/sbs'.format(project_id) body = { "records": records } result = self._make_api_request(path, 'DELETE', delete_data=body) return result # WorkFlows def project_workflows(self, project_id: str) -> dict: """ Get all workflows in project""" path = "project/{}/workflows".format(project_id) return self._make_api_request(path, 'GET', {}) def project_workflows_inLicense(self, project_id: str) -> dict: """Returns the workflows which are in project license""" path = "project/{}/workflows/inLicense".format(project_id) return self._make_api_request(path, 'GET', {}) def project_workflow_details(self, project_id: str, projectWorkflowId: str) -> dict: """Returns the project workflow relation""" path = "project/{}/workflow/{}".format(project_id, projectWorkflowId) return self._make_api_request(path, 'GET', {}) def project_workflow_add(self, project_id: str, workflow_id: str, name: str) -> dict: """Adds a project workflow relation""" path = "project{}/wokrflow" body = { "project": {"id": project_id}, "workflow": {"id": workflow_id}, "name": "name" } return self._make_api_request(path, 'POST', body) def project_workflow_delete(self, project_id: str, workflow_id: str) -> dict: """Delete a workflow from a project""" path = "project/{}/workflow/{}" return self._make_api_request(path, 'DELETE', '') # Sessions def project_sessions(self, project_id: str, sbsId: str) -> dict: """ Get Project Sessions """ path = 'project/{}/sessions'.format(project_id) return self._make_api_request(path, 'GET', {}) def workflow_sessions(self, project_id: str, session_id: str) -> dict: """ Workflow sessions """ path = 'project/{}/sessions/{}'.format(project_id, session_id) return self._make_api_request(path, 'GET', {}) def workflow_createSession(self, project_id: str, workflow_id: str, name: str, sbs_code: str = "") -> dict: """ Workflow sessions """ path = 'project/{}/session'.format(project_id) return self._make_api_request(path, 'POST', {"name": name, "workflow": workflow_id, "sbs_code": sbs_code}) def workflow_sessionUpdateName(self, project_id: str, session_id: str, name: str) -> dict: """ Workflow sessions """ path = 'project/{}/session/{}'.format(project_id, session_id) return self._make_api_request(path, 'PUT', {"name": name}) def workflow_sessionUpdateSBS(self, project_id: str, session_id: str, sbs_code: str) -> dict: """ Workflow sessions """ path = 'project/{}/session/{}'.format(project_id, session_id) return self._make_api_request(path, 'PUT', {"sbs_code": sbs_code}) def workflow_sessionDelete(self, project_id: str, session_id: str) -> dict: """ Workflow sessions """ path = 'project/{}/session/{}'.format(project_id, session_id) return self._make_api_request(path, 'DELETE', {}) # UTILS class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' def link(uri, label=None): """ Private function""" if label is None: label = uri parameters = '' # OSC 8 ; params ; URI ST <name> OSC 8 ;; ST escape_mask = '\033]8;{};{}\033\\{}\033]8;;\033\\' return escape_mask.format(parameters, uri, bcolors.OKBLUE + label + bcolors.ENDC) def selectLicense(license, licenses): if license == "": selectedLicenseName = licenses[0]["name"] URL = link("https://docs.antcde.io/antconnect/python/#taken", "documentation") if len(licenses) > 1: print( bcolors.WARNING + "Warning" + bcolors.ENDC + ": No license provided. A random license (" + bcolors.OKGREEN + "{}".format( selectedLicenseName) + bcolors.ENDC + ") is selected to handle the tasks. Please specify which license you are using, see {}".format( URL)) else: print( bcolors.OKBLUE + "Info" + bcolors.ENDC + ": You didn't provided a license. Since you have only one license (" + bcolors.OKGREEN + "{}".format( selectedLicenseName) + bcolors.ENDC + "), this is automatically selected. Advised to add it, see {} ".format( URL)) return licenses[0] else: return license def depreciationMessage(type, name, date, doc): URL = link("https://docs.antcde.io/antconnect/python/#{}".format(doc), "documentation") if type == "param": print( bcolors.WARNING + "Warning" + bcolors.ENDC + ": The parameter: \"{}\" will be been depreciated from {}. Please update according to {}".format( name, date, URL)) if type == "def": print( bcolors.WARNING + "Warning" + bcolors.ENDC + ": The function {} will be been depreciated from {}. Please update according to {}".format( name, date, URL)) # Monitor the use of depreciated functions? # If depreciation date is soon, inform?
ANTConnect
/ANTConnect-2023.9.3.tar.gz/ANTConnect-2023.9.3/antconnect/api.py
api.py
============ ANYstructure ============ Save cost and time by efficient optimization and reporting! ANYstructure is the ultimate steel structure design tool for plate fields and cylinders! Weight optimization for all structures with machine learning capabilities. Calculations are based on DNV standards and rules. It is based on DNV standards and recommended practices. The following is caluculated: * Minimum plate thickness (DNV-OS-C101) * Minimum section modulus of stiffener/plate (DNVGL-OS-C101) * Minimum shear area (DNVGL-OS-C101) * Buckling (DNVGL-RP-C201)or PULS (licenced DNV software) * Buckling strength of shells DNV-RP-C202 * PULS buckling (DNV license needed) * Machine learning buckling, PULS based * Fatigue for plate/stiffener connection (DNVGL-RP-C203) Loads are defined as follows: * External surface loads defined by polynominal equations * Tank loads are calculated automatically Loads are combined according to DNVGL-OS-C101. Installation ------------ The easiest way to install the package is via pip:: $ pip install anystructure Usage ----- An entry point is defined. After installing on PIP, just type "ANYstructure" in the command window. Alternatively run \_\_main\_\_.py Documentation ------------- Documentation is cointained in the tool. Help -> Open documentation. Website ------------- https://sites.google.com/view/anystructure/start
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/README.rst
README.rst
# ANYstructure # ANYstructure is the ultimate steel structure design tool for plate fields and cylinders! Weight optimization for all structures with machine learning capabilities. Calculations are based on DNV standards and rules ### What's new in 4.9.1 ### * Corrected bug in loading old save files * Corrected error on buckling flat plate calculation ### What's new in 4.8 ### * Reporting table on cylinders. * Color coding on come cylinder properties. * Corrected error on additional hoop stress input for cylinders. ### What's new in 4.7 ### * Corrected error on girder caluculation for cylinder buckling. * Added 1.10 load factor option for cylinder buckling. * Better compability with linux. * Python 3.11 based. ### What's new in 4.4 ### * Backup and restore feature added. ### What's new in 4.3 ### * General stability. * User friendliness. ### What's new in 4.2 ### * Bug fixing. * Ukraininan theme. ### What's new in 4.0 ### * Cylinder design and optimization! * Flat plate prescriptive buckling improved. Girder calculation added. * Updated GUI with color themes. ### What's new in 3.3 ### * Extremely efficient Machine Learning version of PULS called ML-CL. Implemented for all optimizer options. * Calculation of Center of Gravity and Center of Buoyancy. * Reporting of weights and COG. * Lots of bug fixes. ------------------------------------------------------------------------ ## The following is calculated: ## * Minimum plate thickness (DNV-OS-C101) * Minimum section modulus of stiffener/plate (DNVGL-OS-C101) * Minimum shear area (DNVGL-OS-C101) * Buckling (DNVGL-RP-C201)or PULS (licenced DNV software) * Buckling strength of shells DNV-RP-C202 * PULS buckling (DNV license needed) * Machine learning buckling, PULS based * Fatigue for plate/stiffener connection (DNVGL-RP-C203) Compartments (tank pressures) are created automatically. Pressures on external hull (or any other generic location) is defined by specifying equations. You can optimize cylinders, single plate/stiffener field or multiple. Geometry of double bottom can be optimized. PLEASE CONTRIBUTE. REPORT BUGS ERRORS ETC. For windows executable (.exe) version for non-coders, use the link below. Feedback: audunarn@gmail.com or discuss on github. Please like, share or comment on LinkedIn: https://www.linkedin.com/in/audun-arnesen-nyhus-6aa17118/ Screenshot (this example can be loaded from file "ship_section_example.txt"): ![picture](https://docs.google.com/uc?id=1HJeT50bNJTLJbcHTfRke4iySV8zNOAl_)
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/README.md
README.md
import tkinter as tk from _tkinter import TclError import os try: import any_files.example_data as test except ModuleNotFoundError: import ANYstructure.any_files.example_data as test class CreateStressesWindow(): ''' This class initiates the GUI used to define stresses for the selected structure. ''' def __init__(self, master, app=None): super(CreateStressesWindow, self).__init__() if __name__ == '__main__': self._initial_structure_obj = test.get_structure_object() self.default_stresses = test.get_default_stresses() image_dir = os.path.dirname(__file__) + '\\images\\' else: self.app = app try: self._initial_structure_obj = app._line_to_struc[app._active_line][0] except KeyError: self._initial_structure_obj = None self.default_stresses = app._default_stresses image_dir = app._root_dir + '\\images\\' self._frame = master self._frame.wm_title("Specify strucutre - returned to input field in main window") self._frame.geometry('1500x900') self._frame.grab_set() self._opt_runned = False self._opt_resutls = () self._draw_scale = 500 self._canvas_dim = (500, 450) tk.Label(self._frame, text='-- Global stresses and fixation parameter in plate/stiffener --', font='Verdana 15 bold').place(x=10, y=10) ent_w = 10 # stresses in plate and stiffener self._new_structure_type = tk.StringVar() self._new_trans_stress_high = tk.DoubleVar() self._new_trans_stress_low = tk.DoubleVar() self._new_axial_stress_1 = tk.DoubleVar() self._new_axial_stress_2 = tk.DoubleVar() self._new_shear_stress = tk.DoubleVar() self._new_km1 = tk.DoubleVar() self._new_km2 = tk.DoubleVar() self._new_km3 = tk.DoubleVar() self._new_kpp = tk.DoubleVar() self._new_kps = tk.DoubleVar() self._new_max_pressure_side = tk.StringVar() self._ent_structure_type = tk.OptionMenu(self._frame,self._new_structure_type,command=self.change_option_menu, *self.default_stresses.keys()) self._ent_trans_stress_high = tk.Entry(self._frame, textvariable=self._new_trans_stress_high, width=ent_w) self._ent_trans_stress_low = tk.Entry(self._frame, textvariable=self._new_trans_stress_low, width=ent_w) self._ent_axial_stress_1 = tk.Entry(self._frame, textvariable=self._new_axial_stress_1, width=ent_w) self._ent_axial_stress_2 = tk.Entry(self._frame, textvariable=self._new_axial_stress_2, width=ent_w) self._ent_shear_stress = tk.Entry(self._frame, textvariable=self._new_shear_stress, width=ent_w) self._ent_km1 = tk.Entry(self._frame, textvariable=self._new_km1, width=ent_w) self._ent_km2 = tk.Entry(self._frame, textvariable=self._new_km2, width=ent_w) self._ent_km3 = tk.Entry(self._frame, textvariable=self._new_km3, width=ent_w) self._ent_kpp = tk.Entry(self._frame, textvariable=self._new_kpp, width=ent_w) self._ent_kps = tk.Entry(self._frame, textvariable=self._new_kps, width=ent_w) self._ent_pressure_side = tk.OptionMenu(self._frame,self._new_max_pressure_side,*('p','s')) start_x,start_y,dx,dy = 20,100,100,35 ### # tk.Label(self._frame, text='Input stresses and parameters:', font='Verdana 12 bold',fg='red') \ # .place(x=start_x , y=start_y + 9 * dy) tk.Label(self._frame, text='Select strucutre type:', font='Verdana 9',fg='red') \ .place(x=start_x , y=start_y + 10 * dy) tk.Label(self._frame, text='Sigma,y1_Sd - large transversal stress', font='Verdana 9') \ .place(x=start_x , y=start_y + 11 * dy) tk.Label(self._frame, text='[MPa]', font='Verdana 9 bold') \ .place(x=start_x + dx * 4, y=start_y + 11 * dy) tk.Label(self._frame, text='Sigma,y2_Sd - small transversal stress', font='Verdana 9') \ .place(x=start_x, y=start_y + 12* dy) tk.Label(self._frame, text='[MPa]', font='Verdana 9 bold') \ .place(x=start_x + dx * 4, y=start_y + 12 * dy) tk.Label(self._frame, text='Sigma,x_Sd - axial stress 1', font='Verdana 9') \ .place(x=start_x, y=start_y + 13 * dy) tk.Label(self._frame, text='[MPa]', font='Verdana 9 bold') \ .place(x=start_x + dx * 4, y=start_y + 13 * dy) tk.Label(self._frame, text='Sigma,x_Sd - axial stress 2', font='Verdana 9') \ .place(x=start_x, y=start_y + 14 * dy) tk.Label(self._frame, text='[MPa]', font='Verdana 9 bold') \ .place(x=start_x + dx * 4, y=start_y + 14 * dy) tk.Label(self._frame, text='Tau,xy - shear stress', font='Verdana 9') \ .place(x=start_x, y=start_y + 15 * dy) tk.Label(self._frame, text='[MPa]', font='Verdana 9 bold') \ .place(x=start_x + dx * 4, y=start_y + 15 * dy) tk.Label(self._frame, text='km1, bending moment factor', font='Verdana 9') \ .place(x=start_x, y=start_y + 16* dy) tk.Label(self._frame, text='km2, bending moment factor', font='Verdana 9') \ .place(x=start_x, y=start_y + 17 * dy) tk.Label(self._frame, text='km3, bending moment factor', font='Verdana 9') \ .place(x=start_x, y=start_y + 18 * dy) tk.Label(self._frame, text='kpp, fixation parameter plate', font='Verdana 9') \ .place(x=start_x, y=start_y + 19 * dy) tk.Label(self._frame, text='kps, fixation parameter stiffener', font='Verdana 9') \ .place(x=start_x, y=start_y + 20 * dy) tk.Label(self._frame, text='Max pressure side (plate of stiffener)', font='Verdana 9 bold') \ .place(x=start_x+5*dx, y=start_y + 8 * dy) self._ent_structure_type.place(x=start_x + dx * 3, y=start_y + 10 * dy) self._ent_trans_stress_high.place(x=start_x + dx * 3, y=start_y + 11 * dy) self._ent_trans_stress_low.place(x=start_x + dx * 3, y=start_y + 12 * dy) self._ent_axial_stress_1.place(x=start_x + dx * 3, y=start_y + 13 * dy) self._ent_axial_stress_2.place(x=start_x + dx * 3, y=start_y + 14 * dy) self._ent_shear_stress.place(x=start_x + dx * 3, y=start_y + 15 * dy) self._ent_km1.place(x=start_x + dx * 3, y=start_y + 16 * dy) self._ent_km2.place(x=start_x + dx * 3, y=start_y + 17 * dy) self._ent_km3.place(x=start_x + dx * 3, y=start_y + 18 * dy) self._ent_kpp.place(x=start_x + dx * 3, y=start_y + 19 * dy) self._ent_kps.place(x=start_x + dx * 3, y=start_y + 20 * dy) self._ent_pressure_side.place(x=start_x+8*dx, y=start_y + 8 * dy) # setting default values init_dim = 0.05 init_thk = 0.002 if self._initial_structure_obj != None: self._new_trans_stress_high.set(self._initial_structure_obj.Plate.get_sigma_y1()) self._new_trans_stress_low.set(self._initial_structure_obj.Plate.get_sigma_y2()) self._new_axial_stress_1.set(self._initial_structure_obj.Plate.get_sigma_x1()) self._new_axial_stress_2.set(self._initial_structure_obj.Plate.get_sigma_x2()) self._new_shear_stress.set(self._initial_structure_obj.Plate.get_tau_xy()) self._new_km1.set(self._initial_structure_obj.Plate.get_km1()) self._new_km2.set(self._initial_structure_obj.Plate.get_km2()) self._new_km3.set(self._initial_structure_obj.Plate.get_km3()) self._new_kpp.set(self._initial_structure_obj.Plate.get_kpp()) self._new_kps.set(self._initial_structure_obj.Plate.get_kps()) self._new_structure_type.set(self._initial_structure_obj.Plate.get_structure_type()) else: self._new_structure_type.set('GENERAL_INTERNAL_WT') self._new_trans_stress_high.set(self.default_stresses[self._new_structure_type.get()][0]) self._new_trans_stress_low.set(self.default_stresses[self._new_structure_type.get()][1]) self._new_axial_stress_1.set(self.default_stresses[self._new_structure_type.get()][2]) self._new_axial_stress_1.set(self.default_stresses[self._new_structure_type.get()][3]) self._new_shear_stress.set(self.default_stresses[self._new_structure_type.get()][4]) self._new_km1.set(12) self._new_km2.set(24) self._new_km3.set(12) self._new_kpp.set(1) self._new_kps.set(1) self._new_max_pressure_side.set('p') try: img_file_name = 'img_transverse_stress.gif' if os.path.isfile('images/' + img_file_name): file_path ='images/' + img_file_name else: file_path = app._root_dir + '/images/' + img_file_name photo_transverse = tk.PhotoImage(file=file_path) label_trans = tk.Label(self._frame, image=photo_transverse) label_trans.image = photo_transverse # keep a reference! label_trans.place(x=start_x, y=60) except TclError: pass try: img_file_name = "img_axial_stresses.gif" if os.path.isfile('images/' + img_file_name): file_path ='images/' + img_file_name else: file_path = app._root_dir + '/images/' + img_file_name photo_axial = tk.PhotoImage(file=file_path) label_axial = tk.Label(self._frame, image=photo_axial) label_axial.image = photo_axial # keep a reference! label_axial.place(x=start_x+5*dx, y=60) except TclError: pass try: img_file_name = 'img_fixation_parameters.gif' if os.path.isfile('images/' + img_file_name): file_path ='images/' + img_file_name else: file_path = app._root_dir + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) label_fix = tk.Label(self._frame, image=photo) label_fix.image = photo # keep a reference! label_fix.place(x=start_x+9.5*dx, y=60) except TclError: pass tk.Label(self._frame,text='The stresses are global values and is estimated ' '\nby user.\n' 'Alterntively read out stresses from FE-model.\n' 'Suggestions for input:\n' 'Transverse stresses (Sigma,y_Sd is calculated):\n' ' - conservative - about 100 MPa \n' ' - non-conservative - about 60 MPa\n' 'Axial stresses: \n' ' - about 60 MPa\n' ' - non-conservative - about 40 MPa\n' 'Shear stresses: \n' ' - about 20 MPa\n' ' - non-conservative - about 1 MPa', justify=tk.LEFT, font = 'Verdana 10', fg = 'blue',bg='white')\ .place(x=start_x+dx*4.5,y=start_y+dy*11) self._close_and_save = tk.Button(self._frame, text='Return and set stresses and fixation parameter', command=self.save_and_close, bg='green', font='Verdana 10', fg='yellow') self._close_and_save.place(x=start_x + dx * 4.5, y=start_y + dy * 19) def change_option_menu(self,event): ''' Action when changing the structure type :return: ''' self._new_trans_stress_high.set(self.default_stresses[self._new_structure_type.get()][0]) self._new_trans_stress_low.set(self.default_stresses[self._new_structure_type.get()][1]) self._new_axial_stress_1.set(self.default_stresses[self._new_structure_type.get()][2]) self._new_axial_stress_1.set(self.default_stresses[self._new_structure_type.get()][3]) self._new_shear_stress.set(self.default_stresses[self._new_structure_type.get()][4]) def save_and_close(self): ''' Save and close :return: ''' if __name__ == '__main__': self._frame.destroy() return self.app.on_close_stresses_window([self._new_trans_stress_high.get(), self._new_trans_stress_low.get(), self._new_axial_stress_1.get(), self._new_axial_stress_2.get(), self._new_shear_stress.get(), self._new_km1.get(), self._new_km2.get(), self._new_km3.get(), self._new_kpp.get(), self._new_kps.get(), self._new_structure_type.get(), self._new_max_pressure_side.get()]) self._frame.destroy() if __name__ == '__main__': root = tk.Tk() my_app = CreateStressesWindow(root,app=None) root.mainloop()
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/stresses_window.py
stresses_window.py
try: import any_files.calc_loads as load import any_files.calc_structure as calc_structure import any_files.make_grid_numpy as grid except ModuleNotFoundError: import ANYstructure.any_files.calc_loads as load import ANYstructure.any_files.calc_structure as calc_structure import ANYstructure.any_files.make_grid_numpy as grid import random structure_types = {'vertical': ['BBS', 'SIDE_SHELL', 'SSS'], 'horizontal': ['BOTTOM', 'BBT', 'HOPPER', 'MD'], 'non-wt': ['FRAME', 'GENERAL_INTERNAL_NONWT'], 'internals': ['INNER_SIDE', 'FRAME_WT', 'GENERAL_INTERNAL_WT', 'INTERNAL_ZERO_STRESS_WT', 'INTERNAL_LOW_STRESS_WT']} obj_dict = {'mat_yield': [355e6, 'Pa'], 'mat_factor': [1.10, ''],'span': [3.3, 'm'], 'spacing': [0.68, 'm'], 'plate_thk': [0.025, 'm'], 'stf_web_height': [0.250297358, 'm'], 'stf_web_thk': [0.012, 'm'], 'stf_flange_width': [0.052, 'm'], 'stf_flange_thk': [0.029702642, 'm'], 'structure_type': ['BOTTOM', ''], 'plate_kpp': [1, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [100, 'MPa'], 'sigma_y2': [100, 'MPa'], 'sigma_x2': [102.7, 'MPa'], 'sigma_x1': [102.7, 'MPa'], 'tau_xy': [5, 'MPa'], 'stf_type': ['T', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''], 'puls buckling method':[1,''], 'puls boundary':['Int',''], 'puls stiffener end':['C',''], 'puls sp or up':['SP',''], 'puls up boundary' :['SSSS',''], 'panel or shell': ['panel', ''], 'pressure side': ['both sides', ''], 'girder_lg': [5, 'm']} obj_dict_cyl_long = {'mat_yield': [355e6, 'Pa'], 'mat_factor': [1.15, ''],'span': [5, 'm'], 'spacing': [0.6, 'm'], 'plate_thk': [0.015, 'm'], 'stf_web_height': [0.38, 'm'], 'stf_web_thk': [0.012, 'm'], 'stf_flange_width': [0.15, 'm'], 'stf_flange_thk': [0.02, 'm'], 'structure_type': ['BOTTOM', ''], 'plate_kpp': [1, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [80, 'MPa'], 'sigma_y2': [80, 'MPa'], 'sigma_x2': [80, 'MPa'], 'sigma_x1': [80, 'MPa'], 'tau_xy': [5, 'MPa'], 'stf_type': ['T', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''], 'puls buckling method':[2,''], 'puls boundary':['Int',''], 'puls stiffener end':['C',''], 'puls sp or up':['SP',''], 'puls up boundary' :['SSSS',''] , 'panel or shell': ['shell', ''] } obj_dict_cyl_ring = {'mat_yield': [355e6, 'Pa'], 'mat_factor': [1.15, ''],'span': [5, 'm'], 'spacing': [0.6, 'm'], 'plate_thk': [0.015, 'm'], 'stf_web_height': [0.4, 'm'], 'stf_web_thk': [0.012, 'm'], 'stf_flange_width': [0.046, 'm'], 'stf_flange_thk': [0.024957, 'm'], 'structure_type': ['BOTTOM', ''], 'plate_kpp': [1, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [80, 'MPa'], 'sigma_y2': [80, 'MPa'], 'sigma_x2': [80, 'MPa'], 'sigma_x1': [80, 'MPa'], 'tau_xy': [5, 'MPa'], 'stf_type': ['L-bulb', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''], 'puls buckling method':[2,''], 'puls boundary':['Int',''], 'puls stiffener end':['C',''], 'puls sp or up':['SP',''], 'puls up boundary' :['SSSS',''] , 'panel or shell': ['shell', ''] } obj_dict_cyl_heavy_ring = {'mat_yield': [355e6, 'Pa'], 'mat_factor': [1.15, ''],'span': [5, 'm'], 'spacing': [0.6, 'm'], 'plate_thk': [0.015, 'm'], 'stf_web_height': [0.77, 'm'], 'stf_web_thk': [0.014, 'm'], 'stf_flange_width': [0.2, 'm'], 'stf_flange_thk': [0.03, 'm'], 'structure_type': ['BOTTOM', ''], 'plate_kpp': [1, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [80, 'MPa'], 'sigma_y2': [80, 'MPa'], 'sigma_x2': [80, 'MPa'], 'sigma_x1': [80, 'MPa'], 'tau_xy': [5, 'MPa'], 'stf_type': ['L-bulb', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''], 'puls buckling method':[2,''], 'puls boundary':['Int',''], 'puls stiffener end':['C',''], 'puls sp or up':['SP',''], 'puls up boundary' :['SSSS',''] , 'panel or shell': ['shell', ''] } obj_dict_cyl_long2 = {'mat_yield': [355e6, 'Pa'], 'mat_factor': [1.15, ''],'span': [5, 'm'], 'spacing': [0.65, 'm'], 'plate_thk': [0.02, 'm'], 'stf_web_height': [0.24-0.0249572753957594, 'm'], 'stf_web_thk': [0.012, 'm'], 'stf_flange_width': [0.046, 'm'], 'stf_flange_thk': [0.0249572753957594, 'm'], 'structure_type': ['BOTTOM', ''], 'plate_kpp': [1, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [80, 'MPa'], 'sigma_y2': [80, 'MPa'], 'sigma_x2': [80, 'MPa'], 'sigma_x1': [80, 'MPa'], 'tau_xy': [5, 'MPa'], 'stf_type': ['L-bulb', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''], 'puls buckling method':[2,''], 'puls boundary':['Int',''], 'puls stiffener end':['C',''], 'puls sp or up':['SP',''], 'puls up boundary' :['SSSS',''] , 'panel or shell': ['shell', ''] } obj_dict_cyl_ring2 = {'mat_yield': [355e6, 'Pa'], 'mat_factor': [1.15, ''],'span': [5, 'm'], 'spacing': [0.7, 'm'], 'plate_thk': [0.020, 'm'], 'stf_web_height': [0.3, 'm'], 'stf_web_thk': [0.012, 'm'], 'stf_flange_width': [0.12, 'm'], 'stf_flange_thk': [0.02, 'm'], 'structure_type': ['BOTTOM', ''], 'plate_kpp': [1, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [80, 'MPa'], 'sigma_y2': [80, 'MPa'], 'sigma_x2': [80, 'MPa'], 'sigma_x1': [80, 'MPa'], 'tau_xy': [5, 'MPa'], 'stf_type': ['T', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''], 'puls buckling method':[2,''], 'puls boundary':['Int',''], 'puls stiffener end':['C',''], 'puls sp or up':['SP',''], 'puls up boundary' :['SSSS',''] , 'panel or shell': ['shell', ''] } obj_dict_cyl_heavy_ring2 = {'mat_yield': [355e6, 'Pa'], 'mat_factor': [1.15, ''],'span': [5, 'm'], 'spacing': [0.6, 'm'], 'plate_thk': [0.015, 'm'], 'stf_web_height': [0.7, 'm'], 'stf_web_thk': [0.016, 'm'], 'stf_flange_width': [0.2, 'm'], 'stf_flange_thk': [0.03, 'm'], 'structure_type': ['BOTTOM', ''], 'plate_kpp': [1, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [80, 'MPa'], 'sigma_y2': [80, 'MPa'], 'sigma_x2': [80, 'MPa'], 'sigma_x1': [80, 'MPa'], 'tau_xy': [5, 'MPa'], 'stf_type': ['T', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''], 'puls buckling method':[2,''], 'puls boundary':['Int',''], 'puls stiffener end':['C',''], 'puls sp or up':['SP',''], 'puls up boundary' :['SSSS',''] , 'panel or shell': ['shell', ''] } obj_dict_heavy = {'mat_yield': [355e6, 'Pa'], 'mat_factor': [1.15, ''],'span': [3700, 'm'], 'spacing': [0.75, 'm'], 'plate_thk': [0.018, 'm'], 'stf_web_height': [0.500, 'm'], 'stf_web_thk': [0.0120, 'm'], 'stf_flange_width': [0.150, 'm'], 'stf_flange_thk': [0.02, 'm'], 'structure_type': ['BOTTOM', ''], 'plate_kpp': [1, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [80, 'MPa'], 'sigma_y2': [80, 'MPa'], 'sigma_x2': [80, 'MPa'], 'sigma_x1': [80, 'MPa'], 'tau_xy': [5, 'MPa'], 'stf_type': ['T', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''], 'puls buckling method':[2,''], 'puls boundary':['Int',''], 'puls stiffener end':['C',''], 'puls sp or up':['SP',''], 'puls up boundary' :['SSSS',''], 'panel or shell': ['panel', ''], 'pressure side': ['both sides', '']} obj_dict2 = {'mat_yield': [355e6, 'Pa'], 'mat_factor': [1.15, ''],'span': [4, 'm'], 'spacing': [0.7, 'm'], 'plate_thk': [0.018, 'm'], 'stf_web_height': [0.36, 'm'], 'stf_web_thk': [0.012, 'm'], 'stf_flange_width': [0.15, 'm'], 'stf_flange_thk': [0.02, 'm'], 'structure_type': ['BOTTOM', ''], 'plate_kpp': [1, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [100, 'MPa'], 'sigma_y2': [100, 'MPa'], 'sigma_x2': [80, 'MPa'], 'sigma_x1': [50, 'MPa'], 'tau_xy': [5, 'MPa'], 'stf_type': ['T', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''], 'puls buckling method':[2,''], 'puls boundary':['Int',''], 'puls stiffener end':['C',''], 'puls sp or up':['SP',''], 'puls up boundary' :['SSSS',''] } obj_dict_sec_error = {'mat_yield': [355e6, 'Pa'], 'mat_factor': [1.15, ''],'span': [3.5, 'm'], 'spacing': [0.875, 'm'], 'plate_thk': [0.023, 'm'], 'stf_web_height': [0.41, 'm'], 'stf_web_thk': [0.012, 'm'], 'stf_flange_width': [0.17, 'm'], 'stf_flange_thk': [0.015, 'm'], 'structure_type': ['SIDE_SHELL', ''], 'plate_kpp': [1, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [93, 'MPa'], 'sigma_y2': [93, 'MPa'], 'sigma_x2': [80, 'MPa'], 'sigma_x1': [39.7, 'MPa'], 'tau_xy': [2.8, 'MPa'], 'stf_type': ['T', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''], 'puls buckling method':[2,''], 'puls boundary':['Int',''], 'puls stiffener end':['C',''], 'puls sp or up':['SP',''], 'puls up boundary' :['SSSS',''] } obj_dict_L = {'mat_yield': [355e6, 'Pa'], 'mat_factor': [1.15, ''], 'span': [3.6, 'm'], 'spacing': [0.82, 'm'], 'plate_thk': [0.018, 'm'], 'stf_web_height': [0.4, 'm'], 'stf_web_thk': [0.014, 'm'], 'stf_flange_width': [0.072, 'm'], 'stf_flange_thk': [0.0439, 'm'], 'structure_type': ['BOTTOM', ''], 'plate_kpp': [0.5, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [102, 'MPa'], 'sigma_y2': [106.9, 'MPa'], 'sigma_x2': [66.8, 'MPa'], 'sigma_x1': [66.8, 'MPa'], 'tau_xy': [20, 'MPa'], 'stf_type': ['L', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''], 'puls buckling method':[2,''], 'puls boundary':['Int',''], 'puls stiffener end':['C',''], 'puls sp or up':['SP',''], 'puls up boundary' :['SSSS',''] , 'panel or shell': ['panel', ''], 'pressure side': ['both sides', ''] } obj_dict_fr = {'mat_yield': [355e6, 'Pa'], 'mat_factor': [1.15, ''],'span': [2.5, 'm'], 'spacing': [0.74, 'm'], 'plate_thk': [0.018, 'm'], 'stf_web_height': [0.2, 'm'], 'stf_web_thk': [0.018, 'm'], 'stf_flange_width': [0, 'm'], 'stf_flange_thk': [0, 'm'], 'structure_type': ['FRAME', ''], 'plate_kpp': [1, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [150, 'MPa'], 'sigma_y2': [92.22, 'MPa'], 'sigma_x2': [-54.566, 'MPa'], 'sigma_x1': [-54.566, 'MPa'], 'tau_xy': [16.67, 'MPa'], 'stf_type': ['FB', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''], 'puls buckling method':[2,''], 'puls boundary':['Int',''], 'puls stiffener end':['C',''], 'puls sp or up':['SP',''], 'puls up boundary' :['SSSS',''], 'panel or shell': ['panel', ''], 'pressure side': ['both sides', ''] } point_dict = {'point5': [12.0, 2.5], 'point8': [0.0, 2.5], 'point3': [8.0, 0.0], 'point2': [4.0, 0.0], 'point6': [8.0, 2.5], 'point7': [4.0, 2.5], 'point9': [0.0, 20.0], 'point4': [12.0, 0.0], 'point10': [12.0, 20.0], 'point1': [0.0, 0.0]} line_dict = {'line8': [9, 8], 'line6': [7, 6], 'line12': [2, 7], 'line3': [3, 4], 'line13': [3, 6], 'line1': [1, 2], 'line10': [5, 10], 'line11': [1, 8], 'line7': [7, 8], 'line9': [9, 10], 'line5': [5, 6], 'line4': [5, 4], 'line2': [3, 2]} opt_frames = {'opt_frame1': [[2.4, 0.0], [2.4, 2.5]], 'opt_frame2': [[4.8, 0.0], [4.8, 2.5]], 'opt_frame3': [[7.2, 0.0], [7.2, 2.5]], 'opt_frame4': [[9.6, 0.0], [9.6, 2.5]], 'opt_frame_start': [[0.0, 0.0], [0.0, 2.5]], 'opt_frame_stop': [[12.0, 0.0], [12.0, 2.5]]} fat_obj_dict = {'SN-curve': 'Ec','SCF': 1,'Design life': 20, 'n0':10000, 'Weibull': (0.8, 0.8, 0.8), 'Period': (9, 9, 9), 'Fraction': (1, 0, 0), 'CorrLoc': (0.5, 0.5, 0.5), 'Order': ('Loaded', 'Ballast', 'Part'), 'Accelerations':(0.5, 0.5, 0.5), 'DFF':2} fat_obj_dict2 = {'SN-curve': 'Ec','SCF': 1,'Design life': 20, 'n0':10000, 'Weibull': (0.8, 0.8, 0.8), 'Period': (9, 9, 9), 'Fraction': (1, 0, 0), 'CorrLoc': (0.5, 0.5, 0.5), 'Order': ('Loaded', 'Ballast', 'Part'), 'Accelerations':(0.5, 0.5, 0.5), 'DFF':2} fat_obj_dict_problematic = {'SN-curve': 'Ec','SCF': 1,'Design life': 20, 'n0':500571428.0, 'Weibull': (0.8, 0.8, 0), 'Period': (8, 8, 0), 'Fraction': (0.5, 0.5, 0), 'CorrLoc': (0.5, 0.5, 0), 'Order': ('Loaded', 'Ballast', 'Part'), 'Accelerations':(0.5, 0.5, 0), 'DFF':2} loa_fls = {'static_draft':None,'poly_third':1,'poly_second':50,'poly_first':10,'poly_const':5000,'man_press':0, 'load_condition':'loaded','name_of_load':'test_load_laoded_FLS','limit_state':'FLS'} loa_uls = {'static_draft':None,'poly_third':2,'poly_second':20,'poly_first':20,'poly_const':2000,'man_press':0, 'load_condition':'loaded','name_of_load':'test_load_loaded_ULS','limit_state':'ULS'} bal_fls = {'static_draft':None,'poly_third':5.5,'poly_second':10,'poly_first':5.5,'poly_const':1000,'man_press':0, 'load_condition':'ballast','name_of_load':'test_load_ballast_FLS','limit_state':'FLS'} bal_uls = {'static_draft':None,'poly_third':2,'poly_second':20,'poly_first':20,'poly_const':2000,'man_press':0, 'load_condition':'ballast','name_of_load':'test_load_ballast_ULS','limit_state':'ULS'} tank_dict_ballast = {'acc': {'dyn_ballast': 3.0, 'dyn_loaded': 3.0, 'static': 9.81}, 'added_press': 25000.0, 'cells': 10632,'comp_no': 4, 'content': 'ballast', 'density': 1025.0, 'max_el': 20.0, 'min_el': 0.0} comp2 = {'acc': {'static': 9.81, 'dyn_ballast': 3.0, 'dyn_loaded': 3.0}, 'max_el': 29.5, 'added_press': 25000.0, 'cells': 29591, 'density': 1025.0, 'content': 'crude_oil', 'comp_no': 2, 'min_el': 2.5} comp3 = {'acc': {'static': 9.81, 'dyn_ballast': 3.0, 'dyn_loaded': 3.0}, 'max_el': 29.5, 'added_press': 25000.0, 'cells': 19638, 'density': 1025.0, 'content': 'crude_oil', 'comp_no': 3, 'min_el': 2.5} comp4 = {'acc': {'static': 9.81, 'dyn_ballast': 3.0, 'dyn_loaded': 3.0}, 'max_el': 29.5, 'added_press': 25000.0, 'cells': 19072, 'density': 1025.0, 'content': 'ballast', 'comp_no': 4, 'min_el': 0.0} load_side = {'poly_third': 0.0, 'poly_second': 303.0, 'poly_first': -3750.0, 'poly_const': 153000.0, 'load_condition': 'ballast', 'structure_type': None, 'man_press': None, 'static_draft': None, 'name_of_load': 'ballast_side', 'limit_state': 'ULS'} load_bottom = {'poly_third': 0.0, 'poly_second': 31.0, 'poly_first': -83.0, 'poly_const': 45800.0, 'load_condition': 'ballast', 'structure_type': None, 'man_press': None, 'static_draft': None, 'name_of_load': 'ballast_bottom', 'limit_state': 'ULS'} load_static = {'poly_third': None, 'poly_second': None, 'poly_first': None, 'poly_const': None, 'load_condition': 'ballast', 'structure_type': None, 'man_press': None, 'static_draft': 15.0, 'name_of_load': 'ballast_static', 'limit_state': 'ULS'} load_slamming = {'poly_third': 0, 'poly_second': 0, 'poly_first': 0, 'poly_const': 1000000.0, 'load_condition': 'slamming', 'structure_type': None, 'man_press': None, 'static_draft': None, 'name_of_load': 'slamming', 'limit_state': None} ex_comp1 = {'comp_no': 2, 'cells': 32829, 'min_el': 2.5, 'max_el': 30.9, 'content': '', 'added_press': 25000.0, 'acc': {'static': 9.81, 'dyn_loaded': 3.0, 'dyn_ballast': 3.0}, 'density': 1025.0, 'all_types': ['BOTTOM', 'BBS', 'BBT', 'HOPPER', 'SIDE_SHELL', 'INNER_SIDE', 'FRAME', 'FRAME_WT', 'SSS', 'MD', 'GENERAL_INTERNAL_WT', 'GENERAL_INTERNAL_NONWT', 'INTERNAL_1_MPA', 'INTERNAL_LOW_STRESS_WT']} ex_comp2 = {'comp_no': 3, 'cells': 62530, 'min_el': 2.5, 'max_el': 30.900000000000002, 'content': '', 'added_press': 25000.0, 'acc': {'static': 9.81, 'dyn_loaded': 3.0, 'dyn_ballast': 3.0}, 'density': 1025.0, 'all_types': ['BOTTOM', 'BBS', 'BBT', 'HOPPER', 'SIDE_SHELL', 'INNER_SIDE', 'FRAME', 'FRAME_WT', 'SSS', 'MD', 'GENERAL_INTERNAL_WT', 'GENERAL_INTERNAL_NONWT', 'INTERNAL_1_MPA', 'INTERNAL_LOW_STRESS_WT']} ex_comp3 = {'comp_no': 4, 'cells': 14559, 'min_el': 0.0, 'max_el': 30.900000000000002, 'content': '', 'added_press': 25000.0, 'acc': {'static': 9.81, 'dyn_loaded': 3.0, 'dyn_ballast': 3.0}, 'density': 1025.0, 'all_types': ['BOTTOM', 'BBS', 'BBT', 'HOPPER', 'SIDE_SHELL', 'INNER_SIDE', 'FRAME', 'FRAME_WT', 'SSS', 'MD', 'GENERAL_INTERNAL_WT', 'GENERAL_INTERNAL_NONWT', 'INTERNAL_1_MPA', 'INTERNAL_LOW_STRESS_WT']} ex_comp4 = {'comp_no': 5, 'cells': 2785, 'min_el': 0.0, 'max_el': 2.5, 'content': '', 'added_press': 25000.0, 'acc': {'static': 9.81, 'dyn_loaded': 3.0, 'dyn_ballast': 3.0}, 'density': 1025.0, 'all_types': ['BOTTOM', 'BBS', 'BBT', 'HOPPER', 'SIDE_SHELL', 'INNER_SIDE', 'FRAME', 'FRAME_WT', 'SSS', 'MD', 'GENERAL_INTERNAL_WT', 'GENERAL_INTERNAL_NONWT', 'INTERNAL_1_MPA', 'INTERNAL_LOW_STRESS_WT']} run_dict = {'line3': {'Identification': 'line3', 'Length of panel': 4000.0, 'Stiffener spacing': 700.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 400.0, 'Web thick.': 12.0, 'Flange width': 200.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 101.7, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.41261, 'In-plane support': 'Int'}, 'line4': {'Identification': 'line4', 'Length of panel': 3900.0, 'Stiffener spacing': 700.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 400.0, 'Web thick.': 12.0, 'Flange width': 250.0, 'Flange thick.': 14.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 100.5, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.406561, 'In-plane support': 'Int'}, 'line5': {'Identification': 'line5', 'Length of panel': 3800.0, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 400.0, 'Web thick.': 12.0, 'Flange width': 250.0, 'Flange thick.': 14.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 102.7, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.406575, 'In-plane support': 'Int'}, 'line6': {'Identification': 'line6', 'Length of panel': 3700.0, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 400.0, 'Web thick.': 12.0, 'Flange width': 250.0, 'Flange thick.': 14.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 102.7, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.412197, 'In-plane support': 'Int'}, 'line7': {'Identification': 'line7', 'Length of panel': 3600.0, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 400.0, 'Web thick.': 12.0, 'Flange width': 250.0, 'Flange thick.': 12.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 101.5, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.422985, 'In-plane support': 'Int'}, 'line8': {'Identification': 'line8', 'Length of panel': 3500.0, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 400.0, 'Web thick.': 12.0, 'Flange width': 250.0, 'Flange thick.': 12.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 101.5, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.438508, 'In-plane support': 'Int'}, 'line9': {'Identification': 'line9', 'Length of panel': 3800.0, 'Stiffener spacing': 700.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 400.0, 'Web thick.': 12.0, 'Flange width': 200.0, 'Flange thick.': 18.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 100.7, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.459639, 'In-plane support': 'Int'}, 'line10': {'Identification': 'line10', 'Length of panel': 3800.0, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 400.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 50.0, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.487211, 'In-plane support': 'Int'}, 'line11': {'Identification': 'line11', 'Length of panel': 4000.0, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 500.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 50.0, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.521418, 'In-plane support': 'Int'}, 'line12': {'Identification': 'line12', 'Length of panel': 3905.1200000000003, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 500.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 50.0, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.557214, 'In-plane support': 'Int'}, 'line50': {'Identification': 'line50', 'Length of panel': 3000.0, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 340.0, 'Web thick.': 12.0, 'Flange width': 200.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.300313, 'In-plane support': 'Int'}, 'line51': {'Identification': 'line51', 'Length of panel': 3199.999999999999, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 340.0, 'Web thick.': 12.0, 'Flange width': 200.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.295486, 'In-plane support': 'Int'}, 'line52': {'Identification': 'line52', 'Length of panel': 3400.0000000000005, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 340.0, 'Web thick.': 12.0, 'Flange width': 200.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.248226, 'In-plane support': 'Int'}, 'line53': {'Identification': 'line53', 'Length of panel': 3400.0000000000005, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 340.0, 'Web thick.': 12.0, 'Flange width': 200.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.214038, 'In-plane support': 'Int'}, 'line54': {'Identification': 'line54', 'Length of panel': 3600.0, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 340.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 16.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.196177, 'In-plane support': 'Int'}, 'line55': {'Identification': 'line55', 'Length of panel': 3800.000000000001, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 340.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 16.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.189068, 'In-plane support': 'Int'}, 'line56': {'Identification': 'line56', 'Length of panel': 4000.0, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 340.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 16.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.105442, 'In-plane support': 'Int'}, 'line57': {'Identification': 'line57', 'Length of panel': 4000.0, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 340.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 16.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.155554, 'In-plane support': 'Int'}, 'line31': {'Identification': 'line31', 'Length of panel': 4000.0, 'Stiffener spacing': 700.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 14.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.0325, 'In-plane support': 'Int'}, 'line32': {'Identification': 'line32', 'Length of panel': 3900.0000000000005, 'Stiffener spacing': 700.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 14.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.0325, 'In-plane support': 'Int'}, 'line33': {'Identification': 'line33', 'Length of panel': 3799.999999999999, 'Stiffener spacing': 700.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 14.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.0325, 'In-plane support': 'Int'}, 'line34': {'Identification': 'line34', 'Length of panel': 3699.999999999999, 'Stiffener spacing': 700.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 14.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.0325, 'In-plane support': 'Int'}, 'line35': {'Identification': 'line35', 'Length of panel': 3600.0000000000014, 'Stiffener spacing': 700.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 14.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.0325, 'In-plane support': 'Int'}, 'line36': {'Identification': 'line36', 'Length of panel': 3500.0, 'Stiffener spacing': 700.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 14.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.0325, 'In-plane support': 'Int'}, 'line37': {'Identification': 'line37', 'Length of panel': 3800.000000000001, 'Stiffener spacing': 700.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 14.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.0325, 'In-plane support': 'Int'}, 'line38': {'Identification': 'line38', 'Length of panel': 3800.000000000001, 'Stiffener spacing': 700.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 14.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.0325, 'In-plane support': 'Int'}, 'line39': {'Identification': 'line39', 'Length of panel': 4000.0, 'Stiffener spacing': 700.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 14.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.0325, 'In-plane support': 'Int'}, 'line40': {'Identification': 'line40', 'Length of panel': 3000.0, 'Stiffener spacing': 700.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 14.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 3.0, 'Pressure (fixed)': 0.0325, 'In-plane support': 'Int'}, 'line13': {'Identification': 'line13', 'Length of panel': 4000.0, 'Stiffener spacing': 775.0, 'Plate thickness': 20.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 450.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 90.0, 'Trans. stress 2': 90.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.436313, 'In-plane support': 'Int'}, 'line14': {'Identification': 'line14', 'Length of panel': 4000.0, 'Stiffener spacing': 775.0, 'Plate thickness': 20.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 450.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 90.0, 'Trans. stress 2': 90.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.436313, 'In-plane support': 'Int'}, 'line15': {'Identification': 'line15', 'Length of panel': 4000.0, 'Stiffener spacing': 775.0, 'Plate thickness': 20.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 450.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 90.0, 'Trans. stress 2': 90.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.436313, 'In-plane support': 'Int'}, 'line16': {'Identification': 'line16', 'Length of panel': 3699.999999999999, 'Stiffener spacing': 775.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 375.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 18.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 90.0, 'Trans. stress 2': 90.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.436313, 'In-plane support': 'Int'}, 'line17': {'Identification': 'line17', 'Length of panel': 3600.0000000000014, 'Stiffener spacing': 775.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 375.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 18.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 90.0, 'Trans. stress 2': 90.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.436313, 'In-plane support': 'Int'}, 'line18': {'Identification': 'line18', 'Length of panel': 3500.0, 'Stiffener spacing': 775.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 375.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 18.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 90.0, 'Trans. stress 2': 90.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.436313, 'In-plane support': 'Int'}, 'line19': {'Identification': 'line19', 'Length of panel': 3800.000000000001, 'Stiffener spacing': 775.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 375.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 18.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 90.0, 'Trans. stress 2': 90.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.436313, 'In-plane support': 'Int'}, 'line20': {'Identification': 'line20', 'Length of panel': 3800.000000000001, 'Stiffener spacing': 775.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 375.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 18.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 90.0, 'Trans. stress 2': 90.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.436313, 'In-plane support': 'Int'}, 'line41': {'Identification': 'line41', 'Length of panel': 5000.0, 'Stiffener spacing': 775.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 500.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 25.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 90.0, 'Trans. stress 2': 90.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.436313, 'In-plane support': 'Int'}, 'line43': {'Identification': 'line43', 'Length of panel': 3199.999999999999, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 325.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 16.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 80.0, 'Trans. stress 2': 80.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.393657, 'In-plane support': 'Int'}, 'line44': {'Identification': 'line44', 'Length of panel': 3400.0000000000005, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 325.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 16.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 80.0, 'Trans. stress 2': 80.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.348157, 'In-plane support': 'Int'}, 'line45': {'Identification': 'line45', 'Length of panel': 3400.0000000000005, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 325.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 16.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 80.0, 'Trans. stress 2': 80.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.299813, 'In-plane support': 'Int'}, 'line46': {'Identification': 'line46', 'Length of panel': 3600.0000000000014, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 325.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 16.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 80.0, 'Trans. stress 2': 80.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.251469, 'In-plane support': 'Int'}, 'line47': {'Identification': 'line47', 'Length of panel': 3800.000000000001, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 325.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 16.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 80.0, 'Trans. stress 2': 80.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.200281, 'In-plane support': 'Int'}, 'line48': {'Identification': 'line48', 'Length of panel': 4000.0, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 325.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 16.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 80.0, 'Trans. stress 2': 80.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.14625, 'In-plane support': 'Int'}, 'line49': {'Identification': 'line49', 'Length of panel': 4000.0, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 325.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 16.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 80.0, 'Trans. stress 2': 80.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.089375, 'In-plane support': 'Int'}, 'line58': {'Identification': 'line58', 'Length of panel': 2500.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line59': {'Identification': 'line59', 'Length of panel': 2500.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line61': {'Identification': 'line61', 'Length of panel': 2500.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line62': {'Identification': 'line62', 'Length of panel': 2500.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line63': {'Identification': 'line63', 'Length of panel': 2500.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line64': {'Identification': 'line64', 'Length of panel': 2500.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line65': {'Identification': 'line65', 'Length of panel': 2500.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line66': {'Identification': 'line66', 'Length of panel': 2500.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line21': {'Identification': 'line21', 'Length of panel': 4000.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line42': {'Identification': 'line42', 'Length of panel': 3000.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line22': {'Identification': 'line22', 'Length of panel': 3000.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line67': {'Identification': 'line67', 'Length of panel': 3000.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line68': {'Identification': 'line68', 'Length of panel': 3000.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line69': {'Identification': 'line69', 'Length of panel': 3000.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line70': {'Identification': 'line70', 'Length of panel': 3000.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line71': {'Identification': 'line71', 'Length of panel': 3000.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line72': {'Identification': 'line72', 'Length of panel': 3000.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line73': {'Identification': 'line73', 'Length of panel': 3000.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line60': {'Identification': 'line60', 'Length of panel': 2500.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 0.0, 'Flange thick.': 0.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 60.0, 'Trans. stress 1': 70.0, 'Trans. stress 2': 70.0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'Int'}, 'line1': {'Identification': 'line1', 'Length of panel': 2500.0, 'Stiffener spacing': 700.0, 'Plate thickness': 14.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 250.0, 'Web thick.': 18.0, 'Flange width': 150.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 20.0, 'Trans. stress 1': 40.0, 'Trans. stress 2': 40.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.47186, 'In-plane support': 'Int'}, 'line2': {'Identification': 'line2', 'Length of panel': 3000.0, 'Stiffener spacing': 700.0, 'Plate thickness': 16.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'F', 'Stiffener boundary': 'C', 'Stiff. Height': 400.0, 'Web thick.': 18.0, 'Flange width': 150.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 20.0, 'Trans. stress 1': 40.0, 'Trans. stress 2': 40.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.387068, 'In-plane support': 'Int'}, 'line23': {'Identification': 'line23', 'Length of panel': 3000.0, 'Stiffener spacing': 750.0, 'Plate thickness': 15.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 350.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 90.0, 'Trans. stress 2': 90.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.387068, 'In-plane support': 'Int'}, 'line24': {'Identification': 'line24', 'Length of panel': 3200.0, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 350.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 90.0, 'Trans. stress 2': 90.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.349613, 'In-plane support': 'Int'}, 'line25': {'Identification': 'line25', 'Length of panel': 3400.0, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 350.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 90.0, 'Trans. stress 2': 90.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.309662, 'In-plane support': 'Int'}, 'line26': {'Identification': 'line26', 'Length of panel': 3400.0, 'Stiffener spacing': 750.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 320.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 90.0, 'Trans. stress 2': 90.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.267214, 'In-plane support': 'Int'}, 'line27': {'Identification': 'line27', 'Length of panel': 3600.0000000000014, 'Stiffener spacing': 750.0, 'Plate thickness': 15.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 320.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 90.0, 'Trans. stress 2': 90.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.224765, 'In-plane support': 'Int'}, 'line28': {'Identification': 'line28', 'Length of panel': 3800.000000000001, 'Stiffener spacing': 750.0, 'Plate thickness': 15.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 320.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 90.0, 'Trans. stress 2': 90.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.17982, 'In-plane support': 'Int'}, 'line29': {'Identification': 'line29', 'Length of panel': 4000.0, 'Stiffener spacing': 750.0, 'Plate thickness': 15.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 300.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 90.0, 'Trans. stress 2': 90.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.132378, 'In-plane support': 'Int'}, 'line30': {'Identification': 'line30', 'Length of panel': 4000.0, 'Stiffener spacing': 750.0, 'Plate thickness': 15.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 300.0, 'Web thick.': 12.0, 'Flange width': 150.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 40.0, 'Trans. stress 1': 90.0, 'Trans. stress 2': 90.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.082439, 'In-plane support': 'Int'}} run_dict_one = {'line3': {'Identification': 'line3', 'Length of panel': 4000.0, 'Stiffener spacing': 700.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 400.0, 'Web thick.': 12.0, 'Flange width': 200.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 101.7, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.41261, 'In-plane support': 'Int'}} shell_dict = {'plate_thk': [20 / 1000, 'm'], 'radius': [5000 / 1000, 'm'], 'distance between rings, l': [700 / 1000, 'm'], 'length of shell, L': [5000 / 1000, 'm'], 'tot cyl length, Lc': [5000 / 1000, 'm'], 'eff. buckling lenght factor': [1, ''], 'mat_yield': [355 * 1e6, 'Pa'], } shell_main_dict = {'sasd': [-10e6, 'Pa'], 'smsd': [-10e6, 'Pa'], 'tTsd': [40* 1e6, 'Pa'], 'tQsd': [40* 1e6, 'Pa'], 'psd': [-0.1e6, 'Pa'], 'shsd': [0, 'Pa'], 'geometry': [3, '-'], 'material factor': [1.15, ''], 'delta0': [0.005, ''], 'fab method ring stf': [1, ''], 'fab method ring girder': [1, ''], 'E-module': [2.1e11, 'Pa'], 'poisson': [0.3, '-'], 'mat_yield': [355 * 1e6, 'Pa'], 'length between girders' : [None, 'm'], 'panel spacing, s' : [2, 'm'], 'ring stf excluded' : [False, ''], 'ring frame excluded' : [True, ''], 'end cap pressure': ['not included in axial stresses', ''], 'ULS or ALS': ['ULS', '']} ''' self._length_between_girders = main_dict['length between girders'][0] self._panel_spacing = main_dict['panel spacing, s'][0] self.__ring_stiffener_excluded = main_dict['ring stf excluded'][0] self.__ring_frame_excluded = main_dict['ring frame excluded'][0]''' shell_main_dict2 = {'sasd': [79.58 * 1e6, 'Pa'], 'smsd': [31.89* 1e6, 'Pa'], 'tTsd': [12.73* 1e6, 'Pa'], 'tQsd': [4.77* 1e6, 'Pa'], 'psd': [-0.2* 1e6, 'Pa'], 'shsd': [0, 'Pa'], 'geometry': [5, '-'], 'material factor': [1.15, ''], 'delta0': [0.005, ''], 'fab method ring stf': [1, ''], 'fab method ring girder': [1, ''], 'E-module': [2.1e11, 'Pa'], 'poisson': [0.3, '-'], 'mat_yield': [355 * 1e6, 'Pa'], 'length between girders': [None, 'm'], 'panel spacing, s': [0.7, 'm'], 'ring stf excluded': [False, ''], 'ring frame excluded': [True, ''], 'end cap pressure': ['not included in axial stresses', ''], 'ULS or ALS': ['ULS', '']} prescriptive_main_dict = dict() prescriptive_main_dict['minimum pressure in adjacent spans'] = [None, ''] prescriptive_main_dict['material yield'] = [355e6, 'Pa'] prescriptive_main_dict['load factor on stresses'] = [1, ''] prescriptive_main_dict['load factor on pressure'] = [1, ''] prescriptive_main_dict['buckling method'] = ['ultimate', ''] prescriptive_main_dict['stiffener end support'] = ['Continuous', ''] # 'Continuous' prescriptive_main_dict['girder end support'] = ['Continuous', ''] # 'Continuous' prescriptive_main_dict['tension field'] = ['not allowed', ''] # 'not allowed' prescriptive_main_dict['plate effective agains sigy'] = [True, ''] # True prescriptive_main_dict['buckling length factor stf'] = [None, ''] prescriptive_main_dict['buckling length factor girder'] = [None, ''] prescriptive_main_dict['km3'] = [12, ''] # 12 prescriptive_main_dict['km2'] = [24, ''] # 24 prescriptive_main_dict['girder distance between lateral support'] = [None, ''] prescriptive_main_dict['stiffener distance between lateral support'] = [None, ''] prescriptive_main_dict['kgirder'] = [None, ''] prescriptive_main_dict['panel length, Lp'] = [None, ''] prescriptive_main_dict['pressure side'] = ['both sides', '']# either 'stiffener', 'plate', 'both' prescriptive_main_dict['fabrication method stiffener'] = ['welded', ''] prescriptive_main_dict['fabrication method girder'] = ['welded', ''] prescriptive_main_dict['calculation domain'] = ['Flat plate, stiffened', ''] def get_slamming_pressure(): return 1000000 def get_fatigue_pressures(): return {'p_ext':{'loaded':50000,'ballast':60000,'part':0}, 'p_int':{'loaded':0, 'ballast':20000,'part':0}} def get_fatigue_pressures_problematic(): return {'p_ext': {'loaded': 192632, 'ballast': 198705.5, 'part': 0}, 'p_int': {'loaded': 0, 'ballast': 15118, 'part': 0}} def get_loa_fls_load(): return load.Loads(loa_fls) def get_loa_uls_load(): return load.Loads(loa_uls) def get_bal_fls_load(): return load.Loads(bal_fls) def get_bal_uls_load(): return load.Loads(bal_uls) def get_object_dictionary(): return obj_dict def get_structure_object(line=None): if line in ('line12','line13','line11','line4'): return calc_structure.CalcScantlings(obj_dict_fr) else: return calc_structure.CalcScantlings(obj_dict) def get_structure_calc_object(line=None, heavy = False): if line in ('line12','line13','line11','line4'): return calc_structure.CalcScantlings(obj_dict_fr) else: return calc_structure.CalcScantlings(obj_dict if not heavy else obj_dict_heavy) def get_fatigue_object(): return calc_structure.CalcFatigue(obj_dict, fat_obj_dict) def get_fatigue_object_problematic(): return calc_structure.CalcFatigue(obj_dict_sec_error, fat_obj_dict_problematic) def get_tank_object(): return load.Tanks(tank_dict=tank_dict_ballast) def get_line_to_struc(geo = False): to_return = {} for line in line_dict.keys(): Plate = get_structure_object(line) Stiffener = get_structure_object(line) Girder = None # CalcScantlings(ex.obj_dict_heavy) initial_calc_obj = calc_structure.AllStructure(Plate=Plate, Stiffener=Stiffener, Girder=Girder, main_dict=prescriptive_main_dict) to_return[line]=[initial_calc_obj, None, None, [None], {}] return to_return def get_default_stresses(): return {'BOTTOM':(100,100,50,50,5), 'BBS':(70,70,30,30,3), 'BBT':(80,80,30,3), 'HOPPER':(70,70,50,50,3), 'SIDE_SHELL':(100,100,40,40,3),'INNER_SIDE':(80,80,40,40,5), 'FRAME':(70,70,60,0,10), 'FRAME_WT':(70,70,60,0,10),'SSS':(100,100,50,50,20), 'MD':(70,70,4,40,3), 'GENERAL_INTERNAL_WT':(90,90,40,40,5),'GENERAL_INTERNAL_NONWT':(70,70,30,30,3), 'INTERNAL_1_MPA':(1,1,1,1,1), 'INTERNAL_LOW_STRESS_WT':(40,40,20,20,5)} def get_opt_frames(): return opt_frames,['point1', 'point4', 'point8', 'point5'] def get_point_dict(): return point_dict def get_line_dict(): return line_dict def get_grid(origo,base_canvas_dim): return grid.Grid(origo[1] + 1, base_canvas_dim[0] - origo[0] + 1) def get_grid_no_inp(empty_grid = False): origo = (50,670) base_canvas_dim = [1000,720] grid_return = grid.Grid(origo[1] + 1, base_canvas_dim[0] - origo[0] + 1) if empty_grid: return grid_return for line,coords in get_to_draw().items(): for point in grid_return.get_points_along_line(coords[0],coords[1]): grid_return.set_barrier(point[0],point[1]) return grid_return def get_grid_empty(): origo = (50,670) base_canvas_dim = [1000,720] grid_return = grid.Grid(origo[1] + 1, base_canvas_dim[0] - origo[0] + 1) return grid_return def get_to_draw(): to_return = {} for line in line_dict.keys(): p1 = line_dict[line][0] p2 = line_dict[line][1] p1_coord = point_dict['point'+str(p1)] p2_coord = point_dict['point'+str(p2)] point_coord = (p1_coord,p2_coord) to_return[line]= get_grid_coord_from_points_coords(point_coord[0]),\ get_grid_coord_from_points_coords(point_coord[1]) return to_return def get_geo_opt_presure(): return (200,200,200,200,200,200) def get_random_pressure(): return 150 + 100*random.random() def get_random_color(): return random.choice(['red','green','green','green']) def get_geo_opt_object(): dicts = ({'mat_yield': [355000000.0, 'Pa'], 'span': [4.0, 'm'], 'spacing': [0.7, 'm'], 'plate_thk': [0.015, 'm'], 'stf_web_height': [0.4, 'm'], 'stf_web_thk': [0.012, 'm'], 'stf_flange_width': [0.15, 'm'], 'stf_flange_thk': [0.02, 'm'], 'structure_type': ['BOTTOM', ''], 'plate_kpp': [1, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [80, 'MPa'], 'sigma_y2': [80, 'MPa'], 'sigma_x2': [80, 'MPa'], 'sigma_x1': [80, 'MPa'], 'tau_xy': [5, 'MPa'], 'stf_type': ['T', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''] }, {'mat_yield': [355000000.0, 'Pa'], 'span': [4.0, 'm'], 'spacing': [0.7, 'm'], 'plate_thk': [0.015, 'm'], 'stf_web_height': [0.4, 'm'], 'stf_web_thk': [0.012, 'm'], 'stf_flange_width': [0.15, 'm'], 'stf_flange_thk': [0.02, 'm'], 'structure_type': ['BOTTOM', ''], 'plate_kpp': [1, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [80, 'MPa'], 'sigma_y2': [80, 'MPa'], 'sigma_x2': [80, 'MPa'], 'sigma_x1': [80, 'MPa'], 'tau_xy': [5, 'MPa'], 'stf_type': ['T', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''] }, {'mat_yield': [355000000.0, 'Pa'], 'span': [4.0, 'm'], 'spacing': [0.7, 'm'], 'plate_thk': [0.015, 'm'], 'stf_web_height': [0.4, 'm'], 'stf_web_thk': [0.012, 'm'], 'stf_flange_width': [0.15, 'm'], 'stf_flange_thk': [0.02, 'm'], 'structure_type': ['BOTTOM', ''], 'plate_kpp': [1, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [80, 'MPa'], 'sigma_y2': [80, 'MPa'], 'sigma_x2': [80, 'MPa'], 'sigma_x1': [80, 'MPa'], 'tau_xy': [5, 'MPa'], 'stf_type': ['T', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''] }, {'mat_yield': [355000000.0, 'Pa'], 'span': [4.0, 'm'], 'spacing': [0.7, 'm'], 'plate_thk': [0.015, 'm'], 'stf_web_height': [0.4, 'm'], 'stf_web_thk': [0.012, 'm'], 'stf_flange_width': [0.15, 'm'], 'stf_flange_thk': [0.02, 'm'], 'structure_type': ['GENERAL_INTERNAL_WT', ''], 'plate_kpp': [1, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [80, 'MPa'], 'sigma_y2': [80, 'MPa'], 'sigma_x2': [80, 'MPa'], 'sigma_x1': [80, 'MPa'], 'tau_xy': [5, 'MPa'], 'stf_type': ['T', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''] }, {'mat_yield': [355000000.0, 'Pa'], 'span': [4.0, 'm'], 'spacing': [0.7, 'm'], 'plate_thk': [0.015, 'm'], 'stf_web_height': [0.4, 'm'], 'stf_web_thk': [0.012, 'm'], 'stf_flange_width': [0.15, 'm'], 'stf_flange_thk': [0.02, 'm'], 'structure_type': ['GENERAL_INTERNAL_WT', ''], 'plate_kpp': [1, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [80, 'MPa'], 'sigma_y2': [80, 'MPa'], 'sigma_x2': [80, 'MPa'], 'sigma_x1': [80, 'MPa'], 'tau_xy': [5, 'MPa'], 'stf_type': ['T', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''] }, {'mat_yield': [355000000.0, 'Pa'], 'span': [4.0, 'm'], 'spacing': [0.7, 'm'], 'plate_thk': [0.015, 'm'], 'stf_web_height': [0.4, 'm'], 'stf_web_thk': [0.012, 'm'], 'stf_flange_width': [0.15, 'm'], 'stf_flange_thk': [0.02, 'm'], 'structure_type': ['GENERAL_INTERNAL_WT', ''], 'plate_kpp': [1, ''], 'stf_kps': [1, ''], 'stf_km1': [12, ''], 'stf_km2': [24, ''], 'stf_km3': [12, ''], 'sigma_y1': [80, 'MPa'], 'sigma_y2': [80, 'MPa'], 'sigma_x2': [80, 'MPa'], 'sigma_x1': [80, 'MPa'], 'tau_xy': [5, 'MPa'], 'stf_type': ['T', ''], 'structure_types': [structure_types, ''], 'zstar_optimization': [True, ''] }) return [calc_structure.CalcScantlings(dic) for dic in dicts] def get_geo_opt_fatigue(): return [get_fatigue_object() for dummy in range(len(get_geo_opt_presure()))] def get_geo_opt_fat_press(): return [get_fatigue_pressures() for dummy in range(len(get_geo_opt_presure()))] def get_geo_opt_fat_press(): return [get_fatigue_pressures() for dummy in range(len(get_geo_opt_presure()))] def get_geo_opt_slamming_none(): return [0 for dummy in range(len(get_geo_opt_presure()))] def get_geo_opt_slamming(): return [get_slamming_pressure() for dummy in range(len(get_geo_opt_presure()))] def get_grid_coord_from_points_coords(point_coord): ''' Converts coordinates to be used in the grid. Returns (row,col). This value will not change with slider. :param point: :return: ''' canvas_origo = (50,670) row = canvas_origo[1] - point_coord[1]*10 col = point_coord[0]*10 return (row,col) def get_section_list(): ''' Returning a section list. ''' import pl_stf_window as plstf return [plstf.Section(obj_dict), plstf.Section(obj_dict2), plstf.Section(obj_dict_L)] if __name__ == '__main__': print(get_random_color())
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/example_data.py
example_data.py
import os # -*- coding: utf-8 -*- import tkinter as tk from tkinter import ttk from tkinter import filedialog from tkinter import messagebox import decimal, pickle from _tkinter import TclError import multiprocessing import ctypes from matplotlib import pyplot as plt import matplotlib from reportlab.lib.pagesizes import letter, landscape from reportlab.platypus import SimpleDocTemplate from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import StandardScaler from sklearn.metrics._pairwise_distances_reduction import _datasets_pair,_middle_term_computer try: from any_files.calc_structure import * from any_files.calc_loads import * import any_files.load_window as load_window import any_files.make_grid_numpy as grid import any_files.grid_window as grid_window from any_files.helper import * import any_files.optimize as op import any_files.optimize_window as opw import any_files.optimize_cylinder as opc import any_files.optimize_multiple_window as opwmult import any_files.optimize_geometry as optgeo import any_files.pl_stf_window as struc import any_files.stresses_window as stress import any_files.fatigue_window as fatigue import any_files.load_factor_window as load_factors from any_files.report_generator import LetterMaker import any_files.sesam_interface as sesam except ModuleNotFoundError: # This is due to pyinstaller issues. from ANYstructure.any_files.calc_structure import * from ANYstructure.any_files.calc_loads import * import ANYstructure.any_files.load_window as load_window import ANYstructure.any_files.make_grid_numpy as grid import ANYstructure.any_files.grid_window as grid_window from ANYstructure.any_files.helper import * import ANYstructure.any_files.optimize as op import ANYstructure.any_files.optimize_window as opw import ANYstructure.any_files.optimize_cylinder as opc import ANYstructure.any_files.optimize_multiple_window as opwmult import ANYstructure.any_files.optimize_geometry as optgeo import ANYstructure.any_files.pl_stf_window as struc import ANYstructure.any_files.stresses_window as stress import ANYstructure.any_files.fatigue_window as fatigue import ANYstructure.any_files.load_factor_window as load_factors from ANYstructure.any_files.report_generator import LetterMaker import ANYstructure.any_files.sesam_interface as sesam class Application(): ''' The Application class sets up the GUI using Tkinter. It is the main part of the code and calls up all other classes etc. ''' def __init__(self, parent): ''' Initaiting the tkinter frame. The GUI is general initiated in the method gui_init. :param parent: ''' super(Application, self).__init__() parent.wm_title('| ANYstructure |') self._parent = parent parent.protocol("WM_DELETE_WINDOW", self.close_main_window) parent.bind("<Configure>", self.resize) self._root_dir = os.path.dirname(os.path.abspath(__file__)) #self._root_dir = os.path.dirname(os.path.abspath(__file__)).replace('any_files','') # Main frame for the application self._main_fr = ttk.Frame(parent) self._main_fr.place(in_=parent, relwidth=1, relheight = 0.99) # Definng general colors self._general_color = 'alice blue'#"'azure2' # Color for backgrounds. self._entry_color = 'white' # Entry fields color. self._entry_text_color = 'black' # Entry field tex color self._button_bg_color = 'LightBlue1' self._button_fg_color = 'black' self._color_text = 'white' ''' Setting the style of ttk''' # self._style = ttk.Style(parent) # vista theme not available in linux try: self._style.theme_use('ITFT1') #self._style.theme_use('vista') except: # available themes in linux: # ('clam', 'alt', 'default', 'classic') self._style.theme_use('clam') self._style.layout("TNotebook", []) self._style.configure("TNotebook", tabmargins=0) # tabbed frames self._tabControl = ttk.Notebook(parent) self._tab_geo = ttk.Frame(self._tabControl, relief = 'flat') self._tab_prop = ttk.Frame(self._tabControl, relief = 'flat') self._tab_comp = ttk.Frame(self._tabControl, relief='flat') self._tab_prop_tools = ttk.Frame(self._tabControl, relief='flat') self._tab_information = ttk.Frame(self._tabControl, relief='flat') self._tab_help = ttk.Frame(self._tabControl, relief='flat') self._tabControl.add(self._tab_geo, text='Geometry') self._tabControl.add(self._tab_prop, text='Line properties') self._tabControl.add(self._tab_prop_tools, text='Properties tools') self._tabControl.add(self._tab_comp, text='Compartments and loads') self._tabControl.add(self._tab_information, text='Information') self._tabControl.add(self._tab_help, text='Help') self._tabControl.place(relwidth=0.2585, relheight = 1) #self._tabControl.select(self._tab2) # Top open/save/new menu = tk.Menu(parent) parent.config(menu=menu) # menu, canvas, etc. sub_menu = tk.Menu(menu) menu.add_cascade(label='File', menu=sub_menu) sub_menu.add_command(label='New project', command=self.reset) sub_menu.add_command(label='Save project as...', command=self.savefile) self.__last_save_file = None # Keeping the last filename and path sub_menu.add_command(label='Save project, Alt-S', command=self.save_no_dialogue) sub_menu.add_command(label='Open project', command=self.openfile) sub_menu.add_command(label='Restore previous', command=self.restore_previous) self._shortcut_text = 'CTRL-Z Undo geometry action\n' \ 'CTRL-P Copy selected point\n' \ 'CTRL-M Move selected point)\n' \ 'CTRL-N Move selected line)\n' \ 'CTRL-Q New line (right click two points)\n' \ 'CTRL-S Assign structure prop. to line\n' \ 'CTRL-A Select all lines (change param)\n' \ 'CTRL-T Select all structure types (selected)\n' \ 'CTRL-DELETE Delete structure prop. from line\n' \ 'DELETE Delete active line and/or point \n' \ 'CTRL-E Copy line properties from active line\n' \ 'CTRL-D Paste line propeties to active line\n' \ 'Mouse click left/right - select line/point\n' \ 'Arrows left/right - previous/next line\n' \ 'Arrows up/down - previous/next point' ''' END style setting''' undo_redo = tk.Menu(menu) menu.add_cascade(label='Geometry', menu=undo_redo) undo_redo.add_command(label='Undo geometry action (CTRL-Z)', command=self.undo) #undo_redo.add_command(label='Redo geometry action (CTRL-Y)', command=self.redo) undo_redo.add_command(label='Copy selected point (CTRL-P)', command=self.copy_point) undo_redo.add_command(label='Move selected point (CTRL-M)', command=self.move_point) undo_redo.add_command(label='Move selected line (CTRL-N)', command=self.move_line) undo_redo.add_command(label='New line (right click two points) (CTRL-Q)', command=self.new_line) undo_redo.add_command(label='Assign structure properties to clicked line (CTRL-S)', command=self.new_structure) undo_redo.add_command(label='Delete structure properties from clicked line (CTRL-DELETE)', command=self.delete_properties_pressed) undo_redo.add_command(label='Delete active line and/or point (DELETE)', command=self.delete_key_pressed) undo_redo.add_command(label='Copy line properties from active line (CTRL-E)', command=self.copy_property) undo_redo.add_command(label='Paste line propeties to active line (CTRL-D)', command=self.paste_property) sub_report = tk.Menu(menu) menu.add_cascade(label = 'Reporting', menu = sub_report) sub_report.add_command(label = 'Generate PDF report', command = self.report_generate) sub_report.add_command(label='Generate PDF result table', command=self.table_generate) sub_report.add_command(label='Stiffened flat plate - Weight development, plates and beams', command=self.on_plot_cog_dev) sub_sesam = tk.Menu(menu) menu.add_cascade(label = 'Interfaces', menu = sub_sesam) sub_sesam.add_command(label = 'Export geometry to SESAM GeniE JS', command = self.export_to_js) sub_sesam.add_command(label='Run all PULS lines', command=self.puls_run_all_lines) sub_sesam.add_command(label='Delete all PULS results', command=self.puls_delete_all) sub_help = tk.Menu(menu) menu.add_cascade(label='Help', menu = sub_help) sub_help.add_command(label = 'Open website (documentation etc.)', command = self.open_documentation) sub_help.add_command(label='Open documentation pdf', command=self.open_documentation_pdf) sub_help.add_command(label='Donate!', command=self.open_donate) sub_help.add_command(label = 'Open example file', command = self.open_example) sub_help.add_command(label='About ANYstructure', command=self.open_about) sub_colors = tk.Menu(menu) menu.add_cascade(label='GUI', menu = sub_colors) sub_colors.add_command(label='Colors - Default', command=lambda id="default": self.set_colors(id)) sub_colors.add_command(label = 'Colors - Light', command = lambda id = "light": self.set_colors(id)) sub_colors.add_command(label='Colors - Grey', command = lambda id = "grey": self.set_colors(id)) sub_colors.add_command(label='Colors - Dark', command = lambda id = "dark": self.set_colors(id)) sub_colors.add_command(label='Colors - Unicorn', command=lambda id="pink": self.set_colors(id)) sub_colors.add_command(label='Colors - Slava Ukraini', command=lambda id="SlavaUkraini": self.set_colors(id)) sub_colors.add_command(label='Functional - All items', command=lambda id="all items": self.set_colors(id)) sub_colors.add_command(label='Functional - Modelling', command=lambda id="modelling": self.set_colors(id)) sub_colors.add_command(label='Functional - Cylinder', command=lambda id="cylinder": self.set_colors(id)) #base_mult = 1.2 #base_canvas_dim = [int(1000 * base_mult),int(720*base_mult)] #do not modify this, sets the "orignal" canvas dimensions. base_canvas_dim = [1000,720] #do not modify this, sets the "orignal" canvas dimensions. self._canvas_dim = [int(base_canvas_dim[0] *1), int(base_canvas_dim[1] *1)] self._canvas_base_origo = [50, base_canvas_dim[1] - 50] # 50 bottom left location of the canvas, (0,0) self._canvas_draw_origo = [self._canvas_base_origo[0], self._canvas_base_origo[1]+10] self._previous_drag_mouse = list(self._canvas_draw_origo) # Setting the fonts for all items in the application. self.text_scale = 1 self._text_size = {'Text 14 bold': 'Verdana '+str(int(14*self.text_scale))+' bold', 'Text 16 bold': 'Verdana ' + str(int(16 * self.text_scale)) + ' bold', 'Text 18 bold': 'Verdana ' + str(int(18 * self.text_scale)) + ' bold', 'Text 12 bold': 'Verdana ' + str(int(12 * self.text_scale)) + ' bold', 'Text 10 bold': 'Verdana '+str(int(10*self.text_scale))+' bold', 'Text 9 bold': 'Verdana ' + str(int(9 * self.text_scale)) + ' bold', 'Text 8 bold': 'Verdana ' + str(int(8 * self.text_scale)) + ' bold', 'Text 8': 'Verdana ' + str(int(8 * self.text_scale)), 'Text 9': 'Verdana ' + str(int(8 * self.text_scale)), 'Text 7': 'Verdana ' + str(int(7 * self.text_scale)), 'Text 10': 'Verdana ' + str(int(10 * self.text_scale)), 'Text 7 bold': 'Verdana ' + str(int(7 * self.text_scale)) + ' bold', 'Text 6 bold': 'Verdana ' + str(int(6 * self.text_scale)) + ' bold'} self._canvas_scale = 20 # Used for slider and can change self._base_scale_factor = 10 # Used for grid and will not change, 10 is default self._prop_canvas_scale = 100 # Scrolling for property canvas # self._prop_canvas_x_base = # self._prop_canvas_y_base = # # Creating the various canvas next. self._main_canvas = tk.Canvas(self._main_fr, background=self._style.lookup('TFrame', 'background'), bd=0, highlightthickness=0, relief='ridge') self._prop_canvas = tk.Canvas(self._main_fr, background=self._style.lookup('TFrame', 'background'), bd=0, highlightthickness=0, relief='ridge') self._result_canvas = tk.Canvas(self._main_fr, background=self._style.lookup('TFrame', 'background'), bd=0, highlightthickness=0, relief='ridge') # # These frames are just visual separations in the GUI. # frame_horizontal, frame_vertical = 0.73, 0.258 # self._frame_viz_hor = tk.Frame(self._main_fr, height=3, bg="black", colormap="new") # self._frame_viz_hor.place(relx=0, rely=frame_horizontal, relwidth=1) # self._frame_viz_ver = tk.Frame(self._main_fr, width=3, bg="black", colormap="new") # self._frame_viz_ver.place(relx=frame_vertical,rely=0 * 1, relheight=1) x_canvas_place = 0.26 self._main_canvas.place(relx=x_canvas_place, rely=0,relwidth=0.523, relheight = 0.73) self._prop_canvas.place(relx=x_canvas_place, rely=0.73, relwidth=0.38, relheight = 0.27) self._result_canvas.place(relx=x_canvas_place+0.38, rely=0.73, relwidth=0.36, relheight = 0.27) # Point frame self._pt_frame = tk.Frame(self._main_canvas, width=100, height=100, bg="black", relief='raised') # Cylinder gui look placement of optmization button self._gui_functional_look_cylinder_opt = [0.82, 0.008, 0.04, 0.175] # # ------------------------------------------------------------------------------------------------------------- # # The dictionaries below are the main deictionaries used to define this application. self._point_dict = {} # Main point dictionary (point:coords) - see method new_point self._line_dict = {} # Main line dictionary (line:point,point) - see method new_line self._line_to_struc = {} # Main line assosiations (line:various objects) - see method new_structure # The dictionary is widely used and includes all classes in the program # Example: # 'line1':[Structure,CalcScantlings,Fatigue,Load,Combinations] self._tank_dict = {} # Main tank dictionary (created when BFS search is executed for the grid) (comp# : TankObj) self._load_dict = {} # Main load dictionary (created in separate load window (load# : [LoadObj, lines]) self._new_load_comb_dict = {} # Load combination dict.(comb,line,load) : [DoubleVar(), DoubleVar(), IntVar()] # Example ('dnva', 'line25', 'comp3'), ('dnvb', 'line14', 'comp4'), # ('manual', 'line74', 'manual'), ('tanktest', 'line76', 'comp3') self._sections = list() # A list containing section property objects. # # ------------------------------------------------------------------------------------------------------------- # self._pending_grid_draw = {} # Saving lines that shall be transferred to the calculation grid # Load combinations definition used in method gui_load_combinations # These are created and destroyed and is not permanent in the application. self._lc_comb_created,self._comp_comb_created,self._manual_created, self._info_created = [],[],[], [] self._state_logger = dict() # Used to see if recalculation is needed. self._weight_logger = {'new structure': {'COG': list(), 'weight': list(), 'time': list()}} # Recording of weight development # The next dictionaries feed various infomation to the application self._load_factors_dict = {'dnva':[1.3,1.2,0.7], 'dnvb':[1,1,1.2], 'tanktest':[1,1,0]} # DNV loads factors self._accelerations_dict = {'static':9.81, 'dyn_loaded':0, 'dyn_ballast':0} # Vertical acclerations self._load_conditions = ['loaded','ballast','tanktest', 'part','slamming'] # Should not be modified. Load conditions. self._tank_options = {'ballast': 1025, 'crude_oil': 900, 'diesel': 850 , 'slop': 1050, 'fresh water': 1000} # Should not be modified. self._default_stresses = {'BOTTOM':(100,100,50,50,5), 'BBS':(70,70,30,30,3), 'BBT':(80,80,30,3), 'HOPPER':(70,70,50,50,3), 'SIDE_SHELL':(100,100,40,40,3),'INNER_SIDE':(80,80,40,40,5), 'FRAME':(70,70,60,0,10), 'FRAME_WT':(70,70,60,0,10),'SSS':(100,100,50,50,20), 'MD':(70,70,4,40,3), 'GENERAL_INTERNAL_WT':(90,90,40,40,5),'GENERAL_INTERNAL_NONWT':(70,70,30,30,3), 'INTERNAL_1_MPA':(1,1,1,1,1), 'INTERNAL_LOW_STRESS_WT':(40,40,20,20,5)} # The default stresses are used for buckling calculations. self._structure_types = {'vertical':['BBS', 'SIDE_SHELL', 'SSS'], 'horizontal': ['BOTTOM', 'BBT', 'HOPPER', 'MD'], 'non-wt': ['FRAME', 'GENERAL_INTERNAL_NONWT'], 'internals': ['INNER_SIDE', 'FRAME_WT', 'GENERAL_INTERNAL_WT', 'INTERNAL_ZERO_STRESS_WT', 'INTERNAL_LOW_STRESS_WT']} self._options_type = [op_typ for op_typ in self._default_stresses.keys()] self._point_options= ['fixed','free'] self._load_window_couter = 1 # this is used to create the naming of the tanks in the load window self._logger = {'added': list(), 'deleted': list()} # used to log operations for geometry operations, to be used for undo/redo self.__returned_load_data = None # Temporary data for returned loads from the load window. self.__previous_load_data = None # Used to compare loads before and after. self.__copied_line_prop = None # Used to copy line properties to another. self._PULS_results = None # If a puls run is avaliable, it is stored here. self._center_of_buoyancy = dict() # Center of buoyancy for all and for carious static drafts # Example {8: (5,20), 22: (12,20), 'all': (16,20)} self._ML_buckling = dict() # Buckling machine learning algorithm for name, file_base in zip(['cl SP buc int predictor', 'cl SP buc int scaler', 'cl SP ult int predictor', 'cl SP ult int scaler', 'cl SP buc GLGT predictor', 'cl SP buc GLGT scaler', 'cl SP ult GLGT predictor', 'cl SP ult GLGT scaler', 'cl UP buc int predictor', 'cl UP buc int scaler', 'cl UP ult int predictor', 'cl UP ult int scaler', 'cl UP buc GLGT predictor', 'cl UP buc GLGT scaler', 'cl UP ult GLGT predictor', 'cl UP ult GLGT scaler', 'CSR predictor UP', 'CSR scaler UP', 'CSR predictor SP', 'CSR scaler SP' ], ["ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_2,_3_UP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_2,_3_UP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_2,_3_UP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_2,_3_UP", "ml_files\\CL_CSR-Tank_req_cl_predictor", "ml_files\\CL_CSR-Tank_req_cl_UP_scaler", "ml_files\\CL_CSR_plate_cl,_CSR_web_cl,_CSR_web_flange_cl,_CSR_flange_cl_predictor", "ml_files\\CL_CSR_plate_cl,_CSR_web_cl,_CSR_web_flange_cl,_CSR_flange_cl_SP_scaler"]): self._ML_buckling[name] = None if os.path.isfile(file_base + '.pickle'): file = open(file_base + '.pickle', 'rb') self._ML_buckling[name] = pickle.load(file) file.close() else: #file = open(self._root_dir +'\\' + file_base + '.pickle', 'rb') ml_file = os.path.join(self._root_dir, file_base + '.pickle') file = open(ml_file, 'rb') self._ML_buckling[name] = pickle.load(file) file.close() self._ML_classes ={0: 'N/A', 1: 'A negative utilisation factor is found.', 2: 'At least one of the in-plane loads must be non-zero.', 3: 'Division by zero', 4: 'Overflow', 5: 'The aspect ratio exceeds the PULS code limit', 6: 'The global slenderness exceeds 4. Please reduce stiffener span or increase stiffener height.', 7: 'The applied pressure is too high for this plate field.', 8: 'web-flange-ratio', 9: 'UF below or equal 0.87', 10: 'UF between 0.87 and 1.0', 11: 'UF above 1.0'} # Used to select parameter self._stuctural_definition = ['mat_yield','mat_factor', 'span', 'spacing', 'plate_thk', 'stf_web_height', 'stf_web_thk', 'stf_flange_width', 'stf_flange_thk', 'structure_type', 'stf_type', 'sigma_y1', 'sigma_y2', 'sigma_x1','sigma_x2', 'tau_xy', 'plate_kpp', 'stf_kps','stf_km1', 'stf_km2', 'stf_km3', 'press_side', 'zstar_optimization', 'puls buckling method', 'puls boundary', 'puls stiffener end', 'puls sp or up', 'puls up boundary'] self._p1_p2_select = False self._line_is_active = False # True when a line is clicked self._active_line = '' # Name of the clicked point self._point_is_active = False # True when a point is clicked self._active_point = '' # Name of the clicked point self.controls() # Function to activate mouse clicks self._line_point_to_point_string = [] # This one ensures that a line is not created on top of a line self._multiselect_lines = [] # A list used to select many lines. Used to set properties. # Initsializing the calculation grid used for tank definition self._grid_dimensions = [self._canvas_base_origo[1] + 1, base_canvas_dim[0] - self._canvas_base_origo[0] + 1] #self._grid_dimensions = [self._canvas_base_origo[1], base_canvas_dim[0] - self._canvas_base_origo[0] + 1] self._main_grid = grid.Grid(self._grid_dimensions[0], self._grid_dimensions[1]) self._grid_calc = None self.text_widget = None self._clicked_section_create= None # Identifiation of the button clicked. Sections. self._gui_functional_look = 'all items' # used to change size and location of frames, canvas etc. # These sets the location where entries are placed. ent_x = 0.4 delta_y = 0.025 delta_x = 0.1 point_x_start, point_start = 0.005208333, 0.13 # ----------------------INITIATION OF THE SMALLER PARTS OF THE GUI STARTS HERE-------------------------- # Help tab ttk.Label(self._tab_help, text='Buckling paramenter, flat plates', font="Text 10 bold", ) \ .place(relx=0.01, rely=0.05, ) try: img_file_name = 'Panel_geometry_definitions.png' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = os.path.dirname(os.path.abspath(__file__)) + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) label = tk.Label(self._tab_help, image=photo) label.image = photo # keep a reference! label.place(relx = 0.01, rely = 0.1) except TclError: pass ttk.Label(self._tab_help, text='Buckling parameters, cylinders',font="Text 10 bold", )\ .place(relx=0.01, rely=0.55) try: img_file_name = 'Buckling_Strength_of_Shells.png' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = os.path.dirname(os.path.abspath(__file__)) + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) label = tk.Label(self._tab_help, image=photo) label.image = photo # keep a reference! label.place(relx = 0.01, rely = 0.6) except TclError: pass # --- point input/output ---- self._new_point_x = tk.DoubleVar() self._new_point_y = tk.DoubleVar() self._new_point_fix = tk.StringVar() self._new_zstar_optimization = tk.BooleanVar() self._new_zstar_optimization.set(True) ent_width = 6 # width of entries self._project_information = tk.Text(self._tab_geo, wrap = tk.WORD, relief = tk.FLAT) self._project_information.place(relx=0.005, rely=0.005, relwidth = 0.95, relheight = 0.1) self._project_information.insert(1.0, 'No information on project provided. Input here.') ttk.Label(self._tab_geo, text='Input point coordinates [mm]', font=self._text_size['Text 9 bold'], )\ .place(rely=point_start, relx=point_x_start, anchor = tk.NW) ttk.Label(self._tab_geo, text='Point x (horizontal) [mm]:',font="Text 9", )\ .place(relx=point_x_start, rely=point_start+ delta_y,) ttk.Label(self._tab_geo, text='Point y (vertical) [mm]:',font="Text 9", )\ .place(relx=point_x_start, rely=point_start + delta_y*2) ttk.Entry(self._tab_geo, textvariable=self._new_point_x, width = int(ent_width * 1.5))\ .place(relx=ent_x, rely=point_start+ delta_y) ttk.Entry(self._tab_geo, textvariable=self._new_point_y, width = int(ent_width * 1.5))\ .place(relx=ent_x, rely=point_start + delta_y*2) ttk.Button(self._tab_geo, text='Add point (coords)', command=self.new_point,style = "Bold.TButton")\ .place(relx=ent_x + 2 * delta_x, rely=point_start+1*delta_y, relwidth = 0.3) ttk.Button(self._tab_geo, text='Copy point (relative)', command=self.copy_point,style = "Bold.TButton")\ .place(relx=ent_x + 2 * delta_x, rely=point_start+2*delta_y,relwidth = 0.3) ttk.Button(self._tab_geo, text='Move point', command=self.move_point,style = "Bold.TButton")\ .place(relx=ent_x + 2 * delta_x, rely=point_start+3*delta_y, relwidth = 0.3) ttk.Button(self._tab_geo, text='Move line', command=self.move_line,style = "Bold.TButton")\ .place(relx=ent_x + 2 * delta_x,rely=point_start+4*delta_y, relwidth = 0.3) self._new_draw_point_name = tk.BooleanVar() self._new_draw_point_name.set(False) ttk.Label(self._tab_geo, text='Show point names in GUI', font="Text 9")\ .place(relx=point_x_start, rely=point_start+3*delta_y) ttk.Checkbutton(self._tab_geo, variable = self._new_draw_point_name, command = self.on_color_code_check)\ .place(relx=ent_x, rely=point_start+3*delta_y) self._new_line_name = tk.BooleanVar() self._new_line_name.set(False) line_start, line_x = point_start+0.2, 0.0055 ttk.Label(self._tab_geo, text='Input line from "point number" to "point number"', font=self._text_size['Text 9 bold'], )\ .place(rely=line_start, relx=line_x, anchor = tk.NW) ttk.Label(self._tab_geo, text='Line from point number:',font="Text 9", )\ .place(relx=line_x, rely=line_start+delta_y) ttk.Label(self._tab_geo, text='Line to point number:',font="Text 9", )\ .place(relx=line_x, rely=line_start+2*delta_y) ttk.Label(self._tab_geo, text='Show line names in GUI', font="Text 9").place(relx=point_x_start, rely=line_start+3*delta_y) ttk.Checkbutton(self._tab_geo, variable=self._new_line_name, command=self.on_color_code_check).place(relx=ent_x, rely=line_start+3*delta_y) # --- line input/output --- self._new_line_p1 = tk.IntVar() self._new_line_p2 = tk.IntVar() # Check boxes self._new_shortcut_backdrop = tk.BooleanVar() self._new_shortcut_backdrop.set(False) self._new_colorcode_beams = tk.BooleanVar() self._new_colorcode_beams.set(False) self._new_colorcode_plates = tk.BooleanVar() self._new_colorcode_plates.set(False) self._new_colorcode_pressure = tk.BooleanVar() self._new_colorcode_plates.set(False) self._new_colorcode_utilization = tk.BooleanVar() self._new_colorcode_utilization.set(False) self._new_label_color_coding = tk.BooleanVar() self._new_label_color_coding.set(False) self._new_colorcode_sigmax = tk.BooleanVar() self._new_colorcode_sigmax.set(False) self._new_colorcode_sigmay1 = tk.BooleanVar() self._new_colorcode_sigmay1.set(False) self._new_colorcode_sigmay2 = tk.BooleanVar() self._new_colorcode_sigmay2.set(False) self._new_colorcode_tauxy = tk.BooleanVar() self._new_colorcode_tauxy.set(False) self._new_colorcode_structure_type = tk.BooleanVar() self._new_colorcode_structure_type.set(False) self._new_colorcode_section_modulus = tk.BooleanVar() self._new_colorcode_section_modulus.set(False) self._new_colorcode_fatigue = tk.BooleanVar() self._new_colorcode_fatigue.set(False) self._new_colorcode_puls_sp_or_up= tk.BooleanVar() self._new_colorcode_puls_sp_or_up.set(False) self._new_colorcode_puls_acceptance= tk.BooleanVar() self._new_colorcode_puls_acceptance.set(False) self._new_colorcode_total= tk.BooleanVar() self._new_colorcode_total.set(False) self._new_colorcode_spacing= tk.BooleanVar() self._new_colorcode_spacing.set(False) self._new_toggle_var = tk.StringVar() self._new_toggle_select_multiple = tk.BooleanVar() self._new_toggle_puls = tk.BooleanVar() self._new_toggle_puls.set(False) self._new_puls_uf = tk.DoubleVar() self._new_puls_uf.set(0.87) self._new_scale_stresses = tk.BooleanVar() self._new_scale_stresses.set(False) self._new_fup = tk.DoubleVar() self._new_fup.set(0.5) self._new_fdwn = tk.DoubleVar() self._new_fdwn.set(1) self._new_shifted_coords = tk.BooleanVar() self._new_shifted_coords.set(False) self._new_show_cog = tk.BooleanVar() self._new_show_cog.set(False) self._new_content_type = tk.StringVar() self._new_content_type.set('ballast') self._new_panel_or_shell = tk.StringVar() self._new_panel_or_shell.set('panel') self._new_shift_viz_coord_ver = tk.DoubleVar() self._new_shift_viz_coord_ver.set(0) self._new_shift_viz_coord_hor = tk.DoubleVar() self._new_shift_viz_coord_hor.set(0) line_start, line_x = point_start+0.2, 0.0055 ttk.Spinbox(self._tab_geo, textvariable=self._new_line_p1, width=int(ent_width * 1), from_ = 0, to = float('inf')).place(relx=ent_x, rely=line_start+1*delta_y) ttk.Spinbox(self._tab_geo, textvariable=self._new_line_p2, width=int(ent_width * 1), from_ = 0, to = float('inf')).place(relx=ent_x, rely=line_start+2*delta_y) ttk.Button(self._tab_geo, text='Add line', command=self.new_line,style = "Bold.TButton")\ .place(relx=ent_x + 2 * delta_x, rely=line_start+delta_y, relwidth = 0.3) # --- delete points and lines --- self._new_delete_line = tk.IntVar() self._new_delete_point = tk.IntVar() del_start, del_x = line_start + 0.2,0.005208333 ttk.Label(self._tab_geo, text='Delete lines and points (or left/right click and use "Delete key")', font=self._text_size['Text 9 bold'], )\ .place(rely=del_start - 0.02,relx=del_x, anchor = tk.NW) self._ent_delete_line = ttk.Spinbox(self._tab_geo, textvariable=self._new_delete_line, from_ = 0, to = float('inf'), width=int(ent_width * 1)) self._ent_delete_line.place(relx=ent_x, rely=del_start + delta_y) self._ent_delete_point = ttk.Spinbox(self._tab_geo, textvariable=self._new_delete_point, from_ = 0, to = float('inf'), width=int(ent_width * 1)) self._ent_delete_point.place(relx=ent_x, rely=del_start + delta_y*2) ttk.Label(self._tab_geo, text='Line number (left click):',font="Text 9")\ .place(relx=del_x, rely=del_start+ delta_y) ttk.Label(self._tab_geo, text='Point number (right click):',font="Text 9", )\ .place(relx=del_x, rely=del_start+ delta_y*2) ttk.Button(self._tab_geo, text='Delete line',command=self.delete_line,style = "Bold.TButton" ).place(relx=ent_x+delta_x*2, rely=del_start + delta_y, relwidth = 0.3) ttk.Button(self._tab_geo, text='Delete prop.',command=self.delete_properties_pressed,style = "Bold.TButton" ).place(relx=ent_x+delta_x*2, rely=del_start + delta_y*2, relwidth = 0.3) ttk.Button(self._tab_geo, text='Delete point',command=self.delete_point,style = "Bold.TButton" ).place(relx=ent_x+2*delta_x, rely=del_start + delta_y*3, relwidth = 0.3) # Shifing of coordinate display shift_x = del_x shift_y = del_start+0.2 ttk.Label(self._tab_geo, text='Shift coordinate labeling [mm]: ', font = self._text_size['Text 8 bold'])\ .place(relx=shift_x, rely=shift_y - delta_y*0.5) ttk.Label(self._tab_geo, text='Used if you want a different origin of the repoted coordinates. \n' 'Does not affect loads.', font = self._text_size['Text 8'])\ .place(relx=shift_x, rely=shift_y + delta_y*0.5) ttk.Label(self._tab_geo, text='y shift', font = self._text_size['Text 8'], ).place(relx=shift_x, rely=shift_y + delta_y * 2) ttk.Label(self._tab_geo, text='x shift ', font = self._text_size['Text 8'], ).place(relx=shift_x, rely=shift_y + delta_y * 3) self._ent_shift_hor = ttk.Entry(self._tab_geo, textvariable = self._new_shift_viz_coord_hor, width = ent_width ) self._ent_shift_hor.bind('<FocusOut>', self.trace_shift_change) self._ent_shift_ver = ttk.Entry(self._tab_geo, textvariable = self._new_shift_viz_coord_ver, width = ent_width, ) self._ent_shift_ver.bind('<FocusOut>', self.trace_shift_change) #self._ent_shift_ver.trace('w', self.trace_shift_change) self._ent_shift_hor.place(relx=ent_x, rely=shift_y + delta_y * 2) self._ent_shift_ver.place(relx=ent_x, rely=shift_y + delta_y * 3) ttk.Label(self._tab_geo, text='Use shifted coordinates', font="Text 9")\ .place(relx=shift_x, rely=shift_y + delta_y * 4) ttk.Checkbutton(self._tab_geo, variable = self._new_shifted_coords, command = self.update_frame)\ .place(relx=ent_x, rely=shift_y + delta_y * 4) # --- structure type information --- def show_message(): messagebox.showinfo(title='Structure type',message='Types - sets default stresses (sigy1/sigy2/sigx/tauxy)' '\n FOR DYNAMIC EQUATION THE FOLLOWING APPLIES' '\n X (horizontal) used for BOTTOM, BBT, HOPPER, MD' '\n Y (vertical) used for BBS, SIDE_SHELL, SSS' '\n' '\n Bottom (100/100/50/5) : BOTTOM ' '\n Bilge box side (70/70/30/3) : BBS ' '\n Bilge box top (80/80/30/3) : BBT ' '\n Hopper plate(70/70/50/3) : HOPPER' '\n Side shell (100/100/40/3): SIDE_SHELL' '\n Inner side (80/80/40/5): INNER_SIDE ' '\n Non WT self._main_fr (70/70/60/10): FRAME ' '\n WT self._main_fr (70/70/60/10): FRAME_WT ' '\n Internal BHD WT (70/70/50/10): INT_BHD' '\n Main deck (70/70/40/3) : MD ' '\n General (WT) (90/90/40/5): ' 'GENERAL_INTERNAL_WT' '\n General (NONWT) (70/70/30/3): ' 'GENERAL_INTERNAL_NONWT' '\n Side shell slamming (100/100/50/20): SSS ' '\n Internal 1 MPa wt (1/1/1/1): INTERNAL_1_MPA ' '\n Internal low stress wt (40/40/20/5): ' 'INTERNAL_LOW_STRESS_WT ') vert_start = 0.1 hor_start = 0.02 # Toggle buttons ttk.Label(self._tab_prop_tools, text='Change one property for multiple lines here. \n' '1. Press mulitple select button\n' '2. Select parameter in option menu\n' '3. Press Change parameters button', font=self._text_size['Text 9'])\ .place(relx = hor_start, rely=vert_start-1*delta_y) self._toggle_btn = tk.Button(self._tab_prop_tools, text="Toggle select\nmultiple", relief="raised", command=self.toggle_select_multiple, bg = '#E1E1E1', activebackground = '#E5F1FB' ) self._toggle_change_param = ttk.Button(self._tab_prop_tools, text="Change parameters", command=self.toggle_set_variable) self._toggle_param_to_change = None self._toggle_btn.place(relx=hor_start, rely=vert_start+2*delta_y, relwidth = 0.2, relheight = 0.06) self._toggle_change_param.place(relx=hor_start+ delta_x*6, rely=vert_start+2*delta_y, relwidth = 0.25) self._toggle_choose = ttk.OptionMenu(self._tab_prop_tools, self._new_toggle_var,self._stuctural_definition[0], *self._stuctural_definition, command = self.update_frame) self._toggle_choose.place(relx=hor_start+ delta_x*3, rely=vert_start+2*delta_y, relwidth = 0.25) ttk.Label(self._tab_prop_tools, text='Scale stresses when changing properties', font=self._text_size['Text 9'])\ .place(relx = hor_start + delta_x*1, rely=vert_start+6*delta_y) ttk.Checkbutton(self._tab_prop_tools, variable = self._new_scale_stresses, command = self.on_color_code_check)\ .place(relx = hor_start + delta_x*0, rely=vert_start+6*delta_y) ttk.Label(self._tab_prop_tools, text='Factor when scaling stresses up, fup', font=self._text_size['Text 8']).place(relx =hor_start + delta_x, rely=vert_start+7*delta_y) ttk.Label(self._tab_prop_tools, text='Factor when scaling stresses down, fdown', font=self._text_size['Text 8']).place(relx =hor_start + delta_x, rely=vert_start+8*delta_y) ent_fup = ttk.Entry(self._tab_prop_tools, textvariable=self._new_fup) ent_fup.place(relx =hor_start, rely=vert_start+7*delta_y, relwidth = 0.1) ent_fdwn = ttk.Entry(self._tab_prop_tools, textvariable=self._new_fdwn) ent_fdwn.place(relx =hor_start, rely=vert_start+8*delta_y, relwidth = 0.1) # --- main variable to define the structural properties --- self._new_material = tk.DoubleVar() self._new_material_factor = tk.DoubleVar() self._new_field_len = tk.DoubleVar() self._new_stf_spacing = tk.DoubleVar() self._new_plate_thk = tk.DoubleVar() self._new_stf_web_h = tk.DoubleVar() self._new_stf_web_t = tk.DoubleVar() self._new_stf_fl_w = tk.DoubleVar() self._new_stf_fl_t = tk.DoubleVar() self._new_stucture_type = tk.StringVar() self._new_stucture_type_label = tk.StringVar() self._new_sigma_y1 = tk.DoubleVar() self._new_sigma_y2 = tk.DoubleVar() self._new_sigma_x1 = tk.DoubleVar() self._new_sigma_x2 = tk.DoubleVar() self._new_tauxy = tk.DoubleVar() self._new_stf_km1 = tk.DoubleVar() self._new_stf_km2 = tk.DoubleVar() self._new_stf_km3 = tk.DoubleVar() self._new_stf_kps = tk.DoubleVar() self._new_plate_kpp = tk.DoubleVar() self._new_stf_type = tk.StringVar() self._new_girder_web_h = tk.DoubleVar() self._new_girder_web_t = tk.DoubleVar() self._new_girder_fl_w = tk.DoubleVar() self._new_girder_fl_t = tk.DoubleVar() self._new_girder_type = tk.StringVar() self._new_girder_length_LG = tk.DoubleVar() self._new_panel_length_Lp = tk.DoubleVar() self._new_pressure_side = tk.StringVar() self._new_puls_method = tk.StringVar() self._new_puls_panel_boundary = tk.StringVar() self._new_puls_sp_or_up = tk.StringVar() self._new_puls_up_boundary = tk.StringVar() self._new_buckling_min_press_adj_spans = tk.DoubleVar() self._new_buckling_lf_stresses = tk.DoubleVar() self._new_buckling_stf_end_support = tk.StringVar() self._new_buckling_girder_end_support = tk.StringVar() self._new_buckling_tension_field = tk.StringVar() self._new_buckling_effective_against_sigy = tk.StringVar() self._new_buckling_length_factor_stf = tk.DoubleVar() self._new_buckling_length_factor_girder = tk.DoubleVar() self._new_buckling_km3 = tk.DoubleVar() self._new_buckling_km2 = tk.DoubleVar() self._new_buckling_stf_dist_bet_lat_supp = tk.DoubleVar() self._new_buckling_girder_dist_bet_lat_supp = tk.DoubleVar() self._new_buckling_fab_method_stf = tk.StringVar() self._new_buckling_fab_method_girder = tk.StringVar() self._new_buckling_lf_stresses.set(1) self._new_buckling_stf_end_support.set('Continuous') self._new_buckling_girder_end_support.set('Continuous') self._new_buckling_tension_field.set('not allowed') self._new_buckling_effective_against_sigy.set("Stf. pl. effective against sigma y") self._new_buckling_km3.set(12) self._new_buckling_km2.set(24) self._new_buckling_fab_method_stf.set('welded') self._new_buckling_fab_method_girder.set('welded') # Setting default values to tkinter variables self._new_material.set(355) self._new_field_len.set(4000) self._new_stf_spacing.set(750) self._new_plate_thk.set(18) self._new_stf_web_h.set(400) self._new_stf_web_t.set(12) self._new_stf_fl_w.set(150) self._new_stf_fl_t.set(20) self._new_girder_web_h.set(800) self._new_girder_web_t.set(20) self._new_girder_fl_w.set(200) self._new_girder_fl_t.set(30) self._new_girder_length_LG.set(10000) self._new_panel_length_Lp.set(0) self._new_sigma_y1.set(80) self._new_sigma_y2.set(80) self._new_sigma_x1.set(50) self._new_sigma_x2.set(50) self._new_stf_km1.set(12) self._new_stf_km2.set(24) self._new_stf_km3.set(12) self._new_stf_kps.set(1) self._new_plate_kpp.set(1) self._new_material_factor.set(1.15) self._new_overpresure = tk.DoubleVar() self._new_overpresure.set(25000) self._new_density = tk.DoubleVar() self._new_density.set(1025) self._new_max_el = tk.DoubleVar() self._new_min_el = tk.DoubleVar() self._new_calculation_domain = tk.StringVar() self._new_stucture_type.set('GENERAL_INTERNAL_WT') self.option_meny_structure_type_trace(event='GENERAL_INTERNAL_WT') self._new_stf_type.set('T') self._new_pressure_side.set('both sides') self._new_puls_method.set('ultimate') self._new_puls_panel_boundary.set('Int') self._new_puls_sp_or_up.set('SP') self._new_puls_up_boundary.set('SSSS') #self._new_calculation_domain.set('Stiffened panel, flat') self._new_calculation_domain.set('Flat plate, stiffened') #self._new_material_factor.trace('w', self.trace_material_factor) # --- main entries and labels to define the structural properties --- ent_width = 12 #width of entries ''' Flat plate input ''' self._flat_gui_headlines = [ttk.Label(self._tab_prop, text='Plate input', font = self._text_size['Text 8 bold']), ttk.Label(self._tab_prop, text='Stiffener', font = self._text_size['Text 8 bold']), ttk.Label(self._tab_prop, text='Girder', font = self._text_size['Text 8 bold']), ttk.Label(self._tab_prop, text='Load/stresses input', font = self._text_size['Text 8 bold']), ttk.Label(self._tab_prop, text='Special provitions input', font = self._text_size['Text 8 bold']), ttk.Label(self._tab_prop, text='Buckling input', font = self._text_size['Text 8 bold']), ttk.Label(self._tab_prop, text='Stiffener', font=self._text_size['Text 8 bold']), ttk.Label(self._tab_prop, text='Girder', font=self._text_size['Text 8 bold']), ] self._ent_field_len = ttk.Entry(self._tab_prop, textvariable=self._new_field_len, width = int(10)) self._ent_stf_spacing = ttk.Entry(self._tab_prop, textvariable=self._new_stf_spacing, width = int(10)) self._ent_plate_thk = ttk.Entry(self._tab_prop, textvariable=self._new_plate_thk, width = int(10)) self._ent_girder_length = ttk.Entry(self._tab_prop, textvariable=self._new_girder_length_LG, width = int(10)) self._ent_panel_length = ttk.Entry(self._tab_prop, textvariable=self._new_panel_length_Lp, width = int(10)) self._lab_span = ttk.Label(self._tab_prop, text='Stiffener/plate length', ) self._lab_s = ttk.Label(self._tab_prop, text='Stiffener spacing/plate width', ) self._lab_pl_thk = ttk.Label(self._tab_prop, text='Plate thickness', ) self._lab_girder_length_LG = ttk.Label(self._tab_prop, text='Girder length, LG') self._lab_gpanel_length_Lp = ttk.Label(self._tab_prop, text='Panel length, Lp') self._flat_gui_plate = [self._ent_field_len, self._ent_stf_spacing, self._ent_plate_thk, self._ent_girder_length, self._ent_panel_length] self._flat_gui_lab_plate = [self._lab_span, self._lab_s, self._lab_pl_thk, self._lab_girder_length_LG, self._lab_gpanel_length_Lp] self._btn_flat_stf_section = ttk.Button(self._tab_prop, text='Stiffener', command= lambda id= "flat stf": self.on_open_structure_window(id)) self._ent_stf_type = ttk.OptionMenu(self._tab_prop, self._new_stf_type, 'T', *['T', 'FB', 'L', 'L-bulb']) self._ent_stf_web_h = ttk.Entry(self._tab_prop, textvariable=self._new_stf_web_h, width = int(10)) self._ent_stf_web_t = ttk.Entry(self._tab_prop, textvariable=self._new_stf_web_t, width = int(10)) self._ent_stf_fl_w = ttk.Entry(self._tab_prop, textvariable=self._new_stf_fl_w, width = int(10)) self._ent_str_fl_t = ttk.Entry(self._tab_prop, textvariable=self._new_stf_fl_t, width = int(10)) self._lab_stf_section = ttk.Label(self._tab_prop, text='') self._lab_stf_type = ttk.Label(self._tab_prop, text='Stiffener/girder type') self._lab_web_h = ttk.Label(self._tab_prop, text='Web height, hw', ) self._lab_web_thk = ttk.Label(self._tab_prop, text='Web thickness, tw', ) self._lab_fl_w= ttk.Label(self._tab_prop, text='Flange width, b', ) self._lab_fl_thk = ttk.Label(self._tab_prop, text='Flange thickeness, tf', ) self._flat_gui_stf = [self._btn_flat_stf_section, self._ent_stf_type, self._ent_stf_web_h, self._ent_stf_web_t, self._ent_stf_fl_w,self._ent_str_fl_t] self._flat_gui_lab_stf = [self._lab_stf_section,self._lab_stf_type,self._lab_web_h,self._lab_web_thk, self._lab_fl_w, self._lab_fl_thk] self._btn_flat_girder_section = ttk.Button(self._tab_prop, text='Girder', command= lambda id= "flat girder": self.on_open_structure_window(id)) self._ent_girder_type = ttk.OptionMenu(self._tab_prop, self._new_girder_type, 'T', *['T', 'FB', 'L', 'L-bulb']) self._ent_girder_web_h = ttk.Entry(self._tab_prop, textvariable=self._new_girder_web_h, width = int(10)) self._ent_girder_web_t = ttk.Entry(self._tab_prop, textvariable=self._new_girder_web_t, width = int(10)) self._ent_girder_fl_w = ttk.Entry(self._tab_prop, textvariable=self._new_girder_fl_w, width = int(10)) self._ent_girder_fl_t = ttk.Entry(self._tab_prop, textvariable=self._new_girder_fl_t, width = int(10)) self._flat_gui_girder = [self._btn_flat_girder_section, self._ent_girder_type, self._ent_girder_web_h, self._ent_girder_web_t, self._ent_girder_fl_w,self._ent_girder_fl_t] self._ent_plate_kpp = ttk.Entry(self._tab_prop, textvariable=self._new_plate_kpp, width = int(5*1)) self._ent_plate_kps = ttk.Entry(self._tab_prop, textvariable=self._new_stf_kps, width = int(5*1)) self._ent_stf_km1 = ttk.Entry(self._tab_prop, textvariable=self._new_stf_km1, width = int(5*1)) self._ent_stf_km2 = ttk.Entry(self._tab_prop, textvariable=self._new_stf_km2,width = int(5*1)) self._ent_stf_km3 = ttk.Entry(self._tab_prop, textvariable=self._new_stf_km3, width = int(5*1)) self._lab_kpp = ttk.Label(self._tab_prop,text='kpp', ) self._lab_kps = ttk.Label(self._tab_prop, text='kps', ) self._lab_km1 = ttk.Label(self._tab_prop, text='km1', ) self._lab_km2 = ttk.Label(self._tab_prop, text='km2', ) self._lab_km3 = ttk.Label(self._tab_prop, text='km3', ) self._flat_gui_os_c101_provisions = [self._ent_plate_kpp, self._ent_plate_kps, self._ent_stf_km1, self._ent_stf_km2, self._ent_stf_km3] self._flat_gui_lab_os_c101_provisions = [self._lab_kpp, self._lab_kps, self._lab_km1,self._lab_km2, self._lab_km3] self._ent_pressure_side = ttk.OptionMenu(self._tab_prop,self._new_pressure_side,('both sides','plate side', 'stiffener side')[0], *('both sides','plate side','stiffener side')) self._ent_sigma_y1= ttk.Entry(self._tab_prop, textvariable=self._new_sigma_y1, width = int(10)) self._ent_sigma_y2 = ttk.Entry(self._tab_prop, textvariable=self._new_sigma_y2, width=int(10)) self._ent_sigma_x1 = ttk.Entry(self._tab_prop, textvariable=self._new_sigma_x1, width=int(10)) self._ent_sigma_x2 = ttk.Entry(self._tab_prop, textvariable=self._new_sigma_x2, width=int(10)) self._ent_tauxy = ttk.Entry(self._tab_prop, textvariable=self._new_tauxy, width=int(10)) self._ent_mat = ttk.Entry(self._tab_prop, textvariable=self._new_material, width = int(10)) self._ent_mat_factor = ttk.Entry(self._tab_prop, textvariable=self._new_material_factor, width = int(10)) self._ent_structure_type = ttk.OptionMenu(self._tab_prop, self._new_stucture_type, self._options_type[0], *self._options_type,command = self.option_meny_structure_type_trace) self._lab_press_side = ttk.Label(self._tab_prop, text='Overpressure side') self._lab_sig_x1 = ttk.Label(self._tab_prop, text='Axial stress 1,sig_x1') self._lab_sig_x2 = ttk.Label(self._tab_prop, text='Axial stress 2,sig_x2') self._lab_sig_y1 = ttk.Label(self._tab_prop, text='Trans. stress 1,sig_y1') self._lab_sig_y2 = ttk.Label(self._tab_prop, text='Trans. stress 2,sig_y2') self._lab_tau_y1 = ttk.Label(self._tab_prop, text='Shear Stres,tau_y1') self._lab_yield = ttk.Label(self._tab_prop, text='Material yield stress [MPa]:', font = self._text_size['Text 9']) self._lab_mat_fac = ttk.Label(self._tab_prop, text='Mat. factor', font = self._text_size['Text 9']) self._lab_structure_type = ttk.Label(self._tab_prop, text='Select structure type:', font=self._text_size['Text 9']) self._flat_gui_lab_loads = [self._lab_press_side , self._lab_sig_x1, self._lab_sig_x2, self._lab_sig_y1, self._lab_sig_y2, self._lab_tau_y1, self._lab_yield, self._lab_mat_fac, self._lab_structure_type] self._flat_gui_loads = [self._ent_pressure_side, self._ent_sigma_x1, self._ent_sigma_x2, self._ent_sigma_y1, self._ent_sigma_y2, self._ent_tauxy, self._ent_mat, self._ent_mat_factor, self._ent_structure_type] self._new_buckling_method = tk.StringVar() options = ['DNV-RP-C201 - prescriptive','DNV PULS','ML-CL (PULS based)'] self._lab_buckling_method = ttk.Label(self._tab_prop, text='Set buckling method') self._buckling_method = ttk.OptionMenu(self._tab_prop, self._new_buckling_method, options[0], *options, command=self.update_frame) # PULS interface self._puls_run_all = ttk.Button(self._tab_prop, text='Run PULS -\nupdate results', command=self.puls_run_all_lines) self._ent_puls_uf = ttk.Entry(self._tab_prop, textvariable=self._new_puls_uf, width=int(ent_width * 1)) self._new_puls_uf.trace('w', self.trace_acceptance_change) self._ent_puls_sp_or_up= ttk.OptionMenu(self._tab_prop, self._new_puls_sp_or_up, 'SP', *['SP', 'UP'], command = self.trace_puls_up_or_sp,) self._ent_puls_method = ttk.OptionMenu(self._tab_prop, self._new_puls_method,'buckling', *['buckling', 'ultimate']) self._ent_puls_panel_boundary = ttk.OptionMenu(self._tab_prop, self._new_puls_panel_boundary,'Int', *['Int', 'GL', 'GT']) #self._ent_puls_stf_end_type = ttk.OptionMenu(self._tab_prop, self._new_buckling_stf_end_support,'C',*['C', 'S']) self._ent_puls_stf_end_type = ttk.OptionMenu(self._tab_prop, self._new_buckling_stf_end_support, 'Continuous', *['Continuous', 'Sniped']) self._ent_puls_up_boundary = ttk.Entry(self._tab_prop, textvariable=self._new_puls_up_boundary, width=int(7*1)) self._zstar_chk = ttk.Checkbutton(self._tab_prop, variable=self._new_zstar_optimization) self._lab_puls_input = ttk.Label(self._tab_prop, text='Buckling paramenters input', font=self._text_size['Text 8 bold']) self._flat_gui_buc_lab_stf_girder = [ttk.Label(self._tab_prop, text='End support'), ttk.Label(self._tab_prop, text='Fabrication method'), ttk.Label(self._tab_prop, text='Buckling length factor'), ttk.Label(self._tab_prop, text='Distance between lateral support'), ttk.Label(self._tab_prop, text='Tension field action:')] self._flat_gui_buc_stf_opt = [ttk.OptionMenu(self._tab_prop, self._new_buckling_stf_end_support, 'Continuous', *['Continuous', 'Sniped']), ttk.OptionMenu(self._tab_prop, self._new_buckling_fab_method_stf, 'welded', *['welded', 'rolled']), ttk.Entry(self._tab_prop, textvariable=self._new_buckling_length_factor_stf, width=int(ent_width * 1)), ttk.Entry(self._tab_prop, textvariable=self._new_buckling_stf_dist_bet_lat_supp ,width=int(ent_width * 1)), ttk.OptionMenu(self._tab_prop, self._new_buckling_tension_field, 'not allowed', *['allowed', 'not allowed'])] self._flat_gui_buc_girder_opt = [ttk.OptionMenu(self._tab_prop, self._new_buckling_girder_end_support, 'Continuous', *['Continuous', 'Sniped']), ttk.OptionMenu(self._tab_prop, self._new_buckling_fab_method_girder, 'welded',*['welded', 'rolled']), ttk.Entry(self._tab_prop, textvariable=self._new_buckling_length_factor_girder ,width=int(ent_width * 1)), ttk.Entry(self._tab_prop, textvariable=self._new_buckling_girder_dist_bet_lat_supp, width=int(ent_width * 1)), ttk.OptionMenu(self._tab_prop, self._new_buckling_effective_against_sigy, 'Stf. pl. effective against sigma y', *['Stf. pl. effective against sigma y', 'All sigma y to girder'])] self._flat_gui_girder_moment_factor = [ ttk.Label(self._tab_prop, text='Girder moment factor at support/midspan'), ttk.Entry(self._tab_prop, textvariable=self._new_buckling_km3, width=int(ent_width * 1)), ttk.Entry(self._tab_prop, textvariable=self._new_buckling_km2, width=int(ent_width * 1))] self._flat_gui_buc_lab_common = [ttk.Label(self._tab_prop, text='Minimum pressure in adjacent spans'), ttk.Label(self._tab_prop, text='Load factor on stresses')] self._flat_gui_buc_common_opt = [ttk.Entry(self._tab_prop, textvariable=self._new_buckling_min_press_adj_spans, width=int(ent_width * 1)), ttk.Entry(self._tab_prop, textvariable=self._new_buckling_lf_stresses, width=int(ent_width * 1))] self._lab_puls_acceptance= ttk.Label(self._tab_prop, text='PULS acceptance') self._lab_puls_uf = ttk.Label(self._tab_prop, text='PULS utilization factor:') self._lab_puls_int_gt = ttk.Label(self._tab_prop, text='PULS Int-integrated GL-free left/right GT-free top/bottom') self._lab_puls_cont_sniped = ttk.Label(self._tab_prop, text='Continous or Sniped', font = self._text_size['Text 8']) self._lab_puls_up_supp = ttk.Label(self._tab_prop, text='PULS UP support - left,right,upper,lower\n' 'S: simply supported C: Continuous', font = self._text_size['Text 8']) # self._zstar_label = ttk.Label(self._tab_prop, text='z* optimization (buckling RP-C201)', # font=self._text_size['Text 8']) self._flat_gui_buckling = [self._ent_puls_method, self._ent_puls_uf, self._ent_puls_panel_boundary, self._ent_puls_up_boundary]#, self._zstar_chk] self._flat_gui_lab_buckling = [self._lab_puls_acceptance, self._lab_puls_uf, self._lab_puls_int_gt, self._lab_puls_up_supp]#, self._zstar_label] self._button_str_type = ttk.Button(self._tab_prop, text='Show structure types', command=show_message) self._structure_types_label = ttk.Label(textvariable = self._new_stucture_type_label, font = self._text_size['Text 8'], ) #-------------Color coding------------------- self._chk_cc_spacing = ttk.Checkbutton(self._tab_information, variable = self._new_colorcode_spacing, command = self.on_color_code_check) self._chk_button_sigmax1 = ttk.Checkbutton(self._tab_information, variable = self._new_colorcode_sigmax, command = self.on_color_code_check) self._chk_button_sigmax2 = ttk.Checkbutton(self._tab_information, variable = self._new_colorcode_sigmax, command = self.on_color_code_check) self._chk_button_sigmay1 = ttk.Checkbutton(self._tab_information, variable = self._new_colorcode_sigmay1, command = self.on_color_code_check) self._chk_button_sigmay2 = ttk.Checkbutton(self._tab_information, variable = self._new_colorcode_sigmay2, command = self.on_color_code_check) self._chk_button_tauxy = ttk.Checkbutton(self._tab_information, variable = self._new_colorcode_tauxy, command = self.on_color_code_check) self._chk_button_structure_type = ttk.Checkbutton(self._tab_information, variable = self._new_colorcode_structure_type, command = self.on_color_code_check) self._chk_button_puls_spup = ttk.Checkbutton(self._tab_information, variable=self._new_colorcode_puls_sp_or_up, command=self.on_color_code_check) self._chk_button_puls_acceptance =ttk.Checkbutton(self._tab_information, variable=self._new_colorcode_puls_acceptance, command=self.on_color_code_check) chk_deltax = 0.1 chk_deltay = 0.025 self._information_gui_chk_structure = [ ttk.Checkbutton(self._tab_information, variable = self._new_label_color_coding, command = self.on_color_code_check), ttk.Checkbutton(self._tab_information, variable = self._new_show_cog, command = self.update_frame), ttk.Checkbutton(self._tab_information, variable = self._new_shortcut_backdrop, command = self.update_frame), ttk.Checkbutton(self._tab_information, variable = self._new_colorcode_beams, command = self.on_color_code_check), ttk.Checkbutton(self._tab_information, variable = self._new_colorcode_plates, command = self.on_color_code_check), ttk.Checkbutton(self._tab_information, variable = self._new_colorcode_pressure, command = self.on_color_code_check), ttk.Checkbutton(self._tab_information, variable = self._new_colorcode_utilization, command = self.on_color_code_check), ttk.Checkbutton(self._tab_information, variable = self._new_colorcode_section_modulus, command = self.on_color_code_check), ttk.Checkbutton(self._tab_information, variable = self._new_colorcode_fatigue, command = self.on_color_code_check), ttk.Checkbutton(self._tab_information, variable = self._new_colorcode_total, command = self.on_color_code_check), self._chk_cc_spacing, self._chk_button_sigmax1, self._chk_button_sigmax2, self._chk_button_sigmay1, self._chk_button_sigmay2, self._chk_button_tauxy,self._chk_button_structure_type , self._chk_button_puls_spup, self._chk_button_puls_acceptance] self._information_gui_lab_chk_structure = [ ttk.Label(self._tab_information, text='Label color code', font="Text 9"), ttk.Label(self._tab_information, text='Show COG/COB', font="Text 9"), ttk.Label(self._tab_information, text='Check to see avaliable shortcuts', font="Text 9"), ttk.Label(self._tab_information, text='Beam prop.', font="Text 9"), ttk.Label(self._tab_information, text='Plate thk.', font="Text 9"), ttk.Label(self._tab_information, text='Pressure', font="Text 9"), ttk.Label(self._tab_information, text='Buckling UF', font="Text 9"), ttk.Label(self._tab_information, text='Sec. mod. UF', font="Text 9"), ttk.Label(self._tab_information, text='Fatigue UF', font="Text 9"), ttk.Label(self._tab_information, text='Total UF', font="Text 9"), ttk.Label(self._tab_information, text='Stiffener spacing'), ttk.Label(self._tab_information, text='Stresses, sigma x1'), ttk.Label(self._tab_information, text='Stresses, sigma x2'), ttk.Label(self._tab_information, text='Stresses, sigma y1'), ttk.Label(self._tab_information, text='Stresses, sigma y2'), ttk.Label(self._tab_information, text='Stresses, sigma tauxy'), ttk.Label(self._tab_information, text='Structure type'), ttk.Label(self._tab_information, text='Buckling - SP or UP'), ttk.Label(self._tab_information, text='Buckling acceptance criteria')] idx = 2 for lab, ent in zip(self._information_gui_chk_structure, self._information_gui_lab_chk_structure): lab.place(relx=0.02, rely=idx*chk_deltay) ent.place(relx=0.02 + chk_deltax, rely=idx*chk_deltay) idx += 1 try: img_file_name = 'img_stf_button.gif' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = self._root_dir + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) self._stf_button = tk.Button(self._tab_prop, image=photo, command= self.on_open_structure_window) self._stf_button.image = photo except TclError: self._stf_button = tk.Button(self._tab_prop, text='STF.', command= self.on_open_structure_window, bg=self._button_bg_color, fg=self._button_fg_color) try: img_file_name = 'img_stress_button.gif' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = self._root_dir + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) self._stress_button = tk.Button(self._tab_prop, image=photo, command=self.on_open_stresses_window, fg=self._button_fg_color, bg='white') self._stress_button.image = photo except TclError: self._stress_button = tk.Button(self._tab_prop, text='STRESS', command=self.on_open_stresses_window, bg=self._button_bg_color, fg=self._button_fg_color) try: img_file_name = 'fls_button.gif' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = self._root_dir + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) self._fls_button = tk.Button(self._tab_prop, image=photo, command=self.on_open_fatigue_window, bg=self._button_bg_color) self._fls_button.image = photo except TclError: self._fls_button = tk.Button(self._tab_prop, text='FLS', command=self.on_open_fatigue_window, bg=self._button_bg_color, fg=self._button_fg_color, ) self.add_stucture = ttk.Button(self._tab_prop, text='Press to add input properties\n' 'to the selected line. Sets all\n' 'basic structural information.', command=self.new_structure, style = "Bold.TButton") ''' Start shell input ''' ''' Shell input ''' self._new_shell_thk = tk.DoubleVar() self._new_shell_radius = tk.DoubleVar() self._new_shell_dist_rings = tk.DoubleVar() self._new_shell_length = tk.DoubleVar() self._new_shell_tot_length= tk.DoubleVar() self._new_shell_k_factor = tk.DoubleVar() self._new_shell_yield = tk.DoubleVar() self._new_shell_mat_factor = tk.DoubleVar() self._new_shell_poisson = tk.DoubleVar() self._new_shell_e_module = tk.DoubleVar() self._new_shell_ring_stf_fab_method = tk.IntVar() self._new_shell_ring_frame_fab_method = tk.IntVar() self._new_shell_exclude_ring_stf = tk.BooleanVar() self._new_shell_exclude_ring_frame = tk.BooleanVar() self._new_shell_panel_spacing = tk.DoubleVar() self._new_shell_thk.set(20) self._new_shell_radius.set(5000) self._new_shell_dist_rings.set(5000) self._new_shell_length.set(5000) self._new_shell_tot_length.set(5000) self._new_shell_k_factor.set(1) self._new_shell_yield.set(355) self._new_shell_mat_factor.set(1.15) self._new_shell_poisson.set(0.3) self._new_shell_e_module.set(2.1e11) self._new_shell_ring_stf_fab_method.set(1) self._new_shell_ring_frame_fab_method.set(2) self._new_shell_panel_spacing.set(2000) self._new_shell_exclude_ring_stf.set(False) self._new_shell_exclude_ring_frame.set(False) self._shell_gui_items = list() self._lab_shell = ttk.Label(self._tab_prop, text='Shell and curved plate input [mm]') self._ent_shell_plate_thk = ttk.Entry(self._tab_prop, textvariable=self._new_shell_thk) self._ent_shell_radius = ttk.Entry(self._tab_prop, textvariable=self._new_shell_radius) self._ent_shell_dist_rings = ttk.Entry(self._tab_prop, textvariable=self._new_shell_dist_rings) self._ent_shell_length = ttk.Entry(self._tab_prop, textvariable=self._new_shell_length,width = int(5*1)) self._ent_shell_tot_length = ttk.Entry(self._tab_prop, textvariable=self._new_shell_tot_length, ) self._ent_shell_k_factor= ttk.Entry(self._tab_prop, textvariable=self._new_shell_k_factor, ) self._ent_shell_material_factor= ttk.Entry(self._tab_prop, textvariable=self._new_shell_mat_factor) self._shell_gui_items = [self._lab_shell, self._ent_shell_plate_thk, self._ent_shell_radius, self._ent_shell_dist_rings, self._ent_shell_length,self._ent_shell_tot_length,self._ent_shell_k_factor, self._ent_shell_material_factor] ''' Shell, lognitudinal stiffeners ''' # USING stiffeners for flat plates self._lab_shell_long_stiffener = ttk.Label(self._tab_prop, text='Longitudinal stiffener properties [mm]', ) self._btn_shell_stf_section_long_stf = ttk.Button(self._tab_prop, text='STF', command= lambda id= "long stf": self.on_open_structure_window(id)) self._shell_long_stf_gui_items = [self._lab_shell_long_stiffener ,self._ent_stf_web_h, self._ent_stf_web_t, self._ent_stf_fl_w, self._ent_str_fl_t, self._ent_stf_spacing, self._ent_stf_type,self._btn_shell_stf_section_long_stf] ''' Shell, ring stiffener ''' self._lab_shell_ring_stiffener = ttk.Label(self._tab_prop, text='Ring stiffener properties [mm]') self._new_shell_ring_stf_hw = tk.DoubleVar() self._new_shell_ring_stf_tw = tk.DoubleVar() self._new_shell_ring_stf_b = tk.DoubleVar() self._new_shell_ring_stf_tf = tk.DoubleVar() self._new_shell_ring_stf_tripping_brackets = tk.DoubleVar() self._new_shell_ring_stf_type = tk.StringVar() self._new_shell_ring_stf_hw.set(300) self._new_shell_ring_stf_tw.set(12) self._new_shell_ring_stf_b.set(120) self._new_shell_ring_stf_tf.set(20) self._new_shell_ring_stf_tripping_brackets.set(0) self._new_shell_ring_stf_type.set('T') self._ent_shell_ring_stf_hw = ttk.Entry(self._tab_prop, textvariable=self._new_shell_ring_stf_hw, width = int(5*1), ) self._ent_shell_ring_stf_tw = ttk.Entry(self._tab_prop, textvariable=self._new_shell_ring_stf_tw, ) self._ent_shell_ring_stf_b = ttk.Entry(self._tab_prop, textvariable=self._new_shell_ring_stf_b, ) self._ent_shell_ring_stf_tf = ttk.Entry(self._tab_prop, textvariable=self._new_shell_ring_stf_tf, ) self._ent_shell_ring_stf_tripping_brackets = ttk.Entry(self._tab_prop, textvariable=self._new_shell_ring_stf_tripping_brackets, ) self._ent_shell_ring_stf_type = ttk.OptionMenu(self._tab_prop, self._new_shell_ring_stf_type,'T', *['T', 'FB', 'L', 'L-bulb']) self._chk_shell_ring_frame_exclude = ttk.Checkbutton(self._tab_prop, variable = self._new_shell_exclude_ring_stf, command = self.calculation_domain_selected) self._btn_shell_stf_section_ring_stf = ttk.Button(self._tab_prop,text = 'STF', command= lambda id= "ring stf": self.on_open_structure_window(id)) self._shell_ring_stf_gui_items = [self._lab_shell_ring_stiffener,self._ent_shell_ring_stf_hw, self._ent_shell_ring_stf_tw,self._ent_shell_ring_stf_b, self._ent_shell_ring_stf_tf, self._ent_shell_ring_stf_tripping_brackets, self._ent_shell_ring_stf_type, self._chk_shell_ring_frame_exclude, self._btn_shell_stf_section_ring_stf] ''' Shell ring girder/frame ''' self._lab_shell_ring_frame = ttk.Label(self._tab_prop, text='Ring frame/girder properties [mm]', ) self._new_shell_ring_frame_hw = tk.DoubleVar() self._new_shell_ring_frame_tw = tk.DoubleVar() self._new_shell_ring_frame_b = tk.DoubleVar() self._new_shell_ring_frame_tf = tk.DoubleVar() self._new_shell_ring_frame_tripping_brackets = tk.DoubleVar() self._new_shell_ring_frame_l_between_girders = tk.DoubleVar() self._new_shell_ring_frame_type = tk.StringVar() self._new_shell_ring_frame_hw.set(300) self._new_shell_ring_frame_tw.set(12) self._new_shell_ring_frame_b.set(120) self._new_shell_ring_frame_tf.set(20) self._new_shell_ring_frame_tripping_brackets.set(0) self._new_shell_ring_frame_type.set('T') self._new_shell_ring_frame_length_between_girders = tk.DoubleVar() self._new_shell_ring_frame_length_between_girders.set(2500) self._ent_shell_ring_frame_hw = ttk.Entry(self._tab_prop, textvariable=self._new_shell_ring_frame_hw, width=int(5 * 1), ) self._ent_shell_ring_frame_tw = ttk.Entry(self._tab_prop, textvariable=self._new_shell_ring_frame_tw, ) self._ent_shell_ring_frame_b = ttk.Entry(self._tab_prop, textvariable=self._new_shell_ring_frame_b, ) self._ent_shell_ring_frame_tf = ttk.Entry(self._tab_prop, textvariable=self._new_shell_ring_frame_tf, ) self._ent_shell_ring_frame_tripping_brackets = ttk.Entry(self._tab_prop, textvariable=self._new_shell_ring_frame_tripping_brackets, ) self._ent_shell_ring_frame_l_between_girders = ttk.Entry(self._tab_prop, textvariable=self._new_shell_ring_frame_length_between_girders, ) self._ent_shell_ring_stf_type = ttk.OptionMenu(self._tab_prop, self._new_shell_ring_frame_type,'T', *['T', 'FB', 'L', 'L-bulb']) self._chk_shell_ring_frame_exclude = ttk.Checkbutton(self._tab_prop, variable = self._new_shell_exclude_ring_frame, command = self.calculation_domain_selected) self._btn_shell_stf_section_ring_frame = ttk.Button(self._tab_prop, text='STF',command= lambda id= "ring frame": self.on_open_structure_window(id)) self._shell_ring_frame_gui_items = [self._lab_shell_ring_stiffener, self._ent_shell_ring_frame_hw, self._ent_shell_ring_frame_tw, self._ent_shell_ring_frame_b, self._ent_shell_ring_frame_tf, self._ent_shell_ring_frame_tripping_brackets, self._ent_shell_ring_frame_l_between_girders, self._ent_shell_ring_stf_type, self._chk_shell_ring_frame_exclude, self._btn_shell_stf_section_ring_frame] ''' Shell/panel load data ''' self._lab_shell_loads = ttk.Label(self._tab_prop, text='Load data, compression pressure,\n stresses and ' 'forces negative.', ) self._new_shell_stress_or_force = tk.IntVar() self._new_shell_stress_or_force.set(1) self._ent_shell_force_input = ttk.Radiobutton(self._tab_prop, text="Force input", variable=self._new_shell_stress_or_force, value=1, command = self.calculation_domain_selected) self._ent_shell_stress_input = ttk.Radiobutton(self._tab_prop, text="Stress input", variable=self._new_shell_stress_or_force, value=2, command = self.calculation_domain_selected) self._new_shell_Nsd = tk.DoubleVar() self._new_shell_Msd = tk.DoubleVar() self._new_shell_Tsd = tk.DoubleVar() self._new_shell_Qsd = tk.DoubleVar() self._new_shell_psd = tk.DoubleVar() self._new_shell_Nsd.set(500000) self._new_shell_Msd.set(500000) self._new_shell_Tsd.set(40000) self._new_shell_Qsd.set(1500) self._new_shell_psd.set(-0.2) self._new_shell_uls_or_als = tk.StringVar() self._new_shell_end_cap_pressure_included = tk.StringVar() self._new_shell_fab_ring_stf = tk.StringVar() self._new_shell_fab_ring_frame = tk.StringVar() self._new_shell_uls_or_als.set('ULS') self._new_shell_end_cap_pressure_included.set('not included in axial force') self._new_shell_fab_ring_stf.set('Fabricated') self._new_shell_fab_ring_frame.set('Cold formed') self._lab_shell_limit_state = ttk.Label(self._tab_prop, text='Limit state:', font=self._text_size['Text 9 bold'], ) self._lab_shell_en_cap_pressure = ttk.Label(self._tab_prop, text='End cap pressure is', font=self._text_size['Text 8'], ) self._lab_shell_fab_stf = ttk.Label(self._tab_prop, text='Fabrictaion method ring stiffener.:', font=self._text_size['Text 8'], ) self._lab_shell_fab_frame = ttk.Label(self._tab_prop, text='Fabrictaion method ring gird.:', font=self._text_size['Text 8'], ) self._new_shell_sasd = tk.DoubleVar() self._new_shell_smsd = tk.DoubleVar() self._new_shell_tTsd = tk.DoubleVar() self._new_shell_tQsd = tk.DoubleVar() self._new_shell_shsd = tk.DoubleVar() self._ent_shell_uls_or_als = ttk.OptionMenu(self._tab_prop, self._new_shell_uls_or_als,'ULS', *['ULS', 'ALS']) self._ent_shell_end_cap_pressure_included = ttk.OptionMenu(self._tab_prop, self._new_shell_end_cap_pressure_included, 'included in axial force', *['not included in axial force', 'included in axial force']) self._ent_shell_fab_ring_stf = ttk.OptionMenu(self._tab_prop, self._new_shell_fab_ring_stf,'Fabricated', *['Fabricated', 'Cold formed']) self._ent_shell_fab_ring_frame = ttk.OptionMenu(self._tab_prop, self._new_shell_fab_ring_frame,'Fabricated', *['Fabricated', 'Cold formed']) self._ent_shell_yield = ttk.Entry(self._tab_prop, textvariable=self._new_shell_yield, ) self._ent_shell_Nsd = ttk.Entry(self._tab_prop, textvariable=self._new_shell_Nsd, width=int(5 * 1), ) self._ent_shell_Msd = ttk.Entry(self._tab_prop, textvariable=self._new_shell_Msd, width=int(5 * 1), ) self._ent_shell_Tsd = ttk.Entry(self._tab_prop, textvariable=self._new_shell_Tsd, width=int(5 * 1), ) self._ent_shell_Qsd = ttk.Entry(self._tab_prop, textvariable=self._new_shell_Qsd, width=int(5 * 1), ) self._ent_shell_psd = ttk.Entry(self._tab_prop, textvariable=self._new_shell_psd, width=int(5 * 1), ) self._ent_shell_sasd = ttk.Entry(self._tab_prop, textvariable=self._new_shell_sasd, width=int(5 * 1), ) self._ent_shell_smsd = ttk.Entry(self._tab_prop, textvariable=self._new_shell_smsd, width=int(5 * 1), ) self._ent_shell_tTsd = ttk.Entry(self._tab_prop, textvariable=self._new_shell_tTsd, width=int(5 * 1), ) self._ent_shell_tQsd = ttk.Entry(self._tab_prop, textvariable=self._new_shell_tQsd, width=int(5 * 1), ) self._new_shell_psd = self._new_shell_psd self._ent_shell_shsd = ttk.Entry(self._tab_prop, textvariable=self._new_shell_shsd, width=int(5 * 1), ) # Load information button self._shell_btn_load_info = ttk.Button(self._tab_prop, text='Load info', command=lambda id= "shell": self.stress_information_notebooks(id), style = "Bold.TButton") self._flat_btn_load_info = ttk.Button(self._tab_prop, text='Load info', command=lambda id= "flat": self.stress_information_notebooks(id), style = "Bold.TButton") self._shell_btn_length_info = ttk.Button(self._tab_prop, text='Length info', command=lambda id= "length": self.stress_information_notebooks(id), style = "Bold.TButton") self._shell_loads_other_gui_items = [self._lab_shell_loads, self._ent_shell_force_input, self._ent_shell_stress_input] self._shell_loads_forces_gui_items = [self._ent_shell_Nsd, self._ent_shell_Msd, self._ent_shell_Tsd, self._ent_shell_Qsd, self._ent_shell_psd] self._shell_loads_stress_gui_items = [self._ent_shell_sasd, self._ent_shell_smsd,self._ent_shell_tTsd, self._ent_shell_tQsd, self._ent_shell_psd,self._ent_shell_shsd] self._shell_other_gui_items = [self._ent_shell_end_cap_pressure_included, self._ent_shell_uls_or_als, self._ent_shell_fab_ring_stf, self._ent_shell_fab_ring_frame, self._lab_shell_limit_state, self._lab_shell_en_cap_pressure,self._lab_shell_fab_stf, self._lab_shell_fab_frame,self._ent_shell_yield,self._lab_yield] self._shell_exclude_ring_stf = tk.Frame(self._tab_prop, height=10, bg="black", colormap="new", ) self._shell_exclude_ring_frame = tk.Frame(self._tab_prop, height=10, bg="black", colormap="new") ''' END shell input ''' prop_vert_start = 0.01 types_start = 0.005208333 options = list(CylinderAndCurvedPlate.geomeries.values()) # Shell geometry selection [string] self._shell_geometries_map = CylinderAndCurvedPlate.geomeries_map # Shell geometry selection string : int self._current_calculation_domain = 'Flat plate, stiffened' self._unit_informations_dimensions = list() self._ent_calculation_domain = ttk.OptionMenu(self._tab_prop, self._new_calculation_domain,options[0], *options, command=self.calculation_domain_selected) ttk.Label(self._tab_prop, text='Structural and calculation properties input below:', font=self._text_size['Text 9 bold'], ).place(rely=prop_vert_start-delta_y*2.1,relx=types_start, anchor = tk.NW) ttk.Label(self._tab_prop, text='Select calculation domain ->', font=self._text_size['Text 10 bold'], ).place(rely=prop_vert_start, relx=types_start, anchor=tk.NW) self._ent_calculation_domain.place(rely=prop_vert_start, relx=types_start + delta_x*5) # --- Compartment/tank load input and information --- load_vert_start = 0.05#frame_horizontal -0.03 ttk.Label(self._tab_comp,text = 'Selected compartment from box below:', )\ .place(relx=types_start, rely=load_vert_start + 8*delta_y) self._selected_tank = ttk.Label(self._tab_comp,text='', font = 'Verdana 20 bold') self._selected_tank.place(relx=0.3, rely=load_vert_start + 10*delta_y) self._compartments_listbox = tk.Listbox(self._tab_comp, height = int(10 * 1), width = int(5 * 1), font=self._text_size["Text 10 bold"] , selectmode = 'extended' ) self._compartments_listbox.place(relx=types_start, rely=load_vert_start + 10*delta_y) self._compartments_listbox.bind('<<ListboxSelect>>', self.button_1_click_comp_box) ttk.Button(self._tab_comp, text="Set compartment\n""properties.",command = self.update_tank, style = "Bold.TButton")\ .place(relx=types_start + delta_x*4, rely=load_vert_start + delta_y * 10, relwidth = 0.3) ttk.Button(self._tab_comp, text="Delete all tanks", command=self.delete_all_tanks, style = "Bold.TButton").place(relx=types_start + delta_x*4, rely=load_vert_start + delta_y * 12, relwidth = 0.3) self._ent_content_type = ttk.OptionMenu(self._tab_comp, self._new_content_type, list(self._tank_options.keys())[0],*list(self._tank_options.keys()), command=self.tank_density_trace) ent_width = 10 self._ent_overpressure = ttk.Entry(self._tab_comp, textvariable = self._new_overpresure, width = int(ent_width * 1), ) self._ent_density = ttk.Entry(self._tab_comp, textvariable = self._new_density, width = int(ent_width * 1), ) self._ent_max_el = ttk.Entry(self._tab_comp, textvariable=self._new_max_el, width=int(ent_width * 1), ) self._ent_min_el = ttk.Entry(self._tab_comp, textvariable=self._new_min_el, width=int(ent_width * 1), ) comp_dx = delta_x comp_dy = delta_y comp_ent_x = ent_x comp_ent_y = 0.4 ttk.Label(self._tab_comp, text = '', )\ .place(relx=0.052083333, rely=comp_ent_y + 3.4*comp_dy) ttk.Label(self._tab_comp, text='Tank content :', font = self._text_size['Text 8'], )\ .place(relx=hor_start, rely=comp_ent_y + comp_dy * 4.5) self._ent_content_type.place(relx= comp_ent_x+0.35*comp_dx, rely=comp_ent_y + comp_dy * 4.5) ttk.Label(self._tab_comp, text='Tank density [kg/m^3]:', font = self._text_size['Text 8'], )\ .place(relx=hor_start, rely=comp_ent_y + comp_dy * 6) self._ent_density.place(relx=comp_ent_x+0.4*comp_dx, rely=comp_ent_y + comp_dy * 6) ttk.Label(self._tab_comp, text='Overpressure [Pa]:', font = self._text_size['Text 8'], )\ .place(relx=hor_start, rely=comp_ent_y + comp_dy * 7) self._ent_overpressure.place(relx=comp_ent_x+0.4*comp_dx, rely=comp_ent_y + comp_dy * 7) ttk.Label(self._tab_comp, text='Max elevation [m]:', font = self._text_size['Text 8'], )\ .place(relx=hor_start, rely=comp_ent_y + comp_dy * 8) self._ent_max_el.place(relx=comp_ent_x+0.4*comp_dx, rely=comp_ent_y + comp_dy * 8) ttk.Label(self._tab_comp, text='Min elevation [m]:', font = self._text_size['Text 8'], )\ .place(relx=hor_start, rely=comp_ent_y + comp_dy * 9) self._ent_min_el.place(relx=comp_ent_x+0.4*comp_dx, rely=comp_ent_y + comp_dy * 9) self._tank_acc_label = ttk.Label(self._tab_comp, text = 'Acceleration [m/s^2]: ', font = self._text_size['Text 8'], ) self._tank_acc_label.place(relx=hor_start, rely=comp_ent_y + comp_dy * 10) # --- button to create compartments and define external pressures --- try: img_file_name = 'img_int_pressure_button.gif' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = self._root_dir + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) self._int_button = tk.Button(self._tab_comp,image = photo,command=self.grid_find_tanks, bg = 'white') self._int_button.image = photo self._int_button.place(relx=types_start +delta_x, rely=load_vert_start + delta_y*3, relheight = 0.07, relwidth = 0.6) except TclError: tk.Button(self._tab_comp, text='New tanks - start search \n' 'to find compartments', command=self.grid_find_tanks, bg = self._button_bg_color, fg = self._button_fg_color, ) \ .place(relx=types_start, rely=load_vert_start + 1.55 * delta_y, relheight=0.044, relwidth=0.3) show_compartment = ttk.Button(self._tab_comp, text='Display current\n compartments', command=self.grid_display_tanks, style = "Bold.TButton") show_compartment.place(relx=types_start + delta_x*4, rely=load_vert_start + delta_y * 14, relwidth = 0.3) try: img_file_name = 'img_ext_pressure_button.gif' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = self._root_dir + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) self._ext_button = tk.Button(self._tab_comp,image=photo, command = self.on_show_loads, bg = 'white') self._ext_button.image = photo self._ext_button.place(relx=types_start + delta_x, rely=load_vert_start, relheight = 0.07, relwidth = 0.6) except TclError: tk.Button(self._tab_comp, text='New external load window \nsea - static/dynamic', command=self.on_show_loads )\ .place(relx=ent_x+delta_x*1.5, rely=load_vert_start+1.55*delta_y, relheight = 0.044, relwidth = 0.11) lc_x, lc_x_delta, lc_y, lc_y_delta = 0.786458333, 0.015625, 0.12037037, 0.023148148 # --- infomation on accelerations ---- ttk.Label(self._main_fr,text='Static and dynamic accelerations', )\ .place(relx=lc_x, rely=lc_y - 5 * lc_y_delta) ttk.Label(self._main_fr,text='Static acceleration [m/s^2]: ', )\ .place(relx=lc_x, rely=lc_y - 4 * lc_y_delta) ttk.Label(self._main_fr,text='Dyn. acc. loaded [m/s^2]:', )\ .place(relx=lc_x, rely=lc_y - 3 * lc_y_delta) ttk.Label(self._main_fr,text='Dyn. acc. ballast [m/s^2]:', )\ .place(relx=lc_x, rely=lc_y - 2 * lc_y_delta) self._new_dyn_acc_loaded = tk.DoubleVar() self._new_dyn_acc_ballast = tk.DoubleVar() self._new_static_acc = tk.DoubleVar() self._new_static_acc.set(9.81), self._new_dyn_acc_loaded.set(0), self._new_dyn_acc_ballast.set(0) shift_x_acc = 0.08 ttk.Entry(self._main_fr, textvariable = self._new_static_acc,width = 10, )\ .place(relx=lc_x+shift_x_acc, rely=lc_y - 4 * lc_y_delta) ttk.Entry(self._main_fr, textvariable = self._new_dyn_acc_loaded,width = 10, )\ .place(relx=lc_x+shift_x_acc , rely=lc_y - 3 * lc_y_delta) ttk.Entry(self._main_fr, textvariable = self._new_dyn_acc_ballast,width = 10, )\ .place(relx=lc_x+shift_x_acc , rely=lc_y - 2 * lc_y_delta) ttk.Button(self._main_fr, text = 'Set\naccelerations', command = self.create_accelerations, style = "Bold.TButton")\ .place(relx=lc_x +shift_x_acc*1.5, rely=lc_y - 4 * lc_y_delta) # --- checkbuttons and labels --- self._dnv_a_chk,self._dnv_b_chk = tk.IntVar(),tk.IntVar() self._tank_test_chk,self._manual_chk = tk.IntVar(),tk.IntVar() self._check_button_load_comb = [self._dnv_a_chk,self._dnv_b_chk, self._tank_test_chk, self._manual_chk] self._active_label = ttk.Label(self._main_fr, text = '', ) self._active_label.place(relx=lc_x+lc_x_delta*10,rely=lc_y-lc_y_delta*5) ttk.Label(self._main_fr, text='Combination for line (select line). Change with slider.: ', )\ .place(relx=lc_x, rely=lc_y + 2.5*delta_y) lc_y += 0.148148148 self._combination_slider = ttk.Scale(self._main_fr, from_=1, to=4, command=self.gui_load_combinations,length=400, orient = 'horizontal') ttk.Label(self._main_fr, text='1: DNV a) 2: DNV b) 3: TankTest ' ' 4: Cylinder')\ .place(relx=lc_x +0*lc_x_delta, rely=lc_y - 2*lc_y_delta) self._combination_slider.place(relx=lc_x +0*lc_x_delta, rely=lc_y - 3*lc_y_delta) self._combination_slider_map = {1:'dnva',2:'dnvb',3:'tanktest', 4: 'Cylinder'} ttk.Label(self._main_fr, text='Name:', )\ .place(relx=lc_x + 0 * lc_x_delta, rely=lc_y) ttk.Label(self._main_fr, text='Stat LF', )\ .place(relx=lc_x + 8.5 * lc_x_delta, rely=lc_y) ttk.Label(self._main_fr, text='Dyn LF', )\ .place(relx=lc_x + 10.2 * lc_x_delta, rely=lc_y) ttk.Label(self._main_fr, text='Include?',font = self._text_size['Text 7'], )\ .place(relx=lc_x + 11.8 * lc_x_delta, rely=lc_y) self._result_label_dnva = ttk.Label(self._main_fr, text='DNV a [Pa]: ',font='Text 8', ) self._result_label_dnvb = ttk.Label(self._main_fr, text='DNV b [Pa]: ',font=self._text_size["Text 8"], ) self._result_label_tanktest = ttk.Label(self._main_fr, text='Tank test [Pa]: ',font=self._text_size["Text 8"], ) self._result_label_manual = ttk.Label(self._main_fr, text='Manual [Pa]: ',font=self._text_size["Text 8"], ) self.results_gui_start = 0.6 self._lab_pressure = ttk.Label(self._main_fr, text = 'Pressures for this line: \n(DNV a/b [loaded/ballast], tank test, manual)\n' 'Note that ch. 4.3.7 and 4.3.8 is accounted for.',font=self._text_size["Text 10"], ) self._lab_pressure.place(relx= 0.786458333, rely= self.results_gui_start) # --- optimize button --- ttk.Label(self._main_fr,text='Optimize selected line/structure (right click line):', font = self._text_size['Text 9 bold'], )\ .place(relx=lc_x, rely=lc_y - 7 * lc_y_delta) try: img_file_name = 'img_optimize.gif' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = self._root_dir + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) self._opt_button = tk.Button(self._main_fr,image=photo, command = self.on_optimize, bg = 'white', fg = self._button_fg_color) self._opt_button.image = photo self._opt_button.place(relx=lc_x, rely=lc_y - 6 * lc_y_delta, relheight = 0.04, relwidth = 0.098) except TclError: self._opt_button =tk.Button(self._main_fr, text='Optimize', command=self.on_optimize, bg = self._button_bg_color, fg = self._button_fg_color) self._opt_button.place(relx=lc_x, rely=lc_y - 6 * lc_y_delta, relheight = 0.04, relwidth = 0.098) try: img_file_name = 'img_multi_opt.gif' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = self._root_dir + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) self._opt_button_mult = tk.Button(self._main_fr,image=photo, command = self.on_optimize_multiple, bg = self._button_bg_color, fg = self._button_fg_color) self._opt_button_mult.image = photo self._opt_button_mult.place(relx=lc_x+0.1, rely=lc_y - 6 * lc_y_delta, relheight = 0.04, relwidth = 0.065) except TclError: self._opt_button_mult= tk.Button(self._main_fr, text='MultiOpt', command=self.on_optimize_multiple, bg = self._button_bg_color, fg = self._button_fg_color) self._opt_button_mult.place(relx=lc_x+0.1, rely=lc_y - 6 * lc_y_delta, relheight = 0.04, relwidth = 0.065) try: img_file_name = 'cylinder_opt.png' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = self._root_dir + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) self._opt_cylinder = tk.Button(self._main_fr,image=photo, command = self.on_optimize_cylinder, bg = 'white', fg = 'white') self._opt_cylinder.image = photo except TclError: self._opt_cylinder = tk.Button(self._main_fr, text='Cylinder optimization', command=self.on_optimize_cylinder, bg = self._button_bg_color, fg = self._button_fg_color) self._opt_button_span = ttk.Button(self._main_fr, text='SPAN', command=self.on_geometry_optimize, style = "Bold.TButton") self._opt_button_span.place(relx=lc_x + 0.167,rely=lc_y - 6 * lc_y_delta, relheight = 0.04, relwidth = 0.04) self._optimization_buttons = {'Flat plate, stiffened': [self._opt_button, self._opt_button_mult, self._opt_button_span], 'Flat plate, stiffened place': [[lc_x, lc_y - 6 * lc_y_delta, 0.04, 0.098], [lc_x+0.1, lc_y - 6 * lc_y_delta, 0.04, 0.065], [lc_x + 0.167, lc_y - 6 * lc_y_delta, 0.04, 0.04]], 'Flat plate, unstiffened': [], 'Flat plate, unstiffened place': [], 'Flat plate, stiffened with girder': [], 'Flat plate, stiffened with girder place': [], 'cylinder': [self._opt_cylinder], 'cylinder place' : [[lc_x, lc_y - 6 * lc_y_delta, 0.04, 0.175]]} # Load information button ttk.Button(self._main_fr, text='Load info', command=self.button_load_info_click,style = "Bold.TButton")\ .place(relx=0.78,rely=0.7, relwidth = 0.04) # Load information button ttk.Button(self._main_fr, text='Load factors', command=self.on_open_load_factor_window,style = "Bold.TButton")\ .place(relx=0.8225,rely=0.7, relwidth = 0.05) # PULS result information self._puls_information_button = ttk.Button(self._main_fr, text='PULS results for line', command=self.on_puls_results_for_line,style = "Bold.TButton") self._puls_information_button.place(relx=0.875,rely=0.7, relwidth = 0.075) # Wight developement plot self._weight_button = ttk.Button(self._main_fr, text='Weights', command=self.on_plot_cog_dev,style = "Bold.TButton") self._weight_button.place(relx=0.9525,rely=0.7, relwidth = 0.038) self.gui_structural_properties() # Initiating the flat panel structural properties self.set_colors('default') # Setting colors theme # self._current_theme = 'default' def set_colors(self, theme): self._current_theme = theme if theme == 'light': self._general_color = 'alice blue' self._color_text = 'black' ent_bg = '#FFFFFF' elif theme == 'grey': self._general_color = 'light grey' self._color_text = 'black' ent_bg = '#FFFFFF' elif theme == 'dark': self._general_color = '#2B2B2B' self._color_text = 'light grey' ent_bg = '#FFFFFF' elif theme == 'default': self._general_color = '#F0F0F0' self._color_text = 'black' ent_bg = '#FFFFFF' elif theme == 'pink': self._general_color = '#FFD3F6' self._color_text = 'black' ent_bg = 'white' #relx=x_canvas_place, rely=0,relwidth=0.523, relheight = 0.73 elif theme == 'SlavaUkraini': self._general_color = '#0057b7' self._color_text = 'white' ent_bg = 'white' cavas_bg = '#ffd700' elif theme == 'modelling': self._main_canvas.place_forget() x_canvas_place = 0.26 self._main_canvas.place(relx=x_canvas_place, rely=0,relwidth=0.74, relheight = 0.99) tk.Misc.lift(self._main_canvas) self._gui_functional_look = 'modelling' elif theme == 'all items': self._gui_functional_look = 'all items' self._main_canvas.place_forget() x_canvas_place = 0.26 self._main_canvas.place(relx=x_canvas_place, rely=0, relwidth=0.523, relheight=0.73) elif theme == 'cylinder': self._main_canvas.place_forget() x_canvas_place = 0.26 self._main_canvas.place(relx=x_canvas_place, rely=0,relwidth=0.74, relheight = 0.73) tk.Misc.lift(self._main_canvas) self._gui_functional_look = 'cylinder' placement = self._gui_functional_look_cylinder_opt # [0.786458333, 0.12962963000000005, 0.04, 0.175] self._opt_cylinder.place(relx=placement[0], rely=placement[1], relheight=placement[2], relwidth=placement[3]) tk.Misc.lift(self._opt_cylinder) if theme not in ['modelling', 'all items','cylinder']: self._style.configure("Bold.TButton", font=('Sans', '10', 'bold')) self._style.configure('TCheckbutton', background=self._general_color) self._style.configure('TFrame', background=self._general_color) self._style.configure('TLabel', background=self._general_color, foreground = self._color_text) self._style.configure('TScale', background=self._general_color) self._style.configure('TEntry', background=ent_bg) self._style.configure('TOptionMenu', background=ent_bg) self._style.configure("TMenubutton", background=ent_bg) self._style.configure('TRadiobutton', background=self._general_color, foreground='black') if theme in ['SlavaUkraini',]: self._prop_canvas.configure(bg=cavas_bg) self._main_canvas.configure(bg=cavas_bg) self._result_canvas.configure(bg=cavas_bg) else: self._prop_canvas.configure(bg = self._general_color) self._main_canvas.configure(bg = self._general_color) self._result_canvas.configure(bg = self._general_color) # self._frame_viz_hor.configure(bg =self._color_text) # self._frame_viz_ver.configure(bg=self._color_text) self.update_frame() def gui_structural_properties(self, flat_panel_stf_girder = False, flat_unstf = False, flat_stf = True, shell = False, long_stf = False, ring_stf = False, ring_frame = False, force_input = False, stress_input = False): vert_start = 0.04 hor_start = 0.02 delta_y = 0.024 delta_x = 0.13 ent_relx = hor_start + 6*delta_x geo_ent_width = 0.1 ent_geo_y = 0.1 opt_width = 0.2 self._unit_informations_dimensions = list() if any([flat_unstf, flat_stf, flat_panel_stf_girder]): ''' self._flat_gui_headlines = [ttk.Label(self._tab_prop, text='Plate input'), ttk.Label(self._tab_prop, text='Stiffener'), ttk.Label(self._tab_prop, text='Girder'), ttk.Label(self._tab_prop, text='Load/stresses input'), ttk.Label(self._tab_prop, text='Special provitions input'), ttk.Label(self._tab_prop, text='Buckling input')] ''' # Top buttons top_button_shift = 0.2 self._stf_button.place(relx=hor_start, rely=vert_start+ top_button_shift * delta_y) self._stress_button.place(relx=hor_start + delta_x*1.5, rely=vert_start+ top_button_shift * delta_y) self._fls_button.place(relx=hor_start + delta_x*3, rely=vert_start+ top_button_shift * delta_y) self.add_stucture.place(relx=hor_start + delta_x*4.5, rely=vert_start+ top_button_shift * delta_y, relheight = 0.065, relwidth = 0.39) # Input fields if any([shell, long_stf, ring_stf, ring_frame, force_input, stress_input]): return self._flat_gui_headlines[0].place(relx=hor_start, rely=vert_start + 3 * delta_y) idx = 4 for pl_lab, pl_ent in zip(self._flat_gui_lab_plate, self._flat_gui_plate): pl_lab.place(relx=hor_start, rely=vert_start + idx * delta_y) pl_ent.place(relx=hor_start + 3*delta_x, rely=vert_start + idx * delta_y) idx += 1 for stf_lab, stf_ent, girder_ent in zip(self._flat_gui_lab_stf, self._flat_gui_stf, self._flat_gui_girder): if flat_panel_stf_girder: girder_ent.place(relx=hor_start + 5 * delta_x, rely=vert_start + idx * delta_y) if flat_stf: stf_lab.place(relx=hor_start, rely=vert_start + idx * delta_y) stf_ent.place(relx=hor_start + 3 * delta_x, rely=vert_start + idx * delta_y) idx += 1 self._flat_gui_headlines[3].place(relx=hor_start + 0 * delta_x, rely=vert_start + idx * delta_y) idx += 1 this_count = 1 for load_lab, load_ent in zip(self._flat_gui_lab_loads, self._flat_gui_loads): load_lab.place(relx=hor_start, rely=vert_start + idx * delta_y) load_ent.place(relx=hor_start + 3*delta_x, rely=vert_start + idx * delta_y) idx += 1 this_count += 1 idx_now = idx idx -= this_count self._flat_gui_headlines[4].place(relx=hor_start + 5 * delta_x, rely=vert_start + idx * delta_y) idx += 1 for prov_lab, prov_ent in zip(self._flat_gui_lab_os_c101_provisions, self._flat_gui_os_c101_provisions): prov_lab.place(relx=hor_start + 5 * delta_x, rely=vert_start + idx * delta_y) prov_ent.place(relx=hor_start + 6.5 * delta_x, rely=vert_start + idx * delta_y) idx += 1 self._flat_btn_load_info.place(relx=hor_start + 5 * delta_x, rely=vert_start + (idx+1) * delta_y) self._button_str_type.place(relx=hor_start + 5 * delta_x, rely=vert_start + (idx+3) * delta_y) idx = idx_now self._flat_gui_headlines[5].place(relx=hor_start + 0 * delta_x, rely=vert_start + idx * delta_y) idx += 1 self._lab_buckling_method.place(relx=hor_start + 0 * delta_x, rely=vert_start + idx * delta_y) self._buckling_method.place(relx=hor_start + 4 * delta_x, rely=vert_start + idx * delta_y) idx += 1 if flat_panel_stf_girder: self._flat_gui_headlines[7].place(relx=hor_start + 6 * delta_x, rely=vert_start + idx * delta_y) if flat_stf: self._flat_gui_headlines[6].place(relx=hor_start + 4*delta_x, rely=vert_start + idx * delta_y) idx += 1 for buckling_lab, buckling_stf_ent, buckling_girder_ent in zip(self._flat_gui_buc_lab_stf_girder, self._flat_gui_buc_stf_opt, self._flat_gui_buc_girder_opt): if flat_panel_stf_girder: buckling_girder_ent.place(relx=hor_start + 6 * delta_x, rely=vert_start + idx * delta_y) if flat_stf: buckling_lab.place(relx=hor_start, rely=vert_start + idx * delta_y) buckling_stf_ent.place(relx=hor_start + 4 * delta_x, rely=vert_start + idx * delta_y) idx += 1 if flat_panel_stf_girder: self._flat_gui_girder_moment_factor[0].place(relx=hor_start + 0 * delta_x, rely=vert_start + idx * delta_y) self._flat_gui_girder_moment_factor[1].place(relx=hor_start + 6 * delta_x, rely=vert_start + idx * delta_y, relwidth = 0.08) self._flat_gui_girder_moment_factor[2].place(relx=hor_start + 7 * delta_x, rely=vert_start + idx * delta_y, relwidth = 0.08) idx += 1 for buckling_lab, buckling_ent in zip(self._flat_gui_buc_lab_common, self._flat_gui_buc_common_opt): buckling_lab.place(relx=hor_start, rely=vert_start + idx * delta_y) buckling_ent.place(relx=hor_start + 5 * delta_x, rely=vert_start + idx * delta_y) idx += 1 for buckling_lab, buckling_ent in zip(self._flat_gui_lab_buckling, self._flat_gui_buckling): buckling_lab.place(relx=hor_start, rely=vert_start + idx * delta_y) buckling_ent.place(relx=hor_start + 5 * delta_x, rely=vert_start + idx * delta_y) idx += 1 self._puls_run_all.place(relx=hor_start + 6 * delta_x, rely=vert_start + (idx-2) * delta_y) # optimize buttons for dom in ['Flat plate, unstiffened', 'Flat plate, stiffened', 'Flat plate, stiffened with girder', 'cylinder']: for btn, placement in zip(self._optimization_buttons[dom], self._optimization_buttons[dom + ' place']): btn.place_forget() for btn, placement in zip(self._optimization_buttons[self._new_calculation_domain.get()], self._optimization_buttons[self._new_calculation_domain.get() + ' place']): btn.place(relx=placement[0], rely=placement[1], relheight=placement[2], relwidth=placement[3]) if shell: ''' self._shell_gui_items = [self._lab_shell, self._ent_shell_plate_thk, self._ent_shell_radius, self._ent_shell_dist_rings, self._ent_shell_length,self._ent_shell_tot_length,self._ent_shell_k_factor] ''' self._lab_shell.place(relx=hor_start, rely=ent_geo_y+ delta_y) tmp_unit_info = list() for lab in ['Shell plate thickness', 'Shell radius (middle of plate)', 'Distance between rings, l', 'Length of shell, L', 'Total cylinder length, Lc', 'Effective buckling length factor, k', 'Material factor']: tmp_unit_info.append(ttk.Label(self._tab_prop, text=lab)) for lab, idx in zip(tmp_unit_info, range(len(tmp_unit_info))): lab.place(relx=hor_start,rely=ent_geo_y+ delta_y*(2+idx)) self._unit_informations_dimensions.append(lab) for idx, entry in enumerate(self._shell_gui_items[1:]): entry.place(relx=hor_start + 5*delta_x, rely=ent_geo_y + delta_y*(2+idx), relwidth=geo_ent_width) self._shell_btn_length_info.place(relx=hor_start + 6*delta_x, rely=ent_geo_y + delta_y*(idx)) ent_geo_y += delta_y*(len(self._shell_gui_items[1:])+1) if long_stf: self._lab_shell_long_stiffener.place(relx=hor_start, rely=ent_geo_y+ delta_y) tmp_unit_info = list() for lab in ['Web, hw', 'Web, tw', 'Flange b', 'Flange, tf', 'Spacing, s', 'Stf. type', 'Load section']: tmp_unit_info.append(ttk.Label(self._tab_prop, text=lab)) for lab, idx in zip(tmp_unit_info, range(len(tmp_unit_info))): lab.place(relx=hor_start + idx * delta_x,rely=ent_geo_y+ delta_y*2) self._unit_informations_dimensions.append(lab) for idx, entry in enumerate(self._shell_long_stf_gui_items[1:]): entry.place(relx=hor_start + idx * delta_x, rely=ent_geo_y+ delta_y*3, relwidth=geo_ent_width) self._unit_informations_dimensions.append(self._lab_shell_long_stiffener) ent_geo_y += delta_y*3 if ring_stf: self._lab_shell_ring_stiffener.place(relx=hor_start, rely=ent_geo_y+ delta_y*1) tmp_unit_info = list() for lab in ['Web, hw', 'Web, tw', 'Flange, b', 'Flange, tf','tr. br. dist', 'Stf. type', 'Exclude', 'Load section prop.']: tmp_unit_info.append(ttk.Label(self._tab_prop, text=lab)) for lab, idx in zip(tmp_unit_info, range(len(tmp_unit_info))): if idx in [6,7]: lab.place(relx=hor_start + (idx-6) * delta_x*3, rely=ent_geo_y + delta_y * 4) else: lab.place(relx=hor_start + idx * delta_x,rely=ent_geo_y+ delta_y*2) self._unit_informations_dimensions.append(lab) self._unit_informations_dimensions.append(self._lab_shell_ring_stiffener) for idx, entry in enumerate(self._shell_ring_stf_gui_items[1:]): if idx in [6,7]: entry.place(relx=hor_start + (idx-6) * delta_x*4 + delta_x, rely=ent_geo_y+ delta_y*4, relwidth=geo_ent_width) else: entry.place(relx=hor_start + idx * delta_x, rely=ent_geo_y+ delta_y*3, relwidth=geo_ent_width) if self._new_shell_exclude_ring_stf.get(): self._shell_exclude_ring_stf.place(relx=0.005, rely=ent_geo_y+ delta_y*3.15, relwidth=0.9) self._unit_informations_dimensions.append(self._shell_exclude_ring_stf) ent_geo_y += delta_y*4 if ring_frame: self._lab_shell_ring_frame.place(relx=hor_start, rely=ent_geo_y+ delta_y*1) for idx, entry in enumerate(self._shell_ring_frame_gui_items[1:]): if idx in [7, 8]: entry.place(relx=hor_start + (idx - 7) * delta_x * 4 + delta_x, rely=ent_geo_y + delta_y * 4, relwidth=geo_ent_width) else: entry.place(relx=hor_start + idx * delta_x, rely=ent_geo_y + delta_y * 3, relwidth=geo_ent_width) tmp_unit_info = list() for lab in ['Web, hw', 'Web, tw', 'Flange, b', 'Flange, tf', 'tr. br. dist', 'L bet. Gird.', 'Stf. type', 'Exclude', 'Load section prop.']: tmp_unit_info.append(ttk.Label(self._tab_prop, text=lab)) for lab, idx in zip(tmp_unit_info, range(len(tmp_unit_info))): if idx in [7,8]: lab.place(relx=hor_start + (idx-7) * delta_x*3, rely=ent_geo_y + delta_y * 4) else: lab.place(relx=hor_start + idx * delta_x,rely=ent_geo_y+ delta_y*2) self._unit_informations_dimensions.append(lab) self._unit_informations_dimensions.append(self._lab_shell_ring_frame) if self._new_shell_exclude_ring_frame.get(): self._shell_exclude_ring_frame.place(relx=0.005, rely=ent_geo_y+ delta_y*3.15, relwidth=0.9) self._unit_informations_dimensions.append(self._shell_exclude_ring_frame) ent_geo_y += delta_y*3 if not any([flat_panel_stf_girder, flat_stf, flat_unstf]): # Other data ''' self._shell_other_gui_items = [self._ent_shell_end_cap_pressure_included, self._ent_shell_uls_or_als, self._ent_shell_fab_ring_stf, self._ent_shell_fab_ring_frame] ''' self._lab_shell_limit_state.place(relx=hor_start, rely=ent_geo_y + delta_y*2.2) self._ent_shell_uls_or_als.place(relx=hor_start+ 1.6 * delta_x, rely=ent_geo_y + delta_y*2.2, relwidth=geo_ent_width*2) # Load data ent_geo_y += 3.3 * delta_y #self._lab_shell_loads.place(relx=hor_start, rely=ent_geo_y - delta_y*1.5) self._ent_shell_stress_input.place(relx=hor_start, rely=ent_geo_y) if 'shell' in self._new_calculation_domain.get(): self._ent_shell_force_input.place(relx=hor_start + 2 * delta_x, rely=ent_geo_y) else: self._new_shell_stress_or_force.set(2) lab_force = ['Axial', 'Bending', 'Torsional','Shear', 'Lateral'] lab_force_unit = ['kN', 'kNm', 'kNm', 'kN', 'N/mm2'] lab_stress = ['Axial', 'Bending', 'Torsional', 'Shear', 'Lateral', 'Add hoop'] lab_stress_unit = ['N/mm2', 'N/mm2', 'N/mm2', 'N/mm2', 'N/mm2', 'N/mm2'] to_use = self._shell_loads_forces_gui_items if self._new_shell_stress_or_force.get() == 1 \ else self._shell_loads_stress_gui_items lab_to_use = [lab_force, lab_force_unit] if self._new_shell_stress_or_force.get() == 1\ else [lab_stress, lab_stress_unit] tmp_unit_info = list() tmp_unit_info_unit = list() [tmp_unit_info.append(ttk.Label(self._tab_prop, text=val)) for val in lab_to_use[0]] [tmp_unit_info_unit.append(ttk.Label(self._tab_prop, text=val)) for val in lab_to_use[1]] for idx,lab in enumerate(tmp_unit_info): lab.place(relx=hor_start, rely=ent_geo_y + (idx+1)*delta_y) self._unit_informations_dimensions.append(lab) for idx, entry in enumerate(to_use): entry.place(relx=hor_start + 1.5*delta_x, rely=ent_geo_y + (idx+1)*delta_y, relwidth=geo_ent_width) for idx, lab in enumerate(tmp_unit_info_unit): lab.place(relx=hor_start + 2.5*delta_x, rely=ent_geo_y + (idx+1)*delta_y) self._unit_informations_dimensions.append(lab) self._shell_btn_load_info.place(relx=hor_start + 5*delta_x, rely=ent_geo_y + 1*delta_y) # Various end_y = ent_geo_y + (idx+1)*delta_y other_count = 1 self._lab_yield.place(relx=hor_start, rely=end_y + delta_y*other_count) self._ent_shell_yield.place(relx=hor_start+ 4 * delta_x, rely=end_y + delta_y*other_count, relwidth=geo_ent_width) other_count += 1 if ring_stf: self._lab_shell_fab_stf.place(relx=hor_start, rely=end_y + delta_y*other_count) self._ent_shell_fab_ring_stf.place(relx = hor_start + 4 * delta_x, rely=end_y + delta_y*other_count) other_count += 1 if ring_frame: self._lab_shell_fab_frame.place(relx=hor_start, rely=end_y + delta_y*other_count) self._ent_shell_fab_ring_frame.place(relx=hor_start + 4 * delta_x, rely=end_y + delta_y*other_count, relwidth=geo_ent_width*1.9) other_count += 1 if self._shell_geometries_map[self._new_calculation_domain.get()] in [1,5]: self._lab_shell_en_cap_pressure.place(relx=hor_start, rely= end_y + delta_y*other_count) self._ent_shell_end_cap_pressure_included.place(relx=3 * delta_x, rely= end_y + delta_y*other_count) other_count += 1 # Removing flat stuff for dom in ['Flat plate, unstiffened', 'Flat plate, stiffened', 'Flat plate, stiffened with girder', 'cylinder']: for btn, placement in zip(self._optimization_buttons[dom], self._optimization_buttons[dom + ' place']): btn.place_forget() if not any([ring_stf, ring_frame]): # TODO optmizing not implemented yet for ring stf and frame. for btn, placement in zip(self._optimization_buttons['cylinder'], self._optimization_buttons['cylinder' + ' place']): btn.place(relx=placement[0], rely=placement[1], relheight=placement[2], relwidth=placement[3]) def calculation_domain_selected(self, event = None): ''' ['Stiffened panel, flat', 'Unstiffened shell (Force input)', 'Unstiffened panel (Stress input)', 'Longitudinal Stiffened shell (Force input)', 'Longitudinal Stiffened panel (Stress input)', 'Ring Stiffened shell (Force input)', 'Ring Stiffened panel (Stress input)', 'Orthogonally Stiffened shell (Force input)', 'Orthogonally Stiffened panel (Stress input)'] ''' to_process = [self._puls_run_all, self._lab_buckling_method, self._buckling_method, self._lab_yield, self._lab_mat_fac,self._structure_types_label, self._button_str_type, self._ent_structure_type, self._lab_structure_type, self._lab_kpp, self._lab_kps, self._lab_km1, self._lab_km2, self._lab_stf_type, self._lab_press_side, self._ent_pressure_side, self._lab_puls_input, self._lab_puls_up_supp, self._lab_puls_acceptance, self._lab_puls_uf, self._lab_puls_int_gt, self._lab_puls_cont_sniped, self._lab_span, self._lab_s, self._ent_puls_sp_or_up, self._ent_puls_method, self._ent_puls_uf, self._ent_puls_panel_boundary, self._ent_puls_stf_end_type, self._stf_button, self._stress_button,self._fls_button, self._shell_btn_load_info, self._flat_btn_load_info, self._shell_btn_length_info,self._button_str_type] to_process = to_process+self._shell_gui_items+self._shell_long_stf_gui_items+self._shell_ring_stf_gui_items+\ self._shell_ring_frame_gui_items+self._shell_loads_other_gui_items+\ self._shell_loads_forces_gui_items+self._shell_loads_stress_gui_items+\ self._unit_informations_dimensions + self._shell_other_gui_items+ self._flat_gui_plate + \ self._flat_gui_lab_plate + self._flat_gui_lab_stf+self._flat_gui_stf + self._flat_gui_girder + \ self._flat_gui_lab_loads + self._flat_gui_loads + self._flat_gui_lab_os_c101_provisions + \ self._flat_gui_os_c101_provisions + \ self._flat_gui_lab_buckling + self._flat_gui_buckling + self._flat_gui_headlines + \ self._flat_gui_buc_lab_common+ self._flat_gui_buc_common_opt+ self._flat_gui_buc_girder_opt+\ self._flat_gui_buc_lab_stf_girder+ self._flat_gui_buc_stf_opt+ self._flat_gui_girder_moment_factor for item in to_process: item.place_forget() if event is not None: self._new_shell_exclude_ring_stf.set(False) self._new_shell_exclude_ring_frame.set(False) ''' geomeries = {1:'Unstiffened shell (Force input)', 2:'Unstiffened panel (Stress input)', 3:'Longitudinal Stiffened shell (Force input)', 4:'Longitudinal Stiffened panel (Stress input)', 5:'Ring Stiffened shell (Force input)', 6:'Ring Stiffened panel (Stress input)', 7:'Orthogonally Stiffened shell (Force input)', 8:'Orthogonally Stiffened panel (Stress input)'} ''' if self._new_calculation_domain.get() == 'Flat plate, unstiffened': self._new_puls_sp_or_up.set('UP') self.gui_structural_properties(flat_unstf = True, flat_stf = False) elif self._new_calculation_domain.get() == 'Flat plate, stiffened': self._new_puls_sp_or_up.set('SP') self.gui_structural_properties(flat_stf = True) elif self._new_calculation_domain.get() == 'Flat plate, stiffened with girder': self._new_puls_sp_or_up.set('SP') self.gui_structural_properties(flat_panel_stf_girder = True, flat_stf = True) elif self._new_calculation_domain.get() in ['Unstiffened shell (Force input)', 'Unstiffened panel (Stress input)']: self.gui_structural_properties(flat_unstf=False, flat_stf = False, flat_panel_stf_girder = False, shell=True, long_stf=False, ring_stf=False, ring_frame=False) elif self._new_calculation_domain.get() in ['Longitudinal Stiffened shell (Force input)', 'Longitudinal Stiffened panel (Stress input)']: self.gui_structural_properties(flat_unstf=False, flat_stf = False, flat_panel_stf_girder = False, shell=True, long_stf=True, ring_stf=False, ring_frame=False) elif self._new_calculation_domain.get() in ['Ring Stiffened shell (Force input)', 'Ring Stiffened panel (Stress input)']: self.gui_structural_properties(flat_unstf=False, flat_stf = False, flat_panel_stf_girder = False, shell=True, long_stf=False, ring_stf=True, ring_frame=True) elif self._new_calculation_domain.get() in ['Orthogonally Stiffened shell (Force input)', 'Orthogonally Stiffened panel (Stress input)']: self.gui_structural_properties(flat_unstf=False, flat_stf = False, flat_panel_stf_girder = False, shell=True, long_stf=True, ring_stf=True, ring_frame=True) if self._line_is_active and self._active_line in self._line_to_struc.keys(): if event == None and self._line_to_struc[self._active_line][5] is not None: mapper ={1: 'Force', 2: 'Stress'} load = mapper[self._new_shell_stress_or_force.get()] struc_obj = self._line_to_struc[self._active_line][5] if self._new_shell_stress_or_force.get() == 1: forces = [self._new_shell_Nsd.get(), self._new_shell_Msd.get(), \ self._new_shell_Tsd.get(), self._new_shell_Qsd.get()] sasd, smsd, tTsd, tQsd, shsd = hlp.helper_cylinder_stress_to_force_to_stress( stresses=None, forces=forces, geometry=struc_obj.geometry, shell_t=self._new_shell_thk.get(), shell_radius=self._new_shell_radius.get(), shell_spacing=self._new_stf_spacing.get(), hw=self._new_stf_web_h.get(), tw=self._new_stf_web_t.get(), b=self._new_stf_fl_w.get(), tf=self._new_stf_fl_t.get(), CylinderAndCurvedPlate=CylinderAndCurvedPlate) self._new_shell_sasd.set(sasd) self._new_shell_smsd.set(smsd) self._new_shell_tTsd.set(abs(tTsd)) self._new_shell_tQsd.set(tQsd) # self._new_shell_shsd.set(0) else: stresses = [self._new_shell_sasd.get(), self._new_shell_smsd.get(), abs(self._new_shell_tTsd.get()), self._new_shell_tQsd.get(), self._new_shell_shsd.get()] sasd, smsd, tTsd, tQsd, shsd = stresses Nsd, Msd, Tsd, Qsd, shsd = hlp.helper_cylinder_stress_to_force_to_stress( stresses=stresses, geometry=struc_obj.geometry, shell_t=self._new_shell_thk.get(), shell_radius=self._new_shell_radius.get(), shell_spacing=self._new_stf_spacing.get(), hw=self._new_stf_web_h.get(), tw=self._new_stf_web_t.get(), b=self._new_stf_fl_w.get(), tf=self._new_stf_fl_t.get(), CylinderAndCurvedPlate=CylinderAndCurvedPlate) self._new_shell_Nsd.set(Nsd) self._new_shell_Msd.set(Msd) self._new_shell_Tsd.set(Tsd) self._new_shell_Qsd.set(Qsd) self._current_calculation_domain = self._new_calculation_domain.get() # Setting the correct optmization buttons def puls_run_all_lines(self, line_given = None): progress = ttk.Progressbar(self._tab_prop, mode='indeterminate') progress.place(relx = 0.85, rely = 0.9, relwidth = 0.1) progress.start() if self._PULS_results is None: self._PULS_results = PULSpanel() if self._PULS_results.puls_sheet_location is None or not os.path.isfile(self._PULS_results.puls_sheet_location): tk.messagebox.showerror('No PULS excel sheet located', 'Set location of PULS excel sheet.\n' 'Note that PULS excel may require 32 bit ' 'office.\n\n' 'A sheet may be provided but does not exist' ' in :\n' + str(self._PULS_results.puls_sheet_location) + '\n\n A file dialogue will pop up after this message.') self._PULS_results.puls_sheet_location= \ tk.filedialog.askopenfilename(parent=self._main_fr,title='Set location of PULS excel sheet.') if self._PULS_results.puls_sheet_location == '': tk.messagebox.showerror('No valid PULS sheet', 'No excel sheet was provided. Cannot run PULS.\n' 'Note that PULS excel may require 32 bit office.') return dict_to_run = {} result_lines = list(self._PULS_results.get_run_results().keys()) if line_given == None: current_button = self._puls_run_all for line, data in self._line_to_struc.items(): if line not in result_lines: data[0].Plate.hw = 0 if data[0].Stiffener is None else data[0].Stiffener.hw data[0].Plate.tw = 0 if data[0].Stiffener is None else data[0].Stiffener.tw data[0].Plate.b = 0 if data[0].Stiffener is None else data[0].Stiffener.b data[0].Plate.tf = 0 if data[0].Stiffener is None else data[0].Stiffener.tf dict_to_run[line] = data[0].Plate.get_puls_input() dict_to_run[line]['Identification'] = line dict_to_run[line]['Pressure (fixed)'] = self.get_highest_pressure(line)['normal']/1e6 else: current_button = self._puls_run_one if line_given == '': return if line_given not in result_lines: dict_to_run[line_given] = self._line_to_struc[line_given][0].Plate.get_puls_input() dict_to_run[line_given]['Identification'] = line_given dict_to_run[line_given]['Pressure (fixed)'] = self.get_highest_pressure(line_given)['normal'] / 1e6 if len(dict_to_run) > 0: #current_button.config(relief = 'sunken') self._PULS_results.set_all_to_run(dict_to_run) self._PULS_results.run_all() #current_button.config(relief='raised') current_button.config(text='PULS run or\nupdate all lines' if line_given == None else 'PULS\nRun one line') #current_button.config(bg=self._button_bg_color) for key, value in self._line_to_struc.items(): value[0].need_recalc = True else: tk.messagebox.showinfo('Results avaliable', 'PULS results is already avaliable for this line or no ' 'lines need update.') progress.stop() progress.destroy() self.update_frame() def stress_information_notebooks(self, info_type = 'shell'): ''' Shows stress information ''' text_m = tk.Toplevel(self._parent, background=self._general_color) # Create the text widget text_widget = tk.Text(text_m , height=35, width=100) # Create a scrollbar scroll_bar = ttk.Scrollbar(text_m) # Pack the scroll bar # Place it to the right side, using tk.RIGHT scroll_bar.pack(side=tk.RIGHT) # Pack it into our tkinter application # Place the text widget to the left side text_widget.pack(side=tk.LEFT) if info_type == 'shell': long_text = 'Information on stresses:\n' \ ' \n'\ 'Uniform stresses is assumed.\n' \ 'Shear stresses are set to positive.\n' \ 'Compression stress is taken as NEGATIVE.\n' \ 'Lateral pressure is taken as negative when acting toward cylinder center.\n' \ 'Hoop stresses are negative when applying negative overpressure.\n ' \ ' \n' elif info_type == 'flat': long_text = 'Information on stresses:\n' \ ' \n' \ 'Uniform or linear variable stresses is assumed.\n' \ 'The stresses included in the check is acial memebrane stresses.\n'\ 'Shear stresses are set to positive.\n' \ 'Bending stresses are included included by lateral pressure and need not be included.\n'\ 'Compression stress is taken as POSITIVE.\n' \ 'The memebrane acial stress in transverse direction that is due to girder bending\n' \ 'needs to be included in the check according to method 1.\n'\ 'Lateral pressure outer overpressure is taken as positive.\n' \ ' \n' else: long_text = 'Also see the "Help tab".' # Insert text into the text widget text_widget.insert('current', long_text) try: if info_type == 'shell': img_file_name = 'Cylinder-Load_distribution.png' elif info_type == 'flat': img_file_name = 'img_axial_stresses.gif' else: img_file_name = 'Definition_of_parameters_L_and_LH.png' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = self._root_dir + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) self._int_button.config(image = photo) self._int_button.image = photo except TclError: pass text_widget.image_create('current', image=photo) def trace_puls_uf(self, *args): if self._PULS_results is not None: pass def trace_material_factor(self, *args): try: self._new_puls_uf.set(1/self._new_material_factor.get()) except (TclError, ZeroDivisionError): pass def trace_puls_up_or_sp(self, event = None): if self._new_puls_sp_or_up.get() == 'UP': vert_start = 0.1 hor_start = 0.02 delta_y = 0.04 delta_x = 0.13 ent_relx = hor_start + 6 * delta_x geo_ent_width = 0.05 ent_geo_y = vert_start opt_width = 0.2 shift_x = delta_x * 4 lab_place = delta_y * 13 self._ent_puls_up_boundary.place(relx=hor_start + shift_x, rely=vert_start + lab_place+ 2*delta_y, relwidth=opt_width) else: self._ent_puls_up_boundary.place_forget() def puls_run_one_line(self): self.puls_run_all_lines(self._active_line) self.update_frame() def puls_delete_all(self): ''' Deletes all existing PULS results ''' if self._PULS_results is not None: for key, val in self._line_to_struc.items(): self._PULS_results.result_changed(key) val[0].need_recalc = True self.update_frame() def resize(self, event): self.text_scale = 1#self._main_fr.winfo_width()/1920 self._text_size = {'Text 14 bold': 'Verdana '+str(int(14*self.text_scale))+' bold', 'Text 16 bold': 'Verdana ' + str(int(16 * self.text_scale)) + ' bold', 'Text 18 bold': 'Verdana ' + str(int(18 * self.text_scale)) + ' bold', 'Text 12 bold': 'Verdana ' + str(int(12 * self.text_scale)) + ' bold', 'Text 10 bold': 'Verdana '+str(int(10*self.text_scale))+' bold', 'Text 9 bold': 'Verdana ' + str(int(9 * self.text_scale)) + ' bold', 'Text 8 bold': 'Verdana ' + str(int(8 * self.text_scale)) + ' bold', 'Text 8': 'Verdana ' + str(int(8 * self.text_scale)), 'Text 9': 'Verdana ' + str(int(8 * self.text_scale)), 'Text 7': 'Verdana ' + str(int(7 * self.text_scale)), 'Text 10': 'Verdana ' + str(int(10 * self.text_scale)), 'Text 7 bold': 'Verdana ' + str(int(7 * self.text_scale)) + ' bold'} #self.update_frame() def toggle_select_multiple(self, event = None): if self._toggle_btn.config('relief')[-1] == 'sunken': self._toggle_btn.config(relief="raised") self._toggle_btn.config(bg='#E1E1E1') self._multiselect_lines = [] self._toggle_btn.config(text='Toggle select\n' 'multiple') else: self._toggle_btn.config(relief="sunken") self._toggle_btn.config(bg=self._general_color) self._toggle_btn.config(text = 'select lines') self.update_frame() def toggle_set_variable(self): if self._toggle_btn.config('relief')[-1] == "raised": tk.messagebox.showerror('Toggle select not chosen.', 'Toggle select button not pressed.\n' 'To change a parameter select a variable, \n' 'set the value you want to change and \n' 'press Change multi. param.') return var_to_set = self._new_toggle_var.get() if var_to_set == '': tk.messagebox.showerror('Select variable', 'Select a variable to change\n' 'in the drop down menu.') return # if not self._line_is_active: # tk.messagebox.showerror('Select line', 'Click a line first.') obj_dict = {'mat_yield': self._new_material.get, 'mat_factor': self._new_material_factor.get, 'span': self._new_field_len.get, 'spacing': self._new_stf_spacing.get, 'plate_thk': self._new_plate_thk.get, 'stf_web_height': self._new_stf_web_h.get, 'stf_web_thk': self._new_stf_web_t.get, 'stf_flange_width': self._new_stf_fl_w.get, 'stf_flange_thk': self._new_stf_fl_t.get, 'structure_type': self._new_stucture_type.get, 'stf_type': self._new_stf_type.get, 'sigma_y1': self._new_sigma_y1.get, 'sigma_y2': self._new_sigma_y2.get, 'sigma_x1': self._new_sigma_x1.get, 'sigma_x2': self._new_sigma_x2.get, 'tau_xy': self._new_tauxy.get, 'plate_kpp': self._new_plate_kpp, 'stf_kps': self._new_stf_kps.get, 'stf_km1': self._new_stf_km1.get, 'stf_km2': self._new_stf_km2.get, 'stf_km3': self._new_stf_km3.get, 'press_side': self._new_pressure_side.get, #'structure_types': self._structure_types, 'zstar_optimization': self._new_zstar_optimization.get, 'puls buckling method': self._new_puls_method.get, 'puls boundary': self._new_puls_panel_boundary.get, 'puls stiffener end': self._new_buckling_stf_end_support.get, 'puls sp or up': self._new_puls_sp_or_up.get, 'puls up boundary': self._new_puls_up_boundary.get} set_var = obj_dict[var_to_set]() if var_to_set == 'mat_yield': set_var = set_var* 1e6 elif var_to_set in ['spacing','plate_thk','stf_web_height','stf_web_thk', 'stf_flange_width','stf_flange_thk', 'span']: set_var = set_var/1000 no_of_lines = len(self._multiselect_lines) for idx, line in enumerate(self._multiselect_lines): self._active_line = line self._line_is_active = True if self._active_line in self._line_to_struc.keys(): # if self._active_line[self._active_line][0].Stiffener is not None: # dict = self._line_to_struc[self._active_line][0].Stiffener.get_structure_prop() # else: # dict = self._line_to_struc[self._active_line][0].Plate.get_structure_prop() prop_dict = self._line_to_struc[self._active_line][0].get_main_properties() prop_dict['Plate'][var_to_set][0] = set_var prop_dict['Stiffener'][var_to_set][0] = set_var #dict[var_to_set][0] = set_var self.new_structure(toggle_multi=prop_dict, suspend_recalc=True if (idx+1) != no_of_lines else False) def gui_load_combinations(self,event): ''' Initsializing and updating gui for load combinations. The fields are located left of the Canvas. :return: ''' if all([self._line_is_active,self._active_line in self._line_to_struc.keys(), self._gui_functional_look == 'all items']): lc_x, lc_x_delta, lc_y, lc_y_delta = 0.791666667, 0.026041667, 0.287037037, 0.023148148 #self._active_label.config(text=self._active_line) combination = self._combination_slider_map[int(self._combination_slider.get())] # removing label, checkbox and entry. setting created items to empty list. [[item.destroy() for item in items] for items in [self._lc_comb_created,self._comp_comb_created,self._manual_created, self._info_created]] self._lc_comb_created, self._comp_comb_created, self._manual_created, self._info_created= [], [], [], [] if self._line_to_struc[self._active_line][0].Plate.get_structure_type() == '': self._info_created.append(ttk.Label(self._main_fr, text='No structure type selected', font=self._text_size["Text 10 bold"], )) self._info_created[0].place(relx=lc_x , y = lc_y + 3*lc_y_delta) elif self._line_to_struc[self._active_line][5] is not None: pass elif combination != 'Cylinder': # creating new label, checkbox and entry. creating new list of created items. # finding loads applied to lines counter = 0 if len(self._load_dict) != 0 and combination !='manual': for load, data in self._load_dict.items(): if self._active_line in self._load_dict[load][1] and data[0].get_limit_state() == 'ULS': name = (combination,self._active_line,str(load)) #tuple to identify combinations on line self._lc_comb_created.append(ttk.Label(self._main_fr, text = load, font = self._text_size['Text 8 bold'], )) self._lc_comb_created.append(ttk.Entry(self._main_fr, textvariable =self._new_load_comb_dict[name][0], width=5, )) self._lc_comb_created.append(ttk.Entry(self._main_fr, textvariable=self._new_load_comb_dict[name][1], width=5, )) self._lc_comb_created.append(ttk.Checkbutton(self._main_fr, variable =self._new_load_comb_dict[name][2])) for load_no in range(int(len(self._lc_comb_created)/4)): self._lc_comb_created[0+load_no*4].place(relx=lc_x, rely=lc_y+lc_y_delta*load_no) self._lc_comb_created[1+load_no*4].place(relx=lc_x+5*lc_x_delta, rely=lc_y+lc_y_delta*load_no) self._lc_comb_created[2+load_no*4].place(relx=lc_x+6*lc_x_delta, rely=lc_y+lc_y_delta*load_no) self._lc_comb_created[3+load_no*4].place(relx=lc_x+7*lc_x_delta, rely=lc_y+lc_y_delta*load_no) counter += 1 # finding tank loads applied to line (automatically created compartments. lc_y += 0.023148148*counter counter = 0 if len(self._tank_dict) != 0 and combination !='manual': for compartment in self.get_compartments_for_line(self._active_line): name = (combination,self._active_line,'comp' + str(compartment)) #tuple to identify combinations on line self._comp_comb_created.append(ttk.Label(self._main_fr, text='Compartment'+str(compartment), )) self._comp_comb_created.append(ttk.Entry(self._main_fr, textvariable=self._new_load_comb_dict[name][0], width=5, )) self._comp_comb_created.append(ttk.Entry(self._main_fr, textvariable=self._new_load_comb_dict[name][1], width=5, )) self._comp_comb_created.append(ttk.Checkbutton(self._main_fr, variable = self._new_load_comb_dict[name][2])) for comp_no in range(int(len(self._comp_comb_created)/4)): self._comp_comb_created[0+comp_no*4].place(relx=lc_x, rely=lc_y+lc_y_delta*comp_no) self._comp_comb_created[1+comp_no*4].place(relx=lc_x+5*lc_x_delta, rely=lc_y+lc_y_delta*comp_no) self._comp_comb_created[2+comp_no*4].place(relx=lc_x+6*lc_x_delta, rely=lc_y+lc_y_delta*comp_no) self._comp_comb_created[3+comp_no*4].place(relx=lc_x+7*lc_x_delta, rely=lc_y+lc_y_delta*comp_no) counter += 1 lc_y += 0.027777778*counter # finding manual loads applied to the line name = ('manual', self._active_line, 'manual') # tuple to identify combinations on line if name in self._new_load_comb_dict.keys(): self._manual_created.append(ttk.Label(self._main_fr, text='Manual (pressure/LF)', )) self._manual_created.append( ttk.Entry(self._main_fr, textvariable=self._new_load_comb_dict[name][0], width=15, )) self._manual_created.append( ttk.Entry(self._main_fr, textvariable=self._new_load_comb_dict[name][1], width=6, )) self._manual_created.append(ttk.Checkbutton(self._main_fr, variable=self._new_load_comb_dict[name][2])) self._manual_created[0].place(relx=lc_x, rely=lc_y) self._manual_created[1].place(relx=lc_x + 4 * lc_x_delta, rely=lc_y) self._manual_created[2].place(relx=lc_x + 6 * lc_x_delta, rely=lc_y) self._manual_created[3].place(relx=lc_x + 7 * lc_x_delta, rely=lc_y) if self._line_to_struc[self._active_line][5] is None: results = self.calculate_all_load_combinations_for_line(self._active_line) self._result_label_dnva.config(text = 'DNV a [Pa]: ' + str(results['dnva']), font = self._text_size['Text 8']) self._result_label_dnvb.config(text = 'DNV b [Pa]: ' + str(results['dnvb']), font = self._text_size['Text 8']) self._result_label_tanktest.config(text = 'TT [Pa]: ' + str(results['tanktest']), font = self._text_size['Text 8']) self._result_label_manual.config(text = 'Manual [Pa]: ' + str(results['manual'])) lc_y = self.results_gui_start+0.018518519 self._result_label_dnva.place(relx = lc_x+0*lc_x_delta, rely = lc_y+lc_y_delta*1.5) self._result_label_dnvb.place(relx=lc_x+4*lc_x_delta, rely=lc_y+lc_y_delta*1.5) self._result_label_tanktest.place(relx=lc_x+0*lc_x_delta, rely=lc_y+2.4*lc_y_delta) self._result_label_manual.place(relx=lc_x+4*lc_x_delta, rely=lc_y+2.4*lc_y_delta) self._lab_pressure.place(relx=0.786458333, rely=self.results_gui_start) else: for item in [self._result_label_dnva,self._result_label_dnvb, self._result_label_tanktest,self._result_label_manual,self._lab_pressure ]: item.place_forget() #self._combination_slider.set(4) def slider_used(self, event): ''' Action when slider is activated. :return: ''' self._canvas_scale = self._slider.get() self.update_frame() def grid_operations(self, line, coordinates): ''' Creating a grid in the canvas used for various caluclations :return: ''' try: if self._line_to_struc[line][0].Plate.get_structure_type() not in ('GENERAL_INTERNAL_NONWT','FRAME'): self._pending_grid_draw[line] = coordinates except KeyError: pass def grid_find_tanks(self, animate = False): ''' Printing the grid in a separate window :return: ''' if self._line_to_struc == {}: tk.messagebox.showerror('Search error','No geometry with properties exist.') return #setting the button to red try: img_file_name = 'img_int_pressure_button_search.gif' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = self._root_dir + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) self._int_button.config(image = photo) self._int_button.image = photo except TclError: pass animate = tk.messagebox.askquestion('Search for compartments','Searching for compartments will use a large matrix to ' 'identify watertight members and consequently the ' 'enclosed compartments. \n' 'You may animate the search for vizualization and ' 'increased understating purposes.\n ' 'However, this will take some more time than just ' 'showing the final result.\n' '\n' 'Yes - Show search animation\n' 'No - Draw final result only\n' '\n' 'Choose yes or no.' ) animate = True if animate == 'yes' else False self._main_grid.clear() self._tank_dict = {} self._pending_grid_draw={} self._compartments_listbox.delete(0,'end') for line, points in self._line_dict.items(): # making the lines made by used in the grid p1 = self._point_dict['point'+str(points[0])] p2 = self._point_dict['point'+str(points[1])] self.grid_operations(line, [self.get_grid_coord_from_points_coords(p1), self.get_grid_coord_from_points_coords(p2)]) self._grid_calc = grid_window.CreateGridWindow(self._main_grid, self._canvas_dim, self._pending_grid_draw, self._canvas_base_origo) compartment_search_return = self._grid_calc.search_bfs(animate=animate) for comp_no, properties in compartment_search_return['compartments'].items(): # finding actual max min elevation from grid min_el = (float('inf'), float('inf')) max_el = (-float('inf'),-float('inf')) if comp_no > 1: self._compartments_listbox.insert('end', comp_no) for corner in properties[1]: corner_real = self.get_point_coords_from_grid_coords(corner) if self.get_point_coords_from_grid_coords(corner)[1] < min_el[1]: min_el = self.get_closest_point(corner_real)[1] if self.get_point_coords_from_grid_coords(corner)[1] > max_el[1]: max_el = self.get_closest_point(corner_real)[1] self.new_tank(int(comp_no),properties[0], min_el, max_el) comp_name = 'comp'+str(int(comp_no)) for combination in self._load_factors_dict.keys(): #creating the load factor combinations for tanks. for line in self._line_dict.keys(): if comp_no in self.get_compartments_for_line(line): name = (combination, line, comp_name) self._new_load_comb_dict[name] = [tk.DoubleVar(), tk.DoubleVar(), tk.IntVar()] self._new_load_comb_dict[name][0].set(self._load_factors_dict[combination][1]) self._new_load_comb_dict[name][1].set(self._load_factors_dict[combination][2]) self._new_load_comb_dict[name][2].set(1) try: img_file_name = 'img_int_pressure_button.gif' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = self._root_dir + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) self._int_button.config(image = photo) self._int_button.image = photo except TclError: pass if animate == False: tank_count = None if len(self._tank_dict)==0 else len(self._tank_dict) if tank_count is not None: self._grid_calc.draw_grid(tank_count=tank_count) else: tank_count = None if len(self._tank_dict) == 0 else len(self._tank_dict) if tank_count is not None: self._grid_calc.animate_grid(grids_to_animate=compartment_search_return['grids'], tank_count = None if len(self._tank_dict)==0 else len(self._tank_dict)) self.get_cob() # Calculating COB self.update_frame() def grid_display_tanks(self, save = False): ''' Opening matplotlib grid illustation :return: ''' try: if self._grid_calc != None: self._grid_calc.draw_grid(save = save, tank_count=None if len(self._tank_dict)==0 else len(self._tank_dict) ) except RecursionError: pass def add_to_combinations_dict(self,line): ''' When creating new line and tanks exist, the combinations dict must be updated. :param line: :return: ''' if len(self._tank_dict) != 0: for compartment in self.get_compartments_for_line(line): for combination in self._load_factors_dict.keys(): name = (combination, line, 'comp'+str(compartment)) self._new_load_comb_dict[name] = [tk.DoubleVar(), tk.DoubleVar(), tk.IntVar()] self._new_load_comb_dict[name][0].set(self._load_factors_dict[combination][1]) self._new_load_comb_dict[name][1].set(self._load_factors_dict[combination][2]) self._new_load_comb_dict[name][2].set(1) else: pass name = ('manual', line, 'manual') self._new_load_comb_dict[name] = [tk.DoubleVar(), tk.DoubleVar(), tk.IntVar()] self._new_load_comb_dict[name][0].set(0) self._new_load_comb_dict[name][1].set(0) self._new_load_comb_dict[name][2].set(0) def trace_shift_change(self, *args): try: self.update_frame() except (TclError, ZeroDivisionError): pass def trace_acceptance_change(self, *args): try: self.update_frame() for key, val in self._line_to_struc.items(): val[0].need_recalc = True except (TclError, ZeroDivisionError): pass def update_frame(self, event = None, *args): state = self.get_color_and_calc_state() self.draw_results(state=state) self.draw_canvas(state=state) self.draw_prop() #self.trace_puls_up_or_sp() return state def get_color_and_calc_state(self, current_line = None, active_line_only = False): ''' Return calculations and colors for line and results. ''' return_dict = {'colors': {}, 'section_modulus': {}, 'thickness': {}, 'shear_area': {}, 'buckling': {}, 'fatigue': {}, 'pressure_uls': {}, 'pressure_fls': {}, 'all_obj': {}, 'scant_calc_obj': {}, 'fatigue_obj': {}, 'utilization': {}, 'slamming': {}, 'color code': {}, 'PULS colors': {}, 'ML buckling colors' : {}, 'ML buckling class' : {}, 'weights': {}, 'cylinder': {}} return_dict['slamming'][current_line] = {} if current_line is None and active_line_only: line_iterator = [self._active_line, ] elif current_line is None and not active_line_only and len(self._line_dict) != 0: line_iterator = self._line_dict.keys() elif current_line is not None: line_iterator = [current_line, ] elif current_line not in self._line_to_struc.keys() and active_line_only: return return_dict else: return return_dict rec_for_color = {} # Cylinder general all_cyl_thk, recorded_cyl_long_stf = list(), list() for obj_list in self._line_to_struc.values(): if obj_list[5] is not None: all_cyl_thk.append(round(obj_list[5].ShellObj.thk * 1000, 2)) recorded_cyl_long_stf.append(obj_list[5].LongStfObj.get_beam_string()) all_cyl_thk = np.unique(all_cyl_thk) all_cyl_thk = np.sort(all_cyl_thk) for current_line in line_iterator: rec_for_color[current_line] = {} slamming_pressure = 0 if current_line in self._line_to_struc.keys(): if self._line_to_struc[current_line][5] is not None: cyl_obj = self._line_to_struc[current_line][5] cyl_radius = round(cyl_obj.ShellObj.radius * 1000, 2) cyl_thickness = round(cyl_obj.ShellObj.thk * 1000, 2) cyl_long_str = cyl_obj.LongStfObj.get_beam_string() cyl_ring_stf = cyl_obj.LongStfObj.get_beam_string() cyl_heavy_ring = cyl_obj.LongStfObj.get_beam_string() cyl_span = round(cyl_obj.ShellObj.dist_between_rings, 1) cyl_tot_length = round(cyl_obj.ShellObj.length_of_shell, 1) cyl_tot_cyl = round(cyl_obj.ShellObj.tot_cyl_length, 1) cyl_sigma_axial = cyl_obj.sasd / 1e6 cyl_sigma_bend = cyl_obj.smsd / 1e6 cyl_sigma_tors = cyl_obj.tTsd / 1e6 cyl_tau_xy = cyl_obj.tQsd / 1e6 cyl_lat_press = cyl_obj.psd / 1e6 cyl_sigma_hoop = cyl_obj.shsd / 1e6 cyl_results = cyl_obj.get_utilization_factors() else: cyl_thickness = 0 all_obj = self._line_to_struc[current_line][0] obj_scnt_calc_pl = all_obj.Plate #self._line_to_struc[current_line][1] obj_scnt_calc_stf = all_obj.Stiffener # self._line_to_struc[current_line][1] obj_scnt_calc_girder = all_obj.Girder # self._line_to_struc[current_line][1] return_dict['all_obj'][current_line] = all_obj if all_obj.need_recalc is False: return self._state_logger[current_line] try: norm_and_slam = self.get_highest_pressure(current_line) design_pressure = norm_and_slam['normal'] / 1000 if norm_and_slam['slamming'] is None: pass else: slamming_dict = self.get_highest_pressure(current_line) slamming_pressure = slamming_dict['slamming'] slamming_red_fac_pl = slamming_dict['slamming plate reduction factor'] slamming_red_fac_stf = slamming_dict['slamming stf reduction factor'] except KeyError: design_pressure = 0 min_thk = obj_scnt_calc_pl.get_dnv_min_thickness(design_pressure) color_thk = 'green' if obj_scnt_calc_pl.is_acceptable_pl_thk(design_pressure) else 'red' rec_for_color[current_line]['plate thickness'] = (min_thk / 1000) / obj_scnt_calc_pl.get_pl_thk() all_obj.lat_press = design_pressure/1000 buckling = all_obj.plate_buckling() all_buckling_uf_list = list() for buc_domain, domain_results in buckling.items(): for uf_text, uf_num in domain_results.items(): if buc_domain != 'Local buckling': all_buckling_uf_list.append(uf_num) color_buckling = 'green' if all([uf <= 1 for uf in all_buckling_uf_list]) \ else 'red' rec_for_color[current_line]['rp buckling'] = max(all_buckling_uf_list) if obj_scnt_calc_stf is not None: sec_mod = [obj_scnt_calc_stf.get_section_modulus()[0], obj_scnt_calc_stf.get_section_modulus ()[1]] shear_area = obj_scnt_calc_stf.get_shear_area() min_shear = obj_scnt_calc_stf.get_minimum_shear_area(design_pressure) min_sec_mod = obj_scnt_calc_stf.get_dnv_min_section_modulus(design_pressure) rec_for_color[current_line]['section modulus'] = min_sec_mod / min(sec_mod) rec_for_color[current_line]['shear'] = min_shear/shear_area return_dict['slamming'][current_line] = dict() if slamming_pressure is not None and slamming_pressure > 0: return_dict['slamming'][current_line]['state'] = True else: return_dict['slamming'][current_line]['state'] = False try: fatigue_obj = self._line_to_struc[current_line][2] p_int = self.get_fatigue_pressures(current_line, fatigue_obj.get_accelerations())['p_int'] p_ext = self.get_fatigue_pressures(current_line, fatigue_obj.get_accelerations())['p_ext'] damage = fatigue_obj.get_total_damage(int_press=(p_int['loaded'], p_int['ballast'], p_int['part']), ext_press=(p_ext['loaded'], p_ext['ballast'], p_ext['part'])) dff = fatigue_obj.get_dff() color_fatigue = 'green' if damage * dff <= 1 else 'red' except AttributeError: fatigue_obj, p_int, p_ext, damage, dff = [None for dummy in range(5)] color_fatigue = 'green' color_sec = 'green' if obj_scnt_calc_stf.is_acceptable_sec_mod(sec_mod, design_pressure) \ else 'red' color_shear = 'green' if obj_scnt_calc_stf.is_acceptable_shear_area(shear_area, design_pressure) \ else 'red' else: sec_mod = [0,0] rec_for_color[current_line]['section modulus'] = 0.0 rec_for_color[current_line]['shear'] = 0 return_dict['slamming'][current_line] = dict() fatigue_obj, p_int, p_ext, damage, dff = [None for dummy in range(5)] color_sec = 'green' if all_obj.Stiffener is None else 'black' color_shear = 'green' if all_obj.Stiffener is None else'black' return_dict['slamming'][current_line]['state'] = False if slamming_pressure is not None and slamming_pressure > 0 and obj_scnt_calc_stf is not None: slamming_res = obj_scnt_calc_stf.calculate_slamming_stiffener(slamming_pressure, red_fac=slamming_red_fac_pl) min_pl_slamming = obj_scnt_calc_stf.calculate_slamming_plate(slamming_pressure, red_fac=slamming_red_fac_stf) if slamming_res['Zp_req'] is not None: zpl = obj_scnt_calc_stf.get_net_effective_plastic_section_modulus() zpl_req = slamming_res['Zp_req'] color_sec = 'green' if zpl >= zpl_req else 'red' else: zpl = obj_scnt_calc_stf.get_net_effective_plastic_section_modulus() zpl_req = None color_sec = 'red' color_shear = 'green' if round(obj_scnt_calc_stf.get_web_thk()* 1000,1) >= \ round(slamming_res['tw_req'],1) else 'red' color_thk = 'green' if round(obj_scnt_calc_stf.get_pl_thk() * 1000,1) >= \ round(min_pl_slamming,1) else 'red' return_dict['slamming'][current_line]['zpl'] = zpl return_dict['slamming'][current_line]['zpl_req'] = zpl_req return_dict['slamming'][current_line]['min_plate_thk'] = min_pl_slamming return_dict['slamming'][current_line]['min_web_thk'] = slamming_res['tw_req'] return_dict['colors'][current_line] = {'buckling': color_buckling, 'fatigue': color_fatigue, 'section': color_sec, 'shear': color_shear, 'thickness': color_thk} ''' Cylinder calculations ''' if self._line_to_struc[current_line][5] is not None: return_dict['cylinder'][current_line] = cyl_results ''' PULS calculations ''' if self._PULS_results != None: res = self._PULS_results.get_puls_line_results(current_line) if res is not None: geo_problem = False if type(res['Ultimate capacity']['Actual usage Factor'][0]) != str: ufnum = res['Ultimate capacity']['Actual usage Factor'][0] / self._new_puls_uf.get() rec_for_color[current_line]['PULS ultimate']=ufnum col_ult = 'green' if ufnum < 1 else 'red' else: geo_problem = True col_ult = 'red' if res['Buckling strength']['Actual usage Factor'][0] is not None: bnum = res['Buckling strength']['Actual usage Factor'][0] / self._new_puls_uf.get() rec_for_color[current_line]['PULS buckling'] = bnum col_buc = 'green' if bnum < 1 else 'red' else: col_buc = 'red' if geo_problem: loc_geom = 'red' else: if obj_scnt_calc_stf is None: loc_label = 'Geom. Req (PULS validity limits)' else: loc_label = 'Local geom req (PULS validity limits)' if \ obj_scnt_calc_stf.get_puls_sp_or_up() == 'SP' else 'Geom. Req (PULS validity limits)' loc_geom = 'green' if all([val[0] == 'Ok' for val in res[loc_label].values()]) else 'red' if obj_scnt_calc_stf is None: csr_label = 'CSR-Tank req' else: csr_label = 'CSR-Tank requirements (primary stiffeners)' if \ obj_scnt_calc_stf.get_puls_sp_or_up() == 'SP' else'CSR-Tank req' csr_geom = 'green' if all([val[0] in ['Ok', '-'] for val in res[csr_label].values()]) else 'red' return_dict['PULS colors'][current_line] = {'ultimate': col_ult, 'buckling': col_buc, 'local geometry': loc_geom, 'csr': csr_geom} else: return_dict['PULS colors'][current_line] = {'ultimate': 'black', 'buckling': 'black', 'local geometry': 'black', 'csr': 'black'} else: return_dict['PULS colors'][current_line] = {'ultimate': 'black', 'buckling': 'black', 'local geometry': 'black', 'csr': 'black'} ''' Machine learning buckling ['cl SP buc int predictor', 'cl SP buc int scaler', 'cl SP ult int predictor', 'cl SP ult int scaler', 'cl SP buc GLGT predictor', 'cl SP buc GLGT scaler', 'cl SP ult GLGT predictor', 'cl SP ult GLGT scaler'] ''' if obj_scnt_calc_pl.get_puls_sp_or_up() == 'UP': buckling_ml_input = obj_scnt_calc_pl.get_buckling_ml_input(design_lat_press=design_pressure) if obj_scnt_calc_pl.get_puls_boundary() == 'Int': if self._ML_buckling['cl UP buc int predictor'] != None: x_buc = self._ML_buckling['cl UP buc int scaler'].transform(buckling_ml_input) y_pred_buc = self._ML_buckling['cl UP buc int predictor'].predict(x_buc)[0] else: y_pred_buc = 0 if self._ML_buckling['cl UP ult int predictor'] != None: x_ult = self._ML_buckling['cl UP ult int scaler'].transform(buckling_ml_input) y_pred_ult = self._ML_buckling['cl UP ult int predictor'].predict(x_ult)[0] else: y_pred_ult = 0 else: if self._ML_buckling['cl UP buc GLGT predictor'] != None: x_buc = self._ML_buckling['cl UP buc GLGT scaler'].transform(buckling_ml_input) y_pred_buc = self._ML_buckling['cl UP buc GLGT predictor'].predict(x_buc)[0] else: y_pred_buc = 0 if self._ML_buckling['cl UP ult GLGT predictor'] != None: x_ult = self._ML_buckling['cl UP ult GLGT scaler'].transform(buckling_ml_input) y_pred_ult = self._ML_buckling['cl UP ult GLGT predictor'].predict(x_ult)[0] else: y_pred_ult = 0 x_csr = obj_scnt_calc_pl.get_buckling_ml_input(design_lat_press=design_pressure, csr = True) x_csr = self._ML_buckling['CSR scaler UP'].transform(x_csr) csr_pl = self._ML_buckling['CSR predictor UP'].predict(x_csr)[0] return_dict['ML buckling colors'][current_line] = \ {'buckling': 'green' if int(y_pred_buc) == 9 else 'red', 'ultimate': 'green' if int(y_pred_ult) == 9 else 'red', 'CSR requirement': 'green' if csr_pl == 1 else 'red'} return_dict['ML buckling class'][current_line] = {'buckling': int(y_pred_buc), 'ultimate': int(y_pred_ult), 'CSR': [csr_pl, float('inf'), float('inf'), float('inf')]} else: buckling_ml_input = obj_scnt_calc_stf.get_buckling_ml_input(design_lat_press=design_pressure) if obj_scnt_calc_stf.get_puls_boundary() == 'Int': if self._ML_buckling['cl SP buc int predictor'] != None: x_buc = self._ML_buckling['cl SP buc int scaler'].transform(buckling_ml_input) y_pred_buc = self._ML_buckling['cl SP buc int predictor'].predict(x_buc)[0] else: y_pred_buc = 0 if self._ML_buckling['cl SP ult int predictor'] != None: x_ult = self._ML_buckling['cl SP ult int scaler'].transform(buckling_ml_input) y_pred_ult = self._ML_buckling['cl SP ult int predictor'].predict(x_ult)[0] else: y_pred_ult = 0 else: if self._ML_buckling['cl SP buc GLGT predictor'] != None: x_buc = self._ML_buckling['cl SP buc GLGT scaler'].transform(buckling_ml_input) y_pred_buc = self._ML_buckling['cl SP buc GLGT predictor'].predict(x_buc)[0] else: y_pred_buc = 0 if self._ML_buckling['cl SP ult GLGT predictor'] != None: x_ult = self._ML_buckling['cl SP ult GLGT scaler'].transform(buckling_ml_input) y_pred_ult = self._ML_buckling['cl SP ult GLGT predictor'].predict(x_ult)[0] else: y_pred_ult = 0 x_csr = obj_scnt_calc_stf.get_buckling_ml_input(design_lat_press=design_pressure, csr = True) x_csr = self._ML_buckling['CSR scaler SP'].transform(x_csr) csr_pl, csr_web, csr_web_fl, csr_fl = self._ML_buckling['CSR predictor SP'].predict(x_csr)[0] return_dict['ML buckling colors'][current_line] = \ {'buckling': 'green' if int(y_pred_buc) == 9 else 'red', 'ultimate': 'green' if int(y_pred_ult) == 9 else 'red', 'CSR requirement': 'green' if all([csr_pl == 1, csr_web == 1, csr_web_fl == 1, csr_fl == 1]) else 'red'} return_dict['ML buckling class'][current_line] = {'buckling': int(y_pred_buc), 'ultimate': int(y_pred_ult), 'CSR': [csr_pl, csr_web, csr_web_fl, csr_fl]} ''' Weight calculations for line. ''' # TODO only works for stiffened panel! if obj_scnt_calc_stf is not None: line_weight = op.calc_weight([obj_scnt_calc_stf.get_s(), obj_scnt_calc_stf.get_pl_thk(), obj_scnt_calc_stf.get_web_h(), obj_scnt_calc_stf.get_web_thk(), obj_scnt_calc_stf.get_fl_w(), obj_scnt_calc_stf.get_fl_thk(), obj_scnt_calc_stf.get_span(), obj_scnt_calc_stf.get_lg()]) else: line_weight = 0 points = self._line_dict[current_line] p1 = self._point_dict['point' + str(points[0])] p2 = self._point_dict['point' + str(points[1])] mid_coord = [(p1[0]+p2[0])/2, (p1[1]+p2[1])/2] return_dict['weights'][current_line] = {'line weight': line_weight, 'mid_coord': mid_coord} ''' xxxxxxx ''' return_dict['buckling'][current_line] = buckling return_dict['pressure_uls'][current_line] = design_pressure return_dict['pressure_fls'][current_line] = {'p_int': p_int, 'p_ext': p_ext} return_dict['section_modulus'][current_line] = {'sec_mod': sec_mod, 'min_sec_mod': 0} if \ obj_scnt_calc_stf is None else {'sec_mod': sec_mod, 'min_sec_mod': min_sec_mod} return_dict['shear_area'][current_line] = {'shear_area': 0, 'min_shear_area': 0} if \ obj_scnt_calc_stf is None else{'shear_area': shear_area, 'min_shear_area': min_shear} return_dict['thickness'][current_line] = {'thk': obj_scnt_calc_pl.get_pl_thk(), 'min_thk': min_thk} return_dict['fatigue_obj'][current_line] = fatigue_obj return_dict['color code'][current_line] = {} if fatigue_obj is not None: return_dict['fatigue'][current_line] = {'damage': damage, 'dff': dff, 'curve': fatigue_obj.get_sn_curve()} rec_for_color[current_line]['fatigue'] = damage*dff else: return_dict['fatigue'][current_line] = {'damage': None, 'dff': None, 'curve': None} rec_for_color[current_line]['fatigue'] = 0 fat_util = 0 if damage is None else damage * dff shear_util = 0 if shear_area == 0 else min_shear / shear_area thk_util = 0 if obj_scnt_calc_pl.get_pl_thk() == 0 else min_thk / (1000 * obj_scnt_calc_pl.get_pl_thk()) sec_util = 0 if min(sec_mod) == 0 else min_sec_mod / min(sec_mod) buc_util = 1 if float('inf') in buckling else max(all_buckling_uf_list) rec_for_color[current_line]['rp buckling'] = max(all_buckling_uf_list) return_dict['utilization'][current_line] = {'buckling': buc_util, 'PULS buckling': buc_util, 'fatigue': fat_util, 'section': sec_util, 'shear': shear_util, 'thickness': thk_util} # Color coding state self._state_logger[current_line] = return_dict # Logging the current state of the line. self._line_to_struc[current_line][0].need_recalc = False else: pass sec_in_model, idx, recorded_sections = dict(), 0, list() cyl_sec_in_model, idx_cyl, recorded_cyl_sections = dict(), 0, list() for data in self._line_to_struc.values(): if data[0].Stiffener is not None: if data[0].Stiffener.get_beam_string() not in recorded_sections: sec_in_model[data[0].Stiffener.get_beam_string()] = idx recorded_sections.append(data[0].Stiffener.get_beam_string()) idx += 1 if data[5] is not None: if data[5].LongStfObj.get_beam_string() not in recorded_cyl_sections: cyl_sec_in_model[ data[5].LongStfObj.get_beam_string()] = idx_cyl recorded_cyl_sections.append(data[5].LongStfObj.get_beam_string()) idx_cyl += 1 sec_in_model['length'] = len(recorded_sections) cyl_sec_in_model['length'] = len(recorded_cyl_sections) if self._line_to_struc != {}: sec_mod_map = np.arange(0,1.1,0.1) fat_map = np.arange(0,1.1,0.1) all_thicknesses = [round(objs[0].Plate.get_pl_thk(), 5) for objs in self._line_to_struc.values()] all_thicknesses = np.unique(all_thicknesses).tolist() thickest_plate = max(all_thicknesses) if len(all_thicknesses) > 1: thk_map = np.arange(min(all_thicknesses), max(all_thicknesses) + (max(all_thicknesses) - min(all_thicknesses)) / 10, (max(all_thicknesses) - min(all_thicknesses)) / 10) else: thk_map = all_thicknesses # if self._line_to_struc[current_line][5] is not None: # all_cyl_thk = all_cyl_thk.tolist() # if len(all_cyl_thk) > 1: # thk_map_cyl = np.arange(min(all_cyl_thk), max(all_cyl_thk) + (max(all_cyl_thk) - # min(all_cyl_thk)) / 10, # (max(all_cyl_thk) - min(all_cyl_thk)) / 10) # else: # thk_map_cyl = all_cyl_thk # else: # thk_map_cyl = [1,] try: all_pressures = sorted([self.get_highest_pressure(line)['normal'] for line in list(self._line_dict.keys())]) except KeyError: all_pressures = [0, 1] all_pressures = np.unique(all_pressures).tolist() highest_pressure, lowest_pressure = max(all_pressures), min(all_pressures) if len(all_pressures) > 1: press_map = [round(val, 1) for val in np.arange(all_pressures[0], all_pressures[-1], (all_pressures[-1] - all_pressures[0]) / 10)] + \ [round(all_pressures[-1], 1)] else: press_map = all_pressures all_utils = [max(list(return_dict['utilization'][line].values())) for line in self._line_to_struc.keys()] all_utils = np.unique(all_utils).tolist() if len(all_utils) >1: util_map = np.arange(0, 1.1, 0.1) else: util_map = all_utils if self._PULS_results is not None: #puls_util_map = self._PULS_results.all_uf puls_util_map = list() for key, val in self._line_to_struc.items(): puls_util_map.append(self._PULS_results.get_utilization(key, val[0].Plate.get_puls_method(), acceptance = self._new_puls_uf.get())) puls_util_map = np.arange(0, 1.1, 0.1) else: puls_util_map = None sig_x = np.unique([self._line_to_struc[line][0].Plate.get_sigma_x1() for line in self._line_to_struc.keys()]).tolist() if len(sig_x) > 1: # TODO color coding when using sig_x1 and sig_x2 (23.12.2021) sig_x_map = np.arange(min(sig_x), max(sig_x) + (max(sig_x) - min(sig_x)) / 10, (max(sig_x) - min(sig_x)) / 10) else: sig_x_map = sig_x sig_y1 = np.unique([self._line_to_struc[line][0].Plate.get_sigma_y1() for line in self._line_to_struc.keys()]).tolist() if len(sig_y1) > 1: sig_y1_map = np.arange(min(sig_y1), max(sig_y1) + (max(sig_y1) - min(sig_y1)) / 10, (max(sig_y1) - min(sig_y1)) / 10) else: sig_y1_map = sig_y1 sig_y2 = np.unique([self._line_to_struc[line][0].Plate.get_sigma_y2() for line in self._line_to_struc.keys()]).tolist() if len(sig_y2) > 1: sig_y2_map = np.arange(min(sig_y2), max(sig_y2) + (max(sig_y2) - min(sig_y2)) / 10, (max(sig_y2) - min(sig_y2)) / 10) else: sig_y2_map = sig_y2 tau_xy = np.unique([self._line_to_struc[line][0].Plate.get_tau_xy() for line in self._line_to_struc.keys()]).tolist() if len(tau_xy) > 1: tau_xy_map = np.arange(min(tau_xy), max(tau_xy) + (max(tau_xy) - min(tau_xy)) / 10, (max(tau_xy) - min(tau_xy)) / 10) else: tau_xy_map = tau_xy spacings = list() for line in self._line_to_struc.keys(): if self._line_to_struc[line][0].Stiffener is not None: spacings.append(self._line_to_struc[line][0].Stiffener.get_s()) spacing = np.unique(spacings).tolist() structure_type = [self._line_to_struc[line][0].Plate.get_structure_type() for line in self._line_to_struc.keys()] return_dict['color code'] = {'thickest plate': thickest_plate, 'thickness map': thk_map, 'all thicknesses': all_thicknesses, 'all cyl thicknesses': all_cyl_thk, 'section modulus map': sec_mod_map, 'fatigue map': fat_map, 'highest pressure': highest_pressure, 'lowest pressure': lowest_pressure, 'pressure map': press_map, 'all pressures':all_pressures, 'all utilizations': all_utils, 'utilization map': util_map, 'PULS utilization map': puls_util_map, 'max sigma x': max(sig_x), 'min sigma x': min(sig_x), 'sigma x map': sig_x_map, 'max sigma y1': max(sig_y1), 'min sigma y1': min(sig_y1), 'sigma y1 map': sig_y1_map, 'max sigma y2': max(sig_y2), 'min sigma y2': min(sig_y2), 'sigma y2 map': sig_y2_map, 'max tau xy': max(tau_xy), 'min tau xy': min(tau_xy), 'tau xy map': tau_xy_map, 'structure types map': np.unique(structure_type).tolist(), 'sections in model': sec_in_model, 'cyl sections in model': cyl_sec_in_model, 'recorded sections': recorded_sections, 'recorded cylinder long sections' : recorded_cyl_sections, 'spacings': spacing, 'max spacing': max(spacing), 'min spacing': min(spacing)} line_color_coding, puls_method_map, puls_sp_or_up_map = \ {}, {None: 0, 'buckling': 0.5, 'ultimate': 1}, {None:0, 'SP': 0.5, 'UP': 1} cmap_sections = plt.get_cmap('jet') thk_sort_unique = return_dict['color code']['all thicknesses'] spacing_sort_unique = return_dict['color code']['spacings'] structure_type_unique = return_dict['color code']['structure types map'] tot_weight, weight_mult_dist_x, weight_mult_dist_y = 0, 0,0 for line, line_data in self._line_to_struc.items(): if self._PULS_results is None: puls_color, buc_uf, puls_uf, puls_method, puls_sp_or_up = 'black', 0, 0, None, None elif self._PULS_results.get_utilization(line, self._line_to_struc[line][0].Plate.get_puls_method(), self._new_puls_uf.get()) == None: puls_color, buc_uf, puls_uf, puls_method, puls_sp_or_up = 'black', 0,0, None, None else: puls_method = self._line_to_struc[line][0].Plate.get_puls_method() puls_uf = self._PULS_results.get_utilization( line, puls_method, self._new_puls_uf.get()) puls_color = matplotlib.colors.rgb2hex(cmap_sections(puls_uf)) puls_sp_or_up = self._line_to_struc[line][0].Plate.get_puls_sp_or_up() # Cylinders if self._line_to_struc[line][5] is not None: cyl_obj = self._line_to_struc[line][5] cyl_radius = round(cyl_obj.ShellObj.radius * 1000, 2) cyl_thickness = round(cyl_obj.ShellObj.thk * 1000, 2) cyl_long_str = cyl_obj.LongStfObj.get_beam_string() cyl_ring_stf = cyl_obj.LongStfObj.get_beam_string() cyl_heavy_ring = cyl_obj.LongStfObj.get_beam_string() cyl_span = round(cyl_obj.ShellObj.dist_between_rings, 1) cyl_tot_length = round(cyl_obj.ShellObj.length_of_shell, 1) cyl_tot_cyl = round(cyl_obj.ShellObj.tot_cyl_length, 1) cyl_sigma_axial = cyl_obj.sasd / 1e6 cyl_sigma_bend = cyl_obj.smsd / 1e6 cyl_sigma_tors = cyl_obj.tTsd / 1e6 tau_xy = cyl_obj.tQsd / 1e6 cyl_lat_press = cyl_obj.psd / 1e6 cyl_sigma_hoop = cyl_obj.shsd / 1e6 cyl_results = cyl_obj.get_utilization_factors() cyl_uf = max([round(0 if cyl_results['Unstiffened shell'] is None else cyl_results['Unstiffened shell'],2), round(0 if cyl_results['Longitudinal stiffened shell'] is None else cyl_results['Longitudinal stiffened shell'],2), round(0 if cyl_results['Ring stiffened shell'] is None else cyl_results['Ring stiffened shell'],2), round(0 if cyl_results['Heavy ring frame'] is None else cyl_results['Heavy ring frame'],2)]) else: cyl_uf = 0 cyl_long_str = ' ' cyl_long_str = None cyl_thickness = None rp_uf = rec_for_color[line]['rp buckling'] tot_uf_rp = max([rec_for_color[line]['fatigue'], rp_uf, rec_for_color[line]['section modulus'], rec_for_color[line]['shear'], rec_for_color[line]['plate thickness']]) tot_uf_puls = max([rec_for_color[line]['fatigue'], puls_uf, rec_for_color[line]['section modulus'], rec_for_color[line]['shear'], rec_for_color[line]['plate thickness']]) try: this_pressure = self.get_highest_pressure(line)['normal'] except KeyError: this_pressure = 0 rp_util = max(list(return_dict['utilization'][line].values())) res = list() for stress_list, this_stress in zip([sig_x, sig_y1, sig_y2, tau_xy], [line_data[0].Plate.get_sigma_x1(), line_data[0].Plate.get_sigma_y1(), line_data[0].Plate.get_sigma_y2(), line_data[0].Plate.get_tau_xy()]): if type(stress_list)==float: res.append(1) elif len(stress_list) == 1: res.append(1) elif max(stress_list) == 0 and min(stress_list) == 0: res.append(0) elif this_stress < 0: res.append(this_stress /min(stress_list)) elif this_stress >= 0: res.append(this_stress/ max(stress_list)) sig_x_uf, sig_y1_uf, sig_y2_uf , tau_xy_uf = res if type(all_cyl_thk) is not list: all_cyl_thk = all_cyl_thk.tolist() line_color_coding[line] = {'plate': matplotlib.colors.rgb2hex(cmap_sections( thk_sort_unique.index(round(line_data[0].Plate.get_pl_thk(),10))/len(thk_sort_unique))), 'spacing': 'black' if line_data[0].Stiffener is None else matplotlib.colors.rgb2hex( cmap_sections(spacing_sort_unique.index(round(line_data[0].Stiffener .get_s(), 10)) / len( spacing_sort_unique))), 'section': 'black' if line_data[0].Stiffener is None else matplotlib.colors.rgb2hex(cmap_sections(sec_in_model[line_data[0] .Stiffener.get_beam_string()]/ len(list(recorded_sections)))), 'section cyl': 'black' if cyl_long_str is None else matplotlib.colors.rgb2hex(cmap_sections(cyl_sec_in_model[cyl_long_str] / len(list(recorded_cyl_sections)))), 'structure type': matplotlib.colors.rgb2hex( cmap_sections(structure_type_unique.index(line_data[0].Plate.get_structure_type()) /len(structure_type_unique))), 'pressure color': 'black' if all_pressures in [[0],[0,1]] else matplotlib.colors.rgb2hex(cmap_sections( this_pressure/highest_pressure)), 'pressure': this_pressure, 'rp uf color': matplotlib.colors.rgb2hex(cmap_sections(rp_util)), 'rp uf': rp_util, 'PULS method': puls_method, 'PULS sp or up':puls_sp_or_up, 'section modulus color': matplotlib.colors.rgb2hex( cmap_sections(rec_for_color[line]['section modulus'])), 'fatigue color': matplotlib.colors.rgb2hex( cmap_sections(rec_for_color[line]['fatigue'])), 'Total uf color rp' : matplotlib.colors.rgb2hex( cmap_sections(tot_uf_rp)), 'Total uf rp': tot_uf_rp, 'Total uf color puls': matplotlib.colors.rgb2hex( cmap_sections(tot_uf_puls)), 'Total uf puls': tot_uf_puls, 'PULS uf': round(puls_uf,2), 'PULS uf color': puls_color, 'fatigue uf' : rec_for_color[line]['fatigue'], 'section uf' : rec_for_color[line]['section modulus'], 'sigma x': matplotlib.colors.rgb2hex(cmap_sections(sig_x_uf)), 'sigma y1': matplotlib.colors.rgb2hex(cmap_sections(sig_y1_uf)), 'sigma y2': matplotlib.colors.rgb2hex(cmap_sections(sig_y2_uf)), 'tau xy':matplotlib.colors.rgb2hex(cmap_sections(tau_xy_uf)), 'cylinder uf': matplotlib.colors.rgb2hex(cmap_sections(cyl_uf)), 'cylinder plate' : matplotlib.colors.rgb2hex (cmap_sections(0 if cyl_thickness is None else all_cyl_thk.index(cyl_thickness)/len(all_cyl_thk))) } return_dict['color code']['lines'] = line_color_coding # COG calculations # Steel tot_weight += return_dict['weights'][line]['line weight'] weight_mult_dist_x += return_dict['weights'][line]['line weight']\ *return_dict['weights'][line]['mid_coord'][0] weight_mult_dist_y += return_dict['weights'][line]['line weight']\ *return_dict['weights'][line]['mid_coord'][1] tot_cog = [weight_mult_dist_x/tot_weight, weight_mult_dist_y/tot_weight] else: tot_cog = [0,0] tot_weight = 0 return_dict['COG'] = tot_cog return_dict['Total weight'] = tot_weight return return_dict def draw_canvas(self, state = None, event = None): ''' Canvas is drawn here. ''' self._main_canvas.delete('all') color = 'black' #by default # Drawing the shifted lines if any([self._new_shift_viz_coord_hor.get()!=0, self._new_shift_viz_coord_ver.get()!= 0]) and self._new_shifted_coords.get(): self._main_canvas.create_line(self._canvas_draw_origo[0]+self._canvas_scale*self._new_shift_viz_coord_hor.get()/1000, 0, self._canvas_draw_origo[0]+self._canvas_scale*self._new_shift_viz_coord_hor.get()/1000, self._canvas_dim[1] + 500, stipple='gray50', fill = 'peru') self._main_canvas.create_line(0, self._canvas_draw_origo[1]-self._canvas_scale*self._new_shift_viz_coord_ver.get()/1000, self._canvas_dim[0] + 500, self._canvas_draw_origo[1]-self._canvas_scale*self._new_shift_viz_coord_ver.get()/1000, stipple='gray50', fill = 'peru') else: # Drawing lines at (0, 0) self._main_canvas.create_line(self._canvas_draw_origo[0], 0, self._canvas_draw_origo[0], self._canvas_dim[1]+500, stipple= 'gray50', fill=self._color_text) self._main_canvas.create_line(0, self._canvas_draw_origo[1], self._canvas_dim[0] +500, self._canvas_draw_origo[1], stipple='gray50', fill=self._color_text) self._main_canvas.create_text(self._canvas_draw_origo[0] - 30 * 1, self._canvas_draw_origo[1] + 12 * 1, text='(0,0)', font='Text 10', fill = self._color_text) # Drawing COG and COB if self._new_show_cog.get(): pt_size = 5 if 'COG' in state.keys(): if self._new_shifted_coords.get(): point_coord_x = self._canvas_draw_origo[0] + (state['COG'][0] + self._new_shift_viz_coord_hor.get()/1000) * \ self._canvas_scale point_coord_y = self._canvas_draw_origo[1] - (state['COG'][1] + self._new_shift_viz_coord_ver.get()/1000) * \ self._canvas_scale else: point_coord_x = self._canvas_draw_origo[0] + state['COG'][0]*self._canvas_scale point_coord_y = self._canvas_draw_origo[1] - state['COG'][1]*self._canvas_scale self._main_canvas.create_oval(point_coord_x - pt_size + 2, point_coord_y - pt_size + 2, point_coord_x + pt_size + 2, point_coord_y + pt_size + 2, fill='yellow') self._main_canvas.create_text(point_coord_x + 5, point_coord_y - 14, text='steel COG: x=' + str(round(state['COG'][0], 2)) + ' y=' +str(round(state['COG'][1],2)), fill = self._color_text) if self._center_of_buoyancy != {}: for draft, cob in self._center_of_buoyancy.items(): if self._new_shifted_coords.get(): point_coord_x = self._canvas_draw_origo[0] + (cob[1] + self._new_shift_viz_coord_hor.get() / 1000) * \ self._canvas_scale point_coord_y = self._canvas_draw_origo[1] - (cob[0] + self._new_shift_viz_coord_ver.get() / 1000) * \ self._canvas_scale else: point_coord_x = self._canvas_draw_origo[0] + cob[1] * self._canvas_scale point_coord_y = self._canvas_draw_origo[1] - cob[0] * self._canvas_scale self._main_canvas.create_oval(point_coord_x - pt_size + 2, point_coord_y - pt_size + 2, point_coord_x + pt_size + 2, point_coord_y + pt_size + 2, fill='blue') self._main_canvas.create_text(point_coord_x + 5, point_coord_y + 14, text='COB d='+str(draft) +': x=' + str(round(cob[1], 2)) + ' y=' + str(round(cob[0], 2)), font=self._text_size["Text 8"], fill='blue') chk_box_active = [self._new_colorcode_beams.get(), self._new_colorcode_plates.get(), self._new_colorcode_pressure.get(), self._new_colorcode_utilization.get(), self._new_colorcode_sigmax.get(), self._new_colorcode_sigmay1.get(), self._new_colorcode_sigmay2.get(), self._new_colorcode_tauxy.get(), self._new_colorcode_structure_type.get(), self._new_colorcode_fatigue.get(), self._new_colorcode_section_modulus.get(), self._new_colorcode_total.get(), self._new_colorcode_puls_acceptance.get(), self._new_colorcode_puls_sp_or_up.get(), self._new_colorcode_spacing.get()].count(True)> 0 if chk_box_active and state != None: self.color_code_text(state) # Drawing shortcut information if selected. if self._new_shortcut_backdrop.get() == True: self._main_canvas.create_text(self._main_canvas.winfo_width()*0.87, self._main_canvas.winfo_height()*0.16, text = self._shortcut_text, font=self._text_size["Text 8"], fill = self._color_text) # drawing the point dictionary pt_size = 3 for key, value in self._point_dict.items(): if self._new_shifted_coords.get(): x_coord = round(self.get_point_actual_coord(key)[0] - self._new_shift_viz_coord_hor.get() / 1000, 3) y_coord = round(self.get_point_actual_coord(key)[1] - self._new_shift_viz_coord_ver.get() / 1000, 3) coord_color = 'peru' else: x_coord = round(self.get_point_actual_coord(key)[0], 3) y_coord = round(self.get_point_actual_coord(key)[1], 3) coord_color = self._color_text if self._point_is_active and key == self._active_point : self._main_canvas.create_oval(self.get_point_canvas_coord(key)[0] - pt_size+2, self.get_point_canvas_coord(key)[1] - pt_size+2, self.get_point_canvas_coord(key)[0] + pt_size+2, self.get_point_canvas_coord(key)[1] + pt_size+2, fill='blue') if self._new_draw_point_name.get(): # drawing the name of the point self._main_canvas.create_text(self.get_point_canvas_coord(key)[0] + 5, self.get_point_canvas_coord(key)[1] - 14, text='pt.'+str(get_num(key)), font=self._text_size["Text 12 bold"], fill = 'red') # drawing the coordinates of the point self._main_canvas.create_text(self.get_point_canvas_coord(key)[0]+30, self.get_point_canvas_coord(key)[1]-40, text='(' + str(x_coord) + ' , ' + str(y_coord) + ')', font="Text 14", fill = 'red') else: self._main_canvas.create_oval(self.get_point_canvas_coord(key)[0] - pt_size, self.get_point_canvas_coord(key)[1] - pt_size, self.get_point_canvas_coord(key)[0] + pt_size, self.get_point_canvas_coord(key)[1] + pt_size, fill='red') if self._new_draw_point_name.get(): #printing 'pt.#' self._main_canvas.create_text(self.get_point_canvas_coord(key)[0] + 15, self.get_point_canvas_coord(key)[1] - 10, text='pt.'+str(get_num(key)), font="Text 10", fill = self._color_text) #printing the coordinates of the point self._main_canvas.create_text(self.get_point_canvas_coord(key)[0]+35, self.get_point_canvas_coord(key)[1]+10 , text='(' + str(x_coord) + ' , ' + str(y_coord) + ')', font="Text 10", fill = coord_color) # drawing the line dictionary. if len(self._line_dict) != 0: for line, value in self._line_dict.items(): coord1 = self.get_point_canvas_coord('point' + str(value[0])) coord2 = self.get_point_canvas_coord('point' + str(value[1])) if not chk_box_active and state != None: try: if self._line_to_struc[line][5] is not None: # Cylinder cylinder_results = state['cylinder'][line] all_cyl_chks = list() for key, val in cylinder_results.items(): if key in ['Unstiffened shell', 'Longitudinal stiffened shell', 'Ring stiffened shell', 'Heavy ring frame']: all_cyl_chks.append(True if val is None else val < 1) elif key == 'Stiffener check' and val is not None: for stf_key, stf_val in val.items(): if stf_val is not None: all_cyl_chks.append(stf_val) color = 'green' if all(all_cyl_chks) else 'red' elif self._new_buckling_method.get() == 'DNV PULS': if 'black' in state['PULS colors'][line].values(): color = 'black' else: col1, col2 = state['PULS colors'][line]['buckling'], \ state['PULS colors'][line]['ultimate'] if self._line_to_struc[line][0].Plate.get_puls_method() == 'buckling': color = 'red' if any([col1 == 'red', col2 == 'red']) else 'green' else: color = col2 if color == 'green': color = 'green' if all([state['colors'][line][key] == 'green' for key in ['fatigue', 'section', 'shear','thickness']]) else 'red' elif self._new_buckling_method.get() == 'DNV-RP-C201 - prescriptive': color = 'red' if 'red' in state['colors'][line].values() else 'green' elif self._new_buckling_method.get() == 'ML-CL (PULS based)': if 'black' in state['ML buckling colors'][line].values(): color = 'black' else: col1, col2 = state['ML buckling colors'][line]['buckling'], \ state['ML buckling colors'][line]['ultimate'] if self._line_to_struc[line][0].Plate.get_puls_method() == 'buckling': color = col1 else: color = col2 if color == 'green': color = 'green' if all([state['colors'][line][key] == 'green' for key in ['fatigue', 'section', 'shear','thickness']]) else 'red' except (KeyError, TypeError): color = 'black' elif chk_box_active and state != None and self._line_to_struc != {}: color = self.color_code_line(state, line, coord1, [coord2[0] - coord1[0], coord2[1] - coord1[1]]) else: color = 'black' vector = [coord2[0] - coord1[0], coord2[1] - coord1[1]] # drawing a bold line if it is selected if all([line == self._active_line, self._line_is_active]): if line not in self._line_to_struc.keys(): self._main_canvas.create_line(coord1, coord2, width=6, fill=self._color_text) elif self._line_to_struc[line][5] is not None: self._main_canvas.create_line(coord1, coord2, width=10, fill = color, stipple = 'gray50') else: self._main_canvas.create_line(coord1, coord2, width=6, fill=color) if self._new_line_name.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2+10, text='Line ' + str(get_num(line)), font=self._text_size["Text 10 bold"], fill = 'red') else: if line not in self._line_to_struc.keys(): self._main_canvas.create_line(coord1, coord2, width=3, fill=self._color_text) elif self._line_to_struc[line][5] is not None: self._main_canvas.create_line(coord1, coord2, width=6, fill = color, stipple = 'gray50') else: self._main_canvas.create_line(coord1, coord2, width=3, fill = color) if self._new_line_name.get(): self._main_canvas.create_text(coord1[0]-20 + vector[0] / 2 + 5, coord1[1] + vector[1] / 2+10, text='l.' + str(get_num(line)), font="Text 8", fill = self._color_text) if line in self._multiselect_lines: self._main_canvas.create_text(coord1[0] + vector[0] / 2 +5, coord1[1] + vector[1] / 2 -10, text=self._new_toggle_var.get(), fill='orange') # drawing waterline if len(self._load_dict) != 0: for load, data in self._load_dict.items(): if data[0].is_static(): draft = self.get_canvas_coords_from_point_coords((0,data[0].get_static_draft()))[1] self._main_canvas.create_line(0,draft,self._canvas_dim[0]+500,draft, fill="blue", dash=(4, 4)) self._main_canvas.create_text(900,draft-10,text=str(get_num(data[0].get_name()))+' [m]',fill ='blue') else: pass def color_code_text(self, state): ''' return_dict['color code'] = {'thickest plate': thickest_plate, 'thickness map': thk_map, 'highest pressure': highest_pressure, 'lowest pressure': lowest_pressure, 'pressure map': press_map, 'all utilizations': all_utils, 'utilization map': util_map, 'max sigma x': max(sig_x), 'min sigma x': min(sig_x), 'sigma x map': sig_x_map, 'max sigma y1': max(sig_y1), 'min sigma y1': min(sig_y1), 'sigma y1 map': sig_y1_map, 'max sigma y2': max(sig_y2), 'min sigma y2': min(sig_y2), 'sigma y2 map': sig_y2_map, 'max tau xy': max(tau_xy), 'min tau xy': min(tau_xy), 'tau_xy map': tau_xy_map, 'structure types map': set(structure_type), 'sections in model': sec_in_model, 'recorded sections': recorded_sections} } :param state: :return: ''' cc_state = state['color code'] if cc_state == {}: return start_text, start_text_shift = 190,191 cmap_sections = plt.get_cmap('jet') if self._new_colorcode_beams.get() == True and self._line_to_struc != {}: sec_in_model = cc_state['sections in model'] for section, idx in sec_in_model.items(): if section =='length': continue self._main_canvas.create_text(11, start_text_shift+20*idx, text=section, font=self._text_size["Text 10 bold"], fill='black', anchor="nw") self._main_canvas.create_text(10, start_text+20*idx, text=section, font=self._text_size["Text 10 bold"], fill=matplotlib.colors.rgb2hex(cmap_sections(idx/sec_in_model['length'])), anchor="nw") elif self._new_colorcode_plates.get() == True and self._line_to_struc != {}: cylinder = False for obj_list in self._line_to_struc.values(): if obj_list[5] is not None: cylinder = True if cylinder: all_thicknesses = np.unique(cc_state['all cyl thicknesses']).tolist() else: all_thicknesses = np.unique(cc_state['all thicknesses']).tolist() for idx, thk in enumerate(np.unique(all_thicknesses).tolist()): self._main_canvas.create_text(11, start_text_shift+20*idx, text=str('Plate '+ str(thk if cylinder else thk*1000) + ' mm'), font=self._text_size["Text 10 bold"], fill='black', anchor="nw") self._main_canvas.create_text(10, start_text+20*idx, text=str('Plate '+ str(thk if cylinder else thk*1000) + ' mm'), font=self._text_size["Text 10 bold"], fill=matplotlib.colors.rgb2hex(cmap_sections(all_thicknesses.index(thk) /len(all_thicknesses))), anchor="nw") elif self._new_colorcode_spacing.get() == True and self._line_to_struc != {}: all_spacings = cc_state['spacings'] for idx, s in enumerate(all_spacings): self._main_canvas.create_text(11, start_text_shift+20*idx, text=str('Spacing '+ str(s*1000) + ' mm'), font=self._text_size["Text 10 bold"], fill='black', anchor="nw") self._main_canvas.create_text(10, start_text+20*idx, text=str('Spacing '+ str(s*1000) + ' mm'), font=self._text_size["Text 10 bold"], fill=matplotlib.colors.rgb2hex(cmap_sections(all_spacings.index(s) /len(all_spacings))), anchor="nw") elif self._new_colorcode_pressure.get() == True and self._line_to_struc != {}: highest_pressure = cc_state['highest pressure'] press_map = cc_state['pressure map'] for idx, press in enumerate(press_map): self._main_canvas.create_text(11, start_text_shift+20*idx, text=str(str(press) + ' Pa'), font=self._text_size["Text 10 bold"], fill='black', anchor="nw") self._main_canvas.create_text(10, start_text+20*idx, text=str(str(press) + ' Pa'), font=self._text_size["Text 10 bold"], fill=matplotlib.colors.rgb2hex(cmap_sections(0 if highest_pressure == 0 else press/highest_pressure)), anchor="nw") elif all([self._new_colorcode_utilization.get() == True, self._line_to_struc != {}, self._new_buckling_method.get() != 'DNV PULS']): all_utils = cc_state['utilization map'] for idx, uf in enumerate(cc_state['utilization map']): self._main_canvas.create_text(11, start_text_shift + 20 * idx, text=str('UF = ' +str(round(uf,1))), font=self._text_size["Text 10 bold"], fill='black', anchor="nw") self._main_canvas.create_text(10, start_text + 20 * idx, text=str('UF = ' +str(round(uf,1))), font=self._text_size["Text 10 bold"], fill=matplotlib.colors.rgb2hex(cmap_sections(uf/max(all_utils))), anchor="nw") elif all([self._new_colorcode_utilization.get() == True, self._line_to_struc != {}, self._new_buckling_method == 'DNV PULS']): all_utils = cc_state['PULS utilization map'] for idx, uf in enumerate(cc_state['utilization map']): self._main_canvas.create_text(11, start_text_shift + 20 * idx, text=str('UF = ' +str(round(uf,1))), font=self._text_size["Text 10 bold"], fill='black', anchor="nw") self._main_canvas.create_text(10, start_text + 20 * idx, text=str('UF = ' +str(round(uf,1))), font=self._text_size["Text 10 bold"], fill=matplotlib.colors.rgb2hex(cmap_sections(uf/max(all_utils))), anchor="nw") elif self._new_colorcode_sigmax.get() == True: for idx, value in enumerate(cc_state['sigma x map']): self._main_canvas.create_text(11, start_text_shift+20*idx, text=str(str(round(value,5)) + ' MPa'), font=self._text_size["Text 10 bold"], fill='black', anchor="nw") self._main_canvas.create_text(10, start_text+20*idx, text=str(str(round(value,5)) + ' MPa'), font=self._text_size["Text 10 bold"], fill='black' if cc_state['max sigma x']-cc_state['min sigma x'] == 0 else matplotlib.colors.rgb2hex( cmap_sections(0 if cc_state['max sigma x'] == 0 else (value+ abs(cc_state['min sigma x'])) / (cc_state['max sigma x']-cc_state['min sigma x']))), anchor="nw") elif self._new_colorcode_sigmay1.get() == True: for idx, value in enumerate(cc_state['sigma y1 map']): self._main_canvas.create_text(11, start_text_shift+20*idx, text=str(str(round(value,5)) + ' MPa'), font=self._text_size["Text 10 bold"], fill='black', anchor="nw") self._main_canvas.create_text(10, start_text+20*idx, text=str(str(round(value,5)) + ' MPa'), font=self._text_size["Text 10 bold"], fill='black' if cc_state['max sigma y1']-cc_state['min sigma y1'] == 0 else matplotlib.colors.rgb2hex( cmap_sections(0 if cc_state['max sigma y1'] == 0 else (value+ abs(cc_state['min sigma y1'])) / (cc_state['max sigma y1']-cc_state['min sigma y1']))), anchor="nw") elif self._new_colorcode_sigmay2.get() == True: for idx, value in enumerate(cc_state['sigma y2 map']): self._main_canvas.create_text(11, start_text_shift+20*idx, text=str(str(round(value,5)) + ' MPa'), font=self._text_size["Text 10 bold"], fill='black', anchor="nw") self._main_canvas.create_text(10, start_text+20*idx, text=str(str(round(value,5)) + ' MPa'), font=self._text_size["Text 10 bold"], fill='black' if cc_state['max sigma y2']-cc_state['min sigma y2'] == 0 else matplotlib.colors.rgb2hex( cmap_sections(0 if cc_state['max sigma y2'] == 0 else (value+ abs(cc_state['min sigma y2'])) / (cc_state['max sigma y2']-cc_state['min sigma y2']))), anchor="nw") elif self._new_colorcode_tauxy.get() == True: for idx, value in enumerate(cc_state['tau xy map']): self._main_canvas.create_text(11, start_text_shift+20*idx, text=str(str(round(value,5)) + ' MPa'), font=self._text_size["Text 10 bold"], fill='black', anchor="nw") self._main_canvas.create_text(10, start_text+20*idx, text=str(str(round(value,5)) + ' MPa'), font=self._text_size["Text 10 bold"], fill='black' if cc_state['max tau xy']-cc_state['min tau xy'] == 0 else matplotlib.colors.rgb2hex( cmap_sections(0 if cc_state['max tau xy'] == 0 else (value+ abs(cc_state['min tau xy'])) / (cc_state['max tau xy']-cc_state['min tau xy']))), anchor="nw") elif self._new_colorcode_structure_type.get() == True: structure_type_map = list(cc_state['structure types map']) for idx, structure_type in enumerate(structure_type_map): self._main_canvas.create_text(11, start_text_shift+20*idx, text=structure_type, font=self._text_size["Text 10 bold"], fill='black', anchor="nw") self._main_canvas.create_text(10, start_text+20*idx, text=structure_type, font=self._text_size["Text 10 bold"], fill=matplotlib.colors.rgb2hex(cmap_sections(structure_type_map .index(structure_type)/ len(structure_type_map))), anchor="nw") elif self._new_colorcode_section_modulus.get() == True or self._new_colorcode_fatigue.get() == True or \ self._new_colorcode_fatigue.get() == True or self._new_colorcode_total.get() == True: for idx, value in enumerate(cc_state['section modulus map']): self._main_canvas.create_text(11, start_text_shift+20*idx, text=str(str(round(value,5))), font=self._text_size["Text 10 bold"], fill='black', anchor="nw") self._main_canvas.create_text(10, start_text+20*idx, text=str(str(round(value,5))), font=self._text_size["Text 10 bold"], fill=matplotlib.colors.rgb2hex( cmap_sections(value)), anchor="nw") elif self._new_colorcode_puls_sp_or_up.get() == True: for idx, value in enumerate(['SP', 'UP']): self._main_canvas.create_text(11, start_text_shift+20*idx, text=value, font=self._text_size["Text 10 bold"], fill='black', anchor="nw") self._main_canvas.create_text(10, start_text+20*idx, text=value, font=self._text_size["Text 10 bold"], fill='blue' if value == 'SP' else 'red', anchor="nw") elif self._new_colorcode_puls_acceptance.get() == True: for idx, value in enumerate(['buckling', 'ultimate']): self._main_canvas.create_text(11, start_text_shift+20*idx, text=value, font=self._text_size["Text 10 bold"], fill='black', anchor="nw") self._main_canvas.create_text(10, start_text+20*idx, text=value, font=self._text_size["Text 10 bold"], fill='blue' if value == 'ultimate' else 'red', anchor="nw") def color_code_line(self, state, line, coord1, vector): cc_state = state['color code'] if line not in state['color code']['lines'].keys(): return 'black' if self._new_colorcode_beams.get() == True and line in list(self._line_to_struc.keys()): if self._line_to_struc[line][5] is not None or self._line_to_struc[line][0].Stiffener is None: if self._line_to_struc[line][5] is not None: cyl_obj = self._line_to_struc[line][5] if cyl_obj.LongStfObj is not None: this_text = cyl_obj.LongStfObj.get_beam_string(short = True) color = state['color code']['lines'][line]['section cyl'] else: this_text = 'N/A' color = 'grey' else: color = 'grey' this_text = 'N/A' elif self._line_to_struc[line][0].Plate is not None: color = state['color code']['lines'][line]['section'] this_text = self._line_to_struc[line][0].Plate.get_beam_string() if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=this_text , font=self._text_size["Text 7"]) elif self._new_colorcode_plates.get() == True and line in list(self._line_to_struc.keys()): if self._line_to_struc[line][5] is not None: cyl_obj = self._line_to_struc[line][5] color = state['color code']['lines'][line]['cylinder plate'] this_text = str(round(cyl_obj.ShellObj.thk * 1000, 2)) else: color = state['color code']['lines'][line]['plate'] this_text = str(self._line_to_struc[line][0].Plate.get_pl_thk()*1000) if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=this_text) elif self._new_colorcode_spacing.get() == True and line in list(self._line_to_struc.keys()): if self._line_to_struc[line][5] is not None or self._line_to_struc[line][0].Stiffener is None: color = 'grey' this_text = 'N/A' else: color = state['color code']['lines'][line]['spacing'] this_text = str(self._line_to_struc[line][0].Stiffener.get_s()*1000) if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=this_text) elif self._new_colorcode_pressure.get() == True and line in list(self._line_to_struc.keys()): if self._line_to_struc[line][5] is not None: color = 'grey' this_text = 'N/A' else: if cc_state['all pressures'] == [0, 1]: color = 'black' else: color = state['color code']['lines'][line]['pressure color'] this_text = str(state['color code']['lines'][line]['pressure']) if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=this_text) elif self._new_colorcode_utilization.get() == True and self._new_buckling_method.get() == 'DNV-RP-C201 - prescriptive': if line not in list(self._line_to_struc.keys()): color = 'black' this_text = 'N/A' elif self._line_to_struc[line][5] is not None: cyl_obj = self._line_to_struc[line][5] results = cyl_obj.get_utilization_factors() ufs = [round(0 if results['Unstiffened shell'] is None else results['Unstiffened shell'], 2), round(0 if results['Longitudinal stiffened shell'] is None else results['Longitudinal stiffened shell'],2), round(0 if results['Ring stiffened shell'] is None else results['Ring stiffened shell'], 2), round(0 if results['Heavy ring frame'] is None else results['Heavy ring frame'], 2)] color = state['color code']['lines'][line]['cylinder uf'] this_text = str(max(ufs)) if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=this_text) else: color = state['color code']['lines'][line]['rp uf color'] if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=round(state['color code']['lines'][line]['rp uf'],2)) elif self._new_colorcode_utilization.get() == True and self._new_buckling_method.get() == 'DNV PULS': if self._line_to_struc[line][5] is not None: color = 'grey' this_text = 'N/A' else: color = state['color code']['lines'][line]['PULS uf color'] this_text = round(state['color code']['lines'][line]['PULS uf'],2) if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=this_text) elif self._new_colorcode_utilization.get() == True and self._new_buckling_method.get() == 'ML-CL (PULS based)': color = 'black' if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text='N/A') elif self._new_colorcode_sigmax.get() == True: if self._line_to_struc[line][5] is not None: color = 'grey' this_text = 'N/A' else: color = state['color code']['lines'][line]['sigma x'] this_text = str(self._line_to_struc[line][0].Plate.get_sigma_x1()) if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=this_text) elif self._new_colorcode_sigmay1.get() == True: if self._line_to_struc[line][5] is not None: color = 'grey' this_text = 'N/A' else: color = state['color code']['lines'][line]['sigma y1'] this_text = str(self._line_to_struc[line][0].Plate.get_sigma_y2()) if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=this_text) elif self._new_colorcode_sigmay2.get() == True: if self._line_to_struc[line][5] is not None: color = 'grey' this_text = 'N/A' else: color = state['color code']['lines'][line]['sigma y2'] this_text = str(self._line_to_struc[line][0].Plate.get_sigma_y2()) if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=this_text) elif self._new_colorcode_tauxy.get() == True: if self._line_to_struc[line][5] is not None: color = 'grey' this_text = 'N/A' else: color = state['color code']['lines'][line]['tau xy'] this_text =round(self._line_to_struc[line][0].Plate.get_tau_xy(),2) if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=this_text) elif self._new_colorcode_structure_type.get() == True: if self._line_to_struc[line][5] is not None: color = 'grey' this_text = 'N/A' else: color = state['color code']['lines'][line]['structure type'] this_text =self._line_to_struc[line][0].Plate.get_structure_type() if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=this_text, font=self._text_size["Text 7"]) elif self._new_colorcode_section_modulus.get() == True: if self._line_to_struc[line][5] is not None: color = 'grey' this_text = 'N/A' else: color = state['color code']['lines'][line]['section modulus color'] this_text = round(state['color code']['lines'][line]['section uf'],2) if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=this_text) elif self._new_colorcode_fatigue.get() == True: if self._line_to_struc[line][5] is not None: color = 'grey' this_text = 'N/A' else: color = state['color code']['lines'][line]['fatigue color'] this_text = round(state['color code']['lines'][line]['fatigue uf'],2) if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=this_text) elif self._new_colorcode_total.get() == True: if self._line_to_struc[line][5] is not None: cyl_obj = self._line_to_struc[line][5] results = cyl_obj.get_utilization_factors() ufs = [round(0 if results['Unstiffened shell'] is None else results['Unstiffened shell'], 2), round(0 if results['Longitudinal stiffened shell'] is None else results['Longitudinal stiffened shell'],2), round(0 if results['Ring stiffened shell'] is None else results['Ring stiffened shell'], 2), round(0 if results['Heavy ring frame'] is None else results['Heavy ring frame'], 2)] color = state['color code']['lines'][line]['cylinder uf'] this_text = str(max(ufs)) if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=this_text) elif self._new_buckling_method.get() == 'DNV PULS': color = state['color code']['lines'][line]['Total uf color puls'] if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=round(state['color code']['lines'][line]['Total uf puls'],2)) elif self._new_buckling_method.get() == 'DNV-RP-C201 - prescriptive': color = state['color code']['lines'][line]['Total uf color rp'] if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=round(state['color code']['lines'][line]['Total uf rp'],2)) elif self._new_buckling_method.get() == 'ML-CL (PULS based)': color = 'black' if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text='N/A') elif self._new_colorcode_puls_acceptance.get(): if state['color code']['lines'][line]['PULS method'] == None: color = 'black' else: color = 'blue' if state['color code']['lines'][line]['PULS method'] == 'ultimate' else 'red' if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=state['color code']['lines'][line]['PULS method']) elif self._new_colorcode_puls_sp_or_up.get(): if state['color code']['lines'][line]['PULS sp or up'] == None: color = 'black' else: color = 'blue' if state['color code']['lines'][line]['PULS sp or up'] == 'SP' else 'red' if self._new_label_color_coding.get(): self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 - 10, text=state['color code']['lines'][line]['PULS sp or up']) else: color = 'black' return color def draw_prop(self, event = None): ''' Prints the properties of the selected line to the bottom canvas. properties for line dicitonary: name of line : [ Structure class, calc scantling class, calc fatigue class, [load classes] ] ''' self._prop_canvas.delete('all') canvas_width = self._prop_canvas.winfo_width() canvas_height = self._prop_canvas.winfo_height() def checkered(line_distance, canvas): ''' Grid lines in the properties canvas. :param line_distance: :return: ''' # vertical lines at an interval of "line_distance" pixel for x in range(line_distance, canvas_width, line_distance): canvas.create_line(x, 0, x, canvas_width, stipple='gray50', activestipple='gray75') # horizontal lines at an interval of "line_distance" pixel for y in range(line_distance, canvas_height, line_distance): canvas.create_line(0, y, canvas_width, y, stipple='gray50', activestipple='gray75') if self._active_line in self._line_to_struc: self.set_selected_variables(self._active_line) # printing the properties to the active line if self._line_is_active and self._line_to_struc[self._active_line][5] is None: #checkered(10, self._prop_canvas) self._prop_canvas.create_text([canvas_width/2-canvas_width/20, canvas_height/20], text ='SELECTED: '+str(self._active_line), font=self._text_size["Text 10 bold"], fill='red') if all([self._line_to_struc[self._active_line][0].Stiffener is None, self._line_to_struc[self._active_line][0].Girder is None]): structure_obj = self._line_to_struc[self._active_line][0].Plate spacing = structure_obj.get_s() * self._prop_canvas_scale * 3 plate_thk = structure_obj.get_pl_thk() * self._prop_canvas_scale * 3 startx = 20 starty = 225 self._prop_canvas.create_text([startx + 100, 50], text='Plate with thickness ' + str(structure_obj.get_pl_thk()*1000) + ' mm' , font=self._text_size["Text 10 bold"], fill='Black') self._prop_canvas.create_rectangle(startx + spacing, starty, startx + spacing + spacing, starty - plate_thk, fill='grey', activefill='yellow') for idx, structure_obj in enumerate([self._line_to_struc[self._active_line][0].Stiffener, self._line_to_struc[self._active_line][0].Girder]): mult = 1 if self._line_to_struc[self._active_line][0].Girder is not None else 2 # *(400/max_web) thk_mult = 2 # *(400/max_web) startx = 100 + 300 * idx starty = 225 if structure_obj is not None: self._prop_canvas.create_text([startx +60, 50], text='Stiffener\n' +structure_obj.get_beam_string() if idx == 0 else 'Girder\n' + structure_obj.get_beam_string(), font=self._text_size["Text 9 bold"], fill='Black') if structure_obj is not None: self._prop_canvas.create_text([100, 20], text='Thickness scale x 2', font=self._text_size["Text 10 bold"], fill='grey') # drawing stiffener spacing = structure_obj.get_s()*self._prop_canvas_scale * mult stf_web_height = structure_obj.get_web_h()*self._prop_canvas_scale * mult stf_flange_width = structure_obj.get_fl_w() *self._prop_canvas_scale * mult plate_thk = structure_obj.get_pl_thk()*self._prop_canvas_scale*thk_mult * mult stf_web_thk = structure_obj.get_web_thk()*self._prop_canvas_scale*thk_mult * mult stf_flange_thk = structure_obj.get_fl_thk()*self._prop_canvas_scale*thk_mult * mult for count in [0,1,2] if idx == 0 else [0,]: self._prop_canvas.create_rectangle(startx + count*spacing, starty, startx+spacing+ count*spacing, starty- plate_thk , fill = 'grey', activefill = 'yellow') self._prop_canvas.create_rectangle(startx+spacing*0.5+ count*spacing - stf_web_thk/2, starty - plate_thk, startx+spacing*0.5+ count*spacing + stf_web_thk/2, starty - stf_web_height - plate_thk, fill = 'grey', activefill = 'yellow') if structure_obj.get_stiffener_type() not in ['L', 'L-bulb']: self._prop_canvas.create_rectangle(startx+spacing*0.5-stf_flange_width/2+ count*spacing, starty - stf_web_height - plate_thk, startx + spacing * 0.5 + stf_flange_width / 2+ count*spacing, starty - stf_web_height - plate_thk- stf_flange_thk, fill = 'grey', activefill = 'yellow') else: self._prop_canvas.create_rectangle(startx+spacing*0.5-stf_web_thk/2+ count*spacing, starty-stf_web_height - plate_thk, startx + spacing * 0.5 + stf_flange_width + count*spacing, starty - stf_web_height - plate_thk - stf_flange_thk, fill = 'grey', activefill = 'yellow') elif self._line_is_active and self._line_to_struc[self._active_line][5] is not None: self.draw_cylinder(canvas = self._prop_canvas,CylObj = self._line_to_struc[self._active_line][5], height = 200, radius = 150, start_x_cyl = 500,start_y_cyl = 20, text_color= self._color_text) else: pass @staticmethod def draw_cylinder(text_size = None, canvas = None, CylObj: CylinderAndCurvedPlate = None, height = 150, radius = 150, start_x_cyl = 500,start_y_cyl = 20, acceptance_color = False, text_x = 200, text_y = 130, text_color = 'black'): canvas_width = canvas.winfo_width() canvas_height = canvas.winfo_height() if text_size == None: text_size = 'Verdana 8' canvas.create_text([text_x, text_y], text=CylObj, font=text_size,fill = text_color) # setting the input field to active line properties #self.set_selected_variables(self._active_line) offset_oval = 30 coord1 = start_x_cyl, start_y_cyl, start_x_cyl + radius, start_y_cyl+offset_oval coord2 = start_x_cyl, start_y_cyl + height, start_x_cyl + radius,start_y_cyl+ offset_oval + height arc_1 = canvas.create_oval(coord1, width=5, fill='grey90') arc_2 = canvas.create_arc(coord2, extent=180, start=180, style=tk.ARC, width=3) line1 = canvas.create_line(coord1[0], coord1[1] + offset_oval / 2, coord1[0], coord1[1] + height + offset_oval / 2, width=3) line2 = canvas.create_line(coord1[0] + radius, coord1[1] + offset_oval / 2, coord1[0] + radius, coord1[1] + height + offset_oval / 2, width=3) if CylObj.LongStfObj is not None: long_obj = CylObj.LongStfObj num_stf = int(1000 * 2*math.pi*CylObj.ShellObj.radius / long_obj.s / 2) for line_num in range(1, num_stf, 1): angle = 180 - 180 / (num_stf) * line_num arc_x, arc_y = 1 * math.cos(math.radians(angle)), 0.5 * math.sin(math.radians(angle)) arc_x = (arc_x + 1) / 2 line1 = canvas.create_line(coord1[0] + radius * arc_x, coord1[1] + 1 * arc_y * offset_oval+offset_oval/2, coord1[0] + radius * arc_x, coord1[1] + height + 1 * arc_y * offset_oval+offset_oval/2, fill='blue') if CylObj.RingStfObj is not None: num_ring_stiff = CylObj.ShellObj.length_of_shell / \ CylObj.ShellObj._dist_between_rings num_ring_stiff = int(num_ring_stiff) for ring_stf in range(1, num_ring_stiff + 1, 1): coord3 = coord1[0], coord1[1] + (height / (num_ring_stiff + 1)) * ring_stf, \ start_x_cyl + radius, coord1[3] + (height / (num_ring_stiff + 1)) * ring_stf, arc_2 = canvas.create_arc(coord3, extent=180, start=180, style=tk.ARC, width=2, fill='orange', outline='orange') if CylObj.RingFrameObj is not None: num_ring_girder = CylObj.ShellObj.length_of_shell / \ CylObj.length_between_girders num_ring_girder = int(num_ring_girder) for ring_girder in range(1, num_ring_girder + 1, 1): coord3 = coord1[0], coord1[1] + (height / (num_ring_girder + 1)) * ring_girder, \ start_x_cyl + radius, coord1[3] + (height / (num_ring_girder + 1)) * ring_girder, arc_2 = canvas.create_arc(coord3, extent=180, start=180, style=tk.ARC, width=4, fill='grey', outline='grey') def draw_results(self, state = None): ''' The properties canvas is created here. state = {'colors': {}, 'section_modulus': {}, 'thickness': {}, 'shear_area': {}, 'buckling': {}, 'fatigue': {}, 'pressure_uls': {}, 'pressure_fls': {}, 'all_obj': {}, 'scant_calc_obj': {}, 'fatigue_obj': {}} :return: ''' self._result_canvas.delete('all') if state is None or self._active_line not in state['all_obj'].keys(): return if self._line_is_active: x, y, dx, dy = 0, 5, 15, 17 if self._active_line in self._line_to_struc and self._line_to_struc[self._active_line][5] is None: m3_to_mm3 = float(math.pow(1000,3)) m2_to_mm2 = float(math.pow(1000, 2)) current_line = self._active_line obj_scnt_calc_pl = state['all_obj'][current_line].Plate obj_scnt_calc_stf = state['all_obj'][current_line].Stiffener obj_scnt_calc_girder = state['all_obj'][current_line].Girder sec_mod = [round(state['section_modulus'][current_line]['sec_mod'][0], 5), round(state['section_modulus'][current_line]['sec_mod'][1], 5)] shear_area = state['shear_area'][current_line]['shear_area'] min_shear = state['shear_area'][current_line]['min_shear_area'] min_sec_mod = state['section_modulus'][current_line]['min_sec_mod'] min_thk = state['thickness'][current_line]['min_thk'] buckling = state['buckling'][current_line] if state['slamming'][current_line]['state']: slamming = True slm_zpl = state['slamming'][current_line]['zpl'] slm_zpl_req = state['slamming'][current_line]['zpl_req'] slm_min_pl_thk = state['slamming'][current_line]['min_plate_thk'] slm_min_web_thk = state['slamming'][current_line]['min_web_thk'] slm_text_pl_thk = 'Minimum plate thickness (BOW SLAMMING): '+str(round(slm_min_pl_thk,1))+' [mm]' \ if obj_scnt_calc_stf.get_pl_thk() * 1000 < slm_min_pl_thk else None slm_text_min_web_thk = 'Minimum web thickness (BOW SLAMMING): '+str(round(slm_min_web_thk,1))+' [mm]' \ if obj_scnt_calc_stf.get_web_thk()*1000 < slm_min_web_thk else None if slm_zpl_req is not None: slm_text_min_zpl = 'Minimum section modulus (BOW SLAMMING): '+str(round(slm_zpl_req,1))+' [cm^3]' \ if slm_zpl < slm_zpl_req else None else: slm_text_min_zpl = False else: slamming, slm_text_pl_thk, slm_text_min_web_thk, slm_text_min_zpl = [False for di in range(4)] color_fatigue = state['colors'][current_line]['fatigue'] color_sec = state['colors'][current_line]['section'] color_shear = state['colors'][current_line]['shear'] color_thk = state['colors'][current_line]['thickness'] color_buckling = state['colors'][current_line]['buckling'] #printing the minimum section modulus x1, x2, x3 = 15,25,35 self._result_canvas.create_text([x+0*dx, (y+0*dy)*1], text= 'Special provisions - DNV-OS-C101 - checks for section, ' 'web thickness and plate thickness.', font=self._text_size["Text 9 bold"],anchor='nw', fill=self._color_text) self._result_canvas.create_text([x+0*dx, (y+2*dy)*1], text= 'Section modulus check', font=self._text_size["Text 9"],anchor='nw', fill=self._color_text) self._result_canvas.create_text([x+0*dx, (y+3*dy)*1], text= 'Shear area check', font=self._text_size["Text 9"],anchor='nw', fill=self._color_text) self._result_canvas.create_text([x+0*dx, (y+4*dy)*1], text= 'Plate thickness check', font=self._text_size["Text 9"],anchor='nw', fill=self._color_text) self._result_canvas.create_text([x + x1*dx, (y+1*dy)*1], text= 'Minimum value', font=self._text_size["Text 9"],anchor='nw', fill=self._color_text) self._result_canvas.create_text([x+ x2*dx, (y+1*dy)*1], text= 'Actual value', font=self._text_size["Text 9"],anchor='nw', fill=self._color_text) self._result_canvas.create_text([x+ x3*dx, (y+1*dy)*1], text= 'Accepted?', font=self._text_size["Text 9"],anchor='nw', fill=self._color_text) if state['slamming'][current_line]['state'] and slm_text_min_zpl is False: text = '(shear issue, change thickness or web height)' else: text = str('%.4E' % decimal.Decimal(min_sec_mod * m3_to_mm3)) +\ ' [mm^3] ' if not slm_text_min_zpl else slm_text_min_zpl self._result_canvas.create_text([x + x1*dx, (y+2*dy)*1], text= text, font=self._text_size["Text 9 bold"],anchor='nw', fill=self._color_text) # printing the calculated sectiton modulus if state['slamming'][current_line]['state'] and slm_text_min_zpl is False: text = '' else: text = str('%.4E' % decimal.Decimal(min(sec_mod[1], sec_mod[0])*m3_to_mm3))+ ' [mm^3]' \ if not slm_text_min_zpl else str(slm_zpl)+'- zpl [cm^3]' self._result_canvas.create_text([x + x2*dx, (y+2*dy)*1], text=text,font=self._text_size['Text 9 bold'],anchor='nw', fill = color_sec) if not state['slamming'][current_line]['state']: self._result_canvas.create_text([x + x3*dx, (y+2*dy)*1], text='Ok' if min(sec_mod[1], sec_mod[0])*m3_to_mm3 >= min_sec_mod * m3_to_mm3 else 'Not ok', font=self._text_size['Text 9 bold'],anchor='nw', fill=color_sec) #minimum shear area text = str('%.4E' % decimal.Decimal(min_shear * m2_to_mm2))+' [mm^2] ' \ if not slm_text_min_web_thk else str(round(slm_min_web_thk,1))+' [mm]' self._result_canvas.create_text([x + x1*dx, (y+3*dy)*1], text = text, font=self._text_size["Text 9 bold"],anchor='nw',fill=self._color_text) text = str('%.4E' % decimal.Decimal(shear_area * m2_to_mm2 ))+' [mm^2]' \ if not slm_text_min_web_thk else str(obj_scnt_calc_stf.get_web_thk()*1000)+' [mm]' self._result_canvas.create_text([x + x2*dx, (y+3*dy)*1], text= text, font=self._text_size["Text 9 bold"],anchor='nw', fill=color_shear) if not state['slamming'][current_line]['state']: self._result_canvas.create_text([x + x3*dx, (y+3*dy)*1], text= 'Ok' if shear_area * m2_to_mm2 >= min_shear * m2_to_mm2 else 'Not ok', font=self._text_size["Text 9 bold"],anchor='nw', fill=color_shear) #minimum thickness for plate text = str(round(min_thk,1)) + ' [mm]' if not state['slamming'][current_line]['state'] else \ 'Slamming minimum thickness: '+str(round(slm_min_pl_thk,2))+' [mm]' self._result_canvas.create_text([x + x1*dx, (y+4*dy)*1], text=text, font=self._text_size["Text 9 bold"],anchor='nw', fill=self._color_text) if not state['slamming'][current_line]['state']: self._result_canvas.create_text([x + x2*dx, (y+4*dy)*1], text=str(obj_scnt_calc_pl.get_pl_thk()*1000)+' [mm] ', font=self._text_size["Text 9 bold"],anchor='nw', fill=color_shear) self._result_canvas.create_text([x + x3*dx, (y+4*dy)*1], text='Ok' if obj_scnt_calc_pl.get_pl_thk()*1000 > min_thk else 'Not ok', font=self._text_size["Text 9 bold"],anchor='nw', fill=color_shear) # buckling results start_y, y = 5, 10 if self._PULS_results != None and self._new_buckling_method.get() == 'DNV PULS': line_results = state['PULS colors'][self._active_line] puls_res = self._PULS_results.get_puls_line_results(self._active_line) if puls_res != None: geo_problem = False if type(puls_res['Ultimate capacity']['Actual usage Factor'][0]) != str: ult_text = 'Ultimate capacity usage factor: ' + str(puls_res['Ultimate capacity'] ['Actual usage Factor'][ 0] / self._new_puls_uf.get()) else: geo_problem = True ult_text = puls_res['Ultimate capacity']['Actual usage Factor'][0] if puls_res['Buckling strength']['Actual usage Factor'][0] != None: buc_text = 'Buckling capacity usage factor: ' + str(puls_res['Buckling strength'] ['Actual usage Factor'][ 0] / self._new_puls_uf.get()) else: buc_text = 'Buckling capacity usage factor: None - geometric issue' loc_label = 'Local geom req (PULS validity limits)' if \ obj_scnt_calc_pl.get_puls_sp_or_up() == 'SP' else 'Geom. Req (PULS validity limits)' csr_label = 'CSR-Tank requirements (primary stiffeners)' if \ obj_scnt_calc_pl.get_puls_sp_or_up() == 'SP' else 'CSR-Tank req' if geo_problem: loc_geom = 'Not ok: ' for key, value in puls_res[loc_label].items(): if value[0] == 'Not ok': loc_geom += key + ' ' else: loc_geom = 'Ok' if all( [val[0] == 'Ok' for val in puls_res[loc_label] .values()]) else 'Not ok' csr_geom = 'Ok' if all( [val[0] in ['Ok', '-'] for val in puls_res[csr_label] .values()]) else 'Not ok' loc_geom = loc_label + ': ' + loc_geom csr_geom = csr_label+': ' + csr_geom self._result_canvas.create_text([x * 1, y + (start_y+0) * dy], text='PULS results', font=self._text_size['Text 9 bold'], anchor='nw', fill = self._color_text) self._result_canvas.create_text([x * 1, y + (start_y+1) * dy], text=buc_text, font=self._text_size['Text 9 bold'], anchor='nw', fill=line_results['buckling']) self._result_canvas.create_text([x * 1, y + (start_y+2) * dy], text=ult_text, font=self._text_size['Text 9 bold'], anchor='nw', fill=line_results['ultimate']) self._result_canvas.create_text([x * 1, y + (start_y+3) * dy], text=loc_geom, font=self._text_size['Text 9 bold'], anchor='nw', fill=line_results['local geometry']) self._result_canvas.create_text([x * 1, y + (start_y+4) * dy], text=csr_geom, font=self._text_size['Text 9 bold'], anchor='nw', fill=line_results['csr']) else: self._result_canvas.create_text([x * 1, y + (start_y+0) * dy], text='PULS results not avaliable for this line.\n' 'Run or update lines.', font=self._text_size['Text 9 bold'], anchor='nw', fill='Orange') elif self._new_buckling_method.get() == 'DNV-RP-C201 - prescriptive': ''' return {'Plate': {'Plate buckling': up_buckling}, 'Stiffener': {'Overpressure plate side': stf_buckling_pl_side, 'Overpressure stiffener side': stf_buckling_stf_side, 'Resistance between stiffeners': stf_plate_resistance, 'Shear capacity': stf_shear_capacity}, 'Girder': {'Overpressure plate side': girder_buckling_pl_side, 'Overpressure girder side': girder_buckling_girder_side, 'Shear capacity': girder_shear_capacity}, 'Local buckling': local_buckling} ''' self._result_canvas.create_text([x * 1, (y+(start_y+0)*dy) * 1], text='Buckling results DNV-RP-C201 - prescriptive - (plate, stiffener, girder):', font=self._text_size["Text 9 bold"], anchor='nw', fill = self._color_text) self._result_canvas.create_text([x + dx*0, (y+(start_y+2)*dy) * 1], text='Overpressure plate side',font=self._text_size["Text 9"], anchor='nw',fill=self._color_text) self._result_canvas.create_text([x + dx*0, (y+(start_y+3)*dy) * 1], text='Overpressure stiffener side',font=self._text_size["Text 9"], anchor='nw',fill=self._color_text) self._result_canvas.create_text([x + dx*0, (y+(start_y+4)*dy) * 1], text='Resistance between stiffeners',font=self._text_size["Text 9"], anchor='nw',fill=self._color_text) self._result_canvas.create_text([x + dx*0, (y+(start_y+5)*dy) * 1], text='Shear capacity',font=self._text_size["Text 9"], anchor='nw',fill=self._color_text) self._result_canvas.create_text([x + dx*0, (y+(start_y+6)*dy) * 1], text='Maximum web height [mm]', font=self._text_size["Text 9"], anchor='nw',fill=self._color_text) self._result_canvas.create_text([x + dx*0, (y+(start_y+7)*dy) * 1], text='Maximum flange width [mm]', font=self._text_size["Text 9"], anchor='nw',fill=self._color_text) #'Local buckling' x1, x2, x3 = 15,25,35 self._result_canvas.create_text([x + dx*15, (y+(start_y+1)*dy) * 1], text='Plate',font=self._text_size["Text 9 bold"], anchor='nw',fill=self._color_text) self._result_canvas.create_text([x + dx*25, (y+(start_y+1)*dy) * 1], text='Stiffener',font=self._text_size["Text 9 bold"], anchor='nw',fill=self._color_text) self._result_canvas.create_text([x + dx*35, (y+(start_y+1)*dy) * 1], text='Girder',font=self._text_size["Text 9 bold"], anchor='nw',fill=self._color_text) x_mult = x1 self._result_canvas.create_text([x + dx*x_mult , (y+(start_y+2)*dy) * 1], text=str(round(buckling['Plate']['Plate buckling'],3)), font=self._text_size["Text 9 bold"], anchor='nw',fill=color_buckling) x_mult = x2 self._result_canvas.create_text([x + dx*x_mult, (y+(start_y+2)*dy) * 1], text=str(round(buckling['Stiffener']['Overpressure plate side'],3)), font=self._text_size["Text 9 bold"], anchor='nw',fill=color_buckling) self._result_canvas.create_text([x + dx*x_mult, (y+(start_y+3)*dy) * 1], text=str(round(buckling['Stiffener']['Overpressure stiffener side'],3)), font=self._text_size["Text 9 bold"], anchor='nw',fill=color_buckling) stfweb = round(buckling['Local buckling']['Stiffener'][0],3)*1000 stffl = round(buckling['Local buckling']['Stiffener'][1],3)*1000 self._result_canvas.create_text([x + dx*x_mult, (y+(start_y+4)*dy) * 1], text=str(round(buckling['Stiffener']['Resistance between stiffeners'],3)) ,font=self._text_size["Text 9 bold"], anchor='nw', fill= color_buckling) self._result_canvas.create_text([x + dx*x_mult, (y+(start_y+5)*dy) * 1], text=str(round(buckling['Stiffener']['Shear capacity'],3)), font=self._text_size["Text 9 bold"], anchor='nw', fill=color_buckling) self._result_canvas.create_text([x + dx*x_mult, (y+(start_y+6)*dy) * 1], text=str(stfweb), font=self._text_size["Text 9"], anchor='nw',fill=self._color_text if obj_scnt_calc_stf is None else 'red' if obj_scnt_calc_stf.hw > stfweb else 'green') self._result_canvas.create_text([x + dx*x_mult, (y+(start_y+7)*dy) * 1], text=str(stffl), font=self._text_size["Text 9"], anchor='nw',fill=self._color_text if obj_scnt_calc_stf is None else 'red' if obj_scnt_calc_stf.b > stffl else 'green') x_mult = x3 self._result_canvas.create_text([x + dx*x_mult, (y+(start_y+2)*dy) * 1], text=str(round(buckling['Girder']['Overpressure plate side'],3)), font=self._text_size["Text 9 bold"], anchor='nw',fill=color_buckling) self._result_canvas.create_text([x + dx*x_mult, (y+(start_y+3)*dy) * 1], text=str(round(buckling['Girder']['Overpressure girder side'],3)), font=self._text_size["Text 9 bold"], anchor='nw',fill=color_buckling) self._result_canvas.create_text([x + dx*x_mult, (y+(start_y+5)*dy) * 1], text=str(round(buckling['Girder']['Shear capacity'],3)), font=self._text_size["Text 9 bold"], anchor='nw',fill=color_buckling) gweb = round(buckling['Local buckling']['Girder'][0],3)*1000 gfl = round(buckling['Local buckling']['Girder'][1],3)*1000 self._result_canvas.create_text([x + dx*x_mult, (y+(start_y+6)*dy) * 1], text=str(gweb), font=self._text_size["Text 9"], anchor='nw',fill=self._color_text if obj_scnt_calc_girder is None else 'red' if obj_scnt_calc_girder.hw > gweb else 'green') self._result_canvas.create_text([x + dx*x_mult, (y+(start_y+7)*dy) * 1], text=str(gfl), font=self._text_size["Text 9"], anchor='nw',fill=self._color_text if obj_scnt_calc_girder is None else 'red' if obj_scnt_calc_girder.b > gfl else 'green') # # self._result_canvas.create_text([x + dx*x_mult, (y+(start_y+7)*dy) * 1], # text=str(round(buckling['Local buckling']['Girder'][1],3)), # font=self._text_size["Text 9"], # anchor='nw',fill=color_buckling) elif self._new_buckling_method.get() == 'ML-CL (PULS based)': self._result_canvas.create_text([x * 1, (y+(start_y+0)*dy) * 1], text='Buckling results ANYstructure ML algorithm:', font=self._text_size["Text 9 bold"], anchor='nw', fill = self._color_text) self._result_canvas.create_text([x * 1, (y+(start_y+1)*dy) * 1], text='Buckling: ' + self._ML_classes[state['ML buckling class'][current_line]['buckling']], font=self._text_size["Text 9 bold"], anchor='nw', fill=state['ML buckling colors'][current_line]['buckling']) self._result_canvas.create_text([x * 1, (y+(start_y+2)*dy) * 1], text='Ultimate: ' +self._ML_classes[state['ML buckling class'][current_line]['ultimate']], font=self._text_size["Text 9 bold"], anchor='nw', fill=state['ML buckling colors'][current_line]['ultimate']) if obj_scnt_calc_pl.get_puls_sp_or_up() == 'SP': csr = state['ML buckling class'][current_line]['CSR'] csr_str = ['Ok' if csr[0] == 1 else 'Not ok', 'Ok' if csr[1] == 1 else 'Not ok', 'Ok' if csr[2] == 1 else 'Not ok', 'Ok' if csr[3] == 1 else 'Not ok'] self._result_canvas.create_text([x * 1, (y+(start_y+3)*dy) * 1], text='CSR requirements (stiffener): plate-'+ csr_str[0]+ ' web-'+ csr_str[1] + ' web/flange ratio-'+ csr_str[2] + ' flange-'+ csr_str[3] , font=self._text_size["Text 9"], anchor='nw', fill=state['ML buckling colors'][current_line]['CSR requirement']) else: csr = state['ML buckling class'][current_line]['CSR'] csr_str = 'Ok' if csr[0] == 1 else 'Not ok' self._result_canvas.create_text([x * 1, (y+(start_y+3)*dy) * 1], text='CSR requirements (stiffener): Plate slenderness -'+ csr_str, font=self._text_size["Text 9"], anchor='nw', fill=state['ML buckling colors'][current_line]['CSR requirement']) # fatigue results self._result_canvas.create_text([x * 1, (y+(start_y+8)*dy) * 1], text='Fatigue results (DNVGL-RP-C203): ', font=self._text_size["Text 9 bold"], anchor='nw', fill = self._color_text) if self._line_to_struc[current_line][2] != None: if state['fatigue'][current_line]['damage'] is not None: damage = state['fatigue'][current_line]['damage'] dff = state['fatigue'][current_line]['dff'] self._result_canvas.create_text([x * 1, (y + (start_y+9) * dy) * 1], text='Total damage (DFF not included): '+str(round(damage,3)) + ' | With DFF = '+str(dff)+' --> Damage: '+ str(round(damage*dff,3)), font=self._text_size["Text 9 bold"], anchor='nw', fill=color_fatigue) else: self._result_canvas.create_text([x * 1, (y + (start_y+9) * dy) * 1], text='Total damage: NO RESULTS ', font=self._text_size["Text 9 bold"], anchor='nw', fill = self._color_text) else: self._result_canvas.create_text([x * 1, (y + (start_y+9) * dy) * 1], text='Total damage: NO RESULTS ', font=self._text_size["Text 9 bold"], anchor='nw', fill = self._color_text) elif self._active_line in self._line_to_struc and self._line_to_struc[self._active_line][5] is not None: ''' Cylinder calculations 'cylinder' = {'Unstiffened shell': uf_unstf_shell, 'Longitudinal stiffened shell': uf_long_stf, 'Ring stiffened shell': uf_ring_stf, 'Heavy ring frame': uf_ring_frame, 'Column stability check': column_stability, 'Stiffener check': stiffener_check} ''' cyl_obj = self._line_to_struc[self._active_line][5] text = 'Results for cylinders and curved plates/panels:' self._result_canvas.create_text([x * 1, y * 1], text=text, font=self._text_size['Text 12 bold'], anchor='nw', fill = self._color_text) y_location = 3 results = cyl_obj.get_utilization_factors() for key, value in results.items(): if key in ['Weight', 'Need to check column buckling']: continue if all([key != 'Stiffener check', key != 'Stiffener check detailed']): text_key = key if key == 'Column stability check': if 'Need to check column buckling' in results.keys(): if results['Need to check column buckling'] == False: continue text_value = 'N/A' if value is None else 'OK' if value else 'Not ok' else: text_value = 'N/A' if value is None else str(round(value, 2)) if value is None: uf_col = 'grey' else: uf_col = 'red' if any([value > 1, value == False]) else 'green' self._result_canvas.create_text([x*1, y+dy*y_location], text=text_key,font=self._text_size['Text 10 bold'],anchor='nw', fill = self._color_text) self._result_canvas.create_text([dx*20, dy*y_location], text=text_value,font=self._text_size['Text 10 bold'],anchor='nw', fill=uf_col) elif key == 'Stiffener check': if value is not None: y_location +=1 self._result_canvas.create_text([x, dy*y_location], text='Stiffener requirement checks:', font=self._text_size['Text 10 bold'], anchor='nw', fill = self._color_text) y_location += 1 idx_y, idx_x = 0, 0 for stf_type, chk_bool in value.items(): stf_text = stf_type if stf_type == 'ring frame': continue chk_text = 'OK' if chk_bool == True else 'failed' if chk_bool == False else 'N/A' self._result_canvas.create_text([15*dx*idx_x, dy*y_location], text=stf_text, font=self._text_size['Text 10 bold'], anchor='nw', fill=self._color_text if not value else 'black') self._result_canvas.create_text([15*dx*idx_x, y + (y_location+1)*dy], text=chk_text, font=self._text_size['Text 10 bold'], anchor='nw', fill='green' if chk_bool == True else 'red' if chk_bool == False else self._color_text) self._result_canvas.create_text([15*dx*idx_x, y + (y_location+2)*dy], text=results['Stiffener check detailed'][stf_type], font=self._text_size['Text 10'], anchor='nw', fill='green' if chk_bool == True else 'red' if chk_bool == False else self._color_text) idx_y += 1 idx_x += 1 y_location += 1 def report_generate(self, autosave = False): ''' Button is pressed to generate a report of the current structure. :return: ''' if not autosave: save_file = filedialog.asksaveasfile(mode="w", defaultextension=".pdf") filename = save_file.name if save_file is None: # ask saveasfile return `None` if dialog closed with "cancel". return else: filename = '../testrun.pdf' if self._line_dict == {}: tk.messagebox.showerror('No lines', 'No lines defined. Cannot make report.') return if os.path.isfile('../current_comps.png'): os.remove('../current_comps.png') self.grid_display_tanks(save = True) else: self.grid_display_tanks(save=True) doc = LetterMaker(filename, "Section results", 10, self) doc.createDocument() doc.savePDF() try: os.startfile(filename) except FileNotFoundError: pass self._new_colorcode_beams.set(False) self._new_colorcode_plates.set(False) self._new_colorcode_pressure.set(False) self.update_frame() def table_generate(self, autosave = False): if not autosave: save_file = filedialog.asksaveasfile(mode="w", defaultextension=".pdf") filename = save_file.name if save_file is None: # ask saveasfile return `None` if dialog closed with "cancel". return else: filename = '../testrun.pdf' if self._line_dict == {}: tk.messagebox.showerror('No lines', 'No lines defined. Cannot make report.') return doc_dat = LetterMaker(filename, "Section results", 10, self) doc = SimpleDocTemplate(filename, pagesize=landscape(letter)) elements = doc_dat.createTable() doc.build(elements) try: os.startfile(filename) except FileNotFoundError: pass self._new_colorcode_beams.set(False) self._new_colorcode_plates.set(False) self._new_colorcode_pressure.set(False) self.update_frame() def create_accelerations(self): ''' Set the selected accelerations. :return: ''' try: self._accelerations_dict['static'] = self._new_static_acc.get() self._accelerations_dict['dyn_loaded'] = self._new_dyn_acc_loaded.get() self._accelerations_dict['dyn_ballast'] = self._new_dyn_acc_ballast.get() if len(self._tank_dict) != 0: for tank, data in self._tank_dict.items(): data.set_acceleration(self._accelerations_dict) for line, obj in self._line_to_struc.items(): obj[0].need_recalc = True except TclError: messagebox.showinfo(title='Input error', message='Input must be a number. Dots used not comma.') def new_point(self,copy=False,move=False, redo = None): ''' Adds a point number and coordinates to the point dictionary. Type is 'p1' = [x0,y0] ''' try: if copy: x_coord = self._new_point_x.get()/1000 + self._point_dict[self._active_point][0] y_coord = self._new_point_y.get()/1000 + self._point_dict[self._active_point][1] elif move: x_coord = self._new_point_x.get()/1000 + self._point_dict[self._active_point][0] \ if redo is None else redo[0] y_coord = self._new_point_y.get()/1000 + self._point_dict[self._active_point][1]\ if redo is None else redo[1] else: x_coord = (self._new_point_x.get() / 1000) y_coord = (self._new_point_y.get() / 1000) # Finding name of the new point current_point = '' if move: current_point, current_coords = self._active_point, self._point_dict[self._active_point] else: found_name = False if len(self._point_dict) == 0: current_point = 'point1' found_name = True else: counter = 1 while not found_name: current_point = 'point'+str(counter) if current_point not in self._point_dict.keys(): found_name = True else: counter += 1 self._new_line_p1.set(get_num(current_point)) # Creating the point # No point is created if another point is already there if [x_coord,y_coord] not in self._point_dict.values(): self._point_dict[current_point] = [x_coord, y_coord] self._active_point = current_point if move: self.logger(point=current_point, move_coords=(current_coords,[x_coord, y_coord])) else: self.logger(point=current_point, move_coords=None) self.update_frame() except TclError: messagebox.showinfo(title='Input error', message='Input must be a number. Dots used not comma.') def move_line(self,event = None): if self._line_is_active: line = self._line_dict[self._active_line] for pt_num in self._line_dict[self._active_line]: self._active_point = 'point'+str(pt_num) self._point_is_active = True self.move_point() else: messagebox.showinfo(title='Input error', message='A line must be selected (left click).') def move_point(self, event = None, redo = None): ''' Moving a point. :return: ''' if self._point_is_active: self.new_point(move=True, redo=redo) # doing the actual moving for line,data in self._line_dict.items(): # updating the span and deleting compartments (if not WT) if get_num(self._active_point) in data: coord1 = self._point_dict['point'+str(data[0])] coord2 = self._point_dict['point'+str(data[1])] if line in self._line_to_struc.keys(): self._line_to_struc[line][0].Plate.set_span(dist(coord1,coord2)) self._line_to_struc[line][0].Plate.set_span(dist(coord1, coord2)) if self._PULS_results is not None: self._PULS_results.result_changed(line) if self._line_to_struc[line][0].Plate.get_structure_type() not in ['GENERAL_INTERNAL_NONWT', 'FRAME']: self._tank_dict = {} self._main_grid.clear() self._compartments_listbox.delete(0, 'end') for line, obj in self._line_to_struc.items(): obj[0].need_recalc = True self.update_frame() else: messagebox.showinfo(title='Input error', message='A point must be selected (right click).') def copy_point(self, event = None): ''' Using the same input as new point, but with separate button. :return: ''' if self._point_is_active: self.new_point(copy=True) else: messagebox.showinfo(title='Input error', message='A point must be selected (right click).') def new_line(self, event = None, redo = None): ''' Adds line to line dictionary. Type is 'line1' = [p1,p2] ''' try: # if's ensure that the new line does not exist already and that the point input is not an invalid point. if redo is None: first_point, second_point = 'point' + str(self._new_line_p1.get()), \ 'point' + str(self._new_line_p2.get()) else: first_point, second_point = redo first_point_num, second_point_num = get_num(first_point), get_num(second_point) if first_point in self._point_dict.keys() and second_point in self._point_dict.keys() \ and first_point != second_point: line_str, line_str_rev = self.make_point_point_line_string(first_point_num, second_point_num) if line_str and line_str_rev not in self._line_point_to_point_string: name = False counter = 1 while not name: current_name = 'line' + str(counter) if current_name not in self._line_dict.keys(): name = True counter += 1 self._line_dict[current_name] = [first_point_num, second_point_num] self.update_frame() self.logger(line=[current_name, redo]) # making stings from two points difining the lines, e.g. for line 1 string could be 'p1p2' and 'p2p1' self._line_point_to_point_string.append(line_str) self._line_point_to_point_string.append(line_str_rev) self.add_to_combinations_dict(current_name) for line, obj in self._line_to_struc.items(): obj[0].need_recalc = True except TclError: messagebox.showinfo(title='Input error', message='Input must be a line number.') def new_structure(self, event = None, pasted_structure = None, multi_return = None, toggle_multi = None, suspend_recalc = False, cylinder_return = None): ''' This method maps the structure to the line when clicking "add structure to line" button. The result is put in a dictionary. Key is line name and value is the structure object. self_line_to_stuc [0] AllStructure class [1] None [2] calc fatigue class instance [3] load class instance [4] None [5] Cylinder buckling data :return: ''' if multi_return is None: self.save_no_dialogue(backup=True) #keeping a backup if all([pasted_structure == None, multi_return == None]): missing_input = False if self._new_calculation_domain.get() in ['Flat plate, stiffened', 'Flat plate, unstiffened', 'Flat plate, stiffened with girder']: if any([self._new_stf_spacing.get()==0, self._new_plate_thk.get()==0, self._new_stf_web_h.get()==0, self._new_stf_web_t.get()==0]): # TODO must account for calculation domain missing_input = True if missing_input: mess = tk.messagebox.showwarning('No propertied defined', 'No properties is defined for the line!\n' 'Define spacing, web height, web thickness etc.\n' 'Either press button with stiffener or input ' 'manually.', type='ok') return if self._line_is_active or multi_return != None: # structure dictionary: name of line : [ 0.Structure class, 1.calc scantling class, # 2.calc fatigue class, 3.load object, 4.load combinations result ] CylinderObj = None if multi_return is not None: prop_dict = multi_return[0].get_main_properties() # From optimizer. elif toggle_multi is not None: prop_dict = toggle_multi elif pasted_structure is None: calc_dom = self._new_calculation_domain.get() obj_dict = {'mat_yield': [self._new_material.get()*1e6, 'Pa'], 'mat_factor': [self._new_material_factor.get(), ''], 'span': [self._new_field_len.get()/1000, 'm'], 'spacing': [self._new_stf_spacing.get()/1000, 'm'], 'plate_thk': [self._new_plate_thk.get()/1000, 'm'], 'stf_web_height': [self._new_stf_web_h.get()/1000, 'm'], 'stf_web_thk': [self._new_stf_web_t.get()/1000, 'm'], 'stf_flange_width': [self._new_stf_fl_w.get()/1000, 'm'], 'stf_flange_thk': [self._new_stf_fl_t.get()/1000, 'm'], 'structure_type': [self._new_stucture_type.get(), ''], 'stf_type': [self._new_stf_type.get(), ''], 'sigma_y1': [self._new_sigma_y1.get(), 'MPa'], 'sigma_y2': [self._new_sigma_y2.get(), 'MPa'], 'sigma_x1': [self._new_sigma_x1.get(), 'MPa'], 'sigma_x2': [self._new_sigma_x2.get(), 'MPa'], 'tau_xy': [self._new_tauxy.get(), 'MPa'], 'plate_kpp': [self._new_plate_kpp.get(), ''], 'stf_kps': [self._new_stf_kps.get(), ''], 'stf_km1': [self._new_stf_km1.get(), ''], 'stf_km2': [self._new_stf_km2.get(), ''], 'stf_km3': [self._new_stf_km3.get(), ''], 'press_side': [self._new_pressure_side.get(), ''], 'structure_types':[self._structure_types, ''], 'zstar_optimization': [self._new_zstar_optimization.get(), ''], 'puls buckling method': [self._new_puls_method.get(), ''], 'puls boundary': [self._new_puls_panel_boundary.get(), ''], 'puls stiffener end': [self._new_buckling_stf_end_support.get(), ''], 'puls sp or up': [self._new_puls_sp_or_up.get(), ''], 'puls up boundary': [self._new_puls_up_boundary.get(), ''], 'panel or shell': [self._new_panel_or_shell.get(), ''], 'girder_lg': [self._new_girder_length_LG.get()/1000, '']} obj_dict_pl = copy.copy(obj_dict) obj_dict_stf = copy.copy(obj_dict) obj_dict_girder = copy.copy(obj_dict) obj_dict_girder['stf_web_height'] = [self._new_girder_web_h.get()/1000, 'm'] obj_dict_girder['stf_web_thk'] = [self._new_girder_web_t.get() / 1000, 'm'] obj_dict_girder['stf_flange_width'] = [self._new_girder_fl_w.get() / 1000, 'm'] obj_dict_girder['stf_flange_thk'] = [self._new_girder_fl_t.get() / 1000, 'm'] obj_dict_girder['stf_type'] = [self._new_girder_type.get(), ''] main_dict = dict() main_dict['minimum pressure in adjacent spans'] = [self._new_buckling_min_press_adj_spans.get(), ''] main_dict['material yield'] = [self._new_material.get()*1e6, 'Pa'] main_dict['load factor on stresses'] = [self._new_buckling_lf_stresses.get(), ''] main_dict['load factor on pressure'] = [1, ''] main_dict['buckling method'] = [self._new_puls_method.get(), ''] main_dict['stiffener end support'] =[self._new_buckling_stf_end_support.get(), ''] # 'Continuous' main_dict['girder end support'] = [self._new_buckling_girder_end_support.get(), ''] # 'Continuous' main_dict['tension field'] = [self._new_buckling_tension_field.get(), ''] # 'not allowed' main_dict['plate effective agains sigy'] = [self._new_buckling_effective_against_sigy.get(), ''] # True main_dict['buckling length factor stf'] = [self._new_buckling_length_factor_stf.get(), ''] main_dict['buckling length factor girder'] = [self._new_buckling_length_factor_stf.get(), ''] main_dict['km3'] = [self._new_buckling_km3.get(), ''] # 12 main_dict['km2'] = [self._new_buckling_km2.get(), ''] # 24 main_dict['girder distance between lateral support'] = [self._new_buckling_girder_dist_bet_lat_supp.get(), ''] main_dict['stiffener distance between lateral support'] = [self._new_buckling_stf_dist_bet_lat_supp.get(), ''] main_dict['panel length, Lp'] = [self._new_panel_length_Lp.get(), ''] main_dict['pressure side'] = [self._new_pressure_side.get(), ''] # either 'stiffener', 'plate', 'both' main_dict['fabrication method stiffener'] = [self._new_buckling_fab_method_stf.get(), ''] main_dict['fabrication method girder'] = [self._new_buckling_fab_method_girder.get(), ''] main_dict['calculation domain'] = [self._new_calculation_domain.get(), ''] prop_dict = {'main dict': main_dict, 'Plate': obj_dict_pl, 'Stiffener': None if calc_dom == 'Flat plate, unstiffened' else obj_dict_stf, 'Girder': None if calc_dom in ['Flat plate, unstiffened', 'Flat plate, stiffened'] else obj_dict_girder} if self._new_calculation_domain.get() not in ['Flat plate, stiffened','Flat plate, unstiffened', 'Flat plate, stiffened with girder'] and cylinder_return is None: ''' Shell structure. 0:'Stiffened panel, flat', 1:'Unstiffened shell (Force input)', 2:'Unstiffened panel (Stress input)', 3:'Longitudinal Stiffened shell (Force input)', 4:'Longitudinal Stiffened panel (Stress input)', 5:'Ring Stiffened shell (Force input)', 6:'Ring Stiffened panel (Stress input)', 7:'Orthogonally Stiffened shell (Force input)', 8:'Orthogonally Stiffened panel (Stress input)' ''' domain_string = self._new_calculation_domain.get() domain_int = self._shell_geometries_map[domain_string] dummy_data = {'span': [self._new_field_len.get()/1000, 'm'], 'plate_thk': [self._new_plate_thk.get()/1000, 'm'], 'structure_type': [self._new_stucture_type.get(), ''], 'sigma_y1': [self._new_sigma_y1.get(), 'MPa'], 'sigma_y2': [self._new_sigma_y2.get(), 'MPa'], 'sigma_x1': [self._new_sigma_x1.get(), 'MPa'], 'sigma_x2': [self._new_sigma_x2.get(), 'MPa'], 'tau_xy': [self._new_tauxy.get(), 'MPa'], 'plate_kpp': [self._new_plate_kpp.get(), ''], 'stf_kps': [self._new_stf_kps.get(), ''], 'stf_km1': [self._new_stf_km1.get(), ''], 'stf_km2': [self._new_stf_km2.get(), ''], 'stf_km3': [self._new_stf_km3.get(), ''], 'press_side': [self._new_pressure_side.get(), ''], 'structure_types':[self._structure_types, ''], 'zstar_optimization': [self._new_zstar_optimization.get(), ''], 'puls buckling method': [self._new_puls_method.get(), ''], 'puls boundary': [self._new_puls_panel_boundary.get(), ''], 'puls stiffener end': [self._new_buckling_stf_end_support.get(), ''], 'puls sp or up': [self._new_puls_sp_or_up.get(), ''], 'puls up boundary': [self._new_puls_up_boundary.get(), ''], 'panel or shell': [self._new_panel_or_shell.get(), ''], 'mat_factor': [self._new_material_factor.get(), '',], 'spacing': [self._new_stf_spacing.get()/1000, 'm'],} # Main class input # Shell data input shell_dict = {'plate_thk': [self._new_shell_thk.get() / 1000, 'm'], 'radius': [self._new_shell_radius.get() / 1000, 'm'], 'distance between rings, l': [self._new_shell_dist_rings.get() / 1000, 'm'], 'length of shell, L': [self._new_shell_length.get() / 1000, 'm'], 'tot cyl length, Lc': [self._new_shell_tot_length.get() / 1000, 'm'], 'eff. buckling lenght factor': [self._new_shell_k_factor.get(), ''], 'mat_yield': [self._new_shell_yield.get() * 1e6, 'Pa'], } # Longitudinal stiffener input long_dict = {'spacing': [self._new_stf_spacing.get() / 1000, 'm'], 'stf_web_height': [self._new_stf_web_h.get() / 1000, 'm'], 'stf_web_thk': [self._new_stf_web_t.get() / 1000, 'm'], 'stf_flange_width': [self._new_stf_fl_w.get() / 1000, 'm'], 'stf_flange_thk': [self._new_stf_fl_t.get() / 1000, 'm'], 'stf_type': [self._new_stf_type.get(), ''], 'span': [self._new_field_len.get()/1000, 'm'], 'mat_yield': [self._new_shell_yield.get() * 1e6, 'Pa'], 'panel or shell': ['shell', '']} ring_stf_dict = {'stf_web_height': [self._new_shell_ring_stf_hw.get() / 1000, 'm'], 'stf_web_thk': [self._new_shell_ring_stf_tw.get() / 1000, 'm'], 'stf_flange_width': [self._new_shell_ring_stf_b.get() / 1000, 'm'], 'stf_flange_thk': [self._new_shell_ring_stf_tf.get() / 1000, 'm'], 'stf_type': [self._new_shell_ring_stf_type.get(), ''], 'mat_yield': [self._new_shell_yield.get() * 1e6, 'Pa'], 'panel or shell': ['shell', '']} ring_frame_dict = {'stf_web_height': [self._new_shell_ring_frame_hw.get() / 1000, 'm'], 'stf_web_thk': [self._new_shell_ring_frame_tw.get() / 1000, 'm'], 'stf_flange_width': [self._new_shell_ring_frame_b.get() / 1000, 'm'], 'stf_flange_thk': [self._new_shell_ring_frame_tf.get() / 1000, 'm'], 'stf_type': [self._new_shell_ring_frame_type.get(), ''], 'span': [self._new_field_len.get()/1000, 'm'], 'mat_yield': [self._new_shell_yield.get() * 1e6, 'Pa'], 'panel or shell': ['shell', '']} geometry = self._shell_geometries_map[self._new_calculation_domain.get()] if self._new_shell_stress_or_force.get() == 1: forces = [self._new_shell_Nsd.get(), self._new_shell_Msd.get(), \ self._new_shell_Tsd.get(), self._new_shell_Qsd.get()] sasd, smsd, tTsd, tQsd, shsd = hlp.helper_cylinder_stress_to_force_to_stress( stresses=None, forces=forces, geometry=geometry, shell_t=self._new_shell_thk.get(), shell_radius=self._new_shell_radius.get(), shell_spacing=self._new_stf_spacing.get(), hw=self._new_stf_web_h.get(), tw=self._new_stf_web_t.get(), b=self._new_stf_fl_w.get(), tf=self._new_stf_fl_t.get(), CylinderAndCurvedPlate=CylinderAndCurvedPlate) self._new_shell_sasd.set(sasd) self._new_shell_smsd.set(smsd) self._new_shell_tTsd.set(tTsd) self._new_shell_tQsd.set(tQsd) #self._new_shell_shsd.set(0) else: stresses = [self._new_shell_sasd.get(), self._new_shell_smsd.get(), abs(self._new_shell_tTsd.get()), self._new_shell_tQsd.get(), self._new_shell_shsd.get()] sasd, smsd, tTsd, tQsd, shsd = stresses Nsd, Msd, Tsd, Qsd, shsd = hlp.helper_cylinder_stress_to_force_to_stress( stresses=stresses, geometry=geometry, shell_t=self._new_shell_thk.get(), shell_radius=self._new_shell_radius.get(), shell_spacing=self._new_stf_spacing.get(), hw=self._new_stf_web_h.get(), tw=self._new_stf_web_t.get(), b=self._new_stf_fl_w.get(), tf=self._new_stf_fl_t.get(), CylinderAndCurvedPlate=CylinderAndCurvedPlate) self._new_shell_Nsd.set(Nsd) self._new_shell_Msd.set(Msd) self._new_shell_Tsd.set(Tsd) self._new_shell_Qsd.set(Qsd) main_dict_cyl = {'sasd': [sasd*1e6, 'Pa'], 'smsd': [smsd*1e6, 'Pa'], 'tTsd': [tTsd*1e6, 'Pa'], 'tQsd': [tQsd*1e6, 'Pa'], 'psd': [self._new_shell_psd.get() *1e6, 'Pa'], 'shsd': [shsd *1e6, 'Pa'], 'geometry': [self._shell_geometries_map[self._new_calculation_domain.get()], ''], 'material factor': [self._new_shell_mat_factor.get(), ''], 'delta0': [0.005, ''], 'fab method ring stf': [self._new_shell_ring_stf_fab_method.get(), ''], 'fab method ring girder': [self._new_shell_ring_frame_fab_method.get(), ''], 'E-module': [self._new_shell_e_module.get(), 'Pa'], 'poisson': [self._new_shell_poisson.get(), ''], 'mat_yield': [self._new_shell_yield.get() *1e6, 'Pa'], 'length between girders': [self._new_shell_ring_frame_length_between_girders.get()/1000, 'm'], 'panel spacing, s': [self._new_shell_panel_spacing.get()/1000, 'm'], 'ring stf excluded': [self._new_shell_exclude_ring_stf.get(), ''], 'ring frame excluded': [self._new_shell_exclude_ring_frame.get(), '',], 'ULS or ALS': [self._new_shell_uls_or_als.get(), '',], 'end cap pressure': [self._new_shell_end_cap_pressure_included.get(), ''] } for key, value in dummy_data.items(): if key not in long_dict.keys(): long_dict[key] = value if key not in ring_stf_dict.keys(): ring_stf_dict[key] = value if key not in ring_frame_dict.keys(): ring_frame_dict[key] = value CylinderObj = CylinderAndCurvedPlate(main_dict_cyl, Shell(shell_dict), long_stf=None if geometry in [1,2,5,6] else Structure(long_dict), ring_stf=None if any([geometry in [1,2,3,4], self._new_shell_exclude_ring_stf.get()]) else Structure(ring_stf_dict), ring_frame=None if any([geometry in [1,2,3,4], self._new_shell_exclude_ring_frame.get()]) else Structure(ring_frame_dict)) elif cylinder_return is not None: main_dict_cyl, shell_dict, long_dict, ring_stf_dict, ring_frame_dict = \ cylinder_return.get_all_properties() else: prop_dict = pasted_structure.get_main_properties() if self._active_line not in self._line_to_struc.keys() : self._line_to_struc[self._active_line] = [None, None, None, [None], {}, None] # First entry # Flat plate domains: 'Flat plate, stiffened with girder', 'Flat plate, stiffened', Flat plate, unstiffened' cdom = self._new_calculation_domain.get() All = AllStructure(Plate=CalcScantlings(prop_dict['Plate']), Stiffener=None if cdom == 'Flat plate, unstiffened' else CalcScantlings(prop_dict['Stiffener']), Girder=None if cdom in ['Flat plate, unstiffened', 'Flat plate, stiffened'] else CalcScantlings(prop_dict['Girder']), main_dict=prop_dict['main dict']) self._sections = add_new_section(self._sections, struc.Section(obj_dict_stf)) # TODO error when pasting self._line_to_struc[self._active_line][0] = All self._line_to_struc[self._active_line][5] = CylinderObj if self._line_to_struc[self._active_line][0].Plate.get_structure_type() not in \ self._structure_types['non-wt']: self._tank_dict = {} self._main_grid.clear() self._compartments_listbox.delete(0, 'end') if self._new_calculation_domain.get() not in ['Flat plate, stiffened','Flat plate, unstiffened', 'Flat plate, stiffened with girder']: CylinderObj = CylinderAndCurvedPlate(main_dict_cyl, Shell(shell_dict), long_stf=None if geometry in [1,2,5,6] else Structure(long_dict), ring_stf=None if any([geometry in [1,2,3,4], self._new_shell_exclude_ring_stf.get()]) else Structure(ring_stf_dict), ring_frame=None if any([geometry in [1,2,3,4], self._new_shell_exclude_ring_frame.get()]) else Structure(ring_frame_dict)) self._line_to_struc[self._active_line][5] = CylinderObj else: # if self._new_calculation_domain.get() in ['Flat plate, stiffened','Flat plate, unstiffened', # 'Flat plate, stiffened with girder'] and \ # self._line_to_struc[self._active_line][5] is not None: # self._line_to_struc[self._active_line][5] = None prev_type = self._line_to_struc[self._active_line][0].Plate.get_structure_type() prev_all_obj = copy.deepcopy(self._line_to_struc[self._active_line][0]) self._line_to_struc[self._active_line][0].set_main_properties(prop_dict) if self._new_scale_stresses.get() and prev_all_obj.get_main_properties() != \ self._line_to_struc[self._active_line][0].get_main_properties(): if prev_all_obj.Stiffener is not None: plate = self._line_to_struc[self._active_line][0].Plate stiffener = self._line_to_struc[self._active_line][0].Stiffener girder = self._line_to_struc[self._active_line][0].Girder calc_tup = (plate.get_s(), plate.get_pl_thk(), stiffener.get_web_h(), stiffener.get_web_thk(), stiffener.get_fl_w(), stiffener.get_fl_thk(), plate.get_span(), stiffener.get_lg() if girder is None else girder.get_lg(), stiffener.stiffener_type) else: calc_tup = self._line_to_struc[self._active_line][0].Plate.get_tuple() self._line_to_struc[self._active_line][0] = op.create_new_calc_obj(prev_all_obj, calc_tup, fup=self._new_fup.get(), fdwn=self._new_fdwn.get())[0] self._line_to_struc[self._active_line][0].need_recalc = True if self._line_to_struc[self._active_line][2] is not None: calc_dom = self._line_to_struc[self._active_line][0].calculation_domain if calc_dom == 'Flat plate, unstiffened': self._line_to_struc[self._active_line][2] = None else: self._line_to_struc[self._active_line][2].set_main_properties(prop_dict['Stiffener']) if prev_type in self._structure_types['non-wt'] and prop_dict['Plate']['structure_type'][0] in \ self._structure_types['internals'] + self._structure_types['horizontal'] + \ self._structure_types['vertical']: self._tank_dict = {} self._main_grid.clear() self._compartments_listbox.delete(0, 'end') if all([CylinderObj is None, cylinder_return is None, self._line_to_struc[self._active_line][5] is not None]): self._line_to_struc[self._active_line][5] = None elif CylinderObj is not None: if self._line_to_struc[self._active_line][5] is not None and self._new_scale_stresses.get(): NewCylinderObj = op.create_new_cylinder_obj(self._line_to_struc[self._active_line][5], CylinderObj.get_x_opt()) NewCylinderObj.LongStfObj = None if CylinderObj.LongStfObj is None \ else NewCylinderObj.LongStfObj NewCylinderObj.RingStfObj = None if CylinderObj.RingStfObj is None \ else NewCylinderObj.RingStfObj NewCylinderObj.RingFrameObj = None if CylinderObj.RingFrameObj is None \ else NewCylinderObj.RingFrameObj self._line_to_struc[self._active_line][5] = CylinderObj elif cylinder_return is not None: self._line_to_struc[self._active_line][5] = cylinder_return try: self.calculate_all_load_combinations_for_line_all_lines() except (KeyError, AttributeError): pass else: pass if self._PULS_results != None: self._PULS_results.result_changed(self._active_line) if not suspend_recalc: # when changing multiple parameters, recalculations are suspended. for line, obj in self._line_to_struc.items(): obj[0].need_recalc = True state = self.update_frame() if state != None and self._line_is_active: self._weight_logger['new structure']['COG'].append(self.get_color_and_calc_state()['COG']) self._weight_logger['new structure']['weight'].append(self.get_color_and_calc_state()['Total weight']) self._weight_logger['new structure']['time'].append(time.time()) self.cylinder_gui_mods() self.get_unique_plates_and_beams() def option_meny_structure_type_trace(self, event): ''' Updating of the values in the structure type option menu. ''' self._new_sigma_y1.set(self._default_stresses[self._new_stucture_type.get()][0]) self._new_sigma_y2.set(self._default_stresses[self._new_stucture_type.get()][1]) self._new_sigma_x1.set(self._default_stresses[self._new_stucture_type.get()][2]) self._new_sigma_x2.set(self._default_stresses[self._new_stucture_type.get()][3]) self._new_tauxy.set(self._default_stresses[self._new_stucture_type.get()][4]) if self._new_stucture_type.get() in self._structure_types['vertical']: text = '(Vertical pressure calc.)' elif self._new_stucture_type.get() in self._structure_types['horizontal']: text = '(Horizontal pressure calc.)' elif self._new_stucture_type.get() in self._structure_types['non-wt']: text = '(Non-WT (pressure = 0))' elif self._new_stucture_type.get() in self._structure_types['internals']: text = '(Internal, pressure from comp.)' else: text = '' self._new_stucture_type_label.set(text) def tank_density_trace(self, event): ''' Setting tank densities ''' self._new_density.set(self._tank_options[self._new_content_type.get()]) def new_tank(self,comp_no,cells, min_el, max_el): ''' Creating the tanks. :return: ''' # points, self._point_dict, content), point self.save_no_dialogue(backup=True) # keeping a backup temp_tank_dict = { 'comp_no' : comp_no, 'cells' : cells, 'min_el' : min_el[1], 'max_el' : max_el[1], 'content' : self._new_content_type.get(), 'added_press' : self._new_overpresure.get(), 'acc' : self._accelerations_dict, 'density' : self._new_density.get(), 'all_types' : self._options_type} self._tank_dict['comp' + str(comp_no)] = Tanks(temp_tank_dict) if self.__returned_load_data is not None: map(self.on_close_load_window, self.__returned_load_data) self.get_cob() # Recalculating COB def get_cob(self): ''' Calculation of center of buoyancy. ''' self._center_of_buoyancy = dict() self._center_of_buoyancy['all'] = self._grid_calc.grid.get_center_of_matrix(scale=self._base_scale_factor) for load, data in self._load_dict.items(): if data[0].is_static(): draft = data[0].get_static_draft() cob = self._grid_calc.grid.get_center_of_matrix(height_limit=draft, scale=self._base_scale_factor) self._center_of_buoyancy[draft] = cob def calculate_all_load_combinations_for_line_all_lines(self): ''' Calculating all results. :return: ''' line_results = {} for line, data in self._line_to_struc.items(): line_results[line] = data[1].is_acceptable_sec_mod( data[1].get_section_modulus(), self.get_highest_pressure(line)['normal']) return line_results def calculate_all_load_combinations_for_line(self, line, limit_state = 'ULS', get_load_info = False): ''' Calculating pressure for line. self._load_factors_dict = {'dnva':[1.3,1.2,0.7], 'dnvb':[1,1,1.3], 'tanktest':[1,1,1]} # DNV loads factors self._load_conditions = ['loaded', 'ballast','tanktest'] :return: ''' if limit_state == 'FLS': return results = {} #dict - dnva/dnvb/tanktest/manual load_info = [] # calculating for DNV a and DNV b for dnv_ab in ['dnva', 'dnvb']: #, load_factors in self._load_factors_dict.items(): results[dnv_ab] = [] for load_condition in self._load_conditions[0:2]: returned = self.calculate_one_load_combination(line, dnv_ab, load_condition) if returned != None: results[dnv_ab].append(returned[0]) [load_info.append(val) for val in returned[1]] # calculating for tank test condition results['tanktest'] = [] res_val = self.calculate_one_load_combination(line, "tanktest", 'tanktest') results['tanktest'].append(res_val[0]) [load_info.append(val) for val in res_val[1]] # calculating for manual condition results['manual'] = [] res_val = self.calculate_one_load_combination(line, 'manual', 'manual') results['manual'].append(res_val[0]) [load_info.append(val) for val in res_val[1]] results['slamming'] = [] res_val = self.calculate_one_load_combination(line, 'slamming', 'slamming') results['slamming'].append(res_val[0]) [load_info.append(val) for val in res_val[1]] if get_load_info: return load_info return results def calculate_one_load_combination(self, current_line, comb_name, load_condition): ''' Creating load combination for ULS. Inserted into self._line_to_struc index = 4 "dnva", "line12", "static_ballast_10m" #load combination dictionary (comb,line,load) : [stat - DoubleVar(), dyn - DoubleVar], on/off - IntVar()] :return: ''' defined_loads = [] for load_obj in self._line_to_struc[current_line][3]: if load_obj is not None: if load_obj.get_limit_state() != 'FLS': defined_loads.append(load_obj) if self._tank_dict == {}: defined_tanks = [] else: defined_tanks = [['comp'+str(int(tank_num)), self._tank_dict['comp'+str(int(tank_num))]] for tank_num in self.get_compartments_for_line_duplicates(current_line)] coord = (self.get_line_radial_mid(current_line), self.get_line_low_elevation(current_line)) if load_condition not in ['tanktest','manual','slamming']: acc = (self._accelerations_dict['static'], self._accelerations_dict['dyn_'+str(load_condition)]) else: acc = (self._accelerations_dict['static'], 0) load_factors_all = self._new_load_comb_dict current_line_obj = [current_line, self._line_to_struc[current_line][0].Plate] if self._line_to_struc[current_line][0].Plate.get_structure_type() in ['', 'FRAME','GENERAL_INTERNAL_NONWT']: return [0, ''] else: return_value = one_load_combination(current_line_obj, coord, defined_loads, load_condition, defined_tanks, comb_name, acc, load_factors_all) return return_value def run_optimizer_for_line(self,line,goal,constrains): ''' Returning result of a oprimize process :param line: :param goal: :param constrains: :return: ''' pass def update_tank(self): ''' Updating properties of the tank object that was created during BFS search. :return: ''' if len(list(self._tank_dict.keys())) == 0: return current_tank = self._tank_dict['comp' + str(self._compartments_listbox.get('active'))] current_tank.set_overpressure(self._new_overpresure.get()) current_tank.set_content(self._new_content_type.get()) current_tank.set_acceleration(self._accelerations_dict) current_tank.set_density(self._new_density.get()) for line, obj in self._line_to_struc.items(): obj[0].need_recalc = True if self._compartments_listbox.get('active') in self.get_compartments_for_line(line): self._PULS_results.result_changed(line) def delete_line(self, event = None, undo = None, line = None): ''' Deleting line and line properties. :return: ''' try: if line is not None: line = line else: line = 'line' + str(self._ent_delete_line.get()) if line in self._line_dict.keys() or undo is not None: line = line if undo is None else undo point_str = 'p' + str(self._line_dict[line][0]) + 'p' + str(self._line_dict[line][1]) point_str_rev = 'p' + str(self._line_dict[line][1]) + 'p' + str(self._line_dict[line][0]) if line in self._line_dict.keys(): if line in self._line_to_struc.keys(): if self._line_to_struc[line][0].Plate.get_structure_type() not in self._structure_types['non-wt']: self.delete_properties_pressed() self.delete_all_tanks() self._line_dict.pop(line) if line in self._line_to_struc.keys(): self._line_to_struc.pop(line) self._line_point_to_point_string.pop(self._line_point_to_point_string.index(point_str)) self._line_point_to_point_string.pop(self._line_point_to_point_string.index(point_str_rev)) self._active_line = '' # Removing from load dict if self._load_dict != {}: loads = list(self._load_dict.keys()) for load in loads: if line in self._load_dict[load][1]: self._load_dict[load][1].pop(self._load_dict[load][1].index(line)) # Removing from puls results if self._PULS_results is not None: self._PULS_results.result_changed(line) self.update_frame() else: messagebox.showinfo(title='No line.', message='Input line does noe exist.') except TclError: messagebox.showinfo(title='Input error', message='Input must be a number. Dots used not comma.') def delete_point(self, event = None, undo = None, point = None): ''' Deleting point and connected lines. ''' try: if point == None: point = 'point' + str(self._ent_delete_point.get()) if undo is None else undo if point in self._point_dict.keys(): line_to_delete = [] # finding the lines that needs to be deleted for line, points in self._line_dict.items(): if int(self._ent_delete_point.get()) in points: line_to_delete.append(line) # deleting the lines and the connected properties. also deleting point to point string list items. for line in list(line_to_delete): self.delete_line(line = line) # point_str = 'p' + str(self._line_dict[line][0]) + 'p' + str(self._line_dict[line][1]) # point_str_rev = 'p' + str(self._line_dict[line][1]) + 'p' + str(self._line_dict[line][0]) # self._line_point_to_point_string.pop(self._line_point_to_point_string.index(point_str)) # self._line_point_to_point_string.pop(self._line_point_to_point_string.index(point_str_rev)) # self._line_dict.pop(line) # # properties are deleted here # if line in self._line_to_struc.keys(): # self._line_to_struc.pop(line) # at the en, the points is deleted from the point dict. self._point_dict.pop(point) self._active_point = '' else: messagebox.showinfo(title='No point.', message='Input point does not exist.') self.update_frame() except TclError: messagebox.showinfo(title='Input error', message='Input must be a number. Dots used not comma.') def delete_key_pressed(self, event = None): if self._active_line != '': self.delete_line(line = self._active_line) if self._active_point != '': self.delete_point() def copy_property(self, event = None): ''' Copy a property of a line''' if self._active_line not in self._line_to_struc.keys(): tk.messagebox.showinfo('No properties', 'This line does not have properties.') return else: self.__copied_line_prop = self._active_line def paste_property(self, event = None): ''' Paste property to line ''' if self._active_line not in self._line_to_struc.keys(): if self._line_to_struc[self.__copied_line_prop][5] is not None: self.new_structure(cylinder_return=self._line_to_struc[self.__copied_line_prop][5]) else: self.new_structure(pasted_structure=self._line_to_struc[self.__copied_line_prop][0]) elif self._line_to_struc[self.__copied_line_prop][5] is not None: self.new_structure(cylinder_return=self._line_to_struc[self.__copied_line_prop][5]) elif self._line_to_struc[self._active_line][0].Plate.get_structure_type() !=\ self._line_to_struc[self.__copied_line_prop][0].Plate.get_structure_type(): tk.messagebox.showerror('Paste error', 'Can only paste to same structure type. This is to avoid problems ' 'with compartments not detecting changes to watertightness.') return else: self.new_structure(pasted_structure = self._line_to_struc[self.__copied_line_prop][0]) self.update_frame() def delete_properties_pressed(self, event = None, line = None): action_taken = False if line != None: self._line_to_struc.pop(line) self._state_logger.pop(line) action_taken = True elif self._active_line != '' and self._active_line in self._line_to_struc.keys(): self._line_to_struc.pop(self._active_line) self._state_logger.pop(self._active_line) action_taken = True if action_taken: for line, obj in self._line_to_struc.items(): obj[0].need_recalc = True self.update_frame() def delete_all_tanks(self): ''' Delete the tank that has been selected in the Listbox :return: ''' #if self._grid_calc != None: self._tank_dict = {} self._compartments_listbox.delete(0,'end') self._main_grid.clear() self._grid_calc = None if self.__returned_load_data is not None: map(self.on_close_load_window, self.__returned_load_data) # else: # pass self._center_of_buoyancy = dict() # Resetting dict self.update_frame() def set_selected_variables(self, line): ''' Setting the properties in the entry fields to the specified values. ''' if line in self._line_to_struc: all_dict = self._line_to_struc[line][0].get_main_properties() main_dict = {} for key, val in all_dict['main dict'].items(): main_dict[key] = [0, val[1]] if val[0] is None else val self._new_buckling_min_press_adj_spans.set(main_dict['minimum pressure in adjacent spans'][0]) self._new_buckling_lf_stresses.set(main_dict['load factor on stresses'][0]) self._new_buckling_stf_end_support.set(main_dict['stiffener end support'][0]) self._new_buckling_girder_end_support.set(main_dict['girder end support'][0]) self._new_buckling_tension_field.set(main_dict['tension field'][0]) self._new_buckling_effective_against_sigy.set(main_dict['plate effective agains sigy'][0]) self._new_buckling_length_factor_stf.set(main_dict['buckling length factor stf'][0]) self._new_buckling_length_factor_girder.set(main_dict['buckling length factor girder'][0]) self._new_buckling_km3.set(main_dict['km3'][0]) self._new_buckling_km2.set(main_dict['km2'][0]) self._new_buckling_stf_dist_bet_lat_supp.set(main_dict['stiffener distance between lateral support'][0]) self._new_buckling_girder_dist_bet_lat_supp.set(main_dict['girder distance between lateral support'][0]) self._new_buckling_fab_method_stf.set(main_dict['fabrication method stiffener'][0]) self._new_buckling_fab_method_girder.set(main_dict['fabrication method girder'][0]) self._new_pressure_side.set(main_dict['pressure side'][0]) self._new_panel_length_Lp.set(main_dict['panel length, Lp'][0]) self._new_calculation_domain.set(main_dict['calculation domain'][0]) for idx, properties in enumerate([all_dict['Plate'], all_dict['Stiffener'], all_dict['Girder']]): if properties is None: continue if idx == 0: self._new_material.set(round(properties['mat_yield'][0]/1e6,5)) self._new_material_factor.set(properties['mat_factor'][0]) self._new_field_len.set(round(properties['span'][0]*1000,5)) self._new_plate_thk.set(round(properties['plate_thk'][0]*1000,5)) self._new_plate_kpp.set(properties['plate_kpp'][0]) self._new_sigma_y1.set(round(properties['sigma_y1'][0],1)) self._new_sigma_y2.set(round(properties['sigma_y2'][0],1)) self._new_sigma_x1.set(round(properties['sigma_x1'][0],1)) self._new_sigma_x2.set(round(properties['sigma_x2'][0], 1)) self._new_tauxy.set(round(properties['tau_xy'][0],1)) self._new_stucture_type.set(properties['structure_type'][0]) # try: # self._new_pressure_side.set(properties['press_side'][0]) # except KeyError: # self._new_pressure_side.set('both sides') self._new_zstar_optimization.set(properties['zstar_optimization'][0]) self._new_puls_method.set(properties['puls buckling method'][0]) self._new_puls_panel_boundary.set(properties['puls boundary'][0]) self._new_buckling_stf_end_support.set(properties['puls stiffener end'][0]) self._new_puls_sp_or_up.set(properties['puls sp or up'][0]) self._new_puls_up_boundary.set(properties['puls up boundary'][0]) if idx == 1: self._new_stf_spacing.set(round(properties['spacing'][0] * 1000, 5)) self._new_stf_kps.set(properties['stf_kps'][0]) self._new_stf_km1.set(properties['stf_km1'][0]) self._new_stf_km2.set(properties['stf_km2'][0]) self._new_stf_km3.set(properties['stf_km3'][0]) self._new_stf_web_h.set(round(properties['stf_web_height'][0]*1000,5)) self._new_stf_web_t.set(round(properties['stf_web_thk'][0]*1000,5)) self._new_stf_fl_w.set(round(properties['stf_flange_width'][0]*1000,5)) self._new_stf_fl_t.set(round(properties['stf_flange_thk'][0]*1000,5)) self._new_stf_type.set(properties['stf_type'][0]) if idx == 2: self._new_girder_web_h.set(round(properties['stf_web_height'][0]*1000,5)) self._new_girder_web_t.set(round(properties['stf_web_thk'][0]*1000,5)) self._new_girder_fl_w.set(round(properties['stf_flange_width'][0]*1000,5)) self._new_girder_fl_t.set(round(properties['stf_flange_thk'][0]*1000,5)) self._new_girder_type.set(properties['stf_type'][0]) if self._line_to_struc[self._active_line][5] is not None: cylobj = self._line_to_struc[self._active_line][5] all_dicts = cylobj.get_all_properties() # Shell data input shell_dict = all_dicts['Shell'] self._new_shell_thk.set(shell_dict['plate_thk'][0]*1000) self._new_shell_radius.set(shell_dict['radius'][0]*1000) self._new_shell_dist_rings.set(shell_dict['distance between rings, l'][0]*1000) self._new_shell_length.set(shell_dict['length of shell, L'][0]*1000) self._new_shell_tot_length.set(shell_dict['tot cyl length, Lc'][0]*1000) self._new_shell_k_factor.set(shell_dict['eff. buckling lenght factor'][0]) self._new_shell_yield.set(shell_dict['mat_yield'][0]/1e6) main_dict_cyl = all_dicts['Main class'] self._new_shell_sasd.set(main_dict_cyl['sasd'][0]/1e6) self._new_shell_smsd .set(main_dict_cyl['smsd'][0]/1e6) self._new_shell_tTsd.set(main_dict_cyl['tTsd'][0]/1e6) self._new_shell_tQsd.set(main_dict_cyl['tQsd'][0]/1e6) self._new_shell_psd.set(main_dict_cyl['psd'][0]/1e6) self._new_shell_shsd.set(main_dict_cyl['shsd'][0]/1e6) self._new_calculation_domain.set(CylinderAndCurvedPlate.geomeries[main_dict_cyl['geometry'][0]]) self._new_shell_mat_factor.set(main_dict_cyl['material factor'][0]) self._new_shell_ring_stf_fab_method.set(main_dict_cyl['fab method ring stf'][0]) self._new_shell_ring_frame_fab_method.set(main_dict_cyl['fab method ring girder'][0]) self._new_shell_e_module.set(main_dict_cyl['E-module'][0]) self._new_shell_poisson.set(main_dict_cyl['poisson'][0]) self._new_shell_yield.set(main_dict_cyl['mat_yield'][0]/1e6) self._new_shell_ring_frame_length_between_girders.set(main_dict_cyl['length between girders'][0]*1000) self._new_shell_panel_spacing.set(main_dict_cyl['panel spacing, s'][0]*1000) self._new_shell_exclude_ring_stf.set(main_dict_cyl['ring stf excluded'][0]) self._new_shell_exclude_ring_frame.set(main_dict_cyl['ring frame excluded'][0]) self._new_shell_uls_or_als.set(main_dict_cyl['ULS or ALS'][0]) self._new_shell_end_cap_pressure_included.set(main_dict_cyl['end cap pressure'][0]) if cylobj.LongStfObj is not None: # Longitudinal stiffener input long_dict = all_dicts['Long. stf.'] self._new_stf_spacing.set(long_dict['spacing'][0]*1000) self._new_stf_web_h.set(long_dict['stf_web_height'][0]*1000) self._new_stf_web_t.set(long_dict['stf_web_thk'][0]*1000) self._new_stf_fl_w.set(long_dict['stf_flange_width'][0]*1000) self._new_stf_fl_t.set(long_dict['stf_flange_thk'][0]*1000) self._new_stf_type.set(long_dict['stf_type'][0]) self._new_field_len.set(long_dict['span'][0]*1000) self._new_shell_yield.set(long_dict['mat_yield'][0]/1e6) self._new_panel_or_shell.set('shell') if cylobj.RingStfObj is not None: ring_stf_dict = all_dicts['Ring stf.'] self._new_shell_ring_stf_hw.set(ring_stf_dict['stf_web_height'][0]*1000) self._new_shell_ring_stf_tw.set(ring_stf_dict['stf_web_thk'][0]*1000) self._new_shell_ring_stf_b.set(ring_stf_dict['stf_flange_width'][0]*1000) self._new_shell_ring_stf_tf.set(ring_stf_dict['stf_flange_thk'][0]*1000) self._new_shell_ring_stf_type.set(ring_stf_dict['stf_type'][0]) self._new_shell_yield.set(ring_stf_dict['mat_yield'][0]/1e6) self._new_panel_or_shell.set('shell') if cylobj.RingFrameObj is not None: ring_frame_dict = all_dicts['Ring frame'] self._new_shell_ring_frame_hw.set(ring_frame_dict ['stf_web_height'][0]*1000) self._new_shell_ring_frame_tw.set(ring_frame_dict ['stf_web_thk'][0]*1000) self._new_shell_ring_frame_b.set(ring_frame_dict ['stf_flange_width'][0]*1000) self._new_shell_ring_frame_tf.set(ring_frame_dict ['stf_flange_thk'][0]*1000) self._new_shell_ring_frame_type.set(ring_frame_dict ['stf_type'][0]) self._new_shell_yield.set(ring_frame_dict ['mat_yield'][0]/1e6) self._new_panel_or_shell.set('shell') def get_highest_pressure(self, line, limit_state = 'ULS'): ''' Returning the highest pressure of a line. :return: ''' all_press = list() if limit_state == 'ULS': pressures = self.calculate_all_load_combinations_for_line(line) slm_red, psl, slm_red_pl, slm_red_stf = 1, 0, 1, 1 for key, value in pressures.items(): if key != 'slamming': all_press.append(max(value)) else: if value is not None: for load in self._line_to_struc[line][3]: if load is not None: if load.get_load_condition() == 'slamming': slm_red_pl = load.get_slamming_reduction_plate() slm_red_stf = load.get_slamming_reduction_stf() psl = max(value) return {'normal':max(all_press), 'slamming': psl, 'slamming plate reduction factor': slm_red_pl, 'slamming stf reduction factor': slm_red_stf} elif limit_state == 'FLS': pass else: return {'normal':0, 'slamming': 0} def get_fatigue_pressures(self, line, accelerations = (0, 0, 0)): ''' Retruning a dictionary of internal and external pressures. ''' loaded_exist = False ballast_exist = False part_exist = False for load in self._line_to_struc[line][3]: if load.get_limit_state() == 'FLS': if load.get_load_condition() == 'loaded': loaded_exist = True elif load.get_load_condition() == 'ballast': ballast_exist = True elif load.get_load_condition() == 'part': part_exist = True else: pass fls_exist = (loaded_exist, ballast_exist, part_exist) pressures = {} pressures['p_ext'] = {'loaded': 0, 'ballast': 0, 'part': 0} for load in self._line_to_struc[line][3]: if load.get_limit_state() == 'FLS': for exist_i in range(len(fls_exist)): if fls_exist[exist_i] and load.get_load_condition()=='loaded': pressures['p_ext']['loaded'] = load.get_calculated_pressure(self.get_pressures_calc_coord(line), accelerations[0], self._line_to_struc[line][ 0].Plate.get_structure_type()) if fls_exist[exist_i] and load.get_load_condition() == 'ballast': pressures['p_ext']['ballast'] = load.get_calculated_pressure(self.get_pressures_calc_coord(line), accelerations[1], self._line_to_struc[line][ 0].Plate.get_structure_type()) if fls_exist[exist_i] and load.get_load_condition() == 'part': pressures['p_ext']['part'] = load.get_calculated_pressure(self.get_pressures_calc_coord(line), accelerations[2], self._line_to_struc[line][ 0].Plate.get_structure_type()) if self._tank_dict == {}: compartments = [] else: compartments = [self._tank_dict['comp'+str(tank)] for tank in self.get_compartments_for_line(line)] pressures['p_int'] = {'loaded':0, 'ballast':0, 'part':0} for comp in compartments: if fls_exist[0] and comp.is_loaded_condition(): pressures['p_int']['loaded'] = comp.get_calculated_pressure(self.get_pressures_calc_coord(line), accelerations[0]) if fls_exist[1] and comp.is_ballast_condition(): pressures['p_int']['ballast'] = comp.get_calculated_pressure(self.get_pressures_calc_coord(line), accelerations[1]) if fls_exist[2] and any([comp.is_loaded_condition(),comp.is_ballast_condition()]): pressures['p_int']['part'] = comp.get_calculated_pressure(self.get_pressures_calc_coord(line), accelerations[2])*0.5 return pressures def get_compartments_for_line(self, line): ''' Finding the compartment connected to a specified line. :return: ''' start_point = self._point_dict['point' + str(self._line_dict[line][0])] end_point = self._point_dict['point' + str(self._line_dict[line][1])] mid_point = self._main_grid.get_mid_point(self.get_grid_coord_from_points_coords(start_point), self.get_grid_coord_from_points_coords(end_point)) return list(filter(lambda x: x > 1, self._main_grid.get_adjacent_values(mid_point))) def get_compartments_for_line_duplicates(self, line): ''' Finding the compartment connected to a specified line. :return: ''' start_point = self._point_dict['point' + str(self._line_dict[line][0])] end_point = self._point_dict['point' + str(self._line_dict[line][1])] mid_point = self._main_grid.get_mid_point(self.get_grid_coord_from_points_coords(start_point), self.get_grid_coord_from_points_coords(end_point)) return list(filter(lambda x: x > 1, self._main_grid.get_adjacent_values_duplicates(mid_point))) def get_point_canvas_coord(self, point_no): ''' Returning the canvas coordinates of the point. This value will change with slider. ''' point_coord_x = self._canvas_draw_origo[0] + self._point_dict[point_no][0] * self._canvas_scale point_coord_y = self._canvas_draw_origo[1] - self._point_dict[point_no][1] * self._canvas_scale return [point_coord_x, point_coord_y] def get_point_actual_coord(self, point_no): ''' Returning actutual (real world coordinates of a point. ''' return [self._point_dict[point_no][0], self._point_dict[point_no][1]] def get_actual_elevation_from_grid_coords(self,grid_col): ''' Converts coordinates :param canv_elevation: :return: ''' y_coord = (self._main_grid.get_grid_height() - grid_col)/self._base_scale_factor self._main_grid.get_grid_height() return y_coord def get_grid_coord_from_points_coords(self, point_coord): ''' Converts coordinates to be used in the grid. Returns (row,col). This value will not change with slider. :param point: :return: ''' row = self._canvas_base_origo[1] - point_coord[1]*self._base_scale_factor col = point_coord[0]*self._base_scale_factor return (row,col) def get_point_coords_from_grid_coords(self, grid_coord): ''' Converts coordinates to be used in the as points. Returns (x,y). This value will not change with slider. :param point: :return: ''' x_coord = grid_coord[1]/self._base_scale_factor y_coord = (self._main_grid.get_grid_height() - grid_coord[0])/self._base_scale_factor self._main_grid.get_grid_height() self._main_grid.get_grid_width() return x_coord,y_coord def get_canvas_coords_from_point_coords(self, actual_coords): ''' Returns tuple of canvas points from actual (x,y) :param actual_coords: :return: ''' canvas_coord_x = self._canvas_draw_origo[0] + actual_coords[0] * self._canvas_scale canvas_coord_y = self._canvas_draw_origo[1] - actual_coords[1] * self._canvas_scale return (canvas_coord_x, canvas_coord_y) def get_line_low_elevation(self,line): ''' Finding elevation of a line. Used to calculate pressures in load combinations. :param line: :return: ''' return min([self._point_dict['point'+str(point)][1] for point in self._line_dict[line]]) def get_line_radial_mid(self,line): ''' Getting the horizontal coordinates in the middle of a line. :param line: :return: ''' return sum([self._point_dict['point' + str(point)][0] for point in self._line_dict[line]])/2 def get_pressures_calc_coord(self, line): ''' Returning coordinates of the pressures calculation basis of a selected line. ''' p1 = self._point_dict['point'+str(self._line_dict[line][0])] p2 = self._point_dict['point'+str(self._line_dict[line][1])] if p1[1] <= p2[1]: start_point = p1 end_point = p2 elif p1[1] == p2[1]: if p1[0] <= p2[0]: start_point = p1 end_point = p2 else: start_point = p2 end_point = p1 else: start_point = p2 end_point = p1 vector = [end_point[0]-start_point[0], end_point[1]-start_point[1]] return start_point[0]+vector[0]*1/3, start_point[1]+vector[1]*1/3 def get_points(self): return self._point_dict def get_closest_point(self,given_point): ''' Finding the closest point to av given value. Real coordinates used (meters). Returning point name, coordinates and distance. :param coordx: :param coordy: :return: ''' current_dist = float('inf') current_point = None for point,coords in self._point_dict.items(): if dist([coords[0],coords[1]], [given_point[0],given_point[1]]) < current_dist: current_dist = dist([coords[0],coords[1]], [given_point[0],given_point[1]]) current_point = point return current_point, self._point_dict[current_point], current_dist def get_lines(self): return self._line_dict def get_unique_plates_and_beams(self): beams, plates = list(), list() if self._line_to_struc != {}: for line, data in self._line_to_struc.items(): if data[0].Stiffener is not None: this_beam = data[0].Stiffener.get_beam_string() this_plate = data[0].Stiffener.get_pl_thk()*1000 if this_beam not in beams: beams.append(this_beam) if this_plate not in plates: plates.append(this_plate) return {'plates':plates, 'beams': beams} def make_point_point_line_string(self, point1, point2): ''' For a line, this method makes a string 'p1p2' and 'p2p1'. Ensuring that lines are not overwritten. :param point1: :param point2: :return: ''' return ['p' + str(point1) + 'p' + str(point2), 'p' + str(point2) + 'p' + str(point1)] def reset(self): ''' Resetting the script. :return: ''' self._line_dict = {} self._point_dict = {} self._line_to_struc = {} self._line_point_to_point_string = [] self._load_dict = {} self._new_load_comb_dict = {} self._line_is_active = False self._active_line = '' self._point_is_active = False self._active_point = '' self.delete_all_tanks() self._main_canvas.delete('all') self._prop_canvas.delete('all') self._result_canvas.delete('all') self._pending_grid_draw = {} self._p1_p2_select = False self._line_is_active = False # True when a line is clicked self._active_line = '' # Name of the clicked point self._point_is_active = False # True when a point is clicked self._active_point = '' # Name of the clicked point self.controls() # Function to activate mouse clicks self._line_point_to_point_string = [] # This one ensures that a line is not created on top of a line self._accelerations_dict = {'static':9.81, 'dyn_loaded':0, 'dyn_ballast':0} self._multiselect_lines = [] self._PULS_results = None self.update_frame() # Initsializing the calculation grid used for tank definition self._main_grid = grid.Grid(self._grid_dimensions[0], self._grid_dimensions[1]) self._grid_calc = None def controls(self): ''' Specifying the controls to be used. :return: ''' self._main_canvas.bind('<Button-1>', self.button_1_click) self._main_canvas.bind('<Button-2>', self.button_2_click) self._main_canvas.bind('<Button-3>', self.button_3_click) self._main_canvas.bind("<B2-Motion>", self.button_2_click_and_drag) self._main_canvas.bind("<MouseWheel>", self.mouse_scroll) #self._prop_canvas.bind("<MouseWheel>", self.mouse_scroll) self._parent.bind('<Control-z>', self.undo) #self._parent.bind('<Control-y>', self.redo) #self._parent.bind('<Control-p>', self.delete_point) self._parent.bind('<Control-l>', self.delete_line) self._parent.bind('<Control-p>', self.copy_point) self._parent.bind('<Control-m>', self.move_point) self._parent.bind('<Control-n>', self.move_line) self._parent.bind('<Control-a>', self.select_all_lines) self._parent.bind('<Control-t>', self.select_all_lines) self._parent.bind('<Control-q>', self.new_line) self._parent.bind('<Control-s>', self.new_structure) self._parent.bind('<Delete>', self.delete_key_pressed) self._parent.bind('<Control-Delete>', self.delete_properties_pressed) self._parent.bind('<Control-e>', self.copy_property) self._parent.bind('<Control-d>', self.paste_property) self._parent.bind('<Left>', self.left_arrow) self._parent.bind('<Right>', self.right_arrow) self._parent.bind('<Down>', self.up_arrow) self._parent.bind('<Up>', self.down_arrow) self._parent.bind("<Alt-s>", self.save_no_dialogue) #self._parent.bind('<Enter>', self.enter_key_pressed) def left_arrow(self, event): if self._active_line == '': return else: idx = list(self._line_dict.keys()).index(self._active_line) if idx -1 >= 0: self._active_line =list(self._line_dict.keys())[idx-1] else: self._active_line = list(self._line_dict.keys())[-1] self.update_frame() def right_arrow(self, event): if self._active_line == '': return else: idx = list(self._line_dict.keys()).index(self._active_line) if idx + 1 < len(list(self._line_dict.keys())): self._active_line = list(self._line_dict.keys())[idx+1] else: self._active_line = list(self._line_dict.keys())[0] self.update_frame() def up_arrow(self, event): if self._active_point == '': return else: idx = list(self._point_dict.keys()).index(self._active_point) if idx - 1 >= 0: self._active_point = list(self._point_dict.keys())[idx - 1] else: self._active_point = list(self._point_dict.keys())[-1] self.update_frame() def down_arrow(self, event): if self._active_point == '': return else: idx = list(self._point_dict.keys()).index(self._active_point) if idx + 1 < len(list(self._point_dict.keys())): self._active_point = list(self._point_dict.keys())[idx + 1] else: self._active_point = list(self._point_dict.keys())[0] self.update_frame() def select_all_lines(self, event=None): if self._toggle_btn.config('relief')[-1] == "sunken": for line in self._line_to_struc.keys(): if line not in self._multiselect_lines: if event.keysym == 't': if self._line_to_struc[line][0].Plate.get_structure_type() == self._new_stucture_type.get(): self._multiselect_lines.append(line) else: self._multiselect_lines.append(line) else: tk.messagebox.showinfo('CTRL-A and CTRL-T', 'CTRL-A and CTRL-T is used to select all lines \n' 'with the intension to change a single variable in all lines.\n' 'Press the Toggle select multiple button.') self.update_frame() def mouse_scroll(self,event): if event.y < self._main_canvas.winfo_height(): self._canvas_scale += event.delta/50 self._canvas_scale = 0 if self._canvas_scale < 0 else self._canvas_scale else: pass try: state = self.get_color_and_calc_state() except AttributeError: state = None self.update_frame() def button_2_click(self, event): self._previous_drag_mouse = [event.x, event.y] def button_2_click_and_drag(self,event): self._canvas_draw_origo = (self._canvas_draw_origo[0]-(self._previous_drag_mouse[0]-event.x), self._canvas_draw_origo[1]-(self._previous_drag_mouse[1]-event.y)) self._previous_drag_mouse = (event.x,event.y) try: state = self.get_color_and_calc_state() except AttributeError: state = None self.update_frame() #self.draw_canvas(state=state) def button_1_click(self, event = None): ''' When clicking the right button, this method is called. method is referenced in ''' self._previous_drag_mouse = [event.x, event.y] click_x = self._main_canvas.winfo_pointerx() - self._main_canvas.winfo_rootx() click_y = self._main_canvas.winfo_pointery() - self._main_canvas.winfo_rooty() self._prop_canvas.delete('all') stop = False self._active_line = '' self._line_is_active = False if len(self._line_dict) > 0: for key, value in self._line_dict.items(): if stop: break coord1x = self.get_point_canvas_coord('point' + str(value[0]))[0] coord2x = self.get_point_canvas_coord('point' + str(value[1]))[0] coord1y = self.get_point_canvas_coord('point' + str(value[0]))[1] coord2y = self.get_point_canvas_coord('point' + str(value[1]))[1] vector = [coord2x - coord1x, coord2y - coord1y] click_x_range = [ix for ix in range(click_x - 10, click_x + 10)] click_y_range = [iy for iy in range(click_y - 10, click_y + 10)] distance = int(dist([coord1x, coord1y], [coord2x, coord2y])) # checking along the line if the click is witnin +- 10 around the click for dist_mult in range(1, distance - 1): dist_mult = dist_mult / distance x_check = int(coord1x) + int(round(vector[0] * dist_mult, 0)) y_check = int(coord1y) + int(round(vector[1] * dist_mult, 0)) if x_check in click_x_range and y_check in click_y_range: self._line_is_active = True self._active_line = key stop = True break self._new_delete_line.set(get_num(key)) if self._line_is_active and self._active_line not in self._line_to_struc.keys(): p1 = self._point_dict['point'+str(self._line_dict[self._active_line][0])] p2 = self._point_dict['point'+str(self._line_dict[self._active_line][1])] self._new_field_len.set(dist(p1,p2)*1000) if self._toggle_btn.config('relief')[-1] == 'sunken': if self._active_line not in self._multiselect_lines: self._multiselect_lines.append(self._active_line) else: self._multiselect_lines = [] try: state = self.get_color_and_calc_state() except AttributeError: state = None self.update_frame() self._combination_slider.set(1) if self._line_is_active: self._tabControl.select(self._tab_prop) try: self.gui_load_combinations(self._combination_slider.get()) except (KeyError, AttributeError): pass self.cylinder_gui_mods() def cylinder_gui_mods(self): if self._active_line in self._line_to_struc.keys(): if self._line_to_struc[self._active_line][5] is not None: self._new_calculation_domain.set(CylinderAndCurvedPlate .geomeries[self._line_to_struc[self._active_line][5].geometry]) self._new_shell_exclude_ring_stf.set(self._line_to_struc[self._active_line][5]._ring_stiffener_excluded) self._new_shell_exclude_ring_frame.set(self._line_to_struc[self._active_line][5]._ring_frame_excluded) self.calculation_domain_selected() # Setting the correct optmization buttons #'Flat plate, unstiffened', 'Flat plate, stiffened', 'Flat plate, stiffened with girder' for dom in ['Flat plate, unstiffened', 'Flat plate, stiffened', 'Flat plate, stiffened with girder']: for btn, placement in zip(self._optimization_buttons[dom], self._optimization_buttons[dom + ' place']): btn.place_forget() for btn, placement in zip(self._optimization_buttons['cylinder'], self._optimization_buttons['cylinder place']): if self._gui_functional_look == 'cylinder': placement = self._gui_functional_look_cylinder_opt btn.place(relx = placement[0], rely= placement[1],relheight = placement[2], relwidth = placement[3]) else: self._new_calculation_domain.set(self._line_to_struc[self._active_line][0].calculation_domain) self.calculation_domain_selected() dom = self._line_to_struc[self._active_line][0].calculation_domain for btn, placement in zip(self._optimization_buttons['cylinder'], self._optimization_buttons['cylinder place']): btn.place_forget() for btn, placement in zip(self._optimization_buttons[dom], self._optimization_buttons[dom + ' place']): btn.place(relx = placement[0], rely= placement[1],relheight = placement[2], relwidth = placement[3] ) def button_1_click_comp_box(self,event): ''' Action when clicking the compartment box. :param event: :return: ''' self._selected_tank.config(text='') self._tank_acc_label.config(text='Accelerations [m/s^2]: ',font = self._text_size['Text 8 bold']) if len(self._tank_dict)!=0: current_comp = self._tank_dict['comp' + str(self._compartments_listbox.get('active'))] self._selected_tank.config(text=str(self._compartments_listbox.get('active'))) self._new_density.set(self._tank_dict['comp' + str(self._compartments_listbox.get('active'))] .get_density()) self._new_overpresure.set(self._tank_dict['comp' + str(self._compartments_listbox.get('active'))] .get_overpressure()) self._new_content_type.set(self._tank_dict['comp' + str(self._compartments_listbox.get('active'))] .get_content()) self._new_max_el.set(self._tank_dict['comp' + str(self._compartments_listbox.get('active'))] .get_highest_elevation()) self._new_min_el.set(self._tank_dict['comp' + str(self._compartments_listbox.get('active'))] .get_lowest_elevation()) acc = (self._tank_dict['comp' + str(self._compartments_listbox.get('active'))].get_accelerations()) self._tank_acc_label.config(text='Accelerations [m/s^2]: \n' +'static: ' + str(acc[0])+' , ' +'dynamic loaded: ' + str(acc[1])+' , ' +'dynamic ballast: ' + str(acc[2]), font = self._text_size['Text 8 bold']) def button_3_click(self, event = None): ''' Identifies enclosed compartments in the canvas. :return: ''' click_x = self._main_canvas.winfo_pointerx() - self._main_canvas.winfo_rootx() click_y = self._main_canvas.winfo_pointery() - self._main_canvas.winfo_rooty() self._pt_frame.place_forget() self._point_is_active = False margin = 10 self._active_point = '' for point, coords in self._point_dict.items(): point_coord = self.get_point_canvas_coord(point) if point_coord[0]-margin < click_x < point_coord[0]+margin and\ point_coord[1]-margin < click_y < point_coord[1]+margin: self._active_point = point self._point_is_active = True self._new_delete_point.set(get_num(point)) if not self._p1_p2_select: self._new_line_p1.set(get_num(point)) self._p1_p2_select = True else: self._new_line_p2.set(get_num(point)) self._p1_p2_select = False self._new_point_x.set(round(self._point_dict[self._active_point][0]*1000, 1)) self._new_point_y.set(round(self._point_dict[self._active_point][1]*1000, 1)) if self._toggle_btn.config('relief')[-1] == 'sunken': if len(self._multiselect_lines) != 0: self._multiselect_lines.pop(-1) self.update_frame() def draw_point_frame(self): ''' Frame to define brackets on selected point. ''' pt_canvas = tk.Canvas(self._pt_frame,height=100,width=100,background=self._style.lookup('TFrame', 'background')) pt_canvas.place(relx=0, rely=0) pt_canvas.create_oval(45,45,55,55,fill='red') new_left_br = tk.IntVar() new_right_br = tk.IntVar() new_upper_br = tk.IntVar() new_lower_br = tk.IntVar() wid = 5 ent_left = ttk.Entry(self._pt_frame,textvariable=new_left_br, width=wid, ) ent_right = ttk.Entry(self._pt_frame, textvariable=new_right_br, width=wid, ) ent_upper = ttk.Entry(self._pt_frame, textvariable=new_upper_br, width=wid, ) ent_lower = ttk.Entry(self._pt_frame, textvariable=new_lower_br, width=wid, ) ent_lower.place(relx=0.018229167, rely=0.009259259) ent_upper.place(relx=0.018229167, rely=0.069444444) ent_left.place(relx=0.002604167, rely=0.037037037) ent_right.place(relx=0.03125, rely=0.037037037) def save_no_dialogue(self, event = None, backup = False): if backup: self.savefile(filename=os.path.join(self._root_dir, '../backup.txt'), backup = backup) return if self.__last_save_file is not None: self.savefile(filename=self.__last_save_file) else: tk.messagebox.showerror('Save error', 'No saves in this session yet.') def savefile(self, filename = None, backup = False): ''' Saving to a file using JSON formatting. ''' if filename is None: save_file = filedialog.asksaveasfile(mode="w", defaultextension=".txt") if save_file is None: # ask saveasfile return `None` if dialog closed with "cancel". return if not backup: self.__last_save_file = save_file.name else: try: save_file = open(filename, mode='w') except FileNotFoundError: save_file = open(filename.replace('',''), mode='w') structure_properties = {} shell_structure_properties = {} for key, value in self._line_to_struc.items(): structure_properties[key] = value[0].get_main_properties() shell_structure_properties[key] = None if value[5] is None else value[5].get_all_properties() fatigue_properties = {} for key, value in self._line_to_struc.items(): if value[2] != None: try: fatigue_properties[key] = value[2].get_fatigue_properties() except AttributeError: fatigue_properties[key] = None else: fatigue_properties[key] = None load_properties = {} for load, data in self._load_dict.items(): load_properties[load] = [data[0].get_load_parmeters(), data[1]] tank_properties = {} tank_properties['grid'] = self._main_grid.export_grid() tank_properties['search_data'] = self._main_grid.bfs_search_data for tank,data in self._tank_dict.items(): tank_properties[tank] = data.get_parameters() load_combiantions = {} counter = 0 for name, data in self._new_load_comb_dict.items(): load_combiantions[counter] = [name,data[0].get(),data[1].get(),data[2].get()] counter+=1 export_all = {} export_all['project information'] = self._project_information.get('1.0', tk.END) export_all['theme'] = self._current_theme export_all['point_dict'] = self._point_dict export_all['line_dict'] = self._line_dict export_all['structure_properties'] = structure_properties export_all['shell structure properties'] = shell_structure_properties export_all['load_properties'] = load_properties export_all['accelerations_dict'] = self._accelerations_dict export_all['load_combinations'] = load_combiantions export_all['tank_properties'] = tank_properties export_all['fatigue_properties'] = fatigue_properties #export_all['buckling type'] = self._new_buckling_slider.get() export_all['buckling method'] = self._new_buckling_method.get() if self._PULS_results is not None: export_all['PULS results'] = self._PULS_results.get_run_results() export_all['PULS results']['sheet location'] = self._PULS_results.puls_sheet_location export_all['shifting'] = {'shifted checked': self._new_shifted_coords.get(), 'shift hor': self._new_shift_viz_coord_hor.get(), 'shift ver': self._new_shift_viz_coord_ver.get()} export_all['Weight and COG'] = self._weight_logger json.dump(export_all, save_file)#, sort_keys=True, indent=4) save_file.close() if not backup: self._parent.wm_title('| ANYstructure | ' + save_file.name) #self.update_frame() def openfile(self, defined = None, alone = False): ''' Opens a file with data (JSON). ''' if defined == None: imp_file = filedialog.askopenfile(mode='r', defaultextension=".txt") if imp_file is None: # asksaveasfile return `None` if dialog closed with "cancel". return else: imp_file = open(defined,'r') imported = json.load(imp_file) self.reset() if 'project information' in imported.keys(): self._project_information.delete("1.0", tk.END) self._project_information.insert(1.0, imported['project information']) else: self._project_information.delete("1.0", tk.END) self._project_information.insert(1.0, 'No information on project provided. Input here.') if 'shifting' in imported.keys(): self._new_shifted_coords.set(imported['shifting']['shifted checked']) self._new_shift_viz_coord_hor.set(imported['shifting']['shift hor']) self._new_shift_viz_coord_ver.set(imported['shifting']['shift ver']) else: pass if 'theme' in imported.keys(): self.set_colors(imported['theme']) self._point_dict = imported['point_dict'] self._line_dict = imported['line_dict'] struc_prop = imported['structure_properties'] old_save_file = False for line, lines_prop in struc_prop.items(): if len(lines_prop) > 10: # Loading a file (pre 3.4) old_save_file = True self._line_to_struc[line] = [None, None, None, [], {}, None] self._line_point_to_point_string.append( self.make_point_point_line_string(self._line_dict[line][0], self._line_dict[line][1])[0]) self._line_point_to_point_string.append( self.make_point_point_line_string(self._line_dict[line][0], self._line_dict[line][1])[1]) if 'structure_types' not in lines_prop.keys(): lines_prop['structure_types'] = [self._structure_types, ' '] if 'zstar_optimization' not in lines_prop.keys(): lines_prop['zstar_optimization'] = [self._new_zstar_optimization.get(), ''] if 'puls buckling method' not in lines_prop.keys(): lines_prop['puls buckling method'] = [self._new_puls_method.get(), ''] if 'puls boundary' not in lines_prop.keys(): lines_prop['puls boundary'] = [self._new_puls_panel_boundary.get(), ''] if 'puls stiffener end' not in lines_prop.keys(): lines_prop['puls stiffener end'] = [self._new_buckling_stf_end_support.get(), ''] if 'puls sp or up' not in lines_prop.keys(): lines_prop['puls sp or up'] = [self._new_puls_sp_or_up.get(), ''] if 'puls up boundary' not in lines_prop.keys(): lines_prop['puls up boundary'] = [self._new_puls_up_boundary.get(), ''] if 'mat_factor' not in lines_prop.keys(): lines_prop['mat_factor'] = [self._new_material_factor.get(), ''] # Sigma x1/x2 is missing before 3.4 if 'sigma_x' in lines_prop.keys(): lines_prop['sigma_x1'] = lines_prop['sigma_x'] lines_prop['sigma_x2'] = lines_prop['sigma_x'] lines_prop.pop('sigma_x') if old_save_file: #need to get some basic information # Import issues try: import example_data as ex except ModuleNotFoundError: # This is due to pyinstaller issues. import any_files.example_data as ex #import ANYstructure.any_files.example_data as ex main_dict = ex.prescriptive_main_dict map_end = {'C': 'Continuous', 'S': 'Sniped'} lines_prop['puls stiffener end'] = [map_end[lines_prop['puls stiffener end'][0]], lines_prop['puls stiffener end'][1]] main_dict['material yield'] = [355e6, 'Pa'] main_dict['load factor on stresses'] = [1, ''] main_dict['load factor on pressure'] = [1, ''] main_dict['buckling method'] = [lines_prop['puls buckling method'], ''] main_dict['stiffener end support'] = lines_prop['puls stiffener end'] # 'Continuous' main_dict['girder end support'] = ['Continuous', ''] # 'Continuous' dom = 'Flat plate, stiffened' if lines_prop['puls sp or up'][0] == 'SP' else 'Flat plate, unstiffened' main_dict['calculation domain'] = [dom, ''] map_side = {'p': 'plate side', 's': 'stiffener side'} if 'press_side' in lines_prop.keys(): lines_prop['press_side'] = [map_side[lines_prop['press_side'][0]], ''] else: lines_prop['press_side'] = 'both sides' lines_prop['panel or shell'] = 'panel' #lines_prop['tension field'] = 'allowed' self._line_to_struc[line][0] = AllStructure(Plate=CalcScantlings(lines_prop), Stiffener=None if dom == 'Flat plate, unstiffened' else CalcScantlings(lines_prop), Girder=None, main_dict=main_dict) if imported['fatigue_properties'][line] is not None: self._line_to_struc[line][2] = CalcFatigue(lines_prop, imported['fatigue_properties'][line]) else: self._line_to_struc[line][2] = None # Recording sections. self._sections = add_new_section(self._sections, struc.Section(lines_prop)) else: self._line_to_struc[line][0] = AllStructure(Plate=None if lines_prop['Plate'] is None else CalcScantlings(lines_prop['Plate']), Stiffener=None if lines_prop['Stiffener'] is None else CalcScantlings(lines_prop['Stiffener']), Girder=None if lines_prop['Girder'] is None else CalcScantlings(lines_prop['Girder']), main_dict=lines_prop['main dict']) if imported['fatigue_properties'][line] is not None: self._line_to_struc[line][2] = CalcFatigue(lines_prop['Stiffener'], imported['fatigue_properties'][line]) else: self._line_to_struc[line][2] = None # Recording sections. if self._line_to_struc[line][0].Stiffener is not None: self._sections = add_new_section(self._sections, struc.Section(lines_prop['Stiffener'])) if 'shell structure properties' in imported.keys(): if imported['shell structure properties'][line] is not None: # need to correct the calcuation domain. #self._new_calculation_domain.set(imported_dict['Main class'][CylinderAndCurvedPlate.geomeries]) imported_dict = imported['shell structure properties'][line] ''' all_data = {'Main class': self.get_main_properties(), 'Shell': self._Shell.get_main_properties(), 'Long. stf.': self._LongStf.get_structure_prop(), 'Ring stf.': self.RingStfObj.get_structure_prop(), 'Ring frame': self._RingFrame.get_structure_prop()} ''' for stuc_type in ['Long. stf.', 'Ring stf.', 'Ring frame']: if imported_dict[stuc_type] is not None: if 'sigma_x' in imported_dict[stuc_type].keys(): imported_dict[stuc_type]['sigma_x1'] = imported_dict[stuc_type]['sigma_x'] imported_dict[stuc_type]['sigma_x2'] = imported_dict[stuc_type]['sigma_x'] imported_dict[stuc_type].pop('sigma_x') self._line_to_struc[line][5] = \ CylinderAndCurvedPlate(imported_dict['Main class'], shell=None if imported_dict['Shell'] is None else Shell(imported_dict['Shell']), long_stf=None if imported_dict['Long. stf.'] is None else Structure(imported_dict['Long. stf.']), ring_stf=None if imported_dict['Ring stf.'] is None else Structure(imported_dict['Ring stf.']), ring_frame=None if imported_dict['Ring frame'] is None else Structure(imported_dict['Ring frame'])) # opening the loads variables = ['poly_third','poly_second', 'poly_first', 'poly_const', 'load_condition', 'structure_type', 'man_press', 'static_draft', 'name_of_load', 'limit_state', 'slamming mult pl', 'slamming mult stf'] if len(imported['load_properties']) != 0: for load, data in imported['load_properties'].items(): temp_dict = {} count_i = 0 values = data[0] if len(values) != len(variables): # Adding slamming multiplication factors values.append(1) values.append(1) for value in values: temp_dict[variables[count_i]]= value count_i += 1 self._load_dict[load] = [Loads(temp_dict), data[1]] if len(data[1]) != 0: for main_line in self._line_dict.keys(): if main_line in data[1]: self._line_to_struc[main_line][3].append(self._load_dict[load][0]) try: self._accelerations_dict = imported['accelerations_dict'] except IndexError: self._accelerations_dict = {'static':9.81, 'dyn_loaded':0, 'dyn_ballast':0} self._new_static_acc.set(self._accelerations_dict['static']) self._new_dyn_acc_loaded.set(self._accelerations_dict['dyn_loaded']) self._new_dyn_acc_ballast.set(self._accelerations_dict['dyn_ballast']) try: for data in imported['load_combinations'].values(): name = tuple(data[0]) self._new_load_comb_dict[name] = [tk.DoubleVar(),tk.DoubleVar(),tk.IntVar()] self._new_load_comb_dict[name][0].set(data[1]), self._new_load_comb_dict[name][1].set(data[2]) self._new_load_comb_dict[name][2].set(data[3]) except IndexError: for data in imported['load_combinations'].values(): name = tuple(data[0]) self._new_load_comb_dict[name] = [tk.DoubleVar(),tk.IntVar()] self._new_load_comb_dict[name][0].set(data[1]), self._new_load_comb_dict[name][1].set(data[2]) try: self._main_grid.import_grid(imported['tank_properties']['grid']) self._grid_calc = grid_window.CreateGridWindow(self._main_grid, self._canvas_dim, self._pending_grid_draw, self._canvas_base_origo) tank_inp = dict() if 'search_data' in imported['tank_properties'].keys(): try: for key, value in imported['tank_properties']['search_data'].items(): tank_inp[int(key)] = value self._main_grid.bfs_search_data = tank_inp self._grid_calc.bfs_search_data = tank_inp except AttributeError: self._main_grid.bfs_search_data = None self._grid_calc.bfs_search_data = None else: self._main_grid.bfs_search_data = None self._grid_calc.bfs_search_data = None for comp_no in range(2, int(self._main_grid.get_highest_number_in_grid())+1): self._compartments_listbox.insert('end',comp_no) self._tank_dict['comp' + str(comp_no)] = Tanks(imported['tank_properties']['comp' + str(comp_no)]) except IndexError: for line_name, point_no in self._line_dict.items(): point_coord_x = self._canvas_base_origo[0] + self._point_dict[point_no][0] * self._canvas_scale point_coord_y = self._canvas_base_origo[1] - self._point_dict[point_no][1] * self._canvas_scale self.grid_operations(line_name, [point_coord_x,point_coord_y]) if 'PULS results' in list(imported.keys()): self._PULS_results = PULSpanel() if 'sheet location' in imported['PULS results'].keys(): self._PULS_results.puls_sheet_location = imported['PULS results']['sheet location'] imported['PULS results'].pop('sheet location') self._PULS_results.set_run_results(imported['PULS results']) if 'buckling method' in list(imported.keys()): #options = ['DNV-RP-C201 - prescriptive', 'DNV PULS', 'ML-CL (PULS based)'] self._new_buckling_method.set(imported['buckling method']) # Setting the scale of the canvas points = self._point_dict if len(points) != 0: highest_y = max([coord[1] for coord in points.values()]) highest_x = max([coord[0] for coord in points.values()]) else: highest_x = 1 highest_y = 1 if not any([highest_x == 0, highest_y == 0]): self._canvas_scale = min(800 / highest_y, 800 / highest_x, 15) # if 'buckling type' in imported.keys(): # self._new_buckling_slider.set(imported['buckling type']) # self._buckling_slider.set(imported['buckling type']) if 'Weight and COG' in imported.keys(): self._weight_logger = imported['Weight and COG'] self.get_cob() imp_file.close() self._parent.wm_title('| ANYstructure | ' + imp_file.name) self.update_frame() def restore_previous(self): if os.path.isfile(os.path.join(self._root_dir, '../backup.txt')): self.openfile(defined=os.path.join(self._root_dir, '../backup.txt')) def open_example(self, file_name = 'ship_section_example.txt'): ''' Open the example file. To be used in help menu. ''' if os.path.isfile(file_name) : self.openfile(defined = file_name) else: self.openfile(defined= self._root_dir + '/' + file_name) def button_load_info_click(self, event = None): ''' Get the load information for one line.''' if self._active_line != '' and self._active_line in self._line_to_struc.keys(): load_text = self.calculate_all_load_combinations_for_line(self._active_line, get_load_info=True) text_to_frame = 'Load results for ' + self._active_line + '\n' + '\n' for item in load_text: text_to_frame += item text_m = tk.Toplevel(self._parent, background=self._general_color) # Create the text widget text_widget = tk.Text(text_m, height=60, width=80) # Create a scrollbar scroll_bar = ttk.Scrollbar(text_m) # Pack the scroll bar # Place it to the right side, using tk.RIGHT scroll_bar.pack(side=tk.RIGHT) # Pack it into our tkinter application # Place the text widget to the left side text_widget.pack(side=tk.LEFT) # Insert text into the text widget text_widget.insert(tk.END, text_to_frame) #tk.messagebox.showinfo('Load info for '+self._active_line, ''.join(load_text)) else: tk.messagebox.showerror('No data', 'No load data for this line') def on_plot_cog_dev(self): ''' Plot the COG and COB development. ''' if self._weight_logger['new structure']['time'] == []: tk.messagebox.showinfo('New functionality ver. 3.3', 'If you are using and existing model,' ' weights have not been' ' recorded in previous versions.\n' 'Press "Add structure properties to line....." button to add a ' 'blank datapoint.\n' 'Other data will then be avaliable.\n\n' 'If you are making a new model add some structure properties.') return import matplotlib.dates as mdate cog = np.array(self._weight_logger['new structure']['COG']) weight = np.array(self._weight_logger['new structure']['weight'])/\ max(self._weight_logger['new structure']['weight']) time_stamp = np.array(self._weight_logger['new structure']['time']) time_stamp = [mdate.epoch2num(val) for val in time_stamp] structure = self.get_unique_plates_and_beams() hlp.plot_weights(time_stamp=time_stamp, cog=cog,structure=structure,weight=weight) def on_open_structure_window(self, clicked_button = None): ''' Opens the window to create structure. :return: ''' self._clicked_section_create = clicked_button # Identifying the clicked button top_opt = tk.Toplevel(self._parent, background=self._general_color) struc.CreateStructureWindow(top_opt, self) def on_open_stresses_window(self): ''' User can open a new window to stresses :return: ''' if self._line_is_active: top_opt = tk.Toplevel(self._parent, background=self._general_color) stress.CreateStressesWindow(top_opt, self) else: messagebox.showinfo(title='Select line',message='You must select a line') def on_open_fatigue_window(self): ''' User can open a new window to stresses :return: ''' if self._line_is_active: try: self._line_to_struc[self._active_line] except KeyError: messagebox.showinfo(title='Select line', message='Fatigue properties are defined here.\n' 'Strucure must be added to line before setting\n' 'these properties ("Add structure to line"-button).') return top_opt = tk.Toplevel(self._parent, background=self._general_color) fatigue.CreateFatigueWindow(top_opt, self) else: messagebox.showinfo(title='Select line',message='You must select a line') def on_open_load_factor_window(self): ''' Set the default load factors and change all. :return: ''' lf_tkinter = tk.Toplevel(self._parent, background=self._general_color) load_factors.CreateLoadFactorWindow(lf_tkinter, self) def on_puls_results_for_line(self): if not self._line_is_active: return if self._PULS_results is None: return elif self._PULS_results.get_puls_line_results(self._active_line) is None: return # if self._puls_information_button.config('relief')[-1] == 'sunken': # self.text_widget.forget() # self._puls_information_button.config(relief='raised') this_result = self._PULS_results.get_puls_line_results(self._active_line) this_string = '' for key, value in this_result.items(): if type(value) == list: this_string += key + ' : ' + str(value[0]) + ' ' + str(value[1]) + '\n' elif type(value) == str: this_string += key + ' : ' + value + '\n' elif type(value) == dict: this_string += key + '\n' for subk, subv in value.items(): this_string += ' ' + subk + ' : ' + str(subv[0]) + ' ' + str(subv[1] if subv[1] != None else '') + '\n' text_m = tk.Toplevel(self._parent, background=self._general_color) # Create the text widget text_widget = tk.Text(text_m , height=60, width=100) # Create a scrollbar scroll_bar = ttk.Scrollbar(text_m) # Pack the scroll bar # Place it to the right side, using tk.RIGHT scroll_bar.pack(side=tk.RIGHT) # Pack it into our tkinter application # Place the text widget to the left side text_widget.pack(side=tk.LEFT) long_text = this_string # Insert text into the text widget text_widget.insert(tk.END, long_text) def on_show_loads(self): ''' User can open a new window to specify loads :return: ''' try: img_file_name = 'img_ext_pressure_button_def.gif' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = self._root_dir + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) self._ext_button.config(image = photo) self._ext_button.image = photo except TclError: pass self.__previous_load_data = copy.deepcopy(self._load_dict) top = tk.Toplevel(self._parent, background=self._general_color) load_window.CreateLoadWindow(top, self) def on_optimize(self): ''' User open window to optimize current structure :return: ''' # if [self.get_highest_pressure(line)['normal'] for line in self._line_to_struc.keys()] == []: # # messagebox.showinfo(title='Missing something', message='Missing properties/loads etc.') # # return try: self.get_highest_pressure(self._active_line)['normal'] except (KeyError, AttributeError): messagebox.showinfo(title='Missing loads/accelerations', message='Select line or make some loads for the line.\n'+ 'Define accelerations for compartments.') return if self._line_is_active: if self._active_line not in self._line_to_struc: messagebox.showinfo(title='Missing properties', message='Specify properties for line') elif self._line_to_struc[self._active_line][3] == None: messagebox.showinfo(title='Missing loads', message='Make some loads for the line') else: top_opt = tk.Toplevel(self._parent, background=self._general_color) opw.CreateOptimizeWindow(top_opt, self) else: messagebox.showinfo(title='Select line',message='You must select a line') def on_optimize_cylinder(self): ''' User open window to optimize current structure :return: ''' # if [self.get_highest_pressure(line)['normal'] for line in self._line_to_struc.keys()] == []: # # messagebox.showinfo(title='Missing something', message='Missing properties/loads etc.') # # return if self._line_is_active: if self._active_line not in self._line_to_struc: messagebox.showinfo(title='Missing properties', message='Specify properties for line') elif self._line_to_struc[self._active_line][5] == None: messagebox.showinfo(title='Missing cylinder', message='Make a shell or panel') else: top_opt = tk.Toplevel(self._parent, background=self._general_color) opc.CreateOptimizeCylinderWindow(top_opt, self) else: messagebox.showinfo(title='Select line',message='You must select a line') def on_optimize_multiple(self): ''' Used to optimize in batch mode. :return: ''' if [self.get_highest_pressure(line)['normal'] for line in self._line_to_struc.keys()] == []: messagebox.showinfo(title='Missing something', message='Make something') return try: [self.get_highest_pressure(line)['normal'] for line in self._line_to_struc.keys()] except KeyError: messagebox.showinfo(title='Missing loads', message='The MultiOpt requires that loads have been defined.\n') return messagebox.showinfo(title='Multiple optimization information', message='Opening this window enables batch optimization.\n' 'There are less input and information. It is HIGHLY\n' 'recommended to single optimize first (optimize button).\n' 'This way you will understand how the optimizer works.\n' '\n' 'A default range of T properties is chosen. Typical analysis\n' 'steps (deltas) is chosen.') top_opt = tk.Toplevel(self._parent, background=self._general_color) opwmult.CreateOptimizeMultipleWindow(top_opt,self) def on_geometry_optimize(self): ''' :param returned_objects: :return: ''' if [self.get_highest_pressure(line)['normal'] for line in self._line_to_struc.keys()] == []: messagebox.showinfo(title='Missing something', message='Make something') return try: [self.get_highest_pressure(line)['normal'] for line in self._line_to_struc.keys()] except KeyError: messagebox.showinfo(title='Missing loads', message='The SpanOpt requires that loads have been defined.\n') return messagebox.showinfo(title='Span optimization module', message = 'Computationally heavy! Will run for a long time.\n' 'It is HIGHLY recommended to run predefined stiffeners. \n\n' 'WEIGHT INDEX is the most important result.\n' 'Results are presented for information and can not be returned to main model.\n' 'Weight index will show you the span length that will give the lowest weight.\n' '\n' 'A default range of T properties is chosen. Typical analysis\n' 'steps (deltas) is chosen.\n' 'Loads are taken from existing structure.') top_opt = tk.Toplevel(self._parent, background=self._general_color) optgeo.CreateOptGeoWindow(top_opt,self) def on_close_load_window(self, returned_loads, counter, load_comb_dict): ''' Setting properties created in load window. :return: ''' self.save_no_dialogue(backup=True) # keeping a backup try: img_file_name = 'img_ext_pressure_button.gif' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = self._root_dir + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) self._ext_button.config(image = photo) self._ext_button.image = photo except TclError: pass self._load_window_couter = counter self._new_load_comb_dict = load_comb_dict temp_load = self.__previous_load_data if len(returned_loads) != 0: need_to_recalc_puls = {} for load, data in returned_loads.items(): #creating the loads objects dictionary self._load_dict[load] = data # adding values to the line dictionary. resetting first. for key, value in self._line_to_struc.items(): self._line_to_struc[key][3] = [] self._line_to_struc[key][0].need_recalc = True # All lines need recalculations. for main_line in self._line_dict.keys(): for load_obj, load_line in self._load_dict.values(): if main_line in self._line_to_struc.keys(): if load_obj.get_name() in temp_load.keys(): if any([load_obj.__str__() != temp_load[load_obj.get_name()][0].__str__() and main_line in \ load_line+temp_load[load_obj.get_name()][1], main_line in list(set(temp_load[load_obj.get_name()][1]).symmetric_difference(set(load_line)))]) : # The load has changed for this line. if self._PULS_results is not None: self._PULS_results.result_changed(main_line) elif main_line in load_line: # This is a new load for this line. if self._PULS_results is not None: self._PULS_results.result_changed(main_line) if main_line in load_line and main_line in self._line_to_struc.keys(): self._line_to_struc[main_line][3].append(load_obj) # Storing the the returned data to temporary variable. self.__returned_load_data = [returned_loads, counter, load_comb_dict] # Calculating center of buoyancy from static cases. if self._grid_calc is not None: self.get_cob() # Update COB self.update_frame() def on_close_opt_window(self,returned_object): ''' Sets the returned properties. :param returned_structure: :return: ''' self.save_no_dialogue(backup=True) # keeping a backup self.new_structure(multi_return = returned_object[0:2]) # self._line_to_struc[self._active_line][1]=returned_objects[0] # self._line_to_struc[self._active_line][1]=returned_objects[1] # self._line_to_struc[self._active_line][0].need_recalc = True # self.set_selected_variables(self._active_line) # if returned_objects[2] is not None: # self._line_to_struc[self._active_line][2] = CalcFatigue(returned_objects[0].get_structure_prop(), # returned_objects[2]) # self.new_structure() self.update_frame() def on_close_opt_cyl_window(self,returned_object): ''' Sets the returned properties. :param returned_structure: :return: ''' self.new_structure(cylinder_return = returned_object[0]) self.update_frame() def on_close_opt_multiple_window(self, returned_objects): ''' Sets the returned properties. :param returned_structure: :return: ''' self.save_no_dialogue(backup=True) # keeping a backup for line,all_objs in returned_objects.items(): self._active_line = line #self._line_to_struc[line][0].need_recalc = True self.new_structure(multi_return= all_objs[0:2]) self.update_frame() def on_close_structure_window(self,returned_structure): ''' Setting the input field to specified properties :param returned_structure: :return: self._shell_ring_stf_gui_items = [self._lab_shell_ring_stiffener,self._ent_shell_ring_stf_hw, self._ent_shell_ring_stf_tw,self._ent_shell_ring_stf_b, self._ent_shell_ring_stf_tf, self._ent_shell_ring_stf_tripping_brackets, self._ent_shell_ring_stf_type, self._chk_shell_ring_frame_exclude, self._btn_shell_stf_section_ring_stf] ''' clicked_button = returned_structure[7] #["long stf", "ring stf", "ring frame", "flat long stf", 'flat stf', 'flat girder'] if clicked_button in ["long stf", "flat long stf", 'flat stf']: self._new_stf_spacing.set(returned_structure[0]) self._new_plate_thk.set(returned_structure[1]) self._new_stf_web_h.set(returned_structure[2]) self._new_stf_web_t.set(returned_structure[3]) self._new_stf_fl_w.set(returned_structure[4]) self._new_stf_fl_t.set(returned_structure[5]) self._new_stf_type.set(returned_structure[6]) elif clicked_button == 'flat girder': self._new_girder_web_h.set(returned_structure[2]) self._new_girder_web_t.set(returned_structure[3]) self._new_girder_fl_w.set(returned_structure[4]) self._new_girder_fl_t.set(returned_structure[5]) self._new_girder_type.set(returned_structure[6]) elif clicked_button == "ring stf": self._new_shell_ring_stf_hw.set(returned_structure[2]) self._new_shell_ring_stf_tw.set(returned_structure[3]) self._new_shell_ring_stf_b.set(returned_structure[4]) self._new_shell_ring_stf_tf.set(returned_structure[5]) elif clicked_button == "ring frame": self._new_shell_ring_frame_hw.set(returned_structure[2]) self._new_shell_ring_frame_tw.set(returned_structure[3]) self._new_shell_ring_frame_b.set(returned_structure[4]) self._new_shell_ring_frame_tf.set(returned_structure[5]) section = struc.Section({'stf_type': returned_structure[6], 'stf_web_height': returned_structure[2]/1000, 'stf_web_thk': returned_structure[3]/1000, 'stf_flange_width': returned_structure[4]/1000, 'stf_flange_thk': returned_structure[5]/1000}) self._sections = add_new_section(self._sections, section) def on_close_stresses_window(self,returned_stress_and_km): ''' Sets the returned transverse/axial/shear stresses (global estimated values). Sets the km1,km2,km3 paramter. :param returned_stress_and_km: :return: ''' self._new_sigma_y1.set(returned_stress_and_km[0]) self._new_sigma_y2.set(returned_stress_and_km[1]) self._new_sigma_x1.set(returned_stress_and_km[2]) self._new_sigma_x2.set(returned_stress_and_km[3]) self._new_tauxy.set(returned_stress_and_km[4]) self._new_stf_km1.set(returned_stress_and_km[5]) self._new_stf_km1.set(returned_stress_and_km[6]) self._new_stf_km1.set(returned_stress_and_km[7]) self._new_plate_kpp.set(returned_stress_and_km[8]) self._new_stf_kps.set(returned_stress_and_km[9]) self._new_stucture_type.set(returned_stress_and_km[10],) def on_close_fatigue_window(self,returned_fatigue_prop: dict): ''' Sets the returned fatigue properteis. :param returned_stress_and_km: :return: ''' if self._line_to_struc[self._active_line][2] == None: self._line_to_struc[self._active_line][2] = CalcFatigue(self._line_to_struc[self._active_line][0].Plate .get_structure_prop(), returned_fatigue_prop) else: self._line_to_struc[self._active_line][2].set_fatigue_properties(returned_fatigue_prop) self._line_to_struc[self._active_line][0].need_recalc = True if self.__returned_load_data is not None: map(self.on_close_load_window, self.__returned_load_data) # adding values to the line dictionary. resetting first. for key, value in self._line_to_struc.items(): if self._line_to_struc[key][2] is not None: self._line_to_struc[key][2].set_commmon_properties(returned_fatigue_prop) self._line_to_struc[key][0].need_recalc = True # All lines need recalculations. self.update_frame() def on_aborted_load_window(self): ''' When it is aborted due to closing. :return: ''' try: img_file_name = 'img_ext_pressure_button.gif' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = self._root_dir + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) self._ext_button.config(image = photo) self._ext_button.image = photo except TclError: pass def on_close_load_factor_window(self, returned_load_factors): ''' self._load_factors_dict = {'dnva':[1.3,1.2,0.7], 'dnvb':[1,1,1.3], 'tanktest':[1,1,0]} # DNV loads factors self._new_load_comb_dict = {(dnv cond, line, load type) : (stat lf, dyn lf, include)} :param returned_load_factors: list [stat lf, dyn lf] :return: ''' self._load_factors_dict = returned_load_factors['returned lf dict'] for name, data in self._new_load_comb_dict.items(): if name[0] == 'manual': continue if data[0].get() != 0: data[0].set(self._load_factors_dict[name[0]][1]) if data[1].get() != 0: data[1].set(self._load_factors_dict[name[0]][2]) def close_main_window(self): ''' Save of not save when closing window. :return: ''' mess = tk.messagebox.showwarning('Close main window', 'Save before closing?',type = 'yesnocancel') self.save_no_dialogue(backup=True) # keeping a backup if mess == 'yes': self.savefile() self._parent.destroy() elif mess == 'no': self._parent.destroy() elif mess == 'cancel': pass def on_color_code_check(self, event = None): if [self._new_colorcode_beams.get(), self._new_colorcode_plates.get(), self._new_colorcode_pressure.get(), self._new_colorcode_utilization.get(), self._new_colorcode_sigmax.get(), self._new_colorcode_sigmay1.get(), self._new_colorcode_sigmay2.get(), self._new_colorcode_tauxy.get(), self._new_colorcode_structure_type.get(), self._new_colorcode_section_modulus.get(), self._new_colorcode_fatigue.get(), self._new_colorcode_total.get(), self._new_colorcode_puls_sp_or_up.get(), self._new_colorcode_puls_acceptance.get(), self._new_colorcode_spacing.get()].count(True) > 1: messagebox.showinfo(title='Information', message='Can only select on color code at the time.') self._new_colorcode_beams.set(False) self._new_colorcode_plates.set(False) self._new_colorcode_pressure.set(False) self._new_colorcode_utilization.set(False) self._new_colorcode_sigmax.set(False) self._new_colorcode_sigmay1.set(False) self._new_colorcode_sigmay2.set(False) self._new_colorcode_tauxy.set(False) self._new_colorcode_structure_type.set(False) self._new_colorcode_section_modulus.set(False) self._new_colorcode_fatigue.set(False) self._new_colorcode_total.set(False) self._new_colorcode_puls_acceptance.set(False) self._new_colorcode_puls_sp_or_up.set(False) self.update_frame() def logger(self, line = None, point = None, move_coords = None): ''' Log to be used for undo and redo. ''' if line is not None: self._logger['added'].append([line[0], self._line_dict[line[0]]]) elif point is not None and move_coords is None: self._logger['added'].append([point, None]) elif point is not None and move_coords is not None: self._logger['added'].append([point, move_coords]) else: pass def undo(self, event = None): ''' Method to undo and redo. ''' if len(self._logger['added']) > 0: current = self._logger['added'].pop(-1) if 'point' in current[0] and current[1] is None: if current[0] not in self._logger['deleted']: self._logger['deleted'].append(current) self.delete_point(undo=current[0]) elif 'point' in current[0] and current[1] is not None: self.move_point(redo=current[1][0]) elif 'line' in current[0]: if current[0] not in [line[0] for line in self._logger['deleted']]: self._logger['deleted'].append(current) self.delete_line(undo=current[0]) def redo(self, event = None): ''' Method to undo and redo. ''' if len(self._logger['deleted']) > 0: current = self._logger['deleted'].pop(-1) if 'point' in current[0] and current[1] is None: self.new_point(redo=current[0]) elif 'point' in current[0] and current[1] is not None: self.move_point(redo=current[1][1]) elif 'line' in current[0]: self.new_line(redo=['point'+str(num) for num in current[1]]) def open_documentation_pdf(self): ''' Open the documentation pdf. ''' if os.path.isfile('ANYstructure_documentation.pdf'): os.startfile('ANYstructure_documentation.pdf') else: os.startfile(self._root_dir + '/' + 'ANYstructure_documentation.pdf') def open_documentation(self): ''' Open the documentation webpage. ''' import webbrowser webbrowser.open('https://sites.google.com/view/anystructure/start', new=0, autoraise=True) def open_donate(self): ''' Open the documentation webpage. ''' import webbrowser webbrowser.open('https://sites.google.com/view/anystructure/donate', new=0, autoraise=True) def open_about(self): ''' Open a about messagebox. :return: ''' messagebox.showinfo(title='Information', message='ANYstructure 4.x (Stable/Production)' '\n' '\n' 'By Audun Arnesen Nyhus \n' '2022\n\n' 'All technical calculation based on \n' 'DNV RPs and standards') def export_to_js(self): ''' Printing to a js file :return: ''' save_file = filedialog.asksaveasfile(mode="w", defaultextension=".js") if save_file is None: # ask saveasfile return `None` if dialog closed with "cancel". return # Setting up interface class. JS = sesam.JSfile(self._point_dict, self._line_dict, self._sections, self._line_to_struc) JS.write_points() JS.write_lines() JS.write_sections() JS.write_beams() save_file.writelines(JS.output_lines) save_file.close() if __name__ == '__main__': # multiprocessing.freeze_support() # errorCode = ctypes.windll.shcore.SetProcessDpiAwareness(2) # root = tk.Tk() # root.tk.call("source", "sun-valley.tcl") # root.tk.call("set_theme", "dark") # style = ttk.Style(root) # root.tk.eval(""" # set dir C:/Users/cefany/Downloads/awthemes-10.4.0 # # package ifneeded awthemes 10.4.0 \ # [list source [file join $dir awthemes.tcl]] # package ifneeded colorutils 4.8 \ # [list source [file join $dir colorutils.tcl]] # package ifneeded awarc 1.6.1 \ # [list source [file join $dir awarc.tcl]] # package ifneeded ttk::theme::awarc 1.6.1 \ # [list source [file join $dir awarc.tcl]] # package ifneeded awblack 7.8.1 \ # [list source [file join $dir awblack.tcl]] # package ifneeded ttk::theme::awblack 7.8.1 \ # [list source [file join $dir awblack.tcl]] # package ifneeded awbreeze 1.9.1 \ # [list source [file join $dir awbreeze.tcl]] # package ifneeded ttk::theme::awbreeze 1.9.1 \ # [list source [file join $dir awbreeze.tcl]] # package ifneeded awbreezedark 1.0.1 \ # [list source [file join $dir awbreezedark.tcl]] # package ifneeded ttk::theme::awbreezedark 1.0.1 \ # [list source [file join $dir awbreezedark.tcl]] # package ifneeded awclearlooks 1.3.1 \ # [list source [file join $dir awclearlooks.tcl]] # package ifneeded ttk::theme::awclearlooks 1.3.1 \ # [list source [file join $dir awclearlooks.tcl]] # package ifneeded awdark 7.12 \ # [list source [file join $dir awdark.tcl]] # package ifneeded ttk::theme::awdark 7.12 \ # [list source [file join $dir awdark.tcl]] # package ifneeded awlight 7.10 \ # [list source [file join $dir awlight.tcl]] # package ifneeded ttk::theme::awlight 7.10 \ # [list source [file join $dir awlight.tcl]] # package ifneeded awtemplate 1.5.1 \ # [list source [file join $dir awtemplate.tcl]] # package ifneeded ttk::theme::awtemplate 1.5.1 \ # [list source [file join $dir awtemplate.tcl]] # package ifneeded awwinxpblue 7.9.1 \ # [list source [file join $dir awwinxpblue.tcl]] # package ifneeded ttk::theme::awwinxpblue 7.9.1 \ # [list source [file join $dir awwinxpblue.tcl]] # # package require tksvg # # """) # root.tk.call("package", "require", 'awwinxpblue') # style.theme_use('awwinxpblue') # width = int(root.winfo_screenwidth()*1) # height = int(root.winfo_screenheight()*0.95) # root.geometry(f'{width}x{height}') # my_app = Application(root) # root.mainloop() multiprocessing.freeze_support() errorCode = ctypes.windll.shcore.SetProcessDpiAwareness(2) root = tk.Tk() width = root.winfo_screenwidth() height = root.winfo_screenheight() root.geometry(f'{width}x{height}') my_app = Application(root) root.mainloop() #Application(None).openfile(r'C:\Github\ANYstructure\ANYstructure\ship_section_example.txt', alone=True)
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/main_application.py
main_application.py
import math from matplotlib.backends import backend_tkagg from matplotlib import pyplot as plt import numpy as np from collections import deque import copy import matplotlib.animation as animation try: import any_files.example_data as test except ModuleNotFoundError: import ANYstructure.any_files.example_data as test def dist(p, q): return math.sqrt((p[0] - q[0]) ** 2 + (p[1] - q[1]) ** 2) class CreateGridWindow(): def __init__(self, grid, canvas_dim, to_draw, canvas_origo, find_lines: bool = False): self._grid = grid self._parent_dimensions = canvas_dim self._to_draw = to_draw self._parent_origo = canvas_origo self._points_child = {} self._child_dimensions = (canvas_dim[0]-canvas_origo[0]+1, canvas_origo[1]+1) self._bfs_search_data = None for line,point in to_draw.items(): point1 = (int(point[0][0]),int(point[0][1])) point2 = (int(point[1][0]),int(point[1][1])) self._points_child[line] = [point1,point2] for line, points in self._points_child.items(): for point in self._grid.get_points_along_line(points[0],points[1]): if not find_lines: self._grid.set_barrier(point[0],point[1]) else: self._grid.set_barrier(point[0], point[1], line_number = hlp.get_num(line)) def __str__(self): return 'class CreateGridWindow(): __str__ - Not implemented' @property def grid(self): return self._grid @grid.setter def grid(self, val): self._grid = val @property def bfs_search_data(self): return self._bfs_search_data @bfs_search_data.setter def bfs_search_data(self, val): self._bfs_search_data = val def draw_grid(self, save = False, tank_count = None): ''' Drawing grid EMPTY = yellow FULL = red :return: ''' def discrete_matshow(data): if self._bfs_search_data is not None: comp_cell_count = self._bfs_search_data area_mult = self._parent_dimensions[0]/(10*self._parent_dimensions[0]) * \ self._parent_dimensions[1]/(10*self._parent_dimensions[1]) plt_txt = list() tank_iter = [] if tank_count == None else range(tank_count) for num in tank_iter: if self._bfs_search_data is not None: tank_area = comp_cell_count[num + 2] * area_mult plt_txt.append('Comp' + str(num + 2) + ' Approx. area: ' + str(round(tank_area,1))) else: plt_txt.append('Comp' + str(num + 2)) fig = plt.figure(figsize=[12, 8]) ax = fig.add_subplot(111) ax.tick_params(labelsize=8) fig.subplots_adjust(left=0.05, right=0.90, top=0.95, bottom=0.05) # get discrete colormap #cmap = plt.get_cmap('Accent_r', np.int32(np.max(data)) - np.int32(np.min(data)) + 1) cmap = plt.get_cmap('jet', np.int32(np.max(data)) - np.int32(np.min(data)) + 1) # set limits .5 outside true range cax = ax.matshow(data, cmap=cmap, vmin=np.min(data) - .5, vmax=np.max(data) + .5) # tell the colorbar to tick at integers colb = fig.colorbar(cax, ticks=np.arange(np.min(data), np.max(data) + 1), shrink=0.8) if tank_count is not None: colb.set_ticks([-1, 0, 1] + [num + 2 for num in range(tank_count)]) colb.set_ticklabels(['BHD/Deck', 'Not searched', 'External'] + plt_txt) # generate data discrete_matshow(self._grid.get_matrix()) plt.suptitle('Compartments returned from search operation displayed below', fontsize=20, color='red') plt.xscale('linear') plt.axis('off') plt.annotate('*area calculation inaccuracies due to thickness of barriers (BHD/Deck)', (0, 0), (0, -20), xycoords='axes fraction', textcoords='offset points', va='top', fontsize = 10) if save: plt.savefig('current_comps.png') else: plt.show() def animate_grid(self, grids_to_animate: list = None, tank_count = None): ''' If animation is selected, the grid is shown here. ''' all_grids = grids_to_animate def generate_data(): if len(all_grids) == 0: ani.event_source.stop() current_grid = all_grids.pop(0) return current_grid def update(data): if len(all_grids) == 0: ani.event_source.stop() cax.set_data(data) return cax def data_gen(): if len(all_grids) == 0: ani.event_source.stop() while True: yield generate_data() plt.ion() #tank_count = np.max(all_grids[-1]) fig = plt.figure(figsize=[12, 8]) ax = fig.add_subplot(111) ax.tick_params(labelsize=8) fig.subplots_adjust(left=0.05, right=0.90, top=0.95, bottom=0.05) # get discrete colormap cmap = plt.get_cmap('Accent_r', np.int32(np.max(all_grids[-1])) - np.int32(np.min(all_grids[-1])) + 1) # set limits .5 outside true range cax = ax.matshow(all_grids[-1], cmap=cmap, vmin=np.min(all_grids[-1]) - .5, vmax=np.max(all_grids[-1]) + .5) # tell the colorbar to tick at integers colb = fig.colorbar(cax, ticks=np.arange(np.min(all_grids[-1]), np.max(all_grids[-1]) + 1), shrink=0.8) if self._bfs_search_data is not None: comp_cell_count = self._bfs_search_data area_mult = self._parent_dimensions[0] / (10 * self._parent_dimensions[0]) * \ self._parent_dimensions[1] / (10 * self._parent_dimensions[1]) plt_txt = list() for num in range(tank_count): if self._bfs_search_data is not None: tank_area = comp_cell_count[num + 2] * area_mult plt_txt.append('Comp' + str(num + 2) + ' Approx. area: ' + str(round(tank_area, 1))) else: plt_txt.append('Comp' + str(num + 2)) if tank_count is not None: colb.set_ticks([-1, 0, 1] + [num + 2 for num in range(int(tank_count))]) colb.set_ticklabels(['BHD/Deck', 'Not searched', 'External'] + plt_txt) ani = animation.FuncAnimation(fig, update, data_gen, interval=50) fm = plt.get_current_fig_manager() #fm.window.activateWindow() #fm.window.raise_() plt.suptitle('Compartments returned from search operation displayed below', fontsize=20, color='red') plt.xscale('linear') plt.axis('off') plt.annotate('*area calculation inaccuracies due to thickness of barriers (BHD/Deck)', (0, 0), (0, -20), xycoords='axes fraction', textcoords='offset points', va='top', fontsize = 10) plt.show() def search_bfs(self, animate = False): ''' Bredth first search method. Searcing every 20th pixel for empty places in the grid. When a empty cell is found, the search starts. The search ends when no more empty cells are found in the boudnary regions (circular expansion of search). USE GRID CONVENSION HERE. NOT POINTS. grid(row,col) is same as grid(y,x) points uses point(x , y) is same as grid(col,row) :return: ''' compartment_count = 1 compartments = {} all_grids = [] anim_count = 0 if animate: all_grids.append(self._grid.get_matrix()) barriers_where = np.where(self._grid.cells.reshape((1,np.product(self._grid.cells.shape))) == -1) barrier_comp_count = dict() for startrow in range(0, self._child_dimensions[1], 20): for startcol in range(0, self._child_dimensions[0], 20): if self._grid.is_empty(startrow,startcol): el_max = '' el_min = '' cells = 0 boundary = deque() boundary.append((startrow,startcol)) corners = [] barrier_comp_count[compartment_count] = 0 while len(boundary) != 0: current_cell = boundary.pop() #find the min/max elevation, counting cells in tank if el_max == '': el_max = current_cell[0] el_min = current_cell[0] else: if current_cell[0] < el_max: el_max = current_cell[0] if current_cell[0] > el_min: el_min = current_cell[0] cells += 1 anim_count += 1 four_neighbors = self._grid.four_neighbors(current_cell[0], current_cell[1]) neighbors = self._grid.eight_neighbors(current_cell[0], current_cell[1]) #doing serach operations and looking for corners no_of_barriers = 0 for neighbor in four_neighbors: if self._grid.get_value(neighbor[0], neighbor[1]) == -1: no_of_barriers += 1 barrier_comp_count[compartment_count] += 1 else: pass if self._grid.is_empty(neighbor[0], neighbor[1]): self._grid.set_value(neighbor[0], neighbor[1],compartment_count) boundary.append(neighbor) if animate: if compartment_count > 1: anim_interval = 2000 else: anim_interval = 20000 if anim_count/anim_interval - anim_count//anim_interval == 0.0: all_grids.append(copy.deepcopy(self._grid.get_matrix())) #finding corners on diagonal cells for neighbor in [item for item in neighbors if item not in four_neighbors]: if self._grid.get_value(neighbor[0], neighbor[1]) == -1: no_of_barriers += 1 else: pass if no_of_barriers > 4: corners.append((neighbor[0], neighbor[1])) # returning values to the program compartments[compartment_count] = cells, corners compartment_count += 1 if animate: all_grids.append(self._grid.get_matrix()) cells_modified, area_modified = dict(), dict() comp_sum = np.sum([data for data in barrier_comp_count.values()]) for comp_no, data in compartments.items(): barrier_ratio_of_total = barrier_comp_count[comp_no] / comp_sum if np.isnan(barriers_where[0].shape[0] * barrier_ratio_of_total): continue cells_modified[comp_no] = data[0] + int(barriers_where[0].shape[0] * barrier_ratio_of_total) to_return = {'compartments': compartments, 'grids':all_grids, 'modified_cell_count': cells_modified} self.bfs_search_data = to_return['modified_cell_count'] self._grid.bfs_search_data = to_return['modified_cell_count'] return to_return def find_lines_inside_area(self, row1, col1, row2, col2): ''' Define a search area. Return the lines in this area. This method makes sense if "find_lines" is set to True. ''' return np.unique(self._grid.get_array()[row1:row2, col1:col2]) if __name__ == '__main__': import time t1 = time.time() canvas_dim = [1000,720] canvas_origo = (50,670) my_grid = CreateGridWindow(test.get_grid_no_inp(), canvas_dim, test.get_to_draw(), canvas_origo) search_return = my_grid.search_bfs(animate = True) my_grid.draw_grid(tank_count=4) print(np.unique(my_grid.grid))
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/grid_window.py
grid_window.py
import numpy as np class Loads(): ''' This Class calculates the load to be applied on the structure ''' def __init__(self, main_load_dict): self.main_load_dict = main_load_dict self.static_draft = main_load_dict['static_draft'] self.poly_third = main_load_dict['poly_third'] self.poly_second = main_load_dict['poly_second'] self.poly_first = main_load_dict['poly_first'] self.poly_const = main_load_dict['poly_const'] self.manual_press = main_load_dict['man_press'] self.load_condition = main_load_dict['load_condition'] if main_load_dict['load_condition'] == 'slamming': self.slamming_pl_reduction_factor = main_load_dict['slamming mult pl'] self.slamming_stf_reduction_factor = main_load_dict['slamming mult stf'] else: self.slamming_pl_reduction_factor = 1 self.slamming_stf_reduction_factor = 1 self.name_of_load = main_load_dict['name_of_load'] try: self.limit_state = main_load_dict['limit_state'] except KeyError: self.limit_state = 'ULS' try: self.horizontal_types = main_load_dict['structure_types']['horizontal'] self.vertical_types = main_load_dict['structure_types']['vertical'] except KeyError: self.horizontal_types = ['BOTTOM', 'BBT', 'HOPPER', 'MD'] self.vertical_types = ['BBS', 'SIDE_SHELL', 'SSS'] self.dynamic_pressure = 0 self.static_pressure = 0 self.is_external = True def __str__(self): string = str('Properties selected load is:'+ '\n----------------------------'+ '\n Name of load: ' + str(self.name_of_load) + '\n Polynominal (x^3): '+ str(self.poly_third) + '\n Polynominal (x^2): '+ str(self.poly_second) + '\n Polynominal (x): '+ str(self.poly_first) + '\n Constant (C): '+ str(self.poly_const) + '\n Load condition: '+ str(self.load_condition) + '\n Limit state ' + str(self.limit_state) + '\n Is external? '+ str(self.is_external) + '\n Static draft: '+ str(self.static_draft)) return string def get_calculated_pressure(self,varibale_value, acceleration, structure_type): ''' Input variable is a tuple of (x,y). This method need one variable and the right one must be chosen. :param varibale_value: :return: ''' #print(' pressure requested for var/acc: ', varibale_value,'/',acceleration, 'type is: ', structure_type) input_var = varibale_value if self.is_static(): press = 1025 * acceleration * (self.static_draft - input_var[1]) elif structure_type in self.horizontal_types: press = self.__calculate_poly_value(input_var[0]) elif structure_type in self.vertical_types: press = self.__calculate_poly_value(input_var[1]) else: press = 0 if self.load_condition == 'slamming': psl = self.__calculate_poly_value(0) return max(press, psl) else: return press def get_report_string(self): return [ 'Name of load: ' + self.name_of_load, 'Polynominal (x^3): '+ str(self.poly_third) , 'Polynominal (x^2): '+ str(self.poly_second) , 'Polynominal (x): '+ str(self.poly_first) , 'Constant (C): '+ str(self.poly_const) , 'Load condition: '+ str(self.load_condition) , 'Limit state ' + str(self.limit_state) , 'Is external? '+ str(self.is_external) , 'Static draft: '+ str(self.static_draft)] def __calculate_poly_value(self, variable): ''' Returning magnitude of load in the polynominal equation. :param variable: :return: ''' return np.polyval( [self.poly_third, self.poly_second, self.poly_first, self.poly_const], variable) def get_load_condition(self): return self.load_condition def is_tank_test(self): return self.load_condition == 'tanktest' def get_load_parmeters(self): return self.poly_third, self.poly_second, self.poly_first, self.poly_const, self.load_condition, \ None, self.manual_press, self.static_draft, self.name_of_load, self.limit_state, \ self.slamming_pl_reduction_factor, self.slamming_stf_reduction_factor def get_name(self): return self.name_of_load def is_static(self): ''' Checking if the load is static type. :return: ''' return self.static_draft != None def get_static_draft(self): ''' Return static draft if is_static :return: ''' if self.is_static(): return self.static_draft else: pass def get_limit_state(self): ''' Return ULS, FLS.... ''' return self.limit_state def get_load_condition(self): ''' Getting loaded, ballast or part ''' return self.load_condition def get_slamming_reduction_plate(self): return self.slamming_pl_reduction_factor def get_slamming_reduction_stf(self): return self.slamming_stf_reduction_factor class Tanks(): ''' This class incorporates all tank definitions temp_tank_dict = {0 'comp_no' : comp_no, 1 'cells' : properties[0], 2 'min_el' : properties[1], 3 'max_el' : properties[2], 4 'content' : '', 5 'added_press' : 0, 6 'acc' : {static:g,dyn_loaded:az,dyn_ballast:az} 7 'density' : 1025} ''' def __init__(self, tank_dict): self.properties = tank_dict self.compartment_number = tank_dict['comp_no'] self.cells = tank_dict['cells'] self.min_elevation = tank_dict['min_el'] self.max_elevation = tank_dict['max_el'] self.content = tank_dict['content'] self.added_pressure = tank_dict['added_press'] self.density = tank_dict['density'] self.acc_static = tank_dict['acc']['static'] self.acc_dyn_loaded = tank_dict['acc']['dyn_loaded'] self.acc_dyn_ballast = tank_dict['acc']['dyn_ballast'] self.all_types = ['crude_oil', 'diesel', 'slop', 'fresh water', 'ballast'] def __str__(self): ''' Prints a string for the tank. :return: ''' tank_string = str('--- Tank properties (selected tank) ---'+ '\n Minimum elevtaion: ' + str(self.min_elevation) + '\n Maximum elevation: ' + str(self.max_elevation) + '\n Content of tank: ' + self.content + '\n Defined density: ' + str(self.density) + '\n Defined acceleration: ' + 'st = ' + str(self.acc_static) + ' , azl = ' + str(self.acc_dyn_loaded) + ' , azb = ' + str(self.acc_dyn_ballast) + '\n Added pressure at tank top: ' + str(self.added_pressure) ) return tank_string def set_overpressure(self, overpressure): ''' Setter :param overpressure: :return: ''' self.added_pressure = overpressure self.properties['added_press'] = overpressure def set_content(self, content): ''' Setter :param overpressure: :return: ''' self.properties['content'] = content self.content = content def set_acceleration(self, acc): ''' Setter :param overpressure: :return: ''' self.acc_static = acc['static'] self.properties['static'] = acc['static'] self.acc_dyn_loaded = acc['dyn_loaded'] self.properties['dyn_loaded'] = acc['dyn_loaded'] self.acc_dyn_ballast = acc['dyn_ballast'] self.properties['dyn_ballast'] = acc['dyn_ballast'] def set_density(self,density): ''' Setter :param overpressure: :return: ''' self.properties['density'] = density self.density = density def get_name(self): ''' Returns the name of the compartmnet :return: ''' return 'comp'+str(self.compartment_number) def get_highest_elevation(self): ''' Find the top of the tank. :return: ''' return self.max_elevation def get_lowest_elevation(self): ''' Find the bottom of the tank. :return: ''' return self.min_elevation def get_line_pressure_from_max_pressure(self, pressure, coordinates): ''' Used when you have a maximum pressure and request the pressure at a specific coordinate. :param coordinates: :return: ''' elevation = coordinates[1] return pressure *((self.get_highest_elevation()-elevation)/ (self.get_highest_elevation()-self.get_lowest_elevation())) def get_calculated_pressure(self, coordinates, acceleration): ''' Get the pressure with specified variable. :param elevaiton: :return: ''' elevation = coordinates[1] press = (self.get_highest_elevation()-elevation)*self.density*acceleration #print(' tank calculated pressure: ',str(self.get_highest_elevation()),'-', str(elevation),'*', str(self.density),'*',str(acceleration), ' = ', press) return press def get_bottom_pressure(self): ''' Get pressure at bottom of tank. :return: ''' return (self.get_highest_elevation() - self.get_lowest_elevation()) * self.density * self.acceleration + self.added_pressure def get_top_pressure(self): ''' Get the pressure at the top of the tank. :return: ''' return self.added_pressure def get_density(self): ''' Get the tank density. :return: ''' return self.density def get_content(self): ''' Returnt the tank content type :return: ''' return self.content def get_accelerations(self): ''' Returns the defined accelerations :return: ''' return (self.acc_static, self.acc_dyn_loaded,self.acc_dyn_ballast) def get_overpressure(self): ''' Get the overpressure at tank top. :return: ''' return self.added_pressure def get_parameters(self): ''' Returns properties :return: ''' # return_dict = {'comp_no':self.compartment_number, 'cells':self.cells, 'min_el':self.min_elevation, # 'max_el':self.max_elevation, 'content':self.content, 'added_press':self.added_pressure, # 'density':self.density, 'acc':{'static':self.acc_static, 'dyn_loaded':self.acc_dyn_loaded, # 'dyn_ballast':self.acc_dyn_ballast}} # return return_dict return self.properties def is_loaded_condition(self): ''' Check to see if the tank shall be in cluded in loaded condition. self.tank_options = ['crude_oil', 'diesel', 'slop', 'ballast'] :return: ''' try: return self.content in self.all_types[0:4] except AttributeError: return False def is_ballast_condition(self): ''' Check to see if the tank shall be in cluded in loaded condition. :return: ''' try: return self.content == self.all_types[4] except AttributeError: return False def is_tank_test_condition(self): ''' Check to see if the tank shall be in cluded in loaded condition. :return: ''' try: return self.content == self.all_types except AttributeError: return False def get_condition(self): ''' Returning the condition. self.load_conditions = ['loaded', 'ballast','tanktest'] :return: ''' try: if self.is_ballast_condition(): return 'ballast' elif self.is_loaded_condition(): return 'loaded' elif self.is_tank_test_condition(): return 'tanktest' except AttributeError: return False def get_tank_dnv_minimum_pressure(self, lf_static, lf_enviromental): ''' Calculating 4.3.7 and 4.3.8 and returning the highest of these pressures. :return: ''' if self.is_loaded_condition(): dyn_acc = self.acc_dyn_loaded elif self.is_ballast_condition(): dyn_acc = self.acc_dyn_ballast else: dyn_acc = 0 hop = self.get_highest_elevation()-self.get_lowest_elevation() #All tanks shall be designed for the following internal design pressure: p_4_3_7 = self.density * self.acc_static * hop *(lf_static+(dyn_acc/self.acc_static)*lf_enviromental) #For tanks where the air pipe may be filled during filling operations, the following additional internal #design pressure conditions shall be considered: p_4_3_8 = (self.density*self.acc_static*hop + self.get_overpressure())*lf_static return max(p_4_3_7, p_4_3_8) class Combination(): ''' THIS CLASS IS CURRENTLY NOT USED. MAY NOT BE USED AT ALL. IT IS STUPID. This class cointaines the load combinations. combination,self.active_line,compartment ''' def __init__(self, object_line, comb_dict = None, tank_dict = None, load_dict = None): ''' Input from main application is: line for this object tank_dict = {} #main tank dictionary (created when BFS search is executed for the grid) (comp# : TankObj) load_dict = {} #main load dictionary (created in separate load window (load# : [LoadObj, lines]) comb_dict = {} #load combination dictionary (comb,line,load) : [DoubleVar(), DoubleVar], IntVar()] ''' self.object_line = object_line self.comb_dict = comb_dict self.tank_dict = tank_dict self.load_dict = load_dict try: self.combination = comb_dict.keys()[0] except AttributeError : self.combination = None try: self.load_case = comb_dict.keys()[2] except AttributeError: self.load_case = None try: self.load_factor_static = comb_dict.values()[0] except AttributeError: self.load_factor_static = None try: self.load_factor_dynamic = comb_dict.values()[1] except AttributeError: self.load_factor_dynamic = None try: self.on_off = comb_dict.values()[2] except AttributeError: self.on_off = None def __str__(self): return 'NOT IMPLEMENTED' def get_load_factors(self): ''' Get the tk.DoubleVar, tk.DoubleVar, tk.IntVar that is used in the load factor input and on/off. :return: ''' return self.load_factor_static.get(), self.load_factor_dynamic.get(), self.on_off.get() def get_load_factor_static(self): ''' Setting the the dynamic load factor. :return: ''' return self.load_factor_static.get() def get_load_factor_dynamic(self): ''' Setting the the dynamic load factor. :return: ''' return self.load_factor_dynamic.get() def get_on_off(self, value): ''' Setting the the dynamic load factor. :return: ''' return self.on_off.get() def set_load_factor_static(self, value): ''' Setting the the dynamic load factor. :return: ''' self.load_factor_static = value def set_load_factor_dynamic(self, value): ''' Setting the the dynamic load factor. :return: ''' self.load_factor_dynamic = value def set_on_off(self, value): ''' Setting the the dynamic load factor. :return: ''' self.on_off= value def set_combination_dictionary(self, value): ''' Setting the combination dictionary. :return: ''' self.comb_dict = value assert tuple(value.keys())[0][1] == self.object_line, 'line is not correct!' assert len(tuple(value.keys())[0]) == 3 , 'length of key must be 3' assert len(tuple(value.values())[0]) == 3, 'length of values must be 3' try: self.set_load_factor_static(list(value.values())[0][0]) except AttributeError: pass try: self.set_load_factor_dynamic(list(value.values())[0][1]) except AttributeError: pass try: self.set_on_off(list(value.values())[0][2]) except AttributeError: pass def set_load_dictionary(self, value): ''' Setting the load dictionary. :return: ''' self.load_dict = value def set_tank_dictionary(self, value): ''' Setting the tank dictionary. :return: ''' self.tank_dict = value if __name__ == '__main__': import example_data as ex for load, type in zip([Loads(ex.load_bottom), Loads(ex.load_side), Loads(ex.load_static), Loads(ex.load_slamming)], ['BOTTOM', 'SIDE_SHELL', '', '']): print(load.get_calculated_pressure((10,10), 3, type))
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/calc_loads.py
calc_loads.py
import math, copy, csv, os import numpy as np print_it = True root_dir = os.path.dirname(os.path.abspath(__file__)) def print_helper(properties, prop_text, units): ''' Used to print out the properties ''' dummy_i = 0 print(' \n ') for prop_i in prop_text: print(str(prop_i) + ' ' + str(properties[dummy_i]) + ' ' + str(units[dummy_i]) ) dummy_i += 1 def dist(p, q): return math.sqrt((p[0] - q[0]) ** 2 + (p[1] - q[1]) ** 2) def get_num(x): try: return int(''.join(ele for ele in x if ele.isdigit() or ele == '.')) except ValueError: return x def list_2_string(list): new_string = '' for item in list[0:-1]: new_string += str(item) new_string += ' , ' new_string += str(list[-1]) return new_string def one_load_combination(line_name_obj, coord, defined_loads, load_condition, defined_tanks, comb_name, acc, load_factors_all): ''' Creating load combination. Inserted into self.line_to_struc index = 4 "dnva", "line12", "static_ballast_10m" #load combination dictionary (comb,line,load) : [stat - DoubleVar(), dyn - DoubleVar], on/off - IntVar()] :return: ''' if load_condition not in ['tanktest','manual', 'slamming']: return helper_dnva_dnvb(line_name_obj, coord, defined_loads, load_condition, defined_tanks, comb_name, acc, load_factors_all) elif load_condition == 'tanktest' and comb_name == 'tanktest': return helper_tank_test(line_name_obj, coord, defined_loads, load_condition, defined_tanks, comb_name, acc, load_factors_all) elif load_condition == 'manual': return helper_manual(line_name_obj, comb_name,load_factors_all) elif load_condition == 'slamming': return helper_slamming(defined_loads) else: return [None, ' '] def helper_dnva_dnvb(line_name_obj, coord, defined_loads, load_condition, defined_tanks, comb_name, acc, load_factors_all): # calculate the defined loads calc_load, load_print, prt_conditions = [], ['',], [] line_name = line_name_obj[0] structure_type = line_name_obj[1].get_structure_type() # if line_name_obj[0] == 'line12': # print('Load calculation for '+line_name_obj[0] + ' ' + comb_name+ ' ' + load_condition) # if print_line != None and line_name == print_line: # print('Load calculation for '+line_name_obj[0] + ' ' + comb_name+ ' ' + load_condition) if len(defined_loads) != 0: for load in defined_loads : if comb_name+load_condition not in prt_conditions: load_print.append("Loads for condition: " + load_condition + ' - ' + comb_name +' ' + '\n') prt_conditions.append(comb_name+load_condition) if load != None: load_factors = load_factors_all[(comb_name, line_name, load.get_name())] # if print_it: # if load_factors[0].get() != 0: # load_print.append('LOAD NAME: '+' '+ comb_name+ ' '+ line_name+' '+ load.get_name()+'\n') # if load_factors[1].get() != 0: # if load_factors[0].get() != 0: # load_print.append('LOAD NAME: '+' '+ comb_name+ ' '+ line_name+' '+ load.get_name()+'\n') # USE GET() (static,dyn, on/off) if load_condition == load.get_load_condition(): static_pressure = (load_factors[2].get())*(load_factors[0].get())\ *load.get_calculated_pressure(coord, acc[0],structure_type) dynamic_pressure = (load_factors[2].get())*(load_factors[1].get())\ *load.get_calculated_pressure(coord, acc[1],structure_type) if print_it: # load_print.append('load (NON-TANK) calculation for load condition:' + load_condition + ' - Load is: '+ \ # load.get_name() + ' - Type is: \n') if load_factors[0].get() != 0: load_print.append(' static with acceleration: '+ str(acc[0])+ ' is: \n '+ str(load_factors[2].get())+'*'+\ str(load_factors[0].get())+'*'+\ str(round(load.get_calculated_pressure(coord, acc[0],structure_type),1))+ ' = '+ \ str(round(static_pressure,1))+'\n') if load_factors[1].get() != 0: load_print.append(' dynamic with acceleration: '+ str(acc[1])+' is: \n '+ str(load_factors[2].get())+'*'+\ str(load_factors[1].get())+'*'+\ str(round(load.get_calculated_pressure(coord, acc[1],structure_type),1))+ ' = '+ \ str(round(dynamic_pressure,1))+'\n') # if line_name_obj[0] == 'line12': # print('Pressures',static_pressure,'+',dynamic_pressure,'=',static_pressure+dynamic_pressure) calc_load.append(static_pressure+dynamic_pressure) # calculate the tank loads if len(defined_tanks) != 0: temp_tank = {} if comb_name + load_condition not in prt_conditions: load_print.append("Loads for condition: " + load_condition + ' - ' + comb_name + ' ' + '\n') prt_conditions.append(comb_name + load_condition) for tank_name_obj in defined_tanks: temp_tank[tank_name_obj[0]] = 0 load_factors = load_factors_all[(comb_name, line_name, tank_name_obj[0])] overpress_lf = [1.3,0]# if load_factors[0].get()==1.2 else [1,1.3] if load_condition == tank_name_obj[1].get_condition(): # USE GET() (static,dyn, on/off) static_pressure = load_factors[2].get()*(load_factors[0].get())\ *tank_name_obj[1].get_calculated_pressure(coord,acc[0])\ +tank_name_obj[1].get_overpressure()*overpress_lf[0] dynamic_pressure = load_factors[2].get()*load_factors[1].get()\ *tank_name_obj[1].get_calculated_pressure(coord,acc[1])\ +tank_name_obj[1].get_overpressure()*overpress_lf[1] temp_tank[tank_name_obj[0]] = static_pressure + dynamic_pressure# .append((static_pressure + dynamic_pressure)) if print_it and tank_name_obj[0]+load_condition not in prt_conditions: prt_conditions.append(tank_name_obj[0]+load_condition) #load_print.append('load (TANK) calculation for load condition:'+ load_condition+ ' - Tank is: '+ tank_name_obj[0]+'\n') #load_print.append('load factors : '+ str(load_factors[0].get())+str(load_factors[1].get())+str(load_factors[2].get())+'\n') load_print.append('\n' + tank_name_obj[0] + ' - static: '+ str(load_factors[2].get())+ '*'+ str(load_factors[0].get()) + '*'+\ str(tank_name_obj[1].get_calculated_pressure(coord,acc[0]))+' + '+\ str(tank_name_obj[1].get_overpressure())+ '*'+str(overpress_lf[0])+ ' = '+str(static_pressure)+'\n') load_print.append(tank_name_obj[0] + ' - dynamic: '+str(load_factors[2].get())+ '*'+ str(load_factors[1].get())+ '*'+\ str(tank_name_obj[1].get_calculated_pressure(coord, acc[1]))+' + '+\ str(tank_name_obj[1].get_overpressure())+ '*'+str(overpress_lf[1])+' = '+ str(dynamic_pressure)+'\n') # choosing the tank with the highest pressures if len(defined_loads) == 0: line_tank_pressure_calc = max([pressure for pressure in temp_tank.values()]) #print('line_tank_pressure_calc', line_tank_pressure_calc) highest_dnv_tank_pressure = tank_name_obj[1].get_tank_dnv_minimum_pressure(load_factors[0].get(), load_factors[1].get()) #print('highest_dnv_tank_pressure', highest_dnv_tank_pressure) line_dnv_tank_pressure = tank_name_obj[1].get_line_pressure_from_max_pressure(highest_dnv_tank_pressure, coord) #print('line_dnv_tank_pressure', line_dnv_tank_pressure) # if line_name_obj[0] == 'line29': # print('Tank load to append is max( ',highest_tank_pressure_calc,highest_dnv_tank_pressure,')') highest_tank_pressure = max(line_tank_pressure_calc,line_dnv_tank_pressure) calc_load.append(-highest_tank_pressure if highest_tank_pressure else 0) load_print.append('\nDNVGL-OS-C101 4.3.7 and 4.3.8 (Tank pressures) = '+ str(highest_tank_pressure)+'\n') else: pass if print_it: if len(calc_load) == 2: load_print.append('\nRESULT: ' + str(round(calc_load[0], 1)) +' + '+ str(round(calc_load[1])) + ' = ' + str(round(sum(calc_load),1)) +'\n') elif len(calc_load) == 1: load_print.append( '\nRESULT: ' + str(round(calc_load[0],1))+'\n') else: pass load_print.append('------------------------------------------------------------------\n') # if line_name_obj[0] == 'line12': # print('end') return [int(abs(sum(calc_load))), load_print] def helper_slamming(defined_loads): # calculate the defined loads calc_load, load_print = [], ['',] if len(defined_loads) != 0: for load in defined_loads: if load != None and load.get_load_condition() == 'slamming': load_print.append('Slamming pressure: \n'+ str(load.get_calculated_pressure(0, 0, 'slamming'))+ ' Pa \n') return [load.get_calculated_pressure(0, 0, 'slamming'), load_print] return [None, ' '] def helper_tank_test(line_name_obj, coord, defined_loads, load_condition, defined_tanks, comb_name, acc, load_factors_all): # calculate the defined loads calc_load, load_print = [], ['',] static_pressure, dynamic_pressure = 0, 0 line_name = line_name_obj[0] structure_type = line_name_obj[1].get_structure_type() if len(defined_loads) != 0: for load in defined_loads: if load != None: load_factors = load_factors_all[(comb_name, line_name, load.get_name())] # USE GET() (static,dyn, on/off) if load_condition == load.get_load_condition(): static_pressure = (load_factors[2].get()) * (load_factors[0].get()) \ * load.get_calculated_pressure(coord, acc[0], structure_type) dynamic_pressure = (load_factors[2].get()) * (load_factors[1].get()) \ * load.get_calculated_pressure(coord, acc[1], structure_type) calc_load.append(static_pressure + dynamic_pressure) if print_it: load_print.append( 'Tank test for: ' + load_condition[0] + '\n' + str(load_factors[2].get())+' * '+ str(load_factors[0].get()) +' * '+ str(round(load.get_calculated_pressure(coord, acc[0], structure_type),1)) + ' + ' + str(round(dynamic_pressure)) + ' = ' + str(round(dynamic_pressure + static_pressure))+'\n') # calculate the tank loads temp_tank={} if len(defined_tanks) != 0: for tank_name_obj in defined_tanks: temp_tank[tank_name_obj[0]] = [] for tank_name_obj in defined_tanks: load_factors = load_factors_all[(comb_name, line_name, tank_name_obj[0])] # if print_it: # load_print.append('Tank test LF: '+ str(load_factors[0].get())+' '+str(load_factors[1].get())+' '+ # str(load_factors[2].get())+'\n') # USE GET() (static,dyn, on/off) overpress_lf = [1.3, 0] if load_factors[0].get() == 1.2 else [1, 0] static_pressure = (load_factors[2].get()) * (load_factors[0].get())\ * tank_name_obj[1].get_calculated_pressure(coord, acc[0])\ +tank_name_obj[1].get_overpressure()*overpress_lf[0] dynamic_pressure = (load_factors[2].get()) * (load_factors[1].get())\ * tank_name_obj[1].get_calculated_pressure(coord, acc[1])\ +tank_name_obj[1].get_overpressure()*overpress_lf[1] temp_tank[tank_name_obj[0]].append((static_pressure + dynamic_pressure)) if print_it: load_print.append( 'Tank test for: ' + tank_name_obj[0] + '\n' + str(load_factors[2].get()) + ' * ' + str(load_factors[0].get()) + ' * ' + str(round(tank_name_obj[1].get_calculated_pressure(coord, acc[0]), 1)) + ' + ' + str(tank_name_obj[1].get_overpressure()) +' * ' + str(overpress_lf[0]) + ' = ' + str(round(dynamic_pressure + static_pressure)) + '\n') # choosing the tank with the highest pressures if len(defined_tanks) != 0: highest_tank_pressure = max([temp_tank[tank[0]] for tank in defined_tanks]) calc_load.append(-highest_tank_pressure[0] if len(highest_tank_pressure) > 0 else 0) else: pass return [int(abs(sum(calc_load))), load_print] def helper_manual(line_name, comb_name,load_factors_all): calc_load, load_print = [], ['',] if (comb_name, line_name[0], 'manual') not in load_factors_all.keys(): return [0, 'Manual pressure: 0'] load_factors = load_factors_all[(comb_name, line_name[0], 'manual')] man_press = load_factors[0].get() * load_factors[1].get() * load_factors[2].get() if print_it: load_print.append('Manual pressure:\n'+ str(load_factors[0].get())+' * '+ str(load_factors[1].get())+' * '+ str(load_factors[2].get()) + ' = '+ str(man_press) +'\n') return [man_press, load_print] def helper_read_section_file(files, obj = None, to_json = False, to_csv = None): ''' Read a xml file. ''' import json from xml.dom import minidom to_return_final, to_return, return_csv = list(), dict(), list() if type(files) != list: files = [files,] for file in files: if file.endswith('xml'): xmldoc = minidom.parse(file) sectionlist = xmldoc.getElementsByTagName('section') sec_types = ('unsymmetrical_i_section', 'l_section', 'bar_section') for idx, sec_type in enumerate(sec_types): sec_type_get = xmldoc.getElementsByTagName(sec_type) if sec_types == []: continue for item, itemdata in zip(sectionlist, sec_type_get): if sec_type == sec_types[0]: stf_web_h, stf_web_thk = 'h', 'tw' stf_flange_width, stf_flange_thk = 'bfbot', 'tfbot' stiffener_type = 'T' mult = 1/1000 elif sec_type == sec_types[1]: stf_web_h, stf_web_thk = 'h', 'tw' stf_flange_width, stf_flange_thk = 'b', 'tf' stiffener_type = 'L' mult = 1/1000 elif sec_type == sec_types[2]: stf_web_h, stf_web_thk = 'h', 'b' stf_flange_width, stf_flange_thk = None, None stiffener_type = 'FB' mult = 1 / 1000 section_name = item.getAttribute('name') to_return[section_name] = {'stf_web_height': [float(itemdata.getAttribute(stf_web_h)) *mult, 'm'], 'stf_web_thk': [float(itemdata.getAttribute(stf_web_thk)) *mult,'m'], 'stf_flange_width': [0 if stf_flange_width is None else float(itemdata.getAttribute(stf_flange_width)) *mult,'m'], 'stf_flange_thk': [0 if stf_flange_thk is None else float(itemdata.getAttribute(stf_flange_thk)) *mult, 'm'], 'stf_type': [stiffener_type, '']} return_csv.append([to_return[section_name][var][0] for var in ['stf_web_height', 'stf_web_thk', 'stf_flange_width', 'stf_flange_thk', 'stf_type']]) if to_json: with open('sections.json', 'w') as file: json.dump(to_return, file) if to_csv: with open('sections.csv', 'w', newline='') as file: section_writer = csv.writer(file) for line in return_csv: section_writer.writerow(line) elif file.endswith('json'): with open(file, 'r') as json_file: to_return = json.load(json_file) elif file.endswith('csv'): with open(file, 'r') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') for idx, section in enumerate(csv_reader): if section[4] in ['L-bulb', 'bulb', 'hp']: to_return[str(idx)] = {'stf_web_height': [float(section[0]) - float(section[3]), 'm'], 'stf_web_thk': [float(section[1]),'m'], 'stf_flange_width': [float(section[2]),'m'], 'stf_flange_thk': [float(section[3]), 'm'], 'stf_type': [section[4], '']} else: to_return[str(idx)] = {'stf_web_height': [float(section[0]), 'm'], 'stf_web_thk': [float(section[1]),'m'], 'stf_flange_width': [float(section[2]),'m'], 'stf_flange_thk': [float(section[3]), 'm'], 'stf_type': [section[4], '']} if to_json: with open('sections.json', 'w') as file: json.dump(to_return, file) if to_csv is not None: with open(to_csv, 'w', newline = '') as file: section_writer = csv.writer(file) for line in return_csv: section_writer.writerow(line) if obj is not None: # This will return a modified object. if type(obj) is not list: obj = [obj, ] append_list = [[],] else: append_list = [list() for dummy in obj] else: append_list = list() for key, value in to_return.items(): if obj is not None: # This will return a modified object. for idx, iter_obj in enumerate(obj): new_obj = copy.deepcopy(iter_obj) new_obj_prop = new_obj.get_structure_prop() for prop_name, prop_val in value.items(): new_obj_prop[prop_name] = prop_val new_obj.set_main_properties(new_obj_prop) append_list[idx].append(new_obj) else: to_return_final.append(value) if len(append_list) == 1: to_return_final = append_list[0] elif len(append_list) == 0: pass elif len(append_list) > 1: to_return_final = append_list return to_return_final def open_example_file(root_path = None): import os if os.path.isfile('sections.csv'): os.startfile('sections.csv') else: os.startfile(root_path + '/' + 'sections.csv') def add_new_section(section_list, new_section): ''' Checking if a section is already in the list. ''' existing_section = False for section in section_list: if section.__str__() == new_section.__str__(): existing_section = True if existing_section == False: # print('The new section', new_section) # print('The section list', section_list) section_list.append(new_section) return section_list def plot_weights(time_stamp = None, cog = None, structure = None, weight = None): if __name__ == '__main__': cog = [[22.15329254, 12.24742235], [22.1937807, 12.1975691], [22.24684556, 12.15423614], [22.27489223, 12.09378247], [22.29086617, 12.03458725], [22.29559601, 11.97667798], [22.58758899, 11.739118], [22.34550004, 11.936077], [22.39332625, 11.96360235], [22.43016887, 11.99128875], [22.29320631, 12.02004097], [22.2458229, 11.99243978], [22.20984338, 11.96499817]] cog = np.array(cog) structure = {'plates': [18.0, 25.0, 12.0, 20.0, 14.0, 30.0, 15.0], 'beams': ['T_400_0x12_0__200_0x20_0', 'T_400_0x12_0__250_0x14_0', 'T_400_0x12_0__250_0x12_0', 'T_400_0x12_0__200_0x18_0', 'T_400_0x12_0__150_0x20_0', 'T_500_0x12_0__150_0x20_0', 'T_340_0x12_0__200_0x20_0', 'T_340_0x12_0__150_0x16_0', 'T_250_0x12_0__150_0x14_0', 'T_450_0x12_0__150_0x20_0', 'T_375_0x12_0__150_0x18_0', 'T_500_0x12_0__150_0x25_0', 'T_325_0x12_0__150_0x16_0', 'FB_250_0x18_0', 'FB_400_0x18_0', 'T_350_0x12_0__150_0x20_0', 'T_320_0x12_0__150_0x20_0', 'T_300_0x12_0__150_0x20_0']} time_stamp = [18920.477643045164, 18920.477684256162, 18920.477721255855, 18920.477761896746, 18920.477798285963, 18920.477841150896, 18920.4778763735, 18920.477939357952, 18920.47800752034, 18920.47808087777, 18920.478203353003, 18920.478237156338, 18920.47826686926] weight = [0.97156037, 0.97553128, 0.979408, 0.97625964, 0.97319636, 0.97021818, 1., 0.97518182, 0.97234545, 0.96950909, 0.97546545, 0.97830182, 0.98113818] import matplotlib.dates as mdate from matplotlib import pyplot as plt from matplotlib.gridspec import GridSpec pl_and_bm = [['', ''] for dummy in range(max(len(list(structure.values())[0]), len(list(structure.values())[1])))] for key, value in structure.items(): for idx, val in enumerate(value): if key == 'plates': pl_and_bm[idx][0] = str(val) + ' mm' else: pl_and_bm[idx][1] = val fig = plt.figure(figsize=(14, 8)) gs = GridSpec(2, 3, figure=fig) time_stamp = [mdate.epoch2num(val) for val in time_stamp] ax3 = plt.subplot(gs[1, 0:2]) plt.plot(time_stamp, weight, 'tab:green') ax1 = plt.subplot(gs[0, 0], sharex=ax3) plt.plot(time_stamp, cog[:, 0]) ax2 = plt.subplot(gs[0, 1], sharex=ax3) plt.plot(time_stamp, cog[:, 1], 'tab:orange') ax4 = plt.subplot(gs[0:2, 2]) ax4.set_axis_off() table1 = plt.table(cellText=pl_and_bm, colLabels = ['Plates in model', 'Beams in model'],loc='center') table1.auto_set_column_width((0,1)) table1.scale(1,1.5) # ax5 = plt.subplot(gs[0:2, 3]) # ax5.set_axis_off() # table2 = plt.table(cellText=structure['beams'], colLabels = ['Beams in model'],loc='center') # table2.scale(1,1.5) # table2.auto_set_column_width(0) # Choose your xtick format string date_fmt = '%d-%m-%y %H:%M:%S' # Use a DateFormatter to set the data to the correct format. date_formatter = mdate.DateFormatter(date_fmt) ax1.xaxis.set_major_formatter(date_formatter) ax2.xaxis.set_major_formatter(date_formatter) ax3.xaxis.set_major_formatter(date_formatter) ax1.set_title('COG X') ax2.set_title('COG Y') ax3.set_title('Total weight / max(total weight)') fig.suptitle('Developement of weight and COG') # Sets the tick labels diagonal so they fit easier. fig.autofmt_xdate() plt.tight_layout() plt.show() def helper_cylinder_stress_to_force_to_stress(stresses = None, forces = None, geometry = None, shell_t = 0, shell_radius = 0, shell_spacing = 0, hw = 0, tw = 0, b = 0, tf = 0, CylinderAndCurvedPlate = None, conical = False, psd = 0, cone_r1 = 0, cone_r2 = 0, cone_alpha = 0, shell_lenght_l = 0): A = 0 if geometry in [1, 2] else hw * tw + b * tf eq_thk = shell_t if geometry in [1, 2] else shell_t + A/shell_spacing Itot = CylinderAndCurvedPlate.get_Itot(hw=0 if geometry in [1, 2] else hw, tw=0 if geometry in [1, 2] else tw, b=0 if geometry in [1, 2] else b, tf=0 if geometry in [1, 2] else tf, r=shell_radius, s=shell_spacing, t=shell_t) if forces is not None and stresses is None: if not conical: Nsd, Msd, Tsd, Qsd = forces sasd = (Nsd / 2) / (math.pi * shell_radius * eq_thk) * 1000 smsd = (Msd/ Itot) * \ (shell_radius + shell_t / 2) * 1000000 tTsd = (Tsd* 10 ** 6) / (2 * math.pi * shell_t * math.pow(shell_radius, 2)) tQsd = Qsd / (math.pi * shell_radius * shell_t) * 1000 shsd = 0 return sasd, smsd, tTsd, tQsd, shsd else: Nsd, M1sd, M2sd, Tsd, Q1sd, Q2sd = forces re = (cone_r1+cone_r2) / (2*math.cos(math.radians(cone_alpha))) le = shell_lenght_l / math.cos(math.radians(cone_alpha)) te = shell_t *math.cos(math.radians(cone_alpha)) sasd = psd*re/2*te + Nsd/(2*math.pi*re*te) * 1000 smsd = ((M1sd*math.sin(math.radians(cone_alpha)) / (math.pi*math.pow(re,2)*te)) + \ (M2sd*math.cos(math.radians(cone_alpha)) / (math.pi*math.pow(re,2)*te))) * 1000000 shsd = psd*re/te tTsd = Tsd/(2*math.pi*math.pow(re,2)*te) tQsd = -(Q1sd*math.cos(math.radians(cone_alpha)) / (math.pi*re*te)) + \ (Q2sd*math.sin(math.radians(cone_alpha)) / (math.pi*re*te)) return sasd, smsd, tTsd, tQsd, shsd else: if not conical: sasd, smsd, tTsd, tQsd, shsd = stresses Nsd = (sasd * 2 * math.pi * shell_radius * eq_thk) / 1000 Msd = (smsd / (shell_radius * shell_t / 2)) * Itot / 1000000 Tsd = tTsd * 2 * math.pi * shell_t * math.pow(shell_radius, 2) / 1000000 Qsd = tQsd * math.pi * shell_radius * shell_t / 1000 else: re = (cone_r1+cone_r2) / (2*math.cos(math.radians(cone_alpha))) le = shell_lenght_l / math.cos(math.radians(cone_alpha)) te = shell_t *math.cos(math.radians(cone_alpha)) Itot = CylinderAndCurvedPlate.get_Itot(hw=0, tw=0 , b=0 , tf=0, r=re, s=shell_spacing, t=te) sasd, smsd, tTsd, tQsd, shsd = stresses Nsd = (sasd * 2 * math.pi * re * te) / 1000 Msd = (smsd / (re * te / 2)) * Itot / 1000000 Tsd = tTsd * 2 * math.pi * te * math.pow(re, 2) / 1000000 Qsd = tQsd * math.pi * re * te/ 1000 return Nsd, Msd, Tsd, Qsd, shsd if __name__ == '__main__': from tkinter import * class AllTkinterWidgets: def __init__(self, master): frame = Frame(master, width=500, height=400, bd=1) frame.pack() iframe5 = Frame(frame, bd=2, relief=RAISED) iframe5.pack(expand=1, fill=X, pady=10, padx=5) c = Canvas(iframe5, bg='white', width=340, height=200) c.pack() height = 150 radius = 150 offset_oval = 30 start_x_cyl = 150 start_y_cyl = 20 coord1 = start_x_cyl, start_y_cyl, start_x_cyl + radius, offset_oval coord2 = start_x_cyl, start_y_cyl + height, start_x_cyl + radius, offset_oval+ height arc_1 = c.create_oval(coord1, width = 5, fill = 'grey90') arc_2 = c.create_arc(coord2, extent = 180, start = 180,style=ARC, width = 3) line1 = c.create_line(coord1[0], coord1[1]+offset_oval/4, coord1[0], coord1[1]+height+offset_oval/4, width = 3) line2 = c.create_line(coord1[0]+radius, coord1[1]+offset_oval/4, coord1[0]+radius, coord1[1]+height+offset_oval/4, width = 3) num_stf = 10 for line_num in range(1,num_stf,1): angle = 180 - 180/(num_stf) *line_num arc_x, arc_y = 1*math.cos(math.radians(angle)), 0.5*math.sin(math.radians(angle)) arc_x = (arc_x + 1)/2 line1 = c.create_line(coord1[0] + radius*arc_x, coord1[1] +2*arc_y*offset_oval/3, coord1[0] + radius*arc_x, coord1[1] + height +2*arc_y*offset_oval/3,fill = 'blue') num_ring_stiff = 5 for ring_stf in range(1,num_ring_stiff+1,1): coord3 = coord1[0], coord1[1]+(height/(num_ring_stiff+1))*ring_stf, \ start_x_cyl +radius, coord1[3]+ (height/(num_ring_stiff+1))*ring_stf, arc_2 = c.create_arc(coord3, extent=180, start=180, style=ARC, width=2,fill = 'orange', outline = 'orange') num_ring_girder = 1 for ring_girder in range(1, num_ring_girder+1,1): coord3 = coord1[0], coord1[1]+(height/(num_ring_girder+1))*ring_girder, \ start_x_cyl+ radius, coord1[3]+ (height/(num_ring_girder+1))*ring_girder, arc_2 = c.create_arc(coord3, extent=180, start=180, style=ARC, width=4, fill = 'grey', outline = 'grey') iframe5.pack(expand=1, fill=X, pady=10, padx=5) root = Tk() # root.option_add('*font', ('verdana', 10, 'bold')) all = AllTkinterWidgets(root) root.title('Tkinter Widgets') root.mainloop()
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/helper.py
helper.py
import numpy as np import itertools as it import time import random import copy from multiprocessing import Pool, cpu_count import math from math import floor from matplotlib import pyplot as plt from tkinter.filedialog import asksaveasfilename import csv try: import any_files.calc_structure as calc import any_files.helper as hlp except ModuleNotFoundError: import ANYstructure.any_files.calc_structure as calc import ANYstructure.any_files.helper as hlp def run_optmizataion(initial_structure_obj=None, min_var=None, max_var=None, lateral_pressure=None, deltas=None, algorithm='anysmart', trials=30000, side='p', const_chk = (True,True,True,True,True,True, True, False, False, False), pso_options = (100,0.5,0.5,0.5,100,1e-8,1e-8), is_geometric=False, fatigue_obj = None , fat_press_ext_int = None, min_max_span = (2,6), tot_len = None, frame_height = 2.5, frame_distance = None, slamming_press = 0, predefined_stiffener_iter = None, processes = None, use_weight_filter = True, load_pre = False, opt_girder_prop = None, puls_sheet = None, puls_acceptance = 0.87, fdwn = 1, fup = 0.5, ml_algo = None, cylinder = False): ''' The optimazation is initiated here. It is called from optimize_window. :param initial_structure_obj: :param min_var: :param max_var: :param lateral_pressure: :param deltas: :param algorithm: :param init_weigth: :param pso_options: :return: ''' init_filter_weight = float('inf') if is_geometric: fat_dict = [None if this_fat is None else this_fat.get_fatigue_properties() for this_fat in fatigue_obj] else: fat_dict = None if fatigue_obj is None else fatigue_obj.get_fatigue_properties() if use_weight_filter and not cylinder: if is_geometric or algorithm == 'pso': init_filter_weight = float('inf') else: predefined_stiffener_iter = None if predefined_stiffener_iter is None else predefined_stiffener_iter init_filter_weight = get_initial_weight(obj=initial_structure_obj, lat_press=lateral_pressure, min_var=min_var, max_var=max_var, deltas=deltas, trials= 30000 if predefined_stiffener_iter is None else len(predefined_stiffener_iter), fat_dict=fat_dict, fat_press=None if fat_press_ext_int is None else fat_press_ext_int, predefined_stiffener_iter = predefined_stiffener_iter, slamming_press=slamming_press, fdwn = fdwn, fup = fup, ml_algo = ml_algo) if cylinder: to_return = any_smart_loop_cylinder(min_var=min_var, max_var=max_var, deltas=deltas, initial_structure_obj=initial_structure_obj, use_weight_filter = use_weight_filter, predefiened_stiffener_iter=predefined_stiffener_iter) return to_return elif algorithm == 'anysmart' and not is_geometric: to_return = any_smart_loop(min_var, max_var, deltas, initial_structure_obj, lateral_pressure, init_filter_weight, side=side, const_chk=const_chk, fat_dict=fat_dict, fat_press=fat_press_ext_int,slamming_press=slamming_press, predefiened_stiffener_iter=predefined_stiffener_iter, puls_sheet = puls_sheet, puls_acceptance = puls_acceptance, fdwn = fdwn, fup = fup, ml_algo=ml_algo) return to_return elif algorithm == 'anysmart' and is_geometric: return geometric_summary_search(min_var= min_var, max_var=max_var, deltas= deltas, initial_structure_obj= initial_structure_obj, lateral_pressure=lateral_pressure, init_filter= init_filter_weight, side= side, const_chk= const_chk, fat_obj= fatigue_obj, fat_press= fat_press_ext_int, min_max_span= min_max_span, tot_len= tot_len, frame_distance = frame_distance, algorithm= 'anysmart', predefiened_stiffener_iter=predefined_stiffener_iter, slamming_press = slamming_press, load_pre = load_pre, opt_girder_prop = opt_girder_prop, ml_algo=ml_algo) elif algorithm == 'anydetail' and not is_geometric: return any_optimize_loop(min_var, max_var, deltas, initial_structure_obj, lateral_pressure,init_filter_weight, side=side, const_chk=const_chk, fat_dict=fat_dict, fat_press=fat_press_ext_int, slamming_press=slamming_press) elif algorithm == 'random' and not is_geometric: return get_random_result(initial_structure_obj,lateral_pressure,min_var,max_var,deltas,trials=trials, side=side, const_chk=const_chk, fat_dict=fat_dict,fat_press=fat_press_ext_int) elif algorithm == 'random_no_delta' and not is_geometric: return get_random_result_no_bounds(initial_structure_obj, lateral_pressure, min_var, max_var, trials=trials, side=side, const_chk=const_chk) # elif algorithm == 'pso' and is_geometric: # return geometric_summary_search(min_var,max_var,deltas, initial_structure_obj,lateral_pressure, # init_filter_weight,side,const_chk,pso_options,fatigue_obj,fat_press_ext_int, # min_max_span,tot_len,frame_height,frame_cross_a, 'pso') else: return None def any_optimize_loop(min_var,max_var,deltas,initial_structure_obj,lateral_pressure, init_filter = float('inf'), side='p',const_chk=(True,True,True,True,True,False), fat_dict = None, fat_press = None, slamming_press = 0): ''' Calulating initial values. :param min: :param max: :return: ''' ass_var = [] plot_x,plot_y = [],[] plt.xlabel('#') plt.ylabel('weigth [kg]') plt.title('ANYdetail brute force results') plt.grid(True) plt.draw() iter_count = 0 min_weight = init_filter main_fail = list() for spacing in np.arange(min_var[0],max_var[0]+deltas[0],deltas[0]): for plate_thk in np.arange(min_var[1],max_var[1]+deltas[1],deltas[1]): for stf_web_h in np.arange(min_var[2],max_var[2]+deltas[2],deltas[2]): for stf_web_thk in np.arange(min_var[3],max_var[3]+deltas[3],deltas[3]): for stf_flange_width in np.arange(min_var[4],max_var[4]+deltas[4],deltas[4]): for stf_flange_thk in np.arange(min_var[5],max_var[5]+deltas[5],deltas[5]): var_x = np.array([spacing, plate_thk, stf_web_h, stf_web_thk, stf_flange_width, stf_flange_thk,min_var[6],min_var[7]]) check = any_constraints_all(var_x,initial_structure_obj,lat_press=lateral_pressure, init_weight=min_weight,side=side,chk=const_chk, fat_dict = fat_dict, fat_press = fat_press, slamming_press=slamming_press) if check[0] is not False: current_weight = calc_weight(var_x) if current_weight <= min_weight: iter_count+=1 min_weight = current_weight ass_var = var_x main_fail.append(check) else: main_fail.append(check) if ass_var is None: return None, None, None, False, main_fail new_struc_obj = create_new_structure_obj(initial_structure_obj,[item for item in ass_var]) new_calc_obj = create_new_calc_obj(initial_structure_obj,[item for item in ass_var])[0] return new_struc_obj, new_calc_obj, fat_dict, True, main_fail def any_smart_loop(min_var,max_var,deltas,initial_structure_obj,lateral_pressure, init_filter = float('inf'), side='p',const_chk=(True,True,True,True,True,True,True, False, False,False), fat_dict = None, fat_press = None, slamming_press = 0, predefiened_stiffener_iter = None, processes = None, puls_sheet = None, puls_acceptance = 0.87, fdwn = 1, fup = 0.5, ml_algo = None): ''' Trying to be smart :param min_var: :param max_var: :param initial_structure: :return: ''' initial_structure_obj.lat_press = lateral_pressure if predefiened_stiffener_iter is None: structure_to_check = any_get_all_combs(min_var, max_var, deltas) else: structure_to_check = any_get_all_combs(min_var, max_var, deltas,predef_stiffeners=[item.get_tuple() for item in predefiened_stiffener_iter]) main_result = get_filtered_results(structure_to_check, initial_structure_obj,lateral_pressure, init_filter_weight=init_filter, side=side,chk=const_chk, fat_dict=fat_dict, fat_press=fat_press, slamming_press=slamming_press, processes=processes, puls_sheet = puls_sheet, puls_acceptance = puls_acceptance, ml_algo=ml_algo) main_iter = main_result[0] main_fail = main_result[1] ass_var=None current_weight = float('inf') for item in main_iter: main_fail.append(item) item_weight = calc_weight(item[2]) if item_weight < current_weight: ass_var = item[2] current_weight = item_weight if ass_var == None: return None, None, None, False, main_fail if len(ass_var) == 8: ass_var = [round(item, 10) for item in ass_var[0:8]] else: ass_var = [round(item, 10) for item in ass_var[0:8]] + [ass_var[8]] # initial_structure_obj.Plate = create_new_structure_obj(initial_structure_obj.Plate, ass_var, # fdwn = fdwn, fup = fup) # initial_structure_obj.Stiffener = create_new_structure_obj(initial_structure_obj.Stiffener, ass_var, # fdwn=fdwn, fup=fup) calc_object_stf = None if initial_structure_obj.Stiffener is None \ else create_new_calc_obj(initial_structure_obj.Stiffener, ass_var, fat_dict, fdwn=fdwn, fup=fup) calc_object_pl = create_new_calc_obj(initial_structure_obj.Plate, ass_var, fat_dict, fdwn=fdwn, fup=fup) calc_object = calc.AllStructure(Plate=calc_object_pl[0], Stiffener=None if initial_structure_obj.Stiffener is None else calc_object_stf[0], Girder=None, main_dict=initial_structure_obj.get_main_properties()['main dict']) calc_object.lat_press = lateral_pressure return calc_object, fat_dict, True, main_fail def any_smart_loop_cylinder(min_var,max_var,deltas,initial_structure_obj,lateral_pressure = None, init_filter = float('inf'), side='p',const_chk=(True,True,True,True,True,True,True, False, False,False), fat_dict = None, fat_press = None, slamming_press = 0, predefiened_stiffener_iter = None, processes = None, fdwn = 1, fup = 0.5, ml_algo = None, use_weight_filter = True): combs = list() # TODO first optmize for long then ring components. Find the overall smallest weight. # Creating the individual combinations for Shell, LongStf, RingStf and RingFrame for idx, str_type in enumerate(range(len(min_var))): if sum(min_var[idx]) == 0: structure_to_check = [(0, 0, 0, 0, 0, 0, 0, 0),] else: if any([predefiened_stiffener_iter is None, idx == 0]): initial_structure_obj.LongStfObj.stiffener_type = 'T' structure_to_check = any_get_all_combs(min_var[idx], max_var[idx], deltas[idx]) else: structure_to_check = any_get_all_combs(min_var[idx], max_var[idx], deltas[idx], predef_stiffeners= [item.get_tuple() for item in predefiened_stiffener_iter]) # TODO add stifffener type # [list(item).append('T') for item in structure_to_check] # [tuple(item) for item in structure_to_check] combs.append(structure_to_check) # Combining the individual components. final_comb, iter_vals = list(), list() for shell in combs[0]: for long in combs[1]: for ring_stf in combs[2]: for ring_frame in combs[3]: final_comb.append([[shell, long, ring_stf, ring_frame], initial_structure_obj]) # print('All combs', len(combs[0]),len(combs[1]),len(combs[2]),len(combs[3]),len(final_comb)) # quit() # Weight filter min_weight = float('inf') if use_weight_filter: to_check = [random.choice(final_comb) + [float('inf')] for dummy in range(10000)] with Pool(processes=max(cpu_count() - 1, 1)) as my_process: res_pre = my_process.starmap(any_constraints_cylinder, to_check) for chk_res in res_pre : if chk_res[0]: current_weight = calc_weight_cylinder(chk_res[2]) if current_weight < min_weight: min_weight = current_weight else: min_weight = False final_comb_inc_weight = list() for val in final_comb: final_comb_inc_weight.append(val + [min_weight]) t1 = time.time() with Pool(processes = max(cpu_count()-1,1)) as my_process: res_pre = my_process.starmap(any_constraints_cylinder, final_comb_inc_weight) check_ok, check_not_ok = list(), list() for item in res_pre: if item[0] is False: check_not_ok.append(item) else: check_ok.append(item) main_iter = check_ok main_fail = check_not_ok ass_var = None current_weight = float('inf') for item in main_iter: main_fail.append(item) item_weight = calc_weight_cylinder(item[2]) if item_weight < current_weight: ass_var = item[2] current_weight = item_weight if ass_var == None: return None, None, None, False, main_fail new_cylinder_obj = create_new_cylinder_obj(initial_structure_obj, ass_var) # Checking ring stiffeners and frames #return new_struc_obj, new_calc_obj, fat_dict, True, main_fail return new_cylinder_obj, main_fail def any_smart_loop_geometric(min_var,max_var,deltas,initial_structure_obj,lateral_pressure, init_filter = float('inf'), side='p',const_chk=(True,True,True,True,True,True), fat_obj = None, fat_press = None, slamming_press = None, predefiened_stiffener_iter=None, processes = None, ml_algo = None): ''' Searching multiple sections using the smart loop. ''' all_obj = [] idx = 0 for struc_obj, lat_press, fatigue_obj, fatigue_press, slam_press in zip(initial_structure_obj, lateral_pressure, fat_obj, fat_press, slamming_press): #print(predefiened_stiffener_iter) if predefiened_stiffener_iter is not None: this_predefiened_objects = hlp.helper_read_section_file(predefiened_stiffener_iter, struc_obj) else: this_predefiened_objects = None opt_obj = any_smart_loop(min_var = min_var,max_var = max_var,deltas = deltas,initial_structure_obj = struc_obj, lateral_pressure = lat_press, init_filter = init_filter, side=side, const_chk=const_chk, fat_dict = None if fatigue_obj is None else fatigue_obj.get_fatigue_properties(), fat_press = None if fatigue_press is None else fatigue_press, slamming_press = 0 if slam_press is None else slam_press, predefiened_stiffener_iter=this_predefiened_objects, processes=processes, ml_algo=ml_algo) all_obj.append(opt_obj) idx += 1 return all_obj def geometric_summary_search(min_var=None,max_var=None,deltas = None, initial_structure_obj=None,lateral_pressure=None, init_filter = float('inf'),side='p',const_chk=(True,True,True,True, True, True), pso_options=(100,0.5,0.5,0.5,100,1e-8,1e-8), fat_obj = None, fat_press = None, min_max_span = (2,6), tot_len = None, frame_distance = None, algorithm = 'anysmart', predefiened_stiffener_iter=None, reiterate = True, processes = None, slamming_press = None, load_pre = False, opt_girder_prop = None, ml_algo = None): '''Geometric optimization of all relevant sections. ''' # Checking the number of initial objects and adding if number of fraction is to be changed. # print('Min/max span is', min_max_span) found_max, found_min = False, False for frames in range(1,100): frame_count = frames if tot_len/frames <= min_max_span[1] and found_min is False: min_frame_count = frame_count - 1 found_min = True if tot_len/frames <= min_max_span[0] and found_max is False: max_frame_count = frame_count - 1 found_max = True if found_min and found_max: break results = {} # print('Frame count min/max: ', min_frame_count, max_frame_count) # print('Initial objects: ', [print(type(obj)) for obj in initial_structure_obj]) # print('Initial lateral: ', lateral_pressure) working_objects = {} working_lateral = {} working_fatigue = {} working_fatigue_press = {} working_slamming = {} for no_of_fractions in range(min_frame_count+1, max_frame_count+1): # Create fraction varables frac_var,min_frac,max_frac = [], [], [] for var in range(no_of_fractions): # Frame height is a interpolation between height at start and end. frac_var.append(1/no_of_fractions) working_objects[no_of_fractions] = list(initial_structure_obj) working_lateral[no_of_fractions] = list(lateral_pressure) working_fatigue[no_of_fractions] = list(fat_obj) working_fatigue_press[no_of_fractions] = list(fat_press) working_slamming[no_of_fractions] = list(slamming_press) similar_count = len(working_objects[no_of_fractions]) tick_tock = True while similar_count != no_of_fractions*2: if similar_count > no_of_fractions*2: for var_dict in [working_objects, working_lateral, working_fatigue, working_fatigue_press, working_slamming]: if tick_tock: lower_idx = 0 upper_idx = int(floor(len(working_objects[no_of_fractions]) / 2)) tick_tock = False else: lower_idx = int(len(working_objects[no_of_fractions]) / 2) - 1 upper_idx = -1 tick_tock = True var_dict[no_of_fractions].pop(lower_idx) var_dict[no_of_fractions].pop(upper_idx) similar_count -= 2 else: if tick_tock: lower_idx = 0 upper_idx = int(len(working_objects[no_of_fractions])/2) tick_tock = False else: lower_idx = int(len(working_objects[no_of_fractions])/2) - 1 upper_idx = -1 tick_tock = True #print(no_of_fractions, int(ceil(len(working_objects[no_of_fractions])/2))) obj_start, obj_stop = copy.deepcopy(working_objects[no_of_fractions][lower_idx]),\ copy.deepcopy(working_objects[no_of_fractions][upper_idx]) fat_obj_start, fat_obj_stop = copy.deepcopy(working_fatigue[no_of_fractions][lower_idx]), \ copy.deepcopy(working_fatigue[no_of_fractions][upper_idx]) lat_start, lat_stop = working_lateral[no_of_fractions][lower_idx], \ working_lateral[no_of_fractions][upper_idx] fat_press_start, fat_press_stop = working_fatigue_press[no_of_fractions][lower_idx], \ working_fatigue_press[no_of_fractions][upper_idx] slam_start, slam_stop = working_slamming[no_of_fractions][lower_idx], \ working_slamming[no_of_fractions][upper_idx] # if no_of_fractions == 11: # print('Tick/tock', tick_tock, 'lower/opper idx', lower_idx, upper_idx) for work, work_input in zip([working_objects[no_of_fractions], working_lateral[no_of_fractions], working_fatigue[no_of_fractions], working_fatigue_press[no_of_fractions], working_slamming[no_of_fractions]], [(obj_start, obj_stop), (lat_start, lat_stop), (fat_obj_start, fat_obj_stop), (fat_press_start, fat_press_stop), (slam_start, slam_stop)]): # First iteration tick_tock true, second tick_tock false if not tick_tock: lower_idx = lower_idx upper_idx = upper_idx + 1 else: lower_idx = lower_idx + 1 upper_idx = -1 work.insert(lower_idx, work_input[0]) work.insert(upper_idx, work_input[1]) similar_count += 2 # if no_of_fractions == 11: # [print(item.get_structure_type()) for item in working_objects[no_of_fractions]] # print('') for no_of_fractions, struc_objects in working_objects.items(): for struc_obj in struc_objects: struc_obj.Plate.set_span(tot_len/no_of_fractions) struc_obj.Stiffener.set_span(tot_len / no_of_fractions) solution_found, iterations = False, 0 while not solution_found: iterations += 1 if iterations != 1: min_var[0:6] += deltas/2 max_var[0:6] -= deltas/2 if algorithm == 'anysmart': if load_pre: import pickle with open('geo_opt_2.pickle', 'rb') as file: opt_objects = pickle.load(file)[no_of_fractions][1] else: opt_objects = any_smart_loop_geometric(min_var=min_var,max_var=max_var,deltas=deltas, initial_structure_obj=working_objects[no_of_fractions], lateral_pressure=working_lateral[no_of_fractions], init_filter = init_filter,side=side,const_chk=const_chk, fat_obj = working_fatigue[no_of_fractions], slamming_press = working_slamming[no_of_fractions], fat_press=working_fatigue_press[no_of_fractions], predefiened_stiffener_iter = predefiened_stiffener_iter, ml_algo=ml_algo) # Finding weight of this solution. tot_weight, frame_spacings, valid, width, weight_details = 0, [None for dummy in range(len(opt_objects))], \ True, 10, {'frames': list(), 'objects': list(), 'scales': list()} #print('Weight for', no_of_fractions) for count, opt in enumerate(opt_objects): obj = opt[0] if opt[3]: weigth_to_add = calc_weight((obj.Plate.get_s(),obj.Plate.get_pl_thk(),obj.Stiffener.get_web_h(), obj.Stiffener.get_web_thk(), obj.Stiffener.get_fl_w(),obj.Stiffener.get_fl_thk(), obj.Plate.get_span(),width), prt=False) tot_weight += weigth_to_add weight_details['objects'].append(weigth_to_add) if frame_spacings[count // 2] is None: frame_spacings[count // 2] = obj.Plate.get_s() #print('added normal weight', weigth_to_add) else: # In this case there are no applicable solutions found in the specified dimension ranges. tot_weight += float('inf') valid = False if valid: #print(frame_distance) for frame in range(no_of_fractions-1): frame_height = 2.5 if frame_distance is None else frame_distance['start_dist'] + \ (frame_distance['stop_dist']- frame_distance['start_dist']) * \ ((frame+1)/no_of_fractions) #pl_area, stf_area = 0.018 * width, 0.25 * 0.015 * (width//frame_spacings[frame]) this_x = (frame_spacings[frame], opt_girder_prop[0], opt_girder_prop[1], opt_girder_prop[2], opt_girder_prop[3], opt_girder_prop[4], None, width) this_weight = sum(get_field_tot_area(this_x))* frame_height * 7850 scale_max, scale_min = opt_girder_prop[5], opt_girder_prop[6] this_scale = scale_min + (scale_max-scale_min) * (abs((max_frame_count-(count+1)/2))/ (max_frame_count-min_frame_count)) #print('Number of fractions', no_of_fractions, 'Scale', this_scale) tot_weight += this_weight * this_scale solution_found = True #print('added frame weight', this_weight * this_scale) weight_details['frames'].append(this_weight * this_scale) weight_details['scales'].append(this_scale) elif iterations == 2: solution_found = True # Only iterate once. if predefiened_stiffener_iter is not None or not reiterate: solution_found = True # Noe solution may be found, but in this case no more iteations. results[no_of_fractions] = tot_weight, opt_objects, weight_details # for key, val in results.items(): # print(key) # print(val) return results def any_find_min_weight_var(var): ''' Find the minimum weight of the inpu :param min: :param max: :return: ''' return min(map(calc_weight)) def any_constraints_cylinder(x,obj: calc.CylinderAndCurvedPlate,init_weight, lat_press = None,side='p', chk=(True,True,True,True, True, True, True, False, False, False), fat_dict = None, fat_press = None, slamming_press = 0,fdwn = 1, fup = 0.5, ml_results = None): ''' Checking all constraints defined. iter_var = ((item,init_stuc_obj,lat_press,init_filter_weight,side,chk,fat_dict,fat_press,slamming_press, PULSrun) for item in iterable_all) :param x: :return: ''' all_checks = [0,0,0,0,0,0,0,0] check_map = {'weight': 0, 'UF unstiffened': 1, 'Column stability': 2, 'UF longitudinal stiffeners':3, 'Stiffener check': 4, 'UF ring stiffeners':5, 'UF ring frame': 6, 'Check OK': 7} calc_obj = create_new_cylinder_obj(obj, x) optimizing = True if any([calc_obj.RingStfObj is None, calc_obj.RingFrameObj is None]) else False # Weigth if init_weight != False: this_weight = calc_weight_cylinder(x) if this_weight > init_weight: results = calc_obj.get_utilization_factors(optimizing=optimizing, empty_result_dict = True) results['Weight'] = this_weight all_checks[0] += 1 return False, 'Weight filter', x, all_checks, calc_obj if chk[0]: results = calc_obj.get_utilization_factors(optimizing = optimizing) if results[0]: all_checks[check_map[results[1]]] += 1 return True, results[1], x, all_checks, calc_obj else: all_checks[check_map[results[1]]] += 1 return False, results[1], x, all_checks, calc_obj def any_constraints_all(x,obj,lat_press,init_weight,side='p',chk=(True,True,True,True, True, True, True, False, False, False), fat_dict = None, fat_press = None, slamming_press = 0, PULSrun: calc.PULSpanel = None, print_result = False, fdwn = 1, fup = 0.5, ml_results = None, random_result_return = False): ''' Checking all constraints defined. iter_var = ((item,init_stuc_obj,lat_press,init_filter_weight,side,chk,fat_dict,fat_press,slamming_press, PULSrun) for item in iterable_all) :param x: :return: ''' if random_result_return: # Skip all calculations if random.choice([True,False,False,False,False,False,False]): return True, 'Check OK', x, [0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5] else: return False, 'Random result', x, [1.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5] all_checks = [0,0,0,0,0,0,0,0,0,0,0] print_result = False calc_object_stf = None if obj.Stiffener is None else create_new_calc_obj(obj.Stiffener, x, fat_dict, fdwn = fdwn, fup = fup) calc_object_pl = create_new_calc_obj(obj.Plate, x, fat_dict, fdwn=fdwn, fup=fup) calc_object = [calc.AllStructure(Plate=calc_object_pl[0], Stiffener=None if obj.Stiffener is None else calc_object_stf[0], Girder=None, main_dict=obj.get_main_properties()['main dict']), calc_object_pl[1]] calc_object[0].lat_press = lat_press # PULS buckling check if chk[7] and PULSrun is not None: x_id = x_to_string(x) if calc_object[0].Plate.get_puls_method() == 'buckling': puls_uf = PULSrun.get_puls_line_results(x_id)["Buckling strength"]["Actual usage Factor"][0] elif calc_object[0].Plate.get_puls_method() == 'ultimate': puls_uf = PULSrun.get_puls_line_results(x_id)["Ultimate capacity"]["Actual usage Factor"][0] if type(puls_uf) == str or puls_uf is None: return False, 'PULS', x, all_checks all_checks[8] = puls_uf/PULSrun.puls_acceptance if puls_uf/PULSrun.puls_acceptance >= 1: if print_result: print('PULS', calc_object[0].get_one_line_string(), False) return False, 'PULS', x, all_checks # Buckling ml-cl if chk[8]: if any([calc_object[0].Plate.get_puls_method() == 'buckling' and ml_results[0] != 9, calc_object[0].Plate.get_puls_method() == 'ultimate' and ml_results[1] != 9]): if print_result: print('Buckling ML-CL', calc_object[0].Stiffener.get_one_line_string(), False) return False, 'Buckling ML-CL', x, all_checks # Buckling ml-reg if chk[9]: pass this_weight = calc_weight(x) if this_weight > init_weight: weigt_frac = this_weight / init_weight if print_result: pass # print('Weights', calc_weight(x), ' > ', init_weight, # calc_object[0].get_one_line_string(), init_weight, False) all_checks[0] = weigt_frac return False, 'Weight filter', x, all_checks # Section modulus if chk[0] and calc_object[0].Stiffener is not None: section_modulus = min(calc_object[0].Stiffener.get_section_modulus()) min_section_modulus = calc_object[0].Stiffener.get_dnv_min_section_modulus(lat_press*1000) section_frac = section_modulus / min_section_modulus #print(section_modulus, min_section_modulus, section_frac, lat_press) all_checks[1] = section_frac if not section_modulus > min_section_modulus : if print_result: print('Section modulus',calc_object[0].get_one_line_string(), False) return False, 'Section modulus', x, all_checks # Local stiffener buckling if chk[6] and calc_object[0].Stiffener is not None: buckling_local = calc_object[0].local_buckling(optimizing=True) check = all([buckling_local['Stiffener'][0] < calc_object[0].Stiffener.hw, buckling_local['Stiffener'][1] < calc_object[0].Stiffener.b]) all_checks[2] = max([0 if buckling_local['Stiffener'][0] == 0 else calc_object[0].Stiffener.hw/buckling_local['Stiffener'][0], 0 if buckling_local['Stiffener'][1] == 0 else calc_object[0].Stiffener.b/buckling_local['Stiffener'][1]]) if not check: if print_result: print('Local stiffener buckling',calc_object[0].get_one_line_string(), False) return False, 'Local stiffener buckling', x, all_checks # Buckling if chk[3]: ''' {'Plate': {'Plate buckling': up_buckling}, 'Stiffener': {'Overpressure plate side': stf_buckling_pl_side, 'Overpressure stiffener side': stf_buckling_stf_side, 'Resistance between stiffeners': stf_plate_resistance, 'Shear capacity': stf_shear_capacity}, 'Girder': {'Overpressure plate side': girder_buckling_pl_side, 'Overpressure girder side': girder_buckling_girder_side, 'Shear capacity': girder_shear_capacity}, 'Local buckling': local_buckling} ''' buckling_results = calc_object[0].plate_buckling(optimizing=True) res = [buckling_results['Plate']['Plate buckling'],] for val in buckling_results['Stiffener'].values(): res.append(val) # for val in buckling_results['Girder'].values(): # res.append(val) buckling_results = res # print(buckling_results) all_checks[3] = max(buckling_results) if not all([uf<=1 for uf in buckling_results]): if print_result: print('Buckling',calc_object[0].get_one_line_string(), False) return False, 'Buckling', x, all_checks # Minimum plate thickness if chk[1]: act_pl_thk = calc_object[0].Plate.get_pl_thk() min_pl_thk = calc_object[0].Plate.get_dnv_min_thickness(lat_press*1000)/1000 plate_frac = min_pl_thk / act_pl_thk all_checks[4] = plate_frac if not act_pl_thk > min_pl_thk: if print_result: print('Minimum plate thickeness',calc_object[0].get_one_line_string(), False) return False, 'Minimum plate thickness', x, all_checks # Shear area if chk[2]: pass # calc_shear_area = calc_object[0].Stiffener.get_shear_area() # min_shear_area = calc_object[0].Stiffener.get_minimum_shear_area(lat_press) # shear_frac = min_shear_area / calc_shear_area # all_checks[5] = shear_frac # if not calc_shear_area > min_shear_area: # if print_result: # print('Shear area',calc_object[0].Stiffener.get_one_line_string(), False) # return False, 'Shear area', x, all_checks # Fatigue if chk[4] and fat_dict is not None and fat_press is not None: fatigue_uf = calc_object[1].get_total_damage(ext_press=fat_press[0], int_press=fat_press[1])*calc_object[1].get_dff() all_checks[6] = fatigue_uf if fatigue_uf > 1: if print_result: print('Fatigue',calc_object[0].Stiffener.get_one_line_string(), False) return False, 'Fatigue', x, all_checks # Slamming if chk[5] and slamming_press != 0 and calc_object[0].Stiffener is not None: slam_check = calc_object[0].Stiffener.check_all_slamming(slamming_press) all_checks[7] = slam_check[1] if slam_check[0] is False: if print_result: print('Slamming',calc_object[0].Stiffener.get_one_line_string(), False) return False, 'Slamming', x, all_checks if print_result: print('OK Section', calc_object[0].Stiffener.get_one_line_string(), True) return True, 'Check OK', x, all_checks def constraint_geometric(fractions, *args): return sum(fractions) == 1 def pso_constraint_geometric(x,*args): ''' The sum of the fractions must be 1.''' return 1-sum(x) def create_new_cylinder_obj(init_obj, x_new): ''' shell (0.02, 2.5, 5, 5, 10, nan, nan, nan), long (0.875, nan, 0.3, 0.01, 0.1, 0.01, nan, nan), ring (nan, nan, 0.3, 0.01, 0.1, 0.01, nan, nan), ring (nan, nan, 0.7, 0.02, 0.2, 0.02, nan, nan)] ''' stress_press = [init_obj.sasd, init_obj.smsd, init_obj.tTsd, init_obj.tQsd, init_obj.shsd] shell_obj = init_obj.ShellObj long_obj = init_obj.LongStfObj ''' t1, r1, s1, hw1, tw1, b1, tf1 = x1 t1, r1, s2, hw2, tw2, b2, tf2 = x2 ''' x_old = shell_obj.thk, shell_obj.radius, \ init_obj.panel_spacing if long_obj is None else long_obj.s/1000, \ 0 if long_obj is None else long_obj.hw/1000, \ 0 if long_obj is None else long_obj.tw/1000,\ 0 if long_obj is None else long_obj.b/1000,\ 0 if long_obj is None else long_obj.tf/1000, x_new_stress_scaling = x_new[0][0] if not np.isnan(x_new[0][0]) else shell_obj.thk, \ x_new[0][1] if not np.isnan(x_new[0][1]) else shell_obj.radius,\ x_new[0][5] if long_obj is None else x_new[1][0], \ 0 if long_obj is None else x_new[1][2], \ 0 if long_obj is None else x_new[1][3],\ 0 if long_obj is None else x_new[1][4],\ 0 if long_obj is None else x_new[1][5] new_stresses = stress_scaling_cylinder(x_old, x_new_stress_scaling, stress_press) new_obj = copy.deepcopy(init_obj) new_obj.sasd, new_obj.smsd, new_obj.tTsd, new_obj.tQsd, new_obj.shsd = new_stresses new_obj.ShellObj.radius = x_new[0][1] new_obj.ShellObj.thk = x_new[0][0] if long_obj is None: new_obj.panel_spacing = x_new[0][5] else: new_obj.LongStfObj.s = x_new[1][0]*1000 new_obj.LongStfObj.hw = x_new[1][2]*1000 new_obj.LongStfObj.tw = x_new[1][3]*1000 new_obj.LongStfObj.b = x_new[1][4]*1000 new_obj.LongStfObj.tf = x_new[1][5]*1000 #new_obj.LongStfObj.stiffener_type = x_new[1][7] # TODO should be 8 return new_obj def create_new_calc_obj(init_obj,x, fat_dict=None, fdwn = 1, fup = 0.5): ''' Returns a new calculation object to be used in optimization :param init_obj: :return: ''' if type(init_obj) == calc.AllStructure: if init_obj.Stiffener is not None: plate = init_obj.Plate stiffener = init_obj.Stiffener girder = init_obj.Girder x_old = (plate.get_s(), plate.get_pl_thk(), stiffener.get_web_h(), stiffener.get_web_thk(), stiffener.get_fl_w(), stiffener.get_fl_thk(), plate.get_span(), stiffener.get_lg() if girder is None else girder.get_lg(), stiffener.stiffener_type) else: x_old = init_obj.Plate.get_tuple() sigma_y1_new = stress_scaling(init_obj.Plate.get_sigma_y1(), init_obj.Plate.get_pl_thk(), x[1], fdwn = fdwn, fup = fup) sigma_y2_new = stress_scaling(init_obj.Plate.get_sigma_y2(), init_obj.Plate.get_pl_thk(), x[1], fdwn = fdwn, fup = fup) tau_xy_new = stress_scaling(init_obj.Plate.get_tau_xy(), init_obj.Plate.get_pl_thk(), x[1], fdwn = fdwn, fup = fup) sigma_x1_new = stress_scaling_area(init_obj.Plate.get_sigma_x1(), sum(get_field_tot_area(x_old)), sum(get_field_tot_area(x)), fdwn = fdwn, fup = fup) sigma_x2_new = stress_scaling_area(init_obj.Plate.get_sigma_x2(), sum(get_field_tot_area(x_old)), sum(get_field_tot_area(x)), fdwn = fdwn, fup = fup) try: stf_type = x[8] except IndexError: stf_type = init_obj.plate.get_stiffener_type() main_dict = {'mat_yield': [init_obj.Plate.get_fy(), 'Pa'],'mat_factor': [init_obj.Plate.get_mat_factor(), 'Pa'], 'span': [init_obj.Plate.get_span(), 'm'], 'spacing': [x[0], 'm'],'plate_thk': [x[1], 'm'],'stf_web_height':[ x[2], 'm'], 'stf_web_thk': [x[3], 'm'],'stf_flange_width': [x[4], 'm'], 'stf_flange_thk': [x[5], 'm'],'structure_type': [init_obj.Plate.get_structure_type(), ''], 'stf_type': [stf_type, ''],'sigma_y1': [sigma_y1_new, 'MPa'], 'sigma_y2': [sigma_y2_new, 'MPa'],'sigma_x1': [sigma_x1_new, 'MPa'],'sigma_x2': [sigma_x2_new, 'MPa'], 'tau_xy': [tau_xy_new, 'MPa'],'plate_kpp': [init_obj.Plate.get_kpp(), ''], 'stf_kps': [init_obj.Plate.get_kps(), ''],'stf_km1': [init_obj.Plate.get_km1(), ''], 'stf_km2': [init_obj.Plate.get_km2(), ''],'stf_km3': [init_obj.Plate.get_km3(), ''], 'structure_types':[init_obj.Plate.get_structure_types(), ''], 'zstar_optimization': [init_obj.Plate.get_z_opt(), ''], 'puls buckling method':[init_obj.Plate.get_puls_method(),''], 'puls boundary':[init_obj.Plate.get_puls_boundary(),''], 'puls stiffener end':[init_obj.Plate.get_puls_stf_end(),''], 'puls sp or up':[init_obj.Plate.get_puls_sp_or_up(),''], 'puls up boundary':[init_obj.Plate.get_puls_up_boundary(),''], 'panel or shell': [init_obj.Plate.panel_or_shell, '']} all_dict = init_obj.get_main_properties() all_dict['Plate'] = main_dict all_dict['Stiffener'] = None if init_obj.Stiffener is None else main_dict all_dict['Girder'] = None if init_obj.Girder is None else main_dict if fat_dict == None: return calc.AllStructure(Plate=None if all_dict['Plate'] is None else calc.CalcScantlings(all_dict['Plate']), Stiffener=None if all_dict['Stiffener'] is None else calc.CalcScantlings(all_dict['Stiffener']), Girder=None if all_dict['Girder'] is None else calc.CalcScantlings(all_dict['Girder']), main_dict=all_dict['main dict']), None else: return calc.AllStructure(Plate=None if all_dict['Plate'] is None else calc.CalcScantlings(all_dict['Plate']), Stiffener=None if all_dict['Stiffener'] is None else calc.CalcScantlings(all_dict['Stiffener']), Girder=None if all_dict['Girder'] is None else calc.CalcScantlings(all_dict['Girder']), main_dict=all_dict['main dict']), \ calc.CalcFatigue(main_dict, fat_dict) else: x_old = [init_obj.get_s(), init_obj.get_pl_thk(), init_obj.get_web_h() , init_obj.get_web_thk(), init_obj.get_fl_w(),init_obj.get_fl_thk(), init_obj.get_span(), init_obj.get_lg()] sigma_y1_new = stress_scaling(init_obj.get_sigma_y1(), init_obj.get_pl_thk(), x[1], fdwn = fdwn, fup = fup) sigma_y2_new = stress_scaling(init_obj.get_sigma_y2(), init_obj.get_pl_thk(), x[1], fdwn = fdwn, fup = fup) tau_xy_new = stress_scaling(init_obj.get_tau_xy(), init_obj.get_pl_thk(), x[1], fdwn = fdwn, fup = fup) sigma_x1_new = stress_scaling_area(init_obj.get_sigma_x1(), sum(get_field_tot_area(x_old)), sum(get_field_tot_area(x)), fdwn = fdwn, fup = fup) sigma_x2_new = stress_scaling_area(init_obj.get_sigma_x2(), sum(get_field_tot_area(x_old)), sum(get_field_tot_area(x)), fdwn = fdwn, fup = fup) try: stf_type = x[8] except IndexError: stf_type = init_obj.get_stiffener_type() main_dict = {'mat_yield': [init_obj.get_fy(), 'Pa'],'mat_factor': [init_obj.get_mat_factor(), 'Pa'], 'span': [init_obj.get_span(), 'm'], 'spacing': [x[0], 'm'],'plate_thk': [x[1], 'm'],'stf_web_height':[ x[2], 'm'], 'stf_web_thk': [x[3], 'm'],'stf_flange_width': [x[4], 'm'], 'stf_flange_thk': [x[5], 'm'],'structure_type': [init_obj.get_structure_type(), ''], 'stf_type': [stf_type, ''],'sigma_y1': [sigma_y1_new, 'MPa'], 'sigma_y2': [sigma_y2_new, 'MPa'],'sigma_x1': [sigma_x1_new, 'MPa'],'sigma_x2': [sigma_x2_new, 'MPa'], 'tau_xy': [tau_xy_new, 'MPa'],'plate_kpp': [init_obj.get_kpp(), ''], 'stf_kps': [init_obj.get_kps(), ''],'stf_km1': [init_obj.get_km1(), ''], 'stf_km2': [init_obj.get_km2(), ''],'stf_km3': [init_obj.get_km3(), ''], 'structure_types':[init_obj.get_structure_types(), ''], 'zstar_optimization': [init_obj.get_z_opt(), ''], 'puls buckling method':[init_obj.get_puls_method(),''], 'puls boundary':[init_obj.get_puls_boundary(),''], 'puls stiffener end':[init_obj.get_puls_stf_end(),''], 'puls sp or up':[init_obj.get_puls_sp_or_up(),''], 'puls up boundary':[init_obj.get_puls_up_boundary(),''], 'panel or shell': [init_obj.panel_or_shell, '']} if fat_dict == None: return calc.CalcScantlings(main_dict), None else: return calc.CalcScantlings(main_dict), calc.CalcFatigue(main_dict, fat_dict) def create_new_structure_obj(init_obj, x, fat_dict=None, fdwn = 1, fup = 0.5): ''' Returns a new calculation object to be used in optimization :param init_obj: :return: ''' x_old = [init_obj.get_s(), init_obj.get_pl_thk(), init_obj.get_web_h() , init_obj.get_web_thk(), init_obj.get_fl_w() ,init_obj.get_fl_thk(), init_obj.get_span(), init_obj.get_lg()] sigma_y1_new = stress_scaling(init_obj.get_sigma_y1(), init_obj.get_pl_thk(), x[1], fdwn = fdwn, fup = fup) sigma_y2_new = stress_scaling(init_obj.get_sigma_y2(), init_obj.get_pl_thk(), x[1], fdwn = fdwn, fup = fup) tau_xy_new = stress_scaling(init_obj.get_tau_xy(), init_obj.get_pl_thk(), x[1],fdwn = fdwn, fup = fup) sigma_x1_new = stress_scaling_area(init_obj.get_sigma_x1(),sum(get_field_tot_area(x_old)),sum(get_field_tot_area(x)), fdwn = fdwn, fup = fup) sigma_x2_new = stress_scaling_area(init_obj.get_sigma_x2(),sum(get_field_tot_area(x_old)),sum(get_field_tot_area(x)), fdwn = fdwn, fup = fup) try: stf_type = x[8] except IndexError: stf_type = init_obj.get_stiffener_type() main_dict = {'mat_yield': [init_obj.get_fy(), 'Pa'], 'span': [init_obj.get_span(), 'm'], 'mat_factor': [init_obj.get_mat_factor(), 'Pa'], 'spacing': [x[0], 'm'], 'plate_thk': [x[1], 'm'], 'stf_web_height': [x[2], 'm'], 'stf_web_thk': [x[3], 'm'], 'stf_flange_width': [x[4], 'm'], 'stf_flange_thk': [x[5], 'm'], 'structure_type': [init_obj.get_structure_type(), ''], 'stf_type': [stf_type, ''], 'sigma_y1': [sigma_y1_new, 'MPa'], 'sigma_y2': [sigma_y2_new, 'MPa'], 'sigma_x1': [sigma_x1_new, 'MPa'],'sigma_x2': [sigma_x2_new, 'MPa'], 'tau_xy': [tau_xy_new, 'MPa'], 'plate_kpp': [init_obj.get_kpp(), ''], 'stf_kps': [init_obj.get_kps(), ''], 'stf_km1': [init_obj.get_km1(), ''], 'stf_km2': [init_obj.get_km2(), ''], 'stf_km3': [init_obj.get_km3(), ''], 'structure_types': [init_obj.get_structure_types(), ''], 'zstar_optimization': [init_obj.get_z_opt(), ''], 'puls buckling method': [init_obj.get_puls_method(), ''], 'puls boundary': [init_obj.get_puls_boundary(), ''], 'puls stiffener end': [init_obj.get_puls_stf_end(), ''], 'puls sp or up': [init_obj.get_puls_sp_or_up(), ''], 'puls up boundary': [init_obj.get_puls_up_boundary(), ''], } #if fat_dict == None: return calc.Structure(main_dict) def get_field_tot_area(x): ''' Total area of a plate field. ''' if len(x) == 6: width = 10 else: width = x[7] plate_area = width*x[1] stiff_area = (x[2] * x[3]+ x[4] * x[5]) * (width//x[0]) return plate_area, stiff_area def calc_weight(x, prt = False): ''' Calculating the current weight :param current_dict: :return: ''' span = x[6] plate_area, stiff_area = get_field_tot_area(x) if prt: print('x is', x, 'plate area', plate_area, 'stiff area', stiff_area, 'weight', span * 7850 * (plate_area + stiff_area)) return span * 7850 * (plate_area + stiff_area) def calc_weight_pso(x,*args): ''' Calculating the current weight :param current_dict: :return: ''' width = args[5] span = args[6] plate_area = width*x[1] stiff_area = (x[2] * x[3]+ x[4] * x[5]) * (width//x[0]) return span * 7850 * (plate_area + stiff_area) def calc_weight_pso_section(x,*args): ''' Calculating the weight of a complete section. :param x: :param args: :return: ''' stru_objects = args[1] tot_length = args[2] frame_height = args[3] frame_section_area = args[4] tot_weight = 0 for dummy_i in range(len(stru_objects)): tot_weight += frame_section_area*frame_height*7850 count = 0 for stru_object in stru_objects: span = tot_length*x[count] stru_object.Plate.set_span(span) stru_object.Stiffener.set_span(span) tot_weight += stru_object.Stiffener.get_weight_width_lg() return tot_weight def calc_weight_cylinder(x): ''' Calculation of total weigth. shell (0.02, 2.5, 5, 5, 10, nan, nan, nan), long (0.875, nan, 0.3, 0.01, 0.1, 0.01, nan, nan), ring (nan, nan, 0.3, 0.01, 0.1, 0.01, nan, nan), ring (nan, nan, 0.7, 0.02, 0.2, 0.02, nan, nan)] ''' if sum(x[1][0:8]) != 0: num_long_stf = 2*math.pi*x[0][1]/x[1][0] long_stf_area = x[1][2]*x[1][3]+x[1][4]*x[1][5] long_stf_volume = long_stf_area * x[0][4] * num_long_stf else: long_stf_volume = 0 if sum(x[2][0:8]) != 0: num_ring_stf = x[0][4] / x[0][2] ring_stf_volume = math.pi*(math.pow(x[0][1],2)-math.pow(x[0][1]-x[2][2],2))*x[2][3] + \ 2*math.pi*(x[0][1]-x[2][2]) * x[2][4] * x[2][5] ring_stf_tot_vol = ring_stf_volume * num_ring_stf else: ring_stf_tot_vol = 0 if sum(x[3][0:8]) != 0: num_ring_girder = x[0][4] / x[0][3] ring_frame_volume = math.pi*(math.pow(x[0][1],2)-math.pow(x[0][1]-x[3][2],2))*x[3][3] + \ 2*math.pi*(x[0][1]-x[3][2])*x[3][4]*x[3][5] tot_ring_frame_vol = ring_frame_volume*num_ring_girder else: tot_ring_frame_vol = 0 shell_volume = 2 * math.pi * x[0][1] * x[0][0] * x[0][4] return (long_stf_volume+ring_stf_tot_vol+tot_ring_frame_vol+shell_volume)*7850 def stress_scaling_cylinder(x1, x2, stress1): ''' Scale stresses of a stiffened cylinder. To scale: Design axial stress, sa,sd = Design bending stress, sm,sd = Design torsional stress, tT,sd= Design shear stress, tQ,sd= Additional hoop stress, sh,sd = ''' t1, r1, s1, hw1, tw1, b1, tf1 = x1 t2, r2, s2, hw2, tw2, b2, tf2 = x2 sasd1, smsd1, tTsd1, tQsd1, shsd1 = stress1 A1 = hw1 * tw1 + b1 * tf1 A2 = hw2 * tw2 + b2 * tf2 # Axial stress changes by equivalent thickness thk_eq1 = t1 + 0 if s1 == 0 else A1 / s1 thk_eq2 = t2 + 0 if s2 == 0 else A2 / s2 # Moment stress changes by difference in moment of inertia Itot1 = calc.CylinderAndCurvedPlate.get_Itot(hw=hw1, tw=tw1, b=b1, tf=tf1, r=r1, s=s1, t=t1) Itot2 = calc.CylinderAndCurvedPlate.get_Itot(hw=hw2, tw=tw2, b=b2, tf=tf2, r=r2, s=s2, t=t2) # Torsional, shear and hoop changes by cylinder thickness. return sasd1*(thk_eq1/thk_eq2), smsd1*(Itot1/Itot2), tTsd1*(t1/t2), tQsd1*(t1/t2), shsd1*(t1/t2) def stress_scaling(sigma_old,t_old,t_new, fdwn = 1, fup = 0.5): if t_new <= t_old: #decreasing the thickness sigma_new = sigma_old*(t_old/(t_old-fdwn*abs((t_old-t_new)))) # assert sigma_new >= sigma_old, 'ERROR no stress increase: \n' \ # 't_old '+str(t_old)+' sigma_old '+str(sigma_old)+ \ # '\nt_new '+str(t_new)+' sigma_new '+str(sigma_new) else: #increasing the thickness sigma_new = sigma_old*(t_old/(t_old+fup*abs((t_old-t_new)))) # assert sigma_new <= sigma_old, 'ERROR no stress reduction: \n' \ # 't_old '+str(t_old)+' sigma_old '+str(sigma_old)+ \ # '\nt_new '+str(t_new)+' sigma_new '+str(sigma_new) return sigma_new def stress_scaling_area(sigma_old,a_old,a_new, fdwn = 1, fup = 0.5): ''' Scale stresses using input area ''' if a_new <= a_old: #decreasing the thickness sigma_new = sigma_old*(a_old/(a_old-fdwn*abs((a_old-a_new)))) # assert sigma_new >= sigma_old, 'ERROR no stress increase: \n' \ # 't_old '+str(a_old)+' sigma_old '+str(sigma_old)+ \ # '\nt_new '+str(a_new)+' sigma_new '+str(sigma_new) else: #increasing the thickness sigma_new = sigma_old*(a_old/(a_old+fup*abs((a_old-a_new)))) # assert sigma_new <= sigma_old, 'ERROR no stress reduction: \n' \ # 't_old '+str(a_old)+' sigma_old '+str(sigma_old)+ \ # '\nt_new '+str(a_new)+' sigma_new '+str(sigma_new) #print('a_old', a_old, 'sigma_old', sigma_old, '|', 'a_new', a_new, 'sigma_new',sigma_new) return sigma_new def x_to_string(x): ret = '' for val in x: ret += str(val) + '_' return ret def get_filtered_results(iterable_all,init_stuc_obj,lat_press,init_filter_weight,side='p', chk=(True,True,True,True,True,True,True, False),fat_dict = None, fat_press = None, slamming_press=None, processes = None, puls_sheet = None, puls_acceptance = 0.87, fdwn = 1, fup = 0.5, ml_algo = None): ''' Using multiprocessing to return list of applicable results. :param iterable_all: :param init_stuc_obj: :param lat_press: :param init_filter_weight: :param side: :param chk: :return: ''' #print('Init filter weight', init_filter_weight) ''' x,obj,lat_press,init_weight,side='p',chk=(True,True,True,True, True, True, True, False), fat_dict = None, fat_press = None, slamming_press = 0, , puls_results = None, print_result = False ''' if chk[7]: # PULS to be used. #calc.PULSpanel ''' dict_to_run[line_given] = self._line_to_struc[line_given][1].get_puls_input() dict_to_run[line_given]['Identification'] = line_given dict_to_run[line_given]['Pressure (fixed)'] = self.get_highest_pressure(line_given)['normal'] / 1e6 ''' dict_to_run = {} for x in iterable_all: x_id = x_to_string(x) # calc_object = create_new_calc_obj(init_stuc_obj, x, fat_dict, fdwn = fdwn, fup = fup) calc_object_stf = None if init_stuc_obj.Stiffener is None else create_new_calc_obj(init_stuc_obj.Stiffener, x, fat_dict, fdwn=fdwn, fup=fup) calc_object_pl = create_new_calc_obj(init_stuc_obj.Plate, x, fat_dict, fdwn=fdwn, fup=fup) calc_object = [calc.AllStructure(Plate=calc_object_pl[0], Stiffener=None if init_stuc_obj.Stiffener is None else calc_object_stf[0], Girder=None, main_dict=init_stuc_obj.get_main_properties()['main dict']), calc_object_pl[1]] dict_to_run[x_id] = calc_object[0].Plate.get_puls_input() dict_to_run[x_id]['Identification'] = x_id dict_to_run[x_id]['Pressure (fixed)'] = lat_press # PULS sheet to have pressure in MPa PULSrun = calc.PULSpanel(dict_to_run, puls_sheet_location=puls_sheet, puls_acceptance=puls_acceptance) PULSrun.run_all() sort_again = None elif chk[8]: # ML-CL to be used. # Buckling ml-cl sp_int, sp_gl_gt, up_int, up_gl_gt, \ sp_int_idx, sp_gl_gt_idx, up_int_idx, up_gl_gt_idx = \ list(), list(), list(),list(),list(), list(), list(),list() # Create iterator idx_count = 0 for idx, x in enumerate(iterable_all): idx_count += 1 # calc_object = create_new_calc_obj(init_stuc_obj, x, fat_dict, fdwn=fdwn, fup=fup) calc_object_stf = None if init_stuc_obj.Stiffener is None else create_new_calc_obj(init_stuc_obj.Stiffener, x, fat_dict, fdwn=fdwn, fup=fup) calc_object_pl = create_new_calc_obj(init_stuc_obj.Plate, x, fat_dict, fdwn=fdwn, fup=fup) calc_object = [calc.AllStructure(Plate=calc_object_pl[0], Stiffener=None if init_stuc_obj.Stiffener is None else calc_object_stf[0], Girder=None, main_dict=init_stuc_obj.get_main_properties()['main dict']), calc_object_pl[1]] if calc_object[0].Plate.get_puls_sp_or_up() == 'UP': if calc_object[0].Plate.get_puls_boundary() == 'Int': up_int.append(calc_object[0].Plate.get_buckling_ml_input(lat_press, alone = False)) up_int_idx.append(idx) else: up_gl_gt.append(calc_object[0].Plate.get_buckling_ml_input(lat_press, alone = False)) up_gl_gt_idx.append(idx) else: if calc_object[0].Plate.get_puls_boundary() == 'Int': sp_int.append(calc_object[0].Plate.get_buckling_ml_input(lat_press, alone = False)) sp_int_idx.append(idx) else: sp_gl_gt.append(calc_object[0].Plate.get_buckling_ml_input(lat_press, alone = False)) sp_gl_gt_idx.append(idx) # Predict sort_again = np.zeros([len(iterable_all),2]) if len(sp_int) != 0: sp_int_res = [ml_algo['cl SP buc int predictor'].predict(ml_algo['cl SP buc int scaler'] .transform(sp_int)), ml_algo['cl SP ult int predictor'].predict(ml_algo['cl SP buc int scaler'] .transform(sp_int))] for idx, res_buc, res_ult in zip(sp_int_idx, sp_int_res[0],sp_int_res[1]): sort_again[idx] = [res_buc, res_ult] if len(sp_gl_gt) != 0: sp_gl_gt_res = [ml_algo['cl SP buc GLGT predictor'].predict(ml_algo['cl SP buc GLGT scaler'] .transform(sp_gl_gt)), ml_algo['cl SP buc GLGT predictor'].predict(ml_algo['cl SP buc GLGT scaler'] .transform(sp_gl_gt))] for idx, res_buc, res_ult in zip(sp_gl_gt_idx, sp_gl_gt_res[0],sp_gl_gt_res[1]): sort_again[idx] = [res_buc, res_ult] if len(up_int) != 0: up_int_res = [ml_algo['cl UP buc int predictor'].predict(ml_algo['cl UP buc int scaler'] .transform(up_int)), ml_algo['cl UP ult int predictor'].predict(ml_algo['cl UP buc int scaler'] .transform(up_int))] for idx, res_buc, res_ult in zip(up_int_idx, up_int_res[0],up_int_res[1]): sort_again[idx] = [res_buc, res_ult] if len(up_gl_gt) != 0: up_gl_gt_res =[ml_algo['cl UP buc GLGT predictor'].predict(ml_algo['cl UP buc GLGT scaler'] .transform(up_gl_gt)), ml_algo['cl UP buc GLGT predictor'].predict(ml_algo['cl UP buc GLGT scaler'] .transform(up_gl_gt))] for idx, res_buc, res_ult in zip(up_gl_gt_idx, up_gl_gt_res[0],up_gl_gt_res[1]): sort_again[idx] = [res_buc, res_ult] PULSrun = None else: PULSrun = None idx_count = 0 for x in iterable_all: idx_count += 1 sort_again = None iter_var = list() for idx,item in enumerate(iterable_all): iter_var.append((item,init_stuc_obj,lat_press,init_filter_weight,side,chk,fat_dict,fat_press,slamming_press, PULSrun, False,fdwn, fup, sort_again[idx] if chk[8] == True else None)) iter_var = tuple(iter_var) #res_pre = it.starmap(any_constraints_all, iter_var) if processes is None: processes = max(cpu_count()-1,1) with Pool(processes) as my_process: # res_pre = m # y_process.starmap_async(any_constraints_all, iter_var).get() # print('Done calculating') res_pre = my_process.starmap(any_constraints_all, iter_var) check_ok, check_not_ok = list(), list() for item in res_pre: if item[0] is False: check_not_ok.append(item) else: check_ok.append(item) return check_ok, check_not_ok def any_get_all_combs(min_var, max_var,deltas, init_weight = float('inf'), predef_stiffeners = None, stf_type = None): ''' Calulating initial values. :param min: :param max: :return: ''' ''' shell_upper_bounds = np.array( [0.03, 2.5, 5, 0.8, 6, 6]) shell_deltas = np.array( [0.01, 2.5, 1, 0.1, 1, 1]) shell_lower_bounds = np.array( [0.02, 2.5, 5, 0.6, 4, 4]) long_upper_bounds = np.array( [0.875, None, 0.5, 0.018, 0.2, 0.03]) long_deltas = np.array( [0.025, None, 0.1, 0.004, 0.05, 0.005]) long_lower_bounds = np.array( [0.875, None, 0.3, 0.010, 0.1, 0.010]) ring_stf_upper_bounds = np.array( [None, None, 0.5, 0.018, 0.2, 0.03]) ring_stf_deltas = np.array( [None, None, 0.1, 0.004, 0.05, 0.005]) ring_stf_lower_bounds = np.array( [None, None, 0.3, 0.010, 0.1, 0.010]) ring_frame_upper_bounds = np.array( [None, None, 0.9, 0.04, 0.3, 0.04]) ring_frame_deltas = np.array( [None, None, 0.2, 0.01, 0.1, 0.01]) ring_frame_lower_bounds = np.array( [None, None, 0.5, 0.02, 0.2, 0.020]) ''' if min_var[0] is not None: spacing_array = (np.arange(min_var[0], max_var[0]+ deltas[0], deltas[0])) if min_var[0] != max_var[0] \ else np.array([min_var[0]]) spacing_array = spacing_array[spacing_array <= max_var[0]] else: spacing_array = np.array([np.nan]) if min_var[1] is not None: pl_thk_array = (np.arange(min_var[1], max_var[1]+ deltas[1], deltas[1])) if min_var[1] != max_var[1] \ else np.array([min_var[1]]) pl_thk_array = pl_thk_array[pl_thk_array <= max_var[1]] else: pl_thk_array = np.array([np.nan]) if predef_stiffeners is not None: predef_iterable = list() for pre_str in predef_stiffeners: for spacing in spacing_array: for pl_thk in pl_thk_array: new_field = list(pre_str) new_field[0] = spacing new_field[1] = pl_thk predef_iterable.append(tuple(new_field)) return predef_iterable web_h_array = (np.arange(min_var[2], max_var[2]+ deltas[2], deltas[2])) if min_var[2] != max_var[2] \ else np.array([min_var[2]]) web_h_array = web_h_array[web_h_array <= max_var[2]] web_thk_array = (np.arange(min_var[3], max_var[3]+ deltas[3], deltas[3])) if min_var[3] != max_var[3] \ else np.array([min_var[3]]) web_thk_array = web_thk_array[web_thk_array <= max_var[3]] flange_w_array = (np.arange(min_var[4], max_var[4]+ deltas[4], deltas[4])) if min_var[4] != max_var[4] \ else np.array([min_var[4]]) flange_w_array = flange_w_array[flange_w_array <= max_var[4]] if min_var[5] is not None: flange_thk_array = (np.arange(min_var[5], max_var[5]+ deltas[5], deltas[5])) if min_var[5] != max_var[5] \ else np.array([min_var[5]]) flange_thk_array = flange_thk_array[flange_thk_array <= max_var[5]] else: flange_thk_array = np.array([np.nan]) if min_var[6] is not None: span_array = (np.arange(min_var[6], max_var[6], deltas[4])) if min_var[6] != max_var[6] \ else np.array([min_var[6]]) else: span_array = np.array([np.nan]) if min_var[7] is not None: girder_array = (np.arange(min_var[7], max_var[7], deltas[7])) if min_var[7] != max_var[7] \ else np.array([min_var[7]]) else: girder_array = np.array([np.nan]) comb = it.product(spacing_array, pl_thk_array, web_h_array, web_thk_array, flange_w_array, flange_thk_array, span_array,girder_array) return list(comb) def get_initial_weight(obj,lat_press,min_var,max_var,deltas,trials,fat_dict,fat_press, predefined_stiffener_iter, slamming_press, fdwn = 1, fup = 0.5, ml_algo = None): ''' Return a guess of the initial weight used to filter the constraints. Only aim is to reduce running time of the algorithm. ''' min_weight = float('inf') if predefined_stiffener_iter is None: combs = any_get_all_combs(min_var, max_var, deltas) else: combs = any_get_all_combs(min_var, max_var, deltas,predef_stiffeners=[item.get_tuple() for item in predefined_stiffener_iter]) trial_selection = random_product(combs, repeat=trials) obj.lat_press = lat_press for x in trial_selection: if any_constraints_all(x=x,obj=obj,lat_press=lat_press,init_weight=min_weight, fat_dict=fat_dict,fat_press = fat_press,slamming_press=slamming_press, fdwn = fdwn, fup = fup)[0]: current_weight = calc_weight(x) if current_weight < min_weight: min_weight = current_weight return min_weight def get_random_result(obj,lat_press,min_var,max_var,deltas,trials=10000,side='p',const_chk=(True,True,True,True,True), fat_dict=None, fat_press=None): ''' Return random results ''' min_weight = float('inf') ass_var = None combs = any_get_all_combs(min_var, max_var, deltas) trial_selection = random_product(combs,repeat=trials) for x in trial_selection: if any_constraints_all(x=x,obj=obj,lat_press=lat_press,init_weight=min_weight,side=side,chk=const_chk, fat_dict = fat_dict, fat_press = fat_press)[0] is not False: current_weight = calc_weight(x) if current_weight < min_weight: min_weight = current_weight ass_var = x if ass_var == None: return ass_var return create_new_structure_obj(obj, [round(item, 5) for item in ass_var]), \ create_new_calc_obj(obj, [round(item, 5) for item in ass_var])[0] def get_random_result_no_bounds(obj,lat_press,min_var,max_var,trials=10000,side='p',const_chk=(True,True,True,True,True) , fat_dict=None, fat_press=None): ''' Return random results, ignoring the deltas ''' min_weight = float('inf') ass_var = None for trial in range(trials): spacing = random.randrange(int(min_var[0]*1000),int(max_var[0]*1000),1)/1000 pl_thk = random.randrange(int(min_var[1]*1000),int(max_var[1]*1000),1)/1000 web_h = random.randrange(int(min_var[2]*1000),int(max_var[2]*1000),1)/1000 web_thk = random.randrange(int(min_var[3]*1000),int(max_var[3]*1000),1)/1000 fl_w = random.randrange(int(min_var[4]*1000),int(max_var[4]*1000),1)/1000 fl_thk = random.randrange(int(min_var[5]*1000),int(max_var[5]*1000),1)/1000 x = (spacing,pl_thk,web_h,web_thk,fl_w,fl_thk,min_var[6],min_var[7]) if any_constraints_all(x=x,obj=obj,lat_press=lat_press,init_weight=min_weight,side=side,chk=const_chk, fat_dict = fat_dict, fat_press = fat_press)[0]: current_weight = calc_weight(x) if current_weight < min_weight: min_weight = current_weight ass_var = x if ass_var == None: return ass_var return create_new_structure_obj(obj, [round(item, 5) for item in ass_var]), \ create_new_calc_obj(obj, [round(item, 5) for item in ass_var])[0] def random_product(*args, repeat=1): "Random selection from itertools.product(*args, **kwds)" pools = [tuple(pool) for pool in args] * repeat return tuple(random.choice(pool) for pool in pools) def product_any(*args, repeat=1,weight=float('inf')): # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111 pools = [tuple(pool) for pool in args] * repeat result = [[]] for pool in pools: result = [x+[y] for x in result for y in pool] for prod in result: if calc_weight(prod) < weight: yield tuple(prod) def plot_optimization_results(results, multiple = False): check_ok_array, check_array, section_array = list(), list(), list() save_to_csv = asksaveasfilename() if save_to_csv != '': csv_file = open(save_to_csv,'w', newline='') csv_writer = csv.writer(csv_file) csv_writer.writerow(['Is OK', 'Check info', 'pl b', 'pl thk', 'web h', 'web thk', 'fl b', 'fl thk', 'span', 'girder width', 'stiffener type', 'uf weight', 'uf sec mod', 'uf loc stf buc', 'uf buckling', 'uf min pl', 'uf shear', 'uf fatigue', 'uf slamming']) for check_ok, check, section, ufres in results[4]: check_ok_array.append(check_ok) check_array.append(check) section_array.append(section) if save_to_csv != '': to_write = list() to_write.append(check_ok) to_write.append(check) [to_write.append(item) for item in section] if(len(section) == 8): to_write.append('T') [to_write.append(item) for item in ufres] csv_writer.writerow(to_write) if save_to_csv != '': csv_file.close() check_ok_array, check_array, section_array = np.array(check_ok_array), \ np.array(check_array), \ np.array(section_array) x_label = np.unique(check_array) y = [np.count_nonzero(check_array == item) for item in np.unique(check_array)] fig, axs = plt.subplots(2, 1) clust_data = np.append(np.array(x_label).reshape(len(x_label), 1), np.array(y).reshape(len(y), 1), axis=1) collabel = ('Check fail type or OK', 'Number of occurences') axs[0].axis('tight') axs[0].axis('off') the_table = axs[0].table(cellText=clust_data, colLabels=collabel, loc='center') axs[1].pie(y, labels=x_label, autopct='%1.1f%%', explode=[0.1 for dummy in range(len(x_label))]) plt.show() if __name__ == '__main__': import example_data as ex from calc_structure import CylinderAndCurvedPlate, Structure, Shell shell_main_dict = ex.shell_main_dict shell_main_dict['geometry'] = [7, ''] #Structure(ex.obj_dict_cyl_ring) #Structure(ex.obj_dict_cyl_heavy_ring) # my_cyl = CylinderAndCurvedPlate(main_dict = ex.shell_main_dict, shell= Shell(ex.shell_dict), # long_stf= Structure(ex.obj_dict_cyl_long2), # ring_stf = Structure(ex.obj_dict_cyl_ring2), # ring_frame= Structure(ex.obj_dict_cyl_heavy_ring2)) my_cyl = CylinderAndCurvedPlate(main_dict = ex.shell_main_dict, shell= Shell(ex.shell_dict), long_stf= Structure(ex.obj_dict_cyl_long2), ring_stf = None,# Structure(ex.obj_dict_cyl_ring2), ring_frame= None)#Structure(ex.obj_dict_cyl_heavy_ring2)) shell_upper_bounds = np.array( [0.03, 5, 5, 5, 10, None, None, None]) shell_deltas = np.array( [0.005, 0.5, 1, 0.1,1, None, None, None]) shell_lower_bounds = np.array( [0.02, 5, 5, 5, 10, None, None, None]) long_upper_bounds = np.array( [0.8, None, 0.5, 0.02, 0.2, 0.03, None, None]) long_deltas = np.array( [0.1, None, 0.1, 0.01, 0.1, 0.01, None, None]) long_lower_bounds = np.array( [0.7, None, 0.3, 0.01, 0.1, 0.01, None, None]) ring_stf_upper_bounds = np.array( [None, None, 0.5, 0.018, 0.2, 0.03, None, None]) ring_stf_deltas = np.array( [None, None, 0.1, 0.004, 0.1, 0.01, None, None]) ring_stf_lower_bounds = np.array( [None, None, 0.3, 0.010, 0.1, 0.010, None, None]) ring_frame_upper_bounds = np.array( [None, None, 0.9, 0.04, 0.3, 0.04, None, None]) ring_frame_deltas = np.array( [None, None, 0.2, 0.01, 0.1, 0.01, None, None]) ring_frame_lower_bounds = np.array( [None, None, 0.7, 0.02, 0.2, 0.02, None, None]) max_var = [shell_upper_bounds, long_upper_bounds, ring_stf_upper_bounds, ring_frame_upper_bounds] deltas = [shell_deltas, long_deltas, ring_stf_deltas, ring_frame_deltas] min_var = [shell_lower_bounds, long_lower_bounds, ring_stf_lower_bounds, ring_frame_lower_bounds] results = run_optmizataion(initial_structure_obj=my_cyl, min_var=min_var, max_var=max_var, deltas=deltas, cylinder=True, use_weight_filter=True) shell = ['Shell thk. [mm]', 'Shell radius [mm]' , 'l rings [mm]', 'L shell [mm]', 'L tot. [mm]', 'N/A - future', 'N/A - future', 'N/A - future'] stf_long = ['Spacing [mm]', 'Plate thk. [mm]', 'Web height [mm]', 'Web thk. [mm]', 'Flange width [mm]', 'Flange thk. [mm]', 'N/A - future', 'N/A - future'] stf_ring = ['N/A', 'Plate thk. [mm]', 'Web height [mm]', 'Web thk. [mm]', 'Flange width [mm]', 'Flange thk. [mm]', 'N/A - future', 'N/A - future'] # obj_dict = ex.obj_dict_sec_error # fat_obj = ex.get_fatigue_object_problematic() # fp = ex.get_fatigue_pressures_problematic() # fat_press = ((fp['p_ext']['loaded'],fp['p_ext']['ballast'],fp['p_ext']['part']), # (fp['p_int']['loaded'],fp['p_int']['ballast'],fp['p_int']['part'])) # x0 = [obj_dict['spacing'][0], obj_dict['plate_thk'][0], obj_dict['stf_web_height'][0], obj_dict['stf_web_thk'][0], # obj_dict['stf_flange_width'][0], obj_dict['stf_flange_thk'][0], obj_dict['span'][0], 10] # # obj = calc.Structure(obj_dict) # lat_press = 427.235 # calc_object = calc.CalcScantlings(obj_dict) # lower_bounds = np.array([0.875, 0.012, 0.3, 0.012, 0.1, 0.012, 3.5, 10]) # upper_bounds = np.array([0.875, 0.025, 0.5, 0.018, 0.2, 0.03, 3.5, 10]) # deltas = np.array([0.025, 0.001, 0.01, 0.001, 0.01, 0.001]) # # # t1 = time.time() # # # results = run_optmizataion(obj, lower_bounds,upper_bounds, lat_press, deltas, algorithm='anysmart', # fatigue_obj=fat_obj, fat_press_ext_int=fat_press, use_weight_filter=True) # # print(results[1]) # print(results[1].get_dnv_min_section_modulus(lat_press)) # print(min([round(results[1].get_section_modulus()[0], 5), round(results[1].get_section_modulus()[1], 5)])) # t1 = time.time() # check_ok_array, check_array, section_array = list(), list(), list() # # for check_ok, check, section in results[4]: # check_ok_array.append(check_ok) # check_array.append(check) # section_array.append(section) # check_ok_array, check_array, section_array = np.array(check_ok_array),\ # np.array(check_array),\ # np.array(section_array) # # x_label = np.unique(check_array) # y = [np.count_nonzero(check_array == item) for item in np.unique(check_array)] # # fig, axs = plt.subplots(2, 1) # clust_data = np.append(np.array(x_label).reshape(len(x_label),1), np.array(y).reshape(len(y),1), axis=1) # collabel = ('Check fail type or OK', 'Number of occurences') # axs[0].axis('tight') # axs[0].axis('off') # the_table = axs[0].table(cellText=clust_data, colLabels=collabel, loc='center') # axs[1].pie(y, labels = x_label, autopct='%1.1f%%', explode=[0.1 for dummy in range(len(x_label))]) # plt.show() # # cmap = plt.cm.get_cmap(plt.cm.viridis, len(x_label)) # # Create data # N = 60 # x = section_array[:,0] * section_array[:,1] # y = section_array[:,2] * section_array[:,3] # z = section_array[:,4] * section_array[:,5] # # #data = (g1, g2, g3) # # groups = x_label # colors = "bgrcmykw" # color_dict = dict() # for idx, group in enumerate(groups): # color_dict[group] = colors[idx] # # # Create plot # fig = plt.figure() # #ax = fig.add_subplot(1, 1, 1) # ax = fig.gca(projection='3d') # # for xdata, ydata, zdata, group in zip(x, y, z, groups): # if group == 'Check OK': # ax.scatter(x, y, z, alpha= 0.6 if group != 'Weight filter' else 0.2, # c=color_dict[group], edgecolors='none', s=5, label=group) # # plt.title('Matplot 3d scatter plot') # plt.legend(loc=2) # plt.show() # for swarm_size in [100, 1000, 10000, 100000, 1000000]: # t1 = time.time() # # pso_options = (swarm_size, 0.5, 0.5, 0.5, 100, 1e-8, 1e-8) # results = run_optmizataion(obj, upper_bounds, lower_bounds, lat_press, deltas, algorithm='anysmart', # fatigue_obj=fat_obj, fat_press_ext_int=fat_press, pso_options=pso_options)[0] # print('Swarm size', swarm_size, 'running time', time.time()-t1, results.get_one_line_string()) # fat_press_ext_int = list() # for pressure in ex.get_geo_opt_fat_press(): # fat_press_ext_int.append(((pressure['p_ext']['loaded'], pressure['p_ext']['ballast'], # pressure['p_ext']['part']), # (pressure['p_int']['loaded'], pressure['p_int']['ballast'], # pressure['p_int']['part']))) # # opt_girder_prop = (0.018, 0.25,0.015, 0,0, 1.1,0.9) # # results = run_optmizataion(ex.get_geo_opt_object(), lower_bounds, upper_bounds, ex.get_geo_opt_presure(), deltas, # is_geometric=True, fatigue_obj=ex.get_geo_opt_fatigue(), # fat_press_ext_int=fat_press_ext_int, # slamming_press=ex.get_geo_opt_slamming_none(), load_pre=False, # opt_girder_prop= opt_girder_prop, # min_max_span=(1,12), tot_len=12) # import pickle # with open('geo_opt_2.pickle', 'rb') as file: # geo_results = pickle.load(file) # # print(geo_results.keys()) # print(geo_results[1][0]) # for val in range(6): # plot_optimization_results(geo_results[3][1][val])
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/optimize.py
optimize.py
try: import any_files.pl_stf_window as plstf import any_files.helper as hlp except ModuleNotFoundError: import ANYstructure.any_files.pl_stf_window as plstf import ANYstructure.any_files.helper as hlp def point_to_js_command(point_coord, point_name): ''' Returning a js script. :param point_coord: :param point_name: :return: ''' return point_name + ' = Point('+str(point_coord[0])+', 0, '+str(point_coord[1]) + ');\n' def line_to_js_command_reference(from_point, to_point, curve_name): ''' Returning a js script based on reference modelling. :param from_point: :param to_point: :param curve_name: :return: ''' return curve_name +' = CreateLineTwoPoints(' + 'point'+str(from_point)+','+ ' point' + \ str(to_point) + ');\n' def section_property_to_js(section: plstf.Section = None): ''' Sct3 = BarSection(0.25, 0.015); Sct1 = UnsymISection(0.35, 0.02, 0, 0, 0, 0.15, 0.075, 0.02); Sct2 = LSection(0.3, 0.012, 0.1, 0.02); ''' if section.stf_type == 'T': js_def = 'UnsymISection('+str(section.stf_web_height)+', '+str(section.stf_web_thk)+', 0, 0, 0, '+ \ str(section.stf_flange_width)+', '+str(section.stf_flange_width/2)+', '+\ str(section.stf_flange_thk)+');\n' elif section.stf_type in ['L', 'L-bulb']: js_def = 'LSection('+str(section.stf_web_height)+', '+str(section.stf_web_thk)+', '+ \ str(section.stf_flange_width)+', '+ str(section.stf_flange_thk)+');\n' else: js_def = 'BarSection('+str(section.stf_web_height)+', '+str(section.stf_web_thk)+');\n' ret_str = section.__str__() + ' = ' + js_def ret_str.replace('-', '_') return ret_str class JSfile: ''' An object representation of the js file. ''' def __init__(self, points, lines, sections: plstf.Section = None, line_to_struc = None): super(JSfile, self).__init__() self._output_lines = list() self._points = points self._lines = lines self._sections = sections self._line_to_struc = line_to_struc @property def output_lines(self): return self._output_lines def write_points(self): ''' Writing point in the point list. ''' for point_name, point_coord in self._points.items(): self._output_lines.append(point_to_js_command(point_coord, point_name)) def write_lines(self): ''' Writing the line list. ''' for line_name, point_to_point in self._lines.items(): self._output_lines.append(line_to_js_command_reference(point_to_point[0], point_to_point[1], line_name)) def write_sections(self): ''' Exporting all sections. ''' for section in self._sections: self._output_lines.append(section_property_to_js(section)) def write_beams(self): ''' Making beams and assining properties. Bm1 = Beam(line3); Bm1.section = T_400_0x12_0__250_0x14_0; ''' for line_name, line_prop in self._line_to_struc.items(): if line_prop[0].Stiffener is not None: beam_name = 'ANYbm'+str(hlp.get_num(line_name)) self.output_lines.append(beam_name+' = Beam('+line_name+');\n') section = plstf.Section(line_prop[0].Stiffener.get_structure_prop()) self.output_lines.append(beam_name + '.section = '+section.__str__()+';\n') if __name__ == '__main__': import example_data as test from tkinter import filedialog imp_file = open('test_js.js', 'w') JS = JSfile(test.get_point_dict(), test.get_line_dict(), test.get_section_list(), line_to_struc=test.get_line_to_struc()) JS.write_points() JS.write_lines() JS.write_sections() JS.write_beams() imp_file.writelines(JS.output_lines) imp_file.close()
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/sesam_interface.py
sesam_interface.py
import tkinter as tk import os from _tkinter import TclError class CreateLoadFactorWindow: ''' self._load_factors_dict = {'dnva':[1.3,1.2,0.7], 'dnvb':[1,1,1.3], 'tanktest':[1,1,0]} # DNV loads factors ''' def __init__(self,master, app=None): super(CreateLoadFactorWindow, self).__init__() self._frame = master self._frame.wm_title("Load factor modifications here.") self._frame.geometry('800x800') self._frame.grab_set() self._app = app if __name__ == '__main__': self._load_factors_dict = {'dnva': [1.3, 1.2, 0.7], 'dnvb': [1, 1, 1.3], 'tanktest': [1, 1, 0]} # DNV loads factors else: self._load_factors_dict = app._load_factors_dict self.new_conda_lff1 = tk.DoubleVar() self.new_conda_lff2 = tk.DoubleVar() self.new_conda_lff3 = tk.DoubleVar() self.new_condb_lff1 = tk.DoubleVar() self.new_condb_lff2 = tk.DoubleVar() self.new_condb_lff3 = tk.DoubleVar() self.new_condtt_lff1 = tk.DoubleVar() self.new_condtt_lff2 = tk.DoubleVar() self.new_condtt_lff3 = tk.DoubleVar() self.new_change_default = tk.BooleanVar() self.new_change_existing = tk.BooleanVar() self.new_conda_lff1.set(self._load_factors_dict['dnva'][0]) self.new_conda_lff2.set(self._load_factors_dict['dnva'][1]) self.new_conda_lff3.set(self._load_factors_dict['dnva'][2]) self.new_condb_lff1.set(self._load_factors_dict['dnvb'][0]) self.new_condb_lff2.set(self._load_factors_dict['dnvb'][1]) self.new_condb_lff3.set(self._load_factors_dict['dnvb'][2]) self.new_condtt_lff1.set(self._load_factors_dict['tanktest'][0]) self.new_condtt_lff2.set(self._load_factors_dict['tanktest'][1]) self.new_condtt_lff3.set(self._load_factors_dict['tanktest'][2]) ent_w = 20 tk.Label(self._frame, text='Static and dynamic load factors is specified here', font='Verdana 15 bold')\ .grid(row = 1, column = 1, sticky = tk.W) tk.Label(self._frame, text='Note that DNV is used as reference, ' 'but the load factors can be any other rule set such as ISO.', font='Verdana 8 bold')\ .grid(row = 2, column = 1, sticky = tk.W) tk.Label(self._frame, text=' ', font='Verdana 8 bold')\ .grid(row = 3, column = 1, sticky = tk.W) tk.Label(self._frame, text='Condition a) - Static load factor "unknown loads"', font='Verdana 8 bold')\ .grid(row = 4, column = 1, sticky = tk.W) tk.Label(self._frame, text='Condition a) - Static load factor well defined loads', font='Verdana 8 bold')\ .grid(row = 5, column = 1, sticky = tk.W) tk.Label(self._frame, text='Condition a) - Dynamic load factor', font='Verdana 8 bold')\ .grid(row = 6, column = 1, sticky = tk.W) self.ent_conda_lf1 = tk.Entry(self._frame, textvariable=self.new_conda_lff1, width=ent_w) self.ent_conda_lf2 = tk.Entry(self._frame, textvariable=self.new_conda_lff2, width=ent_w) self.ent_conda_lf3 = tk.Entry(self._frame, textvariable=self.new_conda_lff3, width=ent_w) self.ent_conda_lf1.grid(row=4, column=2) self.ent_conda_lf2.grid(row=5, column=2) self.ent_conda_lf3.grid(row=6, column=2) tk.Label(self._frame, text=' ', font='Verdana 8 bold')\ .grid(row = 7, column = 1, sticky = tk.W) tk.Label(self._frame, text='Condition b) - Static load factor "unknown loads"', font='Verdana 8 bold')\ .grid(row = 8, column = 1, sticky = tk.W) tk.Label(self._frame, text='Condition b) - Static load factor well defined loads', font='Verdana 8 bold')\ .grid(row = 9, column = 1, sticky = tk.W) tk.Label(self._frame, text='Condition b) - Dynamic load factor', font='Verdana 8 bold')\ .grid(row = 10, column = 1, sticky = tk.W) self.ent_condb_lf1 = tk.Entry(self._frame, textvariable=self.new_condb_lff1, width=ent_w) self.ent_condb_lf2 = tk.Entry(self._frame, textvariable=self.new_condb_lff2, width=ent_w) self.ent_condb_lf3 = tk.Entry(self._frame, textvariable=self.new_condb_lff3, width=ent_w) self.ent_condb_lf1.grid(row=8, column=2) self.ent_condb_lf2.grid(row=9, column=2) self.ent_condb_lf3.grid(row=10, column=2) tk.Label(self._frame, text=' ', font='Verdana 8 bold')\ .grid(row = 11, column = 1, sticky = tk.W) tk.Label(self._frame, text='Tank test) - Static load factor "unknown loads"', font='Verdana 8 bold')\ .grid(row = 12, column = 1, sticky = tk.W) tk.Label(self._frame, text='Tank test) - Static load factor well defined loads', font='Verdana 8 bold')\ .grid(row = 13, column = 1, sticky = tk.W) tk.Label(self._frame, text='Tank test) - Dynamic load factor', font='Verdana 8 bold')\ .grid(row = 14, column = 1, sticky = tk.W) self.ent_condtt_lf1 = tk.Entry(self._frame, textvariable=self.new_condtt_lff1, width=ent_w) self.ent_condtt_lf2 = tk.Entry(self._frame, textvariable=self.new_condtt_lff2, width=ent_w) self.ent_condtt_lf3 = tk.Entry(self._frame, textvariable=self.new_condtt_lff3, width=ent_w) self.ent_condtt_lf1.grid(row=12, column=2) self.ent_condtt_lf2.grid(row=13, column=2) self.ent_condtt_lf3.grid(row=14, column=2) tk.Label(self._frame, text=' ', font='Verdana 8 bold')\ .grid(row = 15, column = 1, sticky = tk.W) # tk.Label(self._frame, text='Change all current load factors', font='Verdana 8 bold')\ # .grid(row = 16, column = 1, sticky = tk.W) # tk.Checkbutton(self._frame, variable=self.new_change_existing)\ # .grid(row=17, column=1, sticky = tk.W) # tk.Label(self._frame, text='Change default load factors', font='Verdana 8 bold')\ # .grid(row = 18, column = 1, sticky = tk.W) # tk.Checkbutton(self._frame, variable=self.new_change_default)\ # .grid(row=19, column=1, sticky=tk.W) # tk.Label(self._frame, text=' ', font='Verdana 8 bold')\ .grid(row = 16, column = 1, sticky = tk.W) destroy_and_return = tk.Button(self._frame, text='Return specified load factors and change existing', command=self.return_load_factors, bg='green', font='Verdana 12', fg='yellow') destroy_and_return.grid(row = 17, column = 1) tk.Label(self._frame, text=' ', font='Verdana 8 bold')\ .grid(row = 18, column = 1) try: img_file_name = 'img_dnv_load_combinations.gif' if os.path.isfile('images/' + img_file_name): file_path ='images/' + img_file_name else: file_path = app._root_dir + '/images/' + img_file_name photo_transverse = tk.PhotoImage(file=file_path) label_trans = tk.Label(self._frame, image=photo_transverse) label_trans.image = photo_transverse # keep a reference! label_trans.grid(row = 19, column = 1, columnspan = 2) except TclError: pass def return_load_factors(self): ''' self._load_factors_dict = {'dnva':[1.3,1.2,0.7], 'dnvb':[1,1,1.3], 'tanktest':[1,1,0]} # DNV loads factors :return: ''' self._load_factors_dict['dnva'] = [self.new_conda_lff1.get(), self.new_conda_lff2.get(), self.new_conda_lff3.get()] self._load_factors_dict['dnvb'] = [self.new_condb_lff1.get(), self.new_condb_lff2.get(), self.new_condb_lff3.get()] self._load_factors_dict['tanktest'] = [self.new_condtt_lff1.get(), self.new_condtt_lff2.get(), self.new_condtt_lff3.get()] if __name__ == '__main__': self._frame.destroy() print({'returned lf dict': self._load_factors_dict, 'change exisiting': self.new_change_existing.get(), 'change default': self.new_change_default.get()}) return self._app.on_close_load_factor_window({'returned lf dict': self._load_factors_dict, 'change exisiting': self.new_change_existing.get(), 'change default': self.new_change_default.get()}) self._frame.destroy() if __name__ == '__main__': root = tk.Tk() my_app = CreateLoadFactorWindow(root,app=None) root.mainloop()
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/load_factor_window.py
load_factor_window.py
import numpy as np from xlwings import App, Book class PulsExcel(): ''' This class open a PulsExcel work. Input and output structure data and results. Running macros. ''' def __init__(self, path_and_file_to_book: str = None, visible = True): ''' :param path_and_file_to_book: Path and file name or just filename in base directory. :param visible: If excel shall open in windows or run in the background. ''' super(PulsExcel, self).__init__() self.app = App(visible=visible) self.book = Book(path_and_file_to_book) self.names_sp = {'Identification': 1, 'Length of panel': 3, 'Stiffener spacing': 4, 'Plate thickness': 5, 'Number of primary stiffeners': 6, 'Stiffener type (L,T,F)': 7, 'Stiffener boundary': 8, 'Stiff. Height': 9, 'Web thick.': 10,'Flange width': 11, 'Flange thick.': 12, 'Tilt angle': 13, 'Number of sec. stiffeners': 14, 'Modulus of elasticity': 21, "Poisson's ratio": 22, 'Yield stress plate': 23, 'Yield stress stiffener': 24, 'Axial stress': 25, 'Trans. stress 1': 26, 'Trans. stress 2': 27, 'Shear stress': 28, 'Pressure (fixed)': 29, 'In-plane support': 30} self.names_up = {'Identification': 1, 'Length of plate': 3, 'Width of c': 4, 'Plate thickness': 5, 'Modulus of elasticity': 6, "Poisson's ratio":7, 'Yield stress plate': 8, 'Axial stress 1': 9, 'Axial stress 2': 10,'Trans. stress 1': 11, 'Trans. stress 2': 12, 'Shear stress': 13, 'Pressure (fixed)': 14, 'In-plane support': 15, 'Rot left': 16, 'Rot right': 17, 'Rot upper': 18, 'Rot lower': 19} def close_book(self, save = False): ''' Closing ass and book. ''' if save: self.book.save() self.book.close() self.app.kill() def read_data(self, row_number: int = 1, column_number: int = 1): ''' Read one cell in the sheet Row and columns starts at 1 (not 0 as in python general) ''' return self.book.sheets[1].range((row_number, column_number)).value def set_cell_value(self, row_number: int = 1, column_number: int = 1, cell_value = None, sheet_num = 1): ''' Set values of a cell. :param row_number: :param column_number: :param cell_value: :return: ''' #print('Row', row_number, 'Col', column_number, 'Cell', cell_value) self.book.sheets[sheet_num].range((row_number, column_number)).value = cell_value def set_one_row(self, row_number: int = 20, data_dict: dict = None): ''' Set one row of values :param row_number: The row to set. :param data_dict: Data for one panel. :return: ''' for name, col_num in self.names_sp.items(): self.set_cell_value(row_number, col_num, data_dict[name]) def set_multiple_rows(self, start_row:int = 20, data_dict: dict = None): ''' :param start_row: First row to input. :param list_of_dicts: The data to be set. :return: ''' row_number = start_row for id, data in data_dict.items(): self.set_one_row(row_number, data) row_number += 1 def set_multiple_rows_batch(self, data_dict: dict = None): ''' :param start_row: First row to input. :param list_of_dicts: The data to be set. :return: ''' sp_dict, up_dict = dict(), dict() for key, val in data_dict.items(): if val['sp or up'] == 'SP': sp_dict[key] = val else: up_dict[key] = val if len(sp_dict)>0: for name, col_num in self.names_sp.items(): start_row = 20 self.book.sheets[1].range((start_row, col_num)).options(expand='table', transpose=True).value = \ [val[name] for val in sp_dict.values()] if len(up_dict) > 0: for name, col_num in self.names_up.items(): start_row = 21 self.book.sheets[4].range((start_row, col_num)).options(expand='table', transpose=True).value = \ [val[name] for val in up_dict.values()] return len(sp_dict)>0, len(up_dict)>0 def calculate_panels(self, sp = True, up = False): ''' Calculate the panels in the sheet. ''' if sp: run_macro_sp = self.app.macro('Sheet1.cmdCalculatePanels_Click') run_macro_sp() if up: run_macro_up = self.app.macro('Sheet3.CalculatePanelsU3') run_macro_up() def get_results_one_cell(self, row_number: int = 1, column_number: int = 1): ''' Return the results in one cell of a calculated panel. ''' return self.book.sheets[2].range((row_number, column_number)).value def get_results_one_row(self, row_number: int = 15): ''' Return one row. :param row_number: :return: dict : [value, unit] e.g. [3000, 'mm'] ''' return_dict = dict() return_dict['Identification'] = self.get_results_one_cell(row_number, column_number=1) # print('start') # for idx in range(3,74): # if self.get_results_one_cell(11, column_number=idx) != None: # return_dict[self.get_results_one_cell(11, column_number=idx)] = {} # print('stop') current_top_row = '' for idx in range(3,74): if self.get_results_one_cell(11, column_number=idx) != None: current_top_row = self.get_results_one_cell(11, column_number=idx) return_dict[current_top_row] = {} return_dict[current_top_row][self.get_results_one_cell(12, column_number=idx)] = \ [self.get_results_one_cell(row_number, column_number=idx), self.get_results_one_cell(14, column_number=idx)] return return_dict def get_all_results_batch(self, sp = True, up = False): spup = {(True, True) : ['SP', 'UP'], (True, False) : ['SP'], (False, True) : ['UP']} return_dict = {} for run in spup[(sp, up)]: all_ids = self.book.sheets[2 if run == 'SP' else 5].range('A15').expand().value if type(all_ids) != list: all_ids = [all_ids] all_data = np.array(self.book.sheets[2 if run == 'SP' else 5].range('C12').expand().value) all_top_names = np.array(self.book.sheets[2 if run == 'SP' else 5].range('C11:BU11' if run == 'SP' else 'C11:AS11').value) all_names = all_data[0] all_data = all_data[3:] all_units = np.array(self.book.sheets[2 if run == 'SP' else 5].range('C14:BU14'if run == 'SP' else 'C14:AS14').value) current_top_row = '' for data_idx, id in enumerate(all_ids): return_dict[id] = {} return_dict[id]['Identification'] = id same, same_idx = False, 2 for top_name, name, data, unit in zip(all_top_names, all_names, all_data[data_idx], all_units): if top_name != None: current_top_row = top_name return_dict[id][current_top_row] = {} if name in return_dict[id][current_top_row].keys(): same = True name = name + ' ' +str(same_idx) same_idx += 1 elif same == True and name not in return_dict[id][current_top_row].keys(): same = False same_idx = 2 return_dict[id][current_top_row][name] = [data, unit] if run == 'UP': return_dict[id]['Ultimate capacity']['Actual usage Factor'] = \ return_dict[id]['Ultimate capacity']['Usage factor'] return_dict[id]['Ultimate capacity']['Allowable usage factor'] = \ return_dict[id]['Ultimate capacity']['Alowable usage'] return_dict[id]['Buckling strength']['Actual usage Factor'] = \ return_dict[id]['Buckling strength']['Usage factor'] return_dict[id]['Buckling strength']['Allowable usage factor'] = \ return_dict[id]['Buckling strength']['Alowable usage'] return_dict[id]['Ultimate capacity'].pop('Usage factor') return_dict[id]['Ultimate capacity'].pop('Alowable usage') return_dict[id]['Buckling strength'].pop('Usage factor') return_dict[id]['Buckling strength'].pop('Alowable usage') return return_dict def get_all_results(self): ''' Return all results in run. :return: ''' return_dict, found_last, row_number = dict(), False, 15 while found_last is False: this_row = self.get_results_one_row(row_number) if this_row['Identification'] is not None: return_dict[row_number] = this_row row_number += 1 else: found_last = True return return_dict if __name__ == '__main__': ex1 = {'line25': {'Identification': 'line25', 'Length of plate': 3, 'Width of c': 800.0, 'Plate thickness': 20.0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Axial stress 1': 60.0, 'Axial stress 2': 60.0, 'Trans. stress 1': 0, 'Trans. stress 2': 0, 'Shear stress': 10.0, 'Pressure (fixed)': 0.0, 'In-plane support': 'GL', 'Rot left': 'SS', 'Rot right': 'SS', 'Rot upper': 'SS', 'Rot lower': 'SS', 'sp or up': 'UP'}} my_puls = PulsExcel(r'C:\Github\ANYstructure\ANYstructure\PULS\PulsExcel_new - Copy.xlsm', visible=True) my_puls.set_multiple_rows_batch(ex1) # my_puls.set_multiple_rows(20, [ex.ex1, ex.ex2, ex.ex3, ex.ex4, ex.ex5, ex.ex6]) # my_puls.calculate_panels() #my_puls.set_one_row(data_dict=ex.ex1['line1']) # [print(key, value) for key, value in my_puls.get_all_results().items()] # my_puls.close_book()
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/excel_inteface.py
excel_inteface.py
import any_files.example_data as test from any_files.calc_loads import * from any_files.helper import * # try: # import any_files.example_data as test # from any_files.calc_loads import * # from any_files.helper import * # except ModuleNotFoundError: # import ANYstructure.any_files.example_data as test # from ANYstructure.any_files.calc_loads import * # from ANYstructure.any_files.helper import * import tkinter as tk from tkinter import messagebox class CreateLoadWindow(): ''' This class defines the external pressures on the hull (static and dynamic). ''' @staticmethod def return_dummy_manual(line): load = 'manual' combination = 'manual' load_comb_dict = {} load_comb_dict[(combination, line, load)] = [tk.DoubleVar(), tk.DoubleVar(), tk.IntVar()] load_comb_dict[(combination, line, load)][0].set(0) load_comb_dict[(combination, line, load)][1].set(1) load_comb_dict[(combination, line, load)][2].set(1) return load_comb_dict def __init__(self, master,app=None): super(CreateLoadWindow, self).__init__() limit_states = ['ULS', 'FLS'] if __name__ == '__main__': options_cond = ['loaded', 'ballast', 'tanktest', 'part', 'slamming'] self._load_factors_dict = {'dnva': [1.3, 1.2, 0.7], 'dnvb': [1, 1, 1.3], 'tanktest': [1, 1, 0]} self._load_objects = {} self._load_comb_dict = {} self._line_dict = test.get_line_dict() self._load_count = 0 self._slamming_load_count = 0 self._point_dict = test.get_point_dict() self._canvas_scale = 20 self._structure_types = {'vertical': ['BBS', 'SIDE_SHELL', 'SSS'], 'horizontal': ['BOTTOM', 'BBT', 'HOPPER', 'MD']} else: self.app = app self._load_factors_dict = app._load_factors_dict options_cond = app._load_conditions self._load_objects = app._load_dict self._load_comb_dict = app._new_load_comb_dict self._line_dict = app._line_dict self._load_count = 0 self._point_dict = app._point_dict self._canvas_scale = app._canvas_scale self._structure_types = app._structure_types self._slamming_load_count = 0 self._point_is_active = False self._active_point = '' self._point_is_active = False self._active_lines = [] self._add_to_lines = True self._lines_add_to_load = [] listbox_select = 'extended' frame_dim = (1500,980) self._canvas_origo = (50,720-50) self._canvas_dim = (1000,720) self._frame = master self._frame.wm_title("Load properties") self._frame.geometry(str(frame_dim[0])+'x'+str(frame_dim[1])) self._frame.grab_set() self._frame.protocol("WM_DELETE_WINDOW", self.on_closing) tk.Frame(self._frame, width=5, height=980, bg="black", colormap="new").place(x =450, y = 0) tk.Frame(self._frame, width=455, height=5, bg="black", colormap="new").place(x = 0, y = 320) tk.Frame(self._frame, width=5, height=190, bg="black", colormap="new").place(x =1000, y = 0) tk.Frame(self._frame, width=5, height=190, bg="black", colormap="new").place(x=1250, y=0) tk.Frame(self._frame, width=1100, height=5, bg="black", colormap="new").place(x = 450, y = 190) # Main canvas creation self._main_canvas = tk.Canvas(self._frame,width=self._canvas_dim[0], height=self._canvas_dim[1], background='azure', relief = 'groove', borderwidth=2) self._main_canvas.place(relx=0.32,rely=0.25) self._global_shrink = 1 base_canvas_dim = [1000, 720] # do not modify this, sets the "orignal" canvas dimensions. self._canvas_dim = [int(base_canvas_dim[0] *self._global_shrink), int(base_canvas_dim[1] *self._global_shrink)] self._canvas_base_origo = [50, base_canvas_dim[1] - 50] # 50 bottom left location of the canvas, (0,0) self._canvas_draw_origo = list(self._canvas_base_origo) self._previous_drag_mouse = list(self._canvas_draw_origo) # --- slider (used to zoom) ---- self._slider = tk.Scale(self._frame,from_=60,to = 1, command = self.slider_used, background='azure', relief = 'groove', borderwidth=2) self._slider.set(self._canvas_scale) self._slider.place(relx=0.32,rely=0.25) # --- Dynamic load input --- ent_x = 200 delta_y = 30 options_cond = tuple(options_cond) load_vert_start = 90 tk.Label(self._frame, text='1. Dynamic loads', font='Verdana 10 bold', fg = 'red')\ .place(x=10, y=load_vert_start - 80) tk.Label(self._frame, text='Define dynamic loads as an polynominal curve.\n' 'Can be third degree, second degree, linear or constant \n' , font="Verdana 8 bold",justify = tk.LEFT).place(x=10, y=load_vert_start - 50) tk.Button(self._frame, text='Create dynamic load', command=self.create_dynamic_load_object, font='Verdana 9 bold', fg='yellow', bg = 'green' )\ .place(x=270, y=load_vert_start + delta_y *6) self.close_window= tk.Button(self._frame, text='Press this to: \n' 'Save loads and \n' 'close the load window. ',font="Verdana 9 bold", command=self.save_and_close, bg = 'green', fg = 'yellow') self.close_window.place(x=ent_x*6.35, y=load_vert_start-20) self._new_dynamic_load_name = tk.StringVar() self._new_dynamic_load_name.set('load' + str(self._load_count)) self._new_load_poly_third = tk.DoubleVar() self._new_load_poly_second = tk.DoubleVar() self._new_load_poly_first = tk.DoubleVar() self._new_load_poly_const = tk.DoubleVar() self._new_load_manual_pressure = tk.DoubleVar() self._new_dyn_load_condition = tk.StringVar() self._new_limit_state = tk.StringVar() self._new_limit_state.set('ULS') self._new_slamming_pressure = tk.DoubleVar() self._new_slamming_pressure_name = tk.StringVar() self._new_slamming_pressure_name.set('slamming') self._new_slamming_pl_mult = tk.DoubleVar() self._new_slamming_stf_mult = tk.DoubleVar() self._new_slamming_pl_mult.set(1.0) self._new_slamming_stf_mult.set(1.0) ent_w = 15 ent_dyn_load_name = tk.Entry(self._frame, textvariable=self._new_dynamic_load_name, width=ent_w*2) ent_load_poly_third = tk.Entry(self._frame, textvariable=self._new_load_poly_third, width=ent_w) ent_load_poly_second = tk.Entry(self._frame, textvariable=self._new_load_poly_second, width=ent_w) ent_load_poly_first = tk.Entry(self._frame, textvariable=self._new_load_poly_first,width=ent_w) ent_load_poly_constant = tk.Entry(self._frame, textvariable=self._new_load_poly_const,width=ent_w) ent_load_condition = tk.OptionMenu(self._frame, self._new_dyn_load_condition, *options_cond) ent_limit_state = tk.OptionMenu(self._frame, self._new_limit_state, *limit_states) # Slamming pressures slx, sly = ent_x*5.6, load_vert_start-40 tk.Label(self._frame,text = 'Load name:').place(x = slx-90, y = sly) ent_slamming_pressure = tk.Entry(self._frame, textvariable=self._new_slamming_pressure, width=ent_w) ent_slamming_pressure.place(x = slx, y = sly+delta_y) ent_slamming_pl_mult = tk.Entry(self._frame, textvariable=self._new_slamming_pl_mult, width=7) ent_slamming_pl_mult.place(x = slx + 50, y = sly + 1.8*delta_y) ent_slamming_stf_mult = tk.Entry(self._frame, textvariable=self._new_slamming_stf_mult, width=7) ent_slamming_stf_mult.place(x = slx + 50, y = sly+2.6*delta_y) tk.Label(self._frame,text='Pressure [Pa]:').place(x=slx - 90, y=sly+delta_y) tk.Label(self._frame, text='Plate multiplier, Ppl').place(x=slx - 90, y=sly + 1.8*delta_y) tk.Label(self._frame, text='Stiffener multiplier, Pst:').place(x=slx - 90, y=sly + 2.6*delta_y) ent_slamming_pressure_name = tk.Entry(self._frame, textvariable=self._new_slamming_pressure_name, width=ent_w) ent_slamming_pressure_name.place(x=slx, y=sly) tk.Button(self._frame, text = 'Create slamming load', command = self.create_slamming_load, font='Verdana 9 bold', fg='yellow', bg = 'green' ) \ .place(x=slx - 80, y=sly + 3.5*delta_y) ent_dyn_load_name.place(x=ent_x, y=load_vert_start + 0 * delta_y) ent_load_poly_third.place(x=ent_x, y=load_vert_start + 1 * delta_y) ent_load_poly_second.place(x=ent_x, y=load_vert_start + 2 * delta_y) ent_load_poly_first.place(x=ent_x, y=load_vert_start +3 * delta_y) ent_load_poly_constant.place(x=ent_x, y=load_vert_start + 4 * delta_y) ent_load_condition.place(x=ent_x - 5, y=load_vert_start + 5 * delta_y - 5) ent_limit_state.place(x=ent_x - 5, y=load_vert_start + 6 * delta_y - 5) tk.Label(self._frame, text='Input load name:').place(x=10, y=load_vert_start + 0*delta_y) tk.Label(self._frame, text='Third degree poly [x^3]').place(x=10, y=load_vert_start+delta_y) tk.Label(self._frame, text='Second degree poly [x^2]').place(x=10, y=load_vert_start + 2*delta_y) tk.Label(self._frame, text='First degree poly [x]').place(x=10, y=load_vert_start + 3*delta_y) tk.Label(self._frame, text='Constant [C]').place(x=10, y=load_vert_start + 4 * delta_y) tk.Label(self._frame, text='Load condition').place(x=10, y=load_vert_start + 5 * delta_y) tk.Label(self._frame, text='Limit state').place(x=10, y=load_vert_start + 6 * delta_y) # --- Static load input --- horizontal_start = 500 tk.Label(self._frame, text='2. Static loads', font='Verdana 10 bold', fg = 'red') \ .place(x=horizontal_start, y=load_vert_start - 80) tk.Label(self._frame, text='3. Slamming pressure', font='Verdana 10 bold', fg = 'red') \ .place(x=horizontal_start+520, y=load_vert_start - 80) tk.Label(self._frame, text = 'Hydrostatic loads defined by draft.', font="Verdana 8 bold")\ .place(x = horizontal_start,y = load_vert_start-1.5*delta_y) tk.Label(self._frame, text = 'Define static draft from sea [m]:')\ .place(x = horizontal_start,y = load_vert_start + delta_y) tk.Label(self._frame, text='Define name of static load:').place(x=horizontal_start,y=load_vert_start) tk.Label(self._frame, text='Select load condition:').place(x=horizontal_start,y=load_vert_start + delta_y*2) self._new_static_load_name = tk.StringVar() self._new_static_draft = tk.DoubleVar() self._new_static_condition = tk.StringVar() self._new_static_load_name.set('static'+str(self._load_count)) tk.Entry(self._frame, textvariable = self._new_static_load_name,width=ent_w)\ .place(x = horizontal_start+200, y = load_vert_start,) tk.Entry(self._frame, textvariable = self._new_static_draft,width=ent_w)\ .place(x = horizontal_start+200, y = load_vert_start + delta_y) tk.OptionMenu(self._frame, self._new_static_condition, *options_cond)\ .place(x = horizontal_start+200, y = load_vert_start + 2*delta_y) tk.Button(self._frame, text = 'Create static load', command = self.create_static_load_object, font='Verdana 9 bold', fg='yellow', bg = 'green' )\ .place(x = horizontal_start + 340, y = load_vert_start ) # --- showing created loads --- start_y = 340 tk.Label(self._frame, text='3. Created loads are seen below\n' '(scroll if not all is shown.)\n' 'DOUBLE CLICK load to see assosiated lines.:', font="Verdana 10 bold", fg='red').place(x=10, y=start_y) self._load_obj_box = tk.Listbox(self._frame, height = 15, selectmode = listbox_select, bg='azure', relief = 'groove', borderwidth=2) self._load_obj_box.place(x=10, y=start_y + 3 * delta_y) self._load_obj_box.bind('<<ListboxSelect>>', self.left_click_load_box) loads_scrollbar = tk.Scrollbar(self._frame) loads_scrollbar.config(command = self._load_obj_box.yview) loads_scrollbar.place(x=140, y=start_y + 3 * delta_y) self._load_obj_box.config(yscrollcommand=loads_scrollbar.set) tk.Label(self._frame, text = 'Select to see assosiated lines: ').place(x=10, y=start_y + 2*delta_y) # --- showing the lines applied to the load above --- self._load_obj_lines_box = tk.Listbox(self._frame, height = 15, selectmode = listbox_select, bg = 'azure', relief = 'groove', borderwidth=2) lines_scrollbar = tk.Scrollbar(self._frame) lines_scrollbar.config(command = self._load_obj_lines_box.yview) lines_scrollbar.place(x=330, y=start_y+ 3 * delta_y) self._load_obj_lines_box.config(yscrollcommand=lines_scrollbar.set) self._load_obj_lines_box.place(x=200, y=start_y+ 3 * delta_y) self._load_obj_lines_box.bind('<<ListboxSelect>>', self.left_click_load_box) tk.Label(self._frame, text = '-->',font="Verdana 8 bold").place(x=160, y= load_vert_start + 15 * delta_y ) # --- dropdown meny to choose load to assosiate with lines --- self._load_options = [''] self._new_assisiate_load = tk.StringVar() self._ent_assosiate_load = tk.OptionMenu(self._frame, self._new_assisiate_load, *tuple(self._load_options)) self._ent_assosiate_load.place(relx=0.85,rely=0.21) # --- Button to assosiate selecte lines to load tk.Button(self._frame, text = 'Press to add selected lines to selecte load', command=self.append_line_to_load, fg = 'yellow', bg='green',font='Verdana 9 bold')\ .place(relx=0.32,rely=0.215) tk.Label(self._frame,text='Select a load in "3." to and then choose lines to apply to load\n ' '(select by clicking lines). Alterntively define manually ------>')\ .place(relx=0.56,rely=0.205) # --- delete a created load --- tk.Button(self._frame, text="Delete selected load",command=self.delete_load, font='Verdana 9 bold', fg='yellow', bg = 'red' )\ .place(x=10, y=start_y + 12 * delta_y) # --- updating the imported loads from main window --- if len(self._load_objects) > 0: self.import_update() # --- properties canvas to show variables for load --- self._canvas_properties = tk.Canvas(self._frame, height=200, width=350, background='azure', relief = 'groove', borderwidth=2) self._canvas_properties.place(x= 10, y = load_vert_start + delta_y*22.5) self.controls() self.draw_canvas() def delete_load(self): self._load_objects.pop(self._load_obj_box.get('active')) self._load_obj_box.delete('active') def slider_used(self, event): ''' Action when slider is activated. :return: ''' self._canvas_scale = self._slider.get() self.draw_canvas() def draw_canvas(self, load_selected=False): ''' Making the line canvas :return: ''' self._main_canvas.delete('all') # grid for the canavs self._main_canvas.create_line(self._canvas_draw_origo[0], 0, self._canvas_draw_origo[0], self._canvas_dim[1], stipple='gray50') self._main_canvas.create_line(0, self._canvas_draw_origo[1], self._canvas_dim[0], self._canvas_draw_origo[1], stipple='gray50') self._main_canvas.create_text(self._canvas_draw_origo[0] - 30 , self._canvas_draw_origo[1] + 20 , text='(0,0)', font='Text 10') self._main_canvas.create_text([800 ,50], text='Mouse left click: select lines to loads\n' 'Mouse right click: clear all selection\n' 'Shift key press: add selected line\n' 'Control key press: remove selected line', font='Verdana 8 bold', fill='red') # drawing the line dictionary. if len(self._line_dict) != 0: for line, value in self._line_dict.items(): color = 'black' coord1 = self.get_point_canvas_coord('point' + str(value[0])) coord2 = self.get_point_canvas_coord('point' + str(value[1])) vector = [coord2[0] - coord1[0], coord2[1] - coord1[1]] # drawing a bold line if it is selected if line in self._active_lines: self._main_canvas.create_line(coord1, coord2, width=6, fill='orange') self._main_canvas.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 + 10, text='Line ' + str(get_num(line)), font='Verdand 10 bold', fill='red') else: self._main_canvas.create_line(coord1, coord2, width=3, fill=color) self._main_canvas.create_text(coord1[0] - 20 + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 + 10, text='line' + str(get_num(line)), font="Text 8", fill='black') def button_2_click_and_drag(self,event): self._canvas_draw_origo = (self._canvas_draw_origo[0]-(self._previous_drag_mouse[0]-event.x), self._canvas_draw_origo[1]-(self._previous_drag_mouse[1]-event.y)) self._previous_drag_mouse = (event.x,event.y) self.draw_canvas() def mouse_scroll(self,event): self._canvas_scale += event.delta/50 self._canvas_scale = 0 if self._canvas_scale < 0 else self._canvas_scale self.draw_canvas() def get_loads(self): ''' Returning loads :return: ''' return self._load_objects def make_load_comb_dict(self, line, load): ''' Making the load comb dict (comb,line,load) : [DoubleVar(),DoubleVar(), IntVar()] # # {'dnva':[1.3,1.2,0.7], 'dnvb':[1,1,1.3], 'tanktest':[1,1,1]} # DNV loads factors :return: ''' for combination in self._load_factors_dict.keys(): factors =self._load_factors_dict[combination] if load != 'manual':# and (combination, line, load) not in self._load_comb_dict.keys(): #print(combination, line, load) self._load_comb_dict[(combination, line, load)] = [tk.DoubleVar(), tk.DoubleVar(), tk.IntVar()] if combination != 'tanktest': if self._load_objects[load][0].is_static(): if self._load_objects[load][0].get_limit_state() == 'FLS': self._load_comb_dict[(combination, line, load)][0].set(0) elif self._load_objects[load][0].is_tank_test(): self._load_comb_dict[(combination, line, load)][0].set(0) self._load_comb_dict[(combination, line, load)][2].set(0) else: self._load_comb_dict[(combination, line, load)][0].set(factors[0]) self._load_comb_dict[(combination, line, load)][2].set(1) self._load_comb_dict[(combination, line, load)][1].set(0) else: self._load_comb_dict[(combination, line, load)][0].set(0) if self._load_objects[load][0].get_limit_state() == 'FLS': self._load_comb_dict[(combination, line, load)][1].set(1) else: self._load_comb_dict[(combination, line, load)][1].set(factors[2]) self._load_comb_dict[(combination, line, load)][2].set(1) else: if self._load_objects[load][0].is_tank_test(): self._load_comb_dict[(combination, line, load)][0].set(1) self._load_comb_dict[(combination, line, load)][1].set(0) self._load_comb_dict[(combination, line, load)][2].set(1) else: self._load_comb_dict[(combination, line, load)][0].set(0) self._load_comb_dict[(combination, line, load)][1].set(0) self._load_comb_dict[(combination, line, load)][2].set(0) else: combination = 'manual' self._load_comb_dict[(combination, line, load)] = [tk.DoubleVar(), tk.DoubleVar(), tk.IntVar()] self._load_comb_dict[(combination, line, load)][0].set(0) self._load_comb_dict[(combination, line, load)][1].set(1) self._load_comb_dict[(combination, line, load)][2].set(1) def create_dynamic_load_object(self, slamming_load = False): ''' Creating load object for the selected lines. '(poly_third = None,poly_second = None, poly_first = None, poly_const = None , load_condition = None, structure_type = None, man_press = None, static_draft = None)' :return: ''' variables = ['poly_third','poly_second', 'poly_first', 'poly_const', 'load_condition', 'man_press', 'static_draft', 'name_of_load', 'limit_state', 'structure_types', 'slamming mult pl', 'slamming mult stf'] existing_load = None if not slamming_load: name_of_load = self._new_dynamic_load_name.get() if name_of_load in self._load_objects.keys(): # Existing load existing_load = copy.deepcopy(self._load_objects[name_of_load]) self._load_objects.pop(name_of_load) self._load_obj_box.delete(0,'end') for load in self._load_objects.keys(): self._load_obj_box.insert('end', load) values = [self._new_load_poly_third.get(),self._new_load_poly_second.get(), self._new_load_poly_first.get(),self._new_load_poly_const.get(), self._new_dyn_load_condition.get(), None, None, name_of_load, self._new_limit_state.get(), self._structure_types, 1, 1] else: name_of_load = self._new_slamming_pressure_name.get() if name_of_load in self._load_objects.keys(): existing_load = copy.deepcopy(self._load_objects[name_of_load]) self._load_objects.pop(name_of_load) self._load_obj_box.delete(0, 'end') for load in self._load_objects.keys(): self._load_obj_box.insert('end', load) values = [0, 0, 0, self._new_slamming_pressure.get(), 'slamming', None, None, name_of_load, None, self._structure_types, self._new_slamming_pl_mult.get(), self._new_slamming_stf_mult.get()] count_i = 0 current_load_dict = {} for item in variables: current_load_dict[item] = values[count_i] count_i += 1 self._load_objects[name_of_load] = [Loads(current_load_dict),[] if existing_load is None else existing_load[1]] self._load_options.append(name_of_load) self._ent_assosiate_load.destroy() self._ent_assosiate_load = tk.OptionMenu(self._frame, self._new_assisiate_load, *tuple(self._load_options)) self._ent_assosiate_load.place(relx=0.85,rely=0.21) self._load_obj_box.insert('end',name_of_load) if not slamming_load: self._load_count += 1 self._new_dynamic_load_name.set('load'+str(self._load_count)) else: self._new_slamming_pressure_name.set('slamming' + str(self._slamming_load_count)) self._slamming_load_count += 1 def create_slamming_load(self): ''' Creates a slamming load object. ''' self.create_dynamic_load_object(slamming_load=True) def create_static_load_object(self): ''' Creating static loads. '(poly_third = None,poly_second = None, poly_first = None, poly_const = None , load_condition = None, structure_type = None, man_press = None, static_draft = None)' :return: ''' variables = ['poly_third','poly_second', 'poly_first', 'poly_const', 'load_condition', 'structure_type', 'man_press', 'static_draft','name_of_load'] name_of_load = self._new_static_load_name.get() existing_load = None if name_of_load in self._load_objects.keys(): existing_load = copy.deepcopy(self._load_objects[name_of_load]) self._load_objects.pop(name_of_load) self._load_obj_box.delete(0,'end') for load in self._load_objects.keys(): self._load_obj_box.insert('end', load) values = [None,None,None,None,self._new_static_condition.get(),None,None, self._new_static_draft.get(), name_of_load] count_i = 0 current_load_dict = {} for item in variables: current_load_dict[item] = values[count_i] count_i += 1 self._load_objects[name_of_load] = [Loads(current_load_dict),[] if existing_load is None else existing_load[1]] self._load_options.append(name_of_load) self._ent_assosiate_load.destroy() self._ent_assosiate_load = tk.OptionMenu(self._frame, self._new_assisiate_load, *tuple(self._load_options)) self._ent_assosiate_load.place(relx=0.85,rely=0.21) self._load_obj_box.insert('end', name_of_load) self._load_count += 1 self._new_static_load_name.set('static' + str(self._load_count)) def append_line_to_load(self): ''' Specifying lines for the load :return: ''' current_load = self._new_assisiate_load.get() if current_load != '': self._load_objects[current_load][1] = [] for line in self._active_lines: #if line not in self._load_objects[current_load][1]: self._load_objects[current_load][1].append(line) else: mess = tk.messagebox.showwarning('Select load',message='Select a load to apply to the selected lines.', type='ok') def save_and_close(self): ''' Save and close :return: ''' if __name__ == '__main__': self._frame.destroy() return for load, data in self._load_objects.items(): for line in data[1]: self.make_load_comb_dict(line,load) for line in self.app._line_dict.keys(): self.make_load_comb_dict(line,'manual') if self._load_objects is not None: self.app.on_close_load_window(self._load_objects, self._load_count, self._load_comb_dict) self._frame.destroy() def on_closing(self): ''' Action when closing the window without saving. :return: ''' if __name__ == '__main__': self._frame.destroy() return mess = tk.messagebox.showwarning('Closed without saving', 'Closing will not save loads you have created', type = 'okcancel') if mess == 'ok': self._frame.grab_release() self._frame.destroy() self.app.on_aborted_load_window() def get_point_canvas_coord(self, point_no): ''' Returning the canvas coordinates of the point. This value will change with slider. ''' point_coord_x = self._canvas_draw_origo[0] + self._point_dict[point_no][0] * self._canvas_scale point_coord_y = self._canvas_draw_origo[1] - self._point_dict[point_no][1] * self._canvas_scale return [point_coord_x, point_coord_y] def controls(self): ''' Specifying the controls to be used. :return: ''' self._main_canvas.bind('<Button-1>', self.left_click) self._main_canvas.bind('<Button-2>', self.button_2_click) self._main_canvas.bind('<Button-3>', self.right_click) self._load_obj_box.bind('<Button-1>', self.left_click_load_box) self._frame.bind('<Shift_L>', self.shift_pressed) self._frame.bind('<Shift_R>', self.shift_pressed) self._frame.bind('<Control_L>', self.ctrl_pressed) self._frame.bind('<Control_R>', self.ctrl_pressed) self._main_canvas.bind("<MouseWheel>", self.mouse_scroll) self._main_canvas.bind("<B2-Motion>", self.button_2_click_and_drag) def shift_pressed(self,event=None): ''' Event is executed when shift key pressed. :return: ''' self._add_to_lines = True def ctrl_pressed(self,event=None): ''' Event when control is pressed. :param event: :return: ''' self._add_to_lines = False def button_2_click(self, event): ''' Event when right click. :param evnet: :return: ''' self._previous_drag_mouse = [event.x, event.y] def left_click(self, event): ''' When clicking the right button, this method is called. method is referenced in ''' self._previous_drag_mouse = [event.x, event.y] click_x = self._main_canvas.winfo_pointerx() - self._main_canvas.winfo_rootx() click_y = self._main_canvas.winfo_pointery() - self._main_canvas.winfo_rooty() stop = False if len(self._line_dict) > 0: for key, value in self._line_dict.items(): coord1x = self.get_point_canvas_coord('point' + str(value[0]))[0] coord2x = self.get_point_canvas_coord('point' + str(value[1]))[0] coord1y = self.get_point_canvas_coord('point' + str(value[0]))[1] coord2y = self.get_point_canvas_coord('point' + str(value[1]))[1] vector = [coord2x - coord1x, coord2y - coord1y] click_x_range = [ix for ix in range(click_x - 10, click_x + 10)] click_y_range = [iy for iy in range(click_y - 10, click_y + 10)] distance = int(dist([coord1x, coord1y], [coord2x, coord2y])) # checking along the line if the click is witnin +- 10 around the click for dist_mult in range(1, distance - 1): dist_mult = dist_mult / distance x_check = int(coord1x) + int(round(vector[0] * dist_mult, 0)) y_check = int(coord1y) + int(round(vector[1] * dist_mult, 0)) if x_check in click_x_range and y_check in click_y_range: self.line_is_active = True if self._add_to_lines: self._active_lines.append(key) elif self._add_to_lines== False: if key in self._active_lines: self._active_lines.remove(key) self._main_canvas.delete('all') break self.draw_canvas() def right_click(self,event): ''' Event when right click. :param evnet: :return: ''' self._previous_drag_mouse = [event.x, event.y] self._active_lines = [] self._main_canvas.delete('all') self.draw_canvas() def left_click_load_box(self, *event): ''' Load boxes consist of self._load_obj_box (active/non-active) and self._load_obj_lines_box (listing assosiated lines). Both is tkinter ListBox objects. :param events: :return: ''' self._load_obj_lines_box.delete(0,'end') self._active_lines = [] if len(self._load_objects)!=0: self._canvas_properties.delete('all') current_selection = self._load_obj_box.get('active') current_object = self._load_objects[current_selection][0] current_lines = self._load_objects[current_selection][1] self._new_assisiate_load.set(current_selection) # drawing properties in the canvas self._canvas_properties.create_text([140, 100], text=self._load_objects[current_selection][0]) for line in sorted([get_num(line) for line in current_lines]): self._load_obj_lines_box.insert('end','line'+str(line)) self._active_lines.append('line'+str(line)) if current_object.is_static(): self._new_static_load_name.set(current_object.get_load_parmeters()[8]) self._new_static_draft.set(current_object.get_load_parmeters()[7]) self._new_static_condition.set(current_object.get_load_parmeters()[4]) else: self._new_dynamic_load_name.set(current_object.get_load_parmeters()[8]) self._new_load_poly_third.set(current_object.get_load_parmeters()[0]) self._new_load_poly_second.set(current_object.get_load_parmeters()[1]) self._new_load_poly_first.set(current_object.get_load_parmeters()[2]) self._new_load_poly_const.set(current_object.get_load_parmeters()[3]) self._new_load_manual_pressure.set(current_object.get_load_parmeters()[6]) self._new_dyn_load_condition.set(current_object.get_load_parmeters()[4]) self._new_limit_state.set(current_object.get_load_parmeters()[9]) if current_object.get_load_parmeters()[4] == 'slamming': self._new_slamming_pressure.set(current_object.get_load_parmeters()[3]) self._new_slamming_pressure_name.set(current_object.get_load_parmeters()[8]) self._new_slamming_pl_mult.set(current_object.get_load_parmeters()[10]) self._new_slamming_stf_mult.set(current_object.get_load_parmeters()[11]) self._load_obj_box.update() self._ent_assosiate_load.update_idletasks() self.draw_canvas(load_selected=True) def import_update(self): for load, data in self._load_objects.items(): self._load_obj_box.insert('end', load) self._load_options.append(load) self._ent_assosiate_load.destroy() self._ent_assosiate_load = tk.OptionMenu(self._frame, self._new_assisiate_load, *tuple(self._load_options)) self._ent_assosiate_load.place(relx=0.85,rely=0.21) if __name__ == '__main__': root = tk.Tk() my_app = CreateLoadWindow(master=root) root.mainloop()
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/load_window.py
load_window.py
import time from reportlab.lib.enums import TA_LEFT from reportlab.platypus import Spacer from reportlab.lib.styles import ParagraphStyle from PIL import Image from reportlab.lib.pagesizes import letter, A4, landscape from reportlab.lib.styles import getSampleStyleSheet from reportlab.lib.units import mm, inch from reportlab.pdfgen import canvas from reportlab.platypus import Image, Paragraph, Table from time import strftime, gmtime import os from matplotlib import pyplot as plt import matplotlib cmap_sections = plt.get_cmap('jet') from reportlab.platypus import SimpleDocTemplate, TableStyle from reportlab.lib import colors from matplotlib import colors as matplotlib_colors import tkinter as tk try: import any_files.example_data as test import any_files.helper as hlp except ModuleNotFoundError: import ANYstructure.any_files.example_data as test import ANYstructure.any_files.helper as hlp def create_report(input_data): ''' This class uses the module REPORTLAB to generate a report. :param line_obj_dict: :type a dictionary :return: ''' Story = [] file_name = "Report_current_results.pdf" doc = SimpleDocTemplate(file_name, pagesize=letter, rightMargin=72, leftMargin=72, topMargin=72, bottomMargin=18) # logo = "canvas_screenshot.gif" formatted_time = time.ctime() # im = Image(logo, 5 * inch, 4 * inch) # Story.append(im) styles = getSampleStyleSheet() styles.add(ParagraphStyle(name='Justify',alignment=TA_LEFT)) ptext = '<font size=12>%s</font>' % formatted_time Story.append(Paragraph(ptext, styles["Normal"])) Story.append(Spacer(1, 12)) # Create return address ptext = '<font size=12>%s</font>' % 'The results for the structure is shown here' Story.append(Paragraph(ptext, styles["Justify"])) Story.append(Spacer(1, 3)) ptext = '----------------------------------------------------------------------------------------------------------' Story.append(Paragraph(ptext, styles["Justify"])) Story.append(Spacer(5, 3)) for line in input_data['lines'].keys(): struc_obj = input_data['calc_structure'][line] fat_obj = input_data['calc_fatigue'][line] pressure = input_data['pressures'][line] ptext = '<font size=12>' + 'Results for: '+str(line) + '</font>' Story.append(Paragraph(ptext, styles["Justify"])) ptext = '<font size=10>'+'Plate thickness: '+ str(struc_obj.Plate.get_pl_thk()*1000)+ ' [mm], Stiffener spacing: '+\ str(struc_obj.get_s()*1000)+' [mm]'+'</font>' Story.append(Paragraph(ptext, styles["Justify"])) ptext = '<font size=10>'+'Stiffener: '+ str(struc_obj.Stiffener.get_web_h()*1000)+ 'x' + str(struc_obj.Stiffener.get_web_thk()*1000) \ + ' + ' + str(struc_obj.Stiffener.get_fl_w()*1000)+ 'x' + str(struc_obj.Stiffener.get_fl_thk()*1000) +'</font>' Story.append(Paragraph(ptext, styles["Justify"])) ptext = '<font size=10>'+struc_obj.get_report_stresses()+'</font>' Story.append(Paragraph(ptext, styles["Justify"])) ptext = '<font size=10>'+struc_obj.get_results_for_report()+'</font>' Story.append(Paragraph(ptext, styles["Justify"])) Story.append(Spacer(2, 3)) ptext = '<font size=12>END OF RESULTS</font>' Story.append(Paragraph(ptext, styles["Justify"])) my_canvas = canvas.Canvas(file_name) my_canvas.line(0,0,200,200) doc.build(Story, canvasmaker=my_canvas) class LetterMaker(object): """""" def __init__(self, pdf_file, org, seconds, data): self.c = canvas.Canvas(pdf_file, pagesize=A4) self.styles = getSampleStyleSheet() self.width, self.height = A4 self.organization = org self.seconds = seconds self.data = data self.draw_lines() def createDocument(self): """""" voffset = 100 user = os.getlogin() time_now = strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()) # create return address address = """<font size="12"><strong> ANYstructure report generator<br/></strong></font>""" + '<br/>' + \ """<font size="12"> User: </font>""" + '<font size="12">' + user + '</font>' + '<br/>' + '<br/>' + \ """<font size="12"> Time : </font>""" + '<font size="12">' + time_now + '</font>' + '<br/>'+ \ '<br/>'+'<font size="12">' + self.data._project_information.get('1.0', tk.END) + '</font>' p = Paragraph(address, self.styles["Normal"]) # add a logo and size it img_file_name = 'ANYstructure_logo.jpg' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = os.path.dirname(os.path.abspath(__file__)) + '/images/' + img_file_name logo = Image(file_path) logo.drawHeight = 1 * inch logo.drawWidth = 2.5 * inch data = [[p, logo]] table = Table(data, colWidths=4 * inch) table.setStyle([("VALIGN", (0, 0), (0, 0), "TOP")]) table.wrapOn(self.c, self.width, self.height) table.drawOn(self.c, *self.coord(18, 50, mm)) self.draw_lines() ptext = '<font size="12" color = "blue"><strong>' + "Compartments: " + '</strong></font>' self.createParagraph(ptext, 10, voffset + 85) delta = 0 h_start = 130 if self.data._tank_dict != {}: for name, obj in self.data._tank_dict.items(): ptext = '<font size="7" color = "black">' + 'Name: '+ name + ', content: ' \ + obj.get_content() + '</font>' self.createParagraph(ptext, h_start, voffset + 100 + delta) delta += 3 ptext = '<font size="7" color = "black">' + 'Min. elevation: ' + str(obj.get_lowest_elevation()) + \ ', Max. elevation: ' + str(obj.get_highest_elevation()) + '</font>' self.createParagraph(ptext, h_start, voffset + 100 + delta) delta += 3 ptext = '<font size="7" color = "black">' + 'Applied overpressure: ' + str(obj.get_overpressure()) + \ '</font>' self.createParagraph(ptext, h_start, voffset + 100 + delta) delta += 3 ptext = '<font size="7" color = "black">'+'(a_stat, a_dyn_loa, a_dyn_bal): ' + \ str(obj.get_accelerations()) + '</font>' self.createParagraph(ptext, h_start, voffset + 100 + delta) delta += 4 try: self.c.drawImage('current_comps.png', 10,50, width=350, height=250) except OSError: self.c.drawImage('current_comps_NONE.png', 10, 50, width=350, height=250) # insert body of letter self.c.showPage() ptext = '<font size="12" color = "blue"><strong>' + "Results for defined structure: " + '</strong></font>' self.createParagraph(ptext, 10, 0) delta = 140 if self.data._new_buckling_method.get() == 'DNV-RP-C201 - prescriptive' else 180 vpos = 950 for line in sorted(self.data._line_dict.keys()): vpos -= delta if line in self.data._line_to_struc.keys(): if self.data._line_to_struc[line][5] is None: struc_obj = self.data._line_to_struc[line][0] fo = self.data._line_to_struc[line][2] pressure = self.data.get_highest_pressure(line)['normal']/1000 textobject = self.c.beginText() textobject.setTextOrigin(30,vpos) textobject.setFont("Helvetica-Oblique", 10) textobject.textLine('*********** '+line+' ***********') textobject.textLine('Plate thickness: '+ str(struc_obj.Plate.get_pl_thk()*1000)+ ' [mm] ' 'Stiffener spacing: '+ str(struc_obj.Plate.get_s()*1000)+' [mm]'+ ' Span: '+ str(round(struc_obj.Plate.get_span(),4)) + ' [m]') if struc_obj.Stiffener is not None: textobject.textLine('Stiffener: '+ str(struc_obj.Stiffener.get_web_h()*1000)+ 'x' + str(struc_obj.Stiffener.get_web_thk()*1000) + ' + ' + str(struc_obj.Stiffener.get_fl_w()*1000)+ 'x' + str(struc_obj.Stiffener.get_fl_thk()*1000)) textobject.textLine('Fixation paramters: kps: = '+str(struc_obj.Plate.get_kps())+ ' kpp = ' + str(struc_obj.Plate.get_kpp())+ ', Bending moment factors km1/km2/km3 (support/field/support)' + ' = '+ str(int(struc_obj.Plate.get_km1()))+'/'+ str(int(struc_obj.Plate.get_km2()))+'/'+ str(int(struc_obj.Plate.get_km3()))) textobject.textLine('Defined stresses [MPa]: sigma_x1 = '+str(struc_obj.Plate.get_sigma_x1())+ ' sigma_x2 = ' + str(struc_obj.Plate.get_sigma_x2()) + ' sigma_y1 = '+ str(struc_obj.Plate.get_sigma_y1()) + ' sigma_y2 = '+ str(struc_obj.Plate.get_sigma_y2()) + ' tau_xy = ' + str(struc_obj.Plate.get_tau_xy())) textobject.textLine('ULS max pressure for line: '+ str(round(pressure,2)*1000) + ' [kPa]'+' Pressure applied at: '+struc_obj.overpressure_side) if fo is not None: textobject.textLine('Fatigue pressure [Pa]: '+' p_int:'+' loaded/ballast/part = ' + str(round(self.data.get_color_and_calc_state()['pressure_fls'][line]['p_int']['loaded'],0)) +'/'+str(round(self.data.get_color_and_calc_state()['pressure_fls'][line]['p_int']['ballast'],0)) +'/'+str(round(self.data.get_color_and_calc_state()['pressure_fls'][line]['p_int']['part'],0)) + ' p_ext:'+' loaded/ballast/part = '+ str(round(self.data.get_color_and_calc_state()['pressure_fls'][line]['p_ext']['loaded'],0)) +'/'+str(round(self.data.get_color_and_calc_state()['pressure_fls'][line]['p_ext']['ballast'],0)) +'/'+str(round(self.data.get_color_and_calc_state()['pressure_fls'][line]['p_ext']['part'],0))) else: textobject.textLine(' Fatigue pressure: No pressures defined') textobject.setFillColor('red') if self.data.get_color_and_calc_state()['colors'][line]['section'] == 'red' \ else textobject.setFillColor('black') textobject.textLine('Section modulus: '+str(int(min(self.data.get_color_and_calc_state()['section_modulus'][line]['sec_mod']) *1000**3))+ ' [mm3]'+' Min. section modulus: '+ str(int(self.data.get_color_and_calc_state()['section_modulus'][line]['min_sec_mod']*1000**3))+' [mm3]'+ ' -> ' + 'OK' if int(min(self.data.get_color_and_calc_state()['section_modulus'][line]['sec_mod'])*1000**3) >= int(self.data.get_color_and_calc_state()['section_modulus'][line]['min_sec_mod']*1000**3) else 'Section modulus: '+str(int(min(self.data.get_color_and_calc_state()['section_modulus'][line]['sec_mod']) *1000**3))+ ' [mm3]'+ ' Min. section modulus: '+ str(int(self.data.get_color_and_calc_state()['section_modulus'][line]['min_sec_mod']*1000**3))+' [mm3]'+ ' -> ' + 'NOT OK') textobject.setFillColor('black') textobject.setFillColor('red') if self.data.get_color_and_calc_state()['colors'][line]['thickness'] == 'red' \ else textobject.setFillColor('black') textobject.textLine('Min plate thickness: '+ str(round(self.data.get_color_and_calc_state()['thickness'][line]['min_thk'],2)) + ' [mm] ' ' -> ' + 'OK' if struc_obj.Plate.get_pl_thk()*1000 >= self.data.get_color_and_calc_state()['thickness'][line]['min_thk'] else 'Min plate thickness: '+ str(round( self.data.get_color_and_calc_state()['thickness'][line]['min_thk'],2)) + ' [mm] ' ' -> '+'NOT OK') textobject.setFillColor('black') textobject.setFillColor('red') if self.data.get_color_and_calc_state()['colors'][line]['shear'] == 'red' \ else textobject.setFillColor('black') textobject.textLine('Shear area: '+str(int(self.data.get_color_and_calc_state()['shear_area'][line]['shear_area']*1000**2))+' [mm2] '+ ' Min shear area: '+str(int(self.data.get_color_and_calc_state()['shear_area'][line]['min_shear_area']*1000**2)) + ' [mm2] ' + ' -> ' + 'OK' if self.data.get_color_and_calc_state()['shear_area'][line]['shear_area'] >= self.data.get_color_and_calc_state()['shear_area'][line]['min_shear_area'] else 'Shear area: '+str(int(self.data.get_color_and_calc_state()['shear_area'][line]['shear_area']*1000**2))+ ' [mm2] ' + ' Min shear area: '+str(int(self.data.get_color_and_calc_state()['shear_area'][line]['min_shear_area']*1000**2)) + ' [mm2] ' + ' -> ' + 'NOT OK') textobject.setFillColor('black') if self.data._new_buckling_method.get() == 'DNV-RP-C201 - prescriptive': textobject.setFillColor('red') if self.data.get_color_and_calc_state()['colors'][line]['buckling'] == 'red' \ else textobject.setFillColor('black') buc_util = list() for key, val in self.data.get_color_and_calc_state()['buckling'][line].items(): for uf in val.values(): if type(uf) == list: buc_util.append(uf[0]) buc_util.append(uf[1]) else: buc_util.append(uf) textobject.textLine('Highest buckling utilization DNV-RP-C203: '+ str(round(max(buc_util),2))+ ' -> '+'OK' if max(buc_util) < 1 else 'Highest buckling utilization DNV-RP-C203: '+ str(round(max(buc_util),2))+' -> '+'NOT OK') elif self.data._new_buckling_method.get() == 'DNV PULS': if self.data._PULS_results is not None: puls_method = self.data._line_to_struc[line][0].Plate.get_puls_method() textobject.textLine('PULS results using '+str(puls_method) + 'utilization with acceptance '+ str(self.data._PULS_results.puls_acceptance)) if line in self.data._PULS_results.get_run_results().keys(): puls_buckling = self.data._PULS_results.get_run_results()[line]['Buckling strength']['Actual usage Factor'][0] puls_ultimate = self.data._PULS_results.get_run_results()[line]['Ultimate capacity']['Actual usage Factor'][0] if puls_buckling is not None: if puls_method == 'buckling' and puls_buckling/self.data._PULS_results.puls_acceptance > 1: textobject.setFillColor('red') textobject.textLine('PULS buckling utilization = ' + str(puls_buckling)) textobject.setFillColor('black') if puls_ultimate is not None: if puls_method == 'ultimate' and puls_ultimate/self.data._PULS_results.puls_acceptance > 1: textobject.setFillColor('red') textobject.textLine('PULS ultimate utilization = ' + str(puls_ultimate)) textobject.setFillColor('black') else: puls_method = self.data._line_to_struc[line][0].Plate.get_puls_method() textobject.textLine('ML-CL results using '+str(puls_method) + 'utilization with acceptance 0.87') if line in self.data._PULS_results.get_run_results().keys(): ml_buckling = self.data.get_color_and_calc_state()['ML buckling class'][line]['buckling'] ml_ultimate = self.data.get_color_and_calc_state()['ML buckling class'][line]['ultimate'] color_ml_buc = self.data.get_color_and_calc_state()['ML buckling colors'][line]['buckling'] color_ml_ult = self.data.get_color_and_calc_state()['ML buckling colors'][line]['ultimate'] color_csr = self.data.get_color_and_calc_state()['ML buckling colors'][line]['CSR requirement'] if puls_method == 'buckling': textobject.setFillColor('red' if color_ml_buc == 'red' else 'black') textobject.textLine('Buckling ML-CL results: ' + self.data._ML_classes[ml_buckling]) textobject.setFillColor('black') if puls_method == 'ultimate': textobject.setFillColor('red' if color_ml_ult == 'red' else 'black') textobject.textLine('Ultimate ML-CL result: ' + self.data._ML_classes[ml_ultimate]) textobject.setFillColor('red' if color_csr == 'red' else 'black') textobject.textLine('CSR tank requirement (stiffener): ' + 'OK' if color_csr == 'green' else 'red') textobject.setFillColor('black') textobject.setFillColor('black') textobject.setFillColor('red') if self.data.get_color_and_calc_state()['colors'][line]['fatigue'] == 'red' \ else textobject.setFillColor('black') if self.data.get_color_and_calc_state()['fatigue'][line]['damage'] is not None: textobject.textLine('Fatigue (plate/stiffeners) utilization: '+ str(round(self.data.get_color_and_calc_state()['fatigue'][line]['damage'],2))+ ' * DFF('+ str(self.data.get_color_and_calc_state()['fatigue'][line]['dff']) + ') = ' + str(round(self.data.get_color_and_calc_state()['fatigue'][line]['damage']* self.data.get_color_and_calc_state()['fatigue'][line]['dff'],2)) + ' (SN-curve = '+ self.data.get_color_and_calc_state()['fatigue'][line]['curve']+')') else: textobject.textLine('No fatigue results') # textobject.textLine('Utilization percentage (highest calculated): '+ # str(int(max(self.data.get_color_and_calc_state()['utilization'][line].values())*100))+ '%') textobject.setFillColor('black') self.c.drawText(textobject) vpos -= 10 else: cyl_obj = self.data._line_to_struc[line][5] textobject = self.c.beginText() textobject.setTextOrigin(30, vpos) textobject.setFont("Helvetica-Oblique", 10) textobject.textLine('*********** ' + line + ' ***********') textobject.textLine('Cylinder radius: ' + str(round(cyl_obj.ShellObj.radius*1000,2)) + ' mm , thickness: ' +str(round(cyl_obj.ShellObj.thk*1000,2)) + ' mm') textobject.textLine('Longitudinal stiffener: ' + cyl_obj.LongStfObj.get_beam_string()) textobject.textLine('Ring stiffener: ' + cyl_obj.LongStfObj.get_beam_string()) textobject.textLine('Heavy ring girder: ' + cyl_obj.LongStfObj.get_beam_string()) textobject.textLine( 'Dist. between rings/length, l: ' + str(round(cyl_obj.ShellObj.dist_between_rings, 1))) textobject.textLine( 'Lenght of shell, L: ' + str(round(cyl_obj.ShellObj.length_of_shell, 1)) + ' ' +'Total cyl. lenght, Lc: ' + str(round(cyl_obj.ShellObj.tot_cyl_length, 1))) results = cyl_obj.get_utilization_factors() textobject.textLine('Design axial stress/force: ' + str(cyl_obj.sasd / 1e6) + ' MPa') textobject.textLine('Design bending stress/moment: ' + str(cyl_obj.smsd / 1e6) + ' MPa') textobject.textLine('Design tosional stress/moment: ' + str(cyl_obj.tTsd / 1e6) + ' MPa') textobject.textLine('Design shear stress/force: ' + str(cyl_obj.tQsd / 1e6) + ' MPa') textobject.textLine('Design lateral pressure ' + str(cyl_obj.psd / 1e6) + ' MPa' ) textobject.textLine('Additional hoop stress ' + str(cyl_obj.shsd / 1e6) + ' MPa') vpos -= 40 for key, value in results.items(): if key in ['Weight', 'Need to check column buckling']: continue if key not in ['Stiffener check', 'Stiffener check detailed']: text_key = key if key == 'Column stability check': if results['Need to check column buckling'] == False: continue uf_text = 'N/A' if value is None else 'OK' if value else 'Not ok' else: uf_text = 'N/A' if value is None else str(round(value, 2)) if value is None: uf_col = 'grey' else: uf_col = 'red' if any([value > 1, value == False]) else 'green' textobject.setFillColor(uf_col) textobject.textLine(text_key + ' : UF = ' + uf_text) textobject.setFillColor('black') elif key == 'Stiffener check': if value is not None: textobject.textLine('Stiffener requirement checks:') stf_type_all = '' for stf_type, chk_bool in value.items(): chk_text = 'OK' if chk_bool == True else 'Not OK' if chk_bool == False else 'N/A' stf_type_all += stf_type + ' : ' + chk_text + ' ' textobject.textLine(stf_type_all) vpos -= 10 self.c.drawText(textobject) vpos += 10 else: textobject.setFont("Helvetica-Oblique", 10) textobject.textLine('*********** '+line+' ***********') textobject.textLine('(no structural properties defined)') if vpos <= 290: self.c.showPage() vpos = 950 # ---------------------------------------------------------------------- self.c.showPage() self.draw_lines(draw_type='section') self.c.showPage() self.draw_lines(draw_type='plate') self.c.showPage() self.draw_lines(draw_type='pressure') self.c.showPage() self.draw_lines(draw_type='utilization') self.c.showPage() self.draw_lines(draw_type='sigma x') self.c.showPage() self.draw_lines(draw_type='sigma y1') self.c.showPage() self.draw_lines(draw_type='sigma y2') self.c.showPage() self.draw_lines(draw_type='tau xy') self.c.showPage() self.draw_lines(draw_type='structure type') self.c.showPage() idx, new = 0, False for load_name in self.data._load_dict.keys(): self.draw_lines(draw_type=None, load_idx_name = [idx % 3, load_name]) if idx % 3 == 2: self.c.showPage() idx += 1 def draw_lines(self, draw_type = 'UF', load_idx_name = None): ''' Draw the defined lines. :return: ''' points = self.data._point_dict lines = self.data._line_dict if self.data._new_buckling_method.get() == 'DNV-RP-C201 - prescriptive': colors = self.data.get_color_and_calc_state()['colors'] elif self.data._new_buckling_method.get() == 'DNV PULS': colors = self.data.get_color_and_calc_state()['PULS colors'] else: colors = self.data.get_color_and_calc_state()['ML buckling colors'] highest_y = max([coord[1] for coord in points.values()]) highest_x = max([coord[0] for coord in points.values()]) if any([highest_x == 0, highest_y == 0]): scale = 10 elif load_idx_name is not None: scale = 5 else: scale = min(500/highest_y, 500/highest_x, 10) if draw_type == 'UF': origo = (50,350) elif load_idx_name is not None: origo = (50, 600 - 200*load_idx_name[0]) else: origo = (50, 450) self.c.setLineWidth(2) self.c.setStrokeColor('red') idx, drawed_data = 0, list() all_line_data = self.data.get_color_and_calc_state() for line, pt in lines.items(): if line not in list(self.data._line_to_struc.keys()): continue if draw_type == 'UF': if self.data._new_buckling_method.get() == 'DNV-RP-C201 - prescriptive': try: self.c.setStrokeColor('red' if 'red' in colors[line].values() else 'green') except KeyError: self.c.setStrokeColor('black') elif self.data._new_buckling_method.get() == 'DNV PULS': try: method = self.data._line_to_struc[line][0].Plate.get_puls_method() if self.data._PULS_results is not None: util = self.data._PULS_results.get_utilization(line, method, self.data._new_puls_uf.get()) if util is not None: self.c.setStrokeColor('red' if util > 1 else 'green') except KeyError: self.c.setStrokeColor('black') else: method = self.data._line_to_struc[line][0].Plate.get_puls_method() self.c.setStrokeColor(colors[line][method]) elif draw_type == 'section' and self.data._line_to_struc[line][0].Stiffener is not None: self.c.setStrokeColor(all_line_data['color code']['lines'][line]['section']) if self.data._line_to_struc[line][0].Stiffener.get_beam_string() not in drawed_data: textobject = self.c.beginText() if 400 - 20 * idx > 20: textobject.setTextOrigin(50, 400 - 20 * idx) else: textobject.setTextOrigin(300, 400 - 20 * idx) textobject.setFillColor(all_line_data['color code']['lines'][line]['section']) textobject.setFont("Helvetica-Oblique", 10) textobject.textLine(self.data._line_to_struc[line][0].Stiffener.get_beam_string()) self.c.drawText(textobject) drawed_data.append(self.data._line_to_struc[line][0].Stiffener.get_beam_string()) idx += 1 elif draw_type == 'plate': self.c.setStrokeColor(all_line_data['color code']['lines'][line]['plate']) elif draw_type == 'pressure': self.c.setStrokeColor(all_line_data['color code']['lines'][line]['pressure color']) elif draw_type == 'utilization': if self.data._new_buckling_method.get() == 'DNV-RP-C201 - prescriptive': self.c.setStrokeColor(all_line_data['color code']['lines'][line]['rp uf color']) elif self.data._new_buckling_method.get() == 'DNV PULS': self.c.setStrokeColor(all_line_data['color code']['lines'][line]['PULS uf color']) else: puls_method = self.data._line_to_struc[line][0].Plate.get_puls_method() self.c.setStrokeColor(matplotlib_colors.rgb2hex(all_line_data['ML buckling colors'][line][puls_method])) elif draw_type == 'sigma x': self.c.setStrokeColor(all_line_data['color code']['lines'][line]['sigma x']) elif draw_type == 'sigma y1': self.c.setStrokeColor(all_line_data['color code']['lines'][line]['sigma y1']) elif draw_type == 'sigma y2': self.c.setStrokeColor(all_line_data['color code']['lines'][line]['sigma y2']) elif draw_type == 'tau xy': self.c.setStrokeColor(all_line_data['color code']['lines'][line]['tau xy']) elif draw_type == 'structure type': self.c.setStrokeColor(all_line_data['color code']['lines'][line]['structure type']) elif load_idx_name is not None: points = self.data._point_dict highest_y = max([coord[1] for coord in points.values()]) highest_x = max([coord[0] for coord in points.values()]) if any([highest_x == 0, highest_y == 0]): scale = 10 else: scale = min(180 / highest_y, 300 / highest_x, 10) if line in self.data._load_dict[load_idx_name[1]][1]: self.c.setStrokeColor('orange') else: self.c.setStrokeColor('black') x1, y1 = points['point'+str(pt[0])][0] * scale + origo[0], \ points['point'+str(pt[0])][1] * scale + origo[1] x2, y2 = points['point'+str(pt[1])][0] * scale + origo[0], \ points['point'+str(pt[1])][1] * scale + origo[1] self.c.line(x1,y1,x2,y2) if load_idx_name is None: textobject = self.c.beginText() textobject.setTextOrigin(x1+(x2-x1)*0.5-5, y1 + (y2-y1)*0.5+2 ) textobject.setFont("Helvetica-Oblique", 9) textobject.textLine(str(hlp.get_num(line))) self.c.drawText(textobject) if draw_type == 'UF': pass elif draw_type == 'section': textobject = self.c.beginText() textobject.setTextOrigin(50,800) textobject.setFont("Helvetica-Oblique", 15) textobject.setFillColor('black') textobject.textLine('Model beam section properties') self.c.drawText(textobject) elif draw_type == 'plate': textobject = self.c.beginText() textobject.setTextOrigin(50, 800) textobject.setFillColor('black') textobject.setFont("Helvetica-Oblique", 15) textobject.textLine('Model plate thicknesses') self.c.drawText(textobject) all_thicknesses =self.data.get_color_and_calc_state()['color code']['all thicknesses'] for idx, thk in enumerate(all_thicknesses): textobject = self.c.beginText() if 400 - 20 * idx > 20: textobject.setTextOrigin(50, 400 - 20 * idx) else: textobject.setTextOrigin(300, 400 - 20 * idx) textobject.setFillColor(matplotlib.colors.rgb2hex(cmap_sections(all_thicknesses.index(thk)/ len(all_thicknesses)))) textobject.setFont("Helvetica-Oblique", 10) textobject.textLine(str(thk*1000) + ' mm') self.c.drawText(textobject) elif draw_type == 'pressure': textobject = self.c.beginText() textobject.setTextOrigin(50, 800) textobject.setFillColor('black') textobject.setFont("Helvetica-Oblique", 15) textobject.textLine('Highest pressures for lines in model') self.c.drawText(textobject) idx = 0 pressure_map =self.data.get_color_and_calc_state()['color code']['pressure map'] for press in pressure_map: textobject = self.c.beginText() if 400 - 20 * idx > 20: textobject.setTextOrigin(50, 400 - 20 * idx) else: textobject.setTextOrigin(300, 400 - 20 * idx) textobject.setFillColor(matplotlib.colors.rgb2hex(cmap_sections(list(pressure_map).index(press)/ len(list(pressure_map))))) textobject.setFont("Helvetica-Oblique", 10) textobject.textLine(str(press)) self.c.drawText(textobject) drawed_data.append(press) idx += 1 elif draw_type == 'utilization': textobject = self.c.beginText() textobject.setTextOrigin(50, 800) textobject.setFillColor('black') textobject.setFont("Helvetica-Oblique", 12) if self.data._new_buckling_method.get() == 'DNV-RP-C201 - prescriptive': this_text = 'DNV-RP-C201 Buckling Strength of Plated Structures' elif self.data._new_buckling_method.get() == 'DNV PULS': this_text = 'Utilization factors (max of all checks) - PULS (Panel Ultimate Limit State)' else: this_text = 'ML-CL utilization factors not avaliable. ML-CLassifier only shows ok or not ok.' textobject.textLine(this_text) self.c.drawText(textobject) if self.data._new_buckling_method.get() == 'DNV-RP-C201 - prescriptive': all_utils = all_line_data['color code']['utilization map'] elif self.data._new_buckling_method.get() == 'DNV PULS': all_utils = all_line_data['color code']['PULS utilization map'] else: all_utils = list() for idx, uf in enumerate(all_utils): textobject = self.c.beginText() if 400 - 20 * idx > 20: textobject.setTextOrigin(50, 400 - 20 * idx) else: textobject.setTextOrigin(300, 400 - 20 * idx) textobject.setFillColor(matplotlib.colors.rgb2hex(cmap_sections(uf))) textobject.setFont("Helvetica-Oblique", 10) textobject.textLine(str('UF = ' +str(round(uf,1)))) self.c.drawText(textobject) elif draw_type == 'structure type': textobject = self.c.beginText() textobject.setTextOrigin(50,800) textobject.setFont("Helvetica-Oblique", 15) textobject.setFillColor('black') textobject.textLine('Structure types') self.c.drawText(textobject) for idx, value in enumerate(list(all_line_data['color code']['structure types map'])): textobject = self.c.beginText() if 400 - 20 * idx > 20: textobject.setTextOrigin(50, 400 - 20 * idx) else: textobject.setTextOrigin(300, 400 - 20 * idx) textobject.setFillColor(matplotlib.colors.rgb2hex(cmap_sections( list(all_line_data['color code']['structure types map']).index(value)/ len(list(all_line_data['color code']['structure types map']))))) textobject.setFont("Helvetica-Oblique", 10) textobject.textLine(str(value)) self.c.drawText(textobject) drawed_data.append(value) elif draw_type == 'sigma x': textobject = self.c.beginText() textobject.setTextOrigin(50,800) textobject.setFont("Helvetica-Oblique", 15) textobject.setFillColor('black') textobject.textLine('Global stresses - sigma x') self.c.drawText(textobject) for idx, value in enumerate(list(all_line_data['color code']['sigma x map'])): textobject = self.c.beginText() if 400 - 20 * idx > 20: textobject.setTextOrigin(50, 400 - 20 * idx) else: textobject.setTextOrigin(300, 400 - 20 * idx) textobject.setFillColor(matplotlib.colors.rgb2hex(cmap_sections( list(all_line_data['color code']['sigma x map']).index(value)/ len(list(all_line_data['color code']['sigma x map']))))) textobject.setFont("Helvetica-Oblique", 10) textobject.textLine(str(value)) self.c.drawText(textobject) drawed_data.append(value) elif draw_type == 'sigma y1': textobject = self.c.beginText() textobject.setTextOrigin(50,800) textobject.setFont("Helvetica-Oblique", 15) textobject.setFillColor('black') textobject.textLine('Global stresses - sigma y1') self.c.drawText(textobject) for idx, value in enumerate(list(all_line_data['color code']['sigma y1 map'])): textobject = self.c.beginText() if 400 - 20 * idx > 20: textobject.setTextOrigin(50, 400 - 20 * idx) else: textobject.setTextOrigin(300, 400 - 20 * idx) textobject.setFillColor(matplotlib.colors.rgb2hex(cmap_sections( list(all_line_data['color code']['sigma y1 map']).index(value)/ len(list(all_line_data['color code']['sigma y1 map']))))) textobject.setFont("Helvetica-Oblique", 10) textobject.textLine(str(value)) self.c.drawText(textobject) drawed_data.append(value) elif draw_type == 'sigma y2': textobject = self.c.beginText() textobject.setTextOrigin(50,800) textobject.setFont("Helvetica-Oblique", 15) textobject.setFillColor('black') textobject.textLine('Global stresses - sigma y2') self.c.drawText(textobject) for idx, value in enumerate(list(all_line_data['color code']['sigma y2 map'])): textobject = self.c.beginText() if 400 - 20 * idx > 20: textobject.setTextOrigin(50, 400 - 20 * idx) else: textobject.setTextOrigin(300, 400 - 20 * idx) textobject.setFillColor(matplotlib.colors.rgb2hex(cmap_sections( list(all_line_data['color code']['sigma y2 map']).index(value)/ len(list(all_line_data['color code']['sigma y2 map']))))) textobject.setFont("Helvetica-Oblique", 10) textobject.textLine(str(value)) self.c.drawText(textobject) drawed_data.append(value) elif draw_type == 'tau xy': textobject = self.c.beginText() textobject.setTextOrigin(50,800) textobject.setFont("Helvetica-Oblique", 15) textobject.setFillColor('black') textobject.textLine('Global stresses - tau xy') self.c.drawText(textobject) for idx, value in enumerate(list(all_line_data['color code']['tau xy map'])): textobject = self.c.beginText() if 400 - 20 * idx > 20: textobject.setTextOrigin(50, 400 - 20 * idx) else: textobject.setTextOrigin(300, 400 - 20 * idx) textobject.setFillColor(matplotlib.colors.rgb2hex(cmap_sections( list(all_line_data['color code']['tau xy map']).index(value)/ len(list(all_line_data['color code']['tau xy map']))))) textobject.setFont("Helvetica-Oblique", 10) textobject.textLine(str(value)) self.c.drawText(textobject) drawed_data.append(value) elif load_idx_name is not None: for lidx, loadtext in enumerate(reversed(self.data._load_dict[load_idx_name[1]][0].get_report_string())): textobject = self.c.beginText() textobject.setTextOrigin(370 , origo[1]+50+ 11*lidx) textobject.setFont("Helvetica-Oblique", 11) textobject.setFillColor('black') textobject.textLine(loadtext) self.c.drawText(textobject) def coord(self, x, y, unit=1): """ # http://stackoverflow.com/questions/4726011/wrap-text-in-a-table-reportlab Helper class to help position flowables in Canvas objects """ x, y = x * unit, self.height - y * unit return x, y # ---------------------------------------------------------------------- def createParagraph(self, ptext, x, y, style=None): """""" if not style: style = self.styles["Normal"] p = Paragraph(ptext, style=style) p.wrapOn(self.c, self.width, self.height) p.drawOn(self.c, *self.coord(x, y, mm)) # ---------------------------------------------------------------------- def savePDF(self): """""" self.c.save() # ---------------------------------------------------------------------- def createTable(self): ''' Create a table of results for all lines. ''' table_all = [] cylindersy, flat_plates, idx = False, False,-1 for line in sorted(self.data._line_dict.keys()): idx += 1 if self.data._line_to_struc[line][5] is None and cylinders is False: flat_plates = True if idx == 0: headers = ['Line', 'pl thk', 's', 'web h', 'web thk', 'fl. w', 'fl. thk', 'sig x1', 'sig x2', 'sig y1', 'sig y2', 'tau xy', 'max press.', 'sec. mod', 'min sec.', 'min plt', 'shr area', 'min shr A', 'fat uf', 'buc uf'] table_all.append(headers) if line not in list(self.data._line_to_struc.keys()): continue struc_obj = self.data._line_to_struc[line][0] pressure = round(self.data.get_highest_pressure(line)['normal'] / 1000,0) if self.data._PULS_results is not None: puls_method = self.data._line_to_struc[line][0].Plate.get_puls_method() if line in self.data._PULS_results.get_run_results().keys(): if puls_method == 'buckling': buckling_uf = \ self.data._PULS_results.get_run_results()[line]['Buckling strength']['Actual usage Factor'][0] else: buckling_uf = \ self.data._PULS_results.get_run_results()[line]['Ultimate capacity']['Actual usage Factor'][0] else: try: buckling_uf = str(round(max(self.data.get_color_and_calc_state()['buckling'][line]), 2)) except TypeError: buckling_uf = None if self.data.get_color_and_calc_state()['fatigue'][line]['damage'] is not None: fat_uf = self.data.get_color_and_calc_state()['fatigue'][line]['damage'] fat_uf = round(fat_uf, 3) else: fat_uf = self.data.get_color_and_calc_state()['fatigue'][line]['damage'] data = [line,str(struc_obj.Plate.get_pl_thk() * 1000), str(struc_obj.Plate.get_s() * 1000), str('' if struc_obj.Stiffener is None else struc_obj.Stiffener.get_web_h() * 1000), str('' if struc_obj.Stiffener is None else struc_obj.Stiffener.get_web_thk() * 1000), str('' if struc_obj.Stiffener is None else struc_obj.Stiffener.get_fl_w() * 1000), str('' if struc_obj.Stiffener is None else struc_obj.Stiffener.get_fl_thk() * 1000), str(round(struc_obj.Plate.get_sigma_x1(), 0)), str(round(struc_obj.Plate.get_sigma_x2(), 0)), str(round(struc_obj.Plate.get_sigma_y1(), 0)), str(round(struc_obj.Plate.get_sigma_y2(), 0)), str(round(struc_obj.Plate.get_tau_xy(), 0)), str(round(pressure, 2) * 1000), str(int(min(self.data.get_color_and_calc_state()['section_modulus'][line]['sec_mod']) * 1000 ** 3)), str(int(self.data.get_color_and_calc_state()['section_modulus'][line]['min_sec_mod'] * 1000 ** 3)), str(round(self.data.get_color_and_calc_state()['thickness'][line]['min_thk'], 2)), str(int(self.data.get_color_and_calc_state()['shear_area'][line]['shear_area'] * 1000 ** 2)), str(int(self.data.get_color_and_calc_state()['shear_area'][line]['min_shear_area'] * 1000 ** 2)), fat_uf, buckling_uf] table_all.append(data) elif not flat_plates: cylinders = True if idx == 0: headers = ['Line', 'Radius', 'Thickness', 'Span', 'Tot. length', 'Axial stress', 'Bend stress', 'Tors. stress', 'Shear stress', 'Lat. press.', 'Hoop stress', 'UF shell', 'UF long. stf.', 'UF ring. stf.', 'UF girder'] table_all.append(headers) cyl_obj = self.data._line_to_struc[line][5] radius = round(cyl_obj.ShellObj.radius * 1000, 2) thickness = round(cyl_obj.ShellObj.thk * 1000, 2) long_str = cyl_obj.LongStfObj.get_beam_string() ring_stf = cyl_obj.LongStfObj.get_beam_string() heavy_ring = cyl_obj.LongStfObj.get_beam_string() span = round(cyl_obj.ShellObj.dist_between_rings, 1) tot_length = round(cyl_obj.ShellObj.length_of_shell, 1) tot_cyl = round(cyl_obj.ShellObj.tot_cyl_length, 1) sigma_axial = cyl_obj.sasd / 1e6 sigma_bend = cyl_obj.smsd / 1e6 sigma_tors = cyl_obj.tTsd / 1e6 tau_xy = cyl_obj.tQsd / 1e6 lat_press = cyl_obj.psd / 1e6 sigma_hoop = cyl_obj.shsd / 1e6 results = cyl_obj.get_utilization_factors() data = [line, radius, thickness, span, tot_length, sigma_axial, sigma_bend, sigma_tors, tau_xy, lat_press, sigma_hoop, round(0 if results['Unstiffened shell'] is None else results['Unstiffened shell'],2), round(0 if results['Longitudinal stiffened shell'] is None else results['Longitudinal stiffened shell'],2), round(0 if results['Ring stiffened shell'] is None else results['Ring stiffened shell'],2), round(0 if results['Heavy ring frame'] is None else results['Heavy ring frame'],2) ] table_all.append([str(data_item) for data_item in data]) if cylinders: t = Table(table_all,colWidths=[0.7*inch]) t.setStyle(TableStyle([ ('GRID', (0, 0), (-1, -1), 0.5, colors.gray), ('BACKGROUND', (0, 0), (-1, -1), colors.lightblue), ('FONTSIZE', (0, 0), (-1, -1), 8), ('FONTSIZE', (0, 4), (-1, 4), 8), ('TEXTFONT', (0, 1), (-1, 1), 'Times-Bold'), ('TEXTFONT', (0, 4), (-1, 4), 'Times-Bold'), ])) else: t = Table(table_all,colWidths=[0.55*inch]) t.setStyle(TableStyle([ ('GRID', (0, 0), (-1, -1), 0.5, colors.gray), ('BACKGROUND', (0, 0), (-1, -1), colors.lightblue), ('FONTSIZE', (0, 0), (-1, -1), 8), ('FONTSIZE', (0, 4), (-1, 4), 8), ('TEXTFONT', (0, 1), (-1, 1), 'Times-Bold'), ('TEXTFONT', (0, 4), (-1, 4), 'Times-Bold'), ])) return [t,] if __name__ == '__main__': import multiprocessing, ctypes, tkinter import main_application as app multiprocessing.freeze_support() errorCode = ctypes.windll.shcore.SetProcessDpiAwareness(2) root = tkinter.Tk() my_app = app.Application(root) ship_example = r'C:\Github\ANYstructure\ship_section_example.txt' my_app.openfile(ship_example) # my_app.table_generate() #my_app.report_generate(autosave=True) # doc = LetterMaker("example.pdf", "The MVP", 10, to_report_gen) # doc.createDocument() # doc.savePDF()
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/report_generator.py
report_generator.py
import tkinter as tk from _tkinter import TclError from tkinter.ttk import Progressbar from tkinter import messagebox from tkinter.filedialog import askopenfilenames from multiprocessing import Pool, cpu_count try: import any_files.main_application import any_files.optimize as op import any_files.example_data as test from any_files.calc_structure import * import any_files.calc_structure as calc from any_files.helper import * import any_files.optimize as opt except ModuleNotFoundError: import ANYstructure.any_files.main_application import ANYstructure.any_files.optimize as op import ANYstructure.any_files.example_data as test from ANYstructure.any_files.calc_structure import * import ANYstructure.any_files.calc_structure as calc from ANYstructure.any_files.helper import * import ANYstructure.any_files.optimize as opt def helper_harmonizer_multi(iterator): ''' :param : :return: ''' this_check, master_x = list(), None for slave_line in iterator['info']['lines']: lateral_press = iterator['info'][slave_line]['lateral pressure'] fat_press = iterator['info'][slave_line]['fatigue pressure'] fat_obj = iterator['info'][slave_line]['fatigue object'] slamming_pressure = iterator['info'][slave_line]['slamming pressure'] chk_calc_obj = iterator['info'][slave_line]['chk_calc_obj'] master_x = list(iterator['x']) ml_cl = iterator['info'][slave_line]['ML-CL'] fup = iterator['info'][slave_line]['fup'] fdwn = iterator['info'][slave_line]['fdwn'] if iterator['info']['keep spacing']: x = [chk_calc_obj.get_s()] + master_x[1:] + [chk_calc_obj.get_span(), chk_calc_obj.get_lg()] else: x = master_x + [chk_calc_obj.get_span(), chk_calc_obj.get_lg()] chk_any = op.any_constraints_all(x=x, obj=chk_calc_obj, lat_press=lateral_press, init_weight=float('inf'), side='p', chk=iterator['info']['checks'], fat_dict=None if fat_obj == None else fat_obj.get_fatigue_properties(), fat_press=fat_press, slamming_press=slamming_pressure,PULSrun=None, print_result=False,fdwn=fdwn, fup=fup, ml_results=ml_cl) this_check.append(chk_any[0]) if all(this_check) and master_x is not None: return tuple(master_x) else: return None class CreateOptimizeMultipleWindow(): ''' This class initiates the MultiOpt window. ''' def __init__(self, master, app=None): super(CreateOptimizeMultipleWindow, self).__init__() if __name__ == '__main__': import pickle self._load_objects = {} self._load_comb_dict = {} self._line_dict = test.get_line_dict() self._load_count = 0 self._point_dict = test.get_point_dict() self._canvas_scale = 25 self._line_to_struc = test.get_line_to_struc() self._slamming_pressure = test.get_slamming_pressure() self._fatigue_pressure = test.get_fatigue_pressures() self._fatigue_object = test.get_fatigue_object() self._normal_pressure = test.get_random_pressure() image_dir = os.path.dirname(__file__)+'\\images\\' self._active_lines = [] self._ML_buckling = dict() # Buckling machine learning algorithm for name, file_base in zip(['cl SP buc int predictor', 'cl SP buc int scaler', 'cl SP ult int predictor', 'cl SP ult int scaler', 'cl SP buc GLGT predictor', 'cl SP buc GLGT scaler', 'cl SP ult GLGT predictor', 'cl SP ult GLGT scaler', 'cl UP buc int predictor', 'cl UP buc int scaler', 'cl UP ult int predictor', 'cl UP ult int scaler', 'cl UP buc GLGT predictor', 'cl UP buc GLGT scaler', 'cl UP ult GLGT predictor', 'cl UP ult GLGT scaler' ], ["ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_2,_3_UP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_2,_3_UP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_2,_3_UP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_2,_3_UP", "CL_CSR-Tank_req_cl_predictor", "CL_CSR-Tank_req_cl_UP_scaler", "CL_CSR_plate_cl,_CSR_web_cl,_CSR_web_flange_cl,_CSR_flange_cl_predictor", "CL_CSR_plate_cl,_CSR_web_cl,_CSR_web_flange_cl,_CSR_flange_cl_SP_scaler"]): self._ML_buckling[name] = None if os.path.isfile(file_base + '.pickle'): file = open(file_base + '.pickle', 'rb') from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import StandardScaler self._ML_buckling[name] = pickle.load(file) file.close() else: self.app = app self._load_objects = app._load_dict self._load_comb_dict = app._new_load_comb_dict self._line_dict = app._line_dict self._load_count = 0 self._point_dict = app._point_dict self._canvas_scale = app._canvas_scale self._line_to_struc = app._line_to_struc image_dir = app._root_dir + '\\images\\' self._root_dir = app._root_dir self._active_lines = app._multiselect_lines self._ML_buckling = app._ML_buckling self._frame = master self._frame.wm_title("Optimize structure") self._frame.geometry('1800x950') self._frame.grab_set() self._canvas_origo = (50, 720 - 50) self._canvas_base_origo = self._canvas_origo self._canvas_draw_origo = list(self._canvas_base_origo) self._previous_drag_mouse = list(self._canvas_draw_origo) self._active_lines = [] self._add_to_lines = True self._lines_add_to_load = [] self._mid_click_line = None self._predefined_structure = None # ----------------------------------COPIED FROM OPTIMIZE_WINDOW----------------------------------------------- self._opt_results = {} self._opt_actual_running_time = tk.Label(self._frame, text='') tk.Frame(self._frame, width=770, height=5, bg="grey", colormap="new").place(x=20, y=95) tk.Frame(self._frame, width=770, height=5, bg="grey", colormap="new").place(x=20, y=135) algorithms = ('anysmart', 'random', 'random_no_delta') tk.Label(self._frame, text='-- Structural optimizer for multiple selections --', font='Verdana 15 bold').place(x=10, y=10) # upper and lower bounds for optimization # [0.6, 0.012, 0.3, 0.01, 0.1, 0.01] self._new_spacing_upper = tk.DoubleVar() self._new_spacing_lower = tk.DoubleVar() self._new_pl_thk_upper = tk.DoubleVar() self._new_pl_thk_lower = tk.DoubleVar() self._new_web_h_upper = tk.DoubleVar() self._new_web_h_lower = tk.DoubleVar() self._new_web_thk_upper = tk.DoubleVar() self._new_web_thk_lower = tk.DoubleVar() self._new_fl_w_upper = tk.DoubleVar() self._new_fl_w_lower = tk.DoubleVar() self._new_fl_thk_upper = tk.DoubleVar() self._new_fl_thk_lower = tk.DoubleVar() self._new_span = tk.DoubleVar() self._new_width_lg = tk.DoubleVar() self._new_algorithm = tk.StringVar() self._new_algorithm_random_trials = tk.IntVar() self._new_delta_spacing = tk.DoubleVar() self._new_delta_pl_thk = tk.DoubleVar() self._new_delta_web_h = tk.DoubleVar() self._new_delta_web_thk = tk.DoubleVar() self._new_delta_fl_w = tk.DoubleVar() self._new_delta_fl_thk = tk.DoubleVar() self._new_swarm_size = tk.IntVar() self._new_omega = tk.DoubleVar() self._new_phip = tk.DoubleVar() self._new_phig = tk.DoubleVar() self._new_maxiter = tk.IntVar() self._new_minstep = tk.DoubleVar() self._new_minfunc = tk.DoubleVar() ent_w = 10 self._ent_spacing_upper = tk.Entry(self._frame, textvariable=self._new_spacing_upper, width=ent_w) self._ent_spacing_lower = tk.Entry(self._frame, textvariable=self._new_spacing_lower, width=ent_w) self._ent_pl_thk_upper = tk.Entry(self._frame, textvariable=self._new_pl_thk_upper, width=ent_w) self._ent_pl_thk_lower = tk.Entry(self._frame, textvariable=self._new_pl_thk_lower, width=ent_w) self._ent_web_h_upper = tk.Entry(self._frame, textvariable=self._new_web_h_upper, width=ent_w) self._ent_web_h_lower = tk.Entry(self._frame, textvariable=self._new_web_h_lower, width=ent_w) self._ent_web_thk_upper = tk.Entry(self._frame, textvariable=self._new_web_thk_upper, width=ent_w) self._ent_web_thk_lower = tk.Entry(self._frame, textvariable=self._new_web_thk_lower, width=ent_w) self._ent_fl_w_upper = tk.Entry(self._frame, textvariable=self._new_fl_w_upper, width=ent_w) self._ent_fl_w_lower = tk.Entry(self._frame, textvariable=self._new_fl_w_lower, width=ent_w) self._ent_fl_thk_upper = tk.Entry(self._frame, textvariable=self._new_fl_thk_upper, width=ent_w) self._ent_fl_thk_lower = tk.Entry(self._frame, textvariable=self._new_fl_thk_lower, width=ent_w) self._ent_span = tk.Entry(self._frame, textvariable=self._new_span, width=ent_w) self._ent_width_lg = tk.Entry(self._frame, textvariable=self._new_width_lg, width=ent_w) self._ent_algorithm = tk.OptionMenu(self._frame, self._new_algorithm, command=self.selected_algorithm, *algorithms) self._ent_random_trials = tk.Entry(self._frame, textvariable=self._new_algorithm_random_trials) self._ent_delta_spacing = tk.Entry(self._frame, textvariable=self._new_delta_spacing, width=ent_w) self._ent_delta_pl_thk = tk.Entry(self._frame, textvariable=self._new_delta_pl_thk, width=ent_w) self._ent_delta_web_h = tk.Entry(self._frame, textvariable=self._new_delta_web_h, width=ent_w) self._ent_delta_web_thk = tk.Entry(self._frame, textvariable=self._new_delta_web_thk, width=ent_w) self._ent_delta_fl_w = tk.Entry(self._frame, textvariable=self._new_delta_fl_w, width=ent_w) self._ent_delta_fl_thk = tk.Entry(self._frame, textvariable=self._new_delta_fl_thk, width=ent_w) pso_width = 10 self._ent_swarm_size = tk.Entry(self._frame,textvariable=self._new_swarm_size, width = pso_width) self._ent_omega = tk.Entry(self._frame,textvariable=self._new_omega, width = pso_width) self._ent_phip = tk.Entry(self._frame,textvariable=self._new_phip, width = pso_width) self._ent_phig = tk.Entry(self._frame,textvariable=self._new_phig, width = pso_width) self._ent_maxiter = tk.Entry(self._frame,textvariable=self._new_maxiter, width = pso_width) self._ent_minstep = tk.Entry(self._frame,textvariable=self._new_minstep, width = pso_width) self._ent_minfunc = tk.Entry(self._frame,textvariable=self._new_minfunc, width = pso_width) start_x, start_y, dx, dy = 20, 70, 100, 40 self._new_processes = tk.IntVar() self._new_processes.set(max(cpu_count() - 1, 1)) tk.Label(self._frame, text='Processes\n (CPUs)', font='Verdana 9 bold', bg = 'silver')\ .place(x=start_x + 12.3 * dx, y=start_y - 0.2 * dy) tk.Entry(self._frame, textvariable=self._new_processes, width = 12, bg = 'silver')\ .place(x=start_x + 12.3 * dx, y=start_y + 0.7* dy) self._prop_canvas_dim = (500, 450) self._draw_scale = 500 self._canvas_opt = tk.Canvas(self._frame, width=self._prop_canvas_dim[0], height=self._prop_canvas_dim[1], background='azure',relief='groove', borderwidth=2) self._canvas_opt.place(x=start_x+10.5*dx, y=start_y+3.5*dy) self._select_canvas_dim = (1000, 720) self._canvas_select = tk.Canvas(self._frame, width=self._select_canvas_dim[0], height=self._select_canvas_dim[1], background='azure',relief='groove', borderwidth=2) self._canvas_select.place(x=start_x+0*dx, y=start_y+3.5*dy) # Labels for the pso self._lb_swarm_size = tk.Label(self._frame, text='swarm size') self._lb_omega = tk.Label(self._frame, text='omega') self._lb_phip = tk.Label(self._frame, text='phip') self._lb_phig = tk.Label(self._frame, text='phig') self._lb_maxiter = tk.Label(self._frame, text='maxiter') self._lb_minstep = tk.Label(self._frame, text='minstep') self._lb_minfunc = tk.Label(self._frame, text='minfunc') tk.Label(self._frame, text='Upper bounds [mm]', font='Verdana 9').place(x=start_x, y=start_y) tk.Label(self._frame, text='Iteration delta [mm]', font='Verdana 9').place(x=start_x, y=start_y + dy) tk.Label(self._frame, text='Lower bounds [mm]', font='Verdana 9').place(x=start_x, y=start_y + 2 * dy) tk.Label(self._frame, text='Spacing [mm]', font='Verdana 7 bold').place(x=start_x + 1.97 * dx, y=start_y - 0.6 * dy) tk.Label(self._frame, text='Plate thk. [mm]', font='Verdana 7 bold').place(x=start_x + 2.97 * dx, y=start_y - 0.6 * dy) tk.Label(self._frame, text='Web height [mm]', font='Verdana 7 bold').place(x=start_x + 3.97 * dx, y=start_y - 0.6 * dy) tk.Label(self._frame, text='Web thk. [mm]', font='Verdana 7 bold').place(x=start_x + 4.97 * dx, y=start_y - 0.6 * dy) tk.Label(self._frame, text='Flange width [mm]', font='Verdana 7 bold').place(x=start_x + 5.97 * dx, y=start_y - 0.6 * dy) tk.Label(self._frame, text='Flange thk. [mm]', font='Verdana 7 bold').place(x=start_x + 6.97 * dx, y=start_y - 0.6 * dy) tk.Label(self._frame, text='Estimated running time for algorithm: ', font='Verdana 9 bold').place(x=start_x, y=start_y + 2.8 * dy) self._runnig_time_label = tk.Label(self._frame, text='', font='Verdana 9 bold') self._runnig_time_label.place(x=start_x + 2.7 * dx, y=start_y + 2.8 * dy) tk.Label(self._frame, text='seconds ', font='Verdana 9 bold').place(x=start_x + 3.3 * dx, y=start_y + 2.8 * dy) self._result_label = tk.Label(self._frame, text='', font='Verdana 9 bold') self._result_label.place(x=start_x, y=start_y + 4 * dy) self._ent_spacing_upper.place(x=start_x + dx * 2, y=start_y) self._ent_delta_spacing.place(x=start_x + dx * 2, y=start_y + dy) self._ent_spacing_lower.place(x=start_x + dx * 2, y=start_y + 2 * dy) self._ent_pl_thk_upper.place(x=start_x + dx * 3, y=start_y) self._ent_delta_pl_thk.place(x=start_x + dx * 3, y=start_y + dy) self._ent_pl_thk_lower.place(x=start_x + dx * 3, y=start_y + 2 * dy) self._ent_web_h_upper.place(x=start_x + dx * 4, y=start_y) self._ent_delta_web_h.place(x=start_x + dx * 4, y=start_y + dy) self._ent_web_h_lower.place(x=start_x + dx * 4, y=start_y + 2 * dy) self._ent_web_thk_upper.place(x=start_x + dx * 5, y=start_y) self._ent_delta_web_thk.place(x=start_x + dx * 5, y=start_y + dy) self._ent_web_thk_lower.place(x=start_x + dx * 5, y=start_y + 2 * dy) self._ent_fl_w_upper.place(x=start_x + dx * 6, y=start_y) self._ent_delta_fl_w.place(x=start_x + dx * 6, y=start_y + dy) self._ent_fl_w_lower.place(x=start_x + dx * 6, y=start_y + 2 * dy) self._ent_fl_thk_upper.place(x=start_x + dx * 7, y=start_y) self._ent_delta_fl_thk.place(x=start_x + dx * 7, y=start_y + dy) self._ent_fl_thk_lower.place(x=start_x + dx * 7, y=start_y + 2 * dy) # setting default values init_dim = float(10) # mm init_thk = float(1) # mm self._new_delta_spacing.set(init_dim) self._new_delta_pl_thk.set(init_thk) self._new_delta_web_h.set(init_dim) self._new_delta_web_thk.set(init_thk) self._new_delta_fl_w.set(init_dim) self._new_delta_fl_thk.set(init_thk) self._new_spacing_upper.set(round(800, 5)) self._new_spacing_lower.set(round(600, 5)) self._new_pl_thk_upper.set(round(25, 5)) self._new_pl_thk_lower.set(round(15, 5)) self._new_web_h_upper.set(round(500, 5)) self._new_web_h_lower.set(round(400, 5)) self._new_web_thk_upper.set(round(20, 5)) self._new_web_thk_lower.set(round(10, 5)) self._new_fl_w_upper.set(round(200, 5)) self._new_fl_w_lower.set(round(100, 5)) self._new_fl_thk_upper.set(round(30, 5)) self._new_fl_thk_lower.set(round(15, 5)) self._new_algorithm.set('anysmart') self._new_algorithm_random_trials.set(10000) # Selection of constraints self._new_check_sec_mod = tk.BooleanVar() self._new_check_min_pl_thk = tk.BooleanVar() self._new_check_shear_area = tk.BooleanVar() self._new_check_buckling = tk.BooleanVar() self._new_check_fatigue = tk.BooleanVar() self._new_check_slamming = tk.BooleanVar() self._new_check_local_buckling = tk.BooleanVar() self._new_check_ml_buckling = tk.BooleanVar() self._new_harmonizer = tk.BooleanVar() self._keep_spacing = tk.BooleanVar() self._new_check_sec_mod.set(True) self._new_check_min_pl_thk.set(True) self._new_check_shear_area.set(True) self._new_check_buckling.set(True) self._new_check_fatigue.set(True) self._new_check_slamming.set(False) self._new_check_local_buckling.set(True) self._new_harmonizer.set(False) self._keep_spacing.set(False) self._new_check_ml_buckling.set(False) self._new_swarm_size.set(100) self._new_omega.set(0.5) self._new_phip.set(0.5) self._new_phig.set(0.5) self._new_maxiter.set(100) self._new_minstep.set(1e-8) self._new_minfunc.set(1e-8) self._new_delta_spacing.trace('w', self.update_running_time) self._new_delta_pl_thk.trace('w', self.update_running_time) self._new_delta_web_h.trace('w', self.update_running_time) self._new_delta_web_thk.trace('w', self.update_running_time) self._new_delta_fl_w.trace('w', self.update_running_time) self._new_delta_fl_thk.trace('w', self.update_running_time) self._new_spacing_upper.trace('w', self.update_running_time) self._new_spacing_lower.trace('w', self.update_running_time) self._new_pl_thk_upper.trace('w', self.update_running_time) self._new_pl_thk_lower.trace('w', self.update_running_time) self._new_web_h_upper.trace('w', self.update_running_time) self._new_web_h_lower.trace('w', self.update_running_time) self._new_web_thk_upper.trace('w', self.update_running_time) self._new_web_thk_lower.trace('w', self.update_running_time) self._new_fl_w_upper.trace('w', self.update_running_time) self._new_fl_w_lower.trace('w', self.update_running_time) self._new_fl_thk_upper.trace('w', self.update_running_time) self._new_fl_thk_lower.trace('w', self.update_running_time) self._new_algorithm_random_trials.trace('w', self.update_running_time) self._new_algorithm.trace('w', self.update_running_time) self._keep_spacing.trace('w',self.trace_keep_spacing_check) self._new_check_ml_buckling.trace('w', self.update_running_time) self.running_time_per_item = 1.009943181818182e-5 self._runnig_time_label.config(text=str(self.get_running_time())) tk.Label(self._frame, text='Select algorithm type --->', font='Verdana 8 bold').place(x=start_x + dx * 8, y=start_y + 1 * dy) self._ent_algorithm.place(x=start_x + dx * 10, y=start_y + dy) self.algorithm_random_label = tk.Label(self._frame, text='Number of trials') tk.Button(self._frame, text='algorithm information', command=self.algorithm_info, bg='white') \ .place(x=start_x + dx * 15, y=start_y + dy *-0.5) self.run_button = tk.Button(self._frame, text='RUN OPTIMIZATION!', command=self.run_optimizaion, bg='red', font='Verdana 10', fg='Yellow') self.run_button.place(x=start_x + dx * 8, y=start_y) self.run_results = tk.Button(self._frame,text='show calculated', command=self.plot_results, bg='white', font='Verdana 10',fg='black') self.run_results.place(x=start_x+dx*8, y=start_y+dy*1.5) self._opt_actual_running_time.place(x=start_x + dx * 8, y=start_y - dy * 1.5) self.close_and_save = tk.Button(self._frame, text='Return and replace with selected optimized structure', command=self.save_and_close, bg='green', font='Verdana 10 bold', fg='yellow') self.close_and_save.place(x=start_x + dx * 10, y=10) tk.Button(self._frame, text='Open predefined stiffeners example', command=self.open_example_file, bg='white', font='Verdana 10')\ .place(x=start_x+dx*15,y=10) start_y, start_x, dy = 530, 100, 35 tk.Label(self._frame,text='Check for minimum section modulus').place(x=start_x+dx*9.7,y=start_y+4*dy) tk.Label(self._frame, text='Check for minimum plate thk.').place(x=start_x+dx*9.7,y=start_y+5*dy) tk.Label(self._frame, text='Check for minimum shear area').place(x=start_x+dx*9.7,y=start_y+6*dy) tk.Label(self._frame, text='Check for buckling (RP-C201)').place(x=start_x+dx*9.7,y=start_y+7*dy) tk.Label(self._frame, text='Check for fatigue (RP-C203)').place(x=start_x + dx * 9.7, y=start_y + 8 * dy) tk.Label(self._frame, text='Check for bow slamming').place(x=start_x + dx * 9.7, y=start_y + 9 * dy) tk.Label(self._frame, text='Check for local stf. buckling').place(x=start_x + dx * 9.7, y=start_y + 10 * dy) tk.Label(self._frame, text='Check for buckling (ML-CL)').place(x=start_x + dx * 9.7, y=start_y + 11 * dy) tk.Label(self._frame, text='Check to harmonize results. Same stiffener and plate dimensions ' '(defined by largest in opt).', font='Verdana 10 bold')\ .place(x=start_x + dx * +8.5, y=start_y - 10.5 * dy) tk.Label(self._frame, text='Check to skip iterating over spacing (respective line spacing used).', font='Verdana 10 bold')\ .place(x=start_x + dx * +8.5, y=start_y - 9.8 * dy) tk.Checkbutton(self._frame,variable=self._new_check_sec_mod).place(x=start_x+dx*12,y=start_y+4*dy) tk.Checkbutton(self._frame, variable=self._new_check_min_pl_thk).place(x=start_x+dx*12,y=start_y+5*dy) tk.Checkbutton(self._frame, variable=self._new_check_shear_area).place(x=start_x+dx*12,y=start_y+6*dy) tk.Checkbutton(self._frame, variable=self._new_check_buckling).place(x=start_x+dx*12,y=start_y+7*dy) tk.Checkbutton(self._frame, variable=self._new_check_fatigue).place(x=start_x + dx * 12, y=start_y + 8 * dy) tk.Checkbutton(self._frame, variable=self._new_check_slamming).place(x=start_x + dx * 12, y=start_y + 9 * dy) tk.Checkbutton(self._frame, variable=self._new_check_local_buckling).place(x=start_x + dx * 12, y=start_y + 10 * dy) tk.Checkbutton(self._frame, variable=self._new_check_ml_buckling).place(x=start_x + dx * 12, y=start_y + 11 * dy) tk.Checkbutton(self._frame, variable=self._new_harmonizer).place(x=start_x + dx * 8, y=start_y - 10.5 * dy) tk.Checkbutton(self._frame, variable=self._keep_spacing).place(x=start_x + dx * +8, y=start_y - 9.8 * dy) self._toggle_btn = tk.Button(self._frame, text="Iterate predefiened stiffeners", relief="raised", command=self.toggle, bg = 'salmon') self._toggle_btn.place(x=start_x+dx*9, y=start_y - dy * 13) self._toggle_object, self._filez = None, None # Stress scaling self._new_fup = tk.DoubleVar() self._new_fup.set(0.5) self._new_fdwn = tk.DoubleVar() self._new_fdwn.set(1) tk.Label(self._frame, text='Factor when scaling stresses up, fup')\ .place(x=start_x + dx * 13, y=start_y + 5 * dy) ent_fup = tk.Entry(self._frame, textvariable=self._new_fup, width = 10) ent_fup.place(x=start_x + dx * 15.5, y=start_y + 5 * dy) tk.Label(self._frame, text='Factor when scaling stresses up, fdown')\ .place(x=start_x + dx * 13, y=start_y + 6 * dy) ent_fdwn = tk.Entry(self._frame, textvariable=self._new_fdwn, width = 10) ent_fdwn.place(x=start_x + dx * 15.5, y=start_y + 6 * dy) self.draw_properties() # ----------------------------------END OF OPTIMIZE SINGLE COPY----------------------------------------------- self.progress_count = tk.IntVar() self.progress_count.set(0) self.progress_bar = Progressbar(self._frame, orient="horizontal",length=200, mode="determinate", variable=self.progress_count) self.progress_bar.place(x=start_x+dx*10.5,y=start_y-dy*11.5) self.controls() self.draw_select_canvas() self._harmonizer_data = {} def trace_keep_spacing_check(self, *args): if self._keep_spacing.get(): self._ent_spacing_lower.configure({"background": "red"}) self._ent_delta_spacing.configure({"background": "red"}) self._ent_spacing_upper.configure({"background": "red"}) def selected_algorithm(self, event): ''' Action when selecting an algorithm in the optionm menu. :return: ''' start_x, start_y, dx, dy = 20, 100, 100, 40 if self._new_algorithm.get() == 'random' or self._new_algorithm.get() == 'random_no_delta': self._ent_random_trials.place_forget() self.algorithm_random_label.place_forget() self._lb_swarm_size.place_forget() self._lb_omega.place_forget() self._lb_phip.place_forget() self._lb_phig.place_forget() self._lb_maxiter.place_forget() self._lb_minstep.place_forget() self._lb_minfunc.place_forget() self._ent_swarm_size.place_forget() self._ent_omega.place_forget() self._ent_phip.place_forget() self._ent_phig.place_forget() self._ent_maxiter.place_forget() self._ent_minstep.place_forget() self._ent_minfunc.place_forget() self._ent_random_trials.place(x=start_x + dx * 11.3, y=start_y + 1.2 * dy) self.algorithm_random_label.place(x=start_x + dx * 11.3, y=start_y + 0.5 * dy) elif self._new_algorithm.get() == 'anysmart' or self._new_algorithm.get() == 'anydetail': self._ent_random_trials.place_forget() self.algorithm_random_label.place_forget() self._lb_swarm_size.place_forget() self._lb_omega.place_forget() self._lb_phip.place_forget() self._lb_phig.place_forget() self._lb_maxiter.place_forget() self._lb_minstep.place_forget() self._lb_minfunc.place_forget() self._ent_swarm_size.place_forget() self._ent_omega.place_forget() self._ent_phip.place_forget() self._ent_phig.place_forget() self._ent_maxiter.place_forget() self._ent_minstep.place_forget() self._ent_minfunc.place_forget() elif self._new_algorithm.get() == 'pso': y_place_label = 11.2 y_place = 12.2 self._ent_random_trials.place_forget() start_x = 150 self._lb_swarm_size.place(x=start_x + dx*11 , y=start_y - 1 * dy) self._lb_omega.place(x=start_x + dx*11 , y=start_y - 0 * dy) self._lb_phip.place(x=start_x + dx*11 , y=start_y + 1 * dy) self._lb_phig.place(x=start_x + dx*11 , y=start_y + 2 * dy) self._lb_maxiter.place(x=start_x + dx*14 , y=start_y - 1 * dy) self._lb_minstep.place(x=start_x + dx*14, y=start_y + 0 * dy) self._lb_minfunc.place(x=start_x + dx*14, y=start_y + 1 * dy) self._ent_swarm_size.place(x=start_x + dx*12 , y=start_y - 1 * dy) self._ent_omega.place(x=start_x + dx*12 , y=start_y - 0 * dy) self._ent_phip.place(x=start_x + dx*12 , y=start_y + 1 * dy) self._ent_phig.place(x=start_x + dx*12 , y=start_y + 2 * dy) self._ent_maxiter.place(x=start_x + dx*15 , y=start_y - 1 * dy) self._ent_minstep.place(x=start_x + dx*15, y=start_y + 0 * dy) self._ent_minfunc.place(x=start_x + dx*15, y=start_y + 1 * dy) def get_pressure_input(self, line): if __name__ == '__main__': lateral_press = self._normal_pressure fat_press = self._fatigue_pressure slamming_pressure = self._slamming_pressure fat_obj = self._fatigue_object else: lateral_press = self.app.get_highest_pressure(line)['normal'] / 1e6 fat_obj = self.app._line_to_struc[line][2] if fat_obj is not None: try: fat_press = self.app.get_fatigue_pressures(line, fat_obj.get_accelerations()) except AttributeError: fat_press = None else: fat_press = {'p_ext': {'loaded': 0, 'ballast': 0, 'part': 0}, 'p_int': {'loaded': 0, 'ballast': 0, 'part': 0}} try: if self.app.get_highest_pressure(line)['slamming'] is None: slamming_pressure = 0 else: slamming_pressure = self.app.get_highest_pressure(line)['slamming'] except [KeyError, AttributeError]: slamming_pressure = 0 fat_press = ((fat_press['p_ext']['loaded'], fat_press['p_ext']['ballast'], fat_press['p_ext']['part']), (fat_press['p_int']['loaded'], fat_press['p_int']['ballast'], fat_press['p_int']['part'])) return {'lateral pressure': lateral_press, 'fatigue pressure': fat_press, 'slamming pressure': slamming_pressure, 'fatigue object': fat_obj} def run_optimizaion(self): ''' Function when pressing the optimization botton inside this window. :return: ''' self.run_button.config(bg = 'white') self._opt_results = {} t_start = time.time() self.progress_bar.config(maximum=len(self._active_lines)) self._opt_actual_running_time.config(text='') contraints = (self._new_check_sec_mod.get(), self._new_check_min_pl_thk.get(), self._new_check_shear_area.get(), self._new_check_buckling.get(), self._new_check_fatigue.get(), self._new_check_slamming.get(), self._new_check_local_buckling.get(), False, self._new_check_ml_buckling.get(), False) self.pso_parameters = (self._new_swarm_size.get(),self._new_omega.get(),self._new_phip.get(), self._new_phig.get(),self._new_maxiter.get(),self._new_minstep.get(), self._new_minfunc.get()) max_min_span = None self.progress_count.set(0) counter = 0 found_files = self._filez for line in self._active_lines: init_obj = self._line_to_struc[line][0] if __name__ == '__main__': lateral_press = 200 #for testing fat_obj = test.get_fatigue_object() fat_press = test.get_fatigue_pressures() slamming_pressure = test.get_slamming_pressure() fat_press = ((fat_press['p_ext']['loaded'], fat_press['p_ext']['ballast'], fat_press['p_ext']['part']), (fat_press['p_int']['loaded'], fat_press['p_int']['ballast'], fat_press['p_int']['part'])) else: input_pressures = self.get_pressure_input(line) lateral_press = input_pressures['lateral pressure'] fat_press = input_pressures['fatigue pressure'] slamming_pressure = input_pressures['slamming pressure'] fat_obj = input_pressures['fatigue object'] if self._toggle_btn.config('relief')[-1] == 'sunken': found_files, predefined_stiffener_iter = self.toggle(found_files=found_files, obj = init_obj, iterating=True) else: predefined_stiffener_iter = None self._opt_results[line] = list(op.run_optmizataion(init_obj, self.get_lower_bounds(init_obj), self.get_upper_bounds(init_obj), lateral_press,self.get_deltas(), algorithm=self._new_algorithm.get(), trials=self._new_algorithm_random_trials.get(), side=init_obj.Plate.get_side(), const_chk=contraints, pso_options=self.pso_parameters, fatigue_obj=fat_obj, fat_press_ext_int=fat_press, slamming_press=slamming_pressure, predefined_stiffener_iter = predefined_stiffener_iter, processes=self._new_processes.get(), min_max_span=max_min_span, use_weight_filter=False, fdwn = self._new_fdwn.get(), fup = self._new_fdwn.get(), ml_algo=self._ML_buckling)) self._harmonizer_data[line] = {} counter += 1 self.progress_count.set(counter) self.progress_bar.update_idletasks() if self._opt_results[line] != None: self._opt_actual_running_time.config(text='Accumulated running time: \n' + str(time.time() - t_start) + ' sec') # print('Runned', line, 'OK') # else: # print('Runned', line, 'NOT OK - no results') self.draw_select_canvas() if self._new_harmonizer.get() == True: self._canvas_opt.config(bg='yellow') self._canvas_opt.create_text(200, 200, text='Harmonizing results', font='Verdana 14 bold') self.opt_harmonizer_historic() counter += 1 self.progress_bar.stop() self.run_button.config(bg='green') self.draw_properties() def opt_harmonizer_historic(self): # getting all acceptable solutions. all_ok_checks = [] for line, data in self._opt_results.items(): for fail_ok in data[4]: if fail_ok[0] == True: # try: # [round(val, 10) for val in fail_ok[2]] # except TypeError: # [print(val) for val in fail_ok[2]] all_ok_checks.append(tuple([round(val,10) for val in fail_ok[2][0:6]])) all_ok_checks = set(all_ok_checks) # make iterator for multiprocessing iterator = list() to_check = (self._new_check_sec_mod.get(), self._new_check_min_pl_thk.get(), self._new_check_shear_area.get(), self._new_check_buckling.get(), self._new_check_fatigue.get(), self._new_check_slamming.get(), self._new_check_local_buckling.get(), False, self._new_check_ml_buckling.get(), False) iter_run_info = dict() for slave_line in self._opt_results.keys(): input_pressures = self.get_pressure_input(slave_line) iter_run_info[slave_line] = {'lateral pressure': input_pressures['lateral pressure'], 'fatigue pressure': input_pressures['fatigue pressure'], 'fatigue object':input_pressures['fatigue object'], 'slamming pressure':input_pressures['slamming pressure'], 'chk_calc_obj': self._opt_results[slave_line][0], 'ML-CL': [0,0], 'fup': self._new_fup.get(), 'fdwn': self._new_fdwn.get()} iter_run_info['lines'] = list(self._opt_results.keys()) iter_run_info['checks'] = to_check iter_run_info['keep spacing'] = self._keep_spacing.get() for x_check in all_ok_checks: iterator.append({'x': x_check, 'info': iter_run_info}) if to_check[8]: # Do ML-CL checks to_run = list() for x_and_info in iterator: for slave_line in x_and_info['info']['lines']: iter_run_info = x_and_info['info'] lateral_press = iter_run_info[slave_line]['lateral pressure'] fat_press = iter_run_info[slave_line]['fatigue pressure'] fat_obj = iter_run_info[slave_line]['fatigue object'] slamming_pressure = iter_run_info[slave_line]['slamming pressure'] chk_calc_obj = iter_run_info[slave_line]['chk_calc_obj'] master_x = list(x_and_info['x']) if iter_run_info['keep spacing']: x = [chk_calc_obj.Plate.get_s()] + master_x[1:] + [chk_calc_obj.Plate.get_span(), chk_calc_obj.Plate.get_lg()] else: x = master_x + [chk_calc_obj.Plate.get_span(), chk_calc_obj.Plate.get_lg()] fdwn = self._new_fdwn.get() fup = self._new_fdwn.get() calc_object = op.create_new_calc_obj(chk_calc_obj, x, fat_obj.get_fatigue_properties(), fdwn=fdwn, fup=fup) calc_object_stf = op.create_new_calc_obj(chk_calc_obj.Stiffener, x, fat_obj.get_fatigue_properties(), fdwn=fdwn, fup=fup) calc_object_pl = op.create_new_calc_obj(chk_calc_obj.Plate, x, fat_obj.get_fatigue_properties(), fdwn=fdwn, fup=fup) calc_object = [calc.AllStructure(Plate=calc_object_pl[0], Stiffener=calc_object_stf[0], Girder=None, main_dict=chk_calc_obj.get_main_properties()['main dict']), calc_object_pl[1]] calc_object[0].lat_press = lateral_press to_run.append((calc_object, x, lateral_press)) # ML-CL to be used. sp_int, sp_gl_gt, up_int, up_gl_gt, \ sp_int_idx, sp_gl_gt_idx, up_int_idx, up_gl_gt_idx = \ list(), list(), list(), list(), list(), list(), list(), list() # Create iterator idx_count = 0 for calc_object, x, lat_press in to_run: idx_count += 1 if calc_object[0].Plate.get_puls_sp_or_up() == 'UP': if calc_object[0].Plate.get_puls_boundary() == 'Int': up_int.append(calc_object[0].Stiffener.get_buckling_ml_input(lat_press, alone=False)) up_int_idx.append(idx_count-1) else: up_gl_gt_idx.append(idx_count-1) else: if calc_object[0].Stiffener.get_puls_boundary() == 'Int': sp_int.append(calc_object[0].Stiffener.get_buckling_ml_input(lat_press, alone=False)) sp_int_idx.append(idx_count-1) else: sp_gl_gt.append(calc_object[0].Stiffener.get_buckling_ml_input(lat_press, alone=False)) sp_gl_gt_idx.append(idx_count-1) # Predict sort_again = np.zeros([len(to_run), 2]) if len(sp_int) != 0: sp_int_res = [self._ML_buckling['cl SP buc int predictor'].predict(self._ML_buckling['cl SP buc int scaler'] .transform(sp_int)), self._ML_buckling['cl SP ult int predictor'].predict(self._ML_buckling['cl SP buc int scaler'] .transform(sp_int))] for idx, res_buc, res_ult in zip(sp_int_idx, sp_int_res[0], sp_int_res[1]): sort_again[idx] = [res_buc, res_ult] if len(sp_gl_gt) != 0: sp_gl_gt_res = [self._ML_buckling['cl SP buc GLGT predictor'].predict(self._ML_buckling['cl SP buc GLGT scaler'] .transform(sp_gl_gt)), self._ML_buckling['cl SP buc GLGT predictor'].predict(self._ML_buckling['cl SP buc GLGT scaler'] .transform(sp_gl_gt))] for idx, res_buc, res_ult in zip(sp_gl_gt_idx, sp_gl_gt_res[0], sp_gl_gt_res[1]): sort_again[idx] = [res_buc, res_ult] if len(up_int) != 0: up_int_res = [self._ML_buckling['cl UP buc int predictor'].predict(self._ML_buckling['cl UP buc int scaler'] .transform(up_int)), self._ML_buckling['cl UP ult int predictor'].predict(self._ML_buckling['cl UP buc int scaler'] .transform(up_int))] for idx, res_buc, res_ult in zip(up_int_idx, up_int_res[0], up_int_res[1]): sort_again[idx] = [res_buc, res_ult] if len(up_gl_gt) != 0: up_gl_gt_res = [self._ML_buckling['cl UP buc GLGT predictor'].predict(self._ML_buckling['cl UP buc GLGT scaler'] .transform(up_gl_gt)), self._ML_buckling['cl UP buc GLGT predictor'].predict(self._ML_buckling['cl UP buc GLGT scaler'] .transform(up_gl_gt))] for idx, res_buc, res_ult in zip(up_gl_gt_idx, up_gl_gt_res[0], up_gl_gt_res[1]): sort_again[idx] = [res_buc, res_ult] for idx, x_and_info in enumerate(iterator): for slave_line in x_and_info['info']['lines']: iterator[idx]['info'][slave_line]['ML-CL'] = sort_again[idx] # END ML-CL calc processes = max(cpu_count() - 1, 1) with Pool(processes) as my_process: res_pre = my_process.map(helper_harmonizer_multi, iterator) after_multirun_check_ok = list() for res in res_pre: if res is not None: after_multirun_check_ok.append(res) lowest_area, lowest_x = float('inf'), None for ok_chkd in set(after_multirun_check_ok): if sum(op.get_field_tot_area(ok_chkd )) < lowest_area: lowest_area = sum(op.get_field_tot_area(ok_chkd)) lowest_x = ok_chkd if lowest_area != float('inf'): for line in self._opt_results.keys(): if self._keep_spacing: this_x = [self._line_to_struc[line][0].Plate.get_s()] + list(lowest_x)[1:] + \ [self._line_to_struc[line][0].Plate.get_span(), self._line_to_struc[line][0].Plate.get_lg()] else: this_x = list(lowest_x) + [self._line_to_struc[line][0].Plate.get_span(), self._line_to_struc[line][0].Plate.get_lg()] calc_object_stf = op.create_new_calc_obj(self._line_to_struc[line][0].Plate, this_x, fat_obj.get_fatigue_properties(), fdwn=fdwn, fup=fup) calc_object_pl = op.create_new_calc_obj(self._line_to_struc[line][0].Stiffener, this_x, fat_obj.get_fatigue_properties(), fdwn=fdwn, fup=fup) self._opt_results[line][0] = [calc.AllStructure(Plate=calc_object_pl[0], Stiffener=calc_object_stf[0], Girder=None, main_dict=chk_calc_obj.get_main_properties()['main dict']), calc_object_pl[1]] if self._line_to_struc[line][2] != None: self._opt_results[line][2] = opt.create_new_calc_obj(init_obj= self._line_to_struc[line][1], x = this_x, fat_dict=self._line_to_struc[line] [2].get_fatigue_properties())[1] else: self._line_to_struc[line][2] = None return True else: for line in self._opt_results.keys(): self._opt_results[line][0] = None return False def opt_harmonizer(self): ''' Harmonizes the results of you run. :return: ''' # Find highest section modulus. harm_res= {} chk = (self._new_check_sec_mod.get(), self._new_check_min_pl_thk.get(), self._new_check_shear_area.get(), self._new_check_buckling.get(), self._new_check_fatigue.get(), self._new_check_slamming.get(), self._new_check_local_buckling.get()) for master_line in self._opt_results.keys(): master_obj = self._opt_results[master_line][0] master_x = [master_obj.Plate.get_s(), master_obj.Plate.get_pl_thk(), master_obj.Stiffener.get_web_h(), master_obj.Stiffener.get_web_thk(), master_obj.Stiffener.get_fl_w(), master_obj.Stiffener.get_fl_thk(), master_obj.Plate.get_span(),master_obj.Plate.get_lg()] harm_res[master_line] = [] for slave_line in self._opt_results.keys(): input_pressures = self.get_pressure_input(slave_line) lateral_press = input_pressures['lateral pressure'] fat_press = input_pressures['fatigue pressure'] fat_obj = input_pressures['fatigue object'] slamming_pressure = input_pressures['slamming pressure'] chk_calc_obj = self._opt_results[slave_line][1] chk_result = list(op.run_optmizataion(chk_calc_obj, master_x[0:6]+[chk_calc_obj.Plate.get_span(), chk_calc_obj.Plate.get_lg()], master_x[0:6]+[chk_calc_obj.Plate.get_span(), chk_calc_obj.Plate.get_lg()], lateral_press,self.get_deltas(), algorithm=self._new_algorithm.get(), trials=self._new_algorithm_random_trials.get(), side=chk_calc_obj.Plate.get_side(), const_chk=chk, pso_options=self.pso_parameters,fatigue_obj=fat_obj, fat_press_ext_int=fat_press, slamming_press=slamming_pressure, predefined_stiffener_iter = None, processes=self._new_processes.get(), min_max_span=None, use_weight_filter=True, fdwn = self._new_fdwn.get(), fup = self._new_fdwn.get()))[0:4] print('Master:', master_line, 'Slave', slave_line, 'Check', chk_result[-1]) harm_res[master_line].append(chk_result) harmonized_area, harmonized_line =float('inf'), None for master_line, all_slave_res in harm_res.items(): if all([slave_line_res[-1] for slave_line_res in all_slave_res]): master_obj = self._opt_results[master_line][0] master_area = sum(op.get_field_tot_area([master_obj.Plate.get_s(), master_obj.Plate.get_pl_thk(), master_obj.Stiffener.get_web_h(), master_obj.Stiffener.get_web_thk(), master_obj.Stiffener.get_fl_w(), master_obj.Stiffener.get_fl_thk(), master_obj.Plate.get_span(),master_obj.Plate.get_lg()])) if master_area < harmonized_area: harmonized_area = master_area harmonized_line = master_line if harmonized_area != 0 and harmonized_line is not None: harmonized_x_pl = self._opt_results[harmonized_line][0].Plate.get_tuple() harmonized_x_stf = self._opt_results[harmonized_line][0].Stiffener.get_tuple() harmonized_x = harmonized_x_pl[0:2] + harmonized_x_stf[2:] for line in self._opt_results.keys(): self._opt_results[line][0] = opt.create_new_structure_obj(self._line_to_struc[line][0], harmonized_x) calc_object_stf = op.create_new_calc_obj(self._line_to_struc[line][0].Plate, harmonized_x) calc_object_pl = op.create_new_calc_obj(self._line_to_struc[line][0].Stiffener,harmonized_x) self._opt_results[line][0] = [calc.AllStructure(Plate=calc_object_pl[0], Stiffener=calc_object_stf[0], Girder=None, main_dict=chk_calc_obj.get_main_properties()['main dict']), calc_object_pl[1]] if self._line_to_struc[line][2] != None: self._opt_results[line][2] = opt.create_new_calc_obj(init_obj= self._line_to_struc[line][1], x = harmonized_x, fat_dict=self._line_to_struc[line] [2].get_fatigue_properties())[1] else: self._line_to_struc[line][2] = None return True else: for line in self._opt_results.keys(): self._opt_results[line][0] = None self._opt_results[line][1] = None return False def get_running_time(self): ''' Estimate the running time of the algorithm. :return: ''' if self._new_algorithm.get() in ['anysmart', 'anydetail']: try: number_of_combinations = \ max((self._new_spacing_upper.get() - self._new_spacing_lower.get()) / self._new_delta_spacing.get(), 1) * \ max((self._new_pl_thk_upper.get() - self._new_pl_thk_lower.get()) / self._new_delta_pl_thk.get(), 1) * \ max((self._new_web_h_upper.get() - self._new_web_h_lower.get()) / self._new_delta_web_h.get(), 1) * \ max((self._new_web_thk_upper.get() - self._new_web_thk_lower.get()) / self._new_delta_web_thk.get(), 1) * \ max((self._new_fl_w_upper.get() - self._new_fl_w_lower.get()) / self._new_delta_fl_w.get(), 1) * \ max((self._new_fl_thk_upper.get() - self._new_fl_thk_lower.get()) / self._new_delta_fl_thk.get(), 1) return int(number_of_combinations * self.running_time_per_item)*len(self._active_lines) except TclError: return 0 else: try: return int(self._new_algorithm_random_trials.get() * self.running_time_per_item)*len(self._active_lines) except TclError: return 0 def get_deltas(self): ''' Return a numpy array of the deltas. :return: ''' return np.array([float(self._ent_delta_spacing.get()) / 1000, float(self._new_delta_pl_thk.get()) / 1000, float(self._new_delta_web_h.get()) / 1000, float(self._new_delta_web_thk.get()) / 1000, float(self._new_delta_fl_w.get()) / 1000, float(self._new_delta_fl_thk.get()) / 1000]) def update_running_time(self, *args): ''' Estimate the running time of the algorithm. :return: ''' try: self._runnig_time_label.config(text=str(self.get_running_time())) except ZeroDivisionError: pass # _tkinter.TclError: pass if self._new_check_ml_buckling.get() == True: self._new_check_buckling.set(False) self._new_check_local_buckling.set(False) def get_upper_bounds(self,obj): ''' Return an numpy array of upper bounds. :return: ''' if self._keep_spacing: spacing = obj.Plate.get_s() else: spacing = self._new_spacing_lower.get() / 1000 return np.array([spacing, self._new_pl_thk_upper.get() / 1000, self._new_web_h_upper.get() / 1000, self._new_web_thk_upper.get() / 1000, self._new_fl_w_upper.get() / 1000, self._new_fl_thk_upper.get() / 1000, obj.Plate.get_span(), obj.Plate.get_lg()]) def get_lower_bounds(self,obj): ''' Return an numpy array of lower bounds. :return: ''' if self._keep_spacing: spacing = obj.Plate.get_s() else: spacing = self._new_spacing_lower.get() / 1000 return np.array([spacing, self._new_pl_thk_lower.get() / 1000, self._new_web_h_lower.get() / 1000, self._new_web_thk_lower.get() / 1000, self._new_fl_w_lower.get() / 1000, self._new_fl_thk_lower.get() / 1000, obj.Plate.get_span(), obj.Plate.get_lg()]) def checkered(self, line_distance): ''' Creates a grid in the properties canvas. :param line_distance: :return: ''' # vertical lines at an interval of "line_distance" pixel for x in range(line_distance, self._prop_canvas_dim[0], line_distance): self._canvas_opt.create_line(x, 0, x, self._prop_canvas_dim[0], fill="grey", stipple='gray50') # horizontal lines at an interval of "line_distance" pixel for y in range(line_distance, self._prop_canvas_dim[1], line_distance): self._canvas_opt.create_line(0, y, self._prop_canvas_dim[0], y, fill="grey", stipple='gray50') def draw_properties(self,init_obj = None, opt_obj=None,line=None): ''' Drawing properties in the canvas. :return: ''' ctr_x = self._prop_canvas_dim[0] / 2 ctr_y = self._prop_canvas_dim[1] / 2 + 200 opt_color, opt_stippe = 'red', 'gray12' m = self._draw_scale self._canvas_opt.delete('all') if init_obj != None: self.checkered(10) init_color, init_stipple = 'blue', 'gray12' self._canvas_opt.create_rectangle(0, 0, self._prop_canvas_dim[0] + 10, 80, fill='white') self._canvas_opt.create_line(10, 10, 30, 10, fill=init_color, width=5) self._canvas_opt.create_text(270, 10, text='Initial - Pl.: ' + str(init_obj.Plate.get_s() * 1000) + 'x' + str( init_obj.Plate.get_pl_thk() * 1000) + ' Stf.: ' + str(init_obj.Stiffener.get_web_h() * 1000) + 'x' + str( init_obj.Stiffener.get_web_thk() * 1000) + '+' + str(init_obj.Stiffener.get_fl_w() * 1000) + 'x' + str(init_obj.Stiffener.get_fl_thk() * 1000), font='Verdana 8', fill=init_color) self._canvas_opt.create_text(120, 30, text='Weight (per Lg width): ' + str(int(op.calc_weight([init_obj.Plate.get_s(), init_obj.Plate.get_pl_thk(), init_obj.Stiffener.get_web_h(), init_obj.Stiffener.get_web_thk(), init_obj.Stiffener.get_fl_w(), init_obj.Stiffener.get_fl_thk(), init_obj.Stiffener.get_span(), init_obj.Stiffener.get_lg()]))), font='Verdana 8', fill=init_color) self._canvas_opt.create_rectangle(ctr_x - m * init_obj.Plate.get_s() / 2, ctr_y, ctr_x + m * init_obj.Plate.get_s() / 2, ctr_y - m * init_obj.Plate.get_pl_thk(), fill=init_color, stipple=init_stipple) self._canvas_opt.create_rectangle(ctr_x - m * init_obj.Stiffener.get_web_thk() / 2, ctr_y - m * init_obj.Stiffener.get_pl_thk(), ctr_x + m * init_obj.Stiffener.get_web_thk() / 2, ctr_y - m * (init_obj.Stiffener.get_web_h() + init_obj.Stiffener.get_pl_thk()) , fill=init_color, stipple=init_stipple) if init_obj.Stiffener.get_stiffener_type() not in ['L', 'L-bulb']: self._canvas_opt.create_rectangle(ctr_x - m * init_obj.Stiffener.get_fl_w() / 2, ctr_y - m * (init_obj.Plate.get_pl_thk() + init_obj.Stiffener.get_web_h()), ctr_x + m * init_obj.Stiffener.get_fl_w() / 2, ctr_y - m * (init_obj.Plate.get_pl_thk() + init_obj.Stiffener.get_web_h() + init_obj.Stiffener.get_fl_thk()), fill=init_color, stipple=init_stipple) else: self._canvas_opt.create_rectangle(ctr_x - m * init_obj.Stiffener.get_web_thk() / 2, ctr_y - m * (init_obj.Plate.get_pl_thk() + init_obj.Stiffener.get_web_h()), ctr_x + m * init_obj.Stiffener.get_fl_w(), ctr_y - m * (init_obj.Plate.get_pl_thk() + init_obj.Stiffener.get_web_h() + init_obj.Stiffener.get_fl_thk()), fill=init_color, stipple=init_stipple) if opt_obj != None: # [0.6, 0.012, 0.25, 0.01, 0.1, 0.01] self._canvas_opt.config(bg = 'palegreen') self._canvas_opt.create_rectangle(ctr_x - m * opt_obj.Plate.get_s() / 2, ctr_y, ctr_x + m * opt_obj.Plate.get_s() / 2, ctr_y - m * opt_obj.Plate.get_pl_thk(), fill=opt_color, stipple=opt_stippe) self._canvas_opt.create_rectangle(ctr_x - m * opt_obj.Stiffener.get_web_thk() / 2, ctr_y - m * opt_obj.Plate.get_pl_thk(), ctr_x + m * opt_obj.Stiffener.get_web_thk() / 2, ctr_y - m * ( opt_obj.Stiffener.get_web_h() + opt_obj.Plate.get_pl_thk()) , fill=opt_color, stipple=opt_stippe) if init_obj.Stiffener.get_stiffener_type() not in ['L', 'L-bulb']: self._canvas_opt.create_rectangle(ctr_x - m * opt_obj.Stiffener.get_fl_w() / 2, ctr_y - m * ( opt_obj.Plate.get_pl_thk() + opt_obj.Stiffener.get_web_h()), ctr_x + m * opt_obj.Stiffener.get_fl_w() / 2, ctr_y - m * ( opt_obj.Plate.get_pl_thk() + opt_obj.Stiffener.get_web_h() + opt_obj.Stiffener.get_fl_thk()), fill=opt_color, stipple=opt_stippe) else: self._canvas_opt.create_rectangle(ctr_x - m * opt_obj.Stiffener.get_web_thk() / 2, ctr_y - m * ( opt_obj.Plate.get_pl_thk() + opt_obj.Stiffener.get_web_h()), ctr_x + m * opt_obj.Stiffener.get_fl_w(), ctr_y - m * ( opt_obj.Plate.get_pl_thk() + opt_obj.Stiffener.get_web_h() + opt_obj.Stiffener.get_fl_thk()), fill=opt_color, stipple=opt_stippe) self._canvas_opt.create_line(10, 50, 30, 50, fill=opt_color, width=5) self._canvas_opt.create_text(270, 50, text='Optimized - Pl.: ' + str(round(opt_obj.Plate.get_s() * 1000,1)) + 'x' + str(round(opt_obj.Plate.get_pl_thk() * 1000,1)) + ' Stf.: ' + str(round(opt_obj.Stiffener.get_web_h() * 1000,1)) + 'x' + str(round(opt_obj.Stiffener.get_web_thk() * 1000,1)) + '+' + str(round(opt_obj.Stiffener.get_fl_w() * 1000,1)) + 'x' + str(round(opt_obj.Stiffener.get_fl_thk() * 1000,1)), font='Verdana 8', fill=opt_color) self._canvas_opt.create_text(120, 70, text='Weight (per Lg width): ' + str(int(op.calc_weight([opt_obj.Plate.get_s(), opt_obj.Plate.get_pl_thk(), opt_obj.Stiffener.get_web_h(), opt_obj.Stiffener.get_web_thk(), opt_obj.Stiffener.get_fl_w(), opt_obj.Stiffener.get_fl_thk(), opt_obj.Plate.get_span(), opt_obj.Plate.get_lg()]))), font='Verdana 8', fill=opt_color) elif self._opt_results != {}: self._canvas_opt.config(bg='green') self._canvas_opt.create_text(200, 200, text='Optimization results avaliable.\n\n' 'Middle click orange lines to\n view results.', font = 'Verdana 14 bold') else: self._canvas_opt.config(bg='mistyrose') self._canvas_opt.create_text(200, 60, text='No optimization results found.', font = 'Verdana 14 bold') if line != None: if __name__ == '__main__': lateral_press = 200 # for testing else: lateral_press = self.app.get_highest_pressure(line)['normal'] / 1000 self._canvas_opt.create_text(250, self._prop_canvas_dim[1]-10, text= line + ' lateral pressure: '+str(lateral_press)+' kPa', font='Verdana 10 bold',fill='red') def draw_select_canvas(self, load_selected=False): ''' Making the lines canvas. :return: ''' self._canvas_select.delete('all') # grid for the canavs self._canvas_select.create_line(self._canvas_draw_origo[0], 0, self._canvas_draw_origo[0], self._select_canvas_dim[1], stipple='gray50') self._canvas_select.create_line(0, self._canvas_draw_origo[1], self._select_canvas_dim[0], self._canvas_draw_origo[1], stipple='gray50') self._canvas_select.create_text(self._canvas_draw_origo[0] - 30 , self._canvas_draw_origo[1] + 20 , text='(0,0)', font='Text 10') self._canvas_select.create_text([800 ,60], text='Mouse left click: select lines to loads\n' 'Mouse mid click: show properties for one line\n' 'Mouse right click: clear all selection\n' 'Shift key press: add selected line\n' 'Control key press: remove selected line\n\n' 'NOTE! Select lines you want to return before\n' 'pressing return button.', font='Verdana 8 bold', fill='red') # drawing the line dictionary. if len(self._line_dict) != 0: for line, value in self._line_dict.items(): color = 'black' coord1 = self.get_point_canvas_coord('point' + str(value[0])) coord2 = self.get_point_canvas_coord('point' + str(value[1])) vector = [coord2[0] - coord1[0], coord2[1] - coord1[1]] # drawing a bold line if it is selected if line in self._active_lines: width = 6 if line in self._opt_results.keys(): color, width = 'orange', 8 self._canvas_select.create_line(coord1, coord2, width=width, fill=color) self._canvas_select.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 + 10, text='Line ' + str(get_num(line)), font='Verdand 10 bold', fill='red') else: if line in self._opt_results.keys(): color = 'orange' self._canvas_select.create_line(coord1, coord2, width=3, fill=color) self._canvas_select.create_text(coord1[0] - 20 + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 + 10, text='line' + str(get_num(line)), font="Text 8", fill='black') def algorithm_info(self): ''' When button is clicked, info is displayed.''' messagebox.showinfo(title='Algorithm information', message='The algorithms currently included is:\n' 'ANYSMART: \n' ' Calculates all alternatives using upper and lower bounds.\n' ' The step used inside the bounds is defined in deltas.\n\n' 'RANDOM: \n' ' Uses the same bounds and deltas as in ANYSMART.\n' ' Number of combinations calculated is defined in "trials",\n' ' which selects withing the bounds and deltas defined.\n\n' 'RANDOM_NO_BOUNDS:\n' ' Same as RANDOM, but does not use the defined deltas.\n' ' The deltas is set to 1 mm for all dimensions/thicknesses.\n\n' 'ANYDETAIL:\n' ' Same as for ANYSMART, but will take some more time and\n' ' provide a chart of weight development during execution.\n\n' 'PSO - Particle Swarm Search:\n' ' The information can be found on \n' ' http://pythonhosted.org/pyswarm/ \n' ' For further information google it!\n' ' Parameters:\n' ' swarmsize : The number of particles in the swarm (Default: 100)\n' ' omega : Particle velocity scaling factor (Default: 0.5)\n' ' phip : Scaling factor to search away from the particle’s \n' ' best known position (Default: 0.5)\n' ' phig : Scaling factor to search away from the swarm’s best \n' ' known position (Default: 0.5)\n' ' maxiter : The maximum number of iterations for the swarm \n' ' to search (Default: 100)\n' ' minstep : The minimum stepsize of swarm’s best position \n' ' before the search terminates (Default: 1e-8)\n' ' minfunc : The minimum change of swarm’s best objective value\n' ' before the search terminates (Default: 1e-8)\n\n' '\n' 'All algorithms calculates local scantling and buckling requirements') def slider_used(self, event): ''' Action when slider is activated. :return: ''' self._canvas_scale = self.slider.get() self.draw_canvas() def on_closing(self): ''' Action when closing the window without saving. :return: ''' if __name__ == '__main__': self._frame.destroy() return mess = tk.messagebox.showwarning('Closed without saving', 'Closing will not save loads you have created', type = 'okcancel') if mess == 'ok': self._frame.grab_release() self._frame.destroy() self.app.on_aborted_load_window() def get_point_canvas_coord(self, point_no): ''' Returning the canvas coordinates of the point. This value will change with slider. :param point_no: :return: ''' point_coord_x = self._canvas_draw_origo[0] + self._point_dict[point_no][0]* self._canvas_scale point_coord_y = self._canvas_draw_origo[1] - self._point_dict[point_no][1]* self._canvas_scale return [point_coord_x, point_coord_y] def controls(self): ''' Specifying the controls to be used. :return: ''' self._canvas_select.bind('<Button-1>', self.left_click) self._canvas_select.bind('<Button-2>', self.mid_click) self._canvas_select.bind('<Button-3>', self.right_click) self._frame.bind('<Shift_L>', self.shift_pressed) self._frame.bind('<Shift_R>', self.shift_pressed) self._frame.bind('<Control_L>', self.ctrl_pressed) self._frame.bind('<Control_R>', self.ctrl_pressed) self._frame.bind("<MouseWheel>", self.mouse_scroll) self._frame.bind("<B2-Motion>", self.button_2_click_and_drag) def shift_pressed(self,event=None): ''' Event is executed when shift key pressed. :return: ''' self._add_to_lines = True def ctrl_pressed(self,event=None): ''' Event when control is pressed. :param event: :return: ''' self._add_to_lines = False def left_click(self, event): ''' When clicking the right button, this method is called. method is referenced in ''' self._previous_drag_mouse = [event.x, event.y] click_x = self._canvas_select.winfo_pointerx() - self._canvas_select.winfo_rootx() click_y = self._canvas_select.winfo_pointery() - self._canvas_select.winfo_rooty() stop = False if len(self._line_dict) > 0: for key, value in self._line_dict.items(): coord1x = self.get_point_canvas_coord('point' + str(value[0]))[0] coord2x = self.get_point_canvas_coord('point' + str(value[1]))[0] coord1y = self.get_point_canvas_coord('point' + str(value[0]))[1] coord2y = self.get_point_canvas_coord('point' + str(value[1]))[1] vector = [coord2x - coord1x, coord2y - coord1y] click_x_range = [ix for ix in range(click_x - 10, click_x + 10)] click_y_range = [iy for iy in range(click_y - 10, click_y + 10)] distance = int(dist([coord1x, coord1y], [coord2x, coord2y])) # checking along the line if the click is witnin +- 10 around the click for dist_mult in range(1, distance - 1): dist_mult = dist_mult / distance x_check = int(coord1x) + int(round(vector[0] * dist_mult, 0)) y_check = int(coord1y) + int(round(vector[1] * dist_mult, 0)) if x_check in click_x_range and y_check in click_y_range: self.line_is_active = True if self._add_to_lines: if key not in self._active_lines: self._active_lines.append(key) elif self._add_to_lines== False: if key in self._active_lines: self._active_lines.remove(key) self._canvas_select.delete('all') break self.draw_select_canvas() self.update_running_time() def right_click(self,event): ''' Event when right click. :param evnet: :return: ''' self._previous_drag_mouse = [event.x, event.y] self._active_lines = [] self._canvas_select.delete('all') self.draw_select_canvas() self.update_running_time() def mid_click(self,event): ''' Event when right click. :param evnet: :return: ''' self._previous_drag_mouse = [event.x, event.y] if self._opt_results == {}: return click_x = self._canvas_select.winfo_pointerx() - self._canvas_select.winfo_rootx() click_y = self._canvas_select.winfo_pointery() - self._canvas_select.winfo_rooty() if len(self._line_dict) > 0: for key, value in self._line_dict.items(): coord1x = self.get_point_canvas_coord('point' + str(value[0]))[0] coord2x = self.get_point_canvas_coord('point' + str(value[1]))[0] coord1y = self.get_point_canvas_coord('point' + str(value[0]))[1] coord2y = self.get_point_canvas_coord('point' + str(value[1]))[1] vector = [coord2x - coord1x, coord2y - coord1y] click_x_range = [ix for ix in range(click_x - 10, click_x + 10)] click_y_range = [iy for iy in range(click_y - 10, click_y + 10)] distance = int(dist([coord1x, coord1y], [coord2x, coord2y])) # checking along the line if the click is witnin +- 10 around the click for dist_mult in range(1, distance - 1): dist_mult = dist_mult / distance x_check = int(coord1x) + int(round(vector[0] * dist_mult, 0)) y_check = int(coord1y) + int(round(vector[1] * dist_mult, 0)) if x_check in click_x_range and y_check in click_y_range: self._canvas_select.delete('all') self._active_lines = [] self._active_lines.append(key) if key in self._opt_results.keys() and self._opt_results[key]!=None: self.draw_properties(init_obj=self._line_to_struc[key][0],opt_obj=self._opt_results[key][0], line=key) self._mid_click_line = key else: self.draw_properties(init_obj=self._line_to_struc[key][0],line=key) self._mid_click_line = None break self.draw_select_canvas() self.draw_select_canvas() self.update_running_time() def save_and_close(self): ''' Save and close :return: ''' if __name__ == '__main__': self._frame.destroy() return if self._opt_results == {}: messagebox.showinfo(title='Nothing to return', message='No results to return.') return else: to_return = {} for line in self._active_lines: if self._opt_results[line][0] is not None: to_return[line] = self._opt_results[line] else: messagebox.showinfo(title='None in results, cannot return', message='None in results, c' 'annot return values.') return self.app.on_close_opt_multiple_window(to_return) messagebox.showinfo(title='Return info', message='Returning: '+str(list(to_return.keys())) + '\nLines without results are not returned.') self._frame.destroy() def toggle(self, found_files = None, obj = None, iterating = False): ''' On off button. :param found_files: :param obj: :return: ''' if iterating: if found_files is not None: predefined_structure = hlp.helper_read_section_file(files=found_files, obj=obj.Plate) else: predefined_structure = None if self._toggle_btn.config('relief')[-1] == 'sunken': self._toggle_btn.config(relief="raised") self._toggle_btn.config(bg = 'salmon') self._ent_spacing_upper.config(bg = 'white') self._ent_spacing_lower.config(bg = 'white') self._ent_delta_spacing.config(bg = 'white') else: self._toggle_btn.config(relief="sunken") self._toggle_btn.config(bg='lightgreen') self._ent_spacing_upper.config(bg = 'lightgreen') self._ent_spacing_lower.config(bg = 'lightgreen') self._ent_delta_spacing.config(bg = 'lightgreen') openfile = list(askopenfilenames(parent=self._frame, title='Choose files to open', initialdir=self._root_dir)) if openfile == []: self._toggle_btn.config(relief="raised") self._toggle_btn.config(bg='salmon') self._ent_spacing_upper.config(bg='white') self._ent_spacing_lower.config(bg='white') self._ent_delta_spacing.config(bg='white') else: self._filez = openfile return found_files, predefined_structure def toggle_harmonizer(self): pass def plot_results(self): if self._mid_click_line is not None: if len(self._opt_results[self._mid_click_line]) != 0: op.plot_optimization_results(self._opt_results[self._mid_click_line]) def mouse_scroll(self,event): self._canvas_scale += event.delta/50 self._canvas_scale = 0 if self._canvas_scale < 0 else self._canvas_scale self.draw_select_canvas() def button_2_click_and_drag(self,event): self._canvas_draw_origo = (self._canvas_draw_origo[0]-(self._previous_drag_mouse[0]-event.x), self._canvas_draw_origo[1]-(self._previous_drag_mouse[1]-event.y)) self._previous_drag_mouse = (event.x,event.y) self.draw_select_canvas() def open_example_file(self): import os if os.path.isfile('sections.csv'): os.startfile('sections.csv') else: os.startfile(self._root_dir + '/' + 'sections.csv') if __name__ == '__main__': root = tk.Tk() my_app = CreateOptimizeMultipleWindow(master=root) root.mainloop()
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/optimize_multiple_window.py
optimize_multiple_window.py
import tkinter as tk import numpy as np import time, os, datetime from tkinter import messagebox from tkinter.filedialog import askopenfilenames from multiprocessing import cpu_count try: import any_files.main_application as main_application import any_files.optimize as op import any_files.example_data as test except ModuleNotFoundError: import ANYstructure.any_files.main_application as main_application import ANYstructure.any_files.optimize as op import ANYstructure.any_files.example_data as test class CreateOptimizeCylinderWindow(): ''' This class initiates the single optimization window. ''' def __init__(self,master,app=None): super(CreateOptimizeCylinderWindow,self).__init__() if __name__ == '__main__': import pickle import any_files.calc_structure as calc self._initial_structure_obj = test.get_structure_calc_object(heavy=True) self._initial_calc_obj = test.get_structure_calc_object(heavy=True) self._fatigue_object = test.get_fatigue_object() self._fatigue_pressure = test.get_fatigue_pressures() self._slamming_pressure = test.get_slamming_pressure() image_dir = os.path.dirname(__file__)+'\\images\\' self._PULS_object = None self._puls_acceptance = 0.87 self._initial_cylinder_obj = calc.CylinderAndCurvedPlate(main_dict=test.shell_main_dict, shell=calc.Shell(test.shell_dict), long_stf=calc.Structure(test.obj_dict_cyl_long2), ring_stf=None,#calc.Structure(test.obj_dict_cyl_ring2), ring_frame=None)#calc.Structure(test.obj_dict_cyl_heavy_ring2)) self._ML_buckling = dict() # Buckling machine learning algorithm for name, file_base in zip(['cl SP buc int predictor', 'cl SP buc int scaler', 'cl SP ult int predictor', 'cl SP ult int scaler', 'cl SP buc GLGT predictor', 'cl SP buc GLGT scaler', 'cl SP ult GLGT predictor', 'cl SP ult GLGT scaler', 'cl UP buc int predictor', 'cl UP buc int scaler', 'cl UP ult int predictor', 'cl UP ult int scaler', 'cl UP buc GLGT predictor', 'cl UP buc GLGT scaler', 'cl UP ult GLGT predictor', 'cl UP ult GLGT scaler' ], ["ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_2,_3_UP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_2,_3_UP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_2,_3_UP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_2,_3_UP", "ml_files\\CL_CSR-Tank_req_cl_predictor", "ml_files\\CL_CSR-Tank_req_cl_UP_scaler", "ml_files\\CL_CSR_plate_cl,_CSR_web_cl,_CSR_web_flange_cl,_CSR_flange_cl_predictor", "ml_files\\CL_CSR_plate_cl,_CSR_web_cl,_CSR_web_flange_cl,_CSR_flange_cl_SP_scaler"]): self._ML_buckling[name] = None if os.path.isfile(file_base + '.pickle'): file = open(file_base + '.pickle', 'rb') self._ML_buckling[name] = pickle.load(file) file.close() self._ML_classes = {0: 'N/A', 1: 'A negative utilisation factor is found.', 2: 'At least one of the in-plane loads must be non-zero.', 3: 'Division by zero', 4: 'Overflow', 5: 'The aspect ratio exceeds the PULS code limit', 6: 'The global slenderness exceeds 4. Please reduce stiffener span or increase stiffener height.', 7: 'The applied pressure is too high for this plate field.', 8: 'web-flange-ratio', 9: 'UF below or equal 0.87', 10: 'UF between 0.87 and 1.0', 11: 'UF above 1.0'} else: self.app = app self._initial_structure_obj = app._line_to_struc[app._active_line][0] self._initial_calc_obj = app._line_to_struc[app._active_line][1] self._initial_cylinder_obj = app._line_to_struc[app._active_line][5] self._fatigue_object = app._line_to_struc[app._active_line][2] try: self._fatigue_pressure = app.get_fatigue_pressures(app._active_line, self._fatigue_object.get_accelerations()) except AttributeError: self._fatigue_pressure = None try: self._lateral_pressure = 0 except KeyError: self._lateral_pressure = 0 try: if self.app.get_highest_pressure(self.app._active_line)['slamming'] is None: self._slamming_pressure = 0 else: self._slamming_pressure = self.app.get_highest_pressure(self.app._active_line)['slamming'] except KeyError: self._slamming_pressure = 0 image_dir = app._root_dir +'\\images\\' self._root_dir = app._root_dir self._PULS_object = app._PULS_results self._puls_acceptance = self.app._new_puls_uf.get() self._ML_buckling = app._ML_buckling self._frame = master self._frame.wm_title("Optimize structure") self._frame.geometry('1600x900') self._frame.grab_set() ''' shell_upper_bounds = np.array( [0.03, 3, 5, 5, 10, None, None, None]) shell_deltas = np.array( [0.005, 0.5, 1, 0.1,1, None, None, None]) shell_lower_bounds = np.array( [0.02, 2.5, 5, 5, 10, None, None, None]) long_upper_bounds = np.array( [0.8, None, 0.5, 0.02, 0.2, 0.03, None, None]) long_deltas = np.array( [0.1, None, 0.1, 0.01, 0.1, 0.01, None, None]) long_lower_bounds = np.array( [0.7, None, 0.3, 0.01, 0.1, 0.01, None, None]) ring_stf_upper_bounds = np.array( [None, None, 0.5, 0.018, 0.2, 0.03, None, None]) ring_stf_deltas = np.array( [None, None, 0.1, 0.004, 0.1, 0.01, None, None]) ring_stf_lower_bounds = np.array( [None, None, 0.3, 0.010, 0.1, 0.010, None, None]) ring_frame_upper_bounds = np.array( [None, None, 0.9, 0.04, 0.3, 0.04, None, None]) ring_frame_deltas = np.array( [None, None, 0.2, 0.01, 0.1, 0.01, None, None]) ring_frame_lower_bounds = np.array( [None, None, 0.7, 0.02, 0.2, 0.02, None, None]) ''' ent_w = 12 default_shell_upper_bounds = np.array([0.03, 3, 5, 5, 10, None, None, None]) default_shell_deltas = np.array([0.005, 0.5, 1, 0.1, 1, None, None, None]) default_shell_lower_bounds = np.array([0.02, 2.5, 5, 5, 10, None, None, None]) default_long_upper_bounds = np.array([0.8, None, 0.5, 0.02, 0.2, 0.03, None, None]) default_long_deltas = np.array([0.1, None, 0.1, 0.01, 0.1, 0.01, None, None]) default_long_lower_bounds = np.array([0.7, None, 0.3, 0.01, 0.1, 0.01, None, None]) default_ring_stf_upper_bounds = np.array([None, None, 0.5, 0.018, 0.2, 0.03, None, None]) default_ring_stf_deltas = np.array([None, None, 0.1, 0.004, 0.1, 0.01, None, None]) default_ring_stf_lower_bounds = np.array([None, None, 0.3, 0.010, 0.1, 0.010, None, None]) default_ring_frame_upper_bounds = np.array([None, None, 0.9, 0.04, 0.3, 0.04, None, None]) default_ring_frame_deltas = np.array([None, None, 0.2, 0.01, 0.1, 0.01, None, None]) default_ring_frame_lower_bounds = np.array([None, None, 0.7, 0.02, 0.2, 0.02, None, None]) self._default_data = [[default_shell_upper_bounds,default_shell_deltas, default_shell_lower_bounds], [default_long_upper_bounds, default_long_deltas, default_long_lower_bounds], [default_ring_stf_upper_bounds, default_ring_stf_deltas, default_ring_stf_lower_bounds], [default_ring_frame_upper_bounds, default_ring_frame_deltas, default_ring_frame_lower_bounds]] shell_example = [0.03, 3, 5, 5, 10, None, None, None] long_example = ring_stf_example = ring_frame_example = [0.8, None, 0.5, 0.02, 0.2, 0.03, None, None] shell_upper_bounds = [tk.DoubleVar() for dummy in shell_example] shell_deltas = [tk.DoubleVar() for dummy in shell_example] shell_lower_bounds = [tk.DoubleVar() for dummy in shell_example] long_upper_bounds = [tk.DoubleVar() for dummy in long_example] long_deltas = [tk.DoubleVar() for dummy in long_example] long_lower_bounds = [tk.DoubleVar() for dummy in long_example] ring_stf_upper_bounds = [tk.DoubleVar() for dummy in ring_stf_example] ring_stf_deltas = [tk.DoubleVar() for dummy in ring_stf_example] ring_stf_lower_bounds = [tk.DoubleVar() for dummy in ring_stf_example] ring_frame_upper_bounds = [tk.DoubleVar() for dummy in ring_frame_example] ring_frame_deltas = [tk.DoubleVar() for dummy in ring_frame_example] ring_frame_lower_bounds = [tk.DoubleVar() for dummy in ring_frame_example] self._new_geo_data = list() self._new_geo_data = [[shell_upper_bounds,shell_deltas, shell_lower_bounds], [long_upper_bounds, long_deltas, long_lower_bounds], [ring_stf_upper_bounds, ring_stf_deltas, ring_stf_lower_bounds], [ring_frame_upper_bounds, ring_frame_deltas, ring_frame_lower_bounds]] self._new_entries = list() map_type = {'shell':0, 'long':1, 'ring stf': 2, 'ring heavy':3} map_type_idx = {0: True, 1: self._initial_cylinder_obj.LongStfObj is not None, 2: self._initial_cylinder_obj.RingStfObj is not None, 3: self._initial_cylinder_obj.RingFrameObj is not None} for idx_1, geo_i in enumerate(self._new_geo_data): all_geos = list() if map_type_idx[idx_1] == False: continue for idx_2, entries in enumerate(geo_i): these_ents = list() for idx_3, ent_i in enumerate(entries): self._new_geo_data[idx_1][idx_2][idx_3].trace('w', self.update_running_time) these_ents.append(tk.Entry(self._frame, textvariable = self._new_geo_data[idx_1][idx_2][idx_3], width = ent_w)) self._new_geo_data[idx_1][idx_2][idx_3].set(0 if self._default_data[idx_1][idx_2][idx_3] is None else self._default_data[idx_1][idx_2][idx_3]*1000) all_geos.append(these_ents) self._new_entries.append(all_geos) self._predefined_stiffener_iter = None self._opt_runned = False self._opt_results = () self._opt_actual_running_time = tk.Label(self._frame,text='',font='Verdana 12 bold') self._draw_scale = 600 self._canvas_dim = (550, 500) self._canvas_opt = tk.Canvas(self._frame,width=self._canvas_dim[0], height=self._canvas_dim[1], background='azure',relief = 'groove', borderwidth=2) # tk.Frame(self._frame,width=770,height=5, bg="grey", colormap="new").place(x=20,y=127) # tk.Frame(self._frame, width=770, height=5, bg="grey", colormap="new").place(x=20, y=167) self._canvas_opt.place(x=1000,y=350) algorithms = ('anysmart cylinder','random','random_no_delta') tk.Label(self._frame,text='-- Cylinder optimizer --',font='Verdana 15 bold').place(x=10,y=10) # upper and lower bounds for optimization #[0.6, 0.012, 0.3, 0.01, 0.1, 0.01] self._new_algorithm = tk.StringVar() self._new_algorithm_random_trials = tk.IntVar() self._new_swarm_size = tk.IntVar() self._new_omega = tk.DoubleVar() self._new_phip = tk.DoubleVar() self._new_phig = tk.DoubleVar() self._new_maxiter = tk.IntVar() self._new_minstep = tk.DoubleVar() self._new_minfunc = tk.DoubleVar() self._new_slamming_pressure = tk.DoubleVar() self._new_fatigue_int_press = tk.DoubleVar() self._new_fatigue_ext_press = tk.DoubleVar() #additional choices for the random and pso algorithm self._ent_algorithm = tk.OptionMenu(self._frame,self._new_algorithm,command=self.selected_algorithm,*algorithms) self._ent_random_trials = tk.Entry(self._frame,textvariable=self._new_algorithm_random_trials) pso_width = 10 self._ent_swarm_size = tk.Entry(self._frame,textvariable=self._new_swarm_size, width = pso_width) self._ent_omega = tk.Entry(self._frame,textvariable=self._new_omega, width = pso_width) self._ent_phip = tk.Entry(self._frame,textvariable=self._new_phip, width = pso_width) self._ent_phig = tk.Entry(self._frame,textvariable=self._new_phig, width = pso_width) self._ent_maxiter = tk.Entry(self._frame,textvariable=self._new_maxiter, width = pso_width) self._ent_minstep = tk.Entry(self._frame,textvariable=self._new_minstep, width = pso_width) self._ent_minfunc = tk.Entry(self._frame,textvariable=self._new_minfunc, width = pso_width) # stresses in plate and stiffener self._new_sasd = tk.DoubleVar() self._new_smsd = tk.DoubleVar() self._new_tTsd = tk.DoubleVar() self._new_tQsd = tk.DoubleVar() self._new_design_pressure = tk.DoubleVar() self._new_shsd = tk.DoubleVar() self._new_sasd.set(self._initial_cylinder_obj.sasd) self._new_smsd.set(self._initial_cylinder_obj.smsd) self._new_tTsd.set(self._initial_cylinder_obj.tTsd) self._new_tQsd.set(self._initial_cylinder_obj.tQsd) self._new_design_pressure.set(self._initial_cylinder_obj.psd) self._new_shsd.set(self._initial_cylinder_obj.shsd) self._ent_sasd = tk.Entry(self._frame, textvariable=self._new_sasd, width=ent_w) self._ent_smsd = tk.Entry(self._frame, textvariable=self._new_smsd, width=ent_w) self._ent_tTsd = tk.Entry(self._frame, textvariable=self._new_tTsd, width=ent_w) self._ent_tQsd = tk.Entry(self._frame, textvariable=self._new_tQsd, width=ent_w) self._ent_design_pressure = tk.Entry(self._frame, textvariable=self._new_design_pressure, width=ent_w) self._ent_shsd = tk.Entry(self._frame, textvariable=self._new_shsd, width=ent_w) start_x,start_y,dx,dy = 20,100,100,40 self._new_processes = tk.IntVar() self._new_processes.set(max(cpu_count() - 1, 1)) tk.Label(self._frame, text='Processes\n (CPUs)', font='Verdana 9 bold', bg = 'silver')\ .place(x=start_x + 10 * dx, y=start_y - 1.1 * dy) tk.Entry(self._frame, textvariable=self._new_processes, width = 12, bg = 'silver')\ .place(x=start_x + 10 * dx, y=start_y - 0.3 * dy) self._runnig_time_label = tk.Label(self._frame, text='',font='Verdana 12 bold', fg = 'red') self._runnig_time_label.place(x=start_x+4.3*dx, y=start_y + 2.8 * dy) #tk.Label(self._frame, text='seconds ',font='Verdana 9 bold').place(x=start_x+6*dx, y=start_y + 2.8 * dy) self._result_label = tk.Label(self._frame, text = '',font = 'Verdana 9 bold' ) self._result_label.place(x=start_x, y=start_y + 4.2 * dy) ''' self._new_geo_data = [[shell_upper_bounds,shell_deltas, shell_lower_bounds], [long_upper_bounds, long_deltas, long_lower_bounds], [ring_stf_upper_bounds, ring_stf_deltas, ring_stf_lower_bounds], [ring_frame_upper_bounds, ring_frame_deltas, ring_frame_lower_bounds]] ''' shell = ['Shell thk. [mm]', 'Shell radius [mm]', 'l rings [mm]', 'L shell [mm]', 'L tot. [mm]', 'N/A - future', 'N/A - future', 'N/A - future'] stf_long = ['Spacing [mm]', 'N/A', 'Web height [mm]', 'Web thk. [mm]', 'Flange width [mm]', 'Flange thk. [mm]', 'N/A - future', 'N/A - future'] stf_ring = ['N/A', 'N/A', 'Web height [mm]', 'Web thk. [mm]', 'Flange width [mm]', 'Flange thk. [mm]', 'N/A - future', 'N/A - future'] all_label = [shell, stf_long, stf_ring, stf_ring] text_i = ['Upper bounds [mm]', 'Iteration delta [mm]','Lower bounds [mm]'] kind = ['Shell or panel', 'Longitudinal stiffener', 'Ring stiffener', 'Ring frame/girder'] for idx_1, member in enumerate(self._new_entries): if map_type_idx[idx_1] == False: continue for idx_2, bounds in enumerate(member): tk.Label(self._frame, text=text_i[idx_2], font='Verdana 9').place(x=start_x, y=start_y + dy * idx_1 * 4 + dy * idx_2) if idx_2 == 0: tk.Label(self._frame, text=kind[idx_1], font='Verdana 10 bold') \ .place(x=start_x, y=start_y + dy * idx_1 * 4 + dy * idx_2 - dy * 0.5) for idx_3, entry_i in enumerate(bounds): if idx_2 == 0: tk.Label(self._frame, text=all_label[idx_1][idx_3], font='Verdana 7 bold')\ .place(x = start_x+dx*2 + idx_3*dx, y = start_y+dy*idx_1*4 + dy*idx_2 -dy*0.5) entry_i.place(x = start_x+dx*2 + idx_3*dx, y = start_y+dy*idx_1*4 + dy*idx_2) if 'N/A' in all_label[idx_1][idx_3]: entry_i.configure(bg = 'grey') ### #Labels for the pso self._lb_swarm_size = tk.Label(self._frame,text='swarm size') self._lb_omega = tk.Label(self._frame,text='omega') self._lb_phip = tk.Label(self._frame,text='phip') self._lb_phig = tk.Label(self._frame,text='phig') self._lb_maxiter = tk.Label(self._frame,text='maxiter') self._lb_minstep = tk.Label(self._frame,text='minstep') self._lb_minfunc = tk.Label(self._frame,text='minfunc') ### dys = 0.9*dy tk.Label(self._frame, text='Design axial stress, sa,sd', font='Verdana 9')\ .place(x=start_x+10*dx,y=start_y+1*dys) tk.Label(self._frame, text='Pa', font='Verdana 9')\ .place(x=start_x+dx*14,y=start_y+1*dys) tk.Label(self._frame, text='Design bending stress, sm,sd', font='Verdana 9')\ .place(x=start_x+10*dx,y=start_y+2*dys) tk.Label(self._frame, text='Pa', font='Verdana 9')\ .place(x=start_x+dx*14,y=start_y+2*dys) tk.Label(self._frame, text='Design torsional stress, tT,sd', font='Verdana 9')\ .place(x=start_x+10*dx,y=start_y+3*dys) tk.Label(self._frame, text='Pa', font='Verdana 9')\ .place(x=start_x+dx*14,y=start_y+3*dys) tk.Label(self._frame, text='Design shear stress, tQ,sd', font='Verdana 9')\ .place(x=start_x+10*dx,y=start_y+4*dys) tk.Label(self._frame, text='Pa', font='Verdana 9')\ .place(x=start_x+dx*14,y=start_y+4*dys) tk.Label(self._frame, text='Design lateral pressure, psd', font='Verdana 9 bold')\ .place(x=start_x+10*dx,y=start_y+5*dys) tk.Label(self._frame, text='Pa', font='Verdana 9')\ .place(x=start_x+dx*14,y=start_y+5*dys) tk.Label(self._frame, text='Additional hoop stress, sh,sd, psd', font='Verdana 9 bold')\ .place(x=start_x+10*dx,y=start_y+6*dys) tk.Label(self._frame, text='Pa', font='Verdana 9')\ .place(x=start_x+dx*14,y=start_y+6*dys) self._ent_sasd.place(x=start_x+dx*13,y=start_y+1*dys) self._ent_smsd.place(x=start_x+dx*13,y=start_y+2*dys) self._ent_tTsd.place(x=start_x+dx*13,y=start_y+3*dys) self._ent_tQsd.place(x=start_x + dx * 13, y=start_y + 4 * dys) self._ent_design_pressure.place(x=start_x + dx * 13, y=start_y + 5 * dys) self._ent_shsd.place(x=start_x + dx * 13, y=start_y +6 * dys) if self._fatigue_pressure is not None: tk.Label(self._frame, text='Fatigue pressure: internal= '+str(self._fatigue_pressure['p_int'])+ ' external= ' +str(self._fatigue_pressure['p_ext']), font='Verdana 7') \ .place(x=start_x + dx * 5, y=start_y + 19.3 * dy) else: tk.Label(self._frame, text='Fatigue pressure: internal= '+str(0)+ ' external= ' +str(0), font='Verdana 7') \ .place(x=start_x + dx * 5, y=start_y + 19.3 * dy) #setting default values init_dim = float(10) #mm init_thk = float(1) #mm self._new_slamming_pressure.set(self._slamming_pressure) if self._fatigue_pressure is None: self._new_fatigue_ext_press.set(0), self._new_fatigue_int_press.set(0) else: self._new_fatigue_int_press.set(self._fatigue_pressure['p_int']), \ self._new_fatigue_ext_press.set(self._fatigue_pressure['p_ext']) self._new_algorithm.set('anysmart cylinder') self._new_algorithm_random_trials.set(100000) self._new_swarm_size.set(100) self._new_omega.set(0.5) self._new_phip.set(0.5) self._new_phig.set(0.5) self._new_maxiter.set(100) self._new_minstep.set(1e-8) self._new_minfunc.set(1e-8) self._new_algorithm_random_trials.trace('w',self.update_running_time) self._new_algorithm.trace('w',self.update_running_time) # self.running_time_per_item = {'PULS':0.2489626556016598, 'RP': 1.009943181818182e-5} # self.initial_weight = op.calc_weight([self._spacing,self._pl_thk,self._stf_web_h,self._stf_web_thk, # self._fl_w,self._fl_thk,self._new_span.get(),self._new_width_lg.get()]) # img_file_name = 'img_plate_and_stiffener.gif' # if os.path.isfile('images/' + img_file_name): # file_path = 'images/' + img_file_name # else: # file_path = self._root_dir + '/images/' + img_file_name # photo = tk.PhotoImage(file=file_path) # label = tk.Label(self._frame,image=photo) # label.image = photo # keep a reference! # label.place(x=550, y=300) # tk.Label(self._frame,text='Select algorithm', font = 'Verdana 8 bold').place(x=start_x+dx*11, y=start_y+7*dy) # self._ent_algorithm.place(x=start_x+dx*11, y=start_y+dy*8) self.algorithm_random_label = tk.Label(self._frame, text='Number of trials') # tk.Button(self._frame,text='algorith information',command=self.algorithm_info,bg='white')\ # .place(x=start_x+dx*12.5, y=start_y+dy*7) self.run_button = tk.Button(self._frame,text='RUN OPTIMIZATION!', command=self.run_optimizaion, bg='red', font='Verdana 10 bold',fg='Yellow', relief="raised") self.run_button.place(x=start_x+dx*11.5, y=start_y-dy, relwidth = 0.15) # self.run_results = tk.Button(self._frame,text='show calculated', command=self.plot_results, bg='white', # font='Verdana 10',fg='black') # self.run_results.place(x=start_x+dx*8, y=start_y+dy*1.5) self._opt_actual_running_time.place(x=start_x+dx*11, y=start_y) self.close_and_save =tk.Button(self._frame,text='Return and replace initial structure with optimized', command=self.save_and_close,bg='green',font='Verdana 10',fg='yellow') self.close_and_save.place(x=start_x+dx*5,y=10) tk.Button(self._frame, text='Open predefined stiffeners example', command=self.open_example_file, bg='white', font='Verdana 10')\ .place(x=start_x+dx*10,y=10) # Stress scaling self._new_fup = tk.DoubleVar() self._new_fup.set(0.5) self._new_fdwn = tk.DoubleVar() self._new_fdwn.set(1) tk.Label(self._frame, text='Factor when scaling stresses up, fup')\ .place(x=start_x, y=start_y + 16 * dy) ent_fup = tk.Entry(self._frame, textvariable=self._new_fup, width = 10) ent_fup.place(x=start_x + dx * 3, y=start_y + 16 * dy) tk.Label(self._frame, text='Factor when scaling stresses up, fdown')\ .place(x=start_x, y=start_y + 17 * dy) ent_fdwn = tk.Entry(self._frame, textvariable=self._new_fdwn, width = 10) ent_fdwn.place(x=start_x + dx * 3, y=start_y + 17 * dy) # tk.Button(self._frame,text='Iterate predefiened stiffeners',command=self.open_multiple_files ,bg='yellow')\ # .place(x=start_x, y=start_y - dy * 2) # command=lambda id="default": self.set_colors(id) self._toggle_btn = tk.Button(self._frame, text="Iterate predefiened stiffeners", relief="raised", command=self.toggle, bg = 'salmon') self._toggle_btn.place(x= + 3*dx, y=start_y - dy * 2) self._toggle_object, self._filez = self._initial_structure_obj, None self.draw_properties() self.update_running_time() main_application.Application.draw_cylinder(text_size='Verdana 8 bold', canvas = self._canvas_opt, CylObj=self._initial_cylinder_obj, start_x_cyl=350, start_y_cyl=300, text_x=230, text_y=120) def selected_algorithm(self,event): ''' Action when selecting an algorithm. :return: ''' start_x, start_y, dx, dy = 20, 100, 100, 40 if self._new_algorithm.get()=='random' or self._new_algorithm.get()=='random_no_delta': self._ent_random_trials.place_forget() self.algorithm_random_label.place_forget() self._lb_swarm_size.place_forget() self._lb_omega.place_forget() self._lb_phip.place_forget() self._lb_phig.place_forget() self._lb_maxiter.place_forget() self._lb_minstep.place_forget() self._lb_minfunc.place_forget() self._ent_swarm_size.place_forget() self._ent_omega.place_forget() self._ent_phip.place_forget() self._ent_phig.place_forget() self._ent_maxiter.place_forget() self._ent_minstep.place_forget() self._ent_minfunc.place_forget() self._ent_random_trials.place(x=start_x+dx*11.3, y=start_y+1.2*dy) self.algorithm_random_label.place(x=start_x+dx*11.3, y=start_y+0.5*dy) elif self._new_algorithm.get()=='anysmart' or self._new_algorithm.get()=='anydetail': self._ent_random_trials.place_forget() self.algorithm_random_label.place_forget() self._lb_swarm_size.place_forget() self._lb_omega.place_forget() self._lb_phip.place_forget() self._lb_phig.place_forget() self._lb_maxiter.place_forget() self._lb_minstep.place_forget() self._lb_minfunc.place_forget() self._ent_swarm_size.place_forget() self._ent_omega.place_forget() self._ent_phip.place_forget() self._ent_phig.place_forget() self._ent_maxiter.place_forget() self._ent_minstep.place_forget() self._ent_minfunc.place_forget() elif self._new_algorithm.get()=='pso': y_place_label =11.2 y_place = 12.2 self._ent_random_trials.place_forget() self._lb_swarm_size.place(x=start_x+dx*y_place_label, y=start_y-2*dy) self._lb_omega.place(x=start_x+dx*y_place_label, y=start_y-1*dy) self._lb_phip.place(x=start_x+dx*y_place_label, y=start_y-0*dy) self._lb_phig.place(x=start_x+dx*y_place_label, y=start_y+1*dy) self._lb_maxiter.place(x=start_x+dx*y_place_label, y=start_y+2*dy) self._lb_minstep.place(x=start_x+dx*y_place_label, y=start_y+3*dy) self._lb_minfunc.place(x=start_x+dx*y_place_label, y=start_y+4*dy) self._ent_swarm_size.place(x=start_x+dx*y_place, y=start_y-2*dy) self._ent_omega.place(x=start_x+dx*y_place, y=start_y-1*dy) self._ent_phip.place(x=start_x+dx*y_place, y=start_y+0*dy) self._ent_phig.place(x=start_x+dx*y_place, y=start_y+1*dy) self._ent_maxiter.place(x=start_x+dx*y_place, y=start_y+2*dy) self._ent_minstep.place(x=start_x+dx*y_place, y=start_y+3*dy) self._ent_minfunc.place(x=start_x+dx*y_place, y=start_y+4*dy) def modify_structure_object(self): ''' Chaning parameters in the structure object before running. ''' pass def run_optimizaion(self): ''' function for button :return: ''' self.run_button.config(bg = 'white') self.run_button.config(fg='red') self.run_button.config(text='RUNNING OPTIMIZATION') self.run_button.config(relief="sunken") self._opt_actual_running_time.config(text='Run started ' + datetime.datetime.now().strftime("%H:%M:%S")) self._opt_actual_running_time.update() t_start = time.time() self._opt_results, self._opt_runned = (), False self.pso_parameters = (self._new_swarm_size.get(),self._new_omega.get(),self._new_phip.get(), self._new_phig.get(), self._new_maxiter.get(),self._new_minstep.get(),self._new_minfunc.get()) if self._fatigue_pressure is not None: fat_press = ((self._fatigue_pressure['p_ext']['loaded'],self._fatigue_pressure['p_ext']['ballast'], self._fatigue_pressure['p_ext']['part']), (self._fatigue_pressure['p_int']['loaded'],self._fatigue_pressure['p_int']['ballast'], self._fatigue_pressure['p_int']['part'])) else: fat_press = None self._new_sasd.set(self._new_sasd.get()) self._new_smsd.set(self._new_smsd.get()) self._new_tTsd.set(self._new_tTsd.get()) self._new_tQsd.set(self._new_tQsd.get()) self._new_design_pressure.set(self._new_design_pressure.get()) self._initial_cylinder_obj.psd = self._new_design_pressure.get() self._new_shsd.set(self._new_shsd.get()) self._opt_results= op.run_optmizataion(initial_structure_obj= self._initial_cylinder_obj, min_var= self.get_lower_bounds(), max_var=self.get_upper_bounds(),lateral_pressure= self._new_design_pressure.get(), deltas= self.get_deltas(),algorithm=self._new_algorithm.get(), trials=self._new_algorithm_random_trials.get(), fatigue_obj=self._fatigue_object, fat_press_ext_int=fat_press, slamming_press = self._new_slamming_pressure.get(), predefined_stiffener_iter=self._predefined_stiffener_iter, processes=self._new_processes.get(), use_weight_filter = True, fdwn = self._new_fdwn.get(), fup = self._new_fdwn.get(), cylinder = True) if self._opt_results is not None and self._opt_results[0] is not None: self._opt_actual_running_time.config(text='Actual running time: \n' +str(round((time.time()-t_start)/60,4))+' min') self._opt_actual_running_time.update() self._opt_runned = True #self._result_label.config(text=self._opt_results[0].__str__) self._canvas_opt.delete('all') main_application.Application.draw_cylinder(text_size='Verdana 8 bold', canvas = self._canvas_opt, CylObj=self._opt_results[0], start_x_cyl=350, start_y_cyl=300, text_x=230, text_y=120) self._new_sasd.set(self._opt_results[0].sasd) self._new_smsd.set(self._opt_results[0].smsd) self._new_tTsd.set(self._opt_results[0].tTsd) self._new_tQsd.set(self._opt_results[0].tQsd) self._new_design_pressure.set(self._opt_results[0].psd) self._new_shsd.set(self._opt_results[0].shsd) #self.draw_properties() else: messagebox.showinfo(title='Nothing found', message='No better alternatives found. Modify input.\n' 'There may be no alternative that is acceptable.\n') self.run_button.config(bg='green') self.run_button.config(fg='yellow') self.run_button.config(text='RUN OPTIMIZATION') self.run_button.config(relief="raised") def get_running_time(self): ''' Estimate the running time of the algorithm. :return: ''' pass def get_deltas(self): ''' Return a numpy array of the deltas. :return: ''' all_deltas = list() for idx_1, geo_i in enumerate(self._new_geo_data): these_deltas = list() for idx_3, val in enumerate(geo_i[1]): these_deltas.append(val.get()/1000) all_deltas.append(these_deltas) return all_deltas def update_running_time(self,*args): ''' Estimate the running time of the algorithm. :return: ''' pass def get_upper_bounds(self): ''' Return an numpy array of upper bounds. :return: ''' all_upper = list() for idx_1, geo_i in enumerate(self._new_geo_data): these_upper = list() for idx_3, val in enumerate(geo_i[0]): these_upper.append(val.get()/1000) all_upper.append(these_upper) return all_upper def get_lower_bounds(self): ''' Return an numpy array of lower bounds. :return: ''' all_lower = list() for idx_1, geo_i in enumerate(self._new_geo_data): these_lower = list() for idx_3, val in enumerate(geo_i[2]): these_lower.append(val.get()/1000) all_lower.append(these_lower) return all_lower def get_sigmas(self): ''' Returns the stressess. :return: ''' return np.array([self._new_sasd.get(),self._new_smsd.get(), self._new_tTsd.get(),self._new_tQsd.get(), self._new_design_pressure.get(),self._new_shsd.get()]) def checkered(self,line_distance): # vertical lines at an interval of "line_distance" pixel for x in range(line_distance, self._canvas_dim[0], line_distance): self._canvas_opt.create_line(x, 0, x, self._canvas_dim[0], fill="grey",stipple='gray50') # horizontal lines at an interval of "line_distance" pixel for y in range(line_distance, self._canvas_dim[1], line_distance): self._canvas_opt.create_line(0, y, self._canvas_dim[0], y, fill="grey",stipple='gray50') def draw_properties(self): ''' Drawing properties in the canvas. :return: ''' self._canvas_opt.delete('all') #self.checkered(10) ctr_x = self._canvas_dim[0]/2 ctr_y = self._canvas_dim[1]/2+200 m = self._draw_scale init_color,init_stipple = 'blue','gray12' opt_color,opt_stippe = 'red','gray12' # self._canvas_opt.create_rectangle(0,0,self._canvas_dim[0]+10,80,fill='white') # self._canvas_opt.create_line(10,10,30,10,fill = init_color,width=5) if self._opt_runned: self._canvas_opt.create_rectangle(ctr_x - m * self._opt_results[0].get_s() / 2, ctr_y, ctr_x + m * self._opt_results[0].get_s() / 2, ctr_y - m * self._opt_results[0].get_pl_thk(), fill=opt_color, stipple=opt_stippe) self._canvas_opt.create_rectangle(ctr_x - m * self._opt_results[0].get_web_thk() / 2, ctr_y - m * self._opt_results[0].get_pl_thk(), ctr_x + m * self._opt_results[0].get_web_thk() / 2, ctr_y - m * (self._opt_results[0].get_web_h() + self._opt_results[0].get_pl_thk()) , fill=opt_color, stipple=opt_stippe) if self._opt_results[0].get_stiffener_type() not in ['L', 'L-bulb']: self._canvas_opt.create_rectangle(ctr_x - m * self._opt_results[0].get_fl_w() / 2, ctr_y - m * (self._opt_results[0].get_pl_thk()+ self._opt_results[0].get_web_h()), ctr_x + m * self._opt_results[0].get_fl_w() / 2,ctr_y - m * (self._opt_results[0].get_pl_thk() + self._opt_results[0].get_web_h() + self._opt_results[0].get_fl_thk()), fill=opt_color, stipple=opt_stippe) else: self._canvas_opt.create_rectangle(ctr_x - m * self._opt_results[0].get_web_thk() / 2, ctr_y - m * (self._opt_results[0].get_pl_thk()+ self._opt_results[0].get_web_h()), ctr_x + m * self._opt_results[0].get_fl_w() ,ctr_y - m * (self._opt_results[0].get_pl_thk() + self._opt_results[0].get_web_h() + self._opt_results[0].get_fl_thk()), fill=opt_color, stipple=opt_stippe) self._canvas_opt.create_line(10, 50, 30, 50, fill=opt_color, width=5) self._canvas_opt.create_text(270,50,text='Optimized - Pl.: '+str(round(self._opt_results[0].get_s()*1000,1)) +'x'+ str(round(self._opt_results[0].get_pl_thk()*1000,1))+ ' Stf.: '+str(round(self._opt_results[0].get_web_h()*1000,1))+ 'x'+str(round(self._opt_results[0].get_web_thk()*1000,1))+'+'+ str(round(self._opt_results[0].get_fl_w()*1000,1))+ 'x'+str(round(self._opt_results[0].get_fl_thk()*1000,1)), font = 'Verdana 8',fill = opt_color) def save_and_close(self): ''' Save and close :return: ''' if __name__ == '__main__': self._frame.destroy() return try: self.app.on_close_opt_cyl_window(self._opt_results) except (IndexError, TypeError): messagebox.showinfo(title='Nothing to return',message='No results to return.') return self._frame.destroy() def algorithm_info(self): ''' When button is clicked, info is displayed.''' messagebox.showinfo(title='Algorith information', message='The algorithms currently included is:\n' 'ANYSMART: \n' ' Calculates all alternatives using upper and lower bounds.\n' ' The step used inside the bounds is defined in deltas.\n' ' This algoritm uses MULTIPROCESSING and will be faster.\n\n' 'RANDOM: \n' ' Uses the same bounds and deltas as in ANYSMART.\n' ' Number of combinations calculated is defined in "trials",\n' ' which selects withing the bounds and deltas defined.\n\n' 'RANDOM_NO_BOUNDS:\n' ' Same as RANDOM, but does not use the defined deltas.\n' ' The deltas is set to 1 mm for all dimensions/thicknesses.\n\n' 'ANYDETAIL:\n' ' Same as for ANYSMART, but will take some more time and\n' ' provide a chart of weight development during execution.\n\n' 'PSO - Particle Swarm Search:\n' ' The information can be found on \n' ' http://pythonhosted.org/pyswarm/ \n' ' For further information google it!\n' ' Parameters:\n' ' swarmsize : The number of particles in the swarm (Default: 100)\n' ' omega : Particle velocity scaling factor (Default: 0.5)\n' ' phip : Scaling factor to search away from the particle’s \n' ' best known position (Default: 0.5)\n' ' phig : Scaling factor to search away from the swarm’s best \n' ' known position (Default: 0.5)\n' ' maxiter : The maximum number of iterations for the swarm \n' ' to search (Default: 100)\n' ' minstep : The minimum stepsize of swarm’s best position \n' ' before the search terminates (Default: 1e-8)\n' ' minfunc : The minimum change of swarm’s best objective value\n' ' before the search terminates (Default: 1e-8)\n\n' '\n' 'All algorithms calculates local scantling and buckling requirements') def toggle(self): if self._toggle_btn.config('relief')[-1] == 'sunken': self._toggle_btn.config(relief="raised") self._toggle_btn.config(bg = 'salmon') predefined_stiffener_iter = [] else: self._toggle_btn.config(relief="sunken") self._toggle_btn.config(bg = 'salmon') self._toggle_btn.config(bg='lightgreen') predefined_stiffener_iter = [] open_files = askopenfilenames(parent=self._frame, title='Choose files to open', initialdir=self._root_dir) if self._initial_cylinder_obj.LongStfObj is not None: predefined_stiffener_iter = hlp.helper_read_section_file(files=list(open_files), obj=self._initial_cylinder_obj.LongStfObj) if predefined_stiffener_iter == []: self._toggle_btn.config(relief="raised") self._toggle_btn.config(bg = 'salmon') self._predefined_stiffener_iter = None else: self._predefined_stiffener_iter = predefined_stiffener_iter self.update_running_time() def open_example_file(self): import os if os.path.isfile('sections.csv'): os.startfile('sections.csv') else: os.startfile(self._root_dir + '/' + 'sections.csv') def show_calculated(self): ''' ''' pass def plot_results(self): if len(self._opt_results) != 0: op.plot_optimization_results(self._opt_results) def write_result_csv(self): if len(self._opt_results) != 0: print(self._opt_results) def receive_progress_info(): ''' Get progress info from optimization algorithm. :return: ''' print('hi') if __name__ == '__main__': root = tk.Tk() my_app = CreateOptimizeCylinderWindow(master=root) root.mainloop()
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/optimize_cylinder.py
optimize_cylinder.py
from scipy.special import gammaln from scipy.stats import gamma as gammadist import numpy as np from scipy.integrate import simps import os, time, datetime, json, random, math from scipy.optimize import minimize try: import any_files.helper as hlp import any_files.SN_curve_parameters as snc except ModuleNotFoundError: import ANYstructure.any_files.helper as hlp import ANYstructure.any_files.SN_curve_parameters as snc class Structure(): ''' Setting the properties for the plate and the stiffener. Takes a dictionary as argument. ''' def __init__(self, main_dict, *args, **kwargs): super(Structure,self).__init__() self._main_dict = main_dict if 'panel or shell' not in main_dict.keys(): self._panel_or_shell = 'panel' else: self._panel_or_shell = main_dict['panel or shell'][0] self._plate_th = main_dict['plate_thk'][0] self._web_height = main_dict['stf_web_height'][0] self._web_th = main_dict['stf_web_thk'][0] self._flange_width = main_dict['stf_flange_width'][0] self._flange_th = main_dict['stf_flange_thk'][0] self._mat_yield = main_dict['mat_yield'][0] self._mat_factor = main_dict['mat_factor'][0] self._span = main_dict['span'][0] self._spacing = main_dict['spacing'][0] self._structure_type = main_dict['structure_type'][0] self._sigma_y1=main_dict['sigma_y1'][0] self._sigma_y2=main_dict['sigma_y2'][0] self._sigma_x1 = main_dict['sigma_x1'][0] self._sigma_x2 = main_dict['sigma_x2'][0] self._tauxy=main_dict['tau_xy'][0] self._plate_kpp = main_dict['plate_kpp'][0] self._stf_kps = main_dict['stf_kps'][0] self._km1 = main_dict['stf_km1'][0] self._km2 = main_dict['stf_km2'][0] self._km3 = main_dict['stf_km3'][0] self._stiffener_type=main_dict['stf_type'][0] self._structure_types = main_dict['structure_types'][0] self._dynamic_variable_orientation = None if self._structure_type in self._structure_types['vertical']: self._dynamic_variable_orientation = 'z - vertical' elif self._structure_type in self._structure_types['horizontal']: self._dynamic_variable_orientation = 'x - horizontal' self._puls_method = main_dict['puls buckling method'][0] self._puls_boundary = main_dict['puls boundary'][0] self._puls_stf_end = main_dict['puls stiffener end'][0] self._puls_sp_or_up = main_dict['puls sp or up'][0] self._puls_up_boundary = main_dict['puls up boundary'][0] self._zstar_optimization = main_dict['zstar_optimization'][0] try: self._girder_lg=main_dict['girder_lg'][0] except KeyError: self._girder_lg = 10 try: self._pressure_side = main_dict['press_side'][0] except KeyError: self._pressure_side = 'both sides' self._panel_or_shell = main_dict['panel or shell'][0] # Property decorators are used in buckling of shells. IN mm! @property # in mm def hw(self): return self._web_height * 1000 @hw.setter # in mm def hw(self, val): self._web_height = val / 1000 @property # in mm def tw(self): return self._web_th * 1000 @tw.setter # in mm def tw(self, val): self._web_th = val / 1000 @property # in mm def b(self): return self._flange_width * 1000 @b.setter # in mm def b(self, val): self._flange_width = val / 1000 @property # in mm def tf(self): return self._flange_th * 1000 @tf.setter # in mm def tf(self, val): self._flange_th = val / 1000 @property # in mm def s(self): return self._spacing* 1000 @s.setter # in mm def s(self, val): self._spacing = val / 1000 @property # in mm def t(self): return self._plate_th* 1000 @t.setter # in mm def t(self, val): self._plate_th = val / 1000 @property # in mm def panel_or_shell(self): return self._panel_or_shell @panel_or_shell.setter # in mm def panel_or_shell(self, val): self._panel_or_shell = val @property def stiffener_type(self): return self._stiffener_type @stiffener_type.setter def stiffener_type(self, val): self._stiffener_type = val def __str__(self): ''' Returning all properties. ''' return \ str( '\n Plate field span: ' + str(round(self._span*1000)) + ' mm' + '\n Stiffener spacing: ' + str(self._spacing*1000)+' mm'+ '\n Plate thickness: ' + str(self._plate_th*1000)+' mm'+ '\n Stiffener web height: ' + str(self._web_height*1000)+' mm'+ '\n Stiffener web thickness: ' + str(self._web_th*1000)+' mm'+ '\n Stiffener flange width: ' + str(self._flange_width*1000)+' mm'+ '\n Stiffener flange thickness: ' + str(self._flange_th*1000)+' mm'+ '\n Material yield: ' + str(self._mat_yield/1e6)+' MPa'+ '\n Structure/stiffener type: ' + str(self._structure_type)+'/'+(self._stiffener_type)+ '\n Dynamic load varible_ ' + str(self._dynamic_variable_orientation)+ '\n Plate fixation paramter,kpp: ' + str(self._plate_kpp) + ' ' + '\n Stf. fixation paramter,kps: ' + str(self._stf_kps) + ' ' + '\n Global stress, sig_y1/sig_y2: ' + str(round(self._sigma_y1,3))+'/'+str(round(self._sigma_y2,3))+ ' MPa' + '\n Global stress, sig_x1/sig_x2: ' + str(round(self._sigma_x1,3))+'/'+str(round(self._sigma_x2,3))+ ' MPa' + '\n Global shear, tau_xy: ' + str(round(self._tauxy,3)) + ' MPa' + '\n km1,km2,km3: ' + str(self._km1)+'/'+str(self._km2)+'/'+str(self._km3)+ '\n Pressure side (p-plate/s-stf): ' + str(self._pressure_side) + ' ') def get_beam_string(self, short = False): ''' Returning a string. ''' if type(self._stiffener_type) != str: print('error') base_name = self._stiffener_type+ '_' + str(round(self._web_height*1000, 0)) + 'x' + \ str(round(self._web_th*1000, 0)) if self._stiffener_type == 'FB': ret_str = base_name elif self._stiffener_type in ['L-bulb', 'bulb', 'hp']: if not short: ret_str = 'Bulb'+str(int(self._web_height*1000 + self._flange_th*1000))+'x'+\ str(round(self._web_th*1000, 0))+ '_(' +str(round(self._web_height*1000, 0)) + 'x' + \ str(round(self._web_th*1000, 0))+'_'+ str(round(self._flange_width*1000, 0)) + 'x' + \ str(round(self._flange_th*1000, 0))+')' else: ret_str = 'Bulb'+str(int(self._web_height*1000 + self._flange_th*1000))+'x'+\ str(round(self._web_th*1000, 0)) else: ret_str = base_name + '__' + str(round(self._flange_width*1000, 0)) + 'x' + \ str(round(self._flange_th*1000, 0)) ret_str = ret_str.replace('.', '_') return ret_str # base_name = self._stiffener_type+ '_' + str(round(self._web_height*1000, 0)) + 'x' + \ # str(round(self._web_th*1000, 0)) # if self._stiffener_type == 'FB': # ret_str = base_name # else: # ret_str = base_name + '__' + str(round(self._flange_width*1000, 0)) + 'x' + \ # str(round(self._flange_th*1000, 0)) # # ret_str = ret_str.replace('.', '_') # # return ret_str def get_structure_types(self): return self._structure_types def get_z_opt(self): return self._zstar_optimization def get_puls_method(self): return self._puls_method def get_puls_boundary(self): return self._puls_boundary def get_puls_stf_end(self): return self._puls_stf_end def get_puls_sp_or_up(self): return self._puls_sp_or_up def get_puls_up_boundary(self): return self._puls_up_boundary def get_one_line_string(self): ''' Returning a one line string. ''' return 'pl_'+str(round(self._spacing*1000, 1))+'x'+str(round(self._plate_th*1000,1))+' stf_'+self._stiffener_type+\ str(round(self._web_height*1000,1))+'x'+str(round(self._web_th*1000,1))+'+'\ +str(round(self._flange_width*1000,1))+'x'+\ str(round(self._flange_th*1000,1)) def get_report_stresses(self): 'Return the stresses to the report' return 'sigma_y1: '+str(round(self._sigma_y1,1))+' sigma_y2: '+str(round(self._sigma_y2,1))+ \ ' sigma_x1: ' + str(round(self._sigma_x1,1)) +' sigma_x2: ' + str(round(self._sigma_x2,1))+\ ' tauxy: '+ str(round(self._tauxy,1)) def get_extended_string(self): ''' Some more information returned. ''' return 'span: '+str(round(self._span,4))+' structure type: '+ self._structure_type + ' stf. type: ' + \ self._stiffener_type + ' pressure side: ' + self._pressure_side def get_sigma_y1(self): ''' Return sigma_y1 :return: ''' return self._sigma_y1 def get_sigma_y2(self): ''' Return sigma_y2 :return: ''' return self._sigma_y2 def get_sigma_x1(self): ''' Return sigma_x :return: ''' return self._sigma_x1 def get_sigma_x2(self): ''' Return sigma_x :return: ''' return self._sigma_x2 def get_tau_xy(self): ''' Return tau_xy :return: ''' return self._tauxy def get_s(self): ''' Return the spacing :return: ''' return self._spacing def get_pl_thk(self): ''' Return the plate thickness :return: ''' return self._plate_th def get_web_h(self): ''' Return the web heigh :return: ''' return self._web_height def get_web_thk(self): ''' Return the spacing :return: ''' return self._web_th def get_fl_w(self): ''' Return the flange width :return: ''' return self._flange_width def get_fl_thk(self): ''' Return the flange thickness :return: ''' return self._flange_th def get_fy(self): ''' Return material yield :return: ''' return self._mat_yield def get_mat_factor(self): return self._mat_factor def get_span(self): ''' Return the span :return: ''' return self._span def get_lg(self): ''' Return the girder length :return: ''' return self._girder_lg def get_kpp(self): ''' Return var :return: ''' return self._plate_kpp def get_kps(self): ''' Return var :return: ''' return self._stf_kps def get_km1(self): ''' Return var :return: ''' return self._km1 def get_km2(self): ''' Return var :return: ''' return self._km2 def get_km3(self): ''' Return var :return: ''' return self._km3 def get_side(self): ''' Return the checked pressure side. :return: ''' return self._pressure_side def get_tuple(self): ''' Return a tuple of the plate stiffener''' return (self._spacing, self._plate_th, self._web_height, self._web_th, self._flange_width, self._flange_th, self._span, self._girder_lg, self._stiffener_type) def get_section_modulus(self, efficient_se = None, dnv_table = False): ''' Returns the section modulus. :param efficient_se: :return: ''' #Plate. When using DNV table, default values are used for the plate b1 = self._spacing if efficient_se==None else efficient_se tf1 = self._plate_th #Stiffener tf2 = self._flange_th b2 = self._flange_width h = self._flange_th+self._web_height+self._plate_th tw = self._web_th hw = self._web_height # cross section area Ax = tf1 * b1 + tf2 * b2 + hw * tw assert Ax != 0, 'Ax cannot be 0' # distance to center of gravity in z-direction ez = (tf1 * b1 * tf1 / 2 + hw * tw * (tf1 + hw / 2) + tf2 * b2 * (tf1 + hw + tf2 / 2)) / Ax #ez = (tf1 * b1 * (h - tf1 / 2) + hw * tw * (tf2 + hw / 2) + tf2 * b2 * (tf2 / 2)) / Ax # moment of inertia in y-direction (c is centroid) Iyc = (1 / 12) * (b1 * math.pow(tf1, 3) + b2 * math.pow(tf2, 3) + tw * math.pow(hw, 3)) Iy = Iyc + (tf1 * b1 * math.pow(tf1 / 2, 2) + tw * hw * math.pow(tf1+hw / 2, 2) + tf2 * b2 * math.pow(tf1+hw+tf2 / 2, 2)) - Ax * math.pow(ez, 2) # elastic section moduluses y-axis Wey1 = Iy / (h - ez) Wey2 = Iy / ez return Wey1, Wey2 def get_plasic_section_modulus(self): ''' Returns the plastic section modulus :return: ''' tf1 = self._plate_th tf2 = self._flange_th b1 = self._spacing b2 = self._flange_width h = self._flange_th+self._web_height+self._plate_th tw = self._web_th hw = self._web_height Ax = tf1 * b1 + tf2 * b2 + (h-tf1-tf2) * tw ezpl = (Ax/2-b1*tf1)/tw+tf1 az1 = h-ezpl-tf1 az2 = ezpl-tf2 Wy1 = b1*tf1*(az1+tf1/2) + (tw/2)*math.pow(az1,2) Wy2 = b2*tf2*(az2+tf2/2)+(tw/2)*math.pow(az2,2) return Wy1+Wy2 def get_shear_center(self): ''' Returning the shear center :return: ''' tf1 = self._plate_th tf2 = self._flange_th b1 = self._spacing b2 = self._flange_width h = self._flange_th+self._web_height+self._plate_th tw = self._web_th hw = self._web_height Ax = tf1 * b1 + tf2 * b2 + (h-tf1-tf2) * tw # distance to center of gravity in z-direction ez = (b2*tf2*tf2/2 + tw*hw*(tf2+hw/2)+tf1*b1*(tf2+hw+tf1/2)) / Ax # Shear center: # moment of inertia, z-axis Iz1 = tf1 * math.pow(b1, 3) Iz2 = tf2 * math.pow(b2, 3) ht = h - tf1 / 2 - tf2 / 2 return (Iz1 * ht) / (Iz1 + Iz2) + tf2 / 2 - ez def get_moment_of_intertia_hp(self): # class Stiffener: # def __init__(self, h, tw, plate_width, plate_thickness): # self.h = h # self.tw = tw # self.bf = 2.5 * self.tw # self.tf = 2.5 * self.tw # self.r = self.tw # self.plate_width = plate_width # self.plate_thickness = plate_thickness # # @classmethod # def from_hp(cls, h, tw, plate_width, plate_thickness): # return cls(h, tw, plate_width, plate_thickness) # # def _distance(self, x, c, r): # y1 = (self.h - self.tf) / 2 # y2 = self.tf / 2 # if (x <= -c).any() or (x >= c).any(): # return np.abs(x) - c + r # else: # theta = np.arcsin((y1 - y2) / r) # A1 = theta * r ** 2 / 2 # A2 = (y1 - r) * (x + c - r) # A3 = (y2 - r) * (c - r) + r ** 2 * theta # if x <= 0: # return A1 - A2 # else: # return A1 - A3 - (x - c - r) * y1 # # def _integrand(self, x, c, r): # y = self._distance(x, c, r) # return y ** 2 # # def get_moment_of_inertia_hp(self): # # Create points for integration # c = (self.h - 2 * self.tw) / 2 # r = self.tw # x = np.linspace(-c, c, num=1000) # # # Integrate to find moment of inertia # integrand = lambda x: self._integrand(x, c, r) # y = self._distance(x, c, r) # I = simps(y * integrand(x), x) # # return I # # def get_moment_of_inertia_plate(self): # I_plate = (self.plate_width * self.plate_thickness ** 3) / 12 # return I_plate # # def get_moment_of_inertia_combined(self): # I_stiffener = self.get_moment_of_inertia_hp() # I_plate = self.get_moment_of_inertia_plate() # I_combined = I_stiffener + I_plate # return I_stiffener, I_plate, I_combined class Stiffener: def __init__(self, hp_height, hp_thickness, plate_width, plate_thickness): self.hp_height = hp_height self.hp_thickness = hp_thickness self.plate_width = plate_width self.plate_thickness = plate_thickness def _integrand(self, x, c, r): if (x <= -c).any() or (x >= c).any(): return (x ** 2 + r ** 2) ** 0.5 else: return r def _distance(self, x, c, r): if (x <= -c).any() or (x >= c).any(): return self.hp_height / 2 - self.hp_thickness - r elif x >= c: return self.hp_height / 2 - self.hp_thickness - r else: return self.hp_height / 2 - self.hp_thickness - (x ** 2 - c ** 2) ** 0.5 def get_moment_of_inertia_hp(self): # Create points for integration c = (self.hp_height - 2 * self.hp_thickness) / 2 r = self.hp_thickness x = np.linspace(-c, c, num=1000) # Integrate to find moment of inertia integrand = lambda x: self._integrand(x, c, r) y = self._distance(x, c, r) I = simps(y * integrand(x), x) return I def get_moment_of_inertia(self): I_stiffener = self.get_moment_of_inertia_hp() I_plate = self.plate_thickness * (self.plate_width ** 3 / 12) I_total = I_stiffener + I_plate return I_stiffener, I_plate, I_total stiffener = Stiffener(hp_height=300, hp_thickness=12, plate_width=680, plate_thickness=25) I_stiffener, I_plate, I_total = stiffener.get_moment_of_inertia() print(f"Moment of inertia of stiffener: {I_stiffener:.3e} mm^4") print(f"Moment of inertia of plate: {I_plate:.3e} mm^4") print(f"Moment of inertia of combined: {I_total:.3e} mm^4") def get_moment_of_intertia(self, efficent_se=None, only_stf = False, tf1 = None, reduced_tw = None, plate_thk = None, plate_spacing = None): ''' Returning moment of intertia. :return: ''' if only_stf: tf1 = t = 0 b1 = s_e = 0 else: tf1 = t = self._plate_th if tf1 == None else tf1 b1 = s_e =self._spacing if efficent_se==None else efficent_se e_f = 0 h = self._flange_th+self._web_height+tf1 tw = self._web_th if reduced_tw == None else reduced_tw/1000 hw = self._web_height tf2 = tf = self._flange_th b2 = bf = self._flange_width Ax = tf1 * b1 + tf2 * b2 + hw * tw Iyc = (1 / 12) * (b1 * math.pow(tf1, 3) + b2 * math.pow(tf2, 3) + tw * math.pow(hw, 3)) ez = (tf1 * b1 * (h - tf1 / 2) + hw * tw * (tf2 + hw / 2) + tf2 * b2 * (tf2 / 2)) / Ax Iy = Iyc + (tf1 * b1 * math.pow(tf2 + hw + tf1 / 2, 2) + tw * hw * math.pow(tf2 + hw / 2, 2) + tf2 * b2 * math.pow(tf2 / 2, 2)) - Ax * math.pow(ez, 2) # ### # z_c = bf * tf * e_f / (s_e * t + hw * tw + bf * tf) # I_z = 1.0 / 12.0 * t * math.pow(s_e,3) + 1.0 / 12.0 * hw * math.pow(tw,3) + 1.0 / 12.0 * tf * math.pow(bf,3) +\ # t * s_e * math.pow(z_c,2) + \ # tw * hw * math.pow(z_c,2) + bf * tf * math.pow(e_f - z_c,2) # ### # # z_c = (bf * tf * (tf / 2.0 + t / 2.0 + hw) + hw * tw * (hw / 2.0 + t / 2.0)) / (s_e * t + hw * tw + bf * tf) # I_sef = 1.0 / 12.0 * tw * hw ** 3 + 1.0 / 12.0 * bf * tf ** 3 + 1.0 / 12.0 * s_e * t ** 3 + tw * hw * ( # hw / 2.0 + t / 2.0 - z_c) ** 2 + tf * bf * (hw + t / 2.0 + tf / 2.0 - z_c) ** 2 + s_e * t * z_c ** 2 # print(I_sef, I_z, Iy) #print(2*(bf*(h/2)**3/12 + tf*(h-tf)**3/12) + tw*h**3/12, Iy) return Iy def get_Iz_moment_of_inertia(self, reduced_tw = None): tw = self._web_th*1000 if reduced_tw is None else reduced_tw hw = self._web_height * 1000 tf2 = self._flange_th * 1000 b2 = self._flange_width * 1000 if self._stiffener_type == 'FB': Iz = math.pow(tw,3)*hw/12 elif self._stiffener_type == 'T': Iz = hw*math.pow(tw,3)/12 + tf2*math.pow(b2,3)/12 else: Czver = tw/2 Czhor = b2/2 Aver = hw*tw Ahor = b2*tf2 Atot = Aver+Ahor Czoverall = Aver*Czver/Atot + Ahor*Czhor/Atot dz = Czver - Czoverall Iver = (1/12)*hw*math.pow(tw,3) + Aver*math.pow(dz,2) dz = Czhor-Czoverall Ihor = (1/12)*tf2*math.pow(b2,3) + Ahor*math.pow(dz,2) Iz = Iver + Ihor return Iz def get_moment_of_interia_iacs(self, efficent_se=None, only_stf = False, tf1 = None): if only_stf: tf1 = 0 b1 = 0 else: tf1 = self._plate_th if tf1 == None else tf1 b1 = self._spacing if efficent_se==None else efficent_se h = self._flange_th+self._web_height+tf1 tw = self._web_th hw = self._web_height tf2 = self._flange_th b2 = self._flange_width Af = b2*tf2 Aw = hw*tw ef = hw + tf2/2 Iy = (Af*math.pow(ef,2)*math.pow(b2,2)/12) * ( (Af+2.6*Aw) / (Af+Aw)) return Iy def get_torsional_moment_venant(self, reduced_tw = None, efficient_flange = True): # if efficient_flange: # ef = self.get_ef_iacs()*1000 # else: # ef = self._flange_width * 1000 tf = self._flange_th*1000 tw = self._web_th*1000 if reduced_tw is None else reduced_tw bf = self._flange_width*1000 hw = self._web_height*1000 # if self._stiffener_type == 'FB': # It = ((hw*math.pow(tw,3)/3e4) * (1-0.63*(tw/hw)) ) # else: # It = ((((ef-0.5*tf)*math.pow(tw,3))/3e4) * (1-0.63*(tw/(ef-0.5*tf))) + ((bf*math.pow(tf,3))/3e4) # * (1-0.63*(tf/bf)) ) # G = 80769.2 # It2 = (2/3) * (math.pow(tw,3)*hw + bf*math.pow(tf, 3)) *(hw+tf/2) # print(It, It2*G) # print(hw, tw, bf, tf) I_t1 = 1.0 / 3.0 * math.pow(tw , 3) * hw + 1.0 / 3.0 * math.pow(tf, 3) * bf # I_t2 = 1.0 / 3.0 * math.pow(tw , 3) * (hw + tf) + 1.0 / 3.0 * math.pow(tf, 3) * (bf - tw) # print('It', I_t1, I_t2, It* 1e4) return I_t1# * 1e4 def get_polar_moment(self, reduced_tw = None): tf = self._flange_th*1000 tw = self._web_th*1000 if reduced_tw is None else reduced_tw ef = self.get_flange_eccentricity()*1000 hw = self._web_height*1000 b = self._flange_width*1000 #Ipo = (A|w*(ef-0.5*tf)**2/3+Af*ef**2)*10e-4 #polar moment of interia in cm^4 #Ipo = (tw/3)*math.pow(hw, 3) + tf*(math.pow(hw+tf/2,2)*b)+(tf/3)*(math.pow(ef+b/2,3)-math.pow(ef-b/2,3)) # C24/3*C70^3+C26*((C70+C26/2)^2*C25)+C26/3*((C72+C25/2)^3-(C72-C25/2)^3) + (C25*C26^3)/12 + (C70*C24^3)/12 Ipo = tw/3*math.pow(hw, 3)+tf*(math.pow(hw+tf/2,2)*b)+tf/3*(math.pow(ef+b/2,3)-math.pow(ef-b/2,3)) + \ (b*math.pow(tf,3))/12 + (hw*math.pow(tw,3))/12 return Ipo def get_flange_eccentricity(self): ecc = 0 if self._stiffener_type in ['FB', 'T'] else self._flange_width / 2 - self._web_th / 2 return ecc def get_ef_iacs(self): if self._stiffener_type == 'FB': ef = self._web_height # elif self._stiffener_type == 'L-bulb': # ef = self._web_height-0.5*self._flange_th elif self._stiffener_type in ['L', 'T', 'L-bulb', 'HP-profile', 'HP', 'HP-bulb']: ef = self._web_height + 0.5*self._flange_th return ef def get_stf_cog_eccentricity(self): e = (self._web_height * self._web_th * (self._web_height / 2) + self._flange_width * self._flange_th * (self._web_height + self._web_th / 2)) / (self._web_height * self._web_th + self._flange_width * self._flange_th) return e def get_structure_prop(self): return self._main_dict def get_structure_type(self): return self._structure_type def get_stiffener_type(self): return self._stiffener_type def get_shear_area(self): ''' Returning the shear area in [m^2] :return: ''' return ((self._flange_th*self._web_th) + (self._web_th*self._plate_th) + (self._web_height*self._web_th)) def set_main_properties(self, main_dict): ''' Resettting all properties :param input_dictionary: :return: ''' self._main_dict = main_dict self._plate_th = main_dict['plate_thk'][0] self._web_height = main_dict['stf_web_height'][0] self._web_th = main_dict['stf_web_thk'][0] self._flange_width = main_dict['stf_flange_width'][0] self._flange_th = main_dict['stf_flange_thk'][0] self._mat_yield = main_dict['mat_yield'][0] self._mat_factor = main_dict['mat_factor'][0] self._span = main_dict['span'][0] self._spacing = main_dict['spacing'][0] self._structure_type = main_dict['structure_type'][0] self._sigma_y1=main_dict['sigma_y1'][0] self._sigma_y2=main_dict['sigma_y2'][0] self._sigma_x1 = main_dict['sigma_x1'][0] self._sigma_x2 = main_dict['sigma_x2'][0] self._tauxy=main_dict['tau_xy'][0] self._plate_kpp = main_dict['plate_kpp'][0] self._stf_kps = main_dict['stf_kps'][0] self._km1 = main_dict['stf_km1'][0] self._km2 = main_dict['stf_km2'][0] self._km3 = main_dict['stf_km3'][0] self._stiffener_type=main_dict['stf_type'][0] try: self._girder_lg=main_dict['girder_lg'][0] except KeyError: self._girder_lg = 10 try: self._pressure_side = main_dict['press_side'][0] except KeyError: self._pressure_side = 'p' self._zstar_optimization = main_dict['zstar_optimization'][0] self._puls_method = main_dict['puls buckling method'][0] self._puls_boundary = main_dict['puls boundary'][0] self._puls_stf_end = main_dict['puls stiffener end'][0] self._puls_sp_or_up = main_dict['puls sp or up'][0] self._puls_up_boundary = main_dict['puls up boundary'][0] self._panel_or_shell = main_dict['panel or shell'][0] def set_stresses(self,sigy1,sigy2,sigx1,sigx2,tauxy): ''' Setting the global stresses. :param sigy1: :param sigy2: :param sigx: :param tauxy: :return: ''' self._main_dict['sigma_y1'][0]= sigy1 self._sigma_y1 = sigy1 self._main_dict['sigma_y2'][0]= sigy2 self._sigma_y2 = sigy2 self._main_dict['sigma_x1'][0]= sigx1 self._sigma_x1 = sigx1 self._main_dict['sigma_x2'][0]= sigx2 self._sigma_x2 = sigx2 self._main_dict['tau_xy'][0]= tauxy self._tauxy = tauxy def get_cross_section_area(self, efficient_se = None, include_plate = True): ''' Returns the cross section area. :return: ''' tf1 = self._plate_th if include_plate else 0 tf2 = self._flange_th if include_plate: b1 = self._spacing if efficient_se==None else efficient_se else: b1 = 0 b2 = self._flange_width #h = self._flange_th+self._web_height+self._plate_th h = self._web_height tw = self._web_th #print('Plate: thk', tf1, 's', b1, 'Flange: thk', tf2, 'width', b2, 'Web: thk', tw, 'h', h) return tf1 * b1 + tf2 * b2 + h * tw def get_cross_section_centroid_with_effective_plate(self, se = None, tf1 = None, include_plate = True, reduced_tw = None): ''' Returns cross section centroid :return: ''' # checked with example if include_plate: tf1 = self._plate_th if tf1 == None else tf1 b1 = self._spacing if se == None else se else: tf1 = 0 b1 = 0 tf2 = self._flange_th b2 = self._flange_width tw = self._web_th if reduced_tw == None else reduced_tw/1000 hw = self._web_height Ax = tf1 * b1 + tf2 * b2 + hw * tw effana = (tf1 * b1 * tf1/2 + hw * tw * (tf1 + hw / 2) + tf2 * b2 * (tf1+hw+tf2/2)) / Ax return effana def get_weight(self): ''' Return the weight. :return: ''' return 7850*self._span*(self._spacing*self._plate_th+self._web_height*self._web_th+self._flange_width*self._flange_th) def get_weight_width_lg(self): ''' Return the weight including Lg :return: ''' pl_area = self._girder_lg*self._plate_th stf_area = (self._web_height*self._web_th+self._flange_width*self._flange_th)*(self._girder_lg//self._spacing) return (pl_area+stf_area)*7850*self._span def set_span(self,span): ''' Setting the span. Used when moving a point. :return: ''' self._span = span self._main_dict['span'][0] = span def get_puls_input(self, run_type: str = 'SP'): if self._stiffener_type == 'FB': stf_type = 'F' else: stf_type = self._stiffener_type map_boundary = {'Continuous': 'C', 'Sniped': 'S'} sig_x1 = self._sigma_x1 sig_x2 = self._sigma_x2 if sig_x1 * sig_x2 >= 0: sigxd = sig_x1 if abs(sig_x1) > abs(sig_x2) else sig_x2 else: sigxd = max(sig_x1, sig_x2) if self._puls_sp_or_up == 'SP': return_dict = {'Identification': None, 'Length of panel': self._span*1000, 'Stiffener spacing': self._spacing*1000, 'Plate thickness': self._plate_th*1000, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': stf_type, 'Stiffener boundary': map_boundary[self._puls_stf_end] if map_boundary[self._puls_stf_end] in ['C', 'S'] else 'C' if self._puls_stf_end == 'Continuous' else 'S', 'Stiff. Height': self._web_height*1000, 'Web thick.': self._web_th*1000, 'Flange width': self._flange_width*1000, 'Flange thick.': self._flange_th*1000, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 2.1e11/1e6, "Poisson's ratio": 0.3, 'Yield stress plate': self._mat_yield/1e6, 'Yield stress stiffener': self._mat_yield/1e6, 'Axial stress': 0 if self._puls_boundary == 'GT' else sigxd, 'Trans. stress 1': 0 if self._puls_boundary == 'GL' else self._sigma_y1, 'Trans. stress 2': 0 if self._puls_boundary == 'GL' else self._sigma_y2, 'Shear stress': self._tauxy, 'Pressure (fixed)': None, 'In-plane support': self._puls_boundary, 'sp or up': self._puls_sp_or_up} else: boundary = self._puls_up_boundary blist = list() if len(boundary) != 4: blist = ['SS', 'SS', 'SS', 'SS'] else: for letter in boundary: if letter.upper() == 'S': blist.append('SS') elif letter.upper() == 'C': blist.append('CL') else: blist.append('SS') return_dict = {'Identification': None, 'Length of plate': self._span*1000, 'Width of c': self._spacing*1000, 'Plate thickness': self._plate_th*1000, 'Modulus of elasticity': 2.1e11/1e6, "Poisson's ratio": 0.3, 'Yield stress plate': self._mat_yield/1e6, 'Axial stress 1': 0 if self._puls_boundary == 'GT' else sigxd, 'Axial stress 2': 0 if self._puls_boundary == 'GT' else sigxd, 'Trans. stress 1': 0 if self._puls_boundary == 'GL' else self._sigma_y1, 'Trans. stress 2': 0 if self._puls_boundary == 'GL' else self._sigma_y2, 'Shear stress': self._tauxy, 'Pressure (fixed)': None, 'In-plane support': self._puls_boundary, 'Rot left': blist[0], 'Rot right': blist[1], 'Rot upper': blist[2], 'Rot lower': blist[3], 'sp or up': self._puls_sp_or_up} return return_dict def get_buckling_ml_input(self, design_lat_press: float = 0, sp_or_up: str = 'SP', alone = True, csr = False): ''' Classes in data from ML {'negative utilisation': 1, 'non-zero': 2, 'Division by zero': 3, 'Overflow': 4, 'aspect ratio': 5, 'global slenderness': 6, 'pressure': 7, 'web-flange-ratio': 8, 'below 0.87': 9, 'between 0.87 and 1': 10, 'above 1': 11} ''' stf_type = {'T-bar': 1,'T': 1, 'L-bulb': 2, 'Angle': 3, 'Flatbar': 4, 'FB': 4, 'L': 3} stf_end = {'Cont': 1, 'C':1 , 'Sniped': 2, 'S': 2} field_type = {'Integrated': 1,'Int': 1, 'Girder - long': 2,'GL': 2, 'Girder - trans': 3, 'GT': 3} up_boundary = {'SS': 1, 'CL': 2} map_boundary = {'Continuous': 'C', 'Sniped': 'S'} sig_x1 = self._sigma_x1 sig_x2 = self._sigma_x2 if sig_x1 * sig_x2 >= 0: sigxd = sig_x1 if abs(sig_x1) > abs(sig_x2) else sig_x2 else: sigxd = max(sig_x1, sig_x2) if self._puls_sp_or_up == 'SP': if csr == False: this_field = [self._span * 1000, self._spacing * 1000, self._plate_th * 1000, self._web_height * 1000, self._web_th * 1000, self._flange_width * 1000, self._flange_th * 1000, self._mat_yield / 1e6, self._mat_yield / 1e6, sigxd, self._sigma_y1, self._sigma_y2, self._tauxy, design_lat_press/1000, stf_type[self._stiffener_type], stf_end[map_boundary[self._puls_stf_end]]] else: this_field = [self._span * 1000, self._spacing * 1000, self._plate_th * 1000, self._web_height * 1000, self._web_th * 1000, self._flange_width * 1000, self._flange_th * 1000, self._mat_yield / 1e6, self._mat_yield / 1e6, sigxd, self._sigma_y1, self._sigma_y2, self._tauxy, design_lat_press/1000, stf_type[self._stiffener_type], stf_end[map_boundary[self._puls_stf_end]], field_type[self._puls_boundary]] else: ss_cl_list = list() for letter_i in self._puls_up_boundary: if letter_i == 'S': ss_cl_list.append(up_boundary['SS']) else: ss_cl_list.append(up_boundary['CL']) b1, b2, b3, b4 = ss_cl_list if csr == False: this_field = [self._span * 1000, self._spacing * 1000, self._plate_th * 1000, self._mat_yield / 1e6, sigxd, self._sigma_y1, self._sigma_y2, self._tauxy, design_lat_press/1000, b1, b2, b3, b4] else: this_field = [self._span * 1000, self._spacing * 1000, self._plate_th * 1000, self._mat_yield / 1e6, sigxd, self._sigma_y1, self._sigma_y2, self._tauxy, design_lat_press/1000, field_type[self._puls_boundary], b1, b2, b3, b4] if alone: return [this_field,] else: return this_field class CalcScantlings(Structure): ''' This Class does the calculations for the plate fields. Input is a structure object, same as for the structure class. The class inherits from Structure class. ''' def __init__(self, main_dict, lat_press = True, category = 'secondary'): super(CalcScantlings,self).__init__(main_dict=main_dict) self.lat_press = lat_press self.category = category self._need_recalc = True @property def need_recalc(self): return self._need_recalc @need_recalc.setter def need_recalc(self, val): self._need_recalc = val def get_results_for_report(self,lat_press=0): ''' Returns a string for the report. :return: ''' buc = [round(res,1) for res in self.calculate_buckling_all(design_lat_press=lat_press)] return 'Minimum section modulus:'\ +str(int(self.get_dnv_min_section_modulus(design_pressure_kpa=lat_press)*1000**3))\ +'mm^3 '+' Minium plate thickness: '\ +str(round(self.get_dnv_min_thickness(design_pressure_kpa=lat_press),1))+\ ' Buckling results: eq7_19: '+str(buc[0])+' eq7_50: '+str(buc[1])+ ' eq7_51: '\ +str(buc[2])+ ' eq7_52: '+str(buc[3])+ ' eq7_53: '+str(buc[4]) def calculate_slamming_plate(self, slamming_pressure, red_fac = 1): ''' Slamming pressure input is Pa ''' ka1 = 1.1 ka2 = min(max(0.4, self._spacing / self._span), 1) ka = math.pow(ka1 - 0.25*ka2,2) sigmaf = self._mat_yield/1e6 # MPa psl = red_fac * slamming_pressure/1000 # kPa Cd = 1.5 return 0.0158*ka*self._spacing*1000*math.sqrt(psl/(Cd*sigmaf)) def calculate_slamming_stiffener(self, slamming_pressure, angle = 90, red_fac = 1): tk = 0 psl = slamming_pressure / 1000 # kPa Pst = psl * red_fac # Currently DNV does not use psl/2 for slamming. sigmaf = self._mat_yield / 1e6 # MPa hw, twa, tp, tf, bf, s = [(val - tk) * 1000 for val in [self._web_height, self._web_th, self._plate_th, self._flange_th, self._flange_width, self._spacing]] ns = 2 tau_eH = sigmaf/math.sqrt(3) h_stf = (self._web_height+self._flange_th)*1000 f_shr = 0.7 lbdg = self._span lshr = self._span - self._spacing/4000 dshr = h_stf + tp if 75 <= angle <= 90 else (h_stf + tp)*math.sin(math.radians(angle)) tw = (f_shr*Pst*s*lshr)/(dshr*tau_eH) if self._web_th*1000 < tw: return {'tw_req': tw, 'Zp_req':None} fpl = 8* (1+(ns/2)) Zp_req = (1.2*Pst*s*math.pow(lbdg,2)/(fpl*sigmaf)) + \ (ns*(1-math.sqrt(1-math.pow(tw/twa,2)))*hw*tw*(hw+tp))/8000 return {'tw_req': tw, 'Zp_req':Zp_req} def check_all_slamming(self, slamming_pressure, stf_red_fact = 1, pl_red_fact = 1): ''' A summary check of slamming ''' pl_chk = self.calculate_slamming_plate(slamming_pressure, red_fac= pl_red_fact) if self._plate_th*1000 < pl_chk: chk1 = pl_chk / self._plate_th*1000 return False, chk1 stf_res = self.calculate_slamming_stiffener(slamming_pressure, red_fac = stf_red_fact) #print('Slamming checked') if self._web_th*1000 < stf_res['tw_req']: chk2 = stf_res['tw_req'] / self._web_th*1000 return False, chk2 if stf_res['Zp_req'] is not None: eff_pl_sec_mod = self.get_net_effective_plastic_section_modulus() if eff_pl_sec_mod < stf_res['Zp_req']: chk3 = stf_res['Zp_req']/eff_pl_sec_mod return False, chk3 return True, None def get_net_effective_plastic_section_modulus(self, angle = 90): ''' Calculated according to Rules for classification: Ships — DNVGL-RU-SHIP Pt.3 Ch.3. Edition July 2017, page 83 ''' tk = 0 angle_rad = math.radians(angle) hw, tw, tp, tf, bf = [(val - tk) * 1000 for val in [self._web_height, self._web_th, self._plate_th, self._flange_th, self._flange_width]] h_stf = (self._web_height+self._flange_th)*1000 de_gr = 0 tw_gr = self._web_th*1000 hf_ctr = h_stf-0.5*tf if self.get_stiffener_type() not in ['L','L-bulb'] else h_stf - de_gr - 0.5*tf bf_ctr = 0 if self.get_stiffener_type() == 'T' else 0.5*(tf - tw_gr) beta = 0.5 gamma = (1 + math.sqrt(3+12*beta))/4 Af = 0 if self.get_stiffener_type() == 'FB' else bf*tf if 75 <= angle <= 90: zpl = (hw*tw*(hw+tp)/2000) + ( (2*gamma-1) * Af * ((hf_ctr + tp/2)) / 1000) elif angle < 75: zpl = (hw*tw*(hw+tp)/2000)+\ ( (2*gamma-1) * Af * ((hf_ctr + tp/2) * math.sin(angle_rad) - bf_ctr*math.cos(angle_rad)) / 1000) return zpl def get_dnv_min_section_modulus(self, design_pressure_kpa, printit = False): ''' Section modulus according to DNV rules ''' design_pressure = design_pressure_kpa fy = self._mat_yield / 1e6 fyd = fy/self._mat_factor sigma_y = self._sigma_y2 + (self._sigma_y1-self._sigma_y2)\ *(min(0.25*self._span,0.5*self._spacing)/self._span) sig_x1 = self._sigma_x1 sig_x2 = self._sigma_x2 if sig_x1 * sig_x2 >= 0: sigxd = sig_x1 if abs(sig_x1) > abs(sig_x2) else sig_x2 else: sigxd =max(sig_x1 , sig_x2) sigma_jd = math.sqrt(math.pow(sigxd,2)+math.pow(sigma_y,2)- sigxd*sigma_y+3*math.pow(self._tauxy,2)) sigma_pd2 = fyd-sigma_jd # design_bending_stress_mpa kps = self._stf_kps # 1 is clamped, 0.9 is simply supported. km_sides = min(self._km1,self._km3) # see table 3 in DNVGL-OS-C101 (page 62) km_middle = self._km2 # see table 3 in DNVGL-OS-C101 (page 62) Zs = ((math.pow(self._span, 2) * self._spacing * design_pressure) / (min(km_middle, km_sides) * (sigma_pd2) * kps)) * math.pow(10, 6) if printit: print('Sigma y1', self._sigma_y1, 'Sigma y2', self._sigma_y2, 'Sigma x', self._sigma_x1, 'Pressure', design_pressure) return max(math.pow(15, 3) / math.pow(1000, 3), Zs / math.pow(1000, 3)) def get_dnv_min_thickness(self, design_pressure_kpa): ''' Return minimum thickness in mm :param design_pressure_kpa: :return: ''' design_pressure = design_pressure_kpa #print(self._sigma_x1) sigma_y = self._sigma_y2 + (self._sigma_y1-self._sigma_y2)\ *(min(0.25*self._span,0.5*self._spacing)/self._span) sig_x1 = self._sigma_x1 sig_x2 = self._sigma_x2 if sig_x1 * sig_x2 >= 0: sigxd = sig_x1 if abs(sig_x1) > abs(sig_x2) else sig_x2 else: sigxd =max(sig_x1 , sig_x2) sigma_jd = math.sqrt(math.pow(sigxd,2)+math.pow(sigma_y,2)- sigxd*sigma_y+3*math.pow(self._tauxy,2)) fy = self._mat_yield / 1000000 fyd = fy/self._mat_factor sigma_pd1 = min(1.3*(fyd-sigma_jd), fyd) sigma_pd1 = abs(sigma_pd1) #print(fyd, sigma_jd, fyd) if self.category == 'secondary': t0 = 5 else: t0 = 7 t_min = (14.3 * t0) / math.sqrt(fyd) ka = math.pow(1.1 - 0.25 * self._spacing/self._span, 2) if ka > 1: ka =1 elif ka<0.72: ka = 0.72 assert sigma_pd1 > 0, 'sigma_pd1 must be negative | current value is: ' + str(sigma_pd1) t_min_bend = (15.8 * ka * self._spacing * math.sqrt(design_pressure)) / \ math.sqrt(sigma_pd1 *self._plate_kpp) if self.lat_press: return max(t_min, t_min_bend) else: return t_min def get_minimum_shear_area(self, pressure): ''' Calculating minimum section area according to ch 6.4.4. Return [m^2] :return: ''' #print('SIGMA_X ', self._sigma_x1) l = self._span s = self._spacing fy = self._mat_yield fyd = (fy/self._mat_factor)/1e6 #yield strength sig_x1 = self._sigma_x1 sig_x2 = self._sigma_x2 if sig_x1 * sig_x2 >= 0: sigxd = sig_x1 if abs(sig_x1) > abs(sig_x2) else sig_x2 else: sigxd =max(sig_x1 , sig_x2) taupds = 0.577*math.sqrt(math.pow(fyd, 2) - math.pow(sigxd, 2)) As = ((l*s*pressure)/(2*taupds)) * math.pow(10,3) return As/math.pow(1000,2) def is_acceptable_sec_mod(self, section_module, pressure): ''' Checking if the result is accepable. :param section_module: :param pressure: :return: ''' return min(section_module) >= self.get_dnv_min_section_modulus(pressure) def is_acceptable_shear_area(self, shear_area, pressure): ''' Returning if the shear area is ok. :param shear_area: :param pressure: :return: ''' return shear_area >= self.get_minimum_shear_area(pressure) def get_plate_efficent_b(self,design_lat_press=0,axial_stress=50, trans_stress_small=100,trans_stress_large=100): ''' Simple buckling calculations according to DNV-RP-C201 :return: ''' #7.2 Forces in the idealised stiffened plate s = self._spacing #ok t = self._plate_th #ok l = self._span #ok E = 2.1e11 #ok pSd = design_lat_press*1000 sigy1Sd =trans_stress_large*1e6 sigy2Sd =trans_stress_small*1e6 sigxSd = axial_stress*1e6 fy = self._mat_yield #ok #7.3 Effective plate width alphap=0.525*(s/t)*math.sqrt(fy/E) # reduced plate slenderness, checked not calculated with ex alphac = 1.1*(s/t)*math.sqrt(fy/E) # checked not calculated with example mu6_9 = 0.21*(alphac-0.2) if alphac<=0.2: kappa = 1 # eq6.7, all kappa checked not calculated with example elif 0.2<alphac<2: kappa = (1/(2*math.pow(alphac,2)))*(1+mu6_9+math.pow(alphac,2) -math.sqrt(math.pow(1+mu6_9+math.pow(alphac,2),2) -4*math.pow(alphac,2))) # ok else: kappa=(1/(2*math.pow(alphac,2)))+0.07 # ok ha = 0.05*(s/t)-0.75 assert ha>= 0,'ha must be larger than 0' kp = 1 if pSd<=2*((t/s)**2)*fy else 1-ha*((pSd/fy)-2*(t/s)**2) sigyR=( (1.3*t/l)*math.sqrt(E/fy)+kappa*(1-(1.3*t/l)*math.sqrt(E/fy)))*fy*kp # checked not calculated with example l1 = min(0.25*l,0.5*s) sig_min, sig_max = min(sigy1Sd,sigy2Sd),max(sigy1Sd,sigy2Sd) # self-made sigySd = sig_min+(sig_max-sig_min)*(1-l1/l) # see 6.8, page 15 ci = 1-s/(120*t) if (s/t)<=120 else 0 # checked not calculated with example Cxs = (alphap-0.22)/math.pow(alphap,2) if alphap > 0.673 else 1 # reduction factor longitudinal # eq7.16, reduction factor transverse, compression (positive) else tension Cys = math.sqrt(1-math.pow(sigySd/sigyR,2) + ci*((sigxSd*sigySd)/(Cxs*fy*sigyR))) if sigySd >= 0 \ else min(0.5*(math.sqrt(4-3*math.pow(sigySd/fy,2))+sigySd/fy),1) #ok, checked #7.7.3 Resistance parameters for stiffeners return s * Cxs * Cys # 7.3, eq7.13, che def buckling_local_stiffener(self): ''' Local requirements for stiffeners. Chapter 9.11. :return: ''' epsilon = math.sqrt(235 / (self._mat_yield / 1e6)) if self._stiffener_type in ['L', 'L-bulb']: c = self._flange_width - self._web_th/2 elif self._stiffener_type == 'T': c = self._flange_width/2 - self._web_th/2 elif self._stiffener_type == 'FB': return self._web_height <= 42 * self._web_th * epsilon, self._web_height/(42 * self._web_th * epsilon) # print(self._web_height, self._web_th, self._flange_width ,self._flange_th ) # print('c:',c, 14 * self._flange_th * epsilon, ' | ', self._web_height, 42 * self._web_th * epsilon) # print(c <= (14 * self._flange_th * epsilon) and self._web_height <= 42 * self._web_th * epsilon) # print(c/(14 * self._flange_th * epsilon), self._web_height / (42 * self._web_th * epsilon)) # print('') return c <= (14 * self._flange_th * epsilon) and self._web_height <= 42 * self._web_th * epsilon, \ max(c/(14 * self._flange_th * epsilon), self._web_height / (42 * self._web_th * epsilon)) def is_acceptable_pl_thk(self, design_pressure): ''' Checking if the thickness is acceptable. :return: ''' return self.get_dnv_min_thickness(design_pressure) <= self._plate_th*1000 class AllStructure(): ''' Calculation of structure ''' def __init__(self, Plate: CalcScantlings = None, Stiffener: CalcScantlings = None, Girder: CalcScantlings = None, main_dict = None): super(AllStructure, self).__init__() self._Plate = Plate # This contain the stresses self._Stiffener = Stiffener self._Girder = Girder self._lat_press = None self._v = 0.3 self._E = 2.1e11 self._min_lat_press_adj_span = None if main_dict['minimum pressure in adjacent spans'][0] == 0 else \ main_dict['minimum pressure in adjacent spans'][0] self._yield = main_dict['material yield'][0] self._stress_load_factor = main_dict['load factor on stresses'][0] self._lat_load_factor = main_dict['load factor on pressure'][0] self._method = main_dict['buckling method'][0] self._stf_end_support = main_dict['stiffener end support'][0]#'Continuous' self._girder_end_support = main_dict['girder end support'][0]#'Continuous' self._tension_field_action = main_dict['tension field'][0]# 'not allowed' self._stiffed_plate_effective_aginst_sigy = main_dict['plate effective agains sigy'][0] #True self._buckling_length_factor_stf = None if main_dict['buckling length factor stf'][0] == 0 else \ main_dict['buckling length factor stf'][0] self._buckling_length_factor_girder = None if main_dict['buckling length factor girder'][0] == 0 else \ main_dict['buckling length factor girder'][0] self._km3 = main_dict['km3'][0]#12 self._km2 = main_dict['km2'][0]#24 self._stf_dist_between_lateral_supp = None if main_dict['stiffener distance between lateral support'][0] == 0 \ else main_dict['stiffener distance between lateral support'][0] self._girder_dist_between_lateral_supp = None if main_dict['girder distance between lateral support'][0] == 0 \ else main_dict['girder distance between lateral support'][0] self._panel_length_Lp = None if main_dict['panel length, Lp'][0] == 0 else main_dict['panel length, Lp'][0] self._overpressure_side = main_dict['pressure side'][0] # either 'stiffener side', 'plate side', 'both sides' self._fab_method_stiffener = main_dict['fabrication method stiffener'][0]#'welded' self._fab_method_girder = main_dict['fabrication method girder'][0]#'welded' self._calculation_domain = main_dict['calculation domain'][0] self._need_recalc = True @property def need_recalc(self): return self._need_recalc @need_recalc.setter def need_recalc(self, val): self._need_recalc = val @property def lat_press(self): return self._lat_press @lat_press.setter def lat_press(self, val): self._lat_press = val @property def Plate(self): return self._Plate @Plate.setter def Plate(self, val): self._Plate = val @property def Stiffener(self): return self._Stiffener @Stiffener.setter def Stiffener(self, val): self._Stiffener = val @property def Girder(self): return self._Girder @Girder.setter def Girder(self, val): self._Girder = val @property def overpressure_side(self): return self._overpressure_side @overpressure_side.setter def overpressure_side(self, val): self._overpressure_side = val @property def calculation_domain(self): return self._calculation_domain @calculation_domain.setter def calculation_domain(self, val): self._calculation_domain = val def get_main_properties(self): main_dict = dict() main_dict['minimum pressure in adjacent spans'] = [self._min_lat_press_adj_span, ''] main_dict['material yield'] = [self._yield, 'Pa'] main_dict['load factor on stresses'] = [self._stress_load_factor, ''] main_dict['load factor on pressure'] = [self._lat_load_factor, ''] main_dict['buckling method'] = [self._method, ''] main_dict['stiffener end support'] = [self._stf_end_support, ''] # 'Continuous' main_dict['girder end support'] = [self._girder_end_support, ''] # 'Continuous' main_dict['tension field'] = [self._tension_field_action, ''] # 'not allowed' main_dict['plate effective agains sigy'] = [self._stiffed_plate_effective_aginst_sigy, ''] # True main_dict['buckling length factor stf'] = [self._buckling_length_factor_stf, ''] main_dict['buckling length factor girder'] = [self._buckling_length_factor_girder, ''] main_dict['km3'] = [self._km3, ''] # 12 main_dict['km2'] = [self._km2, ''] # 24 main_dict['girder distance between lateral support'] = [self._girder_dist_between_lateral_supp, ''] main_dict['stiffener distance between lateral support'] = [self._stf_dist_between_lateral_supp, ''] main_dict['panel length, Lp'] = [self._panel_length_Lp, ''] main_dict['pressure side'] = [self._overpressure_side, ''] # either 'stiffener', 'plate', 'both' main_dict['fabrication method stiffener'] = [self._fab_method_stiffener, ''] main_dict['fabrication method girder'] = [self._fab_method_girder, ''] main_dict['calculation domain']= [self._calculation_domain, ''] return {'main dict': main_dict, 'Plate': self._Plate.get_structure_prop(), 'Stiffener': None if self._Stiffener is None else self._Stiffener.get_structure_prop(), 'Girder': None if self._Girder is None else self._Girder.get_structure_prop()} def set_main_properties(self, prop_dict): main_dict = prop_dict['main dict'] self._min_lat_press_adj_span = None if main_dict['minimum pressure in adjacent spans'][0] == 0 else \ main_dict['minimum pressure in adjacent spans'][0] self._yield = main_dict['material yield'][0] self._stress_load_factor = main_dict['load factor on stresses'][0] self._lat_load_factor = main_dict['load factor on pressure'][0] self._method = main_dict['buckling method'][0] self._stf_end_support = main_dict['stiffener end support'][0]#'Continuous' self._girder_end_support = main_dict['girder end support'][0]#'Continuous' self._tension_field_action = main_dict['tension field'][0]# 'not allowed' self._stiffed_plate_effective_aginst_sigy = main_dict['plate effective agains sigy'][0] #True self._buckling_length_factor_stf = None if main_dict['buckling length factor stf'][0] == 0 else \ main_dict['buckling length factor stf'][0] self._buckling_length_factor_girder = None if main_dict['buckling length factor girder'][0] == 0 else \ main_dict['buckling length factor girder'][0] self._km3 = main_dict['km3'][0]#12 self._km2 = main_dict['km2'][0]#24 self._girder_dist_between_lateral_supp = None if main_dict['girder distance between lateral support'][0] in [0, None, ''] else \ main_dict['girder distance between lateral support'][0] self._stf_dist_between_lateral_supp = None if main_dict['stiffener distance between lateral support'][0] in [0, None, ''] else \ main_dict['stiffener distance between lateral support'][0] self._panel_length_Lp = None if main_dict['panel length, Lp'][0] == 0 else main_dict['panel length, Lp'][0] self._overpressure_side = main_dict['pressure side'][0] # either 'stiffener', 'plate', 'both' self._fab_method_stiffener = main_dict['fabrication method stiffener'][0]#'welded' self._fab_method_girder = main_dict['fabrication method girder'][0]#'welded' self._Plate.set_main_properties(prop_dict['Plate']) if prop_dict['Stiffener'] is not None and self._Stiffener is None: self._Stiffener = CalcScantlings(prop_dict['Stiffener']) elif prop_dict['Stiffener'] is not None and self._Stiffener is not None: self._Stiffener.set_main_properties(prop_dict['Stiffener']) else: self._Stiffener = None if prop_dict['Girder'] is not None and self._Girder is None: self._Girder = CalcScantlings(prop_dict['Girder']) elif prop_dict['Girder'] is not None and self._Girder is not None: self._Girder.set_main_properties(prop_dict['Girder']) else: self._Girder = None self._calculation_domain = main_dict['calculation domain'][0] def plate_buckling(self, optimizing = False): ''' Summary ''' return_dummy = {'Plate': {'Plate buckling': 0}, 'Stiffener': {'Overpressure plate side': 0, 'Overpressure stiffener side': 0, 'Resistance between stiffeners': 0, 'Shear capacity': 0}, 'Girder': {'Overpressure plate side': 0, 'Overpressure girder side': 0, 'Shear capacity': 0}, 'Local buckling': 0} unstf_pl = self.unstiffened_plate_buckling(optimizing = optimizing) up_buckling = max([unstf_pl['UF Pnt. 5 Lateral loaded plates'], unstf_pl['UF sjsd'], max([unstf_pl['UF Longitudinal stress'], unstf_pl['UF transverse stresses'], unstf_pl['UF Shear stresses'], unstf_pl['UF Combined stresses']]) if all([self._Girder is None, self._Stiffener is None]) else 0]) if optimizing and up_buckling > 1: return_dummy['Plate']['Plate buckling'] = up_buckling return return_dummy if not optimizing: local_buckling = self.local_buckling() if self._Stiffener is not None: stf_pla = self.stiffened_panel(unstf_pl_data=unstf_pl, optimizing=optimizing) if all([optimizing, type(stf_pla) == list]): return_dummy['Stiffener'][stf_pla[0]] = stf_pla[1] return return_dummy stf_buckling_pl_side = stf_pla['UF Plate side'] if self._stf_end_support == 'Continuous' else \ stf_pla['UF simply supported plate side'] stf_buckling_stf_side = stf_pla['UF Stiffener side'] if self._stf_end_support == 'Continuous' else \ stf_pla['UF simply supported stf side'] stf_plate_resistance = stf_pla['UF Plate resistance'] stf_shear_capacity = stf_pla['UF Shear force'] else: stf_buckling_pl_side, stf_buckling_pl_side, stf_buckling_stf_side, stf_plate_resistance, \ stf_shear_capacity = 0,0,0,0,0 if self._Girder is not None: girder = self.girder(unstf_pl_data=unstf_pl, stf_pl_data=stf_pla, optmizing=optimizing) if all([optimizing, type(girder) == list]): return_dummy['Girder'][stf_pla[0]] = stf_pla[1] return return_dummy girder_buckling_pl_side = girder['UF Cont. plate side'] if self._girder_end_support == 'Continuous' else \ stf_pla['UF Simplified plate side'] girder_buckling_girder_side = girder['UF Cont. girder side'] if self._girder_end_support == 'Continuous' \ else \ stf_pla['UF Simplified girder side'] girder_shear_capacity = girder['UF shear force'] else: girder_buckling_pl_side, girder_buckling_girder_side, girder_shear_capacity = 0,0,0 return {'Plate': {'Plate buckling': up_buckling}, 'Stiffener': {'Overpressure plate side': stf_buckling_pl_side, 'Overpressure stiffener side': stf_buckling_stf_side, 'Resistance between stiffeners': stf_plate_resistance, 'Shear capacity': stf_shear_capacity}, 'Girder': {'Overpressure plate side': girder_buckling_pl_side, 'Overpressure girder side': girder_buckling_girder_side, 'Shear capacity': girder_shear_capacity}, 'Local buckling': 0 if optimizing else local_buckling} def unstiffened_plate_buckling(self, optimizing = False): unstf_pl_data = dict() E = self._E/1e6 v = self._v fy = self._yield/1e6 gammaM = self._Plate.get_mat_factor() t = self._Plate.t s = self._Plate.s l = self._Plate.get_span()*1000 tsd = self._Plate.get_tau_xy() psd = self._lat_press*self._lat_load_factor sig_x1 = self._Plate.get_sigma_x1()*self._stress_load_factor sig_x2 = self._Plate.get_sigma_x2()*self._stress_load_factor sig_y1 = self._Plate.get_sigma_y1() * self._stress_load_factor sig_y2 = self._Plate.get_sigma_y2() * self._stress_load_factor if sig_x1 * sig_x2 >= 0: Use_Smax_x = sxsd = sig_x1 if abs(sig_x1) > abs(sig_x2) else sig_x2 else: Use_Smax_x = sxsd =max(sig_x1 , sig_x2) if sig_y1 * sig_y2 >= 0: Use_Smax_y = sy1sd = sig_y1 if abs(sig_y1) > abs(sig_y2) else sig_y2 else: Use_Smax_y = sy1sd = max(sig_y1 , sig_y2) if sig_x1 * sig_x2 >= 0: Use_Smin_x = sig_x2 if abs(sig_x1) > abs(sig_x2) else sig_x1 else: Use_Smin_x = min(sig_x1 , sig_x2) if sig_y1 * sig_y2 >= 0: Use_Smin_y = sig_y2 if abs(sig_y1) > abs(sig_y2) else sig_y1 else: Use_Smin_y = min(sig_y1 , sig_y2) shear_ratio_long = 1 if Use_Smax_x == 0 else Use_Smin_x / Use_Smax_x shear_ratio_trans = 1 if Use_Smax_y == 0 else Use_Smin_y/Use_Smax_y Max_vonMises_x = sig_x1 if abs(sig_x1) > abs(sig_x2) else sig_x2 unstf_pl_data['sxsd'] = sxsd unstf_pl_data['sy1sd'] = sy1sd l1 = min(l/4, s/2) if l == 0: sig_trans_l1 = Use_Smax_y else: sig_trans_l1 = Use_Smax_y*(shear_ratio_trans+(1-shear_ratio_trans)*(l-l1)/l) trans_stress_used = sysd = 0.75*Use_Smax_y if abs(0.75*Use_Smax_y) > abs(Use_Smax_y) else sig_trans_l1 unstf_pl_data['sysd'] = sysd #Pnt. 5 Lateral loaded plates sjsd =math.sqrt(math.pow(Max_vonMises_x,2) + math.pow(sysd,2)-Max_vonMises_x*sysd+3*math.pow(tsd,2)) uf_sjsd = sjsd/fy*gammaM unstf_pl_data['UF sjsd'] = uf_sjsd #psi_x =max([0,(1-math.pow(sjsd/fy,2))/math.sqrt(1-3/4*math.pow(sysd/fy,2)-3*math.pow(tsd/fy,2))]) psi_x =max([0,(1-math.pow(sjsd/fy,2))/math.sqrt(1-3/4*math.pow(sysd/fy,2)-3*math.pow(tsd/fy,2))]) \ if 1-3/4*math.pow(sysd/fy,2)-3*math.pow(tsd/fy,2) > 0 else 0 psi_x_chk = (1-3/4*math.pow(sy1sd/fy,2)-3*math.pow(tsd/fy,2))>0 psi_y = max([0,(1-math.pow(sjsd/fy,2))/math.sqrt(1-3/4*math.pow(sxsd/fy,2)-3*math.pow(tsd/fy,2))]) \ if 1-3/4*math.pow(sxsd/fy,2)-3*math.pow(tsd/fy,2) > 0 else 0 psi_y_chk = (1 - 3 / 4 * math.pow(sxsd / fy, 2) - 3 * math.pow(tsd / fy, 2)) > 0 if gammaM * s * l == 0: Psd_max_press = 0 else: if all([psi_x_chk, psi_y_chk]): Psd_max_press = (4 * fy / gammaM * math.pow(t / s,2) * (psi_y + math.pow(s / l, 2) * psi_x)) else: Psd_max_press = -1 if Psd_max_press == 0: uf_lat_load_pl_press = 0 else: uf_lat_load_pl_press = 9 if Psd_max_press < 0 else abs(psd/Psd_max_press) unstf_pl_data['UF Pnt. 5 Lateral loaded plates'] = uf_lat_load_pl_press #6.2 & 6.6 Longitudinal stress if shear_ratio_long <= -2: ksig = "Unknown" elif 0 <= shear_ratio_long <= 1: ksig = 8.2 / (1.05 + shear_ratio_long) elif shear_ratio_long <= -1: ksig = 7.81 - 6.29 * shear_ratio_long + 9.78 * math.pow(shear_ratio_long, 2) elif -2 < shear_ratio_long < -1: ksig = 5.98 * math.pow(1 - shear_ratio_long, 2) #print(sxsd, sy1sd, tsd, sjsd, uf_lat_load_pl, psi_x, psi_y, uf_lat_load_pl_press, psd, Psd_max_press,ksig) if t*E == 0: alpha_p = 0 elif ksig == "Unknown": alpha_p = 1.05*s/t*math.sqrt(fy/E) else: alpha_p = s/t/(28.4*math.sqrt(ksig*235/fy)) Cx =(alpha_p-0.055*(3+max([-2,shear_ratio_long])))/math.pow(alpha_p, 2) sxRd = Cx*fy/gammaM if not all([sig_x1<0, sig_x2<0]) else 1*fy/gammaM # Corrected 07.08.2023, issue 126 uf_unstf_pl_long_stress = 0 if sxRd == 0 else abs(sxsd/sxRd) unstf_pl_data['UF Longitudinal stress'] = uf_unstf_pl_long_stress #print(uf_unstf_pl_long_stress) #6.3 & 6.8 Transverse stresses: ha = 0 if t == 0 else max([0,0.05*s/t-0.75]) kp_1_for_Psd = 0 if s == 0 else 2*math.pow(t/s,2)*fy kp_used = 1-ha*(psd/fy-2*math.pow(t/s,2)) if psd>kp_1_for_Psd else 1 alpha_c = 0 if t*E == 0 else 1.1*s/t*math.sqrt(fy/E) mu = 0.21*(alpha_c-0.2) if alpha_c <= 0.2: kappa = 1 elif 0.2 < alpha_c < 2: kappa = 0 if alpha_c == 0 else 1/(2*math.pow(alpha_c,2))*(1+mu+math.pow(alpha_c,2)- math.sqrt(math.pow(1+mu+math.pow(alpha_c,2),2)- 4*math.pow(alpha_c,2))) elif alpha_c >= 2: kappa = 0 if alpha_c == 0 else 1/(2*math.pow(alpha_c,2))+0.07 syR = 0 if l*fy == 0 else (1.3*t/l*math.sqrt(E/fy)+kappa*(1-1.3*t/l*math.sqrt(E/fy)))*fy*kp_used syRd = syR if not all([sig_y1<0, sig_y2<0]) else fy syRd = syRd/gammaM uf_unstf_pl_trans_stress = 0 if syRd == 0 else abs(sysd)/syRd #print(uf_unstf_pl_trans_stress) unstf_pl_data['syR'] = syR unstf_pl_data['syRd'] = syRd unstf_pl_data['UF transverse stresses'] = uf_unstf_pl_trans_stress #6.4 Shear stress if l >= s: kl = 0 if l == 0 else 5.34+4*math.pow(s/l,2) else: kl = 0 if l == 0 else 5.34*math.pow(s/l,2)+4 unstf_pl_data['kl'] = kl alpha_w = 0 if t*E*kl == 0 else 0.795*s/t*math.sqrt(fy/E/kl) if alpha_w <= 0.8: Ctau = 1 elif 0.8 < alpha_w < 1.25: Ctau = 1-0.675*(alpha_w-0.8) else: Ctau = 0 if alpha_w == 0 else 0.9/alpha_w tauRd = Ctau*fy/gammaM/math.sqrt(3) uf_unstf_pl_shear_stress = 0 if tauRd == 0 else tsd/tauRd unstf_pl_data['UF Shear stresses'] = uf_unstf_pl_shear_stress #print(uf_unstf_pl_shear_stress) #6.5 Combined stresses if alpha_w <= 0.8: Ctaue = 1 elif 0.8 < alpha_w < 1.25: Ctaue = 1-0.8*(alpha_w-0.8) else: Ctaue = 0 if alpha_w == 0 else 1/math.pow(alpha_w,2) tauRd_comb = Ctaue*fy/gammaM/math.sqrt(3) tauRd_comb = tauRd if sysd>0 else tauRd if s/t <= 120: ci = 0 if t == 0 else 1-s/120/t elif s/t > 120: ci = 0 else: ci = 1 sxRd_comb = fy/gammaM if all([sig_x1<0, sig_x2<0]) else sxRd syRd_comb = syRd sxsd_div_sxrd = 0 if sxRd_comb == 0 else sxsd/sxRd_comb sysd_div_syrd = 0 if syRd_comb == 0 else sysd / syRd_comb tausd_div_taurd = 0 if tauRd_comb == 0 else tsd/tauRd_comb comb_req = math.pow(sxsd_div_sxrd, 2)+math.pow(sysd_div_syrd, 2)-ci*sxsd_div_sxrd*sysd_div_syrd+\ math.pow(tausd_div_taurd, 2) uf_unstf_pl_comb_stress = comb_req unstf_pl_data['UF Combined stresses'] = uf_unstf_pl_comb_stress return unstf_pl_data def stiffened_panel(self, unstf_pl_data = None, optimizing = False): E = self._E / 1e6 v = self._v G = E/(2*(1+v)) fy = self._yield/1e6 gammaM = self._Plate.get_mat_factor() t = self._Plate.t s = self._Plate.s l = self._Plate.get_span() * 1000 sig_x1 = self._Plate.get_sigma_x1() * self._stress_load_factor sig_x2 = self._Plate.get_sigma_x2() * self._stress_load_factor sig_y1 = self._Plate.get_sigma_y1() * self._stress_load_factor sig_y2 = self._Plate.get_sigma_y2() * self._stress_load_factor Lg = self._Plate.get_lg()*1000 stf_pl_data = dict() sxsd = 0 if self._method == 2 else unstf_pl_data['sxsd'] sy1sd = unstf_pl_data['sy1sd'] sysd = 0 if self._method == 2 else unstf_pl_data['sysd'] tsd = self._Plate.get_tau_xy() * self._stress_load_factor psd = self._lat_press * self._lat_load_factor psd_min_adj = psd if self._min_lat_press_adj_span is None else\ self._min_lat_press_adj_span*self._lat_load_factor shear_ratio_long = 1 shear_ratio_trans = 1 #Pnt.7: Buckling of stiffened plates Vsd = psd*s*l/2 tw_req = Vsd*gammaM*math.sqrt(3)/(fy*self._Stiffener.hw) Anet = (self._Stiffener.hw + self._Stiffener.tf) * self._Stiffener.tw# + self._Stiffener.b*self._Stiffener.tf Vrd = Anet*fy/(gammaM*math.sqrt(3)) Vsd_div_Vrd = Vsd/Vrd stf_pl_data['UF Shear force'] = Vsd_div_Vrd if optimizing and Vsd_div_Vrd > 1: return ['UF Shear force', Vsd_div_Vrd] # 7.2 Forces in idealised stiffened plate Iy = Is = self._Stiffener.get_moment_of_intertia()*1000**4 stf_pl_data['Is'] = Is kc = 0 if t*s == 0 else 2*(1+math.sqrt(1+10.9*Is/(math.pow(t,3)*s))) mc = 13.3 if self._stf_end_support == 'Continuous' else 8.9 # 7.3 Effective plate width syR = unstf_pl_data['syR'] Cys = 0.5*(math.sqrt(4-3*math.pow(sysd/fy,2))+sysd/fy) alphap = 0 if t*E == 0 else 0.525 * (s / t) * math.sqrt(fy / E) # reduced plate slenderness, checked not calculated with ex Cxs = (alphap - 0.22) / math.pow(alphap, 2) if alphap > 0.673 else 1 stf_pl_data['alphap'] = alphap stf_pl_data['Cxs'] = Cxs if sysd < 0: Cys = min(Cys, 1) else: if s / t <= 120: ci = 0 if t == 0 else 1-s / 120 / t else: ci = 0 cys_chk = 1 - math.pow(sysd / syR, 2) + ci * ((sxsd * sysd) / (Cxs * fy * syR)) Cys =0 if cys_chk < 0 else math.sqrt(cys_chk) stf_pl_data['Cys_comp'] = Cys se_div_s = Cxs * Cys se = s * se_div_s zp = self._Stiffener.get_cross_section_centroid_with_effective_plate(se=se/1000)*1000 - t / 2 # ch7.5.1 page 19 zt = (self._Stiffener.hw+self._Stiffener.tf) - zp + t/2 Iy = self._Stiffener.get_moment_of_intertia(efficent_se=se/1000)*1000**4 Weff = 0.0001 if zt == 0 else Iy/zt Co= 0 if kc*E*t*s == 0 else Weff*fy*mc/(kc*E*math.pow(t,2)*s) Po = 0 if all([sig_y1 < 0, sig_y2 < 0]) else (0.6+0.4*shear_ratio_trans)*Co*sy1sd \ if shear_ratio_trans >-1.5 else 0 qsd_press = (psd+abs(Po))*s qsd_opposite = abs(Po)*s if psd < Po else 0 ''' 1 Overpressure on Stiffener Side 2 Overpressure on Plate Side 3 Overpr. may occur on both sides ''' qsd_plate_side = qsd_opposite if self._overpressure_side == 'stiffener side' else qsd_press qsd_stf_side = qsd_opposite if self._overpressure_side == 'plate side' else qsd_press kl = unstf_pl_data['kl'] tcrl = 0 if s == 0 else kl*0.904*E*math.pow(t/s,2) if l<= Lg: kg = 0 if Lg == 0 else 5.34+4*math.pow(l/Lg,2) else: kg = 0 if Lg == 0 else 5.34*math.pow(l / Lg, 2)+4 tcrg = 0 if l == 0 else kg*0.904*E*math.pow(t/l,2) if self._tension_field_action == 'allowed' and tsd>(tcrl/gammaM): ttf = tsd-tcrg else: ttf = 0 As = self._Stiffener.tw*self._Stiffener.hw + self._Stiffener.b*self._Stiffener.tf NSd = sxsd*(As+s*t)+ttf*s*t #7.4 Resistance of plate between stiffeners ksp = math.sqrt(1-3*math.pow(tsd/fy,2)) if tsd < (fy/math.sqrt(3)) else 0 syrd_unstf = unstf_pl_data['syRd'] * ksp tsd_7_4 = fy/(math.sqrt(3)*gammaM) uf_stf_panel_res_bet_plate = max([sysd/syrd_unstf if all([syrd_unstf >0, sysd > 0]) else 0, tsd/tsd_7_4]) stf_pl_data['UF Plate resistance'] = uf_stf_panel_res_bet_plate if optimizing and uf_stf_panel_res_bet_plate > 1: return ['UF Plate resistance', uf_stf_panel_res_bet_plate] #7.5 Characteristic buckling strength of stiffeners fEpx = 0 if s == 0 else 3.62*E*math.pow(t/s,2) # eq 7.42, checked, ok fEpy = 0 if s == 0 else 0.9*E*math.pow(t/s,2) # eq 7.43, checked, ok fEpt = 0 if s == 0 else 5.0*E*math.pow(t/s,2) # eq 7.44, checked, ok c = 0 if l == 0 else 2-(s/l) # eq 7.41, checked, ok sjSd = math.sqrt( math.pow(max([sxsd, 0]), 2) + math.pow(max([sysd, 0]), 2) - max([sxsd, 0]) * max([sysd, 0]) + 3 * math.pow(tsd, 2)) # eq 7.38, ok alphae = math.sqrt( (fy/sjSd) * math.pow(math.pow(max([sxsd, 0])/fEpx, c)+ math.pow(max([sysd, 0])/fEpy, c)+ math.pow(abs(tsd)/fEpt, c), 1/c)) # eq 7.40 fep = fy / math.sqrt(1+math.pow(alphae,4)) # eq 7.39 eta = min(sjSd/fep, 1) # eq. 7.377 C = 0 if self._Stiffener.tw == 0 else (self._Stiffener.hw / s) * math.pow(t / self._Stiffener.tw, 3) * \ math.sqrt((1 - eta)) # e 7.36, checked ok beta = (3*C+0.2)/(C+0.2) # eq 7.35 It = self._Stiffener.get_torsional_moment_venant(efficient_flange=False) Ipo = self._Stiffener.get_polar_moment() Iz = self._Stiffener.get_Iz_moment_of_inertia() def red_prop(): tw_red =max(0,self._Stiffener.tw*(1-Vsd_div_Vrd)) Atot_red = As+se*t-self._Stiffener.hw*(self._Stiffener.tw - tw_red ) It_red = self._Stiffener.get_torsional_moment_venant(reduced_tw=tw_red, efficient_flange=False) Ipo_red = self._Stiffener.get_polar_moment(reduced_tw=tw_red ) #Iz = self._Stiffener.get_Iz_moment_of_inertia(reduced_tw=tw) #Iz_red = self._Stiffener.get_moment_of_intertia(efficent_se=se/1000, reduced_tw=tw_red) Iy_red = self._Stiffener.get_moment_of_intertia(efficent_se=se / 1000, reduced_tw=tw_red) * 1000 ** 4 zp_red = self._Stiffener.get_cross_section_centroid_with_effective_plate(se / 1000, reduced_tw=tw_red ) \ * 1000 - t / 2 # ch7.5.1 page 19 zt_red = (self._Stiffener.hw + self._Stiffener.tf) - zp_red + t/2 # ch 7.5.1 page 19 Wes_red = 0.0001 if zt_red == 0 else Iy_red/zt_red Wep_red = 0.0001 if zp_red == 0 else Iy_red/zp_red return {'tw':tw_red , 'Atot': Atot_red , 'It': It_red , 'Ipo': Ipo_red , 'zp': zp_red , 'zt': zt_red , 'Wes': Wes_red , 'Wep': Wep_red, 'Iy': Iy_red} hs = self._Stiffener.hw / 2 if self._Stiffener.get_stiffener_type() == 'FB' else \ self._Stiffener.hw + self._Stiffener.tf / 2 def lt_params(lT): if Ipo*lT>0: fET = beta*G*It/Ipo+math.pow(math.pi,2)*E*math.pow(hs,2)*Iz/(Ipo*math.pow(lT,2)) #NOTE, beta was missed from above, added. 23.08.2022 else: fET = 0.001 alphaT = 0 if fET == 0 else math.sqrt(fy/fET) mu = 0.35*(alphaT-0.6) fT_div_fy = (1+mu+math.pow(alphaT,2)-math.sqrt(math.pow(1+mu+math.pow(alphaT,2),2)- 4*math.pow(alphaT,2)))/(2*math.pow(alphaT,2)) fT = fy*fT_div_fy if alphaT > 0.6 else fy #print(fET, alphaT, mu, fT) return {'fEt': fET, 'alphaT': alphaT, 'mu': mu, 'fT_div_fy': fT_div_fy, 'fT': fT} zp = self._Stiffener.get_cross_section_centroid_with_effective_plate(se/1000)*1000 - t / 2 # ch7.5.1 page 19 zt = (self._Stiffener.hw + self._Stiffener.tf) - zp + t/2 # ch 7.5.1 page 19 fr = fy if Vsd_div_Vrd < 0.5: Wes = 0.0001 if zt == 0 else Iy/zt Wep = 0.0001 if zp == 0 else Iy/zp Ae = As + se * t else: red_param = red_prop() Wes = red_param['Wes'] Wep = red_param['Wep'] Ae = red_param['Atot'] Wmin = min([Wes, Wep]) pf = 0.0001 if l*s*gammaM == 0 else 12*Wmin*fy/(math.pow(l,2)*s*gammaM) if self._buckling_length_factor_stf is None: if self._stf_end_support == 'Continuous': lk = l*(1-0.5*abs(psd_min_adj/pf)) else: lk = l else: lk = self._buckling_length_factor_stf * l ie = 0.0001 if As+se*t == 0 else math.sqrt(Iy/(As+se*t)) fE = 0.0001 if lk == 0 else math.pow(math.pi,2)*E*math.pow(ie/lk,2) fk_dict = dict() fr_dict = dict() #Plate side zp = zp fr = fy fr_dict['plate'] = fr alpha = math.sqrt(fr/fE) mu = 0 if ie == 0 else (0.34+0.08*zp/ie)*(alpha-0.2) fk_div_fr = (1+mu+math.pow(alpha,2)-math.sqrt(math.pow(1+mu+math.pow(alpha,2),2)-4*math.pow(alpha,2)))/(2*math.pow(alpha,2)) fk = fk_div_fr*fr if alpha > 0.2 else fr fk_dict['plate'] = fk #Stiffener side for lT in [int(l if self._stf_dist_between_lateral_supp is None else self._stf_dist_between_lateral_supp), int(0.4*l if self._stf_dist_between_lateral_supp is None else self._stf_dist_between_lateral_supp), int(0.8*l if self._stf_dist_between_lateral_supp is None else self._stf_dist_between_lateral_supp)]: params = lt_params(lT) fr = params['fT'] if params['alphaT']>0.6 else fy fr_dict[lT] = fr alpha = math.sqrt(fr / fE) mu = 0 if ie == 0 else (0.34 + 0.08 * zt / ie) * (alpha - 0.2) fk_div_fr = (1 + mu + math.pow(alpha, 2) - math.sqrt( math.pow(1 + mu + math.pow(alpha, 2), 2) - 4 * math.pow(alpha, 2))) / (2 * math.pow(alpha, 2)) fk = fk_div_fr * fr if alpha > 0.2 else fr fk_dict[lT] = fk #7.7.3 Resistance parameters for stiffeners NRd = 0.0001 if gammaM == 0 else Ae * (fy / gammaM) # eq7.65, checked ok NksRd = Ae * (fk_dict[int(l if self._stf_dist_between_lateral_supp is None else self._stf_dist_between_lateral_supp)] / gammaM) #eq7.66 NkpRd = Ae * (fk_dict['plate'] / gammaM) # checked ok Ms1Rd = Wes * (fr_dict[int(0.4*l if self._stf_dist_between_lateral_supp is None else self._stf_dist_between_lateral_supp)] / gammaM) # ok Ms2Rd = Wes * (fr_dict[int(0.8*l if self._stf_dist_between_lateral_supp is None else self._stf_dist_between_lateral_supp)] / gammaM) # eq7.69 checked ok MstRd = Wes*(fy/gammaM) #eq7.70 checked ok MpRd = Wep*(fy/gammaM) #eq7.71 checked ok Ne = ((math.pow(math.pi,2))*E*Ae)/(math.pow(lk/ie,2))# eq7.72 , checked ok #7.6 Resistance of stiffened panels to shear stresses Ip = math.pow(t,3)*s/10.9 tcrs = (36 * E / (s * t * math.pow(l, 2))) * ((Ip * math.pow(Is, 3)) ** 0.25) tRdy = fy/math.sqrt(3)/gammaM tRdl = tcrl/gammaM tRds = tcrs/gammaM tRd = min([tRdy,tRdl,tRds]) u = 0 if all([tsd>(tcrl/gammaM), self._tension_field_action == 'allowed']) else math.pow(tsd/tRd, 2) zstar = zp if self._stf_end_support != 'Continuous': #Lateral pressure on plate side: #7.7.2 Simple supported stiffener (sniped stiffeners) #Lateral pressure on plate side: stf_pl_data['UF Stiffener side'] = 0 stf_pl_data['UF Plate side'] = 0 uf_7_58 = NSd/NksRd-2*NSd/NRd +((qsd_plate_side*math.pow(l,2)/8)+NSd*zstar)/(MstRd*(1-NSd/Ne))+u uf_7_59 = NSd/NkpRd+((qsd_plate_side*math.pow(l,2)/8)+NSd*zstar)/(MpRd*(1-NSd/Ne))+u uf_max_simp_pl = max([uf_7_58, uf_7_59]) stf_pl_data['UF simply supported plate side'] = uf_max_simp_pl #Lateral pressure on stiffener side: uf_7_60 = NSd/NksRd+((qsd_stf_side*math.pow(l,2)/8)-NSd*zstar)/(Ms2Rd*(1-NSd/Ne))+u uf_7_61 = NSd/NkpRd-2*NSd/NRd+((qsd_stf_side*math.pow(l,2)/8)-NSd*zstar)/(MpRd*(1-NSd/Ne))+u test_qsd_l = qsd_stf_side*math.pow(l,2)/8 >= NSd*zstar uf_7_62 = NSd/NksRd-2*NSd/NRd+(NSd*zstar-(qsd_stf_side*math.pow(l,2)/8))/(MstRd*(1-NSd/Ne))+u uf_7_63 = NSd/NkpRd+(NSd*zstar-(qsd_stf_side*math.pow(l,2)/8))/(MpRd*(1-NSd/Ne))+u uf_max_simp_stf = max([0,uf_7_62,uf_7_63]) if not test_qsd_l else max([0,uf_7_60,uf_7_61]) stf_pl_data['UF simply supported stf side'] = uf_max_simp_stf else: stf_pl_data['UF simply supported stf side'] = 0 stf_pl_data['UF simply supported plate side'] = 0 #7.7.1 Continuous stiffeners M1Sd_pl = abs(qsd_plate_side)*math.pow(l,2)/self._km3 M2Sd_pl = abs(qsd_plate_side)*math.pow(l,2)/self._km2 M1Sd_stf = abs(qsd_stf_side) * math.pow(l, 2) / self._km3 M2Sd_stf = abs(qsd_stf_side) * math.pow(l, 2) / self._km2 M1Sd_max = max([M1Sd_pl, M1Sd_stf]) M2Sd_max = max([M2Sd_pl, M2Sd_stf]) # Lateral pressure on plate side: #print(M1Sd_pl, M2Sd_pl, M1Sd_stf,M2Sd_stf, qsd_stf_side, qsd_plate_side) from scipy.optimize import minimize def iteration_min_uf_pl_side(x): eq7_50 = NSd/NksRd+(M1Sd_pl-NSd*x)/(Ms1Rd*(1-NSd/Ne))+u eq7_51 = NSd/NkpRd-2*NSd/NRd +(M1Sd_pl-NSd*x)/(MpRd*(1-NSd/Ne))+u eq7_52 = NSd/NksRd-2*NSd/NRd+(M2Sd_pl+NSd*x)/(MstRd*(1-NSd/Ne))+u eq7_53 = NSd/NkpRd+(M2Sd_pl+NSd*x)/(MpRd*(1-NSd/Ne))+u #print(zstar, eq7_50, eq7_51,eq7_52,eq7_53,max([eq7_50, eq7_51,eq7_52,eq7_53])) return max(eq7_50, eq7_51, eq7_52, eq7_53) res_iter_pl = minimize(iteration_min_uf_pl_side, 0, bounds=[[-zt+self._Stiffener.tf/2,zp]]) if type(res_iter_pl.fun) == list: stf_pl_data['UF Plate side'] = res_iter_pl.fun[0] else: stf_pl_data['UF Plate side'] = res_iter_pl.fun # Lateral pressure on stiffener side: # max_lfs = [] # ufs = [] def iteration_min_uf_stf_side(x): eq7_54 = NSd/NksRd-2*NSd/NRd +(M1Sd_stf+NSd*x)/(MstRd*(1-NSd/Ne))+u eq7_55 = NSd/NkpRd+(M1Sd_stf+NSd*x)/(MpRd*(1-NSd/Ne))+u eq7_56 = NSd/NksRd+(M2Sd_stf-NSd*x)/(Ms2Rd*(1-NSd/Ne))+u eq7_57 = NSd/NkpRd-2*NSd/NRd+(M2Sd_stf-NSd*x)/(MpRd*(1-NSd/Ne))+u return max(eq7_54, eq7_55, eq7_56, eq7_57) res_iter_stf = minimize(iteration_min_uf_stf_side, 0, bounds=[[-zt+self._Stiffener.tf/2,zp]]) if type(res_iter_stf.fun) == list: stf_pl_data['UF Stiffener side'] = res_iter_stf.fun[0] else: stf_pl_data['UF Stiffener side'] = res_iter_stf.fun return stf_pl_data def girder(self, unstf_pl_data = None, stf_pl_data = None, optmizing = False): ''' Buckling of girder. ''' girder_data = dict() E = self._E / 1e6 v = self._v G = E/(2*(1+v)) fy = self._yield/1e6 gammaM = self._Plate.get_mat_factor() t = self._Plate.t s = self._Plate.s l = self._Plate.get_span() * 1000 hw = self._Girder.hw tsd = self._Plate.get_tau_xy() * self._stress_load_factor psd = self._lat_press sig_x1 = self._Plate.get_sigma_x1() * self._stress_load_factor sig_x2 = self._Plate.get_sigma_x2() * self._stress_load_factor sig_y1 = self._Plate.get_sigma_y1() * self._stress_load_factor sig_y2 = self._Plate.get_sigma_y2() * self._stress_load_factor sxsd = 0 if self._method == 2 else unstf_pl_data['sxsd'] sy1sd = unstf_pl_data['sy1sd'] sysd = 0 if self._method == 2 else unstf_pl_data['sysd'] tsd = self._Plate.get_tau_xy() * self._stress_load_factor psd = self._lat_press * self._lat_load_factor psd_min_adj = psd if self._min_lat_press_adj_span is None else\ self._min_lat_press_adj_span*self._lat_load_factor Lg = self._Plate.get_lg()*1000 Ltg = Lg if self._girder_dist_between_lateral_supp == None else self._girder_dist_between_lateral_supp Lp = 0 if self._panel_length_Lp is None else self._panel_length_Lp #Pnt.8: Buckling of Girders #7.8 Check for shear force Vsd = psd*l*Lg/2 tw_req = Vsd*gammaM*math.sqrt(3)/(fy*self._Girder.hw) Anet = self._Girder.hw * self._Girder.tw + self._Girder.tw*self._Girder.tf Vrd = Anet*fy/(gammaM*math.sqrt(3)) Vsd_div_Vrd = Vsd/Vrd girder_data['UF shear force'] = Vsd_div_Vrd if optmizing and Vsd_div_Vrd > 1: return ['UF shear force', Vsd_div_Vrd] CHK_account_for_interaction = Vsd < 0.5*Vrd #8.2 Girder forces As = self._Stiffener.tw*self._Stiffener.hw + self._Stiffener.b*self._Stiffener.tf Ag = self._Girder.tw*self._Girder.hw + self._Girder.b*self._Girder.tf sysd = 0 if self._method == 2 else unstf_pl_data['sysd'] NySd = sysd*(Ag+l*t) Is = stf_pl_data['Is'] tcel = 18*E/(t*math.pow(l,2))*math.pow(t*Is/s, 0.75) tceg = 0 if Lp == 0 else tcel*math.pow(l,2)/math.pow(Lp,2) alpha_t1 = 0 if Lp == 0 else math.sqrt(0.6*fy/tceg) alpha_t2 = math.sqrt(0.6*fy/tcel) tcrg = 0.6*fy/math.pow(alpha_t1,2) if alpha_t1 > 1 else 0.6*fy tcrl = 0.6*fy/math.pow(alpha_t2,2) if alpha_t2 > 1 else 0.6*fy tcrg = tcrg if self._stf_end_support == 'Continuous' else 0 #8.4 Effective width of girders #Method 1: alphap = stf_pl_data['alphap'] Cxs = stf_pl_data['Cxs'] fkx = Cxs*fy CxG = math.sqrt(1-math.pow(sxsd/fkx,2)) if sxsd<fkx else 0 if 4-math.pow(Lg/l,2) != 0: CyG_tens = 1 if Lg > 2*l else Lg/(l*math.sqrt(4-math.pow(Lg/l,2))) else: CyG_tens = 1 CyG_comp = 0 if l*alphap == 0 else stf_pl_data['Cys_comp'] CyG = min([1,CyG_tens]) if sy1sd<0 else min([1, CyG_comp]) CtG = math.sqrt(1-3*math.pow(tsd/fy,2)) if tsd<fy/math.sqrt(3) else 0 le_div_l_method1 = CxG*CyG*CtG le_method1 = l*le_div_l_method1 lim_sniped_or_cont = 0.3*Lg if self._girder_end_support == 'Continuous' else 0.4*Lg tot_min_lim = min([le_method1, lim_sniped_or_cont]) #Method 2: CxG = math.sqrt(1-math.pow(sxsd/fy,2)) alphaG = 0 if E*t == 0 else 0.525*l/t*math.sqrt(fy/E) CyG = (alphaG-0.22)/math.pow(alphaG,2) if alphaG>0.673 else 1 CtG = math.sqrt(1-3*math.pow(tsd/fy,2)) if tsd<fy/math.sqrt(3) else 0 le_div_l_method2 = CxG*CyG*CtG le_method2 = le_div_l_method2*l eff_width_sec_mod = tot_min_lim if self._stiffed_plate_effective_aginst_sigy else le_method2 eff_width_other_calc = le_method1 if self._stiffed_plate_effective_aginst_sigy else le_method2 le = eff_width_other_calc AtotG = Ag + le * t Iy = self._Girder.get_moment_of_intertia(efficent_se=le / 1000) * 1000 ** 4 zp = self._Girder.get_cross_section_centroid_with_effective_plate(le / 1000) * 1000 - t / 2 # ch7.5.1 page 19 zt = (t / 2 + self._Girder.hw + self._Girder.tf) - zp # ch 7.5.1 page 19 # def red_prop(): twG =max(0,self._Girder.tw*(1-Vsd_div_Vrd)) le = eff_width_other_calc AtotG = Ag+le*t-self._Girder.hw*(self._Girder.tw - twG) Ipo = self._Girder.get_polar_moment(reduced_tw=twG) IzG = self._Girder.get_Iz_moment_of_inertia(reduced_tw=twG) Iy = self._Girder.get_moment_of_intertia(efficent_se=le/1000, reduced_tw=twG)*1000**4 zp = self._Girder.get_cross_section_centroid_with_effective_plate(le / 1000, reduced_tw=twG) * 1000 - t / 2 # ch7.5.1 page 19 zt = (t / 2 + self._Girder.hw + self._Girder.tf) - zp # ch 7.5.1 page 19 WeG = 0.0001 if zt == 0 else Iy / zt Wep = 0.0001 if zp == 0 else Iy / zp #print('In reduced', 'zp',zp,'zt',zt,'WeG',WeG,'Wep',Wep, 'Iy', Iy) return {'tw':twG, 'Atot': AtotG, 'Ipo': Ipo, 'IzG': IzG, 'zp': zp, 'zt': zt, 'WeG': WeG, 'Wep': Wep} if Vsd_div_Vrd < 0.5: WeG = 0.0001 if zt == 0 else Iy/zt Wep = 0.0001 if zp == 0 else Iy/zp AeG = Ag+eff_width_other_calc*t else: red_param = red_prop() WeG = red_param['WeG'] Wep = red_param['Wep'] AeG = red_param['Atot'] # #from: 7.7.3 Resistance parameters for stiffeners Wmin = min([WeG, Wep]) pf = 0.0001 if l*s*gammaM == 0 else 12*Wmin*fy/(math.pow(l,2)*s*gammaM) lk = Lg LGk = lk if self._buckling_length_factor_girder is None else lk*self._buckling_length_factor_girder #ie = 0 if Vsd_div_Vrd<0.5 else math.sqrt(Iy/AtotG) ie = math.sqrt(Iy / AtotG) fE = 0 if LGk == 0 else math.pow(math.pi,2)*E*math.pow(ie/LGk,2) # 8.2 Girder forces, cont alphaG = 0 if fE == 0 else math.sqrt(fy/fE) Q = 0 if alphaG-0.2<0 else min([1, alphaG-0.2]) C_for_tsd_trg = Q*(7-5*math.pow(s/l,2))*math.pow((tsd-tcrg)/tcrl,2) C = C_for_tsd_trg if tsd>tcrg else 0 p0lim = 0.02*(t+As/s)/l*(sxsd+C*tsd) p0calc = 0 if s*self._Girder.hw*Lg*E*l==0 else 0.4*(t+As/s)/(self._Girder.hw*(1-s/Lg))*fy/E*math.pow(Lg/l,2)\ *(sxsd+C*tsd) p0_compression = max([p0lim,p0calc]) p0_tension = 0 if s*Lg*self._Girder.hw*E*l==0 else 0.4*(t+As/s)/(self._Girder.hw*(l-s/Lg))*gammaM/E\ *math.pow(Lg/l,2)*(C*tsd) p0 = p0_tension if sxsd<0 else p0_compression qSd_pressure = (psd+p0_tension)*l if sxsd<0 else (psd+p0_compression)*l qsd_oppsite = p0*l if psd<p0 else 0 qSd_plate_side = qsd_oppsite if self._overpressure_side == 'stiffener side' else qSd_pressure qSd_girder_side = qsd_oppsite if self._overpressure_side == 'plate side' else qSd_pressure #8.5 Torsional buckling of girders Af = self._Girder.tf*self._Girder.b Aw = self._Girder.hw*self._Girder.tw Iz = self._Girder.get_Iz_moment_of_inertia() b = max([self._Girder.b, self._Girder.tw]) C = 0.55 if self._Girder.get_stiffener_type() in ['T', 'FB'] else 1.1 LGT0 = b*C*math.sqrt(E*Af/(fy*(Af+Aw/3))) #TODO can add a automatic check/message if torsional buckling shall be considered girder_data['Torsional buckling'] = 'Torsional buckling to be considered' if Ltg >LGT0 else \ "Torsional buckling need not to be considered" def lt_params(LTG): fETG = math.pow(math.pi, 2)*E*Iz/((Af+Aw/3)*math.pow(LTG, 2)) alphaTG = math.sqrt(fy/fETG) mu = 0.35*(alphaTG-0.6) fT_div_fy = (1 + mu + math.pow(alphaTG, 2) - math.sqrt( math.pow(1 + mu + math.pow(alphaTG, 2), 2) - 4 * math.pow(alphaTG, 2))) / (2 * math.pow(alphaTG, 2)) fT = fT_div_fy*fy if alphaTG>0.6 else fy return {'fETG': fETG, 'alphaT': alphaTG, 'mu': mu, 'fT_div_fy': fT_div_fy, 'fT': fT} fk_dict = dict() fr_dict = dict() for lT in ['plate', Ltg, 0.4*Lg, 0.8*Lg]: if lT != 'plate': params = lt_params(lT) fr = params['fT'] if params['alphaT']>0.6 else fy alpha = math.sqrt(fr / fE) mu = 0 if ie == 0 else (0.34 + 0.08 * zt / ie) * (alpha - 0.2) else: fr = fy alpha = math.sqrt(fr / fE) mu = 0 if ie == 0 else (0.34 + 0.08 * zp / ie) * (alpha - 0.2) fr_dict[lT] = fr fk_div_fr = (1 + mu + math.pow(alpha, 2) - math.sqrt( math.pow(1 + mu + math.pow(alpha, 2), 2) - 4 * math.pow(alpha, 2))) / (2 * math.pow(alpha, 2)) fk = fk_div_fr * fr if alpha > 0.2 else fr fk_dict[lT] = fk # #7.7.3 Resistance parameters for stiffeners NRd = 0.0001 if gammaM == 0 else AeG * (fy / gammaM) # eq7.65, checked ok NksRd = AeG * (fk_dict[Ltg] / gammaM) #eq7.66 NkpRd = AeG * (fk_dict['plate'] / gammaM) # checked ok MsRd = WeG*fr_dict[Ltg]/gammaM Ms1Rd = WeG * (fr_dict[0.4*Lg] / gammaM) # ok Ms2Rd = WeG * (fr_dict[0.8*Lg] / gammaM) # eq7.69 checked ok MstRd = WeG*(fy/gammaM) #eq7.70 checked ok MpRd = Wep*(fy/gammaM) #eq7.71 checked ok NE = ((math.pow(math.pi,2))*E*AeG)/(math.pow(LGk/ie,2))# eq7.72 , checked ok # print(fr_dict) # print(fk_dict) # print('WeG', WeG, 'Wep', Wep) # print('NRd',NRd, 'NksRd',NksRd, 'NkpRd',NkpRd,'MsRd', MsRd,'MstRd', MstRd, 'Ms1Rd', Ms1Rd, 'Ms2Rd', Ms2Rd, 'MstRd', MstRd, 'MpRd', MpRd, 'Ne', Ne) #7.7 Interaction formulas for axial compression and lateral pressure #7.7.2 Simple supported girder (sniped girders) if self._girder_end_support != 'Continuous': u = 0 zstar = zp girder_data['UF Cont. plate side'] = 0 girder_data['UF Cont. girder side'] = 0 # Lateral pressure on plate side: uf_7_58 = NySd/NksRd-2*NySd/NRd +((qSd_plate_side*math.pow(Lg, 2)/8)+NySd*zstar)/(MstRd*(1-NySd/NE))+u uf_7_59 = NySd/NkpRd+((qSd_plate_side*math.pow(Lg, 2)/8)+NySd*zstar)/(MpRd*(1-NySd/NE))+u max_uf_simp_plate = max([0,uf_7_58,uf_7_59]) girder_data['UF Simplified plate side'] = max_uf_simp_plate #Lateral pressure on girder side: uf_7_60 = NySd/NksRd+((qSd_girder_side*math.pow(Lg, 2)/8)-NySd*zstar)/(Ms2Rd*(1-NySd/NE))+u uf_7_61 = NySd/NkpRd-2*NySd/NRd+((qSd_girder_side*math.pow(Lg, 2)/8)-NySd*zstar)/(MpRd*(1-NySd/NE))+u CHK_qSd_NSd = qSd_girder_side*math.pow(Lg, 2)/8 < NySd*zstar uf_7_62 = NySd/NksRd-2*NySd/NRd+(NySd*zstar-(qSd_girder_side*math.pow(Lg, 2)/8))/(MstRd*(1-NySd/NE))+u uf_7_63 = NySd/NkpRd+(NySd*zstar-(qSd_girder_side*math.pow(Lg, 2)/8))/(MpRd*(1-NySd/NE))+u max_uf_simp_stiffener = max([0,uf_7_60,uf_7_61]) if CHK_qSd_NSd else max([0,uf_7_60,uf_7_61, uf_7_62,uf_7_63]) girder_data['UF Simplified girder side'] = max_uf_simp_stiffener else: u = 0 girder_data['UF Simplified girder side'] = 0 girder_data['UF Simplified plate side'] = 0 #7.7.1 Continuous stiffeners M1Sd_pl = abs(qSd_plate_side)*math.pow(Lg, 2)/12 M2Sd_pl = abs(qSd_plate_side)*math.pow(Lg, 2)/24 M1Sd_stf = abs(qSd_girder_side)*math.pow(Lg, 2)/12 M2Sd_stf = abs(qSd_girder_side)*math.pow(Lg, 2)/24 # #Lateral pressure on plate side: def iter_plate(zstar): uf_7_48 = NySd/NksRd+(M1Sd_pl-NySd*zstar)/(Ms1Rd*(1-NySd/NE))+u uf_7_49 = NySd/NkpRd-2*NySd/NRd +(M1Sd_pl-NySd*zstar)/(MpRd*(1-NySd/NE))+u uf_7_50 = NySd/NksRd-2*NySd/NRd+(M2Sd_pl+NySd*zstar)/(MstRd*(1-NySd/NE))+u uf_7_51 = NySd/NkpRd+(M2Sd_pl+NySd*zstar)/(MpRd*(1-NySd/NE))+u return max([uf_7_48, uf_7_49, uf_7_50, uf_7_51]) res_iter_pl = minimize(iter_plate, 0, bounds=[[-zt + self._Girder.tf / 2, zp]]) if type(res_iter_pl.fun) == list: girder_data['UF Cont. plate side'] = res_iter_pl.fun[0] else: girder_data['UF Cont. plate side'] = res_iter_pl.fun # Lateral pressure on girder side: def iter_girder(zstar): uf_7_52 = NySd/NksRd-2*NySd/NRd +(M1Sd_stf +NySd*zstar)/(MstRd*(1-NySd/NE))+u uf_7_53 = NySd/NkpRd+(M1Sd_stf +NySd*zstar)/(MpRd*(1-NySd/NE))+u uf_7_54 = NySd/NksRd+(M2Sd_stf-NySd*zstar)/(Ms2Rd*(1-NySd/NE))+u uf_7_55 = NySd/NkpRd-2*NySd/NRd+(M2Sd_stf-NySd*zstar)/(MpRd*(1-NySd/NE))+u return max([uf_7_52, uf_7_53 ,uf_7_54 ,uf_7_55]) res_iter_girder = minimize(iter_girder, 0, bounds=[[-zt + self._Girder.tf / 2, zp]]) if type(res_iter_girder.fun) == list: girder_data['UF Cont. girder side'] = res_iter_girder.fun[0] else: girder_data['UF Cont. girder side'] = res_iter_girder.fun return girder_data def local_buckling(self, optimizing = False): ''' Checks for girders and stiffeners ''' fy = self._yield if self._Stiffener is not None: max_web_stf = 42*self._Stiffener.tw*math.sqrt(235/fy) if self._Stiffener.get_stiffener_type() != 'FB' else 0 max_flange_stf = (14 if self._fab_method_stiffener == 'welded' else 15) * self._Stiffener.tf *math.sqrt(235/fy) else: max_web_stf = 0 max_flange_stf = 0 if self._Girder is not None: max_web_girder = 42*self._Girder.tw*math.sqrt(235/fy) if self._Girder.get_stiffener_type() != 'FB' else 0 max_flange_girder = (14 if self._fab_method_girder == 'welded' else 15) * self._Girder.tf *math.sqrt(235/fy) else: max_web_girder = 0 max_flange_girder = 0 return {'Stiffener': [max_web_stf, max_flange_stf], 'Girder': [max_web_girder, max_flange_girder]} # def get_tuple(self): # ''' Return a tuple of the plate stiffener''' # return (self.Plate.get_s(), self.Plate.get_pl_thk(), self.Stiffener.get_web_thk(), self.Stiffener.get_web_thk(), # self.Stiffener.get_fl_w(), self.Stiffener.get_fl_thk(), self.Plate.get_span(), self.Plate.get_lg(), # self.Stiffener.get_stiffener_type()) def get_one_line_string_mixed(self): ''' Returning a one line string. ''' return 'pl_'+str(round(self.Plate.s, 1))+'x'+str(round(self.Plate.t,1))+' stf_'+\ self.Stiffener.get_stiffener_type()+\ str(round(self.Stiffener.hw,1))+'x'+str(round(self.Stiffener.tw,1))+'+'\ +str(round(self.Stiffener.b,1))+'x'+\ str(round(self.Stiffener.tf,1)) def get_extended_string_mixed(self): ''' Some more information returned. ''' return 'span: '+str(round(self.Plate.get_span(),4))+' structure type: '+ self.Stiffener.get_structure_type() + ' stf. type: ' + \ self.Stiffener.get_stiffener_type() + ' pressure side: ' + self.Plate.overpressure_side class Shell(): ''' Small class to contain shell properties. ''' def __init__(self, main_dict): super(Shell, self).__init__() ''' shell_dict = {'plate_thk': [self._new_shell_thk.get() / 1000, 'm'], 'radius': [self._new_shell_radius.get() / 1000, 'm'], 'distance between rings, l': [self._new_shell_dist_rings.get() / 1000, 'm'], 'length of shell, L': [self._new_shell_length.get() / 1000, 'm'], 'tot cyl length, Lc': [self._new_shell_tot_length.get() / 1000, 'm'], 'eff. buckling lenght factor': [self._new_shell_k_factor.get() / 1000, 'm'], 'mat_yield': [self._new_shell_yield.get() *1e6, 'Pa']} ''' self._thk = main_dict['plate_thk'][0] self._yield = main_dict['mat_yield'][0] self._radius = main_dict['radius'][0] self._dist_between_rings = main_dict['distance between rings, l'][0] self._length_of_shell = main_dict['length of shell, L'][0] self._tot_cyl_length = main_dict['tot cyl length, Lc'][0] self._k_factor = main_dict['eff. buckling lenght factor'][0] # For conical self._cone_r1 = None self._cone_r2 = None self._cone_alpha = None @property def Lc(self): return self._tot_cyl_length @Lc.setter def Lc(self, val): self._tot_cyl_length = val @property def thk(self): return self._thk @thk.setter def thk(self, val): self._thk = val @property def radius(self): return self._radius @radius.setter def radius(self, val): self._radius = val @property def dist_between_rings(self): return self._dist_between_rings @dist_between_rings.setter def dist_between_rings(self, val): self._dist_between_rings = val @property def length_of_shell(self): return self._length_of_shell @length_of_shell.setter def length_of_shell(self, val): self._length_of_shell = val @property def tot_cyl_length(self): return self._tot_cyl_length @tot_cyl_length.setter def tot_cyl_length(self, val): self._tot_cyl_length = val @property def k_factor(self): return self._k_factor @k_factor.setter def k_factor(self, val): self._k_factor = val def get_Zl(self): L = self.tot_cyl_length*1000 Zl = math.pow(L,2)*math.sqrt(1-math.pow(0.3,2))/(self._radius*1000 * self._thk*1000) if self._thk*self._radius else 0 return Zl def get_effective_width_shell_plate(self): return 1.56*math.sqrt(self._radius * self._thk)/(1+12*self.thk/self._radius) def get_main_properties(self): main_data = {'plate_thk': [self._thk, 'm'], 'radius': [self._radius, 'm'], 'distance between rings, l': [self._dist_between_rings, 'm'], 'length of shell, L': [self._length_of_shell, 'm'], 'tot cyl length, Lc': [self._tot_cyl_length, 'm'], 'eff. buckling lenght factor': [self._k_factor, 'm'], 'mat_yield': [self._yield, 'Pa']} return main_data def set_main_properties(self, main_dict): self._thk = main_dict['plate_thk'][0] self._yield = main_dict['mat_yield'][0] self._radius = main_dict['radius'][0] self._dist_between_rings = main_dict['distance between rings, l'][0] self._length_of_shell = main_dict['length of shell, L'][0] self._tot_cyl_length = main_dict['tot cyl length, Lc'][0] self._k_factor = main_dict['eff. buckling lenght factor'][0] class CylinderAndCurvedPlate(): ''' Buckling of cylinders and curved plates. Geomeries Selections for: Type of Structure Geometry: geomeries = {1:'Unstiffened shell (Force input)', 2:'Unstiffened panel (Stress input)', 3:'Longitudinal Stiffened shell (Force input)', 4:'Longitudinal Stiffened panel (Stress input)', 5:'Ring Stiffened shell (Force input)', 6:'Ring Stiffened panel (Stress input)', 7:'Orthogonally Stiffened shell (Force input)', 8:'Orthogonally Stiffened panel (Stress input)'} ''' geomeries = {11:'Flat plate, stiffened',10: 'Flat plate, unstiffened', 12: 'Flat plate, stiffened with girder', 1:'Unstiffened shell (Force input)', 2:'Unstiffened panel (Stress input)', 3:'Longitudinal Stiffened shell (Force input)', 4:'Longitudinal Stiffened panel (Stress input)', 5:'Ring Stiffened shell (Force input)', 6:'Ring Stiffened panel (Stress input)', 7:'Orthogonally Stiffened shell (Force input)', 8:'Orthogonally Stiffened panel (Stress input)'} geomeries_map = dict() for key, value in geomeries.items(): geomeries_map[value] = key def __init__(self, main_dict = None, shell: Shell = None, long_stf: Structure = None, ring_stf: Structure = None, ring_frame: Structure = None): super(CylinderAndCurvedPlate, self).__init__() # main_dict = {'sasd': 100, 'smsd': 100, 'tTsd': 50, 'tQsd':10, 'psd': -0.3, 'shsd': 0, 'geometry': 7, # 'material factor': self._mat_factor, 'lT': 0, 'delta0': 0.005, 'fab method ring stf': 1, # 'fab method ring girder': 2, 'E-module':2.1e11, 'poisson': 0.3, 'yield': 355e6} #if main_dict['geometry'][0] in [1,3,5,7]: # Need to convert from forces to stresses. self._sasd = main_dict['sasd'][0] self._smsd = main_dict['smsd'][0] self._tTsd = abs(main_dict['tTsd'][0]) self._tQsd= main_dict['tQsd'][0] self._psd = main_dict['psd'][0] self._shsd = main_dict['shsd'][0] self._geometry = main_dict['geometry'][0] self._mat_factor = main_dict['material factor'][0] self._delta0 = main_dict['delta0'][0] self._fab_method_ring_stf = main_dict['fab method ring stf'][0] self._fab_method_ring_girder = main_dict['fab method ring girder'][0] self._E = main_dict['E-module'][0] self._v = main_dict['poisson'][0] self._yield = main_dict['mat_yield'][0] self._Shell = shell self._LongStf = long_stf self._RingStf = ring_stf self._RingFrame = ring_frame self._length_between_girders = main_dict['length between girders'][0] self._panel_spacing = main_dict['panel spacing, s'][0] self.__ring_stiffener_excluded = main_dict['ring stf excluded'][0] self.__ring_frame_excluded = main_dict['ring frame excluded'][0] self._end_cap_pressure_included = main_dict['end cap pressure'][0] self._uls_or_als = main_dict['ULS or ALS'][0] def __str__(self): ''' Returning all properties. ''' long_string = 'N/A' if self._LongStf is None else self._LongStf.get_beam_string() ring_string = 'N/A' if self._RingStf is None else self._RingStf.get_beam_string() frame_string = 'N/A' if self._RingFrame is None else self._RingFrame.get_beam_string() s = max([self._Shell.dist_between_rings, 2*math.pi*self._Shell.radius])*1000 if self._LongStf == None else \ self._LongStf.s return \ str( '\n Cylinder radius: ' + str(round(self._Shell.radius,3)) + ' meters' + '\n Cylinder thickness: ' + str(self._Shell.thk*1000)+' mm'+ '\n Distance between rings, l: ' + str(self._Shell.dist_between_rings*1000)+' mm'+ '\n Length of shell, L: ' + str(self._Shell.length_of_shell*1000)+' mm'+ '\n Total cylinder lenght: ' + str(self._Shell.tot_cyl_length*1000)+' mm'+ '\n Eff. Buckling length factor: ' + str(self._Shell.k_factor)+ '\n Material yield: ' + str(self._yield/1e6)+' MPa'+ '\n Spacing/panel circ., s: ' + str(s) + ' mm' + '\n Longitudinal stiffeners: ' + long_string+ '\n Ring stiffeners ' + ring_string+ '\n Ring frames/girders: ' + frame_string+ '\n Design axial stress/force: ' + str(self._sasd/1e6)+' MPa'+ '\n Design bending stress/moment: ' + str(self._smsd/1e6)+' MPa'+ '\n Design tosional stress/moment: ' + str(self._tTsd/1e6)+' MPa'+ '\n Design shear stress/force: ' + str(self._tQsd/1e6)+' MPa'+ '\n Design lateral pressure ' + str(self._psd/1e6)+' MPa'+ '\n Additional hoop stress ' + str(self._shsd/1e6)+' MPa') @property def sasd(self): return self._sasd @sasd.setter def sasd(self, val): self._sasd = val @property def smsd(self): return self._smsd @smsd.setter def smsd(self, val): self._smsd = val @property def tTsd(self): return abs(self._tTsd) @tTsd.setter def tTsd(self, val): self._tTsd = abs(val) @property def tQsd(self): return self._tQsd @tQsd.setter def tQsd(self, val): self._tQsd = val @property def psd(self): return self._psd @psd.setter def psd(self, val): self._psd = val @property def shsd(self): return self._shsd @shsd.setter def shsd(self, val): self._shsd = val @property def panel_spacing(self): return self._panel_spacing @panel_spacing.setter def panel_spacing(self, val): self._panel_spacing = val @property def ShellObj(self): return self._Shell @ShellObj.setter def ShellObj(self, val): self._Shell = val @property def LongStfObj(self): return self._LongStf @LongStfObj.setter def LongStfObj(self, val): self._LongStf = val @property def RingStfObj(self): return self._RingStf @RingStfObj.setter def RingStfObj(self, val): self._RingStf = val @property def RingFrameObj(self): return self._RingFrame @RingFrameObj.setter def RingFrameObj(self, val): self._RingFrame = val @property def geometry(self): return self._geometry @geometry.setter def geometry(self, val): self._geometry = val @property def length_between_girders(self): return self._length_between_girders @length_between_girders.setter def length_between_girders(self, val): self._length_between_girders = val @property def _ring_stiffener_excluded(self): return self.__ring_stiffener_excluded @_ring_stiffener_excluded.setter def _ring_stiffener_excluded(self, val): self.__ring_stiffener_excluded = val @property def _ring_frame_excluded(self): return self.__ring_frame_excluded @_ring_frame_excluded.setter def _ring_frame_excluded(self, val): self.__ring_frame_excluded = val def get_utilization_factors(self, optimizing = False, empty_result_dict = False): ''' If optimizing running time must be reduced. ''' # Local buckling of stiffeners results = {'Unstiffened shell': None, 'Longitudinal stiffened shell': None, 'Ring stiffened shell': None, 'Heavy ring frame': None, 'Column stability check': None, 'Stiffener check': None, 'Stiffener check detailed': None, 'Weight': None} if empty_result_dict: return results data_shell_buckling = self.shell_buckling() unstiffend_shell, column_buckling_data = None, None # UF for unstiffened shell unstiffend_shell = self.unstiffened_shell(shell_data=data_shell_buckling) s = self._panel_spacing*1000 if self._LongStf is None else self._LongStf.s if any([self._geometry in [1, 5], s > self._Shell.dist_between_rings*1000]): uf_unstf_shell = unstiffend_shell['UF unstiffened circular cylinder'] results['Unstiffened shell'] = uf_unstf_shell else: uf_unstf_shell = unstiffend_shell['UF unstiffened curved panel'] results['Unstiffened shell'] = uf_unstf_shell if optimizing: if uf_unstf_shell > 1: return False, 'UF unstiffened', results # UF for longitudinal stiffened shell if self._geometry in [3,4,7,8]: if self._LongStf is not None: column_buckling_data= self.column_buckling(unstf_shell_data=unstiffend_shell, shell_bukcling_data=data_shell_buckling) long_stf_shell = self.longitudinally_stiffened_shell(column_buckling_data=column_buckling_data, unstiffened_shell=unstiffend_shell) results['Column stability check'] = column_buckling_data['Column stability check'] results['Need to check column buckling'] = column_buckling_data['Need to check column buckling'] results['Stiffener check'] = column_buckling_data['stiffener check'] results['Stiffener check detailed'] = column_buckling_data['stiffener check detailed'] if self._geometry in [3,4,7,8] and long_stf_shell['fksd'] > 0: results['Longitudinal stiffened shell'] = long_stf_shell['sjsd_used']/long_stf_shell['fksd']\ if self._geometry in [3,4,7,8] else 0 if optimizing: if not results['Column stability check']: return False, 'Column stability', results elif False in results['Stiffener check'].values(): return False, 'Stiffener check', results elif results['Longitudinal stiffened shell'] > 1: return False, 'UF longitudinal stiffeners', results if self._geometry in [5,6,7,8]: # UF for panel ring buckling ring_stf_shell = None if self._RingStf is not None: column_buckling_data = column_buckling_data if column_buckling_data is not None \ else self.column_buckling( unstf_shell_data=unstiffend_shell, shell_bukcling_data=data_shell_buckling) ring_stf_shell = self.ring_stiffened_shell(data_shell_buckling=data_shell_buckling, column_buckling_data=column_buckling_data) results['Column stability check'] = column_buckling_data['Column stability check'] results['Need to check column buckling'] = column_buckling_data['Need to check column buckling'] results['Stiffener check'] = column_buckling_data['stiffener check'] results['Stiffener check detailed'] = column_buckling_data['stiffener check detailed'] results['Ring stiffened shell'] = ring_stf_shell[0] if optimizing: if not results['Column stability check']: return False, 'Column stability', results elif False in results['Stiffener check'].values(): return False, 'Stiffener check', results elif results['Ring stiffened shell'] > 1: return False, 'UF ring stiffeners', results # UF for ring frame if self._geometry in [5, 6, 7, 8]: if self._RingFrame is not None: column_buckling_data = column_buckling_data if column_buckling_data is not None \ else self.column_buckling( unstf_shell_data=unstiffend_shell, shell_bukcling_data=data_shell_buckling) ring_stf_shell = ring_stf_shell if ring_stf_shell is not None else\ self.ring_stiffened_shell(data_shell_buckling=data_shell_buckling, column_buckling_data=column_buckling_data) results['Column stability check'] = column_buckling_data['Column stability check'] results['Need to check column buckling'] = column_buckling_data['Need to check column buckling'] results['Stiffener check'] = column_buckling_data['stiffener check'] results['Stiffener check detailed'] = column_buckling_data['stiffener check detailed'] results['Heavy ring frame'] = ring_stf_shell[1] if optimizing: if not results['Column stability check']: return False, 'Column stability', results elif False in results['Stiffener check'].values(): return False, 'Stiffener check', results elif results['Heavy ring frame'] > 1: return False, 'UF ring frame', results if optimizing: return True, 'Check OK', results # print('Results for geometry', self._geometry) # print('UF',uf_unstf_shell, uf_long_stf, uf_ring_stf, uf_ring_frame) # print('Stiffeners', stiffener_check) return results def set_main_properties(self, main_dict): self._sasd = main_dict['sasd'][0] self._smsd = main_dict['smsd'][0] self._tTsd = abs(main_dict['tTsd'][0]) self._tQsd= main_dict['tQsd'][0] self._psd = main_dict['psd'][0] self._shsd = main_dict['shsd'][0] self._geometry = main_dict['geometry'][0] self._mat_factor = main_dict['material factor'][0] self._delta0 = main_dict['delta0'][0] self._fab_method_ring_stf = main_dict['fab method ring stf'][0] self._fab_method_ring_girder = main_dict['fab method ring girder'][0] self._E = main_dict['E-module'][0] self._v = main_dict['poisson'][0] self._yield = main_dict['mat_yield'][0] self._length_between_girders = main_dict['length between girders'][0] self._panel_spacing = main_dict['panel spacing, s'][0] self.__ring_stiffener_excluded = main_dict['ring stf excluded'][0] self.__ring_frame_excluded = main_dict['ring frame excluded'][0] self._end_cap_pressure_included = main_dict['end cap pressure'][0] self._uls_or_als = main_dict['ULS or ALS'][0] def shell_buckling(self): ''' Main sheet to calculate cylinder buckling. ''' stucture_objects = {'Unstiffened':self._Shell, 'Long Stiff.': self._LongStf, 'Ring Stiffeners': self._RingStf, 'Heavy ring Frame': self._RingFrame} stf_type = ['T', 'FB', 'T'] l = self._Shell.dist_between_rings*1000 r = self._Shell.radius*1000 t = self._Shell.thk*1000 parameters, cross_sec_data = list(), list() for idx, obj in stucture_objects.items(): if obj is None: cross_sec_data.append([np.nan, np.nan, np.nan, np.nan, np.nan]) if idx not in ['Unstiffened', 'Long Stiff.']: parameters.append([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]) continue if idx != 'Unstiffened': hs = obj.hw/2 if stf_type =='FB' else obj.hw + obj.tf/2 It = obj.get_torsional_moment_venant() se = self._Shell.get_effective_width_shell_plate() Ipo = obj.get_polar_moment() Iz = obj.get_Iz_moment_of_inertia() Iy = obj.get_moment_of_intertia(efficent_se=se, tf1=self._Shell.thk)*1000**4 cross_sec_data.append([hs, It, Iz, Ipo, Iy]) A = obj.get_cross_section_area(include_plate=False)*math.pow(1000,2) beta = l/(1.56*math.sqrt(r*t)) leo = (l/beta) * ((math.cosh(2*beta)-math.cos(2*beta))/(math.sinh(2*beta)+math.sin(2*beta))) worst_axial_comb = min(self._sasd/1e6 - self._smsd/1e6, self._sasd/1e6 + self._smsd/1e6) sxsd_used = worst_axial_comb if idx == 'Long Stiff.': zp = obj.get_cross_section_centroid_with_effective_plate(include_plate=False) * 1000 h_tot = obj.hw + obj.tf zt = h_tot -zp else: se = self._Shell.get_effective_width_shell_plate() zp = obj.get_cross_section_centroid_with_effective_plate(se=se, tf1=self._Shell.thk) * 1000 # ch7.5.1 page 19 h_tot = self._Shell.thk*1000 + obj.hw + obj.tf zt = h_tot -zp if idx not in ['Unstiffened', 'Long Stiff.']: # Parameters alpha = A/(leo*t) zeta = max([0, 2*(math.sinh(beta)*math.cos(beta)+math.cosh(beta)*math.sin(beta))/ (math.sinh(2*beta)+math.sin(2*beta))]) rf = r - t / 2 - (obj.hw + obj.tf) r0 = zt + rf parameters.append([alpha, beta, leo, zeta, rf, r0, zt]) sxsd, shsd, shRsd, tsd = list(), list(), list(), list() for idx, obj in stucture_objects.items(): if obj is None: shRsd.append(np.nan) continue if idx == 'Unstiffened': shsd.append((self._psd/1e6)*r/t + self._shsd/1e6) sxsd.append(self._sasd/1e6+self._smsd/1e6 if self._geometry in [2,6] else min([self._sasd/1e6, self._sasd/1e6-self._smsd/1e6, self._sasd/1e6+self._smsd/1e6])) tsd.append(self._tTsd/1e6 + self._tQsd/1e6) elif idx == 'Long Stiff.': if stucture_objects['Ring Stiffeners'] == None: shsd.append(shsd[0]+self._shsd/1e6) else: shsd_ring = ((self._psd/1e6)*r/t)-parameters[0][0]*parameters[0][3]/(parameters[0][0]+1)*\ ((self._psd/1e6)*r/t-0.3*sxsd[0]) shsd.append(shsd_ring + self._shsd/1e6) if self._geometry in [3,4,7,8]: sxsd.append(sxsd_used) else: sxsd.append(sxsd[0]) tsd.append(self._tTsd/1e6 + self._tQsd/1e6) elif idx == 'Ring Stiffeners': rf = parameters[0][4] shsd_ring = ((self._psd / 1e6) * r / t) - parameters[0][0] * parameters[0][3] / (parameters[0][0] + 1) * \ ((self._psd / 1e6) * r / t - 0.3 * sxsd[0]) shsd.append(np.nan if stucture_objects['Ring Stiffeners'] == None else shsd_ring) shRsd.append(((self._psd/1e6)*r/t-0.3*sxsd[0])*(1/(1+parameters[0][0]))*(r/rf)) if self._geometry > 4: sxsd.append(sxsd[0]) tsd.append(tsd[0]) else: sxsd.append(np.nan) tsd.append(np.nan) else: rf = parameters[1][4] shsd.append(((self._psd/1e6)*r/t)-parameters[1][0]*parameters[1][3]/(parameters[1][0]+1)* ((self._psd/1e6)*r/t-0.3*self._sasd/1e6)) shRsd.append(((self._psd/1e6)*r/t-0.3*self._sasd/1e6)*(1/(1+parameters[1][0]))*(r/rf)) if self._geometry > 4: sxsd.append(sxsd[0]) tsd.append(tsd[0]) else: sxsd.append(np.nan) tsd.append(np.nan) sxsd = np.array(sxsd) shsd = np.array(shsd) tsd = np.array(np.abs(tsd)) sjsd = np.sqrt(sxsd**2 - sxsd*shsd + shsd**2+3*tsd**2) return {'sjsd': sjsd, 'parameters': parameters, 'cross section data': cross_sec_data, 'shRsd': shRsd, 'shsd': shsd, 'sxsd': sxsd} def unstiffened_shell(self, conical = False, shell_data = None): E = self._E/1e6 t = self._Shell.thk*1000 # get correct s s = min([self._Shell.dist_between_rings, 2*math.pi*self._Shell.radius])*1000 if self._LongStf == None else \ self._LongStf.s v = self._v r = self._Shell.radius*1000 l = self._Shell.dist_between_rings * 1000 fy = self._yield/1e6 sasd = self._sasd/1e6 smsd = self._smsd/1e6 tsd = abs(self._tTsd/1e6+self._tQsd/1e6) psd = self._psd/1e6 if self._RingStf is None: shsd = shell_data['shsd'][0] else: shsd = shell_data['shsd'][1] provide_data = dict() ''' Selections for: Type of Structure Geometry: 1 Unstiffened shell (Force input) 2 Unstiffened panel (Stress input) 3 Longitudinal Stiffened shell (Force input) 4 Longitudinal Stiffened panel (Stress input) 5 Ring Stiffened shell (Force input) 6 Ring Stiffened panel (Stress input) 7 Orthogonally Stiffened shell (Force input) 8 Orthogonally Stiffened panel (Stress input) Selected: 3 Longitudinal Stiffened shell (Force input) ''' # Pnt. 3.3 Unstifffed curved panel geometry = self._geometry if geometry in [2,6]: sxsd = sasd+smsd else: sxsd = min(sasd, sasd+smsd, sasd-smsd) if smsd < 0: smsd = -smsd sm0sd = -smsd else: if geometry in [2, 6]: smsd = 0 sm0sd = 0 else: smsd = smsd sm0sd = smsd sjsd = math.sqrt(math.pow(sxsd,2) - sxsd*shsd + math.pow(shsd,2) + 3 * math.pow(tsd, 2)) # (3.2.3) Zs = (math.pow(s, 2) / (r * t)) * math.sqrt(1 - math.pow(v, 2)) # The curvature parameter Zs (3.3.3) def table_3_1(chk): psi = {'Axial stress': 4, 'Shear stress': 5.34+4*math.pow(s/l, 2), 'Circumferential compression': math.pow(1+math.pow(s/l, 2), 2)} # ψ epsilon = {'Axial stress': 0.702*Zs, 'Shear stress': 0.856*math.sqrt(s/l)*math.pow(Zs, 3/4), 'Circumferential compression': 1.04*(s/l)*math.sqrt(Zs)} # ξ rho = {'Axial stress': 0.5*math.pow(1+(r/(150*t)), -0.5), 'Shear stress': 0.6, 'Circumferential compression': 0.6} return psi[chk], epsilon[chk], rho[chk] vals = list() for chk in ['Axial stress', 'Shear stress', 'Circumferential compression']: psi, epsilon, rho = table_3_1(chk=chk) C = psi * math.sqrt(1 + math.pow(rho * epsilon / psi, 2)) # (3.4.2) (3.6.4) fE = C*(math.pow(math.pi, 2)*E/(12*(1-math.pow(v,2)))) *math.pow(t/s,2) #print(chk, 'C', C, 'psi', psi,'epsilon', epsilon,'rho' ,rho, 'fE', fE) vals.append(fE) fEax, fEshear, fEcirc = vals sa0sd = -sxsd if sxsd < 0 else 0 sh0sd = -shsd if shsd < 0 else 0 # Maximium allowable stress from iteration. if any([val == 0 for val in vals]): lambda_s_pow = 0 else: lambda_s_pow = (fy/sjsd) * (sa0sd/fEax + sh0sd/fEcirc + tsd/fEshear) lambda_s = math.sqrt(lambda_s_pow) fks = fy/math.sqrt(1+math.pow(lambda_s,4 )) provide_data['fks - Unstifffed curved panel'] = fks if lambda_s < 0.5: gammaM = self._mat_factor else: if self._mat_factor == 1.1: if lambda_s > 1: gammaM = 1.4 else: gammaM = 0.8+0.6*lambda_s elif self._mat_factor == 1.15: if lambda_s > 1: gammaM = 1.45 else: gammaM = 0.85+0.6*lambda_s else: if lambda_s > 1: gammaM = 1.45 * (self._mat_factor/1.15) else: gammaM = 0.85+0.6*lambda_s * (self._mat_factor/1.15) if self._uls_or_als == 'ALS': gammaM = gammaM/self._mat_factor provide_data['gammaM Unstifffed panel'] = gammaM fksd = fks/gammaM provide_data['fksd - Unstifffed curved panel'] = fksd uf = sjsd/fksd provide_data['UF unstiffened curved panel'] = uf provide_data['gammaM curved panel'] = gammaM sjsd_max = math.sqrt(math.pow(sasd+smsd,2)-(sasd+smsd)*shsd+math.pow(shsd,2)+3*math.pow(tsd,2)) uf_max = self._mat_factor* sjsd_max/fy # print('Unstifffed curved panel', 'UF', uf, 'UFmax', uf_max, 'sigjsd', sjsd, 'Zs', Zs, 'lambda_s', lambda_s, # 'fks', fks, 'gammaM', gammaM, 'sjsd_max', sjsd_max) def iter_table_1(): found, sasd_iter, count, this_val, logger = False, 0 if uf > 1 else sasd, 0, 0, list() while not found: # Iteration sigmsd_iter = smsd if geometry in [2,6] else min([-smsd, smsd]) siga0sd_iter = 0 if sasd_iter >= 0 else -sasd_iter # (3.2.4) sigm0sd_iter = 0 if sigmsd_iter >= 0 else -sigmsd_iter # (3.2.5) sigh0sd_iter = 0 if shsd>= 0 else -shsd # (3.2.6) sjsd_iter = math.sqrt(math.pow(sasd_iter+sigmsd_iter, 2) - (sasd_iter+sigmsd_iter)*shsd + math.pow(shsd, 2)+ 3*math.pow(tsd, 2)) #(3.2.3) lambdas_iter = math.sqrt((fy / sjsd_iter) * ((siga0sd_iter+sigm0sd_iter)/fEax+ sigh0sd_iter/fEcirc+tsd/fEshear)) # (3.2.2) gammaM_iter = 1 # As taken in the DNVGL sheets fks_iter = fy / math.sqrt(1 + math.pow(lambdas_iter,4)) fksd_iter = fks_iter / gammaM_iter #print('sjsd', sjsd_iter, 'fksd', fksd_iter, 'fks', fks, 'gammaM', gammaM_iter, 'lambdas_iter', lambdas_iter) this_val = sjsd_iter/fksd_iter logger.append(0 if this_val > 1 else siga0sd_iter) if this_val > 1.0 or count == 1e6: found = True count += 1 if this_val >0.98: sasd_iter -= 0.5 elif this_val > 0.95: sasd_iter -= 1 elif this_val > 0.9: sasd_iter -= 2 elif this_val > 0.7: sasd_iter -= 10 else: sasd_iter -= 20 #print(sasd_iter, this_val) return 0 if len(logger) == 1 else max([logger[-2],0]) provide_data['max axial stress - 3.3 Unstifffed curved panel'] = iter_table_1() # Pnt. 3.4 Unstifffed circular cylinders Zl = (math.pow(l, 2)/(r*t)) * math.sqrt(1 - math.pow(v, 2)) #(3.4.3) (3.6.5) provide_data['Zl'] = Zl def table_3_2(chk): psi = {'Axial stress': 1, 'Bending': 1, 'Torsion and shear force': 5.34, 'Lateral pressure': 4, 'Hydrostatic pressure': 2} # ψ zeta= {'Axial stress': 0.702*Zl, 'Bending': 0.702*Zl, 'Torsion and shear force': 0.856* math.pow(Zl, 3/4),'Lateral pressure': 1.04*math.sqrt(Zl), 'Hydrostatic pressure': 1.04*math.sqrt(Zl)} # ξ rho = {'Axial stress': 0.5*math.pow(1+(r/(150*t)), -0.5), 'Bending': 0.5*math.pow(1+(r/(300*t)), -0.5), 'Torsion and shear force': 0.6, 'Lateral pressure': 0.6, 'Hydrostatic pressure': 0.6} return psi[chk], zeta[chk], rho[chk] vals = list() for chk in ['Axial stress', 'Bending', 'Torsion and shear force', 'Lateral pressure','Hydrostatic pressure']: psi, zeta, rho = table_3_2(chk=chk) C = psi * math.sqrt(1 + math.pow(rho * zeta / psi, 2)) # (3.4.2) (3.6.4) fE = C*math.pow(math.pi,2)*E / (12*(1-math.pow(v,2))) * math.pow(t/l,2) #print(chk, 'C', C, 'psi', psi,'epsilon', epsilon,'rho' ,rho, 'fE', fE) vals.append(fE) fEax, fEbend, fEtors, fElat, fEhyd = vals provide_data['fEax - Unstifffed circular cylinders'] = fEax test1 = 3.85 * math.sqrt(r / t) test2 = 2.25 * math.sqrt(r / t) test_l_div_r = l/r provide_data['fEh - Unstifffed circular cylinders - Psi=4'] = 0.25*E*math.pow(t/r,2) if test_l_div_r > test2 else fElat if l / r > test1: fEt_used = 0.25 * E * math.pow(t / r, 3 / 2) # (3.4.4) else: fEt_used = fEtors if l / r > test2: fEh_used = 0.25 * E * math.pow(t / r, 2) else: fEh_used = fElat if self._end_cap_pressure_included == 'not included in axial stresses' else fEhyd sjsd = math.sqrt(math.pow(sxsd,2) - sxsd*shsd + math.pow(shsd,2) + 3 * math.pow(tsd, 2)) # (3.2.3) sa0sd = -sasd if sasd < 0 else 0 sh0sd = -shsd if shsd < 0 else 0 if any([fEax == 0, fEbend == 0, fEt_used == 0, fEh_used == 0, sjsd == 0]): lambda_s_pow = 0 else: lambda_s_pow = (fy/sjsd) * (sa0sd/fEax + sm0sd/fEbend + sh0sd/fEh_used + tsd/fEt_used) lambda_s = math.sqrt(lambda_s_pow) fks = fy/math.sqrt(1+math.pow(lambda_s,4 )) provide_data['fks - Unstifffed circular cylinders'] = fks if lambda_s < 0.5: gammaM = self._mat_factor else: if self._mat_factor == 1.1: if lambda_s > 1: gammaM = 1.4 else: gammaM = 0.8+0.6*lambda_s elif self._mat_factor == 1.15: if lambda_s > 1: gammaM = 1.45 else: gammaM = 0.85+0.6*lambda_s else: if lambda_s > 1: gammaM = 1.45 * (self._mat_factor/1.15) else: gammaM = 0.85+0.6*lambda_s * (self._mat_factor/1.15) if self._uls_or_als == 'ALS': gammaM = gammaM/self._mat_factor fksd = fks/gammaM provide_data['fksd - Unstifffed circular cylinders'] = fksd uf = sjsd/fksd provide_data['UF unstiffened circular cylinder'] = uf provide_data['gammaM circular cylinder'] = gammaM #print('UF', uf, 'Unstifffed circular cylinders') def iter_table_2(): found, sasd_iter, count, this_val, logger = False, 0 if uf > 1 else sasd, 0, 0, list() while not found: # Iteration sigmsd_iter = smsd if geometry in [2, 6] else min([-smsd, smsd]) siga0sd_iter = 0 if sasd_iter >= 0 else -sasd_iter # (3.2.4) sigm0sd_iter = 0 if sigmsd_iter >= 0 else -sigmsd_iter # (3.2.5) sigh0sd_iter = 0 if shsd >= 0 else -shsd # (3.2.6) sjsd_iter = math.sqrt( math.pow(sasd_iter + sigmsd_iter, 2) - (sasd_iter + sigmsd_iter) * shsd + math.pow(shsd, 2) + 3 * math.pow(tsd, 2)) # (3.2.3) lambdas_iter = math.sqrt((fy/sjsd_iter) * (siga0sd_iter/fEax + sigm0sd_iter/fEbend + sigh0sd_iter/fElat + tsd/fEtors)) gammaM_iter = 1 # As taken in the DNVGL sheets fks_iter = fy / math.sqrt(1 + math.pow(lambdas_iter, 4)) fksd_iter = fks_iter / gammaM_iter # print('sjsd', sjsd_iter, 'fksd', fksd_iter, 'fks', fks, 'gammaM', gammaM_iter, 'lambdas_iter', lambdas_iter) this_val = sjsd_iter / fksd_iter logger.append(sasd_iter) if this_val > 1.0 or count == 1e6: found = True count += 1 if this_val >0.98: sasd_iter -= 0.5 elif this_val > 0.95: sasd_iter -= 1 elif this_val > 0.9: sasd_iter -= 2 elif this_val > 0.7: sasd_iter -= 10 else: sasd_iter -= 20 return 0 if len(logger) == 1 else max(logger[-2],0) provide_data['max axial stress - 3.4.2 Shell buckling'] = iter_table_2() provide_data['shsd'] = shsd return provide_data def ring_stiffened_shell(self, data_shell_buckling = None, column_buckling_data = None): E = self._E/1e6 t = self._Shell.thk*1000 s = min([self._Shell.dist_between_rings, 2*math.pi*self._Shell.radius])*1000 if self._LongStf == None else \ self._LongStf.s r = self._Shell.radius*1000 l = self._Shell.dist_between_rings * 1000 fy = self._yield/1e6 L = self._Shell.tot_cyl_length*1000 LH = L sasd = self._sasd/1e6 smsd = self._smsd/1e6 tsd = abs(self._tTsd/1e6 + self._tQsd/1e6) # MAYBE MAYBE NOT. psd = self._psd/1e6 data_shell_buckling = self.shell_buckling() if data_shell_buckling == None else data_shell_buckling #Pnt. 3.5: Ring stiffened shell # Pnt. 3.5.2.1 Requirement for cross-sectional area: #Zl = self._Shell.get_Zl() Zl = math.pow(l, 2) * math.sqrt(1 - math.pow(self._v, 2)) / (r * t) if r * t > 0 else 0 Areq = np.nan if Zl == 0 else (2/math.pow(Zl,2)+0.06)*l*t Areq = np.array([Areq, Areq]) Astf = np.nan if self._RingStf is None else self._RingStf.get_cross_section_area(include_plate=False)*1000**2 Aframe = np.nan if self._RingFrame is None else \ self._RingFrame.get_cross_section_area(include_plate=False) * 1000 ** 2 A = np.array([Astf, Aframe]) uf_cross_section = Areq/A #Pnt. 3.5.2.3 Effective width calculation of shell plate lef = 1.56*math.sqrt(r*t)/(1+12*t/r) lef_used = np.array([min([lef, LH]), min([lef, LH])]) #Pnt. 3.5.2.4 Required Ix for Shell subject to axial load A_long_stf = 0 if self._LongStf is None else self._LongStf.get_cross_section_area(include_plate=False)*1000**2 alfaA = 0 if s*t <= 0 else A_long_stf/(s*t) r0 = np.array([data_shell_buckling['parameters'][0][5], data_shell_buckling['parameters'][1][5]]) worst_ax_comp = min([sasd+smsd, sasd-smsd]) Ixreq = np.array([abs(worst_ax_comp) * t * (1 + alfaA) * math.pow(r0[0], 4) / (500 * E * l), abs(worst_ax_comp) * t * (1 + alfaA) * math.pow(r0[1], 4) / (500 * E * l)]) #Pnt. 3.5.2.5 Required Ixh for shell subjected to torsion and/or shear: Ixhreq = np.array([math.pow(tsd / E, (8 / 5)) * math.pow(r0[0] / L, 1 / 5) * L * r0[0] * t * l, math.pow(tsd / E, (8 / 5)) * math.pow(r0[1] / L, 1 / 5) * L * r0[1] * t * l]) #Pnt. 3.5.2.6 Simplified calculation of Ih for shell subjected to external pressure zt = np.array([data_shell_buckling['parameters'][0][6],data_shell_buckling['parameters'][1][6]]) rf = np.array([data_shell_buckling['parameters'][0][4], data_shell_buckling['parameters'][1][4]]) delta0 = r*self._delta0 fb_ring_req_val = np.array([0 if self._RingStf is None else 0.4*self._RingStf.tw*math.sqrt(E/fy), 0 if self._RingFrame is None else 0.4*self._RingFrame.tw*math.sqrt(E/fy)]) # if self._RingStf.get_stiffener_type() == 'FB': # fb_ring_req = fb_ring_req_val[0] > self._RingStf.hw # else: # fb_ring_req = np.NaN flanged_rf_req_h_val = np.array([0 if self._RingStf is None else 1.35*self._RingStf.tw*math.sqrt(E/fy), 0 if self._RingFrame is None else 1.35*self._RingFrame.tw*math.sqrt(E/fy)]) # if self._RingFrame.get_stiffener_type() != 'FB': # flanged_rf_req_h = flanged_rf_req_h_val[1] > self._RingFrame.hw # else: # flanged_rf_req_h = np.NaN flanged_rf_req_b_val = np.array([0 if self._RingStf is None else 7*self._RingStf.hw/math.sqrt(10+E*self._RingStf.hw/(fy*r)), 0 if self._RingFrame is None else 7*self._RingFrame.hw/math.sqrt(10+E*self._RingFrame.hw/(fy*r))]) # if self._RingFrame.get_stiffener_type() != 'FB': # flanged_rf_req_b = flanged_rf_req_b_val[1] > self._RingFrame.b # else: # flanged_rf_req_b = np.NaN if self._RingStf is not None: spf_stf = self._RingStf.hw/fb_ring_req_val[0] if self._RingStf.get_stiffener_type() == 'FB' \ else max([flanged_rf_req_b_val[0]/self._RingStf.b, self._RingStf.hw/flanged_rf_req_h_val[0]]) else: spf_stf = 0 if self._RingFrame is not None: spf_frame = self._RingFrame.hw / fb_ring_req_val[1]if self._RingFrame.get_stiffener_type() == 'FB' \ else max([flanged_rf_req_b_val[1] / self._RingFrame.b,self._RingFrame.hw / flanged_rf_req_h_val[1]]) else: spf_frame = 0 Stocky_profile_factor = np.array([spf_stf, spf_frame]) fT = column_buckling_data['fT_dict'] fT = np.array([fT['Ring Stiff.'] if Stocky_profile_factor[0] > 1 else fy, fT['Ring Girder'] if Stocky_profile_factor[1] > 1 else fy]) fr_used = np.array([fT[0] if self._fab_method_ring_stf == 1 else 0.9 * fT[0], fT[1] if self._fab_method_ring_girder == 1 else 0.9 * fT[1]]) shRsd = [abs(val) for val in data_shell_buckling['shRsd']] Ih = np.array([0 if E*r0[idx]*(fr_used[idx]/2-shRsd[idx]) == 0 else abs(psd)*r*math.pow(r0[idx],2)*l/(3*E)* (1.5+3*E*zt[idx]*delta0/(math.pow(r0[idx],2) *(fr_used[idx]/2-shRsd[idx]))) for idx in [0,1]]) # Pnt. 3.5.2.2 Moment of inertia: IR = [Ih[idx] + Ixhreq[idx] + Ixreq[idx] if all([psd <= 0, Ih[idx] > 0]) else Ixhreq[idx] + Ixreq[idx] for idx in [0,1]] Iy = [data_shell_buckling['cross section data'][idx+1][4] for idx in [0,1]] uf_moment_of_inertia = list() for idx in [0,1]: if Iy[idx] > 0: uf_moment_of_inertia.append(9.999 if fr_used[idx] < 2*shRsd[idx] else IR[idx]/Iy[idx]) else: uf_moment_of_inertia.append(0) # Pnt. 3.5.2.7 Refined calculation of external pressure # parameters.append([alpha, beta, leo, zeta, rf, r0, zt]) I = Iy Ihmax = [max(0, I[idx]-Ixhreq[idx]-Ixreq[idx]) for idx in [0,1]] leo = [data_shell_buckling['parameters'][idx][2] for idx in [0,1]] Ar = A ih2 = [0 if Ar[idx]+leo[idx]*t == 0 else Ihmax[idx]/(Ar[idx]+leo[idx]*t) for idx in [0,1]] alfa = [0 if l*t == 0 else 12*(1-math.pow(0.3,2))*Ihmax[idx]/(l*math.pow(t,3)) for idx in [0,1]] betta = [data_shell_buckling['parameters'][idx][0] for idx in [0,1]] ZL = [math.pow(L,2)/r/t*math.sqrt(1-math.pow(0.3,2)) for idx in [0,1]] C1 = [2*(1+alfa[idx])/(1+betta[idx])*(math.sqrt(1+0.27*ZL[idx]/math.sqrt(1+alfa[idx]))-alfa[idx]/(1+alfa[idx])) for idx in [0,1]] C2 = [2*math.sqrt(1+0.27*ZL[idx]) for idx in [0,1]] my = [0 if ih2[idx]*r*leo[idx]*C1[idx] == 0 else zt[idx]*delta0*rf[idx]*l/(ih2[idx]*r*leo[idx])*(1-C2[idx]/C1[idx])*1/(1-0.3/2) for idx in [0,1]] fE = np.array([C1[idx]*math.pow(math.pi,2)*E/(12*(1-math.pow(0.3,2)))*(math.pow(t/L,2)) if L > 0 else 0.1 for idx in [0,1]]) fr = np.array(fT) lambda_2 = fr/fE lambda_ = np.sqrt(lambda_2) fk = [0 if lambda_2[idx] == 0 else fr[idx]*(1+my[idx]+lambda_2[idx]-math.sqrt(math.pow(1+my[idx]+lambda_2[idx],2)- 4*lambda_2[idx]))/(2*lambda_2[idx]) for idx in [0,1]] gammaM = self._mat_factor # LRFD fkd = [fk[idx]/gammaM for idx in [0,1]] psd = np.array([0.75*fk[idx]*t*rf[idx]*(1+betta[idx])/(gammaM*math.pow(r,2)*(1-0.3/2)) for idx in [0,1]]) uf_refined = abs((self._psd/1e6))/psd return np.max([uf_cross_section, uf_moment_of_inertia, uf_refined], axis=0) def longitudinally_stiffened_shell(self, column_buckling_data = None, unstiffened_shell = None): h = self._Shell.thk*1000 + self._LongStf.hw + self._LongStf.tf hw = self._LongStf.hw tw = self._LongStf.tw b = self._LongStf.b tf = self._LongStf.tf E = self._E/1e6 t = self._Shell.thk*1000 s = max([self._Shell.dist_between_rings, 2*math.pi*self._Shell.radius])*1000 if self._LongStf == None else \ self._LongStf.s v = self._v r = self._Shell.radius*1000 l = self._Shell.dist_between_rings * 1000 fy = self._yield/1e6 L = self._Shell.tot_cyl_length*1000 LH = L sasd = self._sasd/1e6 smsd = self._smsd/1e6 tsd = abs(self._tTsd/1e6 + self._tQsd/1e6) psd = self._psd/1e6 shsd = unstiffened_shell['shsd'] lightly_stf = s/t > math.sqrt(r/t) provide_data = dict() ''' Selections for: Type of Structure Geometry: 1 Unstiffened shell (Force input) 2 Unstiffened panel (Stress input) 3 Longitudinal Stiffened shell (Force input) 4 Longitudinal Stiffened panel (Stress input) 5 Ring Stiffened shell (Force input) 6 Ring Stiffened panel (Stress input) 7 Orthogonally Stiffened shell (Force input) 8 Orthogonally Stiffened panel (Stress input) Selected: 3 Longitudinal Stiffened shell (Force input) ''' # Pnt. 3.3 Unstifffed curved panel geometry = self._geometry data = unstiffened_shell if unstiffened_shell is not None else self.unstiffened_shell() if geometry == 1: fks = data['fks - Unstifffed circular cylinders'] else: fks = data['fks - Unstifffed curved panel'] sxSd =min([sasd+smsd, sasd-smsd]) sjsd = math.sqrt(math.pow(sxSd,2) - sxSd*shsd + math.pow(shsd,2) + 3 * math.pow(tsd, 2)) Se = (fks*abs(sxSd) / (sjsd*fy))*s # Moment of inertia As = A = hw*tw + b*tf # checked num_stf = math.floor(2*math.pi*r/s) e= (hw*tw*(hw/2) + b*tf*(hw+tf/2)) / (hw*tw+b*tw) Istf = h*math.pow(tw,3)/12 + tf*math.pow(b, 3)/12 dist_stf = r - t / 2 - e Istf_tot = 0 angle = 0 for stf_no in range(num_stf): Istf_tot += Istf + As*math.pow(dist_stf*math.cos(angle),2) angle += 2*math.pi/num_stf # Ishell = (math.pi/4) * ( math.pow(r+t/2,4) - math.pow(r-t/2,4)) # Itot = Ishell + Istf_tot # Checked Iy = self._LongStf.get_moment_of_intertia(efficent_se=Se/1000, tf1=self._Shell.thk)*1000**4 alpha = 12*(1-math.pow(v,2))*Iy/(s*math.pow(t,3)) Zl = (math.pow(l, 2)/(r*t)) * math.sqrt(1-math.pow(v,2)) #|1print('Zl', Zl, 'alpha', alpha, 'Isef', Iy, 'Se', Se, 'sjsd', sjsd, 'sxsd', sxSd, 'fks', fks, 'As', As) # Table 3-3 def table_3_3(chk): psi = {'Axial stress': 0 if Se == 0 else (1+alpha) / (1+A/(Se*t)), 'Torsion and shear stress': 5.54+1.82*math.pow(l/s, 4/3) * math.pow(alpha, 1/3), 'Lateral Pressure': 2*(1+math.sqrt(1+alpha))} # ψ epsilon = {'Axial stress': 0.702*Zl, 'Torsion and shear stress': 0.856*math.pow(Zl, 3/4), 'Lateral Pressure': 1.04*math.sqrt(Zl)} # ξ rho = {'Axial stress': 0.5, 'Torsion and shear stress': 0.6, 'Lateral Pressure': 0.6} return psi[chk], epsilon[chk], rho[chk] vals = list() for chk in ['Axial stress', 'Torsion and shear stress','Lateral Pressure']: psi, epsilon, rho = table_3_3(chk=chk) C = 0 if psi == 0 else psi * math.sqrt(1 + math.pow(rho * epsilon / psi, 2)) # (3.4.2) (3.6.4) fE = C * ((math.pow(math.pi, 2) * E) / (12 * (1 - math.pow(v, 2)))) * math.pow(t / l,2) vals.append(fE) #print(chk, 'C', C, 'psi', psi,'epsilon', epsilon,'rho' ,rho, 'fE', fE) fEax, fEtors, fElat = vals #Torsional Buckling can be excluded as possible failure if: if self._LongStf._stiffener_type == 'FB': chk_fb = hw <= 0.4*tw*math.sqrt(E/fy) data_col_buc = column_buckling_data fy_used = fy if data_col_buc['lambda_T'] <= 0.6 else data_col_buc['fT'] sasd = sasd*(A+s*t)/(A+Se*t) if A+Se*t>0 else 0 smsd = smsd * (A + s * t) / (A + Se * t) if A + Se * t > 0 else 0 sa0sd = -sasd if sasd < 0 else 0 sm0sd = -smsd if smsd < 0 else 0 sh0sd = -shsd if shsd < 0 else 0 #print('fy_used', fy_used,'sasd', sasd,'shsd', shsd, 'tsd', tsd) sjsd_panels = math.sqrt(math.pow(sasd+smsd,2)-(sasd+smsd)*shsd + math.pow(shsd,2)+ 3*math.pow(tsd,2)) worst_axial_comb = min(sasd-smsd,sasd+smsd) sjsd_shells = math.sqrt(math.pow(worst_axial_comb,2)-worst_axial_comb*shsd +math.pow(shsd,2)+3*math.pow(tsd,2)) sxsd_used = worst_axial_comb provide_data['sxsd_used'] = sxsd_used sjsd_used = sjsd_panels if self._geometry in [2,6] else sjsd_shells provide_data['sjsd_used'] = sjsd_used lambda_s2_panel = fy_used/sjsd_panels*((sa0sd+sm0sd)/fEax+sh0sd/fElat+tsd/fEtors) if\ sjsd_panels*fEax*fEtors*fElat>0 else 0 lambda_s2_shell = fy_used/sjsd_shells*(max(0,-worst_axial_comb)/fEax+sh0sd/fElat+tsd/fEtors) if\ sjsd_shells*fEax*fEtors*fElat>0 else 0 shell_type = 2 if self._geometry in [1,5] else 1 lambda_s = math.sqrt(lambda_s2_panel) if shell_type == 1 else math.sqrt(lambda_s2_shell) fks = fy_used/math.sqrt(1+math.pow(lambda_s,4)) #print('tsd',tsd, 'sasd', sasd, 'sjsd panels', sjsd_panels, 'fy_used', fy_used, 'lambda_T',data_col_buc['lambda_T'] ) if lambda_s < 0.5: gammaM = self._mat_factor else: if self._mat_factor == 1.1: if lambda_s > 1: gammaM = 1.4 else: gammaM = 0.8+0.6*lambda_s elif self._mat_factor == 1.15: if lambda_s > 1: gammaM = 1.45 else: gammaM = 0.85+0.6*lambda_s else: if lambda_s > 1: gammaM = 1.45 * (self._mat_factor/1.15) else: gammaM = 0.85+0.6*lambda_s * (self._mat_factor/1.15) if self._uls_or_als == 'ALS': gammaM = gammaM/self._mat_factor # Design buckling strength: fksd = fks/gammaM provide_data['fksd'] = fksd # print('fksd', fksd, 'fks', fks, 'gammaM', gammaM, 'lambda_s', lambda_s, 'lambda_s^2 panel', # lambda_s2_panel, 'sjsd', sjsd_used, 'worst_axial_comb',worst_axial_comb, 'sm0sd',sm0sd) #print(' ') return provide_data @staticmethod def get_Itot(hw, tw, b, tf, r, s, t): h = t+hw+tf As = hw*tw + b*tf # checked if As != 0: num_stf = math.floor(2*math.pi*r/s) e= (hw*tw*(hw/2) + b*tf*(hw+tf/2)) / (hw*tw+b*tw) Istf = h*math.pow(tw,3)/12 + tf*math.pow(b, 3)/12 dist_stf = r - t / 2 - e Istf_tot = 0 angle = 0 for stf_no in range(num_stf): Istf_tot += Istf + As*math.pow(dist_stf*math.cos(angle),2) angle += 2*math.pi/num_stf else: Istf_tot = 0 Ishell = (math.pi/4) * ( math.pow(r+t/2,4) - math.pow(r-t/2,4)) Itot = Ishell + Istf_tot # Checked return Itot def column_buckling(self,shell_bukcling_data = None, unstf_shell_data = None): geometry = self._geometry provide_data = dict() G = 80769.2 if self._LongStf is None: h = self._Shell.thk*1000 else: h = self._Shell.thk*1000 + self._LongStf.hw + self._LongStf.tf hw = 0 if self._LongStf is None else self._LongStf.hw tw = 0 if self._LongStf is None else self._LongStf.tw b = 0 if self._LongStf is None else self._LongStf.b tf = 0 if self._LongStf is None else self._LongStf.tf E = self._E/1e6 t = self._Shell.thk*1000 s = max([self._Shell.dist_between_rings, 2*math.pi*self._Shell.radius])*1000 if self._LongStf == None else \ self._LongStf.s v = self._v r = self._Shell.radius*1000 l = self._Shell.dist_between_rings * 1000 fy = self._yield/1e6 L = self._Shell.tot_cyl_length*1000 LH = L Lc = max([L, LH]) sasd = self._sasd/1e6 smsd = self._smsd/1e6 tsd = abs(self._tTsd/1e6 + self._tQsd/1e6) psd = self._psd/1e6 shsd = psd * r / t shell_buckling_data = self.shell_buckling(unstiffened_cylinder=unstf_shell_data) if\ shell_bukcling_data is None else shell_bukcling_data data = self.unstiffened_shell() if unstf_shell_data is None else unstf_shell_data idx = 1 param_map = {'Ring Stiff.': 0,'Ring Girder': 1} fT_dict = dict() for key, obj in {'Longitudinal stiff.': self._LongStf, 'Ring Stiff.': self._RingStf, 'Ring Girder': self._RingFrame}.items(): if obj is None: idx += 1 continue gammaM = data['gammaM circular cylinder'] if self._geometry > 2 else \ data['gammaM curved panel'] sjsd = shell_buckling_data['sjsd'][idx-1] this_s = 0 if self._LongStf is None else self._LongStf.s if any([self._geometry in [1, 5], this_s > (self._Shell.dist_between_rings * 1000)]): fksd = data['fksd - Unstifffed circular cylinders'] else: fksd = data['fksd - Unstifffed curved panel'] fks = fksd * gammaM eta = sjsd/fks hw = obj.hw tw = obj.tw if key == 'Longitudinal stiff.': s_or_leo = obj.s lT = l else: s_or_leo = shell_buckling_data['parameters'][param_map[key]][2] lT = math.pi*math.sqrt(r*hw) C = hw/s_or_leo*math.pow(t/tw,3)*math.sqrt(1-min([1,eta])) if s_or_leo*tw>0 else 0 beta = (3*C+0.2)/(C+0.2) #parameters.append([alpha, beta, leo, zeta]) hs, It, Iz, Ipo, Iy = shell_buckling_data['cross section data'][idx - 1] if obj.get_stiffener_type() == 'FB': Af = obj.tf * obj.b Aw = obj.hw * obj.tw fEt = beta * (Aw + math.pow(obj.tf / obj.tw, 2) * Af) / (Aw + 3 * Af) * G * math.pow(obj.tw / hw, 2) + math.pow( math.pi, 2) \ * E * Iz / ((Aw / 3 + Af) * math.pow(lT, 2)) else: hs, It, Iz, Ipo, Iy = shell_buckling_data['cross section data'][idx-1] fEt = beta * G * It / Ipo + math.pow(math.pi, 2) * E * math.pow(hs, 2) * Iz / (Ipo * math.pow(lT, 2)) lambdaT = math.sqrt(fy/fEt) mu = 0.35*(lambdaT-0.6) fT = (1+mu+math.pow(lambdaT,2)-math.sqrt(math.pow(1+mu+math.pow(lambdaT,2),2)-4*math.pow(lambdaT,2)))\ /(2*math.pow(lambdaT,2))*fy if lambdaT > 0.6 else fy # General if key == 'Longitudinal stiff.': #print('Column buckling', 'fET', fEt, 'mu', mu, 'lambdaT', lambdaT, 'hs', hs, 'It', It, 'Iz', Iz ,'Ipo', Ipo) provide_data['lambda_T'] = lambdaT provide_data['fT'] = fT fT_dict[key] = fT idx += 1 # if key == 'Ring Stiff.': # print(hs, It, Iz, Ipo, Iy) # print('hello') provide_data['fT_dict'] = fT_dict # Moment of inertia As = A = hw*tw + b*tf # checked num_stf = math.floor(2*math.pi*r/s) Atot = As*num_stf + 2*math.pi*r*t e= (hw*tw*(hw/2) + b*tf*(hw+tf/2)) / (hw*tw+b*tw) Istf = h*math.pow(tw,3)/12 + tf*math.pow(b, 3)/12 dist_stf = r - t / 2 - e Istf_tot = 0 angle = 0 for stf_no in range(num_stf): Istf_tot += Istf + As*math.pow(dist_stf*math.cos(angle),2) angle += 2*math.pi/num_stf Ishell = (math.pi/4) * ( math.pow(r+t/2,4) - math.pow(r-t/2,4)) Itot = Ishell + Istf_tot # Checked k_factor = self._Shell.k_factor col_test =math.pow(k_factor*Lc/math.sqrt(Itot/Atot),2) >= 2.5*E/fy provide_data['Need to check column buckling'] = col_test # print("Column buckling should be assessed") if col_test else \ # print("Column buckling does not need to be checked") #Sec. 3.8.2 Column buckling strength: fEa = data['fEax - Unstifffed circular cylinders'] #fEa = any([geometry in [1,5], s > l]) fEh = data['fEh - Unstifffed circular cylinders - Psi=4'] # Special case: calculation of fak for unstiffened shell: # General case: use_fac = 1 if geometry < 3 else 2 if use_fac == 1: a = 1 + math.pow(fy, 2) / math.pow(fEa, 2) b = ((2 * math.pow(fy, 2) / (fEa * fEh)) - 1) * shsd c = math.pow(shsd, 2) + math.pow(fy, 2) * math.pow(shsd, 2) / math.pow(fEh, 2) - math.pow(fy, 2) fak = 0 if b == 0 else (b + math.sqrt(math.pow(b, 2) - 4 * a * c)) / (2 * a) elif any([geometry in [1,5], s > l]): fak = data['max axial stress - 3.4.2 Shell buckling'] else: fak = data['max axial stress - 3.3 Unstifffed curved panel'] i = Itot/Atot fE = 0.0001 if Lc*k_factor == 0 else E*math.sqrt(math.pi*i / (Lc * k_factor)) Lambda_ = 0 if fE == 0 else math.sqrt(fak/fE) fkc = (1-0-28*math.pow(Lambda_,2))*fak if Lambda_ <= 1.34 else fak/math.pow(Lambda_,2) gammaM = data['gammaM curved panel'] #self._mat_factor # Check fakd = fak/gammaM fkcd = fkc/gammaM sa0sd = -sasd if sasd<0 else 0 if fakd*fkcd > 0: stab_chk = sa0sd/fkcd + (abs(smsd) / (1-sa0sd/fE))/fakd <= 1 else: stab_chk = True #print("Stability requirement satisfied") if stab_chk else print("Not acceptable") # Sec. 3.9 Torsional buckling: moved to the top # Stiffener check stf_req_h = list() for idx, obj in enumerate([self._LongStf, self._RingStf, self._RingFrame]): if obj is None: stf_req_h.append(np.nan) else: stf_req_h.append(0.4*obj.tw*math.sqrt(E/fy) if obj.get_stiffener_type() == 'FB' else 1.35*obj.tw*math.sqrt(E/fy)) stf_req_h = np.array(stf_req_h) stf_req_b = list() for idx, obj in enumerate([self._LongStf, self._RingStf, self._RingFrame]): if obj is None: stf_req_b.append(np.nan) else: stf_req_b.append(np.nan if obj.get_stiffener_type() == 'FB' else 0.4*obj.tf*math.sqrt(E/fy)) bf = list() for idx, obj in enumerate([self._LongStf, self._RingStf, self._RingFrame]): if obj is None: bf.append(np.nan) elif obj.get_stiffener_type() == 'FB': bf.append(obj.b) elif obj.get_stiffener_type() == 'T': bf.append((obj.b-obj.tw)/2) else: bf.append(obj.b-obj.tw) bf = np.array(bf) hw_div_tw = list() for idx, obj in enumerate([self._RingStf, self._RingFrame]): if obj is None: hw_div_tw.append(np.nan) else: hw_div_tw.append(obj.hw/obj.tw) hw_div_tw = np.array(hw_div_tw) #parameters - [alpha, beta, leo, zeta, rf, r0, zt] req_hw_div_tw = list() for idx, obj in enumerate([self._RingStf, self._RingFrame]): if obj is None: req_hw_div_tw.append(np.nan) else: to_append = np.nan if obj.b*obj.tf == 0 else 2/3*math.sqrt(shell_buckling_data['parameters'][idx][4] *(obj.tw*obj.hw)*E/ (obj.hw*obj.b*obj.tf*fy)) req_hw_div_tw.append(to_append) req_hw_div_tw = np.array(req_hw_div_tw) ef_div_tw = list() for idx, obj in enumerate([self._RingStf, self._RingFrame]): if obj is None: ef_div_tw.append(np.nan) else: ef_div_tw.append(obj.get_flange_eccentricity()) ef_div_tw = np.array(ef_div_tw) ef_div_tw_req = list() for idx, obj in enumerate([self._RingStf, self._RingFrame]): if obj is None: ef_div_tw_req.append(np.nan) else: ef_div_tw_req.append(np.nan if obj.b*obj.tf == 0 else 1/3*shell_buckling_data['parameters'][idx][4]/obj.hw*obj.hw*obj.tw/(obj.b*obj.tf)) ef_div_tw_req = np.array(ef_div_tw_req) # # print(stf_req_h , '>', np.array([np.nan if self._LongStf is None else self._LongStf.hw, # np.nan if self._RingStf is None else self._RingStf.hw, # np.nan if self._RingFrame is None else self._RingFrame.hw])) # print(stf_req_b , '>', bf) # print(hw_div_tw , '<', req_hw_div_tw) # print(ef_div_tw , '<', ef_div_tw_req) chk1 = stf_req_h>np.array([np.nan if self._LongStf is None else self._LongStf.hw, np.nan if self._RingStf is None else self._RingStf.hw, np.nan if self._RingFrame is None else self._RingFrame.hw]) chk1 = [np.nan if np.isnan(val) else chk1[idx] for idx, val in enumerate(stf_req_h)] chk2 = stf_req_b > bf chk2 = [np.nan if np.isnan(val) else chk2[idx] for idx, val in enumerate(stf_req_b)] chk3= hw_div_tw < req_hw_div_tw chk3 = [np.nan if np.isnan(val) else chk3[idx] for idx, val in enumerate(req_hw_div_tw)] chk4 = ef_div_tw < ef_div_tw_req chk4 = [np.nan if np.isnan(val) else chk4[idx] for idx, val in enumerate(ef_div_tw_req)] provide_data['stiffener check'] = {'longitudinal':all([chk1[0], chk2[0]]), 'ring stiffener': None if self._RingStf is None else all([chk1[1],chk2[1],chk3[0],chk4[0]]), 'ring frame': None if self._RingFrame is None else True} #all([chk1[2],chk2[2],chk3[1],chk4[1]])} SKIP check for girders provide_data['stiffener check detailed'] = {'longitudinal':'Web height < ' + str(round(stf_req_h[0],1)) if not chk1[0] else '' + ' ' + 'flange width < ' +str(round(stf_req_b[0],1)) if not chk2[0] else ' ', 'ring stiffener': None if self._RingStf is None else 'Web height < ' + str(round(stf_req_h[1],1)) if not chk1[1] else '' + ' ' + 'flange width < ' +str(round(stf_req_b[1],1)) if not chk2[1] else ' ' + ' ' + 'hw/tw >= ' + str(round(req_hw_div_tw[0],1)) if not chk3[0] else ''+ ' ' + 'ef/tw >= ' + str(round(ef_div_tw_req[0],1)) if not chk4[0] else '', 'ring frame': None if self._RingFrame is None else 'Web height < ' + str(round(stf_req_h[2],1)) if not chk1[2] else '' + ' ' + 'flange width < ' +str(round(stf_req_b[2],1)) if not chk2[2] else ' ' + ' ' + 'hw/tw >= ' + str(round(req_hw_div_tw[1],1)) if not chk3[1] else ''+ ' ' + 'ef/tw >= ' + str(round(ef_div_tw_req[1],1)) if not chk4[1] else ''} provide_data['Column stability check'] = stab_chk return provide_data def get_all_properties(self): all_data = {'Main class': self.get_main_properties(), 'Shell': self._Shell.get_main_properties(), 'Long. stf.': None if self._LongStf is None else self._LongStf.get_structure_prop(), 'Ring stf.': None if self._RingStf is None else self.RingStfObj.get_structure_prop(), 'Ring frame': None if self._RingFrame is None else self._RingFrame.get_structure_prop()} return all_data def set_all_properties(self, all_prop_dict): # TODO ensure that this is set when optimizing and saving. all_data = {'Main class': self.set_main_properties(all_prop_dict['Main class']), 'Shell': self._Shell.set_main_properties(all_prop_dict['Shell']), 'Long. stf.': None if self._LongStf is None else self._LongStf.set_main_properties(all_prop_dict['Long. stf.']), 'Ring stf.': None if self._RingStf is None else self.RingStfObj.set_main_properties(all_prop_dict['Ring stf.']), 'Ring frame': None if self._RingFrame is None else self._RingFrame.set_main_properties(all_prop_dict['Ring frame'])} return all_data def get_main_properties(self): main_dict = {'sasd': [self._sasd, 'Pa'], 'smsd': [self._smsd, 'Pa'], 'tTsd': [abs(self._tTsd), 'Pa'], 'tQsd': [self._tQsd, 'Pa'], 'psd': [self._psd, 'Pa'], 'shsd': [self._shsd, 'Pa'], 'geometry': [self._geometry, ''], 'material factor': [self._mat_factor, ''], 'delta0': [self._delta0, ''], 'fab method ring stf': [self._fab_method_ring_stf, '-'], 'fab method ring girder': [self._fab_method_ring_girder, '-'], 'E-module': [self._E, 'Pa'], 'poisson': [self._v, '-'], 'mat_yield': [self._yield, 'Pa'], 'length between girders': [self._length_between_girders, 'm'], 'panel spacing, s': [self._panel_spacing, 'm'], 'ring stf excluded': [self.__ring_stiffener_excluded, ''], 'ring frame excluded': [self.__ring_frame_excluded, ''], 'end cap pressure': [self._end_cap_pressure_included, ''], 'ULS or ALS':[self._uls_or_als, '']} return main_dict def set_stresses_and_pressure(self, val): self._sasd = val['sasd'] self._smsd = val['smsd'] self._tTsd = abs(val['tTsd']) self._tQsd= val['tQsd'] self._psd = val['psd'] self._shsd = val['shsd'] def get_x_opt(self): ''' shell (0.02, 2.5, 5, 5, 10, nan, nan, nan), long (0.875, nan, 0.3, 0.01, 0.1, 0.01, nan, stiffener_type)), ring (nan, nan, 0.3, 0.01, 0.1, 0.01, nan, stiffener_type)), ring (nan, nan, 0.7, 0.02, 0.2, 0.02, nan, stiffener_type))] (self._spacing, self._plate_th, self._web_height, self._web_th, self._flange_width, self._flange_th, self._span, self._girder_lg, self._stiffener_type) ''' shell = [self._Shell.thk, self._Shell.radius, self._Shell.dist_between_rings, self._Shell.length_of_shell, self._Shell.tot_cyl_length, np.nan, np.nan, np.nan] if self._LongStf is not None: long = [self._LongStf.s/1000, np.nan, self._LongStf.hw/1000, self._LongStf.tw/1000, self._LongStf.b/1000, self._LongStf.tf/1000, np.nan, self._LongStf.stiffener_type] else: long = [0 for dummy in range(8)] if self._RingStf is not None: ring_stf = [self._RingStf.s/1000, np.nan, self._RingStf.hw/1000, self._RingStf.tw/1000, self._RingStf.b/1000, self._RingStf.tf/1000, np.nan, self._RingStf.stiffener_type] else: ring_stf = [0 for dummy in range(8)] if self._RingFrame is not None: ring_fr = [self._RingFrame.s/1000, np.nan, self._RingFrame.hw/1000, self._RingFrame.tw/1000, self._RingFrame.b/1000, self._RingFrame.tf/1000, np.nan, self._RingFrame.stiffener_type] else: ring_fr = [0 for dummy in range(8)] return [shell, long, ring_stf, ring_fr] class CalcFatigue(Structure): ''' This Class does the calculations for the plate fields. Input is a structure object (getters from the Structure Class) ''' def __init__(self, main_dict: dict, fatigue_dict: dict=None): super(CalcFatigue, self).__init__(main_dict, fatigue_dict) if fatigue_dict is not None: self._sn_curve = fatigue_dict['SN-curve'] self._acc = fatigue_dict['Accelerations'] self._weibull = fatigue_dict['Weibull'] self._period = fatigue_dict['Period'] self._k_factor = fatigue_dict['SCF'] self._corr_loc = fatigue_dict['CorrLoc'] self._no_of_cycles = fatigue_dict['n0'] self._design_life = fatigue_dict['Design life'] self._fraction = fatigue_dict['Fraction'] self._case_order = fatigue_dict['Order'] try: self._dff = fatigue_dict['DFF'] except KeyError: self._dff = 2 self.fatigue_dict = fatigue_dict def get_sn_curve(self): return self._sn_curve def __get_sigma_ext(self, int_press): return -0.5*int_press* ((self._spacing / (self._plate_th))**2) * (self._k_factor/1000**2) def __get_sigma_int(self, ext_press): return 0.5*ext_press*((self._spacing/(self._plate_th))**2) * (self._k_factor/1000**2) def __get_range(self, idx, int_press, ext_press): return 2*math.sqrt(math.pow(self.__get_sigma_ext(ext_press), 2) + math.pow(self.__get_sigma_int(int_press), 2) + 2*self._corr_loc[idx]*self.__get_sigma_ext(ext_press) *self.__get_sigma_int(int_press)) def __get_stress_fraction(self,idx, int_press, ext_press): return self.__get_range(idx, int_press, ext_press) / \ math.pow(math.log(self._no_of_cycles), 1/self._weibull[idx]) def __get_gamma1(self,idx): return math.exp(gammaln(snc.get_paramter(self._sn_curve,'m1')/self._weibull[idx] + 1)) def __get_gamma2(self,idx): return math.exp(gammaln(snc.get_paramter(self._sn_curve, 'm2') / self._weibull[idx] + 1)) def get_damage_slope1(self, idx, curve, int_press=0, ext_press=0): m1, log_a1, k, slope = snc.get_paramter(curve,'m1'), snc.get_paramter(curve,'log a1'),\ snc.get_paramter(curve,'k'), snc.get_paramter(curve,'slope') cycles = self._design_life*365*24*3600/self._period[idx] thk_eff = math.log10(max(1,self._plate_th/0.025)) * k slope_ch = math.exp( math.log( math.pow(10, log_a1-m1*thk_eff)/slope) / m1) gamma1 = self.__get_gamma1(idx) weibull = self._weibull[idx] stress_frac = self.__get_stress_fraction(idx, int_press, ext_press) # print('Internal pressure: ', int_press) # print('External pressure: ', ext_press) # finding GAMMADIST if stress_frac == 0: return 0 x, alpha = math.pow(slope_ch/stress_frac, weibull),1 + m1/weibull gamma_val = gammadist.cdf(x,alpha) return cycles / math.pow(10, log_a1-m1*thk_eff) * math.pow(stress_frac, m1)*gamma1*(1-gamma_val)\ *self._fraction[idx] def get_damage_slope2(self, idx, curve, int_press, ext_press): m2, log_m2, k, slope = snc.get_paramter(curve,'m2'), snc.get_paramter(curve,'log a2'),\ snc.get_paramter(curve,'k'), snc.get_paramter(curve,'slope') cycles = self._design_life*365*24*3600/self._period[idx] thk_eff = math.log10(max(1,self._plate_th/25)) * k slope_ch = math.exp( math.log( math.pow(10, log_m2-m2*thk_eff)/slope) / m2) gammm2 = self.__get_gamma2(idx) weibull = self._weibull[idx] stress_frac = self.__get_stress_fraction(idx, int_press, ext_press) # finding GAMMADIST if stress_frac == 0: return 0 x, alpha = math.pow(slope_ch/stress_frac, weibull),1 + m2/weibull gamma_val = gammadist.cdf(x,alpha) return cycles / math.pow(10, log_m2-m2*thk_eff) * math.pow(stress_frac, m2)*gammm2*(gamma_val)\ *self._fraction[idx] def get_total_damage(self, int_press=(0, 0, 0), ext_press=(0, 0, 0)): damage = 0 for idx in range(3): if self._fraction[idx] != 0 and self._period[idx] != 0: damage += self.get_damage_slope1(idx,self._sn_curve, int_press[idx], ext_press[idx]) + \ self.get_damage_slope2(idx,self._sn_curve, int_press[idx], ext_press[idx]) return damage def set_commmon_properties(self, fatigue_dict: dict): ''' Setting the fatiuge properties. ''' #self._sn_curve, self.fatigue_dict['SN-curve'] = fatigue_dict['SN-curve'], fatigue_dict['SN-curve'] self._acc, self.fatigue_dict['Accelerations'] = fatigue_dict['Accelerations'], fatigue_dict['Accelerations'] #self._weibull, self.fatigue_dict['Weibull'] = fatigue_dict['Weibull'], fatigue_dict['Weibull'] #self._period, self.fatigue_dict['Period'] = fatigue_dict['Period'], fatigue_dict['Period'] #self._k_factor, self.fatigue_dict['SCF'] = fatigue_dict['SCF'], fatigue_dict['SCF'] #self._corr_loc, self.fatigue_dict['CorrLoc'] = fatigue_dict['CorrLoc'], fatigue_dict['CorrLoc'] self._no_of_cycles, self.fatigue_dict['n0'] = fatigue_dict['n0'], fatigue_dict['n0'] self._design_life, self.fatigue_dict['Design life'] = fatigue_dict['Design life'], fatigue_dict['Design life'] self._fraction, self.fatigue_dict['Fraction'] = fatigue_dict['Fraction'], fatigue_dict['Fraction'] #self._case_order, self.fatigue_dict['Order'] = fatigue_dict['Order'], fatigue_dict['Order'] self._dff, self.fatigue_dict['DFF'] = fatigue_dict['DFF'], fatigue_dict['DFF'] def set_fatigue_properties(self, fatigue_dict: dict): ''' Setting the fatiuge properties. ''' self._sn_curve, self.fatigue_dict['SN-curve'] = fatigue_dict['SN-curve'], fatigue_dict['SN-curve'] self._acc, self.fatigue_dict['Accelerations'] = fatigue_dict['Accelerations'], fatigue_dict['Accelerations'] self._weibull, self.fatigue_dict['Weibull'] = fatigue_dict['Weibull'], fatigue_dict['Weibull'] self._period, self.fatigue_dict['Period'] = fatigue_dict['Period'], fatigue_dict['Period'] self._k_factor, self.fatigue_dict['SCF'] = fatigue_dict['SCF'], fatigue_dict['SCF'] self._corr_loc, self.fatigue_dict['CorrLoc'] = fatigue_dict['CorrLoc'], fatigue_dict['CorrLoc'] self._no_of_cycles, self.fatigue_dict['n0'] = fatigue_dict['n0'], fatigue_dict['n0'] self._design_life, self.fatigue_dict['Design life'] = fatigue_dict['Design life'], fatigue_dict['Design life'] self._fraction, self.fatigue_dict['Fraction'] = fatigue_dict['Fraction'], fatigue_dict['Fraction'] self._case_order, self.fatigue_dict['Order'] = fatigue_dict['Order'], fatigue_dict['Order'] self._dff, self.fatigue_dict['DFF'] = fatigue_dict['DFF'], fatigue_dict['DFF'] def get_fatigue_properties(self): ''' Returning properties as a dictionary ''' return self.fatigue_dict def get_accelerations(self): ''' Returning tuple of accelerattions.''' return self._acc def get_dff(self): return self._dff def get_design_life(self): return self._design_life class PULSpanel(): ''' Takes care of puls runs ''' def __init__(self, run_dict: dict = {}, puls_acceptance: float = 0.87, puls_sheet_location: str = None): super(PULSpanel, self).__init__() self._all_to_run = run_dict self._run_results = {} self._puls_acceptance = puls_acceptance self._puls_sheet_location = puls_sheet_location self._all_uf = {'buckling': list(), 'ultimate': list()} @property def all_uf(self): return self._all_uf @property def puls_acceptance(self): return self._puls_acceptance @puls_acceptance.setter def puls_acceptance(self, val): self._puls_acceptance = val @property def puls_sheet_location(self): return self._puls_sheet_location @puls_sheet_location.setter def puls_sheet_location(self, val): self._puls_sheet_location = val def set_all_to_run(self, val): self._all_to_run = val def get_all_to_run(self): return self._all_to_run def get_run_results(self): return self._run_results def set_run_results(self, val): self._run_results = val for key in self._run_results.keys(): if any([key == 'sheet location',type(self._run_results[key]['Buckling strength']) != dict, type(self._run_results[key]['Ultimate capacity']) != dict]): continue if all([type(self._run_results[key]['Buckling strength']['Actual usage Factor'][0]) == float, type(self._run_results[key]['Ultimate capacity']['Actual usage Factor'][0]) == float]): self._all_uf['buckling'].append(self._run_results[key]['Buckling strength']['Actual usage Factor'][0]) self._all_uf['ultimate'].append(self._run_results[key]['Ultimate capacity']['Actual usage Factor'][0]) self._all_uf['buckling'] = np.unique(self._all_uf['buckling']).tolist() self._all_uf['ultimate'] = np.unique(self._all_uf['ultimate']).tolist() def run_all(self, store_results = False): ''' Returning following results.: Identification: name of line/run Plate geometry: dict_keys(['Length of panel', 'Stiffener spacing', 'Plate thick.']) Primary stiffeners: dict_keys(['Number of stiffeners', 'Stiffener type', 'Stiffener boundary', 'Stiff. Height', 'Web thick.', 'Flange width', 'Flange thick.', 'Flange ecc.', 'Tilt angle']) Secondary stiffeners. dict_keys(['Number of sec. stiffeners', 'Secondary stiffener type', 'Stiffener boundary', 'Stiff. Height', 'Web thick.', 'Flange width', 'Flange thick.']) Model imperfections. dict_keys(['Imp. level', 'Plate', 'Stiffener', 'Stiffener tilt']) Material: dict_keys(['Modulus of elasticity', "Poisson's ratio", 'Yield stress plate', 'Yield stress stiffener']) Aluminium prop: dict_keys(['HAZ pattern', 'HAZ red. factor']) Applied loads: dict_keys(['Axial stress', 'Trans. stress', 'Shear stress', 'Pressure (fixed)']) Bound cond.: dict_keys(['In-plane support']) Global elastic buckling: dict_keys(['Axial stress', 'Trans. Stress', 'Trans. stress', 'Shear stress']) Local elastic buckling: dict_keys(['Axial stress', 'Trans. Stress', 'Trans. stress', 'Shear stress']) Ultimate capacity: dict_keys(['Actual usage Factor', 'Allowable usage factor', 'Status']) Failure modes: dict_keys(['Plate buckling', 'Global stiffener buckling', 'Torsional stiffener buckling', 'Web stiffener buckling']) Buckling strength: dict_keys(['Actual usage Factor', 'Allowable usage factor', 'Status']) Local geom req (PULS validity limits): dict_keys(['Plate slenderness', 'Web slend', 'Web flange ratio', 'Flange slend ', 'Aspect ratio']) CSR-Tank requirements (primary stiffeners): dict_keys(['Plating', 'Web', 'Web-flange', 'Flange', 'stiffness']) :return: ''' import excel_inteface as pulsxl iterator = self._all_to_run newfile = self._puls_sheet_location my_puls = pulsxl.PulsExcel(newfile, visible=False) #my_puls.set_multiple_rows(20, iterator) run_sp, run_up = my_puls.set_multiple_rows_batch(iterator) my_puls.calculate_panels(sp=run_sp, up=run_up) #all_results = my_puls.get_all_results() all_results = my_puls.get_all_results_batch(sp = run_sp, up=run_up) for id, data in all_results.items(): self._run_results[id] = data my_puls.close_book(save=False) self._all_uf = {'buckling': list(), 'ultimate': list()} for key in self._run_results.keys(): try: if all([type(self._run_results[key]['Buckling strength']['Actual usage Factor'][0]) == float, type(self._run_results[key]['Ultimate capacity']['Actual usage Factor'][0]) == float]): self._all_uf['buckling'].append(self._run_results[key]['Buckling strength'] ['Actual usage Factor'][0]) self._all_uf['ultimate'].append(self._run_results[key]['Ultimate capacity'] ['Actual usage Factor'][0]) except TypeError: print('Got a type error. Life will go on. Key for PULS run results was', key) print(self._run_results[key]) self._all_uf['buckling'] = np.unique(self._all_uf['buckling']).tolist() self._all_uf['ultimate'] = np.unique(self._all_uf['ultimate']).tolist() if store_results: store_path = os.path.dirname(os.path.abspath(__file__))+'\\PULS\\Result storage\\' with open(store_path+datetime.datetime.now().strftime("%Y%m%d-%H%M%S")+'_UP.json', 'w') as file: file.write(json.dumps(all_results, ensure_ascii=False)) return all_results def get_utilization(self, line, method, acceptance = 0.87): if line in self._run_results.keys(): if method == 'buckling': if type(self._run_results[line]['Buckling strength']['Actual usage Factor'][0]) == str or \ self._run_results[line]['Buckling strength']['Actual usage Factor'][0] is None: return None return self._run_results[line]['Buckling strength']['Actual usage Factor'][0]/acceptance else: if type(self._run_results[line]['Ultimate capacity']['Actual usage Factor'][0]) == str or \ self._run_results[line]['Buckling strength']['Actual usage Factor'][0] is None: return None return self._run_results[line]['Ultimate capacity']['Actual usage Factor'][0]/acceptance else: return None def get_puls_line_results(self, line): if line not in self._run_results.keys(): return None else: return self._run_results[line] def get_string(self, line, uf = 0.87): ''' :param line: :return: ''' results = self._run_results[line] loc_geom = 'Ok' if all([val[0] == 'Ok' for val in results['Local geom req (PULS validity limits)'] .values()]) else 'Not ok' csr_geom = 'Ok' if all([val[0] == 'Ok' for val in results['CSR-Tank requirements (primary stiffeners)'] .values()]) else 'Not ok' ret_str = 'PULS results\n\n' +\ 'Ultimate capacity usage factor: ' + str(results['Ultimate capacity']['Actual usage Factor'][0]/uf)+'\n'+\ 'Buckling strength usage factor: ' + str(results['Buckling strength']['Actual usage Factor'][0]/uf)+'\n'+\ 'Local geom req (PULS validity limits): ' + loc_geom + '\n'+\ 'CSR-Tank requirements (primary stiffeners): ' + csr_geom return ret_str def result_changed(self, id): if id in self._run_results.keys(): self._run_results.pop(id) def generate_random_results(self, batch_size: int = 1000, stf_type: str = None): ''' Genrate random results based on user input. :return: ''' ''' Running iterator: run_dict_one = {'line3': {'Identification': 'line3', 'Length of panel': 4000.0, 'Stiffener spacing': 700.0, 'Plate thickness': 18.0, 'Number of primary stiffeners': 10, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 400.0, 'Web thick.': 12.0, 'Flange width': 200.0, 'Flange thick.': 20.0, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 210000.0, "Poisson's ratio": 0.3, 'Yield stress plate': 355.0, 'Yield stress stiffener': 355.0, 'Axial stress': 101.7, 'Trans. stress 1': 100.0, 'Trans. stress 2': 100.0, 'Shear stress': 5.0, 'Pressure (fixed)': 0.41261, 'In-plane support': 'Int'}} ''' run_dict = {} profiles = hlp.helper_read_section_file('bulb_anglebar_tbar_flatbar.csv') if stf_type is not None: new_profiles = list() for stf in profiles: if stf['stf_type'][0] == stf_type: new_profiles.append(stf) profiles = new_profiles lengths = np.arange(2000,6000,100) spacings = np.arange(500,900,10) thks = np.arange(10,25,1) axstress =transsress1 = transsress2 = shearstress = np.arange(-200,210,10) #np.concatenate((np.arange(-400,-200,10), np.arange(210,410,10))) pressures = np.arange(0,0.45,0.01) now = time.time() yields = np.array([235,265,315,355,355,355,355,390,420,460]) for idx in range(batch_size): ''' Adding 'Stiffener type (L,T,F)': self.stf_type, 'Stiffener boundary': 'C', 'Stiff. Height': self.stf_web_height*1000, 'Web thick.': self.stf_web_thk*1000, 'Flange width': self.stf_flange_width*1000, 'Flange thick.': self.stf_flange_thk*1000}''' this_id = 'run_' + str(idx) + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") this_stf = random.choice(profiles) if random.choice([True, False]): boundary = 'Int' else: boundary = random.choice(['GL', 'GT']) if random.choice([True, True, True, False]): stf_boundary = 'C' else: stf_boundary = 'S' #boundary = 'Int' #stf_boundary = 'C' yieldstress = np.random.choice(yields) if random.choice([True, True, True, False]): transstress1 = np.random.choice(transsress1) # Using same value for trans1 and trans 2 transstress2 = transstress1 else: transstress1 = np.random.choice(transsress1) transstress2 = np.random.choice(transsress2) # run_dict[this_id] = {'Identification': this_id, 'Length of panel': np.random.choice(lengths), # 'Stiffener spacing': np.random.choice(spacings), # 'Plate thickness': np.random.choice(thks), 'Number of primary stiffeners': 10, # 'Stiffener type (L,T,F)': 'F' if this_stf['stf_type'][0] == 'FB' else this_stf['stf_type'][0], # 'Stiffener boundary': stf_boundary, # 'Stiff. Height': this_stf['stf_web_height'][0]*1000, # 'Web thick.': this_stf['stf_web_thk'][0]*1000, # 'Flange width': 0 if this_stf['stf_type'][0] == 'F' # else this_stf['stf_flange_width'][0]*1000, # 'Flange thick.': 0 if this_stf['stf_type'][0] == 'F' # else this_stf['stf_flange_thk'][0]*1000, # 'Tilt angle': 0, 'Number of sec. stiffeners': 0, # 'Modulus of elasticity': 210000, "Poisson's ratio": 0.3, # 'Yield stress plate':yieldstress, 'Yield stress stiffener': yieldstress, # 'Axial stress': 0 if boundary == 'GT' else np.random.choice(axstress), # 'Trans. stress 1': 0 if boundary == 'GL' else transstress1, # 'Trans. stress 2': 0 if boundary == 'GL' else transstress2, # 'Shear stress': np.random.choice(shearstress), # 'Pressure (fixed)': 0 if stf_boundary == 'S' else np.random.choice(pressures), # 'In-plane support': boundary, 'sp or up': 'SP'} same_ax = np.random.choice(axstress) lengths = np.arange(100, 6000, 100) spacings = np.arange(100, 26000, 100) thks = np.arange(10, 50, 1) boundary = random.choice(['GL', 'GT']) if np.random.choice([True,False,False,False]): support = ['SS','SS','SS','SS'] elif np.random.choice([True,False,False,False]): support = ['CL','CL','CL','CL'] else: support = [np.random.choice(['SS', 'CL']),np.random.choice(['SS', 'CL']), np.random.choice(['SS', 'CL']),np.random.choice(['SS', 'CL'])] if np.random.choice([True,False]): press = 0 else: press = np.random.choice(pressures) run_dict[this_id] = {'Identification': this_id, 'Length of plate': np.random.choice(lengths), 'Width of c': np.random.choice(spacings), 'Plate thickness': np.random.choice(thks), 'Modulus of elasticity': 210000, "Poisson's ratio": 0.3, 'Yield stress plate':yieldstress, 'Axial stress 1': 0 if boundary == 'GT' else same_ax, 'Axial stress 2': 0 if boundary == 'GT' else same_ax, 'Trans. stress 1': 0 if boundary == 'GL' else transstress1, 'Trans. stress 2': 0 if boundary == 'GL' else transstress2, 'Shear stress': np.random.choice(shearstress), 'Pressure (fixed)': press, 'In-plane support': boundary, 'Rot left': support[0], 'Rot right': support[1], 'Rot upper': support[2], 'Rot lower': support[3], 'sp or up': 'UP'} self._all_to_run = run_dict self.run_all(store_results=True) print('Time to run', batch_size, 'batches:', time.time() - now) def main(): import example_data as ex # PULS = PULSpanel(ex.run_dict, puls_sheet_location=r'C:\Github\ANYstructure\ANYstructure\PULS\PulsExcel_new - Copy (1).xlsm') # PULS.run_all_multi() # PULS = PULSpanel(puls_sheet_location=r'C:\Github\ANYstructure\PULS\PulsExcel_new - generator.xlsm') # for dummy in range(100): # PULS.generate_random_results(batch_size=10000) # import example_data as test # from multiprocessing import Process # # queue = multiprocessing.SimpleQueue() # tasks = ['a', 'b', 'c'] # for name in tasks: # p = Process(target=f, args=(name,queue)) # p.start() # # for task in tasks: # print(queue.get()) # print('Fatigue test: ') # my_test = CalcFatigue(test.obj_dict, test.fat_obj_dict) # print('Total damage: ',my_test.get_total_damage(int_press=(0,0,0), ext_press=(50000, 60000,0))) # print('') # print('Buckling test: ') # # my_buc = test.get_structure_calc_object() # # #print(my_buc.calculate_buckling_all(design_lat_press=100)) # print(my_buc.calculate_slamming_plate(1000000)) # print(my_buc.calculate_slamming_stiffener(1000000)) # print(my_buc.get_net_effective_plastic_section_modulus()) #my_test.get_total_damage(int_press=(0, 0, 0), ext_press=(0, 40000, 0)) for example in [CalcScantlings(ex.obj_dict)]:#, CalcScantlings(ex.obj_dict2), CalcScantlings(ex.obj_dict_L)]: my_test = example # my_test = CalcFatigue(example, ex.fat_obj_dict2) # my_test.get_total_damage(int_press=(0, 0, 0), ext_press=(0, 40000, 0)) # print('Total damage: ', my_test.get_total_damage(int_press=(0, 0, 0), ext_press=(0, 40000, 0))) # #print(my_test.get_fatigue_properties()) # pressure = 200 # # print(my_test.buckling_local_stiffener()) # # print('SHEAR CENTER: ',my_test.get_shear_center()) # # print('SECTION MOD: ',my_test.get_section_modulus()) # # print('SECTION MOD FLANGE: ', my_test.get_section_modulus()[0]) # # print('SHEAR AREA: ', my_test.get_shear_area()) # # print('PLASTIC SECTION MOD: ',my_test.get_plasic_section_modulus()) # # print('MOMENT OF INTERTIA: ',my_test.get_moment_of_intertia()) # # print('WEIGHT', my_test.get_weight()) # # print('PROPERTIES', my_test.get_structure_prop()) # # print('CROSS AREA', my_test.get_cross_section_area()) # # print() # # # # print('EFFICIENT MOMENT OF INTERTIA: ',my_test.get_moment_of_intertia(efficent_se=my_test.get_plate_efficent_b( # # design_lat_press=pressure))) # # print('Se: ',my_test.calculate_buckling_all(design_lat_press=pressure,checked_side='s')) # # print('Se: ', my_test.calculate_buckling_all(design_lat_press=pressure, checked_side='p')) # # print('MINIMUM PLATE THICKNESS',my_test.get_dnv_min_thickness(pressure)) # # print('MINIMUM SECTION MOD.', my_test.get_dnv_min_section_modulus(pressure)) # print() # #my_test.cyl_buckling_long_sft_shell() # # #Structure(ex.obj_dict_cyl_ring) #Structure(ex.obj_dict_cyl_heavy_ring) # my_cyl = CylinderAndCurvedPlate(main_dict = ex.shell_main_dict2, shell= Shell(ex.shell_dict), # long_stf= None,#Structure(ex.obj_dict_cyl_long2), # ring_stf = Structure(ex.obj_dict_cyl_ring2), # ring_frame= None)#Structure(ex.obj_dict_cyl_heavy_ring2)) # print(my_cyl.get_utilization_factors()) # Prescriptive buckling UPDATED Plate = CalcScantlings(ex.obj_dict) Stiffener = CalcScantlings(ex.obj_dict) Girder = CalcScantlings(ex.obj_dict_heavy) PreBuc = AllStructure(Plate = Plate, Stiffener = Stiffener, Girder = Girder, main_dict=ex.prescriptive_main_dict) #print(Plate) print(Stiffener) print(Stiffener.get_moment_of_intertia_hp()) #print(Girder) #PreBuc.lat_press = 0.412197 #print(Plate) # print(Plate) #print(Stiffener) # print(Girder) #print(PreBuc.get_main_properties()) #print(PreBuc.plate_buckling()) if __name__ == '__main__': main()
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/calc_structure.py
calc_structure.py
ex1 = {'Identification': 'Panel 1', 'Length of panel': 3000, 'Stiffener spacing': 700, 'Plate thickness': 15, 'Number of primary stiffeners': 20, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 350, 'Web thick.': 12,'Flange width': 150, 'Flange thick.': 18, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 2.1e11/1e6, "Poisson's ratio": 0.33, 'Yield stress plate': 355, 'Yield stress stiffener': 355, 'Axial stress': 80, 'Trans. stress 1': 60, 'Trans. stress 2': 50, 'Shear stress': 10, 'Pressure (fixed)': 0.08, 'In-plane support': 'Int'} ex2 = {'Identification': 'Panel 2', 'Length of panel': 3500, 'Stiffener spacing': 700, 'Plate thickness': 15, 'Number of primary stiffeners': 20, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 350, 'Web thick.': 12,'Flange width': 150, 'Flange thick.': 18, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 2.1e11/1e6, "Poisson's ratio": 0.33, 'Yield stress plate': 355, 'Yield stress stiffener': 355, 'Axial stress': 80, 'Trans. stress 1': 60, 'Trans. stress 2': 50, 'Shear stress': 10, 'Pressure (fixed)': 0.08, 'In-plane support': 'Int'} ex3 = {'Identification': 'Panel 3', 'Length of panel': 4000, 'Stiffener spacing': 700, 'Plate thickness': 15, 'Number of primary stiffeners': 20, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 350, 'Web thick.': 12,'Flange width': 150, 'Flange thick.': 18, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 2.1e11/1e6, "Poisson's ratio": 0.33, 'Yield stress plate': 355, 'Yield stress stiffener': 355, 'Axial stress': 80, 'Trans. stress 1': 60, 'Trans. stress 2': 50, 'Shear stress': 10, 'Pressure (fixed)': 0.08, 'In-plane support': 'Int'} ex4 = {'Identification': 'Panel 4', 'Length of panel': 3000, 'Stiffener spacing': 700, 'Plate thickness': 15, 'Number of primary stiffeners': 20, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 400, 'Web thick.': 12,'Flange width': 150, 'Flange thick.': 18, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 2.1e11/1e6, "Poisson's ratio": 0.33, 'Yield stress plate': 355, 'Yield stress stiffener': 355, 'Axial stress': 80, 'Trans. stress 1': 60, 'Trans. stress 2': 50, 'Shear stress': 10, 'Pressure (fixed)': 0.08, 'In-plane support': 'Int'} ex5 = {'Identification': 'Panel 5', 'Length of panel': 3500, 'Stiffener spacing': 700, 'Plate thickness': 15, 'Number of primary stiffeners': 20, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 350, 'Web thick.': 12,'Flange width': 150, 'Flange thick.': 25, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 2.1e11/1e6, "Poisson's ratio": 0.33, 'Yield stress plate': 355, 'Yield stress stiffener': 355, 'Axial stress': 80, 'Trans. stress 1': 60, 'Trans. stress 2': 50, 'Shear stress': 10, 'Pressure (fixed)': 0.08, 'In-plane support': 'Int'} ex6 = {'Identification': 'Panel 6', 'Length of panel': 4000, 'Stiffener spacing': 800, 'Plate thickness': 20, 'Number of primary stiffeners': 20, 'Stiffener type (L,T,F)': 'T', 'Stiffener boundary': 'C', 'Stiff. Height': 350, 'Web thick.': 12,'Flange width': 150, 'Flange thick.': 18, 'Tilt angle': 0, 'Number of sec. stiffeners': 0, 'Modulus of elasticity': 2.1e11/1e6, "Poisson's ratio": 0.33, 'Yield stress plate': 355, 'Yield stress stiffener': 355, 'Axial stress': 80, 'Trans. stress 1': 60, 'Trans. stress 2': 50, 'Shear stress': 10, 'Pressure (fixed)': 0.08, 'In-plane support': 'Int'}
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/example_data_puls.py
example_data_puls.py
import pathlib import tkinter as tk from _tkinter import TclError from tkinter.ttk import Combobox import os try: import any_files.example_data as test import any_files.helper as hlp except ModuleNotFoundError: import ANYstructure.any_files.example_data as test import ANYstructure.any_files.helper as hlp from matplotlib.backends.backend_tkagg import ( FigureCanvasTkAgg, NavigationToolbar2Tk) # Implement the default Matplotlib key bindings. from matplotlib.backend_bases import key_press_handler from matplotlib.figure import Figure class CreateStructureWindow(): ''' This is the tkinter GUI for defining plate/stiffener properties. ''' def __init__(self, master, app): super(CreateStructureWindow, self).__init__() self._frame = master self._frame.wm_title("Define structure properties") self._frame.geometry('1800x900') self._frame.grab_set() self._root_dir = os.path.dirname(os.path.abspath(__file__)) if __name__ == '__main__': self._initial_structure_obj = test.get_structure_calc_object() self._initial_calc_obj = test.get_structure_calc_object() self._section_list = [] self._section_objects = [] for section in hlp.helper_read_section_file('bulb_anglebar_tbar_flatbar.csv'): SecObj = Section(section) self._section_list = hlp.add_new_section(self._section_list, SecObj) self._section_objects.append(SecObj) # m = self._ent_section_list.children['menu'] # m.add_command(label=SecObj.__str__(), command=self.section_choose) self._clicked_button = ["long stf", "ring stf", "ring frame", "flat long stf", 'flat stf', 'flat girder'][0] else: self.app = app self._clicked_button = app._clicked_section_create# if app._line_is_active else None try: if self._clicked_button in ['flat stf', "flat long stf"]: self._initial_structure_obj = self.app._line_to_struc[app._active_line][0].Stiffener elif self._clicked_button == 'flat girder': self._initial_structure_obj = self.app._line_to_struc[app._active_line][5].Girder elif self._clicked_button in ["long stf"]: self._initial_structure_obj = self.app._line_to_struc[app._active_line][5].LongStfObj elif self._clicked_button == "ring stf": self._initial_structure_obj = self.app._line_to_struc[app._active_line][5].RingStfObj elif self._clicked_button == "ring frame": self._initial_structure_obj = self.app._line_to_struc[app._active_line][0].RingFrameObj else: self._initial_structure_obj = None except (KeyError, AttributeError) as error: self._initial_structure_obj = None self._section_list = [section.__str__() for section in app._sections] self._section_objects = app._sections image_dir = os.path.dirname(__file__) + '\\images\\' self._opt_runned = False self._opt_resutls = () self._draw_scale = 0.5 self._canvas_dim = (500, 450) ent_w = 10 start_x, start_y, dx, dy = 20, 70, 60, 33 self._canvas_struc = tk.Canvas(self._frame, width=self._canvas_dim[0], height=self._canvas_dim[1], background='azure', relief='groove', borderwidth=2) self.structure_types = ['T','L', 'L-bulb','FB'] self._canvas_struc.place(x=10, y=440) tk.Label(self._frame, text='-- Define structure properties here --', font='Verdana 15 bold').place(x=10, y=10) # # ### Adding matplotlib # fig, ax = run_section_properties()# Figure(figsize=(4, 4), dpi=100) # t = np.arange(0, 3, .01) # #fig.add_subplot(111).plot(t, 2 * np.sin(2 * np.pi * t)) # # canvas = FigureCanvasTkAgg(fig, master=master) # A tk.DrawingArea. # canvas.draw() # canvas.get_tk_widget().place(x=start_x+17*dx, y=start_y+dy ) # # toolbar = NavigationToolbar2Tk(canvas, master) # toolbar.update() # canvas.get_tk_widget().place(x=start_x+17*dx, y=start_y+10*dy ) # # def on_key_press(event): # print("you pressed {}".format(event.key)) # key_press_handler(event, canvas, toolbar) # # canvas.mpl_connect("key_press_event", on_key_press) self._new_spacing = tk.DoubleVar() self._new_pl_thk = tk.DoubleVar() self._new_web_h = tk.DoubleVar() self._new_web_thk = tk.DoubleVar() self._new_fl_w = tk.DoubleVar() self._new_fl_thk = tk.DoubleVar() self._new_stiffener_type = tk.StringVar() self._new_stiffener_filter = tk.StringVar() self._new_stiffener_filter.set('No filter applied') self._new_girder_length = tk.DoubleVar() self._new_section = tk.StringVar() self._ent_section_list = Combobox(self._frame, values = self._section_list, textvariable = self._new_section, width = 40) self._ent_section_list.bind("<<ComboboxSelected>>", self.section_choose) # self._ent_section_list = tk.OptionMenu(self._frame, self._new_section, command=self.section_choose, # *['',] if self._section_list == [] else self._section_list) self._ent_structure_options = tk.OptionMenu(self._frame,self._new_stiffener_type, command=self.option_choose,*self.structure_types) self._ent_filter_stf = tk.OptionMenu(self._frame,self._new_stiffener_filter, command=self.regen_option_menu,*['No filter applied','L-bulb', 'L', 'FB', 'T']) self._ent_spacing = tk.Entry(self._frame, textvariable=self._new_spacing, width=ent_w) self._ent_pl_thk = tk.Entry(self._frame, textvariable=self._new_pl_thk, width=ent_w) self._ent_web_h = tk.Entry(self._frame, textvariable=self._new_web_h, width=ent_w) self._ent_web_thk = tk.Entry(self._frame, textvariable=self._new_web_thk, width=ent_w) self._ent_fl_w = tk.Entry(self._frame, textvariable=self._new_fl_w, width=ent_w) self._ent_fl_thk = tk.Entry(self._frame, textvariable=self._new_fl_thk, width=ent_w) self._ent_girder_length = tk.Entry(self._frame, textvariable=self._new_girder_length, width=ent_w) tk.Label(self._frame, text='Stiffener type:', font='Verdana 9 bold').place(x=start_x, y=start_y ) tk.Label(self._frame, text='Girder length (Lg)', font='Verdana 9 bold').place(x=start_x+9*dx, y=start_y + 15 * dy) tk.Label(self._frame, text='[m]', font='Verdana 9 bold').place(x=start_x + 14 * dx,y=start_y + 15 * dy) self._ent_girder_length.place(x=start_x + 12 * dx, y=start_y + 15 * dy) tk.Label(self._frame, text='[mm]', font='Verdana 9 bold').place(x=start_x+3*dx, y=start_y+dy ) tk.Label(self._frame, text='[mm]', font='Verdana 9 bold').place(x=start_x+3*dx, y=start_y + 2*dy) tk.Label(self._frame, text='[mm]', font='Verdana 9 bold').place(x=start_x +3*dx, y=start_y + 3*dy) tk.Label(self._frame, text='[mm]', font='Verdana 9 bold').place(x=start_x+3*dx, y=start_y + 4*dy) tk.Label(self._frame, text='[mm]', font='Verdana 9 bold').place(x=start_x+3*dx, y=start_y + 5*dy) tk.Label(self._frame, text='[mm]', font='Verdana 9 bold').place(x=start_x+3*dx, y=start_y + 6*dy) tk.Label(self._frame, text='Existing sections:', font='Verdana 9 bold').place(x=start_x+4*dx, y=start_y + 6*dy) tk.Label(self._frame, text='filter ->', font='Verdana 9 bold').place(x=start_x + 4 * dx, y=start_y + 7 * dy) self._ent_section_list.place(x=start_x+7*dx, y=start_y + 6*dy) self._ent_filter_stf.place(x=start_x+5*dx, y=start_y + 7*dy) tk.Button(self._frame, text='Read section list from file', command=self.read_sections, font='Verdana 10 bold', bg = 'blue', fg = 'yellow').place(x=start_x+12*dx, y=start_y + 6*dy) tk.Button(self._frame, text='Load built in sections', command=self.read_sections_built_in, font='Verdana 10 bold', bg = 'azure', fg = 'black').place(x=start_x+12*dx, y=start_y + 7*dy) # setting default values init_dim,init_thk = 0.05,0.002 if self._initial_structure_obj != None: self._new_stiffener_type.set(self._initial_structure_obj.get_stiffener_type()) self._new_spacing.set(self._initial_structure_obj.get_s()*1000) self._new_pl_thk.set(self._initial_structure_obj.get_pl_thk()*1000) self._new_web_h.set(self._initial_structure_obj.get_web_h()*1000) self._new_web_thk.set(self._initial_structure_obj.get_web_thk()*1000) self._new_fl_w.set(self._initial_structure_obj.get_fl_w()*1000) self._new_fl_thk.set(self._initial_structure_obj.get_fl_thk()*1000) else: self._new_spacing.set(0) self._new_pl_thk.set(0) self._new_web_h.set(0) self._new_web_thk.set(0) self._new_fl_w.set(0) self._new_fl_thk.set(0) self._new_girder_length.set(10) self._ent_structure_options.place(x=start_x + dx * 3, y=start_y) if self._new_spacing.get() != 0: tk.Label(self._frame, text='Spacing', font='Verdana 9').place(x=start_x, y=start_y + dy) self._ent_spacing.place(x=start_x + dx * 2, y=start_y+dy) if self._new_pl_thk.get() != 0: tk.Label(self._frame, text='Plate thk.', font='Verdana 9').place(x=start_x, y=start_y + 2 * dy) self._ent_pl_thk.place(x=start_x + dx * 2, y=start_y+2*dy) if self._new_web_h.get() != 0: tk.Label(self._frame, text='Web height', font='Verdana 9').place(x=start_x, y=start_y + 3 * dy) self._ent_web_h.place(x=start_x + dx * 2, y=start_y+3*dy) if self._new_web_thk.get() != 0: tk.Label(self._frame, text='Web thk.', font='Verdana 9').place(x=start_x, y=start_y + 4 * dy) self._ent_web_thk.place(x=start_x + dx * 2, y=start_y+4*dy) if self._new_fl_w.get() != 0: tk.Label(self._frame, text='Flange width', font='Verdana 9').place(x=start_x, y=start_y + 5 * dy) self._ent_fl_w.place(x=start_x + dx * 2, y=start_y+5*dy) if self._new_fl_thk.get() != 0: tk.Label(self._frame, text='Flange thk.', font='Verdana 9').place(x=start_x, y=start_y + 6 * dy) self._ent_fl_thk.place(x=start_x + dx * 2, y=start_y+6*dy) self._new_spacing.trace('w',self.draw_trace) self._new_pl_thk.trace('w',self.draw_trace) self._new_web_h.trace('w',self.draw_trace) self._new_web_thk.trace('w',self.draw_trace) self._new_fl_w.trace('w',self.draw_trace) self._new_fl_thk.trace('w',self.draw_trace) try: img_file_name = 'img_stiffened_plate_panel.gif' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = os.path.dirname(os.path.abspath(__file__)) + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) label = tk.Label(self._frame, image=photo) label.image = photo # keep a reference! label.place(x=550, y=610) except TclError: pass try: img_file_name = 'img_T_L_FB.gif' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = os.path.dirname(os.path.abspath(__file__)) + '/images/' + img_file_name photo_T_L_FB = tk.PhotoImage(file=file_path) label = tk.Label(self._frame, image=photo_T_L_FB ) label.image = photo_T_L_FB # keep a reference! label.place(x=270, y=50) except TclError: pass # Close and save depending on input # "long stf", "ring stf", "ring frame", "flat long stf" if self._clicked_button is not None: self.close_and_save = tk.Button(self._frame, text='Click to return section data to ' + self._clicked_button, command=self.save_and_close, bg='green', font='Verdana 10 bold', fg='yellow') self.close_and_save.place(x=start_x + dx * 9, y=start_y + dy * 12) self.draw_properties() def regen_option_menu(self, event = None): self._ent_section_list.destroy() sections = [] if self._section_list == []: sections = ['',] elif self._new_stiffener_filter.get() == 'No filter applied': sections = self._section_list else: for sec_obj in self._section_objects: if sec_obj.stf_type == self._new_stiffener_filter.get(): sections.append(sec_obj.__str__()) start_x, start_y, dx, dy = 20, 70, 60, 33 # self._ent_section_list = tk.OptionMenu(self._frame, self._new_section, command=self.section_choose, # *sections) self._ent_section_list = Combobox(self._frame, values=sections, textvariable=self._new_section, width = 40) self._ent_section_list.bind("<<ComboboxSelected>>", self.section_choose) self._ent_section_list.place(x=start_x + 7 * dx, y=start_y + 6 * dy) pass def option_choose(self, event): ''' Action when the option menu is changed. :param event: :return: ''' start_x, start_y, dx, dy = 20, 70, 50, 33 tk.Label(self._frame, text='Spacing', font='Verdana 9').place(x=start_x, y=start_y + dy) self._ent_spacing.place(x=start_x + dx * 2, y=start_y+dy) tk.Label(self._frame, text='Plate thk.', font='Verdana 9').place(x=start_x, y=start_y + 2 * dy) self._ent_pl_thk.place(x=start_x + dx * 2, y=start_y+2*dy) tk.Label(self._frame, text='Web height', font='Verdana 9').place(x=start_x, y=start_y + 3 * dy) self._ent_web_h.place(x=start_x + dx * 2, y=start_y+3*dy) tk.Label(self._frame, text='Web thk.', font='Verdana 9').place(x=start_x, y=start_y + 4 * dy) self._ent_web_thk.place(x=start_x + dx * 2, y=start_y+4*dy) if self._new_stiffener_type.get()!='FB': tk.Label(self._frame, text='Flange width', font='Verdana 9').place(x=start_x, y=start_y + 5 * dy) self._ent_fl_w.place(x=start_x + dx * 2, y=start_y+5*dy) else: self._ent_fl_w.place_forget() if self._new_stiffener_type.get()!='FB': tk.Label(self._frame, text='Flange thk.', font='Verdana 9').place(x=start_x, y=start_y + 6 * dy) self._ent_fl_thk.place(x=start_x + dx * 2, y=start_y+6*dy) else: self._ent_fl_thk.place_forget() if self._new_stiffener_type.get()=='FB': self._new_fl_w.set(0) self._new_fl_thk.set(0) self.draw_properties() def checkered(self, line_distance): ''' Grid lines in the properties canvas. :param line_distance: :return: ''' # vertical lines at an interval of "line_distance" pixel for x in range(line_distance, self._canvas_dim[0], line_distance): self._canvas_struc.create_line(x, 0, x, self._canvas_dim[0], fill="grey", stipple='gray50') # horizontal lines at an interval of "line_distance" pixel for y in range(line_distance, self._canvas_dim[1], line_distance): self._canvas_struc.create_line(0, y, self._canvas_dim[0], y, fill="grey", stipple='gray50') def draw_properties(self): ''' Drawing properties in the canvas. :return: ''' self._canvas_struc.delete('all') self.checkered(10) ctr_x = self._canvas_dim[0] / 2 ctr_y = self._canvas_dim[1] / 2 + 200 m = self._draw_scale init_color, init_stipple = 'blue', 'gray50' try: spacing = self._new_spacing.get() except TclError: spacing = 0 try: pl_thk = self._new_pl_thk.get() except TclError: pl_thk = 0 try: web_h = self._new_web_h.get() except TclError: web_h = 0 try: web_thk = self._new_web_thk.get() except TclError: web_thk = 0 try: fl_w = self._new_fl_w.get() except TclError: fl_w = 0 try: fl_thk = self._new_fl_thk.get() except TclError: fl_thk = 0 self._canvas_struc.create_rectangle(0, 0, self._canvas_dim[0] + 10, 70, fill='white') self._canvas_struc.create_text(250, 15, text='Plate: ' + str(spacing ) + 'x' + str(pl_thk ),font='Verdana 10 bold',fill='black') self._canvas_struc.create_rectangle(ctr_x - m * spacing / 2, ctr_y,ctr_x + m * spacing / 2, ctr_y - m * pl_thk, fill='black', stipple=init_stipple) self._canvas_struc.create_text(250, 35, text='Web: ' + str(web_h ) + 'x'+ str(web_thk ) ,font='Verdana 10 bold',fill='blue') self._canvas_struc.create_rectangle(ctr_x - m * web_thk / 2,ctr_y - m * pl_thk,ctr_x + m * web_thk / 2, ctr_y - m * (web_h+ pl_thk), fill='blue', stipple=init_stipple) self._canvas_struc.create_text(250, 55, text='Flange: '+ str(fl_w ) + 'x'+ str(fl_thk ), font='Verdana 10 bold',fill='red') if self._new_stiffener_type.get() in ['L', 'L-bulb']: self._canvas_struc.create_rectangle(ctr_x - m * web_thk / 2, ctr_y- m * (pl_thk + web_h),ctr_x + m * fl_w, ctr_y - m * (pl_thk + web_h + fl_thk),fill='red', stipple=init_stipple) else: self._canvas_struc.create_rectangle(ctr_x - m * fl_w / 2, ctr_y- m * (pl_thk + web_h),ctr_x + m * fl_w / 2, ctr_y - m * (pl_thk + web_h + fl_thk),fill='red', stipple=init_stipple) def draw_trace(self,*args): ''' Updating when values in entered :param event: :return: ''' self.draw_properties() def save_and_close(self): ''' Save and close :return: ''' if __name__ == '__main__': self._frame.destroy() return self.app.on_close_structure_window([float(num) for num in [self._new_spacing.get(),self._new_pl_thk.get(), self._new_web_h.get(),self._new_web_thk.get(), self._new_fl_w.get(),self._new_fl_thk.get()]] + [self._new_stiffener_type.get(), self._clicked_button]) self._frame.destroy() def section_choose(self, event = None): ''' Choosing a section. ''' #chosen_section = self._new_section.get() chosen_section = event.widget.get() for section in self._section_objects: if chosen_section == section.__str__(): self._new_web_h.set(section.stf_web_height*1000) self._new_web_thk.set(section.stf_web_thk*1000) self._new_fl_w.set(section.stf_flange_width*1000) self._new_fl_thk.set(section.stf_flange_thk*1000) self._new_stiffener_type.set(section.stf_type) self.option_choose(None) def read_sections(self): ''' Read a list. ''' from tkinter import filedialog import any_files.helper as hlp from pathlib import Path file = filedialog.askopenfile('r') file = Path(file.name) #m = self._ent_section_list.children['menu'] for section in hlp.helper_read_section_file(file.name): SecObj = Section(section) self._section_list = hlp.add_new_section(self._section_list, SecObj) self._section_objects.append(SecObj) #m.add_command(label=SecObj.__str__(), command=self.section_choose) def read_sections_built_in(self): ''' Read a list. ''' import any_files.helper as hlp if pathlib.Path('bulb_anglebar_tbar_flatbar.csv').exists(): libfile = 'bulb_anglebar_tbar_flatbar.csv' else: libfile = 'bulb_anglebar_tbar_flatbar.csv' libfile = self._root_dir + '/' + libfile for section in hlp.helper_read_section_file(libfile): SecObj = Section(section) self._section_list = hlp.add_new_section(self._section_list, SecObj) self._section_objects.append(SecObj) #m.add_command(label=SecObj.__str__(), command=self.section_choose) self.regen_option_menu() class Section: ''' Creates a section property. 'stf_type': [self._new_stf_type.get(), ''], 'stf_web_height': [self._new_stf_web_h.get()/1000, 'm'], 'stf_web_thk': [self._new_sft_web_t.get()/1000, 'm'], 'stf_flange_width': [self._new_stf_fl_w.get()/1000, 'm'], 'stf_flange_thk': [self._new_stf_fl_t.get()/1000, 'm'], ''' def __init__(self, input_dict): super(Section, self).__init__() self._stf_type = input_dict['stf_type'] if type(input_dict['stf_type']) != list \ else input_dict['stf_type'][0] self._stf_web_height = input_dict['stf_web_height']if type(input_dict['stf_web_height']) != list \ else input_dict['stf_web_height'][0] self._stf_web_thk = input_dict['stf_web_thk']if type(input_dict['stf_web_thk']) != list \ else input_dict['stf_web_thk'][0] self._stf_flange_width = input_dict['stf_flange_width']if type(input_dict['stf_flange_width']) != list \ else input_dict['stf_flange_width'][0] self._stf_flange_thk = input_dict['stf_flange_thk']if type(input_dict['stf_flange_thk']) != list \ else input_dict['stf_flange_thk'][0] def __str__(self): ''' Returning a string. ''' base_name = self.stf_type+ '_' + str(round(self.stf_web_height*1000, 0)) + 'x' + \ str(round(self.stf_web_thk*1000, 0)) if self._stf_type == 'FB': ret_str = base_name elif self._stf_type in ['L-bulb', 'bulb', 'hp']: ret_str = 'Bulb'+str(int(self.stf_web_height*1000 + self.stf_flange_thk*1000))+'x'+\ str(round(self.stf_web_thk*1000, 0))+ '__' +str(round(self.stf_web_height*1000, 0)) + 'x' + \ str(round(self.stf_web_thk*1000, 0))+ str(round(self.stf_flange_width*1000, 0)) + 'x' + \ str(round(self.stf_flange_thk*1000, 0)) else: ret_str = base_name + '__' + str(round(self.stf_flange_width*1000, 0)) + 'x' + \ str(round(self.stf_flange_thk*1000, 0)) ret_str = ret_str.replace('.', '_') return ret_str @property def stf_type(self): return self._stf_type @stf_type.setter def stf_type(self, value): self._stf_type = value @property def stf_web_height(self): return self._stf_web_height @stf_web_height.setter def stf_web_height(self, value): self._stf_web_height = value @property def stf_web_thk(self): return self._stf_web_thk @stf_web_thk.setter def stf_web_thk(self, value): self._stf_web_thk = value @property def stf_flange_width(self): return self._stf_flange_width @stf_flange_width.setter def stf_flange_width(self, value): self._stf_flange_width = value @property def stf_flange_thk(self): return self._stf_flange_thk @stf_flange_thk.setter def stf_flange_thk(self, value): self._stf_flange_thk = value def return_puls_input(self): ''' Returns as input good for PULS :return: ''' return {'Stiffener type (L,T,F)': self.stf_type, 'Stiffener boundary': 'C', 'Stiff. Height': self.stf_web_height*1000, 'Web thick.': self.stf_web_thk*1000, 'Flange width': self.stf_flange_width*1000, 'Flange thick.': self.stf_flange_thk*1000} # def run_section_properties(pl_s = 0.75, pl_t = 0.015, hw = 0.4, tw = 0.018, bf = 0.15, tf = 0.02): # import sectionproperties.pre.sections as sections # from sectionproperties.analysis.cross_section import CrossSection # from matplotlib import pyplot as plt # # # create a 50 diameter circle discretised by 64 points # geometry = sections.MonoISection( # d=(pl_t+hw+tf)*1000, b_t=bf*1000, b_b=pl_s*1000, t_ft=tf*1000, t_fb=pl_t*1000, t_w=tw*1000, r=8, n_r=16 # ) # mesh = geometry.create_mesh(mesh_sizes=[3.0]) # section = CrossSection(geometry, mesh) # create a CrossSection object # mesh_nodes = section.mesh_nodes # mesh_elements = section.mesh_elements # # plot the mesh # (fig, ax) = plt.subplots(figsize=(4, 4), dpi=100) # ax.triplot(mesh_nodes[:, 0], mesh_nodes[:, 1], mesh_elements[:, 0:3], lw=0.5) # # #section.display_mesh_info() # display the mesh information # # ax = section.plot_mesh(pause=True) # plot the generated mesh # # # # # perform a geometric, warping and plastic analysis, displaying the time info # # section.calculate_geometric_properties(time_info=True) # # section.calculate_warping_properties(time_info=True) # # section.calculate_plastic_properties(time_info=True) # # # # # print the results to the terminal # # section.display_results() # # # # # get the second moments of area and the torsion constant # # (ixx_c, iyy_c, ixy_c) = section.get_ic() # # j = section.get_j() # # # # # print the sum of the second moments of area and the torsion constant # # print("Ixx + Iyy = {0:.3f}".format(ixx_c + iyy_c)) # # print("J = {0:.3f}".format(j)) # return fig, ax # # if __name__ == '__main__': # sec1 = Section({'stf_type': 'T', 'stf_web_height': 0.35, 'stf_web_thk': 0.02, 'stf_flange_width': 0.15, # 'stf_flange_thk': 0.015}) # # sec_list = [sec1, Section({'stf_type': 'FB', 'stf_web_height': 0.35, 'stf_web_thk': 0.02, 'stf_flange_width': 0, # 'stf_flange_thk': 0}), Section({'stf_type': 'T', 'stf_web_height': 0.4, 'stf_web_thk': 0.02, # 'stf_flange_width': 0.15, 'stf_flange_thk': 0.02})] # # hlp.add_new_section(sec_list, sec1) # run_section_properties() root = tk.Tk() my_app = CreateStructureWindow(root, app=None) root.mainloop()
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/pl_stf_window.py
pl_stf_window.py
import numpy as np from scipy import ndimage class Grid: """ Implementation of 2D grid of cells Includes boundary handling """ def __init__(self, grid_height, grid_width): """ Initializes grid to be empty, take height and width of grid as parameters Indexed by rows (left to right), then by columns (top to bottom) """ #print('Grid initsialised with', grid_height, grid_width) self._grid_height = grid_height self._grid_width = grid_width self._cells = np.zeros((self._grid_height,self._grid_width)) self.empty, self.full, self.barrier, self.corner = 0, 1, -1, -2 self._geo_info = {'points': None, 'lines': None} self._compressed_grid = None self._bfs_search_data = None @property def cells(self): return self._cells @cells.setter def cells(self, val): self._cells = val @property def bfs_search_data(self): return self._bfs_search_data @bfs_search_data.setter def bfs_search_data(self, val): self._bfs_search_data = val def __str__(self): """ Return multi-line string represenation for grid """ ans = "" for row in range(self._grid_height): ans += str(self._cells[row]) ans += "\n" return ans def make_empty_grid(self): ''' Making a grid of all 0. :return: ''' return np.zeros((self._grid_height,self._grid_width)) def get_array(self): ''' Returning the numpy array ''' return self._cells def provide_line_info(self, lines, points): ''' Line information to the grid. The geometric infomation is a dictionary { line_dict: line_dict, point_dict: point_dict } ''' self._geo_info['lines'] = lines self._geo_info['points'] = points def get_grid_height(self): """ Return the height of the grid for use in the GUI """ return self._grid_height def get_grid_width(self): """ Return the width of the grid for use in the GUI """ return self._grid_width def get_matrix(self): """ Return the complete matrix in numpy list form. """ return self._cells def get_highest_number_in_grid(self): ''' Retruns the highes number in the grid. :return: ''' return np.amax(self._cells) def clear(self): """ Clears grid to be empty """ self._cells = np.zeros((self._grid_height,self._grid_width)) def set_empty(self, row, col): """ Set cell with index (row, col) to be empty """ self._cells[row][col] = self.empty def set_full(self, row, col): """ Set cell with index (row, col) to be full """ self._cells[row][col] = self.full def set_value(self, row, col, value): """ Set cell with index (row, col) to be a specified integer """ self._cells[row][col] = value def set_barrier(self, row, col, line_number: int = None): """ Set cell with index (row, col) to be full """ if line_number is None: self._cells[row][col] = self.barrier else: self._cells[row][col] = line_number def set_number_to_cell(self, row, col, number): ''' Setting an arbritary number to a cell. ''' self._cells[row][col] = number def is_empty(self, row, col): """ Checks whether cell with index (row, col) is empty """ return self._cells[row][col] == self.empty def is_full(self, row, col): """ Checks whether cell with index (row, col) is empty """ return self._cells[row][col] == self.full def is_barrier(self, row, col): """ Checks whether cell with index (row, col) is empty """ return self._cells[row][col] == self.barrier def is_corner(self,point): ''' Identifying corners. :param point: :return: ''' return [self.get_value(item[0],item[1]) for item in self.eight_neighbors(point[0],point[1])].count(self.barrier) > 4 def four_neighbors_extend_1(self, row, col): """ Returns horiz/vert neighbors of cell (row, col) """ ans = [] if row > 0: ans.append((row - 2, col)) if row < self._grid_height - 1: ans.append((row + 2, col)) if col > 0: ans.append((row, col - 2)) if col < self._grid_width - 1: ans.append((row, col + 2)) return ans def four_neighbors(self, row, col): """ Returns horiz/vert neighbors of cell (row, col) """ ans = [] if row > 0: ans.append((row - 1, col)) if row < self._grid_height - 1: ans.append((row + 1, col)) if col > 0: ans.append((row, col - 1)) if col < self._grid_width - 1: ans.append((row, col + 1)) return ans def eight_neighbors(self, row, col): """ Returns horiz/vert neighbors of cell (row, col) as well as diagonal neighbors """ ans = [] if row > 0: ans.append((row - 1, col)) if row < self._grid_height - 1: ans.append((row + 1, col)) if col > 0: ans.append((row, col - 1)) if col < self._grid_width - 1: ans.append((row, col + 1)) if (row > 0) and (col > 0): ans.append((row - 1, col - 1)) if (row > 0) and (col < self._grid_width - 1): ans.append((row - 1, col + 1)) if (row < self._grid_height - 1) and (col > 0): ans.append((row + 1, col - 1)) if (row < self._grid_height - 1) and (col < self._grid_width - 1): ans.append((row + 1, col + 1)) return ans def get_index(self, point, cell_size): """ Takes point in screen coordinates and returns index of containing cell """ return (point[1] / cell_size, point[0] / cell_size) def get_value(self, row, col): # print('requested ROW COL: ', row, col) # print('CURRENT CELL LEN: ',len(self._cells), 'Shape is ',self._cells.shape) #print(self._cells[row]) return self._cells[row][col] def get_points_along_line(self,start, end): """Bresenham's Line Algorithm Produces a list of tuples from start and end points1 = get_line((0, 0), (3, 4)) points2 = get_line((3, 4), (0, 0)) assert(set(points1) == set(points2)) print points1 [(0, 0), (1, 1), (1, 2), (2, 3), (3, 4)] [(3, 4), (2, 3), (1, 2), (1, 1), (0, 0)] """ # Setup initial conditions x1 = int(start[0]) y1 = int(start[1]) x2 = int(end[0]) y2 = int(end[1]) dx = x2 - x1 dy = y2 - y1 # Determine how steep the line is is_steep = abs(dy) > abs(dx) # Rotate line if is_steep: x1, y1 = y1, x1 x2, y2 = y2, x2 # Swap start and end points if necessary and store swap state swapped = False if x1 > x2: x1, x2 = x2, x1 y1, y2 = y2, y1 swapped = True # Recalculate differentials dx = x2 - x1 dy = y2 - y1 # Calculate error error = int(dx / 2.0) ystep = 1 if y1 < y2 else -1 # Iterate over bounding box generating points between start and end y = y1 points = [] for x in range(x1, x2 + 1): coord = (y, x) if is_steep else (x, y) points.append(coord) error -= abs(dy) if error < 0: y += ystep error += dx # Reverse the list if the coordinates were swapped if swapped: points.reverse() return points def get_mid_point(self, cell1, cell2): ''' Get the point that is in the middle between two points. :param point1: :param point2: :return: ''' idx = int(round(len(self.get_points_along_line(cell1,cell2))/2,0)) return self.get_points_along_line(cell1,cell2)[idx] def get_adjacent_values(self,cell): ''' Find the labels in the grid adjacent to the specified point. :param point: :return: ''' # return tuple(set([int(self.get_value(neighbor[0], neighbor[1])) # for neighbor in self.four_neighbors_extend_1(cell[0], cell[1])])) return tuple(set([int(self.get_value(neighbor[0], neighbor[1])) for neighbor in self.four_neighbors(cell[0], cell[1])])) def get_adjacent_values_duplicates(self,cell): ''' Find the labels in the grid adjacent to the specified point. :param point: :return: ''' return_tuple = tuple(list([int(self.get_value(neighbor[0], neighbor[1])) for neighbor in self.four_neighbors(cell[0], cell[1])])) # return_tuple = tuple(list([int(self.get_value(neighbor[0], neighbor[1])) # for neighbor in self.four_neighbors_extend_1(cell[0], cell[1])])) len(tuple(set(return_tuple))) if len(tuple(set(return_tuple))) > 1: return set(return_tuple) else: return (tuple(set(return_tuple))[0],tuple(set(return_tuple))[0]) def get_highest_cell(self, value): ''' Get the cell closes to (0,0) with a given value. :param value: :return: ''' highest = (self.get_grid_height(),0) for row in range(self.get_grid_height()): for col in range(self.get_grid_width()): if self.get_value(row,col) == value and row < highest[0]: highest = (row,col) return highest def get_lowest_cell(self,value): ''' Get the cell closest to (height,0) with a given value. :param value: :return: ''' lowest = (0,0) for row in range(self.get_grid_height()): for col in range(self.get_grid_width()): if self.get_value(row,col) == value and row > lowest[0]: lowest = (row,col) return lowest def get_number_of_cells_with_value(self,value): ''' Get the number of cells with a certain value. :param value: :return: ''' counter = 0 for row in range(self.get_grid_height()): for col in range(self.get_grid_width()): if self.get_value(row,col) == value: counter += 1 return counter def import_grid(self,grid): ''' Import a grid to replace created grid. Converting to numpy array. :param grid: :return: ''' if np.array(grid, dtype=object).shape[1] == 2: self._cells = self.rebuild_compressed(grid) else: self.cells = np.array(grid) # old large save files def export_grid(self): ''' Converting from array to list of list. Exporting the grid. :return: ''' return self.export_compressed_grid() def export_compressed_grid(self): ''' Converting from array to list of list. Exporting the grid for saving. :return: ''' save_list = list() # Compressing horizontally for row in self._cells: this_counter, this_number, save_row = 1, row[0], list() for col_idx in range(len(row)-1): last = col_idx == len(row)-2 if row[col_idx] == row[col_idx+1] and not last: this_counter += 1 elif row[col_idx] != row[col_idx+1] and not last: save_row.append([this_number, this_counter]) this_number = row[col_idx+1] this_counter = 1 elif last: save_row.append([this_number, this_counter+1]) save_list.append(save_row) # Compressing vertically this_counter, this_number, save_vertical = 0, save_list[0], list() for row_idx in range(len(save_list) - 1): last = row_idx == len(save_list) - 2 if save_list[row_idx] == save_list[row_idx +1] and not last: this_counter += 1 elif save_list[row_idx] != save_list[row_idx +1] and not last: save_vertical.append([this_number, this_counter]) this_number = save_list[row_idx +1] this_counter = 1 elif last: save_vertical.append([this_number, this_counter]) if save_list[row_idx+1] != save_list[row_idx]: save_vertical.append([save_list[row_idx+1], 1]) if save_vertical[0][-1] != self.cells.shape[0]: save_vertical[0][-1] += 1 # assert this_counter == self.cells.shape[0], 'Error. Shape of compressed grid is not equal to input grid. ' \ # 'The counter has skipped a step. The saved is '\ # +str(save_vertical) + ' and the shape is ' + \ # str(self.cells.shape) return save_vertical def rebuild_compressed(self, compressed_grid = None): ''' Rebuilding a compressed grid made by 'export_compressed_grid(self)' :return: ''' compressed_grid = compressed_grid if compressed_grid is not None else self._compressed_grid vertical_expansion_list = [] # Expand vertically for row_count, row in enumerate(compressed_grid): values = row[0] value_count = row[1] for dummy_i in range(value_count): vertical_expansion_list.append(values) # Expand horisontally expanded_list = [list() for dummy_i in range(len(vertical_expansion_list))] for row_count, row in enumerate(vertical_expansion_list): for values in row: value = values[0] value_count = values[1] for dummy_i in range(value_count): expanded_list[row_count].append(value) #print('Shape of rebuilt grid is',np.array(expanded_list).shape) return np.array(expanded_list) def get_center_of_matrix(self, height_limit: float = None, scale: float = 10): ''' ''' import copy calc_grid = copy.deepcopy(self.get_array()) all_compartments = np.unique(calc_grid) calc_grid[calc_grid == 1] = 0 #set all values to a value for val in all_compartments: if val != 0: calc_grid[calc_grid == val] = 1 if height_limit != None: calc_grid = calc_grid[int(self._grid_height-height_limit*scale):, :] center_of_mass = ndimage.measurements.center_of_mass(calc_grid) center_of_mass = ((calc_grid.shape[0]-center_of_mass[0])/scale, center_of_mass[1]/scale) return center_of_mass if __name__ == '__main__': import example_data as ex import grid_window as grd from matplotlib import pyplot as plt lines = ex.line_dict points = ex.point_dict canvas_dim = [1000,720] canvas_origo = (50,670) empty_grid = np.zeros((720, 1000)) my_grid = grd.CreateGridWindow(ex.get_grid_no_inp(empty_grid=False), canvas_dim, {}, canvas_origo) print('before search', my_grid.grid.get_array().shape) search_return = my_grid.search_bfs(animate = True) print('after search', my_grid.grid.get_array().shape) my_grid.grid.get_center_of_matrix(height_limit=5)
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/make_grid_numpy.py
make_grid_numpy.py
import tkinter as tk try: import any_files.example_data as test import any_files.SN_curve_parameters as sn except ModuleNotFoundError: import ANYstructure.any_files.example_data as test import ANYstructure.any_files.SN_curve_parameters as sn class CreateFatigueWindow(): ''' This class initiates the GUI used to define stresses for the selected structure. ''' def __init__(self, master, app=None): super(CreateFatigueWindow, self).__init__() if __name__ == '__main__': self._initial_structure_obj = test.get_structure_object() self.load_objects = [test.get_loa_fls_load(),test.get_loa_uls_load(), test.get_bal_fls_load(), test.get_bal_uls_load()] self.active_line = 'line1' points = test.line_dict['line1'] coords = (test.point_dict['point'+str(points[0])], test.point_dict['point'+str(points[1])]) self.pressure_coords = self.get_pressure_point_coord_from_two_points(coords[0],coords[1]) self.comp_objects = [test.get_tank_object()] self._initial_fatigue_obj = test.get_fatigue_object() else: if app._line_to_struc[app._active_line][0] is None: return elif app._line_to_struc[app._active_line][0].Stiffener is None: return self.app = app self.active_line = app._active_line points = app._line_dict[self.active_line] coords = (app._point_dict['point'+str(points[0])], app._point_dict['point'+str(points[1])]) self.pressure_coords = self.get_pressure_point_coord_from_two_points(coords[0], coords[1]) self._initial_structure_obj = app._line_to_struc[app._active_line][0].Stiffener self.load_objects = app._line_to_struc[app._active_line][3] self.comp_objects = [app._tank_dict['comp'+str(comp_i)] for comp_i in app.get_compartments_for_line(app._active_line)] self._initial_fatigue_obj = app._line_to_struc[self.active_line][2] self._frame = master self._frame.wm_title("Specify fatigue properties here.") self._frame.geometry('1300x810') self._frame.grab_set() tk.Label(self._frame, text='-- Fatigue calculation for plates according to DNVGL-RP-C203, ' 'Section 5 Simplified fatigue analysis --', font='Verdana 15 bold').place(x=10, y=10) ent_w = 10 self.new_sn_curve = tk.StringVar() self.new_k_factor = tk.DoubleVar() self.new_no_of_cycles = tk.DoubleVar() self.new_design_life = tk.DoubleVar() self.new_dff = tk.DoubleVar() self.new_weibull_loa = tk.DoubleVar() self.new_weibull_bal = tk.DoubleVar() self.new_weibull_prt = tk.DoubleVar() self.new_period_loa = tk.DoubleVar() self.new_period_bal = tk.DoubleVar() self.new_period_prt = tk.DoubleVar() self.new_corr_loc_loa = tk.DoubleVar() self.new_corr_loc_bal = tk.DoubleVar() self.new_corr_loc_prt = tk.DoubleVar() self.new_fraction_loa = tk.DoubleVar() self.new_fraction_bal = tk.DoubleVar() self.new_fraction_prt = tk.DoubleVar() self.new_az_loa = tk.DoubleVar() self.new_az_bal = tk.DoubleVar() self.new_az_prt = tk.DoubleVar() sn_curves = sn.get_all_curves() self.ent_sn_curve = tk.OptionMenu(self._frame, self.new_sn_curve, command=self.change_sn_curve,*sn_curves) self.ent_dff = tk.Entry(self._frame, textvariable=self.new_dff, width=ent_w) self.ent_k_factor = tk.Entry(self._frame, textvariable=self.new_k_factor, width=ent_w) self.ent_no_of_cycles = tk.Entry(self._frame, textvariable=self.new_no_of_cycles, width=ent_w) self.ent_new_design_life = tk.Entry(self._frame, textvariable=self.new_design_life, width=ent_w) self.ent_weibull_loa = tk.Entry(self._frame, textvariable=self.new_weibull_loa, width=ent_w) self.ent_weibull_bal = tk.Entry(self._frame, textvariable=self.new_weibull_bal, width=ent_w) self.ent_weibull_prt = tk.Entry(self._frame, textvariable=self.new_weibull_prt, width=ent_w) self.ent_period_loa = tk.Entry(self._frame, textvariable=self.new_period_loa, width=ent_w) self.ent_period_bal = tk.Entry(self._frame, textvariable=self.new_period_bal, width=ent_w) self.ent_period_prt = tk.Entry(self._frame, textvariable=self.new_period_prt, width=ent_w) self.ent_corr_loc_loa = tk.Entry(self._frame, textvariable=self.new_corr_loc_loa, width=ent_w) self.ent_corr_loc_bal = tk.Entry(self._frame, textvariable=self.new_corr_loc_bal, width=ent_w) self.ent_corr_loc_prt = tk.Entry(self._frame, textvariable=self.new_corr_loc_prt, width=ent_w) self.ent_fraction_loa = tk.Entry(self._frame, textvariable=self.new_fraction_loa, width=ent_w) self.ent_fraction_bal = tk.Entry(self._frame, textvariable=self.new_fraction_bal, width=ent_w) self.ent_fraction_prt = tk.Entry(self._frame, textvariable=self.new_fraction_prt, width=ent_w) self.ent_acc_loa = tk.Entry(self._frame, textvariable=self.new_az_loa, width=ent_w) self.ent_acc_bal = tk.Entry(self._frame, textvariable=self.new_az_bal, width=ent_w) self.ent_acc_prt = tk.Entry(self._frame, textvariable=self.new_az_prt, width=ent_w) start_x, start_y, dx, dy = 20, 100, 150, 35 loaded_exist = False ballast_exist = False part_exist = False fls_exist = (loaded_exist, ballast_exist, part_exist) # Frames to hide loaded, ballast or part loa_fr = tk.Frame(self._frame, width=100, height=170, bg="gray25", colormap="new") bal_fr = tk.Frame(self._frame, width=100, height=170, bg="gray25", colormap="new") prt_fr = tk.Frame(self._frame, width=100, height=170, bg="gray25", colormap="new") for load in self.load_objects: if load != None: if load.get_limit_state() == 'FLS': if load.get_load_condition() == 'loaded': loaded_exist = True elif load.get_load_condition() == 'ballast': ballast_exist = True elif load.get_load_condition() == 'part': part_exist = True else: pass fls_exist = (loaded_exist, ballast_exist, part_exist) if self._initial_fatigue_obj == None: self.new_sn_curve.set('Ec') self.new_k_factor.set(1) self.new_no_of_cycles.set(10000) self.new_design_life.set(20) self.new_dff.set(2) if any(fls_exist): if loaded_exist: self.new_fraction_loa.set(1 / fls_exist.count(True)) self.new_weibull_loa.set(0.8) self.new_period_loa.set(8) self.new_corr_loc_loa.set(0.5) self.new_az_loa.set(0.5) if ballast_exist: self.new_fraction_bal.set(1 / fls_exist.count(True)) self.new_weibull_bal.set(0.8) self.new_period_bal.set(8) self.new_corr_loc_bal.set(0.5) self.new_az_bal.set(0.5) if part_exist: self.new_fraction_prt.set(1 / fls_exist.count(True)) self.new_weibull_prt.set(0.8) self.new_period_prt.set(8) self.new_corr_loc_prt.set(0.5) self.new_az_prt.set(0.5) else: fat_prop = self._initial_fatigue_obj.get_fatigue_properties() self.new_sn_curve.set(fat_prop['SN-curve']) self.new_k_factor.set(fat_prop['SCF']) self.new_no_of_cycles.set(fat_prop['n0']) self.new_design_life.set(fat_prop['Design life']) self.new_dff.set(fat_prop['DFF']) if any(fls_exist): if loaded_exist: self.new_fraction_loa.set(fat_prop['Fraction'][0]) self.new_weibull_loa.set(fat_prop['Weibull'][0]) self.new_period_loa.set(fat_prop['Period'][0]) self.new_corr_loc_loa.set(fat_prop['CorrLoc'][0]) self.new_az_loa.set(fat_prop['Accelerations'][0]) if ballast_exist: self.new_fraction_bal.set(fat_prop['Fraction'][1]) self.new_weibull_bal.set(fat_prop['Weibull'][1]) self.new_period_bal.set(fat_prop['Period'][1]) self.new_corr_loc_bal.set(fat_prop['CorrLoc'][1]) self.new_az_bal.set(fat_prop['Accelerations'][1]) if part_exist: self.new_fraction_prt.set(fat_prop['Fraction'][2]) self.new_weibull_prt.set(fat_prop['Weibull'][2]) self.new_period_prt.set(fat_prop['Period'][2]) self.new_corr_loc_prt.set(fat_prop['CorrLoc'][2]) self.new_az_prt.set(fat_prop['Accelerations'][2]) all_acc = (self.new_az_loa.get(), self.new_az_bal.get(), self.new_az_prt.get()) count = 1 for load in self.load_objects: if load == None: continue press = [] if load.get_limit_state() == 'FLS': tk.Label(self._frame, text=str(count)+'. '+load.get_name(), font='Verdana 8')\ .place(x=start_x + 5 * dx, y=start_y + (5+count) * dy) idx = 0 for exist in fls_exist: if exist: press.append(round(load.get_calculated_pressure(self.pressure_coords,all_acc[idx], self._initial_structure_obj. get_structure_type()), 1)) idx += 1 tk.Label(self._frame, text=press, font='Verdana 8') \ .place(x=start_x + 6.5 * dx, y=start_y + (5 + count) * dy) count += 1 press = [] for comp in self.comp_objects: if comp == None: continue tk.Label(self._frame, text=str(count) + '. ' +str(comp.get_name()), font='Verdana 8') \ .place(x=start_x + 5 * dx, y=start_y + (5 + count) * dy) idx = 0 if fls_exist[0] and comp.is_loaded_condition(): press.append(round(comp.get_calculated_pressure(self.pressure_coords, all_acc[0]), 1)) if fls_exist[1] and comp.is_ballast_condition(): press.append(round(comp.get_calculated_pressure(self.pressure_coords, all_acc[1]), 1)) if fls_exist[2] and any([comp.is_loaded_condition(),comp.is_ballast_condition()]): press.append(round(comp.get_calculated_pressure(self.pressure_coords, all_acc[2]), 1)) tk.Label(self._frame, text=press, font='Verdana 8') \ .place(x=start_x + 6.5 * dx, y=start_y + (5 + count) * dy) count += 1 tk.Label(self._frame, text='Design life:', font='Verdana 8 bold') \ .place(x=start_x , y=start_y + 0*dy) tk.Label(self._frame, text='Design Fatigue Factor (DFF):', font='Verdana 8 bold') \ .place(x=start_x+ 3*dx , y=start_y + 0*dy) tk.Label(self._frame, text='SN-curve:', font='Verdana 8 bold') \ .place(x=start_x , y=start_y + 1*dy) tk.Label(self._frame, text='Cycles in return period, n0', font='Verdana 8 bold') \ .place(x=start_x , y=start_y + 2*dy) tk.Label(self._frame, text='Stress Concentration Factor, SCF', font='Verdana 8 bold') \ .place(x=start_x , y=start_y + 3*dy) tk.Label(self._frame, text='Loaded', font='Verdana 8 bold') \ .place(x=start_x+2*dx , y=start_y + 5*dy) tk.Label(self._frame, text='Ballast', font='Verdana 8 bold') \ .place(x=start_x+3*dx , y=start_y + 5*dy) tk.Label(self._frame, text='Part', font='Verdana 8 bold') \ .place(x=start_x+4*dx , y=start_y + 5*dy) tk.Label(self._frame, text='Defined loads', font='Verdana 8 bold') \ .place(x=start_x+5*dx , y=start_y + 5*dy) tk.Label(self._frame, text='Resulting pressures', font='Verdana 8 bold') \ .place(x=start_x+6.5*dx , y=start_y + 5*dy) tk.Label(self._frame, text='Fraction (sum of bal/part/loa is 1)', font='Verdana 8 bold') \ .place(x=start_x, y=start_y + 6 * dy) tk.Label(self._frame, text='Weibull', font='Verdana 8 bold') \ .place(x=start_x , y=start_y + 7*dy) tk.Label(self._frame, text='Period', font='Verdana 8 bold') \ .place(x=start_x , y=start_y + 8*dy) tk.Label(self._frame, text='Corr. loc.', font='Verdana 8 bold') \ .place(x=start_x , y=start_y + 9*dy) tk.Label(self._frame, text='Accelerations', font='Verdana 8 bold') \ .place(x=start_x , y=start_y + 10*dy) self.ent_new_design_life.place(x=start_x+2*dx, y=start_y + 0 * dy) self.ent_dff.place(x=start_x + 5 * dx, y=start_y + 0 * dy) self.ent_sn_curve.place(x=start_x+2*dx , y=start_y + 1*dy) self.ent_no_of_cycles .place(x=start_x+2*dx , y=start_y + 2*dy) self.ent_k_factor.place(x=start_x+2*dx , y=start_y + 3*dy) self.ent_fraction_loa.place(x=start_x + 2 * dx, y=start_y + 6 * dy) self.ent_fraction_bal.place(x=start_x+3*dx , y=start_y + 6*dy) self.ent_fraction_prt.place(x=start_x+4*dx , y=start_y + 6*dy) self.ent_weibull_loa.place(x=start_x + 2 * dx, y=start_y + 7 * dy) self.ent_weibull_bal.place(x=start_x+3*dx , y=start_y + 7*dy) self.ent_weibull_prt.place(x=start_x+4*dx , y=start_y + 7*dy) self.ent_period_loa.place(x=start_x + 2 * dx, y=start_y + 8 * dy) self.ent_period_bal.place(x=start_x+3*dx, y=start_y + 8*dy) self.ent_period_prt.place(x=start_x+4*dx, y=start_y + 8*dy) self.ent_corr_loc_loa.place(x=start_x + 2 * dx, y=start_y + 9 * dy) self.ent_corr_loc_bal.place(x=start_x+3*dx, y=start_y + 9*dy) self.ent_corr_loc_prt.place(x=start_x+4*dx, y=start_y + 9*dy) self.ent_acc_loa.place(x=start_x + 2 * dx, y=start_y + 10 * dy) self.ent_acc_bal.place(x=start_x + 3 * dx, y=start_y + 10 * dy) self.ent_acc_prt.place(x=start_x + 4 * dx, y=start_y + 10 * dy) # if not loaded_exist: # loa_fr.place(x=start_x + 2 * dx, y=start_y + 6 * dy) # elif not ballast_exist: # bal_fr.place(x=start_x + 3 * dx, y=start_y + 6 * dy) # elif not part_exist: # prt_fr.place(x=start_x + 4 * dx, y=start_y + 6 * dy) self._close_and_save = tk.Button(self._frame, text='Return fatigue parameters', command=self.save_and_close, bg='green', font='Verdana 15', fg='yellow') self._close_and_save.place(x=start_x + dx, y=start_y + dy * 15) def get_pressure_point_coord_from_two_points(self,p1,p2): ''' Finding the coordinates to use in pressure calculations ''' if p1[1] <= p2[1]: start_point = p1 end_point = p2 else: start_point = p2 end_point = p1 vector = [end_point[0]-start_point[0], end_point[1]-start_point[1]] return start_point[0]+vector[0]*1/3, start_point[1]+vector[1]*1/3 def change_sn_curve(self,event): ''' Action when changing the structure type :return: ''' self.new_sn_curve.set(event) def save_and_close(self): ''' Save and close :return: ''' if __name__ == '__main__': self._frame.destroy() return # order of return is (Loaded,Ballast,Part) temp_dict = {'SN-curve':self.new_sn_curve.get(), 'SCF':self.new_k_factor.get(), 'Design life':self.new_design_life.get(), 'n0':self.new_no_of_cycles.get(), 'Weibull':(self.new_weibull_loa.get(),self.new_weibull_bal.get(),self.new_weibull_prt.get()), 'Period':(self.new_period_loa.get(),self.new_period_bal.get(),self.new_period_prt.get()), 'Fraction':(self.new_fraction_loa.get(),self.new_fraction_bal.get(),self.new_fraction_prt.get()), 'CorrLoc':(self.new_corr_loc_loa.get(),self.new_corr_loc_bal.get(),self.new_corr_loc_prt.get()), 'Order':('Loaded','Ballast','Part'), 'Accelerations':(self.new_az_loa.get(),self.new_az_bal.get(),self.new_az_prt.get()), 'DFF': self.new_dff.get()} self.app.on_close_fatigue_window(temp_dict) self._frame.destroy() if __name__ == '__main__': root = tk.Tk() my_app = CreateFatigueWindow(root,app=None) root.mainloop()
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/fatigue_window.py
fatigue_window.py
import tkinter as tk from _tkinter import TclError from tkinter.ttk import Progressbar from tkinter import messagebox import pickle from tkinter.filedialog import askopenfilenames from multiprocessing import cpu_count from tkinter import filedialog from matplotlib import pyplot as plt try: import any_files.main_application import any_files.optimize as op import any_files.example_data as test from any_files.calc_structure import * import any_files.calc_structure from any_files.helper import * except ModuleNotFoundError: import ANYstructure.any_files.main_application import ANYstructure.any_files.optimize as op import ANYstructure.any_files.example_data as test from ANYstructure.any_files.calc_structure import * import ANYstructure.any_files.calc_structure from ANYstructure.any_files.helper import * class CreateOptGeoWindow(): ''' This class initiates the MultiOpt window. ''' def __init__(self, master, app=None): super(CreateOptGeoWindow, self).__init__() if __name__ == '__main__': self._load_objects = {} self._load_comb_dict = {} self._line_dict = test.get_line_dict() self._load_count = 0 self._point_dict = test.get_point_dict() self._canvas_scale = 20 self._line_to_struc = test.get_line_to_struc() self._opt_frames = {} self._active_points = ['point1','point4','point8','point5'] self._ML_buckling = dict() # Buckling machine learning algorithm for name, file_base in zip(['cl SP buc int predictor', 'cl SP buc int scaler', 'cl SP ult int predictor', 'cl SP ult int scaler', 'cl SP buc GLGT predictor', 'cl SP buc GLGT scaler', 'cl SP ult GLGT predictor', 'cl SP ult GLGT scaler', 'cl UP buc int predictor', 'cl UP buc int scaler', 'cl UP ult int predictor', 'cl UP ult int scaler', 'cl UP buc GLGT predictor', 'cl UP buc GLGT scaler', 'cl UP ult GLGT predictor', 'cl UP ult GLGT scaler', 'CSR predictor', 'CSR scaler' ], ["ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_2,_3_UP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_2,_3_UP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_2,_3_UP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_2,_3_UP", "CL_CSR-Tank_req_cl_predictor", "CL_CSR-Tank_req_cl_UP_scaler", "CL_CSR_plate_cl,_CSR_web_cl,_CSR_web_flange_cl,_CSR_flange_cl_predictor", "CL_CSR_plate_cl,_CSR_web_cl,_CSR_web_flange_cl,_CSR_flange_cl_SP_scaler"]): self._ML_buckling[name] = None if os.path.isfile(file_base + '.pickle'): file = open(file_base + '.pickle', 'rb') self._ML_buckling[name] = pickle.load(file) file.close() else: self.app = app self._load_objects = app._load_dict self._load_comb_dict = app._new_load_comb_dict self._line_dict = app._line_dict self._load_count = 0 self._point_dict = app._point_dict self._canvas_scale = app._canvas_scale self._line_to_struc = app._line_to_struc self._opt_frames = {} self._active_points = [] self._root_dir = app._root_dir self._ML_buckling = app._ML_buckling self._opt_structure = {} self._opt_frames_obj = [] self._frame = master self._frame.wm_title("Optimize structure") self._frame.geometry('1800x950') self._frame.grab_set() self._canvas_origo = (50, 720 - 50) self._canvas_base_origo = self._canvas_origo self._canvas_draw_origo = list(self._canvas_base_origo) self._previous_drag_mouse = list(self._canvas_draw_origo) self._active_lines = [] self._add_to_lines = True self._lines_add_to_load = [] self._active_point = None self._point_is_active = False # ----------------------------------COPIED FROM OPTIMIZE_WINDOW----------------------------------------------- # self._opt_resutls = {} self._geo_results = None self._opt_actual_running_time = tk.Label(self._frame, text='') tk.Frame(self._frame, width=770, height=5, bg="grey", colormap="new").place(x=20, y=95) tk.Frame(self._frame, width=770, height=5, bg="grey", colormap="new").place(x=20, y=135) algorithms = ('anysmart',' ') tk.Label(self._frame, text='-- Plate field span optimizer for plate fields separated by frames. --', font='Verdana 15 bold').place(x=10, y=10) # upper and lower bounds for optimization # [0.6, 0.012, 0.3, 0.01, 0.1, 0.01] self._new_spacing_upper = tk.DoubleVar() self._new_spacing_lower = tk.DoubleVar() self._new_pl_thk_upper = tk.DoubleVar() self._new_pl_thk_lower = tk.DoubleVar() self._new_web_h_upper = tk.DoubleVar() self._new_web_h_lower = tk.DoubleVar() self._new_web_thk_upper = tk.DoubleVar() self._new_web_thk_lower = tk.DoubleVar() self._new_fl_w_upper = tk.DoubleVar() self._new_fl_w_lower = tk.DoubleVar() self._new_fl_thk_upper = tk.DoubleVar() self._new_fl_thk_lower = tk.DoubleVar() self._new_span = tk.DoubleVar() self._new_width_lg = tk.DoubleVar() self._new_algorithm = tk.StringVar() self._new_algorithm_random_trials = tk.IntVar() self._new_delta_spacing = tk.DoubleVar() self._new_delta_pl_thk = tk.DoubleVar() self._new_delta_web_h = tk.DoubleVar() self._new_delta_web_thk = tk.DoubleVar() self._new_delta_fl_w = tk.DoubleVar() self._new_delta_fl_thk = tk.DoubleVar() self._new_swarm_size = tk.IntVar() self._new_omega = tk.DoubleVar() self._new_phip = tk.DoubleVar() self._new_phig = tk.DoubleVar() self._new_maxiter = tk.IntVar() self._new_minstep = tk.DoubleVar() self._new_minfunc = tk.DoubleVar() self._new_processes = tk.IntVar() self._new_opt_girder_thk = tk.DoubleVar() self._new_opt_girder_stf_web_h = tk.DoubleVar() self._new_opt_girder_stf_web_thk = tk.DoubleVar() self._new_opt_girder_stf_flange_b = tk.DoubleVar() self._new_opt_girder_stf_flange_thk = tk.DoubleVar() self._new_opt_girder_scale_high = tk.DoubleVar() self._new_opt_girder_scale_low = tk.DoubleVar() self._new_opt_span_max = tk.DoubleVar() self._new_opt_span_min = tk.DoubleVar() self._new_option_fraction = tk.IntVar() self._new_option_panel = tk.IntVar() ent_w = 10 self._ent_spacing_upper = tk.Entry(self._frame, textvariable=self._new_spacing_upper, width=ent_w) self._ent_spacing_lower = tk.Entry(self._frame, textvariable=self._new_spacing_lower, width=ent_w) self._ent_pl_thk_upper = tk.Entry(self._frame, textvariable=self._new_pl_thk_upper, width=ent_w) self._ent_pl_thk_lower = tk.Entry(self._frame, textvariable=self._new_pl_thk_lower, width=ent_w) self._ent_web_h_upper = tk.Entry(self._frame, textvariable=self._new_web_h_upper, width=ent_w) self._ent_web_h_lower = tk.Entry(self._frame, textvariable=self._new_web_h_lower, width=ent_w) self._ent_web_thk_upper = tk.Entry(self._frame, textvariable=self._new_web_thk_upper, width=ent_w) self._ent_web_thk_lower = tk.Entry(self._frame, textvariable=self._new_web_thk_lower, width=ent_w) self._ent_fl_w_upper = tk.Entry(self._frame, textvariable=self._new_fl_w_upper, width=ent_w) self._ent_fl_w_lower = tk.Entry(self._frame, textvariable=self._new_fl_w_lower, width=ent_w) self._ent_fl_thk_upper = tk.Entry(self._frame, textvariable=self._new_fl_thk_upper, width=ent_w) self._ent_fl_thk_lower = tk.Entry(self._frame, textvariable=self._new_fl_thk_lower, width=ent_w) self._ent_span = tk.Entry(self._frame, textvariable=self._new_span, width=ent_w) self._ent_width_lg = tk.Entry(self._frame, textvariable=self._new_width_lg, width=ent_w) self._ent_algorithm = tk.OptionMenu(self._frame, self._new_algorithm, command=self.selected_algorithm, *algorithms) self._ent_random_trials = tk.Entry(self._frame, textvariable=self._new_algorithm_random_trials) self._ent_delta_spacing = tk.Entry(self._frame, textvariable=self._new_delta_spacing, width=ent_w) self._ent_delta_pl_thk = tk.Entry(self._frame, textvariable=self._new_delta_pl_thk, width=ent_w) self._ent_delta_web_h = tk.Entry(self._frame, textvariable=self._new_delta_web_h, width=ent_w) self._ent_delta_web_thk = tk.Entry(self._frame, textvariable=self._new_delta_web_thk, width=ent_w) self._ent_delta_fl_w = tk.Entry(self._frame, textvariable=self._new_delta_fl_w, width=ent_w) self._ent_delta_fl_thk = tk.Entry(self._frame, textvariable=self._new_delta_fl_thk, width=ent_w) pso_width = 10 self._ent_swarm_size = tk.Entry(self._frame, textvariable=self._new_swarm_size, width=pso_width) self._ent_omega = tk.Entry(self._frame, textvariable=self._new_omega, width=pso_width) self._ent_phip = tk.Entry(self._frame, textvariable=self._new_phip, width=pso_width) self._ent_phig = tk.Entry(self._frame, textvariable=self._new_phig, width=pso_width) self._ent_maxiter = tk.Entry(self._frame, textvariable=self._new_maxiter, width=pso_width) self._ent_minstep = tk.Entry(self._frame, textvariable=self._new_minstep, width=pso_width) self._ent_minfunc = tk.Entry(self._frame, textvariable=self._new_minfunc, width=pso_width) self._ent_opt_girder_thk = tk.Entry(self._frame, textvariable=self._new_opt_girder_thk, width=ent_w) self._ent_opt_girder_stf_web_h = tk.Entry(self._frame, textvariable=self._new_opt_girder_stf_web_h, width=ent_w) self._ent_opt_girder_stf_web_thk = tk.Entry(self._frame, textvariable=self._new_opt_girder_stf_web_thk, width=ent_w) self._ent_opt_girder_stf_fl_b = tk.Entry(self._frame, textvariable=self._new_opt_girder_stf_flange_b, width=ent_w) self._ent_opt_girder_stf_fl_thk = tk.Entry(self._frame, textvariable=self._new_opt_girder_stf_flange_thk, width=ent_w) self._ent_opt_girder_scale_high = tk.Entry(self._frame, textvariable=self._new_opt_girder_scale_high, width=int(ent_w/2)) self._ent_opt_girder_scale_low = tk.Entry(self._frame, textvariable=self._new_opt_girder_scale_low, width=int(ent_w/2)) self._ent_opt_max_span = tk.Entry(self._frame, textvariable=self._new_opt_span_max, width=int(ent_w/2)) self._ent_opt_min_span = tk.Entry(self._frame, textvariable=self._new_opt_span_min, width=int(ent_w/2)) start_x, start_y, dx, dy = 20, 70, 100, 40 tk.Label(self._frame, text='Processes\n (CPUs)', font='Verdana 9 bold', bg = 'silver')\ .place(x=start_x + 8 * dx, y=start_y + 0.5 * dy) tk.Entry(self._frame, textvariable=self._new_processes, width = 12, bg = 'silver')\ .place(x=start_x + 8 * dx, y=start_y + 1.4 * dy) self._prop_canvas_dim = (500, 450) self._draw_scale = 500 self._canvas_opt = tk.Canvas(self._frame, width=self._prop_canvas_dim[0], height=self._prop_canvas_dim[1], background='azure', relief='groove', borderwidth=2) self._canvas_opt.place(x=start_x + 10.5 * dx, y=start_y + 3.5 * dy) self._select_canvas_dim = (1000, 720) self._canvas_select = tk.Canvas(self._frame, width=self._select_canvas_dim[0], height=self._select_canvas_dim[1], background='azure', relief='groove', borderwidth=2) self._canvas_select.place(x=start_x + 0 * dx, y=start_y + 3.5 * dy) # Labels for the pso self._lb_swarm_size = tk.Label(self._frame, text='swarm size') self._lb_omega = tk.Label(self._frame, text='omega') self._lb_phip = tk.Label(self._frame, text='phip') self._lb_phig = tk.Label(self._frame, text='phig') self._lb_maxiter = tk.Label(self._frame, text='maxiter') self._lb_minstep = tk.Label(self._frame, text='minstep') self._lb_minfunc = tk.Label(self._frame, text='minfunc') tk.Label(self._frame, text='Upper bounds [mm]', font='Verdana 9').place(x=start_x, y=start_y) tk.Label(self._frame, text='Iteration delta [mm]', font='Verdana 9').place(x=start_x, y=start_y + dy) tk.Label(self._frame, text='Lower bounds [mm]', font='Verdana 9').place(x=start_x, y=start_y + 2 * dy) tk.Label(self._frame, text='Spacing [mm]', font='Verdana 7 bold').place(x=start_x + 1.97 * dx, y=start_y - 0.6 * dy) tk.Label(self._frame, text='Plate thk. [mm]', font='Verdana 7 bold').place(x=start_x + 2.97 * dx, y=start_y - 0.6 * dy) tk.Label(self._frame, text='Web height [mm]', font='Verdana 7 bold').place(x=start_x + 3.97 * dx, y=start_y - 0.6 * dy) tk.Label(self._frame, text='Web thk. [mm]', font='Verdana 7 bold').place(x=start_x + 4.97 * dx, y=start_y - 0.6 * dy) tk.Label(self._frame, text='Flange width [mm]', font='Verdana 7 bold').place(x=start_x + 5.97 * dx, y=start_y - 0.6 * dy) tk.Label(self._frame, text='Flange thk. [mm]', font='Verdana 7 bold').place(x=start_x + 6.97 * dx, y=start_y - 0.6 * dy) tk.Label(self._frame, text='Estimated running time for algorithm not calculated.', font='Verdana 9 bold').place(x=start_x, y=start_y + 2.8 * dy) tk.Label(self._frame, text='- Harmonize stiffener spacing for section.', font='Verdana 9 bold')\ .place(x=start_x + 5*dx, y=start_y + 2.8 * dy) # self._runnig_time_label = tk.Label(self._frame, text='', font='Verdana 9 bold') # self._runnig_time_label.place(x=start_x + 2.7 * dx, y=start_y + 2.8 * dy) # tk.Label(self._frame, text='seconds ', font='Verdana 9 bold').place(x=start_x + 3.3 * dx, y=start_y + 2.8 * dy) self._result_label = tk.Label(self._frame, text='', font='Verdana 9 bold') self._result_label.place(x=start_x, y=start_y + 3.4 * dy) self._ent_spacing_upper.place(x=start_x + dx * 2, y=start_y) self._ent_delta_spacing.place(x=start_x + dx * 2, y=start_y + dy) self._ent_spacing_lower.place(x=start_x + dx * 2, y=start_y + 2 * dy) self._ent_pl_thk_upper.place(x=start_x + dx * 3, y=start_y) self._ent_delta_pl_thk.place(x=start_x + dx * 3, y=start_y + dy) self._ent_pl_thk_lower.place(x=start_x + dx * 3, y=start_y + 2 * dy) self._ent_web_h_upper.place(x=start_x + dx * 4, y=start_y) self._ent_delta_web_h.place(x=start_x + dx * 4, y=start_y + dy) self._ent_web_h_lower.place(x=start_x + dx * 4, y=start_y + 2 * dy) self._ent_web_thk_upper.place(x=start_x + dx * 5, y=start_y) self._ent_delta_web_thk.place(x=start_x + dx * 5, y=start_y + dy) self._ent_web_thk_lower.place(x=start_x + dx * 5, y=start_y + 2 * dy) self._ent_fl_w_upper.place(x=start_x + dx * 6, y=start_y) self._ent_delta_fl_w.place(x=start_x + dx * 6, y=start_y + dy) self._ent_fl_w_lower.place(x=start_x + dx * 6, y=start_y + 2 * dy) self._ent_fl_thk_upper.place(x=start_x + dx * 7, y=start_y) self._ent_delta_fl_thk.place(x=start_x + dx * 7, y=start_y + dy) self._ent_fl_thk_lower.place(x=start_x + dx * 7, y=start_y + 2 * dy) # setting default values init_dim = float(100) # mm init_thk = float(5) # mm self._new_delta_spacing.set(init_dim) self._new_delta_pl_thk.set(init_thk) self._new_delta_web_h.set(init_dim) self._new_delta_web_thk.set(init_thk) self._new_delta_fl_w.set(init_dim) self._new_delta_fl_thk.set(init_thk) self._new_spacing_upper.set(round(800, 5)) self._new_spacing_lower.set(round(600, 5)) self._new_pl_thk_upper.set(round(25, 5)) self._new_pl_thk_lower.set(round(10, 5)) self._new_web_h_upper.set(round(500, 5)) self._new_web_h_lower.set(round(300, 5)) self._new_web_thk_upper.set(round(25, 5)) self._new_web_thk_lower.set(round(10, 5)) self._new_fl_w_upper.set(round(250, 5)) self._new_fl_w_lower.set(round(50, 5)) self._new_fl_thk_upper.set(round(30, 5)) self._new_fl_thk_lower.set(round(10, 5)) self._new_algorithm.set('anysmart') self._new_algorithm_random_trials.set(10000) self._new_processes.set(max(cpu_count() - 1, 1)) self._new_opt_girder_thk.set(0.018) self._new_opt_girder_stf_web_h.set(0.250) self._new_opt_girder_stf_web_thk.set(0.015) self._new_opt_girder_stf_flange_b.set(0) self._new_opt_girder_stf_flange_thk.set(0) self._new_opt_girder_scale_high.set(1.1) self._new_opt_girder_scale_low.set(0.9) self._new_opt_span_max.set(6) self._new_opt_span_min.set(2) self._new_swarm_size.set(100) self._new_omega.set(0.5) self._new_phip.set(0.5) self._new_phig.set(0.5) self._new_maxiter.set(100) self._new_minstep.set(1e-8) self._new_minfunc.set(1e-8) # self._new_delta_spacing.trace('w', self.update_running_time) # self._new_delta_pl_thk.trace('w', self.update_running_time) # self._new_delta_web_h.trace('w', self.update_running_time) # self._new_delta_web_thk.trace('w', self.update_running_time) # self._new_delta_fl_w.trace('w', self.update_running_time) # self._new_delta_fl_thk.trace('w', self.update_running_time) # self._new_spacing_upper.trace('w', self.update_running_time) # self._new_spacing_lower.trace('w', self.update_running_time) # self._new_pl_thk_upper.trace('w', self.update_running_time) # self._new_pl_thk_lower.trace('w', self.update_running_time) # self._new_web_h_upper.trace('w', self.update_running_time) # self._new_web_h_lower.trace('w', self.update_running_time) # self._new_web_thk_upper.trace('w', self.update_running_time) # self._new_web_thk_lower.trace('w', self.update_running_time) # self._new_fl_w_upper.trace('w', self.update_running_time) # self._new_fl_w_lower.trace('w', self.update_running_time) # self._new_fl_thk_upper.trace('w', self.update_running_time) # self._new_fl_thk_lower.trace('w', self.update_running_time) # self._new_algorithm_random_trials.trace('w', self.update_running_time) # self._new_algorithm.trace('w', self.update_running_time) self.running_time_per_item = 4e-05 #self._runnig_time_label.config(text=str(self.get_running_time())) self._ent_algorithm.place(x=start_x + dx * 10, y=start_y + dy) self.algorithm_random_label = tk.Label(self._frame, text='Number of trials') tk.Button(self._frame, text='algorith information', command=self.algorithm_info, bg='white') \ .place(x=start_x + dx * 10, y=start_y + dy * 2) self.run_button = tk.Button(self._frame, text='RUN OPTIMIZATION!', command=self.run_optimizaion, bg='red', font='Verdana 10', fg='Yellow') self.run_button.place(x=start_x + dx * 10, y=start_y) self._opt_actual_running_time.place(x=start_x + dx * 8, y=start_y + dy * 1.5) # self.close_and_save = tk.Button(self._frame, text='Return and replace with selected optimized structure', # command=self.save_and_close, bg='green', font='Verdana 10 bold', fg='yellow') # self.close_and_save.place(x=start_x + dx * 10, y=10) tk.Button(self._frame, text='Open predefined stiffeners example', command=self.open_example_file, bg='white', font='Verdana 10')\ .place(x=start_x+dx*10,y=10) # Selection of constraints self._new_check_sec_mod = tk.BooleanVar() self._new_check_min_pl_thk = tk.BooleanVar() self._new_check_shear_area = tk.BooleanVar() self._new_check_buckling = tk.BooleanVar() self._new_check_fatigue = tk.BooleanVar() self._new_check_slamming = tk.BooleanVar() self._new_check_local_buckling = tk.BooleanVar() self._new_harmonize_spacing = tk.BooleanVar() self._new_check_buckling_ml_cl = tk.BooleanVar() self._new_check_sec_mod.set(True) self._new_check_min_pl_thk.set(True) self._new_check_shear_area.set(True) self._new_check_buckling.set(True) self._new_check_fatigue.set(True) self._new_check_slamming.set(True) self._new_check_local_buckling.set(True) self._new_option_fraction.set(None) self._new_option_panel.set(None) self._new_harmonize_spacing.set(False) self._new_check_buckling_ml_cl.set(False) self._new_check_buckling_ml_cl.trace('w', self.update_running_time) start_y, start_x, dy = 570, 100, 25 tk.Label(self._frame,text='Check for minimum section modulus').place(x=start_x+dx*9.7,y=start_y+4*dy) tk.Label(self._frame, text='Check for minimum plate thk.').place(x=start_x+dx*9.7,y=start_y+5*dy) tk.Label(self._frame, text='Check for minimum shear area').place(x=start_x+dx*9.7,y=start_y+6*dy) tk.Label(self._frame, text='Check for buckling (RP-C201)').place(x=start_x+dx*9.7,y=start_y+7*dy) tk.Label(self._frame, text='Check for fatigue (RP-C203)').place(x=start_x + dx * 9.7, y=start_y + 8 * dy) tk.Label(self._frame, text='Check for bow slamming').place(x=start_x + dx * 9.7, y=start_y + 9 * dy) tk.Label(self._frame, text='Check for local stf. buckling').place(x=start_x + dx * 9.7, y=start_y + 10 * dy) tk.Label(self._frame, text='Check for buckling, ML-CL').place(x=start_x + dx * 9.7, y=start_y + 11 * dy) tk.Label(self._frame, text='Frame (girder data) for weight calculation:', font = 'Verdana 9 bold')\ .place(x=start_x + dx * 13, y=start_y + 4 * dy) tk.Label(self._frame, text='Girder thickness').place(x=start_x + dx * 13, y=start_y + 5 * dy) tk.Label(self._frame, text='Stiffener height').place(x=start_x + dx * 13, y=start_y + 6 * dy) tk.Label(self._frame, text='Stiffener thickness').place(x=start_x + dx * 13, y=start_y + 7 * dy) tk.Label(self._frame, text='Stf. flange width').place(x=start_x + dx * 13, y=start_y + 8 * dy) tk.Label(self._frame, text='Stf. flange thickenss').place(x=start_x + dx * 13, y=start_y + 9 * dy) tk.Label(self._frame, text='For weight calculation of girder: Max span mult / Min span mult')\ .place(x=start_x + dx * 13,y=start_y + 10 * dy) tk.Label(self._frame, text='Maximum span / Minimum span ->')\ .place(x=start_x + dx * 13,y=start_y + 12 * dy) self._ent_opt_girder_thk.place(x=start_x + dx * 15, y=start_y + 5 * dy) self._ent_opt_girder_stf_web_h.place(x=start_x + dx * 15, y=start_y + 6 * dy) self._ent_opt_girder_stf_web_thk.place(x=start_x + dx * 15, y=start_y + 7 * dy) self._ent_opt_girder_stf_fl_b.place(x=start_x + dx * 15, y=start_y + 8 * dy) self._ent_opt_girder_stf_fl_thk.place(x=start_x + dx * 15, y=start_y + 9 * dy) self._ent_opt_girder_scale_high.place(x=start_x + dx * 15, y=start_y + 11 * dy) self._ent_opt_girder_scale_low.place(x=start_x + dx * 15.5, y=start_y + 11 * dy) self._ent_opt_max_span.place(x=start_x + dx * 15, y=start_y + 12 * dy) self._ent_opt_min_span.place(x=start_x + dx * 15.5, y=start_y + 12 * dy) tk.Checkbutton(self._frame,variable=self._new_check_sec_mod).place(x=start_x+dx*12,y=start_y+4*dy) tk.Checkbutton(self._frame, variable=self._new_check_min_pl_thk).place(x=start_x+dx*12,y=start_y+5*dy) tk.Checkbutton(self._frame, variable=self._new_check_shear_area).place(x=start_x+dx*12,y=start_y+6*dy) tk.Checkbutton(self._frame, variable=self._new_check_buckling).place(x=start_x+dx*12,y=start_y+7*dy) tk.Checkbutton(self._frame, variable=self._new_check_fatigue).place(x=start_x + dx * 12, y=start_y + 8 * dy) tk.Checkbutton(self._frame, variable=self._new_check_slamming).place(x=start_x + dx * 12, y=start_y + 9 * dy) tk.Checkbutton(self._frame, variable=self._new_check_local_buckling).place(x=start_x + dx * 12, y=start_y + 10 * dy) tk.Checkbutton(self._frame, variable=self._new_check_buckling_ml_cl).place(x=start_x + dx * 12, y=start_y + 11 * dy) tk.Checkbutton(self._frame, variable=self._new_harmonize_spacing).place(x=start_x + 3.9*dx, y=180) # Stress scaling self._new_fup = tk.DoubleVar() self._new_fup.set(0.5) self._new_fdwn = tk.DoubleVar() self._new_fdwn.set(1) tk.Label(self._frame, text='Factor when scaling stresses up, fup')\ .place(x=start_x + dx * 9.7, y=start_y + 12 * dy) ent_fup = tk.Entry(self._frame, textvariable=self._new_fup, width = 5) ent_fup.place(x=start_x + dx * 12, y=start_y + 12 * dy) tk.Label(self._frame, text='Factor when scaling stresses up, fdown')\ .place(x=start_x + dx * 9.7, y=start_y + 13 * dy) ent_fdwn = tk.Entry(self._frame, textvariable=self._new_fdwn, width = 5) ent_fdwn.place(x=start_x + dx * 12, y=start_y + 13 * dy) self._toggle_btn = tk.Button(self._frame, text="Iterate predefiened stiffeners", relief="raised", command=self.toggle, bg = 'salmon') self._toggle_btn.place(x=start_x+dx*10.5, y=start_y - dy * 16.8) self._toggle_object, self._filez = None, None self._options_fractions = (None, ) self._options_panels = (None, ) tk.Label(self._frame, text='Select number of panels:').place(x=start_x+dx*12, y=start_y - dy * 20.5) tk.Label(self._frame, text='Select panel to plot: ').place(x=start_x+dx*12, y=start_y - dy * 19.5) self._ent_option_fractions = tk.OptionMenu(self._frame, self._new_option_fraction, *self._options_fractions, command=self.get_plate_field_options) self._ent_option_field = tk.OptionMenu(self._frame, self._new_option_panel, *self._options_panels, command=self.get_plate_field_options) self._option_fractions_place = [start_x+dx*13.5, start_y - dy * 20.5] self._options_panels_place = [start_x+dx*13.5, start_y - dy * 19.5] self._ent_option_fractions.place(x=self._option_fractions_place[0], y=self._option_fractions_place[1]) self._ent_option_field.place(x=self._options_panels_place[0], y=self._options_panels_place[1]) self.run_results = tk.Button(self._frame,text='show calculated', command=self.plot_results, bg='white', font='Verdana 10',fg='black') self.run_results.place(x=start_x+dx*13, y=start_y - dy * 18) self.run_results_prev = tk.Button(self._frame,text='Show previous\n' 'results', command=self.show_previous_results, bg='white', font='Verdana 10',fg='black') self.run_results_prev.place(x=start_x+dx*15, y=start_y - dy * 20) # ----------------------------------END OF OPTIMIZE SINGLE COPY----------------------------------------------- self.progress_count = tk.IntVar() self.progress_count.set(0) self.progress_bar = Progressbar(self._frame, orient="horizontal",length=200, mode="determinate", variable=self.progress_count) #self.progress_bar.place(x=start_x+dx*10.5,y=start_y-dy*16.5) self._active_lines = [] self.controls() self.draw_select_canvas() # if __name__ == '__main__': # self.run_optimizaion(load_pre = True, save_results=True) def selected_algorithm(self, event): ''' Action when selecting an algorithm in the optionm menu. :return: ''' start_x, start_y, dx, dy = 20, 100, 100, 40 if self._new_algorithm.get() == 'random' or self._new_algorithm.get() == 'random_no_delta': self._ent_random_trials.place_forget() self.algorithm_random_label.place_forget() self._lb_swarm_size.place_forget() self._lb_omega.place_forget() self._lb_phip.place_forget() self._lb_phig.place_forget() self._lb_maxiter.place_forget() self._lb_minstep.place_forget() self._lb_minfunc.place_forget() self._ent_swarm_size.place_forget() self._ent_omega.place_forget() self._ent_phip.place_forget() self._ent_phig.place_forget() self._ent_maxiter.place_forget() self._ent_minstep.place_forget() self._ent_minfunc.place_forget() self._ent_random_trials.place(x=start_x + dx * 11.3, y=start_y + 1.2 * dy) self.algorithm_random_label.place(x=start_x + dx * 11.3, y=start_y + 0.5 * dy) elif self._new_algorithm.get() == 'anysmart' or self._new_algorithm.get() == 'anydetail': self._ent_random_trials.place_forget() self.algorithm_random_label.place_forget() self._lb_swarm_size.place_forget() self._lb_omega.place_forget() self._lb_phip.place_forget() self._lb_phig.place_forget() self._lb_maxiter.place_forget() self._lb_minstep.place_forget() self._lb_minfunc.place_forget() self._ent_swarm_size.place_forget() self._ent_omega.place_forget() self._ent_phip.place_forget() self._ent_phig.place_forget() self._ent_maxiter.place_forget() self._ent_minstep.place_forget() self._ent_minfunc.place_forget() elif self._new_algorithm.get() == 'pso': y_place_label = 11.2 y_place = 12.2 self._ent_random_trials.place_forget() start_x = 150 self._lb_swarm_size.place(x=start_x + dx * 11, y=start_y - 1 * dy) self._lb_omega.place(x=start_x + dx * 11, y=start_y - 0 * dy) self._lb_phip.place(x=start_x + dx * 11, y=start_y + 1 * dy) self._lb_phig.place(x=start_x + dx * 11, y=start_y + 2 * dy) self._lb_maxiter.place(x=start_x + dx * 14, y=start_y - 1 * dy) self._lb_minstep.place(x=start_x + dx * 14, y=start_y + 0 * dy) self._lb_minfunc.place(x=start_x + dx * 14, y=start_y + 1 * dy) self._ent_swarm_size.place(x=start_x + dx * 12, y=start_y - 1 * dy) self._ent_omega.place(x=start_x + dx * 12, y=start_y - 0 * dy) self._ent_phip.place(x=start_x + dx * 12, y=start_y + 1 * dy) self._ent_phig.place(x=start_x + dx * 12, y=start_y + 2 * dy) self._ent_maxiter.place(x=start_x + dx * 15, y=start_y - 1 * dy) self._ent_minstep.place(x=start_x + dx * 15, y=start_y + 0 * dy) self._ent_minfunc.place(x=start_x + dx * 15, y=start_y + 1 * dy) def show_previous_results(self): # if type(self._geo_results) is not list(): # if self._geo_results is not None: # return # else: # if self._geo_results[0] is not None: # return self.draw_select_canvas(opt_results=self._geo_results) def run_optimizaion(self, load_pre = False, save_results = False, harmonize = False): ''' Function when pressing the optimization botton inside this window. :return: ''' frames, distances = self.opt_create_frames(self.opt_get_fractions()) self.opt_create_main_structure(frames, self._active_points[0], self._active_points[1], self._active_points[2], self._active_points[3]) contraints = (self._new_check_sec_mod.get(), self._new_check_min_pl_thk.get(), self._new_check_shear_area.get(), self._new_check_buckling.get(), self._new_check_fatigue.get(), self._new_check_slamming.get(), self._new_check_local_buckling.get(), False, self._new_check_buckling_ml_cl.get(), False) self.pso_parameters = (self._new_swarm_size.get(), self._new_omega.get(), self._new_phip.get(), self._new_phig.get(),self._new_maxiter.get(), self._new_minstep.get(), self._new_minfunc.get()) opt_girder_prop = (self._new_opt_girder_thk.get(), self._new_opt_girder_stf_web_h.get(), self._new_opt_girder_stf_web_thk.get(), self._new_opt_girder_stf_flange_b.get(), self._new_opt_girder_stf_flange_thk.get(),self._new_opt_girder_scale_high.get(), self._new_opt_girder_scale_low.get()) min_max_span = (self._new_opt_span_min.get(), self._new_opt_span_max.get()) init_objects, fatigue_objects, fat_press_ext_int, slamming_pressures, lateral_press, fatigue_objects, \ slamming_press = [list() for dummy in range(7)] broke = False pressure_side = 'both sides' # default value for line,coord in self._opt_structure.items(): if self.opt_create_struc_obj(self._opt_structure[line]) is None: broke = True break else: init_objects.append(self.opt_create_struc_obj(self._opt_structure[line])[0]) fat_obj_single = self.opt_create_struc_obj(self._opt_structure[line])[2] fatigue_objects.append(fat_obj_single) if __name__ == '__main__': import example_data as ex lateral_press.append(0.2) # for testing slamming_press.append(0) fatigue_objects.append(ex.get_fatigue_object()) for pressure in ex.get_geo_opt_fat_press(): fat_press_ext_int.append(((pressure['p_ext']['loaded'], pressure['p_ext']['ballast'], pressure['p_ext']['part']), (pressure['p_int']['loaded'], pressure['p_int']['ballast'], pressure['p_int']['part']))) pressure_side = 'both sides' else: p1, p2 = self._opt_structure[line] # Check if line is horizontal or vertical if p2[0] == p1[0]: # Vertical to_find = [p2[0], min(p2[1], p1[1]) + abs((p2[1]-p1[1])*0.5)] elif p2[1] == p1[1]: # Horizontal to_find = [min(p2[0], p1[0])+ (p2[0]-p1[0])*0.5, p2[1]] else: # Other orientations to_find = [min(p2[0],p1[0])+abs((p2[0]-p1[0])*0.5), min(p2[1]-p1[1])+abs((p2[1]-p1[1])*0.5)] # Taking properites from the closest line. closet_line = self.opt_find_closest_orig_line(to_find) pressure_side = self._line_to_struc[closet_line].overpressure_side #print('Closest line', closet_line, p1, p2, to_find) gotten_lat_press = self.app.get_highest_pressure(closet_line) lateral_press.append(gotten_lat_press['normal'] / 1e6) slamming_press.append(gotten_lat_press['slamming']) if fat_obj_single is not None: fat_press_single = self.app.get_fatigue_pressures(closet_line, fat_obj_single.get_accelerations()) fat_press_tuple = ((fat_press_single['p_ext']['loaded'], fat_press_single['p_ext']['ballast'], fat_press_single['p_ext']['part']), (fat_press_single['p_int']['loaded'], fat_press_single['p_int']['ballast'], fat_press_single['p_int']['part'])) fat_press_ext_int.append(fat_press_tuple) else: fat_press_ext_int.append(((0, 0, 0), (0, 0,0))) # except AttributeError: # print('AttributeError') # fat_press_ext_int.append(None) if broke: messagebox.showinfo(title='Selection error.', message='This field cannot be subdivided or there are no loads. Error.') return None if not load_pre: min_var = self.get_lower_bounds() max_var = self.get_upper_bounds() deltas = self.get_deltas() spacings = np.arange(min_var[0], max_var[0], deltas[0]) resulting_geo = list() if self._new_harmonize_spacing.get(): geo_results = dict() for spacing in spacings: this_min_var = copy.deepcopy(min_var) this_min_var[0] = spacing this_max_var = copy.deepcopy(max_var) this_max_var[0] = spacing geo_results = op.run_optmizataion(initial_structure_obj=init_objects,min_var=this_min_var, max_var=this_max_var,lateral_pressure=lateral_press, deltas=self.get_deltas(), algorithm='anysmart',side=pressure_side, const_chk = contraints,pso_options = self.pso_parameters, is_geometric=True,fatigue_obj= fatigue_objects, fat_press_ext_int=fat_press_ext_int, min_max_span=min_max_span, tot_len=self.opt_get_length(), frame_height=self.opt_get_distance(), frame_distance = distances, predefined_stiffener_iter=self._filez, processes = self._new_processes.get(), slamming_press=slamming_press, opt_girder_prop=opt_girder_prop, fdwn = self._new_fdwn.get(), fup = self._new_fdwn.get(), ml_algo=self._ML_buckling) resulting_geo.append(geo_results) #need to find the lowest for fraction in resulting_geo[0].keys(): weight = float('inf') best_idx = None for idx, geo_res in enumerate(resulting_geo): this_sub_fraction_weight = geo_res[fraction][0] if this_sub_fraction_weight < weight: best_idx = idx weight = this_sub_fraction_weight geo_results[fraction] = resulting_geo[best_idx][fraction] else: geo_results = op.run_optmizataion(initial_structure_obj=init_objects, min_var=self.get_lower_bounds(), max_var=self.get_upper_bounds(), lateral_pressure=lateral_press, deltas=self.get_deltas(), algorithm='anysmart', side=pressure_side, const_chk=contraints, pso_options=self.pso_parameters, is_geometric=True, fatigue_obj=fatigue_objects, fat_press_ext_int=fat_press_ext_int, min_max_span=min_max_span, tot_len=self.opt_get_length(), frame_height=self.opt_get_distance(), frame_distance=distances, predefined_stiffener_iter=self._filez, processes=self._new_processes.get(), slamming_press=slamming_press, opt_girder_prop=opt_girder_prop, fdwn=self._new_fdwn.get(), fup=self._new_fdwn.get()) self._geo_results = geo_results if len([val*2 for val in self._geo_results.keys()]) != 0: self._ent_option_fractions.destroy() self._ent_option_fractions = tk.OptionMenu(self._frame, self._new_option_fraction, *tuple([val*2 for val in self._geo_results.keys()]), command=self.get_plate_field_options) self._ent_option_fractions.place(x=self._option_fractions_place[0], y=self._option_fractions_place[1]) #SAVING RESULTS if save_results: with open('geo_opt_2.pickle', 'wb') as file: pickle.dump(geo_results, file) else: with open('geo_opt_2.pickle', 'rb') as file: self._geo_results = pickle.load(file) self._ent_option_fractions.destroy() self._ent_option_fractions = tk.OptionMenu(self._frame, self._new_option_fraction, *tuple([val*2 for val in self._geo_results.keys()]), command=self.get_plate_field_options) self._ent_option_fractions.place(x=self._option_fractions_place[0], y=self._option_fractions_place[1]) save_file, filename = None, None if save_results: save_file = filedialog.asksaveasfile(mode="w", defaultextension=".txt", title = 'Save results to file') if save_file is None: # ask saveasfile return `None` if dialog closed with "cancel". filename = None else: filename = save_file.name save_file, xplot, yplot = self.draw_result_text(self._geo_results, save_to_file=filename) self.draw_select_canvas(opt_results=self._geo_results, save_file = save_file) plt.axes(facecolor='lightslategray') plt.plot(xplot, yplot,color='yellow', linestyle='solid', marker='o',markerfacecolor='white', markersize=6) plt.xlabel('Length of plate fields [m]') plt.ylabel('Weight / max weight') plt.title('Length of plate fields vs. total weight') plt.grid() plt.show() def opt_get_fractions(self): ''' Finding initial number of fractions ''' init_fractions = 0 # finding number of fractions for dummy_i in range(1, 100): if 3.8 < self.opt_get_length() / dummy_i < 4.2: init_fractions = dummy_i break to_return = [] for dummy_i in range(init_fractions): to_return.append(1/init_fractions) return to_return def opt_create_struc_obj(self,opt_line): ''' Creating preliminary stucture object from selected optimized line. The properties of the new line oto be optimized is taken from the closest original line.''' pt1 = opt_line[0] pt2 = opt_line[1] vector = [pt2[0] - pt1[0], pt2[1] - pt1[1]] point = [pt1[0]+vector[0]*0.5, pt1[1]+vector[1]*0.5] if self.opt_find_closest_orig_line(point) == None: return None objects = [copy.deepcopy(x) if x != None else None for x in self._line_to_struc[self.opt_find_closest_orig_line(point)]] objects[0].Plate.set_span(dist(pt1,pt2)) objects[0].Stiffener.set_span(dist(pt1, pt2)) return objects def opt_find_closest_orig_line(self,coord): ''' Find the closest original line to the optimized line. Used to create initial structure objects. ''' for key,value in self._line_dict.items(): pt1 = list(self._point_dict['point'+str(value[0])]) pt2 = list(self._point_dict['point'+str(value[1])]) distance = dist(pt2,pt1) vector = [pt2[0]-pt1[0],pt2[1]-pt1[1]] current = list(self._point_dict['point'+str(value[0])]) for dummy_i in range(1000): delta = distance/1000 current[0] += (vector[0]/distance) * delta current[1] += (vector[1]/distance) * delta if dist(coord,current) <= 0.1: if self._line_to_struc[key][0].Plate.get_structure_type() not in ('GENERAL_INTERNAL_NONWT', 'FRAME'): return key else: return None def opt_get_distance(self): ''' Getting the largest disctance between the two lines to be optimized. ''' if len(self._active_points) == 4: return dist(self._point_dict[self._active_points[0]],self._point_dict[self._active_points[2]]) else: return None def opt_get_length(self): ''' Getting the length of the lines to be optimized. ''' if len(self._active_points)==4: return dist(self._point_dict[self._active_points[0]],self._point_dict[self._active_points[1]]) def opt_get_fraction_bounds(self, max_len = 6, min_len = 2): ''' Return the fraction bounds(basis upper/lower) to be considered. ''' return int(self.opt_get_length()/max_len), int(self.opt_get_length()/min_len) def opt_create_frames(self,fractions): ''' Creating frames between the the two lines to be optimized. ''' count = 1 self._opt_frames['opt_frame_start'] = [[self._point_dict[self._active_points[0]][0], self._point_dict[self._active_points[0]][1]], [self._point_dict[self._active_points[2]][0], self._point_dict[self._active_points[2]][1]]] self._opt_frames['opt_frame_stop'] = [[self._point_dict[self._active_points[1]][0], self._point_dict[self._active_points[1]][1]], [self._point_dict[self._active_points[3]][0], self._point_dict[self._active_points[3]][1]]] start = 0 for fraction in fractions: start += fraction if start != 1: self._opt_frames['opt_frame'+str(count)] = [[self._point_dict[self._active_points[0]][0] + round(self.opt_get_length()*start,5), self._point_dict[self._active_points[0]][1]], [self._point_dict[self._active_points[2]][0] + round(self.opt_get_length() * start,5), self._point_dict[self._active_points[2]][1]]] count+=1 distances = {'start_dist': dist(self._opt_frames['opt_frame_start'][0], self._opt_frames['opt_frame_start'][1]), 'stop_dist': dist(self._opt_frames['opt_frame_stop'][0], self._opt_frames['opt_frame_stop'][1])} return self._opt_frames, distances def opt_create_main_structure(self,frames,start1,stop1,start2,stop2): ''' This creates line definition for the new structure objects. The scipt searches the line to find frames.''' line1_coord = self._point_dict[start1],self._point_dict[stop1] line2_coord = self._point_dict[start2],self._point_dict[stop2] structure = {} p1_low,p1_high = list(line1_coord[0]),list(line2_coord[0]) p2_low,p2_high = list(line1_coord[1]),list(line2_coord[1]) vector_low,vector_high = [p2_low[0]-p1_low[0],p2_low[1]-p1_low[1]],[p2_high[0]-p1_high[0],p2_high[1]-p1_high[1]] # Starting search on the lower or inner line count = 1 tmp_struc = [p1_low] # starting point defined. found = None for frame, coords in frames.items(): current = list(p1_low) if frame!='opt_frame_start' and frame!='opt_frame_stop': for jump in range(100): current[0] += vector_low[0] / 100 current[1] += vector_low[1] / 100 if dist(current,coords[0]) < 0.1 and frame != found: found = frame tmp_struc.append(coords[0]) self._opt_structure['opt_struc'+str(count)] = tmp_struc # adding found line tmp_struc = [coords[0]] count += 1 tmp_struc.append(p2_low) self._opt_structure['opt_struc'+str(count)] = tmp_struc # adding found line (end) count += 1 # Starting search of upper or outer line. tmp_struc = [p1_high] # starting point defined. found = None for frame, coords in frames.items(): current = list(p1_high) if frame!='opt_frame_start' and frame!='opt_frame_stop': for jump in range(100): current[0] += vector_high[0] / 100 current[1] += vector_high[1] / 100 if dist(current,coords[1]) < 0.1 and frame != found: found = frame tmp_struc.append(coords[1]) self._opt_structure['opt_struc'+str(count)] = tmp_struc # adding found line tmp_struc = [coords[1]] count += 1 tmp_struc.append(p2_high) self._opt_structure['opt_struc'+str(count)] = tmp_struc # adding found line (end) return self._opt_structure def get_running_time(self): ''' Estimate the running time of the algorithm. :return: ''' if self._new_algorithm.get() in ['anysmart', 'anydetail']: try: number_of_combinations = \ max((self._new_spacing_upper.get() - self._new_spacing_lower.get()) / self._new_delta_spacing.get(), 1) * \ max((self._new_pl_thk_upper.get() - self._new_pl_thk_lower.get()) / self._new_delta_pl_thk.get(), 1) * \ max((self._new_web_h_upper.get() - self._new_web_h_lower.get()) / self._new_delta_web_h.get(), 1) * \ max((self._new_web_thk_upper.get() - self._new_web_thk_lower.get()) / self._new_delta_web_thk.get(), 1) * \ max((self._new_fl_w_upper.get() - self._new_fl_w_lower.get()) / self._new_delta_fl_w.get(), 1) * \ max((self._new_fl_thk_upper.get() - self._new_fl_thk_lower.get()) / self._new_delta_fl_thk.get(), 1) return int(number_of_combinations * self.running_time_per_item) * len(self._active_lines) except TclError: return 0 else: try: return int(self._new_algorithm_random_trials.get() * self.running_time_per_item) * len( self._active_lines) except TclError: return 0 def get_deltas(self): ''' Return a numpy array of the deltas. :return: ''' return np.array([float(self._ent_delta_spacing.get()) / 1000, float(self._new_delta_pl_thk.get()) / 1000, float(self._new_delta_web_h.get()) / 1000, float(self._new_delta_web_thk.get()) / 1000, float(self._new_delta_fl_w.get()) / 1000, float(self._new_delta_fl_thk.get()) / 1000]) def update_running_time(self, *args): ''' Estimate the running time of the algorithm. :return: ''' # try: # self._runnig_time_label.config(text=str(self.get_running_time())) # except ZeroDivisionError: # pass # _tkinter.TclError: pass if self._new_check_buckling_ml_cl.get(): self._new_check_buckling.set(False) self._new_check_local_buckling.set(False) def get_upper_bounds(self): ''' Return an numpy array of upper bounds. :return: ''' return np.array([self._new_spacing_upper.get() / 1000, self._new_pl_thk_upper.get() / 1000, self._new_web_h_upper.get() / 1000, self._new_web_thk_upper.get() / 1000, self._new_fl_w_upper.get() / 1000, self._new_fl_thk_upper.get() / 1000, 6, 10]) def get_lower_bounds(self): ''' Return an numpy array of lower bounds. :return: ''' return np.array([self._new_spacing_lower.get() / 1000, self._new_pl_thk_lower.get() / 1000, self._new_web_h_lower.get() / 1000, self._new_web_thk_lower.get() / 1000, self._new_fl_w_lower.get() / 1000, self._new_fl_thk_lower.get() / 1000, 1, 10]) def checkered(self, line_distance): ''' Creates a grid in the properties canvas. :param line_distance: :return: ''' # vertical lines at an interval of "line_distance" pixel for x in range(line_distance, self._prop_canvas_dim[0], line_distance): self._canvas_opt.create_line(x, 0, x, self._prop_canvas_dim[0], fill="grey", stipple='gray50') # horizontal lines at an interval of "line_distance" pixel for y in range(line_distance, self._prop_canvas_dim[1], line_distance): self._canvas_opt.create_line(0, y, self._prop_canvas_dim[0], y, fill="grey", stipple='gray50') def draw_properties(self, init_obj=None, opt_obj=None, line=None): ''' Drawing properties in the canvas. :return: ''' ctr_x = self._prop_canvas_dim[0] / 2 ctr_y = self._prop_canvas_dim[1] / 2 + 200 opt_color, opt_stippe = 'red', 'gray12' m = self._draw_scale if init_obj != None: self._canvas_opt.delete('all') self.checkered(10) init_color, init_stipple = 'blue', 'gray12' self._canvas_opt.create_rectangle(0, 0, self._prop_canvas_dim[0] + 10, 80, fill='white') self._canvas_opt.create_line(10, 10, 30, 10, fill=init_color, width=5) self._canvas_opt.create_text(270, 10, text='Initial - Pl.: ' + str(init_obj.get_s() * 1000) + 'x' + str( init_obj.get_pl_thk() * 1000) + ' Stf.: ' + str(init_obj.get_web_h() * 1000) + 'x' + str( init_obj.get_web_thk() * 1000) + '+' + str(init_obj.get_fl_w() * 1000) + 'x' + str( init_obj.get_fl_thk() * 1000), font='Verdana 8', fill=init_color) self._canvas_opt.create_text(120, 30, text='Weight (per Lg width): ' + str(int(op.calc_weight([init_obj.get_s(), init_obj.get_pl_thk(), init_obj.get_web_h(), init_obj.get_web_thk(), init_obj.get_fl_w(), init_obj.get_fl_thk(), init_obj.get_span(), init_obj.get_lg()]))), font='Verdana 8', fill=init_color) self._canvas_opt.create_rectangle(ctr_x - m * init_obj.get_s() / 2, ctr_y, ctr_x + m * init_obj.get_s() / 2, ctr_y - m * init_obj.get_pl_thk(), fill=init_color, stipple=init_stipple) self._canvas_opt.create_rectangle(ctr_x - m * init_obj.get_web_thk() / 2, ctr_y - m * init_obj.get_pl_thk(), ctr_x + m * init_obj.get_web_thk() / 2, ctr_y - m * (init_obj.get_web_h() + init_obj.get_pl_thk()) , fill=init_color, stipple=init_stipple) if init_obj.get_stiffener_type() not in ['L', 'L-bulb']: self._canvas_opt.create_rectangle(ctr_x - m * init_obj.get_fl_w() / 2, ctr_y - m * (init_obj.get_pl_thk() + init_obj.get_web_h()), ctr_x + m * init_obj.get_fl_w() / 2, ctr_y - m * ( init_obj.get_pl_thk() + init_obj.get_web_h() + init_obj.get_fl_thk()), fill=init_color, stipple=init_stipple) else: self._canvas_opt.create_rectangle(ctr_x - m * init_obj.get_web_thk() / 2, ctr_y - m * (init_obj.get_pl_thk() + init_obj.get_web_h()), ctr_x + m * init_obj.get_fl_w(), ctr_y - m * ( init_obj.get_pl_thk() + init_obj.get_web_h() + init_obj.get_fl_thk()), fill=init_color, stipple=init_stipple) if opt_obj != None: self._canvas_opt.create_rectangle(ctr_x - m * opt_obj.get_s() / 2, ctr_y, ctr_x + m * opt_obj.get_s() / 2, ctr_y - m * opt_obj.get_pl_thk(), fill=opt_color, stipple=opt_stippe) self._canvas_opt.create_rectangle(ctr_x - m * opt_obj.get_web_thk() / 2, ctr_y - m * opt_obj.get_pl_thk(), ctr_x + m * opt_obj.get_web_thk() / 2, ctr_y - m * ( opt_obj.get_web_h() + opt_obj.get_pl_thk()) , fill=opt_color, stipple=opt_stippe) if init_obj.get_stiffener_type() not in ['L', 'L-bulb']: self._canvas_opt.create_rectangle(ctr_x - m * opt_obj.get_fl_w() / 2, ctr_y - m * ( opt_obj.get_pl_thk() + opt_obj.get_web_h()), ctr_x + m * opt_obj.get_fl_w() / 2, ctr_y - m * ( opt_obj.get_pl_thk() + opt_obj.get_web_h() + opt_obj.get_fl_thk()), fill=opt_color, stipple=opt_stippe) else: self._canvas_opt.create_rectangle(ctr_x - m * opt_obj.get_web_thk() / 2, ctr_y - m * ( opt_obj.get_pl_thk() + opt_obj.get_web_h()), ctr_x + m * opt_obj.get_fl_w(), ctr_y - m * ( opt_obj.get_pl_thk() + opt_obj.get_web_h() + opt_obj.get_fl_thk()), fill=opt_color, stipple=opt_stippe) self._canvas_opt.create_line(10, 50, 30, 50, fill=opt_color, width=5) self._canvas_opt.create_text(270, 50, text='Optimized - Pl.: ' + str(round(opt_obj.get_s() * 1000,1)) + 'x' + str(round(opt_obj.get_pl_thk() * 1000,1)) + ' Stf.: ' + str(round(opt_obj.get_web_h() * 1000,1)) + 'x' + str(round(opt_obj.get_web_thk() * 1000,1)) + '+' + str(round(opt_obj.get_fl_w() * 1000,1)) + 'x' + str(round(opt_obj.get_fl_thk() * 1000,1)), font='Verdana 8', fill=opt_color) self._canvas_opt.create_text(120, 70, text='Weight (per Lg width): ' + str(int(op.calc_weight([opt_obj.get_s(), opt_obj.get_pl_thk(), opt_obj.get_web_h(), opt_obj.get_web_thk(), opt_obj.get_fl_w(), opt_obj.get_fl_thk(), opt_obj.get_span(), opt_obj.get_lg()]))), font='Verdana 8', fill=opt_color) else: self._canvas_opt.create_text(150, 60, text='No optimized solution found.') if line != None: if __name__ == '__main__': lateral_press = 0.2 # for testing else: lateral_press = self.app.get_highest_pressure(line)['normal'] /1e6 self._canvas_opt.create_text(250, self._prop_canvas_dim[1] - 10, text='Lateral pressure: ' + str(lateral_press) + ' kPa', font='Verdana 10 bold', fill='red') def draw_select_canvas(self, opt_results = None, save_file = None): ''' Making the lines canvas. :return: ''' self._canvas_select.delete('all') text_type = 'Verdana 8' if opt_results is None: # stippled lines and text. self._canvas_select.create_line(self._canvas_draw_origo[0], 0, self._canvas_draw_origo[0], self._select_canvas_dim[1], stipple='gray50') self._canvas_select.create_line(0, self._canvas_draw_origo[1], self._select_canvas_dim[0], self._canvas_draw_origo[1], stipple='gray50') self._canvas_select.create_text(self._canvas_draw_origo[0] - 30, self._canvas_draw_origo[1] + 20, text='(0,0)', font='Text 10') self._canvas_select.create_text([700, 50], text='How to:\n' 'For a double bottom structure: \n' 'Click start point 1 -> click en point 1 (for example bottom plate)\n' 'Click start point 2 -> click en point 2 (for example inner bottom\n' 'Run optimization! Wait for the results...... wait.... wait....\n', font='Verdana 8 bold', fill='red') # drawing the line dictionary. if len(self._line_dict) != 0: for line, value in self._line_dict.items(): color = 'black' coord1 = self.get_point_canvas_coord('point' + str(value[0])) coord2 = self.get_point_canvas_coord('point' + str(value[1])) vector = [coord2[0] - coord1[0], coord2[1] - coord1[1]] # drawing a bold line if it is selected if self._line_to_struc[line][0].Plate.get_structure_type() not in ('GENERAL_INTERNAL_NONWT','FRAME'): if line in self._active_lines: self._canvas_select.create_line(coord1, coord2, width=6, fill=color,stipple='gray50') self._canvas_select.create_text(coord1[0] + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 + 10, text='Line ' + str(get_num(line)), font='Verdand 10 bold', fill='red') else: self._canvas_select.create_line(coord1, coord2, width=3, fill=color,stipple='gray25') self._canvas_select.create_text(coord1[0] - 20 + vector[0] / 2 + 5, coord1[1] + vector[1] / 2 + 10,text='line' + str(get_num(line)),font="Text 8", fill='black') if len(self._opt_frames) != 0: for key,value in self._opt_frames.items(): coord1 = self.get_canvas_coord(value[0]) coord2 = self.get_canvas_coord(value[1]) vector = [coord2[0] - coord1[0], coord2[1] - coord1[1]] self._canvas_select.create_line(coord1, coord2, width=3, fill='SkyBlue1') else: pass if len(self._active_points)>1: color = 'blue' coord1 = self.get_point_canvas_coord(self._active_points[0]) coord2 = self.get_point_canvas_coord(self._active_points[1]) vector = [coord2[0] - coord1[0], coord2[1] - coord1[1]] # drawing a bold line if it is selected self._canvas_select.create_line(coord1, coord2, width=6, fill=color) if len(self._active_points) > 3: coord1 = self.get_point_canvas_coord(self._active_points[2]) coord2 = self.get_point_canvas_coord(self._active_points[3]) vector = [coord2[0] - coord1[0], coord2[1] - coord1[1]] self._canvas_select.create_line(coord1, coord2, width=6, fill=color) # self._canvas_select.create_polygon(points, outline='#f11', # fill='#1f1', width=2) # drawing the point dictionary for key,value in self._point_dict.items(): pt_size = 6 if key in self._active_points: self._canvas_select.create_oval(self.get_point_canvas_coord(key)[0] - pt_size + 2, self.get_point_canvas_coord(key)[1] - pt_size + 2, self.get_point_canvas_coord(key)[0] + pt_size + 2, self.get_point_canvas_coord(key)[1] + pt_size + 2, fill='blue') if self._active_points.index(key) == 0: self._canvas_select.create_text(self.get_point_canvas_coord(key)[0] - 5, self.get_point_canvas_coord(key)[1] - 14, text='START 1', font=text_type, fill = 'blue') elif self._active_points.index(key) == 1: self._canvas_select.create_text(self.get_point_canvas_coord(key)[0] - 5, self.get_point_canvas_coord(key)[1] - 14, text='STOP 1',font=text_type, fill='blue') elif self._active_points.index(key) == 2: self._canvas_select.create_text(self.get_point_canvas_coord(key)[0] - 5, self.get_point_canvas_coord(key)[1] - 14, text='START 2',font=text_type, fill='blue') elif self._active_points.index(key) == 3: self._canvas_select.create_text(self.get_point_canvas_coord(key)[0] - 5, self.get_point_canvas_coord(key)[1] - 14, text='STOP 2',font=text_type, fill='blue') else: pass else: self._canvas_select.create_oval(self.get_point_canvas_coord(key)[0] - pt_size, self.get_point_canvas_coord(key)[1] - pt_size, self.get_point_canvas_coord(key)[0] + pt_size, self.get_point_canvas_coord(key)[1] + pt_size, fill='red') self._canvas_select.create_text(self.get_point_canvas_coord(key)[0] - 5, self.get_point_canvas_coord(key)[1] - 14, text='pt.'+str(get_num(key)), font='Verdana 8', fill='blue') else: self._canvas_select.create_text([20, 20], text='Results are presented here. ' 'All results may not fit the screen. ' 'All results are seen in your saved result file.', font='Verdana 12 bold', fill='red', anchor = 'w') delta, start_x, y_loc = 20, 10, 40 for key, values in opt_results.items(): # if y_loc > 700: # start_x = 400 # y_loc = 40 y_loc = y_loc + delta check_ok = [val[2] is True for val in values[1]] if save_file is not None: save_file.write('\n') save_file.write('--------------------------------------------------------------------------' + '\n') save_file.write('Plate fields: '+str(len(values[2]['objects']))+ ' Frames: '+ str(len(values[2]['frames'])) + '\n') self._canvas_select.create_text([start_x + delta, y_loc], text=str(len(check_ok))+' panels with weight '+ str(round(values[0],1)), anchor='w', font=text_type) y_loc += delta item_count, endstring = 0, '' for data_idx, data in enumerate(values[1]): for idx, stuc_info in enumerate(data): if type(stuc_info) == calc_structure.AllStructure: if y_loc > 700: y_loc = 120 start_x += 350 if item_count == 0: endstring = ' START 1'+' OK!\n' if values[1][data_idx][3] else ' START 1'+' NOT OK!\n' elif item_count > 0 and item_count < len(values[1]) / 2-1 and len(values[1]) != 4: endstring = ' -------'+' OK!\n' if values[1][data_idx][3] else ' -------'+' NOT OK!\n' elif item_count == len(values[1])/2-1: endstring = ' -END 1-'+' OK!\n' if values[1][data_idx][3] else ' -END 1-'+' NOT OK!\n' elif item_count == len(values[1])/2: endstring = ' START 2'+' OK!\n' if values[1][data_idx][3] else ' START 2'+' NOT OK!\n' elif item_count > len(values[1])/2 and item_count < len(values[1])-1: endstring = ' -------'+' OK!\n' if values[1][data_idx][3] else ' -------'+' NOT OK!\n' elif item_count == len(values[1])-1: endstring = ' -END 2-'+' OK!\n' if values[1][data_idx][3] else ' -END 2-'+' NOT OK!\n' self._canvas_select.create_text([start_x + delta, y_loc], text=stuc_info.get_one_line_string_mixed()+endstring, anchor='w', font=text_type) y_loc += 15 if save_file is not None: save_file.write(stuc_info.get_one_line_string_mixed()+' ' + stuc_info.get_extended_string_mixed() + ' | ' + stuc_info.Plate.get_report_stresses() + endstring) item_count += 1 if save_file is not None: save_file.write('Weight details for this solution:\n') save_file.write('Weight of main structure: ' + str([str(round(val, 1)) for val in values[2]['objects']]) + '\n') save_file.write('Weight of frames: ' + str([str(round(val, 1)) for val in values[2]['frames']]) + '\n') save_file.write('Scales used on frames: ' + str([str(round(val, 3)) for val in values[2]['scales']]) + '\n') save_file.write('----------------------------------------------------------------------------'+'\n') if save_file is not None: save_file.write('\n ------------- END ---------------') save_file.close() def draw_result_text(self, geo_opt_obj, save_to_file = None): ''' Textual version of the results. ''' self._canvas_opt.delete('all') start_x = 20 delta = 25 start_y = 60 y_loc = delta + start_y xplot = list() yplot = list() self._canvas_opt.create_text([start_x, 40], text='Results seen next. Weight index is tot_weight / max_weight \n' 'max_weight is the highest total weight of the checked variations.\n' 'Weight index of 1 is the heaviest calculated variation.', font='Verdana 10', fill='Blue', anchor='w') self._canvas_opt.create_text([start_x, y_loc], text='| Plate fields | Fields length | Weight index | All OK? |', font='Verdana 10 bold', fill='red', anchor = 'w') y_loc += delta / 2 self._canvas_opt.create_text([start_x, y_loc], text='************************************************', anchor='w', font='Verdana 10 bold') text_type = 'Verdana 10 bold' weights = [self._geo_results[key][0] for key in self._geo_results.keys()] max_weight = 0 for weight in weights: if weight != float('inf'): max_weight = weight if weight > max_weight else max_weight if save_to_file is not None: save_file = open(save_to_file, 'w') save_file.write('| Plate fields | Fields length | Weight index | All OK? |\n') save_file.write('*********************************************************\n') for key, value in self._geo_results.items(): y_loc = y_loc + delta check_ok = [val[2] is True for val in value[1]] self._canvas_opt.create_text([start_x + 20, y_loc ], text=str(len(check_ok)), anchor='w', font=text_type) self._canvas_opt.create_text([start_x + 120, y_loc ], text=str('No results\n' if self._geo_results[key][1][0][0] is None else round(self._geo_results[key][1][0][0]. Plate.get_span(),4)), anchor='w', font=text_type) self._canvas_opt.create_text([start_x + 220, y_loc ], text=str(round(self._geo_results[key][0] / max_weight, 3)) if max_weight != 0 else '', anchor='w', font=text_type) self._canvas_opt.create_text([start_x + 330, y_loc ], text=str(all(check_ok)), anchor='w', font=text_type) if save_to_file is not None: save_file.write(str(len(check_ok))+ ' ' + 'No results\n' if self._geo_results[key][1][0][0] is None else str(round(self._geo_results[key][1][0][0].Plate.get_span(), 4)) + ' ' + str(round(self._geo_results[key][0] / max_weight, 3)) + '\n' if max_weight != 0 else '' + ' ' + str(all(check_ok))+'\n') if self._geo_results[key][1][0][0] is not None: xplot.append(round(self._geo_results[key][1][0][0].Plate.get_span(),4)) yplot.append(round(self._geo_results[key][0] / max_weight, 4)) if save_to_file is not None: return save_file, xplot, yplot else: return None, xplot, yplot def algorithm_info(self): ''' When button is clicked, info is displayed.''' messagebox.showinfo(title='Algorith information', message='The algorithms currently included is:\n' 'ANYSMART: \n' ' Calculates all alternatives using upper and lower bounds.\n' ' The step used inside the bounds is defined in deltas.\n\n' 'RANDOM: \n' ' Uses the same bounds and deltas as in ANYSMART.\n' ' Number of combinations calculated is defined in "trials",\n' ' which selects withing the bounds and deltas defined.\n\n' 'RANDOM_NO_BOUNDS:\n' ' Same as RANDOM, but does not use the defined deltas.\n' ' The deltas is set to 1 mm for all dimensions/thicknesses.\n\n' 'ANYDETAIL:\n' ' Same as for ANYSMART, but will take some more time and\n' ' provide a chart of weight development during execution.\n\n' 'PSO - Particle Swarm Search:\n' ' The information can be found on \n' ' http://pythonhosted.org/pyswarm/ \n' ' For further information google it!\n' ' Parameters:\n' ' swarmsize : The number of particles in the swarm (Default: 100)\n' ' omega : Particle velocity scaling factor (Default: 0.5)\n' ' phip : Scaling factor to search away from the particle’s \n' ' best known position (Default: 0.5)\n' ' phig : Scaling factor to search away from the swarm’s best \n' ' known position (Default: 0.5)\n' ' maxiter : The maximum number of iterations for the swarm \n' ' to search (Default: 100)\n' ' minstep : The minimum stepsize of swarm’s best position \n' ' before the search terminates (Default: 1e-8)\n' ' minfunc : The minimum change of swarm’s best objective value\n' ' before the search terminates (Default: 1e-8)\n\n' '\n' 'All algorithms calculates local scantling and buckling requirements') def slider_used(self, event): ''' Action when slider is activated. :return: ''' self._canvas_scale = self.slider.get() self.draw_canvas() def on_closing(self): ''' Action when closing the window without saving. :return: ''' if __name__ == '__main__': self._frame.destroy() return mess = tk.messagebox.showwarning('Closed without saving', 'Closing will not save loads you have created', type='okcancel') if mess == 'ok': self._frame.grab_release() self._frame.destroy() self.app.on_aborted_load_window() def get_point_canvas_coord(self, point_no): ''' Returning the canvas coordinates of the point. This value will change with slider. :param point_no: :return: ''' point_coord_x = self._canvas_draw_origo[0] + self._point_dict[point_no][0]* self._canvas_scale point_coord_y = self._canvas_draw_origo[1] - self._point_dict[point_no][1]* self._canvas_scale return [point_coord_x, point_coord_y] def get_canvas_coord(self, coord): ''' Returning the canvas coordinates of the point. This value will change with slider. :param point_no: :return: ''' point_coord_x = self._canvas_draw_origo[0] + coord[0] * self._canvas_scale point_coord_y = self._canvas_draw_origo[1] - coord[1] * self._canvas_scale return [point_coord_x, point_coord_y] def controls(self): ''' Specifying the controls to be used. :return: ''' self._canvas_select.bind('<Button-1>', self.button_1_click) self._canvas_select.bind('<Button-2>', self.button_2_click) self._canvas_select.bind('<Button-3>', self.button_3_click) self._frame.bind('<Shift_L>', self.shift_pressed) self._frame.bind('<Shift_R>', self.shift_pressed) self._frame.bind('<Control_L>', self.ctrl_pressed) self._frame.bind('<Control_R>', self.ctrl_pressed) self._frame.bind("<MouseWheel>", self.mouse_scroll) self._frame.bind("<B2-Motion>", self.button_2_click_and_drag) def shift_pressed(self, event=None): ''' Event is executed when shift key pressed. :return: ''' self._add_to_lines = True def ctrl_pressed(self, event=None): ''' Event when control is pressed. :param event: :return: ''' self._add_to_lines = False def button_1_click(self, event): ''' When clicking the right button, this method is called. method is referenced in ''' self._previous_drag_mouse = [event.x, event.y] # if type(self._geo_results) is not list(): # if self._geo_results is not None: # return # else: # if self._geo_results[0] is not None: # return click_x = self._canvas_select.winfo_pointerx() - self._canvas_select.winfo_rootx() click_y = self._canvas_select.winfo_pointery() - self._canvas_select.winfo_rooty() self._point_is_active = False margin = 10 self._active_point = '' for point, coords in self._point_dict.items(): point_coord = self.get_point_canvas_coord(point) if point_coord[0]-margin < click_x < point_coord[0]+margin and\ point_coord[1]-margin < click_y < point_coord[1]+margin: self._active_point = point self._point_is_active = True if len(self._active_points)<4: self._active_points.append(self._active_point) if len(self._active_points)==4: self.opt_create_frames(self.opt_get_fractions()) self.draw_select_canvas() def button_3_click(self, event): ''' Event when right click. :param evnet: :return: ''' self._previous_drag_mouse = [event.x, event.y] self._active_lines = [] self._active_points = [] self.draw_select_canvas() def button_2_click(self, event): ''' Event when right click. :param evnet: :return: ''' self._previous_drag_mouse = [event.x, event.y] if self._opt_resutls =={}: return click_x = self._canvas_select.winfo_pointerx() - self._canvas_select.winfo_rootx() click_y = self._canvas_select.winfo_pointery() - self._canvas_select.winfo_rooty() if len(self._line_dict) > 0: for key, value in self._line_dict.items(): coord1x = self.get_point_canvas_coord('point' + str(value[0]))[0] coord2x = self.get_point_canvas_coord('point' + str(value[1]))[0] coord1y = self.get_point_canvas_coord('point' + str(value[0]))[1] coord2y = self.get_point_canvas_coord('point' + str(value[1]))[1] vector = [coord2x - coord1x, coord2y - coord1y] click_x_range = [ix for ix in range(click_x - 10, click_x + 10)] click_y_range = [iy for iy in range(click_y - 10, click_y + 10)] distance = int(dist([coord1x, coord1y], [coord2x, coord2y])) # checking along the line if the click is witnin +- 10 around the click for dist_mult in range(1, distance - 1): dist_mult = dist_mult / distance x_check = int(coord1x) + int(round(vector[0] * dist_mult, 0)) y_check = int(coord1y) + int(round(vector[1] * dist_mult, 0)) if x_check in click_x_range and y_check in click_y_range: self._canvas_select.delete('all') self._active_lines = [] self._active_lines.append(key) if key in self._opt_resutls.keys() and self._opt_resutls[key] != None: self.draw_properties(init_obj=self._line_to_struc[key][0], opt_obj=self._opt_resutls[key][0], line=key) else: self.draw_properties(init_obj=self._line_to_struc[key][0], line=key) break self.draw_select_canvas() self.draw_select_canvas() self.update_running_time() ############################# self.opt_create_main_structure(self.opt_create_frames(self.opt_get_fractions())[0],self._active_points[0], self._active_points[1],self._active_points[2],self._active_points[3]) def save_and_close(self): ''' Save and close :return: ''' if __name__ == '__main__': self._frame.destroy() return try: to_return = {} for line in self._active_lines: to_return[line] = self._opt_resutls[line] self.app.on_close_opt_multiple_window(to_return) messagebox.showinfo(title='Return info', message='Returning: ' + str(self._active_lines)) except IndexError: messagebox.showinfo(title='Nothing to return', message='No results to return.') return self._frame.destroy() def toggle(self, found_files = None, obj = None, iterating = False, given_path: str = None): ''' On off button. :param found_files: :param obj: :return: ''' # if iterating: # if found_files is not None: # predefined_structure = hlp.helper_read_section_file(files=found_files, obj=obj) # else: predefined_structure = None if self._toggle_btn.config('relief')[-1] == 'sunken': self._toggle_btn.config(relief="raised") self._toggle_btn.config(bg = 'salmon') self._ent_spacing_upper.config(bg = 'white') self._ent_spacing_lower.config(bg = 'white') self._ent_delta_spacing.config(bg = 'white') self._filez = None else: self._toggle_btn.config(relief="sunken") self._toggle_btn.config(bg='lightgreen') self._ent_spacing_upper.config(bg = 'lightgreen') self._ent_spacing_lower.config(bg = 'lightgreen') self._ent_delta_spacing.config(bg = 'lightgreen') self._ent_pl_thk_upper.config(bg = 'lightgreen') self._ent_pl_thk_lower.config(bg = 'lightgreen') self._ent_delta_pl_thk.config(bg = 'lightgreen') if given_path is None: self._filez = list(askopenfilenames(parent=self._frame, title='Choose files to open', initialdir=self._root_dir)) else: self._filez = [given_path] if self._filez == []: self._toggle_btn.config(relief="raised") self._toggle_btn.config(bg='salmon') self._ent_spacing_upper.config(bg='white') self._ent_spacing_lower.config(bg='white') self._ent_delta_spacing.config(bg='white') self._ent_pl_thk_upper.config(bg='white') self._ent_pl_thk_lower.config(bg='white') self._ent_delta_pl_thk.config(bg='white') return found_files, predefined_structure def open_example_file(self): import os if os.path.isfile('sections.csv'): os.startfile('sections.csv') else: os.startfile(self._root_dir + '/' + 'sections.csv') def plot_results(self): 'Plotting a selected panel' if self._geo_results is not None \ and type(self._new_option_fraction.get()) == int and type(self._new_option_panel.get()) == int: op.plot_optimization_results(self._geo_results[int(self._new_option_fraction.get()/2)][1] [self._new_option_panel.get()]) def get_plate_field_options(self, event): if self._geo_results is not None: self._ent_option_field.destroy() to_add = tuple([val for val in range(len(self._geo_results[int(self._new_option_fraction.get()/2)][1]))]) self._ent_option_field = tk.OptionMenu(self._frame, self._new_option_panel, *to_add) self._ent_option_field.place(x=self._options_panels_place[0], y=self._options_panels_place[1]) def mouse_scroll(self,event): self._canvas_scale += event.delta/50 self._canvas_scale = 0 if self._canvas_scale < 0 else self._canvas_scale self.draw_select_canvas() def button_2_click_and_drag(self,event): self._canvas_draw_origo = (self._canvas_draw_origo[0]-(self._previous_drag_mouse[0]-event.x), self._canvas_draw_origo[1]-(self._previous_drag_mouse[1]-event.y)) self._previous_drag_mouse = (event.x,event.y) self.draw_select_canvas() if __name__ == '__main__': root = tk.Tk() my_app = CreateOptGeoWindow(master=root) root.mainloop()
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/optimize_geometry.py
optimize_geometry.py
import tkinter as tk from _tkinter import TclError import numpy as np import time, os, datetime from tkinter import messagebox from tkinter.filedialog import askopenfilenames from multiprocessing import cpu_count try: from any_files.calc_structure import CalcScantlings, AllStructure import any_files.example_data as test import any_files.example_data as ex import any_files.helper as hlp import any_files.optimize as op except ModuleNotFoundError: from ANYstructure.any_files.calc_structure import CalcScantlings, AllStructure import ANYstructure.any_files.example_data as test import ANYstructure.any_files.example_data as ex import ANYstructure.any_files.helper as hlp import ANYstructure.any_files.optimize as op class CreateOptimizeWindow(): ''' This class initiates the single optimization window. ''' def __init__(self,master,app=None): super(CreateOptimizeWindow,self).__init__() if __name__ == '__main__': import pickle Plate = CalcScantlings(ex.obj_dict) Stiffener = None#CalcScantlings(ex.obj_dict) Girder = None # CalcScantlings(ex.obj_dict_heavy) self._initial_calc_obj = AllStructure(Plate=Plate, Stiffener=Stiffener, Girder=Girder, main_dict=ex.prescriptive_main_dict) #self._initial_calc_obj = test.get_structure_calc_object(heavy=True) self._lateral_pressure = 0.2 self._fatigue_object = test.get_fatigue_object() self._fatigue_pressure = test.get_fatigue_pressures() self._slamming_pressure = test.get_slamming_pressure() image_dir = os.path.dirname(__file__)+'\\images\\' self._PULS_object = None self._puls_acceptance = 0.87 self._initial_calc_obj.lat_press = self._lateral_pressure/1000 self._ML_buckling = dict() # Buckling machine learning algorithm self._root_dir = '/\\' for name, file_base in zip(['cl SP buc int predictor', 'cl SP buc int scaler', 'cl SP ult int predictor', 'cl SP ult int scaler', 'cl SP buc GLGT predictor', 'cl SP buc GLGT scaler', 'cl SP ult GLGT predictor', 'cl SP ult GLGT scaler', 'cl UP buc int predictor', 'cl UP buc int scaler', 'cl UP ult int predictor', 'cl UP ult int scaler', 'cl UP buc GLGT predictor', 'cl UP buc GLGT scaler', 'cl UP ult GLGT predictor', 'cl UP ult GLGT scaler' ], ["ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_1_SP", "ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_2,_3_SP", "ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_1_UP", "ml_files\\CL_output_cl_buc_predictor_In-plane_support_cl_2,_3_UP", "ml_files\\CL_output_cl_buc_scaler_In-plane_support_cl_2,_3_UP", "ml_files\\CL_output_cl_ult_predictor_In-plane_support_cl_2,_3_UP", "ml_files\\CL_output_cl_ult_scaler_In-plane_support_cl_2,_3_UP", "CL_CSR-Tank_req_cl_predictor", "CL_CSR-Tank_req_cl_UP_scaler", "CL_CSR_plate_cl,_CSR_web_cl,_CSR_web_flange_cl,_CSR_flange_cl_predictor", "CL_CSR_plate_cl,_CSR_web_cl,_CSR_web_flange_cl,_CSR_flange_cl_SP_scaler"]): self._ML_buckling[name] = None if os.path.isfile(file_base + '.pickle'): file = open(file_base + '.pickle', 'rb') from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import StandardScaler self._ML_buckling[name] = pickle.load(file) file.close() self._ML_classes = {0: 'N/A', 1: 'A negative utilisation factor is found.', 2: 'At least one of the in-plane loads must be non-zero.', 3: 'Division by zero', 4: 'Overflow', 5: 'The aspect ratio exceeds the PULS code limit', 6: 'The global slenderness exceeds 4. Please reduce stiffener span or increase stiffener height.', 7: 'The applied pressure is too high for this plate field.', 8: 'web-flange-ratio', 9: 'UF below or equal 0.87', 10: 'UF between 0.87 and 1.0', 11: 'UF above 1.0'} else: self.app = app self._initial_calc_obj = app._line_to_struc[app._active_line][0] self._fatigue_object = app._line_to_struc[app._active_line][2] try: self._fatigue_pressure = app.get_fatigue_pressures(app._active_line, self._fatigue_object.get_accelerations()) except AttributeError: self._fatigue_pressure = None try: self._lateral_pressure = self.app.get_highest_pressure(self.app._active_line)['normal'] / 1e6 except KeyError: self._lateral_pressure = 0 try: if self.app.get_highest_pressure(self.app._active_line)['slamming'] is None: self._slamming_pressure = 0 else: self._slamming_pressure = self.app.get_highest_pressure(self.app._active_line)['slamming'] except KeyError: self._slamming_pressure = 0 image_dir = app._root_dir +'\\images\\' self._root_dir = app._root_dir self._PULS_object = app._PULS_results self._puls_acceptance = self.app._new_puls_uf.get() self._ML_buckling = app._ML_buckling self._predefined_stiffener_iter = None self._frame = master self._frame.wm_title("Optimize structure") self._frame.geometry('1400x900') self._frame.grab_set() self._opt_runned = False self._opt_results = () self._opt_actual_running_time = tk.Label(self._frame,text='',font='Verdana 12 bold') self._draw_scale = 500 self._canvas_dim = (500, 450) self._canvas_opt = tk.Canvas(self._frame,width=self._canvas_dim[0], height=self._canvas_dim[1], background='azure',relief = 'groove', borderwidth=2) tk.Frame(self._frame,width=770,height=5, bg="grey", colormap="new").place(x=20,y=127) tk.Frame(self._frame, width=770, height=5, bg="grey", colormap="new").place(x=20, y=167) self._canvas_opt.place(x=10,y=300) algorithms = ('anysmart','random','random_no_delta', 'anydetail') tk.Label(self._frame,text='-- Structural optimizer --',font='Verdana 15 bold').place(x=10,y=10) if self._initial_calc_obj.Stiffener is not None: self._spacing = self._initial_calc_obj.Plate.get_s() self._pl_thk = self._initial_calc_obj.Plate.get_pl_thk() self._stf_web_h = self._initial_calc_obj.Stiffener.get_web_h() self._stf_web_thk =self._initial_calc_obj.Stiffener.get_web_thk() self._fl_w = self._initial_calc_obj.Stiffener.get_fl_w() self._fl_thk =self._initial_calc_obj.Stiffener.get_fl_thk() else: self._spacing = self._initial_calc_obj.Plate.get_s() self._pl_thk = self._initial_calc_obj.Plate.get_pl_thk() self._stf_web_h = 0 self._stf_web_thk =0 self._fl_w = 0 self._fl_thk =0 # upper and lower bounds for optimization #[0.6, 0.012, 0.3, 0.01, 0.1, 0.01] self._new_spacing_upper = tk.DoubleVar() self._new_spacing_lower = tk.DoubleVar() self._new_pl_thk_upper = tk.DoubleVar() self._new_pl_thk_lower = tk.DoubleVar() self._new_web_h_upper = tk.DoubleVar() self._new_web_h_lower = tk.DoubleVar() self._new_web_thk_upper = tk.DoubleVar() self._new_web_thk_lower = tk.DoubleVar() self._new_fl_w_upper = tk.DoubleVar() self._new_fl_w_lower = tk.DoubleVar() self._new_fl_thk_upper = tk.DoubleVar() self._new_fl_thk_lower = tk.DoubleVar() self._new_span = tk.DoubleVar() self._new_width_lg = tk.DoubleVar() self._new_algorithm = tk.StringVar() self._new_algorithm_random_trials = tk.IntVar() self._new_swarm_size = tk.IntVar() self._new_omega = tk.DoubleVar() self._new_phip = tk.DoubleVar() self._new_phig = tk.DoubleVar() self._new_maxiter = tk.IntVar() self._new_minstep = tk.DoubleVar() self._new_minfunc = tk.DoubleVar() self._new_slamming_pressure = tk.DoubleVar() self._new_fatigue_int_press = tk.DoubleVar() self._new_fatigue_ext_press = tk.DoubleVar() ent_w = 10 self._ent_spacing_upper = tk.Entry(self._frame, textvariable = self._new_spacing_upper, width = ent_w) self._ent_spacing_lower = tk.Entry(self._frame, textvariable=self._new_spacing_lower, width=ent_w) self._ent_pl_thk_upper= tk.Entry(self._frame, textvariable=self._new_pl_thk_upper, width=ent_w) self._ent_pl_thk_lower= tk.Entry(self._frame, textvariable=self._new_pl_thk_lower, width=ent_w) self._ent_web_h_upper = tk.Entry(self._frame, textvariable=self._new_web_h_upper, width=ent_w) self._ent_web_h_lower = tk.Entry(self._frame, textvariable=self._new_web_h_lower, width=ent_w) self._ent_web_thk_upper = tk.Entry(self._frame, textvariable=self._new_web_thk_upper, width=ent_w) self._ent_web_thk_lower = tk.Entry(self._frame, textvariable=self._new_web_thk_lower, width=ent_w) self._ent_fl_w_upper = tk.Entry(self._frame, textvariable=self._new_fl_w_upper, width=ent_w) self._ent_fl_w_lower = tk.Entry(self._frame, textvariable=self._new_fl_w_lower, width=ent_w) self._ent_fl_thk_upper = tk.Entry(self._frame, textvariable=self._new_fl_thk_upper, width=ent_w) self._ent_fl_thk_lower = tk.Entry(self._frame, textvariable=self._new_fl_thk_lower, width=ent_w) self._ent_span = tk.Entry(self._frame, textvariable=self._new_span, width=ent_w) self._ent_width_lg = tk.Entry(self._frame, textvariable=self._new_width_lg, width=ent_w) self._ent_slamming_pressure = tk.Entry(self._frame, textvariable=self._new_slamming_pressure, width=ent_w) #additional choices for the random and pso algorithm self._ent_algorithm = tk.OptionMenu(self._frame,self._new_algorithm,command=self.selected_algorithm,*algorithms) self._ent_random_trials = tk.Entry(self._frame,textvariable=self._new_algorithm_random_trials) pso_width = 10 self._ent_swarm_size = tk.Entry(self._frame,textvariable=self._new_swarm_size, width = pso_width) self._ent_omega = tk.Entry(self._frame,textvariable=self._new_omega, width = pso_width) self._ent_phip = tk.Entry(self._frame,textvariable=self._new_phip, width = pso_width) self._ent_phig = tk.Entry(self._frame,textvariable=self._new_phig, width = pso_width) self._ent_maxiter = tk.Entry(self._frame,textvariable=self._new_maxiter, width = pso_width) self._ent_minstep = tk.Entry(self._frame,textvariable=self._new_minstep, width = pso_width) self._ent_minfunc = tk.Entry(self._frame,textvariable=self._new_minfunc, width = pso_width) self._new_delta_spacing = tk.DoubleVar() self._new_delta_pl_thk = tk.DoubleVar() self._new_delta_web_h = tk.DoubleVar() self._new_delta_web_thk = tk.DoubleVar() self._new_delta_fl_w = tk.DoubleVar() self._new_delta_fl_thk = tk.DoubleVar() self._new_opt_spacing = tk.DoubleVar() self._new_opt_pl_thk = tk.DoubleVar() self._new_opt_web_h = tk.DoubleVar() self._new_opt_web_thk = tk.DoubleVar() self._new_opt_fl_w = tk.DoubleVar() self._new_opt_fl_thk = tk.DoubleVar() self._ent_delta_spacing = tk.Entry(self._frame, textvariable = self._new_delta_spacing, width = ent_w) self._ent_delta_pl_thk = tk.Entry(self._frame, textvariable = self._new_delta_pl_thk, width = ent_w) self._ent_delta_web_h = tk.Entry(self._frame, textvariable = self._new_delta_web_h, width = ent_w) self._ent_delta_web_thk = tk.Entry(self._frame, textvariable = self._new_delta_web_thk, width = ent_w) self._ent_delta_fl_w = tk.Entry(self._frame, textvariable = self._new_delta_fl_w, width = ent_w) self._ent_delta_fl_thk = tk.Entry(self._frame, textvariable = self._new_delta_fl_thk, width = ent_w) bg_col = 'pink' self._ent_opt_spacing = tk.Entry(self._frame, textvariable=self._new_opt_spacing, width=ent_w,bg=bg_col) self._ent_opt_pl_thk = tk.Entry(self._frame, textvariable=self._new_opt_pl_thk, width=ent_w,bg=bg_col) self._ent_opt_web_h = tk.Entry(self._frame, textvariable=self._new_opt_web_h, width=ent_w,bg=bg_col) self._ent_opt_web_thk = tk.Entry(self._frame, textvariable=self._new_opt_web_thk, width=ent_w,bg=bg_col) self._ent_opt_fl_w = tk.Entry(self._frame, textvariable=self._new_opt_fl_w, width=ent_w,bg=bg_col) self._ent_opt_fl_thk = tk.Entry(self._frame, textvariable=self._new_opt_fl_thk, width=ent_w,bg=bg_col) # stresses in plate and stiffener self._new_trans_stress_high = tk.DoubleVar() self._new_trans_stress_low = tk.DoubleVar() self._new_axial_stress = tk.DoubleVar() self._new_shear_stress = tk.DoubleVar() self._new_design_pressure = tk.DoubleVar() self._new_pressure_side = tk.StringVar() self._ent_trans_stress_high = tk.Entry(self._frame, textvariable=self._new_trans_stress_high, width=ent_w) self._ent_trans_stress_low = tk.Entry(self._frame, textvariable=self._new_trans_stress_low, width=ent_w) self._ent_axial_stress = tk.Entry(self._frame, textvariable=self._new_axial_stress, width=ent_w) self._ent_design_pressure = tk.Entry(self._frame, textvariable=self._new_design_pressure, width=ent_w) self._ent_design_pressure_side = tk.OptionMenu(self._frame,self._new_pressure_side,*('p','s')) self._ent_shear_stress = tk.Entry(self._frame, textvariable=self._new_shear_stress, width=ent_w) start_x,start_y,dx,dy = 20,100,100,40 self._new_processes = tk.IntVar() self._new_processes.set(max(cpu_count() - 1, 1)) tk.Label(self._frame, text='Processes\n (CPUs)', font='Verdana 9 bold', bg = 'silver')\ .place(x=start_x + 8.3 * dx, y=start_y - 1.1 * dy) tk.Entry(self._frame, textvariable=self._new_processes, width = 12, bg = 'silver')\ .place(x=start_x + 8.3 * dx, y=start_y - 0.3 * dy) tk.Label(self._frame,text='Upper bounds [mm]',font='Verdana 9').place(x=start_x,y=start_y) tk.Label(self._frame, text='Iteration delta [mm]',font='Verdana 9').place(x=start_x, y=start_y+dy) tk.Label(self._frame, text='Lower bounds [mm]',font='Verdana 9').place(x=start_x, y=start_y+2*dy) tk.Label(self._frame, text='Spacing [mm]', font='Verdana 7 bold').place(x=start_x + 1.97 * dx, y=start_y-0.6*dy) tk.Label(self._frame, text='Plate thk. [mm]', font='Verdana 7 bold').place(x=start_x + 2.97 * dx, y=start_y-0.6*dy) tk.Label(self._frame, text='Web height [mm]', font='Verdana 7 bold').place(x=start_x + 3.97 * dx, y=start_y-0.6*dy) tk.Label(self._frame, text='Web thk. [mm]', font='Verdana 7 bold').place(x=start_x + 4.97 * dx, y=start_y-0.6*dy) tk.Label(self._frame, text='Flange width [mm]', font='Verdana 7 bold').place(x=start_x + 5.97 * dx, y=start_y-0.6*dy) tk.Label(self._frame, text='Flange thk. [mm]', font='Verdana 7 bold').place(x=start_x + 6.97 * dx, y=start_y-0.6*dy) tk.Label(self._frame, text='--------- Number of combinations to run --------->\n' 'PULS buckling is time consuming, about 0.2 sec. per comb.\n' 'RP-C203 is much faster and can run many more combinations, 1M+.\n' 'ML-CL is about as fast as RP-C203.', font='Verdana 9 bold').place(x=start_x+0.1*dx, y=start_y + 2.8 * dy, anchor = tk.NW) self._runnig_time_label = tk.Label(self._frame, text='',font='Verdana 12 bold', fg = 'red') self._runnig_time_label.place(x=start_x+4.3*dx, y=start_y + 2.8 * dy) #tk.Label(self._frame, text='seconds ',font='Verdana 9 bold').place(x=start_x+6*dx, y=start_y + 2.8 * dy) self._result_label = tk.Label(self._frame, text = '',font = 'Verdana 9 bold' ) self._result_label.place(x=start_x, y=start_y + 4.2 * dy) self._ent_spacing_upper.place(x=start_x+dx*2,y=start_y) self._ent_delta_spacing.place(x=start_x+dx*2,y=start_y+dy) self._ent_spacing_lower.place(x=start_x+dx*2,y=start_y+2*dy) self._ent_pl_thk_upper.place(x=start_x+dx*3,y=start_y) self._ent_delta_pl_thk.place(x=start_x+dx*3,y=start_y+dy) self._ent_pl_thk_lower.place(x=start_x+dx*3,y=start_y+2*dy) self._ent_web_h_upper.place(x=start_x+dx*4,y=start_y) self._ent_delta_web_h.place(x=start_x+dx*4,y=start_y+dy) self._ent_web_h_lower.place(x=start_x+dx*4,y=start_y+2*dy) self._ent_web_thk_upper.place(x=start_x+dx*5,y=start_y) self._ent_delta_web_thk.place(x=start_x+dx*5,y=start_y+dy) self._ent_web_thk_lower.place(x=start_x+dx*5,y=start_y+2*dy) self._ent_fl_w_upper.place(x=start_x+dx*6,y=start_y) self._ent_delta_fl_w.place(x=start_x+dx*6,y=start_y+dy) self._ent_fl_w_lower.place(x=start_x+dx*6,y=start_y+2*dy) self._ent_fl_thk_upper.place(x=start_x+dx*7,y=start_y) self._ent_delta_fl_thk.place(x=start_x+dx*7,y=start_y+dy) self._ent_fl_thk_lower.place(x=start_x+dx*7,y=start_y+2*dy) ### # tk.Label(self._frame,text='Optimized result:\n')\ # .place(x=start_x,y=start_y+ver_mult*dy*0.9) dx_mult = 0.7 tk.Label(self._frame,text='Optimized values').place(x=start_x,y=start_y+17*dy) tk.Label(self._frame, text='s').place(x=start_x, y=start_y + 18 * dy) tk.Label(self._frame, text='pl_thk').place(x=start_x, y=start_y + 19 * dy) self._ent_opt_spacing.place(x=start_x+dx_mult*dx,y=start_y+18*dy) self._ent_opt_pl_thk.place(x=start_x+dx_mult*dx,y=start_y+19*dy) tk.Label(self._frame, text='web_h').place(x=start_x+2*dx_mult*dx, y=start_y + 18 * dy) tk.Label(self._frame, text='web_htk').place(x=start_x+2*dx_mult*dx, y=start_y + 19 * dy) self._ent_opt_web_h.place(x=start_x+3*dx_mult*dx,y=start_y+18*dy) self._ent_opt_web_thk.place(x=start_x+3*dx_mult*dx,y=start_y+19*dy) tk.Label(self._frame, text='fl_thk').place(x=start_x+4*dx_mult*dx, y=start_y + 18 * dy) tk.Label(self._frame, text='fl_ttk.').place(x=start_x+4*dx_mult*dx, y=start_y + 19 * dy) self._ent_opt_fl_w.place(x=start_x+5*dx_mult*dx,y=start_y+18*dy) self._ent_opt_fl_thk.place(x=start_x+5*dx_mult*dx,y=start_y+19*dy) #Labels for the pso self._lb_swarm_size = tk.Label(self._frame,text='swarm size') self._lb_omega = tk.Label(self._frame,text='omega') self._lb_phip = tk.Label(self._frame,text='phip') self._lb_phig = tk.Label(self._frame,text='phig') self._lb_maxiter = tk.Label(self._frame,text='maxiter') self._lb_minstep = tk.Label(self._frame,text='minstep') self._lb_minfunc = tk.Label(self._frame,text='minfunc') ### tk.Label(self._frame, text='Sigma,y1_Sd - large transversal stress', font='Verdana 9')\ .place(x=start_x+dx*5,y=start_y+11.5*dy) tk.Label(self._frame, text='MPa', font='Verdana 9')\ .place(x=start_x+dx*9,y=start_y+11.5*dy) tk.Label(self._frame, text='Sigma,y2_Sd - small transversal stress', font='Verdana 9')\ .place(x=start_x+dx*5,y=start_y+12.5*dy) tk.Label(self._frame, text='MPa', font='Verdana 9')\ .place(x=start_x+dx*9,y=start_y+12.5*dy) tk.Label(self._frame, text='Sigma,x_Sd - axial stress', font='Verdana 9')\ .place(x=start_x+dx*5,y=start_y+13.5*dy) tk.Label(self._frame, text='MPa', font='Verdana 9')\ .place(x=start_x+dx*9,y=start_y+13.5*dy) tk.Label(self._frame, text='Tau,xy - shear stress', font='Verdana 9')\ .place(x=start_x+dx*5,y=start_y+14.5*dy) tk.Label(self._frame, text='MPa', font='Verdana 9')\ .place(x=start_x+dx*9,y=start_y+14.5*dy) tk.Label(self._frame, text='Applied pressure ', font='Verdana 9 bold')\ .place(x=start_x+dx*5,y=start_y+15.5*dy) tk.Label(self._frame, text='kPa', font='Verdana 9')\ .place(x=start_x+dx*9,y=start_y+15.5*dy) tk.Label(self._frame, text='Plate or stiffener side (p/s): ', font='Verdana 9 bold')\ .place(x=start_x+dx*9.5,y=start_y+15.5*dy) tk.Label(self._frame, text='Span: ', font='Verdana 9') \ .place(x=start_x + dx * 5, y=start_y + 16.5 * dy) tk.Label(self._frame, text='m', font='Verdana 9')\ .place(x=start_x+dx*9,y=start_y+16.5*dy) tk.Label(self._frame, text='Girder length,Lg: ', font='Verdana 9') \ .place(x=start_x + dx * 5, y=start_y + 17.5 * dy) tk.Label(self._frame, text='m', font='Verdana 9')\ .place(x=start_x+dx*9,y=start_y+17.5*dy) tk.Label(self._frame, text='Slamming pressure ', font='Verdana 9') \ .place(x=start_x + dx * 5, y=start_y + 18.5 * dy) tk.Label(self._frame, text='Pa', font='Verdana 9')\ .place(x=start_x+dx*9,y=start_y+18.5*dy) if self._fatigue_pressure is not None: tk.Label(self._frame, text='Fatigue pressure: internal= '+str(self._fatigue_pressure['p_int'])+ ' external= ' +str(self._fatigue_pressure['p_ext']), font='Verdana 7') \ .place(x=start_x + dx * 5, y=start_y + 19.3 * dy) else: tk.Label(self._frame, text='Fatigue pressure: internal= '+str(0)+ ' external= ' +str(0), font='Verdana 7') \ .place(x=start_x + dx * 5, y=start_y + 19.3 * dy) self._ent_trans_stress_high.place(x=start_x+dx*8,y=start_y+11.5*dy) self._ent_trans_stress_low.place(x=start_x+dx*8,y=start_y+12.5*dy) self._ent_axial_stress.place(x=start_x+dx*8,y=start_y+13.5*dy) self._ent_shear_stress.place(x=start_x + dx * 8, y=start_y + 14.5 * dy) self._ent_design_pressure.place(x=start_x + dx * 8, y=start_y + 15.5 * dy) self._ent_design_pressure_side.place(x=start_x + dx * 12, y=start_y + 15.5 * dy) self._ent_span.place(x=start_x + dx * 8, y=start_y + 16.5 * dy) self._ent_width_lg.place(x=start_x + dx * 8, y=start_y + 17.5 * dy) self._ent_slamming_pressure.place(x=start_x + dx * 8, y=start_y + 18.5 * dy) #setting default values init_dim = float(10) #mm init_thk = float(1) #mm self._new_delta_spacing.set(init_dim) self._new_delta_pl_thk.set(init_thk) self._new_delta_web_h.set(init_dim) self._new_delta_web_thk.set(init_thk) self._new_delta_fl_w.set(init_dim) self._new_delta_fl_thk.set(init_thk) self._new_trans_stress_high.set(self._initial_calc_obj.Plate.get_sigma_y1()) self._new_trans_stress_low.set(self._initial_calc_obj.Plate.get_sigma_y2()) self._new_axial_stress.set(self._initial_calc_obj.Plate.get_sigma_x1()) self._new_shear_stress.set(self._initial_calc_obj.Plate.get_tau_xy()) self._new_design_pressure.set(self._lateral_pressure) self._new_slamming_pressure.set(self._slamming_pressure) if self._fatigue_pressure is None: self._new_fatigue_ext_press.set(0), self._new_fatigue_int_press.set(0) else: self._new_fatigue_int_press.set(self._fatigue_pressure['p_int']), \ self._new_fatigue_ext_press.set(self._fatigue_pressure['p_ext']) self._new_spacing_upper.set(round(self._spacing*1000,5)) self._new_spacing_lower.set(round(max(self._spacing*1000,0),5)) self._new_pl_thk_upper.set(round(self._pl_thk*1000+10,5)) self._new_pl_thk_lower.set(round(max(self._pl_thk*1000-10,float(10)),5)) self._new_web_h_upper.set(round(self._stf_web_h*1000+100,5)) self._new_web_h_lower.set(round(max(self._stf_web_h*1000-100,100),5)) self._new_web_thk_upper.set(round(self._stf_web_thk*1000+10,5)) self._new_web_thk_lower.set(round(max(self._stf_web_thk*1000-10,float(10)),5)) if self._initial_calc_obj.Stiffener is not None: if self._initial_calc_obj.Stiffener.get_stiffener_type() != 'FB': self._new_fl_w_upper.set(min(round(self._fl_w*1000+100,5), 200)) self._new_fl_w_lower.set(round(max(self._fl_w*1000-100,100),5)) self._new_fl_thk_upper.set(round(self._fl_thk*1000+10,15)) self._new_fl_thk_lower.set(round(max(self._fl_thk*1000-10,10),15)) else: self._new_fl_w_upper.set(0) self._new_fl_w_lower.set(0) self._new_fl_thk_upper.set(0) self._new_fl_thk_lower.set(0) self._new_pressure_side.set('p') self._new_width_lg.set(10) self._new_span.set(round(self._initial_calc_obj.Plate.get_span(),5)) self._new_algorithm.set('anysmart') self._new_algorithm_random_trials.set(100000) self._new_swarm_size.set(100) self._new_omega.set(0.5) self._new_phip.set(0.5) self._new_phig.set(0.5) self._new_maxiter.set(100) self._new_minstep.set(1e-8) self._new_minfunc.set(1e-8) self._new_delta_spacing.trace('w',self.update_running_time) self._new_delta_pl_thk.trace('w',self.update_running_time) self._new_delta_web_h.trace('w',self.update_running_time) self._new_delta_web_thk.trace('w',self.update_running_time) self._new_delta_fl_w.trace('w',self.update_running_time) self._new_delta_fl_thk.trace('w',self.update_running_time) self._new_spacing_upper.trace('w',self.update_running_time) self._new_spacing_lower.trace('w',self.update_running_time) self._new_pl_thk_upper.trace('w',self.update_running_time) self._new_pl_thk_lower.trace('w',self.update_running_time) self._new_web_h_upper.trace('w',self.update_running_time) self._new_web_h_lower.trace('w',self.update_running_time) self._new_web_thk_upper.trace('w',self.update_running_time) self._new_web_thk_lower.trace('w',self.update_running_time) self._new_fl_w_upper.trace('w',self.update_running_time) self._new_fl_w_lower.trace('w',self.update_running_time) self._new_fl_thk_upper.trace('w',self.update_running_time) self._new_fl_thk_lower.trace('w',self.update_running_time) self._new_algorithm_random_trials.trace('w',self.update_running_time) self._new_algorithm.trace('w',self.update_running_time) self.running_time_per_item = {'PULS':0.2489626556016598, 'RP': 1.009943181818182e-5} self.initial_weight = op.calc_weight([self._spacing,self._pl_thk,self._stf_web_h,self._stf_web_thk, self._fl_w,self._fl_thk,self._new_span.get(),self._new_width_lg.get()]) img_file_name = 'img_plate_and_stiffener.gif' if os.path.isfile('images/' + img_file_name): file_path = 'images/' + img_file_name else: file_path = self._root_dir + '/images/' + img_file_name photo = tk.PhotoImage(file=file_path) label = tk.Label(self._frame,image=photo) label.image = photo # keep a reference! label.place(x=550, y=300) tk.Label(self._frame,text='Select algorithm', font = 'Verdana 8 bold').place(x=start_x+dx*11, y=start_y+0.5*dy) self._ent_algorithm.place(x=start_x+dx*11, y=start_y+dy) self.algorithm_random_label = tk.Label(self._frame, text='Number of trials') tk.Button(self._frame,text='algorith information',command=self.algorithm_info,bg='white')\ .place(x=start_x+dx*11, y=start_y+dy*2) self.run_button = tk.Button(self._frame,text='RUN OPTIMIZATION!', command=self.run_optimizaion, bg='red', font='Verdana 10 bold',fg='Yellow', relief="raised") self.run_button.place(x=start_x+dx*8, y=start_y+dy*0.5, relwidth = 0.15) self.run_results = tk.Button(self._frame,text='show calculated', command=self.plot_results, bg='white', font='Verdana 10',fg='black') self.run_results.place(x=start_x+dx*8, y=start_y+dy*1.5) self._opt_actual_running_time.place(x=start_x+dx*9.5, y=start_y-dy) self.close_and_save =tk.Button(self._frame,text='Return and replace initial structure with optimized', command=self.save_and_close,bg='green',font='Verdana 10',fg='yellow') self.close_and_save.place(x=start_x+dx*5,y=10) tk.Button(self._frame, text='Open predefined stiffeners example', command=self.open_example_file, bg='white', font='Verdana 10')\ .place(x=start_x+dx*10,y=10) # Selection of constraints self._new_check_sec_mod = tk.BooleanVar() self._new_check_min_pl_thk = tk.BooleanVar() self._new_check_shear_area = tk.BooleanVar() self._new_check_buckling = tk.BooleanVar() self._new_check_buckling_puls = tk.BooleanVar() self._new_check_buckling_ml_cl = tk.BooleanVar() self._new_check_fatigue = tk.BooleanVar() self._new_check_slamming = tk.BooleanVar() self._new_check_local_buckling = tk.BooleanVar() self._new_use_weight_filter = tk.BooleanVar() self._new_check_sec_mod.set(True) self._new_check_min_pl_thk.set(True) self._new_check_shear_area.set(True) self._new_check_buckling.set(True) self._new_check_fatigue.set(True) self._new_check_slamming.set(False) self._new_check_local_buckling.set(True) self._new_use_weight_filter.set(True) self._new_check_buckling_puls.set(False) self._new_check_buckling_ml_cl.set(False) self._new_check_buckling_puls.trace('w', self.update_running_time) self._new_check_buckling_ml_cl.trace('w', self.update_running_time) start_y = 140 tk.Label(self._frame,text='Check for minimum section mofdulus').place(x=start_x+dx*9.7,y=start_y+4*dy) tk.Label(self._frame, text='Check for minimum plate thk.').place(x=start_x+dx*9.7,y=start_y+5*dy) tk.Label(self._frame, text='Check for minimum shear area').place(x=start_x+dx*9.7,y=start_y+6*dy) tk.Label(self._frame, text='Check for buckling (RP-C201)').place(x=start_x+dx*9.7,y=start_y+7*dy) tk.Label(self._frame, text='Check for fatigue (RP-C203)').place(x=start_x + dx * 9.7, y=start_y + 8 * dy) tk.Label(self._frame, text='Check for bow slamming').place(x=start_x + dx * 9.7, y=start_y + 9 * dy) tk.Label(self._frame, text='Check for local stf. buckling').place(x=start_x + dx * 9.7, y=start_y + 10 * dy) tk.Label(self._frame, text='Use weight filter (for speed)').place(x=start_x + dx * 9.7, y=start_y + 11 * dy) tk.Label(self._frame, text='Check for buckling (PULS)').place(x=start_x + dx * 9.7, y=start_y + 12 * dy) tk.Label(self._frame, text='Check for buckling (ML-CL)').place(x=start_x + dx * 9.7, y=start_y + 13 * dy) tk.Checkbutton(self._frame,variable=self._new_check_sec_mod).place(x=start_x+dx*12,y=start_y+4*dy) tk.Checkbutton(self._frame, variable=self._new_check_min_pl_thk).place(x=start_x+dx*12,y=start_y+5*dy) tk.Checkbutton(self._frame, variable=self._new_check_shear_area).place(x=start_x+dx*12,y=start_y+6*dy) tk.Checkbutton(self._frame, variable=self._new_check_buckling).place(x=start_x+dx*12,y=start_y+7*dy) tk.Checkbutton(self._frame, variable=self._new_check_fatigue).place(x=start_x + dx * 12, y=start_y + 8 * dy) tk.Checkbutton(self._frame, variable=self._new_check_slamming).place(x=start_x + dx * 12, y=start_y + 9 * dy) tk.Checkbutton(self._frame, variable=self._new_check_local_buckling).place(x=start_x + dx * 12, y=start_y + 10 * dy) tk.Checkbutton(self._frame, variable=self._new_use_weight_filter).place(x=start_x + dx * 12, y=start_y + 11 * dy) tk.Checkbutton(self._frame, variable=self._new_check_buckling_puls).place(x=start_x + dx * 12, y=start_y + 12 * dy) tk.Checkbutton(self._frame, variable=self._new_check_buckling_ml_cl).place(x=start_x + dx * 12, y=start_y + 13 * dy) # Stress scaling self._new_fup = tk.DoubleVar() self._new_fup.set(0.5) self._new_fdwn = tk.DoubleVar() self._new_fdwn.set(1) tk.Label(self._frame, text='Factor when scaling stresses up, fup')\ .place(x=start_x + dx * 9.7, y=start_y + 16 * dy) ent_fup = tk.Entry(self._frame, textvariable=self._new_fup, width = 10) ent_fup.place(x=start_x + dx * 12, y=start_y + 16 * dy) tk.Label(self._frame, text='Factor when scaling stresses up, fdown')\ .place(x=start_x + dx * 9.7, y=start_y + 17 * dy) ent_fdwn = tk.Entry(self._frame, textvariable=self._new_fdwn, width = 10) ent_fdwn.place(x=start_x + dx * 12, y=start_y + 17 * dy) # tk.Button(self._frame,text='Iterate predefiened stiffeners',command=self.open_multiple_files ,bg='yellow')\ # .place(x=start_x, y=start_y - dy * 2) self._toggle_btn = tk.Button(self._frame, text="Iterate predefiened stiffeners", relief="raised", command=self.toggle, bg = 'salmon') self._toggle_btn.place(x=start_x, y=start_y - dy * 2) self._toggle_object, self._filez = self._initial_calc_obj, None self.draw_properties() self.update_running_time() def selected_algorithm(self,event): ''' Action when selecting an algorithm. :return: ''' start_x, start_y, dx, dy = 20, 100, 100, 40 if self._new_algorithm.get()=='random' or self._new_algorithm.get()=='random_no_delta': self._ent_random_trials.place_forget() self.algorithm_random_label.place_forget() self._lb_swarm_size.place_forget() self._lb_omega.place_forget() self._lb_phip.place_forget() self._lb_phig.place_forget() self._lb_maxiter.place_forget() self._lb_minstep.place_forget() self._lb_minfunc.place_forget() self._ent_swarm_size.place_forget() self._ent_omega.place_forget() self._ent_phip.place_forget() self._ent_phig.place_forget() self._ent_maxiter.place_forget() self._ent_minstep.place_forget() self._ent_minfunc.place_forget() self._ent_random_trials.place(x=start_x+dx*11.3, y=start_y+1.2*dy) self.algorithm_random_label.place(x=start_x+dx*11.3, y=start_y+0.5*dy) elif self._new_algorithm.get()=='anysmart' or self._new_algorithm.get()=='anydetail': self._ent_random_trials.place_forget() self.algorithm_random_label.place_forget() self._lb_swarm_size.place_forget() self._lb_omega.place_forget() self._lb_phip.place_forget() self._lb_phig.place_forget() self._lb_maxiter.place_forget() self._lb_minstep.place_forget() self._lb_minfunc.place_forget() self._ent_swarm_size.place_forget() self._ent_omega.place_forget() self._ent_phip.place_forget() self._ent_phig.place_forget() self._ent_maxiter.place_forget() self._ent_minstep.place_forget() self._ent_minfunc.place_forget() elif self._new_algorithm.get()=='pso': y_place_label =11.2 y_place = 12.2 self._ent_random_trials.place_forget() self._lb_swarm_size.place(x=start_x+dx*y_place_label, y=start_y-2*dy) self._lb_omega.place(x=start_x+dx*y_place_label, y=start_y-1*dy) self._lb_phip.place(x=start_x+dx*y_place_label, y=start_y-0*dy) self._lb_phig.place(x=start_x+dx*y_place_label, y=start_y+1*dy) self._lb_maxiter.place(x=start_x+dx*y_place_label, y=start_y+2*dy) self._lb_minstep.place(x=start_x+dx*y_place_label, y=start_y+3*dy) self._lb_minfunc.place(x=start_x+dx*y_place_label, y=start_y+4*dy) self._ent_swarm_size.place(x=start_x+dx*y_place, y=start_y-2*dy) self._ent_omega.place(x=start_x+dx*y_place, y=start_y-1*dy) self._ent_phip.place(x=start_x+dx*y_place, y=start_y+0*dy) self._ent_phig.place(x=start_x+dx*y_place, y=start_y+1*dy) self._ent_maxiter.place(x=start_x+dx*y_place, y=start_y+2*dy) self._ent_minstep.place(x=start_x+dx*y_place, y=start_y+3*dy) self._ent_minfunc.place(x=start_x+dx*y_place, y=start_y+4*dy) def modify_structure_object(self): ''' Chaning parameters in the structure object before running. ''' pass def run_optimizaion(self): ''' function for button :return: ''' self.run_button.config(bg = 'white') self.run_button.config(fg='red') self.run_button.config(text='RUNNING OPTIMIZATION') self.run_button.config(relief="sunken") self._opt_actual_running_time.config(text='Run started ' + datetime.datetime.now().strftime("%H:%M:%S")) self._opt_actual_running_time.update() t_start = time.time() self._opt_results, self._opt_runned = (), False if self._PULS_object is not None: puls_sheet_location = self._PULS_object.puls_sheet_location puls_acceptance = self._puls_acceptance if self._new_check_buckling_puls.get() == True: if puls_sheet_location is None or not os.path.isfile( puls_sheet_location): tk.messagebox.showerror('No PULS excel sheet located', 'Set location of PULS excel sheet.\n' 'Note that PULS excel may require 32 bit ' 'office.\n\n' 'A sheet may be provided but does not exist' ' in :\n' + self._PULS_results.puls_sheet_location + '\n\n Return to main window an run one or more lines in PULS.') else: puls_sheet_location = None puls_acceptance =0.87 self.pso_parameters = (self._new_swarm_size.get(),self._new_omega.get(),self._new_phip.get(), self._new_phig.get(), self._new_maxiter.get(),self._new_minstep.get(),self._new_minfunc.get()) contraints = (self._new_check_sec_mod.get(),self._new_check_min_pl_thk.get(), self._new_check_shear_area.get(), self._new_check_buckling.get(), self._new_check_fatigue.get(), self._new_check_slamming.get(), self._new_check_local_buckling.get(), self._new_check_buckling_puls.get(), self._new_check_buckling_ml_cl.get(), False) self._initial_calc_obj.Plate.set_span(self._new_span.get()) if self._fatigue_pressure is not None: fat_press = ((self._fatigue_pressure['p_ext']['loaded'],self._fatigue_pressure['p_ext']['ballast'], self._fatigue_pressure['p_ext']['part']), (self._fatigue_pressure['p_int']['loaded'],self._fatigue_pressure['p_int']['ballast'], self._fatigue_pressure['p_int']['part'])) else: fat_press = None self._opt_results= op.run_optmizataion(self._initial_calc_obj,self.get_lower_bounds(), self.get_upper_bounds(),self._new_design_pressure.get(), self.get_deltas(),algorithm=self._new_algorithm.get(), trials=self._new_algorithm_random_trials.get(), side=self._new_pressure_side.get(), const_chk=contraints,pso_options = self.pso_parameters, fatigue_obj=self._fatigue_object, fat_press_ext_int=fat_press, slamming_press = self._new_slamming_pressure.get(), predefined_stiffener_iter=self._predefined_stiffener_iter, processes=self._new_processes.get(), use_weight_filter = False if self._new_check_buckling_puls.get() else self._new_use_weight_filter.get(), puls_sheet = puls_sheet_location, puls_acceptance = puls_acceptance, fdwn = self._new_fdwn.get(), fup = self._new_fdwn.get(), ml_algo= self._ML_buckling) if self._opt_results is not None and self._opt_results[0] is not None: self._opt_actual_running_time.config(text='Actual running time: \n' +str(round((time.time()-t_start)/60,4))+' min') self._opt_actual_running_time.update() self._opt_runned = True if self._opt_results[0].Stiffener is not None: text = 'Optimization result | Spacing: ' + str(round(self._opt_results[0].Plate.get_s(), 10) * 1000) +\ ' Plate thickness: ' + str(round(self._opt_results[0].Plate.get_pl_thk() * 1000, 10)) +\ ' Stiffener - T' + str(round(self._opt_results[0].Stiffener.get_web_h() * 1000, 10)) + 'x'\ +str(round(self._opt_results[0].Stiffener.get_web_thk() * 1000, 10)) +\ '+' + str(round(self._opt_results[0].Stiffener.get_fl_w() * 1000, 10)) + 'x'\ +str(round(self._opt_results[0].Stiffener.get_fl_thk() * 1000, 10)) else: text = 'Optimization result | Spacing: ' + str(round(self._opt_results[0].Plate.get_s(), 10) * 1000) +\ ' Plate thickness: ' + str(round(self._opt_results[0].Plate.get_pl_thk() * 1000, 10)) self._result_label.config(text= text) self._new_opt_spacing.set(round(self._opt_results[0].Plate.get_s(),5)) self._new_opt_pl_thk.set(round(self._opt_results[0].Plate.get_pl_thk(),5)) if self._opt_results[0].Stiffener is not None: self._new_opt_web_h.set(round(self._opt_results[0].Stiffener.get_web_h(),5)) self._new_opt_web_thk.set(round(self._opt_results[0].Stiffener.get_web_thk(),5)) self._new_opt_fl_w.set(round(self._opt_results[0].Stiffener.get_fl_w(),5)) self._new_opt_fl_thk.set(round(self._opt_results[0].Stiffener.get_fl_thk(),5)) self.draw_properties() else: messagebox.showinfo(title='Nothing found', message='No better alternatives found. Modify input.\n' 'There may be no alternative that is acceptable.\n') self.run_button.config(bg='green') self.run_button.config(fg='yellow') self.run_button.config(text='RUN OPTIMIZATION') self.run_button.config(relief="raised") def get_running_time(self): ''' Estimate the running time of the algorithm. :return: ''' if self._new_algorithm.get() in ['anysmart','anydetail']: all_combs = op.any_get_all_combs(self.get_lower_bounds(), self.get_upper_bounds(), self.get_deltas(), predef_stiffeners=None if self._predefined_stiffener_iter is None else [item.get_tuple() for item in self._predefined_stiffener_iter]) number_of_combinations = len([val for val in all_combs]) return int(number_of_combinations * self.running_time_per_item['PULS' if self._new_check_buckling_puls.get() else 'RP']), number_of_combinations elif self._new_algorithm.get() in ['pso','random','random_no_delta']: try: number_of_combinations = \ max((self._new_spacing_upper.get()-self._new_spacing_lower.get())/self._new_delta_spacing.get(),1)* \ max((self._new_pl_thk_upper.get()-self._new_pl_thk_lower.get())/self._new_delta_pl_thk.get(),1)*\ max((self._new_web_h_upper.get()-self._new_web_h_lower.get())/self._new_delta_web_h.get(),1)*\ max((self._new_web_thk_upper.get()-self._new_web_thk_lower.get())/self._new_delta_web_thk.get(),1)*\ max((self._new_fl_w_upper.get()-self._new_fl_w_lower.get())/self._new_delta_fl_w.get(),1)*\ max((self._new_fl_thk_upper.get()-self._new_fl_thk_lower.get())/self._new_delta_fl_thk.get(),1) return int(number_of_combinations*self.running_time_per_item['PULS' if self._new_check_buckling_puls.get() else 'RP']),number_of_combinations except TclError: return 0,0 else: try: return int(self._new_algorithm_random_trials.get() * self.running_time_per_item['PULS' if self._new_check_buckling_puls.get() else 'RP']),\ self._new_algorithm_random_trials.get() except TclError: return 0,0 def get_deltas(self): ''' Return a numpy array of the deltas. :return: ''' return np.array([float(self._new_delta_spacing.get())/1000,float(self._new_delta_pl_thk.get())/1000, float(self._new_delta_web_h.get())/1000,float(self._new_delta_web_thk.get())/1000, float(self._new_delta_fl_w.get())/1000,float(self._new_delta_fl_thk.get())/1000]) def update_running_time(self,*args): ''' Estimate the running time of the algorithm. :return: ''' try: self._runnig_time_label.config(text=str(int(self.get_running_time()[1])) + ' (about '+ str(max(round(self.get_running_time()[1]*self.running_time_per_item['PULS' if self._new_check_buckling_puls.get() else 'RP']/60,2), 0.1))+ ' min.)') except (ZeroDivisionError, TclError): pass# _tkinter.TclError: pass if [self._new_check_buckling_ml_cl.get(),self._new_check_buckling_puls.get(), self._new_check_buckling.get()].count(True) > 1: tk.messagebox.showerror('You can only select one buckling type. Reselect.') if self._new_check_buckling_puls.get(): self._new_check_buckling_puls.set(False) if self._new_check_buckling_ml_cl.get(): self._new_check_buckling_ml_cl.set(False) if self._new_check_buckling.get(): self._new_check_buckling.set(False) self._new_check_local_buckling.set(False) if self._new_check_buckling_puls.get(): if self._PULS_object is None or self._PULS_object.puls_sheet_location is None: tk.messagebox.showerror('Missing PULS sheet', 'Go back to main window and set a PULS sheet location\n' 'by running one or more lines.') self._new_check_buckling_puls.set(False) def get_upper_bounds(self): ''' Return an numpy array of upper bounds. :return: ''' return np.array([self._new_spacing_upper.get()/1000,self._new_pl_thk_upper.get()/1000, self._new_web_h_upper.get()/1000,self._new_web_thk_upper.get()/1000, self._new_fl_w_upper.get()/1000,self._new_fl_thk_upper.get()/1000, self._new_span.get(),self._new_width_lg.get()]) def get_lower_bounds(self): ''' Return an numpy array of lower bounds. :return: ''' return np.array([self._new_spacing_lower.get()/1000,self._new_pl_thk_lower.get()/1000, self._new_web_h_lower.get()/1000,self._new_web_thk_lower.get()/1000, self._new_fl_w_lower.get()/1000,self._new_fl_thk_lower.get()/1000, self._new_span.get(), self._new_width_lg.get()]) def checkered(self,line_distance): # vertical lines at an interval of "line_distance" pixel for x in range(line_distance, self._canvas_dim[0], line_distance): self._canvas_opt.create_line(x, 0, x, self._canvas_dim[0], fill="grey",stipple='gray50') # horizontal lines at an interval of "line_distance" pixel for y in range(line_distance, self._canvas_dim[1], line_distance): self._canvas_opt.create_line(0, y, self._canvas_dim[0], y, fill="grey",stipple='gray50') def draw_properties(self): ''' Drawing properties in the canvas. :return: ''' self._canvas_opt.delete('all') self.checkered(10) ctr_x = self._canvas_dim[0]/2 ctr_y = self._canvas_dim[1]/2+200 m = self._draw_scale init_color,init_stipple = 'blue','gray12' opt_color,opt_stippe = 'red','gray12' self._canvas_opt.create_rectangle(0,0,self._canvas_dim[0]+10,80,fill='white') self._canvas_opt.create_line(10,10,30,10,fill = init_color,width=5) self._canvas_opt.create_text(270,10,text='Initial - Pl.: '+str(self._spacing*1000) +'x'+str(self._pl_thk*1000)+ ' Stf.: '+str(self._stf_web_h*1000)+'x'+str(self._stf_web_thk*1000)+'+'+ str(self._fl_w*1000)+'x'+str(self._fl_thk*1000), font = 'Verdana 8', fill = init_color) self._canvas_opt.create_text(120,30,text='Weight (per Lg width): '+str(int(self.initial_weight)), font = 'Verdana 8',fill = init_color) self._canvas_opt.create_rectangle(ctr_x-m*self._spacing/2, ctr_y,ctr_x+m*self._spacing/2, ctr_y-m*self._pl_thk, fill=init_color, stipple=init_stipple ) self._canvas_opt.create_rectangle(ctr_x - m * self._stf_web_thk / 2, ctr_y-m* self._pl_thk, ctr_x + m * self._stf_web_thk / 2, ctr_y - m *(self._stf_web_h+self._pl_thk) , fill=init_color, stipple=init_stipple ) if self._initial_calc_obj.Stiffener is None: return if self._initial_calc_obj.Stiffener.get_stiffener_type() not in ['L', 'L-bulb']: self._canvas_opt.create_rectangle(ctr_x-m*self._fl_w/2, ctr_y-m*(self._pl_thk+self._stf_web_h), ctr_x+m*self._fl_w/2, ctr_y-m*(self._pl_thk+self._stf_web_h+self._fl_thk), fill=init_color, stipple=init_stipple) else: self._canvas_opt.create_rectangle(ctr_x-m*self._stf_web_thk/2, ctr_y-m*(self._pl_thk+self._stf_web_h), ctr_x+m*self._fl_w, ctr_y-m*(self._pl_thk+self._stf_web_h+self._fl_thk), fill=init_color, stipple=init_stipple) if self._opt_runned: self._canvas_opt.create_rectangle(ctr_x - m * self._opt_results[0].Stiffener.get_s() / 2, ctr_y, ctr_x + m * self._opt_results[0].Stiffener.get_s() / 2, ctr_y - m * self._opt_results[0].Stiffener.get_pl_thk(), fill=opt_color, stipple=opt_stippe) self._canvas_opt.create_rectangle(ctr_x - m * self._opt_results[0].Stiffener.get_web_thk() / 2, ctr_y - m * self._opt_results[0].Stiffener.get_pl_thk(), ctr_x + m * self._opt_results[0].Stiffener.get_web_thk() / 2, ctr_y - m * (self._opt_results[0].Stiffener.get_web_h() + self._opt_results[0].Stiffener.get_pl_thk()) , fill=opt_color, stipple=opt_stippe) if self._opt_results[0].Stiffener.get_stiffener_type() not in ['L', 'L-bulb']: self._canvas_opt.create_rectangle(ctr_x - m * self._opt_results[0].Stiffener.get_fl_w() / 2, ctr_y - m * (self._opt_results[0].Stiffener.get_pl_thk()+ self._opt_results[0].Stiffener.get_web_h()), ctr_x + m * self._opt_results[0].Stiffener.get_fl_w() / 2,ctr_y - m * (self._opt_results[0].Stiffener.get_pl_thk() + self._opt_results[0].Stiffener.get_web_h() + self._opt_results[0].Stiffener.get_fl_thk()), fill=opt_color, stipple=opt_stippe) else: self._canvas_opt.create_rectangle(ctr_x - m * self._opt_results[0].Stiffener.get_web_thk() / 2, ctr_y - m * (self._opt_results[0].Stiffener.get_pl_thk()+ self._opt_results[0].Stiffener.get_web_h()), ctr_x + m * self._opt_results[0].Stiffener.get_fl_w() ,ctr_y - m * (self._opt_results[0].Stiffener.get_pl_thk() + self._opt_results[0].Stiffener.get_web_h() + self._opt_results[0].Stiffener.get_fl_thk()), fill=opt_color, stipple=opt_stippe) self._canvas_opt.create_line(10, 50, 30, 50, fill=opt_color, width=5) self._canvas_opt.create_text(270,50,text='Optimized - Pl.: '+str(round(self._opt_results[0].Stiffener.get_s()*1000,1)) +'x'+ str(round(self._opt_results[0].Stiffener.get_pl_thk()*1000,1))+ ' Stf.: '+str(round(self._opt_results[0].Stiffener.get_web_h()*1000,1))+ 'x'+str(round(self._opt_results[0].Stiffener.get_web_thk()*1000,1))+'+'+ str(round(self._opt_results[0].Stiffener.get_fl_w()*1000,1))+ 'x'+str(round(self._opt_results[0].Stiffener.get_fl_thk()*1000,1)), font = 'Verdana 8',fill = opt_color) self._canvas_opt.create_text(120, 70, text='Weight (per Lg width): ' + str(int(op.calc_weight([self._opt_results[0].Stiffener.get_s(), self._opt_results[0].Stiffener.get_pl_thk(), self._opt_results[0].Stiffener.get_web_h(), self._opt_results[0].Stiffener.get_web_thk(), self._opt_results[0].Stiffener.get_fl_w(), self._opt_results[0].Stiffener.get_fl_thk(), self._new_span.get(), self._new_width_lg.get()]))), font='Verdana 8', fill=opt_color) def save_and_close(self): ''' Save and close :return: ''' if __name__ == '__main__': self._frame.destroy() return try: self.app.on_close_opt_window(self._opt_results) except (IndexError, TypeError): messagebox.showinfo(title='Nothing to return',message='No results to return.') return self._frame.destroy() def algorithm_info(self): ''' When button is clicked, info is displayed.''' messagebox.showinfo(title='Algorith information', message='The algorithms currently included is:\n' 'ANYSMART: \n' ' Calculates all alternatives using upper and lower bounds.\n' ' The step used inside the bounds is defined in deltas.\n' ' This algoritm uses MULTIPROCESSING and will be faster.\n\n' 'RANDOM: \n' ' Uses the same bounds and deltas as in ANYSMART.\n' ' Number of combinations calculated is defined in "trials",\n' ' which selects withing the bounds and deltas defined.\n\n' 'RANDOM_NO_BOUNDS:\n' ' Same as RANDOM, but does not use the defined deltas.\n' ' The deltas is set to 1 mm for all dimensions/thicknesses.\n\n' 'ANYDETAIL:\n' ' Same as for ANYSMART, but will take some more time and\n' ' provide a chart of weight development during execution.\n\n' 'PSO - Particle Swarm Search:\n' ' The information can be found on \n' ' http://pythonhosted.org/pyswarm/ \n' ' For further information google it!\n' ' Parameters:\n' ' swarmsize : The number of particles in the swarm (Default: 100)\n' ' omega : Particle velocity scaling factor (Default: 0.5)\n' ' phip : Scaling factor to search away from the particle’s \n' ' best known position (Default: 0.5)\n' ' phig : Scaling factor to search away from the swarm’s best \n' ' known position (Default: 0.5)\n' ' maxiter : The maximum number of iterations for the swarm \n' ' to search (Default: 100)\n' ' minstep : The minimum stepsize of swarm’s best position \n' ' before the search terminates (Default: 1e-8)\n' ' minfunc : The minimum change of swarm’s best objective value\n' ' before the search terminates (Default: 1e-8)\n\n' '\n' 'All algorithms calculates local scantling and buckling requirements') def toggle(self): if self._toggle_btn.config('relief')[-1] == 'sunken': self._toggle_btn.config(relief="raised") self._toggle_btn.config(bg = 'salmon') self._ent_spacing_upper.config(bg = 'white') self._ent_spacing_lower.config(bg = 'white') self._ent_delta_spacing.config(bg = 'white') predefined_stiffener_iter = [] else: self._toggle_btn.config(relief="sunken") self._toggle_btn.config(bg = 'salmon') self._toggle_btn.config(bg='lightgreen') self._ent_spacing_upper.config(bg = 'lightgreen') self._ent_spacing_lower.config(bg = 'lightgreen') self._ent_delta_spacing.config(bg = 'lightgreen') self._ent_pl_thk_upper.config(bg = 'lightgreen') self._ent_pl_thk_lower.config(bg = 'lightgreen') self._ent_delta_pl_thk.config(bg = 'lightgreen') open_files = askopenfilenames(parent=self._frame, title='Choose files to open', initialdir=self._root_dir) # TODO for both stiffeners and girders self._initial_calc_obj.Stiffener.t = self._initial_calc_obj.Plate.t self._initial_calc_obj.Stiffener.s = self._initial_calc_obj.Plate.s predefined_stiffener_iter = hlp.helper_read_section_file(files=list(open_files), obj=self._initial_calc_obj.Stiffener) if predefined_stiffener_iter == []: self._toggle_btn.config(relief="raised") self._toggle_btn.config(bg = 'salmon') self._ent_spacing_upper.config(bg = 'white') self._ent_spacing_lower.config(bg = 'white') self._ent_delta_spacing.config(bg = 'white') self._ent_pl_thk_upper.config(bg = 'white') self._ent_pl_thk_lower.config(bg = 'white') self._ent_delta_pl_thk.config(bg = 'white') self._predefined_stiffener_iter = None else: self._predefined_stiffener_iter = predefined_stiffener_iter self.update_running_time() def open_example_file(self): import os if os.path.isfile('sections.csv'): os.startfile('sections.csv') else: os.startfile(self._root_dir + '/' + 'sections.csv') def show_calculated(self): ''' ''' pass def plot_results(self): if len(self._opt_results) != 0: op.plot_optimization_results(self._opt_results) def write_result_csv(self): if len(self._opt_results) != 0: print(self._opt_results) def receive_progress_info(): ''' Get progress info from optimization algorithm. :return: ''' print('hi') if __name__ == '__main__': root = tk.Tk() my_app = CreateOptimizeWindow(master=root) root.mainloop()
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/optimize_window.py
optimize_window.py
import tkinter as tk from matplotlib import pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg try: import any_files.test except ModuleNotFoundError: import ANYstructure.any_files.test import numpy as np class CreateCompartmentWindow(): def __init__(self, master,app=None): super(CreateCompartmentWindow, self).__init__() if __name__ == '__main__': base_canvas_dim = [1000, 720] self.canvas_origo = [50, base_canvas_dim[1] - 50] self.grid = test.get_grid(origo=self.canvas_origo,base_canvas_dim=base_canvas_dim) self.parent_dimensions = base_canvas_dim self.to_draw = test.get_to_draw() else: self.app = app self.grid = app._main_grid self.parent_dimensions = app._canvas_dim self.to_draw = app._pending_grid_draw self.parent_origo = app._canvas_origo frame_dim = (1500,980) self.canvas_origo = (50,720-50) self.canvas_dim = (1000,720) self.frame = master self.frame.wm_title("Load properties") self.frame.geometry(str(frame_dim[0])+'x'+str(frame_dim[1])) self.frame.grab_set() self.points_child = {} self.child_dimensions = (self.parent_dimensions[0]-self.parent_dimensions[0]+1, self.parent_dimensions[1]+1) for line,point in self.to_draw.items(): point1 = (int(point[0][0]),int(point[0][1])) point2 = (int(point[1][0]),int(point[1][1])) self.points_child[line] = [point1,point2] for line, points in self.points_child.items(): for point in self.grid.get_points_along_line(points[0],points[1]): self.grid.set_barrier(point[0],point[1]) fig = plt.figure() self.draw_grid() self.canvas_plt = FigureCanvasTkAgg(fig,self.frame) self.canvas_plt.show() self.canvas_plt.get_tk_widget().place(relx=0.5,rely=0.5) #self.draw_grid() tk.Button(self.frame,text='DRAW',command=self.draw_grid).place(relx=0.1,rely=0.1) def __str__(self): return 'class CreateCompartmentWindow(): Compartment string not implemented' def draw_grid(self): ''' Drawing grid EMPTY = yellow FULL = red :return: ''' def discrete_matshow(data): # get discrete colormap cmap = plt.get_cmap('RdBu', np.max(data) - np.min(data) + 1) # set limits .5 outside true range mat = plt.matshow(data, cmap=cmap, vmin=np.min(data) - .5, vmax=np.max(data) + .5) # tell the colorbar to tick at integers cax = plt.colorbar(mat, ticks=np.arange(np.min(data), np.max(data) + 1)) # # generate data # a = np.random.randint(1, 20, size=(10, 10)) discrete_matshow(self.grid.get_matrix()) plt.suptitle('Tanks defined by numbers from 2 and up.') return plt #plt.show() def search_dfs(self): ''' Depth first search method. :return: ''' start = (0,0) stack = make_stack.Stack() stack.push_item(start) while len(stack) != 0: cell = stack.pop_item() if self.grid.is_empty(cell[0], cell[1]): self.grid.set_full(cell[0], cell[1]) for item in self.grid.four_neighbors(cell[0], cell[1]): stack.push_item(item) def search_bfs(self): ''' Bredth first search method. Searcing evry 20th pixel for empty places in the grid. When a empty cell is found, the search starts. The search ends when no more empty cells are found in the boudnary regions (circular expansion of search). USE GRID CONVENSION HERE. NOT POINTS. grid(row,col) is same as grid(y,x) points uses point(x , y) is same as grid(col,row) :return: ''' compartment_count = 1 cells = 0 el_max = '' el_min = '' compartments = {} for startrow in range(0, self.child_dimensions[1], 20): for startcol in range(0, self.child_dimensions[0], 20): if self.grid.is_empty(startrow,startcol): el_max = '' el_min = '' cells = 0 boundary = deque() boundary.append((startrow,startcol)) corners = [] while len(boundary) != 0: current_cell = boundary.pop() #find the min/max elevation, counting cells in tank if el_max == '': el_max = current_cell[0] el_min = current_cell[0] else: if current_cell[0] < el_max: el_max = current_cell[0] if current_cell[0] > el_min: el_min = current_cell[0] cells += 1 neighbors = self.grid.eight_neighbors(current_cell[0], current_cell[1]) #doing serach operations and looking for corners no_of_barriers = 0 for neighbor in neighbors[0:4]: if self.grid.get_value(neighbor[0], neighbor[1]) == -1: no_of_barriers += 1 else: pass if self.grid.is_empty(neighbor[0], neighbor[1]): self.grid.set_value(neighbor[0], neighbor[1],compartment_count) boundary.append(neighbor) #finding corners on diagonal cells for neighbor in neighbors[4:]: if self.grid.get_value(neighbor[0], neighbor[1]) == -1: no_of_barriers += 1 else: pass if no_of_barriers > 4: corners.append((neighbor[0], neighbor[1])) # returning values to the program compartments[compartment_count] = cells, corners compartment_count += 1 return compartments if __name__ == '__main__': root = tk.Tk() my_app = CreateCompartmentWindow(master=root) root.mainloop()
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/compartment_window.py
compartment_window.py
sn_dict = {'B1': {'m1': 4.0, 'log a1': 15.117, 'm2': 5.0, 'log a2': 17.15, 'slope': 10000000.0, 'k': 0.0}, 'B2': {'m1': 4.0, 'log a1': 14.885, 'm2': 5.0, 'log a2': 16.86, 'slope': 10000000.0, 'k': 0.0}, 'C': {'m1': 3.0, 'log a1': 12.592, 'm2': 5.0, 'log a2': 16.32, 'slope': 10000000.0, 'k': 0.15}, 'C1': {'m1': 3.0, 'log a1': 12.449, 'm2': 5.0, 'log a2': 16.08, 'slope': 10000000.0, 'k': 0.15}, 'C2': {'m1': 3.0, 'log a1': 12.301, 'm2': 5.0, 'log a2': 15.84, 'slope': 10000000.0, 'k': 0.15}, 'D': {'m1': 3.0, 'log a1': 12.164, 'm2': 5.0, 'log a2': 15.61, 'slope': 10000000.0, 'k': 0.2}, 'E': {'m1': 3.0, 'log a1': 12.01, 'm2': 5.0, 'log a2': 15.35, 'slope': 10000000.0, 'k': 0.2}, 'F': {'m1': 3.0, 'log a1': 11.855, 'm2': 5.0, 'log a2': 15.09, 'slope': 10000000.0, 'k': 0.25}, 'F1': {'m1': 3.0, 'log a1': 11.699, 'm2': 5.0, 'log a2': 14.83, 'slope': 10000000.0, 'k': 0.25}, 'F3': {'m1': 3.0, 'log a1': 11.546, 'm2': 5.0, 'log a2': 14.58, 'slope': 10000000.0, 'k': 0.25}, 'G': {'m1': 3.0, 'log a1': 11.398, 'm2': 5.0, 'log a2': 14.33, 'slope': 10000000.0, 'k': 0.25}, 'W1': {'m1': 3.0, 'log a1': 11.261, 'm2': 5.0, 'log a2': 14.1, 'slope': 10000000.0, 'k': 0.25}, 'W2': {'m1': 3.0, 'log a1': 11.107, 'm2': 5.0, 'log a2': 13.85, 'slope': 10000000.0, 'k': 0.25}, 'W3': {'m1': 3.0, 'log a1': 10.97, 'm2': 5.0, 'log a2': 13.62, 'slope': 10000000.0, 'k': 0.25}, 'B1c': {'m1': 4.0, 'log a1': 14.917, 'm2': 5.0, 'log a2': 17.146, 'slope': 1000000.0, 'k': 0.0}, 'B2c': {'m1': 4.0, 'log a1': 14.685, 'm2': 5.0, 'log a2': 16.856, 'slope': 1000000.0, 'k': 0.0}, 'Cc': {'m1': 3.0, 'log a1': 12.192, 'm2': 5.0, 'log a2': 16.32, 'slope': 1000000.0, 'k': 0.15}, 'C1c': {'m1': 3.0, 'log a1': 12.049, 'm2': 5.0, 'log a2': 16.081, 'slope': 1000000.0, 'k': 0.15}, 'C2c': {'m1': 3.0, 'log a1': 11.901, 'm2': 5.0, 'log a2': 15.835, 'slope': 1000000.0, 'k': 0.15}, 'Dc': {'m1': 3.0, 'log a1': 11.764, 'm2': 5.0, 'log a2': 15.606, 'slope': 1000000.0, 'k': 0.2}, 'Ec': {'m1': 3.0, 'log a1': 11.61, 'm2': 5.0, 'log a2': 15.35, 'slope': 1000000.0, 'k': 0.2}, 'Fc': {'m1': 3.0, 'log a1': 11.455, 'm2': 5.0, 'log a2': 15.091, 'slope': 1000000.0, 'k': 0.25}, 'F1c': {'m1': 3.0, 'log a1': 11.299, 'm2': 5.0, 'log a2': 14.832, 'slope': 1000000.0, 'k': 0.25}, 'F3c': {'m1': 3.0, 'log a1': 11.146, 'm2': 5.0, 'log a2': 14.576, 'slope': 1000000.0, 'k': 0.25}, 'Gc': {'m1': 3.0, 'log a1': 10.998, 'm2': 5.0, 'log a2': 14.33, 'slope': 1000000.0, 'k': 0.25}, 'W1c': {'m1': 3.0, 'log a1': 10.861, 'm2': 5.0, 'log a2': 14.101, 'slope': 1000000.0, 'k': 0.25}, 'W2c': {'m1': 3.0, 'log a1': 10.707, 'm2': 5.0, 'log a2': 13.845, 'slope': 1000000.0, 'k': 0.25}, 'W3c': {'m1': 3.0, 'log a1': 10.57, 'm2': 5.0, 'log a2': 13.617, 'slope': 1000000.0, 'k': 0.25}} def get_paramter(curve,parameter): return sn_dict[curve][parameter] def get_all_curves(): return sn_dict.keys()
ANYstructure
/ANYstructure-4.10.tar.gz/ANYstructure-4.10/any_files/SN_curve_parameters.py
SN_curve_parameters.py
AOPython change log 1.0.3 - Removed re/sre weave test from aopythonexamples (it didn't pass on Python 2.4 and it wasn't a good test). - Improved Aspect.wrap() function - Updated copywrite dates - Added setup.py 1.0.2 - API CHANGE: renamed "maxWeaveDepth" parameter of weave function/method to "depth" - API CHANGE: rearranged "weave" parameters (hopefully handier and more logical now--least likely to be used are now at the end) - API CHANGE: replaced "weave" flags "wrapMethodWrappers" and "wrapBuiltIns" with "weaveTest", a function that overrides the normal function/method test when specified. - Aspect.wrap can now wrap any callable object instead of just methods and functions (this fixed a few bugs where objects could be wrapped using wrap but not useing weave). - Improved Aspect.wrap handling of class objects--it's not perfect yet, but at least classes can be wrapped. - Added unweave function (weave is to unweave as wrap is to unwrap). - Added a LOT more tests--weave (and unweave) are now tested more thoroughly. - Changed aopythonexamples to use doctest (they're actually tests that run with aopythontest now, which is what I intended all along...yay!) - Improved documentation. - Changed whitespace to be more consistent with python style (PEP-0008). Keeping tabs and methodNameConvention for now. 1.0.1 - API CHANGE: Changed argument order of weave function: weave(aspects, object, includes...) seems more logical than weave(object, aspects, includes...) since Aspect now has a weave method with that argument order. - Removed "dangerous method name" check from Aspect.wrap. Rare cases may exist in which those methods may need to be wrapped. Not to mention it's more consistent with the Zen of Python. - Switched from using types.MethodType to __get__(instance, class) to create methods from functions. The tests seem to run a tiny bit faster, so it may improve performance (probably not). - Minor code cleanup. - Minor improvements to documentation. - Reorganized the aopython module (moved internal functions to the bottom, etc.). - Added __version__ and __all__ variables to aopython. - Renamed unwrapDict to _unwrapDict. 1.0 - Initial release
AOPython
/AOPython-1.0.3.zip/AOPython-1.0.3/README.txt
README.txt
__version__ = "1.0.2" from types import FunctionType from inspect import getmembers, ismethod, isfunction, isclass from weakref import WeakKeyDictionary __all__ = ["Aspect", "weave", "iswrapped", "unwrap", "MethodHasNoAdviceError"] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # public interface class Aspect(object): """Aspect base class. All aspects should extend this class. Can advise user-defined functions, lambda functions, built-in functions, unbound (class) methods, and bound (instance) methods.""" def advise(self, method, *args, **kwargs): """Override this method to provide advice to the method/function call This method will normaly invoke the given method/function with the supplied arguments and return the result. However, it is not required to do either of those things. All methods (n/a for functions) are unbound before being passed to 'advise', and the first item in args is the self argument of the method. Note that the self argument in advise refers to the aspect instance, not the instance of the wrapped method.""" return method(*args, **kwargs) def wrap(self, method, allowUnwrap=False): """Return the given callable wrapped with the advice provided by this aspect This function works with any callable object. The returned function/ method has the same __dict__ or a dictionary containing the same __dict__ items as the unwrapped version if possible. WARNING: the type of the returned callable may not match the type of the original callable. Arguments: method - the callable to be wrapped allowUnwrap - if set to True, the returned (wrapped) method can be unwrapped at a later time. WARNING: the current implementation uses a dictionary to map the wrapped method to the unwrapped method, and the size of that dictionary may grow very large if many methods are wrapped with this flag set to True. Raises TypeError if the given method is not callable.""" if callable(method): class_ = getattr(method, 'im_class', None) self_ = getattr(method, 'im_self', None) if self_: unbound = method.im_func.__get__(None, type(self_)) else: unbound = method def _method(*args, **kwargs): return self.advise(unbound, *args, **kwargs) # Create a new function with the correct __name__ and __dict__ code = _method.func_code globals_ = getattr(_method, "func_globals", None) name_ = getattr(method, '__name__', None) defaults = getattr(getattr(method, 'im_func', method), 'func_defaults', None) closure = _method.func_closure _method = FunctionType(code, globals_, name_, defaults, closure) if isinstance(getattr(method, "__dict__", None), dict): _method.__dict__ = method.__dict__ else: try: _method.__dict__ = dict(method.__dict__) except: pass if allowUnwrap: _unwrapDict[_method] = method if class_: return _method.__get__(self_, class_) else: return _method else: raise TypeError("cannot apply %s: %r of %s is not callable" % (type(self).__name__, method, type(method))) def weave(self, obj, includes=(), excludes=(), depth=0, allowUnwrap=False, wrapIfStartsWithUnderscore=False, weaveTest=None): """Convenience method to weave an object with this aspect. See aopython.weave (a function in this module) for detailed usage instructions. Note that aopython.weave can weave more than one aspect in a single weave() call. """ weave(self, obj, includes, excludes, depth, allowUnwrap, wrapIfStartsWithUnderscore, weaveTest) def weave(aspect, obj, includes=(), excludes=(), depth=0, allowUnwrap=False, wrapIfStartsWithUnderscore=False, weaveTest=None): """Advise each method or function belonging to obj Arguments: aspect - an Aspect instance or a sequence of Aspect instances with which to weave obj. If this argument is a sequence, the order is important: aspects will be weaved in the order they are listed, and their advise methods will be called in the opposite order when a wrapped method/function is called. obj - an object whose methods/functions/classes will be wrapped. If this is a class or an instance its methods will be wrapped. If this is a module all of its functions will be wrapped. includes - a sequence of method names that will be wrapped. All methods will be included if this is an empty sequence (default). excludes - a sequence of method names that will not be wrapped. No methods will be excluded if this is an empty sequence (default). Excludes override includes (e.g. if a name is is both includes and excludes it will be excluded). depth - the maximum number of levels to be woven. The default behavior (depth=0) only wraps functions or methods belonging directly to the object being weaved. Example for weave(aspect, module, ...): module.function # depth=0 module.Class # depth=0 module.Class.method # depth=1 Note that if this value is less than zero, the objects on level zero will still be wrapped. Note: setting this value to more than one (1) may result in unpredictable results depending on the target object being wrapped. allowUnwrap - see the allowUnwrap argument of Aspect.wrap wrapIfStartsWithUnderscore - if this argument evaluates to True, all functions and methods with names starting with an underscore will be elligible to be wrapped. Otherwise they are excluded. Defaults to False. weaveTest - a function that tests the objects that are being weaved. The function must take a single object argument and return True if the object should be wrapped and False if the object should not be wrapped. The result of this function overrides the normal test that is applied to each object to determine if it is a method or function. includes and excludes are processed after wrapTest. Note: if this function returns True for a non-callable object an exception will be raised when the object is wrapped. includes and excludes may contain predicate functions that match method names. Each predicate function must take a single string argument and return True or False. """ if weaveTest is None: def weaveTest(obj): return ismethod(obj) or isfunction(obj) weaveTest = _MethodNameMatchingAspect(includes, excludes, wrapIfStartsWithUnderscore).wrap(weaveTest) if isinstance(aspect, Aspect): aspects = (aspect,) else: aspects = aspect def _weave(obj, weaveDepth): methods = getmembers(obj, weaveTest) weavables = [member for name, member in getmembers(obj)] if weavables and weaveDepth < depth: weaveDepth += 1 for weavable in weavables: _weave(weavable, weaveDepth) for methodName, method in methods: for aspect in aspects: method = aspect.wrap(method, allowUnwrap) try: setattr(obj, methodName, method) except: pass _weave(obj, 0) def iswrapped(method): """Return True if the given method can be unwrapped. NOTICE: this function will only return True if the allowUnwrap flag was set when the method was wrapped. """ return _unwrapDict.has_key(_getFunction(method)) def unwrap(method, all=False, quiet=False): """Unwrap the given method NOTICE: this function will only work if the allowUnwrap flag was set when the method was wrapped. Arguments: all - when True, unwrap all subsequently wrapped functions before returning. In other words, always return a function that cannot be unwrapped when True. quiet - when False (default), raise a MethodHasNoAdviceError if the method (or any subsequently wrapped methods if all=True) cannot be unwrapped. When True, return the original method without raising an exception if the method cannot be unwrapped. Raises MethodHasNoAdviceError if quiet=False (default). """ try: if not iswrapped(method): raise KeyError() func = _unwrapDict[_getFunction(method)] if all and iswrapped(func): return unwrap(func, all, quiet) else: return func except KeyError: if not quiet: raise MethodHasNoAdviceError('%s is not wrapped' % method) return method def unweave(obj, all=False, depth=0): """Unwrap all wrapped callables on the given object This function does the opposite of weave without all the conditions such as includes, excludes, and weaveTest. Arguments: all - see 'all' arg of 'unwrap' depth - see 'depth' arg of 'weave' """ def _unweave(obj, weaveDepth): for methodName, method in getmembers(obj, iswrapped): method = unwrap(method, all) setattr(obj, methodName, method) weavables = [member for name, member in getmembers(obj)] if weavables and weaveDepth < depth: weaveDepth += 1 for weavable in weavables: _unweave(weavable, weaveDepth) _unweave(obj, 0) class MethodHasNoAdviceError(Exception): """Exception raised by unwrap when a method cannot be unwrapped""" pass # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # internals _unwrapDict = WeakKeyDictionary() class _MethodNameMatchingAspect(Aspect): """Helper aspect used by weave to match methods by name""" def __init__(self, includes, excludes, wrapIfStartsWithUnderscore=False): def separate(litsAndPreds): literals, predicates = [], [] # Separate the literal names from the predicate functions for obj in litsAndPreds: if callable(obj): predicates.append(obj) else: literals.append(str(obj)) return (literals, predicates) self.includes, self.includesFunc = separate(includes) self.excludes, self.excludesFunc = separate(excludes) if not includes: # Include all methods self.includesFunc.append(lambda n: True) if not wrapIfStartsWithUnderscore: # Exclude methods that start with underscore self.excludesFunc.append(lambda n: n and n.startswith('_')) def isMatch(self, methodName, literals, predicates): # Simplest case first: check for matching literal in strings if literals and methodName in literals: return True elif predicates: # Try to match with a predicate function for predicate in predicates: if predicate(methodName): return True return False def isIncluded(self, methodName): return self.isMatch(methodName, self.includes, self.includesFunc) def isNotExcluded(self, methodName): return not self.isMatch(methodName, self.excludes, self.excludesFunc) def advise(self, method, *args, **kwargs): _name = getattr(args[0], "__name__", None) return method(*args, **kwargs) and self.isIncluded(_name) and self.isNotExcluded(_name) def _getFunction(method): """Helper function used by iswrapped and unwrap""" func = method while hasattr(func, 'im_func'): func = func.im_func return func
AOPython
/AOPython-1.0.3.zip/AOPython-1.0.3/aopython.py
aopython.py
import doctest import re from aopython import Aspect, weave, iswrapped, unwrap, unweave # Example aspects class LoggerAspect(Aspect): # A logger aspect that prints method invokation details def __init__(self, verbose=False, hideAddresses=False): self.verbose = verbose self.hideAddresses = hideAddresses self.memAddrRe = re.compile(r' at 0x[0123456789ABCDEF]+>') def getArgStr(self, args, kwargs={}): return ', '.join([self.repr_(arg) for arg in args] + ['%s=%s' % (key, repr(val)) for key, val in kwargs.items()]) def repr_(self, obj): if self.hideAddresses: # Remove memory addresses from representation return self.memAddrRe.sub('>', repr(obj)) return repr(obj) def printFunctionDetails(self, function, indent=1): def attrRepr(obj, attrs, level=0): results = [] for attr in attrs: results.append(('\t' * (indent + level)) + attr + ' = ' + str(getattr(obj, attr, None))) return '\n'.join(results) try: print '\t%s' % inspect.formatargspec(inspect.getargspec(function)) except: pass print '\t' * indent + 'repr =', self.repr_(function) print '\t' * indent + 'dir =', dir(function) print '\t' * indent + 'class =', getattr(function, 'im_class', type(function)).__name__ attrs = ('__class__', '__name__', '__module__', '__dict__', 'func_code') print attrRepr(function, attrs) if getattr(function, 'func_code', False): attrs = ('co_name', 'co_argcount', 'co_nlocals', 'co_varnames', 'co_cellvars', 'co_freevars', 'co_consts', 'co_names', 'co_stacksize', 'co_flags') print attrRepr(function.func_code, attrs, 1) attrs = ('func_closure', 'func_defaults', 'func_globals', 'func_name') #, 'func_doc' print attrRepr(function, attrs) def advise(self, method, *args, **kwargs): if getattr(method, 'im_class', False): name = type(args[0]).__name__ elif hasattr(method, "__module__") and method.__module__ is not None: name = method.__module__ else: name = '?' argStr = ', '.join([self.repr_(arg) for arg in args] + ['%s=%s' % (key, self.repr_(val)) for key, val in kwargs.items()]) call = '%s.%s(%s)' % (name, method.__name__, argStr) print call if self.verbose: self.printFunctionDetails(method) try: rvalue = method(*args, **kwargs) print 'exec %s -> %s' % (call, rvalue) return rvalue except Exception, e: print 'exec %s -> %s: %s' % (call, type(e).__name__, e) raise else: return method(*args, **kwargs) class FunctionResultLoggerAspect(LoggerAspect): # A logger aspect that can be used to wrap __getattribute__ def advise(self, method, *args, **kwargs): rvalue = method(*args, **kwargs) print '%s returned %s' % (method.__name__, rvalue) if self.verbose: self.printFunctionDetails(rvalue) return rvalue class TestAspect(Aspect): # Test aspect prints method signature before and after method execution def advise(self, method, *args, **kwargs): print 'TestAspect.advise checking attribute %s.exposed = %s' % (method.__name__, getattr(method, 'exposed', '<undefined>')) return method(*args, **kwargs) class TestAspect2(Aspect): def advise(self, method, *args, **kwargs): newArgs = args[0:-1] + ('TestAspect2 replaced arg',) try: print "TestAspect2.advise change last arg from %s to %s" % (repr(args[-1]), repr(newArgs[-1])) return method(*newArgs, **kwargs) except Exception, e: print "TestAspect2.advise fall back to original args due to exception: %s: %s" % (type(e).__name__, e) return method(*args, **kwargs) class Test(object): def __repr__(self): return '<Test object>' def __str__(self): return 'Test' def func(self, x=1): return x def func2(self, x): return '%s + 100' % x def func3(self, x): return x def _func(self, x): raise Exception('_func should not be wrapped') func.exposed = True func2.exposed = False def _test(): import doctest, aopythonexamples return doctest.testmod(aopythonexamples) if __name__ == "__main__": _test()
AOPython
/AOPython-1.0.3.zip/AOPython-1.0.3/aopythonexamples.py
aopythonexamples.py
GANGNAM = 0 GANGDONG = 1 GANGBOOK = 2 GANGSEO = 3 GWANAK = 4 GWANJIN = 5 GURO = 6 GUMCHEON = 7 NOWON = 8 DOBONG = 9 DONGDAEMOON = 10 DONGJAK = 11 MAPO = 12 SEODAEMOON = 13 SEOCHO = 14 SEONGDONG = 15 SEONGBOOK = 16 SONGPA = 17 YANGCHEON = 18 YOUNGDEUNGPO = 19 YONGSAN = 20 EUNPYONG = 21 JONGRO = 22 JOONG = 23 JOONGRANG = 24 gu = [] gu.append(('강남구', '개포동', '논현동', '대치동', '도곡동', '삼성동', '세곡동', '수서동', '신사동', '압구정동', '역삼동', '율현동', '일원동', '자곡동', '청담동')) gu.append(('강동구', '강일동', '고덕동', '길동', '둔촌동', '명일동', '상일동', '성내동', '암사동', '천호동')) gu.append(('강북구', '미아동', '번동', '수유동', '우이동')) gu.append(('강서구', '가양동', '개화동', '공항동', '과해동', '내발산동', '등촌동', '마곡동', '방화동', '염창동', '오곡동', '오쇠동', '외발산동', '화곡동')) gu.append(('관악구', '남현동', '봉천동', '신림동')) gu.append(('광진구', '광장동', '구의동', '군자동', '능동', '자양동', '중곡동', '화양동')) gu.append(('구로구', '가리봉동', '개봉동', '고척동', '구로동', '궁동', '신도림동', '오류동', '온수동', '천왕동', '항동')) gu.append(('금천구', '가산동', '독산동', '시흥동')) gu.append(('노원구', '공릉동', '상계동', '월계동', '중계동', '하계동')) gu.append(('도봉구', '도봉동', '방학동', '쌍문동', '창동')) gu.append(('동대문구', '답십리동', '신설동', '용두동', '이문동', '장안동', '전농동', '제기동', '청량리동', '회기동', '휘경동')) gu.append(('동작구', '노량진동', '대방동', '동작동', '본동', '사당동', '상도동', '신대방동', '흑석동')) gu.append(('마포구', '공덕동', '구수동', '노고산동', '당인동', '대흥동', '도화동', '동교동', '마포동', '망원동', '상수동', '상암동', '서교동', '성산동', '신공덕동', '신수동', '신정동', '아현동', '연남동', '염리동', '용강동', '중동', '창전동', '토정동', '하중동', '합정동', '현석동')) gu.append(('서대문구', '남가좌동', '냉천동', '대신동', '대현동', '미근동', '봉원동', '북가좌동', '북아현동', '신촌동', '연희동', '영천동', '옥천동', '창천동', '천연동', '합동', '현저동', '홍은동', '홍제동', '충정로')) gu.append(('서초구', '내곡동', '반포동', '방배동', '서초동', '신원동', '양재동', '염곡동', '우면동', '원지동', '잠원동')) gu.append(('성동구','금호동', '도선동', '마장동', '사근동', '상왕십리동', '성수동', '송정동', '옥수동', '용답동', '응봉동', '하왕십리동', '행당동', '홍익동')) gu.append(('성북구', '길음동', '돈암동', '동선동', '동소문동', '보문동', '삼선동', '상월곡동', '석관동', '성북동', '안암동', '장위동', '정릉동', '종암동', '하월곡동')) gu.append(('송파구', '가락동', '거여동', '마천동', '문정동', '방이동', '삼전동', '석촌동', '송파동', '신천동', '오금동', '잠실동', '장지동', '풍납동')) gu.append(('양천구', '목동', '신월동', '신정동')) gu.append(('영등포구', '당산동', '대림동', '도림동', '문래동', '신길동', '양평동', '양화동', '여의도동', '영등포동')) gu.append(('용산구', '갈월동', '남영동', '도원동', '동빙고동', '동자동', '문배동', '보광동', '산천동', '서계동', '서빙고동', '신계동', '신창동', '용문동', '용산동', '원효로', '이촌동', '이태원동', '주성동', '청암동', '청파동', '한강로', '한남동', '효창동', '후암동')) gu.append(('은평구', '갈현동', '구산동', '녹번동', '대조동', '불광동', '수색동', '신사동', '역촌동', '응암동', '증산동', '진관동')) gu.append(('종로구', '가회동', '견지동', '경운동', '계동', '공평동', '관수동', '관철동', '관훈동', '교남동', '교북동', '구기동', '궁정동', '권농동', '낙원동', '내수동', '내자동', '누상동', '누하동', '당주동', '도렴동', '돈의동', '동숭동', '명륜동', '묘동', '무악동', '봉익동', '부암동', '사간동', '사직동', '삼청동', '서린동', '세종로', '소격동', '송월동', '송현동', '수송동', '숭인동', '신교동', '신문로', '신영동', '안국동', '연건동', '연지동', '예지동', '옥인동', '와룡동', '운니동', '원남동', '원서동', '이화동', '익선동', '인사동', '인의동', '장사동', '재동', '적선동', '종로', '중학동', '창성동', '창신동', '청운동', '청진동', '체부동', '충신동', '통의동', '통인동', '팔판동', '평동', '평창동', '필운동', '행촌동', '혜화동', '홍지동', '홍파동', '화동', '효자동', '효제동', '훈정동')) gu.append(('중구', '광희동', '남대문로', '남산동', '남창동', '남학동', '다동', '만리동', '명동', '무교동', '무학동', '묵정동', '방산동', '봉래동', '북창동', '산림동', '삼각동', '서소문동', '소공동', '수표동', '수하동', '순화동', '신당동', '쌍림동', '예관동', '예장동', '오장동', '을지로', '의주로', '인현동', '입정동', '장교동', '장충동', '저동', '정동', '주교동', '주자동', '중림동', '초동', '충무로', '태평로', '필동', '황학동', '화현동', '흥인동', '충정로1가')) gu.append(('중랑구', '망우동', '면목동', '묵동', '상봉동', '신내동', '중화동'))
APA
/APA-1.0.0.tar.gz/APA-1.0.0/location.py
location.py
import tweepy import datetime import MySQLdb as mdb import location as loc from threading import Thread, BoundedSemaphore import urllib from xml.dom import minidom ################# TWITTER AUTHENTIFICATION KEYS ################# CONSUMER_KEY = 'g5xQx67GQgzJCs4aNam1Q' CONSUMER_SECRET = '4T5y74q6MATeiA13pktZJiyvSSCAu4cjLUesnJLg' ACCESS_TOKEN = '1440443094-X7g4mB05cCU5KT5gaaHkj3sqaWkbcJRDHbs0tKZ' ACCESS_SECRET = 'LBAIA50pmrahav4grydp7r2ylvRgy2Pa5y6xgNK0zrdzC' ############ DO NOT REVEAL ABOVE KEYS TO OTHER PERSON ########### ########## Setting OAuth Handler ########## auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET) auth.set_access_token(ACCESS_TOKEN, ACCESS_SECRET) api = tweepy.API(auth) ########## ETC global variables ########### today = datetime.date.today() con = mdb.connect('localhost', 'root', 'dhepd','test') sema = BoundedSemaphore(value=1) class finder(Thread): def __init__(self, keyword): Thread.__init__(self) self.keyword = keyword def run(self): sema.acquire() ########## START CRITICAL SECTION ########## for tweet in tweepy.Cursor(api.search, q=self.keyword, rpp=100, lang='ko').items(): with con: if (tweet.created_at.day+2 < today.day): break else: cur = con.cursor() tid = tweet.user.id tname = tweet.user.name.encode('utf-8') text = tweet.text.encode('utf-8') location = self.GetLocation(text) tp = '' if (self.keyword=='교통사고 poltra -RT'): tp = '교통사고' if (self.keyword=='화재 발생 -RT'): tp = '화재' if (location!=False): geo = self.GetGeo(location) lat = geo[0] lng = geo[1] cur.execute("INSERT INTO test VALUES(%s, %s, %s, %s, %s, %s, %s, %s)", (tid, tname, location, lat, lng, tp, text, tweet.created_at)) ########## END CRITICAL SECTION ########### sema.release() def GetLocation(self, text): for i in range(0, 25): for j in range (0, len(loc.gu[i])): if (text.count(loc.gu[i][j])>=1): return loc.gu[i][j] return False def GetGeo(self, location): url = 'http://apis.daum.net/local/geo/addr2coord?apikey=6acc30183ab818fa90193ab6154616892a68508f&q='+location+'&output=xml' dom = minidom.parse(urllib.urlopen(url)) items = dom.getElementsByTagName("item") lat = items[0].getElementsByTagName("lat") lng = items[0].getElementsByTagName('lng') return (lat[0].firstChild.data,lng[0].firstChild.data) find = finder('교통사고 poltra -RT') find2 = finder('화재 발생 -RT') find.start() find2.start()
APA
/APA-1.0.0.tar.gz/APA-1.0.0/twit.py
twit.py
# TODO: The maintainer of this repo has not yet edited this file **REPO OWNER**: Do you want Customer Service & Support (CSS) support for this product/project? - **No CSS support:** Fill out this template with information about how to file issues and get help. - **Yes CSS support:** Fill out an intake form at [aka.ms/onboardsupport](https://aka.ms/onboardsupport). CSS will work with/help you to determine next steps. - **Not sure?** Fill out an intake as though the answer were "Yes". CSS will help you decide. *Then remove this first heading from this SUPPORT.MD file before publishing your repo.* # Support ## How to file issues and get help This project uses GitHub Issues to track bugs and feature requests. Please search the existing issues before filing new issues to avoid duplicates. For new issues, file your bug or feature request as a new Issue. For help and questions about using this project, please **REPO MAINTAINER: INSERT INSTRUCTIONS HERE FOR HOW TO ENGAGE REPO OWNERS OR COMMUNITY FOR HELP. COULD BE A STACK OVERFLOW TAG OR OTHER CHANNEL. WHERE WILL YOU HELP PEOPLE?**. ## Microsoft Support Policy Support for this **PROJECT or PRODUCT** is limited to the resources listed above.
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/SUPPORT.md
SUPPORT.md
<!-- BEGIN MICROSOFT SECURITY.MD V0.0.8 BLOCK --> ## Security Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), and [our GitHub organizations](https://opensource.microsoft.com/). If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/opensource/security/definition), please report it to us as described below. ## Reporting Security Issues **Please do not report security vulnerabilities through public GitHub issues.** Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/opensource/security/create-report). If you prefer to submit without logging in, send email to [secure@microsoft.com](mailto:secure@microsoft.com). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/opensource/security/pgpkey). You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://aka.ms/opensource/security/msrc). Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue: * Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.) * Full paths of source file(s) related to the manifestation of the issue * The location of the affected source code (tag/branch/commit or direct URL) * Any special configuration required to reproduce the issue * Step-by-step instructions to reproduce the issue * Proof-of-concept or exploit code (if possible) * Impact of the issue, including how an attacker might exploit the issue This information will help us triage your report more quickly. If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/opensource/security/bounty) page for more details about our active programs. ## Preferred Languages We prefer all communications to be in English. ## Policy Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/opensource/security/cvd). <!-- END MICROSOFT SECURITY.MD BLOCK -->
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/SECURITY.md
SECURITY.md
# TorchScale - A Library for Transformers at (Any) Scale <p> <a href="https://github.com/microsoft/torchscale/blob/main/LICENSE"><img alt="MIT License" src="https://img.shields.io/badge/license-MIT-blue.svg" /></a> <a href="https://pypi.org/project/torchscale"><img alt="MIT License" src="https://badge.fury.io/py/torchscale.svg" /></a> </p> TorchScale is a PyTorch library that allows researchers and developers to scale up Transformers efficiently and effectively. It has the implementation of fundamental research to improve modeling generality and capability as well as training stability and efficiency of scaling Transformers. - Stability - [**DeepNet**](https://arxiv.org/abs/2203.00555): scaling Transformers to 1,000 Layers and beyond - Generality - [**Foundation Transformers (Magneto)**](https://arxiv.org/abs/2210.06423): towards true general-purpose modeling across tasks and modalities (including language, vision, speech, and multimodal) - Capability - A [**Length-Extrapolatable**](https://arxiv.org/abs/2212.10554) Transformer - Efficiency - [**X-MoE**](https://arxiv.org/abs/2204.09179): scalable & finetunable sparse Mixture-of-Experts (MoE) ## News - November, 2022: TorchScale 0.1.1 released [[Paper](https://arxiv.org/abs/2211.13184)] [[PyPI](https://pypi.org/project/torchscale/)] ## Installation To install: ``` pip install torchscale ``` Alternatively, you can develop it locally: ``` git clone https://github.com/microsoft/torchscale.git cd torchscale pip install -e . ``` ## Getting Started It takes only several lines of code to create a model with the above fundamental research features enabled. Here is how to quickly obtain a BERT-like encoder: ```python >>> from torchscale.architecture.config import EncoderConfig >>> from torchscale.architecture.encoder import Encoder >>> config = EncoderConfig(vocab_size=64000) >>> model = Encoder(config) >>> print(model) ``` We also support the `Decoder` architecture and the `EncoderDecoder` architecture: ```python # Creating a decoder model >>> from torchscale.architecture.config import DecoderConfig >>> from torchscale.architecture.decoder import Decoder >>> config = DecoderConfig(vocab_size=64000) >>> decoder = Decoder(config) >>> print(decoder) # Creating a encoder-decoder model >>> from torchscale.architecture.config import EncoderDecoderConfig >>> from torchscale.architecture.encoder_decoder import EncoderDecoder >>> config = EncoderDecoderConfig(vocab_size=64000) >>> encdec = EncoderDecoder(config) >>> print(encdec) ``` ## Key Features - [DeepNorm to improve the training stability of Post-LayerNorm Transformers](https://arxiv.org/abs/2203.00555) * enabled by setting *deepnorm=True* in the `Config` class. * It adjusts both the residual connection and the initialization method according to the model architecture (i.e., encoder, decoder, or encoder-decoder). - [SubLN for the model generality and the training stability](https://arxiv.org/abs/2210.06423) * enabled by *subln=True*. This is enabled by default. * It introduces another LayerNorm to each sublayer and adjusts the initialization according to the model architecture. * Note that SubLN and DeepNorm cannot be used in one single model. - [X-MoE: efficient and finetunable sparse MoE modeling](https://arxiv.org/abs/2204.09179) * enabled by *use_xmoe=True*. * It replaces every *'moe_freq'* `FeedForwardNetwork` layers with the X-MoE layers. - [Multiway architecture for multimodality](https://arxiv.org/abs/2208.10442) * enabled by *multiway=True*. * It provides a pool of Transformer's parameters used for different modalities. - [Extrapolatable position embedding (Xpos)](https://arxiv.org/abs/2212.10554) * enabled by *xpos_rel_pos=True*. - [Relative position bias](https://arxiv.org/abs/1910.10683) * enabled by adjusting *rel_pos_buckets* and *max_rel_pos*. - [SparseClip: improving the gradient clipping for sparse MoE models](https://arxiv.org/abs/2211.13184) * we provide a [sample code](examples/fairseq/utils/sparse_clip.py) that can be easily adapted to the FairSeq (or other) repo. Most of the features above can be used by simply passing the corresponding parameters to the config. For example: ```python >>> from torchscale.architecture.config import EncoderConfig >>> from torchscale.architecture.encoder import Encoder >>> config = EncoderConfig(vocab_size=64000, deepnorm=True, multiway=True) >>> model = Encoder(config) >>> print(model) ``` ## Examples We have the examples of how to use TorchScale in the following scenarios/tasks: - Language * [Decoder/GPT](examples/fairseq/README.md#example-gpt-pretraining) * [Encoder-Decoder/Neural Machine Translation](examples/fairseq/README.md#example-machine-translation) * [Encoder/BERT](examples/fairseq/README.md#example-bert-pretraining) - Vision * ViT/BEiT [In progress] - Speech - Multimodal * [Multiway Transformers/BEiT-3](https://github.com/microsoft/unilm/tree/master/beit3) We plan to provide more examples regarding different tasks (e.g. vision pretraining and speech recognition) and various deep learning toolkits (e.g. [DeepSpeed](https://github.com/microsoft/DeepSpeed) and [Megatron-LM](https://github.com/NVIDIA/Megatron-LM)). Any comments or PRs are welcome! ## Results ### Stability Evaluation <p align="center"> <img src="https://publicmodel.blob.core.windows.net/torchscale/pic/convergence.png" width="800"/> </p> The training curve is smooth by using TorchScale, while the baseline Transformer cannot converge. ### Scaling-up Experiments <p align="center"> <img src="https://publicmodel.blob.core.windows.net/torchscale/pic/scaling_curve.png" width="800"/> </p> TorchScale supports arbitrary depths and widths, successfully scaling-up the models without pain. ## Acknowledgments Some implementations in TorchScale are either adapted from or inspired by the [FairSeq](https://github.com/facebookresearch/fairseq) repository and the [UniLM](https://github.com/microsoft/unilm) repository. ## Citations If you find this repository useful, please consider citing our work: ``` @article{torchscale, author = {Shuming Ma and Hongyu Wang and Shaohan Huang and Wenhui Wang and Zewen Chi and Li Dong and Alon Benhaim and Barun Patra and Vishrav Chaudhary and Xia Song and Furu Wei}, title = {{TorchScale}: {Transformers} at Scale}, journal = {CoRR}, volume = {abs/2211.13184}, year = {2022} } ``` ``` @article{deepnet, author = {Hongyu Wang and Shuming Ma and Li Dong and Shaohan Huang and Dongdong Zhang and Furu Wei}, title = {{DeepNet}: Scaling {Transformers} to 1,000 Layers}, journal = {CoRR}, volume = {abs/2203.00555}, year = {2022}, } ``` ``` @article{magneto, author = {Hongyu Wang and Shuming Ma and Shaohan Huang and Li Dong and Wenhui Wang and Zhiliang Peng and Yu Wu and Payal Bajaj and Saksham Singhal and Alon Benhaim and Barun Patra and Zhun Liu and Vishrav Chaudhary and Xia Song and Furu Wei}, title = {Foundation {Transformers}}, journal = {CoRR}, volume = {abs/2210.06423}, year = {2022} } ``` ``` @inproceedings{xmoe, title={On the Representation Collapse of Sparse Mixture of Experts}, author={Zewen Chi and Li Dong and Shaohan Huang and Damai Dai and Shuming Ma and Barun Patra and Saksham Singhal and Payal Bajaj and Xia Song and Xian-Ling Mao and Heyan Huang and Furu Wei}, booktitle={Advances in Neural Information Processing Systems}, year={2022}, url={https://openreview.net/forum?id=mWaYC6CZf5} } ``` ## Contributing This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com. When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA. This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [Furu Wei](mailto:fuwei@microsoft.com) and [Shuming Ma](mailto:shumma@microsoft.com) with any additional questions or comments. ## Trademarks This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft's Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/usage/general). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/README.md
README.md
# Example: Integration with FairSeq ## Setup ```bash # Install the repo as a package: git clone https://github.com/microsoft/torchscale.git cd torchscale pip install -e . pip install git+https://github.com/shumingma/fairseq.git@moe pip install git+https://github.com/shumingma/infinibatch.git pip install iopath pip install numpy==1.23.0 ``` ## Example: BERT Pretraining ### Data Format We use a [streaming dataloader](https://github.com/microsoft/infinibatch) to read the data on-the-fly from the disk. It requires the data sharded into multiple small files (e.g. 10K lines per file), as well as a JSON file to contain some meta data and the paths to these files. The overall data directory should be organized as follows: ``` Data/ ├── json/ │ ├── train.json │ └── valid.json ├── shard/ │ ├── train/ │ │ ├── 00000.txt │ │ ├── 00001.txt │ │ └── ... │ └── valid/ │ ├── 00000.txt │ ├── 00001.txt │ └── ... ├── dict.txt └── sentencepiece.bpe.model ``` We recommend that each sharded data files contains no more than 10K lines with one sentence per line, and two documents should be separated with an empty line. ``` Document 1 Line 1 Document 1 Line 2 Document 1 Line 3 Document 2 Line 1 Document 2 Line 2 ... ``` Also, the JSON file should be in the format like this: ``` [ { "source": [ "shard/train/00000.txt", "shard/train/00001.txt", ... ], "source_lang": "en", "weight": 1.0 } ] ``` You can quickly get started with our processed vocabulary files: [sentencepiece.bpe.model](https://publicmodel.blob.core.windows.net/torchscale/vocab/sentencepiece.bpe.model) and [dict.txt](https://publicmodel.blob.core.windows.net/torchscale/vocab/dict.txt). Note that this vocabulary is English-only with 64K tokens. To train a new `sentencepiece.bpe.model` on your own data, please refer to the [SentencePiece](https://github.com/google/sentencepiece) repo. With the sentecepiece model and the installed `sentencepiece` library, you can extract the `dict.txt` file from it by ``` spm_export_vocab --model=sentencepiece.bpe.model | sed 's/\t/ /g' | tail -n +4 > dict.txt ``` ### Dense Model ```bash cd examples/fairseq/ python -m torch.distributed.launch --nproc_per_node=8 --nnodes=8 train.py ${PATH_TO_DATA} \ --task pretraining \ --tokens-per-sample 512 \ --mask-prob 0.15 \ --span-length 3.0 \ --leave-unmasked-prob 0.0 \ --random-token-prob 0.0 \ --criterion masked_lm \ --arch mlm_base \ --share-encoder-input-output-embed \ --required-batch-size-multiple 8 \ --spm-model ${PATH_TO_DATA}/sentencepiece.bpe.model \ --dict-file ${PATH_TO_DATA}/dict.txt \ --optimizer adam \ --adam-betas '(0.9,0.98)' \ --adam-eps 1e-6 \ --clip-norm 2.0 \ --lr-scheduler polynomial_decay \ --lr 0.0005 \ --warmup-updates 10000 \ --total-num-update 125000 \ --max-update 125000 \ --max-sentences 32 \ --update-freq 1 \ --log-format simple \ --log-interval 100 \ --disable-validation \ --save-interval-updates 5000 \ --no-epoch-checkpoints \ --fp16 \ --fp16-init-scale 4 \ --fp16-scale-window 256 \ --min-loss-scale 0.0001 \ --seed 1 \ --save-dir ${PATH_TO_CKPT} \ --ddp-backend=no_c10d \ --distributed-no-spawn \ --reset-dataloader \ --batch-read-ahead 10000 \ --rel-pos-buckets 32 \ --max-rel-pos 128 \ --deepnorm ``` ### Sparse (MoE) Model ```bash cd examples/fairseq/ python -m torch.distributed.launch --nproc_per_node=8 --nnodes=8 train.py ${PATH_TO_DATA} \ --task pretraining \ --tokens-per-sample 512 \ --mask-prob 0.15 \ --span-length 3.0 \ --leave-unmasked-prob 0.0 \ --random-token-prob 0.0 \ --arch mlm_base \ --share-encoder-input-output-embed \ --required-batch-size-multiple 8 \ --spm-model ${PATH_TO_DATA}/sentencepiece.bpe.model \ --dict-file ${PATH_TO_DATA}/dict.txt \ --optimizer adam \ --adam-betas '(0.9,0.98)' \ --adam-eps 1e-6 \ --clip-norm 2.0 \ --lr-scheduler polynomial_decay \ --lr 0.0005 \ --warmup-updates 10000 \ --total-num-update 125000 \ --max-update 125000 \ --max-sentences 32 \ --update-freq 1 \ --log-format simple \ --log-interval 100 \ --disable-validation \ --save-interval-updates 5000 \ --no-epoch-checkpoints \ --fp16 \ --fp16-init-scale 4 \ --fp16-scale-window 256 \ --min-loss-scale 0.0001 \ --seed 1 \ --save-dir ${PATH_TO_CKPT} \ --ddp-backend=no_c10d \ --distributed-no-spawn \ --reset-dataloader \ --batch-read-ahead 10000 \ --rel-pos-buckets 32 \ --max-rel-pos 128 \ --deepnorm \ --moe-expert-count 64 --moe-freq 2 \ --moe-gating-use-fp32 --moe-second-expert-policy random --moe-normalize-gate-prob-before-dropping \ --moe-eval-capacity-token-fraction -1.0 \ --criterion masked_lm_moe_cross_entropy --moe-gate-loss-wt 0.01 --moe-gate-loss-combine-method sum \ --use-xmoe --pad-to-max-length ``` ## Example: GPT Pretraining ### Data Format We use the format as in the FairSeq's [language modeling example](https://github.com/facebookresearch/fairseq/tree/main/examples/language_model#1-preprocess-the-data). ### Dense Model ```bash cd examples/fairseq/ python -m torch.distributed.launch --nproc_per_node=2 --nnodes=1 train.py \ ${PATH_TO_DATA} \ --num-workers 2 \ --activation-fn gelu \ --share-decoder-input-output-embed \ --validate-interval-updates 1000 \ --save-interval-updates 1000 \ --no-epoch-checkpoints \ --memory-efficient-fp16 \ --fp16-init-scale 4 \ --arch lm_base \ --task language_modeling \ --sample-break-mode none \ --tokens-per-sample 128 \ --optimizer adam --adam-betas "(0.9, 0.98)" \ --adam-eps 1e-08 \ --clip-norm 0.0 \ --lr 5e-4 \ --lr-scheduler polynomial_decay \ --warmup-updates 750 \ --dropout 0.1 \ --attention-dropout 0.1 \ --weight-decay 0.01 \ --batch-size 4 \ --update-freq 1 \ --required-batch-size-multiple 1 \ --total-num-update 50000 \ --max-update 50000 \ --seed 1 \ --ddp-backend=c10d ``` ### Sparse (MoE) Model ```bash cd examples/fairseq/ python -m torch.distributed.launch --nproc_per_node=2 --nnodes=1 train.py \ ${PATH_TO_DATA} \ --num-workers 2 \ --activation-fn gelu \ --share-decoder-input-output-embed \ --validate-interval-updates 1000 \ --save-interval-updates 1000 \ --no-epoch-checkpoints \ --memory-efficient-fp16 \ --fp16-init-scale 4 \ --arch lm_base \ --task language_modeling \ --sample-break-mode none \ --tokens-per-sample 128 \ --optimizer adam --adam-betas "(0.9, 0.98)" \ --adam-eps 1e-08 \ --clip-norm 0.0 \ --lr 5e-4 \ --lr-scheduler polynomial_decay \ --warmup-updates 750 \ --dropout 0.1 \ --attention-dropout 0.1 \ --weight-decay 0.01 \ --batch-size 4 \ --update-freq 1 \ --required-batch-size-multiple 1 \ --total-num-update 50000 \ --max-update 50000 \ --seed 1 \ --ddp-backend=no_c10d \ --moe-expert-count 2 --moe-freq 2 \ --moe-gating-use-fp32 --moe-second-expert-policy random --moe-normalize-gate-prob-before-dropping \ --moe-eval-capacity-token-fraction -1.0 \ --criterion moe_cross_entropy --moe-gate-loss-wt 0.01 --moe-gate-loss-combine-method sum \ --use-xmoe ``` ## Example: Machine Translation ### Data Format We follow the FairSeq's [neural machine translation example](https://github.com/facebookresearch/fairseq/tree/main/examples/translation#training-a-new-model) to preprocess the data. ### Dense Model ```bash cd examples/fairseq/ python -m torch.distributed.launch --nproc_per_node=2 --nnodes=1 train.py \ ${PATH_TO_DATA} \ --arch mt_base --share-decoder-input-output-embed \ --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \ --lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \ --dropout 0.3 --weight-decay 0.0001 \ --max-tokens 4096 --fp16 ``` ### Sparse (MoE) Model ```bash cd examples/fairseq/ python -m torch.distributed.launch --nproc_per_node=2 --nnodes=1 train.py \ ${PATH_TO_DATA} \ --arch mt_base --share-decoder-input-output-embed \ --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \ --lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \ --dropout 0.3 --weight-decay 0.0001 \ --moe-expert-count 2 --moe-freq 2 \ --moe-gating-use-fp32 --moe-second-expert-policy random --moe-normalize-gate-prob-before-dropping \ --moe-eval-capacity-token-fraction -1.0 \ --criterion moe_cross_entropy --moe-gate-loss-wt 0.01 --moe-gate-loss-combine-method sum \ --use-xmoe \ --max-tokens 4096 --fp16 ```
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/examples/fairseq/README.md
README.md
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Dict, List, Optional, Tuple import torch from fairseq import distributed_utils, utils from fairseq.distributed import fsdp_wrap from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, register_model, register_model_architecture, ) from fairseq.models.transformer import Embedding from fairseq.modules import PositionalEmbedding from torch import Tensor from torchscale.architecture.config import DecoderConfig, EncoderConfig from torchscale.architecture.encoder import Encoder from .language_modeling import LMDecoder as MTDecoder logger = logging.getLogger(__name__) DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8) @register_model("mt") class TranslationModel(FairseqEncoderDecoderModel): def __init__(self, args, encoder, decoder): super().__init__(encoder, decoder) self.args = args @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--decoder-output-dim', type=int, metavar='N', help='decoder output dimension (extra linear layer ' 'if different from decoder embed dim') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings' ' (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. ' 'Must be used with adaptive_loss criterion'), parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections') parser.add_argument('--layernorm-embedding', action='store_true', help='add layernorm to embedding') parser.add_argument('--no-scale-embedding', action='store_true', help='if True, dont scale embeddings') parser.add_argument('--checkpoint-activations', action='store_true', help='checkpoint activations at each layer, which saves GPU ' 'memory usage at the cost of some additional compute') parser.add_argument('--offload-activations', action='store_true', help='checkpoint activations at each layer, then save to gpu. Sets --checkpoint-activations.') # args for "Cross+Self-Attention for Transformer Models" (Peitz et al., 2019) parser.add_argument('--no-cross-attention', default=False, action='store_true', help='do not perform cross-attention') parser.add_argument('--cross-self-attention', default=False, action='store_true', help='perform cross+self-attention') # args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for encoder') parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for decoder') parser.add_argument('--encoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') parser.add_argument('--decoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') # args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020) parser.add_argument('--quant-noise-pq', type=float, metavar='D', default=0, help='iterative PQ quantization noise at training time') parser.add_argument('--quant-noise-pq-block-size', type=int, metavar='D', default=8, help='block size of quantization noise at training time') parser.add_argument('--quant-noise-scalar', type=float, metavar='D', default=0, help='scalar quantization noise and scalar quantization at training time') # args for Fully Sharded Data Parallel (FSDP) training parser.add_argument( '--min-params-to-wrap', type=int, metavar='D', default=DEFAULT_MIN_PARAMS_TO_WRAP, help=( 'minimum number of params for a layer to be wrapped with FSDP() when ' 'training with --ddp-backend=fully_sharded. Smaller values will ' 'improve memory efficiency, but may make torch.distributed ' 'communication less efficient due to smaller input sizes. This option ' 'is set to 0 (i.e., always wrap) when --checkpoint-activations or ' '--offload-activations are passed.' ) ) # args for mixture-of-expert layers parser.add_argument('--moe-freq', type=int, metavar='D', default=0, help='Frequency at which we insert MoE Transformer layers') parser.add_argument('--encoder-moe-freq', type=int, metavar='D', default=0, help='Frequency at which we insert MoE Transformer encoder layers') parser.add_argument('--decoder-moe-freq', type=int, metavar='D', default=0, help='Frequency at which we insert MoE Transformer decoder layers') parser.add_argument('--moe-expert-count', type=int, metavar='D', default=0, help='Number of experts in each MoE Layer') parser.add_argument('--moe-gating-use-fp32', default=False, action='store_true', help="Use FP32 computations in MoE top2 gating function") parser.add_argument('--moe-second-expert-policy', type=str, default='sampling', help="policy for second expert, options: all/sampling/random") parser.add_argument( '--moe-normalize-gate-prob-before-dropping', default=False, action='store_true', help=( "whether to normalize gate probs before or after dropping experts " "for capacity and randomization" ) ) parser.add_argument('--moe-expert-ffn-dim', type=int, default=0, help="MoE Expert FFN dimension") parser.add_argument('--moe-top1-expert', default=False, action='store_true', help="Use top1 gate instead of top2") parser.add_argument( '--moe-eval-capacity-token-fraction', type=float, default=0.25, help=( "Fraction of tokens as capacity during validation" "if set to negative, use same as training. range: (0.0, 1.0]." ) ) parser.add_argument('--moe-normalize-expert-grad', type=str, default='world_size', help="Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'") parser.add_argument('--use-moe-pad-mask', default=False, action='store_true', help="Don't route padding tokens to any expert") parser.add_argument('--use-xmoe', default=False, action='store_true', help="Enable X-Moe") parser.add_argument('--freeze-moe', default=False, action='store_true', help="Freeze MoE Params") parser.add_argument('--deepnorm', default=False, action='store_true', help="Enable DeepNorm") parser.add_argument('--subln', default=False, action='store_true', help="Enable SubLN") parser.add_argument('--pretrained-dense-mt-model-path', type=str, default='') # args for pseudo-MoE layers parser.add_argument('--alternate-ffn-embed-dim', type=int, default=0, help="FFN embed dim of alternate pseudo-MoE blocks") parser.add_argument('--rel-pos-buckets', type=int, default=0, help='') parser.add_argument('--max-rel-pos', type=int, default=0, help='') # fmt: on @classmethod def build_model(cls, args, task): """Build a new model instance.""" # make sure all arguments are present in older models base_architecture(args) if getattr(args, "max_source_positions", None) is None: args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if getattr(args, "max_target_positions", None) is None: args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS args.ddp_rank = distributed_utils.get_data_parallel_rank() src_dict, tgt_dict = task.source_dictionary, task.target_dictionary if args.share_all_embeddings: if src_dict != tgt_dict: raise ValueError("--share-all-embeddings requires a joined dictionary") if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and ( args.decoder_embed_path != args.encoder_embed_path ): raise ValueError( "--share-all-embeddings not compatible with --decoder-embed-path" ) encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = cls.build_embedding( args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) if getattr(args, "offload_activations", False): args.checkpoint_activations = True # offloading implies checkpointing encoder_embed_positions = ( PositionalEmbedding( args.max_source_positions, args.encoder_embed_dim, src_dict.pad(), learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) decoder_embed_positions = ( PositionalEmbedding( args.max_target_positions, args.decoder_embed_dim, tgt_dict.pad(), learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if args.share_decoder_input_output_embed: output_projection = torch.nn.Linear( decoder_embed_tokens.weight.shape[1], decoder_embed_tokens.weight.shape[0], bias=False, ) output_projection.weight = decoder_embed_tokens.weight else: output_projection = torch.nn.Linear( args.decoder_embed_dim, len(tgt_dict), bias=False ) torch.nn.init.normal_( output_projection.weight, mean=0, std=args.decoder_embed_dim**-0.5 ) encoder = cls.build_encoder( args, encoder_embed_tokens, encoder_embed_positions, src_dict, ) decoder = cls.build_decoder( args, decoder_embed_tokens, decoder_embed_positions, output_projection, tgt_dict, ) if not args.share_all_embeddings: min_params_to_wrap = getattr( args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP ) # fsdp_wrap is a no-op when --ddp-backend != fully_sharded encoder = fsdp_wrap(encoder, min_num_params=min_params_to_wrap) decoder = fsdp_wrap(decoder, min_num_params=min_params_to_wrap) return cls(args, encoder, decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) # if provided, load from preloaded dictionaries if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb @classmethod def build_encoder(cls, args, embed_tokens, embed_positions, dictionary): config = EncoderConfig() config.override(args) return MTEncoder( config, embed_tokens, embed_positions, is_encoder_decoder=True, dictionary=dictionary, ) @classmethod def build_decoder( cls, args, embed_tokens, embed_positions, output_projection, dictionary ): config = DecoderConfig() config.override(args) return MTDecoder( config, embed_tokens, embed_positions, output_projection, is_encoder_decoder=True, dictionary=dictionary, ) def forward( self, src_tokens, src_lengths, prev_output_tokens, return_all_hiddens: bool = False, features_only: bool = False, **kwargs ): encoder_out = self.encoder(src_tokens, return_all_hiddens=return_all_hiddens) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, features_only=features_only, return_all_hiddens=return_all_hiddens, ) return decoder_out def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Get normalized probabilities (or log probs) from a net's output.""" return self.get_normalized_probs_scriptable(net_output, log_probs, sample) class MTEncoder(Encoder, FairseqEncoder): def forward(self, src_tokens, **kwargs): self_attn_padding_mask = src_tokens.eq(self.dictionary.pad()) return super().forward( src_tokens=src_tokens, encoder_padding_mask=self_attn_padding_mask, **kwargs ) def reorder_encoder_out(self, encoder_out, new_order): new_encoder_out = encoder_out["encoder_out"].index_select(0, new_order) new_encoder_embedding = encoder_out["encoder_embedding"].index_select( 0, new_order ) new_encoder_padding_mask = encoder_out["encoder_padding_mask"].index_select( 0, new_order ) encoder_states = encoder_out["encoder_states"] if len(encoder_states) > 0: for idx, state in enumerate(encoder_states): encoder_states[idx] = state.index_select(0, new_order) return { "encoder_out": new_encoder_out, # T x B x C "encoder_padding_mask": new_encoder_padding_mask, "encoder_embedding": new_encoder_embedding, # B x T x C "encoder_states": encoder_states, # List[T x B x C] } def max_positions(self): return self.embed_positions.max_positions @register_model_architecture("mt", "mt_base") def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr( args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim ) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0) args.is_moe = getattr(args, "is_moe", False) args.selected_expert_count = getattr(args, "selected_expert_count", 2)
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/examples/fairseq/models/machine_translation.py
machine_translation.py
import logging from dataclasses import dataclass, field from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import BaseFairseqModel, register_model, register_model_architecture from fairseq.models.squad import SQuADHead from fairseq.models.transformer import DEFAULT_MIN_PARAMS_TO_WRAP, Embedding from fairseq.modules import PositionalEmbedding from omegaconf import II try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm from torchscale.architecture.config import EncoderConfig from .machine_translation import MTEncoder as Encoder DEFAULT_MAX_SOURCE_POSITIONS = 1024 logger = logging.getLogger(__name__) @dataclass class BertConfig(FairseqDataclass): activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use"} ) dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) attention_dropout: float = field( default=0.0, metadata={"help": "dropout probability for attention weights"} ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) encoder_embed_dim: int = field( default=512, metadata={"help": "encoder embedding dimension"} ) encoder_output_dim: int = field( default=512, metadata={"help": "encoder output dimension"} ) encoder_input_dim: int = field( default=512, metadata={"help": "encoder input dimension"} ) encoder_ffn_embed_dim: int = field( default=2048, metadata={"help": "encoder embedding dimension for FFN"} ) encoder_layers: int = field(default=6, metadata={"help": "num encoder layers"}) encoder_attention_heads: int = field( default=8, metadata={"help": "num encoder attention heads"} ) encoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each encoder block"} ) no_encoder_final_norm: bool = field( default=False, metadata={"help": "don't add an extra layernorm after the last encoder block"}, ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) share_encoder_input_output_embed: bool = field( default=False, metadata={"help": "share encoder input and output embeddings"} ) encoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the encoder"}, ) layernorm_embedding: bool = field( default=False, metadata={"help": "add layernorm to embedding"} ) no_scale_embedding: bool = field( default=False, metadata={"help": "if True, dont scale embeddings"} ) checkpoint_activations: bool = field( default=False, metadata={"help": "checkpoint activations at each layer"} ) offload_activations: bool = field( default=False, metadata={"help": "move checkpointed activations to CPU after they are used."}, ) # config for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) encoder_layerdrop: float = field( default=0.0, metadata={"help": "LayerDrop probability for encoder"} ) encoder_layers_to_keep: Optional[str] = field( default=None, metadata={ "help": "which layers to *keep* when pruning as a comma-separated list" }, ) # config for Fully Sharded Data Parallel (FSDP) training min_params_to_wrap: int = field( default=DEFAULT_MIN_PARAMS_TO_WRAP, metadata={ "help": ( "minimum number of params for a layer to be wrapped with FSDP() when " "training with --ddp-backend=fully_sharded. Smaller values will " "improve memory efficiency, but may make torch.distributed " "communication less efficient due to smaller input sizes. This option " "is set to 0 (i.e., always wrap) when --checkpoint-activations or " "--offload-activations are passed." ) }, ) max_source_positions: int = field( default=1024, metadata={"help": "max source positions"} ) pooler_activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use for pooler layer"} ) pooler_dropout: float = field( default=0.0, metadata={"help": "dropout probability in the masked_lm pooler layers"}, ) # options from other parts of the config # add_bos_token: bool = II("task.add_bos_token") # tokens_per_sample: int = II("task.tokens_per_sample") tpu: bool = II("common.tpu") rel_pos_buckets: int = field(default=0, metadata={"help": ""}) max_rel_pos: int = field(default=0, metadata={"help": ""}) use_xmoe: Optional[bool] = field( default=False, ) moe_freq: int = field( default=0, metadata={"help": "Frequency at which we insert MoE Transformer layers"}, ) moe_expert_count: int = field( default=0, metadata={"help": "Number of experts in each MoE Layer"} ) moe_gating_use_fp32: bool = field( default=False, metadata={"help": "Use FP32 computations in MoE top2 gating function"}, ) moe_second_expert_policy: str = field( default="sampling", metadata={"help": "policy for second expert, options: all/sampling/random"}, ) moe_normalize_gate_prob_before_dropping: bool = field( default=False, metadata={ "help": "whether to normalize gate probs before or after dropping experts for capacity and randomization" }, ) moe_expert_ffn_dim: Optional[int] = field( default=None, metadata={"help": "MoE expert FFN dimension"} ) moe_top1_expert: Optional[bool] = field( default=False, metadata={"help": "Use top1 gate instead of top2"} ) moe_eval_capacity_token_fraction: Optional[float] = field( default=0.25, metadata={ "help": ( "Default: 0.25, Fraction of tokens as capacity during validation, " "if set to negative, use same as training. range: (0.0, 1.0]." ) }, ) moe_normalize_expert_grad: Optional[str] = field( default="world_size", metadata={ "help": "Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'" }, ) record_a2a_perf_stats: Optional[bool] = field( default=False, metadata={"help": "records all to all perf stats during distributed training"}, ) dummy_a2a: Optional[bool] = field( default=False, metadata={ "help": "By passes all to all during distributed training by returning the input buffer as output" }, ) moe_batch_prioritized_routing: Optional[bool] = field( default=False, metadata={ "help": "if true orders token by the gate prob before capacity dropping." }, ) ddp_rank: int = II("distributed_training.distributed_rank") deepnorm: Optional[bool] = field( default=False, ) subln: Optional[bool] = field( default=False, ) @register_model("mlm", dataclass=BertConfig) class BertModel(BaseFairseqModel): def __init__(self, args, encoder): super().__init__() self.args = args self.encoder = encoder self.padding_idx = self.encoder.embed_tokens.padding_idx self.classification_heads = nn.ModuleDict() @classmethod def build_model(cls, args, task): """Build a new model instance.""" args.max_source_positions = getattr( args, "max_source_positions", DEFAULT_MAX_SOURCE_POSITIONS ) embed_tokens = cls.build_embedding( args, task.dictionary, args.encoder_embed_dim ) embed_positions = ( PositionalEmbedding( args.max_source_positions, args.encoder_embed_dim, task.dictionary.pad(), learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) lm_head = cls.build_lm_head( args, args.encoder_embed_dim, len(task.dictionary), args.activation_fn, weight=embed_tokens.weight, ) config = EncoderConfig() config.override(args) encoder = Encoder( config, embed_tokens=embed_tokens, embed_positions=embed_positions, output_projection=lm_head, is_encoder_decoder=False, dictionary=task.dictionary, ) return cls(args, encoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): embed_tokens = Embedding(len(dictionary), embed_dim, dictionary.pad()) return embed_tokens @classmethod def build_lm_head(cls, args, embed_dim, output_dim, activation_fn, weight): return LMHead(embed_dim, output_dim, activation_fn, weight) def output_layer(self, features, masked_tokens=None): return self.encoder.output_projection(features, masked_tokens=masked_tokens) def register_classification_head( self, name, num_classes=None, inner_dim=None, **kwargs ): """Register a classification head.""" if name in self.classification_heads: prev_num_classes = self.classification_heads[name].out_proj.out_features prev_inner_dim = self.classification_heads[name].dense.out_features if num_classes != prev_num_classes or inner_dim != prev_inner_dim: logger.warning( 're-registering head "{}" with num_classes {} (prev: {}) ' "and inner_dim {} (prev: {})".format( name, num_classes, prev_num_classes, inner_dim, prev_inner_dim ) ) self.classification_heads[name] = ClassificationHead( self.args.encoder_embed_dim, inner_dim or self.args.encoder_embed_dim, num_classes, self.args.pooler_activation_fn, self.args.pooler_dropout, ) def register_question_answering_head(self, name, num_classes=None): self.classification_heads[name] = SQuADHead( self.args.encoder_embed_dim, ) def upgrade_state_dict_named(self, state_dict, name): prefix = name + "." if name != "" else "" # upgrade children modules super().upgrade_state_dict_named(state_dict, name) # Handle new classification heads present in the state dict. current_head_names = ( [] if not hasattr(self, "classification_heads") else self.classification_heads.keys() ) keys_to_delete = [] for k in state_dict.keys(): if not k.startswith(prefix + "classification_heads."): continue head_name = k[len(prefix + "classification_heads.") :].split(".")[0] # noqa: E203 num_classes = state_dict[ prefix + "classification_heads." + head_name + ".out_proj.weight" ].size(0) inner_dim = state_dict[ prefix + "classification_heads." + head_name + ".dense.weight" ].size(0) if getattr(self.args, "load_checkpoint_heads", False): if head_name not in current_head_names: self.register_classification_head(head_name, num_classes, inner_dim) else: if head_name not in current_head_names: logger.warning( "deleting classification head ({}) from checkpoint " "not present in current model: {}".format(head_name, k) ) keys_to_delete.append(k) elif ( num_classes != self.classification_heads[head_name].out_proj.out_features or inner_dim != self.classification_heads[head_name].dense.out_features ): logger.warning( "deleting classification head ({}) from checkpoint " "with different dimensions than current model: {}".format( head_name, k ) ) keys_to_delete.append(k) for k in keys_to_delete: del state_dict[k] # Copy any newly-added classification heads into the state dict # with their current weights. if hasattr(self, "classification_heads"): cur_state = self.classification_heads.state_dict() for k, v in cur_state.items(): if prefix + "classification_heads." + k not in state_dict: logger.info("Overwriting " + prefix + "classification_heads." + k) state_dict[prefix + "classification_heads." + k] = v def get_normalized_probs_scriptable( self, net_output, log_probs, sample = None, ): logits = net_output[0] if log_probs: return utils.log_softmax(logits, dim=-1) else: return utils.softmax(logits, dim=-1) def forward( self, src_tokens=None, features_only=False, return_all_hiddens=False, classification_head_name=None, masked_tokens=None, **kwargs ): encoder_out = self.encoder( src_tokens, features_only=True, return_all_hiddens=return_all_hiddens ) x, extra = encoder_out["encoder_out"], encoder_out if classification_head_name is not None: x = self.classification_heads[classification_head_name](x) elif not features_only: x = self.output_layer(x, masked_tokens=masked_tokens) return x, extra class ClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__( self, input_dim, inner_dim, num_classes, activation_fn, pooler_dropout, ): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, num_classes) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = self.activation_fn(x.float()).type_as(x) x = self.dropout(x) x = self.out_proj(x) return x class LMHead(nn.Module): """Head for masked language modeling.""" def __init__(self, embed_dim, output_dim, activation_fn, weight=None): super().__init__() self.dense = nn.Linear(embed_dim, embed_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.layer_norm = LayerNorm(embed_dim) if weight is None: weight = nn.Linear(embed_dim, output_dim, bias=False).weight self.weight = weight self.bias = nn.Parameter(torch.zeros(output_dim)) def forward(self, features, masked_tokens=None, **kwargs): # Only project the masked tokens while training, # saves both memory and computation if masked_tokens is not None: features = features[masked_tokens, :] x = self.dense(features) x = self.activation_fn(x.float()).type_as(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = F.linear(x, self.weight) + self.bias return x @register_model_architecture("mlm", "mlm_base") def base_unilm_architecture(args): if hasattr(args, "encoder_final_norm"): args.no_encoder_final_norm = not args.encoder_final_norm args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.pooler_dropout = getattr(args, "pooler_dropout", 0.0) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 3072) args.encoder_layers = getattr(args, "encoder_layers", 12) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) args.activation_fn = getattr(args, "activation_fn", "gelu") args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) # args.add_bos_token = getattr(args, "add_bos_token", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.share_encoder_input_output_embed = getattr( args, "share_encoder_input_output_embed", True ) args.encoder_output_dim = getattr( args, "encoder_output_dim", args.encoder_embed_dim ) args.encoder_input_dim = getattr(args, "encoder_input_dim", args.encoder_embed_dim) # Model training is not stable without this args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.no_encoder_final_norm = getattr(args, "no_encoder_final_norm", False) args.no_scale_embedding = getattr(args, "no_scale_embedding", True) args.layernorm_embedding = getattr(args, "layernorm_embedding", True) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/examples/fairseq/models/bert.py
bert.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from dataclasses import dataclass, field from typing import Optional import torch from fairseq import distributed_utils, utils from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import ( FairseqIncrementalDecoder, FairseqLanguageModel, register_model, register_model_architecture, ) from fairseq.models.transformer import DEFAULT_MIN_PARAMS_TO_WRAP, Embedding from fairseq.modules import PositionalEmbedding from omegaconf import II from torchscale.architecture.config import DecoderConfig from torchscale.architecture.decoder import Decoder DEFAULT_MAX_TARGET_POSITIONS = 1024 logger = logging.getLogger(__name__) @dataclass class LanguageConfig(FairseqDataclass): activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="relu", metadata={"help": "activation function to use"} ) dropout: float = field(default=0.1, metadata={"help": "dropout probability"}) attention_dropout: float = field( default=0.0, metadata={"help": "dropout probability for attention weights"} ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) relu_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN."} ) decoder_embed_dim: int = field( default=512, metadata={"help": "decoder embedding dimension"} ) decoder_output_dim: int = field( default=512, metadata={"help": "decoder output dimension"} ) decoder_input_dim: int = field( default=512, metadata={"help": "decoder input dimension"} ) decoder_ffn_embed_dim: int = field( default=2048, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field(default=6, metadata={"help": "num decoder layers"}) decoder_attention_heads: int = field( default=8, metadata={"help": "num decoder attention heads"} ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"} ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings (outside self attention)" }, ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"} ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) layernorm_embedding: bool = field( default=False, metadata={"help": "add layernorm to embedding"} ) no_scale_embedding: bool = field( default=False, metadata={"help": "if True, dont scale embeddings"} ) checkpoint_activations: bool = field( default=False, metadata={"help": "checkpoint activations at each layer"} ) offload_activations: bool = field( default=False, metadata={"help": "move checkpointed activations to CPU after they are used."}, ) # config for Fully Sharded Data Parallel (FSDP) training min_params_to_wrap: int = field( default=DEFAULT_MIN_PARAMS_TO_WRAP, metadata={ "help": ( "minimum number of params for a layer to be wrapped with FSDP() when " "training with --ddp-backend=fully_sharded. Smaller values will " "improve memory efficiency, but may make torch.distributed " "communication less efficient due to smaller input sizes. This option " "is set to 0 (i.e., always wrap) when --checkpoint-activations or " "--offload-activations are passed." ) }, ) moe_freq: int = field( default=0, metadata={"help": "Frequency at which we insert MoE Transformer layers"}, ) moe_expert_count: int = field( default=0, metadata={"help": "Number of experts in each MoE Layer"} ) moe_gating_use_fp32: bool = field( default=False, metadata={"help": "Use FP32 computations in MoE top2 gating function"}, ) moe_second_expert_policy: str = field( default="sampling", metadata={"help": "policy for second expert, options: all/sampling/random"}, ) moe_normalize_gate_prob_before_dropping: bool = field( default=False, metadata={ "help": "whether to normalize gate probs before or after dropping experts for capacity and randomization" }, ) moe_expert_ffn_dim: Optional[int] = field( default=None, metadata={"help": "MoE expert FFN dimension"} ) moe_top1_expert: Optional[bool] = field( default=False, metadata={"help": "Use top1 gate instead of top2"} ) moe_eval_capacity_token_fraction: Optional[float] = field( default=0.25, metadata={ "help": ( "Default: 0.25, Fraction of tokens as capacity during validation, " "if set to negative, use same as training. range: (0.0, 1.0]." ) }, ) moe_normalize_expert_grad: Optional[str] = field( default="world_size", metadata={ "help": "Divide expert gradients by (1) 'world_size' (2) 'sqrt_world_size'" }, ) record_a2a_perf_stats: Optional[bool] = field( default=False, metadata={"help": "records all to all perf stats during distributed training"}, ) dummy_a2a: Optional[bool] = field( default=False, metadata={ "help": "By passes all to all during distributed training by returning the input buffer as output" }, ) moe_batch_prioritized_routing: Optional[bool] = field( default=False, metadata={ "help": "if true orders token by the gate prob before capacity dropping." }, ) use_xmoe: Optional[bool] = field( default=False, ) # options from other parts of the config add_bos_token: bool = II("task.add_bos_token") tokens_per_sample: int = II("task.tokens_per_sample") max_target_positions: Optional[int] = II("task.max_target_positions") tpu: bool = II("common.tpu") memory_efficient_fp16: bool = II("common.memory_efficient_fp16") fp16: bool = II("common.fp16") fp16_no_flatten_grads: bool = II("common.fp16_no_flatten_grads") ddp_backend: str = II("distributed_training.ddp_backend") world_size: int = II("distributed_training.distributed_world_size") distributed_rank: int = II("distributed_training.distributed_rank") ddp_rank: int = II("distributed_training.distributed_rank") deepnorm: Optional[bool] = field( default=False, ) subln: Optional[bool] = field( default=False, ) rel_pos_buckets: Optional[int] = field( default=0, ) max_rel_pos: Optional[int] = field( default=0, ) xpos_rel_pos: Optional[bool] = field( default=False, ) xpos_scale_base: Optional[int] = field( default=512, ) @register_model("lm", dataclass=LanguageConfig) class LanguageModel(FairseqLanguageModel): def __init__(self, args, decoder): self.args = args super().__init__(decoder) @classmethod def build_model(cls, args, task): if getattr(args, "max_target_positions", None) is None: args.max_target_positions = getattr( args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS ) embed_tokens = cls.build_embedding( args, task.source_dictionary, args.decoder_embed_dim ) embed_positions = ( PositionalEmbedding( args.max_target_positions, args.decoder_embed_dim, task.dictionary.pad(), learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None ) if args.share_decoder_input_output_embed: output_projection = torch.nn.Linear( embed_tokens.weight.shape[1], embed_tokens.weight.shape[0], bias=False, ) output_projection.weight = embed_tokens.weight else: output_projection = torch.nn.Linear( args.decoder_embed_dim, len(task.dictionary), bias=False ) torch.nn.init.normal_( output_projection.weight, mean=0, std=args.decoder_embed_dim**-0.5 ) if getattr(args, "moe_freq", 0) > 0 and ( getattr(args, "fp16", False) and not getattr(args, "memory_efficient_fp16", False) and getattr(args, "ddp_backend", None) != "fully_sharded" ): assert ( args.fp16_no_flatten_grads ), "If training moe models, set --fp16-no-flatten-grads to calculate correct gradnorm" args.ddp_rank = distributed_utils.get_data_parallel_rank() config = DecoderConfig() config.override(args) decoder = LMDecoder( config, embed_tokens, embed_positions, output_projection, is_encoder_decoder=False, dictionary=task.dictionary, ) return cls(args, decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): return Embedding(len(dictionary), embed_dim, dictionary.pad()) class LMDecoder(Decoder, FairseqIncrementalDecoder): def forward(self, src_tokens, **kwargs): self_attn_padding_mask = src_tokens.eq(self.dictionary.pad()) return super().forward(src_tokens, self_attn_padding_mask, **kwargs) def max_positions(self): return self.embed_positions.max_positions def reorder_incremental_state_scripting( self, incremental_state, new_order, ): for module in incremental_state: for key in incremental_state[module]: result = incremental_state[module][key].index_select(0, new_order) incremental_state[module][key] = result @register_model_architecture("lm", "lm_base") def base_lm_architecture(args): # backward compatibility for older model checkpoints if hasattr(args, "no_tie_adaptive_proj"): # previous models defined --no-tie-adaptive-proj, so use the existence of # that option to determine if this is an "old" model checkpoint args.no_decoder_final_norm = True # old models always set this to True if args.no_tie_adaptive_proj is False: args.tie_adaptive_proj = True if hasattr(args, "decoder_final_norm"): args.no_decoder_final_norm = not args.decoder_final_norm args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.adaptive_softmax_factor = getattr(args, "adaptive_softmax_factor", 4) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.activation_fn = getattr(args, "activation_fn", "relu") args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.base_layers = getattr(args, "base_layers", 0) args.base_sublayers = getattr(args, "base_sublayers", 1) args.base_shuffle = getattr(args, "base_shuffle", False) args.add_bos_token = getattr(args, "add_bos_token", False) args.no_token_positional_embeddings = getattr( args, "no_token_positional_embeddings", False ) args.share_decoder_input_output_embed = getattr( args, "share_decoder_input_output_embed", False ) args.character_embeddings = getattr(args, "character_embeddings", False) args.decoder_output_dim = getattr( args, "decoder_output_dim", args.decoder_embed_dim ) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) # Model training is not stable without this args.decoder_normalize_before = True args.no_decoder_final_norm = getattr(args, "no_decoder_final_norm", False) args.adaptive_input = getattr(args, "adaptive_input", False) args.adaptive_input_factor = getattr(args, "adaptive_input_factor", 4) args.adaptive_input_cutoff = getattr(args, "adaptive_input_cutoff", None) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.tie_adaptive_proj = getattr(args, "tie_adaptive_proj", False) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/examples/fairseq/models/language_modeling.py
language_modeling.py
import math import torch import torch.nn.functional as F from fairseq import metrics, utils from fairseq.criterions import MoECriterion, register_criterion, MoECriterionConfig @register_criterion("masked_lm_moe_cross_entropy", dataclass=MoECriterionConfig) class MaskedLMMoECrossEntropyCriterion(MoECriterion): def compute_inner_loss(self, model, sample, reduce=True): masked_tokens = sample["target"].ne(self.padding_idx) sample_size = masked_tokens.int().sum() masked_tokens = torch.where( masked_tokens.any(), masked_tokens, masked_tokens.new([True]), ) net_output = model(**sample["net_input"], masked_tokens=masked_tokens) lprobs = model.get_normalized_probs(net_output, log_probs=True) lprobs = lprobs.view(-1, lprobs.size(-1)) target = model.get_targets(sample, net_output) if masked_tokens is not None: target = target[masked_tokens] nll_loss = F.nll_loss( lprobs, target.view(-1), ignore_index=self.padding_idx, reduction="sum" if reduce else "none", ) logging_output = { "inner_loss": nll_loss.data, "ntokens": sample["ntokens"], "nsentences": sample["target"].size(0), "sample_size": sample_size, } return net_output, nll_loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" MaskedLMMoECrossEntropyCriterion.reduce_moe_metrics(logging_outputs) loss_sum = sum(log.get("inner_loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) # we divide by log(2) to convert the loss from base e to base 2 metrics.log_scalar( "inner_loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) if sample_size != ntokens: metrics.log_scalar( "nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 ) metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) ) else: metrics.log_derived( "ppl", lambda meters: utils.get_perplexity(meters["inner_loss"].avg) )
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/examples/fairseq/criterions/masked_lm_moe.py
masked_lm_moe.py
import json import logging import os from argparse import Namespace # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field import sentencepiece as spm from fairseq import utils from fairseq.data import Dictionary from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.tasks import FairseqTask, register_task from omegaconf import II, MISSING from .data.mlm_loader import MLMLoader logger = logging.getLogger(__name__) SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"]) SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"]) @dataclass class PretrainingConfig(FairseqDataclass): data: str = field( default=MISSING, metadata={ "help": "colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner" }, ) sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( default="complete", metadata={ "help": 'If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' "of sentence, but may include multiple sentences per sample. " '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.' }, ) tokens_per_sample: int = field( default=1024, metadata={"help": "max number of tokens per sample for LM dataset"}, ) mask_prob: float = field( default=0.15, metadata={"help": "probability of replacing a token with mask"}, ) leave_unmasked_prob: float = field( default=0.1, metadata={"help": "probability that a masked token is unmasked"}, ) random_token_prob: float = field( default=0.1, metadata={"help": "probability of replacing a token with a random token"}, ) freq_weighted_replacement: bool = field( default=False, metadata={"help": "sample random replacement words based on word frequencies"}, ) mask_whole_words: bool = field( default=False, metadata={"help": "mask whole words; you may also want to set --bpe"}, ) mask_multiple_length: int = field( default=1, metadata={"help": "repeat the mask indices multiple times"}, ) mask_stdev: float = field( default=0.0, metadata={"help": "stdev of the mask length"}, ) shorten_method: SHORTEN_METHOD_CHOICES = field( default="none", metadata={ "help": "if not none, shorten sequences that exceed --tokens-per-sample" }, ) shorten_data_split_list: str = field( default="", metadata={ "help": "comma-separated list of dataset splits to apply shortening to, " 'e.g., "train,valid" (default: all dataset splits)' }, ) seed: int = II("common.seed") span_length: float = field( default=3.0, metadata={"help": "average span length for masking"}, ) remove_source_sentinel: bool = field( default=False, metadata={"help": "remove the source sentinel for the span corruption task"}, ) remove_target_sentinel: bool = field( default=False, metadata={"help": "remove the target sentinel for the span corruption task"}, ) batch_read_ahead: int = field( default=100000, metadata={"help": "batch read ahead size for infinibatch"}, ) required_batch_size_multiple: int = II("dataset.required_batch_size_multiple") spm_model: str = field( default="", metadata={"help": "sentencepice model to tokenize the data"}, ) dict_file: str = field( default="", metadata={"help": ""}, ) pad_to_max_length: bool = field( default=False, ) @register_task("pretraining", dataclass=PretrainingConfig) class PLMTask(FairseqTask): def __init__(self, cfg, dictionary, tokenizer): super().__init__(cfg) self.cfg = cfg self.dictionary = dictionary self.tokenizer = tokenizer self.seed = cfg.seed self.mask_idx = dictionary.index("<mask>") @classmethod def setup_task(cls, cfg, **kwargs): paths = utils.split_paths(cfg.data) assert len(paths) > 0 if cfg.dict_file != "": dictionary = Dictionary.load(cfg.dict_file) else: dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) # add mask token dictionary.add_symbol("<mask>") for i in range(100): dictionary.add_symbol(f"<mask_{i}>") dictionary.pad_to_multiple_(cfg.required_batch_size_multiple) logger.info("dictionary: {} types".format(len(dictionary))) # tokenizer = SentencepieceBPE(Namespace(sentencepiece_model=cfg.spm_model)) tokenizer = spm.SentencePieceProcessor() tokenizer.Load(cfg.spm_model) return cls(cfg, dictionary, tokenizer) def load_dataset(self, split, epoch=1, combine=False, **kwargs): self.datasets[split] = { "data": json.load(open(f"{self.cfg.data}/json/{split}.json")), "data_dir": self.cfg.data, "shuffle": True if split == "train" else False, } self.datasets[split] = Namespace(**self.datasets[split]) def dataset(self, split): if split not in self.datasets: raise KeyError("Dataset not loaded: " + split) return self.datasets[split] def get_batch_iterator( self, dataset, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=1, data_buffer_size=0, disable_iterator_cache=False, **kwargs, ): return MLMLoader( self.cfg, dataset, self.dictionary, self.tokenizer, max_tokens=max_tokens, max_sentences=max_sentences, max_positions=max_positions, ignore_invalid_inputs=ignore_invalid_inputs, required_batch_size_multiple=required_batch_size_multiple, seed=seed, num_shards=num_shards, shard_id=shard_id, ) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/examples/fairseq/tasks/pretraining.py
pretraining.py
import copy import itertools import os import numpy as np from infinibatch import iterators from .basic_loader import BaseBatchGen from .utils import NativeCheckpointableIterator, WeightIterator class MLMLoader(BaseBatchGen): def __init__( self, args, dataset, dictionary, tokenizer, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, ): super().__init__() self.args = args self.data = dataset.data self.data_dir = dataset.data_dir self.shuffle = dataset.shuffle self.dictionary = dictionary self.tokenizer = tokenizer self.max_tokens = max_tokens self.max_sentences = max_sentences self.max_positions = max_positions self.tokens_per_sample = args.tokens_per_sample self.sample_break_mode = args.sample_break_mode self.ignore_invalid_inputs = ignore_invalid_inputs self.required_batch_size_multiple = required_batch_size_multiple self.seed = str(seed) self.num_shards = num_shards self.shard_id = shard_id self.batch_read_ahead = args.batch_read_ahead self._build_iter() def _build_iter(self): tokenized_lines = self._multilingual_tokenize() self.padded_batches = self._batchify(tokenized_lines) prefetch_batches = iterators.PrefetchIterator( self.padded_batches, buffer_size=10000, buffer_in_main_process=True, log_empty_buffer_warning=True and self.shard_id == 0, ) prefetch_batches = iterators.MapIterator(prefetch_batches, self._move_to_tensor) self._iter = prefetch_batches def _multilingual_tokenize(self): multilingual_iters = [] weights = [] for data in self.data: multilingual_iters.append(self._tokenize(data)) if "weight" in data: weights.append(float(data["weight"])) else: weights.append(int(data["count"])) if len(multilingual_iters) == 1: return multilingual_iters[0] sampling_iterator = WeightIterator(weights) control_iterator = NativeCheckpointableIterator(sampling_iterator) tokenized_lines = iterators.MultiplexIterator( control_iterator, multilingual_iters ) return tokenized_lines def _tokenize(self, data): """ data: { 'source': list[Path], 'source_lang': str, 'count': int, 'weight': float, 'name': str, } """ dataset = list( zip( data["source"], itertools.repeat(data["source_lang"]), ) ) if self.shuffle: chunk_files = iterators.InfinitePermutationSourceIterator( dataset, seed=self.seed, shuffle=self.shuffle, num_instances=self.num_shards, instance_rank=self.shard_id, ) else: chunk_files = iterators.ChunkedSourceIterator( dataset, num_instances=self.num_shards, instance_rank=self.shard_id, ) tokenized_lines = iterators.SelectManyIterator( chunk_files, lambda files: self._read_from_files(*files) ) tokenized_lines = iterators.SamplingRandomMapIterator( tokenized_lines, self._prepare, self.seed ) return tokenized_lines def _batchify(self, lines): if self.max_sentences is not None: if self.batch_read_ahead > 0: lines = iterators.BlockwiseShuffleIterator( lines, self.batch_read_ahead, self.seed ) batches = iterators.FixedBatchIterator(lines, self.max_sentences) else: def dynamic_batch_size(sample): lengths = [len(x) for x in sample] batch_size = self.max_tokens // max(lengths) batch_size = ( batch_size // self.required_batch_size_multiple * self.required_batch_size_multiple ) return max(1, batch_size) batches = iterators.BucketedReadaheadBatchIterator( lines, read_ahead=self.batch_read_ahead, key=(lambda x: max(len(x[0]), len(x[1]))) if self.shuffle else None, batch_size=dynamic_batch_size, shuffle=self.shuffle, seed=self.seed, ) def collate(batch): batch_size = len(batch) mlm_source_max_length = max([len(x[0]) for x in batch]) mlm_target_max_length = max([len(x[1]) for x in batch]) s2s_source_max_length = max([len(x[2]) for x in batch]) s2s_target_max_length = max([len(x[3]) for x in batch]) if self.args.pad_to_max_length: mlm_source_max_length = self.args.tokens_per_sample mlm_target_max_length = self.args.tokens_per_sample mlm_source_ids = np.full( shape=(batch_size, mlm_source_max_length), dtype=np.int32, fill_value=self.dictionary.pad(), ) mlm_target_ids = np.full( shape=(batch_size, mlm_target_max_length), dtype=np.int32, fill_value=self.dictionary.pad(), ) s2s_source_ids = np.full( shape=(batch_size, s2s_source_max_length), dtype=np.int32, fill_value=self.dictionary.pad(), ) s2s_target_ids = np.full( shape=(batch_size, s2s_target_max_length - 1), dtype=np.int32, fill_value=self.dictionary.pad(), ) s2s_prev_input_ids = np.full( shape=(batch_size, s2s_target_max_length - 1), dtype=np.int32, fill_value=self.dictionary.pad(), ) for i, ( mlm_input_ids, mlm_label_ids, s2s_input_ids, s2s_label_ids, ) in enumerate(batch): mlm_source_ids[i, : len(mlm_input_ids)] = mlm_input_ids mlm_target_ids[i, : len(mlm_label_ids)] = mlm_label_ids s2s_source_ids[i, : len(s2s_input_ids)] = s2s_input_ids s2s_target_ids[i, : len(s2s_label_ids) - 1] = s2s_label_ids[1:] s2s_prev_input_ids[i, : len(s2s_label_ids) - 1] = s2s_label_ids[:-1] ret_batch = { "net_input": { "src_tokens": mlm_source_ids.astype(np.int64), }, "target": mlm_target_ids.astype(np.int64), "nsentences": batch_size, "ntokens": sum([len(x[0]) for x in batch]), } return ret_batch padded_batches = iterators.MapIterator(batches, collate) return padded_batches def _prepare(self, _random, doc): nonmasked_tokens, masked_tokens = self._mask_lm(_random, doc) nonnoise_spans, noise_spans = self._span_corruption(_random, doc) return nonmasked_tokens, masked_tokens, nonnoise_spans, noise_spans def _mask_lm(self, _random, doc): def mask_tokens(): return "<mask>" length = len(doc) mask_tokens_num = int(length * self.args.mask_prob) mask_tokens_num = min(max(mask_tokens_num, 1), length - 1) possible_mask_positions = _random.sample(range(length), k=mask_tokens_num) possible_mask_positions = sorted(possible_mask_positions) nonmasked_tokens = copy.deepcopy(doc) masked_tokens = [self.dictionary.pad() for _ in range(len(doc))] for position in possible_mask_positions: # masked_tokens.append(nonmasked_tokens[position]) masked_tokens[position] = nonmasked_tokens[position] nonmasked_tokens[position] = self.dictionary.indices[mask_tokens()] return nonmasked_tokens, masked_tokens def _span_corruption(self, _random, doc): def mask_tokens(i): return f"<mask_{i}>" length = len(doc) noise_tokens_num = int(length * self.args.mask_prob) noise_tokens_num = min(max(noise_tokens_num, 1), length - 1) noise_spans_num = int(noise_tokens_num / self.args.span_length) noise_spans_num = max(noise_spans_num, 1) nonnoise_tokens_num = length - noise_tokens_num if noise_spans_num == 1: noise_split_positions = [0, noise_tokens_num] else: possible_split_positions = list(range(1, noise_tokens_num)) _random.shuffle(possible_split_positions) noise_split_positions = sorted( possible_split_positions[: noise_spans_num - 1] ) noise_split_positions = [0] + noise_split_positions + [noise_tokens_num] possible_insert_positions = list(range(nonnoise_tokens_num)) _random.shuffle(possible_insert_positions) noise_insert_positions = sorted(possible_insert_positions[:noise_spans_num]) nonnoise_spans, noise_spans = [], [] last_end = 0 for i in range(noise_spans_num): start_pos = noise_insert_positions[i] + noise_split_positions[i] end_pos = noise_insert_positions[i] + noise_split_positions[i + 1] mask_id = self.dictionary.indices[mask_tokens(i)] if getattr(self.args, "remove_target_sentinel", False): noise_spans.append(doc[start_pos:end_pos]) else: noise_spans.append([mask_id] + doc[start_pos:end_pos]) if getattr(self.args, "remove_source_sentinel", False): nonnoise_spans.extend(doc[last_end:start_pos]) else: nonnoise_spans.extend(doc[last_end:start_pos] + [mask_id]) last_end = end_pos nonnoise_spans.extend(doc[last_end:]) noise_spans = sum(noise_spans, []) return nonnoise_spans, noise_spans def _read_from_files(self, source_file, source_lang): # data = [] file_path = os.path.join(self.data_dir, source_file) if not os.path.exists(file_path): print("| file {} not exists".format(file_path), flush=True) return iter([]) # skip bad file with open(file_path, "r", encoding="utf8") as f: lines = f.read().strip().split("\n") doc = [self.dictionary.bos()] for line in lines: if line == "": if self.sample_break_mode == "complete_doc": # data.append(doc) yield doc doc = [self.dictionary.bos()] continue tokenized_line = self.tokenizer.EncodeAsPieces(line) tokenized_id = [ self.dictionary.index(token) for token in tokenized_line ] + [self.dictionary.eos_index] if len(tokenized_id) > self.tokens_per_sample: continue if len(doc) + len(tokenized_id) > self.tokens_per_sample: # data.append(doc) yield doc doc = [self.dictionary.bos()] doc.extend(tokenized_id) if len(doc) > 1 and len(doc) <= self.tokens_per_sample: # data.append(doc) yield doc # return data
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/examples/fairseq/tasks/data/mlm_loader.py
mlm_loader.py
import collections from random import Random from typing import Dict, Iterable, Optional import numpy as np from infinibatch import iterators def apply_to_sample(f, sample): if hasattr(sample, "__len__") and len(sample) == 0: return {} def _apply(x): if isinstance(x, np.ndarray): return f(x) elif isinstance(x, collections.OrderedDict): # OrderedDict has attributes that needs to be preserved od = collections.OrderedDict( (key, _apply(value)) for key, value in x.items() ) od.__dict__ = x.__dict__ return od elif isinstance(x, dict): return {key: _apply(value) for key, value in x.items()} elif isinstance(x, list): return [_apply(x) for x in x] elif isinstance(x, tuple): return tuple(_apply(x) for x in x) elif isinstance(x, set): return {_apply(x) for x in x} else: return x return _apply(sample) class NativeCheckpointableIterator(iterators.CheckpointableIterator): def __init__(self, iterable: Iterable): self._input_iterable = iterable self.setstate(None) def getstate(self) -> Dict: return {"num_items_yielded": self._num_items_yielded} def setstate(self, checkpoint: Optional[Dict]): self._iterator = iter(self._input_iterable) self._num_items_yielded = ( iterators._advance_iterator(self._iterator, checkpoint["num_items_yielded"]) if checkpoint is not None else 0 ) def __next__(self): item = next(self._iterator) self._num_items_yielded += 1 return item def close(self): pass class WeightIterator(object): def __init__(self, weights, seed): self.weights = weights self.seed = seed self.control_index = list(range(len(weights))) self.setstate(None) def __iter__(self): return self def getstate(self): return {"random_state": self._random_state} def setstate(self, checkpoint): self._random_state = checkpoint["random_state"] if checkpoint else None self._random = ( None # this will trigger the lazy initialization in self.__next__ ) def __next__(self): if self._random is None: self._random = Random(self.seed) if self._random_state is not None: self._random.setstate(self._random_state) idx = self._random.choices(self.control_index, self.weights)[0] self._random_state = self._random.getstate() return idx def close(self): pass
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/examples/fairseq/tasks/data/utils.py
utils.py
import math import warnings import torch import torch.distributed as dist from fairseq.utils import multi_tensor_l2norm_available, multi_tensor_total_norm @torch.no_grad() def clip_grad_norm_( params, max_norm, moe_expert_count, aggregate_norm_fn=None ) -> torch.Tensor: def grad_exists(p): return p is not None and getattr(p, "grad", None) is not None if isinstance(params, torch.Tensor): params = [params] params = list(params) params = list(filter(grad_exists, params)) grads, expert_grads, base_expert_grads, sharded_grads = [], [], [], [] denom = math.sqrt(max(dist.get_global_world_size(), moe_expert_count)) for p in params: if hasattr(p, "expert"): expert_grads.append(p.grad.detach() / denom) elif hasattr(p, "base_expert"): base_expert_grads.append(p.grad.detach()) elif hasattr(p, "_is_sharded"): sharded_grads.append(p.grad.detach()) else: grads.append(p.grad.detach()) if len(grads) == 0: if len(params) > 0: total_norm = params[0].new_tensor(0.0) else: total_norm = torch.tensor(0.0) elif len(grads) == 1: total_norm = torch.norm(grads[0], p=2, dtype=torch.float32) else: if multi_tensor_l2norm_available: total_norm = multi_tensor_total_norm(grads) else: if torch.cuda.is_available(): warnings.warn( "amp_C fused kernels unavailable, disabling multi_tensor_l2norm; " "you may get better performance by installing NVIDIA's apex library" ) device = torch.cuda.current_device() elif grads[0].device.type == "xla": device = grads[0].device else: device = torch.device("cpu") total_norm = torch.norm( torch.stack( [torch.norm(g, p=2, dtype=torch.float32).to(device) for g in grads] ) ) # calculate split_norm and all_reduce with other workers norms = [total_norm] for split_grads in [expert_grads, sharded_grads]: if len(split_grads) == 0: continue split_norm = torch.norm( torch.stack([torch.norm(g, p=2, dtype=torch.float32) for g in split_grads]) ) if dist.is_initialized(): split_norm.pow_(2) dist.all_reduce(split_norm) split_norm.sqrt_() norms.append(split_norm) if len(norms) > 1: total_norm = torch.norm(torch.stack(norms)) if aggregate_norm_fn is not None: total_norm = aggregate_norm_fn(total_norm) if max_norm > 0: max_norm = float(max_norm) clip_coef = (max_norm / (total_norm + 1e-6)).clamp_(max=1) for g in grads + expert_grads + sharded_grads + base_expert_grads: g.mul_(clip_coef) return total_norm
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/examples/fairseq/utils/sparse_clip.py
sparse_clip.py
import time import torch from accelerate.utils import set_seed from datasets import load_dataset from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader from transformers import get_scheduler, default_data_collator, get_linear_schedule_with_warmup from torch.optim import AdamW from lion_pytorch import Lion from kosmos import Kosmos, KosmosTokenizer from accelerate import Accelerator from rich.progres import Progress from datasets import Image from bitsandbytes.optim import AdamW8bit def count_number_of_parameters(model, only_trainable: bool = True) -> int: if only_trainable: num_param: int = sum(p.numel() for p in model.parameters() if p.requires.grad) else: num_params: int = sum(p.numel() for p in model.parameters() if p) def prep_sample(sample): question = sample["question"] answer = sample["answer"].split("|!+")[1] explanation = sample["explanation"] text = f"Question: {question} Answer: {answer} Explanation: {explanation}" image = sample["image"] return { "image": image, "target_text": text } def train(args): accelerator = Accelerator( mixed_precision="fp16" ) #if passed along set the training seed now if args.seed is not None: set_seed(args.seed) model = Kosmos() model = model.to(accelerator.device) optimizer = Lion(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=args.max_steps, ) tokenizer = KosmosTokenizer() dataset = load_dataset("bjoernp/vqax", split="text") #dataset = dataset.cast_column("url", Image) dataset = dataset.map(prep_sample, num_proc=8) remove_columns = ['id', 'img_id', 'question', 'answer', 'explanation', 'none', 'image', 'target_text'] dataset = dataset.map(tokenizer.tokenize, batched=True, batch_size=128, remove_columns=remove_columns) train_dataloader = DataLoader( dataset, collate_fn=default_data_collator, batch_size=args.batch_size, pin_memory=True ) model, train_dataloader, optimizer, lr_scheduler = accelerator.prepare(model, train_dataloader, optimizer, lr_scheduler) model.train() accelerator.register_for_checkpointing(lr_scheduler) model.clip_model.requires_grad_(False) model.clip_model.encoder.layers[-1].requires_grad_(True) accelerator.print(f"number of parameters: {count_number_of_parameters(model):,}") accelerator.print(f"number of trainable parameters: {count_number_of_parameters(model, only_trainable=True):,}") #log model and optimizer paramneters to wandb accelerator.init_trackers(project_name="kosmos") train_loader = iter(train_dataloader) epoch_loss=0 total_loss=0 start_time = time.time() with Progress() as progress: task = progress.add_task("[red]Training...", total=args.max_steps) for step in range(0, args.max_steps): batch_start = time.time() batch = next(train_loader) outputs = model(**batch, self_attn_padding_mask=batch["attention_mask"]) #shift so that tokens < n predict n outputs = torch.cat([outputs[:, :1], outputs[:, 67:]], dim=1).contigous() #shift_logits = outputs[..., :-1, :].contigous() # shift_labels=batch["labels"][..., 1:].contigous() #flatten the tokens loss_fct = CrossEntropyLoss() one_hot_labels = torch.nn.functional.one_hot(batch["labels"][:, 1:], num_classes=32002).float() loss = loss_fct(outputs[:, :-1], one_hot_labels) epoch_loss += loss.detach().float() accelerator.backward(loss) optimizer.step() optimizer.zero_grad() batch_end = time.time() logs = { "loss": loss.items(), "perplexity": torch.exp(loss).item(), "lr": lr_scheduler.get_last_lr()[0], "examples": args.batch_size * (step + 1), "examples_per_second": args.batch_size / (batch_end - batch_start), } if step % args.log_every == args.log_every - 1: accelerator.log(logs, step=step) progress.update(task, advance=1, description=f"Step Loss: {loss.item():.5f} " f"| Mean Loss: {(total_loss + epoch_loss) / step:.5f} " f"| Mean PPL: {torch.exp((total_loss + epoch_loss) / step):.2f} " f"| Examples: {args.batch_size * (step + 1)} " f"| Examples/s: {args.batch_size / (batch_end - batch_start):.2f} " f"| Elapsed: {time.strftime('%H:%M:%S', time.gmtime(time.time() - start_time))}") if step % args.save_every == args.save_every - 1: train_epoch_loss = epoch_loss / args.save_every total_loss += epoch_loss epoch_loss = 0 accelerator.log({ "train_ppl": torch.exp(train_epoch_loss), "train_epoch_loss": train_epoch_loss, }, step=step) progress.print(f"Saving checkpoint at step {step}...") accelerator.save_state( f"{args.checkpoint_dir}/checkpoint_at_step_{step}/") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("--checkpoint_dir", type=str, default="checkpoints") parser.add_argument("--learning_rate", type=float, default=1e-5) parser.add_argument("--weight_decay", type=float, default=0.01) parser.add_argument("--warmup_steps", type=int, default=0) parser.add_argument("--max_steps", type=int, default=100000) parser.add_argument("--batch_size", type=int, default=4) parser.add_argument("--log_every", type=int, default=1) parser.add_argument("--save_every", type=int, default=100) parser.add_argument("--seed", type=int, default=None) args = parser.parse_args() train(args)
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/examples/kosmos/train_kosmos.py
train_kosmos.py
import torch from torchscale.architecture.config import DecoderConfig from torchscale.architecture.decoder import Decoder from torchscale.component.embedding import PositionalEmbedding from transformers import T5Tokenizer, CLIPProcessor, CLIPModel from flamingo_pytorch import PerceiverResampler from PIL import Image from torch.nn import Embedding, Module import bitsandbytes as bnb class KomosTokenizer: def __init__(self): self.processor = CLIPProcessor.from_pretrained('laion/CLIP-ViT-L-14-laion2B-s32B-b82k') #t5 uses sentience piece tokenizer self.tokenize = T5Tokenizer.from_pretrained( "t5-large", additional_special_tokens=["<image>", "</image>"], extra_ids=0, model_max_length=1984 ) self.im_idx, self.im_end_idx = self.tokenizer.convert_tokens_to_ids(["<image>", "</image>"]) def tokenize_texts(self, texts): texts = self.tokenizer(texts, return_tensors="pt", padding=True, truncation=True).input_ids #add image tokens to text as "<s> <image> </image> text </s>" image_tokens = torch.tensor([[self.im_idx, self.im_end_idx]] * texts.shape[0]) return torch.cat([texts[:, 0:1], image_tokens, texts[:, 1:]], dim=1), texts def tokenize_images(self, images): return self.processor(images=images, return_tensors="pt").pixel_values def tokenize(self, sample): text_tokens, only_text_tokens = self.tokenize_texts(sample["target_text"]) attention_mask = text_tokens != self.tokenizer.pad_token_id dummy_image_features = torch.ones((text_tokens.shape[0], 64)) attention_mask = torch.cat([dummy_image_features, attention_mask], dim=1) return { "text_tokens": text_tokens, "images": self.tokenize_images(sample["image"]), "labels": only_text_tokens, "attention_mask": attention_mask, } class Kosmos(Module): def __init__(self): #instantiate clip vit self.clip_model = CLIPModel.from_pretrained("laion/CLIP-ViT-L-14-laion2B-s32B-b82K").vision_model self.embed = bnb.nn.Embedding( 32002, 2048, padding_idx=1 ) self.embed_positions = PositionalEmbedding( 2048, 2048, 1 ) self.output_projection = torch.nn.Linear( 2048, 32002, bias=False ) torch.nn.init.normal_( self.output_projection.weight, mean=9, std=2048**-0.5 ) #config self.config = DecoderConfig( decoder_layers = 24, decoder_embed_dim=2048, decoder_ffn_embed_dim=8192, decoder_attention_heads=32, dropout=0.1, activation_fn="flashattention", use_xmoe=True, attention_dropout=0.1, vocab_size=32002, subln=True, xpos_rel_pos=True, max_rel_pos=2048 ) self.decoder = Decoder( self.config, embed_tokens =self.embed, embed_positions = self.embed_positions, output_projections = self.output_projection ) self.perceive = PerceiverResampler( dim=1024, depth=2, dim_head=64, heads=8, num_latents=64, num_media_embeds=257 ) self.image_proj = torch.nn.Linear(1024, 2048, bias=False) torch.nn.init.normal_( self.image_proj.weight, mean=0, std=2048**-0.5 ) def forward(self, text_tokens, images, **kwargs): images = self.clip_model(pixel_values=images)["last_hidden_state"] images = self.percieve(images).squeeze(1) images = self.image_proj(images) model_input = self.decoder.forward_embedding(text_tokens)[1] model_input = torch.cat([model_input[:, 0:2], images, model_input[:, 2:]], dim=1) model_input = self.decoder.forward_embedding(model_input, token_embedding=model_input)[0] return self.decoder(model_input, passed_x=model_input)[0]
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/examples/kosmos/kosmos.py
kosmos.py
import math import torch import torch.nn.functional as F from torch import nn try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm from .multiway_network import MultiwayWrapper from .xpos_relative_position import XPOS class MultiheadAttention(nn.Module): def __init__( self, args, embed_dim, num_heads, dropout=0.0, self_attention=False, encoder_decoder_attention=False, subln=False, ): super().__init__() self.args = args self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.scaling = self.head_dim**-0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert self.self_attention ^ self.encoder_decoder_attention self.k_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.v_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.q_proj = MultiwayWrapper(args, nn.Linear(embed_dim, embed_dim, bias=True)) self.out_proj = MultiwayWrapper( args, nn.Linear(embed_dim, embed_dim, bias=True) ) self.inner_attn_ln = ( MultiwayWrapper(args, LayerNorm(self.embed_dim, eps=args.layernorm_eps)) if subln and self.self_attention else None ) self.dropout_module = torch.nn.Dropout(dropout) self.xpos = ( XPOS(self.head_dim, args.xpos_scale_base) if args.xpos_rel_pos and self.self_attention else None ) def reset_parameters(self): nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.out_proj.weight) nn.init.constant_(self.out_proj.bias, 0.0) def forward( self, query, key, value, incremental_state=None, key_padding_mask=None, attn_mask=None, rel_pos=None, ): bsz, tgt_len, embed_dim = query.size() src_len = tgt_len assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" key_bsz, src_len, _ = key.size() assert key_bsz == bsz, f"{query.size(), key.size()}" assert value is not None assert bsz, src_len == value.shape[:2] q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling q = q.view(bsz, tgt_len, self.num_heads, self.head_dim).transpose(1, 2) k = k.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) v = v.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2) q = q.reshape(bsz * self.num_heads, tgt_len, self.head_dim) k = k.reshape(bsz * self.num_heads, src_len, self.head_dim) v = v.reshape(bsz * self.num_heads, src_len, self.head_dim) if incremental_state is not None: if "prev_key" in incremental_state: prev_key = incremental_state["prev_key"].view( bsz * self.num_heads, -1, self.head_dim ) prev_value = incremental_state["prev_value"].view( bsz * self.num_heads, -1, self.head_dim ) k = torch.cat([prev_key, k], dim=1) v = torch.cat([prev_value, v], dim=1) incremental_state["prev_key"] = k.view( bsz, self.num_heads, -1, self.head_dim ) incremental_state["prev_value"] = v.view( bsz, self.num_heads, -1, self.head_dim ) src_len = k.size(1) if self.xpos is not None: if incremental_state is not None: offset = src_len - 1 else: offset = 0 k = self.xpos(k, offset=0, downscale=True) q = self.xpos(q, offset=offset, downscale=False) attn_weights = torch.bmm(q, k.transpose(1, 2)) if attn_mask is not None: attn_weights = torch.nan_to_num(attn_weights) attn_mask = attn_mask.unsqueeze(0) attn_weights += attn_mask if key_padding_mask is not None: attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if rel_pos is not None: rel_pos = rel_pos.view(attn_weights.size()) attn_weights = attn_weights + rel_pos attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).type_as( attn_weights ) attn_probs = self.dropout_module(attn_weights) attn = torch.bmm(attn_probs, v) attn = attn.transpose(0, 1).reshape(tgt_len, bsz, embed_dim).transpose(0, 1) if self.inner_attn_ln is not None: attn = self.inner_attn_ln(attn) attn = self.out_proj(attn) attn_weights = attn_weights.view( bsz, self.num_heads, tgt_len, src_len ).transpose(1, 0) return attn, attn_weights
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/torchscale/component/multihead_attention.py
multihead_attention.py
import torch import torch.nn as nn import torch.nn.functional as F class VisionLanguageEmbedding(nn.Module): def __init__(self, text_embed, vision_embed): super().__init__() self.text_embed = text_embed self.vision_embed = vision_embed def forward(self, textual_tokens, visual_tokens, **kwargs): if textual_tokens is None: return self.vision_embed(visual_tokens) if visual_tokens is None: return self.text_embed(textual_tokens) x1 = self.vision_embed(visual_tokens) x2 = self.text_embed(textual_tokens) return torch.cat([x1, x2], dim=1) class VisionEmbedding(nn.Module): """Image to Patch Embedding""" def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, contain_mask_token=False, prepend_cls_token=False, ): super().__init__() img_size = (img_size, img_size) patch_size = (patch_size, patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size ) if contain_mask_token: self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) else: self.mask_token = None if prepend_cls_token: self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) else: self.cls_token = None def num_position_embeddings(self): if self.cls_token is None: return self.num_patches else: return self.num_patches + 1 def forward(self, x, masked_position=None, **kwargs): B, C, H, W = x.shape assert ( H == self.img_size[0] and W == self.img_size[1] ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) batch_size, seq_len, _ = x.size() if masked_position is not None: assert self.mask_token is not None mask_token = self.mask_token.expand(batch_size, seq_len, -1) w = masked_position.unsqueeze(-1).type_as(mask_token) x = x * (1 - w) + mask_token * w if self.cls_token is not None: cls_tokens = self.cls_token.expand( batch_size, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) return x class TextEmbedding(nn.Embedding): def reset_parameters(self): nn.init.normal_(self.weight, mean=0, std=self.embedding_dim**-0.5) self._fill_padding_idx_with_zero() class PositionalEmbedding(nn.Embedding): def forward( self, x, positions=None, **kwargs, ): if positions is None: # being consistent with Fairseq, which starts from 2. positions = ( torch.arange(2, x.size(1) + 2, device=x.device).long().unsqueeze(0) ) return F.embedding( positions, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, )
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/torchscale/component/embedding.py
embedding.py
import numpy as np import torch import torch.nn as nn def fixed_pos_embedding(x): seq_len, dim = x.shape inv_freq = 1.0 / (10000 ** (torch.arange(0, dim) / dim)) sinusoid_inp = ( torch.einsum("i , j -> i j", torch.arange(0, seq_len, dtype=torch.float), inv_freq).to(x) ) return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp) def rotate_every_two(x): x1 = x[:, :, ::2] x2 = x[:, :, 1::2] x = torch.stack((-x2, x1), dim=-1) return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')\ def duplicate_interleave(m): """ A simple version of `torch.repeat_interleave` for duplicating a matrix while interleaving the copy. """ dim0 = m.shape[0] m = m.view(-1, 1) # flatten the matrix m = m.repeat(1, 2) # repeat all elements into the 2nd dimension m = m.view(dim0, -1) # reshape into a matrix, interleaving the copy return m def apply_rotary_pos_emb(x, sin, cos, scale=1): sin, cos = map(lambda t: duplicate_interleave(t * scale), (sin, cos)) # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2) return (x * cos) + (rotate_every_two(x) * sin) class XPOS(nn.Module): def __init__( self, head_dim, scale_base=512 ): super().__init__() self.head_dim = head_dim self.scale_base = scale_base self.register_buffer( "scale", (torch.arange(0, head_dim, 2) + 0.4 * head_dim) / (1.4 * head_dim) ) def forward(self, x, offset=0, downscale=False): length = x.shape[1] min_pos = -(length + offset) // 2 max_pos = length + offset + min_pos scale = self.scale ** torch.arange(min_pos, max_pos, 1).to(self.scale).div(self.scale_base)[:, None] sin, cos = fixed_pos_embedding(scale) if scale.shape[0] > length: scale = scale[-length:] sin = sin[-length:] cos = cos[-length:] if downscale: scale = 1 / scale x = apply_rotary_pos_emb(x, sin, cos, scale) return x
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/torchscale/component/xpos_relative_position.py
xpos_relative_position.py
import math import torch import torch.nn as nn class RelativePositionBias(nn.Module): def __init__( self, bidirectional=True, num_buckets=32, max_distance=128, n_heads=12 ): super().__init__() self.bidirectional = bidirectional self.num_buckets = num_buckets self.max_distance = max_distance self.n_heads = n_heads self.relative_attention_bias = nn.Embedding(self.num_buckets, self.n_heads) @staticmethod def _relative_position_bucket( relative_position, bidirectional=True, num_buckets=32, max_distance=128 ): ret = 0 n = -relative_position if bidirectional: num_buckets //= 2 ret += (n < 0).to(torch.long) * num_buckets n = torch.abs(n) else: n = torch.max(n, torch.zeros_like(n)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) val_if_large = torch.min( val_if_large, torch.full_like(val_if_large, num_buckets - 1) ) ret += torch.where(is_small, n, val_if_large) return ret def compute_bias(self, qlen, klen, step=None): step = 0 if step is None else step context_position = torch.arange( step, step + qlen, dtype=torch.long, device=self.relative_attention_bias.weight.device, )[:, None] memory_position = torch.arange( klen, dtype=torch.long, device=self.relative_attention_bias.weight.device )[None, :] relative_position = memory_position - context_position # shape (qlen, klen) rp_bucket = self._relative_position_bucket( relative_position, # shape (qlen, klen) bidirectional=self.bidirectional, num_buckets=self.num_buckets, max_distance=self.max_distance, ) rp_bucket = rp_bucket.to(self.relative_attention_bias.weight.device) values = self.relative_attention_bias( rp_bucket ) # shape (qlen, klen, num_heads) values = values.permute([2, 0, 1]).unsqueeze( 0 ) # shape (1, num_heads, qlen, klen) return values def forward(self, batch_size, qlen, klen, step=None): # shape (batch * num_heads, qlen, klen) return ( self.compute_bias(qlen, klen, step) .repeat(batch_size, 1, 1, 1) .view(-1, qlen, klen) )
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/torchscale/component/relative_position_bias.py
relative_position_bias.py
import torch import torch.nn as nn import torch.nn.functional as F from flash_attn.flash_attention import FlashMHA try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm class set_torch_seed(object): def __init__(self, seed): assert isinstance(seed, int) self.rng_state = self.get_rng_state() torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) def get_rng_state(self): state = {"torch_rng_state": torch.get_rng_state()} if torch.cuda.is_available(): state["cuda_rng_state"] = torch.cuda.get_rng_state() return state def set_rng_state(self, state): torch.set_rng_state(state["torch_rng_state"]) if torch.cuda.is_available(): torch.cuda.set_rng_state(state["cuda_rng_state"]) def __enter__(self): return self def __exit__(self, *exc): self.set_rng_state(self.rng_state) def make_experts(args, embed_dim, expert_ffn_dim): world_size = ( 1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size() ) expert_list = [] ddp_rank = args.ddp_rank start_seed = torch.randint(1000000, (1,)).item() # at least as many experts than gpus if args.moe_expert_count >= world_size: assert ( args.moe_expert_count % world_size == 0 ), f"{args.moe_expert_count}, {world_size}" local_moe_expert_count = args.moe_expert_count // world_size for i in range(local_moe_expert_count): with set_torch_seed(start_seed + ddp_rank * local_moe_expert_count + i): expert_list.append( FeedForwardNetwork( embed_dim, expert_ffn_dim, args.activation_fn, args.dropout, args.activation_dropout, args.layernorm_eps, args.subln, ) ) else: assert ( world_size % args.moe_expert_count == 0 ), f"{world_size}, {args.moe_expert_count}" with set_torch_seed(start_seed + ddp_rank % args.moe_expert_count): expert_list.append( FeedForwardNetwork( embed_dim, expert_ffn_dim, args.activation_fn, args.dropout, args.activation_dropout, args.layernorm_eps, args.subln, ) ) experts = nn.ModuleList(expert_list) return experts def get_activation_fn(activation): if activation == "relu": return F.relu elif activation == "gelu": return F.gelu elif activation == "flashattention": return FlashMHA else: raise NotImplementedError class FeedForwardNetwork(nn.Module): def __init__( self, embed_dim, ffn_dim, activation_fn, dropout, activation_dropout, layernorm_eps, subln=False, ): super().__init__() self.embed_dim = embed_dim self.activation_fn = get_activation_fn(activation=str(activation_fn)) self.activation_dropout_module = torch.nn.Dropout(activation_dropout) self.dropout_module = torch.nn.Dropout(dropout) self.fc1 = nn.Linear(self.embed_dim, ffn_dim) self.fc2 = nn.Linear(ffn_dim, self.embed_dim) self.ffn_layernorm = LayerNorm(ffn_dim, eps=layernorm_eps) if subln else None def reset_parameters(self): self.fc1.reset_parameters() self.fc2.reset_parameters() if self.ffn_layernorm is not None: self.ffn_layernorm.reset_parameters() def forward(self, x): x_shape = x.shape x = x.reshape(-1, x.size(-1)) x = self.fc1(x) x = self.activation_fn(x.float()).type_as(x) x = self.activation_dropout_module(x) if self.ffn_layernorm is not None: x = self.ffn_layernorm(x) x = self.fc2(x) x = x.view(x_shape) x = self.dropout_module(x) return x
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/torchscale/component/feedforward_network.py
feedforward_network.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # Implementation of Top2Gating described in https://arxiv.org/pdf/2006.16668.pdf # Code is inspired by Top2GatingOnLogits from lingvo: # https://github.com/tensorflow/lingvo/blob/21b8106c5f1d30a196c98eedc441d4fd70833b11/lingvo/core/moe_layers.py#L477 # NOTE: This is a mirror of the code in # https://github.com/facebookresearch/fairscale/tree/master/fairscale/nn/moe import math from typing import Callable, Dict, Optional, Tuple import torch import torch.nn.functional as F from torch import Tensor from .moe_layer import fused_cumsum_sub_one, has_tutel # use a fixed temperature to compute balance loss TEMPERATURE_FOR_L_UAX = 0.07 # maximum capacity of 1 expert as a fraction of number of tokens in the batch # Note: setting this to 1.0 causes inference to significantly slow down EVAL_CAPACITY_TOKEN_FRACTION = 0.25 # logging SAMPLE_FRACTION = 0.2 def top1gating( logits: torch.Tensor, input_mask: Optional[torch.Tensor] = None, use_fp32=False, capacity_factor=1.0, eval_mode=False, moe_eval_capacity_token_fraction=EVAL_CAPACITY_TOKEN_FRACTION, use_xmoe=False, gate_obj=None, ) -> Tuple[Tensor, Tensor, Tensor, Dict]: """Implements Top2Gating on logits.""" metadata = {} if use_fp32: orig_dtype = logits.dtype logits = logits.float() gates = F.softmax(logits, dim=1) metadata["entropy_gating"] = entropy(probs=gates).mean().detach() # gates has shape of SE num_tokens = gates.shape[0] num_experts = gates.shape[1] if moe_eval_capacity_token_fraction > 0.0 and eval_mode: capacity = math.ceil(moe_eval_capacity_token_fraction * num_tokens) else: # capacity = capacity_factor * S/E capacity = int(capacity_factor * math.ceil(num_tokens / num_experts)) # Create a mask for 1st's expert per token indices1_s = torch.argmax(gates, dim=1) mask1 = one_hot(indices1_s, num_classes=num_experts, unsqueeze_indices=True) if input_mask is not None and input_mask.any(): nonpadding = ~input_mask mask1 = mask1 * nonpadding.unsqueeze(-1).to(mask1.dtype) # for logging (percent of tokens routed to each expert) expert1_hist = ( 100 * torch.histc( (indices1_s.squeeze() + 1), bins=num_experts, min=1, max=num_experts ) / num_tokens ) metadata["unused_expert1_count"] = (expert1_hist == 0).sum() expert1_hist = ( torch.sort(expert1_hist, dim=0, descending=True).values + torch.finfo(torch.float32).tiny ) sample_count = max(math.ceil(num_experts * SAMPLE_FRACTION), 1) metadata["expert1_balance_top"] = expert1_hist[:sample_count].sum() metadata["expert1_balance_bottom"] = expert1_hist[-sample_count:].sum() gates1_s = (gates * mask1).sum(dim=1) # Compute locations in capacity buffer locations1 = fused_cumsum_sub_one(mask1) # Compute l_aux me = torch.mean(gates, dim=0) ce = torch.mean(mask1.to(gates.dtype), dim=0) l_aux = torch.mean(me * ce) l_aux = l_aux * num_experts * num_experts if has_tutel: locations1_s = torch.sum(locations1 * mask1, dim=1) return ( l_aux, metadata, capacity, num_experts, [ indices1_s, ], [ locations1_s, ], [ gates1_s, ], ) # Remove locations outside capacity from mask mask1 = mask1 * torch.lt(locations1, capacity) # Store the capacity location for each token locations1_s = torch.sum(locations1 * mask1, dim=1) # Calculate combine_weights and dispatch_mask gates1 = gates1_s.unsqueeze(-1) * mask1.to(gates1_s.dtype) # einsum("s,se->se") # locations1_sc = num_tokens * capacity locations1_sc = one_hot(locations1_s, num_classes=capacity, unsqueeze_indices=True) combine1_sec = torch.bmm( # einsum("se,sc->sec") gates1.unsqueeze(-1), locations1_sc.to(gates1.dtype).unsqueeze(1), ) dispatch_mask = combine1_sec.bool() if use_fp32: return l_aux, combine1_sec.to(orig_dtype), dispatch_mask, metadata else: return l_aux, combine1_sec, dispatch_mask, metadata class Top1Gate(torch.nn.Module): """Gate module which implements Top2Gating as described in Gshard_. :: gate = Top2Gate(model_dim, num_experts) l_aux, combine_weights, dispatch_mask = gate(input) .. Gshard_: https://arxiv.org/pdf/2006.16668.pdf Args: model_dim (int): size of model embedding dimension num_experts (ints): number of experts in model """ wg: torch.nn.Linear def __init__( self, model_dim: int, num_experts: int, use_fp32=False, input_noise_type=None, capacity_factor=1.0, moe_eval_capacity_token_fraction=EVAL_CAPACITY_TOKEN_FRACTION, use_xmoe=False, ) -> None: # TODO: merge this to top2gate.py # super().__init__() if not use_xmoe: self.wg = torch.nn.Linear(model_dim, num_experts, bias=False) else: self.wg_reduction = torch.nn.Linear(model_dim, 16, bias=False) wg = torch.empty(num_experts, 16) torch.nn.init.orthogonal_(wg, gain=0.32) self.register_parameter("wg", torch.nn.Parameter(wg)) self.use_xmoe = use_xmoe self.use_fp32 = use_fp32 self.input_noise_type = input_noise_type self.capacity_factor = capacity_factor self.moe_eval_capacity_token_fraction = moe_eval_capacity_token_fraction def forward(self, input, mask=None): # type: ignore if self.use_xmoe: input = self.wg_reduction(input) with torch.no_grad(): wg_norm = self.wg.norm(p=2.0, dim=1, keepdim=True) self.wg.mul_(1.5 / wg_norm) logits = self._cosine(input, self.wg) logits = self._make_finite(logits) else: logits = self.wg(input) return top1gating( logits, mask, use_fp32=self.use_fp32, capacity_factor=self.capacity_factor, eval_mode=not self.training, moe_eval_capacity_token_fraction=self.moe_eval_capacity_token_fraction, use_xmoe=self.use_xmoe, gate_obj=self, ) def _make_finite(self, scores): ok = scores.isfinite() if not ok.all(): # NaNs here can break the assignment algorithm scores[~ok] = scores[ok].min() return scores def _get_gating_temperature(self, eps=1e-4): if self.gating_t.data.item() < eps: return eps return self.gating_t def _cosine(self, mat1, mat2, eps=1e-4): assert mat1.dim() == 2 assert mat2.dim() == 2 # mat1 = F.normalize(mat1, p=2.0, dim=1, eps=eps) mat2 = F.normalize(mat2.float(), p=2.0, dim=1, eps=eps) return mat1.float().matmul(mat2.transpose(0, 1)).type_as(mat1) gumbel_map: Dict[torch.device, Callable] = {} def gumbel_rsample(shape: Tuple, device: torch.device) -> Tensor: gumbel = gumbel_map.get(device) if gumbel is None: one = torch.tensor(1.0, device=device) zero = torch.tensor(0.0, device=device) gumbel = torch.distributions.gumbel.Gumbel(zero, one).rsample # type: ignore gumbel_map[device] = gumbel return gumbel(shape) def one_hot(indices: torch.Tensor, num_classes: int, unsqueeze_indices=False) -> Tensor: if unsqueeze_indices: indices = indices.unsqueeze(-1) assert indices.shape[-1] == 1, "last dimension of indices must be have size 1" output = torch.zeros( indices.shape[:-1] + (num_classes,), device=indices.device, dtype=indices.dtype ) output.scatter_(len(output.shape) - 1, indices, 1) return output def entropy(probs): logits = torch.distributions.utils.probs_to_logits(probs) p_log_p = probs * logits return -p_log_p.sum(-1) def top2gating( logits: torch.Tensor, input_mask: Optional[torch.Tensor] = None, use_fp32=False, second_expert_policy="sampling", normalize_gate_prob_before_dropping=False, eval_mode=False, moe_eval_capacity_token_fraction=0.25, batch_prioritized_routing=False, ) -> Tuple[Tensor, Tensor, Tensor]: """Implements Top2Gating on logits.""" metadata = {} if use_fp32: orig_dtype = logits.dtype logits = logits.float() gates = F.softmax(logits, dim=1) metadata["entropy_gating"] = entropy(probs=gates).mean().detach() # gates has shape of SE num_tokens = gates.shape[0] num_experts = gates.shape[1] if moe_eval_capacity_token_fraction > 0.0 and eval_mode: capacity = math.ceil(moe_eval_capacity_token_fraction * num_tokens) else: # capacity = 2S/E capacity = 2 * math.ceil(num_tokens / num_experts) # Create a mask for 1st's expert per token indices1_s = torch.argmax(gates, dim=1, keepdim=True) mask1 = one_hot(indices1_s, num_experts) if second_expert_policy == "sampling": # Create a mask for 2nd's expert per token using Gumbel-max trick # https://timvieira.github.io/blog/post/2014/07/31/gumbel-max-trick/ logits_w_noise = logits + gumbel_rsample(logits.shape, device=logits.device) else: logits_w_noise = logits # Replace top-expert with min value logits_except1 = logits_w_noise.masked_fill(mask1.bool(), float("-inf")) indices2_s = torch.argmax(logits_except1, dim=1, keepdim=True) mask2 = one_hot(indices2_s, num_experts) gates1_s = (gates * mask1).sum(dim=1) gates2_s = (gates * mask2).sum(dim=1) if normalize_gate_prob_before_dropping: # Normalize gate probabilities denom_s = gates1_s + gates2_s # Avoid divide-by-zero denom_s = torch.clamp(denom_s, min=torch.finfo(denom_s.dtype).eps) gates1_s = gates1_s / denom_s gates2_s = gates2_s / denom_s if second_expert_policy == "random": sampled = (2 * gates2_s) > torch.rand_like(gates2_s) mask2 = mask2 * sampled.repeat(num_experts, 1).transpose(1, 0) # Compute locations in capacity buffer if input_mask is not None and input_mask.any(): nonpadding = ~input_mask mask1 = mask1 * nonpadding.unsqueeze(-1).to(mask1.dtype) mask2 = mask2 * nonpadding.unsqueeze(-1).to(mask1.dtype) if batch_prioritized_routing: # if batch_prioritized_routing: importance_scores = -1 * gates.max(dim=1)[0] sorted_mask1 = mask1[importance_scores.argsort(dim=0)] sorted_cumsum1 = fused_cumsum_sub_one(sorted_mask1) * sorted_mask1 importance_sorted_locations1 = sorted_cumsum1[ importance_scores.argsort(dim=0).argsort(dim=0) ] sorted_mask2 = mask2[importance_scores.argsort(dim=0)] sorted_cumsum2 = fused_cumsum_sub_one(sorted_mask2) * sorted_mask2 importance_sorted_locations2 = sorted_cumsum2[ importance_scores.argsort(dim=0).argsort(dim=0) ] importance_sorted_locations2 += torch.sum(mask1, dim=0, keepdim=True) locations1, locations2 = ( importance_sorted_locations1, importance_sorted_locations2, ) else: locations1 = fused_cumsum_sub_one(mask1) locations2 = fused_cumsum_sub_one(mask2) # Update 2nd's location by accounting for locations of 1st locations2 += torch.sum(mask1, dim=0, keepdim=True) # Compute l_aux me = torch.mean(gates, dim=0) ce = torch.mean(mask1.to(gates.dtype), dim=0) l_aux = torch.mean(me * ce) l_aux = l_aux * num_experts * num_experts # for logging purposes metadata["overflow_expert1"] = ( 100 * torch.sum(mask1 * torch.ge(locations1, capacity)) / torch.sum(mask1) ) metadata["overflow_expert2"] = ( 100 * torch.sum(mask2 * torch.ge(locations2, capacity)) / torch.sum(mask2) ) # Remove locations outside capacity from mask mask1_, mask2_ = mask1, mask2 mask1 = mask1 * torch.lt(locations1, capacity) mask2 = mask2 * torch.lt(locations2, capacity) # for logging (percent of tokens routed to each expert) expert1_hist = ( 100 * torch.histc( (indices1_s.squeeze() + 1), bins=num_experts, min=1, max=num_experts ) / num_tokens ) metadata["unused_expert1_count"] = (expert1_hist == 0).sum() expert1_hist = ( torch.sort(expert1_hist, dim=0, descending=True).values + torch.finfo(torch.float32).tiny ) expert2_hist = ( 100 * torch.histc( (indices2_s.squeeze() + 1), bins=num_experts, min=1, max=num_experts ) / num_tokens ) metadata["unused_expert2_count"] = (expert2_hist == 0).sum() expert2_hist = ( torch.sort(expert2_hist, dim=0, descending=True).values + torch.finfo(torch.float32).tiny ) sample_count = max(math.ceil(num_experts * SAMPLE_FRACTION), 1) metadata["expert1_balance_top"] = expert1_hist[:sample_count].sum() metadata["expert1_balance_bottom"] = expert1_hist[-sample_count:].sum() metadata["expert2_balance_top"] = expert2_hist[:sample_count].sum() metadata["expert2_balance_bottom"] = expert2_hist[-sample_count:].sum() if not normalize_gate_prob_before_dropping: # Normalize gate probabilities gates1_s = (gates * mask1).sum(dim=1) gates2_s = (gates * mask2).sum(dim=1) denom_s = gates1_s + gates2_s # Avoid divide-by-zero denom_s = torch.clamp(denom_s, min=torch.finfo(denom_s.dtype).eps) gates1_s /= denom_s gates2_s /= denom_s if has_tutel: locations1_s = torch.sum(locations1 * mask1_, dim=1) locations2_s = torch.sum(locations2 * mask2_, dim=1) return ( l_aux, metadata, capacity, num_experts, [indices1_s, indices2_s], [locations1_s, locations2_s], [gates1_s, gates2_s], ) # Store the capacity location for each token locations1_s = torch.sum(locations1 * mask1, dim=1) locations2_s = torch.sum(locations2 * mask2, dim=1) # Calculate combine_weights and dispatch_mask gates1 = gates1_s.unsqueeze(-1) * mask1.to(gates1_s.dtype) # einsum("s,se->se") gates2 = gates2_s.unsqueeze(-1) * mask2.to(gates2_s.dtype) # einsum("s,se->se") locations1_sc = one_hot(locations1_s, num_classes=capacity, unsqueeze_indices=True) locations2_sc = one_hot(locations2_s, num_classes=capacity, unsqueeze_indices=True) combine1_sec = torch.bmm( # einsum("se,sc->sec") gates1.unsqueeze(-1), locations1_sc.to(gates1.dtype).unsqueeze(1), ) combine2_sec = torch.bmm( # einsum("se,sc->sec") gates2.unsqueeze(-1), locations2_sc.to(gates2.dtype).unsqueeze(1), ) combine_weights = combine1_sec + combine2_sec dispatch_mask = combine_weights.bool() if use_fp32: return l_aux, combine_weights.to(orig_dtype), dispatch_mask, metadata else: return l_aux, combine_weights, dispatch_mask, metadata class Top2Gate(torch.nn.Module): """Gate module which implements Top2Gating as described in Gshard_. :: gate = Top2Gate(model_dim, num_experts) l_aux, combine_weights, dispatch_mask = gate(input) .. Gshard_: https://arxiv.org/pdf/2006.16668.pdf Args: model_dim (int): size of model embedding dimension num_experts (ints): number of experts in model """ wg: torch.nn.Linear def __init__( self, model_dim: int, num_experts: int, use_fp32=False, second_expert_policy="sampling", normalize_gate_prob_before_dropping=False, moe_eval_capacity_token_fraction=0.25, batch_prioritized_routing=False, use_xmoe=False, ) -> None: super().__init__() if not use_xmoe: self.wg = torch.nn.Linear(model_dim, num_experts, bias=False) else: self.wg_reduction = torch.nn.Linear(model_dim, 16, bias=False) wg = torch.empty(num_experts, 16) torch.nn.init.orthogonal_(wg, gain=0.32) self.register_parameter("wg", torch.nn.Parameter(wg)) self.use_fp32 = use_fp32 self.second_expert_policy = second_expert_policy self.normalize_gate_prob_before_dropping = normalize_gate_prob_before_dropping self.moe_eval_capacity_token_fraction = moe_eval_capacity_token_fraction self.batch_prioritized_routing = batch_prioritized_routing self.use_xmoe = use_xmoe def forward(self, input, mask=None): # type: ignore if self.use_xmoe: input = self.wg_reduction(input) with torch.no_grad(): wg_norm = self.wg.norm(p=2.0, dim=1, keepdim=True) self.wg.mul_(1.5 / wg_norm) logits = self._cosine(input, self.wg) logits = self._make_finite(logits) else: logits = self.wg(input) return top2gating( logits, mask, use_fp32=self.use_fp32, second_expert_policy=self.second_expert_policy, normalize_gate_prob_before_dropping=self.normalize_gate_prob_before_dropping, eval_mode=not self.training, moe_eval_capacity_token_fraction=self.moe_eval_capacity_token_fraction, batch_prioritized_routing=self.batch_prioritized_routing, ) def _cosine(self, mat1, mat2, eps=1e-4): assert mat1.dim() == 2 assert mat2.dim() == 2 # mat1 = F.normalize(mat1, p=2.0, dim=1, eps=eps) mat2 = F.normalize(mat2.float(), p=2.0, dim=1, eps=eps) return mat1.float().matmul(mat2.transpose(0, 1)).type_as(mat1) def _make_finite(self, scores): ok = scores.isfinite() if not ok.all(): # NaNs here can break the assignment algorithm scores[~ok] = scores[ok].min() return scores
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/torchscale/component/xmoe/routing.py
routing.py
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # NOTE: This is a mirror of the code in # https://github.com/facebookresearch/fairscale/tree/master/fairscale/nn/moe import logging import time from typing import Any, Tuple, cast import torch import torch.distributed as dist from torch import Tensor from torch.nn import Module, ModuleList try: from fairseq.modules.moe import MOELayer has_fairseq = True Base = MOELayer except ModuleNotFoundError: Base = Module has_fairseq = False try: # To enable Tutel MoE optimizations: # python3 -m pip install --user --upgrade git+https://github.com/microsoft/tutel@v0.1.x from tutel import moe as tutel_moe has_tutel, fused_cumsum_sub_one = True, tutel_moe.fast_cumsum_sub_one except ModuleNotFoundError: has_tutel, fused_cumsum_sub_one = False, lambda mask: torch.cumsum(mask, dim=0) - 1 logger = logging.getLogger(__name__) # einsum dimensions: (g)roup, (s)equence, (e)xpert, (m)odel, (c)apacity # See https://arxiv.org/pdf/2006.16668.pdf for details. # Based on https://github.com/pytorch/pytorch/pull/40762 class _AllToAll(torch.autograd.Function): @staticmethod def forward(ctx: Any, group: dist.ProcessGroup, input: Tensor) -> Tensor: # type: ignore ctx.group = group input = input.contiguous() output = torch.empty_like(input) if torch.distributed.is_initialized(): dist.all_to_all_single(output, input, group=group) else: assert group is None output = input return output @staticmethod def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor]: return (None, _AllToAll.apply(ctx.group, *grad_output)) def _find_my_group_index(grouped_ranks): my_rank = dist.get_rank() for i, group in enumerate(grouped_ranks): if my_rank in group: return i raise RuntimeError def get_moe_group(moe_expert_count): if dist.is_initialized(): if not hasattr(get_moe_group, "_moe_groups"): world_size = dist.get_world_size() if world_size <= moe_expert_count: assert moe_expert_count % world_size == 0 moe_groups = [[i] for i in range(world_size)] else: assert world_size % moe_expert_count == 0 ranks_per_group = world_size // moe_expert_count moe_groups = [ [i + j * moe_expert_count for j in range(ranks_per_group)] for i in range(moe_expert_count) ] get_moe_group._moe_group_idx = moe_groups get_moe_group._moe_groups = [dist.new_group(g) for g in moe_groups] my_group_idx = _find_my_group_index(get_moe_group._moe_group_idx) return get_moe_group._moe_groups[my_group_idx] def get_all2all_group(moe_expert_count): if dist.is_initialized(): if not hasattr(get_all2all_group, "_all2all_groups"): world_size = dist.get_world_size() # more experts than world size if world_size <= moe_expert_count: assert moe_expert_count % world_size == 0 all2all_groups = [[i for i in range(world_size)]] # larger world than num experts else: assert world_size % moe_expert_count == 0 ranks_per_group = world_size // moe_expert_count all2all_groups = [ [i * moe_expert_count + j for j in range(moe_expert_count)] for i in range(ranks_per_group) ] get_all2all_group._all2all_group_idx = all2all_groups get_all2all_group._all2all_groups = [ dist.new_group(g) for g in all2all_groups ] my_group_idx = _find_my_group_index(get_all2all_group._all2all_group_idx) return get_all2all_group._all2all_groups[my_group_idx] class MOELayer(Base): """MOELayer module which implements MixtureOfExperts as described in Gshard_. :: gate = Top2Gate(model_dim, num_experts) moe = MOELayer(gate, expert) output = moe(input) l_aux = moe.l_aux .. Gshard_: https://arxiv.org/pdf/2006.16668.pdf Args: gate (torch.nn.Module): gate network expert (torch.nn.Module): expert network """ def __init__(self, gate, experts, args): if has_fairseq: super(Base, self).__init__() else: super().__init__() self.gate = gate if type(experts) == ModuleList: self.experts = cast(ModuleList, experts) else: self.experts = ModuleList([experts]) self.expert_group = get_moe_group(args.moe_expert_count) self.all2all_group = get_all2all_group(args.moe_expert_count) self.world_size = dist.get_world_size(group=self.expert_group) self.all2all_size = dist.get_world_size(group=self.all2all_group) for p in experts.parameters(): p.expert = True # type: ignore self.num_local_experts = len(self.experts) self.args = args self.in_generation = False self.a2a_cuda_event_intervals = [] self.a2a_cpu_time_ms = 0.0 def forward(self, *input: Tensor, input_padding_mask=None, **kwargs: Any) -> Tensor: assert len(input) == 1, "only single input Tensor supported" input = input[0] assert ( len(input.shape) == 3 ), "input Tensor must have dimensions: (s)equence, (t)oken, (m)odel" if input_padding_mask is not None: assert ( len(input_padding_mask.shape) == 2 ), "input Tensor must have dimensions: (s)equence, (t)oken" assert input_padding_mask.shape[0] == input.shape[0] assert input_padding_mask.shape[1] == input.shape[1] # assert input.shape[0] % len(self.experts) == 0, "num tokens must be order of number of local experts" # Implement Algorithm 2 from GShard paper. d_model = input.shape[2] # Pad to expected batch size input_shape = list(input.shape) expected_bsz = ( getattr(self.args, "batch_size", 0) if self.training else getattr(self.args, "batch_size_valid", 0) ) # This indicates that --batch-size or --max-sentences is not specified if expected_bsz is None: expected_bsz = 0 # Note: Padding is not necessary at generation time at present # because all DDP workers process the same batch. Also, batch size at generation time # can be different from that present in the checkpoint state if ( not self.in_generation and expected_bsz != 0 and input_shape[0] != expected_bsz ): logger.warning( f"padding batch with unexpected size {input_shape[0]} (expected: {expected_bsz})" ) assert input_shape[0] < expected_bsz, f"{input_shape[0]} < {expected_bsz}" padded_input = torch.zeros( (expected_bsz, input_shape[1], input_shape[2]), dtype=input.dtype, layout=input.layout, device=input.device, ) padded_input[: input_shape[0], :, :] = input input = padded_input padded_input_padding_mask = torch.ones( ( expected_bsz, input_shape[1], ), dtype=torch.bool, device=input.device, ) if input_padding_mask is not None: padded_input_padding_mask[: input_shape[0], :] = input_padding_mask else: padded_input_padding_mask[: input_shape[0], :] = False input_padding_mask = padded_input_padding_mask # Reshape into S tokens by dropping sequence dimension. reshaped_input = input.reshape(-1, d_model) reshaped_input_shape = reshaped_input.shape reshaped_input_padding_mask = ( input_padding_mask.reshape(-1) if input_padding_mask is not None else None ) # Doing padding here when --max-tokens is specified and not --batch-size or --max-sentences # Pro of --max-tokens: more flexible for MT variable sequence lengths # Con of --max-tokens: extra all-reduce needed to figure out optimal padding without running OOM if expected_bsz == 0: expected_dim = reshaped_input_shape[0] * torch.ones( (1,), dtype=torch.long, device=input.device ) dist.all_reduce(expected_dim, group=dist.group.WORLD, op=dist.ReduceOp.MAX) expected_dim = int(expected_dim.item()) padded_input = torch.zeros( (expected_dim, reshaped_input_shape[1]), dtype=input.dtype, layout=input.layout, device=input.device, ) padded_input[: reshaped_input_shape[0], :] = reshaped_input reshaped_input = padded_input padded_input_padding_mask = torch.ones( (expected_dim,), dtype=torch.bool, device=padded_input.device ) if reshaped_input_padding_mask is not None: padded_input_padding_mask[ : reshaped_input_shape[0] ] = reshaped_input_padding_mask else: padded_input_padding_mask[: reshaped_input_shape[0]] = False reshaped_input_padding_mask = padded_input_padding_mask if has_tutel: l_aux, self.metadata, C, E, indices_, locations_, gates_ = self.gate( reshaped_input, reshaped_input_padding_mask ) S, M = reshaped_input.size(0), reshaped_input.size(1) if not hasattr(self, "_tutel_dispatcher"): self._tutel_dispatcher = tutel_moe.fast_dispatcher( E, C, M, dispatch_dtype=reshaped_input.dtype ) self._tutel_dispatcher.update(indices_, locations_, gates_, capacity=C) dispatched_input = self._tutel_dispatcher.encode(reshaped_input) else: l_aux, combine_weights, dispatch_mask, self.metadata = self.gate( reshaped_input, reshaped_input_padding_mask ) dispatch_mask = dispatch_mask.to(input.dtype).permute( 1, 2, 0 ) # S,E,C -> E,C,S E, C, S = dispatch_mask.size() M = reshaped_input.size(1) assert reshaped_input.size() == (S, M) # einsum("sec,sm->ecm") dispatched_input = torch.mm( dispatch_mask.view(E * C, S), reshaped_input ) # -> (E*C),M if self.all2all_size > 1: dispatched_input = self.all_to_all_wrapper(dispatched_input) # Re-shape after all-to-all: ecm -> gecm dispatched_input = dispatched_input.reshape( self.all2all_size, self.num_local_experts, -1, d_model ) chunks = dispatched_input.chunk(self.num_local_experts, dim=1) expert_outputs = [] for chunk, expert in zip(chunks, self.experts): expert_outputs += [expert(chunk)] expert_output = torch.cat(expert_outputs, dim=1) if self.all2all_size > 1: expert_output = self.all_to_all_wrapper(expert_output) # Re-shape back: gecm -> ecm expert_output = expert_output.reshape( self.all2all_size * self.num_local_experts, -1, d_model ) if has_tutel: combined_output = self._tutel_dispatcher.decode( expert_output.view(E * C, M) ) else: # einsum("sec,ecm->sm") combined_output = combine_weights.view(S, E * C).mm( expert_output.view(E * C, M) ) # Remove padding here when --max-tokens is specified and not --batch-size or --max-sentences combined_output = combined_output[: reshaped_input_shape[0], :] combined_output = combined_output.reshape(input.shape) combined_output = combined_output[: input_shape[0], :, :] self.record_all_to_all_stats() return combined_output, l_aux def prepare_for_inference_(self): self.in_generation = True def all_to_all_wrapper(self, input: Tensor): dummy_a2a = getattr(self.args, "dummy_a2a", False) if dummy_a2a: input = input.contiguous() output = input.detach().clone() return input # always record times, since it is not a lot of overhead # if we do not log it we simply clear it off in record_all_to_all_stats cuda_start = torch.cuda.Event(enable_timing=True) cuda_end = torch.cuda.Event(enable_timing=True) cpu_start = time.time() * 1000 cuda_start.record() output = _AllToAll.apply(self.all2all_group, input) cuda_end.record() cpu_end = time.time() * 1000 self.a2a_cpu_time_ms += cpu_end - cpu_start self.a2a_cuda_event_intervals.append((cuda_start, cuda_end)) return output def record_all_to_all_stats(self): # controlled via an argument as we want to minimize any impact from torch.cuda.synchronize() record_a2a_perf_stats = getattr(self.args, "record_a2a_perf_stats", False) if record_a2a_perf_stats: torch.cuda.synchronize() self.metadata["all_to_all_cpu_time_ms"] = self.a2a_cpu_time_ms a2a_cuda_time_ms = 0.0 for ev_start, ev_end in self.a2a_cuda_event_intervals: a2a_cuda_time_ms += ev_start.elapsed_time(ev_end) self.metadata["all_to_all_cuda_time_ms"] = a2a_cuda_time_ms # reset stats self.a2a_cpu_time_ms = 0.0 self.a2a_cuda_event_intervals = []
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/torchscale/component/xmoe/moe_layer.py
moe_layer.py
import math import numpy as np import torch import torch.nn as nn from fairscale.nn import checkpoint_wrapper, wrap try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm from torchscale.architecture.utils import init_bert_params from torchscale.component.droppath import DropPath from torchscale.component.feedforward_network import FeedForwardNetwork, make_experts from torchscale.component.multihead_attention import MultiheadAttention from torchscale.component.multiway_network import MultiwayWrapper, set_split_position from torchscale.component.relative_position_bias import RelativePositionBias from torchscale.component.xmoe.moe_layer import MOELayer from torchscale.component.xmoe.routing import Top1Gate, Top2Gate class EncoderLayer(nn.Module): def __init__(self, args, depth, is_moe_layer=False, is_encoder_decoder=False): super().__init__() self.args = args self.embed_dim = args.encoder_embed_dim self.self_attn = self.build_self_attention(self.embed_dim, args) self.self_attn_layer_norm = MultiwayWrapper(args, LayerNorm(self.embed_dim, eps=args.layernorm_eps)) self.dropout_module = torch.nn.Dropout(args.dropout) if args.drop_path_rate > 0: drop_path_prob = np.linspace(0, args.drop_path_rate, args.encoder_layers)[ depth ] self.drop_path = DropPath(drop_path_prob) else: self.drop_path = None self.normalize_before = args.encoder_normalize_before self.is_moe_layer = is_moe_layer self.ffn_dim = args.encoder_ffn_embed_dim if not self.is_moe_layer: self.ffn = MultiwayWrapper( args, self.build_ffn( self.embed_dim, self.args, ), ) else: assert not self.args.multiway if args.moe_top1_expert: gate = Top1Gate( self.embed_dim, args.moe_expert_count, use_fp32=args.moe_gating_use_fp32, moe_eval_capacity_token_fraction=args.moe_eval_capacity_token_fraction, use_xmoe=args.use_xmoe, ) else: gate = Top2Gate( self.embed_dim, args.moe_expert_count, args.moe_gating_use_fp32, args.moe_second_expert_policy, args.moe_normalize_gate_prob_before_dropping, args.moe_eval_capacity_token_fraction, use_xmoe=args.use_xmoe, ) experts = make_experts(args, self.embed_dim, self.ffn_dim) self.moe_layer = MOELayer(gate, experts, args) self.final_layer_norm = MultiwayWrapper(args, LayerNorm(self.embed_dim, eps=args.layernorm_eps)) if args.deepnorm: if is_encoder_decoder: self.alpha = ( math.pow( math.pow(args.encoder_layers, 4) * args.decoder_layers, 0.0625 ) * 0.81 ) else: self.alpha = math.pow(2.0 * args.encoder_layers, 0.25) else: self.alpha = 1.0 def build_ffn(self, embed_dim, args): return FeedForwardNetwork( embed_dim, self.ffn_dim, args.activation_fn, args.dropout, args.activation_dropout, args.layernorm_eps, args.subln, ) def build_self_attention(self, embed_dim, args): return MultiheadAttention( args, embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, self_attention=True, encoder_decoder_attention=False, subln=args.subln, ) def residual_connection(self, x, residual): return residual * self.alpha + x def forward(self, x, encoder_padding_mask, attn_mask=None, rel_pos=None, multiway_split_position=None, incremental_state=None): if multiway_split_position is not None: assert self.args.multiway self.apply(set_split_position(multiway_split_position)) if attn_mask is not None: attn_mask = attn_mask.masked_fill(attn_mask.to(torch.bool), -1e8) residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) x, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=encoder_padding_mask, attn_mask=attn_mask, rel_pos=rel_pos, incremental_state=incremental_state, ) x = self.dropout_module(x) if self.drop_path is not None: x = self.drop_path(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) if not self.is_moe_layer: x = self.ffn(x) l_aux = None else: x = x.transpose(0, 1) x, l_aux = self.moe_layer(x) x = x.transpose(0, 1) if self.drop_path is not None: x = self.drop_path(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) return x, l_aux class Encoder(nn.Module): def __init__( self, args, embed_tokens=None, embed_positions=None, output_projection=None, is_encoder_decoder=False, **kwargs ): self.args = args super().__init__(**kwargs) self.dropout_module = torch.nn.Dropout(args.dropout) embed_dim = args.encoder_embed_dim self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) self.embed_tokens = embed_tokens self.embed_positions = embed_positions if ( output_projection is None and not is_encoder_decoder and not args.no_output_layer and args.vocab_size > 0 ): self.output_projection = self.build_output_projection(args) else: self.output_projection = output_projection if args.layernorm_embedding: self.layernorm_embedding = MultiwayWrapper( args, LayerNorm(embed_dim, eps=args.layernorm_eps), dim=1 ) else: self.layernorm_embedding = None self.layers = nn.ModuleList([]) moe_freq = args.moe_freq for i in range(args.encoder_layers): is_moe_layer = moe_freq != 0 and (i + 1) % moe_freq == 0 self.layers.append( self.build_encoder_layer( args, depth=i, is_moe_layer=is_moe_layer, is_encoder_decoder=is_encoder_decoder, ) ) self.num_layers = len(self.layers) if args.encoder_normalize_before and args.normalize_output: self.layer_norm = MultiwayWrapper(args, LayerNorm(embed_dim, eps=args.layernorm_eps)) else: self.layer_norm = None if args.rel_pos_buckets > 0 and args.max_rel_pos > 0: self.relative_position = RelativePositionBias( num_buckets=args.rel_pos_buckets, max_distance=args.max_rel_pos, n_heads=args.encoder_attention_heads, ) else: self.relative_position = None if args.bert_init: self.apply(init_bert_params) if args.deepnorm: if is_encoder_decoder: init_scale = ( math.pow( math.pow(args.encoder_layers, 4) * args.decoder_layers, 0.0625 ) / 1.15 ) else: init_scale = math.pow(8.0 * args.encoder_layers, 0.25) for name, p in self.named_parameters(): if ( "fc1" in name or "fc2" in name or "out_proj" in name or "v_proj" in name ): p.data.div_(init_scale) if args.subln: if is_encoder_decoder: init_scale = math.sqrt( math.log(3 * args.decoder_layers) * math.log(2 * args.encoder_layers) / 3 ) else: init_scale = math.sqrt(math.log(args.encoder_layers * 2)) for name, p in self.named_parameters(): if ( "fc1" in name or "fc2" in name or "out_proj" in name or "v_proj" in name ): p.data.mul_(init_scale) def build_output_projection( self, args, ): if args.share_encoder_input_output_embed: assert args.encoder_embedding_type == "language" output_projection = torch.nn.Linear( self.embed_tokens.weight.shape[1], self.embed_tokens.weight.shape[0], bias=False, ) output_projection.weight = self.embed_tokens.weight else: output_projection = torch.nn.Linear( args.encoder_embed_dim, args.vocab_size, bias=False ) torch.nn.init.normal_( output_projection.weight, mean=0, std=args.encoder_embed_dim**-0.5 ) return output_projection def build_encoder_layer( self, args, depth, is_moe_layer=False, is_encoder_decoder=False ): layer = EncoderLayer( args, depth, is_moe_layer=is_moe_layer, is_encoder_decoder=is_encoder_decoder, ) if args.checkpoint_activations: layer = checkpoint_wrapper(layer) if args.fsdp: layer = wrap(layer) return layer def forward_embedding( self, src_tokens, token_embedding=None, positions=None, ): if token_embedding is None: token_embedding = self.embed_tokens(src_tokens) x = embed = self.embed_scale * token_embedding if self.embed_positions is not None: if src_tokens is not None: x = embed + self.embed_positions(src_tokens, positions=positions) else: x = embed + self.embed_positions(x, positions=positions) if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) return x, embed def forward( self, src_tokens, encoder_padding_mask=None, attn_mask=None, return_all_hiddens=False, token_embeddings=None, multiway_split_position=None, features_only=False, incremental_state=None, positions=None, **kwargs ): assert src_tokens is not None or token_embeddings is not None if encoder_padding_mask is None: if src_tokens is not None: encoder_padding_mask = torch.zeros_like( src_tokens, device=src_tokens.device ).bool() else: encoder_padding_mask = torch.zeros( [token_embeddings.size(0), token_embeddings.size(1)], device=token_embeddings.device, ).bool() if multiway_split_position is not None: assert self.args.multiway self.apply(set_split_position(multiway_split_position)) x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings, positions) x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x)) encoder_states = [] if return_all_hiddens: encoder_states.append(x) rel_pos_bias = None if self.relative_position is not None: rel_pos_bias = self.relative_position( batch_size=x.size(0), qlen=x.size(1), klen=x.size(1) ) # incremental_state is not None during inference if we use the bidirectional encoder as a generator as in s2s-ft (https://arxiv.org/abs/2110.13640) l_aux = [] for idx, layer in enumerate(self.layers): x, l_aux_i = layer( x, encoder_padding_mask=encoder_padding_mask if incremental_state is None else None, attn_mask=attn_mask, rel_pos=rel_pos_bias, multiway_split_position=multiway_split_position, incremental_state=incremental_state[idx] if incremental_state is not None else None, ) if return_all_hiddens: assert encoder_states is not None encoder_states.append(x) l_aux.append(l_aux_i) if self.layer_norm is not None: x = self.layer_norm(x) if not features_only and self.output_projection is not None: x = self.output_projection(x) return { "encoder_out": x, "encoder_embedding": encoder_embedding, "encoder_padding_mask": encoder_padding_mask, "encoder_states": encoder_states, "l_aux": l_aux, }
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/torchscale/architecture/encoder.py
encoder.py
class EncoderConfig(object): def __init__(self, **kwargs): self.encoder_embed_dim = kwargs.pop("encoder_embed_dim", 768) self.encoder_attention_heads = kwargs.pop("encoder_attention_heads", 12) self.encoder_ffn_embed_dim = kwargs.pop("encoder_ffn_embed_dim", 3072) self.encoder_layers = kwargs.pop("encoder_layers", 12) self.encoder_normalize_before = kwargs.pop("encoder_normalize_before", True) self.normalize_output = kwargs.pop("normalize_output", True) self.activation_fn = kwargs.pop("activation_fn", "gelu") # self.activation_fn = kwargs.pop("activation_fn", "flashattention") self.dropout = kwargs.pop("dropout", 0.0) self.drop_path_rate = kwargs.pop("drop_path_rate", 0.0) self.attention_dropout = kwargs.pop("attention_dropout", 0.0) self.activation_dropout = kwargs.pop("activation_dropout", 0.0) self.no_scale_embedding = kwargs.pop("no_scale_embedding", True) self.layernorm_embedding = kwargs.pop("layernorm_embedding", False) self.moe_freq = kwargs.pop("moe_freq", 0) self.moe_top1_expert = kwargs.pop("moe_top1_expert", False) self.moe_expert_count = kwargs.pop("moe_expert_count", 0) self.moe_gating_use_fp32 = kwargs.pop("moe_gating_use_fp32", True) self.moe_eval_capacity_token_fraction = kwargs.pop( "moe_eval_capacity_token_fraction", 0.25 ) self.moe_second_expert_policy = kwargs.pop("moe_second_expert_policy", "random") self.moe_normalize_gate_prob_before_dropping = kwargs.pop( "moe_normalize_gate_prob_before_dropping", False ) self.use_xmoe = kwargs.pop("use_xmoe", False) self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0) self.max_rel_pos = kwargs.pop("max_rel_pos", 0) self.deepnorm = kwargs.pop("deepnorm", False) self.subln = kwargs.pop("subln", True) self.bert_init = kwargs.pop("bert_init", False) self.multiway = kwargs.pop("multiway", False) self.share_encoder_input_output_embed = kwargs.pop( "share_encoder_input_output_embed", False ) self.max_source_positions = kwargs.pop("max_source_positions", 1024) self.no_output_layer = kwargs.pop("no_output_layer", False) self.layernorm_eps = kwargs.pop("layernorm_eps", 1e-5) # Text self.vocab_size = kwargs.pop("vocab_size", -1) # Vision self.img_size = kwargs.pop("img_size", 224) self.patch_size = kwargs.pop("patch_size", 16) self.in_chans = kwargs.pop("in_chans", 3) # Fairscale self.checkpoint_activations = kwargs.pop("checkpoint_activations", False) self.fsdp = kwargs.pop("fsdp", False) self.ddp_rank = kwargs.pop("ddp_rank", 0) self.xpos_rel_pos = kwargs.pop("xpos_rel_pos", False) self.xpos_scale_base = kwargs.pop("xpos_scale_base", 512) if self.deepnorm: self.encoder_normalize_before = False self.subln = False if self.subln: self.encoder_normalize_before = True self.deepnorm = False if self.use_xmoe: self.moe_normalize_gate_prob_before_dropping = True self.moe_second_expert_policy = "random" assert self.moe_freq > 0 and self.moe_expert_count > 0 def override(self, args): for hp in self.__dict__.keys(): if getattr(args, hp, None) is not None: self.__dict__[hp] = getattr(args, hp, None) class DecoderConfig(object): def __init__(self, **kwargs): self.decoder_embed_dim = kwargs.pop("decoder_embed_dim", 768) self.decoder_attention_heads = kwargs.pop("decoder_attention_heads", 12) self.decoder_ffn_embed_dim = kwargs.pop("decoder_ffn_embed_dim", 3072) self.decoder_layers = kwargs.pop("decoder_layers", 12) self.decoder_normalize_before = kwargs.pop("decoder_normalize_before", True) self.activation_fn = kwargs.pop("activation_fn", "gelu") self.dropout = kwargs.pop("dropout", 0.0) self.drop_path_rate = kwargs.pop("drop_path_rate", 0.0) self.attention_dropout = kwargs.pop("attention_dropout", 0.0) self.activation_dropout = kwargs.pop("activation_dropout", 0.0) self.no_scale_embedding = kwargs.pop("no_scale_embedding", True) self.layernorm_embedding = kwargs.pop("layernorm_embedding", False) self.moe_freq = kwargs.pop("moe_freq", 0) self.moe_top1_expert = kwargs.pop("moe_top1_expert", False) self.moe_expert_count = kwargs.pop("moe_expert_count", 0) self.moe_gating_use_fp32 = kwargs.pop("moe_gating_use_fp32", True) self.moe_eval_capacity_token_fraction = kwargs.pop( "moe_eval_capacity_token_fraction", 0.25 ) self.moe_second_expert_policy = kwargs.pop("moe_second_expert_policy", "random") self.moe_normalize_gate_prob_before_dropping = kwargs.pop( "moe_normalize_gate_prob_before_dropping", False ) self.use_xmoe = kwargs.pop("use_xmoe", False) self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0) self.max_rel_pos = kwargs.pop("max_rel_pos", 0) self.deepnorm = kwargs.pop("deepnorm", False) self.subln = kwargs.pop("subln", True) self.bert_init = kwargs.pop("bert_init", False) self.multiway = kwargs.pop("multiway", False) self.share_decoder_input_output_embed = kwargs.pop( "share_decoder_input_output_embed", False ) self.max_target_positions = kwargs.pop("max_target_positions", 1024) self.no_output_layer = kwargs.pop("no_output_layer", False) self.layernorm_eps = kwargs.pop("layernorm_eps", 1e-5) # Text self.vocab_size = kwargs.pop("vocab_size", -1) # Fairscale self.checkpoint_activations = kwargs.pop("checkpoint_activations", False) self.fsdp = kwargs.pop("fsdp", False) self.ddp_rank = kwargs.pop("ddp_rank", 0) self.xpos_rel_pos = kwargs.pop("xpos_rel_pos", False) self.xpos_scale_base = kwargs.pop("xpos_scale_base", 512) if self.deepnorm: self.decoder_normalize_before = False self.subln = False if self.subln: self.decoder_normalize_before = True self.deepnorm = False if self.use_xmoe: self.moe_normalize_gate_prob_before_dropping = True self.moe_second_expert_policy = "random" assert self.moe_freq > 0 and self.moe_expert_count > 0 def override(self, args): for hp in self.__dict__.keys(): if getattr(args, hp, None) is not None: self.__dict__[hp] = getattr(args, hp, None) class EncoderDecoderConfig(object): def __init__(self, **kwargs): self.encoder_embed_dim = kwargs.pop("encoder_embed_dim", 768) self.encoder_attention_heads = kwargs.pop("encoder_attention_heads", 12) self.encoder_ffn_embed_dim = kwargs.pop("encoder_ffn_embed_dim", 3072) self.encoder_layers = kwargs.pop("encoder_layers", 12) self.encoder_normalize_before = kwargs.pop("encoder_normalize_before", True) self.decoder_embed_dim = kwargs.pop("decoder_embed_dim", 768) self.decoder_attention_heads = kwargs.pop("decoder_attention_heads", 12) self.decoder_ffn_embed_dim = kwargs.pop("decoder_ffn_embed_dim", 3072) self.decoder_layers = kwargs.pop("decoder_layers", 12) self.decoder_normalize_before = kwargs.pop("decoder_normalize_before", True) self.activation_fn = kwargs.pop("activation_fn", "gelu") self.dropout = kwargs.pop("dropout", 0.0) self.drop_path_rate = kwargs.pop("drop_path_rate", 0.0) self.attention_dropout = kwargs.pop("attention_dropout", 0.0) self.activation_dropout = kwargs.pop("activation_dropout", 0.0) self.no_scale_embedding = kwargs.pop("no_scale_embedding", True) self.layernorm_embedding = kwargs.pop("layernorm_embedding", False) self.moe_freq = kwargs.pop("moe_freq", 0) self.moe_top1_expert = kwargs.pop("moe_top1_expert", False) self.moe_expert_count = kwargs.pop("moe_expert_count", 0) self.moe_gating_use_fp32 = kwargs.pop("moe_gating_use_fp32", True) self.moe_eval_capacity_token_fraction = kwargs.pop( "moe_eval_capacity_token_fraction", 0.25 ) self.moe_second_expert_policy = kwargs.pop("moe_second_expert_policy", "random") self.moe_normalize_gate_prob_before_dropping = kwargs.pop( "moe_normalize_gate_prob_before_dropping", False ) self.use_xmoe = kwargs.pop("use_xmoe", False) self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0) self.max_rel_pos = kwargs.pop("max_rel_pos", 0) self.deepnorm = kwargs.pop("deepnorm", False) self.subln = kwargs.pop("subln", True) self.bert_init = kwargs.pop("bert_init", False) self.multiway = kwargs.pop("multiway", False) self.share_all_embeddings = kwargs.pop("share_all_embeddings", False) self.share_decoder_input_output_embed = kwargs.pop( "share_decoder_input_output_embed", False ) self.max_source_positions = kwargs.pop("max_source_positions", 1024) self.max_target_positions = kwargs.pop("max_target_positions", 1024) self.no_output_layer = kwargs.pop("no_output_layer", False) self.layernorm_eps = kwargs.pop("layernorm_eps", 1e-5) # Text self.vocab_size = kwargs.pop("vocab_size", -1) # Fairscale self.checkpoint_activations = kwargs.pop("checkpoint_activations", False) self.fsdp = kwargs.pop("fsdp", False) self.ddp_rank = kwargs.pop("ddp_rank", 0) self.xpos_rel_pos = kwargs.pop("xpos_rel_pos", False) self.xpos_scale_base = kwargs.pop("xpos_scale_base", 512) if self.deepnorm: self.encoder_normalize_before = False self.decoder_normalize_before = False self.subln = False if self.subln: self.encoder_normalize_before = True self.decoder_normalize_before = True self.deepnorm = False if self.use_xmoe: self.moe_normalize_gate_prob_before_dropping = True self.moe_second_expert_policy = "random" assert self.moe_freq > 0 and self.moe_expert_count > 0 def override(self, args): for hp in self.__dict__.keys(): if getattr(args, hp, None) is not None: self.__dict__[hp] = getattr(args, hp, None)
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/torchscale/architecture/config.py
config.py
import math import numpy as np import torch import torch.nn as nn from fairscale.nn import checkpoint_wrapper, wrap from torchscale.architecture.utils import init_bert_params from torchscale.component.droppath import DropPath from torchscale.component.feedforward_network import FeedForwardNetwork, make_experts from torchscale.component.multihead_attention import MultiheadAttention from torchscale.component.relative_position_bias import RelativePositionBias from torchscale.component.xmoe.moe_layer import MOELayer from torchscale.component.xmoe.routing import Top1Gate, Top2Gate try: from apex.normalization import FusedLayerNorm as LayerNorm except ModuleNotFoundError: from torch.nn import LayerNorm class DecoderLayer(nn.Module): def __init__( self, args, depth, is_moe_layer=False, is_encoder_decoder=False, ): super().__init__() self.args = args self.embed_dim = args.decoder_embed_dim self.dropout_module = torch.nn.Dropout(args.dropout) if args.drop_path_rate > 0: drop_path_prob = np.linspace(0, args.drop_path_rate, args.decoder_layers)[ depth ] self.drop_path = DropPath(drop_path_prob) else: self.drop_path = None self.self_attn = self.build_self_attention(self.embed_dim, args) self.normalize_before = args.decoder_normalize_before self.self_attn_layer_norm = LayerNorm(self.embed_dim, eps=args.layernorm_eps) if not is_encoder_decoder: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = self.build_encoder_attention(self.embed_dim, args) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, eps=args.layernorm_eps) self.is_moe_layer = is_moe_layer self.ffn_dim = args.decoder_ffn_embed_dim if not self.is_moe_layer: self.ffn = self.build_ffn( self.embed_dim, self.args, ) else: if args.moe_top1_expert: gate = Top1Gate( self.embed_dim, args.moe_expert_count, use_fp32=args.moe_gating_use_fp32, moe_eval_capacity_token_fraction=args.moe_eval_capacity_token_fraction, use_xmoe=args.use_xmoe, ) else: gate = Top2Gate( self.embed_dim, args.moe_expert_count, args.moe_gating_use_fp32, args.moe_second_expert_policy, args.moe_normalize_gate_prob_before_dropping, args.moe_eval_capacity_token_fraction, use_xmoe=args.use_xmoe, ) experts = make_experts(args, self.embed_dim, self.ffn_dim) self.moe_layer = MOELayer(gate, experts, args) self.final_layer_norm = LayerNorm(self.embed_dim, eps=args.layernorm_eps) if args.deepnorm: if is_encoder_decoder: self.alpha = math.pow(3.0 * args.decoder_layers, 0.25) else: self.alpha = math.pow(2.0 * args.decoder_layers, 0.25) else: self.alpha = 1.0 def build_ffn(self, embed_dim, args): return FeedForwardNetwork( embed_dim, self.ffn_dim, args.activation_fn, args.dropout, args.activation_dropout, args.layernorm_eps, args.subln, ) def build_self_attention(self, embed_dim, args): return MultiheadAttention( args, embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, self_attention=True, encoder_decoder_attention=False, subln=args.subln, ) def build_encoder_attention(self, embed_dim, args): return MultiheadAttention( args, embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, self_attention=False, encoder_decoder_attention=True, subln=args.subln, ) def residual_connection(self, x, residual): return residual * self.alpha + x def forward( self, x, encoder_out=None, encoder_padding_mask=None, incremental_state=None, self_attn_mask=None, self_attn_padding_mask=None, self_attn_rel_pos=None, cross_attn_rel_pos=None, ): residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) x, attn = self.self_attn( query=x, key=x, value=x, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, attn_mask=self_attn_mask, rel_pos=self_attn_rel_pos, ) x = self.dropout_module(x) if self.drop_path is not None: x = self.drop_path(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) if self.encoder_attn is not None and encoder_out is not None: residual = x if self.normalize_before: x = self.encoder_attn_layer_norm(x) x, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=None, rel_pos=cross_attn_rel_pos, ) x = self.dropout_module(x) if self.drop_path is not None: x = self.drop_path(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.encoder_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) if not self.is_moe_layer: x = self.ffn(x) l_aux = None else: x, l_aux = self.moe_layer(x) if self.drop_path is not None: x = self.drop_path(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) return x, attn, None, l_aux class Decoder(nn.Module): def __init__( self, args, embed_tokens=None, embed_positions=None, output_projection=None, is_encoder_decoder=False, **kwargs ): super().__init__(**kwargs) self.args = args self.dropout_module = torch.nn.Dropout(args.dropout) embed_dim = args.decoder_embed_dim self.embed_dim = embed_dim self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) self.embed_tokens = embed_tokens self.embed_positions = embed_positions if ( output_projection is None and not args.no_output_layer and args.vocab_size > 0 ): self.output_projection = self.build_output_projection(args) else: self.output_projection = output_projection if args.layernorm_embedding: self.layernorm_embedding = LayerNorm(embed_dim, eps=args.layernorm_eps) else: self.layernorm_embedding = None self.layers = nn.ModuleList([]) moe_freq = args.moe_freq for i in range(args.decoder_layers): is_moe_layer = moe_freq != 0 and (i + 1) % moe_freq == 0 self.layers.append( self.build_decoder_layer( args, depth=i, is_moe_layer=is_moe_layer, is_encoder_decoder=is_encoder_decoder, ) ) self.num_layers = len(self.layers) if args.decoder_normalize_before: self.layer_norm = LayerNorm(embed_dim, eps=args.layernorm_eps) else: self.layer_norm = None self.self_attn_relative_position = None self.cross_attn_relative_position = None if args.rel_pos_buckets > 0 and args.max_rel_pos > 0: self.self_attn_relative_position = RelativePositionBias( num_buckets=args.rel_pos_buckets, max_distance=args.max_rel_pos, n_heads=args.decoder_attention_heads, ) if is_encoder_decoder: self.cross_attn_relative_position = RelativePositionBias( num_buckets=args.rel_pos_buckets, max_distance=args.max_rel_pos, n_heads=args.decoder_attention_heads, ) if args.bert_init: self.apply(init_bert_params) if args.deepnorm: if is_encoder_decoder: init_scale = math.pow(12.0 * args.decoder_layers, 0.25) else: init_scale = math.pow(8.0 * args.decoder_layers, 0.25) for name, p in self.named_parameters(): if ( "fc1" in name or "fc2" in name or "out_proj" in name or "v_proj" in name ): p.data.div_(init_scale) if args.subln: if is_encoder_decoder: init_scale = math.sqrt(math.log(args.decoder_layers * 3)) else: init_scale = math.sqrt(math.log(args.decoder_layers * 2)) for name, p in self.named_parameters(): if "encoder_attn" in name: continue if ( "fc1" in name or "fc2" in name or "out_proj" in name or "v_proj" in name ): p.data.mul_(init_scale) def build_output_projection( self, args, ): if args.share_decoder_input_output_embed: output_projection = torch.nn.Linear( self.embed_tokens.weight.shape[1], self.embed_tokens.weight.shape[0], bias=False, ) output_projection.weight = self.embed_tokens.weight else: output_projection = torch.nn.Linear( args.decoder_embed_dim, args.vocab_size, bias=False ) torch.nn.init.normal_( output_projection.weight, mean=0, std=args.decoder_embed_dim**-0.5 ) return output_projection def build_decoder_layer( self, args, depth, is_moe_layer=False, is_encoder_decoder=False ): layer = DecoderLayer( args, depth, is_moe_layer=is_moe_layer, is_encoder_decoder=is_encoder_decoder, ) if args.checkpoint_activations: layer = checkpoint_wrapper(layer) if args.fsdp: layer = wrap(layer) return layer def forward_embedding( self, tokens, token_embedding=None, incremental_state=None, ): positions = None if self.embed_positions is not None: positions = self.embed_positions( tokens, incremental_state=incremental_state ) if incremental_state is not None: tokens = tokens[:, -1:] if positions is not None: positions = positions[:, -1:] if token_embedding is None: token_embedding = self.embed_tokens(tokens) x = embed = self.embed_scale * token_embedding if positions is not None: x += positions if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) return x, embed def forward( self, prev_output_tokens, self_attn_padding_mask=None, encoder_out=None, incremental_state=None, features_only=False, return_all_hiddens=False, token_embeddings=None, **kwargs ): # embed tokens and positions x, _ = self.forward_embedding( prev_output_tokens, token_embeddings, incremental_state ) # relative position self_attn_rel_pos_bias = None slen = prev_output_tokens.size(1) if self.self_attn_relative_position is not None: self_attn_rel_pos_bias = self.self_attn_relative_position( batch_size=x.size(0), qlen=slen, klen=slen ) if incremental_state is not None: self_attn_rel_pos_bias = self_attn_rel_pos_bias[-1:, :, :] cross_attn_rel_pos_bias = None if self.cross_attn_relative_position is not None: cross_attn_rel_pos_bias = self.cross_attn_relative_position( batch_size=x.size(0), qlen=slen, klen=encoder_out["encoder_out"].size(1), ) if incremental_state is not None: cross_attn_rel_pos_bias = cross_attn_rel_pos_bias[-1:, :, :] # decoder layers inner_states = [x] if encoder_out is None: l_aux = [] else: l_aux = encoder_out["l_aux"] if "l_aux" in encoder_out else [] for idx, layer in enumerate(self.layers): if incremental_state is None: self_attn_mask = torch.triu( torch.zeros([x.size(1), x.size(1)]) .float() .fill_(float("-inf")) .type_as(x), 1, ) else: self_attn_mask = None if idx not in incremental_state: incremental_state[idx] = {} x, layer_attn, _, l_aux_i = layer( x, encoder_out["encoder_out"] if encoder_out is not None else None, encoder_out["encoder_padding_mask"] if encoder_out is not None else None, incremental_state[idx] if incremental_state is not None else None, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, self_attn_rel_pos=self_attn_rel_pos_bias, cross_attn_rel_pos=cross_attn_rel_pos_bias, ) l_aux.append(l_aux_i) inner_states.append(x) if self.layer_norm is not None: x = self.layer_norm(x) if not features_only: x = self.output_layer(x) return x, { "inner_states": inner_states, "l_aux": l_aux, "attn": None, } def output_layer(self, features): return self.output_projection(features)
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/torchscale/architecture/decoder.py
decoder.py
import torch import torch.nn as nn from torchscale.architecture.encoder import Encoder from torchscale.component.embedding import ( PositionalEmbedding, TextEmbedding, VisionEmbedding, ) from torchscale.component.multiway_network import MutliwayEmbedding class BEiT3(nn.Module): def __init__(self, args, **kwargs): super().__init__() self.args = args assert args.multiway assert args.vocab_size > 0 assert not args.share_encoder_input_output_embed self.text_embed = TextEmbedding(args.vocab_size, args.encoder_embed_dim) self.vision_embed = VisionEmbedding( args.img_size, args.patch_size, args.in_chans, args.encoder_embed_dim, contain_mask_token=True, prepend_cls_token=True, ) # being consistent with Fairseq, which starts from 2 for position embedding embed_positions = MutliwayEmbedding( modules=[ PositionalEmbedding(self.vision_embed.num_position_embeddings() + 2, args.encoder_embed_dim), PositionalEmbedding(args.max_source_positions, args.encoder_embed_dim), ], dim=1, ) self.encoder = Encoder( args, embed_tokens=None, embed_positions=embed_positions, output_projection=None, is_encoder_decoder=False, ) def forward( self, textual_tokens=None, visual_tokens=None, text_padding_position=None, attn_mask=None, vision_masked_position=None, incremental_state=None, positions=None, ): assert textual_tokens is not None or visual_tokens is not None if textual_tokens is None: x = self.vision_embed(visual_tokens, vision_masked_position) encoder_padding_mask = None multiway_split_position = -1 elif visual_tokens is None: x = self.text_embed(textual_tokens) encoder_padding_mask = text_padding_position multiway_split_position = 0 else: x1 = self.vision_embed(visual_tokens, vision_masked_position) multiway_split_position = x1.size(1) x2 = self.text_embed(textual_tokens) x = torch.cat([x1, x2], dim=1) if text_padding_position is not None: encoder_padding_mask = torch.cat( [ torch.zeros(x1.shape[:-1]).to(x1.device).bool(), text_padding_position, ], dim=1, ) else: encoder_padding_mask = None encoder_out = self.encoder( src_tokens=None, encoder_padding_mask=encoder_padding_mask, attn_mask=attn_mask, token_embeddings=x, multiway_split_position=multiway_split_position, incremental_state=incremental_state, positions=positions, ) encoder_out["multiway_split_position"] = multiway_split_position return encoder_out
APAC-SCALE
/APAC%20SCALE-0.1.2.tar.gz/APAC SCALE-0.1.2/torchscale/model/BEiT3.py
BEiT3.py
###### APASVO ###### *A graphical tool to perform event detection/picking in seismic traces.* **Main Features** * Three different picking algorithms available: STA-LTA [1]_, AMPA [2]_ and Takanami's autoregressive method [3]_. * Proper functionality from DSP tools: scrolling, zooming, panning, playbacking... * Signal envelope, spectrogram and estimated characteristic function visualization. * Manually editing of picked seismic events or picking new ones. * Detect mode: Find all characteristic function's peaks which value is over a threshold value. * Support for text/binary files containing seismic traces. * Save picked events to CSV format, and characteristic function to text/binary file format. * Two additional command line tools: An event picking/detection tool and a synthetic earthquake generator [4]_. .. contents:: **Table of Contents** :local: :backlinks: none ============ Installation ============ ------- Windows ------- A prebuilt version of APASVO for Windows is available, compatible with 32-bit and 64-bit machines. You can download it `here`_. Prebuilt package contains all the required software dependencies to work. Just unzip its contents into a directory of your choice and then you can start using the application. .. _here: https://github.com/jemromerol/apasvo/releases ----- Linux ----- ~~~~~~~~~~~~~~~~~ Prebuilt packages ~~~~~~~~~~~~~~~~~ Prebuilt distributions are the recommended installation method because they don't require installing any extra software. Just download the appropriate package for your architecture, unzip its contents into the directory of your choice and you can start using the application. Prebuilt packages of APASVO for Linux are available for both 32-bit and 64-bit architectures. You can download them `here`_. .. warning:: Prebuilt packages for Linux require GLIBC version 2.13 or newer to work. You can check your GLIBC version with: :: $ ldd --version .. _here: https://github.com/jemromerol/apasvo/releases ~~~~~~~~~~~~~~~~~~~~~~ Installation from Pypi ~~~~~~~~~~~~~~~~~~~~~~ .. warning:: Installing from PyPI is a long and delicate process that involves installing several large libraries and their dependencies, so it is discouraged unless you are confident about installing python applications with multiple dependencies from source. In any case, PREBUILT PACKAGES ARE THE RECOMMENDED WAY OF INSTALLING APASVO. ************* Prerequisites ************* Make sure you have Python 2.7.x installed. Then, install the latest `pip`_ distribution. ************************************* Installation of required dependencies ************************************* APASVO depends on a list of Python packages, which you can check in the project's `requirements.txt`_ file. These packages are automatically installed when APASVO is installed from Python repositories by using ``pip`` or from source code via `setuptools`_. However, some of these packages, namely Matplotlib and PySide, require installation of a number of additional dependencies. If you're on a Debian / Ubuntu system, you can install these dependencies using the command: :: $ sudo apt-get build-dep python-pyside python-matplotlib Or if you are in Fedora/RedHat, first install ``yum-builddep`` and then use the command: :: $ su -c "yum-builddep python-pyside python-matplotlib" ******* Install ******* You can install the latest version of APASVO from Python repositories by using the command: :: $ pip install --use-wheel apasvo ~~~~~~~~~~~~~~~~~~~~~~~~ Installation from source ~~~~~~~~~~~~~~~~~~~~~~~~ First, make sure you meet the requirements explained in `Prerequisites`_ and install the needed dependencies as explained in `Installation of required dependencies`_ section. Then, download the latest version from `GitHub`_. If you have ``git`` installed, you can use the following command: :: $ git clone https://github.com/jemromerol/apasvo.git Finally, enter the newly created directory containing the source code and run: :: $ python setup.py install .. _pip: http://pip.readthedocs.org/en/latest/installing.html .. _requirements.txt: https://github.com/jemromerol/apasvo/blob/master/requirements.txt .. _setuptools: https://pythonhosted.org/an_example_pypi_project/setuptools.html#using-setup-py .. _GitHub: https://github.com/jemromerol/apasvo ---- OS X ---- Sorry, but no precompiled version for OS X is available yet. You can try to install it from Python repositories or from source by following a similar procedure to that described for `Linux`_. =========== Screenshots =========== * http://jemromerol.github.io/media/apasvo-screenshot-1.jpg * http://jemromerol.github.io/media/apasvo-screenshot-2.jpg * http://jemromerol.github.io/media/apasvo-screenshot-3.jpg * http://jemromerol.github.io/media/apasvo-screenshot-4.jpg * http://jemromerol.github.io/media/apasvo-screenshot-5.jpg * http://jemromerol.github.io/media/apasvo-screenshot-6.jpg ======= License ======= Licensed under the `GPLv3`_ license. .. _GPLv3: http://www.gnu.org/licenses/gpl-3.0.html ======= Authors ======= José Emilio Romero López. jemromerol@gmail.com ========== References ========== .. [1] Trnkoczy, A. (2002). Understanding and parameter setting of STA/LTA trigger algorithm. IASPEI New Manual of Seismological Observatory Practice, 2, 1-19. .. [2] Álvarez, I., García, L., Mota, S., Cortés, G., Benítez, C., & De la Torre, A. (2013). An Automatic P-Phase Picking Algorithm Based on Adaptive Multiband Processing. Geoscience and Remote Sensing Letters, IEEE, Volume: 10, Issue: 6, pp. 1488 - 1492 .. [3] Takanami, T., & Kitagawa, G. (1988). A new efficient procedure for the estimation of onset times of seismic waves. Journal of Physics of the Earth, 36(6), 267-290. .. [4] Peterson, Jon. "Observations and modeling of seismic background noise." (1993): 93-95. ========= Changelog ========= * 0.0.6 (2016-02-07) * Add bandpass filtering options * 0.0.5 (2015-11-30) * Add a trace selector window to handle multitrace files. It also allows to open multiple files and switch between them. * Fix several bugs. * 0.0.4 (2015-11-09) * Refactor apasvo classes to use Obspy library. Thanks to Obspy, now the application supports multiple input formats (wav, sac, mseed, segy, ...) besides binary & text, multiple export event formats (NonLinLoc, QuakeML...) and (virtually) support for multitrace files. * Redesign apasvo-detector to detect events for multitrace files in batch. * Fix several bugs * 0.0.3 (2014-08-16) * Fixed several bugs. * 0.0.2 (2014-06-02) * Fixed several bugs. * Improve installation files. * 0.0.1 (2014-05-16)
APASVO
/APASVO-0.0.6.tar.gz/APASVO-0.0.6/README.rst
README.rst
import argparse import sys import os import itertools import multiprocessing from apasvo._version import __version__ from apasvo.utils import parse from apasvo.utils import collections from apasvo.picking import stalta from apasvo.picking import ampa from apasvo.picking import apasvotrace as rc INPUT_FORMAT_MAP = { 'binary': 'binary', 'text': 'text', 'autodetect': None, 'sac': 'SAC', 'mseed': 'MSEED', } OUTPUT_FORMAT_MAP = { 'nonlinloc': 'NLLOC_OBS', 'quakeml': 'QUAKEML', 'json': 'JSON', } OUTPUT_EXTENSION_SET = { 'NLLOC_OBS': '.hyp', 'QUAKEML': '.xml', 'JSON': '.json', } METHOD_MAP = { 'stalta': stalta.StaLta, 'ampa': ampa.Ampa, } DEFAULT_INPUT_FORMAT = 'autodetect' DEFAULT_OUTPUT_FORMAT = 'nonlinloc' DEFAULT_METHOD = 'ampa' def print_settings(**kwargs): """Print settings to stdout. Args: args: Command-line input arguments. """ sys.stdout.write("\n*** General settings ***\n") # Print multiprocessing settings allow_multiprocessing = not kwargs.get('no_multiprocessing') sys.stdout.write("%30s: %s\n" % ("Allow multiprocessing", allow_multiprocessing)) if allow_multiprocessing: sys.stdout.write("%30s: %s\n" % ("N. of processes", kwargs.get('processes'))) if kwargs.get('threshold'): sys.stdout.write("%30s: %s\n" % ("Threshold", kwargs.get('threshold'))) if kwargs.get('threshold'): sys.stdout.write("%30s: %s\n" % ("Threshold", kwargs.get('threshold'))) sys.stdout.write("%30s: %s\n" % ("Output format", kwargs.get('output_format', '').upper())) sys.stdout.write("%30s: %s\n" % ("Peak checking(s)", kwargs.get('peak_checking'))) sys.stdout.write("%30s: %s\n" % ("Algorithm used", kwargs.get('method', '').upper())) sys.stdout.write("%30s: %s\n" % ("Takanami", kwargs.get('takanami'))) sys.stdout.write("%30s: %s\n" % ("Takanami margin", kwargs.get('takanami_margin'))) if kwargs.get('method') == 'ampa': sys.stdout.write("\n*** AMPA settings ***\n") sys.stdout.write("%30s: %s\n" % ("Window length(s)", kwargs.get('window'))) sys.stdout.write("%30s: %s\n" % ("Window overlap", kwargs.get('step'))) sys.stdout.write("%30s: %s\n" % ("Noise threshold", kwargs.get('noise_thr'))) sys.stdout.write("%30s: %s\n" % ("Length of the filters used(s)", kwargs.get('L'))) sys.stdout.write("%30s: %s\n" % ("Negative response coefficient", kwargs.get('L_coef'))) sys.stdout.write("%30s: %s\n" % ("Coefficient U", kwargs.get('U'))) sys.stdout.write("\n*** AMPA filter bank settings ***\n") sys.stdout.write("%30s: %s\n" % ("Start frequency(Hz)", kwargs.get('f_start'))) sys.stdout.write("%30s: %s\n" % ("End frequency(Hz)", kwargs.get('f_end'))) sys.stdout.write("%30s: %s\n" % ("Subband bandwidth(Hz)", kwargs.get('bandwidth'))) sys.stdout.write("%30s: %s\n" % ("Subband overlap(Hz)", kwargs.get('overlap'))) if kwargs.get('method') == 'stalta': sys.stdout.write("\n*** STA-LTA settings ***\n") sys.stdout.write("%30s: %s\n" % ("STA window length(s)", kwargs.get('sta_length'))) sys.stdout.write("%30s: %s\n" % ("LTA window length(s)", kwargs.get('lta_length'))) sys.stdout.write("\n") sys.stdout.flush() def analysis_single_file_task(filename, **kwargs): """ :param file: :param kwargs: """ # Get debug level debug = kwargs.get('verbosity', 1) # Configure algorithm method = METHOD_MAP.get(kwargs.get('method', DEFAULT_METHOD), ampa.Ampa) alg = method(**kwargs) # Open input file if debug: print "*** Processing file {} ***".format(filename) input_format = INPUT_FORMAT_MAP.get(kwargs.get('input_format', DEFAULT_INPUT_FORMAT)) stream = rc.read(filename, format=input_format, **kwargs) if debug: print "Traces in {}".format(filename) print stream # Pick stream traces for trace in stream.traces: trace.detect(alg, debug=debug, **kwargs) # Export picks ouput_format = OUTPUT_FORMAT_MAP.get(kwargs.get('output_format', DEFAULT_OUTPUT_FORMAT)) extension = OUTPUT_EXTENSION_SET.get(ouput_format, '') basename, _ = os.path.splitext(os.path.basename(filename)) output_path = kwargs.get('destination_path', os.getcwd()) stream_suffix = '_'.join([suffix for tr in stream.traces for suffix in tr.getId().split('.') if suffix != '']) output_filename = "{}_{}{}".format(basename, stream_suffix, extension) stream.export_picks(os.path.join(output_path, output_filename), format=ouput_format, debug=debug) def analysis_chunk_task(parameters): """ :param parameters: """ file_list = parameters[0] kwargs = parameters[1] for file in file_list: analysis_single_file_task(file, **kwargs) def analysis(**kwargs): """Performs event analysis/picking over a set of seismic signals. Performs event detection if parameter 'threshold' is not None, otherwise performs event picking. """ # Get file list file_list = kwargs.pop('FILEIN', []) # Get debug level debug = kwargs.get('verbosity', 1) if debug: print_settings(**kwargs) if kwargs.get('no_multiprocessing', False): analysis_chunk_task((file_list, kwargs)) else: processes = kwargs.get('processes', multiprocessing.cpu_count()) p = multiprocessing.Pool(processes=processes) p.map(analysis_chunk_task, itertools.izip(collections.chunkify(file_list, len(file_list) / processes), itertools.repeat(kwargs))) p.close() p.join() def main(argv=None): '''Command line options.''' if argv is None: argv = sys.argv else: sys.argv.extend(argv) program_name = __import__('__main__').__doc__.split("\n")[0] program_version = "v%s" % __version__ program_version_message = '%%(prog)s %s' % program_version program_description = ''' %s %s A tool to perform event detection/picking over seismic signals. Analysis can be performed in two ways: supervised or unsupervised mode. In supervised mode the function graphs each of the candidate events found and asks the user whether to accept them or not, whereas in unsupervised mode the function just computes results without receiving any feedback from users. Created by Jose Emilio Romero Lopez. Copyright 2013. All rights reserved. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' % (program_name, program_version) program_examples = ''' Examples of use: \033[1m>> python apasvo-apasvo-detector.py meq01.bin meq02.bin -f 100 --takanami\033[0m Given two seismic signals, 'meq01.bin' and 'meq02.bin', sample rate 100 Hz, performs event picking by using AMPA method (default settings) together with Takanami method for arrival time refining. Saves results summary to 'output.csv'. \033[1m>> python apasvo-detector.py meq01.txt -o nonlinloc -m stalta --lta 60 --takanami\033[0m Let 'meq01.txt' a text file containing seismic data, performs event picking with the following settings: Sample rate: 50 Hz. (Default value). Picking Algorithm: STA-LTA. STA window length: 5.0 seconds. (Default value). LTA window length: 60.0 seconds. Apply Takanami AR method on results. Works on supervised mode, showing characteristic function, envelope function and espectrogram for each possible event. Saves results to nonlinloc format \033[1m>> python apasvo-detector.py meq01.bin -t 1.5 --ampa-filters 50.0 25.0 12.5 6.25 --ampa-noise-threshold 75\033[0m Let 'meq01.bin' a binary file containing seismic data, detects seismic events whose characteristic function value is over 1.5. Event detection uses the following settings: Detection Algorithm: AMPA. Filter lengths: 50.0 25.0 12.5 6.25 (in seconds). Noise threshold percentile: 75 Saves results summary to nonlinloc format. Saves characteristic function to './cf_data/meq01.cf.bin'. \033[1m>> python apasvo-detector.py meq*.bin --output-format quakeml @settings.txt\033[0m Performs event picking on all files matching 'meq*.bin' and takes some settings from a text file named 'settings.txt'. Saves results to quakeml format. The following settings are used: Picking Algorithm: AMPA. Sliding window length: 200.0 seconds. Sliding window step: 100.0 seconds. (50 % overlap). Filter lengths: 50.0, 20.0, 10.0, 6.0, 3.0 (in seconds). Noise threshold percentile: 75 Frequency range: 4-25 Hz. So, the following is the content of 'settings.txt': >> cat settings.txt -m ampa --ampa-window 200.0 --ampa-step 100.0 --ampa-filters 50.0 20.0 10.0 6.0 3.0 --ampa-noise-threshold 75 --ampa-f-start 4.0 --ampa-f-end 25.0 ''' try: # Setup argument parser parser = parse.CustomArgumentParser(description=program_description, epilog=program_examples, formatter_class=argparse.RawDescriptionHelpFormatter, fromfile_prefix_chars='@') parser.add_argument('-V', '--version', action='version', version=program_version_message) parser.add_argument('-v', '--verbosity', type=parse.non_negative_int, default=1, metavar='<arg>', help=''' Verbosity level. A value of 0 means no output is printed. Default value is 1. ''') parser.add_argument("FILEIN", nargs='+', action=parse.GlobInputFilenames, metavar='file', help=''' Binary or text file containing a seismic-like signal. ''') parser.add_argument("-i", "--input-format", choices=['binary', 'text', 'sac', 'mseed', 'autodetect'], default='autodetect', help=''' Selected format for input files. Default value is autodetect, meaning format will be inferred for each input file. ''') parser.add_argument("-o", "--output-format", choices=['nonlinloc', 'quakeml', 'json'], default='nonlinloc', help=''' Output file format for the picked events. Default: 'nonlinloc'. ''') parser.add_argument("-d", "--destination-path", metavar='<arg>', default=os.getcwd(), help=''' Destination path for output files. By default it will be the current working directory. ''') parser.add_argument("--no-multiprocessing", action='store_true', default=False, help=''' Do not use multiprocessing during pick estimation. ''') parser.add_argument("-p", "--processes", type=parse.positive_int, default=multiprocessing.cpu_count(), metavar='<arg>', help=''' Number of processes to be used during pick estimation. By default it will be equal to the number of system processors. ''') parser.add_argument("-m", "--method", choices=['ampa', 'stalta'], default='ampa', help=''' Available event detection/picking algorithms. Default: 'ampa'. ''') parser.add_argument("-t", "--threshold", type=parse.positive_float, metavar='<arg>', help=''' Local maxima in the characteristic function over this value will be considered as possible events (detection mode). If no threshold parameter is provided, the application takes only the global maximum of the characteristic function (picking mode). ''') parser.add_argument("--peak-window", type=parse.positive_float, default=1.0, dest='peak_checking', metavar='<arg>', help=''' How many seconds on each side of a point of the characteristic function to use for the comparison to consider the point to be a local maximum. If no threshold is provided, this parameter has no effect. Default value is 1 s. ''') parser.add_argument("-f", "--frequency", type=parse.positive_int, default=50.0, dest='fs', metavar='<arg>', help=''' Sample rate in Hz (only has effect for binary and text input files). Default: 50 Hz ''') parser.add_argument("--datatype", choices=['int16', 'int32', 'int64', 'float16', 'float32', 'float64'], default='float64', dest='dtype', help=''' Data-type of input data (only has effect for binary input files). Default value is float64, meaning double-precision floating point format. ''') parser.add_argument("--byteorder", choices=['little-endian', 'big-endian', 'native'], default='native', help=''' If the input files are in binary format this will be the byte-order of the selected datatype. Default choice is hardware native. ''') # STA-LTA arguments sta_lta_options = parser.add_argument_group("STA-LTA settings") sta_lta_options.add_argument("--sta", type=parse.positive_float, dest='sta_length', default=5.0, metavar='<arg>', help=''' Length of STA window (in seconds) when using STA-LTA method. Default value is 5 seconds. ''') sta_lta_options.add_argument("--lta", type=parse.positive_float, dest='lta_length', default=100.0, metavar='<arg>', help=''' Length of LTA window (in seconds) when using STA-LTA method. Default value is 100 seconds. ''') # AMPA arguments ampa_options = parser.add_argument_group("AMPA settings") ampa_options.add_argument("--ampa-window", type=parse.positive_float, dest='window', default=100.0, metavar='<arg>', help=''' Sliding window length (in seconds) when using AMPA method. Typically this value should be close to the expected length of the events sought. Default: 100 seconds. ''') ampa_options.add_argument("--ampa-step", type=parse.positive_float, dest='step', default=50.0, metavar='<arg>', help=''' Step length in seconds when using AMPA method. Default: 50 seconds. ''') ampa_options.add_argument("--ampa-filters", type=parse.positive_float, dest='L', default=[30.0, 20.0, 10.0, 5.0, 2.5], nargs='+', metavar='<arg>', help=''' A list of filter lengths (in seconds) used by AMPA at the enhancement filter stage. The length of a filter is related to the duration of the detected events. An enhancement filter for long duration events can negate short duration events and vice versa. Combining several filters of different length the algorithm achieves to deal with this issue. Default values are 30.0, 20.0, 10.0, 5.0 and 2.5 seconds. ''') ampa_options.add_argument("--ampa-response-penalty", type=float, dest='L_coef', default=3.0, metavar='<arg>', help=''' Penalty factor that minimizes response to emerging or impulsive noise of the set of filters applied at the enhancement stage. Default: 3.0. ''') ampa_options.add_argument("--ampa-noise-threshold", type=parse.percentile, dest='noise_thr', default=90.0, metavar='<arg>', help=''' Percentile of the amplitude of the envelope that measures the noise reduction level for each band at noise reduction stage. Default: 90. ''') ampa_options.add_argument("--ampa-f-start", type=parse.positive_float, dest='f_start', default=2.0, metavar='<arg>', help=''' Start frequency of the filter bank applied at the adaptive multi-band processing stage. Default: 2.0 Hz. ''') ampa_options.add_argument("--ampa-f-end", type=parse.positive_float, dest='f_end', default=12.0, metavar='<arg>', help=''' End frequency of the filter bank applied at the adaptive multi-band processing stage. Default: 12.0 Hz. ''') ampa_options.add_argument("--ampa-bandwidth", type=parse.positive_float, dest='bandwidth', default=3.0, metavar='<arg>', help=''' Channel bandwidth of the filter bank applied at the adaptive multi-band processing stage. Default: 3.0 Hz. ''') ampa_options.add_argument("--ampa-overlap", type=parse.positive_float, dest='overlap', default=1.0, metavar='<arg>', help=''' Overlap between channels of the filter bank applied at the adaptive multi-band processing stage. Default: 1.0 Hz. ''') ampa_options.add_argument("--ampa-U", type=float, dest='U', default=12.0, metavar='<arg>', help=''' A parameter used at the end of the enhancement filter stage to avoid logarithm of zero and to shift the characteristic function to zero. Given y(n) the product of the outputs of the different filters used at the end of the enhancement stage, the characteristic function is then calculated as: cf(n) = U + log10(y(n) + 10 ** (-U)) Default: 12.0. ''') # Takanami arguments takanami_options = parser.add_argument_group("Takanami settings") takanami_options.add_argument("--takanami", action='store_true', default=False, help=''' Specifies whether to use Takanami AR method to refine results or not. ''') takanami_options.add_argument("--takanami-len", type=parse.positive_float, dest='takanami_margin', default=5.0, metavar='<arg>', help=''' Given a possible event time point, this parameter specifies the length of an interval centered at that point where to perform Takanami AR refining method. I.e. let 't' a possible arrival time and 'w' the value of the parameter, the application will perform Takanami AR method in [t - w, t + w]. Default: 5.0 seconds. ''') # Parse the args and call whatever function was selected args, _ = parser.parse_known_args() except Exception, e: indent = len(program_name) * " " sys.stderr.write(program_name + ": " + repr(e) + "\n") sys.stderr.write(indent + " for help use --help\n") return 2 analysis(**vars(args)) if __name__ == "__main__": sys.exit(main())
APASVO
/APASVO-0.0.6.tar.gz/APASVO-0.0.6/bin/apasvo-detector.py
apasvo-detector.py
import sys from PySide import QtGui, QtCore from apasvo._version import _application_name from apasvo.gui.views import mainwindow if __name__ == '__main__': # QtGui.QApplication.setLibraryPaths([]) # Disable looking for plugins app = QtGui.QApplication(sys.argv) app.setApplicationName(_application_name) app.setWindowIcon(QtGui.QIcon(":/app.png")) # Create and display the splash screen splash = QtGui.QSplashScreen(QtGui.QPixmap(":splash.png"), QtCore.Qt.WindowStaysOnTopHint) splash.show() # Load libraries splash.showMessage("Loading libraries...") import matplotlib matplotlib.rcParams['backend'] = 'qt4agg' matplotlib.rcParams['backend.qt4'] = 'PySide' matplotlib.rcParams['patch.antialiased'] = False matplotlib.rcParams['agg.path.chunksize'] = 80000 import numpy as np import traceback from apasvo.gui.views.generated import qrc_icons from apasvo.gui.delegates import cbdelegate from apasvo.gui.models import eventlistmodel from apasvo.gui.models import pickingtask from apasvo.gui.views import aboutdialog from apasvo.gui.views import svwidget from apasvo.gui.views import navigationtoolbar from apasvo.gui.views import loaddialog from apasvo.gui.views import savedialog from apasvo.gui.views import save_events_dialog from apasvo.gui.views import settingsdialog from apasvo.gui.views import takanamidialog from apasvo.gui.views import staltadialog from apasvo.gui.views import ampadialog from apasvo.gui.views import playertoolbar from apasvo.gui.views import error from apasvo.picking import stalta from apasvo.picking import ampa from apasvo.picking import apasvotrace as rc app.processEvents() # Create and display the main window main = mainwindow.MainWindow() main.show() splash.finish(main) try: app.exec_() except Exception, e: error.display_error_dlg(str(e), traceback.format_exc()) sys.exit(1) sys.exit(0)
APASVO
/APASVO-0.0.6.tar.gz/APASVO-0.0.6/bin/apasvo-gui.py
apasvo-gui.py
import argparse import os import sys from apasvo._version import __version__ from apasvo.utils import clt, parse, futils from apasvo.utils.formats import rawfile from apasvo.picking import eqgenerator def print_settings(args): """Prints settings to stdout. Args: args: Command-line input arguments. """ sys.stdout.write("\nGeneral settings:\n") sys.stdout.write("%30s: %s\n" % ("Signal frequency(Hz)", args.fs)) sys.stdout.write("%30s: %s\n" % ("Length(s)", args.length)) sys.stdout.write("%30s: %s\n" % ("Start time(s)", args.t_event)) sys.stdout.write("%30s: %s\n" % ("Noise power(dB)", args.P_noise_db)) if not args.FILEIN: sys.stdout.write("%30s: %s\n" % ("Event power(dB)", args.gen_event_power)) sys.stdout.write("\nFilter bank settings:\n") sys.stdout.write("%30s: %s\n" % ("Start frequency(Hz)", args.f_low)) sys.stdout.write("%30s: %s\n" % ("End frequency(Hz)", args.f_high)) sys.stdout.write("%30s: %s\n" % ("Subband bandwidth(Hz)", args.bandwidth)) sys.stdout.write("%30s: %s\n" % ("Subband overlap(Hz)", args.overlap)) sys.stdout.write("%30s: %s\n" % ("Start envelope length(s)", args.low_period)) sys.stdout.write("%30s: %s\n" % ("End envelope length(s)", args.high_period)) sys.stdout.write("%30s: %s\n" % ("Start amplitude", args.low_amp)) sys.stdout.write("%30s: %s\n" % ("End amplitude", args.high_amp)) sys.stdout.write("\n") sys.stdout.flush() def generate(FILEIN, length, t_event, output, gen_event_power=5.0, n_events=1, gen_noise_coefficients=False, output_format='binary', datatype='float64', byteorder='native', **kwargs): """Generates synthetic earthquake signals with background noise and saves them to file. The function accepts a list of command-line arguments and renders synthetic seismic data in two ways: If a list of input files containing seismic data is provided, the function generates a new output signal for each one of the files by adding background noise. If no input file is provided, the function generates a list of synthetic seismic signals. Args: FILEIN: A list of binary or text file objects storing seismic data. length: Length of rendered seismic signals, in seconds. If FILEIN is None, this parameter has no effect. t_event: Start time of rendered earthquake, given in seconds from the beginning of the signal. If FILEIN is None, this parameter has no effect. output: Output file name (absolute path). If no input file is provided and n_events is greater than 1, the name of each generated file will be followed by its ordinal number. E.g. given FILEIN = None, output = 'example.out' and n_events = 5, the function will generate 5 synthetic files named: 'example00.out', 'example01.out', 'example02.out', 'example03.out' and 'example04.out'. gen_event_power: Earthquake power in dB. If FILEIN is None, this parameter has no effect. Default: 5.0. n_events: No. of signals to generate. If FILEIN is None, this parameter has no effect. Default: 1. gen_noise_coefficients: A binary or text file object containing a list of numeric coefficients of a FIR filter that models the background noise. Default value is False, meaning unfiltered white noise is used to model the background noise. output_format: Output file format. Possible values are 'binary' or 'text'. Default: 'binary'. datatype: Data-type of generated data. Default value is 'float64'. If FILEIN is not None, this parameter is also the datatype of input data. byteorder: Byte-order of generated data. Possible values are 'little-endian', 'big-endian' and 'native'. If FILEIN is not None, this parameter is also the format of input data. Default value is 'native'. """ fs = kwargs.get('fs', 50.0) # Configure generator clt.print_msg("Configuring generator... ") generator = eqgenerator.EarthquakeGenerator(**kwargs) clt.print_msg("Done\n") # Load noise coefficients if gen_noise_coefficients: if futils.istextfile(gen_noise_coefficients): f = open(gen_noise_coefficients, 'r') else: f = open(gen_noise_coefficients, 'rb') clt.print_msg("Loading noise coefficients from %s... " % f.name) generator.load_noise_coefficients(f, dtype=datatype, byteorder=byteorder) clt.print_msg("Done\n") # Process input files basename, ext = os.path.splitext(output) filename_out = output # If a list of input files containing seismic data # is provided, generate a new output signal for each one of # the files by adding background noise. if FILEIN: fileno = 0 for f in FILEIN: # Read input signal fin_handler = rawfile.get_file_handler(f, dtype=datatype, byteorder=byteorder) clt.print_msg("Loading seismic signal from %s... " % fin_handler.filename) signal = fin_handler.read() clt.print_msg("Done\n") # Generate output filename if len(FILEIN) > 1: filename_out = "%s%02.0i%s" % (basename, fileno, ext) fileno += 1 clt.print_msg("Generating artificial signal in %s... " % filename_out) # Add background noise to signal eq = generator.generate_noise(signal) # Save outputs to file if output_format == 'text': fout_handler = rawfile.TextFile(filename_out, dtype=datatype, byteorder=byteorder) else: fout_handler = rawfile.BinFile(filename_out, dtype=datatype, byteorder=byteorder) fout_handler.write(eq, header="Sample rate: %g Hz." % fs) clt.print_msg("Done\n") # If no input file is provided, # generate a list of synthetic seismic signals. else: for i in xrange(n_events): # Generate output filename if n_events > 1: filename_out = "%s%02.0i%s" % (basename, i, ext) clt.print_msg("Generating artificial signal in %s... " % filename_out) # Generate a synthetic signal eq = generator.generate_earthquake(length, t_event, gen_event_power) # Save outputs to file if output_format == 'text': fout_handler = rawfile.TextFile(filename_out, dtype=datatype, byteorder=byteorder) else: fout_handler = rawfile.BinFile(filename_out, dtype=datatype, byteorder=byteorder) fout_handler.write(eq, header="Sample rate: %g Hz." % fs) clt.print_msg("Done\n") def main(argv=None): '''Command line options.''' if argv is None: argv = sys.argv else: sys.argv.extend(argv) program_name = __import__('__main__').__doc__.split("\n")[0] program_version = "v%s" % __version__ program_version_message = '%%(prog)s %s' % program_version program_description = ''' %s %s A tool that generates synthetic seismic signals. Renders synthetic seismic data in two ways: If a list of input files containing seismic data is provided, the tool generates a new output signal for each one of them by adding background noise. If no input file is provided, it generates a list of synthetic seismic signals. Artificial earthquakes are generated at desired start point from white noise band-filtered and modulated by using different envelope functions for each band. Similarly, background noise is modeled from white noise and finally added to the previously generated sequence that contains the synthetic earthquake. Created by Jose Emilio Romero Lopez. Copyright 2013. All rights reserved. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' % (program_name, program_version) program_examples = ''' Examples of use: \033[1m>> python apasvo-generator.py -o example.out -f 100 -l 600 -t 200 -ep 5 -np 0\033[0m Generates a synthetic earthquake of the following characteristics: Earthquake power: 5.0 dB (SNR 5.0) Noise power: 0.0 dB (SNR 5.0) Sample rate: 100 Hz. Length: 600.0 seconds (10 minutes) Arrival time: 200.0 seconds. Saves result to a file named 'example.out' \033[1m>> python apasvo-generator.py meq.bin meq2.txt -f 50 -np 2 -fir coeffs.txt\033[0m Given two seismic signals, 'meq.bin' and 'meq2.txt', sample rate 50 Hz, adds background noise of 2.0 dB. Noise is modeled by a FIR filter whose coefficients are stored in the file 'coeffs.txt'. Results will be saved to 'eq00.out' and 'eq01.out'. \033[1m>> python apasvo-generator.py -o eq.bin -n 500 -l 3600 -t 100 -ep 2 -np 2 --f-low 4.0 --f-high 25.0\033[0m Generates a list of 500 synthetic earthquakes of the following characteristics: SNR: 0.0 (2.0 dB signal and noise power) Sample rate: 50 Hz. (Default value). Frequency range: 4-25 Hz. Background noise: Gaussian white noise. Length: 3600 seconds. Arrival time: 100.0 seconds. Results will be saved to 'eq00.bin', 'eq01.bin', 'eq02.bin', ..., 'eq499.bin'. \033[1m>> python apasvo-generator.py -o eq.txt -n 30 --output-format text @settings.txt\033[0m Generates a list of 30 synthetic earthquakes and takes some settings from a text file named 'settings.txt' Saves them to 'eq00.txt', ..., 'eq29.txt', plain text format. Rendered signals has the following characteristics: Earthquake power: 10.0 dB. Noise power: 0.0 dB. FIR filter coefficients: 'coeffs.txt' Length: 1200 seconds. Arrival time: 250.0 seconds. So, the following is the content of 'settings.txt': >> cat settings.txt -ep 10.0 -np 0.0 -fir coeffs.txt -l 1200 -t 250 ''' try: # Setup argument parser parser = parse.CustomArgumentParser(description=program_description, epilog=program_examples, formatter_class=argparse.RawDescriptionHelpFormatter, fromfile_prefix_chars='@') parser.add_argument('-V', '--version', action='version', version=program_version_message) parser.set_defaults(func=generate) parser.add_argument("FILEIN", nargs='*', action=parse.GlobInputFilenames, metavar='file', help=''' Binary or text file containing a seismic-like signal. ''') parser.add_argument("-o", "--output", default='eq.out', metavar='<file>', help=''' Output filename. Default: 'eq.out'. If no. of output signals is greater than 1, basename of each generated file will be followed by its ordinal number. E.g. given parameters '-o example.out' and '-n 5', generates 5 files named: 'example00.out', 'example01.out', 'example02.out', 'example03.out' and 'example04.out'. ''') parser.add_argument("-n", "--n-events", type=parse.positive_int, default=1, metavar='<arg>', help=''' No. of signals to generate. Default: 1. If input signal is provided, this parameter has no effect. ''') parser.add_argument("-f", "--frequency", type=parse.positive_int, default=50, dest='fs', metavar='<arg>', help=''' Sample rate in Hz. Default: 50 Hz. ''') parser.add_argument("-l", "--length", type=parse.positive_int, default=600.0, metavar='<arg>', help=''' Length of generated data in seconds. If input file is provided, this parameter has no effect. Default: 600.0 seconds. ''') parser.add_argument("-t", "--t-event", type=parse.positive_float, default=50.0, metavar='<arg>', help=''' Arrival time in seconds from the beginning of rendered signal. If input signal is provided, this parameter has no effect. Default: 50.0 seconds. ''') parser.add_argument("-ep", "--earthquake-power", type=float, dest='gen_event_power', default=10.0, metavar='<arg>', help=''' Earthquake power in dB. If input signal is provided, this parameter has no effect. Default: 10.0 dB. ''') parser.add_argument("-np", "--noise-power", type=float, dest='P_noise_db', default=0.0, metavar='<arg>', help=''' Background noise power in dB. Default: 0.0 dB. ''') parser.add_argument("-fir", "--noise-coefficients", type=parse.filein, dest='gen_noise_coefficients', metavar='<file>', help=''' Binary or text file containing a list of numeric coefficients of a FIR filter that characterizes background noise. If not specified unfiltered white noise is used to model background noise. ''') parser.add_argument("--f-low", type=parse.positive_float, dest='f_low', default=2.0, metavar='<arg>', help=''' Start frequency on multi-band earthquake synthesis. If input signal is provided, this parameter has no effect. Default: 2.0 Hz. ''') parser.add_argument("--f-high", type=parse.positive_float, dest='f_high', default=18.0, metavar='<arg>', help=''' End frequency on multi-band earthquake synthesis. If input signal is provided, this parameter has no effect. Default: 18.0 Hz. ''') parser.add_argument("--bandwidth", type=parse.positive_float, dest='bandwidth', default=4.0, metavar='<arg>', help=''' Channel bandwidth on multi-band earthquake synthesis. If input signal is provided, this parameter has no effect. Default: 4.0 Hz. ''') parser.add_argument("--overlap", type=parse.positive_float, dest='overlap', default=1.0, metavar='<arg>', help=''' Overlap between channels bank on multi-band earthquake synthesis. If input signal is provided, this parameter has no effect. Default: 1.0 Hz. ''') parser.add_argument("--period-low", type=parse.positive_float, dest='low_period', default=50.0, metavar='<arg>', help=''' Start value of the range of noise envelope lengths for the different bands on multi-band earthquake synthesis. If input signal is provided, this parameter has no effect. Default: 50.0 seconds. ''') parser.add_argument("--period-high", type=parse.positive_float, dest='high_period', default=10.0, metavar='<arg>', help=''' End value of the range of noise envelope lengths for the different bands on multi-band earthquake synthesis. If input signal is provided, this parameter has no effect. Default: 10.0 seconds. ''') parser.add_argument("--amplitude-low", type=parse.positive_float, dest='low_amp', default=0.2, metavar='<arg>', help=''' Start value of the range of noise envelope amplitudes for the different bands on multi-band earthquake synthesis. If input signal is provided, this parameter has no effect. Default: 0.2. ''') parser.add_argument("--amplitude-high", type=parse.positive_float, dest='high_amp', default=0.1, metavar='<arg>', help=''' End value of the range of noise envelope amplitudes for the different bands on multi-band earthquake synthesis. If input signal is provided, this parameter has no effect. Default: 0.1. ''') parser.add_argument("--output-format", choices=["binary", "text"], default="binary", help=''' Output file format. Default value is 'binary'. ''') parser.add_argument("--datatype", choices=['int16', 'int32', 'int64', 'float16', 'float32', 'float64'], default='float64', help=''' Data-type of generated data. If input files are specified, this parameter is also the data-type of data stored on them. Default value is float64, meaning double-precision floating point format. ''') parser.add_argument("--byteorder", choices=['little-endian', 'big-endian', 'native'], default='native', help=''' Byte-ordering for generated data. If input files are specified, this parameter is also the byte-ordering for data stored on them. Default value is 'native', meaning platform native byte-ordering. ''') # Parse the args and call whatever function was selected args, _ = parser.parse_known_args() print_settings(args) except Exception, e: indent = len(program_name) * " " sys.stderr.write(program_name + ": " + repr(e) + "\n") sys.stderr.write(indent + " for help use --help\n") return 2 args.func(**vars(args)) if __name__ == "__main__": sys.exit(main())
APASVO
/APASVO-0.0.6.tar.gz/APASVO-0.0.6/bin/apasvo-generator.py
apasvo-generator.py