licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MPL-2.0"
] | 0.12.1 | c68e031e469f1898bb779cbc3c401e1640ecc0c4 | docs | 4020 | # JSOSolvers.jl
[](https://doi.org/10.5281/zenodo.3991143)
[](https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl/releases/latest)
[](https://jso.dev/JSOSolvers.jl/stable)
[](https://jso.dev/JSOSolvers.jl/latest)
[](https://codecov.io/gh/JuliaSmoothOptimizers/JSOSolvers.jl)

[](https://cirrus-ci.com/github/JuliaSmoothOptimizers/JSOSolvers.jl)
This package provides optimization solvers curated by the JuliaSmoothOptimizers
organization for unconstrained optimization
min f(x)
and bound-constrained optimization
min f(x) s.t. ℓ ≤ x ≤ u
This package provides an implementation of four classic algorithms for unconstrained/bound-constrained nonlinear optimization:
- `lbfgs`: an implementation of a limited-memory BFGS line-search method for unconstrained minimization;
> D. C. Liu, J. Nocedal. (1989). On the limited memory BFGS method for
> large scale optimization. *Mathematical Programming*, 45(1), 503-528.
> DOI: [10.1007/BF01589116](https://doi.org/10.1007/BF01589116)
- `R2`: a first-order quadratic regularization method for unconstrained optimization;
> E. G. Birgin, J. L. Gardenghi, J. M. Martínez, S. A. Santos, Ph. L. Toint. (2017).
> Worst-case evaluation complexity for unconstrained nonlinear optimization using
> high-order regularized models. *Mathematical Programming*, 163(1), 359-368.
> DOI: [10.1007/s10107-016-1065-8](https://doi.org/10.1007/s10107-016-1065-8)
- `fomo`: a first-order method with momentum for unconstrained optimization;
- `tron`: a pure Julia implementation of TRON, a trust-region solver for bound-constrained optimization described in
> Chih-Jen Lin and Jorge J. Moré, *Newton's Method for Large Bound-Constrained
> Optimization Problems*, SIAM J. Optim., 9(4), 1100–1127, 1999.
> DOI: [10.1137/S1052623498345075](https://www.doi.org/10.1137/S1052623498345075)
as well as a variant for nonlinear least-squares;
- `trunk`: a trust-region solver for unconstrained optimization using exact second derivatives. Our implementation follows the description given in
> A. R. Conn, N. I. M. Gould, and Ph. L. Toint,
> Trust-Region Methods, volume 1 of MPS/SIAM Series on Optimization.
> SIAM, Philadelphia, USA, 2000.
> DOI: [10.1137/1.9780898719857](https://www.doi.org/10.1137/1.9780898719857)
The package also contains a variant for nonlinear least-squares.
## Installation
`pkg> add JSOSolvers`
## Example
```julia
using JSOSolvers, ADNLPModels
# Rosenbrock
nlp = ADNLPModel(x -> 100 * (x[2] - x[1]^2)^2 + (x[1] - 1)^2, [-1.2; 1.0])
stats = lbfgs(nlp) # or trunk, tron, R2
```
## How to cite
If you use JSOSolvers.jl in your work, please cite using the format given in [CITATION.cff](CITATION.cff).
# Bug reports and discussions
If you think you found a bug, feel free to open an [issue](https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl/issues).
Focused suggestions and requests can also be opened as issues. Before opening a pull request, start an issue or a discussion on the topic, please.
If you want to ask a question not suited for a bug report, feel free to start a discussion [here](https://github.com/JuliaSmoothOptimizers/Organization/discussions). This forum is for general discussion about this repository and the [JuliaSmoothOptimizers](https://github.com/JuliaSmoothOptimizers), so questions about any of our packages are welcome.
| JSOSolvers | https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git |
|
[
"MPL-2.0"
] | 0.12.1 | c68e031e469f1898bb779cbc3c401e1640ecc0c4 | docs | 1133 | # [JSOSolvers.jl documentation](@id Home)
This package provides a few optimization solvers curated by the [JuliaSmoothOptimizers](https://jso.dev) organization.
## Basic usage
All solvers here are _JSO-Compliant_, in the sense that they accept NLPModels and return GenericExecutionStats.
This allows [benchmark them easily](https://jso.dev/tutorials/introduction-to-solverbenchmark/).
All solvers can be called like the following:
```julia
stats = solver_name(nlp; kwargs...)
```
where `nlp` is an AbstractNLPModel or some specialization, such as an `AbstractNLSModel`, and the following keyword arguments are supported:
- `x` is the starting default (default: `nlp.meta.x0`);
- `atol` is the absolute stopping tolerance (default: `atol = √ϵ`);
- `rtol` is the relative stopping tolerance (default: `rtol = √ϵ`);
- `max_eval` is the maximum number of objective and constraints function evaluations (default: `-1`, which means no limit);
- `max_time` is the maximum allowed elapsed time (default: `30.0`);
- `stats` is a `SolverTools.GenericExecutionStats` with the output of the solver.
See the full list of [Solvers](@ref).
| JSOSolvers | https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git |
|
[
"MPL-2.0"
] | 0.12.1 | c68e031e469f1898bb779cbc3c401e1640ecc0c4 | docs | 211 | # Internal functions
```@docs
JSOSolvers.projected_newton!
JSOSolvers.projected_line_search!
JSOSolvers.cauchy!
JSOSolvers.projected_gauss_newton!
JSOSolvers.projected_line_search_ls!
JSOSolvers.cauchy_ls!
```
| JSOSolvers | https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git |
|
[
"MPL-2.0"
] | 0.12.1 | c68e031e469f1898bb779cbc3c401e1640ecc0c4 | docs | 174 | # Reference
## Contents
```@contents
Pages = ["reference.md"]
```
## Index
```@index
Pages = ["reference.md"]
```
```@autodocs
Modules = [JSOSolvers]
```
| JSOSolvers | https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git |
|
[
"MPL-2.0"
] | 0.12.1 | c68e031e469f1898bb779cbc3c401e1640ecc0c4 | docs | 495 | # Solvers
**Solver list**
- [`lbfgs`](@ref)
- [`tron`](@ref)
- [`trunk`](@ref)
- [`R2`](@ref)
- [`fomo`](@ref)
| Problem type | Solvers |
| --------------------- | -------- |
| Unconstrained NLP | [`lbfgs`](@ref), [`tron`](@ref), [`trunk`](@ref), [`R2`](@ref), [`fomo`](@ref)|
| Unconstrained NLS | [`trunk`](@ref), [`tron`](@ref) |
| Bound-constrained NLP | [`tron`](@ref) |
| Bound-constrained NLS | [`tron`](@ref) |
## Solver list
```@docs
lbfgs
tron
trunk
R2
fomo
```
| JSOSolvers | https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git |
|
[
"MIT"
] | 0.6.0 | 31aa360731ce7e75f3a6fc9159d8ab4948a92493 | code | 408 | module AbstractCosmologicalEmulators
using Base: @kwdef
using Adapt
using ChainRulesCore
using Lux
using SimpleChains
export AbstractTrainedEmulators, LuxEmulator, SimpleChainsEmulator
export maximin, inv_maximin, run_emulator, get_emulator_description,
init_emulator
include("core.jl")
include("initialization.jl")
include("utils.jl")
include("chainrules.jl")
end # module AbstractCosmologicalEmulators
| AbstractCosmologicalEmulators | https://github.com/CosmologicalEmulators/AbstractCosmologicalEmulators.jl.git |
|
[
"MIT"
] | 0.6.0 | 31aa360731ce7e75f3a6fc9159d8ab4948a92493 | code | 591 | function ChainRulesCore.rrule(::typeof(maximin), input, minmax)
Y = maximin(input, minmax)
function maximin_pullback(Ȳ)
∂input = @thunk(@views @. Ȳ / (minmax[:,2] - minmax[:,1]))
return NoTangent(), ∂input, NoTangent()
end
return Y, maximin_pullback
end
function ChainRulesCore.rrule(::typeof(inv_maximin), input, minmax)
Y = inv_maximin(input, minmax)
function inv_maximin_pullback(Ȳ)
∂input = @thunk(@views @. Ȳ * (minmax[:,2] - minmax[:,1]))
return NoTangent(), ∂input, NoTangent()
end
return Y, inv_maximin_pullback
end
| AbstractCosmologicalEmulators | https://github.com/CosmologicalEmulators/AbstractCosmologicalEmulators.jl.git |
|
[
"MIT"
] | 0.6.0 | 31aa360731ce7e75f3a6fc9159d8ab4948a92493 | code | 646 | abstract type AbstractTrainedEmulators end
@kwdef mutable struct SimpleChainsEmulator <: AbstractTrainedEmulators
Architecture
Weights
Description::Dict = Dict()
end
function run_emulator(input, emulator::SimpleChainsEmulator)
return emulator.Architecture(input, emulator.Weights)
end
@kwdef mutable struct LuxEmulator <: AbstractTrainedEmulators
Model
Parameters
States
Description::Dict = Dict()
end
Adapt.@adapt_structure LuxEmulator
function run_emulator(input, emulator::LuxEmulator)
return (Lux.apply(emulator.Model, (input),
emulator.Parameters, emulator.States)[1])
end
| AbstractCosmologicalEmulators | https://github.com/CosmologicalEmulators/AbstractCosmologicalEmulators.jl.git |
|
[
"MIT"
] | 0.6.0 | 31aa360731ce7e75f3a6fc9159d8ab4948a92493 | code | 4836 | function _get_layer_simplechains(input_dict::Dict)
if input_dict["activation_function"] == "tanh"
act_func = SimpleChains.tanh
elseif input_dict["activation_function"] == "relu"
act_func = SimpleChains.relu
else
error("Error in the Activation Function. You choose "*
string(input_dict["activation_function"])*" which we do not support.")
end
return TurboDense(act_func, Int(input_dict["n_neurons"]))
end
function _get_hidden_layers_simplechains(input_dict::Dict)
n_hidden_layers = input_dict["n_hidden_layers"]
return (_get_layer_simplechains(input_dict["layers"]["layer_"*string(i)])
for i in 1:n_hidden_layers)
end
function _get_layer_lux(activation_function, n_in::Int, n_out::Int)
if activation_function == "tanh"
act_func = Lux.tanh
elseif activation_function == "relu"
act_func = Lux.relu
else
error("Error in the Activation Function. You choose "*
string(activation_function)*" which we do not support.")
end
return Dense(n_in => n_out, act_func)
end
function _get_layers_lux(input_dict::Dict)
n_hidden_layers = input_dict["n_hidden_layers"]
in_array, out_array = _get_in_out_arrays(input_dict)
intermediate = (_get_layer_lux(
input_dict["layers"]["layer_"*string(j)]["activation_function"],
in_array[j], out_array[j]) for j in 1:n_hidden_layers)
return (intermediate..., Dense(in_array[end],out_array[end]))
end
function _get_nn_simplechains(input_dict::Dict)
hidden_layer_tuple = _get_hidden_layers_simplechains(input_dict)
return SimpleChain(static(input_dict["n_input_features"]), hidden_layer_tuple...,
TurboDense(identity, input_dict["n_output_features"]))
end
function _get_nn_lux(input_dict::Dict)
hidden_layer_tuple = _get_layers_lux(input_dict)
return Chain(hidden_layer_tuple...)
end
function _get_weight_bias(i::Int, n_in::Int, n_out::Int, weight_bias, NN_dict::Dict)
weight = reshape(weight_bias[i:i+n_out*n_in-1], n_out, n_in)
bias = weight_bias[i+n_out*n_in:i+n_out*n_in+n_out-1]
i += n_out*n_in+n_out-1+1
return (weight = weight, bias = bias)
end
function _get_in_out_arrays(NN_dict::Dict)
n = NN_dict["n_hidden_layers"]
in_array = zeros(Int64, n+1)
out_array = zeros(Int64, n+1)
in_array[1] = NN_dict["n_input_features"]
out_array[end] = NN_dict["n_output_features"]
for i in 1:n
in_array[i+1] = NN_dict["layers"]["layer_"*string(i)]["n_neurons"]
out_array[i] = NN_dict["layers"]["layer_"*string(i)]["n_neurons"]
end
return in_array, out_array
end
function _get_i_array(in_array::Vector, out_array::Vector)
i_array = similar(in_array)
i_array[1] = 1
for i in 1:length(i_array)-1
i_array[i+1] = i_array[i]+in_array[i]*out_array[i]+out_array[i]
end
return i_array
end
function _get_lux_params(NN_dict::Dict, weights)
in_array, out_array = _get_in_out_arrays(NN_dict)
i_array = _get_i_array(in_array, out_array)
params = [_get_weight_bias(i_array[j], in_array[j], out_array[j], weights, NN_dict) for j in 1:NN_dict["n_hidden_layers"]+1]
layer = [Symbol("layer_"*string(j)) for j in 1:NN_dict["n_hidden_layers"]+1]
return (; zip(layer, params)...)
end
function _get_lux_states(NN_dict::Dict)
params = [NamedTuple() for j in 1:NN_dict["n_hidden_layers"]+1]
layer = [Symbol("layer_"*string(j)) for j in 1:NN_dict["n_hidden_layers"]+1]
return (; zip(layer, params)...)
end
function _get_lux_params_states(NN_dict::Dict, weights)
return _get_lux_params(NN_dict, weights), _get_lux_states(NN_dict)
end
function _get_emulator_description_dict(input_dict::Dict)
if haskey(input_dict, "emulator_description")
nn_descript = input_dict["emulator_description"]
else
nn_descript = Dict()
@warn "No emulator description found!"
end
return nn_descript
end
function _init_luxemulator(NN_dict::Dict, weight)
params, states = _get_lux_params_states(NN_dict, weight)
model = _get_nn_lux(NN_dict)
nn_descript = Dict("emulator_description"=>_get_emulator_description_dict(NN_dict))
return LuxEmulator(Model = model, Parameters = params, States = states,
Description= nn_descript)
end
function init_emulator(NN_dict::Dict, weight, ::Type{LuxEmulator})
return _init_luxemulator(NN_dict, weight)
end
function _init_simplechainsemulator(NN_dict::Dict, weight)
architecture = _get_nn_simplechains(NN_dict)
nn_descript = Dict("emulator_description"=>_get_emulator_description_dict(NN_dict))
return SimpleChainsEmulator(Architecture = architecture, Weights = weight,
Description= nn_descript)
end
function init_emulator(NN_dict::Dict, weight, ::Type{SimpleChainsEmulator})
return _init_simplechainsemulator(NN_dict, weight)
end
| AbstractCosmologicalEmulators | https://github.com/CosmologicalEmulators/AbstractCosmologicalEmulators.jl.git |
|
[
"MIT"
] | 0.6.0 | 31aa360731ce7e75f3a6fc9159d8ab4948a92493 | code | 1217 | function maximin(input, minmax)
result = @views @. (input - minmax[:,1]) ./ (minmax[:,2] - minmax[:,1])
return result
end
function inv_maximin(input, minmax)
result = @views @. input * (minmax[:,2] - minmax[:,1]) + minmax[:,1]
return result
end
function get_emulator_description(input_dict::Dict)
if haskey(input_dict, "parameters")
println("The parameters the model has been trained are, in the following order: "*input_dict["parameters"]*".")
else
@warn "We do not know which parameters were included in the emulators training space. Use this trained emulator with caution!"
end
if haskey(input_dict, "author")
println("The emulator has been trained by "*input_dict["author"]*".")
end
if haskey(input_dict, "author_email")
println(input_dict["author"]*" email is "*input_dict["author_email"]*".")
end
if haskey(input_dict, "miscellanea")
println(input_dict["miscellanea"])
end
return nothing
end
function get_emulator_description(emu::AbstractTrainedEmulators)
try
get_emulator_description(emu.Description["emulator_description"])
catch
@warn "No emulator description present!"
end
end
| AbstractCosmologicalEmulators | https://github.com/CosmologicalEmulators/AbstractCosmologicalEmulators.jl.git |
|
[
"MIT"
] | 0.6.0 | 31aa360731ce7e75f3a6fc9159d8ab4948a92493 | code | 2883 | using AbstractCosmologicalEmulators
using JSON
using SimpleChains
using Test
using ForwardDiff
using Zygote
m = 100
n = 300
InMinMax = hcat(zeros(m), ones(m))
mlpd = SimpleChain(
static(6),
TurboDense(tanh, 64),
TurboDense(tanh, 64),
TurboDense(relu, 64),
TurboDense(tanh, 64),
TurboDense(tanh, 64),
TurboDense(identity, 40)
)
NN_dict = JSON.parsefile(pwd()*"/testNN.json")
weights = SimpleChains.init_params(mlpd)
sc_emu = SimpleChainsEmulator(Architecture = mlpd, Weights = weights,
Description = Dict("emulator_description"=>
NN_dict["emulator_description"]))
n = 1024
A = randn(n)
B = ones(n, 2)
B[:,1] .*= 0.
test_sum(A) = sum(abs2, maximin(A, B))
test_suminv(A) = sum(abs2, inv_maximin(A, B))
@testset "AbstractEmulators test" begin
x = rand(m)
y = rand(m, n)
X = deepcopy(x)
Y = deepcopy(y)
norm_x = maximin(x, InMinMax)
norm_y = maximin(y, InMinMax)
@test any(norm_x .>=0 .&& norm_x .<=1)
@test any(norm_y .>=0 .&& norm_y .<=1)
x = inv_maximin(norm_x, InMinMax)
y = inv_maximin(norm_y, InMinMax)
@test any(x .== X)
@test any(y .== Y)
input = randn(6)
stack_input = hcat(input, input)
@test isapprox(run_emulator(input, sc_emu), run_emulator(stack_input, sc_emu)[:,1])
@test AbstractCosmologicalEmulators._get_nn_simplechains(NN_dict) == mlpd
lux_emu = init_emulator(NN_dict, weights, LuxEmulator)
sc_emu_check = init_emulator(NN_dict, weights, SimpleChainsEmulator)
@test sc_emu_check.Architecture == sc_emu.Architecture
@test sc_emu_check.Weights == sc_emu.Weights
@test sc_emu_check.Description == sc_emu.Description
NN_dict["layers"]["layer_1"]["activation_function"]= "adremxud"
@test_throws ErrorException AbstractCosmologicalEmulators._get_nn_simplechains(NN_dict)
@test_throws ErrorException AbstractCosmologicalEmulators._get_nn_lux(NN_dict)
@test isapprox(run_emulator(input, sc_emu), run_emulator(input, lux_emu))
@test isapprox(run_emulator(input, lux_emu), run_emulator(stack_input, lux_emu)[:,1])
get_emulator_description(NN_dict["emulator_description"])
@test_logs (:warn, "We do not know which parameters were included in the emulators training space. Use this trained emulator with caution!") AbstractCosmologicalEmulators.get_emulator_description(Dict("pippo" => "franco"))
@test_logs (:warn, "No emulator description found!") AbstractCosmologicalEmulators._get_emulator_description_dict(Dict("pippo" => "franco"))
@test isapprox(run_emulator(input, sc_emu), run_emulator(input, lux_emu))
@test get_emulator_description(sc_emu) == get_emulator_description(NN_dict["emulator_description"])
@test ForwardDiff.gradient(test_sum, A) ≈ Zygote.gradient(test_sum, A)[1]
@test ForwardDiff.gradient(test_suminv, A) ≈ Zygote.gradient(test_suminv, A)[1]
end
| AbstractCosmologicalEmulators | https://github.com/CosmologicalEmulators/AbstractCosmologicalEmulators.jl.git |
|
[
"MIT"
] | 0.6.0 | 31aa360731ce7e75f3a6fc9159d8ab4948a92493 | docs | 2339 | # AbstractCosmologicalEmulators.jl
[](https://github.com/CosmologicalEmulators/AbstractCosmologicalEmulators.jl/actions)
[](https://codecov.io/gh/CosmologicalEmulators/AbstractCosmologicalEmulators.jl)

[](https://github.com/invenia/BlueStyle)
[](https://github.com/SciML/ColPrac)
`AbstractCosmologicalEmulators.jl` is the central `Julia` package within the the [CosmologicalEmulators](https://github.com/CosmologicalEmulators) Github organization, which defines methods and structs used by the other packages hosted by the organization.
In this moment the emulators here used are based only on the [`SimpleChains.jl`](https://github.com/PumasAI/SimpleChains.jl) library, whose performance is excellent on the CPU for the kind of small neural networks (NN) that we employ. We plan to include other frameworks, such as [`Lux.jl`](https://github.com/LuxDL/Lux.jl), in order to support models running on the GPU. If you want include a new NN/GP framework, feel free to open a PR or get in touch with us.
## Roadmap to v1.0.0
Step | Status| Comment
:------------ | :-------------| :-------------
Interface with `SimpleChains.jl` | :heavy_check_mark: | Implemented
Support for vectorization | :heavy_check_mark: | Implemented
Interface with `Lux.jl` | :heavy_check_mark: | Implemented
AD Rules | :heavy_check_mark: | Implemented
Robust emulators initialization | :heavy_check_mark: | Implemented, needs some polishing
GPU support | :construction: | Work in progress
Stable API | :construction: | Work in progress
## Authors
- [Marco Bonici](https://www.marcobonici.com), PostDoctoral Researcher at Waterloo Centre for Astrophysics
- [Marius Millea](https://cosmicmar.com), Researcher at UC Davis and Berkeley Center for Cosmological Physics
| AbstractCosmologicalEmulators | https://github.com/CosmologicalEmulators/AbstractCosmologicalEmulators.jl.git |
|
[
"MIT"
] | 1.1.4 | 218d61a78bc3f3dc01ea89ad75417566ac61f238 | code | 656 | using Documenter, CancerImagingArchive
makedocs(;
modules=[CancerImagingArchive],
format = Documenter.HTML(
prettyurls = get(ENV, "CI", nothing) == "true"
),
pages=[
"Introduction" => "index.md",
"Guide" => Any[
"Formats" => "guide/formats.md",
"Queries" => "guide/queries.md",
"Data Download" => "guide/downloading.md"
],
"Functions" => "functions.md"
],
repo="https://github.com/notZaki/CancerImagingArchive.jl/blob/{commit}{path}#L{line}",
sitename="CancerImagingArchive.jl"
)
deploydocs(;
repo="github.com/notZaki/CancerImagingArchive.jl",
)
| CancerImagingArchive | https://github.com/notZaki/CancerImagingArchive.jl.git |
|
[
"MIT"
] | 1.1.4 | 218d61a78bc3f3dc01ea89ad75417566ac61f238 | code | 8941 | module CancerImagingArchive
using HTTP, CSV, DataFrames, JSON
include("download_series.jl")
export download_series
export tcia_collections, tcia_modalities, tcia_bodyparts, tcia_manufacturers, tcia_studies, tcia_series, tcia_series_size
export tcia_patients, tcia_patients_by_modality, tcia_newpatients, tcia_newstudies, tcia_sop
export tcia_single_image, tcia_images
export dataframe_to_csv, dictionary_to_json
const _host = "services.cancerimagingarchive.net/services/v4/TCIA/query"
const _format = "csv"
const _q = Dict(
:collection => "Collection",
:bodypart => "BodyPartExamined",
:modality => "Modality",
:patient => "PatientID",
:study => "StudyInstanceUID",
:series => "SeriesInstanceUID",
:manufacturer => "Manufacturer",
:model => "ManufacturerModelName",
:date => "Date",
:sop => "SOPInstanceUID",
:format => "format"
)
"""
remove_empty!(dictionary::Dict)
Removes dictionary keys with empty values.
Used internally to remove empty queries.
"""
function remove_empty!(dictionary::Dict)
for (key, value) in dictionary
if isempty(value)
delete!(dictionary, key)
end
end
end
"""
tcia_collections(; format = "csv")
Provides names of all the collections on TCIA.
"""
function tcia_collections(; format = _format)
endpoint = "/getCollectionValues"
query = Dict(
_q[:format] => format
)
return request(endpoint, query)
end
"""
tcia_modalities(; collection, bodypart, format = "csv")
Returns the modalities used in a given `collection` and/or for a given `bodypart`.
"""
function tcia_modalities(; collection = "", bodypart = "", format = _format)
endpoint = "/getModalityValues"
query = Dict(
_q[:collection] => collection,
_q[:bodypart] => bodypart,
_q[:format] => format)
return request(endpoint, query)
end
"""
tcia_bodyparts(; collection, modality, format = "csv")
Returns the body parts examined in a given `collection` and/or by a given `modality`.
"""
function tcia_bodyparts(; collection = "", modality = "", format = _format)
endpoint = "/getBodyPartValues"
query = Dict(
_q[:collection] => collection,
_q[:modality] => uppercase(modality),
_q[:format] => format
)
return request(endpoint, query)
end
"""
tcia_manufacturers(; collection, modality, bodypart, format = "csv")
Returns the hardware manufacturers for a given `collection` and/or `modality` and/or `bodypart`.
"""
function tcia_manufacturers(; collection = "", modality = "", bodypart = "", format = _format)
endpoint = "/getManufacturerValues"
query = Dict(
_q[:collection] => collection,
_q[:bodypart] => bodypart,
_q[:modality] => modality,
_q[:format] => format
)
return request(endpoint, query)
end
"""
tcia_patients(; collection, format = "csv")
Returns the patients in a given `collection`.
"""
function tcia_patients(; collection = "", format = _format)
endpoint = "/getPatient"
query = Dict(
_q[:collection] => collection,
_q[:format] => format
)
return request(endpoint, query)
end
"""
tcia_patients(; collection, modality, format = "csv")
Returns the patients in a given `collection` and `modality` (both inputs required).
"""
function tcia_patients_by_modality(; collection::AbstractString, modality::AbstractString, format = _format)
endpoint = "/PatientsByModality"
query = Dict(
_q[:collection] => collection,
_q[:modality] => modality,
_q[:format] => format
)
return request(endpoint, query)
end
"""
tcia_studies(; collection, patient, study, format = "csv")
Returns the patient studies for a given `collection` and/or `patient` and/or `study`.
"""
function tcia_studies(; collection = "", patient = "", study = "", format = _format)
endpoint = "/getPatientStudy"
query = Dict(
_q[:collection] => collection,
_q[:patient] => patient,
_q[:study] => study,
_q[:format] => format
)
return request(endpoint, query)
end
"""
tcia_series(; collection, bodypart, manufacturer, modality, model, patient, series, study, format = "csv")
Returns series information for a given `collection`, `bodypart, `manufactuer`, `modality`,
manufacturer `model, `patient`, SeriesInstanceUID `series`, or StudyInstanceUID `study`.
"""
function tcia_series(; collection = "", bodypart = "", manufacturer = "", modality = "",
model = "", patient = "", series = "", study = "", format = _format)
endpoint = "/getSeries"
query = Dict(
_q[:collection] => collection,
_q[:bodypart] => bodypart,
_q[:manufacturer] => manufacturer,
_q[:modality] => modality,
_q[:model] => model,
_q[:patient] => patient,
_q[:series] => series,
_q[:study] => study,
_q[:format] => format
)
return request(endpoint, query)
end
"""
tcia_series_size(; series, format = "csv")
Returns the total byte size and the number of objects in the given SeriesInstanceUID `series`.
"""
function tcia_series_size(; series::AbstractString, format = _format)
endpoint = "/getSeriesSize"
query = Dict(
_q[:series] => series,
_q[:format] => format
)
return request(endpoint, query)
end
"""
tcia_sop(; series, format = "csv")
Returns the SOPInstanceUIDs for the given SeriesInstanceUID `series`.
"""
function tcia_sop(; series::AbstractString, format = _format)
endpoint = "/getSOPInstanceUIDs"
query = Dict(
_q[:series] => series,
_q[:format] => format
)
return request(endpoint, query)
end
"""
tcia_images(; series, file)
Downloads the images for the given SeriesInstanceUID `series` as the given zip-file `file`.
"""
function tcia_images(; series::AbstractString, file::AbstractString)
endpoint = "/getImage"
query = Dict(
_q[:series] => series,
)
return request(endpoint, query, file=file)
end
"""
tcia_single_image(; series, sop, file)
Downloads a single DICOM image for the given SeriesInstanceUID `series` and SOPInstanceUID `sop`.
The DICOM file is saved as `file`.
"""
function tcia_single_image(; series::AbstractString, sop::AbstractString, file::AbstractString)
endpoint = "/getSingleImage"
query = Dict(
_q[:series] => series,
_q[:sop] => sop
)
return request(endpoint, query, file = file)
end
function tcia_newpatients(; collection::AbstractString, date::AbstractString, format = _format)
endpoint = "/NewPatientsInCollection"
query = Dict(
_q[:collection] => collection,
_q[:date] => date,
_q[:format] => format
)
return request(endpoint, query)
end
"""
tcia_newstudies(; date, collection, patient, format = "csv")
Returns new studies for a given `collection` that were added after a given `date` formatted as `YYYY-MM-DD`.
The `patient` ID can be optionally given.
"""
function tcia_newstudies(; date::AbstractString, collection::AbstractString, patient = "", format = _format)
endpoint = "/NewStudiesInPatientCollection"
query = Dict(
_q[:collection] => collection,
_q[:date] => date,
_q[:patient] => patient,
_q[:format] => format
)
return request(endpoint, query)
end
function request(endpoint, query; file="", host = _host)
remove_empty!(query)
uri = HTTP.URI(scheme="https", host=host, path=endpoint, query=query)
@assert HTTP.isvalid(uri) "Invalid URI: $(uri)"
url = string(uri)
if has_format(query, "csv")
return _request_csv(url)
elseif has_format(query, "json")
return _request_json(url)
elseif !isempty(file)
return _request_image(url, file)
else
error("Not supported")
end
end
has_format(query, format) = haskey(query, "format") && query["format"]==format
function _request_csv(url)
r = HTTP.request("GET", url)
return DataFrame(CSV.File(r.body))
end
function _request_json(url)
r = HTTP.request("GET", url)
json = JSON.Parser.parse(String(r.body))
return filter(element -> !isempty(element), json)
end
function _request_image(url, file)
HTTP.open("GET", url) do http
open(file, "w") do out
write(out, http)
end
end
return file
end
"""
dataframe_to_csv(; dataframe, file)
Writes the information in a DataFrame object (`dataframe`) into a csv file (`file`).
"""
function dataframe_to_csv(; dataframe::DataFrame, file::AbstractString)
CSV.write(file, dataframe)
return
end
"""
dictionary_to_json(; dictionary, file)
Writes the information in a Dictionary Array (`dictionary`) into a json file (`file`).
"""
function dictionary_to_json(; dictionary, file::AbstractString)
open(file, "w") do io
JSON.print(io, dictionary, 4)
end
return
end
end # module
| CancerImagingArchive | https://github.com/notZaki/CancerImagingArchive.jl.git |
|
[
"MIT"
] | 1.1.4 | 218d61a78bc3f3dc01ea89ad75417566ac61f238 | code | 3245 | function _initialize_destination(destination, overwrite)
if overwrite
rm(destination; force = true, recursive = true)
end
if !isdir(destination)
mkpath(destination)
end
return destination
end
function _append_to_path(path, thing_to_append)
thing_to_append = replace(thing_to_append, r"[^0-9a-zA-Z]" => "")
return joinpath(path, thing_to_append)
end
"""
download_series(series_id::AbstractString, destination::AbstractString = "./", overwrite::Boolean = true)
Downloads images belonging to series with `series_id` and extracts them to `destination` folder.
If the destination folder already exists, then it will be overwritten by default unless `overwrite = false`.
"""
function download_series(series_id::AbstractString, destination = "./", overwrite = true)
_initialize_destination(destination, overwrite)
zip_file = joinpath(destination, "downloaded.zip")
tcia_images(series = series_id, file = zip_file)
unzip_command = `unzip -o $zip_file -d $destination`
run(unzip_command)
rm(zip_file)
return destination
end
"""
download_series(df::DataFrame, destination::AbstractString = "./"; append_desc::Boolean = true, overwrite::Boolean = true)
Downloads all images from the series in the dataframe `df` and then extracts them to `destination` folder.
The `df` can be obtained through the `tcia_series()` function.
By default, the series description will be appended to the path unless `append_desc = false`.
If the destination folder already exists, then it will be overwritten by default unless `overwrite = false`.
"""
function download_series(series_df::DataFrames.DataFrame, destination = "./"; append_desc = true, overwrite = true)
return [download_series(row, destination; append_desc=append_desc, overwrite=overwrite) for row in eachrow(series_df)]
end
function download_series(series::DataFrames.DataFrameRow, destination = "./"; append_desc = true, overwrite = true)
series_id = series.SeriesInstanceUID
if append_desc
destination = _append_to_path(destination, series.SeriesDescription)
end
return download_series(series_id, destination, overwrite)
end
"""
download_series(arr::Array, destination::AbstractString = "./"; append_desc::Boolean = true, overwrite::Boolean = true)
Downloads all images from the series in the array `arr` and then extracts them to `destination` folder.
The `arr` can be obtained through the `tcia_series(..., format = "json")` command.
By default, the series description will be appended to the path unless `append_desc = false`.
If the destination folder already exists, then it will be overwritten by default unless `overwrite = false`.
"""
function download_series(series_array::Array, destination = "./"; append_desc = true, overwrite = true)
return [download_series(series, destination; append_desc=append_desc, overwrite=overwrite) for series in series_array]
end
function download_series(series::Dict, destination = "./"; append_desc = true, overwrite = true)
series_id = series["SeriesInstanceUID"]
if append_desc
destination = _append_to_path(destination, series["SeriesDescription"])
end
return download_series(series_id, destination, overwrite)
end
| CancerImagingArchive | https://github.com/notZaki/CancerImagingArchive.jl.git |
|
[
"MIT"
] | 1.1.4 | 218d61a78bc3f3dc01ea89ad75417566ac61f238 | code | 8367 | using CancerImagingArchive, DataFrames
using Test
#######
# SETUP
#######
# Use global variable for filenames because we want to delete them if they already exist
zip_file = "test.zip"
dicom_file = "test.dcm"
csv_file = "test.csv"
json_file = "test.json"
for file in [zip_file, dicom_file, csv_file, json_file]
rm(file, force = true)
end
# Helper function for comparing CSV/DataFrames vs JSON/DictionaryArrays
function compare_csv_vs_json(csv, json; max_names = Inf)
names_in_csv = find_names_in_csv(csv)
names_in_json = find_names_in_json(json)
@test length(json) == length(csv[!, names_in_csv[1]])
@test length(names_in_json) == length(names_in_csv)
if length(names_in_json) > max_names
# Some cases have too many rows and they are not directly comparable because of types
names_in_json = names_in_json[1:max_names]
names_in_csv = names_in_csv[1:max_names]
end
for (idx, json_element) in enumerate(json)
for name in names_in_csv
if ismissing(csv[!, name][idx])
# Missing entries lead to this messy situation. Just check if both json/csv are empty/missing
@test isempty(json_element) || isempty(json_element[string(name)])
@test ismissing(csv[!, name][idx])
else
@test csv[!, name][idx] == json_element[string(name)]
end
end
end
return nothing
end
function find_names_in_csv(csv)
names_in_csv = names(csv)
# AnnotationsFlag field exists in csv but not json, so remove it for comparisons
filter!(name -> name != "AnnotationsFlag", names_in_csv)
return names_in_csv
end
function find_names_in_json(json_array)
# JSON names get ignored if the entry is missing so we can't just do collect(keys(json_array[1]))
found_names = []
num_names = 0
for json in json_array
cur_names = keys(json)
if length(cur_names) > num_names
found_names = collect(cur_names)
num_names = length(found_names)
end
end
return found_names
end
###############################################################################
@testset "Queries - Collection" begin
@test_throws ErrorException tcia_collections(format = "unknown")
collections_csv = tcia_collections()
collections_json = tcia_collections(format = "json")
@test length(collections_json) > 90
compare_csv_vs_json(collections_csv, collections_json)
end
@testset "Queries - Modalities" begin
@test length( tcia_modalities(collection = "TCGA-GBM", format = "json") ) > 2
@test length( tcia_modalities(bodypart = "BREAST", format = "json") ) > 5
compare_csv_vs_json(
tcia_modalities(collection = "TCGA-GBM", bodypart = "BRAIN"),
tcia_modalities(collection = "TCGA-GBM", bodypart = "BRAIN", format = "json"))
end
@testset "Queries - BodyParts" begin
@test "BRAIN" in tcia_bodyparts(modality = "MR").BodyPartExamined
compare_csv_vs_json(
tcia_bodyparts(collection = "CPTAC-HNSCC"),
tcia_bodyparts(collection = "CPTAC-HNSCC", format = "json"))
end
@testset "Queries - Manufacturers" begin
compare_csv_vs_json(
tcia_manufacturers(collection = "TCGA-KICH", modality = "MR"),
tcia_manufacturers(collection = "TCGA-KICH", modality = "MR", format = "json"))
compare_csv_vs_json(
tcia_manufacturers(bodypart = "BREAST"),
tcia_manufacturers(bodypart = "BREAST", format = "json"))
end
@testset "Queries - Patients" begin
compare_csv_vs_json(
tcia_patients(collection = "TCGA-THCA"),
tcia_patients(collection = "TCGA-THCA", format = "json"))
# Following criteria should only find one patient
found_patient = tcia_patients_by_modality(collection = "ACRIN-FLT-Breast", modality = "OT")
@test length(found_patient.PatientID) == 1
@test found_patient.PatientID[1] == "ACRIN-FLT-Breast_066"
# Following criteria should find at least two patients
new_gbm_patients = tcia_newpatients(collection = "TCGA-GBM", date = "2015-01-01", format = "json")
@test length(new_gbm_patients) > 1
end
@testset "Queries - Studies" begin
# The CSV version requires a few manual changes, so we do them first
studies_csv = tcia_studies(collection = "TCGA-SARC")
# 1. Convert the date to plain strings so that they can be compared with the json version
studies_csv.StudyDate = string.(studies_csv.StudyDate)
# 2. Remove the escape characters in the string. These occur in the study description
for (idx, description) in enumerate(studies_csv.StudyDescription)
studies_csv.StudyDescription[idx] = replace(description, "\\" => "")
end
compare_csv_vs_json(
studies_csv,
tcia_studies(collection = "TCGA-SARC", format = "json"))
# Following criteria should find at least three series
@test length(tcia_newstudies(collection="TCGA-GBM", date="2015-01-01", format="json")) > 2
end
@testset "Queries - Series" begin
compare_csv_vs_json(
tcia_series(collection = "TCGA-THCA"),
tcia_series(collection = "TCGA-THCA", format = "json"), max_names = 3)
compare_csv_vs_json(
tcia_series(study = "1.3.6.1.4.1.14519.5.2.1.3023.4024.298690116465423805879206377806"),
tcia_series(study = "1.3.6.1.4.1.14519.5.2.1.3023.4024.298690116465423805879206377806", format = "json"), max_names = 3)
compare_csv_vs_json(
tcia_series(bodypart = "CHEST", modality = "CT", manufacturer = "TOSHIBA"),
tcia_series(bodypart = "CHEST", modality = "CT", manufacturer = "TOSHIBA", format = "json"), max_names = 3)
# Can not use compare_csv_vs_json() on tcia_series_size() because TotalSizeInBytes has different types
dce_series_json = tcia_series_size(series = "1.3.6.1.4.1.14519.5.2.1.4591.4001.241972527061347495484079664948", format="json")[1]
@test dce_series_json["TotalSizeInBytes"] == "149149266.000000"
dce_series_csv = tcia_series_size(series = "1.3.6.1.4.1.14519.5.2.1.4591.4001.241972527061347495484079664948")
@test dce_series_csv.TotalSizeInBytes[1] ≈ 149149266
@test dce_series_csv.ObjectCount[1] == dce_series_json["ObjectCount"] == 1120
end
@testset "Queries - SOP" begin
compare_csv_vs_json(
tcia_sop(series = "1.3.6.1.4.1.14519.5.2.1.4591.4001.241972527061347495484079664948"),
tcia_sop(series = "1.3.6.1.4.1.14519.5.2.1.4591.4001.241972527061347495484079664948", format = "json"))
end
@testset "Data Download" begin
patient_studies = tcia_studies(collection = "TCGA-THCA")
chosen_study = patient_studies.StudyInstanceUID[1]
imaging_series = tcia_series(study = chosen_study)
chosen_series = imaging_series.SeriesInstanceUID[1]
series_sops = tcia_sop(series = chosen_series)
chosen_sop = series_sops.SOPInstanceUID[1]
tcia_images(series = chosen_series, file = zip_file)
@test isfile(zip_file)
@test filesize(zip_file) == 945849
tcia_single_image(series = chosen_series, sop = chosen_sop, file = dicom_file)
@test isfile(dicom_file)
@test filesize(dicom_file) == 980794
end
@testset "Download series" begin
series = tcia_series(collection = "AAPM-RT-MAC", patient = "RTMAC-LIVE-001")
seriesjs = tcia_series(collection = "AAPM-RT-MAC", patient = "RTMAC-LIVE-001", format="json")
download_series(series, "./testdf")
download_series(seriesjs, "./testjs")
download_series(series, "./testdf"; overwrite = false)
end
@testset "Utilities - remove_empty!()" begin
dict_potentialy_empty_values = Dict(1 => "", 2 => "hello", 3 => "b", 4 => "", 5 => "ye")
CancerImagingArchive.remove_empty!(dict_potentialy_empty_values)
nonempty_keys = []
for (key, value) in dict_potentialy_empty_values
@test !isempty(value)
push!(nonempty_keys, key)
end
@test sort(nonempty_keys) == [2, 3, 5]
end
@testset "Utilities - Data writer" begin
tabular_data = tcia_collections()
dataframe_to_csv(dataframe = tabular_data, file = csv_file)
@test isfile(csv_file)
println("Size of csv file: $(filesize(csv_file))")
@test filesize(csv_file) >= 1346
dict_array = tcia_collections(format = "json")
dictionary_to_json(dictionary = dict_array, file = json_file)
@test isfile(json_file)
println("Size of json file: $(filesize(json_file))")
@test filesize(json_file) >= 4816
end
| CancerImagingArchive | https://github.com/notZaki/CancerImagingArchive.jl.git |
|
[
"MIT"
] | 1.1.4 | 218d61a78bc3f3dc01ea89ad75417566ac61f238 | docs | 2127 | <a href="#"><img src="./docs/src/assets/logo.svg" width="350" height="200"></img></a>
# CancerImagingArchive.jl
[](https://notZaki.github.io/CancerImagingArchive.jl/stable)
[](https://notZaki.github.io/CancerImagingArchive.jl/dev)
[](https://github.com/notZaki/CancerImagingArchive.jl/actions)
[](https://codecov.io/gh/notZaki/CancerImagingArchive.jl)
A Julia interface for [The Cancer Imaging Archive (TCIA) REST-API](https://wiki.cancerimagingarchive.net/display/Public/TCIA+Programmatic+Interface+%28REST+API%29+Usage+Guide)
## Installation
The package can be installed by
```julia
julia> ]add CancerImagingArchive
```
## Usage
The [documentation pages](https://notZaki.github.io/CancerImagingArchive.jl/stable) provide details/examples of how to use the package.
## Notes
This is **not** an official project of The Cancer Imaging Archive. If any problems are experienced with this package, then please open a [new issue here](https://github.com/notZaki/CancerImagingArchive.jl/issues).
Please follow the [Data Usage Policies and Restrictions](https://wiki.cancerimagingarchive.net/display/Public/Data+Usage+Policies+and+Restrictions) outlined in the TCIA wiki.
If this package is helpful, then great! There is no need to cite the package itself.
However, any manuscript produced using data from TCIA should cite:
1. TCIA [[link]](https://www.ncbi.nlm.nih.gov/pubmed/23884657)
```
Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. Journal of Digital Imaging. 2013; 26(6): 1045-1057. doi: 10.1007/s10278-013-9622-7.
```
2. All citations specific to the datasets that were used. These details are mentioned on the [TCIA wiki](https://wiki.cancerimagingarchive.net/display/Public/Data+Usage+Policies+and+Restrictions).
| CancerImagingArchive | https://github.com/notZaki/CancerImagingArchive.jl.git |
|
[
"MIT"
] | 1.1.4 | 218d61a78bc3f3dc01ea89ad75417566ac61f238 | docs | 451 | # Functions
This page briefly describes the functions exported by the package.
The function names in this module are in lowercase letters and sometimes underscores are used for longer function names.
Most functions require keyword arguments, i.e. `tcia_bodyparts(collection = collection_name)` will work but `tcia_bodyparts(collection_name)` will not.
## Index
```@index
```
## Public functions
```@autodocs
Modules = [CancerImagingArchive]
```
| CancerImagingArchive | https://github.com/notZaki/CancerImagingArchive.jl.git |
|
[
"MIT"
] | 1.1.4 | 218d61a78bc3f3dc01ea89ad75417566ac61f238 | docs | 652 | ## Introduction
The `CancerImagingArchive.jl` module provides a Julia interface for exploring and downloading imaging data from [The Cancer Imaging Archive (TCIA)](https://www.cancerimagingarchive.net/) via their [REST API](https://wiki.cancerimagingarchive.net/display/Public/TCIA+Programmatic+Interface+%28REST+API%29+Usage+Guide).
## Installation
This module can be installed by:
```julia
julia> ]add CancerImagingArchive
```
Once installed, the package can be loaded via
```julia
julia> using CancerImagingArchive
```
## Usage
The module contains about a dozen [Functions](@ref) and a guide with some examples is included in the next section.
| CancerImagingArchive | https://github.com/notZaki/CancerImagingArchive.jl.git |
|
[
"MIT"
] | 1.1.4 | 218d61a78bc3f3dc01ea89ad75417566ac61f238 | docs | 2688 | ```@setup ex
using CancerImagingArchive
```
# Data Download
Imaging data can be downloaded either as a `.zip` file containing an imaging series or as a DICOM `.dcm` file containing a single acquisition within an imaging series.
## Imaging series
### Selecting the imaging series
The SeriesInstanceUID is needed to download an imaging series. The below example selects one series from the [TCGA-THCA collection](https://wiki.cancerimagingarchive.net/display/Public/TCGA-THCA).
```@repl ex
patient_studies = tcia_studies(collection = "TCGA-THCA")
chosen_study = patient_studies.StudyInstanceUID[1]
imaging_series = tcia_series(study = chosen_study)
chosen_series = imaging_series.SeriesInstanceUID[1]
```
### Downloading the imaging series
Once the SeriesInstanceUID is known, the imaging data can be downloaded as a zip file by:
```@repl ex
zip_file = "output_file.zip"; # Can also be a path
tcia_images(series = chosen_series, file = zip_file)
```
### Convenience wrapper
The above steps will only download a zip file which then has to be extracted.
This can be cumbersome when downloading multipled series, so the `download_series()` function is provided for convenience.
!!! note
The `download_series()` assumes that the `unzip` utility is installed on the system. This can be verified by typing `unzip` in a terminal or `;unzip` in julia.
```
**Downloading a single series**
The following will download and extract the `chosen_series` (selected above) and extract the images in the current directory `./`.
```julia
julia> download_series(chosen_series, "./")
```
**Downloading multiple series**
The wrapper function can download multiple series from a Dataframe by
```julia
julia> series = tcia_series(collection = "AAPM-RT-MAC", patient = "RTMAC-LIVE-001")
julia> download_series(series, "./testdf")
```
or from an array of dictionaries by
```julia
julia> seriesjs = tcia_series(collection = "AAPM-RT-MAC", patient = "RTMAC-LIVE-001", format="json")
julia> download_series(seriesjs, "./testjs")
```
## Single image
### Selecting the single image
To download a single image, both its SeriesInstanceUID and SOPInstanceUID must be known.
Continuing from the previous example, if we only wanted to download the first image in `chosen_series`, then:
```@repl ex
series_sops = tcia_sop(series = chosen_series)
chosen_sop = series_sops.SOPInstanceUID[1]
```
### Downloading the single image
Once the SeriesInstanceUID and SOPInstanceUID are known, the dicom file can be downloaded by:
```@repl ex
dicom_file = "output_file.dcm";
tcia_single_image(series = chosen_series, sop = chosen_sop, file = dicom_file)
```
```@setup ex
rm(zip_file)
rm(dicom_file)
```
| CancerImagingArchive | https://github.com/notZaki/CancerImagingArchive.jl.git |
|
[
"MIT"
] | 1.1.4 | 218d61a78bc3f3dc01ea89ad75417566ac61f238 | docs | 3749 | ```@setup ex
using CancerImagingArchive
```
# Formats
Most functions in this module return either a DataFrame (default) or a Dictionary Array.
Both formats have their respective advantages and disadvantages.
## DataFrames/CSV
DataFrames display the results in a table and this is the default behaviour.
The table is useful for visually analysing the results.
For example, the studies in the [TCGA-SARC collection](https://wiki.cancerimagingarchive.net/display/Public/TCGA-SARC) can be obtained by:
```@example ex
studies_df = tcia_studies(collection = "TCGA-SARC")
```
### Manipulating the DataFrame object
The table can be manipulated using tools from the [DataFrames.jl](https://juliadata.github.io/DataFrames.jl/stable/) and [CSV.jl](https://juliadata.github.io/CSV.jl/stable/) packages.
Individual columns in a DataFrame object---suppose it is named `data_frame`---can be accessed by `data_frame.column_name` where the available column names are in `names(data_frame)`.
```@repl ex
names(studies_df)
studies_df.StudyDate
```
The table can also be filtered and sorted. As an example, the following lines will sort the previous table by the number of series and then remove the `StudyInstanceUID` and `PatientName` columns:
```@example ex
using DataFrames
studies_sorted_by_count = sort(studies_df, :SeriesCount)
select!(studies_sorted_by_count, Not([:StudyInstanceUID, :PatientName]))
```
### Saving DataFrame as CSV
The contents of the table can be written to a csv file by:
```@repl ex
dataframe_to_csv(dataframe = studies_df, file = "output_file.csv")
```
## DictionaryArray/JSON
Instead of a table, an array of dictionaries can be obtained by passing `format = "json"` as an argument when calling the query function.
For example, the DataFrame from the previous example could have been obtained as an array by:
```@example ex
studies_array = tcia_studies(collection = "TCGA-SARC", format = "json")
```
### Manipulating the Dictionary Array
The array can be manipulated by iterating over the elements. As an example, the following lines will collect patients that are less than 60 years old:
```@example ex
patients_below_60Y = []
for patient in studies_array
if patient["PatientAge"] < "060Y"
push!(patients_below_60Y, patient)
end
end
# Print the new array:
patients_below_60Y
```
The available keys for each dictionary in the array are listed by:
```@repl ex
keys(studies_array[1])
```
### Saving Dictionary Array as JSON
The array can be written to a JSON file by
```@repl ex
dictionary_to_json(dictionary = studies_array, file = "output_file.json")
```
```@setup ex
rm("output_file.csv")
rm("output_file.json")
```
## Note on types
The DataFrames object tries to figure out the types from the input while the DictionaryArray just accepts whatever the API returns.
For a practical example of this, suppose we want to know the size of an imaging series; the DataFrame version will be
```@example ex
tcia_series_size(series = "1.3.6.1.4.1.14519.5.2.1.4591.4001.241972527061347495484079664948")
```
while the JSON version will be
```@repl ex
tcia_series_size(series = "1.3.6.1.4.1.14519.5.2.1.4591.4001.241972527061347495484079664948", format="json")[1]
```
The difference between the two is that the DataFrames version recognizes that `TotalSizeInBytes` is a number whereas the DictionaryArray displays it as a string (because the API returns it as a string).
DataFrames' ability to recognize types is usually helpful, but sometimes it can fail.
For example, in an anonymized dataset where patient names are replaced by numbers, the DataFrames object will incorrectly treat the names as numbers.
These differences are unlikely to cause problems in practice so it isn't something to be actively concerned about.
| CancerImagingArchive | https://github.com/notZaki/CancerImagingArchive.jl.git |
|
[
"MIT"
] | 1.1.4 | 218d61a78bc3f3dc01ea89ad75417566ac61f238 | docs | 6184 | ```@setup ex
using CancerImagingArchive
```
# Queries
Queries are useful for exploring the available imaging data.
The general hierarchy of the cancer imaging archive (TCIA) is:
```
Collection -> PatientID -> StudyInstanceUID -> SeriesInstanceUID -> SOPInstanceUID
```
To download images, the `SeriesInstanceUID` and/or `SOPInstanceUID` must be known.
The query functions are meant to help identify the relevant unique identifiers (UIDs)
Detailed information is available in the TCIA's user guide which includes a [list of available query endpoints](https://wiki.cancerimagingarchive.net/display/Public/TCIA+Programmatic+Interface+%28REST+API%29+Usage+Guide) and the [type of information returned](https://wiki.cancerimagingarchive.net/display/Public/TCIA+API+Return+Values) by each query.
!!! note
As mentioned in the [Formats](@ref) section, each query returns either a DataFrame or a Dictionary Array. The current section will exclusively use the DataFrame output. That being said, a dictionary array can always be obtained by any of these functions by passing `format = "json"` as an input argument.
## All collections
The names of all available collections on TCIA is obtained by:
```@repl ex
tcia_collections()
```
## Imaging modalities
The imaging modalities in a specific collection and/or anatomy are listed by:
```@repl ex
tcia_modalities(collection = "TCGA-KIRP")
tcia_modalities(bodypart = "BRAIN")
tcia_modalities(collection = "CPTAC-HNSCC", bodypart = "HEAD")
```
!!! note
Capitalization matters when passing in arguments, i.e. `bodypart = "BRAIN"` works but passing `bodypart = "brain"` will return an empty object. However, there are some cases where different versions are valid. As an example, passing `bodypart = Kidney` or `bodypart = "KIDNEY"` will both return valid (but different!) results. So although fully-capitalized body part names will work most of the time, do double-check if alternative spellings exist when using the `bodypart` argument (see next section for names)
## Anatomy/body parts
The anatomy scanned in a specific collection and/or modality are listed by:
```@repl ex
tcia_bodyparts(collection = "CPTAC-HNSCC")
tcia_bodyparts(modality = "CT")
tcia_bodyparts(collection = "CPTAC-SAR", modality = "MR")
tcia_bodyparts(collection = "CPTAC-SAR", modality = "CT")
```
## Manufacturers
A list of scanner manufacturers for a specific collection/modality/anatomy is obtained by
```@repl ex
tcia_manufacturers(collection = "TCGA-KICH")
tcia_manufacturers(modality = "CT")
tcia_manufacturers(bodypart = "BREAST")
```
The same manufacturer can have different names, e.g. `Philips`/`Philips Medical Systems` and `SIEMENS`/`Siemens`.
## Patients
The patients in a given collection are listed by:
```@repl ex
tcia_patients(collection = "TCGA-SARC")
```
### Patients for specific modality
To get a patients for which a specific modality was used, a slightly different function is used:
```@repl ex
tcia_patients_by_modality(collection = "TCGA-SARC", modality = "CT")
tcia_patients_by_modality(collection = "TCGA-SARC", modality = "MR")
```
!!! note
Although the functionality of `tcia_patients_by_modality()` could be combined into the `tcia_patients()` function, they use a different query endpoint so the two functions were given different names to keep that difference explicit.
### Patients added after specific date
In large collections, it can be useful to query patients that were added after a date specified as YYYY-MM-DD.
This is accomplished by:
```@repl ex
tcia_newpatients(collection = "TCGA-GBM", date = "2015-01-01")
```
## Patient studies
A list of visits/studies for a given collection/patient is obtained by:
```@repl ex
tcia_studies(collection = "TCGA-THCA")
tcia_studies(patient = "TCGA-QQ-A8VF")
```
If the unique identifier (UID) for a study is known (a.k.a. StudyInstanceUID), then that can also be used
```@repl ex
tcia_studies(study = "1.3.6.1.4.1.14519.5.2.1.3023.4024.298690116465423805879206377806")
```
### Patient studies added after specific data
A list of visits/studies that were added after some date, formatted by YYYY-MM-DD, can be obtained by:
```@repl ex
tcia_newstudies(collection="TCGA-GBM", date="2015-01-01")
```
## Imaging series
Each patient study consists of one or more imaging series which can be obtained by:
```@repl ex
tcia_series(collection = "TCGA-THCA")
tcia_series(patient = "TCGA-QQ-A8VF")
tcia_series(study = "1.3.6.1.4.1.14519.5.2.1.3023.4024.298690116465423805879206377806")
tcia_series(modality = "CT", manufacturer = "TOSHIBA")
tcia_series(bodypart = "EXTREMITY")
```
This query's importance is hinted by the smorgasbord of parameters it accepts.
That's because this query returns the `SeriesInstanceUID` which is needed to download images.
Although the above examples only show `PatientID`, the query actually returns more information which is not shown because of limited screen space.
The complete list of columns are:
```@repl ex
series_dataframe = tcia_series(patient = "TCGA-QQ-A8VF");
names(series_dataframe)
```
!!! note
The entire table could have been printed by:
```julia
show(series_dataframe, allrows = true, allcols = true)
```
!!! warning
Passing `format = "json"` will result in one fewer column. This is because the `AnnotationsFlag` field is returned for CSV output but not for JSON.
### Imaging series size
The size (in bytes) and number of images for a given imaging series is given by
```@repl ex
tcia_series_size(series = "1.3.6.1.4.1.14519.5.2.1.4591.4001.241972527061347495484079664948")
```
!!! warning
It is recommended that `tcia_series_size()` should **not** be used with `format = json`. This is because the json version interprets the `TotalSizeInBytes` as string/text rather than a number.
## Service-Object Pairs (SOP)
Each imaging series consists of one or more images, each of which have a service-object-pair unique identifier (SOPInstanceUID).
These can be listed by
```@repl ex
tcia_sop(series = "1.3.6.1.4.1.14519.5.2.1.4591.4001.241972527061347495484079664948")
```
These identifiers are useful for accessing a specific image without having to download the entire imaging series.
| CancerImagingArchive | https://github.com/notZaki/CancerImagingArchive.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 292 |
using Documenter
import BusinessDays
makedocs(
sitename = "BusinessDays.jl",
modules = [ BusinessDays ],
pages = [ "Home" => "index.md",
"API Reference" => "api.md" ]
)
deploydocs(
repo = "github.com/JuliaFinance/BusinessDays.jl.git",
target = "build",
)
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 785 |
"""
A highly optimized Business Days calculator written in Julia language. Also known as Working Days calculator.
Website: https://github.com/JuliaFinance/BusinessDays.jl
"""
module BusinessDays
import Dates
# exported types
export
HolidayCalendar,
CompositeHolidayCalendar,
GenericHolidayCalendar
# exported functions
export
isholiday,
isweekday,
isweekend,
isbday,
tobday,
advancebdays,
bdayscount,
bdays,
firstbdayofmonth,
lastbdayofmonth,
listholidays,
listbdays
include("dateutils.jl")
include("holidaycalendar.jl")
include("bdayscache.jl")
include("bdays.jl")
include("bdaysvecfun.jl")
include("composite.jl")
include("query.jl")
include("calendars/calendars.jl")
include("generic.jl")
end # module BusinessDays
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 5213 |
"""
isweekend(dt) :: Bool
Returns `true` for Saturdays or Sundays.
Returns `false` otherwise.
"""
@inline isweekend(dt::Dates.Date) :: Bool = signbit(5 - Dates.dayofweek(dt))
"""
isweekday(dt) :: Bool
Returns `true` for Monday to Friday.
Returns `false` otherwise.
"""
@inline isweekday(dt::Dates.Date) :: Bool = signbit(Dates.dayofweek(dt) - 6)
"""
isbday(calendar, dt) :: Bool
Returns `false` for weekends or holidays.
Returns `true` otherwise.
"""
function isbday(hc::HolidayCalendar, dt::Dates.Date) :: Bool
if _getcachestate(hc)
return isbday(_getholidaycalendarcache(hc), dt)
else
return !(isweekend(dt) || isholiday(hc, dt))
end
end
@inline isbday(calendar, dt) :: Bool = isbday(convert(HolidayCalendar, calendar), dt)
"""
tobday(calendar, dt; [forward=true]) :: Dates.Date
Adjusts `dt` to next Business Day if it's not a Business Day.
If `isbday(dt)`, returns `dt`.
"""
function tobday(hc::HolidayCalendar, dt::Dates.Date; forward::Bool = true) :: Dates.Date
if isbday(hc, dt)
return dt
else
increment = forward ? 1 : -1
next_date = dt + Dates.Day(increment)
while !isbday(hc, next_date)
next_date += Dates.Day(increment)
end
end
return next_date
end
tobday(calendar, dt; forward::Bool = true) = tobday(convert(HolidayCalendar, calendar), dt; forward=forward)
"""
advancebdays(calendar, dt, bdays_count) :: Dates.Date
Increments given date `dt` by `bdays_count`.
Decrements it if `bdays_count` is negative.
`bdays_count` can be a `Int`, `Dates.Day`, `Vector{Int}`, `Vector{Dates.Day}` or a `UnitRange`.
Computation starts by next Business Day if `dt` is not a Business Day.
"""
function advancebdays(hc::HolidayCalendar, dt::Dates.Date, bdays_count::Int) :: Dates.Date
result = tobday(hc, dt)
# does nothing
if bdays_count == 0
return result
end
# if bdays_count is positive, goes forward. Otherwise, goes backwards.
increment = bdays_count > 0 ? +1 : -1
num_iterations = abs(bdays_count)
while num_iterations > 0
result += Dates.Day(increment)
# Looks for previous / next Business Day
while !isbday(hc, result)
result += Dates.Day(increment)
end
num_iterations += -1
end
return result
end
advancebdays(hc::HolidayCalendar, dt::Dates.Date, bdays_count::Dates.Day) = advancebdays(hc, dt, Dates.value(bdays_count))
const BDaysCountType = Union{Int, Dates.Day}
function advancebdays(calendar, dt, bdays_count::Union{T, Vector{T}, AbstractRange}) where {T<:BDaysCountType}
advancebdays(convert(HolidayCalendar, calendar), convert(Dates.Date, dt), bdays_count)
end
"""
bdayscount(calendar, dt0, dt1) :: Int
Counts the number of Business Days between `dt0` and `dt1`.
Returns `Int`.
Computation is always based on next Business Day if given dates are not Business Days.
"""
function bdayscount(hc::HolidayCalendar, dt0::Dates.Date, dt1::Dates.Date) :: Int
if _getcachestate(hc)
return bdayscount(_getholidaycalendarcache(hc), dt0, dt1)
else
dt0 = tobday(hc, dt0)
dt1 = tobday(hc, dt1)
inc = dt0 <= dt1 ? +1 : -1
result = 0
while dt0 != dt1
dt0 = advancebdays(hc, dt0, inc)
result += inc
end
return result
end
end
bdayscount(calendar, dt0::Dates.Date, dt1::T) where {T<:Union{Dates.Date, Vector{Dates.Date}}} = bdayscount(convert(HolidayCalendar, calendar), dt0, dt1)
bdayscount(calendar, dt0::Vector{Dates.Date}, dt1::Vector{Dates.Date}) = bdayscount(convert(HolidayCalendar, calendar), dt0, dt1)
"""
bdays(calendar, dt0, dt1) :: Dates.Day
Counts the number of Business Days between `dt0` and `dt1`.
Returns instances of `Dates.Day`.
Computation is always based on next Business Day if given dates are not Business Days.
"""
bdays(hc::HolidayCalendar, dt0::Dates.Date, dt1::Dates.Date) = Dates.Day(bdayscount(hc, dt0, dt1))
bdays(calendar, dt0::Dates.Date, dt1::T) where {T<:Union{Dates.Date, Vector{Dates.Date}}} = bdays(convert(HolidayCalendar, calendar), dt0, dt1)
bdays(calendar, dt0::Vector{Dates.Date}, dt1::Vector{Dates.Date}) = bdays(convert(HolidayCalendar, calendar), dt0, dt1)
"""
firstbdayofmonth(calendar, dt) :: Dates.Date
firstbdayofmonth(calendar, yy, mm) :: Dates.Date
Returns the first business day of month.
"""
firstbdayofmonth(calendar, dt::Dates.Date) = tobday(calendar, Dates.firstdayofmonth(dt))
"""
lastbdayofmonth(calendar, dt) :: Dates.Date
lastbdayofmonth(calendar, yy, mm) :: Dates.Date
Returns the last business day of month.
"""
lastbdayofmonth(calendar, dt::Dates.Date) = tobday(calendar, Dates.lastdayofmonth(dt), forward=false)
firstbdayofmonth(calendar, yy::T, mm::T) where {T<:Integer} = firstbdayofmonth(calendar, Dates.Date(yy, mm, 1))
firstbdayofmonth(calendar, yy::Dates.Year, mm::Dates.Month) = firstbdayofmonth(calendar, Dates.Date(yy, mm, Dates.Day(1)))
lastbdayofmonth(calendar, yy::T, mm::T) where {T<:Integer} = lastbdayofmonth(calendar, Dates.Date(yy, mm, 1))
lastbdayofmonth(calendar, yy::Dates.Year, mm::Dates.Month) = lastbdayofmonth(calendar, Dates.Date(yy, mm, Dates.Day(1)))
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 6595 |
#
# Cache routines for Business Days precalculated days
#
"""
Data structure for calendar cache.
"""
mutable struct HolidayCalendarCache
hc::HolidayCalendar
isbday_array::Vector{Bool}
bdayscounter_array::Vector{UInt32}
dtmin::Dates.Date
dtmax::Dates.Date
is_initialized::Bool # indicated wether isbday_array and bdayscounter_array is empty for this cache
end
"""
HolidayCalendarCache()
creates an empty instance of HolidayCalendarCache
"""
HolidayCalendarCache() = HolidayCalendarCache(NullHolidayCalendar(), Vector{Bool}(), Vector{UInt32}(), Dates.Date(1900,1,1), Dates.Date(1900,1,1), false)
"""
Holds caches for Holiday Calendars.
* Key = `HolidayCalendar` instance
* Value = instance of `HolidayCalendarCache`
"""
const CACHE_DICT = Dict{HolidayCalendar, HolidayCalendarCache}()
const DEFAULT_CACHE_D0 = Dates.Date(1980, 01, 01)
const DEFAULT_CACHE_D1 = Dates.Date(2150, 12, 20)
@inline _getcachestate(hcc::HolidayCalendarCache) = hcc.is_initialized
@inline _getcachestate(hc::HolidayCalendar) = haskey(CACHE_DICT, hc) && _getcachestate(CACHE_DICT[hc])
@inline _getholidaycalendarcache(hc::HolidayCalendar) = CACHE_DICT[hc]
@inline checkbounds(hcc::HolidayCalendarCache, dt::Dates.Date) = @assert (hcc.dtmin <= dt) && (dt <= hcc.dtmax) "Date out of cache bounds. Use initcache function with a wider time spread. Provided date: $(dt)."
@inline _linenumber(hcc::HolidayCalendarCache, dt::Dates.Date) = Dates.days(dt) - Dates.days(hcc.dtmin) + 1
@inline function isbday(hcc::HolidayCalendarCache, dt::Dates.Date) :: Bool
checkbounds(hcc, dt)
return hcc.isbday_array[ _linenumber(hcc, dt) ]
end
function bdayscount(hcc::HolidayCalendarCache, dt0::Dates.Date, dt1::Dates.Date) :: Int
# Computation is always based on next Business Days if given dates are not Business Days, inspired by Banking Account convention.
dt0_tobday = tobday(hcc.hc, dt0) # cache bounds are checked inside tobday -> isbday
dt1_tobday = tobday(hcc.hc, dt1) # cache bounds are checked inside tobday -> isbday
return Int(hcc.bdayscounter_array[_linenumber(hcc, dt1_tobday)]) - Int(hcc.bdayscounter_array[_linenumber(hcc, dt0_tobday)])
end
@inline bdays(hcc::HolidayCalendarCache, dt0::Dates.Date, dt1::Dates.Date) :: Dates.Day = Dates.Day(bdayscount(hcc, dt0, dt1))
# Returns tuple
# tuple[1] = Array of Bool (isBday) , tuple[2] = Array of UInt32 (bdaycounter)
function _create_bdays_cache_arrays(hc::HolidayCalendar, d0::Dates.Date, d1::Dates.Date)
d0_rata = Dates.days(d0)
d1_rata = Dates.days(d1)
# length of the cache arrays
len::Int = d1_rata - d0_rata + 1
# This function uses UInt32 to store bdayscounter array
# We need to check if we'll exceed typemax(UInt32)
@assert len <= typemax(UInt32) "Maximum size allowed for bdays cache array is $(typemax(UInt32)). The required lenght was $(len)."
isbday_array = Vector{Bool}(undef, len)
bdayscounter_array = Vector{UInt32}(undef, len)
@inbounds isbday_array[1] = isbday(hc, d0)
@inbounds bdayscounter_array[1] = 0
for i in 2:len
@inbounds isbday_array[i] = isbday(hc, d0 + Dates.Day(i-1))
@inbounds bdayscounter_array[i] = bdayscounter_array[i-1] + isbday_array[i]
end
return isbday_array, bdayscounter_array
end
@inline needs_cache_update(cache::HolidayCalendarCache, d0::Dates.Date, d1::Dates.Date) :: Bool = _getcachestate(cache) && cache.dtmin == d0 && cache.dtmax == d1
@inline needs_cache_update(hc::HolidayCalendar, d0::Dates.Date, d1::Dates.Date) :: Bool = _getcachestate(hc) && CACHE_DICT[hc].dtmin == d0 && CACHE_DICT[hc].dtmax == d1
# Be sure to use this function on a syncronized code (not multithreaded).
"""
initcache(calendar, [d0], [d1])
Creates cache for a given Holiday Calendar. After calling this function, any call to `isbday`
function, or any function that uses `isbday`, will be optimized to use this cache.
You can pass `calendar` as an instance of `HolidayCalendar`, `Symbol` or `AbstractString`.
You can also pass `calendar` as an `AbstractArray` of those types.
"""
function initcache(hc::HolidayCalendar, d0::Dates.Date=DEFAULT_CACHE_D0, d1::Dates.Date=DEFAULT_CACHE_D1)
@assert d0 <= d1 "d1 < d0 not allowed."
if needs_cache_update(hc, d0, d1)
# will not repeat initcache for this already initialized cache
return
else
isbday_array , bdayscounter_array = _create_bdays_cache_arrays(hc, d0, d1)
CACHE_DICT[hc] = HolidayCalendarCache(hc, isbday_array, bdayscounter_array, d0, d1, true)
end
nothing
end
function initcache(hc_vec::Vector{HolidayCalendar}, d0::Dates.Date=DEFAULT_CACHE_D0, d1::Dates.Date=DEFAULT_CACHE_D1)
for hc in hc_vec
initcache(hc, d0, d1)
end
end
initcache(calendars::A, d0::Dates.Date=DEFAULT_CACHE_D0, d1::Dates.Date=DEFAULT_CACHE_D1) where {A<:AbstractArray} = initcache(convert(Vector{HolidayCalendar}, calendars), d0, d1)
initcache(calendar, d0::Dates.Date=DEFAULT_CACHE_D0, d1::Dates.Date=DEFAULT_CACHE_D1) = initcache(convert(HolidayCalendar, calendar), d0, d1)
function initcache!(cache::HolidayCalendarCache, hc::HolidayCalendar, d0::Dates.Date=DEFAULT_CACHE_D0, d1::Dates.Date=DEFAULT_CACHE_D1)
if needs_cache_update(cache, d0, d1)
# will not repeat initcache for this already initialized cache
return
else
cache.dtmin = d0
cache.dtmax = d1
isbday_array , bdayscounter_array = _create_bdays_cache_arrays(hc, d0, d1)
cache.isbday_array = isbday_array
cache.bdayscounter_array = bdayscounter_array
cache.is_initialized = true
end
nothing
end
function cleancache!(cache::HolidayCalendarCache)
if cache.is_initialized
empty!(cache.isbday_array)
empty!(cache.bdayscounter_array)
cache.is_initialized = false
end
nothing
end
# remove all elements from cache
function cleancache()
for k in keys(CACHE_DICT)
delete!(CACHE_DICT, k)
end
nothing
end
"""
cleancache([calendar])
Cleans cache for a given instance or list of `HolidayCalendar`, `Symbol` or `AbstractString`.
"""
function cleancache(hc::HolidayCalendar)
if haskey(CACHE_DICT, hc)
delete!(CACHE_DICT, hc)
end
nothing
end
function cleancache(hc_vec::Vector{HolidayCalendar})
for k in hc_vec
if k in keys(CACHE_DICT)
delete!(CACHE_DICT, k)
end
end
nothing
end
cleancache(calendar) = cleancache(convert(HolidayCalendar, calendar))
cleancache(calendars::A) where {A<:AbstractArray} = cleancache(convert(Vector{HolidayCalendar}, calendars))
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 4841 |
# helper functions for vector inputs
@inline isweekend(dt::Vector{Dates.Date}) = isweekend.(dt)
function isbday(hc::HolidayCalendar, dt::Vector{Dates.Date})
result = Vector{Bool}(undef, length(dt))
for i in eachindex(dt)
@inbounds result[i] = isbday(hc, dt[i])
end
return result
end
function isbday(hc::Vector{HolidayCalendar}, dt::Vector{Dates.Date})
l_hc = length(hc)
l_dt = length(dt)
@assert l_hc == l_dt "Input vectors must have the same size. $(l_hc) != $(l_dt)"
result = Vector{Bool}(undef, length(dt))
for i in 1:l_hc
@inbounds result[i] = isbday(hc[i], dt[i])
end
return result
end
isbday(calendar, dt::Vector{Dates.Date}) = isbday(convert(HolidayCalendar, calendar), dt)
isbday(calendars::A, dt::Vector{Dates.Date}) where {A<:AbstractArray} = isbday(convert(Vector{HolidayCalendar}, calendars), dt)
function tobday(hc::HolidayCalendar, dt::Vector{Dates.Date}; forward::Bool = true)
result = Vector{Dates.Date}(undef, length(dt))
for i in eachindex(dt)
@inbounds result[i] = tobday(hc, dt[i]; forward=forward)
end
return result
end
function tobday(hc::Vector{HolidayCalendar}, dt::Vector{Dates.Date}; forward::Bool = true)
l_hc = length(hc)
l_dt = length(dt)
@assert l_hc == l_dt "Input vectors must have the same size. $(l_hc) != $(l_dt)"
result = Vector{Dates.Date}(undef, l_hc)
for i in 1:l_hc
@inbounds result[i] = tobday(hc[i], dt[i]; forward=forward)
end
return result
end
tobday(calendar, dt::Vector{Dates.Date}; forward::Bool = true) = tobday(convert(HolidayCalendar, calendar), dt; forward=forward)
tobday(calendars::A, dt::Vector{Dates.Date}; forward::Bool = true) where {A<:AbstractArray} = tobday(convert(Vector{HolidayCalendar}, calendars), dt; forward=forward)
function bdays(hc::HolidayCalendar, base_date::Dates.Date, dt_vec::Vector{Dates.Date})
len = length(dt_vec)
result = Vector{Dates.Day}(undef, len)
for i in 1:len
@inbounds result[i] = bdays(hc, base_date, dt_vec[i])
end
return result
end
function bdayscount(hc::HolidayCalendar, base_date::Dates.Date, dt_vec::Vector{Dates.Date})
len = length(dt_vec)
result = Vector{Int}(undef, len)
for i in 1:len
@inbounds result[i] = bdayscount(hc, base_date, dt_vec[i])
end
return result
end
function bdays(hc::HolidayCalendar, dt0::Vector{Dates.Date}, dt1::Vector{Dates.Date})
l0 = length(dt0)
l1 = length(dt1)
@assert l0 == l1 "Input vectors must have the same size. $(l0) != $(l1)"
result = Vector{Dates.Day}(undef, l0)
for i in 1:l0
@inbounds result[i] = bdays(hc, dt0[i], dt1[i])
end
return result
end
function bdayscount(hc::HolidayCalendar, dt0::Vector{Dates.Date}, dt1::Vector{Dates.Date})
l0 = length(dt0)
l1 = length(dt1)
@assert l0 == l1 "Input vectors must have the same size. $(l0) != $(l1)"
result = Vector{Int}(undef, l0)
for i in 1:l0
@inbounds result[i] = bdayscount(hc, dt0[i], dt1[i])
end
return result
end
function bdays(hc::Vector{HolidayCalendar}, dt0::Vector{Dates.Date}, dt1::Vector{Dates.Date})
l_hc = length(hc)
l0 = length(dt0)
l1 = length(dt1)
@assert l_hc == l0 && l0 == l1 "Input vectors must have the same size. $(l_hc), $(l0), $(l1)"
result = Vector{Dates.Day}(undef, l0)
for i in 1:l0
@inbounds result[i] = bdays(hc[i], dt0[i], dt1[i])
end
return result
end
function bdayscount(hc::Vector{HolidayCalendar}, dt0::Vector{Dates.Date}, dt1::Vector{Dates.Date})
l_hc = length(hc)
l0 = length(dt0)
l1 = length(dt1)
@assert l_hc == l0 && l0 == l1 "Input vectors must have the same size. $(l_hc), $(l0), $(l1)"
result = Vector{Int}(undef, l0)
for i in 1:l0
@inbounds result[i] = bdayscount(hc[i], dt0[i], dt1[i])
end
return result
end
bdays(calendars::A, dt0::Vector{Dates.Date}, dt1::Vector{Dates.Date}) where {A<:AbstractArray} = bdays(convert(Vector{HolidayCalendar}, calendars), dt0, dt1)
bdayscount(calendars::A, dt0::Vector{Dates.Date}, dt1::Vector{Dates.Date}) where {A<:AbstractArray} = bdayscount(convert(Vector{HolidayCalendar}, calendars), dt0, dt1)
function advancebdays(hc::HolidayCalendar, dt::Dates.Date, bdays_count_vec::Vector{T}) where {T<:Union{Int, Dates.Day}}
l = length(bdays_count_vec)
result = Vector{Dates.Date}(undef, l)
for i in 1:l
@inbounds result[i] = advancebdays(hc, dt, bdays_count_vec[i])
end
return result
end
function advancebdays(calendar, dt::Dates.Date, bdays_count_vec::Vector{T}) where {T<:Union{Int, Dates.Day}}
advancebdays(convert(HolidayCalendar, calendar), dt, bdays_count_vec)
end
advancebdays(hc, dt::Dates.Date, bdays_range::AbstractRange) = advancebdays(hc, dt, collect(bdays_range))
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 342 |
"""
Allows for combination of several Holiday Calendars.
"""
struct CompositeHolidayCalendar <: HolidayCalendar
calendars::Vector{HolidayCalendar}
end
function isholiday(hc::CompositeHolidayCalendar, dt::Dates.Date)
for c in hc.calendars
if isholiday(c, dt)
return true
end
end
return false
end
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 3443 |
"""
easter_rata(y::Dates.Year) → Int
Returns Easter date as a *[Rata Die](https://en.wikipedia.org/wiki/Rata_Die)* number.
Based on *[Algo R](http://www.linuxtopia.org/online_books/programming_books/python_programming/python_ch38.html)*.
"""
function easter_rata(y::Dates.Year)
# Algo R only works after 1582
if y.value < 1582
# Are you using this? Send me a postcard!
error("Year cannot be less than 1582. Provided: $(y.value).")
end
# Century
c = div(y.value , 100) + 1
# Shifted Epact
local se::Int = mod(14 + 11*(mod(y.value, 19)) - div(3*c, 4) + div(5+8*c, 25), 30)
# Adjust Epact
if (se == 0) || ((se == 1) && ( 10 < mod(y.value, 19) ))
se += 1
end
# Paschal Moon
p = Dates.Date(y.value, 4, 19).instant.periods.value - se
# Easter: locate the Sunday after the Paschal Moon
return p + 7 - mod(p, 7)
end
"""
easter_date(y::Dates.Year) → Dates.Date
Returns result of `easter_rata` as a `Dates.Date` instance.
"""
@inline easter_date(y::Dates.Year) = Dates.Date(Dates.rata2datetime(easter_rata(y)))
"""
findweekday(weekday_target::Integer, yy::Integer, mm::Integer, occurrence::Integer, ascending::Bool) → Date
Given a year `yy` and month `mm`, finds a date where a choosen weekday occurs.
`weekday_target` values are declared in module `Base.Dates`:
`Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday = 1,2,3,4,5,6,7`.
If `ascending` is true, searches from the beginning of the month. If false, searches from the end of the month.
If `occurrence` is `2` and `weekday_target` is `Monday`, searches the 2nd Monday of the given month, and so on.
"""
function findweekday(weekday_target::Integer, yy::Integer, mm::Integer, occurrence::Integer, ascending::Bool) :: Dates.Date
dt = Dates.Date(yy, mm, 1)
local dt_dayofweek::Integer
local offset::Integer
@assert occurrence > 0 "occurrence must be > 0. Provided $(occurrence)."
if ascending
dt_dayofweek = Dates.dayofweek(dt)
offset = mod(weekday_target + 7 - dt_dayofweek, 7)
else
dt = Dates.lastdayofmonth(dt)
dt_dayofweek = Dates.dayofweek(dt)
offset = mod(dt_dayofweek + 7 - weekday_target, 7)
end
if occurrence > 1
offset += 7 * (occurrence - 1)
end
if ascending
return dt + Dates.Day(offset)
else
return dt - Dates.Day(offset)
end
end
"""
adjustweekendholidayPost(dt, [adjust_saturdays]) → Date
In the UK and Canada, if a holiday falls on Saturday or Sunday, it's observed on the next business day.
This function will adjust to the next Monday.
`adjust_saturdays` kwarg defaults to `true`.
"""
function adjustweekendholidayPost(dt::Dates.Date; adjust_saturdays::Bool = true) :: Dates.Date
if adjust_saturdays && (Dates.dayofweek(dt) == Dates.Saturday)
return dt + Dates.Day(2)
end
if Dates.dayofweek(dt) == Dates.Sunday
return dt + Dates.Day(1)
end
return dt
end
"""
adjustweekendholidayUS(dt) → Date
In the United States, if a holiday falls on Saturday, it's observed on the preceding Friday.
If it falls on Sunday, it's observed on the next Monday.
"""
function adjustweekendholidayUS(dt::Dates.Date) :: Dates.Date
if Dates.dayofweek(dt) == Dates.Saturday
return dt - Dates.Day(1)
end
if Dates.dayofweek(dt) == Dates.Sunday
return dt + Dates.Day(1)
end
return dt
end
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 2665 |
"""
GenericHolidayCalendar
* `holidays`: a set of holiday dates
* `dtmin`: minimum date allowed to check for holidays in holidays set. Defaults to `min(holidays...)`.
* `dtmax`: maximum date allowed to check for holidays in holidays set. Defaults to `max(holidays...)`.
* `cache`: instance of HolidayCalendarCache.
"""
mutable struct GenericHolidayCalendar <: HolidayCalendar
holidays::Set{Dates.Date}
dtmin::Dates.Date
dtmax::Dates.Date
cache::HolidayCalendarCache
end
Base.:(==)(g1::GenericHolidayCalendar, g2::GenericHolidayCalendar) = g1.holidays == g2.holidays && g1.dtmin == g2.dtmin && g1.dtmax == g2.dtmax
Base.hash(g::GenericHolidayCalendar) = hash(g.holidays) + hash(g.dtmin) + hash(g.dtmax)
"""
GenericHolidayCalendar(holidays, [dtmin], [dtmax], [_initcache_])
* `holidays`: a set of holiday dates
* `dtmin`: minimum date allowed to check for holidays in holidays set. Defaults to `min(holidays...)`.
* `dtmax`: maximum date allowed to check for holidays in holidays set. Defaults to `max(holidays...)`.
* `_initcache_`: initializes the cache for this calendar. Defaults to `true`.
"""
function GenericHolidayCalendar(holidays::Set{Dates.Date}, dtmin::Dates.Date=min(holidays...), dtmax::Dates.Date=max(holidays...), _initcache_::Bool=true)
generic_calendar = GenericHolidayCalendar(holidays, dtmin, dtmax, HolidayCalendarCache())
generic_calendar.cache.hc = generic_calendar
if _initcache_
initcache!(generic_calendar.cache, generic_calendar, dtmin, dtmax)
end
return generic_calendar
end
GenericHolidayCalendar(holidays::Vector{Dates.Date}, d0::Dates.Date=min(holidays...), d1::Dates.Date=max(holidays...), _initcache_::Bool=true) = GenericHolidayCalendar(Set(holidays), d0, d1, _initcache_)
@inline checkbounds(cal::GenericHolidayCalendar, dt::Dates.Date) = @assert cal.dtmin <= dt && dt <= cal.dtmax "Date out of calendar bounds: $dt. Allowed dates interval is from $(cal.dtmin) to $(cal.dtmax)."
function isholiday(cal::GenericHolidayCalendar, dt::Dates.Date)
checkbounds(cal, dt)
return in(dt, cal.holidays)
end
@inline _getcachestate(hc::GenericHolidayCalendar) = _getcachestate(hc.cache)
@inline _getholidaycalendarcache(hc::GenericHolidayCalendar) = hc.cache
@inline cleancache(cal::GenericHolidayCalendar) = cleancache!(cal.cache)
@inline needs_cache_update(hc::GenericHolidayCalendar, d0::Dates.Date, d1::Dates.Date) = _getcachestate(hc) && hc.cache.dtmin == d0 && hc.cache.dtmax == d1
function initcache(hc::GenericHolidayCalendar, d0::Dates.Date=hc.dtmin, d1::Dates.Date=hc.dtmax)
checkbounds(hc, d0)
checkbounds(hc, d1)
initcache!(hc.cache, hc, d0, d1)
end
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 1313 |
"""
*Abstract* type for Holiday Calendars.
"""
abstract type HolidayCalendar end
Base.string(hc::HolidayCalendar) = string(typeof(hc))
Base.broadcastable(hc::HolidayCalendar) = Ref(hc)
function symtocalendar(sym::Symbol) :: HolidayCalendar
if isdefined(BusinessDays, sym) && Core.eval(BusinessDays, sym) <: HolidayCalendar
return Core.eval(BusinessDays, sym)()
elseif isdefined(@__MODULE__, sym) && Core.eval(@__MODULE__, sym) <: HolidayCalendar
return Core.eval(@__MODULE__, sym)()
elseif isdefined(Main, sym) && Core.eval(Main, sym) <: HolidayCalendar
return Core.eval(Main, sym)()
else
error("$sym is not a valid HolidayCalendar.")
end
end
@inline strtocalendar(str::AbstractString) = symtocalendar(Symbol(str))
Base.convert(::Type{HolidayCalendar}, sym::Symbol) = symtocalendar(sym)
Base.convert(::Type{HolidayCalendar}, str::AbstractString) = strtocalendar(str)
"""
isholiday(calendar, dt) :: Bool
Checks if `dt` is a holiday based on a given `calendar` of holidays.
`calendar` can be an instance of `HolidayCalendar`, a `Symbol` or an `AbstractString`.
"""
isholiday(hc::HolidayCalendar, dt::Dates.Date) = error("isholiday for $(hc) not implemented.")
isholiday(calendar, dt::Dates.Date) = isholiday(convert(HolidayCalendar, calendar), dt)
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 1257 |
"""
listholidays(calendar, dt0::Dates.Date, dt1::Dates.Date) → Vector{Dates.Date}
Returns the list of holidays between `dt0` and `dt1`.
"""
function listholidays(hc::HolidayCalendar, dt0::Dates.Date, dt1::Dates.Date)
d0 = min(dt0, dt1)
d1 = max(dt0, dt1)
dt_range = d0:Dates.Day(1):d1
isholiday_vec = [ isholiday(hc, i) for i in dt_range ]
return dt_range[isholiday_vec]
end
listholidays(calendar, dt0::Dates.Date, dt1::Dates.Date) = listholidays(convert(HolidayCalendar, calendar), dt0, dt1)
"""
listbdays(calendar, dt0::Dates.Date, dt1::Dates.Date) → Vector{Dates.Date}
Returns the list of business days between `dt0` and `dt1`.
"""
function listbdays(hc::HolidayCalendar, dt0::Dates.Date, dt1::Dates.Date)
d = tobday(hc, min(dt0, dt1))
d1 = max(dt0, dt1)
# empty result
if d > d1
return Vector{Dates.Date}()
end
n = Dates.value(d1 - d) + 1
raw_vec = Vector{Dates.Date}(undef, n)
raw_vec[1] = d
d = advancebdays(hc, d, 1)
i = 2
while d <= d1
raw_vec[i] = d
i += 1
d = advancebdays(hc, d, 1)
end
return raw_vec[1:(i-1)]
end
listbdays(calendar, dt0::Dates.Date, dt1::Dates.Date) = listbdays(convert(HolidayCalendar,calendar), dt0, dt1)
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 9876 |
"""
Public holidays for the Australian Stock Exchange (ASX).
"""
struct AustraliaASX <: HolidayCalendar end
"""
Public holidays for the Australian states and territories.
Although some holidays are common to all states and territories, such as Christmas Day, each state and territory also has its own additional holidays.
Therefore the set of relevant holidays depends on which state/territory you are concerned with.
The Australian states and territories are:
- Australian Capital Territory (ACT)
- New South Wales (NSW)
- Northern Territory (NT)
- Queensland (QLD)
- South Australia (SA)
- Tasmania (TAS)
- Western Australia (WA)
- Victoria (VIC)
For example: cal = Australia(:QLD)
"""
struct Australia <: HolidayCalendar
state::Symbol
function Australia(state::Symbol)
states = Set([:ACT, :NSW, :NT, :QLD, :SA, :TAS, :WA, :VIC])
@assert state ∈ states "$(state) is not a valid Australian state or territory. Must be one of :ACT, :NSW, :NT, :QLD, :SA, :TAS, :WA, :VIC."
new(state)
end
end
Base.:(==)(a1::Australia, a2::Australia) = a1.state == a2.state
Base.hash(a::Australia) = hash(a.state)
function isholiday(::AustraliaASX, dt::Dates.Date)
yy = Dates.year(dt)
mm = Dates.month(dt)
dd = Dates.day(dt)
easter_sunday = BusinessDays.easter_date(Dates.Year(yy))
is_australian_national_holiday(dt, yy, mm, dd, easter_sunday) && return true
mm == 6 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 2 && return true # Queen's Birthday holiday (2nd Monday of June)
false
end
function isholiday(cal::Australia, dt::Dates.Date)
yy = Dates.year(dt)
mm = Dates.month(dt)
dd = Dates.day(dt)
easter_sunday = BusinessDays.easter_date(Dates.Year(yy))
is_australian_national_holiday(dt, yy, mm, dd, easter_sunday) && return true
is_australian_state_holiday(Val{cal.state}, dt, yy, mm, dd, easter_sunday)
end
################################################################################
function is_australian_national_holiday(dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date)
mm == 1 && dd == 1 && return true # New year's day
mm == 1 && dd == 26 && return true # Australia Day
mm == 4 && dd == 25 && return true # ANZAC Day
mm == 12 && dd == 25 && return true # Christmas Day
mm == 12 && dd == 26 && return true # Boxing Day
dt == easter_sunday - Dates.Day(2) && return true # Good Friday
dt == easter_sunday + Dates.Day(1) && return true # Easter Monday
false
end
function is_australian_state_holiday(::Type{Val{:ACT}}, dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date)
dt == easter_sunday - Dates.Day(1) && return true # Easter Saturday
dt == easter_sunday && return true # Easter Sunday
mm == 3 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 2 && return true # Canberra Day (2nd Monday of March)
mm == 6 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 2 && return true # Queen's Birthday holiday (2nd Monday of June)
mm == 10 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 1 && return true # Labour Day (1st Monday of October)
if yy >= 2018 && mm == 5 # Reconciliation Day (Last Monday of May)
first_june = Dates.Date(yy, 6, 1)
last_mon_may = Dates.toprev(first_june, Dates.Mon)
dt == last_mon_may && return true
end
false
end
function is_australian_state_holiday(::Type{Val{:NSW}}, dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date)
dt == easter_sunday - Dates.Day(1) && return true # Easter Saturday
dt == easter_sunday && return true # Easter Sunday
mm == 6 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 2 && return true # Queen's Birthday holiday (2nd Monday of June)
mm == 8 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 1 && return true # Bank holiday (1st Monday of August)
mm == 10 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 1 && return true # Labour Day (1st Monday of October)
false
end
function is_australian_state_holiday(::Type{Val{:NT}}, dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date)
dt == easter_sunday - Dates.Day(1) && return true # Easter Saturday (Easter Sunday is not a public holiday in the Northern Territory)
mm == 5 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 1 && return true # May Day (1st Monday of May)
mm == 6 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 2 && return true # Queen's Birthday holiday (2nd Monday of June)
mm == 8 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 1 && return true # Picnic Day (1st Monday of August)
false
end
function is_australian_state_holiday(::Type{Val{:QLD}}, dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date)
dt == easter_sunday - Dates.Day(1) && return true # Easter Saturday
dt == easter_sunday && return true # Easter Sunday
mm == 5 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 1 && return true # Labour Day (1st Monday of May)
# Royal Brisbane Show (Brisbane area only).
if mm == 8 && Dates.dayofweek(dt) == Dates.Wed
end_aug = Dates.Date(yy, 8, 31)
last_wed_aug = Dates.dayofweek(end_aug) == Dates.Wed ? end_aug : Dates.toprev(end_aug, Dates.Wed)
n_wed_in_aug = Dates.day(last_wed_aug) >= 29 ? 5 : 4
n_wed_in_aug == 4 && Dates.dayofweekofmonth(dt) == 2 && return true # 2nd Wednesday of August if there are 4 Wednesdays in August
n_wed_in_aug == 5 && Dates.dayofweekofmonth(dt) == 3 && return true # 3rd Wednesday of August if there are 5 Wednesdays in August
end
# Queen's Birthday holiday
if yy == 2012 || yy >= 2016
mm == 10 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 1 && return true # 1st Monday of October
else
mm == 6 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 2 && return true # 2nd Monday of June
end
false
end
function is_australian_state_holiday(::Type{Val{:SA}}, dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date)
dt == easter_sunday - Dates.Day(1) && return true # Easter Saturday (Easter Sunday is not a public holiday in South Australia)
mm == 3 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 2 && return true # March public holiday (2nd Monday of March)
mm == 6 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 2 && return true # Queen's Birthday holiday (2nd Monday of June)
mm == 10 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 1 && return true # Labour Day (1st Monday of October)
false
end
function is_australian_state_holiday(::Type{Val{:TAS}}, dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date)
# Neither Easter Saturday nor Easter Sunday are public holidays in Tasmania
mm == 2 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 2 && return true # Royal Hobart Regatta (2nd Monday of February)
mm == 3 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 2 && return true # Labour Day (2nd Monday of March)
mm == 6 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 2 && return true # Queen's Birthday holiday (2nd Monday of June)
mm == 11 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 1 && return true # Recreation Day (1st Monday of November)
false
end
function is_australian_state_holiday(::Type{Val{:WA}}, dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date)
# Neither Easter Saturday nor Easter Sunday are public holidays in Western Australia
mm == 3 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 1 && return true # Labour Day (1st Monday of March)
mm == 6 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 1 && return true # Western Australia Day (1st Monday of June)
# Queen's Birthday holiday (proclaimed each year by the Governor, usually the last Monday of September)
if yy == 2011
mm == 10 && dd == 28 && return true
elseif yy == 2012
mm == 10 && dd == 1 && return true
else
end_sep = Dates.Date(yy, 9, 30)
last_mon_sep = Dates.dayofweek(end_sep) == Dates.Mon ? end_sep : Dates.toprev(end_sep, Dates.Mon)
dt == last_mon_sep && return true
end
false
end
function is_australian_state_holiday(::Type{Val{:VIC}}, dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date)
dt == easter_sunday - Dates.Day(1) && return true # Easter Saturday
dt == easter_sunday && return true # Easter Sunday
mm == 3 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 2 && return true # Labour Day (2nd Monday of March)
mm == 6 && Dates.dayofweek(dt) == Dates.Mon && Dates.dayofweekofmonth(dt) == 2 && return true # Queen's Birthday holiday (2nd Monday of June)
mm == 11 && Dates.dayofweek(dt) == Dates.Tue && Dates.dayofweekofmonth(dt) == 1 && return true # Melbourne Cup (1st Tuesday of November)
if yy >= 2015 && Dates.dayofweek(dt) == Dates.Fri && (mm == 9 || mm == 10) # Friday before AFL Grand Final (Friday closest to 30th September)
first_oct = Dates.Date(yy, 10, 1) # 1st October
first_sat_oct = Dates.dayofweek(first_oct) == Dates.Sat ? first_oct : Dates.tonext(first_oct, Dates.Sat) # 1st Saturday in October
afl_final = Dates.day(first_sat_oct) <= 4 ? first_sat_oct : first_sat_oct - Dates.Day(7)
dt == afl_final - Dates.Day(1) && return true
end
false
end
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 3071 |
"Banking holidays for Brazil (federal holidays plus Carnival)."
struct BRSettlement <: HolidayCalendar end
const Brazil = BRSettlement
"B3 Exchange holidays (https://www.b3.com.br)."
struct BrazilExchange <: HolidayCalendar end
const BrazilBMF = BrazilExchange
const BrazilB3 = BrazilExchange
# Brazilian Banking Holidays
function isholiday(::BRSettlement, dt::Dates.Date)
yy = Dates.year(dt)
mm = Dates.month(dt)
dd = Dates.day(dt)
# Bisection
if mm >= 8
# Fixed holidays
if (
# Independencia do Brasil
((mm == 9) && (dd == 7))
||
# Nossa Senhora Aparecida
((mm == 10) && (dd == 12))
||
# Finados
((mm == 11) && (dd == 2))
||
# Proclamacao da Republica
((mm == 11) && (dd == 15))
||
# Dia Nacional de Zumbi e da Consciência Negra
((mm == 11) && (dd == 20) && (yy >= 2024))
||
# Natal
((mm == 12) && (dd == 25))
)
return true
end
else
# mm < 8
# Fixed holidays
if (
# Confraternizacao Universal
((mm == 1) && (dd == 1))
||
# Tiradentes
((mm == 4) && (dd == 21))
||
# Dia do Trabalho
((mm == 5) && (dd == 1))
)
return true
end
# Easter occurs up to April, so Corpus Christi will be up to July in the worst case, which is before August (mm < 8). See `test/easter-min-max.jl`.
# Holidays based on easter date.
dt_rata::Int = Dates.days(dt)
e_rata::Int = easter_rata(Dates.Year(yy))
if (
# Segunda de Carnaval
( dt_rata == ( e_rata - 48 ) )
||
# Terca de Carnaval
( dt_rata == ( e_rata - 47 ) )
||
# Sexta-feira Santa
( dt_rata == ( e_rata - 2 ) )
||
# Corpus Christi
( dt_rata == ( e_rata + 60 ) )
)
return true
end
end
return false
end
function isholiday(::BrazilExchange, dt::Dates.Date)
yy = Dates.year(dt)
mm = Dates.month(dt)
dd = Dates.day(dt)
if (
# Aniversário de São Paulo
( mm == 1 && dd == 25 && yy < 2022 )
||
# Revolucão
( mm == 7 && dd == 9 && yy != 2020 && yy < 2022 )
||
# Consciência Negra (since 2007)
( yy >= 2007 && mm == 11 && dd == 20 && yy != 2020 && yy < 2022 )
# Christmas Eve
||
( mm == 12 && dd == 24)
||
# Último dia útil do ano
( mm == 12 && (dd == 31 || (dd>=29 && Dates.dayofweek(dt) == Dates.Friday) ))
||
# National holidays
isholiday(Brazil(), dt)
)
return true
end
return false
end
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 1658 |
"""
A calendar with no holidays. But account for weekends.
`isholiday` always returns false for this calendar.
Remember that `isbday` considers that Saturdays and Sundars are not business days.
"""
struct WeekendsOnly <: HolidayCalendar end
isholiday(::WeekendsOnly, dt::Dates.Date) = false
function bdayscount(::WeekendsOnly, dt0::Dates.Date, dt1::Dates.Date)
swapped = false
if dt0 == dt1
return 0
elseif dt0 > dt1
dt1, dt0 = dt0, dt1
swapped = true
end
result = 0
days = Dates.value(dt1 - dt0)
whole_weeks = div(days, 7)
result += whole_weeks * 5
dt0 += Dates.Day(whole_weeks * 7)
if dt0 < dt1
day_of_week = Dates.dayofweek(dt0)
while dt0 < dt1
if day_of_week < 6
result += 1
end
dt0 += Dates.Day(1)
day_of_week += 1
if day_of_week == 8
day_of_week = 1
end
end
end
if swapped
result = -result
end
return result
end
"""
A calendar with no holidays and no weekends.
`bdays` returns the actual days between dates (`dt1 - d10`).
"""
struct NullHolidayCalendar <: HolidayCalendar end
isholiday(::NullHolidayCalendar, dt::Dates.Date) = false
isbday(::NullHolidayCalendar, dt::Dates.Date) = true
bdayscount(::NullHolidayCalendar, dt0::Dates.Date, dt1::Dates.Date) = Dates.value(dt1 - dt0)
listbdays(::NullHolidayCalendar, dt0::Dates.Date, dt1::Dates.Date) = collect(dt0:Dates.Day(1):dt1)
include("australia.jl")
include("brazil.jl")
include("canada.jl")
include("target.jl")
include("uk.jl")
include("us.jl")
include("germany.jl")
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 4290 |
"""
Holidays for Canada
"""
struct CanadaSettlement <: HolidayCalendar end
const Canada = CanadaSettlement
"""
Holidays for Toronto Stock Exchange
"""
struct CanadaTSX <: HolidayCalendar end
function isholiday(::CanadaSettlement, dt::Dates.Date)
yy = Dates.year(dt)
mm = Dates.month(dt)
dd = Dates.day(dt)
ww = Dates.dayofweek(dt)
# Bisection
if mm >= 8
# Fixed holidays
if (
# first Monday of August (Provincial Holiday)
findweekday(Dates.Monday, yy, 8, 1, true) == dt
# first Monday of September (Labor Day)
|| findweekday(Dates.Monday, yy, 9, 1, true) == dt
# second Monday of October (Thanksgiving Day)
|| findweekday(Dates.Monday, yy, 10, 2, true) == dt
# November 11th (possibly moved to Monday)
|| adjustweekendholidayPost(Dates.Date(yy, 11, 11)) == dt
# Christmas
|| adjustweekendholidayPost( Dates.Date(yy, 12, 25) ) == dt
# Boxing
|| adjustweekendholidayPost(adjustweekendholidayPost( Dates.Date(yy, 12, 25) ) + Dates.Day(1)) == dt
)
return true
end
else
# mm < 8
# Fixed holidays
if (
# New Year's Day
adjustweekendholidayPost(Dates.Date(yy, 01, 01); adjust_saturdays=false) == dt
# Family Day (third Monday in February, since 2008)
|| ( yy >= 2008 && findweekday(Dates.Monday, yy, 2, 3, true) == dt )
# The Monday on or preceding 24 May (Victoria Day)
|| (dd > 17 && dd <= 24 && ww == Dates.Monday && mm == Dates.May)
# July 1st, possibly moved to Monday (Canada Day)
|| adjustweekendholidayPost(Dates.Date(yy, 07, 01)) == dt
)
return true
end
# Easter occurs up to April, which is before August (mm < 8). See test/easter-min-max.jl .
# Holidays based on easter date
dt_rata::Int = Dates.days(dt)
e_rata::Int = easter_rata(Dates.Year(yy))
if (
# Good Friday
( dt_rata == ( e_rata - 2 ) )
)
return true
end
end
return false
end
function isholiday(::CanadaTSX, dt::Dates.Date)
yy = Dates.year(dt)
mm = Dates.month(dt)
dd = Dates.day(dt)
ww = Dates.dayofweek(dt)
# Bisection
if mm >= 8
# Fixed holidays
if (
# first Monday of August (Provincial Holiday)
findweekday(Dates.Monday, yy, 8, 1, true) == dt
# first Monday of September (Labor Day)
|| findweekday(Dates.Monday, yy, 9, 1, true) == dt
# second Monday of October (Thanksgiving Day)
|| findweekday(Dates.Monday, yy, 10, 2, true) == dt
# Christmas
|| adjustweekendholidayPost( Dates.Date(yy, 12, 25) ) == dt
# Boxing
|| adjustweekendholidayPost(adjustweekendholidayPost( Dates.Date(yy, 12, 25) ) + Dates.Day(1)) == dt
)
return true
end
else
# mm < 8
# Fixed holidays
if (
# New Year's Day
adjustweekendholidayPost(Dates.Date(yy, 01, 01); adjust_saturdays=false) == dt
# Family Day (third Monday in February, since 2008)
|| ( yy >= 2008 && findweekday(Dates.Monday, yy, 2, 3, true) == dt )
# The Monday on or preceding 24 May (Victoria Day)
|| (dd > 17 && dd <= 24 && ww == Dates.Monday && mm == Dates.May)
# July 1st, possibly moved to Monday (Canada Day)
|| adjustweekendholidayPost(Dates.Date(yy, 07, 01)) == dt
)
return true
end
# Easter occurs up to April, which is before August (mm < 8). See test/easter-min-max.jl .
# Holidays based on easter date
dt_rata::Int = Dates.days(dt)
e_rata::Int = easter_rata(Dates.Year(yy))
if (
# Good Friday
( dt_rata == ( e_rata - 2 ) )
)
return true
end
end
return false
end
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 10523 |
"""
Public holidays for the German states.
Although some holidays are common to all states, such as Easter and Christmas,
each state also has its own additional holidays. The only national holiday is the
Day of German Unity.
The set of relevant holidays depends about which state you are concerned.
The German states are:
- Baden-Württemberg (BW)
- Bavaria (BY)
- Berlin (BE)
- Brandenburg (BB)
- Bremen (HB)
- Hamburg (HH)
- Hessen (HE)
- Mecklenburg-Vorpommern (MV)
- Lowwer Saxony (NI)
- North Rhine-Westphalia (NW)
- Rhineland-Palatinate (RP)
- Saarland (SL)
- Saxony (SN)
- Saxony-Anhalt (ST)
- Schleswig-Holstein (SH)
- Thuringia (TH)
For example: `cal = Germany(:BW)` or `cal = DE(:BW)`
"""
struct Germany <: HolidayCalendar
state::Symbol
function Germany(state::Symbol)
states = Set([:BW, :BY, :BYP, :BE, :BB, :HB, :HH, :HE, :MV, :NI, :NW, :RP, :SL, :SN, :ST, :SH, :TH])
@assert state ∈ states "$(state) is not a valid German state. Choose from: :BW, :BY, :BYP, :BE, :BB, :HB, :HH, :HE, :MV, :NI, :NW, :RP, :SL, :SN, :ST, :SH, :TH."
new(state)
end
end
const DE = Germany
"""
isholiday(cal::DE, dt::Dates.Date)::Bool
Return true if `dt` is a is a holiday in the German calender (`cal`), otherwise false.
"""
function isholiday(cal::DE, dt::Dates.Date)::Bool
dt ≤ Dates.Date(1990, 10, 3) && return false # Only count holidays after German Reunification
yy = Dates.year(dt)
mm = Dates.month(dt)
dd = Dates.day(dt)
easter_sunday = BusinessDays.easter_date(Dates.Year(yy))
is_common_german_holiday(dt, yy, mm, dd, easter_sunday) && return true
is_german_state_holiday(Val{cal.state}, dt, yy, mm, dd, easter_sunday)
end
################################################################################
"""
is_common_german_holiday(dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date)::Bool
Return true if `dt` (with its parts `yy` - year, `mm` - month, `dd` -day) is a is a holiday
in the calender of all of Germany (`cal`), otherwise false.
"""
function is_common_german_holiday(dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date)::Bool
mm == 1 && dd == 1 && return true # New year's day
mm == 5 && dd == 1 && return true # International Workers' Day
dt == easter_sunday - Dates.Day(2) && return true # Good Friday
dt == easter_sunday + Dates.Day(1) && return true # Easter Monday
dt == easter_sunday + Dates.Day(39) && return true # Ascension Day
dt == easter_sunday + Dates.Day(50) && return true # Pentecost Monday
mm == 10 && dd == 3 && return true # German Unity Day
mm == 10 && dd == 31 && yy == 2017 && return true # 500 years Reformation
mm == 12 && dd == 25 && return true # Christmas Day
mm == 12 && dd == 26 && return true # Boxing Day
mm == 11 && dd == day_of_repentance_and_prayer(yy) &&
yy ≤ 1994 && return true # Day of Repentance and Prayer
return false
end
"""
function is_german_state_holiday(
::Union{Type{Val{:HB}},Type{Val{:HH}},Type{Val{:NI}},Type{Val{:SH}}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
Return true if `dt` (with its parts `yy` - year, `mm` - month, `dd` -day)
is a is a holiday in the calender (`cal`) of the German states
Bremen, Hamburg, Lower Saxony or Schleswig-Holstein, otherwise false.
"""
function is_german_state_holiday(
::Union{Type{Val{:HB}},Type{Val{:HH}},Type{Val{:NI}},Type{Val{:SH}}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
mm == 10 && dd == 31 && yy ≥ 2017 && return true # Reformation Day
return false
end
"""
function is_german_state_holiday(
::Union{Type{Val{:NW}},Type{Val{:RP}},Type{Val{:SL}}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
Return true if `dt` (with its parts `yy` - year, `mm` - month, `dd` -day)
is a is a holiday in the calender (`cal`) of the German states
North Rhine-Westphalia, Rhineland-Palatinate or Saarland, otherwise false.
"""
function is_german_state_holiday(
cal::T,
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool where T <: Union{Type{Val{:NW}},Type{Val{:RP}},Type{Val{:SL}}}
mm == 11 && dd == 1 && return true # All Saints' Day
dt == easter_sunday + Dates.Day(60) && return true # Corpus Christi
mm == 8 && dd == 15 && cal <: Val{:SL} && return true # Assumption of Mary
return false
end
"""
function is_german_state_holiday(
::Union{Type{Val{:NW}},Type{Val{:RP}},Type{Val{:SL}}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
Return true if `dt` (with its parts `yy` - year, `mm` - month, `dd` -day)
is a is a holiday in the calender (`cal`) of the German states
Baden-Württemberg or Bavaria (with or without Assumption of Mary), otherwise false.
"""
function is_german_state_holiday(
cal::T,
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool where T <: Union{Type{Val{:BW}},Type{Val{:BY}},Type{Val{:BYP}}}
mm == 1 && dd == 6 && return true # Epiphany
mm == 11 && dd == 1 && return true # All Saints' Day
dt == easter_sunday + Dates.Day(60) && return true # Corpus Christi
mm == 8 && dd == 15 && cal <: Val{:BY} && return true # Assumption of Mary
# (only catholic communities in Bavaria)
return false
end
"""
function is_german_state_holiday(
::Type{Val{:BE}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
Return true if `dt` (with its parts `yy` - year, `mm` - month, `dd` -day)
is a is a holiday in the calender (`cal`) of the German state Berlin, otherwise false.
"""
function is_german_state_holiday(
::Type{Val{:BE}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
mm == 3 && dd == 8 && yy ≥ 2019 && return true # Womens' Day
# 75. Jahrestag zur Befreiung des Nationalsozialismus:
mm == 5 && dd == 8 && yy == 2020 && return true
return false
end
"""
function is_german_state_holiday(
::Type{Val{:BB}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
Return true if `dt` (with its parts `yy` - year, `mm` - month, `dd` -day)
is a is a holiday in the calender (`cal`) of the German state Brandenburg,
otherwise false.
"""
function is_german_state_holiday(
::Type{Val{:BB}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
mm == 10 && dd == 31 && yy ≥ 2019 && return true # Reformation Day
dt == easter_sunday && return true # Easter Sunday
dt == easter_sunday + Dates.Day(49) && return true # Pentecost Sunday
return false
end
"""
function is_german_state_holiday(
::Type{Val{:HE}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
Return true if `dt` (with its parts `yy` - year, `mm` - month, `dd` -day)
is a is a holiday in the calender (`cal`) of the German state Hessen,
otherwise false.
"""
function is_german_state_holiday(
::Type{Val{:HE}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
dt == easter_sunday + Dates.Day(60) && return true # Corpus Christi
return false
end
"""
function is_german_state_holiday(
::Type{Val{:MV}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
Return true if `dt` (with its parts `yy` - year, `mm` - month, `dd` -day)
is a is a holiday in the calender (`cal`) of the German state Mecklenburg-Vorpommern,
otherwise false.
"""
function is_german_state_holiday(
::Type{Val{:MV}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
mm == 10 && dd == 31 && return true # Reformation Day
mm == 3 && dd == 08 && yy ≥ 2023 && return true # Womens' Day
return false
end
"""
function is_german_state_holiday(
::Type{Val{:SN}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
Return true if `dt` (with its parts `yy` - year, `mm` - month, `dd` -day)
is a is a holiday in the calender (`cal`) of the German state Saxony,
otherwise false.
"""
function is_german_state_holiday(
::Type{Val{:SN}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
mm == 10 && dd == 31 && return true # Reformation Day
# Day of Repentance and Prayer:
mm == 11 && dd == day_of_repentance_and_prayer(yy) && return true
return false
end
"""
function is_german_state_holiday(
::Type{Val{:ST}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
Return true if `dt` (with its parts `yy` - year, `mm` - month, `dd` -day)
is a is a holiday in the calender (`cal`) of the German state Saxony-Anhalt,
otherwise false.
"""
function is_german_state_holiday(
::Type{Val{:ST}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
mm == 1 && dd == 6 && return true # Epiphany
mm == 10 && dd == 31 && return true # Reformation Day
return false
end
"""
function is_german_state_holiday(
::Type{Val{:TH}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
Return true if `dt` (with its parts `yy` - year, `mm` - month, `dd` -day)
is a is a holiday in the calender (`cal`) of the German state Thuringia,
otherwise false.
"""
function is_german_state_holiday(
::Type{Val{:TH}},
dt::Dates.Date, yy::Int, mm::Int, dd::Int, easter_sunday::Dates.Date
)::Bool
mm == 9 && dd == 20 && yy ≥ 2019 && return true # Children's Day
mm == 10 && dd == 31 && return true # Reformation Day
return false
end
"""
day_of_repentance_and_prayer(yy::Int)::Int
Calculate day of rependance and prayer als last Wednesday before 23. November.
"""
function day_of_repentance_and_prayer(yy::Int)::Int
drange = Dates.Date(yy,11,16):Dates.Day(1):Dates.Date(yy,11,22)
return Dates.day(drange[findfirst(isequal.(Dates.dayofweek.(drange),3))])
end
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 1386 |
"""
Holidays for TARGET Eurozone (Trans-European Automated Real-time Gross Settlement Express Transfer System)
"""
struct TARGET <: HolidayCalendar end
const TARGET2 = TARGET
const EuroZone = TARGET
function isholiday(::TARGET, dt::Dates.Date)
yy = Dates.year(dt)
mm = Dates.month(dt)
dd = Dates.day(dt)
# Bisection
if mm < 8
# Fixed Holidays
if (
# New Year's Day
((mm == 1) && (dd == 1))
||
# Labour Day
((mm == 5) && (dd == 1) && (yy >= 2000))
)
return true
end
if yy >= 2000
dt_rata::Int = Dates.days(dt)
e_rata::Int = easter_rata(Dates.Year(yy))
if (
# Good Friday
( dt_rata == ( e_rata - 2 ))
||
# Easter Monday
( dt_rata == ( e_rata + 1))
)
return true
end
end
else
# mm >= 8
if (
# Christmas
((mm == 12) && (dd == 25))
||
# Day of Goodwill
((mm == 12) && (dd == 26) && (yy >= 2000))
||
# End of year
((mm == 12) && (dd == 31) && (yy == 1998 || yy == 1999 || yy == 2001))
)
return true
end
end
return false
end
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 3516 |
"""
Banking holidays for England and Wales.
"""
struct UKSettlement <: HolidayCalendar end
const UnitedKingdom = UKSettlement
# England and Wales Banking Holidays
function isholiday(::UKSettlement, dt::Dates.Date)
yy = Dates.year(dt)
mm = Dates.month(dt)
dd = Dates.day(dt)
# Bisection
if mm >= 8
# Fixed holidays
if (
# Late Summer Bank Holiday, August Bank Holiday
adjustweekendholidayPost( findweekday(Dates.Monday, yy, 8, 1, false) ) == dt
||
# Christmas
adjustweekendholidayPost( Dates.Date(yy, 12, 25) ) == dt
||
# Boxing
adjustweekendholidayPost(adjustweekendholidayPost( Dates.Date(yy, 12, 25) ) + Dates.Day(1)) == dt
)
return true
end
# Fixed date holidays with mm >= 8
if (
dt == Dates.Date(1999, 12, 31)
||
# Funeral of Queen Elizabeth II
dt == Dates.Date(2022, 9, 19)
)
return true
end
else
# mm < 8
# Fixed holidays
if (
# New Year's Day
adjustweekendholidayPost( Dates.Date(yy, 01, 01) ) == dt
||
# May Day, Early May Bank Holiday
(adjustweekendholidayPost(findweekday(Dates.Monday, yy, 5, 1, true)) == dt && yy != 1995 && yy != 2020)
)
return true
end
# Spring Bank Holiday
if yy == 2022 && dt == Dates.Date(2022, 6, 2)
return true
elseif adjustweekendholidayPost(findweekday(Dates.Monday, yy, 5, 1, false)) == dt && yy != 2012 && yy != 2002 && yy != 2022
return true
end
# Easter occurs up to April, which is before August (mm < 8). See test/easter-min-max.jl .
# Holidays based on easter date
dt_rata::Int = Dates.days(dt)
e_rata::Int = easter_rata(Dates.Year(yy))
if (
# Good Friday
( dt_rata == ( e_rata - 2 ) )
||
# Easter Monday
( dt_rata == ( e_rata + 1 ) )
)
return true
end
# Fixed date holidays with mm < 8
if (
# Substitute date for Spring Bank Holiday
(dt == Dates.Date(2012, 6, 4))
||
# Diamond Jubilee of Queen Elizabeth II.
(dt == Dates.Date(2012, 6, 5))
||
# Golden Jubilee of Queen Elizabeth II.
(dt == Dates.Date(2002, 6, 3))
||
# Platinum Jubilee of Queen Elizabeth II.
(dt == Dates.Date(2022, 6, 3))
||
# Substitute date for Spring Bank Holiday
(dt == Dates.Date(2002, 6, 4))
||
# Wedding of Prince William and Catherine Middleton
(dt == Dates.Date(2011, 4, 29))
||
# Substitute date for Early May Bank Holiday in 1995
(dt == Dates.Date(1995, 5, 8))
||
# Substitute date for Early May Bank Holiday in 2020
(dt == Dates.Date(2020, 5, 8))
||
# Coronation of King Charles III
(dt == Dates.Date(2023, 5, 8))
)
return true
end
end
return false
end
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 7461 |
# United States calendars
"""
United States federal holidays.
"""
struct USSettlement <: HolidayCalendar end
const UnitedStates = USSettlement
"""
United States NYSE holidays.
"""
struct USNYSE <: HolidayCalendar end
"""
United States Government Bond calendar. See <https://www.sifma.org/resources/general/holiday-schedule/>.
"""
struct USGovernmentBond <: HolidayCalendar end
function isholiday(::USSettlement, dt::Dates.Date)
yy = Dates.year(dt)
mm = Dates.month(dt)
dd = Dates.day(dt)
if (
# New Year's Day
adjustweekendholidayUS(Dates.Date(yy, 1, 1)) == dt
||
# New Year's Day on the previous year when 1st Jan is Saturday
(mm == 12 && dd == 31 && Dates.dayofweek(dt) == Dates.Friday)
||
# Birthday of Martin Luther King, Jr.
(yy >= 1983 && adjustweekendholidayUS(findweekday(Dates.Monday, yy, 1, 3, true)) == dt)
||
# Washington's Birthday
adjustweekendholidayUS(findweekday(Dates.Monday, yy, 2, 3, true)) == dt
||
# Memorial Day
adjustweekendholidayUS(findweekday(Dates.Monday, yy, 5, 1, false)) == dt
||
# Juneteenth
(yy >= 2021 && adjustweekendholidayUS(Dates.Date(yy, 6, 19)) == dt)
||
# Independence Day
adjustweekendholidayUS(Dates.Date(yy, 7, 4)) == dt
||
# Labor Day
adjustweekendholidayUS(findweekday(Dates.Monday, yy, 9, 1, true)) == dt
||
# Columbus Day
adjustweekendholidayUS(findweekday(Dates.Monday, yy, 10, 2, true)) == dt
||
# Veterans Day
adjustweekendholidayUS(Dates.Date(yy, 11, 11)) == dt
||
# Thanksgiving Day
adjustweekendholidayUS(findweekday(Dates.Thursday, yy, 11, 4, true)) == dt
||
# Christmas
adjustweekendholidayUS(Dates.Date(yy, 12, 25)) == dt
)
return true
end
return false
end
function isholiday(::USNYSE, dt::Dates.Date)
yy = Dates.year(dt)
mm = Dates.month(dt)
dd = Dates.day(dt)
dt_rata::Int = Dates.days(dt)
e_rata::Int = easter_rata(Dates.Year(yy))
if (
# New Year's Day
adjustweekendholidayUS(Dates.Date(yy, 1, 1)) == dt
||
# Birthday of Martin Luther King, Jr.
(yy >= 1998 && adjustweekendholidayUS(findweekday(Dates.Monday, yy, 1, 3, true)) == dt)
||
# Washington's Birthday
adjustweekendholidayUS(findweekday(Dates.Monday, yy, 2, 3, true)) == dt
||
# Good Friday
dt_rata == ( e_rata - 2 )
||
# Memorial Day
adjustweekendholidayUS(findweekday(Dates.Monday, yy, 5, 1, false)) == dt
||
# Juneteenth
(yy >= 2022 && adjustweekendholidayUS(Dates.Date(yy, 6, 19)) == dt)
||
# Independence Day
adjustweekendholidayUS(Dates.Date(yy, 7, 4)) == dt
||
# Labor Day
adjustweekendholidayUS(findweekday(Dates.Monday, yy, 9, 1, true)) == dt
||
# Thanksgiving Day
adjustweekendholidayUS(findweekday(Dates.Thursday, yy, 11, 4, true)) == dt
||
# Christmas
adjustweekendholidayUS(Dates.Date(yy, 12, 25)) == dt
)
return true
end
# Presidential election days
if (yy <= 1968 || (yy <= 1980 && yy % 4 == 0)) && mm == 11 && dd <= 7 && Dates.istuesday(dt)
return true
end
# Special Closings
if (
# President George H.W. Bush's funeral
dt == Dates.Date(2018,12,5)
||
# Hurricane Sandy
yy == 2012 && mm == 10 && (dd == 29 || dd == 30)
||
# Predient Ford's funeral
dt == Dates.Date(2007,1,2)
||
# President Reagan's funeral
dt == Dates.Date(2004,6,11)
||
# Sep 11th
yy == 2001 && mm == 9 && (11 <= dd && dd <= 14)
||
# President Nixon's funeral
dt == Dates.Date(1994,4,27)
||
# Hurricane Gloria
dt == Dates.Date(1985,9,27)
||
# 1977 Blackout
dt == Dates.Date(1977,7,14)
||
# Funeral of former President Lyndon B. Johnson
dt == Dates.Date(1973,1,25)
||
# Funeral of former President Harry S. Truman
dt == Dates.Date(1972,12,28)
||
# National Day of Participation for the lunar exploration
dt == Dates.Date(1969,7,21)
||
# Eisenhower's funeral
dt == Dates.Date(1969,3,31)
||
# Heavy snow
dt == Dates.Date(1969,2,10)
||
# Day after Independence Day
dt == Dates.Date(1968,7,5)
||
# Paperwork Crisis
yy == 1968 && Dates.dayofyear(dt) >= 163 && Dates.iswednesday(dt)
||
# Mourning for Martin Luther King Jr
dt == Dates.Date(1968,4,9)
||
# President Kennedy's funeral
dt == Dates.Date(1963,11,25)
||
# Day before Decoration Day
dt == Dates.Date(1961,5,29)
||
# Day after Christmas
dt == Dates.Date(1958,12,26)
||
# Christmas Eve
dt in [Dates.Date(1954,12,24), Dates.Date(1956,12,24), Dates.Date(1965,12,24)]
)
return true
end
return false
end
function isholiday(::USGovernmentBond, dt::Dates.Date)
yy = Dates.year(dt)
mm = Dates.month(dt)
dd = Dates.day(dt)
dt_rata::Int = Dates.days(dt)
e_rata::Int = easter_rata(Dates.Year(yy))
if (
# New Year's Day
adjustweekendholidayUS(Dates.Date(yy, 1, 1)) == dt
||
# Birthday of Martin Luther King, Jr.
yy >= 1983 && adjustweekendholidayUS(findweekday(Dates.Monday, yy, 1, 3, true)) == dt
||
# Washington's Birthday
adjustweekendholidayUS(findweekday(Dates.Monday, yy, 2, 3, true)) == dt
||
# Good Friday
dt_rata == ( e_rata - 2 )
||
# Memorial Day
adjustweekendholidayUS(findweekday(Dates.Monday, yy, 5, 1, false)) == dt
||
# Juneteenth
(yy >= 2022 && adjustweekendholidayUS(Dates.Date(yy, 6, 19)) == dt)
||
# Independence Day
adjustweekendholidayUS(Dates.Date(yy, 7, 4)) == dt
||
# Labor Day
adjustweekendholidayUS(findweekday(Dates.Monday, yy, 9, 1, true)) == dt
||
# Columbus Day
adjustweekendholidayUS(findweekday(Dates.Monday, yy, 10, 2, true)) == dt
||
# Veterans Day
(yy != 2023 && adjustweekendholidayUS(Dates.Date(yy, 11, 11)) == dt)
||
# Thanksgiving Day
adjustweekendholidayUS(findweekday(Dates.Thursday, yy, 11, 4, true)) == dt
||
# Christmas
adjustweekendholidayUS(Dates.Date(yy, 12, 25)) == dt
)
return true
end
# Special Closings
# President George H.W. Bush's funeral <https://www.newyorkfed.org/markets/opolicy/operating_policy_181204>
if dt == Dates.Date(2018, 12, 5)
return true
end
return false
end
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 62759 |
print("##########################\n")
print(" Using cache: $(usecache)\n")
print("##########################\n")
if usecache
BusinessDays.initcache(all_calendars_vec)
end
################
# bdays.jl
################
#export
# isweekend, isbday, tobday, advancebdays, bdays
dt_tuesday = Dates.Date(2015,06,23)
dt_wednesday = Dates.Date(2015, 06, 24)
dt_thursday = Dates.Date(2015, 06, 25)
dt_friday = Dates.Date(2015, 06, 26)
dt_saturday = Dates.Date(2015, 06, 27)
dt_sunday = Dates.Date(2015, 06, 28)
dt_monday = Dates.Date(2015, 06, 29)
dt_newyears = Dates.Date(2016,1,1)
# Bounds tests
if !usecache
# this should work
isbday(hc_brazil, Dates.Date(1600,2,1))
isbday(hc_brazil, Dates.Date(3000,2,1))
bdays(hc_brazil, Dates.Date(1600,2,1), Dates.Date(1600, 2, 5))
bdays(hc_brazil, Dates.Date(3000,2,1), Dates.Date(3000, 2, 5))
bdayscount(hc_brazil, Dates.Date(1600,2,1), Dates.Date(1600, 2, 5))
bdayscount(hc_brazil, Dates.Date(3000,2,1), Dates.Date(3000, 2, 5))
else
#this should not work
@test_throws AssertionError isbday(hc_brazil, Dates.Date(1600,2,1))
@test_throws AssertionError isbday(hc_brazil, Dates.Date(3000,2,1))
@test_throws AssertionError bdays(hc_brazil, Dates.Date(1600,2,1), Dates.Date(1600, 2, 5))
@test_throws AssertionError bdays(hc_brazil, Dates.Date(3000,2,1), Dates.Date(3000, 2, 5))
@test_throws AssertionError bdayscount(hc_brazil, Dates.Date(1600,2,1), Dates.Date(1600, 2, 5))
@test_throws AssertionError bdayscount(hc_brazil, Dates.Date(3000,2,1), Dates.Date(3000, 2, 5))
end
@test_throws ErrorException isbday(:UnknownCalendar, Dates.Date(2016,1,1))
@test_throws ErrorException isbday("UnknownCalendar", Dates.Date(2016,1,1))
@test isweekend(dt_tuesday) == false
@test isweekend(dt_wednesday) == false
@test isweekend(dt_thursday) == false
@test isweekend(dt_friday) == false
@test isweekend(dt_saturday) == true
@test isweekend(dt_sunday) == true
@test isweekend(dt_monday) == false
@test isweekday(dt_tuesday) == true
@test isweekday(dt_wednesday) == true
@test isweekday(dt_thursday) == true
@test isweekday(dt_friday) == true
@test isweekday(dt_saturday) == false
@test isweekday(dt_sunday) == false
@test isweekday(dt_monday) == true
@test isbday(hc_brazil, dt_friday) == true
@test isbday(hc_brazil, dt_saturday) == false
@test isbday(hc_brazil, dt_sunday) == false
@test isbday(hc_brazil, dt_monday) == true
@test isholiday(hc_brazil, dt_friday) == false
@test isholiday(hc_brazil, dt_saturday) == false
@test isholiday(hc_brazil, dt_sunday) == false
@test isholiday(hc_brazil, dt_monday) == false
@test isholiday(hc_brazil, dt_newyears) == true
# Symbol
@test isholiday(:Brazil, dt_friday) == false
@test isholiday(:Brazil, dt_saturday) == false
@test isholiday(:Brazil, dt_sunday) == false
@test isholiday(:Brazil, dt_monday) == false
@test isholiday(:Brazil, dt_newyears) == true
# String
@test isholiday("Brazil", dt_friday) == false
@test isholiday("Brazil", dt_saturday) == false
@test isholiday("Brazil", dt_sunday) == false
@test isholiday("Brazil", dt_monday) == false
@test isholiday("Brazil", dt_newyears) == true
@test isholiday(BusinessDays.NullHolidayCalendar(), Dates.Date(2016,9,25)) == false
@test isholiday(:NullHolidayCalendar, Dates.Date(2016,9,25)) == false
@test isholiday("NullHolidayCalendar", Dates.Date(2016,9,25)) == false
@test isbday(BusinessDays.NullHolidayCalendar(), Dates.Date(2016,9,25)) == true
@test isbday(:NullHolidayCalendar, Dates.Date(2016,9,25)) == true
@test isbday("NullHolidayCalendar", Dates.Date(2016,9,25)) == true
@test bdayscount(:NullHolidayCalendar, Dates.Date(2016,9,25), Dates.Date(2016,9,28)) == 3
@test bdays(:NullHolidayCalendar, Dates.Date(2016,9,25), Dates.Date(2016,9,28)) == Dates.Day(3)
@test isholiday(BusinessDays.WeekendsOnly(), Dates.Date(2016,9,25)) == false
@test isholiday(:WeekendsOnly, Dates.Date(2016,9,25)) == false
@test isholiday("WeekendsOnly", Dates.Date(2016,9,25)) == false
@test isbday(BusinessDays.WeekendsOnly(), Dates.Date(2016,9,25)) == false
@test isbday(:WeekendsOnly, Dates.Date(2016,9,25)) == false
@test isbday("WeekendsOnly", Dates.Date(2016,9,25)) == false
@test bdayscount(:WeekendsOnly, Dates.Date(2016,9,25), Dates.Date(2016,9,28)) == 2
function test_bdays(cal, d0::Dates.Date, d1::Dates.Date, expected_result::Integer)
@test bdays(cal, d0, d1) == Dates.Day(expected_result)
if d0 != d1
@test bdays(cal, d1, d0) == Dates.Day(-expected_result)
end
nothing
end
function test_bdays(cal,
d0::Tuple{Int, Int, Int},
d1::Tuple{Int, Int, Int},
expected_result::Integer)
test_bdays(cal, Dates.Date(d0[1], d0[2], d0[3]), Dates.Date(d1[1], d1[2], d1[3]), expected_result)
end
test_bdays(:WeekendsOnly, (2016, 9, 25), (2016, 9, 28), 2)
test_bdays(:WeekendsOnly, (2019, 8, 26), (2019, 9, 2), 5)
test_bdays(:WeekendsOnly, (2019, 8, 26), (2019, 9, 3), 6)
test_bdays(:WeekendsOnly, (2019, 8, 26), (2019, 9, 9), 10)
test_bdays(:WeekendsOnly, (2019, 8, 26), (2019, 9, 10), 11)
test_bdays(:WeekendsOnly, (2019, 8, 26), (2019, 8, 30), 4)
test_bdays(:WeekendsOnly, (2019, 8, 26), (2019, 8, 27), 1)
test_bdays(:WeekendsOnly, (2019, 8, 26), (2019, 8, 26), 0)
test_bdays(:WeekendsOnly, (2019, 8, 19), (2019, 8, 26), 5)
test_bdays(:WeekendsOnly, (2019, 8, 25), (2019, 8, 26), 0)
test_bdays(:WeekendsOnly, (2019, 8, 24), (2019, 8, 25), 0)
test_bdays(:WeekendsOnly, (2019, 8, 24), (2019, 8, 26), 0)
test_bdays(:WeekendsOnly, (2019, 8, 23), (2019, 8, 24), 1)
# Brazil HolidayCalendar tests
@test isbday(hc_brazil, Dates.Date(2014, 12, 31)) == true # wednesday
@test isbday(hc_brazil, Dates.Date(2015, 01, 01)) == false # new year
@test isbday(hc_brazil, Dates.Date(2015, 01, 02)) == true # friday
@test isbday(hc_brazil, Dates.Date(2015, 04, 20)) == true # monday
@test isbday(hc_brazil, Dates.Date(2015, 04, 21)) == false # tiradentes
@test isbday(hc_brazil, Dates.Date(2015, 04, 22)) == true # wednesday
@test isbday(hc_brazil, Dates.Date(2015, 04, 30)) == true # thursday
@test isbday(hc_brazil, Dates.Date(2015, 05, 01)) == false # labor day
@test isbday(hc_brazil, Dates.Date(2015, 05, 02)) == false # saturday
@test isbday(hc_brazil, Dates.Date(2015, 09, 06)) == false # sunday
@test isbday(hc_brazil, Dates.Date(2015, 09, 07)) == false # independence day
@test isbday(hc_brazil, Dates.Date(2015, 09, 08)) == true # tuesday
@test isbday(hc_brazil, Dates.Date(2015, 10, 11)) == false # sunday
@test isbday(hc_brazil, Dates.Date(2015, 10, 12)) == false # Nossa Senhora Aparecida
@test isbday(hc_brazil, Dates.Date(2015, 10, 13)) == true # tuesday
@test isbday(hc_brazil, Dates.Date(2015, 11, 01)) == false # sunday
@test isbday(hc_brazil, Dates.Date(2015, 11, 02)) == false # Finados
@test isbday(hc_brazil, Dates.Date(2015, 11, 03)) == true # tuesday
@test isbday(hc_brazil, Dates.Date(2013, 11, 14)) == true # thursday
@test isbday(hc_brazil, Dates.Date(2013, 11, 15)) == false # Republic
@test isbday(hc_brazil, Dates.Date(2013, 11, 16)) == false # saturday
@test isbday(hc_brazil, Dates.Date(2013, 12, 24)) == true # tuesday
@test isbday(hc_brazil, Dates.Date(2013, 12, 25)) == false # Christmas
@test isbday(hc_brazil, Dates.Date(2013, 12, 26)) == true # thursday
@test isbday(hc_brazil, Dates.Date(2013, 02, 08)) == true # friday
@test isbday(hc_brazil, Dates.Date(2013, 02, 09)) == false # saturday
@test isbday(hc_brazil, Dates.Date(2013, 02, 10)) == false # sunday
@test isbday(hc_brazil, Dates.Date(2013, 02, 11)) == false # segunda carnaval
@test isbday(hc_brazil, Dates.Date(2013, 02, 12)) == false # terca carnaval
@test isbday(hc_brazil, Dates.Date(2013, 02, 13)) == true # wednesday
@test isbday(hc_brazil, Dates.Date(2013, 03, 28)) == true # thursday
@test isbday(hc_brazil, Dates.Date(2013, 03, 29)) == false # sexta-feira santa
@test isbday(hc_brazil, Dates.Date(2013, 03, 30)) == false # saturday
@test isbday(hc_brazil, Dates.Date(2013, 05, 29)) == true # wednesday
@test isbday(hc_brazil, Dates.Date(2013, 05, 30)) == false # Corpus Christi
@test isbday(hc_brazil, Dates.Date(2013, 05, 31)) == true # friday
@test isbday(hc_brazil, Dates.Date(2023, 11, 20)) == true # zumbi 2023
@test isbday(hc_brazil, Dates.Date(2024, 11, 20)) == false # zumbi 2024
# Symbol
@test isbday(:Brazil, Dates.Date(2013, 05, 29)) == true # wednesday
@test isbday(:Brazil, Dates.Date(2013, 05, 30)) == false # Corpus Christi
@test isbday(:Brazil, Dates.Date(2013, 05, 31)) == true # friday
# String
@test isbday("Brazil", Dates.Date(2013, 05, 29)) == true # wednesday
@test isbday("Brazil", Dates.Date(2013, 05, 30)) == false # Corpus Christi
@test isbday("Brazil", Dates.Date(2013, 05, 31)) == true # friday
# BrazilExchange holiday calendar tests
@test isbday(hc_brazil_exc, Dates.Date(2017, 11, 19)) == false # sunday
@test isbday(hc_brazil_exc, Dates.Date(2017, 11, 20)) == false # Consciência Negra (segunda)
@test isbday(hc_brazil_exc, Dates.Date(2017, 11, 21)) == true # Terca
@test isbday(:BrazilExchange, Dates.Date(2013, 05, 29)) == true # wednesday
@test isbday(:BrazilExchange, Dates.Date(2013, 05, 30)) == false # Corpus Christi (National Holiday)
@test isbday(:BrazilExchange, Dates.Date(2013, 05, 31)) == true # friday
# BrazilB3 as alias of BrazilExchange
@test isbday(:BrazilB3, Dates.Date(2013, 05, 29)) == true # wednesday
@test isbday(:BrazilB3, Dates.Date(2013, 05, 30)) == false # Corpus Christi (National Holiday)
@test isbday(:BrazilB3, Dates.Date(2013, 05, 31)) == true # friday
# BrazilExchange 2019 calendar
@test isbday(hc_brazil_exc, Dates.Date(2019, 01, 01)) == false # Confraternização Universal
@test isbday(hc_brazil_exc, Dates.Date(2019, 03, 04)) == false # Carnaval
@test isbday(hc_brazil_exc, Dates.Date(2019, 03, 05)) == false # Carnaval
@test isbday(hc_brazil_exc, Dates.Date(2019, 04, 19)) == false # Paixão de Cristo
@test isbday(hc_brazil_exc, Dates.Date(2019, 05, 01)) == false # Dia do Trabalho
@test isbday(hc_brazil_exc, Dates.Date(2019, 06, 20)) == false # Corpus Christi
@test isbday(hc_brazil_exc, Dates.Date(2019, 11, 15)) == false # Proclamação da República
@test isbday(hc_brazil_exc, Dates.Date(2019, 12, 24)) == false # Véspera de Natal
@test isbday(hc_brazil_exc, Dates.Date(2019, 12, 25)) == false # Natal
@test isbday(hc_brazil_exc, Dates.Date(2019, 12, 31)) == false # bank holiday
@test isbday(hc_brazil_exc, Dates.Date(2019, 01, 25)) == false # Aniversário de São Paulo
@test isbday(hc_brazil_exc, Dates.Date(2019, 07, 09)) == false # Revolução Constitucionalista
@test isbday(hc_brazil_exc, Dates.Date(2019, 11, 20)) == false # Dia da Consciência Negra
# BrazilExchange 2020 calendar
@test isbday(hc_brazil_exc, Dates.Date(2020, 05, 20)) == true
@test isbday(hc_brazil_exc, Dates.Date(2020, 05, 21)) == true
@test isbday(hc_brazil_exc, Dates.Date(2020, 05, 22)) == true
@test isbday(hc_brazil_exc, Dates.Date(2020, 05, 25)) == true
@test isbday(hc_brazil_exc, Dates.Date(2020, 06, 11)) == false
@test isbday(hc_brazil_exc, Dates.Date(2020, 07, 09)) == true # 2020 update by Ofício Circular 072/2020-PRE
@test isbday(hc_brazil_exc, Dates.Date(2020, 11, 20)) == true # 2020 update by Ofício Circular 072/2020-PRE
# BrazilExchange 2021 calendar
@test isholiday(hc_brazil_exc, Dates.Date(2021, 1, 25)) == true
@test isholiday(hc_brazil_exc, Dates.Date(2021, 7, 9)) == true
# BrazilExchange 2022 calendar
@test isholiday(hc_brazil_exc, Dates.Date(2022, 1, 25)) == false # updated by Ofício Circular 150/2020-PRE
@test isholiday(hc_brazil_exc, Dates.Date(2022, 7, 9)) == false
@test isholiday(hc_brazil_exc, Dates.Date(2022, 11, 20)) == false
@test isholiday(hc_brazil_exc, Dates.Date(2022, 2, 28)) == true
@test isholiday(hc_brazil_exc, Dates.Date(2022, 3, 1)) == true
@test isholiday(hc_brazil_exc, Dates.Date(2022, 4, 15)) == true
@test isholiday(hc_brazil_exc, Dates.Date(2022, 4, 21)) == true
@test isholiday(hc_brazil_exc, Dates.Date(2022, 6, 16)) == true
@test isholiday(hc_brazil_exc, Dates.Date(2022, 9, 7)) == true
@test isholiday(hc_brazil_exc, Dates.Date(2022, 10, 12)) == true
@test isholiday(hc_brazil_exc, Dates.Date(2022, 11, 2)) == true
@test isholiday(hc_brazil_exc, Dates.Date(2022, 11, 15)) == true
@test BusinessDays.listholidays(hc_brazil_exc, Dates.Date(2022, 1, 1), Dates.Date(2022, 12, 31)) == [
Dates.Date("2022-01-01"), # Confraternização Universal (Sábado)
Dates.Date("2022-02-28"), # Carnaval (segunda)
Dates.Date("2022-03-01"), # Carnaval (Terça)
Dates.Date("2022-04-15"), # Paixão de Cristo
Dates.Date("2022-04-21"), # Tiradentes
Dates.Date("2022-05-01"), # Dia do Trabalho (Domingo)
Dates.Date("2022-06-16"), # Corpus Christi
Dates.Date("2022-09-07"), # Independência do Brasil
Dates.Date("2022-10-12"), # Nossa Senhora Aparecida
Dates.Date("2022-11-02"), # Finados
Dates.Date("2022-11-15"), # Proclamação da República
Dates.Date("2022-12-24"), # Véspera de Natal (sábado)
Dates.Date("2022-12-25"), # Natal (Domingo)
Dates.Date("2022-12-30"), # Véspera do ano novo
Dates.Date("2022-12-31") # Ano novo (Sábado)
]
# USSettlement HolidayCaledar tests
# Federal Holidays listed on https://www.opm.gov/policy-data-oversight/snow-dismissal-procedures/federal-holidays/#url=2015
@test isbday(hc_usa, Dates.Date(2014, 12, 31)) == true
@test isbday(hc_usa, Dates.Date(2015, 01, 01)) == false # New Year's Day - Thursday
@test isbday(hc_usa, Dates.Date(2015, 01, 02)) == true
@test isbday(hc_usa, Dates.Date(2015, 01, 18)) == false
@test isbday(hc_usa, Dates.Date(2015, 01, 19)) == false # Birthday of Martin Luther King, Jr. - Monday
@test isbday(hc_usa, Dates.Date(2015, 01, 20)) == true
@test isbday(hc_usa, Dates.Date(1982,01,18)) == true # not a holiday for Martin Luther King
@test isbday(hc_usa, Dates.Date(2015, 02, 15)) == false
@test isbday(hc_usa, Dates.Date(2015, 02, 16)) == false # Washington’s Birthday - Monday
@test isbday(hc_usa, Dates.Date(2015, 02, 17)) == true
@test isbday(hc_usa, Dates.Date(2015, 05, 24)) == false
@test isbday(hc_usa, Dates.Date(2015, 05, 25)) == false # Memorial Day - Monday
@test isbday(hc_usa, Dates.Date(2015, 05, 26)) == true
@test isbday(hc_usa, Dates.Date(2020, 06, 19)) == true
@test isbday(hc_usa, Dates.Date(2021, 06, 17)) == true
@test isbday(hc_usa, Dates.Date(2021, 06, 18)) == false # Juneteenth starting 2021
@test isbday(hc_usa, Dates.Date(2022, 06, 20)) == false # Juneteenth 2022
@test isbday(hc_usa, Dates.Date(2015, 07, 02)) == true
@test isbday(hc_usa, Dates.Date(2015, 07, 03)) == false # Independence Day - Friday
@test isbday(hc_usa, Dates.Date(2015, 07, 04)) == false
@test isbday(hc_usa, Dates.Date(2015, 09, 06)) == false
@test isbday(hc_usa, Dates.Date(2015, 09, 07)) == false # Labor Day - Monday
@test isbday(hc_usa, Dates.Date(2015, 09, 08)) == true
@test isbday(hc_usa, Dates.Date(2015, 10, 11)) == false
@test isbday(hc_usa, Dates.Date(2015, 10, 12)) == false # Columbus Day - Monday
@test isbday(hc_usa, Dates.Date(2015, 10, 13)) == true
@test isbday(hc_usa, Dates.Date(2015, 11, 10)) == true
@test isbday(hc_usa, Dates.Date(2015, 11, 11)) == false # Veterans Day - Wednesday
@test isbday(hc_usa, Dates.Date(2015, 11, 12)) == true
@test isbday(hc_usa, Dates.Date(2015, 11, 25)) == true
@test isbday(hc_usa, Dates.Date(2015, 11, 26)) == false # Thanksgiving Day - Thursday
@test isbday(hc_usa, Dates.Date(2015, 11, 27)) == true
@test isbday(hc_usa, Dates.Date(2015, 12, 24)) == true
@test isbday(hc_usa, Dates.Date(2015, 12, 25)) == false # Christmas - Friday
@test isbday(hc_usa, Dates.Date(2015, 12, 26)) == false
@test isbday(hc_usa, Dates.Date(2010, 12, 31)) == false # new years day observed
@test isbday(hc_usa, Dates.Date(2004, 12, 31)) == false # new years day observed
@test isbday(hc_usa, Dates.Date(2013, 03, 28)) == true # thursday
@test isbday(hc_usa, Dates.Date(2013, 03, 29)) == true # good friday
@test isbday(hc_usa, Dates.Date(2013, 03, 30)) == false # saturday
# Symbol
@test isbday(:USSettlement, Dates.Date(2015, 12, 24)) == true
@test isbday(:USSettlement, Dates.Date(2015, 12, 25)) == false # Christmas - Friday
@test isbday(:USSettlement, Dates.Date(2015, 12, 26)) == false
# String
@test isbday("USSettlement", Dates.Date(2015, 12, 24)) == true
@test isbday("USSettlement", Dates.Date(2015, 12, 25)) == false # Christmas - Friday
@test isbday("USSettlement", Dates.Date(2015, 12, 26)) == false
## USNYSE HolidayCalendar tests
@test isbday(hc_usnyse, Dates.Date(2014, 12, 31)) == true
@test isbday(hc_usnyse, Dates.Date(2015, 01, 01)) == false # New Year's Day - Thursday
@test isbday(hc_usnyse, Dates.Date(2015, 01, 02)) == true
@test isbday(hc_usnyse, Dates.Date(2015, 01, 18)) == false
@test isbday(hc_usnyse, Dates.Date(2015, 01, 19)) == false # Birthday of Martin Luther King, Jr. - Monday
@test isbday(hc_usnyse, Dates.Date(2015, 01, 20)) == true
@test isbday(hc_usnyse, Dates.Date(2015, 02, 15)) == false
@test isbday(hc_usnyse, Dates.Date(2015, 02, 16)) == false # Washington’s Birthday - Monday
@test isbday(hc_usnyse, Dates.Date(2015, 02, 17)) == true
@test isbday(hc_usnyse, Dates.Date(2015, 05, 24)) == false
@test isbday(hc_usnyse, Dates.Date(2015, 05, 25)) == false # Memorial Day - Monday
@test isbday(hc_usnyse, Dates.Date(2015, 05, 26)) == true
@test isbday(hc_usnyse, Dates.Date(2021, 06, 18)) == true
@test isbday(hc_usnyse, Dates.Date(2022, 06, 20)) == false # Juneteenth starting 2022
@test isbday(hc_usnyse, Dates.Date(2023, 06, 19)) == false # Juneteenth 2023
@test isbday(hc_usnyse, Dates.Date(2015, 07, 02)) == true
@test isbday(hc_usnyse, Dates.Date(2015, 07, 03)) == false # Independence Day - Friday
@test isbday(hc_usnyse, Dates.Date(2015, 07, 04)) == false
@test isbday(hc_usnyse, Dates.Date(2015, 09, 06)) == false
@test isbday(hc_usnyse, Dates.Date(2015, 09, 07)) == false # Labor Day - Monday
@test isbday(hc_usnyse, Dates.Date(2015, 09, 08)) == true
@test isbday(hc_usnyse, Dates.Date(2015, 10, 11)) == false
@test isbday(hc_usnyse, Dates.Date(2015, 10, 12)) == true # Columbus Day - Monday
@test isbday(hc_usnyse, Dates.Date(2015, 10, 13)) == true
@test isbday(hc_usnyse, Dates.Date(2015, 11, 10)) == true
@test isbday(hc_usnyse, Dates.Date(2015, 11, 11)) == true # Veterans Day - Wednesday
@test isbday(hc_usnyse, Dates.Date(2015, 11, 12)) == true
@test isbday(hc_usnyse, Dates.Date(2015, 11, 25)) == true
@test isbday(hc_usnyse, Dates.Date(2015, 11, 26)) == false # Thanksgiving Day - Thursday
@test isbday(hc_usnyse, Dates.Date(2015, 11, 27)) == true
@test isbday(hc_usnyse, Dates.Date(2015, 12, 24)) == true
@test isbday(hc_usnyse, Dates.Date(2015, 12, 25)) == false # Christmas - Friday
@test isbday(hc_usnyse, Dates.Date(2015, 12, 26)) == false
@test isbday(hc_usnyse, Dates.Date(2010, 12, 31)) == true # Friday before new years
@test isbday(hc_usnyse, Dates.Date(2004, 12, 31)) == true # Friday before new years
@test isbday(hc_usnyse, Dates.Date(2013, 03, 28)) == true # thursday
@test isbday(hc_usnyse, Dates.Date(2013, 03, 29)) == false # good friday
@test isbday(hc_usnyse, Dates.Date(2013, 03, 30)) == false # saturday
# Symbol
@test isbday(:USNYSE, Dates.Date(2015, 12, 24)) == true
@test isbday(:USNYSE, Dates.Date(2015, 12, 25)) == false # Christmas - Friday
@test isbday(:USNYSE, Dates.Date(2015, 12, 26)) == false
# String
@test isbday("USNYSE", Dates.Date(2015, 12, 24)) == true
@test isbday("USNYSE", Dates.Date(2015, 12, 25)) == false # Christmas - Friday
@test isbday("USNYSE", Dates.Date(2015, 12, 26)) == false
## USGovernmentBond HolidayCalendar tests
@test isbday(hc_usgovbond, Dates.Date(2014, 12, 31)) == true
@test isbday(hc_usgovbond, Dates.Date(2015, 01, 01)) == false # New Year's Day - Thursday
@test isbday(hc_usgovbond, Dates.Date(2015, 01, 02)) == true
@test isbday(hc_usgovbond, Dates.Date(2015, 01, 18)) == false
@test isbday(hc_usgovbond, Dates.Date(2015, 01, 19)) == false # Birthday of Martin Luther King, Jr. - Monday
@test isbday(hc_usgovbond, Dates.Date(2015, 01, 20)) == true
@test isbday(hc_usgovbond, Dates.Date(2015, 02, 15)) == false
@test isbday(hc_usgovbond, Dates.Date(2015, 02, 16)) == false # Washington’s Birthday - Monday
@test isbday(hc_usgovbond, Dates.Date(2015, 02, 17)) == true
@test isbday(hc_usgovbond, Dates.Date(2015, 05, 24)) == false
@test isbday(hc_usgovbond, Dates.Date(2015, 05, 25)) == false # Memorial Day - Monday
@test isbday(hc_usgovbond, Dates.Date(2015, 05, 26)) == true
@test isbday(hc_usgovbond, Dates.Date(2015, 07, 02)) == true
@test isbday(hc_usgovbond, Dates.Date(2015, 07, 03)) == false # Independence Day - Friday
@test isbday(hc_usgovbond, Dates.Date(2015, 07, 04)) == false
@test isbday(hc_usgovbond, Dates.Date(2015, 09, 06)) == false
@test isbday(hc_usgovbond, Dates.Date(2015, 09, 07)) == false # Labor Day - Monday
@test isbday(hc_usgovbond, Dates.Date(2015, 09, 08)) == true
@test isbday(hc_usgovbond, Dates.Date(2015, 10, 11)) == false
@test isbday(hc_usgovbond, Dates.Date(2015, 10, 12)) == false # Columbus Day - Monday
@test isbday(hc_usgovbond, Dates.Date(2015, 10, 13)) == true
@test isbday(hc_usgovbond, Dates.Date(2015, 11, 10)) == true
@test isbday(hc_usgovbond, Dates.Date(2015, 11, 11)) == false # Veterans Day - Wednesday
@test isbday(hc_usgovbond, Dates.Date(2015, 11, 12)) == true
@test isbday(hc_usgovbond, Dates.Date(2015, 11, 25)) == true
@test isbday(hc_usgovbond, Dates.Date(2015, 11, 26)) == false # Thanksgiving Day - Thursday
@test isbday(hc_usgovbond, Dates.Date(2015, 11, 27)) == true
@test isbday(hc_usgovbond, Dates.Date(2015, 12, 24)) == true
@test isbday(hc_usgovbond, Dates.Date(2015, 12, 25)) == false # Christmas - Friday
@test isbday(hc_usgovbond, Dates.Date(2015, 12, 26)) == false
@test isbday(hc_usgovbond, Dates.Date(2010, 12, 31)) == true # Friday before new years
@test isbday(hc_usgovbond, Dates.Date(2004, 12, 31)) == true # Friday before new years
@test isbday(hc_usgovbond, Dates.Date(2013, 03, 28)) == true # thursday
@test isbday(hc_usgovbond, Dates.Date(2013, 03, 29)) == false # good friday
@test isbday(hc_usgovbond, Dates.Date(2013, 03, 30)) == false # saturday
# 2022
@test BusinessDays.listholidays(BusinessDays.USGovernmentBond(), Dates.Date(2022, 1, 1), Dates.Date(2023, 1, 1)) == Dates.Date.([
"2022-01-17", # Martin Luther King Day
"2022-02-21", # Presidents Day
"2022-04-15", # Good Friday
"2022-05-30", # Memorial Day
"2022-06-20", # Juneteenth
"2022-07-04", # U.S. Independence Day
"2022-09-05", # Labor Day
"2022-10-10", # Columbus Day
"2022-11-11", # Veterans Day
"2022-11-24", # Thanksgiving Day
"2022-12-26", # Christmas Day
])
# 2023
@test BusinessDays.listholidays(BusinessDays.USGovernmentBond(), Dates.Date(2023, 1, 1), Dates.Date(2023, 12, 31)) == Dates.Date.([
"2023-01-02", # New Year's Day 2022/2023
"2023-01-16", # Martin Luther King Day
"2023-02-20", # Presidents Day
"2023-04-07", # Good Friday
"2023-05-29", # Memorial Day
"2023-06-19", # Juneteenth
"2023-07-04", # U.S. Independence Day
"2023-09-04", # Labor Day
"2023-10-09", # Columbus Day
"2023-11-23", # Thanksgiving Day
"2023-12-25", # Christmas Day
])
# 2024
@test BusinessDays.listholidays(BusinessDays.USGovernmentBond(), Dates.Date(2024, 1, 1), Dates.Date(2024, 12, 31)) == Dates.Date.([
"2024-01-01", # New Year’s
"2024-01-15", # Martin Luther King Day
"2024-02-19", # Presidents Day
"2024-03-29", # Good Friday
"2024-05-27", # Memorial Day
"2024-06-19", # Juneteenth
"2024-07-04", # U.S. Independence Day
"2024-09-02", # Labor Day
"2024-10-14", # Columbus Day
"2024-11-11", # Veterans Day
"2024-11-28", # Thanksgiving Day
"2024-12-25", # Christmas Day
])
# 2025
@test !isbday(hc_usgovbond, Dates.Date(2025, 01, 1)) # New Year's Day
# Symbol
@test isbday(:USGovernmentBond, Dates.Date(2015, 12, 24)) == true
@test isbday(:USGovernmentBond, Dates.Date(2015, 12, 25)) == false # Christmas - Friday
@test isbday(:USGovernmentBond, Dates.Date(2015, 12, 26)) == false
# String
@test isbday("USGovernmentBond", Dates.Date(2015, 12, 24)) == true
@test isbday("USGovernmentBond", Dates.Date(2015, 12, 25)) == false # Christmas - Friday
@test isbday("USGovernmentBond", Dates.Date(2015, 12, 26)) == false
# TARGET HolidayCalendar tests
@test isbday(targethc, Dates.Date(2017, 12, 24)) == false # Sunday
@test isbday(targethc, Dates.Date(2017, 12, 25)) == false # Christmas - Monday
@test isbday(targethc, Dates.Date(2017, 12, 26)) == false # Day of Goodwill - Tuesday
@test isbday(targethc, Dates.Date(2017, 12, 27)) == true # Wednesday
@test isbday(targethc, Dates.Date(2017, 04, 16)) == false # Easter Sunday
@test isbday(targethc, Dates.Date(2017, 04, 17)) == false # Easter Monday
@test isbday(targethc, Dates.Date(2017, 04, 18)) == true # Tuesday
@test isbday(targethc, Dates.Date(2001, 12, 31)) == false # End of year
@test isbday(targethc, Dates.Date(2002, 12, 31)) == true # End of year
@test isbday(targethc, Dates.Date(2016, 1, 1)) == false # New Year's Day
@test isbday(targethc, Dates.Date(2017, 5, 1)) == false # Labour Day
@test isbday(targethc, Dates.Date(1998, 5, 1)) == true # Labour Day before 2000
# Symbol
@test isbday(:TARGET, Dates.Date(2017, 04, 16)) == false # Easter Sunday
@test isbday(:TARGET, Dates.Date(2017, 04, 17)) == false # Easter Monday
@test isbday(:TARGET, Dates.Date(2017, 04, 18)) == true # Tuesday
# String
@test isbday("TARGET", Dates.Date(2017, 04, 16)) == false # Easter Sunday
@test isbday("TARGET", Dates.Date(2017, 04, 17)) == false # Easter Monday
@test isbday("TARGET", Dates.Date(2017, 04, 18)) == true # Tuesday
# TARGET synonyms
@test isbday("TARGET2", Dates.Date(2017, 04, 18)) == isbday("TARGET", Dates.Date(2017, 04, 18))
@test isbday("EuroZone", Dates.Date(2017, 04, 18)) == isbday("TARGET", Dates.Date(2017, 04, 18))
## UKSettlement HolidayCalendar tests
@test isbday(hc_uk, Dates.Date(2014, 12, 31)) == true
@test isbday(hc_uk, Dates.Date(2015, 01, 01)) == false # New Year's Day Thursday
@test isbday(hc_uk, Dates.Date(2015, 01, 02)) == true
@test isbday(hc_uk, Dates.Date(2015, 08, 30)) == false
@test isbday(hc_uk, Dates.Date(2015, 08, 31)) == false # Monday Summer bank holiday
@test isbday(hc_uk, Dates.Date(2015, 09, 01)) == true
@test isbday(hc_uk, Dates.Date(2015, 12, 24)) == true
@test isbday(hc_uk, Dates.Date(2015, 12, 25)) == false # 25 December Friday Christmas Day
@test isbday(hc_uk, Dates.Date(2015, 12, 26)) == false
@test isbday(hc_uk, Dates.Date(2015, 12, 27)) == false
@test isbday(hc_uk, Dates.Date(2015, 12, 28)) == false # Monday Boxing Day (substitute day)
@test isbday(hc_uk, Dates.Date(2015, 12, 29)) == true
@test isbday(hc_uk, Dates.Date(2016, 03, 24)) == true
@test isbday(hc_uk, Dates.Date(2016, 03, 25)) == false # 25 March Friday Good Friday
@test isbday(hc_uk, Dates.Date(2016, 03, 26)) == false
@test isbday(hc_uk, Dates.Date(2016, 03, 27)) == false
@test isbday(hc_uk, Dates.Date(2016, 03, 28)) == false # 28 March Monday Easter Monday
@test isbday(hc_uk, Dates.Date(2016, 03, 29)) == true
@test isbday(hc_uk, Dates.Date(2016, 05, 01)) == false
@test isbday(hc_uk, Dates.Date(2016, 05, 02)) == false # 2 May Monday Early May bank holiday
@test isbday(hc_uk, Dates.Date(2016, 05, 03)) == true
@test isbday(hc_uk, Dates.Date(2016, 05, 29)) == false
@test isbday(hc_uk, Dates.Date(2016, 05, 30)) == false # 30 May Monday Spring bank holiday
@test isbday(hc_uk, Dates.Date(2016, 05, 31)) == true
@test isbday(hc_uk, Dates.Date(2016, 08, 28)) == false
@test isbday(hc_uk, Dates.Date(2016, 08, 29)) == false # 29 August Monday Summer bank holiday
@test isbday(hc_uk, Dates.Date(2016, 08, 30)) == true
@test isbday(hc_uk, Dates.Date(2016, 12, 23)) == true
@test isbday(hc_uk, Dates.Date(2016, 12, 24)) == false
@test isbday(hc_uk, Dates.Date(2016, 12, 25)) == false
@test isbday(hc_uk, Dates.Date(2016, 12, 26)) == false # 26 December Monday Boxing Day
@test isbday(hc_uk, Dates.Date(2016, 12, 27)) == false # 27 December Tuesday Christmas Day (substitute day)
@test isbday(hc_uk, Dates.Date(2016, 12, 28)) == true
# 2012 UK Holidays
@test isbday(hc_uk, Dates.Date(2011, 12, 30)) == true
@test isbday(hc_uk, Dates.Date(2011, 12, 31)) == false
@test isbday(hc_uk, Dates.Date(2012, 01, 01)) == false
@test isbday(hc_uk, Dates.Date(2012, 01, 02)) == false # 2 January Monday New Year’s Day (substitute day)
@test isbday(hc_uk, Dates.Date(2012, 01, 03)) == true
@test isbday(hc_uk, Dates.Date(2012, 04, 05)) == true
@test isbday(hc_uk, Dates.Date(2012, 04, 06)) == false # 6 April Friday Good Friday
@test isbday(hc_uk, Dates.Date(2012, 04, 07)) == false
@test isbday(hc_uk, Dates.Date(2012, 04, 08)) == false
@test isbday(hc_uk, Dates.Date(2012, 04, 09)) == false # 9 April Monday Easter Monday
@test isbday(hc_uk, Dates.Date(2012, 04, 10)) == true
@test isbday(hc_uk, Dates.Date(2012, 05, 06)) == false
@test isbday(hc_uk, Dates.Date(2012, 05, 07)) == false # 7 May Monday Early May bank holiday
@test isbday(hc_uk, Dates.Date(2012, 05, 08)) == true
@test isbday(hc_uk, Dates.Date(2012, 06, 01)) == true
@test isbday(hc_uk, Dates.Date(2012, 06, 02)) == false
@test isbday(hc_uk, Dates.Date(2012, 06, 03)) == false
@test isbday(hc_uk, Dates.Date(2012, 06, 04)) == false # 4 June Monday Spring bank holiday (substitute day)
@test isbday(hc_uk, Dates.Date(2012, 06, 05)) == false # 5 June Tuesday Queen’s Diamond Jubilee (extra bank holiday)
@test isbday(hc_uk, Dates.Date(2012, 06, 06)) == true
@test isbday(hc_uk, Dates.Date(2011, 04, 29)) == false # wedding
@test isbday(hc_uk, Dates.Date(2012, 08, 26)) == false
@test isbday(hc_uk, Dates.Date(2012, 08, 27)) == false # 27 August Monday Summer bank holiday
@test isbday(hc_uk, Dates.Date(2012, 08, 28)) == true
@test isbday(hc_uk, Dates.Date(2012, 12, 24)) == true
@test isbday(hc_uk, Dates.Date(2012, 12, 25)) == false # 25 December Tuesday Christmas Day
@test isbday(hc_uk, Dates.Date(2012, 12, 26)) == false # 26 December Wednesday Boxing Day
@test isbday(hc_uk, Dates.Date(2012, 12, 27)) == true
# 1999 UK holidays
@test isbday(hc_uk, Dates.Date(1999, 12, 26)) == false # Sunday
@test isbday(hc_uk, Dates.Date(1999, 12, 27)) == false # Christmas observed
@test isbday(hc_uk, Dates.Date(1999, 12, 28)) == false # Boxing observed
@test isbday(hc_uk, Dates.Date(1999, 12, 29)) == true
@test isbday(hc_uk, Dates.Date(1999, 12, 30)) == true
@test isbday(hc_uk, Dates.Date(1999, 12, 31)) == false
# 1995 UK holidays
@test isbday(hc_uk, Dates.Date(1995, 5, 1)) == true # Early May Bank Holiday was moved to May 8th in 1995
@test isbday(hc_uk, Dates.Date(1995, 5, 8)) == false # Early May Bank Holiday was moved to May 8th in 1995
# 2020 UK holidays
@test isbday(hc_uk, Dates.Date(2020, 5, 4)) == true # Early May Bank Holiday was moved to May 8th in 2020
@test isbday(hc_uk, Dates.Date(2020, 5, 8)) == false # Early May Bank Holiday was moved to May 8th in 2020
# 2021 UK Holidays
@test isbday(hc_uk, Dates.Date(2021, 5, 3)) == false # May Day
@test isbday(hc_uk, Dates.Date(2021, 5, 4)) == true
@test isbday(hc_uk, Dates.Date(2021, 5, 31)) == false # spring bank holiday
@test isbday(hc_uk, Dates.Date(2021, 6, 1)) == true # spring bank holiday
# 2022 UK holidays slightly move due to Platinum Jubilee (#57)
@test isbday(hc_uk, Dates.Date(2022, 6, 3)) == false # Platinum Jubilee of Queen Elizabeth II.
@test isbday(hc_uk, Dates.Date(2022, 5, 2)) == false # May Day
@test isbday(hc_uk, Dates.Date(2022, 5, 30)) == true
@test isbday(hc_uk, Dates.Date(2022, 6, 2)) == false # Spring Bank Holiday
@test isbday(hc_uk, Dates.Date(2022, 8, 29)) == false # Summer Bank Holiday
@test isbday(hc_uk, Dates.Date(2022, 9, 19)) == false # Funeral of Queen Elizabeth II
@test isbday(hc_uk, Dates.Date(2022, 12, 26)) == false # Boxing
@test isbday(hc_uk, Dates.Date(2022, 12, 27)) == false # Christmas
# 2023 UK holidays
@test BusinessDays.listholidays(hc_uk, Dates.Date(2023, 1, 1), Dates.Date(2023, 12, 31)) == Dates.Date.([
"2023-01-02", # New Year’s Day (substitute day)
"2023-04-07", # Good Friday
"2023-04-10", # Easter Monday
"2023-05-01", # Early May bank holiday
"2023-05-08", # Coronation of King Charles III
"2023-05-29", # Spring bank holiday
"2023-08-28", # Summer bank holiday
"2023-12-25", # Christmas Day
"2023-12-26", # Boxing Day
])
@test tobday(hc_brazil, Dates.Date(2013, 02, 08)) == Dates.Date(2013, 02, 08) # regular friday
@test tobday(hc_brazil, Dates.Date(2013, 02, 09)) == Dates.Date(2013, 02, 13) # after carnaval
@test tobday(hc_brazil, Dates.Date(2013, 02, 09); forward = true) == Dates.Date(2013, 02, 13) # after carnaval
@test tobday(hc_brazil, Dates.Date(2013, 02, 13); forward = false) == Dates.Date(2013, 02, 13) # after carnaval
@test tobday(hc_brazil, Dates.Date(2013, 02, 12); forward = false) == Dates.Date(2013, 02, 08) # before carnaval
@test tobday(:Brazil, Dates.Date(2013, 02, 08)) == Dates.Date(2013, 02, 08) # regular friday
@test tobday(:Brazil, Dates.Date(2013, 02, 09)) == Dates.Date(2013, 02, 13) # after carnaval
@test tobday(:Brazil, Dates.Date(2013, 02, 09); forward = true) == Dates.Date(2013, 02, 13) # after carnaval
@test tobday(:Brazil, Dates.Date(2013, 02, 13); forward = false) == Dates.Date(2013, 02, 13) # after carnaval
@test tobday(:Brazil, Dates.Date(2013, 02, 12); forward = false) == Dates.Date(2013, 02, 08) # before carnaval
@test tobday("Brazil", Dates.Date(2013, 02, 08)) == Dates.Date(2013, 02, 08) # regular friday
@test tobday("Brazil", Dates.Date(2013, 02, 09)) == Dates.Date(2013, 02, 13) # after carnaval
@test tobday("Brazil", Dates.Date(2013, 02, 09); forward = true) == Dates.Date(2013, 02, 13) # after carnaval
@test tobday("Brazil", Dates.Date(2013, 02, 13); forward = false) == Dates.Date(2013, 02, 13) # after carnaval
@test tobday("Brazil", Dates.Date(2013, 02, 12); forward = false) == Dates.Date(2013, 02, 08) # before carnaval
@test advancebdays(hc_brazil, Dates.Date(2013, 02, 06), 0) == Dates.Date(2013, 02, 06) # regular wednesday
@test advancebdays(hc_brazil, Dates.Date(2013, 02, 06), 1) == Dates.Date(2013, 02, 07) # regular thursday
@test advancebdays(hc_brazil, Dates.Date(2013, 02, 07), -1) == Dates.Date(2013, 02, 06) # regular thursday
@test advancebdays(hc_brazil, Dates.Date(2013, 02, 06), 2) == Dates.Date(2013, 02, 08) # regular friday
@test advancebdays(hc_brazil, Dates.Date(2013, 02, 06), 3) == Dates.Date(2013, 02, 13) # after carnaval wednesday
@test advancebdays(hc_brazil, Dates.Date(2013, 02, 06), 4) == Dates.Date(2013, 02, 14) # after carnaval thursday
@test advancebdays(hc_brazil, Dates.Date(2013, 02, 14), -4) == Dates.Date(2013, 02, 06) # after carnaval thursday
@test advancebdays(:Brazil, Dates.Date(2013, 02, 06), 0) == Dates.Date(2013, 02, 06) # regular wednesday
@test advancebdays(:Brazil, Dates.Date(2013, 02, 06), 1) == Dates.Date(2013, 02, 07) # regular thursday
@test advancebdays(:Brazil, Dates.Date(2013, 02, 06), 2) == Dates.Date(2013, 02, 08) # regular friday
@test advancebdays(:Brazil, Dates.Date(2013, 02, 06), 3) == Dates.Date(2013, 02, 13) # after carnaval wednesday
@test advancebdays(:Brazil, Dates.Date(2013, 02, 06), 4) == Dates.Date(2013, 02, 14) # after carnaval thursday
@test advancebdays("Brazil", Dates.Date(2013, 02, 06), 0) == Dates.Date(2013, 02, 06) # regular wednesday
@test advancebdays("Brazil", Dates.Date(2013, 02, 06), 1) == Dates.Date(2013, 02, 07) # regular thursday
@test advancebdays("Brazil", Dates.Date(2013, 02, 06), 2) == Dates.Date(2013, 02, 08) # regular friday
@test advancebdays("Brazil", Dates.Date(2013, 02, 06), 3) == Dates.Date(2013, 02, 13) # after carnaval wednesday
@test advancebdays("Brazil", Dates.Date(2013, 02, 06), 4) == Dates.Date(2013, 02, 14) # after carnaval thursday
@test bdays(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 06)) == Dates.Day(0)
@test bdays(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 07)) == Dates.Day(1)
@test bdays(hc_brazil, Dates.Date(2013, 02, 07), Dates.Date(2013, 02, 06)).value == -1
@test bdays(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 08)).value == 2
@test bdays(hc_brazil, Dates.Date(2013, 02, 08), Dates.Date(2013, 02, 06)).value == -2
@test bdays(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 09)).value == 3
@test bdays(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 10)).value == 3
@test bdays(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 11)).value == 3
@test bdays(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 12)).value == 3
@test bdays(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 13)).value == 3
@test bdays(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 14)).value == 4
@test bdays(hc_brazil, Dates.Date(2013, 02, 14), Dates.Date(2013, 02, 06)).value == -4
@test bdayscount(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 06)) == 0
@test bdayscount(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 07)) == 1
@test bdayscount(hc_brazil, Dates.Date(2013, 02, 07), Dates.Date(2013, 02, 06)) == -1
@test bdayscount(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 08)) == 2
@test bdayscount(hc_brazil, Dates.Date(2013, 02, 08), Dates.Date(2013, 02, 06)) == -2
@test bdayscount(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 09)) == 3
@test bdayscount(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 10)) == 3
@test bdayscount(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 11)) == 3
@test bdayscount(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 12)) == 3
@test bdayscount(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 13)) == 3
@test bdayscount(hc_brazil, Dates.Date(2013, 02, 06), Dates.Date(2013, 02, 14)) == 4
@test bdayscount(hc_brazil, Dates.Date(2013, 02, 14), Dates.Date(2013, 02, 06)) == -4
# Canada
tsxdates16 = [
Dates.Date(2016, 1, 1),
Dates.Date(2016, 2, 15),
Dates.Date(2016, 3, 25),
Dates.Date(2016, 5, 23),
Dates.Date(2016, 7, 1),
Dates.Date(2016, 8, 1),
Dates.Date(2016, 9, 5),
Dates.Date(2016, 10, 10),
Dates.Date(2016, 12, 26),
Dates.Date(2016, 12, 27)
]
alldates16itr = Dates.Date(2016,1,1):Dates.Day(1):Dates.Date(2016, 12,31)
for i in alldates16itr
if i ∈ tsxdates16
@test isholiday(hc_canadatsx, i) == true
else
@test isholiday(hc_canadatsx, i) == false
end
end
tsxdates17 = [
Dates.Date(2017, 1, 2),
Dates.Date(2017, 2, 20),
Dates.Date(2017, 4, 14),
Dates.Date(2017, 5, 22),
Dates.Date(2017, 7, 3),
Dates.Date(2017, 8, 7),
Dates.Date(2017, 9, 4),
Dates.Date(2017, 10, 9),
Dates.Date(2017, 12, 25),
Dates.Date(2017, 12, 26)
]
alldates17itr = Dates.Date(2017,1,1):Dates.Day(1):Dates.Date(2017, 12,31)
for i in alldates17itr
if i ∈ tsxdates17
@test isholiday(hc_canadatsx, i) == true
else
@test isholiday(hc_canadatsx, i) == false
end
end
canadaDates16 = [
Dates.Date(2016, 1, 1),
Dates.Date(2016, 2, 15),
Dates.Date(2016, 3, 25),
Dates.Date(2016, 5, 23),
Dates.Date(2016, 7, 1),
Dates.Date(2016, 8, 1),
Dates.Date(2016, 9, 5),
Dates.Date(2016, 10, 10),
Dates.Date(2016, 11, 11),
Dates.Date(2016, 12, 26),
Dates.Date(2016, 12, 27)
]
for i in alldates16itr
if i ∈ canadaDates16
@test isholiday(hc_canada, i) == true
else
@test isholiday(hc_canada, i) == false
end
end
# Issue #8
@test isbday(hc_canada, Dates.Date(2011,1,3)) == true
@test isbday(hc_canadatsx, Dates.Date(2008, 2, 18)) == false
# Australian Stock Exchange (ASX)
christmasday = Dates.Date(2018,12, 25)
boxingday = Dates.Date(2018,12, 26)
asxdates18 = Set([
Dates.Date(2018, 1, 1), # New year's day
Dates.Date(2018, 1, 26), # Australia Day
Dates.Date(2018, 3, 30), # Good Friday
Dates.Date(2018, 4, 2), # Easter Monday
Dates.Date(2018, 4, 25), # ANZAC Day
Dates.Date(2018, 6, 11), # Queen's Birthday holiday
christmasday,
boxingday
])
for dt in Dates.Date(2018,1,1):Dates.Day(1):Dates.Date(2018,12,31)
if in(dt, asxdates18)
dt != boxingday && @test isholiday(hc_australiaasx, dt-Dates.Day(1)) == false
@test isholiday(hc_australiaasx, dt) == true
dt != christmasday && @test isholiday(hc_australiaasx, dt+Dates.Day(1)) == false
else
@test isholiday(hc_australiaasx, dt) == false
end
end
# Australian states and territories
@test_throws MethodError BusinessDays.Australia() # State/territory not specified
@test_throws AssertionError BusinessDays.Australia(:XXX) # Invalid state/territory
# The Australian Capital Territory (ACT)
actdates18 = Set([
Dates.Date(2018, 1, 1), # New year's day
Dates.Date(2018, 1, 26), # Australia Day
Dates.Date(2018, 3, 12), # Canberra Day
Dates.Date(2018, 3, 30), # Good Friday
Dates.Date(2018, 3, 31), # Easter Saturday
Dates.Date(2018, 4, 1), # Easter Sunday
Dates.Date(2018, 4, 2), # Easter Monday
Dates.Date(2018, 4, 25), # ANZAC Day
Dates.Date(2018, 5, 28), # Reconciliation Day
Dates.Date(2018, 6, 11), # Queen's Birthday holiday
Dates.Date(2018, 10, 1), # Labour Day
christmasday,
boxingday
])
for dt in Dates.Date(2018,1,1):Dates.Day(1):Dates.Date(2018,12,31)
if in(dt, actdates18)
@test isholiday(hc_australiaact, dt) == true
else
@test isholiday(hc_australiaact, dt) == false
end
end
# The state of New South Wales (NSW), Australia
nswdates18 = Set([
Dates.Date(2018, 1, 1), # New year's day
Dates.Date(2018, 1, 26), # Australia Day
Dates.Date(2018, 3, 30), # Good Friday
Dates.Date(2018, 3, 31), # Easter Saturday
Dates.Date(2018, 4, 1), # Easter Sunday
Dates.Date(2018, 4, 2), # Easter Monday
Dates.Date(2018, 4, 25), # ANZAC Day
Dates.Date(2018, 6, 11), # Queen's Birthday holiday
Dates.Date(2018, 8, 6), # Bank Holiday
Dates.Date(2018, 10, 1), # Labour Day
christmasday,
boxingday
])
for dt in Dates.Date(2018,1,1):Dates.Day(1):Dates.Date(2018,12,31)
if in(dt, nswdates18)
@test isholiday(hc_australiansw, dt) == true
else
@test isholiday(hc_australiansw, dt) == false
end
end
# The Northern Territory (NT), Australia
ntdates18 = Set([
Dates.Date(2018, 1, 1), # New year's day
Dates.Date(2018, 1, 26), # Australia Day
Dates.Date(2018, 3, 30), # Good Friday
Dates.Date(2018, 3, 31), # Easter Saturday
Dates.Date(2018, 4, 2), # Easter Monday
Dates.Date(2018, 4, 25), # ANZAC Day
Dates.Date(2018, 5, 7), # May Day
Dates.Date(2018, 6, 11), # Queen's Birthday holiday
Dates.Date(2018, 8, 6), # Picnic Day
christmasday,
boxingday
])
for dt in Dates.Date(2018,1,1):Dates.Day(1):Dates.Date(2018,12,31)
if in(dt, ntdates18)
@test isholiday(hc_australiant, dt) == true
else
@test isholiday(hc_australiant, dt) == false
end
end
# The state of Queensland (QLD), Australia
qlddates18 = Set([
Dates.Date(2018, 1, 1), # New year's day
Dates.Date(2018, 1, 26), # Australia Day
Dates.Date(2018, 3, 30), # Good Friday
Dates.Date(2018, 3, 31), # Easter Saturday
Dates.Date(2018, 4, 1), # Easter Sunday
Dates.Date(2018, 4, 2), # Easter Monday
Dates.Date(2018, 4, 25), # ANZAC Day
Dates.Date(2018, 5, 7), # Labour Day
Dates.Date(2018, 8, 15), # Royal Brisbane Show (brisbane area only)
Dates.Date(2018, 10, 1), # Queen's Birthday holiday
christmasday,
boxingday
])
for dt in Dates.Date(2018,1,1):Dates.Day(1):Dates.Date(2018,12,31)
if in(dt, qlddates18)
@test isholiday(hc_australiaqld, dt) == true
else
@test isholiday(hc_australiaqld, dt) == false
end
end
@test isholiday(hc_australiaqld, Dates.Date(2013, 6, 10)) == true
# The state of South Australia (SA)
sadates18 = Set([
Dates.Date(2018, 1, 1), # New year's day
Dates.Date(2018, 1, 26), # Australia Day
Dates.Date(2018, 3, 12), # March public Holiday
Dates.Date(2018, 3, 30), # Good Friday
Dates.Date(2018, 3, 31), # Easter Saturday
Dates.Date(2018, 4, 2), # Easter Monday
Dates.Date(2018, 4, 25), # ANZAC Day
Dates.Date(2018, 6, 11), # Queen's Birthday holiday
Dates.Date(2018, 10, 1), # Labour Day
christmasday,
boxingday
])
for dt in Dates.Date(2018,1,1):Dates.Day(1):Dates.Date(2018,12,31)
if in(dt, sadates18)
@test isholiday(hc_australiasa, dt) == true
else
@test isholiday(hc_australiasa, dt) == false
end
end
# The state of Tasmania (TAS), Australia
tasdates18 = Set([
Dates.Date(2018, 1, 1), # New year's day
Dates.Date(2018, 1, 26), # Australia Day
Dates.Date(2018, 2, 12), # Royal Hobart Regatta
Dates.Date(2018, 3, 12), # Labour Day
Dates.Date(2018, 3, 30), # Good Friday
Dates.Date(2018, 4, 2), # Easter Monday
Dates.Date(2018, 4, 25), # ANZAC Day
Dates.Date(2018, 6, 11), # Queen's Birthday holiday
Dates.Date(2018, 11, 5), # Recreation Day
christmasday,
boxingday
])
for dt in Dates.Date(2018,1,1):Dates.Day(1):Dates.Date(2018,12,31)
if in(dt, tasdates18)
@test isholiday(hc_australiatas, dt) == true
else
@test isholiday(hc_australiatas, dt) == false
end
end
# The state of Western Australia (WA)
wadates18 = Set([
Dates.Date(2018, 1, 1), # New year's day
Dates.Date(2018, 1, 26), # Australia Day
Dates.Date(2018, 3, 5), # Labour Day
Dates.Date(2018, 3, 30), # Good Friday
Dates.Date(2018, 4, 2), # Easter Monday
Dates.Date(2018, 4, 25), # ANZAC Day
Dates.Date(2018, 6, 4), # Western Australia Day
Dates.Date(2018, 9, 24), # Queen's Birthday holiday
christmasday,
boxingday
])
for dt in Dates.Date(2018,1,1):Dates.Day(1):Dates.Date(2018,12,31)
if in(dt, wadates18)
@test isholiday(hc_australiawa, dt) == true
else
@test isholiday(hc_australiawa, dt) == false
end
end
@test isholiday(hc_australiawa, Dates.Date(2011, 10, 28)) == true
@test isholiday(hc_australiawa, Dates.Date(2012, 10, 1)) == true
# The state of Victoria (VIC), Australia
vicdates18 = Set([
Dates.Date(2018, 1, 1), # New year's day
Dates.Date(2018, 1, 26), # Australia Day
Dates.Date(2018, 3, 12), # Labour Day
Dates.Date(2018, 3, 30), # Good Friday
Dates.Date(2018, 3, 31), # Easter Saturday
Dates.Date(2018, 4, 1), # Easter Sunday
Dates.Date(2018, 4, 2), # Easter Monday
Dates.Date(2018, 4, 25), # ANZAC Day
Dates.Date(2018, 6, 11), # Queen's Birthday holiday
Dates.Date(2018, 9, 28), # AFL Grand Final Eve holiday
Dates.Date(2018, 11, 6), # Melbourne Cup holiday
christmasday,
boxingday
])
for dt in Dates.Date(2018,1,1):Dates.Day(1):Dates.Date(2018,12,31)
if in(dt, vicdates18)
@test isholiday(hc_australiavic, dt) == true
else
@test isholiday(hc_australiavic, dt) == false
end
end
# German holidays
gerdates2020 = Set([
Dates.Date(2020, 1, 1), # New year's day
Dates.Date(2020, 4, 10), # Good Friday
Dates.Date(2020, 4, 13), # Easter Monday
Dates.Date(2020, 5, 1), # International Workers' Day
Dates.Date(2020, 5, 21), # Ascension Day
Dates.Date(2020, 6, 1), # Pentecost
Dates.Date(2020, 10, 3), # Day of German Unity
Dates.Date(2020, 12, 25), # Christmas Day
Dates.Date(2020, 12, 26) # Boxing Day
])
# German state holidays in different regions
northdates2020 = Set([
Dates.Date(2020, 10, 31) # Reformation Day
])
westdates2020 = Set([
Dates.Date(2020, 6, 11), # Corpus Christi
Dates.Date(2020, 11, 1) # All Saints Day
])
southdates2020 = Set([
Dates.Date(2020, 1, 6), # Epiphany
Dates.Date(2020, 6, 11), # Corpus Christi
Dates.Date(2020, 11, 1) # All Saints Day
])
assumption2020 = Set([
Dates.Date(2020, 8, 15) # Assumption of Mary
])
debedates2020 = Set([
Dates.Date(2020, 3, 8), # International Womens' Day
Dates.Date(2020, 5, 8) # Tag der Befreiung
])
debbdates2020 = Set([
Dates.Date(2020, 4, 12), # Easter Sunday
Dates.Date(2020, 5, 31), # Pentecost Sunday
Dates.Date(2020, 10, 31) # Reformation Day
])
dehedates2020 = Set([
Dates.Date(2020, 6, 11) # Corpus Christi
])
desndates2020 = Set([
Dates.Date(2020, 10, 31), # Reformation Day
Dates.Date(2020, 11, 18) # Day of rependance and prayer
])
destdates2020 = Set([
Dates.Date(2020, 1, 6), # Epiphany
Dates.Date(2020, 10, 31) # Reformation Day
])
dethdates2020 = Set([
Dates.Date(2020, 9, 20), # World Children's Day
Dates.Date(2020, 10, 31) # Reformation Day
])
# Test holidays in northern states of Bremen, Hamburg,
# Mecklenburg-Vorpommern, Lower Saxony, and Schleswig-Holstein
for dt in Dates.Date(2020):Dates.Day(1):Dates.Date(2020,12,31)
if dt ∈ union(gerdates2020, northdates2020)
@test isholiday(hc_de_hb, dt) == true
@test isholiday(hc_de_hh, dt) == true
@test isholiday(hc_de_mv, dt) == true
@test isholiday(hc_de_ni, dt) == true
@test isholiday(hc_de_sh, dt) == true
else
@test isholiday(hc_de_hb, dt) == false
@test isholiday(hc_de_hh, dt) == false
@test isholiday(hc_de_mv, dt) == false
@test isholiday(hc_de_ni, dt) == false
@test isholiday(hc_de_sh, dt) == false
end
end
# Test holidays in western states of
# North Rhine-Westphalia, Rhineland Palatinate, and Saarland
for dt in Dates.Date(2020):Dates.Day(1):Dates.Date(2020,12,31)
if dt ∈ union(gerdates2020, westdates2020)
@test isholiday(hc_de_nw, dt) == true
@test isholiday(hc_de_rp, dt) == true
@test isholiday(hc_de_sl, dt) == true
elseif dt ∈ assumption2020
@test isholiday(hc_de_nw, dt) == false
@test isholiday(hc_de_rp, dt) == false
@test isholiday(hc_de_sl, dt) == true
else
@test isholiday(hc_de_nw, dt) == false
@test isholiday(hc_de_rp, dt) == false
@test isholiday(hc_de_sl, dt) == false
end
end
# Test holidays in southern states of Baden-Württemberg and Bavaria
for dt in Dates.Date(2020):Dates.Day(1):Dates.Date(2020,12,31)
if dt ∈ union(gerdates2020, southdates2020)
@test isholiday(hc_de_bw, dt) == true
@test isholiday(hc_de_by, dt) == true
@test isholiday(hc_de_byp, dt) == true
elseif dt ∈ assumption2020
@test isholiday(hc_de_bw, dt) == false
@test isholiday(hc_de_by, dt) == true
@test isholiday(hc_de_byp, dt) == false
else
@test isholiday(hc_de_bw, dt) == false
@test isholiday(hc_de_by, dt) == false
@test isholiday(hc_de_byp, dt) == false
end
end
# Test holidays of Berlin
for dt in Dates.Date(2020):Dates.Day(1):Dates.Date(2020,12,31)
if dt ∈ union(gerdates2020, debedates2020)
@test isholiday(hc_de_be, dt) == true
else
@test isholiday(hc_de_be, dt) == false
end
end
# Test holidays of Brandenburg
for dt in Dates.Date(2020):Dates.Day(1):Dates.Date(2020,12,31)
if dt ∈ union(gerdates2020, debbdates2020)
@test isholiday(hc_de_bb, dt) == true
else
@test isholiday(hc_de_bb, dt) == false
end
end
# Test holidays of Hessen
for dt in Dates.Date(2020):Dates.Day(1):Dates.Date(2020,12,31)
if dt ∈ union(gerdates2020, dehedates2020)
@test isholiday(hc_de_he, dt) == true
else
@test isholiday(hc_de_he, dt) == false
end
end
# Test holidays of Saxony
for dt in Dates.Date(2020):Dates.Day(1):Dates.Date(2020,12,31)
if dt ∈ union(gerdates2020, desndates2020)
@test isholiday(hc_de_sn, dt) == true
else
@test isholiday(hc_de_sn, dt) == false
end
end
# Test holidays of Saxony-Anhalt
for dt in Dates.Date(2020):Dates.Day(1):Dates.Date(2020,12,31)
if dt ∈ union(gerdates2020, destdates2020)
@test isholiday(hc_de_st, dt) == true
else
@test isholiday(hc_de_st, dt) == false
end
end
# Test holidays of Thuringia
for dt in Dates.Date(2020):Dates.Day(1):Dates.Date(2020,12,31)
if dt ∈ union(gerdates2020, dethdates2020)
@test isholiday(hc_de_th, dt) == true
else
@test isholiday(hc_de_th, dt) == false
end
end
# dates are treated per value
d0 = Dates.Date(2013, 02, 06)
d1 = Dates.Date(2013, 02, 14)
@test bdays(hc_brazil, d0, d1).value == 4
@test bdayscount(hc_brazil, d0, d1) == 4
@test d0 == Dates.Date(2013, 02, 06) # d0 is changed inside bdays function, but outer-scope value remains the same
@test d1 == Dates.Date(2013, 02, 14)
d0 = Dates.Date(2015, 06, 29) ; d2 = Dates.Date(2100, 12, 20)
@test bdays(hc_brazil, d0, d2).value == 21416
@test bdayscount(hc_brazil, d0, d2) == 21416
# Tests for Composite Calendar
@test isholiday(hc_composite_BR_USA, Dates.Date(2012,9,3)) # US Labor Day
@test isholiday(hc_composite_BR_USA, Dates.Date(2012,9,7)) # BR Independence Day
@test bdayscount(hc_composite_BR_USA, Dates.Date(2012,8,31), Dates.Date(2012,9,10)) == 4 # 3/sep labor day US, 7/sep Indep day BR
@test bdays(hc_composite_BR_USA, Dates.Date(2012,8,31), Dates.Date(2012,9,10)) == Dates.Day(4) # 3/sep labor day US, 7/sep Indep day BR
println("Timing composite calendar bdays calculation")
@time bdays(hc_composite_BR_USA, Dates.Date(2012,8,31), Dates.Date(2012,9,10))
println("Timing single bdays calculation")
@time bdays(hc_brazil, d0, d2)
println("Timing 100 bdays calculations")
@time for i in 1:100 bdays(hc_brazil, d0, d2) end
dInicio = Dates.Date(1950, 01, 01) ; dFim = Dates.Date(2100, 12, 20)
if !usecache
println("Timing cache creation")
@time x = BusinessDays._create_bdays_cache_arrays(hc_brazil, dInicio, dFim)
end
if usecache
println("a million...")
@time for i in 1:1000000 bdays(hc_brazil, d0, d2) end
end
# Vector functions
d0 = Dates.Date(2000,01,04)
d1 = Dates.Date(2020,01,04)
d1vec = collect(d0:Dates.Day(1):d1)
d0vec = fill(d0, length(d1vec))
r = bdays(hc_brazil, d0vec, d1vec)
b = isbday(hc_brazil, d0vec)
b2 = isbday(:Brazil, d0vec)
b3 = isbday("Brazil", d0vec)
@test tobday([hc_brazil, hc_usa], [Dates.Date(2015,11,11), Dates.Date(2015,11,11)]) == [Dates.Date(2015,11,11), Dates.Date(2015,11,12)]
@test tobday([:Brazil, :USSettlement], [Dates.Date(2015,11,11), Dates.Date(2015,11,11)]) == [Dates.Date(2015,11,11), Dates.Date(2015,11,12)]
@test tobday(["Brazil", "USSettlement"], [Dates.Date(2015,11,11), Dates.Date(2015,11,11)]) == [Dates.Date(2015,11,11), Dates.Date(2015,11,12)]
# Vector with different sizes
@test_throws AssertionError bdays(hc_brazil, fill(d0, length(d1vec)+1), d1vec)
@test_throws AssertionError bdays([hc_brazil, hc_usa], [Dates.Date(2015,11,11)], [Dates.Date(2015,11,11),Dates.Date(2015,11,11)])
@test_throws AssertionError tobday([hc_brazil, hc_usa], fill(d0, 3))
@test_throws AssertionError isbday( [hc_brazil, hc_usa, hc_uk], [Dates.Date(2015,01,01), Dates.Date(2015,01,01)])
println("Timing vectorized functions (vector length $(length(d0vec)))")
@time bdays(hc_brazil, d0vec, d1vec)
@time bdays(:Brazil, d0vec, d1vec)
@time bdays("Brazil", d0vec, d1vec)
@time isbday(hc_brazil, d0vec)
@time isbday(:Brazil, d0vec)
@time isbday("Brazil", d0vec)
d2001 = collect(Dates.Date(2001,01,01):Dates.Day(1):Dates.Date(2001,01,15))
@test isweekend(d2001) == [ false, false, false, false, false, true, true, false, false, false, false, false, true, true, false]
@test tobday(hc_brazil, d2001; forward=true) == [ Dates.Date(2001,01,02), Dates.Date(2001,01,02), Dates.Date(2001,01,03), Dates.Date(2001,01,04), Dates.Date(2001,01,05), Dates.Date(2001,01,08), Dates.Date(2001,01,08), Dates.Date(2001,01,08), Dates.Date(2001,01,09), Dates.Date(2001,01,10), Dates.Date(2001,01,11), Dates.Date(2001,01,12), Dates.Date(2001,01,15), Dates.Date(2001,01,15), Dates.Date(2001,01,15)]
@test tobday(hc_brazil, d2001; forward=false) == [ Dates.Date(2000,12,29), Dates.Date(2001,01,02), Dates.Date(2001,01,03), Dates.Date(2001,01,04), Dates.Date(2001,01,05), Dates.Date(2001,01,05), Dates.Date(2001,01,05), Dates.Date(2001,01,08), Dates.Date(2001,01,09), Dates.Date(2001,01,10), Dates.Date(2001,01,11), Dates.Date(2001,01,12), Dates.Date(2001,01,12), Dates.Date(2001,01,12), Dates.Date(2001,01,15)]
@test tobday(:Brazil, d2001; forward=true) == [ Dates.Date(2001,01,02), Dates.Date(2001,01,02), Dates.Date(2001,01,03), Dates.Date(2001,01,04), Dates.Date(2001,01,05), Dates.Date(2001,01,08), Dates.Date(2001,01,08), Dates.Date(2001,01,08), Dates.Date(2001,01,09), Dates.Date(2001,01,10), Dates.Date(2001,01,11), Dates.Date(2001,01,12), Dates.Date(2001,01,15), Dates.Date(2001,01,15), Dates.Date(2001,01,15)]
@test tobday("Brazil", d2001; forward=false) == [ Dates.Date(2000,12,29), Dates.Date(2001,01,02), Dates.Date(2001,01,03), Dates.Date(2001,01,04), Dates.Date(2001,01,05), Dates.Date(2001,01,05), Dates.Date(2001,01,05), Dates.Date(2001,01,08), Dates.Date(2001,01,09), Dates.Date(2001,01,10), Dates.Date(2001,01,11), Dates.Date(2001,01,12), Dates.Date(2001,01,12), Dates.Date(2001,01,12), Dates.Date(2001,01,15)]
@test bdays([hc_brazil, hc_usa], [Dates.Date(2012,8,31), Dates.Date(2012,8,31)], [Dates.Date(2012,9,10), Dates.Date(2012,9,10)]) == [Dates.Day(5), Dates.Day(5)] # 1/sep labor day US, 7/sep Indep day BR
@test bdayscount([hc_brazil, hc_usa], [Dates.Date(2012,8,31), Dates.Date(2012,8,31)], [Dates.Date(2012,9,10), Dates.Date(2012,9,10)]) == [5, 5] # 1/sep labor day US, 7/sep Indep day BR
@test isbday([hc_brazil, hc_usa], [Dates.Date(2012, 09, 07), Dates.Date(2012, 09, 03)]) == [false, false] # 1/sep labor day US, 7/sep Indep day BR
@test advancebdays(hc_brazil, Dates.Date(2015,9,1), [0, 1, 3, 4, 5]) == [Dates.Date(2015,9,1),Dates.Date(2015,9,2),Dates.Date(2015,9,4),Dates.Date(2015,9,8),Dates.Date(2015,9,9)]
@test advancebdays(hc_brazil, Dates.Date(2015,9,1), 0:1:5) == [Dates.Date(2015,9,1),Dates.Date(2015,9,2),Dates.Date(2015,9,3),Dates.Date(2015,9,4),Dates.Date(2015,9,8),Dates.Date(2015,9,9)]
@test listholidays(hc_brazil, Dates.Date(2016,1,1), Dates.Date(2016,5,30)) == [Dates.Date(2016,1,1),Dates.Date(2016,2,8),Dates.Date(2016,2,9),Dates.Date(2016,3,25),Dates.Date(2016,4,21),Dates.Date(2016,5,1),Dates.Date(2016,5,26)]
@test bdays([:Brazil, :USSettlement], [Dates.Date(2012,8,31), Dates.Date(2012,8,31)], [Dates.Date(2012,9,10), Dates.Date(2012,9,10)]) == [Dates.Day(5), Dates.Day(5)] # 1/sep labor day US, 7/sep Indep day BR
@test bdayscount([:Brazil, :USSettlement], [Dates.Date(2012,8,31), Dates.Date(2012,8,31)], [Dates.Date(2012,9,10), Dates.Date(2012,9,10)]) == [5, 5] # 1/sep labor day US, 7/sep Indep day BR
@test isbday([:Brazil, :USSettlement], [Dates.Date(2012, 09, 07), Dates.Date(2012, 09, 03)]) == [false, false] # 1/sep labor day US, 7/sep Indep day BR
@test advancebdays(:Brazil, Dates.Date(2015,9,1), [0, 1, 3, 4, 5]) == [Dates.Date(2015,9,1),Dates.Date(2015,9,2),Dates.Date(2015,9,4),Dates.Date(2015,9,8),Dates.Date(2015,9,9)]
@test advancebdays(:Brazil, Dates.Date(2015,9,1), 0:5) == [Dates.Date(2015,9,1),Dates.Date(2015,9,2),Dates.Date(2015,9,3),Dates.Date(2015,9,4),Dates.Date(2015,9,8),Dates.Date(2015,9,9)]
@test listholidays(:Brazil, Dates.Date(2016,1,1), Dates.Date(2016,5,30)) == [Dates.Date(2016,1,1),Dates.Date(2016,2,8),Dates.Date(2016,2,9),Dates.Date(2016,3,25),Dates.Date(2016,4,21),Dates.Date(2016,5,1),Dates.Date(2016,5,26)]
@test bdays(["Brazil", "USSettlement"], [Dates.Date(2012,8,31), Dates.Date(2012,8,31)], [Dates.Date(2012,9,10), Dates.Date(2012,9,10)]) == [Dates.Day(5), Dates.Day(5)] # 1/sep labor day US, 7/sep Indep day BR
@test bdayscount(["Brazil", "USSettlement"], [Dates.Date(2012,8,31), Dates.Date(2012,8,31)], [Dates.Date(2012,9,10), Dates.Date(2012,9,10)]) == [5, 5] # 1/sep labor day US, 7/sep Indep day BR
@test isbday(["Brazil", "USSettlement"], [Dates.Date(2012, 09, 07), Dates.Date(2012, 09, 03)]) == [false, false] # 1/sep labor day US, 7/sep Indep day BR
@test advancebdays("Brazil", Dates.Date(2015,9,1), [0, 1, 3, 4, 5]) == [Dates.Date(2015,9,1),Dates.Date(2015,9,2),Dates.Date(2015,9,4),Dates.Date(2015,9,8),Dates.Date(2015,9,9)]
@test advancebdays("Brazil", Dates.Date(2015,9,1), 0:5) == [Dates.Date(2015,9,1),Dates.Date(2015,9,2),Dates.Date(2015,9,3),Dates.Date(2015,9,4),Dates.Date(2015,9,8),Dates.Date(2015,9,9)]
@test listholidays("Brazil", Dates.Date(2016,1,1), Dates.Date(2016,5,30)) == [Dates.Date(2016,1,1),Dates.Date(2016,2,8),Dates.Date(2016,2,9),Dates.Date(2016,3,25),Dates.Date(2016,4,21),Dates.Date(2016,5,1),Dates.Date(2016,5,26)]
@test listbdays("Brazil", Dates.Date(2016,5,18), Dates.Date(2016,5,23)) == [Dates.Date(2016,5,18),Dates.Date(2016,5,19),Dates.Date(2016,5,20),Dates.Date(2016,5,23)]
@test listbdays("Brazil", Dates.Date(2016,5,18), Dates.Date(2016,5,18)) == [Dates.Date(2016,5,18)]
@test isempty(listbdays("Brazil", Dates.Date(2016,5,21), Dates.Date(2016,5,21)))
@test isempty(listbdays("Brazil", Dates.Date(2016,5,21), Dates.Date(2016,5,22)))
@test listbdays("Brazil", Dates.Date(2016,5,21), Dates.Date(2016,5,23)) == [Dates.Date(2016,5,23)]
@test bdays(:Brazil, Dates.Date(2016,11,1), [Dates.Date(2016,11,3), Dates.Date(2016,11,7), Dates.Date(2016,11,4)]) == [Dates.Day(1), Dates.Day(3), Dates.Day(2)]
@test bdayscount(:Brazil, Dates.Date(2016,11,1), [Dates.Date(2016,11,3), Dates.Date(2016,11,7), Dates.Date(2016,11,4)]) == [1, 3, 2]
@test bdays(:Brazil, [Dates.Date(2018,3,28), Dates.Date(2018,3,28), Dates.Date(2018,3,28), Dates.Date(2018,3,28)], [Dates.Date(2018,3,28), Dates.Date(2018,3,29), Dates.Date(2018,3,30), Dates.Date(2018,4,2)]) == [Dates.Day(0), Dates.Day(1), Dates.Day(2), Dates.Day(2)]
@test bdayscount(:Brazil, [Dates.Date(2018,3,28), Dates.Date(2018,3,28), Dates.Date(2018,3,28), Dates.Date(2018,3,28)], [Dates.Date(2018,3,28), Dates.Date(2018,3,29), Dates.Date(2018,3,30), Dates.Date(2018,4,2)]) == [0, 1, 2, 2]
# first/last businessdayofmonth
@test firstbdayofmonth(:Brazil, Dates.Date(2017,12,10)) == Dates.Date(2017,12,1)
@test firstbdayofmonth(:Brazil, Dates.Date(2018,1,10)) == Dates.Date(2018,1,2)
@test lastbdayofmonth(:Brazil, Dates.Date(2017,12,10)) == Dates.Date(2017,12,29)
@test firstbdayofmonth(:Brazil, 2017, 12) == Dates.Date(2017,12,1)
@test firstbdayofmonth(:Brazil, 2018, 1) == Dates.Date(2018,1,2)
@test lastbdayofmonth(:Brazil, 2017, 12) == Dates.Date(2017,12,29)
@test firstbdayofmonth(:Brazil, Dates.Year(2017), Dates.Month(12)) == Dates.Date(2017,12,1)
@test firstbdayofmonth(:Brazil, Dates.Year(2018), Dates.Month(1)) == Dates.Date(2018,1,2)
@test lastbdayofmonth(:Brazil, Dates.Year(2017), Dates.Month(12)) == Dates.Date(2017,12,29)
# list holidays for all available calendars
for c in [:BRSettlement, :BrazilExchange, :USNYSE, :USGovernmentBond, :USSettlement, :CanadaTSX, :CanadaSettlement, :EuroZone, :UKSettlement, :AustraliaASX]
listholidays(c, Dates.Date(1990,1,1), Dates.Date(2100,1,1))
end
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 308 |
using BusinessDays
struct CustomCalendar <: HolidayCalendar end
BusinessDays.isholiday(::CustomCalendar, dt::Dates.Date) = dt == Dates.Date(2015,8,27)
cc = CustomCalendar()
println("Returns false: $(isholiday(cc, Dates.Date(2015,8,26)))")
println("Returns true: $(isholiday(cc, Dates.Date(2015,8,27)))")
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 837 |
using BusinessDays
using Test
# lets find out minimum and maximum month for easter
function find_easter_min_max()
y = 1582
easter_1582 = BusinessDays.easter_date(Dates.Year(1582))
month_min = Dates.month(easter_1582)
date_min = easter_1582
month_max = Dates.month(easter_1582)
date_max = easter_1582
while y <= 2100
e_date = BusinessDays.easter_date(Dates.Year(y))
m_e_date = Dates.month(e_date)
month_min = min(month_min, m_e_date)
month_max = max(month_max, m_e_date)
if month_min == m_e_date
date_min = e_date
end
if month_max == m_e_date
date_max = e_date
end
y += 1
end
return (month_min, month_max)
end
month_min, month_max = find_easter_min_max()
@test month_min >= 3
@test month_max <= 4
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 13899 |
################
## Easter Dates
################
# easter dates from http://www.maa.mhn.de/StarDate/publ_holidays.html
@test_throws ErrorException BusinessDays.easter_date(Dates.Year(1100))
@test BusinessDays.easter_date(Dates.Year(1901)) == Dates.Date(1901, 04, 07)
@test BusinessDays.easter_date(Dates.Year(1902)) == Dates.Date(1902, 03, 30)
@test BusinessDays.easter_date(Dates.Year(1903)) == Dates.Date(1903, 04, 12)
@test BusinessDays.easter_date(Dates.Year(1904)) == Dates.Date(1904, 04, 03)
@test BusinessDays.easter_date(Dates.Year(1905)) == Dates.Date(1905, 04, 23)
@test BusinessDays.easter_date(Dates.Year(1906)) == Dates.Date(1906, 04, 15)
@test BusinessDays.easter_date(Dates.Year(1907)) == Dates.Date(1907, 03, 31)
@test BusinessDays.easter_date(Dates.Year(1908)) == Dates.Date(1908, 04, 19)
@test BusinessDays.easter_date(Dates.Year(1909)) == Dates.Date(1909, 04, 11)
@test BusinessDays.easter_date(Dates.Year(1910)) == Dates.Date(1910, 03, 27)
@test BusinessDays.easter_date(Dates.Year(1911)) == Dates.Date(1911, 04, 16)
@test BusinessDays.easter_date(Dates.Year(1912)) == Dates.Date(1912, 04, 07)
@test BusinessDays.easter_date(Dates.Year(1913)) == Dates.Date(1913, 03, 23)
@test BusinessDays.easter_date(Dates.Year(1914)) == Dates.Date(1914, 04, 12)
@test BusinessDays.easter_date(Dates.Year(1915)) == Dates.Date(1915, 04, 04)
@test BusinessDays.easter_date(Dates.Year(1916)) == Dates.Date(1916, 04, 23)
@test BusinessDays.easter_date(Dates.Year(1917)) == Dates.Date(1917, 04, 08)
@test BusinessDays.easter_date(Dates.Year(1918)) == Dates.Date(1918, 03, 31)
@test BusinessDays.easter_date(Dates.Year(1919)) == Dates.Date(1919, 04, 20)
@test BusinessDays.easter_date(Dates.Year(1920)) == Dates.Date(1920, 04, 04)
@test BusinessDays.easter_date(Dates.Year(1921)) == Dates.Date(1921, 03, 27)
@test BusinessDays.easter_date(Dates.Year(1922)) == Dates.Date(1922, 04, 16)
@test BusinessDays.easter_date(Dates.Year(1923)) == Dates.Date(1923, 04, 01)
@test BusinessDays.easter_date(Dates.Year(1924)) == Dates.Date(1924, 04, 20)
@test BusinessDays.easter_date(Dates.Year(1925)) == Dates.Date(1925, 04, 12)
@test BusinessDays.easter_date(Dates.Year(1926)) == Dates.Date(1926, 04, 04)
@test BusinessDays.easter_date(Dates.Year(1927)) == Dates.Date(1927, 04, 17)
@test BusinessDays.easter_date(Dates.Year(1928)) == Dates.Date(1928, 04, 08)
@test BusinessDays.easter_date(Dates.Year(1929)) == Dates.Date(1929, 03, 31)
@test BusinessDays.easter_date(Dates.Year(1930)) == Dates.Date(1930, 04, 20)
@test BusinessDays.easter_date(Dates.Year(1931)) == Dates.Date(1931, 04, 05)
@test BusinessDays.easter_date(Dates.Year(1932)) == Dates.Date(1932, 03, 27)
@test BusinessDays.easter_date(Dates.Year(1933)) == Dates.Date(1933, 04, 16)
@test BusinessDays.easter_date(Dates.Year(1934)) == Dates.Date(1934, 04, 01)
@test BusinessDays.easter_date(Dates.Year(1935)) == Dates.Date(1935, 04, 21)
@test BusinessDays.easter_date(Dates.Year(1936)) == Dates.Date(1936, 04, 12)
@test BusinessDays.easter_date(Dates.Year(1937)) == Dates.Date(1937, 03, 28)
@test BusinessDays.easter_date(Dates.Year(1938)) == Dates.Date(1938, 04, 17)
@test BusinessDays.easter_date(Dates.Year(1939)) == Dates.Date(1939, 04, 09)
@test BusinessDays.easter_date(Dates.Year(1940)) == Dates.Date(1940, 03, 24)
@test BusinessDays.easter_date(Dates.Year(1941)) == Dates.Date(1941, 04, 13)
@test BusinessDays.easter_date(Dates.Year(1942)) == Dates.Date(1942, 04, 05)
@test BusinessDays.easter_date(Dates.Year(1943)) == Dates.Date(1943, 04, 25)
@test BusinessDays.easter_date(Dates.Year(1944)) == Dates.Date(1944, 04, 09)
@test BusinessDays.easter_date(Dates.Year(1945)) == Dates.Date(1945, 04, 01)
@test BusinessDays.easter_date(Dates.Year(1946)) == Dates.Date(1946, 04, 21)
@test BusinessDays.easter_date(Dates.Year(1947)) == Dates.Date(1947, 04, 06)
@test BusinessDays.easter_date(Dates.Year(1948)) == Dates.Date(1948, 03, 28)
@test BusinessDays.easter_date(Dates.Year(1949)) == Dates.Date(1949, 04, 17)
@test BusinessDays.easter_date(Dates.Year(1950)) == Dates.Date(1950, 04, 09)
@test BusinessDays.easter_date(Dates.Year(1951)) == Dates.Date(1951, 03, 25)
@test BusinessDays.easter_date(Dates.Year(1952)) == Dates.Date(1952, 04, 13)
@test BusinessDays.easter_date(Dates.Year(1953)) == Dates.Date(1953, 04, 05)
@test BusinessDays.easter_date(Dates.Year(1954)) == Dates.Date(1954, 04, 18)
@test BusinessDays.easter_date(Dates.Year(1955)) == Dates.Date(1955, 04, 10)
@test BusinessDays.easter_date(Dates.Year(1956)) == Dates.Date(1956, 04, 01)
@test BusinessDays.easter_date(Dates.Year(1957)) == Dates.Date(1957, 04, 21)
@test BusinessDays.easter_date(Dates.Year(1958)) == Dates.Date(1958, 04, 06)
@test BusinessDays.easter_date(Dates.Year(1959)) == Dates.Date(1959, 03, 29)
@test BusinessDays.easter_date(Dates.Year(1960)) == Dates.Date(1960, 04, 17)
@test BusinessDays.easter_date(Dates.Year(1961)) == Dates.Date(1961, 04, 02)
@test BusinessDays.easter_date(Dates.Year(1962)) == Dates.Date(1962, 04, 22)
@test BusinessDays.easter_date(Dates.Year(1963)) == Dates.Date(1963, 04, 14)
@test BusinessDays.easter_date(Dates.Year(1964)) == Dates.Date(1964, 03, 29)
@test BusinessDays.easter_date(Dates.Year(1965)) == Dates.Date(1965, 04, 18)
@test BusinessDays.easter_date(Dates.Year(1966)) == Dates.Date(1966, 04, 10)
@test BusinessDays.easter_date(Dates.Year(1967)) == Dates.Date(1967, 03, 26)
@test BusinessDays.easter_date(Dates.Year(1968)) == Dates.Date(1968, 04, 14)
@test BusinessDays.easter_date(Dates.Year(1969)) == Dates.Date(1969, 04, 06)
@test BusinessDays.easter_date(Dates.Year(1970)) == Dates.Date(1970, 03, 29)
@test BusinessDays.easter_date(Dates.Year(1971)) == Dates.Date(1971, 04, 11)
@test BusinessDays.easter_date(Dates.Year(1972)) == Dates.Date(1972, 04, 02)
@test BusinessDays.easter_date(Dates.Year(1973)) == Dates.Date(1973, 04, 22)
@test BusinessDays.easter_date(Dates.Year(1974)) == Dates.Date(1974, 04, 14)
@test BusinessDays.easter_date(Dates.Year(1975)) == Dates.Date(1975, 03, 30)
@test BusinessDays.easter_date(Dates.Year(1976)) == Dates.Date(1976, 04, 18)
@test BusinessDays.easter_date(Dates.Year(1977)) == Dates.Date(1977, 04, 10)
@test BusinessDays.easter_date(Dates.Year(1978)) == Dates.Date(1978, 03, 26)
@test BusinessDays.easter_date(Dates.Year(1979)) == Dates.Date(1979, 04, 15)
@test BusinessDays.easter_date(Dates.Year(1980)) == Dates.Date(1980, 04, 06)
@test BusinessDays.easter_date(Dates.Year(1981)) == Dates.Date(1981, 04, 19)
@test BusinessDays.easter_date(Dates.Year(1982)) == Dates.Date(1982, 04, 11)
@test BusinessDays.easter_date(Dates.Year(1983)) == Dates.Date(1983, 04, 03)
@test BusinessDays.easter_date(Dates.Year(1984)) == Dates.Date(1984, 04, 22)
@test BusinessDays.easter_date(Dates.Year(1985)) == Dates.Date(1985, 04, 07)
@test BusinessDays.easter_date(Dates.Year(1986)) == Dates.Date(1986, 03, 30)
@test BusinessDays.easter_date(Dates.Year(1987)) == Dates.Date(1987, 04, 19)
@test BusinessDays.easter_date(Dates.Year(1988)) == Dates.Date(1988, 04, 03)
@test BusinessDays.easter_date(Dates.Year(1989)) == Dates.Date(1989, 03, 26)
@test BusinessDays.easter_date(Dates.Year(1990)) == Dates.Date(1990, 04, 15)
@test BusinessDays.easter_date(Dates.Year(1991)) == Dates.Date(1991, 03, 31)
@test BusinessDays.easter_date(Dates.Year(1992)) == Dates.Date(1992, 04, 19)
@test BusinessDays.easter_date(Dates.Year(1993)) == Dates.Date(1993, 04, 11)
@test BusinessDays.easter_date(Dates.Year(1994)) == Dates.Date(1994, 04, 03)
@test BusinessDays.easter_date(Dates.Year(1995)) == Dates.Date(1995, 04, 16)
@test BusinessDays.easter_date(Dates.Year(1996)) == Dates.Date(1996, 04, 07)
@test BusinessDays.easter_date(Dates.Year(1997)) == Dates.Date(1997, 03, 30)
@test BusinessDays.easter_date(Dates.Year(1998)) == Dates.Date(1998, 04, 12)
@test BusinessDays.easter_date(Dates.Year(1999)) == Dates.Date(1999, 04, 04)
@test BusinessDays.easter_date(Dates.Year(2000)) == Dates.Date(2000, 04, 23)
@test BusinessDays.easter_date(Dates.Year(2001)) == Dates.Date(2001, 04, 15)
@test BusinessDays.easter_date(Dates.Year(2002)) == Dates.Date(2002, 03, 31)
@test BusinessDays.easter_date(Dates.Year(2003)) == Dates.Date(2003, 04, 20)
@test BusinessDays.easter_date(Dates.Year(2004)) == Dates.Date(2004, 04, 11)
@test BusinessDays.easter_date(Dates.Year(2005)) == Dates.Date(2005, 03, 27)
@test BusinessDays.easter_date(Dates.Year(2006)) == Dates.Date(2006, 04, 16)
@test BusinessDays.easter_date(Dates.Year(2007)) == Dates.Date(2007, 04, 08)
@test BusinessDays.easter_date(Dates.Year(2008)) == Dates.Date(2008, 03, 23)
@test BusinessDays.easter_date(Dates.Year(2009)) == Dates.Date(2009, 04, 12)
@test BusinessDays.easter_date(Dates.Year(2010)) == Dates.Date(2010, 04, 04)
@test BusinessDays.easter_date(Dates.Year(2011)) == Dates.Date(2011, 04, 24)
@test BusinessDays.easter_date(Dates.Year(2012)) == Dates.Date(2012, 04, 08)
@test BusinessDays.easter_date(Dates.Year(2013)) == Dates.Date(2013, 03, 31)
@test BusinessDays.easter_date(Dates.Year(2014)) == Dates.Date(2014, 04, 20)
@test BusinessDays.easter_date(Dates.Year(2015)) == Dates.Date(2015, 04, 05)
@test BusinessDays.easter_date(Dates.Year(2016)) == Dates.Date(2016, 03, 27)
@test BusinessDays.easter_date(Dates.Year(2017)) == Dates.Date(2017, 04, 16)
@test BusinessDays.easter_date(Dates.Year(2018)) == Dates.Date(2018, 04, 01)
@test BusinessDays.easter_date(Dates.Year(2019)) == Dates.Date(2019, 04, 21)
@test BusinessDays.easter_date(Dates.Year(2020)) == Dates.Date(2020, 04, 12)
@test BusinessDays.easter_date(Dates.Year(2021)) == Dates.Date(2021, 04, 04)
@test BusinessDays.easter_date(Dates.Year(2022)) == Dates.Date(2022, 04, 17)
@test BusinessDays.easter_date(Dates.Year(2023)) == Dates.Date(2023, 04, 09)
@test BusinessDays.easter_date(Dates.Year(2024)) == Dates.Date(2024, 03, 31)
@test BusinessDays.easter_date(Dates.Year(2025)) == Dates.Date(2025, 04, 20)
@test BusinessDays.easter_date(Dates.Year(2026)) == Dates.Date(2026, 04, 05)
@test BusinessDays.easter_date(Dates.Year(2027)) == Dates.Date(2027, 03, 28)
@test BusinessDays.easter_date(Dates.Year(2028)) == Dates.Date(2028, 04, 16)
@test BusinessDays.easter_date(Dates.Year(2029)) == Dates.Date(2029, 04, 01)
@test BusinessDays.easter_date(Dates.Year(2030)) == Dates.Date(2030, 04, 21)
@test BusinessDays.easter_date(Dates.Year(2031)) == Dates.Date(2031, 04, 13)
@test BusinessDays.easter_date(Dates.Year(2032)) == Dates.Date(2032, 03, 28)
@test BusinessDays.easter_date(Dates.Year(2033)) == Dates.Date(2033, 04, 17)
@test BusinessDays.easter_date(Dates.Year(2034)) == Dates.Date(2034, 04, 09)
@test BusinessDays.easter_date(Dates.Year(2035)) == Dates.Date(2035, 03, 25)
@test BusinessDays.easter_date(Dates.Year(2036)) == Dates.Date(2036, 04, 13)
@test BusinessDays.easter_date(Dates.Year(2037)) == Dates.Date(2037, 04, 05)
@test BusinessDays.easter_date(Dates.Year(2038)) == Dates.Date(2038, 04, 25)
@test BusinessDays.easter_date(Dates.Year(2039)) == Dates.Date(2039, 04, 10)
@test BusinessDays.easter_date(Dates.Year(2040)) == Dates.Date(2040, 04, 01)
@test BusinessDays.easter_date(Dates.Year(2041)) == Dates.Date(2041, 04, 21)
@test BusinessDays.easter_date(Dates.Year(2042)) == Dates.Date(2042, 04, 06)
@test BusinessDays.easter_date(Dates.Year(2043)) == Dates.Date(2043, 03, 29)
@test BusinessDays.easter_date(Dates.Year(2044)) == Dates.Date(2044, 04, 17)
@test BusinessDays.easter_date(Dates.Year(2045)) == Dates.Date(2045, 04, 09)
@test BusinessDays.easter_date(Dates.Year(2046)) == Dates.Date(2046, 03, 25)
@test BusinessDays.easter_date(Dates.Year(2047)) == Dates.Date(2047, 04, 14)
@test BusinessDays.easter_date(Dates.Year(2048)) == Dates.Date(2048, 04, 05)
@test BusinessDays.easter_date(Dates.Year(2049)) == Dates.Date(2049, 04, 18)
@test BusinessDays.easter_date(Dates.Year(2050)) == Dates.Date(2050, 04, 10)
@test BusinessDays.easter_date(Dates.Year(2051)) == Dates.Date(2051, 04, 02)
@test BusinessDays.easter_date(Dates.Year(2052)) == Dates.Date(2052, 04, 21)
@test BusinessDays.easter_date(Dates.Year(2053)) == Dates.Date(2053, 04, 06)
@test BusinessDays.easter_date(Dates.Year(2054)) == Dates.Date(2054, 03, 29)
@test BusinessDays.easter_date(Dates.Year(2055)) == Dates.Date(2055, 04, 18)
@test BusinessDays.easter_date(Dates.Year(2056)) == Dates.Date(2056, 04, 02)
@test BusinessDays.easter_date(Dates.Year(2057)) == Dates.Date(2057, 04, 22)
@test BusinessDays.easter_date(Dates.Year(2058)) == Dates.Date(2058, 04, 14)
@test BusinessDays.easter_date(Dates.Year(2059)) == Dates.Date(2059, 03, 30)
@test BusinessDays.easter_date(Dates.Year(2060)) == Dates.Date(2060, 04, 18)
@test BusinessDays.easter_date(Dates.Year(2061)) == Dates.Date(2061, 04, 10)
@test BusinessDays.easter_date(Dates.Year(2062)) == Dates.Date(2062, 03, 26)
@test BusinessDays.easter_date(Dates.Year(2063)) == Dates.Date(2063, 04, 15)
@test BusinessDays.easter_date(Dates.Year(2064)) == Dates.Date(2064, 04, 06)
@test BusinessDays.easter_date(Dates.Year(2065)) == Dates.Date(2065, 03, 29)
@test BusinessDays.easter_date(Dates.Year(2066)) == Dates.Date(2066, 04, 11)
@test BusinessDays.easter_date(Dates.Year(2067)) == Dates.Date(2067, 04, 03)
@test BusinessDays.easter_date(Dates.Year(2068)) == Dates.Date(2068, 04, 22)
@test BusinessDays.easter_date(Dates.Year(2069)) == Dates.Date(2069, 04, 14)
@test BusinessDays.easter_date(Dates.Year(2070)) == Dates.Date(2070, 03, 30)
@test BusinessDays.easter_date(Dates.Year(2071)) == Dates.Date(2071, 04, 19)
@test BusinessDays.easter_date(Dates.Year(2072)) == Dates.Date(2072, 04, 10)
@test BusinessDays.easter_date(Dates.Year(2073)) == Dates.Date(2073, 03, 26)
@test BusinessDays.easter_date(Dates.Year(2074)) == Dates.Date(2074, 04, 15)
@test BusinessDays.easter_date(Dates.Year(2075)) == Dates.Date(2075, 04, 07)
@test BusinessDays.easter_date(Dates.Year(2076)) == Dates.Date(2076, 04, 19)
@test BusinessDays.easter_date(Dates.Year(2077)) == Dates.Date(2077, 04, 11)
@test BusinessDays.easter_date(Dates.Year(2078)) == Dates.Date(2078, 04, 03)
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 257 |
using BusinessDays, Dates
d0 = Date(2015, 06, 29) ; d1 = Date(2100, 12, 20)
cal = BusinessDays.Brazil()
@time BusinessDays.initcache(cal)
bdays(cal, d0, d1) # force JIT compilation
@time bdays(cal, d0, d1)
@time for i in 1:1000000 bdays(cal, d0, d1) end
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 2330 |
using BusinessDays
using Test
import Dates
println("Perftests")
d0 = Dates.Date(2015, 06, 29) ; d1 = Dates.Date(2100, 12, 20)
cal_type = BusinessDays.Brazil()
cal_sym = :Brazil
cal_str = "Brazil"
@time BusinessDays.initcache(cal_type)
bdays(cal_type, d0, d1) # force JIT compilation
@time bdays(cal_type, d0, d1)
@time for i in 1:1000 bdays(cal_type, d0, d1) end
bdays(cal_sym, d0, d1) # force JIT compilation
bdays(cal_str, d0, d1) # force JIT compilation
@time for i in 1:1000 bdays(cal_sym, d0, d1) end
@time for i in 1:1000 bdays(cal_str, d0, d1) end
N = 1000
d0vec = fill(d0, N)
d1vec = fill(d1, N)
cal_type_vec = fill(cal_type, N)
cal_sym_vec = fill(cal_sym, N)
cal_str_vec = fill(cal_str, N)
# Warmup
BusinessDays.initcache(BusinessDays.Brazil())
BusinessDays.initcache("USSettlement")
BusinessDays.initcache(:UKSettlement)
BusinessDays.bdays(cal_type, d0, d1)
BusinessDays.bdays(cal_sym, d0, d1)
BusinessDays.bdays(cal_str, d0, d1)
BusinessDays.bdays(cal_type, d0vec, d1vec)
BusinessDays.bdays(cal_sym, d0vec, d1vec)
BusinessDays.bdays(cal_str, d0vec, d1vec)
BusinessDays.bdays(cal_type_vec, d0vec, d1vec)
BusinessDays.bdays(cal_sym_vec, d0vec, d1vec)
BusinessDays.bdays(cal_str_vec, d0vec, d1vec)
println("type")
@time for i in 1:1000 BusinessDays.bdays(cal_type, d0, d1) end
@time BusinessDays.bdays(cal_type, d0vec, d1vec)
@time BusinessDays.bdays(cal_type_vec, d0vec, d1vec)
println("sym")
@time for i in 1:1000 BusinessDays.bdays(cal_sym, d0, d1) end
@time BusinessDays.bdays(cal_sym, d0vec, d1vec)
@time BusinessDays.bdays(cal_sym_vec, d0vec, d1vec)
println("str")
@time for i in 1:1000 BusinessDays.bdays(cal_str, d0, d1) end
@time BusinessDays.bdays(cal_str, d0vec, d1vec)
@time BusinessDays.bdays(cal_str_vec, d0vec, d1vec)
BusinessDays.cleancache()
println("initcache type")
@time BusinessDays.initcache(cal_type)
BusinessDays.cleancache()
println("initcache sym")
@time BusinessDays.initcache(cal_sym)
BusinessDays.cleancache()
println("initcache str")
@time BusinessDays.initcache(cal_str)
BusinessDays.cleancache()
let
cal = BusinessDays.WeekendsOnly()
println("WeekendsOnly no cache")
@time for i in 1:1000 BusinessDays.bdays(cal, d0, d1) end
BusinessDays.initcache(cal)
println("WeekendsOnly cache enabled")
@time for i in 1:1000 BusinessDays.bdays(cal, d0, d1) end
end
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 13506 |
using BusinessDays
using Test
import Dates
# Issue #18
Dict(Any[])
# Issue #30
# list holidays for all available calendars
for c in [:BRSettlement, :BrazilExchange, :USNYSE, :USGovernmentBond, :USSettlement, :CanadaTSX, :CanadaSettlement, :EuroZone, :UKSettlement, :AustraliaASX]
listholidays(c, Dates.Date(1900,1,1), Dates.Date(2100,1,1))
end
# Types
bhc = BusinessDays.Brazil()
ushc = BusinessDays.USSettlement()
ukhc = BusinessDays.UKSettlement()
usnysehc = BusinessDays.USNYSE()
usgovbondhc = BusinessDays.USGovernmentBond()
targethc = BusinessDays.TARGET()
hc_composite_BR_USA = CompositeHolidayCalendar([BusinessDays.Brazil(), BusinessDays.USSettlement()])
all_calendars_vec = [bhc, ushc, ukhc, hc_composite_BR_USA, usnysehc, usgovbondhc]
# two different instances of the same HolidayCalendar subtype should be equal
@test bhc == BusinessDays.Brazil()
@test ushc == BusinessDays.USSettlement()
@test bhc != ushc
@test string(bhc) == "BusinessDays.BRSettlement"
# Check typing system
@test isa(bhc,HolidayCalendar)
@test isa(ushc,HolidayCalendar)
@test isa(ukhc,HolidayCalendar)
include("easter_dates.jl")
include("easter-min-max.jl")
###############
# findweekday
###############
# weekday values:
# const Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday = 1,2,3,4,5,6,7
# see query.jl on Dates module
# See also dayofweek(dt) function.
# function findweekday(weekday_target :: Int, yy :: Int, mm:: Int, occurrence :: Int, ascending :: Bool )
@test BusinessDays.findweekday(Dates.Monday, 2015, 07, 1, true) == Dates.Date(2015, 07, 06)
@test BusinessDays.findweekday(Dates.Monday, 2015, 07, 2, true) == Dates.Date(2015, 07, 13)
@test BusinessDays.findweekday(Dates.Monday, 2015, 07, 3, true) == Dates.Date(2015, 07, 20)
@test BusinessDays.findweekday(Dates.Monday, 2015, 07, 4, true) == Dates.Date(2015, 07, 27)
@test BusinessDays.findweekday(Dates.Monday, 2015, 07, 5, true) == Dates.Date(2015, 08, 03)
@test BusinessDays.findweekday(Dates.Monday, 2015, 07, 1, false) == Dates.Date(2015, 07, 27)
@test BusinessDays.findweekday(Dates.Monday, 2015, 07, 2, false) == Dates.Date(2015, 07, 20)
@test BusinessDays.findweekday(Dates.Monday, 2015, 07, 3, false) == Dates.Date(2015, 07, 13)
@test BusinessDays.findweekday(Dates.Monday, 2015, 07, 4, false) == Dates.Date(2015, 07, 06)
@test BusinessDays.findweekday(Dates.Monday, 2015, 07, 5, false) == Dates.Date(2015, 06, 29)
@test BusinessDays.findweekday(Dates.Friday, 2015, 07, 1, true) == Dates.Date(2015, 07, 03)
@test BusinessDays.findweekday(Dates.Friday, 2015, 07, 2, true) == Dates.Date(2015, 07, 10)
@test BusinessDays.findweekday(Dates.Friday, 2015, 07, 3, true) == Dates.Date(2015, 07, 17)
@test BusinessDays.findweekday(Dates.Friday, 2015, 07, 4, true) == Dates.Date(2015, 07, 24)
@test BusinessDays.findweekday(Dates.Friday, 2015, 07, 5, true) == Dates.Date(2015, 07, 31)
@test BusinessDays.findweekday(Dates.Friday, 2015, 07, 6, true) == Dates.Date(2015, 08, 07)
@test BusinessDays.findweekday(Dates.Friday, 2015, 07, 1, false) == Dates.Date(2015, 07, 31)
@test BusinessDays.findweekday(Dates.Friday, 2015, 07, 2, false) == Dates.Date(2015, 07, 24)
@test BusinessDays.findweekday(Dates.Friday, 2015, 07, 3, false) == Dates.Date(2015, 07, 17)
@test BusinessDays.findweekday(Dates.Friday, 2015, 07, 4, false) == Dates.Date(2015, 07, 10)
@test BusinessDays.findweekday(Dates.Friday, 2015, 07, 5, false) == Dates.Date(2015, 07, 03)
@test BusinessDays.findweekday(Dates.Friday, 2015, 07, 6, false) == Dates.Date(2015, 06, 26)
@test BusinessDays.findweekday(Dates.Wednesday, 2015, 07, 1, true) == Dates.Date(2015, 07, 01)
@test BusinessDays.findweekday(Dates.Wednesday, 2015, 07, 2, true) == Dates.Date(2015, 07, 08)
@test BusinessDays.findweekday(Dates.Wednesday, 2015, 07, 3, true) == Dates.Date(2015, 07, 15)
@test BusinessDays.findweekday(Dates.Wednesday, 2015, 07, 4, true) == Dates.Date(2015, 07, 22)
@test BusinessDays.findweekday(Dates.Wednesday, 2015, 07, 5, true) == Dates.Date(2015, 07, 29)
@test BusinessDays.findweekday(Dates.Wednesday, 2015, 07, 6, true) == Dates.Date(2015, 08, 05)
@test BusinessDays.findweekday(Dates.Wednesday, 2015, 07, 1, false) == Dates.Date(2015, 07, 29)
@test BusinessDays.findweekday(Dates.Wednesday, 2015, 07, 2, false) == Dates.Date(2015, 07, 22)
@test BusinessDays.findweekday(Dates.Wednesday, 2015, 07, 3, false) == Dates.Date(2015, 07, 15)
@test BusinessDays.findweekday(Dates.Wednesday, 2015, 07, 4, false) == Dates.Date(2015, 07, 08)
@test BusinessDays.findweekday(Dates.Wednesday, 2015, 07, 5, false) == Dates.Date(2015, 07, 01)
@test BusinessDays.findweekday(Dates.Wednesday, 2015, 07, 6, false) == Dates.Date(2015, 06, 24)
@test_throws AssertionError BusinessDays.findweekday(Dates.Wednesday, 2015, 07, -1, false)
@test_throws AssertionError BusinessDays.findweekday(Dates.Wednesday, 2015, 07, -1, true)
@test advancebdays(:BRSettlement, Dates.Date(2013, 02, 06), 3) == Dates.Date(2013, 02, 13) # after carnaval wednesday
@test advancebdays(:BRSettlement, Dates.Date(2013, 02, 14), -4) == Dates.Date(2013, 02, 06) # after carnaval thursday
@test advancebdays(:BRSettlement, Dates.Date(2013, 02, 06), Dates.Day(3)) == Dates.Date(2013, 02, 13) # after carnaval wednesday
@test advancebdays(:BRSettlement, Dates.Date(2013, 02, 14), Dates.Day(-4)) == Dates.Date(2013, 02, 06) # after carnaval thursday
@test advancebdays(:BRSettlement, Dates.Date(2013, 02, 06), [Dates.Day(3), Dates.Day(4)]) == [Dates.Date(2013, 02, 13), Dates.Date(2013, 02, 14)] # after carnaval wednesday
# Test this only on 64bit or higher systems
len = typemax(UInt32) + 1
if len > typemax(UInt32)
d0 = Dates.Date(1950, 2, 1)
d1 = d0 + Dates.Day(len)
@test_throws AssertionError BusinessDays._create_bdays_cache_arrays(bhc, d0, d1)
end
# Create HolidayCalendar instances
hc_australiaasx = BusinessDays.AustraliaASX()
hc_australiaact = BusinessDays.Australia(:ACT)
hc_australiansw = BusinessDays.Australia(:NSW)
hc_australiant = BusinessDays.Australia(:NT)
hc_australiaqld = BusinessDays.Australia(:QLD)
hc_australiasa = BusinessDays.Australia(:SA)
hc_australiatas = BusinessDays.Australia(:TAS)
hc_australiawa = BusinessDays.Australia(:WA)
hc_australiavic = BusinessDays.Australia(:VIC)
hc_brazil = BusinessDays.BRSettlement()
hc_brazil_exc = BusinessDays.BrazilExchange()
hc_de_bw = BusinessDays.DE(:BW)
hc_de_by = BusinessDays.DE(:BY)
hc_de_byp = BusinessDays.DE(:BYP)
hc_de_be = BusinessDays.DE(:BE)
hc_de_bb = BusinessDays.DE(:BB)
hc_de_hb = BusinessDays.DE(:HB)
hc_de_hh = BusinessDays.DE(:HH)
hc_de_he = BusinessDays.DE(:HE)
hc_de_mv = BusinessDays.DE(:MV)
hc_de_ni = BusinessDays.DE(:NI)
hc_de_nw = BusinessDays.DE(:NW)
hc_de_rp = BusinessDays.DE(:RP)
hc_de_sl = BusinessDays.DE(:SL)
hc_de_sn = BusinessDays.DE(:SN)
hc_de_st = BusinessDays.DE(:ST)
hc_de_sh = BusinessDays.DE(:SH)
hc_de_th = BusinessDays.DE(:TH)
hc_usa = BusinessDays.USSettlement()
hc_uk = BusinessDays.UKSettlement()
hc_usnyse = BusinessDays.USNYSE()
hc_usgovbond = BusinessDays.USGovernmentBond()
hc_canadatsx = BusinessDays.CanadaTSX()
hc_canada = BusinessDays.CanadaSettlement()
####################
# Calendar Tests
####################
usecache = false
include("calendar_tests.jl")
usecache = true
include("calendar_tests.jl")
####################
# Performance Tests
####################
include("perftests.jl")
BusinessDays.cleancache(hc_brazil)
BusinessDays.cleancache()
struct TestCalendar <: HolidayCalendar end
cc = TestCalendar()
@test_throws ErrorException isholiday(cc, Dates.Date(2015,1,1))
BusinessDays.isholiday(::TestCalendar, dt::Dates.Date) = dt == Dates.Date(2015,8,27)
@test isholiday(cc, Dates.Date(2015,8,26)) == false
@test isholiday(cc, Dates.Date(2015,8,27)) == true
BusinessDays.initcache(cc)
@test isholiday(cc, Dates.Date(2015,8,26)) == false
@test isholiday(cc, Dates.Date(2015,8,27)) == true
BusinessDays.cleancache(cc)
isholiday(:Brazil, Dates.Date(2016,2,1))
isholiday(:TestCalendar, Dates.Date(2016,2,1))
isholiday("TestCalendar", Dates.Date(2016,2,1))
isbday(:Brazil, Dates.Date(2016,2,1))
isbday(:TestCalendar, Dates.Date(2016,2,1))
isbday("TestCalendar", Dates.Date(2016,2,1))
sym_vec = [:Brazil, :UKSettlement]
BusinessDays.initcache(sym_vec)
BusinessDays.cleancache(sym_vec)
str_vec = ["Brazil", "UKSettlement", "Canada", "UnitedStates", "USNYSE", "USGovernmentBond", "CanadaTSX", "WeekendsOnly"]
BusinessDays.initcache(str_vec)
BusinessDays.cleancache(str_vec)
BusinessDays.initcache("UKSettlement", Dates.Date(2000,1,1), Dates.Date(2000,5,2))
BusinessDays.initcache("UKSettlement", Dates.Date(2000,1,1), Dates.Date(2000,5,2)) # repeating initcache should work
BusinessDays.initcache("UKSettlement", Dates.Date(2000,1,1), Dates.Date(2000,1,1)) # single date cache should work
BusinessDays.cleancache("UKSettlement")
# equality and hash function for Australia
@test BusinessDays.Australia(:ACT) == BusinessDays.Australia(:ACT)
@test BusinessDays.Australia(:ACT) != BusinessDays.Australia(:NSW)
@test hash(BusinessDays.Australia(:ACT)) == hash(BusinessDays.Australia(:ACT))
@test hash(BusinessDays.Australia(:ACT)) != hash(BusinessDays.Australia(:NSW))
BusinessDays.initcache(BusinessDays.Australia(:ACT))
@test haskey(BusinessDays.CACHE_DICT, BusinessDays.Australia(:ACT))
@test !haskey(BusinessDays.CACHE_DICT, BusinessDays.Australia(:NSW))
BusinessDays.cleancache(BusinessDays.Australia(:ACT))
include("customcalendar-example.jl")
#########################
# GenericHolidayCalendar
#########################
d0 = Dates.Date(1980,1,1)
d1 = Dates.Date(2050,1,1)
gen_brazil = GenericHolidayCalendar(listholidays(hc_brazil, d0, d1))
@test isbday(gen_brazil, Dates.Date(2014, 12, 31)) == true # wednesday
@test isbday(gen_brazil, Dates.Date(2015, 01, 01)) == false # new year
@test isbday(gen_brazil, Dates.Date(2015, 01, 02)) == true # friday
@test advancebdays(gen_brazil, Dates.Date(2015,9,1), [0, 1, 3, 4, 5]) == advancebdays(hc_brazil, Dates.Date(2015,9,1), [0, 1, 3, 4, 5])
@test advancebdays(gen_brazil, Dates.Date(2015,9,1), 0:5) == advancebdays(hc_brazil, Dates.Date(2015,9,1), 0:5)
@test listholidays(gen_brazil, Dates.Date(2016,1,1), Dates.Date(2016,5,30)) == listholidays(hc_brazil, Dates.Date(2016,1,1), Dates.Date(2016,5,30))
@test tobday(gen_brazil, Dates.Date(2013, 02, 08)) == tobday(hc_brazil, Dates.Date(2013, 02, 08))
@test tobday(gen_brazil, Dates.Date(2013, 02, 09)) == tobday(hc_brazil, Dates.Date(2013, 02, 09))
@test_throws AssertionError bdays(gen_brazil, Dates.Date(1900,2,1), Dates.Date(2000,2,1))
@test_throws AssertionError bdays(gen_brazil, Dates.Date(2000,2,1), Dates.Date(2100,2,1))
d0_test = Dates.Date(1980,1,2)
d1_test = Dates.Date(2049,12,28)
@test bdays(hc_brazil, d0_test, d1_test) == bdays(gen_brazil, d0_test, d1_test)
@test bdayscount(hc_brazil, d0_test, d1_test) == bdayscount(gen_brazil, d0_test, d1_test)
println("a million with GenericHolidayCalendar...")
@time for i in 1:1000000 bdays(gen_brazil, d0_test, d1_test) end
BusinessDays.cleancache(gen_brazil)
# Start all over, but without cache
gen_brazil = GenericHolidayCalendar(listholidays(hc_brazil, d0, d1), d0, d1, false)
@test isbday(gen_brazil, Dates.Date(2014, 12, 31)) == true # wednesday
@test isbday(gen_brazil, Dates.Date(2015, 01, 01)) == false # new year
@test isbday(gen_brazil, Dates.Date(2015, 01, 02)) == true # friday
@test advancebdays(gen_brazil, Dates.Date(2015,9,1), [0, 1, 3, 4, 5]) == advancebdays(hc_brazil, Dates.Date(2015,9,1), [0, 1, 3, 4, 5])
@test advancebdays(gen_brazil, Dates.Date(2015,9,1), 0:5) == advancebdays(hc_brazil, Dates.Date(2015,9,1), 0:5)
@test listholidays(gen_brazil, Dates.Date(2016,1,1), Dates.Date(2016,5,30)) == listholidays(hc_brazil, Dates.Date(2016,1,1), Dates.Date(2016,5,30))
@test tobday(gen_brazil, Dates.Date(2013, 02, 08)) == tobday(hc_brazil, Dates.Date(2013, 02, 08))
@test tobday(gen_brazil, Dates.Date(2013, 02, 09)) == tobday(hc_brazil, Dates.Date(2013, 02, 09))
@test_throws AssertionError bdays(gen_brazil, Dates.Date(1900,2,1), Dates.Date(2000,2,1))
@test_throws AssertionError bdays(gen_brazil, Dates.Date(2000,2,1), Dates.Date(2100,2,1))
@test BusinessDays.needs_cache_update(gen_brazil, d0, d1) == false
BusinessDays.initcache(gen_brazil)
@test BusinessDays.needs_cache_update(gen_brazil, d0, d1) == true
@test isbday(gen_brazil, Dates.Date(2014, 12, 31)) == true # wednesday
@test isbday(gen_brazil, Dates.Date(2015, 01, 01)) == false # new year
@test isbday(gen_brazil, Dates.Date(2015, 01, 02)) == true # friday
# does nothing, because cache is already there
BusinessDays.initcache(gen_brazil)
# A GenericHolidayCalendar is defined by its set of holidays, dtmin, dtmax
dtmin = Dates.Date(2018,1,15)
dtmax = Dates.Date(2018,1,19)
gen_1 = GenericHolidayCalendar(Set([Dates.Date(2018,1,16), Dates.Date(2018,1,18)]), dtmin, dtmax)
gen_2 = GenericHolidayCalendar(Set([Dates.Date(2018,1,16), Dates.Date(2018,1,18)]), dtmin, dtmax)
@test gen_1 == gen_2
# On a set, they are the same element
cal_set = Set([gen_1, gen_2])
@test length(cal_set) == 1
# On a dict, they represent the same key
cal_dict = Dict(gen_1 => "hey")
@test cal_dict[gen_2] == "hey"
# Broadcast
@test BusinessDays.tobday.(BusinessDays.WeekendsOnly(), [Dates.Date(2019, 8, 30), Dates.Date(2019, 8, 31), Dates.Date(2019, 9, 1), Dates.Date(2019, 9, 2)]) == [Dates.Date(2019, 8, 30), Dates.Date(2019, 9, 2), Dates.Date(2019, 9, 2), Dates.Date(2019, 9, 2)]
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | code | 545 |
using Base.Dates
using BusinessDays
using DataFrames
bd = BusinessDays
hc_vec = [:BRSettlement, :USSettlement, :USNYSE, :USGovernmentBond, :UKSettlement, :CanadaSettlement, :CanadaTSX, :TARGET]
d0 = Date(1960,01,04)
d1 = Date(2100,01,04)
bd.initcache(hc_vec, d0, d1)
d1vec = collect(d0:d1)
d0vec = fill(d0, length(d1vec))
!isdir("csv") && mkdir("csv")
for hc in hc_vec
b = convert(Array{Int, 1}, isbday(hc, d1vec))
writetable(string("csv/julia-isbday-", string(hc), ".csv"), DataFrame(D = d1vec, ISBDAY = b), quotemark = ' ')
end
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | docs | 1301 |
# BusinessDays.jl
[![License][license-img]](LICENSE)
[![CI][ci-img]][ci-url]
[![codecov][codecov-img]][codecov-url]
[![dev][docs-dev-img]][docs-dev-url]
[![stable][docs-stable-img]][docs-stable-url]
[license-img]: http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat-square
[ci-img]: https://github.com/felipenoris/BusinessDays.jl/workflows/CI/badge.svg
[ci-url]: https://github.com/felipenoris/BusinessDays.jl/actions?query=workflow%3ACI
[codecov-img]: https://img.shields.io/codecov/c/github/JuliaFinance/BusinessDays.jl/master.svg?label=codecov&style=flat-square
[codecov-url]: http://codecov.io/github/JuliaFinance/BusinessDays.jl?branch=master
[docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg?style=flat-square
[docs-dev-url]: https://juliafinance.github.io/BusinessDays.jl/dev
[docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg?style=flat-square
[docs-stable-url]: https://juliafinance.github.io/BusinessDays.jl/stable
A highly optimized *Business Days* calculator written in Julia language.
Also known as *Working Days* calculator.
## Installation
```julia
julia> Pkg.add("BusinessDays")
```
## Requirements
* Julia v1.0 or newer.
## Documentation
Package documentation is hosted at https://juliafinance.github.io/BusinessDays.jl/stable.
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | docs | 468 |
# API Reference
```@docs
BusinessDays.HolidayCalendar
BusinessDays.easter_rata
BusinessDays.easter_date
BusinessDays.findweekday
BusinessDays.isholiday
BusinessDays.isweekend
BusinessDays.isweekday
BusinessDays.isbday
BusinessDays.tobday
BusinessDays.advancebdays
BusinessDays.bdays
BusinessDays.bdayscount
BusinessDays.firstbdayofmonth
BusinessDays.lastbdayofmonth
BusinessDays.listholidays
BusinessDays.listbdays
BusinessDays.initcache
BusinessDays.cleancache
```
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.9.24 | 00e206895eb8d0350149dff15ba1ea9a8f306c63 | docs | 9979 |
# BusinessDays.jl
A highly optimized *Business Days* calculator written in Julia language.
Also known as *Working Days* calculator.
## Requirements
* Julia v1.0 or newer.
## Installation
From a Julia session, run:
```julia
julia> using Pkg
julia> Pkg.add("BusinessDays")
```
## Motivation
This code was developed with a mindset of a Financial Institution that has a big *Fixed Income* portfolio.
Many financial contracts, specially *Fixed Income instruments*, depend on a particular calendar of holidays
to determine how many days exist between the valuation date and the maturity of the contract.
A *Business Days* calculator is a small piece of software used to perform this important step of the valuation process.
While there are many implementations of *Business Days* calculators out there,
the usual implementation is based on this kind of algorithm:
```r
dt0 = initial_date
dt1 = final_date
holidays = vector_of_holidays
bdays = 0
while d0 <= d1
if d0 not in holidays
bdays = bdays + 1
end
d0 = d0 + 1
end while
```
This works fine for general use. But the performance becomes an issue if one must repeat this calculation many times. Say you have 50 000 contracts, each contract with 20 cash flows. If you need to apply this algorithm to each cash flow, you will need to perform it 1 000 000 times.
For instance, let's try out this code using *R* and [QuantLib](https://github.com/lballabio/QuantLib) ([RQuantLib](https://github.com/eddelbuettel/rquantlib)):
```r
library(RQuantLib)
library(microbenchmark)
from <- as.Date("2015-06-29")
to <- as.Date("2100-12-20")
microbenchmark(businessDaysBetween("Brazil", from, to))
from_vect <- rep(from, 1000000)
to_vect <- rep(to, 1000000)
microbenchmark(businessDaysBetween("Brazil", from_vect, to_vect), times=1)
```
Running this code, we get the following: *(only the fastest execution is shown)*
```
Unit: milliseconds
expr min
businessDaysBetween("Brazil", from, to) 1.63803
Unit: seconds
expr min
businessDaysBetween("Brazil", from_vect, to_vect) 1837.476
```
While one computation takes up to 2 milliseconds, we're in trouble if we have to repeat it for the whole portfolio: it takes about **half an hour** to complete. This is not due to R's performance, because [RQuantLib](https://github.com/eddelbuettel/rquantlib) is a simple wrapper to [QuantLib](https://github.com/lballabio/QuantLib) C++ library.
**BusinessDays.jl** uses a *tailor-made* cache to store Business Days results, reducing the time spent to the order of a few *microseconds* for a single computation. Also, the time spent to process the whole portfolio is reduced to **under a second**.
It's also important to point out that the initialization of the memory cache, which is done only once for each Julia runtime session, takes less than *half a second*, including JIT compilation time. Also, the *memory footprint* required for each cached calendar should take around 0.7 MB.
**Benchmark Code**
```julia
julia> using BusinessDays, Dates
julia> d0 = Date(2015, 06, 29) ; d1 = Date(2100, 12, 20) ;
julia> cal = BusinessDays.BRSettlement()
BusinessDays.BRSettlement()
julia> @time BusinessDays.initcache(cal)
0.161972 seconds (598.85 k allocations: 30.258 MiB, 2.29% gc time)
julia> bdays(cal, d0, d1) # force JIT compilation
21471 days
julia> @time bdays(cal, d0, d1)
0.000012 seconds (9 allocations: 240 bytes)
21471 days
julia> @time for i in 1:1000000 bdays(cal, d0, d1) end
0.221275 seconds (5.00 M allocations: 76.294 MiB, 2.93% gc time)
```
**There's no magic**
If we disable BusinessDays's cache, however, the performance is slightly worse than QuantLib's implementation. It takes around 38 minutes to process the same benchmark test.
```julia
julia> BusinessDays.cleancache() # cleans existing cache, if any
julia> @time for i in 1:1000000 bdays(cal, d0, d1) end
# 2288.906548 seconds (5.00 M allocations: 76.294 MB, 0.00% gc time)
```
It's important to point out that **cache is disabled by default**. So, in order to take advantage of high speed computation provided by this package, one must call `BusinessDays.initcache` function.
## Tutorial
```julia
julia> using BusinessDays, Dates
# creates cache for US Federal holidays, allowing fast computations
julia> BusinessDays.initcache(:USSettlement)
# Calendars can be referenced using symbols
julia> isbday(:USSettlement, Date(2015, 1, 1))
false
# ... and also strings
julia> isbday("USSettlement", Date(2015, 1, 1))
false
# but for the best performance, use a singleton instance
julia> isbday(BusinessDays.USSettlement(), Date(2015, 1, 1))
false
# Adjust to next business day
julia> tobday(:USSettlement, Date(2015, 1, 1))
2015-01-02
# Adjust to last business day
julia> tobday(:USSettlement, Date(2015, 1, 1); forward = false)
2014-12-31
# advances 1 business day
julia> advancebdays(:USSettlement, Date(2015, 1, 2), 1)
2015-01-05
# goes back 1 business day
julia> advancebdays(:USSettlement, Date(2015, 1, 2), -1)
2014-12-31
# counts the number of business days between dates
julia> bdays(:USSettlement, Date(2014, 12, 31), Date(2015, 1, 5))
2 days
# same as above, but returns integer
julia> bdayscount(:USSettlement, Date(2014, 12, 31), Date(2015, 1, 5))
2
julia> isbday(:USSettlement, [Date(2014,12,31),Date(2015,1,1),Date(2015,1,2),Date(2015,1,3),Date(2015,1,5)])
5-element Array{Bool,1}:
true
false
true
false
true
julia> bdays(:USSettlement, [Date(2014,12,31),Date(2015,1,2)], [Date(2015,1,5),Date(2015,1,5)])
2-element Array{Base.Dates.Day,1}:
2 days
1 day
```
See *runtests.jl* for more examples.
## Available Business Days Calendars
- **AustraliaASX** : Public holidays for the Australian Stock Exchange (ASX).
- **Australia(state)** : Public holidays for the Australian states and territories. Available for each state: `Australia(:ACT)`, `Australia(:NSW)`, `Australia(:NT)`, `Australia(:QLD)`, `Australia(:SA)`, `Australia(:TAS)`, `Australia(:WA)`, `Australia(:VIC)`.
- **BRSettlement** or **Brazil** : banking holidays for Brazil (federal holidays plus Carnival).
- **BrazilExchange** or **BrazilB3** : holidays for B3 Stock Exchange.
- **CanadaSettlement** or **Canada**: holidays for Canada.
- **CanadaTSX**: holidays for Toronto Stock Exchange
- **CompositeHolidayCalendar** : supports combination of Holiday Calendars.
- **Germany(state)** or **DE(state)** : State-wide (except BY/BYP) public holidays for the German
federal states.
- Available for each state: `Germany(:BW)`, `Germany(:BY)` (including Assumption of
Mary for Catholic communities), `Germany(:BYP)` (only Protestant communities without Assumption of
Mary), `Germany(:BE)`, `Germany(:BB)`, `Germany(:HB)`, `Germany(:HH)`, `Germany(:HE)`,
`Germany(:MV)`, `Germany(:NI)`, `Germany(:NW)`, `Germany(:RP)`, `Germany(:SL)`, `Germany(:SN)`,
`Germany(:ST)`, `Germany(:SH)`, `Germany(:TH)`.
- **NullHolidayCalendar** : `isholiday` returns `false` and `isbday` returns `true` for any date. `bdays` returns the actual days between dates.
- **TARGET** or **TARGET2** or **EuroZone** : [TARGET / TARGET2 Euro Zone](https://en.wikipedia.org/wiki/TARGET2) holiday calendar.
- **USSettlement** or **UnitedStates**: United States federal holidays.
- **USNYSE** : United States NYSE holidays.
- **USGovernmentBond** : Broadly accepted holidays for United States Government Bond market. [SOFR Rate](https://www.newyorkfed.org/markets/reference-rates/sofr) calendar. See <https://www.sifma.org/resources/general/holiday-schedule/>.
- **UKSettlement** or **UnitedKingdom**: banking holidays for England and Wales. See <https://www.gov.uk/bank-holidays>.
- **WeekendsOnly** : for this calendar, `isholiday` returns `false`, but `isbday` returns `false` for Saturdays and Sundays.
## Adding new Holiday Calendars
You can add your custom Holiday Calendar by doing the following:
1. Define a subtype of `HolidayCalendar`.
2. Implement a new method for `isholiday` for your calendar.
**Example Code**
```julia
julia> using BusinessDays, Dates
julia> struct CustomCalendar <: HolidayCalendar end
julia> BusinessDays.isholiday(::CustomCalendar, dt::Date) = dt == Date(2015,8,27)
julia> cc = CustomCalendar()
CustomCalendar()
julia> isholiday(cc, Date(2015,8,26))
false
julia> isholiday(cc, Date(2015,8,27))
true
julia> isholiday(:CustomCalendar, Date(2015,8,27))
true
julia> isholiday("CustomCalendar", Date(2015,8,27))
true
```
## Generic Holiday Calendar
You can use a fixed set of holidays to define a new Holiday Calendar using `GenericHolidayCalendar` type.
```julia
julia> using BusinessDays, Dates
julia> holidays = Set([Date(2018,1,16), Date(2018,1,18)])
julia> dtmin = Date(2018,1,15); dtmax = Date(2018,1,19)
julia> gen_calendar = GenericHolidayCalendar(holidays, dtmin, dtmax)
julia> bdayscount(gen_calendar, Date(2018,1,15), Date(2018,1,17))
1
```
The constructor is given by: `GenericHolidayCalendar(holidays, [dtmin], [dtmax], [_initcache_])`, where
* `holidays`: a set of holiday dates
* `dtmin`: minimum date allowed to check for holidays in holidays set. Defaults to `min(holidays...)`.
* `dtmax`: maximum date allowed to check for holidays in holidays set. Defaults to `max(holidays...)`.
* `_initcache_`: initializes the cache for this calendar. Defaults to `true`.
## Source Code
The source code for this package is hosted at
[https://github.com/JuliaFinance/BusinessDays.jl](https://github.com/JuliaFinance/BusinessDays.jl).
## License
The source code for the package **BusinessDays.jl** is licensed under
the [MIT License](https://raw.githubusercontent.com/JuliaFinance/BusinessDays.jl/master/LICENSE).
## Alternative Packages
* [Ito.jl](http://aviks.github.io/Ito.jl/time.html)
* [FinancialMarkets.jl](https://github.com/imanuelcostigan/FinancialMarkets.jl)
* [QuantLib.jl](https://github.com/pazzo83/QuantLib.jl)
* [QuantLib C++ Library](https://github.com/lballabio/QuantLib)
| BusinessDays | https://github.com/JuliaFinance/BusinessDays.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 780 | push!(LOAD_PATH, "@stdlib")
import Pkg; Pkg.add("Conda");
using Conda
try
run(`which nvcc`)
ENV["GPU"] = 1
Pkg.build("ADCME")
catch
end
using ADCME
@info "Install Boost"
CONDA = get_conda()
run(`$CONDA install libboost==1.73.0=h3ff78a5_11`)
# run(`$CONDA install boost==1.73.0`)
@info "Install AMGCL"
UNZIP = joinpath(ADCME.BINDIR, "unzip")
if !isdir("$(@__DIR__)/amgcl")
download("https://github.com/ddemidov/amgcl/archive/master.zip", "$(@__DIR__)/amgcl.zip")
run(`$UNZIP -o $(@__DIR__)/amgcl.zip -d $(@__DIR__)`)
mv("$(@__DIR__)/amgcl-master","$(@__DIR__)/amgcl", force=true)
rm("$(@__DIR__)/amgcl.zip")
end
@info "Build Custom Operators"
change_directory("CustomOps/build")
require_file("build.ninja") do
ADCME.cmake()
end
ADCME.make()
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 2612 | using ADCME
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
py"""
import tensorflow as tf
libEikonal = tf.load_op_library('./build/libEikonal.so')
@tf.custom_gradient
def eikonal_lekj(f, srcx, srcy, m, n, h):
u = libEikonal.eikonal(f, srcx, srcy, m, n, h)
def grad(du):
return libEikonal.eikonal_grad(du, u, f, srcx, srcy, m, n, h)
return u, grad
"""
eikonal_ = py"eikonal_lekj"
function eikonal(f::Union{Array{Float64}, PyObject},
srcx::Int64,srcy::Int64,h::Float64)
n_, m_ = size(f) # m width, n depth
n = n_-1
m = m_-1
# eikonal_ = load_op_and_grad("$(@__DIR__)/build/libEikonal","eikonal")
# f,srcx,srcy,m,n,h = convert_to_tensor([f,srcx,srcy,m,n,h], [Float64,Int64,Int64,Int64,Int64,Float64])
f = tf.cast(f, dtype=tf.float64)
srcx = tf.cast(srcx, dtype=tf.int64)
srcy = tf.cast(srcy, dtype=tf.int64)
m = tf.cast(m, dtype=tf.int64)
n = tf.cast(n, dtype=tf.int64)
h = tf.cast(h, dtype=tf.float64)
f = tf.reshape(f, (-1,))
u = eikonal_(f,srcx,srcy,m,n,h)
u.set_shape((length(f),))
tf.reshape(u, (n_, m_))
end
# TODO: specify your input parameters
m = 60
n = 30
h = 0.1
f = ones(n+1, m+1)
for i = 1:m+1
f[12:18, i] .= 10.
end
srcx = 30
srcy = 3
u = eikonal(f,srcx,srcy,h)
sess = Session(); init(sess)
@show run(sess, u)
pcolormesh(run(sess, u)|>Array)
axis("scaled")
colorbar()
gca().invert_yaxis()
# uncomment it for testing gradients
# error()
# TODO: change your test parameter to `m`
# in the case of `multiple=true`, you also need to specify which component you are testings
# gradient check -- v
function scalar_function(m_)
return sum(eikonal(m_,srcx,srcy,h)^2)
end
# TODO: change `m_` and `v_` to appropriate values
m_ = constant(rand((m+1),(n+1)))
v_ = rand((m+1),(n+1))
y_ = scalar_function(m_)
dy_ = gradients(y_, m_)
ms_ = Array{Any}(undef, 5)
ys_ = Array{Any}(undef, 5)
s_ = Array{Any}(undef, 5)
w_ = Array{Any}(undef, 5)
gs_ = @. 0.1 / 10^(1:5)
for i = 1:5
g_ = gs_[i]
ms_[i] = m_ + g_*v_
ys_[i] = scalar_function(ms_[i])
s_[i] = ys_[i] - y_
w_[i] = s_[i] - g_*sum(v_.*dy_)
end
sess = Session(); init(sess)
sval_ = run(sess, s_)
wval_ = run(sess, w_)
close("all")
loglog(gs_, abs.(sval_), "*-", label="finite difference")
loglog(gs_, abs.(wval_), "+-", label="automatic differentiation")
loglog(gs_, gs_.^2 * 0.5*abs(wval_[1])/gs_[1]^2, "--",label="\$\\mathcal{O}(\\gamma^2)\$")
loglog(gs_, gs_ * 0.5*abs(sval_[1])/gs_[1], "--",label="\$\\mathcal{O}(\\gamma)\$")
plt.gca().invert_xaxis()
legend()
xlabel("\$\\gamma\$")
ylabel("Error")
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 1441 | using ADCME
using PyCall
using LinearAlgebra
using PyPlot
using Random
using ADCMEKit
Random.seed!(233)
reset_default_graph()
include("eikonal_op.jl")
m = 60
n = 30
h = 0.1
f = ones(n+1, m+1)
f[12:18, :] .= 10.
srcx = 5
srcy = 15
u = PyObject[]
for (k,(x,y)) in enumerate(zip(5*ones(Int64, length(1:n)), 1:n))
push!(u,eikonal(f,x,y,h))
end
for (k,(x,y)) in enumerate( zip(1:m,5*ones(Int64, length(1:m))))
push!(u,eikonal(f,x,y,h))
end
for (k,(x,y)) in enumerate( zip(1:m,25*ones(Int64, length(1:m))))
push!(u,eikonal(f,x,y,h))
end
sess = Session()
uobs = run(sess, u)
F = Variable(ones(n+1, m+1))
# pl = placeholder(F0'[:])
# F = reshape(pl, n+1, m+1)
# F = Variable(ones(n+1, m+1))
u = PyObject[]
for (k,(x,y)) in enumerate(zip(5*ones(Int64, length(1:n)), 1:n))
push!(u,eikonal(F,x,y,h))
end
for (k,(x,y)) in enumerate(zip(1:m,5*ones(Int64, length(1:m))))
push!(u,eikonal(F,x,y,h))
end
for (k,(x,y)) in enumerate(zip(1:m,25*ones(Int64, length(1:m))))
push!(u,eikonal(F,x,y,h))
end
# loss = sum([sum((uobs[i][5:5:end,55] - u[i][5:5:end,55])^2) for i = 1:length(u)])
loss = sum([sum((uobs[i][1:end,55] - u[i][1:end,55])^2) for i = 1:length(u)])
init(sess)
@show run(sess, loss)
# lineview(sess, F, loss, f, ones(n+1, m+1))
# gradview(sess, pl, loss, ones((n+1)* (m+1)))
# meshview(sess, pl, loss, F0'[:])
BFGS!(sess, loss, 1000,var_to_bounds=Dict(F=>(0.5,100.0)))
pcolormesh(run(sess, F))
colorbar() | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 1379 | # void cufd(double *res, double *grad_Cp, double *grad_Cs, double *grad_Den,
# double *grad_stf, const double *Cp, const double *Cs,
# const double *Den, const double *stf, int calc_id, const int gpu_id,
# int group_size, const int *shot_ids, const string para_fname);
function obscalc(cp,cs,den,stf,shot_ids,para_fname)
m, n = size(cp)
res = zeros(1)
grad_Cp = zeros(m, n)
grad_Cs = zeros(m, n)
grad_Den = zeros(m, n)
grad_stf = zeros(size(stf)...)
calc_id = Int32(2)
gpu_id = Int32(0)
group_size = length(shot_ids)
ccall((:cufd, "./Src/build/libCUFD.so"), Cvoid, (Ref{Cdouble}, Ref{Cdouble}, Ref{Cdouble}, Ref{Cdouble},
Ref{Cdouble}, Ref{Cdouble}, Ref{Cdouble},
Ref{Cdouble}, Ref{Cdouble}, Cint, Cint, Cint, Ref{Cint}, Cstring),
res, grad_Cp, grad_Cs, grad_Den, grad_stf, cp, cs, den, stf, calc_id, gpu_id, group_size, shot_ids,
para_fname)
end
nz = 134
nx = 384
cp = 2500ones(nz, nx)
cs = zeros(nz, nx)
den = 1000ones(nz, nx)
shot_ids = Int32[0 1]
para_fname = "/home/lidongzh/TwoPhaseFlowFWI/Ops/FWI/Src/params/Par_file_obs_data.json"
src = Matrix{Float64}(undef, 1, 2001)
src[1,:] = Float64.(reinterpret(Float32, read("/home/lidongzh/TwoPhaseFlowFWI/Ops/FWI/Src/params/ricker_10Hz.bin")))
stf = repeat(src, outer=30)
obscalc(cp,cs,den,stf,shot_ids,para_fname) | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 4366 | # input: nz, nx, dz, dx, nSteps, nPoints_pml, nPad, dt, f0, survey_fname, data_dir_name, scratch_dir_name, isAc
using JSON
using DataStructures
using Dierckx
function paraGen(nz, nx, dz, dx, nSteps, dt, f0, nPml, nPad, para_fname, survey_fname, data_dir_name; if_win=false, filter_para=nothing, if_src_update=false, scratch_dir_name::String="")
para = OrderedDict()
para["nz"] = nz
para["nx"] = nx
para["dz"] = dz
para["dx"] = dx
para["nSteps"] = nSteps
para["dt"] = dt
para["f0"] = f0
para["nPoints_pml"] = nPml
para["nPad"] = nPad
if if_win != false
para["if_win"] = true
end
if filter_para != nothing
para["filter"] = filter_para
end
if if_src_update != false
para["if_src_update"] = true
end
para["survey_fname"] = survey_fname
para["data_dir_name"] = data_dir_name
if !isdir(data_dir_name)
mkdir(data_dir_name)
end
# if nStepsWrap != nothing
# para["nStepsWrap"] = nStepsWrap
# end
if(scratch_dir_name != "")
para["scratch_dir_name"] = scratch_dir_name
if !isdir(scratch_dir_name)
mkdir(scratch_dir_name)
end
end
para_string = JSON.json(para)
open(para_fname,"w") do f
write(f, para_string)
end
end
# all shots share the same number of receivers
function surveyGen(z_src, x_src, z_rec, x_rec, survey_fname; Windows=nothing, Weights=nothing)
nsrc = length(x_src)
nrec = length(x_rec)
survey = OrderedDict()
survey["nShots"] = nsrc
for i = 1:nsrc
shot = OrderedDict()
shot["z_src"] = z_src[i]
shot["x_src"] = x_src[i]
shot["nrec"] = nrec
shot["z_rec"] = z_rec
shot["x_rec"] = x_rec
if Windows != nothing
shot["win_start"] = Windows["shot$(i-1)"][:start]
shot["win_end"] = Windows["shot$(i-1)"][:end]
end
if Weights != nothing
# shot["weights"] = Int64.(Weights["shot$(i-1)"][:weights])
shot["weights"] = Weights["shot$(i-1)"][:weights]
end
survey["shot$(i-1)"] = shot
end
survey_string = JSON.json(survey)
open(survey_fname,"w") do f
write(f, survey_string)
end
end
function sourceGene(f, nStep, delta_t)
# Ricker wavelet generation and integration for source
# Dongzhuo Li @ Stanford
# May, 2015
e = pi*pi*f*f;
t_delay = 1.2/f;
source = Matrix{Float64}(undef, 1, nStep)
for it = 1:nStep
source[it] = (1-2*e*(delta_t*(it-1)-t_delay)^2)*exp(-e*(delta_t*(it-1)-t_delay)^2);
end
for it = 2:nStep
source[it] = source[it] + source[it-1];
end
source = source * delta_t;
end
"""
cs_bounds_cloud(cpImg, Bounds)
Get `vs` high and low bounds from log point cloud
1st row of Bounds: vp ref line
2nd row of Bounds: vs high ref line
3rd row of Bounds: vs low ref line
"""
function cs_bounds_cloud(cpImg, Bounds)
cs_high_itp = Spline1D(Bounds[1,:], Bounds[2,:]; k=1)
cs_low_itp = Spline1D(Bounds[1,:], Bounds[3,:]; k=1)
csHigh = zeros(size(cpImg))
csLow = zeros(size(cpImg))
for i = 1:size(cpImg, 1)
for j = 1:size(cpImg, 2)
csHigh[i,j] = cs_high_itp(cpImg[i,j])
csLow[i,j] = cs_low_itp(cpImg[i,j])
end
end
return csHigh, csLow
end
"""
klauderWave(fmin, fmax, t_sweep, nStepTotal, nStepDelay, delta_t)
Generates Klauder wavelet.
"""
function klauderWave(fmin, fmax, t_sweep, nStepTotal, nStepDelay, delta_t)
nStep = nStepTotal - nStepDelay
source = Matrix{Float64}(undef, 1, nStep+nStep-1)
source_half = Matrix{Float64}(undef, 1, nStep-1)
K = (fmax - fmin) / t_sweep
f0 = (fmin + fmax) / 2.0
t_axis = delta_t:delta_t:(nStep-1)*delta_t
source_half = sin.(pi * K .* t_axis .* (t_sweep .- t_axis)) .* cos.(2.0 * pi * f0 .* t_axis) ./ (pi*K.*t_axis*t_sweep)
for i = 1:nStep-1
source[i] = source_half[end-i+1]
end
for i = nStep+1:2*nStep-1
source[i] = source_half[i-nStep]
end
source[nStep] = 1.0
source_crop = source[:,nStep-nStepDelay:end]
return source_crop
end
# function klauderWave(fmin, fmax, t_sweep, nStep, delta_t)
# # Klauder wavelet
# # Dongzhuo Li @ Stanford
# # August, 2019
# source = Matrix{Float64}(undef, 1, nStep)
# K = (fmax - fmin) / t_sweep
# f0 = (fmin + fmax) / 2.0
# t_axis = delta_t:delta_t:(nStep-1)*delta_t
# source_part = sin.(pi * K .* t_axis .* (t_sweep .- t_axis)) .* cos.(2.0 * pi * f0 .* t_axis) ./ (pi*K.*t_axis*t_sweep)
# for i = 2:nStep
# source[i] = source_part[i-1]
# end
# source[1] = 1.0
# return source
# end | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 2004 |
if Sys.islinux()
py"""
import tensorflow as tf
import socket
if socket.gethostname() != "Dolores":
libFwiOp = tf.load_op_library('./build/libFwiOp.so')
else:
libFwiOp = tf.load_op_library('./build_dolores/libFwiOp.so')
@tf.custom_gradient
def fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
def grad(dy):
return libFwiOp.fwi_op_grad(dy, tf.constant(1.0,dtype=tf.float64),λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit, grad
def fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libFwiOp = tf.load_op_library('./build/libFwiOp.dylib')
@tf.custom_gradient
def fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
def grad(dy):
return libFwiOp.fwi_op_grad(dy, tf.constant(1.0,dtype=tf.float64),λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit, grad
def fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libFwiOp = tf.load_op_library('./build/libFwiOp.dll')
@tf.custom_gradient
def fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
def grad(dy):
return libFwiOp.fwi_op_grad(dy, tf.constant(1.0,dtype=tf.float64),λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit, grad
def fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit
"""
end
fwi_op = py"fwi_op"
fwi_obs_op = py"fwi_obs_op" | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 5005 | using ADCME
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
include("fwi_util.jl")
include("fwi_util_op.jl")
np = pyimport("numpy")
# argsparse.jl
# ENV["CUDA_VISIBLE_DEVICES"] = 1
# ENV["PARAMDIR"] = "Src/params/"
# config = tf.ConfigProto(device_count = Dict("GPU"=>0))
nz = 400
nx = 400
dz = 20
dx = 20
nSteps = 2001
dt = 0.0025
f0 = 4.5
filter_para = [0, 0.1, 100.0, 200.0]
nPml = 32
isAc = false
nPad = 0
# x_src = collect(5:10:nx-2nPml-5)
# z_src = 2ones(Int64, size(x_src))
# x_rec = collect(5:100-nPml)
# z_rec = 2ones(Int64, size(x_rec))
x_src = [200-nPml]
z_src = [200-nPml]
z = (5:10:nz-2nPml-5)|>collect
x = (5:10:nx-2nPml-5)|>collect
x_rec, z_rec = np.meshgrid(x, z)
x_rec = x_rec[:]
z_rec = z_rec[:]
# x_src = 5
# z_src = [300-nPml]
# z_rec = collect(5:1:nz-2nPml-5)
# x_rec = (nx-2nPml-100) .* ones(Int64, size(z_rec))
para_fname = "./para_file.json"
survey_fname = "./survey_file.json"
data_dir_name = "./Data"
scratch_dir_name="./Scratch"
# paraGen(nz, nx, dz, dx, nSteps, dt, f0, nPml, nPad, filter_para, isAc, para_fname, survey_fname, data_dir_name, scratch_dir_name=scratch_dir_name)
# surveyGen(z_src, x_src, z_rec, x_rec, survey_fname)
paraGen(nz, nx, dz, dx, nSteps, dt, f0, nPml,
nPad, para_fname, survey_fname, data_dir_name,
scratch_dir_name=scratch_dir_name)
surveyGen(z_src, x_src, z_rec, x_rec, survey_fname)
cp = 3000ones(nz, nx)
# cp = (1. .+ 0.1*rand(nz, nx)) .* 3000.
cs = 3000.0/sqrt(3.0) .* ones(nz,nx)
# cs = zeros(nz,nx)
den = 2000.0 .* ones(nz, nx)
function vel2moduli(cp,cs,den)
lambda = (cp.^2 - 2.0 .* cs.^2) .* den ./ 1e6
mu = cs.^2 .* den ./ 1e6
return lambda, mu
end
lambda, mu = vel2moduli(cp,cs,den)
tf_lambda = constant(lambda)
tf_mu = constant(mu)
tf_den = constant(den)
# # src = Matrix{Float64}(undef, 1, 2001)
# src[1,:] = Float64.(reinterpret(Float32, read("./Src/params/ricker_10Hz.bin")))
src = sourceGene(f0, nSteps, dt)
tf_stf = constant(repeat(src, outer=length(z_src)))
tf_para_fname = tf.strings.join([para_fname])
tf_gpu_id0 = constant(0, dtype=Int32)
tf_gpu_id1 = constant(1, dtype=Int32)
tf_shot_ids0 = constant(collect(Int32, 0:length(x_src)-1), dtype=Int32)
tf_shot_ids1 = constant(collect(Int32, 13:25), dtype=Int32)
res1 = fwi_obs_op(tf_lambda, tf_mu, tf_den, tf_stf, tf_gpu_id0, tf_shot_ids0, tf_para_fname)
# res2 = fwi_obs_op(tf_cp2, tf_cs2, tf_den2, tf_stf, tf_gpu_id1, tf_shot_ids0, tf_para_fname)
sess=Session();init(sess);
@time run(sess, res1)
# error("")
# gradient check -- v
function scalar_function(m)
# return fwi_op(m, tf_mu, tf_den, tf_stf, tf_gpu_id0, tf_shot_ids0, tf_para_fname)
return fwi_op(tf_lambda, m, tf_den, tf_stf, tf_gpu_id0, tf_shot_ids0, tf_para_fname)
# return fwi_op(tf_lambda, tf_mu, m, tf_stf, tf_gpu_id0, tf_shot_ids0, tf_para_fname)
# return fwi_op(tf_lambda, tf_mu, tf_den, m, tf_gpu_id0, tf_shot_ids0, tf_para_fname)
end
# lambda2,_ = vel2moduli(3200.0, 3200.0/sqrt(3.0), den)
# m_ = constant(lambda2)
_,mu2 = vel2moduli(3200.0, 3200.0/sqrt(3.0), den)
m_ = constant(mu2)
# m_ = constant(2200ones(nz,nx))
# # src2 = circshift(src, (0,30))
# src2 = sourceGene(f0,nSteps,dt) .*1.5
# m_ = constant(repeat(src2, outer=length(z_src)))
# for forward_backward wavefield comparison
# yy = scalar_function(m_)
# gradm = gradients(yy, m_)
# sess=Session();init(sess);
# @time G = run(sess, gradm)
# imshow(G);colorbar();
# A=read("SnapGPU.bin");A=reshape(reinterpret(Float32,A),(200,200));
# B=read("SnapGPU_back.bin");B=reshape(reinterpret(Float32,B),(200,200));
# imshow(A[33:end-32,33:end-32]-B[33:end-32,33:end-32]);colorbar();
# error("")
v0 = zeros(nz, nx)
# PLEASE!!!!!!!!!!!!!! Don't perturb in the CPML region!!!!!!!!!!!!!!!!!!!!!!!
v0[nPml+5:nz-nPml-5, nPml+5:nx-nPml-5] .= 1.0
# # perturb moduli
v_ = constant(Float64.((1. .+ 0.1*rand(nz, nx)) .* 1e3 .* v0))
# # perturb density
# v_ = constant(Float64.((1. .+ 0.1*rand(nz, nx)) .* 500 .* v0))
# perturb sft
# s0 = zeros(1, nSteps)
# s0[1, 20:end-20] .= 1.0
# src_perturb = rand(1,nSteps) .* s0 *0.1
# v_ = src_perturb
y_ = scalar_function(m_)
dy_ = gradients(y_, m_)
ms_ = Array{Any}(undef, 5)
ys_ = Array{Any}(undef, 5)
s_ = Array{Any}(undef, 5)
w_ = Array{Any}(undef, 5)
gs_ = @. 1 / 10^(1:5)
for i = 1:5
g_ = gs_[i]
ms_[i] = m_ + g_ * v_
ys_[i] = scalar_function(ms_[i])
s_[i] = ys_[i] - y_
w_[i] = s_[i] - g_*sum(v_.*dy_)
end
sess = Session()
init(sess)
sval_ = run(sess, s_)
wval_ = run(sess, w_)
# error("")
sval_ = [x[1] for x in sval_]
wval_ = [x[1] for x in wval_]
close("all")
loglog(gs_, abs.(sval_), "*-", label="finite difference")
loglog(gs_, abs.(wval_), "+-", label="FWI gradient")
loglog(gs_, gs_.^2 * 0.5*abs(wval_[1])/gs_[1]^2, "--",label="\$\\mathcal{O}(\\gamma^2)\$")
loglog(gs_, gs_ * 0.5*abs(sval_[1])/gs_[1], "--",label="\$\\mathcal{O}(\\gamma)\$")
plt.gca().invert_xaxis()
legend()
xlabel("\$\\gamma\$")
ylabel("Error")
savefig("Convergence_test_mu.pdf", bbox_inches="tight",pad_inches = 0, dpi = 300);
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 2786 | using ADCME
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
if Sys.islinux()
py"""
import tensorflow as tf
libLaplacian = tf.load_op_library('build/libLaplacian.so')
@tf.custom_gradient
def laplacian_op(coef,func,h,rhograv):
p = libLaplacian.laplacian(coef,func,h,rhograv)
def grad(dy):
return libLaplacian.laplacian_grad(dy, coef, func, h, rhograv)
return p, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('build/libPoissonOp.dylib')
@tf.custom_gradient
def laplacian_op(coef,func,h,rhograv):
p = libLaplacian.laplacian(coef,func,h,rhograv)
def grad(dy):
return libLaplacian.laplacian_grad(dy, coef, func, h, rhograv)
return p, grad
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('build/libPoissonOp.dll')
@tf.custom_gradient
def laplacian_op(coef,func,h,rhograv):
p = libLaplacian.laplacian(coef,func,h,rhograv)
def grad(dy):
return libLaplacian.laplacian_grad(dy, coef, func, h, rhograv)
return p, grad
"""
end
laplacian = py"laplacian_op"
h = 1.0
rho = 1000.0
G = 9.8
len_z = 16
len_x = 32
nz = Int(len_z/h + 1)
nx = Int(len_x/h + 1)
tf_h=constant(1.0)
# coef = zeros(nz, nx)
# rhs = zeros(nz, nx)
# for i = 1:nz
# for j = 1:nx
# rhs[i,j] = -sin(2*pi/len_z*(i-1)*h) * sin(2*pi/len_x*(j-1)*h)
# coef[i,j] = 1.0 - cos(2*pi/len_z*(i-1)*h) * sin(2*pi/len_x*(j-1)*h) * len_z / (2*pi*rho*G)
# # rhs[i,j] = 2.0*(i-1)*h*exp(-(((i-1)*h)^2) -(((j-1)*h)^2)) * rho * G
# # coef[i,j] = 1.0 + exp(-(((i-1)*h)^2) -(((j-1)*h)^2))
# end
# end
coef = rand(nz, nx)
func = rand(nz, nx)
tf_coef = constant(coef)
tf_func = constant(func)
# gradient check -- v
function scalar_function(m)
# return sum(tanh(laplacian(m, tf_func, tf_h, constant(rho*G))))
return sum(tanh(laplacian(tf_coef, m, tf_h, constant(rho*G))))
end
# m_ = tf_coef
m_ = tf_func
v_ = 0.01*rand(nz, nx)
y_ = scalar_function(m_)
dy_ = gradients(y_, m_)
ms_ = Array{Any}(undef, 5)
ys_ = Array{Any}(undef, 5)
s_ = Array{Any}(undef, 5)
w_ = Array{Any}(undef, 5)
gs_ = @. 1 / 10^(1:5)
for i = 1:5
g_ = gs_[i]
ms_[i] = m_ + g_*v_
ys_[i] = scalar_function(ms_[i])
s_[i] = ys_[i] - y_
w_[i] = s_[i] - g_*sum(v_.*dy_)
end
sess = Session()
init(sess)
sval_ = run(sess, s_)
wval_ = run(sess, w_)
close("all")
loglog(gs_, abs.(sval_), "*-", label="finite difference")
loglog(gs_, abs.(wval_), "+-", label="automatic differentiation")
loglog(gs_, gs_.^2 * 0.5*abs(wval_[1])/gs_[1]^2, "--",label="\$\\mathcal{O}(\\gamma^2)\$")
loglog(gs_, gs_ * 0.5*abs(sval_[1])/gs_[1], "--",label="\$\\mathcal{O}(\\gamma)\$")
plt[:gca]()[:invert_xaxis]()
legend()
xlabel("\$\\gamma\$")
ylabel("Error")
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 3359 | using PyTensorFlow
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
if Sys.islinux()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('build/libPoissonOp.so')
@tf.custom_gradient
def poisson_op(coef,g,h,rhograv,index):
p = libPoissonOp.poisson_op(coef,g,h,rhograv,index)
def grad(dy):
return libPoissonOp.poisson_op_grad(dy, p, coef, g, h, rhograv, index)
return p, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('build/libPoissonOp.dylib')
@tf.custom_gradient
def poisson_op(coef,g,h,rhograv,index):
p = libPoissonOp.poisson_op(coef,g,h,rhograv,index)
def grad(dy):
return libPoissonOp.poisson_op_grad(dy, p, coef, g, h, rhograv, index)
return p, grad
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('build/libPoissonOp.dll')
@tf.custom_gradient
def poisson_op(coef,g,h,rhograv,index):
p = libPoissonOp.poisson_op(coef,g,h,rhograv,index)
def grad(dy):
return libPoissonOp.poisson_op_grad(dy, p, coef, g, h, rhograv, index)
return p, grad
"""
end
poisson_op = py"poisson_op"
len_z = 4
len_x = 4
rho = 1000.0
G = 9.8
nScale = 5
tf_g = Array{Any}(undef, nScale)
tf_coef = Array{Any}(undef, nScale)
tf_h = Array{Any}(undef, nScale)
tf_p = Array{Any}(undef, nScale)
p_true_array = Array{Any}(undef, nScale)
p_inv_array = Array{Any}(undef, nScale)
h_array = @. 1 / 2^(1:nScale)
for iScale = 1:nScale
h = h_array[iScale]
nz = Int(len_z/h + 1)
nx = Int(len_x/h + 1)
g = zeros(nz, nx)
coef = zeros(nz, nx)
p_true = zeros(nz, nx)
for i = 1:nz
for j = 1:nx
g[i,j] = -sin(2*pi/len_z*(i-1)*h) * sin(2*pi/len_x*(j-1)*h)
coef[i,j] = 1.0 - cos(2*pi/len_z*(i-1)*h) * sin(2*pi/len_x*(j-1)*h) * len_z / (2*pi*rho*G)
# g[i,j] = 2.0*(i-1)*h*exp(-(((i-1)*h)^2) -(((j-1)*h)^2)) * rho * G
# coef[i,j] = 1.0 + exp(-(((i-1)*h)^2) -(((j-1)*h)^2))
p_true[i,j] = rho*G*(i-1)*h
end
end
p_true_array[iScale] = p_true .- mean(p_true)
# p_true_array[iScale] = p_true
tf_g[iScale] = constant(g)
tf_coef[iScale] = constant(coef)
tf_h[iScale] = constant(h)
tf_p[iScale] = poisson_op(tf_coef[iScale], tf_g[iScale], tf_h[iScale], constant(rho*G), constant(1))
end
sess = Session()
init(sess)
p_inv_array = run(sess, tf_p)
for iScale = 1:nScale
p_inv_array[iScale] = p_inv_array[iScale] .- mean(p_inv_array[iScale])
end
function l2_error(p_true, p_inv, iScale)
l2_error = 0.0
l2_norm = 0.0
h = h_array[iScale]
nz = size(p_true)[1]
nx = size(p_true)[2]
for i = 1:nz
for j = 1:nx
l2_error += (p_true[i,j]-p_inv[i,j])^2 * h^2
l2_norm += (p_true[i,j])^2 * h^2
end
end
return sqrt(l2_error)/sqrt(l2_norm)
end
Error_array = Array{Any}(undef, nScale)
for iScale = 1:nScale
Error_array[iScale] = l2_error(p_true_array[iScale], p_inv_array[iScale], iScale)
end
loglog(h_array, Error_array, "*-", label="MMS convergence")
loglog(h_array, h_array.^2 * 0.5*Error_array[1]/h_array[1]^2, "--",label="\$\\mathcal{O}(h^2)\$")
loglog(h_array, h_array * 0.5*Error_array[1]/h_array[1], "-",label="\$\\mathcal{O}(h)\$")
plt.gca().invert_xaxis()
legend()
xlabel("\$h\$")
ylabel("Error")
# imshow(p) | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 2776 | using ADCME
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
if Sys.islinux()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('build/libPoissonOp.so')
@tf.custom_gradient
def poisson_op(coef,g,h,rhograv,index):
p = libPoissonOp.poisson_op(coef,g,h,rhograv,index)
def grad(dy):
return libPoissonOp.poisson_op_grad(dy, p, coef, g, h, rhograv, index)
return p, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('build/libPoissonOp.dylib')
@tf.custom_gradient
def poisson_op(coef,g,h,rhograv,index):
p = libPoissonOp.poisson_op(coef,g,h,rhograv,index)
def grad(dy):
return libPoissonOp.poisson_op_grad(dy, p, coef, g, h, rhograv, index)
return p, grad
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('build/libPoissonOp.dll')
@tf.custom_gradient
def poisson_op(coef,g,h,rhograv,index):
p = libPoissonOp.poisson_op(coef,g,h,rhograv,index)
def grad(dy):
return libPoissonOp.poisson_op_grad(dy, p, coef, g, h, rhograv, index)
return p, grad
"""
end
poisson_op = py"poisson_op"
# gradient check -- v
h = 1.0
rho = 1000.0
G = 9.8
len_z = 16
len_x = 32
nz = Int(len_z/h + 1)
nx = Int(len_x/h + 1)
tf_h=constant(1.0)
coef = zeros(nz, nx)
rhs = zeros(nz, nx)
for i = 1:nz
for j = 1:nx
rhs[i,j] = -sin(2*pi/len_z*(i-1)*h) * sin(2*pi/len_x*(j-1)*h)
coef[i,j] = 1.0 - cos(2*pi/len_z*(i-1)*h) * sin(2*pi/len_x*(j-1)*h) * len_z / (2*pi*rho*G)
# rhs[i,j] = 2.0*(i-1)*h*exp(-(((i-1)*h)^2) -(((j-1)*h)^2)) * rho * G
# coef[i,j] = 1.0 + exp(-(((i-1)*h)^2) -(((j-1)*h)^2))
end
end
tf_coef = constant(coef)
tf_rhs = constant(rhs)
function scalar_function(m)
return sum(tanh(poisson_op(tf_coef,m,tf_h,constant(rho*G), constant(0))))
# return sum(tanh(poisson_op(m,tf_rhs,tf_h, constant(rho*G), constant(0))))
end
m_ = tf_rhs
# m_ = tf_coef
v_ = 0.01*rand(nz, nx)
y_ = scalar_function(m_)
dy_ = gradients(y_, m_)
ms_ = Array{Any}(undef, 5)
ys_ = Array{Any}(undef, 5)
s_ = Array{Any}(undef, 5)
w_ = Array{Any}(undef, 5)
gs_ = @. 1 / 20^(1:5)
for i = 1:5
g_ = gs_[i]
ms_[i] = m_ + g_*v_
ys_[i] = scalar_function(ms_[i])
s_[i] = ys_[i] - y_
w_[i] = s_[i] - g_*sum(v_.*dy_)
end
sess = Session()
init(sess)
sval_ = run(sess, s_)
wval_ = run(sess, w_)
close("all")
loglog(gs_, abs.(sval_), "*-", label="finite difference")
loglog(gs_, abs.(wval_), "+-", label="automatic differentiation")
loglog(gs_, gs_.^2 * 0.5*abs(wval_[1])/gs_[1]^2, "--",label="\$\\mathcal{O}(\\gamma^2)\$")
loglog(gs_, gs_ * 0.5*abs(sval_[1])/gs_[1], "--",label="\$\\mathcal{O}(\\gamma)\$")
plt.gca().invert_xaxis()
legend()
xlabel("\$\\gamma\$")
ylabel("Error")
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 2703 | using PyTensorFlow
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
py"""
import tensorflow as tf
libSatOp = tf.load_op_library('./build/libSatOp.so')
@tf.custom_gradient
def sat_op(s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h):
sat = libSatOp.sat_op(s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h)
def grad(dy):
return libSatOp.sat_op_grad(dy, sat, s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h)
return sat, grad
"""
sat_op = py"sat_op"
len_z = 1.0 * 2pi
len_x = 1.0 * 2pi
nScale = 5
tf_permi = Array{Any}(undef, nScale)
tf_poro = Array{Any}(undef, nScale)
tf_h = Array{Any}(undef, nScale)
tf_s = Array{Any}(undef, nScale)
s_true_array = Array{Any}(undef, nScale)
s_inv_array = Array{Any}(undef, nScale)
h_array = @. 1 / (2pi)^(1:nScale)
dt = 0.00001
for iScale = 1:nScale
h = h_array[iScale]
nz = Int64(trunc(len_z/h + 1))
nx = Int64(trunc(len_x/h + 1))
pt = zeros(nz,nx)
s_true = zeros(nz, nx)
q = zeros(nz,nx)
poro = zeros(nz,nx)
for i = 1:nz
for j = 1:nx
x1 = len_z*(i-1)*h
x2 = len_x*(j-1)*h
s_true[i,j] = dt * sin(x1)*sin(x2)
pt[i,j] = cos(x1)*cos(x2)
poro[i,j] = sin(x1)^2 * sin(x2)^2
q[i,j] = sin(x1)*sin(x2) - (-3.0 * sin(x1)*cos(x1)*sin(x2)^2*cos(x2) - 3.0 * sin(x1)^2*cos(x1)*sin(x2)*cos(x2))
end
end
s_true_array[iScale] = s_true
tf_permi[iScale] = constant(ones(nz,nx))
tf_poro[iScale] = constant(poro)
tf_pt = constant(pt)
tf_q = constant(q)
tf_s0 = constant(zeros(nz,nx))
tf_h[iScale] = constant(h)
tf_dt = constant(dt)
tf_ones = constant(ones(nz, nx))
tf_s[iScale] = sat_op(tf_s0, tf_pt, tf_permi[iScale], tf_poro[iScale], tf_q, tf_q,
constant(1.0),constant(1.0),tf_s0,tf_dt,tf_h[iScale])
end
sess = Session()
init(sess)
s_inv_array = run(sess, tf_s)
function l2_error(s_true, s_inv, iScale)
l2_error = 0.0
l2_norm = 0.0
h = h_array[iScale]
nz = size(s_true)[1]
nx = size(s_true)[2]
for i = 1:nz
for j = 1:nx
l2_error += (s_true[i,j]-s_inv[i,j])^2 * h^2
l2_norm += (s_true[i,j])^2 * h^2
end
end
return sqrt(l2_error)/sqrt(l2_norm)
end
Error_array = Array{Any}(undef, nScale)
for iScale = 1:nScale
Error_array[iScale] = l2_error(s_true_array[iScale], s_inv_array[iScale], iScale)
end
loglog(h_array, Error_array, "*-", label="MMS convergence")
loglog(h_array, h_array.^2 * 0.5*Error_array[1]/h_array[1]^2, "--",label="\$\\mathcal{O}(h^2)\$")
loglog(h_array, h_array * 0.5*Error_array[1]/h_array[1], "-",label="\$\\mathcal{O}(h)\$")
plt.gca().invert_xaxis()
legend()
xlabel("\$h\$")
ylabel("Error")
# imshow(p) | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 7564 | using ADCME
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
if Sys.islinux()
py"""
import tensorflow as tf
libSatOp = tf.load_op_library('./build/libSatOp.so')
@tf.custom_gradient
def sat_op(s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h):
sat = libSatOp.sat_op(s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h)
def grad(dy):
return libSatOp.sat_op_grad(dy, sat, s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h)
return sat, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libSatOp = tf.load_op_library('./build/libSatOp.dylib')
@tf.custom_gradient
def sat_op(s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h):
sat = libSatOp.sat_op(s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h)
def grad(dy):
return libSatOp.sat_op_grad(dy, sat, s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h)
return sat, grad
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libSatOp = tf.load_op_library('./build/libSatOp.dll')
@tf.custom_gradient
def sat_op(s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h):
sat = libSatOp.sat_op(s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h)
def grad(dy):
return libSatOp.sat_op_grad(dy, sat, s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h)
return sat, grad
"""
end
sat_op = py"sat_op"
if Sys.islinux()
py"""
import tensorflow as tf
libUpwpsOp = tf.load_op_library('../Upwps/build/libUpwpsOp.so')
@tf.custom_gradient
def upwps_op(permi,mobi,src,funcref,h,rhograv,index):
pres = libUpwpsOp.upwps_op(permi,mobi,src,funcref,h,rhograv,index)
def grad(dy):
return libUpwpsOp.upwps_op_grad(dy, pres, permi,mobi,src,funcref,h,rhograv,index)
return pres, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libUpwpsOp = tf.load_op_library('../Upwps/build/libUpwpsOp.dylib')
@tf.custom_gradient
def upwps_op(permi,mobi,src,funcref,h,rhograv,index):
pres = libUpwpsOp.upwps_op(permi,mobi,src,funcref,h,rhograv,index)
def grad(dy):
return libUpwpsOp.upwps_op_grad(dy, pres, permi,mobi,src,funcref,h,rhograv,index)
return pres, grad
"""
end
upwps_op = py"upwps_op"
if Sys.islinux()
py"""
import tensorflow as tf
libUpwlapOp = tf.load_op_library('../Upwlap/build/libUpwlapOp.so')
@tf.custom_gradient
def upwlap_op(perm,mobi,func,h,rhograv):
out = libUpwlapOp.upwlap_op(perm,mobi,func,h,rhograv)
def grad(dy):
return libUpwlapOp.upwlap_op_grad(dy, out, perm,mobi,func,h,rhograv)
return out, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libUpwlapOp = tf.load_op_library('../Upwlap/build/libUpwlapOp.dylib')
@tf.custom_gradient
def upwlap_op(perm,mobi,func,h,rhograv):
out = libUpwlapOp.upwlap_op(perm,mobi,func,h,rhograv)
def grad(dy):
return libUpwlapOp.upwlap_op_grad(dy, out, perm,mobi,func,h,rhograv)
return out, grad
"""
end
upwlap_op = py"upwlap_op"
if Sys.islinux()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('../Poisson/build/libPoissonOp.so')
@tf.custom_gradient
def poisson_op(coef,g,h,rhograv,index):
p = libPoissonOp.poisson_op(coef,g,h,rhograv,index)
def grad(dy):
return libPoissonOp.poisson_op_grad(dy, p, coef, g, h, rhograv, index)
return p, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('../Poisson/build/libPoissonOp.dylib')
@tf.custom_gradient
def poisson_op(coef,g,h,rhograv,index):
p = libPoissonOp.poisson_op(coef,g,h,rhograv,index)
def grad(dy):
return libPoissonOp.poisson_op_grad(dy, p, coef, g, h, rhograv, index)
return p, grad
"""
end
poisson_op = py"poisson_op"
function ave_normal(quantity, m, n)
aa = sum(quantity)
return aa/(m*n)
end
# TODO:
# const ALPHA = 0.006323996017182
const ALPHA = 1.0
const SRC_CONST = 86400.0
const K_CONST = 9.869232667160130e-16 * 86400
nz=20
nx=30
sw = constant(zeros(nz, nx))
swref = constant(zeros(nz,nx))
μw = constant(0.001)
μo = constant(0.003)
K = constant(100.0 .* ones(nz, nx))
ϕ = constant(0.25 .* ones(nz, nx))
dt = constant(30.0)
h = constant(100.0 * 0.3048)
q1 = zeros(nz,nx)
q2 = zeros(nz,nx)
q1[10,5] = 0.002 * (1/(100.0 * 0.3048)^2)/20.0/0.3048 * SRC_CONST
q2[10,25] = -0.002 * (1/(100.0 * 0.3048)^2)/20.0/0.3048 * SRC_CONST
qw = constant(q1)
qo = constant(q2)
λw = sw.*sw/μw
λo = (1-sw).*(1-sw)/μo
λ = λw + λo
f = λw/λ
q = qw + qo + λw/(λo+1e-16).*qo
# Θ = laplacian_op(K.*λo, potential_c, h, constant(0.0))
Θ = upwlap_op(K*K_CONST, λo, constant(zeros(nz,nx)), h, constant(0.0))
load_normal = (Θ+q/ALPHA) - ave_normal(Θ+q/ALPHA, nz, nx)
tf_comp_p0 = upwps_op(K*K_CONST, λ, load_normal, constant(zeros(nz,nx)), h, constant(0.0), constant(2))
sess = Session()
init(sess)
p0 = run(sess, tf_comp_p0)
tf_p0 = constant(p0)
# s = sat_op(sw,p0,K,ϕ,qw,qo,sw,dt,h)
# function step(sw)
# λw = sw.*sw
# λo = (1-sw).*(1-sw)
# λ = λw + λo
# f = λw/λ
# q = qw + qo + λw/(λo+1e-16).*qo
# # Θ = laplacian_op(K.*λo, constant(zeros(nz,nx)), h, constant(0.0))
# Θ = upwlap_op(K, λo, constant(zeros(nz,nx)), h, constant(0.0))
# # Θ = constant(zeros(nz,nx))
# load_normal = (Θ+q/ALPHA) - ave_normal(Θ+q/ALPHA, nz, nx)
# p = poisson_op(λ.*K, load_normal, h, constant(0.0), constant(0)) # potential p = pw - ρw*g*h
# # p = upwps_op(K, λ, load_normal, constant(zeros(nz,nx)), h, constant(0.0), constant(0))
# sw = sat_op(sw,p,K,ϕ,qw,qo,μw,μo,sw,dt,h)
# return sw
# end
# NT=100
# function evolve(sw, NT, qw, qo)
# # qw_arr = constant(qw) # qw: NT x m x n array
# # qo_arr = constant(qo)
# tf_sw = TensorArray(NT+1)
# function condition(i, ta)
# tf.less(i, NT+1)
# end
# function body(i, tf_sw)
# sw_local = step(read(tf_sw, i))
# i+1, write(tf_sw, i+1, sw_local)
# end
# tf_sw = write(tf_sw, 1, sw)
# i = constant(1, dtype=Int32)
# _, out = while_loop(condition, body, [i;tf_sw])
# read(out, NT+1)
# end
# s = evolve(sw, NT, qw, qo)
# J = tf.nn.l2_loss(s)
# tf_grad_K = gradients(J, K)
# sess = Session()
# init(sess)
# # P = run(sess,p0)
# # error("")
# S=run(sess, s)
# imshow(S);colorbar();
# error("")
# grad_K = run(sess, tf_grad_K)
# imshow(grad_K);colorbar();
# error("")
# TODO:
# gradient check -- v
function scalar_function(m)
# return sum(tanh(sat_op(m,tf_p0,K*K_CONST,ϕ,qw,qo,μw,μo,constant(zeros(nz,nx)),dt,h)))
return sum(tanh(sat_op(sw,m,K*K_CONST,ϕ,qw,qo,μw,μo,constant(zeros(nz,nx)),dt,h)))
# return sum(tanh(sat_op(sw,tf_p0,m,ϕ,qw,qo,μw,μo,constant(zeros(nz,nx)),dt,h)))
# return sum(tanh(sat_op(sw,tf_p0,K*K_CONST,m,qw,qo,μw,μo,constant(zeros(nz,nx)),dt,h)))
end
# m_ = sw
# v_ = 0.1 * rand(nz,nx)
m_ = tf_p0
v_ = 5e5 .* rand(nz,nx)
# m_ = K*K_CONST
# v_ = 10 .* rand(nz,nx) *K_CONST
# m_ = ϕ
# v_ = 0.1 * rand(nz,nx)
y_ = scalar_function(m_)
dy_ = gradients(y_, m_)
ms_ = Array{Any}(undef, 5)
ys_ = Array{Any}(undef, 5)
s_ = Array{Any}(undef, 5)
w_ = Array{Any}(undef, 5)
gs_ = @. 1 / 10^(1:5)
for i = 1:5
g_ = gs_[i]
ms_[i] = m_ + g_*v_
ys_[i] = scalar_function(ms_[i])
s_[i] = ys_[i] - y_
w_[i] = s_[i] - g_*sum(v_.*dy_)
end
sess = Session()
init(sess)
sval_ = run(sess, s_)
wval_ = run(sess, w_)
close("all")
loglog(gs_, abs.(sval_), "*-", label="finite difference")
loglog(gs_, abs.(wval_), "+-", label="automatic differentiation")
loglog(gs_, gs_.^2 * 0.5*abs(wval_[1])/gs_[1]^2, "--",label="\$\\mathcal{O}(\\gamma^2)\$")
loglog(gs_, gs_ * 0.5*abs(sval_[1])/gs_[1], "--",label="\$\\mathcal{O}(\\gamma)\$")
plt.gca().invert_xaxis()
legend()
xlabel("\$\\gamma\$")
ylabel("Error")
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 2629 | using ADCME
using PyCall
using LinearAlgebra
using PyPlot
using Random
using FwiFlow
# include("../ops.jl")
# Random.seed!(233)
function saturation(s0,dporodt,pt,perm,poro,qw,qo,muw,muo,sref,dt,h)
saturation_ = load_op_and_grad("./build/libSaturation","saturation")
s0,dporodt,pt,perm,poro,qw,qo,muw,muo,sref,dt,h = convert_to_tensor([s0,dporodt,pt,perm,poro,qw,qo,muw,muo,sref,dt,h], [Float64,Float64,Float64,Float64,Float64,Float64,Float64,Float64,Float64,Float64,Float64,Float64])
saturation_(s0,dporodt,pt,perm,poro,qw,qo,muw,muo,sref,dt,h)
end
# TODO: specify your input parameters
m = 100
n = 10
h = 0.01
x = zeros(n, m)
y = zeros(n, m)
for i = 1:m
for j = 1:n
x[j, i] = h*i
y[j, i] = h*j
end
end
t = 3.0
s0 = @. (x^2 + y^2)/(1+x^2+y^2) * exp(-t)
dporodt = exp(t) * zeros(n, m)
pt = @. (x^2+y^2)
perm = rand(n, m)
poro = exp(t) * ones(n, m)
qw = ones(n, m)
qo = ones(n, m)
muw = 2.0
muo = 3.0
sref = s0
dt = 0.01
h = 0.1
u = sat_op2(s0,dporodt,pt,perm,poro,qw,qo,muw,muo,sref,dt,h)
u3 = sat_op(s0,pt,perm,poro,qw,qo,muw, muo,sref,dt,h)
# u3 = sat_op(s0,dporodt,pt,perm,poro,qw,qo,muw,muo,sref,dt,h)
sess = Session(); init(sess)
# @show run(sess, u)
@show run(sess, u3-u)
# uncomment it for testing gradients
error()
# TODO: change your test parameter to `m`
# in the case of `multiple=true`, you also need to specify which component you are testings
# gradient check -- v
# s0 qw qo
function scalar_function(m)
# return sum(saturation(s0,dporodt,pt,perm,poro,qw,qo,muw,muo,sref,dt,h)^2)
return sum(sat_op2(m,dporodt,pt,perm,poro,qw,qo,muw,muo,sref,dt,h)^2)
# return sum(sat_op(m,pt,perm,poro,qw,qo,muw,muo,sref,dt,h)^2)
end
# TODO: change `m_` and `v_` to appropriate values
m_ = constant(0.7*rand(n, m))
v_ = rand(n, m)
# m_ = constant(s0)
# v_ = rand(n, m)
y_ = scalar_function(m_)
dy_ = gradients(y_, m_)
ms_ = Array{Any}(undef, 5)
ys_ = Array{Any}(undef, 5)
s_ = Array{Any}(undef, 5)
w_ = Array{Any}(undef, 5)
gs_ = @. 1 / 10^(1:5)
for i = 1:5
g_ = gs_[i]
ms_[i] = m_ + g_*v_
ys_[i] = scalar_function(ms_[i])
s_[i] = ys_[i] - y_
w_[i] = s_[i] - g_*sum(v_.*dy_)
end
sess = Session(); init(sess)
sval_ = run(sess, s_)
wval_ = run(sess, w_)
close("all")
loglog(gs_, abs.(sval_), "*-", label="finite difference")
loglog(gs_, abs.(wval_), "+-", label="automatic differentiation")
loglog(gs_, gs_.^2 * 0.5*abs(wval_[1])/gs_[1]^2, "--",label="\$\\mathcal{O}(\\gamma^2)\$")
loglog(gs_, gs_ * 0.5*abs(sval_[1])/gs_[1], "--",label="\$\\mathcal{O}(\\gamma)\$")
plt.gca().invert_xaxis()
legend()
xlabel("\$\\gamma\$")
ylabel("Error")
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 2721 | using ADCME
using PyCall
using LinearAlgebra
using PyPlot
using Random
using FwiFlow
# Random.seed!(233)
function saturation_nn(s0,dporodt,pt,perm,poro,qw,qo,muw,muo,sref,thetaw,configw,thetao,configo,dt,h)
saturation_nn_ = load_op_and_grad("./build/libSaturationNn","saturation_nn")
s0,dporodt,pt,perm,poro,qw,qo,muw,muo,sref,thetaw,configw,thetao,configo,dt,h = convert_to_tensor(Any[s0,dporodt,pt,perm,poro,qw,qo,muw,muo,sref,thetaw,configw,thetao,configo,dt,h], [Float64,Float64,Float64,Float64,Float64,Float64,Float64,Float64,Float64,Float64,Float64,Int64,Float64,Int64,Float64,Float64])
saturation_nn_(s0,dporodt,pt,perm,poro,qw,qo,muw,muo,sref,thetaw,configw,thetao,configo,dt,h)
end
# TODO: specify your input parameters
m = 100
n = 10
h = 0.01
x = zeros(n, m)
y = zeros(n, m)
for i = 1:m
for j = 1:n
x[j, i] = h*i
y[j, i] = h*j
end
end
t = 3.0
s0 = @. (x^2 + y^2)/(1+x^2+y^2) * exp(-t)
dporodt = exp(t) * ones(n, m)
pt = @. (x^2+y^2)
perm = rand(n, m)
poro = exp(t) * ones(n, m)
qw = ones(n, m)
qo = ones(n, m)
muw = 2.0
muo = 3.0
sref = s0
dt = 0.01
h = 0.1
u3 = sat_op(s0,pt,perm,poro,qw,qo,muw, muo,sref,dt,h)
configw = [1,20,20,20,1]
configo = [1,20,20,20,1]
thetaw = ae_init(configw)
thetao = ae_init(configo)
u = saturation_nn(s0,dporodt,pt,perm,poro,qw,qo,muw,muo,sref,thetaw,configw,thetao,configo,dt,h)
sess = Session(); init(sess)
@show run(sess, u3-u)
# uncomment it for testing gradients
# error()
# TODO: change your test parameter to `m`
# in the case of `multiple=true`, you also need to specify which component you are testings
# gradient check -- v
function scalar_function(m)
return sum(saturation_nn(s0,m,pt,perm,poro,qw,qo,muw,muo,sref,thetaw,configw,thetao,configo,dt,h)^3)
# sum(sat_op(m,pt,perm,poro,qw,qo,muw, muo,sref,dt,h)^2)
end
# TODO: change `m_` and `v_` to appropriate values
m_ = constant(dporodt)
v_ = rand(n, m)
y_ = scalar_function(m_)
dy_ = gradients(y_, m_)
ms_ = Array{Any}(undef, 5)
ys_ = Array{Any}(undef, 5)
s_ = Array{Any}(undef, 5)
w_ = Array{Any}(undef, 5)
gs_ = @. 10000 / 10^(1:5)
for i = 1:5
g_ = gs_[i]
ms_[i] = m_ + g_*v_
ys_[i] = scalar_function(ms_[i])
s_[i] = ys_[i] - y_
w_[i] = s_[i] - g_*sum(v_.*dy_)
end
sess = Session(); init(sess)
sval_ = run(sess, s_)
wval_ = run(sess, w_)
close("all")
loglog(gs_, abs.(sval_), "*-", label="finite difference")
loglog(gs_, abs.(wval_), "+-", label="automatic differentiation")
loglog(gs_, gs_.^2 * 0.5*abs(wval_[1])/gs_[1]^2, "--",label="\$\\mathcal{O}(\\gamma^2)\$")
loglog(gs_, gs_ * 0.5*abs(sval_[1])/gs_[1], "--",label="\$\\mathcal{O}(\\gamma)\$")
plt.gca().invert_xaxis()
legend()
xlabel("\$\\gamma\$")
ylabel("Error")
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 2695 | using ADCME
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
if Sys.islinux()
py"""
import tensorflow as tf
libUpwlapOp = tf.load_op_library('build/libUpwlapOp.so')
@tf.custom_gradient
def upwlap_op(perm,mobi,func,h,rhograv):
out = libUpwlapOp.upwlap_op(perm,mobi,func,h,rhograv)
def grad(dy):
return libUpwlapOp.upwlap_op_grad(dy, out, perm,mobi,func,h,rhograv)
return out, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libUpwlapOp = tf.load_op_library('build/libUpwlapOp.dylib')
@tf.custom_gradient
def upwlap_op(perm,mobi,func,h,rhograv):
out = libUpwlapOp.upwlap_op(perm,mobi,func,h,rhograv)
def grad(dy):
return libUpwlapOp.upwlap_op_grad(dy, out, perm,mobi,func,h,rhograv)
return out, grad
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libUpwlapOp = tf.load_op_library('build/libUpwlapOp.dll')
@tf.custom_gradient
def upwlap_op(perm,mobi,func,h,rhograv):
out = libUpwlapOp.upwlap_op(perm,mobi,func,h,rhograv)
def grad(dy):
return libUpwlapOp.upwlap_op_grad(dy, out, perm,mobi,func,h,rhograv)
return out, grad
"""
end
upwlap_op = py"upwlap_op"
# TODO:
# u = upwlap_op(perm,mobi,func,h,rhograv)
# sess = Session()
# init(sess)
# run(sess, u)
# TODO:
h = 1.0
rho = 1000.0
G = 9.8
len_z = 16
len_x = 32
nz = Int(len_z/h + 1)
nx = Int(len_x/h + 1)
tf_h=constant(1.0)
perm = rand(nz, nx)
mobi = rand(nz, nx)
func = rand(nz, nx)
tf_perm = constant(perm)
tf_mobi = constant(mobi)
tf_func = constant(func)
# gradient check -- v
function scalar_function(m)
# return sum(tanh(upwlap_op(m, tf_mobi, tf_func, tf_h, constant(rho*G))))
# return sum(tanh(upwlap_op(tf_perm, m, tf_func, tf_h, constant(rho*G))))
return sum(tanh(upwlap_op(tf_perm, tf_mobi, m, tf_h, constant(rho*G))))
end
# m_ = constant(rand(10,20))
# m_ = tf_perm
# m_ = tf_mobi
m_ = tf_func
v_ = rand(nz, nx)
y_ = scalar_function(m_)
dy_ = gradients(y_, m_)
ms_ = Array{Any}(undef, 5)
ys_ = Array{Any}(undef, 5)
s_ = Array{Any}(undef, 5)
w_ = Array{Any}(undef, 5)
gs_ = @. 1 / 20^(1:5)
for i = 1:5
g_ = gs_[i]
ms_[i] = m_ + g_*v_
ys_[i] = scalar_function(ms_[i])
s_[i] = ys_[i] - y_
w_[i] = s_[i] - g_*sum(v_.*dy_)
end
sess = Session()
init(sess)
sval_ = run(sess, s_)
wval_ = run(sess, w_)
close("all")
loglog(gs_, abs.(sval_), "*-", label="finite difference")
loglog(gs_, abs.(wval_), "+-", label="automatic differentiation")
loglog(gs_, gs_.^2 * 0.5*abs(wval_[1])/gs_[1]^2, "--",label="\$\\mathcal{O}(\\gamma^2)\$")
loglog(gs_, gs_ * 0.5*abs(sval_[1])/gs_[1], "--",label="\$\\mathcal{O}(\\gamma)\$")
plt.gca().invert_xaxis()
legend()
xlabel("\$\\gamma\$")
ylabel("Error")
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 3525 | using PyTensorFlow
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
if Sys.islinux()
py"""
import tensorflow as tf
libUpwpsOp = tf.load_op_library('build/libUpwpsOp.so')
@tf.custom_gradient
def upwps_op(permi,mobi,src,funcref,h,rhograv,index):
pres = libUpwpsOp.upwps_op(permi,mobi,src,funcref,h,rhograv,index)
def grad(dy):
return libUpwpsOp.upwps_op_grad(dy, pres, permi,mobi,src,funcref,h,rhograv,index)
return pres, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libUpwpsOp = tf.load_op_library('build/libUpwpsOp.dylib')
@tf.custom_gradient
def upwps_op(permi,mobi,src,funcref,h,rhograv,index):
pres = libUpwpsOp.upwps_op(permi,mobi,src,funcref,h,rhograv,index)
def grad(dy):
return libUpwpsOp.upwps_op_grad(dy, pres, permi,mobi,src,funcref,h,rhograv,index)
return pres, grad
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libUpwpsOp = tf.load_op_library('build/libUpwpsOp.dll')
@tf.custom_gradient
def upwps_op(permi,mobi,src,funcref,h,rhograv,index):
pres = libUpwpsOp.upwps_op(permi,mobi,src,funcref,h,rhograv,index)
def grad(dy):
return libUpwpsOp.upwps_op_grad(dy, pres, permi,mobi,src,funcref,h,rhograv,index)
return pres, grad
"""
end
upwps_op = py"upwps_op"
len_z = 4
len_x = 4
rho = 1000.0
G = 9.8
nScale = 5
tf_g = Array{Any}(undef, nScale)
tf_coef = Array{Any}(undef, nScale)
tf_h = Array{Any}(undef, nScale)
tf_p = Array{Any}(undef, nScale)
p_true_array = Array{Any}(undef, nScale)
p_inv_array = Array{Any}(undef, nScale)
h_array = @. 1 / 2^(1:nScale)
for iScale = 1:nScale
h = h_array[iScale]
nz = Int(len_z/h + 1)
nx = Int(len_x/h + 1)
g = zeros(nz, nx)
coef = zeros(nz, nx)
p_true = zeros(nz, nx)
for i = 1:nz
for j = 1:nx
g[i,j] = -sin(2*pi/len_z*(i-1)*h) * sin(2*pi/len_x*(j-1)*h)
coef[i,j] = 1.0 - cos(2*pi/len_z*(i-1)*h) * sin(2*pi/len_x*(j-1)*h) * len_z / (2*pi*rho*G)
# g[i,j] = 2.0*(i-1)*h*exp(-(((i-1)*h)^2) -(((j-1)*h)^2)) * rho * G
# coef[i,j] = 1.0 + exp(-(((i-1)*h)^2) -(((j-1)*h)^2))
p_true[i,j] = rho*G*(i-1)*h
end
end
p_true_array[iScale] = p_true .- mean(p_true)
# p_true_array[iScale] = p_true
tf_g[iScale] = constant(g)
tf_coef[iScale] = constant(coef)
tf_h[iScale] = constant(h)
tf_ones = constant(ones(nz, nx))
tf_p[iScale] = upwps_op(tf_coef[iScale], tf_ones, tf_g[iScale], tf_ones, tf_h[iScale], constant(rho*G), constant(0))
end
sess = Session()
init(sess)
p_inv_array = run(sess, tf_p)
for iScale = 1:nScale
p_inv_array[iScale] = p_inv_array[iScale] .- mean(p_inv_array[iScale])
end
function l2_error(p_true, p_inv, iScale)
l2_error = 0.0
l2_norm = 0.0
h = h_array[iScale]
nz = size(p_true)[1]
nx = size(p_true)[2]
for i = 1:nz
for j = 1:nx
l2_error += (p_true[i,j]-p_inv[i,j])^2 * h^2
l2_norm += (p_true[i,j])^2 * h^2
end
end
return sqrt(l2_error)/sqrt(l2_norm)
end
Error_array = Array{Any}(undef, nScale)
for iScale = 1:nScale
Error_array[iScale] = l2_error(p_true_array[iScale], p_inv_array[iScale], iScale)
end
loglog(h_array, Error_array, "*-", label="MMS convergence")
loglog(h_array, h_array.^2 * 0.5*Error_array[1]/h_array[1]^2, "--",label="\$\\mathcal{O}(h^2)\$")
loglog(h_array, h_array * 0.5*Error_array[1]/h_array[1], "-",label="\$\\mathcal{O}(h)\$")
plt.gca().invert_xaxis()
legend()
xlabel("\$h\$")
ylabel("Error")
# imshow(p) | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 3175 | using ADCME
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
if Sys.islinux()
py"""
import tensorflow as tf
libUpwpsOp = tf.load_op_library('build/libUpwpsOp.so')
@tf.custom_gradient
def upwps_op(permi,mobi,src,funcref,h,rhograv,index):
pres = libUpwpsOp.upwps_op(permi,mobi,src,funcref,h,rhograv,index)
def grad(dy):
return libUpwpsOp.upwps_op_grad(dy, pres, permi,mobi,src,funcref,h,rhograv,index)
return pres, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libUpwpsOp = tf.load_op_library('build/libUpwpsOp.dylib')
@tf.custom_gradient
def upwps_op(permi,mobi,src,funcref,h,rhograv,index):
pres = libUpwpsOp.upwps_op(permi,mobi,src,funcref,h,rhograv,index)
def grad(dy):
return libUpwpsOp.upwps_op_grad(dy, pres, permi,mobi,src,funcref,h,rhograv,index)
return pres, grad
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libUpwpsOp = tf.load_op_library('build/libUpwpsOp.dll')
@tf.custom_gradient
def upwps_op(permi,mobi,src,funcref,h,rhograv,index):
pres = libUpwpsOp.upwps_op(permi,mobi,src,funcref,h,rhograv,index)
def grad(dy):
return libUpwpsOp.upwps_op_grad(dy, pres, permi,mobi,src,funcref,h,rhograv,index)
return pres, grad
"""
end
upwps_op = py"upwps_op"
# gradient check -- v
h = 20.0
rho = 1000.0
G = 9.8
len_z = 16*20
len_x = 32*20
nz = Int(len_z/h + 1)
nx = Int(len_x/h + 1)
tf_h=constant(1.0)
coef = zeros(nz, nx)
ones_cons = ones(nz, nx)
rhs = zeros(nz, nx)
for i = 1:nz
for j = 1:nx
rhs[i,j] = -sin(2*pi/len_z*(i-1)*h) * sin(2*pi/len_x*(j-1)*h)
coef[i,j] = 1.0 - cos(2*pi/len_z*(i-1)*h) * sin(2*pi/len_x*(j-1)*h) * len_z / (2*pi*rho*G)
# rhs[i,j] = 2.0*(i-1)*h*exp(-(((i-1)*h)^2) -(((j-1)*h)^2)) * rho * G
# coef[i,j] = 1.0 + exp(-(((i-1)*h)^2) -(((j-1)*h)^2))
end
end
# coef = 1.0 .+ rand(nz, nx)
# rhs = rand(nz, nx)
tf_coef = constant(coef)
tf_rhs = constant(rhs)
tf_funcref = constant(rand(nz, nx))
tf_ones = constant(ones_cons)
function scalar_function(m)
# return sum(tanh(upwps_op(tf_coef, tf_ones, m, tf_funcref, tf_h, constant(rho*G), constant(0))))
# return sum(tanh(upwps_op(m, tf_ones, tf_rhs, tf_ones, tf_h, constant(rho*G), constant(0))))
return sum(tanh(upwps_op(tf_ones, m, tf_rhs, tf_ones, tf_h, constant(rho*G), constant(0))))
end
# m_ = tf_rhs
m_ = tf_coef
v_ = 0.01*rand(nz, nx)
y_ = scalar_function(m_)
dy_ = gradients(y_, m_)
ms_ = Array{Any}(undef, 5)
ys_ = Array{Any}(undef, 5)
s_ = Array{Any}(undef, 5)
w_ = Array{Any}(undef, 5)
gs_ = @. 1 / 10^(1:5)
for i = 1:5
g_ = gs_[i]
ms_[i] = m_ + g_*v_
ys_[i] = scalar_function(ms_[i])
s_[i] = ys_[i] - y_
w_[i] = s_[i] - g_*sum(v_.*dy_)
end
sess = Session()
init(sess)
sval_ = run(sess, s_)
wval_ = run(sess, w_)
close("all")
loglog(gs_, abs.(sval_), "*-", label="finite difference")
loglog(gs_, abs.(wval_), "+-", label="automatic differentiation")
loglog(gs_, gs_.^2 * 0.5*abs(wval_[1])/gs_[1]^2, "--",label="\$\\mathcal{O}(\\gamma^2)\$")
loglog(gs_, gs_ * 0.5*abs(sval_[1])/gs_[1], "--",label="\$\\mathcal{O}(\\gamma)\$")
plt.gca().invert_xaxis()
legend()
xlabel("\$\\gamma\$")
ylabel("Error")
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 307 | using Documenter, FwiFlow
makedocs(sitename="FwiFlow", modules=[FwiFlow],
pages = Any[
"index.md",
"api.md",
"Tutorial" => ["tutorials/fwi.md","tutorials/flow.md", "tutorials/timefrac.md"]
],
authors = "Dongzhuo Li and Kailai Xu")
deploydocs(
repo = "github.com/lidongzh/FwiFlow.jl.git",
) | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 4469 | using PyPlot
using LinearAlgebra
using PyTensorFlow
using PyCall
np = pyimport("numpy")
include("poisson_op.jl")
# Solver parameters
m = 20
n = 20
h = 1.0 # 50 meters
T = 0.01 # 100 days
NT = 1000
Δt = T/NT
x = (1:m)*h|>collect
z = (1:n)*h|>collect
X, Z = np.meshgrid(x, z)
# todo
#=
Krw, Kro -- function mxn tensor to mxn tensor
μw, μo -- known mxn
ρw, ρo -- known mxn
K -- scalar
g -- constant ≈ 9.8?
ϕ -- known mxn
=#
function Krw(Sw)
return Sw ^ 2
end
function Kro(So)
return So ^2
end
ρw = constant(1.)
ρo = constant(1.)
μw = constant(1.)
μo = constant(1.)
K = Variable(ones(m,n))
g = constant(1.0)
ϕ = Variable(0.25 .* ones(m,n))
function geto(o::Union{Array,PyObject}, i::Int64, j::Int64)
if i==-1
ii = 1:m-2
elseif i==0
ii = 2:m-1
else
ii = 3:m
end
if j==-1
jj = 1:n-2
elseif j==0
jj = 2:n-1
else
jj = 3:n
end
return o[ii,jj]
end
function G(f, p)
f1 = (geto(f, 0, 0) + geto(f, 1, 0))/2
f2 = (geto(f, -1, 0) + geto(f, 0, 0))/2
f3 = (geto(f,0,1) + geto(f,0,0))/2
f4 = (geto(f,0,-1) + geto(f,0,0))/2
rhs = -f1.*(geto(p,1,0)-geto(p,0,0)) +
f2.*(geto(p,0,0)-geto(p,-1,0)) -
f3.*(geto(p,0,1)-geto(p,0,0)) +
f4.*(geto(p,0,0)-geto(p,0,-1))
local q
if isa(rhs, Array)
q = zeros(m, n)
q[2:m-1, 2:n-1] = rhs/h^2
else
q = constant(zeros(m, n))
q = scatter_add(q, 2:m-1, 2:n-1, rhs/h^2)
# q[2:m-1, 2:n-1] += rhs/h^2
end
q
end
# variables : sw, u, v, p
# (time dependent) parameters: qw, qo, ϕ
function onestep(sw, qw, qo)
# step 1: update p
λw = Krw(sw)/μw
λo = Kro(1-sw)/μo
λ = λw + λo
f = λw/λ
q = qw + qo
Θ = G((λw*ρw+λo*ρo)*g, Z)
p = poisson_op(λ.*K, Θ+q, constant(h))
# step 2: update u, v
rhs_u = -(geto(K, 0, 0)+geto(K,1,0))/2.0 .* (geto(λ, 0, 0) + get(λ, 1, 0))/2h .* (geto(p, 1, 0) - geto(p, 0, 0))
rhs_v = -(geto(K, 0, 0)+geto(K,0,1))/2.0 .* (geto(λ, 0, 0) + get(λ, 0, 1))/2h .* (geto(p, 0, 1) - geto(p, 0, 0)) +
(geto(K, 0, 0)+geto(K,0,1))/2.0 .* (geto(λw*ρw+λo*ρo, 0, 0)+geto(λw*ρw+λo*ρo, 0, 1))/2 * g
u = constant(zeros(m, n))
v = constant(zeros(m, n))
u = scatter_add(u, 2:m-1, 2:n-1, rhs_u)
v = scatter_add(v, 2:m-1, 2:n-1, rhs_v)
# step 3: update sw
rhs = geto(qw, 0, 0) - (geto(f, 1, 0)-geto(f, 0, 0))/h.*geto(u, 0, 0) -
(geto(f, 0, 1)-geto(f, 0, 0))/h.*geto(v, 0, 0) -
geto(f, 0, 0) .* (
(geto(u, 0, 0)-geto(u, -1, 0))/h + (geto(v, 0, 0)-geto(v, 0, -1))/h
) -
geto(G(K.*f.*λo*(ρw-ρo)*g, Z), 0, 0)
rhs = Δt*rhs/geto(ϕ, 0, 0)
sw = scatter_add(sw, 2:m-1, 2:n-1, rhs)
return sw, p
end
"""
solve(qw, qo, sw0, p0)
Solve the two phase flow equation.
`qw` and `qo` -- `NT x m x n` numerical array, `qw[i,:,:]` the corresponding value of qw at i*Δt
`sw0` and `p0` -- initial value for `sw` and `p`. `m x n` numerical array.
"""
function solve(qw, qo, sw0)
qw_arr = constant(qw) # qw: NT x m x n array
qo_arr = constant(qo)
function condition(i, tas...)
i <= NT
end
function body(i, tas...)
ta_sw, ta_p = tas
sw, p = onestep(read(ta_sw, i), qw_arr[i], qo_arr[i])
ta_sw = write(ta_sw, i+1, sw)
ta_p = write(ta_p, i+1, p)
i+1, ta_sw, ta_p
end
ta_sw, ta_p = TensorArray(NT+1), TensorArray(NT+1)
ta_sw = write(ta_sw, 1, constant(sw0))
i = constant(1, dtype=Int32)
_, ta_sw, ta_p = while_loop(condition, body, [i; ta_sw; ta_p])
out_sw, out_p = stack(ta_sw), stack(ta_p)
end
function vis(val, args...;kwargs...)
close("all")
ns = Int64.(round.(LinRange(1,size(val,1),9)))
for i = 1:9
subplot(330+i)
imshow(val[ns[i],:,:], args...;kwargs...)
colorbar()
end
end
qw = zeros(NT, m, n)
qw[:,15,5] .= 1.0
qo = zeros(NT, m, n)
sw0 = zeros(m, n)
out_sw, out_p = solve(qw, qo, sw0)
sess = Session(); init(sess)
S, P = run(sess, [out_sw, out_p])
vis(S)
# figure()
# vis(P)
error("stop")
#=
# Step 1: Assign numerical values to qw, qo, sw0, p0
# qw =
# qo =
# sw0 =
# p0 =
qw = zeros(NT, m, n)
qw[:,15,5] .= 0.0018
qo = zeros(NT, m, n)
sw0 = zeros(m, n)
p0 = 3.0337e+07*ones(m,n)
# # Step 2: Construct Graph
out_sw, out_p = solve(qw, qo, sw0, p0)
# # Step 3: Run
sess = Session()
init(sess)
sw, p = run(sess, [out_sw, out_p])
# # Step 4: Visualize
# vis(sw)
=# | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 1379 | # void cufd(double *res, double *grad_Cp, double *grad_Cs, double *grad_Den,
# double *grad_stf, const double *Cp, const double *Cs,
# const double *Den, const double *stf, int calc_id, const int gpu_id,
# int group_size, const int *shot_ids, const string para_fname);
function obscalc(cp,cs,den,stf,shot_ids,para_fname)
m, n = size(cp)
res = zeros(1)
grad_Cp = zeros(m, n)
grad_Cs = zeros(m, n)
grad_Den = zeros(m, n)
grad_stf = zeros(size(stf)...)
calc_id = Int32(2)
gpu_id = Int32(0)
group_size = length(shot_ids)
ccall((:cufd, "./Src/build/libCUFD.so"), Cvoid, (Ref{Cdouble}, Ref{Cdouble}, Ref{Cdouble}, Ref{Cdouble},
Ref{Cdouble}, Ref{Cdouble}, Ref{Cdouble},
Ref{Cdouble}, Ref{Cdouble}, Cint, Cint, Cint, Ref{Cint}, Cstring),
res, grad_Cp, grad_Cs, grad_Den, grad_stf, cp, cs, den, stf, calc_id, gpu_id, group_size, shot_ids,
para_fname)
end
nz = 134
nx = 384
cp = 2500ones(nz, nx)
cs = zeros(nz, nx)
den = 1000ones(nz, nx)
shot_ids = Int32[0 1]
para_fname = "/home/lidongzh/TwoPhaseFlowFWI/Ops/FWI/Src/params/Par_file_obs_data.json"
src = Matrix{Float64}(undef, 1, 2001)
src[1,:] = Float64.(reinterpret(Float32, read("/home/lidongzh/TwoPhaseFlowFWI/Ops/FWI/Src/params/ricker_10Hz.bin")))
stf = repeat(src, outer=30)
obscalc(cp,cs,den,stf,shot_ids,para_fname) | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 1818 | # input: nz, nx, dz, dx, nSteps, nPoints_pml, nPad, dt, f0, survey_fname, data_dir_name, scratch_dir_name, isAc
using JSON
using DataStructures
function paraGen(nz, nx, dz, dx, nSteps, dt, f0, nPml, nPad, filter_para, isAc, para_fname, survey_fname, data_dir_name, scratch_dir_name="")
para = OrderedDict()
para["nz"] = nz
para["nx"] = nx
para["dz"] = dz
para["dx"] = dx
para["nSteps"] = nSteps
para["dt"] = dt
para["f0"] = f0
para["nPoints_pml"] = nPml
para["nPad"] = nPad
para["isAc"] = isAc
para["if_win"] = false
para["filter"] = filter_para
para["if_src_update"] = false
para["survey_fname"] = survey_fname
para["data_dir_name"] = data_dir_name
if(scratch_dir_name != "")
para["scratch_dir_name"] = scratch_dir_name
end
para_string = JSON.json(para)
open(para_fname,"w") do f
write(f, para_string)
end
end
# all shots share the same number of receivers
function surveyGen(z_src, x_src, z_rec, x_rec, survey_fname)
nsrc = length(x_src)
nrec = length(x_rec)
survey = OrderedDict()
survey["nShots"] = nsrc
for i = 1:nsrc
shot = OrderedDict()
shot["z_src"] = z_src[i]
shot["x_src"] = x_src[i]
shot["nrec"] = nrec
shot["z_rec"] = z_rec
shot["x_rec"] = x_rec
survey["shot$(i-1)"] = shot
end
survey_string = JSON.json(survey)
open(survey_fname,"w") do f
write(f, survey_string)
end
end
function sourceGene(f, nStep, delta_t)
# Ricker wavelet generation and integration for source
# Dongzhuo Li @ Stanford
# May, 2015
e = pi*pi*f*f;
t_delay = 1.2/f;
source = Matrix{Float64}(undef, 1, nStep)
for it = 1:nStep
source[it] = (1-2*e*(delta_t*(it-1)-t_delay)^2)*exp(-e*(delta_t*(it-1)-t_delay)^2);
end
for it = 2:nStep
source[it] = source[it] + source[it-1];
end
source = source * delta_t;
end
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 1821 |
if Sys.islinux()
py"""
import tensorflow as tf
libFwiOp = tf.load_op_library('./build/libFwiOp.so')
@tf.custom_gradient
def fwi_op(cp,cs,den,stf,gpu_id,shot_ids,para_fname):
res = libFwiOp.fwi_op(cp,cs,den,stf,gpu_id,shot_ids,para_fname)
def grad(dy):
return libFwiOp.fwi_op_grad(dy, tf.constant(1.0,dtype=tf.float64),cp,cs,den,stf,gpu_id,shot_ids,para_fname)
return res, grad
def fwi_obs_op(cp,cs,den,stf,gpu_id,shot_ids,para_fname):
res = libFwiOp.fwi_obs_op(cp,cs,den,stf,gpu_id,shot_ids,para_fname)
return res
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libFwiOp = tf.load_op_library('./build/libFwiOp.dylib')
@tf.custom_gradient
def fwi_op(cp,cs,den):
res = libFwiOp.fwi_op(cp,cs,den,stf,gpu_id,shot_ids,para_fname)
def grad(dy):
return libFwiOp.fwi_op_grad(dy,tf.constant(1.0,dtype=tf.float64),cp,cs,den,stf,gpu_id,shot_ids,para_fname)
return res, grad
def fwi_obs_op(cp,cs,den,stf,gpu_id,shot_ids,para_fname):
res = libFwiOp.fwi_obs_op(cp,cs,den,stf,gpu_id,shot_ids,para_fname)
return res
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libFwiOp = tf.load_op_library('./build/libFwiOp.dll')
@tf.custom_gradient
def fwi_op(cp,cs,den):
res = libFwiOp.fwi_op(cp,cs,den,stf,gpu_id,shot_ids,para_fname)
def grad(dy):
return libFwiOp.fwi_op_grad(dy,tf.constant(1.0,dtype=tf.float64),cp,cs,den,stf,gpu_id,shot_ids,para_fname)
return res, grad
def fwi_obs_op(cp,cs,den,stf,gpu_id,shot_ids,para_fname):
res = libFwiOp.fwi_obs_op(cp,cs,den,stf,gpu_id,shot_ids,para_fname)
return res
"""
end
fwi_op = py"fwi_op"
fwi_obs_op = py"fwi_obs_op" | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 4059 | using PyTensorFlow
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
include("fwi_util.jl")
include("fwi_util_op.jl")
np = pyimport("numpy")
# argsparse.jl
# ENV["CUDA_VISIBLE_DEVICES"] = 1
# ENV["PARAMDIR"] = "Src/params/"
# config = tf.ConfigProto(device_count = Dict("GPU"=>0))
nz = 200
nx = 200
dz = 20
dx = 20
nSteps = 2001
dt = 0.0025
f0 = 4.5
filter_para = [0, 0.1, 100.0, 200.0]
nPml = 32
isAc = true
nPad = 0
# x_src = collect(5:10:nx-2nPml-5)
# z_src = 2ones(Int64, size(x_src))
# x_rec = collect(5:100-nPml)
# z_rec = 2ones(Int64, size(x_rec))
x_src = [100-nPml]
z_src = [100-nPml]
z = (5:10:nz-2nPml-5)|>collect
x = (5:10:nx-2nPml-5)|>collect
x_rec, z_rec = np.meshgrid(x, z)
x_rec = x_rec[:]
z_rec = z_rec[:]
# x_rec = collect(5:1:nx-2nPml-5)
# z_rec = 60ones(Int64, size(x_rec))
para_fname = "./para_file.json"
survey_fname = "./survey_file.json"
data_dir_name = "./Data"
paraGen(nz, nx, dz, dx, nSteps, dt, f0, nPml, nPad, filter_para, isAc, para_fname, survey_fname, data_dir_name)
surveyGen(z_src, x_src, z_rec, x_rec, survey_fname)
cp = 3000ones(nz, nx)
# cp = (1. .+ 0.1*rand(nz, nx)) .* 3000.
cs = zeros(nz, nx)
den = 1000.0 .* ones(nz, nx)
tf_cp = constant(cp)
tf_cs = constant(cs)
tf_den = constant(den)
src = Matrix{Float64}(undef, 1, 2001)
src[1,:] = Float64.(reinterpret(Float32, read("./Src/params/ricker_10Hz.bin")))
tf_stf = constant(repeat(src, outer=length(z_src)))
tf_para_fname = tf.strings.join([para_fname])
tf_gpu_id0 = constant(0, dtype=Int32)
tf_gpu_id1 = constant(1, dtype=Int32)
tf_shot_ids0 = constant(collect(Int32, 0:length(x_src)-1), dtype=Int32)
tf_shot_ids1 = constant(collect(Int32, 13:25), dtype=Int32)
res1 = fwi_obs_op(tf_cp, tf_cs, tf_den, tf_stf, tf_gpu_id0, tf_shot_ids0, tf_para_fname)
# res2 = fwi_obs_op(tf_cp2, tf_cs2, tf_den2, tf_stf, tf_gpu_id1, tf_shot_ids0, tf_para_fname)
sess=Session();init(sess);
@time run(sess, res1)
error("")
# error("")
# function obj()
# res = 0.0
# for i = 1:29
# gpu_id = mod(i, 2)
# res += fwi_op(tf_cp, tf_cs, tf_den, tf_stf, constant(gpu_id, dtype=Int32), constant([i], dtype=Int32), tf_para_fname)
# end
# return res
# end
# J = obj()
# J1 = fwi_op(tf_cp, tf_cs, tf_den, tf_stf, tf_gpu_id0, tf_shot_ids0, tf_para_fname)
# J2 = fwi_op(tf_cp, tf_cs, tf_den, tf_stf, tf_gpu_id1, tf_shot_ids0, tf_para_fname)
# J = J1 + J2
# # config = tf.ConfigProto()
# # config.allow_growth
# # config.intra_op_parallelism_threads = 2
# # config.inter_op_parallelism_threads = 2
# sess=Session();init(sess);
# # @time run(sess, J)
# gg = gradients(J1, tf_cp)
# grad_cp = run(sess, gg)
# imshow(grad_cp);colorbar();
# error("")
# gradient check -- v
function scalar_function(m)
return fwi_op(m, tf_cs, tf_den, tf_stf, tf_gpu_id0, tf_shot_ids0, tf_para_fname)
end
# open("./Data/Shot1.bin","w") do f
# write(f, zeros(nz*nx,1))
# end
m_ = constant(3100ones(nz, nx))
# m_ = constant(cp)
# v_ = 100. .* (1. .+ rand(Float32, 384, 134))
v0 = zeros(nz, nx)
# PLEASE!!!!!!!!!!!!!! Don't perturb in the CPML region!!!!!!!!!!!!!!!!!!!!!!!
v0[nPml+5:nz-nPml-5, nPml+5:nx-nPml-5] .= 1.0
v_ = constant(Float64.((1. .+ 0.1*rand(nz, nx)) .* 500 .* v0))
y_ = scalar_function(m_)
dy_ = gradients(y_, m_)
ms_ = Array{Any}(undef, 5)
ys_ = Array{Any}(undef, 5)
s_ = Array{Any}(undef, 5)
w_ = Array{Any}(undef, 5)
gs_ = @. 1 / 10^(1:5)
for i = 1:5
g_ = gs_[i]
ms_[i] = m_ + g_ * v_
ys_[i] = scalar_function(ms_[i])
s_[i] = ys_[i] - y_
w_[i] = s_[i] - g_*sum(v_.*dy_)
end
sess = Session()
init(sess)
sval_ = run(sess, s_)
wval_ = run(sess, w_)
# error("")
sval_ = [x[1] for x in sval_]
wval_ = [x[1] for x in wval_]
close("all")
loglog(gs_, abs.(sval_), "*-", label="finite difference")
loglog(gs_, abs.(wval_), "+-", label="automatic differentiation")
loglog(gs_, gs_.^2 * 0.5*abs(wval_[1])/gs_[1]^2, "--",label="\$\\mathcal{O}(\\gamma^2)\$")
loglog(gs_, gs_ * 0.5*abs(sval_[1])/gs_[1], "--",label="\$\\mathcal{O}(\\gamma)\$")
plt.gca().invert_xaxis()
legend()
xlabel("\$\\gamma\$")
ylabel("Error")
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 7078 | using ArgParse
function parse_commandline()
s = ArgParseSettings()
@add_arg_table s begin
"--generate_data"
arg_type = Bool
default = false
"--version"
arg_type = String
default = "0000"
"--gpuIds"
arg_type = String
default = "0"
"--indStage"
arg_type = Int64
default = 2
"--verbose"
arg_type = Bool
default = false
end
return parse_args(s)
end
args = parse_commandline()
if !isdir("./$(args["version"])")
mkdir("./$(args["version"])")
end
if !isdir("./$(args["version"])/Stage$(args["indStage"])")
mkdir("./$(args["version"])/Stage$(args["indStage"])")
end
using PyTensorFlow
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
include("ops_imseq.jl")
include("../Ops/FWI/fwi_util.jl")
include("fwi_util_op.jl")
np = pyimport("numpy")
# NOTE Parameters
# const ALPHA = 0.006323996017182
# const SRC_CONST = 5.6146
# const GRAV_CONST = 1.0/144.0
const ALPHA = 1.0
const SRC_CONST = 86400.0
const GRAV_CONST = 1.0
# NOTE Hyperparameter for flow simulation
NT = 50
dt_survey = 5
Δt = 20.0 # day
if args["generate_data"]
m = 90
n = 180
h = 5.0 # meter
qw = zeros(NT, m, n)
qw[:,54,18] .= 0.005 * (1/h^2)/10.0 * SRC_CONST
qo = zeros(NT, m, n)
qo[:,54,168] .= -0.005 * (1/h^2)/10.0 * SRC_CONST
else
m = 45
n = 90
h = 10.0 # meter
qw = zeros(NT, m, n)
qw[:,27,9] .= 0.005 * (1/h^2)/10.0 * SRC_CONST
qo = zeros(NT, m, n)
qo[:,27,84] .= -0.005 * (1/h^2)/10.0 * SRC_CONST
end
z = (1:m)*h|>collect
x = (1:n)*h|>collect
X, Z = np.meshgrid(x, z)
# ρw = 996.9571
# ρo = 640.7385
# μw = 1.0
# μo = 3.0
ρw = 501.9
ρo = 1053.0
μw = 0.1
μo = 1.0
# K_init = 20.0 .* ones(m,n)
g = 9.8*GRAV_CONST
ϕ = 0.25 .* ones(m,n)
# qw = zeros(NT, m, n)
# qw[:,54,18] .= 0.005 * (1/h^2)/10.0 * SRC_CONST
# qo = zeros(NT, m, n)
# qo[:,54,168] .= -0.005 * (1/h^2)/10.0 * SRC_CONST
sw0 = zeros(m, n)
survey_indices = collect(1:dt_survey:NT+1) # 10 stages
n_survey = length(survey_indices)
# NOTE Hyperparameter for fwi_op
# argsparse.jl
# ENV["CUDA_VISIBLE_DEVICES"] = 1
# ENV["PARAMDIR"] = "Src/params/"
# config = tf.ConfigProto(device_count = Dict("GPU"=>0))
dz = 3 # meters
dx = 3
nz = Int64(round((m * h) / dz)) + 1
nx = Int64(round((n * h) / dx)) + 1
nPml = 64
nSteps = 3001
dt = 0.00025
f0 = 50.0
nPad = 32 - mod((nz+2*nPml), 32)
nz_pad = nz + 2*nPml + nPad
nx_pad = nx + 2*nPml
# reflection
# x_src = collect(5:20:nx-5)
# z_src = 5ones(Int64, size(x_src))
# x_rec = collect(5:1:nx-5)
# z_rec = 5 .* ones(Int64, size(x_rec))
# xwell
# # z_src = collect(5:10:nz-5) #14->11srcs 10->15srcs
# # z_src = collect(5:10:nz-5)
z_src = collect(5:10:nz-5)
x_src = 5ones(Int64, size(z_src))
z_rec = collect(5:1:nz-5)
x_rec = (nx-5) .* ones(Int64, size(z_rec))
# para_fname = "./$(args["version"])/para_file.json"
# survey_fname = "./$(args["version"])/survey_file.json"
# data_dir_name = "./$(args["version"])/Data"
# paraGen(nz, nx, dz, dx, nSteps, dt, f0, nPml, nPad, filter_para, isAc, para_fname, survey_fname, data_dir_name)
# surveyGen(z_src, x_src, z_rec, x_rec, survey_fname)
cp_nopad = 3500.0 .* ones(nz, nx) # initial cp
cs = cp_nopad ./ sqrt(3.0)
den = 2200.0 .* ones(nz, nx)
cp_pad = 3500.0 .* ones(nz_pad, nx_pad) # initial cp
cs_pad = cp_pad ./ sqrt(3.0)
den_pad = 2200.0 .* ones(nz_pad, nx_pad)
cp_pad_value = 3500.0
# tf_cp = constant(cp)
tf_cs = constant(cs_pad)
tf_den = constant(den_pad)
# src = Matrix{Float64}(undef, 1, 2001)
# # src[1,:] = Float64.(reinterpret(Float32, read("../Ops/FWI/Src/params/ricker_10Hz.bin")))
# src[1,:] = Float64.(reinterpret(Float32, read("../Ops/FWI/Src/params/Mar_source_2001.bin")))
src = sourceGene(f0, nSteps, dt)
tf_stf = constant(repeat(src, outer=length(z_src)))
# tf_para_fname = tf.strings.join([para_fname])
tf_gpu_id0 = constant(0, dtype=Int32)
tf_gpu_id1 = constant(1, dtype=Int32)
gpu_id_array = [parse(Int, ss) for ss in split(args["gpuIds"],"_")]
nGpus = length(gpu_id_array)
tf_gpu_id_array = constant(gpu_id_array, dtype=Int32)
tf_shot_ids0 = constant(collect(Int32, 0:length(x_src)-1), dtype=Int32)
tf_shot_ids1 = constant(collect(Int32, 13:25), dtype=Int32)
# NOTE Hyperparameter for rock physics
tf_bulk_fl1 = constant(2.735e9)
tf_bulk_fl2 = constant(0.125e9) # to displace fl1
tf_bulk_sat1 = constant(den .* (cp_nopad.^2 .- 4.0/3.0 .* cp_nopad.^2 ./3.0)) # vp/vs ratio as sqrt(3)
tf_bulk_min = constant(36.6e9)
tf_shear_sat1 = constant(den .* cp_nopad.^2 ./3.0)
tf_ϕ_pad = tf.image.resize_bilinear(tf.reshape(constant(ϕ), (1, m, n, 1)), (nz, nx)) # upsample the porosity
tf_ϕ_pad = cast(tf_ϕ_pad, Float64)
tf_ϕ_pad = squeeze(tf_ϕ_pad)
tf_shear_pad = tf.pad(tf_shear_sat1, [nPml (nPml+nPad); nPml nPml],
constant_values=den[1,1] * cp_nopad[1,1]^2 /3.0) / 1e6
function Gassman(sw)
tf_bulk_fl_mix = 1.0/( (1-sw)/tf_bulk_fl1 + sw/tf_bulk_fl2 )
temp = tf_bulk_sat1/(tf_bulk_min - tf_bulk_sat1) - tf_bulk_fl1/tf_ϕ_pad /(tf_bulk_min - tf_bulk_fl1) + tf_bulk_fl_mix/tf_ϕ_pad /(tf_bulk_min - tf_bulk_fl_mix)
tf_bulk_new = tf_bulk_min / (1.0/temp + 1.0)
# tf_den_new = constant(den) + tf_ϕ_pad .* sw * (ρw - ρo) *16.018463373960138;
tf_den_new = constant(den) + tf_ϕ_pad .* sw * (ρw - ρo)
# tf_cp_new = sqrt((tf_bulk_new + 4.0/3.0 * tf_shear_sat1)/tf_den_new)
tf_lambda_new = tf_bulk_new - 2.0/3.0 * tf_shear_sat1
return tf_lambda_new, tf_den_new
end
tf_brie_coef = Variable(2.0*30.0)
# tf_brie_coef = constant(3.0)
# tf_brie_coef = constant(2.0)
function Brie(sw)
tf_bulk_fl_mix = (tf_bulk_fl1-tf_bulk_fl2)*(1-sw)^(tf_brie_coef/30.0) + tf_bulk_fl2
temp = tf_bulk_sat1/(tf_bulk_min - tf_bulk_sat1) - tf_bulk_fl1/tf_ϕ_pad /(tf_bulk_min - tf_bulk_fl1) + tf_bulk_fl_mix/tf_ϕ_pad /(tf_bulk_min - tf_bulk_fl_mix)
tf_bulk_new = tf_bulk_min / (1.0/temp + 1.0)
# tf_den_new = constant(den) + tf_ϕ_pad .* sw * (ρw - ρo) *16.018463373960138;
tf_den_new = constant(den) + tf_ϕ_pad .* sw * (ρw - ρo)
# tf_cp_new = sqrt((tf_bulk_new + 4.0/3.0 * tf_shear_sat1)/tf_den_new)
tf_lambda_new = tf_bulk_new - 2.0/3.0 * tf_shear_sat1
return tf_lambda_new, tf_den_new
end
function RockLinear(sw)
# tf_lambda_new = constant(7500.0*1e6 .* ones(nz,nx)) + (17400.0-7500.0)*1e6 * sw
tf_lambda_new = constant(7500.0*1e6 .* ones(nz,nx)) + (9200.0-7500.0)*1e6 * sw
tf_den_new = constant(den) + tf_ϕ_pad .* sw * (ρw - ρo)
return tf_lambda_new, tf_den_new
end
tf_patch_temp = tf_bulk_sat1/(tf_bulk_min - tf_bulk_sat1) -
tf_bulk_fl1/tf_ϕ_pad /(tf_bulk_min - tf_bulk_fl1) +
tf_bulk_fl2/tf_ϕ_pad /(tf_bulk_min - tf_bulk_fl2)
tf_bulk_sat2 = tf_bulk_min/(1.0/tf_patch_temp + 1.0)
function Patchy(sw)
tf_bulk_new = 1/( (1-sw)/(tf_bulk_sat1+4.0/3.0*tf_shear_sat1)
+ sw/(tf_bulk_sat2+4.0/3.0*tf_shear_sat1) ) - 4.0/3.0*tf_shear_sat1
tf_lambda_new = tf_bulk_new - 2.0/3.0 * tf_shear_sat1
tf_den_new = constant(den) + tf_ϕ_pad .* sw * (ρw - ρo)
return tf_lambda_new, tf_den_new
end
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 2036 |
if Sys.islinux()
py"""
import tensorflow as tf
import socket
if socket.gethostname() != "Dolores":
libFwiOp = tf.load_op_library('../Ops/FWI/build/libFwiOp.so')
else:
libFwiOp = tf.load_op_library('../Ops/FWI/build_dolores/libFwiOp.so')
@tf.custom_gradient
def fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
def grad(dy):
return libFwiOp.fwi_op_grad(dy, tf.constant(1.0,dtype=tf.float64),λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit, grad
def fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libFwiOp = tf.load_op_library('../Ops/FWI/build/libFwiOp.so')
@tf.custom_gradient
def fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
def grad(dy):
return libFwiOp.fwi_op_grad(dy, tf.constant(1.0,dtype=tf.float64),λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit, grad
def fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libFwiOp = tf.load_op_library('../Ops/FWI/build/libFwiOp.so')
@tf.custom_gradient
def fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
def grad(dy):
return libFwiOp.fwi_op_grad(dy, tf.constant(1.0,dtype=tf.float64),λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit, grad
def fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit
"""
end
fwi_op = py"fwi_op"
fwi_obs_op = py"fwi_obs_op" | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 2301 | using PyTensorFlow
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
if Sys.islinux()
py"""
import tensorflow as tf
libLaplacian = tf.load_op_library('../Ops/Laplacian/build/libLaplacian.so')
@tf.custom_gradient
def laplacian_op(coef,func,h,rhograv):
p = libLaplacian.laplacian(coef,func,h,rhograv)
def grad(dy):
return libLaplacian.laplacian_grad(dy, coef, func, h, rhograv)
return p, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('../Ops/Laplacian/build/libLaplacian.dylib')
@tf.custom_gradient
def laplacian_op(coef,func,h,rhograv):
p = libLaplacian.laplacian(coef,func,h,rhograv)
def grad(dy):
return libLaplacian.laplacian_grad(dy, coef, func, h, rhograv)
return p, grad
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('../Ops/Laplacian/build/libLaplacian.dll')
@tf.custom_gradient
def laplacian_op(coef,func,h,rhograv):
p = libLaplacian.laplacian(coef,func,h,rhograv)
def grad(dy):
return libLaplacian.laplacian_grad(dy, coef, func, h, rhograv)
return p, grad
"""
end
laplacian_op = py"laplacian_op"
if Sys.islinux()
py"""
import tensorflow as tf
libUpwlapOp = tf.load_op_library('../Ops/Upwlap/build/libUpwlapOp.so')
@tf.custom_gradient
def upwlap_op(perm,mobi,func,h,rhograv):
out = libUpwlapOp.upwlap_op(perm,mobi,func,h,rhograv)
def grad(dy):
return libUpwlapOp.upwlap_op_grad(dy, out, perm,mobi,func,h,rhograv)
return out, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libUpwlapOp = tf.load_op_library('../Ops/Upwlap/build/libUpwlapOp.dylib')
@tf.custom_gradient
def upwlap_op(perm,mobi,func,h,rhograv):
out = libUpwlapOp.upwlap_op(perm,mobi,func,h,rhograv)
def grad(dy):
return libUpwlapOp.upwlap_op_grad(dy, out, perm,mobi,func,h,rhograv)
return out, grad
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libUpwlapOp = tf.load_op_library('./Ops/Upwlap/build/libUpwlapOp.dll')
@tf.custom_gradient
def upwlap_op(perm,mobi,func,h,rhograv):
out = libUpwlapOp.upwlap_op(perm,mobi,func,h,rhograv)
def grad(dy):
return libUpwlapOp.upwlap_op_grad(dy, out, perm,mobi,func,h,rhograv)
return out, grad
"""
end
upwlap_op = py"upwlap_op" | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 5967 | #=
Main program for FWI
=#
using ArgParse
function parse_commandline()
s = ArgParseSettings()
@add_arg_table s begin
"--generate_data"
arg_type = Bool
default = false
"--version"
arg_type = String
default = "0000"
"--verbose"
arg_type = Bool
default = false
end
return parse_args(s)
end
args = parse_commandline()
if !isdir("./$(args["version"])")
mkdir("./$(args["version"])")
end
using PyTensorFlow
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
include("ops_imseq.jl")
include("../Ops/FWI/fwi_util.jl")
include("fwi_util_op.jl")
np = pyimport("numpy")
nz = 134
nx = 384
dz = 24. # meters
dx = 24.
nSteps = 2001
dt = 0.0025
f0 = 4.5
filter_para = [0, 0.1, 100.0, 200.0]
isAc = true
nPml = 32
nPad = 32 - mod((nz+2*nPml), 32)
nz_pad = nz + 2*nPml + nPad
nx_pad = nx + 2*nPml
# reflection
x_src = collect(4:8:384)
z_src = 2ones(Int64, size(x_src))
x_rec = collect(3:381)
z_rec = 2ones(Int64, size(x_rec))
# xwell
# z_src = collect(5:10:nz-5) #14->11srcs 10->15srcs
# x_src = 5ones(Int64, size(z_src))
# z_rec = collect(5:1:nz-5)
# x_rec = (nx-5) .* ones(Int64, size(z_rec))
para_fname = "./$(args["version"])/para_file.json"
survey_fname = "./$(args["version"])/survey_file.json"
data_dir_name = "./$(args["version"])/Data"
paraGen(nz_pad, nx_pad, dz, dx, nSteps, dt, f0, nPml, nPad, filter_para, isAc, para_fname, survey_fname, data_dir_name)
surveyGen(z_src, x_src, z_rec, x_rec, survey_fname)
tf_cp = constant(reshape(reinterpret(Float32,read("Mar_models/Model_Cp_true.bin")),(nz_pad, nx_pad)), dtype=Float64)
cs = zeros(nz_pad, nx_pad)
den = 1000.0 .* ones(nz_pad, nx_pad)
cp_pad_value = 3000.0
# tf_cp = constant(cp)
tf_cs = constant(cs)
tf_den = constant(den)
src = Matrix{Float64}(undef, 1, 2001)
# # src[1,:] = Float64.(reinterpret(Float32, read("../Ops/FWI/Src/params/ricker_10Hz.bin")))
src[1,:] = Float64.(reinterpret(Float32, read("../Ops/FWI/Src/params/Mar_source_2001.bin")))
# src = sourceGene(f0, nSteps, dt)
tf_stf = constant(repeat(src, outer=length(z_src)))
# tf_para_fname = tf.strings.join([para_fname])
tf_gpu_id0 = constant(0, dtype=Int32)
tf_gpu_id1 = constant(1, dtype=Int32)
nGpus = 2
tf_gpu_id_array = constant(collect(0:nGpus-1), dtype=Int32)
tf_shot_ids0 = constant(collect(Int32, 0:length(x_src)-1), dtype=Int32)
shot_id_points = Int32.(trunc.(collect(LinRange(0, length(z_src)-1, nGpus+1))))
function pad_cp(cp)
tran_cp = cast(cp, Float64)
return tf.pad(tran_cp, [nPml (nPml+nPad); nPml nPml], constant_values=3000.0)
end
# NOTE Generate Data
if args["generate_data"]
println("Generate Test Data...")
if !isdir("./$(args["version"])/Data")
mkdir("./$(args["version"])/Data")
end
res = fwi_obs_op(tf_cp, tf_cs, tf_den, tf_stf, tf_gpu_id0, tf_shot_ids0, para_fname)
config = tf.ConfigProto()
config.intra_op_parallelism_threads = 24
config.inter_op_parallelism_threads = 24
sess = Session(config=config); init(sess);
run(sess, res)
error("Generate Data: Stop")
end
cp_init = reshape(reinterpret(Float32,read("Mar_models/Model_Cp_init_1D.bin")),(nz_pad, nx_pad))
tf_cp_inv = Variable(cp_init, dtype=Float64)
Mask = ones(nz_pad, nx_pad)
Mask[nPml+1:nPml+10,:] .= 0.0
tf_cp_inv_msk = tf_cp_inv .* constant(Mask) + constant(cp_init[1,1] .* (1. .- Mask))
# NOTE Compute FWI loss
# loss = constant(0.0)
# for i = 1:nGpus
# global loss
# tf_shot_ids = constant(collect(shot_id_points[i] : shot_id_points[i+1]), dtype=Int32)
# loss += fwi_op(tf_cp_inv_msk, tf_cs, tf_den, tf_stf, tf_gpu_id_array[i], tf_shot_ids, para_fname)
# end
loss = fwi_op(tf_cp_inv_msk, tf_cs, tf_den, tf_stf, tf_gpu_id_array[1], tf_shot_ids0, para_fname)
gradCp = gradients(loss, tf_cp_inv)
if args["verbose"]
sess = Session(); init(sess)
println("Initial loss = ", run(sess, loss))
g = gradients(loss, tfCtxInit.K)
G = run(sess, g)
pcolormesh(G); savefig("test.png"); close("all")
end
# Optimization
__cnt = 0
# invK = zeros(m,n)
function print_loss(l, Cp, gradCp)
global __cnt, __l, __Cp, __gradCp
if mod(__cnt,1)==0
println("\niter=$__iter, eval=$__cnt, current loss=",l)
# println("a=$a, b1=$b1, b2=$b2")
end
__cnt += 1
__l = l
__Cp = Cp
__gradCp = gradCp
end
__iter = 0
function print_iter(rk)
global __iter, __l
if mod(__iter,1)==0
println("\n************* ITER=$__iter *************\n")
end
__iter += 1
open("./$(args["version"])/loss.txt", "a") do io
writedlm(io, Any[__iter __l])
end
open("./$(args["version"])/Cp$__iter.txt", "w") do io
writedlm(io, __Cp)
end
open("./$(args["version"])/gradCp$__iter.txt", "w") do io
writedlm(io, __gradCp)
end
end
config = tf.ConfigProto()
config.intra_op_parallelism_threads = 24
config.inter_op_parallelism_threads = 24
sess = Session(config=config); init(sess);
# cp_low_bd = 1500. .* ones(nz_pad, nx_pad)
# cp_high_bd = 5500. .* ones(nz_pad, nx_pad)
# cp_high_bd[nPml+1:nPml+10,:] .= 1500.0
opt = ScipyOptimizerInterface(loss, var_list=[tf_cp_inv], var_to_bounds=Dict(tf_cp_inv=> (1500.0, 5500.0)), method="L-BFGS-B",
options=Dict("maxiter"=> 100, "ftol"=>1e-6, "gtol"=>1e-6))
@info "Optimization Starts..."
ScipyOptimizerMinimize(sess, opt, loss_callback=print_loss, step_callback=print_iter, fetches=[loss,tf_cp_inv,gradCp])
# adam = AdamOptimizer(learning_rate=50.0)
# op = minimize(adam, loss)
# sess = Session(); init(sess);
# for iter = 1:1000
# _, misfit, cp, cpgrad = run(sess, [op, loss, tf_cp_inv, gradCp])
# open("./$(args["version"])/Cp$iter.txt", "w") do io
# writedlm(io, cp)
# end
# open("./$(args["version"])/loss.txt", "a") do io
# writedlm(io, Any[iter misfit])
# end
# open("./$(args["version"])/gradCp$iter.txt", "w") do io
# writedlm(io, cpgrad)
# end
# end | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 6098 | #=
Main program for two phase flow inversion
=#
include("args.jl")
function sw_p_to_lambda_den(sw, p)
sw = tf.reshape(sw, (1, m, n, 1))
p = tf.reshape(p, (1, m, n, 1))
sw = tf.image.resize_bilinear(sw, (nz, nx))
p = tf.image.resize_bilinear(p, (nz, nx))
sw = cast(sw, Float64)
p = cast(p, Float64)
sw = squeeze(sw)
p = squeeze(p)
# tran_lambda, tran_den = Gassman(sw)
# tran_lambda, tran_den = RockLinear(sw) # test linear relationship
tran_lambda, tran_den = Patchy(sw)
# tran_lambda, tran_den = Brie(sw)
tran_lambda_pad = tf.pad(tran_lambda, [nPml (nPml+nPad); nPml nPml], constant_values=3500.0^2*2200.0/3.0) /1e6
tran_den_pad = tf.pad(tran_den, [nPml (nPml+nPad); nPml nPml], constant_values=2200.0)
return tran_lambda_pad, tran_den_pad
end
# NOTE Generate Data
if args["generate_data"]
println("Generate Test Data...")
K = 20.0 .* ones(m,n) # millidarcy
ix = 1:n
y1 = 45. .+ 10. .* sin.(ix./120.0 .* 2.0 .* pi)
y2 = 55. .+ 10. .* sin.(ix./120.0 .* 2.0 .* pi)
for j = 1:n
for i = 1:m
if (i > y1[j] && i < y2[j])
K[i, j] = 120;
end
end
end
# imshow(K)
tfCtxTrue = tfCtxGen(m,n,h,NT,Δt,Z,X,ρw,ρo,μw,μo,K,g,ϕ,qw,qo, sw0, true)
out_sw_true, out_p_true = imseq(tfCtxTrue)
lambdas = Array{PyObject}(undef, n_survey)
dens = Array{PyObject}(undef, n_survey)
for i = 1:n_survey
sw = out_sw_true[survey_indices[i]]
p = out_p_true[survey_indices[i]]
lambdas[i], dens[i] = sw_p_to_lambda_den(sw, p)
end
misfit = Array{PyObject}(undef, n_survey)
for i = 1:n_survey
if !isdir("./$(args["version"])/Data$i")
mkdir("./$(args["version"])/Data$i")
end
para_fname = "./$(args["version"])/para_file$i.json"
survey_fname = "./$(args["version"])/survey_file$i.json"
paraGen(nz_pad, nx_pad, dz, dx, nSteps, dt, f0, nPml, nPad, para_fname, survey_fname, "./$(args["version"])/Data$i/")
# shot_inds = collect(1:3:length(z_src)) .+ mod(i-1,3) # 5src rotation
# shot_inds = i # 1src rotation
shot_inds = collect(1:length(z_src)) # all sources
surveyGen(z_src[shot_inds], x_src[shot_inds], z_rec, x_rec, survey_fname)
tf_shot_ids0 = constant(collect(0:length(shot_inds)-1), dtype=Int32)
misfit[i] = fwi_obs_op(lambdas[i], tf_shear_pad, dens[i], tf_stf, tf_gpu_id0, tf_shot_ids0, para_fname)
end
config = tf.ConfigProto()
config.intra_op_parallelism_threads = 24
config.inter_op_parallelism_threads = 24
sess = Session(config=config); init(sess);
run(sess, misfit)
error("Generate Data: Stop")
end
if args["indStage"] == 2
K_init = 20.0 .* ones(m,n)
elseif args["indStage"] == 1
error("indStage == 1")
else
ls = readdlm("./$(args["version"])/Stage$(args["indStage"]-1)/loss.txt")
Ls = Int64((ls[end,1]))
K_init = readdlm("./$(args["version"])/Stage$(args["indStage"]-1)/K$Ls.txt")
end
tfCtxInit = tfCtxGen(m,n,h,NT,Δt,Z,X,ρw,ρo,μw,μo,K_init,g,ϕ,qw,qo, sw0, false)
out_sw_init, out_p_init = imseq(tfCtxInit)
lambdas = Array{PyObject}(undef, n_survey)
dens = Array{PyObject}(undef, n_survey)
for i = 1:n_survey
sw = out_sw_init[survey_indices[i]]
p = out_p_init[survey_indices[i]]
lambdas[i], dens[i] = sw_p_to_lambda_den(sw, p)
end
# NOTE Compute FWI loss
loss = constant(0.0)
for i = 1:args["indStage"]
global loss
para_fname = "./$(args["version"])/para_file$i.json"
survey_fname = "./$(args["version"])/survey_file$i.json"
# shot_inds = collect(1:3:length(z_src)) .+ mod(i-1,3)
# shot_inds = i
shot_inds = collect(1:length(z_src)) # all sources
tf_shot_ids0 = constant(collect(0:length(shot_inds)-1), dtype=Int32)
loss += fwi_op(lambdas[i], tf_shear_pad, dens[i], tf_stf, tf_gpu_id_array[mod(i,nGpus)], tf_shot_ids0, para_fname) # mod(i,2)
end
gradK = gradients(loss, tfCtxInit.K)
if args["verbose"]
sess = Session(); init(sess)
println("Initial loss = ", run(sess, loss))
g = gradients(loss, tfCtxInit.K)
G = run(sess, g)
pcolormesh(G); savefig("test.png"); close("all")
end
# Optimization
__cnt = 0
# invK = zeros(m,n)
function print_loss(l, K, gradK, brie_coef)
global __cnt, __l, __K, __gradK, __brie_coef
if mod(__cnt,1)==0
println("\niter=$__iter, eval=$__cnt, current loss=",l)
# println("a=$a, b1=$b1, b2=$b2")
end
__cnt += 1
__l = l
__K = K
__gradK = gradK
__brie_coef = brie_coef
end
__iter = 0
function print_iter(rk)
global __iter, __l
if mod(__iter,1)==0
println("\n************* ITER=$__iter *************\n")
end
__iter += 1
open("./$(args["version"])/Stage$(args["indStage"])/loss.txt", "a") do io
writedlm(io, Any[__iter __l])
end
open("./$(args["version"])/Stage$(args["indStage"])/K$__iter.txt", "w") do io
writedlm(io, __K)
end
open("./$(args["version"])/Stage$(args["indStage"])/gradK$__iter.txt", "w") do io
writedlm(io, __gradK)
end
open("./$(args["version"])/Stage$(args["indStage"])/brie_coef.txt", "a") do io
writedlm(io, Any[__iter __brie_coef])
end
end
config = tf.ConfigProto()
config.intra_op_parallelism_threads = 24
config.inter_op_parallelism_threads = 24
sess = Session(config=config); init(sess);
opt = ScipyOptimizerInterface(loss, var_list=[tfCtxInit.K], var_to_bounds=Dict(tfCtxInit.K=> (10.0, 130.0)), method="L-BFGS-B",
options=Dict("maxiter"=> 100, "ftol"=>1e-6, "gtol"=>1e-6))
# opt = ScipyOptimizerInterface(loss, var_list=[tfCtxInit.K, tf_brie_coef], var_to_bounds=Dict(tfCtxInit.K=> (10.0, 130.0), tf_brie_coef=>(1.0,100.0)), method="L-BFGS-B",
# options=Dict("maxiter"=> 100, "ftol"=>1e-6, "gtol"=>1e-6))
@info "Optimization Starts..."
# ScipyOptimizerMinimize(sess, opt, loss_callback=print_loss, step_callback=print_iter, fetches=[loss,tfCtxInit.K,gradK])
ScipyOptimizerMinimize(sess, opt, loss_callback=print_loss, step_callback=print_iter, fetches=[loss,tfCtxInit.K,gradK, tf_brie_coef])
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 5682 | #=
Main program for two phase flow inversion
=#
include("args.jl")
function sw_p_to_lambda_den(sw, p)
sw = tf.reshape(sw, (1, m, n, 1))
p = tf.reshape(p, (1, m, n, 1))
sw = tf.image.resize_bilinear(sw, (nz, nx))
p = tf.image.resize_bilinear(p, (nz, nx))
sw = cast(sw, Float64)
p = cast(p, Float64)
sw = squeeze(sw)
p = squeeze(p)
# tran_lambda, tran_den = Gassman(sw)
# tran_lambda, tran_den = RockLinear(sw) # test linear relationship
tran_lambda, tran_den = Patchy(sw)
# tran_lambda, tran_den = Brie(sw)
tran_lambda_pad = tf.pad(tran_lambda, [nPml (nPml+nPad); nPml nPml], constant_values=3500.0^2*2200.0/3.0) /1e6
tran_den_pad = tf.pad(tran_den, [nPml (nPml+nPad); nPml nPml], constant_values=2200.0)
return tran_lambda_pad, tran_den_pad
end
# NOTE Generate Data
if args["generate_data"]
println("Generate Test Data...")
K = 20.0 .* ones(m,n) # millidarcy
ix = 1:n
y1 = 45. .+ 10. .* sin.(ix./120.0 .* 2.0 .* pi)
y2 = 55. .+ 10. .* sin.(ix./120.0 .* 2.0 .* pi)
for j = 1:n
for i = 1:m
if (i > y1[j] && i < y2[j])
K[i, j] = 120;
end
end
end
# imshow(K)
tfCtxTrue = tfCtxGen(m,n,h,NT,Δt,Z,X,ρw,ρo,μw,μo,K,g,ϕ,qw,qo, sw0, true)
out_sw_true, out_p_true = imseq(tfCtxTrue)
lambdas = Array{PyObject}(undef, n_survey)
dens = Array{PyObject}(undef, n_survey)
for i = 1:n_survey
sw = out_sw_true[survey_indices[i]]
p = out_p_true[survey_indices[i]]
lambdas[i], dens[i] = sw_p_to_lambda_den(sw, p)
end
misfit = Array{PyObject}(undef, n_survey)
for i = 1:n_survey
if !isdir("./$(args["version"])/Data$i")
mkdir("./$(args["version"])/Data$i")
end
para_fname = "./$(args["version"])/para_file$i.json"
survey_fname = "./$(args["version"])/survey_file$i.json"
paraGen(nz_pad, nx_pad, dz, dx, nSteps, dt, f0, nPml, nPad, para_fname, survey_fname, "./$(args["version"])/Data$i/")
# shot_inds = collect(1:3:length(z_src)) .+ mod(i-1,3) # 5src rotation
# shot_inds = i # 1src rotation
shot_inds = collect(1:length(z_src)) # all sources
surveyGen(z_src[shot_inds], x_src[shot_inds], z_rec, x_rec, survey_fname)
tf_shot_ids0 = constant(collect(0:length(shot_inds)-1), dtype=Int32)
misfit[i] = fwi_obs_op(lambdas[i], tf_shear_pad, dens[i], tf_stf, tf_gpu_id0, tf_shot_ids0, para_fname)
end
config = tf.ConfigProto()
config.intra_op_parallelism_threads = 24
config.inter_op_parallelism_threads = 24
sess = Session(config=config); init(sess);
run(sess, misfit)
error("Generate Data: Stop")
end
tfCtxInit = tfCtxGen(m,n,h,NT,Δt,Z,X,ρw,ρo,μw,μo,K_init,g,ϕ,qw,qo, sw0, false)
out_sw_init, out_p_init = imseq(tfCtxInit)
lambdas = Array{PyObject}(undef, n_survey)
dens = Array{PyObject}(undef, n_survey)
for i = 1:n_survey
sw = out_sw_init[survey_indices[i]]
p = out_p_init[survey_indices[i]]
lambdas[i], dens[i] = sw_p_to_lambda_den(sw, p)
end
# NOTE Compute FWI loss
loss = constant(0.0)
for i = 1:n_survey
global loss
para_fname = "./$(args["version"])/para_file$i.json"
survey_fname = "./$(args["version"])/survey_file$i.json"
# shot_inds = collect(1:3:length(z_src)) .+ mod(i-1,3)
# shot_inds = i
shot_inds = collect(1:length(z_src)) # all sources
tf_shot_ids0 = constant(collect(0:length(shot_inds)-1), dtype=Int32)
loss += fwi_op(lambdas[i], tf_shear_pad, dens[i], tf_stf, tf_gpu_id_array[mod(i,nGpus)], tf_shot_ids0, para_fname) # mod(i,2)
end
gradK = gradients(loss, tfCtxInit.K)
if args["verbose"]
sess = Session(); init(sess)
println("Initial loss = ", run(sess, loss))
g = gradients(loss, tfCtxInit.K)
G = run(sess, g)
pcolormesh(G); savefig("test.png"); close("all")
end
# Optimization
__cnt = 0
# invK = zeros(m,n)
function print_loss(l, K, gradK, brie_coef)
global __cnt, __l, __K, __gradK, __brie_coef
if mod(__cnt,1)==0
println("\niter=$__iter, eval=$__cnt, current loss=",l)
# println("a=$a, b1=$b1, b2=$b2")
end
__cnt += 1
__l = l
__K = K
__gradK = gradK
__brie_coef = brie_coef
end
__iter = 0
function print_iter(rk)
global __iter, __l
if mod(__iter,1)==0
println("\n************* ITER=$__iter *************\n")
end
__iter += 1
open("./$(args["version"])/loss.txt", "a") do io
writedlm(io, Any[__iter __l])
end
open("./$(args["version"])/K$__iter.txt", "w") do io
writedlm(io, __K)
end
open("./$(args["version"])/gradK$__iter.txt", "w") do io
writedlm(io, __gradK)
end
open("./$(args["version"])/brie_coef.txt", "a") do io
writedlm(io, Any[__iter __brie_coef])
end
end
config = tf.ConfigProto()
config.intra_op_parallelism_threads = 24
config.inter_op_parallelism_threads = 24
sess = Session(config=config); init(sess);
# opt = ScipyOptimizerInterface(loss, var_list=[tfCtxInit.K], var_to_bounds=Dict(tfCtxInit.K=> (10.0, 130.0)), method="L-BFGS-B",
# options=Dict("maxiter"=> 100, "ftol"=>1e-6, "gtol"=>1e-6))
opt = ScipyOptimizerInterface(loss, var_list=[tfCtxInit.K, tf_brie_coef], var_to_bounds=Dict(tfCtxInit.K=> (10.0, 130.0), tf_brie_coef=>(1.0,100.0)), method="L-BFGS-B",
options=Dict("maxiter"=> 100, "ftol"=>1e-6, "gtol"=>1e-6))
@info "Optimization Starts..."
# ScipyOptimizerMinimize(sess, opt, loss_callback=print_loss, step_callback=print_iter, fetches=[loss,tfCtxInit.K,gradK])
ScipyOptimizerMinimize(sess, opt, loss_callback=print_loss, step_callback=print_iter, fetches=[loss,tfCtxInit.K,gradK, tf_brie_coef])
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 3208 | using PyTensorFlow
using PyCall
using LinearAlgebra
using PyPlot
using DelimitedFiles
using Random
Random.seed!(233)
np = pyimport("numpy")
include("poisson_op.jl")
include("laplacian_op.jl")
include("sat_op.jl")
const K_CONST = 9.869232667160130e-16 * 86400 * 1e3
mutable struct Ctx
m; n; h; NT; Δt; Z; X; ρw; ρo;
μw; μo; K; g; ϕ; qw; qo; sw0
end
function tfCtxGen(m,n,h,NT,Δt,Z,X,ρw,ρo,μw,μo,K,g,ϕ,qw,qo,sw0,ifTrue)
tf_h = constant(h)
# tf_NT = constant(NT)
tf_Δt = constant(Δt)
tf_Z = constant(Z)
tf_X= constant(X)
tf_ρw = constant(ρw)
tf_ρo = constant(ρo)
tf_μw = constant(μw)
tf_μo = constant(μo)
# tf_K = isa(K,Array) ? Variable(K) : K
if ifTrue
tf_K = constant(K)
else
tf_K = Variable(K)
end
tf_g = constant(g)
# tf_ϕ = Variable(ϕ)
tf_ϕ = constant(ϕ)
tf_qw = constant(qw)
tf_qo = constant(qo)
tf_sw0 = constant(sw0)
return Ctx(m,n,tf_h,NT,tf_Δt,tf_Z,tf_X,tf_ρw,tf_ρo,tf_μw,tf_μo,tf_K,tf_g,tf_ϕ,tf_qw,tf_qo,tf_sw0)
end
function Krw(Sw)
return Sw ^ 1.5
end
function Kro(So)
return So ^1.5
end
function ave_normal(quantity, m, n)
aa = sum(quantity)
return aa/(m*n)
end
# variables : sw, u, v, p
# (time dependent) parameters: qw, qo, ϕ
function onestep(sw, p, m, n, h, Δt, Z, ρw, ρo, μw, μo, K, g, ϕ, qw, qo)
# step 1: update p
# λw = Krw(sw)/μw
# λo = Kro(1-sw)/μo
λw = sw.*sw/μw
λo = (1-sw).*(1-sw)/μo
λ = λw + λo
q = qw + qo + λw/(λo+1e-16).*qo
# q = qw + qo
potential_c = (ρw - ρo)*g .* Z
# Step 1: implicit potential
Θ = upwlap_op(K * K_CONST, λo, potential_c, h, constant(0.0))
load_normal = (Θ+q/ALPHA) - ave_normal(Θ+q/ALPHA, m, n)
# p = poisson_op(λ.*K* K_CONST, load_normal, h, constant(0.0), constant(1))
p = upwps_op(K * K_CONST, λ, load_normal, p, h, constant(0.0), constant(0)) # potential p = pw - ρw*g*h
# step 2: implicit transport
sw = sat_op(sw, p, K * K_CONST, ϕ, qw, qo, μw, μo, sw, Δt, h)
return sw, p
end
"""
impes(tf_ctx)
Solve the two phase flow equation.
`qw` and `qo` -- `NT x m x n` numerical array, `qw[i,:,:]` the corresponding value of qw at i*Δt
`sw0` and `p0` -- initial value for `sw` and `p`. `m x n` numerical array.
"""
function imseq(tf_ctx)
ta_sw, ta_p = TensorArray(NT+1), TensorArray(NT+1)
ta_sw = write(ta_sw, 1, tf_ctx.sw0)
ta_p = write(ta_p, 1, constant(zeros(tf_ctx.m, tf_ctx.n)))
i = constant(1, dtype=Int32)
function condition(i, tas...)
i <= tf_ctx.NT
end
function body(i, tas...)
ta_sw, ta_p = tas
sw, p = onestep(read(ta_sw, i), read(ta_p, i), tf_ctx.m, tf_ctx.n, tf_ctx.h, tf_ctx.Δt, tf_ctx.Z, tf_ctx.ρw, tf_ctx.ρo, tf_ctx.μw, tf_ctx.μo, tf_ctx.K, tf_ctx.g, tf_ctx.ϕ, tf_ctx.qw[i], tf_ctx.qo[i])
ta_sw = write(ta_sw, i+1, sw)
ta_p = write(ta_p, i+1, p)
i+1, ta_sw, ta_p
end
_, ta_sw, ta_p = while_loop(condition, body, [i; ta_sw; ta_p;])
out_sw, out_p = stack(ta_sw), stack(ta_p)
end
function vis(val, args...;kwargs...)
close("all")
ns = Int64.(round.(LinRange(1,size(val,1),9)))
for i = 1:9
subplot(330+i)
imshow(val[ns[i],:,:], args...;kwargs...)
colorbar()
end
end | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 3664 | using PyPlot
using DelimitedFiles
if !isdir("figures_summary_channel")
mkdir("figures_summary_channel")
end
m = 90
n = 180
h = 5.0 # meter
dz = 3.0 # meters
dx = 3.0
nz = Int64(round((m * h) / dz)) + 1
nx = Int64(round((n * h) / dx)) + 1
z_src = (collect(5:10:nz-5) .- 1 ) .* dz .+ dz/2.0
x_src = (5-1)ones(Int64, size(z_src)) .* dx .+ dx/2.0
z_rec = (collect(5:1:nz-5) .- 1) .* dz .+ dz/2.0
x_rec = (nx-5-1) .* ones(Int64, size(z_rec)) .*dx .+ dx/2.0
z_inj = (54-1)*h + h/2.0
x_inj = (18-1)*h + h/2.0
z_prod = (54-1)*h + h/2.0
x_prod = (168-1)*h + h/2.0
rc("axes", titlesize=20)
rc("axes", labelsize=18)
rc("xtick", labelsize=18)
rc("ytick", labelsize=18)
rc("legend", fontsize=20)
# true model
figure()
K = 20.0 .* ones(m,n) # millidarcy
ix = 1:n
y1 = 45. .+ 10. .* sin.(ix./120.0 .* 2.0 .* pi)
y2 = 55. .+ 10. .* sin.(ix./120.0 .* 2.0 .* pi)
for j = 1:n
for i = 1:m
if (i > y1[j] && i < y2[j])
K[i, j] = 120;
end
end
end
imshow(K, extent=[0,n*h,m*h,0]);
xlabel("Distance (m)")
ylabel("Depth (m)")
cb = colorbar()
clim([20, 120])
cb.set_label("Permeability (md)")
shot_inds = collect(1:length(z_src))
scatter(x_src[shot_inds], z_src[shot_inds], c="w", marker="*")
scatter(x_rec, z_rec, s=16.0, c="r", marker="v")
scatter(x_inj, z_inj, c="r", marker=">")
scatter(x_prod, z_prod, c="r", marker="<")
savefig("figures_summary_channel/K_true.pdf", bbox_inches="tight",pad_inches = 0, dpi = 300);
# # init model
# figure()
# K = 20.0 .* ones(m,n)
# imshow(K, extent=[0,n*h,m*h,0]);
# xlabel("Distance (m)")
# ylabel("Depth (m)")
# cb = colorbar()
# clim([20, 120])
# cb.set_label("Permeability (md)")
# shot_inds = collect(1:length(z_src))
# scatter(x_src[shot_inds], z_src[shot_inds], c="w", marker="*")
# scatter(x_rec, z_rec, s=16.0, c="r", marker="v")
# scatter(x_inj, z_inj, c="r", marker=">")
# scatter(x_prod, z_prod, c="r", marker="<")
# savefig("figures_summary/K_init.pdf", bbox_inches="tight",pad_inches = 0, dpi = 300);
m = 45
n = 90
h = 10.0 # meter
dz = 3.0 # meters
dx = 3.0
nz = Int64(round((m * h) / dz)) + 1
nx = Int64(round((n * h) / dx)) + 1
z_src = (collect(5:10:nz-5) .- 1 ) .* dz .+ dz/2.0
x_src = (5-1)ones(Int64, size(z_src)) .* dx .+ dx/2.0
z_rec = (collect(5:1:nz-5) .- 1) .* dz .+ dz/2.0
x_rec = (nx-5-1) .* ones(Int64, size(z_rec)) .*dx .+ dx/2.0
z_inj = (27-1)*h + h/2.0
x_inj = (9-1)*h + h/2.0
z_prod = (27-1)*h + h/2.0
x_prod = (84-1)*h + h/2.0
iter = 100
Prj_names = ["CO2_channel_4590_pgs", "CO2_channel_45_90"]
K_name = "/Stage6/K$iter.txt"
figure()
iPrj = 1
K = readdlm(Prj_names[iPrj] * K_name)
imshow(K, extent=[0,n*h,m*h,0]);
xlabel("Distance (m)")
ylabel("Depth (m)")
cb = colorbar()
clim([20, 120])
cb.set_label("Permeability (md)")
shot_inds = collect(1:length(z_src))
scatter(x_src[shot_inds], z_src[shot_inds], c="w", marker="*")
scatter(x_rec, z_rec, s=16.0, c="r", marker="v")
scatter(x_inj, z_inj, c="r", marker=">")
scatter(x_prod, z_prod, c="r", marker="<")
savefig("figures_summary_channel/K_$(Prj_names[iPrj]).pdf", bbox_inches="tight",pad_inches = 0, dpi = 300);
K_name = "/K$iter.txt"
figure()
iPrj = 2
K = readdlm(Prj_names[iPrj] * K_name)
imshow(K, extent=[0,n*h,m*h,0]);
xlabel("Distance (m)")
ylabel("Depth (m)")
cb = colorbar()
clim([20, 120])
cb.set_label("Permeability (md)")
shot_inds = collect(1:length(z_src))
scatter(x_src[shot_inds], z_src[shot_inds], c="w", marker="*")
scatter(x_rec, z_rec, s=16.0, c="r", marker="v")
scatter(x_inj, z_inj, c="r", marker=">")
scatter(x_prod, z_prod, c="r", marker="<")
savefig("figures_summary_channel/K_$(Prj_names[iPrj]).pdf", bbox_inches="tight",pad_inches = 0, dpi = 300); | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 1236 | using DelimitedFiles
using PyPlot
close("all")
if !isdir("figures_summary")
mkdir("figures_summary")
end
Prj_names = ["CO2", "CO2_1src", "CO2_2surveys", "Brie_3_nocoefupdate", "Brie_tune_coef_true3_start2"]
rc("axes", titlesize=14)
rc("axes", labelsize=14)
rc("xtick", labelsize=14)
rc("ytick", labelsize=14)
rc("legend", fontsize=14)
figure()
L1 = readdlm("$(Prj_names[1])/loss.txt")
l1=semilogy(L1[:,1], L1[:,2]/L1[1,2], label="Baseline")
legend()
L2 = readdlm("$(Prj_names[2])/loss.txt")
l2=semilogy(L2[:,1], L2[:,2]/L2[1,2], label="One source")
legend()
L3 = readdlm("$(Prj_names[3])/loss.txt")
l3=semilogy(L3[:,1], L3[:,2]/L3[1,2], label="Two surveys")
legend()
grid(ls="--")
xlabel("Iteration Number")
ylabel("Normalized misfit")
savefig("figures_summary/loss.pdf", bbox_inches="tight",pad_inches = 0, dpi = 300);
figure()
L4 = readdlm("$(Prj_names[4])/loss.txt")
l4=semilogy(L4[:,1], L4[:,2]/L4[1,2], label="Exact coefficient")
legend()
L5 = readdlm("$(Prj_names[5])/loss.txt")
l5=semilogy(L5[:,1], L5[:,2]/L5[1,2], label="Inexact coefficient")
legend()
grid(ls="--")
xlabel("Iteration Number")
ylabel("Normalized misfit")
savefig("figures_summary/loss_brie.pdf", bbox_inches="tight",pad_inches = 0, dpi = 300); | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 92 | using PyPlot
include("args.jl")
Sw = constant(collect(0:0.001:1))
lambda_brie_3 = Brie(Sw) | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 6344 | include("args.jl")
function sw_p_to_lambda_den(sw, p)
sw = tf.reshape(sw, (1, m, n, 1))
p = tf.reshape(p, (1, m, n, 1))
sw = tf.image.resize_bilinear(sw, (nz, nx))
p = tf.image.resize_bilinear(p, (nz, nx))
sw = cast(sw, Float64)
p = cast(p, Float64)
sw = squeeze(sw)
p = squeeze(p)
# tran_lambda, tran_den = Gassman(sw)
# tran_lambda, tran_den = RockLinear(sw) # test linear relationship
tran_lambda, tran_den = Patchy(sw)
return tran_lambda, tran_den
end
if !isdir("figures_summary_channel")
mkdir("figures_summary_channel")
end
K = 20.0 .* ones(m,n) # millidarcy
ix = 1:n
y1 = 45. .+ 10. .* sin.(ix./120.0 .* 2.0 .* pi)
y2 = 55. .+ 10. .* sin.(ix./120.0 .* 2.0 .* pi)
for j = 1:n
for i = 1:m
if (i > y1[j] && i < y2[j])
K[i, j] = 120;
end
end
end
tfCtxTrue = tfCtxGen(m,n,h,NT,Δt,Z,X,ρw,ρo,μw,μo,K,g,ϕ,qw,qo, sw0, true)
out_sw_true, out_p_true = imseq(tfCtxTrue)
lambdas = Array{PyObject}(undef, n_survey)
dens = Array{PyObject}(undef, n_survey)
for i = 1:n_survey
sw = out_sw_true[survey_indices[i]]
p = out_p_true[survey_indices[i]]
lambdas[i], dens[i] = sw_p_to_lambda_den(sw, p)
end
sess = Session();init(sess);
vps = Array{PyObject}(undef, n_survey)
for i=1:n_survey
vps[i] = sqrt((lambdas[i] + 2.0 * tf_shear_sat1[i])/dens[i])
end
V = run(sess, vps);
S = run(sess, out_sw_true);
P = run(sess, out_p_true);
z_inj = (54-1)*h + h/2.0
x_inj = (18-1)*h + h/2.0
z_prod = (54-1)*h + h/2.0
x_prod = (168-1)*h + h/2.0
rc("axes", titlesize=30)
rc("axes", labelsize=30)
rc("xtick", labelsize=28)
rc("ytick", labelsize=28)
rc("legend", fontsize=30)
fig1,axs = subplots(3,3, figsize=[30,15], sharex=true, sharey=true)
ims = Array{Any}(undef, 9)
for iPrj = 1:3
for jPrj = 1:3
ims[(iPrj-1)*3+jPrj] = axs[iPrj,jPrj].imshow(V[(iPrj-1)*3+jPrj], extent=[0,n*h,m*h,0], vmin=3350, vmax=3500);
axs[iPrj,jPrj].title.set_text("Snapshot $((iPrj-1)*3+jPrj)")
if jPrj == 1 || jPrj == 1
axs[iPrj,jPrj].set_ylabel("Depth (m)")
end
if iPrj == 3 || iPrj == 3
axs[iPrj,jPrj].set_xlabel("Distance (m)")
end
# cb = fig1.colorbar(ims[(iPrj-1)*3+jPrj], ax=axs[iPrj,jPrj])
# cb.set_label("Vp")
axs[iPrj,jPrj].scatter(x_inj, z_inj, c="r", marker=">", s=128)
axs[iPrj,jPrj].scatter(x_prod, z_prod, c="r", marker="<", s=128)
end
end
fig1.subplots_adjust(wspace=0.02, hspace=0.18)
cbar_ax = fig1.add_axes([0.91, 0.08, 0.01, 0.82])
cb1 = fig1.colorbar(ims[1], cax=cbar_ax)
cb1.set_label("Vp (m/s)")
savefig("figures_summary_channel/Vp_evo_patchy_true.pdf",bbox_inches="tight",pad_inches = 0);
fig2,axs = subplots(3,3, figsize=[30,15], sharex=true, sharey=true)
ims = Array{Any}(undef, 9)
for iPrj = 1:3
for jPrj = 1:3
ims[(iPrj-1)*3+jPrj] = axs[iPrj,jPrj].imshow(S[survey_indices[(iPrj-1)*3+jPrj], :, :], extent=[0,n*h,m*h,0], vmin=0.0, vmax=0.6);
axs[iPrj,jPrj].title.set_text("Snapshot $((iPrj-1)*3+jPrj)")
if jPrj == 1 || jPrj == 1
axs[iPrj,jPrj].set_ylabel("Depth (m)")
end
if iPrj == 3 || iPrj == 3
axs[iPrj,jPrj].set_xlabel("Distance (m)")
end
# if iPrj ==2 && jPrj == 3
# cb = fig2.colorbar(ims[(iPrj-1)*3+jPrj], ax=axs[iPrj,jPrj])
# cb.set_label("Saturation")
axs[iPrj,jPrj].scatter(x_inj, z_inj, c="r", marker=">", s=128)
axs[iPrj,jPrj].scatter(x_prod, z_prod, c="r", marker="<", s=128)
end
end
# fig2.subplots_adjust(wspace=0.04, hspace=0.042)
fig2.subplots_adjust(wspace=0.02, hspace=0.18)
cbar_ax = fig2.add_axes([0.91, 0.08, 0.01, 0.82])
cb2 = fig2.colorbar(ims[1], cax=cbar_ax)
cb2.set_label("Saturation")
savefig("figures_summary_channel/Saturation_evo_patchy_true.pdf",bbox_inches="tight",pad_inches = 0);
fig3,axs = subplots(3,3, figsize=[30,15], sharex=true, sharey=true)
ims = Array{Any}(undef, 9)
for iPrj = 1:3
for jPrj = 1:3
ims[(iPrj-1)*3+jPrj] = axs[iPrj,jPrj].imshow(P[survey_indices[(iPrj-1)*3+jPrj], :, :]*1.4504e-04, extent=[0,n*h,m*h,0], vmin=-2500.0, vmax=500);
axs[iPrj,jPrj].title.set_text("Snapshot $((iPrj-1)*3+jPrj)")
if jPrj == 1 || jPrj == 1
axs[iPrj,jPrj].set_ylabel("Depth (m)")
end
if iPrj == 3 || iPrj == 3
axs[iPrj,jPrj].set_xlabel("Distance (m)")
end
# if iPrj ==2 && jPrj == 3
# cb = fig2.colorbar(ims[(iPrj-1)*3+jPrj], ax=axs[iPrj,jPrj])
# cb.set_label("Saturation")
axs[iPrj,jPrj].scatter(x_inj, z_inj, c="r", marker=">", s=128)
axs[iPrj,jPrj].scatter(x_prod, z_prod, c="r", marker="<", s=128)
end
end
# fig2.subplots_adjust(wspace=0.04, hspace=0.042)
fig3.subplots_adjust(wspace=0.02, hspace=0.18)
cbar_ax = fig3.add_axes([0.91, 0.08, 0.01, 0.82])
cb3 = fig3.colorbar(ims[1], cax=cbar_ax)
cb3.set_label("Potential (psi)")
savefig("figures_summary_channel/Potential_evo_patchy_true.pdf",bbox_inches="tight",pad_inches = 0);
# iter = 100
# Prj_names = ["CO2", "CO2_1src", "CO2_2surveys", "CO2_6surveys"]
# K_name = "/K$iter.txt"
# fig,axs = subplots(2,2, figsize=[18,8], sharex=true, sharey=true)
# for iPrj = 1:2
# for jPrj = 1:2
# # println(ax)
# A = readdlm(Prj_names[(iPrj-1)*2 + jPrj] * K_name)
# im = axs[iPrj,jPrj].imshow(A, extent=[0,n*h,m*h,0]);
# if jPrj == 1 || jPrj == 1
# axs[iPrj,jPrj].set_ylabel("Depth (m)")
# end
# if iPrj == 2 || iPrj == 2
# axs[iPrj,jPrj].set_xlabel("Distance (m)")
# end
# axs[iPrj,jPrj].text(-0.1,1.1,string("(" * Char((iPrj-1)*2 + jPrj+'a'-1) * ")"),transform=axs[iPrj,jPrj].transAxes,size=12,weight="bold")
# end
# end
# fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.9,
# wspace=0.1, hspace=0.2)
# cb_ax = fig.add_axes([0.93, 0.1, 0.02, 0.8])
# cbar = fig.colorbar(im, cax=cb_ax)
# cb = fig.colorbar()
# clim([20, 120])
# cb.set_label("Permeability (md)")
# fig = figure()
# ax = fig.add_subplot(111) # The big subplot
# ax1 = fig.add_subplot(211)
# ax2 = fig.add_subplot(212)
# # Turn off axis lines and ticks of the big subplot
# ax.spines["top"].set_color("none")
# ax.spines["bottom"].set_color("none")
# ax.spines["left"].set_color("none")
# ax.spines["right"].set_color("none")
# ax.tick_params(labelcolor="w", top="off", bottom="off", left="off", right="off")
# # Set common labels
# ax.set_xlabel("common xlabel")
# ax.set_ylabel("common ylabel")
# ax1.set_title('ax1 title')
# ax2.set_title('ax2 title') | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 2446 | using PyTensorFlow
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
if Sys.islinux()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('../Ops/Poisson/build/libPoissonOp.so')
@tf.custom_gradient
def poisson_op(coef,g,h,rhograv,index):
p = libPoissonOp.poisson_op(coef,g,h,rhograv,index)
def grad(dy):
return libPoissonOp.poisson_op_grad(dy, p, coef, g, h, rhograv, index)
return p, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('../Ops/Poisson/build/libPoissonOp.dylib')
@tf.custom_gradient
def poisson_op(coef,g,h,rhograv,index):
p = libPoissonOp.poisson_op(coef,g,h,rhograv,index)
def grad(dy):
return libPoissonOp.poisson_op_grad(dy, p, coef, g, h, rhograv, index)
return p, grad
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('../Ops/Poisson/build/libPoissonOp.dll')
@tf.custom_gradient
def poisson_op(coef,g,h,rhograv,index):
p = libPoissonOp.poisson_op(coef,g,h,rhograv,index)
def grad(dy):
return libPoissonOp.poisson_op_grad(dy, p, coef, g, h, rhograv, index)
return p, grad
"""
end
poisson_op = py"poisson_op"
if Sys.islinux()
py"""
import tensorflow as tf
libUpwpsOp = tf.load_op_library('../Ops/Upwps/build/libUpwpsOp.so')
@tf.custom_gradient
def upwps_op(permi,mobi,src,funcref,h,rhograv,index):
pres = libUpwpsOp.upwps_op(permi,mobi,src,funcref,h,rhograv,index)
def grad(dy):
return libUpwpsOp.upwps_op_grad(dy, pres, permi,mobi,src,funcref,h,rhograv,index)
return pres, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libUpwpsOp = tf.load_op_library('../Ops/Upwps/build/libUpwpsOp.dylib')
@tf.custom_gradient
def upwps_op(permi,mobi,src,funcref,h,rhograv,index):
pres = libUpwpsOp.upwps_op(permi,mobi,src,funcref,h,rhograv,index)
def grad(dy):
return libUpwpsOp.upwps_op_grad(dy, pres, permi,mobi,src,funcref,h,rhograv,index)
return pres, grad
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libUpwpsOp = tf.load_op_library('../Ops/Upwps/build/libUpwpsOp.dll')
@tf.custom_gradient
def upwps_op(permi,mobi,src,funcref,h,rhograv,index):
pres = libUpwpsOp.upwps_op(permi,mobi,src,funcref,h,rhograv,index)
def grad(dy):
return libUpwpsOp.upwps_op_grad(dy, pres, permi,mobi,src,funcref,h,rhograv,index)
return pres, grad
"""
end
upwps_op = py"upwps_op"
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 6175 | include("args.jl")
using DelimitedFiles
function sw_p_to_lambda_den(sw, p)
sw = tf.reshape(sw, (1, m, n, 1))
p = tf.reshape(p, (1, m, n, 1))
sw = tf.image.resize_bilinear(sw, (nz, nx))
p = tf.image.resize_bilinear(p, (nz, nx))
sw = cast(sw, Float64)
p = cast(p, Float64)
sw = squeeze(sw)
p = squeeze(p)
# tran_lambda, tran_den = Gassman(sw)
# tran_lambda, tran_den = RockLinear(sw) # test linear relationship
tran_lambda, tran_den = Patchy(sw)
return tran_lambda, tran_den
end
if !isdir("figures_summary")
mkdir("figures_summary")
end
iter = 100
Prj_names = "Brie_true3_set2_noupdate";
K_name = "/K$iter.txt"
K = readdlm(Prj_names*K_name)
tfCtxTrue = tfCtxGen(m,n,h,NT,Δt,Z,X,ρw,ρo,μw,μo,K,g,ϕ,qw,qo, sw0, true)
out_sw_true, out_p_true = imseq(tfCtxTrue)
lambdas = Array{PyObject}(undef, n_survey)
dens = Array{PyObject}(undef, n_survey)
for i = 1:n_survey
sw = out_sw_true[survey_indices[i]]
p = out_p_true[survey_indices[i]]
lambdas[i], dens[i] = sw_p_to_lambda_den(sw, p)
end
sess = Session();init(sess);
vps = Array{PyObject}(undef, n_survey)
for i=1:n_survey
vps[i] = sqrt((lambdas[i] + 2.0 * tf_shear_sat1[i])/dens[i])
end
V = run(sess, vps);
S = run(sess, out_sw_true);
P = run(sess, out_p_true);
z_inj = (9-1)*h + h/2.0
x_inj = (3-1)*h + h/2.0
z_prod = (9-1)*h + h/2.0
x_prod = (28-1)*h + h/2.0
rc("axes", titlesize=30)
rc("axes", labelsize=30)
rc("xtick", labelsize=28)
rc("ytick", labelsize=28)
rc("legend", fontsize=30)
fig1,axs = subplots(3,3, figsize=[30,15], sharex=true, sharey=true)
ims = Array{Any}(undef, 9)
for iPrj = 1:3
for jPrj = 1:3
ims[(iPrj-1)*3+jPrj] = axs[iPrj,jPrj].imshow(V[(iPrj-1)*3+jPrj], extent=[0,n*h,m*h,0], vmin=3350, vmax=3500);
axs[iPrj,jPrj].title.set_text("Snapshot $((iPrj-1)*3+jPrj)")
if jPrj == 1 || jPrj == 1
axs[iPrj,jPrj].set_ylabel("Depth (m)")
end
if iPrj == 3 || iPrj == 3
axs[iPrj,jPrj].set_xlabel("Distance (m)")
end
# cb = fig1.colorbar(ims[(iPrj-1)*3+jPrj], ax=axs[iPrj,jPrj])
# cb.set_label("Vp")
axs[iPrj,jPrj].scatter(x_inj, z_inj, c="r", marker=">")
axs[iPrj,jPrj].scatter(x_prod, z_prod, c="r", marker="<")
end
end
fig1.subplots_adjust(wspace=0.02, hspace=0.18)
cbar_ax = fig1.add_axes([0.91, 0.08, 0.01, 0.82])
cb1 = fig1.colorbar(ims[1], cax=cbar_ax)
cb1.set_label("Vp (m/s)")
savefig("figures_summary/predicted_Vp_evo.pdf",bbox_inches="tight",pad_inches = 0);
fig2,axs = subplots(3,3, figsize=[30,15], sharex=true, sharey=true)
ims = Array{Any}(undef, 9)
for iPrj = 1:3
for jPrj = 1:3
ims[(iPrj-1)*3+jPrj] = axs[iPrj,jPrj].imshow(S[survey_indices[(iPrj-1)*3+jPrj], :, :], extent=[0,n*h,m*h,0], vmin=0.0, vmax=0.6);
axs[iPrj,jPrj].title.set_text("Snapshot $((iPrj-1)*3+jPrj)")
if jPrj == 1 || jPrj == 1
axs[iPrj,jPrj].set_ylabel("Depth (m)")
end
if iPrj == 3 || iPrj == 3
axs[iPrj,jPrj].set_xlabel("Distance (m)")
end
# if iPrj ==2 && jPrj == 3
# cb = fig2.colorbar(ims[(iPrj-1)*3+jPrj], ax=axs[iPrj,jPrj])
# cb.set_label("Saturation")
axs[iPrj,jPrj].scatter(x_inj, z_inj, c="r", marker=">")
axs[iPrj,jPrj].scatter(x_prod, z_prod, c="r", marker="<")
end
end
# fig2.subplots_adjust(wspace=0.04, hspace=0.042)
fig2.subplots_adjust(wspace=0.02, hspace=0.18)
cbar_ax = fig2.add_axes([0.91, 0.08, 0.01, 0.82])
cb2 = fig2.colorbar(ims[1], cax=cbar_ax)
cb2.set_label("Saturation")
savefig("figures_summary/predicted_Saturation_evo.pdf",bbox_inches="tight",pad_inches = 0);
# fig3,axs = subplots(3,3, figsize=[30,15], sharex=true, sharey=true)
# ims = Array{Any}(undef, 9)
# for iPrj = 1:3
# for jPrj = 1:3
# ims[(iPrj-1)*3+jPrj] = axs[iPrj,jPrj].imshow(P[survey_indices[(iPrj-1)*3+jPrj], :, :]*1.4504e-04, extent=[0,n*h,m*h,0], vmin=-2500.0, vmax=500);
# axs[iPrj,jPrj].title.set_text("Snapshot $((iPrj-1)*3+jPrj)")
# if jPrj == 1 || jPrj == 1
# axs[iPrj,jPrj].set_ylabel("Depth (m)")
# end
# if iPrj == 3 || iPrj == 3
# axs[iPrj,jPrj].set_xlabel("Distance (m)")
# end
# # if iPrj ==2 && jPrj == 3
# # cb = fig2.colorbar(ims[(iPrj-1)*3+jPrj], ax=axs[iPrj,jPrj])
# # cb.set_label("Saturation")
# axs[iPrj,jPrj].scatter(x_inj, z_inj, c="r", marker=">")
# axs[iPrj,jPrj].scatter(x_prod, z_prod, c="r", marker="<")
# end
# end
# # fig2.subplots_adjust(wspace=0.04, hspace=0.042)
# fig3.subplots_adjust(wspace=0.02, hspace=0.18)
# cbar_ax = fig3.add_axes([0.91, 0.08, 0.01, 0.82])
# cb3 = fig3.colorbar(ims[1], cax=cbar_ax)
# cb3.set_label("Potential (psi)")
# savefig("figures_summary/Potential_evo_patchy_true.pdf",bbox_inches="tight",pad_inches = 0);
# iter = 100
# Prj_names = ["CO2", "CO2_1src", "CO2_2surveys", "CO2_6surveys"]
# K_name = "/K$iter.txt"
# fig,axs = subplots(2,2, figsize=[18,8], sharex=true, sharey=true)
# for iPrj = 1:2
# for jPrj = 1:2
# # println(ax)
# A = readdlm(Prj_names[(iPrj-1)*2 + jPrj] * K_name)
# im = axs[iPrj,jPrj].imshow(A, extent=[0,n*h,m*h,0]);
# if jPrj == 1 || jPrj == 1
# axs[iPrj,jPrj].set_ylabel("Depth (m)")
# end
# if iPrj == 2 || iPrj == 2
# axs[iPrj,jPrj].set_xlabel("Distance (m)")
# end
# axs[iPrj,jPrj].text(-0.1,1.1,string("(" * Char((iPrj-1)*2 + jPrj+'a'-1) * ")"),transform=axs[iPrj,jPrj].transAxes,size=12,weight="bold")
# end
# end
# fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.9,
# wspace=0.1, hspace=0.2)
# cb_ax = fig.add_axes([0.93, 0.1, 0.02, 0.8])
# cbar = fig.colorbar(im, cax=cb_ax)
# cb = fig.colorbar()
# clim([20, 120])
# cb.set_label("Permeability (md)")
# fig = figure()
# ax = fig.add_subplot(111) # The big subplot
# ax1 = fig.add_subplot(211)
# ax2 = fig.add_subplot(212)
# # Turn off axis lines and ticks of the big subplot
# ax.spines["top"].set_color("none")
# ax.spines["bottom"].set_color("none")
# ax.spines["left"].set_color("none")
# ax.spines["right"].set_color("none")
# ax.tick_params(labelcolor="w", top="off", bottom="off", left="off", right="off")
# # Set common labels
# ax.set_xlabel("common xlabel")
# ax.set_ylabel("common ylabel")
# ax1.set_title('ax1 title')
# ax2.set_title('ax2 title') | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 1299 | using PyTensorFlow
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
if Sys.islinux()
py"""
import tensorflow as tf
libSatOp = tf.load_op_library('../Ops/Saturation/build/libSatOp.so')
@tf.custom_gradient
def sat_op(s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h):
sat = libSatOp.sat_op(s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h)
def grad(dy):
return libSatOp.sat_op_grad(dy, sat, s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h)
return sat, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libSatOp = tf.load_op_library('../Ops/Saturation/build/libSatOp.dylib')
@tf.custom_gradient
def sat_op(s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h):
sat = libSatOp.sat_op(s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h)
def grad(dy):
return libSatOp.sat_op_grad(dy, sat, s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h)
return sat, grad
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libSatOp = tf.load_op_library('../Ops/Saturation/build/libSatOp.dll')
@tf.custom_gradient
def sat_op(s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h):
sat = libSatOp.sat_op(s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h)
def grad(dy):
return libSatOp.sat_op_grad(dy, sat, s0,pt,permi,poro,qw,qo,muw,muo,sref,dt,h)
return sat, grad
"""
end
sat_op = py"sat_op" | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 6362 | using ArgParse
function parse_commandline()
s = ArgParseSettings()
@add_arg_table s begin
"--generate_data"
arg_type = Bool
default = false
"--version"
arg_type = String
default = "0000"
"--verbose"
arg_type = Bool
default = false
end
return parse_args(s)
end
args = parse_commandline()
if !isdir("./$(args["version"])")
mkdir("./$(args["version"])")
end
using PyTensorFlow
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
include("ops_imseq.jl")
include("../Ops/FWI/fwi_util.jl")
include("fwi_util_op.jl")
np = pyimport("numpy")
# NOTE Parameters
# const ALPHA = 0.006323996017182
# const SRC_CONST = 5.6146
# const GRAV_CONST = 1.0/144.0
const ALPHA = 1.0
const SRC_CONST = 86400.0
const GRAV_CONST = 1.0
# NOTE Hyperparameter for flow simulation
m = 15
n = 30
h = 30.0 # meter
NT = 50
dt_survey = 5
Δt = 20.0 # day
z = (1:m)*h|>collect
x = (1:n)*h|>collect
X, Z = np.meshgrid(x, z)
# ρw = 996.9571
# ρo = 640.7385
# μw = 1.0
# μo = 3.0
ρw = 501.9
ρo = 1053.0
μw = 0.1
μo = 1.0
K_init = 20.0 .* ones(m,n)
g = 9.8*GRAV_CONST
ϕ = 0.25 .* ones(m,n)
qw = zeros(NT, m, n)
qw[:,9,3] .= 0.005 * (1/h^2)/10.0 * SRC_CONST
qo = zeros(NT, m, n)
qo[:,9,28] .= -0.005 * (1/h^2)/10.0 * SRC_CONST
sw0 = zeros(m, n)
survey_indices = collect(1:dt_survey:NT+1) # 10 stages
n_survey = length(survey_indices)
# NOTE Hyperparameter for fwi_op
# argsparse.jl
# ENV["CUDA_VISIBLE_DEVICES"] = 1
# ENV["PARAMDIR"] = "Src/params/"
# config = tf.ConfigProto(device_count = Dict("GPU"=>0))
dz = 3 # meters
dx = 3
nz = Int64(round((m * h) / dz)) + 1
nx = Int64(round((n * h) / dx)) + 1
nPml = 64
nSteps = 3001
dt = 0.00025
f0 = 50.0
nPad = 32 - mod((nz+2*nPml), 32)
nz_pad = nz + 2*nPml + nPad
nx_pad = nx + 2*nPml
# reflection
# x_src = collect(5:20:nx-5)
# z_src = 5ones(Int64, size(x_src))
# x_rec = collect(5:1:nx-5)
# z_rec = 5 .* ones(Int64, size(x_rec))
# xwell
# # z_src = collect(5:10:nz-5) #14->11srcs 10->15srcs
# # z_src = collect(5:10:nz-5)
z_src = collect(5:10:nz-5)
x_src = 5ones(Int64, size(z_src))
z_rec = collect(5:1:nz-5)
x_rec = (nx-5) .* ones(Int64, size(z_rec))
# para_fname = "./$(args["version"])/para_file.json"
# survey_fname = "./$(args["version"])/survey_file.json"
# data_dir_name = "./$(args["version"])/Data"
# paraGen(nz, nx, dz, dx, nSteps, dt, f0, nPml, nPad, filter_para, isAc, para_fname, survey_fname, data_dir_name)
# surveyGen(z_src, x_src, z_rec, x_rec, survey_fname)
cp_nopad = 3500.0 .* ones(nz, nx) # initial cp
cs = cp_nopad ./ sqrt(3.0)
den = 2200.0 .* ones(nz, nx)
cp_pad = 3500.0 .* ones(nz_pad, nx_pad) # initial cp
cs_pad = cp_pad ./ sqrt(3.0)
den_pad = 2200.0 .* ones(nz_pad, nx_pad)
cp_pad_value = 3500.0
# tf_cp = constant(cp)
tf_cs = constant(cs_pad)
tf_den = constant(den_pad)
# src = Matrix{Float64}(undef, 1, 2001)
# # src[1,:] = Float64.(reinterpret(Float32, read("../Ops/FWI/Src/params/ricker_10Hz.bin")))
# src[1,:] = Float64.(reinterpret(Float32, read("../Ops/FWI/Src/params/Mar_source_2001.bin")))
src = sourceGene(f0, nSteps, dt)
tf_stf = constant(repeat(src, outer=length(z_src)))
# tf_para_fname = tf.strings.join([para_fname])
tf_gpu_id0 = constant(0, dtype=Int32)
tf_gpu_id1 = constant(1, dtype=Int32)
nGpus = 1
# tf_gpu_id_array = constant(collect(0:nGpus-1), dtype=Int32)
tf_gpu_id_array = constant([0], dtype=Int32)
tf_shot_ids0 = constant(collect(Int32, 0:length(x_src)-1), dtype=Int32)
tf_shot_ids1 = constant(collect(Int32, 13:25), dtype=Int32)
# NOTE Hyperparameter for rock physics
tf_bulk_fl1 = constant(2.735e9)
tf_bulk_fl2 = constant(0.125e9) # to displace fl1
tf_bulk_sat1 = constant(den .* (cp_nopad.^2 .- 4.0/3.0 .* cp_nopad.^2 ./3.0)) # vp/vs ratio as sqrt(3)
tf_bulk_min = constant(36.6e9)
tf_shear_sat1 = constant(den .* cp_nopad.^2 ./3.0)
tf_ϕ_pad = tf.image.resize_bilinear(tf.reshape(constant(ϕ), (1, m, n, 1)), (nz, nx)) # upsample the porosity
tf_ϕ_pad = cast(tf_ϕ_pad, Float64)
tf_ϕ_pad = squeeze(tf_ϕ_pad)
tf_shear_pad = tf.pad(tf_shear_sat1, [nPml (nPml+nPad); nPml nPml],
constant_values=den[1,1] * cp_nopad[1,1]^2 /3.0) / 1e6
function Gassman(sw)
tf_bulk_fl_mix = 1.0/( (1-sw)/tf_bulk_fl1 + sw/tf_bulk_fl2 )
temp = tf_bulk_sat1/(tf_bulk_min - tf_bulk_sat1) - tf_bulk_fl1/tf_ϕ_pad /(tf_bulk_min - tf_bulk_fl1) + tf_bulk_fl_mix/tf_ϕ_pad /(tf_bulk_min - tf_bulk_fl_mix)
tf_bulk_new = tf_bulk_min / (1.0/temp + 1.0)
# tf_den_new = constant(den) + tf_ϕ_pad .* sw * (ρw - ρo) *16.018463373960138;
tf_den_new = constant(den) + tf_ϕ_pad .* sw * (ρw - ρo)
# tf_cp_new = sqrt((tf_bulk_new + 4.0/3.0 * tf_shear_sat1)/tf_den_new)
tf_lambda_new = tf_bulk_new - 2.0/3.0 * tf_shear_sat1
return tf_lambda_new, tf_den_new
end
tf_brie_coef = Variable(2.0*30.0)
# tf_brie_coef = constant(3.0)
# tf_brie_coef = constant(2.0)
function Brie(sw)
tf_bulk_fl_mix = (tf_bulk_fl1-tf_bulk_fl2)*(1-sw)^(tf_brie_coef/30.0) + tf_bulk_fl2
temp = tf_bulk_sat1/(tf_bulk_min - tf_bulk_sat1) - tf_bulk_fl1/tf_ϕ_pad /(tf_bulk_min - tf_bulk_fl1) + tf_bulk_fl_mix/tf_ϕ_pad /(tf_bulk_min - tf_bulk_fl_mix)
tf_bulk_new = tf_bulk_min / (1.0/temp + 1.0)
# tf_den_new = constant(den) + tf_ϕ_pad .* sw * (ρw - ρo) *16.018463373960138;
tf_den_new = constant(den) + tf_ϕ_pad .* sw * (ρw - ρo)
# tf_cp_new = sqrt((tf_bulk_new + 4.0/3.0 * tf_shear_sat1)/tf_den_new)
tf_lambda_new = tf_bulk_new - 2.0/3.0 * tf_shear_sat1
return tf_lambda_new, tf_den_new
end
function RockLinear(sw)
# tf_lambda_new = constant(7500.0*1e6 .* ones(nz,nx)) + (17400.0-7500.0)*1e6 * sw
tf_lambda_new = constant(7500.0*1e6 .* ones(nz,nx)) + (9200.0-7500.0)*1e6 * sw
tf_den_new = constant(den) + tf_ϕ_pad .* sw * (ρw - ρo)
return tf_lambda_new, tf_den_new
end
tf_patch_temp = tf_bulk_sat1/(tf_bulk_min - tf_bulk_sat1) -
tf_bulk_fl1/tf_ϕ_pad /(tf_bulk_min - tf_bulk_fl1) +
tf_bulk_fl2/tf_ϕ_pad /(tf_bulk_min - tf_bulk_fl2)
tf_bulk_sat2 = tf_bulk_min/(1.0/tf_patch_temp + 1.0)
function Patchy(sw)
tf_bulk_new = 1/( (1-sw)/(tf_bulk_sat1+4.0/3.0*tf_shear_sat1)
+ sw/(tf_bulk_sat2+4.0/3.0*tf_shear_sat1) ) - 4.0/3.0*tf_shear_sat1
tf_lambda_new = tf_bulk_new - 2.0/3.0 * tf_shear_sat1
tf_den_new = constant(den) + tf_ϕ_pad .* sw * (ρw - ρo)
return tf_lambda_new, tf_den_new
end
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 2036 |
if Sys.islinux()
py"""
import tensorflow as tf
import socket
if socket.gethostname() != "Dolores":
libFwiOp = tf.load_op_library('../Ops/FWI/build/libFwiOp.so')
else:
libFwiOp = tf.load_op_library('../Ops/FWI/build_dolores/libFwiOp.so')
@tf.custom_gradient
def fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
def grad(dy):
return libFwiOp.fwi_op_grad(dy, tf.constant(1.0,dtype=tf.float64),λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit, grad
def fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libFwiOp = tf.load_op_library('../Ops/FWI/build/libFwiOp.so')
@tf.custom_gradient
def fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
def grad(dy):
return libFwiOp.fwi_op_grad(dy, tf.constant(1.0,dtype=tf.float64),λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit, grad
def fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libFwiOp = tf.load_op_library('../Ops/FWI/build/libFwiOp.so')
@tf.custom_gradient
def fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
def grad(dy):
return libFwiOp.fwi_op_grad(dy, tf.constant(1.0,dtype=tf.float64),λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit, grad
def fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname):
misfit = libFwiOp.fwi_obs_op(λ,μ,ρ,stf,gpu_id,shot_ids,para_fname)
return misfit
"""
end
fwi_op = py"fwi_op"
fwi_obs_op = py"fwi_obs_op" | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 2301 | using PyTensorFlow
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
if Sys.islinux()
py"""
import tensorflow as tf
libLaplacian = tf.load_op_library('../Ops/Laplacian/build/libLaplacian.so')
@tf.custom_gradient
def laplacian_op(coef,func,h,rhograv):
p = libLaplacian.laplacian(coef,func,h,rhograv)
def grad(dy):
return libLaplacian.laplacian_grad(dy, coef, func, h, rhograv)
return p, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('../Ops/Laplacian/build/libLaplacian.dylib')
@tf.custom_gradient
def laplacian_op(coef,func,h,rhograv):
p = libLaplacian.laplacian(coef,func,h,rhograv)
def grad(dy):
return libLaplacian.laplacian_grad(dy, coef, func, h, rhograv)
return p, grad
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('../Ops/Laplacian/build/libLaplacian.dll')
@tf.custom_gradient
def laplacian_op(coef,func,h,rhograv):
p = libLaplacian.laplacian(coef,func,h,rhograv)
def grad(dy):
return libLaplacian.laplacian_grad(dy, coef, func, h, rhograv)
return p, grad
"""
end
laplacian_op = py"laplacian_op"
if Sys.islinux()
py"""
import tensorflow as tf
libUpwlapOp = tf.load_op_library('../Ops/Upwlap/build/libUpwlapOp.so')
@tf.custom_gradient
def upwlap_op(perm,mobi,func,h,rhograv):
out = libUpwlapOp.upwlap_op(perm,mobi,func,h,rhograv)
def grad(dy):
return libUpwlapOp.upwlap_op_grad(dy, out, perm,mobi,func,h,rhograv)
return out, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libUpwlapOp = tf.load_op_library('../Ops/Upwlap/build/libUpwlapOp.dylib')
@tf.custom_gradient
def upwlap_op(perm,mobi,func,h,rhograv):
out = libUpwlapOp.upwlap_op(perm,mobi,func,h,rhograv)
def grad(dy):
return libUpwlapOp.upwlap_op_grad(dy, out, perm,mobi,func,h,rhograv)
return out, grad
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libUpwlapOp = tf.load_op_library('./Ops/Upwlap/build/libUpwlapOp.dll')
@tf.custom_gradient
def upwlap_op(perm,mobi,func,h,rhograv):
out = libUpwlapOp.upwlap_op(perm,mobi,func,h,rhograv)
def grad(dy):
return libUpwlapOp.upwlap_op_grad(dy, out, perm,mobi,func,h,rhograv)
return out, grad
"""
end
upwlap_op = py"upwlap_op" | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 5967 | #=
Main program for FWI
=#
using ArgParse
function parse_commandline()
s = ArgParseSettings()
@add_arg_table s begin
"--generate_data"
arg_type = Bool
default = false
"--version"
arg_type = String
default = "0000"
"--verbose"
arg_type = Bool
default = false
end
return parse_args(s)
end
args = parse_commandline()
if !isdir("./$(args["version"])")
mkdir("./$(args["version"])")
end
using PyTensorFlow
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
include("ops_imseq.jl")
include("../Ops/FWI/fwi_util.jl")
include("fwi_util_op.jl")
np = pyimport("numpy")
nz = 134
nx = 384
dz = 24. # meters
dx = 24.
nSteps = 2001
dt = 0.0025
f0 = 4.5
filter_para = [0, 0.1, 100.0, 200.0]
isAc = true
nPml = 32
nPad = 32 - mod((nz+2*nPml), 32)
nz_pad = nz + 2*nPml + nPad
nx_pad = nx + 2*nPml
# reflection
x_src = collect(4:8:384)
z_src = 2ones(Int64, size(x_src))
x_rec = collect(3:381)
z_rec = 2ones(Int64, size(x_rec))
# xwell
# z_src = collect(5:10:nz-5) #14->11srcs 10->15srcs
# x_src = 5ones(Int64, size(z_src))
# z_rec = collect(5:1:nz-5)
# x_rec = (nx-5) .* ones(Int64, size(z_rec))
para_fname = "./$(args["version"])/para_file.json"
survey_fname = "./$(args["version"])/survey_file.json"
data_dir_name = "./$(args["version"])/Data"
paraGen(nz_pad, nx_pad, dz, dx, nSteps, dt, f0, nPml, nPad, filter_para, isAc, para_fname, survey_fname, data_dir_name)
surveyGen(z_src, x_src, z_rec, x_rec, survey_fname)
tf_cp = constant(reshape(reinterpret(Float32,read("Mar_models/Model_Cp_true.bin")),(nz_pad, nx_pad)), dtype=Float64)
cs = zeros(nz_pad, nx_pad)
den = 1000.0 .* ones(nz_pad, nx_pad)
cp_pad_value = 3000.0
# tf_cp = constant(cp)
tf_cs = constant(cs)
tf_den = constant(den)
src = Matrix{Float64}(undef, 1, 2001)
# # src[1,:] = Float64.(reinterpret(Float32, read("../Ops/FWI/Src/params/ricker_10Hz.bin")))
src[1,:] = Float64.(reinterpret(Float32, read("../Ops/FWI/Src/params/Mar_source_2001.bin")))
# src = sourceGene(f0, nSteps, dt)
tf_stf = constant(repeat(src, outer=length(z_src)))
# tf_para_fname = tf.strings.join([para_fname])
tf_gpu_id0 = constant(0, dtype=Int32)
tf_gpu_id1 = constant(1, dtype=Int32)
nGpus = 2
tf_gpu_id_array = constant(collect(0:nGpus-1), dtype=Int32)
tf_shot_ids0 = constant(collect(Int32, 0:length(x_src)-1), dtype=Int32)
shot_id_points = Int32.(trunc.(collect(LinRange(0, length(z_src)-1, nGpus+1))))
function pad_cp(cp)
tran_cp = cast(cp, Float64)
return tf.pad(tran_cp, [nPml (nPml+nPad); nPml nPml], constant_values=3000.0)
end
# NOTE Generate Data
if args["generate_data"]
println("Generate Test Data...")
if !isdir("./$(args["version"])/Data")
mkdir("./$(args["version"])/Data")
end
res = fwi_obs_op(tf_cp, tf_cs, tf_den, tf_stf, tf_gpu_id0, tf_shot_ids0, para_fname)
config = tf.ConfigProto()
config.intra_op_parallelism_threads = 24
config.inter_op_parallelism_threads = 24
sess = Session(config=config); init(sess);
run(sess, res)
error("Generate Data: Stop")
end
cp_init = reshape(reinterpret(Float32,read("Mar_models/Model_Cp_init_1D.bin")),(nz_pad, nx_pad))
tf_cp_inv = Variable(cp_init, dtype=Float64)
Mask = ones(nz_pad, nx_pad)
Mask[nPml+1:nPml+10,:] .= 0.0
tf_cp_inv_msk = tf_cp_inv .* constant(Mask) + constant(cp_init[1,1] .* (1. .- Mask))
# NOTE Compute FWI loss
# loss = constant(0.0)
# for i = 1:nGpus
# global loss
# tf_shot_ids = constant(collect(shot_id_points[i] : shot_id_points[i+1]), dtype=Int32)
# loss += fwi_op(tf_cp_inv_msk, tf_cs, tf_den, tf_stf, tf_gpu_id_array[i], tf_shot_ids, para_fname)
# end
loss = fwi_op(tf_cp_inv_msk, tf_cs, tf_den, tf_stf, tf_gpu_id_array[1], tf_shot_ids0, para_fname)
gradCp = gradients(loss, tf_cp_inv)
if args["verbose"]
sess = Session(); init(sess)
println("Initial loss = ", run(sess, loss))
g = gradients(loss, tfCtxInit.K)
G = run(sess, g)
pcolormesh(G); savefig("test.png"); close("all")
end
# Optimization
__cnt = 0
# invK = zeros(m,n)
function print_loss(l, Cp, gradCp)
global __cnt, __l, __Cp, __gradCp
if mod(__cnt,1)==0
println("\niter=$__iter, eval=$__cnt, current loss=",l)
# println("a=$a, b1=$b1, b2=$b2")
end
__cnt += 1
__l = l
__Cp = Cp
__gradCp = gradCp
end
__iter = 0
function print_iter(rk)
global __iter, __l
if mod(__iter,1)==0
println("\n************* ITER=$__iter *************\n")
end
__iter += 1
open("./$(args["version"])/loss.txt", "a") do io
writedlm(io, Any[__iter __l])
end
open("./$(args["version"])/Cp$__iter.txt", "w") do io
writedlm(io, __Cp)
end
open("./$(args["version"])/gradCp$__iter.txt", "w") do io
writedlm(io, __gradCp)
end
end
config = tf.ConfigProto()
config.intra_op_parallelism_threads = 24
config.inter_op_parallelism_threads = 24
sess = Session(config=config); init(sess);
# cp_low_bd = 1500. .* ones(nz_pad, nx_pad)
# cp_high_bd = 5500. .* ones(nz_pad, nx_pad)
# cp_high_bd[nPml+1:nPml+10,:] .= 1500.0
opt = ScipyOptimizerInterface(loss, var_list=[tf_cp_inv], var_to_bounds=Dict(tf_cp_inv=> (1500.0, 5500.0)), method="L-BFGS-B",
options=Dict("maxiter"=> 100, "ftol"=>1e-6, "gtol"=>1e-6))
@info "Optimization Starts..."
ScipyOptimizerMinimize(sess, opt, loss_callback=print_loss, step_callback=print_iter, fetches=[loss,tf_cp_inv,gradCp])
# adam = AdamOptimizer(learning_rate=50.0)
# op = minimize(adam, loss)
# sess = Session(); init(sess);
# for iter = 1:1000
# _, misfit, cp, cpgrad = run(sess, [op, loss, tf_cp_inv, gradCp])
# open("./$(args["version"])/Cp$iter.txt", "w") do io
# writedlm(io, cp)
# end
# open("./$(args["version"])/loss.txt", "a") do io
# writedlm(io, Any[iter misfit])
# end
# open("./$(args["version"])/gradCp$iter.txt", "w") do io
# writedlm(io, cpgrad)
# end
# end | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 5659 | #=
Main program for two phase flow inversion
=#
include("args.jl")
function sw_p_to_lambda_den(sw, p)
sw = tf.reshape(sw, (1, m, n, 1))
p = tf.reshape(p, (1, m, n, 1))
sw = tf.image.resize_bilinear(sw, (nz, nx))
p = tf.image.resize_bilinear(p, (nz, nx))
sw = cast(sw, Float64)
p = cast(p, Float64)
sw = squeeze(sw)
p = squeeze(p)
# tran_lambda, tran_den = Gassman(sw)
# tran_lambda, tran_den = RockLinear(sw) # test linear relationship
# tran_lambda, tran_den = Patchy(sw)
tran_lambda, tran_den = Brie(sw)
tran_lambda_pad = tf.pad(tran_lambda, [nPml (nPml+nPad); nPml nPml], constant_values=3500.0^2*2200.0/3.0) /1e6
tran_den_pad = tf.pad(tran_den, [nPml (nPml+nPad); nPml nPml], constant_values=2200.0)
return tran_lambda_pad, tran_den_pad
end
# NOTE Generate Data
if args["generate_data"]
println("Generate Test Data...")
K = 20.0 .* ones(m,n) # millidarcy
K[8:10,:] .= 120.0
# K[17:21,:] .= 100.0
# for i = 1:m
# for j = 1:n
# if i <= (14 - 24)/(30 - 1)*(j-1) + 24 && i >= (12 - 18)/(30 - 1)*(j-1) + 18
# K[i,j] = 100.0
# end
# end
# end
tfCtxTrue = tfCtxGen(m,n,h,NT,Δt,Z,X,ρw,ρo,μw,μo,K,g,ϕ,qw,qo, sw0, true)
out_sw_true, out_p_true = imseq(tfCtxTrue)
lambdas = Array{PyObject}(undef, n_survey)
dens = Array{PyObject}(undef, n_survey)
for i = 1:n_survey
sw = out_sw_true[survey_indices[i]]
p = out_p_true[survey_indices[i]]
lambdas[i], dens[i] = sw_p_to_lambda_den(sw, p)
end
misfit = Array{PyObject}(undef, n_survey)
for i = 1:n_survey
if !isdir("./$(args["version"])/Data$i")
mkdir("./$(args["version"])/Data$i")
end
para_fname = "./$(args["version"])/para_file$i.json"
survey_fname = "./$(args["version"])/survey_file$i.json"
paraGen(nz_pad, nx_pad, dz, dx, nSteps, dt, f0, nPml, nPad, para_fname, survey_fname, "./$(args["version"])/Data$i/")
# shot_inds = collect(1:3:length(z_src)) .+ mod(i-1,3) # 5src rotation
# shot_inds = i # 1src rotation
shot_inds = collect(1:length(z_src)) # all sources
surveyGen(z_src[shot_inds], x_src[shot_inds], z_rec, x_rec, survey_fname)
tf_shot_ids0 = constant(collect(0:length(shot_inds)-1), dtype=Int32)
misfit[i] = fwi_obs_op(lambdas[i], tf_shear_pad, dens[i], tf_stf, tf_gpu_id0, tf_shot_ids0, para_fname)
end
config = tf.ConfigProto()
config.intra_op_parallelism_threads = 24
config.inter_op_parallelism_threads = 24
sess = Session(config=config); init(sess);
run(sess, misfit)
error("Generate Data: Stop")
end
tfCtxInit = tfCtxGen(m,n,h,NT,Δt,Z,X,ρw,ρo,μw,μo,K_init,g,ϕ,qw,qo, sw0, false)
out_sw_init, out_p_init = imseq(tfCtxInit)
lambdas = Array{PyObject}(undef, n_survey)
dens = Array{PyObject}(undef, n_survey)
for i = 1:n_survey
sw = out_sw_init[survey_indices[i]]
p = out_p_init[survey_indices[i]]
lambdas[i], dens[i] = sw_p_to_lambda_den(sw, p)
end
# NOTE Compute FWI loss
loss = constant(0.0)
for i = 1:n_survey
global loss
para_fname = "./$(args["version"])/para_file$i.json"
survey_fname = "./$(args["version"])/survey_file$i.json"
# shot_inds = collect(1:3:length(z_src)) .+ mod(i-1,3)
# shot_inds = i
shot_inds = collect(1:length(z_src)) # all sources
tf_shot_ids0 = constant(collect(0:length(shot_inds)-1), dtype=Int32)
loss += fwi_op(lambdas[i], tf_shear_pad, dens[i], tf_stf, tf_gpu_id_array[mod(i,nGpus)], tf_shot_ids0, para_fname) # mod(i,2)
end
gradK = gradients(loss, tfCtxInit.K)
if args["verbose"]
sess = Session(); init(sess)
println("Initial loss = ", run(sess, loss))
g = gradients(loss, tfCtxInit.K)
G = run(sess, g)
pcolormesh(G); savefig("test.png"); close("all")
end
# Optimization
__cnt = 0
# invK = zeros(m,n)
function print_loss(l, K, gradK, brie_coef)
global __cnt, __l, __K, __gradK, __brie_coef
if mod(__cnt,1)==0
println("\niter=$__iter, eval=$__cnt, current loss=",l)
# println("a=$a, b1=$b1, b2=$b2")
end
__cnt += 1
__l = l
__K = K
__gradK = gradK
__brie_coef = brie_coef
end
__iter = 0
function print_iter(rk)
global __iter, __l
if mod(__iter,1)==0
println("\n************* ITER=$__iter *************\n")
end
__iter += 1
open("./$(args["version"])/loss.txt", "a") do io
writedlm(io, Any[__iter __l])
end
open("./$(args["version"])/K$__iter.txt", "w") do io
writedlm(io, __K)
end
open("./$(args["version"])/gradK$__iter.txt", "w") do io
writedlm(io, __gradK)
end
open("./$(args["version"])/brie_coef.txt", "a") do io
writedlm(io, Any[__iter __brie_coef])
end
end
config = tf.ConfigProto()
config.intra_op_parallelism_threads = 24
config.inter_op_parallelism_threads = 24
sess = Session(config=config); init(sess);
# opt = ScipyOptimizerInterface(loss, var_list=[tfCtxInit.K], var_to_bounds=Dict(tfCtxInit.K=> (10.0, 130.0)), method="L-BFGS-B",
# options=Dict("maxiter"=> 100, "ftol"=>1e-6, "gtol"=>1e-6))
opt = ScipyOptimizerInterface(loss, var_list=[tfCtxInit.K, tf_brie_coef], var_to_bounds=Dict(tfCtxInit.K=> (10.0, 130.0), tf_brie_coef=>(1.0,100.0)), method="L-BFGS-B",
options=Dict("maxiter"=> 100, "ftol"=>1e-6, "gtol"=>1e-6))
@info "Optimization Starts..."
# ScipyOptimizerMinimize(sess, opt, loss_callback=print_loss, step_callback=print_iter, fetches=[loss,tfCtxInit.K,gradK])
ScipyOptimizerMinimize(sess, opt, loss_callback=print_loss, step_callback=print_iter, fetches=[loss,tfCtxInit.K,gradK, tf_brie_coef])
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 3208 | using PyTensorFlow
using PyCall
using LinearAlgebra
using PyPlot
using DelimitedFiles
using Random
Random.seed!(233)
np = pyimport("numpy")
include("poisson_op.jl")
include("laplacian_op.jl")
include("sat_op.jl")
const K_CONST = 9.869232667160130e-16 * 86400 * 1e3
mutable struct Ctx
m; n; h; NT; Δt; Z; X; ρw; ρo;
μw; μo; K; g; ϕ; qw; qo; sw0
end
function tfCtxGen(m,n,h,NT,Δt,Z,X,ρw,ρo,μw,μo,K,g,ϕ,qw,qo,sw0,ifTrue)
tf_h = constant(h)
# tf_NT = constant(NT)
tf_Δt = constant(Δt)
tf_Z = constant(Z)
tf_X= constant(X)
tf_ρw = constant(ρw)
tf_ρo = constant(ρo)
tf_μw = constant(μw)
tf_μo = constant(μo)
# tf_K = isa(K,Array) ? Variable(K) : K
if ifTrue
tf_K = constant(K)
else
tf_K = Variable(K)
end
tf_g = constant(g)
# tf_ϕ = Variable(ϕ)
tf_ϕ = constant(ϕ)
tf_qw = constant(qw)
tf_qo = constant(qo)
tf_sw0 = constant(sw0)
return Ctx(m,n,tf_h,NT,tf_Δt,tf_Z,tf_X,tf_ρw,tf_ρo,tf_μw,tf_μo,tf_K,tf_g,tf_ϕ,tf_qw,tf_qo,tf_sw0)
end
function Krw(Sw)
return Sw ^ 1.5
end
function Kro(So)
return So ^1.5
end
function ave_normal(quantity, m, n)
aa = sum(quantity)
return aa/(m*n)
end
# variables : sw, u, v, p
# (time dependent) parameters: qw, qo, ϕ
function onestep(sw, p, m, n, h, Δt, Z, ρw, ρo, μw, μo, K, g, ϕ, qw, qo)
# step 1: update p
# λw = Krw(sw)/μw
# λo = Kro(1-sw)/μo
λw = sw.*sw/μw
λo = (1-sw).*(1-sw)/μo
λ = λw + λo
q = qw + qo + λw/(λo+1e-16).*qo
# q = qw + qo
potential_c = (ρw - ρo)*g .* Z
# Step 1: implicit potential
Θ = upwlap_op(K * K_CONST, λo, potential_c, h, constant(0.0))
load_normal = (Θ+q/ALPHA) - ave_normal(Θ+q/ALPHA, m, n)
# p = poisson_op(λ.*K* K_CONST, load_normal, h, constant(0.0), constant(1))
p = upwps_op(K * K_CONST, λ, load_normal, p, h, constant(0.0), constant(0)) # potential p = pw - ρw*g*h
# step 2: implicit transport
sw = sat_op(sw, p, K * K_CONST, ϕ, qw, qo, μw, μo, sw, Δt, h)
return sw, p
end
"""
impes(tf_ctx)
Solve the two phase flow equation.
`qw` and `qo` -- `NT x m x n` numerical array, `qw[i,:,:]` the corresponding value of qw at i*Δt
`sw0` and `p0` -- initial value for `sw` and `p`. `m x n` numerical array.
"""
function imseq(tf_ctx)
ta_sw, ta_p = TensorArray(NT+1), TensorArray(NT+1)
ta_sw = write(ta_sw, 1, tf_ctx.sw0)
ta_p = write(ta_p, 1, constant(zeros(tf_ctx.m, tf_ctx.n)))
i = constant(1, dtype=Int32)
function condition(i, tas...)
i <= tf_ctx.NT
end
function body(i, tas...)
ta_sw, ta_p = tas
sw, p = onestep(read(ta_sw, i), read(ta_p, i), tf_ctx.m, tf_ctx.n, tf_ctx.h, tf_ctx.Δt, tf_ctx.Z, tf_ctx.ρw, tf_ctx.ρo, tf_ctx.μw, tf_ctx.μo, tf_ctx.K, tf_ctx.g, tf_ctx.ϕ, tf_ctx.qw[i], tf_ctx.qo[i])
ta_sw = write(ta_sw, i+1, sw)
ta_p = write(ta_p, i+1, p)
i+1, ta_sw, ta_p
end
_, ta_sw, ta_p = while_loop(condition, body, [i; ta_sw; ta_p;])
out_sw, out_p = stack(ta_sw), stack(ta_p)
end
function vis(val, args...;kwargs...)
close("all")
ns = Int64.(round.(LinRange(1,size(val,1),9)))
for i = 1:9
subplot(330+i)
imshow(val[ns[i],:,:], args...;kwargs...)
colorbar()
end
end | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 1438 | using PyPlot
using DelimitedFiles
if !isdir("figures_summary")
mkdir("figures_summary")
end
m = 15
n = 30
h = 30.0 # meter
dt = 0.00025
nt = 3001
rc("axes", titlesize=16)
rc("axes", labelsize=12)
rc("xtick", labelsize=12)
rc("ytick", labelsize=12)
rc("legend", fontsize=16)
shot1=read("CO2/Data1/Shot8.bin");
shot1 = reshape(reinterpret(Float32,shot1),(nt,142))
fig,ax = subplots()
imshow(shot1, extent=[0,m*h,(nt-1)*dt,0], cmap="gray", aspect=1.5*(m*h)/((nt-1)*dt));
# imshow(shot1', extent=[0,(nt-1)*dt,m*h,0], cmap="gray", aspect=0.8*(nt-1)*dt/(m*h));
xlabel("Depth (m)")
ylabel("Time (s)")
ax.xaxis.tick_top()
ax.xaxis.set_label_position("top")
savefig("figures_summary/CO2_Data1_Shot8.pdf", bbox_inches="tight",pad_inches = 0, dpi = 300);
shot2=read("CO2/Data11/Shot8.bin");
shot2 = reshape(reinterpret(Float32,shot2),(nt,142))
fig,ax = subplots()
imshow(shot2, extent=[0,m*h,(nt-1)*dt,0], cmap="gray", aspect=1.5*(m*h)/((nt-1)*dt));
xlabel("Depth (m)")
ylabel("Time (s)")
ax.xaxis.tick_top()
ax.xaxis.set_label_position("top")
savefig("figures_summary/CO2_Data11_Shot8.pdf", bbox_inches="tight",pad_inches = 0, dpi = 300);
fig,ax = subplots()
imshow(shot2-shot1, extent=[0,m*h,(nt-1)*dt,0], cmap="gray", aspect=1.5*(m*h)/((nt-1)*dt));
xlabel("Depth (m)")
ylabel("Time (s)")
ax.xaxis.tick_top()
ax.xaxis.set_label_position("top")
savefig("figures_summary/CO2_Data_diff.pdf", bbox_inches="tight",pad_inches = 0, dpi = 300); | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 6258 | using PyPlot
using DelimitedFiles
if !isdir("figures_summary")
mkdir("figures_summary")
end
m = 15
n = 30
h = 30.0
dz = 3.0 # meters
dx = 3.0
nz = Int64(round((m * h) / dz)) + 1
nx = Int64(round((n * h) / dx)) + 1
z_src = (collect(5:10:nz-5) .- 1 ) .* dz .+ dz/2.0
x_src = (5-1)ones(Int64, size(z_src)) .* dx .+ dx/2.0
z_rec = (collect(5:1:nz-5) .- 1) .* dz .+ dz/2.0
x_rec = (nx-5-1) .* ones(Int64, size(z_rec)) .*dx .+ dx/2.0
z_inj = (9-1)*h + h/2.0
x_inj = (3-1)*h + h/2.0
z_prod = (9-1)*h + h/2.0
x_prod = (28-1)*h + h/2.0
iter = 100
Prj_names = ["CO2", "CO2_1src", "CO2_2surveys", "Brie_3_nocoefupdate", "Brie_tune_coef_true3_start2", "Brie_true3_set2_noupdate", "Brie_tune_coef_true3_start2_scale30"]
K_name = "/K$iter.txt"
rc("axes", titlesize=20)
rc("axes", labelsize=18)
rc("xtick", labelsize=18)
rc("ytick", labelsize=18)
rc("legend", fontsize=20)
# true model
figure()
K = 20.0 .* ones(m,n)
K[8:10,:] .= 120.0
imshow(K, extent=[0,n*h,m*h,0]);
xlabel("Distance (m)")
ylabel("Depth (m)")
cb = colorbar()
clim([20, 120])
cb.set_label("Permeability (md)")
shot_inds = collect(1:length(z_src))
scatter(x_src[shot_inds], z_src[shot_inds], c="w", marker="*")
scatter(x_rec, z_rec, s=16.0, c="r", marker="v")
scatter(x_inj, z_inj, c="r", marker=">", s=64)
scatter(x_prod, z_prod, c="r", marker="<", s=64)
savefig("figures_summary/K_true.pdf", bbox_inches="tight",pad_inches = 0, dpi = 300);
# init model
figure()
K = 20.0 .* ones(m,n)
imshow(K, extent=[0,n*h,m*h,0]);
xlabel("Distance (m)")
ylabel("Depth (m)")
cb = colorbar()
clim([20, 120])
cb.set_label("Permeability (md)")
shot_inds = collect(1:length(z_src))
scatter(x_src[shot_inds], z_src[shot_inds], c="w", marker="*")
scatter(x_rec, z_rec, s=16.0, c="r", marker="v")
scatter(x_inj, z_inj, c="r", marker=">", s=64)
scatter(x_prod, z_prod, c="r", marker="<", s=64)
savefig("figures_summary/K_init.pdf", bbox_inches="tight",pad_inches = 0, dpi = 300);
figure()
iPrj = 1
K = readdlm(Prj_names[iPrj] * K_name)
imshow(K, extent=[0,n*h,m*h,0]);
xlabel("Distance (m)")
ylabel("Depth (m)")
cb = colorbar()
clim([20, 120])
cb.set_label("Permeability (md)")
shot_inds = collect(1:length(z_src))
scatter(x_src[shot_inds], z_src[shot_inds], c="w", marker="*")
scatter(x_rec, z_rec, s=16.0, c="r", marker="v")
scatter(x_inj, z_inj, c="r", marker=">", s=64)
scatter(x_prod, z_prod, c="r", marker="<", s=64)
savefig("figures_summary/K_$(Prj_names[iPrj]).pdf", bbox_inches="tight",pad_inches = 0, dpi = 300);
figure()
iPrj = 3
K = readdlm(Prj_names[iPrj] * K_name)
imshow(K, extent=[0,n*h,m*h,0]);
xlabel("Distance (m)")
ylabel("Depth (m)")
cb = colorbar()
clim([20, 120])
cb.set_label("Permeability (md)")
shot_inds = collect(1:length(z_src))
scatter(x_src[shot_inds], z_src[shot_inds], c="w", marker="*")
scatter(x_rec, z_rec, s=16.0, c="r", marker="v")
scatter(x_inj, z_inj, c="r", marker=">", s=64)
scatter(x_prod, z_prod, c="r", marker="<", s=64)
savefig("figures_summary/K_$(Prj_names[iPrj]).pdf", bbox_inches="tight",pad_inches = 0, dpi = 300);
figure()
iPrj = 4
K = readdlm(Prj_names[iPrj] * K_name)
imshow(K, extent=[0,n*h,m*h,0]);
xlabel("Distance (m)")
ylabel("Depth (m)")
cb = colorbar()
clim([20, 120])
cb.set_label("Permeability (md)")
shot_inds = collect(1:length(z_src))
scatter(x_src[shot_inds], z_src[shot_inds], c="w", marker="*")
scatter(x_rec, z_rec, s=16.0, c="r", marker="v")
scatter(x_inj, z_inj, c="r", marker=">", s=64)
scatter(x_prod, z_prod, c="r", marker="<", s=64)
savefig("figures_summary/K_$(Prj_names[iPrj]).pdf", bbox_inches="tight",pad_inches = 0, dpi = 300);
figure()
iPrj = 5
K = readdlm(Prj_names[iPrj] * K_name)
imshow(K, extent=[0,n*h,m*h,0]);
xlabel("Distance (m)")
ylabel("Depth (m)")
cb = colorbar()
clim([20, 120])
cb.set_label("Permeability (md)")
shot_inds = collect(1:length(z_src))
scatter(x_src[shot_inds], z_src[shot_inds], c="w", marker="*")
scatter(x_rec, z_rec, s=16.0, c="r", marker="v")
scatter(x_inj, z_inj, c="r", marker=">", s=64)
scatter(x_prod, z_prod, c="r", marker="<", s=64)
savefig("figures_summary/K_$(Prj_names[iPrj]).pdf", bbox_inches="tight",pad_inches = 0, dpi = 300);
figure()
iPrj = 6
K = readdlm(Prj_names[iPrj] * K_name)
imshow(K, extent=[0,n*h,m*h,0]);
xlabel("Distance (m)")
ylabel("Depth (m)")
cb = colorbar()
clim([20, 120])
cb.set_label("Permeability (md)")
shot_inds = collect(1:length(z_src))
scatter(x_src[shot_inds], z_src[shot_inds], c="w", marker="*")
scatter(x_rec, z_rec, s=16.0, c="r", marker="v")
scatter(x_inj, z_inj, c="r", marker=">", s=64)
scatter(x_prod, z_prod, c="r", marker="<", s=64)
savefig("figures_summary/K_$(Prj_names[iPrj]).pdf", bbox_inches="tight",pad_inches = 0, dpi = 300);
figure()
iPrj = 7
K = readdlm(Prj_names[iPrj] * K_name)
imshow(K, extent=[0,n*h,m*h,0]);
xlabel("Distance (m)")
ylabel("Depth (m)")
cb = colorbar()
clim([20, 120])
cb.set_label("Permeability (md)")
shot_inds = collect(1:length(z_src))
scatter(x_src[shot_inds], z_src[shot_inds], c="w", marker="*")
scatter(x_rec, z_rec, s=16.0, c="r", marker="v")
scatter(x_inj, z_inj, c="r", marker=">", s=64)
scatter(x_prod, z_prod, c="r", marker="<", s=64)
savefig("figures_summary/K_$(Prj_names[iPrj]).pdf", bbox_inches="tight",pad_inches = 0, dpi = 300);
figure()
z_src = [75].* dz .+ dz/2.0 # single source
x_src = (5-1)ones(Int64, size(z_src)) .* dx .+ dx/2.0
iPrj = 2
K = readdlm(Prj_names[iPrj] * K_name)
imshow(K, extent=[0,n*h,m*h,0]);
xlabel("Distance (m)")
ylabel("Depth (m)")
cb = colorbar()
clim([20, 120])
cb.set_label("Permeability (md)")
shot_inds = collect(1:length(z_src))
scatter(x_src[shot_inds], z_src[shot_inds], c="w", marker="*")
scatter(x_rec, z_rec, s=16.0, c="r", marker="v")
scatter(x_inj, z_inj, c="r", marker=">", s=64)
scatter(x_prod, z_prod, c="r", marker="<", s=64)
savefig("figures_summary/K_$(Prj_names[iPrj]).pdf", bbox_inches="tight",pad_inches = 0, dpi = 300);
rc("axes", titlesize=14)
rc("axes", labelsize=14)
rc("xtick", labelsize=14)
rc("ytick", labelsize=14)
rc("legend", fontsize=14)
figure()
iPrj = 7
brie_coef = readdlm(Prj_names[iPrj] * "/brie_coef.txt")[:,2]./30.0
plot(0:100,[2;brie_coef], "k");grid(ls="--")
# plot(1:100, 3ones(100))
xlabel("Iterations")
ylabel("Brie model coefficient")
savefig("figures_summary/brie_coef_curve.pdf", bbox_inches="tight",pad_inches = 0, dpi = 300); | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 1244 | using DelimitedFiles
using PyPlot
close("all")
if !isdir("figures_summary")
mkdir("figures_summary")
end
Prj_names = ["CO2", "CO2_1src", "CO2_2surveys", "Brie_3_nocoefupdate", "Brie_tune_coef_true3_start2_scale30"]
rc("axes", titlesize=14)
rc("axes", labelsize=14)
rc("xtick", labelsize=14)
rc("ytick", labelsize=14)
rc("legend", fontsize=14)
figure()
L1 = readdlm("$(Prj_names[1])/loss.txt")
l1=semilogy(L1[:,1], L1[:,2]/L1[1,2], label="Baseline")
legend()
L2 = readdlm("$(Prj_names[2])/loss.txt")
l2=semilogy(L2[:,1], L2[:,2]/L2[1,2], label="One source")
legend()
L3 = readdlm("$(Prj_names[3])/loss.txt")
l3=semilogy(L3[:,1], L3[:,2]/L3[1,2], label="Two surveys")
legend()
grid(ls="--")
xlabel("Iteration Number")
ylabel("Normalized misfit")
savefig("figures_summary/loss.pdf", bbox_inches="tight",pad_inches = 0, dpi = 300);
figure()
L4 = readdlm("$(Prj_names[4])/loss.txt")
l4=semilogy(L4[:,1], L4[:,2]/L4[1,2], label="Exact coefficient")
legend()
L5 = readdlm("$(Prj_names[5])/loss.txt")
l5=semilogy(L5[:,1], L5[:,2]/L5[1,2], label="Inexact coefficient")
legend()
grid(ls="--")
xlabel("Iteration Number")
ylabel("Normalized misfit")
savefig("figures_summary/loss_brie.pdf", bbox_inches="tight",pad_inches = 0, dpi = 300); | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 92 | using PyPlot
include("args.jl")
Sw = constant(collect(0:0.001:1))
lambda_brie_3 = Brie(Sw) | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 6300 | include("args.jl")
function sw_p_to_lambda_den(sw, p)
sw = tf.reshape(sw, (1, m, n, 1))
p = tf.reshape(p, (1, m, n, 1))
sw = tf.image.resize_bilinear(sw, (nz, nx))
p = tf.image.resize_bilinear(p, (nz, nx))
sw = cast(sw, Float64)
p = cast(p, Float64)
sw = squeeze(sw)
p = squeeze(p)
# tran_lambda, tran_den = Gassman(sw)
# tran_lambda, tran_den = RockLinear(sw) # test linear relationship
tran_lambda, tran_den = Patchy(sw)
return tran_lambda, tran_den
end
if !isdir("figures_summary")
mkdir("figures_summary")
end
K = 20.0 .* ones(m,n) # millidarcy
# K[8:10,:] .= 120.0
# K[17:21,:] .= 100.0
# for i = 1:m
# for j = 1:n
# if i <= (14 - 24)/(30 - 1)*(j-1) + 24 && i >= (12 - 18)/(30 - 1)*(j-1) + 18
# K[i,j] = 100.0
# end
# end
# end
tfCtxTrue = tfCtxGen(m,n,h,NT,Δt,Z,X,ρw,ρo,μw,μo,K,g,ϕ,qw,qo, sw0, true)
out_sw_true, out_p_true = imseq(tfCtxTrue)
lambdas = Array{PyObject}(undef, n_survey)
dens = Array{PyObject}(undef, n_survey)
for i = 1:n_survey
sw = out_sw_true[survey_indices[i]]
p = out_p_true[survey_indices[i]]
lambdas[i], dens[i] = sw_p_to_lambda_den(sw, p)
end
sess = Session();init(sess);
vps = Array{PyObject}(undef, n_survey)
for i=1:n_survey
vps[i] = sqrt((lambdas[i] + 2.0 * tf_shear_sat1[i])/dens[i])
end
V = run(sess, vps);
S = run(sess, out_sw_true);
P = run(sess, out_p_true);
z_inj = (9-1)*h + h/2.0
x_inj = (3-1)*h + h/2.0
z_prod = (9-1)*h + h/2.0
x_prod = (28-1)*h + h/2.0
rc("axes", titlesize=30)
rc("axes", labelsize=30)
rc("xtick", labelsize=28)
rc("ytick", labelsize=28)
rc("legend", fontsize=30)
fig1,axs = subplots(3,3, figsize=[30,15], sharex=true, sharey=true)
ims = Array{Any}(undef, 9)
for iPrj = 1:3
for jPrj = 1:3
ims[(iPrj-1)*3+jPrj] = axs[iPrj,jPrj].imshow(V[(iPrj-1)*3+jPrj], extent=[0,n*h,m*h,0], vmin=3350, vmax=3500);
axs[iPrj,jPrj].title.set_text("Snapshot $((iPrj-1)*3+jPrj)")
if jPrj == 1 || jPrj == 1
axs[iPrj,jPrj].set_ylabel("Depth (m)")
end
if iPrj == 3 || iPrj == 3
axs[iPrj,jPrj].set_xlabel("Distance (m)")
end
# cb = fig1.colorbar(ims[(iPrj-1)*3+jPrj], ax=axs[iPrj,jPrj])
# cb.set_label("Vp")
axs[iPrj,jPrj].scatter(x_inj, z_inj, c="r", marker=">", s=128)
axs[iPrj,jPrj].scatter(x_prod, z_prod, c="r", marker="<", s=128)
end
end
fig1.subplots_adjust(wspace=0.02, hspace=0.18)
cbar_ax = fig1.add_axes([0.91, 0.08, 0.01, 0.82])
cb1 = fig1.colorbar(ims[1], cax=cbar_ax)
cb1.set_label("Vp (m/s)")
savefig("figures_summary/Vp_evo_patchy_init.pdf",bbox_inches="tight",pad_inches = 0);
fig2,axs = subplots(3,3, figsize=[30,15], sharex=true, sharey=true)
ims = Array{Any}(undef, 9)
for iPrj = 1:3
for jPrj = 1:3
ims[(iPrj-1)*3+jPrj] = axs[iPrj,jPrj].imshow(S[survey_indices[(iPrj-1)*3+jPrj], :, :], extent=[0,n*h,m*h,0], vmin=0.0, vmax=0.6);
axs[iPrj,jPrj].title.set_text("Snapshot $((iPrj-1)*3+jPrj)")
if jPrj == 1 || jPrj == 1
axs[iPrj,jPrj].set_ylabel("Depth (m)")
end
if iPrj == 3 || iPrj == 3
axs[iPrj,jPrj].set_xlabel("Distance (m)")
end
# if iPrj ==2 && jPrj == 3
# cb = fig2.colorbar(ims[(iPrj-1)*3+jPrj], ax=axs[iPrj,jPrj])
# cb.set_label("Saturation")
axs[iPrj,jPrj].scatter(x_inj, z_inj, c="r", marker=">", s=128)
axs[iPrj,jPrj].scatter(x_prod, z_prod, c="r", marker="<", s=128)
end
end
# fig2.subplots_adjust(wspace=0.04, hspace=0.042)
fig2.subplots_adjust(wspace=0.02, hspace=0.18)
cbar_ax = fig2.add_axes([0.91, 0.08, 0.01, 0.82])
cb2 = fig2.colorbar(ims[1], cax=cbar_ax)
cb2.set_label("Saturation")
savefig("figures_summary/Saturation_evo_patchy_init.pdf",bbox_inches="tight",pad_inches = 0);
fig3,axs = subplots(3,3, figsize=[30,15], sharex=true, sharey=true)
ims = Array{Any}(undef, 9)
for iPrj = 1:3
for jPrj = 1:3
ims[(iPrj-1)*3+jPrj] = axs[iPrj,jPrj].imshow(P[survey_indices[(iPrj-1)*3+jPrj], :, :]*1.4504e-04, extent=[0,n*h,m*h,0], vmin=-2500.0, vmax=500);
axs[iPrj,jPrj].title.set_text("Snapshot $((iPrj-1)*3+jPrj)")
if jPrj == 1 || jPrj == 1
axs[iPrj,jPrj].set_ylabel("Depth (m)")
end
if iPrj == 3 || iPrj == 3
axs[iPrj,jPrj].set_xlabel("Distance (m)")
end
# if iPrj ==2 && jPrj == 3
# cb = fig2.colorbar(ims[(iPrj-1)*3+jPrj], ax=axs[iPrj,jPrj])
# cb.set_label("Saturation")
axs[iPrj,jPrj].scatter(x_inj, z_inj, c="r", marker=">", s=128)
axs[iPrj,jPrj].scatter(x_prod, z_prod, c="r", marker="<", s=128)
end
end
# fig2.subplots_adjust(wspace=0.04, hspace=0.042)
fig3.subplots_adjust(wspace=0.02, hspace=0.18)
cbar_ax = fig3.add_axes([0.91, 0.08, 0.01, 0.82])
cb3 = fig3.colorbar(ims[1], cax=cbar_ax)
cb3.set_label("Potential (psi)")
savefig("figures_summary/Potential_evo_patchy_init.pdf",bbox_inches="tight",pad_inches = 0);
# iter = 100
# Prj_names = ["CO2", "CO2_1src", "CO2_2surveys", "CO2_6surveys"]
# K_name = "/K$iter.txt"
# fig,axs = subplots(2,2, figsize=[18,8], sharex=true, sharey=true)
# for iPrj = 1:2
# for jPrj = 1:2
# # println(ax)
# A = readdlm(Prj_names[(iPrj-1)*2 + jPrj] * K_name)
# im = axs[iPrj,jPrj].imshow(A, extent=[0,n*h,m*h,0]);
# if jPrj == 1 || jPrj == 1
# axs[iPrj,jPrj].set_ylabel("Depth (m)")
# end
# if iPrj == 2 || iPrj == 2
# axs[iPrj,jPrj].set_xlabel("Distance (m)")
# end
# axs[iPrj,jPrj].text(-0.1,1.1,string("(" * Char((iPrj-1)*2 + jPrj+'a'-1) * ")"),transform=axs[iPrj,jPrj].transAxes,size=12,weight="bold")
# end
# end
# fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.9,
# wspace=0.1, hspace=0.2)
# cb_ax = fig.add_axes([0.93, 0.1, 0.02, 0.8])
# cbar = fig.colorbar(im, cax=cb_ax)
# cb = fig.colorbar()
# clim([20, 120])
# cb.set_label("Permeability (md)")
# fig = figure()
# ax = fig.add_subplot(111) # The big subplot
# ax1 = fig.add_subplot(211)
# ax2 = fig.add_subplot(212)
# # Turn off axis lines and ticks of the big subplot
# ax.spines["top"].set_color("none")
# ax.spines["bottom"].set_color("none")
# ax.spines["left"].set_color("none")
# ax.spines["right"].set_color("none")
# ax.tick_params(labelcolor="w", top="off", bottom="off", left="off", right="off")
# # Set common labels
# ax.set_xlabel("common xlabel")
# ax.set_ylabel("common ylabel")
# ax1.set_title('ax1 title')
# ax2.set_title('ax2 title') | FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
|
[
"MIT"
] | 0.3.1 | 32fa60d65971f3e409a959dedccb0b5c4e29f76e | code | 2446 | using PyTensorFlow
using PyCall
using LinearAlgebra
using PyPlot
using Random
Random.seed!(233)
if Sys.islinux()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('../Ops/Poisson/build/libPoissonOp.so')
@tf.custom_gradient
def poisson_op(coef,g,h,rhograv,index):
p = libPoissonOp.poisson_op(coef,g,h,rhograv,index)
def grad(dy):
return libPoissonOp.poisson_op_grad(dy, p, coef, g, h, rhograv, index)
return p, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('../Ops/Poisson/build/libPoissonOp.dylib')
@tf.custom_gradient
def poisson_op(coef,g,h,rhograv,index):
p = libPoissonOp.poisson_op(coef,g,h,rhograv,index)
def grad(dy):
return libPoissonOp.poisson_op_grad(dy, p, coef, g, h, rhograv, index)
return p, grad
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libPoissonOp = tf.load_op_library('../Ops/Poisson/build/libPoissonOp.dll')
@tf.custom_gradient
def poisson_op(coef,g,h,rhograv,index):
p = libPoissonOp.poisson_op(coef,g,h,rhograv,index)
def grad(dy):
return libPoissonOp.poisson_op_grad(dy, p, coef, g, h, rhograv, index)
return p, grad
"""
end
poisson_op = py"poisson_op"
if Sys.islinux()
py"""
import tensorflow as tf
libUpwpsOp = tf.load_op_library('../Ops/Upwps/build/libUpwpsOp.so')
@tf.custom_gradient
def upwps_op(permi,mobi,src,funcref,h,rhograv,index):
pres = libUpwpsOp.upwps_op(permi,mobi,src,funcref,h,rhograv,index)
def grad(dy):
return libUpwpsOp.upwps_op_grad(dy, pres, permi,mobi,src,funcref,h,rhograv,index)
return pres, grad
"""
elseif Sys.isapple()
py"""
import tensorflow as tf
libUpwpsOp = tf.load_op_library('../Ops/Upwps/build/libUpwpsOp.dylib')
@tf.custom_gradient
def upwps_op(permi,mobi,src,funcref,h,rhograv,index):
pres = libUpwpsOp.upwps_op(permi,mobi,src,funcref,h,rhograv,index)
def grad(dy):
return libUpwpsOp.upwps_op_grad(dy, pres, permi,mobi,src,funcref,h,rhograv,index)
return pres, grad
"""
elseif Sys.iswindows()
py"""
import tensorflow as tf
libUpwpsOp = tf.load_op_library('../Ops/Upwps/build/libUpwpsOp.dll')
@tf.custom_gradient
def upwps_op(permi,mobi,src,funcref,h,rhograv,index):
pres = libUpwpsOp.upwps_op(permi,mobi,src,funcref,h,rhograv,index)
def grad(dy):
return libUpwpsOp.upwps_op_grad(dy, pres, permi,mobi,src,funcref,h,rhograv,index)
return pres, grad
"""
end
upwps_op = py"upwps_op"
| FwiFlow | https://github.com/lidongzh/FwiFlow.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.