licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.6.30
d1abcd4b0b02e036f6a7630f6b563b576e9a8561
code
867
using Revise using Dates using ElectroPhysiology using PhysiologyAnalysis using Pkg; Pkg.activate("test") #%% When we get to the dataframe creation we can fill in details here using XLSX, DataFrames, Query #%% Open all dates for the imaging files img_dir = raw"G:\Data\Calcium Imaging" patch_dir = raw"G:\Data\Patching" filename = raw"G:\Data\Analysis\data_analysis.xlsx" #Don't often need to do this (eventually we need to add an update button) dataset = create2PDataSheet(img_dir, patch_dir; verbose = true) dataset = IV_analysis!(dataset) dataset = pair_experiments!(dataset) save2PDataSheet(filename, dataset) #You can use this to open the datasheet after it has been saved dataset = open2PDataSheet(filename) dataset["ABF Files"].filename all_datasheet = dataset["All Files"] img_datasheet = dataset["TIF Files"] patch_datasheet = dataset["ABF Files"]
PhysiologyAnalysis
https://github.com/mattar13/PhysiologyAnalysis.jl.git
[ "MIT" ]
0.6.30
d1abcd4b0b02e036f6a7630f6b563b576e9a8561
code
1611
#%% Load Packages _________________________________________________________________________# using Pkg; Pkg.activate(".") using ElectroPhysiology, PhysiologyAnalysis Pkg.activate("test") using PhysiologyPlotting, GLMakie import GLMakie.Axis using FileIO, ImageView, Images using Statistics #=[Point to filenames]=========================================================# data_fn = "D:/Data/Calcium Imaging/2024_02_12_WT/Cell1/cell1001.tif" save_fn = "D:/Data/Analysis/2024_02_12_WTCell1_2P.mp4" #[Open and prepare the data]______________________________________________________________# fps = 1.45 data = readImage(data_fn); px_x, px_y = data.HeaderDict["framesize"] xlims = data.HeaderDict["xrng"]; #Extract the x domain ylims = data.HeaderDict["yrng"]; #Extract the y domain t = data.t #Extract the t domain #Every other frame is a different channel t = t[1:2:end] mov = get_all_frames(data)[:,:,1:2:end]; #get all frames as a 3D array fluo = mean(mov, dims = (1,2))[1,1,:] zproj = maximum(mov, dims = 3)[:,:,1] #Can we save this directly? # Plot the data _________________________________________________________________________# fig = Figure(size = (500, 600)) ax1 = Axis(fig[1,1]) ax2 = Axis(fig[2,1]) rowsize!(fig.layout, 2, Relative(1/4)) hm1 = heatmap!(ax1, xlims, ylims, zproj, colormap = Reverse(:speed), colorrange = (0.0, 0.01)) lines!(ax2, t, fluo) ticker = vlines!(ax2, [0.0]) # Animate the Imaging video ___________________________________________________________# record(fig, save_fn, 2:length(t), framerate = fps*10) do i println(i) hm1[3] = mov[:,:,i] ticker[1] = [t[i]] end
PhysiologyAnalysis
https://github.com/mattar13/PhysiologyAnalysis.jl.git
[ "MIT" ]
0.6.30
d1abcd4b0b02e036f6a7630f6b563b576e9a8561
code
2610
#%% Load Packages _________________________________________________________________________# using Pkg; Pkg.activate(".") using ElectroPhysiology, PhysiologyAnalysis Pkg.activate("test") using GLMakie import GLMakie.Axis using FileIO, ImageView, Images using Statistics save_fn = "D:/Data/Analysis/2024_02_12_WTCell1_IC2P.mp4" #%%=[Point to this for data from cell 1]=========================================================# data2P_fn = "D:/Data/Calcium Imaging/2024_02_12_WT/Cell1/cell1001.tif" dataIC_fn = "D:/Data/Patching/2024_02_12_WT/Cell1/24212004.abf" #%%=[Point to this for data from cell 3]=========================================================# #data2P_fn = "D:/Data/Calcium Imaging/2024_03_11_VglutGC6/Cell3/freeRec001.tif" #dataIC_fn = "D:/Data/Patching/2024_03_11_VglutGC6/Cell3/24311015.abf" #%%=[Open and prepare 2P data]=========================================================# fps = 1.45 data2P = readImage(data2P_fn; sampling_rate = fps, chName = "525 nm"); px_x, px_y = data2P.HeaderDict["framesize"] xlims = data2P.HeaderDict["xrng"]; #Extract the x domain ylims = data2P.HeaderDict["yrng"]; #Extract the y domain t = data2P.t #Extract the t domain t = t[1:2:end] #Cell 1 only needs uncommented (I recorded with both green and red. Silly me) mov = get_all_frames(data2P)[:,:,1:2:end] #get all frames as a 3D array fluo = mean(mov, dims = (1,2))[1,1,:] zproj = maximum(mov, dims = 3)[:,:,1] #Can we save this directly? # Open and prepare the data______________________________________________________________# dataIC = readABF(dataIC_fn); downsample!(dataIC, 1000.0); #Go through these functions much more extensively # Create the plot_______________________________________________________________________# fig = Figure(size = (1000, 500)) ax1 = Axis(fig[1:2,1]) ax2 = Axis(fig[1,2], title = "Sample rate = $fps hz", ylabel = "Fluorescence ($(data2P.chUnits[1]))") ax3 = Axis(fig[2,2], title = "Sample rate = $(1/dataIC.dt) hz", ylabel = "Membrane Voltage ($(dataIC.chUnits[1]))") hm1 = heatmap!(ax1, xlims, ylims, zproj, colormap = Reverse(:speed), colorrange = (0.001, 0.01)) lines!(ax2, t, fluo, color = :green) experimentplot!(ax3, dataIC, channel = 1) ticker1 = vlines!(ax2, [0.0], color = :black) ticker2 = vlines!(ax3, [0.0], color = :black) Colorbar(fig[3, 1], hm1, vertical = false, label = "Fluorescence (px)") # Animate the data ___________________________________________________________________# record(fig, save_fn, enumerate(t), framerate = fps*10) do (i, t) println(t) hm1[3] = mov[:,:,i] ticker1[1] = [t] ticker2[1] = [t] end display(fig)
PhysiologyAnalysis
https://github.com/mattar13/PhysiologyAnalysis.jl.git
[ "MIT" ]
0.6.30
d1abcd4b0b02e036f6a7630f6b563b576e9a8561
code
1154
#=[Import packages]============================================================# using Pkg; Pkg.activate(".") using ElectroPhysiology, PhysiologyAnalysis using Statistics Pkg.activate("test") using PhysiologyPlotting using GLMakie import PhysiologyPlotting.experimentplot #=[Point to filenames]=========================================================# data_fn = "D:/Data/Patching/2024_02_12_WT/Cell1/24212004.abf" save_fn = "D:/Data/Analysis/2024_02_12_WT_Cell1_IC.png" #=[Open the data]==============================================================# data = readABF(data_fn); downsample!(data, 1000.0); #Go through these functions much more extensively data.HeaderDict #=[Plot data]==================================================================# fig, axs = experimentplot(data) save(save_fn, fig) #=[Do some analysis]===========================================================# threshold = calculate_threshold(data, Z = 2) timestamps = get_timestamps(data, Z = 2) #durations, intervals = extract_interval(timestamps[1,1]) # Eventually need to figure this out, but not today # max_interval_algorithim(timestamps[1,1], SPBmin = 1, verbose = true)
PhysiologyAnalysis
https://github.com/mattar13/PhysiologyAnalysis.jl.git
[ "MIT" ]
0.6.30
d1abcd4b0b02e036f6a7630f6b563b576e9a8561
docs
684
# PhysiologyAnalysis.jl [![License][license-img]](LICENSE) [![][docs-stable-img]][docs-stable-url] [![][GHA-img]][GHA-url] [license-img]: http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat-square [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: https://mattar13.github.io/ElectroPhysiology.jl/dev [GHA-img]: https://github.com/mattar13/PhysiologyAnalysis.jl/workflows/CI/badge.svg [GHA-url]: https://github.com/mattar13/PhysiologyAnalysis.jl/actions?query=workflows/CI This is the analysis toolkit for the larger package ElectroPhysiology.jl see documentation [here](https://github.com/mattar13/ElectroPhysiology.jl)
PhysiologyAnalysis
https://github.com/mattar13/PhysiologyAnalysis.jl.git
[ "MIT" ]
0.1.0
e203f036dfa6aabe0dee0f760dc752245f2d9887
code
295
#!/usr/bin/env bash #= exec julia --project="$(realpath $(dirname $0))" --color=yes --startup-file=no -e "include(popfirst!(ARGS))" \ "${BASH_SOURCE[0]}" "$@" =# module EyeTrackingUtils export make_clean_data include(joinpath(dirname(@__FILE__), "prep.jl")) end # end module
EyeTrackingUtils
https://github.com/jakewilliami/EyeTrackingUtils.jl.git
[ "MIT" ]
0.1.0
e203f036dfa6aabe0dee0f760dc752245f2d9887
code
5832
#!/usr/bin/env bash #= exec julia --project="$(realpath $(dirname $0))" --color=yes --startup-file=no -e "include(popfirst!(ARGS))" \ "${BASH_SOURCE[0]}" "$@" =# using DataFrames using Query using Lazy: @> # or using DataConvenience: @>, but Lazy exports groupby using DataFramesMeta: @where using Statistics: mean _isbool(x)::Bool = isequal(x, true) || isequal(x, false) ? true : false _iscategorical(df::DataFrame, x)::Bool = isa(df.x, CategoricalArray) function _islogical(x)::Bool if _isbool(x) return true elseif isnumeric(x) else throw(error(""" One of your columns ($(col)) could not be converted to the correct format (Bool). Please do so manually. """)) end end _asnumeric(x) = parse(Float64, x) _aslogical(x) = parse(Bool, x) function _check_then_convert( df::DataFrame, x, check_function::Function, convert_function::Function, colname::Union{String, Symbol} ) if ! check_function(df, x) println("Converting $(colname) to proper type...") x = convert_function(df, Symbol(x)) println("...done") end if colname == "Trackloss" && any(isnothing(x)) @warn "Found NAs in trackloss column. These will be treated as TRACKLOSS = false." x = isnothing(x) ? false : x end return x end function _check_then_convert( x, check_function::Function, convert_function::Function, colname::Union{String, Symbol} ) if ! check_function(x) println("Converting $(colname) to proper type...") x = convert_function(x) println("...done") end if colname == "Trackloss" && any(isnothing(x)) @warn "Found NAs in trackloss column. These will be treated as TRACKLOSS = false." x = isnothing(x) ? false : x end return x end function make_clean_data( data, participant_column, trackloss_column, time_column, trial_column, aoi_columns, treat_non_aoi_looks_as_missing; item_columns = nothing ) ## Data options: data_options = Dict{Symbol, Any}( :participant_column => participant_column, :trackloss_column => trackloss_column, :time_column => time_column, :trial_column => trial_column, :item_columns => item_columns, :aoi_columns => aoi_columns, :treat_non_looks_as_missing => treat_non_looks_as_missing ) ## Check for reserved column name: if data_options[:time_column] == "Time" throw(error(""" We apologise for the invonvenience, but your `time_column` cannot be called 'Time'. This name is a reserved name that EyeTrackingUtils uses. Please rename. """)) end if "Time" ∈ names(data) @warn """Your dataset has a column called 'time', but this column is reserved for EyeTrackingUtils. Will rename to 'TimeOriginal'... """ rename!(data, Dict(:Time => "TimeOriginal")) end ## Verify columns: out = copy(data) col_type_converter = Dict{Symbol, Function}( :participant_column => x -> _check_then_convert(data, x, _iscategorical, categorical!, "Participants"), :time_column => x -> _check_then_convert(data, x, isnumeric, _asnumeric, "Time"), :trial_column => x -> _check_then_convert(data, x, _iscategorical, categorical!, "Trial"), :trackloss_column => x -> _check_then_convert(x, _isbool, _aslogical, "Trackloss"), :item_columns => x -> _check_then_convert(data, x, _iscategorical, categorical!, "Item"), :aoi_columns => x -> _check_then_convert(x, _isbool, _aslogical, "AOI") ) for col in keys(col_type_converter) for i in 1:length(data_options[col]) if isnothing(out.data_options[Symbol(col)][i]) throw(error("Data are missing: $(col)")) end out.data_options = col_type_converter[Symbol(col)](out.data_options[Symbol(col)][i]) end end ## Deal with non-AOI looks: if treat_non_aoi_looks_as_missing # any_aoi = sum(, dims=2) > 0 ? # second dimension is the sum of the rows any_aoi = sum.(skipmissing.(eachrow(out.data_options[Symbol(aoi_columns)]))) > 0 out.data_options[Symbol(trackloss_column)][!any_aoi] = true end ## Set All AOI rows with trackloss to NA: # this ensures that any calculations of proportion-looking will not include trackloss in the denominator for aoi in data_options[Symbol(aoi_columns)] out.aoi[out.data_options[Symbol(trackloss_column)]] = missing # or nothing? end # Check for duplicate values of Trial column within Participants duplicates = @> out begin groupby([:participant_column, :trial_column, :time_column]) combine(nrow => :n) @where :n .> 1 end if nrow(duplicates) > 0 println(duplicates) throw(error(""" It appears that `trial_column` is not unique within participants. See above for a summary of which participant*trials have duplicate timestamps. EyeTrackingUtils requires that each participant only have a single trial with the same `trial_column` value. If you repeated items in your experiment, use `item_column` to specify the name of the item, and set `trial_column` to a unique value (e.g., the trial index). """)) end out = @> out begin groupby([:participant_column, :trial_column, :time_column]) end end struct eR_data_eR_df out::DataFrame eR end ## Assign attribute: # class(out) <- c("eyetrackingR_data", "eyetrackingR_df", class(out)) # attr(out, "eyetrackingR") <- list(data_options = data_options) # return(out)
EyeTrackingUtils
https://github.com/jakewilliami/EyeTrackingUtils.jl.git
[ "MIT" ]
0.1.0
e203f036dfa6aabe0dee0f760dc752245f2d9887
code
179
#!/usr/bin/env bash #= exec julia --project="$(realpath $(dirname $0))" --color=yes --startup-file=no -e "include(popfirst!(ARGS))" \ "${BASH_SOURCE[0]}" "$@" =#
EyeTrackingUtils
https://github.com/jakewilliami/EyeTrackingUtils.jl.git
[ "MIT" ]
0.1.0
e203f036dfa6aabe0dee0f760dc752245f2d9887
code
352
#!/usr/bin/env bash #= exec julia --project="$(realpath $(dirname $0))" --color=yes --startup-file=no -e "include(popfirst!(ARGS))" \ "${BASH_SOURCE[0]}" "$@" =# include(joinpath(dirname(dirname(@__FILE__)), "src", "EyeTracking.jl")) using .EyeTracking using Test @testset "EyeTracking.jl" begin # Write your tests here. end
EyeTrackingUtils
https://github.com/jakewilliami/EyeTrackingUtils.jl.git
[ "MIT" ]
0.1.0
e203f036dfa6aabe0dee0f760dc752245f2d9887
docs
3022
<h1 align="center"> Eye Tracking Utils </h1> [![Code Style: Blue][code-style-img]][code-style-url] [![Build Status](https://travis-ci.com/jakewilliami/EyeTracking.jl.svg?branch=master)](https://travis-ci.com/jakewilliami/EyeTracking.jl) ![Project Status](https://img.shields.io/badge/status-maturing-green) ## Note **THIS PACKAGE IS UNDER DEVELOPMENT AND IS NOT READY FOR USE** Though we have hopes for this repository to be a registered package in the future, it is only for testing purposes, to be used in parallel to other tools, at this point in time. This project is currently worked on by [Alexandros Tantos](https://github.com/atantos), [Jake Ireland](https://github.com/jakewilliami), and others. It is preferrable that you have `coreutils` (or something similar, giving you access to `realpath`) installed for the project path to be interpretted by the shebang correctly. ## Introduction This is a Julia implementation of a robust data-preparation and -analysis package using data from eye tracking experiments. This package is designed modelling an R package called [`eyetrackingR`](https://github.com/jwdink/eyetrackingR). This package is not to be confused with the "EyeTracking.jl" package (at time of writing; October, 2020), which [seems to be a GUI-style experimental interface](https://github.com/dandandai/EyeTracking.jl/) (at first glance, perhaps similar to [PyGaze](https://github.com/esdalmaijer/PyGaze)). ## Installation and Set Up Ensure you `cd` into the `EyeTrackingUtils.jl` directory after `clone`ing it, and run ```bash julia -E 'import Pkg; etu_home = dirname(@__FILE__); Pkg.activate(etu_home), Pkg.instantiate()' ``` To obtain any dependencies. This step will not be necessary once this package is registered. ## How it works This package has two main steps in the workflow, whose second step has three paths. This workflow is drawn from [`eyetrackingR`](http://www.eyetracking-r.com/workflow). 1. **Data cleaning** &mdash; obtain data and information about data from various eye-tracking sources (this step should be extremely robust), and puts data into a standardised format for analyses. 2. **Analyses** &mdash;: &#9;&#9; a) *Overall Looking*; &#9;&#9; b) *Onset-Contingent*; &#9;&#9; c) *Time-Course of Looking*. ## Timeline of Progression - [cdf151e](https://github.com/jakewilliami/EyeTracking.jl/commit/cdf151e) &mdash; Began working on the package. ## To Do - Summarise ([Query.jl?](https://github.com/queryverse/Query.jl)) - Read from [EDF](https://github.com/beacon-biosignals/EDF.jl) file. ## A Note on running on BSD: The default JuliaPlots backend `GR` does not provide binaries for FreeBSD. [Here's how you can build it from source.](https://github.com/jheinen/GR.jl/issues/268#issuecomment-584389111). That said, `StatsPlots` is only a dependency for an example, and not for the main package. [code-style-img]: https://img.shields.io/badge/code%20style-blue-4495d1.svg [code-style-url]: https://github.com/invenia/BlueStyle
EyeTrackingUtils
https://github.com/jakewilliami/EyeTrackingUtils.jl.git
[ "MIT" ]
0.3.5
71e40b5d9aaa5749942cb2183fb5add45f146ff2
code
12988
module CMPFit using Printf using Pkg, Pkg.Artifacts function binary_lib_path() for file in readdir(artifact"libmpfit") if !isnothing(match(r"^libmpfit", file)) return joinpath(artifact"libmpfit", file) end end end const libmpfit = binary_lib_path() # Exported symbols export cmpfit ###################################################################### # Private definitions ###################################################################### #--------------------------------------------------------------------- "Parameter info strutcture" mutable struct Parinfo fixed::Cint # 1 = fixed; 0 = free limited::NTuple{2, Cint} # 1 = low/upper limit; 0 = no limit limits::NTuple{2, Cdouble} # lower/upper limit boundary value char::Ptr{Cchar} # Name of parameter, or 0 for none step::Cdouble # Step size for finite difference relstep::Cdouble # Relative step size for finite difference side::Cint #= Sidedness of finite difference derivative 0 - one-sided derivative computed automatically 1 - one-sided derivative (f(x+h) - f(x) )/h -1 - one-sided derivative (f(x) - f(x-h))/h 2 - two-sided derivative (f(x+h) - f(x-h))/(2*h) 3 - user-computed analytical derivatives =# deriv_debug::Cint #= Derivative debug mode: 1 = Yes; 0 = No; If yes, compute both analytical and numerical derivatives and print them to the console for comparison. NOTE: when debugging, do *not* set side = 3, but rather to the kind of numerical derivative you want to compare the user-analytical one to (0, 1, -1, or 2). =# deriv_reltol::Cdouble # Relative tolerance for derivative debug printout deriv_abstol::Cdouble # Absolute tolerance for derivative debug printout "Create an empty `Parinfo` structure." Parinfo() = new(0, (0, 0), (0, 0), 0, 0, 0, 0, 0, 0, 0) end #--------------------------------------------------------------------- "Create a `Vector{Parinfo}` of empty `Parinfo` structures, whose length is given by `npar`." function Parinfo(npar::Int) return [Parinfo() for i in 1:npar] end #--------------------------------------------------------------------- #Define sibling structure with toggled mutability struct imm_Parinfo fixed::Cint limited::NTuple{2, Cint} limits::NTuple{2, Cdouble} char::Ptr{Cchar} step::Cdouble relstep::Cdouble side::Cint deriv_debug::Cint deriv_reltol::Cdouble deriv_abstol::Cdouble end function imm_Parinfo(p::Parinfo) imm_Parinfo(ntuple((i->begin getfield(p, i) end), nfields(p))...) end #--------------------------------------------------------------------- "CMPFit config structure" mutable struct Config ftol::Cdouble # Relative chi-square convergence criterium Default: 1e-10 xtol::Cdouble # Relative parameter convergence criterium Default: 1e-10 gtol::Cdouble # Orthogonality convergence criterium Default: 1e-10 epsfcn::Cdouble # Finite derivative step size Default: eps() stepfactor::Cdouble # Initial step bound Default: 100.0 covtol::Cdouble # Range tolerance for covariance calculation Default: 1e-14 maxiter::Cint # Maximum number of iterations. If maxiter == MP_NO_ITER, # then basic error checking is done, and parameter # errors/covariances are estimated based on input # parameter values, but no fitting iterations are done. # Default: 200 maxfev::Cint; # Maximum number of function evaluations, or 0 for no limit # Default: 0 (no limit) nprint::Cint; # Default: 1 douserscale::Cint # Scale variables by user values? # 1 = yes, user scale values in diag; # 0 = no, variables scaled internally (Default) nofinitecheck::Cint # Disable check for infinite quantities from user? # 0 = do not perform check (Default) # 1 = perform check iterproc::Cint # Placeholder pointer - must set to 0 Config() = new(1e-10, 1e-10, 1e-10, eps(), 100, 1e-14, 200, 0, 1, 0, 0, 0) end #--------------------------------------------------------------------- "CMPFit return structure (C side)." mutable struct Result_C bestnorm::Cdouble # Final chi^2 orignorm::Cdouble # Starting value of chi^2 niter::Cint # Number of iterations nfev::Cint # Number of function evaluations status::Cint # Fitting status code npar::Cint # Total number of parameters nfree::Cint # Number of free parameters npegged::Cint # Number of pegged parameters nfunc::Cint # Number of residuals (= num. of data points) resid::Ptr{Cdouble} # Final residuals nfunc-vector, or 0 if not desired perror::Ptr{Cdouble} # Final parameter uncertainties (1-sigma) npar-vector, or 0 if not desired covar::Ptr{Cdouble} # Final parameter covariance matrix npar x npar array, or 0 if not desired version::NTuple{20, Cchar} # `mpfit` version string "Create an empty `Result_C` structure." Result_C() = new(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NTuple{20, Cchar}("\0"^20)) end #--------------------------------------------------------------------- "CMPFit return structure (Julia side)." mutable struct Result bestnorm::Float64 # Final chi^2 orignorm::Float64 # Starting value of chi^2 niter::Int64 # Number of iterations nfev::Int64 # Number of function evaluations status::Int64 # Fitting status code npar::Int64 # Total number of parameters nfree::Int64 # Number of free parameters npegged::Int64 # Number of pegged parameters nfunc::Int64 # Number of residuals (= num. of data points) perror::Vector{Float64} # Final parameter uncertainties (1-sigma) covar::Matrix{Float64} # Final parameter covariance matrix version::String # CMPFit version string param::Vector{Float64} # Array of best fit parameters dof::Int # Degrees of freedom elapsed::Float64 # Elapsed time [s] end #--------------------------------------------------------------------- # Add Base.show method to show CMPFit results function Base.show(io::IO, res::Result) @printf io " CMPFit ver. = %s\n" res.version @printf io " STATUS = %d\n" res.status @printf io " CHI-SQUARE = %f (%d DOF)\n" res.bestnorm res.dof @printf io " NPAR = %d\n" res.npar @printf io " NFREE = %d\n" res.nfree @printf io " NPEGGED = %d\n" res.npegged @printf io " NITER = %d\n" res.niter @printf io " NFEV = %d\n" res.nfev @printf io "Elapsed time = %f s\n" res.elapsed @printf io "\n" for i in 1:res.npar @printf io " P[%d] = %f +/- %f\n" i res.param[i] res.perror[i] end end #--------------------------------------------------------------------- mutable struct Wrap_A_Function funct::Function end #--------------------------------------------------------------------- # This function can not be nested into mpfit since this would lead to the error: # ERROR: closures are not yet c-callable # "Function called from C to calculate the residuals" function julia_eval_resid(ndata::Cint, npar::Cint, _param::Ptr{Cdouble}, _resid::Ptr{Cdouble}, _derivs::Ptr{Ptr{Cdouble}}, _funct::Ptr{Wrap_A_Function}) wrap = unsafe_load(_funct) param = unsafe_wrap(Vector{Float64}, _param, npar) resid = unsafe_wrap(Vector{Float64}, _resid, ndata) pderiv = Vector{Int}() vderiv = Vector{Vector{Float64}}() if _derivs != C_NULL derivs = unsafe_wrap(Vector{Ptr{Cdouble}}, _derivs, npar) for ipar in 1:npar if derivs[ipar] != C_NULL push!(pderiv, ipar) push!(vderiv, unsafe_wrap(Vector{Float64}, derivs[ipar], ndata)) end end end # Compute residuals if length(pderiv) > 0 jresid = wrap.funct(param, pderiv, vderiv) else jresid = wrap.funct(param) end resid .= reshape(jresid, length(jresid)) return Cint(0)::Cint end ###################################################################### # Public functions ###################################################################### #--------------------------------------------------------------------- "Main CMPFit function" function cmpfit(funct::Function, _param::Vector{Float64}; parinfo=nothing, config=nothing) # Compute elapsed time elapsedtime = Base.time_ns() # Use a local copy param = deepcopy(_param) # Check user function by evaluating it model = funct(param) res_C = Result_C() res_C.perror = Libc.malloc(length(param) * sizeof(Cdouble) ) res_C.covar = Libc.malloc(length(param)^2 * sizeof(Cdouble) ) if parinfo == nothing parinfo = Parinfo(length(param)) end if length(parinfo) != length(param) error("Lengths of `param` and `parinfo` arrays are different") end imm_parinfo = map(imm_Parinfo, parinfo) if config == nothing config = Config() end wrap = Wrap_A_Function(funct) status = -999 try #C-compatible address of the Julia `julia_eval_resid` function. c_eval_resid = @cfunction(julia_eval_resid, Cint, (Cint, Cint, Ptr{Cdouble}, Ptr{Cdouble}, Ptr{Ptr{Cdouble}}, Ptr{Wrap_A_Function})) status = ccall((:mpfit, libmpfit), Cint, (Ptr{Nothing}, Cint , Cint, Ptr{Cdouble}, Ptr{imm_Parinfo}, Ptr{Config}, Ptr{Wrap_A_Function}, Ref{Result_C}), c_eval_resid , length(model), length(param), param , imm_parinfo , Ref(config), Ref(wrap) , res_C) catch err error("An error occurred during `mpfit` call.") end @assert status >= 0 "mpfit returned status = $status < 0." perror = Vector{Float64}(); covar = Array{Float64, 2}(undef, 0, 0) covar = Vector{Float64}() for i in 1:length(param) ; push!(perror, unsafe_load(res_C.perror, i)); end for i in 1:length(param)^2; push!(covar , unsafe_load(res_C.covar , i)); end covar = reshape(covar, length(param), length(param)) version = findall(x -> x != 0, collect(res_C.version)) if length(version) == 0 version = "" else version = join(Char.(res_C.version[version])) end result = Result(res_C.bestnorm, res_C.orignorm, res_C.niter, res_C.nfev, res_C.status, res_C.npar, res_C.nfree, res_C.npegged, res_C.nfunc, perror, covar, version, param, res_C.nfunc - res_C.nfree, 0.) Libc.free(res_C.perror) Libc.free(res_C.covar ) elapsedtime = Base.time_ns() - elapsedtime result.elapsed = convert(Float64, elapsedtime / 1e9) return result end #--------------------------------------------------------------------- function cmpfit(independentData::AbstractArray, observedData::AbstractArray, uncertainties::AbstractArray, funct::Function, guessParam::Vector{Float64}; parinfo=nothing, config=nothing) function cmpfit_callback(param::Vector{Float64}) model = funct(independentData, param) ret = (observedData - model) ./ uncertainties return ret end function cmpfit_callback(param::Vector{Float64}, pderiv::Vector{Int}, vderiv::Vector{Vector{Float64}}) model = funct(independentData, param, pderiv, vderiv) ret = (observedData - model) ./ uncertainties for i in 1:length(vderiv) vderiv[i] ./= -uncertainties end return ret end cmpfit(cmpfit_callback, guessParam, parinfo=parinfo, config=config) end end # module
CMPFit
https://github.com/gcalderone/CMPFit.jl.git
[ "MIT" ]
0.3.5
71e40b5d9aaa5749942cb2183fb5add45f146ff2
code
4910
using Test using CMPFit @info CMPFit.binary_lib_path() ## testlinfit x = [-1.7237128E+00,1.8712276E+00,-9.6608055E-01, -2.8394297E-01,1.3416969E+00,1.3757038E+00, -1.3703436E+00,4.2581975E-02,-1.4970151E-01, 8.2065094E-01] y = [1.9000429E-01,6.5807428E+00,1.4582725E+00, 2.7270851E+00,5.5969253E+00,5.6249280E+00, 0.787615,3.2599759E+00,2.9771762E+00, 4.5936475E+00] e = fill(0., size(y)) .+ 0.07 param = [1., 1.] function linfunc(x::Vector{Float64}, p::Vector{Float64}) return @. p[1] + p[2]*x end res = cmpfit(x, y, e, linfunc, param) @test res.bestnorm ≈ 2.756285 rtol=1.e-5 @test res.status == 1 @test res.npar == 2 @test res.nfree == 2 @test res.npegged == 0 @test res.dof == 8 zero = res.perror .- [0.0222102, 0.018938]; @test minimum(zero) ≈ 0 atol=1.e-5 @test maximum(zero) ≈ 0 atol=1.e-5 zero = res.param .- [3.209966, 1.770954]; @test minimum(zero) ≈ 0 atol=1.e-5 @test maximum(zero) ≈ 0 atol=1.e-5 ## testquadfit x = [-1.7237128E+00,1.8712276E+00,-9.6608055E-01, -2.8394297E-01,1.3416969E+00,1.3757038E+00, -1.3703436E+00,4.2581975E-02,-1.4970151E-01, 8.2065094E-01] y = [2.3095947E+01,2.6449392E+01,1.0204468E+01, 5.40507,1.5787588E+01,1.6520903E+01, 1.5971818E+01,4.7668524E+00,4.9337711E+00, 8.7348375E+00] e = fill(0., size(y)) .+ 0.2 param = [1., 1., 1.] function quadfunc(x::Vector{Float64}, p::Vector{Float64}) return @. p[1] + p[2]*x + p[3]*(x*x) end res = cmpfit(x, y, e, quadfunc, param) @test res.bestnorm ≈ 5.679323 rtol=1.e-5 @test res.status == 1 @test res.npar == 3 @test res.nfree == 3 @test res.npegged == 0 @test res.dof == 7 zero = res.perror .- [0.097512, 0.054802, 0.054433]; @test minimum(zero) ≈ 0 atol=1.e-5 @test maximum(zero) ≈ 0 atol=1.e-5 zero = res.param .- [4.703829, 0.062586, 6.163087]; @test minimum(zero) ≈ 0 atol=1.e-5 @test maximum(zero) ≈ 0 atol=1.e-5 ## testquadfix param = [1., 0., 1.] pinfo = CMPFit.Parinfo(length(param)) pinfo[2].fixed = 1 res = cmpfit(x, y, e, quadfunc, param, parinfo=pinfo) @test res.bestnorm ≈ 6.983588 rtol=1.e-5 @test res.status == 1 @test res.npar == 3 @test res.nfree == 2 @test res.npegged == 0 @test res.dof == 8 zero = res.perror .- [0.097286, 0., 0.053743]; @test minimum(zero) ≈ 0 atol=1.e-5 @test maximum(zero) ≈ 0 atol=1.e-5 zero = res.param .- [4.696254, 0., 6.172954]; @test minimum(zero) ≈ 0 atol=1.e-5 @test maximum(zero) ≈ 0 atol=1.e-5 ## testgaussfit x = [-1.7237128E+00,1.8712276E+00,-9.6608055E-01, -2.8394297E-01,1.3416969E+00,1.3757038E+00, -1.3703436E+00,4.2581975E-02,-1.4970151E-01, 8.2065094E-01] y = [-4.4494256E-02,8.7324673E-01,7.4443483E-01, 4.7631559E+00,1.7187297E-01,1.1639182E-01, 1.5646480E+00,5.2322268E+00,4.2543168E+00, 6.2792623E-01] e = fill(0., size(y)) .+ 0.5 param = [0.0, 1.0, 1.0, 1.0] function gaussfunc(x::Vector{Float64}, p::Vector{Float64}) sig2 = p[4] * p[4]; xc = @. x - p[3]; return @. p[2] * exp(-0.5 * xc *xc / sig2) + p[1] end res = cmpfit(x, y, e, gaussfunc, param) @test res.bestnorm ≈ 10.350032 rtol=1.e-5 @test res.status == 1 @test res.npar == 4 @test res.nfree == 4 @test res.npegged == 0 @test res.dof == 6 zero = res.perror .- [0.232234, 0.395434, 0.074715, 0.089997]; @test minimum(zero) ≈ 0 atol=1.e-5 @test maximum(zero) ≈ 0 atol=1.e-5 zero = res.param .- [0.480441, 4.550754, -0.062562, 0.397473]; @test minimum(zero) ≈ 0 atol=1.e-5 @test maximum(zero) ≈ 0 atol=1.e-5 ## testgaussfit (with explicit derivatives) gaussfunc_deriv(x::Vector{Float64}, p::Vector{Float64}) = gaussfunc(x, p) function gaussfunc_deriv(x::Vector{Float64}, p::Vector{Float64}, pderiv::Vector{Int}, vderiv::Vector{Vector{Float64}}) sig2 = p[4] * p[4]; xc = x .- p[3]; ee = exp.(-0.5 .* xc.^2 ./ sig2) for i in 1:length(pderiv) ipar = pderiv[i] if ipar == 1 vderiv[i] .= 1. elseif ipar == 2 vderiv[i] .= ee elseif ipar == 3 vderiv[i] .= p[2] .* ee .* (x .- p[3]) ./ sig2 elseif ipar == 4 vderiv[i] .= p[2] .* ee .* (x .- p[3]).^2 ./ sig2 ./ p[4] end end return p[2] .* ee .+ p[1] end pinfo = CMPFit.Parinfo(length(param)) setfield!.(pinfo, :side, Int32(3)) res = cmpfit(x, y, e, gaussfunc_deriv, param, parinfo=pinfo) ## testgaussfix param = [0.0, 1.0, 0.0, 0.1] pinfo = CMPFit.Parinfo(length(param)) pinfo[1].fixed = 1 pinfo[3].fixed = 1 res = cmpfit(x, y, e, gaussfunc, param, parinfo=pinfo) @test res.bestnorm ≈ 15.516134 rtol=1.e-5 @test res.status == 1 @test res.npar == 4 @test res.nfree == 2 @test res.npegged == 0 @test res.dof == 8 zero = res.perror .- [0., 0.329307, 0., 0.053804]; @test minimum(zero) ≈ 0 atol=1.e-5 @test maximum(zero) ≈ 0 atol=1.e-5 zero = res.param .- [0., 5.059244, 0., 0.479746]; @test minimum(zero) ≈ 0 atol=1.e-5 @test maximum(zero) ≈ 0 atol=1.e-5
CMPFit
https://github.com/gcalderone/CMPFit.jl.git
[ "MIT" ]
0.3.5
71e40b5d9aaa5749942cb2183fb5add45f146ff2
docs
3481
# CMPFit ## A Julia wrapper for the `mpfit` library (MINPACK minimization). [![Build Status](https://travis-ci.org/gcalderone/CMPFit.jl.svg?branch=master)](https://travis-ci.org/gcalderone/CMPFit.jl) The `CMPFit.jl` package is a wrapper for the [`mpfit` C-library](https://www.physics.wisc.edu/~craigm/idl/cmpfit.html) by Craig Markwardt, providing access to the the [MINPACK](http://www.netlib.org/minpack/) implementation of the [Levenberg-Marquardt algorithm](https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm), and allowing simple and quick solutions to Least Squares minimization problems in Julia. **This is a wrapper for a C library, hence it uses a binary library compiled from C.** Check the [LsqFit](https://github.com/JuliaNLSolvers/LsqFit.jl) package for a pure Julia solution. ------- ## Installation In the Julia REPL type: ``` julia ] add CMPFit ``` This will automaticaly download the binary `cmpfit` library (v1.4) as an artifact matching your platform. ------- ## Usage Usage is very simple: given a set of observed data and uncertainties, define a (whatever complex) Julia function to evaluate a model to be compared with the data, and ask `cmpfit` to find the model parameter values which best fit the data. Example: ``` julia using CMPFit # Independent variable x = [-1.7237128E+00,1.8712276E+00,-9.6608055E-01, -2.8394297E-01,1.3416969E+00,1.3757038E+00, -1.3703436E+00,4.2581975E-02,-1.4970151E-01, 8.2065094E-01] # Observed data y = [-4.4494256E-02,8.7324673E-01,7.4443483E-01, 4.7631559E+00,1.7187297E-01,1.1639182E-01, 1.5646480E+00,5.2322268E+00,4.2543168E+00, 6.2792623E-01] # Data uncertainties e = fill(0., size(y)) .+ 0.5 # Define a model (actually a Gaussian curve) function GaussModel(x::Vector{Float64}, p::Vector{Float64}) sig2 = p[4] * p[4] xc = @. x - p[3] model = @. p[2] * exp(-0.5 * xc * xc / sig2) + p[1] return model end # Guess model parameters param = [0.0, 1.0, 1.0, 1.0] # Call `cmpfit` and print the results: res = cmpfit(x, y, e, GaussModel, param); println(res) ``` The value returned by `cmpfit` is a Julia structure. You may look at its content with: ``` julia dump(res) ``` Specifically, the best fit parameter values and their 1-sigma uncertainties are: ``` Julia println(res.param) println(res.perror) ``` `CMPFit` mirrors all the facilities provided by the underlying C-library, e.g. a parameter can be fixed during the fit, or its value limited to a specific range. Moreover, the whole fitting process may be customized for, e.g., limiting the maximum number of model evaluation, or change the relative chi-squared convergence criterium. E.g.: ``` Julia # Set guess parameters param = [0.5, 4.5, 1.0, 1.0] # Create the `parinfo` structures for the 4 parameters used in the # example above: pinfo = CMPFit.Parinfo(4) # Fix the value of the 1st parameter: pinfo[1].fixed = 1 # Set a lower (4) and upper limit (5) for the 2nd parameter pinfo[2].limited = (1,1) pinfo[2].limits = (4, 5) # Create a `config` structure config = CMPFit.Config() # Limit the maximum function evaluation to 200 config.maxfev = 200 # Change the chi-squared convergence criterium: config.ftol = 1.e-5 # Re-run the minimization process res = cmpfit(x, y, e, GaussModel, param, parinfo=pinfo, config=config); println(res) ``` See [Craig's webpage](https://www.physics.wisc.edu/~craigm/idl/cmpfit.html) for further documentation on the `config` and `parinfo` structures.
CMPFit
https://github.com/gcalderone/CMPFit.jl.git
[ "MIT" ]
0.2.0
9eb8d474c659d6cdf4c83d34d6673917fff8b1af
code
7883
module Qutilities using LinearAlgebra: Diagonal, eigvals, Hermitian, svdvals, tr export binent, concurrence, concurrence_lb, formation, mutinf, negativity, ptrace, ptranspose, purity, sigma_x, sigma_y, sigma_z, spinflip, S_renyi, S_vn # All logarithms are base 2. const LOG = log2 """ hermitize(rho::AbstractMatrix) Make `rho` Hermitian, but carefully. """ function hermitize(rho::AbstractMatrix) size(rho, 1) == size(rho, 2) || throw(DomainError(size(rho), "Only square matrices are supported.")) err = maximum(abs.(rho - rho')) if err > 1e-12 @warn "Matrix is not Hermitian: $(err)" end # Make the diagonal strictly real. rho_H = copy(rho) for i in 1:size(rho_H, 1) rho_H[i, i] = real(rho_H[i, i]) end Hermitian(rho_H) end hermitize(rho::Diagonal) = rho """ nonneg(x::Real) `x` if `x` is non-negative; zero if `x` is negative. """ nonneg(x::Real) = x < 0 ? zero(x) : x """ shannon(xs::AbstractVector) Shannon entropy of `xs`. """ shannon(xs::AbstractVector) = -sum([x * LOG(x) for x in xs if x > 0]) # Single-qubit Pauli matrices. const sigma_x = [[0.0, 1.0] [1.0, 0.0]] const sigma_y = [[0.0, im] [-im, 0.0]] const sigma_z = [[1.0, 0.0] [0.0, -1.0]] """ ptrace(rho::AbstractMatrix{T}, dims, which::Int) Partial trace of `rho` along dimension `which` from `dims`. """ function ptrace(rho::AbstractMatrix{T}, dims, which::Int) where {T} size(rho) == (prod(dims), prod(dims)) || throw(DomainError(size(rho), "Only square matrices are supported.")) size_before = prod(dims[1:(which-1)]) size_at = dims[which] size_after = prod(dims[(which+1):end]) result = zeros(T, size_before*size_after, size_before*size_after) for i1 in 1:size_before for j1 in 1:size_before for k in 1:size_at for i2 in 1:size_after for j2 in 1:size_after row1 = size_after*(i1-1) + i2 col1 = size_after*(j1-1) + j2 row2 = size_at*size_after*(i1-1) + size_after*(k-1) + i2 col2 = size_at*size_after*(j1-1) + size_after*(k-1) + j2 result[row1, col1] += rho[row2, col2] end end end end end result end """ ptrace(rho::AbstractMatrix, which::Int=2) Partial trace of `rho` along dimension `which`. `rho` is split into halves and the trace is over the second half by default. """ function ptrace(rho::AbstractMatrix, which::Int=2) size(rho, 1) % 2 == 0 || throw(DomainError(size(rho, 1), "Matrix size must be even.")) s = div(size(rho, 1), 2) ptrace(rho, (s, s), which) end """ ptranspose(rho::AbstractMatrix, dims, which::Int) Partial transpose of `rho` along dimension `which` from `dims`. """ function ptranspose(rho::AbstractMatrix, dims, which::Int) size(rho) == (prod(dims), prod(dims)) || throw(DomainError(size(rho), "Only square matrices are supported.")) size_before = prod(dims[1:(which-1)]) size_at = dims[which] size_after = prod(dims[(which+1):end]) result = similar(rho) for i1 in 1:size_before for j1 in 1:size_before for i2 in 1:size_at for j2 in 1:size_at for i3 in 1:size_after for j3 in 1:size_after row1 = size_at*size_after*(i1-1) + size_after*(i2-1) + i3 col1 = size_at*size_after*(j1-1) + size_after*(j2-1) + j3 row2 = size_at*size_after*(i1-1) + size_after*(j2-1) + i3 col2 = size_at*size_after*(j1-1) + size_after*(i2-1) + j3 result[row1, col1] = rho[row2, col2] end end end end end end result end """ ptranspose(rho::AbstractMatrix, which::Int=2) Partial transpose of `rho` along dimension `which`. `rho` is split into halves and the transpose is over the second half by default. """ function ptranspose(rho::AbstractMatrix, which::Int=2) size(rho, 1) % 2 == 0 || throw(DomainError(size(rho, 1), "Matrix size must be even.")) s = div(size(rho, 1), 2) ptranspose(rho, (s, s), which) end """ binent(x::Real) Binary entropy of `x`. """ binent(x::Real) = shannon([x, one(x) - x]) """ purity(rho::AbstractMatrix) Purity of `rho`. """ purity(rho::AbstractMatrix) = rho^2 |> tr |> real """ S_vn(rho::AbstractMatrix) Von Neumann entropy of `rho`. """ S_vn(rho::AbstractMatrix) = rho |> hermitize |> eigvals |> shannon """ S_renyi(rho::AbstractMatrix, alpha::Real=2) Order `alpha` Rényi entropy of `rho`. The `alpha` parameter may have any value on the interval `[0, Inf]` except 1. It defaults to 2. """ function S_renyi(rho::AbstractMatrix, alpha::Real=2) E = rho |> hermitize |> eigvals alpha == Inf && return E |> maximum |> LOG |> - LOG(sum(E.^alpha)) / (1 - alpha) end """ mutinf(rho::AbstractMatrix, S::Function=S_vn) Mutual information of `rho` using the entropy function `S`. """ function mutinf(rho::AbstractMatrix, S::Function=S_vn) S(ptrace(rho, 1)) + S(ptrace(rho, 2)) - S(rho) end """ spinflip(rho::AbstractMatrix) Wootters spin-flip operation for two qubits in the mixed state `rho` in the standard basis. Ref: Wootters, W. K. (1998). Entanglement of formation of an arbitrary state of two qubits. Physical Review Letters, 80(10), 2245. """ function spinflip(rho::AbstractMatrix) size(rho) == (4, 4) || throw(DomainError(size(rho), "Matrix must be 4 by 4.")) Y = kron(sigma_y, sigma_y) Y * conj(rho) * Y end """ concurrence(rho::AbstractMatrix) Concurrence of a mixed state `rho` for two qubits in the standard basis. Ref: Wootters, W. K. (1998). Entanglement of formation of an arbitrary state of two qubits. Physical Review Letters, 80(10), 2245. """ function concurrence(rho::AbstractMatrix) size(rho) == (4, 4) || throw(DomainError(size(rho), "Matrix must be 4 by 4.")) E = rho * spinflip(rho) |> eigvals if any(imag(E) .> 1e-15) @warn "Complex eigenvalues: $(maximum(imag(E)))" end if any(real(E) .< -1e-12) @warn "Negative eigenvalues: $(minimum(real(E)))" end F = sort(sqrt.(nonneg.(real(E)))) nonneg(F[end] - sum(F[1:(end-1)])) end """ concurrence_lb(rho::AbstractMatrix) Lower bound on the concurrence for two qubits in the mixed state `rho` in the standard basis. Ref: Mintert, F., & Buchleitner, A. (2007). Observable entanglement measure for mixed quantum states. Physical Review Letters, 98(14), 140505. """ function concurrence_lb(rho::AbstractMatrix) size(rho) == (4, 4) || throw(DomainError(size(rho), "Matrix must be 4 by 4.")) 2.0*(purity(rho) - purity(ptrace(rho))) |> nonneg |> sqrt end """ formation(C::Real) Entanglement of formation for two qubits with concurrence `C`. Ref: Wootters, W. K. (1998). Entanglement of formation of an arbitrary state of two qubits. Physical Review Letters, 80(10), 2245. """ formation(C::Real) = binent(0.5 * (1.0 + sqrt(1.0 - C^2))) """ formation(rho::AbstractMatrix) Entanglement of formation for two qubits in the mixed state `rho` in the standard basis. Ref: Wootters, W. K. (1998). Entanglement of formation of an arbitrary state of two qubits. Physical Review Letters, 80(10), 2245. """ formation(rho::AbstractMatrix) = rho |> concurrence |> formation """ negativity(rho::AbstractMatrix) Logarithmic negativity for a symmetric bipartition of `rho`. Ref: Plenio, M. B. (2005). Logarithmic negativity: A full entanglement monotone that is not convex. Physical Review Letters, 95(9), 090503. """ negativity(rho::AbstractMatrix) = rho |> ptranspose |> svdvals |> sum |> LOG end
Qutilities
https://github.com/0/Qutilities.jl.git
[ "MIT" ]
0.2.0
9eb8d474c659d6cdf4c83d34d6673917fff8b1af
code
5413
using Qutilities using Test using LinearAlgebra: diagm, I, tr @testset "Qutilities" begin @testset "sigma_x, sigma_y, sigma_z" begin @test sigma_x^2 == I @test sigma_y^2 == I @test sigma_z^2 == I @test -im*sigma_x*sigma_y*sigma_z == I end @testset "ptrace, ptranspose" begin let A = I(2), B = reshape(1:16, 4, 4), C = [[0, 0, 1] [0, 1, 0] [1, 0, 0]], ABC = kron(A, B, C), dims = (2, 4, 3) @test ptrace(ABC, dims, 1) == tr(A) * kron(B, C) @test ptranspose(ABC, dims, 1) == kron(A', B, C) @test ptrace(ABC, dims, 2) == tr(B) * kron(A, C) @test ptranspose(ABC, dims, 2) == kron(A, B', C) @test ptrace(ABC, dims, 3) == tr(C) * kron(A, B) @test ptranspose(ABC, dims, 3) == kron(A, B, C') end let M = reshape(1.0:16.0, 4, 4), MT1 = [[1.0, 2.0, 9.0, 10.0] [5.0, 6.0, 13.0, 14.0] [3.0, 4.0, 11.0, 12.0] [7.0, 8.0, 15.0, 16.0]], MT2 = [[1.0, 5.0, 3.0, 7.0] [2.0, 6.0, 4.0, 8.0] [9.0, 13.0, 11.0, 15.0] [10.0, 14.0, 12.0, 16.0]] @test ptrace(M, (1, 4), 1) == M @test ptranspose(M, (1, 4), 1) == M @test ptrace(M, (1, 4), 2) == fill(tr(M), 1, 1) @test ptranspose(M, (1, 4), 2) == transpose(M) @test ptrace(M, (2, 2), 1) == [[12.0, 14.0] [20.0, 22.0]] @test ptranspose(M, (2, 2), 1) == MT1 @test ptrace(M, (2, 2), 2) == [[7.0, 11.0] [23.0, 27.0]] @test ptranspose(M, (2, 2), 2) == MT2 @test ptrace(M, (4, 1), 1) == fill(tr(M), 1, 1) @test ptranspose(M, (4, 1), 1) == transpose(M) @test ptrace(M, (4, 1), 2) == M @test ptranspose(M, (4, 1), 2) == M @test ptrace(M, 1) == ptrace(M, (2, 2), 1) @test ptrace(M, 2) == ptrace(M, (2, 2), 2) @test ptranspose(M, 1) == ptranspose(M, (2, 2), 1) @test ptranspose(M, 2) == ptranspose(M, (2, 2), 2) @test ptrace(M) == ptrace(M, (2, 2), 2) @test ptranspose(M) == ptranspose(M, (2, 2), 2) end let M = [[1.0, im] [im, 1.0]] @test ptrace(M, (1, 2), 1) == M @test ptranspose(M, (1, 2), 1) == M @test ptrace(M, (1, 2), 2) == fill(tr(M), 1, 1) @test ptranspose(M, (1, 2), 2) == transpose(M) end end @testset "binent" begin @test binent(0.0) == 0.0 @test binent(0.5) == 1.0 @test binent(1.0) == 0.0 end @testset "purity, S_vn, S_renyi" begin let rho1 = I(4) / 4.0, rho2 = [[2.0, im] [-im, 2.0]] / 2.0, eigs2 = [1.0, 3.0] / 2.0 @test purity(rho1) == 0.25 @test purity(rho2) == sum(eigs2.^2) @test S_renyi(rho1, 0) == 2.0 @test S_renyi(rho2, 0) == 1.0 @test S_vn(rho1) == 2.0 @test S_vn(rho2) == -sum(eigs2 .* log2.(eigs2)) @test S_renyi(rho1) == 2.0 @test S_renyi(rho2) == -log2(sum(eigs2.^2)) @test S_renyi(rho1, Inf) == 2.0 @test S_renyi(rho2, Inf) == -log2(maximum(eigs2)) end end @testset "mutinf" begin let rho = diagm([3, 2, 1, 2]) / 8.0 @test isapprox(mutinf(rho), (1.5 - 5.0 * log2(5.0) / 8.0)) @test isapprox(mutinf(rho, S_renyi), (1.0 + 2.0 * log2(3.0) - log2(17.0))) end end @testset "spinflip, concurrence, concurrence_lb, formation, negativity" begin let rho = reshape(1.0:16.0, 4, 4), rho_f = [[16.0, -15.0, -14.0, 13.0] [-12.0, 11.0, 10.0, -9.0] [-8.0, 7.0, 6.0, -5.0] [4.0, -3.0, -2.0, 1.0]] @test spinflip(rho) == rho_f end let rho = zeros(4, 4) rho[1, 1] = 0.5 rho[4, 4] = 0.5 let C = concurrence(rho) @test spinflip(rho) == rho @test C == 0.0 @test concurrence_lb(rho) == 0.0 @test formation(C) == 0.0 @test negativity(rho) == 0.0 end end let rho = zeros(4, 4) rho[1, 1] = 0.125 for i in 2:3, j in 2:3 rho[i, j] = 0.375 end rho[4, 4] = 0.125 let C = concurrence(rho), a = (2 + sqrt(3.0)) / 4.0, b = (2 - sqrt(3.0)) / 4.0 @test spinflip(rho) == rho @test C == 0.5 @test concurrence_lb(rho) == sqrt(3.0)/4.0 @test formation(C) == -a * log2(a) - b * log2(b) @test negativity(rho) == log2(1.5) end end let rho = zeros(4, 4) for i in 2:3, j in 2:3 rho[i, j] = 0.5 end let C = concurrence(rho) @test spinflip(rho) == rho @test C == 1.0 @test concurrence_lb(rho) == 1.0 @test formation(C) == 1.0 @test negativity(rho) == 1.0 end end let rho = Matrix{ComplexF64}(undef, 4, 4) for i in 1:4 for j in 1:4 if i < j rho[i, j] = 0.0625im elseif i == j rho[i, j] = 0.25 else rho[i, j] = -0.0625im end end end let C = concurrence(rho), rho_f = copy(transpose(rho)) rho_f[1, 4] *= -1 rho_f[2, 3] *= -1 rho_f[3, 2] *= -1 rho_f[4, 1] *= -1 @test spinflip(rho) == rho_f @test C == 0.0 @test concurrence_lb(rho) == 0.0 @test formation(C) == 0.0 @test isapprox(negativity(rho), 0.0, atol=1e-15) end end end end
Qutilities
https://github.com/0/Qutilities.jl.git
[ "MIT" ]
0.2.0
9eb8d474c659d6cdf4c83d34d6673917fff8b1af
docs
1143
# Qutilities Assorted utilities for quantum information. Tested with Julia 1.3. ## Installation ``` pkg> add Qutilities ``` ## Examples ```julia julia> using Qutilities julia> rho = [[1, 0, 0, 0] [0, 3, 3, 0] [0, 3, 3, 0] [0, 0, 0, 1]]/8.0 4×4 Array{Float64,2}: 0.125 0.0 0.0 0.0 0.0 0.375 0.375 0.0 0.0 0.375 0.375 0.0 0.0 0.0 0.0 0.125 julia> ptrace(rho) 2×2 Array{Float64,2}: 0.5 0.0 0.0 0.5 julia> ptranspose(rho) 4×4 Array{Float64,2}: 0.125 0.0 0.0 0.375 0.0 0.375 0.0 0.0 0.0 0.0 0.375 0.0 0.375 0.0 0.0 0.125 julia> purity(rho) 0.59375 julia> S_renyi(rho, 0) 2.0 julia> S_vn(rho) 1.061278124459133 julia> S_renyi(rho) 0.7520724865564145 julia> S_renyi(rho, Inf) 0.4150374992788438 julia> mutinf(rho) 0.9387218755408671 julia> concurrence(rho) 0.5 julia> formation(rho) 0.35457890266527003 julia> negativity(rho) 0.5849625007211562 ``` ## Testing To run all the tests, activate the package before calling `test`: ``` pkg> activate . (Qutilities) pkg> test ``` ## License Provided under the terms of the MIT license. See `LICENSE` for more information.
Qutilities
https://github.com/0/Qutilities.jl.git
[ "MIT" ]
0.0.2
5b2502075691622572035a53ca1f852acad50e5d
code
677
using SortMark using Documenter DocMeta.setdocmeta!(SortMark, :DocTestSetup, :(using SortMark); recursive=true) makedocs(; modules=[SortMark], authors="Lilith Orion Hafner <60898866+LilithHafner@users.noreply.github.com> and contributors", repo="https://github.com/LilithHafner/SortMark.jl/blob/{commit}{path}#{line}", sitename="SortMark.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://LilithHafner.github.io/SortMark.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/LilithHafner/SortMark.jl", devbranch="main", )
SortMark
https://github.com/LilithHafner/SortMark.jl.git
[ "MIT" ]
0.0.2
5b2502075691622572035a53ca1f852acad50e5d
code
10278
module SortMark export make_df, compute!, reproduce, stat! using DataFrames: DataFrame, DataFrameRow using Random: shuffle, shuffle! using Base.Order using Base.Sort: Algorithm using Statistics using HypothesisTests using ProgressMeter include("print.jl") ## Types const Ints = [Int64, Int8, Int32, Int16, Int128] const UInts = unsigned.(Ints) const Floats = [Float64, Float32, Float16] const BitTypes = vcat(Ints, Floats, UInts, Char, Bool) matched_UInt(::Type{Float64}) = UInt64 matched_UInt(::Type{Float32}) = UInt32 matched_UInt(::Type{Float16}) = UInt16 matched_UInt(T::Type{<:Signed}) = unsigned(T) matched_UInt(T::Type{<:Unsigned}) = T matched_UInt(::Type{Char}) = UInt32 ## Special Values special_values(T) = T function special_values(T::Type{<:AbstractFloat}) U = matched_UInt(T) T[-π, -1.0, -1/π, 1/π, 1.0, π, -0.0, 0.0, Inf, -Inf, NaN, -NaN, prevfloat(T(0)), nextfloat(T(0)), prevfloat(T(Inf)), nextfloat(T(-Inf)), reinterpret(T, reinterpret(U, T(NaN)) | 0x73), reinterpret(T, reinterpret(U, -T(NaN)) | 0x37)] end function special_values(T::Type{<:Union{Signed, Unsigned}}) T[17, -T(17), 0, -one(T), 1, typemax(T), typemin(T), typemax(T)-1, typemin(T)+1] end special_values(T::Type{Bool}) = [true, false] bit_random(T::Type{Bool}, len::Integer) = rand(T, len) bit_random(T::Type, len::Integer) = reinterpret.(T, rand(matched_UInt(T), len)) ## Sources (perhaps chagne this to a module-level function with dispatch by symbol) const sources = Dict( :simple => (T, len) -> rand(T, len), :special => (T, len) -> rand(special_values(T), len), :tricky => (T, len) -> vcat( rand(special_values(T), len-2*(len÷3)), rand(T, len÷3), bit_random(T, len÷3)), :small_positive => (T::Type{<:Real}, len) -> rand(T.(1:min(1_000, typemax(T))), len) ) ## Lengths function lengths(min=1, max=100_000, spacing=3) length = 1+round(Integer, (log(max)-log(min))/log(spacing)) source = exp.(range(log(min), log(max), length=length)) sort!(collect(Set(round.(Integer, source)))) end ## Orders const orders = [Forward, Reverse] ##Data frame (this could be much faster if it constructed by column instead of row) """ make_df(algs = [MergeSort, QuickSort]; ...) Make a dataframe where each row is a sorting task specified by the cartesian product of keyword arguments. # Arguments - `algs::AbstractVector{<:Base.Sort.Algorithm} = [MergeSort, QuickSort]`: sorting algorithms to test - `unstable::AbstractVector{<:Base.Sort.Algorithm} = [QuickSort]`: which of the algorithms are allowed to be unstable Axes of the cartesian product - `Types::AbstractVector{<:Type} = SortMark.BitTypes`: element type - `lens::AbstractVector{<:Integer} = SortMark.lengths()`: number of elements to be sorted - `orders::AbstractVector{<:Ordering} = SortMark.orders`: orders to sort by - `sources::AbstractDict{<:Any, <:Function} = SortMark.sources`: generation procedures to create input data Benchmarking time - `seconds::Union{Real, Nothing} = .005`: maximum benchmarking time for each row. Compute sum(df.seconds) for an estimated benchmarking runtime - `samples::Union{Nothing, Integer} = nothing`: maximum number of samples for each row. Compute sum(df.seconds) for an estimated benchmarking runtime Setting `seconds` or `samples` to `nothing` removes that limit. """ function make_df(algs::AbstractVector{<:Algorithm} = [MergeSort, QuickSort]; Types::AbstractVector{<:Type} = BitTypes, lens::AbstractVector{<:Integer} = lengths(), orders::AbstractVector{<:Ordering} = orders, sources::AbstractDict{<:Any, <:Function} = sources, unstable = [QuickSort], seconds::Union{Real, Nothing} = .005, samples::Union{Integer, Nothing} = seconds==nothing ? 1 : nothing) df = DataFrame(ContainerType=Type{<:AbstractVector}[], Type=Type[], len=Int[], order=Ordering[], source_key=Symbol[], source=Function[], algs=Vector{<:Algorithm}[], unstable=Vector{<:Algorithm}[], evals=Int[], samples=Union{Nothing, Int}[], seconds=Union{Nothing, Float64}[], data=DataFrame[], errors=Dict[]) for Type in Types, len in lens, order in orders, (source_key, source) in pairs(sources) if source_key == :small_positive && !(Type <: Real); continue; end push!(df, (Vector, Type, len, order, source_key, source, algs, unstable, max(1, 1_000 ÷ max(len, 1)), samples, seconds, DataFrame([Float64[] for _ in algs], Symbol.(algs)), Dict())) end df end ##Compute data function target!(vec, alg, order) sort!(vec, alg=alg, order=order) end const PASSED_TESTS = Ref(0) """ compute!(df::DataFrame; verbose=true, fail_fast=true) Test and run benchmarks for every row in `df`. Benchmark results are saved in df.data. """ function compute!(df::DataFrame; verbose=true, fail_fast=true) start_time = time() benchmark_start_time = sum(sum(sum.(eachcol(d))) for d in df.data) start_passed_tests = PASSED_TESTS[] empty!.(df.errors) rows = shuffle(eachrow(df))#TODO make this appear immediately nominal_runtime = sum([s==nothing ? .001 : s for s in df.seconds]) dt = max(.1, min(1, nominal_runtime/100)) message = "$(round(Integer, nominal_runtime))s, Progress: " try @showprogress dt message for row in rows compute!(row, fail_fast) end catch printstyled("\nFailed test set stored as SortMark.fail. Reproduce it's error with reproduce().\n", color=Base.debug_color()) rethrow() end np, nf, ne = PASSED_TESTS[]-start_passed_tests, 0, 0 for dict in df.errors, vect in values(dict), err in vect if err isa AssertionError nf += 1 else ne += 1 end end end_time = time() benchmark_end_time = sum(sum(sum.(eachcol(d))) for d in df.data) if !all(isempty.(df.errors)) global fail = deepcopy(df[findfirst((!).(isempty.(df.errors))), :]) color = Base.error_color() printstyled("ERROR: Some tests did not pass: $np passed, $nf failed, $ne errored.\n", color=color) verbose && Print._print(df, np, end_time-start_time, benchmark_end_time-benchmark_start_time, color) printstyled("SortMark.fail is an example of a failed set of tests. Reproduce it's error with reproduce().\n", color=Base.debug_color()) elseif verbose Print._print(df, np, end_time-start_time, benchmark_end_time-benchmark_start_time, :normal) end df end function compute!(row::DataFrameRow, fail_fast=true) Base.require_one_based_indexing(row.algs) gen() = row.ContainerType(row.source(row.Type, row.len)) if row.samples == nothing && row.seconds == nothing println("WARNING: row=$row has unbounded samples=$samples and seconds=$seconds. Because of this absence of an end condition it will hang.") end sample = 1 start_time = time() while (row.samples == nothing || sample <= row.samples) && (row.seconds == nothing || time() < start_time+row.seconds) perm = shuffle!(collect(axes(row.algs, 1))) times = trial(row, row.algs[perm], [gen() for _ in 1:row.evals], fail_fast) push!(row.data, times[invperm(perm)]) sample += 1 end row end function trial(row, algs, inputs, fail_fast) Base.require_one_based_indexing(algs) stable_output = nothing test_index = rand(eachindex(inputs)) times = [] order = row.order for alg in algs cinputs = copy.(inputs) outputs = similar(inputs) t = @elapsed for i in eachindex(inputs, cinputs, outputs) try outputs[i] = target!(cinputs[i], alg, order) catch x log_error!(row, x, alg, copy(inputs[i]), fail_fast) end end push!(times, t/length(inputs)) try test_sorted(outputs[test_index], cinputs[test_index], inputs[test_index], row.order) if alg ∉ row.unstable if stable_output == nothing stable_output = outputs[test_index] else test_matched(stable_output, outputs[test_index]) end end catch x log_error!(row, x, alg, copy(inputs[test_index]), fail_fast) end end times end function test_sorted(output, cinput, input, order) @assert cinput === output PASSED_TESTS[] += 1 @assert issorted(output, order=order) PASSED_TESTS[] += 1 @assert typeof(input) == typeof(output) PASSED_TESTS[] += 1 @assert axes(input) == axes(output) PASSED_TESTS[] += 1 nothing end function test_matched(a, b) @assert all(a .=== b) PASSED_TESTS[] += 1 nothing end function log_error!(row, exception, alg, input, fail_fast) entry = (exception, input) if alg ∉ keys(row.errors) row.errors[alg] = [] end push!(row.errors[alg], entry) if fail_fast || exception isa InterruptException global fail = row throw(exception) end end fail = nothing function reproduce(row=fail, alg=nothing) if fail == nothing || isempty(row.errors) return "no errors" end if alg == nothing alg = first(keys(row.errors)) end x, input = first(row.errors[alg]) cinput = copy(input) println("sort!($cinput, "* (row.order != Forward ? "order=$(row.order), " : "")*"alg=$alg)") output = target!(cinput, alg, row.order) test_sorted(output, cinput, input, row.order) test_matched(output, sort(input, alg=MergeSort)) "no errors" end ##Statistics """ function stat!(df, a=1, b=2) Compute comparative stats for the `a`th and `b`th algorithm tested in `df`. Returns the 95% confidence interval for the ratio of runtimes a/b for each row. """ function stat!(df, a=1, b=2) df.log_test = [length(eachrow(d)) <= 1 ? missing : OneSampleTTest(d[!,a]-d[!,b]) for d in [log.(frame) for frame in df.data]] df.pvalue = [ismissing(t) ? missing : pvalue(t) for t in df.log_test] df.point_estimate = [ismissing(t) ? missing : exp(mean(confint(t))) for t in df.log_test] df.confint = [ismissing(t) ? missing : exp.(confint(t)) for t in df.log_test] end end #module
SortMark
https://github.com/LilithHafner/SortMark.jl.git
[ "MIT" ]
0.0.2
5b2502075691622572035a53ca1f852acad50e5d
code
1693
module Print pluralize(n::Real, name, plural="s", singular="") = "$n $(name)$(n != 1 ? plural : singular)" function and_join(strs::AbstractVector) if length(strs) == 0 "nothing" elseif length(strs) == 1 strs[1] elseif length(strs) == 2 join(strs, " and ") else join(strs[1:end-1], ", ") * ", and " * last(strs) end end function algs(df) algs = union(df.algs...) unstable = union(df.unstable...) and_join([alg ∈ unstable ? "$alg (unstable)" : "$alg" for alg in algs]) end function domain(df) and_join(collect(pluralize(length(unique(a)), n) * z for (a,n,z) in [ (df.ContainerType, "container type", ""), (df.Type, "element type", ""), (df.len, "length", " up to $(maximum(df.len))"), (df.order, "order", ""), (df.source, "distribution", ""), ])) end function silly_split(str::AbstractString, width=last(displaysize(stdout))) last_break=0 v = collect(str) while true i = last_break+width if i > length(v) return typeof(str)(v) end while true if i <= last_break return typeof(str)(v) end if v[i] == ' ' break end i -= 1 end v[i] = '\n' last_break = i end end function _print(df, passed_tests, time, benchmark_time, color) printstyled(silly_split("$(algs(df)) passed $(pluralize(passed_tests, "test")) spanning"* " $(domain(df)) in $(round(Integer, time))s. $(round(Integer, benchmark_time))s"* " ($(round(Integer, benchmark_time/time*100))%) spent in benchmarks.\n"), color=color) end end
SortMark
https://github.com/LilithHafner/SortMark.jl.git
[ "MIT" ]
0.0.2
5b2502075691622572035a53ca1f852acad50e5d
code
165
using SortMark df = make_df() skip = (df.Type .<: Union{UInt64,UInt128}) .& (df.source_key .== :small_positive) compute!(df[(!).(skip), :]) stat!(df) SortMark
SortMark
https://github.com/LilithHafner/SortMark.jl.git
[ "MIT" ]
0.0.2
5b2502075691622572035a53ca1f852acad50e5d
docs
8510
# SortMark <!-- [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://LilithHafner.github.io/SortMark.jl/stable) --> <!-- [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://LilithHafner.github.io/SortMark.jl/dev) --> [![Build Status](https://github.com/LilithHafner/SortMark.jl/workflows/CI/badge.svg)](https://github.com/LilithHafner/SortMark.jl/actions) [![Coverage](https://codecov.io/gh/LilithHafner/SortMark.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/LilithHafner/SortMark.jl) A package for efficiently benchmarking and testing sorting algorithms under a wide variety of conditions. Example usage: ```jl ]add https://github.com/LilithHafner/SortMark.jl using SortMark df = make_df(); #wow, what's goin on here? I whish this package were better documented. compute!(df); #this errors... what gives? #= 6s, Progress: 7%|███▉ | ETA: 0:00:11 Failed test set stored as SortMark.fail. Reproduce it's error with reproduce(). ERROR: AssertionError: issorted(output, order = order) Stacktrace: [1] log_error!(row::DataFrames.DataFrameRow{DataFrames.DataFrame, DataFrames.Index}, exception::AssertionError, alg::Base.Sort.QuickSortAlg, input::Vector{UInt128}, fail_fast::Bool) @ SortMark ~/.julia/dev/SortMark/src/SortMark.jl:238 [2] trial(row::DataFrames.DataFrameRow{DataFrames.DataFrame, DataFrames.Index}, algs::Vector{Base.Sort.Algorithm}, inputs::Vector{Vector{UInt128}}, fail_fast::Bool) @ SortMark ~/.julia/dev/SortMark/src/SortMark.jl:205 [3] compute!(row::DataFrames.DataFrameRow{DataFrames.DataFrame, DataFrames.Index}, fail_fast::Bool) @ SortMark ~/.julia/dev/SortMark/src/SortMark.jl:166 [4] macro expansion @ ~/.julia/dev/SortMark/src/SortMark.jl:109 [inlined] [5] macro expansion @ ~/.julia/packages/ProgressMeter/Vf8un/src/ProgressMeter.jl:940 [inlined] [6] compute!(df::DataFrames.DataFrame; verbose::Bool, fail_fast::Bool) @ SortMark ~/.julia/dev/SortMark/src/SortMark.jl:108 [7] compute!(df::DataFrames.DataFrame) @ SortMark ~/.julia/dev/SortMark/src/SortMark.jl:94 [8] top-level scope @ none:1 =# # And what's that fancily colored text above the error message? # hmm... "Failed test set stored as SortMark.fail" SortMark.fail #= DataFrameRow Row │ ContainerType Type len order source_key ⋯ │ Type… Type Int64 Ordering… Symbol ⋯ ─────┼────────────────────────────────────────────────────────────────────────────────────── 765 │ Vector{T} where T UInt64 3162 ReverseOrdering{ForwardOrdering}… small_positive ⋯ 8 columns omitted =# #So... I see we've got a problem for sorting arrays of 3162 small_positive unsigned 64-bit #integers into reverse order, whatever that means... Seems highly unlikely. Here, look: sort(rand(UInt64(0):UInt64(10), 3162), rev=true) #= 3162-element Vector{UInt64}: 0x0000000000000004 0x0000000000000002 0x0000000000000005 0x0000000000000007 0x0000000000000005 0x0000000000000003 0x0000000000000003 0x0000000000000007 ⋮ 0x0000000000000006 0x000000000000000a 0x0000000000000001 0x0000000000000000 0x0000000000000006 0x0000000000000007 0x0000000000000005 =# #wait a second, what the *** is happening?? #turns out this specific corner case for sorting is broken in julia. See https://github.com/JuliaLang/julia/pull/42718. #coolbeans, wow. It runs tests. But I don't care about this edge case, let me start benchmarking! compute!(df, fail_fast=false); julia> compute!(df, fail_fast=false); #= 6s, Progress: 100%|█████████████████████████████████████████████████| Time: 0:00:08 ERROR: Some tests did not pass: 237880 passed, 0 failed, 64 errored. Base.Sort.MergeSortAlg() and Base.Sort.QuickSortAlg() (unstable) passed 237880 tests spanning 1 container type, 15 element types, 11 lengths up to 100000, 2 orders, and 4 distributions in 9s. 3s (37%) spent in benchmarks. SortMark.fail is an example of a failed set of tests. Reproduce it's error with reproduce(). =# # Great! Errors. I love errors. Let's ignore them. Moving on... stat!(df); #what a generic name, what is going on here? df.pvalue #= 1298-element Vector{Union{Missing, Float64}}: 0.07382948536988579 0.08300533865888364 0.17255705413564795 0.043603017750311335 ⋮ 0.1296444186512252 0.2606328408111021 0.13892181597945655 0.21527141177932066 =# #we are comparing the runtime of two different soring algorithms: df.algs[1] #= 2-element Vector{Base.Sort.Algorithm}: Base.Sort.MergeSortAlg() Base.Sort.QuickSortAlg() =# #and those are the p-values indicating wheather we have a statistically significant difference. #those pvalues are too high for my analysis. Let's get more data. df.seconds .*= 10; #This will also make it take longer, oh well; more time to oggle at the beautiful loading bar courtesy of ProgressMeter.jl compute!(df, fail_fast=false); # fun fact, the old data is still here. We just add more! If you want to clear the data, make a new df! (later there might be a better way) #= 65s, Progress: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████| Time: 0:01:08 ERROR: Some tests did not pass: 2874132 passed, 0 failed, 780 errored. Base.Sort.MergeSortAlg() and Base.Sort.QuickSortAlg() (unstable) passed 2874132 tests spanning 1 container type, 15 element types, 11 lengths up to 100000, 2 orders, and 4 distributions in 69s. 23s (33%) spent in benchmarks. SortMark.fail is an example of a failed set of tests. Reproduce it's error with reproduce(). =# #Can we take a moment to look at the numbers that just printed, that's alot of tests running! and over quite a range of inputs. Only 33% of time spent benchmarking, that doesn't sound good. When I tried this with BenchmarkTools, though, t = @timed @benchmark sort(x) setup=(x=rand(10_000)); sum(t.value.times*1e-9)/t.time gives me a similar 37%. #Back to the data. We have to recompute stats stat!(df); df.pvalue #= 1298-element Vector{Float64}: 1.038512836886463e-6 1.4407708601335978e-12 0.00031705574988325153 2.1261920179458133e-25 ⋮ 0.16674400469382414 0.2926325656250292 0.2092427712164047 0.25919129227369314 =# # Okay some of those p-values are quite low. mean(df.pvalue .< .05) # 0.8828967642526965 # and most of them are significant. What is the speed ratio? df.point_estimate #= 1298-element Vector{Float64}: 1.520647201551295 1.4571719750761662 1.3179061226433113 1.436741386153265 ⋮ 1.012936243595496 1.0125157172530284 0.9624269936973555 1.0199318692241786 =# #looks like that ratio is either 1.5 or 1? who knows? and what's the certianty? df.confint #= 1298-element Vector{Tuple{Float64, Float64}}: (1.4132192824122347, 1.636241410206905) (1.4028173986436836, 1.513632613197085) (1.1469008134953327, 1.5144086809105701) (1.400298646448291, 1.4741325473114575) ⋮ (0.994382971723014, 1.0318356838024756) (0.9889886111508599, 1.036602511015198) (0.9052958042424497, 1.0231636044888415) (0.9849999662469475, 1.0561025923916885) =# #Better. Is MergeSort ever faster? minimum(last.(df.confint)) # 0.975616697789511 Apparently, but probably not by a huge amount. Let's investigate. df[minimum(last.(df.confint)) .== last.(df.confint), :] #= 1×17 DataFrame Row │ ContainerType Type len order source_key source algs ⋯ │ Type… Type Int64 Ordering… Symbol Function Array… ⋯ ─────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────── 1 │ Vector{T} where T Bool 10 ForwardOrdering() simple #1 Base.Sort.Algorithm[MergeSortAl ⋯ 11 columns omitted =# #Sorting 10 Bools... this is incredibly bizzare. Why would anyone do this? Why would we use comparison sorting? #What even is the p-value? findfirst(minimum(last.(df.confint)) .== last.(df.confint)) #1229 df.pvalues #0.009056184456237987 #See, that's only .01, and we were p-hacking. We'll just repeat a more fucused study with fresh data: empty!(df.data[1229]); df.seconds[1229] = 1 compute!(df[1229, :]); df.confint[1229] #(0.97468593850494, 0.9843292697105394) df.pvalue[1229] #1.971128265512963e-16 #Hmm... something is afoot... #etc. etc. ```
SortMark
https://github.com/LilithHafner/SortMark.jl.git
[ "MIT" ]
0.0.2
5b2502075691622572035a53ca1f852acad50e5d
docs
180
```@meta CurrentModule = SortMark ``` # SortMark Documentation for [SortMark](https://github.com/LilithHafner/SortMark.jl). ```@index ``` ```@autodocs Modules = [SortMark] ```
SortMark
https://github.com/LilithHafner/SortMark.jl.git
[ "BSD-3-Clause" ]
0.4.1
ccc61241a1b3b3e60145580de043ecb2d3a4d5bc
code
687
using SpectralInference using Documenter DocMeta.setdocmeta!(SpectralInference, :DocTestSetup, :(using SpectralInference); recursive=true) makedocs(; modules=[SpectralInference], authors="Benjamin Doran and collaborators", repo="https://github.com/aramanlab/SpectralInference.jl/blob/{commit}{path}#{line}", sitename="SpectralInference.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://aramanlab.github.io/SpectralInference.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/aramanlab/SpectralInference.jl", devbranch="main", )
SpectralInference
https://github.com/aramanlab/SpectralInference.jl.git
[ "BSD-3-Clause" ]
0.4.1
ccc61241a1b3b3e60145580de043ecb2d3a4d5bc
code
13707
module NewickTreeExt using SpectralInference, NewickTree using StatsBase: sample, mean using NewickTree: Node using NewickTree: prewalk, height, getpath using NewickTree: setdistance!, setsupport!, support, getpath """ getleafnames(t::NewickTree.Node) Get names of all the leafs with `t` as ancester """ SpectralInference.getleafnames(t::Node) = name.(getleaves(t)) """ getleafids(t::NewickTree.Node) Get IDs of all the leafs with `t` as ancester """ SpectralInference.getleafids(t::Node) = id.(getleaves(t)) # how to delete a newick tree node function Base.delete!(n::Node) p = parent(n) cs = children(n) for c in cs push!(p, c) end delete!(p, n) end """ network_distance(n::Node, m::Node) shortest traversal distance between two nodes sibling nodes would have network distance = 2 """ function SpectralInference.network_distance(n::Node, m::Node) p1, p2 = getpath(n, m) (length(p1) - 1) + (length(p2) - 1) end """ network_distances(t::Node) shortest traversal distance between all leafs with `t` as ancester sibling nodes would have network distance = 2 """ function SpectralInference.network_distances(tree::Node) leaves = getleaves(tree) dists = zeros(length(leaves), length(leaves)) for j in axes(dists, 2), i in (j+1):lastindex(dists, 1) dists[i, j] = network_distance(leaves[i], leaves[j]) dists[j, i] = dists[i, j] end return dists end """ patristic_distance(n::Node, m::Node) shortest branch length path between two nodes. sibling nodes `i`, and `j` of parent `p` would have patristic `distance(i, p) + distance(j, p)` """ function SpectralInference.patristic_distance(n::Node, m::Node) NewickTree.getdistance(n, m) end """ patristic_distances(t::Node) shortest branch length path between all leafs with `t` as ancester sibling nodes `i`, and `j` of parent `p` would have patristic `distance(i, p) + distance(j, p)` """ function SpectralInference.patristic_distances(tree::Node) leaves = getleaves(tree) dists = zeros(length(leaves), length(leaves)) for j in axes(dists, 2), i in (j+1):lastindex(dists, 1) dists[i, j] = patristic_distance(leaves[i], leaves[j]) dists[j, i] = dists[i, j] end return dists end """ fscore_precision_recall(reftree, predictedtree) fscore, precision, and recall of branches between the two trees """ function SpectralInference.fscore_precision_recall(reftree::Node, predtree::Node; β=1.0) truesplits = keys(_tally_tree_bifurcations(reftree)) predsplits = keys(_tally_tree_bifurcations(predtree)) compsplits = [k for k in truesplits] .== permutedims([k for k in predsplits]) precision = mean(sum(compsplits; dims=1)) recall = mean(sum(compsplits; dims=2)) fscore = (1 + β) * (precision * recall) / (β * precision + recall) return fscore, precision, recall end """ tally_tree_bifurcations(rootnode::AbstractTree, [cntr::Accumulator]) returns tally of leaf groups based on splitting tree at each internal node assumes nodenames are strings parsible to integers, and returns Accumulator with key as a string: `1110000` where 1 = belonging to smaller group & 0 = belonging to the larger. values are the number of times this split is observed. cntr is modified in place so using the same counter in multiple calls will keep a tally across multiple trees """ function _tally_tree_bifurcations(tree::Node, cntr=Dict{BitVector,Int}(); countroot=true) leafnames = sort(getleafnames(tree)) nleaves = length(leafnames) for node in prewalk(tree) # only internal nodes isleaf(node) && continue !countroot && isroot(node) && continue # get leaves key = zeros(Bool, nleaves) subsetleaves = indexin(getleafnames(node), leafnames) key[subsetleaves] .= true # convert to bitstring true := smaller cluster keystr = sum(key) <= nleaves / 2 ? key : .!key cntr[keystr] = 1 + get(cntr, keystr, 0) end cntr end """ cuttree(distfun::Function, tree::NewickTree.Node, θ) returns all vector of Nodes where distance to root is greater than theta `d > θ`. distance function must take to NewickTree.Node objects and compute a scaler distance between them. """ function SpectralInference.cuttree(distfun::Function, tree::Node, θ) θ ≤ distfun(tree, tree) && return [tree] ns = typeof(tree)[] # define tree traversal function walk!(n, t) distn = distfun(n, t) distp = distfun(parent(n), t) # if edge crosses θ then add current node if distp ≤ θ < distn push!(ns, n) return # if node is leaf an within θ add as singlet cluster elseif isleaf(n) && distn ≤ θ push!(ns, n) return # otherwise continue taversing tree else !isleaf(n) && for c in n.children walk!(c, t) end return end end # actually taverse the tree for c in tree.children walk!(c, tree) end return ns end """ mapnodes(fun::Function, tree::NewickTree.Node, args...; filterfun::Function=x->true, kwargs...) maps function `fun()` across internal nodes of tree. args and kwargs are passed to `fun()` """ function SpectralInference.mapnodes(fun::Function, tree::Node, args...; filterfun::Function=x -> true, kwargs...) results = Vector() for (i, node) in enumerate(prewalk(tree)) # only internal nodes filterfun(node) || continue # run function push!(results, fun(node, args...; kwargs...)) end return results end """ mapinternalnodes(fun::Function, tree::NewickTree.Node, args...; kwargs...) maps function `fun()` across internal nodes of tree. args and kwargs are passed to `fun()` """ function SpectralInference.mapinternalnodes(fun::Function, tree::Node, args...; kwargs...) results = Vector() for (i, node) in enumerate(prewalk(tree)) # only internal nodes isleaf(node) && continue # run function push!(results, fun(node, args...; kwargs...)) end return results end """ maplocalnodes(fun::Function, tree::NewickTree.Node, args...; kwargs...) maps function `fun()` across internal nodes of tree conditioned on having one direct child that is a leaf. args and kwargs are passed to `fun()` """ function SpectralInference.maplocalnodes(fun::Function, tree::Node, args...; kwargs...) results = Vector() for (i, node) in enumerate(prewalk(tree)) # only internal nodes isleaf(node) && continue # only nodes that have a leaf as child all(.!isleaf.(children(node))) && continue # run function push!(results, fun(node, args...; kwargs...)) end return results end """ collectiveLCA(nodes) finds last common ancester of a collection of Nodes """ function SpectralInference.collectiveLCA(nodes::AbstractArray{<:NewickTree.Node}) lca = map(b -> NewickTree.getlca(nodes[1], b), nodes[2:end]) idx = argmin(NewickTree.height.(lca)) lca[idx] end """ as_polytomy(fun::Function, tree::NewickTree.Node) as_polytomy!(fun::Function, tree::NewickTree.Node) removes internal nodes from tree based on `fun()` which must return true if node is to be removed by default removes zero length branches (i.e. nodes where distance between child and parent == 0) """ function SpectralInference.as_polytomy(fun::Function, tree::Node) tree_new = deepcopy(tree) as_polytomy!(fun, tree_new) tree_new end function SpectralInference.as_polytomy!(fun::Function, tree::Node) for n in filter(fun, prewalk(tree)) !isroot(n) && !isleaf(n) && delete!(n) end end """ ladderize!(tree, rev=false) sorts children of each node by number of leaves descending from the child in ascending order. """ function SpectralInference.ladderize!(t; rev=false) function walk!(n) if isleaf(n) return 1 else numleaves = [walk!(c) for c in children(n)] n.children .= n.children[sortperm(numleaves, rev=rev)] return sum(numleaves) end end walk!(t) end """ spectral_lineage_encoding(tree::Node, orderedleafnames=getleafnames(tree); filterfun=x->true) returns vector of named tuples with the id `nodeid` of the node and `sle` a vector of booleans ordered by `orderedleafnames` where true indicates the leaf descends from the node and false indicates that it does not. """ function SpectralInference.spectral_lineage_encoding(tree::Node, orderedleafids=getleafids(tree); filterfun=x -> true) map(filter(filterfun, prewalk(tree))) do node tmp = falses(length(orderedleafids)) tmp[indexin(getleafids(node), orderedleafids)] .= true nodeid = id(node) (; nodeid, sle=tmp) end end """ pairedMI_across_treedepth(metacolumns, metacolumns_ids, tree) pairedMI_across_treedepth(metacolumns, metacolumns_ids, compare::Function=(==), tree::Node; ncuts=100, bootstrap=false, mask=nothing) iterates over each metacolumn and calculates MI between the paired elements of the metacolumn and the paired elements of tree clusters. Args: * metacolumns: column iterator, can be fed to `map(metacolumns)` * metacolumn_ids: ids for each element in the metacolumn. should match the leafnames of the tree, but not necessarily the order. * tree: NewickTree tree * compare: function used to calculate similarity of two elements in metacolumn. Should be written for each element as it will be broadcast across all pairs. Returns: * (; MI, treedepths) * MI: Vector{Vector{Float64}} MI for each metacolumn and each tree depth * treedepths Vector{<:Number} tree depth (away from root) for each cut of the tree """ function SpectralInference.pairedMI_across_treedepth(metacolumns, metacolumn_ids, tree::Node; comparefun::Function=(==), treecut_distancefun::Function=network_distance, ncuts=100, bootstrap=false, mask=nothing) clusts, treedepths = clusters_per_cutlevel(treecut_distancefun, tree, ncuts) clust_names = getleafnames(tree) MI = map(metacolumns) do mcol pmcol = comparefun.(mcol, permutedims(mcol)) _collectMI_across_treedepth(clusts, clust_names, metacolumn_ids, pmcol; bootstrap, mask) end (; MI, treedepths) end """ clusters_per_cutlevel(distfun::Function, tree::Node, ncuts::Number) Returns: * clusts: vector of cluster-memberships. each value indicates the cluster membership of the leaf at that cut. leaves are ordered in prewalk order within each membership vector * treedepths: distance from root for each of the `ncuts` """ function SpectralInference.clusters_per_cutlevel(distfun::Function, tree::Node, ncuts::Number) minmax = extrema(maplocalnodes(distfun, tree, tree)) treedepths = range(zero(first(minmax)), minmax[2], length=ncuts) clusts_nodes = [cuttree(distfun, tree, cut) for cut in treedepths] clustmappings = map(c -> getleafnames.(c), clusts_nodes) clusts = [Int.(vcat([zeros(length(c)) .+ j for (j, c) in enumerate(clustmapping)]...)) for clustmapping in clustmappings] (; clusts, treedepths) end function _collectMI_across_treedepth(clusts, clust_names, IDS, ptax; bootstrap=false, mask=nothing) uppertriangle = triu(trues(size(ptax)), 1) uppertriangle = isnothing(mask) ? uppertriangle : uppertriangle[mask, mask] clustorder = indexin(IDS, clust_names) # ptax = if isnothing(mask) ptax[uppertriangle] else ptax[mask, mask][uppertriangle] end map(clusts) do cids ptax, mask, clustorder, uppertriangle pcids = cids[clustorder] .== permutedims(cids[clustorder]) pcids = if isnothing(mask) pcids else pcids[mask, mask] end wptax = if isnothing(mask) ptax else ptax[mask, mask] end pcids = pcids[uppertriangle] wptax = wptax[uppertriangle] if bootstrap vals_idx = sample(axes(pcids, 1), length(pcids), replace=true) pcids = pcids[vals_idx] wptax = wptax[vals_idx] end empiricalMI(wptax, pcids) end end using PrecompileTools @setup_workload begin @compile_workload begin N = 10 for T in [Float64, Float32, Int64, Int32] m = rand(T, N, N) usv = svd(m) dij = spectraldistances(usv.U, usv.S, getintervals(usv.S)) hc = UPGMA_tree(dij) tree = readnw(newickstring(hc, string.(1:N))) leafnames = getleafnames(tree) network_distances(tree) patristic_distances(tree) fscore_precision_recall(tree, tree) == (1.0, 1.0, 1.0) cuttree(network_distance, tree, 0.0) collectiveLCA(getleaves(tree)) as_polytomy(n -> NewickTree.support(n) < 0.5, tree) mi, treedepths = pairedMI_across_treedepth((; a=rand(Bool, N), b=rand([1, 0], N)), leafnames, tree; ncuts=5) mi, treedepths = pairedMI_across_treedepth((; a=rand(UInt16, N), b=rand(Float64, N)), leafnames, tree; ncuts=5, comparefun=(x, y) -> abs(x - y)) mi, treedepths = pairedMI_across_treedepth((; a=rand(UInt16, N), b=rand(Float64, N)), leafnames, tree; treecut_distancefun=patristic_distance, ncuts=5, comparefun=(x, y) -> abs(x - y)) leafids = getleafids(tree) spectral_lineage_encoding(tree) spectral_lineage_encoding(tree, leafids) spectral_lineage_encoding(tree; filterfun=!isleaf) spectral_lineage_encoding(tree, leafids; filterfun=!isleaf) end end end end # module
SpectralInference
https://github.com/aramanlab/SpectralInference.jl.git
[ "BSD-3-Clause" ]
0.4.1
ccc61241a1b3b3e60145580de043ecb2d3a4d5bc
code
1433
module SpectralInference using Reexport using StatsBase: indicatormat, quantile, cor, fit, Histogram, entropy using Distances: Distances, WeightedEuclidean using Clustering: Clustering, hclust, Hclust using SparseArrays: sparse using LinearAlgebra: svd, SVD using Printf: @sprintf using FreqTables: freqtable using CategoricalArrays: cut @reexport using LinearAlgebra @reexport using Clustering: hclust const ALPHA = 1.0 const QUANT = 0.5 export spectraldistances, spectraldistances_trace, spectralcorrelations, getintervalsIQR, getintervals, projectinLSV, projectinRSV, projectout, UPGMA_tree, newickstring include("core.jl") export explainedvariance, scaledcumsum, distancetrace_spaceneeded, distancematrix_spaceneeded, squareform include("helpers.jl") export empiricalMI, adjustedrandindex, vmeasure_homogeneity_completeness include("empiricalMI.jl") export readphylip, onehotencode include("parsephylip.jl") # extension functions export getleafnames, getleafids, network_distance, network_distances, patristic_distance, patristic_distances, fscore_precision_recall, cuttree, mapnodes, mapinternalnodes, maplocalnodes, collectiveLCA, as_polytomy, as_polytomy!, pairedMI_across_treedepth, clusters_per_cutlevel, ladderize!, spectral_lineage_encoding include("treefunctions.jl") include("precompile_workload.jl") end
SpectralInference
https://github.com/aramanlab/SpectralInference.jl.git
[ "BSD-3-Clause" ]
0.4.1
ccc61241a1b3b3e60145580de043ecb2d3a4d5bc
code
9868
""" getintervals(S::AbstractVector{<:Number}; alpha=1.0, q=0.5) finds spectral partitions. Computes log difference between each subsequent singular value and by default selects the differences that are larger than `1.0 * Q2(differences)` i.e. finds breaks in the spectrum that explain smaller scales of variance Args: * S: singular values of a SVD factorization * alpha: scalar multiple of `q` * q: which quantile of log differences to use; by default Q2 Returns: * AbstractVector{UnitRange} indices into S corresponding to the spectral partitions """ function getintervals(S::AbstractVector{<:Number}; alpha=1.0, q=0.5) potentialbreaks = abs.(diff(log.(S .+ 1))) θ = alpha * quantile(potentialbreaks, q) breaks = findall(potentialbreaks .> θ) .+ 1 starts, ends = vcat(1, breaks), vcat(breaks .- 1, length(S)) intervals = map((s, e) -> s:e, starts, ends) return intervals end """ getintervals_IQR(S::AbstractVector{<:Number}; alpha=1.5, ql=.25, qh=.75) finds spectral partitions. Computes log difference between each subsequent singular value and by default selects the differences that are larger than `1.5 * IQR(differences)` i.e. finds breaks in the spectrum that explain smaller scales of variance Args: * S: singular values of a SVD factorization * alpha: scalar multiple of `q` * q: which quantile of log differences to use; by default Q3 Returns: * AbstractVector{UnitRange} indices into S corresponding to the spectral partitions """ function getintervalsIQR(S::AbstractVector{<:Number}; alpha=1.5, ql=0.25, qh=0.75) potentialbreaks = abs.(diff(log.(S .+ 1))) Q1, Q3 = quantile(potentialbreaks, [ql, qh]) θ = Q3 + alpha * (Q3 - Q1) breaks = findall(potentialbreaks .> θ) .+ 1 starts, ends = vcat(1, breaks), vcat(breaks .- 1, length(S)) intervals = map((s, e) -> s:e, starts, ends) return intervals end """ spectraldistances(A::AbstractMatrix; [onrows=true, alpha=1.0, q=0.5]) spectraldistances(usv::SVD; [onrows=true, alpha=1.0, q=0.5]) spectraldistances(vecs::AbstactMatrix, vals::AbstractMatrix, intervals::AbstractVector{<:UnitRange}) computes the cumulative spectral residual distance for spectral phylogenetic inference ```(∑_{p ∈ P} ||UₚΣₚ||₂)²``` where ``P`` are the spectral partitions found with `getintervals`. Args: * A, usv: AbstractMatrix or SVD factorization (AbstractMatrix is passed to `svd()` before calculation) * onrows: if true will compute spectral distances on the left singular vectors (U matrix), if false will calculate on the right singular vectors or (V matrix) * alpha, q: are passed to `getintervals()` see its documentation Returns: * distance matrix """ function spectraldistances(A::AbstractMatrix{<:Number}; onrows=true::Bool, alpha=ALPHA, q=QUANT) spectraldistances(svd(A); onrows, alpha, q) end function spectraldistances(usv::SVD; onrows=true::Bool, alpha=ALPHA, q=QUANT) if onrows spectraldistances(usv.U, usv.S; alpha, q) else spectraldistances(usv.V, usv.S; alpha, q) end end function spectraldistances(vecs::AbstractMatrix{<:T}, vals::AbstractVector{<:T}; alpha=ALPHA, q=QUANT) where {T<:Number} intervals = getintervals(vals; alpha, q) spectraldistances(vecs, vals, intervals) end function spectraldistances(vecs::AbstractMatrix{<:T}, vals::AbstractVector{<:T}, intervals::AbstractVector) where {T<:Number} spimtx = zeros(size(vecs, 1), size(vecs, 1)) for grp in intervals spimtx += Distances.pairwise(WeightedEuclidean(vals[grp]), vecs'[grp, :]; dims=2) end return spimtx .^ 2 end """ spectraldistances_trace(usv::SVD; onrows=true, groups=nothing, alpha=1.0, q=0.5) spectraldistances_trace(vecs, vals, groups) calculates spectral residual within each partition of spectrum and each pair of taxa returns matrix where rows are spectral partitions and columns are taxa:taxa pairs ordered as the upper triangle in rowwise order, or lower triangle in colwise order. Args: * method: `spectraldistances_trace(vecs, vals, groups)` * vecs: either usv.U or usv.V matrix * vals: usv.S singular values vector * groups: usually calculated with `getintervals(usv.S; alpha=alpha, q=q)` * method: `spectraldistances_trace(usv::SVD; onrows=true, groups=nothing, alpha=1.0, q=0.5)` * usv: SVD object * onrows: true/false switch to calculate spectral distance on rows (U matrix) or columns (V matrix). * groups: if nothing groups are calculated with `getintervals(usv.S; alpha=alpha, q=q)`, otherwise they assume a vector of index ranges `[1:1, 2:3, ...]` to group `usv.S` with. * alpha: passed to `getintervals` * q: passed to `getintervals` """ function spectraldistances_trace(usv::SVD; onrows=true, groups=nothing, alpha=ALPHA, q=QUANT) groups = isnothing(groups) ? getintervals(usv.S; alpha=alpha, q=q) : groups vecs = onrows ? usv.U : usv.V r = zeros(length(groups), binomial(size(vecs, 1), 2)) spectraldistances_trace!(r, vecs, usv.S, groups) return r end function spectraldistances_trace(vecs, vals, groups) Nsmps = size(vecs, 1) r = zeros(length(groups), binomial(Nsmps, 2)) spectraldistances_trace!(r, vecs, vals, groups) return r end function spectraldistances_trace!(r, vecs, vals, groups) Nsmps = size(vecs, 1) for (k, (i, j)) in enumerate(((i, j) for j in 1:Nsmps for i in (j+1):Nsmps)) for (g, grp) in enumerate(groups) r[g, k] = WeightedEuclidean(vals[grp])(vecs'[grp, i], vecs'[grp, j]) end end end """ projectinLSV(data::AbstractArray{T}, usv::SVD{T}, [window]) returns estimated left singular vectors (aka: LSV or Û) for new data based on already calculated SVD factorization """ projectinLSV(data::AbstractArray, usv::SVD) = data * usv.V * inv(diagm(usv.S)) projectinLSV(data::AbstractArray, usv::SVD, window) = data * usv.V[:, window] * inv(diagm(usv.S[window])) """ projectinRSV(data::AbstractArray, usv::SVD, [window]) returns estimated transposed right singular vectors (RSV or V̂ᵗ) for new data based on already calculated SVD factorization """ projectinRSV(data::AbstractArray, usv::SVD) = inv(diagm(usv.S)) * usv.U' * data projectinRSV(data::AbstractArray, usv::SVD, window) = inv(diagm(usv.S[window])) * usv.U'[window, :] * data """ projectout(usv::SVD, [window]) recreates original matrix i.e. calculates ``UΣV'`` or if window is included creates a spectrally filtered version of the original matrix off of the provided components in `window`. i.e., `usv.U[:, window] * diagm(usv.S[window]) * usv.Vt[window, :]` """ projectout(usv::SVD) = usv.U * diagm(usv.S) * usv.Vt projectout(usv::SVD, window) = usv.U[:, window] * diagm(usv.S[window]) * usv.Vt[window, :] """ UPGMA_tree(Dij::AbstractMatrix{<:Number}) shorthand for `Clustering.hclust(Dij, linkage=:average, branchorder=:optimal)` """ function UPGMA_tree(Dij::AbstractMatrix{<:Number}) Clustering.hclust(Dij, linkage=:average, branchorder=:optimal) end """ calc_spcorr_mtx(vecs::AbstractMatrix{<:Number}, window) calc_spcorr_mtx(vecs::AbstractMatrix{<:Number}, vals::AbstractVector{<:Number}, window) Calculates pairwise spectral (pearson) correlations for a set of observations. Args: * vecs: set of left or right singular vectors with observations/features on rows and spectral components on columns * vals: vector of singular values * window: set of indices of `vecs` columns to compute correlations across Returns: * correlation matrix where each pixel is the correlation between a pair of observations """ function spectralcorrelations(vecs::AbstractMatrix{<:Number}, window) cor(vecs[:, window]') end function spectralcorrelations(vecs::AbstractMatrix{<:Number}, vals::AbstractVector{<:Number}, window) contributions = vecs[:, window] * diagm(vals[window]) cor(contributions') end """ newickstring(hc::Hclust[, tiplabels::AbstractVector[<:String]]) convert Hclust to newick tree string Args: * hc: `Hclust` object from Clustering package * tiplabels: `AbstractVector{<:String}` names in same order as distance matrix Returns: * [newick tree](https://en.wikipedia.org/wiki/Newick_format) formated string """ newickstring(hc::Hclust; labelinternalnodes=false) = newickstring(hc, string.(1:length(hc.order)); labelinternalnodes) newickstring(hc::Hclust, tiplabels::AbstractVector{<:Symbol}; labelinternalnodes=false) = newickstring(hc, string.(tiplabels); labelinternalnodes) function newickstring(hc::Hclust, tiplabels::AbstractVector{<:AbstractString}; labelinternalnodes=false) r = length(hc.heights) _newickstring(view(hc.merges, :, :), view(hc.heights, :), r, r, view(tiplabels, :); labelinternalnodes) * ";" end function _newickstring(merges::A, heights::B, i::C, p::C, tiplabels::D; labelinternalnodes=false)::String where { A<:AbstractArray{<:Integer},B<:AbstractVector{<:AbstractFloat}, C<:Integer,D<:AbstractVector{<:AbstractString} } j::Int64 = merges[i, 1] # left subtree pointer k::Int64 = merges[i, 2] # right subtree pointer a::String = if j < 0 # if tip format tip tiplabels[abs(j)] * ':' * @sprintf("%e", heights[i]) else # recurse and format internal node _newickstring(view(merges, :, :), view(heights, :), j, i, view(tiplabels, :); labelinternalnodes) end b::String = if k < 0 # if tip format tip tiplabels[abs(k)] * ':' * @sprintf("%e", heights[i]) else # recurse and format internal node _newickstring(view(merges, :, :), view(heights, :), k, i, view(tiplabels, :); labelinternalnodes) end nid = labelinternalnodes ? "node" * string(length(heights) + i + 1) : "" dist = @sprintf("%e", heights[p] - heights[i]) _newick_merge_strings(a, b, nid, dist) end function _newick_merge_strings(a::S, b::S, n::S, d::S) where {S<:String} '(' * a * ',' * b * ')' * n * ':' * d end
SpectralInference
https://github.com/aramanlab/SpectralInference.jl.git
[ "BSD-3-Clause" ]
0.4.1
ccc61241a1b3b3e60145580de043ecb2d3a4d5bc
code
7017
### MI functions ### """ empiricalMI(a::AbstractVector{<:Float}, b::AbstractVector{<:Float}[, nbins=50, normalize=false]) computes empirical MI from identity of ``H(a) + H(b) - H(a,b)``. where ``H := -sum(p(x)*log(p(x))) + log(Δ)`` the ``+ log(Δ)`` corresponds to the log binwidth and unbiases the entropy estimate from binwidth choice. estimates are roughly stable from ``32`` (``32^2 ≈ 1000`` total bins) to size of sample. going from a small undersestimate to a small overestimate across that range. We recommend choosing the `sqrt(mean(1000, samplesize))` for `nbins` argument, or taking a few estimates across that range and averaging. Args: * a, vecter of length N * b, AbstractVector of length N * nbins, number of bins per side, use 1000 < nbins^2 < length(a) for best results * base, base unit of MI (defaults to nats with base=ℯ) * normalize, bool, whether to normalize with mi / mean(ha, hb) Returns: * MI """ function empiricalMI(a::AbstractVector{T}, b::AbstractVector{T}; nbins=50, base=ℯ, normalize=false) where {T<:AbstractFloat} # num samples marginal then total N = length(a) breaks_a = range(minimum(a), maximum(a), length=nbins) breaks_b = range(minimum(b), maximum(b), length=nbins) ab_counts = fit(Histogram, (a, b), (breaks_a, breaks_b)).weights a_counts = sum(ab_counts; dims=1) b_counts = sum(ab_counts; dims=2) # frequency afreq = vec((a_counts) ./ (N)) bfreq = vec((b_counts) ./ (N)) abfreq = vec((ab_counts) ./ (N)) Δ_a = breaks_a[2] - breaks_a[1] Δ_b = breaks_b[2] - breaks_b[1] # approx entropy ha = entropy(afreq, base) + log(base, Δ_a) hb = entropy(bfreq, base) + log(base, Δ_b) hab = entropy(abfreq, base) + log(base, Δ_a * Δ_b) # mi mi = ha + hb - hab mi = normalize ? 2mi / (ha + hb) : mi # return (mi = mi, ha = ha, hb = hb, hab = hab) return mi end # value grouped by binary catagory function empiricalMI(ab::AbstractVector{F}, mask::M; nbins=100, base=ℯ, normalize=false) where {F<:Number,M<:Union{BitVector,AbstractVector{<:Bool}}} length(ab) == length(mask) || throw(ArgumentError("length of vals and meta must match; got vals=$(length(vals)), meta=$(length(meta))")) # num samples marginal then total N = length(ab) Na, Nb = sum(mask), (length(mask) - sum(mask)) mask = Bool.(mask) # if mask is not grouping than there is no added information Na > 0 && Nb > 0 || return mi = 0.0 ## otherwise ## # form edges edges = range(minimum(ab), maximum(ab), length=nbins) # fit hist and get counts a_counts = fit(Histogram, ab[mask], edges).weights b_counts = fit(Histogram, ab[.!mask], edges).weights ab_counts = a_counts .+ b_counts # get binwidth Δ = edges[2] - edges[1] # frequency afreq = vec((a_counts) ./ (Na)) #Δ/Δ bfreq = vec((b_counts) ./ (Nb)) #Δ/Δ abfreq = vec((ab_counts) ./ (N)) #Δ/Δ # approx entropy ha = entropy(afreq, base) + log(base, Δ) hb = entropy(bfreq, base) + log(base, Δ) hab = entropy(abfreq, base) + log(base, Δ) # mi mi = hab - (Na / N * ha + Nb / N * hb) # original had flipped signs # return (mi = mi, ha = ha, hb = hb, hab = hab) mi = normalize ? 2mi / (ha + hb) : mi return mi end # value grouped by multiple categories function empiricalMI(a::AbstractVector{V}, b::AbstractVector{M}; nbins=100, kwargs...) where {V<:AbstractFloat,M<:AbstractString} binned_a, a_bw = _bin_numbers(a, nbins) empiricalMI(binned_a, b; bw_a=a_bw, kwargs...) end # discrete catagories empiricalMI(a::BitVector, b::BitVector; kwargs...) = empiricalMI(Int.(a), Int.(b); kwargs...) function empiricalMI(a::AbstractVector{T}, b::AbstractVector{T}; bw_a=1.0, bw_b=1.0, base=ℯ, normalize=false) where {T<:Union{Integer,AbstractString}} counts = freqtable(a, b) N = sum(counts) Ha = entropy(sum(counts, dims=2) ./ N, base) + log(base, bw_a) Hb = entropy(sum(counts, dims=1) ./ N, base) + log(base, bw_b) Hab = entropy(counts ./ N, base) + log(base, bw_a * bw_b) mi = Ha + Hb - Hab mi = normalize ? 2mi / (Ha + Hb) : mi end _bin_numbers(v::AbstractVector{<:AbstractString}, nbins) = v, 1.0 _bin_numbers(v::AbstractVector{<:Integer}, nbins) = string.(v), 1.0 function _bin_numbers(v::AbstractVector{<:Number}, nbins) breaks = range(minimum(v), maximum(v), length=nbins) delta = breaks[2] - breaks[1] binned_v = cut(v, breaks; extend=true) return string.(binned_v), delta end """ vmeasure_homogeneity_completeness(labels_true, labels_pred; β=1.) calculates and returns v-measure, homogeneity, completeness; similar to f-score, precision, and recall respectively Args: * β, weighting term for v-measure, if β is greater than 1 completeness is weighted more strongly in the calculation, if β is less than 1, homogeneity is weighted more strongly Citation: * A. Rosenberg, J. Hirschberg, in Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL) (Association for Computational Linguistics, Prague, Czech Republic, 2007; https://aclanthology.org/D07-1043), pp. 410–420. """ function vmeasure_homogeneity_completeness(labels_true, labels_pred; β=1.0) if length(labels_true) == 0 return 1.0, 1.0, 1.0 end N = length(labels_true) entropy_C = entropy(freqtable(labels_true) ./ N) entropy_K = entropy(freqtable(labels_pred) ./ N) entropy_CK = entropy(freqtable(labels_true, labels_pred) ./ N) MI = entropy_C + entropy_K - entropy_CK homogeneity = entropy_C != 0.0 ? (MI / entropy_C) : 1.0 completeness = entropy_K != 0.0 ? (MI / entropy_K) : 1.0 if homogeneity + completeness == 0.0 v_measure_score = 0.0 else v_measure_score = ( (1 + β) * homogeneity * completeness / (β * homogeneity + completeness) ) end return v_measure_score, homogeneity, completeness end """ adjustedrandindex(a::AbstractVector{<:Number}, b::AbstractVector{<:Number}; nbins=50) Args: * a, vector of numbers * b, vector of numbers * nbins, for continuous approximates discrete, for discrete choose nbins>max_number_of_classes """ function adjustedrandindex(a::AbstractVector{<:Number}, b::AbstractVector{<:Number}; nbins=50) # num samples marginal then total N = length(a) ab = vcat(a, b) breaks = range(minimum(ab), maximum(ab), length=nbins) # contingency and marginal counts ab_counts = fit(Histogram, (a, b), (breaks, breaks)).weights a_counts = sum(ab_counts; dims=1) b_counts = sum(ab_counts; dims=2) # count possible pairs contingentpairs = sum(binomial.(abcounts, 2)) a_pairs = sum(binomial.(a_counts, 2)) b_pairs = sum(binomial.(b_counts, 2)) possiblepairs = binomial(N, 2) expectedpairs = a_pairs * b_pairs / possiblepairs # calculate ARI return (contingentpairs - expectedpairs) / ((a_pairs + b_pairs) / 2 - expectedpairs) # ARI end
SpectralInference
https://github.com/aramanlab/SpectralInference.jl.git
[ "BSD-3-Clause" ]
0.4.1
ccc61241a1b3b3e60145580de043ecb2d3a4d5bc
code
3519
""" scaledcumsum(c; dims=1) cumsum divided by maximum cumulative value """ function scaledcumsum(c; dims=1) cc = cumsum(c, dims=dims) cc ./ maximum(cc, dims=dims) end """ explainedvariance(s::AbstractVector{<:Number}) """ function explainedvariance(s::AbstractVector{<:Number}) s .^ 2 / sum(s .^ 2) end """ distancetrace_spaceneeded(n, p; bits=64) = Base.format_bytes(binomial(n,2) * p * bits) how much memory is needed to store spectral residual trace Args: * n: number of samples * p: number of partitions/components """ distancetrace_spaceneeded(n, p; bits=64) = Base.format_bytes(binomial(n, 2) * p * bits) """ distancematrix_spaceneeded(n, p; bits=64) = Base.format_bytes(binomial(n,2) * p * bits) how much memory is needed to store distance matrix Args: * n: number of samples """ distancematrix_spaceneeded(n; bits=64) = Base.format_bytes(n^2 * bits) """ pairwise(func::Function, m::AbstractMatrix) returns the lower columnwise offdiagonal of `result[k] = func(i, j)` where k is the kth pair and i and j are the ith and kth columns of m calculated from `enumerate(((i, j) for j in axes(m, 2) for i in (j+1):lastindex(m, 2)))` """ function pairwise(func::Function, m::AbstractMatrix) result = zeros(binomial(size(m, 2), 2)) for (k, (i, j)) in enumerate(((i, j) for j in axes(m, 2) for i in (j+1):lastindex(m, 2))) result[k] = func(m[:, i], m[:, j]) end return result end numpairs2N(x) = (1 + sqrt(1 + 8x)) / 2 checkoffdiagonal(d) = numpairs2N(length(d)) % 1 == 0 """ squareform(d::AbstractVector, fillvalue=zero(eltype(d))) squareform(d::AbstractVector, fillvalue=zero(eltype(d))) If `d` is a vector, `squareform` checks if it of `n` choose 2 length for integer `n`, then fills the values of a symetric square matrix with the values of `d`. If `d` is a matrix, `squareform` checks if it is square then fills the values of vector with the lower offdiagonal of matrix `d` in column order form. `fillvalue` is the initial value of the produced vector or matrix. Only really apparant in a produced matrix where it will be the values on the diagonal. """ function squareform(d::AbstractVector, fillvalue=zero(eltype(d))) checkoffdiagonal(d) || throw(ArgumentError("Vector wrong length, to be square matrix offdiagonals")) n = numpairs2N(length(d)) Dij = fill(fillvalue, Int(n), Int(n)) for (k, (i, j)) in enumerate(((i, j) for j in axes(Dij, 2) for i in (j+1):lastindex(Dij, 1))) Dij[i, j] = d[k] Dij[j, i] = d[k] end Dij end function squareform(d::AbstractMatrix, fillvalue=zero(eltype(d))) (size(d, 1) == size(d, 2)) || throw(ArgumentError("size of d: $(size(d)), is not square")) n = binomial(size(d, 1), 2) Dk = fill(fillvalue, n) for (k, (i, j)) in enumerate(((i, j) for j in axes(d, 2) for i in (j+1):lastindex(d, 1))) Dk[k] = d[i, j] end Dk end """ k2ij(k, n) which pair `(i,j)` produces the `k`th element of combinations(vec), where vec is length `n` """ function k2ij(k, n) # column major ordering of lower triangle rvLinear = (n * (n - 1)) ÷ 2 - k i = floor(Int, (sqrt(1 + 8 * rvLinear) - 1) ÷ 2) j = rvLinear - i * (i + 1) ÷ 2 (n - j, n - (i + 1)) end """ ij2k(i,j,n) with pair `(i,j)` give index `k` to the pairs produced by combinations(vec), where vec is length `n` """ function ij2k(i, j, n) # for symetric matrix i, j = i < j ? (i, j) : (j, i) k = ((n * (n - 1)) ÷ 2) - ((n - i) * ((n - i) - 1)) ÷ 2 + j - n end
SpectralInference
https://github.com/aramanlab/SpectralInference.jl.git
[ "BSD-3-Clause" ]
0.4.1
ccc61241a1b3b3e60145580de043ecb2d3a4d5bc
code
1011
""" readphylip(fn::String) Read phylip alignment file, return dataframe of IDs and Sequences """ function readphylip(fn::AbstractString) smps, seqs = open(fn, "r") do reader nsmp, nfeat = parse.(Int, split(readline(reader))) smps = String[] seqs = String[] for l in 1:nsmp smp, seq = split(readline(reader)) push!(smps, smp) push!(seqs, seq) end all(s -> length(s) == nfeat, seqs) || throw(DimensionMismatch("Length of all sequences must be the equal")) return smps, seqs end return (; smps, seqs) end # read phylip onehotencode(seqs::AbstractVector{<:AbstractString}) = onehotencode(_stringcolumntocharmtx(seqs)) function onehotencode(chardf::AbstractMatrix{<:Char}) ohemtx = Vector() for col in eachcol(chardf) push!(ohemtx, indicatormat(col)') end return sparse(hcat(ohemtx...)) end function _stringcolumntocharmtx(seqs) reduce(vcat, permutedims.(collect.(seqs))) end
SpectralInference
https://github.com/aramanlab/SpectralInference.jl.git
[ "BSD-3-Clause" ]
0.4.1
ccc61241a1b3b3e60145580de043ecb2d3a4d5bc
code
665
using PrecompileTools @setup_workload begin @compile_workload begin for T in [Float64, Float32, Int64, Int32] m = rand(T, 10, 10) usv = svd(m) dij = spectraldistances(usv.U, usv.S, getintervals(usv.S)) dij = spectraldistances(usv, alpha=1.0, q=0.5) dij_trace = spectraldistances_trace(usv, alpha=1.0, q=0.5) dij_trace = spectraldistances_trace(usv.U, usv.S, getintervalsIQR(usv.S)) spcorr = spectralcorrelations(usv.U, 1:4) spcorr = spectralcorrelations(usv.U, usv.S, 1:4) t = UPGMA_tree(dij) newickstring(t) end end end
SpectralInference
https://github.com/aramanlab/SpectralInference.jl.git
[ "BSD-3-Clause" ]
0.4.1
ccc61241a1b3b3e60145580de043ecb2d3a4d5bc
code
4139
# function definitions are in extensions for various backends of tree implementations """ returns names of all leaves desended from a node in prewalk order """ function getleafnames end """ returns ids of all leaves desended from a node in prewalk order """ function getleafids end """ network_distance(leaf_i, leaf_j) returns network distance between two leaves """ function network_distance end """ network_distances(tree::Node) returns network distances between all pairs of leaves (leaves are in same order as `getleafnames`) """ function network_distances end """ patristic_distance(leaf_i, leaf_j) returns patristic distance between two leaves """ function patristic_distance end """ patristic_distances(tree::Node) returns patristic distances between all pairs of leaves (leaves are in same order as `getleafnames`) """ function patristic_distances end """ fscore_precision_recall(reftree, predictedtree) fscore, precision, and recall of branches between the two trees """ function fscore_precision_recall end """ cuttree(tree, θ) return vector of nodes whose distance from the root are < θ and whose children's distance to the root are > θ """ function cuttree end """ mapnodes(f::Function, tree) maps across all nodes that have children in prewalk order and applies function `f(node)` """ function mapnodes end """ mapinternalnodes(f::Function, tree) maps across all nodes that have children in prewalk order and applies function `f(node)` """ function mapinternalnodes end """ maplocalnodes(f::Function, tree) maps across all nodes that have a leaf as a child in prewalk order and applies function `f(node)` """ function maplocalnodes end """ collectiveLCA(treenodes::AbstractVector) returns last common ancestor of the vector of treenodes """ function collectiveLCA end """ as_polytomy!(f::Function, tree) in-place removal of nodes. function `f` should return `true` if the node is to be removed. Children of node are attached to the parent of the removed node """ function as_polytomy! end """ as_polytomy(f::Function, tree) Makes a copy of the tree, then removes nodes. function `f` should return `true` if the node is to be removed. Children of node are attached to the parent of the removed node """ function as_polytomy end """ pairedMI_across_treedepth(metacolumns, metacolumns_ids, tree) pairedMI_across_treedepth(metacolumns, metacolumns_ids, compare::Function=(==), tree::Node; ncuts=100, bootstrap=false, mask=nothing) iterates over each metacolumn and calculates MI between the paired elements of the metacolumn and the paired elements of tree clusters. Args: * metacolumns: column iterator, can be fed to `map(metacolumns)` * metacolumn_ids: ids for each element in the metacolumn. should match the leafnames of the tree, but not necessarily the order. * tree: NewickTree tree * compare: function used to calculate similarity of two elements in metacolumn. Should be written for each element as it will be broadcast across all pairs. Returns: * (; MI, treedepths) * MI: Vector{Vector{Float64}} MI for each metacolumn and each tree depth * treedepths Vector{<:Number} tree depth (away from root) for each cut of the tree """ function pairedMI_across_treedepth end """ clusters_per_cutlevel(distfun::Function, tree::Node, ncuts::Number) Returns: * clusts: vector of cluster-memberships. each value indicates the cluster membership of the leaf at that cut. leaves are ordered in prewalk order within each membership vector * treedepths: distance from root for each of the `ncuts` """ function clusters_per_cutlevel end """ ladderize!(tree, rev=false) sorts children of each node by number of leaves descending from the child in ascending order. """ function ladderize! end """ spectral_lineage_encoding(tree::Node, orderedleafnames=getleafnames(tree); filterfun=x->true) returns vector of named tuples with the id `nodeid` of the node and `sle` a vector of booleans ordered by `orderedleafnames` where true indicates the leaf descends from the node and false indicates that it does not. """ function spectral_lineage_encoding end
SpectralInference
https://github.com/aramanlab/SpectralInference.jl.git
[ "BSD-3-Clause" ]
0.4.1
ccc61241a1b3b3e60145580de043ecb2d3a4d5bc
code
6933
using SpectralInference using Test using Distributions @testset "SpectralInference" begin @testset "core" begin Dij_true = [ 0.0 2.0 5.3642 5.3642 2.0 0.0 5.3642 5.3642 5.3642 5.3642 0.0 2.0 5.3642 5.3642 2.0 0.0 ] M = Float64.([ 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 ]) Mr2 = [ -3.93055e-16 1.0 0.5 0.5 1.0 1.0 9.01494e-16 1.0 0.5 0.5 1.0 1.0 1.0 -1.5782e-16 1.0 1.0 0.5 0.5 1.0 -1.5782e-16 1.0 1.0 0.5 0.5 ] expS = [ 10.0, 3.0, 3.0, 1.0, 1.0, 1.0, 0.0, ] usv = svd(M) Dij_pred = spectraldistances(usv.U, usv.S, [1:1, 2:2, 3:4]) @inferred spectraldistances(usv.U, usv.S, [1:1, 2:2, 3:4]) # tests for getting partitions @test getintervals(expS) == [1:1, 2:3, 4:6, 7:7] @inferred getintervals(expS) == [1:1, 2:3, 4:6, 7:7] @test getintervalsIQR(expS) == [1:7] # test if SpectralInference distance works @test isapprox(Dij_pred, Dij_true, atol=1e-5) # test if we get the same SpectralInference tree hc = SpectralInference.UPGMA_tree(Dij_pred) nw = newickstring(hc, ["A", "B", "C", "D"], labelinternalnodes=false) @test replace(nw, r"(:)[^,)]*(?=[,);])" => "") ∈ [ "((A,B),(C,D));", "((A,B),(D,C));", "((B,A),(C,D));", "((B,A),(D,C));", "((C,D),(A,B));", "((D,C),(A,B));", "((C,D),(B,A));", "((D,C),(B,A));" ] # @test nw == "((B:2.000000e+00,A:2.000000e+00):3.364199e+00,(D:2.000000e+00,C:2.000000e+00):3.364199e+00):0.000000e+00;" # test projecting in and out of SVD space @test projectout(usv) ≈ M @test projectout(usv, 1:2) ≈ Mr2 @test projectinLSV(M, usv) ≈ usv.U @test projectinLSV(M, usv, 1:3) ≈ usv.U[:, 1:3] @test projectinRSV(M, usv) ≈ usv.Vt @test projectinRSV(M, usv, 1:3) ≈ usv.Vt[1:3, :] # test partial spi_trace calculations result in summed SpectralInference distance matrix @test isapprox(vec(sum(spectraldistances_trace(usv, q=0.25), dims=1) .^ 2), Dij_true[triu(trues(4, 4), 1)], atol=1e-5) # test spectral correlations @inferred spectralcorrelations(usv.U, usv.S, 1:4) end @testset "helpers.jl" begin expS = [ 10.0, 3.0, 3.0, 1.0, 1.0, 1.0, 0.0, ] v = explainedvariance(expS) @test v ≈ (expS .^ 2) ./ sum((expS .^ 2)) @test scaledcumsum(v) ≈ cumsum(v) ./ maximum(cumsum(v)) @test SpectralInference.distancetrace_spaceneeded(100, 100; bits=64) == "30.212 MiB" @test SpectralInference.distancetrace_spaceneeded(1000, 1000; bits=64) == "29.773 GiB" @test SpectralInference.distancematrix_spaceneeded(100; bits=64) == "625.000 KiB" @test SpectralInference.distancematrix_spaceneeded(1000; bits=64) == "61.035 MiB" @test SpectralInference.distancematrix_spaceneeded(1000; bits=32) == "30.518 MiB" M = Float64.([ 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 ]) ps = SpectralInference.pairwise((i, j) -> i' * j, M') @test ps ≈ [3.0, 2.0, 2.0, 2.0, 2.0, 3.0] @test SpectralInference.numpairs2N(6) == 4.0 @test SpectralInference.numpairs2N(5) ≈ 3.7015621187164243 @test squareform(ps) ≈ [ 0.0 3.0 2.0 2.0 3.0 0.0 2.0 2.0 2.0 2.0 0.0 3.0 2.0 2.0 3.0 0.0 ] @test squareform(ps, 4.0) ≈ [ 4.0 3.0 2.0 2.0 3.0 4.0 2.0 2.0 2.0 2.0 4.0 3.0 2.0 2.0 3.0 4.0 ] @test SpectralInference.k2ij(4, 4) == (3, 2) @test SpectralInference.k2ij(6, 4) == (4, 3) @test SpectralInference.ij2k(3, 2, 4) == 4 @test SpectralInference.ij2k(4, 3, 4) == 6 end @testset "empiricalMI" begin x = [0, 0, 0, 1, 1, 1] for T in [Int64, Int32, Int16] t = T.(x) @test empiricalMI(t, t, base=2) == 1.0 @test empiricalMI(t, t) ≈ 0.6931471805599453 atol = 1e-10 end # test masked MI x = randn(1000) for T in [Float64, Float32, Float16] t = T.(x) @test empiricalMI([t; t .+ 10.0], [trues(1000); falses(1000)], base=2) ≈ 1.0 atol = 1e-3 end ρ = 0.8 mvN = MultivariateNormal([1 ρ; ρ 1]) trueMI_e = (2 * entropy(Normal(0, 1))) - entropy(mvN) # entropy as marginals - joint trueMI_2 = (2 * entropy(Normal(0, 1), 2)) - entropy(mvN, 2) # entropy as marginals - joint x = rand(mvN, 10_000)' @test empiricalMI(x[:, 1], x[:, 2], nbins=32) ≈ trueMI_e atol = 1e-1 @test empiricalMI(x[:, 1], x[:, 2], nbins=32, base=2) ≈ trueMI_2 atol = 1e-1 end if VERSION >= v"1.9" @test isnothing(Base.get_extension(SpectralInference, :NewickTreeExt)) using NewickTree @test !isnothing(Base.get_extension(SpectralInference, :NewickTreeExt)) @testset "NewickTreeExt" begin m = rand(100, 40) usv = svd(m) dij = spectraldistances(usv.U, usv.S, getintervals(usv.S)) hc = UPGMA_tree(dij) tree = readnw(newickstring(hc, string.(1:100))) leafnames = getleafnames(tree) @inferred network_distances(tree) @inferred patristic_distances(tree) @test fscore_precision_recall(tree, tree) == (1.0, 1.0, 1.0) @inferred cuttree(network_distance, tree, 0.0) @inferred Node collectiveLCA(getleaves(tree)) @inferred Node as_polytomy(n -> NewickTree.support(n) < 0.5, tree) mi, treedepths = pairedMI_across_treedepth((; a=rand(Bool, 100), b=rand([1, 0], 100)), leafnames, tree; ncuts=50) @test length(treedepths) == length(mi.a) == length(mi.b) mi, treedepths = pairedMI_across_treedepth((; a=rand(UInt16, 100), b=rand(Float64, 100)), leafnames, tree; ncuts=50, comparefun=(x, y) -> abs(x - y)) @test length(treedepths) == length(mi.a) == length(mi.b) mi, treedepths = pairedMI_across_treedepth((; a=rand(UInt16, 100), b=rand(Float64, 100)), leafnames, tree; ncuts=50, treecut_distancefun=patristic_distance, comparefun=(x, y) -> abs(x - y)) @test length(treedepths) == length(mi.a) == length(mi.b) leafids = getleafids(tree) @inferred spectral_lineage_encoding(tree) @inferred spectral_lineage_encoding(tree, leafids) @inferred spectral_lineage_encoding(tree; filterfun=!isleaf) @inferred spectral_lineage_encoding(tree, sample(leafids, length(leafids), replace=false); filterfun=!isleaf) end end # VERSION >= v"1.9" end # SpectralInference testset
SpectralInference
https://github.com/aramanlab/SpectralInference.jl.git
[ "BSD-3-Clause" ]
0.4.1
ccc61241a1b3b3e60145580de043ecb2d3a4d5bc
docs
5255
# Spectral Inference [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://aramanlab.github.io/SpectralInference.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://aramanlab.github.io/SpectralInference.jl/dev) [![Build Status](https://github.com/aramanlab/SpectralInference.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/aramanlab/SpectralInference.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/aramanlab/SpectralInference.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/aramanlab/SpectralInference.jl) ## Install type: ```julia-repl ] dev git@github.com:aramanlab/SpectralInference.jl.git ``` into the julia command line ## Examples calculate Spectral distances ```julia using SpectralInference M = rand(100, 100) usv = svd(M) # from linear algebra spectralpartitions = getintervals(usv.S, alpha=1.0, q=0.5) Dij = spectraldistances(usv.U, usv.S, spectralpartitions) ``` make a tree from the distances using basic hierarchical clusting ```julia # shortcut of `hclust(spimtx; linkage=:average, branchorder=:optimal)` from Clustering package spitree = UPGMA_tree(Dij) ``` or with neighbor joining ```julia using NeighborJoining # https://github.com/BenjaminDoran/NeighborJoining.jl njclusts = regNJ(Dij) # or fastNJ(Dij) ids = string.(1:100); nwstring = NeighborJoining.newickstring(njclusts, ids) ``` example script for running SpectralInference on a gene expression matrix in a `.csv` file to generate spectral tree. ```julia # Example SpectralInference code for gene expression matrix in .csv format (genes = rows, cells = columns) # Ben Doran / Noah Gamble # 2023/08/07 # Load packages using SpectralInference using NeighborJoining using CSV, DataFrames using LinearAlgebra using Clustering using Muon using JLD2 # Load matrix as data frame from .csv df = CSV.read("/path/to/geneexpressionmatrix.csv", DataFrame) # Copy to matrix m = Matrix(df[:,2:end]) # # filter out low abundance genes filt_thresh = 10 genecounts = mapslices(r -> sum(r.>0), m, dims=2) |> vec idx_keep = genecounts .> filt_thresh m = m[idx_keep,:] # Organize into annotated data object # m' is transpose of m (make samples rows) adata = AnnData(X = m') adata.obs_names .= names(df)[2:end] adata.var_names .= string.(df.Column1[idx_keep]) @info size(adata.X) # Perform SVD @info "Peforming SVD..." @time usv = svd(adata.X) # Perform SpectralInference @info "Calculating SpectralInference matrix..." @time dij = spectraldistances(usv.U, usv.S, getintervals(usv.S)) # Cluster to tree @info "Clustering SpectralInference matrix..." # @time spitree = UPGMA_tree(dij) # @time nwtreestring = SpectralInference.newickstring(spitree, adata.obs_names.vals) @time spitree = regNJ(dij) @time nwtreestring = NeighborJoining.newickstring(spitree, adata.obs_names.vals) # Add SpectralInference matrix to adata object @info "Adding SpectralInference matrix to ADATA..." adata.obsp["spectraldistances"] = dij adata.obs[:,"order"] = spitree.order adata.uns["cellmerges"] = spitree.merges adata.uns["heights"] = spitree.heights adata.uns["treelinkage"] = string(spitree.linkage) adata.uns["newicktreestring"] = nwtreestring # Write annotated data to and Newick tree to disk @info "Writing results to disk..." @time begin writeh5ad("spi_test.h5ad", adata) open("test_tree.nw.txt", "w") do io println(io, nwtreestring) end jldsave("test_tree.jld2"; spitree) end ``` example script for creating bootstrap spectral tree and calculating support values ```julia using SpectralInference using NeighborJoining using Muon spitst = readh5ad("spi_test.h5ad") mtx = spitst.X[:, :] NBOOT = 100 boottrees = map(1:NBOOT) do i ncols = size(mtx, 2) tmpmtx = mtx[:, rand(1:ncols, ncols)] usv = svd(tmpmtx) dij = spectraldistances(usv.U, usv.S, getintervals(usv.S)) nwtreestring = NeighborJoining.newickstring(regNJ(dij)) end open("test_tree_bootstraps.nw.txt", "w") do io for t in boottrees println(io, t) end end # calculate support values using GoTree_jll reftreefile = joinpath(pwd(), "test_tree.nw.txt") boottreefile = joinpath(pwd(), "test_tree_bootstraps.nw.txt") supporttreefile = joinpath(pwd(), "test_tree_bootstraps.nw.txt") run(`$(gotree()) -i $reftreefile -b $boottreefile -o $supporttreefile`) ``` script for calculating MI between metavariables and tree depths ```julia using SpectralInference using NewickTree using Muon, DataFrames spitst = readh5ad("spi_test.h5ad") spitree = readnw(readline(joinpath(pwd(), "test_tree_bootstraps.nw.txt"))) spitree_50pct = as_polytomy(n->NewickTree.support(n)<.5, spitree) leafnames = getleafnames(spitree_50pct) mi, treedepths = pairedMI_across_treedepth(eachcolumn(spitst.obs), leafnames, spitree_50pct; ncuts=100) NBOOTS = 50 results = map(1:NBOOTS) do i pairedMI_across_treedepth(eachcolumn(spitst.obs), leafnames, spitree_50pct; bootstrap=true, ncuts=100) end rowmask = spitst.obs.count .> 15 results = map(1:NBOOTS) do i pairedMI_across_treedepth(eachcolumn(spitst.obs), leafnames, spitree_50pct; mask=rowmask, bootstrap=true, ncuts=100) end all_mi_results = first.(results) all_treedepths_results = last.(results) ``` ## Citing See [`CITATION.bib`](CITATION.bib) for the relevant reference(s).
SpectralInference
https://github.com/aramanlab/SpectralInference.jl.git
[ "BSD-3-Clause" ]
0.4.1
ccc61241a1b3b3e60145580de043ecb2d3a4d5bc
docs
222
```@meta CurrentModule = SpectralInference ``` # SpectralInference Documentation for [SpectralInference](https://github.com/aramanlab/SpectralInference.jl). ```@index ``` ```@autodocs Modules = [SpectralInference] ```
SpectralInference
https://github.com/aramanlab/SpectralInference.jl.git
[ "MIT" ]
0.3.0
2fca7ee903e9c45871c1948e6b5fffdf359e2da3
code
588
using Documenter, Literate, PDELib function make_all() makedocs( sitename="PDELib.jl", modules = [PDELib], clean = false, doctest = false, authors = "J. Fuhrmann, Ch.Merdon. T. Streckenbach", repo="https://github.com/WIAS-BERLIN/PDELib.jl", pages=[ "Home"=>"index.md", "Introductory Material"=>"intro.md", ], ) if !isinteractive() deploydocs(repo = "github.com/WIAS-BERLIN/PDELib.jl.git", devbranch = "main" ) end end make_all()
PDELib
https://github.com/WIAS-BERLIN/PDELib.jl.git
[ "MIT" ]
0.3.0
2fca7ee903e9c45871c1948e6b5fffdf359e2da3
code
40503
### A Pluto.jl notebook ### # v0.19.19 using Markdown using InteractiveUtils # This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error). macro bind(def, element) quote local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end local el = $(esc(element)) global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el) el end end # ╔═╡ d432ad64-f91f-11ea-2e48-4bc7472ac64c begin using SimplexGridFactory using ExtendableGrids using Triangulate using TetGen using GridVisualize using PlutoVista using PlutoUI isdefined(Main,:PlutoRunner) ? default_plotter!(PlutoVista) : default_plotter!(nothing) end # ╔═╡ 940b1996-fe9d-11ea-2fa4-8b72bee62b76 md""" # Grid creation and visualization in PDELib.jl This notebook shows how to perform grid creation and visualization with the assistance of the packages [ExtendableGrids.jl](https://github.com/j-fu/ExtendableGrids.jl) and [SimplexGridFactory.jl](https://github.com/j-fu/SimplexGridFactory.jl) which are part of the [PDELib.jl](https://github.com/WIAS-BERLIN/PDElib.jl) meta package. Visualization in this notebook is done using the [GridVisualize.jl](https://github.com/j-fu/GridVisualize.jl) package. """ # ╔═╡ 47103e8f-a4ff-46ed-a632-572a2e194a50 md""" ## 1D grids 1D grids are created just from arrays of montonically increasing coordinates using the [simplexgrid](https://j-fu.github.io/ExtendableGrids.jl/stable/simplexgrid/#ExtendableGrids.simplexgrid-Tuple{AbstractVector{T}%20where%20T}) method. """ # ╔═╡ 93a0c45e-d6a3-415a-a82c-e4f7e2a09d22 X1=range(0,1;length=11) # ╔═╡ 4622a1fc-fda7-4211-9cc0-4eb1a1584aa6 g1=simplexgrid(X1) # ╔═╡ 3212b930-194d-422e-9d06-65885b25cc6d md""" We can plot a grid with a method from `GridVisualize.jl` """ # ╔═╡ 5520b8c0-0874-4790-a956-224e6c43d9cf gridplot(g1; resolution=(500,150),legend=:rt) # ╔═╡ 13aef2a1-5745-4fe5-9659-6b7c0e7267fc md""" We see some additional information: - `cellregion`: each grid cell (interval, triangle, tetrahedron) as an integer region marker attached - `bfaceregion`: boundary faces (points, lines, triangles) have an interger boundary region marker attached We can also have a look into the grid structure: """ # ╔═╡ f19d20c8-4d69-442d-99c8-10874fa0a6d3 g1.components # ╔═╡ 28e2e3b0-c168-481b-b467-29e6a5407431 md""" Components can be accessed via `[ ]`. In fact the keys in the dictionary of components are [types](https://j-fu.github.io/ExtendableGrids.jl/stable/tdict/). """ # ╔═╡ f04017d7-1c55-4118-8467-1e134259e35d g1[Coordinates] # ╔═╡ 98016b49-8786-46b9-aca6-01d15c253b3f g1[CellNodes] # ╔═╡ 2d392a98-bf32-4145-ae93-a8e218367277 md""" ### Modifying region markers The `simplexgrid` method provides a default distribution of markers, but we would like to be able to change them. This can be done by putting masks on cells or faces (points in 1D): """ # ╔═╡ 88247350-aa6c-4876-82c3-3534036d5702 g2=deepcopy(g1) # ╔═╡ 42f8d91d-14c7-488f-bdb9-b3d22705186f cellmask!(g2, [0.0], [0.5], 2); # ╔═╡ db7e0233-4e08-41b8-9ebe-5570e6d32264 bfacemask!(g2, [0.5],[0.5], 3); # ╔═╡ 74641f73-2efe-4df8-bebb-ed97e77d869e gridplot(g2; resolution=(500, 150),legend=:rt) # ╔═╡ 14fb7977-93cf-4f74-a8ec-b6ee25dbdf86 md""" ### Creating locally refined grids For this purpose, we just need to create arrays with the corresponding coordinate values. This can be done programmatically. Two support metods are provided for this purpose. """ # ╔═╡ 2d5cb9e1-2d14-415e-b792-c3124901011d hmin=0.01 ; hmax=0.1 # ╔═╡ b1f903b3-29d7-4909-b7e2-8ef3528c9965 md""" The `geomspace` method creates an array such that the smallest interval size is `hmin` and the largest interval size is not larger but close to `hmax`, and the interval sizes constitute a geometric sequence. """ # ╔═╡ 19125aed-5c46-4968-bcfc-0b469628b68e X2L=geomspace(0,0.5,hmax,hmin) # ╔═╡ f9debaf8-efe8-44d1-9671-4aa5bffa9bb8 DX2=X2L[2:end].-X2L[1:end-1] # ╔═╡ 4f7f9eaf-61c5-4543-ae39-e58ca14fb89a DX2[1:end-1]./DX2[2:end] # ╔═╡ f873cb89-da6e-4e11-b3f6-2bf0b766ce5f X2R=geomspace(0.5,1,hmin,hmax) # ╔═╡ a2e6c397-4a7e-47eb-ad84-df6e9d3fdd43 md""" We can glue these arrays together and create a grid from them: """ # ╔═╡ 805c2a1e-a6c6-47fc-b719-31c2a671a8d0 X2=glue(X2L,X2R) # ╔═╡ dd7d8e17-f825-4047-9386-d9e2bfd0a48d gridplot(simplexgrid(X2); resolution=(500,150),legend=:rt) # ╔═╡ 3d7db57f-2864-4984-a979-609e1d838a9f md""" ### Plotting functions We assume that functions can be represented by their node values an plotted via their piecewise linear interpolants. E.g. they could come from some simulation. """ # ╔═╡ 4cf840e6-86c5-4af1-a780-6fc78b60716b g1d2=simplexgrid(range(-10,10,length=201)) # ╔═╡ 151cc4b8-c5ed-4f5e-8d5f-2f708c9c7fae fsin=map(sin,g1d2) # ╔═╡ 605581c4-3c6f-4c31-bd90-7645d3f70315 fcos=map(cos,g1d2) # ╔═╡ bd40e614-00ef-426d-aa98-eca2ef48320e fsinh=map(x->sinh(0.2*x), g1d2) # ╔═╡ 71af99ab-612a-4821-8e9c-efc8766e2e3e let vis=GridVisualizer(;resolution=(600,300),legend=:lt) scalarplot!(vis, g1d2, fsinh, label="sinh", markershape=:dtriangle, color=:red,markevery=5,clear=false) scalarplot!(vis, g1d2, fcos, label="cos", markershape=:xcross, color=:green, linestyle=:dash, clear=false,markevery=20) scalarplot!(vis, g1d2, fsin, label="sin", markershape=:none, color=:blue, linestyle=:dot, clear=false, markevery=20) reveal(vis) end # ╔═╡ 6dfa1d73-8baa-4589-b2e6-547834c9e444 md""" ## 2D grids ### Tensor product grids For 2D tensor product grids, we can again use the `simplexgrid` method and apply the mask methods for modifying cell and boundary region markers. """ # ╔═╡ f9599246-8238-432c-a315-300d74abfa2c begin g2d1=simplexgrid(X1,X2) cellmask!(g2d1, [0.0,0.0], [0.5, 0.5], 2) cellmask!(g2d1, [0.5,0.5], [1.0, 1.0], 3) bfacemask!(g2d1, [0.0, 0.0], [0.0, 0.5],5) end # ╔═╡ ba5af291-fb16-4f21-8b74-664284bf7bd9 gridplot(g2d1,resolution=(600,400),linewidth=0.5,legend=:lt) # ╔═╡ dfbaacea-4cb4-4147-9f1b-4424d7a7e89b md""" To interact with the plot, you can use the mouse wheel or double toch to zoom, "shift-mouse-left" to pan, and "alt-mouse-left" or "ctrl-mouse-left" to reset. """ # ╔═╡ 7d1698dd-3bb7-4b38-9c6d-a88652749eee md""" We can also have a look into the components of a 2D grid: """ # ╔═╡ 81249f7c-abdf-43cc-b57f-2915b09da009 g2d1.components # ╔═╡ 0765641a-8ed9-4579-bd9b-90bb02a55792 md""" ### Unstructured grids For the triangulation of unstructured grids, we use the mesh generator Triangle via the [Triangulate.jl](https://github.com/JuliaGeometry/Triangulate.jl) and [SimplexGridFactory.jl](https://github.com/j-fu/SimplexGridFactory.jl) packages. The later package exports the `SimplexGridBuilder` which shall help to simplify the creation of the input for `Triangulate`. """ # ╔═╡ 884a11a2-15cf-40fc-a1ca-66ea23c6094e builder2=let b=SimplexGridBuilder(Generator=Triangulate) p1=point!(b,0,0) p2=point!(b,1,0) p3=point!(b,1,1) # Specify outer boundary facetregion!(b,1) facet!(b,p1,p2) facetregion!(b,2) facet!(b,p2,p3) facetregion!(b,3) facet!(b,p3,p1) cellregion!(b,1) regionpoint!(b,0.75,0.25) options!(b,maxvolume=0.01) b end # ╔═╡ 8fbd238c-723e-4bce-af69-9cabfc03f8d9 md""" We can plot the current state of the builder: """ # ╔═╡ 342788d4-e5d0-4239-be87-7658bb67c999 grid2d2=simplexgrid(builder2;maxvolume=0.001) # ╔═╡ 8f7d958e-5dc5-4324-af21-ad829d7d77eb gridplot(grid2d2, resolution=(400,300),linewidth=0.5) # ╔═╡ fd27b44a-f923-11ea-2afb-d79f7e62e214 md""" ### More complicated grids More complicated grids include: - local refinement - interior boundaries - different region markers - holes The particular way to describe these things is due to Jonathan Shewchuk and his mesh generator [Triangle](https://www.cs.cmu.edu/~quake/triangle.html) via its Julia wrapper package [Triangulate.jl](https://github.com/JuliaGeometry/Triangulate.jl). """ # ╔═╡ 4a289b23-46b9-495d-b19c-42b3da71b242 md""" #### Local refinement """ # ╔═╡ b12838f0-fe9c-11ea-2939-155ed907322d refinement_center=[0.8,0.2] # ╔═╡ d5d8a1d6-fe9d-11ea-0fd8-df6e81492cb5 md""" For local refimenent, we define a function, which is able to tell if a triangle is to be refined ("unsuitable") or can be kept as it is. The function measures the distance between the refinement center and the triangle barycenter. We require that the area increases with the distance from the refinement center. """ # ╔═╡ aae2e82a-fe9c-11ea-0427-593f8d2c7746 function unsuitable(x1,y1,x2,y2,x3,y3,area) bary_x=(x1+x2+x3)/3.0 bary_y=(y1+y2+y3)/3.0 dx=bary_x-refinement_center[1] dy=bary_y-refinement_center[2] qdist=dx^2+dy^2 area>0.1*max(1.0e-2,qdist) end; # ╔═╡ 1ae86964-fe9e-11ea-303b-65bb128384a5 md""" #### Interior boundaries Interior boundaries are described in a similar as exterior ones - just by facets connecting points. """ # ╔═╡ 3b8cd906-bc4e-44af-bcf4-8836d597ed4c md""" #### Subregions Subregions are defined as regions surrounded by interior boundaries. By placing a "region point" into such a region and specifying a "region number", we can set the cell region marker for all triangles created in the subregion. """ # ╔═╡ 9d240ef9-6639-4bde-a463-ea78480a970d md""" #### Holes Holes are defined in a similar way as subregions, but a "hole point" is places into the place which shall become the hole. """ # ╔═╡ 511b26c6-f920-11ea-1228-51c3750f495c builder3=let b=SimplexGridBuilder(Generator=Triangulate;tol=1.0e-10) # Specify points p1=point!(b,0,0) p2=point!(b,1,0) p3=point!(b,1,1) p4=point!(b,0,0.7) # Specify outer boundary facetregion!(b,1) facet!(b,p1,p2) facetregion!(b,2) facet!(b,p2,p3) facetregion!(b,3) facet!(b,p3,p4) facetregion!(b,4) facet!(b,p1,p4) # Activate unsuitable callback options!(b,unsuitable=unsuitable) # Specify interior boundary facetregion!(b,5) facet!(b,p1,p3) # Coarse elements in upper left region #1 cellregion!(b,1) maxvolume!(b,0.1) regionpoint!(b,0.1,0.5) # Fine elements in lower right region #2 cellregion!(b,2) maxvolume!(b,0.01) regionpoint!(b,0.9,0.5) # Hole hp1=point!(b,0.4,0.1) hp2=point!(b,0.6,0.1) hp3=point!(b,0.5,0.3) holepoint!(b,0.5,0.2) facetregion!(b,6) facet!(b,hp1,hp2) facet!(b,hp2,hp3) facet!(b,hp3,hp1) b end; # ╔═╡ d2129483-285b-49a2-a11d-886956146b85 md""" __Create a simplex grid from the builder__ """ # ╔═╡ ac93589b-6315-4677-9542-c0a2333f1755 grid2d3=simplexgrid(builder3) # ╔═╡ 59a6c8b5-25aa-47aa-9489-a803672013df gridplot(grid2d3,legend=:lt, resolution=(400,400)) # ╔═╡ 4c99c40f-cf93-4cba-bef1-0c4ffcbf6833 md""" ### Plotting of functions Functions defined on the nodes of a triangular grid can be seen as piecewise linear functions from the P1 finite element space defined by the triangulation. """ # ╔═╡ bad736d7-875c-4bc0-9ec4-494a90a508f7 fsin2=map((x,y)-> sin(x)*y, grid2d2) # ╔═╡ a375c23f-6b8c-4b2c-a8b5-d38e6b5a8f6d fsin3=map((x,y)-> sin(y)*x, grid2d3) # ╔═╡ c3ef9067-3cdb-4bfd-9406-6ded64539978 scalarplot(grid2d2, fsin2, label="grid2d2") # ╔═╡ 4dfb2e0f-3e3a-4053-8a76-765546e96992 scalarplot(grid2d3, fsin3, label="grid2d3",colormap=:spring,isolines=10) # ╔═╡ 2682df92-5955-4b17-ae4f-8e99c5b17980 md""" ## 3D Grids ### Tensor product grids Please note that "masking" is not yet implemented. Furthermore, PyPlot visualization is slow, with GLMakie it is way faster. """ # ╔═╡ 265fe6c7-d1cc-48a6-8295-f8f55acf677c X3=range(0.,10.1,length=11) # ╔═╡ b357395f-2a6e-476f-b008-02802c85a541 grid3d1=simplexgrid(X3,X3,X3) # ╔═╡ af449be7-aab6-4de5-a059-3f8508502676 func3=map((x,y,z)-> sin(x/2)*cos(y/2)*z/10,grid3d1) # ╔═╡ 38e2b4a8-2480-40e7-bde3-6d1775201aae p3dg=GridVisualizer(dim=3,resolution=(200,200)) # ╔═╡ ef1fde48-fe90-4714-ac86-614ae3451aa7 p3ds=GridVisualizer(dim=3,resolution=(400,400)) # ╔═╡ 04041481-0f03-41e1-a7de-1b3fd033c952 mean(x)=sum(x)/length(x) # ╔═╡ a3844fda-5725-4d95-894b-051a5f6c2faa md""" f=$(@bind flevel Slider(range(extrema(func3)...,length=20),default=mean(func3),show_value=true)) x=$(@bind xplane Slider(X3[1]:0.1:X3[end],default=X3[end],show_value=true)) y=$(@bind yplane Slider(X3[1]:0.1:X3[end],default=X3[end],show_value=true)) z=$(@bind zplane Slider(X3[1]:0.1:X3[end],default=X3[end],show_value=true)) """ # ╔═╡ f97d085c-e7bf-4561-8183-673912bdeab6 gridplot!(p3dg,grid3d1,zplanes=[zplane],yplanes=[yplane], xplanes=[xplane], resolution=(200,200),show=true) # ╔═╡ d73d18e7-bcf9-4cc1-9154-b70dc1ff5524 scalarplot!(p3ds,grid3d1, func3, zplanes=[zplane], yplanes=[yplane],xplanes=[xplane],levels=[flevel],colormap=:spring,resolution=(200,200),show=true,levelalpha=0.5,outlinealpha=0.1) # ╔═╡ 6cad87eb-1c59-4000-b688-a6f6d41f9413 md""" ### Unstructured grids The SimplexGridBuilder API supports creation of three-dimensional grids in way very similar to the 2D case. Just define points with three coordinates and planar (!) facets with at least three points to describe the geometry. The backend for mesh generation in this case is the [TetGen](http://tetgen.org) mesh generator by Hang Si from WIAS Berlin and its Julia wrapper [TetGen.jl](https://github.com/JuliaGeometry/TetGen.jl). """ # ╔═╡ fefc7587-8e25-4080-b934-90c0e1afc56a builder3d=let b=SimplexGridBuilder(Generator=TetGen) p1=point!(b,0,0,0) p2=point!(b,1,0,0) p3=point!(b,1,1,0) p4=point!(b,0,1,0) p5=point!(b,0,0,1) p6=point!(b,1,0,1) p7=point!(b,1,1,1) p8=point!(b,0,1,1) facetregion!(b,1) facet!(b,p1 ,p2 ,p3 ,p4) facetregion!(b,2) facet!(b,p5 ,p6 ,p7 ,p8) facetregion!(b,3) facet!(b,p1 ,p2 ,p6 ,p5) facetregion!(b,4) facet!(b,p2 ,p3 ,p7 ,p6) facetregion!(b,5) facet!(b,p3 ,p4 ,p8 ,p7) facetregion!(b,6) facet!(b,p4 ,p1 ,p5 ,p8) hp1=point!(b,0.4,0.4,0.4) hp2=point!(b,0.6,0.4,0.4) hp3=point!(b,0.6,0.6,0.4) hp4=point!(b,0.4,0.6,0.4) hp5=point!(b,0.4,0.4,0.6) hp6=point!(b,0.6,0.4,0.6) hp7=point!(b,0.6,0.6,0.6) hp8=point!(b,0.4,0.6,0.6) facetregion!(b,7) facet!(b,hp1 ,hp2 ,hp3 ,hp4) facet!(b,hp5 ,hp6 ,hp7 ,hp8) facet!(b,hp1 ,hp2 ,hp6 ,hp5) facet!(b,hp2 ,hp3 ,hp7 ,hp6) facet!(b,hp3 ,hp4 ,hp8 ,hp7) facet!(b,hp4 ,hp1 ,hp5 ,hp8) holepoint!(b, 0.5,0.5,0.5) b end; # ╔═╡ 065735f7-c799-4284-bd59-fe6383bb987c grid3d2=simplexgrid(builder3d,maxvolume=0.0001) # ╔═╡ 329992a0-e352-468b-af8b-0b190315fc61 gridplot(grid3d2,zplane=0.1,azim=20,elev=20,linewidth=0.5,outlinealpha=0.3) # ╔═╡ a7965a6e-2e83-47eb-aee2-d366246a8637 html"""<hr>""" # ╔═╡ 7ad541b1-f40f-4cdd-b7b5-b792a8e63d71 TableOfContents(depth=4) # ╔═╡ 071b8834-d3d1-4d08-979f-56b05bc1e0d3 md""" begin using Pkg Pkg.activate(mktempdir()) Pkg.add(["PlutoUI","Revise","Triangulate","TetGen"]) using Revise Pkg.develop(["ExtendableGrids","SimplexGridFactory", "GridVisualize","PlutoVista"]) end """ # ╔═╡ 00000000-0000-0000-0000-000000000001 PLUTO_PROJECT_TOML_CONTENTS = """ [deps] ExtendableGrids = "cfc395e8-590f-11e8-1f13-43a2532b2fa8" GridVisualize = "5eed8a63-0fb0-45eb-886d-8d5a387d12b8" PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8" PlutoVista = "646e1f28-b900-46d7-9d87-d554eb38a413" SimplexGridFactory = "57bfcd06-606e-45d6-baf4-4ba06da0efd5" TetGen = "c5d3f3f7-f850-59f6-8a2e-ffc6dc1317ea" Triangulate = "f7e6ffb2-c36d-4f8f-a77e-16e897189344" [compat] ExtendableGrids = "~0.9.16" GridVisualize = "~0.6.1" PlutoUI = "~0.7.16" PlutoVista = "~0.8.6" SimplexGridFactory = "~0.5.18" TetGen = "~1.4.0" Triangulate = "~2.2.0" """ # ╔═╡ 00000000-0000-0000-0000-000000000002 PLUTO_MANIFEST_TOML_CONTENTS = """ # This file is machine-generated - editing it directly is not advised manifest_format = "2.0" project_hash = "923e356fbb96a3a983b9ae7f68ee55a6e7a31a62" [[deps.AbstractPlutoDingetjes]] deps = ["Pkg"] git-tree-sha1 = "8eaf9f1b4921132a4cff3f36a1d9ba923b14a481" uuid = "6e696c72-6542-2067-7265-42206c756150" version = "1.1.4" [[deps.AbstractTrees]] git-tree-sha1 = "faa260e4cb5aba097a73fab382dd4b5819d8ec8c" uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c" version = "0.4.4" [[deps.Adapt]] deps = ["LinearAlgebra"] git-tree-sha1 = "195c5505521008abea5aee4f96930717958eac6f" uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" version = "3.4.0" [[deps.ArgTools]] uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" version = "1.1.1" [[deps.Artifacts]] uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" [[deps.Base64]] uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" [[deps.BitFlags]] git-tree-sha1 = "43b1a4a8f797c1cddadf60499a8a077d4af2cd2d" uuid = "d1d4a3ce-64b1-5f1a-9ba4-7e7e69966f35" version = "0.1.7" [[deps.ChainRulesCore]] deps = ["Compat", "LinearAlgebra", "SparseArrays"] git-tree-sha1 = "c6d890a52d2c4d55d326439580c3b8d0875a77d9" uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" version = "1.15.7" [[deps.ChangesOfVariables]] deps = ["ChainRulesCore", "LinearAlgebra", "Test"] git-tree-sha1 = "38f7a08f19d8810338d4f5085211c7dfa5d5bdd8" uuid = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0" version = "0.1.4" [[deps.CodecZlib]] deps = ["TranscodingStreams", "Zlib_jll"] git-tree-sha1 = "ded953804d019afa9a3f98981d99b33e3db7b6da" uuid = "944b1d66-785c-5afd-91f1-9de20f533193" version = "0.7.0" [[deps.ColorSchemes]] deps = ["ColorTypes", "ColorVectorSpace", "Colors", "FixedPointNumbers", "Random", "SnoopPrecompile"] git-tree-sha1 = "aa3edc8f8dea6cbfa176ee12f7c2fc82f0608ed3" uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4" version = "3.20.0" [[deps.ColorTypes]] deps = ["FixedPointNumbers", "Random"] git-tree-sha1 = "eb7f0f8307f71fac7c606984ea5fb2817275d6e4" uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" version = "0.11.4" [[deps.ColorVectorSpace]] deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "SpecialFunctions", "Statistics", "TensorCore"] git-tree-sha1 = "600cc5508d66b78aae350f7accdb58763ac18589" uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4" version = "0.9.10" [[deps.Colors]] deps = ["ColorTypes", "FixedPointNumbers", "Reexport"] git-tree-sha1 = "fc08e5930ee9a4e03f84bfb5211cb54e7769758a" uuid = "5ae59095-9a9b-59fe-a467-6f913c188581" version = "0.12.10" [[deps.Compat]] deps = ["Dates", "LinearAlgebra", "UUIDs"] git-tree-sha1 = "00a2cccc7f098ff3b66806862d275ca3db9e6e5a" uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" version = "4.5.0" [[deps.CompilerSupportLibraries_jll]] deps = ["Artifacts", "Libdl"] uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" version = "1.0.1+0" [[deps.Configurations]] deps = ["ExproniconLite", "OrderedCollections", "TOML"] git-tree-sha1 = "62a7c76dbad02fdfdaa53608104edf760938c4ca" uuid = "5218b696-f38b-4ac9-8b61-a12ec717816d" version = "0.17.4" [[deps.DataAPI]] git-tree-sha1 = "e8119c1a33d267e16108be441a287a6981ba1630" uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" version = "1.14.0" [[deps.DataValueInterfaces]] git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6" uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464" version = "1.0.0" [[deps.Dates]] deps = ["Printf"] uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" [[deps.Distributed]] deps = ["Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" [[deps.DocStringExtensions]] deps = ["LibGit2"] git-tree-sha1 = "2fb1e02f2b635d0845df5d7c167fec4dd739b00d" uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" version = "0.9.3" [[deps.Downloads]] deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"] uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" version = "1.6.0" [[deps.EarCut_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "e3290f2d49e661fbd94046d7e3726ffcb2d41053" uuid = "5ae413db-bbd1-5e63-b57d-d24a61df00f5" version = "2.2.4+0" [[deps.ElasticArrays]] deps = ["Adapt"] git-tree-sha1 = "e1c40d78de68e9a2be565f0202693a158ec9ad85" uuid = "fdbdab4c-e67f-52f5-8c3f-e7b388dad3d4" version = "1.2.11" [[deps.ExproniconLite]] deps = ["Pkg", "TOML"] git-tree-sha1 = "c2eb763acf6e13e75595e0737a07a0bec0ce2147" uuid = "55351af7-c7e9-48d6-89ff-24e801d99491" version = "0.7.11" [[deps.ExtendableGrids]] deps = ["AbstractTrees", "Dates", "DocStringExtensions", "ElasticArrays", "InteractiveUtils", "LinearAlgebra", "Printf", "Random", "SparseArrays", "StaticArrays", "Test", "WriteVTK"] git-tree-sha1 = "310b903a560b7b18f63486ff93da1ded9cae1f15" uuid = "cfc395e8-590f-11e8-1f13-43a2532b2fa8" version = "0.9.16" [[deps.Extents]] git-tree-sha1 = "5e1e4c53fa39afe63a7d356e30452249365fba99" uuid = "411431e0-e8b7-467b-b5e0-f676ba4f2910" version = "0.1.1" [[deps.FileIO]] deps = ["Pkg", "Requires", "UUIDs"] git-tree-sha1 = "7be5f99f7d15578798f338f5433b6c432ea8037b" uuid = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549" version = "1.16.0" [[deps.FileWatching]] uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee" [[deps.FillArrays]] deps = ["LinearAlgebra", "Random", "SparseArrays", "Statistics"] git-tree-sha1 = "9a0472ec2f5409db243160a8b030f94c380167a3" uuid = "1a297f60-69ca-5386-bcde-b61e274b549b" version = "0.13.6" [[deps.FixedPointNumbers]] deps = ["Statistics"] git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc" uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" version = "0.8.4" [[deps.FuzzyCompletions]] deps = ["REPL"] git-tree-sha1 = "e16dd964b4dfaebcded16b2af32f05e235b354be" uuid = "fb4132e2-a121-4a70-b8a1-d5b831dcdcc2" version = "0.5.1" [[deps.GPUArraysCore]] deps = ["Adapt"] git-tree-sha1 = "57f7cde02d7a53c9d1d28443b9f11ac5fbe7ebc9" uuid = "46192b85-c4d5-4398-a991-12ede77f4527" version = "0.1.3" [[deps.GeoInterface]] deps = ["Extents"] git-tree-sha1 = "e315c4f9d43575cf6b4e511259433803c15ebaa2" uuid = "cf35fbd7-0cd7-5166-be24-54bfbe79505f" version = "1.1.0" [[deps.GeometryBasics]] deps = ["EarCut_jll", "GeoInterface", "IterTools", "LinearAlgebra", "StaticArrays", "StructArrays", "Tables"] git-tree-sha1 = "fe9aea4ed3ec6afdfbeb5a4f39a2208909b162a6" uuid = "5c1252a2-5f33-56bf-86c9-59e7332b4326" version = "0.4.5" [[deps.GridVisualize]] deps = ["ColorSchemes", "Colors", "DocStringExtensions", "ElasticArrays", "ExtendableGrids", "GeometryBasics", "GridVisualizeTools", "HypertextLiteral", "LinearAlgebra", "Observables", "OrderedCollections", "PkgVersion", "Printf", "StaticArrays"] git-tree-sha1 = "b19a5815f9ba376dff963fccdf0c98dbddc6f61d" uuid = "5eed8a63-0fb0-45eb-886d-8d5a387d12b8" version = "0.6.1" [[deps.GridVisualizeTools]] deps = ["ColorSchemes", "Colors", "DocStringExtensions", "StaticArraysCore"] git-tree-sha1 = "5964fd3e4080af45bfdbdaff75567759fd0367bd" uuid = "5573ae12-3b76-41d9-b48c-81d0b6e61cc5" version = "0.2.1" [[deps.HTTP]] deps = ["Base64", "CodecZlib", "Dates", "IniFile", "Logging", "LoggingExtras", "MbedTLS", "NetworkOptions", "OpenSSL", "Random", "SimpleBufferStream", "Sockets", "URIs", "UUIDs"] git-tree-sha1 = "eb5aa5e3b500e191763d35198f859e4b40fff4a6" uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3" version = "1.7.3" [[deps.Hyperscript]] deps = ["Test"] git-tree-sha1 = "8d511d5b81240fc8e6802386302675bdf47737b9" uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91" version = "0.0.4" [[deps.HypertextLiteral]] deps = ["Tricks"] git-tree-sha1 = "c47c5fa4c5308f27ccaac35504858d8914e102f9" uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2" version = "0.9.4" [[deps.IOCapture]] deps = ["Logging", "Random"] git-tree-sha1 = "f7be53659ab06ddc986428d3a9dcc95f6fa6705a" uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89" version = "0.2.2" [[deps.IniFile]] git-tree-sha1 = "f550e6e32074c939295eb5ea6de31849ac2c9625" uuid = "83e8ac13-25f8-5344-8a64-a9f2b223428f" version = "0.5.1" [[deps.InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" [[deps.InverseFunctions]] deps = ["Test"] git-tree-sha1 = "49510dfcb407e572524ba94aeae2fced1f3feb0f" uuid = "3587e190-3f89-42d0-90ee-14403ec27112" version = "0.1.8" [[deps.IrrationalConstants]] git-tree-sha1 = "7fd44fd4ff43fc60815f8e764c0f352b83c49151" uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" version = "0.1.1" [[deps.IterTools]] git-tree-sha1 = "fa6287a4469f5e048d763df38279ee729fbd44e5" uuid = "c8e1da08-722c-5040-9ed9-7db0dc04731e" version = "1.4.0" [[deps.IteratorInterfaceExtensions]] git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856" uuid = "82899510-4779-5014-852e-03e436cf321d" version = "1.0.0" [[deps.JLLWrappers]] deps = ["Preferences"] git-tree-sha1 = "abc9885a7ca2052a736a600f7fa66209f96506e1" uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" version = "1.4.1" [[deps.JSON]] deps = ["Dates", "Mmap", "Parsers", "Unicode"] git-tree-sha1 = "3c837543ddb02250ef42f4738347454f95079d4e" uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" version = "0.21.3" [[deps.LazilyInitializedFields]] git-tree-sha1 = "410fe4739a4b092f2ffe36fcb0dcc3ab12648ce1" uuid = "0e77f7df-68c5-4e49-93ce-4cd80f5598bf" version = "1.2.1" [[deps.LibCURL]] deps = ["LibCURL_jll", "MozillaCACerts_jll"] uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" version = "0.6.3" [[deps.LibCURL_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" version = "7.84.0+0" [[deps.LibGit2]] deps = ["Base64", "NetworkOptions", "Printf", "SHA"] uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" [[deps.LibSSH2_jll]] deps = ["Artifacts", "Libdl", "MbedTLS_jll"] uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" version = "1.10.2+0" [[deps.Libdl]] uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" [[deps.Libiconv_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "c7cb1f5d892775ba13767a87c7ada0b980ea0a71" uuid = "94ce4f54-9a6c-5748-9c1c-f9c7231a4531" version = "1.16.1+2" [[deps.LightXML]] deps = ["Libdl", "XML2_jll"] git-tree-sha1 = "e129d9391168c677cd4800f5c0abb1ed8cb3794f" uuid = "9c8b4983-aa76-5018-a973-4c85ecc9e179" version = "0.9.0" [[deps.LinearAlgebra]] deps = ["Libdl", "libblastrampoline_jll"] uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" [[deps.LogExpFunctions]] deps = ["ChainRulesCore", "ChangesOfVariables", "DocStringExtensions", "InverseFunctions", "IrrationalConstants", "LinearAlgebra"] git-tree-sha1 = "946607f84feb96220f480e0422d3484c49c00239" uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" version = "0.3.19" [[deps.Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" [[deps.LoggingExtras]] deps = ["Dates", "Logging"] git-tree-sha1 = "cedb76b37bc5a6c702ade66be44f831fa23c681e" uuid = "e6f89c97-d47a-5376-807f-9c37f3926c36" version = "1.0.0" [[deps.MIMEs]] git-tree-sha1 = "65f28ad4b594aebe22157d6fac869786a255b7eb" uuid = "6c6e2e6c-3030-632d-7369-2d6c69616d65" version = "0.1.4" [[deps.Markdown]] deps = ["Base64"] uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" [[deps.MbedTLS]] deps = ["Dates", "MbedTLS_jll", "MozillaCACerts_jll", "Random", "Sockets"] git-tree-sha1 = "03a9b9718f5682ecb107ac9f7308991db4ce395b" uuid = "739be429-bea8-5141-9913-cc70e7f3736d" version = "1.1.7" [[deps.MbedTLS_jll]] deps = ["Artifacts", "Libdl"] uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" version = "2.28.0+0" [[deps.MeshIO]] deps = ["ColorTypes", "FileIO", "GeometryBasics", "Printf"] git-tree-sha1 = "8be09d84a2d597c7c0c34d7d604c039c9763e48c" uuid = "7269a6da-0436-5bbc-96c2-40638cbb6118" version = "0.4.10" [[deps.Mmap]] uuid = "a63ad114-7e13-5084-954f-fe012c677804" [[deps.MozillaCACerts_jll]] uuid = "14a3606d-f60d-562e-9121-12d972cd8159" version = "2022.2.1" [[deps.MsgPack]] deps = ["Serialization"] git-tree-sha1 = "a8cbf066b54d793b9a48c5daa5d586cf2b5bd43d" uuid = "99f44e22-a591-53d1-9472-aa23ef4bd671" version = "1.1.0" [[deps.NetworkOptions]] uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" version = "1.2.0" [[deps.Observables]] git-tree-sha1 = "6862738f9796b3edc1c09d0890afce4eca9e7e93" uuid = "510215fc-4207-5dde-b226-833fc4488ee2" version = "0.5.4" [[deps.OpenBLAS_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" version = "0.3.20+0" [[deps.OpenLibm_jll]] deps = ["Artifacts", "Libdl"] uuid = "05823500-19ac-5b8b-9628-191a04bc5112" version = "0.8.1+0" [[deps.OpenSSL]] deps = ["BitFlags", "Dates", "MozillaCACerts_jll", "OpenSSL_jll", "Sockets"] git-tree-sha1 = "6503b77492fd7fcb9379bf73cd31035670e3c509" uuid = "4d8831e6-92b7-49fb-bdf8-b643e874388c" version = "1.3.3" [[deps.OpenSSL_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "f6e9dba33f9f2c44e08a020b0caf6903be540004" uuid = "458c3c95-2e84-50aa-8efc-19380b2a3a95" version = "1.1.19+0" [[deps.OpenSpecFun_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "13652491f6856acfd2db29360e1bbcd4565d04f1" uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e" version = "0.5.5+0" [[deps.OrderedCollections]] git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c" uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" version = "1.4.1" [[deps.Parsers]] deps = ["Dates", "SnoopPrecompile"] git-tree-sha1 = "8175fc2b118a3755113c8e68084dc1a9e63c61ee" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" version = "2.5.3" [[deps.Pkg]] deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" version = "1.8.0" [[deps.PkgVersion]] deps = ["Pkg"] git-tree-sha1 = "f6cf8e7944e50901594838951729a1861e668cb8" uuid = "eebad327-c553-4316-9ea0-9fa01ccd7688" version = "0.3.2" [[deps.Pluto]] deps = ["Base64", "Configurations", "Dates", "Distributed", "FileWatching", "FuzzyCompletions", "HTTP", "HypertextLiteral", "InteractiveUtils", "Logging", "MIMEs", "Markdown", "MsgPack", "Pkg", "PrecompileSignatures", "REPL", "RegistryInstances", "RelocatableFolders", "Sockets", "TOML", "Tables", "URIs", "UUIDs"] git-tree-sha1 = "f4c99fcadf03dcdd2dd8ae7a56ca963ef1450d4f" uuid = "c3e4b0f8-55cb-11ea-2926-15256bba5781" version = "0.19.19" [[deps.PlutoUI]] deps = ["AbstractPlutoDingetjes", "Base64", "ColorTypes", "Dates", "FixedPointNumbers", "Hyperscript", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "MIMEs", "Markdown", "Random", "Reexport", "URIs", "UUIDs"] git-tree-sha1 = "eadad7b14cf046de6eb41f13c9275e5aa2711ab6" uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8" version = "0.7.49" [[deps.PlutoVista]] deps = ["ColorSchemes", "Colors", "DocStringExtensions", "GridVisualizeTools", "HypertextLiteral", "Pluto", "UUIDs"] git-tree-sha1 = "5af654ba1660641b3b80614a7be7eacae4c49875" uuid = "646e1f28-b900-46d7-9d87-d554eb38a413" version = "0.8.16" [[deps.PrecompileSignatures]] git-tree-sha1 = "18ef344185f25ee9d51d80e179f8dad33dc48eb1" uuid = "91cefc8d-f054-46dc-8f8c-26e11d7c5411" version = "3.0.3" [[deps.Preferences]] deps = ["TOML"] git-tree-sha1 = "47e5f437cc0e7ef2ce8406ce1e7e24d44915f88d" uuid = "21216c6a-2e73-6563-6e65-726566657250" version = "1.3.0" [[deps.Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" [[deps.REPL]] deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"] uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" [[deps.Random]] deps = ["SHA", "Serialization"] uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" [[deps.Reexport]] git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" uuid = "189a3867-3050-52da-a836-e630ba90ab69" version = "1.2.2" [[deps.RegistryInstances]] deps = ["LazilyInitializedFields", "Pkg", "TOML", "Tar"] git-tree-sha1 = "ffd19052caf598b8653b99404058fce14828be51" uuid = "2792f1a3-b283-48e8-9a74-f99dce5104f3" version = "0.1.0" [[deps.RelocatableFolders]] deps = ["SHA", "Scratch"] git-tree-sha1 = "90bc7a7c96410424509e4263e277e43250c05691" uuid = "05181044-ff0b-4ac5-8273-598c1e38db00" version = "1.0.0" [[deps.Requires]] deps = ["UUIDs"] git-tree-sha1 = "838a3a4188e2ded87a4f9f184b4b0d78a1e91cb7" uuid = "ae029012-a4dd-5104-9daa-d747884805df" version = "1.3.0" [[deps.SHA]] uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" version = "0.7.0" [[deps.Scratch]] deps = ["Dates"] git-tree-sha1 = "f94f779c94e58bf9ea243e77a37e16d9de9126bd" uuid = "6c6a2e73-6563-6170-7368-637461726353" version = "1.1.1" [[deps.Serialization]] uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" [[deps.SimpleBufferStream]] git-tree-sha1 = "874e8867b33a00e784c8a7e4b60afe9e037b74e1" uuid = "777ac1f9-54b0-4bf8-805c-2214025038e7" version = "1.1.0" [[deps.SimplexGridFactory]] deps = ["DocStringExtensions", "ElasticArrays", "ExtendableGrids", "FileIO", "GridVisualize", "LinearAlgebra", "MeshIO", "Printf", "Test"] git-tree-sha1 = "4566d826852b7815d34c7a8829679c6f15f4b2e7" uuid = "57bfcd06-606e-45d6-baf4-4ba06da0efd5" version = "0.5.18" [[deps.SnoopPrecompile]] deps = ["Preferences"] git-tree-sha1 = "e760a70afdcd461cf01a575947738d359234665c" uuid = "66db9d55-30c0-4569-8b51-7e840670fc0c" version = "1.0.3" [[deps.Sockets]] uuid = "6462fe0b-24de-5631-8697-dd941f90decc" [[deps.SparseArrays]] deps = ["LinearAlgebra", "Random"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" [[deps.SpecialFunctions]] deps = ["ChainRulesCore", "IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"] git-tree-sha1 = "d75bda01f8c31ebb72df80a46c88b25d1c79c56d" uuid = "276daf66-3868-5448-9aa4-cd146d93841b" version = "2.1.7" [[deps.StaticArrays]] deps = ["LinearAlgebra", "Random", "StaticArraysCore", "Statistics"] git-tree-sha1 = "6954a456979f23d05085727adb17c4551c19ecd1" uuid = "90137ffa-7385-5640-81b9-e52037218182" version = "1.5.12" [[deps.StaticArraysCore]] git-tree-sha1 = "6b7ba252635a5eff6a0b0664a41ee140a1c9e72a" uuid = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" version = "1.4.0" [[deps.Statistics]] deps = ["LinearAlgebra", "SparseArrays"] uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" [[deps.StructArrays]] deps = ["Adapt", "DataAPI", "GPUArraysCore", "StaticArraysCore", "Tables"] git-tree-sha1 = "b03a3b745aa49b566f128977a7dd1be8711c5e71" uuid = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" version = "0.6.14" [[deps.TOML]] deps = ["Dates"] uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" version = "1.0.0" [[deps.TableTraits]] deps = ["IteratorInterfaceExtensions"] git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39" uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c" version = "1.0.1" [[deps.Tables]] deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "OrderedCollections", "TableTraits", "Test"] git-tree-sha1 = "c79322d36826aa2f4fd8ecfa96ddb47b174ac78d" uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" version = "1.10.0" [[deps.Tar]] deps = ["ArgTools", "SHA"] uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" version = "1.10.1" [[deps.TensorCore]] deps = ["LinearAlgebra"] git-tree-sha1 = "1feb45f88d133a655e001435632f019a9a1bcdb6" uuid = "62fd8b95-f654-4bbd-a8a5-9c27f68ccd50" version = "0.1.1" [[deps.Test]] deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[deps.TetGen]] deps = ["DocStringExtensions", "GeometryBasics", "LinearAlgebra", "Printf", "StaticArrays", "TetGen_jll"] git-tree-sha1 = "d99fe468112a24feb36bcdac8c168f423de7e93c" uuid = "c5d3f3f7-f850-59f6-8a2e-ffc6dc1317ea" version = "1.4.0" [[deps.TetGen_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "9ceedd691bce040e24126a56354f20d71554a495" uuid = "b47fdcd6-d2c1-58e9-bbba-c1cee8d8c179" version = "1.5.3+0" [[deps.TranscodingStreams]] deps = ["Random", "Test"] git-tree-sha1 = "94f38103c984f89cf77c402f2a68dbd870f8165f" uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa" version = "0.9.11" [[deps.Triangle_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "fe28e9a4684f6f54e868b9136afb8fd11f1734a7" uuid = "5639c1d2-226c-5e70-8d55-b3095415a16a" version = "1.6.2+0" [[deps.Triangulate]] deps = ["DocStringExtensions", "Libdl", "Printf", "Test", "Triangle_jll"] git-tree-sha1 = "bbca6ec35426334d615f58859ad40c96d3a4a1f9" uuid = "f7e6ffb2-c36d-4f8f-a77e-16e897189344" version = "2.2.0" [[deps.Tricks]] git-tree-sha1 = "6bac775f2d42a611cdfcd1fb217ee719630c4175" uuid = "410a4b4d-49e4-4fbc-ab6d-cb71b17b3775" version = "0.1.6" [[deps.URIs]] git-tree-sha1 = "ac00576f90d8a259f2c9d823e91d1de3fd44d348" uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4" version = "1.4.1" [[deps.UUIDs]] deps = ["Random", "SHA"] uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" [[deps.Unicode]] uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" [[deps.WriteVTK]] deps = ["Base64", "CodecZlib", "FillArrays", "LightXML", "TranscodingStreams"] git-tree-sha1 = "f50c47d715199601a54afdd5267f24c8174842ae" uuid = "64499a7a-5c06-52f2-abe2-ccb03c286192" version = "1.16.0" [[deps.XML2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "Zlib_jll"] git-tree-sha1 = "93c41695bc1c08c46c5899f4fe06d6ead504bb73" uuid = "02c8fc9c-b97f-50b9-bbe4-9be30ff0a78a" version = "2.10.3+0" [[deps.Zlib_jll]] deps = ["Libdl"] uuid = "83775a58-1f1d-513f-b197-d71354ab007a" version = "1.2.12+3" [[deps.libblastrampoline_jll]] deps = ["Artifacts", "Libdl", "OpenBLAS_jll"] uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" version = "5.1.1+0" [[deps.nghttp2_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" version = "1.48.0+0" [[deps.p7zip_jll]] deps = ["Artifacts", "Libdl"] uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" version = "17.4.0+0" """ # ╔═╡ Cell order: # ╟─940b1996-fe9d-11ea-2fa4-8b72bee62b76 # ╠═d432ad64-f91f-11ea-2e48-4bc7472ac64c # ╟─47103e8f-a4ff-46ed-a632-572a2e194a50 # ╠═93a0c45e-d6a3-415a-a82c-e4f7e2a09d22 # ╠═4622a1fc-fda7-4211-9cc0-4eb1a1584aa6 # ╟─3212b930-194d-422e-9d06-65885b25cc6d # ╠═5520b8c0-0874-4790-a956-224e6c43d9cf # ╟─13aef2a1-5745-4fe5-9659-6b7c0e7267fc # ╠═f19d20c8-4d69-442d-99c8-10874fa0a6d3 # ╟─28e2e3b0-c168-481b-b467-29e6a5407431 # ╠═f04017d7-1c55-4118-8467-1e134259e35d # ╠═98016b49-8786-46b9-aca6-01d15c253b3f # ╟─2d392a98-bf32-4145-ae93-a8e218367277 # ╠═88247350-aa6c-4876-82c3-3534036d5702 # ╠═42f8d91d-14c7-488f-bdb9-b3d22705186f # ╠═db7e0233-4e08-41b8-9ebe-5570e6d32264 # ╠═74641f73-2efe-4df8-bebb-ed97e77d869e # ╟─14fb7977-93cf-4f74-a8ec-b6ee25dbdf86 # ╠═2d5cb9e1-2d14-415e-b792-c3124901011d # ╟─b1f903b3-29d7-4909-b7e2-8ef3528c9965 # ╠═19125aed-5c46-4968-bcfc-0b469628b68e # ╠═f9debaf8-efe8-44d1-9671-4aa5bffa9bb8 # ╠═4f7f9eaf-61c5-4543-ae39-e58ca14fb89a # ╠═f873cb89-da6e-4e11-b3f6-2bf0b766ce5f # ╟─a2e6c397-4a7e-47eb-ad84-df6e9d3fdd43 # ╠═805c2a1e-a6c6-47fc-b719-31c2a671a8d0 # ╠═dd7d8e17-f825-4047-9386-d9e2bfd0a48d # ╟─3d7db57f-2864-4984-a979-609e1d838a9f # ╠═4cf840e6-86c5-4af1-a780-6fc78b60716b # ╠═151cc4b8-c5ed-4f5e-8d5f-2f708c9c7fae # ╠═605581c4-3c6f-4c31-bd90-7645d3f70315 # ╠═bd40e614-00ef-426d-aa98-eca2ef48320e # ╠═71af99ab-612a-4821-8e9c-efc8766e2e3e # ╟─6dfa1d73-8baa-4589-b2e6-547834c9e444 # ╠═f9599246-8238-432c-a315-300d74abfa2c # ╠═ba5af291-fb16-4f21-8b74-664284bf7bd9 # ╟─dfbaacea-4cb4-4147-9f1b-4424d7a7e89b # ╟─7d1698dd-3bb7-4b38-9c6d-a88652749eee # ╠═81249f7c-abdf-43cc-b57f-2915b09da009 # ╟─0765641a-8ed9-4579-bd9b-90bb02a55792 # ╠═884a11a2-15cf-40fc-a1ca-66ea23c6094e # ╟─8fbd238c-723e-4bce-af69-9cabfc03f8d9 # ╠═342788d4-e5d0-4239-be87-7658bb67c999 # ╠═8f7d958e-5dc5-4324-af21-ad829d7d77eb # ╟─fd27b44a-f923-11ea-2afb-d79f7e62e214 # ╟─4a289b23-46b9-495d-b19c-42b3da71b242 # ╠═b12838f0-fe9c-11ea-2939-155ed907322d # ╟─d5d8a1d6-fe9d-11ea-0fd8-df6e81492cb5 # ╠═aae2e82a-fe9c-11ea-0427-593f8d2c7746 # ╟─1ae86964-fe9e-11ea-303b-65bb128384a5 # ╟─3b8cd906-bc4e-44af-bcf4-8836d597ed4c # ╟─9d240ef9-6639-4bde-a463-ea78480a970d # ╠═511b26c6-f920-11ea-1228-51c3750f495c # ╟─d2129483-285b-49a2-a11d-886956146b85 # ╠═ac93589b-6315-4677-9542-c0a2333f1755 # ╠═59a6c8b5-25aa-47aa-9489-a803672013df # ╟─4c99c40f-cf93-4cba-bef1-0c4ffcbf6833 # ╠═bad736d7-875c-4bc0-9ec4-494a90a508f7 # ╠═a375c23f-6b8c-4b2c-a8b5-d38e6b5a8f6d # ╠═c3ef9067-3cdb-4bfd-9406-6ded64539978 # ╠═4dfb2e0f-3e3a-4053-8a76-765546e96992 # ╟─2682df92-5955-4b17-ae4f-8e99c5b17980 # ╠═265fe6c7-d1cc-48a6-8295-f8f55acf677c # ╠═b357395f-2a6e-476f-b008-02802c85a541 # ╠═af449be7-aab6-4de5-a059-3f8508502676 # ╠═38e2b4a8-2480-40e7-bde3-6d1775201aae # ╠═f97d085c-e7bf-4561-8183-673912bdeab6 # ╠═ef1fde48-fe90-4714-ac86-614ae3451aa7 # ╠═d73d18e7-bcf9-4cc1-9154-b70dc1ff5524 # ╠═a3844fda-5725-4d95-894b-051a5f6c2faa # ╠═04041481-0f03-41e1-a7de-1b3fd033c952 # ╟─6cad87eb-1c59-4000-b688-a6f6d41f9413 # ╠═fefc7587-8e25-4080-b934-90c0e1afc56a # ╠═065735f7-c799-4284-bd59-fe6383bb987c # ╠═329992a0-e352-468b-af8b-0b190315fc61 # ╟─a7965a6e-2e83-47eb-aee2-d366246a8637 # ╠═7ad541b1-f40f-4cdd-b7b5-b792a8e63d71 # ╠═071b8834-d3d1-4d08-979f-56b05bc1e0d3 # ╟─00000000-0000-0000-0000-000000000001 # ╟─00000000-0000-0000-0000-000000000002
PDELib
https://github.com/WIAS-BERLIN/PDELib.jl.git
[ "MIT" ]
0.3.0
2fca7ee903e9c45871c1948e6b5fffdf359e2da3
code
28887
### A Pluto.jl notebook ### # v0.19.19 using Markdown using InteractiveUtils # This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error). macro bind(def, element) quote local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end local el = $(esc(element)) global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el) el end end # ╔═╡ 60941eaa-1aea-11eb-1277-97b991548781 begin using PlutoUI using ExtendableGrids using SimplexGridFactory using PlutoVista using GridVisualize using Triangulate isdefined(Main,:PlutoRunner) ? default_plotter!(PlutoVista) : default_plotter!(nothing) end # ╔═╡ 07194f25-5735-452f-9bed-cf791958d44d md""" ## Grid with quadratic boundary subregions at electrode """ # ╔═╡ d0f3483a-2bf4-4e2d-80b0-6c869b45cda8 function qxygrid(;nref=0,xymax=1.0,hxymin=0.1,hxymax=0.1) Xp=geomspace(0,xymax,hxymin,hxymax) Xm=-reverse(Xp) X=glue(Xm,Xp) gridxy=simplexgrid(X,X) fill!(gridxy[BFaceRegions],5) gridxy end # ╔═╡ fd8f6c48-0030-4f6f-9fbf-9f2340decbf2 g=qxygrid(hxymin=0.05, hxymax=0.2) # ╔═╡ bbeeebc0-ae16-4022-975d-35588e62166a gridplot(g) # ╔═╡ e6c7e47d-6159-4bb6-a71d-7c633e2fefbd function qxyzgrid(gridxy ;zmax=1.0,hzmin=0.05,hzmax=0.2) Z=geomspace(0,zmax,hzmin,hzmax) gridxyz=simplexgrid(gridxy,Z,top_offset=1) xymax=gridxy[Coordinates][1,end] bfacemask!(gridxyz,[-xymax,-xymax,0],[0,0,0],1) bfacemask!(gridxyz,[0,0,0],[xymax,xymax,0],2) bfacemask!(gridxyz,[0,-xymax,0],[xymax,0,0],3) bfacemask!(gridxyz,[-xymax,0,0],[0,xymax,0],4) gridxyz end # ╔═╡ 9800c97e-c25b-4d08-a014-cccd746f7d71 gxyz=qxyzgrid(g) # ╔═╡ 9a219111-0275-4cd9-b97e-648d3fcfcbb9 vis=GridVisualizer(dim=3,resolution=(400,300));vis # ╔═╡ 85be1677-87ff-49dc-af9a-557e575bc55f @bind z Slider(0:0.01:1,show_value=true,default=0.5) # ╔═╡ 33ecc78c-16ac-46ac-8d83-cbb26288a6fb gridplot!(vis,gxyz,show=true,zplanes=[z],xplanes=[1],yplanes=[1],outlinealpha=0.3) # ╔═╡ 9e640256-61a4-4fb9-a449-d5f948fb2d26 md""" ## Grid with inner circle at electrode """ # ╔═╡ bf0004f4-b3c8-4385-b87d-df2ef1420408 md""" ### Plain triangulation """ # ╔═╡ 1b70e44b-cbe8-4812-b267-ef9bce20a5b7 function cxygrid(;maxvol=0.01,nref=0,xyzmax=1,rad=0.5) builder=SimplexGridBuilder(Generator=Triangulate) regionpoint!(builder,(xyzmax-0.1,xyzmax-0.1)) cellregion!(builder,1) rect2d!(builder,[-xyzmax,-xyzmax],[xyzmax,xyzmax],facetregions=1) facetregion!(builder,3) cellregion!(builder,2) regionpoint!(builder, (0,0)) circle!(builder,(0,0), rad,n=20) simplexgrid(builder,maxvolume=maxvol) end # ╔═╡ 10ebaeab-3ece-480f-9c4d-a676814e2f7f gcxy=cxygrid() # ╔═╡ b711885e-cc61-4e08-9367-437731323863 gridplot(gcxy) # ╔═╡ e4029d2c-18b7-4592-b47d-294e4af93497 gcxy.components # ╔═╡ 0c3f5b1c-7bcf-491e-8318-73f2c880e0b5 function cxyzgrid(gcxy,zmax=1.0,hzmin=0.05,hzmax=0.2) Z=geomspace(0,zmax,hzmin,hzmax) gridxyz=simplexgrid(gcxy,Z,bot_offset=0) xymax=maximum(gcxy[Coordinates][1,:]) bfacemask!(gridxyz,[-xymax,-xymax,zmax],[xymax,xymax,zmax],5,allow_new=false) gridxyz end # ╔═╡ f9130b5d-b4ea-4ebd-b73f-82a3c1bc1307 gcxyz=cxyzgrid(gcxy) # ╔═╡ 73847699-40c0-4043-a16f-37883def6858 gcxyz.components # ╔═╡ bff0a3f1-c545-4fcc-8be8-ef460f8479bd visc=GridVisualizer(dim=3,resolution=(400,300)) # ╔═╡ 66ce2939-2957-43e0-b7ea-cdd10d9fc17e @bind zc Slider(0:0.01:1,show_value=true,default=0.5) # ╔═╡ a310027d-3f9e-4de5-bc9e-5457cb19eef5 gridplot!(visc,gcxyz,show=true,zplanes=[zc],xplanes=[1],yplanes=[1],outlinealpha=0.3) # ╔═╡ 752bdb8f-de5a-4863-b2d1-53d69aff7dcb md""" ### Grid with anisotropic local refinement at electrode """ # ╔═╡ 5aef30a0-8712-4c6c-9465-25da0624b408 function grxy(;nang=40,nxy=15, r=0.5, dr=0.1,hrmin=0.01,hrmax=0.05,xymax=1.0) rad1=geomspace(r-dr,r,hrmax,hrmin) rad2=geomspace(r,r+dr,hrmin,hrmax) ang=range(0,2π,length=nang) δr=2π*r/nang maxvol=0.5*δr^2 ring1=ringsector(rad1,ang) ring1[CellRegions].=1 ring2=ringsector(rad2,ang) ring1[CellRegions].=2 ring=glue(ring1,ring2,breg=3) binner=SimplexGridBuilder(Generator=Triangulate) regionpoint!(binner,(0,0)) cellregion!(binner,2) facetregion!(binner,2) bregions!(binner,ring,[1]) ginner=simplexgrid(binner,maxvolume=maxvol,nosteiner=true) ginner[CellRegions].=2 bouter=SimplexGridBuilder(Generator=Triangulate) holepoint!(bouter,(0,0)) facetregion!(bouter,3) bregions!(bouter,ring,[2]) regionpoint!(bouter,(xymax-0.1,xymax-0.1)) cellregion!(bouter,3) rect2d!(bouter,[-xymax,-xymax],[xymax,xymax],facetregions=1,nx=nxy,ny=nxy) gouter=simplexgrid(bouter;maxvolume=maxvol*2,nosteiner=true) glue(glue(gouter,ring),ginner) end # ╔═╡ 4debce38-96c5-4661-a965-1ca723fa8a36 rxygrid=grxy() # ╔═╡ 52f4c693-0218-4f56-ac95-abd6d99a0b67 gridplot(rxygrid) # ╔═╡ f43bd8ff-a2ed-4740-a61e-4f5d2c615c10 grxyz=cxyzgrid(rxygrid) # ╔═╡ b9ced73f-e7a0-4573-9413-c2a231d21c78 visr=GridVisualizer(dim=3,resolution=(400,300)) # ╔═╡ 2c285e4f-9f10-474b-9482-83a5c4cbfe09 @bind zr Slider(0:0.01:1,show_value=true,default=0.5) # ╔═╡ 97d8db91-16e6-4070-81a0-7bcaff6cc9f6 gridplot!(visr,grxyz,show=true,zplanes=[zr],xplanes=[1],yplanes=[1],outlinealpha=0.3) # ╔═╡ 78dba5b2-52c9-40cd-bc1d-d5c343271f97 html"""<hr> """ # ╔═╡ b9cc0359-7286-4c02-ba10-35303da26a50 TableOfContents() # ╔═╡ 605c914d-607b-4d2e-80c5-d14cb6918e32 md""" begin using Pkg Pkg.activate(mktempdir()) Pkg.add(["PlutoUI","Revise","Triangulate"]) using Revise Pkg.develop(["ExtendableGrids","SimplexGridFactory", "GridVisualize","PlutoVista"]) end """ # ╔═╡ 00000000-0000-0000-0000-000000000001 PLUTO_PROJECT_TOML_CONTENTS = """ [deps] ExtendableGrids = "cfc395e8-590f-11e8-1f13-43a2532b2fa8" GridVisualize = "5eed8a63-0fb0-45eb-886d-8d5a387d12b8" PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8" PlutoVista = "646e1f28-b900-46d7-9d87-d554eb38a413" SimplexGridFactory = "57bfcd06-606e-45d6-baf4-4ba06da0efd5" Triangulate = "f7e6ffb2-c36d-4f8f-a77e-16e897189344" [compat] ExtendableGrids = "~0.9.16" GridVisualize = "~0.6.1" PlutoUI = "~0.7.16" PlutoVista = "~0.8.6" SimplexGridFactory = "~0.5.18" Triangulate = "~2.2.0" """ # ╔═╡ 00000000-0000-0000-0000-000000000002 PLUTO_MANIFEST_TOML_CONTENTS = """ # This file is machine-generated - editing it directly is not advised manifest_format = "2.0" project_hash = "ed5d0e039c16ed3dff8cdeb7be686be0cd3c7d3e" [[deps.AbstractPlutoDingetjes]] deps = ["Pkg"] git-tree-sha1 = "8eaf9f1b4921132a4cff3f36a1d9ba923b14a481" uuid = "6e696c72-6542-2067-7265-42206c756150" version = "1.1.4" [[deps.AbstractTrees]] git-tree-sha1 = "faa260e4cb5aba097a73fab382dd4b5819d8ec8c" uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c" version = "0.4.4" [[deps.Adapt]] deps = ["LinearAlgebra"] git-tree-sha1 = "195c5505521008abea5aee4f96930717958eac6f" uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" version = "3.4.0" [[deps.ArgTools]] uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" version = "1.1.1" [[deps.Artifacts]] uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" [[deps.Base64]] uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" [[deps.BitFlags]] git-tree-sha1 = "43b1a4a8f797c1cddadf60499a8a077d4af2cd2d" uuid = "d1d4a3ce-64b1-5f1a-9ba4-7e7e69966f35" version = "0.1.7" [[deps.ChainRulesCore]] deps = ["Compat", "LinearAlgebra", "SparseArrays"] git-tree-sha1 = "c6d890a52d2c4d55d326439580c3b8d0875a77d9" uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" version = "1.15.7" [[deps.ChangesOfVariables]] deps = ["ChainRulesCore", "LinearAlgebra", "Test"] git-tree-sha1 = "38f7a08f19d8810338d4f5085211c7dfa5d5bdd8" uuid = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0" version = "0.1.4" [[deps.CodecZlib]] deps = ["TranscodingStreams", "Zlib_jll"] git-tree-sha1 = "ded953804d019afa9a3f98981d99b33e3db7b6da" uuid = "944b1d66-785c-5afd-91f1-9de20f533193" version = "0.7.0" [[deps.ColorSchemes]] deps = ["ColorTypes", "ColorVectorSpace", "Colors", "FixedPointNumbers", "Random", "SnoopPrecompile"] git-tree-sha1 = "aa3edc8f8dea6cbfa176ee12f7c2fc82f0608ed3" uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4" version = "3.20.0" [[deps.ColorTypes]] deps = ["FixedPointNumbers", "Random"] git-tree-sha1 = "eb7f0f8307f71fac7c606984ea5fb2817275d6e4" uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" version = "0.11.4" [[deps.ColorVectorSpace]] deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "SpecialFunctions", "Statistics", "TensorCore"] git-tree-sha1 = "600cc5508d66b78aae350f7accdb58763ac18589" uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4" version = "0.9.10" [[deps.Colors]] deps = ["ColorTypes", "FixedPointNumbers", "Reexport"] git-tree-sha1 = "fc08e5930ee9a4e03f84bfb5211cb54e7769758a" uuid = "5ae59095-9a9b-59fe-a467-6f913c188581" version = "0.12.10" [[deps.Compat]] deps = ["Dates", "LinearAlgebra", "UUIDs"] git-tree-sha1 = "00a2cccc7f098ff3b66806862d275ca3db9e6e5a" uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" version = "4.5.0" [[deps.CompilerSupportLibraries_jll]] deps = ["Artifacts", "Libdl"] uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" version = "1.0.1+0" [[deps.Configurations]] deps = ["ExproniconLite", "OrderedCollections", "TOML"] git-tree-sha1 = "62a7c76dbad02fdfdaa53608104edf760938c4ca" uuid = "5218b696-f38b-4ac9-8b61-a12ec717816d" version = "0.17.4" [[deps.DataAPI]] git-tree-sha1 = "e8119c1a33d267e16108be441a287a6981ba1630" uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" version = "1.14.0" [[deps.DataValueInterfaces]] git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6" uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464" version = "1.0.0" [[deps.Dates]] deps = ["Printf"] uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" [[deps.Distributed]] deps = ["Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" [[deps.DocStringExtensions]] deps = ["LibGit2"] git-tree-sha1 = "2fb1e02f2b635d0845df5d7c167fec4dd739b00d" uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" version = "0.9.3" [[deps.Downloads]] deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"] uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" version = "1.6.0" [[deps.EarCut_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "e3290f2d49e661fbd94046d7e3726ffcb2d41053" uuid = "5ae413db-bbd1-5e63-b57d-d24a61df00f5" version = "2.2.4+0" [[deps.ElasticArrays]] deps = ["Adapt"] git-tree-sha1 = "e1c40d78de68e9a2be565f0202693a158ec9ad85" uuid = "fdbdab4c-e67f-52f5-8c3f-e7b388dad3d4" version = "1.2.11" [[deps.ExproniconLite]] deps = ["Pkg", "TOML"] git-tree-sha1 = "c2eb763acf6e13e75595e0737a07a0bec0ce2147" uuid = "55351af7-c7e9-48d6-89ff-24e801d99491" version = "0.7.11" [[deps.ExtendableGrids]] deps = ["AbstractTrees", "Dates", "DocStringExtensions", "ElasticArrays", "InteractiveUtils", "LinearAlgebra", "Printf", "Random", "SparseArrays", "StaticArrays", "Test", "WriteVTK"] git-tree-sha1 = "310b903a560b7b18f63486ff93da1ded9cae1f15" uuid = "cfc395e8-590f-11e8-1f13-43a2532b2fa8" version = "0.9.16" [[deps.Extents]] git-tree-sha1 = "5e1e4c53fa39afe63a7d356e30452249365fba99" uuid = "411431e0-e8b7-467b-b5e0-f676ba4f2910" version = "0.1.1" [[deps.FileIO]] deps = ["Pkg", "Requires", "UUIDs"] git-tree-sha1 = "7be5f99f7d15578798f338f5433b6c432ea8037b" uuid = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549" version = "1.16.0" [[deps.FileWatching]] uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee" [[deps.FillArrays]] deps = ["LinearAlgebra", "Random", "SparseArrays", "Statistics"] git-tree-sha1 = "9a0472ec2f5409db243160a8b030f94c380167a3" uuid = "1a297f60-69ca-5386-bcde-b61e274b549b" version = "0.13.6" [[deps.FixedPointNumbers]] deps = ["Statistics"] git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc" uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" version = "0.8.4" [[deps.FuzzyCompletions]] deps = ["REPL"] git-tree-sha1 = "e16dd964b4dfaebcded16b2af32f05e235b354be" uuid = "fb4132e2-a121-4a70-b8a1-d5b831dcdcc2" version = "0.5.1" [[deps.GPUArraysCore]] deps = ["Adapt"] git-tree-sha1 = "57f7cde02d7a53c9d1d28443b9f11ac5fbe7ebc9" uuid = "46192b85-c4d5-4398-a991-12ede77f4527" version = "0.1.3" [[deps.GeoInterface]] deps = ["Extents"] git-tree-sha1 = "e315c4f9d43575cf6b4e511259433803c15ebaa2" uuid = "cf35fbd7-0cd7-5166-be24-54bfbe79505f" version = "1.1.0" [[deps.GeometryBasics]] deps = ["EarCut_jll", "GeoInterface", "IterTools", "LinearAlgebra", "StaticArrays", "StructArrays", "Tables"] git-tree-sha1 = "fe9aea4ed3ec6afdfbeb5a4f39a2208909b162a6" uuid = "5c1252a2-5f33-56bf-86c9-59e7332b4326" version = "0.4.5" [[deps.GridVisualize]] deps = ["ColorSchemes", "Colors", "DocStringExtensions", "ElasticArrays", "ExtendableGrids", "GeometryBasics", "GridVisualizeTools", "HypertextLiteral", "LinearAlgebra", "Observables", "OrderedCollections", "PkgVersion", "Printf", "StaticArrays"] git-tree-sha1 = "b19a5815f9ba376dff963fccdf0c98dbddc6f61d" uuid = "5eed8a63-0fb0-45eb-886d-8d5a387d12b8" version = "0.6.1" [[deps.GridVisualizeTools]] deps = ["ColorSchemes", "Colors", "DocStringExtensions", "StaticArraysCore"] git-tree-sha1 = "5964fd3e4080af45bfdbdaff75567759fd0367bd" uuid = "5573ae12-3b76-41d9-b48c-81d0b6e61cc5" version = "0.2.1" [[deps.HTTP]] deps = ["Base64", "CodecZlib", "Dates", "IniFile", "Logging", "LoggingExtras", "MbedTLS", "NetworkOptions", "OpenSSL", "Random", "SimpleBufferStream", "Sockets", "URIs", "UUIDs"] git-tree-sha1 = "eb5aa5e3b500e191763d35198f859e4b40fff4a6" uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3" version = "1.7.3" [[deps.Hyperscript]] deps = ["Test"] git-tree-sha1 = "8d511d5b81240fc8e6802386302675bdf47737b9" uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91" version = "0.0.4" [[deps.HypertextLiteral]] deps = ["Tricks"] git-tree-sha1 = "c47c5fa4c5308f27ccaac35504858d8914e102f9" uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2" version = "0.9.4" [[deps.IOCapture]] deps = ["Logging", "Random"] git-tree-sha1 = "f7be53659ab06ddc986428d3a9dcc95f6fa6705a" uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89" version = "0.2.2" [[deps.IniFile]] git-tree-sha1 = "f550e6e32074c939295eb5ea6de31849ac2c9625" uuid = "83e8ac13-25f8-5344-8a64-a9f2b223428f" version = "0.5.1" [[deps.InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" [[deps.InverseFunctions]] deps = ["Test"] git-tree-sha1 = "49510dfcb407e572524ba94aeae2fced1f3feb0f" uuid = "3587e190-3f89-42d0-90ee-14403ec27112" version = "0.1.8" [[deps.IrrationalConstants]] git-tree-sha1 = "7fd44fd4ff43fc60815f8e764c0f352b83c49151" uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" version = "0.1.1" [[deps.IterTools]] git-tree-sha1 = "fa6287a4469f5e048d763df38279ee729fbd44e5" uuid = "c8e1da08-722c-5040-9ed9-7db0dc04731e" version = "1.4.0" [[deps.IteratorInterfaceExtensions]] git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856" uuid = "82899510-4779-5014-852e-03e436cf321d" version = "1.0.0" [[deps.JLLWrappers]] deps = ["Preferences"] git-tree-sha1 = "abc9885a7ca2052a736a600f7fa66209f96506e1" uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" version = "1.4.1" [[deps.JSON]] deps = ["Dates", "Mmap", "Parsers", "Unicode"] git-tree-sha1 = "3c837543ddb02250ef42f4738347454f95079d4e" uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" version = "0.21.3" [[deps.LazilyInitializedFields]] git-tree-sha1 = "410fe4739a4b092f2ffe36fcb0dcc3ab12648ce1" uuid = "0e77f7df-68c5-4e49-93ce-4cd80f5598bf" version = "1.2.1" [[deps.LibCURL]] deps = ["LibCURL_jll", "MozillaCACerts_jll"] uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" version = "0.6.3" [[deps.LibCURL_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" version = "7.84.0+0" [[deps.LibGit2]] deps = ["Base64", "NetworkOptions", "Printf", "SHA"] uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" [[deps.LibSSH2_jll]] deps = ["Artifacts", "Libdl", "MbedTLS_jll"] uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" version = "1.10.2+0" [[deps.Libdl]] uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" [[deps.Libiconv_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "c7cb1f5d892775ba13767a87c7ada0b980ea0a71" uuid = "94ce4f54-9a6c-5748-9c1c-f9c7231a4531" version = "1.16.1+2" [[deps.LightXML]] deps = ["Libdl", "XML2_jll"] git-tree-sha1 = "e129d9391168c677cd4800f5c0abb1ed8cb3794f" uuid = "9c8b4983-aa76-5018-a973-4c85ecc9e179" version = "0.9.0" [[deps.LinearAlgebra]] deps = ["Libdl", "libblastrampoline_jll"] uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" [[deps.LogExpFunctions]] deps = ["ChainRulesCore", "ChangesOfVariables", "DocStringExtensions", "InverseFunctions", "IrrationalConstants", "LinearAlgebra"] git-tree-sha1 = "946607f84feb96220f480e0422d3484c49c00239" uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" version = "0.3.19" [[deps.Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" [[deps.LoggingExtras]] deps = ["Dates", "Logging"] git-tree-sha1 = "cedb76b37bc5a6c702ade66be44f831fa23c681e" uuid = "e6f89c97-d47a-5376-807f-9c37f3926c36" version = "1.0.0" [[deps.MIMEs]] git-tree-sha1 = "65f28ad4b594aebe22157d6fac869786a255b7eb" uuid = "6c6e2e6c-3030-632d-7369-2d6c69616d65" version = "0.1.4" [[deps.Markdown]] deps = ["Base64"] uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" [[deps.MbedTLS]] deps = ["Dates", "MbedTLS_jll", "MozillaCACerts_jll", "Random", "Sockets"] git-tree-sha1 = "03a9b9718f5682ecb107ac9f7308991db4ce395b" uuid = "739be429-bea8-5141-9913-cc70e7f3736d" version = "1.1.7" [[deps.MbedTLS_jll]] deps = ["Artifacts", "Libdl"] uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" version = "2.28.0+0" [[deps.MeshIO]] deps = ["ColorTypes", "FileIO", "GeometryBasics", "Printf"] git-tree-sha1 = "8be09d84a2d597c7c0c34d7d604c039c9763e48c" uuid = "7269a6da-0436-5bbc-96c2-40638cbb6118" version = "0.4.10" [[deps.Mmap]] uuid = "a63ad114-7e13-5084-954f-fe012c677804" [[deps.MozillaCACerts_jll]] uuid = "14a3606d-f60d-562e-9121-12d972cd8159" version = "2022.2.1" [[deps.MsgPack]] deps = ["Serialization"] git-tree-sha1 = "a8cbf066b54d793b9a48c5daa5d586cf2b5bd43d" uuid = "99f44e22-a591-53d1-9472-aa23ef4bd671" version = "1.1.0" [[deps.NetworkOptions]] uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" version = "1.2.0" [[deps.Observables]] git-tree-sha1 = "6862738f9796b3edc1c09d0890afce4eca9e7e93" uuid = "510215fc-4207-5dde-b226-833fc4488ee2" version = "0.5.4" [[deps.OpenBLAS_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" version = "0.3.20+0" [[deps.OpenLibm_jll]] deps = ["Artifacts", "Libdl"] uuid = "05823500-19ac-5b8b-9628-191a04bc5112" version = "0.8.1+0" [[deps.OpenSSL]] deps = ["BitFlags", "Dates", "MozillaCACerts_jll", "OpenSSL_jll", "Sockets"] git-tree-sha1 = "6503b77492fd7fcb9379bf73cd31035670e3c509" uuid = "4d8831e6-92b7-49fb-bdf8-b643e874388c" version = "1.3.3" [[deps.OpenSSL_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "f6e9dba33f9f2c44e08a020b0caf6903be540004" uuid = "458c3c95-2e84-50aa-8efc-19380b2a3a95" version = "1.1.19+0" [[deps.OpenSpecFun_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "13652491f6856acfd2db29360e1bbcd4565d04f1" uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e" version = "0.5.5+0" [[deps.OrderedCollections]] git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c" uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" version = "1.4.1" [[deps.Parsers]] deps = ["Dates", "SnoopPrecompile"] git-tree-sha1 = "8175fc2b118a3755113c8e68084dc1a9e63c61ee" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" version = "2.5.3" [[deps.Pkg]] deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" version = "1.8.0" [[deps.PkgVersion]] deps = ["Pkg"] git-tree-sha1 = "f6cf8e7944e50901594838951729a1861e668cb8" uuid = "eebad327-c553-4316-9ea0-9fa01ccd7688" version = "0.3.2" [[deps.Pluto]] deps = ["Base64", "Configurations", "Dates", "Distributed", "FileWatching", "FuzzyCompletions", "HTTP", "HypertextLiteral", "InteractiveUtils", "Logging", "MIMEs", "Markdown", "MsgPack", "Pkg", "PrecompileSignatures", "REPL", "RegistryInstances", "RelocatableFolders", "Sockets", "TOML", "Tables", "URIs", "UUIDs"] git-tree-sha1 = "f4c99fcadf03dcdd2dd8ae7a56ca963ef1450d4f" uuid = "c3e4b0f8-55cb-11ea-2926-15256bba5781" version = "0.19.19" [[deps.PlutoUI]] deps = ["AbstractPlutoDingetjes", "Base64", "ColorTypes", "Dates", "FixedPointNumbers", "Hyperscript", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "MIMEs", "Markdown", "Random", "Reexport", "URIs", "UUIDs"] git-tree-sha1 = "eadad7b14cf046de6eb41f13c9275e5aa2711ab6" uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8" version = "0.7.49" [[deps.PlutoVista]] deps = ["ColorSchemes", "Colors", "DocStringExtensions", "GridVisualizeTools", "HypertextLiteral", "Pluto", "UUIDs"] git-tree-sha1 = "5af654ba1660641b3b80614a7be7eacae4c49875" uuid = "646e1f28-b900-46d7-9d87-d554eb38a413" version = "0.8.16" [[deps.PrecompileSignatures]] git-tree-sha1 = "18ef344185f25ee9d51d80e179f8dad33dc48eb1" uuid = "91cefc8d-f054-46dc-8f8c-26e11d7c5411" version = "3.0.3" [[deps.Preferences]] deps = ["TOML"] git-tree-sha1 = "47e5f437cc0e7ef2ce8406ce1e7e24d44915f88d" uuid = "21216c6a-2e73-6563-6e65-726566657250" version = "1.3.0" [[deps.Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" [[deps.REPL]] deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"] uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" [[deps.Random]] deps = ["SHA", "Serialization"] uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" [[deps.Reexport]] git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" uuid = "189a3867-3050-52da-a836-e630ba90ab69" version = "1.2.2" [[deps.RegistryInstances]] deps = ["LazilyInitializedFields", "Pkg", "TOML", "Tar"] git-tree-sha1 = "ffd19052caf598b8653b99404058fce14828be51" uuid = "2792f1a3-b283-48e8-9a74-f99dce5104f3" version = "0.1.0" [[deps.RelocatableFolders]] deps = ["SHA", "Scratch"] git-tree-sha1 = "90bc7a7c96410424509e4263e277e43250c05691" uuid = "05181044-ff0b-4ac5-8273-598c1e38db00" version = "1.0.0" [[deps.Requires]] deps = ["UUIDs"] git-tree-sha1 = "838a3a4188e2ded87a4f9f184b4b0d78a1e91cb7" uuid = "ae029012-a4dd-5104-9daa-d747884805df" version = "1.3.0" [[deps.SHA]] uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" version = "0.7.0" [[deps.Scratch]] deps = ["Dates"] git-tree-sha1 = "f94f779c94e58bf9ea243e77a37e16d9de9126bd" uuid = "6c6a2e73-6563-6170-7368-637461726353" version = "1.1.1" [[deps.Serialization]] uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" [[deps.SimpleBufferStream]] git-tree-sha1 = "874e8867b33a00e784c8a7e4b60afe9e037b74e1" uuid = "777ac1f9-54b0-4bf8-805c-2214025038e7" version = "1.1.0" [[deps.SimplexGridFactory]] deps = ["DocStringExtensions", "ElasticArrays", "ExtendableGrids", "FileIO", "GridVisualize", "LinearAlgebra", "MeshIO", "Printf", "Test"] git-tree-sha1 = "4566d826852b7815d34c7a8829679c6f15f4b2e7" uuid = "57bfcd06-606e-45d6-baf4-4ba06da0efd5" version = "0.5.18" [[deps.SnoopPrecompile]] deps = ["Preferences"] git-tree-sha1 = "e760a70afdcd461cf01a575947738d359234665c" uuid = "66db9d55-30c0-4569-8b51-7e840670fc0c" version = "1.0.3" [[deps.Sockets]] uuid = "6462fe0b-24de-5631-8697-dd941f90decc" [[deps.SparseArrays]] deps = ["LinearAlgebra", "Random"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" [[deps.SpecialFunctions]] deps = ["ChainRulesCore", "IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"] git-tree-sha1 = "d75bda01f8c31ebb72df80a46c88b25d1c79c56d" uuid = "276daf66-3868-5448-9aa4-cd146d93841b" version = "2.1.7" [[deps.StaticArrays]] deps = ["LinearAlgebra", "Random", "StaticArraysCore", "Statistics"] git-tree-sha1 = "6954a456979f23d05085727adb17c4551c19ecd1" uuid = "90137ffa-7385-5640-81b9-e52037218182" version = "1.5.12" [[deps.StaticArraysCore]] git-tree-sha1 = "6b7ba252635a5eff6a0b0664a41ee140a1c9e72a" uuid = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" version = "1.4.0" [[deps.Statistics]] deps = ["LinearAlgebra", "SparseArrays"] uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" [[deps.StructArrays]] deps = ["Adapt", "DataAPI", "GPUArraysCore", "StaticArraysCore", "Tables"] git-tree-sha1 = "b03a3b745aa49b566f128977a7dd1be8711c5e71" uuid = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" version = "0.6.14" [[deps.TOML]] deps = ["Dates"] uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" version = "1.0.0" [[deps.TableTraits]] deps = ["IteratorInterfaceExtensions"] git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39" uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c" version = "1.0.1" [[deps.Tables]] deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "OrderedCollections", "TableTraits", "Test"] git-tree-sha1 = "c79322d36826aa2f4fd8ecfa96ddb47b174ac78d" uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" version = "1.10.0" [[deps.Tar]] deps = ["ArgTools", "SHA"] uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" version = "1.10.1" [[deps.TensorCore]] deps = ["LinearAlgebra"] git-tree-sha1 = "1feb45f88d133a655e001435632f019a9a1bcdb6" uuid = "62fd8b95-f654-4bbd-a8a5-9c27f68ccd50" version = "0.1.1" [[deps.Test]] deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[deps.TranscodingStreams]] deps = ["Random", "Test"] git-tree-sha1 = "94f38103c984f89cf77c402f2a68dbd870f8165f" uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa" version = "0.9.11" [[deps.Triangle_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "fe28e9a4684f6f54e868b9136afb8fd11f1734a7" uuid = "5639c1d2-226c-5e70-8d55-b3095415a16a" version = "1.6.2+0" [[deps.Triangulate]] deps = ["DocStringExtensions", "Libdl", "Printf", "Test", "Triangle_jll"] git-tree-sha1 = "bbca6ec35426334d615f58859ad40c96d3a4a1f9" uuid = "f7e6ffb2-c36d-4f8f-a77e-16e897189344" version = "2.2.0" [[deps.Tricks]] git-tree-sha1 = "6bac775f2d42a611cdfcd1fb217ee719630c4175" uuid = "410a4b4d-49e4-4fbc-ab6d-cb71b17b3775" version = "0.1.6" [[deps.URIs]] git-tree-sha1 = "ac00576f90d8a259f2c9d823e91d1de3fd44d348" uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4" version = "1.4.1" [[deps.UUIDs]] deps = ["Random", "SHA"] uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" [[deps.Unicode]] uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" [[deps.WriteVTK]] deps = ["Base64", "CodecZlib", "FillArrays", "LightXML", "TranscodingStreams"] git-tree-sha1 = "f50c47d715199601a54afdd5267f24c8174842ae" uuid = "64499a7a-5c06-52f2-abe2-ccb03c286192" version = "1.16.0" [[deps.XML2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "Zlib_jll"] git-tree-sha1 = "93c41695bc1c08c46c5899f4fe06d6ead504bb73" uuid = "02c8fc9c-b97f-50b9-bbe4-9be30ff0a78a" version = "2.10.3+0" [[deps.Zlib_jll]] deps = ["Libdl"] uuid = "83775a58-1f1d-513f-b197-d71354ab007a" version = "1.2.12+3" [[deps.libblastrampoline_jll]] deps = ["Artifacts", "Libdl", "OpenBLAS_jll"] uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" version = "5.1.1+0" [[deps.nghttp2_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" version = "1.48.0+0" [[deps.p7zip_jll]] deps = ["Artifacts", "Libdl"] uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" version = "17.4.0+0" """ # ╔═╡ Cell order: # ╠═60941eaa-1aea-11eb-1277-97b991548781 # ╟─07194f25-5735-452f-9bed-cf791958d44d # ╠═d0f3483a-2bf4-4e2d-80b0-6c869b45cda8 # ╠═fd8f6c48-0030-4f6f-9fbf-9f2340decbf2 # ╠═bbeeebc0-ae16-4022-975d-35588e62166a # ╠═e6c7e47d-6159-4bb6-a71d-7c633e2fefbd # ╠═9800c97e-c25b-4d08-a014-cccd746f7d71 # ╠═9a219111-0275-4cd9-b97e-648d3fcfcbb9 # ╠═85be1677-87ff-49dc-af9a-557e575bc55f # ╠═33ecc78c-16ac-46ac-8d83-cbb26288a6fb # ╟─9e640256-61a4-4fb9-a449-d5f948fb2d26 # ╟─bf0004f4-b3c8-4385-b87d-df2ef1420408 # ╠═1b70e44b-cbe8-4812-b267-ef9bce20a5b7 # ╠═10ebaeab-3ece-480f-9c4d-a676814e2f7f # ╠═b711885e-cc61-4e08-9367-437731323863 # ╠═e4029d2c-18b7-4592-b47d-294e4af93497 # ╠═0c3f5b1c-7bcf-491e-8318-73f2c880e0b5 # ╠═f9130b5d-b4ea-4ebd-b73f-82a3c1bc1307 # ╠═73847699-40c0-4043-a16f-37883def6858 # ╠═bff0a3f1-c545-4fcc-8be8-ef460f8479bd # ╠═66ce2939-2957-43e0-b7ea-cdd10d9fc17e # ╠═a310027d-3f9e-4de5-bc9e-5457cb19eef5 # ╟─752bdb8f-de5a-4863-b2d1-53d69aff7dcb # ╠═5aef30a0-8712-4c6c-9465-25da0624b408 # ╠═4debce38-96c5-4661-a965-1ca723fa8a36 # ╠═52f4c693-0218-4f56-ac95-abd6d99a0b67 # ╠═f43bd8ff-a2ed-4740-a61e-4f5d2c615c10 # ╠═b9ced73f-e7a0-4573-9413-c2a231d21c78 # ╠═2c285e4f-9f10-474b-9482-83a5c4cbfe09 # ╠═97d8db91-16e6-4070-81a0-7bcaff6cc9f6 # ╟─78dba5b2-52c9-40cd-bc1d-d5c343271f97 # ╠═b9cc0359-7286-4c02-ba10-35303da26a50 # ╠═605c914d-607b-4d2e-80c5-d14cb6918e32 # ╟─00000000-0000-0000-0000-000000000001 # ╟─00000000-0000-0000-0000-000000000002
PDELib
https://github.com/WIAS-BERLIN/PDELib.jl.git
[ "MIT" ]
0.3.0
2fca7ee903e9c45871c1948e6b5fffdf359e2da3
code
85347
### A Pluto.jl notebook ### # v0.17.1 using Markdown using InteractiveUtils # This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error). macro bind(def, element) quote local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end local el = $(esc(element)) global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el) el end end # ╔═╡ d05f97e2-85ba-11eb-06ea-c933332c0630 using ForwardDiff # ╔═╡ 092e6940-8598-11eb-335d-9fd32dadd468 begin using VoronoiFVM # the finite volume solver using ExtendableGrids # grid management using GridVisualize # visualization on grids end # ╔═╡ cf503e46-85bb-11eb-2ae7-e959707a01a9 using DifferentialEquations # ╔═╡ 134530ae-85c2-11eb-1556-a3aa72624a7a begin using SimplexGridFactory using Triangulate using GradientRobustMultiPhysics end # ╔═╡ e44bb844-85cc-11eb-05c9-cdaaa914d6c1 begin using LinearAlgebra using Printf ENV["LC_NUMERIC"]="C" # This is needed for triangle ENV["MPLBACKEND"]="agg" # Ensure pyplot has the right backend for pluto on mac using PlutoUI using AbstractTrees using PyPlot using AbstractTrees, PyPlot,PlutoUI AbstractTrees.children(x::Type) = subtypes(x) # Enable AbstractTrees to show typet trees PyPlot.svg(true) # Choose svg driver for pyplot end; # ╔═╡ b7d13a60-8370-11eb-3a14-1df66337bc34 md""" # PDELib.jl ### Towards software components for the numerical solution of partial differential equations in Julia ### J. Fuhrmann, Ch. Merdon, T. Streckenbach $(Resource("https://www.wias-berlin.de/layout3/img/logo-tablet.png")) #### WIAS Berlin, 2021-03-16 Update 2021-11-18: switch to Pluto's built-in package manager """ # ╔═╡ 6c221d04-863c-11eb-0bf8-41f7a6288b66 md""" ## pdelib """ # ╔═╡ 68847d40-863c-11eb-18d3-e1060d831230 html"""<iframe src="https://www.wias-berlin.de/software/index.jsp?lang=1&id=pdelib" width=600 height=200) </iframe>""" # ╔═╡ b0581c08-863c-11eb-0d81-d59ac5f24479 md""" - Thanks to: Timo Streckenbach, Hartmut Langmach, Manfred Uhle, Hang Si, Klaus Gärtner, Thomas Koprucki, Matthias Liero, Hong Zhao, Jaques Bloch, Ulrich Wilbrandt and many others who contributed code and/or ideas to the core code - Attempt to have a flexible toolbox for working with PDEs in research and applications - Some applications based on pdelib: Semiconductors (ddfermi), Electrochemistry, Steel manufacturing (with RG4), Pressure robust FEM - Patrico Farrell, Markus Kantner, Duy Hai Doan, Thomas Petzold, Alexander Linke, Christian Merdon ... - Main languages: C++, Python, Lua """ # ╔═╡ 0d1ef53a-85c8-11eb-13ef-952df60b51b0 md""" # Why Julia? """ # ╔═╡ 174e53bc-863f-11eb-169d-2fe8a9b2adfb md""" ... BTW thanks to Alexander Linke for keeping his (and my) eye on Julia """ # ╔═╡ d2f59d32-863a-11eb-2ffe-37e8d2a06d27 md""" ## The two-language problem - Efficient computational cores in compiled languages (Fortran,C, C++) - Embedded into scripting languages (Python, Lua) - Support of pre- and postprocessing - "Glueing" together different algoritms - Hard to explain and to maintain ⇒ preference for commercial tools (Matlab, Comsol, ... ) outside of core scientifc computing research - __Julia__ attempts to bridge this gap: write code like in python or matlab which nevertheless performs like code from compiled languages """ # ╔═╡ 7cb4be3c-8372-11eb-17cc-ad4f68a34e72 md""" ## Julia homepage [http://www.julialang.org](http://www.julialang.org) """ # ╔═╡ 3a462e56-8371-11eb-0503-bf8ebd33276b html"""<iframe src="https://www.julialang.org" width=650 height=300></iframe>""" # ╔═╡ 00bcd2be-8373-11eb-368e-61b2cdc2ab74 md""" ## Some general points - Multidimensional arrays as first class objects - Extensive library of standard functions, linear algebra operations - Easy Interfacing to C, Python, R $\dots$ - Build and distribution system for binary code for Linux, Windows, MacOS - Interactive Read-Eval-Print-Loop (REPL) - Integration with Visual Studio Code editor - Notebook functionality: Jupyter, Pluto - This talk's slides are a Pluto notebook """ # ╔═╡ d0c8331e-840b-11eb-249b-5bba159d0d60 md""" ## Julia packages """ # ╔═╡ 3b05b78a-83e9-11eb-3d9e-8dda5fb67594 md""" - Packages provide functionality which is not part of the core Julia installation - Each package is a git repository containing - Prescribed subdirectory structure (`src`,`doc`,`test`) - Metadata on package and dependencies (`Project.toml`) - ⇒ No julia package without version management - Packages can be registered in package registries which are themselves git repositories containing metadata of registered packages. - By default, a [General Registry](https://github.com/JuliaRegistries/General) is used - Additonal project specific registries can be added to a Julia installation """ # ╔═╡ 151c3696-840e-11eb-0cd6-d91971fcf502 md""" ## $(Resource("https://julialang.github.io/Pkg.jl/v1/assets/logo.png", :width=>150, :style => "vertical-align:middle")) Package manager - For installing (adding) or removing packages, Julia has a package manager `Pkg` which is integrated into the core language - Fine grained package version management supports reproducible research - UPDATE 2021-11-18: Pluto notebooks like this one have their own package managenment aimed at reproducibility. """ # ╔═╡ 5062ea76-83e9-11eb-26ad-cb5cb7746014 md""" ## CI (Continuous integration) - Julia provides integrated unit testing facilities - It is seen as good style to have package unit tests covering as much of the code as possible - Github Actions or Gitlab Runner can be used to trigger unit tests for all major operating systems on every commit """ # ╔═╡ 0d9b6474-85e8-11eb-24a1-e7c037afb546 html"""<p style="text-align:center"> <img src="https://avatars.githubusercontent.com/u/44036562?s=200&v=4" height=150> <img src="https://geontech.com/wp-content/uploads/2017/08/runner_logo.png" height=150 ></p> """ # ╔═╡ 47127b3a-83e9-11eb-22cf-9904b800edeb md""" ## $(Resource("https://juliadocs.github.io/Documenter.jl/stable/assets/logo.svg",:height=> 100, :style=>"vertical-align: middle;"))Documentation - Docstrings document Julia code - They can be inquired by interactive help facilities (`@doc` macro, `?` mode in REPL) - During CI runs, automatic documentation generation via `Documenter.jl` puts them together into documentation pages served from `github.io` """ # ╔═╡ 2f1894e0-842c-11eb-2489-ab7cbaa2fe68 html"""<iframe src="https://juliadocs.github.io/Documenter.jl/stable/" width=650 height=250></iframe>""" # ╔═╡ 86f5e288-85b4-11eb-133e-25e1fbe363da md""" ## Just-In-Time compilation - Julia has high level syntax comparable to Python or Matlab, but has been developed from scratch in order to integrate Just-In-Time compilation (JIT) into every of its aspects. - JIT compilation turns source code into machine code when executing a function the first time - JIT compilation can be sometimes time consuming, so in many cases one encounters a "JIT-lag" during the first run of an instance of code """ # ╔═╡ 5dd7b7b6-8634-11eb-37d0-f13485dca6a0 md"""$(Resource("https://wias-berlin.de/people/fuhrmann/blobs/julia_introspect.png",:height=>300)) (c) D. Robinson """ # ╔═╡ 568527e0-8374-11eb-17b8-7d100bbd8e37 md""" ## Multiple Dispatch - Aka "Generic Lambdas" in C++-Speak - Define a function and its derivative: """ # ╔═╡ 045e2078-8641-11eb-188f-a98971dc8155 md""" - In Julia, methods are attached to functions instead of classes - in C++ speak, a Julia method is a specialization of template code for a particular template parameter - The type of the return value is determined by the type of the input: """ # ╔═╡ 8773d184-8375-11eb-0e52-53c2df5dff93 md""" ## Machine code generated by JIT """ # ╔═╡ caf52886-8375-11eb-3cf8-a949cf8a3a25 md""" ## Multiple Dispatch: Discussion - Multiple dispatch allows the JIT compiler to generate optimized machine code tailored to the particular combination of parameter types - This comes with a price tag: dispatching at compile time influences the performance of the compilation process - Akin to compiling template heavy C++ code $(Resource("https://imgs.xkcd.com/xk3d/303/compiling.png",:width=>300)) (from xkcd) Are there other advantages than performance after the first function call? """ # ╔═╡ f7f2cb36-8375-11eb-0c40-c5063c068bef md""" ## Dual numbers - Complex numbers $\mathbb C$: extend the real numbers $\mathbb R$ based on the introduction of $i$ with $i^2=-1$. - Dual numbers: extend the real numbers by formally adding a number $\varepsilon$ with $\varepsilon^2=0$: $D= \{ a + b\varepsilon \; |\; a,b \in \mathbb R\} = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \; |\; a,b\in\mathbb R \right\}\subset \mathbb R^{2\times 2}$ - Evaluating polynomials on dual numbers: Let $p(x)=\sum_{i=0}^n p_i x^i$. Then $\begin{align*} p(a+b\varepsilon) &= \sum_{i=0}^n p_i a^i + \sum_{i=1}^n i p_i a^{i-1} b\varepsilon = p(a)+bp'(a)\varepsilon \end{align*}$ - ``\Rightarrow`` forward mode automatic differentiation So let us have this in Julia! But before, have some glance on Julia's type system... """ # ╔═╡ 9507b252-837a-11eb-332e-117ceb07cf2b md""" ## The Julia type system - Julia is a strongly typed language, information about the layout of a value in memory is encoded in its type - Concrete types: - Every value in Julia has a concrete type - Concrete types correspond to computer representations of objects - Abstract types - Abstract types label concepts which work for several concrete types without regard to their memory layout etc. - The functionality of an abstract type is implicitely characterized by the methods working on it - Types can have subtypes, e.g. `Int64<:Real` says that the concrete type `Float64` (possibly through several hierarchy steps) is a subtype of `Real`. - Julia types form a tree, with concrete types as leaves """ # ╔═╡ 5d5cef6a-85ba-11eb-263e-0dcbcb148ac0 md""" ## Type tree emanating from `Number` """ # ╔═╡ 6fb193dc-837b-11eb-0380-3136d173692b Tree(Number) # ╔═╡ 69e51df4-8379-11eb-12c6-93e6d605be60 md""" ## A custom dual number type [Nathan Krislock](https://julialang.zulipchat.com/#narrow/stream/225542-helpdesk/topic/Comparing.20julia.20and.20numpy/near/209143302) provided a simple dual number arithmetic example in Julia. - Define a struct parametrized with type T. This is akin a template class in C++ - The type shall work with all methods working with `Number` - In order to construct a Dual number from arguments of different types, allow promotion aka "parameter type homogenization" """ # ╔═╡ b7872370-8376-11eb-0abb-5ba2ba60697f begin struct DualNumber{T} <: Number where {T <: Real} value::T deriv::T end DualNumber(v,d) = DualNumber(promote(v,d)...) end; # ╔═╡ ccbd1974-8642-11eb-39db-212dcf3821fc md""" In c++ we would write something along ```` template <typename T> class DualNumber { T value; T deriv;}; ```` """ # ╔═╡ bd938738-8379-11eb-2e7b-3521b0c4d225 DualNumber(3,2.0) # ╔═╡ 192ee390-8379-11eb-1666-9bd411478d4d md""" ## Promotion and Conversion - Promote a pair of `DualNumber{T}` and `Real` number to `DualNumber{T}` if needed - This is a function on types ! - Julia functions can have multiple methods. Here, we add another method to the function `promote_rule`: """ # ╔═╡ 04d59916-8379-11eb-0c09-d91190563a84 Base.promote_rule(::Type{DualNumber{T}}, ::Type{<:Real}) where T<:Real = DualNumber{T} # ╔═╡ 3e02d072-837a-11eb-2838-259e4228d577 md""" - Define a way to convert a `Real` to `DualNumber` """ # ╔═╡ e134f5a6-8378-11eb-0766-657ab2915de3 Base.convert(::Type{DualNumber{T}}, x::Real) where T<:Real = DualNumber(x,zero(T)) # ╔═╡ 9eae6a52-837b-11eb-1f08-ff6a44398858 md""" ## Simple arithmetic for `DualNumber` """ # ╔═╡ 518b68fe-8643-11eb-3243-719110f74026 md""" All these definitions add methods to the functions `+, /, *, -, inv` which allow them to work for `DualNumber` """ # ╔═╡ 544c6a08-81dd-11eb-301f-df0c8194d88f begin import Base: +, /, *, -, inv +(x::DualNumber, y::DualNumber) = DualNumber(x.value + y.value, x.deriv + y.deriv) -(y::DualNumber) = DualNumber(-y.value, -y.deriv) -(x::DualNumber, y::DualNumber) = x + -y *(x::DualNumber, y::DualNumber) = DualNumber(x.value*y.value, x.value*y.deriv + x.deriv*y.value) inv(y::DualNumber{T}) where T<:Union{Integer, Rational} = DualNumber(1//y.value, (-y.deriv)//y.value^2) inv(y::DualNumber{T}) where T<:Union{AbstractFloat,AbstractIrrational} = DualNumber(1/y.value, (-y.deriv)/y.value^2) /(x::DualNumber, y::DualNumber) = x*inv(y) end; # ╔═╡ c42de0a2-8374-11eb-2bf2-e11a848bf099 p(x) = x^3 + 2x^2 + 2x + 1 # ╔═╡ 8aa0565e-85cd-11eb-32de-739cf53f6419 p(3//1) # ╔═╡ ebf09b36-8374-11eb-06a5-f3baec9932c2 with_terminal() do @code_native p(3) end # ╔═╡ 296637fc-8376-11eb-0fef-050bf60bb7ff dp(x) = 3x^2 + 4x + 2 # ╔═╡ 92e1351e-837c-11eb-3b02-33ccb80a48d8 md""" ## Test the implementation Compare the evaluation of the polynomial `p` and its derivative `dp` on a value `x` with the evaluation of `p` with `DuallNumber(x,1)`. """ # ╔═╡ 63e18f7a-837c-11eb-0285-b76ef6d38a1f x=14//3 # ╔═╡ 549161a6-81df-11eb-2de0-f5629bcd3005 p(x), dp(x), p(DualNumber(x,1)) # ╔═╡ 563e9540-840d-11eb-2a8b-5fca30564841 md""" ## ForwardDiff.jl """ # ╔═╡ bfe00216-81e7-11eb-16a1-3f1436253097 md""" This was of course a toy example. For more serious work, we can use the `Dual` type from the [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) package. This also works for standard functions and for partial derivatives. """ # ╔═╡ 244e9f36-837e-11eb-1a02-a1989909f58f p(x),dp(x), p(ForwardDiff.Dual(x,1)) # ╔═╡ 255b62e0-8380-11eb-1c58-7fb1c067f0e5 md""" ## A simple Newton solver """ # ╔═╡ ff99425c-837f-11eb-2217-e54e40a5a314 function newton(A,b,u0; tol=1.0e-12, maxit=100) # Define storage place for the result of function + Jacobian result=DiffResults.JacobianResult(u0) history=Float64[] u=copy(u0) it=1 while it<maxit # This call evaluates both function and jacobian at once ForwardDiff.jacobian!(result,(v)->A(v)-b ,u) res=DiffResults.value(result) jac=DiffResults.jacobian(result) # Solve the Jacobian linear system h=jac\res u-=h nm=norm(h) push!(history,nm) if nm<tol return u,history end it=it+1 end throw("convergence failed") end # ╔═╡ 1fc5d0ee-85bb-11eb-25d8-69151e6dafc2 md""" ## Test the Newton solver """ # ╔═╡ 5ab844b2-8380-11eb-3eff-f562f445b06f A(x)= [ x[1]+exp(x[1])+3*x[2]*x[3], 0.1*x[2]+x[2]^5-3*x[1]-x[3], x[3]^5+x[1]*x[2]*x[3] ] # ╔═╡ 8214acb2-8380-11eb-2d24-1bef38c4e1da b=[0.3,0.1,0.2]; # ╔═╡ 919677d6-8380-11eb-3e1c-152fea8b92ec result, history=newton(A,b,ones(3)) # ╔═╡ c41db0b8-8380-11eb-14cc-71af2cd90a9f A(result)-b # ╔═╡ 71e783ea-8381-11eb-3eaa-5142de7bbd68 md""" # I WANT THIS FOR THE SOLUTION OF NONLINEAR PDES!!! """ # ╔═╡ d39e6472-8594-11eb-07d6-8961306a6a44 md"" # ╔═╡ d6076ec0-8594-11eb-154d-1dc03499315f md"" # ╔═╡ dc76902a-85c8-11eb-24a5-5b456ad625d9 md""" # VoronoiFVM.jl """ # ╔═╡ eedfd550-85cd-11eb-1bbf-4daf6fc4d019 html"""<iframe src="https://j-fu.github.io/VoronoiFVM.jl/stable/" width=650 height=400> </iframe>""" # ╔═╡ 5e0307a2-85be-11eb-2295-3d1f2b01256b md""" ## The Voronoi Finite Volume Method $(Resource("https://j-fu.github.io/VoronoiFVM.jl/stable/trivoro.png",:width=>300)) $(Resource("https://j-fu.github.io/VoronoiFVM.jl/stable/vor.png",:width=>300)) """ # ╔═╡ d0e82116-85bf-11eb-1580-c5cb1efc1ba1 md""" - __Continuous:__ $n$ coupled PDEs in $\Omega\subset \mathbb R^d$ for unknown $\mathbf u(\vec x,t)=(u^1(\vec x,t)\dots u^n(\vec x,t))$ $$\partial_t \mathbf s(\mathbf u) - \nabla \cdot \mathbf j(\mathbf u, \nabla \mathbf u) + \mathbf r(\mathbf u) =0$$ "Storage" $\mathbf s(\mathbf u)$, "Reaction" $\mathbf r(\mathbf u)$, "Flux" $\mathbf j(\mathbf u, \nabla \mathbf u)$ - __Discretized:__ $$|\omega_k|\frac{s(\mathbf u_k)-\mathbf s(\mathbf u^{\text{old}}_k)}{\Delta t}\\ + \sum_{\omega_l \text{neigbour of} \omega_k} |\omega_k\cap\omega_l| \mathbf g(\mathbf u_k , \mathbf u_l) + |\omega_k|\mathbf r(\mathbf u_k)=0$$ "Storage" $\mathbf s(\mathbf u_k)$, "Reaction" $\mathbf r(\mathbf u_k)$, inter-REV flux $\mathbf g(\mathbf u_k, \mathbf u_L)$ ⇒ Software API """ # ╔═╡ b1d732c0-8381-11eb-0d91-eb04784ec1cb md""" ## Some features of VoronoiFVM.jl - Use automatic differentiation (AD) to calculate Jacobi matrices for Newton's method from the describing functions $\mathbf r(), \mathbf g(), \mathbf s()$ - AD is applied at the local level -- on grid nodes and grid edges - `ExtendableSparse.jl` package allows for efficient value insertion into sparse matrices during assembly into the global matrix Let us add the package to the environment of this notebook: """ # ╔═╡ 62cc9dea-8382-11eb-0552-f3858008c864 md""" ## Example: porous medium equation ```math \partial_t u -\Delta u^m = 0 ``` in $\Omega=(-1,1)$ with homogeneous Neumann boundary conditons. I has an exact solution, the so-called Barenblatt solution. The Barenblatt solution is an exact solution of this problem for m>1. It has a finite support. """ # ╔═╡ be46f34a-8383-11eb-2972-87f7ef807ebe function barenblatt(x,t,m) t1=t^(-1.0/(m+1.0)) x1=1- (x*t1)^2*(m-1)/(2.0*m*(m+1)) x1<0.0 ? 0.0 : t1*x1^(1.0/(m-1.0)) end; # ╔═╡ 488377d4-8593-11eb-2f16-1b031f62537b md""" We use the exact solution for $t=t_0=0.001$ as initial value. """ # ╔═╡ ad3a5aac-8382-11eb-140b-c10660fd8c61 md""" ## Define problem in VoronoiFVM.jl """ # ╔═╡ 99ce60fa-85e2-11eb-29af-a5f0feb65191 md""" The problem has one species, set its number: """ # ╔═╡ ae80e57c-85e2-11eb-1297-3b0219a7af3b iu=1; # ╔═╡ 89607c62-85e2-11eb-25b7-8b5cb4771d02 md""" Flux between two neigboring control volumes. Just use the finite differences in $u^m$. """ # ╔═╡ dca25088-8382-11eb-0584-399677021678 md""" "Storage" is the function under the time derivative. """ # ╔═╡ d2bfa708-8382-11eb-3bab-07447ecb4adb pmstorage(f,u,node)=f[1]=u[1]; # ╔═╡ 7b954d3c-8593-11eb-0cfc-2b1a0e51d6e6 md""" ## Implicit Euler in VoronoiFVM """ # ╔═╡ 01415fe2-8644-11eb-1fad-51fc9957aea8 md""" ## DifferentialEquations.jl """ # ╔═╡ 1a6fbeb4-8644-11eb-00d9-832a003ccd4b html"""<iframe src="https://diffeq.sciml.ai/stable/" width=650 height=300></iframe>""" # ╔═╡ 61666f48-8644-11eb-36a6-35129059c0fd md""" Can we use this package for the transient solution based on the method of lines ? This could open pathways e.g. to access Machine Learning with PDEs... """ # ╔═╡ 79a8c4a4-8593-11eb-0e16-99a6cff3040e md""" ## Solver using DifferentialEquations.jl """ # ╔═╡ ffd27a44-8385-11eb-150e-2f9a8bc48ec7 function plotsol(sol,X) f=sol[1,:,:]' fmax=maximum(sol[1,:,1]) rnge=range(0,fmax,length=11) contourf(X,sol.t,f,rnge,cmap=:summer) contour(X,sol.t,f,rnge,colors=:black) xlabel("x") ylabel("t") end; # ╔═╡ c7cf0430-85bc-11eb-1527-b152703c025c md""" ## Compare solutions """ # ╔═╡ 099134de-85be-11eb-2aed-812180c08921 diffeq_solver=DifferentialEquations.Rosenbrock23(); # ╔═╡ 528624f4-85c3-11eb-1579-cb4852b9904b m=2; n=20; # ╔═╡ 07923cf2-85c9-11eb-0563-3b29940f50bb let fig=PyPlot.figure(1) clf() X=collect(range(-1,1,length=500)) for t in [0.001,0.002, 0.004, 0.008, 0.01] PyPlot.plot(X,map( (x) -> barenblatt(x,t,m),X),label="t=$(t)") end PyPlot.legend() PyPlot.grid() fig.set_size_inches(6,1.5) fig end # ╔═╡ 9c94a022-8382-11eb-38ad-adc4d894e517 function pmflux(f,u0,edge) u=unknowns(edge,u0) f[iu]=u[iu,1]^m-u[iu,2]^m end; # ╔═╡ 845f6460-8382-11eb-21b0-b7082bdd66e3 function create_porous_medium_problem(n,m) X=collect(range(-1,1,length=n)) grid=simplexgrid(X) physics=VoronoiFVM.Physics(flux=pmflux,storage=pmstorage,num_species=1) sys=VoronoiFVM.System(grid,physics) enable_species!(sys,iu,[1]) sys,X end; # ╔═╡ 5c82b6bc-8383-11eb-192e-71e5336e0425 function solve_vfvm(;n=20,m=2,t0=0.001, tend=0.01,tstep=1.0e-7) sys,X=create_porous_medium_problem(n,m) inival=unknowns(sys) inival[1,:].=map(x->barenblatt(x,t0,m),sys.grid) control=VoronoiFVM.NewtonControl() control.Δt=tstep control.Δu_opt=0.05 control.Δt_min=tstep control.tol_relative=1.0e-5 t_elapsed=@elapsed sol=VoronoiFVM.solve(inival,sys,[t0,tend],control=control) err=norm(sol[1,:,end]-map(x->barenblatt(x,tend,m),sys.grid),Inf) sol,X,err,t_elapsed end # ╔═╡ d84c89de-8384-11eb-28aa-132d56751734 function solve_diffeq(;n=20,m=2, t0=0.001,tend=0.01,solver=nothing) sys,X=create_porous_medium_problem(n,m) inival=unknowns(sys) inival[1,:].=map(x->barenblatt(x,t0,m),sys.grid) tspan = (t0,tend) t_elapsed=@elapsed begin f = DifferentialEquations.ODEFunction( VoronoiFVM.eval_rhs!, jac= VoronoiFVM.eval_jacobian!, jac_prototype = VoronoiFVM.jac_prototype(sys), mass_matrix= VoronoiFVM.mass_matrix(sys)) prob = DifferentialEquations.ODEProblem(f,vec(inival),tspan,sys) sol = DifferentialEquations.solve(prob,solver) sol = TransientSolution([reshape(sol.u[i],sys) for i=1:length(sol.u)] ,sol.t) end err=norm(sol[1,:,end]-map(x->barenblatt(x,tend,m),sys.grid),Inf) sol,X,err,t_elapsed end # ╔═╡ 52fc31d1-d41b-410d-bb07-17b991d34f05 md""" UPDATE: timing from the first click on solve will include JIT compilation. Try to run the code a second time to see computation time. """ # ╔═╡ c06c99c8-85bc-11eb-29b5-694d7fab6673 md""" Solve: $(@bind solve_pm CheckBox()) """ # ╔═╡ 3aed6f3c-85be-11eb-30ae-6170b11fc0a1 if solve_pm sol_vfvm,X_vfvm,err_vfvm,t_vfvm=solve_vfvm(m=m,n=n) end; # ╔═╡ 20fc42e6-8385-11eb-1b8d-c70dcb798cff if solve_pm sol_diffeq,X_diffeq,err_diffeq,t_diffeq=solve_diffeq(m=m,n=n,solver=diffeq_solver) end; # ╔═╡ 0c0a4210-8386-11eb-08a2-ff3625833da3 if solve_pm clf() subplot(121) title(@sprintf("VoronoiFVM\n %.0f ms\n err=%.2e",t_vfvm*1000,err_vfvm)) plotsol(sol_vfvm,X_vfvm) subplot(122) plotsol(sol_diffeq,X_diffeq) title(@sprintf("DifferentialEquations\n %.0f ms\n err=%.2e",t_diffeq*1000,err_diffeq)) tight_layout() gcf().set_size_inches(7,3.5) gcf() end # ╔═╡ 51a150ee-8388-11eb-33e2-fb03cf4c0c76 md""" ## More VoronoiFVM.jl features - 1/2/3D grids - Multispecies handling for subdomains, interfaces - Testfunction based current calculation for implicit Euler metod - Small signal analysis in frequency domain (impedance spectroscopy); automatic linearization comes here in handy as well Currently used for: - Solid oxide cell simulation (EDLSOC project with P. Vágner, V. Miloš) - Semiconductor and Perovskite modeling in LG5 (Successor of C++- ddfermi, with P. Farell, D. Abdel) - Investigation of finite volume discretizations with B. Gaudeul - Rotating disk electrode calculations (With R. Kehl, LuCaMag project) - Nanopores with P. Berg """ # ╔═╡ be8470e0-8594-11eb-2d55-657b74d82ccb md"" # ╔═╡ 50602f28-85da-11eb-1f03-5d33ec4ee42e md""" # GradientRobustMultiphysics.jl """ # ╔═╡ 913c1c76-8645-11eb-24b6-47bc88ad6f5d md""" - Started by Ch. Merdon based on the same package infrastructure for grid management, sparse matrix assembly and visualization """ # ╔═╡ da9158d6-85ce-11eb-3494-6bbd1b790284 html"""<iframe src="https://chmerdon.github.io/GradientRobustMultiPhysics.jl/stable/pdedescription/" width=650 height=300> </iframe>""" # ╔═╡ 4563f38a-8389-11eb-0596-81019d2948c8 md""" ## GradientRobustMultiPhysics.jl features - Low order H1,Hdiv,Hcurl FEM in 1D/2D/3D on simplices and parallelograms - Standard interpolations that satisfy commutating diagram ``\mathrm{Curl} (I_{Hcurl}\; v) = I_{Hdiv} \mathrm{Curl}\; v`` - AD for shape function derivatives up to 2nd order on reference geometry - user provides weak formulation by combining assembly patterns (bilinearform, linearform, trilinearform etc.) and function operators for their arguments and a kernel function for further manipulation (like application of parameters) + boundary data - AD for kernels (like (u grad)u for NSE or (1+grad(u))*C*eps(u) for nonlinear elasticity) - divergence-preserving reconstruction operators as a function operator - adaptive mesh refinement in 2D available """ # ╔═╡ b6dacce0-838c-11eb-18ca-fd4e85901bde md""" ## Define grid for Karman vortex street """ # ╔═╡ f9479696-838a-11eb-22cd-13f069f2dc9a function make_grid(L,H; n=20,maxvol=0.1) builder=SimplexGridBuilder(Generator=Triangulate) function circlehole!(builder, center, radius; n=20) points=[point!(builder, center[1]+radius*sin(t),center[2]+radius*cos(t)) for t in range(0,2π,length=n)] for i=1:n-1 facet!(builder,points[i],points[i+1]) end facet!(builder,points[end],points[1]) holepoint!(builder,center) end p1=point!(builder,0,0) p2=point!(builder,L,0) p3=point!(builder,L,H) p4=point!(builder,0,H) facetregion!(builder,1); facet!(builder,p1,p2) facetregion!(builder,2); facet!(builder,p2,p3) facetregion!(builder,3); facet!(builder,p3,p4) facetregion!(builder,4); facet!(builder,p4,p1) facetregion!(builder,5); circlehole!(builder, (0.25,H/2),0.05,n=20) simplexgrid(builder,maxvolume=maxvol) end; # ╔═╡ f95fed4c-85c2-11eb-2b76-a94551adbec1 md""" ## The grid """ # ╔═╡ 87dca836-85b3-11eb-1d28-73c08f594823 L=2.2; H=0.41; # ╔═╡ b272ebcc-85c3-11eb-1fad-bf71ffde1a6c md""" ## Constitutive functions """ # ╔═╡ f6a6c162-b795-46e3-9229-ecad67836fb3 md""" UPDATE: The API of GradientRobustMultiPhysics changed since the time of the talk. """ # ╔═╡ 05910082-85c4-11eb-2bd2-556c9e2c1975 md""" Inlet data for Karman vortex street example: """ # ╔═╡ f572f800-8388-11eb-2774-95a3ff9a3ad6 function bnd_inlet!(result,x) result[1] = 6*x[2]*(H-x[2])/H^2; result[2] = 0.0; end; # ╔═╡ 4fdf3a96-85c4-11eb-2f44-bd15bdf02dec md""" Nonlinear convection term to be handeled by AD """ # ╔═╡ 4cf131ae-85c4-11eb-28c6-a9d9a73d681e function ugradu_kernel_AD(result, input) # input = [VeloIdentity(u), grad(u)] # result = (u * grad) u = grad(u)*u fill!(result,0) for j = 1 : 2, k = 1 : 2 result[j] += input[k]*input[2 + (j-1)*2+k] end return nothing end; # ╔═╡ c0f97390-85c4-11eb-2398-8d96e73caae2 md""" ## Create Navier-Stokes problem """ # ╔═╡ e9ce479c-85c3-11eb-0a14-e10dfe1dceb9 function create_problem(;viscosity=1.0e-3) Problem = PDEDescription("NSE problem") add_unknown!(Problem; equation_name = "momentum equation", unknown_name = "velocity") add_unknown!(Problem; equation_name = "incompressibility constraint", unknown_name = "pressure") # add Laplacian to [velo,velo] block add_operator!(Problem, [1,1], LaplaceOperator(viscosity,2,2; store = true)) # add Lagrange multiplier for divergence of velocity to [velo,pressure] block add_operator!(Problem, [1,2], LagrangeMultiplier(Divergence)) # add boundary data (bregion 2 is outflow) user_function_inflow = DataFunction(bnd_inlet!, [2,2]; name = "u_inflow", dependencies = "X", quadorder = 2) add_boundarydata!(Problem, 1, [1,3,5], HomogeneousDirichletBoundary) add_boundarydata!(Problem, 1, [4], BestapproxDirichletBoundary; data = user_function_inflow) action_kernel = ActionKernel(ugradu_kernel_AD, [2,6]; dependencies = "", quadorder = 1) # div-free reconstruction operator for Identity VeloIdentity = ReconstructionIdentity{HDIVRT0{2}} NLConvectionOperator = GenerateNonlinearForm("(u * grad) u * v", [VeloIdentity, Gradient], [1,1], VeloIdentity, action_kernel; ADnewton = true) add_operator!(Problem, [1,1], NLConvectionOperator) Problem end # ╔═╡ a0161bd8-85c4-11eb-2366-45621bbe59b4 md""" ## Solve Navier-Stokes problem """ # ╔═╡ ebcd0b92-8388-11eb-02f3-99334d45c9be function solve_problem(grid,Problem) # generate FESpaces FESpaceVelocity = FESpace{H1BR{2}}(grid) FESpacePressure = FESpace{H1P0{1}}(grid,broken=true) Solution = FEVector{Float64}("velocity",FESpaceVelocity) append!(Solution,"pressure",FESpacePressure) GradientRobustMultiPhysics.solve!(Solution, Problem; maxIterations = 12, maxResidual = 1e-10) Solution end # ╔═╡ 3199edda-85c5-11eb-2da5-0dafc6cd7b84 md""" ## Run problem creation and solver """ # ╔═╡ 95c2ce84-85c3-11eb-37a7-bf13754d062c maxvol=2.0e-3 # 1.0e-4 still runs in finite time # ╔═╡ f50ae9c4-838b-11eb-1822-499d9f4afbe4 grid=make_grid(L,H;n=40,maxvol=maxvol) # ╔═╡ 0bfe0312-838c-11eb-06d2-dbefd908b8ae gridplot(grid,Plotter=PyPlot, resolution=(800,200)) # ╔═╡ d3d7a9e4-838a-11eb-3e70-9525fb60e1c1 md""" Solve: $(@bind solve_karman CheckBox()) """ # ╔═╡ 0eb76256-8389-11eb-2e40-0d4e94c1d18d if solve_karman problem=create_problem() Solution=solve_problem(grid,problem) GradientRobustMultiPhysics.plot(Solution, [1], [Identity]; Plotter = PyPlot) end # ╔═╡ fb4690e2-838e-11eb-38e9-29168d5f6360 md""" # PDELib.jl - Combine the tools described so far into a meta-package with liberal licenses (MIT, BSD) - Translation table between C++ pdelib modules and corresponding Julia packages: | pdelib (C++) | PDELib.jl | | |:------------ |:---------------------------- |:---------------- | | fvsys2 | VoronoiFVM.jl | | femlib | GradientRobustMultiPhysics.jl| | Grid | ExtendableGrids.jl | | GridFactory | SimplexGridFactory.jl | | gltools | GridVisualize.jl | (PyPlot,Plots,(Makie)) | VMatrix | ExtendableSparse.jl | - Maintained by WIAS but not part of PDElib.jl (for licensing reasons): | pdelib (C++) | Julia | | |:------------ |:---------------------------- |:---------------- | | triwrap.cxx | Triangulate.jl | (Triangle interface) | | tetwrap.cxx | TetGen.jl | (TetGen interface, with S. Danisch)| """ # ╔═╡ 4d14735c-8647-11eb-2891-91d1bc0fe717 md""" ## Profiting from the community """ # ╔═╡ 4446bc76-8647-11eb-3d4b-af4000b83024 md""" - (to be) (partially) replaced by other Julia packages | pdelib (C++) | Julia | | |:------------ |:---------------------------- |:---------------- | | Iteration | IterativeSolvers.jl | | | Bifurcation | BifurcationKit.jl | | | VPrecon | IncompleteLU.jl|| | | AlgebraicMultigrid.jl|| | | ...|| """ # ╔═╡ 07658648-8596-11eb-12f2-7564ab864a2e md""" ## Outlook - Continue transition of knowledge to Julia packages - Integrate C++ pdelib via python interface (e.g. gltools graphics) - Support for projects in semiconductor simulation, electrochemistry $\dots$ - Charge transport in semiconductors and electrochemical devices - Coupling to additional physics: Nanowires, light... - Further development of gradient robust FEM: - compressible flows, electro-magneto-hydrodynamics, nonlinear elasticity problems - Make use of Julia's interfacing capabilities to acces more complex algorithms on top of forward simulation - Optimization - Bifurcation analysis - Machine Learning - ... """ # ╔═╡ df0cd404-85da-11eb-3274-51394b5edfa8 md""" # Package environent """ # ╔═╡ f94316ca-85cc-11eb-1d6b-8ba91fe99cb5 TableOfContents(depth=4,title="") # ╔═╡ 00000000-0000-0000-0000-000000000001 PLUTO_PROJECT_TOML_CONTENTS = """ [deps] AbstractTrees = "1520ce14-60c1-5f80-bbc7-55ef81b5835c" DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa" ExtendableGrids = "cfc395e8-590f-11e8-1f13-43a2532b2fa8" ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" GradientRobustMultiPhysics = "0802c0ca-1768-4022-988c-6dd5f9588a11" GridVisualize = "5eed8a63-0fb0-45eb-886d-8d5a387d12b8" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8" Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7" PyPlot = "d330b81b-6aea-500a-939a-2ce795aea3ee" SimplexGridFactory = "57bfcd06-606e-45d6-baf4-4ba06da0efd5" Triangulate = "f7e6ffb2-c36d-4f8f-a77e-16e897189344" VoronoiFVM = "82b139dc-5afc-11e9-35da-9b9bdfd336f3" [compat] AbstractTrees = "~0.3.4" DifferentialEquations = "~6.20.0" ExtendableGrids = "~0.7.9" ForwardDiff = "~0.10.23" GradientRobustMultiPhysics = "~0.4.1" GridVisualize = "~0.1.7" PlutoUI = "~0.7.19" PyPlot = "~2.10.0" SimplexGridFactory = "~0.5.3" Triangulate = "~2.1.0" VoronoiFVM = "~0.10.12" """ # ╔═╡ 00000000-0000-0000-0000-000000000002 PLUTO_MANIFEST_TOML_CONTENTS = """ # This file is machine-generated - editing it directly is not advised [[AbstractPlutoDingetjes]] deps = ["Pkg"] git-tree-sha1 = "0bc60e3006ad95b4bb7497698dd7c6d649b9bc06" uuid = "6e696c72-6542-2067-7265-42206c756150" version = "1.1.1" [[AbstractTrees]] git-tree-sha1 = "03e0550477d86222521d254b741d470ba17ea0b5" uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c" version = "0.3.4" [[Adapt]] deps = ["LinearAlgebra"] git-tree-sha1 = "84918055d15b3114ede17ac6a7182f68870c16f7" uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" version = "3.3.1" [[ArgCheck]] git-tree-sha1 = "dedbbb2ddb876f899585c4ec4433265e3017215a" uuid = "dce04be8-c92d-5529-be00-80e4d2c0e197" version = "2.1.0" [[ArgTools]] uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" [[ArnoldiMethod]] deps = ["LinearAlgebra", "Random", "StaticArrays"] git-tree-sha1 = "62e51b39331de8911e4a7ff6f5aaf38a5f4cc0ae" uuid = "ec485272-7323-5ecc-a04f-4719b315124d" version = "0.2.0" [[ArrayInterface]] deps = ["Compat", "IfElse", "LinearAlgebra", "Requires", "SparseArrays", "Static"] git-tree-sha1 = "e527b258413e0c6d4f66ade574744c94edef81f8" uuid = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9" version = "3.1.40" [[ArrayLayouts]] deps = ["FillArrays", "LinearAlgebra", "SparseArrays"] git-tree-sha1 = "e1ba79094cae97b688fb42d31cbbfd63a69706e4" uuid = "4c555306-a7a7-4459-81d9-ec55ddd5c99a" version = "0.7.8" [[Artifacts]] uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" [[AutoHashEquals]] git-tree-sha1 = "45bb6705d93be619b81451bb2006b7ee5d4e4453" uuid = "15f4f7f2-30c1-5605-9d31-71845cf9641f" version = "0.2.0" [[BandedMatrices]] deps = ["ArrayLayouts", "FillArrays", "LinearAlgebra", "Random", "SparseArrays"] git-tree-sha1 = "ce68f8c2162062733f9b4c9e3700d5efc4a8ec47" uuid = "aae01518-5342-5314-be14-df237901396f" version = "0.16.11" [[BangBang]] deps = ["Compat", "ConstructionBase", "Future", "InitialValues", "LinearAlgebra", "Requires", "Setfield", "Tables", "ZygoteRules"] git-tree-sha1 = "0ad226aa72d8671f20d0316e03028f0ba1624307" uuid = "198e06fe-97b7-11e9-32a5-e1d131e6ad66" version = "0.3.32" [[Base64]] uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" [[Baselet]] git-tree-sha1 = "aebf55e6d7795e02ca500a689d326ac979aaf89e" uuid = "9718e550-a3fa-408a-8086-8db961cd8217" version = "0.1.1" [[BenchmarkTools]] deps = ["JSON", "Logging", "Printf", "Statistics", "UUIDs"] git-tree-sha1 = "9e62e66db34540a0c919d72172cc2f642ac71260" uuid = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" version = "0.5.0" [[Bijections]] git-tree-sha1 = "705e7822597b432ebe152baa844b49f8026df090" uuid = "e2ed5e7c-b2de-5872-ae92-c73ca462fb04" version = "0.1.3" [[BitTwiddlingConvenienceFunctions]] deps = ["Static"] git-tree-sha1 = "bc1317f71de8dce26ea67fcdf7eccc0d0693b75b" uuid = "62783981-4cbd-42fc-bca8-16325de8dc4b" version = "0.1.1" [[BoundaryValueDiffEq]] deps = ["BandedMatrices", "DiffEqBase", "FiniteDiff", "ForwardDiff", "LinearAlgebra", "NLsolve", "Reexport", "SparseArrays"] git-tree-sha1 = "fe34902ac0c3a35d016617ab7032742865756d7d" uuid = "764a87c0-6b3e-53db-9096-fe964310641d" version = "2.7.1" [[CEnum]] git-tree-sha1 = "215a9aa4a1f23fbd05b92769fdd62559488d70e9" uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82" version = "0.4.1" [[CPUSummary]] deps = ["Hwloc", "IfElse", "Static"] git-tree-sha1 = "87b0c9c6ee0124d6c1f4ce8cb035dcaf9f90b803" uuid = "2a0fbf3d-bb9c-48f3-b0a9-814d99fd7ab9" version = "0.1.6" [[CSTParser]] deps = ["Tokenize"] git-tree-sha1 = "f9a6389348207faf5e5c62cbc7e89d19688d338a" uuid = "00ebfdb7-1f24-5e51-bd34-a7502290713f" version = "3.3.0" [[Cassette]] git-tree-sha1 = "6ce3cd755d4130d43bab24ea5181e77b89b51839" uuid = "7057c7e9-c182-5462-911a-8362d720325c" version = "0.3.9" [[ChainRulesCore]] deps = ["Compat", "LinearAlgebra", "SparseArrays"] git-tree-sha1 = "f885e7e7c124f8c92650d61b9477b9ac2ee607dd" uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" version = "1.11.1" [[ChangesOfVariables]] deps = ["LinearAlgebra", "Test"] git-tree-sha1 = "9a1d594397670492219635b35a3d830b04730d62" uuid = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0" version = "0.1.1" [[CloseOpenIntervals]] deps = ["ArrayInterface", "Static"] git-tree-sha1 = "7b8f09d58294dc8aa13d91a8544b37c8a1dcbc06" uuid = "fb6a15b2-703c-40df-9091-08a04967cfa9" version = "0.1.4" [[ColorSchemes]] deps = ["ColorTypes", "Colors", "FixedPointNumbers", "Random"] git-tree-sha1 = "a851fec56cb73cfdf43762999ec72eff5b86882a" uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4" version = "3.15.0" [[ColorTypes]] deps = ["FixedPointNumbers", "Random"] git-tree-sha1 = "024fe24d83e4a5bf5fc80501a314ce0d1aa35597" uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" version = "0.11.0" [[Colors]] deps = ["ColorTypes", "FixedPointNumbers", "Reexport"] git-tree-sha1 = "417b0ed7b8b838aa6ca0a87aadf1bb9eb111ce40" uuid = "5ae59095-9a9b-59fe-a467-6f913c188581" version = "0.12.8" [[Combinatorics]] git-tree-sha1 = "08c8b6831dc00bfea825826be0bc8336fc369860" uuid = "861a8166-3701-5b0c-9a16-15d98fcdc6aa" version = "1.0.2" [[CommonMark]] deps = ["Crayons", "JSON", "URIs"] git-tree-sha1 = "393ac9df4eb085c2ab12005fc496dae2e1da344e" uuid = "a80b9123-70ca-4bc0-993e-6e3bcb318db6" version = "0.8.3" [[CommonSolve]] git-tree-sha1 = "68a0743f578349ada8bc911a5cbd5a2ef6ed6d1f" uuid = "38540f10-b2f7-11e9-35d8-d573e4eb0ff2" version = "0.2.0" [[CommonSubexpressions]] deps = ["MacroTools", "Test"] git-tree-sha1 = "7b8a93dba8af7e3b42fecabf646260105ac373f7" uuid = "bbf7d656-a473-5ed7-a52c-81e309532950" version = "0.3.0" [[Compat]] deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"] git-tree-sha1 = "dce3e3fea680869eaa0b774b2e8343e9ff442313" uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" version = "3.40.0" [[CompilerSupportLibraries_jll]] deps = ["Artifacts", "Libdl"] uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" [[CompositeTypes]] git-tree-sha1 = "d5b014b216dc891e81fea299638e4c10c657b582" uuid = "b152e2b5-7a66-4b01-a709-34e65c35f657" version = "0.1.2" [[CompositionsBase]] git-tree-sha1 = "455419f7e328a1a2493cabc6428d79e951349769" uuid = "a33af91c-f02d-484b-be07-31d278c5ca2b" version = "0.1.1" [[Conda]] deps = ["JSON", "VersionParsing"] git-tree-sha1 = "299304989a5e6473d985212c28928899c74e9421" uuid = "8f4d0f93-b110-5947-807f-2305c1781a2d" version = "1.5.2" [[ConstructionBase]] deps = ["LinearAlgebra"] git-tree-sha1 = "f74e9d5388b8620b4cee35d4c5a618dd4dc547f4" uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9" version = "1.3.0" [[Crayons]] git-tree-sha1 = "3f71217b538d7aaee0b69ab47d9b7724ca8afa0d" uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f" version = "4.0.4" [[DEDataArrays]] deps = ["ArrayInterface", "DocStringExtensions", "LinearAlgebra", "RecursiveArrayTools", "SciMLBase", "StaticArrays"] git-tree-sha1 = "31186e61936fbbccb41d809ad4338c9f7addf7ae" uuid = "754358af-613d-5f8d-9788-280bf1605d4c" version = "0.2.0" [[DataAPI]] git-tree-sha1 = "cc70b17275652eb47bc9e5f81635981f13cea5c8" uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" version = "1.9.0" [[DataStructures]] deps = ["Compat", "InteractiveUtils", "OrderedCollections"] git-tree-sha1 = "7d9d316f04214f7efdbb6398d545446e246eff02" uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" version = "0.18.10" [[DataValueInterfaces]] git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6" uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464" version = "1.0.0" [[Dates]] deps = ["Printf"] uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" [[DefineSingletons]] git-tree-sha1 = "77b4ca280084423b728662fe040e5ff8819347c5" uuid = "244e2a9f-e319-4986-a169-4d1fe445cd52" version = "0.1.1" [[DelayDiffEq]] deps = ["ArrayInterface", "DataStructures", "DiffEqBase", "LinearAlgebra", "Logging", "NonlinearSolve", "OrdinaryDiffEq", "Printf", "RecursiveArrayTools", "Reexport", "UnPack"] git-tree-sha1 = "6eba402e968317b834c28cd47499dd1b572dd093" uuid = "bcd4f6db-9728-5f36-b5f7-82caef46ccdb" version = "5.31.1" [[DelimitedFiles]] deps = ["Mmap"] uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab" [[DensityInterface]] deps = ["InverseFunctions", "Test"] git-tree-sha1 = "80c3e8639e3353e5d2912fb3a1916b8455e2494b" uuid = "b429d917-457f-4dbc-8f4c-0cc954292b1d" version = "0.4.0" [[DiffEqBase]] deps = ["ArrayInterface", "ChainRulesCore", "DEDataArrays", "DataStructures", "Distributions", "DocStringExtensions", "FastBroadcast", "ForwardDiff", "FunctionWrappers", "IterativeSolvers", "LabelledArrays", "LinearAlgebra", "Logging", "MuladdMacro", "NonlinearSolve", "Parameters", "PreallocationTools", "Printf", "RecursiveArrayTools", "RecursiveFactorization", "Reexport", "Requires", "SciMLBase", "Setfield", "SparseArrays", "StaticArrays", "Statistics", "SuiteSparse", "ZygoteRules"] git-tree-sha1 = "5c3d877ddfc2da61ce5cc1f5ce330ff97789c57c" uuid = "2b5f629d-d688-5b77-993f-72d75c75574e" version = "6.76.0" [[DiffEqCallbacks]] deps = ["DataStructures", "DiffEqBase", "ForwardDiff", "LinearAlgebra", "NLsolve", "OrdinaryDiffEq", "Parameters", "RecipesBase", "RecursiveArrayTools", "StaticArrays"] git-tree-sha1 = "35bc7f8be9dd2155336fe999b11a8f5e44c0d602" uuid = "459566f4-90b8-5000-8ac3-15dfb0a30def" version = "2.17.0" [[DiffEqFinancial]] deps = ["DiffEqBase", "DiffEqNoiseProcess", "LinearAlgebra", "Markdown", "RandomNumbers"] git-tree-sha1 = "db08e0def560f204167c58fd0637298e13f58f73" uuid = "5a0ffddc-d203-54b0-88ba-2c03c0fc2e67" version = "2.4.0" [[DiffEqJump]] deps = ["ArrayInterface", "Compat", "DataStructures", "DiffEqBase", "FunctionWrappers", "Graphs", "LinearAlgebra", "PoissonRandom", "Random", "RandomNumbers", "RecursiveArrayTools", "Reexport", "StaticArrays", "TreeViews", "UnPack"] git-tree-sha1 = "0aa2d003ec9efe2a93f93ae722de05a870ffc0b2" uuid = "c894b116-72e5-5b58-be3c-e6d8d4ac2b12" version = "8.0.0" [[DiffEqNoiseProcess]] deps = ["DiffEqBase", "Distributions", "LinearAlgebra", "Optim", "PoissonRandom", "QuadGK", "Random", "Random123", "RandomNumbers", "RecipesBase", "RecursiveArrayTools", "Requires", "ResettableStacks", "SciMLBase", "StaticArrays", "Statistics"] git-tree-sha1 = "d6839a44a268c69ef0ed927b22a6f43c8a4c2e73" uuid = "77a26b50-5914-5dd7-bc55-306e6241c503" version = "5.9.0" [[DiffEqPhysics]] deps = ["DiffEqBase", "DiffEqCallbacks", "ForwardDiff", "LinearAlgebra", "Printf", "Random", "RecipesBase", "RecursiveArrayTools", "Reexport", "StaticArrays"] git-tree-sha1 = "8f23c6f36f6a6eb2cbd6950e28ec7c4b99d0e4c9" uuid = "055956cb-9e8b-5191-98cc-73ae4a59e68a" version = "3.9.0" [[DiffResults]] deps = ["StaticArrays"] git-tree-sha1 = "c18e98cba888c6c25d1c3b048e4b3380ca956805" uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5" version = "1.0.3" [[DiffRules]] deps = ["LogExpFunctions", "NaNMath", "Random", "SpecialFunctions"] git-tree-sha1 = "3287dacf67c3652d3fed09f4c12c187ae4dbb89a" uuid = "b552c78f-8df3-52c6-915a-8e097449b14b" version = "1.4.0" [[DifferentialEquations]] deps = ["BoundaryValueDiffEq", "DelayDiffEq", "DiffEqBase", "DiffEqCallbacks", "DiffEqFinancial", "DiffEqJump", "DiffEqNoiseProcess", "DiffEqPhysics", "DimensionalPlotRecipes", "LinearAlgebra", "MultiScaleArrays", "OrdinaryDiffEq", "ParameterizedFunctions", "Random", "RecursiveArrayTools", "Reexport", "SteadyStateDiffEq", "StochasticDiffEq", "Sundials"] git-tree-sha1 = "91df208ee040be7960c408d4681bf91974bcb4f4" uuid = "0c46a032-eb83-5123-abaf-570d42b7fbaa" version = "6.20.0" [[DimensionalPlotRecipes]] deps = ["LinearAlgebra", "RecipesBase"] git-tree-sha1 = "af883a26bbe6e3f5f778cb4e1b81578b534c32a6" uuid = "c619ae07-58cd-5f6d-b883-8f17bd6a98f9" version = "1.2.0" [[Distances]] deps = ["LinearAlgebra", "Statistics", "StatsAPI"] git-tree-sha1 = "837c83e5574582e07662bbbba733964ff7c26b9d" uuid = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7" version = "0.10.6" [[Distributed]] deps = ["Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" [[Distributions]] deps = ["ChainRulesCore", "DensityInterface", "FillArrays", "LinearAlgebra", "PDMats", "Printf", "QuadGK", "Random", "SparseArrays", "SpecialFunctions", "Statistics", "StatsBase", "StatsFuns", "Test"] git-tree-sha1 = "dc6f530de935bb3c3cd73e99db5b4698e58b2fcf" uuid = "31c24e10-a181-5473-b8eb-7969acd0382f" version = "0.25.31" [[DocStringExtensions]] deps = ["LibGit2"] git-tree-sha1 = "b19534d1895d702889b219c382a6e18010797f0b" uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" version = "0.8.6" [[DomainSets]] deps = ["CompositeTypes", "IntervalSets", "LinearAlgebra", "StaticArrays", "Statistics"] git-tree-sha1 = "5f5f0b750ac576bcf2ab1d7782959894b304923e" uuid = "5b8099bc-c8ec-5219-889f-1d9e522a28bf" version = "0.5.9" [[Downloads]] deps = ["ArgTools", "LibCURL", "NetworkOptions"] uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" [[DynamicPolynomials]] deps = ["DataStructures", "Future", "LinearAlgebra", "MultivariatePolynomials", "MutableArithmetics", "Pkg", "Reexport", "Test"] git-tree-sha1 = "1b4665a7e303eaa7e03542cfaef0730cb056cb00" uuid = "7c1d4256-1411-5781-91ec-d7bc3513ac07" version = "0.3.21" [[EarCut_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "3f3a2501fa7236e9b911e0f7a588c657e822bb6d" uuid = "5ae413db-bbd1-5e63-b57d-d24a61df00f5" version = "2.2.3+0" [[ElasticArrays]] deps = ["Adapt"] git-tree-sha1 = "a0fcc1bb3c9ceaf07e1d0529c9806ce94be6adf9" uuid = "fdbdab4c-e67f-52f5-8c3f-e7b388dad3d4" version = "1.2.9" [[EllipsisNotation]] deps = ["ArrayInterface"] git-tree-sha1 = "9aad812fb7c4c038da7cab5a069f502e6e3ae030" uuid = "da5c29d0-fa7d-589e-88eb-ea29b0a81949" version = "1.1.1" [[ExponentialUtilities]] deps = ["ArrayInterface", "LinearAlgebra", "Printf", "Requires", "SparseArrays"] git-tree-sha1 = "cb39752c2a1f83bbe0fda393c51c480a296042ad" uuid = "d4d017d3-3776-5f7e-afef-a10c40355c18" version = "1.10.1" [[ExprTools]] git-tree-sha1 = "b7e3d17636b348f005f11040025ae8c6f645fe92" uuid = "e2ba6199-217a-4e67-a87a-7c52f15ade04" version = "0.1.6" [[ExtendableGrids]] deps = ["AbstractTrees", "Dates", "DocStringExtensions", "ElasticArrays", "InteractiveUtils", "LinearAlgebra", "Printf", "Random", "SparseArrays", "Test"] git-tree-sha1 = "5a42a9371dd5ad1a00ec27c63c5eccc8e38dab43" uuid = "cfc395e8-590f-11e8-1f13-43a2532b2fa8" version = "0.7.9" [[ExtendableSparse]] deps = ["DocStringExtensions", "LinearAlgebra", "Printf", "SparseArrays", "Test"] git-tree-sha1 = "ead69f021a6b37642f8c85a5b2b2d95aec40afd7" uuid = "95c220a8-a1cf-11e9-0c77-dbfce5f500b3" version = "0.3.7" [[FastBroadcast]] deps = ["LinearAlgebra", "Polyester", "Static"] git-tree-sha1 = "e32a81c505ab234c992ca978f31ed8b0dabbc327" uuid = "7034ab61-46d4-4ed7-9d0f-46aef9175898" version = "0.1.11" [[FastClosures]] git-tree-sha1 = "acebe244d53ee1b461970f8910c235b259e772ef" uuid = "9aa1b823-49e4-5ca5-8b0f-3971ec8bab6a" version = "0.3.2" [[FileIO]] deps = ["Pkg", "Requires", "UUIDs"] git-tree-sha1 = "2db648b6712831ecb333eae76dbfd1c156ca13bb" uuid = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549" version = "1.11.2" [[FillArrays]] deps = ["LinearAlgebra", "Random", "SparseArrays", "Statistics"] git-tree-sha1 = "8756f9935b7ccc9064c6eef0bff0ad643df733a3" uuid = "1a297f60-69ca-5386-bcde-b61e274b549b" version = "0.12.7" [[FiniteDiff]] deps = ["ArrayInterface", "LinearAlgebra", "Requires", "SparseArrays", "StaticArrays"] git-tree-sha1 = "8b3c09b56acaf3c0e581c66638b85c8650ee9dca" uuid = "6a86dc24-6348-571c-b903-95158fe2bd41" version = "2.8.1" [[FixedPointNumbers]] deps = ["Statistics"] git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc" uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" version = "0.8.4" [[Formatting]] deps = ["Printf"] git-tree-sha1 = "8339d61043228fdd3eb658d86c926cb282ae72a8" uuid = "59287772-0a20-5a39-b81b-1366585eb4c0" version = "0.4.2" [[ForwardDiff]] deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "LinearAlgebra", "LogExpFunctions", "NaNMath", "Preferences", "Printf", "Random", "SpecialFunctions", "StaticArrays"] git-tree-sha1 = "6406b5112809c08b1baa5703ad274e1dded0652f" uuid = "f6369f11-7733-5829-9624-2563aa707210" version = "0.10.23" [[FunctionWrappers]] git-tree-sha1 = "241552bc2209f0fa068b6415b1942cc0aa486bcc" uuid = "069b7b12-0de2-55c6-9aab-29f3d0a68a2e" version = "1.1.2" [[Future]] deps = ["Random"] uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820" [[GeometryBasics]] deps = ["EarCut_jll", "IterTools", "LinearAlgebra", "StaticArrays", "StructArrays", "Tables"] git-tree-sha1 = "15ff9a14b9e1218958d3530cc288cf31465d9ae2" uuid = "5c1252a2-5f33-56bf-86c9-59e7332b4326" version = "0.3.13" [[GradientRobustMultiPhysics]] deps = ["BenchmarkTools", "DiffResults", "DocStringExtensions", "ExtendableGrids", "ExtendableSparse", "ForwardDiff", "GridVisualize", "LinearAlgebra", "Printf", "SparseArrays", "StaticArrays", "SuiteSparse", "Test"] git-tree-sha1 = "4dd7e32409b3632804ffbc0d814756841290124e" uuid = "0802c0ca-1768-4022-988c-6dd5f9588a11" version = "0.4.1" [[Graphs]] deps = ["ArnoldiMethod", "DataStructures", "Distributed", "Inflate", "LinearAlgebra", "Random", "SharedArrays", "SimpleTraits", "SparseArrays", "Statistics"] git-tree-sha1 = "92243c07e786ea3458532e199eb3feee0e7e08eb" uuid = "86223c79-3864-5bf0-83f7-82e725a168b6" version = "1.4.1" [[GridVisualize]] deps = ["ColorSchemes", "Colors", "DocStringExtensions", "ElasticArrays", "ExtendableGrids", "GeometryBasics", "LinearAlgebra", "PkgVersion", "Printf", "StaticArrays"] git-tree-sha1 = "39eef7772fbe0945ebd9662f12c4239490cb63e4" uuid = "5eed8a63-0fb0-45eb-886d-8d5a387d12b8" version = "0.1.7" [[HostCPUFeatures]] deps = ["BitTwiddlingConvenienceFunctions", "IfElse", "Libdl", "Static"] git-tree-sha1 = "8f0dc80088981ab55702b04bba38097a44a1a3a9" uuid = "3e5b6fbb-0976-4d2c-9146-d79de83f2fb0" version = "0.1.5" [[Hwloc]] deps = ["Hwloc_jll"] git-tree-sha1 = "92d99146066c5c6888d5a3abc871e6a214388b91" uuid = "0e44f5e4-bd66-52a0-8798-143a42290a1d" version = "2.0.0" [[Hwloc_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "3395d4d4aeb3c9d31f5929d32760d8baeee88aaf" uuid = "e33a78d0-f292-5ffc-b300-72abe9b543c8" version = "2.5.0+0" [[Hyperscript]] deps = ["Test"] git-tree-sha1 = "8d511d5b81240fc8e6802386302675bdf47737b9" uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91" version = "0.0.4" [[HypertextLiteral]] git-tree-sha1 = "2b078b5a615c6c0396c77810d92ee8c6f470d238" uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2" version = "0.9.3" [[IOCapture]] deps = ["Logging", "Random"] git-tree-sha1 = "f7be53659ab06ddc986428d3a9dcc95f6fa6705a" uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89" version = "0.2.2" [[IfElse]] git-tree-sha1 = "debdd00ffef04665ccbb3e150747a77560e8fad1" uuid = "615f187c-cbe4-4ef1-ba3b-2fcf58d6d173" version = "0.1.1" [[Inflate]] git-tree-sha1 = "f5fc07d4e706b84f72d54eedcc1c13d92fb0871c" uuid = "d25df0c9-e2be-5dd7-82c8-3ad0b3e990b9" version = "0.1.2" [[InitialValues]] git-tree-sha1 = "7f6a4508b4a6f46db5ccd9799a3fc71ef5cad6e6" uuid = "22cec73e-a1b8-11e9-2c92-598750a2cf9c" version = "0.2.11" [[InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" [[IntervalSets]] deps = ["Dates", "EllipsisNotation", "Statistics"] git-tree-sha1 = "3cc368af3f110a767ac786560045dceddfc16758" uuid = "8197267c-284f-5f27-9208-e0e47529a953" version = "0.5.3" [[InverseFunctions]] deps = ["Test"] git-tree-sha1 = "a7254c0acd8e62f1ac75ad24d5db43f5f19f3c65" uuid = "3587e190-3f89-42d0-90ee-14403ec27112" version = "0.1.2" [[IrrationalConstants]] git-tree-sha1 = "7fd44fd4ff43fc60815f8e764c0f352b83c49151" uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" version = "0.1.1" [[IterTools]] git-tree-sha1 = "05110a2ab1fc5f932622ffea2a003221f4782c18" uuid = "c8e1da08-722c-5040-9ed9-7db0dc04731e" version = "1.3.0" [[IterativeSolvers]] deps = ["LinearAlgebra", "Printf", "Random", "RecipesBase", "SparseArrays"] git-tree-sha1 = "1169632f425f79429f245113b775a0e3d121457c" uuid = "42fd0dbc-a981-5370-80f2-aaf504508153" version = "0.9.2" [[IteratorInterfaceExtensions]] git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856" uuid = "82899510-4779-5014-852e-03e436cf321d" version = "1.0.0" [[JLD2]] deps = ["DataStructures", "FileIO", "MacroTools", "Mmap", "Pkg", "Printf", "Reexport", "TranscodingStreams", "UUIDs"] git-tree-sha1 = "46b7834ec8165c541b0b5d1c8ba63ec940723ffb" uuid = "033835bb-8acc-5ee8-8aae-3f567f8a3819" version = "0.4.15" [[JLLWrappers]] deps = ["Preferences"] git-tree-sha1 = "642a199af8b68253517b80bd3bfd17eb4e84df6e" uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" version = "1.3.0" [[JSON]] deps = ["Dates", "Mmap", "Parsers", "Unicode"] git-tree-sha1 = "8076680b162ada2a031f707ac7b4953e30667a37" uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" version = "0.21.2" [[JuliaFormatter]] deps = ["CSTParser", "CommonMark", "DataStructures", "Pkg", "Tokenize"] git-tree-sha1 = "e45015cdba3dea9ce91a573079a5706e73a5e895" uuid = "98e50ef6-434e-11e9-1051-2b60c6c9e899" version = "0.19.0" [[LaTeXStrings]] git-tree-sha1 = "f2355693d6778a178ade15952b7ac47a4ff97996" uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f" version = "1.3.0" [[LabelledArrays]] deps = ["ArrayInterface", "LinearAlgebra", "MacroTools", "StaticArrays"] git-tree-sha1 = "fa07d4ee13edf79a6ac2575ad28d9f43694e1190" uuid = "2ee39098-c373-598a-b85f-a56591580800" version = "1.6.6" [[Latexify]] deps = ["Formatting", "InteractiveUtils", "LaTeXStrings", "MacroTools", "Markdown", "Printf", "Requires"] git-tree-sha1 = "a8f4f279b6fa3c3c4f1adadd78a621b13a506bce" uuid = "23fbe1c1-3f47-55db-b15f-69d7ec21a316" version = "0.15.9" [[LayoutPointers]] deps = ["ArrayInterface", "LinearAlgebra", "ManualMemory", "SIMDTypes", "Static"] git-tree-sha1 = "83b56449c39342a47f3fcdb3bc782bd6d66e1d97" uuid = "10f19ff3-798f-405d-979b-55457f8fc047" version = "0.1.4" [[LibCURL]] deps = ["LibCURL_jll", "MozillaCACerts_jll"] uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" [[LibCURL_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" [[LibGit2]] deps = ["Base64", "NetworkOptions", "Printf", "SHA"] uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" [[LibSSH2_jll]] deps = ["Artifacts", "Libdl", "MbedTLS_jll"] uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" [[Libdl]] uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" [[LineSearches]] deps = ["LinearAlgebra", "NLSolversBase", "NaNMath", "Parameters", "Printf"] git-tree-sha1 = "f27132e551e959b3667d8c93eae90973225032dd" uuid = "d3d80556-e9d4-5f37-9878-2ab0fcc64255" version = "7.1.1" [[LinearAlgebra]] deps = ["Libdl"] uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" [[LogExpFunctions]] deps = ["ChainRulesCore", "ChangesOfVariables", "DocStringExtensions", "InverseFunctions", "IrrationalConstants", "LinearAlgebra"] git-tree-sha1 = "be9eef9f9d78cecb6f262f3c10da151a6c5ab827" uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" version = "0.3.5" [[Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" [[LoopVectorization]] deps = ["ArrayInterface", "CPUSummary", "CloseOpenIntervals", "DocStringExtensions", "HostCPUFeatures", "IfElse", "LayoutPointers", "LinearAlgebra", "OffsetArrays", "PolyesterWeave", "Requires", "SIMDDualNumbers", "SLEEFPirates", "Static", "ThreadingUtilities", "UnPack", "VectorizationBase"] git-tree-sha1 = "9d8ce46c7727debdfd65be244f22257abf7d8739" uuid = "bdcacae8-1622-11e9-2a5c-532679323890" version = "0.12.98" [[MacroTools]] deps = ["Markdown", "Random"] git-tree-sha1 = "3d3e902b31198a27340d0bf00d6ac452866021cf" uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" version = "0.5.9" [[ManualMemory]] git-tree-sha1 = "9cb207b18148b2199db259adfa923b45593fe08e" uuid = "d125e4d3-2237-4719-b19c-fa641b8a4667" version = "0.1.6" [[Markdown]] deps = ["Base64"] uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" [[MbedTLS_jll]] deps = ["Artifacts", "Libdl"] uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" [[Metatheory]] deps = ["AutoHashEquals", "DataStructures", "Dates", "DocStringExtensions", "Parameters", "Reexport", "TermInterface", "ThreadsX", "TimerOutputs"] git-tree-sha1 = "0d3b2feb3168e4deb78361d3b5bb5c2e51ea5271" uuid = "e9d8d322-4543-424a-9be4-0cc815abe26c" version = "1.3.2" [[MicroCollections]] deps = ["BangBang", "Setfield"] git-tree-sha1 = "4f65bdbbe93475f6ff9ea6969b21532f88d359be" uuid = "128add7d-3638-4c79-886c-908ea0c25c34" version = "0.1.1" [[Missings]] deps = ["DataAPI"] git-tree-sha1 = "bf210ce90b6c9eed32d25dbcae1ebc565df2687f" uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28" version = "1.0.2" [[Mmap]] uuid = "a63ad114-7e13-5084-954f-fe012c677804" [[ModelingToolkit]] deps = ["AbstractTrees", "ArrayInterface", "ConstructionBase", "DataStructures", "DiffEqBase", "DiffEqCallbacks", "DiffEqJump", "DiffRules", "Distributed", "Distributions", "DocStringExtensions", "DomainSets", "Graphs", "IfElse", "InteractiveUtils", "JuliaFormatter", "LabelledArrays", "Latexify", "Libdl", "LinearAlgebra", "MacroTools", "NaNMath", "NonlinearSolve", "RecursiveArrayTools", "Reexport", "Requires", "RuntimeGeneratedFunctions", "SafeTestsets", "SciMLBase", "Serialization", "Setfield", "SparseArrays", "SpecialFunctions", "StaticArrays", "SymbolicUtils", "Symbolics", "UnPack", "Unitful"] git-tree-sha1 = "c9d6d91b6a976b668309691ea21a459d7bcf4f59" uuid = "961ee093-0014-501f-94e3-6117800e7a78" version = "7.1.2" [[MozillaCACerts_jll]] uuid = "14a3606d-f60d-562e-9121-12d972cd8159" [[MuladdMacro]] git-tree-sha1 = "c6190f9a7fc5d9d5915ab29f2134421b12d24a68" uuid = "46d2c3a1-f734-5fdb-9937-b9b9aeba4221" version = "0.2.2" [[MultiScaleArrays]] deps = ["DiffEqBase", "FiniteDiff", "ForwardDiff", "LinearAlgebra", "OrdinaryDiffEq", "Random", "RecursiveArrayTools", "SparseDiffTools", "Statistics", "StochasticDiffEq", "TreeViews"] git-tree-sha1 = "258f3be6770fe77be8870727ba9803e236c685b8" uuid = "f9640e96-87f6-5992-9c3b-0743c6a49ffa" version = "1.8.1" [[MultivariatePolynomials]] deps = ["DataStructures", "LinearAlgebra", "MutableArithmetics"] git-tree-sha1 = "45c9940cec79dedcdccc73cc6dd09ea8b8ab142c" uuid = "102ac46a-7ee4-5c85-9060-abc95bfdeaa3" version = "0.3.18" [[MutableArithmetics]] deps = ["LinearAlgebra", "SparseArrays", "Test"] git-tree-sha1 = "8d9496b2339095901106961f44718920732616bb" uuid = "d8a4904e-b15c-11e9-3269-09a3773c0cb0" version = "0.2.22" [[NLSolversBase]] deps = ["DiffResults", "Distributed", "FiniteDiff", "ForwardDiff"] git-tree-sha1 = "50310f934e55e5ca3912fb941dec199b49ca9b68" uuid = "d41bc354-129a-5804-8e4c-c37616107c6c" version = "7.8.2" [[NLsolve]] deps = ["Distances", "LineSearches", "LinearAlgebra", "NLSolversBase", "Printf", "Reexport"] git-tree-sha1 = "019f12e9a1a7880459d0173c182e6a99365d7ac1" uuid = "2774e3e8-f4cf-5e23-947b-6d7e65073b56" version = "4.5.1" [[NaNMath]] git-tree-sha1 = "bfe47e760d60b82b66b61d2d44128b62e3a369fb" uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" version = "0.3.5" [[NetworkOptions]] uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" [[NonlinearSolve]] deps = ["ArrayInterface", "FiniteDiff", "ForwardDiff", "IterativeSolvers", "LinearAlgebra", "RecursiveArrayTools", "RecursiveFactorization", "Reexport", "SciMLBase", "Setfield", "StaticArrays", "UnPack"] git-tree-sha1 = "e9ffc92217b8709e0cf7b8808f6223a4a0936c95" uuid = "8913a72c-1f9b-4ce2-8d82-65094dcecaec" version = "0.3.11" [[OffsetArrays]] deps = ["Adapt"] git-tree-sha1 = "043017e0bdeff61cfbb7afeb558ab29536bbb5ed" uuid = "6fe1bfb0-de20-5000-8ca7-80f57d26f881" version = "1.10.8" [[OpenBLAS_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" [[OpenLibm_jll]] deps = ["Artifacts", "Libdl"] uuid = "05823500-19ac-5b8b-9628-191a04bc5112" [[OpenSpecFun_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "13652491f6856acfd2db29360e1bbcd4565d04f1" uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e" version = "0.5.5+0" [[Optim]] deps = ["Compat", "FillArrays", "ForwardDiff", "LineSearches", "LinearAlgebra", "NLSolversBase", "NaNMath", "Parameters", "PositiveFactorizations", "Printf", "SparseArrays", "StatsBase"] git-tree-sha1 = "35d435b512fbab1d1a29138b5229279925eba369" uuid = "429524aa-4258-5aef-a3af-852621145aeb" version = "1.5.0" [[OrderedCollections]] git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c" uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" version = "1.4.1" [[OrdinaryDiffEq]] deps = ["Adapt", "ArrayInterface", "DataStructures", "DiffEqBase", "DocStringExtensions", "ExponentialUtilities", "FastClosures", "FiniteDiff", "ForwardDiff", "LinearAlgebra", "Logging", "LoopVectorization", "MacroTools", "MuladdMacro", "NLsolve", "Polyester", "PreallocationTools", "RecursiveArrayTools", "Reexport", "SparseArrays", "SparseDiffTools", "StaticArrays", "UnPack"] git-tree-sha1 = "6f76c887ddfd3f2a018ef1ee00a17b46bcf4886e" uuid = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" version = "5.67.0" [[PDMats]] deps = ["LinearAlgebra", "SparseArrays", "SuiteSparse"] git-tree-sha1 = "ee26b350276c51697c9c2d88a072b339f9f03d73" uuid = "90014a1f-27ba-587c-ab20-58faa44d9150" version = "0.11.5" [[ParameterizedFunctions]] deps = ["DataStructures", "DiffEqBase", "DocStringExtensions", "Latexify", "LinearAlgebra", "ModelingToolkit", "Reexport", "SciMLBase"] git-tree-sha1 = "3baa1ad75b77f406988be4dc0364e01cf16127e7" uuid = "65888b18-ceab-5e60-b2b9-181511a3b968" version = "5.12.2" [[Parameters]] deps = ["OrderedCollections", "UnPack"] git-tree-sha1 = "34c0e9ad262e5f7fc75b10a9952ca7692cfc5fbe" uuid = "d96e819e-fc66-5662-9728-84c9c7592b0a" version = "0.12.3" [[Parsers]] deps = ["Dates"] git-tree-sha1 = "ae4bbcadb2906ccc085cf52ac286dc1377dceccc" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" version = "2.1.2" [[Pkg]] deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" [[PkgVersion]] deps = ["Pkg"] git-tree-sha1 = "a7a7e1a88853564e551e4eba8650f8c38df79b37" uuid = "eebad327-c553-4316-9ea0-9fa01ccd7688" version = "0.1.1" [[PlutoUI]] deps = ["AbstractPlutoDingetjes", "Base64", "Dates", "Hyperscript", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "Markdown", "Random", "Reexport", "UUIDs"] git-tree-sha1 = "e071adf21e165ea0d904b595544a8e514c8bb42c" uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8" version = "0.7.19" [[PoissonRandom]] deps = ["Random", "Statistics", "Test"] git-tree-sha1 = "44d018211a56626288b5d3f8c6497d28c26dc850" uuid = "e409e4f3-bfea-5376-8464-e040bb5c01ab" version = "0.4.0" [[Polyester]] deps = ["ArrayInterface", "BitTwiddlingConvenienceFunctions", "CPUSummary", "IfElse", "ManualMemory", "PolyesterWeave", "Requires", "Static", "StrideArraysCore", "ThreadingUtilities"] git-tree-sha1 = "892b8d9dd3c7987a4d0fd320f0a421dd90b5d09d" uuid = "f517fe37-dbe3-4b94-8317-1923a5111588" version = "0.5.4" [[PolyesterWeave]] deps = ["BitTwiddlingConvenienceFunctions", "CPUSummary", "IfElse", "Static", "ThreadingUtilities"] git-tree-sha1 = "a3ff99bf561183ee20386aec98ab8f4a12dc724a" uuid = "1d0040c9-8b98-4ee7-8388-3f51789ca0ad" version = "0.1.2" [[PositiveFactorizations]] deps = ["LinearAlgebra"] git-tree-sha1 = "17275485f373e6673f7e7f97051f703ed5b15b20" uuid = "85a6dd25-e78a-55b7-8502-1745935b8125" version = "0.2.4" [[PreallocationTools]] deps = ["Adapt", "ArrayInterface", "ForwardDiff", "LabelledArrays"] git-tree-sha1 = "ba819074442cd4c9bda1a3d905ec305f8acb37f2" uuid = "d236fae5-4411-538c-8e31-a6e3d9e00b46" version = "0.2.0" [[Preferences]] deps = ["TOML"] git-tree-sha1 = "00cfd92944ca9c760982747e9a1d0d5d86ab1e5a" uuid = "21216c6a-2e73-6563-6e65-726566657250" version = "1.2.2" [[Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" [[PyCall]] deps = ["Conda", "Dates", "Libdl", "LinearAlgebra", "MacroTools", "Serialization", "VersionParsing"] git-tree-sha1 = "4ba3651d33ef76e24fef6a598b63ffd1c5e1cd17" uuid = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0" version = "1.92.5" [[PyPlot]] deps = ["Colors", "LaTeXStrings", "PyCall", "Sockets", "Test", "VersionParsing"] git-tree-sha1 = "14c1b795b9d764e1784713941e787e1384268103" uuid = "d330b81b-6aea-500a-939a-2ce795aea3ee" version = "2.10.0" [[QuadGK]] deps = ["DataStructures", "LinearAlgebra"] git-tree-sha1 = "78aadffb3efd2155af139781b8a8df1ef279ea39" uuid = "1fd47b50-473d-5c70-9696-f719f8f3bcdc" version = "2.4.2" [[REPL]] deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"] uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" [[Random]] deps = ["Serialization"] uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" [[Random123]] deps = ["Libdl", "Random", "RandomNumbers"] git-tree-sha1 = "0e8b146557ad1c6deb1367655e052276690e71a3" uuid = "74087812-796a-5b5d-8853-05524746bad3" version = "1.4.2" [[RandomNumbers]] deps = ["Random", "Requires"] git-tree-sha1 = "043da614cc7e95c703498a491e2c21f58a2b8111" uuid = "e6cf234a-135c-5ec9-84dd-332b85af5143" version = "1.5.3" [[RecipesBase]] git-tree-sha1 = "44a75aa7a527910ee3d1751d1f0e4148698add9e" uuid = "3cdcf5f2-1ef4-517c-9805-6587b60abb01" version = "1.1.2" [[RecursiveArrayTools]] deps = ["ArrayInterface", "ChainRulesCore", "DocStringExtensions", "FillArrays", "LinearAlgebra", "RecipesBase", "Requires", "StaticArrays", "Statistics", "ZygoteRules"] git-tree-sha1 = "c944fa4adbb47be43376359811c0a14757bdc8a8" uuid = "731186ca-8d62-57ce-b412-fbd966d074cd" version = "2.20.0" [[RecursiveFactorization]] deps = ["LinearAlgebra", "LoopVectorization", "Polyester", "StrideArraysCore", "TriangularSolve"] git-tree-sha1 = "b7edd69c796b30985ea6dfeda8504cdb7cf77e9f" uuid = "f2c3362d-daeb-58d1-803e-2bc74f2840b4" version = "0.2.5" [[Reexport]] git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" uuid = "189a3867-3050-52da-a836-e630ba90ab69" version = "1.2.2" [[Referenceables]] deps = ["Adapt"] git-tree-sha1 = "e681d3bfa49cd46c3c161505caddf20f0e62aaa9" uuid = "42d2dcc6-99eb-4e98-b66c-637b7d73030e" version = "0.1.2" [[Requires]] deps = ["UUIDs"] git-tree-sha1 = "4036a3bd08ac7e968e27c203d45f5fff15020621" uuid = "ae029012-a4dd-5104-9daa-d747884805df" version = "1.1.3" [[ResettableStacks]] deps = ["StaticArrays"] git-tree-sha1 = "256eeeec186fa7f26f2801732774ccf277f05db9" uuid = "ae5879a3-cd67-5da8-be7f-38c6eb64a37b" version = "1.1.1" [[Rmath]] deps = ["Random", "Rmath_jll"] git-tree-sha1 = "bf3188feca147ce108c76ad82c2792c57abe7b1f" uuid = "79098fc4-a85e-5d69-aa6a-4863f24498fa" version = "0.7.0" [[Rmath_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "68db32dff12bb6127bac73c209881191bf0efbb7" uuid = "f50d1b31-88e8-58de-be2c-1cc44531875f" version = "0.3.0+0" [[RuntimeGeneratedFunctions]] deps = ["ExprTools", "SHA", "Serialization"] git-tree-sha1 = "cdc1e4278e91a6ad530770ebb327f9ed83cf10c4" uuid = "7e49a35a-f44a-4d26-94aa-eba1b4ca6b47" version = "0.5.3" [[SHA]] uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" [[SIMDDualNumbers]] deps = ["ForwardDiff", "IfElse", "SLEEFPirates", "VectorizationBase"] git-tree-sha1 = "62c2da6eb66de8bb88081d20528647140d4daa0e" uuid = "3cdde19b-5bb0-4aaf-8931-af3e248e098b" version = "0.1.0" [[SIMDTypes]] git-tree-sha1 = "330289636fb8107c5f32088d2741e9fd7a061a5c" uuid = "94e857df-77ce-4151-89e5-788b33177be4" version = "0.1.0" [[SLEEFPirates]] deps = ["IfElse", "Static", "VectorizationBase"] git-tree-sha1 = "1410aad1c6b35862573c01b96cd1f6dbe3979994" uuid = "476501e8-09a2-5ece-8869-fb82de89a1fa" version = "0.6.28" [[SafeTestsets]] deps = ["Test"] git-tree-sha1 = "36ebc5622c82eb9324005cc75e7e2cc51181d181" uuid = "1bc83da4-3b8d-516f-aca4-4fe02f6d838f" version = "0.0.1" [[SciMLBase]] deps = ["ArrayInterface", "CommonSolve", "ConstructionBase", "Distributed", "DocStringExtensions", "IteratorInterfaceExtensions", "LinearAlgebra", "Logging", "RecipesBase", "RecursiveArrayTools", "StaticArrays", "Statistics", "Tables", "TreeViews"] git-tree-sha1 = "ad2c7f08e332cc3bb05d33026b71fa0ef66c009a" uuid = "0bca4576-84f4-4d90-8ffe-ffa030f20462" version = "1.19.4" [[Serialization]] uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" [[Setfield]] deps = ["ConstructionBase", "Future", "MacroTools", "Requires"] git-tree-sha1 = "def0718ddbabeb5476e51e5a43609bee889f285d" uuid = "efcf1570-3423-57d1-acb7-fd33fddbac46" version = "0.8.0" [[SharedArrays]] deps = ["Distributed", "Mmap", "Random", "Serialization"] uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383" [[SimpleTraits]] deps = ["InteractiveUtils", "MacroTools"] git-tree-sha1 = "5d7e3f4e11935503d3ecaf7186eac40602e7d231" uuid = "699a6c99-e7fa-54fc-8d76-47d257e15c1d" version = "0.9.4" [[SimplexGridFactory]] deps = ["DocStringExtensions", "ElasticArrays", "ExtendableGrids", "GridVisualize", "LinearAlgebra", "Printf", "Test"] git-tree-sha1 = "9789d88e28d43355d1c4293943d320dc1a755de8" uuid = "57bfcd06-606e-45d6-baf4-4ba06da0efd5" version = "0.5.3" [[Sockets]] uuid = "6462fe0b-24de-5631-8697-dd941f90decc" [[SortingAlgorithms]] deps = ["DataStructures"] git-tree-sha1 = "b3363d7460f7d098ca0912c69b082f75625d7508" uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c" version = "1.0.1" [[SparseArrays]] deps = ["LinearAlgebra", "Random"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" [[SparseDiffTools]] deps = ["Adapt", "ArrayInterface", "Compat", "DataStructures", "FiniteDiff", "ForwardDiff", "Graphs", "LinearAlgebra", "Requires", "SparseArrays", "StaticArrays", "VertexSafeGraphs"] git-tree-sha1 = "f87076b43379cb0bd9f421cfe7c649fb510d8e4e" uuid = "47a9eef4-7e08-11e9-0b38-333d64bd3804" version = "1.18.1" [[SparsityDetection]] deps = ["Cassette", "DocStringExtensions", "LinearAlgebra", "SparseArrays", "SpecialFunctions"] git-tree-sha1 = "9e182a311d169cb9fe0c6501aa252983215fe692" uuid = "684fba80-ace3-11e9-3d08-3bc7ed6f96df" version = "0.3.4" [[SpecialFunctions]] deps = ["ChainRulesCore", "IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"] git-tree-sha1 = "f0bccf98e16759818ffc5d97ac3ebf87eb950150" uuid = "276daf66-3868-5448-9aa4-cd146d93841b" version = "1.8.1" [[SplittablesBase]] deps = ["Setfield", "Test"] git-tree-sha1 = "39c9f91521de844bad65049efd4f9223e7ed43f9" uuid = "171d559e-b47b-412a-8079-5efa626c420e" version = "0.1.14" [[Static]] deps = ["IfElse"] git-tree-sha1 = "e7bc80dc93f50857a5d1e3c8121495852f407e6a" uuid = "aedffcd0-7271-4cad-89d0-dc628f76c6d3" version = "0.4.0" [[StaticArrays]] deps = ["LinearAlgebra", "Random", "Statistics"] git-tree-sha1 = "3c76dde64d03699e074ac02eb2e8ba8254d428da" uuid = "90137ffa-7385-5640-81b9-e52037218182" version = "1.2.13" [[Statistics]] deps = ["LinearAlgebra", "SparseArrays"] uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" [[StatsAPI]] git-tree-sha1 = "1958272568dc176a1d881acb797beb909c785510" uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0" version = "1.0.0" [[StatsBase]] deps = ["DataAPI", "DataStructures", "LinearAlgebra", "LogExpFunctions", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"] git-tree-sha1 = "eb35dcc66558b2dda84079b9a1be17557d32091a" uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91" version = "0.33.12" [[StatsFuns]] deps = ["ChainRulesCore", "InverseFunctions", "IrrationalConstants", "LogExpFunctions", "Reexport", "Rmath", "SpecialFunctions"] git-tree-sha1 = "385ab64e64e79f0cd7cfcf897169b91ebbb2d6c8" uuid = "4c63d2b9-4356-54db-8cca-17b64c39e42c" version = "0.9.13" [[SteadyStateDiffEq]] deps = ["DiffEqBase", "DiffEqCallbacks", "LinearAlgebra", "NLsolve", "Reexport", "SciMLBase"] git-tree-sha1 = "3e057e1f9f12d18cac32011aed9e61eef6c1c0ce" uuid = "9672c7b4-1e72-59bd-8a11-6ac3964bc41f" version = "1.6.6" [[StochasticDiffEq]] deps = ["Adapt", "ArrayInterface", "DataStructures", "DiffEqBase", "DiffEqJump", "DiffEqNoiseProcess", "DocStringExtensions", "FillArrays", "FiniteDiff", "ForwardDiff", "LinearAlgebra", "Logging", "MuladdMacro", "NLsolve", "OrdinaryDiffEq", "Random", "RandomNumbers", "RecursiveArrayTools", "Reexport", "SparseArrays", "SparseDiffTools", "StaticArrays", "UnPack"] git-tree-sha1 = "d6756d0c66aecd5d57ad9d305d7c2526fb5922d9" uuid = "789caeaf-c7a9-5a7d-9973-96adeb23e2a0" version = "6.41.0" [[StrideArraysCore]] deps = ["ArrayInterface", "CloseOpenIntervals", "IfElse", "LayoutPointers", "ManualMemory", "Requires", "SIMDTypes", "Static", "ThreadingUtilities"] git-tree-sha1 = "12cf3253ebd8e2a3214ae171fbfe51e7e8d8ad28" uuid = "7792a7ef-975c-4747-a70f-980b88e8d1da" version = "0.2.9" [[StructArrays]] deps = ["Adapt", "DataAPI", "StaticArrays", "Tables"] git-tree-sha1 = "2ce41e0d042c60ecd131e9fb7154a3bfadbf50d3" uuid = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" version = "0.6.3" [[SuiteSparse]] deps = ["Libdl", "LinearAlgebra", "Serialization", "SparseArrays"] uuid = "4607b0f0-06f3-5cda-b6b1-a6196a1729e9" [[SuiteSparse_jll]] deps = ["Artifacts", "Libdl", "OpenBLAS_jll"] uuid = "bea87d4a-7f5b-5778-9afe-8cc45184846c" [[Sundials]] deps = ["CEnum", "DataStructures", "DiffEqBase", "Libdl", "LinearAlgebra", "Logging", "Reexport", "SparseArrays", "Sundials_jll"] git-tree-sha1 = "12d529a67c232bd27e9868fbcfad4997435786a5" uuid = "c3572dad-4567-51f8-b174-8c6c989267f4" version = "4.6.0" [[Sundials_jll]] deps = ["CompilerSupportLibraries_jll", "Libdl", "OpenBLAS_jll", "Pkg", "SuiteSparse_jll"] git-tree-sha1 = "013ff4504fc1d475aa80c63b455b6b3a58767db2" uuid = "fb77eaff-e24c-56d4-86b1-d163f2edb164" version = "5.2.0+1" [[SymbolicUtils]] deps = ["AbstractTrees", "Bijections", "ChainRulesCore", "Combinatorics", "ConstructionBase", "DataStructures", "DocStringExtensions", "DynamicPolynomials", "IfElse", "LabelledArrays", "LinearAlgebra", "Metatheory", "MultivariatePolynomials", "NaNMath", "Setfield", "SparseArrays", "SpecialFunctions", "StaticArrays", "TermInterface", "TimerOutputs"] git-tree-sha1 = "5255e65d129c8edbde92fd2ede515e61098f93df" uuid = "d1185830-fcd6-423d-90d6-eec64667417b" version = "0.18.1" [[Symbolics]] deps = ["ConstructionBase", "DataStructures", "DiffRules", "Distributions", "DocStringExtensions", "DomainSets", "IfElse", "Latexify", "Libdl", "LinearAlgebra", "MacroTools", "Metatheory", "NaNMath", "RecipesBase", "Reexport", "Requires", "RuntimeGeneratedFunctions", "SciMLBase", "Setfield", "SparseArrays", "SpecialFunctions", "StaticArrays", "SymbolicUtils", "TermInterface", "TreeViews"] git-tree-sha1 = "56272fc85e8d99332149fece99284ee31a9fa101" uuid = "0c5d862f-8b57-4792-8d23-62f2024744c7" version = "4.1.0" [[TOML]] deps = ["Dates"] uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" [[TableTraits]] deps = ["IteratorInterfaceExtensions"] git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39" uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c" version = "1.0.1" [[Tables]] deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "TableTraits", "Test"] git-tree-sha1 = "fed34d0e71b91734bf0a7e10eb1bb05296ddbcd0" uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" version = "1.6.0" [[Tar]] deps = ["ArgTools", "SHA"] uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" [[TermInterface]] git-tree-sha1 = "7aa601f12708243987b88d1b453541a75e3d8c7a" uuid = "8ea1fca8-c5ef-4a55-8b96-4e9afe9c9a3c" version = "0.2.3" [[Test]] deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[ThreadingUtilities]] deps = ["ManualMemory"] git-tree-sha1 = "03013c6ae7f1824131b2ae2fc1d49793b51e8394" uuid = "8290d209-cae3-49c0-8002-c8c24d57dab5" version = "0.4.6" [[ThreadsX]] deps = ["ArgCheck", "BangBang", "ConstructionBase", "InitialValues", "MicroCollections", "Referenceables", "Setfield", "SplittablesBase", "Transducers"] git-tree-sha1 = "abcff3ac31c7894550566be533b512f8b059104f" uuid = "ac1d9e8a-700a-412c-b207-f0111f4b6c0d" version = "0.1.8" [[TimerOutputs]] deps = ["ExprTools", "Printf"] git-tree-sha1 = "7cb456f358e8f9d102a8b25e8dfedf58fa5689bc" uuid = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f" version = "0.5.13" [[Tokenize]] git-tree-sha1 = "0952c9cee34988092d73a5708780b3917166a0dd" uuid = "0796e94c-ce3b-5d07-9a54-7f471281c624" version = "0.5.21" [[TranscodingStreams]] deps = ["Random", "Test"] git-tree-sha1 = "216b95ea110b5972db65aa90f88d8d89dcb8851c" uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa" version = "0.9.6" [[Transducers]] deps = ["Adapt", "ArgCheck", "BangBang", "Baselet", "CompositionsBase", "DefineSingletons", "Distributed", "InitialValues", "Logging", "Markdown", "MicroCollections", "Requires", "Setfield", "SplittablesBase", "Tables"] git-tree-sha1 = "bccb153150744d476a6a8d4facf5299325d5a442" uuid = "28d57a85-8fef-5791-bfe6-a80928e7c999" version = "0.4.67" [[TreeViews]] deps = ["Test"] git-tree-sha1 = "8d0d7a3fe2f30d6a7f833a5f19f7c7a5b396eae6" uuid = "a2a6695c-b41b-5b7d-aed9-dbfdeacea5d7" version = "0.3.0" [[Triangle_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "bfdd9ef1004eb9d407af935a6f36a4e0af711369" uuid = "5639c1d2-226c-5e70-8d55-b3095415a16a" version = "1.6.1+0" [[TriangularSolve]] deps = ["CloseOpenIntervals", "IfElse", "LayoutPointers", "LinearAlgebra", "LoopVectorization", "Polyester", "Static", "VectorizationBase"] git-tree-sha1 = "ec9a310324dd2c546c07f33a599ded9c1d00a420" uuid = "d5829a12-d9aa-46ab-831f-fb7c9ab06edf" version = "0.1.8" [[Triangulate]] deps = ["DocStringExtensions", "Libdl", "Printf", "Test", "Triangle_jll"] git-tree-sha1 = "2b4f716b192c0c615d96d541ee029e85666388cb" uuid = "f7e6ffb2-c36d-4f8f-a77e-16e897189344" version = "2.1.0" [[URIs]] git-tree-sha1 = "97bbe755a53fe859669cd907f2d96aee8d2c1355" uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4" version = "1.3.0" [[UUIDs]] deps = ["Random", "SHA"] uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" [[UnPack]] git-tree-sha1 = "387c1f73762231e86e0c9c5443ce3b4a0a9a0c2b" uuid = "3a884ed6-31ef-47d7-9d2a-63182c4928ed" version = "1.0.2" [[Unicode]] uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" [[Unitful]] deps = ["ConstructionBase", "Dates", "LinearAlgebra", "Random"] git-tree-sha1 = "0992ed0c3ef66b0390e5752fe60054e5ff93b908" uuid = "1986cc42-f94f-5a68-af5c-568840ba703d" version = "1.9.2" [[VectorizationBase]] deps = ["ArrayInterface", "CPUSummary", "HostCPUFeatures", "Hwloc", "IfElse", "LayoutPointers", "Libdl", "LinearAlgebra", "SIMDTypes", "Static"] git-tree-sha1 = "5239606cf3552aff43d79ecc75b1af1ce4625109" uuid = "3d5dd08c-fd9d-11e8-17fa-ed2836048c2f" version = "0.21.21" [[VersionParsing]] git-tree-sha1 = "e575cf85535c7c3292b4d89d89cc29e8c3098e47" uuid = "81def892-9a0e-5fdd-b105-ffc91e053289" version = "1.2.1" [[VertexSafeGraphs]] deps = ["Graphs"] git-tree-sha1 = "8351f8d73d7e880bfc042a8b6922684ebeafb35c" uuid = "19fa3120-7c27-5ec5-8db8-b0b0aa330d6f" version = "0.2.0" [[VoronoiFVM]] deps = ["DiffResults", "DocStringExtensions", "ExtendableGrids", "ExtendableSparse", "ForwardDiff", "GridVisualize", "IterativeSolvers", "JLD2", "LinearAlgebra", "Printf", "RecursiveArrayTools", "SparseArrays", "SparseDiffTools", "SparsityDetection", "StaticArrays", "SuiteSparse", "Test"] git-tree-sha1 = "679fd7b10ea44e39eb9e83b256c410eb75d96ffc" uuid = "82b139dc-5afc-11e9-35da-9b9bdfd336f3" version = "0.10.12" [[Zlib_jll]] deps = ["Libdl"] uuid = "83775a58-1f1d-513f-b197-d71354ab007a" [[ZygoteRules]] deps = ["MacroTools"] git-tree-sha1 = "8c1a8e4dfacb1fd631745552c8db35d0deb09ea0" uuid = "700de1a5-db45-46bc-99cf-38207098b444" version = "0.2.2" [[nghttp2_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" [[p7zip_jll]] deps = ["Artifacts", "Libdl"] uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" """ # ╔═╡ Cell order: # ╟─b7d13a60-8370-11eb-3a14-1df66337bc34 # ╟─6c221d04-863c-11eb-0bf8-41f7a6288b66 # ╟─68847d40-863c-11eb-18d3-e1060d831230 # ╟─b0581c08-863c-11eb-0d81-d59ac5f24479 # ╟─0d1ef53a-85c8-11eb-13ef-952df60b51b0 # ╟─174e53bc-863f-11eb-169d-2fe8a9b2adfb # ╟─d2f59d32-863a-11eb-2ffe-37e8d2a06d27 # ╟─7cb4be3c-8372-11eb-17cc-ad4f68a34e72 # ╟─3a462e56-8371-11eb-0503-bf8ebd33276b # ╟─00bcd2be-8373-11eb-368e-61b2cdc2ab74 # ╟─d0c8331e-840b-11eb-249b-5bba159d0d60 # ╟─3b05b78a-83e9-11eb-3d9e-8dda5fb67594 # ╟─151c3696-840e-11eb-0cd6-d91971fcf502 # ╟─5062ea76-83e9-11eb-26ad-cb5cb7746014 # ╟─0d9b6474-85e8-11eb-24a1-e7c037afb546 # ╟─47127b3a-83e9-11eb-22cf-9904b800edeb # ╟─2f1894e0-842c-11eb-2489-ab7cbaa2fe68 # ╟─86f5e288-85b4-11eb-133e-25e1fbe363da # ╟─5dd7b7b6-8634-11eb-37d0-f13485dca6a0 # ╟─568527e0-8374-11eb-17b8-7d100bbd8e37 # ╠═c42de0a2-8374-11eb-2bf2-e11a848bf099 # ╠═296637fc-8376-11eb-0fef-050bf60bb7ff # ╟─045e2078-8641-11eb-188f-a98971dc8155 # ╠═8aa0565e-85cd-11eb-32de-739cf53f6419 # ╟─8773d184-8375-11eb-0e52-53c2df5dff93 # ╠═ebf09b36-8374-11eb-06a5-f3baec9932c2 # ╟─caf52886-8375-11eb-3cf8-a949cf8a3a25 # ╟─f7f2cb36-8375-11eb-0c40-c5063c068bef # ╟─9507b252-837a-11eb-332e-117ceb07cf2b # ╟─5d5cef6a-85ba-11eb-263e-0dcbcb148ac0 # ╟─6fb193dc-837b-11eb-0380-3136d173692b # ╟─69e51df4-8379-11eb-12c6-93e6d605be60 # ╠═b7872370-8376-11eb-0abb-5ba2ba60697f # ╟─ccbd1974-8642-11eb-39db-212dcf3821fc # ╠═bd938738-8379-11eb-2e7b-3521b0c4d225 # ╟─192ee390-8379-11eb-1666-9bd411478d4d # ╠═04d59916-8379-11eb-0c09-d91190563a84 # ╟─3e02d072-837a-11eb-2838-259e4228d577 # ╠═e134f5a6-8378-11eb-0766-657ab2915de3 # ╟─9eae6a52-837b-11eb-1f08-ff6a44398858 # ╟─518b68fe-8643-11eb-3243-719110f74026 # ╠═544c6a08-81dd-11eb-301f-df0c8194d88f # ╟─92e1351e-837c-11eb-3b02-33ccb80a48d8 # ╠═63e18f7a-837c-11eb-0285-b76ef6d38a1f # ╠═549161a6-81df-11eb-2de0-f5629bcd3005 # ╟─563e9540-840d-11eb-2a8b-5fca30564841 # ╟─bfe00216-81e7-11eb-16a1-3f1436253097 # ╠═d05f97e2-85ba-11eb-06ea-c933332c0630 # ╠═244e9f36-837e-11eb-1a02-a1989909f58f # ╟─255b62e0-8380-11eb-1c58-7fb1c067f0e5 # ╠═ff99425c-837f-11eb-2217-e54e40a5a314 # ╟─1fc5d0ee-85bb-11eb-25d8-69151e6dafc2 # ╠═5ab844b2-8380-11eb-3eff-f562f445b06f # ╠═8214acb2-8380-11eb-2d24-1bef38c4e1da # ╠═919677d6-8380-11eb-3e1c-152fea8b92ec # ╠═c41db0b8-8380-11eb-14cc-71af2cd90a9f # ╟─71e783ea-8381-11eb-3eaa-5142de7bbd68 # ╟─d39e6472-8594-11eb-07d6-8961306a6a44 # ╟─d6076ec0-8594-11eb-154d-1dc03499315f # ╟─dc76902a-85c8-11eb-24a5-5b456ad625d9 # ╟─eedfd550-85cd-11eb-1bbf-4daf6fc4d019 # ╟─5e0307a2-85be-11eb-2295-3d1f2b01256b # ╟─d0e82116-85bf-11eb-1580-c5cb1efc1ba1 # ╟─b1d732c0-8381-11eb-0d91-eb04784ec1cb # ╠═092e6940-8598-11eb-335d-9fd32dadd468 # ╟─62cc9dea-8382-11eb-0552-f3858008c864 # ╠═be46f34a-8383-11eb-2972-87f7ef807ebe # ╟─488377d4-8593-11eb-2f16-1b031f62537b # ╟─07923cf2-85c9-11eb-0563-3b29940f50bb # ╟─ad3a5aac-8382-11eb-140b-c10660fd8c61 # ╟─99ce60fa-85e2-11eb-29af-a5f0feb65191 # ╠═ae80e57c-85e2-11eb-1297-3b0219a7af3b # ╟─89607c62-85e2-11eb-25b7-8b5cb4771d02 # ╠═9c94a022-8382-11eb-38ad-adc4d894e517 # ╟─dca25088-8382-11eb-0584-399677021678 # ╠═d2bfa708-8382-11eb-3bab-07447ecb4adb # ╠═845f6460-8382-11eb-21b0-b7082bdd66e3 # ╟─7b954d3c-8593-11eb-0cfc-2b1a0e51d6e6 # ╠═5c82b6bc-8383-11eb-192e-71e5336e0425 # ╠═3aed6f3c-85be-11eb-30ae-6170b11fc0a1 # ╟─01415fe2-8644-11eb-1fad-51fc9957aea8 # ╟─1a6fbeb4-8644-11eb-00d9-832a003ccd4b # ╟─61666f48-8644-11eb-36a6-35129059c0fd # ╟─79a8c4a4-8593-11eb-0e16-99a6cff3040e # ╠═cf503e46-85bb-11eb-2ae7-e959707a01a9 # ╠═d84c89de-8384-11eb-28aa-132d56751734 # ╠═20fc42e6-8385-11eb-1b8d-c70dcb798cff # ╠═ffd27a44-8385-11eb-150e-2f9a8bc48ec7 # ╟─c7cf0430-85bc-11eb-1527-b152703c025c # ╠═099134de-85be-11eb-2aed-812180c08921 # ╠═528624f4-85c3-11eb-1579-cb4852b9904b # ╟─52fc31d1-d41b-410d-bb07-17b991d34f05 # ╟─c06c99c8-85bc-11eb-29b5-694d7fab6673 # ╟─0c0a4210-8386-11eb-08a2-ff3625833da3 # ╟─51a150ee-8388-11eb-33e2-fb03cf4c0c76 # ╟─be8470e0-8594-11eb-2d55-657b74d82ccb # ╟─50602f28-85da-11eb-1f03-5d33ec4ee42e # ╟─913c1c76-8645-11eb-24b6-47bc88ad6f5d # ╟─da9158d6-85ce-11eb-3494-6bbd1b790284 # ╟─4563f38a-8389-11eb-0596-81019d2948c8 # ╠═134530ae-85c2-11eb-1556-a3aa72624a7a # ╟─b6dacce0-838c-11eb-18ca-fd4e85901bde # ╠═f9479696-838a-11eb-22cd-13f069f2dc9a # ╟─f95fed4c-85c2-11eb-2b76-a94551adbec1 # ╠═87dca836-85b3-11eb-1d28-73c08f594823 # ╠═f50ae9c4-838b-11eb-1822-499d9f4afbe4 # ╠═0bfe0312-838c-11eb-06d2-dbefd908b8ae # ╟─b272ebcc-85c3-11eb-1fad-bf71ffde1a6c # ╟─f6a6c162-b795-46e3-9229-ecad67836fb3 # ╟─05910082-85c4-11eb-2bd2-556c9e2c1975 # ╠═f572f800-8388-11eb-2774-95a3ff9a3ad6 # ╟─4fdf3a96-85c4-11eb-2f44-bd15bdf02dec # ╠═4cf131ae-85c4-11eb-28c6-a9d9a73d681e # ╟─c0f97390-85c4-11eb-2398-8d96e73caae2 # ╠═e9ce479c-85c3-11eb-0a14-e10dfe1dceb9 # ╟─a0161bd8-85c4-11eb-2366-45621bbe59b4 # ╠═ebcd0b92-8388-11eb-02f3-99334d45c9be # ╟─3199edda-85c5-11eb-2da5-0dafc6cd7b84 # ╠═95c2ce84-85c3-11eb-37a7-bf13754d062c # ╟─d3d7a9e4-838a-11eb-3e70-9525fb60e1c1 # ╠═0eb76256-8389-11eb-2e40-0d4e94c1d18d # ╟─fb4690e2-838e-11eb-38e9-29168d5f6360 # ╟─4d14735c-8647-11eb-2891-91d1bc0fe717 # ╟─4446bc76-8647-11eb-3d4b-af4000b83024 # ╟─07658648-8596-11eb-12f2-7564ab864a2e # ╟─df0cd404-85da-11eb-3274-51394b5edfa8 # ╠═e44bb844-85cc-11eb-05c9-cdaaa914d6c1 # ╠═f94316ca-85cc-11eb-1d6b-8ba91fe99cb5 # ╟─00000000-0000-0000-0000-000000000001 # ╟─00000000-0000-0000-0000-000000000002
PDELib
https://github.com/WIAS-BERLIN/PDELib.jl.git
[ "MIT" ]
0.3.0
2fca7ee903e9c45871c1948e6b5fffdf359e2da3
code
6148
#= # 2D Lid-driven cavity (AD-Newton) ([source code](SOURCE_URL)) This example solves the lid-driven cavity problem where one seeks a velocity ``\mathbf{u}`` and pressure ``\mathbf{p}`` of the incompressible Navier--Stokes problem ```math \begin{aligned} - \mu \Delta \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p & = 0\\ \mathrm{div}(u) & = 0 \end{aligned} ``` where ``\mathbf{u} = (1,0)`` along the top boundary of a square domain. This examples highlights the use of automatic differentation to obtain Newton derivatives of nonlinear PDEOperators. The user can switch between a Newton obtained by automatic differentation (ADnewton = true) and a 'manual' Newton scheme (ADnewton = false). The runtime of the manual newton is slightly faster, but requires much more code input from the user that is more prone to errors. =# using PDELib using Printf function fe_liddrivencavity_autonewton(; verbosity = 0, Plotter = nothing, ADnewton = true, nref=2) function boundary_data_top!(result) result[1] = 1; result[2] = 0; end ## grid xgrid = uniform_refine(grid_unitsquare(Triangle2D), nref); ## problem parameters viscosity = 1e-2 maxIterations = 50 # termination criterion 1 for nonlinear mode maxResidual = 1e-12 # termination criterion 2 for nonlinear mode broken_p = false ## choose one of these (inf-sup stable) finite element type pairs #FETypes = [H1P2{2,2}, H1P1{1}] # Taylor--Hood #FETypes = [H1P2B{2,2}, H1P1{1}]; broken_p = true # P2-bubble #FETypes = [H1CR{2}, H1P0{1}] # Crouzeix--Raviart #FETypes = [H1MINI{2,2}, H1P1{1}] # MINI element on triangles only FETypes = [H1BR{2}, H1P0{1}]; broken_p = true # Bernardi--Raugel ##################################################################################### ##################################################################################### ## negotiate data functions to the package user_function_bnd = DataFunction(boundary_data_top!, [2,2]; name = "u_bnd", dependencies = "", quadorder = 0) ## load linear Stokes problem prototype and assign data ## we are adding the nonlinar convection term ourself below ## to discuss the details StokesProblem = IncompressibleNavierStokesProblem(2; viscosity = viscosity, nonlinear = false) add_boundarydata!(StokesProblem, 1, [1,2,4], HomogeneousDirichletBoundary) add_boundarydata!(StokesProblem, 1, [3], BestapproxDirichletBoundary; data = user_function_bnd) ## store matrix of Laplace operator for nonlinear solver StokesProblem.LHSOperators[1,1][1].store_operator = true ## add Newton for convection term if ADnewton ## AUTOMATIC DIFFERENTATION ## requries kernel function for NonlinearForm action (u * grad) u function ugradu_kernel_AD(result, input) ## input = [u, grad(u)] ## compute (u * grad) u = grad(u)*u for j = 1 : 2 result[j] = 0.0 for k = 1 : 2 result[j] += input[k]*input[2 + (j-1)*2+k] end end return nothing end action_kernel = ActionKernel(ugradu_kernel_AD, [2,6]; dependencies = "", quadorder = 1) ## generate and add nonlinear PDEOperator (modifications to RHS are taken care of automatically) NLConvectionOperator = GenerateNonlinearForm("(u * grad) u * v", [Identity, Gradient], [1,1], Identity, action_kernel; ADnewton = true) add_operator!(StokesProblem, [1,1], NLConvectionOperator) else ## MANUAL DIFFERENTATION ## uses the following kernel function for the linearised convection operator function ugradu_kernel_nonAD(result, input_current, input_ansatz) ## input_current = [current, grad(current)] ## input_ansatz = [ansatz, grad(ansatz)] ## compute (current * grad) ansatz + (current * grad) ansatz for j = 1 : 2 result[j] = 0.0 for k = 1 : 2 result[j] += input_current[k]*input_ansatz[2 + (j-1)*2+k] result[j] += input_ansatz[k]*input_current[2 + (j-1)*2+k] end end return nothing end ## and a similar kernel function for the right-hand side function ugradu_kernel_rhs(result, input_current) ## input_current = [current, grad(current)] ## input_ansatz = [ansatz, grad(ansatz)] ## compute (current * grad) current for j = 1 : 2 result[j] = 0.0 for k = 1 : 2 result[j] += input_current[k]*input_current[2 + (j-1)*2+k] end end return nothing end newton_action_kernel = NLActionKernel(ugradu_kernel_nonAD, [2,6]; dependencies = "", quadorder = 1) action_kernel_rhs = ActionKernel(ugradu_kernel_rhs, [2,6]; dependencies = "", quadorder = 1) ## generate and add nonlinear PDEOperator (modifications to RHS are taken care of by optional arguments) NLConvectionOperator = GenerateNonlinearForm("(u * grad) u * v", [Identity, Gradient], [1,1], Identity, newton_action_kernel; ADnewton = false, action_kernel_rhs = action_kernel_rhs) add_operator!(StokesProblem, [1,1], NLConvectionOperator) end ## generate FESpaces FESpaceVelocity = FESpace{FETypes[1]}(xgrid) FESpacePressure = FESpace{FETypes[2]}(xgrid; broken = broken_p) Solution = FEVector{Float64}("Stokes velocity",FESpaceVelocity) append!(Solution,"Stokes pressure",FESpacePressure) ## show configuration and solve Stokes problem Base.show(StokesProblem) GradientRobustMultiPhysics.solve!(Solution, StokesProblem; verbosity = verbosity, maxIterations = maxIterations, maxResidual = maxResidual) ## plot GradientRobustMultiPhysics.plot(Solution, [1,2], [Identity, Identity]; Plotter = Plotter, verbosity = verbosity, use_subplots = true) true end
PDELib
https://github.com/WIAS-BERLIN/PDELib.jl.git
[ "MIT" ]
0.3.0
2fca7ee903e9c45871c1948e6b5fffdf359e2da3
code
1384
using PDELib using Triangulate function fv_laplace_circle(;Plotter=nothing,nref=0) function circle!(builder, center, radius; n=20*2^nref) points=[point!(builder, center[1]+radius*sin(t),center[2]+radius*cos(t)) for t in range(0,2π,length=n)] for i=1:n-1 facet!(builder,points[i],points[i+1]) end facet!(builder,points[end],points[1]) end builder=SimplexGridBuilder(Generator=Triangulate) cellregion!(builder,1) maxvolume!(builder,0.1) regionpoint!(builder,0,0) facetregion!(builder,1) circle!(builder,(0,0),1) facetregion!(builder,2) circle!(builder,(-0.2,-0.2),0.2) holepoint!(builder,-0.2,-0.2) grid=simplexgrid(builder,maxvolume=0.1*4.0^(-nref)) function flux(f,u0,edge) u=unknowns(edge,u0) f[1]=u[1,1]-u[1,2] end physics=VoronoiFVM.Physics(num_species=1,flux=flux) sys=VoronoiFVM.System(grid,physics) ispec=1 enable_species!(sys,ispec,[1]) boundary_dirichlet!(sys,ispec,1,0.0) boundary_dirichlet!(sys,ispec,2,1.0) inival=unknowns(sys,inival=0) solution=unknowns(sys) VoronoiFVM.solve!(solution,inival,sys) visualizer=GridVisualizer(Plotter=Plotter,layout=(1,2),resolution=(800,400)) gridplot!(visualizer[1,1],grid) scalarplot!(visualizer[1,2],grid,solution[1,:]) reveal(visualizer) true end
PDELib
https://github.com/WIAS-BERLIN/PDELib.jl.git
[ "MIT" ]
0.3.0
2fca7ee903e9c45871c1948e6b5fffdf359e2da3
code
614
using PDELib function fv_laplace_rect(;Plotter=nothing) nspecies=1 ispec=1 X=collect(0:0.2:1) function g!(f,u0,edge) u=unknowns(edge,u0) f[1]=u[1,1]-u[1,2] end grid=simplexgrid(X,X) physics=VoronoiFVM.Physics(num_species=nspecies,flux=g!) sys=VoronoiFVM.System(grid,physics) enable_species!(sys,ispec,[1]) boundary_dirichlet!(sys,ispec,1,0.0) boundary_dirichlet!(sys,ispec,3,1.0) inival=unknowns(sys,inival=0) solution=unknowns(sys) VoronoiFVM.solve!(solution,inival,sys) scalarplot(grid,solution[1,:],Plotter=Plotter) true end
PDELib
https://github.com/WIAS-BERLIN/PDELib.jl.git
[ "MIT" ]
0.3.0
2fca7ee903e9c45871c1948e6b5fffdf359e2da3
code
244
module PDELib using Reexport @reexport using ExtendableGrids @reexport using GridVisualize @reexport using ExtendableSparse @reexport using SimplexGridFactory @reexport using VoronoiFVM @reexport using GradientRobustMultiPhysics end # module
PDELib
https://github.com/WIAS-BERLIN/PDELib.jl.git
[ "MIT" ]
0.3.0
2fca7ee903e9c45871c1948e6b5fffdf359e2da3
code
1074
using Test using PDELib import Pluto, Pkg function runtest(t) include(joinpath(@__DIR__,"..","examples",t*".jl")) eval(Meta.parse("$(t)()")) end @testset "VoronoiFVM" begin @test runtest("fv_laplace_rect") @test runtest("fv_laplace_circle") end @testset "GradientRobustMultiPhysics" begin @info "GradientRobustMultiPhysics tests disabled in the moment" # @test runtest("fe_liddrivencavity_autonewton") end function testnotebook(name) input=joinpath(@__DIR__,"..","examples",name*".jl") notebook=Pluto.load_notebook_nobackup(input) session = Pluto.ServerSession(); notebook = Pluto.SessionActions.open(session,input; run_async=false) errored=false for c in notebook.cells if c.errored errored=true @error "Error in $(c.cell_id): $(c.output.body[:msg])\n $(c.code)" end end !errored end notebooks=["Pluto-GridsAndVisualization", "Pluto-MultECatGrids"] @testset "Notebooks" begin for notebook in notebooks @test testnotebook(notebook) end end
PDELib
https://github.com/WIAS-BERLIN/PDELib.jl.git
[ "MIT" ]
0.3.0
2fca7ee903e9c45871c1948e6b5fffdf359e2da3
code
458
using Pkg Pkg.activate(".") Pkg.instantiate() using Pluto using PDELib Pkg.update() notebooks=["examples/Pluto-GridsAndVisualization.jl", "examples/Pluto-MultECatGrids.jl"] for notebook in notebooks println("Updating packages in $(notebook):") Pluto.activate_notebook_environment(notebook) Pkg.update() Pkg.status() run(`git diff $(notebook)`) println("Updating of $(notebook) done\n") Pkg.activate(".") end
PDELib
https://github.com/WIAS-BERLIN/PDELib.jl.git
[ "MIT" ]
0.3.0
2fca7ee903e9c45871c1948e6b5fffdf359e2da3
docs
3172
[![Build status](https://github.com/WIAS-BERLIN/PDELib.jl/workflows/linux-macos-windows/badge.svg)](https://github.com/WIAS-BERLIN/PDELib.jl/actions) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://wias-berlin.github.io/PDELib.jl/dev/) PDELib.jl ========= This is a meta package which re-exports several Julia packages developed and maintained by the [WIAS](https://www.wias-berlin.de) research group [Numerical Mathematics and Scientific Computing](https://www.wias-berlin.de/research/rgs/fg3/) and various coauthors, inspired by [pdelib](https://pdelib.org) which was implemented in C++ and python. The final workflow for maintaining this meta package has not yet been established. Currently, it is advisable to add the packages listed below one-by-one. ## Packages re-exported - [VoronoiFVM.jl](https://github.com/j-fu/VoronoiFVM.jl): a finite volume solver for systems of nonlinear PDEs - [GradientRobustMultiPhysics.jl](https://github.com/chmerdon/GradientRobustMultiPhysics.jl): finite element library implementing gradient robust FEM - [ExtendableGrids.jl](https://github.com/j-fu/ExtendableGrids.jl): unstructured grid management library - [GridVisualize.jl](https://github.com/j-fu/GridVisualize.jl): grid and function visualization related to ExtendableGrids.jl - [SimplexGridFactory.jl](https://github.com/j-fu/SimplexGridFactory.jl): unified high level mesh generator interface - [ExtendableSparse.jl](https://github.com/j-fu/ExtendableSparse.jl): convenient and efficient sparse matrix assembly ## Packages associated - [PlutoVista.jl](https://github.com/j-fu/PlutoVista.jl): Backend for using GridVisualize.jl in Pluto notebooks based on Plotly.js and vtk.js - [VoronoiFVMDiffEq.jl](https://github.com/j-fu/VoronoiFVMDiffEq.jl): glue package for using VoronoiFVM.jl together with DifferentialEquations.jl - [GridVisualizeTools.jl](https://github.com/j-fu/GridVisualizeTools.jl): some tools for GridVisualize.jl and PlutoVista.jl ## Additional packages maintained Not part of PDELib.jl, but maintained as part of the project: - [Triangulate.jl](https://github.com/JuliaGeometry/Triangulate.jl), [Triangle_jll.jl](https://github.com/JuliaBinaryWrappers/Triangle_jll.jl): Julia wrapper and binary package of the [Triangle](https://www.cs.cmu.edu/~quake/triangle.html) triangle mesh generator by J. Shewchuk - [TetGen.jl](https://github.com/JuliaGeometry/TetGen.jl),[TetGen_jll.jl](https://github.com/JuliaBinaryWrappers/TetGen_jll.jl): (co-maintained with [S. Danisch](https://github.com/SimonDanisch)): Julia wrapper binary package of the [TetGen](http://www.tetgen.org) tetrahedral mesh generator by H. Si. ## Documentation and examples Some examples are collected in the [examples](https://github.com/WIAS-BERLIN/PDELib.jl/tree/main/examples) subdirectory. More up-to-date examples and documentation are found in the respective package repositories, mainly in - [VoronoiFVM.jl](https://j-fu.github.io/VoronoiFVM.jl/stable/) - [GradientRobustMultiPhysics.jl](https://chmerdon.github.io/GradientRobustMultiPhysics.jl/stable/) - [VoronoiFVMDiffEq.jl](https://j-fu.github.io/VoronoiFVMDiffEq.jl/stable/)
PDELib
https://github.com/WIAS-BERLIN/PDELib.jl.git
[ "MIT" ]
0.3.0
2fca7ee903e9c45871c1948e6b5fffdf359e2da3
docs
88
````@eval using Markdown Markdown.parse(""" $(read("../../README.md",String)) """) ````
PDELib
https://github.com/WIAS-BERLIN/PDELib.jl.git
[ "MIT" ]
0.3.0
2fca7ee903e9c45871c1948e6b5fffdf359e2da3
docs
455
# Introductory material ## Grid generation and visualization - Pluto notebook: [source](https://raw.githubusercontent.com/WIAS-BERLIN/PDELib.jl/main/examples/GridsAndVisualization.jl) [html](GridsAndVisualization.html) ```@raw html <iframe id="installation" height="300" src="https://www.youtube.com/embed/dw1djnkWWDQ" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen=""></iframe> ```
PDELib
https://github.com/WIAS-BERLIN/PDELib.jl.git
[ "MIT" ]
0.2.5
963a3f28a2e65bb87a68033ea4a616002406037d
code
673
using Documenter, OneHotArrays DocMeta.setdocmeta!(OneHotArrays, :DocTestSetup, :(using OneHotArrays); recursive = true) makedocs(sitename = "OneHotArrays.jl", doctest = false, pages = ["Overview" => "index.md", "Reference" => "reference.md"], format = Documenter.HTML( canonical = "https://fluxml.ai/OneHotArrays.jl/stable/", # analytics = "UA-36890222-9", assets = ["assets/flux.css"], prettyurls = get(ENV, "CI", nothing) == "true" ), ) deploydocs(repo = "github.com/FluxML/OneHotArrays.jl.git", target = "build", push_preview = true)
OneHotArrays
https://github.com/FluxML/OneHotArrays.jl.git
[ "MIT" ]
0.2.5
963a3f28a2e65bb87a68033ea4a616002406037d
code
292
module OneHotArrays using Adapt using ChainRulesCore using GPUArraysCore using LinearAlgebra using Compat: Compat using NNlib export onehot, onehotbatch, onecold, OneHotArray, OneHotVector, OneHotMatrix, OneHotLike include("array.jl") include("onehot.jl") include("linalg.jl") end
OneHotArrays
https://github.com/FluxML/OneHotArrays.jl.git
[ "MIT" ]
0.2.5
963a3f28a2e65bb87a68033ea4a616002406037d
code
6548
""" OneHotArray{T, N, M, I} <: AbstractArray{Bool, M} OneHotArray(indices, L) A one-hot `M`-dimensional array with `L` labels (i.e. `size(A, 1) == L` and `sum(A, dims=1) == 1`) stored as a compact `N == M-1`-dimensional array of indices. Typically constructed by [`onehot`](@ref) and [`onehotbatch`](@ref). Parameter `I` is the type of the underlying storage, and `T` its eltype. """ struct OneHotArray{T<:Integer, N, var"N+1", I<:Union{T, AbstractArray{T, N}}} <: AbstractArray{Bool, var"N+1"} indices::I nlabels::Int end OneHotArray{T, N, I}(indices, L::Int) where {T, N, I} = OneHotArray{T, N, N+1, I}(indices, L) OneHotArray(indices::T, L::Int) where {T<:Integer} = OneHotArray{T, 0, 1, T}(indices, L) OneHotArray(indices::I, L::Int) where {T, N, I<:AbstractArray{T, N}} = OneHotArray{T, N, N+1, I}(indices, L) _indices(x::OneHotArray) = x.indices _indices(x::Base.ReshapedArray{<:Any, <:Any, <:OneHotArray}) = reshape(parent(x).indices, x.dims[2:end]) """ OneHotVector{T} = OneHotArray{T, 0, 1, T} OneHotVector(indices, L) A one-hot vector with `L` labels (i.e. `length(A) == L` and `count(A) == 1`) typically constructed by [`onehot`](@ref). Stored efficiently as a single index of type `T`, usually `UInt32`. """ const OneHotVector{T} = OneHotArray{T, 0, 1, T} OneHotVector(idx, L) = OneHotArray(idx, L) """ OneHotMatrix{T, I} = OneHotArray{T, 1, 2, I} OneHotMatrix(indices, L) A one-hot matrix (with `L` labels) typically constructed using [`onehotbatch`](@ref). Stored efficiently as a vector of indices with type `I` and eltype `T`. """ const OneHotMatrix{T, I} = OneHotArray{T, 1, 2, I} OneHotMatrix(indices, L) = OneHotArray(indices, L) # use this type so reshaped arrays hit fast paths # e.g. argmax const OneHotLike{T, N, var"N+1", I} = Union{OneHotArray{T, N, var"N+1", I}, Base.ReshapedArray{Bool, var"N+1", <:OneHotArray{T, <:Any, <:Any, I}}} _isonehot(x::OneHotArray) = true _isonehot(x::Base.ReshapedArray{<:Any, <:Any, <:OneHotArray}) = (size(x, 1) == parent(x).nlabels) _check_nlabels(L, xs::OneHotLike...) = all(size.(xs, 1) .== L) _nlabels(x::OneHotArray) = size(x, 1) function _nlabels(x::OneHotLike, xs::OneHotLike...) L = size(x, 1) _check_nlabels(L, xs...) || throw(DimensionMismatch("The number of labels are not the same for all one-hot arrays.")) return L end Base.size(x::OneHotArray) = (x.nlabels, size(x.indices)...) function Base.getindex(x::OneHotArray{<:Any, N}, i::Int, I::Vararg{Int, N}) where N @boundscheck (1 <= i <= x.nlabels) || throw(BoundsError(x, (i, I...))) return x.indices[I...] .== i end # the method above is faster on the CPU but will scalar index on the GPU # so we define the method below to pass the extra indices directly to GPU array function Base.getindex(x::OneHotArray{<:Any, N, <:Any, <:AbstractGPUArray}, i::Int, I::Vararg{Any, N}) where N @boundscheck (1 <= i <= x.nlabels) || throw(BoundsError(x, (i, I...))) return x.indices[I...] .== i end function Base.getindex(x::OneHotArray{<:Any, N}, ::Colon, I::Vararg{Any, N}) where N return OneHotArray(x.indices[I...], x.nlabels) end Base.getindex(x::OneHotArray, ::Colon) = BitVector(reshape(x, :)) Base.getindex(x::OneHotArray{<:Any, N}, ::Colon, ::Vararg{Colon, N}) where N = x function Base.showarg(io::IO, x::OneHotArray, toplevel) print(io, ndims(x) == 1 ? "OneHotVector(" : ndims(x) == 2 ? "OneHotMatrix(" : "OneHotArray(") Base.showarg(io, x.indices, false) print(io, ')') toplevel && print(io, " with eltype Bool") return nothing end # this is from /LinearAlgebra/src/diagonal.jl, official way to print the dots: function Base.replace_in_print_matrix(x::OneHotLike, i::Integer, j::Integer, s::AbstractString) x[i,j] ? s : _isonehot(x) ? Base.replace_with_centered_mark(s) : s end # copy CuArray versions back before trying to print them: for fun in (:show, :print_array) # print_array is used by 3-arg show @eval begin Base.$fun(io::IO, X::OneHotLike{T, N, var"N+1", <:AbstractGPUArray}) where {T, N, var"N+1"} = Base.$fun(io, adapt(Array, X)) Base.$fun(io::IO, X::LinearAlgebra.AdjOrTrans{Bool, <:OneHotLike{T, N, <:Any, <:AbstractGPUArray}}) where {T, N} = Base.$fun(io, adapt(Array, X)) end end _onehot_bool_type(::OneHotLike{<:Any, <:Any, var"N+1", <:Union{Integer, AbstractArray}}) where {var"N+1"} = Array{Bool, var"N+1"} _onehot_bool_type(::OneHotLike{<:Any, <:Any, var"N+1", <:AbstractGPUArray}) where {var"N+1"} = AbstractGPUArray{Bool, var"N+1"} _notall_onehot(x::OneHotArray, xs::OneHotArray...) = false _notall_onehot(x::OneHotLike, xs::OneHotLike...) = any(x -> !_isonehot(x), (x, xs...)) function Base.cat(x::OneHotLike{<:Any, <:Any, N}, xs::OneHotLike...; dims::Int) where N if isone(dims) || _notall_onehot(x, xs...) return cat(map(x -> convert(_onehot_bool_type(x), x), (x, xs...))...; dims = dims) else L = _nlabels(x, xs...) return OneHotArray(cat(_indices(x), _indices.(xs)...; dims = dims - 1), L) end end Base.hcat(x::OneHotLike, xs::OneHotLike...) = cat(x, xs...; dims = 2) Base.vcat(x::OneHotLike, xs::OneHotLike...) = vcat(map(x -> convert(_onehot_bool_type(x), x), (x, xs...))...) # optimized concatenation for matrices and vectors of same parameters Base.hcat(x::OneHotMatrix, xs::OneHotMatrix...) = OneHotMatrix(reduce(vcat, _indices.(xs); init = _indices(x)), _nlabels(x, xs...)) Base.hcat(x::OneHotVector, xs::OneHotVector...) = OneHotMatrix(reduce(vcat, _indices.(xs); init = _indices(x)), _nlabels(x, xs...)) if isdefined(Base, :stack) import Base: _stack else import Compat: _stack end function _stack(::Colon, xs::AbstractArray{<:OneHotArray}) n = _nlabels(first(xs)) all(x -> _nlabels(x)==n, xs) || throw(DimensionMismatch("The number of labels are not the same for all one-hot arrays.")) OneHotArray(Compat.stack(_indices, xs), n) end Adapt.adapt_structure(T, x::OneHotArray) = OneHotArray(adapt(T, _indices(x)), x.nlabels) function Base.BroadcastStyle(::Type{<:OneHotArray{<:Any, <:Any, var"N+1", T}}) where {var"N+1", T <: AbstractGPUArray} # We want CuArrayStyle{N+1}(). There's an AbstractGPUArrayStyle but it doesn't do what we need. S = Base.BroadcastStyle(T) typeof(S)(Val{var"N+1"}()) end Base.map(f, x::OneHotLike) = Base.broadcast(f, x) Base.argmax(x::OneHotLike; dims = Colon()) = (_isonehot(x) && dims == 1) ? reshape(CartesianIndex.(_indices(x), CartesianIndices(_indices(x))), 1, size(_indices(x))...) : invoke(argmax, Tuple{AbstractArray}, x; dims = dims)
OneHotArrays
https://github.com/FluxML/OneHotArrays.jl.git
[ "MIT" ]
0.2.5
963a3f28a2e65bb87a68033ea4a616002406037d
code
1561
function Base.:(*)(A::AbstractMatrix, B::OneHotLike) _isonehot(B) || return invoke(*, Tuple{AbstractMatrix, AbstractMatrix}, A, B) size(A, 2) == size(B, 1) || throw(DimensionMismatch("Matrix column must correspond with OneHot size: $(size(A, 2)) != $(size(B, 1))")) return A[:, onecold(B)] end function Base.:(*)(A::AbstractMatrix, B::OneHotLike{<:Any, 1}) _isonehot(B) || return invoke(*, Tuple{AbstractMatrix, AbstractMatrix}, A, B) size(A, 2) == size(B, 1) || throw(DimensionMismatch("Matrix column must correspond with OneHot size: $(size(A, 2)) != $(size(B, 1))")) return NNlib.gather(A, _indices(B)) end function Base.:(*)(A::AbstractMatrix, B::Adjoint{Bool, <:OneHotMatrix}) B_dim = length(_indices(parent(B))) size(A, 2) == B_dim || throw(DimensionMismatch("Matrix column must correspond with OneHot size: $(size(A, 2)) != $B_dim")) return NNlib.scatter(+, A, _indices(parent(B)), dstsize=(size(A,1), size(B,2))) end for wrapper in [:Adjoint, :Transpose] @eval begin function Base.:*(A::$wrapper{<:Any, <:AbstractMatrix{T}}, b::OneHotVector) where T size(A, 2) == length(b) || throw(DimensionMismatch("Matrix column must correspond with OneHot size: $(size(A, 2)) != $(length(b))")) return A[:, onecold(b)] end function Base.:*(A::$wrapper{<:Number, <:AbstractVector{T}}, b::OneHotVector) where T size(A, 2) == length(b) || throw(DimensionMismatch("Matrix column must correspond with OneHot size: $(size(A, 2)) != $(length(b))")) return A[onecold(b)] end end end
OneHotArrays
https://github.com/FluxML/OneHotArrays.jl.git
[ "MIT" ]
0.2.5
963a3f28a2e65bb87a68033ea4a616002406037d
code
6277
""" onehot(x, labels, [default]) Returns a [`OneHotVector`](@ref) which is roughly a sparse representation of `x .== labels`. Instead of storing say `Vector{Bool}`, it stores the index of the first occurrence of `x` in `labels`. If `x` is not found in labels, then it either returns `onehot(default, labels)`, or gives an error if no default is given. See also [`onehotbatch`](@ref) to apply this to many `x`s, and [`onecold`](@ref) to reverse either of these, as well as to generalise `argmax`. # Examples ```jldoctest julia> β = onehot(:b, (:a, :b, :c)) 3-element OneHotVector(::UInt32) with eltype Bool: ⋅ 1 ⋅ julia> αβγ = (onehot(0, 0:2), β, onehot(:z, [:a, :b, :c], :c)) # uses default (Bool[1, 0, 0], Bool[0, 1, 0], Bool[0, 0, 1]) julia> hcat(αβγ...) # preserves sparsity 3×3 OneHotMatrix(::Vector{UInt32}) with eltype Bool: 1 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1 ``` """ function onehot(x, labels) i = _findval(x, labels) isnothing(i) && error("Value $x is not in labels") OneHotVector{UInt32}(i, length(labels)) end function onehot(x, labels, default) i = _findval(x, labels) isnothing(i) && return onehot(default, labels) OneHotVector{UInt32}(i, length(labels)) end _findval(val, labels) = findfirst(isequal(val), labels) # Fast unrolled method for tuples: function _findval(val, labels::Tuple, i::Integer=1) ifelse(isequal(val, first(labels)), i, _findval(val, Base.tail(labels), i+1)) end _findval(val, labels::Tuple{}, i::Integer) = nothing """ onehotbatch(xs, labels, [default]) Returns a [`OneHotMatrix`](@ref) where `k`th column of the matrix is [`onehot(xs[k], labels)`](@ref onehot). This is a sparse matrix, which stores just a `Vector{UInt32}` containing the indices of the nonzero elements. If one of the inputs in `xs` is not found in `labels`, that column is `onehot(default, labels)` if `default` is given, else an error. If `xs` has more dimensions, `N = ndims(xs) > 1`, then the result is an `AbstractArray{Bool, N+1}` which is one-hot along the first dimension, i.e. `result[:, k...] == onehot(xs[k...], labels)`. Note that `xs` can be any iterable, such as a string. And that using a tuple for `labels` will often speed up construction, certainly for less than 32 classes. # Examples ```jldoctest julia> oh = onehotbatch("abracadabra", 'a':'e', 'e') 5×11 OneHotMatrix(::Vector{UInt32}) with eltype Bool: 1 ⋅ ⋅ 1 ⋅ 1 ⋅ 1 ⋅ ⋅ 1 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ julia> reshape(1:15, 3, 5) * oh # this matrix multiplication is done efficiently 3×11 Matrix{Int64}: 1 4 13 1 7 1 10 1 4 13 1 2 5 14 2 8 2 11 2 5 14 2 3 6 15 3 9 3 12 3 6 15 3 ``` """ onehotbatch(data, labels, default...) = _onehotbatch(data, length(labels) < 32 ? Tuple(labels) : labels, default...) function _onehotbatch(data, labels) indices = UInt32[something(_findval(i, labels), 0) for i in data] if 0 in indices for x in data isnothing(_findval(x, labels)) && error("Value $x not found in labels") end end return OneHotArray(indices, length(labels)) end function _onehotbatch(data, labels, default) default_index = _findval(default, labels) isnothing(default_index) && error("Default value $default is not in labels") indices = UInt32[something(_findval(i, labels), default_index) for i in data] return OneHotArray(indices, length(labels)) end function onehotbatch(data::AbstractArray{<:Integer}, labels::AbstractUnitRange{<:Integer}) lo, hi = extrema(data) lo < first(labels) && error("Value $lo not found in labels") hi > last(labels) && error("Value $hi not found in labels") offset = 1 - first(labels) indices = UInt32.(data .+ offset) return OneHotArray(indices, length(labels)) end # That bounds check with extrema synchronises on GPU, much slower than rest of the function, # hence add a special method, with a less helpful error message: function onehotbatch(data::AbstractGPUArray{<:Integer}, labels::AbstractUnitRange{<:Integer}) offset = 1 - first(labels) indices = map(data) do datum i = UInt32(datum + offset) checkbounds(labels, i) i end return OneHotArray(indices, length(labels)) end """ onecold(y::AbstractArray, labels = 1:size(y,1)) Roughly the inverse operation of [`onehot`](@ref) or [`onehotbatch`](@ref): This finds the index of the largest element of `y`, or each column of `y`, and looks them up in `labels`. If `labels` are not specified, the default is integers `1:size(y,1)` -- the same operation as `argmax(y, dims=1)` but sometimes a different return type. # Examples ```jldoctest julia> onecold([false, true, false]) 2 julia> onecold([0.3, 0.2, 0.5], (:a, :b, :c)) :c julia> onecold([ 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 ], 'a':'e') |> String "abeacadabea" ``` """ function onecold(y::AbstractVector, labels = 1:length(y)) nl = length(labels) ny = length(y) nl == ny || throw(DimensionMismatch("onecold got $nl labels for a vector of length $ny, these must agree")) ymax, i = findmax(y) ymax isa Number && isnan(ymax) && throw(ArgumentError("maximum value found by onecold is $ymax")) labels[i] end function onecold(y::AbstractArray, labels = 1:size(y, 1)) nl = length(labels) ny = size(y, 1) nl == ny || throw(DimensionMismatch("onecold got $nl labels for an array with size(y, 1) == $ny, these must agree")) indices = _fast_argmax(y) xs = isbits(labels) ? indices : collect(indices) # non-bit type cannot be handled by CUDA return map(xi -> labels[xi[1]], xs) end _fast_argmax(x::AbstractArray) = dropdims(argmax(x; dims = 1); dims = 1) _fast_argmax(x::OneHotArray) = _indices(x) function _fast_argmax(x::OneHotLike) if _isonehot(x) return _indices(x) else return _fast_argmax(convert(_onehot_bool_type(x), x)) end end ChainRulesCore.@non_differentiable onehot(::Any...) ChainRulesCore.@non_differentiable onehotbatch(::Any...) ChainRulesCore.@non_differentiable onecold(::Any...) ChainRulesCore.@non_differentiable (::Type{<:OneHotArray})(indices::Any, L::Int)
OneHotArrays
https://github.com/FluxML/OneHotArrays.jl.git
[ "MIT" ]
0.2.5
963a3f28a2e65bb87a68033ea4a616002406037d
code
3672
ov = OneHotVector(rand(1:10), 10) ov2 = OneHotVector(rand(1:11), 11) om = OneHotMatrix(rand(1:10, 5), 10) om2 = OneHotMatrix(rand(1:11, 5), 11) oa = OneHotArray(rand(1:10, 5, 5), 10) # sizes @testset "Base.size" begin @test size(ov) == (10,) @test size(om) == (10, 5) @test size(oa) == (10, 5, 5) end @testset "Indexing" begin # vector indexing @test ov[3] == (ov.indices == 3) @test ov[:] == ov # matrix indexing @test om[3, 3] == (om.indices[3] == 3) @test om[:, 3] == OneHotVector(om.indices[3], 10) @test om[3, :] == (om.indices .== 3) @test om[:, :] == om @test om[:] == reshape(om, :) # array indexing @test oa[3, 3, 3] == (oa.indices[3, 3] == 3) @test oa[:, 3, 3] == OneHotVector(oa.indices[3, 3], 10) @test oa[3, :, 3] == (oa.indices[:, 3] .== 3) @test oa[3, :, :] == (oa.indices .== 3) @test oa[:, 3, :] == OneHotMatrix(oa.indices[3, :], 10) @test oa[:, :, :] == oa @test oa[:] == reshape(oa, :) # cartesian indexing @test oa[CartesianIndex(3, 3, 3)] == oa[3, 3, 3] # linear indexing @test om[11] == om[1, 2] @test oa[52] == oa[2, 1, 2] # bounds checks @test_throws BoundsError ov[0] @test_throws BoundsError om[2, -1] @test_throws BoundsError oa[11, 5, 5] @test_throws BoundsError oa[:, :] end @testset "Concatenating" begin # vector cat @test hcat(ov, ov) == OneHotMatrix(vcat(ov.indices, ov.indices), 10) @test hcat(ov, ov) isa OneHotMatrix @test vcat(ov, ov) == vcat(collect(ov), collect(ov)) @test cat(ov, ov; dims = 3) == OneHotArray(cat(ov.indices, ov.indices; dims = 2), 10) # matrix cat @test hcat(om, om) == OneHotMatrix(vcat(om.indices, om.indices), 10) @test hcat(om, om) isa OneHotMatrix @test vcat(om, om) == vcat(collect(om), collect(om)) @test cat(om, om; dims = 3) == OneHotArray(cat(om.indices, om.indices; dims = 2), 10) # array cat @test cat(oa, oa; dims = 3) == OneHotArray(cat(oa.indices, oa.indices; dims = 2), 10) @test cat(oa, oa; dims = 3) isa OneHotArray @test cat(oa, oa; dims = 1) == cat(collect(oa), collect(oa); dims = 1) # stack @test stack([ov, ov]) == hcat(ov, ov) @test stack([ov, ov, ov]) isa OneHotMatrix @test stack([om, om]) == cat(om, om; dims = 3) @test stack([om, om]) isa OneHotArray @test stack([oa, oa, oa, oa]) isa OneHotArray # proper error handling of inconsistent sizes @test_throws DimensionMismatch hcat(ov, ov2) @test_throws DimensionMismatch hcat(om, om2) end @testset "Base.reshape" begin # reshape test @test reshape(oa, 10, 25) isa OneHotLike @test reshape(oa, 10, :) isa OneHotLike @test reshape(oa, :, 25) isa OneHotLike @test reshape(oa, 50, :) isa OneHotLike @test reshape(oa, 5, 10, 5) isa OneHotLike @test reshape(oa, (10, 25)) isa OneHotLike @testset "w/ cat" begin r = reshape(oa, 10, :) @test hcat(r, r) isa OneHotArray @test vcat(r, r) isa Array{Bool} end @testset "w/ argmax" begin r = reshape(oa, 10, :) @test argmax(r) == argmax(OneHotMatrix(reshape(oa.indices, :), 10)) @test OneHotArrays._fast_argmax(r) == collect(reshape(oa.indices, :)) end end @testset "Base.argmax" begin # argmax test @test argmax(ov) == argmax(convert(Array{Bool}, ov)) @test argmax(om) == argmax(convert(Array{Bool}, om)) @test argmax(om; dims = 1) == argmax(convert(Array{Bool}, om); dims = 1) @test argmax(om; dims = 2) == argmax(convert(Array{Bool}, om); dims = 2) @test argmax(oa; dims = 1) == argmax(convert(Array{Bool}, oa); dims = 1) @test argmax(oa; dims = 3) == argmax(convert(Array{Bool}, oa); dims = 3) end @testset "Forward map to broadcast" begin @test map(identity, oa) == oa @test map(x -> 2 * x, oa) == 2 .* oa end
OneHotArrays
https://github.com/FluxML/OneHotArrays.jl.git
[ "MIT" ]
0.2.5
963a3f28a2e65bb87a68033ea4a616002406037d
code
2074
# Tests from Flux, probably not the optimal testset organisation! @testset "CUDA" begin x = randn(5, 5) cx = cu(x) @test cx isa CuArray @test_skip onecold(cu([1.0, 2.0, 3.0])) == 3 # passes with CuArray with Julia 1.6, but fails with JLArray x = onehotbatch([1, 2, 3], 1:3) cx = cu(x) @test cx isa OneHotMatrix && cx.indices isa CuArray @test (cx .+ 1) isa CuArray xs = rand(5, 5) ys = onehotbatch(1:5,1:5) @test collect(cu(xs) .+ cu(ys)) ≈ collect(xs .+ ys) end @testset "onehot gpu" begin y = onehotbatch(ones(3), 1:2) |> cu; @test (repr("text/plain", y); true) gA = rand(3, 2) |> cu; if VERSION >= v"1.9" && CUDA.functional() @test gradient(A -> sum(A * y), gA)[1] isa CuArray else @test_broken gradient(A -> sum(A * y), gA)[1] isa CuArray # fails with JLArray, bug in Zygote? end end @testset "onehotbatch(::CuArray, ::UnitRange)" begin y1 = onehotbatch([1, 3, 0, 2], 0:9) |> cu y2 = onehotbatch([1, 3, 0, 2] |> cu, 0:9) @test y1.indices == y2.indices @test_broken y1 == y2 # issue 28 if !CUDA.functional() # Here CUDA gives an error which @test_throws does not notice, # although with JLArrays @test_throws it's fine. @test_throws Exception onehotbatch([1, 3, 0, 2] |> cu, 1:10) @test_throws Exception onehotbatch([1, 3, 0, 2] |> cu, -2:2) end end @testset "onecold gpu" begin y = onehotbatch(ones(3), 1:10) |> cu; l = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] @test onecold(y) isa CuArray @test y[3,:] isa CuArray @test onecold(y, l) == ['a', 'a', 'a'] end @testset "onehot forward map to broadcast" begin oa = OneHotArray(rand(1:10, 5, 5), 10) |> cu @test all(map(identity, oa) .== oa) @test all(map(x -> 2 * x, oa) .== 2 .* oa) end @testset "show gpu" begin x = onehotbatch([1, 2, 3], 1:3) cx = cu(x) # 3-arg show @test contains(repr("text/plain", cx), "1 ⋅ ⋅") @test contains(repr("text/plain", cx), string(typeof(cx.indices))) # 2-arg show, https://github.com/FluxML/Flux.jl/issues/1905 @test repr(cx) == "Bool[1 0 0; 0 1 0; 0 0 1]" end
OneHotArrays
https://github.com/FluxML/OneHotArrays.jl.git
[ "MIT" ]
0.2.5
963a3f28a2e65bb87a68033ea4a616002406037d
code
1511
@testset "abstractmatrix onehotvector multiplication" begin A = [1 3 5; 2 4 6; 3 6 9] v = [1, 2, 3, 4, 5] X = reshape(v, (5, 1)) b1 = OneHotVector(1, 3) b2 = OneHotVector(3, 5) @test A * b1 == A[:,1] @test b1' * A == Array(b1') * A @test A' * b1 == A' * Array(b1) @test v' * b2 == v' * Array(b2) @test transpose(X) * b2 == transpose(X) * Array(b2) @test transpose(v) * b2 == transpose(v) * Array(b2) @test_throws DimensionMismatch A*b2 end @testset "AbstractMatrix-OneHotMatrix multiplication" begin A = [1 3 5; 2 4 6; 3 6 9] v = [1, 2, 3, 4, 5] X = reshape(v, (5, 1)) b1 = OneHotMatrix([1, 1, 2, 2], 3) b2 = OneHotMatrix([2, 4, 1, 3], 5) b3 = OneHotMatrix([1, 1, 2], 4) b4 = reshape(OneHotMatrix([1 2 3; 2 2 1], 3), 3, :) b5 = reshape(b4, 6, :) b6 = reshape(OneHotMatrix([1 2 2; 2 2 1], 2), 3, :) b7 = reshape(OneHotMatrix([1 2 3; 1 2 3], 3), 6, :) @test A * b1 == A[:,[1, 1, 2, 2]] @test b1' * A == Array(b1') * A @test A' * b1 == A' * Array(b1) @test A * b3' == A * Array(b3') @test transpose(X) * b2 == transpose(X) * Array(b2) @test A * b4 == A[:,[1, 2, 2, 2, 3, 1]] @test A * b5' == hcat(A[:,[1, 2, 3, 3]], A[:,1]+A[:,2], zeros(Int64, 3)) @test A * b6 == hcat(A[:,1], 2*A[:,2], A[:,2], A[:,1]+A[:,2]) @test A * b7' == A[:,[1, 2, 3, 1, 2, 3]] @test_throws DimensionMismatch A*b1' @test_throws DimensionMismatch A*b2 @test_throws DimensionMismatch A*b2' @test_throws DimensionMismatch A*b6' @test_throws DimensionMismatch A*b7 end
OneHotArrays
https://github.com/FluxML/OneHotArrays.jl.git
[ "MIT" ]
0.2.5
963a3f28a2e65bb87a68033ea4a616002406037d
code
2697
@testset "onehot constructors" begin @test onehot(20, 10:10:30) == [false, true, false] @test onehot(20, (10,20,30)) == [false, true, false] @test onehot(40, (10,20,30), 20) == [false, true, false] @test_throws Exception onehot('d', 'a':'c') @test_throws Exception onehot(:d, (:a, :b, :c)) @test_throws Exception onehot('d', 'a':'c', 'e') @test_throws Exception onehot(:d, (:a, :b, :c), :e) @test onehotbatch([20, 10], 10:10:30) == Bool[0 1; 1 0; 0 0] @test onehotbatch([20, 10], (10,20,30)) == Bool[0 1; 1 0; 0 0] @test onehotbatch([40, 10], (10,20,30), 20) == Bool[0 1; 1 0; 0 0] @test onehotbatch("abc", 'a':'c') == Bool[1 0 0; 0 1 0; 0 0 1] @test onehotbatch("zbc", ('a', 'b', 'c'), 'a') == Bool[1 0 0; 0 1 0; 0 0 1] @test onehotbatch([10, 20], [30, 40, 50], 30) == Bool[1 1; 0 0; 0 0] @test_throws Exception onehotbatch([:a, :d], [:a, :b, :c]) @test_throws Exception onehotbatch([:a, :d], (:a, :b, :c)) @test_throws Exception onehotbatch([:a, :d], [:a, :b, :c], :e) @test_throws Exception onehotbatch([:a, :d], (:a, :b, :c), :e) floats = (0.0, -0.0, NaN, -NaN, Inf, -Inf) @test onecold(onehot(0.0, floats)) == 1 @test onecold(onehot(-0.0, floats)) == 2 # as it uses isequal @test onecold(onehot(Inf, floats)) == 5 # UnitRange fast path @test onehotbatch([1,3,0,4], 0:4) == onehotbatch([1,3,0,4], Tuple(0:4)) @test onehotbatch([2 3 7 4], 2:7) == onehotbatch([2 3 7 4], Tuple(2:7)) @test_throws Exception onehotbatch([2, -1], 0:4) @test_throws Exception onehotbatch([2, 5], 0:4) # inferrabiltiy tests @test @inferred(onehot(20, 10:10:30)) == [false, true, false] @test @inferred(onehot(40, (10,20,30), 20)) == [false, true, false] @test @inferred(onehotbatch([20, 10], 10:10:30)) == Bool[0 1; 1 0; 0 0] @test @inferred(onehotbatch([40, 10], (10,20,30), 20)) == Bool[0 1; 1 0; 0 0] end @testset "onecold" begin a = [1, 2, 5, 3.] A = [1 20 5; 2 7 6; 3 9 10; 2 1 14] labels = ['A', 'B', 'C', 'D'] @test onecold(a) == 3 @test onecold(A) == [3, 1, 4] @test onecold(a, labels) == 'C' @test onecold(a, Tuple(labels)) == 'C' @test onecold(A, labels) == ['C', 'A', 'D'] @test onecold(A, Tuple(labels)) == ['C', 'A', 'D'] data = [:b, :a, :c] labels = [:a, :b, :c] hot = onehotbatch(data, labels) cold = onecold(hot, labels) @test cold == data @test_throws DimensionMismatch onecold([0.3, 0.2], (:a, :b, :c)) @test_throws DimensionMismatch onecold([0.3, 0.2, 0.5, 0.99], (:a, :b, :c)) @test_throws ArgumentError onecold([0.3, NaN, 0.5], (:a, :b, :c)) end @testset "onehotbatch indexing" begin y = onehotbatch(ones(3), 1:10) @test y[:,1] isa OneHotVector @test y[:,:] isa OneHotMatrix end
OneHotArrays
https://github.com/FluxML/OneHotArrays.jl.git
[ "MIT" ]
0.2.5
963a3f28a2e65bb87a68033ea4a616002406037d
code
604
using OneHotArrays using Test using Compat: stack @testset "OneHotArray" begin include("array.jl") end @testset "Constructors" begin include("onehot.jl") end @testset "Linear Algebra" begin include("linalg.jl") end using Zygote import CUDA if CUDA.functional() using CUDA # exports CuArray, etc CUDA.allowscalar(false) @info "starting CUDA tests" else @info "CUDA not functional, testing with JLArrays instead" using JLArrays # fake GPU array, for testing JLArrays.allowscalar(false) cu = jl CuArray{T,N} = JLArray{T,N} end @testset "GPUArrays" begin include("gpu.jl") end
OneHotArrays
https://github.com/FluxML/OneHotArrays.jl.git
[ "MIT" ]
0.2.5
963a3f28a2e65bb87a68033ea4a616002406037d
docs
1192
<img align="right" width="200px" src="https://github.com/FluxML/OneHotArrays.jl/raw/main/docs/src/assets/logo.png"> # OneHotArrays.jl [![Documentation](https://img.shields.io/badge/docs-latest-blue.svg)](https://fluxml.ai/OneHotArrays.jl/dev/) [![Tests](https://github.com/FluxML/OneHotArrays.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/FluxML/OneHotArrays.jl/actions/workflows/CI.yml) This package provides memory efficient one-hot array encodings. It was originally part of [Flux.jl](https://github.com/FluxML/Flux.jl). ```julia julia> using OneHotArrays julia> m = onehotbatch([10, 20, 30, 10, 10], 10:10:40) 4×5 OneHotMatrix(::Vector{UInt32}) with eltype Bool: 1 ⋅ ⋅ 1 1 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ julia> dump(m) OneHotMatrix{UInt32, 4, Vector{UInt32}} indices: Array{UInt32}((5,)) UInt32[0x00000001, 0x00000002, 0x00000003, 0x00000001, 0x00000001] julia> @which rand(100, 4) * m *(A::AbstractMatrix, B::Union{OneHotArray{var"#s14", L, 1, var"N+1", I}, Base.ReshapedArray{Bool, var"N+1", <:OneHotArray{var"#s14", L, <:Any, <:Any, I}}} where {var"#s14", var"N+1", I}) where L @ OneHotArrays ~/.julia/dev/OneHotArrays/src/linalg.jl:7 ```
OneHotArrays
https://github.com/FluxML/OneHotArrays.jl.git
[ "MIT" ]
0.2.5
963a3f28a2e65bb87a68033ea4a616002406037d
docs
1673
# OneHotArrays.jl [![CI](https://github.com/FluxML/OneHotArrays.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/FluxML/OneHotArrays.jl/actions/workflows/CI.yml) Memory efficient one-hot array encodings (primarily for use in machine-learning contexts like Flux.jl). ## Usage One-hot arrays are boolean arrays where only a single element in the first dimension is `true` (i.e. "hot"). OneHotArrays.jl stores such arrays efficiently by encoding a N-dimensional array of booleans as a (N - 1)-dimensional array of integers. For example, the one-hot vector below only uses a single `UInt32` for storage. ```julia julia> β = onehot(:b, (:a, :b, :c)) 3-element OneHotVector(::UInt32) with eltype Bool: ⋅ 1 ⋅ ``` As seen above, the one-hot encoding can be useful for representing labeled data. The label `:b` is encoded into a 3-element vector where the "hot" element indicates the label from the set `(:a, :b, :c)`. We can also encode a batch of one-hot vectors or reverse the encoding. ```julia julia> oh = onehotbatch("abracadabra", 'a':'e', 'e') 5×11 OneHotMatrix(::Vector{UInt32}) with eltype Bool: 1 ⋅ ⋅ 1 ⋅ 1 ⋅ 1 ⋅ ⋅ 1 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ julia> Flux.onecold(β, (:a, :b, :c)) :b julia> Flux.onecold([0.3, 0.2, 0.5], (:a, :b, :c)) :c ``` In addition to functions for encoding and decoding data as one-hot, this package provides numerous "fast-paths" for linear algebraic operations with one-hot arrays. For example, multiplying by a matrix by a one-hot vector triggers an indexing operation instead of a matrix multiplication.
OneHotArrays
https://github.com/FluxML/OneHotArrays.jl.git
[ "MIT" ]
0.2.5
963a3f28a2e65bb87a68033ea4a616002406037d
docs
84
# Reference ```@autodocs Modules = [OneHotArrays] Order = [:function, :type] ```
OneHotArrays
https://github.com/FluxML/OneHotArrays.jl.git
[ "MIT" ]
0.1.3
c311a14a10c0717994d1c007bb859979a647b528
code
990
using Documenter using RegularizedCovarianceMatrices DocMeta.setdocmeta!(RegularizedCovarianceMatrices, :DocTestSetup, :(using RegularizedCovarianceMatrices); recursive = true) makedocs( sitename = "RegularizedCovarianceMatrices", modules = [RegularizedCovarianceMatrices], authors = "Raphael Araujo Sampaio and Joaquim Dias Garcia and Marcus Poggi and Thibaut Vidal", repo = "https://github.com/raphasampaio/RegularizedCovarianceMatrices.jl/blob/{commit}{path}#{line}", doctest = true, clean = true, format = Documenter.HTML( prettyurls = get(ENV, "CI", "false") == "true", canonical = "https://raphasampaio.github.io/RegularizedCovarianceMatrices.jl", edit_link = "main", assets = [ "assets/favicon.ico", ], ), pages = [ "Home" => "index.md" ], ) deploydocs( repo = "github.com/raphasampaio/RegularizedCovarianceMatrices.jl.git", devbranch = "main", push_preview = true, )
RegularizedCovarianceMatrices
https://github.com/raphasampaio/RegularizedCovarianceMatrices.jl.git
[ "MIT" ]
0.1.3
c311a14a10c0717994d1c007bb859979a647b528
code
78
import Pkg Pkg.instantiate() using JuliaFormatter format(dirname(@__DIR__))
RegularizedCovarianceMatrices
https://github.com/raphasampaio/RegularizedCovarianceMatrices.jl.git
[ "MIT" ]
0.1.3
c311a14a10c0717994d1c007bb859979a647b528
code
289
import Pkg Pkg.instantiate() using Revise Pkg.activate(dirname(@__DIR__)) Pkg.instantiate() using RegularizedCovarianceMatrices @info(""" This session is using RegularizedCovarianceMatrices.jl with Revise.jl. For more information visit https://timholy.github.io/Revise.jl/stable/. """)
RegularizedCovarianceMatrices
https://github.com/raphasampaio/RegularizedCovarianceMatrices.jl.git
[ "MIT" ]
0.1.3
c311a14a10c0717994d1c007bb859979a647b528
code
348
module RegularizedCovarianceMatrices using LinearAlgebra using Statistics export CovarianceMatrixEstimator, EmpiricalCovarianceMatrix, ShrunkCovarianceMatrix, OASCovarianceMatrix, LedoitWolfCovarianceMatrix include("estimator.jl") include("empirical.jl") include("shrunk.jl") include("oas.jl") include("ledoitwolf.jl") end
RegularizedCovarianceMatrices
https://github.com/raphasampaio/RegularizedCovarianceMatrices.jl.git
[ "MIT" ]
0.1.3
c311a14a10c0717994d1c007bb859979a647b528
code
1192
struct EmpiricalCovarianceMatrix <: CovarianceMatrixEstimator n::Int d::Int cache1::Matrix{Float64} cache2::Matrix{Float64} end function EmpiricalCovarianceMatrix(n::Integer = 0, d::Integer = 0) return EmpiricalCovarianceMatrix(n, d, zeros(n, d), zeros(n, d)) end function fit( estimator::EmpiricalCovarianceMatrix, X::AbstractMatrix{<:Real}; mu::AbstractVector{<:Real} = get_mu(X) ) return empirical(estimator, X, mu = mu) end function fit( estimator::EmpiricalCovarianceMatrix, X::AbstractMatrix{<:Real}, weights::AbstractVector{<:Real}; mu::AbstractVector{<:Real} = get_mu(X, weights) ) return empirical(estimator, X, weights, mu = mu) end function fit!( estimator::EmpiricalCovarianceMatrix, X::AbstractMatrix{<:Real}, covariance::AbstractMatrix{<:Real}, mu::AbstractVector{<:Real} ) empirical!(estimator, X, covariance, mu) return end function fit!( estimator::EmpiricalCovarianceMatrix, X::AbstractMatrix{<:Real}, weights::AbstractVector{<:Real}, covariance::AbstractMatrix{<:Real}, mu::AbstractVector{<:Real} ) empirical!(estimator, X, weights, covariance, mu) return end
RegularizedCovarianceMatrices
https://github.com/raphasampaio/RegularizedCovarianceMatrices.jl.git
[ "MIT" ]
0.1.3
c311a14a10c0717994d1c007bb859979a647b528
code
4474
abstract type CovarianceMatrixEstimator end function empirical( estimator::CovarianceMatrixEstimator, X::AbstractMatrix{<:Real}; mu::AbstractVector{<:Real} = get_mu(X) ) n, d = size(X) translated = (X .- mu') covariance = (translated' * translated) ./ n return covariance, mu end function empirical( estimator::CovarianceMatrixEstimator, X::AbstractMatrix{<:Real}, weights::AbstractVector{<:Real}; mu::AbstractVector{<:Real} = get_mu(X, weights) ) translated = X .- mu' covariance = (translated' * (weights .* translated)) ./ sum(weights) return covariance, mu end function empirical!( estimator::CovarianceMatrixEstimator, X::AbstractMatrix{<:Real}, covariance::AbstractMatrix{<:Real}, mu::AbstractVector{<:Real} ) n, d = size(X) @assert n == estimator.n @assert d == estimator.d update_mu!(X, mu) estimator.cache1 .= X .- mu' mul!(covariance, estimator.cache1', estimator.cache1) covariance ./= n return end function empirical!( estimator::CovarianceMatrixEstimator, X::AbstractMatrix{<:Real}, weights::AbstractVector{<:Real}, covariance::AbstractMatrix{<:Real}, mu::AbstractVector{<:Real} ) n, d = size(X) @assert n == estimator.n @assert d == estimator.d update_mu!(X, weights, mu) estimator.cache1 .= X .- mu' estimator.cache2 .= weights .* estimator.cache1 mul!(covariance, estimator.cache1', estimator.cache2) covariance ./= sum(weights) return end function shrunk( estimator::CovarianceMatrixEstimator, X::AbstractMatrix{<:Real}; mu::AbstractVector{<:Real} = get_mu(X), λ::Float64 = 0.1 ) covariance, mu = empirical(estimator, X, mu = mu) shrunk = shrunk_matrix(covariance, λ) return Symmetric(shrunk), mu end function shrunk( estimator::CovarianceMatrixEstimator, X::AbstractMatrix{<:Real}, weights::AbstractVector{<:Real}; mu::AbstractVector{<:Real} = get_mu(X, weights), λ::Float64 = 0.1 ) covariance, mu = empirical(estimator, X, weights, mu = mu) shrunk = shrunk_matrix(covariance, λ) return Symmetric(shrunk), mu end function shrunk!( estimator::CovarianceMatrixEstimator, X::AbstractMatrix{<:Real}, covariance::AbstractMatrix{<:Real}, mu::AbstractVector{<:Real}; λ::Float64 = 0.1 ) empirical!(estimator, X, covariance, mu) shrunk_matrix!(covariance, λ) return end function shrunk!( estimator::CovarianceMatrixEstimator, X::AbstractMatrix{<:Real}, weights::AbstractVector{<:Real}, covariance::AbstractMatrix{<:Real}, mu::AbstractVector{<:Real}; λ::Float64 = 0.1 ) empirical!(estimator, X, weights, covariance, mu) shrunk_matrix!(covariance, λ) return end function get_mu(X::AbstractMatrix{<:Real}) return dropdims(sum(X, dims = 1) / size(X, 1), dims = 1) end function get_mu(X::AbstractMatrix{<:Real}, weights::AbstractVector{<:Real}) return dropdims(sum(X .* weights, dims = 1) / sum(weights), dims = 1) end function update_mu!(X::AbstractMatrix{<:Real}, mu::AbstractVector{<:Real}) n, d = size(X) for i in 1:d mu[i] = 0 for j in 1:n mu[i] += X[j, i] end mu[i] /= n end end function update_mu!( X::AbstractMatrix{<:Real}, weights::AbstractVector{<:Real}, mu::AbstractVector{<:Real} ) n, d = size(X) sum_weights = sum(weights) for i in 1:d mu[i] = 0 for j in 1:n mu[i] += weights[j] * X[j, i] end mu[i] /= sum_weights end end function shrunk_matrix(covariance::AbstractMatrix{<:Real}, λ::Float64) d = size(covariance, 2) trace_mean = tr(covariance) / d shrunk = (1.0 - λ) * covariance for i in 1:d shrunk[i, i] += λ * trace_mean end return shrunk end function shrunk_matrix!(covariance::AbstractMatrix{<:Real}, λ::Float64) d = size(covariance, 2) trace_shrinkage = λ * (tr(covariance) / d) covariance .= (1.0 - λ) .* covariance for i in 1:d covariance[i, i] += trace_shrinkage end return end function translate_to_zero!(X::AbstractMatrix{<:Real}, mu::AbstractVector{<:Real}) n, d = size(X) for j in 1:d, i in 1:n X[i, j] = X[i, j] - mu[j] end end function translate_to_mu!(X::AbstractMatrix{<:Real}, mu::AbstractVector{<:Real}) n, d = size(X) for j in 1:d, i in 1:n X[i, j] = X[i, j] + mu[j] end end
RegularizedCovarianceMatrices
https://github.com/raphasampaio/RegularizedCovarianceMatrices.jl.git
[ "MIT" ]
0.1.3
c311a14a10c0717994d1c007bb859979a647b528
code
2818
struct LedoitWolfCovarianceMatrix <: CovarianceMatrixEstimator n::Int d::Int cache1::Matrix{Float64} cache2::Matrix{Float64} cache3::Matrix{Float64} function LedoitWolfCovarianceMatrix(n::Integer = 0, d::Integer = 0) return new(n, d, zeros(n, d), zeros(n, d), zeros(d, d)) end end function get_shrinkage( estimator::LedoitWolfCovarianceMatrix, X::AbstractMatrix{<:Real}, mu::AbstractVector{<:Real} ) n, d = size(X) @assert n == estimator.n @assert d == estimator.d estimator.cache1 .= X .- mu' estimator.cache2 .= estimator.cache1 .^ 2 trace_mean = 0 trace_sum = 0 for i in 1:d s = 0 for j in 1:n s += estimator.cache2[j, i] end trace_sum += s / n end trace_mean = trace_sum / d mul!(estimator.cache3, estimator.cache2', estimator.cache2) beta_coefficients = sum(estimator.cache3) mul!(estimator.cache3, estimator.cache1', estimator.cache1) estimator.cache3 .= estimator.cache3 .^ 2 delta_coefficients = sum(estimator.cache3) / (n^2) beta = 1.0 / (n * d) * (beta_coefficients / n - delta_coefficients) delta = (delta_coefficients - 2.0 * trace_mean * trace_sum + d * trace_mean .^ 2) / d beta = min(beta, delta) return (beta <= 0) ? 0.0 : beta / delta end function fit( estimator::LedoitWolfCovarianceMatrix, X::AbstractMatrix{<:Real}, weights = ones(size(X, 1)), mu = dropdims(sum(X .* weights, dims = 1) / sum(weights), dims = 1) ) n = size(X, 1) d = size(X, 2) translate_to_zero!(X, mu) X2 = X .^ 2 trace = sum(X2, dims = 1) / n trace_mean = sum(trace) / d beta_coefficients = 0.0 delta_coefficients = 0.0 delta_coefficients += sum((X' * X) .^ 2) delta_coefficients /= (n^2) beta_coefficients += sum(X2' * X2) beta = 1.0 / (n * d) * (beta_coefficients / n - delta_coefficients) delta = delta_coefficients - 2.0 * trace_mean * sum(trace) + d * trace_mean .^ 2 delta /= d beta = min(beta, delta) λ = (beta == 0) ? 0.0 : beta / delta translate_to_mu!(X, mu) return shrunk(estimator, X, weights, mu = mu, λ = λ) end function fit!( estimator::LedoitWolfCovarianceMatrix, X::AbstractMatrix{<:Real}, covariance::AbstractMatrix{<:Real}, mu::AbstractVector{<:Real} ) update_mu!(X, mu) λ = get_shrinkage(estimator, X, mu) return shrunk!(estimator, X, covariance, mu, λ = λ) end function fit!( estimator::LedoitWolfCovarianceMatrix, X::AbstractMatrix{<:Real}, weights::AbstractVector{<:Real}, covariance::AbstractMatrix{<:Real}, mu::AbstractVector{<:Real} ) update_mu!(X, weights, mu) λ = get_shrinkage(estimator, X, mu) shrunk!(estimator, X, weights, covariance, mu, λ = λ) return end
RegularizedCovarianceMatrices
https://github.com/raphasampaio/RegularizedCovarianceMatrices.jl.git
[ "MIT" ]
0.1.3
c311a14a10c0717994d1c007bb859979a647b528
code
2025
struct OASCovarianceMatrix <: CovarianceMatrixEstimator n::Int d::Int cache1::Matrix{Float64} cache2::Matrix{Float64} cache3::Matrix{Float64} function OASCovarianceMatrix(n::Integer = 0, d::Integer = 0) return new(n, d, zeros(n, d), zeros(n, d), zeros(d, d)) end end function get_shrinkage( estimator::OASCovarianceMatrix, X::AbstractMatrix{<:Real}, covariance::AbstractMatrix{<:Real} ) n, d = size(X) @assert n == estimator.n @assert d == estimator.d trace_mean = tr(covariance) / d estimator.cache3 .= covariance .^ 2 alpha = mean(estimator.cache3) num = alpha + trace_mean^2 den = (n + 1.0) * (alpha - (trace_mean^2) / d) return (den == 0) ? 1.0 : min(num / den, 1.0) end function fit( estimator::OASCovarianceMatrix, X::AbstractMatrix{<:Real}, weights::AbstractVector{<:Real} = ones(size(X, 1)), mu::AbstractVector{<:Real} = get_mu(X, weights) ) n, d = size(X) translate_to_zero!(X, mu) covariance, _ = empirical(estimator, X, weights, mu = zeros(d)) trace_mean = tr(covariance) / d alpha = mean(covariance .^ 2) num = alpha + trace_mean^2 den = (n + 1.0) * (alpha - (trace_mean^2) / d) λ = (den == 0) ? 1.0 : min(num / den, 1.0) shrunk = shrunk_matrix(covariance, λ) translate_to_mu!(X, mu) return Symmetric(shrunk), mu end function fit!( estimator::OASCovarianceMatrix, X::AbstractMatrix{<:Real}, covariance::AbstractMatrix{<:Real}, mu::AbstractVector{<:Real} ) empirical!(estimator, X, covariance, mu) λ = get_shrinkage(estimator, X, covariance) shrunk_matrix!(covariance, λ) return end function fit!( estimator::OASCovarianceMatrix, X::AbstractMatrix{<:Real}, weights::AbstractVector{<:Real}, covariance::AbstractMatrix{<:Real}, mu::AbstractVector{<:Real} ) empirical!(estimator, X, weights, covariance, mu) λ = get_shrinkage(estimator, X, covariance) shrunk_matrix!(covariance, λ) return end
RegularizedCovarianceMatrices
https://github.com/raphasampaio/RegularizedCovarianceMatrices.jl.git
[ "MIT" ]
0.1.3
c311a14a10c0717994d1c007bb859979a647b528
code
1256
struct ShrunkCovarianceMatrix <: CovarianceMatrixEstimator n::Int d::Int λ::Float64 cache1::Matrix{Float64} cache2::Matrix{Float64} function ShrunkCovarianceMatrix(n::Integer = 0, d::Integer = 0; λ::Float64 = 0.1) return new(n, d, λ, zeros(n, d), zeros(n, d)) end end function fit( estimator::ShrunkCovarianceMatrix, X::AbstractMatrix{<:Real}; mu::AbstractVector{<:Real} = get_mu(X) ) return shrunk(estimator, X, mu = mu, λ = estimator.λ) end function fit( estimator::ShrunkCovarianceMatrix, X::AbstractMatrix{<:Real}, weights::AbstractVector{<:Real}; mu::AbstractVector{<:Real} = get_mu(X, weights) ) return shrunk(estimator, X, weights, mu = mu, λ = estimator.λ) end function fit!( estimator::ShrunkCovarianceMatrix, X::AbstractMatrix{<:Real}, covariance::AbstractMatrix{<:Real}, mu::AbstractVector{<:Real} ) shrunk!(estimator, X, covariance, mu, λ = estimator.λ) return end function fit!( estimator::ShrunkCovarianceMatrix, X::AbstractMatrix{<:Real}, weights::AbstractVector{<:Real}, covariance::AbstractMatrix{<:Real}, mu::AbstractVector{<:Real} ) shrunk!(estimator, X, weights, covariance, mu, λ = estimator.λ) return end
RegularizedCovarianceMatrices
https://github.com/raphasampaio/RegularizedCovarianceMatrices.jl.git
[ "MIT" ]
0.1.3
c311a14a10c0717994d1c007bb859979a647b528
code
2026
function test_empirical() size = 10 dimensions = [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048] Random.seed!(1) for i in 1:size, n in dimensions, d in dimensions if n > d X = rand(n, d) X_copy = copy(X) weights = rand(n) weights_copy = copy(weights) estimator = EmpiricalCovarianceMatrix(n, d) @timeit "rcm" covariance, mu = RegularizedCovarianceMatrices.fit(estimator, X) @test X == X_copy @timeit "base" covariance_base = Statistics.cov(X, corrected = false) @test X == X_copy @test covariance ≈ covariance_base @timeit "statsbase" covariance_statsbase = StatsBase.cov(X, corrected = false) @test X == X_copy @test covariance ≈ covariance_statsbase mu_inplace = zeros(d) covariance_inplace = zeros(d, d) estimator = EmpiricalCovarianceMatrix(n, d) @timeit "rcm in-place" RegularizedCovarianceMatrices.fit!(estimator, X, covariance_inplace, mu_inplace) @test X == X_copy @test covariance ≈ covariance_inplace @test mu ≈ mu_inplace @timeit "rcm weighted" covariance, mu = RegularizedCovarianceMatrices.fit(estimator, X, weights) @test X == X_copy @test weights == weights_copy @timeit "statsbase weighted" covariance_statsbase = StatsBase.cov(X, Weights(weights), corrected = false) @test X == X_copy @test weights == weights_copy @test covariance ≈ covariance_statsbase mu_inplace = zeros(d) covariance_inplace = zeros(d, d) @timeit "rcm weighted in-place" RegularizedCovarianceMatrices.fit!(estimator, X, weights, covariance_inplace, mu_inplace) @test X == X_copy @test weights == weights_copy @test covariance ≈ covariance_inplace @test mu ≈ mu_inplace end end end
RegularizedCovarianceMatrices
https://github.com/raphasampaio/RegularizedCovarianceMatrices.jl.git
[ "MIT" ]
0.1.3
c311a14a10c0717994d1c007bb859979a647b528
code
530
using RegularizedCovarianceMatrices using Aqua using Random using Statistics using StatsBase using Test using TimerOutputs include("empirical.jl") function test_all() reset_timer!() @testset "Aqua.jl" begin @testset "Ambiguities" begin Aqua.test_ambiguities(RegularizedCovarianceMatrices, recursive = false) end Aqua.test_all(RegularizedCovarianceMatrices, ambiguities = false) end @timeit "empirical" test_empirical() print_timer(sortby = :firstexec) end test_all()
RegularizedCovarianceMatrices
https://github.com/raphasampaio/RegularizedCovarianceMatrices.jl.git
[ "MIT" ]
0.1.3
c311a14a10c0717994d1c007bb859979a647b528
docs
2153
# RegularizedCovarianceMatrices.jl <div align="center"> <a href="/docs/src/assets/"> <img src="/docs/src/assets/logo.svg" width=250px alt="RegularizedCovarianceMatrices.jl" /> </a> <br> <br> <a href="https://raphasampaio.github.io/RegularizedCovarianceMatrices.jl/stable"> <img src="https://img.shields.io/badge/docs-stable-blue.svg" alt="Stable"> </a> <a href="https://raphasampaio.github.io/RegularizedCovarianceMatrices.jl/dev"> <img src="https://img.shields.io/badge/docs-dev-blue.svg" alt="Dev"> </a> <a href="https://pkgs.genieframework.com?packages=RegularizedCovarianceMatrices"> <img src="https://shields.io/endpoint?url=https://pkgs.genieframework.com/api/v1/badge/RegularizedCovarianceMatrices/label:-sep:"> </a> <br> <a href="https://juliahub.com/ui/Packages/RegularizedCovarianceMatrices/0JHdO"> <img src="https://juliahub.com/docs/RegularizedCovarianceMatrices/version.svg" alt="Version"/> </a> <a href="https://github.com/raphasampaio/RegularizedCovarianceMatrices.jl/actions/workflows/CI.yml"> <img src="https://github.com/raphasampaio/RegularizedCovarianceMatrices.jl/actions/workflows/CI.yml/badge.svg" alt="CI"/> </a> <a href="https://codecov.io/gh/raphasampaio/RegularizedCovarianceMatrices.jl"> <img src="https://codecov.io/gh/raphasampaio/RegularizedCovarianceMatrices.jl/branch/main/graph/badge.svg" alt="Coverage"/> </a> <a href="https://github.com/JuliaTesting/Aqua.jl"> <img src="https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg" alt="Coverage"/> </a> </div> ## Introduction RegularizedCovarianceMatrices.jl is a Julia package that implements several regularized covariance matrices estimations. ## Getting Started ### Installation ```julia julia> ] add RegularizedCovarianceMatrices ``` ### Example ```julia using RegularizedCovarianceMatrices n = 100 d = 2 data = rand(n, d) estimator = ShrunkCovarianceMatrix(n, d, 0.1) covariance_matrix = RegularizedCovarianceMatrices.fit(estimator, data) ```
RegularizedCovarianceMatrices
https://github.com/raphasampaio/RegularizedCovarianceMatrices.jl.git
[ "MIT" ]
0.1.3
c311a14a10c0717994d1c007bb859979a647b528
docs
574
# RegularizedCovarianceMatrices ## Installation ```julia using Pkg Pkg.add("RegularizedCovarianceMatrices") ``` ## Citing If you find RegularizedCovarianceMatrices useful in your work, we kindly request that you cite the following paper ([preprint](https://arxiv.org/abs/2302.02450)): ```bibtex @article{sampaio2023regularization, title={Regularization and Global Optimization in Model-Based Clustering}, author={Sampaio, Raphael Araujo and Garcia, Joaquim Dias and Poggi, Marcus and Vidal, Thibaut}, journal={arXiv preprint arXiv:2302.02450}, year={2023} } ```
RegularizedCovarianceMatrices
https://github.com/raphasampaio/RegularizedCovarianceMatrices.jl.git
[ "MIT" ]
0.1.1
b5e118a01e694c88297e93b9fe87db92e85a0a0b
code
297
module BoundaryValueProblemsPlotsExt using Plots using BoundaryValueProblems function Plots.plot(sol::BoundaryValueSolution{<:Number, 1}) plot(sol.u, sol.cache.space) end function Plots.plot(sol::BoundaryValueSolution{<:Number, 2}; a = 45, b = 60) plot(sol.u, sol.cache.space) end end
BoundaryValueProblems
https://github.com/CalculustJL/BoundaryValueProblems.jl.git
[ "MIT" ]
0.1.1
b5e118a01e694c88297e93b9fe87db92e85a0a0b
code
1436
""" Boundary Value Problem Interface for `CalculustJL` """ module BoundaryValueProblems using DocStringExtensions using Reexport @reexport using SciMLBase @reexport using CalculustCore using SciMLOperators: AbstractSciMLOperator, IdentityOperator using CalculustCore.Domains: AbstractDomain using CalculustCore.Spaces: AbstractSpace, AbstractDiscretization using UnPack: @unpack using LinearAlgebra using LinearSolve @static if !isdefined(Base, :get_extension) import Requires end @static if !isdefined(Base, :get_extension) function __init__() Requires.@require Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" begin include("../ext/BoundaryValueProblemsPlotsExt.jl") end end end """ $TYPEDEF """ abstract type AbstractBoundaryCondition{T} end """ $TYPEDEF """ abstract type AbstractBoundaryValueProblem <: SciMLBase.DEProblem end """ $TYPEDEF """ abstract type AbstractBoundaryValueCache <: SciMLBase.DECache end """ $TYPEDEF """ abstract type AbstractBoundaryValueAlgorithm <: SciMLBase.DEAlgorithm end include("utils.jl") include("conditions.jl") include("types.jl") include("make_lhs_rhs.jl") include("problem.jl") export # boundary conditions DirichletBC, NeumannBC, RobinBC, PeriodicBC, # boundary vale problem BoundaryValueProblem, BoundaryValueSolution, # boundary value algorithms LinearBoundaryValueAlg, NonlinearBoundaryValueAlg end
BoundaryValueProblems
https://github.com/CalculustJL/BoundaryValueProblems.jl.git
[ "MIT" ]
0.1.1
b5e118a01e694c88297e93b9fe87db92e85a0a0b
code
576
# ### # Boundary Condition Types ### """ $TYPEDEF u(x) = f(x), x ∈ ∂Ω Defaults to homogeneous. """ Base.@kwdef struct DirichletBC{F} f::F = (points...) -> zero(first(points)) end """ $SIGNATURES (n⋅∇)u(x) = f(x), x ∈ ∂Ω Defaults to homogeneous. """ Base.@kwdef struct NeumannBC{F} f::F = (points...) -> zero(first(points)) end """ $SIGNATURES f1(x)u(x) + f2(x)(n⋅∇)u(x) = f3(x), x ∈ ∂Ω """ struct RobinBC{F1, F2, F3} f1::F1 f2::F2 f3::F3 end """ $SIGNATURES Periodic Boundary Condition """ Base.@kwdef struct PeriodicBC{Ttag} tag::Ttag end #
BoundaryValueProblems
https://github.com/CalculustJL/BoundaryValueProblems.jl.git
[ "MIT" ]
0.1.1
b5e118a01e694c88297e93b9fe87db92e85a0a0b
code
1999
# ### # boundary masks ### function dirichlet_mask(space::AbstractSpace, dom::AbstractDomain, indices, bc_dict) tags = boundary_tags(dom) x = points(space) |> first M = similar(x, Bool) * false .+ true |> vec for i in 1:num_boundaries(dom) tag = tags[i] bc = bc_dict[tag] if bc isa DirichletBC idx = indices[i] set_val!(M, false, idx) end end DiagonalOperator(M) end function boundary_antimasks(space::AbstractSpace, dom::AbstractDomain, indices) glo_num = global_numbering(space) antimasks = [] for i in 1:num_boundaries(dom) M = similar(glo_num, Bool) * false |> vec idx = indices[i] set_val!(M, true, idx) push!(antimasks, M) end DiagonalOperator.(antimasks) end ### # form LHS, RHS ### function makeLHS(op::AbstractSciMLOperator, bc::AbstractBoundaryCondition) @unpack mask_dir, amask_dir = bc #TODO """ how to empty dirichlet row? - https://github.com/vpuri3/PDEInterfaces.jl/issues/1 is having the construct u := u_inhom + u_hom the only way? then would have to interpolate u_inhom into interior. what are the consequences? """ mask_dir * op + amask_dir end function makeRHS(f, bc::AbstractBoundaryCondition) @unpack bc_dict, antimasks, mask_dir, space, discr = bc M = massOp(space, discr) b = M * f dirichlet = zero(b) neumann = zero(b) robin = zero(b) pts = points(space) dom = domain(space) tags = boundary_tags(dom) for i in 1:num_boundaries(dom) tag = tags[i] bc = bc_dict[tag] amask = antimasks[i] if bc isa DirichletBC dirichlet += amask * bc.f(pts...) elseif bc isa NeumannBC neumann += amask * bc.f(pts...) elseif bc isa RobinBC # TODO elseif bc isa PeriodicBC continue end end (mask_dir * b) + dirichlet - neumann + robin end #
BoundaryValueProblems
https://github.com/CalculustJL/BoundaryValueProblems.jl.git
[ "MIT" ]
0.1.1
b5e118a01e694c88297e93b9fe87db92e85a0a0b
code
5399
# struct BoundaryValueProblem{ isinplace, T, F, fType, uType, Tbcs, Tspace <: AbstractSpace{T}, Tdiscr <: AbstractDiscretization, P, K } <: AbstractBoundaryValueProblem """Neumann Operator""" op::F """Right-hand-side forcing vector""" f::fType """Initial guess""" u0::uType """Boundary condition object""" bc_dict::Tbcs """Function space""" space::Tspace """Discretization""" discr::Tdiscr """Parameters""" p::P """Keyword arguments""" kwargs::K SciMLBase.@add_kwonly function BoundaryValueProblem(op::AbstractSciMLOperator, f, bc_dict::Dict, space::AbstractSpace{T}, discr::AbstractDiscretization, p = SciMLBase.NullParameters(); u0 = nothing, kwargs...) where {T} new{true, eltype(space), typeof(op), typeof(f), typeof(u0), typeof(bc_dict), typeof(space), typeof(discr), typeof(p), typeof(kwargs) }(op, f, u0, bc_dict, space, discr, p, kwargs) end end function Base.summary(io::IO, prob::BoundaryValueProblem) type_color, no_color = SciMLBase.get_colorizers(io) print(io, type_color, nameof(typeof(prob)), no_color, " with uType ", type_color, typeof(prob.u0), no_color, " with AType ", type_color, typeof(prob.op), no_color, ". In-place: ", type_color, SciMLBase.isinplace(prob), no_color) end function Base.show(io::IO, mime::MIME"text/plain", A::BoundaryValueProblem) summary(io, A) println(io) println(io, "u0: ") show(io, mime, A.u0) println(io, "Neumann Operator: ") show(io, mime, A.op) println(io, "Forcing Vector: ") show(io, mime, A.f) println(io, "Boundary Conditions: ") show(io, mime, A.bc_dict) println(io, "Function Space: ") show(io, mime, A.space) end struct BoundaryValueCache{Top, Tu, Tbc, Tsp, Tdi, Talg} <: AbstractBoundaryValueCache """Neumann Operator""" op::Top """Right-hand-side forcing vector""" f::Tu """Initial guess""" u::Tu """Boundary condition object""" bc::Tbc """Function space""" space::Tsp """Discretization""" discr::Tdi """Algorithm""" alg::Talg end struct BoundaryValueSolution{T, D, uType, R, A, C} #<: SciMLBase.AbstractDAESolution{T,D} u::uType resid::R alg::A retcode::Symbol iters::Int cache::C function BoundaryValueSolution(u, resid, alg, retcode, iters, cache) @unpack space = cache new{ eltype(space), ndims(space), typeof(u), typeof(resid), typeof(alg), typeof(cache) }(u, resid, alg, retcode, iters, cache) end end function build_bv_solution(alg, u, resid, cache; retcode = :Default, iters = nothing) BoundaryValueSolution(u, resid, alg, retcode, iters, cache) end Base.@kwdef struct LinearBoundaryValueAlg{Tl} <: AbstractBoundaryValueAlgorithm linalg::Tl = nothing end #TODO integrate NonlinearSolve.jl with LinearSolve.jl first Base.@kwdef struct NonlinearBoundaryValueAlg{Tnl} <: AbstractBoundaryValueAlgorithm nlalg::Tnl = nothing end function SciMLBase.solve(cache::BoundaryValueCache; kwargs...) @unpack op, f, u, bc, space, alg = cache @unpack linalg = alg lhsOp = makeLHS(op, bc) lhsOp = cache_operator(lhsOp, f) rhs = makeRHS(f, bc) linprob = LinearProblem(lhsOp, rhs; u0 = vec(u)) linsol = solve(linprob, linalg; kwargs...) resid = norm(lhsOp * linsol.u - rhs, Inf) build_bv_solution(alg, u, resid, cache; iters = linsol.iters) end function SciMLBase.init(prob::AbstractBoundaryValueProblem, alg::AbstractBoundaryValueAlgorithm = nothing; abstol = default_tol(eltype(prob.op)), reltol = default_tol(eltype(prob.op)), maxiters = length(prob.f), verbose = false, kwargs...) @unpack op, f, u0, bc_dict, space, discr = prob alg = alg isa Nothing ? LinearBoundaryValueAlg() : alg u = u0 isa Nothing ? zero(f) : u0 bc = BoundaryCondition(bc_dict, space, discr) BoundaryValueCache(op, f, u, bc, space, discr, alg) end function SciMLBase.solve(prob::BoundaryValueProblem, args...; kwargs...) solve(init(prob, nothing, args...; kwargs...)) end function SciMLBase.solve(prob::BoundaryValueProblem, alg::Union{AbstractBoundaryValueAlgorithm, Nothing}, args...; kwargs...) solve(init(prob, alg, args...; kwargs...); kwargs...) end #
BoundaryValueProblems
https://github.com/CalculustJL/BoundaryValueProblems.jl.git
[ "MIT" ]
0.1.1
b5e118a01e694c88297e93b9fe87db92e85a0a0b
code
1166
# """ $TYPEDEF $FIELDS """ struct BoundaryCondition{T, Tdict, Tamasks, Tmask, Tamask, Tspace <: AbstractSpace{T}, Tdiscr <: AbstractDiscretization } <: AbstractBoundaryCondition{T} """Dict(Domain_bdry_tag => BCType)""" bc_dict::Tdict """Vector(boundary_antimasks); antimask = id - mask""" antimasks::Tamasks """Diagonal Mask operator hiding Dirichlet boundaries""" mask_dir::Tmask """antimask for dirichlet BC""" amask_dir::Tamask """Function space""" space::Tspace """ Discretization """ discr::Tdiscr end """ $SIGNATURES """ function BoundaryCondition(bc_dict::Dict, V::AbstractSpace, discr::AbstractDiscretization) dom = domain(V) indices = boundary_nodes(V) antimasks = boundary_antimasks(V, dom, indices) mask_dir = dirichlet_mask(V, dom, indices, bc_dict) amask_dir = IdentityOperator(length(V)) - mask_dir BoundaryCondition(bc_dict, antimasks, mask_dir, amask_dir, V, discr) end #
BoundaryValueProblems
https://github.com/CalculustJL/BoundaryValueProblems.jl.git
[ "MIT" ]
0.1.1
b5e118a01e694c88297e93b9fe87db92e85a0a0b
code
228
# using LinearSolve: default_tol function set_val!(M, val, idx) len = length(idx) if len < 1 M elseif len == 1 M[idx] = val else M[idx] = [val for i in 1:length(idx)] end M end
BoundaryValueProblems
https://github.com/CalculustJL/BoundaryValueProblems.jl.git
[ "MIT" ]
0.1.1
b5e118a01e694c88297e93b9fe87db92e85a0a0b
code
115
using BoundaryValueProblems using Test @testset "BoundaryValueProblems.jl" begin # Write your tests here. end
BoundaryValueProblems
https://github.com/CalculustJL/BoundaryValueProblems.jl.git
[ "MIT" ]
0.1.1
b5e118a01e694c88297e93b9fe87db92e85a0a0b
docs
253
# BoundaryValueProblems [![Build Status](https://github.com/CalculustJL/BoundaryValueProblems.jl/actions/workflows/CI.yml/badge.svg?branch=master)](https://github.com/CalculustJL/BoundaryValueProblems.jl/actions/workflows/CI.yml?query=branch%3Amaster)
BoundaryValueProblems
https://github.com/CalculustJL/BoundaryValueProblems.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
448
using Documenter, JSOSolvers makedocs( modules = [JSOSolvers], doctest = true, linkcheck = true, format = Documenter.HTML( prettyurls = get(ENV, "CI", nothing) == "true", assets = ["assets/style.css"], ), sitename = "JSOSolvers.jl", pages = ["index.md", "solvers.md", "internal.md", "reference.md"], ) deploydocs( repo = "github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git", push_preview = true, devbranch = "main", )
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
2065
module JSOSolvers # stdlib using LinearAlgebra, Logging, Printf # JSO packages using Krylov, LinearOperators, NLPModels, NLPModelsModifiers, SolverCore, SolverTools import SolverCore.solve! export solve! const Callback_docstring = " The callback is called at each iteration. The expected signature of the callback is `callback(nlp, solver, stats)`, and its output is ignored. Changing any of the input arguments will affect the subsequent iterations. In particular, setting `stats.status = :user` will stop the algorithm. All relevant information should be available in `nlp` and `solver`. Notably, you can access, and modify, the following: - `solver.x`: current iterate; - `solver.gx`: current gradient; - `stats`: structure holding the output of the algorithm (`GenericExecutionStats`), which contains, among other things: - `stats.dual_feas`: norm of the residual, for instance, the norm of the gradient for unconstrained problems; - `stats.iter`: current iteration counter; - `stats.objective`: current objective function value; - `stats.status`: current status of the algorithm. Should be `:unknown` unless the algorithm attained a stopping criterion. Changing this to anything will stop the algorithm, but you should use `:user` to properly indicate the intention. - `stats.elapsed_time`: elapsed time in seconds. " """ normM!(n, x, M, z) Weighted norm of `x` with respect to `M`, i.e., `z = sqrt(x' * M * x)`. Uses `z` as workspace. """ function normM!(n, x, M, z) if M === I return nrm2(n, x) else mul!(z, M, x) return √(x ⋅ z) end end # Unconstrained solvers include("lbfgs.jl") include("trunk.jl") include("fomo.jl") # Unconstrained solvers for NLS include("trunkls.jl") # List of keywords accepted by TRONTrustRegion const tron_keys = ( :max_radius, :acceptance_threshold, :decrease_threshold, :increase_threshold, :large_decrease_factor, :small_decrease_factor, :increase_factor, ) # Bound-constrained solvers include("tron.jl") # Bound-constrained solvers for NLS include("tronls.jl") end
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
16129
export fomo, FomoSolver, FoSolver, fo, R2, TR, tr_step, r2_step abstract type AbstractFirstOrderSolver <: AbstractOptimizationSolver end abstract type AbstractFOMethod end struct tr_step <: AbstractFOMethod end struct r2_step <: AbstractFOMethod end """ fomo(nlp; kwargs...) A First-Order with MOmentum (FOMO) model-based method for unconstrained optimization. Supports quadratic regularization and trust region method with linear model. # Algorithm description The step is computed along d = - (1-βmax) .* ∇f(xk) - βmax .* mk with mk the memory of past gradients (initialized at 0), and updated at each successful iteration as mk .= ∇f(xk) .* (1 - βmax) .+ mk .* βmax and βmax ∈ [0,β] chosen as to ensure d is gradient-related, i.e., the following 2 conditions are satisfied: (1-βmax) .* ∇f(xk) + βmax .* ∇f(xk)ᵀmk ≥ θ1 * ‖∇f(xk)‖² (1) ‖∇f(xk)‖ ≥ θ2 * ‖(1-βmax) *. ∇f(xk) + βmax .* mk‖ (2) In the nonmonotone case, (1) rewrites (1-βmax) .* ∇f(xk) + βmax .* ∇f(xk)ᵀmk + (fm - fk)/μk ≥ θ1 * ‖∇f(xk)‖², with fm the largest objective value over the last M successful iterations, and fk = f(xk). # Advanced usage For advanced usage, first define a `FomoSolver` to preallocate the memory used in the algorithm, and then call `solve!`: solver = FomoSolver(nlp) solve!(solver, nlp; kwargs...) **No momentum**: if the user does not whish to use momentum (`β` = 0), it is recommended to use the memory-optimized `fo` method. # Arguments - `nlp::AbstractNLPModel{T, V}` is the model to solve, see `NLPModels.jl`. # Keyword arguments - `x::V = nlp.meta.x0`: the initial guess. - `atol::T = √eps(T)`: absolute tolerance. - `rtol::T = √eps(T)`: relative tolerance: algorithm stops when ‖∇f(xᵏ)‖ ≤ atol + rtol * ‖∇f(x⁰)‖. - `η1 = eps(T)^(1/4)`, `η2 = T(0.95)`: step acceptance parameters. - `γ1 = T(1/2)`, `γ2 = T(2)`: regularization update parameters. - `γ3 = T(1/2)` : momentum factor βmax update parameter in case of unsuccessful iteration. - `αmax = 1/eps(T)`: maximum step parameter for fomo algorithm. - `max_eval::Int = -1`: maximum number of objective evaluations. - `max_time::Float64 = 30.0`: maximum time limit in seconds. - `max_iter::Int = typemax(Int)`: maximum number of iterations. - `β = T(0.9) ∈ [0,1)`: target decay rate for the momentum. - `θ1 = T(0.1)`: momentum contribution parameter for convergence condition (1). - `θ2 = T(eps(T)^(1/3))`: momentum contribution parameter for convergence condition (2). - `M = 1` : requires objective decrease over the `M` last iterates (nonmonotone context). `M=1` implies monotone behaviour. - `verbose::Int = 0`: if > 0, display iteration details every `verbose` iteration. - `step_backend = r2_step()`: step computation mode. Options are `r2_step()` for quadratic regulation step and `tr_step()` for first-order trust-region. # Output The value returned is a `GenericExecutionStats`, see `SolverCore.jl`. # Callback $(Callback_docstring) The callback is called at each iteration. The expected signature of the callback is `callback(nlp, solver, stats)`, and its output is ignored. Changing any of the input arguments will affect the subsequent iterations. In particular, setting `stats.status = :user || stats.stats = :unknown` will stop the algorithm. All relevant information should be available in `nlp` and `solver`. Notably, you can access, and modify, the following: - `solver.x`: current iterate; - `solver.gx`: current gradient; - `stats`: structure holding the output of the algorithm (`GenericExecutionStats`), which contains, among other things: - `stats.dual_feas`: norm of current gradient; - `stats.iter`: current iteration counter; - `stats.objective`: current objective function value; - `stats.status`: current status of the algorithm. Should be `:unknown` unless the algorithm has attained a stopping criterion. Changing this to anything will stop the algorithm, but you should use `:user` to properly indicate the intention. - `stats.elapsed_time`: elapsed time in seconds. # Examples ## `fomo` ```jldoctest using JSOSolvers, ADNLPModels nlp = ADNLPModel(x -> sum(x.^2), ones(3)) stats = fomo(nlp) # output "Execution stats: first-order stationary" ``` ```jldoctest using JSOSolvers, ADNLPModels nlp = ADNLPModel(x -> sum(x.^2), ones(3)) solver = FomoSolver(nlp); stats = solve!(solver, nlp) # output "Execution stats: first-order stationary" ``` """ mutable struct FomoSolver{T, V} <: AbstractFirstOrderSolver x::V g::V c::V m::V d::V p::V o::V α::T end function FomoSolver(nlp::AbstractNLPModel{T, V}; M::Int = 1) where {T, V} x = similar(nlp.meta.x0) g = similar(nlp.meta.x0) c = similar(nlp.meta.x0) m = fill!(similar(nlp.meta.x0), 0) d = fill!(similar(nlp.meta.x0), 0) p = similar(nlp.meta.x0) o = fill!(Vector{T}(undef, M), -Inf) return FomoSolver{T, V}(x, g, c, m, d, p, o, T(0)) end @doc (@doc FomoSolver) function fomo( nlp::AbstractNLPModel{T, V}; M::Int = 1, kwargs..., ) where {T, V} solver = FomoSolver(nlp; M) solver_specific = Dict(:avgβmax => T(0.0)) stats = GenericExecutionStats(nlp; solver_specific = solver_specific) return solve!(solver, nlp, stats; kwargs...) end function SolverCore.reset!(solver::FomoSolver{T}) where {T} fill!(solver.m, 0) fill!(solver.o, -Inf) solver end SolverCore.reset!(solver::FomoSolver, ::AbstractNLPModel) = reset!(solver) """ fo(nlp; kwargs...) R2(nlp; kwargs...) TR(nlp; kwargs...) A First-Order (FO) model-based method for unconstrained optimization. Supports quadratic regularization and trust region method with linear model. For advanced usage, first define a `FomoSolver` to preallocate the memory used in the algorithm, and then call `solve!`: solver = FoSolver(nlp) solve!(solver, nlp; kwargs...) `R2` and `TR` runs `fo` with the dedicated `step_backend` keyword argument. # Arguments - `nlp::AbstractNLPModel{T, V}` is the model to solve, see `NLPModels.jl`. # Keyword arguments - `x::V = nlp.meta.x0`: the initial guess. - `atol::T = √eps(T)`: absolute tolerance. - `rtol::T = √eps(T)`: relative tolerance: algorithm stops when ‖∇f(xᵏ)‖ ≤ atol + rtol * ‖∇f(x⁰)‖. - `η1 = eps(T)^(1/4)`, `η2 = T(0.95)`: step acceptance parameters. - `γ1 = T(1/2)`, `γ2 = T(2)`: regularization update parameters. - `αmax = 1/eps(T)`: maximum step parameter for fomo algorithm. - `max_eval::Int = -1`: maximum number of evaluation of the objective function. - `max_time::Float64 = 30.0`: maximum time limit in seconds. - `max_iter::Int = typemax(Int)`: maximum number of iterations. - `M = 1` : requires objective decrease over the `M` last iterates (nonmonotone context). `M=1` implies monotone behaviour. - `verbose::Int = 0`: if > 0, display iteration details every `verbose` iteration. - `step_backend = r2_step()`: step computation mode. Options are `r2_step()` for quadratic regulation step and `tr_step()` for first-order trust-region. # Output The value returned is a `GenericExecutionStats`, see `SolverCore.jl`. # Callback $(Callback_docstring) # Examples ```jldoctest using JSOSolvers, ADNLPModels nlp = ADNLPModel(x -> sum(x.^2), ones(3)) stats = fo(nlp) # run with step_backend = r2_step(), equivalent to R2(nlp) # output "Execution stats: first-order stationary" ``` ```jldoctest using JSOSolvers, ADNLPModels nlp = ADNLPModel(x -> sum(x.^2), ones(3)) solver = FoSolver(nlp); stats = solve!(solver, nlp) # output "Execution stats: first-order stationary" ``` """ mutable struct FoSolver{T, V} <: AbstractFirstOrderSolver x::V g::V c::V o::V α::T end function FoSolver(nlp::AbstractNLPModel{T, V}; M::Int = 1) where {T, V} x = similar(nlp.meta.x0) g = similar(nlp.meta.x0) c = similar(nlp.meta.x0) o = fill!(Vector{T}(undef, M), -Inf) return FoSolver{T, V}(x, g, c, o, T(0)) end """ `R2Solver` is deprecated, please check the documentation of `R2`. """ mutable struct R2Solver{T, V} <: AbstractOptimizationSolver end Base.@deprecate R2Solver(nlp::AbstractNLPModel; kwargs...) FoSolver( nlp::AbstractNLPModel; M = 1, kwargs..., ) @doc (@doc FoSolver) function fo(nlp::AbstractNLPModel{T, V}; M::Int = 1, kwargs...) where {T, V} solver = FoSolver(nlp; M) stats = GenericExecutionStats(nlp) return solve!(solver, nlp, stats; step_backend = r2_step(), kwargs...) end @doc (@doc FoSolver) function R2(nlp::AbstractNLPModel{T, V}; kwargs...) where {T, V} fo(nlp; step_backend = r2_step(), kwargs...) end @doc (@doc FoSolver) function TR(nlp::AbstractNLPModel{T, V}; kwargs...) where {T, V} fo(nlp; step_backend = tr_step(), kwargs...) end function SolverCore.reset!(solver::FoSolver{T}) where {T} fill!(solver.o, -Inf) solver end SolverCore.reset!(solver::FoSolver, ::AbstractNLPModel) = reset!(solver) function SolverCore.solve!( solver::Union{FoSolver, FomoSolver}, nlp::AbstractNLPModel{T, V}, stats::GenericExecutionStats{T, V}; callback = (args...) -> nothing, x::V = nlp.meta.x0, atol::T = √eps(T), rtol::T = √eps(T), η1::T = T(eps(T)^(1 / 4)), η2::T = T(0.95), γ1::T = T(1 / 2), γ2::T = T(2), γ3::T = T(1 / 2), αmax::T = 1 / eps(T), max_time::Float64 = 30.0, max_eval::Int = -1, max_iter::Int = typemax(Int), β::T = T(0.9), θ1::T = T(0.1), θ2::T = T(eps(T)^(1 / 3)), verbose::Int = 0, step_backend = r2_step(), ) where {T, V} use_momentum = typeof(solver) <: FomoSolver is_r2 = typeof(step_backend) <: r2_step unconstrained(nlp) || error("fomo should only be called on unconstrained problems.") reset!(stats) start_time = time() set_time!(stats, 0.0) x = solver.x .= x ∇fk = solver.g c = solver.c momentum = use_momentum ? solver.m : nothing # not used if no momentum d = use_momentum ? solver.d : solver.g # g = d if no momentum p = use_momentum ? solver.p : nothing # not used if no momentum set_iter!(stats, 0) f0 = obj(nlp, x) set_objective!(stats, f0) obj_mem = solver.o M = length(obj_mem) mem_ind = 0 obj_mem[mem_ind + 1] = stats.objective max_obj_mem = stats.objective grad!(nlp, x, ∇fk) norm_∇fk = norm(∇fk) set_dual_residual!(stats, norm_∇fk) solver.α = init_alpha(norm_∇fk, step_backend) # Stopping criterion: fmin = min(-one(T), f0) / eps(T) unbounded = f0 < fmin ϵ = atol + rtol * norm_∇fk optimal = norm_∇fk ≤ ϵ step_param_name = is_r2 ? "σ" : "Δ" if optimal @info("Optimal point found at initial point") if is_r2 @info @sprintf "%5s %9s %7s %7s " "iter" "f" "‖∇f‖" step_param_name @info @sprintf "%5d %9.2e %7.1e %7.1e" stats.iter stats.objective norm_∇fk 1 / solver.α else @info @sprintf "%5s %9s %7s %7s " "iter" "f" "‖∇f‖" step_param_name @info @sprintf "%5d %9.2e %7.1e %7.1e" stats.iter stats.objective norm_∇fk solver.α end else if verbose > 0 && mod(stats.iter, verbose) == 0 step_param = is_r2 ? 1 / solver.α : solver.α if !use_momentum @info @sprintf "%5s %9s %7s %7s %7s " "iter" "f" "‖∇f‖" step_param_name "ρk" infoline = @sprintf "%5d %9.2e %7.1e %7.1e %7.1e" stats.iter stats.objective norm_∇fk step_param ' ' else @info @sprintf "%5s %9s %7s %7s %7s %7s " "iter" "f" "‖∇f‖" step_param_name "ρk" "βmax" infoline = @sprintf "%5d %9.2e %7.1e %7.1e %7.1e %7.1e" stats.iter stats.objective norm_∇fk step_param ' ' 0 end end end set_status!( stats, get_status( nlp, elapsed_time = stats.elapsed_time, optimal = optimal, unbounded = unbounded, max_eval = max_eval, iter = stats.iter, max_iter = max_iter, max_time = max_time, ), ) callback(nlp, solver, stats) done = stats.status != :unknown d .= ∇fk norm_d = norm_∇fk βmax = T(0) ρk = T(0) avgβmax = T(0) siter::Int = 0 oneT = T(1) mdot∇f = T(0) # dot(momentum,∇fk) while !done μk = step_mult(solver.α, norm_d, step_backend) c .= x .- μk .* d step_underflow = x == c # step addition underfow on every dimensions, should happen before solver.α == 0 ΔTk = ((oneT - βmax) * norm_∇fk^2 + βmax * mdot∇f) * μk # = dot(d,∇fk) * μk with momentum, ‖∇fk‖²μk without momentum fck = obj(nlp, c) unbounded = fck < fmin ρk = (max_obj_mem - fck) / (max_obj_mem - stats.objective + ΔTk) # Update regularization parameters if ρk >= η2 solver.α = min(αmax, γ2 * solver.α) elseif ρk < η1 solver.α = solver.α * γ1 if use_momentum βmax *= γ3 d .= ∇fk .* (oneT - βmax) .+ momentum .* βmax end end # Acceptance of the new candidate if ρk >= η1 x .= c if use_momentum momentum .= ∇fk .* (oneT - β) .+ momentum .* β end set_objective!(stats, fck) mem_ind = (mem_ind + 1) % M obj_mem[mem_ind + 1] = stats.objective max_obj_mem = maximum(obj_mem) grad!(nlp, x, ∇fk) norm_∇fk = norm(∇fk) if use_momentum mdot∇f = dot(momentum, ∇fk) p .= momentum .- ∇fk βmax = find_beta(p, mdot∇f, norm_∇fk, μk, stats.objective, max_obj_mem, β, θ1, θ2) d .= ∇fk .* (oneT - βmax) .+ momentum .* βmax norm_d = norm(d) avgβmax += βmax siter += 1 end end set_iter!(stats, stats.iter + 1) set_time!(stats, time() - start_time) set_dual_residual!(stats, norm_∇fk) optimal = norm_∇fk ≤ ϵ if verbose > 0 && mod(stats.iter, verbose) == 0 @info infoline step_param = is_r2 ? 1 / solver.α : solver.α if !use_momentum infoline = @sprintf "%5d %9.2e %7.1e %7.1e %7.1e" stats.iter stats.objective norm_∇fk step_param ρk else infoline = @sprintf "%5d %9.2e %7.1e %7.1e %7.1e %7.1e" stats.iter stats.objective norm_∇fk step_param ρk βmax end end set_status!( stats, get_status( nlp, elapsed_time = stats.elapsed_time, optimal = optimal, unbounded = unbounded, max_eval = max_eval, iter = stats.iter, max_iter = max_iter, max_time = max_time, ), ) callback(nlp, solver, stats) step_underflow && set_status!(stats, :small_step) solver.α == 0 && set_status!(stats, :exception) # :small_nlstep exception should happen before done = stats.status != :unknown end if use_momentum avgβmax /= siter set_solver_specific!(stats, :avgβmax, avgβmax) end set_solution!(stats, x) return stats end """ find_beta(m, mdot∇f, norm_∇f, μk, fk, max_obj_mem, β, θ1, θ2) Compute βmax which saturates the contribution of the momentum term to the gradient. `βmax` is computed such that the two gradient-related conditions (first one is relaxed in the nonmonotone case) are ensured: 1. (1-βmax) * ‖∇f(xk)‖² + βmax * ∇f(xk)ᵀm + (max_obj_mem - fk)/μk ≥ θ1 * ‖∇f(xk)‖² 2. ‖∇f(xk)‖ ≥ θ2 * ‖(1-βmax) * ∇f(xk) .+ βmax .* m‖ with `m` the momentum term and `mdot∇f = ∇f(xk)ᵀm`, `fk` the model at s=0, `max_obj_mem` the largest objective value over the last M successful iterations. """ function find_beta( p::V, mdot∇f::T, norm_∇f::T, μk::T, fk::T, max_obj_mem::T, β::T, θ1::T, θ2::T, ) where {T, V} n1 = norm_∇f^2 - mdot∇f n2 = norm(p) β1 = n1 > 0 ? ((1 - θ1) * norm_∇f^2 - (fk - max_obj_mem) / μk) / n1 : β β2 = n2 != 0 ? (1 - θ2) * norm_∇f / n2 : β return min(β, min(β1, β2)) end """ init_alpha(norm_∇fk::T, ::r2_step) init_alpha(norm_∇fk::T, ::tr_step) Initialize `α` step size parameter. Ensure first step is the same for quadratic regularization and trust region methods. """ function init_alpha(norm_∇fk::T, ::r2_step) where {T} 1 / 2^round(log2(norm_∇fk + 1)) end function init_alpha(norm_∇fk::T, ::tr_step) where {T} norm_∇fk / 2^round(log2(norm_∇fk + 1)) end """ step_mult(α::T, norm_∇fk::T, ::r2_step) step_mult(α::T, norm_∇fk::T, ::tr_step) Compute step size multiplier: `α` for quadratic regularization(`::r2` and `::R2og`) and `α/norm_∇fk` for trust region (`::tr`). """ function step_mult(α::T, norm_∇fk::T, ::r2_step) where {T} α end function step_mult(α::T, norm_∇fk::T, ::tr_step) where {T} α / norm_∇fk end
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
5941
export lbfgs, LBFGSSolver """ lbfgs(nlp; kwargs...) An implementation of a limited memory BFGS line-search method for unconstrained minimization. For advanced usage, first define a `LBFGSSolver` to preallocate the memory used in the algorithm, and then call `solve!`. solver = LBFGSSolver(nlp; mem::Int = 5) solve!(solver, nlp; kwargs...) # Arguments - `nlp::AbstractNLPModel{T, V}` represents the model to solve, see `NLPModels.jl`. The keyword arguments may include - `x::V = nlp.meta.x0`: the initial guess. - `mem::Int = 5`: memory parameter of the `lbfgs` algorithm. - `atol::T = √eps(T)`: absolute tolerance. - `rtol::T = √eps(T)`: relative tolerance, the algorithm stops when ‖∇f(xᵏ)‖ ≤ atol + rtol * ‖∇f(x⁰)‖. - `max_eval::Int = -1`: maximum number of objective function evaluations. - `max_time::Float64 = 30.0`: maximum time limit in seconds. - `max_iter::Int = typemax(Int)`: maximum number of iterations. - `τ₁::T = T(0.9999)`: slope factor in the Wolfe condition when performing the line search. - `bk_max:: Int = 25`: maximum number of backtracks when performing the line search. - `verbose::Int = 0`: if > 0, display iteration details every `verbose` iteration. - `verbose_subsolver::Int = 0`: if > 0, display iteration information every `verbose_subsolver` iteration of the subsolver. # Output The returned value is a `GenericExecutionStats`, see `SolverCore.jl`. # Callback $(Callback_docstring) # Examples ```jldoctest using JSOSolvers, ADNLPModels nlp = ADNLPModel(x -> sum(x.^2), ones(3)); stats = lbfgs(nlp) # output "Execution stats: first-order stationary" ``` ```jldoctest using JSOSolvers, ADNLPModels nlp = ADNLPModel(x -> sum(x.^2), ones(3)); solver = LBFGSSolver(nlp; mem = 5); stats = solve!(solver, nlp) # output "Execution stats: first-order stationary" ``` """ mutable struct LBFGSSolver{T, V, Op <: AbstractLinearOperator{T}, M <: AbstractNLPModel{T, V}} <: AbstractOptimizationSolver x::V xt::V gx::V gt::V d::V H::Op h::LineModel{T, V, M} end function LBFGSSolver(nlp::M; mem::Int = 5) where {T, V, M <: AbstractNLPModel{T, V}} nvar = nlp.meta.nvar x = V(undef, nvar) d = V(undef, nvar) xt = V(undef, nvar) gx = V(undef, nvar) gt = V(undef, nvar) H = InverseLBFGSOperator(T, nvar, mem = mem, scaling = true) h = LineModel(nlp, x, d) Op = typeof(H) return LBFGSSolver{T, V, Op, M}(x, xt, gx, gt, d, H, h) end function SolverCore.reset!(solver::LBFGSSolver) reset!(solver.H) end function SolverCore.reset!(solver::LBFGSSolver, nlp::AbstractNLPModel) reset!(solver.H) solver.h = LineModel(nlp, solver.x, solver.d) solver end @doc (@doc LBFGSSolver) function lbfgs( nlp::AbstractNLPModel; x::V = nlp.meta.x0, mem::Int = 5, kwargs..., ) where {V} solver = LBFGSSolver(nlp; mem = mem) return solve!(solver, nlp; x = x, kwargs...) end function SolverCore.solve!( solver::LBFGSSolver{T, V}, nlp::AbstractNLPModel{T, V}, stats::GenericExecutionStats{T, V}; callback = (args...) -> nothing, x::V = nlp.meta.x0, atol::T = √eps(T), rtol::T = √eps(T), max_eval::Int = -1, max_iter::Int = typemax(Int), max_time::Float64 = 30.0, τ₁::T = T(0.9999), bk_max::Int = 25, verbose::Int = 0, verbose_subsolver::Int = 0, ) where {T, V} if !(nlp.meta.minimize) error("lbfgs only works for minimization problem") end if !unconstrained(nlp) error("lbfgs should only be called for unconstrained problems. Try tron instead") end reset!(stats) start_time = time() set_time!(stats, 0.0) n = nlp.meta.nvar solver.x .= x x = solver.x xt = solver.xt ∇f = solver.gx ∇ft = solver.gt d = solver.d h = solver.h H = solver.H reset!(H) f, ∇f = objgrad!(nlp, x, ∇f) ∇fNorm = nrm2(n, ∇f) ϵ = atol + rtol * ∇fNorm set_iter!(stats, 0) set_objective!(stats, f) set_dual_residual!(stats, ∇fNorm) verbose > 0 && @info log_header( [:iter, :f, :dual, :slope, :bk], [Int, T, T, T, Int], hdr_override = Dict(:f => "f(x)", :dual => "‖∇f‖", :slope => "∇fᵀd"), ) verbose > 0 && @info log_row(Any[stats.iter, f, ∇fNorm, T, Int]) optimal = ∇fNorm ≤ ϵ fmin = min(-one(T), f) / eps(T) unbounded = f < fmin set_status!( stats, get_status( nlp, elapsed_time = stats.elapsed_time, optimal = optimal, unbounded = unbounded, max_eval = max_eval, iter = stats.iter, max_iter = max_iter, max_time = max_time, ), ) callback(nlp, solver, stats) done = stats.status != :unknown while !done mul!(d, H, ∇f, -one(T), zero(T)) slope = dot(n, d, ∇f) if slope ≥ 0 @error "not a descent direction" slope set_status!(stats, :not_desc) done = true continue end # Perform improved Armijo linesearch. t, good_grad, ft, nbk, nbW = armijo_wolfe(h, f, slope, ∇ft, τ₁ = τ₁, bk_max = bk_max, verbose = Bool(verbose_subsolver)) copyaxpy!(n, t, d, x, xt) good_grad || grad!(nlp, xt, ∇ft) # Update L-BFGS approximation. d .*= t @. ∇f = ∇ft - ∇f push!(H, d, ∇f) # Move on. x .= xt f = ft ∇f .= ∇ft ∇fNorm = nrm2(n, ∇f) set_iter!(stats, stats.iter + 1) verbose > 0 && mod(stats.iter, verbose) == 0 && @info log_row(Any[stats.iter, f, ∇fNorm, slope, nbk]) set_objective!(stats, f) set_time!(stats, time() - start_time) set_dual_residual!(stats, ∇fNorm) optimal = ∇fNorm ≤ ϵ unbounded = f < fmin set_status!( stats, get_status( nlp, elapsed_time = stats.elapsed_time, optimal = optimal, unbounded = unbounded, max_eval = max_eval, iter = stats.iter, max_iter = max_iter, max_time = max_time, ), ) callback(nlp, solver, stats) done = stats.status != :unknown end verbose > 0 && @info log_row(Any[stats.iter, f, ∇fNorm]) set_solution!(stats, x) stats end
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
15034
# Some parts of this code were adapted from # https://github.com/PythonOptimizers/NLP.py/blob/develop/nlp/optimize/tron.py export tron, TronSolver tron(nlp::AbstractNLPModel; variant = :Newton, kwargs...) = tron(Val(variant), nlp; kwargs...) """ tron(nlp; kwargs...) A pure Julia implementation of a trust-region solver for bound-constrained optimization: min f(x) s.t. ℓ ≦ x ≦ u For advanced usage, first define a `TronSolver` to preallocate the memory used in the algorithm, and then call `solve!`: solver = TronSolver(nlp; kwargs...) solve!(solver, nlp; kwargs...) # Arguments - `nlp::AbstractNLPModel{T, V}` represents the model to solve, see `NLPModels.jl`. The keyword arguments may include - `x::V = nlp.meta.x0`: the initial guess. - `μ₀::T = T(1e-2)`: algorithm parameter in (0, 0.5). - `μ₁::T = one(T)`: algorithm parameter in (0, +∞). - `σ::T = T(10)`: algorithm parameter in (1, +∞). - `max_eval::Int = -1`: maximum number of objective function evaluations. - `max_time::Float64 = 30.0`: maximum time limit in seconds. - `max_iter::Int = typemax(Int)`: maximum number of iterations. - `max_cgiter::Int = 50`: subproblem's iteration limit. - `use_only_objgrad::Bool = false`: If `true`, the algorithm uses only the function `objgrad` instead of `obj` and `grad`. - `cgtol::T = T(0.1)`: subproblem tolerance. - `atol::T = √eps(T)`: absolute tolerance. - `rtol::T = √eps(T)`: relative tolerance, the algorithm stops when ‖x - Proj(x - ∇f(xᵏ))‖ ≤ atol + rtol * ‖∇f(x⁰)‖. Proj denotes here the projection over the bounds. - `verbose::Int = 0`: if > 0, display iteration details every `verbose` iteration. - `subsolver_verbose::Int = 0`: if > 0, display iteration information every `subsolver_verbose` iteration of the subsolver. The keyword arguments of `TronSolver` are passed to the [`TRONTrustRegion`](https://github.com/JuliaSmoothOptimizers/SolverTools.jl/blob/main/src/trust-region/tron-trust-region.jl) constructor. # Output The value returned is a `GenericExecutionStats`, see `SolverCore.jl`. # Callback $(Callback_docstring) # References TRON is described in Chih-Jen Lin and Jorge J. Moré, *Newton's Method for Large Bound-Constrained Optimization Problems*, SIAM J. Optim., 9(4), 1100–1127, 1999. DOI: 10.1137/S1052623498345075 # Examples ```jldoctest; output = false using JSOSolvers, ADNLPModels nlp = ADNLPModel(x -> sum(x), ones(3), zeros(3), 2 * ones(3)); stats = tron(nlp) # output "Execution stats: first-order stationary" ``` ```jldoctest; output = false using JSOSolvers, ADNLPModels nlp = ADNLPModel(x -> sum(x), ones(3), zeros(3), 2 * ones(3)); solver = TronSolver(nlp); stats = solve!(solver, nlp) # output "Execution stats: first-order stationary" ``` """ mutable struct TronSolver{ T, V <: AbstractVector{T}, Op <: AbstractLinearOperator{T}, Aop <: AbstractLinearOperator{T}, } <: AbstractOptimizationSolver x::V xc::V temp::V gx::V gt::V gn::V gpx::V s::V Hs::V H::Op tr::TRONTrustRegion{T, V} ifix::BitVector cg_solver::CgSolver{T, T, V} cg_rhs::V cg_op_diag::V cg_op::LinearOperator{T} ZHZ::Aop end function TronSolver( nlp::AbstractNLPModel{T, V}; max_radius::T = min(one(T) / sqrt(2 * eps(T)), T(100)), kwargs..., ) where {T, V <: AbstractVector{T}} nvar = nlp.meta.nvar x = V(undef, nvar) xc = V(undef, nvar) temp = V(undef, nvar) gx = V(undef, nvar) gt = V(undef, nvar) gn = isa(nlp, QuasiNewtonModel) ? V(undef, nvar) : V(undef, 0) gpx = V(undef, nvar) s = V(undef, nvar) Hs = V(undef, nvar) H = hess_op!(nlp, xc, Hs) Op = typeof(H) tr = TRONTrustRegion(gt, min(one(T), max_radius - eps(T)); max_radius = max_radius, kwargs...) ifix = BitVector(undef, nvar) cg_rhs = V(undef, nvar) cg_op_diag = V(undef, nvar) cg_op = opDiagonal(cg_op_diag) ZHZ = cg_op' * H * cg_op cg_solver = CgSolver(ZHZ, Hs) return TronSolver{T, V, Op, typeof(ZHZ)}( x, xc, temp, gx, gt, gn, gpx, s, Hs, H, tr, ifix, cg_solver, cg_rhs, cg_op_diag, cg_op, ZHZ, ) end function SolverCore.reset!(solver::TronSolver) solver.tr.good_grad = false solver end function SolverCore.reset!(solver::TronSolver, nlp::AbstractNLPModel) @assert (length(solver.gn) == 0) || isa(nlp, QuasiNewtonModel) solver.H = hess_op!(nlp, solver.xc, solver.Hs) solver.ZHZ = solver.cg_op' * solver.H * solver.cg_op solver.tr.good_grad = false solver end @doc (@doc TronSolver) function tron( ::Val{:Newton}, nlp::AbstractNLPModel{T, V}; x::V = nlp.meta.x0, kwargs..., ) where {T, V} dict = Dict(kwargs) subsolver_keys = intersect(keys(dict), tron_keys) subsolver_kwargs = Dict(k => dict[k] for k in subsolver_keys) solver = TronSolver(nlp; subsolver_kwargs...) for k in subsolver_keys pop!(dict, k) end return solve!(solver, nlp; x = x, dict...) end function SolverCore.solve!( solver::TronSolver{T, V}, nlp::AbstractNLPModel{T, V}, stats::GenericExecutionStats{T, V}; callback = (args...) -> nothing, x::V = nlp.meta.x0, μ₀::T = T(1e-2), μ₁::T = one(T), σ::T = T(10), max_eval::Int = -1, max_iter::Int = typemax(Int), max_time::Float64 = 30.0, max_cgiter::Int = 50, use_only_objgrad::Bool = false, cgtol::T = T(0.1), atol::T = √eps(T), rtol::T = √eps(T), verbose::Int = 0, subsolver_verbose::Int = 0, ) where {T, V <: AbstractVector{T}} if !(nlp.meta.minimize) error("tron only works for minimization problem") end if !(unconstrained(nlp) || bound_constrained(nlp)) error("tron should only be called for unconstrained or bound-constrained problems") end reset!(stats) ℓ = nlp.meta.lvar u = nlp.meta.uvar n = nlp.meta.nvar if (verbose > 0 && !(u ≥ x ≥ ℓ)) @warn "Warning: Initial guess is not within bounds." end start_time = time() set_time!(stats, 0.0) solver.x .= x x = solver.x xc = solver.xc gx = solver.gx gt = solver.gt gn = solver.gn gpx = solver.gpx s = solver.s Hs = solver.Hs H = solver.H x .= max.(ℓ, min.(x, u)) fx, _ = objgrad!(nlp, x, gx) # gt = use_only_objgrad ? zeros(T, n) : T[] num_success_iters = 0 # Optimality measure project_step!(gpx, x, gx, ℓ, u, -one(T)) πx = nrm2(n, gpx) ϵ = atol + rtol * πx fmin = min(-one(T), fx) / eps(T) optimal = πx <= ϵ unbounded = fx < fmin set_iter!(stats, 0) set_objective!(stats, fx) set_dual_residual!(stats, πx) if isa(nlp, QuasiNewtonModel) gn .= gx end αC = one(T) tr = solver.tr tr.radius = tr.initial_radius = min(max(one(T), πx / 10), tr.max_radius) verbose > 0 && @info log_header( [:iter, :f, :dual, :radius, :ratio, :cgstatus], [Int, T, T, T, T, String], hdr_override = Dict(:f => "f(x)", :dual => "π", :radius => "Δ"), ) verbose > 0 && @info log_row([stats.iter, fx, πx, T, T, String]) set_status!( stats, get_status( nlp, elapsed_time = stats.elapsed_time, optimal = optimal, unbounded = unbounded, max_eval = max_eval, iter = stats.iter, max_iter = max_iter, max_time = max_time, ), ) callback(nlp, solver, stats) done = stats.status != :unknown while !done # Current iteration xc .= x # implicitly update H = hess_op!(nlp, xc, Hs) fc = fx Δ = tr.radius αC, s, cauchy_status = cauchy!(x, H, gx, Δ, αC, ℓ, u, s, Hs, μ₀ = μ₀, μ₁ = μ₁, σ = σ) if cauchy_status != :success stats.status = cauchy_status done = true continue end cginfo = projected_newton!( solver, x, H, gx, Δ, cgtol, ℓ, u, s, Hs, max_cgiter = max_cgiter, max_time = max_time - stats.elapsed_time, subsolver_verbose = subsolver_verbose, ) slope = dot(n, gx, s) qs = dot(n, s, Hs) / 2 + slope fx = if use_only_objgrad objgrad!(nlp, x, gt)[1] else obj(nlp, x) end ared, pred = aredpred!(tr, nlp, fc, fx, qs, x, s, slope) if pred ≥ 0 stats.status = :neg_pred done = true continue end tr.ratio = ared / pred if acceptable(tr) num_success_iters += 1 if use_only_objgrad gx .= gt else grad!(nlp, x, gx) end project_step!(gpx, x, gx, ℓ, u, -one(T)) πx = nrm2(n, gpx) if isa(nlp, QuasiNewtonModel) gn .-= gx gn .*= -1 # gn = ∇f(xₖ₊₁) - ∇f(xₖ) push!(nlp, s, gn) gn .= gx end end if !acceptable(tr) fx = fc x .= xc end set_iter!(stats, stats.iter + 1) verbose > 0 && mod(stats.iter, verbose) == 0 && @info log_row([stats.iter, fx, πx, Δ, tr.ratio, cginfo]) s_norm = nrm2(n, s) if num_success_iters == 0 tr.radius = min(Δ, s_norm) end # Update the trust region update!(tr, s_norm) optimal = πx <= ϵ unbounded = fx < fmin set_objective!(stats, fx) set_time!(stats, time() - start_time) set_dual_residual!(stats, πx) set_status!( stats, get_status( nlp, elapsed_time = stats.elapsed_time, optimal = optimal, unbounded = unbounded, max_eval = max_eval, iter = stats.iter, max_iter = max_iter, max_time = max_time, ), ) callback(nlp, solver, stats) done = stats.status != :unknown end verbose > 0 && @info log_row(Any[stats.iter, fx, πx, tr.radius]) set_solution!(stats, x) stats end """`s = projected_line_search!(x, H, g, d, ℓ, u, Hs; μ₀ = 1e-2)` Performs a projected line search, searching for a step size `t` such that 0.5sᵀHs + sᵀg ≦ μ₀sᵀg, where `s = P(x + t * d) - x`, while remaining on the same face as `x + d`. Backtracking is performed from t = 1.0. `x` is updated in place. """ function projected_line_search!( x::AbstractVector{T}, H::Union{AbstractMatrix, AbstractLinearOperator}, g::AbstractVector{T}, d::AbstractVector{T}, ℓ::AbstractVector{T}, u::AbstractVector{T}, Hs::AbstractVector{T}, s::AbstractVector{T}; μ₀::Real = T(1e-2), ) where {T <: Real} α = one(T) _, brkmin, _ = breakpoints(x, d, ℓ, u) nsteps = 0 s .= zero(T) Hs .= zero(T) search = true while search && α > brkmin nsteps += 1 project_step!(s, x, d, ℓ, u, α) slope, qs = compute_Hs_slope_qs!(Hs, H, s, g) if qs <= μ₀ * slope search = false else α /= 2 end end if α < 1 && α < brkmin α = brkmin project_step!(s, x, d, ℓ, u, α) slope, qs = compute_Hs_slope_qs!(Hs, H, s, g) end project_step!(s, x, d, ℓ, u, α) x .= x .+ s return s end """`α, s = cauchy!(x, H, g, Δ, ℓ, u, s, Hs; μ₀ = 1e-2, μ₁ = 1.0, σ=10.0)` Computes a Cauchy step `s = P(x - α g) - x` for min q(s) = ¹/₂sᵀHs + gᵀs s.t. ‖s‖ ≦ μ₁Δ, ℓ ≦ x + s ≦ u, with the sufficient decrease condition q(s) ≦ μ₀sᵀg. """ function cauchy!( x::AbstractVector{T}, H::Union{AbstractMatrix, AbstractLinearOperator}, g::AbstractVector{T}, Δ::Real, α::Real, ℓ::AbstractVector{T}, u::AbstractVector{T}, s::AbstractVector{T}, Hs::AbstractVector{T}; μ₀::Real = T(1e-2), μ₁::Real = one(T), σ::Real = T(10), ) where {T <: Real} # TODO: Use brkmin to care for g direction s .= .-g _, _, brkmax = breakpoints(x, s, ℓ, u) n = length(x) s .= zero(T) Hs .= zero(T) status = :success project_step!(s, x, g, ℓ, u, -α) # Interpolate or extrapolate s_norm = nrm2(n, s) if s_norm > μ₁ * Δ interp = true else slope, qs = compute_Hs_slope_qs!(Hs, H, s, g) interp = qs >= μ₀ * slope end if interp search = true while search α /= σ project_step!(s, x, g, ℓ, u, -α) s_norm = nrm2(n, s) if s_norm <= μ₁ * Δ slope, qs = compute_Hs_slope_qs!(Hs, H, s, g) search = qs >= μ₀ * slope end # TODO: Correctly assess why this fails if α < sqrt(nextfloat(zero(α))) search = false status = :small_step end end else search = true αs = α while search && α <= brkmax α *= σ project_step!(s, x, g, ℓ, u, -α) s_norm = nrm2(n, s) if s_norm <= μ₁ * Δ slope, qs = compute_Hs_slope_qs!(Hs, H, s, g) if qs <= μ₀ * slope αs = α end else search = false end end # Recover the last successful step α = αs s = project_step!(s, x, g, ℓ, u, -α) end return α, s, status end """ projected_newton!(solver, x, H, g, Δ, cgtol, ℓ, u, s, Hs; max_time = Inf, max_cgiter = 50, subsolver_verbose = 0) Compute an approximate solution `d` for min q(d) = ¹/₂dᵀHs + dᵀg s.t. ℓ ≦ x + d ≦ u, ‖d‖ ≦ Δ starting from `s`. The steps are computed using the conjugate gradient method projected on the active bounds. """ function projected_newton!( solver::TronSolver{T}, x::AbstractVector{T}, H::Union{AbstractMatrix, AbstractLinearOperator}, g::AbstractVector{T}, Δ::T, cgtol::T, ℓ::AbstractVector{T}, u::AbstractVector{T}, s::AbstractVector{T}, Hs::AbstractVector{T}; max_cgiter::Int = 50, max_time::Float64 = Inf, subsolver_verbose = 0, ) where {T <: Real} start_time, elapsed_time = time(), 0.0 n = length(x) status = "" cg_solver, cgs_rhs = solver.cg_solver, solver.cg_rhs cg_op_diag, ZHZ = solver.cg_op_diag, solver.ZHZ w = solver.temp ifix = solver.ifix mul!(Hs, H, s) # Projected Newton Step exit_optimal, exit_pcg, exit_itmax, exit_time = false, false, false, false iters = 0 x .= x .+ s project!(x, x, ℓ, u) while !(exit_optimal || exit_pcg || exit_itmax || exit_time) active!(ifix, x, ℓ, u) if sum(ifix) == n exit_optimal = true continue end gfnorm = 0 for i = 1:n cgs_rhs[i] = ifix[i] ? 0 : -g[i] gfnorm += cgs_rhs[i]^2 cgs_rhs[i] -= ifix[i] ? 0 : Hs[i] cg_op_diag[i] = ifix[i] ? 0 : 1 # implictly changes cg_op and so ZHZ end Krylov.cg!( cg_solver, ZHZ, cgs_rhs, radius = Δ, rtol = cgtol, atol = zero(T), timemax = max_time - elapsed_time, verbose = subsolver_verbose, ) st, stats = cg_solver.x, cg_solver.stats status = stats.status iters += 1 # Projected line search cgs_rhs .*= -1 projected_line_search!(x, ZHZ, cgs_rhs, st, ℓ, u, Hs, w) s .+= w mul!(Hs, H, s) newnorm = 0 for i = 1:n cgs_rhs[i] = ifix[i] ? 0 : Hs[i] + g[i] newnorm += cgs_rhs[i]^2 end if √newnorm <= cgtol * √gfnorm exit_optimal = true elseif status == "on trust-region boundary" exit_pcg = true elseif iters >= max_cgiter exit_itmax = true end elapsed_time = time() - start_time exit_time = elapsed_time >= max_time end status = if exit_optimal "stationary point found" elseif exit_pcg "on trust-region boundary" elseif exit_itmax "maximum number of iterations" elseif exit_time "time limit exceeded" else status # unknown end return status end
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
16178
export TronSolverNLS const tronls_allowed_subsolvers = [CglsSolver, CrlsSolver, LsqrSolver, LsmrSolver] tron(nls::AbstractNLSModel; variant = :GaussNewton, kwargs...) = tron(Val(variant), nls; kwargs...) """ tron(nls; kwargs...) A pure Julia implementation of a trust-region solver for bound-constrained nonlinear least-squares problems: min ½‖F(x)‖² s.t. ℓ ≦ x ≦ u For advanced usage, first define a `TronSolverNLS` to preallocate the memory used in the algorithm, and then call `solve!`: solver = TronSolverNLS(nls, subsolver_type::Type{<:KrylovSolver} = LsmrSolver; kwargs...) solve!(solver, nls; kwargs...) # Arguments - `nls::AbstractNLSModel{T, V}` represents the model to solve, see `NLPModels.jl`. The keyword arguments may include - `x::V = nlp.meta.x0`: the initial guess. - `subsolver_type::Symbol = LsmrSolver`: `Krylov.jl` method used as subproblem solver, see `JSOSolvers.tronls_allowed_subsolvers` for a list. - `μ₀::T = T(1e-2)`: algorithm parameter in (0, 0.5). - `μ₁::T = one(T)`: algorithm parameter in (0, +∞). - `σ::T = T(10)`: algorithm parameter in (1, +∞). - `max_eval::Int = -1`: maximum number of objective function evaluations. - `max_time::Float64 = 30.0`: maximum time limit in seconds. - `max_iter::Int = typemax(Int)`: maximum number of iterations. - `max_cgiter::Int = 50`: subproblem iteration limit. - `cgtol::T = T(0.1)`: subproblem tolerance. - `atol::T = √eps(T)`: absolute tolerance. - `rtol::T = √eps(T)`: relative tolerance, the algorithm stops when ‖x - Proj(x - ∇f(xᵏ))‖ ≤ atol + rtol * ‖∇f(x⁰)‖. Proj denotes here the projection over the bounds. - `Fatol::T = √eps(T)`: absolute tolerance on the residual. - `Frtol::T = eps(T)`: relative tolerance on the residual, the algorithm stops when ‖F(xᵏ)‖ ≤ Fatol + Frtol * ‖F(x⁰)‖. - `verbose::Int = 0`: if > 0, display iteration details every `verbose` iteration. - `subsolver_verbose::Int = 0`: if > 0, display iteration information every `subsolver_verbose` iteration of the subsolver. The keyword arguments of `TronSolverNLS` are passed to the [`TRONTrustRegion`](https://github.com/JuliaSmoothOptimizers/SolverTools.jl/blob/main/src/trust-region/tron-trust-region.jl) constructor. # Output The value returned is a `GenericExecutionStats`, see `SolverCore.jl`. # Callback $(Callback_docstring) # References This is an adaptation for bound-constrained nonlinear least-squares problems of the TRON method described in Chih-Jen Lin and Jorge J. Moré, *Newton's Method for Large Bound-Constrained Optimization Problems*, SIAM J. Optim., 9(4), 1100–1127, 1999. DOI: 10.1137/S1052623498345075 # Examples ```jldoctest; output = false using JSOSolvers, ADNLPModels F(x) = [x[1] - 1.0; 10 * (x[2] - x[1]^2)] x0 = [-1.2; 1.0] nls = ADNLSModel(F, x0, 2, zeros(2), 0.5 * ones(2)) stats = tron(nls) # output "Execution stats: first-order stationary" ``` ```jldoctest; output = false using JSOSolvers, ADNLPModels F(x) = [x[1] - 1.0; 10 * (x[2] - x[1]^2)] x0 = [-1.2; 1.0] nls = ADNLSModel(F, x0, 2, zeros(2), 0.5 * ones(2)) solver = TronSolverNLS(nls) stats = solve!(solver, nls) # output "Execution stats: first-order stationary" ``` """ mutable struct TronSolverNLS{ T, V <: AbstractVector{T}, Sub <: KrylovSolver{T, T, V}, Op <: AbstractLinearOperator{T}, Aop <: AbstractLinearOperator{T}, } <: AbstractOptimizationSolver x::V xc::V temp::V gx::V gt::V gpx::V s::V tr::TRONTrustRegion{T, V} Fx::V Fc::V Av::V Atv::V A::Op As::V ifix::BitVector ls_rhs::V ls_op_diag::V ls_op::LinearOperator{T} AZ::Aop ls_subsolver::Sub end function TronSolverNLS( nlp::AbstractNLSModel{T, V}; subsolver_type::Type{<:KrylovSolver} = LsmrSolver, max_radius::T = min(one(T) / sqrt(2 * eps(T)), T(100)), kwargs..., ) where {T, V <: AbstractVector{T}} subsolver_type in tronls_allowed_subsolvers || error("subproblem solver must be one of $(tronls_allowed_subsolvers)") nvar = nlp.meta.nvar nequ = nlp.nls_meta.nequ x = V(undef, nvar) xc = V(undef, nvar) temp = V(undef, nvar) gx = V(undef, nvar) gt = V(undef, nvar) gpx = V(undef, nvar) s = V(undef, nvar) tr = TRONTrustRegion(gt, min(one(T), max_radius - eps(T)); max_radius = max_radius, kwargs...) Fx = V(undef, nequ) Fc = V(undef, nequ) Av = V(undef, nequ) Atv = V(undef, nvar) A = jac_op_residual!(nlp, xc, Av, Atv) As = V(undef, nequ) ifix = BitVector(undef, nvar) ls_rhs = V(undef, nequ) ls_op_diag = V(undef, nvar) ls_op = opDiagonal(ls_op_diag) AZ = A * ls_op ls_subsolver = subsolver_type(AZ, As) Sub = typeof(ls_subsolver) return TronSolverNLS{T, V, Sub, typeof(A), typeof(AZ)}( x, xc, temp, gx, gt, gpx, s, tr, Fx, Fc, Av, Atv, A, As, ifix, ls_rhs, ls_op_diag, ls_op, AZ, ls_subsolver, ) end function SolverCore.reset!(solver::TronSolverNLS) solver.tr.good_grad = false solver end function SolverCore.reset!(solver::TronSolverNLS, nlp::AbstractNLPModel) solver.A = jac_op_residual!(nlp, solver.xc, solver.Av, solver.Atv) solver.AZ = solver.A * solver.ls_op reset!(solver) solver end @doc (@doc TronSolverNLS) function tron( ::Val{:GaussNewton}, nlp::AbstractNLSModel{T, V}; x::V = nlp.meta.x0, subsolver_type::Type{<:KrylovSolver} = LsmrSolver, kwargs..., ) where {T, V} dict = Dict(kwargs) subsolver_keys = intersect(keys(dict), tron_keys) subsolver_kwargs = Dict(k => dict[k] for k in subsolver_keys) solver = TronSolverNLS(nlp, subsolver_type = subsolver_type; subsolver_kwargs...) for k in subsolver_keys pop!(dict, k) end return solve!(solver, nlp; x = x, dict...) end function SolverCore.solve!( solver::TronSolverNLS{T, V}, nlp::AbstractNLSModel{T, V}, stats::GenericExecutionStats{T, V}; callback = (args...) -> nothing, x::V = nlp.meta.x0, μ₀::Real = T(1e-2), μ₁::Real = one(T), σ::Real = T(10), max_eval::Int = -1, max_iter::Int = typemax(Int), max_time::Real = 30.0, max_cgiter::Int = 50, cgtol::T = T(0.1), atol::T = √eps(T), rtol::T = √eps(T), Fatol::T = √eps(T), Frtol::T = eps(T), verbose::Int = 0, subsolver_verbose::Int = 0, ) where {T, V <: AbstractVector{T}} if !(nlp.meta.minimize) error("tron only works for minimization problem") end if !(unconstrained(nlp) || bound_constrained(nlp)) error("tron should only be called for unconstrained or bound-constrained problems") end reset!(stats) ℓ = nlp.meta.lvar u = nlp.meta.uvar n = nlp.meta.nvar m = nlp.nls_meta.nequ if (verbose > 0 && !(u ≥ x ≥ ℓ)) @warn "Warning: Initial guess is not within bounds." end start_time = time() set_time!(stats, 0.0) solver.x .= x x = solver.x xc = solver.xc gx = solver.gx # Preallocation s = solver.s As = solver.As Ax = solver.A gpx = solver.gpx Fx, Fc = solver.Fc, solver.Fx x .= max.(ℓ, min.(x, u)) residual!(nlp, x, Fx) fx, gx = objgrad!(nlp, x, gx, Fx, recompute = false) gt = solver.gt num_success_iters = 0 # Optimality measure project_step!(gpx, x, gx, ℓ, u, -one(T)) πx = nrm2(n, gpx) ϵ = atol + rtol * πx fmin = min(-one(T), fx) / eps(T) optimal = πx <= ϵ unbounded = fx < fmin ϵF = Fatol + Frtol * 2 * √fx project_step!(gpx, x, x, ℓ, u, zero(T)) # Proj(x) - x small_residual = (norm(gpx) <= ϵ) && (2 * √fx <= ϵF) set_iter!(stats, 0) set_objective!(stats, fx) set_dual_residual!(stats, πx) αC = one(T) tr = solver.tr tr.radius = tr.initial_radius = min(max(one(T), πx / 10), tr.max_radius) verbose > 0 && @info log_header( [:iter, :f, :dual, :radius, :ratio, :cgstatus], [Int, T, T, T, T, String], hdr_override = Dict(:f => "f(x)", :dual => "π", :radius => "Δ"), ) verbose > 0 && @info log_row([stats.iter, fx, πx, T, T, String]) set_status!( stats, get_status( nlp, elapsed_time = stats.elapsed_time, optimal = optimal, small_residual = small_residual, unbounded = unbounded, max_eval = max_eval, iter = stats.iter, max_iter = max_iter, max_time = max_time, ), ) callback(nlp, solver, stats) done = stats.status != :unknown while !done # Current iteration xc .= x # implicitly update Ax fc = fx Fc .= Fx Δ = tr.radius αC, s, cauchy_status = cauchy_ls!(x, Ax, Fx, gx, Δ, αC, ℓ, u, s, As, μ₀ = μ₀, μ₁ = μ₁, σ = σ) if cauchy_status != :success @error "Cauchy step returned: $cauchy_status" stats.status = cauchy_status done = true continue end cginfo = projected_gauss_newton!( solver, x, Ax, Fx, Δ, cgtol, s, ℓ, u, As, max_cgiter = max_cgiter, max_time = max_time - stats.elapsed_time, subsolver_verbose = subsolver_verbose, ) slope = dot(m, Fx, As) qs = dot(As, As) / 2 + slope residual!(nlp, x, Fx) fx = obj(nlp, x, Fx, recompute = false) ared, pred = aredpred!(tr, nlp, Fx, fc, fx, qs, x, s, slope) if pred ≥ 0 stats.status = :neg_pred done = true continue end tr.ratio = ared / pred s_norm = nrm2(n, s) if num_success_iters == 0 tr.radius = min(Δ, s_norm) end # Update the trust region update!(tr, s_norm) if acceptable(tr) num_success_iters += 1 if tr.good_grad gx .= tr.gt tr.good_grad = false else grad!(nlp, x, gx, Fx, recompute = false) end project_step!(gpx, x, gx, ℓ, u, -one(T)) πx = nrm2(n, gpx) end # No post-iteration if !acceptable(tr) Fx .= Fc fx = fc x .= xc end set_iter!(stats, stats.iter + 1) set_objective!(stats, fx) set_time!(stats, time() - start_time) set_dual_residual!(stats, πx) optimal = πx <= ϵ project_step!(gpx, x, x, ℓ, u, zero(T)) # Proj(x) - x small_residual = (norm(gpx) <= ϵ) && (2 * √fx <= ϵF) unbounded = fx < fmin verbose > 0 && mod(stats.iter, verbose) == 0 && @info log_row([stats.iter, fx, πx, Δ, tr.ratio, cginfo]) set_status!( stats, get_status( nlp, elapsed_time = stats.elapsed_time, optimal = optimal, small_residual = small_residual, unbounded = unbounded, max_eval = max_eval, iter = stats.iter, max_iter = max_iter, max_time = max_time, ), ) callback(nlp, solver, stats) done = stats.status != :unknown end verbose > 0 && @info log_row(Any[stats.iter, fx, πx, tr.radius]) set_solution!(stats, x) stats end """`s = projected_line_search_ls!(x, A, g, d, ℓ, u, As, s; μ₀ = 1e-2)` Performs a projected line search, searching for a step size `t` such that ½‖As + Fx‖² ≤ ½‖Fx‖² + μ₀FxᵀAs where `s = P(x + t * d) - x`, while remaining on the same face as `x + d`. Backtracking is performed from t = 1.0. `x` is updated in place. """ function projected_line_search_ls!( x::AbstractVector{T}, A::Union{AbstractMatrix, AbstractLinearOperator}, Fx::AbstractVector{T}, d::AbstractVector{T}, ℓ::AbstractVector{T}, u::AbstractVector{T}, As::AbstractVector{T}, s::AbstractVector{T}; μ₀::Real = T(1e-2), ) where {T <: Real} α = one(T) _, brkmin, _ = breakpoints(x, d, ℓ, u) nsteps = 0 n = length(x) m = length(Fx) s .= zero(T) As .= zero(T) search = true while search && α > brkmin nsteps += 1 project_step!(s, x, d, ℓ, u, α) slope, qs = compute_As_slope_qs!(As, A, s, Fx) if qs <= μ₀ * slope search = false else α /= 2 end end if α < 1 && α < brkmin α = brkmin project_step!(s, x, d, ℓ, u, α) slope, qs = compute_As_slope_qs!(As, A, s, Fx) end project_step!(s, x, d, ℓ, u, α) x .= x .+ s return s end """`α, s = cauchy_ls!(x, A, Fx, g, Δ, ℓ, u, s, As; μ₀ = 1e-2, μ₁ = 1.0, σ=10.0)` Computes a Cauchy step `s = P(x - α g) - x` for min q(s) = ½‖As + Fx‖² - ½‖Fx‖² s.t. ‖s‖ ≦ μ₁Δ, ℓ ≦ x + s ≦ u, with the sufficient decrease condition q(s) ≦ μ₀gᵀs, where g = AᵀFx. """ function cauchy_ls!( x::AbstractVector{T}, A::Union{AbstractMatrix, AbstractLinearOperator}, Fx::AbstractVector{T}, g::AbstractVector{T}, Δ::Real, α::Real, ℓ::AbstractVector{T}, u::AbstractVector{T}, s::AbstractVector{T}, As::AbstractVector{T}; μ₀::Real = T(1e-2), μ₁::Real = one(T), σ::Real = T(10), ) where {T <: Real} # TODO: Use brkmin to care for g direction s .= .-g _, _, brkmax = breakpoints(x, s, ℓ, u) n = length(x) s .= zero(T) As .= zero(T) status = :success project_step!(s, x, g, ℓ, u, -α) # Interpolate or extrapolate s_norm = nrm2(n, s) if s_norm > μ₁ * Δ interp = true else slope, qs = compute_As_slope_qs!(As, A, s, Fx) interp = qs >= μ₀ * slope end if interp search = true while search α /= σ project_step!(s, x, g, ℓ, u, -α) s_norm = nrm2(n, s) if s_norm <= μ₁ * Δ slope, qs = compute_As_slope_qs!(As, A, s, Fx) search = qs >= μ₀ * slope end # TODO: Correctly assess why this fails if α < sqrt(nextfloat(zero(α))) search = false status = :small_step end end else search = true αs = α while search && α <= brkmax α *= σ project_step!(s, x, g, ℓ, u, -α) s_norm = nrm2(n, s) if s_norm <= μ₁ * Δ slope, qs = compute_As_slope_qs!(As, A, s, Fx) if qs <= μ₀ * slope αs = α end else search = false end end # Recover the last successful step α = αs s = project_step!(s, x, g, ℓ, u, -α) end return α, s, status end """ projected_gauss_newton!(solver, x, A, Fx, Δ, gctol, s, max_cgiter, ℓ, u; max_cgiter = 50, max_time = Inf, subsolver_verbose = 0) Compute an approximate solution `d` for min q(d) = ½‖Ad + Fx‖² - ½‖Fx‖² s.t. ℓ ≦ x + d ≦ u, ‖d‖ ≦ Δ starting from `s`. The steps are computed using the conjugate gradient method projected on the active bounds. """ function projected_gauss_newton!( solver::TronSolverNLS{T}, x::AbstractVector{T}, A::Union{AbstractMatrix, AbstractLinearOperator}, Fx::AbstractVector{T}, Δ::T, cgtol::T, s::AbstractVector{T}, ℓ::AbstractVector{T}, u::AbstractVector{T}, As::AbstractVector{T}; max_cgiter::Int = 50, max_time::Float64 = Inf, subsolver_verbose = 0, ) where {T <: Real} start_time, elapsed_time = time(), 0.0 n = length(x) status = "" w = solver.temp ls_rhs = solver.ls_rhs ls_op_diag, AZ = solver.ls_op_diag, solver.AZ ifix = solver.ifix ls_subsolver = solver.ls_subsolver mul!(As, A, s) Fxnorm = norm(Fx) # Projected Newton Step exit_optimal, exit_pcg, exit_itmax, exit_time = false, false, false, false iters = 0 x .= x .+ s project!(x, x, ℓ, u) while !(exit_optimal || exit_pcg || exit_itmax || exit_time) active!(ifix, x, ℓ, u) if sum(ifix) == n exit_optimal = true continue end for i = 1:n ls_op_diag[i] = ifix[i] ? 0 : 1 # implictly changes ls_op and so AZ end ls_rhs .= .-As .- Fx Krylov.solve!( ls_subsolver, AZ, ls_rhs, radius = Δ, rtol = cgtol, atol = zero(T), timemax = max_time - elapsed_time, verbose = subsolver_verbose, ) st, stats = ls_subsolver.x, ls_subsolver.stats iters += 1 status = stats.status # Projected line search ls_rhs .*= -1 projected_line_search_ls!(x, AZ, ls_rhs, st, ℓ, u, As, w) s .+= w mul!(As, A, s) ls_rhs .= .-As .- Fx mul!(w, AZ', ls_rhs) if norm(w) <= cgtol * Fxnorm exit_optimal = true elseif status == "on trust-region boundary" exit_pcg = true elseif iters >= max_cgiter exit_itmax = true end elapsed_time = time() - start_time exit_time = elapsed_time >= max_time end status = if exit_optimal "stationary point found" elseif exit_pcg "on trust-region boundary" elseif exit_itmax "maximum number of iterations" elseif exit_time "time limit exceeded" else status # unknown end return status end
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
10965
export trunk, TrunkSolver trunk(nlp::AbstractNLPModel; variant = :Newton, kwargs...) = trunk(Val(variant), nlp; kwargs...) """ trunk(nlp; kwargs...) A trust-region solver for unconstrained optimization using exact second derivatives. For advanced usage, first define a `TrunkSolver` to preallocate the memory used in the algorithm, and then call `solve!`: solver = TrunkSolver(nlp, subsolver_type::Type{<:KrylovSolver} = CgSolver) solve!(solver, nlp; kwargs...) # Arguments - `nlp::AbstractNLPModel{T, V}` represents the model to solve, see `NLPModels.jl`. The keyword arguments may include - `subsolver_logger::AbstractLogger = NullLogger()`: subproblem's logger. - `x::V = nlp.meta.x0`: the initial guess. - `atol::T = √eps(T)`: absolute tolerance. - `rtol::T = √eps(T)`: relative tolerance, the algorithm stops when ‖∇f(xᵏ)‖ ≤ atol + rtol * ‖∇f(x⁰)‖. - `max_eval::Int = -1`: maximum number of objective function evaluations. - `max_time::Float64 = 30.0`: maximum time limit in seconds. - `max_iter::Int = typemax(Int)`: maximum number of iterations. - `bk_max::Int = 10`: algorithm parameter. - `monotone::Bool = true`: algorithm parameter. - `nm_itmax::Int = 25`: algorithm parameter. - `verbose::Int = 0`: if > 0, display iteration information every `verbose` iteration. - `subsolver_verbose::Int = 0`: if > 0, display iteration information every `subsolver_verbose` iteration of the subsolver. - `M`: linear operator that models a Hermitian positive-definite matrix of size `n`; passed to Krylov subsolvers. # Output The returned value is a `GenericExecutionStats`, see `SolverCore.jl`. # Callback $(Callback_docstring) # References This implementation follows the description given in A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-Region Methods, volume 1 of MPS/SIAM Series on Optimization. SIAM, Philadelphia, USA, 2000. DOI: 10.1137/1.9780898719857 The main algorithm follows the basic trust-region method described in Section 6. The backtracking linesearch follows Section 10.3.2. The nonmonotone strategy follows Section 10.1.3, Algorithm 10.1.2. # Examples ```jldoctest; output = false using JSOSolvers, ADNLPModels nlp = ADNLPModel(x -> sum(x.^2), ones(3)) stats = trunk(nlp) # output "Execution stats: first-order stationary" ``` ```jldoctest; output = false using JSOSolvers, ADNLPModels nlp = ADNLPModel(x -> sum(x.^2), ones(3)) solver = TrunkSolver(nlp) stats = solve!(solver, nlp) # output "Execution stats: first-order stationary" ``` """ mutable struct TrunkSolver{ T, V <: AbstractVector{T}, Sub <: KrylovSolver{T, T, V}, Op <: AbstractLinearOperator{T}, } <: AbstractOptimizationSolver x::V xt::V gx::V gt::V gn::V Hs::V subsolver::Sub H::Op tr::TrustRegion{T, V} end function TrunkSolver( nlp::AbstractNLPModel{T, V}; subsolver_type::Type{<:KrylovSolver} = CgSolver, ) where {T, V <: AbstractVector{T}} nvar = nlp.meta.nvar x = V(undef, nvar) xt = V(undef, nvar) gx = V(undef, nvar) gt = V(undef, nvar) gn = isa(nlp, QuasiNewtonModel) ? V(undef, nvar) : V(undef, 0) Hs = V(undef, nvar) subsolver = subsolver_type(nvar, nvar, V) Sub = typeof(subsolver) H = hess_op!(nlp, x, Hs) Op = typeof(H) tr = TrustRegion(gt, one(T)) return TrunkSolver{T, V, Sub, Op}(x, xt, gx, gt, gn, Hs, subsolver, H, tr) end function SolverCore.reset!(solver::TrunkSolver) solver.tr.good_grad = false solver.tr.radius = solver.tr.initial_radius solver end function SolverCore.reset!(solver::TrunkSolver, nlp::AbstractNLPModel) @assert (length(solver.gn) == 0) || isa(nlp, QuasiNewtonModel) solver.H = hess_op!(nlp, solver.x, solver.Hs) solver.tr.good_grad = false solver.tr.radius = solver.tr.initial_radius solver end @doc (@doc TrunkSolver) function trunk( ::Val{:Newton}, nlp::AbstractNLPModel; x::V = nlp.meta.x0, subsolver_type::Type{<:KrylovSolver} = CgSolver, kwargs..., ) where {V} solver = TrunkSolver(nlp, subsolver_type = subsolver_type) return solve!(solver, nlp; x = x, kwargs...) end function SolverCore.solve!( solver::TrunkSolver{T, V}, nlp::AbstractNLPModel{T, V}, stats::GenericExecutionStats{T, V}; callback = (args...) -> nothing, subsolver_logger::AbstractLogger = NullLogger(), x::V = nlp.meta.x0, atol::T = √eps(T), rtol::T = √eps(T), max_eval::Int = -1, max_iter::Int = typemax(Int), max_time::Float64 = 30.0, bk_max::Int = 10, monotone::Bool = true, nm_itmax::Int = 25, verbose::Int = 0, subsolver_verbose::Int = 0, M = I, ) where {T, V <: AbstractVector{T}} if !(nlp.meta.minimize) error("trunk only works for minimization problem") end if !unconstrained(nlp) error("trunk should only be called for unconstrained problems. Try tron instead") end reset!(stats) start_time = time() set_time!(stats, 0.0) n = nlp.meta.nvar solver.x .= x x = solver.x xt = solver.xt ∇f = solver.gx ∇fn = solver.gn Hs = solver.Hs subsolver = solver.subsolver H = solver.H tr = solver.tr cgtol = one(T) # Must be ≤ 1. # Armijo linesearch parameter. β = eps(T)^T(1 / 4) f = obj(nlp, x) grad!(nlp, x, ∇f) isa(nlp, QuasiNewtonModel) && (∇fn .= ∇f) ∇fNorm2 = norm(∇f) ∇fNormM = normM!(n, ∇f, M, Hs) ϵ = atol + rtol * ∇fNorm2 tr = solver.tr tr.radius = min(max(∇fNormM / 10, one(T)), T(100)) # Non-monotone mode parameters. # fmin: current best overall objective value # nm_iter: number of successful iterations since fmin was first attained # fref: objective value at reference iteration # σref: cumulative model decrease over successful iterations since the reference iteration fmin = fref = fcur = f σref = σcur = zero(T) nm_iter = 0 set_iter!(stats, 0) set_objective!(stats, f) set_dual_residual!(stats, ∇fNorm2) optimal = ∇fNorm2 ≤ ϵ fmin = min(-one(T), f) / eps(T) unbounded = f < fmin verbose > 0 && @info log_header( [:iter, :f, :dual, :radius, :ratio, :inner, :bk, :cgstatus], [Int, T, T, T, T, Int, Int, String], hdr_override = Dict(:f => "f(x)", :dual => "π", :radius => "Δ"), ) verbose > 0 && @info log_row([stats.iter, f, ∇fNorm2, T, T, Int, Int, String]) set_status!( stats, get_status( nlp, elapsed_time = stats.elapsed_time, optimal = optimal, unbounded = unbounded, max_eval = max_eval, iter = stats.iter, max_iter = max_iter, max_time = max_time, ), ) callback(nlp, solver, stats) done = stats.status != :unknown while !done # Compute inexact solution to trust-region subproblem # minimize g's + 1/2 s'Hs subject to ‖s‖_M ≤ radius. # In this particular case, we may use an operator with preallocation. cgtol = max(rtol, min(T(0.1), √∇fNormM, T(0.9) * cgtol)) ∇f .*= -1 Krylov.solve!( subsolver, H, ∇f, atol = atol, rtol = cgtol, radius = tr.radius, itmax = max(2 * n, 50), timemax = max_time - stats.elapsed_time, verbose = subsolver_verbose, M = M, ) s, cg_stats = subsolver.x, subsolver.stats # Compute actual vs. predicted reduction. sNorm = nrm2(n, s) copyaxpy!(n, one(T), s, x, xt) slope = -dot(n, s, ∇f) mul!(Hs, H, s) curv = dot(n, s, Hs) Δq = slope + curv / 2 ft = obj(nlp, xt) ared, pred = aredpred!(tr, nlp, f, ft, Δq, xt, s, slope) if pred ≥ 0 stats.status = :neg_pred done = true continue end tr.ratio = ared / pred if !monotone ared_hist, pred_hist = aredpred!(tr, nlp, fref, ft, σref + Δq, xt, s, slope) if pred_hist ≥ 0 stats.status = :neg_pred done = true continue end ρ_hist = ared_hist / pred_hist tr.ratio = max(tr.ratio, ρ_hist) end bk = 0 if !acceptable(tr) # Perform backtracking linesearch along s # Scaling s to the trust-region boundary, as recommended in # Algorithm 10.3.2 of the Trust-Region book # appears to deteriorate results. # BLAS.scal!(n, tr.radius / sNorm, s, 1) # slope *= tr.radius / sNorm # sNorm = tr.radius if slope ≥ 0 @error "not a descent direction: slope = $slope, ‖∇f‖ = $∇fNorm2" stats.status = :not_desc done = true continue end α = one(T) while (bk < bk_max) && (ft > f + β * α * slope) bk = bk + 1 α /= T(1.2) copyaxpy!(n, α, s, x, xt) ft = obj(nlp, xt) end sNorm *= α scal!(n, α, s) slope *= α Δq = slope + α * α * curv / 2 ared, pred = aredpred!(tr, nlp, f, ft, Δq, xt, s, slope) if pred ≥ 0 stats.status = :neg_pred done = true continue end tr.ratio = ared / pred if !monotone ared_hist, pred_hist = aredpred!(tr, nlp, fref, ft, σref + Δq, xt, s, slope) if pred_hist ≥ 0 stats.status = :neg_pred done = true continue end ρ_hist = ared_hist / pred_hist tr.ratio = max(tr.ratio, ρ_hist) end end set_iter!(stats, stats.iter + 1) if acceptable(tr) # Update non-monotone mode parameters. if !monotone σref = σref + Δq σcur = σcur + Δq if ft < fmin # New overall best objective value found. fcur = ft fmin = ft σcur = zero(T) nm_iter = 0 else nm_iter = nm_iter + 1 if ft > fcur fcur = ft σcur = zero(T) end if nm_iter ≥ nm_itmax fref = fcur σref = σcur end end end x .= xt f = ft if !tr.good_grad grad!(nlp, x, ∇f) else ∇f .= tr.gt tr.good_grad = false end ∇fNorm2 = nrm2(n, ∇f) ∇fNormM = normM!(n, ∇f, M, Hs) set_objective!(stats, f) set_time!(stats, time() - start_time) set_dual_residual!(stats, ∇fNorm2) if isa(nlp, QuasiNewtonModel) ∇fn .-= ∇f ∇fn .*= -1 # = ∇f(xₖ₊₁) - ∇f(xₖ) push!(nlp, s, ∇fn) ∇fn .= ∇f end verbose > 0 && mod(stats.iter, verbose) == 0 && @info log_row([ stats.iter, f, ∇fNorm2, tr.radius, tr.ratio, cg_stats.niter, bk, cg_stats.status, ]) end # Move on. update!(tr, sNorm) optimal = ∇fNorm2 ≤ ϵ unbounded = f < fmin set_status!( stats, get_status( nlp, elapsed_time = stats.elapsed_time, optimal = optimal, unbounded = unbounded, max_eval = max_eval, iter = stats.iter, max_iter = max_iter, max_time = max_time, ), ) callback(nlp, solver, stats) done = stats.status != :unknown end verbose > 0 && @info log_row(Any[stats.iter, f, ∇fNorm2, tr.radius]) set_solution!(stats, x) stats end
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
11599
export TrunkSolverNLS const trunkls_allowed_subsolvers = [CglsSolver, CrlsSolver, LsqrSolver, LsmrSolver] trunk(nlp::AbstractNLSModel; variant = :GaussNewton, kwargs...) = trunk(Val(variant), nlp; kwargs...) """ trunk(nls; kwargs...) A pure Julia implementation of a trust-region solver for nonlinear least-squares problems: min ½‖F(x)‖² For advanced usage, first define a `TrunkSolverNLS` to preallocate the memory used in the algorithm, and then call `solve!`: solver = TrunkSolverNLS(nls, subsolver_type::Type{<:KrylovSolver} = LsmrSolver) solve!(solver, nls; kwargs...) # Arguments - `nls::AbstractNLSModel{T, V}` represents the model to solve, see `NLPModels.jl`. The keyword arguments may include - `x::V = nlp.meta.x0`: the initial guess. - `atol::T = √eps(T)`: absolute tolerance. - `rtol::T = √eps(T)`: relative tolerance, the algorithm stops when ‖∇f(xᵏ)‖ ≤ atol + rtol * ‖∇f(x⁰)‖. - `Fatol::T = √eps(T)`: absolute tolerance on the residual. - `Frtol::T = eps(T)`: relative tolerance on the residual, the algorithm stops when ‖F(xᵏ)‖ ≤ Fatol + Frtol * ‖F(x⁰)‖. - `max_eval::Int = -1`: maximum number of objective function evaluations. - `max_time::Float64 = 30.0`: maximum time limit in seconds. - `max_iter::Int = typemax(Int)`: maximum number of iterations. - `bk_max::Int = 10`: algorithm parameter. - `monotone::Bool = true`: algorithm parameter. - `nm_itmax::Int = 25`: algorithm parameter. - `verbose::Int = 0`: if > 0, display iteration details every `verbose` iteration. - `subsolver_verbose::Int = 0`: if > 0, display iteration information every `subsolver_verbose` iteration of the subsolver. See `JSOSolvers.trunkls_allowed_subsolvers` for a list of available `KrylovSolver`. # Output The value returned is a `GenericExecutionStats`, see `SolverCore.jl`. # Callback $(Callback_docstring) # References This implementation follows the description given in A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-Region Methods, volume 1 of MPS/SIAM Series on Optimization. SIAM, Philadelphia, USA, 2000. DOI: 10.1137/1.9780898719857 The main algorithm follows the basic trust-region method described in Section 6. The backtracking linesearch follows Section 10.3.2. The nonmonotone strategy follows Section 10.1.3, Algorithm 10.1.2. # Examples ```jldoctest; output = false using JSOSolvers, ADNLPModels F(x) = [x[1] - 1.0; 10 * (x[2] - x[1]^2)] x0 = [-1.2; 1.0] nls = ADNLSModel(F, x0, 2) stats = trunk(nls) # output "Execution stats: first-order stationary" ``` ```jldoctest; output = false using JSOSolvers, ADNLPModels F(x) = [x[1] - 1.0; 10 * (x[2] - x[1]^2)] x0 = [-1.2; 1.0] nls = ADNLSModel(F, x0, 2) solver = TrunkSolverNLS(nls) stats = solve!(solver, nls) # output "Execution stats: first-order stationary" ``` """ mutable struct TrunkSolverNLS{ T, V <: AbstractVector{T}, Sub <: KrylovSolver{T, T, V}, Op <: AbstractLinearOperator{T}, } <: AbstractOptimizationSolver x::V xt::V temp::V gx::V gt::V tr::TrustRegion{T, V} Fx::V rt::V Av::V Atv::V A::Op subsolver::Sub end function TrunkSolverNLS( nlp::AbstractNLPModel{T, V}; subsolver_type::Type{<:KrylovSolver} = LsmrSolver, ) where {T, V <: AbstractVector{T}} subsolver_type in trunkls_allowed_subsolvers || error("subproblem solver must be one of $(trunkls_allowed_subsolvers)") nvar = nlp.meta.nvar nequ = nlp.nls_meta.nequ x = V(undef, nvar) xt = V(undef, nvar) temp = V(undef, nequ) gx = V(undef, nvar) gt = V(undef, nvar) tr = TrustRegion(gt, one(T)) Fx = V(undef, nequ) rt = V(undef, nequ) Av = V(undef, nequ) Atv = V(undef, nvar) A = jac_op_residual!(nlp, x, Av, Atv) Op = typeof(A) subsolver = subsolver_type(nequ, nvar, V) Sub = typeof(subsolver) return TrunkSolverNLS{T, V, Sub, Op}(x, xt, temp, gx, gt, tr, rt, Fx, Av, Atv, A, subsolver) end function SolverCore.reset!(solver::TrunkSolverNLS) solver.tr.good_grad = false solver.tr.radius = solver.tr.initial_radius solver end function SolverCore.reset!(solver::TrunkSolverNLS, nlp::AbstractNLSModel) solver.A = jac_op_residual!(nlp, solver.x, solver.Av, solver.Atv) solver.tr.good_grad = false solver.tr.radius = solver.tr.initial_radius solver end @doc (@doc TrunkSolverNLS) function trunk( ::Val{:GaussNewton}, nlp::AbstractNLSModel; x::V = nlp.meta.x0, subsolver_type::Type{<:KrylovSolver} = LsmrSolver, kwargs..., ) where {V} solver = TrunkSolverNLS(nlp, subsolver_type = subsolver_type) return solve!(solver, nlp; x = x, kwargs...) end function SolverCore.solve!( solver::TrunkSolverNLS{T, V}, nlp::AbstractNLPModel{T, V}, stats::GenericExecutionStats{T, V}; callback = (args...) -> nothing, x::V = nlp.meta.x0, atol::Real = √eps(T), rtol::Real = √eps(T), Fatol::T = zero(T), Frtol::T = zero(T), max_eval::Int = -1, max_iter::Int = typemax(Int), max_time::Float64 = 30.0, bk_max::Int = 10, monotone::Bool = true, nm_itmax::Int = 25, verbose::Int = 0, subsolver_verbose::Int = 0, ) where {T, V <: AbstractVector{T}} if !(nlp.meta.minimize) error("trunk only works for minimization problem") end if !unconstrained(nlp) error("trunk should only be called for unconstrained problems. Try tron instead") end reset!(stats) start_time = time() set_time!(stats, 0.0) solver.x .= x x = solver.x ∇f = solver.gx subsolver = solver.subsolver n = nlp.nls_meta.nvar m = nlp.nls_meta.nequ cgtol = one(T) # Must be ≤ 1. # Armijo linesearch parameter. β = eps(T)^T(1 / 4) r, rt = solver.Fx, solver.rt residual!(nlp, x, r) f, ∇f = objgrad!(nlp, x, ∇f, r, recompute = false) # preallocate storage for products with A and A' A = solver.A # jac_op_residual!(nlp, x, Av, Atv) mul!(∇f, A', r) ∇fNorm2 = nrm2(n, ∇f) ϵ = atol + rtol * ∇fNorm2 ϵF = Fatol + Frtol * 2 * √f tr = solver.tr tr.radius = min(max(∇fNorm2 / 10, one(T)), T(100)) # Non-monotone mode parameters. # fmin: current best overall objective value # nm_iter: number of successful iterations since fmin was first attained # fref: objective value at reference iteration # σref: cumulative model decrease over successful iterations since the reference iteration fmin = fref = fcur = f σref = σcur = zero(T) nm_iter = 0 # Preallocate xt. xt = solver.xt temp = solver.temp optimal = ∇fNorm2 ≤ ϵ small_residual = 2 * √f ≤ ϵF set_iter!(stats, 0) set_objective!(stats, f) set_dual_residual!(stats, ∇fNorm2) verbose > 0 && @info log_header( [:iter, :f, :dual, :radius, :step, :ratio, :inner, :bk, :cgstatus], [Int, T, T, T, T, T, Int, Int, String], hdr_override = Dict(:f => "f(x)", :dual => "‖∇f‖", :radius => "Δ"), ) verbose > 0 && @info log_row([stats.iter, f, ∇fNorm2, T, T, T, Int, Int, String]) set_status!( stats, get_status( nlp, elapsed_time = stats.elapsed_time, optimal = optimal, small_residual = small_residual, max_eval = max_eval, max_iter = max_iter, max_time = max_time, ), ) callback(nlp, solver, stats) done = stats.status != :unknown while !done # Compute inexact solution to trust-region subproblem # minimize g's + 1/2 s'Hs subject to ‖s‖ ≤ radius. # In this particular case, we may use an operator with preallocation. cgtol = max(rtol, min(T(0.1), 9 * cgtol / 10, sqrt(∇fNorm2))) temp .= .-r Krylov.solve!( subsolver, A, temp, atol = atol, rtol = cgtol, radius = tr.radius, itmax = max(2 * (n + m), 50), timemax = max_time - stats.elapsed_time, verbose = subsolver_verbose, ) s, cg_stats = subsolver.x, subsolver.stats # Compute actual vs. predicted reduction. sNorm = nrm2(n, s) copyaxpy!(n, one(T), s, x, xt) # slope = dot(∇f, s) mul!(temp, A, s) slope = dot(r, temp) curv = dot(temp, temp) Δq = slope + curv / 2 residual!(nlp, xt, rt) ft = obj(nlp, x, rt, recompute = false) ared, pred = aredpred!(tr, nlp, rt, f, ft, Δq, xt, s, slope) if pred ≥ 0 stats.status = :neg_pred done = true continue end tr.ratio = ared / pred if !monotone ared_hist, pred_hist = aredpred!(tr, nlp, rt, fref, ft, σref + Δq, xt, s, slope) if pred_hist ≥ 0 stats.status = :neg_pred done = true continue end ρ_hist = ared_hist / pred_hist tr.ratio = max(tr.ratio, ρ_hist) end bk = 0 if !acceptable(tr) # Perform backtracking linesearch along s # Scaling s to the trust-region boundary, as recommended in # Algorithm 10.3.2 of the Trust-Region book # appears to deteriorate results. # BLAS.scal!(n, tr.radius / sNorm, s, 1) # slope *= tr.radius / sNorm # sNorm = tr.radius if slope ≥ 0 @error "not a descent direction" slope ∇fNorm2 sNorm stats.status = :not_desc done = true continue end α = one(T) while (bk < bk_max) && (ft > f + β * α * slope) bk = bk + 1 α /= T(1.2) copyaxpy!(n, α, s, x, xt) residual!(nlp, xt, rt) ft = obj(nlp, x, rt, recompute = false) end sNorm *= α scal!(n, α, s) slope *= α Δq = slope + α * α * curv / 2 ared, pred = aredpred!(tr, nlp, rt, f, ft, Δq, xt, s, slope) if pred ≥ 0 stats.status = :neg_pred done = true continue end tr.ratio = ared / pred if !monotone ared_hist, pred_hist = aredpred!(tr, nlp, rt, fref, ft, σref + Δq, xt, s, slope) if pred_hist ≥ 0 stats.status = :neg_pred done = true continue end ρ_hist = ared_hist / pred_hist tr.ratio = max(tr.ratio, ρ_hist) end end set_iter!(stats, stats.iter + 1) if acceptable(tr) # Update non-monotone mode parameters. if !monotone σref = σref + Δq σcur = σcur + Δq if ft < fmin # New overall best objective value found. fcur = ft fmin = ft σcur = zero(T) nm_iter = 0 else nm_iter = nm_iter + 1 if ft > fcur fcur = ft σcur = zero(T) end if nm_iter >= nm_itmax fref = fcur σref = σcur end end end x .= xt # update A implicitly r .= rt f = ft if tr.good_grad ∇f .= tr.gt tr.good_grad = false else grad!(nlp, x, ∇f, r, recompute = false) end ∇fNorm2 = nrm2(n, ∇f) end # Move on. update!(tr, sNorm) set_objective!(stats, f) set_time!(stats, time() - start_time) set_dual_residual!(stats, ∇fNorm2) verbose > 0 && mod(stats.iter, verbose) == 0 && @info log_row([ stats.iter, f, ∇fNorm2, tr.radius, sNorm, tr.ratio, length(cg_stats.residuals), bk, cg_stats.status, ]) optimal = ∇fNorm2 ≤ ϵ small_residual = 2 * √f ≤ ϵF set_status!( stats, get_status( nlp, elapsed_time = stats.elapsed_time, optimal = optimal, small_residual = small_residual, max_eval = max_eval, iter = stats.iter, max_iter = max_iter, max_time = max_time, ), ) callback(nlp, solver, stats) done = stats.status != :unknown end verbose > 0 && @info log_row(Any[stats.iter, f, ∇fNorm2, tr.radius]) set_solution!(stats, x) stats end
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
2575
""" @wrappedallocs(expr) Given an expression, this macro wraps that expression inside a new function which will evaluate that expression and measure the amount of memory allocated by the expression. Wrapping the expression in a new function allows for more accurate memory allocation detection when using global variables (e.g. when at the REPL). For example, `@wrappedallocs(x + y)` produces: ```julia function g(x1, x2) @allocated x1 + x2 end g(x, y) ``` You can use this macro in a unit test to verify that a function does not allocate: ``` @test @wrappedallocs(x + y) == 0 ``` """ macro wrappedallocs(expr) argnames = [gensym() for a in expr.args] quote function g($(argnames...)) @allocated $(Expr(expr.head, argnames...)) end $(Expr(:call, :g, [esc(a) for a in expr.args]...)) end end if Sys.isunix() @testset "Allocation tests" begin @testset "$symsolver" for symsolver in (:LBFGSSolver, :FoSolver, :FomoSolver, :TrunkSolver, :TronSolver) for model in NLPModelsTest.nlp_problems nlp = eval(Meta.parse(model))() if unconstrained(nlp) || (bound_constrained(nlp) && (symsolver == :TronSolver)) if (symsolver == :FoSolver || symsolver == :FomoSolver) solver = eval(symsolver)(nlp; M = 2) # nonmonotone configuration allocates extra memory else solver = eval(symsolver)(nlp) end if symsolver == :FomoSolver T = eltype(nlp.meta.x0) stats = GenericExecutionStats(nlp, solver_specific = Dict(:avgβmax => T(0))) else stats = GenericExecutionStats(nlp) end with_logger(NullLogger()) do SolverCore.solve!(solver, nlp, stats) reset!(solver) reset!(nlp) al = @wrappedallocs SolverCore.solve!(solver, nlp, stats) @test al == 0 end end end end @testset "$symsolver" for symsolver in (:TrunkSolverNLS, :TronSolverNLS) for model in NLPModelsTest.nls_problems nlp = eval(Meta.parse(model))() if unconstrained(nlp) || (bound_constrained(nlp) && (symsolver == :TronSolverNLS)) solver = eval(symsolver)(nlp) stats = GenericExecutionStats(nlp) with_logger(NullLogger()) do SolverCore.solve!(solver, nlp, stats) reset!(solver) reset!(nlp) al = @wrappedallocs SolverCore.solve!(solver, nlp, stats) @test al == 0 end end end end end end
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
1614
using ADNLPModels, JSOSolvers, LinearAlgebra, Logging #, Plots @testset "Test callback" begin f(x) = (x[1] - 1)^2 + 4 * (x[2] - x[1]^2)^2 nlp = ADNLPModel(f, [-1.2; 1.0]) X = [nlp.meta.x0[1]] Y = [nlp.meta.x0[2]] function cb(nlp, solver, stats) x = solver.x push!(X, x[1]) push!(Y, x[2]) if stats.iter == 8 stats.status = :user end end stats = with_logger(NullLogger()) do R2(nlp, callback = cb) end @test stats.iter == 8 stats = with_logger(NullLogger()) do lbfgs(nlp, callback = cb) end @test stats.iter == 8 stats = with_logger(NullLogger()) do trunk(nlp, callback = cb) end @test stats.iter == 8 stats = with_logger(NullLogger()) do tron(nlp, callback = cb) end @test stats.iter == 8 stats = with_logger(NullLogger()) do fomo(nlp, callback = cb) end @test stats.iter == 8 end @testset "Test callback for NLS" begin F(x) = [x[1] - 1; 2 * (x[2] - x[1]^2)] nls = ADNLSModel(F, [-1.2; 1.0], 2) function cb(nlp, solver, stats) if stats.iter == 8 stats.status = :user end end stats = with_logger(NullLogger()) do trunk(nls, callback = cb) end @test stats.iter == 8 stats = with_logger(NullLogger()) do tron(nls, callback = cb) end @test stats.iter == 8 end @testset "Testing Solver Values" begin f(x) = (x[1] - 1)^2 + 4 * (x[2] - x[1]^2)^2 nlp = ADNLPModel(f, [-1.2; 1.0]) function cb(nlp, solver, stats) if stats.iter == 4 @test solver.α > 0.0 stats.status = :user end end stats = with_logger(NullLogger()) do R2(nlp, callback = cb) end end
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
2078
function consistency() f = x -> (x[1] - 1)^2 + 100 * (x[2] - x[1]^2)^2 unlp = ADNLPModel(f, zeros(2)) F = x -> [x[1] - 1; 10 * (x[2] - x[1]^2)] unls = ADNLSModel(F, zeros(2), 2) #trunk and tron have special features for QuasiNewtonModel qnlp = LBFGSModel(unlp) qnls = LBFGSModel(unls) @testset "Consistency" begin args = Pair{Symbol, Number}[:atol => 1e-6, :rtol => 1e-6, :max_eval => 20000, :max_time => 60.0] @testset "NLP with $mtd" for mtd in [trunk, lbfgs, tron, R2, fomo] with_logger(NullLogger()) do reset!(unlp) stats = mtd(unlp; args...) @test stats isa GenericExecutionStats @test stats.status == :first_order reset!(unlp) stats = mtd(unlp; max_eval = 1) @test stats.status == :max_eval slow_nlp = ADNLPModel(x -> begin sleep(0.1) f(x) end, unlp.meta.x0) stats = mtd(slow_nlp; max_time = 0.0) @test stats.status == :max_time end end @testset "Quasi-Newton NLP with $mtd" for mtd in [trunk, lbfgs, tron, R2, fomo] with_logger(NullLogger()) do reset!(qnlp) stats = mtd(qnlp; args...) @test stats isa GenericExecutionStats @test stats.status == :first_order end end @testset "NLS with $mtd" for mtd in [trunk] with_logger(NullLogger()) do stats = mtd(unls; args...) @test stats isa GenericExecutionStats @test stats.status == :first_order reset!(unls) stats = mtd(unls; max_eval = 1) @test stats.status == :max_eval slow_nls = ADNLSModel(x -> begin sleep(0.1) F(x) end, unls.meta.x0, nls_meta(unls).nequ) stats = mtd(slow_nls; max_time = 0.0) @test stats.status == :max_time end end @testset "Quasi-Newton NLS with $mtd" for mtd in [trunk] with_logger(NullLogger()) do stats = mtd(qnls; args...) @test stats isa GenericExecutionStats @test stats.status == :first_order end end end end consistency()
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
1830
mutable struct DummyModel{T, S} <: AbstractNLPModel{T, S} meta::NLPModelMeta{T, S} end mutable struct DummyNLSModel{T, S} <: AbstractNLSModel{T, S} meta::NLPModelMeta{T, S} end function test_incompatible() @testset "Incompatible problems should throw error" begin solvers = Dict(:lbfgs => [:unc], :trunk => [:unc], :tron => [:unc, :bnd]) problems = Dict( :unc => ADNLPModel(x -> 0, zeros(2)), :bnd => ADNLPModel(x -> 0, zeros(2), zeros(2), ones(2)), :equ => ADNLPModel(x -> 0, zeros(2), x -> [0.0], [0.0], [0.0]), :ine => ADNLPModel(x -> 0, zeros(2), x -> [0.0], [-Inf], [0.0]), :gen => ADNLPModel(x -> 0, zeros(2), x -> [0.0; 0.0], [-Inf; 0.0], zeros(2)), ) for (ptype, problem) in problems, (solver, types_accepted) in solvers @testset "Testing that $solver on problem type $ptype raises error: " begin if !(ptype in types_accepted) @test_throws ErrorException eval(solver)(problem) end end end nlp = DummyModel(NLPModelMeta(1, minimize = false)) @testset for solver in keys(solvers) @test_throws ErrorException eval(solver)(nlp) end solvers = Dict(:trunk => [:unc], :tron => [:unc, :bnd]) problems = Dict( :unc => ADNLSModel(x -> [0], zeros(2), 1), :bnd => ADNLSModel(x -> [0], zeros(2), 1, zeros(2), ones(2)), ) for (ptype, problem) in problems, (solver, types_accepted) in solvers @testset "Testing that $solver on problem type $ptype raises error: " begin if !(ptype in types_accepted) @test_throws ErrorException eval(solver)(problem) end end end nls = DummyNLSModel(NLPModelMeta(1, minimize = false)) @testset for solver in keys(solvers) @test_throws ErrorException eval(solver)(nls) end end end test_incompatible()
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
1276
@testset "objgrad on tron" begin struct MyProblem <: AbstractNLPModel{Float64, Vector{Float64}} meta::NLPModelMeta{Float64, Vector{Float64}} counters::Counters end function MyProblem() meta = NLPModelMeta{Float64, Vector{Float64}}( 2, # nvar x0 = [0.1; 0.1], lvar = zeros(2), uvar = ones(2), ) MyProblem(meta, Counters()) end function NLPModels.objgrad!(::MyProblem, x::AbstractVector, g::AbstractVector) f = (x[1] - 1)^2 + 100 * (x[2] - x[1]^2)^2 g[1] = 2 * (x[1] - 1) - 400 * x[1] * (x[2] - x[1]^2) g[2] = 200 * (x[2] - x[1]^2) f, g end function NLPModels.hprod!( ::MyProblem, x::AbstractVector, v::AbstractVector, Hv::AbstractVector; obj_weight = 1.0, ) Hv[1] = obj_weight * (2 - 400 * (x[2] - x[1]^2) + 800 * x[1]^2) * v[1] - 400obj_weight * x[1] * v[2] Hv[2] = 200obj_weight * v[2] - 400obj_weight * x[1] * v[1] Hv end nlp = MyProblem() output = with_logger(NullLogger()) do tron(nlp, use_only_objgrad = true) end @test isapprox(output.solution, ones(2), rtol = 1e-4) @test output.dual_feas < 1e-4 @test output.objective < 1e-4 with_logger(NullLogger()) do @test_throws MethodError tron(nlp, use_only_objgrad = false) end end
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
2843
@testset "Test restart with a different initial guess: $fun" for (fun, s) in ( (:R2, :FoSolver), (:fomo, :FomoSolver), (:lbfgs, :LBFGSSolver), (:tron, :TronSolver), (:trunk, :TrunkSolver), ) f(x) = (x[1] - 1)^2 + 4 * (x[2] - x[1]^2)^2 nlp = ADNLPModel(f, [-1.2; 1.0]) stats = GenericExecutionStats(nlp) solver = eval(s)(nlp) stats = SolverCore.solve!(solver, nlp, stats) @test stats.status == :first_order @test isapprox(stats.solution, [1.0; 1.0], atol = 1e-6) nlp.meta.x0 .= 2.0 SolverCore.reset!(solver) stats = SolverCore.solve!(solver, nlp, stats, atol = 1e-10, rtol = 1e-10) @test stats.status == :first_order @test isapprox(stats.solution, [1.0; 1.0], atol = 1e-6) end @testset "Test restart NLS with a different initial guess: $fun" for (fun, s) in ( (:tron, :TronSolverNLS), (:trunk, :TrunkSolverNLS), ) F(x) = [x[1] - 1; 2 * (x[2] - x[1]^2)] nlp = ADNLSModel(F, [-1.2; 1.0], 2) stats = GenericExecutionStats(nlp) solver = eval(s)(nlp) stats = SolverCore.solve!(solver, nlp, stats) @test stats.status == :first_order @test isapprox(stats.solution, [1.0; 1.0], atol = 1e-6) nlp.meta.x0 .= 2.0 SolverCore.reset!(solver) stats = SolverCore.solve!(solver, nlp, stats, atol = 1e-10, rtol = 1e-10) @test stats.status == :first_order @test isapprox(stats.solution, [1.0; 1.0], atol = 1e-6) end @testset "Test restart with a different problem: $fun" for (fun, s) in ( (:R2, :FoSolver), (:fomo, :FomoSolver), (:lbfgs, :LBFGSSolver), (:tron, :TronSolver), (:trunk, :TrunkSolver), ) f(x) = (x[1] - 1)^2 + 4 * (x[2] - x[1]^2)^2 nlp = ADNLPModel(f, [-1.2; 1.0]) stats = GenericExecutionStats(nlp) solver = eval(s)(nlp) stats = SolverCore.solve!(solver, nlp, stats) @test stats.status == :first_order @test isapprox(stats.solution, [1.0; 1.0], atol = 1e-6) f2(x) = (x[1])^2 + 4 * (x[2] - x[1]^2)^2 nlp = ADNLPModel(f2, [-1.2; 1.0]) SolverCore.reset!(solver, nlp) stats = SolverCore.solve!(solver, nlp, stats, atol = 1e-10, rtol = 1e-10) @test stats.status == :first_order @test isapprox(stats.solution, [0.0; 0.0], atol = 1e-6) end @testset "Test restart NLS with a different problem: $fun" for (fun, s) in ( (:tron, :TronSolverNLS), (:trunk, :TrunkSolverNLS), ) F(x) = [x[1] - 1; 2 * (x[2] - x[1]^2)] nlp = ADNLSModel(F, [-1.2; 1.0], 2) stats = GenericExecutionStats(nlp) solver = eval(s)(nlp) stats = SolverCore.solve!(solver, nlp, stats) @test stats.status == :first_order @test isapprox(stats.solution, [1.0; 1.0], atol = 1e-6) F2(x) = [x[1]; 2 * (x[2] - x[1]^2)] nlp = ADNLSModel(F2, [-1.2; 1.0], 2) SolverCore.reset!(solver, nlp) stats = SolverCore.solve!(solver, nlp, stats, atol = 1e-10, rtol = 1e-10) @test stats.status == :first_order @test isapprox(stats.solution, [0.0; 0.0], atol = 1e-6) end
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
3102
# stdlib using Printf, LinearAlgebra, Logging, SparseArrays, Test # additional packages using ADNLPModels, Krylov, LinearOperators, NLPModels, NLPModelsModifiers, SolverCore, SolverTools using NLPModelsTest # this package using JSOSolvers @testset "Test small residual checks $solver" for solver in (:TrunkSolverNLS, :TronSolverNLS) nls = ADNLSModel(x -> [x[1] - 1; sin(x[2])], [-1.2; 1.0], 2) stats = GenericExecutionStats(nls) solver = eval(solver)(nls) SolverCore.solve!(solver, nls, stats, atol = 0.0, rtol = 0.0, Fatol = 1e-6, Frtol = 0.0) @test stats.status_reliable && stats.status == :small_residual @test stats.objective_reliable && isapprox(stats.objective, 0, atol = 1e-6) end @testset "Test iteration limit" begin @testset "$fun" for fun in (R2, fomo, lbfgs, tron, trunk) f(x) = (x[1] - 1)^2 + 4 * (x[2] - x[1]^2)^2 nlp = ADNLPModel(f, [-1.2; 1.0]) stats = eval(fun)(nlp, max_iter = 1) @test stats.status == :max_iter end @testset "$(fun)-NLS" for fun in (tron, trunk) f(x) = [x[1] - 1; 2 * (x[2] - x[1]^2)] nlp = ADNLSModel(f, [-1.2; 1.0], 2) stats = eval(fun)(nlp, max_iter = 1) @test stats.status == :max_iter end end @testset "Test unbounded below" begin @testset "$fun" for fun in (R2, fomo, lbfgs, tron, trunk) T = Float64 x0 = [T(0)] f(x) = -exp(x[1]) nlp = ADNLPModel(f, x0) stats = eval(fun)(nlp) @test stats.status == :unbounded @test stats.objective < -one(T) / eps(T) end end include("restart.jl") include("callback.jl") include("consistency.jl") include("test_solvers.jl") if VERSION ≥ v"1.7" include("allocs.jl") @testset "Test warning for infeasible initial guess" begin nlp = ADNLPModel(x -> (x[1] - 1)^2 + sin(x[2])^2, [-1.2; 1.0], zeros(2), ones(2)) @test_warn "Warning: Initial guess is not within bounds." tron(nlp, verbose = 1) nls = ADNLSModel(x -> [x[1] - 1; sin(x[2])], [-1.2; 1.0], 2, zeros(2), ones(2)) @test_warn "Warning: Initial guess is not within bounds." tron(nls, verbose = 1) end end include("objgrad-on-tron.jl") @testset "Test max_radius in TRON" begin max_radius = 0.00314 increase_factor = 5.0 function cb(nlp, solver, stats) @test solver.tr.radius ≤ max_radius end nlp = ADNLPModel(x -> 100 * (x[2] - x[1]^2)^2 + (x[1] - 1)^2, [-1.2; 1.0]) stats = tron(nlp, max_radius = max_radius, increase_factor = increase_factor, callback = cb) nls = ADNLSModel(x -> [100 * (x[2] - x[1]^2); x[1] - 1], [-1.2; 1.0], 2) stats = tron(nls, max_radius = max_radius, increase_factor = increase_factor, callback = cb) end @testset "Preconditioner in Trunk" begin x0 = [-1.2; 1.0] nlp = ADNLPModel(x -> 100 * (x[2] - x[1]^2)^2 + (x[1] - 1)^2, x0) function DiagPrecon(x) H = Matrix(hess(nlp, x)) λmin = minimum(eigvals(H)) Diagonal(H + λmin * I) end M = DiagPrecon(x0) function LinearAlgebra.ldiv!(y, M::Diagonal, x) y .= M \ x end function callback(nlp, solver, stats) M[:] = DiagPrecon(solver.x) end stats = trunk(nlp, callback = callback, M = M) @test stats.status == :first_order end
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
2379
using SolverTest function tests() @testset "Testing NLP solvers" begin @testset "Unconstrained solvers" begin @testset "$name" for (name, solver) in [ ("trunk+cg", (nlp; kwargs...) -> trunk(nlp, subsolver_type = CgSolver; kwargs...)), ("lbfgs", lbfgs), ("tron", tron), ("R2", R2), ("fomo_r2", fomo), ("fomo_tr", (nlp; kwargs...) -> fomo(nlp, step_backend = JSOSolvers.tr_step(); kwargs...)), ] unconstrained_nlp(solver) multiprecision_nlp(solver, :unc) end @testset "$name : nonmonotone configuration" for (name, solver) in [ ("R2", (nlp; kwargs...) -> R2(nlp, M = 2; kwargs...)), ("fomo_r2", (nlp; kwargs...) -> fomo(nlp, M = 2; kwargs...)), ( "fomo_tr", (nlp; kwargs...) -> fomo(nlp, M = 2, step_backend = JSOSolvers.tr_step(); kwargs...), ), ] unconstrained_nlp(solver) multiprecision_nlp(solver, :unc) end end @testset "Bound-constrained solvers" begin @testset "$solver" for solver in [tron] bound_constrained_nlp(solver) multiprecision_nlp(solver, :unc) multiprecision_nlp(solver, :bnd) end end end @testset "Testing NLS solvers" begin @testset "Unconstrained solvers" begin @testset "$name" for (name, solver) in [ ("trunk+cgls", (nls; kwargs...) -> trunk(nls, subsolver_type = CglsSolver; kwargs...)), # trunk with cgls due to multiprecision ("trunk full Hessian", (nls; kwargs...) -> trunk(nls, variant = :Newton; kwargs...)), ("tron+cgls", (nls; kwargs...) -> tron(nls, subsolver_type = CglsSolver; kwargs...)), ("tron full Hessian", (nls; kwargs...) -> tron(nls, variant = :Newton; kwargs...)), ] unconstrained_nls(solver) multiprecision_nls(solver, :unc) end end @testset "Bound-constrained solvers" begin @testset "$name" for (name, solver) in [ ("tron+cgls", (nls; kwargs...) -> tron(nls, subsolver_type = CglsSolver; kwargs...)), ("tron full Hessian", (nls; kwargs...) -> tron(nls, variant = :Newton; kwargs...)), ] bound_constrained_nls(solver) multiprecision_nls(solver, :unc) multiprecision_nls(solver, :bnd) end end end end tests() include("solvers/trunkls.jl") include("incompatible.jl")
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
1350
# TODO: After all subsolvers handle multiprecision, drop this file and use # `unconstrained-nls` @testset "Simple test" begin model = ADNLSModel(x -> [10 * (x[2] - x[1]^2), 1 - x[1]], [-2.0, 1.0], 2) for subsolver in JSOSolvers.tronls_allowed_subsolvers stats = tron(model, subsolver = subsolver) @test stats.status == :first_order @test stats.solution_reliable isapprox(stats.solution, ones(2), rtol = 1e-4) @test stats.objective_reliable @test isapprox(stats.objective, 0, atol = 1e-6) @test neval_jac_residual(model) == 0 stline = statsline(stats, [:objective, :dual_feas, :elapsed_time, :iter, :status]) reset!(model) end @test_throws ErrorException tron(model, subsolver = :minres) end @testset "Larger test" begin n = 30 model = ADNLSModel( x -> [[10 * (x[i + 1] - x[i]^2) for i = 1:(n - 1)]; [x[i] - 1 for i = 1:(n - 1)]], (1:n) ./ (n + 1), 2n - 2, ) for subsolver in JSOSolvers.tronls_allowed_subsolvers stats = with_logger(NullLogger()) do tron(model, subsolver = subsolver) end @test stats.status == :first_order @test stats.objective_reliable @test isapprox(stats.objective, 0, atol = 1e-6) @test neval_jac_residual(model) == 0 stline = statsline(stats, [:objective, :dual_feas, :elapsed_time, :iter, :status]) reset!(model) end end
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git
[ "MPL-2.0" ]
0.12.1
c68e031e469f1898bb779cbc3c401e1640ecc0c4
code
1425
# TODO: After all subsolvers handle multiprecision, drop this file and use # `unconstrained-nls` @testset "Simple test" begin model = ADNLSModel(x -> [10 * (x[2] - x[1]^2), 1 - x[1]], [-2.0, 1.0], 2) for subsolver in JSOSolvers.trunkls_allowed_subsolvers stats = with_logger(NullLogger()) do trunk(model, subsolver_type = subsolver) end @test stats.status == :first_order @test stats.solution_reliable isapprox(stats.solution, ones(2), rtol = 1e-4) @test stats.objective_reliable @test isapprox(stats.objective, 0, atol = 1e-6) @test neval_jac_residual(model) == 0 stline = statsline(stats, [:objective, :dual_feas, :elapsed_time, :iter, :status]) reset!(model) end @test_throws ErrorException trunk(model, subsolver_type = MinresSolver) end @testset "Larger test" begin n = 30 model = ADNLSModel( x -> [[10 * (x[i + 1] - x[i]^2) for i = 1:(n - 1)]; [x[i] - 1 for i = 1:(n - 1)]], collect(1:n) ./ (n + 1), 2n - 2, ) for subsolver in JSOSolvers.trunkls_allowed_subsolvers stats = with_logger(NullLogger()) do trunk(model, subsolver_type = subsolver) end @test stats.status == :first_order @test stats.objective_reliable @test isapprox(stats.objective, 0, atol = 1e-6) @test neval_jac_residual(model) == 0 stline = statsline(stats, [:objective, :dual_feas, :elapsed_time, :iter, :status]) reset!(model) end end
JSOSolvers
https://github.com/JuliaSmoothOptimizers/JSOSolvers.jl.git