repo_name
stringlengths
7
81
path
stringlengths
4
224
copies
stringclasses
221 values
size
stringlengths
4
7
content
stringlengths
975
1.04M
license
stringclasses
15 values
tuxillo/aarch64-dragonfly-gcc
gcc/testsuite/gfortran.dg/continuation_3.f90
193
1932
! { dg-do compile } ! { dg-options -std=f95 } ! PR 19262 Test limit on line continuations. Test case derived form case in PR ! by Steve Kargl. Submitted by Jerry DeLisle <jvdelisle@gcc.gnu.org> print *, & "1" // & ! 1 "2" // & ! 2 "3" // & ! 3 "4" // & ! 4 "5" // & ! 5 "6" // & ! 6 "7" // & ! 7 "8" // & ! 8 "9" // & ! 9 "0" // & ! 10 "1" // & ! 11 "2" // & ! 12 "3" // & ! 13 "4" // & ! 14 "5" // & ! 15 "6" // & ! 16 "7" // & ! 17 "8" // & ! 18 "9" // & ! 19 "0" // & ! 20 "1" // & ! 21 "2" // & ! 22 "3" // & ! 23 "4" // & ! 24 "5" // & ! 25 "6" // & ! 26 "7" // & ! 27 "8" // & ! 28 "9" // & ! 29 "0" // & ! 30 "1" // & ! 31 "2" // & ! 32 "3" // & ! 33 "4" // & ! 34 "5" // & ! 35 "6" // & ! 36 "7" // & ! 37 "8" // & ! 38 "9" print *, & "1" // & ! 1 "2" // & ! 2 "3" // & ! 3 "4" // & ! 4 "5" // & ! 5 "6" // & ! 6 "7" // & ! 7 "8" // & ! 8 "9" // & ! 9 "0" // & ! 10 "1" // & ! 11 "2" // & ! 12 "3" // & ! 13 "4" // & ! 14 "5" // & ! 15 "6" // & ! 16 "7" // & ! 17 "8" // & ! 18 "9" // & ! 19 "0" // & ! 20 "1" // & ! 21 "2" // & ! 22 "3" // & ! 23 "4" // & ! 24 "5" // & ! 25 "6" // & ! 26 "7" // & ! 27 "8" // & ! 28 "9" // & ! 29 ! ! "0" // & ! 30 "1" // & ! 31 ! ! "2" // & ! 32 "3" // & ! 33 "4" // & ! 34 "5" // & ! 35 "6" // & ! 36 "7" // & ! 37 "8" // & ! 38 "9" // & ! 39 "0" ! { dg-warning "Limit of 39 continuations exceeded" } end
gpl-2.0
Hellybean/SaberMod_ROM_Toolchain
gcc/testsuite/gfortran.fortran-torture/execute/intrinsic_mmval.f90
190
1175
! Program to test the MINVAL and MAXVAL intrinsics program testmmval implicit none integer, dimension (3, 3) :: a integer, dimension (3) :: b logical, dimension (3, 3) :: m, tr integer i character (len=9) line a = reshape ((/1, 2, 3, 5, 4, 6, 9, 8, 7/), (/3, 3/)); tr = .true. b = minval (a, 1) if (any(b .ne. (/1, 4, 7/))) call abort write (line, 9000) minval (a, 1) if (line .ne. ' 1 4 7') call abort m = .true. m(1, 1) = .false. m(1, 2) = .false. b = minval (a, 1, m) if (any(b .ne. (/2, 4, 7/))) call abort b = minval (a, 1, m .and. tr) if (any(b .ne. (/2, 4, 7/))) call abort write (line, 9000) minval(a, 1, m) if (line .ne. ' 2 4 7') call abort b = maxval (a, 1) if (any(b .ne. (/3, 6, 9/))) call abort write (line, 9000) maxval (a, 1) if (line .ne. ' 3 6 9') call abort m = .true. m(1, 2) = .false. m(1, 3) = .false. b = maxval (a, 1, m) if (any(b .ne. (/3, 6, 8/))) call abort b = maxval (a, 1, m .and. tr) if (any(b .ne. (/3, 6, 8/))) call abort write (line, 9000) maxval(a, 1, m) if (line .ne. ' 3 6 8') call abort 9000 format(3I3) end program
gpl-2.0
rvanharen/netcdf2littler
tests/netcdf2littler_tests.f90
1
14347
module netcdf2littler_tests ! minimal unit testing framework for write_littler use readncdf use write_littler use logging implicit none private public :: main integer, parameter :: stdout = 6 contains logical function assert(condition, test_name) ! asserts if the condition is true/false and returns the status of the tests logical, intent(in) :: condition character(len=*), intent(in) :: test_name character(len=60) :: output_test_name assert = condition output_test_name = test_name ! report only first 60 characters of test_name if (assert) then write(unit=stdout, fmt='(A)')'test '//output_test_name//': '//& char(27)//'[32mPASS'//char(27)//'[0m' else write(unit=stdout, fmt='(A)')'test '//output_test_name//': '//& char(27)//'[31mFAIL'//char(27)//'[0m' end if end function assert subroutine initialize_tests(tests, ntests) ! allocate logical array with test results ! write output header to stdout logical, dimension(:), allocatable, intent(inout) :: tests integer, intent(in) :: ntests ! allocate logical array with test results if (allocated(tests)) deallocate(tests) allocate(tests(ntests)) ! write header of test results write(unit=stdout, fmt='(A)') write(unit=stdout, fmt='(71("-"))') write(unit=stdout, fmt='(T6, A,T66,A)') 'test name', 'result' write(unit=stdout, fmt='(71("-"))') end subroutine initialize_tests subroutine report_tests(tests) ! reports the total number of tests and the number of passes/fails logical, dimension(:), intent(in) :: tests integer :: n, nsuccess, nfailure ! set initial number of passes/fails to 0 nsuccess = 0 nfailure = 0 ! loop over all tests and update passes/fails do n = 1, size(tests) if (tests(n)) then nsuccess = nsuccess + 1 else nfailure = nfailure + 1 end if end do ! write the result to the screen write(unit=stdout, fmt='(71("-"))') write(unit=stdout, fmt='(A,I3,A)')'Ran a total of ', size(tests),' tests.' write(unit=stdout, fmt='(I3,A,I3,A)')nsuccess,' tests PASSED, ',nfailure,' tests FAILED.' write(unit=stdout, fmt='(A)') if (nfailure /= 0) then call exit(1) end if end subroutine report_tests subroutine main ! main routine that runs all the tests logical,dimension(:),allocatable :: tests ! logical array with test results INTEGER :: ntests ! total number of tests INTEGER :: n = 1 ! test counter ntests = 49 ! modify if adding new tests call define_logfile('write_littler_tests.log') call initialize_tests(tests,ntests) call test_dateint(tests, n) call test_get_default_littler(tests, n) call test_readtimedim(tests, n) call test_readstepnc_single(tests, n) call test_readstepnc(tests, n) call test_read_variables(tests, n) call test_concat(tests, n) n = n-1 call report_tests(tests) ! remove this statement later, used for keeping track of ntests if ( n/=ntests ) then print *, 'WARNING' print *, 'Total number of actual tests performed was: ', n print *, 'Total number of tests set (ntests) was: ', ntests end if end subroutine main subroutine test_dateint(tests, n) ! test if dateint returns a character string with YYYYMMDDHHMMSS integer, intent(inout) :: n logical, dimension(*), intent(inout) :: tests tests(n) = assert(dateint(2010,01,02,23,30,59)=='20100102233059', 'dateint') n = n+1 end subroutine test_dateint subroutine test_get_default_littler(tests, n) ! description integer, intent(inout) :: n logical, dimension(*), intent(inout) :: tests integer, parameter :: kx=1 real, dimension(kx) :: dpressure, dheight, dtemperature, ddew_point real, dimension(kx) :: dspeed, ddirection, du, dv, drh, dthickness real, dimension(kx) :: dpsfc, drefpres integer, dimension(kx) :: dpressure_qc, dheight_qc, dtemperature_qc integer, dimension(kx) :: ddew_point_qc, dspeed_qc, ddirection_qc, du_qc integer, dimension(kx) :: dv_qc, drh_qc, dthickness_qc call get_default_littler(dpressure, dheight, dtemperature, ddew_point, & dspeed, ddirection, du, dv, drh, dthickness, dpsfc, drefpres, dpressure_qc, & dheight_qc, dtemperature_qc, ddew_point_qc, dspeed_qc, ddirection_qc, du_qc, & dv_qc, drh_qc, dthickness_qc, kx) ! default values tests(n) = assert(dpressure(1)==-888888., 'get_default_littler: default pressure') n=n+1 tests(n) = assert(dheight(1)==-888888., 'get_default_littler: default height') n=n+1 tests(n) = assert(dtemperature(1)==-888888., 'get_default_littler: default temperature') n=n+1 tests(n) = assert(ddew_point(1)==-888888., 'get_default_littler: default dew_point') n=n+1 tests(n) = assert(dspeed(1)==-888888., 'get_default_littler: default speed') n=n+1 tests(n) = assert(ddirection(1)==-888888., 'get_default_littler: default direction') n=n+1 tests(n) = assert(du(1)==-888888., 'get_default_littler: default u velocity') n=n+1 tests(n) = assert(dv(1)==-888888., 'get_default_littler: default v velocity') n=n+1 tests(n) = assert(drh(1)==-888888., 'get_default_littler: default relative humidity') n=n+1 tests(n) = assert(dthickness(1)==-888888., 'get_default_littler: default thickness') n=n+1 tests(n) = assert(dpsfc(1)==-888888., 'get_default_littler: default surface pressure') n=n+1 tests(n) = assert(drefpres(1)==-888888., 'get_default_littler: reference pressure') n=n+1 ! default qc values tests(n) = assert(dpressure_qc(1)==0, 'get_default_littler: default pressure_qc') n=n+1 tests(n) = assert(dheight_qc(1)==0, 'get_default_littler: default height_qc') n=n+1 tests(n) = assert(dtemperature_qc(1)==0, 'get_default_littler: default temperature_qc') n=n+1 tests(n) = assert(ddew_point_qc(1)==0, 'get_default_littler: default dew_point_qc') n=n+1 tests(n) = assert(dspeed_qc(1)==0, 'get_default_littler: default speed_qc') n=n+1 tests(n) = assert(ddirection_qc(1)==0, 'get_default_littler: default direction_qc') n=n+1 tests(n) = assert(du_qc(1)==0, 'get_default_littler: default u velocity_qc') n=n+1 tests(n) = assert(dv_qc(1)==0, 'get_default_littler: default v velocity_qc') n=n+1 tests(n) = assert(drh_qc(1)==0, 'get_default_littler: default relative humidity_qc') n=n+1 tests(n) = assert(dthickness_qc(1)==0, 'get_default_littler: default thickness_qc') n=n+1 end subroutine test_get_default_littler subroutine test_readtimedim(tests, n) ! unit test for readtimedim subroutine integer, intent(inout) :: n logical, dimension(*), intent(inout) :: tests real,dimension(:), allocatable :: time character(len=100) :: timeunits call readtimedim('../test_data/test_1d.nc', time, timeunits) tests(n) = assert(time(5)==138750896., 'readtimedim: time (1d) - 1') n=n+1 tests(n) = assert((time(9)-time(1))==2400., 'readtimedim: time (1d) - 2') n=n+1 tests(n) = assert(timeunits=='seconds since 2010-01-01 00:00', & 'readtimedim: timeunits (1d)') n=n+1 call readtimedim('../test_data/test_2d.nc', time, timeunits) tests(n) = assert(time(5)==138750896., 'readtimedim: time (2d) - 1') n=n+1 tests(n) = assert((time(9)-time(1))==2400., 'readtimedim: time (2d) - 2') n=n+1 tests(n) = assert(timeunits=='seconds since 2010-01-01 00:00', & 'readtimedim: timeunits (2d)') n=n+1 end subroutine test_readtimedim subroutine test_readstepnc_single(tests, n) ! unit test for readstepnc_single subroutine integer, intent(inout) :: n logical, dimension(*), intent(inout) :: tests real, dimension(10) :: ff real :: lon, lat, elevation, fill_value integer :: startindex = 1 integer :: countnum = 10 call readstepnc_single('../test_data/test_1d.nc', 'temperature', ff, & fill_value, lon, lat, elevation, startindex, countnum) tests(n) = assert(lon==4.88883305, 'readstepnc_single: longitude') n=n+1 tests(n) = assert(lat==52.3687325, 'readstepnc_single: latitude') n=n+1 tests(n) = assert(elevation==1.8, 'readstepnc_single: elevation') n=n+1 tests(n) = assert(ff(3)==20.5000000, 'readstepnc_single: array value') n=n+1 tests(n) = assert((ff(1)-ff(10))==1.50000000, 'readstepnc_single: array value difference') n=n+1 end subroutine test_readstepnc_single subroutine test_readstepnc(tests, n) ! unit test for readstepnc subroutine integer, intent(inout) :: n logical, dimension(*), intent(inout) :: tests real, dimension(10) :: ff real :: lon, lat, elevation, fill_value integer :: startindex = 1 integer :: countnum = 10 integer :: device = 2 call readstepnc('../test_data/test_2d.nc','temperature', ff, & fill_value, lon, lat, elevation, device, startindex, countnum) tests(n) = assert(lon==4.88883305, 'readstepnc: longitude') n=n+1 tests(n) = assert(lat==52.3687325, 'readstepnc: latitude') n=n+1 tests(n) = assert(elevation==24.2, 'readstepnc: elevation') n=n+1 tests(n) = assert(ff(3)==20.5000000, 'readstepnc: array value') n=n+1 tests(n) = assert((ff(1)-ff(10))==1.50000000, 'readstepnc: array value difference') n=n+1 end subroutine test_readstepnc subroutine test_read_variables(tests, n) ! unit test for readstepnc subroutine integer, intent(inout) :: n logical, dimension(*), intent(inout) :: tests character(len=99):: filename, outfile real :: lon, lat, elevation, fill_value integer :: startindex = 1 integer :: countnum = 10 integer :: device = 1 integer :: dimensions = 1 integer :: idx = 1 real, dimension(:), allocatable :: humidity, height, speed real, dimension(:), allocatable :: temperature, dew_point real, dimension(:), allocatable :: pressure, direction, thickness real,dimension(:), allocatable :: uwind, vwind, refpres character(len=30), dimension(2):: variable_name character(len=30), dimension(2):: variable_mapping integer, parameter :: kx=1 integer,dimension(kx) :: p_qc,z_qc,t_qc,td_qc,spd_qc integer, dimension(kx) :: dir_qc,u_qc,v_qc,rh_qc,thick_qc real, dimension(kx) :: dpressure, dheight, dtemperature, ddew_point real, dimension(kx) :: dspeed, ddirection, du, dv, drh, dthickness real, dimension(kx) :: dpsfc, drefpres integer, dimension(kx) :: dpressure_qc, dheight_qc, dtemperature_qc integer, dimension(kx) :: ddew_point_qc, dspeed_qc, ddirection_qc, du_qc integer, dimension(kx) :: dv_qc, drh_qc, dthickness_qc character(len=14), dimension(:), allocatable :: time_littler character(len=8):: startdate, enddate integer :: timeLength character(len=100) :: timeunits logical bogus, append data bogus /.false./ integer:: iseq_num = 1 real,dimension(:), allocatable :: time logical :: file_exists append = .false. variable_name(1) = 'temperature' variable_name(2) = 'humidity' variable_mapping(1) = 'temperature' variable_mapping(2) = 'humidity' if (allocated(temperature)) deallocate(temperature) allocate(temperature(countnum)) if (allocated(humidity)) deallocate(humidity) allocate(humidity(countnum)) if (allocated(height)) deallocate(height) allocate(height(countnum)) if (allocated(speed)) deallocate(speed) allocate(speed(countnum)) if (allocated(dew_point)) deallocate(dew_point) allocate(dew_point(countnum)) if (allocated(pressure)) deallocate(pressure) allocate(pressure(countnum)) if (allocated(refpres)) deallocate(refpres) allocate(refpres(countnum)) if (allocated(direction)) deallocate(direction) allocate(direction(countnum)) if (allocated(thickness)) deallocate(thickness) allocate(thickness(countnum)) if (allocated(uwind)) deallocate(uwind) allocate(uwind(countnum)) if (allocated(vwind)) deallocate(vwind) allocate(vwind(countnum)) ! read both temperature and humidity filename = '../test_data/test_1d.nc' do idx=1,2 call read_variables(lat, lon, elevation, humidity, height, speed, temperature, dew_point, & pressure, refpres, direction, thickness, uwind, vwind, variable_name, & variable_mapping, filename, fill_value, idx, device, dimensions, startindex, countnum) end do ! get default values call get_default_littler(dpressure, dheight, dtemperature, ddew_point, & dspeed, ddirection, du, dv, drh, dthickness, dpsfc, drefpres, dpressure_qc, & dheight_qc, dtemperature_qc, ddew_point_qc, dspeed_qc, ddirection_qc, du_qc, & dv_qc, drh_qc, dthickness_qc, kx) ! read time dimensions call readtimedim(filename, time, timeunits) timeLength = size(time) ! convert to LITTLE_R time format allocate(time_littler(timeLength)) startdate = '20140525' enddate = '20140526' call time_to_littler_date(time, timeunits, time_littler, startindex, & countnum, startdate, enddate) ! define output file outfile = 'test.out' ! write obs to file in LITTLE_R format call write_obs_littler(pressure,height,temperature,dew_point,speed, & direction,uwind,vwind,humidity,thickness,refpres, p_qc,z_qc,t_qc,td_qc,spd_qc, & dir_qc,u_qc,v_qc,rh_qc,thick_qc,elevation,lat,lon,variable_mapping, & kx, bogus, iseq_num, time_littler(startindex:startindex+countnum-1), fill_value, outfile, append) ! run tests tests(n) = assert(lon==4.88883305, 'read_variables: longitude') n=n+1 tests(n) = assert(lat==52.3687325, 'read_variables: latitude') n=n+1 tests(n) = assert(elevation==1.8, 'read_variables: elevation') n=n+1 tests(n) = assert(temperature(3)==20.5000000, 'read_variables: array value') n=n+1 tests(n) = assert(humidity(2)==0.3729959, 'read_variables: array value') n=n+1 tests(n) = assert((temperature(1)-temperature(10))==1.50000000, 'read_variables: array value difference') n=n+1 tests(n) = assert(time_littler(3)=='20140525214504', 'time conversion to LITTLE_R format') n=n+1 ! check if LITTLE_R file is created inquire(FILE=outfile, EXIST=file_exists) tests(n) = assert(file_exists .eqv. .true., 'creation of LITTLE_R output file') n=n+1 end subroutine test_read_variables subroutine test_concat(tests, n) ! unit test for readstepnc subroutine integer, intent(inout) :: n logical, dimension(*), intent(inout) :: tests ! run tests tests(n) = assert(concat_str_int('Number ', 1) == 'Number 1', 'concat str and int') n=n+1 tests(n) = assert(concat_str_real('Number ', 1.0) == 'Number 1.00000000', 'concat str and real') n=n+1 end subroutine test_concat end module netcdf2littler_tests
apache-2.0
tuxillo/aarch64-dragonfly-gcc
gcc/testsuite/gfortran.dg/internal_references_1.f90
135
1045
! { dg-do compile } ! This tests the patch for PRs 24327, 25024 & 25625, which ! are all connected with references to internal procedures. ! This is a composite of the PR testcases; and each is ! labelled by PR. ! ! Contributed by Paul Thomas <pault@gcc.gnu.org> ! ! PR25625 - would neglect to point out that there were 2 subroutines p. module m implicit none contains subroutine p (i) ! { dg-error "is already defined" } integer :: i end subroutine subroutine p (i) ! { dg-error "is already defined" } integer :: i end subroutine end module ! ! PR25124 - would happily ignore the declaration of foo in the main program. program test real :: foo, x ! { dg-error "explicit interface and must not have attributes declared" } x = bar () ! This is OK because it is a regular reference. x = foo () contains function foo () ! { dg-error "explicit interface and must not have attributes declared" } foo = 1.0 end function foo function bar () bar = 1.0 end function bar end program test
gpl-2.0
Hellybean/SaberMod_ROM_Toolchain
gcc/testsuite/gfortran.dg/internal_references_1.f90
135
1045
! { dg-do compile } ! This tests the patch for PRs 24327, 25024 & 25625, which ! are all connected with references to internal procedures. ! This is a composite of the PR testcases; and each is ! labelled by PR. ! ! Contributed by Paul Thomas <pault@gcc.gnu.org> ! ! PR25625 - would neglect to point out that there were 2 subroutines p. module m implicit none contains subroutine p (i) ! { dg-error "is already defined" } integer :: i end subroutine subroutine p (i) ! { dg-error "is already defined" } integer :: i end subroutine end module ! ! PR25124 - would happily ignore the declaration of foo in the main program. program test real :: foo, x ! { dg-error "explicit interface and must not have attributes declared" } x = bar () ! This is OK because it is a regular reference. x = foo () contains function foo () ! { dg-error "explicit interface and must not have attributes declared" } foo = 1.0 end function foo function bar () bar = 1.0 end function bar end program test
gpl-2.0
alongwithyou/rnnlib
hdf5_snap/fortran/test/tH5P_F03.f90
5
19335
!****h* root/fortran/test/tH5P_F03.f90 ! ! NAME ! tH5P_F03.f90 ! ! FUNCTION ! Test FORTRAN HDF5 H5P APIs which are dependent on FORTRAN 2003 ! features. ! ! COPYRIGHT ! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ! Copyright by The HDF Group. * ! Copyright by the Board of Trustees of the University of Illinois. * ! All rights reserved. * ! * ! This file is part of HDF5. The full HDF5 copyright notice, including * ! terms governing use, modification, and redistribution, is contained in * ! the files COPYING and Copyright.html. COPYING can be found at the root * ! of the source code distribution tree; Copyright.html can be found at the * ! root level of an installed copy of the electronic HDF5 document set and * ! is linked from the top-level documents page. It can also be found at * ! http://hdfgroup.org/HDF5/doc/Copyright.html. If you do not have * ! access to either file, you may request a copy from help@hdfgroup.org. * ! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ! ! USES ! test_genprop_cls_cb1_mod ! ! CONTAINS SUBROUTINES ! test_create, test_genprop_class_callback ! !***** ! ***************************************** ! *** H 5 P T E S T S ! ***************************************** MODULE test_genprop_cls_cb1_mod ! Callback subroutine for test_genprop_class_callback ! and the function H5Pcreate_class_f. USE HDF5 USE ISO_C_BINDING IMPLICIT NONE TYPE, bind(C) :: cop_cb_struct_ ! /* Struct for iterations */ INTEGER :: count INTEGER(HID_T) :: id END TYPE cop_cb_struct_ CONTAINS INTEGER FUNCTION test_genprop_cls_cb1_f(list_id, create_data ) bind(C) USE HDF5 USE ISO_C_BINDING IMPLICIT NONE INTEGER(HID_T), INTENT(IN), VALUE :: list_id TYPE(cop_cb_struct_) :: create_data create_data%count = create_data%count + 1 create_data%id = list_id test_genprop_cls_cb1_f = 0 END FUNCTION test_genprop_cls_cb1_f END MODULE test_genprop_cls_cb1_mod MODULE TH5P_F03 CONTAINS !/*------------------------------------------------------------------------- ! * Function: test_create ! * ! * Purpose: Tests H5Pset_fill_value_f and H5Pget_fill_value_f ! * ! * Return: Success: 0 ! * ! * Failure: number of errors ! * ! * Programmer: M. Scot Breitenfeld ! * June 24, 2008 ! * ! * Modifications: ! * ! *------------------------------------------------------------------------- ! */ SUBROUTINE test_create(total_error) USE HDF5 USE TH5_MISC USE ISO_C_BINDING IMPLICIT NONE INTEGER, INTENT(INOUT) :: total_error INTEGER(HID_T) :: fapl INTEGER(hid_t) :: file=-1, space=-1, dcpl=-1, comp_type_id=-1 INTEGER(hid_t) :: dset9=-1 INTEGER(hsize_t), DIMENSION(1:5), PARAMETER :: cur_size = (/2, 8, 8, 4, 2/) INTEGER(hsize_t), DIMENSION(1:5), PARAMETER :: ch_size= (/1, 1, 1, 4, 1/) CHARACTER(LEN=14) :: filename ='test_create.h5' ! /* compound datatype operations */ TYPE, BIND(C) :: comp_datatype REAL :: a INTEGER :: x DOUBLE PRECISION :: y CHARACTER(LEN=1) :: z END TYPE comp_datatype TYPE(comp_datatype), TARGET :: rd_c, fill_ctype INTEGER :: error INTEGER(SIZE_T) :: h5off TYPE(C_PTR) :: f_ptr LOGICAL :: differ1, differ2 !/* ! * Create a file. ! */ CALL h5fcreate_f(filename,H5F_ACC_TRUNC_F,file,error) CALL check("h5fcreate_f", error, total_error) CALL h5screate_simple_f(5, cur_size, space, error, cur_size) CALL check("h5screate_simple_f", error, total_error) CALL H5Pcreate_f(H5P_DATASET_CREATE_F, dcpl, error) CALL check("H5Pcreate_f", error, total_error) CALL h5pset_chunk_f(dcpl, 5, ch_size, error) CALL check("h5pset_chunk_f",error, total_error) ! /* Create a compound datatype */ CALL h5tcreate_f(H5T_COMPOUND_F, INT(SIZEOF(fill_ctype),size_t), comp_type_id, error) CALL check("h5tcreate_f", error, total_error) h5off = H5OFFSETOF(C_LOC(fill_ctype), C_LOC(fill_ctype%a)) CALL h5tinsert_f(comp_type_id, "a", h5off , H5T_NATIVE_REAL, error) CALL check("h5tinsert_f", error, total_error) CALL h5tinsert_f(comp_type_id, "x", H5OFFSETOF(C_LOC(fill_ctype), C_LOC(fill_ctype%x)), H5T_NATIVE_INTEGER, error) CALL check("h5tinsert_f", error, total_error) CALL h5tinsert_f(comp_type_id, "y", H5OFFSETOF(C_LOC(fill_ctype), C_LOC(fill_ctype%y)), H5T_NATIVE_DOUBLE, error) CALL check("h5tinsert_f", error, total_error) CALL h5tinsert_f(comp_type_id, "z", & H5OFFSETOF(C_LOC(fill_ctype), C_LOC(fill_ctype%z)), H5T_NATIVE_CHARACTER, error) CALL check("h5tinsert_f", error, total_error) CALL H5Pset_alloc_time_f(dcpl, H5D_ALLOC_TIME_LATE_F,error) CALL check("H5Pset_alloc_time_f",error, total_error) CALL H5Pset_fill_time_f(dcpl, H5D_FILL_TIME_ALLOC_F, error) CALL check("H5Pset_fill_time_f",error, total_error) ! /* Compound datatype test */ f_ptr = C_LOC(fill_ctype) CALL H5Pget_fill_value_f(dcpl, comp_type_id, f_ptr, error) CALL check("H5Pget_fill_value_f",error, total_error) fill_ctype%y = 4444.D0 fill_ctype%z = 'S' fill_ctype%a = 5555. fill_ctype%x = 55 f_ptr = C_LOC(fill_ctype) CALL H5Pset_fill_value_f(dcpl, comp_type_id, f_ptr, error) CALL check("H5Pget_fill_value_f",error, total_error) CALL h5dcreate_f(file,"dset9", comp_type_id, space, dset9, error, dcpl_id=dcpl) CALL check("h5dcreate_f", error, total_error) CALL h5dclose_f(dset9, error) CALL check("h5dclose_f", error, total_error) CALL h5fclose_f(file,error) CALL check("h5fclose_f", error, total_error) ! /* Open the file and get the dataset fill value from each dataset */ CALL H5Pcreate_f(H5P_FILE_ACCESS_F, fapl, error) CALL check("H5Pcreate_f",error, total_error) CALL H5Pset_libver_bounds_f(fapl, H5F_LIBVER_LATEST_F, H5F_LIBVER_LATEST_F, error) CALL check("H5Pset_libver_bounds_f",error, total_error) CALL h5fopen_f (FILENAME, H5F_ACC_RDONLY_F, file, error, fapl) CALL check("h5fopen_f", error, total_error) !/* Compound datatype test */ CALL h5dopen_f(file, "dset9", dset9, error) CALL check("h5dopen_f", error, total_error) CALL H5Dget_create_plist_f(dset9, dcpl, error) CALL check("H5Dget_create_plist_f", error, total_error) f_ptr = C_LOC(rd_c) CALL H5Pget_fill_value_f(dcpl, comp_type_id, f_ptr, error) CALL check("H5Pget_fill_value_f", error, total_error) IF( .NOT.dreal_eq( REAL(rd_c%a,dp), REAL(fill_ctype%a, dp)) .OR. & .NOT.dreal_eq( REAL(rd_c%y,dp), REAL(fill_ctype%y, dp)) .OR. & rd_c%x .NE. fill_ctype%x .OR. & rd_c%z .NE. fill_ctype%z )THEN PRINT*,"***ERROR: Returned wrong fill value" total_error = total_error + 1 ENDIF CALL h5dclose_f(dset9, error) CALL check("h5dclose_f", error, total_error) CALL H5Pclose_f(dcpl, error) CALL check("H5Pclose_f", error, total_error) CALL h5fclose_f(file,error) CALL check("h5fclose_f", error, total_error) END SUBROUTINE test_create SUBROUTINE test_genprop_class_callback(total_error) ! ! ! test_genprop_class_callback(): Test basic generic property list code. ! Tests callbacks for property lists in a generic class. ! ! FORTRAN TESTS: ! Tests function H5Pcreate_class_f with callback. ! ! USE HDF5 USE TH5_MISC USE ISO_C_BINDING USE test_genprop_cls_cb1_mod IMPLICIT NONE INTEGER, INTENT(INOUT) :: total_error INTEGER(hid_t) :: cid1 !/* Generic Property class ID */ INTEGER(hid_t) :: lid1 !/* Generic Property list ID */ INTEGER(hid_t) :: lid2 !/* 2nd Generic Property list ID */ INTEGER(size_t) :: nprops !/* Number of properties in class */ TYPE cb_struct INTEGER :: count INTEGER(hid_t) :: id END TYPE cb_struct TYPE(cb_struct), TARGET :: crt_cb_struct, cls_cb_struct CHARACTER(LEN=7) :: CLASS1_NAME = "Class 1" TYPE(C_FUNPTR) :: f1, f5 TYPE(C_PTR) :: f2, f6 CHARACTER(LEN=10) :: PROP1_NAME = "Property 1" INTEGER(SIZE_T) :: PROP1_SIZE = 10 CHARACTER(LEN=10) :: PROP2_NAME = "Property 2" INTEGER(SIZE_T) :: PROP2_SIZE = 10 CHARACTER(LEN=10) :: PROP3_NAME = "Property 3" INTEGER(SIZE_T) :: PROP3_SIZE = 10 CHARACTER(LEN=10) :: PROP4_NAME = "Property 4" INTEGER(SIZE_T) :: PROP4_SIZE = 10 INTEGER :: PROP1_DEF_VALUE = 10 INTEGER :: PROP2_DEF_VALUE = 10 INTEGER :: PROP3_DEF_VALUE = 10 INTEGER :: PROP4_DEF_VALUE = 10 INTEGER :: error ! /* Generic RETURN value */ f1 = C_FUNLOC(test_genprop_cls_cb1_f) f5 = C_FUNLOC(test_genprop_cls_cb1_f) f2 = C_LOC(crt_cb_struct) f6 = C_LOC(cls_cb_struct) !/* Create a new generic class, derived from the root of the class hierarchy */ CALL h5pcreate_class_f(h5p_ROOT_F,CLASS1_NAME, cid1, error, f1, f2, c_null_funptr, c_null_ptr, f5, f6) CALL check("h5pcreate_class_f", error, total_error) !/* Insert first property into class (with no callbacks) */ CALL h5pregister_f(cid1, PROP1_NAME, PROP1_SIZE, PROP1_DEF_VALUE, error) CALL check("h5pregister_f", error, total_error) !/* Insert second property into class (with no callbacks) */ CALL h5pregister_f(cid1, PROP2_NAME, PROP2_SIZE, PROP2_DEF_VALUE, error) CALL check("h5pregister_f", error, total_error) !/* Insert third property into class (with no callbacks) */ CALL h5pregister_f(cid1, PROP3_NAME, PROP3_SIZE, PROP3_DEF_VALUE, error) CALL check("h5pregister_f", error, total_error) !/* Insert fourth property into class (with no callbacks) */ CALL h5pregister_f(cid1, PROP4_NAME, PROP4_SIZE, PROP4_DEF_VALUE, error) CALL check("h5pregister_f", error, total_error) ! /* Check the number of properties in class */ CALL h5pget_nprops_f(cid1, nprops, error) CALL check("h5pget_nprops_f", error, total_error) CALL VERIFY("h5pget_nprops_f", INT(nprops), 4, total_error) ! /* Initialize class callback structs */ crt_cb_struct%count = 0 crt_cb_struct%id = -1 cls_cb_struct%count = 0 cls_cb_struct%id = -1 !/* Create a property list from the class */ CALL h5pcreate_f(cid1, lid1, error) CALL check("h5pcreate_f", error, total_error) !/* Verify that the creation callback occurred */ CALL VERIFY("h5pcreate_f", crt_cb_struct%count, 1, total_error) CALL VERIFY("h5pcreate_f", INT(crt_cb_struct%id), INT(lid1), total_error) ! /* Check the number of properties in list */ CALL h5pget_nprops_f(lid1,nprops, error) CALL check("h5pget_nprops_f", error, total_error) CALL VERIFY("h5pget_nprops_f", INT(nprops), 4, total_error) ! /* Create another property list from the class */ CALL h5pcreate_f(cid1, lid2, error) CALL check("h5pcreate_f", error, total_error) ! /* Verify that the creation callback occurred */ CALL VERIFY("h5pcreate_f", crt_cb_struct%count, 2, total_error) CALL VERIFY("h5pcreate_f", INT(crt_cb_struct%id), INT(lid2), total_error) ! /* Check the number of properties in list */ CALL h5pget_nprops_f(lid2,nprops, error) CALL check("h5pget_nprops_f", error, total_error) CALL VERIFY("h5pget_nprops_f", INT(nprops), 4, total_error) ! /* Close first list */ CALL h5pclose_f(lid1, error); CALL check("h5pclose_f", error, total_error) !/* Verify that the close callback occurred */ CALL VERIFY("h5pcreate_f", cls_cb_struct%count, 1, total_error) CALL VERIFY("h5pcreate_f", INT(cls_cb_struct%id), INT(lid1), total_error) !/* Close second list */ CALL h5pclose_f(lid2, error); CALL check("h5pclose_f", error, total_error) !/* Verify that the close callback occurred */ CALL VERIFY("h5pcreate_f", cls_cb_struct%count, 2, total_error) CALL VERIFY("h5pcreate_f", INT(cls_cb_struct%id), INT(lid2), total_error) !/* Close class */ CALL h5pclose_class_f(cid1, error) CALL check("h5pclose_class_f", error, total_error) END SUBROUTINE test_genprop_class_callback !------------------------------------------------------------------------- ! Function: test_h5p_file_image ! ! Purpose: Tests APIs: ! h5pget_file_image_f and h5pset_file_image_f ! ! Return: Success: 0 ! Failure: -1 ! ! FORTRAN Programmer: M. Scot Breitenfeld ! April 1, 2014 !------------------------------------------------------------------------- SUBROUTINE test_h5p_file_image(total_error) USE HDF5 USE TH5_MISC USE, INTRINSIC :: iso_c_binding IMPLICIT NONE INTEGER, INTENT(INOUT) :: total_error INTEGER(hid_t) :: fapl_1 = -1 INTEGER, PARAMETER :: count = 10 INTEGER, DIMENSION(1:count), TARGET :: buffer INTEGER, DIMENSION(1:count), TARGET :: temp INTEGER :: i INTEGER(size_t) :: size INTEGER(size_t) :: temp_size INTEGER :: error ! error return value TYPE(C_PTR) :: f_ptr TYPE(C_PTR), DIMENSION(1:count) :: f_ptr1 TYPE(C_PTR), DIMENSION(1:1) :: f_ptr2 ! Initialize file image buffer DO i = 1, count buffer(i) = i*10 ENDDO ! Create fapl CALL h5pcreate_f(H5P_FILE_ACCESS_F, fapl_1, error) CALL check("h5pcreate_f", error, total_error) ! Test with NULL ptr f_ptr2(1) = C_NULL_PTR temp_size = 1 CALL h5pget_file_image_f(fapl_1, f_ptr2, temp_size, error) CALL check("h5pget_file_image_f", error, total_error) CALL verify("h5pget_file_image_f", INT(temp_size), 0, total_error) ! Set file image f_ptr = C_LOC(buffer(1)) size = SIZEOF(buffer) CALL h5pset_file_image_f(fapl_1, f_ptr, size, error) CALL check("h5pset_file_image_f", error, total_error) ! Get the same data back DO i = 1, count f_ptr1(i) = C_LOC(temp(i)) ENDDO temp_size = 0 CALL h5pget_file_image_f(fapl_1, f_ptr1, temp_size, error) CALL check("h5pget_file_image_f", error, total_error) ! Check that sizes are the same, and that the buffers are identical but separate CALL VERIFY("h5pget_file_image_f", INT(temp_size), INT(size), total_error) ! Verify the image data is correct DO i = 1, count CALL VERIFY("h5pget_file_image_f", temp(i), buffer(i), total_error) ENDDO END SUBROUTINE test_h5p_file_image !------------------------------------------------------------------------- ! Function: external_test_offset ! ! Purpose: Tests APIs: ! h5pset_external_f (with offsets not equal to zero), h5pget_external_f ! ! Return: Success: 0 ! Failure: -1 ! ! FORTRAN Programmer: M. Scot Breitenfeld ! January 10, 2012 !------------------------------------------------------------------------- ! SUBROUTINE external_test_offset(cleanup,total_error) USE ISO_C_BINDING USE TH5_MISC USE HDF5 ! This module contains all necessary modules IMPLICIT NONE INTEGER, INTENT(INOUT) :: total_error LOGICAL, INTENT(IN) :: cleanup INTEGER(hid_t) :: fapl=-1 ! file access property list INTEGER(hid_t) :: file=-1 ! file to write to INTEGER(hid_t) :: dcpl=-1 ! dataset creation properties INTEGER(hid_t) :: space=-1 ! data space INTEGER(hid_t) :: dset=-1 ! dataset INTEGER(hid_t) :: grp=-1 ! group to emit diagnostics INTEGER(size_t) :: i, j ! miscellaneous counters CHARACTER(LEN=180) :: filename ! file names INTEGER, DIMENSION(1:25) :: part ! raw data buffers INTEGER, DIMENSION(1:100), TARGET :: whole ! raw data buffers INTEGER(hsize_t), DIMENSION(1:1) :: cur_size ! current data space size INTEGER(hid_t) :: hs_space ! hyperslab data space INTEGER(hsize_t), DIMENSION(1:1) :: hs_start = (/30/) ! hyperslab starting offset INTEGER(hsize_t), DIMENSION(1:1) :: hs_count = (/25/) ! hyperslab size CHARACTER(LEN=1) :: ichr1 ! character conversion holder INTEGER :: error ! error status TYPE(C_PTR) :: f_ptr ! fortran pointer CHARACTER(LEN=1,KIND=C_CHAR), DIMENSION(1:30) :: temparray temparray(1:30)(1:1) = '0' ! 1 byte character ! Write the data to external files directly DO i = 1, 4 DO j = 1, 25 part(j) = (i-1)*25+(j-1) ENDDO WRITE(ichr1,'(I1.1)') i filename = "extern_"//ichr1//"a.raw" OPEN(10, FILE=filename, ACCESS='STREAM', form='UNFORMATTED') WRITE(10) temparray(1:(i-1)*10) WRITE(10) part CLOSE(10) ENDDO ! ! Create the file and an initial group. CALL h5pcreate_f(H5P_FILE_ACCESS_F, fapl, error) CALL h5fcreate_f('extren_raw.h5', H5F_ACC_TRUNC_F, file, error, access_prp=fapl) CALL check("h5fcreate_f",error,total_error) CALL h5gcreate_f(file, "emit-diagnostics", grp, error) CALL check("h5gcreate_f",error, total_error) ! Create the dataset CALL h5pcreate_f(H5P_DATASET_CREATE_F, dcpl, error) CALL check("h5pcreate_f", error, total_error) CALL h5pset_external_f(dcpl, "extern_1a.raw", INT(0,off_t), INT(SIZEOF(part), hsize_t), error) CALL check("h5pset_external_f",error,total_error) CALL h5pset_external_f(dcpl, "extern_2a.raw", INT(10,off_t), INT(SIZEOF(part), hsize_t), error) CALL check("h5pset_external_f",error,total_error) CALL h5pset_external_f(dcpl, "extern_3a.raw", INT(20,off_t), INT(SIZEOF(part), hsize_t), error) CALL check("h5pset_external_f",error,total_error) CALL h5pset_external_f(dcpl, "extern_4a.raw", INT(30,off_t), INT(SIZEOF(part), hsize_t), error) CALL check("h5pset_external_f",error,total_error) cur_size(1) = 100 CALL h5screate_simple_f(1, cur_size, space, error) CALL check("h5screate_simple_f", error, total_error) CALL h5dcreate_f(file, "dset1", H5T_NATIVE_INTEGER, space, dset,error,dcpl_id=dcpl) CALL check("h5dcreate_f", error, total_error) ! ! Read the entire dataset and compare with the original whole(:) = 0 f_ptr = C_LOC(whole(1)) CALL h5dread_f(dset, H5T_NATIVE_INTEGER, f_ptr, error, mem_space_id=space, file_space_id=space) CALL check("h5dread_f", error, total_error) DO i = 1, 100 IF(whole(i) .NE. i-1)THEN WRITE(*,*) "Incorrect value(s) read." total_error = total_error + 1 EXIT ENDIF ENDDO ! ! Read the middle of the dataset CALL h5scopy_f(space, hs_space, error) CALL check("h5scopy_f", error, total_error) CALL h5sselect_hyperslab_f(hs_space, H5S_SELECT_SET_F, hs_start, hs_count, error) CALL check("h5sselect_hyperslab_f", error, total_error) whole(:) = 0 f_ptr = C_LOC(whole(1)) CALL h5dread_f(dset, H5T_NATIVE_INTEGER, f_ptr, error, mem_space_id=hs_space, file_space_id=hs_space) CALL check("h5dread_f", error, total_error) CALL h5sclose_f(hs_space, error) CALL check("h5sclose_f", error, total_error) DO i = INT(hs_start(1))+1, INT(hs_start(1)+hs_count(1)) IF(whole(i) .NE. i-1)THEN WRITE(*,*) "Incorrect value(s) read." total_error = total_error + 1 EXIT ENDIF ENDDO CALL h5dclose_f(dset, error) CALL check("h5dclose_f", error, total_error) CALL h5pclose_f(dcpl, error) CALL check("h5pclose_f", error, total_error) CALL h5sclose_f(space, error) CALL check("h5sclose_f", error, total_error) CALL h5fclose_f(file, error) CALL check("h5fclose_f", error, total_error) ! cleanup DO i = 1, 4 WRITE(ichr1,'(I1.1)') i filename = "extern_"//ichr1//"a.raw" CALL h5_cleanup_f(filename, H5P_DEFAULT_F, error) CALL check("h5_cleanup_f", error, total_error) ENDDO IF(cleanup) CALL h5_cleanup_f("extren_raw.h5", H5P_DEFAULT_F, error) CALL check("h5_cleanup_f", error, total_error) END SUBROUTINE external_test_offset END MODULE TH5P_F03
gpl-3.0
Hellybean/SaberMod_ROM_Toolchain
gcc/testsuite/gfortran.fortran-torture/execute/intrinsic_trailz.f90
174
1541
program test_intrinsic_trailz implicit none call test_trailz(0_1,0_2,0_4,0_8,1_1,1_2,1_4,1_8,8_1,8_2,8_4,8_8) stop contains subroutine test_trailz(z1,z2,z4,z8,i1,i2,i4,i8,e1,e2,e4,e8) integer(kind=1) :: z1, i1, e1 integer(kind=2) :: z2, i2, e2 integer(kind=4) :: z4, i4, e4 integer(kind=8) :: z8, i8, e8 if (trailz(0_1) /= 8) call abort() if (trailz(0_2) /= 16) call abort() if (trailz(0_4) /= 32) call abort() if (trailz(0_8) /= 64) call abort() if (trailz(1_1) /= 0) call abort() if (trailz(1_2) /= 0) call abort() if (trailz(1_4) /= 0) call abort() if (trailz(1_8) /= 0) call abort() if (trailz(8_1) /= 3) call abort() if (trailz(8_2) /= 3) call abort() if (trailz(8_4) /= 3) call abort() if (trailz(8_8) /= 3) call abort() if (trailz(z1) /= 8) call abort() if (trailz(z2) /= 16) call abort() if (trailz(z4) /= 32) call abort() if (trailz(z8) /= 64) call abort() if (trailz(i1) /= 0) call abort() if (trailz(i2) /= 0) call abort() if (trailz(i4) /= 0) call abort() if (trailz(i8) /= 0) call abort() if (trailz(e1) /= 3) call abort() if (trailz(e2) /= 3) call abort() if (trailz(e4) /= 3) call abort() if (trailz(e8) /= 3) call abort() end subroutine test_trailz end program
gpl-2.0
tuxillo/aarch64-dragonfly-gcc
gcc/testsuite/gfortran.dg/do_check_6.f90
139
2350
! { dg-do compile } ! ! PR fortran/54958 ! module m integer, protected :: i integer :: j end module m subroutine test1() use m implicit none integer :: A(5) ! Valid: data-implied-do (has a scope of the statement or construct) DATA (A(i), i=1,5)/5*42/ ! OK ! Valid: ac-implied-do (has a scope of the statement or construct) print *, [(i, i=1,5 )] ! OK ! Valid: index-name (has a scope of the statement or construct) forall (i = 1:5) ! OK end forall ! Valid: index-name (has a scope of the statement or construct) do concurrent (i = 1:5) ! OK end do ! Invalid: io-implied-do print *, (i, i=1,5 ) ! { dg-error "PROTECTED and can not appear in a variable definition context .iterator variable." } ! Invalid: do-variable in a do-stmt do i = 1, 5 ! { dg-error "PROTECTED and can not appear in a variable definition context .iterator variable." } end do end subroutine test1 subroutine test2(i) implicit none integer, intent(in) :: i integer :: A(5) ! Valid: data-implied-do (has a scope of the statement or construct) DATA (A(i), i=1,5)/5*42/ ! OK ! Valid: ac-implied-do (has a scope of the statement or construct) print *, [(i, i=1,5 )] ! OK ! Valid: index-name (has a scope of the statement or construct) forall (i = 1:5) ! OK end forall ! Valid: index-name (has a scope of the statement or construct) do concurrent (i = 1:5) ! OK end do ! Invalid: io-implied-do print *, (i, i=1,5 ) ! { dg-error "INTENT.IN. in variable definition context .iterator variable." } ! Invalid: do-variable in a do-stmt do i = 1, 5 ! { dg-error "INTENT.IN. in variable definition context .iterator variable." } end do end subroutine test2 pure subroutine test3() use m implicit none integer :: A(5) !DATA (A(j), j=1,5)/5*42/ ! Not allowed in pure ! Valid: ac-implied-do (has a scope of the statement or construct) A = [(j, j=1,5 )] ! OK ! Valid: index-name (has a scope of the statement or construct) forall (j = 1:5) ! OK end forall ! Valid: index-name (has a scope of the statement or construct) do concurrent (j = 1:5) ! OK end do ! print *, (j, j=1,5 ) ! I/O not allowed in PURE ! Invalid: do-variable in a do-stmt do j = 1, 5 ! { dg-error "variable definition context .iterator variable. at .1. in PURE procedure" } end do end subroutine test3
gpl-2.0
FrontISTR/FrontISTR
fistr1/src/lib/element/hex20n.f90
1
4558
!------------------------------------------------------------------------------- ! Copyright (c) 2019 FrontISTR Commons ! This software is released under the MIT License, see LICENSE.txt !------------------------------------------------------------------------------- !> \brief This module contains functions for interpolation in 20 node !! hexahedral element (Serendipity interpolation) module shape_hex20n integer, parameter, private :: kreal = kind(0.0d0) contains subroutine ShapeFunc_hex20n(localcoord,func) real(kind=kreal) :: localcoord(3) real(kind=kreal) :: func(20) real(kind=kreal) RI,SI,TI,RP,SP,TP,RM,SM,TM RI=localcoord(1); SI=localcoord(2); TI=localcoord(3) RP=1.0+RI; SP=1.0+SI; TP=1.0+TI RM=1.0-RI; SM=1.0-SI; TM=1.0-TI func(1)=-0.125*RM*SM*TM*(2.0+RI+SI+TI) func(2)=-0.125*RP*SM*TM*(2.0-RI+SI+TI) func(3)=-0.125*RP*SP*TM*(2.0-RI-SI+TI) func(4)=-0.125*RM*SP*TM*(2.0+RI-SI+TI) func(5)=-0.125*RM*SM*TP*(2.0+RI+SI-TI) func(6)=-0.125*RP*SM*TP*(2.0-RI+SI-TI) func(7)=-0.125*RP*SP*TP*(2.0-RI-SI-TI) func(8)=-0.125*RM*SP*TP*(2.0+RI-SI-TI) func(9)=0.25*(1.0-RI**2)*SM*TM func(10)=0.25*RP*(1.0-SI**2)*TM func(11)=0.25*(1.0-RI**2)*SP*TM func(12)=0.25*RM*(1.0-SI**2)*TM func(13)=0.25*(1.0-RI**2)*SM*TP func(14)=0.25*RP*(1.0-SI**2)*TP func(15)=0.25*(1.0-RI**2)*SP*TP func(16)=0.25*RM*(1.0-SI**2)*TP func(17)=0.25*RM*SM*(1.0-TI**2) func(18)=0.25*RP*SM*(1.0-TI**2) func(19)=0.25*RP*SP*(1.0-TI**2) func(20)=0.25*RM*SP*(1.0-TI**2) end subroutine subroutine ShapeDeriv_hex20n(localcoord,func) real(kind=kreal) :: localcoord(3) real(kind=kreal) :: func(20,3) real(kind=kreal) RI,SI,TI,RP,SP,TP,RM,SM,TM RI=localcoord(1); SI=localcoord(2); TI=localcoord(3) RP=1.d0+RI; SP=1.d0+SI; TP=1.d0+TI RM=1.d0-RI; SM=1.d0-SI; TM=1.d0-TI ! FOR R-COORDINATE func(1,1)=-0.125*RM*SM*TM+0.125*SM*TM*(2.0+RI+SI+TI) func(2,1)=+0.125*RP*SM*TM-0.125*SM*TM*(2.0-RI+SI+TI) func(3,1)=+0.125*RP*SP*TM-0.125*SP*TM*(2.0-RI-SI+TI) func(4,1)=-0.125*RM*SP*TM+0.125*SP*TM*(2.0+RI-SI+TI) func(5,1)=-0.125*RM*SM*TP+0.125*SM*TP*(2.0+RI+SI-TI) func(6,1)=+0.125*RP*SM*TP-0.125*SM*TP*(2.0-RI+SI-TI) func(7,1)=+0.125*RP*SP*TP-0.125*SP*TP*(2.0-RI-SI-TI) func(8,1)=-0.125*RM*SP*TP+0.125*SP*TP*(2.0+RI-SI-TI) func(9,1 )=-0.50*RI*SM*TM func(10,1)=+0.25*(1.0-SI**2)*TM func(11,1)=-0.50*RI*SP*TM func(12,1)=-0.25*(1.0-SI**2)*TM func(13,1)=-0.50*RI*SM*TP func(14,1)=+0.25*(1.0-SI**2)*TP func(15,1)=-0.50*RI*SP*TP func(16,1)=-0.25*(1.0-SI**2)*TP func(17,1)=-0.25*SM*(1.0-TI**2) func(18,1)=+0.25*SM*(1.0-TI**2) func(19,1)=+0.25*SP*(1.0-TI**2) func(20,1)=-0.25*SP*(1.0-TI**2) ! FOR S-COORDINATE func(1,2)=-0.125*RM*SM*TM+0.125*RM*TM*(2.0+RI+SI+TI) func(2,2)=-0.125*RP*SM*TM+0.125*RP*TM*(2.0-RI+SI+TI) func(3,2)=+0.125*RP*SP*TM-0.125*RP*TM*(2.0-RI-SI+TI) func(4,2)=+0.125*RM*SP*TM-0.125*RM*TM*(2.0+RI-SI+TI) func(5,2)=-0.125*RM*SM*TP+0.125*RM*TP*(2.0+RI+SI-TI) func(6,2)=-0.125*RP*SM*TP+0.125*RP*TP*(2.0-RI+SI-TI) func(7,2)=+0.125*RP*SP*TP-0.125*RP*TP*(2.0-RI-SI-TI) func(8,2)=+0.125*RM*SP*TP-0.125*RM*TP*(2.0+RI-SI-TI) func(9,2)=-0.25*(1.0-RI**2)*TM func(10,2)=-0.50*RP*SI*TM func(11,2)=+0.25*(1.0-RI**2)*TM func(12,2)=-0.50*RM*SI*TM func(13,2)=-0.25*(1.0-RI**2)*TP func(14,2)=-0.50*RP*SI*TP func(15,2)=+0.25*(1.0-RI**2)*TP func(16,2)=-0.50*RM*SI*TP func(17,2)=-0.25*RM*(1.0-TI**2) func(18,2)=-0.25*RP*(1.0-TI**2) func(19,2)=+0.25*RP*(1.0-TI**2) func(20,2)=+0.25*RM*(1.0-TI**2) ! FOR T-COORDINATE func(1,3)=-0.125*RM*SM*TM+0.125*RM*SM*(2.0+RI+SI+TI) func(2,3)=-0.125*RP*SM*TM+0.125*RP*SM*(2.0-RI+SI+TI) func(3,3)=-0.125*RP*SP*TM+0.125*RP*SP*(2.0-RI-SI+TI) func(4,3)=-0.125*RM*SP*TM+0.125*RM*SP*(2.0+RI-SI+TI) func(5,3)=+0.125*RM*SM*TP-0.125*RM*SM*(2.0+RI+SI-TI) func(6,3)=+0.125*RP*SM*TP-0.125*RP*SM*(2.0-RI+SI-TI) func(7,3)=+0.125*RP*SP*TP-0.125*RP*SP*(2.0-RI-SI-TI) func(8,3)=+0.125*RM*SP*TP-0.125*RM*SP*(2.0+RI-SI-TI) func(9,3)=-0.25*(1.0-RI**2)*SM func(10,3)=-0.25*RP*(1.0-SI**2) func(11,3)=-0.25*(1.0-RI**2)*SP func(12,3)=-0.25*RM*(1.0-SI**2) func(13,3)=0.25*(1.0-RI**2)*SM func(14,3)=0.25*RP*(1.0-SI**2) func(15,3)=0.25*(1.0-RI**2)*SP func(16,3)=0.25*RM*(1.0-SI**2) func(17,3)=-0.5*RM*SM*TI func(18,3)=-0.5*RP*SM*TI func(19,3)=-0.5*RP*SP*TI func(20,3)=-0.5*RM*SP*TI end subroutine end module
mit
ovilab/atomify-lammps
libs/lammps/lib/linalg/dsygvd.f
48
12188
*> \brief \b DSYGST * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DSYGVD + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygvd.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygvd.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygvd.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, * LWORK, IWORK, LIWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER JOBZ, UPLO * INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N * .. * .. Array Arguments .. * INTEGER IWORK( * ) * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DSYGVD computes all the eigenvalues, and optionally, the eigenvectors *> of a real generalized symmetric-definite eigenproblem, of the form *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and *> B are assumed to be symmetric and B is also positive definite. *> If eigenvectors are desired, it uses a divide and conquer algorithm. *> *> The divide and conquer algorithm makes very mild assumptions about *> floating point arithmetic. It will work on machines with a guard *> digit in add/subtract, or on those binary machines without guard *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or *> Cray-2. It could conceivably fail on hexadecimal or decimal machines *> without guard digits, but we know of none. *> \endverbatim * * Arguments: * ========== * *> \param[in] ITYPE *> \verbatim *> ITYPE is INTEGER *> Specifies the problem type to be solved: *> = 1: A*x = (lambda)*B*x *> = 2: A*B*x = (lambda)*x *> = 3: B*A*x = (lambda)*x *> \endverbatim *> *> \param[in] JOBZ *> \verbatim *> JOBZ is CHARACTER*1 *> = 'N': Compute eigenvalues only; *> = 'V': Compute eigenvalues and eigenvectors. *> \endverbatim *> *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> = 'U': Upper triangles of A and B are stored; *> = 'L': Lower triangles of A and B are stored. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrices A and B. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA, N) *> On entry, the symmetric matrix A. If UPLO = 'U', the *> leading N-by-N upper triangular part of A contains the *> upper triangular part of the matrix A. If UPLO = 'L', *> the leading N-by-N lower triangular part of A contains *> the lower triangular part of the matrix A. *> *> On exit, if JOBZ = 'V', then if INFO = 0, A contains the *> matrix Z of eigenvectors. The eigenvectors are normalized *> as follows: *> if ITYPE = 1 or 2, Z**T*B*Z = I; *> if ITYPE = 3, Z**T*inv(B)*Z = I. *> If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') *> or the lower triangle (if UPLO='L') of A, including the *> diagonal, is destroyed. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is DOUBLE PRECISION array, dimension (LDB, N) *> On entry, the symmetric matrix B. If UPLO = 'U', the *> leading N-by-N upper triangular part of B contains the *> upper triangular part of the matrix B. If UPLO = 'L', *> the leading N-by-N lower triangular part of B contains *> the lower triangular part of the matrix B. *> *> On exit, if INFO <= N, the part of B containing the matrix is *> overwritten by the triangular factor U or L from the Cholesky *> factorization B = U**T*U or B = L*L**T. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. LDB >= max(1,N). *> \endverbatim *> *> \param[out] W *> \verbatim *> W is DOUBLE PRECISION array, dimension (N) *> If INFO = 0, the eigenvalues in ascending order. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. *> If N <= 1, LWORK >= 1. *> If JOBZ = 'N' and N > 1, LWORK >= 2*N+1. *> If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal sizes of the WORK and IWORK *> arrays, returns these values as the first entries of the WORK *> and IWORK arrays, and no error message related to LWORK or *> LIWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. *> \endverbatim *> *> \param[in] LIWORK *> \verbatim *> LIWORK is INTEGER *> The dimension of the array IWORK. *> If N <= 1, LIWORK >= 1. *> If JOBZ = 'N' and N > 1, LIWORK >= 1. *> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. *> *> If LIWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal sizes of the WORK and *> IWORK arrays, returns these values as the first entries of *> the WORK and IWORK arrays, and no error message related to *> LWORK or LIWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: DPOTRF or DSYEVD returned an error code: *> <= N: if INFO = i and JOBZ = 'N', then the algorithm *> failed to converge; i off-diagonal elements of an *> intermediate tridiagonal form did not converge to *> zero; *> if INFO = i and JOBZ = 'V', then the algorithm *> failed to compute an eigenvalue while working on *> the submatrix lying in rows and columns INFO/(N+1) *> through mod(INFO,N+1); *> > N: if INFO = N + i, for 1 <= i <= N, then the leading *> minor of order i of B is not positive definite. *> The factorization of B could not be completed and *> no eigenvalues or eigenvectors were computed. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup doubleSYeigen * *> \par Further Details: * ===================== *> *> \verbatim *> *> Modified so that no backsubstitution is performed if DSYEVD fails to *> converge (NEIG in old code could be greater than N causing out of *> bounds reference to A - reported by Ralf Meyer). Also corrected the *> description of INFO and the test on ITYPE. Sven, 16 Feb 05. *> \endverbatim * *> \par Contributors: * ================== *> *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA *> * ===================================================================== SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, $ LWORK, IWORK, LIWORK, INFO ) * * -- LAPACK driver routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER JOBZ, UPLO INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N * .. * .. Array Arguments .. INTEGER IWORK( * ) DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D+0 ) * .. * .. Local Scalars .. LOGICAL LQUERY, UPPER, WANTZ CHARACTER TRANS INTEGER LIOPT, LIWMIN, LOPT, LWMIN * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL DPOTRF, DSYEVD, DSYGST, DTRMM, DTRSM, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MAX * .. * .. Executable Statements .. * * Test the input parameters. * WANTZ = LSAME( JOBZ, 'V' ) UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 ) * INFO = 0 IF( N.LE.1 ) THEN LIWMIN = 1 LWMIN = 1 ELSE IF( WANTZ ) THEN LIWMIN = 3 + 5*N LWMIN = 1 + 6*N + 2*N**2 ELSE LIWMIN = 1 LWMIN = 2*N + 1 END IF LOPT = LWMIN LIOPT = LIWMIN IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN INFO = -1 ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN INFO = -2 ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -6 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 END IF * IF( INFO.EQ.0 ) THEN WORK( 1 ) = LOPT IWORK( 1 ) = LIOPT * IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN INFO = -11 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN INFO = -13 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DSYGVD', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Form a Cholesky factorization of B. * CALL DPOTRF( UPLO, N, B, LDB, INFO ) IF( INFO.NE.0 ) THEN INFO = N + INFO RETURN END IF * * Transform problem to standard eigenvalue problem and solve. * CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO ) CALL DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK, $ INFO ) LOPT = MAX( DBLE( LOPT ), DBLE( WORK( 1 ) ) ) LIOPT = MAX( DBLE( LIOPT ), DBLE( IWORK( 1 ) ) ) * IF( WANTZ .AND. INFO.EQ.0 ) THEN * * Backtransform eigenvectors to the original problem. * IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN * * For A*x=(lambda)*B*x and A*B*x=(lambda)*x; * backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y * IF( UPPER ) THEN TRANS = 'N' ELSE TRANS = 'T' END IF * CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE, $ B, LDB, A, LDA ) * ELSE IF( ITYPE.EQ.3 ) THEN * * For B*A*x=(lambda)*x; * backtransform eigenvectors: x = L*y or U**T*y * IF( UPPER ) THEN TRANS = 'T' ELSE TRANS = 'N' END IF * CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE, $ B, LDB, A, LDA ) END IF END IF * WORK( 1 ) = LOPT IWORK( 1 ) = LIOPT * RETURN * * End of DSYGVD * END
gpl-3.0
tuxillo/aarch64-dragonfly-gcc
gcc/testsuite/gfortran.dg/widechar_intrinsics_1.f90
181
4725
! { dg-do compile } ! { dg-options "-fmax-errors=100000" } character(kind=1,len=20) :: s1, t1, u1, v1 character(kind=4,len=20) :: s4, t4, u4, v4 call date_and_time(date=s1) call date_and_time(time=s1) call date_and_time(zone=s1) call date_and_time(s1, t1, u1) call date_and_time(date=s4) ! { dg-error "must be of kind 1" } call date_and_time(time=s4) ! { dg-error "must be of kind 1" } call date_and_time(zone=s4) ! { dg-error "must be of kind 1" } call date_and_time(s4, t4, u4) ! { dg-error "must be of kind 1" } call get_command(s1) call get_command(s4) ! { dg-error "Type of argument" } call get_command_argument(1, s1) call get_command_argument(1, s4) ! { dg-error "Type of argument" } call get_environment_variable("PATH", s1) call get_environment_variable(s1) call get_environment_variable(s1, t1) call get_environment_variable(4_"PATH", s1) ! { dg-error "Type of argument" } call get_environment_variable(s4) ! { dg-error "Type of argument" } call get_environment_variable(s1, t4) ! { dg-error "Type of argument" } call get_environment_variable(s4, t1) ! { dg-error "Type of argument" } print *, lge(s1,t1) print *, lge(s1,"foo") print *, lge("foo",t1) print *, lge("bar","foo") print *, lge(s1,t4) ! { dg-error "must be of kind 1" } print *, lge(s1,4_"foo") ! { dg-error "must be of kind 1" } print *, lge("foo",t4) ! { dg-error "must be of kind 1" } print *, lge("bar",4_"foo") ! { dg-error "must be of kind 1" } print *, lge(s4,t1) ! { dg-error "must be of kind 1" } print *, lge(s4,"foo") ! { dg-error "must be of kind 1" } print *, lge(4_"foo",t1) ! { dg-error "must be of kind 1" } print *, lge(4_"bar","foo") ! { dg-error "must be of kind 1" } print *, lge(s4,t4) ! { dg-error "must be of kind 1" } print *, lge(s4,4_"foo") ! { dg-error "must be of kind 1" } print *, lge(4_"foo",t4) ! { dg-error "must be of kind 1" } print *, lge(4_"bar",4_"foo") ! { dg-error "must be of kind 1" } print *, lgt(s1,t1) print *, lgt(s1,"foo") print *, lgt("foo",t1) print *, lgt("bar","foo") print *, lgt(s1,t4) ! { dg-error "must be of kind 1" } print *, lgt(s1,4_"foo") ! { dg-error "must be of kind 1" } print *, lgt("foo",t4) ! { dg-error "must be of kind 1" } print *, lgt("bar",4_"foo") ! { dg-error "must be of kind 1" } print *, lgt(s4,t1) ! { dg-error "must be of kind 1" } print *, lgt(s4,"foo") ! { dg-error "must be of kind 1" } print *, lgt(4_"foo",t1) ! { dg-error "must be of kind 1" } print *, lgt(4_"bar","foo") ! { dg-error "must be of kind 1" } print *, lgt(s4,t4) ! { dg-error "must be of kind 1" } print *, lgt(s4,4_"foo") ! { dg-error "must be of kind 1" } print *, lgt(4_"foo",t4) ! { dg-error "must be of kind 1" } print *, lgt(4_"bar",4_"foo") ! { dg-error "must be of kind 1" } print *, lle(s1,t1) print *, lle(s1,"foo") print *, lle("foo",t1) print *, lle("bar","foo") print *, lle(s1,t4) ! { dg-error "must be of kind 1" } print *, lle(s1,4_"foo") ! { dg-error "must be of kind 1" } print *, lle("foo",t4) ! { dg-error "must be of kind 1" } print *, lle("bar",4_"foo") ! { dg-error "must be of kind 1" } print *, lle(s4,t1) ! { dg-error "must be of kind 1" } print *, lle(s4,"foo") ! { dg-error "must be of kind 1" } print *, lle(4_"foo",t1) ! { dg-error "must be of kind 1" } print *, lle(4_"bar","foo") ! { dg-error "must be of kind 1" } print *, lle(s4,t4) ! { dg-error "must be of kind 1" } print *, lle(s4,4_"foo") ! { dg-error "must be of kind 1" } print *, lle(4_"foo",t4) ! { dg-error "must be of kind 1" } print *, lle(4_"bar",4_"foo") ! { dg-error "must be of kind 1" } print *, llt(s1,t1) print *, llt(s1,"foo") print *, llt("foo",t1) print *, llt("bar","foo") print *, llt(s1,t4) ! { dg-error "must be of kind 1" } print *, llt(s1,4_"foo") ! { dg-error "must be of kind 1" } print *, llt("foo",t4) ! { dg-error "must be of kind 1" } print *, llt("bar",4_"foo") ! { dg-error "must be of kind 1" } print *, llt(s4,t1) ! { dg-error "must be of kind 1" } print *, llt(s4,"foo") ! { dg-error "must be of kind 1" } print *, llt(4_"foo",t1) ! { dg-error "must be of kind 1" } print *, llt(4_"bar","foo") ! { dg-error "must be of kind 1" } print *, llt(s4,t4) ! { dg-error "must be of kind 1" } print *, llt(s4,4_"foo") ! { dg-error "must be of kind 1" } print *, llt(4_"foo",t4) ! { dg-error "must be of kind 1" } print *, llt(4_"bar",4_"foo") ! { dg-error "must be of kind 1" } print *, selected_char_kind("foo") print *, selected_char_kind(4_"foo") ! { dg-error "must be of kind 1" } print *, selected_char_kind(s1) print *, selected_char_kind(s4) ! { dg-error "must be of kind 1" } end
gpl-2.0
Heathckliff/MeshTools
Fortran/gmsh2su2_3D.f90
3
20567
! ==================== ! README Gmsh2SU3D ver 0.02 ! ==================== ! ! Original version by Ceanwang@gmail.com, Jan 2012 ! ! Adapted from gmsh2dolfyn.f90 developed by dolfyn team. ! For dolfyn, please visit http://www.dolfyn.net/index_en.html ! ! Support Gmsh 2.5.0 ! ! Purpose ! ------- ! This Fortran95 program translates a mesh file from Gmsh (.msh) format ! to Su2 format. ! ! Input and Output ! ---------------- ! Input : A Gmsh .msh file (version 2.0, ascii format). ! Output: SU2 files. ! ! Running the Program !-------------------- ! First compile it using a Fortran95 compiler (eg g95 or gfortran). ! Run it from the command line. ! The program prompts for the name of the input file. ! ! Bug reports ! ----------- ! Please report bugs to ceanwang@gmail.com ! ! Important note about the Gmsh msh format and Physical Groups. ! ------------------------------------------------------------- ! In order to define boundary conditions, the Gmsh geometry-builder allows a ! group of faces to be assigned a common 'physical group' label. The mesh ! inherits this label, and the label is used in the .su2 file. ! ! When saving the mesh, the default is to save only mesh elements with a ! physical group label. This means that some mesh elements will be missing, ! unless every mesh element belongs to a physical group. ! ! For example in the adapted gmsh tutorial t2.geo enter: ! ! Physical Volume ("Fluid") = {119,120}; ! Physical Surface("Inlet") = {111}; ! Physical Surface("Outlet") = {132}; ! ! Mesh 3D and save it as t2.msh ! !======================================================================== !======================================================================== !======================================================================== SUBROUTINE UPPERCASE(STR) IMPLICIT NONE CHARACTER(LEN=*), INTENT(IN OUT) :: STR INTEGER :: I, DEL DEL = IACHAR('a') - IACHAR('A') DO I = 1, LEN_TRIM(STR) IF (LGE(STR(I:I),'a') .AND. LLE(STR(I:I),'z')) THEN STR(I:I) = ACHAR(IACHAR(STR(I:I)) - DEL) END IF END DO RETURN END SUBROUTINE UPPERCASE integer function lens(string) character(len=*) string do i=len(string),0,-1 if( string(i:i) .ne. ' ') goto 10 end do i = 0 10 continue lens = i end function lens !====================================================================== subroutine openfile(iunit,casename,extension,reqform,status,idebug) character(len=*) casename character(len=*) extension character(len=*) reqform character(len=*) status character(len=48) filename character(len=11) form logical exists filename = casename(1:lens(casename))//extension(1:lens(extension)) length = lens(filename) if( idebug > 2 )write(*,*) 'Opening ',filename(1:length) if( status(1:3) == 'OLD' )then inquire(file=filename(1:length),exist=exists,form=form) if( .not. exists )then write(*,*) '*** Error: File ',filename(1:length),' does not exist' stop endif endif open(iunit,file=filename(1:length),form=reqform,status=status) if( idebug >= 2 ) write(*,*) 'File ',filename(1:length),' opened' end subroutine openfile !============================================================================== program gmsh2SU2 implicit none integer, parameter :: IOinp = 13, IOcel = 14 ! I/O file numbers integer, parameter :: IOdbg = 63, IOcfg = 12 integer, parameter :: IOgmsh= 24 !Gmsh mesh file integer :: Ninlet = 0 integer :: Noutlet = 0 integer :: Nsurface = 0 integer :: isur = 0 integer :: debug = 0 integer, parameter :: version = 0530 character(len=128) :: line integer, parameter :: MaxNames = 100 integer, parameter :: MaxNperBnd = 500 integer, parameter :: MaxNodes = 90000 character(len=64), dimension(MaxNames) :: Names character(len=64), dimension(MaxNames) :: Regions integer, dimension(MaxNames) :: ICTID = -1 integer, dimension(MaxNames) :: Partition= 1 logical, dimension(MaxNames) :: Fluid = .false. logical, dimension(MaxNames) :: Boundary = .false. character(len=64) :: casename = 'su2' character(len=72) :: c_input1, c_input2, c_input3 integer i, j, k, ie, icel, ibnd, iloop,ii integer tbnd(maxnames) integer nbnd ! ! nodes/vertices ! integer n_nodes,inode real node(MaxNodes,3) integer mytags(MaxNames) integer tv0(MaxNperBnd,MaxNames) integer tv1(MaxNperBnd,MaxNames) integer tv2(MaxNperBnd,MaxNames) integer tv3(MaxNperBnd,MaxNames) integer tv4(MaxNperBnd,MaxNames) ! ! there are 19 gmsh element types: \ ! ! 1 : 2-node line ! 2 : 3-node triangle (face) ! 3 : 4-node quadrangle (face) ! 4 : 4-node tetrahedron ! 5 : 8-node hexahedron (eg cube) ! 6 : 6-node triangular-prism ! 7 : 5-node pyramid ! ! 8-14: 'second-order' elements. Ref Gmsh manual. ! 15 : 1-node point ! 16-19: more second-order FEM elements ! ! the nodes/vertices for each element are read into the ! v array. ! ! each element can have several tags. ! the first tag gives the physical_group number. ! all elements on the same boundary have the same physical_group number. ! integer, parameter :: element_type(19) = & (/ 2,3,4,4,8,6,5,3,6,9,10,27,18,14,1,8,20,15,13 /) integer :: n_elements, ielement, ielement_type, n_tags, n_names, lens integer :: tags(64), v(27) integer :: bmarknew,bmarkold integer :: i3, i4q, i4, i5, i6, i8 integer :: i2 integer :: ivs = 0 if( size(v) /= maxval(element_type) )then stop'bug: error in dimensions of array v' endif ! ! read the gmsh filename, then open the .msh file ! write(*,*) 'Gmsh2SU2: Converts a Gmsh mesh file to SU2 format.' write(*,*) '(Input must be in Gmsh version 2.0 ascii format.' write(*,*) ' Output is in SU2 format.)' write(*,*) ' ' write(*,*) 'Input Gmsh filename, excluding the .msh suffix' read(*,'(A)') casename write(*,*) 'Opening the Gmsh file' call openfile(IOgmsh,casename,'.msh','FORMATTED','OLD',debug) ! ! read the Gmsh file header ! write(*,*)'Reading MeshFormat' read(IOgmsh,*) c_input1 call check_input_character(c_input1,'$MeshFormat') read(IOgmsh,*) c_input1,c_input2,c_input3 if( c_input1 == '2.2' )then ivs = 22 else if( c_input1 == '2.1' )then ivs = 21 else if( c_input1 == '2' )then ivs = 20 else write(*,*) '*** WARNING: unknown Gmsh version' write(*,*) '*** Unexpected results might happen' ivs = 21 endif if( ivs == 20 )then call check_input_character(c_input1,'2') else if( ivs == 21 )then call check_input_character(c_input1,'2.1') else if( ivs == 22 )then call check_input_character(c_input1,'2.2') else write(*,*) '*** Version found ',c_input1 endif call check_input_character(c_input2,'0') call check_input_character(c_input3,'8') write(*,*) 'MeshFormat: ', c_input1(1:lens(c_input1)),' ', & c_input2(1:lens(c_input2)),' ', & c_input3(1:lens(c_input3)) read(IOgmsh,*) c_input1 call check_input_character(c_input1,'$EndMeshFormat') ! ! read the Gmsh PhysicalNames ! write(*,*)'Reading PhysicalNames' read(IOgmsh,*) c_input1 call check_input_character(c_input1,'$PhysicalNames') read(IOgmsh,*) n_names if( n_names <= 0 )then write(*,*) 'error: number of names must be a positive number' stop endif if( ivs == 20 )then do i=1,n_names !read(IOgmsh,*) k,j,c_input1 read(IOgmsh,*) j,c_input1 write(*,*) 'Name ',j,'-> ', c_input1 Names(j) = c_input1 end do else if( ivs == 21 )then do i=1,n_names read(IOgmsh,*) k,j,c_input1 write(*,*) 'Name ',j,'-> ', c_input1 Names(j) = c_input1 end do else do i=1,n_names read(IOgmsh,*) k,j,c_input1 write(*,*) 'Name ',j,'-> ', c_input1 Names(j) = c_input1 end do endif do i=1,n_names CALL UPPERCASE(Names(i)) enddo read(IOgmsh,*) c_input1 call check_input_character(c_input1,'$EndPhysicalNames') ! ! read the nodes from the .msh file and write them ! to the .vrt file. ! write(*,*)'Reading Nodes' read(IOgmsh,*) c_input1 call check_input_character(c_input1,'$Nodes') !nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn read(IOgmsh,*) n_nodes if( n_nodes <= 0 )then write(*,*) 'error: number of nodes must be a positive number' stop endif if( n_nodes > MaxNodes )then write(*,*) 'error: The Gmsh file contains ',n_nodes,' nodes.' write(*,*) 'Gmsh2Su2 is hard-wired for a maximum of ',MaxNodes,& 'nodes. The dimension of this array needs to be increased.' stop endif ! ! open the su2 .vrt.su2 file ! !write(*,*) 'Creating the su2 .vrt.su2 file' !call openfile(IOvrt,casename,'.vrt.su2','FORMATTED','UNKNOWN',debug) nodes: do iloop=1,n_nodes read(IOgmsh,*) inode,(node(iloop,i), i=1,3) !write(IOvrt,'(3g16.9,6x,i9)') (node(iloop,i),i=1,3),inode-1 enddo nodes write(*,*) 'Nodes written ',n_nodes ! ! close the su2 .vrt.su2 file ! !close(IOvrt) read(IOgmsh,*) c_input1 call check_input_character(c_input1,'$EndNodes') !eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ! ! read the elements from the .msh file and write them ! to the .cel and .bnd files. ! read(IOgmsh,*) c_input1 call check_input_character(c_input1,'$Elements') read(IOgmsh,*) n_elements if( n_elements <= 0 )then write(*,*) 'error: number of elements must be a positive number' stop endif write(*,*) 'Total Gmsh elements to be read in:',n_elements ! ! open the su2 .cel files ! write(*,*) 'Creating the .su2 files' call openfile(IOcel,casename,'.su2','FORMATTED','UNKNOWN',debug) write(IOcel,101) 3 101 format('NDIME= ',i1) ! ! note in Gmsh fluid cells and boudaries can be mixed ! we just keep track on them both ! remind default region is not assigned ! icel = 0 ibnd = 0 nbnd=0 tbnd(nbnd)=0 i2 = 0 i3 = 0 i4q = 0 i4 = 0 i5 = 0 i6 = 0 i8 = 0 bmarkOld=0 do ie=1,n_elements read(IOgmsh,*) ielement, ielement_type, n_tags if( ivs <= 21 )then if( n_tags /= 3 ) write(*,*) 'tag error n_tags /= 3:',ielement,n_tags else if( n_tags /= 2 ) write(*,*) 'tag error n_tags /= 2:',ielement,n_tags endif call check_element_type(ielement_type,element_type) call check_n_tags(n_tags,tags) backspace(IOgmsh) ! ! we need to circumvent backspace but ! advance='no' requires fixed format ! just keep it for now. ! ! ! now we know what to to expect to find on the line ! read(IOgmsh,*) ielement, ielement_type, & n_tags, (tags(i),i=1,n_tags),& (v(i),i=1,element_type(ielement_type)) do ii=1,element_type(ielement_type) v(ii)=v(ii)-1 end do bmarkNew=tags(1) if( 4 <= ielement_type .and. ielement_type <= 7 )then if (icel==0) then write(IOcel,121) n_elements-ibnd 121 format('NELEM= ',i10) endif icel = icel + 1 if( .not. Fluid(tags(1)) ) Fluid(tags(1)) = .true. if( Boundary(tags(1)) )then write(*,*) 'Inconsistent data: Physical names ids overlap 1' endif 1 format(i8,8(1x,i8),2(1x,i4)) select case(ielement_type) case(4) ! 4-node tet write(IOcel,*) 10,v(1),v(2),v(3),v(4),icel-1 i4 = i4 + 1 case(5) ! 8-node hex write(IOcel,*) 12,v(1),v(2),v(3),v(4), v(5),v(6),v(7),v(8),icel-1 !tags(1),tags(3) i8 = i8 + 1 case(6) ! 6-node prism or wedge write(IOcel,*) 13,v(1),v(2),v(3), v(4),v(5),v(6),icel-1 i6 = i6 + 1 case(7) ! 5-node pyramid write(IOcel,*) 14,v(1),v(2),v(3),v(4), v(5),icel-1 i5 = i5 + 1 case default write(*,*)'internal error 1' end select elseif( ielement_type == 2 .or. ielement_type == 3 )then if (bmarkNew/=bmarkOld) then bmarkOld=bmarkNew nbnd=nbnd+1 tbnd(nbnd)=0 endif ibnd = ibnd + 1 tbnd(nbnd) = tbnd(nbnd) + 1 if( .not. Boundary(tags(1)) ) Boundary(tags(1)) = .true. if( Fluid(tags(1)) )then write(*,*) 'Inconsistent data: Physical names ids overlap 2' endif select case(ielement_type) case(2) ! 3-node tri !write(IObnd,*) 5, v(1),v(2),v(3) mytags(nbnd)=tags(1) tv0(tbnd(nbnd),nbnd)=5 tv1(tbnd(nbnd),nbnd)=v(1) tv2(tbnd(nbnd),nbnd)=v(2) tv3(tbnd(nbnd),nbnd)=v(3) i3 = i3 + 1 case(3) ! 4-node quad !write(IObnd,1) 8, v(1),v(2),v(3),v(4) mytags(nbnd)=tags(1) tv0(tbnd(nbnd),nbnd)=8 tv1(tbnd(nbnd),nbnd)=v(1) tv2(tbnd(nbnd),nbnd)=v(2) tv3(tbnd(nbnd),nbnd)=v(3) tv4(tbnd(nbnd),nbnd)=v(4) i4q = i4q + 1 case default write(*,*)'internal error 2' end select elseif( ielement_type == 1 )then ! 2- nodes line !write(IObnd,*) 3, v(1),v(2) mytags(nbnd)=tags(1) tv0(tbnd(nbnd),nbnd)=3 tv1(tbnd(nbnd),nbnd)=v(1) tv2(tbnd(nbnd),nbnd)=v(2) i2 = i2 + 1 else write(*,*)'internal error 3' endif end do read(IOgmsh,*) c_input1 call check_input_character(c_input1,'$EndElements') !------------------------------------------------------------ ! write out points !------------------------------------------------------------ write(IOcel,91) n_nodes 91 format('NPOIN= ',i10) do iloop=1,n_nodes write(IOcel,'(3g16.9,6x,i9)') (node(iloop,i),i=1,3),iloop-1 enddo write(IOcel,111) n_names-1 111 format('NMARK= ',i10) do j=1,n_names-1 write(IOcel,141) mytags(j) write(IOcel,151) tbnd(j) do i=1,tbnd(j) if (tv0(i,j)==5) then write(IOcel,*) tv0(i,j), tv1(i,j),tv2(i,j),tv3(i,j) endif 201 format(1x, i10,3f15.6) if (tv0(i,j)==8) then write(IOcel,*) tv0(i,j), tv1(i,j),tv2(i,j),tv3(i,j),tv4(i,j) endif 211 format(1x, i10,4f15.6) enddo end do 141 format('MARKER_TAG= ',i3) 151 format('MARKER_ELEMS= ', i10) close(IOcel) if( i3 > 0 ) write(*,*) 'Triangle boundaries: ',i3 if( i4q > 0 ) write(*,*) 'Quad boundaries: ',i4q if( i4 > 0 ) write(*,*) 'Tetrahedral cells: ',i4 if( i5 > 0 ) write(*,*) 'Pyramid cells: ',i5 if( i6 > 0 ) write(*,*) 'Prism cells: ',i6 if( i8 > 0 ) write(*,*) 'Hexahedral cells: ',i8 !------------------------------------------------------------ ! finally write out the boundary names !------------------------------------------------------------ do i=1,n_Names if (Names(i)=='INLET') then Ninlet=Ninlet+1 endif if (Names(i)=='OUTLET') then Noutlet=Noutlet+1 endif enddo Nsurface=N_names-Ninlet-Noutlet-1 write(*,*) 'Writing the .inp file' call openfile(IOinp,casename,'_inp.txt','FORMATTED','UNKNOWN',debug) write(IOinp,'('''')') write(IOinp,'(''% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%'')') write(IOinp,'(''%'')') write(IOinp,'(''% Euler wall boundary marker(s) (NONE = no marker)'')') !write(IOinp,'(''MARKER_EULER='')') !( 3,4,5,6,7,8,9,10 ) if (N_names>0) then write(IOinp,'( "MARKER_EULER=(" )',ADVANCE = "NO") do i=1,N_names if (Names(i) .ne. 'INLET' .and. Names(i) .ne. 'OUTLET' .and. Names(i) .ne. 'FLUID') then write(IOinp,'( i4 )',ADVANCE = "NO") i isur=isur+1 if (isur<Nsurface) then write(IOinp,'( "," )',ADVANCE = "NO") endif endif end do write(IOinp,'( ")" )') else write(IOinp,'(''MARKER_EULER = NONE'')') endif write(IOinp,'(''%'')') write(IOinp,'(''% Inlet boundary marker(s) (NONE = no marker) '')') write(IOinp,'(''% Format: ( inlet marker, total temperature, total pressure, flow_direction_x, '')') write(IOinp,'(''% flow_direction_y, flow_direction_z, ... ) where flow_direction is'')') write(IOinp,'(''% a unit vector.'')') if (Ninlet>0) then do i=1,MaxNames if (Names(i)=='INLET') then write(IOinp,'( "MARKER_INLET=(",i4,",288.6, 102010.0, 1.0, 0.0, 0.0)" )') i endif end do else write(IOinp,'(''MARKER_INLET= NONE'')') endif write(IOinp,'(''%'')') !1001 format(1x,'MARKER_INLET=(',i10,'288.6, 102010.0, 1.0, 0.0, 0.0)') write(IOinp,'(''% Outlet boundary marker(s) (NONE = no marker)'')') write(IOinp,'(''% Format: ( outlet marker, back pressure (static), ... )'')') if (Noutlet>0) then do i=1,MaxNames if (Names(i)=='OUTLET') then write(IOinp,'( "MARKER_OUTLET=(",i4,",101300.0)" )') i endif end do else write(IOinp,'(''MARKER_OUTLET= NONE'')') endif write(IOinp,'(''%'')') write(IOinp,'(''% Marker(s) of the surface to be plotted or designed'')') write(IOinp,'( ''MARKER_PLOTTING=(4,5)'' )') ! ( 5,4 ) write(IOinp,'(''%'')') write(IOinp,'(''% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated'')') write(IOinp,'( ''MARKER_MONITORING=(4,5)'' )') ! ( 5, 4 ) write(IOinp,'('''')') !do i=1,MaxNames ! if( Boundary(i) )then ! if( i <= 9 )then ! write(IOinp,'(''rname,'',i1,'','',A64)') i,Names(i) ! elseif( i <= 99 )then ! write(IOinp,'(''rname,'',i2,'','',A64)') i,Names(i) ! elseif( i <= 999 )then ! write(IOinp,'(''rname,'',i3,'','',A64)') i,Names(i) ! elseif( i <= 9999 )then ! write(IOinp,'(''rname,'',i4,'','',A64)') i,Names(i) ! elseif( i <= 99999 )then ! write(IOinp,'(''rname,'',i5,'','',A64)') i,Names(i) ! else ! write(IOinp,'(''rname,'',i6,'','',A64)') i,Names(i) ! endif ! endif ! end do close(IOinp) write(*,*) 'Done gmsh2su2' contains !------------------------------------------------------------------------------------ subroutine check_input_character(c1,c2) implicit none character (len=*) :: c1, c2 if( c1(1:len(c2)) /= c2 )then write(*,*) 'error reading Gmsh input file: ',& 'the following two characters should be the ',& 'same but differ ',c1(1:len(c2)),c2 stop endif end subroutine subroutine check_element_type(ielement_type,element_type) implicit none integer ielement_type integer element_type(:) if( ielement_type < 0 )then write(*,*) 'error reading Gmsh file: element type must be positive' write(*,*) 'element type = ',ielement_type stop endif if( ielement_type > size(element_type) )then write(*,*) 'error reading Gmsh file: unrecognised element type' write(*,*) 'element type ',ielement_type write(*,*) 'max recognised element type ',size(element_type) stop endif end subroutine subroutine check_n_tags(ntags,itags) implicit none integer ntags integer itags(:) if( ntags > size(itags) )then write(*,*) 'error: The Gmsh file contains ',ntags,' tags per element' write(*,*) 'Gmsh2Su2 is hard-wired for a maximum of ',size(itags),& 'tags. The dimension of this array needs to be increased.' stop endif end subroutine end
lgpl-2.1
intervigilium/cs259-or32-gcc
gcc/testsuite/gfortran.dg/char_pointer_func.f90
166
1196
! { dg-do run } ! { dg-options "-std=legacy" } ! program char_pointer_func ! Test assignments from character pointer functions, required ! to fix PR17192 and PR17202 ! Provided by Paul Thomas pault@gcc.gnu.org implicit none character*4 :: c0 character*4, pointer :: c1 character*4, pointer :: c2(:) allocate (c1, c2(1)) ! Check that we have not broken non-pointer characters. c0 = foo () if (c0 /= "abcd") call abort () ! Value assignments c1 = sfoo () if (c1 /= "abcd") call abort () c2 = afoo (c0) if (c2(1) /= "abcd") call abort () deallocate (c1, c2) ! Pointer assignments c1 => sfoo () if (c1 /= "abcd") call abort () c2 => afoo (c0) if (c2(1) /= "abcd") call abort () deallocate (c1, c2) contains function foo () result (cc1) character*4 :: cc1 cc1 = "abcd" end function foo function sfoo () result (sc1) character*4, pointer :: sc1 allocate (sc1) sc1 = "abcd" end function sfoo function afoo (c0) result (ac1) character*4 :: c0 character*4, pointer :: ac1(:) allocate (ac1(1)) ac1 = "abcd" end function afoo end program char_pointer_func
gpl-2.0
tuxillo/aarch64-dragonfly-gcc
libgomp/testsuite/libgomp.fortran/simd7.f90
102
9430
! { dg-do run } ! { dg-additional-options "-msse2" { target sse2_runtime } } ! { dg-additional-options "-mavx" { target avx_runtime } } subroutine foo (d, e, f, g, m, n) integer :: i, j, b(2:9), c(3:n), d(:), e(2:n), f(2:,3:), n integer, allocatable :: g(:), h(:), k, m logical :: l l = .false. allocate (h(2:7)) i = 4; j = 4; b = 7; c = 8; d = 9; e = 10; f = 11; g = 12; h = 13; k = 14; m = 15 !$omp simd linear(b)linear(c:2)linear(d:3)linear(e:4)linear(f:5)linear(g:6) & !$omp & linear(h:7)linear(k:8)linear(m:9) reduction(.or.:l) do i = 0, 63 l = l .or. .not.allocated (g) .or. .not.allocated (h) l = l .or. .not.allocated (k) .or. .not.allocated (m) l = l .or. any (b /= 7 + i) .or. any (c /= 8 + 2 * i) l = l .or. any (d /= 9 + 3 * i) .or. any (e /= 10 + 4 * i) l = l .or. any (f /= 11 + 5 * i) .or. any (g /= 12 + 6 * i) l = l .or. any (h /= 13 + 7 * i) .or. (k /= 14 + 8 * i) l = l .or. (m /= 15 + 9 * i) l = l .or. (lbound (b, 1) /= 2) .or. (ubound (b, 1) /= 9) l = l .or. (lbound (c, 1) /= 3) .or. (ubound (c, 1) /= n) l = l .or. (lbound (d, 1) /= 1) .or. (ubound (d, 1) /= 17) l = l .or. (lbound (e, 1) /= 2) .or. (ubound (e, 1) /= n) l = l .or. (lbound (f, 1) /= 2) .or. (ubound (f, 1) /= 3) l = l .or. (lbound (f, 2) /= 3) .or. (ubound (f, 2) /= 5) l = l .or. (lbound (g, 1) /= 7) .or. (ubound (g, 1) /= 10) l = l .or. (lbound (h, 1) /= 2) .or. (ubound (h, 1) /= 7) b = b + 1; c = c + 2; d = d + 3; e = e + 4; f = f + 5; g = g + 6 h = h + 7; k = k + 8; m = m + 9 end do if (l .or. i /= 64) call abort if (any (b /= 7 + 64) .or. any (c /= 8 + 2 * 64)) call abort if (any (d /= 9 + 3 * 64) .or. any (e /= 10 + 4 * 64)) call abort if (any (f /= 11 + 5 * 64) .or. any (g /= 12 + 6 * 64)) call abort if (any (h /= 13 + 7 * 64) .or. (k /= 14 + 8 * 64)) call abort if (m /= 15 + 9 * 64) call abort if ((lbound (b, 1) /= 2) .or. (ubound (b, 1) /= 9)) call abort if ((lbound (c, 1) /= 3) .or. (ubound (c, 1) /= n)) call abort if ((lbound (d, 1) /= 1) .or. (ubound (d, 1) /= 17)) call abort if ((lbound (e, 1) /= 2) .or. (ubound (e, 1) /= n)) call abort if ((lbound (f, 1) /= 2) .or. (ubound (f, 1) /= 3)) call abort if ((lbound (f, 2) /= 3) .or. (ubound (f, 2) /= 5)) call abort if ((lbound (g, 1) /= 7) .or. (ubound (g, 1) /= 10)) call abort if ((lbound (h, 1) /= 2) .or. (ubound (h, 1) /= 7)) call abort i = 4; j = 4; b = 7; c = 8; d = 9; e = 10; f = 11; g = 12; h = 13; k = 14; m = 15 !$omp simd linear(b)linear(c:2)linear(d:3)linear(e:4)linear(f:5)linear(g:6) & !$omp & linear(h:7)linear(k:8)linear(m:9) reduction(.or.:l) collapse(2) do i = 0, 7 do j = 0, 7 l = l .or. .not.allocated (g) .or. .not.allocated (h) l = l .or. .not.allocated (k) .or. .not.allocated (m) l = l .or. any (b /= 7 + (8 * i + j)) .or. any (c /= 8 + 2 * (8 * i + j)) l = l .or. any (d /= 9 + 3 * (8 * i + j)) .or. any (e /= 10 + 4 * (8 * i + j)) l = l .or. any (f /= 11 + 5 * (8 * i + j)) .or. any (g /= 12 + 6 * (8 * i + j)) l = l .or. any (h /= 13 + 7 * (8 * i + j)) .or. (k /= 14 + 8 * (8 * i + j)) l = l .or. (m /= 15 + 9 * (8 * i + j)) l = l .or. (lbound (b, 1) /= 2) .or. (ubound (b, 1) /= 9) l = l .or. (lbound (c, 1) /= 3) .or. (ubound (c, 1) /= n) l = l .or. (lbound (d, 1) /= 1) .or. (ubound (d, 1) /= 17) l = l .or. (lbound (e, 1) /= 2) .or. (ubound (e, 1) /= n) l = l .or. (lbound (f, 1) /= 2) .or. (ubound (f, 1) /= 3) l = l .or. (lbound (f, 2) /= 3) .or. (ubound (f, 2) /= 5) l = l .or. (lbound (g, 1) /= 7) .or. (ubound (g, 1) /= 10) l = l .or. (lbound (h, 1) /= 2) .or. (ubound (h, 1) /= 7) b = b + 1; c = c + 2; d = d + 3; e = e + 4; f = f + 5; g = g + 6 h = h + 7; k = k + 8; m = m + 9 end do end do if (l .or. i /= 8 .or. j /= 8) call abort if (any (b /= 7 + 64) .or. any (c /= 8 + 2 * 64)) call abort if (any (d /= 9 + 3 * 64) .or. any (e /= 10 + 4 * 64)) call abort if (any (f /= 11 + 5 * 64) .or. any (g /= 12 + 6 * 64)) call abort if (any (h /= 13 + 7 * 64) .or. (k /= 14 + 8 * 64)) call abort if (m /= 15 + 9 * 64) call abort if ((lbound (b, 1) /= 2) .or. (ubound (b, 1) /= 9)) call abort if ((lbound (c, 1) /= 3) .or. (ubound (c, 1) /= n)) call abort if ((lbound (d, 1) /= 1) .or. (ubound (d, 1) /= 17)) call abort if ((lbound (e, 1) /= 2) .or. (ubound (e, 1) /= n)) call abort if ((lbound (f, 1) /= 2) .or. (ubound (f, 1) /= 3)) call abort if ((lbound (f, 2) /= 3) .or. (ubound (f, 2) /= 5)) call abort if ((lbound (g, 1) /= 7) .or. (ubound (g, 1) /= 10)) call abort if ((lbound (h, 1) /= 2) .or. (ubound (h, 1) /= 7)) call abort i = 4; j = 4; b = 7; c = 8; d = 9; e = 10; f = 11; g = 12; h = 13; k = 14; m = 15 !$omp parallel do simd linear(b)linear(c:2)linear(d:3)linear(e:4)linear(f:5) & !$omp & linear(g:6)linear(h:7)linear(k:8)linear(m:9) reduction(.or.:l) do i = 0, 63 l = l .or. .not.allocated (g) .or. .not.allocated (h) l = l .or. .not.allocated (k) .or. .not.allocated (m) l = l .or. any (b /= 7 + i) .or. any (c /= 8 + 2 * i) l = l .or. any (d /= 9 + 3 * i) .or. any (e /= 10 + 4 * i) l = l .or. any (f /= 11 + 5 * i) .or. any (g /= 12 + 6 * i) l = l .or. any (h /= 13 + 7 * i) .or. (k /= 14 + 8 * i) l = l .or. (m /= 15 + 9 * i) l = l .or. (lbound (b, 1) /= 2) .or. (ubound (b, 1) /= 9) l = l .or. (lbound (c, 1) /= 3) .or. (ubound (c, 1) /= n) l = l .or. (lbound (d, 1) /= 1) .or. (ubound (d, 1) /= 17) l = l .or. (lbound (e, 1) /= 2) .or. (ubound (e, 1) /= n) l = l .or. (lbound (f, 1) /= 2) .or. (ubound (f, 1) /= 3) l = l .or. (lbound (f, 2) /= 3) .or. (ubound (f, 2) /= 5) l = l .or. (lbound (g, 1) /= 7) .or. (ubound (g, 1) /= 10) l = l .or. (lbound (h, 1) /= 2) .or. (ubound (h, 1) /= 7) b = b + 1; c = c + 2; d = d + 3; e = e + 4; f = f + 5; g = g + 6 h = h + 7; k = k + 8; m = m + 9 end do if (l .or. i /= 64) call abort if (any (b /= 7 + 64) .or. any (c /= 8 + 2 * 64)) call abort if (any (d /= 9 + 3 * 64) .or. any (e /= 10 + 4 * 64)) call abort if (any (f /= 11 + 5 * 64) .or. any (g /= 12 + 6 * 64)) call abort if (any (h /= 13 + 7 * 64) .or. (k /= 14 + 8 * 64)) call abort if (m /= 15 + 9 * 64) call abort if ((lbound (b, 1) /= 2) .or. (ubound (b, 1) /= 9)) call abort if ((lbound (c, 1) /= 3) .or. (ubound (c, 1) /= n)) call abort if ((lbound (d, 1) /= 1) .or. (ubound (d, 1) /= 17)) call abort if ((lbound (e, 1) /= 2) .or. (ubound (e, 1) /= n)) call abort if ((lbound (f, 1) /= 2) .or. (ubound (f, 1) /= 3)) call abort if ((lbound (f, 2) /= 3) .or. (ubound (f, 2) /= 5)) call abort if ((lbound (g, 1) /= 7) .or. (ubound (g, 1) /= 10)) call abort if ((lbound (h, 1) /= 2) .or. (ubound (h, 1) /= 7)) call abort i = 4; j = 4; b = 7; c = 8; d = 9; e = 10; f = 11; g = 12; h = 13; k = 14; m = 15 !$omp parallel do simd linear(b)linear(c:2)linear(d:3)linear(e:4)linear(f:5) & !$omp & linear(g:6)linear(h:7)linear(k:8)linear(m:9) reduction(.or.:l) collapse(2) do i = 0, 7 do j = 0, 7 l = l .or. .not.allocated (g) .or. .not.allocated (h) l = l .or. .not.allocated (k) .or. .not.allocated (m) l = l .or. any (b /= 7 + (8 * i + j)) .or. any (c /= 8 + 2 * (8 * i + j)) l = l .or. any (d /= 9 + 3 * (8 * i + j)) .or. any (e /= 10 + 4 * (8 * i + j)) l = l .or. any (f /= 11 + 5 * (8 * i + j)) .or. any (g /= 12 + 6 * (8 * i + j)) l = l .or. any (h /= 13 + 7 * (8 * i + j)) .or. (k /= 14 + 8 * (8 * i + j)) l = l .or. (m /= 15 + 9 * (8 * i + j)) l = l .or. (lbound (b, 1) /= 2) .or. (ubound (b, 1) /= 9) l = l .or. (lbound (c, 1) /= 3) .or. (ubound (c, 1) /= n) l = l .or. (lbound (d, 1) /= 1) .or. (ubound (d, 1) /= 17) l = l .or. (lbound (e, 1) /= 2) .or. (ubound (e, 1) /= n) l = l .or. (lbound (f, 1) /= 2) .or. (ubound (f, 1) /= 3) l = l .or. (lbound (f, 2) /= 3) .or. (ubound (f, 2) /= 5) l = l .or. (lbound (g, 1) /= 7) .or. (ubound (g, 1) /= 10) l = l .or. (lbound (h, 1) /= 2) .or. (ubound (h, 1) /= 7) b = b + 1; c = c + 2; d = d + 3; e = e + 4; f = f + 5; g = g + 6 h = h + 7; k = k + 8; m = m + 9 end do end do if (l .or. i /= 8 .or. j /= 8) call abort if (any (b /= 7 + 64) .or. any (c /= 8 + 2 * 64)) call abort if (any (d /= 9 + 3 * 64) .or. any (e /= 10 + 4 * 64)) call abort if (any (f /= 11 + 5 * 64) .or. any (g /= 12 + 6 * 64)) call abort if (any (h /= 13 + 7 * 64) .or. (k /= 14 + 8 * 64)) call abort if (m /= 15 + 9 * 64) call abort if ((lbound (b, 1) /= 2) .or. (ubound (b, 1) /= 9)) call abort if ((lbound (c, 1) /= 3) .or. (ubound (c, 1) /= n)) call abort if ((lbound (d, 1) /= 1) .or. (ubound (d, 1) /= 17)) call abort if ((lbound (e, 1) /= 2) .or. (ubound (e, 1) /= n)) call abort if ((lbound (f, 1) /= 2) .or. (ubound (f, 1) /= 3)) call abort if ((lbound (f, 2) /= 3) .or. (ubound (f, 2) /= 5)) call abort if ((lbound (g, 1) /= 7) .or. (ubound (g, 1) /= 10)) call abort if ((lbound (h, 1) /= 2) .or. (ubound (h, 1) /= 7)) call abort end subroutine interface subroutine foo (d, e, f, g, m, n) integer :: d(:), e(2:n), f(2:,3:), n integer, allocatable :: g(:), m end subroutine end interface integer, parameter :: n = 8 integer :: d(2:18), e(3:n+1), f(5:6,7:9) integer, allocatable :: g(:), m allocate (g(7:10)) call foo (d, e, f, g, m, n) end
gpl-2.0
tuxillo/aarch64-dragonfly-gcc
gcc/testsuite/gfortran.dg/vect/vect-2.f90
48
1306
! { dg-do compile } ! { dg-require-effective-target vect_float } SUBROUTINE FOO(A, B, C) DIMENSION A(1000000), B(1000000), C(1000000) READ*, X, Y A = LOG(X); B = LOG(Y); C = A + B PRINT*, C(500000) END ! First loop (A=LOG(X)) is vectorized using peeling to align the store. ! Same for the second loop (B=LOG(Y)). ! Third loop (C = A + B) is vectorized using versioning (for targets that don't ! support unaligned loads) or using peeling to align the store (on targets that ! support unaligned loads). ! { dg-final { scan-tree-dump-times "vectorized 3 loops" 1 "vect" } } ! { dg-final { scan-tree-dump-times "Alignment of access forced using peeling" 3 "vect" { xfail { { vect_no_align && { ! vect_hw_misalign } } || { ! vector_alignment_reachable } } } } } ! { dg-final { scan-tree-dump-times "Alignment of access forced using peeling" 2 "vect" { target { { vect_no_align && { ! vect_hw_misalign } } && { ! vector_alignment_reachable } } } } } ! { dg-final { scan-tree-dump-times "Vectorizing an unaligned access" 2 "vect" { xfail { vect_no_align && { ! vect_hw_misalign } } } } } ! { dg-final { scan-tree-dump-times "Alignment of access forced using versioning." 3 "vect" {target { { vect_no_align && { ! vect_hw_misalign } } || { { ! vector_alignment_reachable } && { ! vect_hw_misalign } } } } } }
gpl-2.0
tuxillo/aarch64-dragonfly-gcc
gcc/testsuite/gfortran.dg/equiv_7.f90
174
3659
! { dg-do run } ! { dg-options "-std=gnu" } ! Tests the fix for PR29786, in which initialization of overlapping ! equivalence elements caused a compile error. ! ! Contributed by Bernhard Fischer <aldot@gcc.gnu.org> ! block data common /global/ ca (4) integer(4) ca, cb equivalence (cb, ca(3)) data (ca(i), i = 1, 2) /42,43/, ca(4) /44/ data cb /99/ end block data integer(4), parameter :: abcd = ichar ("a") + 256_4 * (ichar("b") + 256_4 * & (ichar ("c") + 256_4 * ichar ("d"))) logical(4), parameter :: bigendian = transfer (abcd, "wxyz") .eq. "abcd" call int4_int4 call real4_real4 call complex_real call check_block_data call derived_types ! Thanks to Tobias Burnus for this:) ! ! This came up in PR29786 comment #9 - Note the need to treat endianess ! Thanks Dominique d'Humieres:) ! if (bigendian) then if (d1mach_little (1) .ne. transfer ((/0_4, 1048576_4/), 1d0)) call abort () if (d1mach_little (2) .ne. transfer ((/-1_4,2146435071_4/), 1d0)) call abort () else if (d1mach_big (1) .ne. transfer ((/1048576_4, 0_4/), 1d0)) call abort () if (d1mach_big (2) .ne. transfer ((/2146435071_4,-1_4/), 1d0)) call abort () end if ! contains subroutine int4_int4 integer(4) a(4) integer(4) b equivalence (b,a(3)) data b/3/ data (a(i), i=1,2) /1,2/, a(4) /4/ if (any (a .ne. (/1, 2, 3, 4/))) call abort () end subroutine int4_int4 subroutine real4_real4 real(4) a(4) real(4) b equivalence (b,a(3)) data b/3.0_4/ data (a(i), i=1,2) /1.0_4, 2.0_4/, & a(4) /4.0_4/ if (sum (abs (a - & (/1.0_4, 2.0_4, 3.0_4, 4.0_4/))) > 1.0e-6) call abort () end subroutine real4_real4 subroutine complex_real complex(4) a(4) real(4) b(2) equivalence (b,a(3)) data b(1)/3.0_4/, b(2)/4.0_4/ data (a(i), i=1,2) /(0.0_4, 1.0_4),(2.0_4,0.0_4)/, & a(4) /(0.0_4,5.0_4)/ if (sum (abs (a - (/(0.0_4, 1.0_4),(2.0_4, 0.0_4), & (3.0_4, 4.0_4),(0.0_4, 5.0_4)/))) > 1.0e-6) call abort () end subroutine complex_real subroutine check_block_data common /global/ ca (4) equivalence (ca(3), cb) integer(4) ca if (any (ca .ne. (/42, 43, 99, 44/))) call abort () end subroutine check_block_data function d1mach_little(i) result(d1mach) implicit none double precision d1mach,dmach(5) integer i integer*4 large(4),small(4) equivalence ( dmach(1), small(1) ) equivalence ( dmach(2), large(1) ) data small(1),small(2) / 0, 1048576/ data large(1),large(2) /-1,2146435071/ d1mach = dmach(i) end function d1mach_little function d1mach_big(i) result(d1mach) implicit none double precision d1mach,dmach(5) integer i integer*4 large(4),small(4) equivalence ( dmach(1), small(1) ) equivalence ( dmach(2), large(1) ) data small(1),small(2) /1048576, 0/ data large(1),large(2) /2146435071,-1/ d1mach = dmach(i) end function d1mach_big subroutine derived_types TYPE T1 sequence character (3) :: chr integer :: i = 1 integer :: j END TYPE T1 TYPE T2 sequence character (3) :: chr = "wxy" integer :: i = 1 integer :: j = 4 END TYPE T2 TYPE(T1) :: a1 TYPE(T2) :: a2 EQUIVALENCE(a1,a2) ! { dg-warning="mixed|components" } if (a1%chr .ne. "wxy") call abort () if (a1%i .ne. 1) call abort () if (a1%j .ne. 4) call abort () end subroutine derived_types end
gpl-2.0
Hellybean/SaberMod_ROM_Toolchain
gcc/testsuite/gfortran.dg/equiv_7.f90
174
3659
! { dg-do run } ! { dg-options "-std=gnu" } ! Tests the fix for PR29786, in which initialization of overlapping ! equivalence elements caused a compile error. ! ! Contributed by Bernhard Fischer <aldot@gcc.gnu.org> ! block data common /global/ ca (4) integer(4) ca, cb equivalence (cb, ca(3)) data (ca(i), i = 1, 2) /42,43/, ca(4) /44/ data cb /99/ end block data integer(4), parameter :: abcd = ichar ("a") + 256_4 * (ichar("b") + 256_4 * & (ichar ("c") + 256_4 * ichar ("d"))) logical(4), parameter :: bigendian = transfer (abcd, "wxyz") .eq. "abcd" call int4_int4 call real4_real4 call complex_real call check_block_data call derived_types ! Thanks to Tobias Burnus for this:) ! ! This came up in PR29786 comment #9 - Note the need to treat endianess ! Thanks Dominique d'Humieres:) ! if (bigendian) then if (d1mach_little (1) .ne. transfer ((/0_4, 1048576_4/), 1d0)) call abort () if (d1mach_little (2) .ne. transfer ((/-1_4,2146435071_4/), 1d0)) call abort () else if (d1mach_big (1) .ne. transfer ((/1048576_4, 0_4/), 1d0)) call abort () if (d1mach_big (2) .ne. transfer ((/2146435071_4,-1_4/), 1d0)) call abort () end if ! contains subroutine int4_int4 integer(4) a(4) integer(4) b equivalence (b,a(3)) data b/3/ data (a(i), i=1,2) /1,2/, a(4) /4/ if (any (a .ne. (/1, 2, 3, 4/))) call abort () end subroutine int4_int4 subroutine real4_real4 real(4) a(4) real(4) b equivalence (b,a(3)) data b/3.0_4/ data (a(i), i=1,2) /1.0_4, 2.0_4/, & a(4) /4.0_4/ if (sum (abs (a - & (/1.0_4, 2.0_4, 3.0_4, 4.0_4/))) > 1.0e-6) call abort () end subroutine real4_real4 subroutine complex_real complex(4) a(4) real(4) b(2) equivalence (b,a(3)) data b(1)/3.0_4/, b(2)/4.0_4/ data (a(i), i=1,2) /(0.0_4, 1.0_4),(2.0_4,0.0_4)/, & a(4) /(0.0_4,5.0_4)/ if (sum (abs (a - (/(0.0_4, 1.0_4),(2.0_4, 0.0_4), & (3.0_4, 4.0_4),(0.0_4, 5.0_4)/))) > 1.0e-6) call abort () end subroutine complex_real subroutine check_block_data common /global/ ca (4) equivalence (ca(3), cb) integer(4) ca if (any (ca .ne. (/42, 43, 99, 44/))) call abort () end subroutine check_block_data function d1mach_little(i) result(d1mach) implicit none double precision d1mach,dmach(5) integer i integer*4 large(4),small(4) equivalence ( dmach(1), small(1) ) equivalence ( dmach(2), large(1) ) data small(1),small(2) / 0, 1048576/ data large(1),large(2) /-1,2146435071/ d1mach = dmach(i) end function d1mach_little function d1mach_big(i) result(d1mach) implicit none double precision d1mach,dmach(5) integer i integer*4 large(4),small(4) equivalence ( dmach(1), small(1) ) equivalence ( dmach(2), large(1) ) data small(1),small(2) /1048576, 0/ data large(1),large(2) /2146435071,-1/ d1mach = dmach(i) end function d1mach_big subroutine derived_types TYPE T1 sequence character (3) :: chr integer :: i = 1 integer :: j END TYPE T1 TYPE T2 sequence character (3) :: chr = "wxy" integer :: i = 1 integer :: j = 4 END TYPE T2 TYPE(T1) :: a1 TYPE(T2) :: a2 EQUIVALENCE(a1,a2) ! { dg-warning="mixed|components" } if (a1%chr .ne. "wxy") call abort () if (a1%i .ne. 1) call abort () if (a1%j .ne. 4) call abort () end subroutine derived_types end
gpl-2.0
intervigilium/cs259-or32-gcc
gcc/testsuite/gfortran.dg/namelist_22.f90
166
1390
!{ dg-do run { target fd_truncate } } !{ dg-options "-std=legacy" } ! ! Tests filling arrays from a namelist read when object list is not complete. ! This is the same as namelist_21.f90 except using spaces as seperators instead ! of commas. Developed from a test case provided by Christoph Jacob. ! Contributed by Jerry DeLisle <jvdelisle@gcc.gnu.org>. program pr24794 implicit none integer, parameter :: maxop=15, iunit=7 character*8 namea(maxop), nameb(maxop) integer i, ier namelist/ccsopr/ namea,nameb namea="" nameb="" open (12, status="scratch", delim="apostrophe") write (12, '(a)') "&ccsopr" write (12, '(a)') " namea='spi01h' 'spi02o' 'spi03h' 'spi04o' 'spi05h'" write (12, '(a)') " 'spi07o' 'spi08h' 'spi09h'" write (12, '(a)') " nameb='spi01h' 'spi03h' 'spi05h' 'spi06h' 'spi08h'" write (12, '(a)') "&end" rewind (12) read (12, nml=ccsopr, iostat=ier) if (ier.ne.0) call abort() rewind (12) write(12,nml=ccsopr) rewind (12) read (12, nml=ccsopr, iostat=ier) if (ier.ne.0) call abort() if (namea(2).ne."spi02o ") call abort() if (namea(9).ne." ") call abort() if (namea(15).ne." ") call abort() if (nameb(1).ne."spi01h ") call abort() if (nameb(6).ne." ") call abort() if (nameb(15).ne." ") call abort() close (12) end program pr24794
gpl-2.0
intervigilium/cs259-or32-gcc
gcc/testsuite/gfortran.dg/c_ptr_tests_14.f90
30
1423
! { dg-do run } ! { dg-options "-fdump-tree-original" } ! ! PR fortran/41298 ! ! Check that c_null_ptr default initializer is really applied module m use iso_c_binding type, public :: fgsl_file type(c_ptr) :: gsl_file = c_null_ptr type(c_funptr) :: gsl_func = c_null_funptr type(c_ptr) :: NIptr type(c_funptr) :: NIfunptr end type fgsl_file contains subroutine sub(aaa,bbb) type(fgsl_file), intent(out) :: aaa type(fgsl_file), intent(inout) :: bbb end subroutine subroutine proc() bind(C) end subroutine proc end module m program test use m implicit none type(fgsl_file) :: file, noreinit integer, target :: tgt call sub(file, noreinit) if(c_associated(file%gsl_file)) call abort() if(c_associated(file%gsl_func)) call abort() file%gsl_file = c_loc(tgt) file%gsl_func = c_funloc(proc) call sub(file, noreinit) if(c_associated(file%gsl_file)) call abort() if(c_associated(file%gsl_func)) call abort() end program test ! { dg-final { scan-tree-dump-times "gsl_file = 0B" 1 "original" } } ! { dg-final { scan-tree-dump-times "gsl_func = 0B" 1 "original" } } ! { dg-final { scan-tree-dump-times "NIptr = 0B" 0 "original" } } ! { dg-final { scan-tree-dump-times "NIfunptr = 0B" 0 "original" } } ! { dg-final { scan-tree-dump-times "bbb =" 0 "original" } } ! { dg-final { cleanup-tree-dump "original" } } ! { dg-final { cleanup-modules "m" } }
gpl-2.0
ovilab/atomify-lammps
libs/lammps/tools/ch2lmp/other/pdb_to_crd.f
60
3059
c Reads PDB file, writes out charmm file c Uses a temp file c PDB format c text IATOM TYPE RES IRES X Y Z W c A6 I5 2X A4 A4 I5 4X 3F8.3 6X F6.2 c charmm format c ATOMNO RESNO RES TYPE X Y Z SEGID RESID Weighting c I5 I5 1X A4 1X A4 F10.5 F10.5 F10.5 1X A4 1X A4 F10.5 c c character*80 infile,outfile,line character*4 str1,type,res,code,segid,resid,residold,resold character*1 chain logical loxt(1000) write (6,*) 'Give input PDB files, output will be .crd' 1 read (5,'(a)') infile i=1 2 i=i+1 if (infile(i:i).eq.' ') then outfile=infile(1:i-1)//'.crd' else goto 2 endif open (unit=11, file=infile, status='old') open (unit=12, file='temppdb', status='unknown') open (unit=13, file=outfile, status='new') write (13,'(a80)') '* converted from '//infile write (13,'(a)') '*' do 4 i=1,1000 4 loxt(i)=.false. nss=0 ires=0 iat=0 residold=' ' resold=' ' do 100 i=1,100000 read (11,'(a80)',end=1000) line read (unit=line,fmt=500) str1 if (str1.eq.'SSBO') then nss=nss+1 goto 100 else if (str1.eq.'ATOM') then iat= iat+1 read (unit=line,fmt=500) str1,iatom,type,res,chain,resid, & x,y,z,a,w,code 500 format (a4,2x,i5,1x,a4,1x,a4,a1,a4,4x,3f8.3,2f6.2,6x,a4) if ((resid.ne.residold).or.(res.ne.resold)) ires=ires+1 residold=resid resold= res if (chain.ne.' ') then segid=chain//code elseif (code.ne.' ') then segid=code else segid='MAIN' endif if (type.eq.'CD1 ') then if (res.eq.'ILE ') type='CD ' elseif (type.eq.'OCT1') then type='OT1 ' elseif (type.eq.'OCT2') then type='OT2 ' elseif (type.eq.'OXT ') then type='OT2 ' loxt(ires)=.true. endif c fluch resid left 5 if (resid(1:1).eq.' ') then resid=resid(2:4)//' ' goto 5 endif 6 if (type(1:1).eq.' ') then type=type(2:4)//' ' goto 6 endif write (12,600) iat,ires,res,type,x,y,z,segid,resid,w 600 format (I5,I5,1X,A4,1X,A4,3F10.5,1X,A4,1X,a4,F10.5) else goto 100 endif 100 continue 1000 write (6,*) 'Disulfide bonds', nss nres=ires write (13,'(i5)') iat close (unit=12) open (unit=12,file='temppdb',status='old') do 200 i=1,100000 read (12,'(a80)',end=2000) line read (unit=line,fmt=600) iatom,ires,res,type,x,y,z,segid,resid,w if (loxt(ires).and.(type.eq.'O ')) type='OT1 ' write (13,600) iatom,ires,res,type,x,y,z,segid,resid,w 200 continue 2000 close (unit=11) close (unit=12) close (unit=13) goto 1 end
gpl-3.0
intervigilium/cs259-or32-gcc
gcc/testsuite/gfortran.dg/where_operator_assign_2.f90
52
3388
! { dg-do compile } ! Tests the fix for PR30407, in which operator assignments did not work ! in WHERE blocks or simple WHERE statements. ! ! Contributed by Paul Thomas <pault@gcc.gnu.org> !****************************************************************************** module global type :: a integer :: b integer :: c end type a interface assignment(=) module procedure a_to_a end interface interface operator(.ne.) module procedure a_ne_a end interface type(a) :: x(4), y(4), z(4), u(4, 4) logical :: l1(4), t = .true., f= .false. contains !****************************************************************************** elemental subroutine a_to_a (m, n) type(a), intent(in) :: n type(a), intent(out) :: m m%b = n%b + 1 m%c = n%c end subroutine a_to_a !****************************************************************************** elemental logical function a_ne_a (m, n) type(a), intent(in) :: n type(a), intent(in) :: m a_ne_a = (m%b .ne. n%b) .or. (m%c .ne. n%c) end function a_ne_a !****************************************************************************** elemental function foo (m) type(a) :: foo type(a), intent(in) :: m foo%b = 0 foo%c = m%c end function foo end module global !****************************************************************************** program test use global x = (/a (0, 1),a (0, 2),a (0, 3),a (0, 4)/) y = x z = x l1 = (/t, f, f, t/) call test_where_1 if (any (y .ne. (/a (2, 1),a (2, 2),a (2, 3),a (2, 4)/))) call abort () call test_where_2 if (any (y .ne. (/a (1, 0),a (2, 2),a (2, 3),a (1, 0)/))) call abort () if (any (z .ne. (/a (3, 4),a (1, 0),a (1, 0),a (3, 1)/))) call abort () call test_where_3 if (any (y .ne. (/a (1, 0),a (1, 2),a (1, 3),a (1, 0)/))) call abort () y = x call test_where_forall_1 if (any (u(4, :) .ne. (/a (1, 4),a (2, 2),a (2, 3),a (1, 4)/))) call abort () l1 = (/t, f, t, f/) call test_where_4 if (any (x .ne. (/a (1, 1),a (2, 1),a (1, 3),a (2, 3)/))) call abort () contains !****************************************************************************** subroutine test_where_1 ! Test a simple WHERE where (l1) y = x end subroutine test_where_1 !****************************************************************************** subroutine test_where_2 ! Test a WHERE blocks where (l1) y = a (0, 0) z = z(4:1:-1) elsewhere y = x z = a (0, 0) end where end subroutine test_where_2 !****************************************************************************** subroutine test_where_3 ! Test a simple WHERE with a function assignment where (.not. l1) y = foo (x) end subroutine test_where_3 !****************************************************************************** subroutine test_where_forall_1 ! Test a WHERE in a FORALL block forall (i = 1:4) where (.not. l1) u(i, :) = x elsewhere u(i, :) = a(0, i) endwhere end forall end subroutine test_where_forall_1 !****************************************************************************** subroutine test_where_4 ! Test a WHERE assignment with dependencies where (l1(1:3)) x(2:4) = x(1:3) endwhere end subroutine test_where_4 end program test ! { dg-final { cleanup-modules "global" } }
gpl-2.0
Hellybean/SaberMod_ROM_Toolchain
gcc/testsuite/gfortran.fortran-torture/execute/seq_io.f90
191
1882
! pr 15472 ! sequential access files ! ! this test verifies the most basic sequential unformatted I/O ! write 3 records of various sizes ! then read them back ! and compare with what was written ! implicit none integer size parameter(size=100) logical debug data debug /.FALSE./ ! set debug to true for help in debugging failures. integer m(2) integer n real*4 r(size) integer i m(1) = Z'11111111' m(2) = Z'22222222' n = Z'33333333' do i = 1,size r(i) = i end do write(9)m ! an array of 2 write(9)n ! an integer write(9)r ! an array of reals ! zero all the results so we can compare after they are read back do i = 1,size r(i) = 0 end do m(1) = 0 m(2) = 0 n = 0 rewind(9) read(9)m read(9)n read(9)r ! ! check results if (m(1).ne.Z'11111111') then if (debug) then print '(A,Z8)','m(1) incorrect. m(1) = ',m(1) else call abort endif endif if (m(2).ne.Z'22222222') then if (debug) then print '(A,Z8)','m(2) incorrect. m(2) = ',m(2) else call abort endif endif if (n.ne.Z'33333333') then if (debug) then print '(A,Z8)','n incorrect. n = ',n else call abort endif endif do i = 1,size if (int(r(i)).ne.i) then if (debug) then print*,'element ',i,' was ',r(i),' should be ',i else call abort endif endif end do ! use hexdump to look at the file "fort.9" if (debug) then close(9) else close(9,status='DELETE') endif end
gpl-2.0
intervigilium/cs259-or32-gcc
gcc/testsuite/gfortran.fortran-torture/execute/seq_io.f90
191
1882
! pr 15472 ! sequential access files ! ! this test verifies the most basic sequential unformatted I/O ! write 3 records of various sizes ! then read them back ! and compare with what was written ! implicit none integer size parameter(size=100) logical debug data debug /.FALSE./ ! set debug to true for help in debugging failures. integer m(2) integer n real*4 r(size) integer i m(1) = Z'11111111' m(2) = Z'22222222' n = Z'33333333' do i = 1,size r(i) = i end do write(9)m ! an array of 2 write(9)n ! an integer write(9)r ! an array of reals ! zero all the results so we can compare after they are read back do i = 1,size r(i) = 0 end do m(1) = 0 m(2) = 0 n = 0 rewind(9) read(9)m read(9)n read(9)r ! ! check results if (m(1).ne.Z'11111111') then if (debug) then print '(A,Z8)','m(1) incorrect. m(1) = ',m(1) else call abort endif endif if (m(2).ne.Z'22222222') then if (debug) then print '(A,Z8)','m(2) incorrect. m(2) = ',m(2) else call abort endif endif if (n.ne.Z'33333333') then if (debug) then print '(A,Z8)','n incorrect. n = ',n else call abort endif endif do i = 1,size if (int(r(i)).ne.i) then if (debug) then print*,'element ',i,' was ',r(i),' should be ',i else call abort endif endif end do ! use hexdump to look at the file "fort.9" if (debug) then close(9) else close(9,status='DELETE') endif end
gpl-2.0
Hellybean/SaberMod_ROM_Toolchain
gcc/testsuite/gfortran.dg/maxval_maxloc_conformance_1.f90
193
1816
! { dg-do compile } ! PR 26039: Tests for different ranks for (min|max)loc, (min|max)val, product ! and sum were missing. program main integer, dimension(2) :: a logical, dimension(2,1) :: lo logical, dimension(3) :: lo2 a = (/ 1, 2 /) lo = .true. print *,minloc(a,mask=lo) ! { dg-error "Incompatible ranks" } print *,maxloc(a,mask=lo) ! { dg-error "Incompatible ranks" } print *,minval(a,mask=lo) ! { dg-error "Incompatible ranks" } print *,maxval(a,mask=lo) ! { dg-error "Incompatible ranks" } print *,sum(a,mask=lo) ! { dg-error "Incompatible ranks" } print *,product(a,mask=lo) ! { dg-error "Incompatible ranks" } print *,minloc(a,1,mask=lo) ! { dg-error "Incompatible ranks" } print *,maxloc(a,1,mask=lo) ! { dg-error "Incompatible ranks" } print *,minval(a,1,mask=lo) ! { dg-error "Incompatible ranks" } print *,maxval(a,1,mask=lo) ! { dg-error "Incompatible ranks" } print *,sum(a,1,mask=lo) ! { dg-error "Incompatible ranks" } print *,product(a,1,mask=lo) ! { dg-error "Incompatible ranks" } print *,minloc(a,mask=lo2) ! { dg-error "Different shape" } print *,maxloc(a,mask=lo2) ! { dg-error "Different shape" } print *,minval(a,mask=lo2) ! { dg-error "Different shape" } print *,maxval(a,mask=lo2) ! { dg-error "Different shape" } print *,sum(a,mask=lo2) ! { dg-error "Different shape" } print *,product(a,mask=lo2) ! { dg-error "Different shape" } print *,minloc(a,1,mask=lo2) ! { dg-error "Different shape" } print *,maxloc(a,1,mask=lo2) ! { dg-error "Different shape" } print *,minval(a,1,mask=lo2) ! { dg-error "Different shape" } print *,maxval(a,1,mask=lo2) ! { dg-error "Different shape" } print *,sum(a,1,mask=lo2) ! { dg-error "Different shape" } print *,product(a,1,mask=lo2) ! { dg-error "Different shape" } end program main
gpl-2.0
intervigilium/cs259-or32-gcc
gcc/testsuite/gfortran.dg/maxval_maxloc_conformance_1.f90
193
1816
! { dg-do compile } ! PR 26039: Tests for different ranks for (min|max)loc, (min|max)val, product ! and sum were missing. program main integer, dimension(2) :: a logical, dimension(2,1) :: lo logical, dimension(3) :: lo2 a = (/ 1, 2 /) lo = .true. print *,minloc(a,mask=lo) ! { dg-error "Incompatible ranks" } print *,maxloc(a,mask=lo) ! { dg-error "Incompatible ranks" } print *,minval(a,mask=lo) ! { dg-error "Incompatible ranks" } print *,maxval(a,mask=lo) ! { dg-error "Incompatible ranks" } print *,sum(a,mask=lo) ! { dg-error "Incompatible ranks" } print *,product(a,mask=lo) ! { dg-error "Incompatible ranks" } print *,minloc(a,1,mask=lo) ! { dg-error "Incompatible ranks" } print *,maxloc(a,1,mask=lo) ! { dg-error "Incompatible ranks" } print *,minval(a,1,mask=lo) ! { dg-error "Incompatible ranks" } print *,maxval(a,1,mask=lo) ! { dg-error "Incompatible ranks" } print *,sum(a,1,mask=lo) ! { dg-error "Incompatible ranks" } print *,product(a,1,mask=lo) ! { dg-error "Incompatible ranks" } print *,minloc(a,mask=lo2) ! { dg-error "Different shape" } print *,maxloc(a,mask=lo2) ! { dg-error "Different shape" } print *,minval(a,mask=lo2) ! { dg-error "Different shape" } print *,maxval(a,mask=lo2) ! { dg-error "Different shape" } print *,sum(a,mask=lo2) ! { dg-error "Different shape" } print *,product(a,mask=lo2) ! { dg-error "Different shape" } print *,minloc(a,1,mask=lo2) ! { dg-error "Different shape" } print *,maxloc(a,1,mask=lo2) ! { dg-error "Different shape" } print *,minval(a,1,mask=lo2) ! { dg-error "Different shape" } print *,maxval(a,1,mask=lo2) ! { dg-error "Different shape" } print *,sum(a,1,mask=lo2) ! { dg-error "Different shape" } print *,product(a,1,mask=lo2) ! { dg-error "Different shape" } end program main
gpl-2.0
intervigilium/cs259-or32-gcc
gcc/testsuite/gfortran.dg/alloc_comp_default_init_1.f90
171
1789
! { dg-do run } ! Checks the fixes for PR34681 and PR34704, in which various mixtures ! of default initializer and allocatable array were not being handled ! correctly for derived types with allocatable components. ! ! Contributed by Paolo Giannozzi <p.giannozzi@fisica.uniud.it> ! program boh integer :: c1, c2, c3, c4, c5 ! call mah (0, c1) ! These calls deal with PR34681 call mah (1, c2) call mah (2, c3) ! if (c1 /= c2) call abort if (c1 /= c3) call abort ! call mah0 (c4) ! These calls deal with PR34704 call mah1 (c5) ! if (c4 /= c5) call abort ! end program boh ! subroutine mah (i, c) ! integer, intent(in) :: i integer, intent(OUT) :: c ! type mix_type real(8), allocatable :: a(:) complex(8), allocatable :: b(:) end type mix_type type(mix_type), allocatable, save :: t(:) integer :: j, n=1024 ! if (i==0) then allocate (t(1)) allocate (t(1)%a(n)) allocate (t(1)%b(n)) do j=1,n t(1)%a(j) = j t(1)%b(j) = n-j end do end if c = sum( t(1)%a(:) ) + sum( t(1)%b(:) ) if ( i==2) then deallocate (t(1)%b) deallocate (t(1)%a) deallocate (t) end if end subroutine mah subroutine mah0 (c) ! integer, intent(OUT) :: c type mix_type real(8), allocatable :: a(:) integer :: n=1023 end type mix_type type(mix_type) :: t ! allocate(t%a(1)) t%a=3.1415926 c = t%n deallocate(t%a) ! end subroutine mah0 ! subroutine mah1 (c) ! integer, intent(OUT) :: c type mix_type real(8), allocatable :: a(:) integer :: n=1023 end type mix_type type(mix_type), save :: t ! allocate(t%a(1)) t%a=3.1415926 c = t%n deallocate(t%a) ! end subroutine mah1
gpl-2.0
MarkDekker/FSI-Foil
XFOIL/plotlib/examples/symbolsall.f
4
4537
C*********************************************************************** C Module: symbolsall.f C C Copyright (C) 1996 Harold Youngren, Mark Drela C C This program is free software; you can redistribute it and/or modify C it under the terms of the GNU General Public License as published by C the Free Software Foundation; either version 2 of the License, or C (at your option) any later version. C C This program is distributed in the hope that it will be useful, C but WITHOUT ANY WARRANTY; without even the implied warranty of C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the C GNU General Public License for more details. C C You should have received a copy of the GNU General Public License C along with this program; if not, write to the Free Software C Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. C C Report problems to: guppy@maine.com C or drela@mit.edu C*********************************************************************** C---Test routine for Pltlib C Displays a symbol set in color C CHARACTER*4 INP, FNAME*80 CH = 0.02 C C---Decide about what devices to plot to WRITE(*,*) ' ' WRITE(*,*) 'Font plot test' WRITE(*,*) ' You may just <cr> for each question to take defaults' WRITE(*,*) ' ' 1 WRITE(*,*) ' Enter -1 for no PS, 0 for B&W PS, 1 for color PS' READ(*,1000,end=2000) INP itype = -1 if(INP.ne.' ') then READ(INP,*,end=2000,err=2000) itype endif IDEV = 1 IF(itype.eq.0) IDEV = 3 IF(itype.ge.1) IDEV = 5 C WRITE(*,*) ' ' WRITE(*,*) ' Enter 0 for default PSfile' WRITE(*,*) ' #>0 for external PSfile on unit #' WRITE(*,*) ' Enter -1 for separate PSfiles' READ(*,1000,end=2000) INP iunit = 0 if(INP.ne.' ') then READ(INP,*,end=2000,err=2000) iunit endif if(iunit.gt.0) then WRITE(*,*) 'Enter file name for PSFILE' READ(*,1000,end=2000) FNAME OPEN(unit=iunit,file=FNAME,status='UNKNOWN') endif C C---Initialize the plot package before we get into color plotting... CALL PLINITIALIZE C C---Now, how many colors... WRITE(*,*) ' Enter # colors (0 or 1 gives no colors)' READ(*,1000,end=2000) INP ncolors = 32 if(INP.ne.' ') then READ(INP,*,end=2000,err=2000) ncolors endif C---Set up colormap spectrum colors if(ncolors.LE.1) ncolors = 1 CALL COLORSPECTRUMHUES(ncolors,'MBCGYR') C C---Loop through the four defined fonts and symbols DO 1500 IFNT = 1, 4 C C---Take the default window (portrait, 2/3 screen dimension) CALL PLOPEN(0.,iunit,IDEV) C CALL NEWFACTOR(5.0) CALL PLOT(0.10,0.1,-3) c CALL NEWCOLORNAME('black') C C---Plot the symbols in 8 columns of 32 characters each (256 total) DO ISET=1, 8 C I0 = (ISET-1)*32 + 1 IN = I0 + 31 C DO I=I0, IN RNUM = FLOAT(I-1) XX = 0.2*FLOAT(ISET-1) YY = (36.-FLOAT(I-I0))*2.0*CH ICOLOR = MOD(I-1,NCOLORS) + 1 C WRITE(*,*) 'ICOLOR,ISYM ',ICOLOR,I-1 C---Select one of the colormap spectrum colors (repeat, modulo ncolors) c write(*,*) ncolors, icolor IF(ncolors.GT.1) CALL NEWCOLOR(-icolor) CALL PLNUMB(XX,YY-0.5*CH,CH,RNUM,0.0,-1) IF(IFNT.EQ.1) CALL PLCHAR(XX+4.0*CH,YY,CH,char(I-1),0.0,1) IF(IFNT.EQ.2) CALL PLSLAN(XX+4.0*CH,YY,CH,char(I-1),0.0,1) IF(IFNT.EQ.3) CALL PLMATH(XX+4.0*CH,YY,CH,char(I-1),0.0,1) IF(IFNT.EQ.4) CALL PLSYMB(XX+4.0*CH,YY,CH,(I-1),0.0,0) END DO END DO C C---Put colored title at bottom of plot CALL NEWCOLORNAME('blue') CALL PLCHAR(0.,0.,2.*CH,'Xplot11 ',0.0,8) CALL NEWCOLORNAME('green') IF(IFNT.EQ.1) CALL PLCHAR(999.,999.,2.*CH,'PLCHAR ',0.0,7) IF(IFNT.EQ.2) CALL PLCHAR(999.,999.,2.*CH,'PLSLAN ',0.0,7) IF(IFNT.EQ.3) CALL PLCHAR(999.,999.,2.*CH,'PLMATH ',0.0,7) IF(IFNT.EQ.4) CALL PLCHAR(999.,999.,2.*CH,'PLSYMB ',0.0,7) CALL NEWCOLORNAME('red') CALL PLCHAR(999.,999.,2.*CH,'test',0.0,4) C CALL PLFLUSH WRITE(*,*) 'Hit return to proceed...' READ(5,1000) INP 1000 FORMAT(A) C CALL PLEND C 1500 CONTINUE C 2000 CALL PLCLOSE STOP END
gpl-2.0
bollig/pscf
src/crystal/unit_cell_mod.f
3
25441
!----------------------------------------------------------------------- ! PSCF - Polymer Self-Consistent Field Theory ! Copyright (2002-2016) Regents of the University of Minnesota ! contact: David Morse, morse012@umn.edu ! ! This program is free software; you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation. A copy of this license is included in ! the LICENSE file in the top-level PSCF directory. !---------------------------------------------------------------------- !****m scf/unit_cell_mod ! PURPOSE ! Define crystal unit cell and lattice basis vectors ! AUTHOR ! David Morse (2002) ! Chris Tyler (2002-2004) ! SOURCE !---------------------------------------------------------------------- module unit_cell_mod use const_mod use io_mod implicit none private ! Public procedures public :: input_unit_cell ! read dim, crystal_system, cell_param public :: output_unit_cell ! write dim, crystal_system, cell_param public :: standard_cell_param ! return parameters a,b,c, alpha,beta,gamma public :: make_unit_cell ! create lattice basis vectors, etc. public :: define_unit_cell ! reset cell parameters public :: make_G_basis ! make G_basis from R_basis ! Public variables public :: crystal_system, N_cell_param, cell_param public :: R_basis, G_basis, dGG_basis character(30) :: crystal_system ! type of crystal cell (cubic, etc.) integer :: N_cell_param ! # of unit cell parameters real(long) :: cell_param(6) ! unit cell parameters real(long) :: R_basis(:,:) ! (dim,dim) lattice bases a_i real(long) :: G_basis(:,:) ! (dim,dim) reciprocal bases b_i real(long) :: dGG_basis(:,:,:) ! (dim,dim,6) derivatives of b_i.b_j !*** allocatable :: R_basis, G_basis, dGG_basis ! Private variables real(long), allocatable :: dR_basis(:,:,:) ! derivatives of a_i real(long), allocatable :: dG_basis(:,:,:) ! derivatives of b_i real(long), allocatable :: dRR_basis(:,:,:) ! derivatives of a_i.a_j !-------------------------------------------------------------------- !****v* unit_cell_mod/crystal_system ! VARIABLE ! character(30) crystal_system = string identifying crystal system ! ! Allowed values: ! 3D crystal systems (dim = 3): ! 'cubic', 'tetragonal', 'orthorhombic', 'monoclinic', ! 'hexagonal', 'triclinic' ! 2D crystal systems (dim = 2) ! 'square', 'rectangular', 'rhombus', 'hexagonal', 'oblique' ! 1D crystal system (dim = 1): ! 'lamellar' !*** ---------------------------------------------------------------- !****v* unit_cell_mod/N_cell_param ! VARIABLE ! integer N_cell_param = # of unit cell parameters ! Different values needed for different crystal ! systems (e.g., 1 for cubic, 6 for triclinic) !*** ---------------------------------------------------------------- !****v* unit_cell_mod/cell_param ! VARIABLE ! real(long) cell_param(6) - array of cell parameters ! Only elements 1:N_cell_param are used !*** ---------------------------------------------------------------- !****v* unit_cell_mod/R_basis ! VARIABLE ! real(long) R_basis(:,:) - dimension(dim,dim) ! R_basis(i,:) = a_i = Bravais lattice basis vector i !*** ---------------------------------------------------------------- !****v* unit_cell_mod/G_basis ! VARIABLE ! real(long) G_basis(:,:) - dimension(dim,dim) ! G_basis(i,:) = b_i = reciprocal lattice basis vector i !*** ---------------------------------------------------------------- !****v* unit_cell_mod/dGG_basis ! VARIABLE ! real(long) dGG_basis(:,:,:) - dimension(dim,dim,6) ! dGG_basis(i,j,k) = d(b_i.dot.b_j)/d(cell_param(k)) ! Needed in calculation of stress by perturbation theory !*** ---------------------------------------------------------------- contains !--------------------------------------------------------------- !****p* unit_cell_mod/input_unit_cell ! SUBROUTINE ! input_unit_cell(i_unit, fmt_flag) ! PURPOSE ! Read data needed to construct unit cell from file i_unit. ! Inputs dim, crystal_system, N_cell_param, and cell_param ! If necessary, allocates R_basis, G_basis, related arrays ! ARGUMENTS ! integer i_unit - unit # of input file ! character(1) fmt_flag - flag specifying input format ! COMMENT ! Allowed values of fmt_flag: ! F -> formatted ascii input ! U -> unformatted input ! SOURCE !--------------------------------------------------------------- subroutine input_unit_cell(i_unit,fmt_flag) integer, intent(IN) :: i_unit character(len = 1), intent(IN) :: fmt_flag !*** call set_io_units(i=i_unit,o=6) select case(fmt_flag) case('F') ! Input formatted call input(dim,'dim') call input(crystal_system,'crystal_system') call input(N_cell_param,'N_cell_param') call input(cell_param,N_cell_param,'cell_param') case('U') read(i_unit) dim read(i_unit) crystal_system read(i_unit) N_cell_param read(i_unit) cell_param case default print *, 'Illegal format specified in input_unit_cell' print *, 'fmt_flag = ', fmt_flag stop end select if (.not.allocated(R_basis)) allocate(R_basis(dim,dim)) if (.not.allocated(G_basis)) allocate(G_basis(dim,dim)) if (.not.allocated(dR_basis)) allocate(dR_basis(dim,dim,6)) if (.not.allocated(dG_basis)) allocate(dG_basis(dim,dim,6)) if (.not.allocated(dRR_basis)) allocate(dRR_basis(dim,dim,6)) if (.not.allocated(dGG_basis)) allocate(dGG_basis(dim,dim,6)) end subroutine input_unit_cell !--------------------------------------------------------------- !--------------------------------------------------------------- !****p* unit_cell_mod/output_unit_cell ! SUBROUTINE ! output_unit_cell(o_unit,fmt_flag) ! PURPOSE ! Write crystal_system, N_cell_param, and cell_param to file ! ARGUMENTS ! integer o_unit - unit # of output file ! character(1) fmt_flag - flag specifying output format ! COMMENT ! Allowed values of fmt_flag: ! F -> formatted output ! U -> unformatted output ! SOURCE !--------------------------------------------------------------- subroutine output_unit_cell(o_unit,fmt_flag) integer, intent(IN) :: o_unit character(len = 1), intent(IN) :: fmt_flag !*** integer :: k !call set_io_units(o=o_unit) select case(fmt_flag) case('F') ! Formatted for input call output(dim,'dim',o=o_unit) call output(trim(crystal_system),'crystal_system',o=o_unit) call output(N_cell_param,'N_cell_param',o=o_unit) call output(cell_param,N_cell_param,'cell_param',o=o_unit) case('U') write(o_unit) dim write(o_unit) crystal_system write(o_unit) N_cell_param write(o_unit) cell_param write(o_unit) R_basis write(o_unit) G_basis case default print *, 'Invalid fmt_flag in output_unit_cell' print *, 'fmt_flag = ', fmt_flag stop end select end subroutine output_unit_cell !------------------------------------------------------------------ !--------------------------------------------------------------- !****p* unit_cell_mod/standard_cell_param ! FUNCTION ! standard_cell_param(cell_param) ! PURPOSE ! Returns array (a, b, c, alpha, beta, gamma) for 3-d systems ! a, b, c are lengths of the three Bravais basis vectors ! alpha is the angle beween b, c ! beta is the angle between a, c ! gamma is the angle between a, b ! RETURN ! standard_cell_param(1:3) = (a,b,c) ! standard_cell_param(4:6) = (alpha,beta,gamma) ! AUTHOR ! Chris Tyler ! SOURCE !--------------------------------------------------------------- function standard_cell_param(cell_param) real(long), dimension(6), intent(IN) :: cell_param real(long), dimension(6) :: standard_cell_param !*** real(long) :: a, b, c, alpha, beta, gamma standard_cell_param = 0.0_long if ( dim .ne. 3 ) then standard_cell_param = cell_param(1:N_cell_param) return endif select case(crystal_system) case('cubic') a = cell_param(1) b = cell_param(1) c = cell_param(1) alpha = 90.0 beta = 90.0 gamma = 90.0 case('tetragonal') a = cell_param(1) b = cell_param(1) c = cell_param(2) alpha = 90.0 beta = 90.0 gamma = 90.0 case('orthorhombic') alpha = 90.0 beta = 90.0 gamma = 90.0 a = cell_param(1) b = cell_param(2) c = cell_param(3) case('hexagonal') a = cell_param(1) b = cell_param(1) c = cell_param(2) gamma = 120.0 beta = 90.0 alpha = 90.0 case('trigonal') a = cell_param(1) b = cell_param(1) c = cell_param(1) alpha = cell_param(2) * 90/asin(1.0) beta = alpha gamma = alpha case('monoclinic') a = cell_param(1) b = cell_param(2) c = cell_param(3) alpha = 90.0 beta = cell_param(4) gamma = 90.0 case('triclinic') a = cell_param(1) b = cell_param(2) c = cell_param(3) alpha = cell_param(4) beta = cell_param(5) gamma = cell_param(6) case default a = 1 b = 1 c = 1 alpha = 90 beta = 90 gamma = 90 end select standard_cell_param(1) = a standard_cell_param(2) = b standard_cell_param(3) = c standard_cell_param(4) = alpha standard_cell_param(5) = beta standard_cell_param(6) = gamma end function standard_cell_param !--------------------------------------------------------------- !--------------------------------------------------------------- !****p unit_cell_mod/make_unit_cell ! SUBROUTINE ! make_unit_cell ! PURPOSE ! Constructs Bravais and reciprocal lattice vectors, and ! related arrays, from knowledge of module input variables. ! COMMENT ! All inputs and outputs are module variables, rather than ! explicit parameters. ! Inputs: crystal_system, N_cell_param, and cell_param ! Outputs: R_basis, G_basis, dRR_basis, dGG_basis ! SOURCE !--------------------------------------------------------------- subroutine make_unit_cell !*** integer :: i,j,k,l,m real(long) :: a, b, c, alpha, beta, gamma, twopi !C if ( size(cell_param) < N_cell_param ) then !C print *,'Error: size(cell_param)<N_cell_param in make_unit_cell' !C stop !C endif twopi = 4.0_long*acos(0.0_long) R_basis = 0.0_long G_basis = 0.0_long dR_basis = 0.0_long dG_basis = 0.0_long dRR_basis = 0.0_long dGG_basis = 0.0_long select case(dim) case(3) select case(trim(crystal_system)) case('cubic') If (N_cell_param /= 1) then write(6,*) 'Incorrect N_cell_param' stop endif a = cell_param(1) R_basis(1,1) = a R_basis(2,2) = a R_basis(3,3) = a dR_basis(1,1,1) = 1.0_long dR_basis(2,2,1) = 1.0_long dR_basis(3,3,1) = 1.0_long case('tetragonal') If (N_cell_param /= 2) then write(6,*) 'Incorrect N_cell_param' stop endif a = cell_param(1) c = cell_param(2) R_basis(1,1) = a R_basis(2,2) = a R_basis(3,3) = c dR_basis(1,1,1) = 1.0_long dR_basis(2,2,1) = 1.0_long dR_basis(3,3,2) = 1.0_long case('orthorhombic') If (N_cell_param /= 3) then write(6,*) 'Incorrect N_cell_param' stop endif a = cell_param(1) b = cell_param(2) c = cell_param(3) R_basis(1,1) = a R_basis(2,2) = b R_basis(3,3) = c dR_basis(1,1,1) = 1.0_long dR_basis(2,2,2) = 1.0_long dR_basis(3,3,3) = 1.0_long case('hexagonal') ! Note: Unique axis is c axis If (N_cell_param /= 2) then write(6,*) 'Incorrect N_cell_param' stop endif a = cell_param(1) c = cell_param(2) R_basis(1,1) = a R_basis(2,1) = -0.5_long*a R_basis(2,2) = a * sqrt(0.75_long) R_basis(3,3) = c dR_basis(1,1,1) = 1.0_long dR_basis(2,1,1) = -0.5_long dR_basis(2,2,1) = sqrt(0.75_long) dR_basis(3,3,2) = 1.0_long case('trigonal') !For Rhombohedral axes, otherwise use Hexagonal If (N_cell_param /= 2) then write(6,*) 'Incorrect N_cell_param' stop endif a = cell_param(1) ! length of one edge beta = cell_param(2) ! angle between edges ! gamma is angle of rotation from a-b plane up to c-axis gamma = cos(beta)/cos(beta* 0.5_long) gamma = acos(gamma) R_basis(1,1) = a R_basis(2,1) = a * cos(beta) R_basis(2,2) = a * sin(beta) R_basis(3,1) = a * cos(gamma) * cos(beta*0.5_long) R_basis(3,2) = a * cos(gamma) * sin(beta*0.5_long) R_basis(3,3) = a * sin(gamma) dR_basis(1,1,1) = 1.0_long dR_basis(2,1,1) = cos(beta) dR_basis(2,2,1) = sin(beta) dR_basis(3,1,1) = cos(gamma) * cos(beta*0.5_long) dR_basis(3,2,1) = cos(gamma) * sin(beta*0.5_long) dR_basis(3,3,1) = sin(gamma) dR_basis(2,1,2) = -a*sin(beta) dR_basis(2,2,2) = a*cos(beta) ! alpha =d gamma/ d beta alpha = 2._long* sin(beta) - cos(beta)* tan(beta*0.5_long) *0.5_long & / ( cos(beta*0.5) & * sqrt( (1 + 2._long* cos(beta))* (tan(beta*0.5)**2)) ) dR_basis(3,1,2) = a * (-0.5_long * cos(gamma) * sin(beta*0.5_long) - & sin(gamma) * alpha * cos(beta*0.5_long)) dR_basis(3,2,2) = a * ( 0.5_long * cos(beta*0.5_long) * cos(gamma) - & sin(gamma) * sin(beta*0.5_long) * alpha ) dR_basis(3,3,2) = 1 * cos(gamma) * alpha case('monoclinic') ! Note: Unique axis is b axis If (N_cell_param /= 4) then write(6,*) 'Incorrect N_cell_param' stop endif a = cell_param(1) b = cell_param(2) c = cell_param(3) beta = cell_param(4) R_basis(1,1) = a R_basis(2,2) = b R_basis(3,1) = c*cos(beta) R_basis(3,3) = c*sin(beta) dR_basis(1,1,1) = 1.0_long dR_basis(2,2,2) = 1.0_long dR_basis(3,1,3) = cos(beta) dR_basis(3,3,3) = sin(beta) dR_basis(3,1,4) = -c * sin(beta) dR_basis(3,3,4) = c * cos(beta) case('triclinic') If (N_cell_param /= 6) then write(6,*) 'Incorrect N_cell_param' stop endif a = cell_param(1) b = cell_param(2) c = cell_param(3) alpha = cell_param(4) ! angle between c and x-y-plane beta = cell_param(5) ! angle between c and z-axis gamma = cell_param(6) ! angle between a and b R_basis(1,1) = a R_basis(2,1) = b * cos(gamma) R_basis(2,2) = b * sin(gamma) R_basis(3,1) = c * cos(alpha)*sin(beta) R_basis(3,2) = c * sin(alpha)*sin(beta) R_basis(3,3) = c * cos(beta) dR_basis(1,1,1) = 1.0_long dR_basis(2,1,2) = cos(gamma) dR_basis(2,1,2) = sin(gamma) dR_basis(3,1,3) = cos(alpha) * sin(beta) dR_basis(3,2,3) = sin(alpha) * sin(beta) dR_basis(3,3,3) = cos(beta) dR_basis(3,1,4) = - c * sin(alpha) * sin(beta) dR_basis(3,2,4) = c * cos(alpha) * sin(beta) dR_basis(3,3,5) = - c * sin(beta) dR_basis(2,1,6) = - b * sin(gamma) dR_basis(2,2,6) = b * cos(gamma) case('R-3m') !For Rhombohedral axes, otherwise use Hexagonal If (N_cell_param /= 2) then write(6,*) 'Incorrect N_cell_param' stop endif a = cell_param(1) ! length of one edge beta = cell_param(2) ! angle between edges ! gamma is angle of rotation from a-b plane up to c-axis gamma = cos(beta)/cos(beta* 0.5_long) gamma = acos(gamma) R_basis(1,1) = a R_basis(2,1) = a * cos(beta) R_basis(2,2) = a * sin(beta) R_basis(3,1) = a * cos(gamma) * cos(beta*0.5_long) R_basis(3,2) = a * cos(gamma) * sin(beta*0.5_long) R_basis(3,3) = a * sin(gamma) dR_basis(1,1,1) = 1.0_long dR_basis(2,1,1) = cos(beta) dR_basis(2,2,1) = sin(beta) dR_basis(3,1,1) = cos(gamma) * cos(beta*0.5_long) dR_basis(3,2,1) = cos(gamma) * sin(beta*0.5_long) dR_basis(3,3,1) = sin(gamma) N_cell_param=1 case('pnna') if (N_cell_param /= 1 ) then write(6,*) 'Incorrect N_cell_param' stop endif a = cell_param(1) R_basis(1,1) = 2.0_long * a R_basis(2,2) = sqrt(3.0_long) *a R_basis(3,3) = 1.0_long * a dR_basis(1,1,1) = 2.0_long dR_basis(2,2,1) = sqrt(3.0_long) dR_basis(3,3,1) = 1.0_long case('fddd1') if (N_cell_param /= 1 ) then write(6,*) 'Incorrect N_cell_param' stop endif a = cell_param(1) R_basis(1,1) = a R_basis(2,2) = sqrt(3.0_long) * a R_basis(3,3) = sqrt(3.0_long) * 2.0_long * a dR_basis(1,1,1) = 1 dR_basis(2,2,1) = sqrt(3.0_long) dR_basis(3,3,1) = 2 * sqrt(3.0_long) case('fddd2') if (N_cell_param /= 2 ) then write(6,*) 'Incorrect N_cell_param' stop endif a = cell_param(1) alpha = cell_param(2) * atan(1.0)/45.0_long R_basis(1,1) = 2.0_long * sin(alpha/2) * a R_Basis(2,2) = 2.0_long * cos(alpha/2) * a R_basis(3,3) = sqrt(3.0_long) * 2.0_long * a dR_basis(1,1,1) = 2.0_long * sin(alpha/2) dR_basis(2,2,1) = 2.0_long * cos(alpha/2) dR_basis(3,3,1) = 2.0_long * sqrt(3.0_long) dR_basis(1,1,2) = cos(alpha/2) dR_basis(2,2,2) = -sin(alpha/2) case default write(6,*) 'Unknown crystal system, dim=3' stop end select case(2) select case(trim(crystal_system)) case('square') if (N_cell_param /= 1 ) then write(6,*) 'Incorrect N_cell_param' stop endif a = cell_param(1) R_basis(1,1) = a R_basis(2,2) = a dR_basis(1,1,1) = 1.0_long dR_basis(2,2,1) = 1.0_long case('rectangular') if (N_cell_param /=2) then write(6,*) 'Incorrect N_cell_param' stop endif a = cell_param(1) b = cell_param(2) R_basis(1,1) = a R_basis(2,2) = b dR_basis(1,1,1) = 1.0_long dR_basis(2,2,2) = 1.0_long case('hexagonal') if (N_cell_param /= 1) then write(6,*) 'Incorrect N_cell_param' stop endif a = cell_param(1) R_basis(1,1) = a R_basis(2,1) = -0.5_long*a R_basis(2,2) = a * sqrt(0.75_long) dR_basis(1,1,1) = 1.0_long dR_basis(2,1,1) = -0.5_long dR_basis(2,2,1) = sqrt(0.75_long) case('oblique') if (N_cell_param /=3 ) then write(6,*) 'Incorrect N_cell_param' stop endif a = cell_param(1) b = cell_param(2) gamma = cell_param(3) R_basis(1,1) = a R_basis(2,1) = b * cos(gamma) R_basis(2,2) = b * sin(gamma) dR_basis(1,1,1) = a dR_basis(2,1,2) = cos(gamma) dR_basis(2,2,2) = sin(gamma) dR_basis(2,1,3) = - b * sin(gamma) dR_basis(2,2,3) = b * cos(gamma) case default write(6,*) 'Unknown crystal system, dim=2' stop end select case(1) ! 1D crystal system - lamellar if ( trim(crystal_system) == 'lamellar') then a = cell_param(1) R_basis(1,1) = a dR_basis(1,1,1) = 1.0_long else write(6,*) 'Unknown crystal system, dim=2' write(6,*) 'Only 1D system is "lamellar"' stop endif case default write(6,*) 'Invalid dimension, dim=', dim stop end select ! Invert R_basis to make G_basis call make_G_basis(R_basis,G_basis) ! Calculate dG_basis do k=1, N_cell_param do i=1, dim do j=1, dim do l=1, dim do m=1, dim dG_basis(i,j,k) = dG_basis(i,j,k) & - G_basis(i,l)*dR_basis(m,l,k)*G_basis(m,j) enddo enddo enddo enddo enddo dG_basis = dG_basis/twopi ! Calculate dRR_basis, dGG_basis ! do k=1, N_cell_param ! do i=1, dim ! do j=1, dim ! do l=1, dim ! dRR_basis(i,j,k) = dRR_basis(i,j,k) & ! + R_basis(i,l)*dR_basis(j,l,k) ! dGG_basis(i,j,k) = dGG_basis(i,j,k) & ! + G_basis(i,l)*dG_basis(j,l,k) ! enddo ! dRR_basis(i,j,k) = dRR_basis(i,j,k) + dRR_basis(j,i,k) ! dGG_basis(i,j,k) = dGG_basis(i,j,k) + dGG_basis(j,i,k) ! enddo ! enddo ! enddo do k = 1,N_cell_param do i = 1,dim do j = 1,dim do l = 1,dim dRR_basis(i,j,k) = dRR_basis(i,j,k) & + R_basis(i,l) * dR_basis(l,j,k) & + R_basis(j,l) * dR_basis(l,i,k) dGG_basis(i,j,k) = dGG_basis(i,j,k) & + G_basis(i,l) * dG_basis(j,l,k) & + G_basis(j,l) * dG_basis(i,l,k) enddo enddo enddo enddo !dGG_basis = -dGG_basis/twopi end subroutine make_unit_cell !=================================================================== !--------------------------------------------------------------- !****p* unit_cell_mod/define_unit_cell ! SUBROUTINE ! define_unit_cell( mylattice, my_N, my_param ) ! PURPOSE ! Modify crystal system and/or unit cell parameters ! ARGUMENTS ! mylattice - crystal system ! my_N - number of cell parameters ! my_param - array of cell parameters ! AUTHOR ! Chris Tyler ! SOURCE !--------------------------------------------------------------- subroutine define_unit_cell( mylattice, my_N, my_param ) character(*), intent(IN) :: mylattice integer, intent(IN) :: my_N real(long), intent(IN) :: my_param(:) !*** integer :: i if ( size(my_param) < my_N ) then print *, 'Error: size(my_param) < my_N in define_unit_cell' stop endif crystal_system = mylattice N_cell_param = my_N cell_param = 0.0_long do i = 1,N_cell_param cell_param(i) = my_param(i) enddo allocate(R_basis(dim,dim)) allocate(G_basis(dim,dim)) allocate(dR_basis(dim,dim,6)) allocate(dG_basis(dim,dim,6)) allocate(dRR_basis(dim,dim,6)) allocate(dGG_basis(dim,dim,6)) end subroutine define_unit_cell !================================================================== !------------------------------------------------------------------- !****p* unit_cell_mod/make_G_basis ! SUBROUTINE ! make_G_basis(R_basis,G_basis) ! PURPOSE ! Construct array G_basis of reciprocal lattice basis vectors ! from input array R_basis of Bravais lattice basis vectors ! SOURCE !------------------------------------------------------------------- subroutine make_G_basis(R_basis,G_basis) use group_mod, only : Inverse real(long), intent(IN) :: R_basis(:,:) ! (dim,dim) Bravais real(long), intent(OUT) :: G_basis(:,:) ! (dim,dim) reciprocal !*** real(long) :: R_local(3,3), G_local(3,3), twopi integer :: i, j twopi = 4.0_long*acos(0.0_long) ! Check dimensions for R_basis and G_basis if ( ( size(R_basis,1) /= dim).or.( size(R_basis,2) /= dim ) ) then write(6,*) 'Error in make_G_basis: Incorrect dimensions for R_basis' endif if ((size(G_basis,1)/=dim).or.(size(G_basis,2)/=dim)) then write(6,*) 'Error in make_G_basis: Incorrect dimensions for G_basis' endif R_local = 0.0_long G_local = 0.0_long do i=1, dim do j=1, dim R_local(i,j) = R_basis(i,j) enddo enddo R_local = inverse(R_local) G_local = twopi*Transpose(R_local) ! Line split to compile on Regatta do i=1, dim do j=1, dim G_basis(i,j) = G_local(i,j) enddo enddo end subroutine make_G_basis !=================================================================== end module unit_cell_mod
gpl-2.0
intervigilium/cs259-or32-gcc
gcc/testsuite/gfortran.fortran-torture/execute/dep_fails.f90
191
1137
! This gives incorrect results when compiled with ! the intel and pgf90 compilers Program Strange Implicit None Type Link Integer, Dimension(2) :: Next End Type Link Integer, Parameter :: N = 2 Integer, dimension (2, 4) :: results Integer :: i, j Type(Link), Dimension(:,:), Pointer :: Perm Integer, Dimension(2) :: Current Allocate (Perm(N,N)) ! Print*, 'Spanned by indices' Do i = 1, N**2 Perm(mod(i-1,N)+1, (i-1)/N+1)%Next = (/ Mod(i,N) + 1, Mod(i/N+1,N)+1/) ! Write(*,100) mod(i-1,N)+1, (i-1)/N+1, Perm(mod(i-1,N)+1, (i-1)/N+1)%Next ! Expected output: ! Spanned by indices ! 1 1---> 2 2 ! 2 1---> 1 1 ! 1 2---> 2 1 ! 2 2---> 1 2 End Do ! Print*, 'Spanned as a cycle' Current = (/1,1/) Do i = 1, n**2 results (:, i) = Perm(Current(1), Current(2))%Next ! Write(*,100) Current, Perm(Current(1), Current(2))%Next ! Expected output: ! 1 1---> 2 2 ! 2 2---> 1 2 ! 1 2---> 2 1 ! 2 1---> 1 1 Current = Perm(Current(1), Current(2))%Next End Do if (any(results .ne. reshape ((/2,2,1,2,2,1,1,1/), (/2, 4/)))) call abort ! 100 Format( 2I3, '--->', 2I3) DeAllocate (Perm) End Program Strange
gpl-2.0
Hellybean/SaberMod_ROM_Toolchain
gcc/testsuite/gfortran.dg/namelist_26.f90
180
1566
! { dg-do run } ! PR30918 Failure to skip commented out NAMELIST ! Before the patch, this read the commented out namelist and iuse would ! equal 2 when done. Test case from PR. program gfcbug58 implicit none integer :: iuse = 0, ios integer, parameter :: nmlunit = 10 ! Namelist unit !------------------ ! Namelist 'REPORT' !------------------ character(len=12) :: type, use integer :: max_proc namelist /REPORT/ type, use, max_proc !------------------ ! Set up the test file !------------------ open(unit=nmlunit, status="scratch") write(nmlunit, '(a)') "!================" write(nmlunit, '(a)') "! Namelist REPORT" write(nmlunit, '(a)') "!================" write(nmlunit, '(a)') "! &REPORT use = 'ignore' / ! Comment" write(nmlunit, '(a)') "!" write(nmlunit, '(a)') " &REPORT type = 'SYNOP'" write(nmlunit, '(a)') " use = 'active'" write(nmlunit, '(a)') " max_proc = 20" write(nmlunit, '(a)') " /" rewind(nmlunit) !------------------------------------- ! Loop to read namelist multiple times !------------------------------------- do !---------------------------------------- ! Preset namelist variables with defaults !---------------------------------------- type = '' use = '' max_proc = -1 !-------------- ! Read namelist !-------------- read (nmlunit, nml=REPORT, iostat=ios) if (ios /= 0) exit iuse = iuse + 1 end do if (iuse /= 1) call abort() end program gfcbug58
gpl-2.0
Hellybean/SaberMod_ROM_Toolchain
gcc/testsuite/gfortran.dg/integer_exponentiation_5.F90
136
1741
! { dg-do run { xfail spu-*-* } } ! FAILs on SPU because of invalid result of 1.0/0.0 inline code ! { dg-options "-fno-range-check" } ! { dg-add-options ieee } module mod_check implicit none interface check module procedure check_i8 module procedure check_i4 module procedure check_r8 module procedure check_r4 module procedure check_c8 module procedure check_c4 end interface check contains subroutine check_i8 (a, b) integer(kind=8), intent(in) :: a, b if (a /= b) call abort() end subroutine check_i8 subroutine check_i4 (a, b) integer(kind=4), intent(in) :: a, b if (a /= b) call abort() end subroutine check_i4 subroutine check_r8 (a, b) real(kind=8), intent(in) :: a, b if (a /= b) call abort() end subroutine check_r8 subroutine check_r4 (a, b) real(kind=4), intent(in) :: a, b if (a /= b) call abort() end subroutine check_r4 subroutine check_c8 (a, b) complex(kind=8), intent(in) :: a, b if (a /= b) call abort() end subroutine check_c8 subroutine check_c4 (a, b) complex(kind=4), intent(in) :: a, b if (a /= b) call abort() end subroutine check_c4 end module mod_check program test use mod_check implicit none integer(kind=4) :: i4 integer(kind=8) :: i8 real(kind=4) :: r4 real(kind=8) :: r8 complex(kind=4) :: c4 complex(kind=8) :: c8 #define TEST(base,exp,var) var = base; call check((var)**(exp),(base)**(exp)) !!!!! INTEGER BASE !!!!! TEST(3,23,i4) TEST(-3,23,i4) TEST(3_8,43_8,i8) TEST(-3_8,43_8,i8) TEST(17_8,int(huge(0_4),kind=8)+1,i8) !!!!! REAL BASE !!!!! TEST(0.0,-1,r4) TEST(0.0,-huge(0)-1,r4) TEST(2.0,huge(0),r4) TEST(nearest(1.0,-1.0),-huge(0),r4) end program test
gpl-2.0
tuxillo/aarch64-dragonfly-gcc
gcc/testsuite/gfortran.dg/namelist_use_only.f90
136
1248
! { dg-do run } ! { dg-options "-std=legacy" } ! ! This tests the fix for PR22010, where namelists were not being written to ! and read back from modules. It checks that namelists from modules that are ! selected by an ONLY declaration work correctly, even when the variables in ! the namelist are not host associated. Note that renaming a namelist by USE ! association is not allowed by the standard and this is trapped in module.c. ! ! Contributed by Paul Thomas pault@gcc.gnu.org ! module global character*4 :: aa, aaa integer :: ii, iii real :: rr, rrr namelist /nml1/ aa, ii, rr namelist /nml2/ aaa, iii, rrr contains logical function foo() foo = (aaa.ne."pqrs").or.(iii.ne.2).or.(rrr.ne.3.5) end function foo end module global program namelist_use_only use global, only : nml1, aa, ii, rr use global, only : nml2, rrrr=>rrr, foo open (10, status="scratch") write (10,'(a)') "&NML1 aa='lmno' ii=1 rr=2.5 /" write (10,'(a)') "&NML2 aaa='pqrs' iii=2 rrr=3.5 /" rewind (10) read (10,nml=nml1,iostat=i) if ((i.ne.0).or.(aa.ne."lmno").or.(ii.ne.1).or.(rr.ne.2.5)) call abort () read (10,nml=nml2,iostat=i) if ((i.ne.0).or.(rrrr.ne.3.5).or.foo()) call abort () close (10) end program namelist_use_only
gpl-2.0
intervigilium/cs259-or32-gcc
libgomp/testsuite/libgomp.fortran/reduction1.f90
202
4309
! { dg-do run } !$ use omp_lib integer :: i, ia (6), n, cnt real :: r, ra (4) double precision :: d, da (5) complex :: c, ca (3) logical :: v i = 1 ia = 2 r = 3 ra = 4 d = 5.5 da = 6.5 c = cmplx (7.5, 1.5) ca = cmplx (8.5, -3.0) v = .false. cnt = -1 !$omp parallel num_threads (3) private (n) reduction (.or.:v) & !$omp & reduction (+:i, ia, r, ra, d, da, c, ca) !$ if (i .ne. 0 .or. any (ia .ne. 0)) v = .true. !$ if (r .ne. 0 .or. any (ra .ne. 0)) v = .true. !$ if (d .ne. 0 .or. any (da .ne. 0)) v = .true. !$ if (c .ne. cmplx (0) .or. any (ca .ne. cmplx (0))) v = .true. n = omp_get_thread_num () if (n .eq. 0) then cnt = omp_get_num_threads () i = 4 ia(3:5) = -2 r = 5 ra(1:2) = 6.5 d = -2.5 da(2:4) = 8.5 c = cmplx (2.5, -3.5) ca(1) = cmplx (4.5, 5) else if (n .eq. 1) then i = 2 ia(4:6) = 5 r = 1 ra(2:4) = -1.5 d = 8.5 da(1:3) = 2.5 c = cmplx (0.5, -3) ca(2:3) = cmplx (-1, 6) else i = 1 ia = 1 r = -1 ra = -1 d = 1 da = -1 c = 1 ca = cmplx (-1, 0) end if !$omp end parallel if (v) call abort if (cnt .eq. 3) then if (i .ne. 8 .or. any (ia .ne. (/3, 3, 1, 6, 6, 8/))) call abort if (r .ne. 8 .or. any (ra .ne. (/9.5, 8.0, 1.5, 1.5/))) call abort if (d .ne. 12.5 .or. any (da .ne. (/8.0, 16.5, 16.5, 14.0, 5.5/))) call abort if (c .ne. cmplx (11.5, -5)) call abort if (ca(1) .ne. cmplx (12, 2)) call abort if (ca(2) .ne. cmplx (6.5, 3) .or. ca(2) .ne. ca(3)) call abort end if i = 1 ia = 2 r = 3 ra = 4 d = 5.5 da = 6.5 c = cmplx (7.5, 1.5) ca = cmplx (8.5, -3.0) v = .false. cnt = -1 !$omp parallel num_threads (3) private (n) reduction (.or.:v) & !$omp & reduction (-:i, ia, r, ra, d, da, c, ca) !$ if (i .ne. 0 .or. any (ia .ne. 0)) v = .true. !$ if (r .ne. 0 .or. any (ra .ne. 0)) v = .true. !$ if (d .ne. 0 .or. any (da .ne. 0)) v = .true. !$ if (c .ne. cmplx (0) .or. any (ca .ne. cmplx (0))) v = .true. n = omp_get_thread_num () if (n .eq. 0) then cnt = omp_get_num_threads () i = 4 ia(3:5) = -2 r = 5 ra(1:2) = 6.5 d = -2.5 da(2:4) = 8.5 c = cmplx (2.5, -3.5) ca(1) = cmplx (4.5, 5) else if (n .eq. 1) then i = 2 ia(4:6) = 5 r = 1 ra(2:4) = -1.5 d = 8.5 da(1:3) = 2.5 c = cmplx (0.5, -3) ca(2:3) = cmplx (-1, 6) else i = 1 ia = 1 r = -1 ra = -1 d = 1 da = -1 c = 1 ca = cmplx (-1, 0) end if !$omp end parallel if (v) call abort if (cnt .eq. 3) then if (i .ne. 8 .or. any (ia .ne. (/3, 3, 1, 6, 6, 8/))) call abort if (r .ne. 8 .or. any (ra .ne. (/9.5, 8.0, 1.5, 1.5/))) call abort if (d .ne. 12.5 .or. any (da .ne. (/8.0, 16.5, 16.5, 14.0, 5.5/))) call abort if (c .ne. cmplx (11.5, -5)) call abort if (ca(1) .ne. cmplx (12, 2)) call abort if (ca(2) .ne. cmplx (6.5, 3) .or. ca(2) .ne. ca(3)) call abort end if i = 1 ia = 2 r = 4 ra = 8 d = 16 da = 32 c = 2 ca = cmplx (0, 2) v = .false. cnt = -1 !$omp parallel num_threads (3) private (n) reduction (.or.:v) & !$omp & reduction (*:i, ia, r, ra, d, da, c, ca) !$ if (i .ne. 1 .or. any (ia .ne. 1)) v = .true. !$ if (r .ne. 1 .or. any (ra .ne. 1)) v = .true. !$ if (d .ne. 1 .or. any (da .ne. 1)) v = .true. !$ if (c .ne. cmplx (1) .or. any (ca .ne. cmplx (1))) v = .true. n = omp_get_thread_num () if (n .eq. 0) then cnt = omp_get_num_threads () i = 3 ia(3:5) = 2 r = 0.5 ra(1:2) = 2 d = -1 da(2:4) = -2 c = 2.5 ca(1) = cmplx (-5, 0) else if (n .eq. 1) then i = 2 ia(4:6) = -2 r = 8 ra(2:4) = -0.5 da(1:3) = -1 c = -3 ca(2:3) = cmplx (0, -1) else ia = 2 r = 0.5 ra = 0.25 d = 2.5 da = -1 c = cmplx (0, -1) ca = cmplx (-1, 0) end if !$omp end parallel if (v) call abort if (cnt .eq. 3) then if (i .ne. 6 .or. any (ia .ne. (/4, 4, 8, -16, -16, -8/))) call abort if (r .ne. 8 .or. any (ra .ne. (/4., -2., -1., -1./))) call abort if (d .ne. -40 .or. any (da .ne. (/32., -64., -64., 64., -32./))) call abort if (c .ne. cmplx (0, 15)) call abort if (ca(1) .ne. cmplx (0, 10)) call abort if (ca(2) .ne. cmplx (-2, 0) .or. ca(2) .ne. ca(3)) call abort end if end
gpl-2.0
robustrobotics/eigen
lapack/clarfb.f
273
23424
*> \brief \b CLARFB * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CLARFB + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarfb.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarfb.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarfb.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, * T, LDT, C, LDC, WORK, LDWORK ) * * .. Scalar Arguments .. * CHARACTER DIRECT, SIDE, STOREV, TRANS * INTEGER K, LDC, LDT, LDV, LDWORK, M, N * .. * .. Array Arguments .. * COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ), * $ WORK( LDWORK, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CLARFB applies a complex block reflector H or its transpose H**H to a *> complex M-by-N matrix C, from either the left or the right. *> \endverbatim * * Arguments: * ========== * *> \param[in] SIDE *> \verbatim *> SIDE is CHARACTER*1 *> = 'L': apply H or H**H from the Left *> = 'R': apply H or H**H from the Right *> \endverbatim *> *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> = 'N': apply H (No transpose) *> = 'C': apply H**H (Conjugate transpose) *> \endverbatim *> *> \param[in] DIRECT *> \verbatim *> DIRECT is CHARACTER*1 *> Indicates how H is formed from a product of elementary *> reflectors *> = 'F': H = H(1) H(2) . . . H(k) (Forward) *> = 'B': H = H(k) . . . H(2) H(1) (Backward) *> \endverbatim *> *> \param[in] STOREV *> \verbatim *> STOREV is CHARACTER*1 *> Indicates how the vectors which define the elementary *> reflectors are stored: *> = 'C': Columnwise *> = 'R': Rowwise *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix C. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix C. *> \endverbatim *> *> \param[in] K *> \verbatim *> K is INTEGER *> The order of the matrix T (= the number of elementary *> reflectors whose product defines the block reflector). *> \endverbatim *> *> \param[in] V *> \verbatim *> V is COMPLEX array, dimension *> (LDV,K) if STOREV = 'C' *> (LDV,M) if STOREV = 'R' and SIDE = 'L' *> (LDV,N) if STOREV = 'R' and SIDE = 'R' *> The matrix V. See Further Details. *> \endverbatim *> *> \param[in] LDV *> \verbatim *> LDV is INTEGER *> The leading dimension of the array V. *> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); *> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); *> if STOREV = 'R', LDV >= K. *> \endverbatim *> *> \param[in] T *> \verbatim *> T is COMPLEX array, dimension (LDT,K) *> The triangular K-by-K matrix T in the representation of the *> block reflector. *> \endverbatim *> *> \param[in] LDT *> \verbatim *> LDT is INTEGER *> The leading dimension of the array T. LDT >= K. *> \endverbatim *> *> \param[in,out] C *> \verbatim *> C is COMPLEX array, dimension (LDC,N) *> On entry, the M-by-N matrix C. *> On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H. *> \endverbatim *> *> \param[in] LDC *> \verbatim *> LDC is INTEGER *> The leading dimension of the array C. LDC >= max(1,M). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (LDWORK,K) *> \endverbatim *> *> \param[in] LDWORK *> \verbatim *> LDWORK is INTEGER *> The leading dimension of the array WORK. *> If SIDE = 'L', LDWORK >= max(1,N); *> if SIDE = 'R', LDWORK >= max(1,M). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complexOTHERauxiliary * *> \par Further Details: * ===================== *> *> \verbatim *> *> The shape of the matrix V and the storage of the vectors which define *> the H(i) is best illustrated by the following example with n = 5 and *> k = 3. The elements equal to 1 are not stored; the corresponding *> array elements are modified but restored on exit. The rest of the *> array is not used. *> *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': *> *> V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) *> ( v1 1 ) ( 1 v2 v2 v2 ) *> ( v1 v2 1 ) ( 1 v3 v3 ) *> ( v1 v2 v3 ) *> ( v1 v2 v3 ) *> *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': *> *> V = ( v1 v2 v3 ) V = ( v1 v1 1 ) *> ( v1 v2 v3 ) ( v2 v2 v2 1 ) *> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) *> ( 1 v3 ) *> ( 1 ) *> \endverbatim *> * ===================================================================== SUBROUTINE CLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, $ T, LDT, C, LDC, WORK, LDWORK ) * * -- LAPACK auxiliary routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. CHARACTER DIRECT, SIDE, STOREV, TRANS INTEGER K, LDC, LDT, LDV, LDWORK, M, N * .. * .. Array Arguments .. COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ), $ WORK( LDWORK, * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX ONE PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. CHARACTER TRANST INTEGER I, J, LASTV, LASTC * .. * .. External Functions .. LOGICAL LSAME INTEGER ILACLR, ILACLC EXTERNAL LSAME, ILACLR, ILACLC * .. * .. External Subroutines .. EXTERNAL CCOPY, CGEMM, CLACGV, CTRMM * .. * .. Intrinsic Functions .. INTRINSIC CONJG * .. * .. Executable Statements .. * * Quick return if possible * IF( M.LE.0 .OR. N.LE.0 ) $ RETURN * IF( LSAME( TRANS, 'N' ) ) THEN TRANST = 'C' ELSE TRANST = 'N' END IF * IF( LSAME( STOREV, 'C' ) ) THEN * IF( LSAME( DIRECT, 'F' ) ) THEN * * Let V = ( V1 ) (first K rows) * ( V2 ) * where V1 is unit lower triangular. * IF( LSAME( SIDE, 'L' ) ) THEN * * Form H * C or H**H * C where C = ( C1 ) * ( C2 ) * LASTV = MAX( K, ILACLR( M, K, V, LDV ) ) LASTC = ILACLC( LASTV, N, C, LDC ) * * W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK) * * W := C1**H * DO 10 J = 1, K CALL CCOPY( LASTC, C( J, 1 ), LDC, WORK( 1, J ), 1 ) CALL CLACGV( LASTC, WORK( 1, J ), 1 ) 10 CONTINUE * * W := W * V1 * CALL CTRMM( 'Right', 'Lower', 'No transpose', 'Unit', $ LASTC, K, ONE, V, LDV, WORK, LDWORK ) IF( LASTV.GT.K ) THEN * * W := W + C2**H *V2 * CALL CGEMM( 'Conjugate transpose', 'No transpose', $ LASTC, K, LASTV-K, ONE, C( K+1, 1 ), LDC, $ V( K+1, 1 ), LDV, ONE, WORK, LDWORK ) END IF * * W := W * T**H or W * T * CALL CTRMM( 'Right', 'Upper', TRANST, 'Non-unit', $ LASTC, K, ONE, T, LDT, WORK, LDWORK ) * * C := C - V * W**H * IF( M.GT.K ) THEN * * C2 := C2 - V2 * W**H * CALL CGEMM( 'No transpose', 'Conjugate transpose', $ LASTV-K, LASTC, K, -ONE, V( K+1, 1 ), LDV, $ WORK, LDWORK, ONE, C( K+1, 1 ), LDC ) END IF * * W := W * V1**H * CALL CTRMM( 'Right', 'Lower', 'Conjugate transpose', $ 'Unit', LASTC, K, ONE, V, LDV, WORK, LDWORK ) * * C1 := C1 - W**H * DO 30 J = 1, K DO 20 I = 1, LASTC C( J, I ) = C( J, I ) - CONJG( WORK( I, J ) ) 20 CONTINUE 30 CONTINUE * ELSE IF( LSAME( SIDE, 'R' ) ) THEN * * Form C * H or C * H**H where C = ( C1 C2 ) * LASTV = MAX( K, ILACLR( N, K, V, LDV ) ) LASTC = ILACLR( M, LASTV, C, LDC ) * * W := C * V = (C1*V1 + C2*V2) (stored in WORK) * * W := C1 * DO 40 J = 1, K CALL CCOPY( LASTC, C( 1, J ), 1, WORK( 1, J ), 1 ) 40 CONTINUE * * W := W * V1 * CALL CTRMM( 'Right', 'Lower', 'No transpose', 'Unit', $ LASTC, K, ONE, V, LDV, WORK, LDWORK ) IF( LASTV.GT.K ) THEN * * W := W + C2 * V2 * CALL CGEMM( 'No transpose', 'No transpose', $ LASTC, K, LASTV-K, $ ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV, $ ONE, WORK, LDWORK ) END IF * * W := W * T or W * T**H * CALL CTRMM( 'Right', 'Upper', TRANS, 'Non-unit', $ LASTC, K, ONE, T, LDT, WORK, LDWORK ) * * C := C - W * V**H * IF( LASTV.GT.K ) THEN * * C2 := C2 - W * V2**H * CALL CGEMM( 'No transpose', 'Conjugate transpose', $ LASTC, LASTV-K, K, $ -ONE, WORK, LDWORK, V( K+1, 1 ), LDV, $ ONE, C( 1, K+1 ), LDC ) END IF * * W := W * V1**H * CALL CTRMM( 'Right', 'Lower', 'Conjugate transpose', $ 'Unit', LASTC, K, ONE, V, LDV, WORK, LDWORK ) * * C1 := C1 - W * DO 60 J = 1, K DO 50 I = 1, LASTC C( I, J ) = C( I, J ) - WORK( I, J ) 50 CONTINUE 60 CONTINUE END IF * ELSE * * Let V = ( V1 ) * ( V2 ) (last K rows) * where V2 is unit upper triangular. * IF( LSAME( SIDE, 'L' ) ) THEN * * Form H * C or H**H * C where C = ( C1 ) * ( C2 ) * LASTV = MAX( K, ILACLR( M, K, V, LDV ) ) LASTC = ILACLC( LASTV, N, C, LDC ) * * W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK) * * W := C2**H * DO 70 J = 1, K CALL CCOPY( LASTC, C( LASTV-K+J, 1 ), LDC, $ WORK( 1, J ), 1 ) CALL CLACGV( LASTC, WORK( 1, J ), 1 ) 70 CONTINUE * * W := W * V2 * CALL CTRMM( 'Right', 'Upper', 'No transpose', 'Unit', $ LASTC, K, ONE, V( LASTV-K+1, 1 ), LDV, $ WORK, LDWORK ) IF( LASTV.GT.K ) THEN * * W := W + C1**H*V1 * CALL CGEMM( 'Conjugate transpose', 'No transpose', $ LASTC, K, LASTV-K, ONE, C, LDC, V, LDV, $ ONE, WORK, LDWORK ) END IF * * W := W * T**H or W * T * CALL CTRMM( 'Right', 'Lower', TRANST, 'Non-unit', $ LASTC, K, ONE, T, LDT, WORK, LDWORK ) * * C := C - V * W**H * IF( LASTV.GT.K ) THEN * * C1 := C1 - V1 * W**H * CALL CGEMM( 'No transpose', 'Conjugate transpose', $ LASTV-K, LASTC, K, -ONE, V, LDV, WORK, LDWORK, $ ONE, C, LDC ) END IF * * W := W * V2**H * CALL CTRMM( 'Right', 'Upper', 'Conjugate transpose', $ 'Unit', LASTC, K, ONE, V( LASTV-K+1, 1 ), LDV, $ WORK, LDWORK ) * * C2 := C2 - W**H * DO 90 J = 1, K DO 80 I = 1, LASTC C( LASTV-K+J, I ) = C( LASTV-K+J, I ) - $ CONJG( WORK( I, J ) ) 80 CONTINUE 90 CONTINUE * ELSE IF( LSAME( SIDE, 'R' ) ) THEN * * Form C * H or C * H**H where C = ( C1 C2 ) * LASTV = MAX( K, ILACLR( N, K, V, LDV ) ) LASTC = ILACLR( M, LASTV, C, LDC ) * * W := C * V = (C1*V1 + C2*V2) (stored in WORK) * * W := C2 * DO 100 J = 1, K CALL CCOPY( LASTC, C( 1, LASTV-K+J ), 1, $ WORK( 1, J ), 1 ) 100 CONTINUE * * W := W * V2 * CALL CTRMM( 'Right', 'Upper', 'No transpose', 'Unit', $ LASTC, K, ONE, V( LASTV-K+1, 1 ), LDV, $ WORK, LDWORK ) IF( LASTV.GT.K ) THEN * * W := W + C1 * V1 * CALL CGEMM( 'No transpose', 'No transpose', $ LASTC, K, LASTV-K, $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK ) END IF * * W := W * T or W * T**H * CALL CTRMM( 'Right', 'Lower', TRANS, 'Non-unit', $ LASTC, K, ONE, T, LDT, WORK, LDWORK ) * * C := C - W * V**H * IF( LASTV.GT.K ) THEN * * C1 := C1 - W * V1**H * CALL CGEMM( 'No transpose', 'Conjugate transpose', $ LASTC, LASTV-K, K, -ONE, WORK, LDWORK, V, LDV, $ ONE, C, LDC ) END IF * * W := W * V2**H * CALL CTRMM( 'Right', 'Upper', 'Conjugate transpose', $ 'Unit', LASTC, K, ONE, V( LASTV-K+1, 1 ), LDV, $ WORK, LDWORK ) * * C2 := C2 - W * DO 120 J = 1, K DO 110 I = 1, LASTC C( I, LASTV-K+J ) = C( I, LASTV-K+J ) $ - WORK( I, J ) 110 CONTINUE 120 CONTINUE END IF END IF * ELSE IF( LSAME( STOREV, 'R' ) ) THEN * IF( LSAME( DIRECT, 'F' ) ) THEN * * Let V = ( V1 V2 ) (V1: first K columns) * where V1 is unit upper triangular. * IF( LSAME( SIDE, 'L' ) ) THEN * * Form H * C or H**H * C where C = ( C1 ) * ( C2 ) * LASTV = MAX( K, ILACLC( K, M, V, LDV ) ) LASTC = ILACLC( LASTV, N, C, LDC ) * * W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK) * * W := C1**H * DO 130 J = 1, K CALL CCOPY( LASTC, C( J, 1 ), LDC, WORK( 1, J ), 1 ) CALL CLACGV( LASTC, WORK( 1, J ), 1 ) 130 CONTINUE * * W := W * V1**H * CALL CTRMM( 'Right', 'Upper', 'Conjugate transpose', $ 'Unit', LASTC, K, ONE, V, LDV, WORK, LDWORK ) IF( LASTV.GT.K ) THEN * * W := W + C2**H*V2**H * CALL CGEMM( 'Conjugate transpose', $ 'Conjugate transpose', LASTC, K, LASTV-K, $ ONE, C( K+1, 1 ), LDC, V( 1, K+1 ), LDV, $ ONE, WORK, LDWORK ) END IF * * W := W * T**H or W * T * CALL CTRMM( 'Right', 'Upper', TRANST, 'Non-unit', $ LASTC, K, ONE, T, LDT, WORK, LDWORK ) * * C := C - V**H * W**H * IF( LASTV.GT.K ) THEN * * C2 := C2 - V2**H * W**H * CALL CGEMM( 'Conjugate transpose', $ 'Conjugate transpose', LASTV-K, LASTC, K, $ -ONE, V( 1, K+1 ), LDV, WORK, LDWORK, $ ONE, C( K+1, 1 ), LDC ) END IF * * W := W * V1 * CALL CTRMM( 'Right', 'Upper', 'No transpose', 'Unit', $ LASTC, K, ONE, V, LDV, WORK, LDWORK ) * * C1 := C1 - W**H * DO 150 J = 1, K DO 140 I = 1, LASTC C( J, I ) = C( J, I ) - CONJG( WORK( I, J ) ) 140 CONTINUE 150 CONTINUE * ELSE IF( LSAME( SIDE, 'R' ) ) THEN * * Form C * H or C * H**H where C = ( C1 C2 ) * LASTV = MAX( K, ILACLC( K, N, V, LDV ) ) LASTC = ILACLR( M, LASTV, C, LDC ) * * W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK) * * W := C1 * DO 160 J = 1, K CALL CCOPY( LASTC, C( 1, J ), 1, WORK( 1, J ), 1 ) 160 CONTINUE * * W := W * V1**H * CALL CTRMM( 'Right', 'Upper', 'Conjugate transpose', $ 'Unit', LASTC, K, ONE, V, LDV, WORK, LDWORK ) IF( LASTV.GT.K ) THEN * * W := W + C2 * V2**H * CALL CGEMM( 'No transpose', 'Conjugate transpose', $ LASTC, K, LASTV-K, ONE, C( 1, K+1 ), LDC, $ V( 1, K+1 ), LDV, ONE, WORK, LDWORK ) END IF * * W := W * T or W * T**H * CALL CTRMM( 'Right', 'Upper', TRANS, 'Non-unit', $ LASTC, K, ONE, T, LDT, WORK, LDWORK ) * * C := C - W * V * IF( LASTV.GT.K ) THEN * * C2 := C2 - W * V2 * CALL CGEMM( 'No transpose', 'No transpose', $ LASTC, LASTV-K, K, $ -ONE, WORK, LDWORK, V( 1, K+1 ), LDV, $ ONE, C( 1, K+1 ), LDC ) END IF * * W := W * V1 * CALL CTRMM( 'Right', 'Upper', 'No transpose', 'Unit', $ LASTC, K, ONE, V, LDV, WORK, LDWORK ) * * C1 := C1 - W * DO 180 J = 1, K DO 170 I = 1, LASTC C( I, J ) = C( I, J ) - WORK( I, J ) 170 CONTINUE 180 CONTINUE * END IF * ELSE * * Let V = ( V1 V2 ) (V2: last K columns) * where V2 is unit lower triangular. * IF( LSAME( SIDE, 'L' ) ) THEN * * Form H * C or H**H * C where C = ( C1 ) * ( C2 ) * LASTV = MAX( K, ILACLC( K, M, V, LDV ) ) LASTC = ILACLC( LASTV, N, C, LDC ) * * W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK) * * W := C2**H * DO 190 J = 1, K CALL CCOPY( LASTC, C( LASTV-K+J, 1 ), LDC, $ WORK( 1, J ), 1 ) CALL CLACGV( LASTC, WORK( 1, J ), 1 ) 190 CONTINUE * * W := W * V2**H * CALL CTRMM( 'Right', 'Lower', 'Conjugate transpose', $ 'Unit', LASTC, K, ONE, V( 1, LASTV-K+1 ), LDV, $ WORK, LDWORK ) IF( LASTV.GT.K ) THEN * * W := W + C1**H * V1**H * CALL CGEMM( 'Conjugate transpose', $ 'Conjugate transpose', LASTC, K, LASTV-K, $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK ) END IF * * W := W * T**H or W * T * CALL CTRMM( 'Right', 'Lower', TRANST, 'Non-unit', $ LASTC, K, ONE, T, LDT, WORK, LDWORK ) * * C := C - V**H * W**H * IF( LASTV.GT.K ) THEN * * C1 := C1 - V1**H * W**H * CALL CGEMM( 'Conjugate transpose', $ 'Conjugate transpose', LASTV-K, LASTC, K, $ -ONE, V, LDV, WORK, LDWORK, ONE, C, LDC ) END IF * * W := W * V2 * CALL CTRMM( 'Right', 'Lower', 'No transpose', 'Unit', $ LASTC, K, ONE, V( 1, LASTV-K+1 ), LDV, $ WORK, LDWORK ) * * C2 := C2 - W**H * DO 210 J = 1, K DO 200 I = 1, LASTC C( LASTV-K+J, I ) = C( LASTV-K+J, I ) - $ CONJG( WORK( I, J ) ) 200 CONTINUE 210 CONTINUE * ELSE IF( LSAME( SIDE, 'R' ) ) THEN * * Form C * H or C * H**H where C = ( C1 C2 ) * LASTV = MAX( K, ILACLC( K, N, V, LDV ) ) LASTC = ILACLR( M, LASTV, C, LDC ) * * W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK) * * W := C2 * DO 220 J = 1, K CALL CCOPY( LASTC, C( 1, LASTV-K+J ), 1, $ WORK( 1, J ), 1 ) 220 CONTINUE * * W := W * V2**H * CALL CTRMM( 'Right', 'Lower', 'Conjugate transpose', $ 'Unit', LASTC, K, ONE, V( 1, LASTV-K+1 ), LDV, $ WORK, LDWORK ) IF( LASTV.GT.K ) THEN * * W := W + C1 * V1**H * CALL CGEMM( 'No transpose', 'Conjugate transpose', $ LASTC, K, LASTV-K, ONE, C, LDC, V, LDV, ONE, $ WORK, LDWORK ) END IF * * W := W * T or W * T**H * CALL CTRMM( 'Right', 'Lower', TRANS, 'Non-unit', $ LASTC, K, ONE, T, LDT, WORK, LDWORK ) * * C := C - W * V * IF( LASTV.GT.K ) THEN * * C1 := C1 - W * V1 * CALL CGEMM( 'No transpose', 'No transpose', $ LASTC, LASTV-K, K, -ONE, WORK, LDWORK, V, LDV, $ ONE, C, LDC ) END IF * * W := W * V2 * CALL CTRMM( 'Right', 'Lower', 'No transpose', 'Unit', $ LASTC, K, ONE, V( 1, LASTV-K+1 ), LDV, $ WORK, LDWORK ) * * C1 := C1 - W * DO 240 J = 1, K DO 230 I = 1, LASTC C( I, LASTV-K+J ) = C( I, LASTV-K+J ) $ - WORK( I, J ) 230 CONTINUE 240 CONTINUE * END IF * END IF END IF * RETURN * * End of CLARFB * END
bsd-3-clause
kmkolasinski/Quantulaba
include/blas.f90
2
153487
!******************************************************************************* ! Copyright(C) 2005-2013 Intel Corporation. All Rights Reserved. ! ! The source code, information and material ("Material") contained herein is ! owned by Intel Corporation or its suppliers or licensors, and title to such ! Material remains with Intel Corporation or its suppliers or licensors. The ! Material contains proprietary information of Intel or its suppliers and ! licensors. The Material is protected by worldwide copyright laws and treaty ! provisions. No part of the Material may be used, copied, reproduced, ! modified, published, uploaded, posted, transmitted, distributed or disclosed ! in any way without Intel's prior express written permission. No license ! under any patent, copyright or other intellectual property rights in the ! Material is granted to or conferred upon you, either expressly, by ! implication, inducement, estoppel or otherwise. Any license under such ! intellectual property rights must be express and approved by Intel in ! writing. ! ! *Third Party trademarks are the property of their respective owners. ! ! Unless otherwise agreed by Intel in writing, you may not remove or alter ! this notice or any other notice embedded in Materials by Intel or Intel's ! suppliers or licensors in any way. ! !******************************************************************************* ! Content: ! F95 interface for BLAS routines !******************************************************************************* ! This file was generated automatically! !******************************************************************************* MODULE F95_PRECISION INTEGER, PARAMETER :: SP = KIND(1.0E0) INTEGER, PARAMETER :: DP = KIND(1.0D0) END MODULE F95_PRECISION MODULE BLAS95 INTERFACE ASUM PURE FUNCTION SASUM_F95(X) ! Fortran77 call: ! SASUM(N,X,INCX) USE F95_PRECISION, ONLY: WP => SP REAL(WP) :: SASUM_F95 REAL(WP), INTENT(IN) :: X(:) END FUNCTION SASUM_F95 PURE FUNCTION SCASUM_F95(X) ! Fortran77 call: ! SCASUM(N,X,INCX) USE F95_PRECISION, ONLY: WP => SP REAL(WP) :: SCASUM_F95 COMPLEX(WP), INTENT(IN) :: X(:) END FUNCTION SCASUM_F95 PURE FUNCTION DASUM_F95(X) ! Fortran77 call: ! DASUM(N,X,INCX) USE F95_PRECISION, ONLY: WP => DP REAL(WP) :: DASUM_F95 REAL(WP), INTENT(IN) :: X(:) END FUNCTION DASUM_F95 PURE FUNCTION DZASUM_F95(X) ! Fortran77 call: ! DZASUM(N,X,INCX) USE F95_PRECISION, ONLY: WP => DP REAL(WP) :: DZASUM_F95 COMPLEX(WP), INTENT(IN) :: X(:) END FUNCTION DZASUM_F95 END INTERFACE ASUM INTERFACE AXPY ! Default A=1 PURE SUBROUTINE SAXPY_F95(X,Y,A) ! Fortran77 call: ! SAXPY(N,A,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN), OPTIONAL :: A REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SAXPY_F95 PURE SUBROUTINE DAXPY_F95(X,Y,A) ! Fortran77 call: ! DAXPY(N,A,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN), OPTIONAL :: A REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DAXPY_F95 PURE SUBROUTINE CAXPY_F95(X,Y,A) ! Fortran77 call: ! CAXPY(N,A,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN), OPTIONAL :: A COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CAXPY_F95 PURE SUBROUTINE ZAXPY_F95(X,Y,A) ! Fortran77 call: ! ZAXPY(N,A,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN), OPTIONAL :: A COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZAXPY_F95 END INTERFACE AXPY INTERFACE COPY PURE SUBROUTINE SCOPY_F95(X,Y) ! Fortran77 call: ! SCOPY(N,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SCOPY_F95 PURE SUBROUTINE DCOPY_F95(X,Y) ! Fortran77 call: ! DCOPY(N,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DCOPY_F95 PURE SUBROUTINE CCOPY_F95(X,Y) ! Fortran77 call: ! CCOPY(N,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CCOPY_F95 PURE SUBROUTINE ZCOPY_F95(X,Y) ! Fortran77 call: ! ZCOPY(N,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZCOPY_F95 END INTERFACE COPY INTERFACE DOT PURE FUNCTION SDOT_F95(X,Y) ! Fortran77 call: ! SDOT(N,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => SP REAL(WP) :: SDOT_F95 REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(IN) :: Y(:) END FUNCTION SDOT_F95 PURE FUNCTION DDOT_F95(X,Y) ! Fortran77 call: ! DDOT(N,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => DP REAL(WP) :: DDOT_F95 REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(IN) :: Y(:) END FUNCTION DDOT_F95 END INTERFACE DOT INTERFACE SDOT PURE FUNCTION SDSDOT_F95(SX,SY,SB) ! Fortran77 call: ! SDSDOT(N,SB,SX,INCX,SY,INCY) USE F95_PRECISION, ONLY: WP => SP REAL(WP) :: SDSDOT_F95 REAL(WP), INTENT(IN) :: SB REAL(WP), INTENT(IN) :: SX(:) REAL(WP), INTENT(IN) :: SY(:) END FUNCTION SDSDOT_F95 PURE FUNCTION DSDOT_F95(SX,SY) ! Fortran77 call: ! DSDOT(N,SX,INCX,SY,INCY) USE F95_PRECISION, ONLY: WP => DP, SP REAL(WP) :: DSDOT_F95 REAL(SP), INTENT(IN) :: SX(:) REAL(SP), INTENT(IN) :: SY(:) END FUNCTION DSDOT_F95 END INTERFACE SDOT INTERFACE DOTC PURE FUNCTION CDOTC_F95(X,Y) ! Fortran77 call: ! CDOTC(N,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP) :: CDOTC_F95 COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END FUNCTION CDOTC_F95 PURE FUNCTION ZDOTC_F95(X,Y) ! Fortran77 call: ! ZDOTC(N,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP) :: ZDOTC_F95 COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END FUNCTION ZDOTC_F95 END INTERFACE DOTC INTERFACE DOTU PURE FUNCTION CDOTU_F95(X,Y) ! Fortran77 call: ! CDOTU(N,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP) :: CDOTU_F95 COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END FUNCTION CDOTU_F95 PURE FUNCTION ZDOTU_F95(X,Y) ! Fortran77 call: ! ZDOTU(N,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP) :: ZDOTU_F95 COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END FUNCTION ZDOTU_F95 END INTERFACE DOTU INTERFACE NRM2 PURE FUNCTION SNRM2_F95(X) ! Fortran77 call: ! SNRM2(N,X,INCX) USE F95_PRECISION, ONLY: WP => SP REAL(WP) :: SNRM2_F95 REAL(WP), INTENT(IN) :: X(:) END FUNCTION SNRM2_F95 PURE FUNCTION DNRM2_F95(X) ! Fortran77 call: ! DNRM2(N,X,INCX) USE F95_PRECISION, ONLY: WP => DP REAL(WP) :: DNRM2_F95 REAL(WP), INTENT(IN) :: X(:) END FUNCTION DNRM2_F95 PURE FUNCTION SCNRM2_F95(X) ! Fortran77 call: ! SCNRM2(N,X,INCX) USE F95_PRECISION, ONLY: WP => SP REAL(WP) :: SCNRM2_F95 COMPLEX(WP), INTENT(IN) :: X(:) END FUNCTION SCNRM2_F95 PURE FUNCTION DZNRM2_F95(X) ! Fortran77 call: ! DZNRM2(N,X,INCX) USE F95_PRECISION, ONLY: WP => DP REAL(WP) :: DZNRM2_F95 COMPLEX(WP), INTENT(IN) :: X(:) END FUNCTION DZNRM2_F95 END INTERFACE NRM2 INTERFACE ROT PURE SUBROUTINE SROT_F95(X,Y,C,S) ! Fortran77 call: ! SROT(N,X,INCX,Y,INCY,C,S) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN) :: C REAL(WP), INTENT(IN) :: S REAL(WP), INTENT(INOUT) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SROT_F95 PURE SUBROUTINE DROT_F95(X,Y,C,S) ! Fortran77 call: ! DROT(N,X,INCX,Y,INCY,C,S) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN) :: C REAL(WP), INTENT(IN) :: S REAL(WP), INTENT(INOUT) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DROT_F95 PURE SUBROUTINE CSROT_F95(X,Y,C,S) ! Fortran77 call: ! CSROT(N,X,INCX,Y,INCY,C,S) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN) :: C REAL(WP), INTENT(IN) :: S COMPLEX(WP), INTENT(INOUT) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CSROT_F95 PURE SUBROUTINE ZDROT_F95(X,Y,C,S) ! Fortran77 call: ! ZDROT(N,X,INCX,Y,INCY,C,S) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN) :: C REAL(WP), INTENT(IN) :: S COMPLEX(WP), INTENT(INOUT) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZDROT_F95 END INTERFACE ROT INTERFACE ROTG PURE SUBROUTINE SROTG(A,B,C,S) ! Fortran77 call: ! SROTG(A,B,C,S) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(INOUT) :: A REAL(WP), INTENT(INOUT) :: B REAL(WP), INTENT(OUT) :: C REAL(WP), INTENT(OUT) :: S END SUBROUTINE SROTG PURE SUBROUTINE DROTG(A,B,C,S) ! Fortran77 call: ! DROTG(A,B,C,S) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(INOUT) :: A REAL(WP), INTENT(INOUT) :: B REAL(WP), INTENT(OUT) :: C REAL(WP), INTENT(OUT) :: S END SUBROUTINE DROTG PURE SUBROUTINE CROTG(A,B,C,S) ! Fortran77 call: ! CROTG(A,B,C,S) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(INOUT) :: A COMPLEX(WP), INTENT(INOUT) :: B REAL(WP), INTENT(OUT) :: C COMPLEX(WP), INTENT(OUT) :: S END SUBROUTINE CROTG PURE SUBROUTINE ZROTG(A,B,C,S) ! Fortran77 call: ! ZROTG(A,B,C,S) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(INOUT) :: A COMPLEX(WP), INTENT(INOUT) :: B REAL(WP), INTENT(OUT) :: C COMPLEX(WP), INTENT(OUT) :: S END SUBROUTINE ZROTG END INTERFACE ROTG INTERFACE ROTM PURE SUBROUTINE SROTM_F95(X,Y,PARAM) ! Fortran77 call: ! SROTM(N,X,INCX,Y,INCY,PARAM) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(INOUT) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) REAL(WP), INTENT(IN) :: PARAM(5) END SUBROUTINE SROTM_F95 PURE SUBROUTINE DROTM_F95(X,Y,PARAM) ! Fortran77 call: ! DROTM(N,X,INCX,Y,INCY,PARAM) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(INOUT) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) REAL(WP), INTENT(IN) :: PARAM(5) END SUBROUTINE DROTM_F95 END INTERFACE ROTM INTERFACE ROTMG PURE SUBROUTINE SROTMG_F95(D1,D2,X1,Y1,PARAM) ! Fortran77 call: ! SROTMG(D1,D2,X1,Y1,PARAM) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(INOUT) :: D1 REAL(WP), INTENT(INOUT) :: D2 REAL(WP), INTENT(INOUT) :: X1 REAL(WP), INTENT(IN) :: Y1 REAL(WP), INTENT(OUT) :: PARAM(5) END SUBROUTINE SROTMG_F95 PURE SUBROUTINE DROTMG_F95(D1,D2,X1,Y1,PARAM) ! Fortran77 call: ! DROTMG(D1,D2,X1,Y1,PARAM) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(INOUT) :: D1 REAL(WP), INTENT(INOUT) :: D2 REAL(WP), INTENT(INOUT) :: X1 REAL(WP), INTENT(IN) :: Y1 REAL(WP), INTENT(OUT) :: PARAM(5) END SUBROUTINE DROTMG_F95 END INTERFACE ROTMG INTERFACE SCAL PURE SUBROUTINE SSCAL_F95(X,A) ! Fortran77 call: ! SSCAL(N,A,X,INCX) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN) :: A REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE SSCAL_F95 PURE SUBROUTINE DSCAL_F95(X,A) ! Fortran77 call: ! DSCAL(N,A,X,INCX) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN) :: A REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE DSCAL_F95 PURE SUBROUTINE CSCAL_F95(X,A) ! Fortran77 call: ! CSCAL(N,A,X,INCX) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN) :: A COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE CSCAL_F95 PURE SUBROUTINE ZSCAL_F95(X,A) ! Fortran77 call: ! ZSCAL(N,A,X,INCX) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN) :: A COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE ZSCAL_F95 PURE SUBROUTINE CSSCAL_F95(X,A) ! Fortran77 call: ! CSSCAL(N,A,X,INCX) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN) :: A COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE CSSCAL_F95 PURE SUBROUTINE ZDSCAL_F95(X,A) ! Fortran77 call: ! ZDSCAL(N,A,X,INCX) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN) :: A COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE ZDSCAL_F95 END INTERFACE SCAL INTERFACE SWAP PURE SUBROUTINE SSWAP_F95(X,Y) ! Fortran77 call: ! SSWAP(N,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(INOUT) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SSWAP_F95 PURE SUBROUTINE DSWAP_F95(X,Y) ! Fortran77 call: ! DSWAP(N,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(INOUT) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DSWAP_F95 PURE SUBROUTINE CSWAP_F95(X,Y) ! Fortran77 call: ! CSWAP(N,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(INOUT) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CSWAP_F95 PURE SUBROUTINE ZSWAP_F95(X,Y) ! Fortran77 call: ! ZSWAP(N,X,INCX,Y,INCY) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(INOUT) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZSWAP_F95 END INTERFACE SWAP INTERFACE IAMAX PURE FUNCTION ISAMAX_F95(X) ! Fortran77 call: ! ISAMAX(N,X,INCX) USE F95_PRECISION, ONLY: WP => SP INTEGER :: ISAMAX_F95 REAL(WP), INTENT(IN) :: X(:) END FUNCTION ISAMAX_F95 PURE FUNCTION IDAMAX_F95(X) ! Fortran77 call: ! IDAMAX(N,X,INCX) USE F95_PRECISION, ONLY: WP => DP INTEGER :: IDAMAX_F95 REAL(WP), INTENT(IN) :: X(:) END FUNCTION IDAMAX_F95 PURE FUNCTION ICAMAX_F95(X) ! Fortran77 call: ! ICAMAX(N,X,INCX) USE F95_PRECISION, ONLY: WP => SP INTEGER :: ICAMAX_F95 COMPLEX(WP), INTENT(IN) :: X(:) END FUNCTION ICAMAX_F95 PURE FUNCTION IZAMAX_F95(X) ! Fortran77 call: ! IZAMAX(N,X,INCX) USE F95_PRECISION, ONLY: WP => DP INTEGER :: IZAMAX_F95 COMPLEX(WP), INTENT(IN) :: X(:) END FUNCTION IZAMAX_F95 END INTERFACE IAMAX INTERFACE IAMIN PURE FUNCTION ISAMIN_F95(X) ! Fortran77 call: ! ISAMIN(N,X,INCX) USE F95_PRECISION, ONLY: WP => SP INTEGER :: ISAMIN_F95 REAL(WP), INTENT(IN) :: X(:) END FUNCTION ISAMIN_F95 PURE FUNCTION IDAMIN_F95(X) ! Fortran77 call: ! IDAMIN(N,X,INCX) USE F95_PRECISION, ONLY: WP => DP INTEGER :: IDAMIN_F95 REAL(WP), INTENT(IN) :: X(:) END FUNCTION IDAMIN_F95 PURE FUNCTION ICAMIN_F95(X) ! Fortran77 call: ! ICAMIN(N,X,INCX) USE F95_PRECISION, ONLY: WP => SP INTEGER :: ICAMIN_F95 COMPLEX(WP), INTENT(IN) :: X(:) END FUNCTION ICAMIN_F95 PURE FUNCTION IZAMIN_F95(X) ! Fortran77 call: ! IZAMIN(N,X,INCX) USE F95_PRECISION, ONLY: WP => DP INTEGER :: IZAMIN_F95 COMPLEX(WP), INTENT(IN) :: X(:) END FUNCTION IZAMIN_F95 END INTERFACE IAMIN INTERFACE CABS1 PURE FUNCTION SCABS1(C) ! Fortran77 call: ! SCABS1(C) USE F95_PRECISION, ONLY: WP => SP REAL(WP) :: SCABS1 COMPLEX(WP), INTENT(IN) :: C END FUNCTION SCABS1 PURE FUNCTION DCABS1(Z) ! Fortran77 call: ! DCABS1(Z) USE F95_PRECISION, ONLY: WP => DP REAL(WP) :: DCABS1 COMPLEX(WP), INTENT(IN) :: Z END FUNCTION DCABS1 END INTERFACE CABS1 INTERFACE GBMV ! TRANS='N','C','T'; default: 'N' ! Default ALPHA=1 ! Default BETA=0 PURE SUBROUTINE SGBMV_F95(A,X,Y,KL,M,ALPHA,BETA,TRANS) ! Fortran77 call: ! SGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => SP INTEGER, INTENT(IN), OPTIONAL :: KL INTEGER, INTENT(IN), OPTIONAL :: M REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SGBMV_F95 PURE SUBROUTINE DGBMV_F95(A,X,Y,KL,M,ALPHA,BETA,TRANS) ! Fortran77 call: ! DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => DP INTEGER, INTENT(IN), OPTIONAL :: KL INTEGER, INTENT(IN), OPTIONAL :: M REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DGBMV_F95 PURE SUBROUTINE CGBMV_F95(A,X,Y,KL,M,ALPHA,BETA,TRANS) ! Fortran77 call: ! CGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => SP INTEGER, INTENT(IN), OPTIONAL :: KL INTEGER, INTENT(IN), OPTIONAL :: M COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CGBMV_F95 PURE SUBROUTINE ZGBMV_F95(A,X,Y,KL,M,ALPHA,BETA,TRANS) ! Fortran77 call: ! ZGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => DP INTEGER, INTENT(IN), OPTIONAL :: KL INTEGER, INTENT(IN), OPTIONAL :: M COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZGBMV_F95 END INTERFACE GBMV INTERFACE GEMV ! TRANS='N','C','T'; default: 'N' ! Default ALPHA=1 ! Default BETA=0 PURE SUBROUTINE SGEMV_F95(A,X,Y,ALPHA,BETA,TRANS) ! Fortran77 call: ! SGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SGEMV_F95 PURE SUBROUTINE DGEMV_F95(A,X,Y,ALPHA,BETA,TRANS) ! Fortran77 call: ! DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DGEMV_F95 PURE SUBROUTINE CGEMV_F95(A,X,Y,ALPHA,BETA,TRANS) ! Fortran77 call: ! CGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CGEMV_F95 PURE SUBROUTINE ZGEMV_F95(A,X,Y,ALPHA,BETA,TRANS) ! Fortran77 call: ! ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZGEMV_F95 PURE SUBROUTINE SCGEMV_F95(A,X,Y,ALPHA,BETA,TRANS) ! Fortran77 call: ! SCGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SCGEMV_F95 PURE SUBROUTINE DZGEMV_F95(A,X,Y,ALPHA,BETA,TRANS) ! Fortran77 call: ! DZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DZGEMV_F95 END INTERFACE GEMV INTERFACE GER ! Default ALPHA=1 PURE SUBROUTINE SGER_F95(A,X,Y,ALPHA) ! Fortran77 call: ! SGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE SGER_F95 PURE SUBROUTINE DGER_F95(A,X,Y,ALPHA) ! Fortran77 call: ! DGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE DGER_F95 END INTERFACE GER INTERFACE GERC ! Default ALPHA=1 PURE SUBROUTINE CGERC_F95(A,X,Y,ALPHA) ! Fortran77 call: ! CGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE CGERC_F95 PURE SUBROUTINE ZGERC_F95(A,X,Y,ALPHA) ! Fortran77 call: ! ZGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE ZGERC_F95 END INTERFACE GERC INTERFACE GERU ! Default ALPHA=1 PURE SUBROUTINE CGERU_F95(A,X,Y,ALPHA) ! Fortran77 call: ! CGERU(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE CGERU_F95 PURE SUBROUTINE ZGERU_F95(A,X,Y,ALPHA) ! Fortran77 call: ! ZGERU(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE ZGERU_F95 END INTERFACE GERU INTERFACE HBMV ! UPLO='U','L'; default: 'U' ! Default ALPHA=1 ! Default BETA=0 PURE SUBROUTINE CHBMV_F95(A,X,Y,UPLO,ALPHA,BETA) ! Fortran77 call: ! CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CHBMV_F95 PURE SUBROUTINE ZHBMV_F95(A,X,Y,UPLO,ALPHA,BETA) ! Fortran77 call: ! ZHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZHBMV_F95 END INTERFACE HBMV INTERFACE HEMV ! UPLO='U','L'; default: 'U' ! Default ALPHA=1 ! Default BETA=0 PURE SUBROUTINE CHEMV_F95(A,X,Y,UPLO,ALPHA,BETA) ! Fortran77 call: ! CHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CHEMV_F95 PURE SUBROUTINE ZHEMV_F95(A,X,Y,UPLO,ALPHA,BETA) ! Fortran77 call: ! ZHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZHEMV_F95 END INTERFACE HEMV INTERFACE HER ! UPLO='U','L'; default: 'U' ! Default ALPHA=1 PURE SUBROUTINE CHER_F95(A,X,UPLO,ALPHA) ! Fortran77 call: ! CHER(UPLO,N,ALPHA,X,INCX,A,LDA) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) END SUBROUTINE CHER_F95 PURE SUBROUTINE ZHER_F95(A,X,UPLO,ALPHA) ! Fortran77 call: ! ZHER(UPLO,N,ALPHA,X,INCX,A,LDA) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) END SUBROUTINE ZHER_F95 END INTERFACE HER INTERFACE HER2 ! UPLO='U','L'; default: 'U' ! Default ALPHA=1 PURE SUBROUTINE CHER2_F95(A,X,Y,UPLO,ALPHA) ! Fortran77 call: ! CHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE CHER2_F95 PURE SUBROUTINE ZHER2_F95(A,X,Y,UPLO,ALPHA) ! Fortran77 call: ! ZHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE ZHER2_F95 END INTERFACE HER2 INTERFACE HPMV ! UPLO='U','L'; default: 'U' ! Default ALPHA=1 ! Default BETA=0 PURE SUBROUTINE CHPMV_F95(AP,X,Y,UPLO,ALPHA,BETA) ! Fortran77 call: ! CHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: AP(:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CHPMV_F95 PURE SUBROUTINE ZHPMV_F95(AP,X,Y,UPLO,ALPHA,BETA) ! Fortran77 call: ! ZHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: AP(:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZHPMV_F95 END INTERFACE HPMV INTERFACE HPR ! UPLO='U','L'; default: 'U' ! Default ALPHA=1 PURE SUBROUTINE CHPR_F95(AP,X,UPLO,ALPHA) ! Fortran77 call: ! CHPR(UPLO,N,ALPHA,X,INCX,AP) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: AP(:) COMPLEX(WP), INTENT(IN) :: X(:) END SUBROUTINE CHPR_F95 PURE SUBROUTINE ZHPR_F95(AP,X,UPLO,ALPHA) ! Fortran77 call: ! ZHPR(UPLO,N,ALPHA,X,INCX,AP) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: AP(:) COMPLEX(WP), INTENT(IN) :: X(:) END SUBROUTINE ZHPR_F95 END INTERFACE HPR INTERFACE HPR2 ! UPLO='U','L'; default: 'U' ! Default ALPHA=1 PURE SUBROUTINE CHPR2_F95(AP,X,Y,UPLO,ALPHA) ! Fortran77 call: ! CHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: AP(:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE CHPR2_F95 PURE SUBROUTINE ZHPR2_F95(AP,X,Y,UPLO,ALPHA) ! Fortran77 call: ! ZHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: AP(:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE ZHPR2_F95 END INTERFACE HPR2 INTERFACE SBMV ! UPLO='U','L'; default: 'U' ! Default ALPHA=1 ! Default BETA=0 PURE SUBROUTINE SSBMV_F95(A,X,Y,UPLO,ALPHA,BETA) ! Fortran77 call: ! SSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SSBMV_F95 PURE SUBROUTINE DSBMV_F95(A,X,Y,UPLO,ALPHA,BETA) ! Fortran77 call: ! DSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DSBMV_F95 END INTERFACE SBMV INTERFACE SPMV ! UPLO='U','L'; default: 'U' ! Default ALPHA=1 ! Default BETA=0 PURE SUBROUTINE SSPMV_F95(AP,X,Y,UPLO,ALPHA,BETA) ! Fortran77 call: ! SSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: AP(:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SSPMV_F95 PURE SUBROUTINE DSPMV_F95(AP,X,Y,UPLO,ALPHA,BETA) ! Fortran77 call: ! DSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: AP(:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DSPMV_F95 END INTERFACE SPMV INTERFACE SPR ! UPLO='U','L'; default: 'U' ! Default ALPHA=1 PURE SUBROUTINE SSPR_F95(AP,X,UPLO,ALPHA) ! Fortran77 call: ! SSPR(UPLO,N,ALPHA,X,INCX,AP) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: AP(:) REAL(WP), INTENT(IN) :: X(:) END SUBROUTINE SSPR_F95 PURE SUBROUTINE DSPR_F95(AP,X,UPLO,ALPHA) ! Fortran77 call: ! DSPR(UPLO,N,ALPHA,X,INCX,AP) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: AP(:) REAL(WP), INTENT(IN) :: X(:) END SUBROUTINE DSPR_F95 END INTERFACE SPR INTERFACE SPR2 ! UPLO='U','L'; default: 'U' ! Default ALPHA=1 PURE SUBROUTINE SSPR2_F95(AP,X,Y,UPLO,ALPHA) ! Fortran77 call: ! SSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: AP(:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE SSPR2_F95 PURE SUBROUTINE DSPR2_F95(AP,X,Y,UPLO,ALPHA) ! Fortran77 call: ! DSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: AP(:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE DSPR2_F95 END INTERFACE SPR2 INTERFACE SYMV ! UPLO='U','L'; default: 'U' ! Default ALPHA=1 ! Default BETA=0 PURE SUBROUTINE SSYMV_F95(A,X,Y,UPLO,ALPHA,BETA) ! Fortran77 call: ! SSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SSYMV_F95 PURE SUBROUTINE DSYMV_F95(A,X,Y,UPLO,ALPHA,BETA) ! Fortran77 call: ! DSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DSYMV_F95 END INTERFACE SYMV INTERFACE SYR ! UPLO='U','L'; default: 'U' ! Default ALPHA=1 PURE SUBROUTINE SSYR_F95(A,X,UPLO,ALPHA) ! Fortran77 call: ! SSYR(UPLO,N,ALPHA,X,INCX,A,LDA) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) END SUBROUTINE SSYR_F95 PURE SUBROUTINE DSYR_F95(A,X,UPLO,ALPHA) ! Fortran77 call: ! DSYR(UPLO,N,ALPHA,X,INCX,A,LDA) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) END SUBROUTINE DSYR_F95 END INTERFACE SYR INTERFACE SYR2 ! UPLO='U','L'; default: 'U' ! Default ALPHA=1 PURE SUBROUTINE SSYR2_F95(A,X,Y,UPLO,ALPHA) ! Fortran77 call: ! SSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE SSYR2_F95 PURE SUBROUTINE DSYR2_F95(A,X,Y,UPLO,ALPHA) ! Fortran77 call: ! DSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE DSYR2_F95 END INTERFACE SYR2 INTERFACE TBMV ! UPLO='U','L'; default: 'U' ! TRANS='N','C','T'; default: 'N' ! DIAG='N','U'; default: 'N' PURE SUBROUTINE STBMV_F95(A,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! STBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE STBMV_F95 PURE SUBROUTINE DTBMV_F95(A,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! DTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE DTBMV_F95 PURE SUBROUTINE CTBMV_F95(A,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! CTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE CTBMV_F95 PURE SUBROUTINE ZTBMV_F95(A,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! ZTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE ZTBMV_F95 END INTERFACE TBMV INTERFACE TBSV ! UPLO='U','L'; default: 'U' ! TRANS='N','C','T'; default: 'N' ! DIAG='N','U'; default: 'N' PURE SUBROUTINE STBSV_F95(A,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! STBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE STBSV_F95 PURE SUBROUTINE DTBSV_F95(A,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! DTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE DTBSV_F95 PURE SUBROUTINE CTBSV_F95(A,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! CTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE CTBSV_F95 PURE SUBROUTINE ZTBSV_F95(A,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! ZTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE ZTBSV_F95 END INTERFACE TBSV INTERFACE TPMV ! UPLO='U','L'; default: 'U' ! TRANS='N','C','T'; default: 'N' ! DIAG='N','U'; default: 'N' PURE SUBROUTINE STPMV_F95(AP,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! STPMV(UPLO,TRANS,DIAG,N,AP,X,INCX) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: AP(:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE STPMV_F95 PURE SUBROUTINE DTPMV_F95(AP,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! DTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: AP(:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE DTPMV_F95 PURE SUBROUTINE CTPMV_F95(AP,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! CTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: AP(:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE CTPMV_F95 PURE SUBROUTINE ZTPMV_F95(AP,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! ZTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: AP(:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE ZTPMV_F95 END INTERFACE TPMV INTERFACE TPSV ! UPLO='U','L'; default: 'U' ! TRANS='N','C','T'; default: 'N' ! DIAG='N','U'; default: 'N' PURE SUBROUTINE STPSV_F95(AP,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! STPSV(UPLO,TRANS,DIAG,N,AP,X,INCX) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: AP(:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE STPSV_F95 PURE SUBROUTINE DTPSV_F95(AP,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! DTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: AP(:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE DTPSV_F95 PURE SUBROUTINE CTPSV_F95(AP,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! CTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: AP(:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE CTPSV_F95 PURE SUBROUTINE ZTPSV_F95(AP,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! ZTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: AP(:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE ZTPSV_F95 END INTERFACE TPSV INTERFACE TRMV ! UPLO='U','L'; default: 'U' ! TRANS='N','C','T'; default: 'N' ! DIAG='N','U'; default: 'N' PURE SUBROUTINE STRMV_F95(A,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! STRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE STRMV_F95 PURE SUBROUTINE DTRMV_F95(A,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! DTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE DTRMV_F95 PURE SUBROUTINE CTRMV_F95(A,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! CTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE CTRMV_F95 PURE SUBROUTINE ZTRMV_F95(A,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! ZTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE ZTRMV_F95 END INTERFACE TRMV INTERFACE TRSV ! UPLO='U','L'; default: 'U' ! TRANS='N','C','T'; default: 'N' ! DIAG='N','U'; default: 'N' PURE SUBROUTINE STRSV_F95(A,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! STRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE STRSV_F95 PURE SUBROUTINE DTRSV_F95(A,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE DTRSV_F95 PURE SUBROUTINE CTRSV_F95(A,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! CTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE CTRSV_F95 PURE SUBROUTINE ZTRSV_F95(A,X,UPLO,TRANS,DIAG) ! Fortran77 call: ! ZTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE ZTRSV_F95 END INTERFACE TRSV INTERFACE GEMM ! TRANSA='N','C','T'; default: 'N' ! TRANSB='N','C','T'; default: 'N' ! Default ALPHA=1 ! Default BETA=0 PURE SUBROUTINE SGEMM_F95(A,B,C,TRANSA,TRANSB,ALPHA,BETA) ! Fortran77 call: ! SGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSB REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: B(:,:) REAL(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE SGEMM_F95 PURE SUBROUTINE DGEMM_F95(A,B,C,TRANSA,TRANSB,ALPHA,BETA) ! Fortran77 call: ! DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSB REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: B(:,:) REAL(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE DGEMM_F95 PURE SUBROUTINE CGEMM_F95(A,B,C,TRANSA,TRANSB,ALPHA,BETA) ! Fortran77 call: ! CGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSB COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE CGEMM_F95 PURE SUBROUTINE ZGEMM_F95(A,B,C,TRANSA,TRANSB,ALPHA,BETA) ! Fortran77 call: ! ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSB COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE ZGEMM_F95 PURE SUBROUTINE SCGEMM_F95(A,B,C,TRANSA,TRANSB,ALPHA,BETA) ! Fortran77 call: ! SCGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSB COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE SCGEMM_F95 PURE SUBROUTINE DZGEMM_F95(A,B,C,TRANSA,TRANSB,ALPHA,BETA) ! Fortran77 call: ! DZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSB COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE DZGEMM_F95 END INTERFACE GEMM INTERFACE HEMM ! SIDE='L','R'; default: 'L' ! UPLO='U','L'; default: 'U' ! Default ALPHA=1 ! Default BETA=0 PURE SUBROUTINE CHEMM_F95(A,B,C,SIDE,UPLO,ALPHA,BETA) ! Fortran77 call: ! CHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE CHEMM_F95 PURE SUBROUTINE ZHEMM_F95(A,B,C,SIDE,UPLO,ALPHA,BETA) ! Fortran77 call: ! ZHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE ZHEMM_F95 END INTERFACE HEMM INTERFACE HERK ! UPLO='U','L'; default: 'U' ! TRANS='N','C'; default: 'N' ! Default ALPHA=1 ! Default BETA=0 PURE SUBROUTINE CHERK_F95(A,C,UPLO,TRANS,ALPHA,BETA) ! Fortran77 call: ! CHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE CHERK_F95 PURE SUBROUTINE ZHERK_F95(A,C,UPLO,TRANS,ALPHA,BETA) ! Fortran77 call: ! ZHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE ZHERK_F95 END INTERFACE HERK INTERFACE HER2K ! UPLO='U','L'; default: 'U' ! TRANS='N','C'; default: 'N' ! Default ALPHA=1 ! Default BETA=0 PURE SUBROUTINE CHER2K_F95(A,B,C,UPLO,TRANS,ALPHA,BETA) ! Fortran77 call: ! CHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE CHER2K_F95 PURE SUBROUTINE ZHER2K_F95(A,B,C,UPLO,TRANS,ALPHA,BETA) ! Fortran77 call: ! ZHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE ZHER2K_F95 END INTERFACE HER2K INTERFACE SYMM ! SIDE='L','R'; default: 'L' ! UPLO='U','L'; default: 'U' ! Default ALPHA=1 ! Default BETA=0 PURE SUBROUTINE SSYMM_F95(A,B,C,SIDE,UPLO,ALPHA,BETA) ! Fortran77 call: ! SSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: B(:,:) REAL(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE SSYMM_F95 PURE SUBROUTINE DSYMM_F95(A,B,C,SIDE,UPLO,ALPHA,BETA) ! Fortran77 call: ! DSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: B(:,:) REAL(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE DSYMM_F95 PURE SUBROUTINE CSYMM_F95(A,B,C,SIDE,UPLO,ALPHA,BETA) ! Fortran77 call: ! CSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE CSYMM_F95 PURE SUBROUTINE ZSYMM_F95(A,B,C,SIDE,UPLO,ALPHA,BETA) ! Fortran77 call: ! ZSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE ZSYMM_F95 END INTERFACE SYMM INTERFACE SYRK ! UPLO='U','L'; default: 'U' ! TRANS='N','C','T'; default: 'N' ! Default ALPHA=1 ! Default BETA=0 PURE SUBROUTINE SSYRK_F95(A,C,UPLO,TRANS,ALPHA,BETA) ! Fortran77 call: ! SSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE SSYRK_F95 PURE SUBROUTINE DSYRK_F95(A,C,UPLO,TRANS,ALPHA,BETA) ! Fortran77 call: ! DSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE DSYRK_F95 PURE SUBROUTINE CSYRK_F95(A,C,UPLO,TRANS,ALPHA,BETA) ! Fortran77 call: ! CSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE CSYRK_F95 PURE SUBROUTINE ZSYRK_F95(A,C,UPLO,TRANS,ALPHA,BETA) ! Fortran77 call: ! ZSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE ZSYRK_F95 END INTERFACE SYRK INTERFACE SYR2K ! UPLO='U','L'; default: 'U' ! TRANS='N','C','T'; default: 'N' ! Default ALPHA=1 ! Default BETA=0 PURE SUBROUTINE SSYR2K_F95(A,B,C,UPLO,TRANS,ALPHA,BETA) ! Fortran77 call: ! SSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: B(:,:) REAL(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE SSYR2K_F95 PURE SUBROUTINE DSYR2K_F95(A,B,C,UPLO,TRANS,ALPHA,BETA) ! Fortran77 call: ! DSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: B(:,:) REAL(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE DSYR2K_F95 PURE SUBROUTINE CSYR2K_F95(A,B,C,UPLO,TRANS,ALPHA,BETA) ! Fortran77 call: ! CSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE CSYR2K_F95 PURE SUBROUTINE ZSYR2K_F95(A,B,C,UPLO,TRANS,ALPHA,BETA) ! Fortran77 call: ! ZSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE ZSYR2K_F95 END INTERFACE SYR2K INTERFACE TRMM ! SIDE='L','R'; default: 'L' ! UPLO='U','L'; default: 'U' ! TRANSA='N','C','T'; default: 'N' ! DIAG='N','U'; default: 'N' ! Default ALPHA=1 PURE SUBROUTINE STRMM_F95(A,B,SIDE,UPLO,TRANSA,DIAG,ALPHA) ! Fortran77 call: ! STRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: B(:,:) END SUBROUTINE STRMM_F95 PURE SUBROUTINE DTRMM_F95(A,B,SIDE,UPLO,TRANSA,DIAG,ALPHA) ! Fortran77 call: ! DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: B(:,:) END SUBROUTINE DTRMM_F95 PURE SUBROUTINE CTRMM_F95(A,B,SIDE,UPLO,TRANSA,DIAG,ALPHA) ! Fortran77 call: ! CTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: B(:,:) END SUBROUTINE CTRMM_F95 PURE SUBROUTINE ZTRMM_F95(A,B,SIDE,UPLO,TRANSA,DIAG,ALPHA) ! Fortran77 call: ! ZTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: B(:,:) END SUBROUTINE ZTRMM_F95 END INTERFACE TRMM INTERFACE TRSM ! SIDE='L','R'; default: 'L' ! UPLO='U','L'; default: 'U' ! TRANSA='N','C','T'; default: 'N' ! DIAG='N','U'; default: 'N' ! Default ALPHA=1 PURE SUBROUTINE STRSM_F95(A,B,SIDE,UPLO,TRANSA,DIAG,ALPHA) ! Fortran77 call: ! STRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: B(:,:) END SUBROUTINE STRSM_F95 PURE SUBROUTINE DTRSM_F95(A,B,SIDE,UPLO,TRANSA,DIAG,ALPHA) ! Fortran77 call: ! DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: B(:,:) END SUBROUTINE DTRSM_F95 PURE SUBROUTINE CTRSM_F95(A,B,SIDE,UPLO,TRANSA,DIAG,ALPHA) ! Fortran77 call: ! CTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: B(:,:) END SUBROUTINE CTRSM_F95 PURE SUBROUTINE ZTRSM_F95(A,B,SIDE,UPLO,TRANSA,DIAG,ALPHA) ! Fortran77 call: ! ZTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: B(:,:) END SUBROUTINE ZTRSM_F95 END INTERFACE TRSM INTERFACE AXPYI ! Default A=1 PURE SUBROUTINE SAXPYI_F95(X,INDX,Y,A) ! Fortran77 call: ! SAXPYI(NZ,A,X,INDX,Y) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN), OPTIONAL :: A REAL(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SAXPYI_F95 PURE SUBROUTINE DAXPYI_F95(X,INDX,Y,A) ! Fortran77 call: ! DAXPYI(NZ,A,X,INDX,Y) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN), OPTIONAL :: A REAL(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DAXPYI_F95 PURE SUBROUTINE CAXPYI_F95(X,INDX,Y,A) ! Fortran77 call: ! CAXPYI(NZ,A,X,INDX,Y) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN), OPTIONAL :: A COMPLEX(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CAXPYI_F95 PURE SUBROUTINE ZAXPYI_F95(X,INDX,Y,A) ! Fortran77 call: ! ZAXPYI(NZ,A,X,INDX,Y) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN), OPTIONAL :: A COMPLEX(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZAXPYI_F95 END INTERFACE AXPYI INTERFACE DOTI PURE FUNCTION SDOTI_F95(X,INDX,Y) ! Fortran77 call: ! SDOTI(NZ,X,INDX,Y) USE F95_PRECISION, ONLY: WP => SP REAL(WP) :: SDOTI_F95 REAL(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(IN) :: Y(:) END FUNCTION SDOTI_F95 PURE FUNCTION DDOTI_F95(X,INDX,Y) ! Fortran77 call: ! DDOTI(NZ,X,INDX,Y) USE F95_PRECISION, ONLY: WP => DP REAL(WP) :: DDOTI_F95 REAL(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(IN) :: Y(:) END FUNCTION DDOTI_F95 END INTERFACE DOTI INTERFACE DOTCI PURE FUNCTION CDOTCI_F95(X,INDX,Y) ! Fortran77 call: ! CDOTCI(NZ,X,INDX,Y) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP) :: CDOTCI_F95 COMPLEX(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(IN) :: Y(:) END FUNCTION CDOTCI_F95 PURE FUNCTION ZDOTCI_F95(X,INDX,Y) ! Fortran77 call: ! ZDOTCI(NZ,X,INDX,Y) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP) :: ZDOTCI_F95 COMPLEX(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(IN) :: Y(:) END FUNCTION ZDOTCI_F95 END INTERFACE DOTCI INTERFACE DOTUI PURE FUNCTION CDOTUI_F95(X,INDX,Y) ! Fortran77 call: ! CDOTUI(NZ,X,INDX,Y) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP) :: CDOTUI_F95 COMPLEX(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(IN) :: Y(:) END FUNCTION CDOTUI_F95 PURE FUNCTION ZDOTUI_F95(X,INDX,Y) ! Fortran77 call: ! ZDOTUI(NZ,X,INDX,Y) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP) :: ZDOTUI_F95 COMPLEX(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(IN) :: Y(:) END FUNCTION ZDOTUI_F95 END INTERFACE DOTUI INTERFACE GTHR PURE SUBROUTINE SGTHR_F95(X,INDX,Y) ! Fortran77 call: ! SGTHR(NZ,Y,X,INDX) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(OUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE SGTHR_F95 PURE SUBROUTINE DGTHR_F95(X,INDX,Y) ! Fortran77 call: ! DGTHR(NZ,Y,X,INDX) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(OUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE DGTHR_F95 PURE SUBROUTINE CGTHR_F95(X,INDX,Y) ! Fortran77 call: ! CGTHR(NZ,Y,X,INDX) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(OUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE CGTHR_F95 PURE SUBROUTINE ZGTHR_F95(X,INDX,Y) ! Fortran77 call: ! ZGTHR(NZ,Y,X,INDX) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(OUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE ZGTHR_F95 END INTERFACE GTHR INTERFACE GTHRZ PURE SUBROUTINE SGTHRZ_F95(X,INDX,Y) ! Fortran77 call: ! SGTHRZ(NZ,Y,X,INDX) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(OUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SGTHRZ_F95 PURE SUBROUTINE DGTHRZ_F95(X,INDX,Y) ! Fortran77 call: ! DGTHRZ(NZ,Y,X,INDX) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(OUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DGTHRZ_F95 PURE SUBROUTINE CGTHRZ_F95(X,INDX,Y) ! Fortran77 call: ! CGTHRZ(NZ,Y,X,INDX) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(OUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CGTHRZ_F95 PURE SUBROUTINE ZGTHRZ_F95(X,INDX,Y) ! Fortran77 call: ! ZGTHRZ(NZ,Y,X,INDX) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(OUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZGTHRZ_F95 END INTERFACE GTHRZ INTERFACE ROTI ! Default C=1 ! Default S=1 PURE SUBROUTINE SROTI_F95(X,INDX,Y,C,S) ! Fortran77 call: ! SROTI(NZ,X,INDX,Y,C,S) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN) :: C REAL(WP), INTENT(IN) :: S REAL(WP), INTENT(INOUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE SROTI_F95 PURE SUBROUTINE DROTI_F95(X,INDX,Y,C,S) ! Fortran77 call: ! DROTI(NZ,X,INDX,Y,C,S) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN) :: C REAL(WP), INTENT(IN) :: S REAL(WP), INTENT(INOUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE DROTI_F95 END INTERFACE ROTI INTERFACE SCTR PURE SUBROUTINE SSCTR_F95(X,INDX,Y) ! Fortran77 call: ! SSCTR(NZ,X,INDX,Y) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(OUT) :: Y(:) END SUBROUTINE SSCTR_F95 PURE SUBROUTINE DSCTR_F95(X,INDX,Y) ! Fortran77 call: ! DSCTR(NZ,X,INDX,Y) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(OUT) :: Y(:) END SUBROUTINE DSCTR_F95 PURE SUBROUTINE CSCTR_F95(X,INDX,Y) ! Fortran77 call: ! CSCTR(NZ,X,INDX,Y) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(OUT) :: Y(:) END SUBROUTINE CSCTR_F95 PURE SUBROUTINE ZSCTR_F95(X,INDX,Y) ! Fortran77 call: ! ZSCTR(NZ,X,INDX,Y) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(OUT) :: Y(:) END SUBROUTINE ZSCTR_F95 END INTERFACE SCTR INTERFACE GEMM3M ! TRANSA='N','C','T'; default: 'N' ! TRANSB='N','C','T'; default: 'N' ! Default ALPHA=1 ! Default BETA=0 PURE SUBROUTINE CGEMM3M_F95(A,B,C,TRANSA,TRANSB,ALPHA,BETA) ! Fortran77 call: ! CGEMM3M(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSB COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE CGEMM3M_F95 PURE SUBROUTINE ZGEMM3M_F95(A,B,C,TRANSA,TRANSB,ALPHA,BETA) ! Fortran77 call: ! ZGEMM3M(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE F95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSB COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE ZGEMM3M_F95 END INTERFACE GEMM3M INTERFACE AXPBY ! Default ALPHA=1 ! Default BETA=1 PURE SUBROUTINE SAXPBY_F95(X,Y,ALPHA,BETA) ! Fortran77 call: ! SAXPBY(N,ALPHA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SAXPBY_F95 PURE SUBROUTINE DAXPBY_F95(X,Y,ALPHA,BETA) ! Fortran77 call: ! DAXPBY(N,ALPHA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DAXPBY_F95 PURE SUBROUTINE CAXPBY_F95(X,Y,ALPHA,BETA) ! Fortran77 call: ! CAXPBY(N,ALPHA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CAXPBY_F95 PURE SUBROUTINE ZAXPBY_F95(X,Y,ALPHA,BETA) ! Fortran77 call: ! ZAXPBY(N,ALPHA,X,INCX,BETA,Y,INCY) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZAXPBY_F95 END INTERFACE AXPBY INTERFACE GEM2V ! Default ALPHA=1 ! Default BETA=0 PURE SUBROUTINE SGEM2VU_F95(A,X1,X2,Y1,Y2,ALPHA,BETA) ! Fortran77 call: ! SGEM2VU(M,N,ALPHA,A,LDA,X1,INCX1,X2,INCX2,BETA,Y1,INCY1,Y2, ! INCY2) USE F95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X1(:) REAL(WP), INTENT(IN) :: X2(:) REAL(WP), INTENT(INOUT) :: Y1(:) REAL(WP), INTENT(INOUT) :: Y2(:) END SUBROUTINE SGEM2VU_F95 PURE SUBROUTINE DGEM2VU_F95(A,X1,X2,Y1,Y2,ALPHA,BETA) ! Fortran77 call: ! DGEM2VU(M,N,ALPHA,A,LDA,X1,INCX1,X2,INCX2,BETA,Y1,INCY1,Y2, ! INCY2) USE F95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X1(:) REAL(WP), INTENT(IN) :: X2(:) REAL(WP), INTENT(INOUT) :: Y1(:) REAL(WP), INTENT(INOUT) :: Y2(:) END SUBROUTINE DGEM2VU_F95 PURE SUBROUTINE CGEM2VC_F95(A,X1,X2,Y1,Y2,ALPHA,BETA) ! Fortran77 call: ! CGEM2VC(M,N,ALPHA,A,LDA,X1,INCX1,X2,INCX2,BETA,Y1,INCY1,Y2, ! INCY2) USE F95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X1(:) COMPLEX(WP), INTENT(IN) :: X2(:) COMPLEX(WP), INTENT(INOUT) :: Y1(:) COMPLEX(WP), INTENT(INOUT) :: Y2(:) END SUBROUTINE CGEM2VC_F95 PURE SUBROUTINE ZGEM2VC_F95(A,X1,X2,Y1,Y2,ALPHA,BETA) ! Fortran77 call: ! ZGEM2VC(M,N,ALPHA,A,LDA,X1,INCX1,X2,INCX2,BETA,Y1,INCY1,Y2, ! INCY2) USE F95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X1(:) COMPLEX(WP), INTENT(IN) :: X2(:) COMPLEX(WP), INTENT(INOUT) :: Y1(:) COMPLEX(WP), INTENT(INOUT) :: Y2(:) END SUBROUTINE ZGEM2VC_F95 END INTERFACE GEM2V END MODULE BLAS95 MODULE MKL95_PRECISION INTEGER, PARAMETER :: SP = KIND(1.0E0) INTEGER, PARAMETER :: DP = KIND(1.0D0) END MODULE MKL95_PRECISION MODULE MKL95_BLAS INTERFACE ASUM PURE FUNCTION SASUM_MKL95(X) ! MKL Fortran77 call: ! SASUM(N,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP) :: SASUM_MKL95 REAL(WP), INTENT(IN) :: X(:) END FUNCTION SASUM_MKL95 PURE FUNCTION SCASUM_MKL95(X) ! MKL Fortran77 call: ! SCASUM(N,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP) :: SCASUM_MKL95 COMPLEX(WP), INTENT(IN) :: X(:) END FUNCTION SCASUM_MKL95 PURE FUNCTION DASUM_MKL95(X) ! MKL Fortran77 call: ! DASUM(N,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP) :: DASUM_MKL95 REAL(WP), INTENT(IN) :: X(:) END FUNCTION DASUM_MKL95 PURE FUNCTION DZASUM_MKL95(X) ! MKL Fortran77 call: ! DZASUM(N,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP) :: DZASUM_MKL95 COMPLEX(WP), INTENT(IN) :: X(:) END FUNCTION DZASUM_MKL95 END INTERFACE ASUM INTERFACE AXPY PURE SUBROUTINE SAXPY_MKL95(X,Y,A) ! MKL Fortran77 call: ! SAXPY(N,A,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN), OPTIONAL :: A REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SAXPY_MKL95 PURE SUBROUTINE DAXPY_MKL95(X,Y,A) ! MKL Fortran77 call: ! DAXPY(N,A,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN), OPTIONAL :: A REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DAXPY_MKL95 PURE SUBROUTINE CAXPY_MKL95(X,Y,A) ! MKL Fortran77 call: ! CAXPY(N,A,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN), OPTIONAL :: A COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CAXPY_MKL95 PURE SUBROUTINE ZAXPY_MKL95(X,Y,A) ! MKL Fortran77 call: ! ZAXPY(N,A,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN), OPTIONAL :: A COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZAXPY_MKL95 END INTERFACE AXPY INTERFACE COPY PURE SUBROUTINE SCOPY_MKL95(X,Y) ! MKL Fortran77 call: ! SCOPY(N,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SCOPY_MKL95 PURE SUBROUTINE DCOPY_MKL95(X,Y) ! MKL Fortran77 call: ! DCOPY(N,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DCOPY_MKL95 PURE SUBROUTINE CCOPY_MKL95(X,Y) ! MKL Fortran77 call: ! CCOPY(N,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CCOPY_MKL95 PURE SUBROUTINE ZCOPY_MKL95(X,Y) ! MKL Fortran77 call: ! ZCOPY(N,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZCOPY_MKL95 END INTERFACE COPY INTERFACE DOT PURE FUNCTION SDOT_MKL95(X,Y) ! MKL Fortran77 call: ! SDOT(N,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP) :: SDOT_MKL95 REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(IN) :: Y(:) END FUNCTION SDOT_MKL95 PURE FUNCTION DDOT_MKL95(X,Y) ! MKL Fortran77 call: ! DDOT(N,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP) :: DDOT_MKL95 REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(IN) :: Y(:) END FUNCTION DDOT_MKL95 END INTERFACE DOT INTERFACE SDOT PURE FUNCTION SDSDOT_MKL95(SX,SY,SB) ! MKL Fortran77 call: ! SDSDOT(N,SB,SX,INCX,SY,INCY) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP) :: SDSDOT_MKL95 REAL(WP), INTENT(IN) :: SB REAL(WP), INTENT(IN) :: SX(:) REAL(WP), INTENT(IN) :: SY(:) END FUNCTION SDSDOT_MKL95 PURE FUNCTION DSDOT_MKL95(SX,SY) ! MKL Fortran77 call: ! DSDOT(N,SX,INCX,SY,INCY) USE MKL95_PRECISION, ONLY: WP => DP, SP REAL(WP) :: DSDOT_MKL95 REAL(SP), INTENT(IN) :: SX(:) REAL(SP), INTENT(IN) :: SY(:) END FUNCTION DSDOT_MKL95 END INTERFACE SDOT INTERFACE DOTC PURE FUNCTION CDOTC_MKL95(X,Y) ! MKL Fortran77 call: ! CDOTC(N,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP COMPLEX(WP) :: CDOTC_MKL95 COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END FUNCTION CDOTC_MKL95 PURE FUNCTION ZDOTC_MKL95(X,Y) ! MKL Fortran77 call: ! ZDOTC(N,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP COMPLEX(WP) :: ZDOTC_MKL95 COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END FUNCTION ZDOTC_MKL95 END INTERFACE DOTC INTERFACE DOTU PURE FUNCTION CDOTU_MKL95(X,Y) ! MKL Fortran77 call: ! CDOTU(N,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP COMPLEX(WP) :: CDOTU_MKL95 COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END FUNCTION CDOTU_MKL95 PURE FUNCTION ZDOTU_MKL95(X,Y) ! MKL Fortran77 call: ! ZDOTU(N,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP COMPLEX(WP) :: ZDOTU_MKL95 COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END FUNCTION ZDOTU_MKL95 END INTERFACE DOTU INTERFACE NRM2 PURE FUNCTION SNRM2_MKL95(X) ! MKL Fortran77 call: ! SNRM2(N,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP) :: SNRM2_MKL95 REAL(WP), INTENT(IN) :: X(:) END FUNCTION SNRM2_MKL95 PURE FUNCTION DNRM2_MKL95(X) ! MKL Fortran77 call: ! DNRM2(N,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP) :: DNRM2_MKL95 REAL(WP), INTENT(IN) :: X(:) END FUNCTION DNRM2_MKL95 PURE FUNCTION SCNRM2_MKL95(X) ! MKL Fortran77 call: ! SCNRM2(N,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP) :: SCNRM2_MKL95 COMPLEX(WP), INTENT(IN) :: X(:) END FUNCTION SCNRM2_MKL95 PURE FUNCTION DZNRM2_MKL95(X) ! MKL Fortran77 call: ! DZNRM2(N,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP) :: DZNRM2_MKL95 COMPLEX(WP), INTENT(IN) :: X(:) END FUNCTION DZNRM2_MKL95 END INTERFACE NRM2 INTERFACE ROT PURE SUBROUTINE SROT_MKL95(X,Y,C,S) ! MKL Fortran77 call: ! SROT(N,X,INCX,Y,INCY,C,S) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN) :: C REAL(WP), INTENT(IN) :: S REAL(WP), INTENT(INOUT) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SROT_MKL95 PURE SUBROUTINE DROT_MKL95(X,Y,C,S) ! MKL Fortran77 call: ! DROT(N,X,INCX,Y,INCY,C,S) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN) :: C REAL(WP), INTENT(IN) :: S REAL(WP), INTENT(INOUT) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DROT_MKL95 PURE SUBROUTINE CSROT_MKL95(X,Y,C,S) ! MKL Fortran77 call: ! CSROT(N,X,INCX,Y,INCY,C,S) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN) :: C REAL(WP), INTENT(IN) :: S COMPLEX(WP), INTENT(INOUT) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CSROT_MKL95 PURE SUBROUTINE ZDROT_MKL95(X,Y,C,S) ! MKL Fortran77 call: ! ZDROT(N,X,INCX,Y,INCY,C,S) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN) :: C REAL(WP), INTENT(IN) :: S COMPLEX(WP), INTENT(INOUT) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZDROT_MKL95 END INTERFACE ROT INTERFACE ROTG PURE SUBROUTINE SROTG(A,B,C,S) ! MKL Fortran77 call: ! SROTG(A,B,C,S) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(INOUT) :: A REAL(WP), INTENT(INOUT) :: B REAL(WP), INTENT(OUT) :: C REAL(WP), INTENT(OUT) :: S END SUBROUTINE SROTG PURE SUBROUTINE DROTG(A,B,C,S) ! MKL Fortran77 call: ! DROTG(A,B,C,S) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(INOUT) :: A REAL(WP), INTENT(INOUT) :: B REAL(WP), INTENT(OUT) :: C REAL(WP), INTENT(OUT) :: S END SUBROUTINE DROTG PURE SUBROUTINE CROTG(A,B,C,S) ! MKL Fortran77 call: ! CROTG(A,B,C,S) USE MKL95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(INOUT) :: A COMPLEX(WP), INTENT(INOUT) :: B REAL(WP), INTENT(OUT) :: C COMPLEX(WP), INTENT(OUT) :: S END SUBROUTINE CROTG PURE SUBROUTINE ZROTG(A,B,C,S) ! MKL Fortran77 call: ! ZROTG(A,B,C,S) USE MKL95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(INOUT) :: A COMPLEX(WP), INTENT(INOUT) :: B REAL(WP), INTENT(OUT) :: C COMPLEX(WP), INTENT(OUT) :: S END SUBROUTINE ZROTG END INTERFACE ROTG INTERFACE ROTM PURE SUBROUTINE SROTM_MKL95(X,Y,PARAM) ! MKL Fortran77 call: ! SROTM(N,X,INCX,Y,INCY,PARAM) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(INOUT) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) REAL(WP), INTENT(IN) :: PARAM(5) END SUBROUTINE SROTM_MKL95 PURE SUBROUTINE DROTM_MKL95(X,Y,PARAM) ! MKL Fortran77 call: ! DROTM(N,X,INCX,Y,INCY,PARAM) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(INOUT) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) REAL(WP), INTENT(IN) :: PARAM(5) END SUBROUTINE DROTM_MKL95 END INTERFACE ROTM INTERFACE ROTMG PURE SUBROUTINE SROTMG_MKL95(D1,D2,X1,Y1,PARAM) ! MKL Fortran77 call: ! SROTMG(D1,D2,X1,Y1,PARAM) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(INOUT) :: D1 REAL(WP), INTENT(INOUT) :: D2 REAL(WP), INTENT(INOUT) :: X1 REAL(WP), INTENT(IN) :: Y1 REAL(WP), INTENT(OUT) :: PARAM(5) END SUBROUTINE SROTMG_MKL95 PURE SUBROUTINE DROTMG_MKL95(D1,D2,X1,Y1,PARAM) ! MKL Fortran77 call: ! DROTMG(D1,D2,X1,Y1,PARAM) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(INOUT) :: D1 REAL(WP), INTENT(INOUT) :: D2 REAL(WP), INTENT(INOUT) :: X1 REAL(WP), INTENT(IN) :: Y1 REAL(WP), INTENT(OUT) :: PARAM(5) END SUBROUTINE DROTMG_MKL95 END INTERFACE ROTMG INTERFACE SCAL PURE SUBROUTINE SSCAL_MKL95(X,A) ! MKL Fortran77 call: ! SSCAL(N,A,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN) :: A REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE SSCAL_MKL95 PURE SUBROUTINE DSCAL_MKL95(X,A) ! MKL Fortran77 call: ! DSCAL(N,A,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN) :: A REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE DSCAL_MKL95 PURE SUBROUTINE CSCAL_MKL95(X,A) ! MKL Fortran77 call: ! CSCAL(N,A,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN) :: A COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE CSCAL_MKL95 PURE SUBROUTINE ZSCAL_MKL95(X,A) ! MKL Fortran77 call: ! ZSCAL(N,A,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN) :: A COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE ZSCAL_MKL95 PURE SUBROUTINE CSSCAL_MKL95(X,A) ! MKL Fortran77 call: ! CSSCAL(N,A,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN) :: A COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE CSSCAL_MKL95 PURE SUBROUTINE ZDSCAL_MKL95(X,A) ! MKL Fortran77 call: ! ZDSCAL(N,A,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN) :: A COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE ZDSCAL_MKL95 END INTERFACE SCAL INTERFACE SWAP PURE SUBROUTINE SSWAP_MKL95(X,Y) ! MKL Fortran77 call: ! SSWAP(N,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(INOUT) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SSWAP_MKL95 PURE SUBROUTINE DSWAP_MKL95(X,Y) ! MKL Fortran77 call: ! DSWAP(N,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(INOUT) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DSWAP_MKL95 PURE SUBROUTINE CSWAP_MKL95(X,Y) ! MKL Fortran77 call: ! CSWAP(N,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(INOUT) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CSWAP_MKL95 PURE SUBROUTINE ZSWAP_MKL95(X,Y) ! MKL Fortran77 call: ! ZSWAP(N,X,INCX,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(INOUT) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZSWAP_MKL95 END INTERFACE SWAP INTERFACE IAMAX PURE FUNCTION ISAMAX_MKL95(X) ! MKL Fortran77 call: ! ISAMAX(N,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP INTEGER :: ISAMAX_MKL95 REAL(WP), INTENT(IN) :: X(:) END FUNCTION ISAMAX_MKL95 PURE FUNCTION IDAMAX_MKL95(X) ! MKL Fortran77 call: ! IDAMAX(N,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP INTEGER :: IDAMAX_MKL95 REAL(WP), INTENT(IN) :: X(:) END FUNCTION IDAMAX_MKL95 PURE FUNCTION ICAMAX_MKL95(X) ! MKL Fortran77 call: ! ICAMAX(N,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP INTEGER :: ICAMAX_MKL95 COMPLEX(WP), INTENT(IN) :: X(:) END FUNCTION ICAMAX_MKL95 PURE FUNCTION IZAMAX_MKL95(X) ! MKL Fortran77 call: ! IZAMAX(N,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP INTEGER :: IZAMAX_MKL95 COMPLEX(WP), INTENT(IN) :: X(:) END FUNCTION IZAMAX_MKL95 END INTERFACE IAMAX INTERFACE IAMIN PURE FUNCTION ISAMIN_MKL95(X) ! MKL Fortran77 call: ! ISAMIN(N,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP INTEGER :: ISAMIN_MKL95 REAL(WP), INTENT(IN) :: X(:) END FUNCTION ISAMIN_MKL95 PURE FUNCTION IDAMIN_MKL95(X) ! MKL Fortran77 call: ! IDAMIN(N,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP INTEGER :: IDAMIN_MKL95 REAL(WP), INTENT(IN) :: X(:) END FUNCTION IDAMIN_MKL95 PURE FUNCTION ICAMIN_MKL95(X) ! MKL Fortran77 call: ! ICAMIN(N,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP INTEGER :: ICAMIN_MKL95 COMPLEX(WP), INTENT(IN) :: X(:) END FUNCTION ICAMIN_MKL95 PURE FUNCTION IZAMIN_MKL95(X) ! MKL Fortran77 call: ! IZAMIN(N,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP INTEGER :: IZAMIN_MKL95 COMPLEX(WP), INTENT(IN) :: X(:) END FUNCTION IZAMIN_MKL95 END INTERFACE IAMIN INTERFACE DCABS1 PURE FUNCTION DCABS1(Z) ! MKL Fortran77 call: ! DCABS1(Z) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP) :: DCABS1 COMPLEX(WP), INTENT(IN) :: Z END FUNCTION DCABS1 END INTERFACE DCABS1 INTERFACE GBMV PURE SUBROUTINE SGBMV_MKL95(A,X,Y,KL,M,ALPHA,BETA,TRANS) ! MKL Fortran77 call: ! SGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP INTEGER, INTENT(IN), OPTIONAL :: KL INTEGER, INTENT(IN), OPTIONAL :: M REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SGBMV_MKL95 PURE SUBROUTINE DGBMV_MKL95(A,X,Y,KL,M,ALPHA,BETA,TRANS) ! MKL Fortran77 call: ! DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP INTEGER, INTENT(IN), OPTIONAL :: KL INTEGER, INTENT(IN), OPTIONAL :: M REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DGBMV_MKL95 PURE SUBROUTINE CGBMV_MKL95(A,X,Y,KL,M,ALPHA,BETA,TRANS) ! MKL Fortran77 call: ! CGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP INTEGER, INTENT(IN), OPTIONAL :: KL INTEGER, INTENT(IN), OPTIONAL :: M COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CGBMV_MKL95 PURE SUBROUTINE ZGBMV_MKL95(A,X,Y,KL,M,ALPHA,BETA,TRANS) ! MKL Fortran77 call: ! ZGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP INTEGER, INTENT(IN), OPTIONAL :: KL INTEGER, INTENT(IN), OPTIONAL :: M COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZGBMV_MKL95 END INTERFACE GBMV INTERFACE GEMV PURE SUBROUTINE SGEMV_MKL95(A,X,Y,ALPHA,BETA,TRANS) ! MKL Fortran77 call: ! SGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SGEMV_MKL95 PURE SUBROUTINE DGEMV_MKL95(A,X,Y,ALPHA,BETA,TRANS) ! MKL Fortran77 call: ! DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DGEMV_MKL95 PURE SUBROUTINE CGEMV_MKL95(A,X,Y,ALPHA,BETA,TRANS) ! MKL Fortran77 call: ! CGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CGEMV_MKL95 PURE SUBROUTINE ZGEMV_MKL95(A,X,Y,ALPHA,BETA,TRANS) ! MKL Fortran77 call: ! ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZGEMV_MKL95 END INTERFACE GEMV INTERFACE GER PURE SUBROUTINE SGER_MKL95(A,X,Y,ALPHA) ! MKL Fortran77 call: ! SGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE SGER_MKL95 PURE SUBROUTINE DGER_MKL95(A,X,Y,ALPHA) ! MKL Fortran77 call: ! DGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE DGER_MKL95 END INTERFACE GER INTERFACE GERC PURE SUBROUTINE CGERC_MKL95(A,X,Y,ALPHA) ! MKL Fortran77 call: ! CGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE MKL95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE CGERC_MKL95 PURE SUBROUTINE ZGERC_MKL95(A,X,Y,ALPHA) ! MKL Fortran77 call: ! ZGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE MKL95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE ZGERC_MKL95 END INTERFACE GERC INTERFACE GERU PURE SUBROUTINE CGERU_MKL95(A,X,Y,ALPHA) ! MKL Fortran77 call: ! CGERU(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE MKL95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE CGERU_MKL95 PURE SUBROUTINE ZGERU_MKL95(A,X,Y,ALPHA) ! MKL Fortran77 call: ! ZGERU(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE MKL95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE ZGERU_MKL95 END INTERFACE GERU INTERFACE HBMV PURE SUBROUTINE CHBMV_MKL95(A,X,Y,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CHBMV_MKL95 PURE SUBROUTINE ZHBMV_MKL95(A,X,Y,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! ZHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZHBMV_MKL95 END INTERFACE HBMV INTERFACE HEMV PURE SUBROUTINE CHEMV_MKL95(A,X,Y,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! CHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CHEMV_MKL95 PURE SUBROUTINE ZHEMV_MKL95(A,X,Y,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! ZHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZHEMV_MKL95 END INTERFACE HEMV INTERFACE HER PURE SUBROUTINE CHER_MKL95(A,X,UPLO,ALPHA) ! MKL Fortran77 call: ! CHER(UPLO,N,ALPHA,X,INCX,A,LDA) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) END SUBROUTINE CHER_MKL95 PURE SUBROUTINE ZHER_MKL95(A,X,UPLO,ALPHA) ! MKL Fortran77 call: ! ZHER(UPLO,N,ALPHA,X,INCX,A,LDA) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) END SUBROUTINE ZHER_MKL95 END INTERFACE HER INTERFACE HER2 PURE SUBROUTINE CHER2_MKL95(A,X,Y,UPLO,ALPHA) ! MKL Fortran77 call: ! CHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE CHER2_MKL95 PURE SUBROUTINE ZHER2_MKL95(A,X,Y,UPLO,ALPHA) ! MKL Fortran77 call: ! ZHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: A(:,:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE ZHER2_MKL95 END INTERFACE HER2 INTERFACE HPMV PURE SUBROUTINE CHPMV_MKL95(AP,X,Y,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! CHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: AP(:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CHPMV_MKL95 PURE SUBROUTINE ZHPMV_MKL95(AP,X,Y,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! ZHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: AP(:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZHPMV_MKL95 END INTERFACE HPMV INTERFACE HPR PURE SUBROUTINE CHPR_MKL95(AP,X,UPLO,ALPHA) ! MKL Fortran77 call: ! CHPR(UPLO,N,ALPHA,X,INCX,AP) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: AP(:) COMPLEX(WP), INTENT(IN) :: X(:) END SUBROUTINE CHPR_MKL95 PURE SUBROUTINE ZHPR_MKL95(AP,X,UPLO,ALPHA) ! MKL Fortran77 call: ! ZHPR(UPLO,N,ALPHA,X,INCX,AP) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: AP(:) COMPLEX(WP), INTENT(IN) :: X(:) END SUBROUTINE ZHPR_MKL95 END INTERFACE HPR INTERFACE HPR2 PURE SUBROUTINE CHPR2_MKL95(AP,X,Y,UPLO,ALPHA) ! MKL Fortran77 call: ! CHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: AP(:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE CHPR2_MKL95 PURE SUBROUTINE ZHPR2_MKL95(AP,X,Y,UPLO,ALPHA) ! MKL Fortran77 call: ! ZHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(INOUT) :: AP(:) COMPLEX(WP), INTENT(IN) :: X(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE ZHPR2_MKL95 END INTERFACE HPR2 INTERFACE SBMV PURE SUBROUTINE SSBMV_MKL95(A,X,Y,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! SSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SSBMV_MKL95 PURE SUBROUTINE DSBMV_MKL95(A,X,Y,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! DSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DSBMV_MKL95 END INTERFACE SBMV INTERFACE SPMV PURE SUBROUTINE SSPMV_MKL95(AP,X,Y,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! SSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: AP(:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SSPMV_MKL95 PURE SUBROUTINE DSPMV_MKL95(AP,X,Y,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! DSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: AP(:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DSPMV_MKL95 END INTERFACE SPMV INTERFACE SPR PURE SUBROUTINE SSPR_MKL95(AP,X,UPLO,ALPHA) ! MKL Fortran77 call: ! SSPR(UPLO,N,ALPHA,X,INCX,AP) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: AP(:) REAL(WP), INTENT(IN) :: X(:) END SUBROUTINE SSPR_MKL95 PURE SUBROUTINE DSPR_MKL95(AP,X,UPLO,ALPHA) ! MKL Fortran77 call: ! DSPR(UPLO,N,ALPHA,X,INCX,AP) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: AP(:) REAL(WP), INTENT(IN) :: X(:) END SUBROUTINE DSPR_MKL95 END INTERFACE SPR INTERFACE SPR2 PURE SUBROUTINE SSPR2_MKL95(AP,X,Y,UPLO,ALPHA) ! MKL Fortran77 call: ! SSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: AP(:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE SSPR2_MKL95 PURE SUBROUTINE DSPR2_MKL95(AP,X,Y,UPLO,ALPHA) ! MKL Fortran77 call: ! DSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: AP(:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE DSPR2_MKL95 END INTERFACE SPR2 INTERFACE SYMV PURE SUBROUTINE SSYMV_MKL95(A,X,Y,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! SSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SSYMV_MKL95 PURE SUBROUTINE DSYMV_MKL95(A,X,Y,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! DSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DSYMV_MKL95 END INTERFACE SYMV INTERFACE SYR PURE SUBROUTINE SSYR_MKL95(A,X,UPLO,ALPHA) ! MKL Fortran77 call: ! SSYR(UPLO,N,ALPHA,X,INCX,A,LDA) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) END SUBROUTINE SSYR_MKL95 PURE SUBROUTINE DSYR_MKL95(A,X,UPLO,ALPHA) ! MKL Fortran77 call: ! DSYR(UPLO,N,ALPHA,X,INCX,A,LDA) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) END SUBROUTINE DSYR_MKL95 END INTERFACE SYR INTERFACE SYR2 PURE SUBROUTINE SSYR2_MKL95(A,X,Y,UPLO,ALPHA) ! MKL Fortran77 call: ! SSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE SSYR2_MKL95 PURE SUBROUTINE DSYR2_MKL95(A,X,Y,UPLO,ALPHA) ! MKL Fortran77 call: ! DSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(INOUT) :: A(:,:) REAL(WP), INTENT(IN) :: X(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE DSYR2_MKL95 END INTERFACE SYR2 INTERFACE TBMV PURE SUBROUTINE STBMV_MKL95(A,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! STBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE STBMV_MKL95 PURE SUBROUTINE DTBMV_MKL95(A,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! DTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE DTBMV_MKL95 PURE SUBROUTINE CTBMV_MKL95(A,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! CTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE CTBMV_MKL95 PURE SUBROUTINE ZTBMV_MKL95(A,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! ZTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE ZTBMV_MKL95 END INTERFACE TBMV INTERFACE TBSV PURE SUBROUTINE STBSV_MKL95(A,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! STBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE STBSV_MKL95 PURE SUBROUTINE DTBSV_MKL95(A,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! DTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE DTBSV_MKL95 PURE SUBROUTINE CTBSV_MKL95(A,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! CTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE CTBSV_MKL95 PURE SUBROUTINE ZTBSV_MKL95(A,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! ZTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE ZTBSV_MKL95 END INTERFACE TBSV INTERFACE TPMV PURE SUBROUTINE STPMV_MKL95(AP,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! STPMV(UPLO,TRANS,DIAG,N,AP,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: AP(:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE STPMV_MKL95 PURE SUBROUTINE DTPMV_MKL95(AP,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! DTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: AP(:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE DTPMV_MKL95 PURE SUBROUTINE CTPMV_MKL95(AP,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! CTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: AP(:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE CTPMV_MKL95 PURE SUBROUTINE ZTPMV_MKL95(AP,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! ZTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: AP(:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE ZTPMV_MKL95 END INTERFACE TPMV INTERFACE TPSV PURE SUBROUTINE STPSV_MKL95(AP,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! STPSV(UPLO,TRANS,DIAG,N,AP,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: AP(:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE STPSV_MKL95 PURE SUBROUTINE DTPSV_MKL95(AP,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! DTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: AP(:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE DTPSV_MKL95 PURE SUBROUTINE CTPSV_MKL95(AP,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! CTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: AP(:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE CTPSV_MKL95 PURE SUBROUTINE ZTPSV_MKL95(AP,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! ZTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: AP(:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE ZTPSV_MKL95 END INTERFACE TPSV INTERFACE TRMV PURE SUBROUTINE STRMV_MKL95(A,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! STRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE STRMV_MKL95 PURE SUBROUTINE DTRMV_MKL95(A,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! DTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE DTRMV_MKL95 PURE SUBROUTINE CTRMV_MKL95(A,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! CTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE CTRMV_MKL95 PURE SUBROUTINE ZTRMV_MKL95(A,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! ZTRMV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE ZTRMV_MKL95 END INTERFACE TRMV INTERFACE TRSV PURE SUBROUTINE STRSV_MKL95(A,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! STRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE STRSV_MKL95 PURE SUBROUTINE DTRSV_MKL95(A,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: X(:) END SUBROUTINE DTRSV_MKL95 PURE SUBROUTINE CTRSV_MKL95(A,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! CTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE CTRSV_MKL95 PURE SUBROUTINE ZTRSV_MKL95(A,X,UPLO,TRANS,DIAG) ! MKL Fortran77 call: ! ZTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: X(:) END SUBROUTINE ZTRSV_MKL95 END INTERFACE TRSV INTERFACE GEMM PURE SUBROUTINE SGEMM_MKL95(A,B,C,TRANSA,TRANSB,ALPHA,BETA) ! MKL Fortran77 call: ! SGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSB REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: B(:,:) REAL(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE SGEMM_MKL95 PURE SUBROUTINE DGEMM_MKL95(A,B,C,TRANSA,TRANSB,ALPHA,BETA) ! MKL Fortran77 call: ! DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSB REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: B(:,:) REAL(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE DGEMM_MKL95 PURE SUBROUTINE CGEMM_MKL95(A,B,C,TRANSA,TRANSB,ALPHA,BETA) ! MKL Fortran77 call: ! CGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSB COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE CGEMM_MKL95 PURE SUBROUTINE ZGEMM_MKL95(A,B,C,TRANSA,TRANSB,ALPHA,BETA) ! MKL Fortran77 call: ! ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSB COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE ZGEMM_MKL95 END INTERFACE GEMM INTERFACE HEMM PURE SUBROUTINE CHEMM_MKL95(A,B,C,SIDE,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! CHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE CHEMM_MKL95 PURE SUBROUTINE ZHEMM_MKL95(A,B,C,SIDE,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! ZHEMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE ZHEMM_MKL95 END INTERFACE HEMM INTERFACE HERK PURE SUBROUTINE CHERK_MKL95(A,C,UPLO,TRANS,ALPHA,BETA) ! MKL Fortran77 call: ! CHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE CHERK_MKL95 PURE SUBROUTINE ZHERK_MKL95(A,C,UPLO,TRANS,ALPHA,BETA) ! MKL Fortran77 call: ! ZHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE ZHERK_MKL95 END INTERFACE HERK INTERFACE HER2K PURE SUBROUTINE CHER2K_MKL95(A,B,C,UPLO,TRANS,ALPHA,BETA) ! MKL Fortran77 call: ! CHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE CHER2K_MKL95 PURE SUBROUTINE ZHER2K_MKL95(A,B,C,UPLO,TRANS,ALPHA,BETA) ! MKL Fortran77 call: ! ZHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE ZHER2K_MKL95 END INTERFACE HER2K INTERFACE SYMM PURE SUBROUTINE SSYMM_MKL95(A,B,C,SIDE,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! SSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: B(:,:) REAL(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE SSYMM_MKL95 PURE SUBROUTINE DSYMM_MKL95(A,B,C,SIDE,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! DSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: B(:,:) REAL(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE DSYMM_MKL95 PURE SUBROUTINE CSYMM_MKL95(A,B,C,SIDE,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! CSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE CSYMM_MKL95 PURE SUBROUTINE ZSYMM_MKL95(A,B,C,SIDE,UPLO,ALPHA,BETA) ! MKL Fortran77 call: ! ZSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE ZSYMM_MKL95 END INTERFACE SYMM INTERFACE SYRK PURE SUBROUTINE SSYRK_MKL95(A,C,UPLO,TRANS,ALPHA,BETA) ! MKL Fortran77 call: ! SSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE SSYRK_MKL95 PURE SUBROUTINE DSYRK_MKL95(A,C,UPLO,TRANS,ALPHA,BETA) ! MKL Fortran77 call: ! DSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE DSYRK_MKL95 PURE SUBROUTINE CSYRK_MKL95(A,C,UPLO,TRANS,ALPHA,BETA) ! MKL Fortran77 call: ! CSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE CSYRK_MKL95 PURE SUBROUTINE ZSYRK_MKL95(A,C,UPLO,TRANS,ALPHA,BETA) ! MKL Fortran77 call: ! ZSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE ZSYRK_MKL95 END INTERFACE SYRK INTERFACE SYR2K PURE SUBROUTINE SSYR2K_MKL95(A,B,C,UPLO,TRANS,ALPHA,BETA) ! MKL Fortran77 call: ! SSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: B(:,:) REAL(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE SSYR2K_MKL95 PURE SUBROUTINE DSYR2K_MKL95(A,B,C,UPLO,TRANS,ALPHA,BETA) ! MKL Fortran77 call: ! DSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN), OPTIONAL :: BETA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(IN) :: B(:,:) REAL(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE DSYR2K_MKL95 PURE SUBROUTINE CSYR2K_MKL95(A,B,C,UPLO,TRANS,ALPHA,BETA) ! MKL Fortran77 call: ! CSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE CSYR2K_MKL95 PURE SUBROUTINE ZSYR2K_MKL95(A,B,C,UPLO,TRANS,ALPHA,BETA) ! MKL Fortran77 call: ! ZSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANS COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN), OPTIONAL :: BETA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(IN) :: B(:,:) COMPLEX(WP), INTENT(INOUT) :: C(:,:) END SUBROUTINE ZSYR2K_MKL95 END INTERFACE SYR2K INTERFACE TRMM PURE SUBROUTINE STRMM_MKL95(A,B,SIDE,UPLO,TRANSA,DIAG,ALPHA) ! MKL Fortran77 call: ! STRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: B(:,:) END SUBROUTINE STRMM_MKL95 PURE SUBROUTINE DTRMM_MKL95(A,B,SIDE,UPLO,TRANSA,DIAG,ALPHA) ! MKL Fortran77 call: ! DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: B(:,:) END SUBROUTINE DTRMM_MKL95 PURE SUBROUTINE CTRMM_MKL95(A,B,SIDE,UPLO,TRANSA,DIAG,ALPHA) ! MKL Fortran77 call: ! CTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: B(:,:) END SUBROUTINE CTRMM_MKL95 PURE SUBROUTINE ZTRMM_MKL95(A,B,SIDE,UPLO,TRANSA,DIAG,ALPHA) ! MKL Fortran77 call: ! ZTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: B(:,:) END SUBROUTINE ZTRMM_MKL95 END INTERFACE TRMM INTERFACE TRSM PURE SUBROUTINE STRSM_MKL95(A,B,SIDE,UPLO,TRANSA,DIAG,ALPHA) ! MKL Fortran77 call: ! STRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: B(:,:) END SUBROUTINE STRSM_MKL95 PURE SUBROUTINE DTRSM_MKL95(A,B,SIDE,UPLO,TRANSA,DIAG,ALPHA) ! MKL Fortran77 call: ! DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG REAL(WP), INTENT(IN), OPTIONAL :: ALPHA REAL(WP), INTENT(IN) :: A(:,:) REAL(WP), INTENT(INOUT) :: B(:,:) END SUBROUTINE DTRSM_MKL95 PURE SUBROUTINE CTRSM_MKL95(A,B,SIDE,UPLO,TRANSA,DIAG,ALPHA) ! MKL Fortran77 call: ! CTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) USE MKL95_PRECISION, ONLY: WP => SP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: B(:,:) END SUBROUTINE CTRSM_MKL95 PURE SUBROUTINE ZTRSM_MKL95(A,B,SIDE,UPLO,TRANSA,DIAG,ALPHA) ! MKL Fortran77 call: ! ZTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) USE MKL95_PRECISION, ONLY: WP => DP CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: SIDE CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: UPLO CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: TRANSA CHARACTER(LEN=1), INTENT(IN), OPTIONAL :: DIAG COMPLEX(WP), INTENT(IN), OPTIONAL :: ALPHA COMPLEX(WP), INTENT(IN) :: A(:,:) COMPLEX(WP), INTENT(INOUT) :: B(:,:) END SUBROUTINE ZTRSM_MKL95 END INTERFACE TRSM INTERFACE AXPYI PURE SUBROUTINE SAXPYI_MKL95(X,INDX,Y,A) ! MKL Fortran77 call: ! SAXPYI(NZ,A,X,INDX,Y) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN), OPTIONAL :: A REAL(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SAXPYI_MKL95 PURE SUBROUTINE DAXPYI_MKL95(X,INDX,Y,A) ! MKL Fortran77 call: ! DAXPYI(NZ,A,X,INDX,Y) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN), OPTIONAL :: A REAL(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DAXPYI_MKL95 PURE SUBROUTINE CAXPYI_MKL95(X,INDX,Y,A) ! MKL Fortran77 call: ! CAXPYI(NZ,A,X,INDX,Y) USE MKL95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN), OPTIONAL :: A COMPLEX(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CAXPYI_MKL95 PURE SUBROUTINE ZAXPYI_MKL95(X,INDX,Y,A) ! MKL Fortran77 call: ! ZAXPYI(NZ,A,X,INDX,Y) USE MKL95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN), OPTIONAL :: A COMPLEX(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZAXPYI_MKL95 END INTERFACE AXPYI INTERFACE DOTI PURE FUNCTION SDOTI_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! SDOTI(NZ,X,INDX,Y) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP) :: SDOTI_MKL95 REAL(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(IN) :: Y(:) END FUNCTION SDOTI_MKL95 PURE FUNCTION DDOTI_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! DDOTI(NZ,X,INDX,Y) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP) :: DDOTI_MKL95 REAL(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(IN) :: Y(:) END FUNCTION DDOTI_MKL95 END INTERFACE DOTI INTERFACE DOTCI PURE FUNCTION CDOTCI_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! CDOTCI(NZ,X,INDX,Y) USE MKL95_PRECISION, ONLY: WP => SP COMPLEX(WP) :: CDOTCI_MKL95 COMPLEX(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(IN) :: Y(:) END FUNCTION CDOTCI_MKL95 PURE FUNCTION ZDOTCI_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! ZDOTCI(NZ,X,INDX,Y) USE MKL95_PRECISION, ONLY: WP => DP COMPLEX(WP) :: ZDOTCI_MKL95 COMPLEX(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(IN) :: Y(:) END FUNCTION ZDOTCI_MKL95 END INTERFACE DOTCI INTERFACE DOTUI PURE FUNCTION CDOTUI_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! CDOTUI(NZ,X,INDX,Y) USE MKL95_PRECISION, ONLY: WP => SP COMPLEX(WP) :: CDOTUI_MKL95 COMPLEX(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(IN) :: Y(:) END FUNCTION CDOTUI_MKL95 PURE FUNCTION ZDOTUI_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! ZDOTUI(NZ,X,INDX,Y) USE MKL95_PRECISION, ONLY: WP => DP COMPLEX(WP) :: ZDOTUI_MKL95 COMPLEX(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(IN) :: Y(:) END FUNCTION ZDOTUI_MKL95 END INTERFACE DOTUI INTERFACE GTHR PURE SUBROUTINE SGTHR_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! SGTHR(NZ,Y,X,INDX) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(OUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE SGTHR_MKL95 PURE SUBROUTINE DGTHR_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! DGTHR(NZ,Y,X,INDX) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(OUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE DGTHR_MKL95 PURE SUBROUTINE CGTHR_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! CGTHR(NZ,Y,X,INDX) USE MKL95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(OUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE CGTHR_MKL95 PURE SUBROUTINE ZGTHR_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! ZGTHR(NZ,Y,X,INDX) USE MKL95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(OUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(IN) :: Y(:) END SUBROUTINE ZGTHR_MKL95 END INTERFACE GTHR INTERFACE GTHRZ PURE SUBROUTINE SGTHRZ_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! SGTHRZ(NZ,Y,X,INDX) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(OUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE SGTHRZ_MKL95 PURE SUBROUTINE DGTHRZ_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! DGTHRZ(NZ,Y,X,INDX) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(OUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE DGTHRZ_MKL95 PURE SUBROUTINE CGTHRZ_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! CGTHRZ(NZ,Y,X,INDX) USE MKL95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(OUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE CGTHRZ_MKL95 PURE SUBROUTINE ZGTHRZ_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! ZGTHRZ(NZ,Y,X,INDX) USE MKL95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(OUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(INOUT) :: Y(:) END SUBROUTINE ZGTHRZ_MKL95 END INTERFACE GTHRZ INTERFACE ROTI PURE SUBROUTINE SROTI_MKL95(X,INDX,Y,C,S) ! MKL Fortran77 call: ! SROTI(NZ,X,INDX,Y,C,S) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN) :: C REAL(WP), INTENT(IN) :: S REAL(WP), INTENT(INOUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE SROTI_MKL95 PURE SUBROUTINE DROTI_MKL95(X,INDX,Y,C,S) ! MKL Fortran77 call: ! DROTI(NZ,X,INDX,Y,C,S) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN) :: C REAL(WP), INTENT(IN) :: S REAL(WP), INTENT(INOUT) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(IN) :: Y(:) END SUBROUTINE DROTI_MKL95 END INTERFACE ROTI INTERFACE SCTR PURE SUBROUTINE SSCTR_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! SSCTR(NZ,X,INDX,Y) USE MKL95_PRECISION, ONLY: WP => SP REAL(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(OUT) :: Y(:) END SUBROUTINE SSCTR_MKL95 PURE SUBROUTINE DSCTR_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! DSCTR(NZ,X,INDX,Y) USE MKL95_PRECISION, ONLY: WP => DP REAL(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) REAL(WP), INTENT(OUT) :: Y(:) END SUBROUTINE DSCTR_MKL95 PURE SUBROUTINE CSCTR_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! CSCTR(NZ,X,INDX,Y) USE MKL95_PRECISION, ONLY: WP => SP COMPLEX(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(OUT) :: Y(:) END SUBROUTINE CSCTR_MKL95 PURE SUBROUTINE ZSCTR_MKL95(X,INDX,Y) ! MKL Fortran77 call: ! ZSCTR(NZ,X,INDX,Y) USE MKL95_PRECISION, ONLY: WP => DP COMPLEX(WP), INTENT(IN) :: X(:) INTEGER, INTENT(IN) :: INDX(:) COMPLEX(WP), INTENT(OUT) :: Y(:) END SUBROUTINE ZSCTR_MKL95 END INTERFACE SCTR END MODULE MKL95_BLAS
mit
intervigilium/cs259-or32-gcc
gcc/testsuite/gfortran.dg/namelist_23.f90
174
1731
!{ dg-do run { target fd_truncate } } ! PR26136 Filling logical variables from namelist read when object list is not ! complete. Test case derived from PR. ! Contributed by Jerry DeLisle <jvdelisle@gcc.gnu.org> program read_logical implicit none logical, dimension(4) :: truely integer, dimension(4) :: truely_a_very_long_variable_name namelist /mynml/ truely namelist /mynml/ truely_a_very_long_variable_name truely = .false. truely_a_very_long_variable_name = 0 open(10, status="scratch") write(10,*) "&mynml" write(10,*) "truely = trouble, traffic .true" write(10,*) "truely_a_very_long_variable_name = 4, 4, 4" write(10,*) "/" rewind(10) read (10, nml=mynml, err = 1000) if (.not.all(truely(1:3))) call abort() if (.not.all(truely_a_very_long_variable_name(1:3).eq.4)) call abort() truely = .false. truely_a_very_long_variable_name = 0 rewind(10) write(10,*) "&mynml" write(10,*) "truely = .true., .true.," write(10,*) "truely_a_very_long_variable_name = 4, 4, 4" write(10,*) "/" rewind(10) read (10, nml=mynml, err = 1000) if (.not.all(truely(1:2))) call abort() if (.not.all(truely_a_very_long_variable_name(1:3).eq.4)) call abort() truely = .true. truely_a_very_long_variable_name = 0 rewind(10) write(10,*) "&mynml" write(10,*) "truely = .false., .false.," write(10,*) "truely_a_very_long_variable_name = 4, 4, 4" write(10,*) "/" rewind(10) read (10, nml=mynml, err = 1000) if (all(truely(1:2))) call abort() if (.not.all(truely_a_very_long_variable_name(1:3).eq.4)) call abort() close(10) stop 1000 call abort() end program read_logical
gpl-2.0
Hellybean/SaberMod_ROM_Toolchain
libgfortran/generated/_aimag_c16.F90
26
1466
! Copyright (C) 2002-2013 Free Software Foundation, Inc. ! Contributed by Paul Brook <paul@nowt.org> ! !This file is part of the GNU Fortran 95 runtime library (libgfortran). ! !GNU libgfortran is free software; you can redistribute it and/or !modify it under the terms of the GNU General Public !License as published by the Free Software Foundation; either !version 3 of the License, or (at your option) any later version. !GNU libgfortran is distributed in the hope that it will be useful, !but WITHOUT ANY WARRANTY; without even the implied warranty of !MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the !GNU General Public License for more details. ! !Under Section 7 of GPL version 3, you are granted additional !permissions described in the GCC Runtime Library Exception, version !3.1, as published by the Free Software Foundation. ! !You should have received a copy of the GNU General Public License and !a copy of the GCC Runtime Library Exception along with this program; !see the files COPYING3 and COPYING.RUNTIME respectively. If not, see !<http://www.gnu.org/licenses/>. ! !This file is machine generated. #include "config.h" #include "kinds.inc" #include "c99_protos.inc" #if defined (HAVE_GFC_COMPLEX_16) elemental function _gfortran_specific__aimag_c16 (parm) complex (kind=16), intent (in) :: parm real (kind=16) :: _gfortran_specific__aimag_c16 _gfortran_specific__aimag_c16 = aimag (parm) end function #endif
gpl-2.0
ganzenmg/lammps_current
tools/ch2lmp/other/mkpdb.f
60
11604
c ------------------------------------------------------------------------- c Code converts LAMMPS output to .pdb files c Overlays coordinates from LAMMPS output onto template pdb c Assumes atom order is the same between the two c Converts from atom-based pbc to residue-based pbc c Also assumes starting config fed to LAMMPS had residue-based pbc c Paul Crozier, SNL, 2002 c ------------------------------------------------------------------------- module global real*8 xprd,yprd,zprd,box(2,3) real*8, allocatable :: x(:,:),q(:),mass(:) real*8, allocatable :: comx(:),comy(:),comz(:),totmass(:) integer ntimestep,natoms,nframes,iframe,nper integer nbonds,nangles,ndihedrals,nimpropers,ntypes integer nbondtypes,nangletypes,ndihedtypes,nimprotypes integer nconfig,nconfig_skip,nskip,nframes_between_pdbs integer nmolecules,nprotein_residues integer, allocatable :: mytrue(:,:),type(:),molecule(:) integer, allocatable :: nboxx(:),nboxy(:),nboxz(:) character*200 data_file_path,config_file_path,pdb_file_path character*200 compare_file_path character*76, allocatable :: outbeg(:),outend(:) end module c ------------------------------------------------------------------------- c ------------------------------------------------------------------------- program mkpdb use global implicit none call read_in_mkpdb call read_data call mkpdb_start do iframe = nskip+1, nframes call find_config call read_config write(6,*) 'Frame # ', iframe if (mod(iframe,nframes_between_pdbs) == 0) call mk_pdb enddo write(6,*) 'Done.' stop end c ------------------------------------------------------------------------- subroutine find_config use global implicit none integer l,m,n,i,j,ntotal real*8 buf(8) if (mod((iframe-1),nper) == 0) then n = (iframe-1)/nper + 1 write(6,*) 'On config file # ', n close(21) c l = n/100 c m = n/10 - l*10 c n = mod(n,10) open(21,file=trim(config_file_path) $ //char(48+n),status='old') rewind 21 c skip the first frame of each config file read(21,*) read(21,*) ntimestep read(21,*) read(21,*) ntotal read(21,*) read(21,*) box(1,1),box(2,1) read(21,*) box(1,2),box(2,2) read(21,*) box(1,3),box(2,3) read(21,*) if (ntotal /= natoms) write(6,*) 'Mismatch # of atoms' do i = 1, natoms read (21,*) (buf(j),j=1,5) enddo endif return end c ------------------------------------------------------------------------- logical function match(str1,str2,m) implicit none character*(*) str1,str2 integer m match = .FALSE. m = len(str1) + 1 if (len(str1).gt.len(str2)) return if (str1.eq.str2(1:len(str1))) match = .TRUE. return end c ------------------------------------------------------------------------- subroutine mk_pdb use global implicit none integer i,j,k,l,m,n,o,imolecule,ith_pdb real*8 xx,yy,zz,shiftx,shifty,shiftz,proteinmass ith_pdb = iframe/nframes_between_pdbs j = ith_pdb/1E4 k = (ith_pdb - j*1E4)/1E3 l = (ith_pdb - j*1E4 - k*1E3)/1E2 m = (ith_pdb - j*1E4 - k*1E3 - l*1E2)/1E1 n = (ith_pdb - j*1E4 - k*1E3 - l*1E2 - m*1E1) open(26,file=trim(pdb_file_path)//char(48+j)//char(48+k)// 1 char(48+l)//char(48+m)//char(48+n)//'.pdb') c Have to convert from pbc applied on an atomic basis to pbc applied c on a residue basis. c Step 1: Recenter system based on protein c.o.m. shiftx = 0.0 shifty = 0.0 shiftz = 0.0 proteinmass = 0.0 do i = 1, natoms imolecule = molecule(i) if (imolecule <= nprotein_residues) then shiftx = shiftx + (x(1,i) + mytrue(1,i)*xprd)*mass(type(i)) shifty = shifty + (x(2,i) + mytrue(2,i)*yprd)*mass(type(i)) shiftz = shiftz + (x(3,i) + mytrue(3,i)*zprd)*mass(type(i)) proteinmass = proteinmass + mass(type(i)) endif enddo shiftx = shiftx/proteinmass shifty = shifty/proteinmass shiftz = shiftz/proteinmass do i = 1, natoms x(1,i) = x(1,i) - shiftx x(2,i) = x(2,i) - shifty x(3,i) = x(3,i) - shiftz enddo c Step 2: Find the c.o.m. of each residue --- "molecule" do i = 1, nmolecules comx(i) = 0.0 comy(i) = 0.0 comz(i) = 0.0 totmass(i) = 0.0 enddo do i = 1, natoms imolecule = molecule(i) comx(imolecule) = comx(imolecule) + 1 (x(1,i) + mytrue(1,i)*xprd)*mass(type(i)) comy(imolecule) = comy(imolecule) + 1 (x(2,i) + mytrue(2,i)*yprd)*mass(type(i)) comz(imolecule) = comz(imolecule) + 1 (x(3,i) + mytrue(3,i)*zprd)*mass(type(i)) totmass(imolecule) = totmass(imolecule) + mass(type(i)) enddo do i = 1, nmolecules comx(i) = comx(i)/totmass(i) comy(i) = comy(i)/totmass(i) comz(i) = comz(i)/totmass(i) enddo c Step 3: Decide how many boxes must be moved in each direction do i = 1, nmolecules nboxx(i) = nint(comx(i)/xprd) nboxy(i) = nint(comy(i)/yprd) nboxz(i) = nint(comz(i)/zprd) enddo c Step 4: Apply moves to atoms. Write pdb file. do i = 1, natoms imolecule = molecule(i) xx = x(1,i) + (mytrue(1,i) - nboxx(imolecule))*xprd yy = x(2,i) + (mytrue(2,i) - nboxy(imolecule))*yprd zz = x(3,i) + (mytrue(3,i) - nboxz(imolecule))*zprd write(26,100) outbeg(i),xx,yy,zz,outend(i) enddo 100 format(a30,3f8.3,a22) write(26,200) 'END' 200 format(a3) close(26) return end c ------------------------------------------------------------------------- subroutine mkpdb_start use global implicit none integer i character*76 pdbline(natoms),str open(25,file=trim(compare_file_path),status='old') rewind 25 do i = 1, natoms read(25,100) pdbline(i) enddo 100 format (a) do i = 1, natoms str = pdbline(i) read (str(1:30),100) outbeg(i) read (str(55:76),100) outend(i) enddo return end c ------------------------------------------------------------------------- c input data from config file subroutine read_config use global implicit none c local variables integer i,j,itag,itrue,ntotal real*8 buf(8) read(21,*) read(21,*) ntimestep read(21,*) read(21,*) ntotal read(21,*) read(21,*) box(1,1),box(2,1) read(21,*) box(1,2),box(2,2) read(21,*) box(1,3),box(2,3) read(21,*) if (ntotal /= natoms) write(6,*) 'Mismatch # of atoms' xprd = box(2,1) - box(1,1) yprd = box(2,2) - box(1,2) zprd = box(2,3) - box(1,3) do i = 1, natoms read (21,*) (buf(j),j=1,5) itag = nint(buf(1)) type(itag)= nint(buf(2)) x(1,itag) = buf(3)*xprd + box(1,1) x(2,itag) = buf(4)*yprd + box(1,2) x(3,itag) = buf(5)*zprd + box(1,3) mytrue(1,itag) = 0 mytrue(2,itag) = 0 mytrue(3,itag) = 0 enddo return end c ------------------------------------------------------------------------- c read data from input file subroutine read_data use global implicit none c local variables logical match integer i,j,jtmp,m,itag real*8 buf(7) character*80 str 900 format (a) open(27,file=trim(data_file_path),status='old') rewind 27 read (27,*) read (27,*) read (27,*) natoms read (27,*) nbonds read (27,*) nangles read (27,*) ndihedrals read (27,*) nimpropers read (27,*) read (27,*) ntypes if (nbonds.gt.0) read (27,*) nbondtypes if (nangles.gt.0) read (27,*) nangletypes if (ndihedrals.gt.0) read (27,*) ndihedtypes if (nimpropers.gt.0) read (27,*) nimprotypes read (27,*) read (27,*) read (27,*) read (27,*) allocate(q(natoms)) allocate(type(natoms)) allocate(molecule(natoms)) allocate(mass(natoms)) allocate(x(3,natoms)) allocate(mytrue(3,natoms)) allocate(outbeg(natoms)) allocate(outend(natoms)) do read (27,*,end=999,err=999) read (27,900,end=999,err=999) str read (27,*,end=999,err=999) if (match('All Done',str,m)) then goto 999 else if (match('Masses',str,m)) then write (6,*) 'Masses ...' do i = 1,ntypes read (27,*) jtmp,mass(i) enddo else if (match('Atoms',str,m)) then write (6,*) 'Atoms ...' do i = 1,natoms read (27,*) (buf(j),j=1,7) itag = nint(buf(1)) molecule(itag) = nint(buf(2)) type(itag) = nint(buf(3)) q(itag) = buf(4) enddo else if (match('Bonds',str,m)) then do i = 1,nbonds read (27,*) enddo else if (match('Angles',str,m)) then do i = 1,nangles read (27,*) enddo else if (match('Impropers',str,m)) then do i = 1,nimpropers read (27,*) enddo else if (match('Pair Coeffs',str,m)) then write (6,*) 'Pair Coeffs ...' do i = 1,ntypes read (27,*) enddo else if (match('Bond Coeffs',str,m)) then do i = 1,nbondtypes read (27,*) enddo else if (match('Angle Coeffs',str,m)) then do i = 1,nangletypes read (27,*) enddo else if (match('Dihedral Coeffs',str,m)) then do i = 1,ndihedtypes read (27,*) enddo else if (match('Dihedrals',str,m)) then do i = 1,ndihedrals read (27,*) enddo goto 999 else write (6,*) 'UNKNOWN: ',trim(str) write (6,*) 'Unknown identifier in data file' endif enddo 999 continue close (27) nmolecules = molecule(natoms) allocate(nboxx(nmolecules)) allocate(nboxy(nmolecules)) allocate(nboxz(nmolecules)) allocate(comx(nmolecules)) allocate(comy(nmolecules)) allocate(comz(nmolecules)) allocate(totmass(nmolecules)) return end c ------------------------------------------------------------------------- c read data from in_mkpdb file subroutine read_in_mkpdb use global implicit none 100 format (a) open(22,file='in_mkpdb') rewind 22 read (22,*) nconfig read (22,*) nper read (22,*) nconfig_skip read (22,*) nframes_between_pdbs read (22,*) nprotein_residues read (22,100) data_file_path read (22,100) config_file_path read (22,100) pdb_file_path read (22,100) compare_file_path nframes = nconfig*nper nskip = nconfig_skip*nper iframe = nskip close (22) return end c -------------------------------------------------------------------------
gpl-2.0
unofficial-opensource-apple/gcc_40
gcc/testsuite/gfortran.dg/g77/960317-1.f
17
4755
c { dg-do compile } * Date: Sat, 16 Mar 1996 19:58:37 -0500 (EST) * From: Kate Hedstrom <kate@ahab.Rutgers.EDU> * To: burley@gnu.ai.mit.edu * Subject: g77 bug in assign * * I found some files in the NCAR graphics source code which used to * compile with g77 and now don't. All contain the following combination * of "save" and "assign". It fails on a Sun running SunOS 4.1.3 and a * Sun running SunOS 5.5 (slightly older g77), but compiles on an * IBM/RS6000: * C SUBROUTINE QUICK SAVE C ASSIGN 101 TO JUMP ! { dg-warning "Obsolete: ASSIGN" "" } 101 Continue C RETURN END * * Everything else in the NCAR distribution compiled, including quite a * few C routines. * * Kate * * * nemo% g77 -v -c quick.f * gcc -v -c -xf77 quick.f * Reading specs from /usr/local/lib/gcc-lib/sparc-sun-sunos4.1.3/2.7.2/specs * gcc version 2.7.2 * /usr/local/lib/gcc-lib/sparc-sun-sunos4.1.3/2.7.2/f771 quick.f -fset-g77-defaults -quiet -dumpbase quick.f -version -fversion -o /usr/tmp/cca24166.s * GNU F77 version 2.7.2 (sparc) compiled by GNU C version 2.7.1. * GNU Fortran Front End version 0.5.18-960314 compiled: Mar 16 1996 14:28:11 * gcc: Internal compiler error: program f771 got fatal signal 11 * * * nemo% gdb /usr/local/lib/gcc-lib/*/*/f771 core * GDB is free software and you are welcome to distribute copies of it * under certain conditions; type "show copying" to see the conditions. * There is absolutely no warranty for GDB; type "show warranty" for details. * GDB 4.14 (sparc-sun-sunos4.1.3), * Copyright 1995 Free Software Foundation, Inc... * Core was generated by `f771'. * Program terminated with signal 11, Segmentation fault. * Couldn't read input and local registers from core file * find_solib: Can't read pathname for load map: I/O error * * Couldn't read input and local registers from core file * #0 0x21aa4 in ffecom_sym_transform_assign_ (s=???) at f/com.c:7881 * 7881 if ((ffesymbol_save (s) || ffe_is_saveall ()) * (gdb) where * #0 0x21aa4 in ffecom_sym_transform_assign_ (s=???) at f/com.c:7881 * Error accessing memory address 0xefffefcc: Invalid argument. * (gdb) * * * ahab% g77 -v -c quick.f * gcc -v -c -xf77 quick.f * Reading specs from /usr/local/lib/gcc-lib/sparc-sun-solaris2.5/2.7.2/specs * gcc version 2.7.2 * /usr/local/lib/gcc-lib/sparc-sun-solaris2.5/2.7.2/f771 quick.f -quiet -dumpbase quick.f -version -fversion -o /var/tmp/cca003D2.s * GNU F77 version 2.7.2 (sparc) compiled by GNU C version 2.7.2. * GNU Fortran Front End version 0.5.18-960304 compiled: Mar 5 1996 16:12:46 * gcc: Internal compiler error: program f771 got fatal signal 11 * * * ahab% !gdb * gdb /usr/local/lib/gcc-lib/*/*/f771 core * GDB is free software and you are welcome to distribute copies of it * under certain conditions; type "show copying" to see the conditions. * There is absolutely no warranty for GDB; type "show warranty" for details. * GDB 4.15.1 (sparc-sun-solaris2.4), * Copyright 1995 Free Software Foundation, Inc... * Core was generated by * `/usr/local/lib/gcc-lib/sparc-sun-solaris2.5/2.7.2/f771 quick.f -quiet -dumpbase'. * Program terminated with signal 11, Segmentation fault. * Reading symbols from /usr/lib/libc.so.1...done. * Reading symbols from /usr/lib/libdl.so.1...done. * #0 0x43e04 in ffecom_sym_transform_assign_ (s=0x3a22f8) at f/com.c:7963 * Source file is more recent than executable. * 7963 assert (st != NULL); * (gdb) where * #0 0x43e04 in ffecom_sym_transform_assign_ (s=0x3a22f8) at f/com.c:7963 * #1 0x38044 in ffecom_expr_ (expr=0x3a23c0, dest_tree=0x0, dest=0x0, dest_used=0x0, assignp=true) at f/com.c:2100 * #2 0x489c8 in ffecom_expr_assign_w (expr=0x3a23c0) at f/com.c:10238 * #3 0xe9228 in ffeste_R838 (label=0x3a1ba8, target=0x3a23c0) at f/ste.c:2769 * #4 0xdae60 in ffestd_stmt_pass_ () at f/std.c:840 * #5 0xdc090 in ffestd_exec_end () at f/std.c:1405 * #6 0xcb534 in ffestc_shriek_subroutine_ (ok=true) at f/stc.c:4849 * #7 0xd8f00 in ffestc_R1225 (name=0x0) at f/stc.c:12307 * #8 0xcc808 in ffestc_end () at f/stc.c:5572 * #9 0x9fa84 in ffestb_end3_ (t=0x3a19c8) at f/stb.c:3216 * #10 0x9f30c in ffestb_end (t=0x3a19c8) at f/stb.c:2995 * #11 0x98414 in ffesta_save_ (t=0x3a19c8) at f/sta.c:453 * #12 0x997ec in ffesta_second_ (t=0x3a19c8) at f/sta.c:1178 * #13 0x8ed84 in ffelex_send_token_ () at f/lex.c:1614 * #14 0x8cab8 in ffelex_finish_statement_ () at f/lex.c:946 * #15 0x91684 in ffelex_file_fixed (wf=0x397780, f=0x37a560) at f/lex.c:2946 * #16 0x107a94 in ffe_file (wf=0x397780, f=0x37a560) at f/top.c:456 * #17 0x96218 in yyparse () at f/parse.c:77 * #18 0x10beac in compile_file (name=0xdffffaf7 "quick.f") at toplev.c:2239 * #19 0x110dc0 in main (argc=9, argv=0xdffff994, envp=0xdffff9bc) at toplev.c:3927
gpl-2.0
shengren/magma-1.6.1
testing/lin/dpot06.f
9
4109
SUBROUTINE DPOT06( UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, $ RWORK, RESID ) * * -- LAPACK test routine (version 3.1.2) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * April 2007 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDA, LDB, LDX, N, NRHS DOUBLE PRECISION RESID * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), RWORK( * ), $ X( LDX, * ) * .. * * Purpose * ======= * * DPOT06 computes the residual for a solution of a system of linear * equations A*x = b : * RESID = norm(B - A*X,inf) / ( norm(A,inf) * norm(X,inf) * EPS ), * where EPS is the machine epsilon. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * symmetric matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The number of rows and columns of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of columns of B, the matrix of right hand sides. * NRHS >= 0. * * A (input) DOUBLE PRECISION array, dimension (LDA,N) * The original M x N matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) * The computed solution vectors for the system of linear * equations. * * LDX (input) INTEGER * The leading dimension of the array X. If TRANS = 'N', * LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,N). * * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) * On entry, the right hand side vectors for the system of * linear equations. * On exit, B is overwritten with the difference B - A*X. * * LDB (input) INTEGER * The leading dimension of the array B. IF TRANS = 'N', * LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). * * RWORK (workspace) DOUBLE PRECISION array, dimension (N) * * RESID (output) DOUBLE PRECISION * The maximum over the number of right hand sides of * norm(B - A*X) / ( norm(A) * norm(X) * EPS ). * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, NEGONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) PARAMETER ( NEGONE = -1.0D+0 ) * .. * .. Local Scalars .. INTEGER IFAIL, J DOUBLE PRECISION ANORM, BNORM, EPS, XNORM * .. * .. External Functions .. LOGICAL LSAME INTEGER IDAMAX DOUBLE PRECISION DLAMCH, DLANSY EXTERNAL LSAME, IDAMAX, DLAMCH, DLANSY * .. * .. External Subroutines .. EXTERNAL DSYMM * .. * .. Intrinsic Functions .. INTRINSIC MAX, ABS * .. * .. Executable Statements .. * * Quick exit if N = 0 or NRHS = 0 * IF( N.LE.0 .OR. NRHS.EQ.0 ) THEN RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0. * EPS = DLAMCH( 'Epsilon' ) ANORM = DLANSY( 'I', UPLO, N, A, LDA, RWORK ) IF( ANORM.LE.ZERO ) THEN RESID = ONE / EPS RETURN END IF * * Compute B - A*X and store in B. IFAIL=0 * CALL DSYMM( 'Left', UPLO, N, NRHS, NEGONE, A, LDA, X, $ LDX, ONE, B, LDB ) * * Compute the maximum over the number of right hand sides of * norm(B - A*X) / ( norm(A) * norm(X) * EPS ) . * RESID = ZERO DO 10 J = 1, NRHS BNORM = ABS(B(IDAMAX( N, B( 1, J ), 1 ),J)) XNORM = ABS(X(IDAMAX( N, X( 1, J ), 1 ),J)) IF( XNORM.LE.ZERO ) THEN RESID = ONE / EPS ELSE RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS ) END IF 10 CONTINUE * RETURN * * End of DPOT06 * END
bsd-3-clause
bftg/gcc-5.3.0
libgomp/testsuite/libgomp.fortran/udr12.f90
102
1875
! { dg-do run } interface elemental subroutine sub1 (x, y) integer, intent(in) :: y integer, intent(out) :: x end subroutine elemental function fn2 (x) integer, intent(in) :: x integer :: fn2 end function end interface !$omp declare reduction (foo : integer : omp_out = omp_out + omp_in) initializer (omp_priv = 0) !$omp declare reduction (bar : integer : omp_out = fn1 (omp_out, omp_in)) & !$omp & initializer (sub1 (omp_priv, omp_orig)) !$omp declare reduction (baz : integer : sub2 (omp_out, omp_in)) & !$omp initializer (omp_priv = fn2 (omp_orig)) interface elemental function fn1 (x, y) integer, intent(in) :: x, y integer :: fn1 end function elemental subroutine sub2 (x, y) integer, intent(in) :: y integer, intent(inout) :: x end subroutine end interface integer :: a(10), b, r a(:) = 0 b = 0 r = 0 !$omp parallel reduction (foo : a, b) reduction (+: r) a = a + 2 b = b + 3 r = r + 1 !$omp end parallel if (any (a /= 2 * r) .or. b /= 3 * r) call abort a(:) = 0 b = 0 r = 0 !$omp parallel reduction (bar : a, b) reduction (+: r) a = a + 2 b = b + 3 r = r + 1 !$omp end parallel if (any (a /= 4 * r) .or. b /= 6 * r) call abort a(:) = 0 b = 0 r = 0 !$omp parallel reduction (baz : a, b) reduction (+: r) a = a + 2 b = b + 3 r = r + 1 !$omp end parallel if (any (a /= 2 * r) .or. b /= 3 * r) call abort end elemental function fn1 (x, y) integer, intent(in) :: x, y integer :: fn1 fn1 = x + 2 * y end function elemental subroutine sub1 (x, y) integer, intent(in) :: y integer, intent(out) :: x x = 0 end subroutine elemental function fn2 (x) integer, intent(in) :: x integer :: fn2 fn2 = x end function elemental subroutine sub2 (x, y) integer, intent(inout) :: x integer, intent(in) :: y x = x + y end subroutine
gpl-2.0
mortada/scipy
scipy/sparse/linalg/eigen/arpack/ARPACK/SRC/dsesrt.f
171
5368
c----------------------------------------------------------------------- c\BeginDoc c c\Name: dsesrt c c\Description: c Sort the array X in the order specified by WHICH and optionally c apply the permutation to the columns of the matrix A. c c\Usage: c call dsesrt c ( WHICH, APPLY, N, X, NA, A, LDA) c c\Arguments c WHICH Character*2. (Input) c 'LM' -> X is sorted into increasing order of magnitude. c 'SM' -> X is sorted into decreasing order of magnitude. c 'LA' -> X is sorted into increasing order of algebraic. c 'SA' -> X is sorted into decreasing order of algebraic. c c APPLY Logical. (Input) c APPLY = .TRUE. -> apply the sorted order to A. c APPLY = .FALSE. -> do not apply the sorted order to A. c c N Integer. (INPUT) c Dimension of the array X. c c X Double precision array of length N. (INPUT/OUTPUT) c The array to be sorted. c c NA Integer. (INPUT) c Number of rows of the matrix A. c c A Double precision array of length NA by N. (INPUT/OUTPUT) c c LDA Integer. (INPUT) c Leading dimension of A. c c\EndDoc c c----------------------------------------------------------------------- c c\BeginLib c c\Routines c dswap Level 1 BLAS that swaps the contents of two vectors. c c\Authors c Danny Sorensen Phuong Vu c Richard Lehoucq CRPC / Rice University c Dept. of Computational & Houston, Texas c Applied Mathematics c Rice University c Houston, Texas c c\Revision history: c 12/15/93: Version ' 2.1'. c Adapted from the sort routine in LANSO and c the ARPACK code dsortr c c\SCCS Information: @(#) c FILE: sesrt.F SID: 2.3 DATE OF SID: 4/19/96 RELEASE: 2 c c\EndLib c c----------------------------------------------------------------------- c subroutine dsesrt (which, apply, n, x, na, a, lda) c c %------------------% c | Scalar Arguments | c %------------------% c character*2 which logical apply integer lda, n, na c c %-----------------% c | Array Arguments | c %-----------------% c Double precision & x(0:n-1), a(lda, 0:n-1) c c %---------------% c | Local Scalars | c %---------------% c integer i, igap, j Double precision & temp c c %----------------------% c | External Subroutines | c %----------------------% c external dswap c c %-----------------------% c | Executable Statements | c %-----------------------% c igap = n / 2 c if (which .eq. 'SA') then c c X is sorted into decreasing order of algebraic. c 10 continue if (igap .eq. 0) go to 9000 do 30 i = igap, n-1 j = i-igap 20 continue c if (j.lt.0) go to 30 c if (x(j).lt.x(j+igap)) then temp = x(j) x(j) = x(j+igap) x(j+igap) = temp if (apply) call dswap( na, a(1, j), 1, a(1,j+igap), 1) else go to 30 endif j = j-igap go to 20 30 continue igap = igap / 2 go to 10 c else if (which .eq. 'SM') then c c X is sorted into decreasing order of magnitude. c 40 continue if (igap .eq. 0) go to 9000 do 60 i = igap, n-1 j = i-igap 50 continue c if (j.lt.0) go to 60 c if (abs(x(j)).lt.abs(x(j+igap))) then temp = x(j) x(j) = x(j+igap) x(j+igap) = temp if (apply) call dswap( na, a(1, j), 1, a(1,j+igap), 1) else go to 60 endif j = j-igap go to 50 60 continue igap = igap / 2 go to 40 c else if (which .eq. 'LA') then c c X is sorted into increasing order of algebraic. c 70 continue if (igap .eq. 0) go to 9000 do 90 i = igap, n-1 j = i-igap 80 continue c if (j.lt.0) go to 90 c if (x(j).gt.x(j+igap)) then temp = x(j) x(j) = x(j+igap) x(j+igap) = temp if (apply) call dswap( na, a(1, j), 1, a(1,j+igap), 1) else go to 90 endif j = j-igap go to 80 90 continue igap = igap / 2 go to 70 c else if (which .eq. 'LM') then c c X is sorted into increasing order of magnitude. c 100 continue if (igap .eq. 0) go to 9000 do 120 i = igap, n-1 j = i-igap 110 continue c if (j.lt.0) go to 120 c if (abs(x(j)).gt.abs(x(j+igap))) then temp = x(j) x(j) = x(j+igap) x(j+igap) = temp if (apply) call dswap( na, a(1, j), 1, a(1,j+igap), 1) else go to 120 endif j = j-igap go to 110 120 continue igap = igap / 2 go to 100 end if c 9000 continue return c c %---------------% c | End of dsesrt | c %---------------% c end
bsd-3-clause
jseabold/scipy
scipy/special/amos/zunk2.f
118
17247
SUBROUTINE ZUNK2(ZR, ZI, FNU, KODE, MR, N, YR, YI, NZ, TOL, ELIM, * ALIM) C***BEGIN PROLOGUE ZUNK2 C***REFER TO ZBESK C C ZUNK2 COMPUTES K(FNU,Z) AND ITS ANALYTIC CONTINUATION FROM THE C RIGHT HALF PLANE TO THE LEFT HALF PLANE BY MEANS OF THE C UNIFORM ASYMPTOTIC EXPANSIONS FOR H(KIND,FNU,ZN) AND J(FNU,ZN) C WHERE ZN IS IN THE RIGHT HALF PLANE, KIND=(3-MR)/2, MR=+1 OR C -1. HERE ZN=ZR*I OR -ZR*I WHERE ZR=Z IF Z IS IN THE RIGHT C HALF PLANE OR ZR=-Z IF Z IS IN THE LEFT HALF PLANE. MR INDIC- C ATES THE DIRECTION OF ROTATION FOR ANALYTIC CONTINUATION. C NZ=-1 MEANS AN OVERFLOW WILL OCCUR C C***ROUTINES CALLED ZAIRY,ZKSCL,ZS1S2,ZUCHK,ZUNHJ,D1MACH,AZABS C***END PROLOGUE ZUNK2 C COMPLEX AI,ARG,ARGD,ASUM,ASUMD,BSUM,BSUMD,CFN,CI,CIP,CK,CONE,CRSC, C *CR1,CR2,CS,CSCL,CSGN,CSPN,CSR,CSS,CY,CZERO,C1,C2,DAI,PHI,PHID,RZ, C *S1,S2,Y,Z,ZB,ZETA1,ZETA1D,ZETA2,ZETA2D,ZN,ZR DOUBLE PRECISION AARG, AIC, AII, AIR, ALIM, ANG, APHI, ARGDI, * ARGDR, ARGI, ARGR, ASC, ASCLE, ASUMDI, ASUMDR, ASUMI, ASUMR, * BRY, BSUMDI, BSUMDR, BSUMI, BSUMR, CAR, CIPI, CIPR, CKI, CKR, * CONER, CRSC, CR1I, CR1R, CR2I, CR2R, CSCL, CSGNI, CSI, * CSPNI, CSPNR, CSR, CSRR, CSSR, CYI, CYR, C1I, C1R, C2I, C2M, * C2R, DAII, DAIR, ELIM, FMR, FN, FNF, FNU, HPI, PHIDI, PHIDR, * PHII, PHIR, PI, PTI, PTR, RAST, RAZR, RS1, RZI, RZR, SAR, SGN, * STI, STR, S1I, S1R, S2I, S2R, TOL, YI, YR, YY, ZBI, ZBR, ZEROI, * ZEROR, ZETA1I, ZETA1R, ZETA2I, ZETA2R, ZET1DI, ZET1DR, ZET2DI, * ZET2DR, ZI, ZNI, ZNR, ZR, ZRI, ZRR, D1MACH, AZABS INTEGER I, IB, IFLAG, IFN, IL, IN, INU, IUF, K, KDFLG, KFLAG, KK, * KODE, MR, N, NAI, NDAI, NW, NZ, IDUM, J, IPARD, IC DIMENSION BRY(3), YR(N), YI(N), ASUMR(2), ASUMI(2), BSUMR(2), * BSUMI(2), PHIR(2), PHII(2), ARGR(2), ARGI(2), ZETA1R(2), * ZETA1I(2), ZETA2R(2), ZETA2I(2), CYR(2), CYI(2), CIPR(4), * CIPI(4), CSSR(3), CSRR(3) DATA ZEROR,ZEROI,CONER,CR1R,CR1I,CR2R,CR2I / 1 0.0D0, 0.0D0, 1.0D0, 1 1.0D0,1.73205080756887729D0 , -0.5D0,-8.66025403784438647D-01 / DATA HPI, PI, AIC / 1 1.57079632679489662D+00, 3.14159265358979324D+00, 1 1.26551212348464539D+00/ DATA CIPR(1),CIPI(1),CIPR(2),CIPI(2),CIPR(3),CIPI(3),CIPR(4), * CIPI(4) / 1 1.0D0,0.0D0 , 0.0D0,-1.0D0 , -1.0D0,0.0D0 , 0.0D0,1.0D0 / C KDFLG = 1 NZ = 0 C----------------------------------------------------------------------- C EXP(-ALIM)=EXP(-ELIM)/TOL=APPROX. ONE PRECISION GREATER THAN C THE UNDERFLOW LIMIT C----------------------------------------------------------------------- CSCL = 1.0D0/TOL CRSC = TOL CSSR(1) = CSCL CSSR(2) = CONER CSSR(3) = CRSC CSRR(1) = CRSC CSRR(2) = CONER CSRR(3) = CSCL BRY(1) = 1.0D+3*D1MACH(1)/TOL BRY(2) = 1.0D0/BRY(1) BRY(3) = D1MACH(2) ZRR = ZR ZRI = ZI IF (ZR.GE.0.0D0) GO TO 10 ZRR = -ZR ZRI = -ZI 10 CONTINUE YY = ZRI ZNR = ZRI ZNI = -ZRR ZBR = ZRR ZBI = ZRI INU = INT(SNGL(FNU)) FNF = FNU - DBLE(FLOAT(INU)) ANG = -HPI*FNF CAR = DCOS(ANG) SAR = DSIN(ANG) C2R = HPI*SAR C2I = -HPI*CAR KK = MOD(INU,4) + 1 STR = C2R*CIPR(KK) - C2I*CIPI(KK) STI = C2R*CIPI(KK) + C2I*CIPR(KK) CSR = CR1R*STR - CR1I*STI CSI = CR1R*STI + CR1I*STR IF (YY.GT.0.0D0) GO TO 20 ZNR = -ZNR ZBI = -ZBI 20 CONTINUE C----------------------------------------------------------------------- C K(FNU,Z) IS COMPUTED FROM H(2,FNU,-I*Z) WHERE Z IS IN THE FIRST C QUADRANT. FOURTH QUADRANT VALUES (YY.LE.0.0E0) ARE COMPUTED BY C CONJUGATION SINCE THE K FUNCTION IS REAL ON THE POSITIVE REAL AXIS C----------------------------------------------------------------------- J = 2 DO 80 I=1,N C----------------------------------------------------------------------- C J FLIP FLOPS BETWEEN 1 AND 2 IN J = 3 - J C----------------------------------------------------------------------- J = 3 - J FN = FNU + DBLE(FLOAT(I-1)) CALL ZUNHJ(ZNR, ZNI, FN, 0, TOL, PHIR(J), PHII(J), ARGR(J), * ARGI(J), ZETA1R(J), ZETA1I(J), ZETA2R(J), ZETA2I(J), ASUMR(J), * ASUMI(J), BSUMR(J), BSUMI(J)) IF (KODE.EQ.1) GO TO 30 STR = ZBR + ZETA2R(J) STI = ZBI + ZETA2I(J) RAST = FN/AZABS(STR,STI) STR = STR*RAST*RAST STI = -STI*RAST*RAST S1R = ZETA1R(J) - STR S1I = ZETA1I(J) - STI GO TO 40 30 CONTINUE S1R = ZETA1R(J) - ZETA2R(J) S1I = ZETA1I(J) - ZETA2I(J) 40 CONTINUE C----------------------------------------------------------------------- C TEST FOR UNDERFLOW AND OVERFLOW C----------------------------------------------------------------------- RS1 = S1R IF (DABS(RS1).GT.ELIM) GO TO 70 IF (KDFLG.EQ.1) KFLAG = 2 IF (DABS(RS1).LT.ALIM) GO TO 50 C----------------------------------------------------------------------- C REFINE TEST AND SCALE C----------------------------------------------------------------------- APHI = AZABS(PHIR(J),PHII(J)) AARG = AZABS(ARGR(J),ARGI(J)) RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC IF (DABS(RS1).GT.ELIM) GO TO 70 IF (KDFLG.EQ.1) KFLAG = 1 IF (RS1.LT.0.0D0) GO TO 50 IF (KDFLG.EQ.1) KFLAG = 3 50 CONTINUE C----------------------------------------------------------------------- C SCALE S1 TO KEEP INTERMEDIATE ARITHMETIC ON SCALE NEAR C EXPONENT EXTREMES C----------------------------------------------------------------------- C2R = ARGR(J)*CR2R - ARGI(J)*CR2I C2I = ARGR(J)*CR2I + ARGI(J)*CR2R CALL ZAIRY(C2R, C2I, 0, 2, AIR, AII, NAI, IDUM) CALL ZAIRY(C2R, C2I, 1, 2, DAIR, DAII, NDAI, IDUM) STR = DAIR*BSUMR(J) - DAII*BSUMI(J) STI = DAIR*BSUMI(J) + DAII*BSUMR(J) PTR = STR*CR2R - STI*CR2I PTI = STR*CR2I + STI*CR2R STR = PTR + (AIR*ASUMR(J)-AII*ASUMI(J)) STI = PTI + (AIR*ASUMI(J)+AII*ASUMR(J)) PTR = STR*PHIR(J) - STI*PHII(J) PTI = STR*PHII(J) + STI*PHIR(J) S2R = PTR*CSR - PTI*CSI S2I = PTR*CSI + PTI*CSR STR = DEXP(S1R)*CSSR(KFLAG) S1R = STR*DCOS(S1I) S1I = STR*DSIN(S1I) STR = S2R*S1R - S2I*S1I S2I = S1R*S2I + S2R*S1I S2R = STR IF (KFLAG.NE.1) GO TO 60 CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL) IF (NW.NE.0) GO TO 70 60 CONTINUE IF (YY.LE.0.0D0) S2I = -S2I CYR(KDFLG) = S2R CYI(KDFLG) = S2I YR(I) = S2R*CSRR(KFLAG) YI(I) = S2I*CSRR(KFLAG) STR = CSI CSI = -CSR CSR = STR IF (KDFLG.EQ.2) GO TO 85 KDFLG = 2 GO TO 80 70 CONTINUE IF (RS1.GT.0.0D0) GO TO 320 C----------------------------------------------------------------------- C FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW C----------------------------------------------------------------------- IF (ZR.LT.0.0D0) GO TO 320 KDFLG = 1 YR(I)=ZEROR YI(I)=ZEROI NZ=NZ+1 STR = CSI CSI =-CSR CSR = STR IF (I.EQ.1) GO TO 80 IF ((YR(I-1).EQ.ZEROR).AND.(YI(I-1).EQ.ZEROI)) GO TO 80 YR(I-1)=ZEROR YI(I-1)=ZEROI NZ=NZ+1 80 CONTINUE I = N 85 CONTINUE RAZR = 1.0D0/AZABS(ZRR,ZRI) STR = ZRR*RAZR STI = -ZRI*RAZR RZR = (STR+STR)*RAZR RZI = (STI+STI)*RAZR CKR = FN*RZR CKI = FN*RZI IB = I + 1 IF (N.LT.IB) GO TO 180 C----------------------------------------------------------------------- C TEST LAST MEMBER FOR UNDERFLOW AND OVERFLOW. SET SEQUENCE TO ZERO C ON UNDERFLOW. C----------------------------------------------------------------------- FN = FNU + DBLE(FLOAT(N-1)) IPARD = 1 IF (MR.NE.0) IPARD = 0 CALL ZUNHJ(ZNR, ZNI, FN, IPARD, TOL, PHIDR, PHIDI, ARGDR, ARGDI, * ZET1DR, ZET1DI, ZET2DR, ZET2DI, ASUMDR, ASUMDI, BSUMDR, BSUMDI) IF (KODE.EQ.1) GO TO 90 STR = ZBR + ZET2DR STI = ZBI + ZET2DI RAST = FN/AZABS(STR,STI) STR = STR*RAST*RAST STI = -STI*RAST*RAST S1R = ZET1DR - STR S1I = ZET1DI - STI GO TO 100 90 CONTINUE S1R = ZET1DR - ZET2DR S1I = ZET1DI - ZET2DI 100 CONTINUE RS1 = S1R IF (DABS(RS1).GT.ELIM) GO TO 105 IF (DABS(RS1).LT.ALIM) GO TO 120 C---------------------------------------------------------------------------- C REFINE ESTIMATE AND TEST C------------------------------------------------------------------------- APHI = AZABS(PHIDR,PHIDI) RS1 = RS1+DLOG(APHI) IF (DABS(RS1).LT.ELIM) GO TO 120 105 CONTINUE IF (RS1.GT.0.0D0) GO TO 320 C----------------------------------------------------------------------- C FOR ZR.LT.0.0, THE I FUNCTION TO BE ADDED WILL OVERFLOW C----------------------------------------------------------------------- IF (ZR.LT.0.0D0) GO TO 320 NZ = N DO 106 I=1,N YR(I) = ZEROR YI(I) = ZEROI 106 CONTINUE RETURN 120 CONTINUE S1R = CYR(1) S1I = CYI(1) S2R = CYR(2) S2I = CYI(2) C1R = CSRR(KFLAG) ASCLE = BRY(KFLAG) DO 130 I=IB,N C2R = S2R C2I = S2I S2R = CKR*C2R - CKI*C2I + S1R S2I = CKR*C2I + CKI*C2R + S1I S1R = C2R S1I = C2I CKR = CKR + RZR CKI = CKI + RZI C2R = S2R*C1R C2I = S2I*C1R YR(I) = C2R YI(I) = C2I IF (KFLAG.GE.3) GO TO 130 STR = DABS(C2R) STI = DABS(C2I) C2M = DMAX1(STR,STI) IF (C2M.LE.ASCLE) GO TO 130 KFLAG = KFLAG + 1 ASCLE = BRY(KFLAG) S1R = S1R*C1R S1I = S1I*C1R S2R = C2R S2I = C2I S1R = S1R*CSSR(KFLAG) S1I = S1I*CSSR(KFLAG) S2R = S2R*CSSR(KFLAG) S2I = S2I*CSSR(KFLAG) C1R = CSRR(KFLAG) 130 CONTINUE 180 CONTINUE IF (MR.EQ.0) RETURN C----------------------------------------------------------------------- C ANALYTIC CONTINUATION FOR RE(Z).LT.0.0D0 C----------------------------------------------------------------------- NZ = 0 FMR = DBLE(FLOAT(MR)) SGN = -DSIGN(PI,FMR) C----------------------------------------------------------------------- C CSPN AND CSGN ARE COEFF OF K AND I FUNCIONS RESP. C----------------------------------------------------------------------- CSGNI = SGN IF (YY.LE.0.0D0) CSGNI = -CSGNI IFN = INU + N - 1 ANG = FNF*SGN CSPNR = DCOS(ANG) CSPNI = DSIN(ANG) IF (MOD(IFN,2).EQ.0) GO TO 190 CSPNR = -CSPNR CSPNI = -CSPNI 190 CONTINUE C----------------------------------------------------------------------- C CS=COEFF OF THE J FUNCTION TO GET THE I FUNCTION. I(FNU,Z) IS C COMPUTED FROM EXP(I*FNU*HPI)*J(FNU,-I*Z) WHERE Z IS IN THE FIRST C QUADRANT. FOURTH QUADRANT VALUES (YY.LE.0.0E0) ARE COMPUTED BY C CONJUGATION SINCE THE I FUNCTION IS REAL ON THE POSITIVE REAL AXIS C----------------------------------------------------------------------- CSR = SAR*CSGNI CSI = CAR*CSGNI IN = MOD(IFN,4) + 1 C2R = CIPR(IN) C2I = CIPI(IN) STR = CSR*C2R + CSI*C2I CSI = -CSR*C2I + CSI*C2R CSR = STR ASC = BRY(1) IUF = 0 KK = N KDFLG = 1 IB = IB - 1 IC = IB - 1 DO 290 K=1,N FN = FNU + DBLE(FLOAT(KK-1)) C----------------------------------------------------------------------- C LOGIC TO SORT OUT CASES WHOSE PARAMETERS WERE SET FOR THE K C FUNCTION ABOVE C----------------------------------------------------------------------- IF (N.GT.2) GO TO 175 172 CONTINUE PHIDR = PHIR(J) PHIDI = PHII(J) ARGDR = ARGR(J) ARGDI = ARGI(J) ZET1DR = ZETA1R(J) ZET1DI = ZETA1I(J) ZET2DR = ZETA2R(J) ZET2DI = ZETA2I(J) ASUMDR = ASUMR(J) ASUMDI = ASUMI(J) BSUMDR = BSUMR(J) BSUMDI = BSUMI(J) J = 3 - J GO TO 210 175 CONTINUE IF ((KK.EQ.N).AND.(IB.LT.N)) GO TO 210 IF ((KK.EQ.IB).OR.(KK.EQ.IC)) GO TO 172 CALL ZUNHJ(ZNR, ZNI, FN, 0, TOL, PHIDR, PHIDI, ARGDR, * ARGDI, ZET1DR, ZET1DI, ZET2DR, ZET2DI, ASUMDR, * ASUMDI, BSUMDR, BSUMDI) 210 CONTINUE IF (KODE.EQ.1) GO TO 220 STR = ZBR + ZET2DR STI = ZBI + ZET2DI RAST = FN/AZABS(STR,STI) STR = STR*RAST*RAST STI = -STI*RAST*RAST S1R = -ZET1DR + STR S1I = -ZET1DI + STI GO TO 230 220 CONTINUE S1R = -ZET1DR + ZET2DR S1I = -ZET1DI + ZET2DI 230 CONTINUE C----------------------------------------------------------------------- C TEST FOR UNDERFLOW AND OVERFLOW C----------------------------------------------------------------------- RS1 = S1R IF (DABS(RS1).GT.ELIM) GO TO 280 IF (KDFLG.EQ.1) IFLAG = 2 IF (DABS(RS1).LT.ALIM) GO TO 240 C----------------------------------------------------------------------- C REFINE TEST AND SCALE C----------------------------------------------------------------------- APHI = AZABS(PHIDR,PHIDI) AARG = AZABS(ARGDR,ARGDI) RS1 = RS1 + DLOG(APHI) - 0.25D0*DLOG(AARG) - AIC IF (DABS(RS1).GT.ELIM) GO TO 280 IF (KDFLG.EQ.1) IFLAG = 1 IF (RS1.LT.0.0D0) GO TO 240 IF (KDFLG.EQ.1) IFLAG = 3 240 CONTINUE CALL ZAIRY(ARGDR, ARGDI, 0, 2, AIR, AII, NAI, IDUM) CALL ZAIRY(ARGDR, ARGDI, 1, 2, DAIR, DAII, NDAI, IDUM) STR = DAIR*BSUMDR - DAII*BSUMDI STI = DAIR*BSUMDI + DAII*BSUMDR STR = STR + (AIR*ASUMDR-AII*ASUMDI) STI = STI + (AIR*ASUMDI+AII*ASUMDR) PTR = STR*PHIDR - STI*PHIDI PTI = STR*PHIDI + STI*PHIDR S2R = PTR*CSR - PTI*CSI S2I = PTR*CSI + PTI*CSR STR = DEXP(S1R)*CSSR(IFLAG) S1R = STR*DCOS(S1I) S1I = STR*DSIN(S1I) STR = S2R*S1R - S2I*S1I S2I = S2R*S1I + S2I*S1R S2R = STR IF (IFLAG.NE.1) GO TO 250 CALL ZUCHK(S2R, S2I, NW, BRY(1), TOL) IF (NW.EQ.0) GO TO 250 S2R = ZEROR S2I = ZEROI 250 CONTINUE IF (YY.LE.0.0D0) S2I = -S2I CYR(KDFLG) = S2R CYI(KDFLG) = S2I C2R = S2R C2I = S2I S2R = S2R*CSRR(IFLAG) S2I = S2I*CSRR(IFLAG) C----------------------------------------------------------------------- C ADD I AND K FUNCTIONS, K SEQUENCE IN Y(I), I=1,N C----------------------------------------------------------------------- S1R = YR(KK) S1I = YI(KK) IF (KODE.EQ.1) GO TO 270 CALL ZS1S2(ZRR, ZRI, S1R, S1I, S2R, S2I, NW, ASC, ALIM, IUF) NZ = NZ + NW 270 CONTINUE YR(KK) = S1R*CSPNR - S1I*CSPNI + S2R YI(KK) = S1R*CSPNI + S1I*CSPNR + S2I KK = KK - 1 CSPNR = -CSPNR CSPNI = -CSPNI STR = CSI CSI = -CSR CSR = STR IF (C2R.NE.0.0D0 .OR. C2I.NE.0.0D0) GO TO 255 KDFLG = 1 GO TO 290 255 CONTINUE IF (KDFLG.EQ.2) GO TO 295 KDFLG = 2 GO TO 290 280 CONTINUE IF (RS1.GT.0.0D0) GO TO 320 S2R = ZEROR S2I = ZEROI GO TO 250 290 CONTINUE K = N 295 CONTINUE IL = N - K IF (IL.EQ.0) RETURN C----------------------------------------------------------------------- C RECUR BACKWARD FOR REMAINDER OF I SEQUENCE AND ADD IN THE C K FUNCTIONS, SCALING THE I SEQUENCE DURING RECURRENCE TO KEEP C INTERMEDIATE ARITHMETIC ON SCALE NEAR EXPONENT EXTREMES. C----------------------------------------------------------------------- S1R = CYR(1) S1I = CYI(1) S2R = CYR(2) S2I = CYI(2) CSR = CSRR(IFLAG) ASCLE = BRY(IFLAG) FN = DBLE(FLOAT(INU+IL)) DO 310 I=1,IL C2R = S2R C2I = S2I S2R = S1R + (FN+FNF)*(RZR*C2R-RZI*C2I) S2I = S1I + (FN+FNF)*(RZR*C2I+RZI*C2R) S1R = C2R S1I = C2I FN = FN - 1.0D0 C2R = S2R*CSR C2I = S2I*CSR CKR = C2R CKI = C2I C1R = YR(KK) C1I = YI(KK) IF (KODE.EQ.1) GO TO 300 CALL ZS1S2(ZRR, ZRI, C1R, C1I, C2R, C2I, NW, ASC, ALIM, IUF) NZ = NZ + NW 300 CONTINUE YR(KK) = C1R*CSPNR - C1I*CSPNI + C2R YI(KK) = C1R*CSPNI + C1I*CSPNR + C2I KK = KK - 1 CSPNR = -CSPNR CSPNI = -CSPNI IF (IFLAG.GE.3) GO TO 310 C2R = DABS(CKR) C2I = DABS(CKI) C2M = DMAX1(C2R,C2I) IF (C2M.LE.ASCLE) GO TO 310 IFLAG = IFLAG + 1 ASCLE = BRY(IFLAG) S1R = S1R*CSR S1I = S1I*CSR S2R = CKR S2I = CKI S1R = S1R*CSSR(IFLAG) S1I = S1I*CSSR(IFLAG) S2R = S2R*CSSR(IFLAG) S2I = S2I*CSSR(IFLAG) CSR = CSRR(IFLAG) 310 CONTINUE RETURN 320 CONTINUE NZ = -1 RETURN END
bsd-3-clause
jseabold/scipy
scipy/sparse/linalg/eigen/arpack/ARPACK/SRC/dnapps.f
102
23505
c----------------------------------------------------------------------- c\BeginDoc c c\Name: dnapps c c\Description: c Given the Arnoldi factorization c c A*V_{k} - V_{k}*H_{k} = r_{k+p}*e_{k+p}^T, c c apply NP implicit shifts resulting in c c A*(V_{k}*Q) - (V_{k}*Q)*(Q^T* H_{k}*Q) = r_{k+p}*e_{k+p}^T * Q c c where Q is an orthogonal matrix which is the product of rotations c and reflections resulting from the NP bulge chage sweeps. c The updated Arnoldi factorization becomes: c c A*VNEW_{k} - VNEW_{k}*HNEW_{k} = rnew_{k}*e_{k}^T. c c\Usage: c call dnapps c ( N, KEV, NP, SHIFTR, SHIFTI, V, LDV, H, LDH, RESID, Q, LDQ, c WORKL, WORKD ) c c\Arguments c N Integer. (INPUT) c Problem size, i.e. size of matrix A. c c KEV Integer. (INPUT/OUTPUT) c KEV+NP is the size of the input matrix H. c KEV is the size of the updated matrix HNEW. KEV is only c updated on ouput when fewer than NP shifts are applied in c order to keep the conjugate pair together. c c NP Integer. (INPUT) c Number of implicit shifts to be applied. c c SHIFTR, Double precision array of length NP. (INPUT) c SHIFTI Real and imaginary part of the shifts to be applied. c Upon, entry to dnapps, the shifts must be sorted so that the c conjugate pairs are in consecutive locations. c c V Double precision N by (KEV+NP) array. (INPUT/OUTPUT) c On INPUT, V contains the current KEV+NP Arnoldi vectors. c On OUTPUT, V contains the updated KEV Arnoldi vectors c in the first KEV columns of V. c c LDV Integer. (INPUT) c Leading dimension of V exactly as declared in the calling c program. c c H Double precision (KEV+NP) by (KEV+NP) array. (INPUT/OUTPUT) c On INPUT, H contains the current KEV+NP by KEV+NP upper c Hessenber matrix of the Arnoldi factorization. c On OUTPUT, H contains the updated KEV by KEV upper Hessenberg c matrix in the KEV leading submatrix. c c LDH Integer. (INPUT) c Leading dimension of H exactly as declared in the calling c program. c c RESID Double precision array of length N. (INPUT/OUTPUT) c On INPUT, RESID contains the the residual vector r_{k+p}. c On OUTPUT, RESID is the update residual vector rnew_{k} c in the first KEV locations. c c Q Double precision KEV+NP by KEV+NP work array. (WORKSPACE) c Work array used to accumulate the rotations and reflections c during the bulge chase sweep. c c LDQ Integer. (INPUT) c Leading dimension of Q exactly as declared in the calling c program. c c WORKL Double precision work array of length (KEV+NP). (WORKSPACE) c Private (replicated) array on each PE or array allocated on c the front end. c c WORKD Double precision work array of length 2*N. (WORKSPACE) c Distributed array used in the application of the accumulated c orthogonal matrix Q. c c\EndDoc c c----------------------------------------------------------------------- c c\BeginLib c c\Local variables: c xxxxxx real c c\References: c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992), c pp 357-385. c c\Routines called: c ivout ARPACK utility routine that prints integers. c arscnd ARPACK utility routine for timing. c dmout ARPACK utility routine that prints matrices. c dvout ARPACK utility routine that prints vectors. c dlabad LAPACK routine that computes machine constants. c dlacpy LAPACK matrix copy routine. c dlamch LAPACK routine that determines machine constants. c dlanhs LAPACK routine that computes various norms of a matrix. c dlapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully. c dlarf LAPACK routine that applies Householder reflection to c a matrix. c dlarfg LAPACK Householder reflection construction routine. c dlartg LAPACK Givens rotation construction routine. c dlaset LAPACK matrix initialization routine. c dgemv Level 2 BLAS routine for matrix vector multiplication. c daxpy Level 1 BLAS that computes a vector triad. c dcopy Level 1 BLAS that copies one vector to another . c dscal Level 1 BLAS that scales a vector. c c\Author c Danny Sorensen Phuong Vu c Richard Lehoucq CRPC / Rice University c Dept. of Computational & Houston, Texas c Applied Mathematics c Rice University c Houston, Texas c c\Revision history: c xx/xx/92: Version ' 2.4' c c\SCCS Information: @(#) c FILE: napps.F SID: 2.4 DATE OF SID: 3/28/97 RELEASE: 2 c c\Remarks c 1. In this version, each shift is applied to all the sublocks of c the Hessenberg matrix H and not just to the submatrix that it c comes from. Deflation as in LAPACK routine dlahqr (QR algorithm c for upper Hessenberg matrices ) is used. c The subdiagonals of H are enforced to be non-negative. c c\EndLib c c----------------------------------------------------------------------- c subroutine dnapps & ( n, kev, np, shiftr, shifti, v, ldv, h, ldh, resid, q, ldq, & workl, workd ) c c %----------------------------------------------------% c | Include files for debugging and timing information | c %----------------------------------------------------% c include 'debug.h' include 'stat.h' c c %------------------% c | Scalar Arguments | c %------------------% c integer kev, ldh, ldq, ldv, n, np c c %-----------------% c | Array Arguments | c %-----------------% c Double precision & h(ldh,kev+np), resid(n), shifti(np), shiftr(np), & v(ldv,kev+np), q(ldq,kev+np), workd(2*n), workl(kev+np) c c %------------% c | Parameters | c %------------% c Double precision & one, zero parameter (one = 1.0D+0, zero = 0.0D+0) c c %------------------------% c | Local Scalars & Arrays | c %------------------------% c integer i, iend, ir, istart, j, jj, kplusp, msglvl, nr logical cconj, first Double precision & c, f, g, h11, h12, h21, h22, h32, ovfl, r, s, sigmai, & sigmar, smlnum, ulp, unfl, u(3), t, tau, tst1 save first, ovfl, smlnum, ulp, unfl c c %----------------------% c | External Subroutines | c %----------------------% c external daxpy, dcopy, dscal, dlacpy, dlarfg, dlarf, & dlaset, dlabad, arscnd, dlartg c c %--------------------% c | External Functions | c %--------------------% c Double precision & dlamch, dlanhs, dlapy2 external dlamch, dlanhs, dlapy2 c c %----------------------% c | Intrinsics Functions | c %----------------------% c intrinsic abs, max, min c c %----------------% c | Data statments | c %----------------% c data first / .true. / c c %-----------------------% c | Executable Statements | c %-----------------------% c if (first) then c c %-----------------------------------------------% c | Set machine-dependent constants for the | c | stopping criterion. If norm(H) <= sqrt(OVFL), | c | overflow should not occur. | c | REFERENCE: LAPACK subroutine dlahqr | c %-----------------------------------------------% c unfl = dlamch( 'safe minimum' ) ovfl = one / unfl call dlabad( unfl, ovfl ) ulp = dlamch( 'precision' ) smlnum = unfl*( n / ulp ) first = .false. end if c c %-------------------------------% c | Initialize timing statistics | c | & message level for debugging | c %-------------------------------% c call arscnd (t0) msglvl = mnapps kplusp = kev + np c c %--------------------------------------------% c | Initialize Q to the identity to accumulate | c | the rotations and reflections | c %--------------------------------------------% c call dlaset ('All', kplusp, kplusp, zero, one, q, ldq) c c %----------------------------------------------% c | Quick return if there are no shifts to apply | c %----------------------------------------------% c if (np .eq. 0) go to 9000 c c %----------------------------------------------% c | Chase the bulge with the application of each | c | implicit shift. Each shift is applied to the | c | whole matrix including each block. | c %----------------------------------------------% c cconj = .false. do 110 jj = 1, np sigmar = shiftr(jj) sigmai = shifti(jj) c if (msglvl .gt. 2 ) then call ivout (logfil, 1, jj, ndigit, & '_napps: shift number.') call dvout (logfil, 1, sigmar, ndigit, & '_napps: The real part of the shift ') call dvout (logfil, 1, sigmai, ndigit, & '_napps: The imaginary part of the shift ') end if c c %-------------------------------------------------% c | The following set of conditionals is necessary | c | in order that complex conjugate pairs of shifts | c | are applied together or not at all. | c %-------------------------------------------------% c if ( cconj ) then c c %-----------------------------------------% c | cconj = .true. means the previous shift | c | had non-zero imaginary part. | c %-----------------------------------------% c cconj = .false. go to 110 else if ( jj .lt. np .and. abs( sigmai ) .gt. zero ) then c c %------------------------------------% c | Start of a complex conjugate pair. | c %------------------------------------% c cconj = .true. else if ( jj .eq. np .and. abs( sigmai ) .gt. zero ) then c c %----------------------------------------------% c | The last shift has a nonzero imaginary part. | c | Don't apply it; thus the order of the | c | compressed H is order KEV+1 since only np-1 | c | were applied. | c %----------------------------------------------% c kev = kev + 1 go to 110 end if istart = 1 20 continue c c %--------------------------------------------------% c | if sigmai = 0 then | c | Apply the jj-th shift ... | c | else | c | Apply the jj-th and (jj+1)-th together ... | c | (Note that jj < np at this point in the code) | c | end | c | to the current block of H. The next do loop | c | determines the current block ; | c %--------------------------------------------------% c do 30 i = istart, kplusp-1 c c %----------------------------------------% c | Check for splitting and deflation. Use | c | a standard test as in the QR algorithm | c | REFERENCE: LAPACK subroutine dlahqr | c %----------------------------------------% c tst1 = abs( h( i, i ) ) + abs( h( i+1, i+1 ) ) if( tst1.eq.zero ) & tst1 = dlanhs( '1', kplusp-jj+1, h, ldh, workl ) if( abs( h( i+1,i ) ).le.max( ulp*tst1, smlnum ) ) then if (msglvl .gt. 0) then call ivout (logfil, 1, i, ndigit, & '_napps: matrix splitting at row/column no.') call ivout (logfil, 1, jj, ndigit, & '_napps: matrix splitting with shift number.') call dvout (logfil, 1, h(i+1,i), ndigit, & '_napps: off diagonal element.') end if iend = i h(i+1,i) = zero go to 40 end if 30 continue iend = kplusp 40 continue c if (msglvl .gt. 2) then call ivout (logfil, 1, istart, ndigit, & '_napps: Start of current block ') call ivout (logfil, 1, iend, ndigit, & '_napps: End of current block ') end if c c %------------------------------------------------% c | No reason to apply a shift to block of order 1 | c %------------------------------------------------% c if ( istart .eq. iend ) go to 100 c c %------------------------------------------------------% c | If istart + 1 = iend then no reason to apply a | c | complex conjugate pair of shifts on a 2 by 2 matrix. | c %------------------------------------------------------% c if ( istart + 1 .eq. iend .and. abs( sigmai ) .gt. zero ) & go to 100 c h11 = h(istart,istart) h21 = h(istart+1,istart) if ( abs( sigmai ) .le. zero ) then c c %---------------------------------------------% c | Real-valued shift ==> apply single shift QR | c %---------------------------------------------% c f = h11 - sigmar g = h21 c do 80 i = istart, iend-1 c c %-----------------------------------------------------% c | Contruct the plane rotation G to zero out the bulge | c %-----------------------------------------------------% c call dlartg (f, g, c, s, r) if (i .gt. istart) then c c %-------------------------------------------% c | The following ensures that h(1:iend-1,1), | c | the first iend-2 off diagonal of elements | c | H, remain non negative. | c %-------------------------------------------% c if (r .lt. zero) then r = -r c = -c s = -s end if h(i,i-1) = r h(i+1,i-1) = zero end if c c %---------------------------------------------% c | Apply rotation to the left of H; H <- G'*H | c %---------------------------------------------% c do 50 j = i, kplusp t = c*h(i,j) + s*h(i+1,j) h(i+1,j) = -s*h(i,j) + c*h(i+1,j) h(i,j) = t 50 continue c c %---------------------------------------------% c | Apply rotation to the right of H; H <- H*G | c %---------------------------------------------% c do 60 j = 1, min(i+2,iend) t = c*h(j,i) + s*h(j,i+1) h(j,i+1) = -s*h(j,i) + c*h(j,i+1) h(j,i) = t 60 continue c c %----------------------------------------------------% c | Accumulate the rotation in the matrix Q; Q <- Q*G | c %----------------------------------------------------% c do 70 j = 1, min( i+jj, kplusp ) t = c*q(j,i) + s*q(j,i+1) q(j,i+1) = - s*q(j,i) + c*q(j,i+1) q(j,i) = t 70 continue c c %---------------------------% c | Prepare for next rotation | c %---------------------------% c if (i .lt. iend-1) then f = h(i+1,i) g = h(i+2,i) end if 80 continue c c %-----------------------------------% c | Finished applying the real shift. | c %-----------------------------------% c else c c %----------------------------------------------------% c | Complex conjugate shifts ==> apply double shift QR | c %----------------------------------------------------% c h12 = h(istart,istart+1) h22 = h(istart+1,istart+1) h32 = h(istart+2,istart+1) c c %---------------------------------------------------------% c | Compute 1st column of (H - shift*I)*(H - conj(shift)*I) | c %---------------------------------------------------------% c s = 2.0*sigmar t = dlapy2 ( sigmar, sigmai ) u(1) = ( h11 * (h11 - s) + t * t ) / h21 + h12 u(2) = h11 + h22 - s u(3) = h32 c do 90 i = istart, iend-1 c nr = min ( 3, iend-i+1 ) c c %-----------------------------------------------------% c | Construct Householder reflector G to zero out u(1). | c | G is of the form I - tau*( 1 u )' * ( 1 u' ). | c %-----------------------------------------------------% c call dlarfg ( nr, u(1), u(2), 1, tau ) c if (i .gt. istart) then h(i,i-1) = u(1) h(i+1,i-1) = zero if (i .lt. iend-1) h(i+2,i-1) = zero end if u(1) = one c c %--------------------------------------% c | Apply the reflector to the left of H | c %--------------------------------------% c call dlarf ('Left', nr, kplusp-i+1, u, 1, tau, & h(i,i), ldh, workl) c c %---------------------------------------% c | Apply the reflector to the right of H | c %---------------------------------------% c ir = min ( i+3, iend ) call dlarf ('Right', ir, nr, u, 1, tau, & h(1,i), ldh, workl) c c %-----------------------------------------------------% c | Accumulate the reflector in the matrix Q; Q <- Q*G | c %-----------------------------------------------------% c call dlarf ('Right', kplusp, nr, u, 1, tau, & q(1,i), ldq, workl) c c %----------------------------% c | Prepare for next reflector | c %----------------------------% c if (i .lt. iend-1) then u(1) = h(i+1,i) u(2) = h(i+2,i) if (i .lt. iend-2) u(3) = h(i+3,i) end if c 90 continue c c %--------------------------------------------% c | Finished applying a complex pair of shifts | c | to the current block | c %--------------------------------------------% c end if c 100 continue c c %---------------------------------------------------------% c | Apply the same shift to the next block if there is any. | c %---------------------------------------------------------% c istart = iend + 1 if (iend .lt. kplusp) go to 20 c c %---------------------------------------------% c | Loop back to the top to get the next shift. | c %---------------------------------------------% c 110 continue c c %--------------------------------------------------% c | Perform a similarity transformation that makes | c | sure that H will have non negative sub diagonals | c %--------------------------------------------------% c do 120 j=1,kev if ( h(j+1,j) .lt. zero ) then call dscal( kplusp-j+1, -one, h(j+1,j), ldh ) call dscal( min(j+2, kplusp), -one, h(1,j+1), 1 ) call dscal( min(j+np+1,kplusp), -one, q(1,j+1), 1 ) end if 120 continue c do 130 i = 1, kev c c %--------------------------------------------% c | Final check for splitting and deflation. | c | Use a standard test as in the QR algorithm | c | REFERENCE: LAPACK subroutine dlahqr | c %--------------------------------------------% c tst1 = abs( h( i, i ) ) + abs( h( i+1, i+1 ) ) if( tst1.eq.zero ) & tst1 = dlanhs( '1', kev, h, ldh, workl ) if( h( i+1,i ) .le. max( ulp*tst1, smlnum ) ) & h(i+1,i) = zero 130 continue c c %-------------------------------------------------% c | Compute the (kev+1)-st column of (V*Q) and | c | temporarily store the result in WORKD(N+1:2*N). | c | This is needed in the residual update since we | c | cannot GUARANTEE that the corresponding entry | c | of H would be zero as in exact arithmetic. | c %-------------------------------------------------% c if (h(kev+1,kev) .gt. zero) & call dgemv ('N', n, kplusp, one, v, ldv, q(1,kev+1), 1, zero, & workd(n+1), 1) c c %----------------------------------------------------------% c | Compute column 1 to kev of (V*Q) in backward order | c | taking advantage of the upper Hessenberg structure of Q. | c %----------------------------------------------------------% c do 140 i = 1, kev call dgemv ('N', n, kplusp-i+1, one, v, ldv, & q(1,kev-i+1), 1, zero, workd, 1) call dcopy (n, workd, 1, v(1,kplusp-i+1), 1) 140 continue c c %-------------------------------------------------% c | Move v(:,kplusp-kev+1:kplusp) into v(:,1:kev). | c %-------------------------------------------------% c call dlacpy ('A', n, kev, v(1,kplusp-kev+1), ldv, v, ldv) c c %--------------------------------------------------------------% c | Copy the (kev+1)-st column of (V*Q) in the appropriate place | c %--------------------------------------------------------------% c if (h(kev+1,kev) .gt. zero) & call dcopy (n, workd(n+1), 1, v(1,kev+1), 1) c c %-------------------------------------% c | Update the residual vector: | c | r <- sigmak*r + betak*v(:,kev+1) | c | where | c | sigmak = (e_{kplusp}'*Q)*e_{kev} | c | betak = e_{kev+1}'*H*e_{kev} | c %-------------------------------------% c call dscal (n, q(kplusp,kev), resid, 1) if (h(kev+1,kev) .gt. zero) & call daxpy (n, h(kev+1,kev), v(1,kev+1), 1, resid, 1) c if (msglvl .gt. 1) then call dvout (logfil, 1, q(kplusp,kev), ndigit, & '_napps: sigmak = (e_{kev+p}^T*Q)*e_{kev}') call dvout (logfil, 1, h(kev+1,kev), ndigit, & '_napps: betak = e_{kev+1}^T*H*e_{kev}') call ivout (logfil, 1, kev, ndigit, & '_napps: Order of the final Hessenberg matrix ') if (msglvl .gt. 2) then call dmout (logfil, kev, kev, h, ldh, ndigit, & '_napps: updated Hessenberg matrix H for next iteration') end if c end if c 9000 continue call arscnd (t1) tnapps = tnapps + (t1 - t0) c return c c %---------------% c | End of dnapps | c %---------------% c end
bsd-3-clause
olpotkin/CarND-Path-Planning
src/Eigen-3.3/lapack/iladlr.f
271
3000
*> \brief \b ILADLR * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ILADLR + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/iladlr.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/iladlr.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/iladlr.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * INTEGER FUNCTION ILADLR( M, N, A, LDA ) * * .. Scalar Arguments .. * INTEGER M, N, LDA * .. * .. Array Arguments .. * DOUBLE PRECISION A( LDA, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ILADLR scans A for its last non-zero row. *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,N) *> The m by n matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date April 2012 * *> \ingroup auxOTHERauxiliary * * ===================================================================== INTEGER FUNCTION ILADLR( M, N, A, LDA ) * * -- LAPACK auxiliary routine (version 3.4.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * April 2012 * * .. Scalar Arguments .. INTEGER M, N, LDA * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D+0 ) * .. * .. Local Scalars .. INTEGER I, J * .. * .. Executable Statements .. * * Quick test for the common case where one corner is non-zero. IF( M.EQ.0 ) THEN ILADLR = M ELSE IF( A(M, 1).NE.ZERO .OR. A(M, N).NE.ZERO ) THEN ILADLR = M ELSE * Scan up each column tracking the last zero row seen. ILADLR = 0 DO J = 1, N I=M DO WHILE((A(MAX(I,1),J).EQ.ZERO).AND.(I.GE.1)) I=I-1 ENDDO ILADLR = MAX( ILADLR, I ) END DO END IF RETURN END
mit
aosm/llvmgcc42
gcc/testsuite/gfortran.dg/namelist_18.f90
16
1068
!{ dg-do run } ! Tests character delimiters for namelist write ! provided by Paul Thomas - pault@gcc.gnu.org program namelist_18 character*3 :: ch = "foo" character*80 :: buffer namelist /mynml/ ch open (10, status = "scratch") write (10, mynml) rewind (10) read (10, '(a)', iostat = ier) buffer read (10, '(a)', iostat = ier) buffer if (ier .ne. 0) call abort () close (10) If ((buffer(5:5) /= "f") .or. (buffer(9:9) /= " ")) call abort () open (10, status = "scratch", delim ="quote") write (10, mynml) rewind (10) read (10, '(a)', iostat = ier) buffer read (10, '(a)', iostat = ier) buffer if (ier .ne. 0) call abort () close (10) If ((buffer(5:5) /= """") .or. (buffer(9:9) /= """")) call abort () open (10, status = "scratch", delim ="apostrophe") write (10, mynml) rewind (10) read (10, '(a)', iostat = ier) buffer read (10, '(a)', iostat = ier) buffer if (ier .ne. 0) call abort () close (10) If ((buffer(5:5) /= "'") .or. (buffer(9:9) /= "'")) call abort () end program namelist_18
gpl-2.0
nisihara1/q-e
PP/src/local_dos.f90
4
17829
! ! Copyright (C) 2001-2007 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !-------------------------------------------------------------------- SUBROUTINE local_dos (iflag, lsign, kpoint, kband, spin_component, & emin, emax, dos) !-------------------------------------------------------------------- ! ! iflag=0: calculates |psi|^2 for band "kband" at point "kpoint" ! iflag=1: calculates the local density of state at e_fermi ! (only for metals) ! iflag=2: calculates the local density of electronic entropy ! (only for metals with fermi spreading) ! iflag=3: calculates the integral of local dos from "emin" to "emax" ! (emin, emax in Ry) ! ! lsign: if true and k=gamma and iflag=0, write |psi|^2 * sign(psi) ! spin_component: for iflag=3 and LSDA calculations only ! 0 for up+down dos, 1 for up dos, 2 for down dos ! USE kinds, ONLY : DP USE cell_base, ONLY : omega USE ions_base, ONLY : nat, ntyp => nsp, ityp USE ener, ONLY : ef USE fft_base, ONLY : dffts, dfftp USE fft_interfaces, ONLY : fwfft, invfft USE gvect, ONLY : nl, ngm, g USE gvecs, ONLY : nls, nlsm, doublegrid USE klist, ONLY : lgauss, degauss, ngauss, nks, wk, xk, & nkstot, ngk, igk_k USE lsda_mod, ONLY : lsda, nspin, current_spin, isk USE scf, ONLY : rho USE symme, ONLY : sym_rho, sym_rho_init, sym_rho_deallocate USE uspp, ONLY : nkb, vkb, becsum, nhtol, nhtoj, indv USE uspp_param, ONLY : upf, nh, nhm USE wavefunctions_module, ONLY : evc, psic, psic_nc USE wvfct, ONLY : nbnd, npwx, wg, et USE control_flags, ONLY : gamma_only USE noncollin_module, ONLY : noncolin, npol USE spin_orb, ONLY : lspinorb, fcoef USE io_files, ONLY : iunwfc, nwordwfc USE mp_global, ONLY : me_pool, nproc_pool, my_pool_id, npool USE mp, ONLY : mp_bcast, mp_sum USE mp_global, ONLY : inter_pool_comm, intra_pool_comm USE becmod, ONLY : calbec USE control_flags, ONLY : tqr USE realus, ONLY : addusdens_r IMPLICIT NONE ! ! input variables ! INTEGER, INTENT(in) :: iflag, kpoint, kband, spin_component LOGICAL, INTENT(in) :: lsign REAL(DP), INTENT(in) :: emin, emax ! REAL(DP), INTENT(out) :: dos (dfftp%nnr) ! ! local variables ! ! counters for US PPs INTEGER :: npw, ikb, jkb, ijkb0, ih, jh, kh, na, ijh, np ! counters INTEGER :: ir, is, ig, ibnd, ik, irm, isup, isdw, ipol, kkb, is1, is2 REAL(DP) :: w, w1, modulus, wg_max REAL(DP), ALLOCATABLE :: rbecp(:,:), segno(:), maxmod(:) COMPLEX(DP), ALLOCATABLE :: becp(:,:), & becp_nc(:,:,:), be1(:,:), be2(:,:) INTEGER :: who_calculate, iproc COMPLEX(DP) :: phase REAL(DP), EXTERNAL :: w0gauss, w1gauss LOGICAL :: i_am_the_pool INTEGER :: which_pool, kpoint_pool ! ! input checks ! IF (noncolin.and. lsign) CALL errore('local_dos','not available',1) IF (noncolin.and. gamma_only) CALL errore('local_dos','not available',1) ! IF ( (iflag == 0) .and. ( kband < 1 .or. kband > nbnd ) ) & CALL errore ('local_dos', 'wrong band specified', 1) IF ( (iflag == 0) .and. ( kpoint < 1 .or. kpoint > nkstot ) ) & CALL errore ('local_dos', 'wrong kpoint specified', 1) IF (lsign) THEN IF (iflag /= 0) CALL errore ('local_dos', 'inconsistent flags', 1) IF (sqrt(xk(1,kpoint)**2+xk(2,kpoint)**2+xk(3,kpoint)**2) > 1d-9 ) & CALL errore ('local_dos', 'k must be zero', 1) ENDIF ! IF (gamma_only) THEN ALLOCATE (rbecp(nkb,nbnd)) ELSE IF (noncolin) THEN ALLOCATE (becp_nc(nkb,npol,nbnd)) IF (lspinorb) THEN ALLOCATE(be1(nhm,2)) ALLOCATE(be2(nhm,2)) ENDIF ELSE ALLOCATE (becp(nkb,nbnd)) ENDIF ENDIF rho%of_r(:,:) = 0.d0 dos(:) = 0.d0 becsum(:,:,:) = 0.d0 IF (lsign) ALLOCATE(segno(dfftp%nnr)) ! ! calculate the correct weights ! IF (iflag /= 0.and. iflag /=3 .and. .not.lgauss) CALL errore ('local_dos', & 'gaussian broadening needed', 1) IF (iflag == 2 .and. ngauss /= -99) CALL errore ('local_dos', & ' beware: not using Fermi-Dirac function ', - ngauss) DO ik = 1, nks DO ibnd = 1, nbnd IF (iflag == 0) THEN wg (ibnd, ik) = 0.d0 ELSEIF (iflag == 1) THEN ! Local density of states at energy emin with broadening emax wg(ibnd,ik) = wk(ik) * w0gauss((emin - et(ibnd, ik))/emax, ngauss) / emax ELSEIF (iflag == 2) THEN wg (ibnd, ik) = - wk (ik) * w1gauss ( (ef - et (ibnd, ik) ) & / degauss, ngauss) ELSEIF (iflag == 3) THEN IF (et (ibnd, ik) <= emax .and. et (ibnd, ik) >= emin) THEN wg (ibnd, ik) = wk (ik) ELSE wg (ibnd, ik) = 0.d0 ENDIF ELSE CALL errore ('local_dos', ' iflag not allowed', abs (iflag) ) ENDIF ENDDO ENDDO wg_max = MAXVAL(wg(:,:)) IF ( iflag == 0 .and. npool > 1 ) THEN CALL xk_pool( kpoint, nkstot, kpoint_pool, which_pool ) IF ( kpoint_pool < 1 .or. kpoint_pool > nks ) & CALL errore('local_dos','problems with xk_pool',1) i_am_the_pool=(my_pool_id==which_pool) ELSE i_am_the_pool=.true. kpoint_pool=kpoint ENDIF IF (iflag == 0.and.i_am_the_pool) wg (kband, kpoint_pool) = 1.d0 ! ! here we sum for each k point the contribution ! of the wavefunctions to the density of states ! DO ik = 1, nks IF (ik == kpoint_pool .and.i_am_the_pool.or. iflag /= 0) THEN IF (lsda) current_spin = isk (ik) CALL davcio (evc, 2*nwordwfc, iunwfc, ik, - 1) npw = ngk(ik) CALL init_us_2 (npw, igk_k(1,ik), xk (1, ik), vkb) IF (gamma_only) THEN CALL calbec ( npw, vkb, evc, rbecp ) ELSEIF (noncolin) THEN CALL calbec ( npw, vkb, evc, becp_nc ) ELSE CALL calbec ( npw, vkb, evc, becp ) ENDIF ! ! here we compute the density of states ! DO ibnd = 1, nbnd ! Neglect summands with relative weights below machine epsilon IF ( wg(ibnd, ik) > epsilon(0.0_DP) * wg_max .and. & (ibnd == kband .or. iflag /= 0)) THEN IF (noncolin) THEN psic_nc = (0.d0,0.d0) DO ig = 1, npw psic_nc(nls(igk_k(ig,ik)),1)=evc(ig ,ibnd) psic_nc(nls(igk_k(ig,ik)),2)=evc(ig+npwx,ibnd) ENDDO DO ipol=1,npol CALL invfft ('Wave', psic_nc(:,ipol), dffts) ENDDO ELSE psic(1:dffts%nnr) = (0.d0,0.d0) DO ig = 1, npw psic (nls (igk_k(ig,ik) ) ) = evc (ig, ibnd) ENDDO IF (gamma_only) THEN DO ig = 1, npw psic (nlsm(igk_k (ig,ik) ) ) = conjg(evc (ig, ibnd)) ENDDO ENDIF CALL invfft ('Wave', psic, dffts) ENDIF w1 = wg (ibnd, ik) / omega ! ! Compute and save the sign of the wavefunction at the gamma point ! IF (lsign) THEN IF (gamma_only) THEN ! psi(r) is real by construction segno(1:dffts%nnr) = dble(psic(1:dffts%nnr)) ELSE ! determine the phase factor that makes psi(r) real. ALLOCATE(maxmod(nproc_pool)) maxmod(me_pool+1)=0.0_DP DO ir = 1, dffts%nnr modulus=abs(psic(ir)) IF (modulus > maxmod(me_pool+1)) THEN irm=ir maxmod(me_pool+1)=modulus ENDIF ENDDO who_calculate=1 #if defined(__MPI) CALL mp_sum(maxmod,intra_pool_comm) DO iproc=2,nproc_pool IF (maxmod(iproc)>maxmod(who_calculate)) & who_calculate=iproc ENDDO #endif IF (maxmod(who_calculate) < 1.d-10) & CALL errore('local_dos','zero wavefunction',1) IF (me_pool+1==who_calculate) & phase = psic(irm)/maxmod(who_calculate) DEALLOCATE(maxmod) #if defined(__MPI) CALL mp_bcast(phase,who_calculate-1,intra_pool_comm) #endif segno(1:dffts%nnr) = dble( psic(1:dffts%nnr)*conjg(phase) ) ENDIF IF (doublegrid) CALL interpolate (segno, segno, 1) segno(:) = sign( 1.d0, segno(:) ) ENDIF ! IF (noncolin) THEN DO ipol=1,npol DO ir=1,dffts%nnr rho%of_r(ir,current_spin)=rho%of_r(ir,current_spin)+& w1*(dble(psic_nc(ir,ipol))**2+ & aimag(psic_nc(ir,ipol))**2) ENDDO ENDDO ELSE DO ir=1,dffts%nnr rho%of_r(ir,current_spin)=rho%of_r(ir,current_spin) + & w1 * (dble( psic (ir) ) **2 + aimag (psic (ir) ) **2) ENDDO ENDIF ! ! If we have a US pseudopotential we compute here the becsum term ! w1 = wg (ibnd, ik) ijkb0 = 0 DO np = 1, ntyp IF (upf(np)%tvanp ) THEN DO na = 1, nat IF (ityp (na) == np) THEN IF (noncolin) THEN IF (upf(np)%has_so) THEN be1=(0.d0,0.d0) be2=(0.d0,0.d0) DO ih = 1, nh(np) ikb = ijkb0 + ih DO kh = 1, nh(np) IF ((nhtol(kh,np)==nhtol(ih,np)).and. & (nhtoj(kh,np)==nhtoj(ih,np)).and. & (indv(kh,np)==indv(ih,np))) THEN kkb=ijkb0 + kh DO is1=1,2 DO is2=1,2 be1(ih,is1)=be1(ih,is1)+ & fcoef(ih,kh,is1,is2,np)* & becp_nc(kkb,is2,ibnd) be2(ih,is1)=be2(ih,is1)+ & fcoef(kh,ih,is2,is1,np)* & conjg(becp_nc(kkb,is2,ibnd)) ENDDO ENDDO ENDIF ENDDO ENDDO ENDIF ijh = 1 DO ih = 1, nh (np) ikb = ijkb0 + ih IF (upf(np)%has_so) THEN becsum(ijh,na,1)=becsum(ijh,na,1)+ w1* & (be1(ih,1)*be2(ih,1)+be1(ih,2)*be2(ih,2)) ELSE becsum(ijh,na,1) = becsum(ijh,na,1)+ & w1*(conjg(becp_nc(ikb,1,ibnd))* & becp_nc(ikb,1,ibnd)+ & conjg(becp_nc(ikb,2,ibnd))* & becp_nc(ikb,2,ibnd)) ENDIF ijh = ijh + 1 DO jh = ih + 1, nh (np) jkb = ijkb0 + jh IF (upf(np)%has_so) THEN becsum(ijh,na,1)=becsum(ijh,na,1) & + w1*((be1(jh,1)*be2(ih,1)+ & be1(jh,2)*be2(ih,2))+ & (be1(ih,1)*be2(jh,1)+ & be1(ih,2)*be2(jh,2)) ) ELSE becsum(ijh,na,1)= becsum(ijh,na,1)+ & w1*2.d0*dble(conjg(becp_nc(ikb,1,ibnd)) & *becp_nc(jkb,1,ibnd) + & conjg(becp_nc(ikb,2,ibnd)) & *becp_nc(jkb,2,ibnd) ) ENDIF ijh = ijh + 1 ENDDO ENDDO ELSE ijh = 1 DO ih = 1, nh (np) ikb = ijkb0 + ih IF (gamma_only) THEN becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + w1 * & rbecp(ikb,ibnd)*rbecp(ikb,ibnd) ELSE becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + w1 * & dble(conjg(becp(ikb,ibnd))*becp(ikb,ibnd)) ENDIF ijh = ijh + 1 DO jh = ih + 1, nh (np) jkb = ijkb0 + jh IF (gamma_only) THEN becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + 2.d0*w1 * & rbecp(ikb,ibnd)*rbecp(jkb,ibnd) ELSE becsum(ijh,na,current_spin) = & becsum(ijh,na,current_spin) + 2.d0*w1 * & dble(conjg(becp(ikb,ibnd))*becp(jkb,ibnd)) ENDIF ijh = ijh + 1 ENDDO ENDDO ENDIF ijkb0 = ijkb0 + nh (np) ENDIF ENDDO ELSE DO na = 1, nat IF (ityp (na) == np) ijkb0 = ijkb0 + nh (np) ENDDO ENDIF ENDDO ENDIF ENDDO ! loop over bands ENDIF ENDDO ! loop over k-points IF (gamma_only) THEN DEALLOCATE(rbecp) ELSE IF (noncolin) THEN IF (lspinorb) THEN DEALLOCATE(be1) DEALLOCATE(be2) ENDIF DEALLOCATE(becp_nc) ELSE DEALLOCATE(becp) ENDIF ENDIF IF (doublegrid) THEN IF (noncolin) THEN CALL interpolate(rho%of_r, rho%of_r, 1) ELSE DO is = 1, nspin CALL interpolate(rho%of_r(1, is), rho%of_r(1, is), 1) ENDDO ENDIF ENDIF ! ! Here we add the US contribution to the charge ! IF ( tqr ) THEN CALL addusdens_r(rho%of_r(:,:),.false.) ELSE ! CALL addusdens(rho%of_r(:,:)) ! ENDIF ! IF (nspin == 1 .or. nspin==4) THEN is = 1 dos(:) = rho%of_r (:, is) ELSE IF ( iflag==3 .and. (spin_component==1 .or. spin_component==2 ) ) THEN dos(:) = rho%of_r (:, spin_component) ELSE isup = 1 isdw = 2 dos(:) = rho%of_r (:, isup) + rho%of_r (:, isdw) ENDIF ENDIF IF (lsign) THEN dos(:) = dos(:) * segno(:) DEALLOCATE(segno) ENDIF #if defined(__MPI) CALL mp_sum( dos, inter_pool_comm ) #endif IF (iflag == 0 .or. gamma_only) RETURN ! ! symmetrization of the local dos ! CALL sym_rho_init (gamma_only ) ! psic(:) = cmplx ( dos(:), 0.0_dp, kind=dp) CALL fwfft ('Dense', psic, dfftp) rho%of_g(:,1) = psic(nl(:)) ! CALL sym_rho (1, rho%of_g) ! psic(:) = (0.0_dp, 0.0_dp) psic(nl(:)) = rho%of_g(:,1) CALL invfft ('Dense', psic, dfftp) dos(:) = dble(psic(:)) ! CALL sym_rho_deallocate() ! RETURN END SUBROUTINE local_dos !------------------------------------------------------------------------ SUBROUTINE xk_pool( ik, nkstot, ik_pool, which_pool ) !------------------------------------------------------------------------ ! ! This routine is a simplified version of set_kpoint_vars in ! xml_io_files. It receives the index ik of a k_point in the complete ! k point list and return the index within the pool ik_pool, and ! the number of the pool that has that k point. ! ! USE mp_global, ONLY : npool, kunit ! IMPLICIT NONE INTEGER, INTENT(in) :: ik, nkstot INTEGER, INTENT(out) :: ik_pool, which_pool ! INTEGER :: nkl, nkr, nkbl ! ! IF (npool==1) THEN which_pool=1 ik_pool=ik RETURN ENDIF ! ! ... find out number of k points blocks ! nkbl = nkstot / kunit ! ! ... k points per pool ! nkl = kunit * ( nkbl / npool ) ! ! ... find out the reminder ! nkr = ( nkstot - nkl * npool ) / kunit ! ! ... calculate the pool and the index within the pool ! IF (ik<=nkr*(nkl+1)) THEN which_pool=(ik-1)/(nkl+1) ik_pool=ik-which_pool*(nkl+1) ELSE which_pool=nkr+(ik-nkr*(nkl+1)-1)/nkl ik_pool=ik-nkr*(nkl+1)-(which_pool-nkr)*nkl ENDIF RETURN END SUBROUTINE xk_pool
gpl-2.0
rongzhen/FPLAPW-KP
src/src_advanced/exxengyk.f90
1
9310
! ! ! ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. ! ! Subroutine exxengyk (ikp, evv, ecv) Use modmain Use modinput Implicit None ! arguments Integer, Intent (In) :: ikp Real (8), Intent (Inout) :: evv Real (8), Intent (Inout) :: ecv ! local variables Integer :: ngknr, ik, ist, jst Integer :: is, ia, ias, nrc, m, lmax Integer :: iv (3), iq, ig, igq0 Real (8) :: cfq, v (3), t1 Complex (8) zrho0, zt1 ! automatic arrays Real (8) :: zn (nspecies) ! allocatable arrays Integer, Allocatable :: igkignr (:) Real (8), Allocatable :: vgklnr (:, :) Real (8), Allocatable :: vgkcnr (:, :) Real (8), Allocatable :: gkcnr (:) Real (8), Allocatable :: tpgkcnr (:, :) Real (8), Allocatable :: vgqc (:, :) Real (8), Allocatable :: tpgqc (:, :) Real (8), Allocatable :: gqc (:) Real (8), Allocatable :: jlgqr (:, :, :) Real (8), Allocatable :: evalsvp (:) Real (8), Allocatable :: evalsvnr (:) Complex (8), Allocatable :: sfacgknr (:, :) Complex (8), Allocatable :: apwalm (:, :, :, :) Complex (8), Allocatable :: evecfv (:, :) Complex (8), Allocatable :: evecsv (:, :) Complex (8), Allocatable :: ylmgq (:, :) Complex (8), Allocatable :: sfacgq (:, :) Complex (8), Allocatable :: wfmt1 (:, :, :, :, :) Complex (8), Allocatable :: wfmt2 (:, :, :, :, :) Complex (8), Allocatable :: wfir1 (:, :, :) Complex (8), Allocatable :: wfir2 (:, :, :) Complex (8), Allocatable :: wfcr (:, :, :) Complex (8), Allocatable :: zrhomt (:, :, :) Complex (8), Allocatable :: zrhoir (:) Complex (8), Allocatable :: zvclmt (:, :, :) Complex (8), Allocatable :: zvclir (:) Complex (8), Allocatable :: zfmt (:, :) ! external functions Complex (8) zfinp, zfmtinp External zfinp, zfmtinp ! allocate local arrays Allocate (igkignr(ngkmax)) Allocate (vgklnr(3, ngkmax)) Allocate (vgkcnr(3, ngkmax)) Allocate (gkcnr(ngkmax)) Allocate (tpgkcnr(2, ngkmax)) Allocate (vgqc(3, ngvec)) Allocate (tpgqc(2, ngvec)) Allocate (gqc(ngvec)) Allocate & & (jlgqr(0:input%groundstate%lmaxvr+input%groundstate%npsden+1, & & ngvec, nspecies)) Allocate (evalsvp(nstsv)) Allocate (evalsvnr(nstsv)) Allocate (sfacgknr(ngkmax, natmtot)) Allocate (ylmgq(lmmaxvr, ngvec)) Allocate (sfacgq(ngvec, natmtot)) Allocate (apwalm(ngkmax, apwordmax, lmmaxapw, natmtot)) Allocate (evecfv(nmatmax, nstfv)) Allocate (evecsv(nstsv, nstsv)) Allocate (wfmt1(lmmaxvr, nrcmtmax, natmtot, nspinor, nstsv)) Allocate (wfmt2(lmmaxvr, nrcmtmax, natmtot, nspinor, nstsv)) Allocate (wfir1(ngrtot, nspinor, nstsv)) Allocate (wfir2(ngrtot, nspinor, nstsv)) Allocate (zrhomt(lmmaxvr, nrcmtmax, natmtot)) Allocate (zrhoir(ngrtot)) Allocate (zvclmt(lmmaxvr, nrcmtmax, natmtot)) Allocate (zvclir(ngrtot)) Allocate (wfcr(lmmaxvr, nrcmtmax, 2)) Allocate (zfmt(lmmaxvr, nrcmtmax)) ! coefficient for long-range term cfq = 0.5d0 * (omega/pi) ** 2 ! set the nuclear charges to zero zn (:) = 0.d0 ! get the eigenvalues/vectors from file for input k-point Call getevalsv (vkl(:, ikp), evalsvp) Call getevecfv (vkl(:, ikp), vgkl(:, :, :, ikp), evecfv) Call getevecsv (vkl(:, ikp), evecsv) ! find the matching coefficients Call match (ngk(1, ikp), gkc(:, 1, ikp), tpgkc(:, :, 1, ikp), & & sfacgk(:, :, 1, ikp), apwalm) ! calculate the wavefunctions for occupied states for the input k-point Call genwfsv (.True., ngk(1, ikp), igkig(:, 1, ikp), evalsvp, & & apwalm, evecfv, evecsv, wfmt1, wfir1) ! start loop over non-reduced k-point set Do ik = 1, nkptnr ! generate G+k vectors Call gengpvec (vklnr(:, ik), vkcnr(:, ik), ngknr, igkignr, & & vgklnr, vgkcnr, gkcnr, tpgkcnr) ! get the eigenvalues/vectors from file for non-reduced k-points Call getevalsv (vklnr(:, ik), evalsvnr) Call getevecfv (vklnr(:, ik), vgklnr, evecfv) Call getevecsv (vklnr(:, ik), evecsv) ! generate the structure factors Call gensfacgp (ngknr, vgkcnr, ngkmax, sfacgknr) ! find the matching coefficients Call match (ngknr, gkcnr, tpgkcnr, sfacgknr, apwalm) ! determine q-vector iv (:) = ivk (:, ikp) - ivknr (:, ik) iv (:) = modulo (iv(:), input%groundstate%ngridk(:)) iq = iqmap (iv(1), iv(2), iv(3)) v (:) = vkc (:, ikp) - vkcnr (:, ik) Do ig = 1, ngvec ! determine G+q vectors vgqc (:, ig) = vgc (:, ig) + v (:) ! G+q-vector length and (theta, phi) coordinates Call sphcrd (vgqc(:, ig), gqc(ig), tpgqc(:, ig)) ! spherical harmonics for G+q-vectors Call genylm (input%groundstate%lmaxvr, tpgqc(:, ig), & & ylmgq(:, ig)) End Do ! structure factor for G+q Call gensfacgp (ngvec, vgqc, ngvec, sfacgq) ! find the shortest G+q-vector Call findigp0 (ngvec, gqc, igq0) ! compute the required spherical Bessel functions lmax = input%groundstate%lmaxvr + input%groundstate%npsden + 1 Call genjlgpr (lmax, gqc, jlgqr) ! calculate the wavefunctions for occupied states Call genwfsv (.True., ngknr, igkignr, evalsvnr, apwalm, & & evecfv, evecsv, wfmt2, wfir2) !--------------------------------------------! ! valence-valence-valence contribution ! !--------------------------------------------! Do jst = 1, nstsv If (evalsvnr(jst) .Lt. efermi) Then Do ist = 1, nstsv If (evalsvp(ist) .Lt. efermi) Then ! calculate the complex overlap density Call vnlrho (.True., wfmt2(:, :, :, :, jst), & & wfmt1(:, :, :, :, ist), wfir2(:, :, jst), & & wfir1(:, :, ist), zrhomt, zrhoir) ! calculate the Coulomb potential Call zpotcoul (nrcmt, nrcmtmax, nrcmtmax, rcmt, & & igq0, gqc, jlgqr, ylmgq, sfacgq, zn, zrhomt, & & zrhoir, zvclmt, zvclir, zrho0) zt1 = zfinp (.True., zrhomt, zvclmt, zrhoir, & & zvclir) t1 = cfq * wiq2 (iq) * & & (dble(zrho0)**2+aimag(zrho0)**2) !$OMP CRITICAL evv = evv - 0.5d0 * occmax * wkpt (ikp) * & & (wkptnr(ik)*dble(zt1)+t1) !$OMP END CRITICAL ! end loop over ist End If End Do ! end loop over jst End If End Do ! end loop over non-reduced k-point set End Do !-----------------------------------------! ! valence-core-valence contribution ! !-----------------------------------------! ! begin loops over atoms and species Do is = 1, nspecies nrc = nrcmt (is) Do ia = 1, natoms (is) ias = idxas (ia, is) Do jst = 1, spnst (is) If (spcore(jst, is)) Then Do m = - spk (jst, is), spk (jst, is) - 1 ! pass m-1/2 to wavefcr Call wavefcr (input%groundstate%lradstep, is, ia, & & jst, m, nrcmtmax, wfcr) Do ist = 1, nstsv If (evalsvp(ist) .Lt. efermi) Then ! calculate the complex overlap density Call vnlrhomt (.True., is, wfcr(:, :, 1), & & wfmt1(:, :, ias, 1, ist), zrhomt(:, :, & & ias)) If (associated(input%groundstate%spin)) Then Call vnlrhomt (.True., is, wfcr(:, :, 2), & & wfmt1(:, :, ias, 2, ist), zfmt) zrhomt (:, 1:nrc, ias) = zrhomt (:, & & 1:nrc, ias) + zfmt (:, 1:nrc) End If ! calculate the Coulomb potential Call zpotclmt (input%groundstate%ptnucl, & & input%groundstate%lmaxvr, nrc, rcmt(:, is), & & 0.d0, lmmaxvr, zrhomt(:, :, ias), zvclmt(:, & & :, ias)) zt1 = zfmtinp (.True., & & input%groundstate%lmaxvr, nrc, rcmt(:, is), & & lmmaxvr, zrhomt(:, :, ias), zvclmt(:, :, & & ias)) !$OMP CRITICAL ecv = ecv - occmax * wkpt (ikp) * dble (zt1) !$OMP END CRITICAL ! end loop over ist End If End Do ! end loop over m End Do ! end loop over jst End If End Do ! end loops over atoms and species End Do End Do Deallocate (igkignr, vgklnr, vgkcnr, gkcnr, tpgkcnr) Deallocate (vgqc, tpgqc, gqc, jlgqr) Deallocate (evalsvp, evalsvnr, evecfv, evecsv) Deallocate (sfacgknr, apwalm, ylmgq, sfacgq) Deallocate (wfmt1, wfmt2, wfir1, wfir2, wfcr) Deallocate (zrhomt, zrhoir, zvclmt, zvclir, zfmt) Return End Subroutine
lgpl-2.1
carlren/CuCV
CuCV/3rdparty/Eigen/lapack/sladiv.f
272
2897
*> \brief \b SLADIV * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SLADIV + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sladiv.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sladiv.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sladiv.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SLADIV( A, B, C, D, P, Q ) * * .. Scalar Arguments .. * REAL A, B, C, D, P, Q * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SLADIV performs complex division in real arithmetic *> *> a + i*b *> p + i*q = --------- *> c + i*d *> *> The algorithm is due to Robert L. Smith and can be found *> in D. Knuth, The art of Computer Programming, Vol.2, p.195 *> \endverbatim * * Arguments: * ========== * *> \param[in] A *> \verbatim *> A is REAL *> \endverbatim *> *> \param[in] B *> \verbatim *> B is REAL *> \endverbatim *> *> \param[in] C *> \verbatim *> C is REAL *> \endverbatim *> *> \param[in] D *> \verbatim *> D is REAL *> The scalars a, b, c, and d in the above expression. *> \endverbatim *> *> \param[out] P *> \verbatim *> P is REAL *> \endverbatim *> *> \param[out] Q *> \verbatim *> Q is REAL *> The scalars p and q in the above expression. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup auxOTHERauxiliary * * ===================================================================== SUBROUTINE SLADIV( A, B, C, D, P, Q ) * * -- LAPACK auxiliary routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. REAL A, B, C, D, P, Q * .. * * ===================================================================== * * .. Local Scalars .. REAL E, F * .. * .. Intrinsic Functions .. INTRINSIC ABS * .. * .. Executable Statements .. * IF( ABS( D ).LT.ABS( C ) ) THEN E = D / C F = C + D*E P = ( A+B*E ) / F Q = ( B-A*E ) / F ELSE E = C / D F = D + C*E P = ( B+A*E ) / F Q = ( -A+B*E ) / F END IF * RETURN * * End of SLADIV * END
bsd-2-clause
nisihara1/q-e
FFTXlib/test0.f90
4
15699
! ! Copyright (C) Quantum ESPRESSO group ! ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! by F. Affinito and C. Cavazzoni, Cineca ! & S. de Gironcoli, SISSA program test USE fft_types, ONLY: fft_type_descriptor, fft_type_deallocate USE fft_interfaces USE fft_parallel USE fft_scalar USE fft_support USE fft_param IMPLICIT NONE TYPE(fft_type_descriptor) :: dfftp, dffts, dfft3d INTEGER :: nx = 128 INTEGER :: ny = 128 INTEGER :: nz = 256 ! INTEGER :: mype, npes, comm, ntgs, root, nbnd LOGICAL :: iope INTEGER :: ierr, i, j, k, ncount, ib, ireq, nreq, ipsi, iloop INTEGER :: stdout INTEGER :: ngw_ , ngm_ , ngs_ REAL*8 :: gcutm, gkcut, gcutms REAL*8 :: ecutm, ecutw, ecutms REAL*8 :: ecutwfc, ecutrho REAL*8 :: tpiba, alat, alat_in REAL*8 :: time(100), my_time(100), time_min(100), time_max(100), time_avg(100) REAL*8 :: wall REAL*8 :: wall_avg ! REAL*8 :: tmp1(10000),tmp2(10000) ! LOGICAL :: gamma_only REAL*8 :: at(3,3), bg(3,3) REAL(DP), PARAMETER :: pi = 3.14159265358979323846_DP ! COMPLEX(DP), ALLOCATABLE :: psis(:,:) COMPLEX(DP), ALLOCATABLE :: aux(:) COMPLEX(DP) :: f_aux, ff(5) ! integer :: nargs CHARACTER(LEN=80) :: arg ! #if defined(__OPENMP) INTEGER :: PROVIDED #endif ! ! ........ ! ! default parameter (32 water molecules) ! ecutwfc = 80.0d0 ecutrho = 0.d0 alat_in = 18.65 ntgs = 1 nbnd = 1 ! nargs = command_argument_count() do i = 1, nargs - 1 CALL get_command_argument(i, arg) IF( TRIM( arg ) == '-ecutrho' ) THEN CALL get_command_argument(i+1, arg) READ( arg, * ) ecutrho END IF IF( TRIM( arg ) == '-ecutwfc' ) THEN CALL get_command_argument(i+1, arg) READ( arg, * ) ecutwfc END IF IF( TRIM( arg ) == '-alat' ) THEN CALL get_command_argument(i+1, arg) READ( arg, * ) alat_in END IF IF( TRIM( arg ) == '-ntg' ) THEN CALL get_command_argument(i+1, arg) READ( arg, * ) ntgs END IF IF( TRIM( arg ) == '-nbnd' ) THEN CALL get_command_argument(i+1, arg) READ( arg, * ) nbnd END IF end do if (ecutrho == 0.d0) ecutrho = 4.0d0 * ecutwfc #if defined(__MPI) #if defined(__OPENMP) CALL MPI_Init_thread(MPI_THREAD_FUNNELED, PROVIDED, ierr) #else CALL MPI_Init(ierr) #endif CALL mpi_comm_rank(MPI_COMM_WORLD,mype,ierr) CALL mpi_comm_size(MPI_COMM_WORLD,npes,ierr) comm = MPI_COMM_WORLD root = 0 IF(mype==root) THEN iope = .true. ELSE iope = .false. ENDIF #else mype = 0 npes = 1 comm = 0 ntgs = 1 root = 0 iope = .true. #endif ! ! Broadcast input parameter first ! #if defined(__MPI) CALL MPI_BCAST(ecutrho, 1, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr ) CALL MPI_BCAST(ecutwfc, 1, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr ) CALL MPI_BCAST(alat_in, 1, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr ) CALL MPI_BCAST(ntgs, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr ) CALL MPI_BCAST(nbnd, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr ) #endif ! ecutw = ecutwfc ! dual ecutm = ecutrho ecutms = ecutrho ! at(1,:) = (/ 0.5d0 , 1.0d0, 0.0d0 /) at(2,:) = (/ 0.5d0 , 0.0d0, 0.5d0 /) at(3,:) = (/ 0.0d0 , 0.5d0, 1.5d0 /) ! at = at * alat_in ! alat = SQRT ( at(1,1)**2+at(2,1)**2+at(3,1)**2 ) ! tpiba = 2.0d0 * pi / alat ! gcutm = ecutm / tpiba**2 ! potential cut-off gcutms= ecutms / tpiba**2 ! smooth mesh cut-off gkcut = ecutw / tpiba**2 ! wave function cut-off ! if( mype == 0 ) then write(*,*) '+-----------------------------------+' write(*,*) '| QE FFT |' write(*,*) '| testing & timing |' write(*,*) '| by Carlo Cavazzoni |' write(*,*) '+-----------------------------------+' write(*,*) write(*,*) 'alat = ', alat write(*,*) 'Ecutwfc = ', ecutw write(*,*) 'Ecutrho = ', ecutm write(*,*) 'Ecuts = ', ecutms write(*,*) 'Gcutrho = ', SQRT(gcutm) write(*,*) 'Gcuts = ', SQRT(gcutms) write(*,*) 'Gcutwfc = ', SQRT(gkcut) write(*,*) 'Num bands = ', nbnd write(*,*) 'Num procs = ', npes write(*,*) 'Num Task Group = ', ntgs end if ! at = at / alat ! call recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) ) ! nx = 2 * int ( sqrt (gcutm) * sqrt (at(1, 1)**2 + at(2, 1)**2 + at(3, 1)**2) ) + 1 ny = 2 * int ( sqrt (gcutm) * sqrt (at(1, 2)**2 + at(2, 2)**2 + at(3, 2)**2) ) + 1 nz = 2 * int ( sqrt (gcutm) * sqrt (at(1, 3)**2 + at(2, 3)**2 + at(3, 3)**2) ) + 1 ! if( mype == 0 ) then write(*,*) 'nx = ', nx,' ny = ', ny, ' nz = ', nz end if ! dffts%nr1 = good_fft_order( nx ) dffts%nr2 = good_fft_order( ny ) dffts%nr3 = good_fft_order( nz ) dffts%nr1x = good_fft_dimension( dffts%nr1 ) dffts%nr2x = dffts%nr2 dffts%nr3x = good_fft_dimension( dffts%nr3 ) ! if( mype == 0 ) then write(*,*) 'dffts: nr1 = ', dffts%nr1 ,' nr2 = ', dffts%nr2 , ' nr3 = ', dffts%nr3 write(*,*) ' nr1x= ', dffts%nr1x,' nr2x= ', dffts%nr2x, ' nr3x= ', dffts%nr3x end if dfftp%nr1 = good_fft_order( nx ) dfftp%nr2 = good_fft_order( ny ) dfftp%nr3 = good_fft_order( nz ) dfftp%nr1x = good_fft_dimension( dfftp%nr1 ) dfftp%nr2x = dfftp%nr2 dfftp%nr3x = good_fft_dimension( dfftp%nr3 ) ! dfft3d%nr1 = good_fft_order( nx ) dfft3d%nr2 = good_fft_order( ny ) dfft3d%nr3 = good_fft_order( nz ) dfft3d%nr1x = good_fft_dimension( dfft3d%nr1 ) dfft3d%nr2x = dfft3d%nr2 dfft3d%nr3x = good_fft_dimension( dfft3d%nr3 ) gamma_only = .true. stdout = 6 CALL pstickset( gamma_only, bg, gcutm, gkcut, gcutms, & dfftp, dffts, ngw_ , ngm_ , ngs_ , mype, root, & npes, comm, ntgs, iope, stdout, dfft3d ) ! write (6,'(25i5)') dffts%isind ALLOCATE( psis( dffts%tg_nnr * dffts%nogrp, 2 ) ) ALLOCATE( aux( dffts%tg_nnr * dffts%nogrp ) ) time = 0.0d0 my_time = 0.0d0 time_min = 0.0d0 time_max = 0.0d0 time_avg = 0.0d0 ! ! Test FFT for wave functions - First calls may be biased by MPI and FFT initialization ! if( mype == 0 ) then write (*,*) 'Define a function in Reciprocal space such that it contains' write (*,*) ' f(1,1,1) = (1.0,0.0) | a constant term' write (*,*) ' f(2,1,1) = (0.d0,0.5d0) | something varying along x ' write (*,*) ' f(1,2,1) = (0.d0,0.3d0) | something varying along y ' write (*,*) ' f(1,1,2) = (0.d0,0.7d0) | something varying along z ' end if aux = 0.0d0 f_aux = (1.0,0.0) ; call put_f_of_G(f_aux,1,1,1,aux,dffts) ! constant f_aux = (0.d0,0.5d0); call put_f_of_G(f_aux,2,1,1,aux,dffts) ! something varying along x f_aux = (0.d0,0.3d0); call put_f_of_G(f_aux,1,2,1,aux,dffts) ! something varying along y f_aux = (0.d0,0.7d0); call put_f_of_G(f_aux,1,1,2,aux,dffts) ! something varying along z if( mype == 0 ) write (*,*) 'function in Reciprocal space ' do k =1, 5 if( mype == 0 ) write (*,*) 'k = ',k do j =1,5 do i =1,5 ff(i) = get_f_of_G(i,j,k,aux,dffts) end do if( mype == 0 ) write (*,'(5("(",2f10.6,")",3x))') (ff(i),i=1,5) end do end do #if defined(__MPI) CALL MPI_BARRIER( MPI_COMM_WORLD, ierr) #endif call invfft ('Dense',aux,dffts) if( mype == 0 ) write (*,*) 'function in Real space (i,j,k)' do k =1, 5 if( mype == 0 ) write (*,*) 'k = ',k do j =1,5 do i =1,5 ff(i) = get_f_of_R(i,j,k,aux,dffts) end do if( mype == 0 ) write (*,'(5("(",2f10.6,")",3x))') (ff(i),i=1,5) end do end do call fwfft ('Dense',aux,dffts) if( mype == 0 ) write (*,*) 'function in Reciprocal space ' do k =1, 5 if( mype == 0 ) write (*,*) 'k = ',k do j =1,5 do i =1,5 ff(i) = get_f_of_G(i,j,k,aux,dffts) end do if( mype == 0 ) write (*,'(5("(",2f10.6,")",3x))') (ff(i),i=1,5) end do end do ! ! Execute FFT calls once more, this time as Wave, and Take time ! ! if( mype == 0 ) write (*,*) ' Execute FFT calls once more, this time as Wave !' #if defined(__MPI) CALL MPI_BARRIER( MPI_COMM_WORLD, ierr) wall = MPI_WTIME() #endif call invfft ('Wave',aux,dffts) if( mype == 0 ) write (*,*) 'function in Real space (i,j,k)' do k =1, 5 if( mype == 0 ) write (*,*) 'k = ',k do j =1,5 do i =1,5 ff(i) = get_f_of_R(i,j,k,aux,dffts) end do if( mype == 0 ) write (*,'(5("(",2f10.6,")",3x))') (ff(i),i=1,5) end do end do call fwfft ('Wave',aux,dffts) if( mype == 0 ) write (*,*) 'function in Reciprocal space ' do k =1, 5 if( mype == 0 ) write (*,*) 'k = ',k do j =1,5 do i =1,5 ff(i) = get_f_of_G(i,j,k,aux,dffts) end do if( mype == 0 ) write (*,'(5("(",2f10.6,")",3x))') (ff(i),i=1,5) end do end do DEALLOCATE( aux ) if( mype == 0 ) write (*,*) ' Execute FFT calls once more, this time as with cft3ds !' ALLOCATE( aux (dffts%nr1x * dffts%nr2x * dffts%nr3x ) ) #if defined(__MPI) CALL MPI_BARRIER( MPI_COMM_WORLD, ierr) wall = MPI_WTIME() #endif aux = 0.0d0 f_aux = (1.0,0.0) ; i=1;j=1;k=1; aux( i+dffts%nr1x *(j-1) + dffts%nr1x*dffts%nr2x*(k-1) ) = f_aux f_aux = (0.d0,0.5d0); i=2;j=1;k=1; aux( i+dffts%nr1x *(j-1) + dffts%nr1x*dffts%nr2x*(k-1) ) = f_aux f_aux = (0.d0,0.3d0); i=1;j=2;k=1; aux( i+dffts%nr1x *(j-1) + dffts%nr1x*dffts%nr2x*(k-1) ) = f_aux f_aux = (0.d0,0.7d0); i=1;j=1;k=2; aux( i+dffts%nr1x *(j-1) + dffts%nr1x*dffts%nr2x*(k-1) ) = f_aux CALL cfft3ds( aux, dffts%nr1, dffts%nr2, dffts%nr3, & dffts%nr1x,dffts%nr2x,dffts%nr3x, 1, & dffts%isind, dffts%iplw ) if( mype == 0 ) write (*,*) 'function in Real space (i,j,k)' do k =1, 5 if( mype == 0 ) write (*,*) 'k = ',k do j =1,5 do i =1,5 ff(i) =aux (i+dffts%nr1x *(j-1) + dffts%nr1x*dffts%nr2x*(k-1) ) end do if( mype == 0 ) write (*,'(5("(",2f10.6,")",3x))') (ff(i),i=1,5) end do end do CALL cfft3ds( aux, dffts%nr1, dffts%nr2, dffts%nr3, & dffts%nr1x,dffts%nr2x,dffts%nr3x, -1, & dffts%isind, dffts%iplw ) if( mype == 0 ) write (*,*) 'function in Reciprocal space ' do k =1, 5 if( mype == 0 ) write (*,*) 'k = ',k do j =1,5 do i =1,5 ff(i) =aux (i+dffts%nr1x *(j-1) + dffts%nr1x*dffts%nr2x*(k-1) ) end do if( mype == 0 ) write (*,'(5("(",2f10.6,")",3x))') (ff(i),i=1,5) end do end do #if defined(__MPI) wall = MPI_WTIME() - wall #endif DEALLOCATE( psis, aux ) CALL fft_type_deallocate( dffts ) CALL fft_type_deallocate( dfftp ) CALL fft_type_deallocate( dfft3d ) if( ncount > 0 ) then my_time = my_time / DBLE(ncount) endif !write(*,*)my_time(2), my_time(3), my_time(4) #if defined(__MPI) CALL MPI_ALLREDUCE( my_time, time_min, 10, MPI_DOUBLE_PRECISION, MPI_MIN, MPI_COMM_WORLD, ierr ) CALL MPI_ALLREDUCE( my_time, time_max, 10, MPI_DOUBLE_PRECISION, MPI_MAX, MPI_COMM_WORLD, ierr ) CALL MPI_ALLREDUCE( my_time, time_avg, 10, MPI_DOUBLE_PRECISION, MPI_SUM, MPI_COMM_WORLD, ierr ) CALL MPI_ALLREDUCE( wall, wall_avg, 1, MPI_DOUBLE_PRECISION, MPI_SUM, MPI_COMM_WORLD, ierr ) #else time_min = time time_max = time #endif !write(*,*)time_min(2), time_min(3), time_min(4) time_avg = time_avg / npes wall_avg = wall_avg / npes if( mype == 0 ) then write(*,*) '**** QE 3DFFT Timing ****' write(*,*) 'grid size = ', dffts%nr1, dffts%nr2, dffts%nr3 write(*,*) 'num proc = ', npes write(*,*) 'num band = ', nbnd write(*,*) 'num task group = ', ntgs write(*,*) 'num fft cycles = ', ncount write(*,100) write(*,1) write(*,100) write(*,2) time_min(2), time_max(2), time_avg(2) write(*,3) time_min(3), time_max(3), time_avg(3) write(*,4) time_min(4), time_max(4), time_avg(4) write(*,5) time_min(5), time_max(5), time_avg(5) write(*,6) time_min(6), time_max(6), time_avg(6) write(*,7) time_min(7), time_max(7), time_avg(7) write(*,8) time_min(8), time_max(8), time_avg(8) write(*,9) time_min(9), time_max(9), time_avg(9) write(*,10) time_min(10), time_max(10), time_avg(10) write(*,11) wall write(*,100) 100 FORMAT(' +--------------------+----------------+-----------------+----------------+' ) 1 FORMAT(' |FFT subroutine | sec. min | sec. max | sec. avg |' ) 2 FORMAT(' |pack_group_sticks/w | ', D14.5, ' | ', D14.3, ' | ', D14.3, ' |' ) 3 FORMAT(' |fw_tg_cft3_z | ', D14.5, ' | ', D14.3, ' | ', D14.3, ' |' ) 4 FORMAT(' |fw_tg_cft3_scatter | ', D14.5, ' | ', D14.3, ' | ', D14.3 , ' |') 5 FORMAT(' |fw_tg_cft3_xy | ', D14.5, ' | ', D14.3, ' | ', D14.3 , ' |') 6 FORMAT(' |workload | ', D14.5, ' | ', D14.3, ' | ', D14.3 , ' |') 7 FORMAT(' |bw_tg_cft3_xy | ', D14.5, ' | ', D14.3, ' | ', D14.3 , ' |') 8 FORMAT(' |bw_tg_cft3_scatter | ', D14.5, ' | ', D14.3, ' | ', D14.3 , ' |') 9 FORMAT(' |bw_tg_cft3_z | ', D14.5, ' | ', D14.3, ' | ', D14.3 , ' |') 10 FORMAT(' |unpack_group_sticks | ', D14.5, ' | ', D14.3, ' | ', D14.3 , ' |') 11 FORMAT(' |wall time | ', D14.5, ' |') end if #if defined(__MPI) CALL mpi_finalize(ierr) #endif contains ! ! Copyright (C) 2001 PWSCF group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !--------------------------------------------------------------------- subroutine recips (a1, a2, a3, b1, b2, b3) !--------------------------------------------------------------------- ! ! This routine generates the reciprocal lattice vectors b1,b2,b3 ! given the real space vectors a1,a2,a3. The b's are units of 2 pi/a. ! ! first the input variables ! implicit none real(DP) :: a1 (3), a2 (3), a3 (3), b1 (3), b2 (3), b3 (3) ! input: first direct lattice vector ! input: second direct lattice vector ! input: third direct lattice vector ! output: first reciprocal lattice vector ! output: second reciprocal lattice vector ! output: third reciprocal lattice vector ! ! then the local variables ! real(DP) :: den, s ! the denominator ! the sign of the permutations integer :: iperm, i, j, k, l, ipol ! counter on the permutations !\ ! Auxiliary variables !/ ! ! Counter on the polarizations ! ! first we compute the denominator ! den = 0 i = 1 j = 2 k = 3 s = 1.d0 100 do iperm = 1, 3 den = den + s * a1 (i) * a2 (j) * a3 (k) l = i i = j j = k k = l enddo i = 2 j = 1 k = 3 s = - s if (s.lt.0.d0) goto 100 ! ! here we compute the reciprocal vectors ! i = 1 j = 2 k = 3 do ipol = 1, 3 b1 (ipol) = (a2 (j) * a3 (k) - a2 (k) * a3 (j) ) / den b2 (ipol) = (a3 (j) * a1 (k) - a3 (k) * a1 (j) ) / den b3 (ipol) = (a1 (j) * a2 (k) - a1 (k) * a2 (j) ) / den l = i i = j j = k k = l enddo return end subroutine recips end program test subroutine start_clock( label ) implicit none character(len=*) :: label end subroutine subroutine stop_clock( label ) implicit none character(len=*) :: label end subroutine
gpl-2.0
AndresYague/Snuppat
loader.f90
1
16558
MODULE loader USE readvars_mod USE structures_mod USE math_routines IMPLICIT NONE CONTAINS !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!! This subroutine creates the cross sections linked list. !!! !!! !!! !!! The input values are: !!! !!! -highTempReacts, a pointer to type REACT. !!! !!! -lowTempReacts, a pointer to type REACT. !!! !!! !!! !!! At the output, both highTempReacts and lowTempReacts are the heads of !!! !!! two linked lists, the first one containing all the reactions in the !!! !!! network, and the second one containing just decay reactions, which can !!! !!! be followed in low temperature shells. !!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE loadNetwork(highTempReacts, lowTempReacts) IMPLICIT NONE ! Input variables TYPE (REACT), POINTER::highTempReacts, lowTempReacts ! Local variables TYPE (REACT), POINTER::curr, last DOUBLE PRECISION, DIMENSION(7)::avector DOUBLE PRECISION, ALLOCATABLE::locTempTable(:) CHARACTER(10)::source INTEGER, DIMENSION(3)::neg INTEGER, DIMENSION(4)::pos INTEGER::kk, jj, jumpSiz, locTabSiz, kkindx !!!!!!!!!!!!!!!!!!!!!!!!!!!!!END OF DECLARATIONS!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! This reads the files with the reactions and makes the linked list. NULLIFY(last) DO kk = 1, SIZE(filenames) + SIZE(lowTempFiles) IF ((kk - SIZE(filenames)).LT.1) THEN kkindx = kk OPEN(UNIT = uni, FILE = "data/"//filenames(kk)//".lst") ELSE kkindx = kk - SIZE(filenames) OPEN(UNIT = uni, FILE = "data/"//lowTempFiles(kkindx)//".lst") END IF ! For the first list we must skip the first jumpSiz lines. IF (kk.EQ.1) THEN READ(uni, *) jumpSiz DO jj = 1, jumpSiz READ(uni, *) END DO END IF ! Nullify last if we are at the head IF (kkindx.EQ.1) NULLIFY(last) ! In this loop the coefficients are read. DO ! This line reads the nucleon tag, the reaction source and coefs. neg = 0; pos = 0 IF (kk.EQ.kkindx) THEN READ(uni, *, IOSTAT = error) neg(1:targ(kk)), pos(1:prod(kk)), & source, avector ELSE READ(uni, *, IOSTAT = error) neg(1:targ(kkindx)), & pos(1:prod(kkindx)), source, & locTabSiz END IF IF (error.NE.0) EXIT ! Check that tabSiz has not changed IF ((kk.NE.kkindx).AND.(tabSiz.NE.locTabSiz)) THEN PRINT*, "Not the same table size for starlib reactions!" PRINT*, tabSiz, locTabSiz STOP END IF ! Put reaction in the list: ALLOCATE(curr) IF (kk.EQ.kkindx) THEN !Allocate space for avector ALLOCATE(curr%avector(7)) curr%avector = avector ELSE ! Allocate space for the tables ALLOCATE(locTempTable(locTabSiz)) ALLOCATE(curr%crossTable(tabSiz)) ! Read the tables READ(uni, *) locTempTable READ(uni, *) curr%crossTable ! Make all zeros in crossTable 1e-100 DO jj = 1, tabSiz IF (curr%crossTable(jj).LT.1.D-100) THEN curr%crossTable(jj) = 1.D-100 END IF END DO ! Define tempTable if not done already IF (MAXVAL(tempTable).LE.0.D0) tempTable = locTempTable ! Check that the temperature table is the same IF (MAXVAL(ABS(tempTable - locTempTable)).GT.0.D0) THEN PRINT*, "Not the same temperatures for starlib reactions!" DO jj = 1, tabSiz PRINT*, tempTable(jj), locTempTable(jj) END DO STOP END IF DEALLOCATE(locTempTable) END IF ! Input all common values curr%source = source curr%targnum = targ(kkindx) curr%prodnum = prod(kkindx) curr%totnum = targ(kkindx) + prod(kkindx) curr%targindx = neg curr%prodindx = pos IF (curr%source(1:2).EQ."ec") THEN curr%isEc = .TRUE. ELSE curr%isEc = .FALSE. END IF ! Introduce new reaction at the end IF (ASSOCIATED(last)) THEN last%next => curr ELSE IF (kk.EQ.1) THEN highTempReacts => curr ELSE IF (kkindx.EQ.1) THEN lowTempReacts => curr END IF last => curr ! Nullify next to be in the safe side NULLIFY(curr%next) END DO CLOSE(UNIT = uni) END DO END SUBROUTINE loadNetwork !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!! This subroutine loads the partition functions in "partfunct". !!! !!! !!! !!! The input value is: !!! !!! -partfunct, a two-dimensional array. !!! !!! !!! !!! At the output, the array partfunct contains all the partition function !!! !!! tabulated values for a given nucleon. The first index is the label of !!! !!! said nucleon. !!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE loadPartitions(partfunct) IMPLICIT NONE ! Input variables DOUBLE PRECISION::partfunct(:, :) ! Local variables INTEGER::ii !!!!!!!!!!!!!!!!!!!!!!!!!!!!!END OF DECLARATIONS!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Read file and store OPEN(UNIT = uni, FILE = "data/partition.lst") DO READ(uni, *, IOSTAT = error) ii READ(uni, *, IOSTAT = error) partfunct(ii, :) IF (error.NE.0) EXIT END DO CLOSE(UNIT = uni) END SUBROUTINE loadPartitions !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!! This subroutine calculates the cross section for every reaction for the !!! !!! given temperature and density. !!! !!! !!! !!! The input values are: !!! !!! -reacts, the linked list of CROSSARR types with the cross sections. !!! !!! -fullReacts, the linked list of REACT types with the cross sections. !!! !!! -temp, the temperature in T9 units. !!! !!! -rho, the density in g/cm^3. !!! !!! -partfun, the array with the partition function tables. !!! !!! -isLowTemp, boolean telling us if we are in low temperature reactions. !!! !!! !!! !!! At the output, all the cross sections in the linked list have been !!! !!! calculated for the given temperature and density. !!! !!! !!! !!! An additional function is included to calculate the cross sections. !!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE calculateReacts(reacts, fullReacts, temp, rho, partfun, isLowTemp) IMPLICIT NONE ! Input variables TYPE (CROSSARR), TARGET::reacts TYPE (REACT), TARGET::fullReacts DOUBLE PRECISION::temp, rho, partfun(:, :) LOGICAL::isLowTemp ! Local variables TYPE (CROSSARR), POINTER::cCross TYPE (REACT), POINTER::cReact DOUBLE PRECISION::crsect, partval INTEGER::ii, jj1, jj2, jj3, targIndx(3), prodIndx(4) LOGICAL::isRepeated, firstAdded, isSameReaction !!!!!!!!!!!!!!!!!!!!!!!!!!!!!END OF DECLARATIONS!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Initialize targIndx = 0 prodIndx = 0 ! Point to lists beginning cCross => reacts cReact => fullReacts firstAdded = .FALSE. ! In this loop the reactions are calculated DO ! Calculate cross section. IF (isLowTemp) THEN crsect = interpolateOneValue(log(temp), log(tempTable), & log(cReact%crossTable)) crsect = exp(crsect) ELSE crsect = highTempCross(cReact%avector, temp) END IF crsect = crsect*(rho**(cReact%targnum - 1)) ! If reaction is "ec", we have to multiply again by rho. IF (cReact%isEc) crsect = crsect*rho ! If there are more than one of each target, then we have to divide ! by the factorial of the number of repetitions, so by 2 or by 6. IF (cReact%targnum.GE.2) THEN jj1 = cReact%targindx(1) jj2 = cReact%targindx(2) jj3 = cReact%targindx(3) IF ((jj1.EQ.jj2).AND.(jj2.EQ.jj3)) THEN crsect = crsect/6.D0 ELSE IF ((jj1.EQ.jj2).OR.(jj1.EQ.jj3).OR.(jj2.EQ.jj3)) THEN crsect = crsect/2.D0 END IF END IF ! This block reads the partition function and calculates it. IF ((cReact%source(5:5).EQ.'v').OR.(cReact%source(6:6).EQ.'v')) THEN ! If the temperature is lower than 10^8 K, the partition ! functions will always be 1, if the temperature is higher, ! a logarithmical interpolation is made. IF ((temp.GE.1D-1).AND.(.NOT.isLowTemp)) THEN DO ii = 1, cReact%targnum + cReact%prodnum IF (ii.LE.cReact%targnum) THEN jj1 = cReact%targindx(ii) CALL partitionValue(temp, partfun(jj1, :), partval) crsect = crsect/partval ELSE jj1 = cReact%prodindx(ii - cReact%targnum) CALL partitionValue(temp, partfun(jj1, :), partval) crsect = crsect*partval END IF END DO END IF END IF ! Check that crsect is bigger than a value ! If the reaction is a repeat, simply add it to the last one IF (crsect.GT.1.D-40) THEN isRepeated = .TRUE. isSameReaction = .TRUE. IF (targIndx(1).NE.cReact%targIndx(1)) THEN isRepeated = .FALSE. isSameReaction = .FALSE. ELSE IF (targIndx(2).NE.cReact%targIndx(2)) THEN isRepeated = .FALSE. isSameReaction = .FALSE. ELSE IF (targIndx(3).NE.cReact%targIndx(3)) THEN isRepeated = .FALSE. isSameReaction = .FALSE. ELSE IF (prodIndx(1).NE.cReact%prodIndx(1)) THEN isSameReaction = .FALSE. ELSE IF (prodIndx(2).NE.cReact%prodIndx(2)) THEN isSameReaction = .FALSE. ELSE IF (prodIndx(3).NE.cReact%prodIndx(3)) THEN isSameReaction = .FALSE. ELSE IF (prodIndx(4).NE.cReact%prodIndx(4)) THEN isSameReaction = .FALSE. END IF ! If not repeated, fill this bit and allocate the next ! If repeated, add to the last one IF (.NOT.isSameReaction) THEN IF (firstAdded) THEN ALLOCATE(cCross%next) cCross => cCross%next NULLIFY(cCross%next) ELSE firstAdded = .TRUE. END IF cCross%crossect = crsect cCross%targIndx = cReact%targIndx cCross%prodIndx = cReact%prodIndx cCross%targnum = cReact%targnum cCross%prodnum = cReact%prodnum cCross%totnum = cReact%totnum cCross%isEc = cReact%isEc cCross%isRepeated = isRepeated ELSE cCross%crossect = cCross%crossect + crsect END IF targIndx = cReact%targIndx prodIndx = cReact%prodIndx END IF ! Go to next reaction IF (ASSOCIATED(cReact%next)) THEN cReact => cReact%next ELSE EXIT END IF END DO END SUBROUTINE calculateReacts FUNCTION highTempCross(avector, temp) RESULT(crsect) IMPLICIT NONE ! Input variables DOUBLE PRECISION::avector(:), temp ! Function DOUBLE PRECISION::crsect !!!!!!!!!!!!!!!!!!!!!!!!!!!!!END OF DECLARATIONS!!!!!!!!!!!!!!!!!!!!!!!!!!!! crsect = avector(1) + avector(2)/temp + avector(3)*temp**(-1.d0/3.d0) + & avector(4)*temp**(1.d0/3.d0) + avector(5)*temp + & avector(6)*temp**(5.d0/3.d0) + avector(7)*log(temp) ! Check that there are no underflows IF (crsect.LT.-300) THEN crsect = 0 ELSE crsect = exp(crsect) END IF END FUNCTION highTempCross !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!! This subroutine calculates the partition function for each element using !!! !!! the data from reaclib and performing a logarithmic interpolation. !!! !!! !!! !!! The input values are: !!! !!! -temp, the temperature in T9 units. !!! !!! -partit, the array with the partition function tables. !!! !!! -partVal, the interpolated value. !!! !!! !!! !!! At the output, partVal carries the interpolated value. !!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE partitionValue(temp, partit, partVal) IMPLICIT NONE ! Input DOUBLE PRECISION::temp, partit(24), partVal ! Temperature array for interpolation (in T9). DOUBLE PRECISION, DIMENSION(24)::tempArr = (/ 1D-1, 1.5D-1, 2D-1, 3D-1, & 4D-1, 5D-1, 6D-1, 7D-1, 8D-1, 9D-1, 1D0, 1.5D0, 2D0, 2.5D0, & 3D0, 3.5D0, 4D0, 4.5D0, 5D0, 6D0,7D0, 8D0, 9D0, 1D1 /) ! Local INTEGER::kk DOUBLE PRECISION::aa, bb !!!!!!!!!!!!!!!!!!!!!!!!!!!!!END OF DECLARATIONS!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! First we search between which two temperatures is our temp. DO kk = 1, 23 IF ((temp.GE.tempArr(kk)).AND.(temp.LE.tempArr(kk+1))) EXIT END DO ! Now we avoid calculation if the partition function is constant between the ! two temperatures and make the logarithmic interpolation if it's not. IF (ABS(partit(kk) - partit(kk+1)).LE.1.D-5) THEN partVal = partit(kk) ELSE aa = (log(partit(kk+1)) - log(partit(kk)))/ & (log(tempArr(kk+1)) - log(tempArr(kk))) bb = -(log(partit(kk+1))*log(tempArr(kk)) - log(partit(kk))* & log(tempArr(kk+1)))/(log(tempArr(kk+1)) - log(tempArr(kk))) partVal = (temp**aa)*exp(bb) END IF END SUBROUTINE partitionValue END MODULE loader
mit
bftg/gcc-5.3.0
gcc/testsuite/gfortran.dg/mvbits_4.f90
174
1031
! { dg-do run } ! PR fortran/35681 ! Check that dependencies of MVBITS arguments are resolved correctly by using ! temporaries if both arguments refer to the same variable. integer, dimension(10) :: ila1 = (/1,2,3,4,5,6,7,8,9,10/) integer, dimension(20) :: ila2 integer, dimension(10), target :: ila3 integer, pointer :: ila3_ptr(:) integer, parameter :: SHOULD_BE(10) = (/17,18,11,4,13,22,7,16,9,18/) integer, parameter :: INDEX_VECTOR(10) = (/9,9,6,2,4,9,2,9,6,10/) ila2(2:20:2) = ila1 ila3 = ila1 ! Argument is already packed. call mvbits (ila1(INDEX_VECTOR), 2, 4, ila1, 3) write (*,'(10(I3))') ila1 if (any (ila1 /= SHOULD_BE)) call abort () ! Argument is not packed. call mvbits (ila2(2*INDEX_VECTOR), 2, 4, ila2(2:20:2), 3) write (*,'(10(I3))') ila2(2:20:2) if (any (ila2(2:20:2) /= SHOULD_BE)) call abort () ! Pointer and target ila3_ptr => ila3 call mvbits (ila3(INDEX_VECTOR), 2, 4, ila3_ptr, 3) write (*,'(10(I3))') ila3 if (any (ila3 /= SHOULD_BE)) call abort () end
gpl-2.0
shengren/magma-1.6.1
testing/lin/dchkpp.f
9
13624
SUBROUTINE DCHKPP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, $ NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, $ IWORK, NOUT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER NMAX, NN, NNS, NOUT DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER IWORK( * ), NSVAL( * ), NVAL( * ) DOUBLE PRECISION A( * ), AFAC( * ), AINV( * ), B( * ), $ RWORK( * ), WORK( * ), X( * ), XACT( * ) * .. * * Purpose * ======= * * DCHKPP tests DPPTRF, -TRI, -TRS, -RFS, and -CON * * Arguments * ========= * * DOTYPE (input) LOGICAL array, dimension (NTYPES) * The matrix types to be used for testing. Matrices of type j * (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = * .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. * * NN (input) INTEGER * The number of values of N contained in the vector NVAL. * * NVAL (input) INTEGER array, dimension (NN) * The values of the matrix dimension N. * * NNS (input) INTEGER * The number of values of NRHS contained in the vector NSVAL. * * NSVAL (input) INTEGER array, dimension (NNS) * The values of the number of right hand sides NRHS. * * THRESH (input) DOUBLE PRECISION * The threshold value for the test ratios. A result is * included in the output file if RESULT >= THRESH. To have * every test ratio printed, use THRESH = 0. * * TSTERR (input) LOGICAL * Flag that indicates whether error exits are to be tested. * * NMAX (input) INTEGER * The maximum value permitted for N, used in dimensioning the * work arrays. * * A (workspace) DOUBLE PRECISION array, dimension * (NMAX*(NMAX+1)/2) * * AFAC (workspace) DOUBLE PRECISION array, dimension * (NMAX*(NMAX+1)/2) * * AINV (workspace) DOUBLE PRECISION array, dimension * (NMAX*(NMAX+1)/2) * * B (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) * where NSMAX is the largest entry in NSVAL. * * X (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) * * XACT (workspace) DOUBLE PRECISION array, dimension (NMAX*NSMAX) * * WORK (workspace) DOUBLE PRECISION array, dimension * (NMAX*max(3,NSMAX)) * * RWORK (workspace) DOUBLE PRECISION array, dimension * (max(NMAX,2*NSMAX)) * * IWORK (workspace) INTEGER array, dimension (NMAX) * * NOUT (input) INTEGER * The unit number for output. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D+0 ) INTEGER NTYPES PARAMETER ( NTYPES = 9 ) INTEGER NTESTS PARAMETER ( NTESTS = 8 ) * .. * .. Local Scalars .. LOGICAL ZEROT CHARACTER DIST, PACKIT, TYPE, UPLO, XTYPE CHARACTER*3 PATH INTEGER I, IMAT, IN, INFO, IOFF, IRHS, IUPLO, IZERO, K, $ KL, KU, LDA, MODE, N, NERRS, NFAIL, NIMAT, NPP, $ NRHS, NRUN DOUBLE PRECISION ANORM, CNDNUM, RCOND, RCONDC * .. * .. Local Arrays .. CHARACTER PACKS( 2 ), UPLOS( 2 ) INTEGER ISEED( 4 ), ISEEDY( 4 ) DOUBLE PRECISION RESULT( NTESTS ) * .. * .. External Functions .. DOUBLE PRECISION DGET06, DLANSP EXTERNAL DGET06, DLANSP * .. * .. External Subroutines .. EXTERNAL ALAERH, ALAHD, ALASUM, DCOPY, DERRPO, DGET04, $ DLACPY, DLARHS, DLATB4, DLATMS, DPPCON, DPPRFS, $ DPPT01, DPPT02, DPPT03, DPPT05, DPPTRF, DPPTRI, $ DPPTRS * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / DATA UPLOS / 'U', 'L' / , PACKS / 'C', 'R' / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 1 ) = 'Double precision' PATH( 2: 3 ) = 'PP' NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE * * Test the error exits * IF( TSTERR ) $ CALL DERRPO( PATH, NOUT ) INFOT = 0 * * Do for each value of N in NVAL * DO 110 IN = 1, NN N = NVAL( IN ) LDA = MAX( N, 1 ) XTYPE = 'N' NIMAT = NTYPES IF( N.LE.0 ) $ NIMAT = 1 * DO 100 IMAT = 1, NIMAT * * Do the tests only if DOTYPE( IMAT ) is true. * IF( .NOT.DOTYPE( IMAT ) ) $ GO TO 100 * * Skip types 3, 4, or 5 if the matrix size is too small. * ZEROT = IMAT.GE.3 .AND. IMAT.LE.5 IF( ZEROT .AND. N.LT.IMAT-2 ) $ GO TO 100 * * Do first for UPLO = 'U', then for UPLO = 'L' * DO 90 IUPLO = 1, 2 UPLO = UPLOS( IUPLO ) PACKIT = PACKS( IUPLO ) * * Set up parameters with DLATB4 and generate a test matrix * with DLATMS. * CALL DLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE, $ CNDNUM, DIST ) * SRNAMT = 'DLATMS' CALL DLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, $ CNDNUM, ANORM, KL, KU, PACKIT, A, LDA, WORK, $ INFO ) * * Check error code from DLATMS. * IF( INFO.NE.0 ) THEN CALL ALAERH( PATH, 'DLATMS', INFO, 0, UPLO, N, N, -1, $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) GO TO 90 END IF * * For types 3-5, zero one row and column of the matrix to * test that INFO is returned correctly. * IF( ZEROT ) THEN IF( IMAT.EQ.3 ) THEN IZERO = 1 ELSE IF( IMAT.EQ.4 ) THEN IZERO = N ELSE IZERO = N / 2 + 1 END IF * * Set row and column IZERO of A to 0. * IF( IUPLO.EQ.1 ) THEN IOFF = ( IZERO-1 )*IZERO / 2 DO 20 I = 1, IZERO - 1 A( IOFF+I ) = ZERO 20 CONTINUE IOFF = IOFF + IZERO DO 30 I = IZERO, N A( IOFF ) = ZERO IOFF = IOFF + I 30 CONTINUE ELSE IOFF = IZERO DO 40 I = 1, IZERO - 1 A( IOFF ) = ZERO IOFF = IOFF + N - I 40 CONTINUE IOFF = IOFF - IZERO DO 50 I = IZERO, N A( IOFF+I ) = ZERO 50 CONTINUE END IF ELSE IZERO = 0 END IF * * Compute the L*L' or U'*U factorization of the matrix. * NPP = N*( N+1 ) / 2 CALL DCOPY( NPP, A, 1, AFAC, 1 ) SRNAMT = 'DPPTRF' CALL DPPTRF( UPLO, N, AFAC, INFO ) * * Check error code from DPPTRF. * IF( INFO.NE.IZERO ) THEN CALL ALAERH( PATH, 'DPPTRF', INFO, IZERO, UPLO, N, N, $ -1, -1, -1, IMAT, NFAIL, NERRS, NOUT ) GO TO 90 END IF * * Skip the tests if INFO is not 0. * IF( INFO.NE.0 ) $ GO TO 90 * *+ TEST 1 * Reconstruct matrix from factors and compute residual. * CALL DCOPY( NPP, AFAC, 1, AINV, 1 ) CALL DPPT01( UPLO, N, A, AINV, RWORK, RESULT( 1 ) ) * *+ TEST 2 * Form the inverse and compute the residual. * CALL DCOPY( NPP, AFAC, 1, AINV, 1 ) SRNAMT = 'DPPTRI' CALL DPPTRI( UPLO, N, AINV, INFO ) * * Check error code from DPPTRI. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'DPPTRI', INFO, 0, UPLO, N, N, -1, $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) * CALL DPPT03( UPLO, N, A, AINV, WORK, LDA, RWORK, RCONDC, $ RESULT( 2 ) ) * * Print information about the tests that did not pass * the threshold. * DO 60 K = 1, 2 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )UPLO, N, IMAT, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF 60 CONTINUE NRUN = NRUN + 2 * DO 80 IRHS = 1, NNS NRHS = NSVAL( IRHS ) * *+ TEST 3 * Solve and compute residual for A * X = B. * SRNAMT = 'DLARHS' CALL DLARHS( PATH, XTYPE, UPLO, ' ', N, N, KL, KU, $ NRHS, A, LDA, XACT, LDA, B, LDA, ISEED, $ INFO ) CALL DLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) * SRNAMT = 'DPPTRS' CALL DPPTRS( UPLO, N, NRHS, AFAC, X, LDA, INFO ) * * Check error code from DPPTRS. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'DPPTRS', INFO, 0, UPLO, N, N, $ -1, -1, NRHS, IMAT, NFAIL, NERRS, $ NOUT ) * CALL DLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) CALL DPPT02( UPLO, N, NRHS, A, X, LDA, WORK, LDA, $ RWORK, RESULT( 3 ) ) * *+ TEST 4 * Check solution from generated exact solution. * CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, $ RESULT( 4 ) ) * *+ TESTS 5, 6, and 7 * Use iterative refinement to improve the solution. * SRNAMT = 'DPPRFS' CALL DPPRFS( UPLO, N, NRHS, A, AFAC, B, LDA, X, LDA, $ RWORK, RWORK( NRHS+1 ), WORK, IWORK, $ INFO ) * * Check error code from DPPRFS. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'DPPRFS', INFO, 0, UPLO, N, N, $ -1, -1, NRHS, IMAT, NFAIL, NERRS, $ NOUT ) * CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, $ RESULT( 5 ) ) CALL DPPT05( UPLO, N, NRHS, A, B, LDA, X, LDA, XACT, $ LDA, RWORK, RWORK( NRHS+1 ), $ RESULT( 6 ) ) * * Print information about the tests that did not pass * the threshold. * DO 70 K = 3, 7 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9998 )UPLO, N, NRHS, IMAT, $ K, RESULT( K ) NFAIL = NFAIL + 1 END IF 70 CONTINUE NRUN = NRUN + 5 80 CONTINUE * *+ TEST 8 * Get an estimate of RCOND = 1/CNDNUM. * ANORM = DLANSP( '1', UPLO, N, A, RWORK ) SRNAMT = 'DPPCON' CALL DPPCON( UPLO, N, AFAC, ANORM, RCOND, WORK, IWORK, $ INFO ) * * Check error code from DPPCON. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'DPPCON', INFO, 0, UPLO, N, N, -1, $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) * RESULT( 8 ) = DGET06( RCOND, RCONDC ) * * Print the test ratio if greater than or equal to THRESH. * IF( RESULT( 8 ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )UPLO, N, IMAT, 8, $ RESULT( 8 ) NFAIL = NFAIL + 1 END IF NRUN = NRUN + 1 90 CONTINUE 100 CONTINUE 110 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', type ', I2, ', test ', $ I2, ', ratio =', G12.5 ) 9998 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NRHS=', I3, ', type ', $ I2, ', test(', I2, ') =', G12.5 ) RETURN * * End of DCHKPP * END
bsd-3-clause
bftg/gcc-5.3.0
gcc/testsuite/gfortran.dg/coarray_10.f90
99
2137
! { dg-do compile } ! { dg-options "-fcoarray=single" } ! ! PR fortran/18918 ! ! Coarray intrinsics ! subroutine image_idx_test1() INTEGER,save :: array[2,-1:4,8,*] WRITE (*,*) IMAGE_INDEX (array, [2,0,3,1]) WRITE (*,*) IMAGE_INDEX (array, [0,0,3,1]) ! { dg-error "for dimension 1, SUB has 0 and COARRAY lower bound is 1" } WRITE (*,*) IMAGE_INDEX (array, [1,2,9,0]) ! { dg-error "for dimension 3, SUB has 9 and COARRAY upper bound is 8" } WRITE (*,*) IMAGE_INDEX (array, [2,0,3]) ! { dg-error "array elements of the SUB argument to IMAGE_INDEX at .1. shall be 4" } WRITE (*,*) IMAGE_INDEX (array, [2,0,3,1,1])! { dg-error "array elements of the SUB argument to IMAGE_INDEX at .1. shall be 4" } end subroutine subroutine this_image_check() integer,save :: a(1,2,3,5)[0:3,*] integer :: j integer,save :: z(4)[*], i j = this_image(a,dim=3) ! { dg-error "not a valid codimension index" } j = this_image(dim=3) ! { dg-error "DIM argument without COARRAY argument" } i = image_index(i, [ 1 ]) ! { dg-error "Expected coarray variable" } i = image_index(z, 2) ! { dg-error "must be a rank one array" } end subroutine this_image_check subroutine rank_mismatch() implicit none integer,allocatable :: A(:)[:,:,:,:] allocate(A(1)[1,1,1:*]) ! { dg-error "Too few codimensions" } allocate(A(1)[1,1,1,1,1,*]) ! { dg-error "Invalid codimension 5" } allocate(A(1)[1,1,1,*]) allocate(A(1)[1,1]) ! { dg-error "Too few codimensions" } allocate(A(1)[1,*]) ! { dg-error "Too few codimensions" } allocate(A(1)[1,1:*]) ! { dg-error "Too few codimensions" } A(1)[1,1,1] = 1 ! { dg-error "Too few codimensions" } A(1)[1,1,1,1,1,1] = 1 ! { dg-error "Invalid codimension 5" } A(1)[1,1,1,1] = 1 A(1)[1,1] = 1 ! { dg-error "Too few codimensions" } A(1)[1,1] = 1 ! { dg-error "Too few codimensions" } A(1)[1,1:1] = 1 ! { dg-error "Too few codimensions" } end subroutine rank_mismatch subroutine rank_mismatch2() implicit none integer, allocatable:: A(:)[:,:,:] allocate(A(1)[7:8,4:*]) ! { dg-error "Too few codimensions" } end subroutine rank_mismatch2
gpl-2.0
bftg/gcc-5.3.0
gcc/testsuite/gfortran.dg/ichar_1.f90
163
2107
! { dg-do compile } ! { dg-options "-std=legacy" } ! ! PR20879 ! Check that we reject expressions longer than one character for the ! ICHAR and IACHAR intrinsics. ! Assumed length variables are special because the frontend doesn't have ! an expression for their length subroutine test (c) character(len=*) :: c integer i i = ichar(c) i = ichar(c(2:)) i = ichar(c(:1)) end subroutine program ichar_1 type derivedtype character(len=4) :: addr end type derivedtype type derivedtype1 character(len=1) :: addr end type derivedtype1 integer i integer, parameter :: j = 2 character(len=8) :: c = 'abcd' character(len=1) :: g1(2) character(len=1) :: g2(2,2) character*1, parameter :: s1 = 'e' character*2, parameter :: s2 = 'ef' type(derivedtype) :: dt type(derivedtype1) :: dt1 if (ichar(c(3:3)) /= 97) call abort if (ichar(c(:1)) /= 97) call abort if (ichar(c(j:j)) /= 98) call abort if (ichar(s1) /= 101) call abort if (ichar('f') /= 102) call abort g1(1) = 'a' if (ichar(g1(1)) /= 97) call abort if (ichar(g1(1)(:)) /= 97) call abort g2(1,1) = 'a' if (ichar(g2(1,1)) /= 97) call abort i = ichar(c) ! { dg-error "must be of length one" "" } i = ichar(c(:)) ! { dg-error "must be of length one" "" } i = ichar(s2) ! { dg-error "must be of length one" "" } i = ichar(c(1:2)) ! { dg-error "must be of length one" "" } i = ichar(c(1:)) ! { dg-error "must be of length one" "" } i = ichar('abc') ! { dg-error "must be of length one" "" } ! ichar and iachar use the same checking routines. DO a couple of tests to ! make sure it's not totally broken. if (ichar(c(3:3)) /= 97) call abort i = ichar(c) ! { dg-error "must be of length one" "" } i = ichar(dt%addr(1:1)) i = ichar(dt%addr) ! { dg-error "must be of length one" "" } i = ichar(dt%addr(1:2)) ! { dg-error "must be of length one" "" } i = ichar(dt%addr(1:)) ! { dg-error "must be of length one" "" } i = ichar(dt1%addr(1:1)) i = ichar(dt1%addr) call test(g1(1)) end program ichar_1
gpl-2.0
nisihara1/q-e
LR_Modules/addusdbec_nc.f90
9
3676
! ! Copyright (C) 2001-2016 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------- subroutine addusdbec_nc (ik, wgt, dpsi, dbecsum_nc) !---------------------------------------------------------------------- ! ! This routine adds to the dbecsum the term which correspond to this ! k point. After the accumulation the additional part of the charge ! is computed in addusddens. ! USE kinds, ONLY : DP USE lsda_mod, ONLY : nspin USE ions_base, ONLY : nat, ityp, ntyp => nsp USE becmod, ONLY : calbec USE wvfct, ONLY : npwx, nbnd USE uspp, ONLY : nkb, vkb, okvan USE noncollin_module, ONLY : noncolin, npol USE uspp_param, ONLY : upf, nh, nhm USE mp_bands, ONLY : intra_bgrp_comm USE klist, ONLY : ngk USE lrus, ONLY : becp1 USE qpoint, ONLY : ikks, ikqs USE control_lr, ONLY : nbnd_occ ! IMPLICIT NONE ! ! the dummy variables ! COMPLEX(DP) :: dbecsum_nc (nhm,nhm,nat,nspin), dpsi(npwx*npol,nbnd) ! inp/out: the sum kv of bec * ! input : contains delta psi INTEGER :: ik ! input: the k point REAL(DP) :: wgt ! input: the weight of this k point ! ! here the local variables ! INTEGER :: na, nt, ih, jh, ibnd, ikb, jkb, startb, & lastb, ijkb0, is1, is2, ijs ! counter on atoms ! counter on atomic type ! counter on solid beta functions ! counter on solid beta functions ! counter on the bands ! the real k point ! counter on solid becp ! counter on solid becp ! composite index for dbecsum ! divide among processors the sum ! auxiliary variable for counting INTEGER :: ikk, ikq, npwq ! index of the point k ! index of the point k+q ! number of the plane-waves at point k+q COMPLEX(DP), ALLOCATABLE :: dbecq_nc(:,:,:) ! the change of becq IF (.NOT.okvan) RETURN ! CALL start_clock ('addusdbec_nc') ! ALLOCATE (dbecq_nc( nkb,npol, nbnd)) ! ikk = ikks(ik) ikq = ikqs(ik) npwq = ngk(ikq) ! ! First compute the product of dpsi and vkb ! CALL calbec (npwq, vkb, dpsi, dbecq_nc) ! ! And then we add the product to becsum ! ! Band parallelization: each processor takes care of its slice of bands ! CALL divide (intra_bgrp_comm, nbnd_occ (ikk), startb, lastb) ! ijkb0 = 0 do nt = 1, ntyp if (upf(nt)%tvanp ) then do na = 1, nat if (ityp (na) .eq.nt) then do ih = 1, nh (nt) ikb = ijkb0 + ih do jh = 1, nh (nt) jkb = ijkb0 + jh DO ibnd = startb, lastb ijs=0 DO is1=1,npol DO is2=1,npol ijs=ijs+1 dbecsum_nc(ih,jh,na,ijs)=dbecsum_nc(ih,jh,na,ijs)+& wgt*CONJG(becp1(ik)%nc(ikb,is1,ibnd)) & *dbecq_nc(jkb,is2,ibnd) ENDDO ENDDO ENDDO enddo enddo ijkb0 = ijkb0 + nh (nt) endif enddo else do na = 1, nat if (ityp (na) .eq.nt) ijkb0 = ijkb0 + nh (nt) enddo endif enddo ! DEALLOCATE (dbecq_nc) ! CALL stop_clock ('addusdbec_nc') ! RETURN ! end subroutine addusdbec_nc
gpl-2.0
healpy/healpixmirror
src/f90/mod/paramfile_io.F90
1
37962
!----------------------------------------------------------------------------- ! ! Copyright (C) 1997-2013 Krzysztof M. Gorski, Eric Hivon, ! Benjamin D. Wandelt, Anthony J. Banday, ! Matthias Bartelmann, Hans K. Eriksen, ! Frode K. Hansen, Martin Reinecke ! ! ! This file is part of HEALPix. ! ! HEALPix is free software; you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation; either version 2 of the License, or ! (at your option) any later version. ! ! HEALPix is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with HEALPix; if not, write to the Free Software ! Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ! ! For more information about HEALPix see http://healpix.sourceforge.net ! !----------------------------------------------------------------------------- ! -*- f90 -*- ! ! v1.0: M. Reinecke ! v1.1: 2002-09, E. Hivon, added concatnl, scan_directories, numeric_string ! made interactive mode more user friendly ! v1.2: added parse_summarize ! v1.3: 2008-01-22, added parse_check_unused ! 2008-01-29, addition of silent keyword in parse_init ! 2008-03-25: expand environment variables (${XXX}) in parse_string ! v1.4: 2008-10-15, avoid over-running keylist in parse_summarize ! v1.5: 2009-09-07, introduces get_healpix_main_dir, get_healpix_data_dir, get_healpix_test_dir ! v1.6: 2009-11-26: bug correction in get_healpix_*_dir ! v1.7: 2011-01-03: addition of get_healpix_pixel_window_file & get_healpix_ring_weight_file ! v1.8: 2012-10-29: replaced F90 inquire with misc_utils's file_present which will accept remote files ! v1.9: 2012-11-14: deal correctly with undefined HEALPIX (or equivalent) in get_healpix_data_dir ! v2.0: 2018-05-18: added get_healpix_pixel_weight_file and get_healpix_weight_file module paramfile_io use healpix_types use extension use misc_utils implicit none private public paramfile_handle, parse_init, parse_real, parse_double, parse_int, & parse_long, parse_lgt, parse_string, parse_summarize, parse_finish, & parse_check_unused public concatnl, scan_directories public get_healpix_main_dir, get_healpix_data_dir, get_healpix_test_dir public get_healpix_pixel_window_file, get_healpix_ring_weight_file, & get_healpix_pixel_weight_file, get_healpix_weight_file type paramfile_handle character(len=filenamelen) filename character(len=filenamelen), pointer, dimension(:) :: keylist=>NULL() character(len=filenamelen), pointer, dimension(:) :: valuelist=>NULL() logical(LGT), pointer, dimension(:) :: usedlist=>NULL() logical interactive, verbose end type paramfile_handle character(len=*), parameter, public :: ret = achar(10)//' ' character(len=*), parameter, private :: swdef = ' <default>' contains !===================================================================== subroutine notify_user (keyname, rdef, rmin, rmax, ddef, dmin, dmax, & idef, imin, imax, ldef, lmin, lmax, logdef, chdef, descr, ivalid) !===================================================================== ! prompts user for next parameter when in interactive mode !===================================================================== character(len=*), intent(in) :: keyname real(sp), intent(in), optional :: rdef, rmin, rmax real(dp), intent(in), optional :: ddef, dmin, dmax integer(i4b), intent(in), optional :: idef, imin, imax integer(i8b), intent(in), optional :: ldef, lmin, lmax logical, intent(in), optional :: logdef character(len=*), intent(in), optional :: chdef, descr integer(i4b), intent(in), optional, dimension(1:) :: ivalid if (present(descr)) then write(*,'(a)') trim(descr) else print *, 'Please enter a value for the key ', keyname endif if (present(rmin) .and. present(rmax)) then print *, "allowed range: ", rmin, rmax else if (present(rmin)) print *, "min value: ", rmin if (present(rmax)) print *, "max value: ", rmax endif if (present(dmin) .and. present(dmax)) then print *, "allowed range: ", dmin, dmax else if (present(dmin)) print *, "min value: ", dmin if (present(dmax)) print *, "max value: ", dmax endif if (present(imin) .and. present(imax)) then print *, "allowed range: ", imin, imax else if (present(imin)) print *, "min value: ", imin if (present(imax)) print *, "max value: ", imax endif if (present(ivalid)) then print *, "allowed values: ",ivalid(1:) endif if (present(lmin) .and. present(lmax)) then print *, "allowed range: ", lmin, lmax else if (present(lmin)) print *, "min value: ", lmin if (present(lmax)) print *, "max value: ", lmax endif if (present(rdef)) print *, "default value: ", rdef if (present(ddef)) print *, "default value: ", ddef if (present(idef)) print *, "default value: ", idef if (present(ldef)) print *, "default value: ", ldef if (present(logdef)) print *, "default value: ", logdef if (present(chdef)) print *, "default value: ", trim(chdef) end subroutine notify_user !=================================================================== function parse_init (fname, silent) !=================================================================== character(len=*), intent(in) :: fname type(paramfile_handle) parse_init logical(LGT), intent(in), optional :: silent integer :: i,cnt character(len=filenamelen) :: line, name, value logical(LGT) :: myverbose ! be verbose by default myverbose = .true. if (present(silent)) myverbose = .not.silent if (len(trim(fname))==0) then parse_init%filename = '' parse_init%interactive = .true. parse_init%verbose = .true. parse_init%keylist => NULL() parse_init%valuelist => NULL() parse_init%usedlist => NULL() cnt = 30 allocate(parse_init%keylist(cnt),parse_init%valuelist(cnt)) allocate(parse_init%usedlist(cnt)) parse_init%keylist = '' parse_init%valuelist = '' parse_init%usedlist = .false. else call assert_present (fname) call assert(len(fname)<=filenamelen, 'Parser: error: file name too long') parse_init%filename = fname parse_init%interactive = .false. parse_init%verbose = myverbose parse_init%keylist => NULL() parse_init%valuelist => NULL() parse_init%usedlist => NULL() ! count valid lines open (1, file=trim(fname)) cnt=0 do read (1,'(a)',end=2) line line = adjustl(line) i=scan(line,'=') if (i/=0 .and. line(1:1)/='#' .and. line(1:1)/='!') cnt=cnt+1 end do 2 close (1) ! read and parse valid lines allocate(parse_init%keylist(cnt),parse_init%valuelist(cnt)) allocate(parse_init%usedlist(cnt)) open (1, file=trim(fname)) cnt=0 do read (1,'(a)',end=3) line line = adjustl(line) i=scan(line,'=') if (i/=0 .and. line(1:1)/='#' .and. line(1:1)/='!') then cnt=cnt+1 name = trim(adjustl(line(:i-1))) value = trim(adjustl(line(i+1:))) if (trim(value)=="") then write(*,'(a)') ' ' write(*,'(a)') 'ERROR: Inputs of the form ' write(*,'(a)') trim(name)//' = ' write(*,'(a)') ' (ie, defined as a blank value) are not valid' write(*,'(a)') 'To get the default value, comment out the keyword in '& & //trim(parse_init%filename) write(*,'(a)') '# '//trim(name)//' = ' write(*,'(a)') "If you mean 'No file', use" write(*,'(a)') trim(name)//" = '' " write(*,'(a)') ' ' call fatal_error endif parse_init%keylist(cnt) = name parse_init%valuelist(cnt) = value parse_init%usedlist(cnt) = .false. endif end do 3 close (1) endif ! be verbose if (parse_init%interactive) then write(*,'(a)') 'Interactive mode. Answer the following questions.' write(*,'(a)') 'If no answer is entered, the default value will be taken' else if (parse_init%verbose) then write(*,'(a)') 'Reading run parameters from '//trim(parse_init%filename) write(*,'(a)') ' parameters not defined in that file will be set to their default value' endif endif end function parse_init !=================================================================== subroutine parse_summarize (handle, code, prec) !=================================================================== type(paramfile_handle), intent(in) :: handle character(len=*), optional, intent(in) :: code integer(i4b), optional, intent(in) :: prec ! integer(i4b) :: i, nkeys character(len=filenamelen) :: name, value, next_name, command if (handle%interactive) then command = '' if (present(code)) then command = trim(code) if (present(prec)) then if (prec == SP) command = trim(command)//' --single' if (prec == DP) command = trim(command)//' --double' endif endif if (trim(command) /= '') then print*,' This run can be reproduced in non-interactive mode, with the command' print*,trim(command)//' paramfile' print*,'where paramfile contains' else print*,' This run can be reproduced in non-interactive mode' print*,'if a parameter file with the following content is provided:' endif nkeys = size(handle%keylist) do i=1, nkeys name = handle%keylist(i) if (i < nkeys) then next_name = handle%keylist(i+1) else next_name = '' endif value = handle%valuelist(i) if (trim(name) /= '' .and. trim(name) /= trim(next_name)) then if (trim(value) == '') then write(*,'(a)') '# '//trim(name) else write(*,'(a)') trim(name)//' = '//trim(value) endif endif enddo print*,' ' endif end subroutine parse_summarize !=================================================================== subroutine parse_check_unused(handle, code) !=================================================================== ! print out unused keywords, if any !=================================================================== type(paramfile_handle), intent(in) :: handle character(len=*), optional, intent(in) :: code ! integer(i4b) :: i, unused character(len=80) :: mycode ! character(len=filenamelen) :: name, value, next_name, command ! non interactive mode if (.not.handle%interactive) then mycode = 'this code' if (present(code)) mycode = trim(code) ! count unused keywords in input parameter files unused = 0 do i=1,size(handle%keylist) if (.not. handle%usedlist(i)) unused = unused + 1 enddo if (unused > 0) then print*,' ' print*,' =====================================================' print*,' WARNING: the following keywords found in '//trim(handle%filename) print*,' have NOT been used by '//trim(mycode) !print*,' Make sure they are correctly spelled.' do i=1,size(handle%keylist) if (.not. handle%usedlist(i)) then write(*,'(a)') trim(handle%keylist(i))//' = '//trim(handle%valuelist(i)) endif enddo print*,' =====================================================' print*,' ' endif end if return end subroutine parse_check_unused !=================================================================== subroutine parse_finish (handle) !=================================================================== type(paramfile_handle), intent(inout) :: handle if (associated(handle%keylist)) then deallocate(handle%keylist, handle%valuelist) deallocate(handle%usedlist) endif end subroutine parse_finish !=================================================================== subroutine find_param (handle,keyname,result,found,rdef,rmin,rmax, & ddef,dmin,dmax,idef,imin,imax,ldef,lmin,lmax,logdef,chdef,descr, & ivalid) !=================================================================== ! extract parameter from file or read from standard input !=================================================================== type(paramfile_handle), intent(inout) :: handle character(len=*), intent(in) :: keyname character(len=*), intent(out) :: result logical, intent(out) :: found real(sp), intent(in), optional :: rdef, rmin, rmax real(dp), intent(in), optional :: ddef, dmin, dmax integer(i4b), intent(in), optional :: idef, imin, imax integer(i8b), intent(in), optional :: ldef, lmin, lmax logical, intent(in), optional :: logdef character(len=*), intent(in), optional :: chdef, descr integer(i4b), intent(in), optional, dimension(1:) :: ivalid character(len=filenamelen) :: line, name, value integer i !=================================================================== found=.false. if (handle%interactive) then call notify_user (keyname,rdef,rmin,rmax,ddef,dmin,dmax, & & idef,imin,imax,ldef,lmin,lmax,logdef,chdef,descr, & & ivalid) read (*,'(a)',err=5) result found = (trim(result)/='') do i=1,size(handle%keylist) if (trim(handle%keylist(i))=='') then handle%keylist(i) = trim(keyname) if (found) then handle%valuelist(i) = trim(result) handle%usedlist(i) = .true. else if (present(rdef)) write(handle%valuelist(i),*) rdef if (present(ddef)) write(handle%valuelist(i),*) ddef if (present(idef)) write(handle%valuelist(i),*) idef if (present(ldef)) write(handle%valuelist(i),*) ldef if (present(logdef)) write(handle%valuelist(i),*) logdef if (present(chdef)) handle%valuelist(i) = chdef endif exit end if end do else do i=1,size(handle%keylist) if (trim(handle%keylist(i))==keyname) then result=trim(handle%valuelist(i)) found=.true. handle%usedlist(i) = .true. end if end do 2 close (1) endif return 5 print*,'Parser: find_param: error reading value' call fatal_error end subroutine find_param !=================================================================== !=================================================================== function parse_real (handle, keyname, default, vmin, vmax, descr) !=================================================================== !=================================================================== type(paramfile_handle), intent(inout) :: handle character(len=*), intent(in) :: keyname real(sp), intent(in), optional :: default, vmin, vmax character(len=*), intent(in), optional :: descr real(sp) :: parse_real character(len=filenamelen) :: result character(len=30) :: about_def logical found !=================================================================== 10 continue about_def = '' call find_param (handle, trim(keyname), result, found, rdef=default, & & rmin=vmin, rmax=vmax, descr=descr) if (found) then read (result,*,err=5) parse_real else if (present(default)) then ! print *,'Parser: warning: using default value for ',trim(keyname) about_def = swdef parse_real = default else print *,'Parser: error: ',trim(keyname),' not found.' goto 2 endif endif if (handle%verbose) print *,'Parser: ',trim(keyname),' = ',parse_real, trim(about_def) if (present(vmin)) then if (parse_real<vmin) then print *,'Parser: error: value for ', trim(keyname),' too small.' goto 2 endif endif if (present(vmax)) then if (parse_real>vmax) then print *,'Parser: error: value for ', trim(keyname),' too large.' goto 2 endif endif return ! normal exit 5 print*,'Parser: parse_real: error reading value' 2 if (handle%interactive) goto 10 ! try again call fatal_error end function parse_real !=================================================================== function parse_double (handle, keyname, default, vmin, vmax, descr) !=================================================================== !=================================================================== type(paramfile_handle), intent(inout) :: handle character(len=*), intent(in) :: keyname real(dp), intent(in), optional :: default, vmin, vmax character(len=*), intent(in), optional :: descr real(dp) :: parse_double character(len=filenamelen) :: result character(len=30) :: about_def logical found !=================================================================== 10 continue about_def = '' call find_param (handle, trim(keyname), result, found, ddef=default, & & dmin=vmin, dmax=vmax, descr=descr) if (found) then read (result,*,err=5) parse_double else if (present(default)) then ! print *,'Parser: warning: using default value for ',trim(keyname) about_def = swdef parse_double = default else print *,'Parser: error: ',trim(keyname),' not found.' goto 2 endif endif if (handle%verbose) print *,'Parser: ',trim(keyname),' = ',parse_double, trim(about_def) if (present(vmin)) then if (parse_double<vmin) then print *,'Parser: error: value for ', trim(keyname),' too small.' goto 2 endif endif if (present(vmax)) then if (parse_double>vmax) then print *,'Parser: error: value for ', trim(keyname),' too large.' goto 2 endif endif return ! normal exit 5 print*,'Parser: parse_double: error reading value' 2 if (handle%interactive) goto 10 ! try again call fatal_error end function parse_double !================================================================== function parse_int (handle, keyname, default, vmin, vmax, descr, valid) !================================================================== ! parse 4 byte integer parameter !================================================================== type(paramfile_handle), intent(inout) :: handle character(len=*), intent(in) :: keyname integer(i4b), intent(in), optional :: default, vmin, vmax integer(i4b), intent(in), optional, dimension(1:) :: valid character(len=*), intent(in), optional :: descr integer(i4b) :: parse_int character(len=filenamelen) :: result character(len=30) :: about_def logical :: found integer(i4b) :: i !================================================================== 10 continue about_def = '' call find_param (handle, trim(keyname), result, found, idef=default, & & imin=vmin, imax=vmax, descr=descr, ivalid=valid) if (found) then read (result,*,err=5) parse_int else if (present(default)) then ! print *,'Parser: warning: using default value for ',trim(keyname) about_def = swdef parse_int = default else print *,'Parser: error: ',trim(keyname),' not found.' goto 2 endif endif if (handle%verbose) print *,'Parser: ',trim(keyname),' = ',parse_int, trim(about_def) if (present(vmin)) then if (parse_int<vmin) then print *,'Parser: error: value for ', trim(keyname),' too small.' goto 2 endif endif if (present(vmax)) then if (parse_int>vmax) then print *,'Parser: error: value for ', trim(keyname),' too large.' goto 2 endif endif if (present(valid)) then found = .false. do i=1, size(valid) if (parse_int == valid(i)) found=.true. enddo if (.not.found) then print *,'Parser: error: invalid value for '//trim(keyname) goto 2 endif endif return ! normal exit 5 print*,'Parser: parse_int: error reading value' 2 if (handle%interactive) goto 10 ! try again call fatal_error end function parse_int !================================================================== !================================================================== function parse_long (handle, keyname, default, vmin, vmax, descr) !================================================================== ! parse 8 byte integer parameter !================================================================== type(paramfile_handle), intent(inout) :: handle character(len=*), intent(in) :: keyname integer(i8b), intent(in), optional :: default, vmin, vmax character(len=*), intent(in), optional :: descr integer(i8b) :: parse_long character(len=filenamelen) :: result character(len=30) :: about_def logical found !================================================================== 10 continue about_def = '' call find_param (handle, trim(keyname), result, found, ldef=default, & lmin=vmin, lmax=vmax, descr=descr) if (found) then read (result,*,err=5) parse_long else if (present(default)) then ! print *,'Parser: warning: using default value for ',trim(keyname) about_def = swdef parse_long = default else print *,'Parser: error: ',trim(keyname),' not found.' goto 2 endif endif if (handle%verbose) print *,'Parser: ',trim(keyname),' = ',parse_long, trim(about_def) if (present(vmin)) then if (parse_long<vmin) then print *,'Parser: error: value for ', trim(keyname),' too small.' goto 2 endif endif if (present(vmax)) then if (parse_long>vmax) then print *,'Parser: error: value for ', trim(keyname),' too large.' goto 2 endif endif return ! normal exit 5 print*,'Parser: parse_long: error reading value' 2 if (handle%interactive) goto 10 ! try again call fatal_error end function parse_long !=================================================================== function parse_lgt (handle, keyname, default, descr) !=================================================================== ! parse (1 byte) logical parameter !=================================================================== type(paramfile_handle), intent(inout) :: handle character(len=*), intent(in) :: keyname logical, intent(in), optional :: default character(len=*), intent(in), optional :: descr logical :: parse_lgt character(len=filenamelen) :: result character(len=30) :: about_def logical found !=================================================================== 10 continue about_def = '' call find_param (handle, trim(keyname), result, found, logdef=default, & & descr=descr) if (found) then select case (strupcase(result)) case ('Y','YES','T','TRUE', '.TRUE.','1') parse_lgt = .true. case ('N','NO', 'F','FALSE','.FALSE.','0') parse_lgt= .false. case default goto 5 end select else if (present(default)) then ! print *,'Parser: warning: using default value for ',trim(keyname) parse_lgt = default else print *,'Parser: error: ',trim(keyname),' not found.' goto 2 endif endif if (handle%verbose) print *,'Parser: ',trim(keyname),' = ',parse_lgt, trim(about_def) return ! normal exit 5 print*,'Parser: parse_lgt: error reading value' 2 if (handle%interactive) goto 10 ! try again call fatal_error end function parse_lgt !=================================================================== function parse_string (handle, keyname, default, descr, filestatus, options) !=================================================================== ! parse a character string parameter ! ! if filestatus is 'old', look for an existing file having the name of the string ! ! if filestatus is 'new', no file with the exact same name as the string should exist ! ! options is the list of valid options ! !=================================================================== type(paramfile_handle), intent(inout) :: handle character(len=*), intent(in) :: keyname character(len=*), intent(in), optional :: default character(len=*), intent(in), optional :: descr character(len=*), intent(in), optional :: filestatus character(len=*), intent(in), optional, dimension(1:) :: options character(len=filenamelen) :: parse_string character(len=filenamelen) :: result character(len=30) :: about_def logical :: found, there integer :: i !=================================================================== 10 continue about_def = '' call find_param (handle, trim(keyname), result, found, chdef=default, & descr=descr) if (found) then parse_string = trim(result) else if (present(default)) then ! write(*,'(1x,a)') 'Parser: warning: using default value for '//trim(keyname) about_def = swdef parse_string = trim(default) else write(*,'(1x,a)') 'Parser: error: '//trim(keyname)//' not found.' goto 2 endif endif parse_string = expand_env_var(parse_string) if (handle%verbose) write(*,'(1x,a)') 'Parser: '//trim(keyname)//' = '//trim(parse_string)//trim(about_def) ! 0 (zero), '' and ' ' (2 single quotes with nothing or one space in between) ! are interpreted as "No File" if (trim(adjustl(parse_string)) == "0" ) parse_string = '' if (trim(adjustl(parse_string)) == "''") parse_string = '' if (trim(adjustl(parse_string)) == "' '") parse_string = '' if (present(filestatus) .and. trim(parse_string) /= '') then if (trim(filestatus)=='new' .or. trim(filestatus)=='NEW') then !inquire(file=trim(parse_string),exist=there) there = file_present(trim(parse_string)) if (there) then print *, 'Parser: error: output file ' // trim(parse_string) // & ' already exists!' goto 2 end if else if (trim(filestatus)=='old' .or. trim(filestatus)=='OLD') then !inquire(file=trim(parse_string),exist=there) there = file_present(trim(parse_string)) if (.not. there) then print *, 'Parser: error: input file ' // trim(parse_string) // & ' does not exist!' goto 2 end if else print *, 'Parser: error: wrong value for filestatus :',filestatus call fatal_error endif endif if (present(options)) then do i=1, size(options) if (trim(adjustl(parse_string)) == trim(adjustl(options(i)))) goto 5 enddo print*,'Invalid choice' goto 2 5 continue endif return ! normal exit 2 if (handle%interactive) goto 10 ! try again call fatal_error end function parse_string !======================================================================== function concatnl(line1,line2,line3,line4,line5,line6,line7,line8,line9,line10) !======================================================================== ! concatenate line1, line2, line3,... into one string, ! while putting a char(10) Line Feed in between !======================================================================== character(len=*), intent(in) :: line1 character(len=*), intent(in), optional :: line2,line3,line4,line5 character(len=*), intent(in), optional :: line6,line7,line8,line9,line10 character(len=filenamelen) :: concatnl concatnl = trim(line1) if (present(line2)) concatnl = trim(concatnl)//ret//trim(line2) if (present(line3)) concatnl = trim(concatnl)//ret//trim(line3) if (present(line4)) concatnl = trim(concatnl)//ret//trim(line4) if (present(line5)) concatnl = trim(concatnl)//ret//trim(line5) if (present(line6)) concatnl = trim(concatnl)//ret//trim(line6) if (present(line7)) concatnl = trim(concatnl)//ret//trim(line7) if (present(line8)) concatnl = trim(concatnl)//ret//trim(line8) if (present(line9)) concatnl = trim(concatnl)//ret//trim(line9) if (present(line10)) concatnl = trim(concatnl)//ret//trim(line10) end function concatnl !======================================================================== !======================================================================== function scan_directories(directories, filename, fullpath) !======================================================================== ! scan directories in search of filename, ! if found, returns .true. and the full path is in fullpath. ! The search is *NOT* recursive ! ! it assumes that the given directory and filename are separated by either ! nothing, a / (slash) or a \ (backslash) ! ! if several directories are to be searched (up to 20), ! concatenate them into 'directories', ! putting a special character (ASCII < 32) between them. ! see concatnl ! NB: a space is not a special character !======================================================================== logical(LGT) :: scan_directories character(len=*), intent(in) :: filename, directories character(len=*), intent(out) :: fullpath logical :: found integer(I4B), dimension(1:20) :: index integer(I4B) :: i, k, nc, nspecial character(len=1) :: ch character(len=filenamelen) :: directory character(len=3000) :: string character(LEN=1), DIMENSION(1:3) :: separator character(len=*), parameter :: code = 'scan_directories' !======================================================================== ! define separators (this is the only way that works for all compilers) separator(1) = char(32) ! ' ' separator(2) = char(47) ! '/' separator(3) = char(92) ! '\' ! find location of special characters nc = len_trim(directories) index(1) = 0 nspecial = 2 do i=1,nc ch = directories(i:i) if (iachar(ch) < 32) then index(nspecial) = i nspecial = nspecial + 1 endif enddo index(nspecial) = nc + 1 ! test string between special character as potential directory fullpath = '' found = .false. do i = 1, nspecial-1 directory=trim(adjustl(directories(index(i)+1:index(i+1)-1))) do k = 1, size(separator) string = trim(directory)//trim(separator(k))//trim(filename) ! inquire(& ! & file=string, & ! & exist=found) found = file_present(string) if (found) goto 10 enddo enddo 10 continue if (found) then if (len(fullpath) >= len_trim(string)) then fullpath = trim(string) else print*,code print*,'variable fullpath is not large enough' print*,'requires ',len_trim(string),' characters' print*,'has only ',trim(fullpath) call fatal_error endif endif scan_directories = found end function scan_directories !----------------------------------------------------------- function get_healpix_main_dir() result (hmd) character(len=FILENAMELEN) :: hmd !----------------------------------------------------------- ! healpix_dir = get_healpix_main_dir() ! returns the full path to the HEALPIX main directory ! using ! 1) the preprocessing macros ! 1a HEALPIX ! 1b HEALPIXDIR ! 2) the environment variable ! 2a HEALPIX !----------------------------------------------------------- hmd = '' ! print*,'get_healpix_main' #ifdef HEALPIX hmd = HEALPIX #else #ifdef HEALPIXDIR hmd = HEALPIXDIR #else call getEnvironment('HEALPIX',hmd) #endif #endif if (trim(hmd) == '') then !!! call fatal_error("Can not determine main HEALPIX directory") else hmd = trim(hmd) // '/' endif return end function get_healpix_main_dir !----------------------------------------------------------- function get_healpix_data_dir() result (hdd) character(len=FILENAMELEN) :: hdd character(len=FILENAMELEN) :: def_dir, healpixdir !----------------------------------------------------------- ! healpix_data_dir = get_healpix_data_dir() ! returns the full path to the HEALPIX DATA directory ! using ! 1) the preprocessing macro ! HEALPIXDATA ! 2) the environment variable ! $HEALPIXDATA ! otherwise, it will return the list of directories: ! . ! ../data ! ./data ! .. ! (and if $HEALPIX is defined) ! $HEALPIX ! $HEALPIX/data ! $HEALPIX/../data ! $HEALPIX\data ! separated by LineFeed ! ! bug correction 2009-11-26 ! treat correctly the case where HEALPIX not defined 2012-11-14 !----------------------------------------------------------- hdd = '' ! print*,'get_healpix_data' #ifdef HEALPIXDATA hdd = HEALPIXDATA #else call getEnvironment('HEALPIXDATA',hdd) if (trim(hdd) == '') then def_dir = concatnl("","../data","./data","..") healpixdir = get_healpix_main_dir() if (trim(healpixdir) /= "") then ! if $HEALPIX defined ! def_dir = concatnl(& hdd = concatnl(& & def_dir, & & healpixdir, & & trim(healpixdir)//"/data", & & trim(healpixdir)//"/../data", & & trim(healpixdir)//char(92)//"data") !backslash else ! if $HEALPIX (or equivalent) not defined hdd = def_dir endif endif #endif if (trim(hdd) == '') then !!! call fatal_error("Can not determine HEALPIX DATA directory") else hdd = trim(hdd) // '/' endif return end function get_healpix_data_dir !----------------------------------------------------------- function get_healpix_test_dir() result (htd) character(len=FILENAMELEN) :: htd character(len=FILENAMELEN) :: hmd !----------------------------------------------------------- ! healpix_test_dir = get_healpix_test_dir() ! returns the full path to the HEALPIX TEST directory ! using ! 1) the preprocessing macro ! HEALPIXTEST ! 2) the environment variable ! $HEALPIXTEST ! 3) ! $HEALPIX/test ! bug correction 2009-11-26 !----------------------------------------------------------- htd = '' ! print*,'get_healpix_test' #ifdef HEALPIXTEST htd = HEALPIXTEST #else call getEnvironment('HEALPIXTEST',htd) if (trim(htd) == '') then call getEnvironment('HEALPIX',hmd) if (trim(hmd) /= '') then ! bug correction htd = trim(hmd)//'/test' endif endif #endif if (trim(htd) == '') then !!! call fatal_error("Can not determine HEALPIX TEST directory") else htd = trim(htd) // '/' endif return end function get_healpix_test_dir !----------------------------------------------------------- ! file = get_healpix_pixel_window_file(nside) ! returns default file name of Healpix pixel window !----------------------------------------------------------- function get_healpix_pixel_window_file(nside) result(filename) integer(i4b), intent(in) :: nside character(len=FILENAMELEN) :: filename character(len=6) :: sstr if (nside <= 8192) then sstr = adjustl(string(nside,'(i4.4)')) else sstr = adjustl(string(nside,'(i6.6)')) endif filename = "pixel_window_n"//trim(sstr)//".fits" end function get_healpix_pixel_window_file !----------------------------------------------------------- ! file = get_healpix_ring_weight_file(nside) ! returns default file name of Healpix ring weights !----------------------------------------------------------- function get_healpix_ring_weight_file(nside) result (filename) integer(i4b), intent(in) :: nside character(len=FILENAMELEN) :: filename character(len=6) :: sstr if (nside <= 8192) then sstr = adjustl(string(nside,'(i5.5)')) else sstr = adjustl(string(nside,'(i6.6)')) endif filename = "weight_ring_n"//trim(sstr)//".fits" end function get_healpix_ring_weight_file !----------------------------------------------------------- ! file = get_healpix_pixel_weight_file(nside) ! returns default file name of Healpix pixel weights !----------------------------------------------------------- function get_healpix_pixel_weight_file(nside) result (filename) integer(i4b), intent(in) :: nside character(len=FILENAMELEN) :: filename character(len=6) :: sstr if (nside <= 8192) then sstr = adjustl(string(nside,'(i5.5)')) else sstr = adjustl(string(nside,'(i6.6)')) endif filename = "weight_pixel_n"//trim(sstr)//".fits" end function get_healpix_pixel_weight_file !----------------------------------------------------------- ! file = get_healpix_weight_file(nside, type) ! returns default file name of Healpix ring weights (if type=1) ! or pixel weigts (if type=2) !----------------------------------------------------------- function get_healpix_weight_file(nside, type) result (filename) integer(i4b), intent(in) :: nside, type character(len=FILENAMELEN) :: filename if (type == 0) then filename = '' else if (type == 1) then filename = get_healpix_ring_weight_file(nside) else if (type == 2) then filename = get_healpix_pixel_weight_file(nside) else print*,'Wrong choice of weight: must be either' print*,' 0: no weight' print*,' 1: ring-based weights' print*,' 2: pixel-based weights' print*,' value: '//string(type) call fatal_error endif end function get_healpix_weight_file end module paramfile_io
gpl-2.0
cpatrick/ITK-RemoteIO
Modules/ThirdParty/VNL/src/vxl/v3p/netlib/lapack/single/sggsvp.f
43
11543
SUBROUTINE SGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, $ TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, $ IWORK, TAU, WORK, INFO ) * * -- LAPACK routine (version 3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * September 30, 1994 * * .. Scalar Arguments .. CHARACTER JOBQ, JOBU, JOBV INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P REAL TOLA, TOLB * .. * .. Array Arguments .. INTEGER IWORK( * ) REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ), $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * ) * .. * * Purpose * ======= * * SGGSVP computes orthogonal matrices U, V and Q such that * * N-K-L K L * U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; * L ( 0 0 A23 ) * M-K-L ( 0 0 0 ) * * N-K-L K L * = K ( 0 A12 A13 ) if M-K-L < 0; * M-K ( 0 0 A23 ) * * N-K-L K L * V'*B*Q = L ( 0 0 B13 ) * P-L ( 0 0 0 ) * * where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular * upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, * otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective * numerical rank of the (M+P)-by-N matrix (A',B')'. Z' denotes the * transpose of Z. * * This decomposition is the preprocessing step for computing the * Generalized Singular Value Decomposition (GSVD), see subroutine * SGGSVD. * * Arguments * ========= * * JOBU (input) CHARACTER*1 * = 'U': Orthogonal matrix U is computed; * = 'N': U is not computed. * * JOBV (input) CHARACTER*1 * = 'V': Orthogonal matrix V is computed; * = 'N': V is not computed. * * JOBQ (input) CHARACTER*1 * = 'Q': Orthogonal matrix Q is computed; * = 'N': Q is not computed. * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * P (input) INTEGER * The number of rows of the matrix B. P >= 0. * * N (input) INTEGER * The number of columns of the matrices A and B. N >= 0. * * A (input/output) REAL array, dimension (LDA,N) * On entry, the M-by-N matrix A. * On exit, A contains the triangular (or trapezoidal) matrix * described in the Purpose section. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * B (input/output) REAL array, dimension (LDB,N) * On entry, the P-by-N matrix B. * On exit, B contains the triangular matrix described in * the Purpose section. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,P). * * TOLA (input) REAL * TOLB (input) REAL * TOLA and TOLB are the thresholds to determine the effective * numerical rank of matrix B and a subblock of A. Generally, * they are set to * TOLA = MAX(M,N)*norm(A)*MACHEPS, * TOLB = MAX(P,N)*norm(B)*MACHEPS. * The size of TOLA and TOLB may affect the size of backward * errors of the decomposition. * * K (output) INTEGER * L (output) INTEGER * On exit, K and L specify the dimension of the subblocks * described in Purpose. * K + L = effective numerical rank of (A',B')'. * * U (output) REAL array, dimension (LDU,M) * If JOBU = 'U', U contains the orthogonal matrix U. * If JOBU = 'N', U is not referenced. * * LDU (input) INTEGER * The leading dimension of the array U. LDU >= max(1,M) if * JOBU = 'U'; LDU >= 1 otherwise. * * V (output) REAL array, dimension (LDV,M) * If JOBV = 'V', V contains the orthogonal matrix V. * If JOBV = 'N', V is not referenced. * * LDV (input) INTEGER * The leading dimension of the array V. LDV >= max(1,P) if * JOBV = 'V'; LDV >= 1 otherwise. * * Q (output) REAL array, dimension (LDQ,N) * If JOBQ = 'Q', Q contains the orthogonal matrix Q. * If JOBQ = 'N', Q is not referenced. * * LDQ (input) INTEGER * The leading dimension of the array Q. LDQ >= max(1,N) if * JOBQ = 'Q'; LDQ >= 1 otherwise. * * IWORK (workspace) INTEGER array, dimension (N) * * TAU (workspace) REAL array, dimension (N) * * WORK (workspace) REAL array, dimension (max(3*N,M,P)) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value. * * * Further Details * =============== * * The subroutine uses LAPACK subroutine SGEQPF for the QR factorization * with column pivoting to detect the effective numerical rank of the * a matrix. It may be replaced by a better rank determination strategy. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL FORWRD, WANTQ, WANTU, WANTV INTEGER I, J * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL SGEQPF, SGEQR2, SGERQ2, SLACPY, SLAPMT, SLASET, $ SORG2R, SORM2R, SORMR2, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters * WANTU = LSAME( JOBU, 'U' ) WANTV = LSAME( JOBV, 'V' ) WANTQ = LSAME( JOBQ, 'Q' ) FORWRD = .TRUE. * INFO = 0 IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN INFO = -1 ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN INFO = -2 ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN INFO = -3 ELSE IF( M.LT.0 ) THEN INFO = -4 ELSE IF( P.LT.0 ) THEN INFO = -5 ELSE IF( N.LT.0 ) THEN INFO = -6 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -8 ELSE IF( LDB.LT.MAX( 1, P ) ) THEN INFO = -10 ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN INFO = -16 ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN INFO = -18 ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN INFO = -20 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGGSVP', -INFO ) RETURN END IF * * QR with column pivoting of B: B*P = V*( S11 S12 ) * ( 0 0 ) * DO 10 I = 1, N IWORK( I ) = 0 10 CONTINUE CALL SGEQPF( P, N, B, LDB, IWORK, TAU, WORK, INFO ) * * Update A := A*P * CALL SLAPMT( FORWRD, M, N, A, LDA, IWORK ) * * Determine the effective rank of matrix B. * L = 0 DO 20 I = 1, MIN( P, N ) IF( ABS( B( I, I ) ).GT.TOLB ) $ L = L + 1 20 CONTINUE * IF( WANTV ) THEN * * Copy the details of V, and form V. * CALL SLASET( 'Full', P, P, ZERO, ZERO, V, LDV ) IF( P.GT.1 ) $ CALL SLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ), $ LDV ) CALL SORG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO ) END IF * * Clean up B * DO 40 J = 1, L - 1 DO 30 I = J + 1, L B( I, J ) = ZERO 30 CONTINUE 40 CONTINUE IF( P.GT.L ) $ CALL SLASET( 'Full', P-L, N, ZERO, ZERO, B( L+1, 1 ), LDB ) * IF( WANTQ ) THEN * * Set Q = I and Update Q := Q*P * CALL SLASET( 'Full', N, N, ZERO, ONE, Q, LDQ ) CALL SLAPMT( FORWRD, N, N, Q, LDQ, IWORK ) END IF * IF( P.GE.L .AND. N.NE.L ) THEN * * RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z * CALL SGERQ2( L, N, B, LDB, TAU, WORK, INFO ) * * Update A := A*Z' * CALL SORMR2( 'Right', 'Transpose', M, N, L, B, LDB, TAU, A, $ LDA, WORK, INFO ) * IF( WANTQ ) THEN * * Update Q := Q*Z' * CALL SORMR2( 'Right', 'Transpose', N, N, L, B, LDB, TAU, Q, $ LDQ, WORK, INFO ) END IF * * Clean up B * CALL SLASET( 'Full', L, N-L, ZERO, ZERO, B, LDB ) DO 60 J = N - L + 1, N DO 50 I = J - N + L + 1, L B( I, J ) = ZERO 50 CONTINUE 60 CONTINUE * END IF * * Let N-L L * A = ( A11 A12 ) M, * * then the following does the complete QR decomposition of A11: * * A11 = U*( 0 T12 )*P1' * ( 0 0 ) * DO 70 I = 1, N - L IWORK( I ) = 0 70 CONTINUE CALL SGEQPF( M, N-L, A, LDA, IWORK, TAU, WORK, INFO ) * * Determine the effective rank of A11 * K = 0 DO 80 I = 1, MIN( M, N-L ) IF( ABS( A( I, I ) ).GT.TOLA ) $ K = K + 1 80 CONTINUE * * Update A12 := U'*A12, where A12 = A( 1:M, N-L+1:N ) * CALL SORM2R( 'Left', 'Transpose', M, L, MIN( M, N-L ), A, LDA, $ TAU, A( 1, N-L+1 ), LDA, WORK, INFO ) * IF( WANTU ) THEN * * Copy the details of U, and form U * CALL SLASET( 'Full', M, M, ZERO, ZERO, U, LDU ) IF( M.GT.1 ) $ CALL SLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ), $ LDU ) CALL SORG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO ) END IF * IF( WANTQ ) THEN * * Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1 * CALL SLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK ) END IF * * Clean up A: set the strictly lower triangular part of * A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0. * DO 100 J = 1, K - 1 DO 90 I = J + 1, K A( I, J ) = ZERO 90 CONTINUE 100 CONTINUE IF( M.GT.K ) $ CALL SLASET( 'Full', M-K, N-L, ZERO, ZERO, A( K+1, 1 ), LDA ) * IF( N-L.GT.K ) THEN * * RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1 * CALL SGERQ2( K, N-L, A, LDA, TAU, WORK, INFO ) * IF( WANTQ ) THEN * * Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1' * CALL SORMR2( 'Right', 'Transpose', N, N-L, K, A, LDA, TAU, $ Q, LDQ, WORK, INFO ) END IF * * Clean up A * CALL SLASET( 'Full', K, N-L-K, ZERO, ZERO, A, LDA ) DO 120 J = N - L - K + 1, N - L DO 110 I = J - N + L + K + 1, K A( I, J ) = ZERO 110 CONTINUE 120 CONTINUE * END IF * IF( M.GT.K ) THEN * * QR factorization of A( K+1:M,N-L+1:N ) * CALL SGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO ) * IF( WANTU ) THEN * * Update U(:,K+1:M) := U(:,K+1:M)*U1 * CALL SORM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ), $ A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU, $ WORK, INFO ) END IF * * Clean up * DO 140 J = N - L + 1, N DO 130 I = J - N + K + L + 1, M A( I, J ) = ZERO 130 CONTINUE 140 CONTINUE * END IF * RETURN * * End of SGGSVP * END
apache-2.0
ARTED/ARTED_noc
src/PSE_read_matrix_elements.f90
1
2205
! ! Copyright 2016 ARTED developers ! ! Licensed under the Apache License, Version 2.0 (the "License"); ! you may not use this file except in compliance with the License. ! You may obtain a copy of the License at ! ! http://www.apache.org/licenses/LICENSE-2.0 ! ! Unless required by applicable law or agreed to in writing, software ! distributed under the License is distributed on an "AS IS" BASIS, ! WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ! See the License for the specific language governing permissions and ! limitations under the License. ! subroutine PSE_read_matrix_elements use global_variables implicit none integer :: ik character(50) :: cik, filename if(myrank == 0)write(*,"(A)")"== Start reading matrix elements." if(myrank == 0)then open(200,file="basis_exp_basic.out",form='unformatted') read(200)NB_basis read(200)Amax,dAmax read(200)Epdir_1 close(200) end if call MPI_BCAST(NB_basis,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(Amax,1,MPI_DOUBLE_PRECISION,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(dAmax,1,MPI_DOUBLE_PRECISION,0,MPI_COMM_WORLD,ierr) call MPI_BCAST(Epdir_1,3,MPI_DOUBLE_PRECISION,0,MPI_COMM_WORLD,ierr) if(abs(dble(NAmax) -Amax/dAmax) > 0.01d0)then err_message='NAmax is not consistent.' call err_finalize end if allocate(zH_loc(NB_basis,NB_basis,NK_s:NK_e)) allocate(zPi_loc(NB_basis,NB_basis,NK_s:NK_e)) allocate(zV_NL(NB_basis,NB_basis,NK_s:NK_e,-NAmax:NAmax)) allocate(zPi_NL(NB_basis,NB_basis,NK_s:NK_e,-NAmax:NAmax)) allocate(zH_tot(NB_basis,NB_basis,NK_s:NK_e)) allocate(zPi_tot(NB_basis,NB_basis,NK_s:NK_e)) allocate(zH0_tot(NB_basis,NB_basis,NK_s:NK_e)) allocate(zdH_tot(NB_basis,NB_basis,NK_s:NK_e)) allocate(H0_eigval(NB_basis,NK_s:NK_e)) do ik = NK_s,NK_e write(cik,"(I9.9)")ik filename=trim(cik)//"_matrix_elements.out" open(201,file=filename,form='unformatted') read(201)zH_loc(:,:,ik) read(201)zPi_loc(:,:,ik) read(201)zV_NL(:,:,ik,:) read(201)zPi_NL(:,:,ik,:) close(201) end do if(myrank == 0)write(*,"(A)")"== End reading matrix elements." return end subroutine PSE_read_matrix_elements
apache-2.0
SaberMod/GCC_SaberMod
gcc/testsuite/gfortran.dg/interface_16.f90
155
3123
! { dg-do compile } ! This tests the fix for PR32634, in which the generic interface ! in foo_pr_mod was given the original rather than the local name. ! This meant that the original name had to be used in the calll ! in foo_sub. ! ! Contributed by Salvatore Filippone <salvatore.filippone@uniroma2.it> module foo_base_mod type foo_dmt real(kind(1.d0)), allocatable :: rv(:) integer, allocatable :: iv1(:), iv2(:) end type foo_dmt type foo_zmt complex(kind(1.d0)), allocatable :: rv(:) integer, allocatable :: iv1(:), iv2(:) end type foo_zmt type foo_cdt integer, allocatable :: md(:) integer, allocatable :: hi(:), ei(:) end type foo_cdt end module foo_base_mod module bar_prt use foo_base_mod, only : foo_dmt, foo_zmt, foo_cdt type bar_dbprt type(foo_dmt), allocatable :: av(:) real(kind(1.d0)), allocatable :: d(:) type(foo_cdt) :: cd end type bar_dbprt type bar_dprt type(bar_dbprt), allocatable :: bpv(:) end type bar_dprt type bar_zbprt type(foo_zmt), allocatable :: av(:) complex(kind(1.d0)), allocatable :: d(:) type(foo_cdt) :: cd end type bar_zbprt type bar_zprt type(bar_zbprt), allocatable :: bpv(:) end type bar_zprt end module bar_prt module bar_pr_mod use bar_prt interface bar_pwrk subroutine bar_dppwrk(pr,x,y,cd,info,trans,work) use foo_base_mod use bar_prt type(foo_cdt),intent(in) :: cd type(bar_dprt), intent(in) :: pr real(kind(0.d0)),intent(inout) :: x(:), y(:) integer, intent(out) :: info character(len=1), optional :: trans real(kind(0.d0)),intent(inout), optional, target :: work(:) end subroutine bar_dppwrk subroutine bar_zppwrk(pr,x,y,cd,info,trans,work) use foo_base_mod use bar_prt type(foo_cdt),intent(in) :: cd type(bar_zprt), intent(in) :: pr complex(kind(0.d0)),intent(inout) :: x(:), y(:) integer, intent(out) :: info character(len=1), optional :: trans complex(kind(0.d0)),intent(inout), optional, target :: work(:) end subroutine bar_zppwrk end interface end module bar_pr_mod module foo_pr_mod use bar_prt, & & foo_dbprt => bar_dbprt,& & foo_zbprt => bar_zbprt,& & foo_dprt => bar_dprt,& & foo_zprt => bar_zprt use bar_pr_mod, & & foo_pwrk => bar_pwrk end module foo_pr_mod Subroutine foo_sub(a,pr,b,x,eps,cd,info) use foo_base_mod use foo_pr_mod Implicit None !!$ parameters Type(foo_dmt), Intent(in) :: a Type(foo_dprt), Intent(in) :: pr Type(foo_cdt), Intent(in) :: cd Real(Kind(1.d0)), Intent(in) :: b(:) Real(Kind(1.d0)), Intent(inout) :: x(:) Real(Kind(1.d0)), Intent(in) :: eps integer, intent(out) :: info !!$ Local data Real(Kind(1.d0)), allocatable, target :: aux(:),wwrk(:,:) Real(Kind(1.d0)), allocatable :: p(:), f(:) info = 0 Call foo_pwrk(pr,p,f,cd,info,work=aux) ! This worked if bar_pwrk was called! return End Subroutine foo_sub
gpl-2.0
embecosm/avr32-gcc
gcc/testsuite/gfortran.dg/g77/20010519-1.f
8
46708
c { dg-do compile } CHARMM Element source/dimb/nmdimb.src 1.1 C.##IF DIMB SUBROUTINE NMDIMB(X,Y,Z,NAT3,BNBND,BIMAG,LNOMA,AMASS,DDS,DDSCR, 1 PARDDV,DDV,DDM,PARDDF,DDF,PARDDE,DDEV,DD1BLK, 2 DD1BLL,NADD,LRAISE,DD1CMP,INBCMP,JNBCMP, 3 NPAR,ATMPAR,ATMPAS,BLATOM,PARDIM,NFREG,NFRET, 4 PARFRQ,CUTF1,ITMX,TOLDIM,IUNMOD,IUNRMD, 5 LBIG,LSCI,ATMPAD,SAVF,NBOND,IB,JB,DDVALM) C----------------------------------------------------------------------- C 01-Jul-1992 David Perahia, Liliane Mouawad C 15-Dec-1994 Herman van Vlijmen C C This is the main routine for the mixed-basis diagonalization. C See: L.Mouawad and D.Perahia, Biopolymers (1993), 33, 599, C and: D.Perahia and L.Mouawad, Comput. Chem. (1995), 19, 241. C The method iteratively solves the diagonalization of the C Hessian matrix. To save memory space, it uses a compressed C form of the Hessian, which only contains the nonzero elements. C In the diagonalization process, approximate eigenvectors are C mixed with Cartesian coordinates to form a reduced basis. The C Hessian is then diagonalized in the reduced basis. By iterating C over different sets of Cartesian coordinates the method ultimately C converges to the exact eigenvalues and eigenvectors (up to the C requested accuracy). C If no existing basis set is read, an initial basis will be created C which consists of the low-frequency eigenvectors of diagonal blocks C of the Hessian. C----------------------------------------------------------------------- C----------------------------------------------------------------------- C:::##INCLUDE '~/charmm_fcm/impnon.fcm' C..##IF VAX IRIS HPUX IRIS GNU CSPP OS2 GWS CRAY ALPHA IMPLICIT NONE C..##ENDIF C----------------------------------------------------------------------- C----------------------------------------------------------------------- C:::##INCLUDE '~/charmm_fcm/stream.fcm' LOGICAL LOWER,QLONGL INTEGER MXSTRM,POUTU PARAMETER (MXSTRM=20,POUTU=6) INTEGER NSTRM,ISTRM,JSTRM,OUTU,PRNLEV,WRNLEV,IOLEV COMMON /CASE/ LOWER, QLONGL COMMON /STREAM/ NSTRM,ISTRM,JSTRM(MXSTRM),OUTU,PRNLEV,WRNLEV,IOLEV C..##IF SAVEFCM C..##ENDIF C----------------------------------------------------------------------- C----------------------------------------------------------------------- C:::##INCLUDE '~/charmm_fcm/dimens.fcm' INTEGER LARGE,MEDIUM,SMALL,REDUCE C..##IF QUANTA C..##ELIF T3D C..##ELSE PARAMETER (LARGE=60120, MEDIUM=25140, SMALL=6120) C..##ENDIF PARAMETER (REDUCE=15000) INTEGER SIZE C..##IF XLARGE C..##ELIF XXLARGE C..##ELIF LARGE C..##ELIF MEDIUM PARAMETER (SIZE=MEDIUM) C..##ELIF REDUCE C..##ELIF SMALL C..##ELIF XSMALL C..##ENDIF C..##IF MMFF integer MAXDEFI parameter(MAXDEFI=250) INTEGER NAME0,NAMEQ0,NRES0,KRES0 PARAMETER (NAME0=4,NAMEQ0=10,NRES0=4,KRES0=4) integer MaxAtN parameter (MaxAtN=55) INTEGER MAXAUX PARAMETER (MAXAUX = 10) C..##ENDIF INTEGER MAXCSP, MAXHSET C..##IF HMCM PARAMETER (MAXHSET = 200) C..##ELSE C..##ENDIF C..##IF REDUCE C..##ELSE PARAMETER (MAXCSP = 500) C..##ENDIF C..##IF HMCM INTEGER MAXHCM,MAXPCM,MAXRCM C...##IF REDUCE C...##ELSE PARAMETER (MAXHCM=500) PARAMETER (MAXPCM=5000) PARAMETER (MAXRCM=2000) C...##ENDIF C..##ENDIF INTEGER MXCMSZ C..##IF IBM IBMRS CRAY INTEL IBMSP T3D REDUCE C..##ELSE PARAMETER (MXCMSZ = 5000) C..##ENDIF INTEGER CHRSIZ PARAMETER (CHRSIZ = SIZE) INTEGER MAXATB C..##IF REDUCE C..##ELIF QUANTA C..##ELSE PARAMETER (MAXATB = 200) C..##ENDIF INTEGER MAXVEC C..##IFN VECTOR PARVECT PARAMETER (MAXVEC = 10) C..##ELIF LARGE XLARGE XXLARGE C..##ELIF MEDIUM C..##ELIF SMALL REDUCE C..##ELIF XSMALL C..##ELSE C..##ENDIF INTEGER IATBMX PARAMETER (IATBMX = 8) INTEGER MAXHB C..##IF LARGE XLARGE XXLARGE C..##ELIF MEDIUM PARAMETER (MAXHB = 8000) C..##ELIF SMALL C..##ELIF REDUCE XSMALL C..##ELSE C..##ENDIF INTEGER MAXTRN,MAXSYM C..##IFN NOIMAGES PARAMETER (MAXTRN = 5000) PARAMETER (MAXSYM = 192) C..##ELSE C..##ENDIF C..##IF LONEPAIR (lonepair_max) INTEGER MAXLP,MAXLPH C...##IF REDUCE C...##ELSE PARAMETER (MAXLP = 2000) PARAMETER (MAXLPH = 4000) C...##ENDIF C..##ENDIF (lonepair_max) INTEGER NOEMAX,NOEMX2 C..##IF REDUCE C..##ELSE PARAMETER (NOEMAX = 2000) PARAMETER (NOEMX2 = 4000) C..##ENDIF INTEGER MAXATC, MAXCB, MAXCH, MAXCI, MAXCP, MAXCT, MAXITC, MAXNBF C..##IF REDUCE C..##ELIF MMFF CFF PARAMETER (MAXATC = 500, MAXCB = 1500, MAXCH = 3200, MAXCI = 600, & MAXCP = 3000,MAXCT = 15500,MAXITC = 200, MAXNBF=1000) C..##ELIF YAMMP C..##ELIF LARGE C..##ELSE C..##ENDIF INTEGER MAXCN PARAMETER (MAXCN = MAXITC*(MAXITC+1)/2) INTEGER MAXA, MAXAIM, MAXB, MAXT, MAXP INTEGER MAXIMP, MAXNB, MAXPAD, MAXRES INTEGER MAXSEG, MAXGRP C..##IF LARGE XLARGE XXLARGE C..##ELIF MEDIUM PARAMETER (MAXA = SIZE, MAXB = SIZE, MAXT = SIZE, & MAXP = 2*SIZE) PARAMETER (MAXIMP = 9200, MAXNB = 17200, MAXPAD = 8160, & MAXRES = 14000) C...##IF MCSS C...##ELSE PARAMETER (MAXSEG = 1000) C...##ENDIF C..##ELIF SMALL C..##ELIF XSMALL C..##ELIF REDUCE C..##ELSE C..##ENDIF C..##IF NOIMAGES C..##ELSE PARAMETER (MAXAIM = 2*SIZE) PARAMETER (MAXGRP = 2*SIZE/3) C..##ENDIF INTEGER REDMAX,REDMX2 C..##IF REDUCE C..##ELSE PARAMETER (REDMAX = 20) PARAMETER (REDMX2 = 80) C..##ENDIF INTEGER MXRTRS, MXRTA, MXRTB, MXRTT, MXRTP, MXRTI, MXRTX, & MXRTHA, MXRTHD, MXRTBL, NICM PARAMETER (MXRTRS = 200, MXRTA = 5000, MXRTB = 5000, & MXRTT = 5000, MXRTP = 5000, MXRTI = 2000, C..##IF YAMMP C..##ELSE & MXRTX = 5000, MXRTHA = 300, MXRTHD = 300, C..##ENDIF & MXRTBL = 5000, NICM = 10) INTEGER NMFTAB, NMCTAB, NMCATM, NSPLIN C..##IF REDUCE C..##ELSE PARAMETER (NMFTAB = 200, NMCTAB = 3, NMCATM = 12000, NSPLIN = 3) C..##ENDIF INTEGER MAXSHK C..##IF XSMALL C..##ELIF REDUCE C..##ELSE PARAMETER (MAXSHK = SIZE*3/4) C..##ENDIF INTEGER SCRMAX C..##IF IBM IBMRS CRAY INTEL IBMSP T3D REDUCE C..##ELSE PARAMETER (SCRMAX = 5000) C..##ENDIF C..##IF TSM INTEGER MXPIGG C...##IF REDUCE C...##ELSE PARAMETER (MXPIGG=500) C...##ENDIF INTEGER MXCOLO,MXPUMB PARAMETER (MXCOLO=20,MXPUMB=20) C..##ENDIF C..##IF ADUMB INTEGER MAXUMP, MAXEPA, MAXNUM C...##IF REDUCE C...##ELSE PARAMETER (MAXUMP = 10, MAXNUM = 4) C...##ENDIF C..##ENDIF INTEGER MAXING PARAMETER (MAXING=1000) C..##IF MMFF integer MAX_RINGSIZE, MAX_EACH_SIZE parameter (MAX_RINGSIZE = 20, MAX_EACH_SIZE = 1000) integer MAXPATHS parameter (MAXPATHS = 8000) integer MAX_TO_SEARCH parameter (MAX_TO_SEARCH = 6) C..##ENDIF C----------------------------------------------------------------------- C----------------------------------------------------------------------- C:::##INCLUDE '~/charmm_fcm/number.fcm' REAL(KIND=8) ZERO, ONE, TWO, THREE, FOUR, FIVE, SIX, & SEVEN, EIGHT, NINE, TEN, ELEVEN, TWELVE, THIRTN, & FIFTN, NINETN, TWENTY, THIRTY C..##IF SINGLE C..##ELSE PARAMETER (ZERO = 0.D0, ONE = 1.D0, TWO = 2.D0, & THREE = 3.D0, FOUR = 4.D0, FIVE = 5.D0, & SIX = 6.D0, SEVEN = 7.D0, EIGHT = 8.D0, & NINE = 9.D0, TEN = 10.D0, ELEVEN = 11.D0, & TWELVE = 12.D0, THIRTN = 13.D0, FIFTN = 15.D0, & NINETN = 19.D0, TWENTY = 20.D0, THIRTY = 30.D0) C..##ENDIF REAL(KIND=8) FIFTY, SIXTY, SVNTY2, EIGHTY, NINETY, HUNDRD, & ONE2TY, ONE8TY, THRHUN, THR6TY, NINE99, FIFHUN, THOSND, & FTHSND,MEGA C..##IF SINGLE C..##ELSE PARAMETER (FIFTY = 50.D0, SIXTY = 60.D0, SVNTY2 = 72.D0, & EIGHTY = 80.D0, NINETY = 90.D0, HUNDRD = 100.D0, & ONE2TY = 120.D0, ONE8TY = 180.D0, THRHUN = 300.D0, & THR6TY=360.D0, NINE99 = 999.D0, FIFHUN = 1500.D0, & THOSND = 1000.D0,FTHSND = 5000.D0, MEGA = 1.0D6) C..##ENDIF REAL(KIND=8) MINONE, MINTWO, MINSIX PARAMETER (MINONE = -1.D0, MINTWO = -2.D0, MINSIX = -6.D0) REAL(KIND=8) TENM20,TENM14,TENM8,TENM5,PT0001,PT0005,PT001,PT005, & PT01, PT02, PT05, PTONE, PT125, PT25, SIXTH, THIRD, & PTFOUR, PTSIX, HALF, PT75, PT9999, ONEPT5, TWOPT4 C..##IF SINGLE C..##ELSE PARAMETER (TENM20 = 1.0D-20, TENM14 = 1.0D-14, TENM8 = 1.0D-8, & TENM5 = 1.0D-5, PT0001 = 1.0D-4, PT0005 = 5.0D-4, & PT001 = 1.0D-3, PT005 = 5.0D-3, PT01 = 0.01D0, & PT02 = 0.02D0, PT05 = 0.05D0, PTONE = 0.1D0, & PT125 = 0.125D0, SIXTH = ONE/SIX,PT25 = 0.25D0, & THIRD = ONE/THREE,PTFOUR = 0.4D0, HALF = 0.5D0, & PTSIX = 0.6D0, PT75 = 0.75D0, PT9999 = 0.9999D0, & ONEPT5 = 1.5D0, TWOPT4 = 2.4D0) C..##ENDIF REAL(KIND=8) ANUM,FMARK REAL(KIND=8) RSMALL,RBIG C..##IF SINGLE C..##ELSE PARAMETER (ANUM=9999.0D0, FMARK=-999.0D0) PARAMETER (RSMALL=1.0D-10,RBIG=1.0D20) C..##ENDIF REAL(KIND=8) RPRECI,RBIGST C..##IF VAX DEC C..##ELIF IBM C..##ELIF CRAY C..##ELIF ALPHA T3D T3E C..##ELSE C...##IF SINGLE C...##ELSE PARAMETER (RPRECI = 2.22045D-16, RBIGST = 4.49423D+307) C...##ENDIF C..##ENDIF C----------------------------------------------------------------------- C----------------------------------------------------------------------- C:::##INCLUDE '~/charmm_fcm/consta.fcm' REAL(KIND=8) PI,RADDEG,DEGRAD,TWOPI PARAMETER(PI=3.141592653589793D0,TWOPI=2.0D0*PI) PARAMETER (RADDEG=180.0D0/PI) PARAMETER (DEGRAD=PI/180.0D0) REAL(KIND=8) COSMAX PARAMETER (COSMAX=0.9999999999D0) REAL(KIND=8) TIMFAC PARAMETER (TIMFAC=4.88882129D-02) REAL(KIND=8) KBOLTZ PARAMETER (KBOLTZ=1.987191D-03) REAL(KIND=8) CCELEC C..##IF AMBER C..##ELIF DISCOVER C..##ELSE PARAMETER (CCELEC=332.0716D0) C..##ENDIF REAL(KIND=8) CNVFRQ PARAMETER (CNVFRQ=2045.5D0/(2.99793D0*6.28319D0)) REAL(KIND=8) SPEEDL PARAMETER (SPEEDL=2.99793D-02) REAL(KIND=8) ATMOSP PARAMETER (ATMOSP=1.4584007D-05) REAL(KIND=8) PATMOS PARAMETER (PATMOS = 1.D0 / ATMOSP ) REAL(KIND=8) BOHRR PARAMETER (BOHRR = 0.529177249D0 ) REAL(KIND=8) TOKCAL PARAMETER (TOKCAL = 627.5095D0 ) C..##IF MMFF REAL(KIND=8) MDAKCAL parameter(MDAKCAL=143.9325D0) C..##ENDIF REAL(KIND=8) DEBYEC PARAMETER ( DEBYEC = 2.541766D0 / BOHRR ) REAL(KIND=8) ZEROC PARAMETER ( ZEROC = 298.15D0 ) C----------------------------------------------------------------------- C----------------------------------------------------------------------- C:::##INCLUDE '~/charmm_fcm/exfunc.fcm' C..##IF ACE C..##ENDIF C..##IF ADUMB C..##ENDIF CHARACTER*4 GTRMA, NEXTA4, CURRA4 CHARACTER*6 NEXTA6 CHARACTER*8 NEXTA8 CHARACTER*20 NEXT20 INTEGER ALLCHR, ALLSTK, ALLHP, DECODI, FIND52, * GETATN, GETRES, GETRSN, GETSEG, GTRMI, I4VAL, * ICHAR4, ICMP16, ILOGI4, INDX, INDXA, INDXAF, * INDXRA, INTEG4, IREAL4, IREAL8, LOCDIF, * LUNASS, MATOM, NEXTI, NINDX, NSELCT, NSELCTV, ATMSEL, * PARNUM, PARINS, * SRCHWD, SRCHWS, STRLNG, DSIZE, SSIZE C..##IF ACE * ,GETNNB C..##ENDIF LOGICAL CHKPTR, EQST, EQSTA, EQSTWC, EQWDWC, DOTRIM, CHECQUE, * HYDROG, INITIA, LONE, LTSTEQ, ORDER, ORDER5, * ORDERR, USEDDT, QTOKDEL, QDIGIT, QALPHA REAL(KIND=8) DECODF, DOTVEC, GTRMF, LENVEC, NEXTF, RANDOM, GTRR8, * RANUMB, R8VAL, RETVAL8, SUMVEC C..##IF ADUMB * ,UMFI C..##ENDIF EXTERNAL GTRMA, NEXTA4, CURRA4, NEXTA6, NEXTA8,NEXT20, * ALLCHR, ALLSTK, ALLHP, DECODI, FIND52, * GETATN, GETRES, GETRSN, GETSEG, GTRMI, I4VAL, * ICHAR4, ICMP16, ILOGI4, INDX, INDXA, INDXAF, * INDXRA, INTEG4, IREAL4, IREAL8, LOCDIF, * LUNASS, MATOM, NEXTI, NINDX, NSELCT, NSELCTV, ATMSEL, * PARNUM, PARINS, * SRCHWD, SRCHWS, STRLNG, DSIZE, SSIZE, * CHKPTR, EQST, EQSTA, EQSTWC, EQWDWC, DOTRIM, CHECQUE, * HYDROG, INITIA, LONE, LTSTEQ, ORDER, ORDER5, * ORDERR, USEDDT, QTOKDEL, QDIGIT, QALPHA, * DECODF, DOTVEC, GTRMF, LENVEC, NEXTF, RANDOM, GTRR8, * RANUMB, R8VAL, RETVAL8, SUMVEC C..##IF ADUMB * ,UMFI C..##ENDIF C..##IF ACE * ,GETNNB C..##ENDIF C..##IFN NOIMAGES INTEGER IMATOM EXTERNAL IMATOM C..##ENDIF C..##IF MBOND C..##ENDIF C..##IF MMFF INTEGER LEN_TRIM EXTERNAL LEN_TRIM CHARACTER*4 AtName external AtName CHARACTER*8 ElementName external ElementName CHARACTER*10 QNAME external QNAME integer IATTCH, IBORDR, CONN12, CONN13, CONN14 integer LEQUIV, LPATH integer nbndx, nbnd2, nbnd3, NTERMA external IATTCH, IBORDR, CONN12, CONN13, CONN14 external LEQUIV, LPATH external nbndx, nbnd2, nbnd3, NTERMA external find_loc REAL(KIND=8) vangle, OOPNGL, TORNGL, ElementMass external vangle, OOPNGL, TORNGL, ElementMass C..##ENDIF C----------------------------------------------------------------------- C----------------------------------------------------------------------- C:::##INCLUDE '~/charmm_fcm/stack.fcm' INTEGER STKSIZ C..##IFN UNICOS C...##IF LARGE XLARGE C...##ELIF MEDIUM REDUCE PARAMETER (STKSIZ=4000000) C...##ELIF SMALL C...##ELIF XSMALL C...##ELIF XXLARGE C...##ELSE C...##ENDIF INTEGER LSTUSD,MAXUSD,STACK COMMON /ISTACK/ LSTUSD,MAXUSD,STACK(STKSIZ) C..##ELSE C..##ENDIF C..##IF SAVEFCM C..##ENDIF C----------------------------------------------------------------------- C----------------------------------------------------------------------- C:::##INCLUDE '~/charmm_fcm/heap.fcm' INTEGER HEAPDM C..##IFN UNICOS (unicos) C...##IF XXLARGE (size) C...##ELIF LARGE XLARGE (size) C...##ELIF MEDIUM (size) C....##IF T3D (t3d2) C....##ELIF TERRA (t3d2) C....##ELIF ALPHA (t3d2) C....##ELIF T3E (t3d2) C....##ELSE (t3d2) PARAMETER (HEAPDM=2048000) C....##ENDIF (t3d2) C...##ELIF SMALL (size) C...##ELIF REDUCE (size) C...##ELIF XSMALL (size) C...##ELSE (size) C...##ENDIF (size) INTEGER FREEHP,HEAPSZ,HEAP COMMON /HEAPST/ FREEHP,HEAPSZ,HEAP(HEAPDM) LOGICAL LHEAP(HEAPDM) EQUIVALENCE (LHEAP,HEAP) C..##ELSE (unicos) C..##ENDIF (unicos) C..##IF SAVEFCM (save) C..##ENDIF (save) C----------------------------------------------------------------------- C----------------------------------------------------------------------- C:::##INCLUDE '~/charmm_fcm/fast.fcm' INTEGER IACNB, NITCC, ICUSED, FASTER, LFAST, LMACH, OLMACH INTEGER ICCOUNT, LOWTP, IGCNB, NITCC2 INTEGER ICCNBA, ICCNBB, ICCNBC, ICCNBD, LCCNBA, LCCNBD COMMON /FASTI/ FASTER, LFAST, LMACH, OLMACH, NITCC, NITCC2, & ICUSED(MAXATC), ICCOUNT(MAXATC), LOWTP(MAXATC), & IACNB(MAXAIM), IGCNB(MAXATC), & ICCNBA, ICCNBB, ICCNBC, ICCNBD, LCCNBA, LCCNBD C..##IF SAVEFCM C..##ENDIF C----------------------------------------------------------------------- C----------------------------------------------------------------------- C:::##INCLUDE '~/charmm_fcm/deriv.fcm' REAL(KIND=8) DX,DY,DZ COMMON /DERIVR/ DX(MAXAIM),DY(MAXAIM),DZ(MAXAIM) C..##IF SAVEFCM C..##ENDIF C----------------------------------------------------------------------- C----------------------------------------------------------------------- C:::##INCLUDE '~/charmm_fcm/energy.fcm' INTEGER LENENP, LENENT, LENENV, LENENA PARAMETER (LENENP = 50, LENENT = 70, LENENV = 50, & LENENA = LENENP + LENENT + LENENV ) INTEGER TOTE, TOTKE, EPOT, TEMPS, GRMS, BPRESS, PJNK1, PJNK2, & PJNK3, PJNK4, HFCTE, HFCKE, EHFC, EWORK, VOLUME, PRESSE, & PRESSI, VIRI, VIRE, VIRKE, TEPR, PEPR, KEPR, KEPR2, & DROFFA, & XTLTE, XTLKE, XTLPE, XTLTEM, XTLPEP, XTLKEP, XTLKP2, & TOT4, TOTK4, EPOT4, TEM4, MbMom, BodyT, PartT C..##IF ACE & , SELF, SCREEN, COUL ,SOLV, INTER C..##ENDIF C..##IF FLUCQ & ,FQKIN C..##ENDIF PARAMETER (TOTE = 1, TOTKE = 2, EPOT = 3, TEMPS = 4, & GRMS = 5, BPRESS = 6, PJNK1 = 7, PJNK2 = 8, & PJNK3 = 9, PJNK4 = 10, HFCTE = 11, HFCKE = 12, & EHFC = 13, EWORK = 11, VOLUME = 15, PRESSE = 16, & PRESSI = 17, VIRI = 18, VIRE = 19, VIRKE = 20, & TEPR = 21, PEPR = 22, KEPR = 23, KEPR2 = 24, & DROFFA = 26, XTLTE = 27, XTLKE = 28, & XTLPE = 29, XTLTEM = 30, XTLPEP = 31, XTLKEP = 32, & XTLKP2 = 33, & TOT4 = 37, TOTK4 = 38, EPOT4 = 39, TEM4 = 40, & MbMom = 41, BodyT = 42, PartT = 43 C..##IF ACE & , SELF = 45, SCREEN = 46, COUL = 47, & SOLV = 48, INTER = 49 C..##ENDIF C..##IF FLUCQ & ,FQKIN = 50 C..##ENDIF & ) C..##IF ACE C..##ENDIF C..##IF GRID C..##ENDIF C..##IF FLUCQ C..##ENDIF INTEGER BOND, ANGLE, UREYB, DIHE, IMDIHE, VDW, ELEC, HBOND, & USER, CHARM, CDIHE, CINTCR, CQRT, NOE, SBNDRY, & IMVDW, IMELEC, IMHBND, EWKSUM, EWSELF, EXTNDE, RXNFLD, & ST2, IMST2, TSM, QMEL, QMVDW, ASP, EHARM, GEO, MDIP, & PRMS, PANG, SSBP, BK4D, SHEL, RESD, SHAP, & STRB, OOPL, PULL, POLAR, DMC, RGY, EWEXCL, EWQCOR, & EWUTIL, PBELEC, PBNP, PINT, MbDefrm, MbElec, STRSTR, & BNDBND, BNDTW, EBST, MBST, BBT, SST, GBEnr, GSBP C..##IF HMCM & , HMCM C..##ENDIF C..##IF ADUMB & , ADUMB C..##ENDIF & , HYDR C..##IF FLUCQ & , FQPOL C..##ENDIF PARAMETER (BOND = 1, ANGLE = 2, UREYB = 3, DIHE = 4, & IMDIHE = 5, VDW = 6, ELEC = 7, HBOND = 8, & USER = 9, CHARM = 10, CDIHE = 11, CINTCR = 12, & CQRT = 13, NOE = 14, SBNDRY = 15, IMVDW = 16, & IMELEC = 17, IMHBND = 18, EWKSUM = 19, EWSELF = 20, & EXTNDE = 21, RXNFLD = 22, ST2 = 23, IMST2 = 24, & TSM = 25, QMEL = 26, QMVDW = 27, ASP = 28, & EHARM = 29, GEO = 30, MDIP = 31, PINT = 32, & PRMS = 33, PANG = 34, SSBP = 35, BK4D = 36, & SHEL = 37, RESD = 38, SHAP = 39, STRB = 40, & OOPL = 41, PULL = 42, POLAR = 43, DMC = 44, & RGY = 45, EWEXCL = 46, EWQCOR = 47, EWUTIL = 48, & PBELEC = 49, PBNP = 50, MbDefrm= 51, MbElec = 52, & STRSTR = 53, BNDBND = 54, BNDTW = 55, EBST = 56, & MBST = 57, BBT = 58, SST = 59, GBEnr = 60, & GSBP = 65 C..##IF HMCM & , HMCM = 61 C..##ENDIF C..##IF ADUMB & , ADUMB = 62 C..##ENDIF & , HYDR = 63 C..##IF FLUCQ & , FQPOL = 65 C..##ENDIF & ) INTEGER VEXX, VEXY, VEXZ, VEYX, VEYY, VEYZ, VEZX, VEZY, VEZZ, & VIXX, VIXY, VIXZ, VIYX, VIYY, VIYZ, VIZX, VIZY, VIZZ, & PEXX, PEXY, PEXZ, PEYX, PEYY, PEYZ, PEZX, PEZY, PEZZ, & PIXX, PIXY, PIXZ, PIYX, PIYY, PIYZ, PIZX, PIZY, PIZZ PARAMETER ( VEXX = 1, VEXY = 2, VEXZ = 3, VEYX = 4, & VEYY = 5, VEYZ = 6, VEZX = 7, VEZY = 8, & VEZZ = 9, & VIXX = 10, VIXY = 11, VIXZ = 12, VIYX = 13, & VIYY = 14, VIYZ = 15, VIZX = 16, VIZY = 17, & VIZZ = 18, & PEXX = 19, PEXY = 20, PEXZ = 21, PEYX = 22, & PEYY = 23, PEYZ = 24, PEZX = 25, PEZY = 26, & PEZZ = 27, & PIXX = 28, PIXY = 29, PIXZ = 30, PIYX = 31, & PIYY = 32, PIYZ = 33, PIZX = 34, PIZY = 35, & PIZZ = 36) CHARACTER*4 CEPROP, CETERM, CEPRSS COMMON /ANER/ CEPROP(LENENP), CETERM(LENENT), CEPRSS(LENENV) LOGICAL QEPROP, QETERM, QEPRSS COMMON /QENER/ QEPROP(LENENP), QETERM(LENENT), QEPRSS(LENENV) REAL(KIND=8) EPROP, ETERM, EPRESS COMMON /ENER/ EPROP(LENENP), ETERM(LENENT), EPRESS(LENENV) C..##IF SAVEFCM C..##ENDIF REAL(KIND=8) EPRPA, EPRP2A, EPRPP, EPRP2P, & ETRMA, ETRM2A, ETRMP, ETRM2P, & EPRSA, EPRS2A, EPRSP, EPRS2P COMMON /ENACCM/ EPRPA(LENENP), ETRMA(LENENT), EPRSA(LENENV), & EPRP2A(LENENP),ETRM2A(LENENT),EPRS2A(LENENV), & EPRPP(LENENP), ETRMP(LENENT), EPRSP(LENENV), & EPRP2P(LENENP),ETRM2P(LENENT),EPRS2P(LENENV) C..##IF SAVEFCM C..##ENDIF INTEGER ECALLS, TOT1ST, TOT2ND COMMON /EMISCI/ ECALLS, TOT1ST, TOT2ND REAL(KIND=8) EOLD, FITA, DRIFTA, EAT0A, CORRA, FITP, DRIFTP, & EAT0P, CORRP COMMON /EMISCR/ EOLD, FITA, DRIFTA, EAT0A, CORRA, & FITP, DRIFTP, EAT0P, CORRP C..##IF SAVEFCM C..##ENDIF C..##IF ACE C..##ENDIF C..##IF FLUCQ C..##ENDIF C..##IF ADUMB C..##ENDIF C..##IF GRID C..##ENDIF C..##IF FLUCQ C..##ENDIF C..##IF TSM REAL(KIND=8) TSMTRM(LENENT),TSMTMP(LENENT) COMMON /TSMENG/ TSMTRM,TSMTMP C...##IF SAVEFCM C...##ENDIF C..##ENDIF REAL(KIND=8) EHQBM LOGICAL HQBM COMMON /HQBMVAR/HQBM C..##IF SAVEFCM C..##ENDIF C----------------------------------------------------------------------- C----------------------------------------------------------------------- C:::##INCLUDE '~/charmm_fcm/dimb.fcm' C..##IF DIMB (dimbfcm) INTEGER NPARMX,MNBCMP,LENDSK PARAMETER (NPARMX=1000,MNBCMP=300,LENDSK=200000) INTEGER IJXXCM,IJXYCM,IJXZCM,IJYXCM,IJYYCM INTEGER IJYZCM,IJZXCM,IJZYCM,IJZZCM INTEGER IIXXCM,IIXYCM,IIXZCM,IIYYCM INTEGER IIYZCM,IIZZCM INTEGER JJXXCM,JJXYCM,JJXZCM,JJYYCM INTEGER JJYZCM,JJZZCM PARAMETER (IJXXCM=1,IJXYCM=2,IJXZCM=3,IJYXCM=4,IJYYCM=5) PARAMETER (IJYZCM=6,IJZXCM=7,IJZYCM=8,IJZZCM=9) PARAMETER (IIXXCM=1,IIXYCM=2,IIXZCM=3,IIYYCM=4) PARAMETER (IIYZCM=5,IIZZCM=6) PARAMETER (JJXXCM=1,JJXYCM=2,JJXZCM=3,JJYYCM=4) PARAMETER (JJYZCM=5,JJZZCM=6) INTEGER ITER,IPAR1,IPAR2,NFSAV,PINBCM,PJNBCM,PDD1CM,LENCMP LOGICAL QDISK,QDW,QCMPCT COMMON /DIMBI/ ITER,IPAR1,IPAR2,NFSAV,PINBCM,PJNBCM,LENCMP COMMON /DIMBL/ QDISK,QDW,QCMPCT C...##IF SAVEFCM C...##ENDIF C..##ENDIF (dimbfcm) C----------------------------------------------------------------------- C----------------------------------------------------------------------- C:::##INCLUDE '~/charmm_fcm/ctitla.fcm' INTEGER MAXTIT PARAMETER (MAXTIT=32) INTEGER NTITLA,NTITLB CHARACTER*80 TITLEA,TITLEB COMMON /NTITLA/ NTITLA,NTITLB COMMON /CTITLA/ TITLEA(MAXTIT),TITLEB(MAXTIT) C..##IF SAVEFCM C..##ENDIF C----------------------------------------------------------------------- C Passed variables INTEGER NAT3,NADD,NPAR,NFREG,NFRET,BLATOM INTEGER ATMPAR(2,*),ATMPAS(2,*),ATMPAD(2,*) INTEGER BNBND(*),BIMAG(*) INTEGER INBCMP(*),JNBCMP(*),PARDIM INTEGER ITMX,IUNMOD,IUNRMD,SAVF INTEGER NBOND,IB(*),JB(*) REAL(KIND=8) X(*),Y(*),Z(*),AMASS(*),DDSCR(*) REAL(KIND=8) DDV(NAT3,*),PARDDV(PARDIM,*),DDM(*),DDS(*) REAL(KIND=8) DDF(*),PARDDF(*),DDEV(*),PARDDE(*) REAL(KIND=8) DD1BLK(*),DD1BLL(*),DD1CMP(*) REAL(KIND=8) TOLDIM,DDVALM REAL(KIND=8) PARFRQ,CUTF1 LOGICAL LNOMA,LRAISE,LSCI,LBIG C Local variables INTEGER NATOM,NATP,NDIM,I,J,II,OLDFAS,OLDPRN,IUPD INTEGER NPARC,NPARD,NPARS,NFCUT1,NFREG2,NFREG6 INTEGER IH1,IH2,IH3,IH4,IH5,IH6,IH7,IH8 INTEGER IS1,IS2,IS3,IS4,JSPACE,JSP,DDSS,DD5 INTEGER ISTRT,ISTOP,IPA1,IPA2,IRESF INTEGER ATMPAF,INIDS,TRAROT INTEGER SUBLIS,ATMCOR INTEGER NFRRES,DDVBAS INTEGER DDV2,DDVAL INTEGER LENCM,NTR,NFRE,NFC,N1,N2,NFCUT,NSUBP INTEGER SCIFV1,SCIFV2,SCIFV3,SCIFV4,SCIFV6 INTEGER DRATQ,ERATQ,E2RATQ,BDRATQ,INRATQ INTEGER I620,I640,I660,I700,I720,I760,I800,I840,I880,I920 REAL(KIND=8) CVGMX,TOLER LOGICAL LCARD,LAPPE,LPURG,LWDINI,QCALC,QMASWT,QMIX,QDIAG C Begin QCALC=.TRUE. LWDINI=.FALSE. INIDS=0 IS3=0 IS4=0 LPURG=.TRUE. ITER=0 NADD=0 NFSAV=0 TOLER=TENM5 QDIAG=.TRUE. CVGMX=HUNDRD QMIX=.FALSE. NATOM=NAT3/3 NFREG6=(NFREG-6)/NPAR NFREG2=NFREG/2 NFRRES=(NFREG+6)/2 IF(NFREG.GT.PARDIM) CALL WRNDIE(-3,'<NMDIMB>', 1 'NFREG IS LARGER THAN PARDIM*3') C C ALLOCATE-SPACE-FOR-TRANSROT-VECTORS ASSIGN 801 TO I800 ! { dg-warning "Deleted feature: ASSIGN" "Deleted feature: ASSIGN" } GOTO 800 801 CONTINUE C ALLOCATE-SPACE-FOR-DIAGONALIZATION ASSIGN 721 TO I720 ! { dg-warning "Deleted feature: ASSIGN" "Deleted feature: ASSIGN" } GOTO 720 721 CONTINUE C ALLOCATE-SPACE-FOR-REDUCED-BASIS ASSIGN 761 TO I760 ! { dg-warning "Deleted feature: ASSIGN" "Deleted feature: ASSIGN" } GOTO 760 761 CONTINUE C ALLOCATE-SPACE-FOR-OTHER-ARRAYS ASSIGN 921 TO I920 ! { dg-warning "Deleted feature: ASSIGN" "Deleted feature: ASSIGN" } GOTO 920 921 CONTINUE C C Space allocation for working arrays of EISPACK C diagonalization subroutines IF(LSCI) THEN C ALLOCATE-SPACE-FOR-LSCI ASSIGN 841 TO I840 ! { dg-warning "Deleted feature: ASSIGN" "Deleted feature: ASSIGN" } GOTO 840 841 CONTINUE ELSE C ALLOCATE-DUMMY-SPACE-FOR-LSCI ASSIGN 881 TO I880 ! { dg-warning "Deleted feature: ASSIGN" "Deleted feature: ASSIGN" } GOTO 880 881 CONTINUE ENDIF QMASWT=(.NOT.LNOMA) IF(.NOT. QDISK) THEN LENCM=INBCMP(NATOM-1)*9+NATOM*6 DO I=1,LENCM DD1CMP(I)=0.0 ENDDO OLDFAS=LFAST QCMPCT=.TRUE. LFAST = -1 CALL ENERGY(X,Y,Z,DX,DY,DZ,BNBND,BIMAG,NAT3,DD1CMP,.TRUE.,1) LFAST=OLDFAS QCMPCT=.FALSE. C C Mass weight DD1CMP matrix C CALL MASSDD(DD1CMP,DDM,INBCMP,JNBCMP,NATOM) ELSE CALL WRNDIE(-3,'<NMDIMB>','QDISK OPTION NOT SUPPORTED YET') C DO I=1,LENDSK C DD1CMP(I)=0.0 C ENDDO C OLDFAS=LFAST C LFAST = -1 ENDIF C C Fill DDV with six translation-rotation vectors C CALL TRROT(X,Y,Z,DDV,NAT3,1,DDM) CALL CPARAY(HEAP(TRAROT),DDV,NAT3,1,6,1) NTR=6 OLDPRN=PRNLEV PRNLEV=1 CALL ORTHNM(1,6,NTR,HEAP(TRAROT),NAT3,.FALSE.,TOLER) PRNLEV=OLDPRN IF(IUNRMD .LT. 0) THEN C C If no previous basis is read C IF(PRNLEV.GE.2) WRITE(OUTU,502) NPAR 502 FORMAT(/' NMDIMB: Calculating initial basis from block ', 1 'diagonals'/' NMDIMB: The number of blocks is ',I5/) NFRET = 6 DO I=1,NPAR IS1=ATMPAR(1,I) IS2=ATMPAR(2,I) NDIM=(IS2-IS1+1)*3 NFRE=NDIM IF(NFRE.GT.NFREG6) NFRE=NFREG6 IF(NFREG6.EQ.0) NFRE=1 CALL FILUPT(HEAP(IUPD),NDIM) CALL MAKDDU(DD1BLK,DD1CMP,INBCMP,JNBCMP,HEAP(IUPD), 1 IS1,IS2,NATOM) IF(PRNLEV.GE.9) CALL PRINTE(OUTU,EPROP,ETERM,'VIBR', 1 'ENR',.TRUE.,1,ZERO,ZERO) C C Generate the lower section of the matrix and diagonalize C C..##IF EISPACK C..##ENDIF IH1=1 NATP=NDIM+1 IH2=IH1+NATP IH3=IH2+NATP IH4=IH3+NATP IH5=IH4+NATP IH6=IH5+NATP IH7=IH6+NATP IH8=IH7+NATP CALL DIAGQ(NDIM,NFRE,DD1BLK,PARDDV,DDS(IH2),DDS(IH3), 1 DDS(IH4),DDS(IH5),DDS,DDS(IH6),DDS(IH7),DDS(IH8),NADD) C..##IF EISPACK C..##ENDIF C C Put the PARDDV vectors into DDV and replace the elements which do C not belong to the considered partitioned region by zeros. C CALL ADJNME(DDV,PARDDV,NAT3,NDIM,NFRE,NFRET,IS1,IS2) IF(LSCI) THEN DO J=1,NFRE PARDDF(J)=CNVFRQ*SQRT(ABS(PARDDE(J))) IF(PARDDE(J) .LT. 0.0) PARDDF(J)=-PARDDF(J) ENDDO ELSE DO J=1,NFRE PARDDE(J)=DDS(J) PARDDF(J)=CNVFRQ*SQRT(ABS(PARDDE(J))) IF(PARDDE(J) .LT. 0.0) PARDDF(J)=-PARDDF(J) ENDDO ENDIF IF(PRNLEV.GE.2) THEN WRITE(OUTU,512) I WRITE(OUTU,514) WRITE(OUTU,516) (J,PARDDF(J),J=1,NFRE) ENDIF NFRET=NFRET+NFRE IF(NFRET .GE. NFREG) GOTO 10 ENDDO 512 FORMAT(/' NMDIMB: Diagonalization of part',I5,' completed') 514 FORMAT(' NMDIMB: Frequencies'/) 516 FORMAT(5(I4,F12.6)) 10 CONTINUE C C Orthonormalize the eigenvectors C OLDPRN=PRNLEV PRNLEV=1 CALL ORTHNM(1,NFRET,NFRET,DDV,NAT3,LPURG,TOLER) PRNLEV=OLDPRN C C Do reduced basis diagonalization using the DDV vectors C and get eigenvectors of zero iteration C IF(PRNLEV.GE.2) THEN WRITE(OUTU,521) ITER WRITE(OUTU,523) NFRET ENDIF 521 FORMAT(/' NMDIMB: Iteration number = ',I5) 523 FORMAT(' NMDIMB: Dimension of the reduced basis set = ',I5) IF(LBIG) THEN IF(PRNLEV.GE.2) WRITE(OUTU,585) NFRET,IUNMOD 525 FORMAT(' NMDIMB: ',I5,' basis vectors are saved in unit',I5) REWIND (UNIT=IUNMOD) LCARD=.FALSE. CALL WRTNMD(LCARD,1,NFRET,NAT3,DDV,DDSCR,DDEV,IUNMOD,AMASS) CALL SAVEIT(IUNMOD) ELSE CALL CPARAY(HEAP(DDVBAS),DDV,NAT3,1,NFRET,1) ENDIF CALL RBDG(X,Y,Z,NAT3,NDIM,NFRET,DDV,DDF,DDEV, 1 DDSCR,HEAP(DD5),HEAP(DDSS),HEAP(DDV2),NADD, 2 INBCMP,JNBCMP,HEAP(DDVBAS),DD1CMP,QMIX,0,0,IS3,IS4, 3 CUTF1,NFCUT1,NFREG,HEAP(IUPD),DD1BLL,HEAP(SCIFV1), 4 HEAP(SCIFV2),HEAP(SCIFV3),HEAP(SCIFV4),HEAP(SCIFV6), 5 HEAP(DRATQ),HEAP(ERATQ),HEAP(E2RATQ), 6 HEAP(BDRATQ),HEAP(INRATQ),LSCI,LBIG,IUNMOD) C C DO-THE-DIAGONALISATIONS-WITH-RESIDUALS C ASSIGN 621 TO I620 ! { dg-warning "Deleted feature: ASSIGN" "Deleted feature: ASSIGN" } GOTO 620 621 CONTINUE C SAVE-MODES ASSIGN 701 TO I700 ! { dg-warning "Deleted feature: ASSIGN" "Deleted feature: ASSIGN" } GOTO 700 701 CONTINUE IF(ITER.EQ.ITMX) THEN CALL CLEANHP(NAT3,NFREG,NPARD,NSUBP,PARDIM,DDV2,DDSS,DDVBAS, 1 DDVAL,JSPACE,TRAROT, 2 SCIFV1,SCIFV2,SCIFV3,SCIFV4,SCIFV6, 3 DRATQ,ERATQ,E2RATQ,BDRATQ,INRATQ,IUPD,ATMPAF, 4 ATMCOR,SUBLIS,LSCI,QDW,LBIG) RETURN ENDIF ELSE C C Read in existing basis C IF(PRNLEV.GE.2) THEN WRITE(OUTU,531) 531 FORMAT(/' NMDIMB: Calculations restarted') ENDIF C READ-MODES ISTRT=1 ISTOP=99999999 LCARD=.FALSE. LAPPE=.FALSE. CALL RDNMD(LCARD,NFRET,NFREG,NAT3,NDIM, 1 DDV,DDSCR,DDF,DDEV, 2 IUNRMD,LAPPE,ISTRT,ISTOP) NFRET=NDIM IF(NFRET.GT.NFREG) THEN NFRET=NFREG CALL WRNDIE(-1,'<NMDIMB>', 1 'Not enough space to hold the basis. Increase NMODes') ENDIF C PRINT-MODES IF(PRNLEV.GE.2) THEN WRITE(OUTU,533) NFRET,IUNRMD WRITE(OUTU,514) WRITE(OUTU,516) (J,DDF(J),J=1,NFRET) ENDIF 533 FORMAT(/' NMDIMB: ',I5,' restart modes read from unit ',I5) NFRRES=NFRET ENDIF C C ------------------------------------------------- C Here starts the mixed-basis diagonalization part. C ------------------------------------------------- C C C Check cut-off frequency C CALL SELNMD(DDF,NFRET,CUTF1,NFCUT1) C TEST-NFCUT1 IF(IUNRMD.LT.0) THEN IF(NFCUT1*2-6.GT.NFREG) THEN IF(PRNLEV.GE.2) WRITE(OUTU,537) DDF(NFRRES) NFCUT1=NFRRES CUTF1=DDF(NFRRES) ENDIF ELSE CUTF1=DDF(NFRRES) ENDIF 537 FORMAT(/' NMDIMB: Too many vectors for the given cutoff frequency' 1 /' Cutoff frequency is decreased to',F9.3) C C Compute the new partioning of the molecule C CALL PARTIC(NAT3,NFREG,NFCUT1,NPARMX,NPARC,ATMPAR,NFRRES, 1 PARDIM) NPARS=NPARC DO I=1,NPARC ATMPAS(1,I)=ATMPAR(1,I) ATMPAS(2,I)=ATMPAR(2,I) ENDDO IF(QDW) THEN IF(IPAR1.EQ.0.OR.IPAR2.EQ.0) LWDINI=.TRUE. IF(IPAR1.GE.IPAR2) LWDINI=.TRUE. IF(IABS(IPAR1).GT.NPARC*2) LWDINI=.TRUE. IF(IABS(IPAR2).GT.NPARC*2) LWDINI=.TRUE. IF(ITER.EQ.0) LWDINI=.TRUE. ENDIF ITMX=ITMX+ITER IF(PRNLEV.GE.2) THEN WRITE(OUTU,543) ITER,ITMX IF(QDW) WRITE(OUTU,545) IPAR1,IPAR2 ENDIF 543 FORMAT(/' NMDIMB: Previous iteration number = ',I8/ 1 ' NMDIMB: Iteration number to reach = ',I8) 545 FORMAT(' NMDIMB: Previous sub-blocks = ',I5,2X,I5) C IF(SAVF.LE.0) SAVF=NPARC IF(PRNLEV.GE.2) WRITE(OUTU,547) SAVF 547 FORMAT(' NMDIMB: Eigenvectors will be saved every',I5, 1 ' iterations') C C If double windowing is defined, the original block sizes are divided C in two. C IF(QDW) THEN NSUBP=1 CALL PARTID(NPARC,ATMPAR,NPARD,ATMPAD,NPARMX) ATMPAF=ALLHP(INTEG4(NPARD*NPARD)) ATMCOR=ALLHP(INTEG4(NATOM)) DDVAL=ALLHP(IREAL8(NPARD*NPARD)) CALL CORARR(ATMPAD,NPARD,HEAP(ATMCOR),NATOM) CALL PARLIS(HEAP(ATMCOR),HEAP(ATMPAF),INBCMP,JNBCMP,NPARD, 2 NSUBP,NATOM,X,Y,Z,NBOND,IB,JB,DD1CMP,HEAP(DDVAL),DDVALM) SUBLIS=ALLHP(INTEG4(NSUBP*2)) CALL PARINT(HEAP(ATMPAF),NPARD,HEAP(SUBLIS),NSUBP) CALL INIPAF(HEAP(ATMPAF),NPARD) C C Find out with which block to continue (double window method only) C IPA1=IPAR1 IPA2=IPAR2 IRESF=0 IF(LWDINI) THEN ITER=0 LWDINI=.FALSE. GOTO 500 ENDIF DO II=1,NSUBP CALL IPART(HEAP(SUBLIS),II,IPAR1,IPAR2,HEAP(ATMPAF), 1 NPARD,QCALC) IF((IPAR1.EQ.IPA1).AND.(IPAR2.EQ.IPA2)) GOTO 500 ENDDO ENDIF 500 CONTINUE C C Main loop. C DO WHILE((CVGMX.GT.TOLDIM).AND.(ITER.LT.ITMX)) IF(.NOT.QDW) THEN ITER=ITER+1 IF(PRNLEV.GE.2) WRITE(OUTU,553) ITER 553 FORMAT(/' NMDIMB: Iteration number = ',I8) IF(INIDS.EQ.0) THEN INIDS=1 ELSE INIDS=0 ENDIF CALL PARTDS(NAT3,NPARC,ATMPAR,NPARS,ATMPAS,INIDS,NPARMX, 1 DDF,NFREG,CUTF1,PARDIM,NFCUT1) C DO-THE-DIAGONALISATIONS ASSIGN 641 to I640 ! { dg-warning "Deleted feature: ASSIGN" "Deleted feature: ASSIGN" } GOTO 640 641 CONTINUE QDIAG=.FALSE. C DO-THE-DIAGONALISATIONS-WITH-RESIDUALS ASSIGN 622 TO I620 ! { dg-warning "Deleted feature: ASSIGN" "Deleted feature: ASSIGN" } GOTO 620 622 CONTINUE QDIAG=.TRUE. C SAVE-MODES ASSIGN 702 TO I700 ! { dg-warning "Deleted feature: ASSIGN" "Deleted feature: ASSIGN" } GOTO 700 702 CONTINUE C ELSE DO II=1,NSUBP CALL IPART(HEAP(SUBLIS),II,IPAR1,IPAR2,HEAP(ATMPAF), 1 NPARD,QCALC) IF(QCALC) THEN IRESF=IRESF+1 ITER=ITER+1 IF(PRNLEV.GE.2) WRITE(OUTU,553) ITER C DO-THE-DWIN-DIAGONALISATIONS ASSIGN 661 TO I660 ! { dg-warning "Deleted feature: ASSIGN" "Deleted feature: ASSIGN" } GOTO 660 661 CONTINUE ENDIF IF((IRESF.EQ.SAVF).OR.(ITER.EQ.ITMX)) THEN IRESF=0 QDIAG=.FALSE. C DO-THE-DIAGONALISATIONS-WITH-RESIDUALS ASSIGN 623 TO I620 ! { dg-warning "Deleted feature: ASSIGN" "Deleted feature: ASSIGN" } GOTO 620 623 CONTINUE QDIAG=.TRUE. IF((CVGMX.LE.TOLDIM).OR.(ITER.EQ.ITMX)) GOTO 600 C SAVE-MODES ASSIGN 703 TO I700 ! { dg-warning "Deleted feature: ASSIGN" "Deleted feature: ASSIGN" } GOTO 700 703 CONTINUE ENDIF ENDDO ENDIF ENDDO 600 CONTINUE C C SAVE-MODES ASSIGN 704 TO I700 ! { dg-warning "Deleted feature: ASSIGN" "Deleted feature: ASSIGN" } GOTO 700 704 CONTINUE CALL CLEANHP(NAT3,NFREG,NPARD,NSUBP,PARDIM,DDV2,DDSS,DDVBAS, 1 DDVAL,JSPACE,TRAROT, 2 SCIFV1,SCIFV2,SCIFV3,SCIFV4,SCIFV6, 3 DRATQ,ERATQ,E2RATQ,BDRATQ,INRATQ,IUPD,ATMPAF, 4 ATMCOR,SUBLIS,LSCI,QDW,LBIG) RETURN C----------------------------------------------------------------------- C INTERNAL PROCEDURES C----------------------------------------------------------------------- C TO DO-THE-DIAGONALISATIONS-WITH-RESIDUALS 620 CONTINUE IF(IUNRMD.LT.0) THEN CALL SELNMD(DDF,NFRET,CUTF1,NFC) N1=NFCUT1 N2=(NFRET+6)/2 NFCUT=MAX(N1,N2) IF(NFCUT*2-6 .GT. NFREG) THEN NFCUT=(NFREG+6)/2 CUTF1=DDF(NFCUT) IF(PRNLEV.GE.2) THEN WRITE(OUTU,562) ITER WRITE(OUTU,564) CUTF1 ENDIF ENDIF ELSE NFCUT=NFRET NFC=NFRET ENDIF 562 FORMAT(/' NMDIMB: Not enough space to hold the residual vectors'/ 1 ' into DDV array during iteration ',I5) 564 FORMAT(' Cutoff frequency is changed to ',F9.3) C C do reduced diagonalization with preceding eigenvectors plus C residual vectors C ISTRT=1 ISTOP=NFCUT CALL CLETR(DDV,HEAP(TRAROT),NAT3,ISTRT,ISTOP,NFCUT,DDEV,DDF) CALL RNMTST(DDV,HEAP(DDVBAS),NAT3,DDSCR,DD1CMP,INBCMP,JNBCMP, 2 7,NFCUT,CVGMX,NFCUT,NFC,QDIAG,LBIG,IUNMOD) NFSAV=NFCUT IF(QDIAG) THEN NFRET=NFCUT*2-6 IF(PRNLEV.GE.2) WRITE(OUTU,566) NFRET 566 FORMAT(/' NMDIMB: Diagonalization with residual vectors. '/ 1 ' Dimension of the reduced basis set'/ 2 ' before orthonormalization = ',I5) NFCUT=NFRET OLDPRN=PRNLEV PRNLEV=1 CALL ORTHNM(1,NFRET,NFCUT,DDV,NAT3,LPURG,TOLER) PRNLEV=OLDPRN NFRET=NFCUT IF(PRNLEV.GE.2) WRITE(OUTU,568) NFRET 568 FORMAT(' after orthonormalization = ',I5) IF(LBIG) THEN IF(PRNLEV.GE.2) WRITE(OUTU,570) NFCUT,IUNMOD 570 FORMAT(' NMDIMB: ',I5,' basis vectors are saved in unit',I5) REWIND (UNIT=IUNMOD) LCARD=.FALSE. CALL WRTNMD(LCARD,1,NFCUT,NAT3,DDV,DDSCR,DDEV,IUNMOD,AMASS) CALL SAVEIT(IUNMOD) ELSE CALL CPARAY(HEAP(DDVBAS),DDV,NAT3,1,NFCUT,1) ENDIF QMIX=.FALSE. CALL RBDG(X,Y,Z,NAT3,NDIM,NFRET,DDV,DDF,DDEV, 1 DDSCR,HEAP(DD5),HEAP(DDSS),HEAP(DDV2),NADD, 2 INBCMP,JNBCMP,HEAP(DDVBAS),DD1CMP,QMIX,0,0,IS3,IS4, 3 CUTF1,NFCUT1,NFREG,HEAP(IUPD),DD1BLL,HEAP(SCIFV1), 4 HEAP(SCIFV2),HEAP(SCIFV3),HEAP(SCIFV4),HEAP(SCIFV6), 5 HEAP(DRATQ),HEAP(ERATQ),HEAP(E2RATQ), 6 HEAP(BDRATQ),HEAP(INRATQ),LSCI,LBIG,IUNMOD) CALL SELNMD(DDF,NFRET,CUTF1,NFCUT1) ENDIF GOTO I620 ! { dg-warning "Deleted feature: Assigned" "Assigned GO TO" } C C----------------------------------------------------------------------- C TO DO-THE-DIAGONALISATIONS 640 CONTINUE DO I=1,NPARC NFCUT1=NFRRES IS1=ATMPAR(1,I) IS2=ATMPAR(2,I) NDIM=(IS2-IS1+1)*3 IF(PRNLEV.GE.2) WRITE(OUTU,573) I,IS1,IS2 573 FORMAT(/' NMDIMB: Mixed diagonalization, part ',I5/ 1 ' NMDIMB: Block limits: ',I5,2X,I5) IF(NDIM+NFCUT1.GT.PARDIM) CALL WRNDIE(-3,'<NMDIMB>', 1 'Error in dimension of block') NFRET=NFCUT1 IF(NFRET.GT.NFREG) NFRET=NFREG CALL CLETR(DDV,HEAP(TRAROT),NAT3,1,NFCUT1,NFCUT,DDEV,DDF) NFCUT1=NFCUT CALL ADZER(DDV,1,NFCUT1,NAT3,IS1,IS2) NFSAV=NFCUT1 OLDPRN=PRNLEV PRNLEV=1 CALL ORTHNM(1,NFCUT1,NFCUT,DDV,NAT3,LPURG,TOLER) PRNLEV=OLDPRN CALL CPARAY(HEAP(DDVBAS),DDV,NAT3,1,NFCUT,1) NFRET=NDIM+NFCUT QMIX=.TRUE. CALL RBDG(X,Y,Z,NAT3,NDIM,NFRET,DDV,DDF,DDEV, 1 DDSCR,HEAP(DD5),HEAP(DDSS),HEAP(DDV2),NADD, 2 INBCMP,JNBCMP,HEAP(DDVBAS),DD1CMP,QMIX,IS1,IS2,IS3,IS4, 3 CUTF1,NFCUT,NFREG,HEAP(IUPD),DD1BLL,HEAP(SCIFV1), 4 HEAP(SCIFV2),HEAP(SCIFV3),HEAP(SCIFV4),HEAP(SCIFV6), 5 HEAP(DRATQ),HEAP(ERATQ),HEAP(E2RATQ), 6 HEAP(BDRATQ),HEAP(INRATQ),LSCI,LBIG,IUNMOD) QMIX=.FALSE. IF(NFCUT.GT.NFRRES) NFCUT=NFRRES NFCUT1=NFCUT NFRET=NFCUT ENDDO GOTO I640 ! { dg-warning "Deleted feature: Assigned" "Assigned GO TO" } C C----------------------------------------------------------------------- C TO DO-THE-DWIN-DIAGONALISATIONS 660 CONTINUE C C Store the DDV vectors into DDVBAS C NFCUT1=NFRRES IS1=ATMPAD(1,IPAR1) IS2=ATMPAD(2,IPAR1) IS3=ATMPAD(1,IPAR2) IS4=ATMPAD(2,IPAR2) NDIM=(IS2-IS1+IS4-IS3+2)*3 IF(PRNLEV.GE.2) WRITE(OUTU,577) IPAR1,IPAR2,IS1,IS2,IS3,IS4 577 FORMAT(/' NMDIMB: Mixed double window diagonalization, parts ', 1 2I5/ 2 ' NMDIMB: Block limits: ',I5,2X,I5,4X,I5,2X,I5) IF(NDIM+NFCUT1.GT.PARDIM) CALL WRNDIE(-3,'<NMDIMB>', 1 'Error in dimension of block') NFRET=NFCUT1 IF(NFRET.GT.NFREG) NFRET=NFREG C C Prepare the DDV vectors consisting of 6 translations-rotations C + eigenvectors from 7 to NFCUT1 + cartesian displacements vectors C spanning the atoms from IS1 to IS2 C CALL CLETR(DDV,HEAP(TRAROT),NAT3,1,NFCUT1,NFCUT,DDEV,DDF) NFCUT1=NFCUT NFSAV=NFCUT1 CALL ADZERD(DDV,1,NFCUT1,NAT3,IS1,IS2,IS3,IS4) OLDPRN=PRNLEV PRNLEV=1 CALL ORTHNM(1,NFCUT1,NFCUT,DDV,NAT3,LPURG,TOLER) PRNLEV=OLDPRN CALL CPARAY(HEAP(DDVBAS),DDV,NAT3,1,NFCUT,1) C NFRET=NDIM+NFCUT QMIX=.TRUE. CALL RBDG(X,Y,Z,NAT3,NDIM,NFRET,DDV,DDF,DDEV, 1 DDSCR,HEAP(DD5),HEAP(DDSS),HEAP(DDV2),NADD, 2 INBCMP,JNBCMP,HEAP(DDVBAS),DD1CMP,QMIX,IS1,IS2,IS3,IS4, 3 CUTF1,NFCUT,NFREG,HEAP(IUPD),DD1BLL,HEAP(SCIFV1), 4 HEAP(SCIFV2),HEAP(SCIFV3),HEAP(SCIFV4),HEAP(SCIFV6), 5 HEAP(DRATQ),HEAP(ERATQ),HEAP(E2RATQ), 6 HEAP(BDRATQ),HEAP(INRATQ),LSCI,LBIG,IUNMOD) QMIX=.FALSE. C IF(NFCUT.GT.NFRRES) NFCUT=NFRRES NFCUT1=NFCUT NFRET=NFCUT GOTO I660 ! { dg-warning "Deleted feature: Assigned" "Assigned GO TO" } C C----------------------------------------------------------------------- C TO SAVE-MODES 700 CONTINUE IF(PRNLEV.GE.2) WRITE(OUTU,583) IUNMOD 583 FORMAT(/' NMDIMB: Saving the eigenvalues and eigenvectors to unit' 1 ,I4) REWIND (UNIT=IUNMOD) ISTRT=1 ISTOP=NFSAV LCARD=.FALSE. IF(PRNLEV.GE.2) WRITE(OUTU,585) NFSAV,IUNMOD 585 FORMAT(' NMDIMB: ',I5,' modes are saved in unit',I5) CALL WRTNMD(LCARD,ISTRT,ISTOP,NAT3,DDV,DDSCR,DDEV,IUNMOD, 1 AMASS) CALL SAVEIT(IUNMOD) GOTO I700 ! { dg-warning "Deleted feature: Assigned" "Assigned GO TO" } C C----------------------------------------------------------------------- C TO ALLOCATE-SPACE-FOR-DIAGONALIZATION 720 CONTINUE DDV2=ALLHP(IREAL8((PARDIM+3)*(PARDIM+3))) JSPACE=IREAL8((PARDIM+4))*8 JSP=IREAL8(((PARDIM+3)*(PARDIM+4))/2) JSPACE=JSPACE+JSP DDSS=ALLHP(JSPACE) DD5=DDSS+JSPACE-JSP GOTO I720 ! { dg-warning "Deleted feature: Assigned" "Assigned GO TO" } C C----------------------------------------------------------------------- C TO ALLOCATE-SPACE-FOR-REDUCED-BASIS 760 CONTINUE IF(LBIG) THEN DDVBAS=ALLHP(IREAL8(NAT3)) ELSE DDVBAS=ALLHP(IREAL8(NFREG*NAT3)) ENDIF GOTO I760 ! { dg-warning "Deleted feature: Assigned" "Assigned GO TO" } C C----------------------------------------------------------------------- C TO ALLOCATE-SPACE-FOR-TRANSROT-VECTORS 800 CONTINUE TRAROT=ALLHP(IREAL8(6*NAT3)) GOTO I800 ! { dg-warning "Deleted feature: Assigned" "Assigned GO TO" } C C----------------------------------------------------------------------- C TO ALLOCATE-SPACE-FOR-LSCI 840 CONTINUE SCIFV1=ALLHP(IREAL8(PARDIM+3)) SCIFV2=ALLHP(IREAL8(PARDIM+3)) SCIFV3=ALLHP(IREAL8(PARDIM+3)) SCIFV4=ALLHP(IREAL8(PARDIM+3)) SCIFV6=ALLHP(IREAL8(PARDIM+3)) DRATQ=ALLHP(IREAL8(PARDIM+3)) ERATQ=ALLHP(IREAL8(PARDIM+3)) E2RATQ=ALLHP(IREAL8(PARDIM+3)) BDRATQ=ALLHP(IREAL8(PARDIM+3)) INRATQ=ALLHP(INTEG4(PARDIM+3)) GOTO I840 ! { dg-warning "Deleted feature: Assigned" "Assigned GO TO" } C C----------------------------------------------------------------------- C TO ALLOCATE-DUMMY-SPACE-FOR-LSCI 880 CONTINUE SCIFV1=ALLHP(IREAL8(2)) SCIFV2=ALLHP(IREAL8(2)) SCIFV3=ALLHP(IREAL8(2)) SCIFV4=ALLHP(IREAL8(2)) SCIFV6=ALLHP(IREAL8(2)) DRATQ=ALLHP(IREAL8(2)) ERATQ=ALLHP(IREAL8(2)) E2RATQ=ALLHP(IREAL8(2)) BDRATQ=ALLHP(IREAL8(2)) INRATQ=ALLHP(INTEG4(2)) GOTO I880 ! { dg-warning "Deleted feature: Assigned" "Assigned GO TO" } C C----------------------------------------------------------------------- C TO ALLOCATE-SPACE-FOR-OTHER-ARRAYS 920 CONTINUE IUPD=ALLHP(INTEG4(PARDIM+3)) GOTO I920 ! { dg-warning "Deleted feature: Assigned" "Assigned GO TO" } C.##ELSE C.##ENDIF END
gpl-2.0
luca-penasa/mtspec-python3
mtspec/src/programs/coherence.f90
2
26568
module cohe_variables ! ! Module: define some global variables, that can be accesed and ! changed, modified by any function, program or subroutine ! that USES the specific module. The command is: ! use module_name ! ! ! For the scan subroutine ! integer, parameter :: inmx = 500 character (len=100), dimension(inmx) :: input character (len=100) :: output character (len=20) :: type integer :: iecho, nin ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Put here any global variables !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! real :: xbar, varx integer :: nx,nf real :: dt real, dimension(:), allocatable :: t real, dimension(:,:), allocatable :: x real(4) :: fact, tbp, p integer :: ntap, ntimes, kspec real(4), dimension(:), allocatable :: freq real(4), dimension(:), allocatable :: cohe, phase, conf integer, dimension(:), allocatable :: kopt real(4), dimension(:), allocatable :: spec1, spec2 real(4), dimension(:,:), allocatable :: cohe_ci, phase_ci integer, parameter :: mxx=200000 end module cohe_variables !---------------------------------------------------------------- program coherence ! ! Multitaper Power Spectral Density code ! See subroutine scan for synopsis of commands. ! ! ! Last modified 15 Sept 2005 ! !$$$$ calls getdat getone getint scan mtspec !******************************************************************** use cohe_variables use spectra use mvspectra use plot implicit none integer :: ignor, kwit, i character (len = 100) :: output2 !******************************************************************** ! ! Initializing two of the variables of the module, ! "Don't echo command lines when read" ! iecho = -1 nin = 0 ! ! Read in the commands ! do call scan call getint('quit',ignor, kwit) if (kwit >= 0) then dt = 0.0 write(6,'(/a)') 'Normal Termination' stop endif ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Put here the call to your subroutines !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! if (allocated(x)) then deallocate(x) endif if (allocated(t)) then deallocate(t) endif call getdat ! Spectral parameters call getint('ntap',ntap,kwit) if (kwit .ne. 1) then ntap = 0 endif call getint('ntimes',ntimes,kwit) if (kwit .ne. 1) then ntimes = 2 endif call getone('fact',fact,kwit) if (kwit .ne. 1) then fact = 1. endif call getone('tbnw',tbp,kwit) if (kwit .ne. 1) then tbp = 4. endif call getint('kspec',kspec,kwit) if (kwit .ne. 1) then kspec = 7 endif call getone('conf',p,kwit) if (kwit .ne. 1) then p = 0.95 endif nf = nx/2 + 1 if (allocated(freq)) then deallocate(freq) endif if (allocated(spec1)) then deallocate(spec1) endif if (allocated(spec2)) then deallocate(spec2) endif if (allocated(cohe)) then deallocate(cohe) endif if (allocated(phase)) then deallocate(phase) endif if (allocated(kopt)) then deallocate(kopt) endif if (allocated(conf)) then deallocate(conf) endif if (allocated(cohe_ci)) then deallocate(cohe_ci) endif if (allocated(phase_ci)) then deallocate(phase_ci) endif allocate(freq(nf)) allocate(spec1(nf)) allocate(spec2(nf)) allocate(cohe(nf)) allocate(phase(nf)) allocate(kopt(nf)) allocate(conf(nf)) allocate(cohe_ci(nf,2)) allocate(phase_ci(nf,2)) kopt = kspec ! Set all freq to same # of tapers call getchr('method',type,kwit) if (kwit>0) then if (0 .eq. index('sine para ',type(1:4))) then call mt_cohe (nx,dt,x(:,1),x(:,2),tbp,kspec,nf,p, & freq,cohe,phase,spec1, spec2,conf,cohe_ci, phase_ci ) else call sine_cohe (nx,dt,x(:,1),x(:,2),ntap,ntimes,fact,nf,p, & freq,cohe,phase,spec1,spec2,kopt,conf,cohe_ci,phase_ci) endif else ! Standard is Thomson method call mt_cohe (nx,dt,x(:,1),x(:,2),tbp,kspec,nf,p, & freq,cohe,phase,spec1, spec2,conf,cohe_ci, phase_ci ) endif call getchr('save',output,kwit) if (kwit>0) then output2 = trim(adjustl(output)) open(12,file=output2,form='formatted') write(6,'(2a)') & 'Output contains: freq, spec1, spec2, cohe, phase, # tapers, ', & 'conf, cohe_ci, phase_ci' do i=1,nf write(12,'(5E16.7,i5,5E16.7)') & freq(i), spec1(i), spec2(i), cohe(i), phase(i), kopt(i), & conf(i), cohe_ci(i,1), cohe_ci(i,2),phase_ci(i,1), phase_ci(i,2) enddo close(12) endif call getint('plot',ignor, kwit) if (kwit>=0) then if (ignor == 1) then allocate(t(nx)) t = real( (/(i-1, i=1,nx)/) )*dt call gplot(t,x(:,1),'plot',ylimit='4',xlimit='5', & frame=' ') call gplot(t,x(:,2),ylimit='4',xlimit='5', & frame='frame on top right -xaxis',output='ts.ps') deallocate(t) endif call gplot(freq,conf,'hold',color='2',xlabel='Frequency (Hz)', & ylabel='Coherence') call gplot(freq,cohe,'plot',color='1',frame=' ',& ylimit='4 0. 1.',xlimit='5') call gplot(freq,phase,frame='frame on top right -xaxis', & ylimit='4 -200 200',xlimit='5',color='black', & ylabel='Phase',output='coh_plot.ps') endif write(6,'(/a)')'Enter further commands or "quit" to terminate run' enddo end program coherence !_______________________________________________________________ ! ! Contains ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Put here your subroutines !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! !_______________________________________________________________________ !======================================================================= ! Unit K: Decoding routines for command kit !======================================================================= subroutine scan !$$$$ calls clear getchr icheck ! Input routine for commands ! Reads from the standard input until eof or code "execute " or "quit". ! Saves lines in the input in cohe_variables for later retrieval by ! getarr, getone or getchr. ! Prints a glossary upon request !******************************************************************** use cohe_variables implicit none integer :: n1, ignor, i, ios, l character *80 line, code*4 !******************************************************************** if (nin .eq. 0) then write(6,'(a)') ' ', & 'Enter commands for coherence estimation (? for help)' endif do l=nin+1, inmx read(*,'(80a)', iostat = ios) line if (ios<0) then stop endif call ljust(line,line) ! Remove leading blanks if (line(1:4) == 'exec') then exit endif ! ! List a glossary of codes ! if (line(1:1) .eq. '?') then write(6,'(a/(2x,a))') & 'Enter commands from the following list:', & '?: Remind me of the command list again', & 'execute: With given parameters start coherence program', & 'file file1 [file2]: Enter filename(s) of data (mandatory)', & 'method type: Enter the method to use (Thomson (def) - Sine )', & 'interval dt: Sampling interval of data', & 'nterms n: Number of data points to be read', & 'skip k: Skip over k lines before reading data', & 'column k n: Read data from columns k [and n] in a table', & 'kspec k: Number of taper for Slepian tapers (Default = 7)', & 'tbnw nw: Time-bandwidth product for Thomson method (def=4.)', & 'ntap ntap: Number of tapers to be used (constant number)', & 'ntimes ntimes: # Iterations adaptive spectrum (overrides ntap)', & 'fact factor: The spectral smoothing for derivative estimates', & 'conf p: Probability that the coherence exceeds 0 (def 0.95)', & 'save file: The file to save the coherence spectrum ', & 'review: Display current command stack', & 'clear command: Delete most recent occurrence of the command', & 'plot i: Make plots of cohe/phase (to plot data set i=1)', & ' ' ! ! Review the command stack ! elseif (line(1:4) .eq. 'revi') then write(6,'(5x,a)')' ', '=================== ', & (input(i)(1:60),i=1,nin),'=================== ' elseif (line(1:1) .ne. ' ') then ! Translate homonyms if (line(1:4) .eq. 'echo') then iecho=-iecho endif nin=nin + 1 if (nin > inmx) then write(6,'(a)') '>>>> Too many commands - memory full' stop endif call icheck(line) input(nin)=line if (line(1:4) .eq. 'quit') then return endif ! ! Clear a command and clear clear itself ! if (line(1:4) .eq. 'clea') then call getchr('clear', code, ignor) call clear (code) nin=nin - 1 endif endif enddo n1=max(1, nin-24) write(6,'(5x,a)')' ', '=================== ', & (input(i)(1:60),i=n1,nin),'=================== ' return end subroutine scan !______________________________________________________________________ subroutine icheck(line) !$$$$ calls nothing ! Checks the command fragment com against the catalog; appends a ! warning if com is not present in the list. !******************************************************************** use cohe_variables implicit none character*80 line, com*4 !******************************************************************** com=line(1:4) if (0 .eq. & index('clea colu detr file inte ',com) & +index('nter outp skip save ',com) & +index('ntap ntim fact quit ', com) & +index('kspe tbnw meth conf plot ', com)) then line=line(1:20)//' %<<<<<<< Unrecognized command' endif return end subroutine icheck !______________________________________________________________________ subroutine getarr(code, values, nwant, nfound) !$$$$ calls ljust ! Extracts an array of numbers from input in the cohe_variables module. ! It is a large array in the cohe_variables module at the end of the ! file, which has been filled earlier. ! code A 4-byte identifying code. Only lines in the input store ! beginning with this code are scanned for numbers. ! values the real output array of values found. ! nwant the maximum number of numbers expected . ! nfound the number of numbers actually found in the input. ! If the line contains fewer than nwant values, this is the ! value returned in nfound. If an error is discovered ! nfound=-n, where n is the number of numbers properly ! decoded. If there are no numbers after the codeword ! nfound=0. Finally, if the code is absent from the store ! nfound=-99 and the array is left undisturbed. !******************************************************************** use cohe_variables implicit none integer :: l, ios, lbl, n, n1, n2, lin, nwant, nfound real :: values character *80 line,local,char, code*4 dimension values(*) !******************************************************************** ! ! Read the store in reverse order (Thus last entry is obeyed) ! do lin=nin, 1, -1 line=input(lin) ! ! Check for code ! if (code == line(1:4)) then if (iecho .ge. 1) then write(6,'(2a)')'==> ',line endif n1=index(line, ' ')+1 n2=index(line, '%') n2=80 + min(n2,1)*(n2 - 81) char=line(n1:n2) do n=1, nwant call ljust(char, local) lbl=index(local, ' ') if (lbl .eq. 1) then nfound = n -1 return endif read (local, *, iostat=ios) values(n) if (ios > 0) then print '(a)',' ', & '>>> Unreadable numbers in this input line:',line nfound = l - n return endif char=local(lbl:80) enddo n=nwant+1 nfound = n - 1 return endif enddo ! ! Code word not found ! nfound=-99 return end subroutine getarr !______________________________________________________________ subroutine getone(code, value, nfound) !$$$$ calls getarr ! Extracts a single number from the input store. That store is ! a large array in the cohe_variables module at the end of the ! file, which has been filled earlier. ! code A 4-bye identifying code. Only lines in the input store ! beginning with this code are scanned for numbers. ! value the real output variable containing the desired number. ! nfound is 1 if a number is successfully read in; it is zero ! the number is absent or unreadable. nfound = -99 if the ! code is absent from the input store. !******************************************************************** use cohe_variables implicit none character*4 code real, dimension(1) :: v real :: value integer :: nfound !******************************************************************** call getarr(code, v, 1, nfound) if (nfound .eq. 1) then value=v(1) endif return end subroutine getone !______________________________________________________________ subroutine getint(code, number, nfound) !$$$$ calls getarr ! Extracts a single integer from the input store. ! See getone for details. ! !******************************************************************** use cohe_variables implicit none character*4 code real, dimension(1) :: v integer :: number, nfound !******************************************************************** call getarr(code, v, 1, nfound) if (nfound .eq. 1) then number=nint(v(1)) if (number .ne. v(1)) then write(6,'(4a,1p,g16.8/a,i10)') & '>>> Warning: ',code,' expects an integer argument, but', & ' found: ',v(1),' Returns: ',number,' ' endif endif return end subroutine getint !______________________________________________________________ subroutine getchr(code, char, nbytes) ! $$$$ calls ljust ! Extracts a single character variable from the input store. That ! store is a large array in the cohe_variables module at the end ! of the file, which has been filled earlier. ! ! code A 4-byte identifying code. Only lines in the input store ! beginning with this code are scanned. ! char the character output variable containing the desired string. ! nbytes is the length of the string read; it is zero if ! the line is blank after the code. nbytes = -99 if the ! code is absent from the input store. ! !******************************************************************** use cohe_variables implicit none integer :: k, nn, n1, n2, lin, nbytes character *80 line, char*(*), code*4 !******************************************************************** ! ! Inspect the store in reverse order (thus reading latest entry) ! do lin=nin, 1, -1 line=input(lin) ! ! Check for code word ! if (code == line(1:4)) then if (iecho >= 1) then write(6,'(2a)')'==> ',line endif n1=index(line, ' ')+1 n2=index(line, '%') n2=80 + min(n2,1)*(n2 - 81) ! ! Check for blank string ! nbytes=0 if (line(n1:n2) == ' ') then return endif ! ! Save in char everything from 1st non-blank to last non-blank ! call ljust(line(n1:n2), char) nn=min(n2-n1+1, len(char)) do k=nn, 1, -1 if (char(k:k) .ne. ' ') then exit endif enddo nbytes= k return endif enddo ! ! Code word not found ! nbytes=-99 return end subroutine getchr !______________________________________________________________ subroutine clear(code) !$$$$ calls nothing ! ! Removes the last command entry identified by code. ! code A 4-byte identifying code. Only lines in the input store ! beginning with this code are scanned. ! !******************************************************************** use cohe_variables implicit none integer :: lin character *80 line, code*4 !******************************************************************** ! ! Inspect the store in normal order ! do lin= nin, 1, -1 line=input(lin) ! ! Check code and clear the line if present, but only once ! if (code .eq. line(1:4)) then input(lin)=' --' return endif enddo return end subroutine clear !______________________________________________________________ subroutine ljust(str1, str2) !$$$$ calls nothing ! Left justify: input character string str1 (up to 80 bytes in length) ! is left justified, removing leading blanks, and returned in str2. ! str1 and str2 may be set to the same variable in the call. !******************************************************************** use cohe_variables implicit none integer :: j, l1 character*(*) str1, str2, str3*80 !******************************************************************** str2=str1 if (str1 == ' ') then return endif l1=len(str1) str3=str1 do j=1, l1 if (str1(j:j) .ne. ' ') then str2=str3(j:l1) return endif enddo return end subroutine ljust !______________________________________________________________________ function later(code1, code2) !$$$$ calls nothing ! Returns the difference in order number in the stack of the ! most recent occurrence of the commands code1, code2. If the ! command isn't present assigns it the order number zero. ! Thus later > 0 if code1 occurs after code 2, < 0 if before, ! and later=0 if both are absent and code1 and code2 are different. !******************************************************************** use cohe_variables implicit none integer :: lin, kode2, kode1, later character *80 line, code1*4,code2*4 !******************************************************************** ! ! Inspect the store ! kode1=0 kode2=0 do lin=1, nin line=input(lin) if (code1 .eq. line(1:4)) then kode1=lin endif if (code2 .eq. line(1:4)) then kode2=lin endif enddo later=kode1 - kode2 return end function later !======================================================================= ! Unit D: Get the Data !======================================================================= subroutine getdat !$$$$ calls getarr getchr getone getint ! ! Gets the file name and reads data into vector x(). ! I define a y() vector, just in this program, to be ! able to allocate the x() vector with the size of the ! data series. ! ! Issues error messages. ! !******************************************************************** use cohe_variables implicit none character (len=64) :: name, temp character (len=64), dimension(2) :: name1 real, dimension(40) :: tab real, dimension(mxx,2) :: y real :: dum real, dimension(2) :: column, rskip integer :: l, koln, kols, intdt, nte, j, nt, none integer :: nterm, ios, itwas, koln2 integer :: kbl, nfiles, i1, i2, nfl, nskip integer, dimension(2) :: iskip data nterm/mxx/ save nterm !******************************************************************** name(1:1) = ' ' ! Assign a default name. column = 1 ! If no column assigned, use column = 1 iskip = 0 ! If no skipping assigned, do not skip call getchr('file', name, itwas) if (itwas == 0) then write(6,'(a)')'>>> Psd cannot continue without a file name' stop endif if (itwas == -99) then write(6,'(a)')'>>> Command file is mandatory' stop endif kbl = index(name(1:itwas), ' ') nfiles = min(2,kbl+1) if (kbl == 0) then kbl = itwas endif ! ! If there are two files, squeeze out excess blanks in name if (nfiles .eq. 2) then call ljust(name(kbl:itwas), temp) name(kbl+1:itwas)=temp write(6,'(a)') 'Data will be read from two separate files:',name column(2)=1 endif i1=1 i2=kbl ! ! Number of terms to skip ! nskip = 0 call getarr('skip', rskip, 2, nskip) if (nskip > 1) then iskip(1) = rskip(1) iskip(2) = rskip(2) elseif (nskip == 1) then iskip = rskip(1) else iskip = 0 endif if (nfiles == 2 ) then name1(1) = name(i1:i2) name1(2) = name(i2+1:itwas) else name1(1) = name endif ! ! Skip records before reading ! do nfl = 1,nfiles open(11,file=name1(nfl), status='OLD', iostat=ios) if( ios/=0) then write (6,'(2a)') 'Unable to open file: ', name1(nfl) stop endif if (none >= 1 .and. iskip(nfl) > 0) then do j=1, iskip(nfl) read (11,*, iostat = ios) dum if (ios<0) then write(6,'(2a)') '>>> End of file encountered', & ' while skipping' stop endif enddo write(6,'(a,i7)')' Skipped records before data:',iskip(nfl) endif ! ! Get number of terms to be read ! nt=mxx call getint('nterms', nterm, nte) if (nte > 0) then nt=min(mxx, nterm) endif ! ! Get the sampling interval ! call getone('interval', dt, intdt) if (intdt < 0) then dt = 1.0 endif ! ! Get column(s) to be read ! call getarr('column', column, 2, kols) if (kols > 1) then koln = column(1) koln2 = column(2) elseif (kols == 1) then koln = column(1) koln2 = koln else write(6,'(a)') 'Column has to be either 1 or two values' stop endif ! ! Read from two columns in same file, given by user ! if (nfiles == 1) then write(6,'(a,2i4)')'Series read from columns ',koln,koln2 do j=1, nt read (11,*, iostat = ios) (tab(l),l=1,max(koln,koln2)) if (ios > 0) then write(6,'(2a,i7)') '>>> Unreadable number in ', & 'data file at point ', j stop endif if (ios<0) then nx = j-1 write(6,'(a)') ' EOF detected in data file' rewind(unit=11) write(6,'(a,i7)')' Number of terms read:',nx allocate(x(nx,2)) x(:,1) = y(1:nx,1) x(:,2) = y(1:nx,2) exit endif y(j,1) = tab(koln) y(j,2) = tab(koln2) enddo ! ! Read from 2 files. ! else koln = nint(column(nfl)) write(6,'(2(a,i3))')'Reading file number',nfl,', column ',koln do j = 1,nt read (11, *, iostat=ios) (tab(l),l=1, koln) if (ios>0) then write(6,'(2a,i7)')'>>> Unreadable number in data', & 'file at point',j stop elseif(ios<0) then nx = j-1 write(6,'(a)') ' EOF detected in data file' rewind(unit=11) write(6,'(a,i7)')' Number of terms read:',nx if (allocated(x)) then write(6,'(a,i7)')' Already allocated array:', nx else allocate(x(nx,2)) endif x(:,nfl) = y(1:nx,nfl) exit endif y(j,nfl) = tab(koln) enddo endif enddo if (ios >= 0) then if (nt == mxx) then write(6,'(2a,i7,a)') & '>>> Array space filled:', & ' series truncated to',mxx,' terms' nx=nt allocate(x(nx,2)) x(:,1) = y(1:nx,1) x(:,2) = y(1:nx,2) else nx = nt allocate(x(nx,2)) x(:,1) = y(1:nx,1) x(:,2) = y(1:nx,2) endif endif write(6,'(a,i7)')' Number of terms read:',nx if (nx == 0) then allocate(x(mxx,2)) ! If nx is zero, need to allocate x() endif close(11) return end subroutine getdat !___________________________________________________________________
gpl-2.0
embecosm/avr32-gcc
gcc/testsuite/gfortran.dg/c_kind_params.f90
8
3141
! { dg-do run } ! { dg-require-effective-target stdint_types } ! { dg-additional-sources c_kinds.c } ! { dg-options "-w -std=c99" } ! the -w option is needed to make f951 not report a warning for ! the -std=c99 option that the C file needs. ! ! Note: int_fast*_t currently not supported, cf. PR 448. module c_kind_params use, intrinsic :: iso_c_binding implicit none contains subroutine param_test(my_short, my_int, my_long, my_long_long, & my_int8_t, my_int_least8_t, my_int16_t, & my_int_least16_t, my_int32_t, my_int_least32_t, & my_int64_t, my_int_least64_t, & my_intmax_t, my_intptr_t, my_float, my_double, my_long_double, & my_char, my_bool) bind(c) integer(c_short), value :: my_short integer(c_int), value :: my_int integer(c_long), value :: my_long integer(c_long_long), value :: my_long_long integer(c_int8_t), value :: my_int8_t integer(c_int_least8_t), value :: my_int_least8_t ! integer(c_int_fast8_t), value :: my_int_fast8_t integer(c_int16_t), value :: my_int16_t integer(c_int_least16_t), value :: my_int_least16_t ! integer(c_int_fast16_t), value :: my_int_fast16_t integer(c_int32_t), value :: my_int32_t integer(c_int_least32_t), value :: my_int_least32_t ! integer(c_int_fast32_t), value :: my_int_fast32_t integer(c_int64_t), value :: my_int64_t integer(c_int_least64_t), value :: my_int_least64_t ! integer(c_int_fast64_t), value :: my_int_fast64_t integer(c_intmax_t), value :: my_intmax_t integer(c_intptr_t), value :: my_intptr_t real(c_float), value :: my_float real(c_double), value :: my_double real(c_long_double), value :: my_long_double character(c_char), value :: my_char logical(c_bool), value :: my_bool if(my_short /= 1_c_short) call abort() if(my_int /= 2_c_int) call abort() if(my_long /= 3_c_long) call abort() if(my_long_long /= 4_c_long_long) call abort() if(my_int8_t /= 1_c_int8_t) call abort() if(my_int_least8_t /= 2_c_int_least8_t ) call abort() print *, 'c_int_fast8_t is: ', c_int_fast8_t if(my_int16_t /= 1_c_int16_t) call abort() if(my_int_least16_t /= 2_c_int_least16_t) call abort() print *, 'c_int_fast16_t is: ', c_int_fast16_t if(my_int32_t /= 1_c_int32_t) call abort() if(my_int_least32_t /= 2_c_int_least32_t) call abort() print *, 'c_int_fast32_t is: ', c_int_fast32_t if(my_int64_t /= 1_c_int64_t) call abort() if(my_int_least64_t /= 2_c_int_least64_t) call abort() print *, 'c_int_fast64_t is: ', c_int_fast64_t if(my_intmax_t /= 1_c_intmax_t) call abort() if(my_intptr_t /= 0_c_intptr_t) call abort() if(my_float /= 1.0_c_float) call abort() if(my_double /= 2.0_c_double) call abort() if(my_long_double /= 3.0_c_long_double) call abort() if(my_char /= c_char_'y') call abort() if(my_bool .neqv. .true._c_bool) call abort() end subroutine param_test end module c_kind_params ! { dg-final { cleanup-modules "c_kind_params" } }
gpl-2.0
SaberMod/GCC_SaberMod
gcc/testsuite/gfortran.fortran-torture/execute/entry_7.f90
190
2079
! Test alternate entry points for functions when the result types ! of all entry points match function f1 (a) integer a, b integer, pointer :: f1, e1 allocate (f1) f1 = 15 + a return entry e1 (b) allocate (e1) e1 = 42 + b end function function f2 () real, pointer :: f2, e2 entry e2 () allocate (e2) e2 = 45 end function function f3 () double precision, pointer :: f3, e3 entry e3 () allocate (f3) f3 = 47 end function function f4 (a) result (r) double precision a, b double precision, pointer :: r, s allocate (r) r = 15 + a return entry e4 (b) result (s) allocate (s) s = 42 + b end function function f5 () result (r) integer, pointer :: r, s entry e5 () result (s) allocate (r) r = 45 end function function f6 () result (r) real, pointer :: r, s entry e6 () result (s) allocate (s) s = 47 end function program entrytest interface function f1 (a) integer a integer, pointer :: f1 end function function e1 (b) integer b integer, pointer :: e1 end function function f2 () real, pointer :: f2 end function function e2 () real, pointer :: e2 end function function f3 () double precision, pointer :: f3 end function function e3 () double precision, pointer :: e3 end function function f4 (a) double precision a double precision, pointer :: f4 end function function e4 (b) double precision b double precision, pointer :: e4 end function function f5 () integer, pointer :: f5 end function function e5 () integer, pointer :: e5 end function function f6 () real, pointer :: f6 end function function e6 () real, pointer :: e6 end function end interface double precision d if (f1 (6) .ne. 21) call abort () if (e1 (7) .ne. 49) call abort () if (f2 () .ne. 45) call abort () if (e2 () .ne. 45) call abort () if (f3 () .ne. 47) call abort () if (e3 () .ne. 47) call abort () d = 17 if (f4 (d) .ne. 32) call abort () if (e4 (d) .ne. 59) call abort () if (f5 () .ne. 45) call abort () if (e5 () .ne. 45) call abort () if (f6 () .ne. 47) call abort () if (e6 () .ne. 47) call abort () end
gpl-2.0
embecosm/avr32-gcc
gcc/testsuite/gfortran.dg/proc_decl_3.f90
193
1304
! { dg-do compile } ! Some tests for PROCEDURE declarations inside of interfaces. ! Contributed by Janus Weil <jaydub66@gmail.com> module m interface subroutine a() end subroutine a end interface procedure(c) :: f interface bar procedure a,d end interface bar interface foo procedure c end interface foo abstract interface procedure f ! { dg-error "must be in a generic interface" } end interface interface function opfoo(a) integer,intent(in) :: a integer :: opfoo end function opfoo end interface interface operator(.op.) procedure opfoo end interface external ex ! { dg-error "has no explicit interface" } procedure():: ip ! { dg-error "has no explicit interface" } procedure(real):: pip ! { dg-error "has no explicit interface" } interface nn1 procedure ex procedure a, a ! { dg-error "already present in the interface" } end interface interface nn2 procedure ip end interface interface nn3 procedure pip end interface contains subroutine d(x) interface subroutine x() end subroutine x end interface interface gen procedure x end interface end subroutine d function c(x) integer :: x real :: c c = 3.4*x end function c end module m
gpl-2.0
pbosler/LPPM
AdvectMovingVortsRefineVorticity.f90
2
24238
program MovingVorticesAdvectionAMRVorticity use NumberKindsModule use OutputWriterModule use LoggerModule use SphereGeomModule use SphereMeshModule use AdvectionModule use ParticlesModule use PanelsModule use SphereMeshModule use TracerSetupModule use VTKOutputModule use BVESetupModule use SphereRemeshModule implicit none include 'mpif.h' ! ! mesh variables ! type(SphereMesh) :: sphere integer(kint) :: panelKind, initNest, AMR, nTracer type(Particles), pointer :: sphereParticles type(Panels), pointer :: spherePanels integer(kint), allocatable :: amrN(:) ! ! tracer variables ! type(TracerSetup) :: testCaseTracer integer(kint) :: tracerID real(kreal) :: vortStartLon, vortStartLat ! ! vorticity placeholder ! type(BVESetup) :: nullVort real(kreal) :: maxCircTol, vortVarTol ! ! remeshing / refinement variables ! type(RemeshSetup) :: remesh integer(kint) :: remeshInterval, resetAlphaInterval, amrLimit, remeshCounter real(kreal) :: tracerMassTol, tracerVarTol, lagVarTol type(ReferenceSphere), pointer :: reference ! ! time stepping variables ! type(AdvRK4Data) :: timekeeper real(kreal) :: t, tfinal, dt integer(kint) :: timesteps, timeJ ! ! output variables ! type(VTKSource) :: vtkOut, vtkMeshOut character(len = MAX_STRING_LENGTH) :: vtkRoot, vtkFile, vtkMeshFile, outputDir, jobPrefix, dataFile, summaryFile character(len = 56) :: amrString integer(kint) :: frameCounter, frameOut, readWriteStat type(OutputWriter) :: writer ! ! test case variables ! real(kreal), allocatable :: totalMasstestCaseTracer(:), sphereL1(:), sphereL2(:), sphereLinf(:), panelsLinf(:),& particlesLinf(:), phiMax(:), phiMin(:), tracerVar(:), surfArea(:) real(kreal) :: deltaPhi, phimax0, phimin0 real(kreal) :: mass0, var0 ! ! logging ! type(Logger) :: exeLog character(len=28) :: logkey character(len=MAX_STRING_LENGTH) :: logstring ! ! mpi / computing environment / general variables ! integer(kint) :: errCode real(kreal) :: wallclock integer(kint) :: j ! ! namelists and user input ! character(len=MAX_STRING_LENGTH) :: namelistFile = 'MovingVortices2.namelist' namelist /meshDefine/ initNest, AMR, panelKind, amrLimit, maxCircTol, vortVarTol, tracerMassTol, tracerVarTol, lagVarTol namelist /timestepping/ tfinal, dt, remeshInterval, resetAlphaInterval namelist /fileIO/ outputDir, jobPrefix, frameOut !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ! INITIALIZE COMPUTER, MESH, TEST CASE !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ call MPI_INIT(errCode) call MPI_COMM_SIZE(MPI_COMM_WORLD, numProcs, errCode) call MPI_COMM_RANK(MPI_COMM_WORLD, procRank, errCode) call InitLogger(exeLog, procRank) wallclock = MPI_WTIME() nTracer = 3 ! ! get user input ! call ReadNamelistFile(procRank) ! ! define tracer ! tracerID = 1 vortStartLon = 0.0_kreal vortStartLat = 0.0_kreal call New(testCaseTracer, 1, 2) call InitMovingVortsTracer(testCaseTracer, vortStartLon, vortStartLat, tracerID) ! ! build initial mesh ! call New(sphere, panelKind, initNest, AMR, nTracer, BVE_SOLVER) sphereParticles => sphere%particles spherePanels => sphere%panels call SetTestCaseVorticityOnMesh(sphere, nullVort, 0.0_kreal) call SetMovingVortsTracerOnMesh(sphere, testCaseTracer) ! ! initialize remeshing and refinement ! call ConvertFromRelativeTolerances(sphere, maxCircTol, vortVarTol, tracerMassTol, & tracerVarTol, tracerID, lagVarTol) call LogMessage(exeLog, TRACE_LOGGING_LEVEL, 'maxCircTol = ', maxCircTol ) call LogMessage(exeLog, TRACE_LOGGING_LEVEL, 'vortVarTol = ', vortVarTol ) call LogMessage(exeLog, TRACE_LOGGING_LEVEL, 'tracerMassTol = ', tracerMassTol ) call LogMessage(exeLog, TRACE_LOGGING_LEVEL, 'tracerVarTol = ', tracerVarTol ) call LogMessage(exeLog, TRACE_LOGGING_LEVEL, ' lagVarTol = ', lagVarTol ) if ( procRank == 0 ) then print *, "maxCircTol = ", maxCircTol print *, "lagVarTol = ", lagVarTol endif call New(remesh, maxCircTol, vortVarTol, lagVarTol, tracerID, tracerMassTol, tracerVarTol, amrLimit) nullify(reference) if ( AMR > 0 ) then call InitialRefinement(sphere, remesh, SetMovingVortsTracerOnMesh, testCaseTracer, & SetTestCaseVorticityOnMesh, nullvort, 0.0_kreal) if ( panelKind == QUAD_PANEL ) & write(amrstring,'(A,I1,A,I0.2,A)') 'quadAMR_', initNest, 'to', initNest+amrLimit, '_' if ( panelKind == TRI_PANEL ) & write(amrstring,'(A,I1,A,I0.2,A)') 'triAMR_', initNest, 'to', initNest+amrLimit, '_' print *, "rel surf area error = ", (sum(spherePanels%area) - (4.0_kreal * PI * EARTH_RADIUS * EARTH_RADIUS)) / & ((4.0_kreal * PI * EARTH_RADIUS * EARTH_RADIUS)) !call ResetSphereArea(sphere) !print *, "rel surf area error = ", (sum(spherePanels%area) - (4.0_kreal * PI * EARTH_RADIUS * EARTH_RADIUS)) / & ! (4.0_kreal * PI * EARTH_RADIUS * EARTH_RADIUS) else if ( panelKind == QUAD_PANEL ) & write(amrstring,'(A,I1,A)') 'quadUnif_', initNest, '_' if ( panelKind == TRI_PANEL ) & write(amrstring,'(A,I1,A)') 'triUnif_', initNest, '_' endif do j = 1, sphereParticles%N sphereParticles%tracer(j,3) = testCaseTracerExact(sphereParticles%x(:,j), 0.0_kreal,testCaseTracer) enddo do j = 1, spherePanels%N if ( spherePanels%hasChildren(j) ) then spherePanels%tracer(j,3) = 0.0_kreal else spherePanels%tracer(j,3) = testCaseTracerExact( spherePanels%x(:,j), 0.0_kreal,testCaseTracer) endif enddo ! ! initialize output ! if ( procrank == 0 ) then call LogStats( sphere, exeLog) write(vtkRoot,'(A,A,A,A,A)') trim(outputDir), 'vtkOut/',trim(jobPrefix),trim(amrString),'_' write(vtkFile,'(A,I0.4,A)') trim(vtkRoot),0,'.vtk' write(vtkMeshFile,'(A,A,I0.4,A)') trim(vtkRoot), '_mesh_',0,'.vtk' write(summaryFile,'(A,A,A,A)') trim(outputDir), trim(jobPrefix), trim(amrString), '_summary.txt' write(datafile,'(A,A,A,A)') trim(outputDir), trim(jobPrefix), trim(amrstring), '_calculatedData.m' call New(vtkOut, sphere, vtkFile, 'moving vortices') call New(vtkMeshOut, sphere, vtkMeshFile, 'moving vortices') call VTKOutput(vtkOut, sphere) call VTKOutputMidpointRule(vtkMeshOut,sphere) endif ! ! initialize time stepping ! call New(timekeeper, sphere, numProcs) timesteps = floor(tfinal / dt) t = 0.0_kreal remeshCounter = 0 frameCounter = 1 allocate(totalMasstestCaseTracer(0:timesteps)) totalMasstestCaseTracer = 0.0_kreal mass0 = TotalMass(sphere, tracerID) allocate(sphereL2(0:timesteps)) sphereL2 = 0.0_kreal allocate(sphereLinf(0:timesteps)) sphereLinf = 0.0_kreal allocate(particlesLinf(0:timesteps)) particlesLinf = 0.0_kreal allocate(panelsLinf(0:timesteps)) panelsLinf = 0.0_kreal allocate(phiMax(0:timesteps)) phiMax = 0.0_kreal allocate(phiMin(0:timesteps)) phiMin = 0.0_kreal allocate(tracerVar(0:timesteps)) tracerVar = 0.0_kreal var0 = TracerVariance(sphere, tracerID) allocate(sphereL1(0:timesteps)) sphereL1 = 0.0_kreal allocate(amrN(0:timesteps)) amrN(0) = spherePanels%N_Active allocate(surfArea(0:timesteps)) surfArea(0) = sum(spherePanels%area) phimax0 = max( maxval(sphereParticles%tracer(1:sphereParticles%N,1)), maxval(spherePanels%tracer(1:spherePanels%N,1)) ) phimin0 = 0.0_kreal deltaPhi = phimax0 - phimin0 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ! RUN THE PROBLEM !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ do timeJ = 0, timesteps - 1 if ( mod( timeJ+1, remeshInterval) == 0 ) then ! ! remesh before timestep ! remeshCounter = remeshCounter + 1 ! ! choose appropriate remeshing procedure ! if ( remeshCounter < resetAlphaInterval ) then ! ! remesh to t = 0 ! call LagrangianRemeshToInitialTime(sphere, remesh, SetTestCaseVorticityOnMesh, & nullVort, SetMovingVortsTracerOnMesh, testCaseTracer,t) elseif ( remeshCounter == resetAlphaInterval ) then ! ! remesh to t = 0, create reference mesh to current time ! call LagrangianRemeshToInitialTime(sphere, remesh, SetTestCaseVorticityOnMesh, & nullVort, SetMovingVortsTracerOnMesh, testCaseTracer,t) allocate(reference) call New(reference, sphere) call ResetLagrangianParameter(sphere) elseif ( remeshCounter > resetAlphaInterval .AND. mod(remeshCounter, resetAlphaInterval) == 0 ) then ! ! remesh to existing reference, then create new reference to current time ! call LagrangianRemeshToReference( sphere, reference, remesh, SetTestCaseVorticityOnMesh, nullVort, t) call Delete(reference) call New( reference, sphere) call ResetLagrangianParameter(sphere) else ! ! remesh to existing reference ! call LagrangianRemeshToReference(sphere, reference, remesh) endif ! ! delete objects associated with old mesh ! call Delete(timekeeper) if ( procrank == 0 ) then call Delete(vtkOUt) call Delete(vtkMeshOut) endif ! ! create new associated objects for new mesh ! call New(timekeeper, sphere, numProcs) if ( procRank == 0 ) then call New(vtkOut, sphere, vtkFile, 'moving vortices') call New(vtkMeshOut, sphere, vtkMeshFile, 'moving vortices') endif sphereParticles => sphere%particles spherePanels => sphere%panels print *, "rel surf area error = ", (sum(spherePanels%area) - (4.0_kreal * PI * EARTH_RADIUS * EARTH_RADIUS)) / & (4.0_kreal * PI * EARTH_RADIUS * EARTH_RADIUS) !call ResetSphereArea(sphere) !print *, "rel surf area error = ", (sum(spherePanels%area) - (4.0_kreal * PI * EARTH_RADIUS * EARTH_RADIUS)) / & ! (4.0_kreal * PI * EARTH_RADIUS * EARTH_RADIUS) endif ! remesh ! ! advance time ! call AdvectionRK4Timestep(timekeeper, sphere, dt, t, procRank, numProcs, MovingVorticesVelocity) t = real( timeJ+1, kreal) * dt call SetTestCaseVorticityOnMesh(sphere, nullVort, t) do j = 1, sphereParticles%N sphereParticles%tracer(j,3) = testCaseTracerExact(sphereParticles%x(:,j), t, testCaseTracer) enddo do j = 1, spherePanels%N if ( spherePanels%hasChildren(j) ) then spherePanels%tracer(j,3) = 0.0_kreal else spherePanels%tracer(j,3) = testCaseTracerExact( spherePanels%x(:,j), t, testCaseTracer) endif enddo ! ! calculate error ! do j = 1, sphereParticles%N sphereParticles%tracer(j,2) = (sphereParticles%tracer(j,1) - sphereParticles%tracer(j,3)) /& maxval(abs(sphereParticles%tracer(1:sphereParticles%N,1))) enddo do j = 1, spherePanels%N if ( spherePanels%hasChildren(j) ) then spherePanels%tracer(j,2) = 0.0_kreal else spherePanels%tracer(j,2) = (spherePanels%tracer(j,1) - spherePanels%tracer(j,3))/ & maxval(abs(sphereParticles%tracer(1:sphereParticles%N,1))) endif enddo totalMasstestCaseTracer(timeJ+1) = ( TotalMass(sphere, tracerID) - mass0 ) / mass0 tracerVar(timeJ+1) = ( TracerVariance(sphere, tracerID) - var0 ) / var0 particlesLinf(timeJ+1) = maxval(sphereParticles%tracer(1:sphereParticles%N,2)) / & maxval(abs(sphereParticles%tracer(1:sphereParticles%N,1))) panelsLinf(timeJ+1) = maxval( spherePanels%tracer(1:spherePanels%N,2) ) / & maxval( abs(spherePanels%tracer(1:spherePanels%N,1) )) sphereLinf(timeJ+1) = max( particlesLinf(timeJ+1), panelsLinf(timeJ+1) ) sphereL2(timeJ+1) = sum( spherePanels%tracer(1:spherePanels%N,2) *& spherePanels%tracer(1:spherePanels%N,2) * spherePanels%area(1:spherePanels%N) ) sphereL2(timeJ+1) = sphereL2(timeJ+1) / sum( spherePanels%tracer(1:spherePanels%N,1) * & spherePanels%tracer(1:spherePanels%N,1) * spherePanels%area(1:spherePanels%N) ) sphereL2(timeJ+1) = sqrt(sphereL2(timeJ+1)) sphereL1(timeJ+1) = sum( abs(spherePanels%tracer(1:spherePanels%N,2)) * spherePanels%area(1:spherePanels%N) ) sphereL1(timeJ+1) = sphereL1(timeJ+1) / & sum( abs(spherePanels%tracer(1:spherePanels%N,1)) * spherePanels%area(1:spherePanels%N) ) phimax(timeJ+1) = ( max( maxval(sphereParticles%tracer(1:sphereParticles%N,1)),& maxval( spherePanels%tracer(1:spherePanels%N,1)) ) - phimax0) / deltaPhi phimin(timeJ+1) = ( min( minval(sphereParticles%tracer(1:sphereParticles%N,1)), & minval( spherePanels%tracer(1:spherePanels%N,1)) ) - phimin0)/ deltaPhi amrN(timeJ+1) = spherePanels%N_Active surfArea(timeJ+1) = sum(spherePanels%area) ! ! output data ! if ( procRank == 0 .AND. mod( timeJ+1, frameOut) == 0 ) then call LogMessage(exelog, TRACE_LOGGING_LEVEL, 'day = ', t/ONE_DAY) write(vtkFile, '(A,I0.4,A)') trim(vtkRoot), frameCounter, '.vtk' write(vtkMeshFile, '(A,A,I0.4,A)') trim(vtkRoot),'_mesh_',frameCounter,'.vtk' call UpdateFilename(vtkOut, vtkFile) call UpdateFilename(vtkMeshOut,vtkMeshFile) call VTKOutput(vtkOut, sphere) call VTKOutputMidpointRule(vtkMeshOut,sphere) frameCounter = frameCounter + 1 endif enddo !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ! OUTPUT FINAL DATA !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if ( procRank == 0 ) then open( unit = WRITE_UNIT_1, file = datafile, status = 'REPLACE', action = 'WRITE', iostat = readwritestat) if ( readwritestat /= 0 ) then call LogMessage(exeLog, ERROR_LOGGING_LEVEL, 'data file ERROR : ', ' failed to open data file.') else write(WRITE_UNIT_1,'(A,F24.15,A)') 'passiveLinf = [', particlesLinf(0), ' ;' do j = 1, timesteps -1 write(WRITE_UNIT_1,'(F24.15,A)') particlesLinf(j), ' ;' enddo write(WRITE_UNIT_1,'(F24.15,A)') particlesLinf(timesteps), ' ];' write(WRITE_UNIT_1,'(A,F24.15,A)') 'activeLinf = [', panelsLinf(0), ' ;' do j = 1, timesteps -1 write(WRITE_UNIT_1,'(F24.15,A)') panelsLinf(j), ' ;' enddo write(WRITE_UNIT_1,'(F24.15,A)') panelsLinf(timesteps), ' ];' write(WRITE_UNIT_1,'(A,F24.15,A)') 'sphereLinf = [', sphereLinf(0), ' ;' do j = 1, timesteps -1 write(WRITE_UNIT_1,'(F24.15,A)') sphereLinf(j), ' ;' enddo write(WRITE_UNIT_1,'(F24.15,A)') sphereLinf(timesteps), ' ];' write(WRITE_UNIT_1,'(A,F24.15,A)') 'sphereL2 = [', sphereL2(0), ' ;' do j = 1, timesteps -1 write(WRITE_UNIT_1,'(F24.15,A)') sphereL2(j), ' ;' enddo write(WRITE_UNIT_1,'(F24.15,A)') sphereL2(timesteps), ' ];' write(WRITE_UNIT_1,'(A,F24.15,A)') 'sphereL1 = [', sphereL1(0), ' ;' do j = 1, timesteps -1 write(WRITE_UNIT_1,'(F24.15,A)') sphereL1(j), ' ;' enddo write(WRITE_UNIT_1,'(F24.15,A)') sphereL1(timesteps), ' ];' write(WRITE_UNIT_1,'(A,F24.15,A)') 'phi_max = [', phimax(0), ' ;' do j = 1, timesteps -1 write(WRITE_UNIT_1,'(F24.15,A)') phimax(j), ' ;' enddo write(WRITE_UNIT_1,'(F24.15,A)') phimax(timesteps), ' ];' write(WRITE_UNIT_1,'(A,F24.15,A)') 'phi_min = [', phimin(0), ' ;' do j = 1, timesteps -1 write(WRITE_UNIT_1,'(F24.15,A)') phimin(j), ' ;' enddo write(WRITE_UNIT_1,'(F24.15,A)') phimin(timesteps), ' ];' write(WRITE_UNIT_1,'(A,F24.15,A)') 'dt_day = ', dt / ONE_DAY, ' ;' write(WRITE_UNIT_1,'(A,F24.15,A)') 'tfinal_day = ', tfinal / ONE_DAY, ' ;' write(WRITE_UNIT_1,'(A,F24.15,A)') 'mass = [ ', totalMasstestCaseTracer(0), ' ; ...' do j = 1, timesteps-1 write(WRITE_UNIT_1,'(F24.15,A)') totalMasstestCaseTracer(j), ' ; ...' enddo write(WRITE_UNIT_1,'(F24.15,A)') totalMasstestCaseTracer(timesteps), ' ] ;' write(WRITE_UNIT_1,'(A,F24.15,A)') 'tracerVar = [ ', tracerVar(0), ' ; ...' do j = 1, timesteps-1 write(WRITE_UNIT_1,'(F24.15,A)') tracerVar(j), ' ; ...' enddo write(WRITE_UNIT_1,'(F24.15,A)') tracerVar(timesteps), ' ] ;' if ( AMR > 0 ) then write(WRITE_UNIT_1,'(A,I8,A)') 'amrN = [ ', amrN(0), '; ...' do j = 1, timesteps - 1 write(WRITE_UNIT_1,'(I8,A)') amrN(j), ' ; ...' enddo write(WRITE_UNIT_1,'(I8,A)') amrN(timesteps), '];' write(WRITE_UNIT_1,*) 'surfArea = [ ', surfArea(0), '; ...' do j = 1, timesteps - 1 write(WRITE_UNIT_1,*) surfArea(j), ' ; ...' enddo write(WRITE_UNIT_1,*) surfArea(timesteps), '];' endif endif close(WRITE_UNIT_1) write(logstring,'(A, F8.2,A)') 'elapsed time = ', (MPI_WTIME() - wallClock)/60.0, ' minutes.' call LogMessage(exelog,TRACE_LOGGING_LEVEL,'PROGRAM COMPLETE : ',trim(logstring)) endif !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ! FREE MEMORY, CLEAN UP, FINALIZE !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if (associated(reference)) then call Delete(reference) deallocate(reference) endif deallocate(totalMasstestCaseTracer) deallocate(tracerVar) deallocate(sphereL1) deallocate(sphereL2) deallocate(sphereLinf) deallocate(particlesLinf) deallocate(panelsLinf) deallocate(phiMax) deallocate(phiMin) call Delete(timekeeper) call Delete(remesh) if ( procrank == 0 ) then call Delete(vtkOut) call Delete(vtkMeshOUt) endif call Delete(sphere) call Delete(testCaseTracer) call Delete(exeLog) call MPI_FINALIZE(errCode) contains function testCaseTracerExact(xyz, t, mvTracer) real(kreal) :: testCaseTracerExact real(kreal), intent(in) :: xyz(3), t type(TracerSetup), intent(in) :: mvTracer ! real(kreal) :: lat, lon, wr, rho, vortCenterLon, vortCenterLat, vortStartingLon, vortStartingLat real(kreal) :: lonPrime, latPrime real(kreal), parameter :: u0 = 2.0_kreal * PI * EARTH_RADIUS / (12.0_kreal * ONE_DAY) lat = Latitude(xyz) lon = Longitude(xyz) vortStartingLon = mvTracer%reals(1) vortStartingLat = mvTracer%reals(2) ! ! find position of vortex center at time t ! vortCenterLon = 1.5_kreal*PI + OMEGA * t / 12.0_kreal vortCenterLat = 0.0_kreal ! ! Find coordinates of xyz in a coordinate system whose north pole is at the vortex location ! lonPrime = atan4( cos(lat)*sin( lon - vortCenterLon), & cos(lat)*sin(vortCenterLat)*cos( lon - vortCenterLon) - cos(vortCenterLat)*sin(lat) ) latPrime = asin( sin(lat)*sin(vortCenterLat) + cos(lat)*cos(vortCenterLat)*cos( lon - vortCenterLon ) ) ! ! Determine angular tangential velocity induced by vortex about its center ! rho = 3.0_kreal * cos( latPrime ) wr = u0 * 1.5_kreal * sqrt(3.0_kreal) * tanh(rho) * rho /& ( EARTH_RADIUS * cosh(rho) * cosh(rho) * (rho * rho + ZERO_TOL*ZERO_TOL)) testCaseTracerExact = 1.0_kreal - tanh( 0.2_kreal * rho * sin(lonPrime - wr*t) ) end function function MovingVortsVorticity(xyz, t) real(kreal) :: MovingVortsVorticity real(kreal), intent(in) :: xyz(3), t ! real(kreal) :: lat, lon, rho, omg, rhoDenom, rho_lam, rho_theta, omg_rho, v_lam, ucostheta_theta real(kreal) :: cosDenom real(kreal), parameter :: u0 = 2.0_kreal * PI * EARTH_RADIUS / (12.0_kreal * ONE_DAY) lat = Latitude(xyz) lon = Longitude(xyz) if ( abs(lat) < ZERO_TOL .and. abs(abs(xyz(2))/EARTH_RADIUS - 1.0_kreal ) < ZERO_TOL ) then lon = lon + 1.0e-7 lat = lat - ZERO_TOL endif rho = 3.0_kreal*sqrt( 1.0_kreal - cos(lat)*cos(lat)*& sin(lon - u0 * t / EARTH_RADIUS) * sin(lon - OMEGA*t/12.0_kreal) ) rhoDenom = rho / (rho*rho + ZERO_TOL*ZERO_TOL) omg = u0 * 1.5_kreal * sqrt(3.0_kreal) * tanh( rho ) * rhoDenom / cosh(rho) /cosh(rho) omg_rho = u0 * 1.5_kreal * sqrt(3.0_kreal) * & ( rho - tanh(rho)*(cosh(rho)*cosh(rho) + 2.0_kreal*rho*cosh(rho)*sinh(rho))) * & rhoDenom*rhoDenom / (cosh(rho)**4) rho_lam = -3.0_kreal*cos(lat)*cos(lat)*sin(lon-u0 * t / EARTH_RADIUS)*cos(lon-u0 * t / EARTH_RADIUS) * rhoDenom rho_theta = 3.0_kreal*cos(lat)*sin(lat)*sin(lon-u0 * t / EARTH_RADIUS)*sin(lon-u0 * t / EARTH_RADIUS) * rhoDenom v_lam = omg_rho * rho_lam * cos(lon-u0 * t / EARTH_RADIUS) - omg * sin(lon-OMEGA*t/12.0_kreal) ucostheta_theta = -omg * sin(lat)*sin(lat)*sin(lon-u0 * t / EARTH_RADIUS) + & omg_rho*rho_theta*sin(lat)*sin(lon-u0 * t / EARTH_RADIUS) + omg*cos(lat)*sin(lon-u0 * t / EARTH_RADIUS) cosDenom = cos(lat)/( cos(lat)*cos(lat) + ZERO_TOL * ZERO_TOL) MovingVortsVorticity = v_lam * cosDenom / EARTH_RADIUS - ucostheta_theta * cosDenom / EARTH_RADIUS ! if ( abs(abs(xyz(2))/EARTH_RADIUS - 1.0_kreal) < ZERO_TOL ) then ! print *, "*** at lat = ", lat, ", lon = ", lon, " ****" ! print *, "rho = ", rho, ", rhoDenom = ", rhoDenom, ", omg = ", omg, ", omg_rho = " ! print *, "rho_lam = ", rho_lam, ", rho_theta = ", rho_theta, ", v_lam = ", v_lam, ", ucostheta_theta = ", ucostheta_theta ! print *, "cosDenom = ", cosDenom, ", vorticity = ", MovingVortsVorticity ! endif end function subroutine StoreVorticityInTracer(aMesh, t, tracerID) type(SphereMesh), intent(inout) :: aMesh real(kreal), intent(in) :: t integer(kint), intent(in) :: tracerID ! integer(kint) :: j type(Particles), pointer :: aParticles type(Panels), pointer :: aPanels aParticles => aMesh%particles aPanels => aMesh%panels do j = 1, aParticles%N aParticles%tracer(j,tracerID) = MovingVortsVorticity(aParticles%x(:,j), t) enddo do j = 1, aPanels%N if ( aPanels%hasCHildren(j) ) then aPanels%tracer(j,tracerID) = 0.0_kreal else aPanels%tracer(j,tracerID) = MovingVortsVorticity(aPanels%x(:,j), t) endif enddo end subroutine subroutine SetTestCaseVorticityOnMesh(aMesh, aVorticity, time) type(SphereMesh), intent(inout) :: aMesh type(BVESetup), intent(in) :: aVorticity real(kreal), intent(in) :: time ! integer(kint) :: j type(Particles), pointer :: aParticles type(Panels), pointer :: aPanels aParticles => aMesh%particles aPanels => aMesh%panels do j = 1, aParticles%N aParticles%absVort(j) = 0.0_kreal aParticles%relvort(j) = MovingVortsVorticity(aParticles%x(:,j), time) enddo do j = 1, aPanels%N if ( aPanels%hasCHildren(j) ) then aPanels%relvort(j) = 0.0_kreal aPanels%absVort(j) = 0.0_kreal else aPanels%relvort(j) = MovingVortsVorticity(aPanels%x(:,j), time) aPanels%absVort(j) = 0.0_kreal endif enddo end subroutine subroutine ConvertFromRelativeTolerances(aMesh, maxCircTol, & vortVarTol, tracerMassTol, tracerVarTol, tracerID, lagVarTol) type(SphereMesh), intent(in) :: amesh real(kreal), intent(inout) :: maxCircTol, vortVarTol, tracerMassTol, tracerVarTol, lagVarTol integer(kint), intent(in) :: tracerID maxCircTol = maxCircTol * MaximumCirculation(aMesh) vortVarTol = vortVarTol * MaximumVorticityVariation(aMesh) tracerMassTol = tracerMassTol * MaximumTracerMass(aMesh, tracerID) tracerVarTol = tracerVarTol * MaximumTracerVariation(aMesh, tracerID) lagVarTol = lagVarTol * MaximumLagrangianParameterVariation(aMesh) end subroutine subroutine ReadNamelistFile(rank) integer(kint), intent(in) :: rank integer(kint), parameter :: BCAST_INT_SIZE = 6, BCAST_REAL_SIZE= 7 integer(kint) :: broadcastIntegers(BCAST_INT_SIZE) real(kreal) :: broadcastReals(BCAST_REAL_SIZE) if ( rank == 0 ) then open(unit=READ_UNIT, file=namelistfile, status='OLD', action='READ', iostat=readWriteStat) if ( readWriteStat /= 0 ) stop 'cannot read namelist file.' read(READ_UNIT, nml=meshDefine) rewind(READ_UNIT) read(READ_UNIT, nml=timestepping) rewind(READ_UNIT) read(READ_UNIT, nml=fileIO) rewind(READ_UNIT) close(READ_UNIT) broadcastIntegers(1) = panelKind broadcastIntegers(2) = initNest broadcastIntegers(3) = AMR broadcastIntegers(4) = amrLimit broadcastIntegers(5) = remeshInterval broadcastIntegers(6) = resetAlphaInterval broadcastReals(1) = tracerMassTol broadcastReals(2) = tracerVarTol broadcastReals(3) = dt broadcastReals(4) = tfinal broadcastReals(5) = lagVarTol broadcastReals(6) = maxCircTol broadcastReals(7) = vortVarTol endif call MPI_BCAST(broadcastIntegers, BCAST_INT_SIZE, MPI_INTEGER, 0, MPI_COMM_WORLD, errCode) panelKind = broadcastIntegers(1) initNest = broadcastIntegers(2) AMR = broadcastIntegers(3) amrLimit = broadcastIntegers(4) remeshInterval = broadcastIntegers(5) resetAlphaInterval = broadcastIntegers(6) call MPI_BCAST(broadcastReals, BCAST_REAL_SIZE, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, errCode) tracerMassTol = broadcastReals(1) tracerVarTol = broadcastReals(2) dt = broadcastReals(3) * ONE_DAY ! convert time to seconds tfinal = broadcastReals(4) * ONE_DAY ! convert time to seconds lagVarTol = broadcastReals(5) maxCircTol = broadcastReals(6) vortVarTol = broadcastReals(7) end subroutine subroutine InitLogger(alog,rank) type(Logger), intent(out) :: aLog integer(kint), intent(in) :: rank if ( rank == 0 ) then call New(aLog,DEBUG_LOGGING_LEVEL) else call New(aLog,WARNING_LOGGING_LEVEL) endif write(logKey,'(A,I0.2,A)') 'EXE_LOG',rank,' : ' end subroutine end program
mit
pbosler/LPPM
stripack.f
4
208886
SUBROUTINE ADDNOD (NST,K,X,Y,Z, LIST,LPTR,LEND, . LNEW, IER) INTEGER NST, K, LIST(*), LPTR(*), LEND(K), LNEW, IER REAL(kind=8) X(K), Y(K), Z(K) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/08/99 C C This subroutine adds node K to a triangulation of the C convex hull of nodes 1,...,K-1, producing a triangulation C of the convex hull of nodes 1,...,K. C C The algorithm consists of the following steps: node K C is located relative to the triangulation (TRFIND), its C index is added to the data structure (INTADD or BDYADD), C and a sequence of swaps (SWPTST and SWAP) are applied to C the arcs opposite K so that all arcs incident on node K C and opposite node K are locally optimal (satisfy the cir- C cumcircle test). Thus, if a Delaunay triangulation is C input, a Delaunay triangulation will result. C C C On input: C C NST = Index of a node at which TRFIND begins its C search. Search time depends on the proximity C of this node to K. If NST < 1, the search is C begun at node K-1. C C K = Nodal index (index for X, Y, Z, and LEND) of the C new node to be added. K .GE. 4. C C X,Y,Z = Arrays of length .GE. K containing Car- C tesian coordinates of the nodes. C (X(I),Y(I),Z(I)) defines node I for C I = 1,...,K. C C The above parameters are not altered by this routine. C C LIST,LPTR,LEND,LNEW = Data structure associated with C the triangulation of nodes 1 C to K-1. The array lengths are C assumed to be large enough to C add node K. Refer to Subrou- C tine TRMESH. C C On output: C C LIST,LPTR,LEND,LNEW = Data structure updated with C the addition of node K as the C last entry unless IER .NE. 0 C and IER .NE. -3, in which case C the arrays are not altered. C C IER = Error indicator: C IER = 0 if no errors were encountered. C IER = -1 if K is outside its valid range C on input. C IER = -2 if all nodes (including K) are col- C linear (lie on a common geodesic). C IER = L if nodes L and K coincide for some C L < K. C C Modules required by ADDNOD: BDYADD, COVSPH, INSERT, C INTADD, JRAND, LSTPTR, C STORE, SWAP, SWPTST, C TRFIND C C Intrinsic function called by ADDNOD: ABS C C*********************************************************** C INTEGER LSTPTR INTEGER I1, I2, I3, IO1, IO2, IN1, IST, KK, KM1, L, . LP, LPF, LPO1, LPO1S LOGICAL SWPTST REAL(kind=8) B1, B2, B3, P(3) C C Local parameters: C C B1,B2,B3 = Unnormalized barycentric coordinates returned C by TRFIND. C I1,I2,I3 = Vertex indexes of a triangle containing K C IN1 = Vertex opposite K: first neighbor of IO2 C that precedes IO1. IN1,IO1,IO2 are in C counterclockwise order. C IO1,IO2 = Adjacent neighbors of K defining an arc to C be tested for a swap C IST = Index of node at which TRFIND begins its search C KK = Local copy of K C KM1 = K-1 C L = Vertex index (I1, I2, or I3) returned in IER C if node K coincides with a vertex C LP = LIST pointer C LPF = LIST pointer to the first neighbor of K C LPO1 = LIST pointer to IO1 C LPO1S = Saved value of LPO1 C P = Cartesian coordinates of node K C KK = K IF (KK .LT. 4) GO TO 3 C C Initialization: C KM1 = KK - 1 IST = NST IF (IST .LT. 1) IST = KM1 P(1) = X(KK) P(2) = Y(KK) P(3) = Z(KK) C C Find a triangle (I1,I2,I3) containing K or the rightmost C (I1) and leftmost (I2) visible boundary nodes as viewed C from node K. C CALL TRFIND (IST,P,KM1,X,Y,Z,LIST,LPTR,LEND, B1,B2,B3, . I1,I2,I3) C C Test for collinear or duplicate nodes. C IF (I1 .EQ. 0) GO TO 4 IF (I3 .NE. 0) THEN L = I1 IF (P(1) .EQ. X(L) .AND. P(2) .EQ. Y(L) .AND. . P(3) .EQ. Z(L)) THEN ! GO TO 5 PRINT '(A,I6,A,I6,A)', 'NODES ',KK,' AND ',L,'ARE DUPLICATES.' GO TO 5 ENDIF L = I2 IF (P(1) .EQ. X(L) .AND. P(2) .EQ. Y(L) .AND. . P(3) .EQ. Z(L)) THEN !GO TO 5 PRINT '(A,I6,A,I6,A)', 'NODES ',KK,' AND ',L,'ARE DUPLICATES.' GO TO 5 ENDIF L = I3 IF (P(1) .EQ. X(L) .AND. P(2) .EQ. Y(L) .AND. . P(3) .EQ. Z(L)) THEN !GO TO 5 PRINT '(A,I6,A,I6,A)', 'NODES ',KK,' AND ',L,'ARE DUPLICATES.' GO TO 5 ENDIF CALL INTADD (KK,I1,I2,I3, LIST,LPTR,LEND,LNEW ) ELSE IF (I1 .NE. I2) THEN CALL BDYADD (KK,I1,I2, LIST,LPTR,LEND,LNEW ) ELSE CALL COVSPH (KK,I1, LIST,LPTR,LEND,LNEW ) ENDIF ENDIF IER = 0 C C Initialize variables for optimization of the C triangulation. C LP = LEND(KK) LPF = LPTR(LP) IO2 = LIST(LPF) LPO1 = LPTR(LPF) IO1 = ABS(LIST(LPO1)) C C Begin loop: find the node opposite K. C 1 LP = LSTPTR(LEND(IO1),IO2,LIST,LPTR) IF (LIST(LP) .LT. 0) GO TO 2 LP = LPTR(LP) IN1 = ABS(LIST(LP)) C C Swap test: if a swap occurs, two new arcs are C opposite K and must be tested. C LPO1S = LPO1 IF ( .NOT. SWPTST(IN1,KK,IO1,IO2,X,Y,Z) ) GO TO 2 CALL SWAP (IN1,KK,IO1,IO2, LIST,LPTR,LEND, LPO1) IF (LPO1 .EQ. 0) THEN C C A swap is not possible because KK and IN1 are already C adjacent. This error in SWPTST only occurs in the C neutral case and when there are nearly duplicate C nodes. C LPO1 = LPO1S GO TO 2 ENDIF IO1 = IN1 GO TO 1 C C No swap occurred. Test for termination and reset C IO2 and IO1. C 2 IF (LPO1 .EQ. LPF .OR. LIST(LPO1) .LT. 0) RETURN IO2 = IO1 LPO1 = LPTR(LPO1) IO1 = ABS(LIST(LPO1)) GO TO 1 C C KK < 4. C 3 IER = -1 RETURN C C All nodes are collinear. C 4 IER = -2 RETURN C C Nodes L and K coincide. C 5 IER = L RETURN END REAL(kind=8) FUNCTION AREAS (V1,V2,V3) REAL(kind=8) V1(3), V2(3), V3(3) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 09/18/90 C C This function returns the area of a spherical triangle C on the unit sphere. C C C On input: C C V1,V2,V3 = Arrays of length 3 containing the Carte- C sian coordinates of unit vectors (the C three triangle vertices in any order). C These vectors, if nonzero, are implicitly C scaled to have length 1. C C Input parameters are not altered by this function. C C On output: C C AREAS = Area of the spherical triangle defined by C V1, V2, and V3 in the range 0 to 2*PI (the C area of a hemisphere). AREAS = 0 (or 2*PI) C if and only if V1, V2, and V3 lie in (or C close to) a plane containing the origin. C C Modules required by AREAS: None C C Intrinsic functions called by AREAS: ACOS, DBLE, REAL, C SQRT C C*********************************************************** C DOUBLE PRECISION A1, A2, A3, CA1, CA2, CA3, DV1(3), . DV2(3), DV3(3), S12, S23, S31, . U12(3), U23(3), U31(3) INTEGER I C C Local parameters: C C A1,A2,A3 = Interior angles of the spherical triangle C CA1,CA2,CA3 = cos(A1), cos(A2), and cos(A3), respectively C DV1,DV2,DV3 = Double Precision copies of V1, V2, and V3 C I = DO-loop index and index for Uij C S12,S23,S31 = Sum of squared components of U12, U23, U31 C U12,U23,U31 = Unit normal vectors to the planes defined by C pairs of triangle vertices C DO 1 I = 1,3 DV1(I) = DBLE(V1(I)) DV2(I) = DBLE(V2(I)) DV3(I) = DBLE(V3(I)) 1 CONTINUE C C Compute cross products Uij = Vi X Vj. C U12(1) = DV1(2)*DV2(3) - DV1(3)*DV2(2) U12(2) = DV1(3)*DV2(1) - DV1(1)*DV2(3) U12(3) = DV1(1)*DV2(2) - DV1(2)*DV2(1) C U23(1) = DV2(2)*DV3(3) - DV2(3)*DV3(2) U23(2) = DV2(3)*DV3(1) - DV2(1)*DV3(3) U23(3) = DV2(1)*DV3(2) - DV2(2)*DV3(1) C U31(1) = DV3(2)*DV1(3) - DV3(3)*DV1(2) U31(2) = DV3(3)*DV1(1) - DV3(1)*DV1(3) U31(3) = DV3(1)*DV1(2) - DV3(2)*DV1(1) C C Normalize Uij to unit vectors. C S12 = 0.D0 S23 = 0.D0 S31 = 0.D0 DO 2 I = 1,3 S12 = S12 + U12(I)*U12(I) S23 = S23 + U23(I)*U23(I) S31 = S31 + U31(I)*U31(I) 2 CONTINUE C C Test for a degenerate triangle associated with collinear C vertices. C IF (S12 .EQ. 0.D0 .OR. S23 .EQ. 0.D0 .OR. . S31 .EQ. 0.D0) THEN AREAS = 0. RETURN ENDIF S12 = SQRT(S12) S23 = SQRT(S23) S31 = SQRT(S31) DO 3 I = 1,3 U12(I) = U12(I)/S12 U23(I) = U23(I)/S23 U31(I) = U31(I)/S31 3 CONTINUE C C Compute interior angles Ai as the dihedral angles between C planes: C CA1 = cos(A1) = -<U12,U31> C CA2 = cos(A2) = -<U23,U12> C CA3 = cos(A3) = -<U31,U23> C CA1 = -U12(1)*U31(1)-U12(2)*U31(2)-U12(3)*U31(3) CA2 = -U23(1)*U12(1)-U23(2)*U12(2)-U23(3)*U12(3) CA3 = -U31(1)*U23(1)-U31(2)*U23(2)-U31(3)*U23(3) IF (CA1 .LT. -1.D0) CA1 = -1.D0 IF (CA1 .GT. 1.D0) CA1 = 1.D0 IF (CA2 .LT. -1.D0) CA2 = -1.D0 IF (CA2 .GT. 1.D0) CA2 = 1.D0 IF (CA3 .LT. -1.D0) CA3 = -1.D0 IF (CA3 .GT. 1.D0) CA3 = 1.D0 A1 = ACOS(CA1) A2 = ACOS(CA2) A3 = ACOS(CA3) C C Compute AREAS = A1 + A2 + A3 - PI. C AREAS = REAL(A1 + A2 + A3 - ACOS(-1.D0),8) IF (AREAS .LT. 0.) AREAS = 0. RETURN END SUBROUTINE BDYADD (KK,I1,I2, LIST,LPTR,LEND,LNEW ) INTEGER KK, I1, I2, LIST(*), LPTR(*), LEND(*), LNEW C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/11/96 C C This subroutine adds a boundary node to a triangulation C of a set of KK-1 points on the unit sphere. The data C structure is updated with the insertion of node KK, but no C optimization is performed. C C This routine is identical to the similarly named routine C in TRIPACK. C C C On input: C C KK = Index of a node to be connected to the sequence C of all visible boundary nodes. KK .GE. 1 and C KK must not be equal to I1 or I2. C C I1 = First (rightmost as viewed from KK) boundary C node in the triangulation that is visible from C node KK (the line segment KK-I1 intersects no C arcs. C C I2 = Last (leftmost) boundary node that is visible C from node KK. I1 and I2 may be determined by C Subroutine TRFIND. C C The above parameters are not altered by this routine. C C LIST,LPTR,LEND,LNEW = Triangulation data structure C created by Subroutine TRMESH. C Nodes I1 and I2 must be in- C cluded in the triangulation. C C On output: C C LIST,LPTR,LEND,LNEW = Data structure updated with C the addition of node KK. Node C KK is connected to I1, I2, and C all boundary nodes in between. C C Module required by BDYADD: INSERT C C*********************************************************** C INTEGER K, LP, LSAV, N1, N2, NEXT, NSAV C C Local parameters: C C K = Local copy of KK C LP = LIST pointer C LSAV = LIST pointer C N1,N2 = Local copies of I1 and I2, respectively C NEXT = Boundary node visible from K C NSAV = Boundary node visible from K C K = KK N1 = I1 N2 = I2 C C Add K as the last neighbor of N1. C LP = LEND(N1) LSAV = LPTR(LP) LPTR(LP) = LNEW LIST(LNEW) = -K LPTR(LNEW) = LSAV LEND(N1) = LNEW LNEW = LNEW + 1 NEXT = -LIST(LP) LIST(LP) = NEXT NSAV = NEXT C C Loop on the remaining boundary nodes between N1 and N2, C adding K as the first neighbor. C 1 LP = LEND(NEXT) CALL INSERT (K,LP, LIST,LPTR,LNEW ) IF (NEXT .EQ. N2) GO TO 2 NEXT = -LIST(LP) LIST(LP) = NEXT GO TO 1 C C Add the boundary nodes between N1 and N2 as neighbors C of node K. C 2 LSAV = LNEW LIST(LNEW) = N1 LPTR(LNEW) = LNEW + 1 LNEW = LNEW + 1 NEXT = NSAV C 3 IF (NEXT .EQ. N2) GO TO 4 LIST(LNEW) = NEXT LPTR(LNEW) = LNEW + 1 LNEW = LNEW + 1 LP = LEND(NEXT) NEXT = LIST(LP) GO TO 3 C 4 LIST(LNEW) = -N2 LPTR(LNEW) = LSAV LEND(K) = LNEW LNEW = LNEW + 1 RETURN END SUBROUTINE BNODES (N,LIST,LPTR,LEND, NODES,NB,NA,NT) INTEGER N, LIST(*), LPTR(*), LEND(N), NODES(*), NB, . NA, NT C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 06/26/96 C C Given a triangulation of N nodes on the unit sphere C created by Subroutine TRMESH, this subroutine returns an C array containing the indexes (if any) of the counterclock- C wise-ordered sequence of boundary nodes -- the nodes on C the boundary of the convex hull of the set of nodes. (The C boundary is empty if the nodes do not lie in a single C hemisphere.) The numbers of boundary nodes, arcs, and C triangles are also returned. C C C On input: C C N = Number of nodes in the triangulation. N .GE. 3. C C LIST,LPTR,LEND = Data structure defining the trian- C gulation. Refer to Subroutine C TRMESH. C C The above parameters are not altered by this routine. C C NODES = Integer array of length at least NB C (NB .LE. N). C C On output: C C NODES = Ordered sequence of boundary node indexes C in the range 1 to N (in the first NB loca- C tions). C C NB = Number of boundary nodes. C C NA,NT = Number of arcs and triangles, respectively, C in the triangulation. C C Modules required by BNODES: None C C*********************************************************** C INTEGER K, LP, N0, NN, NST C C Local parameters: C C K = NODES index C LP = LIST pointer C N0 = Boundary node to be added to NODES C NN = Local copy of N C NST = First element of nodes (arbitrarily chosen to be C the one with smallest index) C NN = N C C Search for a boundary node. C DO 1 NST = 1,NN LP = LEND(NST) IF (LIST(LP) .LT. 0) GO TO 2 1 CONTINUE C C The triangulation contains no boundary nodes. C NB = 0 NA = 3*(NN-2) NT = 2*(NN-2) RETURN C C NST is the first boundary node encountered. Initialize C for traversal of the boundary. C 2 NODES(1) = NST K = 1 N0 = NST C C Traverse the boundary in counterclockwise order. C 3 LP = LEND(N0) LP = LPTR(LP) N0 = LIST(LP) IF (N0 .EQ. NST) GO TO 4 K = K + 1 NODES(K) = N0 GO TO 3 C C Store the counts. C 4 NB = K NT = 2*N - NB - 2 NA = NT + N - 1 RETURN END SUBROUTINE CIRCUM (V1,V2,V3, C,IER) INTEGER IER REAL(kind=8) V1(3), V2(3), V3(3), C(3) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 06/29/95 C C This subroutine returns the circumcenter of a spherical C triangle on the unit sphere: the point on the sphere sur- C face that is equally distant from the three triangle C vertices and lies in the same hemisphere, where distance C is taken to be arc-length on the sphere surface. C C C On input: C C V1,V2,V3 = Arrays of length 3 containing the Carte- C sian coordinates of the three triangle C vertices (unit vectors) in CCW order. C C The above parameters are not altered by this routine. C C C = Array of length 3. C C On output: C C C = Cartesian coordinates of the circumcenter unless C IER > 0, in which case C is not defined. C = C (V2-V1) X (V3-V1) normalized to a unit vector. C C IER = Error indicator: C IER = 0 if no errors were encountered. C IER = 1 if V1, V2, and V3 lie on a common C line: (V2-V1) X (V3-V1) = 0. C (The vertices are not tested for validity.) C C Modules required by CIRCUM: None C C Intrinsic function called by CIRCUM: SQRT C C*********************************************************** C INTEGER I REAL(kind=8) CNORM, CU(3), E1(3), E2(3) C C Local parameters: C C CNORM = Norm of CU: used to compute C C CU = Scalar multiple of C: E1 X E2 C E1,E2 = Edges of the underlying planar triangle: C V2-V1 and V3-V1, respectively C I = DO-loop index C DO 1 I = 1,3 E1(I) = V2(I) - V1(I) E2(I) = V3(I) - V1(I) 1 CONTINUE C C Compute CU = E1 X E2 and CNORM**2. C CU(1) = E1(2)*E2(3) - E1(3)*E2(2) CU(2) = E1(3)*E2(1) - E1(1)*E2(3) CU(3) = E1(1)*E2(2) - E1(2)*E2(1) CNORM = CU(1)*CU(1) + CU(2)*CU(2) + CU(3)*CU(3) C C The vertices lie on a common line if and only if CU is C the zero vector. C IF (CNORM .NE. 0.) THEN C C No error: compute C. C CNORM = SQRT(CNORM) DO 2 I = 1,3 C(I) = CU(I)/CNORM 2 CONTINUE IER = 0 ELSE C C CU = 0. C IER = 1 ENDIF RETURN END SUBROUTINE COVSPH (KK,N0, LIST,LPTR,LEND,LNEW ) INTEGER KK, N0, LIST(*), LPTR(*), LEND(*), LNEW C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/17/96 C C This subroutine connects an exterior node KK to all C boundary nodes of a triangulation of KK-1 points on the C unit sphere, producing a triangulation that covers the C sphere. The data structure is updated with the addition C of node KK, but no optimization is performed. All boun- C dary nodes must be visible from node KK. C C C On input: C C KK = Index of the node to be connected to the set of C all boundary nodes. KK .GE. 4. C C N0 = Index of a boundary node (in the range 1 to C KK-1). N0 may be determined by Subroutine C TRFIND. C C The above parameters are not altered by this routine. C C LIST,LPTR,LEND,LNEW = Triangulation data structure C created by Subroutine TRMESH. C Node N0 must be included in C the triangulation. C C On output: C C LIST,LPTR,LEND,LNEW = Data structure updated with C the addition of node KK as the C last entry. The updated C triangulation contains no C boundary nodes. C C Module required by COVSPH: INSERT C C*********************************************************** C INTEGER K, LP, LSAV, NEXT, NST C C Local parameters: C C K = Local copy of KK C LP = LIST pointer C LSAV = LIST pointer C NEXT = Boundary node visible from K C NST = Local copy of N0 C K = KK NST = N0 C C Traverse the boundary in clockwise order, inserting K as C the first neighbor of each boundary node, and converting C the boundary node to an interior node. C NEXT = NST 1 LP = LEND(NEXT) CALL INSERT (K,LP, LIST,LPTR,LNEW ) NEXT = -LIST(LP) LIST(LP) = NEXT IF (NEXT .NE. NST) GO TO 1 C C Traverse the boundary again, adding each node to K's C adjacency list. C LSAV = LNEW 2 LP = LEND(NEXT) LIST(LNEW) = NEXT LPTR(LNEW) = LNEW + 1 LNEW = LNEW + 1 NEXT = LIST(LP) IF (NEXT .NE. NST) GO TO 2 C LPTR(LNEW-1) = LSAV LEND(K) = LNEW - 1 RETURN END SUBROUTINE CRLIST (N,NCOL,X,Y,Z,LIST,LEND, LPTR,LNEW, . LTRI, LISTC,NB,XC,YC,ZC,RC,IER) INTEGER N, NCOL, LIST(*), LEND(N), LPTR(*), LNEW, . LTRI(6,NCOL), LISTC(*), NB, IER REAL(kind=8) X(N), Y(N), Z(N), XC(*), YC(*), ZC(*), RC(*) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/05/98 C C Given a Delaunay triangulation of nodes on the surface C of the unit sphere, this subroutine returns the set of C triangle circumcenters corresponding to Voronoi vertices, C along with the circumradii and a list of triangle indexes C LISTC stored in one-to-one correspondence with LIST/LPTR C entries. C C A triangle circumcenter is the point (unit vector) lying C at the same angular distance from the three vertices and C contained in the same hemisphere as the vertices. (Note C that the negative of a circumcenter is also equidistant C from the vertices.) If the triangulation covers the sur- C face, the Voronoi vertices are the circumcenters of the C triangles in the Delaunay triangulation. LPTR, LEND, and C LNEW are not altered in this case. C C On the other hand, if the nodes are contained in a sin- C gle hemisphere, the triangulation is implicitly extended C to the entire surface by adding pseudo-arcs (of length C greater than 180 degrees) between boundary nodes forming C pseudo-triangles whose 'circumcenters' are included in the C list. This extension to the triangulation actually con- C sists of a triangulation of the set of boundary nodes in C which the swap test is reversed (a non-empty circumcircle C test). The negative circumcenters are stored as the C pseudo-triangle 'circumcenters'. LISTC, LPTR, LEND, and C LNEW contain a data structure corresponding to the ex- C tended triangulation (Voronoi diagram), but LIST is not C altered in this case. Thus, if it is necessary to retain C the original (unextended) triangulation data structure, C copies of LPTR and LNEW must be saved before calling this C routine. C C C On input: C C N = Number of nodes in the triangulation. N .GE. 3. C Note that, if N = 3, there are only two Voronoi C vertices separated by 180 degrees, and the C Voronoi regions are not well defined. C C NCOL = Number of columns reserved for LTRI. This C must be at least NB-2, where NB is the number C of boundary nodes. C C X,Y,Z = Arrays of length N containing the Cartesian C coordinates of the nodes (unit vectors). C C LIST = Integer array containing the set of adjacency C lists. Refer to Subroutine TRMESH. C C LEND = Set of pointers to ends of adjacency lists. C Refer to Subroutine TRMESH. C C The above parameters are not altered by this routine. C C LPTR = Array of pointers associated with LIST. Re- C fer to Subroutine TRMESH. C C LNEW = Pointer to the first empty location in LIST C and LPTR (list length plus one). C C LTRI = Integer work space array dimensioned 6 by C NCOL, or unused dummy parameter if NB = 0. C C LISTC = Integer array of length at least 3*NT, where C NT = 2*N-4 is the number of triangles in the C triangulation (after extending it to cover C the entire surface if necessary). C C XC,YC,ZC,RC = Arrays of length NT = 2*N-4. C C On output: C C LPTR = Array of pointers associated with LISTC: C updated for the addition of pseudo-triangles C if the original triangulation contains C boundary nodes (NB > 0). C C LNEW = Pointer to the first empty location in LISTC C and LPTR (list length plus one). LNEW is not C altered if NB = 0. C C LTRI = Triangle list whose first NB-2 columns con- C tain the indexes of a clockwise-ordered C sequence of vertices (first three rows) C followed by the LTRI column indexes of the C triangles opposite the vertices (or 0 C denoting the exterior region) in the last C three rows. This array is not generally of C any use. C C LISTC = Array containing triangle indexes (indexes C to XC, YC, ZC, and RC) stored in 1-1 corres- C pondence with LIST/LPTR entries (or entries C that would be stored in LIST for the C extended triangulation): the index of tri- C angle (N1,N2,N3) is stored in LISTC(K), C LISTC(L), and LISTC(M), where LIST(K), C LIST(L), and LIST(M) are the indexes of N2 C as a neighbor of N1, N3 as a neighbor of N2, C and N1 as a neighbor of N3. The Voronoi C region associated with a node is defined by C the CCW-ordered sequence of circumcenters in C one-to-one correspondence with its adjacency C list (in the extended triangulation). C C NB = Number of boundary nodes unless IER = 1. C C XC,YC,ZC = Arrays containing the Cartesian coordi- C nates of the triangle circumcenters C (Voronoi vertices). XC(I)**2 + YC(I)**2 C + ZC(I)**2 = 1. The first NB-2 entries C correspond to pseudo-triangles if NB > 0. C C RC = Array containing circumradii (the arc lengths C or angles between the circumcenters and associ- C ated triangle vertices) in 1-1 correspondence C with circumcenters. C C IER = Error indicator: C IER = 0 if no errors were encountered. C IER = 1 if N < 3. C IER = 2 if NCOL < NB-2. C IER = 3 if a triangle is degenerate (has ver- C tices lying on a common geodesic). C C Modules required by CRLIST: CIRCUM, LSTPTR, SWPTST C C Intrinsic functions called by CRLIST: ABS, ACOS C C*********************************************************** C INTEGER LSTPTR INTEGER I1, I2, I3, I4, IERR, KT, KT1, KT2, KT11, . KT12, KT21, KT22, LP, LPL, LPN, N0, N1, N2, . N3, N4, NM2, NN, NT LOGICAL SWPTST LOGICAL SWP REAL(kind=8) C(3), T, V1(3), V2(3), V3(3) C C Local parameters: C C C = Circumcenter returned by Subroutine CIRCUM C I1,I2,I3 = Permutation of (1,2,3): LTRI row indexes C I4 = LTRI row index in the range 1 to 3 C IERR = Error flag for calls to CIRCUM C KT = Triangle index C KT1,KT2 = Indexes of a pair of adjacent pseudo-triangles C KT11,KT12 = Indexes of the pseudo-triangles opposite N1 C and N2 as vertices of KT1 C KT21,KT22 = Indexes of the pseudo-triangles opposite N1 C and N2 as vertices of KT2 C LP,LPN = LIST pointers C LPL = LIST pointer of the last neighbor of N1 C N0 = Index of the first boundary node (initial C value of N1) in the loop on boundary nodes C used to store the pseudo-triangle indexes C in LISTC C N1,N2,N3 = Nodal indexes defining a triangle (CCW order) C or pseudo-triangle (clockwise order) C N4 = Index of the node opposite N2 -> N1 C NM2 = N-2 C NN = Local copy of N C NT = Number of pseudo-triangles: NB-2 C SWP = Logical variable set to TRUE in each optimiza- C tion loop (loop on pseudo-arcs) iff a swap C is performed C V1,V2,V3 = Vertices of triangle KT = (N1,N2,N3) sent to C Subroutine CIRCUM C NN = N NB = 0 NT = 0 IF (NN .LT. 3) GO TO 21 C C Search for a boundary node N1. C DO 1 N1 = 1,NN LP = LEND(N1) IF (LIST(LP) .LT. 0) GO TO 2 1 CONTINUE C C The triangulation already covers the sphere. C GO TO 9 C C There are NB .GE. 3 boundary nodes. Add NB-2 pseudo- C triangles (N1,N2,N3) by connecting N3 to the NB-3 C boundary nodes to which it is not already adjacent. C C Set N3 and N2 to the first and last neighbors, C respectively, of N1. C 2 N2 = -LIST(LP) LP = LPTR(LP) N3 = LIST(LP) C C Loop on boundary arcs N1 -> N2 in clockwise order, C storing triangles (N1,N2,N3) in column NT of LTRI C along with the indexes of the triangles opposite C the vertices. C 3 NT = NT + 1 IF (NT .LE. NCOL) THEN LTRI(1,NT) = N1 LTRI(2,NT) = N2 LTRI(3,NT) = N3 LTRI(4,NT) = NT + 1 LTRI(5,NT) = NT - 1 LTRI(6,NT) = 0 ENDIF N1 = N2 LP = LEND(N1) N2 = -LIST(LP) IF (N2 .NE. N3) GO TO 3 C NB = NT + 2 IF (NCOL .LT. NT) GO TO 22 LTRI(4,NT) = 0 IF (NT .EQ. 1) GO TO 7 C C Optimize the exterior triangulation (set of pseudo- C triangles) by applying swaps to the pseudo-arcs N1-N2 C (pairs of adjacent pseudo-triangles KT1 and KT2 > KT1). C The loop on pseudo-arcs is repeated until no swaps are C performed. C 4 SWP = .FALSE. DO 6 KT1 = 1,NT-1 DO 5 I3 = 1,3 KT2 = LTRI(I3+3,KT1) IF (KT2 .LE. KT1) GO TO 5 C C The LTRI row indexes (I1,I2,I3) of triangle KT1 = C (N1,N2,N3) are a cyclical permutation of (1,2,3). C IF (I3 .EQ. 1) THEN I1 = 2 I2 = 3 ELSEIF (I3 .EQ. 2) THEN I1 = 3 I2 = 1 ELSE I1 = 1 I2 = 2 ENDIF N1 = LTRI(I1,KT1) N2 = LTRI(I2,KT1) N3 = LTRI(I3,KT1) C C KT2 = (N2,N1,N4) for N4 = LTRI(I,KT2), where C LTRI(I+3,KT2) = KT1. C IF (LTRI(4,KT2) .EQ. KT1) THEN I4 = 1 ELSEIF (LTRI(5,KT2) .EQ. KT1) THEN I4 = 2 ELSE I4 = 3 ENDIF N4 = LTRI(I4,KT2) C C The empty circumcircle test is reversed for the pseudo- C triangles. The reversal is implicit in the clockwise C ordering of the vertices. C IF ( .NOT. SWPTST(N1,N2,N3,N4,X,Y,Z) ) GO TO 5 C C Swap arc N1-N2 for N3-N4. KTij is the triangle opposite C Nj as a vertex of KTi. C SWP = .TRUE. KT11 = LTRI(I1+3,KT1) KT12 = LTRI(I2+3,KT1) IF (I4 .EQ. 1) THEN I2 = 2 I1 = 3 ELSEIF (I4 .EQ. 2) THEN I2 = 3 I1 = 1 ELSE I2 = 1 I1 = 2 ENDIF KT21 = LTRI(I1+3,KT2) KT22 = LTRI(I2+3,KT2) LTRI(1,KT1) = N4 LTRI(2,KT1) = N3 LTRI(3,KT1) = N1 LTRI(4,KT1) = KT12 LTRI(5,KT1) = KT22 LTRI(6,KT1) = KT2 LTRI(1,KT2) = N3 LTRI(2,KT2) = N4 LTRI(3,KT2) = N2 LTRI(4,KT2) = KT21 LTRI(5,KT2) = KT11 LTRI(6,KT2) = KT1 C C Correct the KT11 and KT22 entries that changed. C IF (KT11 .NE. 0) THEN I4 = 4 IF (LTRI(4,KT11) .NE. KT1) THEN I4 = 5 IF (LTRI(5,KT11) .NE. KT1) I4 = 6 ENDIF LTRI(I4,KT11) = KT2 ENDIF IF (KT22 .NE. 0) THEN I4 = 4 IF (LTRI(4,KT22) .NE. KT2) THEN I4 = 5 IF (LTRI(5,KT22) .NE. KT2) I4 = 6 ENDIF LTRI(I4,KT22) = KT1 ENDIF 5 CONTINUE 6 CONTINUE IF (SWP) GO TO 4 C C Compute and store the negative circumcenters and radii of C the pseudo-triangles in the first NT positions. C 7 DO 8 KT = 1,NT N1 = LTRI(1,KT) N2 = LTRI(2,KT) N3 = LTRI(3,KT) V1(1) = X(N1) V1(2) = Y(N1) V1(3) = Z(N1) V2(1) = X(N2) V2(2) = Y(N2) V2(3) = Z(N2) V3(1) = X(N3) V3(2) = Y(N3) V3(3) = Z(N3) CALL CIRCUM (V1,V2,V3, C,IERR) IF (IERR .NE. 0) GO TO 23 C C Store the negative circumcenter and radius (computed C from <V1,C>). C XC(KT) = C(1) YC(KT) = C(2) ZC(KT) = C(3) T = V1(1)*C(1) + V1(2)*C(2) + V1(3)*C(3) IF (T .LT. -1.0) T = -1.0 IF (T .GT. 1.0) T = 1.0 RC(KT) = ACOS(T) 8 CONTINUE C C Compute and store the circumcenters and radii of the C actual triangles in positions KT = NT+1, NT+2, ... C Also, store the triangle indexes KT in the appropriate C LISTC positions. C 9 KT = NT C C Loop on nodes N1. C NM2 = NN - 2 DO 12 N1 = 1,NM2 LPL = LEND(N1) LP = LPL N3 = LIST(LP) C C Loop on adjacent neighbors N2,N3 of N1 for which N2 > N1 C and N3 > N1. C 10 LP = LPTR(LP) N2 = N3 N3 = ABS(LIST(LP)) IF (N2 .LE. N1 .OR. N3 .LE. N1) GO TO 11 KT = KT + 1 C C Compute the circumcenter C of triangle KT = (N1,N2,N3). C V1(1) = X(N1) V1(2) = Y(N1) V1(3) = Z(N1) V2(1) = X(N2) V2(2) = Y(N2) V2(3) = Z(N2) V3(1) = X(N3) V3(2) = Y(N3) V3(3) = Z(N3) CALL CIRCUM (V1,V2,V3, C,IERR) IF (IERR .NE. 0) GO TO 23 C C Store the circumcenter, radius and triangle index. C XC(KT) = C(1) YC(KT) = C(2) ZC(KT) = C(3) T = V1(1)*C(1) + V1(2)*C(2) + V1(3)*C(3) IF (T .LT. -1.0) T = -1.0 IF (T .GT. 1.0) T = 1.0 RC(KT) = ACOS(T) C C Store KT in LISTC(LPN), where Abs(LIST(LPN)) is the C index of N2 as a neighbor of N1, N3 as a neighbor C of N2, and N1 as a neighbor of N3. C LPN = LSTPTR(LPL,N2,LIST,LPTR) LISTC(LPN) = KT LPN = LSTPTR(LEND(N2),N3,LIST,LPTR) LISTC(LPN) = KT LPN = LSTPTR(LEND(N3),N1,LIST,LPTR) LISTC(LPN) = KT 11 IF (LP .NE. LPL) GO TO 10 12 CONTINUE IF (NT .EQ. 0) GO TO 20 C C Store the first NT triangle indexes in LISTC. C C Find a boundary triangle KT1 = (N1,N2,N3) with a C boundary arc opposite N3. C KT1 = 0 13 KT1 = KT1 + 1 IF (LTRI(4,KT1) .EQ. 0) THEN I1 = 2 I2 = 3 I3 = 1 GO TO 14 ELSEIF (LTRI(5,KT1) .EQ. 0) THEN I1 = 3 I2 = 1 I3 = 2 GO TO 14 ELSEIF (LTRI(6,KT1) .EQ. 0) THEN I1 = 1 I2 = 2 I3 = 3 GO TO 14 ENDIF GO TO 13 14 N1 = LTRI(I1,KT1) N0 = N1 C C Loop on boundary nodes N1 in CCW order, storing the C indexes of the clockwise-ordered sequence of triangles C that contain N1. The first triangle overwrites the C last neighbor position, and the remaining triangles, C if any, are appended to N1's adjacency list. C C A pointer to the first neighbor of N1 is saved in LPN. C 15 LP = LEND(N1) LPN = LPTR(LP) LISTC(LP) = KT1 C C Loop on triangles KT2 containing N1. C 16 KT2 = LTRI(I2+3,KT1) IF (KT2 .NE. 0) THEN C C Append KT2 to N1's triangle list. C LPTR(LP) = LNEW LP = LNEW LISTC(LP) = KT2 LNEW = LNEW + 1 C C Set KT1 to KT2 and update (I1,I2,I3) such that C LTRI(I1,KT1) = N1. C KT1 = KT2 IF (LTRI(1,KT1) .EQ. N1) THEN I1 = 1 I2 = 2 I3 = 3 ELSEIF (LTRI(2,KT1) .EQ. N1) THEN I1 = 2 I2 = 3 I3 = 1 ELSE I1 = 3 I2 = 1 I3 = 2 ENDIF GO TO 16 ENDIF C C Store the saved first-triangle pointer in LPTR(LP), set C N1 to the next boundary node, test for termination, C and permute the indexes: the last triangle containing C a boundary node is the first triangle containing the C next boundary node. C LPTR(LP) = LPN N1 = LTRI(I3,KT1) IF (N1 .NE. N0) THEN I4 = I3 I3 = I2 I2 = I1 I1 = I4 GO TO 15 ENDIF C C No errors encountered. C 20 IER = 0 RETURN C C N < 3. C 21 IER = 1 RETURN C C Insufficient space reserved for LTRI. C 22 IER = 2 RETURN C C Error flag returned by CIRCUM: KT indexes a null triangle. C 23 IER = 3 RETURN END SUBROUTINE DELARC (N,IO1,IO2, LIST,LPTR,LEND, . LNEW, IER) INTEGER N, IO1, IO2, LIST(*), LPTR(*), LEND(N), LNEW, . IER C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/17/96 C C This subroutine deletes a boundary arc from a triangula- C tion. It may be used to remove a null triangle from the C convex hull boundary. Note, however, that if the union of C triangles is rendered nonconvex, Subroutines DELNOD, EDGE, C and TRFIND (and hence ADDNOD) may fail. Also, Function C NEARND should not be called following an arc deletion. C C This routine is identical to the similarly named routine C in TRIPACK. C C C On input: C C N = Number of nodes in the triangulation. N .GE. 4. C C IO1,IO2 = Indexes (in the range 1 to N) of a pair of C adjacent boundary nodes defining the arc C to be removed. C C The above parameters are not altered by this routine. C C LIST,LPTR,LEND,LNEW = Triangulation data structure C created by Subroutine TRMESH. C C On output: C C LIST,LPTR,LEND,LNEW = Data structure updated with C the removal of arc IO1-IO2 C unless IER > 0. C C IER = Error indicator: C IER = 0 if no errors were encountered. C IER = 1 if N, IO1, or IO2 is outside its valid C range, or IO1 = IO2. C IER = 2 if IO1-IO2 is not a boundary arc. C IER = 3 if the node opposite IO1-IO2 is al- C ready a boundary node, and thus IO1 C or IO2 has only two neighbors or a C deletion would result in two triangu- C lations sharing a single node. C IER = 4 if one of the nodes is a neighbor of C the other, but not vice versa, imply- C ing an invalid triangulation data C structure. C C Module required by DELARC: DELNB, LSTPTR C C Intrinsic function called by DELARC: ABS C C*********************************************************** C INTEGER LSTPTR INTEGER LP, LPH, LPL, N1, N2, N3 C C Local parameters: C C LP = LIST pointer C LPH = LIST pointer or flag returned by DELNB C LPL = Pointer to the last neighbor of N1, N2, or N3 C N1,N2,N3 = Nodal indexes of a triangle such that N1->N2 C is the directed boundary edge associated C with IO1-IO2 C N1 = IO1 N2 = IO2 C C Test for errors, and set N1->N2 to the directed boundary C edge associated with IO1-IO2: (N1,N2,N3) is a triangle C for some N3. C IF (N .LT. 4 .OR. N1 .LT. 1 .OR. N1 .GT. N .OR. . N2 .LT. 1 .OR. N2 .GT. N .OR. N1 .EQ. N2) THEN IER = 1 RETURN ENDIF C LPL = LEND(N2) IF (-LIST(LPL) .NE. N1) THEN N1 = N2 N2 = IO1 LPL = LEND(N2) IF (-LIST(LPL) .NE. N1) THEN IER = 2 RETURN ENDIF ENDIF C C Set N3 to the node opposite N1->N2 (the second neighbor C of N1), and test for error 3 (N3 already a boundary C node). C LPL = LEND(N1) LP = LPTR(LPL) LP = LPTR(LP) N3 = ABS(LIST(LP)) LPL = LEND(N3) IF (LIST(LPL) .LE. 0) THEN IER = 3 RETURN ENDIF C C Delete N2 as a neighbor of N1, making N3 the first C neighbor, and test for error 4 (N2 not a neighbor C of N1). Note that previously computed pointers may C no longer be valid following the call to DELNB. C CALL DELNB (N1,N2,N, LIST,LPTR,LEND,LNEW, LPH) IF (LPH .LT. 0) THEN IER = 4 RETURN ENDIF C C Delete N1 as a neighbor of N2, making N3 the new last C neighbor. C CALL DELNB (N2,N1,N, LIST,LPTR,LEND,LNEW, LPH) C C Make N3 a boundary node with first neighbor N2 and last C neighbor N1. C LP = LSTPTR(LEND(N3),N1,LIST,LPTR) LEND(N3) = LP LIST(LP) = -N1 C C No errors encountered. C IER = 0 RETURN END SUBROUTINE DELNB (N0,NB,N, LIST,LPTR,LEND,LNEW, LPH) INTEGER N0, NB, N, LIST(*), LPTR(*), LEND(N), LNEW, . LPH C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/29/98 C C This subroutine deletes a neighbor NB from the adjacency C list of node N0 (but N0 is not deleted from the adjacency C list of NB) and, if NB is a boundary node, makes N0 a C boundary node. For pointer (LIST index) LPH to NB as a C neighbor of N0, the empty LIST,LPTR location LPH is filled C in with the values at LNEW-1, pointer LNEW-1 (in LPTR and C possibly in LEND) is changed to LPH, and LNEW is decremen- C ted. This requires a search of LEND and LPTR entailing an C expected operation count of O(N). C C This routine is identical to the similarly named routine C in TRIPACK. C C C On input: C C N0,NB = Indexes, in the range 1 to N, of a pair of C nodes such that NB is a neighbor of N0. C (N0 need not be a neighbor of NB.) C C N = Number of nodes in the triangulation. N .GE. 3. C C The above parameters are not altered by this routine. C C LIST,LPTR,LEND,LNEW = Data structure defining the C triangulation. C C On output: C C LIST,LPTR,LEND,LNEW = Data structure updated with C the removal of NB from the ad- C jacency list of N0 unless C LPH < 0. C C LPH = List pointer to the hole (NB as a neighbor of C N0) filled in by the values at LNEW-1 or error C indicator: C LPH > 0 if no errors were encountered. C LPH = -1 if N0, NB, or N is outside its valid C range. C LPH = -2 if NB is not a neighbor of N0. C C Modules required by DELNB: None C C Intrinsic function called by DELNB: ABS C C*********************************************************** C INTEGER I, LNW, LP, LPB, LPL, LPP, NN C C Local parameters: C C I = DO-loop index C LNW = LNEW-1 (output value of LNEW) C LP = LIST pointer of the last neighbor of NB C LPB = Pointer to NB as a neighbor of N0 C LPL = Pointer to the last neighbor of N0 C LPP = Pointer to the neighbor of N0 that precedes NB C NN = Local copy of N C NN = N C C Test for error 1. C IF (N0 .LT. 1 .OR. N0 .GT. NN .OR. NB .LT. 1 .OR. . NB .GT. NN .OR. NN .LT. 3) THEN LPH = -1 RETURN ENDIF C C Find pointers to neighbors of N0: C C LPL points to the last neighbor, C LPP points to the neighbor NP preceding NB, and C LPB points to NB. C LPL = LEND(N0) LPP = LPL LPB = LPTR(LPP) 1 IF (LIST(LPB) .EQ. NB) GO TO 2 LPP = LPB LPB = LPTR(LPP) IF (LPB .NE. LPL) GO TO 1 C C Test for error 2 (NB not found). C IF (ABS(LIST(LPB)) .NE. NB) THEN LPH = -2 RETURN ENDIF C C NB is the last neighbor of N0. Make NP the new last C neighbor and, if NB is a boundary node, then make N0 C a boundary node. C LEND(N0) = LPP LP = LEND(NB) IF (LIST(LP) .LT. 0) LIST(LPP) = -LIST(LPP) GO TO 3 C C NB is not the last neighbor of N0. If NB is a boundary C node and N0 is not, then make N0 a boundary node with C last neighbor NP. C 2 LP = LEND(NB) IF (LIST(LP) .LT. 0 .AND. LIST(LPL) .GT. 0) THEN LEND(N0) = LPP LIST(LPP) = -LIST(LPP) ENDIF C C Update LPTR so that the neighbor following NB now fol- C lows NP, and fill in the hole at location LPB. C 3 LPTR(LPP) = LPTR(LPB) LNW = LNEW-1 LIST(LPB) = LIST(LNW) LPTR(LPB) = LPTR(LNW) DO 4 I = NN,1,-1 IF (LEND(I) .EQ. LNW) THEN LEND(I) = LPB GO TO 5 ENDIF 4 CONTINUE C 5 DO 6 I = 1,LNW-1 IF (LPTR(I) .EQ. LNW) THEN LPTR(I) = LPB ENDIF 6 CONTINUE C C No errors encountered. C LNEW = LNW LPH = LPB RETURN END SUBROUTINE DELNOD (K, N,X,Y,Z,LIST,LPTR,LEND,LNEW,LWK, . IWK, IER) INTEGER K, N, LIST(*), LPTR(*), LEND(*), LNEW, LWK, . IWK(2,*), IER REAL(kind=8) X(*), Y(*), Z(*) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 11/30/99 C C This subroutine deletes node K (along with all arcs C incident on node K) from a triangulation of N nodes on the C unit sphere, and inserts arcs as necessary to produce a C triangulation of the remaining N-1 nodes. If a Delaunay C triangulation is input, a Delaunay triangulation will C result, and thus, DELNOD reverses the effect of a call to C Subroutine ADDNOD. C C C On input: C C K = Index (for X, Y, and Z) of the node to be C deleted. 1 .LE. K .LE. N. C C K is not altered by this routine. C C N = Number of nodes in the triangulation on input. C N .GE. 4. Note that N will be decremented C following the deletion. C C X,Y,Z = Arrays of length N containing the Cartesian C coordinates of the nodes in the triangula- C tion. C C LIST,LPTR,LEND,LNEW = Data structure defining the C triangulation. Refer to Sub- C routine TRMESH. C C LWK = Number of columns reserved for IWK. LWK must C be at least NNB-3, where NNB is the number of C neighbors of node K, including an extra C pseudo-node if K is a boundary node. C C IWK = Integer work array dimensioned 2 by LWK (or C array of length .GE. 2*LWK). C C On output: C C N = Number of nodes in the triangulation on output. C The input value is decremented unless 1 .LE. IER C .LE. 4. C C X,Y,Z = Updated arrays containing nodal coordinates C (with elements K+1,...,N+1 shifted up one C position, thus overwriting element K) unless C 1 .LE. IER .LE. 4. C C LIST,LPTR,LEND,LNEW = Updated triangulation data C structure reflecting the dele- C tion unless 1 .LE. IER .LE. 4. C Note that the data structure C may have been altered if IER > C 3. C C LWK = Number of IWK columns required unless IER = 1 C or IER = 3. C C IWK = Indexes of the endpoints of the new arcs added C unless LWK = 0 or 1 .LE. IER .LE. 4. (Arcs C are associated with columns, or pairs of C adjacent elements if IWK is declared as a C singly-subscripted array.) C C IER = Error indicator: C IER = 0 if no errors were encountered. C IER = 1 if K or N is outside its valid range C or LWK < 0 on input. C IER = 2 if more space is required in IWK. C Refer to LWK. C IER = 3 if the triangulation data structure is C invalid on input. C IER = 4 if K indexes an interior node with C four or more neighbors, none of which C can be swapped out due to collineari- C ty, and K cannot therefore be deleted. C IER = 5 if an error flag (other than IER = 1) C was returned by OPTIM. An error C message is written to the standard C output unit in this case. C IER = 6 if error flag 1 was returned by OPTIM. C This is not necessarily an error, but C the arcs may not be optimal. C C Note that the deletion may result in all remaining nodes C being collinear. This situation is not flagged. C C Modules required by DELNOD: DELNB, LEFT, LSTPTR, NBCNT, C OPTIM, SWAP, SWPTST C C Intrinsic function called by DELNOD: ABS C C*********************************************************** C INTEGER LSTPTR, NBCNT INTEGER I, IERR, IWL, J, LNW, LP, LP21, LPF, LPH, LPL, . LPL2, LPN, LWKL, N1, N2, NFRST, NIT, NL, NN, . NNB, NR LOGICAL LEFT LOGICAL BDRY REAL(kind=8) X1, X2, XL, XR, Y1, Y2, YL, YR, Z1, Z2, ZL, ZR C C Local parameters: C C BDRY = Logical variable with value TRUE iff N1 is a C boundary node C I,J = DO-loop indexes C IERR = Error flag returned by OPTIM C IWL = Number of IWK columns containing arcs C LNW = Local copy of LNEW C LP = LIST pointer C LP21 = LIST pointer returned by SWAP C LPF,LPL = Pointers to the first and last neighbors of N1 C LPH = Pointer (or flag) returned by DELNB C LPL2 = Pointer to the last neighbor of N2 C LPN = Pointer to a neighbor of N1 C LWKL = Input value of LWK C N1 = Local copy of K C N2 = Neighbor of N1 C NFRST = First neighbor of N1: LIST(LPF) C NIT = Number of iterations in OPTIM C NR,NL = Neighbors of N1 preceding (to the right of) and C following (to the left of) N2, respectively C NN = Number of nodes in the triangulation C NNB = Number of neighbors of N1 (including a pseudo- C node representing the boundary if N1 is a C boundary node) C X1,Y1,Z1 = Coordinates of N1 C X2,Y2,Z2 = Coordinates of N2 C XL,YL,ZL = Coordinates of NL C XR,YR,ZR = Coordinates of NR C C C Set N1 to K and NNB to the number of neighbors of N1 (plus C one if N1 is a boundary node), and test for errors. LPF C and LPL are LIST indexes of the first and last neighbors C of N1, IWL is the number of IWK columns containing arcs, C and BDRY is TRUE iff N1 is a boundary node. C N1 = K NN = N IF (N1 .LT. 1 .OR. N1 .GT. NN .OR. NN .LT. 4 .OR. . LWK .LT. 0) GO TO 21 LPL = LEND(N1) LPF = LPTR(LPL) NNB = NBCNT(LPL,LPTR) BDRY = LIST(LPL) .LT. 0 IF (BDRY) NNB = NNB + 1 IF (NNB .LT. 3) GO TO 23 LWKL = LWK LWK = NNB - 3 IF (LWKL .LT. LWK) GO TO 22 IWL = 0 IF (NNB .EQ. 3) GO TO 3 C C Initialize for loop on arcs N1-N2 for neighbors N2 of N1, C beginning with the second neighbor. NR and NL are the C neighbors preceding and following N2, respectively, and C LP indexes NL. The loop is exited when all possible C swaps have been applied to arcs incident on N1. C X1 = X(N1) Y1 = Y(N1) Z1 = Z(N1) NFRST = LIST(LPF) NR = NFRST XR = X(NR) YR = Y(NR) ZR = Z(NR) LP = LPTR(LPF) N2 = LIST(LP) X2 = X(N2) Y2 = Y(N2) Z2 = Z(N2) LP = LPTR(LP) C C Top of loop: set NL to the neighbor following N2. C 1 NL = ABS(LIST(LP)) IF (NL .EQ. NFRST .AND. BDRY) GO TO 3 XL = X(NL) YL = Y(NL) ZL = Z(NL) C C Test for a convex quadrilateral. To avoid an incorrect C test caused by collinearity, use the fact that if N1 C is a boundary node, then N1 LEFT NR->NL and if N2 is C a boundary node, then N2 LEFT NL->NR. C LPL2 = LEND(N2) IF ( .NOT. ((BDRY .OR. LEFT(XR,YR,ZR,XL,YL,ZL,X1,Y1, . Z1)) .AND. (LIST(LPL2) .LT. 0 .OR. . LEFT(XL,YL,ZL,XR,YR,ZR,X2,Y2,Z2))) ) THEN C C Nonconvex quadrilateral -- no swap is possible. C NR = N2 XR = X2 YR = Y2 ZR = Z2 GO TO 2 ENDIF C C The quadrilateral defined by adjacent triangles C (N1,N2,NL) and (N2,N1,NR) is convex. Swap in C NL-NR and store it in IWK unless NL and NR are C already adjacent, in which case the swap is not C possible. Indexes larger than N1 must be decremented C since N1 will be deleted from X, Y, and Z. C CALL SWAP (NL,NR,N1,N2, LIST,LPTR,LEND, LP21) IF (LP21 .EQ. 0) THEN NR = N2 XR = X2 YR = Y2 ZR = Z2 GO TO 2 ENDIF IWL = IWL + 1 IF (NL .LE. N1) THEN IWK(1,IWL) = NL ELSE IWK(1,IWL) = NL - 1 ENDIF IF (NR .LE. N1) THEN IWK(2,IWL) = NR ELSE IWK(2,IWL) = NR - 1 ENDIF C C Recompute the LIST indexes and NFRST, and decrement NNB. C LPL = LEND(N1) NNB = NNB - 1 IF (NNB .EQ. 3) GO TO 3 LPF = LPTR(LPL) NFRST = LIST(LPF) LP = LSTPTR(LPL,NL,LIST,LPTR) IF (NR .EQ. NFRST) GO TO 2 C C NR is not the first neighbor of N1. C Back up and test N1-NR for a swap again: Set N2 to C NR and NR to the previous neighbor of N1 -- the C neighbor of NR which follows N1. LP21 points to NL C as a neighbor of NR. C N2 = NR X2 = XR Y2 = YR Z2 = ZR LP21 = LPTR(LP21) LP21 = LPTR(LP21) NR = ABS(LIST(LP21)) XR = X(NR) YR = Y(NR) ZR = Z(NR) GO TO 1 C C Bottom of loop -- test for termination of loop. C 2 IF (N2 .EQ. NFRST) GO TO 3 N2 = NL X2 = XL Y2 = YL Z2 = ZL LP = LPTR(LP) GO TO 1 C C Delete N1 and all its incident arcs. If N1 is an interior C node and either NNB > 3 or NNB = 3 and N2 LEFT NR->NL, C then N1 must be separated from its neighbors by a plane C containing the origin -- its removal reverses the effect C of a call to COVSPH, and all its neighbors become C boundary nodes. This is achieved by treating it as if C it were a boundary node (setting BDRY to TRUE, changing C a sign in LIST, and incrementing NNB). C 3 IF (.NOT. BDRY) THEN IF (NNB .GT. 3) THEN BDRY = .TRUE. ELSE LPF = LPTR(LPL) NR = LIST(LPF) LP = LPTR(LPF) N2 = LIST(LP) NL = LIST(LPL) BDRY = LEFT(X(NR),Y(NR),Z(NR),X(NL),Y(NL),Z(NL), . X(N2),Y(N2),Z(N2)) ENDIF IF (BDRY) THEN C C IF a boundary node already exists, then N1 and its C neighbors cannot be converted to boundary nodes. C (They must be collinear.) This is a problem if C NNB > 3. C DO 4 I = 1,NN IF (LIST(LEND(I)) .LT. 0) THEN BDRY = .FALSE. GO TO 5 ENDIF 4 CONTINUE LIST(LPL) = -LIST(LPL) NNB = NNB + 1 ENDIF ENDIF 5 IF (.NOT. BDRY .AND. NNB .GT. 3) GO TO 24 C C Initialize for loop on neighbors. LPL points to the last C neighbor of N1. LNEW is stored in local variable LNW. C LP = LPL LNW = LNEW C C Loop on neighbors N2 of N1, beginning with the first. C 6 LP = LPTR(LP) N2 = ABS(LIST(LP)) CALL DELNB (N2,N1,N, LIST,LPTR,LEND,LNW, LPH) IF (LPH .LT. 0) GO TO 23 C C LP and LPL may require alteration. C IF (LPL .EQ. LNW) LPL = LPH IF (LP .EQ. LNW) LP = LPH IF (LP .NE. LPL) GO TO 6 C C Delete N1 from X, Y, Z, and LEND, and remove its adjacency C list from LIST and LPTR. LIST entries (nodal indexes) C which are larger than N1 must be decremented. C NN = NN - 1 IF (N1 .GT. NN) GO TO 9 DO 7 I = N1,NN X(I) = X(I+1) Y(I) = Y(I+1) Z(I) = Z(I+1) LEND(I) = LEND(I+1) 7 CONTINUE C DO 8 I = 1,LNW-1 IF (LIST(I) .GT. N1) LIST(I) = LIST(I) - 1 IF (LIST(I) .LT. -N1) LIST(I) = LIST(I) + 1 8 CONTINUE C C For LPN = first to last neighbors of N1, delete the C preceding neighbor (indexed by LP). C C Each empty LIST,LPTR location LP is filled in with the C values at LNW-1, and LNW is decremented. All pointers C (including those in LPTR and LEND) with value LNW-1 C must be changed to LP. C C LPL points to the last neighbor of N1. C 9 IF (BDRY) NNB = NNB - 1 LPN = LPL DO 13 J = 1,NNB LNW = LNW - 1 LP = LPN LPN = LPTR(LP) LIST(LP) = LIST(LNW) LPTR(LP) = LPTR(LNW) IF (LPTR(LPN) .EQ. LNW) LPTR(LPN) = LP IF (LPN .EQ. LNW) LPN = LP DO 10 I = NN,1,-1 IF (LEND(I) .EQ. LNW) THEN LEND(I) = LP GO TO 11 ENDIF 10 CONTINUE C 11 DO 12 I = LNW-1,1,-1 IF (LPTR(I) .EQ. LNW) LPTR(I) = LP 12 CONTINUE 13 CONTINUE C C Update N and LNEW, and optimize the patch of triangles C containing K (on input) by applying swaps to the arcs C in IWK. C N = NN LNEW = LNW IF (IWL .GT. 0) THEN NIT = 4*IWL CALL OPTIM (X,Y,Z,IWL, LIST,LPTR,LEND,NIT,IWK, IERR) IF (IERR .NE. 0 .AND. IERR .NE. 1) GO TO 25 IF (IERR .EQ. 1) GO TO 26 ENDIF C C Successful termination. C IER = 0 RETURN C C Invalid input parameter. C 21 IER = 1 RETURN C C Insufficient space reserved for IWK. C 22 IER = 2 RETURN C C Invalid triangulation data structure. NNB < 3 on input or C N2 is a neighbor of N1 but N1 is not a neighbor of N2. C 23 IER = 3 RETURN C C N1 is interior but NNB could not be reduced to 3. C 24 IER = 4 RETURN C C Error flag (other than 1) returned by OPTIM. C 25 IER = 5 WRITE (*,100) NIT, IERR 100 FORMAT (//5X,'*** Error in OPTIM (called from ', . 'DELNOD): NIT = ',I4,', IER = ',I1,' ***'/) RETURN C C Error flag 1 returned by OPTIM. C 26 IER = 6 RETURN END SUBROUTINE EDGE (IN1,IN2,X,Y,Z, LWK,IWK,LIST,LPTR, . LEND, IER) INTEGER IN1, IN2, LWK, IWK(2,*), LIST(*), LPTR(*), . LEND(*), IER REAL(kind=8) X(*), Y(*), Z(*) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/30/98 C C Given a triangulation of N nodes and a pair of nodal C indexes IN1 and IN2, this routine swaps arcs as necessary C to force IN1 and IN2 to be adjacent. Only arcs which C intersect IN1-IN2 are swapped out. If a Delaunay triangu- C lation is input, the resulting triangulation is as close C as possible to a Delaunay triangulation in the sense that C all arcs other than IN1-IN2 are locally optimal. C C A sequence of calls to EDGE may be used to force the C presence of a set of edges defining the boundary of a non- C convex and/or multiply connected region, or to introduce C barriers into the triangulation. Note that Subroutine C GETNP will not necessarily return closest nodes if the C triangulation has been constrained by a call to EDGE. C However, this is appropriate in some applications, such C as triangle-based interpolation on a nonconvex domain. C C C On input: C C IN1,IN2 = Indexes (of X, Y, and Z) in the range 1 to C N defining a pair of nodes to be connected C by an arc. C C X,Y,Z = Arrays of length N containing the Cartesian C coordinates of the nodes. C C The above parameters are not altered by this routine. C C LWK = Number of columns reserved for IWK. This must C be at least NI -- the number of arcs that C intersect IN1-IN2. (NI is bounded by N-3.) C C IWK = Integer work array of length at least 2*LWK. C C LIST,LPTR,LEND = Data structure defining the trian- C gulation. Refer to Subroutine C TRMESH. C C On output: C C LWK = Number of arcs which intersect IN1-IN2 (but C not more than the input value of LWK) unless C IER = 1 or IER = 3. LWK = 0 if and only if C IN1 and IN2 were adjacent (or LWK=0) on input. C C IWK = Array containing the indexes of the endpoints C of the new arcs other than IN1-IN2 unless C IER > 0 or LWK = 0. New arcs to the left of C IN1->IN2 are stored in the first K-1 columns C (left portion of IWK), column K contains C zeros, and new arcs to the right of IN1->IN2 C occupy columns K+1,...,LWK. (K can be deter- C mined by searching IWK for the zeros.) C C LIST,LPTR,LEND = Data structure updated if necessary C to reflect the presence of an arc C connecting IN1 and IN2 unless IER > C 0. The data structure has been C altered if IER >= 4. C C IER = Error indicator: C IER = 0 if no errors were encountered. C IER = 1 if IN1 < 1, IN2 < 1, IN1 = IN2, C or LWK < 0 on input. C IER = 2 if more space is required in IWK. C Refer to LWK. C IER = 3 if IN1 and IN2 could not be connected C due to either an invalid data struc- C ture or collinear nodes (and floating C point error). C IER = 4 if an error flag other than IER = 1 C was returned by OPTIM. C IER = 5 if error flag 1 was returned by OPTIM. C This is not necessarily an error, but C the arcs other than IN1-IN2 may not C be optimal. C C An error message is written to the standard output unit C in the case of IER = 3 or IER = 4. C C Modules required by EDGE: LEFT, LSTPTR, OPTIM, SWAP, C SWPTST C C Intrinsic function called by EDGE: ABS C C*********************************************************** C LOGICAL LEFT INTEGER I, IERR, IWC, IWCP1, IWEND, IWF, IWL, LFT, LP, . LP21, LPL, N0, N1, N1FRST, N1LST, N2, NEXT, . NIT, NL, NR REAL(kind=8) DP12, DP1L, DP1R, DP2L, DP2R, X0, X1, X2, Y0, . Y1, Y2, Z0, Z1, Z2 C C Local parameters: C C DPij = Dot product <Ni,Nj> C I = DO-loop index and column index for IWK C IERR = Error flag returned by Subroutine OPTIM C IWC = IWK index between IWF and IWL -- NL->NR is C stored in IWK(1,IWC)->IWK(2,IWC) C IWCP1 = IWC + 1 C IWEND = Input or output value of LWK C IWF = IWK (column) index of the first (leftmost) arc C which intersects IN1->IN2 C IWL = IWK (column) index of the last (rightmost) are C which intersects IN1->IN2 C LFT = Flag used to determine if a swap results in the C new arc intersecting IN1-IN2 -- LFT = 0 iff C N0 = IN1, LFT = -1 implies N0 LEFT IN1->IN2, C and LFT = 1 implies N0 LEFT IN2->IN1 C LP = List pointer (index for LIST and LPTR) C LP21 = Unused parameter returned by SWAP C LPL = Pointer to the last neighbor of IN1 or NL C N0 = Neighbor of N1 or node opposite NR->NL C N1,N2 = Local copies of IN1 and IN2 C N1FRST = First neighbor of IN1 C N1LST = (Signed) last neighbor of IN1 C NEXT = Node opposite NL->NR C NIT = Flag or number of iterations employed by OPTIM C NL,NR = Endpoints of an arc which intersects IN1-IN2 C with NL LEFT IN1->IN2 C X0,Y0,Z0 = Coordinates of N0 C X1,Y1,Z1 = Coordinates of IN1 C X2,Y2,Z2 = Coordinates of IN2 C C C Store IN1, IN2, and LWK in local variables and test for C errors. C N1 = IN1 N2 = IN2 IWEND = LWK IF (N1 .LT. 1 .OR. N2 .LT. 1 .OR. N1 .EQ. N2 .OR. . IWEND .LT. 0) GO TO 31 C C Test for N2 as a neighbor of N1. LPL points to the last C neighbor of N1. C LPL = LEND(N1) N0 = ABS(LIST(LPL)) LP = LPL 1 IF (N0 .EQ. N2) GO TO 30 LP = LPTR(LP) N0 = LIST(LP) IF (LP .NE. LPL) GO TO 1 C C Initialize parameters. C IWL = 0 NIT = 0 C C Store the coordinates of N1 and N2. C 2 X1 = X(N1) Y1 = Y(N1) Z1 = Z(N1) X2 = X(N2) Y2 = Y(N2) Z2 = Z(N2) C C Set NR and NL to adjacent neighbors of N1 such that C NR LEFT N2->N1 and NL LEFT N1->N2, C (NR Forward N1->N2 or NL Forward N1->N2), and C (NR Forward N2->N1 or NL Forward N2->N1). C C Initialization: Set N1FRST and N1LST to the first and C (signed) last neighbors of N1, respectively, and C initialize NL to N1FRST. C LPL = LEND(N1) N1LST = LIST(LPL) LP = LPTR(LPL) N1FRST = LIST(LP) NL = N1FRST IF (N1LST .LT. 0) GO TO 4 C C N1 is an interior node. Set NL to the first candidate C for NR (NL LEFT N2->N1). C 3 IF (LEFT(X2,Y2,Z2,X1,Y1,Z1,X(NL),Y(NL),Z(NL))) GO TO 4 LP = LPTR(LP) NL = LIST(LP) IF (NL .NE. N1FRST) GO TO 3 C C All neighbors of N1 are strictly left of N1->N2. C GO TO 5 C C NL = LIST(LP) LEFT N2->N1. Set NR to NL and NL to the C following neighbor of N1. C 4 NR = NL LP = LPTR(LP) NL = ABS(LIST(LP)) IF (LEFT(X1,Y1,Z1,X2,Y2,Z2,X(NL),Y(NL),Z(NL)) ) THEN C C NL LEFT N1->N2 and NR LEFT N2->N1. The Forward tests C are employed to avoid an error associated with C collinear nodes. C DP12 = X1*X2 + Y1*Y2 + Z1*Z2 DP1L = X1*X(NL) + Y1*Y(NL) + Z1*Z(NL) DP2L = X2*X(NL) + Y2*Y(NL) + Z2*Z(NL) DP1R = X1*X(NR) + Y1*Y(NR) + Z1*Z(NR) DP2R = X2*X(NR) + Y2*Y(NR) + Z2*Z(NR) IF ( (DP2L-DP12*DP1L .GE. 0. .OR. . DP2R-DP12*DP1R .GE. 0.) .AND. . (DP1L-DP12*DP2L .GE. 0. .OR. . DP1R-DP12*DP2R .GE. 0.) ) GO TO 6 C C NL-NR does not intersect N1-N2. However, there is C another candidate for the first arc if NL lies on C the line N1-N2. C IF ( .NOT. LEFT(X2,Y2,Z2,X1,Y1,Z1,X(NL),Y(NL), . Z(NL)) ) GO TO 5 ENDIF C C Bottom of loop. C IF (NL .NE. N1FRST) GO TO 4 C C Either the triangulation is invalid or N1-N2 lies on the C convex hull boundary and an edge NR->NL (opposite N1 and C intersecting N1-N2) was not found due to floating point C error. Try interchanging N1 and N2 -- NIT > 0 iff this C has already been done. C 5 IF (NIT .GT. 0) GO TO 33 NIT = 1 N1 = N2 N2 = IN1 GO TO 2 C C Store the ordered sequence of intersecting edges NL->NR in C IWK(1,IWL)->IWK(2,IWL). C 6 IWL = IWL + 1 IF (IWL .GT. IWEND) GO TO 32 IWK(1,IWL) = NL IWK(2,IWL) = NR C C Set NEXT to the neighbor of NL which follows NR. C LPL = LEND(NL) LP = LPTR(LPL) C C Find NR as a neighbor of NL. The search begins with C the first neighbor. C 7 IF (LIST(LP) .EQ. NR) GO TO 8 LP = LPTR(LP) IF (LP .NE. LPL) GO TO 7 C C NR must be the last neighbor, and NL->NR cannot be a C boundary edge. C IF (LIST(LP) .NE. NR) GO TO 33 C C Set NEXT to the neighbor following NR, and test for C termination of the store loop. C 8 LP = LPTR(LP) NEXT = ABS(LIST(LP)) IF (NEXT .EQ. N2) GO TO 9 C C Set NL or NR to NEXT. C IF ( LEFT(X1,Y1,Z1,X2,Y2,Z2,X(NEXT),Y(NEXT),Z(NEXT)) ) . THEN NL = NEXT ELSE NR = NEXT ENDIF GO TO 6 C C IWL is the number of arcs which intersect N1-N2. C Store LWK. C 9 LWK = IWL IWEND = IWL C C Initialize for edge swapping loop -- all possible swaps C are applied (even if the new arc again intersects C N1-N2), arcs to the left of N1->N2 are stored in the C left portion of IWK, and arcs to the right are stored in C the right portion. IWF and IWL index the first and last C intersecting arcs. C IWF = 1 C C Top of loop -- set N0 to N1 and NL->NR to the first edge. C IWC points to the arc currently being processed. LFT C .LE. 0 iff N0 LEFT N1->N2. C 10 LFT = 0 N0 = N1 X0 = X1 Y0 = Y1 Z0 = Z1 NL = IWK(1,IWF) NR = IWK(2,IWF) IWC = IWF C C Set NEXT to the node opposite NL->NR unless IWC is the C last arc. C 11 IF (IWC .EQ. IWL) GO TO 21 IWCP1 = IWC + 1 NEXT = IWK(1,IWCP1) IF (NEXT .NE. NL) GO TO 16 NEXT = IWK(2,IWCP1) C C NEXT RIGHT N1->N2 and IWC .LT. IWL. Test for a possible C swap. C IF ( .NOT. LEFT(X0,Y0,Z0,X(NR),Y(NR),Z(NR),X(NEXT), . Y(NEXT),Z(NEXT)) ) GO TO 14 IF (LFT .GE. 0) GO TO 12 IF ( .NOT. LEFT(X(NL),Y(NL),Z(NL),X0,Y0,Z0,X(NEXT), . Y(NEXT),Z(NEXT)) ) GO TO 14 C C Replace NL->NR with N0->NEXT. C CALL SWAP (NEXT,N0,NL,NR, LIST,LPTR,LEND, LP21) IWK(1,IWC) = N0 IWK(2,IWC) = NEXT GO TO 15 C C Swap NL-NR for N0-NEXT, shift columns IWC+1,...,IWL to C the left, and store N0-NEXT in the right portion of C IWK. C 12 CALL SWAP (NEXT,N0,NL,NR, LIST,LPTR,LEND, LP21) DO 13 I = IWCP1,IWL IWK(1,I-1) = IWK(1,I) IWK(2,I-1) = IWK(2,I) 13 CONTINUE IWK(1,IWL) = N0 IWK(2,IWL) = NEXT IWL = IWL - 1 NR = NEXT GO TO 11 C C A swap is not possible. Set N0 to NR. C 14 N0 = NR X0 = X(N0) Y0 = Y(N0) Z0 = Z(N0) LFT = 1 C C Advance to the next arc. C 15 NR = NEXT IWC = IWC + 1 GO TO 11 C C NEXT LEFT N1->N2, NEXT .NE. N2, and IWC .LT. IWL. C Test for a possible swap. C 16 IF ( .NOT. LEFT(X(NL),Y(NL),Z(NL),X0,Y0,Z0,X(NEXT), . Y(NEXT),Z(NEXT)) ) GO TO 19 IF (LFT .LE. 0) GO TO 17 IF ( .NOT. LEFT(X0,Y0,Z0,X(NR),Y(NR),Z(NR),X(NEXT), . Y(NEXT),Z(NEXT)) ) GO TO 19 C C Replace NL->NR with NEXT->N0. C CALL SWAP (NEXT,N0,NL,NR, LIST,LPTR,LEND, LP21) IWK(1,IWC) = NEXT IWK(2,IWC) = N0 GO TO 20 C C Swap NL-NR for N0-NEXT, shift columns IWF,...,IWC-1 to C the right, and store N0-NEXT in the left portion of C IWK. C 17 CALL SWAP (NEXT,N0,NL,NR, LIST,LPTR,LEND, LP21) DO 18 I = IWC-1,IWF,-1 IWK(1,I+1) = IWK(1,I) IWK(2,I+1) = IWK(2,I) 18 CONTINUE IWK(1,IWF) = N0 IWK(2,IWF) = NEXT IWF = IWF + 1 GO TO 20 C C A swap is not possible. Set N0 to NL. C 19 N0 = NL X0 = X(N0) Y0 = Y(N0) Z0 = Z(N0) LFT = -1 C C Advance to the next arc. C 20 NL = NEXT IWC = IWC + 1 GO TO 11 C C N2 is opposite NL->NR (IWC = IWL). C 21 IF (N0 .EQ. N1) GO TO 24 IF (LFT .LT. 0) GO TO 22 C C N0 RIGHT N1->N2. Test for a possible swap. C IF ( .NOT. LEFT(X0,Y0,Z0,X(NR),Y(NR),Z(NR),X2,Y2,Z2) ) . GO TO 10 C C Swap NL-NR for N0-N2 and store N0-N2 in the right C portion of IWK. C CALL SWAP (N2,N0,NL,NR, LIST,LPTR,LEND, LP21) IWK(1,IWL) = N0 IWK(2,IWL) = N2 IWL = IWL - 1 GO TO 10 C C N0 LEFT N1->N2. Test for a possible swap. C 22 IF ( .NOT. LEFT(X(NL),Y(NL),Z(NL),X0,Y0,Z0,X2,Y2,Z2) ) . GO TO 10 C C Swap NL-NR for N0-N2, shift columns IWF,...,IWL-1 to the C right, and store N0-N2 in the left portion of IWK. C CALL SWAP (N2,N0,NL,NR, LIST,LPTR,LEND, LP21) I = IWL 23 IWK(1,I) = IWK(1,I-1) IWK(2,I) = IWK(2,I-1) I = I - 1 IF (I .GT. IWF) GO TO 23 IWK(1,IWF) = N0 IWK(2,IWF) = N2 IWF = IWF + 1 GO TO 10 C C IWF = IWC = IWL. Swap out the last arc for N1-N2 and C store zeros in IWK. C 24 CALL SWAP (N2,N1,NL,NR, LIST,LPTR,LEND, LP21) IWK(1,IWC) = 0 IWK(2,IWC) = 0 C C Optimization procedure -- C IER = 0 IF (IWC .GT. 1) THEN C C Optimize the set of new arcs to the left of IN1->IN2. C NIT = 4*(IWC-1) CALL OPTIM (X,Y,Z,IWC-1, LIST,LPTR,LEND,NIT, . IWK, IERR) IF (IERR .NE. 0 .AND. IERR .NE. 1) GO TO 34 IF (IERR .EQ. 1) IER = 5 ENDIF IF (IWC .LT. IWEND) THEN C C Optimize the set of new arcs to the right of IN1->IN2. C NIT = 4*(IWEND-IWC) CALL OPTIM (X,Y,Z,IWEND-IWC, LIST,LPTR,LEND,NIT, . IWK(1,IWC+1), IERR) IF (IERR .NE. 0 .AND. IERR .NE. 1) GO TO 34 IF (IERR .EQ. 1) GO TO 35 ENDIF IF (IER .EQ. 5) GO TO 35 C C Successful termination (IER = 0). C RETURN C C IN1 and IN2 were adjacent on input. C 30 IER = 0 RETURN C C Invalid input parameter. C 31 IER = 1 RETURN C C Insufficient space reserved for IWK. C 32 IER = 2 RETURN C C Invalid triangulation data structure or collinear nodes C on convex hull boundary. C 33 IER = 3 WRITE (*,130) IN1, IN2 130 FORMAT (//5X,'*** Error in EDGE: Invalid triangula', . 'tion or null triangles on boundary'/ . 9X,'IN1 =',I4,', IN2=',I4/) RETURN C C Error flag (other than 1) returned by OPTIM. C 34 IER = 4 WRITE (*,140) NIT, IERR 140 FORMAT (//5X,'*** Error in OPTIM (called from EDGE):', . ' NIT = ',I4,', IER = ',I1,' ***'/) RETURN C C Error flag 1 returned by OPTIM. C 35 IER = 5 RETURN END SUBROUTINE GETNP (X,Y,Z,LIST,LPTR,LEND,L, NPTS, DF, . IER) INTEGER LIST(*), LPTR(*), LEND(*), L, NPTS(L), IER REAL(kind=8) X(*), Y(*), Z(*), DF C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/28/98 C C Given a Delaunay triangulation of N nodes on the unit C sphere and an array NPTS containing the indexes of L-1 C nodes ordered by angular distance from NPTS(1), this sub- C routine sets NPTS(L) to the index of the next node in the C sequence -- the node, other than NPTS(1),...,NPTS(L-1), C that is closest to NPTS(1). Thus, the ordered sequence C of K closest nodes to N1 (including N1) may be determined C by K-1 calls to GETNP with NPTS(1) = N1 and L = 2,3,...,K C for K .GE. 2. C C The algorithm uses the property of a Delaunay triangula- C tion that the K-th closest node to N1 is a neighbor of one C of the K-1 closest nodes to N1. C C C On input: C C X,Y,Z = Arrays of length N containing the Cartesian C coordinates of the nodes. C C LIST,LPTR,LEND = Triangulation data structure. Re- C fer to Subroutine TRMESH. C C L = Number of nodes in the sequence on output. 2 C .LE. L .LE. N. C C The above parameters are not altered by this routine. C C NPTS = Array of length .GE. L containing the indexes C of the L-1 closest nodes to NPTS(1) in the C first L-1 locations. C C On output: C C NPTS = Array updated with the index of the L-th C closest node to NPTS(1) in position L unless C IER = 1. C C DF = Value of an increasing function (negative cos- C ine) of the angular distance between NPTS(1) C and NPTS(L) unless IER = 1. C C IER = Error indicator: C IER = 0 if no errors were encountered. C IER = 1 if L < 2. C C Modules required by GETNP: None C C Intrinsic function called by GETNP: ABS C C*********************************************************** C INTEGER I, LM1, LP, LPL, N1, NB, NI, NP REAL(kind=8) DNB, DNP, X1, Y1, Z1 C C Local parameters: C C DNB,DNP = Negative cosines of the angular distances from C N1 to NB and to NP, respectively C I = NPTS index and DO-loop index C LM1 = L-1 C LP = LIST pointer of a neighbor of NI C LPL = Pointer to the last neighbor of NI C N1 = NPTS(1) C NB = Neighbor of NI and candidate for NP C NI = NPTS(I) C NP = Candidate for NPTS(L) C X1,Y1,Z1 = Coordinates of N1 C LM1 = L - 1 IF (LM1 .LT. 1) GO TO 6 IER = 0 C C Store N1 = NPTS(1) and mark the elements of NPTS. C N1 = NPTS(1) X1 = X(N1) Y1 = Y(N1) Z1 = Z(N1) DO 1 I = 1,LM1 NI = NPTS(I) LEND(NI) = -LEND(NI) 1 CONTINUE C C Candidates for NP = NPTS(L) are the unmarked neighbors C of nodes in NPTS. DNP is initially greater than -cos(PI) C (the maximum distance). C DNP = 2. C C Loop on nodes NI in NPTS. C DO 4 I = 1,LM1 NI = NPTS(I) LPL = -LEND(NI) LP = LPL C C Loop on neighbors NB of NI. C 2 NB = ABS(LIST(LP)) IF (LEND(NB) .LT. 0) GO TO 3 C C NB is an unmarked neighbor of NI. Replace NP if NB is C closer to N1. C DNB = -(X(NB)*X1 + Y(NB)*Y1 + Z(NB)*Z1) IF (DNB .GE. DNP) GO TO 3 NP = NB DNP = DNB 3 LP = LPTR(LP) IF (LP .NE. LPL) GO TO 2 4 CONTINUE NPTS(L) = NP DF = DNP C C Unmark the elements of NPTS. C DO 5 I = 1,LM1 NI = NPTS(I) LEND(NI) = -LEND(NI) 5 CONTINUE RETURN C C L is outside its valid range. C 6 IER = 1 RETURN END SUBROUTINE INSERT (K,LP, LIST,LPTR,LNEW ) INTEGER K, LP, LIST(*), LPTR(*), LNEW C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/17/96 C C This subroutine inserts K as a neighbor of N1 following C N2, where LP is the LIST pointer of N2 as a neighbor of C N1. Note that, if N2 is the last neighbor of N1, K will C become the first neighbor (even if N1 is a boundary node). C C This routine is identical to the similarly named routine C in TRIPACK. C C C On input: C C K = Index of the node to be inserted. C C LP = LIST pointer of N2 as a neighbor of N1. C C The above parameters are not altered by this routine. C C LIST,LPTR,LNEW = Data structure defining the trian- C gulation. Refer to Subroutine C TRMESH. C C On output: C C LIST,LPTR,LNEW = Data structure updated with the C addition of node K. C C Modules required by INSERT: None C C*********************************************************** C INTEGER LSAV C LSAV = LPTR(LP) LPTR(LP) = LNEW LIST(LNEW) = K LPTR(LNEW) = LSAV LNEW = LNEW + 1 RETURN END LOGICAL FUNCTION INSIDE (P,LV,XV,YV,ZV,NV,LISTV, IER) INTEGER LV, NV, LISTV(NV), IER REAL(kind=8) P(3), XV(LV), YV(LV), ZV(LV) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 12/27/93 C C This function locates a point P relative to a polygonal C region R on the surface of the unit sphere, returning C INSIDE = TRUE if and only if P is contained in R. R is C defined by a cyclically ordered sequence of vertices which C form a positively-oriented simple closed curve. Adjacent C vertices need not be distinct but the curve must not be C self-intersecting. Also, while polygon edges are by defi- C nition restricted to a single hemisphere, R is not so C restricted. Its interior is the region to the left as the C vertices are traversed in order. C C The algorithm consists of selecting a point Q in R and C then finding all points at which the great circle defined C by P and Q intersects the boundary of R. P lies inside R C if and only if there is an even number of intersection C points between Q and P. Q is taken to be a point immedi- C ately to the left of a directed boundary edge -- the first C one that results in no consistency-check failures. C C If P is close to the polygon boundary, the problem is C ill-conditioned and the decision may be incorrect. Also, C an incorrect decision may result from a poor choice of Q C (if, for example, a boundary edge lies on the great cir- C cle defined by P and Q). A more reliable result could be C obtained by a sequence of calls to INSIDE with the ver- C tices cyclically permuted before each call (to alter the C choice of Q). C C C On input: C C P = Array of length 3 containing the Cartesian C coordinates of the point (unit vector) to be C located. C C LV = Length of arrays XV, YV, and ZV. C C XV,YV,ZV = Arrays of length LV containing the Carte- C sian coordinates of unit vectors (points C on the unit sphere). These values are C not tested for validity. C C NV = Number of vertices in the polygon. 3 .LE. NV C .LE. LV. C C LISTV = Array of length NV containing the indexes C (for XV, YV, and ZV) of a cyclically-ordered C (and CCW-ordered) sequence of vertices that C define R. The last vertex (indexed by C LISTV(NV)) is followed by the first (indexed C by LISTV(1)). LISTV entries must be in the C range 1 to LV. C C Input parameters are not altered by this function. C C On output: C C INSIDE = TRUE if and only if P lies inside R unless C IER .NE. 0, in which case the value is not C altered. C C IER = Error indicator: C IER = 0 if no errors were encountered. C IER = 1 if LV or NV is outside its valid C range. C IER = 2 if a LISTV entry is outside its valid C range. C IER = 3 if the polygon boundary was found to C be self-intersecting. This error will C not necessarily be detected. C IER = 4 if every choice of Q (one for each C boundary edge) led to failure of some C internal consistency check. The most C likely cause of this error is invalid C input: P = (0,0,0), a null or self- C intersecting polygon, etc. C C Module required by INSIDE: INTRSC C C Intrinsic function called by INSIDE: SQRT C C*********************************************************** C INTEGER I1, I2, IERR, IMX, K, K0, N, NI LOGICAL EVEN, LFT1, LFT2, PINR, QINR REAL(kind=8) B(3), BP, BQ, CN(3), D, EPS, PN(3), Q(3), . QN(3), QNRM, V1(3), V2(3), VN(3), VNRM C C Local parameters: C C B = Intersection point between the boundary and C the great circle defined by P and Q C BP,BQ = <B,P> and <B,Q>, respectively, maximized over C intersection points B that lie between P and C Q (on the shorter arc) -- used to find the C closest intersection points to P and Q C CN = Q X P = normal to the plane of P and Q C D = Dot product <B,P> or <B,Q> C EPS = Parameter used to define Q as the point whose C orthogonal distance to (the midpoint of) C boundary edge V1->V2 is approximately EPS/ C (2*Cos(A/2)), where <V1,V2> = Cos(A). C EVEN = TRUE iff an even number of intersection points C lie between P and Q (on the shorter arc) C I1,I2 = Indexes (LISTV elements) of a pair of adjacent C boundary vertices (endpoints of a boundary C edge) C IERR = Error flag for calls to INTRSC (not tested) C IMX = Local copy of LV and maximum value of I1 and C I2 C K = DO-loop index and LISTV index C K0 = LISTV index of the first endpoint of the C boundary edge used to compute Q C LFT1,LFT2 = Logical variables associated with I1 and I2 in C the boundary traversal: TRUE iff the vertex C is strictly to the left of Q->P (<V,CN> > 0) C N = Local copy of NV C NI = Number of intersections (between the boundary C curve and the great circle P-Q) encountered C PINR = TRUE iff P is to the left of the directed C boundary edge associated with the closest C intersection point to P that lies between P C and Q (a left-to-right intersection as C viewed from Q), or there is no intersection C between P and Q (on the shorter arc) C PN,QN = P X CN and CN X Q, respectively: used to C locate intersections B relative to arc Q->P C Q = (V1 + V2 + EPS*VN/VNRM)/QNRM, where V1->V2 is C the boundary edge indexed by LISTV(K0) -> C LISTV(K0+1) C QINR = TRUE iff Q is to the left of the directed C boundary edge associated with the closest C intersection point to Q that lies between P C and Q (a right-to-left intersection as C viewed from Q), or there is no intersection C between P and Q (on the shorter arc) C QNRM = Euclidean norm of V1+V2+EPS*VN/VNRM used to C compute (normalize) Q C V1,V2 = Vertices indexed by I1 and I2 in the boundary C traversal C VN = V1 X V2, where V1->V2 is the boundary edge C indexed by LISTV(K0) -> LISTV(K0+1) C VNRM = Euclidean norm of VN C DATA EPS/1.E-3/ C C Store local parameters, test for error 1, and initialize C K0. C IMX = LV N = NV IF (N .LT. 3 .OR. N .GT. IMX) GO TO 11 K0 = 0 I1 = LISTV(1) IF (I1 .LT. 1 .OR. I1 .GT. IMX) GO TO 12 C C Increment K0 and set Q to a point immediately to the left C of the midpoint of edge V1->V2 = LISTV(K0)->LISTV(K0+1): C Q = (V1 + V2 + EPS*VN/VNRM)/QNRM, where VN = V1 X V2. C 1 K0 = K0 + 1 IF (K0 .GT. N) GO TO 14 I1 = LISTV(K0) IF (K0 .LT. N) THEN I2 = LISTV(K0+1) ELSE I2 = LISTV(1) ENDIF IF (I2 .LT. 1 .OR. I2 .GT. IMX) GO TO 12 VN(1) = YV(I1)*ZV(I2) - ZV(I1)*YV(I2) VN(2) = ZV(I1)*XV(I2) - XV(I1)*ZV(I2) VN(3) = XV(I1)*YV(I2) - YV(I1)*XV(I2) VNRM = SQRT(VN(1)*VN(1) + VN(2)*VN(2) + VN(3)*VN(3)) IF (VNRM .EQ. 0.) GO TO 1 Q(1) = XV(I1) + XV(I2) + EPS*VN(1)/VNRM Q(2) = YV(I1) + YV(I2) + EPS*VN(2)/VNRM Q(3) = ZV(I1) + ZV(I2) + EPS*VN(3)/VNRM QNRM = SQRT(Q(1)*Q(1) + Q(2)*Q(2) + Q(3)*Q(3)) Q(1) = Q(1)/QNRM Q(2) = Q(2)/QNRM Q(3) = Q(3)/QNRM C C Compute CN = Q X P, PN = P X CN, and QN = CN X Q. C CN(1) = Q(2)*P(3) - Q(3)*P(2) CN(2) = Q(3)*P(1) - Q(1)*P(3) CN(3) = Q(1)*P(2) - Q(2)*P(1) IF (CN(1) .EQ. 0. .AND. CN(2) .EQ. 0. .AND. . CN(3) .EQ. 0.) GO TO 1 PN(1) = P(2)*CN(3) - P(3)*CN(2) PN(2) = P(3)*CN(1) - P(1)*CN(3) PN(3) = P(1)*CN(2) - P(2)*CN(1) QN(1) = CN(2)*Q(3) - CN(3)*Q(2) QN(2) = CN(3)*Q(1) - CN(1)*Q(3) QN(3) = CN(1)*Q(2) - CN(2)*Q(1) C C Initialize parameters for the boundary traversal. C NI = 0 EVEN = .TRUE. BP = -2. BQ = -2. PINR = .TRUE. QINR = .TRUE. I2 = LISTV(N) IF (I2 .LT. 1 .OR. I2 .GT. IMX) GO TO 12 LFT2 = CN(1)*XV(I2) + CN(2)*YV(I2) + . CN(3)*ZV(I2) .GT. 0. C C Loop on boundary arcs I1->I2. C DO 2 K = 1,N I1 = I2 LFT1 = LFT2 I2 = LISTV(K) IF (I2 .LT. 1 .OR. I2 .GT. IMX) GO TO 12 LFT2 = CN(1)*XV(I2) + CN(2)*YV(I2) + . CN(3)*ZV(I2) .GT. 0. IF (LFT1 .EQV. LFT2) GO TO 2 C C I1 and I2 are on opposite sides of Q->P. Compute the C point of intersection B. C NI = NI + 1 V1(1) = XV(I1) V1(2) = YV(I1) V1(3) = ZV(I1) V2(1) = XV(I2) V2(2) = YV(I2) V2(3) = ZV(I2) CALL INTRSC (V1,V2,CN, B,IERR) C C B is between Q and P (on the shorter arc) iff C B Forward Q->P and B Forward P->Q iff C <B,QN> > 0 and <B,PN> > 0. C IF (B(1)*QN(1) + B(2)*QN(2) + B(3)*QN(3) .GT. 0. . .AND. . B(1)*PN(1) + B(2)*PN(2) + B(3)*PN(3) .GT. 0.) . THEN C C Update EVEN, BQ, QINR, BP, and PINR. C EVEN = .NOT. EVEN D = B(1)*Q(1) + B(2)*Q(2) + B(3)*Q(3) IF (D .GT. BQ) THEN BQ = D QINR = LFT2 ENDIF D = B(1)*P(1) + B(2)*P(2) + B(3)*P(3) IF (D .GT. BP) THEN BP = D PINR = LFT1 ENDIF ENDIF 2 CONTINUE C C Test for consistency: NI must be even and QINR must be C TRUE. C IF (NI .NE. 2*(NI/2) .OR. .NOT. QINR) GO TO 1 C C Test for error 3: different values of PINR and EVEN. C IF (PINR .NEQV. EVEN) GO TO 13 C C No error encountered. C IER = 0 INSIDE = EVEN RETURN C C LV or NV is outside its valid range. C 11 IER = 1 RETURN C C A LISTV entry is outside its valid range. C 12 IER = 2 RETURN C C The polygon boundary is self-intersecting. C 13 IER = 3 RETURN C C Consistency tests failed for all values of Q. C 14 IER = 4 RETURN END SUBROUTINE INTADD (KK,I1,I2,I3, LIST,LPTR,LEND,LNEW ) INTEGER KK, I1, I2, I3, LIST(*), LPTR(*), LEND(*), . LNEW C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/17/96 C C This subroutine adds an interior node to a triangulation C of a set of points on the unit sphere. The data structure C is updated with the insertion of node KK into the triangle C whose vertices are I1, I2, and I3. No optimization of the C triangulation is performed. C C This routine is identical to the similarly named routine C in TRIPACK. C C C On input: C C KK = Index of the node to be inserted. KK .GE. 1 C and KK must not be equal to I1, I2, or I3. C C I1,I2,I3 = Indexes of the counterclockwise-ordered C sequence of vertices of a triangle which C contains node KK. C C The above parameters are not altered by this routine. C C LIST,LPTR,LEND,LNEW = Data structure defining the C triangulation. Refer to Sub- C routine TRMESH. Triangle C (I1,I2,I3) must be included C in the triangulation. C C On output: C C LIST,LPTR,LEND,LNEW = Data structure updated with C the addition of node KK. KK C will be connected to nodes I1, C I2, and I3. C C Modules required by INTADD: INSERT, LSTPTR C C*********************************************************** C INTEGER LSTPTR INTEGER K, LP, N1, N2, N3 C C Local parameters: C C K = Local copy of KK C LP = LIST pointer C N1,N2,N3 = Local copies of I1, I2, and I3 C K = KK C C Initialization. C N1 = I1 N2 = I2 N3 = I3 C C Add K as a neighbor of I1, I2, and I3. C LP = LSTPTR(LEND(N1),N2,LIST,LPTR) CALL INSERT (K,LP, LIST,LPTR,LNEW ) LP = LSTPTR(LEND(N2),N3,LIST,LPTR) CALL INSERT (K,LP, LIST,LPTR,LNEW ) LP = LSTPTR(LEND(N3),N1,LIST,LPTR) CALL INSERT (K,LP, LIST,LPTR,LNEW ) C C Add I1, I2, and I3 as neighbors of K. C LIST(LNEW) = N1 LIST(LNEW+1) = N2 LIST(LNEW+2) = N3 LPTR(LNEW) = LNEW + 1 LPTR(LNEW+1) = LNEW + 2 LPTR(LNEW+2) = LNEW LEND(K) = LNEW + 2 LNEW = LNEW + 3 RETURN END SUBROUTINE INTRSC (P1,P2,CN, P,IER) INTEGER IER REAL(kind=8) P1(3), P2(3), CN(3), P(3) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/19/90 C C Given a great circle C and points P1 and P2 defining an C arc A on the surface of the unit sphere, where A is the C shorter of the two portions of the great circle C12 assoc- C iated with P1 and P2, this subroutine returns the point C of intersection P between C and C12 that is closer to A. C Thus, if P1 and P2 lie in opposite hemispheres defined by C C, P is the point of intersection of C with A. C C C On input: C C P1,P2 = Arrays of length 3 containing the Cartesian C coordinates of unit vectors. C C CN = Array of length 3 containing the Cartesian C coordinates of a nonzero vector which defines C C as the intersection of the plane whose normal C is CN with the unit sphere. Thus, if C is to C be the great circle defined by P and Q, CN C should be P X Q. C C The above parameters are not altered by this routine. C C P = Array of length 3. C C On output: C C P = Point of intersection defined above unless IER C .NE. 0, in which case P is not altered. C C IER = Error indicator. C IER = 0 if no errors were encountered. C IER = 1 if <CN,P1> = <CN,P2>. This occurs C iff P1 = P2 or CN = 0 or there are C two intersection points at the same C distance from A. C IER = 2 if P2 = -P1 and the definition of A is C therefore ambiguous. C C Modules required by INTRSC: None C C Intrinsic function called by INTRSC: SQRT C C*********************************************************** C INTEGER I REAL(kind=8) D1, D2, PP(3), PPN, T C C Local parameters: C C D1 = <CN,P1> C D2 = <CN,P2> C I = DO-loop index C PP = P1 + T*(P2-P1) = Parametric representation of the C line defined by P1 and P2 C PPN = Norm of PP C T = D1/(D1-D2) = Parameter value chosen so that PP lies C in the plane of C C D1 = CN(1)*P1(1) + CN(2)*P1(2) + CN(3)*P1(3) D2 = CN(1)*P2(1) + CN(2)*P2(2) + CN(3)*P2(3) C IF (D1 .EQ. D2) THEN IER = 1 RETURN ENDIF C C Solve for T such that <PP,CN> = 0 and compute PP and PPN. C T = D1/(D1-D2) PPN = 0. DO 1 I = 1,3 PP(I) = P1(I) + T*(P2(I)-P1(I)) PPN = PPN + PP(I)*PP(I) 1 CONTINUE C C PPN = 0 iff PP = 0 iff P2 = -P1 (and T = .5). C IF (PPN .EQ. 0.) THEN IER = 2 RETURN ENDIF PPN = SQRT(PPN) C C Compute P = PP/PPN. C DO 2 I = 1,3 P(I) = PP(I)/PPN 2 CONTINUE IER = 0 RETURN END INTEGER FUNCTION JRAND (N, IX,IY,IZ ) INTEGER N, IX, IY, IZ C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/28/98 C C This function returns a uniformly distributed pseudo- C random integer in the range 1 to N. C C C On input: C C N = Maximum value to be returned. C C N is not altered by this function. C C IX,IY,IZ = Integer seeds initialized to values in C the range 1 to 30,000 before the first C call to JRAND, and not altered between C subsequent calls (unless a sequence of C random numbers is to be repeated by C reinitializing the seeds). C C On output: C C IX,IY,IZ = Updated integer seeds. C C JRAND = Random integer in the range 1 to N. C C Reference: B. A. Wichmann and I. D. Hill, "An Efficient C and Portable Pseudo-random Number Generator", C Applied Statistics, Vol. 31, No. 2, 1982, C pp. 188-190. C C Modules required by JRAND: None C C Intrinsic functions called by JRAND: INT, MOD, REAL C C*********************************************************** C REAL(kind=8) U, X C C Local parameters: C C U = Pseudo-random number uniformly distributed in the C interval (0,1). C X = Pseudo-random number in the range 0 to 3 whose frac- C tional part is U. C IX = MOD(171*IX,30269) IY = MOD(172*IY,30307) IZ = MOD(170*IZ,30323) X = (REAL(IX,8)/30269.) + (REAL(IY,8)/30307.) + . (REAL(IZ,8)/30323.) U = X - INT(X) JRAND = REAL(N,8)*U + 1. RETURN END LOGICAL FUNCTION LEFT (X1,Y1,Z1,X2,Y2,Z2,X0,Y0,Z0) REAL(kind=8) X1, Y1, Z1, X2, Y2, Z2, X0, Y0, Z0 C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/15/96 C C This function determines whether node N0 is in the C (closed) left hemisphere defined by the plane containing C N1, N2, and the origin, where left is defined relative to C an observer at N1 facing N2. C C C On input: C C X1,Y1,Z1 = Coordinates of N1. C C X2,Y2,Z2 = Coordinates of N2. C C X0,Y0,Z0 = Coordinates of N0. C C Input parameters are not altered by this function. C C On output: C C LEFT = TRUE if and only if N0 is in the closed C left hemisphere. C C Modules required by LEFT: None C C*********************************************************** C C LEFT = TRUE iff <N0,N1 X N2> = det(N0,N1,N2) .GE. 0. C LEFT = X0*(Y1*Z2-Y2*Z1) - Y0*(X1*Z2-X2*Z1) + . Z0*(X1*Y2-X2*Y1) .GE. 0. RETURN END INTEGER FUNCTION LSTPTR (LPL,NB,LIST,LPTR) INTEGER LPL, NB, LIST(*), LPTR(*) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/15/96 C C This function returns the index (LIST pointer) of NB in C the adjacency list for N0, where LPL = LEND(N0). C C This function is identical to the similarly named C function in TRIPACK. C C C On input: C C LPL = LEND(N0) C C NB = Index of the node whose pointer is to be re- C turned. NB must be connected to N0. C C LIST,LPTR = Data structure defining the triangula- C tion. Refer to Subroutine TRMESH. C C Input parameters are not altered by this function. C C On output: C C LSTPTR = Pointer such that LIST(LSTPTR) = NB or C LIST(LSTPTR) = -NB, unless NB is not a C neighbor of N0, in which case LSTPTR = LPL. C C Modules required by LSTPTR: None C C*********************************************************** C INTEGER LP, ND C C Local parameters: C C LP = LIST pointer C ND = Nodal index C LP = LPTR(LPL) 1 ND = LIST(LP) IF (ND .EQ. NB) GO TO 2 LP = LPTR(LP) IF (LP .NE. LPL) GO TO 1 C 2 LSTPTR = LP RETURN END INTEGER FUNCTION NBCNT (LPL,LPTR) INTEGER LPL, LPTR(*) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/15/96 C C This function returns the number of neighbors of a node C N0 in a triangulation created by Subroutine TRMESH. C C This function is identical to the similarly named C function in TRIPACK. C C C On input: C C LPL = LIST pointer to the last neighbor of N0 -- C LPL = LEND(N0). C C LPTR = Array of pointers associated with LIST. C C Input parameters are not altered by this function. C C On output: C C NBCNT = Number of neighbors of N0. C C Modules required by NBCNT: None C C*********************************************************** C INTEGER K, LP C C Local parameters: C C K = Counter for computing the number of neighbors C LP = LIST pointer C LP = LPL K = 1 C 1 LP = LPTR(LP) IF (LP .EQ. LPL) GO TO 2 K = K + 1 GO TO 1 C 2 NBCNT = K RETURN END INTEGER FUNCTION NEARND (P,IST,N,X,Y,Z,LIST,LPTR, . LEND, AL) INTEGER IST, N, LIST(*), LPTR(*), LEND(N) REAL(kind=8) P(3), X(N), Y(N), Z(N), AL C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/28/98 C C Given a point P on the surface of the unit sphere and a C Delaunay triangulation created by Subroutine TRMESH, this C function returns the index of the nearest triangulation C node to P. C C The algorithm consists of implicitly adding P to the C triangulation, finding the nearest neighbor to P, and C implicitly deleting P from the triangulation. Thus, it C is based on the fact that, if P is a node in a Delaunay C triangulation, the nearest node to P is a neighbor of P. C C C On input: C C P = Array of length 3 containing the Cartesian coor- C dinates of the point P to be located relative to C the triangulation. It is assumed without a test C that P(1)**2 + P(2)**2 + P(3)**2 = 1. C C IST = Index of a node at which TRFIND begins the C search. Search time depends on the proximity C of this node to P. C C N = Number of nodes in the triangulation. N .GE. 3. C C X,Y,Z = Arrays of length N containing the Cartesian C coordinates of the nodes. C C LIST,LPTR,LEND = Data structure defining the trian- C gulation. Refer to TRMESH. C C Input parameters are not altered by this function. C C On output: C C NEARND = Nodal index of the nearest node to P, or 0 C if N < 3 or the triangulation data struc- C ture is invalid. C C AL = Arc length (angular distance in radians) be- C tween P and NEARND unless NEARND = 0. C C Note that the number of candidates for NEARND C (neighbors of P) is limited to LMAX defined in C the PARAMETER statement below. C C Modules required by NEARND: JRAND, LSTPTR, TRFIND, STORE C C Intrinsic functions called by NEARND: ABS, ACOS C C*********************************************************** C INTEGER LSTPTR INTEGER LMAX PARAMETER (LMAX=25) INTEGER I1, I2, I3, L, LISTP(LMAX), LP, LP1, LP2, . LPL, LPTRP(LMAX), N1, N2, N3, NN, NR, NST REAL(kind=8) B1, B2, B3, DS1, DSR, DX1, DX2, DX3, DY1, . DY2, DY3, DZ1, DZ2, DZ3 C C Local parameters: C C B1,B2,B3 = Unnormalized barycentric coordinates returned C by TRFIND C DS1 = (Negative cosine of the) distance from P to N1 C DSR = (Negative cosine of the) distance from P to NR C DX1,..DZ3 = Components of vectors used by the swap test C I1,I2,I3 = Nodal indexes of a triangle containing P, or C the rightmost (I1) and leftmost (I2) visible C boundary nodes as viewed from P C L = Length of LISTP/LPTRP and number of neighbors C of P C LMAX = Maximum value of L C LISTP = Indexes of the neighbors of P C LPTRP = Array of pointers in 1-1 correspondence with C LISTP elements C LP = LIST pointer to a neighbor of N1 and LISTP C pointer C LP1,LP2 = LISTP indexes (pointers) C LPL = Pointer to the last neighbor of N1 C N1 = Index of a node visible from P C N2 = Index of an endpoint of an arc opposite P C N3 = Index of the node opposite N1->N2 C NN = Local copy of N C NR = Index of a candidate for the nearest node to P C NST = Index of the node at which TRFIND begins the C search C C C Store local parameters and test for N invalid. C NN = N IF (NN .LT. 3) GO TO 6 NST = IST IF (NST .LT. 1 .OR. NST .GT. NN) NST = 1 C C Find a triangle (I1,I2,I3) containing P, or the rightmost C (I1) and leftmost (I2) visible boundary nodes as viewed C from P. C CALL TRFIND (NST,P,N,X,Y,Z,LIST,LPTR,LEND, B1,B2,B3, . I1,I2,I3) C C Test for collinear nodes. C IF (I1 .EQ. 0) GO TO 6 C C Store the linked list of 'neighbors' of P in LISTP and C LPTRP. I1 is the first neighbor, and 0 is stored as C the last neighbor if P is not contained in a triangle. C L is the length of LISTP and LPTRP, and is limited to C LMAX. C IF (I3 .NE. 0) THEN LISTP(1) = I1 LPTRP(1) = 2 LISTP(2) = I2 LPTRP(2) = 3 LISTP(3) = I3 LPTRP(3) = 1 L = 3 ELSE N1 = I1 L = 1 LP1 = 2 LISTP(L) = N1 LPTRP(L) = LP1 C C Loop on the ordered sequence of visible boundary nodes C N1 from I1 to I2. C 1 LPL = LEND(N1) N1 = -LIST(LPL) L = LP1 LP1 = L+1 LISTP(L) = N1 LPTRP(L) = LP1 IF (N1 .NE. I2 .AND. LP1 .LT. LMAX) GO TO 1 L = LP1 LISTP(L) = 0 LPTRP(L) = 1 ENDIF C C Initialize variables for a loop on arcs N1-N2 opposite P C in which new 'neighbors' are 'swapped' in. N1 follows C N2 as a neighbor of P, and LP1 and LP2 are the LISTP C indexes of N1 and N2. C LP2 = 1 N2 = I1 LP1 = LPTRP(1) N1 = LISTP(LP1) C C Begin loop: find the node N3 opposite N1->N2. C 2 LP = LSTPTR(LEND(N1),N2,LIST,LPTR) IF (LIST(LP) .LT. 0) GO TO 3 LP = LPTR(LP) N3 = ABS(LIST(LP)) C C Swap test: Exit the loop if L = LMAX. C IF (L .EQ. LMAX) GO TO 4 DX1 = X(N1) - P(1) DY1 = Y(N1) - P(2) DZ1 = Z(N1) - P(3) C DX2 = X(N2) - P(1) DY2 = Y(N2) - P(2) DZ2 = Z(N2) - P(3) C DX3 = X(N3) - P(1) DY3 = Y(N3) - P(2) DZ3 = Z(N3) - P(3) IF ( DX3*(DY2*DZ1 - DY1*DZ2) - . DY3*(DX2*DZ1 - DX1*DZ2) + . DZ3*(DX2*DY1 - DX1*DY2) .LE. 0. ) GO TO 3 C C Swap: Insert N3 following N2 in the adjacency list for P. C The two new arcs opposite P must be tested. C L = L+1 LPTRP(LP2) = L LISTP(L) = N3 LPTRP(L) = LP1 LP1 = L N1 = N3 GO TO 2 C C No swap: Advance to the next arc and test for termination C on N1 = I1 (LP1 = 1) or N1 followed by 0. C 3 IF (LP1 .EQ. 1) GO TO 4 LP2 = LP1 N2 = N1 LP1 = LPTRP(LP1) N1 = LISTP(LP1) IF (N1 .EQ. 0) GO TO 4 GO TO 2 C C Set NR and DSR to the index of the nearest node to P and C an increasing function (negative cosine) of its distance C from P, respectively. C 4 NR = I1 DSR = -(X(NR)*P(1) + Y(NR)*P(2) + Z(NR)*P(3)) DO 5 LP = 2,L N1 = LISTP(LP) IF (N1 .EQ. 0) GO TO 5 DS1 = -(X(N1)*P(1) + Y(N1)*P(2) + Z(N1)*P(3)) IF (DS1 .LT. DSR) THEN NR = N1 DSR = DS1 ENDIF 5 CONTINUE DSR = -DSR IF (DSR .GT. 1.0) DSR = 1.0 AL = ACOS(DSR) NEARND = NR RETURN C C Invalid input. C 6 NEARND = 0 RETURN END SUBROUTINE OPTIM (X,Y,Z,NA, LIST,LPTR,LEND,NIT, . IWK, IER) INTEGER NA, LIST(*), LPTR(*), LEND(*), NIT, IWK(2,NA), . IER REAL(kind=8) X(*), Y(*), Z(*) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/30/98 C C Given a set of NA triangulation arcs, this subroutine C optimizes the portion of the triangulation consisting of C the quadrilaterals (pairs of adjacent triangles) which C have the arcs as diagonals by applying the circumcircle C test and appropriate swaps to the arcs. C C An iteration consists of applying the swap test and C swaps to all NA arcs in the order in which they are C stored. The iteration is repeated until no swap occurs C or NIT iterations have been performed. The bound on the C number of iterations may be necessary to prevent an C infinite loop caused by cycling (reversing the effect of a C previous swap) due to floating point inaccuracy when four C or more nodes are nearly cocircular. C C C On input: C C X,Y,Z = Arrays containing the nodal coordinates. C C NA = Number of arcs in the set. NA .GE. 0. C C The above parameters are not altered by this routine. C C LIST,LPTR,LEND = Data structure defining the trian- C gulation. Refer to Subroutine C TRMESH. C C NIT = Maximum number of iterations to be performed. C NIT = 4*NA should be sufficient. NIT .GE. 1. C C IWK = Integer array dimensioned 2 by NA containing C the nodal indexes of the arc endpoints (pairs C of endpoints are stored in columns). C C On output: C C LIST,LPTR,LEND = Updated triangulation data struc- C ture reflecting the swaps. C C NIT = Number of iterations performed. C C IWK = Endpoint indexes of the new set of arcs C reflecting the swaps. C C IER = Error indicator: C IER = 0 if no errors were encountered. C IER = 1 if a swap occurred on the last of C MAXIT iterations, where MAXIT is the C value of NIT on input. The new set C of arcs is not necessarily optimal C in this case. C IER = 2 if NA < 0 or NIT < 1 on input. C IER = 3 if IWK(2,I) is not a neighbor of C IWK(1,I) for some I in the range 1 C to NA. A swap may have occurred in C this case. C IER = 4 if a zero pointer was returned by C Subroutine SWAP. C C Modules required by OPTIM: LSTPTR, SWAP, SWPTST C C Intrinsic function called by OPTIM: ABS C C*********************************************************** C INTEGER I, IO1, IO2, ITER, LP, LP21, LPL, LPP, MAXIT, . N1, N2, NNA LOGICAL SWPTST LOGICAL SWP C C Local parameters: C C I = Column index for IWK C IO1,IO2 = Nodal indexes of the endpoints of an arc in IWK C ITER = Iteration count C LP = LIST pointer C LP21 = Parameter returned by SWAP (not used) C LPL = Pointer to the last neighbor of IO1 C LPP = Pointer to the node preceding IO2 as a neighbor C of IO1 C MAXIT = Input value of NIT C N1,N2 = Nodes opposite IO1->IO2 and IO2->IO1, C respectively C NNA = Local copy of NA C SWP = Flag set to TRUE iff a swap occurs in the C optimization loop C NNA = NA MAXIT = NIT IF (NNA .LT. 0 .OR. MAXIT .LT. 1) GO TO 7 C C Initialize iteration count ITER and test for NA = 0. C ITER = 0 IF (NNA .EQ. 0) GO TO 5 C C Top of loop -- C SWP = TRUE iff a swap occurred in the current iteration. C 1 IF (ITER .EQ. MAXIT) GO TO 6 ITER = ITER + 1 SWP = .FALSE. C C Inner loop on arcs IO1-IO2 -- C DO 4 I = 1,NNA IO1 = IWK(1,I) IO2 = IWK(2,I) C C Set N1 and N2 to the nodes opposite IO1->IO2 and C IO2->IO1, respectively. Determine the following: C C LPL = pointer to the last neighbor of IO1, C LP = pointer to IO2 as a neighbor of IO1, and C LPP = pointer to the node N2 preceding IO2. C LPL = LEND(IO1) LPP = LPL LP = LPTR(LPP) 2 IF (LIST(LP) .EQ. IO2) GO TO 3 LPP = LP LP = LPTR(LPP) IF (LP .NE. LPL) GO TO 2 C C IO2 should be the last neighbor of IO1. Test for no C arc and bypass the swap test if IO1 is a boundary C node. C IF (ABS(LIST(LP)) .NE. IO2) GO TO 8 IF (LIST(LP) .LT. 0) GO TO 4 C C Store N1 and N2, or bypass the swap test if IO1 is a C boundary node and IO2 is its first neighbor. C 3 N2 = LIST(LPP) IF (N2 .LT. 0) GO TO 4 LP = LPTR(LP) N1 = ABS(LIST(LP)) C C Test IO1-IO2 for a swap, and update IWK if necessary. C IF ( .NOT. SWPTST(N1,N2,IO1,IO2,X,Y,Z) ) GO TO 4 CALL SWAP (N1,N2,IO1,IO2, LIST,LPTR,LEND, LP21) IF (LP21 .EQ. 0) GO TO 9 SWP = .TRUE. IWK(1,I) = N1 IWK(2,I) = N2 4 CONTINUE IF (SWP) GO TO 1 C C Successful termination. C 5 NIT = ITER IER = 0 RETURN C C MAXIT iterations performed without convergence. C 6 NIT = MAXIT IER = 1 RETURN C C Invalid input parameter. C 7 NIT = 0 IER = 2 RETURN C C IO2 is not a neighbor of IO1. C 8 NIT = ITER IER = 3 RETURN C C Zero pointer returned by SWAP. C 9 NIT = ITER IER = 4 RETURN END SUBROUTINE SCOORD (PX,PY,PZ, PLAT,PLON,PNRM) REAL(kind=8) PX, PY, PZ, PLAT, PLON, PNRM C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 08/27/90 C C This subroutine converts a point P from Cartesian coor- C dinates to spherical coordinates. C C C On input: C C PX,PY,PZ = Cartesian coordinates of P. C C Input parameters are not altered by this routine. C C On output: C C PLAT = Latitude of P in the range -PI/2 to PI/2, or C 0 if PNRM = 0. PLAT should be scaled by C 180/PI to obtain the value in degrees. C C PLON = Longitude of P in the range -PI to PI, or 0 C if P lies on the Z-axis. PLON should be C scaled by 180/PI to obtain the value in C degrees. C C PNRM = Magnitude (Euclidean norm) of P. C C Modules required by SCOORD: None C C Intrinsic functions called by SCOORD: ASIN, ATAN2, SQRT C C*********************************************************** C PNRM = SQRT(PX*PX + PY*PY + PZ*PZ) IF (PX .NE. 0. .OR. PY .NE. 0.) THEN PLON = ATAN2(PY,PX) ELSE PLON = 0. ENDIF IF (PNRM .NE. 0.) THEN PLAT = ASIN(PZ/PNRM) ELSE PLAT = 0. ENDIF RETURN END REAL(kind=8) FUNCTION STORE (X) REAL(kind=8) X C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 05/09/92 C C This function forces its argument X to be stored in a C memory location, thus providing a means of determining C floating point number characteristics (such as the machine C precision) when it is necessary to avoid computation in C high precision registers. C C C On input: C C X = Value to be stored. C C X is not altered by this function. C C On output: C C STORE = Value of X after it has been stored and C possibly truncated or rounded to the single C precision word length. C C Modules required by STORE: None C C*********************************************************** C REAL(kind=8) Y COMMON/STCOM/Y Y = X STORE = Y RETURN END SUBROUTINE SWAP (IN1,IN2,IO1,IO2, LIST,LPTR, . LEND, LP21) INTEGER IN1, IN2, IO1, IO2, LIST(*), LPTR(*), LEND(*), . LP21 C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 06/22/98 C C Given a triangulation of a set of points on the unit C sphere, this subroutine replaces a diagonal arc in a C strictly convex quadrilateral (defined by a pair of adja- C cent triangles) with the other diagonal. Equivalently, a C pair of adjacent triangles is replaced by another pair C having the same union. C C C On input: C C IN1,IN2,IO1,IO2 = Nodal indexes of the vertices of C the quadrilateral. IO1-IO2 is re- C placed by IN1-IN2. (IO1,IO2,IN1) C and (IO2,IO1,IN2) must be trian- C gles on input. C C The above parameters are not altered by this routine. C C LIST,LPTR,LEND = Data structure defining the trian- C gulation. Refer to Subroutine C TRMESH. C C On output: C C LIST,LPTR,LEND = Data structure updated with the C swap -- triangles (IO1,IO2,IN1) and C (IO2,IO1,IN2) are replaced by C (IN1,IN2,IO2) and (IN2,IN1,IO1) C unless LP21 = 0. C C LP21 = Index of IN1 as a neighbor of IN2 after the C swap is performed unless IN1 and IN2 are C adjacent on input, in which case LP21 = 0. C C Module required by SWAP: LSTPTR C C Intrinsic function called by SWAP: ABS C C*********************************************************** C INTEGER LSTPTR INTEGER LP, LPH, LPSAV C C Local parameters: C C LP,LPH,LPSAV = LIST pointers C C C Test for IN1 and IN2 adjacent. C LP = LSTPTR(LEND(IN1),IN2,LIST,LPTR) IF (ABS(LIST(LP)) .EQ. IN2) THEN LP21 = 0 RETURN ENDIF C C Delete IO2 as a neighbor of IO1. C LP = LSTPTR(LEND(IO1),IN2,LIST,LPTR) LPH = LPTR(LP) LPTR(LP) = LPTR(LPH) C C If IO2 is the last neighbor of IO1, make IN2 the C last neighbor. C IF (LEND(IO1) .EQ. LPH) LEND(IO1) = LP C C Insert IN2 as a neighbor of IN1 following IO1 C using the hole created above. C LP = LSTPTR(LEND(IN1),IO1,LIST,LPTR) LPSAV = LPTR(LP) LPTR(LP) = LPH LIST(LPH) = IN2 LPTR(LPH) = LPSAV C C Delete IO1 as a neighbor of IO2. C LP = LSTPTR(LEND(IO2),IN1,LIST,LPTR) LPH = LPTR(LP) LPTR(LP) = LPTR(LPH) C C If IO1 is the last neighbor of IO2, make IN1 the C last neighbor. C IF (LEND(IO2) .EQ. LPH) LEND(IO2) = LP C C Insert IN1 as a neighbor of IN2 following IO2. C LP = LSTPTR(LEND(IN2),IO2,LIST,LPTR) LPSAV = LPTR(LP) LPTR(LP) = LPH LIST(LPH) = IN1 LPTR(LPH) = LPSAV LP21 = LPH RETURN END LOGICAL FUNCTION SWPTST (N1,N2,N3,N4,X,Y,Z) INTEGER N1, N2, N3, N4 REAL(kind=8) X(*), Y(*), Z(*) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 03/29/91 C C This function decides whether or not to replace a C diagonal arc in a quadrilateral with the other diagonal. C The decision will be to swap (SWPTST = TRUE) if and only C if N4 lies above the plane (in the half-space not contain- C ing the origin) defined by (N1,N2,N3), or equivalently, if C the projection of N4 onto this plane is interior to the C circumcircle of (N1,N2,N3). The decision will be for no C swap if the quadrilateral is not strictly convex. C C C On input: C C N1,N2,N3,N4 = Indexes of the four nodes defining the C quadrilateral with N1 adjacent to N2, C and (N1,N2,N3) in counterclockwise C order. The arc connecting N1 to N2 C should be replaced by an arc connec- C ting N3 to N4 if SWPTST = TRUE. Refer C to Subroutine SWAP. C C X,Y,Z = Arrays of length N containing the Cartesian C coordinates of the nodes. (X(I),Y(I),Z(I)) C define node I for I = N1, N2, N3, and N4. C C Input parameters are not altered by this routine. C C On output: C C SWPTST = TRUE if and only if the arc connecting N1 C and N2 should be swapped for an arc con- C necting N3 and N4. C C Modules required by SWPTST: None C C*********************************************************** C REAL(kind=8) DX1, DX2, DX3, DY1, DY2, DY3, DZ1, DZ2, DZ3, . X4, Y4, Z4 C C Local parameters: C C DX1,DY1,DZ1 = Coordinates of N4->N1 C DX2,DY2,DZ2 = Coordinates of N4->N2 C DX3,DY3,DZ3 = Coordinates of N4->N3 C X4,Y4,Z4 = Coordinates of N4 C X4 = X(N4) Y4 = Y(N4) Z4 = Z(N4) DX1 = X(N1) - X4 DX2 = X(N2) - X4 DX3 = X(N3) - X4 DY1 = Y(N1) - Y4 DY2 = Y(N2) - Y4 DY3 = Y(N3) - Y4 DZ1 = Z(N1) - Z4 DZ2 = Z(N2) - Z4 DZ3 = Z(N3) - Z4 C C N4 lies above the plane of (N1,N2,N3) iff N3 lies above C the plane of (N2,N1,N4) iff Det(N3-N4,N2-N4,N1-N4) = C (N3-N4,N2-N4 X N1-N4) > 0. C SWPTST = DX3*(DY2*DZ1 - DY1*DZ2) . -DY3*(DX2*DZ1 - DX1*DZ2) . +DZ3*(DX2*DY1 - DX1*DY2) .GT. 0. RETURN END SUBROUTINE TRANS (N,RLAT,RLON, X,Y,Z) INTEGER N REAL(kind=8) RLAT(N), RLON(N), X(N), Y(N), Z(N) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 04/08/90 C C This subroutine transforms spherical coordinates into C Cartesian coordinates on the unit sphere for input to C Subroutine TRMESH. Storage for X and Y may coincide with C storage for RLAT and RLON if the latter need not be saved. C C C On input: C C N = Number of nodes (points on the unit sphere) C whose coordinates are to be transformed. C C RLAT = Array of length N containing latitudinal C coordinates of the nodes in radians. C C RLON = Array of length N containing longitudinal C coordinates of the nodes in radians. C C The above parameters are not altered by this routine. C C X,Y,Z = Arrays of length at least N. C C On output: C C X,Y,Z = Cartesian coordinates in the range -1 to 1. C X(I)**2 + Y(I)**2 + Z(I)**2 = 1 for I = 1 C to N. C C Modules required by TRANS: None C C Intrinsic functions called by TRANS: COS, SIN C C*********************************************************** C INTEGER I, NN REAL(kind=8) COSPHI, PHI, THETA C C Local parameters: C C COSPHI = cos(PHI) C I = DO-loop index C NN = Local copy of N C PHI = Latitude C THETA = Longitude C NN = N DO 1 I = 1,NN PHI = RLAT(I) THETA = RLON(I) COSPHI = COS(PHI) X(I) = COSPHI*COS(THETA) Y(I) = COSPHI*SIN(THETA) Z(I) = SIN(PHI) 1 CONTINUE RETURN END SUBROUTINE TRFIND (NST,P,N,X,Y,Z,LIST,LPTR,LEND, B1, . B2,B3,I1,I2,I3) INTEGER NST, N, LIST(*), LPTR(*), LEND(N), I1, I2, I3 REAL(kind=8) P(3), X(N), Y(N), Z(N), B1, B2, B3 C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 11/30/99 C C This subroutine locates a point P relative to a triangu- C lation created by Subroutine TRMESH. If P is contained in C a triangle, the three vertex indexes and barycentric coor- C dinates are returned. Otherwise, the indexes of the C visible boundary nodes are returned. C C C On input: C C NST = Index of a node at which TRFIND begins its C search. Search time depends on the proximity C of this node to P. C C P = Array of length 3 containing the x, y, and z C coordinates (in that order) of the point P to be C located. C C N = Number of nodes in the triangulation. N .GE. 3. C C X,Y,Z = Arrays of length N containing the Cartesian C coordinates of the triangulation nodes (unit C vectors). (X(I),Y(I),Z(I)) defines node I C for I = 1 to N. C C LIST,LPTR,LEND = Data structure defining the trian- C gulation. Refer to Subroutine C TRMESH. C C Input parameters are not altered by this routine. C C On output: C C B1,B2,B3 = Unnormalized barycentric coordinates of C the central projection of P onto the un- C derlying planar triangle if P is in the C convex hull of the nodes. These parame- C ters are not altered if I1 = 0. C C I1,I2,I3 = Counterclockwise-ordered vertex indexes C of a triangle containing P if P is con- C tained in a triangle. If P is not in the C convex hull of the nodes, I1 and I2 are C the rightmost and leftmost (boundary) C nodes that are visible from P, and C I3 = 0. (If all boundary nodes are vis- C ible from P, then I1 and I2 coincide.) C I1 = I2 = I3 = 0 if P and all of the C nodes are coplanar (lie on a common great C circle. C C Modules required by TRFIND: JRAND, LSTPTR, STORE C C Intrinsic function called by TRFIND: ABS C C*********************************************************** C INTEGER JRAND, LSTPTR INTEGER IX, IY, IZ, LP, N0, N1, N1S, N2, N2S, N3, N4, . NEXT, NF, NL REAL(kind=8) STORE REAL(kind=8) DET, EPS, PTN1, PTN2, Q(3), S12, TOL, XP, YP, . ZP REAL(kind=8) X0, X1, X2, Y0, Y1, Y2, Z0, Z1, Z2 C SAVE IX, IY, IZ DATA IX/1/, IY/2/, IZ/3/ C C Local parameters: C C EPS = Machine precision C IX,IY,IZ = Integer seeds for JRAND C LP = LIST pointer C N0,N1,N2 = Nodes in counterclockwise order defining a C cone (with vertex N0) containing P, or end- C points of a boundary edge such that P Right C N1->N2 C N1S,N2S = Initially-determined values of N1 and N2 C N3,N4 = Nodes opposite N1->N2 and N2->N1, respectively C NEXT = Candidate for I1 or I2 when P is exterior C NF,NL = First and last neighbors of N0, or first C (rightmost) and last (leftmost) nodes C visible from P when P is exterior to the C triangulation C PTN1 = Scalar product <P,N1> C PTN2 = Scalar product <P,N2> C Q = (N2 X N1) X N2 or N1 X (N2 X N1) -- used in C the boundary traversal when P is exterior C S12 = Scalar product <N1,N2> C TOL = Tolerance (multiple of EPS) defining an upper C bound on the magnitude of a negative bary- C centric coordinate (B1 or B2) for P in a C triangle -- used to avoid an infinite number C of restarts with 0 <= B3 < EPS and B1 < 0 or C B2 < 0 but small in magnitude C XP,YP,ZP = Local variables containing P(1), P(2), and P(3) C X0,Y0,Z0 = Dummy arguments for DET C X1,Y1,Z1 = Dummy arguments for DET C X2,Y2,Z2 = Dummy arguments for DET C C Statement function: C C DET(X1,...,Z0) .GE. 0 if and only if (X0,Y0,Z0) is in the C (closed) left hemisphere defined by C the plane containing (0,0,0), C (X1,Y1,Z1), and (X2,Y2,Z2), where C left is defined relative to an ob- C server at (X1,Y1,Z1) facing C (X2,Y2,Z2). C DET (X1,Y1,Z1,X2,Y2,Z2,X0,Y0,Z0) = X0*(Y1*Z2-Y2*Z1) . - Y0*(X1*Z2-X2*Z1) + Z0*(X1*Y2-X2*Y1) C C Initialize variables. C XP = P(1) YP = P(2) ZP = P(3) N0 = NST IF (N0 .LT. 1 .OR. N0 .GT. N) . N0 = JRAND(N, IX,IY,IZ ) C C Compute the relative machine precision EPS and TOL. C EPS = 1.E0 1 EPS = EPS/2.E0 IF (STORE(EPS+1.E0) .GT. 1.E0) GO TO 1 EPS = 2.E0*EPS TOL = 100.E0*EPS C C Set NF and NL to the first and last neighbors of N0, and C initialize N1 = NF. C 2 LP = LEND(N0) NL = LIST(LP) LP = LPTR(LP) NF = LIST(LP) N1 = NF C C Find a pair of adjacent neighbors N1,N2 of N0 that define C a wedge containing P: P LEFT N0->N1 and P RIGHT N0->N2. C IF (NL .GT. 0) THEN C C N0 is an interior node. Find N1. C 3 IF ( DET(X(N0),Y(N0),Z(N0),X(N1),Y(N1),Z(N1), . XP,YP,ZP) .LT. 0. ) THEN LP = LPTR(LP) N1 = LIST(LP) IF (N1 .EQ. NL) GO TO 6 GO TO 3 ENDIF ELSE C C N0 is a boundary node. Test for P exterior. C NL = -NL IF ( DET(X(N0),Y(N0),Z(N0),X(NF),Y(NF),Z(NF), . XP,YP,ZP) .LT. 0. ) THEN C C P is to the right of the boundary edge N0->NF. C N1 = N0 N2 = NF GO TO 9 ENDIF IF ( DET(X(NL),Y(NL),Z(NL),X(N0),Y(N0),Z(N0), . XP,YP,ZP) .LT. 0. ) THEN C C P is to the right of the boundary edge NL->N0. C N1 = NL N2 = N0 GO TO 9 ENDIF ENDIF C C P is to the left of arcs N0->N1 and NL->N0. Set N2 to the C next neighbor of N0 (following N1). C 4 LP = LPTR(LP) N2 = ABS(LIST(LP)) IF ( DET(X(N0),Y(N0),Z(N0),X(N2),Y(N2),Z(N2), . XP,YP,ZP) .LT. 0. ) GO TO 7 N1 = N2 IF (N1 .NE. NL) GO TO 4 IF ( DET(X(N0),Y(N0),Z(N0),X(NF),Y(NF),Z(NF), . XP,YP,ZP) .LT. 0. ) GO TO 6 C C P is left of or on arcs N0->NB for all neighbors NB C of N0. Test for P = +/-N0. C IF (STORE(ABS(X(N0)*XP + Y(N0)*YP + Z(N0)*ZP)) . .LT. 1.0-4.0*EPS) THEN C C All points are collinear iff P Left NB->N0 for all C neighbors NB of N0. Search the neighbors of N0. C Note: N1 = NL and LP points to NL. C 5 IF ( DET(X(N1),Y(N1),Z(N1),X(N0),Y(N0),Z(N0), . XP,YP,ZP) .GE. 0. ) THEN LP = LPTR(LP) N1 = ABS(LIST(LP)) IF (N1 .EQ. NL) GO TO 14 GO TO 5 ENDIF ENDIF C C P is to the right of N1->N0, or P = +/-N0. Set N0 to N1 C and start over. C N0 = N1 GO TO 2 C C P is between arcs N0->N1 and N0->NF. C 6 N2 = NF C C P is contained in a wedge defined by geodesics N0-N1 and C N0-N2, where N1 is adjacent to N2. Save N1 and N2 to C test for cycling. C 7 N3 = N0 N1S = N1 N2S = N2 C C Top of edge-hopping loop: C 8 B3 = DET(X(N1),Y(N1),Z(N1),X(N2),Y(N2),Z(N2),XP,YP,ZP) IF (B3 .LT. 0.) THEN C C Set N4 to the first neighbor of N2 following N1 (the C node opposite N2->N1) unless N1->N2 is a boundary arc. C LP = LSTPTR(LEND(N2),N1,LIST,LPTR) IF (LIST(LP) .LT. 0) GO TO 9 LP = LPTR(LP) N4 = ABS(LIST(LP)) C C Define a new arc N1->N2 which intersects the geodesic C N0-P. C IF ( DET(X(N0),Y(N0),Z(N0),X(N4),Y(N4),Z(N4), . XP,YP,ZP) .LT. 0. ) THEN N3 = N2 N2 = N4 N1S = N1 IF (N2 .NE. N2S .AND. N2 .NE. N0) GO TO 8 ELSE N3 = N1 N1 = N4 N2S = N2 IF (N1 .NE. N1S .AND. N1 .NE. N0) GO TO 8 ENDIF C C The starting node N0 or edge N1-N2 was encountered C again, implying a cycle (infinite loop). Restart C with N0 randomly selected. C N0 = JRAND(N, IX,IY,IZ ) GO TO 2 ENDIF C C P is in (N1,N2,N3) unless N0, N1, N2, and P are collinear C or P is close to -N0. C IF (B3 .GE. EPS) THEN C C B3 .NE. 0. C B1 = DET(X(N2),Y(N2),Z(N2),X(N3),Y(N3),Z(N3), . XP,YP,ZP) B2 = DET(X(N3),Y(N3),Z(N3),X(N1),Y(N1),Z(N1), . XP,YP,ZP) IF (B1 .LT. -TOL .OR. B2 .LT. -TOL) THEN C C Restart with N0 randomly selected. C N0 = JRAND(N, IX,IY,IZ ) GO TO 2 ENDIF ELSE C C B3 = 0 and thus P lies on N1->N2. Compute C B1 = Det(P,N2 X N1,N2) and B2 = Det(P,N1,N2 X N1). C B3 = 0. S12 = X(N1)*X(N2) + Y(N1)*Y(N2) + Z(N1)*Z(N2) PTN1 = XP*X(N1) + YP*Y(N1) + ZP*Z(N1) PTN2 = XP*X(N2) + YP*Y(N2) + ZP*Z(N2) B1 = PTN1 - S12*PTN2 B2 = PTN2 - S12*PTN1 IF (B1 .LT. -TOL .OR. B2 .LT. -TOL) THEN C C Restart with N0 randomly selected. C N0 = JRAND(N, IX,IY,IZ ) GO TO 2 ENDIF ENDIF C C P is in (N1,N2,N3). C I1 = N1 I2 = N2 I3 = N3 IF (B1 .LT. 0.0) B1 = 0.0 IF (B2 .LT. 0.0) B2 = 0.0 RETURN C C P Right N1->N2, where N1->N2 is a boundary edge. C Save N1 and N2, and set NL = 0 to indicate that C NL has not yet been found. C 9 N1S = N1 N2S = N2 NL = 0 C C Counterclockwise Boundary Traversal: C 10 LP = LEND(N2) LP = LPTR(LP) NEXT = LIST(LP) IF ( DET(X(N2),Y(N2),Z(N2),X(NEXT),Y(NEXT),Z(NEXT), . XP,YP,ZP) .GE. 0. ) THEN C C N2 is the rightmost visible node if P Forward N2->N1 C or NEXT Forward N2->N1. Set Q to (N2 X N1) X N2. C S12 = X(N1)*X(N2) + Y(N1)*Y(N2) + Z(N1)*Z(N2) Q(1) = X(N1) - S12*X(N2) Q(2) = Y(N1) - S12*Y(N2) Q(3) = Z(N1) - S12*Z(N2) IF (XP*Q(1) + YP*Q(2) + ZP*Q(3) .GE. 0.) GO TO 11 IF (X(NEXT)*Q(1) + Y(NEXT)*Q(2) + Z(NEXT)*Q(3) . .GE. 0.) GO TO 11 C C N1, N2, NEXT, and P are nearly collinear, and N2 is C the leftmost visible node. C NL = N2 ENDIF C C Bottom of counterclockwise loop: C N1 = N2 N2 = NEXT IF (N2 .NE. N1S) GO TO 10 C C All boundary nodes are visible from P. C I1 = N1S I2 = N1S I3 = 0 RETURN C C N2 is the rightmost visible node. C 11 NF = N2 IF (NL .EQ. 0) THEN C C Restore initial values of N1 and N2, and begin the search C for the leftmost visible node. C N2 = N2S N1 = N1S C C Clockwise Boundary Traversal: C 12 LP = LEND(N1) NEXT = -LIST(LP) IF ( DET(X(NEXT),Y(NEXT),Z(NEXT),X(N1),Y(N1),Z(N1), . XP,YP,ZP) .GE. 0. ) THEN C C N1 is the leftmost visible node if P or NEXT is C forward of N1->N2. Compute Q = N1 X (N2 X N1). C S12 = X(N1)*X(N2) + Y(N1)*Y(N2) + Z(N1)*Z(N2) Q(1) = X(N2) - S12*X(N1) Q(2) = Y(N2) - S12*Y(N1) Q(3) = Z(N2) - S12*Z(N1) IF (XP*Q(1) + YP*Q(2) + ZP*Q(3) .GE. 0.) GO TO 13 IF (X(NEXT)*Q(1) + Y(NEXT)*Q(2) + Z(NEXT)*Q(3) . .GE. 0.) GO TO 13 C C P, NEXT, N1, and N2 are nearly collinear and N1 is the C rightmost visible node. C NF = N1 ENDIF C C Bottom of clockwise loop: C N2 = N1 N1 = NEXT IF (N1 .NE. N1S) GO TO 12 C C All boundary nodes are visible from P. C I1 = N1 I2 = N1 I3 = 0 RETURN C C N1 is the leftmost visible node. C 13 NL = N1 ENDIF C C NF and NL have been found. C I1 = NF I2 = NL I3 = 0 RETURN C C All points are collinear (coplanar). C 14 I1 = 0 I2 = 0 I3 = 0 RETURN END SUBROUTINE TRLIST (N,LIST,LPTR,LEND,NROW, NT,LTRI,IER) INTEGER N, LIST(*), LPTR(*), LEND(N), NROW, NT, . LTRI(NROW,*), IER C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/20/96 C C This subroutine converts a triangulation data structure C from the linked list created by Subroutine TRMESH to a C triangle list. C C On input: C C N = Number of nodes in the triangulation. N .GE. 3. C C LIST,LPTR,LEND = Linked list data structure defin- C ing the triangulation. Refer to C Subroutine TRMESH. C C NROW = Number of rows (entries per triangle) re- C served for the triangle list LTRI. The value C must be 6 if only the vertex indexes and C neighboring triangle indexes are to be C stored, or 9 if arc indexes are also to be C assigned and stored. Refer to LTRI. C C The above parameters are not altered by this routine. C C LTRI = Integer array of length at least NROW*NT, C where NT is at most 2N-4. (A sufficient C length is 12N if NROW=6 or 18N if NROW=9.) C C On output: C C NT = Number of triangles in the triangulation unless C IER .NE. 0, in which case NT = 0. NT = 2N-NB-2 C if NB .GE. 3 or 2N-4 if NB = 0, where NB is the C number of boundary nodes. C C LTRI = NROW by NT array whose J-th column contains C the vertex nodal indexes (first three rows), C neighboring triangle indexes (second three C rows), and, if NROW = 9, arc indexes (last C three rows) associated with triangle J for C J = 1,...,NT. The vertices are ordered C counterclockwise with the first vertex taken C to be the one with smallest index. Thus, C LTRI(2,J) and LTRI(3,J) are larger than C LTRI(1,J) and index adjacent neighbors of C node LTRI(1,J). For I = 1,2,3, LTRI(I+3,J) C and LTRI(I+6,J) index the triangle and arc, C respectively, which are opposite (not shared C by) node LTRI(I,J), with LTRI(I+3,J) = 0 if C LTRI(I+6,J) indexes a boundary arc. Vertex C indexes range from 1 to N, triangle indexes C from 0 to NT, and, if included, arc indexes C from 1 to NA, where NA = 3N-NB-3 if NB .GE. 3 C or 3N-6 if NB = 0. The triangles are or- C dered on first (smallest) vertex indexes. C C IER = Error indicator. C IER = 0 if no errors were encountered. C IER = 1 if N or NROW is outside its valid C range on input. C IER = 2 if the triangulation data structure C (LIST,LPTR,LEND) is invalid. Note, C however, that these arrays are not C completely tested for validity. C C Modules required by TRLIST: None C C Intrinsic function called by TRLIST: ABS C C*********************************************************** C INTEGER I, I1, I2, I3, ISV, J, KA, KN, KT, LP, LP2, . LPL, LPLN1, N1, N2, N3, NM2 LOGICAL ARCS C C Local parameters: C C ARCS = Logical variable with value TRUE iff are C indexes are to be stored C I,J = LTRI row indexes (1 to 3) associated with C triangles KT and KN, respectively C I1,I2,I3 = Nodal indexes of triangle KN C ISV = Variable used to permute indexes I1,I2,I3 C KA = Arc index and number of currently stored arcs C KN = Index of the triangle that shares arc I1-I2 C with KT C KT = Triangle index and number of currently stored C triangles C LP = LIST pointer C LP2 = Pointer to N2 as a neighbor of N1 C LPL = Pointer to the last neighbor of I1 C LPLN1 = Pointer to the last neighbor of N1 C N1,N2,N3 = Nodal indexes of triangle KT C NM2 = N-2 C C C Test for invalid input parameters. C IF (N .LT. 3 .OR. (NROW .NE. 6 .AND. NROW .NE. 9)) . GO TO 11 C C Initialize parameters for loop on triangles KT = (N1,N2, C N3), where N1 < N2 and N1 < N3. C C ARCS = TRUE iff arc indexes are to be stored. C KA,KT = Numbers of currently stored arcs and triangles. C NM2 = Upper bound on candidates for N1. C ARCS = NROW .EQ. 9 KA = 0 KT = 0 NM2 = N-2 C C Loop on nodes N1. C DO 9 N1 = 1,NM2 C C Loop on pairs of adjacent neighbors (N2,N3). LPLN1 points C to the last neighbor of N1, and LP2 points to N2. C LPLN1 = LEND(N1) LP2 = LPLN1 1 LP2 = LPTR(LP2) N2 = LIST(LP2) LP = LPTR(LP2) N3 = ABS(LIST(LP)) IF (N2 .LT. N1 .OR. N3 .LT. N1) GO TO 8 C C Add a new triangle KT = (N1,N2,N3). C KT = KT + 1 LTRI(1,KT) = N1 LTRI(2,KT) = N2 LTRI(3,KT) = N3 C C Loop on triangle sides (I2,I1) with neighboring triangles C KN = (I1,I2,I3). C DO 7 I = 1,3 IF (I .EQ. 1) THEN I1 = N3 I2 = N2 ELSEIF (I .EQ. 2) THEN I1 = N1 I2 = N3 ELSE I1 = N2 I2 = N1 ENDIF C C Set I3 to the neighbor of I1 that follows I2 unless C I2->I1 is a boundary arc. C LPL = LEND(I1) LP = LPTR(LPL) 2 IF (LIST(LP) .EQ. I2) GO TO 3 LP = LPTR(LP) IF (LP .NE. LPL) GO TO 2 C C I2 is the last neighbor of I1 unless the data structure C is invalid. Bypass the search for a neighboring C triangle if I2->I1 is a boundary arc. C IF (ABS(LIST(LP)) .NE. I2) GO TO 12 KN = 0 IF (LIST(LP) .LT. 0) GO TO 6 C C I2->I1 is not a boundary arc, and LP points to I2 as C a neighbor of I1. C 3 LP = LPTR(LP) I3 = ABS(LIST(LP)) C C Find J such that LTRI(J,KN) = I3 (not used if KN > KT), C and permute the vertex indexes of KN so that I1 is C smallest. C IF (I1 .LT. I2 .AND. I1 .LT. I3) THEN J = 3 ELSEIF (I2 .LT. I3) THEN J = 2 ISV = I1 I1 = I2 I2 = I3 I3 = ISV ELSE J = 1 ISV = I1 I1 = I3 I3 = I2 I2 = ISV ENDIF C C Test for KN > KT (triangle index not yet assigned). C IF (I1 .GT. N1) GO TO 7 C C Find KN, if it exists, by searching the triangle list in C reverse order. C DO 4 KN = KT-1,1,-1 IF (LTRI(1,KN) .EQ. I1 .AND. LTRI(2,KN) .EQ. . I2 .AND. LTRI(3,KN) .EQ. I3) GO TO 5 4 CONTINUE GO TO 7 C C Store KT as a neighbor of KN. C 5 LTRI(J+3,KN) = KT C C Store KN as a neighbor of KT, and add a new arc KA. C 6 LTRI(I+3,KT) = KN IF (ARCS) THEN KA = KA + 1 LTRI(I+6,KT) = KA IF (KN .NE. 0) LTRI(J+6,KN) = KA ENDIF 7 CONTINUE C C Bottom of loop on triangles. C 8 IF (LP2 .NE. LPLN1) GO TO 1 9 CONTINUE C C No errors encountered. C NT = KT IER = 0 RETURN C C Invalid input parameter. C 11 NT = 0 IER = 1 RETURN C C Invalid triangulation data structure: I1 is a neighbor of C I2, but I2 is not a neighbor of I1. C 12 NT = 0 IER = 2 RETURN END SUBROUTINE TRLPRT (N,X,Y,Z,IFLAG,NROW,NT,LTRI,LOUT) INTEGER N, IFLAG, NROW, NT, LTRI(NROW,NT), LOUT REAL(kind=8) X(N), Y(N), Z(N) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/02/98 C C This subroutine prints the triangle list created by Sub- C routine TRLIST and, optionally, the nodal coordinates C (either latitude and longitude or Cartesian coordinates) C on logical unit LOUT. The numbers of boundary nodes, C triangles, and arcs are also printed. C C C On input: C C N = Number of nodes in the triangulation. C 3 .LE. N .LE. 9999. C C X,Y,Z = Arrays of length N containing the Cartesian C coordinates of the nodes if IFLAG = 0, or C (X and Y only) arrays of length N containing C longitude and latitude, respectively, if C IFLAG > 0, or unused dummy parameters if C IFLAG < 0. C C IFLAG = Nodal coordinate option indicator: C IFLAG = 0 if X, Y, and Z (assumed to contain C Cartesian coordinates) are to be C printed (to 6 decimal places). C IFLAG > 0 if only X and Y (assumed to con- C tain longitude and latitude) are C to be printed (to 6 decimal C places). C IFLAG < 0 if only the adjacency lists are to C be printed. C C NROW = Number of rows (entries per triangle) re- C served for the triangle list LTRI. The value C must be 6 if only the vertex indexes and C neighboring triangle indexes are stored, or 9 C if arc indexes are also stored. C C NT = Number of triangles in the triangulation. C 1 .LE. NT .LE. 9999. C C LTRI = NROW by NT array whose J-th column contains C the vertex nodal indexes (first three rows), C neighboring triangle indexes (second three C rows), and, if NROW = 9, arc indexes (last C three rows) associated with triangle J for C J = 1,...,NT. C C LOUT = Logical unit number for output. If LOUT is C not in the range 0 to 99, output is written C to unit 6. C C Input parameters are not altered by this routine. C C On output: C C The triangle list and nodal coordinates (as specified by C IFLAG) are written to unit LOUT. C C Modules required by TRLPRT: None C C*********************************************************** C INTEGER I, K, LUN, NA, NB, NL, NLMAX, NMAX DATA NMAX/9999/, NLMAX/58/ C C Local parameters: C C I = DO-loop, nodal index, and row index for LTRI C K = DO-loop and triangle index C LUN = Logical unit number for output C NA = Number of triangulation arcs C NB = Number of boundary nodes C NL = Number of lines printed on the current page C NLMAX = Maximum number of print lines per page (except C for the last page which may have two addi- C tional lines) C NMAX = Maximum value of N and NT (4-digit format) C LUN = LOUT IF (LUN .LT. 0 .OR. LUN .GT. 99) LUN = 6 C C Print a heading and test for invalid input. C WRITE (LUN,100) N NL = 3 IF (N .LT. 3 .OR. N .GT. NMAX .OR. . (NROW .NE. 6 .AND. NROW .NE. 9) .OR. . NT .LT. 1 .OR. NT .GT. NMAX) THEN C C Print an error message and exit. C WRITE (LUN,110) N, NROW, NT RETURN ENDIF IF (IFLAG .EQ. 0) THEN C C Print X, Y, and Z. C WRITE (LUN,101) NL = 6 DO 1 I = 1,N IF (NL .GE. NLMAX) THEN WRITE (LUN,108) NL = 0 ENDIF WRITE (LUN,103) I, X(I), Y(I), Z(I) NL = NL + 1 1 CONTINUE ELSEIF (IFLAG .GT. 0) THEN C C Print X (longitude) and Y (latitude). C WRITE (LUN,102) NL = 6 DO 2 I = 1,N IF (NL .GE. NLMAX) THEN WRITE (LUN,108) NL = 0 ENDIF WRITE (LUN,104) I, X(I), Y(I) NL = NL + 1 2 CONTINUE ENDIF C C Print the triangulation LTRI. C IF (NL .GT. NLMAX/2) THEN WRITE (LUN,108) NL = 0 ENDIF IF (NROW .EQ. 6) THEN WRITE (LUN,105) ELSE WRITE (LUN,106) ENDIF NL = NL + 5 DO 3 K = 1,NT IF (NL .GE. NLMAX) THEN WRITE (LUN,108) NL = 0 ENDIF WRITE (LUN,107) K, (LTRI(I,K), I = 1,NROW) NL = NL + 1 3 CONTINUE C C Print NB, NA, and NT (boundary nodes, arcs, and C triangles). C NB = 2*N - NT - 2 IF (NB .LT. 3) THEN NB = 0 NA = 3*N - 6 ELSE NA = NT + N - 1 ENDIF WRITE (LUN,109) NB, NA, NT RETURN C C Print formats: C 100 FORMAT (///18X,'STRIPACK (TRLIST) Output, N = ',I4) 101 FORMAT (//8X,'Node',10X,'X(Node)',10X,'Y(Node)',10X, . 'Z(Node)'//) 102 FORMAT (//16X,'Node',8X,'Longitude',9X,'Latitude'//) 103 FORMAT (8X,I4,3E17.6) 104 FORMAT (16X,I4,2E17.6) 105 FORMAT (//1X,'Triangle',8X,'Vertices',12X,'Neighbors'/ . 4X,'KT',7X,'N1',5X,'N2',5X,'N3',4X,'KT1',4X, . 'KT2',4X,'KT3'/) 106 FORMAT (//1X,'Triangle',8X,'Vertices',12X,'Neighbors', . 14X,'Arcs'/ . 4X,'KT',7X,'N1',5X,'N2',5X,'N3',4X,'KT1',4X, . 'KT2',4X,'KT3',4X,'KA1',4X,'KA2',4X,'KA3'/) 107 FORMAT (2X,I4,2X,6(3X,I4),3(2X,I5)) 108 FORMAT (///) 109 FORMAT (/1X,'NB = ',I4,' Boundary Nodes',5X, . 'NA = ',I5,' Arcs',5X,'NT = ',I5, . ' Triangles') 110 FORMAT (//1X,10X,'*** Invalid Parameter: N =',I5, . ', NROW =',I5,', NT =',I5,' ***') END SUBROUTINE TRMESH (N,X,Y,Z, LIST,LPTR,LEND,LNEW,NEAR, . NEXT,DIST,IER) INTEGER N, LIST(*), LPTR(*), LEND(N), LNEW, NEAR(N), . NEXT(N), IER REAL(kind=8) X(N), Y(N), Z(N), DIST(N) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/08/99 C C This subroutine creates a Delaunay triangulation of a C set of N arbitrarily distributed points, referred to as C nodes, on the surface of the unit sphere. The Delaunay C triangulation is defined as a set of (spherical) triangles C with the following five properties: C C 1) The triangle vertices are nodes. C 2) No triangle contains a node other than its vertices. C 3) The interiors of the triangles are pairwise disjoint. C 4) The union of triangles is the convex hull of the set C of nodes (the smallest convex set that contains C the nodes). If the nodes are not contained in a C single hemisphere, their convex hull is the en- C tire sphere and there are no boundary nodes. C Otherwise, there are at least three boundary nodes. C 5) The interior of the circumcircle of each triangle C contains no node. C C The first four properties define a triangulation, and the C last property results in a triangulation which is as close C as possible to equiangular in a certain sense and which is C uniquely defined unless four or more nodes lie in a common C plane. This property makes the triangulation well-suited C for solving closest-point problems and for triangle-based C interpolation. C C Provided the nodes are randomly ordered, the algorithm C has expected time complexity O(N*log(N)) for most nodal C distributions. Note, however, that the complexity may be C as high as O(N**2) if, for example, the nodes are ordered C on increasing latitude. C C Spherical coordinates (latitude and longitude) may be C converted to Cartesian coordinates by Subroutine TRANS. C C The following is a list of the software package modules C which a user may wish to call directly: C C ADDNOD - Updates the triangulation by appending a new C node. C C AREAS - Returns the area of a spherical triangle. C C BNODES - Returns an array containing the indexes of the C boundary nodes (if any) in counterclockwise C order. Counts of boundary nodes, triangles, C and arcs are also returned. C C CIRCUM - Returns the circumcenter of a spherical trian- C gle. C C CRLIST - Returns the set of triangle circumcenters C (Voronoi vertices) and circumradii associated C with a triangulation. C C DELARC - Deletes a boundary arc from a triangulation. C C DELNOD - Updates the triangulation with a nodal deletion. C C EDGE - Forces an arbitrary pair of nodes to be connec- C ted by an arc in the triangulation. C C GETNP - Determines the ordered sequence of L closest C nodes to a given node, along with the associ- C ated distances. C C INSIDE - Locates a point relative to a polygon on the C surface of the sphere. C C INTRSC - Returns the point of intersection between a C pair of great circle arcs. C C JRAND - Generates a uniformly distributed pseudo-random C integer. C C LEFT - Locates a point relative to a great circle. C C NEARND - Returns the index of the nearest node to an C arbitrary point, along with its squared C distance. C C SCOORD - Converts a point from Cartesian coordinates to C spherical coordinates. C C STORE - Forces a value to be stored in main memory so C that the precision of floating point numbers C in memory locations rather than registers is C computed. C C TRANS - Transforms spherical coordinates into Cartesian C coordinates on the unit sphere for input to C Subroutine TRMESH. C C TRLIST - Converts the triangulation data structure to a C triangle list more suitable for use in a fin- C ite element code. C C TRLPRT - Prints the triangle list created by Subroutine C TRLIST. C C TRMESH - Creates a Delaunay triangulation of a set of C nodes. C C TRPLOT - Creates a level-2 Encapsulated Postscript (EPS) C file containing a triangulation plot. C C TRPRNT - Prints the triangulation data structure and, C optionally, the nodal coordinates. C C VRPLOT - Creates a level-2 Encapsulated Postscript (EPS) C file containing a Voronoi diagram plot. C C C On input: C C N = Number of nodes in the triangulation. N .GE. 3. C C X,Y,Z = Arrays of length N containing the Cartesian C coordinates of distinct nodes. (X(K),Y(K), C Z(K)) is referred to as node K, and K is re- C ferred to as a nodal index. It is required C that X(K)**2 + Y(K)**2 + Z(K)**2 = 1 for all C K. The first three nodes must not be col- C linear (lie on a common great circle). C C The above parameters are not altered by this routine. C C LIST,LPTR = Arrays of length at least 6N-12. C C LEND = Array of length at least N. C C NEAR,NEXT,DIST = Work space arrays of length at C least N. The space is used to C efficiently determine the nearest C triangulation node to each un- C processed node for use by ADDNOD. C C On output: C C LIST = Set of nodal indexes which, along with LPTR, C LEND, and LNEW, define the triangulation as a C set of N adjacency lists -- counterclockwise- C ordered sequences of neighboring nodes such C that the first and last neighbors of a bound- C ary node are boundary nodes (the first neigh- C bor of an interior node is arbitrary). In C order to distinguish between interior and C boundary nodes, the last neighbor of each C boundary node is represented by the negative C of its index. C C LPTR = Set of pointers (LIST indexes) in one-to-one C correspondence with the elements of LIST. C LIST(LPTR(I)) indexes the node which follows C LIST(I) in cyclical counterclockwise order C (the first neighbor follows the last neigh- C bor). C C LEND = Set of pointers to adjacency lists. LEND(K) C points to the last neighbor of node K for C K = 1,...,N. Thus, LIST(LEND(K)) < 0 if and C only if K is a boundary node. C C LNEW = Pointer to the first empty location in LIST C and LPTR (list length plus one). LIST, LPTR, C LEND, and LNEW are not altered if IER < 0, C and are incomplete if IER > 0. C C NEAR,NEXT,DIST = Garbage. C C IER = Error indicator: C IER = 0 if no errors were encountered. C IER = -1 if N < 3 on input. C IER = -2 if the first three nodes are C collinear. C IER = L if nodes L and M coincide for some C M > L. The data structure represents C a triangulation of nodes 1 to M-1 in C this case. C C Modules required by TRMESH: ADDNOD, BDYADD, COVSPH, C INSERT, INTADD, JRAND, C LEFT, LSTPTR, STORE, SWAP, C SWPTST, TRFIND C C Intrinsic function called by TRMESH: ABS C C*********************************************************** C INTEGER I, I0, J, K, LP, LPL, NEXTI, NN LOGICAL LEFT REAL(kind=8) D, D1, D2, D3 C C Local parameters: C C D = (Negative cosine of) distance from node K to C node I C D1,D2,D3 = Distances from node K to nodes 1, 2, and 3, C respectively C I,J = Nodal indexes C I0 = Index of the node preceding I in a sequence of C unprocessed nodes: I = NEXT(I0) C K = Index of node to be added and DO-loop index: C K > 3 C LP = LIST index (pointer) of a neighbor of K C LPL = Pointer to the last neighbor of K C NEXTI = NEXT(I) C NN = Local copy of N C NN = N IF (NN .LT. 3) THEN IER = -1 RETURN ENDIF C C Store the first triangle in the linked list. C IF ( .NOT. LEFT (X(1),Y(1),Z(1),X(2),Y(2),Z(2), . X(3),Y(3),Z(3)) ) THEN C C The first triangle is (3,2,1) = (2,1,3) = (1,3,2). C LIST(1) = 3 LPTR(1) = 2 LIST(2) = -2 LPTR(2) = 1 LEND(1) = 2 C LIST(3) = 1 LPTR(3) = 4 LIST(4) = -3 LPTR(4) = 3 LEND(2) = 4 C LIST(5) = 2 LPTR(5) = 6 LIST(6) = -1 LPTR(6) = 5 LEND(3) = 6 C ELSEIF ( .NOT. LEFT(X(2),Y(2),Z(2),X(1),Y(1),Z(1), . X(3),Y(3),Z(3)) ) . THEN C C The first triangle is (1,2,3): 3 Strictly Left 1->2, C i.e., node 3 lies in the left hemisphere defined by C arc 1->2. C LIST(1) = 2 LPTR(1) = 2 LIST(2) = -3 LPTR(2) = 1 LEND(1) = 2 C LIST(3) = 3 LPTR(3) = 4 LIST(4) = -1 LPTR(4) = 3 LEND(2) = 4 C LIST(5) = 1 LPTR(5) = 6 LIST(6) = -2 LPTR(6) = 5 LEND(3) = 6 C ELSE C C The first three nodes are collinear. C IER = -2 RETURN ENDIF C C Initialize LNEW and test for N = 3. C LNEW = 7 IF (NN .EQ. 3) THEN IER = 0 RETURN ENDIF C C A nearest-node data structure (NEAR, NEXT, and DIST) is C used to obtain an expected-time (N*log(N)) incremental C algorithm by enabling constant search time for locating C each new node in the triangulation. C C For each unprocessed node K, NEAR(K) is the index of the C triangulation node closest to K (used as the starting C point for the search in Subroutine TRFIND) and DIST(K) C is an increasing function of the arc length (angular C distance) between nodes K and NEAR(K): -Cos(a) for arc C length a. C C Since it is necessary to efficiently find the subset of C unprocessed nodes associated with each triangulation C node J (those that have J as their NEAR entries), the C subsets are stored in NEAR and NEXT as follows: for C each node J in the triangulation, I = NEAR(J) is the C first unprocessed node in J's set (with I = 0 if the C set is empty), L = NEXT(I) (if I > 0) is the second, C NEXT(L) (if L > 0) is the third, etc. The nodes in each C set are initially ordered by increasing indexes (which C maximizes efficiency) but that ordering is not main- C tained as the data structure is updated. C C Initialize the data structure for the single triangle. C NEAR(1) = 0 NEAR(2) = 0 NEAR(3) = 0 DO 1 K = NN,4,-1 D1 = -(X(K)*X(1) + Y(K)*Y(1) + Z(K)*Z(1)) D2 = -(X(K)*X(2) + Y(K)*Y(2) + Z(K)*Z(2)) D3 = -(X(K)*X(3) + Y(K)*Y(3) + Z(K)*Z(3)) IF (D1 .LE. D2 .AND. D1 .LE. D3) THEN NEAR(K) = 1 DIST(K) = D1 NEXT(K) = NEAR(1) NEAR(1) = K ELSEIF (D2 .LE. D1 .AND. D2 .LE. D3) THEN NEAR(K) = 2 DIST(K) = D2 NEXT(K) = NEAR(2) NEAR(2) = K ELSE NEAR(K) = 3 DIST(K) = D3 NEXT(K) = NEAR(3) NEAR(3) = K ENDIF 1 CONTINUE C C Add the remaining nodes C DO 6 K = 4,NN CALL ADDNOD (NEAR(K),K,X,Y,Z, LIST,LPTR,LEND, . LNEW, IER) IF (IER .NE. 0) RETURN C C Remove K from the set of unprocessed nodes associated C with NEAR(K). C I = NEAR(K) IF (NEAR(I) .EQ. K) THEN NEAR(I) = NEXT(K) ELSE I = NEAR(I) 2 I0 = I I = NEXT(I0) IF (I .NE. K) GO TO 2 NEXT(I0) = NEXT(K) ENDIF NEAR(K) = 0 C C Loop on neighbors J of node K. C LPL = LEND(K) LP = LPL 3 LP = LPTR(LP) J = ABS(LIST(LP)) C C Loop on elements I in the sequence of unprocessed nodes C associated with J: K is a candidate for replacing J C as the nearest triangulation node to I. The next value C of I in the sequence, NEXT(I), must be saved before I C is moved because it is altered by adding I to K's set. C I = NEAR(J) 4 IF (I .EQ. 0) GO TO 5 NEXTI = NEXT(I) C C Test for the distance from I to K less than the distance C from I to J. C D = -(X(I)*X(K) + Y(I)*Y(K) + Z(I)*Z(K)) IF (D .LT. DIST(I)) THEN C C Replace J by K as the nearest triangulation node to I: C update NEAR(I) and DIST(I), and remove I from J's set C of unprocessed nodes and add it to K's set. C NEAR(I) = K DIST(I) = D IF (I .EQ. NEAR(J)) THEN NEAR(J) = NEXTI ELSE NEXT(I0) = NEXTI ENDIF NEXT(I) = NEAR(K) NEAR(K) = I ELSE I0 = I ENDIF C C Bottom of loop on I. C I = NEXTI GO TO 4 C C Bottom of loop on neighbors J. C 5 IF (LP .NE. LPL) GO TO 3 6 CONTINUE RETURN END SUBROUTINE TRPLOT (LUN,PLTSIZ,ELAT,ELON,A,N,X,Y,Z, . LIST,LPTR,LEND,TITLE,NUMBR, IER) CHARACTER*(*) TITLE INTEGER LUN, N, LIST(*), LPTR(*), LEND(N), IER LOGICAL NUMBR REAL(kind=8) PLTSIZ, ELAT, ELON, A, X(N), Y(N), Z(N) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/16/98 C C This subroutine creates a level-2 Encapsulated Post- C script (EPS) file containing a graphical display of a C triangulation of a set of nodes on the unit sphere. The C visible nodes are projected onto the plane that contains C the origin and has normal defined by a user-specified eye- C position. Projections of adjacent (visible) nodes are C connected by line segments. C C C On input: C C LUN = Logical unit number in the range 0 to 99. C The unit should be opened with an appropriate C file name before the call to this routine. C C PLTSIZ = Plot size in inches. A circular window in C the projection plane is mapped to a circu- C lar viewport with diameter equal to .88* C PLTSIZ (leaving room for labels outside the C viewport). The viewport is centered on the C 8.5 by 11 inch page, and its boundary is C drawn. 1.0 .LE. PLTSIZ .LE. 8.5. C C ELAT,ELON = Latitude and longitude (in degrees) of C the center of projection E (the center C of the plot). The projection plane is C the plane that contains the origin and C has E as unit normal. In a rotated C coordinate system for which E is the C north pole, the projection plane con- C tains the equator, and only northern C hemisphere nodes are visible (from the C point at infinity in the direction E). C These are projected orthogonally onto C the projection plane (by zeroing the z- C component in the rotated coordinate C system). ELAT and ELON must be in the C range -90 to 90 and -180 to 180, respec- C tively. C C A = Angular distance in degrees from E to the boun- C dary of a circular window against which the C triangulation is clipped. The projected window C is a disk of radius r = Sin(A) centered at the C origin, and only visible nodes whose projections C are within distance r of the origin are included C in the plot. Thus, if A = 90, the plot includes C the entire hemisphere centered at E. 0 .LT. A C .LE. 90. C C N = Number of nodes in the triangulation. N .GE. 3. C C X,Y,Z = Arrays of length N containing the Cartesian C coordinates of the nodes (unit vectors). C C LIST,LPTR,LEND = Data structure defining the trian- C gulation. Refer to Subroutine C TRMESH. C C TITLE = Type CHARACTER variable or constant contain- C ing a string to be centered above the plot. C The string must be enclosed in parentheses; C i.e., the first and last characters must be C '(' and ')', respectively, but these are not C displayed. TITLE may have at most 80 char- C acters including the parentheses. C C NUMBR = Option indicator: If NUMBR = TRUE, the C nodal indexes are plotted next to the nodes. C C Input parameters are not altered by this routine. C C On output: C C IER = Error indicator: C IER = 0 if no errors were encountered. C IER = 1 if LUN, PLTSIZ, or N is outside its C valid range. C IER = 2 if ELAT, ELON, or A is outside its C valid range. C IER = 3 if an error was encountered in writing C to unit LUN. C C The values in the data statement below may be altered C in order to modify various plotting options. C C Modules required by TRPLOT: None C C Intrinsic functions called by TRPLOT: ABS, ATAN, COS, C NINT, REAL, SIN, C SQRT C C*********************************************************** C INTEGER IPX1, IPX2, IPY1, IPY2, IR, LP, LPL, N0, N1 LOGICAL ANNOT REAL(kind=8) CF, CT, EX, EY, EZ, FSIZN, FSIZT, R11, R12, . R21, R22, R23, SF, T, TX, TY, WR, WRS, X0, X1, . Y0, Y1, Z0, Z1 C DATA ANNOT/.TRUE./, FSIZN/10.0/, FSIZT/16.0/ C C Local parameters: C C ANNOT = Logical variable with value TRUE iff the plot C is to be annotated with the values of ELAT, C ELON, and A C CF = Conversion factor for degrees to radians C CT = Cos(ELAT) C EX,EY,EZ = Cartesian coordinates of the eye-position E C FSIZN = Font size in points for labeling nodes with C their indexes if NUMBR = TRUE C FSIZT = Font size in points for the title (and C annotation if ANNOT = TRUE) C IPX1,IPY1 = X and y coordinates (in points) of the lower C left corner of the bounding box or viewport C box C IPX2,IPY2 = X and y coordinates (in points) of the upper C right corner of the bounding box or viewport C box C IR = Half the width (height) of the bounding box or C viewport box in points -- viewport radius C LP = LIST index (pointer) C LPL = Pointer to the last neighbor of N0 C N0 = Index of a node whose incident arcs are to be C drawn C N1 = Neighbor of N0 C R11...R23 = Components of the first two rows of a rotation C that maps E to the north pole (0,0,1) C SF = Scale factor for mapping world coordinates C (window coordinates in [-WR,WR] X [-WR,WR]) C to viewport coordinates in [IPX1,IPX2] X C [IPY1,IPY2] C T = Temporary variable C TX,TY = Translation vector for mapping world coordi- C nates to viewport coordinates C WR = Window radius r = Sin(A) C WRS = WR**2 C X0,Y0,Z0 = Coordinates of N0 in the rotated coordinate C system or label location (X0,Y0) C X1,Y1,Z1 = Coordinates of N1 in the rotated coordinate C system or intersection of edge N0-N1 with C the equator (in the rotated coordinate C system) C C C Test for invalid parameters. C IF ( ( (LUN .LT. 0) .OR. (LUN .GT. 99)) .OR. . ( (PLTSIZ .LT. 1.0) .OR. ( PLTSIZ .GT. 8.5 )) .OR. . (N .LT. 3)) THEN GO TO 11 ENDIF IF (ABS(ELAT) .GT. 90.0 .OR. ABS(ELON) .GT. 180.0 . .OR. A .GT. 90.0) GO TO 12 C C Compute a conversion factor CF for degrees to radians C and compute the window radius WR. C CF = ATAN(1.0)/45.0 WR = SIN(CF*A) WRS = WR*WR C C Compute the lower left (IPX1,IPY1) and upper right C (IPX2,IPY2) corner coordinates of the bounding box. C The coordinates, specified in default user space units C (points, at 72 points/inch with origin at the lower C left corner of the page), are chosen to preserve the C square aspect ratio, and to center the plot on the 8.5 C by 11 inch page. The center of the page is (306,396), C and IR = PLTSIZ/2 in points. C IR = NINT(36.0*PLTSIZ) IPX1 = 306 - IR IPX2 = 306 + IR IPY1 = 396 - IR IPY2 = 396 + IR C C Output header comments. C WRITE (LUN,100,ERR=13) IPX1, IPY1, IPX2, IPY2 100 FORMAT ('%!PS-Adobe-3.0 EPSF-3.0'/ . '%%BoundingBox:',4I4/ . '%%Title: Triangulation'/ . '%%Creator: STRIPACK'/ . '%%EndComments') C C Set (IPX1,IPY1) and (IPX2,IPY2) to the corner coordinates C of a viewport box obtained by shrinking the bounding box C by 12% in each dimension. C IR = NINT(0.88*REAL(IR,8)) IPX1 = 306 - IR IPX2 = 306 + IR IPY1 = 396 - IR IPY2 = 396 + IR C C Set the line thickness to 2 points, and draw the C viewport boundary. C T = 2.0 WRITE (LUN,110,ERR=13) T WRITE (LUN,120,ERR=13) IR WRITE (LUN,130,ERR=13) 110 FORMAT (F12.6,' setlinewidth') 120 FORMAT ('306 396 ',I3,' 0 360 arc') 130 FORMAT ('stroke') C C Set up an affine mapping from the window box [-WR,WR] X C [-WR,WR] to the viewport box. C SF = REAL(IR,8)/WR TX = IPX1 + SF*WR TY = IPY1 + SF*WR WRITE (LUN,140,ERR=13) TX, TY, SF, SF 140 FORMAT (2F12.6,' translate'/ . 2F12.6,' scale') C C The line thickness must be changed to reflect the new C scaling which is applied to all subsequent output. C Set it to 1.0 point. C T = 1.0/SF WRITE (LUN,110,ERR=13) T C C Save the current graphics state, and set the clip path to C the boundary of the window. C WRITE (LUN,150,ERR=13) WRITE (LUN,160,ERR=13) WR WRITE (LUN,170,ERR=13) 150 FORMAT ('gsave') 160 FORMAT ('0 0 ',F12.6,' 0 360 arc') 170 FORMAT ('clip newpath') C C Compute the Cartesian coordinates of E and the components C of a rotation R which maps E to the north pole (0,0,1). C R is taken to be a rotation about the z-axis (into the C yz-plane) followed by a rotation about the x-axis chosen C so that the view-up direction is (0,0,1), or (-1,0,0) if C E is the north or south pole. C C ( R11 R12 0 ) C R = ( R21 R22 R23 ) C ( EX EY EZ ) C T = CF*ELON CT = COS(CF*ELAT) EX = CT*COS(T) EY = CT*SIN(T) EZ = SIN(CF*ELAT) IF (CT .NE. 0.0) THEN R11 = -EY/CT R12 = EX/CT ELSE R11 = 0.0 R12 = 1.0 ENDIF R21 = -EZ*R12 R22 = EZ*R11 R23 = CT C C Loop on visible nodes N0 that project to points (X0,Y0) in C the window. C DO 3 N0 = 1,N Z0 = EX*X(N0) + EY*Y(N0) + EZ*Z(N0) IF (Z0 .LT. 0.) GO TO 3 X0 = R11*X(N0) + R12*Y(N0) Y0 = R21*X(N0) + R22*Y(N0) + R23*Z(N0) IF (X0*X0 + Y0*Y0 .GT. WRS) GO TO 3 LPL = LEND(N0) LP = LPL C C Loop on neighbors N1 of N0. LPL points to the last C neighbor of N0. Copy the components of N1 into P. C 1 LP = LPTR(LP) N1 = ABS(LIST(LP)) X1 = R11*X(N1) + R12*Y(N1) Y1 = R21*X(N1) + R22*Y(N1) + R23*Z(N1) Z1 = EX*X(N1) + EY*Y(N1) + EZ*Z(N1) IF (Z1 .LT. 0.) THEN C C N1 is a 'southern hemisphere' point. Move it to the C intersection of edge N0-N1 with the equator so that C the edge is clipped properly. Z1 is implicitly set C to 0. C X1 = Z0*X1 - Z1*X0 Y1 = Z0*Y1 - Z1*Y0 T = SQRT(X1*X1+Y1*Y1) X1 = X1/T Y1 = Y1/T ENDIF C C If node N1 is in the window and N1 < N0, bypass edge C N0->N1 (since edge N1->N0 has already been drawn). C IF ( Z1 .GE. 0.0 .AND. X1*X1 + Y1*Y1 .LE. WRS . .AND. N1 .LT. N0 ) GO TO 2 C C Add the edge to the path. C WRITE (LUN,180,ERR=13) X0, Y0, X1, Y1 180 FORMAT (2F12.6,' moveto',2F12.6,' lineto') C C Bottom of loops. C 2 IF (LP .NE. LPL) GO TO 1 3 CONTINUE C C Paint the path and restore the saved graphics state (with C no clip path). C WRITE (LUN,130,ERR=13) WRITE (LUN,190,ERR=13) 190 FORMAT ('grestore') IF (NUMBR) THEN C C Nodes in the window are to be labeled with their indexes. C Convert FSIZN from points to world coordinates, and C output the commands to select a font and scale it. C T = FSIZN/SF WRITE (LUN,200,ERR=13) T 200 FORMAT ('/Helvetica findfont'/ . F12.6,' scalefont setfont') C C Loop on visible nodes N0 that project to points (X0,Y0) in C the window. C DO 4 N0 = 1,N IF (EX*X(N0) + EY*Y(N0) + EZ*Z(N0) .LT. 0.) . GO TO 4 X0 = R11*X(N0) + R12*Y(N0) Y0 = R21*X(N0) + R22*Y(N0) + R23*Z(N0) IF (X0*X0 + Y0*Y0 .GT. WRS) GO TO 4 C C Move to (X0,Y0) and draw the label N0. The first char- C acter will will have its lower left corner about one C character width to the right of the nodal position. C WRITE (LUN,210,ERR=13) X0, Y0 WRITE (LUN,220,ERR=13) N0 210 FORMAT (2F12.6,' moveto') 220 FORMAT ('(',I3,') show') 4 CONTINUE ENDIF C C Convert FSIZT from points to world coordinates, and output C the commands to select a font and scale it. C T = FSIZT/SF WRITE (LUN,200,ERR=13) T C C Display TITLE centered above the plot: C Y0 = WR + 3.0*T WRITE (LUN,230,ERR=13) TITLE, Y0 230 FORMAT (A80/' stringwidth pop 2 div neg ',F12.6, . ' moveto') WRITE (LUN,240,ERR=13) TITLE 240 FORMAT (A80/' show') IF (ANNOT) THEN C C Display the window center and radius below the plot. C X0 = -WR Y0 = -WR - 50.0/SF WRITE (LUN,210,ERR=13) X0, Y0 WRITE (LUN,250,ERR=13) ELAT, ELON Y0 = Y0 - 2.0*T WRITE (LUN,210,ERR=13) X0, Y0 WRITE (LUN,260,ERR=13) A 250 FORMAT ('(Window center: ELAT = ',F7.2, . ', ELON = ',F8.2,') show') 260 FORMAT ('(Angular extent: A = ',F5.2,') show') ENDIF C C Paint the path and output the showpage command and C end-of-file indicator. C WRITE (LUN,270,ERR=13) 270 FORMAT ('stroke'/ . 'showpage'/ . '%%EOF') C C HP's interpreters require a one-byte End-of-PostScript-Job C indicator (to eliminate a timeout error message): C ASCII 4. C WRITE (LUN,280,ERR=13) CHAR(4) 280 FORMAT (A1) C C No error encountered. C IER = 0 RETURN C C Invalid input parameter LUN, PLTSIZ, or N. C 11 IER = 1 RETURN C C Invalid input parameter ELAT, ELON, or A. C 12 IER = 2 RETURN C C Error writing to unit LUN. C 13 IER = 3 RETURN END SUBROUTINE TRPRNT (N,X,Y,Z,IFLAG,LIST,LPTR,LEND,LOUT) INTEGER N, IFLAG, LIST(*), LPTR(*), LEND(N), LOUT REAL(kind=8) X(N), Y(N), Z(N) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/25/98 C C This subroutine prints the triangulation adjacency lists C created by Subroutine TRMESH and, optionally, the nodal C coordinates (either latitude and longitude or Cartesian C coordinates) on logical unit LOUT. The list of neighbors C of a boundary node is followed by index 0. The numbers of C boundary nodes, triangles, and arcs are also printed. C C C On input: C C N = Number of nodes in the triangulation. N .GE. 3 C and N .LE. 9999. C C X,Y,Z = Arrays of length N containing the Cartesian C coordinates of the nodes if IFLAG = 0, or C (X and Y only) arrays of length N containing C longitude and latitude, respectively, if C IFLAG > 0, or unused dummy parameters if C IFLAG < 0. C C IFLAG = Nodal coordinate option indicator: C IFLAG = 0 if X, Y, and Z (assumed to contain C Cartesian coordinates) are to be C printed (to 6 decimal places). C IFLAG > 0 if only X and Y (assumed to con- C tain longitude and latitude) are C to be printed (to 6 decimal C places). C IFLAG < 0 if only the adjacency lists are to C be printed. C C LIST,LPTR,LEND = Data structure defining the trian- C gulation. Refer to Subroutine C TRMESH. C C LOUT = Logical unit for output. If LOUT is not in C the range 0 to 99, output is written to C logical unit 6. C C Input parameters are not altered by this routine. C C On output: C C The adjacency lists and nodal coordinates (as specified C by IFLAG) are written to unit LOUT. C C Modules required by TRPRNT: None C C*********************************************************** C INTEGER I, INC, K, LP, LPL, LUN, NA, NABOR(400), NB, . ND, NL, NLMAX, NMAX, NODE, NN, NT DATA NMAX/9999/, NLMAX/58/ C C Local parameters: C C I = NABOR index (1 to K) C INC = Increment for NL associated with an adjacency list C K = Counter and number of neighbors of NODE C LP = LIST pointer of a neighbor of NODE C LPL = Pointer to the last neighbor of NODE C LUN = Logical unit for output (copy of LOUT) C NA = Number of arcs in the triangulation C NABOR = Array containing the adjacency list associated C with NODE, with zero appended if NODE is a C boundary node C NB = Number of boundary nodes encountered C ND = Index of a neighbor of NODE (or negative index) C NL = Number of lines that have been printed on the C current page C NLMAX = Maximum number of print lines per page (except C for the last page which may have two addi- C tional lines) C NMAX = Upper bound on N (allows 4-digit indexes) C NODE = Index of a node and DO-loop index (1 to N) C NN = Local copy of N C NT = Number of triangles in the triangulation C NN = N LUN = LOUT IF (LUN .LT. 0 .OR. LUN .GT. 99) LUN = 6 C C Print a heading and test the range of N. C WRITE (LUN,100) NN IF (NN .LT. 3 .OR. NN .GT. NMAX) THEN C C N is outside its valid range. C WRITE (LUN,110) RETURN ENDIF C C Initialize NL (the number of lines printed on the current C page) and NB (the number of boundary nodes encountered). C NL = 6 NB = 0 IF (IFLAG .LT. 0) THEN C C Print LIST only. K is the number of neighbors of NODE C that have been stored in NABOR. C WRITE (LUN,101) DO 2 NODE = 1,NN LPL = LEND(NODE) LP = LPL K = 0 C 1 K = K + 1 LP = LPTR(LP) ND = LIST(LP) NABOR(K) = ND IF (LP .NE. LPL) GO TO 1 IF (ND .LE. 0) THEN C C NODE is a boundary node. Correct the sign of the last C neighbor, add 0 to the end of the list, and increment C NB. C NABOR(K) = -ND K = K + 1 NABOR(K) = 0 NB = NB + 1 ENDIF C C Increment NL and print the list of neighbors. C INC = (K-1)/14 + 2 NL = NL + INC IF (NL .GT. NLMAX) THEN WRITE (LUN,108) NL = INC ENDIF WRITE (LUN,104) NODE, (NABOR(I), I = 1,K) IF (K .NE. 14) WRITE (LUN,107) 2 CONTINUE ELSEIF (IFLAG .GT. 0) THEN C C Print X (longitude), Y (latitude), and LIST. C WRITE (LUN,102) DO 4 NODE = 1,NN LPL = LEND(NODE) LP = LPL K = 0 C 3 K = K + 1 LP = LPTR(LP) ND = LIST(LP) NABOR(K) = ND IF (LP .NE. LPL) GO TO 3 IF (ND .LE. 0) THEN C C NODE is a boundary node. C NABOR(K) = -ND K = K + 1 NABOR(K) = 0 NB = NB + 1 ENDIF C C Increment NL and print X, Y, and NABOR. C INC = (K-1)/8 + 2 NL = NL + INC IF (NL .GT. NLMAX) THEN WRITE (LUN,108) NL = INC ENDIF WRITE (LUN,105) NODE, X(NODE), Y(NODE), . (NABOR(I), I = 1,K) IF (K .NE. 8) WRITE (LUN,107) 4 CONTINUE ELSE C C Print X, Y, Z, and LIST. C WRITE (LUN,103) DO 6 NODE = 1,NN LPL = LEND(NODE) LP = LPL K = 0 C 5 K = K + 1 LP = LPTR(LP) ND = LIST(LP) NABOR(K) = ND IF (LP .NE. LPL) GO TO 5 IF (ND .LE. 0) THEN C C NODE is a boundary node. C NABOR(K) = -ND K = K + 1 NABOR(K) = 0 NB = NB + 1 ENDIF C C Increment NL and print X, Y, Z, and NABOR. C INC = (K-1)/5 + 2 NL = NL + INC IF (NL .GT. NLMAX) THEN WRITE (LUN,108) NL = INC ENDIF WRITE (LUN,106) NODE, X(NODE), Y(NODE), . Z(NODE), (NABOR(I), I = 1,K) IF (K .NE. 5) WRITE (LUN,107) 6 CONTINUE ENDIF C C Print NB, NA, and NT (boundary nodes, arcs, and C triangles). C IF (NB .NE. 0) THEN NA = 3*NN - NB - 3 NT = 2*NN - NB - 2 ELSE NA = 3*NN - 6 NT = 2*NN - 4 ENDIF WRITE (LUN,109) NB, NA, NT RETURN C C Print formats: C 100 FORMAT (///15X,'STRIPACK Triangulation Data ', . 'Structure, N = ',I5//) 101 FORMAT (1X,'Node',31X,'Neighbors of Node'//) 102 FORMAT (1X,'Node',5X,'Longitude',6X,'Latitude', . 18X,'Neighbors of Node'//) 103 FORMAT (1X,'Node',5X,'X(Node)',8X,'Y(Node)',8X, . 'Z(Node)',11X,'Neighbors of Node'//) 104 FORMAT (1X,I4,4X,14I5/(1X,8X,14I5)) 105 FORMAT (1X,I4,2E15.6,4X,8I5/(1X,38X,8I5)) 106 FORMAT (1X,I4,3E15.6,4X,5I5/(1X,53X,5I5)) 107 FORMAT (1X) 108 FORMAT (///) 109 FORMAT (/1X,'NB = ',I4,' Boundary Nodes',5X, . 'NA = ',I5,' Arcs',5X,'NT = ',I5, . ' Triangles') 110 FORMAT (1X,10X,'*** N is outside its valid', . ' range ***') END SUBROUTINE VRPLOT (LUN,PLTSIZ,ELAT,ELON,A,N,X,Y,Z, . NT,LISTC,LPTR,LEND,XC,YC,ZC,TITLE, . NUMBR, IER) CHARACTER*(*) TITLE INTEGER LUN, N, NT, LISTC(*), LPTR(*), LEND(N), IER LOGICAL NUMBR REAL(kind=8) PLTSIZ, ELAT, ELON, A, X(N), Y(N), Z(N), . XC(NT), YC(NT), ZC(NT) C C*********************************************************** C C From STRIPACK C Robert J. Renka C Dept. of Computer Science C Univ. of North Texas C renka@cs.unt.edu C 07/16/98 C C This subroutine creates a level-2 Encapsulated Post- C script (EPS) file containing a graphical depiction of a C Voronoi diagram of a set of nodes on the unit sphere. C The visible vertices are projected onto the plane that C contains the origin and has normal defined by a user- C specified eye-position. Projections of adjacent (visible) C Voronoi vertices are connected by line segments. C C The parameters defining the Voronoi diagram may be com- C puted by Subroutine CRLIST. C C C On input: C C LUN = Logical unit number in the range 0 to 99. C The unit should be opened with an appropriate C file name before the call to this routine. C C PLTSIZ = Plot size in inches. A circular window in C the projection plane is mapped to a circu- C lar viewport with diameter equal to .88* C PLTSIZ (leaving room for labels outside the C viewport). The viewport is centered on the C 8.5 by 11 inch page, and its boundary is C drawn. 1.0 .LE. PLTSIZ .LE. 8.5. C C ELAT,ELON = Latitude and longitude (in degrees) of C the center of projection E (the center C of the plot). The projection plane is C the plane that contains the origin and C has E as unit normal. In a rotated C coordinate system for which E is the C north pole, the projection plane con- C tains the equator, and only northern C hemisphere points are visible (from the C point at infinity in the direction E). C These are projected orthogonally onto C the projection plane (by zeroing the z- C component in the rotated coordinate C system). ELAT and ELON must be in the C range -90 to 90 and -180 to 180, respec- C tively. C C A = Angular distance in degrees from E to the boun- C dary of a circular window against which the C Voronoi diagram is clipped. The projected win- C dow is a disk of radius r = Sin(A) centered at C the origin, and only visible vertices whose C projections are within distance r of the origin C are included in the plot. Thus, if A = 90, the C plot includes the entire hemisphere centered at C E. 0 .LT. A .LE. 90. C C N = Number of nodes (Voronoi centers) and Voronoi C regions. N .GE. 3. C C X,Y,Z = Arrays of length N containing the Cartesian C coordinates of the nodes (unit vectors). C C NT = Number of Voronoi region vertices (triangles, C including those in the extended triangulation C if the number of boundary nodes NB is nonzero): C NT = 2*N-4. C C LISTC = Array of length 3*NT containing triangle C indexes (indexes to XC, YC, and ZC) stored C in 1-1 correspondence with LIST/LPTR entries C (or entries that would be stored in LIST for C the extended triangulation): the index of C triangle (N1,N2,N3) is stored in LISTC(K), C LISTC(L), and LISTC(M), where LIST(K), C LIST(L), and LIST(M) are the indexes of N2 C as a neighbor of N1, N3 as a neighbor of N2, C and N1 as a neighbor of N3. The Voronoi C region associated with a node is defined by C the CCW-ordered sequence of circumcenters in C one-to-one correspondence with its adjacency C list (in the extended triangulation). C C LPTR = Array of length 3*NT = 6*N-12 containing a C set of pointers (LISTC indexes) in one-to-one C correspondence with the elements of LISTC. C LISTC(LPTR(I)) indexes the triangle which C follows LISTC(I) in cyclical counterclockwise C order (the first neighbor follows the last C neighbor). C C LEND = Array of length N containing a set of C pointers to triangle lists. LP = LEND(K) C points to a triangle (indexed by LISTC(LP)) C containing node K for K = 1 to N. C C XC,YC,ZC = Arrays of length NT containing the C Cartesian coordinates of the triangle C circumcenters (Voronoi vertices). C XC(I)**2 + YC(I)**2 + ZC(I)**2 = 1. C C TITLE = Type CHARACTER variable or constant contain- C ing a string to be centered above the plot. C The string must be enclosed in parentheses; C i.e., the first and last characters must be C '(' and ')', respectively, but these are not C displayed. TITLE may have at most 80 char- C acters including the parentheses. C C NUMBR = Option indicator: If NUMBR = TRUE, the C nodal indexes are plotted at the Voronoi C region centers. C C Input parameters are not altered by this routine. C C On output: C C IER = Error indicator: C IER = 0 if no errors were encountered. C IER = 1 if LUN, PLTSIZ, N, or NT is outside C its valid range. C IER = 2 if ELAT, ELON, or A is outside its C valid range. C IER = 3 if an error was encountered in writing C to unit LUN. C C Modules required by VRPLOT: None C C Intrinsic functions called by VRPLOT: ABS, ATAN, COS, C NINT, REAL, SIN, C SQRT C C*********************************************************** C INTEGER IPX1, IPX2, IPY1, IPY2, IR, KV1, KV2, LP, LPL, . N0 LOGICAL ANNOT, IN1, IN2 REAL(kind=8) CF, CT, EX, EY, EZ, FSIZN, FSIZT, R11, R12, . R21, R22, R23, SF, T, TX, TY, WR, WRS, X0, X1, . X2, Y0, Y1, Y2, Z1, Z2 C DATA ANNOT/.TRUE./, FSIZN/10.0/, FSIZT/16.0/ C C Local parameters: C C ANNOT = Logical variable with value TRUE iff the plot C is to be annotated with the values of ELAT, C ELON, and A C CF = Conversion factor for degrees to radians C CT = Cos(ELAT) C EX,EY,EZ = Cartesian coordinates of the eye-position E C FSIZN = Font size in points for labeling nodes with C their indexes if NUMBR = TRUE C FSIZT = Font size in points for the title (and C annotation if ANNOT = TRUE) C IN1,IN2 = Logical variables with value TRUE iff the C projections of vertices KV1 and KV2, respec- C tively, are inside the window C IPX1,IPY1 = X and y coordinates (in points) of the lower C left corner of the bounding box or viewport C box C IPX2,IPY2 = X and y coordinates (in points) of the upper C right corner of the bounding box or viewport C box C IR = Half the width (height) of the bounding box or C viewport box in points -- viewport radius C KV1,KV2 = Endpoint indexes of a Voronoi edge C LP = LIST index (pointer) C LPL = Pointer to the last neighbor of N0 C N0 = Index of a node C R11...R23 = Components of the first two rows of a rotation C that maps E to the north pole (0,0,1) C SF = Scale factor for mapping world coordinates C (window coordinates in [-WR,WR] X [-WR,WR]) C to viewport coordinates in [IPX1,IPX2] X C [IPY1,IPY2] C T = Temporary variable C TX,TY = Translation vector for mapping world coordi- C nates to viewport coordinates C WR = Window radius r = Sin(A) C WRS = WR**2 C X0,Y0 = Projection plane coordinates of node N0 or C label location C X1,Y1,Z1 = Coordinates of vertex KV1 in the rotated C coordinate system C X2,Y2,Z2 = Coordinates of vertex KV2 in the rotated C coordinate system or intersection of edge C KV1-KV2 with the equator (in the rotated C coordinate system) C C C Test for invalid parameters. C IF (LUN .LT. 0 .OR. LUN .GT. 99 .OR. . PLTSIZ .LT. 1.0 .OR. PLTSIZ .GT. 8.5 .OR. . N .LT. 3 .OR. NT .NE. 2*N-4) . GO TO 11 IF (ABS(ELAT) .GT. 90.0 .OR. ABS(ELON) .GT. 180.0 . .OR. A .GT. 90.0) GO TO 12 C C Compute a conversion factor CF for degrees to radians C and compute the window radius WR. C CF = ATAN(1.0)/45.0 WR = SIN(CF*A) WRS = WR*WR C C Compute the lower left (IPX1,IPY1) and upper right C (IPX2,IPY2) corner coordinates of the bounding box. C The coordinates, specified in default user space units C (points, at 72 points/inch with origin at the lower C left corner of the page), are chosen to preserve the C square aspect ratio, and to center the plot on the 8.5 C by 11 inch page. The center of the page is (306,396), C and IR = PLTSIZ/2 in points. C IR = NINT(36.0*PLTSIZ) IPX1 = 306 - IR IPX2 = 306 + IR IPY1 = 396 - IR IPY2 = 396 + IR C C Output header comments. C WRITE (LUN,100,ERR=13) IPX1, IPY1, IPX2, IPY2 100 FORMAT ('%!PS-Adobe-3.0 EPSF-3.0'/ . '%%BoundingBox:',4I4/ . '%%Title: Voronoi diagram'/ . '%%Creator: STRIPACK'/ . '%%EndComments') C C Set (IPX1,IPY1) and (IPX2,IPY2) to the corner coordinates C of a viewport box obtained by shrinking the bounding box C by 12% in each dimension. C IR = NINT(0.88*REAL(IR,8)) IPX1 = 306 - IR IPX2 = 306 + IR IPY1 = 396 - IR IPY2 = 396 + IR C C Set the line thickness to 2 points, and draw the C viewport boundary. C T = 2.0 WRITE (LUN,110,ERR=13) T WRITE (LUN,120,ERR=13) IR WRITE (LUN,130,ERR=13) 110 FORMAT (F12.6,' setlinewidth') 120 FORMAT ('306 396 ',I3,' 0 360 arc') 130 FORMAT ('stroke') C C Set up an affine mapping from the window box [-WR,WR] X C [-WR,WR] to the viewport box. C SF = REAL(IR,8)/WR TX = IPX1 + SF*WR TY = IPY1 + SF*WR WRITE (LUN,140,ERR=13) TX, TY, SF, SF 140 FORMAT (2F12.6,' translate'/ . 2F12.6,' scale') C C The line thickness must be changed to reflect the new C scaling which is applied to all subsequent output. C Set it to 1.0 point. C T = 1.0/SF WRITE (LUN,110,ERR=13) T C C Save the current graphics state, and set the clip path to C the boundary of the window. C WRITE (LUN,150,ERR=13) WRITE (LUN,160,ERR=13) WR WRITE (LUN,170,ERR=13) 150 FORMAT ('gsave') 160 FORMAT ('0 0 ',F12.6,' 0 360 arc') 170 FORMAT ('clip newpath') C C Compute the Cartesian coordinates of E and the components C of a rotation R which maps E to the north pole (0,0,1). C R is taken to be a rotation about the z-axis (into the C yz-plane) followed by a rotation about the x-axis chosen C so that the view-up direction is (0,0,1), or (-1,0,0) if C E is the north or south pole. C C ( R11 R12 0 ) C R = ( R21 R22 R23 ) C ( EX EY EZ ) C T = CF*ELON CT = COS(CF*ELAT) EX = CT*COS(T) EY = CT*SIN(T) EZ = SIN(CF*ELAT) IF (CT .NE. 0.0) THEN R11 = -EY/CT R12 = EX/CT ELSE R11 = 0.0 R12 = 1.0 ENDIF R21 = -EZ*R12 R22 = EZ*R11 R23 = CT C C Loop on nodes (Voronoi centers) N0. C LPL indexes the last neighbor of N0. C DO 3 N0 = 1,N LPL = LEND(N0) C C Set KV2 to the first (and last) vertex index and compute C its coordinates (X2,Y2,Z2) in the rotated coordinate C system. C KV2 = LISTC(LPL) X2 = R11*XC(KV2) + R12*YC(KV2) Y2 = R21*XC(KV2) + R22*YC(KV2) + R23*ZC(KV2) Z2 = EX*XC(KV2) + EY*YC(KV2) + EZ*ZC(KV2) C C IN2 = TRUE iff KV2 is in the window. C IN2 = Z2 .GE. 0. .AND. X2*X2 + Y2*Y2 .LE. WRS C C Loop on neighbors N1 of N0. For each triangulation edge C N0-N1, KV1-KV2 is the corresponding Voronoi edge. C LP = LPL 1 LP = LPTR(LP) KV1 = KV2 X1 = X2 Y1 = Y2 Z1 = Z2 IN1 = IN2 KV2 = LISTC(LP) C C Compute the new values of (X2,Y2,Z2) and IN2. C X2 = R11*XC(KV2) + R12*YC(KV2) Y2 = R21*XC(KV2) + R22*YC(KV2) + R23*ZC(KV2) Z2 = EX*XC(KV2) + EY*YC(KV2) + EZ*ZC(KV2) IN2 = Z2 .GE. 0. .AND. X2*X2 + Y2*Y2 .LE. WRS C C Add edge KV1-KV2 to the path iff both endpoints are inside C the window and KV2 > KV1, or KV1 is inside and KV2 is C outside (so that the edge is drawn only once). C IF (.NOT. IN1 .OR. (IN2 .AND. KV2 .LE. KV1)) . GO TO 2 IF (Z2 .LT. 0.) THEN C C KV2 is a 'southern hemisphere' point. Move it to the C intersection of edge KV1-KV2 with the equator so that C the edge is clipped properly. Z2 is implicitly set C to 0. C X2 = Z1*X2 - Z2*X1 Y2 = Z1*Y2 - Z2*Y1 T = SQRT(X2*X2+Y2*Y2) X2 = X2/T Y2 = Y2/T ENDIF WRITE (LUN,180,ERR=13) X1, Y1, X2, Y2 180 FORMAT (2F12.6,' moveto',2F12.6,' lineto') C C Bottom of loops. C 2 IF (LP .NE. LPL) GO TO 1 3 CONTINUE C C Paint the path and restore the saved graphics state (with C no clip path). C WRITE (LUN,130,ERR=13) WRITE (LUN,190,ERR=13) 190 FORMAT ('grestore') IF (NUMBR) THEN C C Nodes in the window are to be labeled with their indexes. C Convert FSIZN from points to world coordinates, and C output the commands to select a font and scale it. C T = FSIZN/SF WRITE (LUN,200,ERR=13) T 200 FORMAT ('/Helvetica findfont'/ . F12.6,' scalefont setfont') C C Loop on visible nodes N0 that project to points (X0,Y0) in C the window. C DO 4 N0 = 1,N IF (EX*X(N0) + EY*Y(N0) + EZ*Z(N0) .LT. 0.) . GO TO 4 X0 = R11*X(N0) + R12*Y(N0) Y0 = R21*X(N0) + R22*Y(N0) + R23*Z(N0) IF (X0*X0 + Y0*Y0 .GT. WRS) GO TO 4 C C Move to (X0,Y0), and draw the label N0 with the origin C of the first character at (X0,Y0). C WRITE (LUN,210,ERR=13) X0, Y0 WRITE (LUN,220,ERR=13) N0 210 FORMAT (2F12.6,' moveto') 220 FORMAT ('(',I3,') show') 4 CONTINUE ENDIF C C Convert FSIZT from points to world coordinates, and output C the commands to select a font and scale it. C T = FSIZT/SF WRITE (LUN,200,ERR=13) T C C Display TITLE centered above the plot: C Y0 = WR + 3.0*T WRITE (LUN,230,ERR=13) TITLE, Y0 230 FORMAT (A80/' stringwidth pop 2 div neg ',F12.6, . ' moveto') WRITE (LUN,240,ERR=13) TITLE 240 FORMAT (A80/' show') IF (ANNOT) THEN C C Display the window center and radius below the plot. C X0 = -WR Y0 = -WR - 50.0/SF WRITE (LUN,210,ERR=13) X0, Y0 WRITE (LUN,250,ERR=13) ELAT, ELON Y0 = Y0 - 2.0*T WRITE (LUN,210,ERR=13) X0, Y0 WRITE (LUN,260,ERR=13) A 250 FORMAT ('(Window center: ELAT = ',F7.2, . ', ELON = ',F8.2,') show') 260 FORMAT ('(Angular extent: A = ',F5.2,') show') ENDIF C C Paint the path and output the showpage command and C end-of-file indicator. C WRITE (LUN,270,ERR=13) 270 FORMAT ('stroke'/ . 'showpage'/ . '%%EOF') C C HP's interpreters require a one-byte End-of-PostScript-Job C indicator (to eliminate a timeout error message): C ASCII 4. C WRITE (LUN,280,ERR=13) CHAR(4) 280 FORMAT (A1) C C No error encountered. C IER = 0 RETURN C C Invalid input parameter LUN, PLTSIZ, N, or NT. C 11 IER = 1 RETURN C C Invalid input parameter ELAT, ELON, or A. C 12 IER = 2 RETURN C C Error writing to unit LUN. C 13 IER = 3 RETURN END
mit
davidho95/WaveEqCurvedSpacetime
CurvedSEM2d/src/gll_library.f90
4
13139
!======================================================================= ! ! Library to compute the Gauss-Lobatto-Legendre points and weights ! Based on Gauss-Lobatto routines from M.I.T. ! Department of Mechanical Engineering ! !======================================================================= double precision function endw1(n,alpha,beta) implicit none integer n double precision alpha,beta double precision, parameter :: zero=0.d0,one=1.d0,two=2.d0,three=3.d0,four=4.d0 double precision apb,f1,fint1,fint2,f2,di,abn,abnn,a1,a2,a3,f3 double precision, external :: gammaf integer i f3 = zero apb = alpha+beta if(n == 0) then endw1 = zero return endif f1 = gammaf(alpha+two)*gammaf(beta+one)/gammaf(apb+three) f1 = f1*(apb+two)*two**(apb+two)/two if(n == 1) then endw1 = f1 return endif fint1 = gammaf(alpha+two)*gammaf(beta+one)/gammaf(apb+three) fint1 = fint1*two**(apb+two) fint2 = gammaf(alpha+two)*gammaf(beta+two)/gammaf(apb+four) fint2 = fint2*two**(apb+three) f2 = (-two*(beta+two)*fint1 + (apb+four)*fint2) * (apb+three)/four if(n == 2) then endw1 = f2 return endif do i=3,n di = dble(i-1) abn = alpha+beta+di abnn = abn+di a1 = -(two*(di+alpha)*(di+beta))/(abn*abnn*(abnn+one)) a2 = (two*(alpha-beta))/(abnn*(abnn+two)) a3 = (two*(abn+one))/((abnn+two)*(abnn+one)) f3 = -(a2*f2+a1*f1)/a3 f1 = f2 f2 = f3 enddo endw1 = f3 end function endw1 ! !======================================================================= ! double precision function endw2(n,alpha,beta) implicit none integer n double precision alpha,beta double precision, parameter :: zero=0.d0,one=1.d0,two=2.d0,three=3.d0,four=4.d0 double precision apb,f1,fint1,fint2,f2,di,abn,abnn,a1,a2,a3,f3 double precision, external :: gammaf integer i apb = alpha+beta f3 = zero if (n == 0) then endw2 = zero return endif f1 = gammaf(alpha+one)*gammaf(beta+two)/gammaf(apb+three) f1 = f1*(apb+two)*two**(apb+two)/two if (n == 1) then endw2 = f1 return endif fint1 = gammaf(alpha+one)*gammaf(beta+two)/gammaf(apb+three) fint1 = fint1*two**(apb+two) fint2 = gammaf(alpha+two)*gammaf(beta+two)/gammaf(apb+four) fint2 = fint2*two**(apb+three) f2 = (two*(alpha+two)*fint1 - (apb+four)*fint2) * (apb+three)/four if (n == 2) then endw2 = f2 return endif do i=3,n di = dble(i-1) abn = alpha+beta+di abnn = abn+di a1 = -(two*(di+alpha)*(di+beta))/(abn*abnn*(abnn+one)) a2 = (two*(alpha-beta))/(abnn*(abnn+two)) a3 = (two*(abn+one))/((abnn+two)*(abnn+one)) f3 = -(a2*f2+a1*f1)/a3 f1 = f2 f2 = f3 enddo endw2 = f3 end function endw2 ! !======================================================================= ! double precision function gammaf (x) implicit none double precision, parameter :: pi = 3.141592653589793d0 double precision x double precision, parameter :: half=0.5d0,one=1.d0,two=2.d0 gammaf = one if (x == -half) gammaf = -two*sqrt(pi) if (x == half) gammaf = sqrt(pi) if (x == one ) gammaf = one if (x == two ) gammaf = one if (x == 1.5d0) gammaf = sqrt(pi)/2.d0 if (x == 2.5d0) gammaf = 1.5d0*sqrt(pi)/2.d0 if (x == 3.5d0) gammaf = 2.5d0*1.5d0*sqrt(pi)/2.d0 if (x == 3.d0 ) gammaf = 2.d0 if (x == 4.d0 ) gammaf = 6.d0 if (x == 5.d0 ) gammaf = 24.d0 if (x == 6.d0 ) gammaf = 120.d0 end function gammaf ! !===================================================================== ! subroutine jacg (xjac,np,alpha,beta) !======================================================================= ! ! computes np Gauss points, which are the zeros of the ! Jacobi polynomial with parameters alpha and beta ! ! .alpha = beta = 0.0 -> Legendre points ! .alpha = beta = -0.5 -> Chebyshev points ! !======================================================================= implicit none integer np double precision alpha,beta double precision xjac(np) integer k,j,i,jmin,jm,n double precision xlast,dth,x,x1,x2,recsum,delx,xmin,swap double precision p,pd,pm1,pdm1,pm2,pdm2 integer, parameter :: K_MAX_ITER = 10 double precision, parameter :: zero = 0.d0, eps = 1.0d-12 pm1 = zero pm2 = zero pdm1 = zero pdm2 = zero xlast = 0.d0 n = np-1 dth = 4.d0*atan(1.d0)/(2.d0*dble(n)+2.d0) p = 0.d0 pd = 0.d0 jmin = 0 do j=1,np if(j == 1) then x = cos((2.d0*(dble(j)-1.d0)+1.d0)*dth) else x1 = cos((2.d0*(dble(j)-1.d0)+1.d0)*dth) x2 = xlast x = (x1+x2)/2.d0 endif do k=1,K_MAX_ITER call jacobf (p,pd,pm1,pdm1,pm2,pdm2,np,alpha,beta,x) recsum = 0.d0 jm = j-1 do i=1,jm recsum = recsum+1.d0/(x-xjac(np-i+1)) enddo delx = -p/(pd-recsum*p) x = x+delx if(abs(delx) < eps) goto 31 enddo 31 continue xjac(np-j+1) = x xlast = x enddo do i=1,np xmin = 2.d0 do j=i,np if(xjac(j) < xmin) then xmin = xjac(j) jmin = j endif enddo if(jmin /= i) then swap = xjac(i) xjac(i) = xjac(jmin) xjac(jmin) = swap endif enddo end subroutine jacg ! !===================================================================== ! subroutine jacobf (poly,pder,polym1,pderm1,polym2,pderm2,n,alp,bet,x) !======================================================================= ! ! Computes the Jacobi polynomial of degree n and its derivative at x ! !======================================================================= implicit none double precision poly,pder,polym1,pderm1,polym2,pderm2,alp,bet,x integer n double precision apb,polyl,pderl,dk,a1,a2,b3,a3,a4,polyn,pdern,psave,pdsave integer k apb = alp+bet poly = 1.d0 pder = 0.d0 psave = 0.d0 pdsave = 0.d0 if (n == 0) return polyl = poly pderl = pder poly = (alp-bet+(apb+2.d0)*x)/2.d0 pder = (apb+2.d0)/2.d0 if (n == 1) return do k=2,n dk = dble(k) a1 = 2.d0*dk*(dk+apb)*(2.d0*dk+apb-2.d0) a2 = (2.d0*dk+apb-1.d0)*(alp**2-bet**2) b3 = (2.d0*dk+apb-2.d0) a3 = b3*(b3+1.d0)*(b3+2.d0) a4 = 2.d0*(dk+alp-1.d0)*(dk+bet-1.d0)*(2.d0*dk+apb) polyn = ((a2+a3*x)*poly-a4*polyl)/a1 pdern = ((a2+a3*x)*pder-a4*pderl+a3*poly)/a1 psave = polyl pdsave = pderl polyl = poly poly = polyn pderl = pder pder = pdern enddo polym1 = polyl pderm1 = pderl polym2 = psave pderm2 = pdsave end subroutine jacobf ! !------------------------------------------------------------------------ ! double precision FUNCTION PNDLEG (Z,N) !------------------------------------------------------------------------ ! ! Compute the derivative of the Nth order Legendre polynomial at Z. ! Based on the recursion formula for the Legendre polynomials. ! !------------------------------------------------------------------------ implicit none double precision z integer n double precision P1,P2,P1D,P2D,P3D,FK,P3 integer k P1 = 1.d0 P2 = Z P1D = 0.d0 P2D = 1.d0 P3D = 1.d0 do K = 1, N-1 FK = dble(K) P3 = ((2.d0*FK+1.d0)*Z*P2 - FK*P1)/(FK+1.d0) P3D = ((2.d0*FK+1.d0)*P2 + (2.d0*FK+1.d0)*Z*P2D - FK*P1D) / (FK+1.d0) P1 = P2 P2 = P3 P1D = P2D P2D = P3D enddo PNDLEG = P3D end function pndleg ! !------------------------------------------------------------------------ ! double precision FUNCTION PNLEG (Z,N) !------------------------------------------------------------------------ ! ! Compute the value of the Nth order Legendre polynomial at Z. ! Based on the recursion formula for the Legendre polynomials. ! !------------------------------------------------------------------------ implicit none double precision z integer n double precision P1,P2,P3,FK integer k P1 = 1.d0 P2 = Z P3 = P2 do K = 1, N-1 FK = dble(K) P3 = ((2.d0*FK+1.d0)*Z*P2 - FK*P1)/(FK+1.d0) P1 = P2 P2 = P3 enddo PNLEG = P3 end function pnleg ! !------------------------------------------------------------------------ ! double precision function pnglj(z,n) !------------------------------------------------------------------------ ! ! Compute the value of the Nth order polynomial of the ! Gauss-Lobatto-Jacobi (0,1) at Z. from Legendre polynomials. ! !------------------------------------------------------------------------ implicit none double precision z integer n double precision, external :: pnleg double precision, parameter :: TINYVAL = 1.d-15 double precision, parameter :: ONE = 1.d0 if (abs(z+1.d0) > TINYVAL) then ! if (z /= -1.d0) pnglj = (pnleg(z,n)+pnleg(z,n+1))/(ONE+z) else pnglj = (dble(n)+ONE)*(-1)**n endif end function pnglj ! !------------------------------------------------------------------------ ! double precision function pnormj (n,alpha,beta) implicit none double precision alpha,beta integer n double precision one,two,dn,const,prod,dindx,frac double precision, external :: gammaf integer i one = 1.d0 two = 2.d0 dn = dble(n) const = alpha+beta+one if (n <= 1) then prod = gammaf(dn+alpha)*gammaf(dn+beta) prod = prod/(gammaf(dn)*gammaf(dn+alpha+beta)) pnormj = prod * two**const/(two*dn+const) return endif prod = gammaf(alpha+one)*gammaf(beta+one) prod = prod/(two*(one+const)*gammaf(const+one)) prod = prod*(one+alpha)*(two+alpha) prod = prod*(one+beta)*(two+beta) do i=3,n dindx = dble(i) frac = (dindx+alpha)*(dindx+beta)/(dindx*(dindx+alpha+beta)) prod = prod*frac enddo pnormj = prod * two**const/(two*dn+const) end function pnormj ! !------------------------------------------------------------------------ ! subroutine zwgjd(z,w,np,alpha,beta) !======================================================================= ! ! Z w g j d : Generate np Gauss-Jacobi points and weights ! associated with Jacobi polynomial of degree n = np-1 ! ! Note : Coefficients alpha and beta must be greater than -1. ! ---- !======================================================================= implicit none double precision, parameter :: zero=0.d0,one=1.d0,two=2.d0 integer np double precision z(np),w(np) double precision alpha,beta integer n,np1,np2,i double precision p,pd,pm1,pdm1,pm2,pdm2 double precision apb,dnp1,dnp2,fac1,fac2,fac3,fnorm,rcoef double precision, external :: gammaf,pnormj pd = zero pm1 = zero pm2 = zero pdm1 = zero pdm2 = zero n = np-1 apb = alpha+beta p = zero pdm1 = zero if (np <= 0) stop 'minimum number of Gauss points is 1' if ((alpha <= -one) .or. (beta <= -one)) stop 'alpha and beta must be greater than -1' if (np == 1) then z(1) = (beta-alpha)/(apb+two) w(1) = gammaf(alpha+one)*gammaf(beta+one)/gammaf(apb+two) * two**(apb+one) return endif call jacg(z,np,alpha,beta) np1 = n+1 np2 = n+2 dnp1 = dble(np1) dnp2 = dble(np2) fac1 = dnp1+alpha+beta+one fac2 = fac1+dnp1 fac3 = fac2+one fnorm = pnormj(np1,alpha,beta) rcoef = (fnorm*fac2*fac3)/(two*fac1*dnp2) do i=1,np call jacobf(p,pd,pm1,pdm1,pm2,pdm2,np2,alpha,beta,z(i)) w(i) = -rcoef/(p*pdm1) enddo end subroutine zwgjd ! !------------------------------------------------------------------------ ! subroutine zwgljd(z,w,np,alpha,beta) !======================================================================= ! ! Z w g l j d : Generate np Gauss-Lobatto-Jacobi points and the ! ----------- weights associated with Jacobi polynomials of degree ! n = np-1. ! ! Note : alpha and beta coefficients must be greater than -1. ! Legendre polynomials are special case of Jacobi polynomials ! just by setting alpha and beta to 0. ! !======================================================================= implicit none double precision, parameter :: zero=0.d0,one=1.d0,two=2.d0 integer np double precision alpha,beta double precision z(np), w(np) integer n,nm1,i double precision p,pd,pm1,pdm1,pm2,pdm2 double precision alpg,betg double precision, external :: endw1,endw2 p = zero pm1 = zero pm2 = zero pdm1 = zero pdm2 = zero n = np-1 nm1 = n-1 pd = zero if (np <= 1) stop 'minimum number of Gauss-Lobatto points is 2' ! with spectral elements, use at least 3 points if (np <= 2) stop 'minimum number of Gauss-Lobatto points for the SEM is 3' if ((alpha <= -one) .or. (beta <= -one)) stop 'alpha and beta must be greater than -1' if (nm1 > 0) then alpg = alpha+one betg = beta+one call zwgjd(z(2),w(2),nm1,alpg,betg) endif z(1) = - one z(np) = one do i=2,np-1 w(i) = w(i)/(one-z(i)**2) enddo call jacobf(p,pd,pm1,pdm1,pm2,pdm2,n,alpha,beta,z(1)) w(1) = endw1(n,alpha,beta)/(two*pd) call jacobf(p,pd,pm1,pdm1,pm2,pdm2,n,alpha,beta,z(np)) w(np) = endw2(n,alpha,beta)/(two*pd) end subroutine zwgljd
gpl-3.0
SaberMod/GCC_SaberMod
libgfortran/generated/_sinh_r4.F90
35
1473
! Copyright (C) 2002-2014 Free Software Foundation, Inc. ! Contributed by Paul Brook <paul@nowt.org> ! !This file is part of the GNU Fortran 95 runtime library (libgfortran). ! !GNU libgfortran is free software; you can redistribute it and/or !modify it under the terms of the GNU General Public !License as published by the Free Software Foundation; either !version 3 of the License, or (at your option) any later version. !GNU libgfortran is distributed in the hope that it will be useful, !but WITHOUT ANY WARRANTY; without even the implied warranty of !MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the !GNU General Public License for more details. ! !Under Section 7 of GPL version 3, you are granted additional !permissions described in the GCC Runtime Library Exception, version !3.1, as published by the Free Software Foundation. ! !You should have received a copy of the GNU General Public License and !a copy of the GCC Runtime Library Exception along with this program; !see the files COPYING3 and COPYING.RUNTIME respectively. If not, see !<http://www.gnu.org/licenses/>. ! !This file is machine generated. #include "config.h" #include "kinds.inc" #include "c99_protos.inc" #if defined (HAVE_GFC_REAL_4) #ifdef HAVE_SINHF elemental function _gfortran_specific__sinh_r4 (parm) real (kind=4), intent (in) :: parm real (kind=4) :: _gfortran_specific__sinh_r4 _gfortran_specific__sinh_r4 = sinh (parm) end function #endif #endif
gpl-2.0
ARTED/ARTED_noc
src/PSE_hpsi_DFT.f90
1
2318
! ! Copyright 2016 ARTED developers ! ! Licensed under the Apache License, Version 2.0 (the "License"); ! you may not use this file except in compliance with the License. ! You may obtain a copy of the License at ! ! http://www.apache.org/licenses/LICENSE-2.0 ! ! Unless required by applicable law or agreed to in writing, software ! distributed under the License is distributed on an "AS IS" BASIS, ! WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ! See the License for the specific language governing permissions and ! limitations under the License. ! subroutine PSE_hpsi_DFT(ik) use global_variables use PSE_variables implicit none integer :: ik integer :: i,ix,iy,iz real(8) :: kAc2_2 integer :: ilma,ia,j complex(8) :: uVpsi kAc2_2=sum(kAc_Cvec(:,ik)**2)*0.5 do i=1,NL zft2(iLx(1,i),iLx(2,i),iLx(3,i))=tpsi(i) end do do ix=0,NL1-1 do iy=0,NL2-1 do iz=0,NL3-1 zft1(ix,iy,iz)=sum(cexp_x3(:,iz)*zft2(ix,iy,:)) end do end do end do do ix=0,NL1-1 do iy=0,NL2-1 do iz=0,NL3-1 zft2(ix,iy,iz)=sum(cexp_x2(:,iy)*zft1(ix,:,iz)) end do end do end do do ix=0,NL1-1 do iy=0,NL2-1 do iz=0,NL3-1 zft1(ix,iy,iz)=sum(cexp_x1(:,ix)*zft2(:,iy,iz)) end do end do end do zft1(:,:,:)=(-0.5d0*Lap_k(:,:,:) & -kAc_Cvec(1,ik)*Grad_x_zI(:,:,:) & -kAc_Cvec(2,ik)*Grad_y_zI(:,:,:) & -kAc_Cvec(3,ik)*Grad_z_zI(:,:,:) & )*zft1(:,:,:)/dble(NL1*NL2*NL3) do ix=0,NL1-1 do iy=0,NL2-1 do iz=0,NL3-1 zft2(ix,iy,iz)=sum(exp_x3(:,iz)*zft1(ix,iy,:)) end do end do end do do ix=0,NL1-1 do iy=0,NL2-1 do iz=0,NL3-1 zft1(ix,iy,iz)=sum(exp_x2(:,iy)*zft2(ix,:,iz)) end do end do end do do ix=0,NL1-1 do iy=0,NL2-1 do iz=0,NL3-1 zft2(ix,iy,iz)=sum(exp_x1(:,ix)*zft1(:,iy,iz)) end do end do end do do i=1,NL htpsi(i)=zft2(iLx(1,i),iLx(2,i),iLx(3,i)) end do htpsi=htpsi+(Vloc+kAc2_2)*tpsi ! return !Calculating nonlocal part do ilma=1,Nlma ia=a_tbl(ilma) uVpsi=0.d0 do j=1,Mps(ia) i=Jxyz(j,ia) uVpsi=uVpsi+uV(j,ilma)*ekr(j,ia,ik)*tpsi(i) enddo uVpsi=uVpsi*H123*iuV(ilma) do j=1,Mps(ia) i=Jxyz(j,ia) htpsi(i)=htpsi(i)+conjg(ekr(j,ia,ik))*uVpsi*uV(j,ilma) enddo enddo return end subroutine PSE_hpsi_DFT
apache-2.0
jag1g13/lammps
lib/linalg/dgesvd.f
52
134919
*> \brief <b> DGESVD computes the singular value decomposition (SVD) for GE matrices</b> * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DGESVD + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesvd.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesvd.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesvd.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, * WORK, LWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER JOBU, JOBVT * INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N * .. * .. Array Arguments .. * DOUBLE PRECISION A( LDA, * ), S( * ), U( LDU, * ), * $ VT( LDVT, * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DGESVD computes the singular value decomposition (SVD) of a real *> M-by-N matrix A, optionally computing the left and/or right singular *> vectors. The SVD is written *> *> A = U * SIGMA * transpose(V) *> *> where SIGMA is an M-by-N matrix which is zero except for its *> min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and *> V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA *> are the singular values of A; they are real and non-negative, and *> are returned in descending order. The first min(m,n) columns of *> U and V are the left and right singular vectors of A. *> *> Note that the routine returns V**T, not V. *> \endverbatim * * Arguments: * ========== * *> \param[in] JOBU *> \verbatim *> JOBU is CHARACTER*1 *> Specifies options for computing all or part of the matrix U: *> = 'A': all M columns of U are returned in array U: *> = 'S': the first min(m,n) columns of U (the left singular *> vectors) are returned in the array U; *> = 'O': the first min(m,n) columns of U (the left singular *> vectors) are overwritten on the array A; *> = 'N': no columns of U (no left singular vectors) are *> computed. *> \endverbatim *> *> \param[in] JOBVT *> \verbatim *> JOBVT is CHARACTER*1 *> Specifies options for computing all or part of the matrix *> V**T: *> = 'A': all N rows of V**T are returned in the array VT; *> = 'S': the first min(m,n) rows of V**T (the right singular *> vectors) are returned in the array VT; *> = 'O': the first min(m,n) rows of V**T (the right singular *> vectors) are overwritten on the array A; *> = 'N': no rows of V**T (no right singular vectors) are *> computed. *> *> JOBVT and JOBU cannot both be 'O'. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the input matrix A. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the input matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,N) *> On entry, the M-by-N matrix A. *> On exit, *> if JOBU = 'O', A is overwritten with the first min(m,n) *> columns of U (the left singular vectors, *> stored columnwise); *> if JOBVT = 'O', A is overwritten with the first min(m,n) *> rows of V**T (the right singular vectors, *> stored rowwise); *> if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A *> are destroyed. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim *> *> \param[out] S *> \verbatim *> S is DOUBLE PRECISION array, dimension (min(M,N)) *> The singular values of A, sorted so that S(i) >= S(i+1). *> \endverbatim *> *> \param[out] U *> \verbatim *> U is DOUBLE PRECISION array, dimension (LDU,UCOL) *> (LDU,M) if JOBU = 'A' or (LDU,min(M,N)) if JOBU = 'S'. *> If JOBU = 'A', U contains the M-by-M orthogonal matrix U; *> if JOBU = 'S', U contains the first min(m,n) columns of U *> (the left singular vectors, stored columnwise); *> if JOBU = 'N' or 'O', U is not referenced. *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> The leading dimension of the array U. LDU >= 1; if *> JOBU = 'S' or 'A', LDU >= M. *> \endverbatim *> *> \param[out] VT *> \verbatim *> VT is DOUBLE PRECISION array, dimension (LDVT,N) *> If JOBVT = 'A', VT contains the N-by-N orthogonal matrix *> V**T; *> if JOBVT = 'S', VT contains the first min(m,n) rows of *> V**T (the right singular vectors, stored rowwise); *> if JOBVT = 'N' or 'O', VT is not referenced. *> \endverbatim *> *> \param[in] LDVT *> \verbatim *> LDVT is INTEGER *> The leading dimension of the array VT. LDVT >= 1; if *> JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= min(M,N). *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK; *> if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged *> superdiagonal elements of an upper bidiagonal matrix B *> whose diagonal is in S (not necessarily sorted). B *> satisfies A = U * B * VT, so it has the same singular values *> as A, and singular vectors related by U and VT. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. *> LWORK >= MAX(1,5*MIN(M,N)) for the paths (see comments inside code): *> - PATH 1 (M much larger than N, JOBU='N') *> - PATH 1t (N much larger than M, JOBVT='N') *> LWORK >= MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N)) for the other paths *> For good performance, LWORK should generally be larger. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: if DBDSQR did not converge, INFO specifies how many *> superdiagonals of an intermediate bidiagonal form B *> did not converge to zero. See the description of WORK *> above for details. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date April 2012 * *> \ingroup doubleGEsing * * ===================================================================== SUBROUTINE DGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, $ VT, LDVT, WORK, LWORK, INFO ) * * -- LAPACK driver routine (version 3.4.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * April 2012 * * .. Scalar Arguments .. CHARACTER JOBU, JOBVT INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), S( * ), U( LDU, * ), $ VT( LDVT, * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. * .. Local Scalars .. LOGICAL LQUERY, WNTUA, WNTUAS, WNTUN, WNTUO, WNTUS, $ WNTVA, WNTVAS, WNTVN, WNTVO, WNTVS INTEGER BDSPAC, BLK, CHUNK, I, IE, IERR, IR, ISCL, $ ITAU, ITAUP, ITAUQ, IU, IWORK, LDWRKR, LDWRKU, $ MAXWRK, MINMN, MINWRK, MNTHR, NCU, NCVT, NRU, $ NRVT, WRKBL INTEGER LWORK_DGEQRF, LWORK_DORGQR_N, LWORK_DORGQR_M, $ LWORK_DGEBRD, LWORK_DORGBR_P, LWORK_DORGBR_Q, $ LWORK_DGELQF, LWORK_DORGLQ_N, LWORK_DORGLQ_M DOUBLE PRECISION ANRM, BIGNUM, EPS, SMLNUM * .. * .. Local Arrays .. DOUBLE PRECISION DUM( 1 ) * .. * .. External Subroutines .. EXTERNAL DBDSQR, DGEBRD, DGELQF, DGEMM, DGEQRF, DLACPY, $ DLASCL, DLASET, DORGBR, DORGLQ, DORGQR, DORMBR, $ XERBLA * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV DOUBLE PRECISION DLAMCH, DLANGE EXTERNAL LSAME, ILAENV, DLAMCH, DLANGE * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, SQRT * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 MINMN = MIN( M, N ) WNTUA = LSAME( JOBU, 'A' ) WNTUS = LSAME( JOBU, 'S' ) WNTUAS = WNTUA .OR. WNTUS WNTUO = LSAME( JOBU, 'O' ) WNTUN = LSAME( JOBU, 'N' ) WNTVA = LSAME( JOBVT, 'A' ) WNTVS = LSAME( JOBVT, 'S' ) WNTVAS = WNTVA .OR. WNTVS WNTVO = LSAME( JOBVT, 'O' ) WNTVN = LSAME( JOBVT, 'N' ) LQUERY = ( LWORK.EQ.-1 ) * IF( .NOT.( WNTUA .OR. WNTUS .OR. WNTUO .OR. WNTUN ) ) THEN INFO = -1 ELSE IF( .NOT.( WNTVA .OR. WNTVS .OR. WNTVO .OR. WNTVN ) .OR. $ ( WNTVO .AND. WNTUO ) ) THEN INFO = -2 ELSE IF( M.LT.0 ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -6 ELSE IF( LDU.LT.1 .OR. ( WNTUAS .AND. LDU.LT.M ) ) THEN INFO = -9 ELSE IF( LDVT.LT.1 .OR. ( WNTVA .AND. LDVT.LT.N ) .OR. $ ( WNTVS .AND. LDVT.LT.MINMN ) ) THEN INFO = -11 END IF * * Compute workspace * (Note: Comments in the code beginning "Workspace:" describe the * minimal amount of workspace needed at that point in the code, * as well as the preferred amount for good performance. * NB refers to the optimal block size for the immediately * following subroutine, as returned by ILAENV.) * IF( INFO.EQ.0 ) THEN MINWRK = 1 MAXWRK = 1 IF( M.GE.N .AND. MINMN.GT.0 ) THEN * * Compute space needed for DBDSQR * MNTHR = ILAENV( 6, 'DGESVD', JOBU // JOBVT, M, N, 0, 0 ) BDSPAC = 5*N * Compute space needed for DGEQRF CALL DGEQRF( M, N, A, LDA, DUM(1), DUM(1), -1, IERR ) LWORK_DGEQRF=DUM(1) * Compute space needed for DORGQR CALL DORGQR( M, N, N, A, LDA, DUM(1), DUM(1), -1, IERR ) LWORK_DORGQR_N=DUM(1) CALL DORGQR( M, M, N, A, LDA, DUM(1), DUM(1), -1, IERR ) LWORK_DORGQR_M=DUM(1) * Compute space needed for DGEBRD CALL DGEBRD( N, N, A, LDA, S, DUM(1), DUM(1), $ DUM(1), DUM(1), -1, IERR ) LWORK_DGEBRD=DUM(1) * Compute space needed for DORGBR P CALL DORGBR( 'P', N, N, N, A, LDA, DUM(1), $ DUM(1), -1, IERR ) LWORK_DORGBR_P=DUM(1) * Compute space needed for DORGBR Q CALL DORGBR( 'Q', N, N, N, A, LDA, DUM(1), $ DUM(1), -1, IERR ) LWORK_DORGBR_Q=DUM(1) * IF( M.GE.MNTHR ) THEN IF( WNTUN ) THEN * * Path 1 (M much larger than N, JOBU='N') * MAXWRK = N + LWORK_DGEQRF MAXWRK = MAX( MAXWRK, 3*N+LWORK_DGEBRD ) IF( WNTVO .OR. WNTVAS ) $ MAXWRK = MAX( MAXWRK, 3*N+LWORK_DORGBR_P ) MAXWRK = MAX( MAXWRK, BDSPAC ) MINWRK = MAX( 4*N, BDSPAC ) ELSE IF( WNTUO .AND. WNTVN ) THEN * * Path 2 (M much larger than N, JOBU='O', JOBVT='N') * WRKBL = N + LWORK_DGEQRF WRKBL = MAX( WRKBL, N+LWORK_DORGQR_N ) WRKBL = MAX( WRKBL, 3*N+LWORK_DGEBRD ) WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_Q ) WRKBL = MAX( WRKBL, BDSPAC ) MAXWRK = MAX( N*N+WRKBL, N*N+M*N+N ) MINWRK = MAX( 3*N+M, BDSPAC ) ELSE IF( WNTUO .AND. WNTVAS ) THEN * * Path 3 (M much larger than N, JOBU='O', JOBVT='S' or * 'A') * WRKBL = N + LWORK_DGEQRF WRKBL = MAX( WRKBL, N+LWORK_DORGQR_N ) WRKBL = MAX( WRKBL, 3*N+LWORK_DGEBRD ) WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_Q ) WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_P ) WRKBL = MAX( WRKBL, BDSPAC ) MAXWRK = MAX( N*N+WRKBL, N*N+M*N+N ) MINWRK = MAX( 3*N+M, BDSPAC ) ELSE IF( WNTUS .AND. WNTVN ) THEN * * Path 4 (M much larger than N, JOBU='S', JOBVT='N') * WRKBL = N + LWORK_DGEQRF WRKBL = MAX( WRKBL, N+LWORK_DORGQR_N ) WRKBL = MAX( WRKBL, 3*N+LWORK_DGEBRD ) WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_Q ) WRKBL = MAX( WRKBL, BDSPAC ) MAXWRK = N*N + WRKBL MINWRK = MAX( 3*N+M, BDSPAC ) ELSE IF( WNTUS .AND. WNTVO ) THEN * * Path 5 (M much larger than N, JOBU='S', JOBVT='O') * WRKBL = N + LWORK_DGEQRF WRKBL = MAX( WRKBL, N+LWORK_DORGQR_N ) WRKBL = MAX( WRKBL, 3*N+LWORK_DGEBRD ) WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_Q ) WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_P ) WRKBL = MAX( WRKBL, BDSPAC ) MAXWRK = 2*N*N + WRKBL MINWRK = MAX( 3*N+M, BDSPAC ) ELSE IF( WNTUS .AND. WNTVAS ) THEN * * Path 6 (M much larger than N, JOBU='S', JOBVT='S' or * 'A') * WRKBL = N + LWORK_DGEQRF WRKBL = MAX( WRKBL, N+LWORK_DORGQR_N ) WRKBL = MAX( WRKBL, 3*N+LWORK_DGEBRD ) WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_Q ) WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_P ) WRKBL = MAX( WRKBL, BDSPAC ) MAXWRK = N*N + WRKBL MINWRK = MAX( 3*N+M, BDSPAC ) ELSE IF( WNTUA .AND. WNTVN ) THEN * * Path 7 (M much larger than N, JOBU='A', JOBVT='N') * WRKBL = N + LWORK_DGEQRF WRKBL = MAX( WRKBL, N+LWORK_DORGQR_M ) WRKBL = MAX( WRKBL, 3*N+LWORK_DGEBRD ) WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_Q ) WRKBL = MAX( WRKBL, BDSPAC ) MAXWRK = N*N + WRKBL MINWRK = MAX( 3*N+M, BDSPAC ) ELSE IF( WNTUA .AND. WNTVO ) THEN * * Path 8 (M much larger than N, JOBU='A', JOBVT='O') * WRKBL = N + LWORK_DGEQRF WRKBL = MAX( WRKBL, N+LWORK_DORGQR_M ) WRKBL = MAX( WRKBL, 3*N+LWORK_DGEBRD ) WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_Q ) WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_P ) WRKBL = MAX( WRKBL, BDSPAC ) MAXWRK = 2*N*N + WRKBL MINWRK = MAX( 3*N+M, BDSPAC ) ELSE IF( WNTUA .AND. WNTVAS ) THEN * * Path 9 (M much larger than N, JOBU='A', JOBVT='S' or * 'A') * WRKBL = N + LWORK_DGEQRF WRKBL = MAX( WRKBL, N+LWORK_DORGQR_M ) WRKBL = MAX( WRKBL, 3*N+LWORK_DGEBRD ) WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_Q ) WRKBL = MAX( WRKBL, 3*N+LWORK_DORGBR_P ) WRKBL = MAX( WRKBL, BDSPAC ) MAXWRK = N*N + WRKBL MINWRK = MAX( 3*N+M, BDSPAC ) END IF ELSE * * Path 10 (M at least N, but not much larger) * CALL DGEBRD( M, N, A, LDA, S, DUM(1), DUM(1), $ DUM(1), DUM(1), -1, IERR ) LWORK_DGEBRD=DUM(1) MAXWRK = 3*N + LWORK_DGEBRD IF( WNTUS .OR. WNTUO ) THEN CALL DORGBR( 'Q', M, N, N, A, LDA, DUM(1), $ DUM(1), -1, IERR ) LWORK_DORGBR_Q=DUM(1) MAXWRK = MAX( MAXWRK, 3*N+LWORK_DORGBR_Q ) END IF IF( WNTUA ) THEN CALL DORGBR( 'Q', M, M, N, A, LDA, DUM(1), $ DUM(1), -1, IERR ) LWORK_DORGBR_Q=DUM(1) MAXWRK = MAX( MAXWRK, 3*N+LWORK_DORGBR_Q ) END IF IF( .NOT.WNTVN ) THEN MAXWRK = MAX( MAXWRK, 3*N+LWORK_DORGBR_P ) END IF MAXWRK = MAX( MAXWRK, BDSPAC ) MINWRK = MAX( 3*N+M, BDSPAC ) END IF ELSE IF( MINMN.GT.0 ) THEN * * Compute space needed for DBDSQR * MNTHR = ILAENV( 6, 'DGESVD', JOBU // JOBVT, M, N, 0, 0 ) BDSPAC = 5*M * Compute space needed for DGELQF CALL DGELQF( M, N, A, LDA, DUM(1), DUM(1), -1, IERR ) LWORK_DGELQF=DUM(1) * Compute space needed for DORGLQ CALL DORGLQ( N, N, M, DUM(1), N, DUM(1), DUM(1), -1, IERR ) LWORK_DORGLQ_N=DUM(1) CALL DORGLQ( M, N, M, A, LDA, DUM(1), DUM(1), -1, IERR ) LWORK_DORGLQ_M=DUM(1) * Compute space needed for DGEBRD CALL DGEBRD( M, M, A, LDA, S, DUM(1), DUM(1), $ DUM(1), DUM(1), -1, IERR ) LWORK_DGEBRD=DUM(1) * Compute space needed for DORGBR P CALL DORGBR( 'P', M, M, M, A, N, DUM(1), $ DUM(1), -1, IERR ) LWORK_DORGBR_P=DUM(1) * Compute space needed for DORGBR Q CALL DORGBR( 'Q', M, M, M, A, N, DUM(1), $ DUM(1), -1, IERR ) LWORK_DORGBR_Q=DUM(1) IF( N.GE.MNTHR ) THEN IF( WNTVN ) THEN * * Path 1t(N much larger than M, JOBVT='N') * MAXWRK = M + LWORK_DGELQF MAXWRK = MAX( MAXWRK, 3*M+LWORK_DGEBRD ) IF( WNTUO .OR. WNTUAS ) $ MAXWRK = MAX( MAXWRK, 3*M+LWORK_DORGBR_Q ) MAXWRK = MAX( MAXWRK, BDSPAC ) MINWRK = MAX( 4*M, BDSPAC ) ELSE IF( WNTVO .AND. WNTUN ) THEN * * Path 2t(N much larger than M, JOBU='N', JOBVT='O') * WRKBL = M + LWORK_DGELQF WRKBL = MAX( WRKBL, M+LWORK_DORGLQ_M ) WRKBL = MAX( WRKBL, 3*M+LWORK_DGEBRD ) WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_P ) WRKBL = MAX( WRKBL, BDSPAC ) MAXWRK = MAX( M*M+WRKBL, M*M+M*N+M ) MINWRK = MAX( 3*M+N, BDSPAC ) ELSE IF( WNTVO .AND. WNTUAS ) THEN * * Path 3t(N much larger than M, JOBU='S' or 'A', * JOBVT='O') * WRKBL = M + LWORK_DGELQF WRKBL = MAX( WRKBL, M+LWORK_DORGLQ_M ) WRKBL = MAX( WRKBL, 3*M+LWORK_DGEBRD ) WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_P ) WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_Q ) WRKBL = MAX( WRKBL, BDSPAC ) MAXWRK = MAX( M*M+WRKBL, M*M+M*N+M ) MINWRK = MAX( 3*M+N, BDSPAC ) ELSE IF( WNTVS .AND. WNTUN ) THEN * * Path 4t(N much larger than M, JOBU='N', JOBVT='S') * WRKBL = M + LWORK_DGELQF WRKBL = MAX( WRKBL, M+LWORK_DORGLQ_M ) WRKBL = MAX( WRKBL, 3*M+LWORK_DGEBRD ) WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_P ) WRKBL = MAX( WRKBL, BDSPAC ) MAXWRK = M*M + WRKBL MINWRK = MAX( 3*M+N, BDSPAC ) ELSE IF( WNTVS .AND. WNTUO ) THEN * * Path 5t(N much larger than M, JOBU='O', JOBVT='S') * WRKBL = M + LWORK_DGELQF WRKBL = MAX( WRKBL, M+LWORK_DORGLQ_M ) WRKBL = MAX( WRKBL, 3*M+LWORK_DGEBRD ) WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_P ) WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_Q ) WRKBL = MAX( WRKBL, BDSPAC ) MAXWRK = 2*M*M + WRKBL MINWRK = MAX( 3*M+N, BDSPAC ) ELSE IF( WNTVS .AND. WNTUAS ) THEN * * Path 6t(N much larger than M, JOBU='S' or 'A', * JOBVT='S') * WRKBL = M + LWORK_DGELQF WRKBL = MAX( WRKBL, M+LWORK_DORGLQ_M ) WRKBL = MAX( WRKBL, 3*M+LWORK_DGEBRD ) WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_P ) WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_Q ) WRKBL = MAX( WRKBL, BDSPAC ) MAXWRK = M*M + WRKBL MINWRK = MAX( 3*M+N, BDSPAC ) ELSE IF( WNTVA .AND. WNTUN ) THEN * * Path 7t(N much larger than M, JOBU='N', JOBVT='A') * WRKBL = M + LWORK_DGELQF WRKBL = MAX( WRKBL, M+LWORK_DORGLQ_N ) WRKBL = MAX( WRKBL, 3*M+LWORK_DGEBRD ) WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_P ) WRKBL = MAX( WRKBL, BDSPAC ) MAXWRK = M*M + WRKBL MINWRK = MAX( 3*M+N, BDSPAC ) ELSE IF( WNTVA .AND. WNTUO ) THEN * * Path 8t(N much larger than M, JOBU='O', JOBVT='A') * WRKBL = M + LWORK_DGELQF WRKBL = MAX( WRKBL, M+LWORK_DORGLQ_N ) WRKBL = MAX( WRKBL, 3*M+LWORK_DGEBRD ) WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_P ) WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_Q ) WRKBL = MAX( WRKBL, BDSPAC ) MAXWRK = 2*M*M + WRKBL MINWRK = MAX( 3*M+N, BDSPAC ) ELSE IF( WNTVA .AND. WNTUAS ) THEN * * Path 9t(N much larger than M, JOBU='S' or 'A', * JOBVT='A') * WRKBL = M + LWORK_DGELQF WRKBL = MAX( WRKBL, M+LWORK_DORGLQ_N ) WRKBL = MAX( WRKBL, 3*M+LWORK_DGEBRD ) WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_P ) WRKBL = MAX( WRKBL, 3*M+LWORK_DORGBR_Q ) WRKBL = MAX( WRKBL, BDSPAC ) MAXWRK = M*M + WRKBL MINWRK = MAX( 3*M+N, BDSPAC ) END IF ELSE * * Path 10t(N greater than M, but not much larger) * CALL DGEBRD( M, N, A, LDA, S, DUM(1), DUM(1), $ DUM(1), DUM(1), -1, IERR ) LWORK_DGEBRD=DUM(1) MAXWRK = 3*M + LWORK_DGEBRD IF( WNTVS .OR. WNTVO ) THEN * Compute space needed for DORGBR P CALL DORGBR( 'P', M, N, M, A, N, DUM(1), $ DUM(1), -1, IERR ) LWORK_DORGBR_P=DUM(1) MAXWRK = MAX( MAXWRK, 3*M+LWORK_DORGBR_P ) END IF IF( WNTVA ) THEN CALL DORGBR( 'P', N, N, M, A, N, DUM(1), $ DUM(1), -1, IERR ) LWORK_DORGBR_P=DUM(1) MAXWRK = MAX( MAXWRK, 3*M+LWORK_DORGBR_P ) END IF IF( .NOT.WNTUN ) THEN MAXWRK = MAX( MAXWRK, 3*M+LWORK_DORGBR_Q ) END IF MAXWRK = MAX( MAXWRK, BDSPAC ) MINWRK = MAX( 3*M+N, BDSPAC ) END IF END IF MAXWRK = MAX( MAXWRK, MINWRK ) WORK( 1 ) = MAXWRK * IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN INFO = -13 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DGESVD', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 ) THEN RETURN END IF * * Get machine constants * EPS = DLAMCH( 'P' ) SMLNUM = SQRT( DLAMCH( 'S' ) ) / EPS BIGNUM = ONE / SMLNUM * * Scale A if max element outside range [SMLNUM,BIGNUM] * ANRM = DLANGE( 'M', M, N, A, LDA, DUM ) ISCL = 0 IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN ISCL = 1 CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, IERR ) ELSE IF( ANRM.GT.BIGNUM ) THEN ISCL = 1 CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, IERR ) END IF * IF( M.GE.N ) THEN * * A has at least as many rows as columns. If A has sufficiently * more rows than columns, first reduce using the QR * decomposition (if sufficient workspace available) * IF( M.GE.MNTHR ) THEN * IF( WNTUN ) THEN * * Path 1 (M much larger than N, JOBU='N') * No left singular vectors to be computed * ITAU = 1 IWORK = ITAU + N * * Compute A=Q*R * (Workspace: need 2*N, prefer N+N*NB) * CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Zero out below R * CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA ) IE = 1 ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in A * (Workspace: need 4*N, prefer 3*N+2*N*NB) * CALL DGEBRD( N, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1, $ IERR ) NCVT = 0 IF( WNTVO .OR. WNTVAS ) THEN * * If right singular vectors desired, generate P'. * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) * CALL DORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) NCVT = N END IF IWORK = IE + N * * Perform bidiagonal QR iteration, computing right * singular vectors of A in A if desired * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', N, NCVT, 0, 0, S, WORK( IE ), A, LDA, $ DUM, 1, DUM, 1, WORK( IWORK ), INFO ) * * If right singular vectors desired in VT, copy them there * IF( WNTVAS ) $ CALL DLACPY( 'F', N, N, A, LDA, VT, LDVT ) * ELSE IF( WNTUO .AND. WNTVN ) THEN * * Path 2 (M much larger than N, JOBU='O', JOBVT='N') * N left singular vectors to be overwritten on A and * no right singular vectors to be computed * IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN * * Sufficient workspace for a fast algorithm * IR = 1 IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+LDA*N ) THEN * * WORK(IU) is LDA by N, WORK(IR) is LDA by N * LDWRKU = LDA LDWRKR = LDA ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+N*N ) THEN * * WORK(IU) is LDA by N, WORK(IR) is N by N * LDWRKU = LDA LDWRKR = N ELSE * * WORK(IU) is LDWRKU by N, WORK(IR) is N by N * LDWRKU = ( LWORK-N*N-N ) / N LDWRKR = N END IF ITAU = IR + LDWRKR*N IWORK = ITAU + N * * Compute A=Q*R * (Workspace: need N*N+2*N, prefer N*N+N+N*NB) * CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to WORK(IR) and zero out below it * CALL DLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR ) CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, WORK( IR+1 ), $ LDWRKR ) * * Generate Q in A * (Workspace: need N*N+2*N, prefer N*N+N+N*NB) * CALL DORGQR( M, N, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in WORK(IR) * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) * CALL DGEBRD( N, N, WORK( IR ), LDWRKR, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Generate left vectors bidiagonalizing R * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB) * CALL DORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of R in WORK(IR) * (Workspace: need N*N+BDSPAC) * CALL DBDSQR( 'U', N, 0, N, 0, S, WORK( IE ), DUM, 1, $ WORK( IR ), LDWRKR, DUM, 1, $ WORK( IWORK ), INFO ) IU = IE + N * * Multiply Q in A by left singular vectors of R in * WORK(IR), storing result in WORK(IU) and copying to A * (Workspace: need N*N+2*N, prefer N*N+M*N+N) * DO 10 I = 1, M, LDWRKU CHUNK = MIN( M-I+1, LDWRKU ) CALL DGEMM( 'N', 'N', CHUNK, N, N, ONE, A( I, 1 ), $ LDA, WORK( IR ), LDWRKR, ZERO, $ WORK( IU ), LDWRKU ) CALL DLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU, $ A( I, 1 ), LDA ) 10 CONTINUE * ELSE * * Insufficient workspace for a fast algorithm * IE = 1 ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize A * (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB) * CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Generate left vectors bidiagonalizing A * (Workspace: need 4*N, prefer 3*N+N*NB) * CALL DORGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of A in A * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', N, 0, M, 0, S, WORK( IE ), DUM, 1, $ A, LDA, DUM, 1, WORK( IWORK ), INFO ) * END IF * ELSE IF( WNTUO .AND. WNTVAS ) THEN * * Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A') * N left singular vectors to be overwritten on A and * N right singular vectors to be computed in VT * IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN * * Sufficient workspace for a fast algorithm * IR = 1 IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+LDA*N ) THEN * * WORK(IU) is LDA by N and WORK(IR) is LDA by N * LDWRKU = LDA LDWRKR = LDA ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+N )+N*N ) THEN * * WORK(IU) is LDA by N and WORK(IR) is N by N * LDWRKU = LDA LDWRKR = N ELSE * * WORK(IU) is LDWRKU by N and WORK(IR) is N by N * LDWRKU = ( LWORK-N*N-N ) / N LDWRKR = N END IF ITAU = IR + LDWRKR*N IWORK = ITAU + N * * Compute A=Q*R * (Workspace: need N*N+2*N, prefer N*N+N+N*NB) * CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to VT, zeroing out below it * CALL DLACPY( 'U', N, N, A, LDA, VT, LDVT ) IF( N.GT.1 ) $ CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, $ VT( 2, 1 ), LDVT ) * * Generate Q in A * (Workspace: need N*N+2*N, prefer N*N+N+N*NB) * CALL DORGQR( M, N, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in VT, copying result to WORK(IR) * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) * CALL DGEBRD( N, N, VT, LDVT, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'L', N, N, VT, LDVT, WORK( IR ), LDWRKR ) * * Generate left vectors bidiagonalizing R in WORK(IR) * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB) * CALL DORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right vectors bidiagonalizing R in VT * (Workspace: need N*N+4*N-1, prefer N*N+3*N+(N-1)*NB) * CALL DORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of R in WORK(IR) and computing right * singular vectors of R in VT * (Workspace: need N*N+BDSPAC) * CALL DBDSQR( 'U', N, N, N, 0, S, WORK( IE ), VT, LDVT, $ WORK( IR ), LDWRKR, DUM, 1, $ WORK( IWORK ), INFO ) IU = IE + N * * Multiply Q in A by left singular vectors of R in * WORK(IR), storing result in WORK(IU) and copying to A * (Workspace: need N*N+2*N, prefer N*N+M*N+N) * DO 20 I = 1, M, LDWRKU CHUNK = MIN( M-I+1, LDWRKU ) CALL DGEMM( 'N', 'N', CHUNK, N, N, ONE, A( I, 1 ), $ LDA, WORK( IR ), LDWRKR, ZERO, $ WORK( IU ), LDWRKU ) CALL DLACPY( 'F', CHUNK, N, WORK( IU ), LDWRKU, $ A( I, 1 ), LDA ) 20 CONTINUE * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + N * * Compute A=Q*R * (Workspace: need 2*N, prefer N+N*NB) * CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to VT, zeroing out below it * CALL DLACPY( 'U', N, N, A, LDA, VT, LDVT ) IF( N.GT.1 ) $ CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, $ VT( 2, 1 ), LDVT ) * * Generate Q in A * (Workspace: need 2*N, prefer N+N*NB) * CALL DORGQR( M, N, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in VT * (Workspace: need 4*N, prefer 3*N+2*N*NB) * CALL DGEBRD( N, N, VT, LDVT, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply Q in A by left vectors bidiagonalizing R * (Workspace: need 3*N+M, prefer 3*N+M*NB) * CALL DORMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT, $ WORK( ITAUQ ), A, LDA, WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right vectors bidiagonalizing R in VT * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) * CALL DORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of A in A and computing right * singular vectors of A in VT * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', N, N, M, 0, S, WORK( IE ), VT, LDVT, $ A, LDA, DUM, 1, WORK( IWORK ), INFO ) * END IF * ELSE IF( WNTUS ) THEN * IF( WNTVN ) THEN * * Path 4 (M much larger than N, JOBU='S', JOBVT='N') * N left singular vectors to be computed in U and * no right singular vectors to be computed * IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN * * Sufficient workspace for a fast algorithm * IR = 1 IF( LWORK.GE.WRKBL+LDA*N ) THEN * * WORK(IR) is LDA by N * LDWRKR = LDA ELSE * * WORK(IR) is N by N * LDWRKR = N END IF ITAU = IR + LDWRKR*N IWORK = ITAU + N * * Compute A=Q*R * (Workspace: need N*N+2*N, prefer N*N+N+N*NB) * CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to WORK(IR), zeroing out below it * CALL DLACPY( 'U', N, N, A, LDA, WORK( IR ), $ LDWRKR ) CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, $ WORK( IR+1 ), LDWRKR ) * * Generate Q in A * (Workspace: need N*N+2*N, prefer N*N+N+N*NB) * CALL DORGQR( M, N, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in WORK(IR) * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) * CALL DGEBRD( N, N, WORK( IR ), LDWRKR, S, $ WORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate left vectors bidiagonalizing R in WORK(IR) * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB) * CALL DORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of R in WORK(IR) * (Workspace: need N*N+BDSPAC) * CALL DBDSQR( 'U', N, 0, N, 0, S, WORK( IE ), DUM, $ 1, WORK( IR ), LDWRKR, DUM, 1, $ WORK( IWORK ), INFO ) * * Multiply Q in A by left singular vectors of R in * WORK(IR), storing result in U * (Workspace: need N*N) * CALL DGEMM( 'N', 'N', M, N, N, ONE, A, LDA, $ WORK( IR ), LDWRKR, ZERO, U, LDU ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (Workspace: need 2*N, prefer N+N*NB) * CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'L', M, N, A, LDA, U, LDU ) * * Generate Q in U * (Workspace: need 2*N, prefer N+N*NB) * CALL DORGQR( M, N, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Zero out below R in A * CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), $ LDA ) * * Bidiagonalize R in A * (Workspace: need 4*N, prefer 3*N+2*N*NB) * CALL DGEBRD( N, N, A, LDA, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply Q in U by left vectors bidiagonalizing R * (Workspace: need 3*N+M, prefer 3*N+M*NB) * CALL DORMBR( 'Q', 'R', 'N', M, N, N, A, LDA, $ WORK( ITAUQ ), U, LDU, WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', N, 0, M, 0, S, WORK( IE ), DUM, $ 1, U, LDU, DUM, 1, WORK( IWORK ), $ INFO ) * END IF * ELSE IF( WNTVO ) THEN * * Path 5 (M much larger than N, JOBU='S', JOBVT='O') * N left singular vectors to be computed in U and * N right singular vectors to be overwritten on A * IF( LWORK.GE.2*N*N+MAX( 4*N, BDSPAC ) ) THEN * * Sufficient workspace for a fast algorithm * IU = 1 IF( LWORK.GE.WRKBL+2*LDA*N ) THEN * * WORK(IU) is LDA by N and WORK(IR) is LDA by N * LDWRKU = LDA IR = IU + LDWRKU*N LDWRKR = LDA ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN * * WORK(IU) is LDA by N and WORK(IR) is N by N * LDWRKU = LDA IR = IU + LDWRKU*N LDWRKR = N ELSE * * WORK(IU) is N by N and WORK(IR) is N by N * LDWRKU = N IR = IU + LDWRKU*N LDWRKR = N END IF ITAU = IR + LDWRKR*N IWORK = ITAU + N * * Compute A=Q*R * (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) * CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to WORK(IU), zeroing out below it * CALL DLACPY( 'U', N, N, A, LDA, WORK( IU ), $ LDWRKU ) CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, $ WORK( IU+1 ), LDWRKU ) * * Generate Q in A * (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) * CALL DORGQR( M, N, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in WORK(IU), copying result to * WORK(IR) * (Workspace: need 2*N*N+4*N, * prefer 2*N*N+3*N+2*N*NB) * CALL DGEBRD( N, N, WORK( IU ), LDWRKU, S, $ WORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) CALL DLACPY( 'U', N, N, WORK( IU ), LDWRKU, $ WORK( IR ), LDWRKR ) * * Generate left bidiagonalizing vectors in WORK(IU) * (Workspace: need 2*N*N+4*N, prefer 2*N*N+3*N+N*NB) * CALL DORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right bidiagonalizing vectors in WORK(IR) * (Workspace: need 2*N*N+4*N-1, * prefer 2*N*N+3*N+(N-1)*NB) * CALL DORGBR( 'P', N, N, N, WORK( IR ), LDWRKR, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of R in WORK(IU) and computing * right singular vectors of R in WORK(IR) * (Workspace: need 2*N*N+BDSPAC) * CALL DBDSQR( 'U', N, N, N, 0, S, WORK( IE ), $ WORK( IR ), LDWRKR, WORK( IU ), $ LDWRKU, DUM, 1, WORK( IWORK ), INFO ) * * Multiply Q in A by left singular vectors of R in * WORK(IU), storing result in U * (Workspace: need N*N) * CALL DGEMM( 'N', 'N', M, N, N, ONE, A, LDA, $ WORK( IU ), LDWRKU, ZERO, U, LDU ) * * Copy right singular vectors of R to A * (Workspace: need N*N) * CALL DLACPY( 'F', N, N, WORK( IR ), LDWRKR, A, $ LDA ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (Workspace: need 2*N, prefer N+N*NB) * CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'L', M, N, A, LDA, U, LDU ) * * Generate Q in U * (Workspace: need 2*N, prefer N+N*NB) * CALL DORGQR( M, N, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Zero out below R in A * CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), $ LDA ) * * Bidiagonalize R in A * (Workspace: need 4*N, prefer 3*N+2*N*NB) * CALL DGEBRD( N, N, A, LDA, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply Q in U by left vectors bidiagonalizing R * (Workspace: need 3*N+M, prefer 3*N+M*NB) * CALL DORMBR( 'Q', 'R', 'N', M, N, N, A, LDA, $ WORK( ITAUQ ), U, LDU, WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right vectors bidiagonalizing R in A * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) * CALL DORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U and computing right * singular vectors of A in A * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', N, N, M, 0, S, WORK( IE ), A, $ LDA, U, LDU, DUM, 1, WORK( IWORK ), $ INFO ) * END IF * ELSE IF( WNTVAS ) THEN * * Path 6 (M much larger than N, JOBU='S', JOBVT='S' * or 'A') * N left singular vectors to be computed in U and * N right singular vectors to be computed in VT * IF( LWORK.GE.N*N+MAX( 4*N, BDSPAC ) ) THEN * * Sufficient workspace for a fast algorithm * IU = 1 IF( LWORK.GE.WRKBL+LDA*N ) THEN * * WORK(IU) is LDA by N * LDWRKU = LDA ELSE * * WORK(IU) is N by N * LDWRKU = N END IF ITAU = IU + LDWRKU*N IWORK = ITAU + N * * Compute A=Q*R * (Workspace: need N*N+2*N, prefer N*N+N+N*NB) * CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to WORK(IU), zeroing out below it * CALL DLACPY( 'U', N, N, A, LDA, WORK( IU ), $ LDWRKU ) CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, $ WORK( IU+1 ), LDWRKU ) * * Generate Q in A * (Workspace: need N*N+2*N, prefer N*N+N+N*NB) * CALL DORGQR( M, N, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in WORK(IU), copying result to VT * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) * CALL DGEBRD( N, N, WORK( IU ), LDWRKU, S, $ WORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) CALL DLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT, $ LDVT ) * * Generate left bidiagonalizing vectors in WORK(IU) * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB) * CALL DORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right bidiagonalizing vectors in VT * (Workspace: need N*N+4*N-1, * prefer N*N+3*N+(N-1)*NB) * CALL DORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of R in WORK(IU) and computing * right singular vectors of R in VT * (Workspace: need N*N+BDSPAC) * CALL DBDSQR( 'U', N, N, N, 0, S, WORK( IE ), VT, $ LDVT, WORK( IU ), LDWRKU, DUM, 1, $ WORK( IWORK ), INFO ) * * Multiply Q in A by left singular vectors of R in * WORK(IU), storing result in U * (Workspace: need N*N) * CALL DGEMM( 'N', 'N', M, N, N, ONE, A, LDA, $ WORK( IU ), LDWRKU, ZERO, U, LDU ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (Workspace: need 2*N, prefer N+N*NB) * CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'L', M, N, A, LDA, U, LDU ) * * Generate Q in U * (Workspace: need 2*N, prefer N+N*NB) * CALL DORGQR( M, N, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to VT, zeroing out below it * CALL DLACPY( 'U', N, N, A, LDA, VT, LDVT ) IF( N.GT.1 ) $ CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, $ VT( 2, 1 ), LDVT ) IE = ITAU ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in VT * (Workspace: need 4*N, prefer 3*N+2*N*NB) * CALL DGEBRD( N, N, VT, LDVT, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply Q in U by left bidiagonalizing vectors * in VT * (Workspace: need 3*N+M, prefer 3*N+M*NB) * CALL DORMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT, $ WORK( ITAUQ ), U, LDU, WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right bidiagonalizing vectors in VT * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) * CALL DORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U and computing right * singular vectors of A in VT * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', N, N, M, 0, S, WORK( IE ), VT, $ LDVT, U, LDU, DUM, 1, WORK( IWORK ), $ INFO ) * END IF * END IF * ELSE IF( WNTUA ) THEN * IF( WNTVN ) THEN * * Path 7 (M much larger than N, JOBU='A', JOBVT='N') * M left singular vectors to be computed in U and * no right singular vectors to be computed * IF( LWORK.GE.N*N+MAX( N+M, 4*N, BDSPAC ) ) THEN * * Sufficient workspace for a fast algorithm * IR = 1 IF( LWORK.GE.WRKBL+LDA*N ) THEN * * WORK(IR) is LDA by N * LDWRKR = LDA ELSE * * WORK(IR) is N by N * LDWRKR = N END IF ITAU = IR + LDWRKR*N IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (Workspace: need N*N+2*N, prefer N*N+N+N*NB) * CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'L', M, N, A, LDA, U, LDU ) * * Copy R to WORK(IR), zeroing out below it * CALL DLACPY( 'U', N, N, A, LDA, WORK( IR ), $ LDWRKR ) CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, $ WORK( IR+1 ), LDWRKR ) * * Generate Q in U * (Workspace: need N*N+N+M, prefer N*N+N+M*NB) * CALL DORGQR( M, M, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in WORK(IR) * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) * CALL DGEBRD( N, N, WORK( IR ), LDWRKR, S, $ WORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors in WORK(IR) * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB) * CALL DORGBR( 'Q', N, N, N, WORK( IR ), LDWRKR, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of R in WORK(IR) * (Workspace: need N*N+BDSPAC) * CALL DBDSQR( 'U', N, 0, N, 0, S, WORK( IE ), DUM, $ 1, WORK( IR ), LDWRKR, DUM, 1, $ WORK( IWORK ), INFO ) * * Multiply Q in U by left singular vectors of R in * WORK(IR), storing result in A * (Workspace: need N*N) * CALL DGEMM( 'N', 'N', M, N, N, ONE, U, LDU, $ WORK( IR ), LDWRKR, ZERO, A, LDA ) * * Copy left singular vectors of A from A to U * CALL DLACPY( 'F', M, N, A, LDA, U, LDU ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (Workspace: need 2*N, prefer N+N*NB) * CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'L', M, N, A, LDA, U, LDU ) * * Generate Q in U * (Workspace: need N+M, prefer N+M*NB) * CALL DORGQR( M, M, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Zero out below R in A * CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), $ LDA ) * * Bidiagonalize R in A * (Workspace: need 4*N, prefer 3*N+2*N*NB) * CALL DGEBRD( N, N, A, LDA, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply Q in U by left bidiagonalizing vectors * in A * (Workspace: need 3*N+M, prefer 3*N+M*NB) * CALL DORMBR( 'Q', 'R', 'N', M, N, N, A, LDA, $ WORK( ITAUQ ), U, LDU, WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', N, 0, M, 0, S, WORK( IE ), DUM, $ 1, U, LDU, DUM, 1, WORK( IWORK ), $ INFO ) * END IF * ELSE IF( WNTVO ) THEN * * Path 8 (M much larger than N, JOBU='A', JOBVT='O') * M left singular vectors to be computed in U and * N right singular vectors to be overwritten on A * IF( LWORK.GE.2*N*N+MAX( N+M, 4*N, BDSPAC ) ) THEN * * Sufficient workspace for a fast algorithm * IU = 1 IF( LWORK.GE.WRKBL+2*LDA*N ) THEN * * WORK(IU) is LDA by N and WORK(IR) is LDA by N * LDWRKU = LDA IR = IU + LDWRKU*N LDWRKR = LDA ELSE IF( LWORK.GE.WRKBL+( LDA+N )*N ) THEN * * WORK(IU) is LDA by N and WORK(IR) is N by N * LDWRKU = LDA IR = IU + LDWRKU*N LDWRKR = N ELSE * * WORK(IU) is N by N and WORK(IR) is N by N * LDWRKU = N IR = IU + LDWRKU*N LDWRKR = N END IF ITAU = IR + LDWRKR*N IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (Workspace: need 2*N*N+2*N, prefer 2*N*N+N+N*NB) * CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'L', M, N, A, LDA, U, LDU ) * * Generate Q in U * (Workspace: need 2*N*N+N+M, prefer 2*N*N+N+M*NB) * CALL DORGQR( M, M, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to WORK(IU), zeroing out below it * CALL DLACPY( 'U', N, N, A, LDA, WORK( IU ), $ LDWRKU ) CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, $ WORK( IU+1 ), LDWRKU ) IE = ITAU ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in WORK(IU), copying result to * WORK(IR) * (Workspace: need 2*N*N+4*N, * prefer 2*N*N+3*N+2*N*NB) * CALL DGEBRD( N, N, WORK( IU ), LDWRKU, S, $ WORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) CALL DLACPY( 'U', N, N, WORK( IU ), LDWRKU, $ WORK( IR ), LDWRKR ) * * Generate left bidiagonalizing vectors in WORK(IU) * (Workspace: need 2*N*N+4*N, prefer 2*N*N+3*N+N*NB) * CALL DORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right bidiagonalizing vectors in WORK(IR) * (Workspace: need 2*N*N+4*N-1, * prefer 2*N*N+3*N+(N-1)*NB) * CALL DORGBR( 'P', N, N, N, WORK( IR ), LDWRKR, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of R in WORK(IU) and computing * right singular vectors of R in WORK(IR) * (Workspace: need 2*N*N+BDSPAC) * CALL DBDSQR( 'U', N, N, N, 0, S, WORK( IE ), $ WORK( IR ), LDWRKR, WORK( IU ), $ LDWRKU, DUM, 1, WORK( IWORK ), INFO ) * * Multiply Q in U by left singular vectors of R in * WORK(IU), storing result in A * (Workspace: need N*N) * CALL DGEMM( 'N', 'N', M, N, N, ONE, U, LDU, $ WORK( IU ), LDWRKU, ZERO, A, LDA ) * * Copy left singular vectors of A from A to U * CALL DLACPY( 'F', M, N, A, LDA, U, LDU ) * * Copy right singular vectors of R from WORK(IR) to A * CALL DLACPY( 'F', N, N, WORK( IR ), LDWRKR, A, $ LDA ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (Workspace: need 2*N, prefer N+N*NB) * CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'L', M, N, A, LDA, U, LDU ) * * Generate Q in U * (Workspace: need N+M, prefer N+M*NB) * CALL DORGQR( M, M, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Zero out below R in A * CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), $ LDA ) * * Bidiagonalize R in A * (Workspace: need 4*N, prefer 3*N+2*N*NB) * CALL DGEBRD( N, N, A, LDA, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply Q in U by left bidiagonalizing vectors * in A * (Workspace: need 3*N+M, prefer 3*N+M*NB) * CALL DORMBR( 'Q', 'R', 'N', M, N, N, A, LDA, $ WORK( ITAUQ ), U, LDU, WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right bidiagonalizing vectors in A * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) * CALL DORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U and computing right * singular vectors of A in A * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', N, N, M, 0, S, WORK( IE ), A, $ LDA, U, LDU, DUM, 1, WORK( IWORK ), $ INFO ) * END IF * ELSE IF( WNTVAS ) THEN * * Path 9 (M much larger than N, JOBU='A', JOBVT='S' * or 'A') * M left singular vectors to be computed in U and * N right singular vectors to be computed in VT * IF( LWORK.GE.N*N+MAX( N+M, 4*N, BDSPAC ) ) THEN * * Sufficient workspace for a fast algorithm * IU = 1 IF( LWORK.GE.WRKBL+LDA*N ) THEN * * WORK(IU) is LDA by N * LDWRKU = LDA ELSE * * WORK(IU) is N by N * LDWRKU = N END IF ITAU = IU + LDWRKU*N IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (Workspace: need N*N+2*N, prefer N*N+N+N*NB) * CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'L', M, N, A, LDA, U, LDU ) * * Generate Q in U * (Workspace: need N*N+N+M, prefer N*N+N+M*NB) * CALL DORGQR( M, M, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R to WORK(IU), zeroing out below it * CALL DLACPY( 'U', N, N, A, LDA, WORK( IU ), $ LDWRKU ) CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, $ WORK( IU+1 ), LDWRKU ) IE = ITAU ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in WORK(IU), copying result to VT * (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) * CALL DGEBRD( N, N, WORK( IU ), LDWRKU, S, $ WORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) CALL DLACPY( 'U', N, N, WORK( IU ), LDWRKU, VT, $ LDVT ) * * Generate left bidiagonalizing vectors in WORK(IU) * (Workspace: need N*N+4*N, prefer N*N+3*N+N*NB) * CALL DORGBR( 'Q', N, N, N, WORK( IU ), LDWRKU, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right bidiagonalizing vectors in VT * (Workspace: need N*N+4*N-1, * prefer N*N+3*N+(N-1)*NB) * CALL DORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of R in WORK(IU) and computing * right singular vectors of R in VT * (Workspace: need N*N+BDSPAC) * CALL DBDSQR( 'U', N, N, N, 0, S, WORK( IE ), VT, $ LDVT, WORK( IU ), LDWRKU, DUM, 1, $ WORK( IWORK ), INFO ) * * Multiply Q in U by left singular vectors of R in * WORK(IU), storing result in A * (Workspace: need N*N) * CALL DGEMM( 'N', 'N', M, N, N, ONE, U, LDU, $ WORK( IU ), LDWRKU, ZERO, A, LDA ) * * Copy left singular vectors of A from A to U * CALL DLACPY( 'F', M, N, A, LDA, U, LDU ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + N * * Compute A=Q*R, copying result to U * (Workspace: need 2*N, prefer N+N*NB) * CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'L', M, N, A, LDA, U, LDU ) * * Generate Q in U * (Workspace: need N+M, prefer N+M*NB) * CALL DORGQR( M, M, N, U, LDU, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy R from A to VT, zeroing out below it * CALL DLACPY( 'U', N, N, A, LDA, VT, LDVT ) IF( N.GT.1 ) $ CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, $ VT( 2, 1 ), LDVT ) IE = ITAU ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize R in VT * (Workspace: need 4*N, prefer 3*N+2*N*NB) * CALL DGEBRD( N, N, VT, LDVT, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply Q in U by left bidiagonalizing vectors * in VT * (Workspace: need 3*N+M, prefer 3*N+M*NB) * CALL DORMBR( 'Q', 'R', 'N', M, N, N, VT, LDVT, $ WORK( ITAUQ ), U, LDU, WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right bidiagonalizing vectors in VT * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) * CALL DORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + N * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U and computing right * singular vectors of A in VT * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', N, N, M, 0, S, WORK( IE ), VT, $ LDVT, U, LDU, DUM, 1, WORK( IWORK ), $ INFO ) * END IF * END IF * END IF * ELSE * * M .LT. MNTHR * * Path 10 (M at least N, but not much larger) * Reduce to bidiagonal form without QR decomposition * IE = 1 ITAUQ = IE + N ITAUP = ITAUQ + N IWORK = ITAUP + N * * Bidiagonalize A * (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB) * CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1, $ IERR ) IF( WNTUAS ) THEN * * If left singular vectors desired in U, copy result to U * and generate left bidiagonalizing vectors in U * (Workspace: need 3*N+NCU, prefer 3*N+NCU*NB) * CALL DLACPY( 'L', M, N, A, LDA, U, LDU ) IF( WNTUS ) $ NCU = N IF( WNTUA ) $ NCU = M CALL DORGBR( 'Q', M, NCU, N, U, LDU, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IF( WNTVAS ) THEN * * If right singular vectors desired in VT, copy result to * VT and generate right bidiagonalizing vectors in VT * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) * CALL DLACPY( 'U', N, N, A, LDA, VT, LDVT ) CALL DORGBR( 'P', N, N, N, VT, LDVT, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IF( WNTUO ) THEN * * If left singular vectors desired in A, generate left * bidiagonalizing vectors in A * (Workspace: need 4*N, prefer 3*N+N*NB) * CALL DORGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IF( WNTVO ) THEN * * If right singular vectors desired in A, generate right * bidiagonalizing vectors in A * (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) * CALL DORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IWORK = IE + N IF( WNTUAS .OR. WNTUO ) $ NRU = M IF( WNTUN ) $ NRU = 0 IF( WNTVAS .OR. WNTVO ) $ NCVT = N IF( WNTVN ) $ NCVT = 0 IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN * * Perform bidiagonal QR iteration, if desired, computing * left singular vectors in U and computing right singular * vectors in VT * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', N, NCVT, NRU, 0, S, WORK( IE ), VT, $ LDVT, U, LDU, DUM, 1, WORK( IWORK ), INFO ) ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN * * Perform bidiagonal QR iteration, if desired, computing * left singular vectors in U and computing right singular * vectors in A * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', N, NCVT, NRU, 0, S, WORK( IE ), A, LDA, $ U, LDU, DUM, 1, WORK( IWORK ), INFO ) ELSE * * Perform bidiagonal QR iteration, if desired, computing * left singular vectors in A and computing right singular * vectors in VT * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', N, NCVT, NRU, 0, S, WORK( IE ), VT, $ LDVT, A, LDA, DUM, 1, WORK( IWORK ), INFO ) END IF * END IF * ELSE * * A has more columns than rows. If A has sufficiently more * columns than rows, first reduce using the LQ decomposition (if * sufficient workspace available) * IF( N.GE.MNTHR ) THEN * IF( WNTVN ) THEN * * Path 1t(N much larger than M, JOBVT='N') * No right singular vectors to be computed * ITAU = 1 IWORK = ITAU + M * * Compute A=L*Q * (Workspace: need 2*M, prefer M+M*NB) * CALL DGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Zero out above L * CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ), LDA ) IE = 1 ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in A * (Workspace: need 4*M, prefer 3*M+2*M*NB) * CALL DGEBRD( M, M, A, LDA, S, WORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1, $ IERR ) IF( WNTUO .OR. WNTUAS ) THEN * * If left singular vectors desired, generate Q * (Workspace: need 4*M, prefer 3*M+M*NB) * CALL DORGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IWORK = IE + M NRU = 0 IF( WNTUO .OR. WNTUAS ) $ NRU = M * * Perform bidiagonal QR iteration, computing left singular * vectors of A in A if desired * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', M, 0, NRU, 0, S, WORK( IE ), DUM, 1, A, $ LDA, DUM, 1, WORK( IWORK ), INFO ) * * If left singular vectors desired in U, copy them there * IF( WNTUAS ) $ CALL DLACPY( 'F', M, M, A, LDA, U, LDU ) * ELSE IF( WNTVO .AND. WNTUN ) THEN * * Path 2t(N much larger than M, JOBU='N', JOBVT='O') * M right singular vectors to be overwritten on A and * no left singular vectors to be computed * IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN * * Sufficient workspace for a fast algorithm * IR = 1 IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+LDA*M ) THEN * * WORK(IU) is LDA by N and WORK(IR) is LDA by M * LDWRKU = LDA CHUNK = N LDWRKR = LDA ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+M*M ) THEN * * WORK(IU) is LDA by N and WORK(IR) is M by M * LDWRKU = LDA CHUNK = N LDWRKR = M ELSE * * WORK(IU) is M by CHUNK and WORK(IR) is M by M * LDWRKU = M CHUNK = ( LWORK-M*M-M ) / M LDWRKR = M END IF ITAU = IR + LDWRKR*M IWORK = ITAU + M * * Compute A=L*Q * (Workspace: need M*M+2*M, prefer M*M+M+M*NB) * CALL DGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to WORK(IR) and zero out above it * CALL DLACPY( 'L', M, M, A, LDA, WORK( IR ), LDWRKR ) CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, $ WORK( IR+LDWRKR ), LDWRKR ) * * Generate Q in A * (Workspace: need M*M+2*M, prefer M*M+M+M*NB) * CALL DORGLQ( M, N, M, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in WORK(IR) * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) * CALL DGEBRD( M, M, WORK( IR ), LDWRKR, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Generate right vectors bidiagonalizing L * (Workspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB) * CALL DORGBR( 'P', M, M, M, WORK( IR ), LDWRKR, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IWORK = IE + M * * Perform bidiagonal QR iteration, computing right * singular vectors of L in WORK(IR) * (Workspace: need M*M+BDSPAC) * CALL DBDSQR( 'U', M, M, 0, 0, S, WORK( IE ), $ WORK( IR ), LDWRKR, DUM, 1, DUM, 1, $ WORK( IWORK ), INFO ) IU = IE + M * * Multiply right singular vectors of L in WORK(IR) by Q * in A, storing result in WORK(IU) and copying to A * (Workspace: need M*M+2*M, prefer M*M+M*N+M) * DO 30 I = 1, N, CHUNK BLK = MIN( N-I+1, CHUNK ) CALL DGEMM( 'N', 'N', M, BLK, M, ONE, WORK( IR ), $ LDWRKR, A( 1, I ), LDA, ZERO, $ WORK( IU ), LDWRKU ) CALL DLACPY( 'F', M, BLK, WORK( IU ), LDWRKU, $ A( 1, I ), LDA ) 30 CONTINUE * ELSE * * Insufficient workspace for a fast algorithm * IE = 1 ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize A * (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) * CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Generate right vectors bidiagonalizing A * (Workspace: need 4*M, prefer 3*M+M*NB) * CALL DORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + M * * Perform bidiagonal QR iteration, computing right * singular vectors of A in A * (Workspace: need BDSPAC) * CALL DBDSQR( 'L', M, N, 0, 0, S, WORK( IE ), A, LDA, $ DUM, 1, DUM, 1, WORK( IWORK ), INFO ) * END IF * ELSE IF( WNTVO .AND. WNTUAS ) THEN * * Path 3t(N much larger than M, JOBU='S' or 'A', JOBVT='O') * M right singular vectors to be overwritten on A and * M left singular vectors to be computed in U * IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN * * Sufficient workspace for a fast algorithm * IR = 1 IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+LDA*M ) THEN * * WORK(IU) is LDA by N and WORK(IR) is LDA by M * LDWRKU = LDA CHUNK = N LDWRKR = LDA ELSE IF( LWORK.GE.MAX( WRKBL, LDA*N+M )+M*M ) THEN * * WORK(IU) is LDA by N and WORK(IR) is M by M * LDWRKU = LDA CHUNK = N LDWRKR = M ELSE * * WORK(IU) is M by CHUNK and WORK(IR) is M by M * LDWRKU = M CHUNK = ( LWORK-M*M-M ) / M LDWRKR = M END IF ITAU = IR + LDWRKR*M IWORK = ITAU + M * * Compute A=L*Q * (Workspace: need M*M+2*M, prefer M*M+M+M*NB) * CALL DGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to U, zeroing about above it * CALL DLACPY( 'L', M, M, A, LDA, U, LDU ) CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ), $ LDU ) * * Generate Q in A * (Workspace: need M*M+2*M, prefer M*M+M+M*NB) * CALL DORGLQ( M, N, M, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in U, copying result to WORK(IR) * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) * CALL DGEBRD( M, M, U, LDU, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'U', M, M, U, LDU, WORK( IR ), LDWRKR ) * * Generate right vectors bidiagonalizing L in WORK(IR) * (Workspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB) * CALL DORGBR( 'P', M, M, M, WORK( IR ), LDWRKR, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate left vectors bidiagonalizing L in U * (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB) * CALL DORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of L in U, and computing right * singular vectors of L in WORK(IR) * (Workspace: need M*M+BDSPAC) * CALL DBDSQR( 'U', M, M, M, 0, S, WORK( IE ), $ WORK( IR ), LDWRKR, U, LDU, DUM, 1, $ WORK( IWORK ), INFO ) IU = IE + M * * Multiply right singular vectors of L in WORK(IR) by Q * in A, storing result in WORK(IU) and copying to A * (Workspace: need M*M+2*M, prefer M*M+M*N+M)) * DO 40 I = 1, N, CHUNK BLK = MIN( N-I+1, CHUNK ) CALL DGEMM( 'N', 'N', M, BLK, M, ONE, WORK( IR ), $ LDWRKR, A( 1, I ), LDA, ZERO, $ WORK( IU ), LDWRKU ) CALL DLACPY( 'F', M, BLK, WORK( IU ), LDWRKU, $ A( 1, I ), LDA ) 40 CONTINUE * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + M * * Compute A=L*Q * (Workspace: need 2*M, prefer M+M*NB) * CALL DGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to U, zeroing out above it * CALL DLACPY( 'L', M, M, A, LDA, U, LDU ) CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ), $ LDU ) * * Generate Q in A * (Workspace: need 2*M, prefer M+M*NB) * CALL DORGLQ( M, N, M, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in U * (Workspace: need 4*M, prefer 3*M+2*M*NB) * CALL DGEBRD( M, M, U, LDU, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply right vectors bidiagonalizing L by Q in A * (Workspace: need 3*M+N, prefer 3*M+N*NB) * CALL DORMBR( 'P', 'L', 'T', M, N, M, U, LDU, $ WORK( ITAUP ), A, LDA, WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate left vectors bidiagonalizing L in U * (Workspace: need 4*M, prefer 3*M+M*NB) * CALL DORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U and computing right * singular vectors of A in A * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', M, N, M, 0, S, WORK( IE ), A, LDA, $ U, LDU, DUM, 1, WORK( IWORK ), INFO ) * END IF * ELSE IF( WNTVS ) THEN * IF( WNTUN ) THEN * * Path 4t(N much larger than M, JOBU='N', JOBVT='S') * M right singular vectors to be computed in VT and * no left singular vectors to be computed * IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN * * Sufficient workspace for a fast algorithm * IR = 1 IF( LWORK.GE.WRKBL+LDA*M ) THEN * * WORK(IR) is LDA by M * LDWRKR = LDA ELSE * * WORK(IR) is M by M * LDWRKR = M END IF ITAU = IR + LDWRKR*M IWORK = ITAU + M * * Compute A=L*Q * (Workspace: need M*M+2*M, prefer M*M+M+M*NB) * CALL DGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to WORK(IR), zeroing out above it * CALL DLACPY( 'L', M, M, A, LDA, WORK( IR ), $ LDWRKR ) CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, $ WORK( IR+LDWRKR ), LDWRKR ) * * Generate Q in A * (Workspace: need M*M+2*M, prefer M*M+M+M*NB) * CALL DORGLQ( M, N, M, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in WORK(IR) * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) * CALL DGEBRD( M, M, WORK( IR ), LDWRKR, S, $ WORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right vectors bidiagonalizing L in * WORK(IR) * (Workspace: need M*M+4*M, prefer M*M+3*M+(M-1)*NB) * CALL DORGBR( 'P', M, M, M, WORK( IR ), LDWRKR, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IWORK = IE + M * * Perform bidiagonal QR iteration, computing right * singular vectors of L in WORK(IR) * (Workspace: need M*M+BDSPAC) * CALL DBDSQR( 'U', M, M, 0, 0, S, WORK( IE ), $ WORK( IR ), LDWRKR, DUM, 1, DUM, 1, $ WORK( IWORK ), INFO ) * * Multiply right singular vectors of L in WORK(IR) by * Q in A, storing result in VT * (Workspace: need M*M) * CALL DGEMM( 'N', 'N', M, N, M, ONE, WORK( IR ), $ LDWRKR, A, LDA, ZERO, VT, LDVT ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + M * * Compute A=L*Q * (Workspace: need 2*M, prefer M+M*NB) * CALL DGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy result to VT * CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Generate Q in VT * (Workspace: need 2*M, prefer M+M*NB) * CALL DORGLQ( M, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Zero out above L in A * CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ), $ LDA ) * * Bidiagonalize L in A * (Workspace: need 4*M, prefer 3*M+2*M*NB) * CALL DGEBRD( M, M, A, LDA, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply right vectors bidiagonalizing L by Q in VT * (Workspace: need 3*M+N, prefer 3*M+N*NB) * CALL DORMBR( 'P', 'L', 'T', M, N, M, A, LDA, $ WORK( ITAUP ), VT, LDVT, $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + M * * Perform bidiagonal QR iteration, computing right * singular vectors of A in VT * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', M, N, 0, 0, S, WORK( IE ), VT, $ LDVT, DUM, 1, DUM, 1, WORK( IWORK ), $ INFO ) * END IF * ELSE IF( WNTUO ) THEN * * Path 5t(N much larger than M, JOBU='O', JOBVT='S') * M right singular vectors to be computed in VT and * M left singular vectors to be overwritten on A * IF( LWORK.GE.2*M*M+MAX( 4*M, BDSPAC ) ) THEN * * Sufficient workspace for a fast algorithm * IU = 1 IF( LWORK.GE.WRKBL+2*LDA*M ) THEN * * WORK(IU) is LDA by M and WORK(IR) is LDA by M * LDWRKU = LDA IR = IU + LDWRKU*M LDWRKR = LDA ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN * * WORK(IU) is LDA by M and WORK(IR) is M by M * LDWRKU = LDA IR = IU + LDWRKU*M LDWRKR = M ELSE * * WORK(IU) is M by M and WORK(IR) is M by M * LDWRKU = M IR = IU + LDWRKU*M LDWRKR = M END IF ITAU = IR + LDWRKR*M IWORK = ITAU + M * * Compute A=L*Q * (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) * CALL DGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to WORK(IU), zeroing out below it * CALL DLACPY( 'L', M, M, A, LDA, WORK( IU ), $ LDWRKU ) CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, $ WORK( IU+LDWRKU ), LDWRKU ) * * Generate Q in A * (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) * CALL DORGLQ( M, N, M, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in WORK(IU), copying result to * WORK(IR) * (Workspace: need 2*M*M+4*M, * prefer 2*M*M+3*M+2*M*NB) * CALL DGEBRD( M, M, WORK( IU ), LDWRKU, S, $ WORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) CALL DLACPY( 'L', M, M, WORK( IU ), LDWRKU, $ WORK( IR ), LDWRKR ) * * Generate right bidiagonalizing vectors in WORK(IU) * (Workspace: need 2*M*M+4*M-1, * prefer 2*M*M+3*M+(M-1)*NB) * CALL DORGBR( 'P', M, M, M, WORK( IU ), LDWRKU, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors in WORK(IR) * (Workspace: need 2*M*M+4*M, prefer 2*M*M+3*M+M*NB) * CALL DORGBR( 'Q', M, M, M, WORK( IR ), LDWRKR, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of L in WORK(IR) and computing * right singular vectors of L in WORK(IU) * (Workspace: need 2*M*M+BDSPAC) * CALL DBDSQR( 'U', M, M, M, 0, S, WORK( IE ), $ WORK( IU ), LDWRKU, WORK( IR ), $ LDWRKR, DUM, 1, WORK( IWORK ), INFO ) * * Multiply right singular vectors of L in WORK(IU) by * Q in A, storing result in VT * (Workspace: need M*M) * CALL DGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ), $ LDWRKU, A, LDA, ZERO, VT, LDVT ) * * Copy left singular vectors of L to A * (Workspace: need M*M) * CALL DLACPY( 'F', M, M, WORK( IR ), LDWRKR, A, $ LDA ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + M * * Compute A=L*Q, copying result to VT * (Workspace: need 2*M, prefer M+M*NB) * CALL DGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Generate Q in VT * (Workspace: need 2*M, prefer M+M*NB) * CALL DORGLQ( M, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Zero out above L in A * CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ), $ LDA ) * * Bidiagonalize L in A * (Workspace: need 4*M, prefer 3*M+2*M*NB) * CALL DGEBRD( M, M, A, LDA, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply right vectors bidiagonalizing L by Q in VT * (Workspace: need 3*M+N, prefer 3*M+N*NB) * CALL DORMBR( 'P', 'L', 'T', M, N, M, A, LDA, $ WORK( ITAUP ), VT, LDVT, $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors of L in A * (Workspace: need 4*M, prefer 3*M+M*NB) * CALL DORGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + M * * Perform bidiagonal QR iteration, compute left * singular vectors of A in A and compute right * singular vectors of A in VT * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT, $ LDVT, A, LDA, DUM, 1, WORK( IWORK ), $ INFO ) * END IF * ELSE IF( WNTUAS ) THEN * * Path 6t(N much larger than M, JOBU='S' or 'A', * JOBVT='S') * M right singular vectors to be computed in VT and * M left singular vectors to be computed in U * IF( LWORK.GE.M*M+MAX( 4*M, BDSPAC ) ) THEN * * Sufficient workspace for a fast algorithm * IU = 1 IF( LWORK.GE.WRKBL+LDA*M ) THEN * * WORK(IU) is LDA by N * LDWRKU = LDA ELSE * * WORK(IU) is LDA by M * LDWRKU = M END IF ITAU = IU + LDWRKU*M IWORK = ITAU + M * * Compute A=L*Q * (Workspace: need M*M+2*M, prefer M*M+M+M*NB) * CALL DGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to WORK(IU), zeroing out above it * CALL DLACPY( 'L', M, M, A, LDA, WORK( IU ), $ LDWRKU ) CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, $ WORK( IU+LDWRKU ), LDWRKU ) * * Generate Q in A * (Workspace: need M*M+2*M, prefer M*M+M+M*NB) * CALL DORGLQ( M, N, M, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in WORK(IU), copying result to U * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) * CALL DGEBRD( M, M, WORK( IU ), LDWRKU, S, $ WORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) CALL DLACPY( 'L', M, M, WORK( IU ), LDWRKU, U, $ LDU ) * * Generate right bidiagonalizing vectors in WORK(IU) * (Workspace: need M*M+4*M-1, * prefer M*M+3*M+(M-1)*NB) * CALL DORGBR( 'P', M, M, M, WORK( IU ), LDWRKU, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors in U * (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB) * CALL DORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of L in U and computing right * singular vectors of L in WORK(IU) * (Workspace: need M*M+BDSPAC) * CALL DBDSQR( 'U', M, M, M, 0, S, WORK( IE ), $ WORK( IU ), LDWRKU, U, LDU, DUM, 1, $ WORK( IWORK ), INFO ) * * Multiply right singular vectors of L in WORK(IU) by * Q in A, storing result in VT * (Workspace: need M*M) * CALL DGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ), $ LDWRKU, A, LDA, ZERO, VT, LDVT ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + M * * Compute A=L*Q, copying result to VT * (Workspace: need 2*M, prefer M+M*NB) * CALL DGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Generate Q in VT * (Workspace: need 2*M, prefer M+M*NB) * CALL DORGLQ( M, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to U, zeroing out above it * CALL DLACPY( 'L', M, M, A, LDA, U, LDU ) CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ), $ LDU ) IE = ITAU ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in U * (Workspace: need 4*M, prefer 3*M+2*M*NB) * CALL DGEBRD( M, M, U, LDU, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply right bidiagonalizing vectors in U by Q * in VT * (Workspace: need 3*M+N, prefer 3*M+N*NB) * CALL DORMBR( 'P', 'L', 'T', M, N, M, U, LDU, $ WORK( ITAUP ), VT, LDVT, $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors in U * (Workspace: need 4*M, prefer 3*M+M*NB) * CALL DORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U and computing right * singular vectors of A in VT * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT, $ LDVT, U, LDU, DUM, 1, WORK( IWORK ), $ INFO ) * END IF * END IF * ELSE IF( WNTVA ) THEN * IF( WNTUN ) THEN * * Path 7t(N much larger than M, JOBU='N', JOBVT='A') * N right singular vectors to be computed in VT and * no left singular vectors to be computed * IF( LWORK.GE.M*M+MAX( N+M, 4*M, BDSPAC ) ) THEN * * Sufficient workspace for a fast algorithm * IR = 1 IF( LWORK.GE.WRKBL+LDA*M ) THEN * * WORK(IR) is LDA by M * LDWRKR = LDA ELSE * * WORK(IR) is M by M * LDWRKR = M END IF ITAU = IR + LDWRKR*M IWORK = ITAU + M * * Compute A=L*Q, copying result to VT * (Workspace: need M*M+2*M, prefer M*M+M+M*NB) * CALL DGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Copy L to WORK(IR), zeroing out above it * CALL DLACPY( 'L', M, M, A, LDA, WORK( IR ), $ LDWRKR ) CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, $ WORK( IR+LDWRKR ), LDWRKR ) * * Generate Q in VT * (Workspace: need M*M+M+N, prefer M*M+M+N*NB) * CALL DORGLQ( N, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in WORK(IR) * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) * CALL DGEBRD( M, M, WORK( IR ), LDWRKR, S, $ WORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate right bidiagonalizing vectors in WORK(IR) * (Workspace: need M*M+4*M-1, * prefer M*M+3*M+(M-1)*NB) * CALL DORGBR( 'P', M, M, M, WORK( IR ), LDWRKR, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IWORK = IE + M * * Perform bidiagonal QR iteration, computing right * singular vectors of L in WORK(IR) * (Workspace: need M*M+BDSPAC) * CALL DBDSQR( 'U', M, M, 0, 0, S, WORK( IE ), $ WORK( IR ), LDWRKR, DUM, 1, DUM, 1, $ WORK( IWORK ), INFO ) * * Multiply right singular vectors of L in WORK(IR) by * Q in VT, storing result in A * (Workspace: need M*M) * CALL DGEMM( 'N', 'N', M, N, M, ONE, WORK( IR ), $ LDWRKR, VT, LDVT, ZERO, A, LDA ) * * Copy right singular vectors of A from A to VT * CALL DLACPY( 'F', M, N, A, LDA, VT, LDVT ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + M * * Compute A=L*Q, copying result to VT * (Workspace: need 2*M, prefer M+M*NB) * CALL DGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Generate Q in VT * (Workspace: need M+N, prefer M+N*NB) * CALL DORGLQ( N, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Zero out above L in A * CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ), $ LDA ) * * Bidiagonalize L in A * (Workspace: need 4*M, prefer 3*M+2*M*NB) * CALL DGEBRD( M, M, A, LDA, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply right bidiagonalizing vectors in A by Q * in VT * (Workspace: need 3*M+N, prefer 3*M+N*NB) * CALL DORMBR( 'P', 'L', 'T', M, N, M, A, LDA, $ WORK( ITAUP ), VT, LDVT, $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + M * * Perform bidiagonal QR iteration, computing right * singular vectors of A in VT * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', M, N, 0, 0, S, WORK( IE ), VT, $ LDVT, DUM, 1, DUM, 1, WORK( IWORK ), $ INFO ) * END IF * ELSE IF( WNTUO ) THEN * * Path 8t(N much larger than M, JOBU='O', JOBVT='A') * N right singular vectors to be computed in VT and * M left singular vectors to be overwritten on A * IF( LWORK.GE.2*M*M+MAX( N+M, 4*M, BDSPAC ) ) THEN * * Sufficient workspace for a fast algorithm * IU = 1 IF( LWORK.GE.WRKBL+2*LDA*M ) THEN * * WORK(IU) is LDA by M and WORK(IR) is LDA by M * LDWRKU = LDA IR = IU + LDWRKU*M LDWRKR = LDA ELSE IF( LWORK.GE.WRKBL+( LDA+M )*M ) THEN * * WORK(IU) is LDA by M and WORK(IR) is M by M * LDWRKU = LDA IR = IU + LDWRKU*M LDWRKR = M ELSE * * WORK(IU) is M by M and WORK(IR) is M by M * LDWRKU = M IR = IU + LDWRKU*M LDWRKR = M END IF ITAU = IR + LDWRKR*M IWORK = ITAU + M * * Compute A=L*Q, copying result to VT * (Workspace: need 2*M*M+2*M, prefer 2*M*M+M+M*NB) * CALL DGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Generate Q in VT * (Workspace: need 2*M*M+M+N, prefer 2*M*M+M+N*NB) * CALL DORGLQ( N, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to WORK(IU), zeroing out above it * CALL DLACPY( 'L', M, M, A, LDA, WORK( IU ), $ LDWRKU ) CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, $ WORK( IU+LDWRKU ), LDWRKU ) IE = ITAU ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in WORK(IU), copying result to * WORK(IR) * (Workspace: need 2*M*M+4*M, * prefer 2*M*M+3*M+2*M*NB) * CALL DGEBRD( M, M, WORK( IU ), LDWRKU, S, $ WORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) CALL DLACPY( 'L', M, M, WORK( IU ), LDWRKU, $ WORK( IR ), LDWRKR ) * * Generate right bidiagonalizing vectors in WORK(IU) * (Workspace: need 2*M*M+4*M-1, * prefer 2*M*M+3*M+(M-1)*NB) * CALL DORGBR( 'P', M, M, M, WORK( IU ), LDWRKU, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors in WORK(IR) * (Workspace: need 2*M*M+4*M, prefer 2*M*M+3*M+M*NB) * CALL DORGBR( 'Q', M, M, M, WORK( IR ), LDWRKR, $ WORK( ITAUQ ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) IWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of L in WORK(IR) and computing * right singular vectors of L in WORK(IU) * (Workspace: need 2*M*M+BDSPAC) * CALL DBDSQR( 'U', M, M, M, 0, S, WORK( IE ), $ WORK( IU ), LDWRKU, WORK( IR ), $ LDWRKR, DUM, 1, WORK( IWORK ), INFO ) * * Multiply right singular vectors of L in WORK(IU) by * Q in VT, storing result in A * (Workspace: need M*M) * CALL DGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ), $ LDWRKU, VT, LDVT, ZERO, A, LDA ) * * Copy right singular vectors of A from A to VT * CALL DLACPY( 'F', M, N, A, LDA, VT, LDVT ) * * Copy left singular vectors of A from WORK(IR) to A * CALL DLACPY( 'F', M, M, WORK( IR ), LDWRKR, A, $ LDA ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + M * * Compute A=L*Q, copying result to VT * (Workspace: need 2*M, prefer M+M*NB) * CALL DGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Generate Q in VT * (Workspace: need M+N, prefer M+N*NB) * CALL DORGLQ( N, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IE = ITAU ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Zero out above L in A * CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ), $ LDA ) * * Bidiagonalize L in A * (Workspace: need 4*M, prefer 3*M+2*M*NB) * CALL DGEBRD( M, M, A, LDA, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply right bidiagonalizing vectors in A by Q * in VT * (Workspace: need 3*M+N, prefer 3*M+N*NB) * CALL DORMBR( 'P', 'L', 'T', M, N, M, A, LDA, $ WORK( ITAUP ), VT, LDVT, $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors in A * (Workspace: need 4*M, prefer 3*M+M*NB) * CALL DORGBR( 'Q', M, M, M, A, LDA, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of A in A and computing right * singular vectors of A in VT * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT, $ LDVT, A, LDA, DUM, 1, WORK( IWORK ), $ INFO ) * END IF * ELSE IF( WNTUAS ) THEN * * Path 9t(N much larger than M, JOBU='S' or 'A', * JOBVT='A') * N right singular vectors to be computed in VT and * M left singular vectors to be computed in U * IF( LWORK.GE.M*M+MAX( N+M, 4*M, BDSPAC ) ) THEN * * Sufficient workspace for a fast algorithm * IU = 1 IF( LWORK.GE.WRKBL+LDA*M ) THEN * * WORK(IU) is LDA by M * LDWRKU = LDA ELSE * * WORK(IU) is M by M * LDWRKU = M END IF ITAU = IU + LDWRKU*M IWORK = ITAU + M * * Compute A=L*Q, copying result to VT * (Workspace: need M*M+2*M, prefer M*M+M+M*NB) * CALL DGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Generate Q in VT * (Workspace: need M*M+M+N, prefer M*M+M+N*NB) * CALL DORGLQ( N, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to WORK(IU), zeroing out above it * CALL DLACPY( 'L', M, M, A, LDA, WORK( IU ), $ LDWRKU ) CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, $ WORK( IU+LDWRKU ), LDWRKU ) IE = ITAU ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in WORK(IU), copying result to U * (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) * CALL DGEBRD( M, M, WORK( IU ), LDWRKU, S, $ WORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) CALL DLACPY( 'L', M, M, WORK( IU ), LDWRKU, U, $ LDU ) * * Generate right bidiagonalizing vectors in WORK(IU) * (Workspace: need M*M+4*M, prefer M*M+3*M+(M-1)*NB) * CALL DORGBR( 'P', M, M, M, WORK( IU ), LDWRKU, $ WORK( ITAUP ), WORK( IWORK ), $ LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors in U * (Workspace: need M*M+4*M, prefer M*M+3*M+M*NB) * CALL DORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of L in U and computing right * singular vectors of L in WORK(IU) * (Workspace: need M*M+BDSPAC) * CALL DBDSQR( 'U', M, M, M, 0, S, WORK( IE ), $ WORK( IU ), LDWRKU, U, LDU, DUM, 1, $ WORK( IWORK ), INFO ) * * Multiply right singular vectors of L in WORK(IU) by * Q in VT, storing result in A * (Workspace: need M*M) * CALL DGEMM( 'N', 'N', M, N, M, ONE, WORK( IU ), $ LDWRKU, VT, LDVT, ZERO, A, LDA ) * * Copy right singular vectors of A from A to VT * CALL DLACPY( 'F', M, N, A, LDA, VT, LDVT ) * ELSE * * Insufficient workspace for a fast algorithm * ITAU = 1 IWORK = ITAU + M * * Compute A=L*Q, copying result to VT * (Workspace: need 2*M, prefer M+M*NB) * CALL DGELQF( M, N, A, LDA, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT ) * * Generate Q in VT * (Workspace: need M+N, prefer M+N*NB) * CALL DORGLQ( N, N, M, VT, LDVT, WORK( ITAU ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Copy L to U, zeroing out above it * CALL DLACPY( 'L', M, M, A, LDA, U, LDU ) CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, U( 1, 2 ), $ LDU ) IE = ITAU ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize L in U * (Workspace: need 4*M, prefer 3*M+2*M*NB) * CALL DGEBRD( M, M, U, LDU, S, WORK( IE ), $ WORK( ITAUQ ), WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Multiply right bidiagonalizing vectors in U by Q * in VT * (Workspace: need 3*M+N, prefer 3*M+N*NB) * CALL DORMBR( 'P', 'L', 'T', M, N, M, U, LDU, $ WORK( ITAUP ), VT, LDVT, $ WORK( IWORK ), LWORK-IWORK+1, IERR ) * * Generate left bidiagonalizing vectors in U * (Workspace: need 4*M, prefer 3*M+M*NB) * CALL DORGBR( 'Q', M, M, M, U, LDU, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) IWORK = IE + M * * Perform bidiagonal QR iteration, computing left * singular vectors of A in U and computing right * singular vectors of A in VT * (Workspace: need BDSPAC) * CALL DBDSQR( 'U', M, N, M, 0, S, WORK( IE ), VT, $ LDVT, U, LDU, DUM, 1, WORK( IWORK ), $ INFO ) * END IF * END IF * END IF * ELSE * * N .LT. MNTHR * * Path 10t(N greater than M, but not much larger) * Reduce to bidiagonal form without LQ decomposition * IE = 1 ITAUQ = IE + M ITAUP = ITAUQ + M IWORK = ITAUP + M * * Bidiagonalize A * (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) * CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ), $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1, $ IERR ) IF( WNTUAS ) THEN * * If left singular vectors desired in U, copy result to U * and generate left bidiagonalizing vectors in U * (Workspace: need 4*M-1, prefer 3*M+(M-1)*NB) * CALL DLACPY( 'L', M, M, A, LDA, U, LDU ) CALL DORGBR( 'Q', M, M, N, U, LDU, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IF( WNTVAS ) THEN * * If right singular vectors desired in VT, copy result to * VT and generate right bidiagonalizing vectors in VT * (Workspace: need 3*M+NRVT, prefer 3*M+NRVT*NB) * CALL DLACPY( 'U', M, N, A, LDA, VT, LDVT ) IF( WNTVA ) $ NRVT = N IF( WNTVS ) $ NRVT = M CALL DORGBR( 'P', NRVT, N, M, VT, LDVT, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IF( WNTUO ) THEN * * If left singular vectors desired in A, generate left * bidiagonalizing vectors in A * (Workspace: need 4*M-1, prefer 3*M+(M-1)*NB) * CALL DORGBR( 'Q', M, M, N, A, LDA, WORK( ITAUQ ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IF( WNTVO ) THEN * * If right singular vectors desired in A, generate right * bidiagonalizing vectors in A * (Workspace: need 4*M, prefer 3*M+M*NB) * CALL DORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ), $ WORK( IWORK ), LWORK-IWORK+1, IERR ) END IF IWORK = IE + M IF( WNTUAS .OR. WNTUO ) $ NRU = M IF( WNTUN ) $ NRU = 0 IF( WNTVAS .OR. WNTVO ) $ NCVT = N IF( WNTVN ) $ NCVT = 0 IF( ( .NOT.WNTUO ) .AND. ( .NOT.WNTVO ) ) THEN * * Perform bidiagonal QR iteration, if desired, computing * left singular vectors in U and computing right singular * vectors in VT * (Workspace: need BDSPAC) * CALL DBDSQR( 'L', M, NCVT, NRU, 0, S, WORK( IE ), VT, $ LDVT, U, LDU, DUM, 1, WORK( IWORK ), INFO ) ELSE IF( ( .NOT.WNTUO ) .AND. WNTVO ) THEN * * Perform bidiagonal QR iteration, if desired, computing * left singular vectors in U and computing right singular * vectors in A * (Workspace: need BDSPAC) * CALL DBDSQR( 'L', M, NCVT, NRU, 0, S, WORK( IE ), A, LDA, $ U, LDU, DUM, 1, WORK( IWORK ), INFO ) ELSE * * Perform bidiagonal QR iteration, if desired, computing * left singular vectors in A and computing right singular * vectors in VT * (Workspace: need BDSPAC) * CALL DBDSQR( 'L', M, NCVT, NRU, 0, S, WORK( IE ), VT, $ LDVT, A, LDA, DUM, 1, WORK( IWORK ), INFO ) END IF * END IF * END IF * * If DBDSQR failed to converge, copy unconverged superdiagonals * to WORK( 2:MINMN ) * IF( INFO.NE.0 ) THEN IF( IE.GT.2 ) THEN DO 50 I = 1, MINMN - 1 WORK( I+1 ) = WORK( I+IE-1 ) 50 CONTINUE END IF IF( IE.LT.2 ) THEN DO 60 I = MINMN - 1, 1, -1 WORK( I+1 ) = WORK( I+IE-1 ) 60 CONTINUE END IF END IF * * Undo scaling if necessary * IF( ISCL.EQ.1 ) THEN IF( ANRM.GT.BIGNUM ) $ CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN, $ IERR ) IF( INFO.NE.0 .AND. ANRM.GT.BIGNUM ) $ CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN-1, 1, WORK( 2 ), $ MINMN, IERR ) IF( ANRM.LT.SMLNUM ) $ CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN, $ IERR ) IF( INFO.NE.0 .AND. ANRM.LT.SMLNUM ) $ CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN-1, 1, WORK( 2 ), $ MINMN, IERR ) END IF * * Return optimal workspace in WORK(1) * WORK( 1 ) = MAXWRK * RETURN * * End of DGESVD * END
gpl-2.0
eligere/eligere
FAHPcore/eigen/lapack/iladlc.f
272
2952
*> \brief \b ILADLC * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ILADLC + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/iladlc.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/iladlc.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/iladlc.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * INTEGER FUNCTION ILADLC( M, N, A, LDA ) * * .. Scalar Arguments .. * INTEGER M, N, LDA * .. * .. Array Arguments .. * DOUBLE PRECISION A( LDA, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ILADLC scans A for its last non-zero column. *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,N) *> The m by n matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup auxOTHERauxiliary * * ===================================================================== INTEGER FUNCTION ILADLC( M, N, A, LDA ) * * -- LAPACK auxiliary routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER M, N, LDA * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D+0 ) * .. * .. Local Scalars .. INTEGER I * .. * .. Executable Statements .. * * Quick test for the common case where one corner is non-zero. IF( N.EQ.0 ) THEN ILADLC = N ELSE IF( A(1, N).NE.ZERO .OR. A(M, N).NE.ZERO ) THEN ILADLC = N ELSE * Now scan each column from the end, returning with the first non-zero. DO ILADLC = N, 1, -1 DO I = 1, M IF( A(I, ILADLC).NE.ZERO ) RETURN END DO END DO END IF RETURN END
gpl-3.0
jag1g13/lammps
lib/linalg/dlaeda.f
50
9906
*> \brief \b DLAEDA used by sstedc. Computes the Z vector determining the rank-one modification of the diagonal matrix. Used when the original matrix is dense. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DLAEDA + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaeda.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaeda.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaeda.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR, * GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO ) * * .. Scalar Arguments .. * INTEGER CURLVL, CURPBM, INFO, N, TLVLS * .. * .. Array Arguments .. * INTEGER GIVCOL( 2, * ), GIVPTR( * ), PERM( * ), * $ PRMPTR( * ), QPTR( * ) * DOUBLE PRECISION GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLAEDA computes the Z vector corresponding to the merge step in the *> CURLVLth step of the merge process with TLVLS steps for the CURPBMth *> problem. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The dimension of the symmetric tridiagonal matrix. N >= 0. *> \endverbatim *> *> \param[in] TLVLS *> \verbatim *> TLVLS is INTEGER *> The total number of merging levels in the overall divide and *> conquer tree. *> \endverbatim *> *> \param[in] CURLVL *> \verbatim *> CURLVL is INTEGER *> The current level in the overall merge routine, *> 0 <= curlvl <= tlvls. *> \endverbatim *> *> \param[in] CURPBM *> \verbatim *> CURPBM is INTEGER *> The current problem in the current level in the overall *> merge routine (counting from upper left to lower right). *> \endverbatim *> *> \param[in] PRMPTR *> \verbatim *> PRMPTR is INTEGER array, dimension (N lg N) *> Contains a list of pointers which indicate where in PERM a *> level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) *> indicates the size of the permutation and incidentally the *> size of the full, non-deflated problem. *> \endverbatim *> *> \param[in] PERM *> \verbatim *> PERM is INTEGER array, dimension (N lg N) *> Contains the permutations (from deflation and sorting) to be *> applied to each eigenblock. *> \endverbatim *> *> \param[in] GIVPTR *> \verbatim *> GIVPTR is INTEGER array, dimension (N lg N) *> Contains a list of pointers which indicate where in GIVCOL a *> level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) *> indicates the number of Givens rotations. *> \endverbatim *> *> \param[in] GIVCOL *> \verbatim *> GIVCOL is INTEGER array, dimension (2, N lg N) *> Each pair of numbers indicates a pair of columns to take place *> in a Givens rotation. *> \endverbatim *> *> \param[in] GIVNUM *> \verbatim *> GIVNUM is DOUBLE PRECISION array, dimension (2, N lg N) *> Each number indicates the S value to be used in the *> corresponding Givens rotation. *> \endverbatim *> *> \param[in] Q *> \verbatim *> Q is DOUBLE PRECISION array, dimension (N**2) *> Contains the square eigenblocks from previous levels, the *> starting positions for blocks are given by QPTR. *> \endverbatim *> *> \param[in] QPTR *> \verbatim *> QPTR is INTEGER array, dimension (N+2) *> Contains a list of pointers which indicate where in Q an *> eigenblock is stored. SQRT( QPTR(i+1) - QPTR(i) ) indicates *> the size of the block. *> \endverbatim *> *> \param[out] Z *> \verbatim *> Z is DOUBLE PRECISION array, dimension (N) *> On output this vector contains the updating vector (the last *> row of the first sub-eigenvector matrix and the first row of *> the second sub-eigenvector matrix). *> \endverbatim *> *> \param[out] ZTEMP *> \verbatim *> ZTEMP is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date September 2012 * *> \ingroup auxOTHERcomputational * *> \par Contributors: * ================== *> *> Jeff Rutter, Computer Science Division, University of California *> at Berkeley, USA * * ===================================================================== SUBROUTINE DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR, $ GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO ) * * -- LAPACK computational routine (version 3.4.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * September 2012 * * .. Scalar Arguments .. INTEGER CURLVL, CURPBM, INFO, N, TLVLS * .. * .. Array Arguments .. INTEGER GIVCOL( 2, * ), GIVPTR( * ), PERM( * ), $ PRMPTR( * ), QPTR( * ) DOUBLE PRECISION GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, HALF, ONE PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 ) * .. * .. Local Scalars .. INTEGER BSIZ1, BSIZ2, CURR, I, K, MID, PSIZ1, PSIZ2, $ PTR, ZPTR1 * .. * .. External Subroutines .. EXTERNAL DCOPY, DGEMV, DROT, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DBLE, INT, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 * IF( N.LT.0 ) THEN INFO = -1 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLAEDA', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Determine location of first number in second half. * MID = N / 2 + 1 * * Gather last/first rows of appropriate eigenblocks into center of Z * PTR = 1 * * Determine location of lowest level subproblem in the full storage * scheme * CURR = PTR + CURPBM*2**CURLVL + 2**( CURLVL-1 ) - 1 * * Determine size of these matrices. We add HALF to the value of * the SQRT in case the machine underestimates one of these square * roots. * BSIZ1 = INT( HALF+SQRT( DBLE( QPTR( CURR+1 )-QPTR( CURR ) ) ) ) BSIZ2 = INT( HALF+SQRT( DBLE( QPTR( CURR+2 )-QPTR( CURR+1 ) ) ) ) DO 10 K = 1, MID - BSIZ1 - 1 Z( K ) = ZERO 10 CONTINUE CALL DCOPY( BSIZ1, Q( QPTR( CURR )+BSIZ1-1 ), BSIZ1, $ Z( MID-BSIZ1 ), 1 ) CALL DCOPY( BSIZ2, Q( QPTR( CURR+1 ) ), BSIZ2, Z( MID ), 1 ) DO 20 K = MID + BSIZ2, N Z( K ) = ZERO 20 CONTINUE * * Loop through remaining levels 1 -> CURLVL applying the Givens * rotations and permutation and then multiplying the center matrices * against the current Z. * PTR = 2**TLVLS + 1 DO 70 K = 1, CURLVL - 1 CURR = PTR + CURPBM*2**( CURLVL-K ) + 2**( CURLVL-K-1 ) - 1 PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR ) PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 ) ZPTR1 = MID - PSIZ1 * * Apply Givens at CURR and CURR+1 * DO 30 I = GIVPTR( CURR ), GIVPTR( CURR+1 ) - 1 CALL DROT( 1, Z( ZPTR1+GIVCOL( 1, I )-1 ), 1, $ Z( ZPTR1+GIVCOL( 2, I )-1 ), 1, GIVNUM( 1, I ), $ GIVNUM( 2, I ) ) 30 CONTINUE DO 40 I = GIVPTR( CURR+1 ), GIVPTR( CURR+2 ) - 1 CALL DROT( 1, Z( MID-1+GIVCOL( 1, I ) ), 1, $ Z( MID-1+GIVCOL( 2, I ) ), 1, GIVNUM( 1, I ), $ GIVNUM( 2, I ) ) 40 CONTINUE PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR ) PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 ) DO 50 I = 0, PSIZ1 - 1 ZTEMP( I+1 ) = Z( ZPTR1+PERM( PRMPTR( CURR )+I )-1 ) 50 CONTINUE DO 60 I = 0, PSIZ2 - 1 ZTEMP( PSIZ1+I+1 ) = Z( MID+PERM( PRMPTR( CURR+1 )+I )-1 ) 60 CONTINUE * * Multiply Blocks at CURR and CURR+1 * * Determine size of these matrices. We add HALF to the value of * the SQRT in case the machine underestimates one of these * square roots. * BSIZ1 = INT( HALF+SQRT( DBLE( QPTR( CURR+1 )-QPTR( CURR ) ) ) ) BSIZ2 = INT( HALF+SQRT( DBLE( QPTR( CURR+2 )-QPTR( CURR+ $ 1 ) ) ) ) IF( BSIZ1.GT.0 ) THEN CALL DGEMV( 'T', BSIZ1, BSIZ1, ONE, Q( QPTR( CURR ) ), $ BSIZ1, ZTEMP( 1 ), 1, ZERO, Z( ZPTR1 ), 1 ) END IF CALL DCOPY( PSIZ1-BSIZ1, ZTEMP( BSIZ1+1 ), 1, Z( ZPTR1+BSIZ1 ), $ 1 ) IF( BSIZ2.GT.0 ) THEN CALL DGEMV( 'T', BSIZ2, BSIZ2, ONE, Q( QPTR( CURR+1 ) ), $ BSIZ2, ZTEMP( PSIZ1+1 ), 1, ZERO, Z( MID ), 1 ) END IF CALL DCOPY( PSIZ2-BSIZ2, ZTEMP( PSIZ1+BSIZ2+1 ), 1, $ Z( MID+BSIZ2 ), 1 ) * PTR = PTR + 2**( TLVLS-K ) 70 CONTINUE * RETURN * * End of DLAEDA * END
gpl-2.0
SaberMod/GCC_SaberMod
libgfortran/intrinsics/selected_real_kind.f90
35
3245
! Copyright (C) 2003-2014 Free Software Foundation, Inc. ! Contributed by Kejia Zhao <kejia_zh@yahoo.com.cn> ! !This file is part of the GNU Fortran runtime library (libgfortran). ! !Libgfortran is free software; you can redistribute it and/or !modify it under the terms of the GNU General Public !License as published by the Free Software Foundation; either !version 3 of the License, or (at your option) any later version. ! !Libgfortran is distributed in the hope that it will be useful, !but WITHOUT ANY WARRANTY; without even the implied warranty of !MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the !GNU General Public License for more details. ! !Under Section 7 of GPL version 3, you are granted additional !permissions described in the GCC Runtime Library Exception, version !3.1, as published by the Free Software Foundation. ! !You should have received a copy of the GNU General Public License and !a copy of the GCC Runtime Library Exception along with this program; !see the files COPYING3 and COPYING.RUNTIME respectively. If not, see !<http://www.gnu.org/licenses/>. function _gfortran_selected_real_kind2008 (p, r, rdx) implicit none integer, optional, intent (in) :: p, r, rdx integer :: _gfortran_selected_real_kind2008 integer :: i, p2, r2, radix2 logical :: found_p, found_r, found_radix ! Real kind_precision_range table type :: real_info integer :: kind integer :: precision integer :: range integer :: radix end type real_info include "selected_real_kind.inc" _gfortran_selected_real_kind2008 = 0 p2 = 0 r2 = 0 radix2 = 0 found_p = .false. found_r = .false. found_radix = .false. if (present (p)) p2 = p if (present (r)) r2 = r if (present (rdx)) radix2 = rdx ! Assumes each type has a greater precision and range than previous one. do i = 1, c if (p2 <= real_infos (i) % precision) found_p = .true. if (r2 <= real_infos (i) % range) found_r = .true. if (radix2 <= real_infos (i) % radix) found_radix = .true. if (p2 <= real_infos (i) % precision & .and. r2 <= real_infos (i) % range & .and. radix2 <= real_infos (i) % radix) then _gfortran_selected_real_kind2008 = real_infos (i) % kind return end if end do if (found_radix .and. found_r .and. .not. found_p) then _gfortran_selected_real_kind2008 = -1 elseif (found_radix .and. found_p .and. .not. found_r) then _gfortran_selected_real_kind2008 = -2 elseif (found_radix .and. .not. found_p .and. .not. found_r) then _gfortran_selected_real_kind2008 = -3 elseif (found_radix) then _gfortran_selected_real_kind2008 = -4 else _gfortran_selected_real_kind2008 = -5 end if end function _gfortran_selected_real_kind2008 function _gfortran_selected_real_kind (p, r) implicit none integer, optional, intent (in) :: p, r integer :: _gfortran_selected_real_kind interface function _gfortran_selected_real_kind2008 (p, r, rdx) implicit none integer, optional, intent (in) :: p, r, rdx integer :: _gfortran_selected_real_kind2008 end function _gfortran_selected_real_kind2008 end interface _gfortran_selected_real_kind = _gfortran_selected_real_kind2008 (p, r) end function
gpl-2.0
SaberMod/GCC_SaberMod
libgfortran/generated/_acosh_r10.F90
35
1484
! Copyright (C) 2002-2014 Free Software Foundation, Inc. ! Contributed by Paul Brook <paul@nowt.org> ! !This file is part of the GNU Fortran 95 runtime library (libgfortran). ! !GNU libgfortran is free software; you can redistribute it and/or !modify it under the terms of the GNU General Public !License as published by the Free Software Foundation; either !version 3 of the License, or (at your option) any later version. !GNU libgfortran is distributed in the hope that it will be useful, !but WITHOUT ANY WARRANTY; without even the implied warranty of !MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the !GNU General Public License for more details. ! !Under Section 7 of GPL version 3, you are granted additional !permissions described in the GCC Runtime Library Exception, version !3.1, as published by the Free Software Foundation. ! !You should have received a copy of the GNU General Public License and !a copy of the GCC Runtime Library Exception along with this program; !see the files COPYING3 and COPYING.RUNTIME respectively. If not, see !<http://www.gnu.org/licenses/>. ! !This file is machine generated. #include "config.h" #include "kinds.inc" #include "c99_protos.inc" #if defined (HAVE_GFC_REAL_10) #ifdef HAVE_ACOSHL elemental function _gfortran_specific__acosh_r10 (parm) real (kind=10), intent (in) :: parm real (kind=10) :: _gfortran_specific__acosh_r10 _gfortran_specific__acosh_r10 = acosh (parm) end function #endif #endif
gpl-2.0
OpenVnmrJ/OpenVnmrJ
src/ib/port3/dv2nrm.f
3
1501
DOUBLE PRECISION FUNCTION DV2NRM(P, X) C C *** RETURN THE 2-NORM OF THE P-VECTOR X, TAKING *** C *** CARE TO AVOID THE MOST LIKELY UNDERFLOWS. *** C INTEGER P DOUBLE PRECISION X(P) C INTEGER I, J DOUBLE PRECISION ONE, R, SCALE, SQTETA, T, XI, ZERO C/+ DOUBLE PRECISION DSQRT C/ DOUBLE PRECISION DR7MDC EXTERNAL DR7MDC C C/6 C DATA ONE/1.D+0/, ZERO/0.D+0/ C/7 PARAMETER (ONE=1.D+0, ZERO=0.D+0) SAVE SQTETA C/ DATA SQTETA/0.D+0/ C IF (P .GT. 0) GO TO 10 DV2NRM = ZERO GO TO 999 10 DO 20 I = 1, P IF (X(I) .NE. ZERO) GO TO 30 20 CONTINUE DV2NRM = ZERO GO TO 999 C 30 SCALE = DABS(X(I)) IF (I .LT. P) GO TO 40 DV2NRM = SCALE GO TO 999 40 T = ONE IF (SQTETA .EQ. ZERO) SQTETA = DR7MDC(2) C C *** SQTETA IS (SLIGHTLY LARGER THAN) THE SQUARE ROOT OF THE C *** SMALLEST POSITIVE FLOATING POINT NUMBER ON THE MACHINE. C *** THE TESTS INVOLVING SQTETA ARE DONE TO PREVENT UNDERFLOWS. C J = I + 1 DO 60 I = J, P XI = DABS(X(I)) IF (XI .GT. SCALE) GO TO 50 R = XI / SCALE IF (R .GT. SQTETA) T = T + R*R GO TO 60 50 R = SCALE / XI IF (R .LE. SQTETA) R = ZERO T = ONE + T * R*R SCALE = XI 60 CONTINUE C DV2NRM = SCALE * DSQRT(T) 999 RETURN C *** LAST LINE OF DV2NRM FOLLOWS *** END
apache-2.0
eligere/eligere
FAHPcore-network/eigen/lapack/ilazlr.f
271
3010
*> \brief \b ILAZLR * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download ILAZLR + dependencies *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ilazlr.f"> *> [TGZ]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ilazlr.f"> *> [ZIP]</a> *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ilazlr.f"> *> [TXT]</a> *> \endhtmlonly * * Definition: * =========== * * INTEGER FUNCTION ILAZLR( M, N, A, LDA ) * * .. Scalar Arguments .. * INTEGER M, N, LDA * .. * .. Array Arguments .. * COMPLEX*16 A( LDA, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ILAZLR scans A for its last non-zero row. *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX*16 array, dimension (LDA,N) *> The m by n matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,M). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date April 2012 * *> \ingroup complex16OTHERauxiliary * * ===================================================================== INTEGER FUNCTION ILAZLR( M, N, A, LDA ) * * -- LAPACK auxiliary routine (version 3.4.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * April 2012 * * .. Scalar Arguments .. INTEGER M, N, LDA * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX*16 ZERO PARAMETER ( ZERO = (0.0D+0, 0.0D+0) ) * .. * .. Local Scalars .. INTEGER I, J * .. * .. Executable Statements .. * * Quick test for the common case where one corner is non-zero. IF( M.EQ.0 ) THEN ILAZLR = M ELSE IF( A(M, 1).NE.ZERO .OR. A(M, N).NE.ZERO ) THEN ILAZLR = M ELSE * Scan up each column tracking the last zero row seen. ILAZLR = 0 DO J = 1, N I=M DO WHILE((A(MAX(I,1),J).EQ.ZERO).AND.(I.GE.1)) I=I-1 ENDDO ILAZLR = MAX( ILAZLR, I ) END DO END IF RETURN END
gpl-3.0
OpenVnmrJ/OpenVnmrJ
src/ib/port3/dg7qts.f
1
21907
SUBROUTINE DG7QTS(D, DIG, DIHDI, KA, L, P, STEP, V, W) C C *** COMPUTE GOLDFELD-QUANDT-TROTTER STEP BY MORE-HEBDEN TECHNIQUE *** C *** (NL2SOL VERSION 2.2), MODIFIED A LA MORE AND SORENSEN *** C C *** PARAMETER DECLARATIONS *** C INTEGER KA, P DOUBLE PRECISION D(P), DIG(P), DIHDI(1), L(1), V(21), STEP(P), 1 W(1) C DIMENSION DIHDI(P*(P+1)/2), L(P*(P+1)/2), W(4*P+7) C C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ C C *** PURPOSE *** C C GIVEN THE (COMPACTLY STORED) LOWER TRIANGLE OF A SCALED C HESSIAN (APPROXIMATION) AND A NONZERO SCALED GRADIENT VECTOR, C THIS SUBROUTINE COMPUTES A GOLDFELD-QUANDT-TROTTER STEP OF C APPROXIMATE LENGTH V(RADIUS) BY THE MORE-HEBDEN TECHNIQUE. IN C OTHER WORDS, STEP IS COMPUTED TO (APPROXIMATELY) MINIMIZE C PSI(STEP) = (G**T)*STEP + 0.5*(STEP**T)*H*STEP SUCH THAT THE C 2-NORM OF D*STEP IS AT MOST (APPROXIMATELY) V(RADIUS), WHERE C G IS THE GRADIENT, H IS THE HESSIAN, AND D IS A DIAGONAL C SCALE MATRIX WHOSE DIAGONAL IS STORED IN THE PARAMETER D. C (DG7QTS ASSUMES DIG = D**-1 * G AND DIHDI = D**-1 * H * D**-1.) C C *** PARAMETER DESCRIPTION *** C C D (IN) = THE SCALE VECTOR, I.E. THE DIAGONAL OF THE SCALE C MATRIX D MENTIONED ABOVE UNDER PURPOSE. C DIG (IN) = THE SCALED GRADIENT VECTOR, D**-1 * G. IF G = 0, THEN C STEP = 0 AND V(STPPAR) = 0 ARE RETURNED. C DIHDI (IN) = LOWER TRIANGLE OF THE SCALED HESSIAN (APPROXIMATION), C I.E., D**-1 * H * D**-1, STORED COMPACTLY BY ROWS., I.E., C IN THE ORDER (1,1), (2,1), (2,2), (3,1), (3,2), ETC. C KA (I/O) = THE NUMBER OF HEBDEN ITERATIONS (SO FAR) TAKEN TO DETER- C MINE STEP. KA .LT. 0 ON INPUT MEANS THIS IS THE FIRST C ATTEMPT TO DETERMINE STEP (FOR THE PRESENT DIG AND DIHDI) C -- KA IS INITIALIZED TO 0 IN THIS CASE. OUTPUT WITH C KA = 0 (OR V(STPPAR) = 0) MEANS STEP = -(H**-1)*G. C L (I/O) = WORKSPACE OF LENGTH P*(P+1)/2 FOR CHOLESKY FACTORS. C P (IN) = NUMBER OF PARAMETERS -- THE HESSIAN IS A P X P MATRIX. C STEP (I/O) = THE STEP COMPUTED. C V (I/O) CONTAINS VARIOUS CONSTANTS AND VARIABLES DESCRIBED BELOW. C W (I/O) = WORKSPACE OF LENGTH 4*P + 6. C C *** ENTRIES IN V *** C C V(DGNORM) (I/O) = 2-NORM OF (D**-1)*G. C V(DSTNRM) (OUTPUT) = 2-NORM OF D*STEP. C V(DST0) (I/O) = 2-NORM OF D*(H**-1)*G (FOR POS. DEF. H ONLY), OR C OVERESTIMATE OF SMALLEST EIGENVALUE OF (D**-1)*H*(D**-1). C V(EPSLON) (IN) = MAX. REL. ERROR ALLOWED FOR PSI(STEP). FOR THE C STEP RETURNED, PSI(STEP) WILL EXCEED ITS OPTIMAL VALUE C BY LESS THAN -V(EPSLON)*PSI(STEP). SUGGESTED VALUE = 0.1. C V(GTSTEP) (OUT) = INNER PRODUCT BETWEEN G AND STEP. C V(NREDUC) (OUT) = PSI(-(H**-1)*G) = PSI(NEWTON STEP) (FOR POS. DEF. C H ONLY -- V(NREDUC) IS SET TO ZERO OTHERWISE). C V(PHMNFC) (IN) = TOL. (TOGETHER WITH V(PHMXFC)) FOR ACCEPTING STEP C (MORE*S SIGMA). THE ERROR V(DSTNRM) - V(RADIUS) MUST LIE C BETWEEN V(PHMNFC)*V(RADIUS) AND V(PHMXFC)*V(RADIUS). C V(PHMXFC) (IN) (SEE V(PHMNFC).) C SUGGESTED VALUES -- V(PHMNFC) = -0.25, V(PHMXFC) = 0.5. C V(PREDUC) (OUT) = PSI(STEP) = PREDICTED OBJ. FUNC. REDUCTION FOR STEP. C V(RADIUS) (IN) = RADIUS OF CURRENT (SCALED) TRUST REGION. C V(RAD0) (I/O) = VALUE OF V(RADIUS) FROM PREVIOUS CALL. C V(STPPAR) (I/O) IS NORMALLY THE MARQUARDT PARAMETER, I.E. THE ALPHA C DESCRIBED BELOW UNDER ALGORITHM NOTES. IF H + ALPHA*D**2 C (SEE ALGORITHM NOTES) IS (NEARLY) SINGULAR, HOWEVER, C THEN V(STPPAR) = -ALPHA. C C *** USAGE NOTES *** C C IF IT IS DESIRED TO RECOMPUTE STEP USING A DIFFERENT VALUE OF C V(RADIUS), THEN THIS ROUTINE MAY BE RESTARTED BY CALLING IT C WITH ALL PARAMETERS UNCHANGED EXCEPT V(RADIUS). (THIS EXPLAINS C WHY STEP AND W ARE LISTED AS I/O). ON AN INITIAL CALL (ONE WITH C KA .LT. 0), STEP AND W NEED NOT BE INITIALIZED AND ONLY COMPO- C NENTS V(EPSLON), V(STPPAR), V(PHMNFC), V(PHMXFC), V(RADIUS), AND C V(RAD0) OF V MUST BE INITIALIZED. C C *** ALGORITHM NOTES *** C C THE DESIRED G-Q-T STEP (REF. 2, 3, 4, 6) SATISFIES C (H + ALPHA*D**2)*STEP = -G FOR SOME NONNEGATIVE ALPHA SUCH THAT C H + ALPHA*D**2 IS POSITIVE SEMIDEFINITE. ALPHA AND STEP ARE C COMPUTED BY A SCHEME ANALOGOUS TO THE ONE DESCRIBED IN REF. 5. C ESTIMATES OF THE SMALLEST AND LARGEST EIGENVALUES OF THE HESSIAN C ARE OBTAINED FROM THE GERSCHGORIN CIRCLE THEOREM ENHANCED BY A C SIMPLE FORM OF THE SCALING DESCRIBED IN REF. 7. CASES IN WHICH C H + ALPHA*D**2 IS NEARLY (OR EXACTLY) SINGULAR ARE HANDLED BY C THE TECHNIQUE DISCUSSED IN REF. 2. IN THESE CASES, A STEP OF C (EXACT) LENGTH V(RADIUS) IS RETURNED FOR WHICH PSI(STEP) EXCEEDS C ITS OPTIMAL VALUE BY LESS THAN -V(EPSLON)*PSI(STEP). THE TEST C SUGGESTED IN REF. 6 FOR DETECTING THE SPECIAL CASE IS PERFORMED C ONCE TWO MATRIX FACTORIZATIONS HAVE BEEN DONE -- DOING SO SOONER C SEEMS TO DEGRADE THE PERFORMANCE OF OPTIMIZATION ROUTINES THAT C CALL THIS ROUTINE. C C *** FUNCTIONS AND SUBROUTINES CALLED *** C C DD7TPR - RETURNS INNER PRODUCT OF TWO VECTORS. C DL7ITV - APPLIES INVERSE-TRANSPOSE OF COMPACT LOWER TRIANG. MATRIX. C DL7IVM - APPLIES INVERSE OF COMPACT LOWER TRIANG. MATRIX. C DL7SRT - FINDS CHOLESKY FACTOR (OF COMPACTLY STORED LOWER TRIANG.). C DL7SVN - RETURNS APPROX. TO MIN. SING. VALUE OF LOWER TRIANG. MATRIX. C DR7MDC - RETURNS MACHINE-DEPENDENT CONSTANTS. C DV2NRM - RETURNS 2-NORM OF A VECTOR. C C *** REFERENCES *** C C 1. DENNIS, J.E., GAY, D.M., AND WELSCH, R.E. (1981), AN ADAPTIVE C NONLINEAR LEAST-SQUARES ALGORITHM, ACM TRANS. MATH. C SOFTWARE, VOL. 7, NO. 3. C 2. GAY, D.M. (1981), COMPUTING OPTIMAL LOCALLY CONSTRAINED STEPS, C SIAM J. SCI. STATIST. COMPUTING, VOL. 2, NO. 2, PP. C 186-197. C 3. GOLDFELD, S.M., QUANDT, R.E., AND TROTTER, H.F. (1966), C MAXIMIZATION BY QUADRATIC HILL-CLIMBING, ECONOMETRICA 34, C PP. 541-551. C 4. HEBDEN, M.D. (1973), AN ALGORITHM FOR MINIMIZATION USING EXACT C SECOND DERIVATIVES, REPORT T.P. 515, THEORETICAL PHYSICS C DIV., A.E.R.E. HARWELL, OXON., ENGLAND. C 5. MORE, J.J. (1978), THE LEVENBERG-MARQUARDT ALGORITHM, IMPLEMEN- C TATION AND THEORY, PP.105-116 OF SPRINGER LECTURE NOTES C IN MATHEMATICS NO. 630, EDITED BY G.A. WATSON, SPRINGER- C VERLAG, BERLIN AND NEW YORK. C 6. MORE, J.J., AND SORENSEN, D.C. (1981), COMPUTING A TRUST REGION C STEP, TECHNICAL REPORT ANL-81-83, ARGONNE NATIONAL LAB. C 7. VARGA, R.S. (1965), MINIMAL GERSCHGORIN SETS, PACIFIC J. MATH. 15, C PP. 719-729. C C *** GENERAL *** C C CODED BY DAVID M. GAY. C THIS SUBROUTINE WAS WRITTEN IN CONNECTION WITH RESEARCH C SUPPORTED BY THE NATIONAL SCIENCE FOUNDATION UNDER GRANTS C MCS-7600324, DCR75-10143, 76-14311DSS, MCS76-11989, AND C MCS-7906671. C C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ C C *** LOCAL VARIABLES *** C LOGICAL RESTRT INTEGER DGGDMX, DIAG, DIAG0, DSTSAV, EMAX, EMIN, I, IM1, INC, IRC, 1 J, K, KALIM, KAMIN, K1, LK0, PHIPIN, Q, Q0, UK0, X DOUBLE PRECISION ALPHAK, AKI, AKK, DELTA, DST, EPS, GTSTA, LK, 1 OLDPHI, PHI, PHIMAX, PHIMIN, PSIFAC, RAD, RADSQ, 2 ROOT, SI, SK, SW, T, TWOPSI, T1, T2, UK, WI C C *** CONSTANTS *** DOUBLE PRECISION BIG, DGXFAC, EPSFAC, FOUR, HALF, KAPPA, NEGONE, 1 ONE, P001, SIX, THREE, TWO, ZERO C C *** INTRINSIC FUNCTIONS *** C/+ DOUBLE PRECISION DSQRT C/ C *** EXTERNAL FUNCTIONS AND SUBROUTINES *** C DOUBLE PRECISION DD7TPR, DL7SVN, DR7MDC, DV2NRM EXTERNAL DD7TPR, DL7ITV, DL7IVM,DL7SRT, DL7SVN, DR7MDC, DV2NRM C C *** SUBSCRIPTS FOR V *** C INTEGER DGNORM, DSTNRM, DST0, EPSLON, GTSTEP, STPPAR, NREDUC, 1 PHMNFC, PHMXFC, PREDUC, RADIUS, RAD0 C/6 C DATA DGNORM/1/, DSTNRM/2/, DST0/3/, EPSLON/19/, GTSTEP/4/, C 1 NREDUC/6/, PHMNFC/20/, PHMXFC/21/, PREDUC/7/, RADIUS/8/, C 2 RAD0/9/, STPPAR/5/ C/7 PARAMETER (DGNORM=1, DSTNRM=2, DST0=3, EPSLON=19, GTSTEP=4, 1 NREDUC=6, PHMNFC=20, PHMXFC=21, PREDUC=7, RADIUS=8, 2 RAD0=9, STPPAR=5) C/ C C/6 C DATA EPSFAC/50.0D+0/, FOUR/4.0D+0/, HALF/0.5D+0/, C 1 KAPPA/2.0D+0/, NEGONE/-1.0D+0/, ONE/1.0D+0/, P001/1.0D-3/, C 2 SIX/6.0D+0/, THREE/3.0D+0/, TWO/2.0D+0/, ZERO/0.0D+0/ C/7 PARAMETER (EPSFAC=50.0D+0, FOUR=4.0D+0, HALF=0.5D+0, 1 KAPPA=2.0D+0, NEGONE=-1.0D+0, ONE=1.0D+0, P001=1.0D-3, 2 SIX=6.0D+0, THREE=3.0D+0, TWO=2.0D+0, ZERO=0.0D+0) SAVE DGXFAC C/ DATA BIG/0.D+0/, DGXFAC/0.D+0/ C C *** BODY *** C IF (BIG .LE. ZERO) BIG = DR7MDC(6) C C *** STORE LARGEST ABS. ENTRY IN (D**-1)*H*(D**-1) AT W(DGGDMX). DGGDMX = P + 1 C *** STORE GERSCHGORIN OVER- AND UNDERESTIMATES OF THE LARGEST C *** AND SMALLEST EIGENVALUES OF (D**-1)*H*(D**-1) AT W(EMAX) C *** AND W(EMIN) RESPECTIVELY. EMAX = DGGDMX + 1 EMIN = EMAX + 1 C *** FOR USE IN RECOMPUTING STEP, THE FINAL VALUES OF LK, UK, DST, C *** AND THE INVERSE DERIVATIVE OF MORE*S PHI AT 0 (FOR POS. DEF. C *** H) ARE STORED IN W(LK0), W(UK0), W(DSTSAV), AND W(PHIPIN) C *** RESPECTIVELY. LK0 = EMIN + 1 PHIPIN = LK0 + 1 UK0 = PHIPIN + 1 DSTSAV = UK0 + 1 C *** STORE DIAG OF (D**-1)*H*(D**-1) IN W(DIAG),...,W(DIAG0+P). DIAG0 = DSTSAV DIAG = DIAG0 + 1 C *** STORE -D*STEP IN W(Q),...,W(Q0+P). Q0 = DIAG0 + P Q = Q0 + 1 C *** ALLOCATE STORAGE FOR SCRATCH VECTOR X *** X = Q + P RAD = V(RADIUS) RADSQ = RAD**2 C *** PHITOL = MAX. ERROR ALLOWED IN DST = V(DSTNRM) = 2-NORM OF C *** D*STEP. PHIMAX = V(PHMXFC) * RAD PHIMIN = V(PHMNFC) * RAD PSIFAC = BIG T1 = TWO * V(EPSLON) / (THREE * (FOUR * (V(PHMNFC) + ONE) * 1 (KAPPA + ONE) + KAPPA + TWO) * RAD) IF (T1 .LT. BIG*DMIN1(RAD,ONE)) PSIFAC = T1 / RAD C *** OLDPHI IS USED TO DETECT LIMITS OF NUMERICAL ACCURACY. IF C *** WE RECOMPUTE STEP AND IT DOES NOT CHANGE, THEN WE ACCEPT IT. OLDPHI = ZERO EPS = V(EPSLON) IRC = 0 RESTRT = .FALSE. KALIM = KA + 50 C C *** START OR RESTART, DEPENDING ON KA *** C IF (KA .GE. 0) GO TO 290 C C *** FRESH START *** C K = 0 UK = NEGONE KA = 0 KALIM = 50 V(DGNORM) = DV2NRM(P, DIG) V(NREDUC) = ZERO V(DST0) = ZERO KAMIN = 3 IF (V(DGNORM) .EQ. ZERO) KAMIN = 0 C C *** STORE DIAG(DIHDI) IN W(DIAG0+1),...,W(DIAG0+P) *** C J = 0 DO 10 I = 1, P J = J + I K1 = DIAG0 + I W(K1) = DIHDI(J) 10 CONTINUE C C *** DETERMINE W(DGGDMX), THE LARGEST ELEMENT OF DIHDI *** C T1 = ZERO J = P * (P + 1) / 2 DO 20 I = 1, J T = DABS(DIHDI(I)) IF (T1 .LT. T) T1 = T 20 CONTINUE W(DGGDMX) = T1 C C *** TRY ALPHA = 0 *** C 30 CALL DL7SRT(1, P, L, DIHDI, IRC) IF (IRC .EQ. 0) GO TO 50 C *** INDEF. H -- UNDERESTIMATE SMALLEST EIGENVALUE, USE THIS C *** ESTIMATE TO INITIALIZE LOWER BOUND LK ON ALPHA. J = IRC*(IRC+1)/2 T = L(J) L(J) = ONE DO 40 I = 1, IRC 40 W(I) = ZERO W(IRC) = ONE CALL DL7ITV(IRC, W, L, W) T1 = DV2NRM(IRC, W) LK = -T / T1 / T1 V(DST0) = -LK IF (RESTRT) GO TO 210 GO TO 70 C C *** POSITIVE DEFINITE H -- COMPUTE UNMODIFIED NEWTON STEP. *** 50 LK = ZERO T = DL7SVN(P, L, W(Q), W(Q)) IF (T .GE. ONE) GO TO 60 IF (V(DGNORM) .GE. T*T*BIG) GO TO 70 60 CALL DL7IVM(P, W(Q), L, DIG) GTSTA = DD7TPR(P, W(Q), W(Q)) V(NREDUC) = HALF * GTSTA CALL DL7ITV(P, W(Q), L, W(Q)) DST = DV2NRM(P, W(Q)) V(DST0) = DST PHI = DST - RAD IF (PHI .LE. PHIMAX) GO TO 260 IF (RESTRT) GO TO 210 C C *** PREPARE TO COMPUTE GERSCHGORIN ESTIMATES OF LARGEST (AND C *** SMALLEST) EIGENVALUES. *** C 70 K = 0 DO 100 I = 1, P WI = ZERO IF (I .EQ. 1) GO TO 90 IM1 = I - 1 DO 80 J = 1, IM1 K = K + 1 T = DABS(DIHDI(K)) WI = WI + T W(J) = W(J) + T 80 CONTINUE 90 W(I) = WI K = K + 1 100 CONTINUE C C *** (UNDER-)ESTIMATE SMALLEST EIGENVALUE OF (D**-1)*H*(D**-1) *** C K = 1 T1 = W(DIAG) - W(1) IF (P .LE. 1) GO TO 120 DO 110 I = 2, P J = DIAG0 + I T = W(J) - W(I) IF (T .GE. T1) GO TO 110 T1 = T K = I 110 CONTINUE C 120 SK = W(K) J = DIAG0 + K AKK = W(J) K1 = K*(K-1)/2 + 1 INC = 1 T = ZERO DO 150 I = 1, P IF (I .EQ. K) GO TO 130 AKI = DABS(DIHDI(K1)) SI = W(I) J = DIAG0 + I T1 = HALF * (AKK - W(J) + SI - AKI) T1 = T1 + DSQRT(T1*T1 + SK*AKI) IF (T .LT. T1) T = T1 IF (I .LT. K) GO TO 140 130 INC = I 140 K1 = K1 + INC 150 CONTINUE C W(EMIN) = AKK - T UK = V(DGNORM)/RAD - W(EMIN) IF (V(DGNORM) .EQ. ZERO) UK = UK + P001 + P001*UK IF (UK .LE. ZERO) UK = P001 C C *** COMPUTE GERSCHGORIN (OVER-)ESTIMATE OF LARGEST EIGENVALUE *** C K = 1 T1 = W(DIAG) + W(1) IF (P .LE. 1) GO TO 170 DO 160 I = 2, P J = DIAG0 + I T = W(J) + W(I) IF (T .LE. T1) GO TO 160 T1 = T K = I 160 CONTINUE C 170 SK = W(K) J = DIAG0 + K AKK = W(J) K1 = K*(K-1)/2 + 1 INC = 1 T = ZERO DO 200 I = 1, P IF (I .EQ. K) GO TO 180 AKI = DABS(DIHDI(K1)) SI = W(I) J = DIAG0 + I T1 = HALF * (W(J) + SI - AKI - AKK) T1 = T1 + DSQRT(T1*T1 + SK*AKI) IF (T .LT. T1) T = T1 IF (I .LT. K) GO TO 190 180 INC = I 190 K1 = K1 + INC 200 CONTINUE C W(EMAX) = AKK + T LK = DMAX1(LK, V(DGNORM)/RAD - W(EMAX)) C C *** ALPHAK = CURRENT VALUE OF ALPHA (SEE ALG. NOTES ABOVE). WE C *** USE MORE*S SCHEME FOR INITIALIZING IT. ALPHAK = DABS(V(STPPAR)) * V(RAD0)/RAD ALPHAK = DMIN1(UK, DMAX1(ALPHAK, LK)) C IF (IRC .NE. 0) GO TO 210 C C *** COMPUTE L0 FOR POSITIVE DEFINITE H *** C CALL DL7IVM(P, W, L, W(Q)) T = DV2NRM(P, W) W(PHIPIN) = RAD / T / T LK = DMAX1(LK, PHI*W(PHIPIN)) C C *** SAFEGUARD ALPHAK AND ADD ALPHAK*I TO (D**-1)*H*(D**-1) *** C 210 KA = KA + 1 IF (-V(DST0) .GE. ALPHAK .OR. ALPHAK .LT. LK .OR. ALPHAK .GE. UK) 1 ALPHAK = UK * DMAX1(P001, DSQRT(LK/UK)) IF (ALPHAK .LE. ZERO) ALPHAK = HALF * UK IF (ALPHAK .LE. ZERO) ALPHAK = UK K = 0 DO 220 I = 1, P K = K + I J = DIAG0 + I DIHDI(K) = W(J) + ALPHAK 220 CONTINUE C C *** TRY COMPUTING CHOLESKY DECOMPOSITION *** C CALL DL7SRT(1, P, L, DIHDI, IRC) IF (IRC .EQ. 0) GO TO 240 C C *** (D**-1)*H*(D**-1) + ALPHAK*I IS INDEFINITE -- OVERESTIMATE C *** SMALLEST EIGENVALUE FOR USE IN UPDATING LK *** C J = (IRC*(IRC+1))/2 T = L(J) L(J) = ONE DO 230 I = 1, IRC 230 W(I) = ZERO W(IRC) = ONE CALL DL7ITV(IRC, W, L, W) T1 = DV2NRM(IRC, W) LK = ALPHAK - T/T1/T1 V(DST0) = -LK IF (UK .LT. LK) UK = LK IF (ALPHAK .LT. LK) GO TO 210 C C *** NASTY CASE -- EXACT GERSCHGORIN BOUNDS. FUDGE LK, UK... C T = P001 * ALPHAK IF (T .LE. ZERO) T = P001 LK = ALPHAK + T IF (UK .LE. LK) UK = LK + T GO TO 210 C C *** ALPHAK MAKES (D**-1)*H*(D**-1) POSITIVE DEFINITE. C *** COMPUTE Q = -D*STEP, CHECK FOR CONVERGENCE. *** C 240 CALL DL7IVM(P, W(Q), L, DIG) GTSTA = DD7TPR(P, W(Q), W(Q)) CALL DL7ITV(P, W(Q), L, W(Q)) DST = DV2NRM(P, W(Q)) PHI = DST - RAD IF (PHI .LE. PHIMAX .AND. PHI .GE. PHIMIN) GO TO 270 IF (PHI .EQ. OLDPHI) GO TO 270 OLDPHI = PHI IF (PHI .LT. ZERO) GO TO 330 C C *** UNACCEPTABLE ALPHAK -- UPDATE LK, UK, ALPHAK *** C 250 IF (KA .GE. KALIM) GO TO 270 C *** THE FOLLOWING DMIN1 IS NECESSARY BECAUSE OF RESTARTS *** IF (PHI .LT. ZERO) UK = DMIN1(UK, ALPHAK) C *** KAMIN = 0 ONLY IFF THE GRADIENT VANISHES *** IF (KAMIN .EQ. 0) GO TO 210 CALL DL7IVM(P, W, L, W(Q)) C *** THE FOLLOWING, COMMENTED CALCULATION OF ALPHAK IS SOMETIMES C *** SAFER BUT WORSE IN PERFORMANCE... C T1 = DST / DV2NRM(P, W) C ALPHAK = ALPHAK + T1 * (PHI/RAD) * T1 T1 = DV2NRM(P, W) ALPHAK = ALPHAK + (PHI/T1) * (DST/T1) * (DST/RAD) LK = DMAX1(LK, ALPHAK) ALPHAK = LK GO TO 210 C C *** ACCEPTABLE STEP ON FIRST TRY *** C 260 ALPHAK = ZERO C C *** SUCCESSFUL STEP IN GENERAL. COMPUTE STEP = -(D**-1)*Q *** C 270 DO 280 I = 1, P J = Q0 + I STEP(I) = -W(J)/D(I) 280 CONTINUE V(GTSTEP) = -GTSTA V(PREDUC) = HALF * (DABS(ALPHAK)*DST*DST + GTSTA) GO TO 410 C C C *** RESTART WITH NEW RADIUS *** C 290 IF (V(DST0) .LE. ZERO .OR. V(DST0) - RAD .GT. PHIMAX) GO TO 310 C C *** PREPARE TO RETURN NEWTON STEP *** C RESTRT = .TRUE. KA = KA + 1 K = 0 DO 300 I = 1, P K = K + I J = DIAG0 + I DIHDI(K) = W(J) 300 CONTINUE UK = NEGONE GO TO 30 C 310 KAMIN = KA + 3 IF (V(DGNORM) .EQ. ZERO) KAMIN = 0 IF (KA .EQ. 0) GO TO 50 C DST = W(DSTSAV) ALPHAK = DABS(V(STPPAR)) PHI = DST - RAD T = V(DGNORM)/RAD UK = T - W(EMIN) IF (V(DGNORM) .EQ. ZERO) UK = UK + P001 + P001*UK IF (UK .LE. ZERO) UK = P001 IF (RAD .GT. V(RAD0)) GO TO 320 C C *** SMALLER RADIUS *** LK = ZERO IF (ALPHAK .GT. ZERO) LK = W(LK0) LK = DMAX1(LK, T - W(EMAX)) IF (V(DST0) .GT. ZERO) LK = DMAX1(LK, (V(DST0)-RAD)*W(PHIPIN)) GO TO 250 C C *** BIGGER RADIUS *** 320 IF (ALPHAK .GT. ZERO) UK = DMIN1(UK, W(UK0)) LK = DMAX1(ZERO, -V(DST0), T - W(EMAX)) IF (V(DST0) .GT. ZERO) LK = DMAX1(LK, (V(DST0)-RAD)*W(PHIPIN)) GO TO 250 C C *** DECIDE WHETHER TO CHECK FOR SPECIAL CASE... IN PRACTICE (FROM C *** THE STANDPOINT OF THE CALLING OPTIMIZATION CODE) IT SEEMS BEST C *** NOT TO CHECK UNTIL A FEW ITERATIONS HAVE FAILED -- HENCE THE C *** TEST ON KAMIN BELOW. C 330 DELTA = ALPHAK + DMIN1(ZERO, V(DST0)) TWOPSI = ALPHAK*DST*DST + GTSTA IF (KA .GE. KAMIN) GO TO 340 C *** IF THE TEST IN REF. 2 IS SATISFIED, FALL THROUGH TO HANDLE C *** THE SPECIAL CASE (AS SOON AS THE MORE-SORENSEN TEST DETECTS C *** IT). IF (PSIFAC .GE. BIG) GO TO 340 IF (DELTA .GE. PSIFAC*TWOPSI) GO TO 370 C C *** CHECK FOR THE SPECIAL CASE OF H + ALPHA*D**2 (NEARLY) C *** SINGULAR. USE ONE STEP OF INVERSE POWER METHOD WITH START C *** FROM DL7SVN TO OBTAIN APPROXIMATE EIGENVECTOR CORRESPONDING C *** TO SMALLEST EIGENVALUE OF (D**-1)*H*(D**-1). DL7SVN RETURNS C *** X AND W WITH L*W = X. C 340 T = DL7SVN(P, L, W(X), W) C C *** NORMALIZE W *** DO 350 I = 1, P 350 W(I) = T*W(I) C *** COMPLETE CURRENT INV. POWER ITER. -- REPLACE W BY (L**-T)*W. CALL DL7ITV(P, W, L, W) T2 = ONE/DV2NRM(P, W) DO 360 I = 1, P 360 W(I) = T2*W(I) T = T2 * T C C *** NOW W IS THE DESIRED APPROXIMATE (UNIT) EIGENVECTOR AND C *** T*X = ((D**-1)*H*(D**-1) + ALPHAK*I)*W. C SW = DD7TPR(P, W(Q), W) T1 = (RAD + DST) * (RAD - DST) ROOT = DSQRT(SW*SW + T1) IF (SW .LT. ZERO) ROOT = -ROOT SI = T1 / (SW + ROOT) C C *** THE ACTUAL TEST FOR THE SPECIAL CASE... C IF ((T2*SI)**2 .LE. EPS*(DST**2 + ALPHAK*RADSQ)) GO TO 380 C C *** UPDATE UPPER BOUND ON SMALLEST EIGENVALUE (WHEN NOT POSITIVE) C *** (AS RECOMMENDED BY MORE AND SORENSEN) AND CONTINUE... C IF (V(DST0) .LE. ZERO) V(DST0) = DMIN1(V(DST0), T2**2 - ALPHAK) LK = DMAX1(LK, -V(DST0)) C C *** CHECK WHETHER WE CAN HOPE TO DETECT THE SPECIAL CASE IN C *** THE AVAILABLE ARITHMETIC. ACCEPT STEP AS IT IS IF NOT. C C *** IF NOT YET AVAILABLE, OBTAIN MACHINE DEPENDENT VALUE DGXFAC. 370 IF (DGXFAC .EQ. ZERO) DGXFAC = EPSFAC * DR7MDC(3) C IF (DELTA .GT. DGXFAC*W(DGGDMX)) GO TO 250 GO TO 270 C C *** SPECIAL CASE DETECTED... NEGATE ALPHAK TO INDICATE SPECIAL CASE C 380 ALPHAK = -ALPHAK V(PREDUC) = HALF * TWOPSI C C *** ACCEPT CURRENT STEP IF ADDING SI*W WOULD LEAD TO A C *** FURTHER RELATIVE REDUCTION IN PSI OF LESS THAN V(EPSLON)/3. C T1 = ZERO T = SI*(ALPHAK*SW - HALF*SI*(ALPHAK + T*DD7TPR(P,W(X),W))) IF (T .LT. EPS*TWOPSI/SIX) GO TO 390 V(PREDUC) = V(PREDUC) + T DST = RAD T1 = -SI 390 DO 400 I = 1, P J = Q0 + I W(J) = T1*W(I) - W(J) STEP(I) = W(J) / D(I) 400 CONTINUE V(GTSTEP) = DD7TPR(P, DIG, W(Q)) C C *** SAVE VALUES FOR USE IN A POSSIBLE RESTART *** C 410 V(DSTNRM) = DST V(STPPAR) = ALPHAK W(LK0) = LK W(UK0) = UK V(RAD0) = RAD W(DSTSAV) = DST C C *** RESTORE DIAGONAL OF DIHDI *** C J = 0 DO 420 I = 1, P J = J + I K = DIAG0 + I DIHDI(J) = W(K) 420 CONTINUE C 999 RETURN C C *** LAST CARD OF DG7QTS FOLLOWS *** END
apache-2.0
lendle/KernSmooth.jl
deps/rlbin.f
3
1471
c Part of R package KernSmooth c Copyright (C) 1995 M. P. Wand c c Unlimited use and distribution (see LICENCE). cccccccccc FORTRAN subroutine rlbin.f cccccccccc c Obtains bin counts for univariate regression data c via the linear binning strategy. If "trun=0" then c weight from end observations is given to corresponding c end grid points. If "trun=1" then end observations c are truncated. c Last changed: 26 MAR 2009 subroutine rlbin(X,Y,n,a,b,M,trun,xcnts,ycnts) double precision X(*),Y(*),a,b,xcnts(*),ycnts(*),lxi,delta,rem integer n,M,i,li,trun c Initialize grid counts to zero do 10 i=1,M xcnts(i) = dble(0) ycnts(i) = dble(0) 10 continue delta = (b-a)/(M-1) do 20 i=1,n lxi = ((X(i)-a)/delta) + 1 c Find integer part of "lxi" li = int(lxi) rem = lxi - li if (li.ge.1.and.li.lt.M) then xcnts(li) = xcnts(li) + (1-rem) xcnts(li+1) = xcnts(li+1) + rem ycnts(li) = ycnts(li) + (1-rem)*y(i) ycnts(li+1) = ycnts(li+1) + rem*y(i) endif if (li.lt.1.and.trun.eq.0) then xcnts(1) = xcnts(1) + 1 ycnts(1) = ycnts(1) + y(i) endif if (li.ge.M.and.trun.eq.0) then xcnts(M) = xcnts(M) + 1 ycnts(M) = ycnts(M) + y(i) endif 20 continue return end cccccccccc End of rlbin.f cccccccccc
mit
embecosm/avr32-gcc
gcc/testsuite/gfortran.dg/transfer_simplify_2.f90
8
5134
! { dg-do run } ! { dg-options "-O2" } ! { dg-options "-O2 -mieee" { target alpha*-*-* } } ! Tests the fix for the meta-bug PR31237 (TRANSFER intrinsic) ! Exercises gfc_simplify_transfer a random walk through types and shapes ! and compares its results with the middle-end version that operates on ! variables. ! implicit none call integer4_to_real4 call real4_to_integer8 call integer4_to_integer8 call logical4_to_real8 call real8_to_integer4 call integer8_to_real4 call integer8_to_complex4 call character16_to_complex8 call character16_to_real8 call real8_to_character2 call dt_to_integer1 call character16_to_dt contains subroutine integer4_to_real4 integer(4), parameter :: i1 = 11111_4 integer(4) :: i2 = i1 real(4), parameter :: r1 = transfer (i1, 1.0_4) real(4) :: r2 r2 = transfer (i2, r2); if (r1 .ne. r2) call abort () end subroutine integer4_to_real4 subroutine real4_to_integer8 real(4), parameter :: r1(2) = (/3.14159_4, 0.0_4/) real(4) :: r2(2) = r1 integer(8), parameter :: i1 = transfer (r1, 1_8) integer(8) :: i2 i2 = transfer (r2, 1_8); if (i1 .ne. i2) call abort () end subroutine real4_to_integer8 subroutine integer4_to_integer8 integer(4), parameter :: i1(2) = (/11111_4, 22222_4/) integer(4) :: i2(2) = i1 integer(8), parameter :: i3 = transfer (i1, 1_8) integer(8) :: i4 i4 = transfer (i2, 1_8); if (i3 .ne. i4) call abort () end subroutine integer4_to_integer8 subroutine logical4_to_real8 logical(4), parameter :: l1(2) = (/.false., .true./) logical(4) :: l2(2) = l1 real(8), parameter :: r1 = transfer (l1, 1_8) real(8) :: r2 r2 = transfer (l2, 1_8); if (r1 .ne. r2) call abort () end subroutine logical4_to_real8 subroutine real8_to_integer4 real(8), parameter :: r1 = 3.14159_8 real(8) :: r2 = r1 integer(4), parameter :: i1(2) = transfer (r1, 1_4, 2) integer(4) :: i2(2) i2 = transfer (r2, i2, 2); if (any (i1 .ne. i2)) call abort () end subroutine real8_to_integer4 subroutine integer8_to_real4 integer :: k integer(8), parameter :: i1(2) = transfer ((/asin (1.0_8), log (1.0_8)/), 0_8) integer(8) :: i2(2) = i1 real(4), parameter :: r1(4) = transfer (i1, (/(1.0_4,k=1,4)/)) real(4) :: r2(4) r2 = transfer (i2, r2); if (any (r1 .ne. r2)) call abort () end subroutine integer8_to_real4 subroutine integer8_to_complex4 integer :: k integer(8), parameter :: i1(2) = transfer ((/asin (1.0_8), log (1.0_8)/), 0_8) integer(8) :: i2(2) = i1 complex(4), parameter :: z1(2) = transfer (i1, (/((1.0_4,2.0_4),k=1,2)/)) complex(4) :: z2(2) z2 = transfer (i2, z2); if (any (z1 .ne. z2)) call abort () end subroutine integer8_to_complex4 subroutine character16_to_complex8 character(16), parameter :: c1(2) = (/"abcdefghijklmnop","qrstuvwxyz123456"/) character(16) :: c2(2) = c1 complex(8), parameter :: z1(2) = transfer (c1, (1.0_8,1.0_8), 2) complex(8) :: z2(2) z2 = transfer (c2, z2, 2); if (any (z1 .ne. z2)) call abort () end subroutine character16_to_complex8 subroutine character16_to_real8 character(16), parameter :: c1 = "abcdefghijklmnop" character(16) :: c2 = c1 real(8), parameter :: r1(2) = transfer (c1, 1.0_8, 2) real(8) :: r2(2) r2 = transfer (c2, r2, 2); if (any (r1 .ne. r2)) call abort () end subroutine character16_to_real8 subroutine real8_to_character2 real(8), parameter :: r1 = 3.14159_8 real(8) :: r2 = r1 character(2), parameter :: c1(4) = transfer (r1, "ab", 4) character(2) :: c2(4) c2 = transfer (r2, "ab", 4); if (any (c1 .ne. c2)) call abort () end subroutine real8_to_character2 subroutine dt_to_integer1 integer, parameter :: i1(4) = (/1_4,2_4,3_4,4_4/) real, parameter :: r1(4) = (/1.0_4,2.0_4,3.0_4,4.0_4/) type :: mytype integer(4) :: i(4) real(4) :: x(4) end type mytype type (mytype), parameter :: dt1 = mytype (i1, r1) type (mytype) :: dt2 = dt1 integer(1), parameter :: i2(32) = transfer (dt1, 1_1, 32) integer(1) :: i3(32) i3 = transfer (dt2, 1_1, 32); if (any (i2 .ne. i3)) call abort () end subroutine dt_to_integer1 subroutine character16_to_dt character(16), parameter :: c1 = "abcdefghijklmnop" character(16) :: c2 = c1 type :: mytype real(4) :: x(2) end type mytype type (mytype), parameter :: dt1(2) = transfer (c1, mytype ((/1.0,2.0,3.0,4.0/)), 2) type (mytype) :: dt2(2) dt2 = transfer (c2, dt2); if (any (dt1(1)%x .ne. dt2(1)%x)) call abort () if (any (dt1(2)%x .ne. dt2(2)%x)) call abort () end subroutine character16_to_dt end
gpl-2.0
embecosm/avr32-gcc
gcc/testsuite/gfortran.dg/boz_1.f90
174
1156
! { dg-do run } ! { dg-options "-std=gnu" } ! Test the boz handling program boz implicit none integer(1), parameter :: b1 = b'00000001' integer(2), parameter :: b2 = b'0101010110101010' integer(4), parameter :: b4 = b'01110000111100001111000011110000' integer(8), parameter :: & & b8 = b'0111000011110000111100001111000011110000111100001111000011110000' integer(1), parameter :: o1 = o'12' integer(2), parameter :: o2 = o'4321' integer(4), parameter :: o4 = o'43210765' integer(8), parameter :: o8 = o'1234567076543210' integer(1), parameter :: z1 = z'a' integer(2), parameter :: z2 = z'ab' integer(4), parameter :: z4 = z'dead' integer(8), parameter :: z8 = z'deadbeef' if (z1 /= 10_1) call abort if (z2 /= 171_2) call abort if (z4 /= 57005_4) call abort if (z8 /= 3735928559_8) call abort if (b1 /= 1_1) call abort if (b2 /= 21930_2) call abort if (b4 /= 1894838512_4) call abort if (b8 /= 8138269444283625712_8) call abort if (o1 /= 10_1) call abort if (o2 /= 2257_2) call abort if (o4 /= 9245173_4) call abort if (o8 /= 45954958542472_8) call abort end program boz
gpl-2.0
lapesd/libgomp
src/libgomp/testsuite/libgomp.fortran/simd2.f90
103
2682
! { dg-do run } ! { dg-additional-options "-msse2" { target sse2_runtime } } ! { dg-additional-options "-mavx" { target avx_runtime } } integer :: a(1024), b(1024), k, m, i, s, t k = 4 m = 2 t = 1 do i = 1, 1024 a(i) = i - 513 b(i) = modulo (i - 52, 39) if (i.lt.52.and.b(i).ne.0) b(i) = b(i) - 39 end do s = foo (b) do i = 1, 1024 if (a(i).ne.((i - 513) * b(i))) call abort if (i.lt.52.and.modulo (i - 52, 39).ne.0) then if (b(i).ne.(modulo (i - 52, 39) - 39)) call abort else if (b(i).ne.(modulo (i - 52, 39))) call abort end if a(i) = i - 513 end do if (k.ne.(4 + 3 * 1024).or.s.ne.1596127) call abort k = 4 m = 2 t = 1 s = bar (b) do i = 1, 1024 if (a(i).ne.((i - 513) * b(i))) call abort if (i.lt.52.and.modulo (i - 52, 39).ne.0) then if (b(i).ne.(modulo (i - 52, 39) - 39)) call abort else if (b(i).ne.(modulo (i - 52, 39))) call abort end if a(i) = i - 513 end do if (k.ne.(4 + 3 * 1024).or.s.ne.1596127) call abort k = 4 m = 2 t = 1 s = baz (b) do i = 1, 1024 if (a(i).ne.((i - 513) * b(i))) call abort if (i.lt.52.and.modulo (i - 52, 39).ne.0) then if (b(i).ne.(modulo (i - 52, 39) - 39)) call abort else if (b(i).ne.(modulo (i - 52, 39))) call abort end if end do if (k.ne.(4 + 3 * 1024).or.s.ne.1596127) call abort contains function foo (p) integer :: p(1024), u, v, i, s, foo s = 0 !$omp simd linear(k : m + 1) reduction(+: s) lastprivate(u, v) do i = 1, 1024 a(i) = a(i) * p(i) u = p(i) + k k = k + m + 1 v = p(i) + k s = s + p(i) + k end do !$omp end simd if (i.ne.1025) call abort if (u.ne.(36 + 4 + 3 * 1023).or.v.ne.(36 + 4 + 3 * 1024)) call abort foo = s end function foo function bar (p) integer :: p(1024), u, v, i, s, bar s = 0 !$omp simd linear(k : m + 1) reduction(+: s) lastprivate(u, v) do i = 1, 1024, t a(i) = a(i) * p(i) u = p(i) + k k = k + m + 1 v = p(i) + k s = s + p(i) + k end do !$omp end simd if (i.ne.1025) call abort if (u.ne.(36 + 4 + 3 * 1023).or.v.ne.(36 + 4 + 3 * 1024)) call abort bar = s end function bar function baz (p) integer :: p(1024), u, v, i, s, baz s = 0 !$omp simd linear(k : m + 1) reduction(+: s) lastprivate(u, v) & !$omp & linear(i : t) do i = 1, 1024, t a(i) = a(i) * p(i) u = p(i) + k k = k + m + 1 v = p(i) + k s = s + p(i) + k end do if (i.ne.1025) call abort if (u.ne.(36 + 4 + 3 * 1023).or.v.ne.(36 + 4 + 3 * 1024)) call abort baz = s end function baz end
gpl-3.0
embecosm/avr32-gcc
gcc/testsuite/gfortran.dg/interface_24.f90
38
1241
! { dg-do compile } ! ! This tests the fix for PR36361: If a function was declared in an INTERFACE ! statement, no attributes may be declared outside of the INTERFACE body. ! ! Contributed by Janus Weil <janus@gcc.gnu.org> module m1 interface real function f1() end function end interface dimension :: f1(4) ! { dg-error "outside its INTERFACE body" } end module module m2 dimension :: f2(4) interface real function f2() ! { dg-error "outside its INTERFACE body" } !end function end interface end module ! valid module m3 interface real function f3() dimension :: f3(4) end function end interface end module module m4 interface function f4() ! { dg-error "cannot have a deferred shape" } real :: f4(:) end function end interface allocatable :: f4 ! { dg-error "outside of INTERFACE body" } end module module m5 allocatable :: f5(:) interface function f5() ! { dg-error "outside its INTERFACE body" } !real f5(:) !end function end interface end module !valid module m6 interface function f6() real f6(:) allocatable :: f6 end function end interface end module ! { dg-final { cleanup-modules "m1 m2 m3 m4 m5 m6" } }
gpl-2.0
jag1g13/lammps
lib/linalg/dtrsv.f
72
10138
*> \brief \b DTRSV * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) * * .. Scalar Arguments .. * INTEGER INCX,LDA,N * CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. * DOUBLE PRECISION A(LDA,*),X(*) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DTRSV solves one of the systems of equations *> *> A*x = b, or A**T*x = b, *> *> where b and x are n element vectors and A is an n by n unit, or *> non-unit, upper or lower triangular matrix. *> *> No test for singularity or near-singularity is included in this *> routine. Such tests must be performed before calling this routine. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> On entry, UPLO specifies whether the matrix is an upper or *> lower triangular matrix as follows: *> *> UPLO = 'U' or 'u' A is an upper triangular matrix. *> *> UPLO = 'L' or 'l' A is a lower triangular matrix. *> \endverbatim *> *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> On entry, TRANS specifies the equations to be solved as *> follows: *> *> TRANS = 'N' or 'n' A*x = b. *> *> TRANS = 'T' or 't' A**T*x = b. *> *> TRANS = 'C' or 'c' A**T*x = b. *> \endverbatim *> *> \param[in] DIAG *> \verbatim *> DIAG is CHARACTER*1 *> On entry, DIAG specifies whether or not A is unit *> triangular as follows: *> *> DIAG = 'U' or 'u' A is assumed to be unit triangular. *> *> DIAG = 'N' or 'n' A is not assumed to be unit *> triangular. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> On entry, N specifies the order of the matrix A. *> N must be at least zero. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is DOUBLE PRECISION array of DIMENSION ( LDA, n ). *> Before entry with UPLO = 'U' or 'u', the leading n by n *> upper triangular part of the array A must contain the upper *> triangular matrix and the strictly lower triangular part of *> A is not referenced. *> Before entry with UPLO = 'L' or 'l', the leading n by n *> lower triangular part of the array A must contain the lower *> triangular matrix and the strictly upper triangular part of *> A is not referenced. *> Note that when DIAG = 'U' or 'u', the diagonal elements of *> A are not referenced either, but are assumed to be unity. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> On entry, LDA specifies the first dimension of A as declared *> in the calling (sub) program. LDA must be at least *> max( 1, n ). *> \endverbatim *> *> \param[in,out] X *> \verbatim *> X is DOUBLE PRECISION array of dimension at least *> ( 1 + ( n - 1 )*abs( INCX ) ). *> Before entry, the incremented array X must contain the n *> element right-hand side vector b. On exit, X is overwritten *> with the solution vector x. *> \endverbatim *> *> \param[in] INCX *> \verbatim *> INCX is INTEGER *> On entry, INCX specifies the increment for the elements of *> X. INCX must not be zero. *> *> Level 2 Blas routine. *> *> -- Written on 22-October-1986. *> Jack Dongarra, Argonne National Lab. *> Jeremy Du Croz, Nag Central Office. *> Sven Hammarling, Nag Central Office. *> Richard Hanson, Sandia National Labs. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup double_blas_level1 * * ===================================================================== SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) * * -- Reference BLAS level1 routine (version 3.4.0) -- * -- Reference BLAS is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER INCX,LDA,N CHARACTER DIAG,TRANS,UPLO * .. * .. Array Arguments .. DOUBLE PRECISION A(LDA,*),X(*) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER (ZERO=0.0D+0) * .. * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I,INFO,IX,J,JX,KX LOGICAL NOUNIT * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. + .NOT.LSAME(TRANS,'C')) THEN INFO = 2 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (LDA.LT.MAX(1,N)) THEN INFO = 6 ELSE IF (INCX.EQ.0) THEN INFO = 8 END IF IF (INFO.NE.0) THEN CALL XERBLA('DTRSV ',INFO) RETURN END IF * * Quick return if possible. * IF (N.EQ.0) RETURN * NOUNIT = LSAME(DIAG,'N') * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF (INCX.LE.0) THEN KX = 1 - (N-1)*INCX ELSE IF (INCX.NE.1) THEN KX = 1 END IF * * Start the operations. In this version the elements of A are * accessed sequentially with one pass through A. * IF (LSAME(TRANS,'N')) THEN * * Form x := inv( A )*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 20 J = N,1,-1 IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/A(J,J) TEMP = X(J) DO 10 I = J - 1,1,-1 X(I) = X(I) - TEMP*A(I,J) 10 CONTINUE END IF 20 CONTINUE ELSE JX = KX + (N-1)*INCX DO 40 J = N,1,-1 IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/A(J,J) TEMP = X(JX) IX = JX DO 30 I = J - 1,1,-1 IX = IX - INCX X(IX) = X(IX) - TEMP*A(I,J) 30 CONTINUE END IF JX = JX - INCX 40 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 60 J = 1,N IF (X(J).NE.ZERO) THEN IF (NOUNIT) X(J) = X(J)/A(J,J) TEMP = X(J) DO 50 I = J + 1,N X(I) = X(I) - TEMP*A(I,J) 50 CONTINUE END IF 60 CONTINUE ELSE JX = KX DO 80 J = 1,N IF (X(JX).NE.ZERO) THEN IF (NOUNIT) X(JX) = X(JX)/A(J,J) TEMP = X(JX) IX = JX DO 70 I = J + 1,N IX = IX + INCX X(IX) = X(IX) - TEMP*A(I,J) 70 CONTINUE END IF JX = JX + INCX 80 CONTINUE END IF END IF ELSE * * Form x := inv( A**T )*x. * IF (LSAME(UPLO,'U')) THEN IF (INCX.EQ.1) THEN DO 100 J = 1,N TEMP = X(J) DO 90 I = 1,J - 1 TEMP = TEMP - A(I,J)*X(I) 90 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) X(J) = TEMP 100 CONTINUE ELSE JX = KX DO 120 J = 1,N TEMP = X(JX) IX = KX DO 110 I = 1,J - 1 TEMP = TEMP - A(I,J)*X(IX) IX = IX + INCX 110 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) X(JX) = TEMP JX = JX + INCX 120 CONTINUE END IF ELSE IF (INCX.EQ.1) THEN DO 140 J = N,1,-1 TEMP = X(J) DO 130 I = N,J + 1,-1 TEMP = TEMP - A(I,J)*X(I) 130 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) X(J) = TEMP 140 CONTINUE ELSE KX = KX + (N-1)*INCX JX = KX DO 160 J = N,1,-1 TEMP = X(JX) IX = KX DO 150 I = N,J + 1,-1 TEMP = TEMP - A(I,J)*X(IX) IX = IX - INCX 150 CONTINUE IF (NOUNIT) TEMP = TEMP/A(J,J) X(JX) = TEMP JX = JX - INCX 160 CONTINUE END IF END IF END IF * RETURN * * End of DTRSV . * END
gpl-2.0
SaberMod/GCC_SaberMod
libgfortran/generated/_asinh_r10.F90
35
1484
! Copyright (C) 2002-2014 Free Software Foundation, Inc. ! Contributed by Paul Brook <paul@nowt.org> ! !This file is part of the GNU Fortran 95 runtime library (libgfortran). ! !GNU libgfortran is free software; you can redistribute it and/or !modify it under the terms of the GNU General Public !License as published by the Free Software Foundation; either !version 3 of the License, or (at your option) any later version. !GNU libgfortran is distributed in the hope that it will be useful, !but WITHOUT ANY WARRANTY; without even the implied warranty of !MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the !GNU General Public License for more details. ! !Under Section 7 of GPL version 3, you are granted additional !permissions described in the GCC Runtime Library Exception, version !3.1, as published by the Free Software Foundation. ! !You should have received a copy of the GNU General Public License and !a copy of the GCC Runtime Library Exception along with this program; !see the files COPYING3 and COPYING.RUNTIME respectively. If not, see !<http://www.gnu.org/licenses/>. ! !This file is machine generated. #include "config.h" #include "kinds.inc" #include "c99_protos.inc" #if defined (HAVE_GFC_REAL_10) #ifdef HAVE_ASINHL elemental function _gfortran_specific__asinh_r10 (parm) real (kind=10), intent (in) :: parm real (kind=10) :: _gfortran_specific__asinh_r10 _gfortran_specific__asinh_r10 = asinh (parm) end function #endif #endif
gpl-2.0
luca-penasa/mtspec-python3
mtspec/src/examples/src/fig4_5.f90
2
3502
program fig4_5 ! ! Simple code to generate Figure 4 and 5 of ! Prieto, G. A., R. L. Parker, and F. L. Vernon (2008) ! A Fortran 90 library formultitaper spectrum analysis ! ! Additional editing of the figure was performed for publication. ! An additional on-the-fly plotting library is used for the ! plotting of the data, available at ! pangea.stanford.edu/~gprieto/software.html ! ! Written by ! G. A. Prieto ! January 2nd, 2008 ! ! Comments, questions, bugs? ! Please email gprieto@stanford.edu ! ! Calls: mt_transfer, gplot ! Modules: mvspectra.mod, plot.mod ! !******************************************************************** use mvspectra use plot implicit none integer, parameter :: npts=4458, nfft = 4*8916, nf = 4*8916/2+1 integer :: kspec, i, iadapt real(4) :: tbnw, dt, junk real(4), dimension(npts) :: ext1, int1, t real(4), dimension(nf) :: freq, spec, cohe, wt complex(4), dimension(nfft) :: trf complex(4), dimension(nf-1) :: Qi real(4), dimension(nf-1) :: per, lper ! Band averging real(4), dimension(10) :: avper, crvar, civar complex(4), dimension(10) :: c, cavg, travg real(4) :: swt, l complex(4) :: Q2c integer :: fcnt, j, iloc1, iloc2 integer, dimension(1) :: i1, i2 !******************************************************************** dt = 3600. kspec = 12 tbnw = 7.5 iadapt = 1 ! Adaptive multitaper ! Load the data, already resampled open(12,file='../data/asc_akima.dat') do i = 1,npts read(12,*) junk, ext1(i), int1(i) t(i) = real(i)*dt enddo close(12) ! Plot time series call gplot(t/1.e6,int1,ylimit='5 -120 20') call gplot(t/1.e6,ext1,ylimit='5 -120 20') ! Demean the two series (maybe not needed, result does not change) int1 = int1 - sum(int1)/real(npts) ext1 = ext1 - sum(ext1)/real(npts) ! Call transfer function subroutine call mt_transfer (npts,nfft,dt,int1,ext1,tbnw,kspec,nf, & freq=freq,cohe=cohe,trf=trf,iadapt=iadapt) call gplot(freq*86400.,cohe) ! cycles per day ! Compute Qi do i = 2,nf if (cohe(i) >= 0.6) then wt(i) = 1./sqrt(1. - cohe(i)) else wt(i) = 0. endif Qi(i) = trf(i) enddo ! Band averaging (same periods as Constable and Constable (2004) per = 1./freq(2:nf) lper = log10(per) avper(1) = 21330. avper(2) = 41410. avper(3) = 74400. avper(4) = 185100. avper(5) = 348000. avper(6) = 697800. avper(7) = 1428000. avper(8) = 2674000. avper(9) = 4593000. avper(10) = 11810000. avper = log10(avper) cavg = 0. do i = 1,10 fcnt = count(lper<=avper(i)+0.1 .and. lper>=avper(i)-0.1) if (fcnt > 1) then i1 = minloc(lper, lper >= avper(i)-0.1) i2 = maxloc(lper, lper <= avper(i)+0.1) iloc2 = i1(1) iloc1 = i2(1) ! Weighted mean swt = 0. do j = 0,fcnt-1 travg(i) = travg(i) + wt(iloc1+j)*Qi(iloc1+j) swt = swt + wt(iloc1+j) enddo travg(i) = travg(i)/swt elseif (fcnt == 1) then travg(i) = Qi(iloc1) endif enddo cavg = 6378. * (1. - 2.*travg) / (2.*(1.+travg)) call gplot(avper,real(cavg),'hold',xlimit='5 4. 7.5') call gplot(avper,imag(cavg),xlimit='5 4. 7.5',ylimit='4 -750 1500') end program fig4_5
gpl-2.0
eligere/eligere
FAHPcore/eigen/blas/testing/zblat1.f
245
31188
PROGRAM ZBLAT1 * Test program for the COMPLEX*16 Level 1 BLAS. * Based upon the original BLAS test routine together with: * F06GAF Example Program Text * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. DOUBLE PRECISION SFAC INTEGER IC * .. External Subroutines .. EXTERNAL CHECK1, CHECK2, HEADER * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA SFAC/9.765625D-4/ * .. Executable Statements .. WRITE (NOUT,99999) DO 20 IC = 1, 10 ICASE = IC CALL HEADER * * Initialize PASS, INCX, INCY, and MODE for a new case. * The value 9999 for INCX, INCY or MODE will appear in the * detailed output, if any, for cases that do not involve * these parameters. * PASS = .TRUE. INCX = 9999 INCY = 9999 MODE = 9999 IF (ICASE.LE.5) THEN CALL CHECK2(SFAC) ELSE IF (ICASE.GE.6) THEN CALL CHECK1(SFAC) END IF * -- Print IF (PASS) WRITE (NOUT,99998) 20 CONTINUE STOP * 99999 FORMAT (' Complex BLAS Test Program Results',/1X) 99998 FORMAT (' ----- PASS -----') END SUBROUTINE HEADER * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Arrays .. CHARACTER*6 L(10) * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA L(1)/'ZDOTC '/ DATA L(2)/'ZDOTU '/ DATA L(3)/'ZAXPY '/ DATA L(4)/'ZCOPY '/ DATA L(5)/'ZSWAP '/ DATA L(6)/'DZNRM2'/ DATA L(7)/'DZASUM'/ DATA L(8)/'ZSCAL '/ DATA L(9)/'ZDSCAL'/ DATA L(10)/'IZAMAX'/ * .. Executable Statements .. WRITE (NOUT,99999) ICASE, L(ICASE) RETURN * 99999 FORMAT (/' Test of subprogram number',I3,12X,A6) END SUBROUTINE CHECK1(SFAC) * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. DOUBLE PRECISION SFAC * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. COMPLEX*16 CA DOUBLE PRECISION SA INTEGER I, J, LEN, NP1 * .. Local Arrays .. COMPLEX*16 CTRUE5(8,5,2), CTRUE6(8,5,2), CV(8,5,2), CX(8), + MWPCS(5), MWPCT(5) DOUBLE PRECISION STRUE2(5), STRUE4(5) INTEGER ITRUE3(5) * .. External Functions .. DOUBLE PRECISION DZASUM, DZNRM2 INTEGER IZAMAX EXTERNAL DZASUM, DZNRM2, IZAMAX * .. External Subroutines .. EXTERNAL ZSCAL, ZDSCAL, CTEST, ITEST1, STEST1 * .. Intrinsic Functions .. INTRINSIC MAX * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA SA, CA/0.3D0, (0.4D0,-0.7D0)/ DATA ((CV(I,J,1),I=1,8),J=1,5)/(0.1D0,0.1D0), + (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0), + (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0), + (1.0D0,2.0D0), (0.3D0,-0.4D0), (3.0D0,4.0D0), + (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0), + (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0), + (0.1D0,-0.3D0), (0.5D0,-0.1D0), (5.0D0,6.0D0), + (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0), + (5.0D0,6.0D0), (5.0D0,6.0D0), (0.1D0,0.1D0), + (-0.6D0,0.1D0), (0.1D0,-0.3D0), (7.0D0,8.0D0), + (7.0D0,8.0D0), (7.0D0,8.0D0), (7.0D0,8.0D0), + (7.0D0,8.0D0), (0.3D0,0.1D0), (0.1D0,0.4D0), + (0.4D0,0.1D0), (0.1D0,0.2D0), (2.0D0,3.0D0), + (2.0D0,3.0D0), (2.0D0,3.0D0), (2.0D0,3.0D0)/ DATA ((CV(I,J,2),I=1,8),J=1,5)/(0.1D0,0.1D0), + (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0), + (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0), + (4.0D0,5.0D0), (0.3D0,-0.4D0), (6.0D0,7.0D0), + (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0), + (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0), + (0.1D0,-0.3D0), (8.0D0,9.0D0), (0.5D0,-0.1D0), + (2.0D0,5.0D0), (2.0D0,5.0D0), (2.0D0,5.0D0), + (2.0D0,5.0D0), (2.0D0,5.0D0), (0.1D0,0.1D0), + (3.0D0,6.0D0), (-0.6D0,0.1D0), (4.0D0,7.0D0), + (0.1D0,-0.3D0), (7.0D0,2.0D0), (7.0D0,2.0D0), + (7.0D0,2.0D0), (0.3D0,0.1D0), (5.0D0,8.0D0), + (0.1D0,0.4D0), (6.0D0,9.0D0), (0.4D0,0.1D0), + (8.0D0,3.0D0), (0.1D0,0.2D0), (9.0D0,4.0D0)/ DATA STRUE2/0.0D0, 0.5D0, 0.6D0, 0.7D0, 0.7D0/ DATA STRUE4/0.0D0, 0.7D0, 1.0D0, 1.3D0, 1.7D0/ DATA ((CTRUE5(I,J,1),I=1,8),J=1,5)/(0.1D0,0.1D0), + (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0), + (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0), + (1.0D0,2.0D0), (-0.16D0,-0.37D0), (3.0D0,4.0D0), + (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0), + (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0), + (-0.17D0,-0.19D0), (0.13D0,-0.39D0), + (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0), + (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0), + (0.11D0,-0.03D0), (-0.17D0,0.46D0), + (-0.17D0,-0.19D0), (7.0D0,8.0D0), (7.0D0,8.0D0), + (7.0D0,8.0D0), (7.0D0,8.0D0), (7.0D0,8.0D0), + (0.19D0,-0.17D0), (0.32D0,0.09D0), + (0.23D0,-0.24D0), (0.18D0,0.01D0), + (2.0D0,3.0D0), (2.0D0,3.0D0), (2.0D0,3.0D0), + (2.0D0,3.0D0)/ DATA ((CTRUE5(I,J,2),I=1,8),J=1,5)/(0.1D0,0.1D0), + (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0), + (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0), + (4.0D0,5.0D0), (-0.16D0,-0.37D0), (6.0D0,7.0D0), + (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0), + (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0), + (-0.17D0,-0.19D0), (8.0D0,9.0D0), + (0.13D0,-0.39D0), (2.0D0,5.0D0), (2.0D0,5.0D0), + (2.0D0,5.0D0), (2.0D0,5.0D0), (2.0D0,5.0D0), + (0.11D0,-0.03D0), (3.0D0,6.0D0), + (-0.17D0,0.46D0), (4.0D0,7.0D0), + (-0.17D0,-0.19D0), (7.0D0,2.0D0), (7.0D0,2.0D0), + (7.0D0,2.0D0), (0.19D0,-0.17D0), (5.0D0,8.0D0), + (0.32D0,0.09D0), (6.0D0,9.0D0), + (0.23D0,-0.24D0), (8.0D0,3.0D0), + (0.18D0,0.01D0), (9.0D0,4.0D0)/ DATA ((CTRUE6(I,J,1),I=1,8),J=1,5)/(0.1D0,0.1D0), + (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0), + (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0), + (1.0D0,2.0D0), (0.09D0,-0.12D0), (3.0D0,4.0D0), + (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0), + (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0), + (0.03D0,-0.09D0), (0.15D0,-0.03D0), + (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0), + (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0), + (0.03D0,0.03D0), (-0.18D0,0.03D0), + (0.03D0,-0.09D0), (7.0D0,8.0D0), (7.0D0,8.0D0), + (7.0D0,8.0D0), (7.0D0,8.0D0), (7.0D0,8.0D0), + (0.09D0,0.03D0), (0.03D0,0.12D0), + (0.12D0,0.03D0), (0.03D0,0.06D0), (2.0D0,3.0D0), + (2.0D0,3.0D0), (2.0D0,3.0D0), (2.0D0,3.0D0)/ DATA ((CTRUE6(I,J,2),I=1,8),J=1,5)/(0.1D0,0.1D0), + (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0), + (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0), + (4.0D0,5.0D0), (0.09D0,-0.12D0), (6.0D0,7.0D0), + (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0), + (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0), + (0.03D0,-0.09D0), (8.0D0,9.0D0), + (0.15D0,-0.03D0), (2.0D0,5.0D0), (2.0D0,5.0D0), + (2.0D0,5.0D0), (2.0D0,5.0D0), (2.0D0,5.0D0), + (0.03D0,0.03D0), (3.0D0,6.0D0), + (-0.18D0,0.03D0), (4.0D0,7.0D0), + (0.03D0,-0.09D0), (7.0D0,2.0D0), (7.0D0,2.0D0), + (7.0D0,2.0D0), (0.09D0,0.03D0), (5.0D0,8.0D0), + (0.03D0,0.12D0), (6.0D0,9.0D0), (0.12D0,0.03D0), + (8.0D0,3.0D0), (0.03D0,0.06D0), (9.0D0,4.0D0)/ DATA ITRUE3/0, 1, 2, 2, 2/ * .. Executable Statements .. DO 60 INCX = 1, 2 DO 40 NP1 = 1, 5 N = NP1 - 1 LEN = 2*MAX(N,1) * .. Set vector arguments .. DO 20 I = 1, LEN CX(I) = CV(I,NP1,INCX) 20 CONTINUE IF (ICASE.EQ.6) THEN * .. DZNRM2 .. CALL STEST1(DZNRM2(N,CX,INCX),STRUE2(NP1),STRUE2(NP1), + SFAC) ELSE IF (ICASE.EQ.7) THEN * .. DZASUM .. CALL STEST1(DZASUM(N,CX,INCX),STRUE4(NP1),STRUE4(NP1), + SFAC) ELSE IF (ICASE.EQ.8) THEN * .. ZSCAL .. CALL ZSCAL(N,CA,CX,INCX) CALL CTEST(LEN,CX,CTRUE5(1,NP1,INCX),CTRUE5(1,NP1,INCX), + SFAC) ELSE IF (ICASE.EQ.9) THEN * .. ZDSCAL .. CALL ZDSCAL(N,SA,CX,INCX) CALL CTEST(LEN,CX,CTRUE6(1,NP1,INCX),CTRUE6(1,NP1,INCX), + SFAC) ELSE IF (ICASE.EQ.10) THEN * .. IZAMAX .. CALL ITEST1(IZAMAX(N,CX,INCX),ITRUE3(NP1)) ELSE WRITE (NOUT,*) ' Shouldn''t be here in CHECK1' STOP END IF * 40 CONTINUE 60 CONTINUE * INCX = 1 IF (ICASE.EQ.8) THEN * ZSCAL * Add a test for alpha equal to zero. CA = (0.0D0,0.0D0) DO 80 I = 1, 5 MWPCT(I) = (0.0D0,0.0D0) MWPCS(I) = (1.0D0,1.0D0) 80 CONTINUE CALL ZSCAL(5,CA,CX,INCX) CALL CTEST(5,CX,MWPCT,MWPCS,SFAC) ELSE IF (ICASE.EQ.9) THEN * ZDSCAL * Add a test for alpha equal to zero. SA = 0.0D0 DO 100 I = 1, 5 MWPCT(I) = (0.0D0,0.0D0) MWPCS(I) = (1.0D0,1.0D0) 100 CONTINUE CALL ZDSCAL(5,SA,CX,INCX) CALL CTEST(5,CX,MWPCT,MWPCS,SFAC) * Add a test for alpha equal to one. SA = 1.0D0 DO 120 I = 1, 5 MWPCT(I) = CX(I) MWPCS(I) = CX(I) 120 CONTINUE CALL ZDSCAL(5,SA,CX,INCX) CALL CTEST(5,CX,MWPCT,MWPCS,SFAC) * Add a test for alpha equal to minus one. SA = -1.0D0 DO 140 I = 1, 5 MWPCT(I) = -CX(I) MWPCS(I) = -CX(I) 140 CONTINUE CALL ZDSCAL(5,SA,CX,INCX) CALL CTEST(5,CX,MWPCT,MWPCS,SFAC) END IF RETURN END SUBROUTINE CHECK2(SFAC) * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. DOUBLE PRECISION SFAC * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. COMPLEX*16 CA INTEGER I, J, KI, KN, KSIZE, LENX, LENY, MX, MY * .. Local Arrays .. COMPLEX*16 CDOT(1), CSIZE1(4), CSIZE2(7,2), CSIZE3(14), + CT10X(7,4,4), CT10Y(7,4,4), CT6(4,4), CT7(4,4), + CT8(7,4,4), CX(7), CX1(7), CY(7), CY1(7) INTEGER INCXS(4), INCYS(4), LENS(4,2), NS(4) * .. External Functions .. COMPLEX*16 ZDOTC, ZDOTU EXTERNAL ZDOTC, ZDOTU * .. External Subroutines .. EXTERNAL ZAXPY, ZCOPY, ZSWAP, CTEST * .. Intrinsic Functions .. INTRINSIC ABS, MIN * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Data statements .. DATA CA/(0.4D0,-0.7D0)/ DATA INCXS/1, 2, -2, -1/ DATA INCYS/1, -2, 1, -2/ DATA LENS/1, 1, 2, 4, 1, 1, 3, 7/ DATA NS/0, 1, 2, 4/ DATA CX1/(0.7D0,-0.8D0), (-0.4D0,-0.7D0), + (-0.1D0,-0.9D0), (0.2D0,-0.8D0), + (-0.9D0,-0.4D0), (0.1D0,0.4D0), (-0.6D0,0.6D0)/ DATA CY1/(0.6D0,-0.6D0), (-0.9D0,0.5D0), + (0.7D0,-0.6D0), (0.1D0,-0.5D0), (-0.1D0,-0.2D0), + (-0.5D0,-0.3D0), (0.8D0,-0.7D0)/ DATA ((CT8(I,J,1),I=1,7),J=1,4)/(0.6D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.32D0,-1.41D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.32D0,-1.41D0), + (-1.55D0,0.5D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.32D0,-1.41D0), (-1.55D0,0.5D0), + (0.03D0,-0.89D0), (-0.38D0,-0.96D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0)/ DATA ((CT8(I,J,2),I=1,7),J=1,4)/(0.6D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.32D0,-1.41D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (-0.07D0,-0.89D0), + (-0.9D0,0.5D0), (0.42D0,-1.41D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.78D0,0.06D0), (-0.9D0,0.5D0), + (0.06D0,-0.13D0), (0.1D0,-0.5D0), + (-0.77D0,-0.49D0), (-0.5D0,-0.3D0), + (0.52D0,-1.51D0)/ DATA ((CT8(I,J,3),I=1,7),J=1,4)/(0.6D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.32D0,-1.41D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (-0.07D0,-0.89D0), + (-1.18D0,-0.31D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.78D0,0.06D0), (-1.54D0,0.97D0), + (0.03D0,-0.89D0), (-0.18D0,-1.31D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0)/ DATA ((CT8(I,J,4),I=1,7),J=1,4)/(0.6D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.32D0,-1.41D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.32D0,-1.41D0), (-0.9D0,0.5D0), + (0.05D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.32D0,-1.41D0), + (-0.9D0,0.5D0), (0.05D0,-0.6D0), (0.1D0,-0.5D0), + (-0.77D0,-0.49D0), (-0.5D0,-0.3D0), + (0.32D0,-1.16D0)/ DATA CT7/(0.0D0,0.0D0), (-0.06D0,-0.90D0), + (0.65D0,-0.47D0), (-0.34D0,-1.22D0), + (0.0D0,0.0D0), (-0.06D0,-0.90D0), + (-0.59D0,-1.46D0), (-1.04D0,-0.04D0), + (0.0D0,0.0D0), (-0.06D0,-0.90D0), + (-0.83D0,0.59D0), (0.07D0,-0.37D0), + (0.0D0,0.0D0), (-0.06D0,-0.90D0), + (-0.76D0,-1.15D0), (-1.33D0,-1.82D0)/ DATA CT6/(0.0D0,0.0D0), (0.90D0,0.06D0), + (0.91D0,-0.77D0), (1.80D0,-0.10D0), + (0.0D0,0.0D0), (0.90D0,0.06D0), (1.45D0,0.74D0), + (0.20D0,0.90D0), (0.0D0,0.0D0), (0.90D0,0.06D0), + (-0.55D0,0.23D0), (0.83D0,-0.39D0), + (0.0D0,0.0D0), (0.90D0,0.06D0), (1.04D0,0.79D0), + (1.95D0,1.22D0)/ DATA ((CT10X(I,J,1),I=1,7),J=1,4)/(0.7D0,-0.8D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.6D0,-0.6D0), (-0.9D0,0.5D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.6D0,-0.6D0), + (-0.9D0,0.5D0), (0.7D0,-0.6D0), (0.1D0,-0.5D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0)/ DATA ((CT10X(I,J,2),I=1,7),J=1,4)/(0.7D0,-0.8D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.7D0,-0.6D0), (-0.4D0,-0.7D0), + (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.8D0,-0.7D0), + (-0.4D0,-0.7D0), (-0.1D0,-0.2D0), + (0.2D0,-0.8D0), (0.7D0,-0.6D0), (0.1D0,0.4D0), + (0.6D0,-0.6D0)/ DATA ((CT10X(I,J,3),I=1,7),J=1,4)/(0.7D0,-0.8D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (-0.9D0,0.5D0), (-0.4D0,-0.7D0), + (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.1D0,-0.5D0), + (-0.4D0,-0.7D0), (0.7D0,-0.6D0), (0.2D0,-0.8D0), + (-0.9D0,0.5D0), (0.1D0,0.4D0), (0.6D0,-0.6D0)/ DATA ((CT10X(I,J,4),I=1,7),J=1,4)/(0.7D0,-0.8D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.6D0,-0.6D0), (0.7D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.6D0,-0.6D0), + (0.7D0,-0.6D0), (-0.1D0,-0.2D0), (0.8D0,-0.7D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0)/ DATA ((CT10Y(I,J,1),I=1,7),J=1,4)/(0.6D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.7D0,-0.8D0), (-0.4D0,-0.7D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.7D0,-0.8D0), + (-0.4D0,-0.7D0), (-0.1D0,-0.9D0), + (0.2D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0)/ DATA ((CT10Y(I,J,2),I=1,7),J=1,4)/(0.6D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (-0.1D0,-0.9D0), (-0.9D0,0.5D0), + (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (-0.6D0,0.6D0), + (-0.9D0,0.5D0), (-0.9D0,-0.4D0), (0.1D0,-0.5D0), + (-0.1D0,-0.9D0), (-0.5D0,-0.3D0), + (0.7D0,-0.8D0)/ DATA ((CT10Y(I,J,3),I=1,7),J=1,4)/(0.6D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (-0.1D0,-0.9D0), (0.7D0,-0.8D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (-0.6D0,0.6D0), + (-0.9D0,-0.4D0), (-0.1D0,-0.9D0), + (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0)/ DATA ((CT10Y(I,J,4),I=1,7),J=1,4)/(0.6D0,-0.6D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.7D0,-0.8D0), (-0.9D0,0.5D0), + (-0.4D0,-0.7D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.7D0,-0.8D0), + (-0.9D0,0.5D0), (-0.4D0,-0.7D0), (0.1D0,-0.5D0), + (-0.1D0,-0.9D0), (-0.5D0,-0.3D0), + (0.2D0,-0.8D0)/ DATA CSIZE1/(0.0D0,0.0D0), (0.9D0,0.9D0), + (1.63D0,1.73D0), (2.90D0,2.78D0)/ DATA CSIZE3/(0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (1.17D0,1.17D0), + (1.17D0,1.17D0), (1.17D0,1.17D0), + (1.17D0,1.17D0), (1.17D0,1.17D0), + (1.17D0,1.17D0), (1.17D0,1.17D0)/ DATA CSIZE2/(0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0), + (0.0D0,0.0D0), (0.0D0,0.0D0), (1.54D0,1.54D0), + (1.54D0,1.54D0), (1.54D0,1.54D0), + (1.54D0,1.54D0), (1.54D0,1.54D0), + (1.54D0,1.54D0), (1.54D0,1.54D0)/ * .. Executable Statements .. DO 60 KI = 1, 4 INCX = INCXS(KI) INCY = INCYS(KI) MX = ABS(INCX) MY = ABS(INCY) * DO 40 KN = 1, 4 N = NS(KN) KSIZE = MIN(2,KN) LENX = LENS(KN,MX) LENY = LENS(KN,MY) * .. initialize all argument arrays .. DO 20 I = 1, 7 CX(I) = CX1(I) CY(I) = CY1(I) 20 CONTINUE IF (ICASE.EQ.1) THEN * .. ZDOTC .. CDOT(1) = ZDOTC(N,CX,INCX,CY,INCY) CALL CTEST(1,CDOT,CT6(KN,KI),CSIZE1(KN),SFAC) ELSE IF (ICASE.EQ.2) THEN * .. ZDOTU .. CDOT(1) = ZDOTU(N,CX,INCX,CY,INCY) CALL CTEST(1,CDOT,CT7(KN,KI),CSIZE1(KN),SFAC) ELSE IF (ICASE.EQ.3) THEN * .. ZAXPY .. CALL ZAXPY(N,CA,CX,INCX,CY,INCY) CALL CTEST(LENY,CY,CT8(1,KN,KI),CSIZE2(1,KSIZE),SFAC) ELSE IF (ICASE.EQ.4) THEN * .. ZCOPY .. CALL ZCOPY(N,CX,INCX,CY,INCY) CALL CTEST(LENY,CY,CT10Y(1,KN,KI),CSIZE3,1.0D0) ELSE IF (ICASE.EQ.5) THEN * .. ZSWAP .. CALL ZSWAP(N,CX,INCX,CY,INCY) CALL CTEST(LENX,CX,CT10X(1,KN,KI),CSIZE3,1.0D0) CALL CTEST(LENY,CY,CT10Y(1,KN,KI),CSIZE3,1.0D0) ELSE WRITE (NOUT,*) ' Shouldn''t be here in CHECK2' STOP END IF * 40 CONTINUE 60 CONTINUE RETURN END SUBROUTINE STEST(LEN,SCOMP,STRUE,SSIZE,SFAC) * ********************************* STEST ************************** * * THIS SUBR COMPARES ARRAYS SCOMP() AND STRUE() OF LENGTH LEN TO * SEE IF THE TERM BY TERM DIFFERENCES, MULTIPLIED BY SFAC, ARE * NEGLIGIBLE. * * C. L. LAWSON, JPL, 1974 DEC 10 * * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. DOUBLE PRECISION SFAC INTEGER LEN * .. Array Arguments .. DOUBLE PRECISION SCOMP(LEN), SSIZE(LEN), STRUE(LEN) * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. DOUBLE PRECISION SD INTEGER I * .. External Functions .. DOUBLE PRECISION SDIFF EXTERNAL SDIFF * .. Intrinsic Functions .. INTRINSIC ABS * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Executable Statements .. * DO 40 I = 1, LEN SD = SCOMP(I) - STRUE(I) IF (SDIFF(ABS(SSIZE(I))+ABS(SFAC*SD),ABS(SSIZE(I))).EQ.0.0D0) + GO TO 40 * * HERE SCOMP(I) IS NOT CLOSE TO STRUE(I). * IF ( .NOT. PASS) GO TO 20 * PRINT FAIL MESSAGE AND HEADER. PASS = .FALSE. WRITE (NOUT,99999) WRITE (NOUT,99998) 20 WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, I, SCOMP(I), + STRUE(I), SD, SSIZE(I) 40 CONTINUE RETURN * 99999 FORMAT (' FAIL') 99998 FORMAT (/' CASE N INCX INCY MODE I ', + ' COMP(I) TRUE(I) DIFFERENCE', + ' SIZE(I)',/1X) 99997 FORMAT (1X,I4,I3,3I5,I3,2D36.8,2D12.4) END SUBROUTINE STEST1(SCOMP1,STRUE1,SSIZE,SFAC) * ************************* STEST1 ***************************** * * THIS IS AN INTERFACE SUBROUTINE TO ACCOMODATE THE FORTRAN * REQUIREMENT THAT WHEN A DUMMY ARGUMENT IS AN ARRAY, THE * ACTUAL ARGUMENT MUST ALSO BE AN ARRAY OR AN ARRAY ELEMENT. * * C.L. LAWSON, JPL, 1978 DEC 6 * * .. Scalar Arguments .. DOUBLE PRECISION SCOMP1, SFAC, STRUE1 * .. Array Arguments .. DOUBLE PRECISION SSIZE(*) * .. Local Arrays .. DOUBLE PRECISION SCOMP(1), STRUE(1) * .. External Subroutines .. EXTERNAL STEST * .. Executable Statements .. * SCOMP(1) = SCOMP1 STRUE(1) = STRUE1 CALL STEST(1,SCOMP,STRUE,SSIZE,SFAC) * RETURN END DOUBLE PRECISION FUNCTION SDIFF(SA,SB) * ********************************* SDIFF ************************** * COMPUTES DIFFERENCE OF TWO NUMBERS. C. L. LAWSON, JPL 1974 FEB 15 * * .. Scalar Arguments .. DOUBLE PRECISION SA, SB * .. Executable Statements .. SDIFF = SA - SB RETURN END SUBROUTINE CTEST(LEN,CCOMP,CTRUE,CSIZE,SFAC) * **************************** CTEST ***************************** * * C.L. LAWSON, JPL, 1978 DEC 6 * * .. Scalar Arguments .. DOUBLE PRECISION SFAC INTEGER LEN * .. Array Arguments .. COMPLEX*16 CCOMP(LEN), CSIZE(LEN), CTRUE(LEN) * .. Local Scalars .. INTEGER I * .. Local Arrays .. DOUBLE PRECISION SCOMP(20), SSIZE(20), STRUE(20) * .. External Subroutines .. EXTERNAL STEST * .. Intrinsic Functions .. INTRINSIC DIMAG, DBLE * .. Executable Statements .. DO 20 I = 1, LEN SCOMP(2*I-1) = DBLE(CCOMP(I)) SCOMP(2*I) = DIMAG(CCOMP(I)) STRUE(2*I-1) = DBLE(CTRUE(I)) STRUE(2*I) = DIMAG(CTRUE(I)) SSIZE(2*I-1) = DBLE(CSIZE(I)) SSIZE(2*I) = DIMAG(CSIZE(I)) 20 CONTINUE * CALL STEST(2*LEN,SCOMP,STRUE,SSIZE,SFAC) RETURN END SUBROUTINE ITEST1(ICOMP,ITRUE) * ********************************* ITEST1 ************************* * * THIS SUBROUTINE COMPARES THE VARIABLES ICOMP AND ITRUE FOR * EQUALITY. * C. L. LAWSON, JPL, 1974 DEC 10 * * .. Parameters .. INTEGER NOUT PARAMETER (NOUT=6) * .. Scalar Arguments .. INTEGER ICOMP, ITRUE * .. Scalars in Common .. INTEGER ICASE, INCX, INCY, MODE, N LOGICAL PASS * .. Local Scalars .. INTEGER ID * .. Common blocks .. COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS * .. Executable Statements .. IF (ICOMP.EQ.ITRUE) GO TO 40 * * HERE ICOMP IS NOT EQUAL TO ITRUE. * IF ( .NOT. PASS) GO TO 20 * PRINT FAIL MESSAGE AND HEADER. PASS = .FALSE. WRITE (NOUT,99999) WRITE (NOUT,99998) 20 ID = ICOMP - ITRUE WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, ICOMP, ITRUE, ID 40 CONTINUE RETURN * 99999 FORMAT (' FAIL') 99998 FORMAT (/' CASE N INCX INCY MODE ', + ' COMP TRUE DIFFERENCE', + /1X) 99997 FORMAT (1X,I4,I3,3I5,2I36,I12) END
gpl-3.0
SaberMod/GCC_SaberMod
gcc/testsuite/gfortran.dg/default_initialization_5.f90
63
1460
! { dg-do run } ! { dg-options "-fdump-tree-original" } ! ! PR fortran/51435 ! ! Contributed by darmar.xxl@gmail.com ! module arr_m type arr_t real(8), dimension(:), allocatable :: rsk end type type arr_t2 integer :: a = 77 end type end module arr_m !********************* module list_m use arr_m implicit none type(arr_t2), target :: tgt type my_list type(arr_t), pointer :: head => null() end type my_list type my_list2 type(arr_t2), pointer :: head => tgt end type my_list2 end module list_m !*********************** module worker_mod use list_m implicit none type data_all_t type(my_list) :: my_data end type data_all_t type data_all_t2 type(my_list2) :: my_data end type data_all_t2 contains subroutine do_job() type(data_all_t) :: dum type(data_all_t2) :: dum2 if (associated(dum%my_data%head)) then call abort() else print *, 'OK: do_job my_data%head is NOT associated' end if if (dum2%my_data%head%a /= 77) & call abort() end subroutine end module !*************** program hello use worker_mod implicit none call do_job() end program ! { dg-final { scan-tree-dump-times "my_data.head = 0B" 1 "original" } } ! { dg-final { scan-tree-dump-times "my_data.head = &tgt" 1 "original" } } ! { dg-final { cleanup-tree-dump "original" } }
gpl-2.0
pbosler/LPPM
AdvectGaussHillsDirect.f90
2
14227
program GaussianHillsAdvectionDirect use NumberKindsModule use OutputWriterModule use LoggerModule use SphereMeshModule use AdvectionModule use ParticlesModule use PanelsModule use SphereMeshModule use TracerSetupModule use VTKOutputModule use BVESetupModule use SphereRemeshModule implicit none include 'mpif.h' ! ! mesh variables ! type(SphereMesh) :: sphere integer(kint) :: panelKind, initNest, AMR, nTracer type(Particles), pointer :: sphereParticles type(Panels), pointer :: spherePanels ! ! tracer variables ! type(TracerSetup) :: gHills integer(kint) :: tracerID real(kreal) :: hmax, beta ! ! vorticity placeholder ! type(BVESetup) :: nullVort ! ! remeshing / refinement variables ! type(RemeshSetup) :: remesh integer(kint) :: remeshInterval, resetAlphaInterval, amrLimit, remeshCounter real(kreal) :: tracerMassTol, tracerVarTol type(ReferenceSphere), pointer :: reference ! ! time stepping variables ! type(AdvRK4Data) :: timekeeper real(kreal) :: t, tfinal, dt integer(kint) :: timesteps, timeJ ! ! output variables ! type(VTKSource) :: vtkOut character(len = MAX_STRING_LENGTH) :: vtkRoot, vtkFile, outputDir, jobPrefix, dataFile, summaryFile character(len = 56) :: amrString integer(kint) :: frameCounter, frameOut, readWriteStat type(OutputWriter) :: writer ! ! test case variables ! real(kreal), allocatable :: totalMassGHills(:), tracerVar(:) real(kreal) :: sphereL2, sphereLinf, panelsLinf, particlesLinf, phiMax, phiMin, deltaPhi, phimax0, phimin0 real(kreal) :: mass0, var0 ! ! logging ! type(Logger) :: exeLog character(len=28) :: logkey character(len=MAX_STRING_LENGTH) :: logstring ! ! mpi / computing environment / general variables ! integer(kint) :: errCode real(kreal) :: wallclock integer(kint) :: j ! ! namelists and user input ! character(len=MAX_STRING_LENGTH) :: namelistFile = 'AdvectGaussHillsDirect.namelist' namelist /meshDefine/ initNest, AMR, panelKind, amrLimit, tracerMassTol, tracerVarTol namelist /timestepping/ tfinal, dt, remeshInterval, resetAlphaInterval namelist /fileIO/ outputDir, jobPrefix, frameOut !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ! INITIALIZE COMPUTER, MESH, TEST CASE !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ call MPI_INIT(errCode) call MPI_COMM_SIZE(MPI_COMM_WORLD, numProcs, errCode) call MPI_COMM_RANK(MPI_COMM_WORLD, procRank, errCode) call InitLogger(exeLog, procRank) wallclock = MPI_WTIME() nTracer = 2 tracerID = 1 hmax = 0.95_kreal beta = 5.0_kreal ! ! get user input ! call ReadNamelistFile(procRank) ! ! define tracer ! call New(gHills, GAUSS_HILLS_N_INT, GAUSS_HILLS_N_REAL) call InitGaussianHillsTracer(gHills, hmax, beta, tracerID) !call New(gHills, 0, 4) !call InitCosineBellTracer(gHills, 0.0_kreal, 0.0_kreal, EARTH_RADIUS/3.0_kreal, 1000.0_kreal, tracerID) ! ! build initial mesh ! call New(sphere, panelKind, initNest, AMR, nTracer, ADVECTION_SOLVER) call SetGaussianHillsTracerOnMesh(sphere, gHills) !call SetCosineBellTracerOnMesh(sphere, gHills) ! ! initialize remeshing and refinement ! call ConvertFromRelativeTolerances(sphere, tracerMassTol, tracerVarTol, tracerID) call LogMessage(exeLog, TRACE_LOGGING_LEVEL, 'tracerMassTol = ', tracerMassTol ) call LogMessage(exeLog, TRACE_LOGGING_LEVEL, 'tracerVarTol = ', tracerVarTol ) call New(remesh, tracerID, tracerMassTol, tracerVarTol, amrLimit) nullify(reference) if ( AMR > 0 ) then call InitialRefinement(sphere, remesh, SetGaussianHillsTracerOnMesh, gHills, NullVorticity, nullvort) if ( panelKind == QUAD_PANEL ) & write(amrstring,'(A,I1,A,I0.2,A)') 'quadAMR_', initNest, 'to', initNest+amrLimit, '_' if ( panelKind == TRI_PANEL ) & write(amrstring,'(A,I1,A,I0.2,A)') 'triAMR_', initNest, 'to', initNest+amrLimit, '_' else if ( panelKind == QUAD_PANEL ) & write(amrstring,'(A,I1,A)') 'quadUnif_', initNest, '_' if ( panelKind == TRI_PANEL ) & write(amrstring,'(A,I1,A)') 'triUnif_', initNest, '_' endif ! ! initialize output ! if ( procrank == 0 ) then call LogStats( sphere, exeLog) write(vtkRoot,'(A,A,A,A,A)') trim(outputDir), '/vtkOut/',trim(jobPrefix),trim(amrString),'_' write(vtkFile,'(A,I0.4,A)') trim(vtkRoot),0,'.vtk' write(summaryFile,'(A,A,A,A)') trim(outputDir), trim(jobPrefix), trim(amrString), '_summary.txt' write(datafile,'(A,A,A,A)') trim(outputDir), trim(jobPrefix), trim(amrstring), '_calculatedData.m' call New(vtkOut, sphere, vtkFile, 'Gaussian hills advection') call VTKOutput(vtkOut, sphere) endif ! ! initialize time stepping ! call New(timekeeper, sphere, numProcs) timesteps = floor(tfinal / dt) t = 0.0_kreal remeshCounter = 0 frameCounter = 1 allocate(totalMassGHills(0:timesteps)) totalMassGHills = 0.0_kreal mass0 = TotalMass(sphere, tracerID) allocate(tracerVar(0:timesteps)) tracerVar = 0.0_kreal var0 = TracerVariance(sphere, tracerID) sphereParticles => sphere%particles spherePanels => sphere%panels !phimax0 = max( maxval(sphereParticles%tracer(1:sphereParticles%N,1)), maxval(spherePanels%tracer(1:spherePanels%N,1)) ) !phimin0 = min( minval(sphereParticles%tracer(1:sphereParticles%N,1)), minval(spherePanels%tracer(1:spherePanels%N,1)) ) phimax0 = hmax phimin0 = hmax do j = 1, sphereParticles%N if ( sphereParticles%tracer(j,1) > phimax0 ) phiMax0 = sphereParticles%tracer(j,1) if ( sphereParticles%tracer(j,1) < phimin0 ) phimin0 = sphereParticles%tracer(j,1) enddo do j = 1, spherePanels%N if ( .NOT. spherePanels%hasChildren(j) ) then if ( spherePanels%tracer(j,1) > phimax0 ) phimax0 = spherePanels%tracer(j,1) if ( spherePanels%tracer(j,1) < phimin0 ) phimin0 = spherePanels%tracer(j,1) endif enddo deltaPhi = phimax0 - phimin0 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ! RUN THE PROBLEM !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ do timeJ = 0, timesteps - 1 if ( mod( timeJ+1, remeshInterval) == 0 ) then ! ! remesh before timestep ! remeshCounter = remeshCounter + 1 call DirectRemesh(sphere, remesh) ! ! delete objects associated with old mesh ! call Delete(timekeeper) if ( procrank == 0 ) call Delete(vtkOUt) ! ! create new associated objects for new mesh ! call New(timekeeper, sphere, numProcs) if ( procRank == 0 ) then call New(vtkOut, sphere, vtkFile, 'Gaussian hills advection') call LogStats( sphere, exeLog) endif sphereParticles => sphere%particles spherePanels => sphere%panels endif ! remesh ! ! advance time ! call AdvectionRK4Timestep(timekeeper, sphere, dt, t, procRank, numProcs, LauritzenEtAlNonDivergentWind) totalMassGHills(timeJ+1) = ( TotalMass(sphere, tracerID) - mass0 ) / mass0 tracerVar(timeJ+1) = ( TracerVariance(sphere, tracerID) - var0 ) / var0 t = real( timeJ+1, kreal) * dt if ( procRank == 0 .AND. mod( timeJ+1, frameOut) == 0 ) then call LogMessage(exelog, TRACE_LOGGING_LEVEL, 'day = ', t/ONE_DAY) write(vtkFile, '(A,I0.4,A)') trim(vtkRoot), frameCounter, '.vtk' call UpdateFilename(vtkOut, vtkFile) call VTKOutput(vtkOut, sphere) frameCounter = frameCounter + 1 endif enddo !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ! OUTPUT FINAL DATA !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ! ! calculate error : exact solution at final time should equal exact tracer from initial distribution ! sphereParticles => sphere%particles spherePanels => sphere%panels do j = 1, sphereParticles%N sphereParticles%tracer(j,2) = abs( GHillsExact(sphereParticles%x(:,j)/EARTH_RADIUS, hmax, beta) & - sphereParticles%tracer(j,1)) enddo do j = 1, spherePanels%N if ( spherePanels%hasChildren(j) ) then spherePanels%tracer(j,2) = 0.0_kreal else spherePanels%tracer(j,2) = abs( GHillsExact(spherePanels%x(:,j)/EARTH_RADIUS, hmax, beta) & - spherePanels%tracer(j,1) ) endif enddo particlesLinf = maxval(sphereParticles%tracer(1:sphereParticles%N,2)) /& maxval(sphereParticles%tracer(1:sphereParticles%N,1)) panelsLinf = maxval( spherePanels%tracer(1:spherePanels%N,2) ) /& maxval( spherePanels%tracer(1:spherePanels%N,1) ) sphereLinf = max( particlesLinf, panelsLinf ) sphereL2 = sum( spherePanels%tracer(1:spherePanels%N,2) * & spherePanels%tracer(1:spherePanels%N,2) * spherePanels%area(1:spherePanels%N) ) sphereL2 = sphereL2 / sum( spherePanels%tracer(1:spherePanels%N,1) *& spherePanels%tracer(1:spherePanels%N,1) * spherePanels%area(1:spherePanels%N) ) sphereL2 = sqrt(sphereL2) ! phimax = ( max( maxval(sphereParticles%tracer(1:sphereParticles%N,1)),& ! maxval( spherePanels%tracer(1:spherePanels%N,1)) ) - phimax0) / deltaPhi ! phimin = ( min( minval(sphereParticles%tracer(1:sphereParticles%N,1)), & ! minval( spherePanels%tracer(1:spherePanels%N,1)) ) - phimin0)/ deltaPhi phimax = maxval(sphereParticles%tracer(1:sphereParticles%N,1)) phimin = minval(sphereParticles%tracer(1:sphereParticles%N,1)) do j = 1, spherePanels%N if ( .NOT. spherePanels%hasChildren(j) ) then if ( spherePanels%tracer(j,1) > phiMax) phiMax = spherePanels%tracer(j,1) if ( spherePanels%tracer(j,1) < phimin) phiMin = spherePanels%tracer(j,1) endif enddo phimax = (phimax - phimax0)/deltaPhi phimin = (phimin - phimin0)/deltaPhi print *, "direct N = ", spherePanels%N_Active, ": phi_max = ", phimax,", phi_min = ", phimin if ( procRank == 0 ) then open( unit = WRITE_UNIT_1, file = datafile, status = 'REPLACE', action = 'WRITE', iostat = readwritestat) if ( readwritestat /= 0 ) then call LogMessage(exeLog, ERROR_LOGGING_LEVEL, 'data file ERROR : ', ' failed to open data file.') else write(WRITE_UNIT_1,'(A,F24.15,A)') 'passiveLinf = ', particlesLinf, ' ;' write(WRITE_UNIT_1,'(A,F24.15,A)') 'activeLinf = ', panelsLinf, ' ;' write(WRITE_UNIT_1,'(A,F24.15,A)') 'sphereLinf = ', sphereLinf, ' ;' write(WRITE_UNIT_1,'(A,F24.15,A)') 'sphereL2 = ', sphereL2, ' ;' write(WRITE_UNIT_1,'(A,F24.15,A)') 'phi_max = ', phimax, ' ;' write(WRITE_UNIT_1,'(A,F24.15,A)') 'phi_min = ', phimin, ' ;' write(WRITE_UNIT_1,'(A,F24.15,A)') 'dt_day = ', dt / ONE_DAY, ' ;' write(WRITE_UNIT_1,'(A,F24.15,A)') 'tfinal_day = ', tfinal / ONE_DAY, ' ;' write(WRITE_UNIT_1,'(A,F24.15,A)') 'mass = [ ', totalMassGHills(0), ' ; ...' do j = 1, timesteps-1 write(WRITE_UNIT_1,'(F24.15,A)') totalMassGHills(j), ' ; ...' enddo write(WRITE_UNIT_1,'(F24.15,A)') totalMassGHills(timesteps), ' ] ;' write(WRITE_UNIT_1,'(A,F24.15,A)') 'tracerVar = [ ', tracerVar(0), ' ; ...' do j = 1, timesteps-1 write(WRITE_UNIT_1,'(F24.15,A)') tracerVar(j), ' ; ...' enddo write(WRITE_UNIT_1,'(F24.15,A)') tracerVar(timesteps), ' ] ;' endif close(WRITE_UNIT_1) write(logstring,'(A, F8.2,A)') 'elapsed time = ', (MPI_WTIME() - wallClock)/60.0, ' minutes.' call LogMessage(exelog,TRACE_LOGGING_LEVEL,'PROGRAM COMPLETE : ',trim(logstring)) endif !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ! FREE MEMORY, CLEAN UP, FINALIZE !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if (associated(reference)) then call Delete(reference) deallocate(reference) endif deallocate(totalMassGHills) deallocate(tracerVar) call Delete(timekeeper) call Delete(remesh) if ( procrank == 0 ) call Delete(vtkOut) call Delete(sphere) call Delete(gHills) call Delete(exeLog) call MPI_FINALIZE(errCode) contains function GHillsExact(xyz, hmax, beta) real(kreal) :: GHillsExact real(kreal), intent(in) :: xyz(3), hmax, beta ! real(kreal) :: xc1(3), xc2(3), h1, h2 xC1 = [ cos(5.0_kreal * PI / 6.0_kreal), sin( 5.0_kreal * PI / 6.0_kreal ), 0.0_kreal ] xC2 = [ cos(7.0_kreal * PI / 6.0_kreal), sin( 7.0_kreal * PI / 6.0_kreal ), 0.0_kreal ] h1 = hmax * exp( -beta * ( sum( (xyz-xc1) * (xyz-xc1) ) ) ) h2 = hmax * exp( -beta * ( sum( (xyz-xc2) * (xyz-xc2) ) ) ) GHillsExact = h1 + h2 end function subroutine ConvertFromRelativeTolerances(aMesh, tracerMassTol, tracerVarTol, tracerID) type(SphereMesh), intent(in) :: amesh real(kreal), intent(inout) :: tracerMassTol, tracerVarTol integer(kint), intent(in) :: tracerID tracerMassTol = tracerMassTol * MaximumTracerMass(aMesh, tracerID) tracerVarTol = tracerVarTol * MaximumTracerVariation(aMesh, tracerID) end subroutine subroutine ReadNamelistFile(rank) integer(kint), intent(in) :: rank integer(kint), parameter :: BCAST_INT_SIZE = 6, BCAST_REAL_SIZE= 4 integer(kint) :: broadcastIntegers(BCAST_INT_SIZE) real(kreal) :: broadcastReals(BCAST_REAL_SIZE) if ( rank == 0 ) then open(unit=READ_UNIT, file=namelistfile, status='OLD', action='READ', iostat=readWriteStat) if ( readWriteStat /= 0 ) stop 'cannot read namelist file.' read(READ_UNIT, nml=meshDefine) rewind(READ_UNIT) read(READ_UNIT, nml=timestepping) rewind(READ_UNIT) read(READ_UNIT, nml=fileIO) rewind(READ_UNIT) close(READ_UNIT) broadcastIntegers(1) = panelKind broadcastIntegers(2) = initNest broadcastIntegers(3) = AMR broadcastIntegers(4) = amrLimit broadcastIntegers(5) = remeshInterval broadcastIntegers(6) = resetAlphaInterval broadcastReals(1) = tracerMassTol broadcastReals(2) = tracerVarTol broadcastReals(3) = dt broadcastReals(4) = tfinal endif call MPI_BCAST(broadcastIntegers, BCAST_INT_SIZE, MPI_INTEGER, 0, MPI_COMM_WORLD, errCode) panelKind = broadcastIntegers(1) initNest = broadcastIntegers(2) AMR = broadcastIntegers(3) amrLimit = broadcastIntegers(4) remeshInterval = broadcastIntegers(5) resetAlphaInterval = broadcastIntegers(6) call MPI_BCAST(broadcastReals, BCAST_REAL_SIZE, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, errCode) tracerMassTol = broadcastReals(1) tracerVarTol = broadcastReals(2) dt = broadcastReals(3) * ONE_DAY ! convert time to seconds tfinal = broadcastReals(4) * ONE_DAY ! convert time to seconds end subroutine subroutine InitLogger(alog,rank) type(Logger), intent(out) :: aLog integer(kint), intent(in) :: rank if ( rank == 0 ) then call New(aLog,DEBUG_LOGGING_LEVEL) else call New(aLog,WARNING_LOGGING_LEVEL) endif write(logKey,'(A,I0.2,A)') 'EXE_LOG',rank,' : ' end subroutine end program
mit
eligere/eligere
FAHPcore-network/eigen/blas/sspmv.f
184
7974
SUBROUTINE SSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) * .. Scalar Arguments .. REAL ALPHA,BETA INTEGER INCX,INCY,N CHARACTER UPLO * .. * .. Array Arguments .. REAL AP(*),X(*),Y(*) * .. * * Purpose * ======= * * SSPMV performs the matrix-vector operation * * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n symmetric matrix, supplied in packed form. * * Arguments * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the upper or lower * triangular part of the matrix A is supplied in the packed * array AP as follows: * * UPLO = 'U' or 'u' The upper triangular part of A is * supplied in AP. * * UPLO = 'L' or 'l' The lower triangular part of A is * supplied in AP. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * ALPHA - REAL . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * AP - REAL array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular part of the symmetric matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) * and a( 2, 2 ) respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular part of the symmetric matrix * packed sequentially, column by column, so that AP( 1 ) * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) * and a( 3, 1 ) respectively, and so on. * Unchanged on exit. * * X - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. * Unchanged on exit. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * BETA - REAL . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then Y need not be set on input. * Unchanged on exit. * * Y - REAL array of dimension at least * ( 1 + ( n - 1 )*abs( INCY ) ). * Before entry, the incremented array Y must contain the n * element vector y. On exit, Y is overwritten by the updated * vector y. * * INCY - INTEGER. * On entry, INCY specifies the increment for the elements of * Y. INCY must not be zero. * Unchanged on exit. * * Further Details * =============== * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * ===================================================================== * * .. Parameters .. REAL ONE,ZERO PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) * .. * .. Local Scalars .. REAL TEMP1,TEMP2 INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * * Test the input parameters. * INFO = 0 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN INFO = 1 ELSE IF (N.LT.0) THEN INFO = 2 ELSE IF (INCX.EQ.0) THEN INFO = 6 ELSE IF (INCY.EQ.0) THEN INFO = 9 END IF IF (INFO.NE.0) THEN CALL XERBLA('SSPMV ',INFO) RETURN END IF * * Quick return if possible. * IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN * * Set up the start points in X and Y. * IF (INCX.GT.0) THEN KX = 1 ELSE KX = 1 - (N-1)*INCX END IF IF (INCY.GT.0) THEN KY = 1 ELSE KY = 1 - (N-1)*INCY END IF * * Start the operations. In this version the elements of the array AP * are accessed sequentially with one pass through AP. * * First form y := beta*y. * IF (BETA.NE.ONE) THEN IF (INCY.EQ.1) THEN IF (BETA.EQ.ZERO) THEN DO 10 I = 1,N Y(I) = ZERO 10 CONTINUE ELSE DO 20 I = 1,N Y(I) = BETA*Y(I) 20 CONTINUE END IF ELSE IY = KY IF (BETA.EQ.ZERO) THEN DO 30 I = 1,N Y(IY) = ZERO IY = IY + INCY 30 CONTINUE ELSE DO 40 I = 1,N Y(IY) = BETA*Y(IY) IY = IY + INCY 40 CONTINUE END IF END IF END IF IF (ALPHA.EQ.ZERO) RETURN KK = 1 IF (LSAME(UPLO,'U')) THEN * * Form y when AP contains the upper triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 60 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO K = KK DO 50 I = 1,J - 1 Y(I) = Y(I) + TEMP1*AP(K) TEMP2 = TEMP2 + AP(K)*X(I) K = K + 1 50 CONTINUE Y(J) = Y(J) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2 KK = KK + J 60 CONTINUE ELSE JX = KX JY = KY DO 80 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO IX = KX IY = KY DO 70 K = KK,KK + J - 2 Y(IY) = Y(IY) + TEMP1*AP(K) TEMP2 = TEMP2 + AP(K)*X(IX) IX = IX + INCX IY = IY + INCY 70 CONTINUE Y(JY) = Y(JY) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY KK = KK + J 80 CONTINUE END IF ELSE * * Form y when AP contains the lower triangle. * IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN DO 100 J = 1,N TEMP1 = ALPHA*X(J) TEMP2 = ZERO Y(J) = Y(J) + TEMP1*AP(KK) K = KK + 1 DO 90 I = J + 1,N Y(I) = Y(I) + TEMP1*AP(K) TEMP2 = TEMP2 + AP(K)*X(I) K = K + 1 90 CONTINUE Y(J) = Y(J) + ALPHA*TEMP2 KK = KK + (N-J+1) 100 CONTINUE ELSE JX = KX JY = KY DO 120 J = 1,N TEMP1 = ALPHA*X(JX) TEMP2 = ZERO Y(JY) = Y(JY) + TEMP1*AP(KK) IX = JX IY = JY DO 110 K = KK + 1,KK + N - J IX = IX + INCX IY = IY + INCY Y(IY) = Y(IY) + TEMP1*AP(K) TEMP2 = TEMP2 + AP(K)*X(IX) 110 CONTINUE Y(JY) = Y(JY) + ALPHA*TEMP2 JX = JX + INCX JY = JY + INCY KK = KK + (N-J+1) 120 CONTINUE END IF END IF * RETURN * * End of SSPMV . * END
gpl-3.0
SaberMod/GCC_SaberMod
libgomp/testsuite/libgomp.fortran/alloc-comp-1.f90
102
13864
! { dg-do run } ! Don't cycle by default through all options, just test -O0 and -O2, ! as this is quite large test. ! { dg-skip-if "" { ! run_expensive_tests } { "*" } { "-O0" "-O2" } } module m type dl integer :: a, b integer, allocatable :: c(:,:) integer :: d, e integer, allocatable :: f end type type dt integer :: g type (dl), allocatable :: h(:) integer :: i type (dl) :: j(2, 2) type (dl), allocatable :: k end type contains subroutine ver_dl (obj, val, c, cl1, cu1, cl2, cu2, f) type (dl), intent (in) :: obj integer, intent (in) :: val, cl1, cu1, cl2, cu2 logical, intent (in) :: c, f if ((c .neqv. allocated (obj%c)) .or. (f .neqv. allocated (obj%f))) call abort if (c) then if (lbound (obj%c, 1) /= cl1 .or. ubound (obj%c, 1) /= cu1) call abort if (lbound (obj%c, 2) /= cl2 .or. ubound (obj%c, 2) /= cu2) call abort end if if (val /= 0) then if (obj%a /= val .or. obj%b /= val) call abort if (obj%d /= val .or. obj%e /= val) call abort if (c) then if (any (obj%c /= val)) call abort end if if (f) then if (obj%f /= val) call abort end if end if end subroutine ver_dl subroutine ver_dt (obj, val, h, hl, hu, k, c, cl1, cu1, cl2, cu2, f) type (dt), intent (in) :: obj integer, intent (in) :: val, hl, hu, cl1, cu1, cl2, cu2 logical, intent (in) :: h, k, c, f integer :: i, j if ((h .neqv. allocated (obj%h)) .or. (k .neqv. allocated (obj%k))) call abort if (h) then if (lbound (obj%h, 1) /= hl .or. ubound (obj%h, 1) /= hu) call abort do i = hl, hu call ver_dl (obj%h(i), val, c, cl1, cu1, cl2, cu2, f) end do end if do i = 1, 2 do j = 1, 2 call ver_dl (obj%j(i, j), val, c, cl1, cu1, cl2, cu2, f) end do end do if (k) call ver_dl (obj%k, val, c, cl1, cu1, cl2, cu2, f) if (val /= 0) then if (obj%g /= val .or. obj%i /= val) call abort end if end subroutine ver_dt subroutine alloc_dl (obj, val, c, cl1, cu1, cl2, cu2, f) type (dl), intent (inout) :: obj integer, intent (in) :: val, cl1, cu1, cl2, cu2 logical, intent (in) :: c, f if (val /= 0) then obj%a = val obj%b = val obj%d = val obj%e = val end if if (allocated (obj%c)) deallocate (obj%c) if (c) then allocate (obj%c(cl1:cu1, cl2:cu2)) if (val /= 0) obj%c = val end if if (f) then if (.not.allocated (obj%f)) allocate (obj%f) if (val /= 0) obj%f = val else if (allocated (obj%f)) deallocate (obj%f) end if end subroutine alloc_dl subroutine alloc_dt (obj, val, h, hl, hu, k, c, cl1, cu1, cl2, cu2, f) type (dt), intent (inout) :: obj integer, intent (in) :: val, hl, hu, cl1, cu1, cl2, cu2 logical, intent (in) :: h, k, c, f integer :: i, j if (val /= 0) then obj%g = val obj%i = val end if if (allocated (obj%h)) deallocate (obj%h) if (h) then allocate (obj%h(hl:hu)) do i = hl, hu call alloc_dl (obj%h(i), val, c, cl1, cu1, cl2, cu2, f) end do end if do i = 1, 2 do j = 1, 2 call alloc_dl (obj%j(i, j), val, c, cl1, cu1, cl2, cu2, f) end do end do if (k) then if (.not.allocated (obj%k)) allocate (obj%k) call alloc_dl (obj%k, val, c, cl1, cu1, cl2, cu2, f) else if (allocated (obj%k)) deallocate (obj%k) end if end subroutine alloc_dt end module m use m type (dt) :: y call foo (y) contains subroutine foo (y) use m type (dt) :: x, y, z(-3:-3,2:3) logical, parameter :: F = .false. logical, parameter :: T = .true. logical :: l call ver_dt (x, 0, F, 0, 0, F, F, 0, 0, 0, 0, F) call ver_dt (y, 0, F, 0, 0, F, F, 0, 0, 0, 0, F) call ver_dt (z(-3,2), 0, F, 0, 0, F, F, 0, 0, 0, 0, F) call ver_dt (z(-3,3), 0, F, 0, 0, F, F, 0, 0, 0, 0, F) !$omp parallel private (x, y, z) call ver_dt (x, 0, F, 0, 0, F, F, 0, 0, 0, 0, F) call alloc_dt (x, 4, T, -3, -1, T, T, -1, -1, 2, 3, T) call ver_dt (x, 4, T, -3, -1, T, T, -1, -1, 2, 3, T) call ver_dt (y, 0, F, 0, 0, F, F, 0, 0, 0, 0, F) call alloc_dt (y, 14, T, 3, 4, F, T, 1, 1, 2, 4, T) call ver_dt (y, 14, T, 3, 4, F, T, 1, 1, 2, 4, T) call ver_dt (z(-3,2), 0, F, 0, 0, F, F, 0, 0, 0, 0, F) call alloc_dt (z(-3,2), 4, T, -3, -1, T, T, -1, -1, 2, 3, T) call ver_dt (z(-3,2), 4, T, -3, -1, T, T, -1, -1, 2, 3, T) call ver_dt (z(-3,3), 0, F, 0, 0, F, F, 0, 0, 0, 0, F) call alloc_dt (z(-3,3), 14, T, 3, 4, F, T, 1, 1, 2, 4, T) call ver_dt (z(-3,3), 14, T, 3, 4, F, T, 1, 1, 2, 4, T) !$omp end parallel call ver_dt (x, 0, F, 0, 0, F, F, 0, 0, 0, 0, F) call alloc_dt (x, 4, T, -3, -1, T, T, -1, -1, 2, 3, T) call ver_dt (y, 0, F, 0, 0, F, F, 0, 0, 0, 0, F) call alloc_dt (y, 14, T, 3, 4, F, T, 1, 1, 2, 4, T) call ver_dt (z(-3,2), 0, F, 0, 0, F, F, 0, 0, 0, 0, F) call alloc_dt (z(-3,2), 4, T, -3, -1, T, T, -1, -1, 2, 3, T) call ver_dt (z(-3,3), 0, F, 0, 0, F, F, 0, 0, 0, 0, F) call alloc_dt (z(-3,3), 14, T, 3, 4, F, T, 1, 1, 2, 4, T) !$omp parallel private (x, y, z) call ver_dt (x, 0, T, -3, -1, T, T, -1, -1, 2, 3, T) call ver_dt (y, 0, T, 3, 4, F, T, 1, 1, 2, 4, T) deallocate (x%h, x%k) deallocate (y%h) allocate (y%k) call ver_dt (z(-3,2), 0, T, -3, -1, T, T, -1, -1, 2, 3, T) call ver_dt (z(-3,3), 0, T, 3, 4, F, T, 1, 1, 2, 4, T) deallocate (z(-3,2)%h, z(-3,2)%k) deallocate (z(-3,3)%h) allocate (z(-3,3)%k) !$omp end parallel call alloc_dt (x, 5, T, 1, 2, F, T, 2, 3, -2, -2, F) call alloc_dt (y, 15, F, 0, 0, T, T, 2, 2, 2, 2, T) call alloc_dt (z(-3,2), 5, T, 1, 2, F, T, 2, 3, -2, -2, F) call alloc_dt (z(-3,3), 15, F, 0, 0, T, T, 2, 2, 2, 2, T) !$omp parallel firstprivate (x, y, z) call ver_dt (x, 5, T, 1, 2, F, T, 2, 3, -2, -2, F) call alloc_dt (x, 4, T, -3, -1, T, T, -1, -1, 2, 3, T) call ver_dt (x, 4, T, -3, -1, T, T, -1, -1, 2, 3, T) call ver_dt (y, 15, F, 0, 0, T, T, 2, 2, 2, 2, T) call alloc_dt (y, 4, T, 3, 4, T, T, 1, 1, 2, 4, T) call ver_dt (y, 4, T, 3, 4, T, T, 1, 1, 2, 4, T) call ver_dt (z(-3,2), 5, T, 1, 2, F, T, 2, 3, -2, -2, F) call alloc_dt (z(-3,2), 4, T, -3, -1, T, T, -1, -1, 2, 3, T) call ver_dt (z(-3,2), 4, T, -3, -1, T, T, -1, -1, 2, 3, T) call ver_dt (z(-3,3), 15, F, 0, 0, T, T, 2, 2, 2, 2, T) call alloc_dt (z(-3,3), 4, T, 3, 4, T, T, 1, 1, 2, 4, T) call ver_dt (z(-3,3), 4, T, 3, 4, T, T, 1, 1, 2, 4, T) !$omp end parallel call ver_dt (x, 5, T, 1, 2, F, T, 2, 3, -2, -2, F) call alloc_dt (x, 4, F, 0, 0, F, F, 0, 0, 0, 0, F) call ver_dt (y, 15, F, 0, 0, T, T, 2, 2, 2, 2, T) call alloc_dt (y, 16, F, 0, 0, F, F, 0, 0, 0, 0, F) call ver_dt (z(-3,2), 5, T, 1, 2, F, T, 2, 3, -2, -2, F) call alloc_dt (z(-3,2), 4, F, 0, 0, F, F, 0, 0, 0, 0, F) call ver_dt (z(-3,3), 15, F, 0, 0, T, T, 2, 2, 2, 2, T) call alloc_dt (z(-3,3), 16, F, 0, 0, F, F, 0, 0, 0, 0, F) !$omp parallel firstprivate (x, y, z) call ver_dt (x, 4, F, 0, 0, F, F, 0, 0, 0, 0, F) call alloc_dt (x, 4, T, -3, -1, T, T, -1, -1, 2, 3, T) call ver_dt (x, 4, T, -3, -1, T, T, -1, -1, 2, 3, T) call ver_dt (y, 16, F, 0, 0, F, F, 0, 0, 0, 0, F) call alloc_dt (y, 17, T, 1, 2, F, T, 2, 2, 3, 3, F) call ver_dt (y, 17, T, 1, 2, F, T, 2, 2, 3, 3, F) call ver_dt (z(-3,2), 4, F, 0, 0, F, F, 0, 0, 0, 0, F) call alloc_dt (z(-3,2), 4, T, -3, -1, T, T, -1, -1, 2, 3, T) call ver_dt (z(-3,2), 4, T, -3, -1, T, T, -1, -1, 2, 3, T) call ver_dt (z(-3,3), 16, F, 0, 0, F, F, 0, 0, 0, 0, F) call alloc_dt (z(-3,3), 17, T, 1, 2, F, T, 2, 2, 3, 3, F) call ver_dt (z(-3,3), 17, T, 1, 2, F, T, 2, 2, 3, 3, F) !$omp end parallel call ver_dt (x, 4, F, 0, 0, F, F, 0, 0, 0, 0, F) call ver_dt (y, 16, F, 0, 0, F, F, 0, 0, 0, 0, F) call alloc_dt (y, 18, T, 0, 1, T, T, 0, 1, 0, 1, T) call ver_dt (z(-3,2), 4, F, 0, 0, F, F, 0, 0, 0, 0, F) call ver_dt (z(-3,3), 16, F, 0, 0, F, F, 0, 0, 0, 0, F) call alloc_dt (z(-3,3), 18, T, 0, 1, T, T, 0, 1, 0, 1, T) l = F !$omp parallel sections lastprivate (x, y, z) firstprivate (l) !$omp section if (l) then call ver_dt (x, 9, T, 1, 1, F, F, 0, 0, 0, 0, T) call ver_dt (y, 21, F, 0, 0, T, T, 1, 2, 3, 4, T) call ver_dt (z(-3,2), 9, T, 1, 1, F, F, 0, 0, 0, 0, T) call ver_dt (z(-3,3), 21, F, 0, 0, T, T, 1, 2, 3, 4, T) else call ver_dt (x, 0, F, 0, 0, F, F, 0, 0, 0, 0, F) call ver_dt (y, 0, T, 0, 1, T, T, 0, 1, 0, 1, T) call ver_dt (z(-3,2), 0, F, 0, 0, F, F, 0, 0, 0, 0, F) call ver_dt (z(-3,3), 0, T, 0, 1, T, T, 0, 1, 0, 1, T) end if l = T call alloc_dt (x, 7, T, 1, 1, T, T, 1, 2, 3, 3, T) call ver_dt (x, 7, T, 1, 1, T, T, 1, 2, 3, 3, T) call alloc_dt (y, 20, T, 0, 0, F, T, 2, 2, 3, 4, F) call ver_dt (y, 20, T, 0, 0, F, T, 2, 2, 3, 4, F) call alloc_dt (z(-3,2), 7, T, 1, 1, T, T, 1, 2, 3, 3, T) call ver_dt (z(-3,2), 7, T, 1, 1, T, T, 1, 2, 3, 3, T) call alloc_dt (z(-3,3), 20, T, 0, 0, F, T, 2, 2, 3, 4, F) call ver_dt (z(-3,3), 20, T, 0, 0, F, T, 2, 2, 3, 4, F) !$omp section if (l) then call ver_dt (x, 7, T, 1, 1, T, T, 1, 2, 3, 3, T) call ver_dt (y, 20, T, 0, 0, F, T, 2, 2, 3, 4, F) call ver_dt (z(-3,2), 7, T, 1, 1, T, T, 1, 2, 3, 3, T) call ver_dt (z(-3,3), 20, T, 0, 0, F, T, 2, 2, 3, 4, F) else call ver_dt (x, 0, F, 0, 0, F, F, 0, 0, 0, 0, F) call ver_dt (y, 0, T, 0, 1, T, T, 0, 1, 0, 1, T) call ver_dt (z(-3,2), 0, F, 0, 0, F, F, 0, 0, 0, 0, F) call ver_dt (z(-3,3), 0, T, 0, 1, T, T, 0, 1, 0, 1, T) end if l = T call alloc_dt (x, 9, T, 1, 1, F, F, 0, 0, 0, 0, T) call ver_dt (x, 9, T, 1, 1, F, F, 0, 0, 0, 0, T) call alloc_dt (y, 21, F, 0, 0, T, T, 1, 2, 3, 4, T) call ver_dt (y, 21, F, 0, 0, T, T, 1, 2, 3, 4, T) call alloc_dt (z(-3,2), 9, T, 1, 1, F, F, 0, 0, 0, 0, T) call ver_dt (z(-3,2), 9, T, 1, 1, F, F, 0, 0, 0, 0, T) call alloc_dt (z(-3,3), 21, F, 0, 0, T, T, 1, 2, 3, 4, T) call ver_dt (z(-3,3), 21, F, 0, 0, T, T, 1, 2, 3, 4, T) !$omp section !$omp end parallel sections call ver_dt (x, 9, T, 1, 1, F, F, 0, 0, 0, 0, T) call ver_dt (y, 21, F, 0, 0, T, T, 1, 2, 3, 4, T) call ver_dt (z(-3,2), 9, T, 1, 1, F, F, 0, 0, 0, 0, T) call ver_dt (z(-3,3), 21, F, 0, 0, T, T, 1, 2, 3, 4, T) !$omp parallel sections lastprivate (x, y, z) firstprivate (l) !$omp section if (l) then call ver_dt (x, 5, F, 0, 0, T, T, -1, -1, -1, -1, T) call ver_dt (y, 23, T, 0, 1, T, T, 2, 2, 2, 2, F) call ver_dt (z(-3,2), 5, F, 0, 0, T, T, -1, -1, -1, -1, T) call ver_dt (z(-3,3), 23, T, 0, 1, T, T, 2, 2, 2, 2, F) else call ver_dt (x, 0, T, 1, 1, F, F, 0, 0, 0, 0, T) call ver_dt (y, 0, F, 0, 0, T, T, 1, 2, 3, 4, T) call ver_dt (z(-3,2), 0, T, 1, 1, F, F, 0, 0, 0, 0, T) call ver_dt (z(-3,3), 0, F, 0, 0, T, T, 1, 2, 3, 4, T) end if l = T call alloc_dt (x, 3, F, 0, 0, T, T, 0, 1, 0, 1, F) call ver_dt (x, 3, F, 0, 0, T, T, 0, 1, 0, 1, F) call alloc_dt (y, 22, T, 5, 5, F, T, 2, 3, 2, 2, T) call ver_dt (y, 22, T, 5, 5, F, T, 2, 3, 2, 2, T) call alloc_dt (z(-3,2), 3, F, 0, 0, T, T, 0, 1, 0, 1, F) call ver_dt (z(-3,2), 3, F, 0, 0, T, T, 0, 1, 0, 1, F) call alloc_dt (z(-3,3), 22, T, 5, 5, F, T, 2, 3, 2, 2, T) call ver_dt (z(-3,3), 22, T, 5, 5, F, T, 2, 3, 2, 2, T) !$omp section if (l) then call ver_dt (x, 3, F, 0, 0, T, T, 0, 1, 0, 1, F) call ver_dt (y, 22, T, 5, 5, F, T, 2, 3, 2, 2, T) call ver_dt (z(-3,2), 3, F, 0, 0, T, T, 0, 1, 0, 1, F) call ver_dt (z(-3,3), 22, T, 5, 5, F, T, 2, 3, 2, 2, T) else call ver_dt (x, 0, T, 1, 1, F, F, 0, 0, 0, 0, T) call ver_dt (y, 0, F, 0, 0, T, T, 1, 2, 3, 4, T) call ver_dt (z(-3,2), 0, T, 1, 1, F, F, 0, 0, 0, 0, T) call ver_dt (z(-3,3), 0, F, 0, 0, T, T, 1, 2, 3, 4, T) end if l = T call alloc_dt (x, 5, F, 0, 0, T, T, -1, -1, -1, -1, T) call ver_dt (x, 5, F, 0, 0, T, T, -1, -1, -1, -1, T) call alloc_dt (y, 23, T, 0, 1, T, T, 2, 2, 2, 2, F) call ver_dt (y, 23, T, 0, 1, T, T, 2, 2, 2, 2, F) call alloc_dt (z(-3,2), 5, F, 0, 0, T, T, -1, -1, -1, -1, T) call ver_dt (z(-3,2), 5, F, 0, 0, T, T, -1, -1, -1, -1, T) call alloc_dt (z(-3,3), 23, T, 0, 1, T, T, 2, 2, 2, 2, F) call ver_dt (z(-3,3), 23, T, 0, 1, T, T, 2, 2, 2, 2, F) !$omp section !$omp end parallel sections call ver_dt (x, 5, F, 0, 0, T, T, -1, -1, -1, -1, T) call ver_dt (y, 23, T, 0, 1, T, T, 2, 2, 2, 2, F) call ver_dt (z(-3,2), 5, F, 0, 0, T, T, -1, -1, -1, -1, T) call ver_dt (z(-3,3), 23, T, 0, 1, T, T, 2, 2, 2, 2, F) !$omp parallel private (x, y, z) call ver_dt (x, 0, F, 0, 0, T, T, -1, -1, -1, -1, T) call ver_dt (y, 0, T, 0, 1, T, T, 2, 2, 2, 2, F) call ver_dt (z(-3,2), 0, F, 0, 0, T, T, -1, -1, -1, -1, T) call ver_dt (z(-3,3), 0, T, 0, 1, T, T, 2, 2, 2, 2, F) !$omp single call alloc_dt (x, 3, F, 0, 0, T, T, 0, 1, 0, 1, F) call alloc_dt (y, 22, T, 5, 5, F, T, 2, 3, 2, 2, T) call alloc_dt (z(-3,2), 3, F, 0, 0, T, T, 0, 1, 0, 1, F) call alloc_dt (z(-3,3), 22, T, 5, 5, F, T, 2, 3, 2, 2, T) !$omp end single copyprivate (x, y, z) call ver_dt (x, 3, F, 0, 0, T, T, 0, 1, 0, 1, F) call ver_dt (y, 22, T, 5, 5, F, T, 2, 3, 2, 2, T) call ver_dt (z(-3,2), 3, F, 0, 0, T, T, 0, 1, 0, 1, F) call ver_dt (z(-3,3), 22, T, 5, 5, F, T, 2, 3, 2, 2, T) !$omp end parallel call ver_dt (x, 5, F, 0, 0, T, T, -1, -1, -1, -1, T) call ver_dt (y, 23, T, 0, 1, T, T, 2, 2, 2, 2, F) call ver_dt (z(-3,2), 5, F, 0, 0, T, T, -1, -1, -1, -1, T) call ver_dt (z(-3,3), 23, T, 0, 1, T, T, 2, 2, 2, 2, F) end subroutine foo end
gpl-2.0
SaberMod/GCC_SaberMod
libgfortran/generated/_abs_i16.F90
35
1461
! Copyright (C) 2002-2014 Free Software Foundation, Inc. ! Contributed by Paul Brook <paul@nowt.org> ! !This file is part of the GNU Fortran 95 runtime library (libgfortran). ! !GNU libgfortran is free software; you can redistribute it and/or !modify it under the terms of the GNU General Public !License as published by the Free Software Foundation; either !version 3 of the License, or (at your option) any later version. !GNU libgfortran is distributed in the hope that it will be useful, !but WITHOUT ANY WARRANTY; without even the implied warranty of !MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the !GNU General Public License for more details. ! !Under Section 7 of GPL version 3, you are granted additional !permissions described in the GCC Runtime Library Exception, version !3.1, as published by the Free Software Foundation. ! !You should have received a copy of the GNU General Public License and !a copy of the GCC Runtime Library Exception along with this program; !see the files COPYING3 and COPYING.RUNTIME respectively. If not, see !<http://www.gnu.org/licenses/>. ! !This file is machine generated. #include "config.h" #include "kinds.inc" #include "c99_protos.inc" #if defined (HAVE_GFC_INTEGER_16) elemental function _gfortran_specific__abs_i16 (parm) integer (kind=16), intent (in) :: parm integer (kind=16) :: _gfortran_specific__abs_i16 _gfortran_specific__abs_i16 = abs (parm) end function #endif
gpl-2.0
mtitze/madx-cf
madx-5.02.07-util.f90
1
78823
module Inf_NaN_Detection !! Inf_NaN_Detection module !! Copyright(c) 2003, Lahey Computer Systems, Inc. !! Copies of this source code, or standalone compiled files !! derived from this source may not be sold without permission !! from Lahey Computers Systems. All or part of this module may be !! freely incorporated into executable programs which are offered !! for sale. Otherwise, distribution of all or part of this file is !! permitted, provided this copyright notice and header are included. !! This module exposes four elemental functions: !! !! isnan(x) - test for a "not a number" value !! !! isinf(x) - test for either a positive or negative "infinite" value !! !! isposinf(x) - test for a positive "infinite" value !! !! isneginf(x) - test for a negative "infinite" value !! !! Each function accepts a single or double precision real argument, and !! returns a true or false value to indicate the presence of the value !! being tested for. If the argument is array valued, the function returns !! a conformable logical array, suitable for use with the ANY function, or !! as a logical mask. !! !! Each function operates by transferring the bit pattern from a real !! variable to an integer container. Unless testing for + or - infinity, !! the sign bit is cleared to zero. The value is exclusive ORed with !! the value being tested for. The integer result of the IEOR function is !! converted to a logical result by comparing it to zero. !! implicit none private public :: isnan, isinf, isposinf, isneginf, sp, dp ! Order set-up integer,parameter::sp=kind(1.e0) integer,parameter::dp=selected_real_kind(2*precision(1.e0)) ! Kind numbers for single and double precision integer containers integer, parameter :: Single = selected_int_kind(precision(1.e0)) integer, parameter :: Double = selected_int_kind(2*precision(1.e0)) !VK20070611: The below lines are not accepted by NAG-compiler with <Makefile_nag> ! Single precision IEEE values integer(Single), parameter :: sNaN = Z"7FC00000" integer(Single), parameter :: sPosInf = Z"7F800000" integer(Single), parameter :: sNegInf = Z"FF800000" ! Double precision IEEE values integer(Double), parameter :: dNaN = Z"7FF8000000000000" integer(Double), parameter :: dPosInf = Z"7FF0000000000000" integer(Double), parameter :: dNegInf = Z"FFF0000000000000" ! Locatation of single and double precision sign bit (Intel) ! Subtract one because bit numbering starts at zero integer, parameter :: SPSB = bit_size(sNaN) - 1 integer, parameter :: DPSB = bit_size(dNaN) - 1 interface isnan module procedure sisnan module procedure disnan end interface isnan interface isinf module procedure sisinf module procedure disinf end interface isinf interface isposinf module procedure sisposinf module procedure disposinf end interface isposinf interface isneginf module procedure sisneginf module procedure disneginf end interface isneginf contains ! Single precision test for NaN elemental function sisnan(x) result(res) implicit none real(sp), intent(in) :: x logical :: res res = ieor(ibclr(transfer(x,sNan),SPSB), sNaN) == 0 end function sisnan ! Double precision test for NaN !DEC$ ATTRIBUTES FORCEINLINE :: disnan elemental function disnan(d) result(res) implicit none real(dp), intent(in) :: d logical :: res res = ieor(ibclr(transfer(d,dNaN),DPSB), dNaN) == 0 end function disnan ! Single precision test for Inf elemental function sisinf(x) result(res) implicit none real(sp), intent(in) :: x logical :: res res = ieor(ibclr(transfer(x,sPosInf),SPSB), sPosInf) == 0 end function sisinf ! Double precision test for Inf elemental function disinf(d) result(res) implicit none real(dp), intent(in) :: d logical :: res res = ieor(ibclr(transfer(d,dPosInf),DPSB), dPosInf) == 0 end function disinf ! Single precision test for +Inf elemental function sisposinf(x) result(res) implicit none real(sp), intent(in) :: x logical :: res res = ieor(transfer(x,sPosInf), sPosInf) == 0 end function sisposinf ! Double precision test for +Inf elemental function disposinf(d) result(res) implicit none real(dp), intent(in) :: d logical :: res res = ieor(transfer(d,dPosInf), dPosInf) == 0 end function disposinf ! Single precision test for -Inf elemental function sisneginf(x) result(res) implicit none real(sp), intent(in) :: x logical :: res res = ieor(transfer(x,sNegInf), sNegInf) == 0 end function sisneginf ! Double precision test for -Inf elemental function disneginf(d) result(res) implicit none real(dp), intent(in) :: d logical :: res res = ieor(transfer(d,dNegInf), dNegInf) == 0 end function disneginf end module Inf_NaN_Detection module bbfi implicit none public integer bbd_max parameter(bbd_max=100000) integer :: bbd_loc(bbd_max)=0,bbd_cnt=0,bbd_flag=0,bbd_pos=0 double precision :: bb_kick(2,bbd_max)=0.d0 end module bbfi module deltrafi implicit none public logical :: dorad=.false.,dodamp=.false.,dorand=.false.,fastune=.false. double precision :: deltax=0.d0 end module deltrafi module dyntabfi implicit none public double precision :: dynapfrac=0.d0,dktrturns=0.d0,xend=0.d0,pxend=0.d0,& yend=0.d0,pyend=0.d0,tend=0.d0,ptend=0.d0,smear=0.d0,yapunov=0.d0 end module dyntabfi module wmaxmin0fi implicit none public double precision :: wxmax=0.d0,wxmin=0.d0,wymax=0.d0,wymin=0.d0,& wxymax=0.d0,wxymin=0.d0 end module wmaxmin0fi module tunesfi implicit none public double precision :: x0=0.d0,y0=0.d0,tunx=0.d0,tuny=0.d0,dtune=0.d0 end module tunesfi module twiss0fi implicit none public integer align_max,fundim parameter(align_max=14,fundim = 74) end module twiss0fi module twissafi implicit none public character(48) :: table_name=' ',sectorTableName=' ' logical :: match_is_on=.false. end module twissafi module twisslfi implicit none public logical :: centre=.false.,centre_cptk=.false.,centre_bttk=.false.,first,& rmatrix=.false.,sectormap=.false.,ripken=.false. end module twisslfi module twisscfi use twiss0fi implicit none public double precision :: opt_fun0(fundim)=0.d0,opt_fun(fundim)=0.d0,disp(6)=0.d0,& ddisp(6)=0.d0,rmat(2,2)=0.d0,betx=0.d0,alfx=0.d0,amux=0.d0,bety=0.d0,& alfy=0.d0,amuy=0.d0,bxmax=0.d0,dxmax=0.d0,bymax=0.d0,dymax=0.d0,& xcomax=0.d0,ycomax=0.d0,sigxco=0.d0,sigyco=0.d0,sigdx=0.d0,sigdy=0.d0,& wgt=0.d0,cosmux=0.d0,cosmuy=0.d0,wx=0.d0,phix=0.d0,dmux=0.d0,wy=0.d0,& phiy=0.d0,dmuy=0.d0,synch_1=0.d0,synch_2=0.d0,synch_3=0.d0,synch_4=0.d0,& synch_5=0.d0,suml=0.d0,circ=0.d0,eta=0.d0,alfa=0.d0,gamtr=0.d0,qx=0.d0,& qy=0.d0,sinmux=0.d0,sinmuy=0.d0,xix=0.d0,xiy=0.d0,currpos=0.d0 end module twisscfi module twissotmfi implicit none public double precision :: rotm(6,6)=0.d0,rw(6,6)=0.d0,skick(6)=0.d0,sorb(6)=0.d0,& srmat(6,6)=0.d0,stmat(6,6,6)=0.d0 end module twissotmfi module max_iterate implicit none public integer MAXITER parameter(MAXITER=150) end module max_iterate module twiss_elpfi implicit none public !---fixed positions for element parameters-----------------------------* double precision :: g_elpar(50)=0.d0 !-general--------------------------------------------------------------* integer g_el, g_kmax, g_kmin, g_calib, g_polarity parameter (g_el = 2, g_kmax = 3, g_kmin = 4, g_calib = 5, g_polarity = 6) !-bend-----------------------------------------------------------------* integer b_angle , b_tilt , b_k0 , b_k0s , & b_k1 , b_k1s , b_e1 , b_e2 , b_k2 , & b_k2s , b_h1 , b_h2 , b_hgap , & b_fint , b_fintx , b_k3 , b_k3s parameter (b_angle = 7, b_tilt = 8, b_k0 = 9, b_k0s = 10, & b_k1 = 11, b_k1s = 12, b_e1 = 13 , b_e2 = 14, b_k2 =15,& b_k2s = 16, b_h1 = 17, b_h2 = 18, b_hgap = 19, & b_fint = 20, b_fintx = 21, b_k3 = 22, b_k3s = 23) !-quad-----------------------------------------------------------------* integer q_tilt, q_k1 , q_k1s parameter (q_tilt = 7, q_k1 = 8, q_k1s = 9) !-sext-----------------------------------------------------------------* integer s_tilt, s_k2 , s_k2s parameter (s_tilt = 7, s_k2 = 8, s_k2s = 9) !-oct------------------------------------------------------------------* integer o_tilt, o_k3 , o_k3s parameter (o_tilt = 7, o_k3 = 8, o_k3s = 9) !-mult-----------------------------------------------------------------* integer m_tilt, m_lrad parameter (m_tilt = 7, m_lrad = 8) !-sol------------------------------------------------------------------* integer so_lrad, so_ks, so_ksi parameter (so_lrad = 7, so_ks = 8, so_ksi = 9) !-rfc------------------------------------------------------------------* integer r_volt, r_lag , r_freq parameter (r_volt = 7, r_lag = 8, r_freq = 9) !-elsep----------------------------------------------------------------* integer e_tilt, e_ex , e_ey parameter (e_tilt = 7, e_ex = 8, e_ey = 9) !-hkick----------------------------------------------------------------* integer h_tilt, h_lrad , h_kick, h_hkick, h_chkick parameter (h_tilt = 7, h_lrad = 8, h_kick = 9, h_hkick = 10, & h_chkick = 11) !-vkick----------------------------------------------------------------* integer v_tilt, v_lrad , v_kick, v_vkick, v_cvkick parameter (v_tilt = 7, v_lrad = 8, v_kick = 9, v_vkick = 10, & v_cvkick = 11) !-kick-----------------------------------------------------------------* integer k_tilt, k_lrad , k_hkick, k_vkick, k_chkick, k_cvkick parameter (k_tilt = 7, k_lrad = 8, k_hkick = 9, k_vkick = 10, & k_chkick = 11, k_cvkick = 12) end module twiss_elpfi module emitfi implicit none public double precision :: qx=0.d0,qy=0.d0,qs=0.d0,cg=0.d0,sum(3)=0.d0,sumu0=0.d0 save qx, qy, qs, cg,sum,sumu0 end module emitfi module twtrrfi implicit none public !---- maxmul is the maximum multipole order both in twiss and trrun integer maxmul,maxferr,maxnaper parameter(maxmul=20,maxferr=50,maxnaper=100) end module twtrrfi module ibsdbfi implicit none public integer :: bunch=0 double precision :: circ=0.d0,clight=0.d0,arad=0.d0,freq0=0.d0,alpha=0.d0,& amass=0.d0,charge=0.d0,en0=0.d0,gammas=0.d0,gamma=0.d0,ex=0.d0,ey=0.d0,& et=0.d0,sigt=0.d0,sige=0.d0,betas=0.d0,beta=0.d0,parnum=0.d0,& currnt=0.d0,sigx=0.d0,sigy=0.d0,alfa=0.d0 end module ibsdbfi module matchfi implicit none public integer :: icovar=0,ilevel=0 double precision :: edm=0.d0,fmin=0.d0 end module matchfi module name_lenfi implicit none public integer name_len parameter(name_len=48) end module name_lenfi module physconsfi implicit none public double precision :: amu0=0.d0,elamda=0.d0,emass=0.d0,eps0=0.d0,erad=0.d0,& hbar=0.d0,plamda=0.d0,pmass=0.d0,prad=0.d0,qelect=0.d0,mumass=0.d0 end module physconsfi module touschekfi implicit none public integer :: bunch=0 double precision :: circ=0.d0,clight=0.d0,arad=0.d0,freq0=0.d0,amass=0.d0,& charge=0.d0,en0=0.d0,gammas=0.d0,gamma=0.d0,ex=0.d0,ey=0.d0,et=0.d0,& sigt=0.d0,sige=0.d0,betas=0.d0,beta=0.d0,parnum=0.d0,currnt=0.d0,& alfa=0.d0,um1=0.d0,deltap=0.d0,fb1=0.d0,fb2=0.d0 end module touschekfi module trackfi implicit none public double precision :: arad=0.d0,betas=0.d0,beti=0.d0,gammas=0.d0,dtbyds=0.d0,& deltas=0.d0,bet0=0.d0,bet0i=0.d0,t_max=1.d20,pt_max=1.d20 logical :: dodamp=.false.,dorad=.false.,dorand=.false.,fsecarb=.false. save arad,betas,beti,gammas,dtbyds,bet0,bet0i end module trackfi module time_varfi use twtrrfi use name_lenfi implicit none public logical time_var_m,time_var_p,time_var_c integer n_time_var parameter (n_time_var = 10000) integer time_var_m_cnt,time_var_p_cnt,time_var_c_cnt, & time_var_m_lnt,time_var_p_lnt,time_var_c_lnt, & trrun_nt double precision myfield(n_time_var,2,0:maxmul), & phase_tromb(n_time_var,36),cav_volt(n_time_var), & time_var_m_ind(n_time_var),time_var_p_ind(n_time_var), & time_var_c_ind(n_time_var), & time_var_m_nt(n_time_var),time_var_p_nt(n_time_var), & time_var_c_nt(n_time_var) character*(name_len) time_var_m_ch(n_time_var), & time_var_p_ch(n_time_var),time_var_c_ch(n_time_var) save time_var_m_cnt,time_var_p_cnt,time_var_c_cnt, & time_var_m_lnt,time_var_p_lnt,time_var_c_lnt,trrun_nt, & myfield,phase_tromb,cav_volt,time_var_m_ind, & time_var_p_ind,time_var_c_ind,time_var_m_nt,time_var_p_nt, & time_var_c_nt,time_var_m_ch,time_var_p_ch,time_var_c_ch end module time_varfi module spch_bbfi use name_lenfi use bbfi implicit none public logical :: lost_in_turn = .false., is_lost = .false. integer i_turn, N_macro_surv, N_for_I, N_macro_max, N_spch, i_spch parameter(N_macro_max=16000) double precision Ex_rms, Ey_rms, sigma_p, sigma_z double precision Ix_array(N_macro_max), Iy_array(N_macro_max), & dpi_array(N_macro_max), & z_part_array(N_macro_max) double precision alpha, I_div_E_sum_max ! parameter(alpha=0.0, I_div_E_sum_max=7.0) double precision betx_bb(bbd_max), bety_bb(bbd_max), & alfx_bb(bbd_max), alfy_bb(bbd_max), & gamx_bb(bbd_max), gamy_bb(bbd_max), & dx_bb(bbd_max), dy_bb(bbd_max) double precision rat_bb_n_ions double precision :: sigma_t=0.d0, mean_t=0.d0 ! calculate and transfer to BB character*(name_len) spch_bb_name(bbd_max) save i_turn,N_macro_surv,N_for_I,N_spch,i_spch, & Ex_rms,Ey_rms,sigma_p,sigma_z, & Ix_array,Iy_array,dpi_array, z_part_array, & betx_bb,bety_bb,alfx_bb,alfy_bb,gamx_bb,gamy_bb,dx_bb,dy_bb, & rat_bb_n_ions,sigma_t, mean_t,spch_bb_name data rat_bb_n_ions / 1d0 / end module spch_bbfi module plotfi implicit none public !--- m_adble is the number of different types of elements integer mtype, m_adble parameter (mtype = 50, m_adble = 20) !--- mcnam adjusted to NAME_L integer mcnam, maxpnt parameter (mcnam = 48, maxpnt = 500) !--- szcompar is the size of the arrays returned by the routine comm_para integer szcompar parameter (szcompar = 100) !--- szchara is the size of the character strings char_a & version in !--- the routine pesopt integer szchara parameter (szchara = 400) !--- character sizes: ! MLSIZE label character height ! MTSIZE text - " - ! MASIZE annotation - " - integer mlsize, mtsize, masize parameter (mlsize = 13,mtsize = 13,masize = 20) !--- parameters used in the routine pegacn in file plot.F integer mposx, mposy, mpost parameter (mposx = 8, mposy = 3, mpost = mposx * mposy) !--- parameters used in the routine peschm in file plot.F integer mobj, msize parameter (mobj = 14, msize = 88) integer mtitl, mxlabl, mnvar, mxdep, mqadd, mntmax, mksmax, mplred, mplout parameter (mtitl = 128, mxlabl = 160) parameter (mnvar = 74, mxdep = 2) parameter (mqadd = 100000) parameter (mntmax = 20, mksmax = 10) parameter (mplred = 46, mplout = 47) integer maxseql, mtwcol, mpparm, mxcurv, mopt, mfile, marg, maxarg, mxdp, mxplot parameter (maxseql = 50000, mtwcol = 46, mpparm = 10, & mxcurv = 10, mopt = 60, mfile = 120, marg = 60, maxarg = 1000, & mxdp = 25, mxplot = 100) integer mintpl parameter (mintpl = 18) !--- Definition of common / peaddi / !--- itbv set in routine pesopt, used in routines pemima, peplot !--- and pesopt. !--- nivvar set in routine pesopt, used in routines pefill, peintp, !--- pemima, peplot and pesopt. !--- nelmach set in routine pefill, used in routines pefill, peplot. !--- numax set in routine pemima, used in routines pemima, peplot. !--- interf set in routine pesopt, used in routines pecurv, pefill. !--- noline set in routine pesopt, used in routines pefill, pesopt. !--- nqval set in routine pefill and peintp, used in routines pefill, !--- peintp, pemima and peplot. !--- nvvar set in routine pesopt and pemima, used in routine pemima. !--- nrrang set in routine pefill, used in routine pesopt and pefill. !--- proc_flag set in routine pesopt, used in routine pefill, peintp !--- and pesopt. !--- ipparm set in routine peintp and pesopt, used in routine peplot !--- and pesopt. !--- naxref set in routine pemima and pesopt, used in routine pemima !--- and pesopt. !--- ieltyp set in routine pefill, used in routine psplot. integer :: itbv=0,nivvar=0,nelmach=0,numax=0,interf=0,noline=0, & nqval(mxcurv)=0,nvvar(4)=0,nrrang(2)=0, & proc_flag(2,mxcurv)=0,ipparm(mpparm,mxcurv)=0, & naxref(mxcurv)=0,ieltyp(maxseql)=0 !--- Definition of common / peaddr / !--- qascl set in routine pesopt, used in routine peplot. !--- qlscl set in routine pesopt, used in routine peplot. !--- qsscl set in routine pesopt, used in routine peplot. !--- qtscl set in routine pesopt, used in routine peplot. !--- hrange set in routine pesopt, used in routines pefill, peplot. !--- vrange set in routine pesopt, used in routine peplot. !--- hmima set in routines pesopt and pemima, !--- used in routines peplot, pesopt and pemima. !--- vmima set in routines pesopt and pemima, !--- used in routines peplot and pemima. !--- qhval set in routines pefill and peintp, !--- used in routines peplot, pefill and pemima. !--- qvval set in routines pefill and peintp, !--- used in routines peplot, pefill and pemima. !--- estart set in routine pefill, and peintp, !--- used in routines peplot and pefill. !--- eend set in routine pefill, used in routine peplot. real :: qascl=0.,qlscl=0.,qsscl=0.,qtscl=0., & hrange(2)=0.,vrange(2,4)=0.,hmima(2)=0.,vmima(2,4)=0., & qhval(maxseql,mxcurv)=0.,qvval(maxseql,mxcurv)=0., & estart(maxseql)=0.,eend(maxseql)=0. !--- Definition of common / peaddc / !--- horname set in routine pesopt, !--- used in routines pefill, peplot and pesopt. !--- tabname set in routine pesopt, !--- used in routines pefill, peintp, pelfill and pesopt. !--- toptitle set in routine pesopt, used in routine peplot. !--- plfnam set in routine plginit, used in routines plotit and plginit. !--- axlabel set in routine pemima, used in routine peplot. !--- sname set in routine pesopt, !--- used in routines pefill and pesopt. !--- slabl set in routine pesplit, !--- used in routines peplot, pemima and pesopt. character(mfile) :: plfnam=' ' character(mcnam) :: horname=' ',tabname=' ',sname(mxcurv)=' ',slabl(mxcurv)=' ' character(mxlabl) :: axlabel(4)=' ' character(mtitl) :: toptitle=' ' save itbv,nivvar,nelmach,numax,interf,noline,nqval,nvvar,nrrang,proc_flag,& ipparm,naxref,ieltyp,qascl,qlscl,qsscl,qtscl,hrange,vrange,hmima,& vmima,qhval,qvval,estart,eend,horname,tabname,toptitle,plfnam,axlabel,& sname,slabl end module plotfi module plot_bfi implicit none public !--- Definition of common / peotcl / !--- fpmach set in routines pesopt and pefill, used in routine peplot !--- ddp_flag set in routine pefill, used in routine peplot !--- ptc_flag set in routines pesopt, used in routine pefill logical :: fpmach=.false.,dpp_flag=.false.,ptc_flag=.false. save fpmach,dpp_flag,ptc_flag end module plot_bfi module plot_cfi implicit none public !--- Definition of common / e2save / !--- e2s initialised in routine pefill, used in routine peelma double precision :: e2s=0.d0 end module plot_cfi module plot_mathfi implicit none public !--- Definitions of mathematical constants double precision pi, zero, eps, one, two, twopi, half parameter (pi = 3.1415926535898d0) parameter (zero = 0.d0, half = 0.5d0, eps = 1.d-5) parameter (one = 1.d0, two = 2.d0, twopi = two * pi) end module plot_mathfi module resindexfi implicit none public integer mnres,mymorder parameter (mnres=1000,mymorder=20) end module resindexfi module gxx11_common implicit none public ! integer madim1,madim2,maxset,mconid,merrun,metaun,miunit,mmetat,& normt,mounit,mpaxs,mpcurv,mtermt,mtick,mtmeta,mtterm,mxaxs,mxpix,& mxsize,myaxs,mypix,mysize,mnormt,mx11pr,mx11tf,mxxpix,mxypix,& mcolor,mpspro,meppro,mdict,mlpro,& mpsep,mepep,mhead,mline,msfact,mlbb1,mlbb2,mubb1,mubb2,mtfont,& mwid1,mwid2 real toleps,versio parameter (mxaxs = 4, myaxs = 4, mpaxs = 23, mpcurv = 10,& maxset = 20, mtterm = 1, mmetat = 4,& mtermt = 101, mtmeta = 2, mconid = 7, mtick = 10, metaun = 11,& mxpix = 1000, mypix = 1000, mxsize = 27, mysize = 19,& madim1 = 500, toleps = 1.e-5,& merrun = 10, miunit = 5, mounit = 6, versio = 1.50,& mx11pr = 10, mx11tf = 10, mxxpix = 1200, mxypix = 1000,& mcolor = 6, mpspro = 8, meppro = 8, mdict = 24, mlpro = 68,& mpsep = 3, mepep = 2, mhead = 4, mline = 72, msfact = 4,& mlbb1 = 17, mlbb2 = 30, mubb1 = 573, mubb2 = 790, mtfont = 12,& mwid1 = mubb1 - mlbb1, mwid2 = mubb2 - mlbb2 ) parameter (mnormt = 2, madim2 = 100) ! integer :: & itermt=0, interm=0, inmeta=0, ierrun=0, imetun=0, inunit=0, iounit=0, ipage=0,& isfflg=0, isqflg=0, iwtflg=0, iclflg=0, inormt=0, ipseps=0, iepsop=0, itseop=0,& iepscf=0, imetps=0, ipctct=0, iczebr=0, idinit=0, ipstyp=0, iclear=0, istotx=0,& lmpict=0, ltermt=0, lnterm=0, lnmeta=0, lerrun=0, lmetun=0, lnunit=0, lounit=0,& lsfflg=0, lsqflg=0, lwtflg=0, lclflg=0, lnormt=0, lmetax=0, lmetay=0, lmetnm=0,& lerrnm=0, ldefnl=0, lerrop=0, lmetop=0, ltotin=0, lacttm=0, lpseps=0, lundef=0,& lttime=0, ldinit=0, ltseop=0,& ixapar(mpaxs,mxaxs)=0, iyapar(mpaxs,myaxs)=0, icvpar(mpcurv ,maxset)=0 ! integer :: & nxpix=0, nypix=0, lxpix=0, lypix=0, icucol=0, iorips=0, & iutlps=0, ibbox(4)=0, ix11pr(mx11pr)=0, ix11tf(mx11tf)=0, ix11op(mx11tf)=0 ! ! real :: & fxpix=0., fypix=0., rx11pr(mx11pr)=0., rgbcol(3,mcolor)=0. ! real :: & xmetaf=0., ymetaf=0., xsterm=0., ysterm=0., wfact=0., wttime=0., wxfact=0., wyfact=0.,& vpfacx=0., vpfacy=0.,& vptdef(4)=0., vploc(4)=0., actwnd(4)=0., rangex(2,mxaxs)=0., rangey(2 ,myaxs)=0.,& cvwnwd(4,maxset)=0., axwndx(2,maxset), axwndy(2,maxset)=0. ! character :: & smetnm*256=" ", serrnm*256=" ", sxtext(mxaxs)*300=" ", sytext(myaxs)*300=" ",& sxform(mxaxs)*20=" ", syform(myaxs)*20=" ", splotc*(maxset)=" ", stortx * 20=" ",& sdefnl*1=" ",spsnam * 256=" ", colour(mcolor) * 16=" ", pshead(mhead) * 60=" " ! real :: xp(madim2+1)=0.,xvp(madim2+1)=0,yp(madim2+1)=0.,yvp(madim2+1)=0 ! real :: p(madim1,2)=0.,s(madim1)=0.,yy1d(madim1,2)=0.,yy2d(madim1,2)=0. end module gxx11_common module gxx11_aux implicit none public ! character(100) strloc integer, dimension(14) :: ivals=(/ 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 1, 0 /) ! ivals(1) marker type ! (2) fill area interior style ! (3) horizontal text alignment ! (4) vertical text alignment ! (5) text font ! (6) text precision ! (7) marker colour index ! (8) metafile status (0 closed, 1 open) ! (9) text colour index ! (10) free ! (11) polyline colour index ! (12) polyline style ! (13) current normalisation transformation number ! (14) last call type: 0 undef., 1 line, 2 text, 3 marker real, dimension(14) :: rvals=(/ 0., 1., 0.01, 0., 1., 0., 1., 0., 1., 0., 1., 1., 1., 1. /) ! rvals(1-2) chup vector ! 3 character height ! 4-7 window ! 8-11 viewport ! 12 character expansion factor ! 13 line width scale factor ! 14 marker scale factor save ivals, rvals end module gxx11_aux module fasterror implicit none logical :: fasterror_on = .false. integer idim,nx,ny,kstep double precision hrecip,wtimag,wtreal parameter ( nx = 490, ny = 470 ) parameter ( idim = (nx+2)*(ny+2) ) public common /wzcom1/ hrecip, kstep common /wzcom2/ wtreal(idim), wtimag(idim) end module fasterror subroutine fort_info(t1, t2) implicit none character(*) t1, t2 integer get_option if (get_option('info ') .ne. 0 .and. get_option('warn ') .ne. 0) & print '(a,1x,a,1x,a)', '++++++ info:', t1, t2 end subroutine fort_info subroutine fort_warn(t1, t2) implicit none character(*) t1, t2 integer get_option if (get_option('warn ') .ne. 0) then print '(a,1x,a,1x,a)', '++++++ warning:', t1, t2 call augmentfwarn() endif end subroutine fort_warn subroutine getclor(orbit0, rt, tt, error) !----------------------------------------------------------------------* ! Purpose: ! Get periodic closed orbit (e.g. at start of Twiss), ! first + second order one-turn map ! Input: ! orbit0(6) (real) initial guess ! Output: ! rt(6,6) (real) one-turn matrix ! tt(6,6,6) (real) one-turn second-order map ! error (int) error flag (0: OK, else != 0) !----------------------------------------------------------------------* use twiss0fi implicit none double precision orbit0(6), rt(6,6), tt(6,6,6) double precision opt(fundim) integer error call m66one(rt) call dzero(opt,fundim) call tmclor(orbit0, .true., .true., opt, rt, tt, error) end subroutine getclor subroutine m66add(term1,term2,target) implicit none !----------------------------------------------------------------------* ! Purpose: ! Add two matrices. ! Input: ! TERM1(6,6) (real) First term. ! TERM2(6,6) (real) Second term. ! Output: ! TARGET(6,6) (real) Sum: TARGET = TERM1 + TERM2. !----------------------------------------------------------------------* integer i,j double precision target(6,6),term1(6,6),term2(6,6) do i = 1, 6 do j = 1, 6 target(i,j) = term1(i,j) + term2(i,j) enddo enddo end subroutine m66add subroutine m66byv(amat,avec,target) implicit none !----------------------------------------------------------------------* ! Purpose: ! Multiply matrix times vector. ! Input: ! AMAT(6,6) (real) Input matrix. ! AVEC(6) (real) Input vector. ! Output: ! TARGET(6) (real) Output vector: TARGET = AMAT * AVEC. !----------------------------------------------------------------------* integer i,j double precision amat(6,6),avec(6),target(6),temp(6) call dzero(temp,6) do i = 1, 6 do j = 1, 6 temp(i) = temp(i) + amat(i,j) * avec(j) enddo enddo call dcopy(temp,target,6) end subroutine m66byv subroutine m66cpy(source,target) implicit none !----------------------------------------------------------------------* ! Purpose: ! Copy matrix. ! Input: ! SOURCE(6,6) (real) Input matrix. ! Output: ! TARGET(6,6) (real) Output matrix: TARGET = SOURCE. !----------------------------------------------------------------------* integer i,j double precision source(6,6),target(6,6) do i = 1, 6 do j = 1, 6 target(i,j) = source(i,j) enddo enddo end subroutine m66cpy subroutine m66div(anum,aden,target,eflag) implicit none !----------------------------------------------------------------------* ! Purpose: ! "Divide" matrices, i. e. postmultiply with inverse of denominator. ! Input: ! ANUM(6,6) (real) "Numerator" matrix. ! ADEN(6,6) (real) "Denominator" matrix. ! Output: ! TARGET(6,6) (real) "Quotient" matrix: TARGET = ANUM * ADEN**(-1). ! EFLAG (logical) Error flag. !----------------------------------------------------------------------* logical eflag integer i,irank,j double precision aden(6,6),anum(6,6),augmat(6,12),target(6,6) !---- Copy input to local array. do i = 1, 6 do j = 1, 6 augmat(i,j) = aden(i,j) augmat(i,j+6) = anum(i,j) enddo enddo !---- Solve resulting system. call solver(augmat,6,6,irank) if (irank .lt. 6) then eflag = .true. !---- Copy result. else eflag = .false. do i = 1, 6 do j = 1, 6 target(i,j) = augmat(i,j+6) enddo enddo endif end subroutine m66div subroutine m66exp(source,target,eflag) implicit none !----------------------------------------------------------------------* ! Purpose: ! "Exponentiate" matrix. ! Original author: Liam Healy. ! Input: ! SOURCE(6,6) (real) Input matrix. ! Output: ! TARGET(6,6) (real) Output matrix: TARGET = exp(SOURCE). ! EFLAG (logical) Error flag. !----------------------------------------------------------------------* logical eflag integer i,j double precision b(6,6),c(6,6),source(6,6),target(6,6),one,two,twelve parameter(one=1d0,two=2d0,twelve=12d0) call m66mpy(source,source,b) call m66mpy(source,b,c) do j = 1, 6 do i = 1, 6 b(i,j) = (source(i,j) - c(i,j) / twelve) / two c(i,j) = - b(i,j) enddo b(j,j) = b(j,j) + one c(j,j) = c(j,j) + one enddo call m66div(b,c,target,eflag) end subroutine m66exp subroutine m66inv(source,target) implicit none !----------------------------------------------------------------------* ! Purpose: ! Invert symplectic matrix. ! Input: ! SOURCE(6,6) (real) Input matrix. ! Output: ! TARGET(6,6) (real) Output matrix: TARGET = tr(J) * tr(SOURCE) * J. !----------------------------------------------------------------------* integer i double precision source(6,6),target(6,6),temp(6,6) !---- TEMP = transpose(SOURCE) * J. do i = 1, 6 temp(i,1) = - source(2,i) temp(i,2) = + source(1,i) temp(i,3) = - source(4,i) temp(i,4) = + source(3,i) temp(i,5) = - source(6,i) temp(i,6) = + source(5,i) enddo !---- TARGET = transpose(J) * TEMP. do i = 1, 6 target(1,i) = - temp(2,i) target(2,i) = + temp(1,i) target(3,i) = - temp(4,i) target(4,i) = + temp(3,i) target(5,i) = - temp(6,i) target(6,i) = + temp(5,i) enddo end subroutine m66inv subroutine m66symp(r,nrm) implicit none !----------------------------------------------------------------------* ! Purpose: ! Check if a 6 by 6 matrix R is symplectic. ! Input: ! r(6,6) (double) Matrix R to check ! Output: ! nrm (double) The column norm of R'*J*R-J !----------------------------------------------------------------------* double precision R(6,6),J(6,6),T(6,6),nrm,z,o,n parameter(z=0d0,o=1d0,n=-1d0) J = reshape((/ z, o, z, z, z, z, & & n, z, z, z, z, z, & & z, z, z, o, z, z, & & z, z, n, z, z, z, & & z, z, z, z, z, o, & & z, z, z, z, n, z /), shape(J)) call m66trm(R,J,T) call m66mpy(T,R,T) call m66sub(T,J,T) call m66nrm(T,nrm) end subroutine m66symp subroutine m66mak(f2,target) implicit none !----------------------------------------------------------------------* ! Purpose: ! Compute matrix TARGET corresponding to Lie polynomial F2. ! Original author: Liam Healy. ! Input: ! F2 (poly) Polynomial of order 2. ! Output: ! TARGET(6,6) (real) Output matrix: TARGET * v = - [J,v]. !----------------------------------------------------------------------* double precision f2(*),target(6,6),two parameter(two=2d0) target(1,1) = - f2(8) target(1,2) = - two * f2(13) target(1,3) = - f2(14) target(1,4) = - f2(15) target(1,5) = - f2(16) target(1,6) = - f2(17) target(2,1) = two * f2(7) target(2,2) = f2(8) target(2,3) = f2(9) target(2,4) = f2(10) target(2,5) = f2(11) target(2,6) = f2(12) target(3,1) = - f2(10) target(3,2) = - f2(15) target(3,3) = - f2(19) target(3,4) = - two * f2(22) target(3,5) = - f2(23) target(3,6) = - f2(24) target(4,1) = f2(9) target(4,2) = f2(14) target(4,3) = two * f2(18) target(4,4) = f2(19) target(4,5) = f2(20) target(4,6) = f2(21) target(5,1) = - f2(12) target(5,2) = - f2(17) target(5,3) = - f2(21) target(5,4) = - f2(24) target(5,5) = - f2(26) target(5,6) = - two * f2(27) target(6,1) = f2(11) target(6,2) = f2(16) target(6,3) = f2(20) target(6,4) = f2(23) target(6,5) = two * f2(25) target(6,6) = f2(26) end subroutine m66mak subroutine m66mpy(fact1,fact2,target) implicit none !----------------------------------------------------------------------* ! Purpose: ! Multiply two matrices. ! TARGET may coincide with one of the factors. ! Input: ! FACT1(6,6) (real) First factor. ! FACT2(6,6) (real) Second factor. ! Output: ! TARGET(6,6) (real) Product matrix: TARGET = FACT1 * FACT2. !----------------------------------------------------------------------* integer i,j,k double precision fact1(6,6),fact2(6,6),target(6,6),temp(6,6) call dzero(temp,36) do k = 1, 6 do j = 1, 6 do i = 1, 6 temp(i,k) = temp(i,k) + fact1(i,j) * fact2(j,k) enddo enddo enddo call dcopy(temp,target,36) end subroutine m66mpy subroutine m66mtr(fact1,fact2,target) implicit none !----------------------------------------------------------------------* ! Purpose: ! Multiply a matrix with the transpose of another matrix. ! TARGET must not coincide with either factor. ! Input: ! FACT1(6,6) (real) First factor. ! FACT2(6,6) (real) Second factor (will be transposed). ! Output: ! TARGET(6,6) (real) Product: TARGET = FACT1 * tr(FACT2). !----------------------------------------------------------------------* integer i,j,k double precision fact1(6,6),fact2(6,6),target(6,6) call dzero(target,36) do j = 1, 6 do k = 1, 6 do i = 1, 6 target(i,j) = target(i,j) + fact1(i,k) * fact2(j,k) enddo enddo enddo end subroutine m66mtr subroutine m66nrm(fm,res) implicit none !----------------------------------------------------------------------* ! Purpose: ! Computes the norm of a matrix. ! Reference: L. Collatz, ! Functional Analysis & Numerical Mathematics. ! Source: MARYLIE, Version 3.0. ! Input: ! FM(6,6) (real) Input matrix. ! Output: ! RES (real) Norm of FM: RES = max abs column sum. !----------------------------------------------------------------------* integer i,j double precision fm(6,6),res,sum,zero parameter(zero=0d0) res = zero do j = 1, 6 sum = zero do i = 1, 6 sum = sum + abs(fm(i,j)) enddo res = max(res,sum) enddo end subroutine m66nrm subroutine m66one(target) implicit none !----------------------------------------------------------------------* ! Purpose: ! Set matrix to unity. ! Output: ! TARGET(6,6) (real) Unit matrix: TARGET = I. !----------------------------------------------------------------------* integer j double precision target(6,6),one parameter(one=1d0) call dzero(target,36) do j = 1, 6 target(j,j) = one enddo end subroutine m66one subroutine m66ref(source,target) implicit none !----------------------------------------------------------------------* ! Purpose: ! Reflect symplectic first order transform. ! Input: ! SOURCE(6,6) (real) Input matrix. ! Output: ! TARGET(6,6) (real) Reflected matrix. !----------------------------------------------------------------------* integer i double precision source(6,6),target(6,6),temp(6,6) !---- TEMP = transpose(SOURCE) * J * signs. do i = 1, 6 temp(i,1) = source(2,i) temp(i,2) = source(1,i) temp(i,3) = source(4,i) temp(i,4) = source(3,i) temp(i,5) = - source(6,i) temp(i,6) = - source(5,i) enddo !---- TARGET = signs * transpose(J) * TEMP. do i = 1, 6 target(1,i) = temp(2,i) target(2,i) = temp(1,i) target(3,i) = temp(4,i) target(4,i) = temp(3,i) target(5,i) = - temp(6,i) target(6,i) = - temp(5,i) enddo end subroutine m66ref subroutine m66scl(scalar,source,target) implicit none !----------------------------------------------------------------------* ! Purpose: ! Multiply matrix by scalar. ! Input: ! SCALAR (real) Scale factor. ! SOURCE(6,6) (real) Input matrix. ! Output: ! TARGET(6,6) (real) Scaled matrix: TARGET = SCALAR * SOURCE. !----------------------------------------------------------------------* integer i,j double precision scalar,source(6,6),target(6,6) do i = 1, 6 do j = 1, 6 target(i,j) = scalar * source(i,j) enddo enddo end subroutine m66scl logical function m66sta(amat) implicit none !----------------------------------------------------------------------* ! Purpose: ! Check effect of a matrix on momentum. ! Input: ! AMAT(6,6) (real) Input matrix. ! Result: ! .TRUE. For static case (constant p). ! .FALSE. For dynamic case (variable p). !----------------------------------------------------------------------* integer j double precision amat(6,6),tol,one parameter(one=1d0,tol=1d-12) m66sta = abs(amat(6,6) - one) .le. tol do j = 1, 5 m66sta = m66sta .and. abs(amat(6,j)) .le. tol enddo end function m66sta subroutine m66sub(term1,term2,target) implicit none !----------------------------------------------------------------------* ! Purpose: ! Subtract two matrices. ! Input: ! TERM1(6,6) (real) Minuend matrix. ! TERM2(6,6) (real) Subtrahend matrix. ! Output: ! TARGET(6,6) (real) Difference matrix: TARGET = TERM1 - TERM2. !----------------------------------------------------------------------* integer i,j double precision target(6,6),term1(6,6),term2(6,6) do j = 1, 6 do i = 1, 6 target(i,j) = term1(i,j) - term2(i,j) enddo enddo end subroutine m66sub subroutine m66trm(fact1,fact2,target) implicit none !----------------------------------------------------------------------* ! Purpose: ! Multiply the transpose of a matrix with another matrix. ! TARGET must not coincide with either factor. ! Input: ! FACT1(6,6) (real) First factor (will be transposed). ! FACT2(6,6) (real) Second factor. ! Output: ! TARGET(6,6) (real) Product: TARGET = tr(FACT1) * FACT2. !----------------------------------------------------------------------* integer i,j,k double precision fact1(6,6),fact2(6,6),target(6,6) call dzero(target,36) do j = 1, 6 do k = 1, 6 do i = 1, 6 target(i,j) = target(i,j) + fact1(k,i) * fact2(k,j) enddo enddo enddo end subroutine m66trm subroutine m66tp(source,target) implicit none !----------------------------------------------------------------------* ! Purpose: ! Transpose a matrix. ! TARGET and SOURCE may overlap. ! Input: ! SOURCE(6,6) (real) Input matrix. ! Output: ! TARGET(6,6) (real) Transposed matrix: TARGET = tr(SOURCE). !----------------------------------------------------------------------* integer i,j double precision source(6,6),target(6,6),temp(6,6) do i = 1, 6 do j = 1, 6 temp(j,i) = source(i,j) enddo enddo call m66cpy(temp,target) end subroutine m66tp subroutine m66zro(target) implicit none !----------------------------------------------------------------------* ! Purpose: ! Clear a matrix to zero. ! Output: ! TARGET(6,6) (real) Zero matrix: TARGET = 0. !----------------------------------------------------------------------* double precision target(6,6) call dzero(target,36) end subroutine m66zro subroutine solver(augmat,ndim,mdim,irank) implicit none !----------------------------------------------------------------------* ! Purpose: ! Solve the linear equation A * X = B. ! Input: ! AUGMAT(n,n+m) A(n,n), augmented by B(n,m). ! NDIM, MDIM n, m. ! Output: ! AUGMAT(n,n+m) Identity(n,n), augmented by X(n,m). ! IRANK Rank of A. !----------------------------------------------------------------------* integer ic,ip,ir,irank,it,mdim,nc,ndim,nr double precision augmat(ndim,ndim+mdim),h,pivot,zero parameter(zero=0d0) nr = ndim nc = ndim + mdim irank = 0 do it = 1, nr pivot = zero ip = 0 do ir = it, nr if (abs(augmat(ir,it)) .ge. abs(pivot)) then pivot = augmat(ir,it) ip = ir endif enddo if (pivot .eq. zero) go to 9999 irank = it do ic = 1, nc augmat(ip,ic) = augmat(ip,ic) / pivot enddo if (ip .ne. it) then do ic = 1, nc h = augmat(ip,ic) augmat(ip,ic) = augmat(it,ic) augmat(it,ic) = h enddo endif do ir = 1, nr if (ir .ne. it) then h = augmat(ir,it) do ic = 1, nc augmat(ir,ic) = augmat(ir,ic) - h * augmat(it,ic) enddo endif enddo enddo irank = ndim 9999 end subroutine solver subroutine symsol(a,n,eflag,work_1,work_2,work_3) implicit none !----------------------------------------------------------------------* ! Purpose: ! Invert symmetric matrix. ! Input: ! A(*,*) (real) Matrix to be inverted. ! N (integer) Actual size of A. ! Output: ! A(*,*) (real) Inverted matrix. ! EFLAG (logical) Error flag. !----------------------------------------------------------------------* logical eflag integer i,j,k,n double precision a(n,n),si,work_1(n),work_2(n),work_3(n),zero,one parameter(zero=0d0,one=1d0) !---- Scale upper triangle. eflag = .true. do i = 1, n si = a(i,i) if (si .le. zero) go to 100 work_1(i) = one / sqrt(si) enddo do i = 1, n do j = i, n a(i,j) = a(i,j) * work_1(i) * work_1(j) enddo enddo !---- Invert upper triangle. do i = 1, n if (a(i,i) .eq. zero) go to 100 work_2(i) = one work_3(i) = one / a(i,i) a(i,i) = zero do j = 1, n if (j .lt. i) then work_2(j) = a(j,i) work_3(j) = work_2(j) * work_3(i) a(j,i) = zero else if (j .gt. i) then work_2(j) = a(i,j) work_3(j) = - work_2(j) * work_3(i) a(i,j) = zero endif enddo do j = 1, n do k = j, n a(j,k) = a(j,k) + work_2(j) * work_3(k) enddo enddo enddo !---- Rescale upper triangle and symmetrize. do i = 1, n do j = i, n a(i,j) = a(i,j) * work_1(i) * work_1(j) a(j,i) = a(i,j) enddo enddo eflag = .false. 100 continue end subroutine symsol subroutine symeig(a,nd,n,eigen,nval,work) implicit none !----------------------------------------------------------------------* ! Purpose: * ! Eigenvalues of a real symmetric matrix in ascending order. * ! Input: * ! A(ND,ND) (real) Symmetric input matrix; destroyed by call. * ! N (integer) Rank of matrix. * ! Output: * ! EIGEN(*) (real) Eigenvalues of A in descending order. * ! NVAL (integer) Number of eigenvalues found. * !----------------------------------------------------------------------* integer i,it,j,k,l,m,n,nd,nval,itmax parameter(itmax=15) double precision b,c,f,g,h,p,r,s,work(nd),a(nd,nd),eigen(nd),zero,& one,two,four,big,eps parameter(zero=0d0,one=1d0,two=2d0,four=4d0,big=1d10,eps=1d-20) !---- Matrix is 1 * 1. nval = n if (n .le. 0) go to 300 if (n .eq. 1) then eigen(1) = a(1,1) go to 300 endif !---- Matrix is 2 * 2. if (n .eq. 2) then f = a(1,1) + a(2,2) g = sqrt((a(1,1) - a(2,2))**2 + four * a(2,1)**2) eigen(1) = (f - g) / two eigen(2) = (f + g) / two go to 300 endif !---- N is at least 3, reduce to tridiagonal form. do i = n, 3, -1 g = zero do k = 1, i-2 g = g + a(i,k)**2 enddo eigen(i) = a(i,i) if (g .eq. zero) then work(i) = a(i,i-1) else h = g + a(i,i-1)**2 work(i) = sign(sqrt(h),a(i,i-1)) h = h + a(i,i-1) * work(i) a(i,i-1) = a(i,i-1) + work(i) f = zero do j = 1, i-1 g = zero do k = 1, i-1 if (k .le. j) then g = g + a(j,k) * a(i,k) else g = g + a(k,j) * a(i,k) endif enddo work(j) = g / h f = f + work(j) * a(i,j) enddo do j = 1, i-1 work(j) = work(j) - (f / (h + h)) * a(i,j) do k = 1, j a(j,k) = a(j,k) - a(i,j) * work(k) - work(j) * a(i,k) enddo enddo endif enddo work(2) = a(2,1) work(1) = zero eigen(2) = a(2,2) eigen(1) = a(1,1) !---- Iterate on tridiagonal matrix. do i = 2, n work(i-1) = work(i) enddo work(n) = zero f = zero b = zero do l = 1, n b = max(eps*(abs(eigen(l))+abs(work(l))),b) do m = l, n if (abs(work(m)) .le. b) go to 130 enddo m = n 130 if (m .ne. l) then do it = 1, itmax p = (eigen(l+1) - eigen(l)) / (two * work(l)) if (abs(p) .gt. big) then r = abs(p) else r = sqrt(p*p+one) endif h = eigen(l) - work(l) / (p + sign(r,p)) do i = l, n eigen(i) = eigen(i) - h enddo f = f + h p = eigen(m) c = one s = zero do i = m-1, l, -1 g = c * work(i) h = c * p r = sqrt(work(i)**2+p**2) work(i+1) = s * r s = work(i) / r c = p / r p = c * eigen(i) - s * g eigen(i+1) = h + s * (c * g + s * eigen(i)) enddo work(l) = s * p eigen(l) = c * p if (abs(work(l)) .le. b) go to 170 enddo nval = l - 1 go to 300 endif 170 p = eigen(l) + f do i = l, 2, -1 if (p .ge. eigen(i-1)) go to 190 eigen(i) = eigen(i-1) enddo i = 1 190 eigen(i) = p enddo 300 continue end subroutine symeig subroutine dcopy(in,out,n) !----------------------------------------------------------------------* ! Purpose: * ! Copy arrays. * ! Input: * ! in (double) array to be copied. * ! n (integer) array length. * ! Output: * ! out (double) target array. * !----------------------------------------------------------------------* implicit none integer n, i double precision in(*), out(*) do i = 1, n out(i) = in(i) enddo end subroutine dcopy subroutine dzero(vector,n) !----------------------------------------------------------------------* ! Purpose: * ! Zero an array. * ! Input: * ! n (integer) array length. * ! Input/output: * ! vector (double) array to be zeroed. * !----------------------------------------------------------------------* implicit none integer n, i double precision vector(*),zero parameter(zero=0d0) do i = 1, n vector(i) = zero enddo end subroutine dzero subroutine aawarn(rout,text) implicit none !----------------------------------------------------------------------* ! Purpose: * ! Print warning message. * ! Input: * ! ROUT (char) Calling routine name. * ! TEXT (char) Message. * !----------------------------------------------------------------------* character(*) rout,text print *, '++++++ warning: ',rout,text call augmentfwarn() end subroutine aawarn subroutine aafail(rout,text) implicit none !----------------------------------------------------------------------* ! Purpose: * ! Print fatal error message. * ! Input: * ! ROUT (char) Calling routine name. * ! TEXT (char) Message. * !----------------------------------------------------------------------* character(*) rout,text print *,' ' print *, '+-+-+- fatal: ',rout,text print *,' ' print *,' ' stop 1 end subroutine aafail double precision function proxim(x,y) !----------------------------------------------------------------------* ! Proximity function of x and y. * ! If angle is larger than pi between vector x and y, 2pi is added to * ! to this angle * !----------------------------------------------------------------------* implicit none double precision x,y,twopi,get_variable twopi=get_variable('twopi ') proxim = x+twopi*anint((y-x)/twopi) end function proxim character(48) function charconv(tint) !----------------------------------------------------------------------* ! purpose: * ! converts integer array to string (based on ascii) * ! input: * ! tint (int array) 1 = length, rest = string * !----------------------------------------------------------------------* implicit none integer tint(*) integer i, j, m, n parameter (m = 128) character(m) letter data letter / & ' !"#$%&''()*+,-./0123456789:;<=>?@& &ABCDEFGHIJKLMNOPQRSTUVWXYZ[ ]^_`abcdefghijklmnopqrstuvwxyz{|}~'/ charconv = ' ' n = tint(1) do i = 1, n j = tint(i+1) if (j .lt. m) charconv(i:i) = letter(j:j) enddo end function charconv subroutine laseig(fm,reeig,aieig,am) implicit none !----------------------------------------------------------------------* ! Purpose: * ! Return eigenvalues and eigenvectors of a 4x4 matrix. * ! Input: * ! FM(6,6) (real) Matrix to be transformed. * ! Output: * ! REEIG(6) (real) Real parts of eigenvalues. * ! AIEIG(6) (real) Imaginary parts of eigenvalues. * ! AM(6,6) (real) Transforming matrix, contains eigenvectors. * !----------------------------------------------------------------------* integer i,ihi,ilo,info,ipind,iqind,j,k,mdim,nn,kpnt(6) double precision fm(6,6),reeig(6),aieig(6),am(6,6),aival(6),big,c,& d(6),dx,dy,pb,reval(6),s,tm(6,6),zero,one parameter(zero=0d0,one=1d0,ilo=1,ihi=4,mdim=6,nn=4) !---- Compute eigenvalues and vectors. call m66cpy(fm,tm) call m66one(am) call orthes(mdim,nn,ilo,ihi,tm,d) call ortran(mdim,nn,ilo,ihi,tm,d,am) call hqr2(mdim,nn,ilo,ihi,tm,reval,aival,am,info) if (info .ne. 0) then write (6, 910) ((fm(i,k), k = 1, 6), i = 1, 6) 910 format('Unable to find eigenvalues for matrix:'/(6f12.6)) call aafail('LASEIG',' Unable to find eigenvalues for matrix') go to 999 endif !---- Normalize the eigenvectors. do k = 1, 5, 2 pb = zero do ipind = 2, 6, 2 iqind = ipind - 1 pb = pb + am(iqind,k) * am(ipind,k+1) - am(ipind,k) * am(iqind,k+1) enddo s = sqrt(abs(pb)) if (pb .lt. zero) then aival(k) = - aival(k) aival(k+1) = - aival(k+1) endif do i = 1, 6 am(i,k) = am(i,k) / s am(i,k+1) = am(i,k+1) * (s / pb) enddo enddo !---- Sort these eigenvectors. call m66cpy(am,tm) !---- Find the eigenvectors with the largest vertical component. big = zero kpnt(3) = 1 do i = 1, 3, 2 c = tm(3,i)**2 + tm(3,i+1)**2 + tm(4,i)**2 + tm(4,i+1)**2 if (c .gt. big) then big = c kpnt(3) = i endif enddo !---- Find the remaining vector. do i = 1, 3, 2 if (i .ne. kpnt(3)) kpnt(1) = i enddo !---- Reorder vectors. do i = 1, 3, 2 k = kpnt(i) reeig(i) = reval(k) aieig(i) = aival(k) reeig(i+1) = reval(k+1) aieig(i+1) = aival(k+1) do j = 1, 6 am(j,i) = tm(j,k) am(j,i+1) = tm(j,k+1) enddo enddo reeig(5) = one aieig(5) = zero reeig(6) = one aieig(6) = zero !---- Rephase the result. call m66one(tm) dx = sqrt(am(1,1)**2 + am(1,2)**2) tm(1,1) = am(1,1) / dx tm(2,1) = am(1,2) / dx tm(1,2) = - tm(2,1) tm(2,2) = tm(1,1) dy = sqrt(am(3,3)**2 + am(3,4)**2) tm(3,3) = am(3,3) / dy tm(4,3) = am(3,4) / dy tm(3,4) = - tm(4,3) tm(4,4) = tm(3,3) call m66mpy(am,tm,am) 999 end subroutine laseig subroutine ladeig(fm,reeig,aieig,am) implicit none !----------------------------------------------------------------------* ! Purpose: * ! Return eigenvalues and eigenvectors of a 6x6 matrix. * ! Input: * ! FM(6,6) (real) Matrix to be transformed. * ! Output: * ! REEIG(6) (real) Real parts of eigenvalues. * ! AIEIG(6) (real) Imaginary parts of eigenvalues. * ! AM(6,6) (real) Transforming matrix, contains eigenvectors. * !----------------------------------------------------------------------* integer i,ihi,ilo,info,j,k,mdim,nn,kpnt(6) double precision fm(6,6),reeig(6),aieig(6),am(6,6),aival(6),big,c,& d(6),dt,dx,dy,pb,reval(6),s,tm(6,6),zero parameter(zero=0d0,ilo=1,ihi=6,mdim=6,nn=6) !---- Compute eigenvalues and eigenvectors. call m66cpy(fm,tm) call orthes(mdim,nn,ilo,ihi,tm,d) call ortran(mdim,nn,ilo,ihi,tm,d,am) call hqr2(mdim,nn,ilo,ihi,tm,reval,aival,am,info) if (info .ne. 0) then write (6, 910) ((fm(i,k), k = 1, 6), i = 1, 6) 910 format('Unable to find eigenvalues for matrix:'/(6f12.6)) call aafail('LADEIG',' Unable to find eigenvalues for matrix') go to 9999 endif !---- Normalize the eigenvectors. do k = 1, 5, 2 pb = zero do i = 1, 5, 2 pb = pb + am(i,k) * am(i+1,k+1) - am(i+1,k) * am(i,k+1) enddo s = sqrt(abs(pb)) if (pb .lt. zero) then aival(k) = - aival(k) aival(k+1) = - aival(k+1) endif do i = 1, 6 am(i,k) = am(i,k) / s am(i,k+1) = am(i,k+1) * (s / pb) enddo enddo !---- Copy vectors to temporary array. call m66cpy(am,tm) !---- Find the vector with the largest vertical component. big = zero kpnt(3) = 1 do i = 1, 5, 2 c = tm(3,i)**2 + tm(3,i+1)**2 + tm(4,i)**2 + tm(4,i+1)**2 if (c .gt. big) then big = c kpnt(3) = i endif enddo !---- Find the vector with the largest horizontal component. kpnt(1) = 1 big = zero do i = 1, 5, 2 if (i .ne. kpnt(3)) then c = tm(1,i)**2 + tm(1,i+1)**2 + tm(2,i)**2 + tm(2,i+1)**2 if (c .gt. big) then big = c kpnt(1) = i endif endif enddo !---- Find the remaining vector. do i = 1, 5, 2 if (i .ne. kpnt(3) .and. i .ne. kpnt(1)) kpnt(5) = i enddo !---- Reorder vectors. do i = 1, 5, 2 k = kpnt(i) reeig(i) = reval(k) aieig(i) = aival(k) reeig(i+1) = reval(k+1) aieig(i+1) = aival(k+1) do j = 1, 6 am(j,i) = tm(j,k) am(j,i+1) = tm(j,k+1) enddo enddo !---- Rephase the result. call m66one(tm) dx = sqrt(am(1,1)**2 + am(1,2)**2) tm(1,1) = am(1,1) / dx tm(2,1) = am(1,2) / dx tm(1,2) = - tm(2,1) tm(2,2) = tm(1,1) dy = sqrt(am(3,3)**2 + am(3,4)**2) tm(3,3) = am(3,3) / dy tm(4,3) = am(3,4) / dy tm(3,4) = - tm(4,3) tm(4,4) = tm(3,3) dt = sqrt(am(5,5)**2 + am(5,6)**2) tm(5,5) = am(5,5) / dt tm(6,5) = am(5,6) / dt tm(5,6) = - tm(6,5) tm(6,6) = tm(5,5) call m66mpy(am,tm,am) 9999 end subroutine ladeig subroutine orthes(ndim,n,ilow,iupp,a,d) implicit none !----------------------------------------------------------------------* ! Purpose: * ! Converts an unsymmetric real matrix, A, to upper Hessenberg form * ! applying successive orthogonal transformations. * ! * ! Translation of the ALGOL procedure ORTHES in: * ! Handbook Series Linear Algebra, * ! Num. Math. 12, 349-368 (1968) by R. S. Martin and J. H. Wilkinson. * ! Input: * ! N (integer) Order of the matrix A. * ! ILOW,IUPP (integer) Determine a submatrix, set by BALANC. * ! May be set to 1 and N respectively. * ! A(NDIM,N) (real) Input matrix. * ! Output: * ! A(NDIM,N) (real) The matrix A, converted to upper Hessenberg. * ! The lower triangle contains information * ! about the orthogonal transformations. * ! D(N) (real) Further information. * !----------------------------------------------------------------------* integer i,ilow,iupp,j,m,n,ndim double precision a(ndim,n),d(n),f,g,h,scale,zero parameter(zero=0d0) do m = ilow + 1, iupp - 1 h = zero d(m) = zero !---- Find scale factor. scale = zero do i = m, iupp scale = scale + abs(a(i,m-1)) enddo if (scale .ne. zero) then do i = iupp, m, - 1 d(i) = a(i,m-1) / scale h = h + d(i) * d(i) enddo g = sign(sqrt(h),d(m)) h = h + d(m) * g d(m) = d(m) + g !---- Form (I - (u*uT) / h) * A. do j = m, n f = zero do i = iupp, m, - 1 f = f + d(i) * a(i,j) enddo f = f / h do i = m, iupp a(i,j) = a(i,j) - f * d(i) enddo enddo !---- Form (I - (u*uT) / h) * A * (I - (u*uT) / h). do i = 1, iupp f = zero do j = iupp, m, - 1 f = f + d(j) * a(i,j) enddo f = f / h do j = m, iupp a(i,j) = a(i,j) - f * d(j) enddo enddo d(m) = scale * d(m) a(m,m-1) = - scale * g endif enddo end subroutine orthes subroutine ortran(ndim,n,ilow,iupp,h,d,v) implicit none !----------------------------------------------------------------------* ! Purpose: * ! Accumulate the orthogonal similarity transformation used by * ! ORTHES to reduce a general real matrix A to upper Hessenberg form. * ! * ! Translation of the ALGOL procedure ORTRANS in: * ! Handbook Series Linear Algebra, * ! Num. Math. 16, 181-204 (1970) by G. Peters and J. H. Wilkinson. * ! Input: * ! N (integer) Order of the matrices A and V. * ! ILOW,IUPP (integer) Determine a sub-matrix set by BALANC. * ! May be set to 1 and N respectively. * ! H(NDIM,N) (real) The matrix resulting from running ORTHES. * ! D(N) (real) Further information about the transformation. * ! Output: * ! V(NDIM,N) (real) The accumulated transformation. * ! D(N) (real) Destroyed. * !----------------------------------------------------------------------* integer i,ilow,iupp,j,k,m,n,ndim double precision d(n),h(ndim,n),v(ndim,n),x,y,zero,one parameter(zero=0d0,one=1d0) !---- Initialize V to identity matrix. do i = 1, n do j = 1, n v(i,j) = zero enddo v(i,i) = one enddo !---- Accumulate transformations. do k = iupp - 2, ilow, - 1 m = k + 1 y = h(m,k) if (y .ne. zero) then y = y * d(m) do i = k + 2, iupp d(i) = h(i,k) enddo do j = m, iupp x = zero do i = m, iupp x = x + d(i) * v(i,j) enddo x = x / y do i = m, iupp v(i,j) = v(i,j) + x * d(i) enddo enddo endif enddo end subroutine ortran subroutine hqr2(ndim,n,ilow,iupp,h,wr,wi,vecs,ierr) use max_iterate implicit none !----------------------------------------------------------------------* ! Purpose: * ! Finds eigenvalues and eigenvectors of an unsymmetric real matrix, * ! A which has been reduced to upper Hessenberg form, H, by the * ! subroutine ORTHES. The orthogonal transformations must be placed * ! in the array VECS by subroutine ORTRAN. * ! * ! Translation of the ALGOL procedure HQR2 in: * ! Handbook Series Linear Algebra, * ! Num. Math. 16, 181 - 204 (1970) by G. Peters and J. H. Wilkinson. * ! Input: * ! N (integer) Order of the Hessenberg matrix H. * ! ILOW,IUPP (integer) * ! H(NDIM,N) (real) The Hessenberg matrix produced by ORTHES. * ! VECS(NDIM,N) (real) A square matrix of order N containing the * ! similarity transformation from A to H * ! Output: * ! H(NDIM,N) (real) Modified. * ! WR(N) (real) Real parts of eigenvalues of H (or A). * ! WI(N) (real) Imaginary parts of eigenvalues of H (or A). * ! VECS(NDIM,N) (real) The unnormalized eigenvectors of A. * ! Complex vectors are stored as pairs of reals. * !----------------------------------------------------------------------* integer i,ien,ierr,ilow,its,iupp,j,k,l,m,n,na,ndim double precision den,h(ndim,n),hnorm,p,q,r,ra,s,sa,t,temp,tempi, & tempr,vecs(ndim,n),vi,vr,w,wi(n),wr(n),x,y,z,epsmch,zero,one,two, & triqua,fac1 parameter(epsmch=1d-16,zero=0d0,one=1d0,two=2d0,triqua=.75d0,fac1=.4375d0) !Initialize z=zero s=zero p=zero q=zero r=zero ierr = 0 !---- Store isolated roots. do i = 1, n if (i .lt. ilow .or. i .gt. iupp) then wr(i) = h(i,i) wi(i) = zero endif enddo ien = iupp t = zero !---- Next eigenvalue. 60 if (ien .ge. ilow) then its = 0 na = ien - 1 !---- Next iteration; look for single small sub-diagonal element. 70 continue do l = ien, ilow + 1, -1 if (abs(h(l,l-1)) .le. epsmch * (abs(h(l-1,l-1)) + abs(h(l,l)))) go to 100 enddo l = ilow 100 continue x = h(ien,ien) if (l .eq. ien) go to 270 y = h(na,na) w = h(ien,na) * h(na,ien) if (l .eq. na) go to 280 if (its .eq. MAXITER) then write(6,*) "Maximum Iteration exceeded in HQR2, increase MAXITER: ",MAXITER ierr = ien go to 9999 endif !---- Form exceptional shift. if (its .eq. 10 .or. its .eq. 20) then t = t + x do i = ilow, ien h(i,i) = h(i,i) - x enddo s = abs(h(ien,na)) + abs(h(na,ien-2)) x = triqua * s y = x w = - fac1 * s * s endif its = its + 1 !---- Look for two consecutive small sub-diagonal elements. do m = ien - 2, l, - 1 z = h(m,m) r = x - z s = y - z p = (r * s - w) / h(m+1,m) + h(m,m+1) q = h(m+1,m+1) - z - r - s r = h(m+2,m+1) s = abs(p) + abs(q) + abs(r) p = p / s q = q / s r = r / s if (m .eq. l) go to 150 if (abs(h(m,m-1)) * (abs(q) + abs(r)) .le. epsmch * abs(p) & * (abs(h(m-1,m-1)) + abs(z) + abs(h(m+1,m+1)))) go to 150 enddo 150 continue h(m+2,m) = zero do i = m + 3, ien h(i,i-2) = zero h(i,i-3) = zero enddo !---- Double QR step involving rows L to IEN and columns M to IEN. do k = m, na if (k .ne. m) then p = h(k,k-1) q = h(k+1,k-1) if (k .ne. na) then r = h(k+2,k-1) else r = zero endif x = abs(p) + abs(q) + abs(r) if (x .eq. zero) go to 260 p = p / x q = q / x r = r / x endif s = sign(sqrt(p**2+q**2+r**2),p) if (k .ne. m) then h(k,k-1) = - s * x else if (l .ne. m) then h(k,k-1) = - h(k,k-1) endif p = p + s x = p / s y = q / s z = r / s q = q / p r = r / p !---- Row modification. do j = k, n p = h(k,j) + q * h(k+1,j) if (k .ne. na) then p = p + r * h(k+2,j) h(k+2,j) = h(k+2,j) - p * z endif h(k+1,j) = h(k+1,j) - p * y h(k,j) = h(k,j) - p * x enddo !---- Column modification. j = min(ien,k+3) do i = 1, j p = x * h(i,k) + y * h(i,k+1) if (k .ne. na) then p = p + z * h(i,k+2) h(i,k+2) = h(i,k+2) - p * r endif h(i,k+1) = h(i,k+1) - p * q h(i,k) = h(i,k) - p enddo !---- Accumulate transformations. do i = ilow, iupp p = x * vecs(i,k) + y * vecs(i,k+1) if (k .ne. na) then p = p + z * vecs(i,k+2) vecs(i,k+2) = vecs(i,k+2) - p * r endif vecs(i,k+1) = vecs(i,k+1) - p * q vecs(i,k) = vecs(i,k) - p enddo 260 continue enddo !---- Go to next iteration. go to 70 !==== One real root found. 270 h(ien,ien) = x + t wr(ien) = h(ien,ien) wi(ien) = zero ien = na go to 60 !==== Two roots (real pair or complex conjugate) found. 280 p = (y - x) / two q = p**2 + w z = sqrt(abs(q)) x = x + t h(ien,ien) = x h(na,na) = y + t !---- Real pair. if (q .gt. zero) then z = p + sign(z,p) wr(na) = x + z wr(ien) = x - w / z wi(na) = zero wi(ien) = zero x = h(ien,na) r = sqrt(x**2+z**2) p = x / r q = z / r !---- Row modification. do j = na, n z = h(na,j) h(na,j) = q * z + p * h(ien,j) h(ien,j) = q * h(ien,j) - p * z enddo !---- Column modification. do i = 1, ien z = h(i,na) h(i,na) = q * z + p * h(i,ien) h(i,ien) = q * h(i,ien) - p * z enddo !---- Accumulate transformations. do i = ilow, iupp z = vecs(i,na) vecs(i,na) = q * z + p * vecs(i,ien) vecs(i,ien) = q * vecs(i,ien) - p * z enddo !---- Complex pair. else wr(na) = x + p wr(ien) = x + p wi(na) = z wi(ien) = -z endif !----- Go to next root. ien = ien - 2 go to 60 endif !==== Compute matrix norm. hnorm = zero k = 1 do i = 1, n do j = k, n hnorm = hnorm + abs(h(i,j)) enddo k = i enddo !==== Back substitution. do ien = n, 1, -1 p = wr(ien) q = wi(ien) na = ien - 1 !---- Real vector. if (q .eq. zero) then m = ien h(ien,ien) = one do i = na, 1, -1 w = h(i,i) - p r = h(i,ien) do j = m, na r = r + h(i,j) * h(j,ien) enddo if (wi(i) .lt. zero) then z = w s = r else m = i if (wi(i) .eq. zero) then temp = w if (w .eq. zero) temp = epsmch * hnorm h(i,ien) = - r / temp else x = h(i,i+1) y = h(i+1,i) q = (wr(i) - p)**2 + wi(i)**2 t = (x * s - z * r) / q h(i,ien) = t if (abs(x) .gt. abs(z)) then h(i+1,ien) = - (r + w * t) / x else h(i+1,ien) = - (s + y * t) / z endif endif endif enddo !---- Complex vector associated with lamda = P - i * Q. else if (q .lt. zero) then m = na if (abs(h(ien,na)) .gt. abs(h(na,ien))) then h(na,na) = - (h(ien,ien) - p) / h(ien,na) h(na,ien) = - q / h(ien,na) else den = (h(na,na) - p)**2 + q**2 h(na,na) = - h(na,ien) * (h(na,na) - p) / den h(na,ien) = h(na,ien) * q / den endif h(ien,na) = one h(ien,ien) = zero do i = ien - 2, 1, - 1 w = h(i,i) - p ra = h(i,ien) sa = zero do j = m, na ra = ra + h(i,j) * h(j,na) sa = sa + h(i,j) * h(j,ien) enddo if (wi(i) .lt. zero) then z = w r = ra s = sa else m = i if (wi(i) .eq. zero) then den = w**2 + q**2 h(i,na) = - (ra * w + sa * q) / den h(i,ien) = (ra * q - sa * w) / den else x = h(i,i+1) y = h(i+1,i) vr = (wr(i) - p)**2 + wi(i)**2 - q**2 vi = two * (wr(i) - p) * q if (vr .eq. zero .and. vi .eq. zero) then vr = epsmch * hnorm & * (abs(w) + abs(q) + abs(x) + abs(y) + abs(z)) endif tempr = x * r - z * ra + q * sa tempi = x * s - z * sa - q * ra den = vr**2 + vi**2 h(i,na) = (tempr * vr + tempi * vi) / den h(i,ien) = (tempi * vr - tempr * vi) / den if (abs(x) .gt. abs(z) + abs(q)) then h(i+1,na) = (- ra - w * h(i,na) + q * h(i,ien)) / x h(i+1,ien) = (- sa - w * h(i,ien) - q * h(i,na)) / x else tempr = - r - y * h(i,na) tempi = - s - y * h(i,ien) den = z**2 + q**2 h(i+1,na) = (tempr * z + tempi * q) / den h(i+1,ien) = (tempi * z - tempr * q) / den endif endif endif enddo endif enddo !==== Vectors of isolated roots. do i = 1, n if (i .lt. ilow .or. i .gt. iupp) then do j = i, n vecs(i,j) = h(i,j) enddo endif enddo !==== Multiply by transformation matrix to give eigenvectors of the ! original full matrix. do j = n, ilow, - 1 m = min(j,iupp) if (wi(j) .lt. zero) then l = j - 1 do i = ilow, iupp y = zero z = zero do k = ilow, m y = y + vecs(i,k) * h(k,l) z = z + vecs(i,k) * h(k,j) enddo vecs(i,l) = y vecs(i,j) = z enddo else if (wi(j) .eq. zero) then do i = ilow, iupp z = zero do k = ilow, m z = z + vecs(i,k) * h(k,j) enddo vecs(i,j) = z enddo endif enddo 9999 end subroutine hqr2 integer function lastnb(t) !----------------------------------------------------------------------* ! Purpose: ! Find last non-blank in string ! !----------------------------------------------------------------------* implicit none character(*) t integer i do i = len(t), 1, -1 if (t(i:i) .ne. ' ') goto 20 enddo i = 1 20 lastnb = i end function lastnb subroutine tmfoc(el,sk1,c,s,d,f) implicit none !----------------------------------------------------------------------* ! Purpose: * ! Compute linear focussing functions. * ! Input: * ! el (double) element length. * ! sk1 (double) quadrupole strength. * ! Output: * ! c (double) cosine-like function. c(k,l) * ! s (double) sine-like function. s(k,l) * ! d (double) dispersion function. d(k,l) * ! f (double) integral of dispersion function. f(k,l) * !----------------------------------------------------------------------* double precision c,d,el,f,qk,qkl,qkl2,s,sk1,zero,one,two,six, & twelve,twty,thty,foty2 parameter(zero=0d0,one=1d0,two=2d0,six=6d0,twelve=12d0,twty=20d0, & thty=30d0,foty2=42d0) !---- Initialize. qk = sqrt(abs(sk1)) qkl = qk * el qkl2 = sk1 * el**2 if (abs(qkl2) .le. 1e-2) then c = (one - qkl2 * (one - qkl2 / twelve) / two) s = (one - qkl2 * (one - qkl2 / twty) / six) * el d = (one - qkl2 * (one - qkl2 / thty) / twelve) * el**2 / two f = (one - qkl2 * (one - qkl2 / foty2) / twty) * el**3 / six else if (qkl2 .gt. zero) then c = cos(qkl) s = sin(qkl) / qk else c = cosh(qkl) s = sinh(qkl) / qk endif d = (one - c) / sk1 f = (el - s) / sk1 endif end subroutine tmfoc subroutine f77flush(i,option) implicit none integer i,ios real a logical ostat, fexist,option character(20) faccess,fform character(255) fname character(1) c inquire(err=5,iostat=ios,unit=i,opened=ostat,exist=fexist) if (.not.ostat.or..not.fexist) return inquire(err=6,iostat=ios,unit=i,access=faccess,form=fform,name=fname) close (unit=i,err=7,iostat=ios) ! write (*,*) 'Re-opening ',i,' ',faccess,fform,fname open(err=8,iostat=ios,unit=i,access=faccess,form=fform,file=fname,status='old') if (option) then if (fform.eq.'FORMATTED') then 3 read (i,100,err=9,iostat=ios,end=4) c go to 3 else 2 read (i,err=10,iostat=ios,end=1) a go to 2 endif 4 backspace i 1 continue endif return 100 format (a1) 5 write (*,*) ' F77FLUSH 1st INQUIRE FAILED with IOSTAT ',ios,' on UNIT ',i stop 6 write (*,*) ' F77FLUSH 2nd INQUIRE FAILED with IOSTAT ', ios,' on UNIT ',i stop 7 write (*,*) ' F77FLUSH CLOSE FAILED with IOSTAT ',ios,' on UNIT ',i stop 8 write (*,*) ' F77FLUSH RE-OPEN FAILED with IOSTAT ',ios,' on UNIT ',i stop 9 write (*,*) ' F77FLUSH FORMATTED READ FAILED with IOSTAT ',ios,' on UNIT ',i stop 10 write (*,*) ' F77FLUSH UNFORMATTED READ FAILED with IOSTAT ',ios,' on UNIT ',i stop end subroutine f77flush subroutine seterrorflag(errorcode,from,descr) !----------------------------------------------------------------------* ! Purpose: * ! Puts global error flag in c code. * ! Input: * ! errorcode * ! from - name of a routine where the error occured * ! descr - description of the error that has occured * ! Input/output: * !----------------------------------------------------------------------* implicit none integer :: errorcode character(*) :: from character(*) :: descr integer n,m n = LEN(from) m = LEN(descr) call seterrorflagfort(errorcode,from,n,descr,m) end subroutine seterrorflag
gpl-3.0
embecosm/avr32-gcc
gcc/testsuite/gfortran.dg/namelist_11.f
174
1620
c { dg-do run { target fd_truncate } } c This program tests: namelist comment, a blank line before the nameilist name, the namelist name, c a scalar qualifier, various combinations of space, comma and lf delimiters, f-formats, e-formats c a blank line within the data read, nulls, a range qualifier, a new object name before end of data c and an integer read. It also tests that namelist output can be re-read by namelist input. c provided by Paul Thomas - pault@gcc.gnu.org program namelist_1 REAL x(10) REAL(kind=8) xx integer ier namelist /mynml/ x, xx do i = 1 , 10 x(i) = -1 end do x(6) = 6.0 x(10) = 10.0 xx = 0d0 open (10,status="scratch") write (10, *) "!mynml" write (10, *) "" write (10, *) "&gf /" write (10, *) "&mynml x(7) =+99.0e0 x=1.0, 2.0 ," write (10, *) " 2*3.0, ,, 7.0e0,+0.08e+02 !comment" write (10, *) "" write (10, *) " 9000e-3 x(4:5)=4 ,5 " write (10, *) " x=,,3.0, xx=10d0 /" rewind (10) read (10, nml=mynml, IOSTAT=ier) if (ier.ne.0) call abort rewind (10) do i = 1 , 10 if ( abs( x(i) - real(i) ) .gt. 1e-8 ) call abort end do if ( abs( xx - 10d0 ) .gt. 1e-8 ) call abort write (10, nml=mynml, iostat=ier) if (ier.ne.0) call abort rewind (10) read (10, NML=mynml, IOSTAT=ier) if (ier.ne.0) call abort close (10) do i = 1 , 10 if ( abs( x(i) - real(i) ) .gt. 1e-8 ) call abort end do if ( abs( xx - 10d0 ) .gt. 1e-8 ) call abort end program
gpl-2.0
cpatrick/ITK-RemoteIO
Modules/ThirdParty/VNL/src/vxl/v3p/netlib/lapack/double/dsptrs.f
41
10858
SUBROUTINE DSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO ) * * -- LAPACK routine (version 2.0) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * March 31, 1993 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDB, N, NRHS * .. * .. Array Arguments .. INTEGER IPIV( * ) DOUBLE PRECISION AP( * ), B( LDB, * ) * .. * * Purpose * ======= * * DSPTRS solves a system of linear equations A*X = B with a real * symmetric matrix A stored in packed format using the factorization * A = U*D*U**T or A = L*D*L**T computed by DSPTRF. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the details of the factorization are stored * as an upper or lower triangular matrix. * = 'U': Upper triangular, form is A = U*D*U**T; * = 'L': Lower triangular, form is A = L*D*L**T. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) * The block diagonal matrix D and the multipliers used to * obtain the factor U or L as computed by DSPTRF, stored as a * packed triangular matrix. * * IPIV (input) INTEGER array, dimension (N) * Details of the interchanges and the block structure of D * as determined by DSPTRF. * * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) * On entry, the right hand side matrix B. * On exit, the solution matrix X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D+0 ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER J, K, KC, KP DOUBLE PRECISION AK, AKM1, AKM1K, BK, BKM1, DENOM * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL DGEMV, DGER, DSCAL, DSWAP, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( NRHS.LT.0 ) THEN INFO = -3 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DSPTRS', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 .OR. NRHS.EQ.0 ) $ RETURN * IF( UPPER ) THEN * * Solve A*X = B, where A = U*D*U'. * * First solve U*D*X = B, overwriting B with X. * * K is the main loop index, decreasing from N to 1 in steps of * 1 or 2, depending on the size of the diagonal blocks. * K = N KC = N*( N+1 ) / 2 + 1 10 CONTINUE * * If K < 1, exit from loop. * IF( K.LT.1 ) $ GO TO 30 * KC = KC - K IF( IPIV( K ).GT.0 ) THEN * * 1 x 1 diagonal block * * Interchange rows K and IPIV(K). * KP = IPIV( K ) IF( KP.NE.K ) $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) * * Multiply by inv(U(K)), where U(K) is the transformation * stored in column K of A. * CALL DGER( K-1, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB, $ B( 1, 1 ), LDB ) * * Multiply by the inverse of the diagonal block. * CALL DSCAL( NRHS, ONE / AP( KC+K-1 ), B( K, 1 ), LDB ) K = K - 1 ELSE * * 2 x 2 diagonal block * * Interchange rows K-1 and -IPIV(K). * KP = -IPIV( K ) IF( KP.NE.K-1 ) $ CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB ) * * Multiply by inv(U(K)), where U(K) is the transformation * stored in columns K-1 and K of A. * CALL DGER( K-2, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB, $ B( 1, 1 ), LDB ) CALL DGER( K-2, NRHS, -ONE, AP( KC-( K-1 ) ), 1, $ B( K-1, 1 ), LDB, B( 1, 1 ), LDB ) * * Multiply by the inverse of the diagonal block. * AKM1K = AP( KC+K-2 ) AKM1 = AP( KC-1 ) / AKM1K AK = AP( KC+K-1 ) / AKM1K DENOM = AKM1*AK - ONE DO 20 J = 1, NRHS BKM1 = B( K-1, J ) / AKM1K BK = B( K, J ) / AKM1K B( K-1, J ) = ( AK*BKM1-BK ) / DENOM B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM 20 CONTINUE KC = KC - K + 1 K = K - 2 END IF * GO TO 10 30 CONTINUE * * Next solve U'*X = B, overwriting B with X. * * K is the main loop index, increasing from 1 to N in steps of * 1 or 2, depending on the size of the diagonal blocks. * K = 1 KC = 1 40 CONTINUE * * If K > N, exit from loop. * IF( K.GT.N ) $ GO TO 50 * IF( IPIV( K ).GT.0 ) THEN * * 1 x 1 diagonal block * * Multiply by inv(U'(K)), where U(K) is the transformation * stored in column K of A. * CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, AP( KC ), $ 1, ONE, B( K, 1 ), LDB ) * * Interchange rows K and IPIV(K). * KP = IPIV( K ) IF( KP.NE.K ) $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) KC = KC + K K = K + 1 ELSE * * 2 x 2 diagonal block * * Multiply by inv(U'(K+1)), where U(K+1) is the transformation * stored in columns K and K+1 of A. * CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, AP( KC ), $ 1, ONE, B( K, 1 ), LDB ) CALL DGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, $ AP( KC+K ), 1, ONE, B( K+1, 1 ), LDB ) * * Interchange rows K and -IPIV(K). * KP = -IPIV( K ) IF( KP.NE.K ) $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) KC = KC + 2*K + 1 K = K + 2 END IF * GO TO 40 50 CONTINUE * ELSE * * Solve A*X = B, where A = L*D*L'. * * First solve L*D*X = B, overwriting B with X. * * K is the main loop index, increasing from 1 to N in steps of * 1 or 2, depending on the size of the diagonal blocks. * K = 1 KC = 1 60 CONTINUE * * If K > N, exit from loop. * IF( K.GT.N ) $ GO TO 80 * IF( IPIV( K ).GT.0 ) THEN * * 1 x 1 diagonal block * * Interchange rows K and IPIV(K). * KP = IPIV( K ) IF( KP.NE.K ) $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) * * Multiply by inv(L(K)), where L(K) is the transformation * stored in column K of A. * IF( K.LT.N ) $ CALL DGER( N-K, NRHS, -ONE, AP( KC+1 ), 1, B( K, 1 ), $ LDB, B( K+1, 1 ), LDB ) * * Multiply by the inverse of the diagonal block. * CALL DSCAL( NRHS, ONE / AP( KC ), B( K, 1 ), LDB ) KC = KC + N - K + 1 K = K + 1 ELSE * * 2 x 2 diagonal block * * Interchange rows K+1 and -IPIV(K). * KP = -IPIV( K ) IF( KP.NE.K+1 ) $ CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB ) * * Multiply by inv(L(K)), where L(K) is the transformation * stored in columns K and K+1 of A. * IF( K.LT.N-1 ) THEN CALL DGER( N-K-1, NRHS, -ONE, AP( KC+2 ), 1, B( K, 1 ), $ LDB, B( K+2, 1 ), LDB ) CALL DGER( N-K-1, NRHS, -ONE, AP( KC+N-K+2 ), 1, $ B( K+1, 1 ), LDB, B( K+2, 1 ), LDB ) END IF * * Multiply by the inverse of the diagonal block. * AKM1K = AP( KC+1 ) AKM1 = AP( KC ) / AKM1K AK = AP( KC+N-K+1 ) / AKM1K DENOM = AKM1*AK - ONE DO 70 J = 1, NRHS BKM1 = B( K, J ) / AKM1K BK = B( K+1, J ) / AKM1K B( K, J ) = ( AK*BKM1-BK ) / DENOM B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM 70 CONTINUE KC = KC + 2*( N-K ) + 1 K = K + 2 END IF * GO TO 60 80 CONTINUE * * Next solve L'*X = B, overwriting B with X. * * K is the main loop index, decreasing from N to 1 in steps of * 1 or 2, depending on the size of the diagonal blocks. * K = N KC = N*( N+1 ) / 2 + 1 90 CONTINUE * * If K < 1, exit from loop. * IF( K.LT.1 ) $ GO TO 100 * KC = KC - ( N-K+1 ) IF( IPIV( K ).GT.0 ) THEN * * 1 x 1 diagonal block * * Multiply by inv(L'(K)), where L(K) is the transformation * stored in column K of A. * IF( K.LT.N ) $ CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ), $ LDB, AP( KC+1 ), 1, ONE, B( K, 1 ), LDB ) * * Interchange rows K and IPIV(K). * KP = IPIV( K ) IF( KP.NE.K ) $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) K = K - 1 ELSE * * 2 x 2 diagonal block * * Multiply by inv(L'(K-1)), where L(K-1) is the transformation * stored in columns K-1 and K of A. * IF( K.LT.N ) THEN CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ), $ LDB, AP( KC+1 ), 1, ONE, B( K, 1 ), LDB ) CALL DGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ), $ LDB, AP( KC-( N-K ) ), 1, ONE, B( K-1, 1 ), $ LDB ) END IF * * Interchange rows K and -IPIV(K). * KP = -IPIV( K ) IF( KP.NE.K ) $ CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) KC = KC - ( N-K+2 ) K = K - 2 END IF * GO TO 90 100 CONTINUE END IF * RETURN * * End of DSPTRS * END
apache-2.0
ggonzalezabad/OMI_SAO_Shared_VOCs
src/fitting_loops.f90
1
25411
SUBROUTINE xtrack_radiance_wvl_calibration ( & yn_radiance_reference, yn_solar_comp, & first_pix, last_pix, n_max_rspec, n_comm_wvl_out, errstat ) USE OMSAO_precision_module USE OMSAO_indices_module, ONLY: & wvl_idx, spc_idx, sig_idx, max_calfit_idx, max_rs_idx, hwe_idx, asy_idx, & shi_idx, squ_idx, oclo_idx, o2o2_idx, bro_idx, solar_idx, pge_bro_idx, & pge_oclo_idx, ccd_idx, radcal_idx USE OMSAO_parameters_module, ONLY: maxchlen, downweight, normweight USE OMSAO_variables_module, ONLY: & verb_thresh_lev, hw1e, e_asym, n_rad_wvl, curr_rad_spec, rad_spec_wavcal, & sol_wav_avg, database, fitvar_cal, fitvar_cal_saved, & fitvar_rad_init, pge_idx, rad_wght_wavcal, & n_fitres_loop, fitres_range, yn_diagnostic_run USE OMSAO_slitfunction_module, ONLY: saved_shift, saved_squeeze USE OMSAO_omidata_module ! , exept_this_one => n_comm_wvl USE OMSAO_errstat_module USE EZspline_obj USE EZspline IMPLICIT NONE ! --------------- ! Input variables ! --------------- INTEGER (KIND=i4), INTENT (IN) :: first_pix, last_pix, n_max_rspec LOGICAL, INTENT (IN) :: yn_radiance_reference, yn_solar_comp ! --------------- ! Output variable ! --------------- INTEGER (KIND=i4), INTENT (OUT) :: n_comm_wvl_out ! ----------------- ! Modified variable ! ----------------- INTEGER (KIND=i4), INTENT (INOUT) :: errstat ! --------------- ! Local variables ! --------------- INTEGER (KIND=i2) :: radcal_itnum INTEGER (KIND=i4) :: locerrstat, ipix, radcal_exval, i, imax, n_ref_wvl !, nxtloc, xtr_add REAL (KIND=r8) :: chisquav, rad_spec_avg LOGICAL :: yn_skip_pix, yn_bad_pixel, yn_full_range CHARACTER (LEN=maxchlen) :: addmsg INTEGER (KIND=i4), DIMENSION (4) :: select_idx INTEGER (KIND=i4), DIMENSION (2) :: exclud_idx REAL (KIND=r8), DIMENSION (n_max_rspec) :: ref_wvl, ref_spc, ref_wgt, rad_wvl ! ------------------------------ ! Name of this module/subroutine ! ------------------------------ CHARACTER (LEN=31), PARAMETER :: modulename = 'xtrack_radiance_wvl_calibration' locerrstat = pge_errstat_ok fitvar_cal_saved(1:max_calfit_idx) = fitvar_rad_init(1:max_calfit_idx) ! ------------------------------------------------- ! Set the number of wavelengths for the common mode ! ------------------------------------------------- n_comm_wvl_out = MAXVAL ( omi_nwav_radref(first_pix:last_pix) ) IF ( MAXVAL(omi_nwav_rad(first_pix:last_pix,0)) > n_comm_wvl_out ) & n_comm_wvl_out = MAXVAL(omi_nwav_rad(first_pix:last_pix,0)) ! -------------------------------- ! Loop over cross-track positions. ! -------------------------------- XTrackWavCal: DO ipix = first_pix, last_pix locerrstat = pge_errstat_ok curr_xtrack_pixnum = ipix ! --------------------------------------------------------------------- ! If we already determined that this cross track pixel position carries ! an error, we don't even have to start processing. ! --------------------------------------------------------------------- IF ( omi_cross_track_skippix(ipix) ) CYCLE ! --------------------------------------------------------------------------- ! For each cross-track position we have to initialize the saved Shift&Squeeze ! --------------------------------------------------------------------------- saved_shift = -1.0e+30_r8 ; saved_squeeze = -1.0e+30_r8 ! ---------------------------------------------------- ! Assign number of radiance and irradiance wavelengths ! ---------------------------------------------------- n_omi_irradwvl = omi_nwav_irrad(ipix ) n_omi_radwvl = omi_nwav_rad (ipix,0) ! ----------------------------------------------------------------- ! tpk: Should the following be "> n_fitvar_rad"??? No, because that ! value is set only inside OMI_ADJUST_RADIANCE_DATA!!! ! ----------------------------------------------------------------- IF ( n_omi_irradwvl <= 0 .OR. n_omi_radwvl <= 0 ) CYCLE ! --------------------------------------------------------------- ! Restore solar fitting variables for across-track reference in ! Earthshine fitting. Use the Radiance References if appropriate. ! --------------------------------------------------------------- sol_wav_avg = omi_sol_wav_avg(ipix) hw1e = omi_solcal_pars(hwe_idx,ipix) e_asym = omi_solcal_pars(asy_idx,ipix) ! ----------------------------------------------------- ! Assign (hopefully predetermined) "reference" weights. ! ----------------------------------------------------- IF ( .NOT. yn_solar_comp ) THEN n_omi_irradwvl = omi_nwav_irrad(ipix) ref_wgt(1:n_omi_irradwvl) = omi_irradiance_wght(1:n_omi_irradwvl,ipix) ! ----------------------------------------------------- ! Catch the possibility that N_OMI_RADWVL > N_OMI_IRRADWVL ! ----------------------------------------------------- IF ( n_omi_radwvl > n_omi_irradwvl ) THEN i = n_omi_radwvl - n_omi_irradwvl ref_wgt(n_omi_irradwvl+1:n_omi_irradwvl+i) = downweight n_omi_irradwvl = n_omi_radwvl END IF ELSE n_omi_irradwvl = n_omi_radwvl ref_wgt(1:n_omi_radwvl) = normweight END IF ! --------------------------------------------------------------- ! If a Radiance Reference is being used, then it must be calibrated ! rather than the swath line that has been read. ! --------------------------------------------------------------- IF ( yn_radiance_reference ) THEN omi_radiance_wavl(1:n_omi_radwvl,ipix,0) = omi_radref_wavl(1:n_omi_radwvl,ipix) omi_radiance_spec(1:n_omi_radwvl,ipix,0) = omi_radref_spec(1:n_omi_radwvl,ipix) omi_radiance_qflg(1:n_omi_radwvl,ipix,0) = omi_radref_qflg(1:n_omi_radwvl,ipix) END IF ! --------------------------------------------------------------------------- ! Set up generic fitting arrays. Remember that OMI_RADIANCE_XXX arrays are ! 3-dim with the last dimension being the scan line numbers. For the radiance ! wavelength calibration we only have one scan line at index "0". ! --------------------------------------------------------------------------- select_idx(1:4) = omi_ccdpix_selection(ipix,1:4) exclud_idx(1:2) = omi_ccdpix_exclusion(ipix,1:2) CALL omi_adjust_radiance_data ( & ! Set up generic fitting arrays select_idx(1:4), exclud_idx(1:2), & n_omi_radwvl, & omi_radiance_wavl (1:n_omi_radwvl,ipix,0), & omi_radiance_spec (1:n_omi_radwvl,ipix,0), & omi_radiance_qflg (1:n_omi_radwvl,ipix,0), & omi_radiance_ccdpix(1:n_omi_radwvl,ipix,0), & n_omi_irradwvl, ref_wgt(1:n_omi_irradwvl), & n_rad_wvl, curr_rad_spec(wvl_idx:ccd_idx,1:n_omi_radwvl), rad_spec_avg, & yn_skip_pix ) ! ------------------------------------------------------------------------------------ IF ( yn_skip_pix .OR. locerrstat >= pge_errstat_error ) THEN errstat = MAX ( errstat, locerrstat ) omi_cross_track_skippix (ipix) = .TRUE. addmsg = '' WRITE (addmsg, '(A,I2)') 'SKIPPING cross track pixel #', ipix CALL error_check ( 0, 1, pge_errstat_warning, OMSAO_W_SKIPPIX, & modulename//f_sep//TRIM(ADJUSTL(addmsg)), vb_lev_default, & locerrstat ) CYCLE END IF ! ----------------------------------------------------- ! Assign the solar average wavelength - the wavelength ! calibration will not converge without it! ! ----------------------------------------------------- sol_wav_avg = & SUM ( curr_rad_spec(wvl_idx,1:n_omi_radwvl) ) / REAL(n_omi_radwvl,KIND=r8) yn_bad_pixel = .FALSE. CALL radiance_wavcal ( & ! Radiance wavelength calibration ipix, n_fitres_loop(radcal_idx), fitres_range(radcal_idx), & n_rad_wvl, curr_rad_spec(wvl_idx:ccd_idx,1:n_rad_wvl), & radcal_exval, radcal_itnum, chisquav, yn_bad_pixel, locerrstat ) IF ( yn_bad_pixel .OR. locerrstat >= pge_errstat_error ) THEN errstat = MAX ( errstat, locerrstat ) omi_cross_track_skippix (ipix) = .TRUE. addmsg = '' WRITE (addmsg, '(A,I2)') 'SKIPPING cross track pixel #', ipix CALL error_check ( 0, 1, pge_errstat_warning, OMSAO_W_SKIPPIX, & modulename//f_sep//TRIM(ADJUSTL(addmsg)), vb_lev_default, & locerrstat ) CYCLE END IF ! ------------------------------------------------------------------------------------ addmsg = '' WRITE (addmsg, '(A,I2,4(A,1PE10.3),2(A,I5))') 'RADIANCE Wavcal #', ipix, & ': hw 1/e = ', hw1e, '; e_asy = ', e_asym, '; shift = ', & fitvar_cal(shi_idx), '; squeeze = ', fitvar_cal(squ_idx), & '; exit val = ', radcal_exval, '; iter num = ', radcal_itnum CALL error_check ( & 0, 1, pge_errstat_ok, OMSAO_S_PROGRESS, TRIM(ADJUSTL(addmsg)), & vb_lev_omidebug, locerrstat ) IF ( verb_thresh_lev >= vb_lev_screen ) WRITE (*, '(A)') TRIM(ADJUSTL(addmsg)) ! --------------------------------- ! Save crucial variables for output ! --------------------------------- omi_radcal_pars (1:max_calfit_idx,ipix) = fitvar_cal(1:max_calfit_idx) omi_radcal_xflag(ipix) = INT (radcal_exval, KIND=i2) omi_radcal_itnum(ipix) = INT (radcal_itnum, KIND=i2) omi_radcal_chisq(ipix) = chisquav ! ----------------------------------------------------------------------- IF ( .NOT. (yn_radiance_reference) ) THEN n_ref_wvl = n_omi_irradwvl ref_wvl(1:n_ref_wvl) = omi_irradiance_wavl(1:n_ref_wvl,ipix) ref_spc(1:n_ref_wvl) = omi_irradiance_spec(1:n_ref_wvl,ipix) ref_wgt(1:n_ref_wvl) = omi_irradiance_wght(1:n_ref_wvl,ipix) ELSE n_ref_wvl = n_rad_wvl ref_wvl(1:n_ref_wvl) = curr_rad_spec(wvl_idx,1:n_rad_wvl) ref_spc(1:n_ref_wvl) = curr_rad_spec(spc_idx,1:n_rad_wvl) ref_wgt(1:n_ref_wvl) = curr_rad_spec(sig_idx,1:n_rad_wvl) omi_nwav_radref(ipix) = n_ref_wvl omi_radref_wavl(1:n_ref_wvl,ipix) = curr_rad_spec(wvl_idx,1:n_rad_wvl) omi_radref_spec(1:n_ref_wvl,ipix) = curr_rad_spec(spc_idx,1:n_rad_wvl) omi_radref_wght(1:n_ref_wvl,ipix) = curr_rad_spec(sig_idx,1:n_rad_wvl) END IF ! ---------------------------------------------------- ! Spline reference spectra to current wavelength grid. ! ---------------------------------------------------- rad_wvl(1:n_rad_wvl) = curr_rad_spec(wvl_idx,1:n_rad_wvl) Call prepare_databases ( & ipix, n_ref_wvl, ref_wvl(1:n_ref_wvl), ref_spc(1:n_ref_wvl), & n_rad_wvl, rad_wvl(1:n_rad_wvl), n_max_rspec, locerrstat ) ! -------------------------------------------------------------------------------- IF ( locerrstat >= pge_errstat_error ) EXIT XTrackWavCal ! --------------------------------------------------------- ! Save DATABASE in OMI_DATABASE for radiance fitting loops. ! --------------------------------------------------------- omi_database (1:max_rs_idx,1:n_rad_wvl,ipix) = database (1:max_rs_idx,1:n_rad_wvl) n_omi_database_wvl(ipix) = n_rad_wvl omi_database_wvl(1:n_rad_wvl, ipix) = curr_rad_spec(wvl_idx,1:n_rad_wvl) ! ---------------------------------------------------------------------- ! Update the radiance reference with the wavelength calibrated values. ! ---------------------------------------------------------------------- IF ( yn_radiance_reference ) THEN omi_radref_wavl(1:n_rad_wvl,ipix) = curr_rad_spec(wvl_idx,1:n_rad_wvl) omi_radref_spec(1:n_rad_wvl,ipix) = curr_rad_spec(spc_idx,1:n_rad_wvl) omi_radref_wght(n_rad_wvl+1:nwavel_max,ipix) = downweight ! -------------------------------------------------------- ! Update the solar spectrum entry in OMI_DATABASE. First ! re-sample the solar reference spectrum to the OMI grid ! then assign to data base. ! ! We need to keep the irradiance spectrum because we still ! have to fit the radiance reference, and we can't really ! do that against itself. In a later module the irradiance ! is replaced by the radiance reference. ! -------------------------------------------------------- ! ------------------------------------------------------------------ ! Prevent failure of interpolation by finding the maximum wavelength ! of the irradiance wavelength array. ! ------------------------------------------------------------------ imax = MAXVAL ( MAXLOC ( omi_irradiance_wavl(1:n_omi_irradwvl,ipix) ) ) !imin = MINVAL ( MINLOC ( omi_irradiance_wavl(1:imax, ipix) ) ) CALL interpolation ( & modulename, & imax, omi_irradiance_wavl(1:imax,ipix), & omi_irradiance_spec(1:imax,ipix), & n_rad_wvl, omi_database_wvl(1:n_rad_wvl,ipix), & omi_database(solar_idx,1:n_rad_wvl,ipix), & 'endpoints', 0.0_r8, yn_full_range, locerrstat ) IF ( locerrstat >= pge_errstat_error ) THEN errstat = MAX ( errstat, locerrstat ) omi_cross_track_skippix (ipix) = .TRUE. addmsg = '' WRITE (addmsg, '(A,I2)') 'SKIPPING cross track pixel #', ipix CALL error_check ( 0, 1, pge_errstat_warning, OMSAO_W_SKIPPIX, & modulename//f_sep//TRIM(ADJUSTL(addmsg)), vb_lev_default, & locerrstat ) CYCLE END IF END IF END DO XTrackWavCal ! CCM Write splined/convolved databases if necessary IF( yn_diagnostic_run ) THEN ! omi_database maybe omi_database_wvl? CALL he5_write_omi_database(omi_database(1:max_rs_idx,1:n_rad_wvl,1:nxtrack_max), & omi_database_wvl(1:n_rad_wvl, 1:nxtrack_max), & max_rs_idx, n_rad_wvl, nxtrack_max, errstat) ENDIF errstat = MAX ( errstat, locerrstat ) RETURN END SUBROUTINE xtrack_radiance_wvl_calibration SUBROUTINE xtrack_radiance_fitting_loop ( & n_max_rspec, first_pix, last_pix, pge_idx, iloop, & ctr_maxcol, n_fitvar_rad, allfit_cols, allfit_errs, corr_matrix, & target_var, errstat, fitspc_out, fitspc_out_dim0 ) USE OMSAO_precision_module USE OMSAO_indices_module, ONLY: & wvl_idx, spc_idx, sig_idx, o3_t1_idx, o3_t3_idx, hwe_idx, asy_idx, shi_idx, squ_idx, & pge_o3_idx, pge_hcho_idx, n_max_fitpars, solar_idx, ccd_idx, radfit_idx, bro_idx, & pge_gly_idx USE OMSAO_parameters_module, ONLY: & i2_missval, i4_missval, r4_missval, r8_missval, maxchlen, elsunc_less_is_noise USE OMSAO_variables_module, ONLY: & database, curr_sol_spec, n_rad_wvl, curr_rad_spec, sol_wav_avg, hw1e, e_asym, & verb_thresh_lev, fitvar_rad_saved, fitvar_rad_init, n_database_wvl, & fitvar_rad, rad_wght_wavcal, n_fitres_loop, fitres_range, refspecs_original, & yn_solar_comp, max_itnum_rad, szamax, n_fincol_idx, ozone_idx, ozone_log USE OMSAO_radiance_ref_module, ONLY: yn_radiance_reference, yn_reference_fit USE OMSAO_slitfunction_module, ONLY: saved_shift, saved_squeeze USE OMSAO_prefitcol_module, ONLY: & yn_o3_prefit, o3_prefit_col, o3_prefit_dcol, & yn_bro_prefit, bro_prefit_col, bro_prefit_dcol, & yn_lqh2o_prefit, lqh2o_prefit_col, lqh2o_prefit_dcol USE OMSAO_omidata_module ! nxtrack_max, ... USE OMSAO_errstat_module IMPLICIT NONE ! --------------- ! Input Variables ! --------------- REAL (KIND=r8), INTENT (IN) :: ctr_maxcol INTEGER (KIND=i4), INTENT (IN) :: & pge_idx, iloop, first_pix, last_pix, n_max_rspec, n_fitvar_rad, & fitspc_out_dim0 ! ----------------- ! Modified variable ! ----------------- INTEGER (KIND=i4), INTENT (INOUT) :: errstat REAL (KIND=r8), INTENT (OUT ), DIMENSION (n_fitvar_rad,first_pix:last_pix) :: & allfit_cols, allfit_errs, corr_matrix ! --------------------------------------------------------- ! Optional output variable (fitted variable for target gas) ! --------------------------------------------------------- REAL (KIND=r8), DIMENSION(n_fincol_idx,first_pix:last_pix), INTENT (OUT) :: target_var ! CCM Output fit spectra !REAL (KIND=r8), DIMENSION(n_comm_wvl,nxtrack_max,4), INTENT (OUT) :: fitspc_out REAL (KIND=r8), DIMENSION(fitspc_out_dim0,nxtrack_max,4), INTENT (OUT) :: fitspc_out ! --------------- ! Local variables ! --------------- INTEGER (KIND=i4) :: locerrstat, ipix, radfit_exval, radfit_itnum REAL (KIND=r8) :: fitcol, rms, dfitcol, chisquav, rad_spec_avg REAL (KIND=r8) :: brofit_col, brofit_dcol REAL (KIND=r8) :: lqh2ofit_col, lqh2ofit_dcol REAL (KIND=r8), DIMENSION (o3_t1_idx:o3_t3_idx) :: o3fit_cols, o3fit_dcols LOGICAL :: yn_skip_pix, yn_cycle_this_pix LOGICAL :: yn_bad_pixel INTEGER (KIND=i4), DIMENSION (4) :: select_idx INTEGER (KIND=i4), DIMENSION (2) :: exclud_idx INTEGER (KIND=i4) :: n_solar_pts REAL (KIND=r8), DIMENSION (n_max_rspec) :: solar_wvl ! CCM Array for holding fitted spectra REAL (KIND=r8), DIMENSION (fitspc_out_dim0) :: fitspc REAL (KIND=i4) :: id CHARACTER (LEN=28), PARAMETER :: modulename = 'xtrack_radiance_fitting_loop' locerrstat = pge_errstat_ok !!!fitvar_rad_saved = fitvar_rad_init XTrackPix: DO ipix = first_pix, last_pix curr_xtrack_pixnum = ipix ! --------------------------------------------------------------------- ! If we already determined that this cross track pixel position carries ! an error, we don't even have to start processing. ! --------------------------------------------------------------------- IF ( omi_cross_track_skippix(ipix) .OR. szamax < omi_szenith(ipix,iloop) ) CYCLE locerrstat = pge_errstat_ok n_database_wvl = n_omi_database_wvl(ipix) n_omi_radwvl = omi_nwav_rad (ipix,iloop) ! --------------------------------------------------------------------------- ! For each cross-track position we have to initialize the saved Shift&Squeeze ! --------------------------------------------------------------------------- saved_shift = -1.0e+30_r8 ; saved_squeeze = -1.0e+30_r8 ! ---------------------------------------------------------------------------- ! Assign the solar wavelengths. Those should be current in the DATABASE array ! and can be taken from there no matter which case - YN_SOLAR_COMP and/or ! YN_RADIANCE_REFRENCE we are processing. ! ---------------------------------------------------------------------------- n_solar_pts = n_omi_database_wvl(ipix) if (n_solar_pts < 1) cycle ! JED fix solar_wvl(1:n_solar_pts) = omi_database_wvl (1:n_solar_pts, ipix) n_omi_irradwvl = n_solar_pts CALL check_wavelength_overlap ( & n_fitvar_rad, & n_solar_pts, solar_wvl (1:n_solar_pts), & n_omi_radwvl, omi_radiance_wavl (1:n_omi_radwvl,ipix,iloop), & yn_cycle_this_pix ) IF ( yn_cycle_this_pix .OR. & (n_database_wvl <= 0) .OR. (n_omi_radwvl <= 0) ) CYCLE !(n_database_wvl <= n_fitvar_rad) .OR. (n_omi_radwvl <= n_fitvar_rad) ) CYCLE ! ---------------------------------------------- ! Restore DATABASE from OMI_DATABASE (see above) ! ---------------------------------------------- database (1:max_rs_idx,1:n_database_wvl) = omi_database (1:max_rs_idx,1:n_database_wvl,ipix) ! --------------------------------------------------------------------------------- ! Restore solar fitting variables for across-track reference in Earthshine fitting. ! Note that, for the YN_SOLAR_COMP case, some variables have been assigned already ! in the XTRACK_RADIANCE_WAVCAL loop. ! --------------------------------------------------------------------------------- sol_wav_avg = omi_sol_wav_avg(ipix) hw1e = omi_solcal_pars(hwe_idx,ipix) e_asym = omi_solcal_pars(asy_idx,ipix) curr_sol_spec(wvl_idx,1:n_database_wvl) = omi_database_wvl(1:n_database_wvl,ipix) curr_sol_spec(spc_idx,1:n_database_wvl) = omi_database (solar_idx,1:n_database_wvl,ipix) ! -------------------------------------------------------------------------------- omi_xtrackpix_no = ipix ! ------------------------------------------------------------------------- select_idx(1:4) = omi_ccdpix_selection(ipix,1:4) exclud_idx(1:2) = omi_ccdpix_exclusion(ipix,1:2) CALL omi_adjust_radiance_data ( & ! Set up generic fitting arrays select_idx(1:4), exclud_idx(1:2), & n_omi_radwvl, & omi_radiance_wavl (1:n_omi_radwvl,ipix,iloop), & omi_radiance_spec (1:n_omi_radwvl,ipix,iloop), & omi_radiance_qflg (1:n_omi_radwvl,ipix,iloop), & omi_radiance_ccdpix(1:n_omi_radwvl,ipix,iloop), & n_omi_radwvl, omi_radref_wght(1:n_omi_radwvl,ipix), & n_rad_wvl, curr_rad_spec(wvl_idx:ccd_idx,1:n_omi_radwvl),& rad_spec_avg, yn_skip_pix ) SELECT CASE ( pge_idx ) CASE (pge_hcho_idx) o3fit_cols (o3_t1_idx:o3_t3_idx) = o3_prefit_col (o3_t1_idx:o3_t3_idx,ipix,iloop) o3fit_dcols(o3_t1_idx:o3_t3_idx) = o3_prefit_dcol(o3_t1_idx:o3_t3_idx,ipix,iloop) brofit_col = bro_prefit_col (ipix,iloop) brofit_dcol = bro_prefit_dcol(ipix,iloop) CASE ( pge_gly_idx ) lqh2ofit_col = lqh2o_prefit_col (ipix,iloop) lqh2ofit_dcol = lqh2o_prefit_dcol(ipix,iloop) CASE DEFAULT ! Nothing END SELECT ! -------------------- ! The radiance fitting ! -------------------- fitcol = r8_missval dfitcol = r8_missval radfit_exval = INT(i2_missval, KIND=i4) radfit_itnum = INT(i2_missval, KIND=i4) rms = r8_missval yn_reference_fit = .FALSE. IF ( MAXVAL(curr_rad_spec(spc_idx,1:n_rad_wvl)) > 0.0_r8 .AND. & n_rad_wvl > n_fitvar_rad .AND. (.NOT. yn_skip_pix) ) THEN yn_bad_pixel = .FALSE. CALL radiance_fit ( & pge_idx, ipix, n_fitres_loop(radfit_idx), fitres_range(radfit_idx), & yn_reference_fit, & n_rad_wvl, curr_rad_spec(wvl_idx:ccd_idx,1:n_rad_wvl), & fitcol, rms, dfitcol, radfit_exval, radfit_itnum, chisquav, & o3fit_cols, o3fit_dcols, brofit_col, brofit_dcol, & lqh2ofit_col, lqh2ofit_dcol, & target_var(1:n_fincol_idx,ipix), & allfit_cols(1:n_fitvar_rad,ipix), allfit_errs(1:n_fitvar_rad,ipix), & corr_matrix(1:n_fitvar_rad,ipix), yn_bad_pixel, fitspc(1:n_rad_wvl) ) IF ( yn_bad_pixel ) CYCLE END IF ! ----------------------------------- ! Assign pixel values to final arrays ! ----------------------------------- omi_fitconv_flag (ipix,iloop) = INT (radfit_exval, KIND=i2) omi_itnum_flag (ipix,iloop) = INT (radfit_itnum, KIND=i2) omi_radfit_chisq (ipix,iloop) = chisquav omi_fit_rms (ipix,iloop) = rms omi_column_amount(ipix,iloop) = fitcol omi_column_uncert(ipix,iloop) = dfitcol IF (ozone_log) THEN omi_ozone_amount(ipix,omi_iline) = allfit_cols(ozone_idx,ipix) ENDIF ! CCM assign fit residual fitspc_out(1:n_rad_wvl,ipix,1) = fitspc(1:n_rad_wvl) fitspc_out(1:n_rad_wvl,ipix,2) = curr_rad_spec(spc_idx,1:n_rad_wvl) fitspc_out(1:n_rad_wvl,ipix,3) = curr_rad_spec(wvl_idx,1:n_rad_wvl) fitspc_out(1:n_rad_wvl,ipix,4) = curr_rad_spec(sig_idx,1:n_rad_wvl) IF ( pge_idx == pge_o3_idx ) THEN omi_o3_amount(o3_t1_idx:o3_t3_idx,ipix,iloop) = o3fit_cols (o3_t1_idx:o3_t3_idx) omi_o3_uncert(o3_t1_idx:o3_t3_idx,ipix,iloop) = o3fit_dcols(o3_t1_idx:o3_t3_idx) END IF END DO XTrackPix errstat = MAX ( errstat, locerrstat ) RETURN END SUBROUTINE xtrack_radiance_fitting_loop
mit
luca-penasa/mtspec-python3
mtspec/src/examples/src/fig5.f90
2
2306
program fig5 ! ! Simple code to generate Figure 5 of ! Prieto et al. ! A Fortran 90 library formultitaper spectrumanalysis ! ! Additional editing of the figure was performed for ! publication. ! An additional on-the-fly plotting library is used ! for the plotting of the data. ! !******************************************************************** use spectra use plot implicit none integer, parameter :: npts=86400, nfft = 2*86400, nf = 2*86400/2+1 integer, parameter :: ngf = 500, nf2 = ngf/2+1 integer :: kspec, i, iadapt real(4) :: tbnw, dt real(4), dimension(npts) :: pasc, ado, t complex(4), dimension(nfft) :: trf, pasc_cmp, ado_cmp, cc real(4), dimension(ngf) :: gf, gf2 real(4), dimension(nf2) :: freq, spec !******************************************************************** dt = 1. kspec = 7 tbnw = 4. iadapt = 0 ! Adaptive multitaper ! Load the data, already resampled open(12,file='../data/PASC_jan04_2007.dat') do i = 1,npts read(12,*) pasc(i) t(i) = real(i)*dt enddo close(12) open(12,file='../data/ADO_jan04_2007.dat') do i = 1,npts read(12,*) ado(i) enddo close(12) pasc = pasc - sum(pasc)/real(npts) ado = ado - sum(ado) /real(npts) ! Call transfer function subroutine call mt_transfer (npts,nfft,dt,pasc,ado,tbnw,kspec,nf, & freq=freq,trf=trf,iadapt=iadapt,demean=1) call ifft4(trf,nfft) do i = 1,ngf gf(i) = real(trf(nfft-i+1)) enddo call gplot(t(1:ngf),gf,ylimit = '3',xlimit='6',output='gf1.ps') ! The correlation approach pasc_cmp = 0. pasc_cmp(1:npts) = pasc ado_cmp = 0. ado_cmp(1:npts) = ado call fft4(pasc_cmp,nfft) call fft4(ado_cmp,nfft) cc = pasc_cmp * conjg(ado_cmp) call ifft4(cc,nfft) do i = 1,ngf gf2(i) = real(cc(nfft-i+1)) enddo call gplot(t(1:ngf),gf2,ylimit = '3',xlimit='6',output='gf2.ps') ! Single taper Spectral estimates tbnw = 1.5 kspec = 1 call mtspec(ngf,dt,gf,tbnw,kspec,nf2,freq,spec) call gplot(freq,spec,'hold',logxy='loglog') call mtspec(ngf,dt,gf2,tbnw,kspec,nf2,freq,spec) call gplot(freq,spec,logxy='loglog',output='gfspec.ps') end program fig5
gpl-2.0
SaberMod/GCC_SaberMod
gcc/testsuite/gfortran.dg/common_errors_1.f90
193
1080
! { dg-do compile } ! Tests a number of error messages relating to derived type objects ! in common blocks. Originally due to PR 33198 subroutine one type a sequence integer :: i = 1 end type a type(a) :: t ! { dg-error "Derived type variable .t. in COMMON at ... may not have default initializer" } common /c/ t end subroutine first type a integer :: i integer :: j end type a type(a) :: t ! { dg-error "Derived type variable .t. in COMMON at ... has neither the SEQUENCE nor the BIND.C. attribute" } common /c/ t end subroutine prime type a sequence integer, allocatable :: i(:) integer :: j end type a type(a) :: t ! { dg-error "Derived type variable .t. in COMMON at ... has an ultimate component that is allocatable" } common /c/ t end subroutine source parameter(x=0.) ! { dg-error "COMMON block .x. at ... is used as PARAMETER at ..." } common /x/ i ! { dg-error "COMMON block .x. at ... is used as PARAMETER at ..." } intrinsic sin common /sin/ j ! { dg-error "COMMON block .sin. at ... is also an intrinsic procedure" } end subroutine source
gpl-2.0
SaberMod/GCC_SaberMod
gcc/testsuite/gfortran.fortran-torture/execute/intrinsic_trailz.f90
174
1541
program test_intrinsic_trailz implicit none call test_trailz(0_1,0_2,0_4,0_8,1_1,1_2,1_4,1_8,8_1,8_2,8_4,8_8) stop contains subroutine test_trailz(z1,z2,z4,z8,i1,i2,i4,i8,e1,e2,e4,e8) integer(kind=1) :: z1, i1, e1 integer(kind=2) :: z2, i2, e2 integer(kind=4) :: z4, i4, e4 integer(kind=8) :: z8, i8, e8 if (trailz(0_1) /= 8) call abort() if (trailz(0_2) /= 16) call abort() if (trailz(0_4) /= 32) call abort() if (trailz(0_8) /= 64) call abort() if (trailz(1_1) /= 0) call abort() if (trailz(1_2) /= 0) call abort() if (trailz(1_4) /= 0) call abort() if (trailz(1_8) /= 0) call abort() if (trailz(8_1) /= 3) call abort() if (trailz(8_2) /= 3) call abort() if (trailz(8_4) /= 3) call abort() if (trailz(8_8) /= 3) call abort() if (trailz(z1) /= 8) call abort() if (trailz(z2) /= 16) call abort() if (trailz(z4) /= 32) call abort() if (trailz(z8) /= 64) call abort() if (trailz(i1) /= 0) call abort() if (trailz(i2) /= 0) call abort() if (trailz(i4) /= 0) call abort() if (trailz(i8) /= 0) call abort() if (trailz(e1) /= 3) call abort() if (trailz(e2) /= 3) call abort() if (trailz(e4) /= 3) call abort() if (trailz(e8) /= 3) call abort() end subroutine test_trailz end program
gpl-2.0
MALBECC/lio
lioamber/liomods/garcha_mod.f
2
4421
!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%! module garcha_mod implicit none INCLUDE 'param.f' integer natom,ntatom,NMAX,NCO,NUNP,igrid,igrid2 > ,Iexch,nsol,npas,npasw,watermod,noconverge, > converge,ndiis,nang,propagator,NBCH integer ex_functional_id, ec_functional_id logical use_libxc integer restart_freq, energy_freq real*8 GOLD, TOLD character*20 fcoord,fmulliken,frestart,frestartin,solv,solv2 logical MEMO,predcoef logical OPEN,DIRECT,VCINP,DIIS logical sol logical primera,writexyz logical writeforces logical cubegen_only,cube_dens,cube_orb,cube_elec, cube_sqrt_orb integer cube_res,cube_sel character*20 cube_dens_file,cube_orb_file,cube_elec_file real*8 e_(50,3),wang(50),e_2(116,3),wang2(116),e3(194,3), ! intg1 e intg2 > wang3(194) ! integer Nr(0:54),Nr2(0:54) real*8, dimension (:,:), ALLOCATABLE :: r,v,rqm,d real*8, dimension (:), ALLOCATABLE :: Em, Rm, pc integer, dimension (:), ALLOCATABLE :: Iz real*8 :: Rm2(0:54) c Everything is dimensioned for 2 basis, normal and density c ncf, lt,at,ct parameters for atomic basis sets real*8, dimension (:), ALLOCATABLE :: Fmat_vec, Fmat_vec2, > Pmat_vec, Hmat_vec, Ginv_vec, Gmat_vec, Pmat_en_wgt real*8, dimension (:), ALLOCATABLE :: rhoalpha,rhobeta real*8, dimension (:,:), ALLOCATABLE :: X real*8 :: pi, pi32, rpi, pi5, pi52 real*8 :: piss, pis32, rpis, pis5, pis52 parameter(pi32=5.56832799683170698D0,pi=3.14159265358979312D0, > rpi=1.77245385090551588D0, pi5=34.9868366552497108D0, > pi52=34.9868366552497108D0) parameter(pis32=5.56832799683170698E0,piss=3.14159265358979312E0, > rpis=1.77245385090551588E0, pis5=34.9868366552497108E0, > pis52=34.9868366552497108E0) c Angular momenta : up to f functions ( could be easily extended if c necessary) ! FFR - My global variables !------------------------------------------------------------------------------! real*8,allocatable,dimension(:,:) :: Smat real*8,allocatable,dimension(:,:) :: RealRho logical :: doing_ehrenfest=.false. logical :: first_step real*8,allocatable,dimension(:) :: atom_mass real*8,allocatable,dimension(:,:) :: nucpos, nucvel real*8 :: total_time real*8,allocatable,dimension(:,:) :: qm_forces_ds real*8,allocatable,dimension(:,:) :: qm_forces_total !------------------------------------------------------------------------------! !-Variables for hibrid damping-diis logical :: hybrid_converg double precision :: good_cut double precision :: Etold !-Variables for property calculations. logical :: fukui, dipole, lowdin, mulliken, print_coeffs integer :: nng, max_func ! GPU OPTIONS logical :: assign_all_functions, remove_zero_weights, > energy_all_iterations real*8 :: free_global_memory, sphere_radius, little_cube_size integer :: min_points_per_cube, max_function_exponent ! Energy contributions real*8 :: Enucl real*8,dimension(:) ,allocatable :: Eorbs, Eorbs_b ! need this for lowdin real*8,dimension(:,:),allocatable :: sqsm !-Variables for distance combination restrain INTEGER :: number_restr, number_index INTEGER, ALLOCATABLE, DIMENSION(:,:) :: restr_pairs INTEGER, ALLOCATABLE, DIMENSION(:) :: restr_index DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: restr_k,restr_w, > restr_r0 !-Debug. Activates check of NaN in Fock and Rho Logical :: Dbug integer :: timers real*8, dimension (:,:), ALLOCATABLE :: MO_coef_at, MO_coef_at_b !Geometry optimizations logical :: steep !enables steepest decend algorithm real*8 :: Force_cut, Energy_cut, minimzation_steep !energy and force convergence crit and initial steep integer :: n_points ! number of points scaned for lineal search integer :: n_min_steeps !number of optimization steps integer :: charge, gpu_level=4 logical :: lineal_search !enable lineal search !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%! end module
gpl-2.0