repo_name
stringlengths 7
81
| path
stringlengths 4
224
| copies
stringclasses 221
values | size
stringlengths 4
7
| content
stringlengths 975
1.04M
| license
stringclasses 15
values |
---|---|---|---|---|---|
puppeh/gcc-6502 | gcc/testsuite/gfortran.dg/g77/980628-2.f | 188 | 1337 | c { dg-do run }
c { dg-options "-std=gnu" }
* g77 0.5.23 and previous had bugs involving too little space
* allocated for EQUIVALENCE and COMMON areas needing initial
* padding to meet alignment requirements of the system.
call subr
end
subroutine subr
implicit none
character c1(11), c2(11), c3(11)
real r1, r2, r3
character c4, c5, c6
equivalence (c1(2), r1)
equivalence (c2(2), r2)
equivalence (c3(2), r3)
c1(1) = '1'
r1 = 1.
c1(11) = '1'
c4 = '4'
c2(1) = '2'
r2 = 2.
c2(11) = '2'
c5 = '5'
c3(1) = '3'
r3 = 3.
c3(11) = '3'
c6 = '6'
call x (c1, r1, c2, r2, c3, r3, c4, c5, c6)
end
subroutine x (c1, r1, c2, r2, c3, r3, c4, c5, c6)
implicit none
character c1(11), c2(11), c3(11)
real r1, r2, r3
character c4, c5, c6
if (c1(1) .ne. '1') call abort
if (r1 .ne. 1.) call abort
if (c1(11) .ne. '1') call abort
if (c4 .ne. '4') call abort
if (c2(1) .ne. '2') call abort
if (r2 .ne. 2.) call abort
if (c2(11) .ne. '2') call abort
if (c5 .ne. '5') call abort
if (c3(1) .ne. '3') call abort
if (r3 .ne. 3.) call abort
if (c3(11) .ne. '3') call abort
if (c6 .ne. '6') call abort
end
| gpl-2.0 |
dch312/scipy | scipy/optimize/minpack/qrsolv.f | 142 | 6178 | subroutine qrsolv(n,r,ldr,ipvt,diag,qtb,x,sdiag,wa)
integer n,ldr
integer ipvt(n)
double precision r(ldr,n),diag(n),qtb(n),x(n),sdiag(n),wa(n)
c **********
c
c subroutine qrsolv
c
c given an m by n matrix a, an n by n diagonal matrix d,
c and an m-vector b, the problem is to determine an x which
c solves the system
c
c a*x = b , d*x = 0 ,
c
c in the least squares sense.
c
c this subroutine completes the solution of the problem
c if it is provided with the necessary information from the
c qr factorization, with column pivoting, of a. that is, if
c a*p = q*r, where p is a permutation matrix, q has orthogonal
c columns, and r is an upper triangular matrix with diagonal
c elements of nonincreasing magnitude, then qrsolv expects
c the full upper triangle of r, the permutation matrix p,
c and the first n components of (q transpose)*b. the system
c a*x = b, d*x = 0, is then equivalent to
c
c t t
c r*z = q *b , p *d*p*z = 0 ,
c
c where x = p*z. if this system does not have full rank,
c then a least squares solution is obtained. on output qrsolv
c also provides an upper triangular matrix s such that
c
c t t t
c p *(a *a + d*d)*p = s *s .
c
c s is computed within qrsolv and may be of separate interest.
c
c the subroutine statement is
c
c subroutine qrsolv(n,r,ldr,ipvt,diag,qtb,x,sdiag,wa)
c
c where
c
c n is a positive integer input variable set to the order of r.
c
c r is an n by n array. on input the full upper triangle
c must contain the full upper triangle of the matrix r.
c on output the full upper triangle is unaltered, and the
c strict lower triangle contains the strict upper triangle
c (transposed) of the upper triangular matrix s.
c
c ldr is a positive integer input variable not less than n
c which specifies the leading dimension of the array r.
c
c ipvt is an integer input array of length n which defines the
c permutation matrix p such that a*p = q*r. column j of p
c is column ipvt(j) of the identity matrix.
c
c diag is an input array of length n which must contain the
c diagonal elements of the matrix d.
c
c qtb is an input array of length n which must contain the first
c n elements of the vector (q transpose)*b.
c
c x is an output array of length n which contains the least
c squares solution of the system a*x = b, d*x = 0.
c
c sdiag is an output array of length n which contains the
c diagonal elements of the upper triangular matrix s.
c
c wa is a work array of length n.
c
c subprograms called
c
c fortran-supplied ... dabs,dsqrt
c
c argonne national laboratory. minpack project. march 1980.
c burton s. garbow, kenneth e. hillstrom, jorge j. more
c
c **********
integer i,j,jp1,k,kp1,l,nsing
double precision cos,cotan,p5,p25,qtbpj,sin,sum,tan,temp,zero
data p5,p25,zero /5.0d-1,2.5d-1,0.0d0/
c
c copy r and (q transpose)*b to preserve input and initialize s.
c in particular, save the diagonal elements of r in x.
c
do 20 j = 1, n
do 10 i = j, n
r(i,j) = r(j,i)
10 continue
x(j) = r(j,j)
wa(j) = qtb(j)
20 continue
c
c eliminate the diagonal matrix d using a givens rotation.
c
do 100 j = 1, n
c
c prepare the row of d to be eliminated, locating the
c diagonal element using p from the qr factorization.
c
l = ipvt(j)
if (diag(l) .eq. zero) go to 90
do 30 k = j, n
sdiag(k) = zero
30 continue
sdiag(j) = diag(l)
c
c the transformations to eliminate the row of d
c modify only a single element of (q transpose)*b
c beyond the first n, which is initially zero.
c
qtbpj = zero
do 80 k = j, n
c
c determine a givens rotation which eliminates the
c appropriate element in the current row of d.
c
if (sdiag(k) .eq. zero) go to 70
if (dabs(r(k,k)) .ge. dabs(sdiag(k))) go to 40
cotan = r(k,k)/sdiag(k)
sin = p5/dsqrt(p25+p25*cotan**2)
cos = sin*cotan
go to 50
40 continue
tan = sdiag(k)/r(k,k)
cos = p5/dsqrt(p25+p25*tan**2)
sin = cos*tan
50 continue
c
c compute the modified diagonal element of r and
c the modified element of ((q transpose)*b,0).
c
r(k,k) = cos*r(k,k) + sin*sdiag(k)
temp = cos*wa(k) + sin*qtbpj
qtbpj = -sin*wa(k) + cos*qtbpj
wa(k) = temp
c
c accumulate the tranformation in the row of s.
c
kp1 = k + 1
if (n .lt. kp1) go to 70
do 60 i = kp1, n
temp = cos*r(i,k) + sin*sdiag(i)
sdiag(i) = -sin*r(i,k) + cos*sdiag(i)
r(i,k) = temp
60 continue
70 continue
80 continue
90 continue
c
c store the diagonal element of s and restore
c the corresponding diagonal element of r.
c
sdiag(j) = r(j,j)
r(j,j) = x(j)
100 continue
c
c solve the triangular system for z. if the system is
c singular, then obtain a least squares solution.
c
nsing = n
do 110 j = 1, n
if (sdiag(j) .eq. zero .and. nsing .eq. n) nsing = j - 1
if (nsing .lt. n) wa(j) = zero
110 continue
if (nsing .lt. 1) go to 150
do 140 k = 1, nsing
j = nsing - k + 1
sum = zero
jp1 = j + 1
if (nsing .lt. jp1) go to 130
do 120 i = jp1, nsing
sum = sum + r(i,j)*wa(i)
120 continue
130 continue
wa(j) = (wa(j) - sum)/sdiag(j)
140 continue
150 continue
c
c permute the components of z back to components of x.
c
do 160 j = 1, n
l = ipvt(j)
x(l) = wa(j)
160 continue
return
c
c last card of subroutine qrsolv.
c
end
| bsd-3-clause |
nschloe/seacas | packages/seacas/libraries/exodus_for/test/testcpnl.f | 1 | 3520 | C Copyright (c) 2005-2017 National Technology & Engineering Solutions
C of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
C NTESS, the U.S. Government retains certain rights in this software.
C
C Redistribution and use in source and binary forms, with or without
C modification, are permitted provided that the following conditions are
C met:
C
C * Redistributions of source code must retain the above copyright
C notice, this list of conditions and the following disclaimer.
C
C * Redistributions in binary form must reproduce the above
C copyright notice, this list of conditions and the following
C disclaimer in the documentation and/or other materials provided
C with the distribution.
C
C * Neither the name of NTESS nor the names of its
C contributors may be used to endorse or promote products derived
C from this software without specific prior written permission.
C
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
C "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
C LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
C A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
C OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
C SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
C LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
C DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
C THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
C (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
C OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
C
program testcpnl
c
c This is a test program for the Fortran binding of the EXODUS II
c database copy function (excopy).
c
implicit none
include 'exodusII.inc'
integer iin, iout, exoid, exoid1, ierr, cpu_ws, io_ws, mod_sz
real vers
data iin /5/, iout /6/
c
c open EXODUS II input file
c
c the setting of cpu_ws isn't used for copying but will test the
c conversion routines
cpu_ws = 8
io_ws = 4
exoid = exopen ("test.exo", EXREAD, cpu_ws, io_ws, vers, ierr)
write (iout, '(/"after exopen, error = ",i3)')
1 ierr
write (iout, '("test.exo is an EXODUSII file; version ",
1 f4.2)') vers
write (iout, '(" I/O word size: ",i4)') io_ws
mod_sz = exlgmd(exoid)
write (iout, '(" Model Size",i2)') mod_sz
c
c create EXODUS II output file with default size reals
c
c the setting of cpu_ws isn't used for copying but will test the
c conversion routines
cpu_ws = 8
io_ws = 0
exoid1 = excre ("testcpnl.exo",
1 EXCLOB+EXLARG, cpu_ws, io_ws, ierr)
write (iout,'("after excre, id = ", i3, ", error = ",i3)')
1 exoid1, ierr
write (iout,'(" I/O word size: ",i4)') io_ws
mod_sz = exlgmd(exoid1)
write (iout, '(" Model Size",i2)') mod_sz
write (iout,'("after excre, error = ", i4)') ierr
call excopy (exoid, exoid1, ierr)
write (iout, '(/"after excopy, error = ", i3)' ) ierr
call exclos (exoid, ierr)
write (iout, '(/"after exclos, error = ", i3)' ) ierr
call exclos (exoid1, ierr)
write (iout, '(/"after exclos, error = ", i3)' ) ierr
stop
end
| bsd-3-clause |
tm1249wk/WASHLIGGGHTS-3.3.x | lib/linalg/dasum.f | 72 | 2558 | *> \brief \b DASUM
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* DOUBLE PRECISION FUNCTION DASUM(N,DX,INCX)
*
* .. Scalar Arguments ..
* INTEGER INCX,N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION DX(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DASUM takes the sum of the absolute values.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_blas_level1
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> jack dongarra, linpack, 3/11/78.
*> modified 3/93 to return if incx .le. 0.
*> modified 12/3/93, array(1) declarations changed to array(*)
*> \endverbatim
*>
* =====================================================================
DOUBLE PRECISION FUNCTION DASUM(N,DX,INCX)
*
* -- Reference BLAS level1 routine (version 3.4.0) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INCX,N
* ..
* .. Array Arguments ..
DOUBLE PRECISION DX(*)
* ..
*
* =====================================================================
*
* .. Local Scalars ..
DOUBLE PRECISION DTEMP
INTEGER I,M,MP1,NINCX
* ..
* .. Intrinsic Functions ..
INTRINSIC DABS,MOD
* ..
DASUM = 0.0d0
DTEMP = 0.0d0
IF (N.LE.0 .OR. INCX.LE.0) RETURN
IF (INCX.EQ.1) THEN
* code for increment equal to 1
*
*
* clean-up loop
*
M = MOD(N,6)
IF (M.NE.0) THEN
DO I = 1,M
DTEMP = DTEMP + DABS(DX(I))
END DO
IF (N.LT.6) THEN
DASUM = DTEMP
RETURN
END IF
END IF
MP1 = M + 1
DO I = MP1,N,6
DTEMP = DTEMP + DABS(DX(I)) + DABS(DX(I+1)) +
$ DABS(DX(I+2)) + DABS(DX(I+3)) +
$ DABS(DX(I+4)) + DABS(DX(I+5))
END DO
ELSE
*
* code for increment not equal to 1
*
NINCX = N*INCX
DO I = 1,NINCX,INCX
DTEMP = DTEMP + DABS(DX(I))
END DO
END IF
DASUM = DTEMP
RETURN
END
| gpl-2.0 |
dch312/scipy | scipy/integrate/tests/banded5x5.f | 6 | 6691 | c banded5x5.f
c
c This Fortran library contains implementations of the
c differential equation
c dy/dt = A*y
c where A is a 5x5 banded matrix (see below for the actual
c values). These functions will be used to test
c scipy.integrate.odeint.
c
c The idea is to solve the system two ways: pure Fortran, and
c using odeint. The "pure Fortran" solver is implemented in
c the subroutine banded5x5_solve below. It calls LSODA to
c solve the system.
c
c To solve the same system using odeint, the functions in this
c file are given a python wrapper using f2py. Then the code
c in test_odeint_jac.py uses the wrapper to implement the
c equation and Jacobian functions required by odeint. Because
c those functions ultimately call the Fortran routines defined
c in this file, the two method (pure Fortran and odeint) should
c produce exactly the same results. (That's assuming floating
c point calculations are deterministic, which can be an
c incorrect assumption.) If we simply re-implemented the
c equation and Jacobian functions using just python and numpy,
c the floating point calculations would not be performed in
c the same sequence as in the Fortran code, and we would obtain
c different answers. The answer for either method would be
c numerically "correct", but the errors would be different,
c and the counts of function and Jacobian evaluations would
c likely be different.
c
block data jacobian
implicit none
double precision bands
dimension bands(4,5)
common /jac/ bands
c The data for a banded Jacobian stored in packed banded
c format. The full Jacobian is
c
c -1, 0.25, 0, 0, 0
c 0.25, -5, 0.25, 0, 0
c 0.10, 0.25, -25, 0.25, 0
c 0, 0.10, 0.25, -125, 0.25
c 0, 0, 0.10, 0.25, -625
c
c The columns in the following layout of numbers are
c the upper diagonal, main diagonal and two lower diagonals
c (i.e. each row in the layout is a column of the packed
c banded Jacobian). The values 0.00D0 are in the "don't
c care" positions.
data bands/
+ 0.00D0, -1.0D0, 0.25D0, 0.10D0,
+ 0.25D0, -5.0D0, 0.25D0, 0.10D0,
+ 0.25D0, -25.0D0, 0.25D0, 0.10D0,
+ 0.25D0, -125.0D0, 0.25D0, 0.00D0,
+ 0.25D0, -625.0D0, 0.00D0, 0.00D0
+ /
end
subroutine getbands(jac)
double precision jac
dimension jac(4, 5)
cf2py intent(out) jac
double precision bands
dimension bands(4,5)
common /jac/ bands
integer i, j
do 5 i = 1, 4
do 5 j = 1, 5
jac(i, j) = bands(i, j)
5 continue
return
end
c
c Differential equations, right-hand-side
c
subroutine banded5x5(n, t, y, f)
implicit none
integer n
double precision t, y, f
dimension y(n), f(n)
integer i, j, k
double precision bands
dimension bands(4,5)
common /jac/ bands
f(1) = bands(2,1)*y(1) + bands(1,2)*y(2)
f(2) = bands(3,1)*y(1) + bands(2,2)*y(2) + bands(1,3)*y(3)
f(3) = bands(4,1)*y(1) + bands(3,2)*y(2) + bands(2,3)*y(3)
+ + bands(1,4)*y(4)
f(4) = bands(4,2)*y(2) + bands(3,3)*y(3) + bands(2,4)*y(4)
+ + bands(1,5)*y(5)
f(5) = bands(4,3)*y(3) + bands(3,4)*y(4) + bands(2,5)*y(5)
return
end
c
c Jacobian
c
c The subroutine assumes that the full Jacobian is to be computed.
c ml and mu are ignored, and nrowpd is assumed to be n.
c
subroutine banded5x5_jac(n, t, y, ml, mu, jac, nrowpd)
implicit none
integer n, ml, mu, nrowpd
double precision t, y, jac
dimension y(n), jac(nrowpd, n)
integer i, j
double precision bands
dimension bands(4,5)
common /jac/ bands
do 15 i = 1, 4
do 15 j = 1, 5
if ((i - j) .gt. 0) then
jac(i - j, j) = bands(i, j)
end if
15 continue
return
end
c
c Banded Jacobian
c
c ml = 2, mu = 1
c
subroutine banded5x5_bjac(n, t, y, ml, mu, bjac, nrowpd)
implicit none
integer n, ml, mu, nrowpd
double precision t, y, bjac
dimension y(5), bjac(nrowpd, n)
integer i, j
double precision bands
dimension bands(4,5)
common /jac/ bands
do 20 i = 1, 4
do 20 j = 1, 5
bjac(i, j) = bands(i, j)
20 continue
return
end
subroutine banded5x5_solve(y, nsteps, dt, jt, nst, nfe, nje)
c jt is the Jacobian type:
c jt = 1 Use the full Jacobian.
c jt = 4 Use the banded Jacobian.
c nst, nfe and nje are outputs:
c nst: Total number of internal steps
c nfe: Total number of function (i.e. right-hand-side)
c evaluations
c nje: Total number of Jacobian evaluations
implicit none
external banded5x5
external banded5x5_jac
external banded5x5_bjac
external LSODA
c Arguments...
double precision y, dt
integer nsteps, jt, nst, nfe, nje
cf2py intent(inout) y
cf2py intent(in) nsteps, dt, jt
cf2py intent(out) nst, nfe, nje
c Local variables...
double precision atol, rtol, t, tout, rwork
integer iwork
dimension y(5), rwork(500), iwork(500)
integer neq, i
integer itol, iopt, itask, istate, lrw, liw
c Common block...
double precision jacband
dimension jacband(4,5)
common /jac/ jacband
c --- t range ---
t = 0.0D0
c --- Solver tolerances ---
rtol = 1.0D-11
atol = 1.0D-13
itol = 1
c --- Other LSODA parameters ---
neq = 5
itask = 1
istate = 1
iopt = 0
iwork(1) = 2
iwork(2) = 1
lrw = 500
liw = 500
c --- Call LSODA in a loop to compute the solution ---
do 40 i = 1, nsteps
tout = i*dt
if (jt .eq. 1) then
call LSODA(banded5x5, neq, y, t, tout,
& itol, rtol, atol, itask, istate, iopt,
& rwork, lrw, iwork, liw,
& banded5x5_jac, jt)
else
call LSODA(banded5x5, neq, y, t, tout,
& itol, rtol, atol, itask, istate, iopt,
& rwork, lrw, iwork, liw,
& banded5x5_bjac, jt)
end if
40 if (istate .lt. 0) goto 80
nst = iwork(11)
nfe = iwork(12)
nje = iwork(13)
return
80 write (6,89) istate
89 format(1X,"Error: istate=",I3)
return
end
| bsd-3-clause |
nschloe/seacas | packages/seacas/applications/algebra/ag_opnlog.f | 1 | 3245 | C Copyright(C) 2008-2017 National Technology & Engineering Solutions of
C Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
C NTESS, the U.S. Government retains certain rights in this software.
C
C Redistribution and use in source and binary forms, with or without
C modification, are permitted provided that the following conditions are
C met:
C
C * Redistributions of source code must retain the above copyright
C notice, this list of conditions and the following disclaimer.
C
C * Redistributions in binary form must reproduce the above
C copyright notice, this list of conditions and the following
C disclaimer in the documentation and/or other materials provided
C with the distribution.
C
C * Neither the name of NTESS nor the names of its
C contributors may be used to endorse or promote products derived
C from this software without specific prior written permission.
C
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
C "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
C LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
C A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
C OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
C SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
C LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
C DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
C THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
C (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
C OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
C
C=======================================================================
SUBROUTINE OPNLOG (LOGU)
C=======================================================================
C $Id: opnlog.f,v 1.8 2008/03/14 13:45:28 gdsjaar Exp $
C --*** OPNLOG *** (BLOT) Open log file and write header
C -- Written by Amy Gilkey - revised 12/21/87
C --
C --OPNLOG opens the log file and writes the command line as the header
C --for the log file.
C --
C --Parameters:
C -- NLOG - IN - the log file number
C --
C --Common Variables:
C -- Uses QAINFO of /PROGQA/
C -- Uses NDBIN, NDBOUT of /DBASE/
include 'exodusII.inc'
include 'ag_progqa.blk'
include 'ag_dbase.blk'
CHARACTER*256 INLINE
CHARACTER*256 STR
NLOG = LOGU
CALL OPNFIL (NLOG, 'U', 'L', 0, IERR)
IF (IERR .NE. 0) THEN
CALL PRTERR ('WARNING', 'Log file cannot be opened')
NLOG = -1
GOTO 100
END IF
INLINE = '$$$ ' // QAINFO(1)
L = LENSTR (INLINE) + 1
CALL EXNAME(NDBIN, STR, LFIL)
IF (L .LT. LEN (INLINE)) INLINE(L+1:) = STR(:LFIL)
L = LENSTR (INLINE) + 1
CALL EXNAME(NDBOUT, STR, LFIL)
IF (L .LT. LEN (INLINE)) INLINE(L+1:) = STR(:LFIL)
L = LENSTR (INLINE) + 1
WRITE (NLOG, '(A)') INLINE(:L-1)
100 CONTINUE
LOGU = NLOG
RETURN
END
| bsd-3-clause |
fedya/aircam-openwrt | build_dir/toolchain-arm_v5te_gcc-linaro_uClibc-0.9.32_eabi/gcc-linaro-4.5-2011.02-0/gcc/testsuite/gfortran.dg/whole_file_1.f90 | 4 | 1043 | ! { dg-do compile }
! { dg-options "-fwhole-file" }
! Tests the fix for PR22571 in which the derived types in a, b
! c and d were not detected to be different. In e and f, they
! are the same because they are sequence types.
!
! Contributed by Joost VandeVondele <jv244@cam.ac.uk>
!
subroutine a(p)
type t
integer :: t1
end type
type(t) :: p
p%t1 = 42
end subroutine
subroutine b
type u
integer :: u1
end type
type (u) :: q
call a(q) ! { dg-error "Type mismatch" }
print *, q%u1
end subroutine
subroutine c(p)
type u
integer :: u1
end type
type(u) :: p
p%u1 = 42
end subroutine
subroutine d
type u
integer :: u1
end type
type (u) :: q
call c(q) ! { dg-error "Type mismatch" }
print *, q%u1
end subroutine
subroutine e(p)
type u
sequence
integer :: u1
end type
type(u) :: p
p%u1 = 42
end subroutine
subroutine f
type u
sequence
integer :: u1
end type
type (u) :: q
call e(q) ! This is OK because the types are sequence.
print *, q%u1
end subroutine
| gpl-2.0 |
puppeh/gcc-6502 | gcc/testsuite/gfortran.dg/constructor_2.f90 | 98 | 1279 | ! { dg-do run }
!
! PR fortran/39427
!
module foo_module
interface foo
procedure constructor
end interface
type foo
integer :: bar
end type
contains
type(foo) function constructor()
constructor%bar = 1
end function
subroutine test_foo()
type(foo) :: f
f = foo()
if (f%bar /= 1) call abort ()
f = foo(2)
if (f%bar /= 2) call abort ()
end subroutine test_foo
end module foo_module
! Same as foo_module but order
! of INTERFACE and TYPE reversed
module bar_module
type bar
integer :: bar
end type
interface bar
procedure constructor
end interface
contains
type(bar) function constructor()
constructor%bar = 3
end function
subroutine test_bar()
type(bar) :: f
f = bar()
if (f%bar /= 3) call abort ()
f = bar(4)
if (f%bar /= 4) call abort ()
end subroutine test_bar
end module bar_module
program main
use foo_module
use bar_module
implicit none
type(foo) :: f
type(bar) :: b
call test_foo()
f = foo()
if (f%bar /= 1) call abort ()
f = foo(2)
if (f%bar /= 2) call abort ()
call test_bar()
b = bar()
if (b%bar /= 3) call abort ()
b = bar(4)
if (b%bar /= 4) call abort ()
end program main
! { dg-final { cleanup-tree-dump "foo_module bar_module" } }
| gpl-2.0 |
nschloe/seacas | packages/seacas/applications/fastq/addjut.f | 1 | 3287 | C Copyright(C) 2014-2017 National Technology & Engineering Solutions of
C Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
C NTESS, the U.S. Government retains certain rights in this software.
C
C Redistribution and use in source and binary forms, with or without
C modification, are permitted provided that the following conditions are
C met:
C
C * Redistributions of source code must retain the above copyright
C notice, this list of conditions and the following disclaimer.
C
C * Redistributions in binary form must reproduce the above
C copyright notice, this list of conditions and the following
C disclaimer in the documentation and/or other materials provided
C with the distribution.
C
C * Neither the name of NTESS nor the names of its
C contributors may be used to endorse or promote products derived
C from this software without specific prior written permission.
C
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
C "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
C LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
C A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
C OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
C SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
C LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
C DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
C THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
C (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
C OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
C
C $Id: addjut.f,v 1.1 1990/11/30 11:02:52 gdsjaar Exp $
C $Log: addjut.f,v $
C Revision 1.1 1990/11/30 11:02:52 gdsjaar
C Initial revision
C
C
CC* FILE: [.PAVING]ADDJUT.FOR
CC* MODIFIED BY: TED BLACKER
CC* MODIFICATION DATE: 7/6/90
CC* MODIFICATION: COMPLETED HEADER INFORMATION
C
SUBROUTINE ADDJUT (MXND, XN, YN, LXK, KXL, NXL, LXN,
+ ANGLE, LNODES, XNEW, YNEW, NNN, LLL, NOLD, NLOOP, JUTTED)
C***********************************************************************
C
C SUBROUTINE ADDJUT = ADDS A NEW NODE JUTTING OUT FROM AN EXISTING
C NODE
C
C***********************************************************************
C
DIMENSION XN (MXND), YN (MXND)
DIMENSION LXK (4, MXND), KXL (2, 3*MXND)
DIMENSION NXL (2, 3*MXND), LXN (4, MXND)
DIMENSION ANGLE (MXND), LNODES (7, MXND)
C
LOGICAL JUTTED
C
NNN = NNN+1
XN (NNN) = XNEW
YN (NNN) = YNEW
C
C MAKE LXN AND NXL ARRAYS
C
C ADD THE NEW NODE'S LINES
C
LLL = LLL+1
NXL (1, LLL) = NNN
NXL (2, LLL) = NOLD
C
DO 100 I = 1, 4
LXN (I, NNN) = 0
100 CONTINUE
C
KXL (1, LLL) = 0
KXL (2, LLL) = 0
C
C REDO THE LNODES ARRAY
C
LNODES (1, NNN) = 0
LNODES (2, NNN) = NOLD
LNODES (3, NNN) = NOLD
LNODES (4, NNN) = - 1
LNODES (5, NNN) = LLL
C
LNODES (1, NOLD) = 0
LNODES (3, NOLD) = NNN
LNODES (5, NOLD) = LLL
C
NLOOP = NLOOP + 2
JUTTED = .TRUE.
C
RETURN
C
END
| bsd-3-clause |
puppeh/gcc-6502 | gcc/testsuite/gfortran.dg/finalize_13.f90 | 111 | 3780 | ! { dg-do run }
!
! PR fortran/37336
!
module m
implicit none
type t
integer :: i
contains
final :: fini3, fini2, fini_elm
end type t
type, extends(t) :: t2
integer :: j
contains
final :: f2ini2, f2ini_elm
end type t2
logical :: elem_call
logical :: rank2_call
logical :: rank3_call
integer :: cnt, cnt2
integer :: fini_call
contains
subroutine fini2 (x)
type(t), intent(in), contiguous :: x(:,:)
if (.not. rank2_call) call abort ()
if (size(x,1) /= 2 .or. size(x,2) /= 3) call abort()
!print *, 'fini2:', x%i
if (any (x%i /= reshape([11, 12, 21, 22, 31, 32], [2,3]))) call abort()
fini_call = fini_call + 1
end subroutine
subroutine fini3 (x)
type(t), intent(in) :: x(2,2,*)
integer :: i,j,k
if (.not. elem_call) call abort ()
if (.not. rank3_call) call abort ()
if (cnt2 /= 9) call abort()
if (cnt /= 1) call abort()
do i = 1, 2
do j = 1, 2
do k = 1, 2
!print *, k,j,i,x(k,j,i)%i
if (x(k,j,i)%i /= k+10*j+100*i) call abort()
end do
end do
end do
fini_call = fini_call + 1
end subroutine
impure elemental subroutine fini_elm (x)
type(t), intent(in) :: x
if (.not. elem_call) call abort ()
if (rank3_call) call abort ()
if (cnt2 /= 6) call abort()
if (cnt /= x%i) call abort()
!print *, 'fini_elm:', cnt, x%i
fini_call = fini_call + 1
cnt = cnt + 1
end subroutine
subroutine f2ini2 (x)
type(t2), intent(in), target :: x(:,:)
if (.not. rank2_call) call abort ()
if (size(x,1) /= 2 .or. size(x,2) /= 3) call abort()
!print *, 'f2ini2:', x%i
!print *, 'f2ini2:', x%j
if (any (x%i /= reshape([11, 12, 21, 22, 31, 32], [2,3]))) call abort()
if (any (x%j /= 100*reshape([11, 12, 21, 22, 31, 32], [2,3]))) call abort()
fini_call = fini_call + 1
end subroutine
impure elemental subroutine f2ini_elm (x)
type(t2), intent(in) :: x
integer, parameter :: exprected(*) &
= [111, 112, 121, 122, 211, 212, 221, 222]
if (.not. elem_call) call abort ()
!print *, 'f2ini_elm:', cnt2, x%i, x%j
if (rank3_call) then
if (x%i /= exprected(cnt2)) call abort ()
if (x%j /= 1000*exprected(cnt2)) call abort ()
else
if (cnt2 /= x%i .or. cnt2*10 /= x%j) call abort()
end if
cnt2 = cnt2 + 1
fini_call = fini_call + 1
end subroutine
end module m
program test
use m
implicit none
class(t), save, allocatable :: y(:), z(:,:), zz(:,:,:)
target :: z, zz
integer :: i,j,k
elem_call = .false.
rank2_call = .false.
rank3_call = .false.
allocate (t2 :: y(5))
select type (y)
type is (t2)
do i = 1, 5
y(i)%i = i
y(i)%j = i*10
end do
end select
cnt = 1
cnt2 = 1
fini_call = 0
elem_call = .true.
deallocate (y)
if (fini_call /= 10) call abort ()
elem_call = .false.
rank2_call = .false.
rank3_call = .false.
allocate (t2 :: z(2,3))
select type (z)
type is (t2)
do i = 1, 3
do j = 1, 2
z(j,i)%i = j+10*i
z(j,i)%j = (j+10*i)*100
end do
end do
end select
cnt = 1
cnt2 = 1
fini_call = 0
rank2_call = .true.
deallocate (z)
if (fini_call /= 2) call abort ()
elem_call = .false.
rank2_call = .false.
rank3_call = .false.
allocate (t2 :: zz(2,2,2))
select type (zz)
type is (t2)
do i = 1, 2
do j = 1, 2
do k = 1, 2
zz(k,j,i)%i = k+10*j+100*i
zz(k,j,i)%j = (k+10*j+100*i)*1000
end do
end do
end do
end select
cnt = 1
cnt2 = 1
fini_call = 0
rank3_call = .true.
elem_call = .true.
deallocate (zz)
if (fini_call /= 2*2*2+1) call abort ()
end program test
| gpl-2.0 |
dch312/scipy | scipy/fftpack/src/dfftpack/zfftb1.f | 116 | 12027 | SUBROUTINE ZFFTB1 (N,C,CH,WA,IFAC)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION CH(*) ,C(*) ,WA(*) ,IFAC(*)
NF = IFAC(2)
NA = 0
L1 = 1
IW = 1
DO 116 K1=1,NF
IP = IFAC(K1+2)
L2 = IP*L1
IDO = N/L2
IDOT = IDO+IDO
IDL1 = IDOT*L1
IF (IP .NE. 4) GO TO 103
IX2 = IW+IDOT
IX3 = IX2+IDOT
IF (NA .NE. 0) GO TO 101
CALL DPASSB4 (IDOT,L1,C,CH,WA(IW),WA(IX2),WA(IX3))
GO TO 102
101 CALL DPASSB4 (IDOT,L1,CH,C,WA(IW),WA(IX2),WA(IX3))
102 NA = 1-NA
GO TO 115
103 IF (IP .NE. 2) GO TO 106
IF (NA .NE. 0) GO TO 104
CALL DPASSB2 (IDOT,L1,C,CH,WA(IW))
GO TO 105
104 CALL DPASSB2 (IDOT,L1,CH,C,WA(IW))
105 NA = 1-NA
GO TO 115
106 IF (IP .NE. 3) GO TO 109
IX2 = IW+IDOT
IF (NA .NE. 0) GO TO 107
CALL DPASSB3 (IDOT,L1,C,CH,WA(IW),WA(IX2))
GO TO 108
107 CALL DPASSB3 (IDOT,L1,CH,C,WA(IW),WA(IX2))
108 NA = 1-NA
GO TO 115
109 IF (IP .NE. 5) GO TO 112
IX2 = IW+IDOT
IX3 = IX2+IDOT
IX4 = IX3+IDOT
IF (NA .NE. 0) GO TO 110
CALL DPASSB5 (IDOT,L1,C,CH,WA(IW),WA(IX2),WA(IX3),WA(IX4))
GO TO 111
110 CALL DPASSB5 (IDOT,L1,CH,C,WA(IW),WA(IX2),WA(IX3),WA(IX4))
111 NA = 1-NA
GO TO 115
112 IF (NA .NE. 0) GO TO 113
CALL DPASSB (NAC,IDOT,IP,L1,IDL1,C,C,C,CH,CH,WA(IW))
GO TO 114
113 CALL DPASSB (NAC,IDOT,IP,L1,IDL1,CH,CH,CH,C,C,WA(IW))
114 IF (NAC .NE. 0) NA = 1-NA
115 L1 = L2
IW = IW+(IP-1)*IDOT
116 CONTINUE
IF (NA .EQ. 0) RETURN
N2 = N+N
DO 117 I=1,N2
C(I) = CH(I)
117 CONTINUE
RETURN
END
SUBROUTINE DPASSB (NAC,IDO,IP,L1,IDL1,CC,C1,C2,CH,CH2,WA)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION CH(IDO,L1,IP) ,CC(IDO,IP,L1) ,
1 C1(IDO,L1,IP) ,WA(1) ,C2(IDL1,IP),
2 CH2(IDL1,IP)
IDOT = IDO/2
NT = IP*IDL1
IPP2 = IP+2
IPPH = (IP+1)/2
IDP = IP*IDO
C
IF (IDO .LT. L1) GO TO 106
DO 103 J=2,IPPH
JC = IPP2-J
DO 102 K=1,L1
DO 101 I=1,IDO
CH(I,K,J) = CC(I,J,K)+CC(I,JC,K)
CH(I,K,JC) = CC(I,J,K)-CC(I,JC,K)
101 CONTINUE
102 CONTINUE
103 CONTINUE
DO 105 K=1,L1
DO 104 I=1,IDO
CH(I,K,1) = CC(I,1,K)
104 CONTINUE
105 CONTINUE
GO TO 112
106 DO 109 J=2,IPPH
JC = IPP2-J
DO 108 I=1,IDO
DO 107 K=1,L1
CH(I,K,J) = CC(I,J,K)+CC(I,JC,K)
CH(I,K,JC) = CC(I,J,K)-CC(I,JC,K)
107 CONTINUE
108 CONTINUE
109 CONTINUE
DO 111 I=1,IDO
DO 110 K=1,L1
CH(I,K,1) = CC(I,1,K)
110 CONTINUE
111 CONTINUE
112 IDL = 2-IDO
INC = 0
DO 116 L=2,IPPH
LC = IPP2-L
IDL = IDL+IDO
DO 113 IK=1,IDL1
C2(IK,L) = CH2(IK,1)+WA(IDL-1)*CH2(IK,2)
C2(IK,LC) = WA(IDL)*CH2(IK,IP)
113 CONTINUE
IDLJ = IDL
INC = INC+IDO
DO 115 J=3,IPPH
JC = IPP2-J
IDLJ = IDLJ+INC
IF (IDLJ .GT. IDP) IDLJ = IDLJ-IDP
WAR = WA(IDLJ-1)
WAI = WA(IDLJ)
DO 114 IK=1,IDL1
C2(IK,L) = C2(IK,L)+WAR*CH2(IK,J)
C2(IK,LC) = C2(IK,LC)+WAI*CH2(IK,JC)
114 CONTINUE
115 CONTINUE
116 CONTINUE
DO 118 J=2,IPPH
DO 117 IK=1,IDL1
CH2(IK,1) = CH2(IK,1)+CH2(IK,J)
117 CONTINUE
118 CONTINUE
DO 120 J=2,IPPH
JC = IPP2-J
DO 119 IK=2,IDL1,2
CH2(IK-1,J) = C2(IK-1,J)-C2(IK,JC)
CH2(IK-1,JC) = C2(IK-1,J)+C2(IK,JC)
CH2(IK,J) = C2(IK,J)+C2(IK-1,JC)
CH2(IK,JC) = C2(IK,J)-C2(IK-1,JC)
119 CONTINUE
120 CONTINUE
NAC = 1
IF (IDO .EQ. 2) RETURN
NAC = 0
DO 121 IK=1,IDL1
C2(IK,1) = CH2(IK,1)
121 CONTINUE
DO 123 J=2,IP
DO 122 K=1,L1
C1(1,K,J) = CH(1,K,J)
C1(2,K,J) = CH(2,K,J)
122 CONTINUE
123 CONTINUE
IF (IDOT .GT. L1) GO TO 127
IDIJ = 0
DO 126 J=2,IP
IDIJ = IDIJ+2
DO 125 I=4,IDO,2
IDIJ = IDIJ+2
DO 124 K=1,L1
C1(I-1,K,J) = WA(IDIJ-1)*CH(I-1,K,J)-WA(IDIJ)*CH(I,K,J)
C1(I,K,J) = WA(IDIJ-1)*CH(I,K,J)+WA(IDIJ)*CH(I-1,K,J)
124 CONTINUE
125 CONTINUE
126 CONTINUE
RETURN
127 IDJ = 2-IDO
DO 130 J=2,IP
IDJ = IDJ+IDO
DO 129 K=1,L1
IDIJ = IDJ
DO 128 I=4,IDO,2
IDIJ = IDIJ+2
C1(I-1,K,J) = WA(IDIJ-1)*CH(I-1,K,J)-WA(IDIJ)*CH(I,K,J)
C1(I,K,J) = WA(IDIJ-1)*CH(I,K,J)+WA(IDIJ)*CH(I-1,K,J)
128 CONTINUE
129 CONTINUE
130 CONTINUE
RETURN
END
SUBROUTINE DPASSB2 (IDO,L1,CC,CH,WA1)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION CC(IDO,2,L1) ,CH(IDO,L1,2) ,
1 WA1(1)
IF (IDO .GT. 2) GO TO 102
DO 101 K=1,L1
CH(1,K,1) = CC(1,1,K)+CC(1,2,K)
CH(1,K,2) = CC(1,1,K)-CC(1,2,K)
CH(2,K,1) = CC(2,1,K)+CC(2,2,K)
CH(2,K,2) = CC(2,1,K)-CC(2,2,K)
101 CONTINUE
RETURN
102 DO 104 K=1,L1
DO 103 I=2,IDO,2
CH(I-1,K,1) = CC(I-1,1,K)+CC(I-1,2,K)
TR2 = CC(I-1,1,K)-CC(I-1,2,K)
CH(I,K,1) = CC(I,1,K)+CC(I,2,K)
TI2 = CC(I,1,K)-CC(I,2,K)
CH(I,K,2) = WA1(I-1)*TI2+WA1(I)*TR2
CH(I-1,K,2) = WA1(I-1)*TR2-WA1(I)*TI2
103 CONTINUE
104 CONTINUE
RETURN
END
SUBROUTINE DPASSB3 (IDO,L1,CC,CH,WA1,WA2)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION CC(IDO,3,L1) ,CH(IDO,L1,3) ,
1 WA1(1) ,WA2(1)
C *** TAUI IS SQRT(3)/2 ***
DATA TAUR,TAUI /-0.5D0,0.86602540378443864676D0/
IF (IDO .NE. 2) GO TO 102
DO 101 K=1,L1
TR2 = CC(1,2,K)+CC(1,3,K)
CR2 = CC(1,1,K)+TAUR*TR2
CH(1,K,1) = CC(1,1,K)+TR2
TI2 = CC(2,2,K)+CC(2,3,K)
CI2 = CC(2,1,K)+TAUR*TI2
CH(2,K,1) = CC(2,1,K)+TI2
CR3 = TAUI*(CC(1,2,K)-CC(1,3,K))
CI3 = TAUI*(CC(2,2,K)-CC(2,3,K))
CH(1,K,2) = CR2-CI3
CH(1,K,3) = CR2+CI3
CH(2,K,2) = CI2+CR3
CH(2,K,3) = CI2-CR3
101 CONTINUE
RETURN
102 DO 104 K=1,L1
DO 103 I=2,IDO,2
TR2 = CC(I-1,2,K)+CC(I-1,3,K)
CR2 = CC(I-1,1,K)+TAUR*TR2
CH(I-1,K,1) = CC(I-1,1,K)+TR2
TI2 = CC(I,2,K)+CC(I,3,K)
CI2 = CC(I,1,K)+TAUR*TI2
CH(I,K,1) = CC(I,1,K)+TI2
CR3 = TAUI*(CC(I-1,2,K)-CC(I-1,3,K))
CI3 = TAUI*(CC(I,2,K)-CC(I,3,K))
DR2 = CR2-CI3
DR3 = CR2+CI3
DI2 = CI2+CR3
DI3 = CI2-CR3
CH(I,K,2) = WA1(I-1)*DI2+WA1(I)*DR2
CH(I-1,K,2) = WA1(I-1)*DR2-WA1(I)*DI2
CH(I,K,3) = WA2(I-1)*DI3+WA2(I)*DR3
CH(I-1,K,3) = WA2(I-1)*DR3-WA2(I)*DI3
103 CONTINUE
104 CONTINUE
RETURN
END
SUBROUTINE DPASSB4 (IDO,L1,CC,CH,WA1,WA2,WA3)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION CC(IDO,4,L1) ,CH(IDO,L1,4) ,
1 WA1(1) ,WA2(1) ,WA3(1)
IF (IDO .NE. 2) GO TO 102
DO 101 K=1,L1
TI1 = CC(2,1,K)-CC(2,3,K)
TI2 = CC(2,1,K)+CC(2,3,K)
TR4 = CC(2,4,K)-CC(2,2,K)
TI3 = CC(2,2,K)+CC(2,4,K)
TR1 = CC(1,1,K)-CC(1,3,K)
TR2 = CC(1,1,K)+CC(1,3,K)
TI4 = CC(1,2,K)-CC(1,4,K)
TR3 = CC(1,2,K)+CC(1,4,K)
CH(1,K,1) = TR2+TR3
CH(1,K,3) = TR2-TR3
CH(2,K,1) = TI2+TI3
CH(2,K,3) = TI2-TI3
CH(1,K,2) = TR1+TR4
CH(1,K,4) = TR1-TR4
CH(2,K,2) = TI1+TI4
CH(2,K,4) = TI1-TI4
101 CONTINUE
RETURN
102 DO 104 K=1,L1
DO 103 I=2,IDO,2
TI1 = CC(I,1,K)-CC(I,3,K)
TI2 = CC(I,1,K)+CC(I,3,K)
TI3 = CC(I,2,K)+CC(I,4,K)
TR4 = CC(I,4,K)-CC(I,2,K)
TR1 = CC(I-1,1,K)-CC(I-1,3,K)
TR2 = CC(I-1,1,K)+CC(I-1,3,K)
TI4 = CC(I-1,2,K)-CC(I-1,4,K)
TR3 = CC(I-1,2,K)+CC(I-1,4,K)
CH(I-1,K,1) = TR2+TR3
CR3 = TR2-TR3
CH(I,K,1) = TI2+TI3
CI3 = TI2-TI3
CR2 = TR1+TR4
CR4 = TR1-TR4
CI2 = TI1+TI4
CI4 = TI1-TI4
CH(I-1,K,2) = WA1(I-1)*CR2-WA1(I)*CI2
CH(I,K,2) = WA1(I-1)*CI2+WA1(I)*CR2
CH(I-1,K,3) = WA2(I-1)*CR3-WA2(I)*CI3
CH(I,K,3) = WA2(I-1)*CI3+WA2(I)*CR3
CH(I-1,K,4) = WA3(I-1)*CR4-WA3(I)*CI4
CH(I,K,4) = WA3(I-1)*CI4+WA3(I)*CR4
103 CONTINUE
104 CONTINUE
RETURN
END
SUBROUTINE DPASSB5 (IDO,L1,CC,CH,WA1,WA2,WA3,WA4)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION CC(IDO,5,L1) ,CH(IDO,L1,5) ,
1 WA1(1) ,WA2(1) ,WA3(1) ,WA4(1)
C *** TR11=COS(2*PI/5), TI11=SIN(2*PI/5)
C *** TR12=COS(4*PI/5), TI12=SIN(4*PI/5)
DATA TR11,TI11,TR12,TI12 /0.3090169943749474241D0,
+ 0.95105651629515357212D0,
+ -0.8090169943749474241D0,0.58778525229247312917D0/
IF (IDO .NE. 2) GO TO 102
DO 101 K=1,L1
TI5 = CC(2,2,K)-CC(2,5,K)
TI2 = CC(2,2,K)+CC(2,5,K)
TI4 = CC(2,3,K)-CC(2,4,K)
TI3 = CC(2,3,K)+CC(2,4,K)
TR5 = CC(1,2,K)-CC(1,5,K)
TR2 = CC(1,2,K)+CC(1,5,K)
TR4 = CC(1,3,K)-CC(1,4,K)
TR3 = CC(1,3,K)+CC(1,4,K)
CH(1,K,1) = CC(1,1,K)+TR2+TR3
CH(2,K,1) = CC(2,1,K)+TI2+TI3
CR2 = CC(1,1,K)+TR11*TR2+TR12*TR3
CI2 = CC(2,1,K)+TR11*TI2+TR12*TI3
CR3 = CC(1,1,K)+TR12*TR2+TR11*TR3
CI3 = CC(2,1,K)+TR12*TI2+TR11*TI3
CR5 = TI11*TR5+TI12*TR4
CI5 = TI11*TI5+TI12*TI4
CR4 = TI12*TR5-TI11*TR4
CI4 = TI12*TI5-TI11*TI4
CH(1,K,2) = CR2-CI5
CH(1,K,5) = CR2+CI5
CH(2,K,2) = CI2+CR5
CH(2,K,3) = CI3+CR4
CH(1,K,3) = CR3-CI4
CH(1,K,4) = CR3+CI4
CH(2,K,4) = CI3-CR4
CH(2,K,5) = CI2-CR5
101 CONTINUE
RETURN
102 DO 104 K=1,L1
DO 103 I=2,IDO,2
TI5 = CC(I,2,K)-CC(I,5,K)
TI2 = CC(I,2,K)+CC(I,5,K)
TI4 = CC(I,3,K)-CC(I,4,K)
TI3 = CC(I,3,K)+CC(I,4,K)
TR5 = CC(I-1,2,K)-CC(I-1,5,K)
TR2 = CC(I-1,2,K)+CC(I-1,5,K)
TR4 = CC(I-1,3,K)-CC(I-1,4,K)
TR3 = CC(I-1,3,K)+CC(I-1,4,K)
CH(I-1,K,1) = CC(I-1,1,K)+TR2+TR3
CH(I,K,1) = CC(I,1,K)+TI2+TI3
CR2 = CC(I-1,1,K)+TR11*TR2+TR12*TR3
CI2 = CC(I,1,K)+TR11*TI2+TR12*TI3
CR3 = CC(I-1,1,K)+TR12*TR2+TR11*TR3
CI3 = CC(I,1,K)+TR12*TI2+TR11*TI3
CR5 = TI11*TR5+TI12*TR4
CI5 = TI11*TI5+TI12*TI4
CR4 = TI12*TR5-TI11*TR4
CI4 = TI12*TI5-TI11*TI4
DR3 = CR3-CI4
DR4 = CR3+CI4
DI3 = CI3+CR4
DI4 = CI3-CR4
DR5 = CR2+CI5
DR2 = CR2-CI5
DI5 = CI2-CR5
DI2 = CI2+CR5
CH(I-1,K,2) = WA1(I-1)*DR2-WA1(I)*DI2
CH(I,K,2) = WA1(I-1)*DI2+WA1(I)*DR2
CH(I-1,K,3) = WA2(I-1)*DR3-WA2(I)*DI3
CH(I,K,3) = WA2(I-1)*DI3+WA2(I)*DR3
CH(I-1,K,4) = WA3(I-1)*DR4-WA3(I)*DI4
CH(I,K,4) = WA3(I-1)*DI4+WA3(I)*DR4
CH(I-1,K,5) = WA4(I-1)*DR5-WA4(I)*DI5
CH(I,K,5) = WA4(I-1)*DI5+WA4(I)*DR5
103 CONTINUE
104 CONTINUE
RETURN
END
| bsd-3-clause |
fedya/aircam-openwrt | build_dir/toolchain-arm_v5te_gcc-linaro_uClibc-0.9.32_eabi/gcc-linaro-4.5-2011.02-0/libgfortran/generated/_abs_c10.F90 | 22 | 1485 | ! Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
! Contributed by Paul Brook <paul@nowt.org>
!
!This file is part of the GNU Fortran 95 runtime library (libgfortran).
!
!GNU libgfortran is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public
!License as published by the Free Software Foundation; either
!version 3 of the License, or (at your option) any later version.
!
!GNU libgfortran is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!
!Under Section 7 of GPL version 3, you are granted additional
!permissions described in the GCC Runtime Library Exception, version
!3.1, as published by the Free Software Foundation.
!
!You should have received a copy of the GNU General Public License and
!a copy of the GCC Runtime Library Exception along with this program;
!see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
!<http://www.gnu.org/licenses/>.
!
!This file is machine generated.
#include "config.h"
#include "kinds.inc"
#include "c99_protos.inc"
#if defined (HAVE_GFC_COMPLEX_10)
#ifdef HAVE_CABSL
elemental function _gfortran_specific__abs_c10 (parm)
complex (kind=10), intent (in) :: parm
real (kind=10) :: _gfortran_specific__abs_c10
_gfortran_specific__abs_c10 = abs (parm)
end function
#endif
#endif
| gpl-2.0 |
scattering-central/CCP13 | otoko/src/vc03a.f | 1 | 6051 | SUBROUTINE VC03A (M,N,XD,YD,WD,RD,XN,FN,GN,DN,THETA,IPRINT,W)
C
C ------------------------------------------------------------
C
C calculate a smooth weighted least squares fit to given data
C
C CALLS:
C VB06A
C
C ------------------------------------------------------------
C
REAL*8 W(1)
DIMENSION XD(1),YD(1),WD(1),RD(1),XN(N),FN(N),GN(1),DN(1),
1THETA(1)
NDIMAX=N
C OMIT DATA WITH ZERO WEIGHTS
MM=1
J=1
DO 1 I=2,M
IF (WD(I)) 3,2,3
2 IF (I-M) 4,3,3
4 W(J)=XD(I)
W(J+1)=YD(I)
W(J+2)=FLOAT(I)
J=J+3
GO TO 1
3 MM=MM+1
XD(MM)=XD(I)
YD(MM)=YD(I)
WD(MM)=WD(I)
1 CONTINUE
J=1
K=MM
7 IF (K-M) 5,6,6
5 K=K+1
XD(K)=W(J)
YD(K)=W(J+1)
WD(K)=W(J+2)
J=J+3
GO TO 7
C INITIALIZATION OF ITERATIONS
6 JA=1
IF (WD(1)) 9,8,9
8 JA=2
9 N=5
IF(N-NDIMAX)100,100,110
100 XN(1)=XD(1)
XN(5)=XD(MM)
XN(3)=0.5*(XN(1)+XN(5))
XN(2)=0.5*(XN(1)+XN(3))
XN(4)=0.5*(XN(3)+XN(5))
IW=7*MM+46
DO 10 I=1,5
J=IW+I
W(J)=XN(I)
10 CONTINUE
IP=-IPRINT
C CALCULATE THE HISTOGRAMS FOR NEW SCALE FACTORS
11 J=0
K=1
SA=0.
12 SA=SA+WD(K)**2
K=K+1
IF (XD(K)-XD(1)) 12,12,13
13 SA=(SA+0.5*WD(K)**2)/(XD(K)-XD(1))
14 J=J+1
IF (XD(K)-XN(J+1)) 15,15,16
16 GN(J)=SA*(XN(J+1)-XN(J))
GO TO 14
15 GN(J)=SA*(XD(K)-XN(J))+0.5*WD(K)**2
17 K=K+1
IF (K-MM) 18,18,19
18 IF (XD(K)-XN(J+1)) 20,20,21
20 GN(J)=GN(J)+WD(K)**2
GO TO 17
21 SA=0.5*(WD(K-1)**2+WD(K)**2)/(XD(K)-XD(K-1))
GN(J)=GN(J)-0.5*WD(K-1)**2+SA*(XN(J+1)-XD(K-1))
GO TO 14
C CALCULATE THE NEW SCALE FACTORS
19 K=IW+2
GN(1)=0.00025216*GN(1)*(W(K)-W(K-1))**8/(XN(2)-XN(1))
DO 22 J=3,N
IF (XN(J)-W(K)) 23,23,24
24 K=K+1
23 GN(J-1)=0.00025216*GN(J-1)*(W(K)-W(K-1))**8/(XN(J)-XN(J-1))
GN(J-2)=ALOG(GN(J-2)+GN(J-1))
22 CONTINUE
NN=N-2
HS=1.386294
DO 97 J=2,NN
GN(J)=AMIN1(GN(J),GN(J-1)+HS)
97 CONTINUE
J=NN-1
98 GN(J)=AMIN1(GN(J),GN(J+1)+HS)
J=J-1
IF (J) 99,99,98
99 DO 25 J=3,N
THETA(J-1)=SQRT(EXP(GN(J-2))/(XN(J)-XN(J-2)))
25 CONTINUE
C CALCULATE THE SPLINE APPROXIMATION WITH CURRENT KNOTS
CALL VB06A (MM,N,XD,YD,WD,RD,XN,FN,GN,DN,THETA,IP,W)
C APPLY STATISTICAL TEST FOR EXTRA KNOTS
J=IW+1
JJ=0
K=JA
TMAX=0.
IIS=1
26 KC=-1
SW=0.
SR=0.
RP=0.
J=J+1
JJ=JJ+1
W(JJ)=0.
27 IF (W(J)-XD(K)) 28,29,30
30 KC=KC+1
SW=SW+RD(K)**2
SR=SR+RP*RD(K)
RP=RD(K)
K=K+1
GO TO 27
29 IF (WD(K)) 31,28,31
31 KC=KC+1
SW=SW+RD(K)**2
SR=SR+RP*RD(K)
28 IF (SR) 32,32,33
33 SW=(SW/SR)**2
RP=SQRT(SR/FLOAT(KC))
IF (FLOAT(KC)-SW) 32,32,34
34 GO TO (35,36,37),IIS
35 PRP=RP
IIS=3
IF (FLOAT(KC)-2.*SW) 38,38,39
37 W(JJ-1)=PRP
TMAX=AMAX1(TMAX,PRP)
39 IIS=2
36 W(JJ)=RP
TMAX=AMAX1(TMAX,RP)
GO TO 38
32 IIS=1
38 IF (W(J)-XN(N)) 26,40,40
C TEST WHETHER ANOTHER ITERATION IS REQUIRED
40 IF (TMAX) 41,41,42
C CALCULATE NEW TREND ARRAY, INCLUDING LARGER TRENDS ONLY
42 TMAX=0.5*TMAX
I=0
J=1
JW=1
K=IW+1
THETA(JW)=W(K)
43 I=I+1
K=K+1
IF (W(I)-TMAX) 44,44,45
44 JW=JW+1
THETA(JW)=W(K)
46 FN(J)=0.
J=J+1
IF (W(K)-XN(J)) 47,47,46
45 JW=JW+2
THETA(JW-1)=0.5*(W(K-1)+W(K))
THETA(JW)=W(K)
IF (XN(J+1)-THETA(JW-1)) 46,46,48
48 FN(J)=1.
J=J+1
47 IF (J-N) 43,49,49
C MAKE KNOT SPACINGS BE USED FOUR TIMES
49 IK=1
KL=1
FN(2)=AMAX1(FN(1),FN(2))
GO TO 102
50 K=KL+3
51 IF (FN(K)) 52,52,53
52 K=K-1
IF (K-KL) 74,74,51
53 K=K-1
FN(K)=1.
IF (K-KL) 74,74,53
102 K=KL+3
54 K=K+1
IF (K-N) 55,56,56
55 IF (XN(K+1)-XN(K)-1.5*(XN(K)-XN(K-1))) 54,54,56
56 KU=K
FN(K-2)=AMAX1(FN(K-2),FN(K-1))
57 KKU=K
58 K=K-1
IF (K-KL) 59,59,60
60 IF (XN(K)-XN(K-1)-1.5*(XN(K+1)-XN(K))) 58,58,61
61 FN(K+1)=AMAX1(FN(K),FN(K+1))
59 KKL=K
KZ=4
IF (FN(K)) 62,62,63
63 K=K+1
IF (K-KKU) 64,65,65
64 IF (FN(K)) 66,66,63
66 KZ=0
62 KZ=KZ+1
K=K+1
IF (K-KKU) 67,65,65
67 IF (FN(K)) 62,62,68
68 IF (KZ-3) 69,69,70
69 J=K-KZ
71 FN(J)=1.
J=J+1
IF (J-K) 71,63,63
70 IF (K+1-KKU) 72,65,65
72 K=K+1
FN(K)=1.
GO TO 63
65 IF (KL-KKL) 73,50,50
73 FN(KKL-2)=AMAX1(FN(KKL-2),FN(KKL+1))
FN(KKL-1)=AMAX1(FN(KKL-1),FN(KKL+3))
75 K=KKL-4
78 IF (FN(K)) 76,76,77
76 K=K+1
IF (K-KKL) 78,79,79
77 FN(K)=1.
K=K+1
IF (K-KKL) 77,79,79
79 GO TO (57,80),IK
74 IF (KU-N) 81,82,82
81 KL=KU
FN(KL+1)=AMAX1(FN(KL+1),FN(KL-2))
FN(KL)=AMAX1(FN(KL),FN(KL-4))
GO TO 102
82 IK=2
KKL=N
GO TO 75
C INSERT EXTRA KNOTS FOR NEW APPROXIMATION
80 DO 83 J=1,N
GN(J)=XN(J)
83 CONTINUE
NN=1
DO 84 J=2,N
IF (FN(J-1)) 85,85,86
86 NN=NN+1
XN(NN)=0.5*(GN(J-1)+GN(J))
85 NN=NN+1
XN(NN)=GN(J)
84 CONTINUE
IF(N-NDIMAX)101,110,110
110 WRITE(5,111)N
111 FORMAT(///' ARRAY SIZES TOO SMALL. N =',I6,///)
N=-N
GO TO 90
101 N=NN
IW=7*MM+8*N+6
DO 87 J=1,JW
I=IW+J
W(I)=THETA(J)
87 CONTINUE
GO TO 11
C RESTORE DATA WITH ZERO WEIGHTS
41 IF (MM-M) 88,89,89
89 IF (IPRINT) 90,90,91
88 J=-2
K=MM
92 J=J+3
K=K+1
W(J)=XD(K)
W(J+1)=YD(K)
W(J+2)=WD(K)
IF (K-M) 92,93,93
93 I=INT(W(J+2)+0.5)
94 IF (K-I) 95,95,96
96 XD(K)=XD(MM)
YD(K)=YD(MM)
WD(K)=WD(MM)
K=K-1
MM=MM-1
GO TO 94
95 XD(K)=W(J)
YD(K)=W(J+1)
WD(K)=0.
K=K-1
J=J-3
IF (J) 91,91,93
91 CALL VB06A (M,N,XD,YD,WD,RD,XN,FN,GN,DN,THETA,IABS(IPRINT),W)
90 RETURN
END
| bsd-3-clause |
yxiong/xyMatlabUtils-release | xyCppUtils/ThirdParty/eigen/lapack/iladlc.f | 272 | 2952 | *> \brief \b ILADLC
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ILADLC + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/iladlc.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/iladlc.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/iladlc.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* INTEGER FUNCTION ILADLC( M, N, A, LDA )
*
* .. Scalar Arguments ..
* INTEGER M, N, LDA
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ILADLC scans A for its last non-zero column.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> The m by n matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup auxOTHERauxiliary
*
* =====================================================================
INTEGER FUNCTION ILADLC( M, N, A, LDA )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER M, N, LDA
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I
* ..
* .. Executable Statements ..
*
* Quick test for the common case where one corner is non-zero.
IF( N.EQ.0 ) THEN
ILADLC = N
ELSE IF( A(1, N).NE.ZERO .OR. A(M, N).NE.ZERO ) THEN
ILADLC = N
ELSE
* Now scan each column from the end, returning with the first non-zero.
DO ILADLC = N, 1, -1
DO I = 1, M
IF( A(I, ILADLC).NE.ZERO ) RETURN
END DO
END DO
END IF
RETURN
END
| mit |
nschloe/seacas | packages/seacas/applications/numbers/nu_point2.f | 1 | 4950 | C Copyright(C) 1988-2017 National Technology & Engineering Solutions
C of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
C NTESS, the U.S. Government retains certain rights in this software.
C
C Redistribution and use in source and binary forms, with or without
C modification, are permitted provided that the following conditions are
C met:
C
C * Redistributions of source code must retain the above copyright
C notice, this list of conditions and the following disclaimer.
C
C * Redistributions in binary form must reproduce the above
C copyright notice, this list of conditions and the following
C disclaimer in the documentation and/or other materials provided
C with the distribution.
C
C * Neither the name of NTESS nor the names of its
C contributors may be used to endorse or promote products derived
C from this software without specific prior written permission.
C
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
C "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
C LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
C A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
C OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
C SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
C LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
C DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
C THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
C (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
C OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
C $Id: point2.f,v 1.1 1991/02/21 15:44:54 gdsjaar Exp $
C $Log: point2.f,v $
C Revision 1.1 1991/02/21 15:44:54 gdsjaar
C Initial revision
C
C=======================================================================
SUBROUTINE POINT2 (COORD, NUMNP, DIST, NDIM, P1, TOLER,
* NODEL, SORTYP, MAP, ANGLE, SORUP, INUM, OPT, SELECT)
C=======================================================================
DIMENSION COORD (NUMNP, *), DIST(*), P1(*), TOLER(*),
* MAP(*), ANGLE(*)
CHARACTER*(*) NODEL, SORTYP, OPT
LOGICAL SORUP, SELECT(*), ISABRT
include 'nu_io.blk'
PI = ATAN2(0.0, -1.0)
C
CALL LOCOUT ('POINT', NDIM, NODEL, TOLER, SORTYP, P1, P1, ' ')
C
TEMP = TOLER(1)
TOLER(1) = MAX(0.0, TEMP - TOLER(2))
TOLER(2) = MAX(0.0, TEMP + TOLER(2))
C
X1 = P1(1)
Y1 = P1(2)
C
DO 10 I=1, NUMNP
IF (SELECT(I)) THEN
X0 = COORD(I,1)
Y0 = COORD(I,2)
C
DIST(I) = (X1 - X0)**2 + (Y1 - Y0)**2
C
END IF
10 CONTINUE
INUM = 0
DISMIN = 1.0E30
DO 20 I=1, NUMNP
IF (SELECT(I)) THEN
DISMIN = MIN(DIST(I), ABS(DISMIN-TEMP))
IF (DIST(I) .GE. TOLER(1)**2 .AND. DIST(I) .LE. TOLER(2)**2)
* THEN
INUM = INUM + 1
MAP(INUM) = I
DX = COORD(I,1) - P1(1)
DY = COORD(I,2) - P1(2)
FIX = SIGN(0.5,ABS(DX+DY)) + SIGN(0.5,-ABS(DX+DY))
ANGLE(I) = ATAN2(DY,DX+FIX) * 180.0 / PI
END IF
END IF
20 CONTINUE
IF (INUM .GT. 0) THEN
IF (SORTYP .EQ. 'X') THEN
CALL INDEXX (COORD(1,1), MAP, INUM, .FALSE.)
ELSE IF (SORTYP .EQ. 'Y') THEN
CALL INDEXX (COORD(1,2), MAP, INUM, .FALSE.)
ELSE IF (SORTYP .EQ. 'ANGLE') THEN
CALL INDEXX (ANGLE, MAP, INUM, .FALSE.)
ELSE IF (SORTYP .EQ. 'THETA') THEN
CALL INDEXX (ANGLE, MAP, INUM, .FALSE.)
ELSE IF (SORTYP .EQ. 'DISTANCE') THEN
CALL INDEXX (DIST, MAP, INUM, .FALSE.)
END IF
END IF
IF (SORUP) THEN
IBEG = 1
IEND = INUM
IINC = 1
ELSE
IBEG = INUM
IEND = 1
IINC = -1
END IF
IF (OPT .EQ. '*' .OR. INDEX(OPT, 'P') .GT. 0) THEN
DO 30 IO=IOMIN, IOMAX
WRITE (IO, 40) NODEL
30 CONTINUE
40 FORMAT (/,2X,A8,' X Y DISTANCE THETA')
DO 60 IN = IBEG, IEND, IINC
IF (ISABRT()) RETURN
I = MAP(IN)
DO 50 IO=IOMIN, IOMAX
WRITE (IO, 90) I, (COORD(I,J),J=1,2), SQRT(DIST(I)),
* ANGLE(I)
50 CONTINUE
60 CONTINUE
C
IF (INUM .EQ. 0) THEN
DO 70 IO=IOMIN, IOMAX
WRITE (IO, 80) SQRT(DISMIN)
70 CONTINUE
END IF
END IF
80 FORMAT (/' None found within range, minimum distance = ',
* 1PE12.3,/)
90 FORMAT (I10, 2(F10.4), 2(1PE12.3))
RETURN
END
| bsd-3-clause |
puppeh/gcc-6502 | libgomp/testsuite/libgomp.oacc-fortran/lib-10.f90 | 72 | 1898 | ! { dg-do run }
program main
implicit none
include "openacc_lib.h"
integer, target :: a_3d_i(10, 10, 10)
complex a_3d_c(10, 10, 10)
real a_3d_r(10, 10, 10)
integer i, j, k
complex c
real r
integer, parameter :: i_size = sizeof (i)
integer, parameter :: c_size = sizeof (c)
integer, parameter :: r_size = sizeof (r)
if (acc_get_num_devices (acc_device_nvidia) .eq. 0) call exit
call acc_init (acc_device_nvidia)
call set3d (.FALSE., a_3d_i, a_3d_c, a_3d_r)
call acc_copyin (a_3d_i)
call acc_copyin (a_3d_c)
call acc_copyin (a_3d_r)
if (acc_is_present (a_3d_i) .neqv. .TRUE.) call abort
if (acc_is_present (a_3d_c) .neqv. .TRUE.) call abort
if (acc_is_present (a_3d_r) .neqv. .TRUE.) call abort
do i = 1, 10
do j = 1, 10
do k = 1, 10
if (acc_is_present (a_3d_i(i, j, k), i_size) .neqv. .TRUE.) call abort
if (acc_is_present (a_3d_c(i, j, k), i_size) .neqv. .TRUE.) call abort
if (acc_is_present (a_3d_r(i, j, k), i_size) .neqv. .TRUE.) call abort
end do
end do
end do
call acc_shutdown (acc_device_nvidia)
contains
subroutine set3d (clear, a_i, a_c, a_r)
logical clear
integer, dimension (:,:,:), intent (inout) :: a_i
complex, dimension (:,:,:), intent (inout) :: a_c
real, dimension (:,:,:), intent (inout) :: a_r
integer i, j, k
integer lb1, ub1, lb2, ub2, lb3, ub3
lb1 = lbound (a_i, 1)
ub1 = ubound (a_i, 1)
lb2 = lbound (a_i, 2)
ub2 = ubound (a_i, 2)
lb3 = lbound (a_i, 3)
ub3 = ubound (a_i, 3)
do i = lb1, ub1
do j = lb2, ub2
do k = lb3, ub3
if (clear) then
a_i(i, j, k) = 0
a_c(i, j, k) = cmplx (0.0, 0.0)
a_r(i, j, k) = 0.0
else
a_i(i, j, k) = i
a_c(i, j, k) = cmplx (i, j)
a_r(i, j, k) = i
end if
end do
end do
end do
end subroutine
end program
| gpl-2.0 |
fedya/aircam-openwrt | build_dir/toolchain-arm_v5te_gcc-linaro_uClibc-0.9.32_eabi/gcc-linaro-4.5-2011.02-0/libgfortran/generated/_abs_r16.F90 | 22 | 1479 | ! Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
! Contributed by Paul Brook <paul@nowt.org>
!
!This file is part of the GNU Fortran 95 runtime library (libgfortran).
!
!GNU libgfortran is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public
!License as published by the Free Software Foundation; either
!version 3 of the License, or (at your option) any later version.
!
!GNU libgfortran is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!
!Under Section 7 of GPL version 3, you are granted additional
!permissions described in the GCC Runtime Library Exception, version
!3.1, as published by the Free Software Foundation.
!
!You should have received a copy of the GNU General Public License and
!a copy of the GCC Runtime Library Exception along with this program;
!see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
!<http://www.gnu.org/licenses/>.
!
!This file is machine generated.
#include "config.h"
#include "kinds.inc"
#include "c99_protos.inc"
#if defined (HAVE_GFC_REAL_16)
#ifdef HAVE_FABSL
elemental function _gfortran_specific__abs_r16 (parm)
real (kind=16), intent (in) :: parm
real (kind=16) :: _gfortran_specific__abs_r16
_gfortran_specific__abs_r16 = abs (parm)
end function
#endif
#endif
| gpl-2.0 |
nschloe/seacas | packages/seacas/applications/grepos/gp_elementize.f | 1 | 2672 | C Copyright(C) 2011-2017 National Technology & Engineering Solutions of
C Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
C NTESS, the U.S. Government retains certain rights in this software.
C
C Redistribution and use in source and binary forms, with or without
C modification, are permitted provided that the following conditions are
C met:
C
C * Redistributions of source code must retain the above copyright
C notice, this list of conditions and the following disclaimer.
C
C * Redistributions in binary form must reproduce the above
C copyright notice, this list of conditions and the following
C disclaimer in the documentation and/or other materials provided
C with the distribution.
C
C * Neither the name of NTESS nor the names of its
C contributors may be used to endorse or promote products derived
C from this software without specific prior written permission.
C
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
C "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
C LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
C A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
C OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
C SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
C LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
C DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
C THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
C (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
C OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
subroutine elementize(var_nod, var_el,
* nelblk, numelb, numlnk, link)
real var_nod(*), var_el(*)
integer numelb(*), numlnk(*), link(*)
IELNK = 0
IE = 0
DO 100 IELB = 1, nelblk
IS = IE + 1
IE = IE + NUMELB(IELB)
ISLNK = IELNK + 1
IELNK = IELNK + NUMLNK(IELB) * NUMELB(IELB)
CALL elemtz1(var_nod, var_el(is),
* NUMELB(IELB), NUMLNK(IELB), LINK(ISLNK))
100 CONTINUE
RETURN
END
subroutine elemtz1(var_nod, var_el, numelb, numlnk, link)
real var_nod(*)
real var_el(*)
integer numelb, numlnk
integer link(numlnk,*)
do 20 ne=1, numelb
var = 0.0
do 10 j=1, numlnk
var = var + var_nod(link(j,ne))
10 continue
rnodes = numlnk
var_el(ne) = var / rnodes
20 continue
return
end
| bsd-3-clause |
nschloe/seacas | packages/seacas/libraries/suplib/ffonof.f | 1 | 3472 | C Copyright(C) 2009-2017 National Technology & Engineering Solutions
C of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
C NTESS, the U.S. Government retains certain rights in this software.
C
C Redistribution and use in source and binary forms, with or without
C modification, are permitted provided that the following conditions are
C met:
C
C * Redistributions of source code must retain the above copyright
C notice, this list of conditions and the following disclaimer.
C
C * Redistributions in binary form must reproduce the above
C copyright notice, this list of conditions and the following
C disclaimer in the documentation and/or other materials provided
C with the distribution.
C
C * Neither the name of NTESS nor the names of its
C contributors may be used to endorse or promote products derived
C from this software without specific prior written permission.
C
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
C "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
C LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
C A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
C OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
C SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
C LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
C DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
C THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
C (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
C OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
C=======================================================================
SUBROUTINE FFONOF (IFLD, INTYP, CFIELD, ISON, *)
C=======================================================================
C$Id: ffonof.f,v 1.2 2009/03/25 12:46:02 gdsjaar Exp $
C$Log: ffonof.f,v $
CRevision 1.2 2009/03/25 12:46:02 gdsjaar
CAdd copyright and license notice to all files.
C
CRevision 1.1.1.1 1990/08/14 16:14:36 gdsjaar
CTesting
C
c Revision 1.1 90/08/14 16:14:35 gdsjaar
c Initial revision
c
c Revision 1.1 90/08/09 13:39:26 gdsjaar
c Initial revision
c
C --*** FFONOF *** (FFLIB) Parse free-field ON/OFF
C -- Written by Amy Gilkey - revised 02/24/86
C --
C --FFONOF parses an on/off option from an input field. No field is
C --assumed 'ON'.
C --
C --Parameters:
C -- IFLD - IN/OUT - the index of the current field number, incremented
C -- INTYP - IN - the input type from the free-field reader
C -- CFIELD - IN - the input option string
C -- ISON - OUT - true iff the option is ON, set only if no error
C -- * - return statement if the field is invalid; message is printed
INTEGER IFLD
INTEGER INTYP(*)
CHARACTER*(*) CFIELD(*)
LOGICAL ISON
CHARACTER*4 OPT
IF (INTYP(IFLD) .EQ. 0) THEN
OPT = CFIELD(IFLD)
ELSE IF (INTYP(IFLD) .LE. -1) THEN
OPT = 'ON'
ELSE
OPT = ' '
END IF
IF ((OPT(:2) .NE. 'ON') .AND. (OPT(:3) .NE. 'OFF')) THEN
CALL PRTERR ('CMDERR', 'Expected "ON" or "OFF"')
GOTO 100
END IF
ISON = (OPT(:2) .EQ. 'ON')
IF (INTYP(IFLD) .GE. -1) IFLD = IFLD + 1
RETURN
100 CONTINUE
IF (INTYP(IFLD) .GE. -1) IFLD = IFLD + 1
RETURN 1
END
| bsd-3-clause |
nschloe/seacas | packages/seacas/applications/blot/tplabn.f | 1 | 4094 | C Copyright(C) 2009-2017 National Technology & Engineering Solutions of
C Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
C NTESS, the U.S. Government retains certain rights in this software.
C
C Redistribution and use in source and binary forms, with or without
C modification, are permitted provided that the following conditions are
C met:
C
C * Redistributions of source code must retain the above copyright
C notice, this list of conditions and the following disclaimer.
C
C * Redistributions in binary form must reproduce the above
C copyright notice, this list of conditions and the following
C disclaimer in the documentation and/or other materials provided
C with the distribution.
C * Neither the name of NTESS nor the names of its
C contributors may be used to endorse or promote products derived
C from this software without specific prior written permission.
C
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
C "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
C LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
C A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
C OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
C SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
C LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
C DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
C THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
C (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
C OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
C=======================================================================
SUBROUTINE TPLABN (IPVAR, TIMLIM, NAMES, PLTITL, TXLAB, TYLAB,
* MAPEL, MAPND)
C=======================================================================
C --*** TPLABN *** (TPLOT) Get neutral file plot labels
C -- Written by Amy Gilkey - revised 03/23/87
C --
C --TPLABN makes up the plot titles and labels for the neutral file.
C --
C --Parameters:
C -- IPVAR - IN - the /TPVARS/ index of the starting plot variable
C -- TIMLIM - IN - the starting and ending times for a
C -- variable-versus-variable curve
C -- NAMES - IN - the variable names
C -- PLTITL - OUT - the plot title describing the curves to be
C -- plotted (e.g. "TIME vs SIGXX at ELEMENT 30" or
C -- "LOAD vs SIGXX at ELEMENT 30 for times 0.000 to 15.000")
C -- TXLAB, TYLAB - OUT - the X and Y axis labels, either the
C -- user-input labels or the plot variable descriptions
C --
C --Common Variables:
C -- Uses TIMPLT, ITVID, ITVNE of /TPVARS/
C -- Uses XLAB, YLAB of /XYLAB/
include 'params.blk'
include 'tpvars.blk'
include 'xylab.blk'
REAL TIMLIM(2)
CHARACTER*(*) NAMES(*)
CHARACTER*(*) PLTITL
CHARACTER*(*) TXLAB, TYLAB
INTEGER MAPEL(*), MAPND(*)
CHARACTER*(1024) PV1, PV2
CHARACTER*20 RSTR(2)
C --Get the plot legend
N = IPVAR
IF (TIMPLT) THEN
PV1 = 'TIME'
CALL TPLABV (-1, ITVID(N), NAMES(ITVID(N)), ITVNE(N), PV2,
* MAPEL, MAPND)
PLTITL = PV1(:LENSTR(PV1)) // ' vs ' // PV2(:LENSTR(PV2))
write (*,*) pltitl(:lenstr(pltitl))
ELSE
CALL TPLABV (-1, ITVID(N), NAMES(ITVID(N)), ITVNE(N), PV1,
* MAPEL, MAPND)
N = N + 1
CALL TPLABV (-1, ITVID(N), NAMES(ITVID(N)), ITVNE(N), PV2,
* MAPEL, MAPND)
CALL NUMSTR (2, 4, TIMLIM, RSTR, LSTR)
PLTITL = PV1(:LENSTR(PV1)) // ' vs ' // PV2(:LENSTR(PV2))
& // ' for times ' // RSTR(1)(:LENSTR(RSTR(1)))
& // ' to ' // RSTR(2)(:LSTR)
END IF
C --Get the axis labels
IF (XLAB .NE. ' ') THEN
TXLAB = XLAB
ELSE
TXLAB = PV1
END IF
IF (YLAB .NE. ' ') THEN
TYLAB = YLAB
ELSE
TYLAB = PV2
END IF
RETURN
END
| bsd-3-clause |
pscholz/presto | src/slalib/dafin.f | 4 | 6035 | SUBROUTINE sla_DAFIN (STRING, IPTR, A, J)
*+
* - - - - - -
* D A F I N
* - - - - - -
*
* Sexagesimal character string to angle (double precision)
*
* Given:
* STRING c*(*) string containing deg, arcmin, arcsec fields
* IPTR i pointer to start of decode (1st = 1)
*
* Returned:
* IPTR i advanced past the decoded angle
* A d angle in radians
* J i status: 0 = OK
* +1 = default, A unchanged
* -1 = bad degrees )
* -2 = bad arcminutes ) (note 3)
* -3 = bad arcseconds )
*
* Example:
*
* argument before after
*
* STRING '-57 17 44.806 12 34 56.7' unchanged
* IPTR 1 16 (points to 12...)
* A ? -1.00000D0
* J ? 0
*
* A further call to sla_DAFIN, without adjustment of IPTR, will
* decode the second angle, 12deg 34min 56.7sec.
*
* Notes:
*
* 1) The first three "fields" in STRING are degrees, arcminutes,
* arcseconds, separated by spaces or commas. The degrees field
* may be signed, but not the others. The decoding is carried
* out by the DFLTIN routine and is free-format.
*
* 2) Successive fields may be absent, defaulting to zero. For
* zero status, the only combinations allowed are degrees alone,
* degrees and arcminutes, and all three fields present. If all
* three fields are omitted, a status of +1 is returned and A is
* unchanged. In all other cases A is changed.
*
* 3) Range checking:
*
* The degrees field is not range checked. However, it is
* expected to be integral unless the other two fields are absent.
*
* The arcminutes field is expected to be 0-59, and integral if
* the arcseconds field is present. If the arcseconds field
* is absent, the arcminutes is expected to be 0-59.9999...
*
* The arcseconds field is expected to be 0-59.9999...
*
* 4) Decoding continues even when a check has failed. Under these
* circumstances the field takes the supplied value, defaulting
* to zero, and the result A is computed and returned.
*
* 5) Further fields after the three expected ones are not treated
* as an error. The pointer IPTR is left in the correct state
* for further decoding with the present routine or with DFLTIN
* etc. See the example, above.
*
* 6) If STRING contains hours, minutes, seconds instead of degrees
* etc, or if the required units are turns (or days) instead of
* radians, the result A should be multiplied as follows:
*
* for to obtain multiply
* STRING A in A by
*
* d ' " radians 1 = 1D0
* d ' " turns 1/2pi = 0.1591549430918953358D0
* h m s radians 15 = 15D0
* h m s days 15/2pi = 2.3873241463784300365D0
*
* Called: sla_DFLTIN
*
* P.T.Wallace Starlink 1 August 1996
*
* Copyright (C) 1996 Rutherford Appleton Laboratory
*
* License:
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (see SLA_CONDITIONS); if not, write to the
* Free Software Foundation, Inc., 59 Temple Place, Suite 330,
* Boston, MA 02111-1307 USA
*
*-
IMPLICIT NONE
CHARACTER*(*) STRING
INTEGER IPTR
DOUBLE PRECISION A
INTEGER J
DOUBLE PRECISION AS2R
PARAMETER (AS2R=4.84813681109535993589914102358D-6)
INTEGER JF,JD,JM,JS
DOUBLE PRECISION DEG,ARCMIN,ARCSEC
* Preset the status to OK
JF=0
* Defaults
DEG=0D0
ARCMIN=0D0
ARCSEC=0D0
* Decode degrees, arcminutes, arcseconds
CALL sla_DFLTIN(STRING,IPTR,DEG,JD)
IF (JD.GT.1) THEN
JF=-1
ELSE
CALL sla_DFLTIN(STRING,IPTR,ARCMIN,JM)
IF (JM.LT.0.OR.JM.GT.1) THEN
JF=-2
ELSE
CALL sla_DFLTIN(STRING,IPTR,ARCSEC,JS)
IF (JS.LT.0.OR.JS.GT.1) THEN
JF=-3
* See if the combination of fields is credible
ELSE IF (JD.GT.0) THEN
* No degrees: arcmin, arcsec ought also to be absent
IF (JM.EQ.0) THEN
* Suspect arcmin
JF=-2
ELSE IF (JS.EQ.0) THEN
* Suspect arcsec
JF=-3
ELSE
* All three fields absent
JF=1
END IF
* Degrees present: if arcsec present so ought arcmin to be
ELSE IF (JM.NE.0.AND.JS.EQ.0) THEN
JF=-3
* Tests for range and integrality
* Degrees
ELSE IF (JM.EQ.0.AND.DINT(DEG).NE.DEG) THEN
JF=-1
* Arcminutes
ELSE IF ((JS.EQ.0.AND.DINT(ARCMIN).NE.ARCMIN).OR.
: ARCMIN.GE.60D0) THEN
JF=-2
* Arcseconds
ELSE IF (ARCSEC.GE.60D0) THEN
JF=-3
END IF
END IF
END IF
* Unless all three fields absent, compute angle value
IF (JF.LE.0) THEN
A=AS2R*(60D0*(60D0*ABS(DEG)+ARCMIN)+ARCSEC)
IF (JD.LT.0) A=-A
END IF
* Return the status
J=JF
END
| gpl-2.0 |
tm1249wk/WASHLIGGGHTS-3.3.x | lib/linalg/dlaswp.f | 75 | 5055 | *> \brief \b DLASWP performs a series of row interchanges on a general rectangular matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLASWP + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaswp.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaswp.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaswp.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLASWP( N, A, LDA, K1, K2, IPIV, INCX )
*
* .. Scalar Arguments ..
* INTEGER INCX, K1, K2, LDA, N
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* DOUBLE PRECISION A( LDA, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLASWP performs a series of row interchanges on the matrix A.
*> One row interchange is initiated for each of rows K1 through K2 of A.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the matrix of column dimension N to which the row
*> interchanges will be applied.
*> On exit, the permuted matrix.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A.
*> \endverbatim
*>
*> \param[in] K1
*> \verbatim
*> K1 is INTEGER
*> The first element of IPIV for which a row interchange will
*> be done.
*> \endverbatim
*>
*> \param[in] K2
*> \verbatim
*> K2 is INTEGER
*> The last element of IPIV for which a row interchange will
*> be done.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (K2*abs(INCX))
*> The vector of pivot indices. Only the elements in positions
*> K1 through K2 of IPIV are accessed.
*> IPIV(K) = L implies rows K and L are to be interchanged.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> The increment between successive values of IPIV. If IPIV
*> is negative, the pivots are applied in reverse order.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date September 2012
*
*> \ingroup doubleOTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Modified by
*> R. C. Whaley, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DLASWP( N, A, LDA, K1, K2, IPIV, INCX )
*
* -- LAPACK auxiliary routine (version 3.4.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* September 2012
*
* .. Scalar Arguments ..
INTEGER INCX, K1, K2, LDA, N
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION A( LDA, * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, I1, I2, INC, IP, IX, IX0, J, K, N32
DOUBLE PRECISION TEMP
* ..
* .. Executable Statements ..
*
* Interchange row I with row IPIV(I) for each of rows K1 through K2.
*
IF( INCX.GT.0 ) THEN
IX0 = K1
I1 = K1
I2 = K2
INC = 1
ELSE IF( INCX.LT.0 ) THEN
IX0 = 1 + ( 1-K2 )*INCX
I1 = K2
I2 = K1
INC = -1
ELSE
RETURN
END IF
*
N32 = ( N / 32 )*32
IF( N32.NE.0 ) THEN
DO 30 J = 1, N32, 32
IX = IX0
DO 20 I = I1, I2, INC
IP = IPIV( IX )
IF( IP.NE.I ) THEN
DO 10 K = J, J + 31
TEMP = A( I, K )
A( I, K ) = A( IP, K )
A( IP, K ) = TEMP
10 CONTINUE
END IF
IX = IX + INCX
20 CONTINUE
30 CONTINUE
END IF
IF( N32.NE.N ) THEN
N32 = N32 + 1
IX = IX0
DO 50 I = I1, I2, INC
IP = IPIV( IX )
IF( IP.NE.I ) THEN
DO 40 K = N32, N
TEMP = A( I, K )
A( I, K ) = A( IP, K )
A( IP, K ) = TEMP
40 CONTINUE
END IF
IX = IX + INCX
50 CONTINUE
END IF
*
RETURN
*
* End of DLASWP
*
END
| gpl-2.0 |
scattering-central/CCP13 | software/libs/bsl/imsize.f | 1 | 2037 | C LAST UPDATE 15/09/88
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
SUBROUTINE IMSIZE (ITERM,IPRINT,NPIX,NRAST,IFPIX,ILPIX,
& IFRAST,ILRAST,IRC)
IMPLICIT NONE
C
C PURPOSE: ALLOW USER TO SELECT A SECTION OF THE IMAGE.
C
INTEGER ITERM,IPRINT,NPIX,NRAST,IFPIX,ILPIX,IFRAST,ILRAST,IRC
C
C ITERM : TERMINAL INPUT
C IPRINT : TERMINAL OUTPUT
C NPIX : NOS. OF PIXELS IN IMAGE
C NRAST : NOS. OF RASTERS IN IMAGE
C IFPIX : FIRST PIXEL OF SECTION
C ILPIX : LAST PIXEL OF SECTION
C IFRAST : FIRST RASTER OF SECTION
C ILRAST : LAST RASTER OF SECTION
C IRC : RETURN CODE
C
C CALLS 2: ERRMSG , GETVAL
C
C-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
C LOCAL VARIABLES:
C
REAL VALUE(10)
INTEGER ITEMP,NVAL
C
C-----------------------------------------------------------------------
C
C========GET INTEGRATION LIMITS
C
20 WRITE (IPRINT,1000) NPIX,NRAST
CALL FLUSH(IPRINT)
IFPIX=1
ILPIX=NPIX
IFRAST=1
ILRAST=NRAST
CALL GETVAL (ITERM,VALUE,NVAL,IRC)
IF (IRC.EQ.1) GOTO 999
IF (IRC.EQ.2) GOTO 20
IF (NVAL.GT.0) IFPIX=INT(VALUE(1))
IF (NVAL.GT.1) ILPIX=INT(VALUE(2))
IF (NVAL.GT.2) IFRAST=INT(VALUE(3))
IF (NVAL.GT.3) ILRAST=INT(VALUE(4))
C
C======CHECK VALUES LIE WITHIN CORRECT LIMITS
C
IF (IFPIX.LT.1) IFPIX=1
IF (ILPIX.LT.1) ILPIX=1
IF (IFPIX.GT.NPIX) IFPIX=NPIX
IF (ILPIX.GT.NPIX) ILPIX=NPIX
IF (IFRAST.LT.1) IFRAST=1
IF (ILRAST.LT.1) ILRAST=1
IF (IFRAST.GT.NRAST) IFRAST=NRAST
IF (ILRAST.GT.NRAST) ILRAST=NRAST
IF (ILPIX.LT.IFPIX) THEN
ITEMP=IFPIX
IFPIX=ILPIX
ILPIX=ITEMP
ENDIF
IF (ILRAST.LT.IFRAST) THEN
ITEMP=IFRAST
IFRAST=ILRAST
ILRAST=ITEMP
ENDIF
999 RETURN
C
1000 FORMAT (' Enter first & last pixels and',/,' first & last'
& ' rasters or <CTRL-Z> [1,',I4,',1,',I4,']: ',$)
END
| bsd-3-clause |
scipy/scipy | scipy/integrate/quadpack/dqawo.f | 10 | 10489 | recursive subroutine dqawo(f,a,b,omega,integr,epsabs,epsrel,
* result,abserr,neval,ier,leniw,maxp1,lenw,last,iwork,work)
c***begin prologue dqawo
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a2a1
c***keywords automatic integrator, special-purpose,
c integrand with oscillatory cos or sin factor,
c clenshaw-curtis method, (end point) singularities,
c extrapolation, globally adaptive
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose the routine calculates an approximation result to a given
c definite integral i=integral of f(x)*w(x) over (a,b)
c where w(x) = cos(omega*x)
c or w(x) = sin(omega*x),
c hopefully satisfying following claim for accuracy
c abs(i-result).le.max(epsabs,epsrel*abs(i)).
c***description
c
c computation of oscillatory integrals
c standard fortran subroutine
c double precision version
c
c parameters
c on entry
c f - double precision
c function subprogram defining the function
c f(x). the actual name for f needs to be
c declared e x t e r n a l in the driver program.
c
c a - double precision
c lower limit of integration
c
c b - double precision
c upper limit of integration
c
c omega - double precision
c parameter in the integrand weight function
c
c integr - integer
c indicates which of the weight functions is used
c integr = 1 w(x) = cos(omega*x)
c integr = 2 w(x) = sin(omega*x)
c if integr.ne.1.and.integr.ne.2, the routine will
c end with ier = 6.
c
c epsabs - double precision
c absolute accuracy requested
c epsrel - double precision
c relative accuracy requested
c if epsabs.le.0 and
c epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c the routine will end with ier = 6.
c
c on return
c result - double precision
c approximation to the integral
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c neval - integer
c number of integrand evaluations
c
c ier - integer
c ier = 0 normal and reliable termination of the
c routine. it is assumed that the requested
c accuracy has been achieved.
c - ier.gt.0 abnormal termination of the routine.
c the estimates for integral and error are
c less reliable. it is assumed that the
c requested accuracy has not been achieved.
c error messages
c ier = 1 maximum number of subdivisions allowed
c (= leniw/2) has been achieved. one can
c allow more subdivisions by increasing the
c value of leniw (and taking the according
c dimension adjustments into account).
c however, if this yields no improvement it
c is advised to analyze the integrand in
c order to determine the integration
c difficulties. if the position of a local
c difficulty can be determined (e.g.
c singularity, discontinuity within the
c interval) one will probably gain from
c splitting up the interval at this point
c and calling the integrator on the
c subranges. if possible, an appropriate
c special-purpose integrator should be used
c which is designed for handling the type of
c difficulty involved.
c = 2 the occurrence of roundoff error is
c detected, which prevents the requested
c tolerance from being achieved.
c the error may be under-estimated.
c = 3 extremely bad integrand behaviour occurs
c at some interior points of the
c integration interval.
c = 4 the algorithm does not converge.
c roundoff error is detected in the
c extrapolation table. it is presumed that
c the requested tolerance cannot be achieved
c due to roundoff in the extrapolation
c table, and that the returned result is
c the best which can be obtained.
c = 5 the integral is probably divergent, or
c slowly convergent. it must be noted that
c divergence can occur with any other value
c of ier.
c = 6 the input is invalid, because
c (epsabs.le.0 and
c epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
c or (integr.ne.1 and integr.ne.2),
c or leniw.lt.2 or maxp1.lt.1 or
c lenw.lt.leniw*2+maxp1*25.
c result, abserr, neval, last are set to
c zero. except when leniw, maxp1 or lenw are
c invalid, work(limit*2+1), work(limit*3+1),
c iwork(1), iwork(limit+1) are set to zero,
c work(1) is set to a and work(limit+1) to
c b.
c
c dimensioning parameters
c leniw - integer
c dimensioning parameter for iwork.
c leniw/2 equals the maximum number of subintervals
c allowed in the partition of the given integration
c interval (a,b), leniw.ge.2.
c if leniw.lt.2, the routine will end with ier = 6.
c
c maxp1 - integer
c gives an upper bound on the number of chebyshev
c moments which can be stored, i.e. for the
c intervals of lengths abs(b-a)*2**(-l),
c l=0,1, ..., maxp1-2, maxp1.ge.1
c if maxp1.lt.1, the routine will end with ier = 6.
c
c lenw - integer
c dimensioning parameter for work
c lenw must be at least leniw*2+maxp1*25.
c if lenw.lt.(leniw*2+maxp1*25), the routine will
c end with ier = 6.
c
c last - integer
c on return, last equals the number of subintervals
c produced in the subdivision process, which
c determines the number of significant elements
c actually in the work arrays.
c
c work arrays
c iwork - integer
c vector of dimension at least leniw
c on return, the first k elements of which contain
c pointers to the error estimates over the
c subintervals, such that work(limit*3+iwork(1)), ..
c work(limit*3+iwork(k)) form a decreasing
c sequence, with limit = lenw/2 , and k = last
c if last.le.(limit/2+2), and k = limit+1-last
c otherwise.
c furthermore, iwork(limit+1), ..., iwork(limit+
c last) indicate the subdivision levels of the
c subintervals, such that iwork(limit+i) = l means
c that the subinterval numbered i is of length
c abs(b-a)*2**(1-l).
c
c work - double precision
c vector of dimension at least lenw
c on return
c work(1), ..., work(last) contain the left
c end points of the subintervals in the
c partition of (a,b),
c work(limit+1), ..., work(limit+last) contain
c the right end points,
c work(limit*2+1), ..., work(limit*2+last) contain
c the integral approximations over the
c subintervals,
c work(limit*3+1), ..., work(limit*3+last)
c contain the error estimates.
c work(limit*4+1), ..., work(limit*4+maxp1*25)
c provide space for storing the chebyshev moments.
c note that limit = lenw/2.
c
c***references (none)
c***routines called dqawoe,xerror
c***end prologue dqawo
c
double precision a,abserr,b,epsabs,epsrel,f,omega,result,work
integer ier,integr,iwork,last,limit,lenw,leniw,lvl,l1,l2,l3,l4,
* maxp1,momcom,neval
c
dimension iwork(leniw),work(lenw)
c
external f
c
c check validity of leniw, maxp1 and lenw.
c
c***first executable statement dqawo
ier = 6
neval = 0
last = 0
result = 0.0d+00
abserr = 0.0d+00
if(leniw.lt.2.or.maxp1.lt.1.or.lenw.lt.(leniw*2+maxp1*25))
* go to 10
c
c prepare call for dqawoe
c
limit = leniw/2
l1 = limit+1
l2 = limit+l1
l3 = limit+l2
l4 = limit+l3
call dqawoe(f,a,b,omega,integr,epsabs,epsrel,limit,1,maxp1,result,
* abserr,neval,ier,last,work(1),work(l1),work(l2),work(l3),
* iwork(1),iwork(l1),momcom,work(l4))
c
c call error handler if necessary
c
lvl = 0
10 if(ier.eq.6) lvl = 0
if(ier.ne.0) call xerror('abnormal return from dqawo',26,ier,lvl)
return
end
| bsd-3-clause |
pscholz/presto | python/fftfit_src/brent.f | 3 | 1873 | C @(#)brent.f 1.1 9/7/90
function zbrent(x1,x2,f1,f2,tol,tmp,pha,nsum)
C Brent's method root finding, calls dchisqr(x,tmp,r,nsum) function for fftfit
C Fit refined till output accuracy is tol
parameter (itmax=100,eps=6.e-8,MAXSAM=8192)
real*4 tmp(MAXSAM/2),pha(MAXSAM/2)
a=x1
b=x2
fa=f1
fb=f2
fc=fb
do 11 iter=1,itmax
if(fb*fc.gt.0.) then
c=a
fc=fa
d=b-a
e=d
end if
if(abs(fc).lt.abs(fb)) then
a=b
b=c
c=a
fa=fb
fb=fc
fc=fa
end if
tol1=2.*eps*abs(b)+0.5*tol
xm=.5*(c-b)
if(abs(xm).le.tol1 .or. fb.eq.0.) then
zbrent=b
return
end if
if(abs(e).ge.tol1 .and. abs(fa).gt.abs(fb)) then
s=fb/fa
if(a.eq.c) then
p=2.*xm*s
q=1.-s
else
q=fa/fc
r=fb/fc
p=s*(2.*xm*q*(q-r)-(b-a)*(r-1.))
q=(q-1.)*(r-1.)*(s-1.)
end if
if(p.gt.0.) q=-q
p=abs(p)
if(2.*p .lt. min(3.*xm*q-abs(tol1*q),abs(e*q))) then
e=d
d=p/q
else
d=xm
e=d
end if
else
d=xm
e=d
end if
a=b
fa=fb
if(abs(d) .gt. tol1) then
b=b+d
else
b=b+sign(tol1,xm)
end if
fb=dchisqr(b,tmp,pha,nsum)
11 continue
zbrent=b
return
end
function dchisqr(tau,tmp,r,nsum)
parameter (MAXSAM=8192)
real*4 tmp(MAXSAM/2),r(MAXSAM/2)
s=0.
do 40 k=1,nsum
40 s=s+k*tmp(k)*sin(-r(k)+k*tau)
dchisqr=s
return
end
| gpl-2.0 |
vigna/scipy | scipy/special/cdflib/erfc1.f | 151 | 3633 | DOUBLE PRECISION FUNCTION erfc1(ind,x)
C-----------------------------------------------------------------------
C EVALUATION OF THE COMPLEMENTARY ERROR FUNCTION
C
C ERFC1(IND,X) = ERFC(X) IF IND = 0
C ERFC1(IND,X) = EXP(X*X)*ERFC(X) OTHERWISE
C-----------------------------------------------------------------------
C .. Scalar Arguments ..
DOUBLE PRECISION x
INTEGER ind
C ..
C .. Local Scalars ..
DOUBLE PRECISION ax,bot,c,e,t,top,w
C ..
C .. Local Arrays ..
DOUBLE PRECISION a(5),b(3),p(8),q(8),r(5),s(4)
C ..
C .. External Functions ..
DOUBLE PRECISION exparg
EXTERNAL exparg
C ..
C .. Intrinsic Functions ..
INTRINSIC abs,dble,exp
C ..
C .. Data statements ..
C-------------------------
C-------------------------
C-------------------------
C-------------------------
DATA c/.564189583547756D0/
DATA a(1)/.771058495001320D-04/,a(2)/-.133733772997339D-02/,
+ a(3)/.323076579225834D-01/,a(4)/.479137145607681D-01/,
+ a(5)/.128379167095513D+00/
DATA b(1)/.301048631703895D-02/,b(2)/.538971687740286D-01/,
+ b(3)/.375795757275549D+00/
DATA p(1)/-1.36864857382717D-07/,p(2)/5.64195517478974D-01/,
+ p(3)/7.21175825088309D+00/,p(4)/4.31622272220567D+01/,
+ p(5)/1.52989285046940D+02/,p(6)/3.39320816734344D+02/,
+ p(7)/4.51918953711873D+02/,p(8)/3.00459261020162D+02/
DATA q(1)/1.00000000000000D+00/,q(2)/1.27827273196294D+01/,
+ q(3)/7.70001529352295D+01/,q(4)/2.77585444743988D+02/,
+ q(5)/6.38980264465631D+02/,q(6)/9.31354094850610D+02/,
+ q(7)/7.90950925327898D+02/,q(8)/3.00459260956983D+02/
DATA r(1)/2.10144126479064D+00/,r(2)/2.62370141675169D+01/,
+ r(3)/2.13688200555087D+01/,r(4)/4.65807828718470D+00/,
+ r(5)/2.82094791773523D-01/
DATA s(1)/9.41537750555460D+01/,s(2)/1.87114811799590D+02/,
+ s(3)/9.90191814623914D+01/,s(4)/1.80124575948747D+01/
C ..
C .. Executable Statements ..
C-------------------------
C
C ABS(X) .LE. 0.5
C
ax = abs(x)
IF (ax.GT.0.5D0) GO TO 10
t = x*x
top = ((((a(1)*t+a(2))*t+a(3))*t+a(4))*t+a(5)) + 1.0D0
bot = ((b(1)*t+b(2))*t+b(3))*t + 1.0D0
erfc1 = 0.5D0 + (0.5D0-x* (top/bot))
IF (ind.NE.0) erfc1 = exp(t)*erfc1
RETURN
C
C 0.5 .LT. ABS(X) .LE. 4
C
10 IF (ax.GT.4.0D0) GO TO 20
top = ((((((p(1)*ax+p(2))*ax+p(3))*ax+p(4))*ax+p(5))*ax+p(6))*ax+
+ p(7))*ax + p(8)
bot = ((((((q(1)*ax+q(2))*ax+q(3))*ax+q(4))*ax+q(5))*ax+q(6))*ax+
+ q(7))*ax + q(8)
erfc1 = top/bot
GO TO 40
C
C ABS(X) .GT. 4
C
20 IF (x.LE.-5.6D0) GO TO 60
IF (ind.NE.0) GO TO 30
IF (x.GT.100.0D0) GO TO 70
IF (x*x.GT.-exparg(1)) GO TO 70
C
30 t = (1.0D0/x)**2
top = (((r(1)*t+r(2))*t+r(3))*t+r(4))*t + r(5)
bot = (((s(1)*t+s(2))*t+s(3))*t+s(4))*t + 1.0D0
erfc1 = (c-t*top/bot)/ax
C
C FINAL ASSEMBLY
C
40 IF (ind.EQ.0) GO TO 50
IF (x.LT.0.0D0) erfc1 = 2.0D0*exp(x*x) - erfc1
RETURN
50 w = dble(x)*dble(x)
t = w
e = w - dble(t)
erfc1 = ((0.5D0+ (0.5D0-e))*exp(-t))*erfc1
IF (x.LT.0.0D0) erfc1 = 2.0D0 - erfc1
RETURN
C
C LIMIT VALUE FOR LARGE NEGATIVE X
C
60 erfc1 = 2.0D0
IF (ind.NE.0) erfc1 = 2.0D0*exp(x*x)
RETURN
C
C LIMIT VALUE FOR LARGE POSITIVE X
C WHEN IND = 0
C
70 erfc1 = 0.0D0
RETURN
END
| bsd-3-clause |
fuesika/mmtl | bem/src/ext/sgedi.F | 2 | 3501 | SUBROUTINE SGEDI(A,LDA,N,IPVT,DET,WORK,JOB)
INTEGER LDA,N,IPVT(*),JOB
REAL A(LDA,*),DET(2),WORK(*)
C
C SGEDI COMPUTES THE DETERMINANT AND INVERSE OF A MATRIX
C USING THE FACTORS COMPUTED BY SGECO OR SGEFA.
C
C ON ENTRY
C
C A REAL(LDA, N)
C THE OUTPUT FROM SGECO OR SGEFA.
C
C LDA INTEGER
C THE LEADING DIMENSION OF THE ARRAY A .
C
C N INTEGER
C THE ORDER OF THE MATRIX A .
C
C IPVT INTEGER(N)
C THE PIVOT VECTOR FROM SGECO OR SGEFA.
C
C WORK REAL(N)
C WORK VECTOR. CONTENTS DESTROYED.
C
C JOB INTEGER
C = 11 BOTH DETERMINANT AND INVERSE.
C = 01 INVERSE ONLY.
C = 10 DETERMINANT ONLY.
C
C ON RETURN
C
C A INVERSE OF ORIGINAL MATRIX IF REQUESTED.
C OTHERWISE UNCHANGED.
C
C DET REAL(2)
C DETERMINANT OF ORIGINAL MATRIX IF REQUESTED.
C OTHERWISE NOT REFERENCED.
C DETERMINANT = DET(1) * 10.0**DET(2)
C WITH 1.0 .LE. ABS(DET(1)) .LT. 10.0
C OR DET(1) .EQ. 0.0 .
C
C ERROR CONDITION
C
C A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS
C A ZERO ON THE DIAGONAL AND THE INVERSE IS REQUESTED.
C IT WILL NOT OCCUR IF THE SUBROUTINES ARE CALLED CORRECTLY
C AND IF SGECO HAS SET RCOND .GT. 0.0 OR SGEFA HAS SET
C INFO .EQ. 0 .
C
C LINPACK. THIS VERSION DATED 08/14/78 .
C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C
C SUBROUTINES AND FUNCTIONS
C
C BLAS SAXPY,SSCAL,SSWAP
C FORTRAN ABS,MOD
C
C INTERNAL VARIABLES
C
REAL T
REAL TEN
INTEGER I,J,K,KB,KP1,L,NM1
C
C
C COMPUTE DETERMINANT
C
IF (JOB/10 .EQ. 0) GO TO 70
DET(1) = 1.0E0
DET(2) = 0.0E0
TEN = 10.0E0
DO 50 I = 1, N
IF (IPVT(I) .NE. I) DET(1) = -DET(1)
DET(1) = A(I,I)*DET(1)
C ...EXIT
IF (DET(1) .EQ. 0.0E0) GO TO 60
10 IF (ABS(DET(1)) .GE. 1.0E0) GO TO 20
DET(1) = TEN*DET(1)
DET(2) = DET(2) - 1.0E0
GO TO 10
20 CONTINUE
30 IF (ABS(DET(1)) .LT. TEN) GO TO 40
DET(1) = DET(1)/TEN
DET(2) = DET(2) + 1.0E0
GO TO 30
40 CONTINUE
50 CONTINUE
60 CONTINUE
70 CONTINUE
C
C COMPUTE INVERSE(U)
C
IF (MOD(JOB,10) .EQ. 0) GO TO 150
DO 100 K = 1, N
A(K,K) = 1.0E0/A(K,K)
T = -A(K,K)
CALL SSCAL(K-1,T,A(1,K),1)
KP1 = K + 1
IF (N .LT. KP1) GO TO 90
DO 80 J = KP1, N
T = A(K,J)
A(K,J) = 0.0E0
CALL SAXPY(K,T,A(1,K),1,A(1,J),1)
80 CONTINUE
90 CONTINUE
100 CONTINUE
C
C FORM INVERSE(U)*INVERSE(L)
C
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 140
DO 130 KB = 1, NM1
K = N - KB
KP1 = K + 1
DO 110 I = KP1, N
WORK(I) = A(I,K)
A(I,K) = 0.0E0
110 CONTINUE
DO 120 J = KP1, N
T = WORK(J)
CALL SAXPY(N,T,A(1,J),1,A(1,K),1)
120 CONTINUE
L = IPVT(K)
IF (L .NE. K) CALL SSWAP(N,A(1,K),1,A(1,L),1)
130 CONTINUE
140 CONTINUE
150 CONTINUE
RETURN
END
| gpl-2.0 |
dch312/scipy | scipy/integrate/quadpack/dqpsrt.f | 147 | 4243 | subroutine dqpsrt(limit,last,maxerr,ermax,elist,iord,nrmax)
c***begin prologue dqpsrt
c***refer to dqage,dqagie,dqagpe,dqawse
c***routines called (none)
c***revision date 810101 (yymmdd)
c***keywords sequential sorting
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose this routine maintains the descending ordering in the
c list of the local error estimated resulting from the
c interval subdivision process. at each call two error
c estimates are inserted using the sequential search
c method, top-down for the largest error estimate and
c bottom-up for the smallest error estimate.
c***description
c
c ordering routine
c standard fortran subroutine
c double precision version
c
c parameters (meaning at output)
c limit - integer
c maximum number of error estimates the list
c can contain
c
c last - integer
c number of error estimates currently in the list
c
c maxerr - integer
c maxerr points to the nrmax-th largest error
c estimate currently in the list
c
c ermax - double precision
c nrmax-th largest error estimate
c ermax = elist(maxerr)
c
c elist - double precision
c vector of dimension last containing
c the error estimates
c
c iord - integer
c vector of dimension last, the first k elements
c of which contain pointers to the error
c estimates, such that
c elist(iord(1)),..., elist(iord(k))
c form a decreasing sequence, with
c k = last if last.le.(limit/2+2), and
c k = limit+1-last otherwise
c
c nrmax - integer
c maxerr = iord(nrmax)
c
c***end prologue dqpsrt
c
double precision elist,ermax,errmax,errmin
integer i,ibeg,ido,iord,isucc,j,jbnd,jupbn,k,last,limit,maxerr,
* nrmax
dimension elist(last),iord(last)
c
c check whether the list contains more than
c two error estimates.
c
c***first executable statement dqpsrt
if(last.gt.2) go to 10
iord(1) = 1
iord(2) = 2
go to 90
c
c this part of the routine is only executed if, due to a
c difficult integrand, subdivision increased the error
c estimate. in the normal case the insert procedure should
c start after the nrmax-th largest error estimate.
c
10 errmax = elist(maxerr)
if(nrmax.eq.1) go to 30
ido = nrmax-1
do 20 i = 1,ido
isucc = iord(nrmax-1)
c ***jump out of do-loop
if(errmax.le.elist(isucc)) go to 30
iord(nrmax) = isucc
nrmax = nrmax-1
20 continue
c
c compute the number of elements in the list to be maintained
c in descending order. this number depends on the number of
c subdivisions still allowed.
c
30 jupbn = last
if(last.gt.(limit/2+2)) jupbn = limit+3-last
errmin = elist(last)
c
c insert errmax by traversing the list top-down,
c starting comparison from the element elist(iord(nrmax+1)).
c
jbnd = jupbn-1
ibeg = nrmax+1
if(ibeg.gt.jbnd) go to 50
do 40 i=ibeg,jbnd
isucc = iord(i)
c ***jump out of do-loop
if(errmax.ge.elist(isucc)) go to 60
iord(i-1) = isucc
40 continue
50 iord(jbnd) = maxerr
iord(jupbn) = last
go to 90
c
c insert errmin by traversing the list bottom-up.
c
60 iord(i-1) = maxerr
k = jbnd
do 70 j=i,jbnd
isucc = iord(k)
c ***jump out of do-loop
if(errmin.lt.elist(isucc)) go to 80
iord(k+1) = isucc
k = k-1
70 continue
iord(i) = last
go to 90
80 iord(k+1) = last
c
c set maxerr and ermax.
c
90 maxerr = iord(nrmax)
ermax = elist(maxerr)
return
end
| bsd-3-clause |
nschloe/seacas | packages/seacas/applications/blot/bl_rotate.f | 1 | 3039 | C Copyright(C) 2009-2017 National Technology & Engineering Solutions of
C Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
C NTESS, the U.S. Government retains certain rights in this software.
C
C Redistribution and use in source and binary forms, with or without
C modification, are permitted provided that the following conditions are
C met:
C
C * Redistributions of source code must retain the above copyright
C notice, this list of conditions and the following disclaimer.
C
C * Redistributions in binary form must reproduce the above
C copyright notice, this list of conditions and the following
C disclaimer in the documentation and/or other materials provided
C with the distribution.
C * Neither the name of NTESS nor the names of its
C contributors may be used to endorse or promote products derived
C from this software without specific prior written permission.
C
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
C "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
C LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
C A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
C OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
C SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
C LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
C DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
C THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
C (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
C OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
C=======================================================================
SUBROUTINE BL_ROTATE (NUM, NPROT, ROTMAT, ROTCEN,
& XN, YN, ZN, HZ, VT, PD)
C=======================================================================
C --*** ROTATE *** (MESH) Rotate 3D coordinates
C -- Written by Amy Gilkey - revised 09/09/87
C --
C --ROTATE rotates the 3D coordinates by subtracting the rotation center
C --and multipling by the rotation matrix.
C --
C --Parameters:
C -- NUM - IN - the number of nodes to rotate
C -- NPROT - IN - the node numbers of the nodes to rotate
C -- ROTMAT - IN - the rotation matrix
C -- ROTCEN - IN - the center of the rotation
C -- XN, YN, ZN - IN - the original nodal coordinates
C -- HZ, VT, PD - OUT - the rotated nodal coordinates
INTEGER NPROT(NUM)
REAL ROTMAT(3,3), ROTCEN(3)
REAL XN(*), YN(*), ZN(*)
REAL HZ(*), VT(*), PD(*)
DO 100 IX = 1, NUM
INP = NPROT(IX)
X = XN(INP) - ROTCEN(1)
Y = YN(INP) - ROTCEN(2)
Z = ZN(INP) - ROTCEN(3)
HZ(INP) = X*ROTMAT(1,1) + Y*ROTMAT(2,1) + Z*ROTMAT(3,1)
VT(INP) = X*ROTMAT(1,2) + Y*ROTMAT(2,2) + Z*ROTMAT(3,2)
PD(INP) = X*ROTMAT(1,3) + Y*ROTMAT(2,3) + Z*ROTMAT(3,3)
100 CONTINUE
RETURN
END
| bsd-3-clause |
puppeh/gcc-6502 | gcc/testsuite/gfortran.dg/intent_out_2.f90 | 136 | 1028 | ! { dg-do run }
! Tests the fix for PR33554, in which the default initialization
! of temp, in construct_temp, caused a segfault because it was
! being done before the array offset and lower bound were
! available.
!
! Contributed by Harald Anlauf <anlauf@gmx.de>
!
module gfcbug72
implicit none
type t_datum
character(len=8) :: mn = 'abcdefgh'
end type t_datum
type t_temp
type(t_datum) :: p
end type t_temp
contains
subroutine setup ()
integer :: i
type (t_temp), pointer :: temp(:) => NULL ()
do i=1,2
allocate (temp (2))
call construct_temp (temp)
if (any (temp % p% mn .ne. 'ijklmnop')) call abort ()
deallocate (temp)
end do
end subroutine setup
!--
subroutine construct_temp (temp)
type (t_temp), intent(out) :: temp (:)
if (any (temp % p% mn .ne. 'abcdefgh')) call abort ()
temp(:)% p% mn = 'ijklmnop'
end subroutine construct_temp
end module gfcbug72
program test
use gfcbug72
implicit none
call setup ()
end program test
| gpl-2.0 |
nschloe/seacas | packages/seacas/applications/gen3d/g3_wrnps.f | 1 | 6982 | C Copyright(C) 2011-2017 National Technology & Engineering Solutions
C of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
C NTESS, the U.S. Government retains certain rights in this software.
C
C Redistribution and use in source and binary forms, with or without
C modification, are permitted provided that the following conditions are
C met:
C
C * Redistributions of source code must retain the above copyright
C notice, this list of conditions and the following disclaimer.
C
C * Redistributions in binary form must reproduce the above
C copyright notice, this list of conditions and the following
C disclaimer in the documentation and/or other materials provided
C with the distribution.
C
C * Neither the name of NTESS nor the names of its
C contributors may be used to endorse or promote products derived
C from this software without specific prior written permission.
C
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
C "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
C LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
C A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
C OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
C SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
C LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
C DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
C THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
C (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
C OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
C=======================================================================
SUBROUTINE WRNPS (A, IA, IDFRO, IDBCK,
& IDNPS, NNNP3, IXNNP3, LTNNP3, FACNP3,
& IXNP, NRNP, *)
C=======================================================================
C --*** WRNPS *** (GEN3D) Write 3D node sets
C -- Written by Amy Gilkey - revised 05/05/86
C --
C --WRNPS writes the node set information for the 3D database.
C --Calculations have been done elsewhere.
C --
C --Parameters:
C -- IDFRO - IN - ids for front surface node sets; (0) = length
C -- IDBCK - IN - ids for back surface node sets; (0) = length
C -- IDNPS - IN - the 2D node sets ids
C -- NNNP3 - IN - the number of nodes for each 3D set
C -- IXNNP3 - IN - the index of the first node for each 3D set
C -- LTNNP3 - IN - the nodes for all 3D sets
C -- FACNP3 - IN - the distribution factors for all 3D sets
C -- IXNP - IN - the new index for each node
C -- NRNP - IN - the number of new nodes generated for each node
C --
C --Common Variables:
C -- Uses NDBOUT of /DBASE/
C -- Uses NUMNPS, LNPSNL of /DBNUMS/
C -- Uses LNPSNO of /DBNUM3/
INCLUDE 'exodusII.inc'
INCLUDE 'g3_dbase.blk'
INCLUDE 'g3_dbnums.blk'
INCLUDE 'g3_dbnum3.blk'
REAL A(*)
INTEGER IA(*)
INTEGER IDFRO(0:*)
INTEGER IDBCK(0:*)
INTEGER IDNPS(*)
INTEGER NNNP3(*)
INTEGER IXNNP3(*)
INTEGER LTNNP3(*)
REAL FACNP3(*)
INTEGER IXNP(*), NRNP(*)
LOGICAL ANYNPS
NFRO = IDFRO(0)
NBCK = IDBCK(0)
ANYNPS = (NFRO .GT. 0) .OR. (NBCK .GT. 0) .OR. (NUMNPS .GT. 0)
C --Write 3D
call expnp (exoid, 20, 5, 5, ierr)
call expns (exoid, 20, node_list, ierr)
call expnsd (exoid, 20, dist_fact, ierr)
IF (ANYNPS) THEN
C ... Output nodeset id, number nodes, number dist factors
C Assumes that there are the same number of distribution factors
C as there are nodes in the nodeset.
DO 10 ins = 1, numnps
call expnp (ndbout, idnps(ins), nnnp3(ins), nnnp3(ins), ierr)
if (ierr .lt. 0) then
call exerr('gen3d2', 'Error from expnp', exlmsg)
go to 50
endif
call expns (ndbout, idnps(ins), LTNNP3(IXNNP3(ins)), ierr)
if (ierr .lt. 0) then
call exerr('gen3d2', 'Error from expns', exlmsg)
go to 50
endif
call expnsd(ndbout, idnps(ins), FACNP3(IXNNP3(ins)), ierr)
if (ierr .lt. 0) then
call exerr('gen3d2', 'Error from expnsd', exlmsg)
go to 50
endif
10 continue
C ... Output front and back nodesets (if any)
C Front and back nodesets contain NUMNP (2D database) nodes
C If there are any front or back, then create a temporary
C Array to hold the distribution factors. Defaulted to 1.0
if (nfro .gt. 0 .or. nbck .gt. 0) then
call mdrsrv('factorns', knfac, numnp)
call mdstat(mnerrs, mnused)
if (mnerrs .gt. 0) goto 50
call inirea(numnp, 1.0, a(knfac))
do 20 ins = 1, nfro
call expnp (ndbout, idfro(ins), numnp, numnp, ierr)
if (ierr .lt. 0) then
call exerr('gen3d2', 'Error from expnp', exlmsg)
go to 50
endif
call expns (ndbout, idfro(ins), IXNP, ierr)
if (ierr .lt. 0) then
call exerr('gen3d2', 'Error from expns', exlmsg)
go to 50
endif
call expnsd(ndbout, idfro(ins), a(knfac), ierr)
if (ierr .lt. 0) then
call exerr('gen3d2', 'Error from expnsd', exlmsg)
go to 50
endif
20 continue
if (nbck .gt. 0) then
call mdrsrv('nodelist', knlst, numnp)
call mdstat(mnerrs, mnused)
if (mnerrs .gt. 0) goto 50
do 30 i=1, numnp
ia(knlst+i-1) = ixnp(i) + nrnp(i) - 1
30 continue
do 40 ins = 1, nbck
call expnp (ndbout, idbck(ins), numnp, numnp, ierr)
if (ierr .lt. 0) then
call exerr('gen3d2', 'Error from expnp', exlmsg)
go to 50
endif
call expns (ndbout, idbck(ins), ia(knlst), ierr)
if (ierr .lt. 0) then
call exerr('gen3d2', 'Error from expns', exlmsg)
go to 50
endif
call expnsd(ndbout, idbck(ins), a(knfac), ierr)
if (ierr .lt. 0) then
call exerr('gen3d2', 'Error from expnsd', exlmsg)
go to 50
endif
40 continue
end if
end if
end if
if (nfro .gt. 0 .or. nbck .gt. 0) then
call mddel('factorns')
if (nbck .gt. 0) then
call mddel('nodelist')
end if
end if
call mdstat(mnerrs, mnused)
if (mnerrs .gt. 0) goto 50
RETURN
50 continue
RETURN 1
END
| bsd-3-clause |
nschloe/seacas | packages/seacas/applications/numbers/nu_jacob.f | 1 | 5443 | C Copyright(C) 1988-2017 National Technology & Engineering Solutions
C of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
C NTESS, the U.S. Government retains certain rights in this software.
C
C Redistribution and use in source and binary forms, with or without
C modification, are permitted provided that the following conditions are
C met:
C
C * Redistributions of source code must retain the above copyright
C notice, this list of conditions and the following disclaimer.
C
C * Redistributions in binary form must reproduce the above
C copyright notice, this list of conditions and the following
C disclaimer in the documentation and/or other materials provided
C with the distribution.
C
C * Neither the name of NTESS nor the names of its
C contributors may be used to endorse or promote products derived
C from this software without specific prior written permission.
C
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
C "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
C LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
C A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
C OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
C SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
C LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
C DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
C THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
C (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
C OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
subroutine jacob(x1,x2,x3,x4,x5,x6,x7,x8,
* y1,y2,y3,y4,y5,y6,y7,y8,
* z1,z2,z3,z4,z5,z6,z7,z8, JACMN)
REAL JACOBI, JACMN
REAL XXI(3), XET(3), XZE(3)
JACMN = 1.0e38
C... Jacobian at mid-point:
xxi(1) = x2 + x3 + x6 + x7 - x1 - x4 - x5 - x8
xet(1) = x3 + x4 + x7 + x8 - x1 - x2 - x5 - x6
xze(1) = x5 + x6 + x7 + x8 - x1 - x2 - x3 - x4
xxi(2) = y2 + y3 + y6 + y7 - y1 - y4 - y5 - y8
xet(2) = y3 + y4 + y7 + y8 - y1 - y2 - y5 - y6
xze(2) = y5 + y6 + y7 + y8 - y1 - y2 - y3 - y4
xxi(3) = z2 + z3 + z6 + z7 - z1 - z4 - z5 - z8
xet(3) = z3 + z4 + z7 + z8 - z1 - z2 - z5 - z6
xze(3) = z5 + z6 + z7 + z8 - z1 - z2 - z3 - z4
jacobi = CRSDOT(xxi,xet,xze)/64.0
jacmn = min(jacobi, jacmn)
C... J(0,0,0):
xxi(1) = x2 - x1
xet(1) = x4 - x1
xze(1) = x5 - x1
xxi(2) = y2 - y1
xet(2) = y4 - y1
xze(2) = y5 - y1
xxi(3) = z2 - z1
xet(3) = z4 - z1
xze(3) = z5 - z1
jacobi = CRSDOT(xxi,xet,xze)
jacmn = min(jacobi, jacmn)
C... J(1,0,0):
xxi(1) = x2 - x1
xet(1) = x3 - x2
xze(1) = x6 - x2
xxi(2) = y2 - y1
xet(2) = y3 - y2
xze(2) = y6 - y2
xxi(3) = z2 - z1
xet(3) = z3 - z2
xze(3) = z6 - z2
jacobi = CRSDOT(xxi,xet,xze)
jacmn = min(jacobi, jacmn)
C... J(0,1,0):
xxi(1) = x3 - x4
xet(1) = x4 - x1
xze(1) = x8 - x4
xxi(2) = y3 - y4
xet(2) = y4 - y1
xze(2) = y8 - y4
xxi(3) = z3 - z4
xet(3) = z4 - z1
xze(3) = z8 - z4
jacobi = CRSDOT(xxi,xet,xze)
jacmn = min(jacobi, jacmn)
C... J(0,0,1):
xxi(1) = x6 - x5
xet(1) = x8 - x5
xze(1) = x5 - x1
xxi(2) = y6 - y5
xet(2) = y8 - y5
xze(2) = y5 - y1
xxi(3) = z6 - z5
xet(3) = z8 - z5
xze(3) = z5 - z1
jacobi = CRSDOT(xxi,xet,xze)
jacmn = min(jacobi, jacmn)
C... J(1,1,0):
xxi(1) = x3 - x4
xet(1) = x3 - x2
xze(1) = x7 - x3
xxi(2) = y3 - y4
xet(2) = y3 - y2
xze(2) = y7 - y3
xxi(3) = z3 - z4
xet(3) = z3 - z2
xze(3) = z7 - z3
jacobi = CRSDOT(xxi,xet,xze)
jacmn = min(jacobi, jacmn)
C... J(1,0,1):
xxi(1) = x6 - x5
xet(1) = x7 - x6
xze(1) = x6 - x2
xxi(2) = y6 - y5
xet(2) = y7 - y6
xze(2) = y6 - y2
xxi(3) = z6 - z5
xet(3) = z7 - z6
xze(3) = z6 - z2
jacobi = CRSDOT(xxi,xet,xze)
jacmn = min(jacobi, jacmn)
C... J(0,1,1):
xxi(1) = x7 - x8
xet(1) = x8 - x5
xze(1) = x8 - x4
xxi(2) = y7 - y8
xet(2) = y8 - y5
xze(2) = y8 - y4
xxi(3) = z7 - z8
xet(3) = z8 - z5
xze(3) = z8 - z4
jacobi = CRSDOT(xxi,xet,xze)
jacmn = min(jacobi, jacmn)
C... J(1,1,1):
xxi(1) = x7 - x8
xet(1) = x7 - x6
xze(1) = x7 - x3
xxi(2) = y7 - y8
xet(2) = y7 - y6
xze(2) = y7 - y3
xxi(3) = z7 - z8
xet(3) = z7 - z6
xze(3) = z7 - z3
jacobi = CRSDOT(xxi,xet,xze)
jacmn = min(jacobi, jacmn)
return
end
REAL FUNCTION CRSDOT(a, b, c)
REAL a(3), b(3), c(3)
C ... Compute d = a dot (b cross c)
REAL xcross, ycross, zcross
xcross = b(2) * c(3) - b(3) * c(2)
ycross = b(3) * c(1) - b(1) * c(3)
zcross = b(1) * c(2) - b(2) * c(1)
crsdot = (a(1) * xcross + a(2) * ycross + a(3) * zcross)
return
end
| bsd-3-clause |
scipy/scipy | scipy/linalg/src/det.f | 29 | 4787 |
c Calculate determinant of square matrix
c Author: Pearu Peterson, March 2002
c
c prefixes: d,z,s,c (double,complex double,float,complex float)
c suffixes: _c,_r (column major order,row major order)
subroutine ddet_c(det,a,n,piv,info)
integer n,piv(n),i,info
double precision det,a(n,n)
cf2py intent(in,copy) :: a
cf2py intent(out) :: det,info
cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv
cf2py integer intent(hide),depend(a) :: n = shape(a,0)
cf2py check(shape(a,0)==shape(a,1)) :: a
cf2py callprotoargument double*,double*,int*,int*,int*
external dgetrf
call dgetrf(n,n,a,n,piv,info)
det = 0d0
if (info.ne.0) then
return
endif
det = 1d0
do 10,i=1,n
if (piv(i).ne.i) then
det = -det * a(i,i)
else
det = det * a(i,i)
endif
10 continue
end
subroutine ddet_r(det,a,n,piv,info)
integer n,piv(n),info
double precision det,a(n,n)
cf2py intent(c,in,copy) :: a
cf2py intent(out) :: det,info
cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv
cf2py integer intent(hide),depend(a) :: n = shape(a,0)
cf2py check(shape(a,0)==shape(a,1)) :: a
cf2py callprotoargument double*,double*,int*,int*,int*
external ddet_c
call ddet_c(det,a,n,piv,info)
end
subroutine sdet_c(det,a,n,piv,info)
integer n,piv(n),i,info
real det,a(n,n)
cf2py intent(in,copy) :: a
cf2py intent(out) :: det,info
cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv
cf2py integer intent(hide),depend(a) :: n = shape(a,0)
cf2py check(shape(a,0)==shape(a,1)) :: a
cf2py callprotoargument float*,float*,int*,int*,int*
external sgetrf
call sgetrf(n,n,a,n,piv,info)
det = 0e0
if (info.ne.0) then
return
endif
det = 1e0
do 10,i=1,n
if (piv(i).ne.i) then
det = -det * a(i,i)
else
det = det * a(i,i)
endif
10 continue
end
subroutine sdet_r(det,a,n,piv,info)
integer n,piv(n),info
real det,a(n,n)
cf2py intent(c,in,copy) :: a
cf2py intent(out) :: det,info
cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv
cf2py integer intent(hide),depend(a) :: n = shape(a,0)
cf2py check(shape(a,0)==shape(a,1)) :: a
cf2py callprotoargument float*,float*,int*,int*,int*
external sdet_c
call sdet_c(det,a,n,piv,info)
end
subroutine zdet_c(det,a,n,piv,info)
integer n,piv(n),i,info
complex*16 det,a(n,n)
cf2py intent(in,copy) :: a
cf2py intent(out) :: det,info
cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv
cf2py integer intent(hide),depend(a) :: n = shape(a,0)
cf2py check(shape(a,0)==shape(a,1)) :: a
cf2py callprotoargument complex_double*,complex_double*,int*,int*,int*
external zgetrf
call zgetrf(n,n,a,n,piv,info)
det = (0d0,0d0)
if (info.ne.0) then
return
endif
det = (1d0,0d0)
do 10,i=1,n
if (piv(i).ne.i) then
det = -det * a(i,i)
else
det = det * a(i,i)
endif
10 continue
end
subroutine zdet_r(det,a,n,piv,info)
integer n,piv(n),info
complex*16 det,a(n,n)
cf2py intent(c,in,copy) :: a
cf2py intent(out) :: det,info
cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv
cf2py integer intent(hide),depend(a) :: n = shape(a,0)
cf2py check(shape(a,0)==shape(a,1)) :: a
cf2py callprotoargument complex_double*,complex_double*,int*,int*,int*
external zdet_c
call zdet_c(det,a,n,piv,info)
end
subroutine cdet_c(det,a,n,piv,info)
integer n,piv(n),i,info
complex det,a(n,n)
cf2py intent(in,copy) :: a
cf2py intent(out) :: det,info
cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv
cf2py integer intent(hide),depend(a) :: n = shape(a,0)
cf2py check(shape(a,0)==shape(a,1)) :: a
cf2py callprotoargument complex_float*,complex_float*,int*,int*,int*
external cgetrf
call cgetrf(n,n,a,n,piv,info)
det = (0e0,0e0)
if (info.ne.0) then
return
endif
det = (1e0,0e0)
do 10,i=1,n
if (piv(i).ne.i) then
det = -det * a(i,i)
else
det = det * a(i,i)
endif
10 continue
end
subroutine cdet_r(det,a,n,piv,info)
integer n,piv(n),info
complex det,a(n,n)
cf2py intent(c,in,copy) :: a
cf2py intent(out) :: det,info
cf2py integer intent(hide,cache),depend(n),dimension(n) :: piv
cf2py integer intent(hide),depend(a) :: n = shape(a,0)
cf2py check(shape(a,0)==shape(a,1)) :: a
cf2py callprotoargument complex_float*,complex_float*,int*,int*,int*
external cdet_c
call cdet_c(det,a,n,piv,info)
end
| bsd-3-clause |
nschloe/seacas | packages/seacas/applications/grepos/gp_chkss.f | 1 | 2028 | C Copyright(C) 2011-2017 National Technology & Engineering Solutions of
C Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
C NTESS, the U.S. Government retains certain rights in this software.
C
C Redistribution and use in source and binary forms, with or without
C modification, are permitted provided that the following conditions are
C met:
C
C * Redistributions of source code must retain the above copyright
C notice, this list of conditions and the following disclaimer.
C
C * Redistributions in binary form must reproduce the above
C copyright notice, this list of conditions and the following
C disclaimer in the documentation and/or other materials provided
C with the distribution.
C
C * Neither the name of NTESS nor the names of its
C contributors may be used to endorse or promote products derived
C from this software without specific prior written permission.
C
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
C "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
C LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
C A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
C OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
C SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
C LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
C DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
C THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
C (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
C OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
subroutine chkss(nelblk, numelb, iblock)
INTEGER NUMELB(*)
INTEGER iblock(*)
itot = 0
do 10 i=1, nelblk
iblock(i) = itot + numelb(i)
itot = itot + numelb(i)
10 continue
return
end
| bsd-3-clause |
puppeh/gcc-6502 | gcc/testsuite/gfortran.dg/entry_13.f90 | 136 | 1751 | ! { dg-do run }
! Tests the fix for pr31214, in which the typespec for the entry would be lost,
! thereby causing the function to be disallowed, since the function and entry
! types did not match.
!
! Contributed by Joost VandeVondele <jv244@cam.ac.uk>
!
module type_mod
implicit none
type x
real x
end type x
type y
real x
end type y
type z
real x
end type z
interface assignment(=)
module procedure equals
end interface assignment(=)
interface operator(//)
module procedure a_op_b, b_op_a
end interface operator(//)
interface operator(==)
module procedure a_po_b, b_po_a
end interface operator(==)
contains
subroutine equals(x,y)
type(z), intent(in) :: y
type(z), intent(out) :: x
x%x = y%x
end subroutine equals
function a_op_b(a,b)
type(x), intent(in) :: a
type(y), intent(in) :: b
type(z) a_op_b
type(z) b_op_a
a_op_b%x = a%x + b%x
return
entry b_op_a(b,a)
b_op_a%x = a%x - b%x
end function a_op_b
function a_po_b(a,b)
type(x), intent(in) :: a
type(y), intent(in) :: b
type(z) a_po_b
type(z) b_po_a
entry b_po_a(b,a)
a_po_b%x = a%x/b%x
end function a_po_b
end module type_mod
program test
use type_mod
implicit none
type(x) :: x1 = x(19.0_4)
type(y) :: y1 = y(7.0_4)
type(z) z1
z1 = x1//y1
if (abs(z1%x - (19.0_4 + 7.0_4)) > epsilon(x1%x)) call abort ()
z1 = y1//x1
if (abs(z1%x - (19.0_4 - 7.0_4)) > epsilon(x1%x)) call abort ()
z1 = x1==y1
if (abs(z1%x - 19.0_4/7.0_4) > epsilon(x1%x)) call abort ()
z1 = y1==x1
if (abs(z1%x - 19.0_4/7.0_4) > epsilon(x1%x)) call abort ()
end program test
| gpl-2.0 |
nschloe/seacas | packages/zoltan/src/fdriver/fdr_param_file.f90 | 2 | 19252 | !!
!! @HEADER
!!
!!!!**********************************************************************
!!
!! Zoltan Toolkit for Load-balancing, Partitioning, Ordering and Coloring
!! Copyright 2012 Sandia Corporation
!!
!! Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
!! the U.S. Government retains certain rights in this software.
!!
!! Redistribution and use in source and binary forms, with or without
!! modification, are permitted provided that the following conditions are
!! met:
!!
!! 1. Redistributions of source code must retain the above copyright
!! notice, this list of conditions and the following disclaimer.
!!
!! 2. Redistributions in binary form must reproduce the above copyright
!! notice, this list of conditions and the following disclaimer in the
!! documentation and/or other materials provided with the distribution.
!!
!! 3. Neither the name of the Corporation nor the names of the
!! contributors may be used to endorse or promote products derived from
!! this software without specific prior written permission.
!!
!! THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
!! EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
!! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
!! CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
!! EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
!! PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
!! PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
!! LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
!! NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
!! SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
!!
!! Questions? Contact Karen Devine kddevin@sandia.gov
!! Erik Boman egboman@sandia.gov
!!
!!!!**********************************************************************
!!
!! @HEADER
!!
! ***************************************************************************
!
! Code imported to Zoltan zdrive from
!
! zoltanParams_read_file.c
!
! Read Zoltan parameters from a file, call Zoltan to set the parameters
!
! zoltanParams library
!
! Jim Teresco
!
! Department of Computer Science
! Williams College
!
! and
!
! Computer Science Research Institute
! Sandia National Laboratories
!
!
! Translated to Fortran by Bill Mitchell, NIST, March 2007
module dr_param_file
!#include <stdio.h>
!#include <mpi.h>
!#include <stdlib.h>
!#include "zoltan.h"
use zoltan
use mpi_h
implicit none
private
! Are other routines public? If so, add them separated by commas. Use
! an amperstand at the end of the line to continue on another line.
public ztnPrm_read_file
! standard error and standard out are not standardized in Fortran 90, but most
! compilers use units 0 (most) and 6 (universal). Change here if necessary.
integer, parameter :: stderr = 0, stdout = 6
!#define DEBUG 1
logical, parameter :: DEBUG = .false.
!struct zoltanParams_list_entry {
! char *param;
! char *value;
! struct zoltanParams_list_entry *next;
!};
! unknown length character strings are tricky in Fortran, just pick a
! length that is hopefully big enough. Change it here if necessary.
integer, parameter :: MAX_CHAR_LEN = 128
type ztnPrm_list_entry
character(len=MAX_CHAR_LEN) :: param
character(len=MAX_CHAR_LEN) :: value
type (ztnPrm_list_entry), pointer :: next
end type ztnPrm_list_entry
!struct zoltanParams_hier_struct {
! int partition;
! struct zoltanParams_list_entry *first;
!};
type ztnPrm_hier_struct
integer :: partition
type (ztnPrm_list_entry), pointer :: first
end type ztnPrm_hier_struct
!static struct zoltanParams_hier_struct **zph = NULL;
!static int num_levels = 0;
!static MPI_Comm comm;
! I think the use of **zph is as an allocatable array
type(ztnPrm_hier_struct), save, allocatable :: zph(:)
integer :: num_levels = 0
integer :: comm
contains
!static void check_level(int level) {
!
! if (!zph) {
! fprintf(stderr,"check_level: must set number of levels first\n");
! return;
! }
!
! if (level >= num_levels) {
! fprintf(stderr,"check_level: invalid level\n");
! }
!}
subroutine check_level(level)
integer :: level
if (.not. allocated(zph)) then
write(stderr,*) "check_level: must set number of levels first"
return
endif
if (level >= num_levels) then
write(stderr,*) "check_level: invalid level"
endif
end subroutine check_level
!void zoltanParams_hier_free() {
! int i;
!
! if (!zph) {
! fprintf(stderr, "zoltanParams_hier_free warning: not allocated\n");
! return;
! }
!
! for (i=0; i<num_levels; i++) {
! free(zph[i]);
! }
!
! free(zph);
!}
subroutine ztnPrm_hier_free()
integer :: i
if (.not. allocated(zph)) then
write(stderr,*) "ztnPrm_hier_free warning: not allocated"
return
endif
deallocate(zph)
end subroutine ztnPrm_hier_free
!void zoltanParams_hier_set_num_levels(int levels) {
! int i;
subroutine ztnPrm_hier_set_num_levels(levels)
integer :: levels
integer :: i, astat
!#ifdef DEBUG
! printf("(zoltanParams_hier_set_num_levels) setting to %d\n", levels);
!#endif
if (DEBUG) then
write(stdout,*) "(ztnPrm_hier_set_num_levels) setting to ",levels
endif
! if (zph) {
! fprintf(stderr,"zoltanParams_hier_set_num_levels warning: already initialized, reinitializing\n");
! zoltanParams_hier_free();
! }
if (allocated(zph)) then
write(stderr,*) "ztnPrm_hier_set_num_levels warning: already initialized, reinitializing"
call ztnPrm_hier_free()
endif
! if (levels <= 0) {
! fprintf(stderr, "(zoltanParams_hier_set_num_levels) num levels must be positive\n");
! return;
! }
if (levels <= 0) then
write(stderr,*) "(ztnPrm_hier_set_num_levels) num levels must be positive"
return
endif
! num_levels = levels;
!
! SAFE_MALLOC(zph, struct zoltanParams_hier_struct **,
! sizeof(struct zoltanParams_hier_struct *) * levels);
!
! for (i=0; i<levels; i++) {
! SAFE_MALLOC(zph[i], struct zoltanParams_hier_struct *,
! sizeof (struct zoltanParams_hier_struct));
! zph[i]->partition = 0;
! zph[i]->first = NULL;
! }
num_levels = levels
allocate(zph(0:levels-1),stat=astat)
if (astat /= 0) then
write(stderr,*) "allocation failed in ztnPrm_hier_set_num_level"
stop
endif
do i=0,levels-1
zph(i)%partition = 0
nullify(zph(i)%first)
end do
!}
end subroutine ztnPrm_hier_set_num_levels
!void zoltanParams_hier_set_partition(int level, int partition) {
!
!#ifdef DEBUG
! int mypid;
! MPI_Comm_rank(comm, &mypid);
!
! printf("[%d] will compute partition %d at level %d\n",
! mypid, partition, level);
!#endif
!
! check_level(level);
!
! zph[level]->partition = partition;
!}
subroutine ztnPrm_hier_set_partition(level,partition)
integer :: level, partition
integer :: mypid, ierr
if (DEBUG) then
call MPI_Comm_rank(comm,mypid,ierr)
write(stdout,*) "[",mypid,"] will compute partition ",partition," at level ",level
endif
call check_level(level)
zph(level)%partition = partition
end subroutine ztnPrm_hier_set_partition
!void zoltanParams_hier_set_param(int level, char *param, char *value) {
! struct zoltanParams_list_entry *newparam, *nextparam;
subroutine ztnPrm_hier_set_param(level,param,value)
integer :: level
character(len=*) :: param, value
type(ztnPrm_list_entry), pointer :: newparam, nextparam
integer :: mypid, ierr, astat
!#ifdef DEBUG
! int mypid;
! MPI_Comm_rank(comm, &mypid);
! printf("[%d] will set param <%s> to <%s> at level %d\n",
! mypid, param, value, level);
!#endif
if (DEBUG) then
call MPI_Comm_rank(comm,mypid,ierr)
write(stdout,*) "[",mypid,"] will set param ",trim(param)," to ",trim(value)," at level ",level
endif
! check_level(level);
!
! SAFE_MALLOC(newparam, struct zoltanParams_list_entry *,
! sizeof(struct zoltanParams_list_entry));
call check_level(level)
allocate(newparam,stat=astat)
if (astat /= 0) then
write(stderr,*) "allocation failed in ztnPrm_hier_set_param"
stop
endif
! newparam->param = strdup(param);
! newparam->value = strdup(value);
! newparam->next = NULL;
newparam%param = param
newparam%value = value
nullify(newparam%next)
! if (!zph[level]->first) {
! zph[level]->first = newparam;
! return;
! }
if (.not. associated(zph(level)%first)) then
zph(level)%first => newparam
return
endif
! nextparam = zph[level]->first;
! while (nextparam->next) nextparam=nextparam->next;
! nextparam->next = newparam;
nextparam => zph(level)%first
do while (associated(nextparam%next))
nextparam => nextparam%next
end do
nextparam%next => newparam
!}
end subroutine ztnPrm_hier_set_param
!int zoltanParams_hier_get_num_levels() {
!
! return num_levels;
!}
function ztnPrm_hier_get_num_levels()
integer :: ztnPrm_hier_get_num_levels
ztnPrm_hier_get_num_levels = num_levels
end function ztnPrm_hier_get_num_levels
!int zoltanParams_hier_get_part(int level) {
!
! check_level(level);
!
! return zph[level]->partition;
!}
function ztnPrm_hier_get_part(level)
integer :: level
integer :: ztnPrm_hier_get_part
call check_level(level)
ztnPrm_hier_get_part = zph(level)%partition
end function ztnPrm_hier_get_part
!void zoltanParams_hier_use_params(int level, struct Zoltan_Struct *zz, int *ierr) {
! struct zoltanParams_list_entry *nextparam;
!
! *ierr = ZOLTAN_OK;
! check_level(level);
!
! nextparam = zph[level]->first;
!
! while (nextparam) {
! *ierr = Zoltan_Set_Param(zz, nextparam->param, nextparam->value);
! if (*ierr != ZOLTAN_OK) return;
! nextparam = nextparam->next;
! }
!
!}
subroutine ztnPrm_hier_use_params(level,zz,ierr)
integer :: level
type(Zoltan_Struct), pointer :: zz
integer :: ierr
type(ztnPrm_list_entry), pointer :: nextparam
ierr = ZOLTAN_OK
call check_level(level)
nextparam => zph(level)%first
do while (associated(nextparam))
ierr = Zoltan_Set_Param(zz, nextparam%param, nextparam%value)
if (ierr /= ZOLTAN_OK) return
nextparam => nextparam%next
end do
end subroutine ztnPrm_hier_use_params
!static int get_num_levels(void *data, int *ierr) {
!
! *ierr = ZOLTAN_OK;
! return zoltanParams_hier_get_num_levels();
!}
function get_num_levels(data, ierr)
integer(Zoltan_INT), intent(in) :: data(*)
integer(Zoltan_INT), intent(out) :: ierr
integer(Zoltan_INT) :: get_num_levels
ierr = ZOLTAN_OK
get_num_levels = ztnPrm_hier_get_num_levels()
end function get_num_levels
!static int get_part(void *data, int level, int *ierr) {
!
! *ierr = ZOLTAN_OK;
!
! return ztnPrm_hier_get_part(level);
!}
function get_part(data, level, ierr)
integer(Zoltan_INT), intent(in) :: data(*)
integer(Zoltan_INT), intent(in) :: level
integer(Zoltan_INT), intent(out) :: ierr
integer(Zoltan_INT) :: get_part
ierr = ZOLTAN_OK
get_part = ztnPrm_hier_get_part(level)
end function get_part
!static void get_method(void *data, int level, struct Zoltan_Struct *zz,
! int *ierr) {
!
! zoltanParams_hier_use_params(level, zz, ierr);
!}
subroutine get_method(data,level,azz,ierr)
integer(Zoltan_INT), intent(in) :: data(*)
integer(Zoltan_INT), intent(in) :: level
type(Zoltan_Struct), intent(in), target :: azz
integer(Zoltan_INT), intent(out) :: ierr
type(Zoltan_Struct), pointer :: zz
zz => azz
call ztnPrm_hier_use_params(level, zz, ierr)
end subroutine get_method
!void zoltanParams_set_comm(MPI_Comm thecomm) {
!
! remember the comm passed in
! MPI_Comm_dup(thecomm, &comm);
!}
subroutine ztnPrm_set_comm(thecomm)
integer :: thecomm
integer :: ierr
! remember the comm passed in
call MPI_Comm_dup(thecomm, comm, ierr)
end subroutine ztnPrm_set_comm
!void zoltanParams_hier_setup(struct Zoltan_Struct *zz) {
!
! make sure the hierarchical balancing callbacks are in place
! if (Zoltan_Set_Fn(zz, ZOLTAN_HIER_NUM_LEVELS_FN_TYPE,
! (void (*)()) get_num_levels, NULL) == ZOLTAN_FATAL) {
! fprintf(stderr,"zoltanParams_hier_setup: set NUM_LEVELS callback failed\n");
! }
!
! if (Zoltan_Set_Fn(zz, ZOLTAN_HIER_PARTITION_FN_TYPE,
! (void (*)()) get_part, NULL) == ZOLTAN_FATAL) {
! fprintf(stderr,"zoltanParams_hier_setup: set PARTITION callback failed\n");
! }
!
! if (Zoltan_Set_Fn(zz, ZOLTAN_HIER_METHOD_FN_TYPE,
! (void (*)()) get_method, NULL) == ZOLTAN_FATAL) {
! fprintf(stderr,"zoltanParams_hier_setup: set METHOD callback failed\n");
! }
!}
subroutine ztnPrm_hier_setup(zz)
type(Zoltan_Struct), pointer :: zz
integer(Zoltan_INT) :: dummy(1) = (/0/)
! make sure the hierarchical balancing callbacks are in place
if (Zoltan_Set_Hier_Num_Levels_Fn(zz, get_num_levels, dummy) == &
ZOLTAN_FATAL) then
write(stderr,*) "ztnPrm_hier_setup: set NUM_LEVELS callback failed"
endif
if (Zoltan_Set_Hier_Part_Fn(zz, get_part, dummy) == &
ZOLTAN_FATAL) then
write(stderr,*) "ztnPrm_hier_setup: set PARTITION callback failed"
endif
if (Zoltan_Set_Hier_Method_Fn(zz, get_method, dummy) == &
ZOLTAN_FATAL) then
write(stderr,*) "ztnPrm_hier_setup: set METHOD callback failed"
endif
end subroutine ztnPrm_hier_setup
!
!
! zoltanParams_read_file
!
! Set up the given Zoltan_Struct with parameters as specified
! in the given file.
!
! File format:
!
! Lines of the format:
! ZOLTAN_PARAM PARAM_VALUE
!
! If the parameter is LB_METHOD set to HIER, the next part of the file
! is interpreted as hierarchical balancing parameters:
!
! num_levels
! level 0 partitions for each proc
! level 0 parameters
! end with LEVEL END
! level 1 partitions for each proc
! level 1 parameters
! end with LEVEL END
! ...
!
! End file with EOF
!
!
!void zoltanParams_read_file(struct Zoltan_Struct *lb, char *file,
! MPI_Comm thecomm) {
! FILE *fp;
! char str1[500], str2[500];
! int numlevels, level, partition, proc;
! int ierr;
! int mypid, numprocs;
subroutine ztnPrm_read_file(lb, file, thecomm)
type(Zoltan_Struct), pointer :: lb
character(len=*) :: file
integer :: thecomm
integer :: fp
character(len=500) :: str1, str2
integer :: numlevels, level, proc
integer :: ierr
integer :: mypid, numprocs
logical :: not2
integer, allocatable :: partition(:)
! remember the comm passed in
! MPI_Comm_dup(thecomm, &comm);
!
! MPI_Comm_rank(comm, &mypid);
! MPI_Comm_size(comm, &numprocs);
! remember the comm passed in
call MPI_Comm_dup(thecomm, comm, ierr)
call MPI_Comm_rank(comm, mypid, ierr)
call MPI_Comm_size(comm, numprocs, ierr)
! fp = fopen(file, "r");
! if (!fp) {
! fprintf(stderr,"Cannot open file %s for reading", file);
! return;
! }
! Assume unit 9 is available. If it isn't, an error will be reported and
! you can change it to some other positive integer, not too big.
fp = 9
open(unit=fp,file=trim(file),action="read",iostat=ierr)
if (ierr /= 0) then
write(stderr,*) "cannot open file ",trim(file)," for reading"
return
endif
!#ifdef DEBUG
! if (mypid == 0) {
! printf("Reading Zoltan parameters from file %s\n", file);
! }
!#endif
if (DEBUG) then
if (mypid == 0) then
write(stdout,*) "Reading Zoltan parameters from file ",trim(file)
endif
endif
! while (fscanf(fp, "%s %s\n", str1, str2) == 2) {
do
call myread(fp, str1, str2, not2)
if (not2) exit
! ierr = Zoltan_Set_Param(lb, str1, str2);
! if (ierr != ZOLTAN_OK) {
! fprintf(stderr,"Zoltan_Set_Param failed to set param <%s> to <%s>",str1,str2);
! }
!#ifdef DEBUG
! else {
! if (mypid == 0) {
! printf("Set Zoltan parameter <%s> to <%s>\n", str1, str2);
! }
! }
!#endif
! get rid of the leading space left on str2
str2 = adjustl(str2)
ierr = Zoltan_Set_Param(lb, trim(str1), trim(str2))
if (ierr /= ZOLTAN_OK) then
write(stderr,*) "Zoltan_Set_Param failed to set param ",trim(str1)," to ",trim(str2)
endif
if (DEBUG) then
if (ierr == ZOLTAN_OK) then
if (mypid == 0) then
write(stdout,*) "Set Zoltan parameter ",trim(str1)," to ",trim(str2)
endif
endif
endif
! if (strcmp(str1,"LB_METHOD") == 0 && strcmp(str2,"HIER") == 0) {
if (trim(str1) == "LB_METHOD" .and. trim(str2) == "HIER") then
! zoltanParams_hier_setup(lb);
call ztnPrm_hier_setup(lb)
! the rest of the file contains hierarchical balancing parameters
! fscanf(fp, "%d", &numlevels);
! the rest of the file contains hierarchical balancing parameters
! The line containing numlevels is already in str1 (NO - it's next in the file)
read(fp,*) numlevels
!#ifdef DEBUG
! printf("[%d] read in numlevels=%d\n", mypid, numlevels);
!#endif
if (DEBUG) then
write(stdout,*) "[",mypid,"] read in numlevels=",numlevels
endif
! zoltanParams_hier_set_num_levels(numlevels);
call ztnPrm_hier_set_num_levels(numlevels)
! for (level=0; level<numlevels; level++) {
! first, a list of partitions for each proc should be in the file
! for (proc=0; proc<numprocs; proc++) {
! fscanf(fp, "%d", &partition);
! if (proc == mypid) zoltanParams_hier_set_partition(level, partition);
! }
allocate(partition(0:numprocs-1))
! probably should check that allocate succeeded
do level=0,numlevels-1
read(fp,*) partition ! assumes the line has exactly numprocs numbers
call ztnPrm_hier_set_partition(level,partition(mypid))
! then parameters until we get LEVEL END
! while ((fscanf(fp, "%s %s\n", str1, str2) == 2) &&
! (strcmp(str1, "LEVEL") != 0) &&
! (strcmp(str2, "END") != 0)) {
!
! zoltanParams_hier_set_param(level, str1, str2);
! }
! }
! then parameters until we get LEVEL END
do
read(fp,*) str1, str2
str2 = adjustl(str2)
if (trim(str1) == "LEVEL" .and. trim(str2) == "END") exit
call ztnPrm_hier_set_param(level, str1, str2)
end do
end do
deallocate(partition)
! }
endif
! }
end do
! fclose(fp);
close(fp)
!}
end subroutine ztnPrm_read_file
! Fortran will generate an error if we try to read 2 strings and there is
! only 1 there. So we have to read the whole line into a string and
! see if there are 1 or 2 strings in there. Then read the individual
! strings and return them with a flag indicating if there are 1 or 2.
subroutine myread(runit,str1,str2,not2)
integer :: runit
character(len=*) :: str1, str2
logical :: not2
integer :: iostat
! assume 1000 is plenty long for an input line.
character(len=1000) :: line
! read the whole input line
read(runit,"(A)",iostat=iostat) line
! end of file?
if (iostat /= 0) then
not2 = .true.
else
! remove leading blanks
line = adjustl(line)
! read the first string
read(line,*) str1
! if the length of the whole line with leading and trailing blanks removed
! is the same as the length of the first string, then there is only 1 string
if (len_trim(line) == len_trim(str1)) then
not2 = .true.
! otherwise, read the second line
else
not2 = .false.
read(line(len_trim(str1)+1:),"(A)") str2
endif
endif
end subroutine myread
end module dr_param_file
| bsd-3-clause |
dch312/scipy | scipy/integrate/quadpack/dqagi.f | 109 | 8806 | subroutine dqagi(f,bound,inf,epsabs,epsrel,result,abserr,neval,
* ier,limit,lenw,last,iwork,work)
c***begin prologue dqagi
c***date written 800101 (yymmdd)
c***revision date 830518 (yymmdd)
c***category no. h2a3a1,h2a4a1
c***keywords automatic integrator, infinite intervals,
c general-purpose, transformation, extrapolation,
c globally adaptive
c***author piessens,robert,appl. math. & progr. div. - k.u.leuven
c de doncker,elise,appl. math. & progr. div. -k.u.leuven
c***purpose the routine calculates an approximation result to a given
c integral i = integral of f over (bound,+infinity)
c or i = integral of f over (-infinity,bound)
c or i = integral of f over (-infinity,+infinity)
c hopefully satisfying following claim for accuracy
c abs(i-result).le.max(epsabs,epsrel*abs(i)).
c***description
c
c integration over infinite intervals
c standard fortran subroutine
c
c parameters
c on entry
c f - double precision
c function subprogram defining the integrand
c function f(x). the actual name for f needs to be
c declared e x t e r n a l in the driver program.
c
c bound - double precision
c finite bound of integration range
c (has no meaning if interval is doubly-infinite)
c
c inf - integer
c indicating the kind of integration range involved
c inf = 1 corresponds to (bound,+infinity),
c inf = -1 to (-infinity,bound),
c inf = 2 to (-infinity,+infinity).
c
c epsabs - double precision
c absolute accuracy requested
c epsrel - double precision
c relative accuracy requested
c if epsabs.le.0
c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c the routine will end with ier = 6.
c
c
c on return
c result - double precision
c approximation to the integral
c
c abserr - double precision
c estimate of the modulus of the absolute error,
c which should equal or exceed abs(i-result)
c
c neval - integer
c number of integrand evaluations
c
c ier - integer
c ier = 0 normal and reliable termination of the
c routine. it is assumed that the requested
c accuracy has been achieved.
c - ier.gt.0 abnormal termination of the routine. the
c estimates for result and error are less
c reliable. it is assumed that the requested
c accuracy has not been achieved.
c error messages
c ier = 1 maximum number of subdivisions allowed
c has been achieved. one can allow more
c subdivisions by increasing the value of
c limit (and taking the according dimension
c adjustments into account). however, if
c this yields no improvement it is advised
c to analyze the integrand in order to
c determine the integration difficulties. if
c the position of a local difficulty can be
c determined (e.g. singularity,
c discontinuity within the interval) one
c will probably gain from splitting up the
c interval at this point and calling the
c integrator on the subranges. if possible,
c an appropriate special-purpose integrator
c should be used, which is designed for
c handling the type of difficulty involved.
c = 2 the occurrence of roundoff error is
c detected, which prevents the requested
c tolerance from being achieved.
c the error may be under-estimated.
c = 3 extremely bad integrand behaviour occurs
c at some points of the integration
c interval.
c = 4 the algorithm does not converge.
c roundoff error is detected in the
c extrapolation table.
c it is assumed that the requested tolerance
c cannot be achieved, and that the returned
c result is the best which can be obtained.
c = 5 the integral is probably divergent, or
c slowly convergent. it must be noted that
c divergence can occur with any other value
c of ier.
c = 6 the input is invalid, because
c (epsabs.le.0 and
c epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
c or limit.lt.1 or leniw.lt.limit*4.
c result, abserr, neval, last are set to
c zero. exept when limit or leniw is
c invalid, iwork(1), work(limit*2+1) and
c work(limit*3+1) are set to zero, work(1)
c is set to a and work(limit+1) to b.
c
c dimensioning parameters
c limit - integer
c dimensioning parameter for iwork
c limit determines the maximum number of subintervals
c in the partition of the given integration interval
c (a,b), limit.ge.1.
c if limit.lt.1, the routine will end with ier = 6.
c
c lenw - integer
c dimensioning parameter for work
c lenw must be at least limit*4.
c if lenw.lt.limit*4, the routine will end
c with ier = 6.
c
c last - integer
c on return, last equals the number of subintervals
c produced in the subdivision process, which
c determines the number of significant elements
c actually in the work arrays.
c
c work arrays
c iwork - integer
c vector of dimension at least limit, the first
c k elements of which contain pointers
c to the error estimates over the subintervals,
c such that work(limit*3+iwork(1)),... ,
c work(limit*3+iwork(k)) form a decreasing
c sequence, with k = last if last.le.(limit/2+2), and
c k = limit+1-last otherwise
c
c work - double precision
c vector of dimension at least lenw
c on return
c work(1), ..., work(last) contain the left
c end points of the subintervals in the
c partition of (a,b),
c work(limit+1), ..., work(limit+last) contain
c the right end points,
c work(limit*2+1), ...,work(limit*2+last) contain the
c integral approximations over the subintervals,
c work(limit*3+1), ..., work(limit*3+last)
c contain the error estimates.
c***references (none)
c***routines called dqagie,xerror
c***end prologue dqagi
c
double precision abserr,bound,epsabs,epsrel,f,result,work
integer ier,inf,iwork,last,lenw,limit,lvl,l1,l2,l3,neval
c
dimension iwork(limit),work(lenw)
c
external f
c
c check validity of limit and lenw.
c
c***first executable statement dqagi
ier = 6
neval = 0
last = 0
result = 0.0d+00
abserr = 0.0d+00
if(limit.lt.1.or.lenw.lt.limit*4) go to 10
c
c prepare call for dqagie.
c
l1 = limit+1
l2 = limit+l1
l3 = limit+l2
c
call dqagie(f,bound,inf,epsabs,epsrel,limit,result,abserr,
* neval,ier,work(1),work(l1),work(l2),work(l3),iwork,last)
c
c call error handler if necessary.
c
lvl = 0
10 if(ier.eq.6) lvl = 1
if(ier.ne.0) call xerror('abnormal return from dqagi',26,ier,lvl)
return
end
| bsd-3-clause |
vigna/scipy | scipy/special/cdflib/gaminv.f | 151 | 10511 | SUBROUTINE gaminv(a,x,x0,p,q,ierr)
C ----------------------------------------------------------------------
C INVERSE INCOMPLETE GAMMA RATIO FUNCTION
C
C GIVEN POSITIVE A, AND NONEGATIVE P AND Q WHERE P + Q = 1.
C THEN X IS COMPUTED WHERE P(A,X) = P AND Q(A,X) = Q. SCHRODER
C ITERATION IS EMPLOYED. THE ROUTINE ATTEMPTS TO COMPUTE X
C TO 10 SIGNIFICANT DIGITS IF THIS IS POSSIBLE FOR THE
C PARTICULAR COMPUTER ARITHMETIC BEING USED.
C
C ------------
C
C X IS A VARIABLE. IF P = 0 THEN X IS ASSIGNED THE VALUE 0,
C AND IF Q = 0 THEN X IS SET TO THE LARGEST FLOATING POINT
C NUMBER AVAILABLE. OTHERWISE, GAMINV ATTEMPTS TO OBTAIN
C A SOLUTION FOR P(A,X) = P AND Q(A,X) = Q. IF THE ROUTINE
C IS SUCCESSFUL THEN THE SOLUTION IS STORED IN X.
C
C X0 IS AN OPTIONAL INITIAL APPROXIMATION FOR X. IF THE USER
C DOES NOT WISH TO SUPPLY AN INITIAL APPROXIMATION, THEN SET
C X0 .LE. 0.
C
C IERR IS A VARIABLE THAT REPORTS THE STATUS OF THE RESULTS.
C WHEN THE ROUTINE TERMINATES, IERR HAS ONE OF THE FOLLOWING
C VALUES ...
C
C IERR = 0 THE SOLUTION WAS OBTAINED. ITERATION WAS
C NOT USED.
C IERR.GT.0 THE SOLUTION WAS OBTAINED. IERR ITERATIONS
C WERE PERFORMED.
C IERR = -2 (INPUT ERROR) A .LE. 0
C IERR = -3 NO SOLUTION WAS OBTAINED. THE RATIO Q/A
C IS TOO LARGE.
C IERR = -4 (INPUT ERROR) P + Q .NE. 1
C IERR = -6 20 ITERATIONS WERE PERFORMED. THE MOST
C RECENT VALUE OBTAINED FOR X IS GIVEN.
C THIS CANNOT OCCUR IF X0 .LE. 0.
C IERR = -7 ITERATION FAILED. NO VALUE IS GIVEN FOR X.
C THIS MAY OCCUR WHEN X IS APPROXIMATELY 0.
C IERR = -8 A VALUE FOR X HAS BEEN OBTAINED, BUT THE
C ROUTINE IS NOT CERTAIN OF ITS ACCURACY.
C ITERATION CANNOT BE PERFORMED IN THIS
C CASE. IF X0 .LE. 0, THIS CAN OCCUR ONLY
C WHEN P OR Q IS APPROXIMATELY 0. IF X0 IS
C POSITIVE THEN THIS CAN OCCUR WHEN A IS
C EXCEEDINGLY CLOSE TO X AND A IS EXTREMELY
C LARGE (SAY A .GE. 1.E20).
C ----------------------------------------------------------------------
C WRITTEN BY ALFRED H. MORRIS, JR.
C NAVAL SURFACE WEAPONS CENTER
C DAHLGREN, VIRGINIA
C -------------------
C .. Scalar Arguments ..
DOUBLE PRECISION a,p,q,x,x0
INTEGER ierr
C ..
C .. Local Scalars ..
DOUBLE PRECISION a0,a1,a2,a3,am1,amax,ap1,ap2,ap3,apn,b,b1,b2,b3,
+ b4,c,c1,c2,c3,c4,c5,d,e,e2,eps,g,h,ln10,pn,qg,qn,
+ r,rta,s,s2,sum,t,tol,u,w,xmax,xmin,xn,y,z
INTEGER iop
C ..
C .. Local Arrays ..
DOUBLE PRECISION amin(2),bmin(2),dmin(2),emin(2),eps0(2)
C ..
C .. External Functions ..
DOUBLE PRECISION alnrel,gamln,gamln1,gamma,rcomp,spmpar
EXTERNAL alnrel,gamln,gamln1,gamma,rcomp,spmpar
C ..
C .. External Subroutines ..
EXTERNAL gratio
C ..
C .. Intrinsic Functions ..
INTRINSIC abs,dble,dlog,dmax1,exp,sqrt
C ..
C .. Data statements ..
C -------------------
C LN10 = LN(10)
C C = EULER CONSTANT
C -------------------
C -------------------
C -------------------
C -------------------
DATA ln10/2.302585D0/
DATA c/.577215664901533D0/
DATA a0/3.31125922108741D0/,a1/11.6616720288968D0/,
+ a2/4.28342155967104D0/,a3/.213623493715853D0/
DATA b1/6.61053765625462D0/,b2/6.40691597760039D0/,
+ b3/1.27364489782223D0/,b4/.036117081018842D0/
DATA eps0(1)/1.D-10/,eps0(2)/1.D-08/
DATA amin(1)/500.0D0/,amin(2)/100.0D0/
DATA bmin(1)/1.D-28/,bmin(2)/1.D-13/
DATA dmin(1)/1.D-06/,dmin(2)/1.D-04/
DATA emin(1)/2.D-03/,emin(2)/6.D-03/
DATA tol/1.D-5/
C ..
C .. Executable Statements ..
C -------------------
C ****** E, XMIN, AND XMAX ARE MACHINE DEPENDENT CONSTANTS.
C E IS THE SMALLEST NUMBER FOR WHICH 1.0 + E .GT. 1.0.
C XMIN IS THE SMALLEST POSITIVE NUMBER AND XMAX IS THE
C LARGEST POSITIVE NUMBER.
C
e = spmpar(1)
xmin = spmpar(2)
xmax = spmpar(3)
C -------------------
x = 0.0D0
IF (a.LE.0.0D0) GO TO 300
t = dble(p) + dble(q) - 1.D0
IF (abs(t).GT.e) GO TO 320
C
ierr = 0
IF (p.EQ.0.0D0) RETURN
IF (q.EQ.0.0D0) GO TO 270
IF (a.EQ.1.0D0) GO TO 280
C
e2 = 2.0D0*e
amax = 0.4D-10/ (e*e)
iop = 1
IF (e.GT.1.D-10) iop = 2
eps = eps0(iop)
xn = x0
IF (x0.GT.0.0D0) GO TO 160
C
C SELECTION OF THE INITIAL APPROXIMATION XN OF X
C WHEN A .LT. 1
C
IF (a.GT.1.0D0) GO TO 80
g = gamma(a+1.0D0)
qg = q*g
IF (qg.EQ.0.0D0) GO TO 360
b = qg/a
IF (qg.GT.0.6D0*a) GO TO 40
IF (a.GE.0.30D0 .OR. b.LT.0.35D0) GO TO 10
t = exp(- (b+c))
u = t*exp(t)
xn = t*exp(u)
GO TO 160
C
10 IF (b.GE.0.45D0) GO TO 40
IF (b.EQ.0.0D0) GO TO 360
y = -dlog(b)
s = 0.5D0 + (0.5D0-a)
z = dlog(y)
t = y - s*z
IF (b.LT.0.15D0) GO TO 20
xn = y - s*dlog(t) - dlog(1.0D0+s/ (t+1.0D0))
GO TO 220
20 IF (b.LE.0.01D0) GO TO 30
u = ((t+2.0D0* (3.0D0-a))*t+ (2.0D0-a)* (3.0D0-a))/
+ ((t+ (5.0D0-a))*t+2.0D0)
xn = y - s*dlog(t) - dlog(u)
GO TO 220
30 c1 = -s*z
c2 = -s* (1.0D0+c1)
c3 = s* ((0.5D0*c1+ (2.0D0-a))*c1+ (2.5D0-1.5D0*a))
c4 = -s* (((c1/3.0D0+ (2.5D0-1.5D0*a))*c1+ ((a-6.0D0)*a+7.0D0))*
+ c1+ ((11.0D0*a-46)*a+47.0D0)/6.0D0)
c5 = -s* ((((-c1/4.0D0+ (11.0D0*a-17.0D0)/6.0D0)*c1+ ((-3.0D0*a+
+ 13.0D0)*a-13.0D0))*c1+0.5D0* (((2.0D0*a-25.0D0)*a+72.0D0)*a-
+ 61.0D0))*c1+ (((25.0D0*a-195.0D0)*a+477.0D0)*a-379.0D0)/
+ 12.0D0)
xn = ((((c5/y+c4)/y+c3)/y+c2)/y+c1) + y
IF (a.GT.1.0D0) GO TO 220
IF (b.GT.bmin(iop)) GO TO 220
x = xn
RETURN
C
40 IF (b*q.GT.1.D-8) GO TO 50
xn = exp(- (q/a+c))
GO TO 70
50 IF (p.LE.0.9D0) GO TO 60
xn = exp((alnrel(-q)+gamln1(a))/a)
GO TO 70
60 xn = exp(dlog(p*g)/a)
70 IF (xn.EQ.0.0D0) GO TO 310
t = 0.5D0 + (0.5D0-xn/ (a+1.0D0))
xn = xn/t
GO TO 160
C
C SELECTION OF THE INITIAL APPROXIMATION XN OF X
C WHEN A .GT. 1
C
80 IF (q.LE.0.5D0) GO TO 90
w = dlog(p)
GO TO 100
90 w = dlog(q)
100 t = sqrt(-2.0D0*w)
s = t - (((a3*t+a2)*t+a1)*t+a0)/ ((((b4*t+b3)*t+b2)*t+b1)*t+1.0D0)
IF (q.GT.0.5D0) s = -s
C
rta = sqrt(a)
s2 = s*s
xn = a + s*rta + (s2-1.0D0)/3.0D0 + s* (s2-7.0D0)/ (36.0D0*rta) -
+ ((3.0D0*s2+7.0D0)*s2-16.0D0)/ (810.0D0*a) +
+ s* ((9.0D0*s2+256.0D0)*s2-433.0D0)/ (38880.0D0*a*rta)
xn = dmax1(xn,0.0D0)
IF (a.LT.amin(iop)) GO TO 110
x = xn
d = 0.5D0 + (0.5D0-x/a)
IF (abs(d).LE.dmin(iop)) RETURN
C
110 IF (p.LE.0.5D0) GO TO 130
IF (xn.LT.3.0D0*a) GO TO 220
y = - (w+gamln(a))
d = dmax1(2.0D0,a* (a-1.0D0))
IF (y.LT.ln10*d) GO TO 120
s = 1.0D0 - a
z = dlog(y)
GO TO 30
120 t = a - 1.0D0
xn = y + t*dlog(xn) - alnrel(-t/ (xn+1.0D0))
xn = y + t*dlog(xn) - alnrel(-t/ (xn+1.0D0))
GO TO 220
C
130 ap1 = a + 1.0D0
IF (xn.GT.0.70D0*ap1) GO TO 170
w = w + gamln(ap1)
IF (xn.GT.0.15D0*ap1) GO TO 140
ap2 = a + 2.0D0
ap3 = a + 3.0D0
x = exp((w+x)/a)
x = exp((w+x-dlog(1.0D0+ (x/ap1)* (1.0D0+x/ap2)))/a)
x = exp((w+x-dlog(1.0D0+ (x/ap1)* (1.0D0+x/ap2)))/a)
x = exp((w+x-dlog(1.0D0+ (x/ap1)* (1.0D0+ (x/ap2)* (1.0D0+
+ x/ap3))))/a)
xn = x
IF (xn.GT.1.D-2*ap1) GO TO 140
IF (xn.LE.emin(iop)*ap1) RETURN
GO TO 170
C
140 apn = ap1
t = xn/apn
sum = 1.0D0 + t
150 apn = apn + 1.0D0
t = t* (xn/apn)
sum = sum + t
IF (t.GT.1.D-4) GO TO 150
t = w - dlog(sum)
xn = exp((xn+t)/a)
xn = xn* (1.0D0- (a*dlog(xn)-xn-t)/ (a-xn))
GO TO 170
C
C SCHRODER ITERATION USING P
C
160 IF (p.GT.0.5D0) GO TO 220
170 IF (p.LE.1.D10*xmin) GO TO 350
am1 = (a-0.5D0) - 0.5D0
180 IF (a.LE.amax) GO TO 190
d = 0.5D0 + (0.5D0-xn/a)
IF (abs(d).LE.e2) GO TO 350
C
190 IF (ierr.GE.20) GO TO 330
ierr = ierr + 1
CALL gratio(a,xn,pn,qn,0)
IF (pn.EQ.0.0D0 .OR. qn.EQ.0.0D0) GO TO 350
r = rcomp(a,xn)
IF (r.EQ.0.0D0) GO TO 350
t = (pn-p)/r
w = 0.5D0* (am1-xn)
IF (abs(t).LE.0.1D0 .AND. abs(w*t).LE.0.1D0) GO TO 200
x = xn* (1.0D0-t)
IF (x.LE.0.0D0) GO TO 340
d = abs(t)
GO TO 210
C
200 h = t* (1.0D0+w*t)
x = xn* (1.0D0-h)
IF (x.LE.0.0D0) GO TO 340
IF (abs(w).GE.1.0D0 .AND. abs(w)*t*t.LE.eps) RETURN
d = abs(h)
210 xn = x
IF (d.GT.tol) GO TO 180
IF (d.LE.eps) RETURN
IF (abs(p-pn).LE.tol*p) RETURN
GO TO 180
C
C SCHRODER ITERATION USING Q
C
220 IF (q.LE.1.D10*xmin) GO TO 350
am1 = (a-0.5D0) - 0.5D0
230 IF (a.LE.amax) GO TO 240
d = 0.5D0 + (0.5D0-xn/a)
IF (abs(d).LE.e2) GO TO 350
C
240 IF (ierr.GE.20) GO TO 330
ierr = ierr + 1
CALL gratio(a,xn,pn,qn,0)
IF (pn.EQ.0.0D0 .OR. qn.EQ.0.0D0) GO TO 350
r = rcomp(a,xn)
IF (r.EQ.0.0D0) GO TO 350
t = (q-qn)/r
w = 0.5D0* (am1-xn)
IF (abs(t).LE.0.1D0 .AND. abs(w*t).LE.0.1D0) GO TO 250
x = xn* (1.0D0-t)
IF (x.LE.0.0D0) GO TO 340
d = abs(t)
GO TO 260
C
250 h = t* (1.0D0+w*t)
x = xn* (1.0D0-h)
IF (x.LE.0.0D0) GO TO 340
IF (abs(w).GE.1.0D0 .AND. abs(w)*t*t.LE.eps) RETURN
d = abs(h)
260 xn = x
IF (d.GT.tol) GO TO 230
IF (d.LE.eps) RETURN
IF (abs(q-qn).LE.tol*q) RETURN
GO TO 230
C
C SPECIAL CASES
C
270 x = xmax
RETURN
C
280 IF (q.LT.0.9D0) GO TO 290
x = -alnrel(-p)
RETURN
290 x = -dlog(q)
RETURN
C
C ERROR RETURN
C
300 ierr = -2
RETURN
C
310 ierr = -3
RETURN
C
320 ierr = -4
RETURN
C
330 ierr = -6
RETURN
C
340 ierr = -7
RETURN
C
350 x = xn
ierr = -8
RETURN
C
360 x = xmax
ierr = -8
RETURN
END
| bsd-3-clause |
andim/scipy | scipy/special/cdflib/gaminv.f | 151 | 10511 | SUBROUTINE gaminv(a,x,x0,p,q,ierr)
C ----------------------------------------------------------------------
C INVERSE INCOMPLETE GAMMA RATIO FUNCTION
C
C GIVEN POSITIVE A, AND NONEGATIVE P AND Q WHERE P + Q = 1.
C THEN X IS COMPUTED WHERE P(A,X) = P AND Q(A,X) = Q. SCHRODER
C ITERATION IS EMPLOYED. THE ROUTINE ATTEMPTS TO COMPUTE X
C TO 10 SIGNIFICANT DIGITS IF THIS IS POSSIBLE FOR THE
C PARTICULAR COMPUTER ARITHMETIC BEING USED.
C
C ------------
C
C X IS A VARIABLE. IF P = 0 THEN X IS ASSIGNED THE VALUE 0,
C AND IF Q = 0 THEN X IS SET TO THE LARGEST FLOATING POINT
C NUMBER AVAILABLE. OTHERWISE, GAMINV ATTEMPTS TO OBTAIN
C A SOLUTION FOR P(A,X) = P AND Q(A,X) = Q. IF THE ROUTINE
C IS SUCCESSFUL THEN THE SOLUTION IS STORED IN X.
C
C X0 IS AN OPTIONAL INITIAL APPROXIMATION FOR X. IF THE USER
C DOES NOT WISH TO SUPPLY AN INITIAL APPROXIMATION, THEN SET
C X0 .LE. 0.
C
C IERR IS A VARIABLE THAT REPORTS THE STATUS OF THE RESULTS.
C WHEN THE ROUTINE TERMINATES, IERR HAS ONE OF THE FOLLOWING
C VALUES ...
C
C IERR = 0 THE SOLUTION WAS OBTAINED. ITERATION WAS
C NOT USED.
C IERR.GT.0 THE SOLUTION WAS OBTAINED. IERR ITERATIONS
C WERE PERFORMED.
C IERR = -2 (INPUT ERROR) A .LE. 0
C IERR = -3 NO SOLUTION WAS OBTAINED. THE RATIO Q/A
C IS TOO LARGE.
C IERR = -4 (INPUT ERROR) P + Q .NE. 1
C IERR = -6 20 ITERATIONS WERE PERFORMED. THE MOST
C RECENT VALUE OBTAINED FOR X IS GIVEN.
C THIS CANNOT OCCUR IF X0 .LE. 0.
C IERR = -7 ITERATION FAILED. NO VALUE IS GIVEN FOR X.
C THIS MAY OCCUR WHEN X IS APPROXIMATELY 0.
C IERR = -8 A VALUE FOR X HAS BEEN OBTAINED, BUT THE
C ROUTINE IS NOT CERTAIN OF ITS ACCURACY.
C ITERATION CANNOT BE PERFORMED IN THIS
C CASE. IF X0 .LE. 0, THIS CAN OCCUR ONLY
C WHEN P OR Q IS APPROXIMATELY 0. IF X0 IS
C POSITIVE THEN THIS CAN OCCUR WHEN A IS
C EXCEEDINGLY CLOSE TO X AND A IS EXTREMELY
C LARGE (SAY A .GE. 1.E20).
C ----------------------------------------------------------------------
C WRITTEN BY ALFRED H. MORRIS, JR.
C NAVAL SURFACE WEAPONS CENTER
C DAHLGREN, VIRGINIA
C -------------------
C .. Scalar Arguments ..
DOUBLE PRECISION a,p,q,x,x0
INTEGER ierr
C ..
C .. Local Scalars ..
DOUBLE PRECISION a0,a1,a2,a3,am1,amax,ap1,ap2,ap3,apn,b,b1,b2,b3,
+ b4,c,c1,c2,c3,c4,c5,d,e,e2,eps,g,h,ln10,pn,qg,qn,
+ r,rta,s,s2,sum,t,tol,u,w,xmax,xmin,xn,y,z
INTEGER iop
C ..
C .. Local Arrays ..
DOUBLE PRECISION amin(2),bmin(2),dmin(2),emin(2),eps0(2)
C ..
C .. External Functions ..
DOUBLE PRECISION alnrel,gamln,gamln1,gamma,rcomp,spmpar
EXTERNAL alnrel,gamln,gamln1,gamma,rcomp,spmpar
C ..
C .. External Subroutines ..
EXTERNAL gratio
C ..
C .. Intrinsic Functions ..
INTRINSIC abs,dble,dlog,dmax1,exp,sqrt
C ..
C .. Data statements ..
C -------------------
C LN10 = LN(10)
C C = EULER CONSTANT
C -------------------
C -------------------
C -------------------
C -------------------
DATA ln10/2.302585D0/
DATA c/.577215664901533D0/
DATA a0/3.31125922108741D0/,a1/11.6616720288968D0/,
+ a2/4.28342155967104D0/,a3/.213623493715853D0/
DATA b1/6.61053765625462D0/,b2/6.40691597760039D0/,
+ b3/1.27364489782223D0/,b4/.036117081018842D0/
DATA eps0(1)/1.D-10/,eps0(2)/1.D-08/
DATA amin(1)/500.0D0/,amin(2)/100.0D0/
DATA bmin(1)/1.D-28/,bmin(2)/1.D-13/
DATA dmin(1)/1.D-06/,dmin(2)/1.D-04/
DATA emin(1)/2.D-03/,emin(2)/6.D-03/
DATA tol/1.D-5/
C ..
C .. Executable Statements ..
C -------------------
C ****** E, XMIN, AND XMAX ARE MACHINE DEPENDENT CONSTANTS.
C E IS THE SMALLEST NUMBER FOR WHICH 1.0 + E .GT. 1.0.
C XMIN IS THE SMALLEST POSITIVE NUMBER AND XMAX IS THE
C LARGEST POSITIVE NUMBER.
C
e = spmpar(1)
xmin = spmpar(2)
xmax = spmpar(3)
C -------------------
x = 0.0D0
IF (a.LE.0.0D0) GO TO 300
t = dble(p) + dble(q) - 1.D0
IF (abs(t).GT.e) GO TO 320
C
ierr = 0
IF (p.EQ.0.0D0) RETURN
IF (q.EQ.0.0D0) GO TO 270
IF (a.EQ.1.0D0) GO TO 280
C
e2 = 2.0D0*e
amax = 0.4D-10/ (e*e)
iop = 1
IF (e.GT.1.D-10) iop = 2
eps = eps0(iop)
xn = x0
IF (x0.GT.0.0D0) GO TO 160
C
C SELECTION OF THE INITIAL APPROXIMATION XN OF X
C WHEN A .LT. 1
C
IF (a.GT.1.0D0) GO TO 80
g = gamma(a+1.0D0)
qg = q*g
IF (qg.EQ.0.0D0) GO TO 360
b = qg/a
IF (qg.GT.0.6D0*a) GO TO 40
IF (a.GE.0.30D0 .OR. b.LT.0.35D0) GO TO 10
t = exp(- (b+c))
u = t*exp(t)
xn = t*exp(u)
GO TO 160
C
10 IF (b.GE.0.45D0) GO TO 40
IF (b.EQ.0.0D0) GO TO 360
y = -dlog(b)
s = 0.5D0 + (0.5D0-a)
z = dlog(y)
t = y - s*z
IF (b.LT.0.15D0) GO TO 20
xn = y - s*dlog(t) - dlog(1.0D0+s/ (t+1.0D0))
GO TO 220
20 IF (b.LE.0.01D0) GO TO 30
u = ((t+2.0D0* (3.0D0-a))*t+ (2.0D0-a)* (3.0D0-a))/
+ ((t+ (5.0D0-a))*t+2.0D0)
xn = y - s*dlog(t) - dlog(u)
GO TO 220
30 c1 = -s*z
c2 = -s* (1.0D0+c1)
c3 = s* ((0.5D0*c1+ (2.0D0-a))*c1+ (2.5D0-1.5D0*a))
c4 = -s* (((c1/3.0D0+ (2.5D0-1.5D0*a))*c1+ ((a-6.0D0)*a+7.0D0))*
+ c1+ ((11.0D0*a-46)*a+47.0D0)/6.0D0)
c5 = -s* ((((-c1/4.0D0+ (11.0D0*a-17.0D0)/6.0D0)*c1+ ((-3.0D0*a+
+ 13.0D0)*a-13.0D0))*c1+0.5D0* (((2.0D0*a-25.0D0)*a+72.0D0)*a-
+ 61.0D0))*c1+ (((25.0D0*a-195.0D0)*a+477.0D0)*a-379.0D0)/
+ 12.0D0)
xn = ((((c5/y+c4)/y+c3)/y+c2)/y+c1) + y
IF (a.GT.1.0D0) GO TO 220
IF (b.GT.bmin(iop)) GO TO 220
x = xn
RETURN
C
40 IF (b*q.GT.1.D-8) GO TO 50
xn = exp(- (q/a+c))
GO TO 70
50 IF (p.LE.0.9D0) GO TO 60
xn = exp((alnrel(-q)+gamln1(a))/a)
GO TO 70
60 xn = exp(dlog(p*g)/a)
70 IF (xn.EQ.0.0D0) GO TO 310
t = 0.5D0 + (0.5D0-xn/ (a+1.0D0))
xn = xn/t
GO TO 160
C
C SELECTION OF THE INITIAL APPROXIMATION XN OF X
C WHEN A .GT. 1
C
80 IF (q.LE.0.5D0) GO TO 90
w = dlog(p)
GO TO 100
90 w = dlog(q)
100 t = sqrt(-2.0D0*w)
s = t - (((a3*t+a2)*t+a1)*t+a0)/ ((((b4*t+b3)*t+b2)*t+b1)*t+1.0D0)
IF (q.GT.0.5D0) s = -s
C
rta = sqrt(a)
s2 = s*s
xn = a + s*rta + (s2-1.0D0)/3.0D0 + s* (s2-7.0D0)/ (36.0D0*rta) -
+ ((3.0D0*s2+7.0D0)*s2-16.0D0)/ (810.0D0*a) +
+ s* ((9.0D0*s2+256.0D0)*s2-433.0D0)/ (38880.0D0*a*rta)
xn = dmax1(xn,0.0D0)
IF (a.LT.amin(iop)) GO TO 110
x = xn
d = 0.5D0 + (0.5D0-x/a)
IF (abs(d).LE.dmin(iop)) RETURN
C
110 IF (p.LE.0.5D0) GO TO 130
IF (xn.LT.3.0D0*a) GO TO 220
y = - (w+gamln(a))
d = dmax1(2.0D0,a* (a-1.0D0))
IF (y.LT.ln10*d) GO TO 120
s = 1.0D0 - a
z = dlog(y)
GO TO 30
120 t = a - 1.0D0
xn = y + t*dlog(xn) - alnrel(-t/ (xn+1.0D0))
xn = y + t*dlog(xn) - alnrel(-t/ (xn+1.0D0))
GO TO 220
C
130 ap1 = a + 1.0D0
IF (xn.GT.0.70D0*ap1) GO TO 170
w = w + gamln(ap1)
IF (xn.GT.0.15D0*ap1) GO TO 140
ap2 = a + 2.0D0
ap3 = a + 3.0D0
x = exp((w+x)/a)
x = exp((w+x-dlog(1.0D0+ (x/ap1)* (1.0D0+x/ap2)))/a)
x = exp((w+x-dlog(1.0D0+ (x/ap1)* (1.0D0+x/ap2)))/a)
x = exp((w+x-dlog(1.0D0+ (x/ap1)* (1.0D0+ (x/ap2)* (1.0D0+
+ x/ap3))))/a)
xn = x
IF (xn.GT.1.D-2*ap1) GO TO 140
IF (xn.LE.emin(iop)*ap1) RETURN
GO TO 170
C
140 apn = ap1
t = xn/apn
sum = 1.0D0 + t
150 apn = apn + 1.0D0
t = t* (xn/apn)
sum = sum + t
IF (t.GT.1.D-4) GO TO 150
t = w - dlog(sum)
xn = exp((xn+t)/a)
xn = xn* (1.0D0- (a*dlog(xn)-xn-t)/ (a-xn))
GO TO 170
C
C SCHRODER ITERATION USING P
C
160 IF (p.GT.0.5D0) GO TO 220
170 IF (p.LE.1.D10*xmin) GO TO 350
am1 = (a-0.5D0) - 0.5D0
180 IF (a.LE.amax) GO TO 190
d = 0.5D0 + (0.5D0-xn/a)
IF (abs(d).LE.e2) GO TO 350
C
190 IF (ierr.GE.20) GO TO 330
ierr = ierr + 1
CALL gratio(a,xn,pn,qn,0)
IF (pn.EQ.0.0D0 .OR. qn.EQ.0.0D0) GO TO 350
r = rcomp(a,xn)
IF (r.EQ.0.0D0) GO TO 350
t = (pn-p)/r
w = 0.5D0* (am1-xn)
IF (abs(t).LE.0.1D0 .AND. abs(w*t).LE.0.1D0) GO TO 200
x = xn* (1.0D0-t)
IF (x.LE.0.0D0) GO TO 340
d = abs(t)
GO TO 210
C
200 h = t* (1.0D0+w*t)
x = xn* (1.0D0-h)
IF (x.LE.0.0D0) GO TO 340
IF (abs(w).GE.1.0D0 .AND. abs(w)*t*t.LE.eps) RETURN
d = abs(h)
210 xn = x
IF (d.GT.tol) GO TO 180
IF (d.LE.eps) RETURN
IF (abs(p-pn).LE.tol*p) RETURN
GO TO 180
C
C SCHRODER ITERATION USING Q
C
220 IF (q.LE.1.D10*xmin) GO TO 350
am1 = (a-0.5D0) - 0.5D0
230 IF (a.LE.amax) GO TO 240
d = 0.5D0 + (0.5D0-xn/a)
IF (abs(d).LE.e2) GO TO 350
C
240 IF (ierr.GE.20) GO TO 330
ierr = ierr + 1
CALL gratio(a,xn,pn,qn,0)
IF (pn.EQ.0.0D0 .OR. qn.EQ.0.0D0) GO TO 350
r = rcomp(a,xn)
IF (r.EQ.0.0D0) GO TO 350
t = (q-qn)/r
w = 0.5D0* (am1-xn)
IF (abs(t).LE.0.1D0 .AND. abs(w*t).LE.0.1D0) GO TO 250
x = xn* (1.0D0-t)
IF (x.LE.0.0D0) GO TO 340
d = abs(t)
GO TO 260
C
250 h = t* (1.0D0+w*t)
x = xn* (1.0D0-h)
IF (x.LE.0.0D0) GO TO 340
IF (abs(w).GE.1.0D0 .AND. abs(w)*t*t.LE.eps) RETURN
d = abs(h)
260 xn = x
IF (d.GT.tol) GO TO 230
IF (d.LE.eps) RETURN
IF (abs(q-qn).LE.tol*q) RETURN
GO TO 230
C
C SPECIAL CASES
C
270 x = xmax
RETURN
C
280 IF (q.LT.0.9D0) GO TO 290
x = -alnrel(-p)
RETURN
290 x = -dlog(q)
RETURN
C
C ERROR RETURN
C
300 ierr = -2
RETURN
C
310 ierr = -3
RETURN
C
320 ierr = -4
RETURN
C
330 ierr = -6
RETURN
C
340 ierr = -7
RETURN
C
350 x = xn
ierr = -8
RETURN
C
360 x = xmax
ierr = -8
RETURN
END
| bsd-3-clause |
puppeh/gcc-6502 | gcc/testsuite/gfortran.dg/g77/970125-0.f | 202 | 1528 | c { dg-do compile }
c
c Following line added on transfer to gfortran testsuite
c { dg-excess-errors "" }
c
C JCB comments:
C g77 doesn't accept the added line "integer(kind=7) ..." --
C it crashes!
C
C It's questionable that g77 DTRT with regarding to passing
C %LOC() as an argument (thus by reference) and the new global
C analysis. I need to look into that further; my feeling is that
C passing %LOC() as an argument should be treated like passing an
C INTEGER(KIND=7) by reference, and no more specially than that
C (and that INTEGER(KIND=7) should be permitted as equivalent to
C INTEGER(KIND=1), INTEGER(KIND=2), or whatever, depending on the
C system's pointer size).
C
C The back end *still* has a bug here, which should be fixed,
C because, currently, what g77 is passing to it is, IMO, correct.
C No options:
C ../../egcs/gcc/f/info.c:259: failed assertion `ffeinfo_types_[basictype][kindtype] != NULL'
C -fno-globals -O:
C ../../egcs/gcc/expr.c:7291: Internal compiler error in function expand_expr
c Frontend bug fixed by JCB 1998-06-01 com.c &c changes.
integer i4
integer(kind=8) i8
integer(kind=8) max4
data max4/2147483647/
i4 = %loc(i4)
i8 = %loc(i8)
print *, max4
print *, i4, %loc(i4)
print *, i8, %loc(i8)
call foo(i4, %loc(i4), i8, %loc(i8))
end
subroutine foo(i4, i4a, i8, i8a)
integer(kind=7) i4a, i8a
integer(kind=8) i8
print *, i4, i4a
print *, i8, i8a
end
| gpl-2.0 |
puppeh/gcc-6502 | libgfortran/generated/_asin_r4.F90 | 47 | 1473 | ! Copyright (C) 2002-2015 Free Software Foundation, Inc.
! Contributed by Paul Brook <paul@nowt.org>
!
!This file is part of the GNU Fortran 95 runtime library (libgfortran).
!
!GNU libgfortran is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public
!License as published by the Free Software Foundation; either
!version 3 of the License, or (at your option) any later version.
!GNU libgfortran is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!
!Under Section 7 of GPL version 3, you are granted additional
!permissions described in the GCC Runtime Library Exception, version
!3.1, as published by the Free Software Foundation.
!
!You should have received a copy of the GNU General Public License and
!a copy of the GCC Runtime Library Exception along with this program;
!see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
!<http://www.gnu.org/licenses/>.
!
!This file is machine generated.
#include "config.h"
#include "kinds.inc"
#include "c99_protos.inc"
#if defined (HAVE_GFC_REAL_4)
#ifdef HAVE_ASINF
elemental function _gfortran_specific__asin_r4 (parm)
real (kind=4), intent (in) :: parm
real (kind=4) :: _gfortran_specific__asin_r4
_gfortran_specific__asin_r4 = asin (parm)
end function
#endif
#endif
| gpl-2.0 |
vigna/scipy | scipy/sparse/linalg/_eigen/arpack/ARPACK/SRC/zneupd.f | 141 | 34995 | c\BeginDoc
c
c\Name: zneupd
c
c\Description:
c This subroutine returns the converged approximations to eigenvalues
c of A*z = lambda*B*z and (optionally):
c
c (1) The corresponding approximate eigenvectors;
c
c (2) An orthonormal basis for the associated approximate
c invariant subspace;
c
c (3) Both.
c
c There is negligible additional cost to obtain eigenvectors. An orthonormal
c basis is always computed. There is an additional storage cost of n*nev
c if both are requested (in this case a separate array Z must be supplied).
c
c The approximate eigenvalues and eigenvectors of A*z = lambda*B*z
c are derived from approximate eigenvalues and eigenvectors of
c of the linear operator OP prescribed by the MODE selection in the
c call to ZNAUPD. ZNAUPD must be called before this routine is called.
c These approximate eigenvalues and vectors are commonly called Ritz
c values and Ritz vectors respectively. They are referred to as such
c in the comments that follow. The computed orthonormal basis for the
c invariant subspace corresponding to these Ritz values is referred to as a
c Schur basis.
c
c The definition of OP as well as other terms and the relation of computed
c Ritz values and vectors of OP with respect to the given problem
c A*z = lambda*B*z may be found in the header of ZNAUPD. For a brief
c description, see definitions of IPARAM(7), MODE and WHICH in the
c documentation of ZNAUPD.
c
c\Usage:
c call zneupd
c ( RVEC, HOWMNY, SELECT, D, Z, LDZ, SIGMA, WORKEV, BMAT,
c N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR, WORKD,
c WORKL, LWORKL, RWORK, INFO )
c
c\Arguments:
c RVEC LOGICAL (INPUT)
c Specifies whether a basis for the invariant subspace corresponding
c to the converged Ritz value approximations for the eigenproblem
c A*z = lambda*B*z is computed.
c
c RVEC = .FALSE. Compute Ritz values only.
c
c RVEC = .TRUE. Compute Ritz vectors or Schur vectors.
c See Remarks below.
c
c HOWMNY Character*1 (INPUT)
c Specifies the form of the basis for the invariant subspace
c corresponding to the converged Ritz values that is to be computed.
c
c = 'A': Compute NEV Ritz vectors;
c = 'P': Compute NEV Schur vectors;
c = 'S': compute some of the Ritz vectors, specified
c by the logical array SELECT.
c
c SELECT Logical array of dimension NCV. (INPUT)
c If HOWMNY = 'S', SELECT specifies the Ritz vectors to be
c computed. To select the Ritz vector corresponding to a
c Ritz value D(j), SELECT(j) must be set to .TRUE..
c If HOWMNY = 'A' or 'P', SELECT need not be initialized
c but it is used as internal workspace.
c
c D Complex*16 array of dimension NEV+1. (OUTPUT)
c On exit, D contains the Ritz approximations
c to the eigenvalues lambda for A*z = lambda*B*z.
c
c Z Complex*16 N by NEV array (OUTPUT)
c On exit, if RVEC = .TRUE. and HOWMNY = 'A', then the columns of
c Z represents approximate eigenvectors (Ritz vectors) corresponding
c to the NCONV=IPARAM(5) Ritz values for eigensystem
c A*z = lambda*B*z.
c
c If RVEC = .FALSE. or HOWMNY = 'P', then Z is NOT REFERENCED.
c
c NOTE: If if RVEC = .TRUE. and a Schur basis is not required,
c the array Z may be set equal to first NEV+1 columns of the Arnoldi
c basis array V computed by ZNAUPD. In this case the Arnoldi basis
c will be destroyed and overwritten with the eigenvector basis.
c
c LDZ Integer. (INPUT)
c The leading dimension of the array Z. If Ritz vectors are
c desired, then LDZ .ge. max( 1, N ) is required.
c In any case, LDZ .ge. 1 is required.
c
c SIGMA Complex*16 (INPUT)
c If IPARAM(7) = 3 then SIGMA represents the shift.
c Not referenced if IPARAM(7) = 1 or 2.
c
c WORKEV Complex*16 work array of dimension 2*NCV. (WORKSPACE)
c
c **** The remaining arguments MUST be the same as for the ****
c **** call to ZNAUPD that was just completed. ****
c
c NOTE: The remaining arguments
c
c BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR,
c WORKD, WORKL, LWORKL, RWORK, INFO
c
c must be passed directly to ZNEUPD following the last call
c to ZNAUPD. These arguments MUST NOT BE MODIFIED between
c the the last call to ZNAUPD and the call to ZNEUPD.
c
c Three of these parameters (V, WORKL and INFO) are also output parameters:
c
c V Complex*16 N by NCV array. (INPUT/OUTPUT)
c
c Upon INPUT: the NCV columns of V contain the Arnoldi basis
c vectors for OP as constructed by ZNAUPD .
c
c Upon OUTPUT: If RVEC = .TRUE. the first NCONV=IPARAM(5) columns
c contain approximate Schur vectors that span the
c desired invariant subspace.
c
c NOTE: If the array Z has been set equal to first NEV+1 columns
c of the array V and RVEC=.TRUE. and HOWMNY= 'A', then the
c Arnoldi basis held by V has been overwritten by the desired
c Ritz vectors. If a separate array Z has been passed then
c the first NCONV=IPARAM(5) columns of V will contain approximate
c Schur vectors that span the desired invariant subspace.
c
c WORKL Double precision work array of length LWORKL. (OUTPUT/WORKSPACE)
c WORKL(1:ncv*ncv+2*ncv) contains information obtained in
c znaupd. They are not changed by zneupd.
c WORKL(ncv*ncv+2*ncv+1:3*ncv*ncv+4*ncv) holds the
c untransformed Ritz values, the untransformed error estimates of
c the Ritz values, the upper triangular matrix for H, and the
c associated matrix representation of the invariant subspace for H.
c
c Note: IPNTR(9:13) contains the pointer into WORKL for addresses
c of the above information computed by zneupd.
c -------------------------------------------------------------
c IPNTR(9): pointer to the NCV RITZ values of the
c original system.
c IPNTR(10): Not used
c IPNTR(11): pointer to the NCV corresponding error estimates.
c IPNTR(12): pointer to the NCV by NCV upper triangular
c Schur matrix for H.
c IPNTR(13): pointer to the NCV by NCV matrix of eigenvectors
c of the upper Hessenberg matrix H. Only referenced by
c zneupd if RVEC = .TRUE. See Remark 2 below.
c -------------------------------------------------------------
c
c INFO Integer. (OUTPUT)
c Error flag on output.
c = 0: Normal exit.
c
c = 1: The Schur form computed by LAPACK routine csheqr
c could not be reordered by LAPACK routine ztrsen.
c Re-enter subroutine zneupd with IPARAM(5)=NCV and
c increase the size of the array D to have
c dimension at least dimension NCV and allocate at least NCV
c columns for Z. NOTE: Not necessary if Z and V share
c the same space. Please notify the authors if this error
c occurs.
c
c = -1: N must be positive.
c = -2: NEV must be positive.
c = -3: NCV-NEV >= 1 and less than or equal to N.
c = -5: WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'
c = -6: BMAT must be one of 'I' or 'G'.
c = -7: Length of private work WORKL array is not sufficient.
c = -8: Error return from LAPACK eigenvalue calculation.
c This should never happened.
c = -9: Error return from calculation of eigenvectors.
c Informational error from LAPACK routine ztrevc.
c = -10: IPARAM(7) must be 1,2,3
c = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible.
c = -12: HOWMNY = 'S' not yet implemented
c = -13: HOWMNY must be one of 'A' or 'P' if RVEC = .true.
c = -14: ZNAUPD did not find any eigenvalues to sufficient
c accuracy.
c = -15: ZNEUPD got a different count of the number of converged
c Ritz values than ZNAUPD got. This indicates the user
c probably made an error in passing data from ZNAUPD to
c ZNEUPD or that the data was modified before entering
c ZNEUPD
c
c\BeginLib
c
c\References:
c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in
c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992),
c pp 357-385.
c 2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly
c Restarted Arnoldi Iteration", Rice University Technical Report
c TR95-13, Department of Computational and Applied Mathematics.
c 3. B. Nour-Omid, B. N. Parlett, T. Ericsson and P. S. Jensen,
c "How to Implement the Spectral Transformation", Math Comp.,
c Vol. 48, No. 178, April, 1987 pp. 664-673.
c
c\Routines called:
c ivout ARPACK utility routine that prints integers.
c zmout ARPACK utility routine that prints matrices
c zvout ARPACK utility routine that prints vectors.
c zgeqr2 LAPACK routine that computes the QR factorization of
c a matrix.
c zlacpy LAPACK matrix copy routine.
c zlahqr LAPACK routine that computes the Schur form of a
c upper Hessenberg matrix.
c zlaset LAPACK matrix initialization routine.
c ztrevc LAPACK routine to compute the eigenvectors of a matrix
c in upper triangular form.
c ztrsen LAPACK routine that re-orders the Schur form.
c zunm2r LAPACK routine that applies an orthogonal matrix in
c factored form.
c dlamch LAPACK routine that determines machine constants.
c ztrmm Level 3 BLAS matrix times an upper triangular matrix.
c zgeru Level 2 BLAS rank one update to a matrix.
c zcopy Level 1 BLAS that copies one vector to another .
c zscal Level 1 BLAS that scales a vector.
c zdscal Level 1 BLAS that scales a complex vector by a real number.
c dznrm2 Level 1 BLAS that computes the norm of a complex vector.
c
c\Remarks
c
c 1. Currently only HOWMNY = 'A' and 'P' are implemented.
c
c 2. Schur vectors are an orthogonal representation for the basis of
c Ritz vectors. Thus, their numerical properties are often superior.
c If RVEC = .true. then the relationship
c A * V(:,1:IPARAM(5)) = V(:,1:IPARAM(5)) * T, and
c transpose( V(:,1:IPARAM(5)) ) * V(:,1:IPARAM(5)) = I
c are approximately satisfied.
c Here T is the leading submatrix of order IPARAM(5) of the
c upper triangular matrix stored workl(ipntr(12)).
c
c\Authors
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Chao Yang Houston, Texas
c Dept. of Computational &
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\SCCS Information: @(#)
c FILE: neupd.F SID: 2.8 DATE OF SID: 07/21/02 RELEASE: 2
c
c\EndLib
c
c-----------------------------------------------------------------------
subroutine zneupd(rvec , howmny, select, d ,
& z , ldz , sigma , workev,
& bmat , n , which , nev ,
& tol , resid , ncv , v ,
& ldv , iparam, ipntr , workd ,
& workl, lworkl, rwork , info )
c
c %----------------------------------------------------%
c | Include files for debugging and timing information |
c %----------------------------------------------------%
c
include 'debug.h'
include 'stat.h'
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
character bmat, howmny, which*2
logical rvec
integer info, ldz, ldv, lworkl, n, ncv, nev
Complex*16
& sigma
Double precision
& tol
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
integer iparam(11), ipntr(14)
logical select(ncv)
Double precision
& rwork(ncv)
Complex*16
& d(nev) , resid(n) , v(ldv,ncv),
& z(ldz, nev),
& workd(3*n) , workl(lworkl), workev(2*ncv)
c
c %------------%
c | Parameters |
c %------------%
c
Complex*16
& one, zero
parameter (one = (1.0D+0, 0.0D+0), zero = (0.0D+0, 0.0D+0))
c
c %---------------%
c | Local Scalars |
c %---------------%
c
character type*6
integer bounds, ierr , ih , ihbds, iheig , nconv ,
& invsub, iuptri, iwev , j , ldh , ldq ,
& mode , msglvl, ritz , wr , k , irz ,
& ibd , outncv, iq , np , numcnv, jj ,
& ishift, nconv2
Complex*16
& rnorm, temp, vl(1)
Double precision
& conds, sep, rtemp, eps23
logical reord
c
c %----------------------%
c | External Subroutines |
c %----------------------%
c
external zcopy , zgeru, zgeqr2, zlacpy, zmout,
& zunm2r, ztrmm, zvout, ivout,
& zlahqr
c
c %--------------------%
c | External Functions |
c %--------------------%
c
Double precision
& dznrm2, dlamch, dlapy2
external dznrm2, dlamch, dlapy2
c
Complex*16
& wzdotc
external wzdotc
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
c %------------------------%
c | Set default parameters |
c %------------------------%
c
msglvl = mceupd
mode = iparam(7)
nconv = iparam(5)
info = 0
c
c
c %---------------------------------%
c | Get machine dependent constant. |
c %---------------------------------%
c
eps23 = dlamch('Epsilon-Machine')
eps23 = eps23**(2.0D+0 / 3.0D+0)
c
c %-------------------------------%
c | Quick return |
c | Check for incompatible input |
c %-------------------------------%
c
ierr = 0
c
if (nconv .le. 0) then
ierr = -14
else if (n .le. 0) then
ierr = -1
else if (nev .le. 0) then
ierr = -2
else if (ncv .le. nev+1 .or. ncv .gt. n) then
ierr = -3
else if (which .ne. 'LM' .and.
& which .ne. 'SM' .and.
& which .ne. 'LR' .and.
& which .ne. 'SR' .and.
& which .ne. 'LI' .and.
& which .ne. 'SI') then
ierr = -5
else if (bmat .ne. 'I' .and. bmat .ne. 'G') then
ierr = -6
else if (lworkl .lt. 3*ncv**2 + 4*ncv) then
ierr = -7
else if ( (howmny .ne. 'A' .and.
& howmny .ne. 'P' .and.
& howmny .ne. 'S') .and. rvec ) then
ierr = -13
else if (howmny .eq. 'S' ) then
ierr = -12
end if
c
if (mode .eq. 1 .or. mode .eq. 2) then
type = 'REGULR'
else if (mode .eq. 3 ) then
type = 'SHIFTI'
else
ierr = -10
end if
if (mode .eq. 1 .and. bmat .eq. 'G') ierr = -11
c
c %------------%
c | Error Exit |
c %------------%
c
if (ierr .ne. 0) then
info = ierr
go to 9000
end if
c
c %--------------------------------------------------------%
c | Pointer into WORKL for address of H, RITZ, WORKEV, Q |
c | etc... and the remaining workspace. |
c | Also update pointer to be used on output. |
c | Memory is laid out as follows: |
c | workl(1:ncv*ncv) := generated Hessenberg matrix |
c | workl(ncv*ncv+1:ncv*ncv+ncv) := ritz values |
c | workl(ncv*ncv+ncv+1:ncv*ncv+2*ncv) := error bounds |
c %--------------------------------------------------------%
c
c %-----------------------------------------------------------%
c | The following is used and set by ZNEUPD. |
c | workl(ncv*ncv+2*ncv+1:ncv*ncv+3*ncv) := The untransformed |
c | Ritz values. |
c | workl(ncv*ncv+3*ncv+1:ncv*ncv+4*ncv) := The untransformed |
c | error bounds of |
c | the Ritz values |
c | workl(ncv*ncv+4*ncv+1:2*ncv*ncv+4*ncv) := Holds the upper |
c | triangular matrix |
c | for H. |
c | workl(2*ncv*ncv+4*ncv+1: 3*ncv*ncv+4*ncv) := Holds the |
c | associated matrix |
c | representation of |
c | the invariant |
c | subspace for H. |
c | GRAND total of NCV * ( 3 * NCV + 4 ) locations. |
c %-----------------------------------------------------------%
c
ih = ipntr(5)
ritz = ipntr(6)
iq = ipntr(7)
bounds = ipntr(8)
ldh = ncv
ldq = ncv
iheig = bounds + ldh
ihbds = iheig + ldh
iuptri = ihbds + ldh
invsub = iuptri + ldh*ncv
ipntr(9) = iheig
ipntr(11) = ihbds
ipntr(12) = iuptri
ipntr(13) = invsub
wr = 1
iwev = wr + ncv
c
c %-----------------------------------------%
c | irz points to the Ritz values computed |
c | by _neigh before exiting _naup2. |
c | ibd points to the Ritz estimates |
c | computed by _neigh before exiting |
c | _naup2. |
c %-----------------------------------------%
c
irz = ipntr(14) + ncv*ncv
ibd = irz + ncv
c
c %------------------------------------%
c | RNORM is B-norm of the RESID(1:N). |
c %------------------------------------%
c
rnorm = workl(ih+2)
workl(ih+2) = zero
c
if (msglvl .gt. 2) then
call zvout(logfil, ncv, workl(irz), ndigit,
& '_neupd: Ritz values passed in from _NAUPD.')
call zvout(logfil, ncv, workl(ibd), ndigit,
& '_neupd: Ritz estimates passed in from _NAUPD.')
end if
c
if (rvec) then
c
reord = .false.
c
c %---------------------------------------------------%
c | Use the temporary bounds array to store indices |
c | These will be used to mark the select array later |
c %---------------------------------------------------%
c
do 10 j = 1,ncv
workl(bounds+j-1) = j
select(j) = .false.
10 continue
c
c %-------------------------------------%
c | Select the wanted Ritz values. |
c | Sort the Ritz values so that the |
c | wanted ones appear at the tailing |
c | NEV positions of workl(irr) and |
c | workl(iri). Move the corresponding |
c | error estimates in workl(ibd) |
c | accordingly. |
c %-------------------------------------%
c
np = ncv - nev
ishift = 0
call zngets(ishift, which , nev ,
& np , workl(irz), workl(bounds))
c
if (msglvl .gt. 2) then
call zvout (logfil, ncv, workl(irz), ndigit,
& '_neupd: Ritz values after calling _NGETS.')
call zvout (logfil, ncv, workl(bounds), ndigit,
& '_neupd: Ritz value indices after calling _NGETS.')
end if
c
c %-----------------------------------------------------%
c | Record indices of the converged wanted Ritz values |
c | Mark the select array for possible reordering |
c %-----------------------------------------------------%
c
numcnv = 0
do 11 j = 1,ncv
rtemp = max(eps23,
& dlapy2 ( dble(workl(irz+ncv-j)),
& dimag(workl(irz+ncv-j)) ))
jj = workl(bounds + ncv - j)
if (numcnv .lt. nconv .and.
& dlapy2( dble(workl(ibd+jj-1)),
& dimag(workl(ibd+jj-1)) )
& .le. tol*rtemp) then
select(jj) = .true.
numcnv = numcnv + 1
if (jj .gt. nconv) reord = .true.
endif
11 continue
c
c %-----------------------------------------------------------%
c | Check the count (numcnv) of converged Ritz values with |
c | the number (nconv) reported by dnaupd. If these two |
c | are different then there has probably been an error |
c | caused by incorrect passing of the dnaupd data. |
c %-----------------------------------------------------------%
c
if (msglvl .gt. 2) then
call ivout(logfil, 1, numcnv, ndigit,
& '_neupd: Number of specified eigenvalues')
call ivout(logfil, 1, nconv, ndigit,
& '_neupd: Number of "converged" eigenvalues')
end if
c
if (numcnv .ne. nconv) then
info = -15
go to 9000
end if
c
c %-------------------------------------------------------%
c | Call LAPACK routine zlahqr to compute the Schur form |
c | of the upper Hessenberg matrix returned by ZNAUPD. |
c | Make a copy of the upper Hessenberg matrix. |
c | Initialize the Schur vector matrix Q to the identity. |
c %-------------------------------------------------------%
c
call zcopy(ldh*ncv, workl(ih), 1, workl(iuptri), 1)
call zlaset('All', ncv, ncv ,
& zero , one, workl(invsub),
& ldq)
call zlahqr(.true., .true. , ncv ,
& 1 , ncv , workl(iuptri),
& ldh , workl(iheig) , 1 ,
& ncv , workl(invsub), ldq ,
& ierr)
call zcopy(ncv , workl(invsub+ncv-1), ldq,
& workl(ihbds), 1)
c
if (ierr .ne. 0) then
info = -8
go to 9000
end if
c
if (msglvl .gt. 1) then
call zvout (logfil, ncv, workl(iheig), ndigit,
& '_neupd: Eigenvalues of H')
call zvout (logfil, ncv, workl(ihbds), ndigit,
& '_neupd: Last row of the Schur vector matrix')
if (msglvl .gt. 3) then
call zmout (logfil , ncv, ncv ,
& workl(iuptri), ldh, ndigit,
& '_neupd: The upper triangular matrix ')
end if
end if
c
if (reord) then
c
c %-----------------------------------------------%
c | Reorder the computed upper triangular matrix. |
c %-----------------------------------------------%
c
call ztrsen('None' , 'V' , select ,
& ncv , workl(iuptri), ldh ,
& workl(invsub), ldq , workl(iheig),
& nconv2 , conds , sep ,
& workev , ncv , ierr)
c
if (nconv2 .lt. nconv) then
nconv = nconv2
end if
if (ierr .eq. 1) then
info = 1
go to 9000
end if
c
if (msglvl .gt. 2) then
call zvout (logfil, ncv, workl(iheig), ndigit,
& '_neupd: Eigenvalues of H--reordered')
if (msglvl .gt. 3) then
call zmout(logfil , ncv, ncv ,
& workl(iuptri), ldq, ndigit,
& '_neupd: Triangular matrix after re-ordering')
end if
end if
c
end if
c
c %---------------------------------------------%
c | Copy the last row of the Schur basis matrix |
c | to workl(ihbds). This vector will be used |
c | to compute the Ritz estimates of converged |
c | Ritz values. |
c %---------------------------------------------%
c
call zcopy(ncv , workl(invsub+ncv-1), ldq,
& workl(ihbds), 1)
c
c %--------------------------------------------%
c | Place the computed eigenvalues of H into D |
c | if a spectral transformation was not used. |
c %--------------------------------------------%
c
if (type .eq. 'REGULR') then
call zcopy(nconv, workl(iheig), 1, d, 1)
end if
c
c %----------------------------------------------------------%
c | Compute the QR factorization of the matrix representing |
c | the wanted invariant subspace located in the first NCONV |
c | columns of workl(invsub,ldq). |
c %----------------------------------------------------------%
c
call zgeqr2(ncv , nconv , workl(invsub),
& ldq , workev, workev(ncv+1),
& ierr)
c
c %--------------------------------------------------------%
c | * Postmultiply V by Q using zunm2r. |
c | * Copy the first NCONV columns of VQ into Z. |
c | * Postmultiply Z by R. |
c | The N by NCONV matrix Z is now a matrix representation |
c | of the approximate invariant subspace associated with |
c | the Ritz values in workl(iheig). The first NCONV |
c | columns of V are now approximate Schur vectors |
c | associated with the upper triangular matrix of order |
c | NCONV in workl(iuptri). |
c %--------------------------------------------------------%
c
call zunm2r('Right', 'Notranspose', n ,
& ncv , nconv , workl(invsub),
& ldq , workev , v ,
& ldv , workd(n+1) , ierr)
call zlacpy('All', n, nconv, v, ldv, z, ldz)
c
do 20 j=1, nconv
c
c %---------------------------------------------------%
c | Perform both a column and row scaling if the |
c | diagonal element of workl(invsub,ldq) is negative |
c | I'm lazy and don't take advantage of the upper |
c | triangular form of workl(iuptri,ldq). |
c | Note that since Q is orthogonal, R is a diagonal |
c | matrix consisting of plus or minus ones. |
c %---------------------------------------------------%
c
if ( dble( workl(invsub+(j-1)*ldq+j-1) ) .lt.
& dble(zero) ) then
call zscal(nconv, -one, workl(iuptri+j-1), ldq)
call zscal(nconv, -one, workl(iuptri+(j-1)*ldq), 1)
end if
c
20 continue
c
if (howmny .eq. 'A') then
c
c %--------------------------------------------%
c | Compute the NCONV wanted eigenvectors of T |
c | located in workl(iuptri,ldq). |
c %--------------------------------------------%
c
do 30 j=1, ncv
if (j .le. nconv) then
select(j) = .true.
else
select(j) = .false.
end if
30 continue
c
call ztrevc('Right', 'Select' , select ,
& ncv , workl(iuptri), ldq ,
& vl , 1 , workl(invsub),
& ldq , ncv , outncv ,
& workev , rwork , ierr)
c
if (ierr .ne. 0) then
info = -9
go to 9000
end if
c
c %------------------------------------------------%
c | Scale the returning eigenvectors so that their |
c | Euclidean norms are all one. LAPACK subroutine |
c | ztrevc returns each eigenvector normalized so |
c | that the element of largest magnitude has |
c | magnitude 1. |
c %------------------------------------------------%
c
do 40 j=1, nconv
rtemp = dznrm2(ncv, workl(invsub+(j-1)*ldq), 1)
rtemp = dble(one) / rtemp
call zdscal ( ncv, rtemp,
& workl(invsub+(j-1)*ldq), 1 )
c
c %------------------------------------------%
c | Ritz estimates can be obtained by taking |
c | the inner product of the last row of the |
c | Schur basis of H with eigenvectors of T. |
c | Note that the eigenvector matrix of T is |
c | upper triangular, thus the length of the |
c | inner product can be set to j. |
c %------------------------------------------%
c
workev(j) = wzdotc(j, workl(ihbds), 1,
& workl(invsub+(j-1)*ldq), 1)
40 continue
c
if (msglvl .gt. 2) then
call zcopy(nconv, workl(invsub+ncv-1), ldq,
& workl(ihbds), 1)
call zvout (logfil, nconv, workl(ihbds), ndigit,
& '_neupd: Last row of the eigenvector matrix for T')
if (msglvl .gt. 3) then
call zmout(logfil , ncv, ncv ,
& workl(invsub), ldq, ndigit,
& '_neupd: The eigenvector matrix for T')
end if
end if
c
c %---------------------------------------%
c | Copy Ritz estimates into workl(ihbds) |
c %---------------------------------------%
c
call zcopy(nconv, workev, 1, workl(ihbds), 1)
c
c %----------------------------------------------%
c | The eigenvector matrix Q of T is triangular. |
c | Form Z*Q. |
c %----------------------------------------------%
c
call ztrmm('Right' , 'Upper' , 'No transpose',
& 'Non-unit', n , nconv ,
& one , workl(invsub), ldq ,
& z , ldz)
end if
c
else
c
c %--------------------------------------------------%
c | An approximate invariant subspace is not needed. |
c | Place the Ritz values computed ZNAUPD into D. |
c %--------------------------------------------------%
c
call zcopy(nconv, workl(ritz), 1, d, 1)
call zcopy(nconv, workl(ritz), 1, workl(iheig), 1)
call zcopy(nconv, workl(bounds), 1, workl(ihbds), 1)
c
end if
c
c %------------------------------------------------%
c | Transform the Ritz values and possibly vectors |
c | and corresponding error bounds of OP to those |
c | of A*x = lambda*B*x. |
c %------------------------------------------------%
c
if (type .eq. 'REGULR') then
c
if (rvec)
& call zscal(ncv, rnorm, workl(ihbds), 1)
c
else
c
c %---------------------------------------%
c | A spectral transformation was used. |
c | * Determine the Ritz estimates of the |
c | Ritz values in the original system. |
c %---------------------------------------%
c
if (rvec)
& call zscal(ncv, rnorm, workl(ihbds), 1)
c
do 50 k=1, ncv
temp = workl(iheig+k-1)
workl(ihbds+k-1) = workl(ihbds+k-1) / temp / temp
50 continue
c
end if
c
c %-----------------------------------------------------------%
c | * Transform the Ritz values back to the original system. |
c | For TYPE = 'SHIFTI' the transformation is |
c | lambda = 1/theta + sigma |
c | NOTES: |
c | *The Ritz vectors are not affected by the transformation. |
c %-----------------------------------------------------------%
c
if (type .eq. 'SHIFTI') then
do 60 k=1, nconv
d(k) = one / workl(iheig+k-1) + sigma
60 continue
end if
c
if (type .ne. 'REGULR' .and. msglvl .gt. 1) then
call zvout (logfil, nconv, d, ndigit,
& '_neupd: Untransformed Ritz values.')
call zvout (logfil, nconv, workl(ihbds), ndigit,
& '_neupd: Ritz estimates of the untransformed Ritz values.')
else if ( msglvl .gt. 1) then
call zvout (logfil, nconv, d, ndigit,
& '_neupd: Converged Ritz values.')
call zvout (logfil, nconv, workl(ihbds), ndigit,
& '_neupd: Associated Ritz estimates.')
end if
c
c %-------------------------------------------------%
c | Eigenvector Purification step. Formally perform |
c | one of inverse subspace iteration. Only used |
c | for MODE = 3. See reference 3. |
c %-------------------------------------------------%
c
if (rvec .and. howmny .eq. 'A' .and. type .eq. 'SHIFTI') then
c
c %------------------------------------------------%
c | Purify the computed Ritz vectors by adding a |
c | little bit of the residual vector: |
c | T |
c | resid(:)*( e s ) / theta |
c | NCV |
c | where H s = s theta. |
c %------------------------------------------------%
c
do 100 j=1, nconv
if (workl(iheig+j-1) .ne. zero) then
workev(j) = workl(invsub+(j-1)*ldq+ncv-1) /
& workl(iheig+j-1)
endif
100 continue
c %---------------------------------------%
c | Perform a rank one update to Z and |
c | purify all the Ritz vectors together. |
c %---------------------------------------%
c
call zgeru (n, nconv, one, resid, 1, workev, 1, z, ldz)
c
end if
c
9000 continue
c
return
c
c %---------------%
c | End of zneupd|
c %---------------%
c
end
| bsd-3-clause |
dch312/scipy | scipy/linalg/src/id_dist/src/idzr_rid.f | 128 | 4548 | c this file contains the following user-callable routines:
c
c
c routine idzr_rid computes the ID, to a specified rank,
c of a matrix specified by a routine for applying its adjoint
c to arbitrary vectors. This routine is randomized.
c
c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c
c
c
subroutine idzr_rid(m,n,matveca,p1,p2,p3,p4,krank,list,proj)
c
c computes the ID of a matrix "a" specified by
c the routine matveca -- matveca must apply the adjoint
c of the matrix being ID'd to an arbitrary vector --
c i.e., the present routine lists in list the indices
c of krank columns of a such that
c
c a(j,list(k)) = a(j,list(k))
c
c for all j = 1, ..., m; k = 1, ..., krank, and
c
c min(m,n,krank)
c a(j,list(k)) = Sigma a(j,list(l)) * proj(l,k-krank)(*)
c l=1
c
c + epsilon(j,k-krank)
c
c for all j = 1, ..., m; k = krank+1, ..., n,
c
c for some matrix epsilon, dimensioned epsilon(m,n-krank),
c whose norm is (hopefully) minimized by the pivoting procedure.
c
c input:
c m -- number of rows in the matrix to be ID'd
c n -- number of columns in the matrix to be ID'd
c matveca -- routine which applies the adjoint
c of the matrix to be ID'd to an arbitrary vector;
c this routine must have a calling sequence
c of the form
c
c matveca(m,x,n,y,p1,p2,p3,p4),
c
c where m is the length of x,
c x is the vector to which the adjoint
c of the matrix is to be applied,
c n is the length of y,
c y is the product of the adjoint of the matrix and x,
c and p1, p2, p3, and p4 are user-specified parameters
c p1 -- parameter to be passed to routine matveca
c p2 -- parameter to be passed to routine matveca
c p3 -- parameter to be passed to routine matveca
c p4 -- parameter to be passed to routine matveca
c krank -- rank of the ID to be constructed
c
c output:
c list -- indices of the columns in the ID
c proj -- matrix of coefficients needed to interpolate
c from the selected columns to the other columns
c in the original matrix being ID'd;
c proj doubles as a work array in the present routine, so
c proj must be at least m+(krank+3)*n complex*16 elements
c long
c
c _N.B._: The algorithm used by this routine is randomized.
c proj must be at least m+(krank+3)*n complex*16 elements
c long.
c
c reference:
c Halko, Martinsson, Tropp, "Finding structure with randomness:
c probabilistic algorithms for constructing approximate
c matrix decompositions," SIAM Review, 53 (2): 217-288,
c 2011.
c
implicit none
integer m,n,krank,list(n),lw,ix,lx,iy,ly,ir,lr
complex*16 p1,p2,p3,p4,proj(m+(krank+3)*n)
external matveca
c
c
c Allocate memory in w.
c
lw = 0
c
ir = lw+1
lr = (krank+2)*n
lw = lw+lr
c
ix = lw+1
lx = m
lw = lw+lx
c
iy = lw+1
ly = n
lw = lw+ly
c
c
call idzr_ridall0(m,n,matveca,p1,p2,p3,p4,krank,
1 list,proj(ir),proj(ix),proj(iy))
c
c
return
end
c
c
c
c
subroutine idzr_ridall0(m,n,matveca,p1,p2,p3,p4,krank,
1 list,r,x,y)
c
c routine idzr_ridall serves as a memory wrapper
c for the present routine
c (see idzr_ridall for further documentation).
c
implicit none
integer j,k,l,m,n,krank,list(n),m2
complex*16 x(m),y(n),p1,p2,p3,p4,r(krank+2,n)
external matveca
c
c
c Set the number of random test vectors to 2 more than the rank.
c
l = krank+2
c
c Apply the adjoint of the original matrix to l random vectors.
c
do j = 1,l
c
c Generate a random vector.
c
m2 = m*2
call id_srand(m2,x)
c
c Apply the adjoint of the matrix to x, obtaining y.
c
call matveca(m,x,n,y,p1,p2,p3,p4)
c
c Copy the conjugate of y into row j of r.
c
do k = 1,n
r(j,k) = conjg(y(k))
enddo ! k
c
enddo ! j
c
c
c ID r.
c
call idzr_id(l,n,r,krank,list,y)
c
c
return
end
| bsd-3-clause |
hendersa/sel4px4os | impl/libs/libpx4eigen/blas/testing/dblat1.f | 288 | 44819 | *> \brief \b DBLAT1
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM DBLAT1
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Test program for the DOUBLE PRECISION Level 1 BLAS.
*>
*> Based upon the original BLAS test routine together with:
*> F06EAF Example Program Text
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup double_blas_testing
*
* =====================================================================
PROGRAM DBLAT1
*
* -- Reference BLAS test routine (version 3.4.1) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* =====================================================================
*
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
DOUBLE PRECISION SFAC
INTEGER IC
* .. External Subroutines ..
EXTERNAL CHECK0, CHECK1, CHECK2, CHECK3, HEADER
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
DATA SFAC/9.765625D-4/
* .. Executable Statements ..
WRITE (NOUT,99999)
DO 20 IC = 1, 13
ICASE = IC
CALL HEADER
*
* .. Initialize PASS, INCX, and INCY for a new case. ..
* .. the value 9999 for INCX or INCY will appear in the ..
* .. detailed output, if any, for cases that do not involve ..
* .. these parameters ..
*
PASS = .TRUE.
INCX = 9999
INCY = 9999
IF (ICASE.EQ.3 .OR. ICASE.EQ.11) THEN
CALL CHECK0(SFAC)
ELSE IF (ICASE.EQ.7 .OR. ICASE.EQ.8 .OR. ICASE.EQ.9 .OR.
+ ICASE.EQ.10) THEN
CALL CHECK1(SFAC)
ELSE IF (ICASE.EQ.1 .OR. ICASE.EQ.2 .OR. ICASE.EQ.5 .OR.
+ ICASE.EQ.6 .OR. ICASE.EQ.12 .OR. ICASE.EQ.13) THEN
CALL CHECK2(SFAC)
ELSE IF (ICASE.EQ.4) THEN
CALL CHECK3(SFAC)
END IF
* -- Print
IF (PASS) WRITE (NOUT,99998)
20 CONTINUE
STOP
*
99999 FORMAT (' Real BLAS Test Program Results',/1X)
99998 FORMAT (' ----- PASS -----')
END
SUBROUTINE HEADER
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Arrays ..
CHARACTER*6 L(13)
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
DATA L(1)/' DDOT '/
DATA L(2)/'DAXPY '/
DATA L(3)/'DROTG '/
DATA L(4)/' DROT '/
DATA L(5)/'DCOPY '/
DATA L(6)/'DSWAP '/
DATA L(7)/'DNRM2 '/
DATA L(8)/'DASUM '/
DATA L(9)/'DSCAL '/
DATA L(10)/'IDAMAX'/
DATA L(11)/'DROTMG'/
DATA L(12)/'DROTM '/
DATA L(13)/'DSDOT '/
* .. Executable Statements ..
WRITE (NOUT,99999) ICASE, L(ICASE)
RETURN
*
99999 FORMAT (/' Test of subprogram number',I3,12X,A6)
END
SUBROUTINE CHECK0(SFAC)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
DOUBLE PRECISION SFAC
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
DOUBLE PRECISION SA, SB, SC, SS, D12
INTEGER I, K
* .. Local Arrays ..
DOUBLE PRECISION DA1(8), DATRUE(8), DB1(8), DBTRUE(8), DC1(8),
$ DS1(8), DAB(4,9), DTEMP(9), DTRUE(9,9)
* .. External Subroutines ..
EXTERNAL DROTG, DROTMG, STEST1
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
DATA DA1/0.3D0, 0.4D0, -0.3D0, -0.4D0, -0.3D0, 0.0D0,
+ 0.0D0, 1.0D0/
DATA DB1/0.4D0, 0.3D0, 0.4D0, 0.3D0, -0.4D0, 0.0D0,
+ 1.0D0, 0.0D0/
DATA DC1/0.6D0, 0.8D0, -0.6D0, 0.8D0, 0.6D0, 1.0D0,
+ 0.0D0, 1.0D0/
DATA DS1/0.8D0, 0.6D0, 0.8D0, -0.6D0, 0.8D0, 0.0D0,
+ 1.0D0, 0.0D0/
DATA DATRUE/0.5D0, 0.5D0, 0.5D0, -0.5D0, -0.5D0,
+ 0.0D0, 1.0D0, 1.0D0/
DATA DBTRUE/0.0D0, 0.6D0, 0.0D0, -0.6D0, 0.0D0,
+ 0.0D0, 1.0D0, 0.0D0/
* INPUT FOR MODIFIED GIVENS
DATA DAB/ .1D0,.3D0,1.2D0,.2D0,
A .7D0, .2D0, .6D0, 4.2D0,
B 0.D0,0.D0,0.D0,0.D0,
C 4.D0, -1.D0, 2.D0, 4.D0,
D 6.D-10, 2.D-2, 1.D5, 10.D0,
E 4.D10, 2.D-2, 1.D-5, 10.D0,
F 2.D-10, 4.D-2, 1.D5, 10.D0,
G 2.D10, 4.D-2, 1.D-5, 10.D0,
H 4.D0, -2.D0, 8.D0, 4.D0 /
* TRUE RESULTS FOR MODIFIED GIVENS
DATA DTRUE/0.D0,0.D0, 1.3D0, .2D0, 0.D0,0.D0,0.D0, .5D0, 0.D0,
A 0.D0,0.D0, 4.5D0, 4.2D0, 1.D0, .5D0, 0.D0,0.D0,0.D0,
B 0.D0,0.D0,0.D0,0.D0, -2.D0, 0.D0,0.D0,0.D0,0.D0,
C 0.D0,0.D0,0.D0, 4.D0, -1.D0, 0.D0,0.D0,0.D0,0.D0,
D 0.D0, 15.D-3, 0.D0, 10.D0, -1.D0, 0.D0, -1.D-4,
E 0.D0, 1.D0,
F 0.D0,0.D0, 6144.D-5, 10.D0, -1.D0, 4096.D0, -1.D6,
G 0.D0, 1.D0,
H 0.D0,0.D0,15.D0,10.D0,-1.D0, 5.D-5, 0.D0,1.D0,0.D0,
I 0.D0,0.D0, 15.D0, 10.D0, -1. D0, 5.D5, -4096.D0,
J 1.D0, 4096.D-6,
K 0.D0,0.D0, 7.D0, 4.D0, 0.D0,0.D0, -.5D0, -.25D0, 0.D0/
* 4096 = 2 ** 12
DATA D12 /4096.D0/
DTRUE(1,1) = 12.D0 / 130.D0
DTRUE(2,1) = 36.D0 / 130.D0
DTRUE(7,1) = -1.D0 / 6.D0
DTRUE(1,2) = 14.D0 / 75.D0
DTRUE(2,2) = 49.D0 / 75.D0
DTRUE(9,2) = 1.D0 / 7.D0
DTRUE(1,5) = 45.D-11 * (D12 * D12)
DTRUE(3,5) = 4.D5 / (3.D0 * D12)
DTRUE(6,5) = 1.D0 / D12
DTRUE(8,5) = 1.D4 / (3.D0 * D12)
DTRUE(1,6) = 4.D10 / (1.5D0 * D12 * D12)
DTRUE(2,6) = 2.D-2 / 1.5D0
DTRUE(8,6) = 5.D-7 * D12
DTRUE(1,7) = 4.D0 / 150.D0
DTRUE(2,7) = (2.D-10 / 1.5D0) * (D12 * D12)
DTRUE(7,7) = -DTRUE(6,5)
DTRUE(9,7) = 1.D4 / D12
DTRUE(1,8) = DTRUE(1,7)
DTRUE(2,8) = 2.D10 / (1.5D0 * D12 * D12)
DTRUE(1,9) = 32.D0 / 7.D0
DTRUE(2,9) = -16.D0 / 7.D0
* .. Executable Statements ..
*
* Compute true values which cannot be prestored
* in decimal notation
*
DBTRUE(1) = 1.0D0/0.6D0
DBTRUE(3) = -1.0D0/0.6D0
DBTRUE(5) = 1.0D0/0.6D0
*
DO 20 K = 1, 8
* .. Set N=K for identification in output if any ..
N = K
IF (ICASE.EQ.3) THEN
* .. DROTG ..
IF (K.GT.8) GO TO 40
SA = DA1(K)
SB = DB1(K)
CALL DROTG(SA,SB,SC,SS)
CALL STEST1(SA,DATRUE(K),DATRUE(K),SFAC)
CALL STEST1(SB,DBTRUE(K),DBTRUE(K),SFAC)
CALL STEST1(SC,DC1(K),DC1(K),SFAC)
CALL STEST1(SS,DS1(K),DS1(K),SFAC)
ELSEIF (ICASE.EQ.11) THEN
* .. DROTMG ..
DO I=1,4
DTEMP(I)= DAB(I,K)
DTEMP(I+4) = 0.0
END DO
DTEMP(9) = 0.0
CALL DROTMG(DTEMP(1),DTEMP(2),DTEMP(3),DTEMP(4),DTEMP(5))
CALL STEST(9,DTEMP,DTRUE(1,K),DTRUE(1,K),SFAC)
ELSE
WRITE (NOUT,*) ' Shouldn''t be here in CHECK0'
STOP
END IF
20 CONTINUE
40 RETURN
END
SUBROUTINE CHECK1(SFAC)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
DOUBLE PRECISION SFAC
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
INTEGER I, LEN, NP1
* .. Local Arrays ..
DOUBLE PRECISION DTRUE1(5), DTRUE3(5), DTRUE5(8,5,2), DV(8,5,2),
+ SA(10), STEMP(1), STRUE(8), SX(8)
INTEGER ITRUE2(5)
* .. External Functions ..
DOUBLE PRECISION DASUM, DNRM2
INTEGER IDAMAX
EXTERNAL DASUM, DNRM2, IDAMAX
* .. External Subroutines ..
EXTERNAL ITEST1, DSCAL, STEST, STEST1
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
DATA SA/0.3D0, -1.0D0, 0.0D0, 1.0D0, 0.3D0, 0.3D0,
+ 0.3D0, 0.3D0, 0.3D0, 0.3D0/
DATA DV/0.1D0, 2.0D0, 2.0D0, 2.0D0, 2.0D0, 2.0D0,
+ 2.0D0, 2.0D0, 0.3D0, 3.0D0, 3.0D0, 3.0D0, 3.0D0,
+ 3.0D0, 3.0D0, 3.0D0, 0.3D0, -0.4D0, 4.0D0,
+ 4.0D0, 4.0D0, 4.0D0, 4.0D0, 4.0D0, 0.2D0,
+ -0.6D0, 0.3D0, 5.0D0, 5.0D0, 5.0D0, 5.0D0,
+ 5.0D0, 0.1D0, -0.3D0, 0.5D0, -0.1D0, 6.0D0,
+ 6.0D0, 6.0D0, 6.0D0, 0.1D0, 8.0D0, 8.0D0, 8.0D0,
+ 8.0D0, 8.0D0, 8.0D0, 8.0D0, 0.3D0, 9.0D0, 9.0D0,
+ 9.0D0, 9.0D0, 9.0D0, 9.0D0, 9.0D0, 0.3D0, 2.0D0,
+ -0.4D0, 2.0D0, 2.0D0, 2.0D0, 2.0D0, 2.0D0,
+ 0.2D0, 3.0D0, -0.6D0, 5.0D0, 0.3D0, 2.0D0,
+ 2.0D0, 2.0D0, 0.1D0, 4.0D0, -0.3D0, 6.0D0,
+ -0.5D0, 7.0D0, -0.1D0, 3.0D0/
DATA DTRUE1/0.0D0, 0.3D0, 0.5D0, 0.7D0, 0.6D0/
DATA DTRUE3/0.0D0, 0.3D0, 0.7D0, 1.1D0, 1.0D0/
DATA DTRUE5/0.10D0, 2.0D0, 2.0D0, 2.0D0, 2.0D0,
+ 2.0D0, 2.0D0, 2.0D0, -0.3D0, 3.0D0, 3.0D0,
+ 3.0D0, 3.0D0, 3.0D0, 3.0D0, 3.0D0, 0.0D0, 0.0D0,
+ 4.0D0, 4.0D0, 4.0D0, 4.0D0, 4.0D0, 4.0D0,
+ 0.20D0, -0.60D0, 0.30D0, 5.0D0, 5.0D0, 5.0D0,
+ 5.0D0, 5.0D0, 0.03D0, -0.09D0, 0.15D0, -0.03D0,
+ 6.0D0, 6.0D0, 6.0D0, 6.0D0, 0.10D0, 8.0D0,
+ 8.0D0, 8.0D0, 8.0D0, 8.0D0, 8.0D0, 8.0D0,
+ 0.09D0, 9.0D0, 9.0D0, 9.0D0, 9.0D0, 9.0D0,
+ 9.0D0, 9.0D0, 0.09D0, 2.0D0, -0.12D0, 2.0D0,
+ 2.0D0, 2.0D0, 2.0D0, 2.0D0, 0.06D0, 3.0D0,
+ -0.18D0, 5.0D0, 0.09D0, 2.0D0, 2.0D0, 2.0D0,
+ 0.03D0, 4.0D0, -0.09D0, 6.0D0, -0.15D0, 7.0D0,
+ -0.03D0, 3.0D0/
DATA ITRUE2/0, 1, 2, 2, 3/
* .. Executable Statements ..
DO 80 INCX = 1, 2
DO 60 NP1 = 1, 5
N = NP1 - 1
LEN = 2*MAX(N,1)
* .. Set vector arguments ..
DO 20 I = 1, LEN
SX(I) = DV(I,NP1,INCX)
20 CONTINUE
*
IF (ICASE.EQ.7) THEN
* .. DNRM2 ..
STEMP(1) = DTRUE1(NP1)
CALL STEST1(DNRM2(N,SX,INCX),STEMP(1),STEMP,SFAC)
ELSE IF (ICASE.EQ.8) THEN
* .. DASUM ..
STEMP(1) = DTRUE3(NP1)
CALL STEST1(DASUM(N,SX,INCX),STEMP(1),STEMP,SFAC)
ELSE IF (ICASE.EQ.9) THEN
* .. DSCAL ..
CALL DSCAL(N,SA((INCX-1)*5+NP1),SX,INCX)
DO 40 I = 1, LEN
STRUE(I) = DTRUE5(I,NP1,INCX)
40 CONTINUE
CALL STEST(LEN,SX,STRUE,STRUE,SFAC)
ELSE IF (ICASE.EQ.10) THEN
* .. IDAMAX ..
CALL ITEST1(IDAMAX(N,SX,INCX),ITRUE2(NP1))
ELSE
WRITE (NOUT,*) ' Shouldn''t be here in CHECK1'
STOP
END IF
60 CONTINUE
80 CONTINUE
RETURN
END
SUBROUTINE CHECK2(SFAC)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
DOUBLE PRECISION SFAC
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
DOUBLE PRECISION SA
INTEGER I, J, KI, KN, KNI, KPAR, KSIZE, LENX, LENY,
$ MX, MY
* .. Local Arrays ..
DOUBLE PRECISION DT10X(7,4,4), DT10Y(7,4,4), DT7(4,4),
$ DT8(7,4,4), DX1(7),
$ DY1(7), SSIZE1(4), SSIZE2(14,2), SSIZE(7),
$ STX(7), STY(7), SX(7), SY(7),
$ DPAR(5,4), DT19X(7,4,16),DT19XA(7,4,4),
$ DT19XB(7,4,4), DT19XC(7,4,4),DT19XD(7,4,4),
$ DT19Y(7,4,16), DT19YA(7,4,4),DT19YB(7,4,4),
$ DT19YC(7,4,4), DT19YD(7,4,4), DTEMP(5)
INTEGER INCXS(4), INCYS(4), LENS(4,2), NS(4)
* .. External Functions ..
DOUBLE PRECISION DDOT, DSDOT
EXTERNAL DDOT, DSDOT
* .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DROTM, DSWAP, STEST, STEST1
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
EQUIVALENCE (DT19X(1,1,1),DT19XA(1,1,1)),(DT19X(1,1,5),
A DT19XB(1,1,1)),(DT19X(1,1,9),DT19XC(1,1,1)),
B (DT19X(1,1,13),DT19XD(1,1,1))
EQUIVALENCE (DT19Y(1,1,1),DT19YA(1,1,1)),(DT19Y(1,1,5),
A DT19YB(1,1,1)),(DT19Y(1,1,9),DT19YC(1,1,1)),
B (DT19Y(1,1,13),DT19YD(1,1,1))
DATA SA/0.3D0/
DATA INCXS/1, 2, -2, -1/
DATA INCYS/1, -2, 1, -2/
DATA LENS/1, 1, 2, 4, 1, 1, 3, 7/
DATA NS/0, 1, 2, 4/
DATA DX1/0.6D0, 0.1D0, -0.5D0, 0.8D0, 0.9D0, -0.3D0,
+ -0.4D0/
DATA DY1/0.5D0, -0.9D0, 0.3D0, 0.7D0, -0.6D0, 0.2D0,
+ 0.8D0/
DATA DT7/0.0D0, 0.30D0, 0.21D0, 0.62D0, 0.0D0,
+ 0.30D0, -0.07D0, 0.85D0, 0.0D0, 0.30D0, -0.79D0,
+ -0.74D0, 0.0D0, 0.30D0, 0.33D0, 1.27D0/
DATA DT8/0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.68D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.68D0, -0.87D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.68D0, -0.87D0, 0.15D0,
+ 0.94D0, 0.0D0, 0.0D0, 0.0D0, 0.5D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.68D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.35D0, -0.9D0, 0.48D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.38D0, -0.9D0, 0.57D0, 0.7D0, -0.75D0,
+ 0.2D0, 0.98D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.68D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.35D0, -0.72D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.38D0,
+ -0.63D0, 0.15D0, 0.88D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.68D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.68D0, -0.9D0, 0.33D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.68D0, -0.9D0, 0.33D0, 0.7D0,
+ -0.75D0, 0.2D0, 1.04D0/
DATA DT10X/0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.5D0, -0.9D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.5D0, -0.9D0, 0.3D0, 0.7D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.6D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.3D0, 0.1D0, 0.5D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.8D0, 0.1D0, -0.6D0,
+ 0.8D0, 0.3D0, -0.3D0, 0.5D0, 0.6D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.5D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, -0.9D0,
+ 0.1D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.7D0,
+ 0.1D0, 0.3D0, 0.8D0, -0.9D0, -0.3D0, 0.5D0,
+ 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.5D0, 0.3D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.5D0, 0.3D0, -0.6D0, 0.8D0, 0.0D0, 0.0D0,
+ 0.0D0/
DATA DT10Y/0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.6D0, 0.1D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.6D0, 0.1D0, -0.5D0, 0.8D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, -0.5D0, -0.9D0, 0.6D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, -0.4D0, -0.9D0, 0.9D0,
+ 0.7D0, -0.5D0, 0.2D0, 0.6D0, 0.5D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.6D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, -0.5D0,
+ 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ -0.4D0, 0.9D0, -0.5D0, 0.6D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.6D0, -0.9D0, 0.1D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.6D0, -0.9D0, 0.1D0, 0.7D0,
+ -0.5D0, 0.2D0, 0.8D0/
DATA SSIZE1/0.0D0, 0.3D0, 1.6D0, 3.2D0/
DATA SSIZE2/0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0,
+ 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0,
+ 1.17D0, 1.17D0, 1.17D0/
*
* FOR DROTM
*
DATA DPAR/-2.D0, 0.D0,0.D0,0.D0,0.D0,
A -1.D0, 2.D0, -3.D0, -4.D0, 5.D0,
B 0.D0, 0.D0, 2.D0, -3.D0, 0.D0,
C 1.D0, 5.D0, 2.D0, 0.D0, -4.D0/
* TRUE X RESULTS F0R ROTATIONS DROTM
DATA DT19XA/.6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
A .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
B .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
C .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
D .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
E -.8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
F -.9D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
G 3.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
H .6D0, .1D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
I -.8D0, 3.8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
J -.9D0, 2.8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
K 3.5D0, -.4D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
L .6D0, .1D0, -.5D0, .8D0, 0.D0,0.D0,0.D0,
M -.8D0, 3.8D0, -2.2D0, -1.2D0, 0.D0,0.D0,0.D0,
N -.9D0, 2.8D0, -1.4D0, -1.3D0, 0.D0,0.D0,0.D0,
O 3.5D0, -.4D0, -2.2D0, 4.7D0, 0.D0,0.D0,0.D0/
*
DATA DT19XB/.6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
A .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
B .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
C .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
D .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
E -.8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
F -.9D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
G 3.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
H .6D0, .1D0, -.5D0, 0.D0,0.D0,0.D0,0.D0,
I 0.D0, .1D0, -3.0D0, 0.D0,0.D0,0.D0,0.D0,
J -.3D0, .1D0, -2.0D0, 0.D0,0.D0,0.D0,0.D0,
K 3.3D0, .1D0, -2.0D0, 0.D0,0.D0,0.D0,0.D0,
L .6D0, .1D0, -.5D0, .8D0, .9D0, -.3D0, -.4D0,
M -2.0D0, .1D0, 1.4D0, .8D0, .6D0, -.3D0, -2.8D0,
N -1.8D0, .1D0, 1.3D0, .8D0, 0.D0, -.3D0, -1.9D0,
O 3.8D0, .1D0, -3.1D0, .8D0, 4.8D0, -.3D0, -1.5D0 /
*
DATA DT19XC/.6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
A .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
B .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
C .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
D .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
E -.8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
F -.9D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
G 3.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
H .6D0, .1D0, -.5D0, 0.D0,0.D0,0.D0,0.D0,
I 4.8D0, .1D0, -3.0D0, 0.D0,0.D0,0.D0,0.D0,
J 3.3D0, .1D0, -2.0D0, 0.D0,0.D0,0.D0,0.D0,
K 2.1D0, .1D0, -2.0D0, 0.D0,0.D0,0.D0,0.D0,
L .6D0, .1D0, -.5D0, .8D0, .9D0, -.3D0, -.4D0,
M -1.6D0, .1D0, -2.2D0, .8D0, 5.4D0, -.3D0, -2.8D0,
N -1.5D0, .1D0, -1.4D0, .8D0, 3.6D0, -.3D0, -1.9D0,
O 3.7D0, .1D0, -2.2D0, .8D0, 3.6D0, -.3D0, -1.5D0 /
*
DATA DT19XD/.6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
A .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
B .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
C .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
D .6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
E -.8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
F -.9D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
G 3.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
H .6D0, .1D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
I -.8D0, -1.0D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
J -.9D0, -.8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
K 3.5D0, .8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
L .6D0, .1D0, -.5D0, .8D0, 0.D0,0.D0,0.D0,
M -.8D0, -1.0D0, 1.4D0, -1.6D0, 0.D0,0.D0,0.D0,
N -.9D0, -.8D0, 1.3D0, -1.6D0, 0.D0,0.D0,0.D0,
O 3.5D0, .8D0, -3.1D0, 4.8D0, 0.D0,0.D0,0.D0/
* TRUE Y RESULTS FOR ROTATIONS DROTM
DATA DT19YA/.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
A .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
B .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
C .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
D .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
E .7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
F 1.7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
G -2.6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
H .5D0, -.9D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
I .7D0, -4.8D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
J 1.7D0, -.7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
K -2.6D0, 3.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
L .5D0, -.9D0, .3D0, .7D0, 0.D0,0.D0,0.D0,
M .7D0, -4.8D0, 3.0D0, 1.1D0, 0.D0,0.D0,0.D0,
N 1.7D0, -.7D0, -.7D0, 2.3D0, 0.D0,0.D0,0.D0,
O -2.6D0, 3.5D0, -.7D0, -3.6D0, 0.D0,0.D0,0.D0/
*
DATA DT19YB/.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
A .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
B .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
C .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
D .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
E .7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
F 1.7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
G -2.6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
H .5D0, -.9D0, .3D0, 0.D0,0.D0,0.D0,0.D0,
I 4.0D0, -.9D0, -.3D0, 0.D0,0.D0,0.D0,0.D0,
J -.5D0, -.9D0, 1.5D0, 0.D0,0.D0,0.D0,0.D0,
K -1.5D0, -.9D0, -1.8D0, 0.D0,0.D0,0.D0,0.D0,
L .5D0, -.9D0, .3D0, .7D0, -.6D0, .2D0, .8D0,
M 3.7D0, -.9D0, -1.2D0, .7D0, -1.5D0, .2D0, 2.2D0,
N -.3D0, -.9D0, 2.1D0, .7D0, -1.6D0, .2D0, 2.0D0,
O -1.6D0, -.9D0, -2.1D0, .7D0, 2.9D0, .2D0, -3.8D0 /
*
DATA DT19YC/.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
A .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
B .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
C .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
D .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
E .7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
F 1.7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
G -2.6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
H .5D0, -.9D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
I 4.0D0, -6.3D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
J -.5D0, .3D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
K -1.5D0, 3.0D0, 0.D0,0.D0,0.D0,0.D0,0.D0,
L .5D0, -.9D0, .3D0, .7D0, 0.D0,0.D0,0.D0,
M 3.7D0, -7.2D0, 3.0D0, 1.7D0, 0.D0,0.D0,0.D0,
N -.3D0, .9D0, -.7D0, 1.9D0, 0.D0,0.D0,0.D0,
O -1.6D0, 2.7D0, -.7D0, -3.4D0, 0.D0,0.D0,0.D0/
*
DATA DT19YD/.5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
A .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
B .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
C .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
D .5D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
E .7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
F 1.7D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
G -2.6D0, 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
H .5D0, -.9D0, .3D0, 0.D0,0.D0,0.D0,0.D0,
I .7D0, -.9D0, 1.2D0, 0.D0,0.D0,0.D0,0.D0,
J 1.7D0, -.9D0, .5D0, 0.D0,0.D0,0.D0,0.D0,
K -2.6D0, -.9D0, -1.3D0, 0.D0,0.D0,0.D0,0.D0,
L .5D0, -.9D0, .3D0, .7D0, -.6D0, .2D0, .8D0,
M .7D0, -.9D0, 1.2D0, .7D0, -1.5D0, .2D0, 1.6D0,
N 1.7D0, -.9D0, .5D0, .7D0, -1.6D0, .2D0, 2.4D0,
O -2.6D0, -.9D0, -1.3D0, .7D0, 2.9D0, .2D0, -4.0D0 /
*
* .. Executable Statements ..
*
DO 120 KI = 1, 4
INCX = INCXS(KI)
INCY = INCYS(KI)
MX = ABS(INCX)
MY = ABS(INCY)
*
DO 100 KN = 1, 4
N = NS(KN)
KSIZE = MIN(2,KN)
LENX = LENS(KN,MX)
LENY = LENS(KN,MY)
* .. Initialize all argument arrays ..
DO 20 I = 1, 7
SX(I) = DX1(I)
SY(I) = DY1(I)
20 CONTINUE
*
IF (ICASE.EQ.1) THEN
* .. DDOT ..
CALL STEST1(DDOT(N,SX,INCX,SY,INCY),DT7(KN,KI),SSIZE1(KN)
+ ,SFAC)
ELSE IF (ICASE.EQ.2) THEN
* .. DAXPY ..
CALL DAXPY(N,SA,SX,INCX,SY,INCY)
DO 40 J = 1, LENY
STY(J) = DT8(J,KN,KI)
40 CONTINUE
CALL STEST(LENY,SY,STY,SSIZE2(1,KSIZE),SFAC)
ELSE IF (ICASE.EQ.5) THEN
* .. DCOPY ..
DO 60 I = 1, 7
STY(I) = DT10Y(I,KN,KI)
60 CONTINUE
CALL DCOPY(N,SX,INCX,SY,INCY)
CALL STEST(LENY,SY,STY,SSIZE2(1,1),1.0D0)
ELSE IF (ICASE.EQ.6) THEN
* .. DSWAP ..
CALL DSWAP(N,SX,INCX,SY,INCY)
DO 80 I = 1, 7
STX(I) = DT10X(I,KN,KI)
STY(I) = DT10Y(I,KN,KI)
80 CONTINUE
CALL STEST(LENX,SX,STX,SSIZE2(1,1),1.0D0)
CALL STEST(LENY,SY,STY,SSIZE2(1,1),1.0D0)
ELSE IF (ICASE.EQ.12) THEN
* .. DROTM ..
KNI=KN+4*(KI-1)
DO KPAR=1,4
DO I=1,7
SX(I) = DX1(I)
SY(I) = DY1(I)
STX(I)= DT19X(I,KPAR,KNI)
STY(I)= DT19Y(I,KPAR,KNI)
END DO
*
DO I=1,5
DTEMP(I) = DPAR(I,KPAR)
END DO
*
DO I=1,LENX
SSIZE(I)=STX(I)
END DO
* SEE REMARK ABOVE ABOUT DT11X(1,2,7)
* AND DT11X(5,3,8).
IF ((KPAR .EQ. 2) .AND. (KNI .EQ. 7))
$ SSIZE(1) = 2.4D0
IF ((KPAR .EQ. 3) .AND. (KNI .EQ. 8))
$ SSIZE(5) = 1.8D0
*
CALL DROTM(N,SX,INCX,SY,INCY,DTEMP)
CALL STEST(LENX,SX,STX,SSIZE,SFAC)
CALL STEST(LENY,SY,STY,STY,SFAC)
END DO
ELSE IF (ICASE.EQ.13) THEN
* .. DSDOT ..
CALL TESTDSDOT(REAL(DSDOT(N,REAL(SX),INCX,REAL(SY),INCY)),
$ REAL(DT7(KN,KI)),REAL(SSIZE1(KN)), .3125E-1)
ELSE
WRITE (NOUT,*) ' Shouldn''t be here in CHECK2'
STOP
END IF
100 CONTINUE
120 CONTINUE
RETURN
END
SUBROUTINE CHECK3(SFAC)
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
DOUBLE PRECISION SFAC
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
DOUBLE PRECISION SC, SS
INTEGER I, K, KI, KN, KSIZE, LENX, LENY, MX, MY
* .. Local Arrays ..
DOUBLE PRECISION COPYX(5), COPYY(5), DT9X(7,4,4), DT9Y(7,4,4),
+ DX1(7), DY1(7), MWPC(11), MWPS(11), MWPSTX(5),
+ MWPSTY(5), MWPTX(11,5), MWPTY(11,5), MWPX(5),
+ MWPY(5), SSIZE2(14,2), STX(7), STY(7), SX(7),
+ SY(7)
INTEGER INCXS(4), INCYS(4), LENS(4,2), MWPINX(11),
+ MWPINY(11), MWPN(11), NS(4)
* .. External Subroutines ..
EXTERNAL DROT, STEST
* .. Intrinsic Functions ..
INTRINSIC ABS, MIN
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Data statements ..
DATA INCXS/1, 2, -2, -1/
DATA INCYS/1, -2, 1, -2/
DATA LENS/1, 1, 2, 4, 1, 1, 3, 7/
DATA NS/0, 1, 2, 4/
DATA DX1/0.6D0, 0.1D0, -0.5D0, 0.8D0, 0.9D0, -0.3D0,
+ -0.4D0/
DATA DY1/0.5D0, -0.9D0, 0.3D0, 0.7D0, -0.6D0, 0.2D0,
+ 0.8D0/
DATA SC, SS/0.8D0, 0.6D0/
DATA DT9X/0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.78D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.78D0, -0.46D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.78D0, -0.46D0, -0.22D0,
+ 1.06D0, 0.0D0, 0.0D0, 0.0D0, 0.6D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.78D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.66D0, 0.1D0, -0.1D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.96D0, 0.1D0, -0.76D0, 0.8D0, 0.90D0,
+ -0.3D0, -0.02D0, 0.6D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.78D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, -0.06D0, 0.1D0,
+ -0.1D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.90D0,
+ 0.1D0, -0.22D0, 0.8D0, 0.18D0, -0.3D0, -0.02D0,
+ 0.6D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.78D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.78D0, 0.26D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.78D0, 0.26D0, -0.76D0, 1.12D0,
+ 0.0D0, 0.0D0, 0.0D0/
DATA DT9Y/0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.04D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.04D0, -0.78D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.04D0, -0.78D0, 0.54D0,
+ 0.08D0, 0.0D0, 0.0D0, 0.0D0, 0.5D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.04D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.7D0,
+ -0.9D0, -0.12D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.64D0, -0.9D0, -0.30D0, 0.7D0, -0.18D0, 0.2D0,
+ 0.28D0, 0.5D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.04D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.7D0, -1.08D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.64D0, -1.26D0,
+ 0.54D0, 0.20D0, 0.0D0, 0.0D0, 0.0D0, 0.5D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.04D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.04D0, -0.9D0, 0.18D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.04D0, -0.9D0, 0.18D0, 0.7D0,
+ -0.18D0, 0.2D0, 0.16D0/
DATA SSIZE2/0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0, 0.0D0,
+ 0.0D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0,
+ 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0, 1.17D0,
+ 1.17D0, 1.17D0, 1.17D0/
* .. Executable Statements ..
*
DO 60 KI = 1, 4
INCX = INCXS(KI)
INCY = INCYS(KI)
MX = ABS(INCX)
MY = ABS(INCY)
*
DO 40 KN = 1, 4
N = NS(KN)
KSIZE = MIN(2,KN)
LENX = LENS(KN,MX)
LENY = LENS(KN,MY)
*
IF (ICASE.EQ.4) THEN
* .. DROT ..
DO 20 I = 1, 7
SX(I) = DX1(I)
SY(I) = DY1(I)
STX(I) = DT9X(I,KN,KI)
STY(I) = DT9Y(I,KN,KI)
20 CONTINUE
CALL DROT(N,SX,INCX,SY,INCY,SC,SS)
CALL STEST(LENX,SX,STX,SSIZE2(1,KSIZE),SFAC)
CALL STEST(LENY,SY,STY,SSIZE2(1,KSIZE),SFAC)
ELSE
WRITE (NOUT,*) ' Shouldn''t be here in CHECK3'
STOP
END IF
40 CONTINUE
60 CONTINUE
*
MWPC(1) = 1
DO 80 I = 2, 11
MWPC(I) = 0
80 CONTINUE
MWPS(1) = 0
DO 100 I = 2, 6
MWPS(I) = 1
100 CONTINUE
DO 120 I = 7, 11
MWPS(I) = -1
120 CONTINUE
MWPINX(1) = 1
MWPINX(2) = 1
MWPINX(3) = 1
MWPINX(4) = -1
MWPINX(5) = 1
MWPINX(6) = -1
MWPINX(7) = 1
MWPINX(8) = 1
MWPINX(9) = -1
MWPINX(10) = 1
MWPINX(11) = -1
MWPINY(1) = 1
MWPINY(2) = 1
MWPINY(3) = -1
MWPINY(4) = -1
MWPINY(5) = 2
MWPINY(6) = 1
MWPINY(7) = 1
MWPINY(8) = -1
MWPINY(9) = -1
MWPINY(10) = 2
MWPINY(11) = 1
DO 140 I = 1, 11
MWPN(I) = 5
140 CONTINUE
MWPN(5) = 3
MWPN(10) = 3
DO 160 I = 1, 5
MWPX(I) = I
MWPY(I) = I
MWPTX(1,I) = I
MWPTY(1,I) = I
MWPTX(2,I) = I
MWPTY(2,I) = -I
MWPTX(3,I) = 6 - I
MWPTY(3,I) = I - 6
MWPTX(4,I) = I
MWPTY(4,I) = -I
MWPTX(6,I) = 6 - I
MWPTY(6,I) = I - 6
MWPTX(7,I) = -I
MWPTY(7,I) = I
MWPTX(8,I) = I - 6
MWPTY(8,I) = 6 - I
MWPTX(9,I) = -I
MWPTY(9,I) = I
MWPTX(11,I) = I - 6
MWPTY(11,I) = 6 - I
160 CONTINUE
MWPTX(5,1) = 1
MWPTX(5,2) = 3
MWPTX(5,3) = 5
MWPTX(5,4) = 4
MWPTX(5,5) = 5
MWPTY(5,1) = -1
MWPTY(5,2) = 2
MWPTY(5,3) = -2
MWPTY(5,4) = 4
MWPTY(5,5) = -3
MWPTX(10,1) = -1
MWPTX(10,2) = -3
MWPTX(10,3) = -5
MWPTX(10,4) = 4
MWPTX(10,5) = 5
MWPTY(10,1) = 1
MWPTY(10,2) = 2
MWPTY(10,3) = 2
MWPTY(10,4) = 4
MWPTY(10,5) = 3
DO 200 I = 1, 11
INCX = MWPINX(I)
INCY = MWPINY(I)
DO 180 K = 1, 5
COPYX(K) = MWPX(K)
COPYY(K) = MWPY(K)
MWPSTX(K) = MWPTX(I,K)
MWPSTY(K) = MWPTY(I,K)
180 CONTINUE
CALL DROT(MWPN(I),COPYX,INCX,COPYY,INCY,MWPC(I),MWPS(I))
CALL STEST(5,COPYX,MWPSTX,MWPSTX,SFAC)
CALL STEST(5,COPYY,MWPSTY,MWPSTY,SFAC)
200 CONTINUE
RETURN
END
SUBROUTINE STEST(LEN,SCOMP,STRUE,SSIZE,SFAC)
* ********************************* STEST **************************
*
* THIS SUBR COMPARES ARRAYS SCOMP() AND STRUE() OF LENGTH LEN TO
* SEE IF THE TERM BY TERM DIFFERENCES, MULTIPLIED BY SFAC, ARE
* NEGLIGIBLE.
*
* C. L. LAWSON, JPL, 1974 DEC 10
*
* .. Parameters ..
INTEGER NOUT
DOUBLE PRECISION ZERO
PARAMETER (NOUT=6, ZERO=0.0D0)
* .. Scalar Arguments ..
DOUBLE PRECISION SFAC
INTEGER LEN
* .. Array Arguments ..
DOUBLE PRECISION SCOMP(LEN), SSIZE(LEN), STRUE(LEN)
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
DOUBLE PRECISION SD
INTEGER I
* .. External Functions ..
DOUBLE PRECISION SDIFF
EXTERNAL SDIFF
* .. Intrinsic Functions ..
INTRINSIC ABS
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Executable Statements ..
*
DO 40 I = 1, LEN
SD = SCOMP(I) - STRUE(I)
IF (ABS(SFAC*SD) .LE. ABS(SSIZE(I))*EPSILON(ZERO))
+ GO TO 40
*
* HERE SCOMP(I) IS NOT CLOSE TO STRUE(I).
*
IF ( .NOT. PASS) GO TO 20
* PRINT FAIL MESSAGE AND HEADER.
PASS = .FALSE.
WRITE (NOUT,99999)
WRITE (NOUT,99998)
20 WRITE (NOUT,99997) ICASE, N, INCX, INCY, I, SCOMP(I),
+ STRUE(I), SD, SSIZE(I)
40 CONTINUE
RETURN
*
99999 FORMAT (' FAIL')
99998 FORMAT (/' CASE N INCX INCY I ',
+ ' COMP(I) TRUE(I) DIFFERENCE',
+ ' SIZE(I)',/1X)
99997 FORMAT (1X,I4,I3,2I5,I3,2D36.8,2D12.4)
END
SUBROUTINE TESTDSDOT(SCOMP,STRUE,SSIZE,SFAC)
* ********************************* STEST **************************
*
* THIS SUBR COMPARES ARRAYS SCOMP() AND STRUE() OF LENGTH LEN TO
* SEE IF THE TERM BY TERM DIFFERENCES, MULTIPLIED BY SFAC, ARE
* NEGLIGIBLE.
*
* C. L. LAWSON, JPL, 1974 DEC 10
*
* .. Parameters ..
INTEGER NOUT
REAL ZERO
PARAMETER (NOUT=6, ZERO=0.0E0)
* .. Scalar Arguments ..
REAL SFAC, SCOMP, SSIZE, STRUE
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
REAL SD
* .. Intrinsic Functions ..
INTRINSIC ABS
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Executable Statements ..
*
SD = SCOMP - STRUE
IF (ABS(SFAC*SD) .LE. ABS(SSIZE) * EPSILON(ZERO))
+ GO TO 40
*
* HERE SCOMP(I) IS NOT CLOSE TO STRUE(I).
*
IF ( .NOT. PASS) GO TO 20
* PRINT FAIL MESSAGE AND HEADER.
PASS = .FALSE.
WRITE (NOUT,99999)
WRITE (NOUT,99998)
20 WRITE (NOUT,99997) ICASE, N, INCX, INCY, SCOMP,
+ STRUE, SD, SSIZE
40 CONTINUE
RETURN
*
99999 FORMAT (' FAIL')
99998 FORMAT (/' CASE N INCX INCY ',
+ ' COMP(I) TRUE(I) DIFFERENCE',
+ ' SIZE(I)',/1X)
99997 FORMAT (1X,I4,I3,1I5,I3,2E36.8,2E12.4)
END
SUBROUTINE STEST1(SCOMP1,STRUE1,SSIZE,SFAC)
* ************************* STEST1 *****************************
*
* THIS IS AN INTERFACE SUBROUTINE TO ACCOMODATE THE FORTRAN
* REQUIREMENT THAT WHEN A DUMMY ARGUMENT IS AN ARRAY, THE
* ACTUAL ARGUMENT MUST ALSO BE AN ARRAY OR AN ARRAY ELEMENT.
*
* C.L. LAWSON, JPL, 1978 DEC 6
*
* .. Scalar Arguments ..
DOUBLE PRECISION SCOMP1, SFAC, STRUE1
* .. Array Arguments ..
DOUBLE PRECISION SSIZE(*)
* .. Local Arrays ..
DOUBLE PRECISION SCOMP(1), STRUE(1)
* .. External Subroutines ..
EXTERNAL STEST
* .. Executable Statements ..
*
SCOMP(1) = SCOMP1
STRUE(1) = STRUE1
CALL STEST(1,SCOMP,STRUE,SSIZE,SFAC)
*
RETURN
END
DOUBLE PRECISION FUNCTION SDIFF(SA,SB)
* ********************************* SDIFF **************************
* COMPUTES DIFFERENCE OF TWO NUMBERS. C. L. LAWSON, JPL 1974 FEB 15
*
* .. Scalar Arguments ..
DOUBLE PRECISION SA, SB
* .. Executable Statements ..
SDIFF = SA - SB
RETURN
END
SUBROUTINE ITEST1(ICOMP,ITRUE)
* ********************************* ITEST1 *************************
*
* THIS SUBROUTINE COMPARES THE VARIABLES ICOMP AND ITRUE FOR
* EQUALITY.
* C. L. LAWSON, JPL, 1974 DEC 10
*
* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
INTEGER ICOMP, ITRUE
* .. Scalars in Common ..
INTEGER ICASE, INCX, INCY, N
LOGICAL PASS
* .. Local Scalars ..
INTEGER ID
* .. Common blocks ..
COMMON /COMBLA/ICASE, N, INCX, INCY, PASS
* .. Executable Statements ..
*
IF (ICOMP.EQ.ITRUE) GO TO 40
*
* HERE ICOMP IS NOT EQUAL TO ITRUE.
*
IF ( .NOT. PASS) GO TO 20
* PRINT FAIL MESSAGE AND HEADER.
PASS = .FALSE.
WRITE (NOUT,99999)
WRITE (NOUT,99998)
20 ID = ICOMP - ITRUE
WRITE (NOUT,99997) ICASE, N, INCX, INCY, ICOMP, ITRUE, ID
40 CONTINUE
RETURN
*
99999 FORMAT (' FAIL')
99998 FORMAT (/' CASE N INCX INCY ',
+ ' COMP TRUE DIFFERENCE',
+ /1X)
99997 FORMAT (1X,I4,I3,2I5,2I36,I12)
END
| bsd-2-clause |
vigna/scipy | scipy/linalg/src/id_dist/src/idz_snorm.f | 139 | 12408 | c this file contains the following user-callable routines:
c
c
c routine idz_snorm estimates the spectral norm
c of a matrix specified by routines for applying the matrix
c and its adjoint to arbitrary vectors. This routine uses
c the power method with a random starting vector.
c
c routine idz_diffsnorm estimates the spectral norm
c of the difference between two matrices specified by routines
c for applying the matrices and their adjoints
c to arbitrary vectors. This routine uses
c the power method with a random starting vector.
c
c routine idz_enorm calculates the Euclidean norm of a vector.
c
c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
c
c
c
subroutine idz_snorm(m,n,matveca,p1a,p2a,p3a,p4a,
1 matvec,p1,p2,p3,p4,its,snorm,v,u)
c
c estimates the spectral norm of a matrix a specified
c by a routine matvec for applying a to an arbitrary vector,
c and by a routine matveca for applying a^*
c to an arbitrary vector. This routine uses the power method
c with a random starting vector.
c
c input:
c m -- number of rows in a
c n -- number of columns in a
c matveca -- routine which applies the adjoint of a
c to an arbitrary vector; this routine must have
c a calling sequence of the form
c
c matveca(m,x,n,y,p1a,p2a,p3a,p4a),
c
c where m is the length of x,
c x is the vector to which the adjoint of a
c is to be applied,
c n is the length of y,
c y is the product of the adjoint of a and x,
c and p1a, p2a, p3a, and p4a are user-specified
c parameters
c p1a -- parameter to be passed to routine matveca
c p2a -- parameter to be passed to routine matveca
c p3a -- parameter to be passed to routine matveca
c p4a -- parameter to be passed to routine matveca
c matvec -- routine which applies the matrix a
c to an arbitrary vector; this routine must have
c a calling sequence of the form
c
c matvec(n,x,m,y,p1,p2,p3,p4),
c
c where n is the length of x,
c x is the vector to which a is to be applied,
c m is the length of y,
c y is the product of a and x,
c and p1, p2, p3, and p4 are user-specified parameters
c p1 -- parameter to be passed to routine matvec
c p2 -- parameter to be passed to routine matvec
c p3 -- parameter to be passed to routine matvec
c p4 -- parameter to be passed to routine matvec
c its -- number of iterations of the power method to conduct
c
c output:
c snorm -- estimate of the spectral norm of a
c v -- estimate of a normalized right singular vector
c corresponding to the greatest singular value of a
c
c work:
c u -- must be at least m complex*16 elements long
c
c reference:
c Kuczynski and Wozniakowski, "Estimating the largest eigenvalue
c by the power and Lanczos algorithms with a random start,"
c SIAM Journal on Matrix Analysis and Applications,
c 13 (4): 1992, 1094-1122.
c
implicit none
integer m,n,its,it,n2,k
real*8 snorm,enorm
complex*16 p1a,p2a,p3a,p4a,p1,p2,p3,p4,u(m),v(n)
external matveca,matvec
c
c
c Fill the real and imaginary parts of each entry
c of the initial vector v with i.i.d. random variables
c drawn uniformly from [-1,1].
c
n2 = 2*n
call id_srand(n2,v)
c
do k = 1,n
v(k) = 2*v(k)-1
enddo ! k
c
c
c Normalize v.
c
call idz_enorm(n,v,enorm)
c
do k = 1,n
v(k) = v(k)/enorm
enddo ! k
c
c
do it = 1,its
c
c Apply a to v, obtaining u.
c
call matvec(n,v,m,u,p1,p2,p3,p4)
c
c Apply a^* to u, obtaining v.
c
call matveca(m,u,n,v,p1a,p2a,p3a,p4a)
c
c Normalize v.
c
call idz_enorm(n,v,snorm)
c
if(snorm .ne. 0) then
c
do k = 1,n
v(k) = v(k)/snorm
enddo ! k
c
endif
c
snorm = sqrt(snorm)
c
enddo ! it
c
c
return
end
c
c
c
c
subroutine idz_enorm(n,v,enorm)
c
c computes the Euclidean norm of v, the square root
c of the sum of the squares of the absolute values
c of the entries of v.
c
c input:
c n -- length of v
c v -- vector whose Euclidean norm is to be calculated
c
c output:
c enorm -- Euclidean norm of v
c
implicit none
integer n,k
real*8 enorm
complex*16 v(n)
c
c
enorm = 0
c
do k = 1,n
enorm = enorm+v(k)*conjg(v(k))
enddo ! k
c
enorm = sqrt(enorm)
c
c
return
end
c
c
c
c
subroutine idz_diffsnorm(m,n,matveca,p1a,p2a,p3a,p4a,
1 matveca2,p1a2,p2a2,p3a2,p4a2,
2 matvec,p1,p2,p3,p4,
3 matvec2,p12,p22,p32,p42,its,snorm,w)
c
c estimates the spectral norm of the difference between matrices
c a and a2, where a is specified by routines matvec and matveca
c for applying a and a^* to arbitrary vectors,
c and a2 is specified by routines matvec2 and matveca2
c for applying a2 and (a2)^* to arbitrary vectors.
c This routine uses the power method
c with a random starting vector.
c
c input:
c m -- number of rows in a, as well as the number of rows in a2
c n -- number of columns in a, as well as the number of columns
c in a2
c matveca -- routine which applies the adjoint of a
c to an arbitrary vector; this routine must have
c a calling sequence of the form
c
c matveca(m,x,n,y,p1a,p2a,p3a,p4a),
c
c where m is the length of x,
c x is the vector to which the adjoint of a
c is to be applied,
c n is the length of y,
c y is the product of the adjoint of a and x,
c and p1a, p2a, p3a, and p4a are user-specified
c parameters
c p1a -- parameter to be passed to routine matveca
c p2a -- parameter to be passed to routine matveca
c p3a -- parameter to be passed to routine matveca
c p4a -- parameter to be passed to routine matveca
c matveca2 -- routine which applies the adjoint of a2
c to an arbitrary vector; this routine must have
c a calling sequence of the form
c
c matveca2(m,x,n,y,p1a2,p2a2,p3a2,p4a2),
c
c where m is the length of x,
c x is the vector to which the adjoint of a2
c is to be applied,
c n is the length of y,
c y is the product of the adjoint of a2 and x,
c and p1a2, p2a2, p3a2, and p4a2 are user-specified
c parameters
c p1a2 -- parameter to be passed to routine matveca2
c p2a2 -- parameter to be passed to routine matveca2
c p3a2 -- parameter to be passed to routine matveca2
c p4a2 -- parameter to be passed to routine matveca2
c matvec -- routine which applies the matrix a
c to an arbitrary vector; this routine must have
c a calling sequence of the form
c
c matvec(n,x,m,y,p1,p2,p3,p4),
c
c where n is the length of x,
c x is the vector to which a is to be applied,
c m is the length of y,
c y is the product of a and x,
c and p1, p2, p3, and p4 are user-specified parameters
c p1 -- parameter to be passed to routine matvec
c p2 -- parameter to be passed to routine matvec
c p3 -- parameter to be passed to routine matvec
c p4 -- parameter to be passed to routine matvec
c matvec2 -- routine which applies the matrix a2
c to an arbitrary vector; this routine must have
c a calling sequence of the form
c
c matvec2(n,x,m,y,p12,p22,p32,p42),
c
c where n is the length of x,
c x is the vector to which a2 is to be applied,
c m is the length of y,
c y is the product of a2 and x, and
c p12, p22, p32, and p42 are user-specified parameters
c p12 -- parameter to be passed to routine matvec2
c p22 -- parameter to be passed to routine matvec2
c p32 -- parameter to be passed to routine matvec2
c p42 -- parameter to be passed to routine matvec2
c its -- number of iterations of the power method to conduct
c
c output:
c snorm -- estimate of the spectral norm of a-a2
c
c work:
c w -- must be at least 3*m+3*n complex*16 elements long
c
c reference:
c Kuczynski and Wozniakowski, "Estimating the largest eigenvalue
c by the power and Lanczos algorithms with a random start,"
c SIAM Journal on Matrix Analysis and Applications,
c 13 (4): 1992, 1094-1122.
c
implicit none
integer m,n,its,lw,iu,lu,iu1,lu1,iu2,lu2,
1 iv,lv,iv1,lv1,iv2,lv2
real*8 snorm
complex*16 p1a,p2a,p3a,p4a,p1a2,p2a2,p3a2,p4a2,
1 p1,p2,p3,p4,p12,p22,p32,p42,w(3*m+3*n)
external matveca,matvec,matveca2,matvec2
c
c
c Allocate memory in w.
c
lw = 0
c
iu = lw+1
lu = m
lw = lw+lu
c
iu1 = lw+1
lu1 = m
lw = lw+lu1
c
iu2 = lw+1
lu2 = m
lw = lw+lu2
c
iv = lw+1
lv = n
lw = lw+1
c
iv1 = lw+1
lv1 = n
lw = lw+lv1
c
iv2 = lw+1
lv2 = n
lw = lw+lv2
c
c
call idz_diffsnorm0(m,n,matveca,p1a,p2a,p3a,p4a,
1 matveca2,p1a2,p2a2,p3a2,p4a2,
2 matvec,p1,p2,p3,p4,
3 matvec2,p12,p22,p32,p42,
4 its,snorm,w(iu),w(iu1),w(iu2),
5 w(iv),w(iv1),w(iv2))
c
c
return
end
c
c
c
c
subroutine idz_diffsnorm0(m,n,matveca,p1a,p2a,p3a,p4a,
1 matveca2,p1a2,p2a2,p3a2,p4a2,
2 matvec,p1,p2,p3,p4,
3 matvec2,p12,p22,p32,p42,
4 its,snorm,u,u1,u2,v,v1,v2)
c
c routine idz_diffsnorm serves as a memory wrapper
c for the present routine. (Please see routine idz_diffsnorm
c for further documentation.)
c
implicit none
integer m,n,its,it,n2,k
real*8 snorm,enorm
complex*16 p1a,p2a,p3a,p4a,p1a2,p2a2,p3a2,p4a2,
1 p1,p2,p3,p4,p12,p22,p32,p42,u(m),u1(m),u2(m),
2 v(n),v1(n),v2(n)
external matveca,matvec,matveca2,matvec2
c
c
c Fill the real and imaginary parts of each entry
c of the initial vector v with i.i.d. random variables
c drawn uniformly from [-1,1].
c
n2 = 2*n
call id_srand(n2,v)
c
do k = 1,n
v(k) = 2*v(k)-1
enddo ! k
c
c
c Normalize v.
c
call idz_enorm(n,v,enorm)
c
do k = 1,n
v(k) = v(k)/enorm
enddo ! k
c
c
do it = 1,its
c
c Apply a and a2 to v, obtaining u1 and u2.
c
call matvec(n,v,m,u1,p1,p2,p3,p4)
call matvec2(n,v,m,u2,p12,p22,p32,p42)
c
c Form u = u1-u2.
c
do k = 1,m
u(k) = u1(k)-u2(k)
enddo ! k
c
c Apply a^* and (a2)^* to u, obtaining v1 and v2.
c
call matveca(m,u,n,v1,p1a,p2a,p3a,p4a)
call matveca2(m,u,n,v2,p1a2,p2a2,p3a2,p4a2)
c
c Form v = v1-v2.
c
do k = 1,n
v(k) = v1(k)-v2(k)
enddo ! k
c
c Normalize v.
c
call idz_enorm(n,v,snorm)
c
if(snorm .gt. 0) then
c
do k = 1,n
v(k) = v(k)/snorm
enddo ! k
c
endif
c
snorm = sqrt(snorm)
c
enddo ! it
c
c
return
end
| bsd-3-clause |
pscholz/presto | src/slalib/rcc.f | 4 | 58810 | DOUBLE PRECISION FUNCTION sla_RCC (TDB, UT1, WL, U, V)
*+
* - - - -
* R C C
* - - - -
*
* Relativistic clock correction: the difference between proper time at
* a point on the surface of the Earth and coordinate time in the Solar
* System barycentric space-time frame of reference.
*
* The proper time is terrestrial time, TT; the coordinate time is an
* implementation of barycentric dynamical time, TDB.
*
* Given:
* TDB d TDB (MJD: JD-2400000.5)
* UT1 d universal time (fraction of one day)
* WL d clock longitude (radians west)
* U d clock distance from Earth spin axis (km)
* V d clock distance north of Earth equatorial plane (km)
*
* Returned:
* The clock correction, TDB-TT, in seconds:
*
* . TDB is coordinate time in the solar system barycentre frame
* of reference, in units chosen to eliminate the scale difference
* with respect to terrestrial time.
*
* . TT is the proper time for clocks at mean sea level on the
* Earth.
*
* Notes:
*
* 1 The argument TDB is, strictly, the barycentric coordinate time;
* however, the terrestrial time TT can in practice be used without
* any significant loss of accuracy.
*
* 2 The result returned by sla_RCC comprises a main (annual)
* sinusoidal term of amplitude approximately 0.00166 seconds, plus
* planetary and lunar terms up to about 20 microseconds, and diurnal
* terms up to 2 microseconds. The variation arises from the
* transverse Doppler effect and the gravitational red-shift as the
* observer varies in speed and moves through different gravitational
* potentials.
*
* 3 The geocentric model is that of Fairhead & Bretagnon (1990), in
* its full form. It was supplied by Fairhead (private
* communication) as a FORTRAN subroutine. The original Fairhead
* routine used explicit formulae, in such large numbers that
* problems were experienced with certain compilers (Microsoft
* Fortran on PC aborted with stack overflow, Convex compiled
* successfully but extremely slowly). The present implementation is
* a complete recoding, with the original Fairhead coefficients held
* in a table. To optimise arithmetic precision, the terms are
* accumulated in reverse order, smallest first. A number of other
* coding changes were made, in order to match the calling sequence
* of previous versions of the present routine, and to comply with
* Starlink programming standards. The numerical results compared
* with those from the Fairhead form are essentially unaffected by
* the changes, the differences being at the 10^-20 sec level.
*
* 4 The topocentric part of the model is from Moyer (1981) and
* Murray (1983). It is an approximation to the expression
* ( v / c ) . ( r / c ), where v is the barycentric velocity of
* the Earth, r is the geocentric position of the observer and
* c is the speed of light.
*
* 5 During the interval 1950-2050, the absolute accuracy of is better
* than +/- 3 nanoseconds relative to direct numerical integrations
* using the JPL DE200/LE200 solar system ephemeris.
*
* 6 The IAU definition of TDB was that it must differ from TT only by
* periodic terms. Though practical, this is an imprecise definition
* which ignores the existence of very long-period and secular
* effects in the dynamics of the solar system. As a consequence,
* different implementations of TDB will, in general, differ in zero-
* point and will drift linearly relative to one other.
*
* 7 TDB was, in principle, superseded by new coordinate timescales
* which the IAU introduced in 1991: geocentric coordinate time,
* TCG, and barycentric coordinate time, TCB. However, sla_RCC
* can be used to implement the periodic part of TCB-TCG.
*
* References:
*
* 1 Fairhead, L., & Bretagnon, P., Astron.Astrophys., 229, 240-247
* (1990).
*
* 2 Moyer, T.D., Cel.Mech., 23, 33 (1981).
*
* 3 Murray, C.A., Vectorial Astrometry, Adam Hilger (1983).
*
* 4 Seidelmann, P.K. et al, Explanatory Supplement to the
* Astronomical Almanac, Chapter 2, University Science Books
* (1992).
*
* 5 Simon J.L., Bretagnon P., Chapront J., Chapront-Touze M.,
* Francou G. & Laskar J., Astron.Astrophys., 282, 663-683 (1994).
*
* P.T.Wallace Starlink 7 May 2000
*
* Copyright (C) 2000 Rutherford Appleton Laboratory
*
* License:
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (see SLA_CONDITIONS); if not, write to the
* Free Software Foundation, Inc., 59 Temple Place, Suite 330,
* Boston, MA 02111-1307 USA
*
*-
IMPLICIT NONE
DOUBLE PRECISION TDB,UT1,WL,U,V
DOUBLE PRECISION D2PI,D2R
PARAMETER (D2PI=6.283185307179586476925287D0,
: D2R=0.0174532925199432957692369D0)
DOUBLE PRECISION T,TSOL,W,ELSUN,EMSUN,D,ELJ,ELS,
: WT,W0,W1,W2,W3,W4,WF,WJ
* -----------------------------------------------------------------------
*
* Fairhead and Bretagnon canonical coefficients
*
* 787 sets of three coefficients.
*
* Each set is amplitude (microseconds)
* frequency (radians per Julian millennium since J2000),
* phase (radians).
*
* Sets 1-474 are the T**0 terms,
* " 475-679 " " T**1 "
* " 680-764 " " T**2 "
* " 765-784 " " T**3 "
* " 785-787 " " T**4 " .
*
DOUBLE PRECISION FAIRHD(3,787)
INTEGER I,J
DATA ((FAIRHD(I,J),I=1,3),J= 1, 10) /
: 1656.674564D-6, 6283.075849991D0, 6.240054195D0,
: 22.417471D-6, 5753.384884897D0, 4.296977442D0,
: 13.839792D-6, 12566.151699983D0, 6.196904410D0,
: 4.770086D-6, 529.690965095D0, 0.444401603D0,
: 4.676740D-6, 6069.776754553D0, 4.021195093D0,
: 2.256707D-6, 213.299095438D0, 5.543113262D0,
: 1.694205D-6, -3.523118349D0, 5.025132748D0,
: 1.554905D-6, 77713.771467920D0, 5.198467090D0,
: 1.276839D-6, 7860.419392439D0, 5.988822341D0,
: 1.193379D-6, 5223.693919802D0, 3.649823730D0 /
DATA ((FAIRHD(I,J),I=1,3),J= 11, 20) /
: 1.115322D-6, 3930.209696220D0, 1.422745069D0,
: 0.794185D-6, 11506.769769794D0, 2.322313077D0,
: 0.447061D-6, 26.298319800D0, 3.615796498D0,
: 0.435206D-6, -398.149003408D0, 4.349338347D0,
: 0.600309D-6, 1577.343542448D0, 2.678271909D0,
: 0.496817D-6, 6208.294251424D0, 5.696701824D0,
: 0.486306D-6, 5884.926846583D0, 0.520007179D0,
: 0.432392D-6, 74.781598567D0, 2.435898309D0,
: 0.468597D-6, 6244.942814354D0, 5.866398759D0,
: 0.375510D-6, 5507.553238667D0, 4.103476804D0 /
DATA ((FAIRHD(I,J),I=1,3),J= 21, 30) /
: 0.243085D-6, -775.522611324D0, 3.651837925D0,
: 0.173435D-6, 18849.227549974D0, 6.153743485D0,
: 0.230685D-6, 5856.477659115D0, 4.773852582D0,
: 0.203747D-6, 12036.460734888D0, 4.333987818D0,
: 0.143935D-6, -796.298006816D0, 5.957517795D0,
: 0.159080D-6, 10977.078804699D0, 1.890075226D0,
: 0.119979D-6, 38.133035638D0, 4.551585768D0,
: 0.118971D-6, 5486.777843175D0, 1.914547226D0,
: 0.116120D-6, 1059.381930189D0, 0.873504123D0,
: 0.137927D-6, 11790.629088659D0, 1.135934669D0 /
DATA ((FAIRHD(I,J),I=1,3),J= 31, 40) /
: 0.098358D-6, 2544.314419883D0, 0.092793886D0,
: 0.101868D-6, -5573.142801634D0, 5.984503847D0,
: 0.080164D-6, 206.185548437D0, 2.095377709D0,
: 0.079645D-6, 4694.002954708D0, 2.949233637D0,
: 0.062617D-6, 20.775395492D0, 2.654394814D0,
: 0.075019D-6, 2942.463423292D0, 4.980931759D0,
: 0.064397D-6, 5746.271337896D0, 1.280308748D0,
: 0.063814D-6, 5760.498431898D0, 4.167901731D0,
: 0.048042D-6, 2146.165416475D0, 1.495846011D0,
: 0.048373D-6, 155.420399434D0, 2.251573730D0 /
DATA ((FAIRHD(I,J),I=1,3),J= 41, 50) /
: 0.058844D-6, 426.598190876D0, 4.839650148D0,
: 0.046551D-6, -0.980321068D0, 0.921573539D0,
: 0.054139D-6, 17260.154654690D0, 3.411091093D0,
: 0.042411D-6, 6275.962302991D0, 2.869567043D0,
: 0.040184D-6, -7.113547001D0, 3.565975565D0,
: 0.036564D-6, 5088.628839767D0, 3.324679049D0,
: 0.040759D-6, 12352.852604545D0, 3.981496998D0,
: 0.036507D-6, 801.820931124D0, 6.248866009D0,
: 0.036955D-6, 3154.687084896D0, 5.071801441D0,
: 0.042732D-6, 632.783739313D0, 5.720622217D0 /
DATA ((FAIRHD(I,J),I=1,3),J= 51, 60) /
: 0.042560D-6, 161000.685737473D0, 1.270837679D0,
: 0.040480D-6, 15720.838784878D0, 2.546610123D0,
: 0.028244D-6, -6286.598968340D0, 5.069663519D0,
: 0.033477D-6, 6062.663207553D0, 4.144987272D0,
: 0.034867D-6, 522.577418094D0, 5.210064075D0,
: 0.032438D-6, 6076.890301554D0, 0.749317412D0,
: 0.030215D-6, 7084.896781115D0, 3.389610345D0,
: 0.029247D-6, -71430.695617928D0, 4.183178762D0,
: 0.033529D-6, 9437.762934887D0, 2.404714239D0,
: 0.032423D-6, 8827.390269875D0, 5.541473556D0 /
DATA ((FAIRHD(I,J),I=1,3),J= 61, 70) /
: 0.027567D-6, 6279.552731642D0, 5.040846034D0,
: 0.029862D-6, 12139.553509107D0, 1.770181024D0,
: 0.022509D-6, 10447.387839604D0, 1.460726241D0,
: 0.020937D-6, 8429.241266467D0, 0.652303414D0,
: 0.020322D-6, 419.484643875D0, 3.735430632D0,
: 0.024816D-6, -1194.447010225D0, 1.087136918D0,
: 0.025196D-6, 1748.016413067D0, 2.901883301D0,
: 0.021691D-6, 14143.495242431D0, 5.952658009D0,
: 0.017673D-6, 6812.766815086D0, 3.186129845D0,
: 0.022567D-6, 6133.512652857D0, 3.307984806D0 /
DATA ((FAIRHD(I,J),I=1,3),J= 71, 80) /
: 0.016155D-6, 10213.285546211D0, 1.331103168D0,
: 0.014751D-6, 1349.867409659D0, 4.308933301D0,
: 0.015949D-6, -220.412642439D0, 4.005298270D0,
: 0.015974D-6, -2352.866153772D0, 6.145309371D0,
: 0.014223D-6, 17789.845619785D0, 2.104551349D0,
: 0.017806D-6, 73.297125859D0, 3.475975097D0,
: 0.013671D-6, -536.804512095D0, 5.971672571D0,
: 0.011942D-6, 8031.092263058D0, 2.053414715D0,
: 0.014318D-6, 16730.463689596D0, 3.016058075D0,
: 0.012462D-6, 103.092774219D0, 1.737438797D0 /
DATA ((FAIRHD(I,J),I=1,3),J= 81, 90) /
: 0.010962D-6, 3.590428652D0, 2.196567739D0,
: 0.015078D-6, 19651.048481098D0, 3.969480770D0,
: 0.010396D-6, 951.718406251D0, 5.717799605D0,
: 0.011707D-6, -4705.732307544D0, 2.654125618D0,
: 0.010453D-6, 5863.591206116D0, 1.913704550D0,
: 0.012420D-6, 4690.479836359D0, 4.734090399D0,
: 0.011847D-6, 5643.178563677D0, 5.489005403D0,
: 0.008610D-6, 3340.612426700D0, 3.661698944D0,
: 0.011622D-6, 5120.601145584D0, 4.863931876D0,
: 0.010825D-6, 553.569402842D0, 0.842715011D0 /
DATA ((FAIRHD(I,J),I=1,3),J= 91,100) /
: 0.008666D-6, -135.065080035D0, 3.293406547D0,
: 0.009963D-6, 149.563197135D0, 4.870690598D0,
: 0.009858D-6, 6309.374169791D0, 1.061816410D0,
: 0.007959D-6, 316.391869657D0, 2.465042647D0,
: 0.010099D-6, 283.859318865D0, 1.942176992D0,
: 0.007147D-6, -242.728603974D0, 3.661486981D0,
: 0.007505D-6, 5230.807466803D0, 4.920937029D0,
: 0.008323D-6, 11769.853693166D0, 1.229392026D0,
: 0.007490D-6, -6256.777530192D0, 3.658444681D0,
: 0.009370D-6, 149854.400134205D0, 0.673880395D0 /
DATA ((FAIRHD(I,J),I=1,3),J=101,110) /
: 0.007117D-6, 38.027672636D0, 5.294249518D0,
: 0.007857D-6, 12168.002696575D0, 0.525733528D0,
: 0.007019D-6, 6206.809778716D0, 0.837688810D0,
: 0.006056D-6, 955.599741609D0, 4.194535082D0,
: 0.008107D-6, 13367.972631107D0, 3.793235253D0,
: 0.006731D-6, 5650.292110678D0, 5.639906583D0,
: 0.007332D-6, 36.648562930D0, 0.114858677D0,
: 0.006366D-6, 4164.311989613D0, 2.262081818D0,
: 0.006858D-6, 5216.580372801D0, 0.642063318D0,
: 0.006919D-6, 6681.224853400D0, 6.018501522D0 /
DATA ((FAIRHD(I,J),I=1,3),J=111,120) /
: 0.006826D-6, 7632.943259650D0, 3.458654112D0,
: 0.005308D-6, -1592.596013633D0, 2.500382359D0,
: 0.005096D-6, 11371.704689758D0, 2.547107806D0,
: 0.004841D-6, 5333.900241022D0, 0.437078094D0,
: 0.005582D-6, 5966.683980335D0, 2.246174308D0,
: 0.006304D-6, 11926.254413669D0, 2.512929171D0,
: 0.006603D-6, 23581.258177318D0, 5.393136889D0,
: 0.005123D-6, -1.484472708D0, 2.999641028D0,
: 0.004648D-6, 1589.072895284D0, 1.275847090D0,
: 0.005119D-6, 6438.496249426D0, 1.486539246D0 /
DATA ((FAIRHD(I,J),I=1,3),J=121,130) /
: 0.004521D-6, 4292.330832950D0, 6.140635794D0,
: 0.005680D-6, 23013.539539587D0, 4.557814849D0,
: 0.005488D-6, -3.455808046D0, 0.090675389D0,
: 0.004193D-6, 7234.794256242D0, 4.869091389D0,
: 0.003742D-6, 7238.675591600D0, 4.691976180D0,
: 0.004148D-6, -110.206321219D0, 3.016173439D0,
: 0.004553D-6, 11499.656222793D0, 5.554998314D0,
: 0.004892D-6, 5436.993015240D0, 1.475415597D0,
: 0.004044D-6, 4732.030627343D0, 1.398784824D0,
: 0.004164D-6, 12491.370101415D0, 5.650931916D0 /
DATA ((FAIRHD(I,J),I=1,3),J=131,140) /
: 0.004349D-6, 11513.883316794D0, 2.181745369D0,
: 0.003919D-6, 12528.018664345D0, 5.823319737D0,
: 0.003129D-6, 6836.645252834D0, 0.003844094D0,
: 0.004080D-6, -7058.598461315D0, 3.690360123D0,
: 0.003270D-6, 76.266071276D0, 1.517189902D0,
: 0.002954D-6, 6283.143160294D0, 4.447203799D0,
: 0.002872D-6, 28.449187468D0, 1.158692983D0,
: 0.002881D-6, 735.876513532D0, 0.349250250D0,
: 0.003279D-6, 5849.364112115D0, 4.893384368D0,
: 0.003625D-6, 6209.778724132D0, 1.473760578D0 /
DATA ((FAIRHD(I,J),I=1,3),J=141,150) /
: 0.003074D-6, 949.175608970D0, 5.185878737D0,
: 0.002775D-6, 9917.696874510D0, 1.030026325D0,
: 0.002646D-6, 10973.555686350D0, 3.918259169D0,
: 0.002575D-6, 25132.303399966D0, 6.109659023D0,
: 0.003500D-6, 263.083923373D0, 1.892100742D0,
: 0.002740D-6, 18319.536584880D0, 4.320519510D0,
: 0.002464D-6, 202.253395174D0, 4.698203059D0,
: 0.002409D-6, 2.542797281D0, 5.325009315D0,
: 0.003354D-6, -90955.551694697D0, 1.942656623D0,
: 0.002296D-6, 6496.374945429D0, 5.061810696D0 /
DATA ((FAIRHD(I,J),I=1,3),J=151,160) /
: 0.003002D-6, 6172.869528772D0, 2.797822767D0,
: 0.003202D-6, 27511.467873537D0, 0.531673101D0,
: 0.002954D-6, -6283.008539689D0, 4.533471191D0,
: 0.002353D-6, 639.897286314D0, 3.734548088D0,
: 0.002401D-6, 16200.772724501D0, 2.605547070D0,
: 0.003053D-6, 233141.314403759D0, 3.029030662D0,
: 0.003024D-6, 83286.914269554D0, 2.355556099D0,
: 0.002863D-6, 17298.182327326D0, 5.240963796D0,
: 0.002103D-6, -7079.373856808D0, 5.756641637D0,
: 0.002303D-6, 83996.847317911D0, 2.013686814D0 /
DATA ((FAIRHD(I,J),I=1,3),J=161,170) /
: 0.002303D-6, 18073.704938650D0, 1.089100410D0,
: 0.002381D-6, 63.735898303D0, 0.759188178D0,
: 0.002493D-6, 6386.168624210D0, 0.645026535D0,
: 0.002366D-6, 3.932153263D0, 6.215885448D0,
: 0.002169D-6, 11015.106477335D0, 4.845297676D0,
: 0.002397D-6, 6243.458341645D0, 3.809290043D0,
: 0.002183D-6, 1162.474704408D0, 6.179611691D0,
: 0.002353D-6, 6246.427287062D0, 4.781719760D0,
: 0.002199D-6, -245.831646229D0, 5.956152284D0,
: 0.001729D-6, 3894.181829542D0, 1.264976635D0 /
DATA ((FAIRHD(I,J),I=1,3),J=171,180) /
: 0.001896D-6, -3128.388765096D0, 4.914231596D0,
: 0.002085D-6, 35.164090221D0, 1.405158503D0,
: 0.002024D-6, 14712.317116458D0, 2.752035928D0,
: 0.001737D-6, 6290.189396992D0, 5.280820144D0,
: 0.002229D-6, 491.557929457D0, 1.571007057D0,
: 0.001602D-6, 14314.168113050D0, 4.203664806D0,
: 0.002186D-6, 454.909366527D0, 1.402101526D0,
: 0.001897D-6, 22483.848574493D0, 4.167932508D0,
: 0.001825D-6, -3738.761430108D0, 0.545828785D0,
: 0.001894D-6, 1052.268383188D0, 5.817167450D0 /
DATA ((FAIRHD(I,J),I=1,3),J=181,190) /
: 0.001421D-6, 20.355319399D0, 2.419886601D0,
: 0.001408D-6, 10984.192351700D0, 2.732084787D0,
: 0.001847D-6, 10873.986030480D0, 2.903477885D0,
: 0.001391D-6, -8635.942003763D0, 0.593891500D0,
: 0.001388D-6, -7.046236698D0, 1.166145902D0,
: 0.001810D-6, -88860.057071188D0, 0.487355242D0,
: 0.001288D-6, -1990.745017041D0, 3.913022880D0,
: 0.001297D-6, 23543.230504682D0, 3.063805171D0,
: 0.001335D-6, -266.607041722D0, 3.995764039D0,
: 0.001376D-6, 10969.965257698D0, 5.152914309D0 /
DATA ((FAIRHD(I,J),I=1,3),J=191,200) /
: 0.001745D-6, 244287.600007027D0, 3.626395673D0,
: 0.001649D-6, 31441.677569757D0, 1.952049260D0,
: 0.001416D-6, 9225.539273283D0, 4.996408389D0,
: 0.001238D-6, 4804.209275927D0, 5.503379738D0,
: 0.001472D-6, 4590.910180489D0, 4.164913291D0,
: 0.001169D-6, 6040.347246017D0, 5.841719038D0,
: 0.001039D-6, 5540.085789459D0, 2.769753519D0,
: 0.001004D-6, -170.672870619D0, 0.755008103D0,
: 0.001284D-6, 10575.406682942D0, 5.306538209D0,
: 0.001278D-6, 71.812653151D0, 4.713486491D0 /
DATA ((FAIRHD(I,J),I=1,3),J=201,210) /
: 0.001321D-6, 18209.330263660D0, 2.624866359D0,
: 0.001297D-6, 21228.392023546D0, 0.382603541D0,
: 0.000954D-6, 6282.095528923D0, 0.882213514D0,
: 0.001145D-6, 6058.731054289D0, 1.169483931D0,
: 0.000979D-6, 5547.199336460D0, 5.448375984D0,
: 0.000987D-6, -6262.300454499D0, 2.656486959D0,
: 0.001070D-6, -154717.609887482D0, 1.827624012D0,
: 0.000991D-6, 4701.116501708D0, 4.387001801D0,
: 0.001155D-6, -14.227094002D0, 3.042700750D0,
: 0.001176D-6, 277.034993741D0, 3.335519004D0 /
DATA ((FAIRHD(I,J),I=1,3),J=211,220) /
: 0.000890D-6, 13916.019109642D0, 5.601498297D0,
: 0.000884D-6, -1551.045222648D0, 1.088831705D0,
: 0.000876D-6, 5017.508371365D0, 3.969902609D0,
: 0.000806D-6, 15110.466119866D0, 5.142876744D0,
: 0.000773D-6, -4136.910433516D0, 0.022067765D0,
: 0.001077D-6, 175.166059800D0, 1.844913056D0,
: 0.000954D-6, -6284.056171060D0, 0.968480906D0,
: 0.000737D-6, 5326.786694021D0, 4.923831588D0,
: 0.000845D-6, -433.711737877D0, 4.749245231D0,
: 0.000819D-6, 8662.240323563D0, 5.991247817D0 /
DATA ((FAIRHD(I,J),I=1,3),J=221,230) /
: 0.000852D-6, 199.072001436D0, 2.189604979D0,
: 0.000723D-6, 17256.631536341D0, 6.068719637D0,
: 0.000940D-6, 6037.244203762D0, 6.197428148D0,
: 0.000885D-6, 11712.955318231D0, 3.280414875D0,
: 0.000706D-6, 12559.038152982D0, 2.824848947D0,
: 0.000732D-6, 2379.164473572D0, 2.501813417D0,
: 0.000764D-6, -6127.655450557D0, 2.236346329D0,
: 0.000908D-6, 131.541961686D0, 2.521257490D0,
: 0.000907D-6, 35371.887265976D0, 3.370195967D0,
: 0.000673D-6, 1066.495477190D0, 3.876512374D0 /
DATA ((FAIRHD(I,J),I=1,3),J=231,240) /
: 0.000814D-6, 17654.780539750D0, 4.627122566D0,
: 0.000630D-6, 36.027866677D0, 0.156368499D0,
: 0.000798D-6, 515.463871093D0, 5.151962502D0,
: 0.000798D-6, 148.078724426D0, 5.909225055D0,
: 0.000806D-6, 309.278322656D0, 6.054064447D0,
: 0.000607D-6, -39.617508346D0, 2.839021623D0,
: 0.000601D-6, 412.371096874D0, 3.984225404D0,
: 0.000646D-6, 11403.676995575D0, 3.852959484D0,
: 0.000704D-6, 13521.751441591D0, 2.300991267D0,
: 0.000603D-6, -65147.619767937D0, 4.140083146D0 /
DATA ((FAIRHD(I,J),I=1,3),J=241,250) /
: 0.000609D-6, 10177.257679534D0, 0.437122327D0,
: 0.000631D-6, 5767.611978898D0, 4.026532329D0,
: 0.000576D-6, 11087.285125918D0, 4.760293101D0,
: 0.000674D-6, 14945.316173554D0, 6.270510511D0,
: 0.000726D-6, 5429.879468239D0, 6.039606892D0,
: 0.000710D-6, 28766.924424484D0, 5.672617711D0,
: 0.000647D-6, 11856.218651625D0, 3.397132627D0,
: 0.000678D-6, -5481.254918868D0, 6.249666675D0,
: 0.000618D-6, 22003.914634870D0, 2.466427018D0,
: 0.000738D-6, 6134.997125565D0, 2.242668890D0 /
DATA ((FAIRHD(I,J),I=1,3),J=251,260) /
: 0.000660D-6, 625.670192312D0, 5.864091907D0,
: 0.000694D-6, 3496.032826134D0, 2.668309141D0,
: 0.000531D-6, 6489.261398429D0, 1.681888780D0,
: 0.000611D-6, -143571.324284214D0, 2.424978312D0,
: 0.000575D-6, 12043.574281889D0, 4.216492400D0,
: 0.000553D-6, 12416.588502848D0, 4.772158039D0,
: 0.000689D-6, 4686.889407707D0, 6.224271088D0,
: 0.000495D-6, 7342.457780181D0, 3.817285811D0,
: 0.000567D-6, 3634.621024518D0, 1.649264690D0,
: 0.000515D-6, 18635.928454536D0, 3.945345892D0 /
DATA ((FAIRHD(I,J),I=1,3),J=261,270) /
: 0.000486D-6, -323.505416657D0, 4.061673868D0,
: 0.000662D-6, 25158.601719765D0, 1.794058369D0,
: 0.000509D-6, 846.082834751D0, 3.053874588D0,
: 0.000472D-6, -12569.674818332D0, 5.112133338D0,
: 0.000461D-6, 6179.983075773D0, 0.513669325D0,
: 0.000641D-6, 83467.156352816D0, 3.210727723D0,
: 0.000520D-6, 10344.295065386D0, 2.445597761D0,
: 0.000493D-6, 18422.629359098D0, 1.676939306D0,
: 0.000478D-6, 1265.567478626D0, 5.487314569D0,
: 0.000472D-6, -18.159247265D0, 1.999707589D0 /
DATA ((FAIRHD(I,J),I=1,3),J=271,280) /
: 0.000559D-6, 11190.377900137D0, 5.783236356D0,
: 0.000494D-6, 9623.688276691D0, 3.022645053D0,
: 0.000463D-6, 5739.157790895D0, 1.411223013D0,
: 0.000432D-6, 16858.482532933D0, 1.179256434D0,
: 0.000574D-6, 72140.628666286D0, 1.758191830D0,
: 0.000484D-6, 17267.268201691D0, 3.290589143D0,
: 0.000550D-6, 4907.302050146D0, 0.864024298D0,
: 0.000399D-6, 14.977853527D0, 2.094441910D0,
: 0.000491D-6, 224.344795702D0, 0.878372791D0,
: 0.000432D-6, 20426.571092422D0, 6.003829241D0 /
DATA ((FAIRHD(I,J),I=1,3),J=281,290) /
: 0.000481D-6, 5749.452731634D0, 4.309591964D0,
: 0.000480D-6, 5757.317038160D0, 1.142348571D0,
: 0.000485D-6, 6702.560493867D0, 0.210580917D0,
: 0.000426D-6, 6055.549660552D0, 4.274476529D0,
: 0.000480D-6, 5959.570433334D0, 5.031351030D0,
: 0.000466D-6, 12562.628581634D0, 4.959581597D0,
: 0.000520D-6, 39302.096962196D0, 4.788002889D0,
: 0.000458D-6, 12132.439962106D0, 1.880103788D0,
: 0.000470D-6, 12029.347187887D0, 1.405611197D0,
: 0.000416D-6, -7477.522860216D0, 1.082356330D0 /
DATA ((FAIRHD(I,J),I=1,3),J=291,300) /
: 0.000449D-6, 11609.862544012D0, 4.179989585D0,
: 0.000465D-6, 17253.041107690D0, 0.353496295D0,
: 0.000362D-6, -4535.059436924D0, 1.583849576D0,
: 0.000383D-6, 21954.157609398D0, 3.747376371D0,
: 0.000389D-6, 17.252277143D0, 1.395753179D0,
: 0.000331D-6, 18052.929543158D0, 0.566790582D0,
: 0.000430D-6, 13517.870106233D0, 0.685827538D0,
: 0.000368D-6, -5756.908003246D0, 0.731374317D0,
: 0.000330D-6, 10557.594160824D0, 3.710043680D0,
: 0.000332D-6, 20199.094959633D0, 1.652901407D0 /
DATA ((FAIRHD(I,J),I=1,3),J=301,310) /
: 0.000384D-6, 11933.367960670D0, 5.827781531D0,
: 0.000387D-6, 10454.501386605D0, 2.541182564D0,
: 0.000325D-6, 15671.081759407D0, 2.178850542D0,
: 0.000318D-6, 138.517496871D0, 2.253253037D0,
: 0.000305D-6, 9388.005909415D0, 0.578340206D0,
: 0.000352D-6, 5749.861766548D0, 3.000297967D0,
: 0.000311D-6, 6915.859589305D0, 1.693574249D0,
: 0.000297D-6, 24072.921469776D0, 1.997249392D0,
: 0.000363D-6, -640.877607382D0, 5.071820966D0,
: 0.000323D-6, 12592.450019783D0, 1.072262823D0 /
DATA ((FAIRHD(I,J),I=1,3),J=311,320) /
: 0.000341D-6, 12146.667056108D0, 4.700657997D0,
: 0.000290D-6, 9779.108676125D0, 1.812320441D0,
: 0.000342D-6, 6132.028180148D0, 4.322238614D0,
: 0.000329D-6, 6268.848755990D0, 3.033827743D0,
: 0.000374D-6, 17996.031168222D0, 3.388716544D0,
: 0.000285D-6, -533.214083444D0, 4.687313233D0,
: 0.000338D-6, 6065.844601290D0, 0.877776108D0,
: 0.000276D-6, 24.298513841D0, 0.770299429D0,
: 0.000336D-6, -2388.894020449D0, 5.353796034D0,
: 0.000290D-6, 3097.883822726D0, 4.075291557D0 /
DATA ((FAIRHD(I,J),I=1,3),J=321,330) /
: 0.000318D-6, 709.933048357D0, 5.941207518D0,
: 0.000271D-6, 13095.842665077D0, 3.208912203D0,
: 0.000331D-6, 6073.708907816D0, 4.007881169D0,
: 0.000292D-6, 742.990060533D0, 2.714333592D0,
: 0.000362D-6, 29088.811415985D0, 3.215977013D0,
: 0.000280D-6, 12359.966151546D0, 0.710872502D0,
: 0.000267D-6, 10440.274292604D0, 4.730108488D0,
: 0.000262D-6, 838.969287750D0, 1.327720272D0,
: 0.000250D-6, 16496.361396202D0, 0.898769761D0,
: 0.000325D-6, 20597.243963041D0, 0.180044365D0 /
DATA ((FAIRHD(I,J),I=1,3),J=331,340) /
: 0.000268D-6, 6148.010769956D0, 5.152666276D0,
: 0.000284D-6, 5636.065016677D0, 5.655385808D0,
: 0.000301D-6, 6080.822454817D0, 2.135396205D0,
: 0.000294D-6, -377.373607916D0, 3.708784168D0,
: 0.000236D-6, 2118.763860378D0, 1.733578756D0,
: 0.000234D-6, 5867.523359379D0, 5.575209112D0,
: 0.000268D-6, -226858.238553767D0, 0.069432392D0,
: 0.000265D-6, 167283.761587465D0, 4.369302826D0,
: 0.000280D-6, 28237.233459389D0, 5.304829118D0,
: 0.000292D-6, 12345.739057544D0, 4.096094132D0 /
DATA ((FAIRHD(I,J),I=1,3),J=341,350) /
: 0.000223D-6, 19800.945956225D0, 3.069327406D0,
: 0.000301D-6, 43232.306658416D0, 6.205311188D0,
: 0.000264D-6, 18875.525869774D0, 1.417263408D0,
: 0.000304D-6, -1823.175188677D0, 3.409035232D0,
: 0.000301D-6, 109.945688789D0, 0.510922054D0,
: 0.000260D-6, 813.550283960D0, 2.389438934D0,
: 0.000299D-6, 316428.228673312D0, 5.384595078D0,
: 0.000211D-6, 5756.566278634D0, 3.789392838D0,
: 0.000209D-6, 5750.203491159D0, 1.661943545D0,
: 0.000240D-6, 12489.885628707D0, 5.684549045D0 /
DATA ((FAIRHD(I,J),I=1,3),J=351,360) /
: 0.000216D-6, 6303.851245484D0, 3.862942261D0,
: 0.000203D-6, 1581.959348283D0, 5.549853589D0,
: 0.000200D-6, 5642.198242609D0, 1.016115785D0,
: 0.000197D-6, -70.849445304D0, 4.690702525D0,
: 0.000227D-6, 6287.008003254D0, 2.911891613D0,
: 0.000197D-6, 533.623118358D0, 1.048982898D0,
: 0.000205D-6, -6279.485421340D0, 1.829362730D0,
: 0.000209D-6, -10988.808157535D0, 2.636140084D0,
: 0.000208D-6, -227.526189440D0, 4.127883842D0,
: 0.000191D-6, 415.552490612D0, 4.401165650D0 /
DATA ((FAIRHD(I,J),I=1,3),J=361,370) /
: 0.000190D-6, 29296.615389579D0, 4.175658539D0,
: 0.000264D-6, 66567.485864652D0, 4.601102551D0,
: 0.000256D-6, -3646.350377354D0, 0.506364778D0,
: 0.000188D-6, 13119.721102825D0, 2.032195842D0,
: 0.000185D-6, -209.366942175D0, 4.694756586D0,
: 0.000198D-6, 25934.124331089D0, 3.832703118D0,
: 0.000195D-6, 4061.219215394D0, 3.308463427D0,
: 0.000234D-6, 5113.487598583D0, 1.716090661D0,
: 0.000188D-6, 1478.866574064D0, 5.686865780D0,
: 0.000222D-6, 11823.161639450D0, 1.942386641D0 /
DATA ((FAIRHD(I,J),I=1,3),J=371,380) /
: 0.000181D-6, 10770.893256262D0, 1.999482059D0,
: 0.000171D-6, 6546.159773364D0, 1.182807992D0,
: 0.000206D-6, 70.328180442D0, 5.934076062D0,
: 0.000169D-6, 20995.392966449D0, 2.169080622D0,
: 0.000191D-6, 10660.686935042D0, 5.405515999D0,
: 0.000228D-6, 33019.021112205D0, 4.656985514D0,
: 0.000184D-6, -4933.208440333D0, 3.327476868D0,
: 0.000220D-6, -135.625325010D0, 1.765430262D0,
: 0.000166D-6, 23141.558382925D0, 3.454132746D0,
: 0.000191D-6, 6144.558353121D0, 5.020393445D0 /
DATA ((FAIRHD(I,J),I=1,3),J=381,390) /
: 0.000180D-6, 6084.003848555D0, 0.602182191D0,
: 0.000163D-6, 17782.732072784D0, 4.960593133D0,
: 0.000225D-6, 16460.333529525D0, 2.596451817D0,
: 0.000222D-6, 5905.702242076D0, 3.731990323D0,
: 0.000204D-6, 227.476132789D0, 5.636192701D0,
: 0.000159D-6, 16737.577236597D0, 3.600691544D0,
: 0.000200D-6, 6805.653268085D0, 0.868220961D0,
: 0.000187D-6, 11919.140866668D0, 2.629456641D0,
: 0.000161D-6, 127.471796607D0, 2.862574720D0,
: 0.000205D-6, 6286.666278643D0, 1.742882331D0 /
DATA ((FAIRHD(I,J),I=1,3),J=391,400) /
: 0.000189D-6, 153.778810485D0, 4.812372643D0,
: 0.000168D-6, 16723.350142595D0, 0.027860588D0,
: 0.000149D-6, 11720.068865232D0, 0.659721876D0,
: 0.000189D-6, 5237.921013804D0, 5.245313000D0,
: 0.000143D-6, 6709.674040867D0, 4.317625647D0,
: 0.000146D-6, 4487.817406270D0, 4.815297007D0,
: 0.000144D-6, -664.756045130D0, 5.381366880D0,
: 0.000175D-6, 5127.714692584D0, 4.728443327D0,
: 0.000162D-6, 6254.626662524D0, 1.435132069D0,
: 0.000187D-6, 47162.516354635D0, 1.354371923D0 /
DATA ((FAIRHD(I,J),I=1,3),J=401,410) /
: 0.000146D-6, 11080.171578918D0, 3.369695406D0,
: 0.000180D-6, -348.924420448D0, 2.490902145D0,
: 0.000148D-6, 151.047669843D0, 3.799109588D0,
: 0.000157D-6, 6197.248551160D0, 1.284375887D0,
: 0.000167D-6, 146.594251718D0, 0.759969109D0,
: 0.000133D-6, -5331.357443741D0, 5.409701889D0,
: 0.000154D-6, 95.979227218D0, 3.366890614D0,
: 0.000148D-6, -6418.140930027D0, 3.384104996D0,
: 0.000128D-6, -6525.804453965D0, 3.803419985D0,
: 0.000130D-6, 11293.470674356D0, 0.939039445D0 /
DATA ((FAIRHD(I,J),I=1,3),J=411,420) /
: 0.000152D-6, -5729.506447149D0, 0.734117523D0,
: 0.000138D-6, 210.117701700D0, 2.564216078D0,
: 0.000123D-6, 6066.595360816D0, 4.517099537D0,
: 0.000140D-6, 18451.078546566D0, 0.642049130D0,
: 0.000126D-6, 11300.584221356D0, 3.485280663D0,
: 0.000119D-6, 10027.903195729D0, 3.217431161D0,
: 0.000151D-6, 4274.518310832D0, 4.404359108D0,
: 0.000117D-6, 6072.958148291D0, 0.366324650D0,
: 0.000165D-6, -7668.637425143D0, 4.298212528D0,
: 0.000117D-6, -6245.048177356D0, 5.379518958D0 /
DATA ((FAIRHD(I,J),I=1,3),J=421,430) /
: 0.000130D-6, -5888.449964932D0, 4.527681115D0,
: 0.000121D-6, -543.918059096D0, 6.109429504D0,
: 0.000162D-6, 9683.594581116D0, 5.720092446D0,
: 0.000141D-6, 6219.339951688D0, 0.679068671D0,
: 0.000118D-6, 22743.409379516D0, 4.881123092D0,
: 0.000129D-6, 1692.165669502D0, 0.351407289D0,
: 0.000126D-6, 5657.405657679D0, 5.146592349D0,
: 0.000114D-6, 728.762966531D0, 0.520791814D0,
: 0.000120D-6, 52.596639600D0, 0.948516300D0,
: 0.000115D-6, 65.220371012D0, 3.504914846D0 /
DATA ((FAIRHD(I,J),I=1,3),J=431,440) /
: 0.000126D-6, 5881.403728234D0, 5.577502482D0,
: 0.000158D-6, 163096.180360983D0, 2.957128968D0,
: 0.000134D-6, 12341.806904281D0, 2.598576764D0,
: 0.000151D-6, 16627.370915377D0, 3.985702050D0,
: 0.000109D-6, 1368.660252845D0, 0.014730471D0,
: 0.000131D-6, 6211.263196841D0, 0.085077024D0,
: 0.000146D-6, 5792.741760812D0, 0.708426604D0,
: 0.000146D-6, -77.750543984D0, 3.121576600D0,
: 0.000107D-6, 5341.013788022D0, 0.288231904D0,
: 0.000138D-6, 6281.591377283D0, 2.797450317D0 /
DATA ((FAIRHD(I,J),I=1,3),J=441,450) /
: 0.000113D-6, -6277.552925684D0, 2.788904128D0,
: 0.000115D-6, -525.758811831D0, 5.895222200D0,
: 0.000138D-6, 6016.468808270D0, 6.096188999D0,
: 0.000139D-6, 23539.707386333D0, 2.028195445D0,
: 0.000146D-6, -4176.041342449D0, 4.660008502D0,
: 0.000107D-6, 16062.184526117D0, 4.066520001D0,
: 0.000142D-6, 83783.548222473D0, 2.936315115D0,
: 0.000128D-6, 9380.959672717D0, 3.223844306D0,
: 0.000135D-6, 6205.325306007D0, 1.638054048D0,
: 0.000101D-6, 2699.734819318D0, 5.481603249D0 /
DATA ((FAIRHD(I,J),I=1,3),J=451,460) /
: 0.000104D-6, -568.821874027D0, 2.205734493D0,
: 0.000103D-6, 6321.103522627D0, 2.440421099D0,
: 0.000119D-6, 6321.208885629D0, 2.547496264D0,
: 0.000138D-6, 1975.492545856D0, 2.314608466D0,
: 0.000121D-6, 137.033024162D0, 4.539108237D0,
: 0.000123D-6, 19402.796952817D0, 4.538074405D0,
: 0.000119D-6, 22805.735565994D0, 2.869040566D0,
: 0.000133D-6, 64471.991241142D0, 6.056405489D0,
: 0.000129D-6, -85.827298831D0, 2.540635083D0,
: 0.000131D-6, 13613.804277336D0, 4.005732868D0 /
DATA ((FAIRHD(I,J),I=1,3),J=461,470) /
: 0.000104D-6, 9814.604100291D0, 1.959967212D0,
: 0.000112D-6, 16097.679950283D0, 3.589026260D0,
: 0.000123D-6, 2107.034507542D0, 1.728627253D0,
: 0.000121D-6, 36949.230808424D0, 6.072332087D0,
: 0.000108D-6, -12539.853380183D0, 3.716133846D0,
: 0.000113D-6, -7875.671863624D0, 2.725771122D0,
: 0.000109D-6, 4171.425536614D0, 4.033338079D0,
: 0.000101D-6, 6247.911759770D0, 3.441347021D0,
: 0.000113D-6, 7330.728427345D0, 0.656372122D0,
: 0.000113D-6, 51092.726050855D0, 2.791483066D0 /
DATA ((FAIRHD(I,J),I=1,3),J=471,480) /
: 0.000106D-6, 5621.842923210D0, 1.815323326D0,
: 0.000101D-6, 111.430161497D0, 5.711033677D0,
: 0.000103D-6, 909.818733055D0, 2.812745443D0,
: 0.000101D-6, 1790.642637886D0, 1.965746028D0,
* T
: 102.156724D-6, 6283.075849991D0, 4.249032005D0,
: 1.706807D-6, 12566.151699983D0, 4.205904248D0,
: 0.269668D-6, 213.299095438D0, 3.400290479D0,
: 0.265919D-6, 529.690965095D0, 5.836047367D0,
: 0.210568D-6, -3.523118349D0, 6.262738348D0,
: 0.077996D-6, 5223.693919802D0, 4.670344204D0 /
DATA ((FAIRHD(I,J),I=1,3),J=481,490) /
: 0.054764D-6, 1577.343542448D0, 4.534800170D0,
: 0.059146D-6, 26.298319800D0, 1.083044735D0,
: 0.034420D-6, -398.149003408D0, 5.980077351D0,
: 0.032088D-6, 18849.227549974D0, 4.162913471D0,
: 0.033595D-6, 5507.553238667D0, 5.980162321D0,
: 0.029198D-6, 5856.477659115D0, 0.623811863D0,
: 0.027764D-6, 155.420399434D0, 3.745318113D0,
: 0.025190D-6, 5746.271337896D0, 2.980330535D0,
: 0.022997D-6, -796.298006816D0, 1.174411803D0,
: 0.024976D-6, 5760.498431898D0, 2.467913690D0 /
DATA ((FAIRHD(I,J),I=1,3),J=491,500) /
: 0.021774D-6, 206.185548437D0, 3.854787540D0,
: 0.017925D-6, -775.522611324D0, 1.092065955D0,
: 0.013794D-6, 426.598190876D0, 2.699831988D0,
: 0.013276D-6, 6062.663207553D0, 5.845801920D0,
: 0.011774D-6, 12036.460734888D0, 2.292832062D0,
: 0.012869D-6, 6076.890301554D0, 5.333425680D0,
: 0.012152D-6, 1059.381930189D0, 6.222874454D0,
: 0.011081D-6, -7.113547001D0, 5.154724984D0,
: 0.010143D-6, 4694.002954708D0, 4.044013795D0,
: 0.009357D-6, 5486.777843175D0, 3.416081409D0 /
DATA ((FAIRHD(I,J),I=1,3),J=501,510) /
: 0.010084D-6, 522.577418094D0, 0.749320262D0,
: 0.008587D-6, 10977.078804699D0, 2.777152598D0,
: 0.008628D-6, 6275.962302991D0, 4.562060226D0,
: 0.008158D-6, -220.412642439D0, 5.806891533D0,
: 0.007746D-6, 2544.314419883D0, 1.603197066D0,
: 0.007670D-6, 2146.165416475D0, 3.000200440D0,
: 0.007098D-6, 74.781598567D0, 0.443725817D0,
: 0.006180D-6, -536.804512095D0, 1.302642751D0,
: 0.005818D-6, 5088.628839767D0, 4.827723531D0,
: 0.004945D-6, -6286.598968340D0, 0.268305170D0 /
DATA ((FAIRHD(I,J),I=1,3),J=511,520) /
: 0.004774D-6, 1349.867409659D0, 5.808636673D0,
: 0.004687D-6, -242.728603974D0, 5.154890570D0,
: 0.006089D-6, 1748.016413067D0, 4.403765209D0,
: 0.005975D-6, -1194.447010225D0, 2.583472591D0,
: 0.004229D-6, 951.718406251D0, 0.931172179D0,
: 0.005264D-6, 553.569402842D0, 2.336107252D0,
: 0.003049D-6, 5643.178563677D0, 1.362634430D0,
: 0.002974D-6, 6812.766815086D0, 1.583012668D0,
: 0.003403D-6, -2352.866153772D0, 2.552189886D0,
: 0.003030D-6, 419.484643875D0, 5.286473844D0 /
DATA ((FAIRHD(I,J),I=1,3),J=521,530) /
: 0.003210D-6, -7.046236698D0, 1.863796539D0,
: 0.003058D-6, 9437.762934887D0, 4.226420633D0,
: 0.002589D-6, 12352.852604545D0, 1.991935820D0,
: 0.002927D-6, 5216.580372801D0, 2.319951253D0,
: 0.002425D-6, 5230.807466803D0, 3.084752833D0,
: 0.002656D-6, 3154.687084896D0, 2.487447866D0,
: 0.002445D-6, 10447.387839604D0, 2.347139160D0,
: 0.002990D-6, 4690.479836359D0, 6.235872050D0,
: 0.002890D-6, 5863.591206116D0, 0.095197563D0,
: 0.002498D-6, 6438.496249426D0, 2.994779800D0 /
DATA ((FAIRHD(I,J),I=1,3),J=531,540) /
: 0.001889D-6, 8031.092263058D0, 3.569003717D0,
: 0.002567D-6, 801.820931124D0, 3.425611498D0,
: 0.001803D-6, -71430.695617928D0, 2.192295512D0,
: 0.001782D-6, 3.932153263D0, 5.180433689D0,
: 0.001694D-6, -4705.732307544D0, 4.641779174D0,
: 0.001704D-6, -1592.596013633D0, 3.997097652D0,
: 0.001735D-6, 5849.364112115D0, 0.417558428D0,
: 0.001643D-6, 8429.241266467D0, 2.180619584D0,
: 0.001680D-6, 38.133035638D0, 4.164529426D0,
: 0.002045D-6, 7084.896781115D0, 0.526323854D0 /
DATA ((FAIRHD(I,J),I=1,3),J=541,550) /
: 0.001458D-6, 4292.330832950D0, 1.356098141D0,
: 0.001437D-6, 20.355319399D0, 3.895439360D0,
: 0.001738D-6, 6279.552731642D0, 0.087484036D0,
: 0.001367D-6, 14143.495242431D0, 3.987576591D0,
: 0.001344D-6, 7234.794256242D0, 0.090454338D0,
: 0.001438D-6, 11499.656222793D0, 0.974387904D0,
: 0.001257D-6, 6836.645252834D0, 1.509069366D0,
: 0.001358D-6, 11513.883316794D0, 0.495572260D0,
: 0.001628D-6, 7632.943259650D0, 4.968445721D0,
: 0.001169D-6, 103.092774219D0, 2.838496795D0 /
DATA ((FAIRHD(I,J),I=1,3),J=551,560) /
: 0.001162D-6, 4164.311989613D0, 3.408387778D0,
: 0.001092D-6, 6069.776754553D0, 3.617942651D0,
: 0.001008D-6, 17789.845619785D0, 0.286350174D0,
: 0.001008D-6, 639.897286314D0, 1.610762073D0,
: 0.000918D-6, 10213.285546211D0, 5.532798067D0,
: 0.001011D-6, -6256.777530192D0, 0.661826484D0,
: 0.000753D-6, 16730.463689596D0, 3.905030235D0,
: 0.000737D-6, 11926.254413669D0, 4.641956361D0,
: 0.000694D-6, 3340.612426700D0, 2.111120332D0,
: 0.000701D-6, 3894.181829542D0, 2.760823491D0 /
DATA ((FAIRHD(I,J),I=1,3),J=561,570) /
: 0.000689D-6, -135.065080035D0, 4.768800780D0,
: 0.000700D-6, 13367.972631107D0, 5.760439898D0,
: 0.000664D-6, 6040.347246017D0, 1.051215840D0,
: 0.000654D-6, 5650.292110678D0, 4.911332503D0,
: 0.000788D-6, 6681.224853400D0, 4.699648011D0,
: 0.000628D-6, 5333.900241022D0, 5.024608847D0,
: 0.000755D-6, -110.206321219D0, 4.370971253D0,
: 0.000628D-6, 6290.189396992D0, 3.660478857D0,
: 0.000635D-6, 25132.303399966D0, 4.121051532D0,
: 0.000534D-6, 5966.683980335D0, 1.173284524D0 /
DATA ((FAIRHD(I,J),I=1,3),J=571,580) /
: 0.000543D-6, -433.711737877D0, 0.345585464D0,
: 0.000517D-6, -1990.745017041D0, 5.414571768D0,
: 0.000504D-6, 5767.611978898D0, 2.328281115D0,
: 0.000485D-6, 5753.384884897D0, 1.685874771D0,
: 0.000463D-6, 7860.419392439D0, 5.297703006D0,
: 0.000604D-6, 515.463871093D0, 0.591998446D0,
: 0.000443D-6, 12168.002696575D0, 4.830881244D0,
: 0.000570D-6, 199.072001436D0, 3.899190272D0,
: 0.000465D-6, 10969.965257698D0, 0.476681802D0,
: 0.000424D-6, -7079.373856808D0, 1.112242763D0 /
DATA ((FAIRHD(I,J),I=1,3),J=581,590) /
: 0.000427D-6, 735.876513532D0, 1.994214480D0,
: 0.000478D-6, -6127.655450557D0, 3.778025483D0,
: 0.000414D-6, 10973.555686350D0, 5.441088327D0,
: 0.000512D-6, 1589.072895284D0, 0.107123853D0,
: 0.000378D-6, 10984.192351700D0, 0.915087231D0,
: 0.000402D-6, 11371.704689758D0, 4.107281715D0,
: 0.000453D-6, 9917.696874510D0, 1.917490952D0,
: 0.000395D-6, 149.563197135D0, 2.763124165D0,
: 0.000371D-6, 5739.157790895D0, 3.112111866D0,
: 0.000350D-6, 11790.629088659D0, 0.440639857D0 /
DATA ((FAIRHD(I,J),I=1,3),J=591,600) /
: 0.000356D-6, 6133.512652857D0, 5.444568842D0,
: 0.000344D-6, 412.371096874D0, 5.676832684D0,
: 0.000383D-6, 955.599741609D0, 5.559734846D0,
: 0.000333D-6, 6496.374945429D0, 0.261537984D0,
: 0.000340D-6, 6055.549660552D0, 5.975534987D0,
: 0.000334D-6, 1066.495477190D0, 2.335063907D0,
: 0.000399D-6, 11506.769769794D0, 5.321230910D0,
: 0.000314D-6, 18319.536584880D0, 2.313312404D0,
: 0.000424D-6, 1052.268383188D0, 1.211961766D0,
: 0.000307D-6, 63.735898303D0, 3.169551388D0 /
DATA ((FAIRHD(I,J),I=1,3),J=601,610) /
: 0.000329D-6, 29.821438149D0, 6.106912080D0,
: 0.000357D-6, 6309.374169791D0, 4.223760346D0,
: 0.000312D-6, -3738.761430108D0, 2.180556645D0,
: 0.000301D-6, 309.278322656D0, 1.499984572D0,
: 0.000268D-6, 12043.574281889D0, 2.447520648D0,
: 0.000257D-6, 12491.370101415D0, 3.662331761D0,
: 0.000290D-6, 625.670192312D0, 1.272834584D0,
: 0.000256D-6, 5429.879468239D0, 1.913426912D0,
: 0.000339D-6, 3496.032826134D0, 4.165930011D0,
: 0.000283D-6, 3930.209696220D0, 4.325565754D0 /
DATA ((FAIRHD(I,J),I=1,3),J=611,620) /
: 0.000241D-6, 12528.018664345D0, 3.832324536D0,
: 0.000304D-6, 4686.889407707D0, 1.612348468D0,
: 0.000259D-6, 16200.772724501D0, 3.470173146D0,
: 0.000238D-6, 12139.553509107D0, 1.147977842D0,
: 0.000236D-6, 6172.869528772D0, 3.776271728D0,
: 0.000296D-6, -7058.598461315D0, 0.460368852D0,
: 0.000306D-6, 10575.406682942D0, 0.554749016D0,
: 0.000251D-6, 17298.182327326D0, 0.834332510D0,
: 0.000290D-6, 4732.030627343D0, 4.759564091D0,
: 0.000261D-6, 5884.926846583D0, 0.298259862D0 /
DATA ((FAIRHD(I,J),I=1,3),J=621,630) /
: 0.000249D-6, 5547.199336460D0, 3.749366406D0,
: 0.000213D-6, 11712.955318231D0, 5.415666119D0,
: 0.000223D-6, 4701.116501708D0, 2.703203558D0,
: 0.000268D-6, -640.877607382D0, 0.283670793D0,
: 0.000209D-6, 5636.065016677D0, 1.238477199D0,
: 0.000193D-6, 10177.257679534D0, 1.943251340D0,
: 0.000182D-6, 6283.143160294D0, 2.456157599D0,
: 0.000184D-6, -227.526189440D0, 5.888038582D0,
: 0.000182D-6, -6283.008539689D0, 0.241332086D0,
: 0.000228D-6, -6284.056171060D0, 2.657323816D0 /
DATA ((FAIRHD(I,J),I=1,3),J=631,640) /
: 0.000166D-6, 7238.675591600D0, 5.930629110D0,
: 0.000167D-6, 3097.883822726D0, 5.570955333D0,
: 0.000159D-6, -323.505416657D0, 5.786670700D0,
: 0.000154D-6, -4136.910433516D0, 1.517805532D0,
: 0.000176D-6, 12029.347187887D0, 3.139266834D0,
: 0.000167D-6, 12132.439962106D0, 3.556352289D0,
: 0.000153D-6, 202.253395174D0, 1.463313961D0,
: 0.000157D-6, 17267.268201691D0, 1.586837396D0,
: 0.000142D-6, 83996.847317911D0, 0.022670115D0,
: 0.000152D-6, 17260.154654690D0, 0.708528947D0 /
DATA ((FAIRHD(I,J),I=1,3),J=641,650) /
: 0.000144D-6, 6084.003848555D0, 5.187075177D0,
: 0.000135D-6, 5756.566278634D0, 1.993229262D0,
: 0.000134D-6, 5750.203491159D0, 3.457197134D0,
: 0.000144D-6, 5326.786694021D0, 6.066193291D0,
: 0.000160D-6, 11015.106477335D0, 1.710431974D0,
: 0.000133D-6, 3634.621024518D0, 2.836451652D0,
: 0.000134D-6, 18073.704938650D0, 5.453106665D0,
: 0.000134D-6, 1162.474704408D0, 5.326898811D0,
: 0.000128D-6, 5642.198242609D0, 2.511652591D0,
: 0.000160D-6, 632.783739313D0, 5.628785365D0 /
DATA ((FAIRHD(I,J),I=1,3),J=651,660) /
: 0.000132D-6, 13916.019109642D0, 0.819294053D0,
: 0.000122D-6, 14314.168113050D0, 5.677408071D0,
: 0.000125D-6, 12359.966151546D0, 5.251984735D0,
: 0.000121D-6, 5749.452731634D0, 2.210924603D0,
: 0.000136D-6, -245.831646229D0, 1.646502367D0,
: 0.000120D-6, 5757.317038160D0, 3.240883049D0,
: 0.000134D-6, 12146.667056108D0, 3.059480037D0,
: 0.000137D-6, 6206.809778716D0, 1.867105418D0,
: 0.000141D-6, 17253.041107690D0, 2.069217456D0,
: 0.000129D-6, -7477.522860216D0, 2.781469314D0 /
DATA ((FAIRHD(I,J),I=1,3),J=661,670) /
: 0.000116D-6, 5540.085789459D0, 4.281176991D0,
: 0.000116D-6, 9779.108676125D0, 3.320925381D0,
: 0.000129D-6, 5237.921013804D0, 3.497704076D0,
: 0.000113D-6, 5959.570433334D0, 0.983210840D0,
: 0.000122D-6, 6282.095528923D0, 2.674938860D0,
: 0.000140D-6, -11.045700264D0, 4.957936982D0,
: 0.000108D-6, 23543.230504682D0, 1.390113589D0,
: 0.000106D-6, -12569.674818332D0, 0.429631317D0,
: 0.000110D-6, -266.607041722D0, 5.501340197D0,
: 0.000115D-6, 12559.038152982D0, 4.691456618D0 /
DATA ((FAIRHD(I,J),I=1,3),J=671,680) /
: 0.000134D-6, -2388.894020449D0, 0.577313584D0,
: 0.000109D-6, 10440.274292604D0, 6.218148717D0,
: 0.000102D-6, -543.918059096D0, 1.477842615D0,
: 0.000108D-6, 21228.392023546D0, 2.237753948D0,
: 0.000101D-6, -4535.059436924D0, 3.100492232D0,
: 0.000103D-6, 76.266071276D0, 5.594294322D0,
: 0.000104D-6, 949.175608970D0, 5.674287810D0,
: 0.000101D-6, 13517.870106233D0, 2.196632348D0,
: 0.000100D-6, 11933.367960670D0, 4.056084160D0,
: 4.322990D-6, 6283.075849991D0, 2.642893748D0 /
DATA ((FAIRHD(I,J),I=1,3),J=681,690) /
: 0.406495D-6, 0.000000000D0, 4.712388980D0,
: 0.122605D-6, 12566.151699983D0, 2.438140634D0,
: 0.019476D-6, 213.299095438D0, 1.642186981D0,
: 0.016916D-6, 529.690965095D0, 4.510959344D0,
: 0.013374D-6, -3.523118349D0, 1.502210314D0,
: 0.008042D-6, 26.298319800D0, 0.478549024D0,
: 0.007824D-6, 155.420399434D0, 5.254710405D0,
: 0.004894D-6, 5746.271337896D0, 4.683210850D0,
: 0.004875D-6, 5760.498431898D0, 0.759507698D0,
: 0.004416D-6, 5223.693919802D0, 6.028853166D0 /
DATA ((FAIRHD(I,J),I=1,3),J=691,700) /
: 0.004088D-6, -7.113547001D0, 0.060926389D0,
: 0.004433D-6, 77713.771467920D0, 3.627734103D0,
: 0.003277D-6, 18849.227549974D0, 2.327912542D0,
: 0.002703D-6, 6062.663207553D0, 1.271941729D0,
: 0.003435D-6, -775.522611324D0, 0.747446224D0,
: 0.002618D-6, 6076.890301554D0, 3.633715689D0,
: 0.003146D-6, 206.185548437D0, 5.647874613D0,
: 0.002544D-6, 1577.343542448D0, 6.232904270D0,
: 0.002218D-6, -220.412642439D0, 1.309509946D0,
: 0.002197D-6, 5856.477659115D0, 2.407212349D0 /
DATA ((FAIRHD(I,J),I=1,3),J=701,710) /
: 0.002897D-6, 5753.384884897D0, 5.863842246D0,
: 0.001766D-6, 426.598190876D0, 0.754113147D0,
: 0.001738D-6, -796.298006816D0, 2.714942671D0,
: 0.001695D-6, 522.577418094D0, 2.629369842D0,
: 0.001584D-6, 5507.553238667D0, 1.341138229D0,
: 0.001503D-6, -242.728603974D0, 0.377699736D0,
: 0.001552D-6, -536.804512095D0, 2.904684667D0,
: 0.001370D-6, -398.149003408D0, 1.265599125D0,
: 0.001889D-6, -5573.142801634D0, 4.413514859D0,
: 0.001722D-6, 6069.776754553D0, 2.445966339D0 /
DATA ((FAIRHD(I,J),I=1,3),J=711,720) /
: 0.001124D-6, 1059.381930189D0, 5.041799657D0,
: 0.001258D-6, 553.569402842D0, 3.849557278D0,
: 0.000831D-6, 951.718406251D0, 2.471094709D0,
: 0.000767D-6, 4694.002954708D0, 5.363125422D0,
: 0.000756D-6, 1349.867409659D0, 1.046195744D0,
: 0.000775D-6, -11.045700264D0, 0.245548001D0,
: 0.000597D-6, 2146.165416475D0, 4.543268798D0,
: 0.000568D-6, 5216.580372801D0, 4.178853144D0,
: 0.000711D-6, 1748.016413067D0, 5.934271972D0,
: 0.000499D-6, 12036.460734888D0, 0.624434410D0 /
DATA ((FAIRHD(I,J),I=1,3),J=721,730) /
: 0.000671D-6, -1194.447010225D0, 4.136047594D0,
: 0.000488D-6, 5849.364112115D0, 2.209679987D0,
: 0.000621D-6, 6438.496249426D0, 4.518860804D0,
: 0.000495D-6, -6286.598968340D0, 1.868201275D0,
: 0.000456D-6, 5230.807466803D0, 1.271231591D0,
: 0.000451D-6, 5088.628839767D0, 0.084060889D0,
: 0.000435D-6, 5643.178563677D0, 3.324456609D0,
: 0.000387D-6, 10977.078804699D0, 4.052488477D0,
: 0.000547D-6, 161000.685737473D0, 2.841633844D0,
: 0.000522D-6, 3154.687084896D0, 2.171979966D0 /
DATA ((FAIRHD(I,J),I=1,3),J=731,740) /
: 0.000375D-6, 5486.777843175D0, 4.983027306D0,
: 0.000421D-6, 5863.591206116D0, 4.546432249D0,
: 0.000439D-6, 7084.896781115D0, 0.522967921D0,
: 0.000309D-6, 2544.314419883D0, 3.172606705D0,
: 0.000347D-6, 4690.479836359D0, 1.479586566D0,
: 0.000317D-6, 801.820931124D0, 3.553088096D0,
: 0.000262D-6, 419.484643875D0, 0.606635550D0,
: 0.000248D-6, 6836.645252834D0, 3.014082064D0,
: 0.000245D-6, -1592.596013633D0, 5.519526220D0,
: 0.000225D-6, 4292.330832950D0, 2.877956536D0 /
DATA ((FAIRHD(I,J),I=1,3),J=741,750) /
: 0.000214D-6, 7234.794256242D0, 1.605227587D0,
: 0.000205D-6, 5767.611978898D0, 0.625804796D0,
: 0.000180D-6, 10447.387839604D0, 3.499954526D0,
: 0.000229D-6, 199.072001436D0, 5.632304604D0,
: 0.000214D-6, 639.897286314D0, 5.960227667D0,
: 0.000175D-6, -433.711737877D0, 2.162417992D0,
: 0.000209D-6, 515.463871093D0, 2.322150893D0,
: 0.000173D-6, 6040.347246017D0, 2.556183691D0,
: 0.000184D-6, 6309.374169791D0, 4.732296790D0,
: 0.000227D-6, 149854.400134205D0, 5.385812217D0 /
DATA ((FAIRHD(I,J),I=1,3),J=751,760) /
: 0.000154D-6, 8031.092263058D0, 5.120720920D0,
: 0.000151D-6, 5739.157790895D0, 4.815000443D0,
: 0.000197D-6, 7632.943259650D0, 0.222827271D0,
: 0.000197D-6, 74.781598567D0, 3.910456770D0,
: 0.000138D-6, 6055.549660552D0, 1.397484253D0,
: 0.000149D-6, -6127.655450557D0, 5.333727496D0,
: 0.000137D-6, 3894.181829542D0, 4.281749907D0,
: 0.000135D-6, 9437.762934887D0, 5.979971885D0,
: 0.000139D-6, -2352.866153772D0, 4.715630782D0,
: 0.000142D-6, 6812.766815086D0, 0.513330157D0 /
DATA ((FAIRHD(I,J),I=1,3),J=761,770) /
: 0.000120D-6, -4705.732307544D0, 0.194160689D0,
: 0.000131D-6, -71430.695617928D0, 0.000379226D0,
: 0.000124D-6, 6279.552731642D0, 2.122264908D0,
: 0.000108D-6, -6256.777530192D0, 0.883445696D0,
: 0.143388D-6, 6283.075849991D0, 1.131453581D0,
: 0.006671D-6, 12566.151699983D0, 0.775148887D0,
: 0.001480D-6, 155.420399434D0, 0.480016880D0,
: 0.000934D-6, 213.299095438D0, 6.144453084D0,
: 0.000795D-6, 529.690965095D0, 2.941595619D0,
: 0.000673D-6, 5746.271337896D0, 0.120415406D0 /
DATA ((FAIRHD(I,J),I=1,3),J=771,780) /
: 0.000672D-6, 5760.498431898D0, 5.317009738D0,
: 0.000389D-6, -220.412642439D0, 3.090323467D0,
: 0.000373D-6, 6062.663207553D0, 3.003551964D0,
: 0.000360D-6, 6076.890301554D0, 1.918913041D0,
: 0.000316D-6, -21.340641002D0, 5.545798121D0,
: 0.000315D-6, -242.728603974D0, 1.884932563D0,
: 0.000278D-6, 206.185548437D0, 1.266254859D0,
: 0.000238D-6, -536.804512095D0, 4.532664830D0,
: 0.000185D-6, 522.577418094D0, 4.578313856D0,
: 0.000245D-6, 18849.227549974D0, 0.587467082D0 /
DATA ((FAIRHD(I,J),I=1,3),J=781,787) /
: 0.000180D-6, 426.598190876D0, 5.151178553D0,
: 0.000200D-6, 553.569402842D0, 5.355983739D0,
: 0.000141D-6, 5223.693919802D0, 1.336556009D0,
: 0.000104D-6, 5856.477659115D0, 4.239842759D0,
: 0.003826D-6, 6283.075849991D0, 5.705257275D0,
: 0.000303D-6, 12566.151699983D0, 5.407132842D0,
: 0.000209D-6, 155.420399434D0, 1.989815753D0 /
* -----------------------------------------------------------------------
* Time since J2000.0 in Julian millennia.
T=(TDB-51544.5D0)/365250D0
* -------------------- Topocentric terms -------------------------------
* Convert UT1 to local solar time in radians.
TSOL = MOD(UT1,1D0)*D2PI - WL
* FUNDAMENTAL ARGUMENTS: Simon et al 1994
* Combine time argument (millennia) with deg/arcsec factor.
W = T / 3600D0
* Sun Mean Longitude.
ELSUN = MOD(280.46645683D0+1296027711.03429D0*W,360D0)*D2R
* Sun Mean Anomaly.
EMSUN = MOD(357.52910918D0+1295965810.481D0*W,360D0)*D2R
* Mean Elongation of Moon from Sun.
D = MOD(297.85019547D0+16029616012.090D0*W,360D0)*D2R
* Mean Longitude of Jupiter.
ELJ = MOD(34.35151874D0+109306899.89453D0*W,360D0)*D2R
* Mean Longitude of Saturn.
ELS = MOD(50.07744430D0+44046398.47038D0*W,360D0)*D2R
* TOPOCENTRIC TERMS: Moyer 1981 and Murray 1983.
WT = +0.00029D-10*U*SIN(TSOL+ELSUN-ELS)
: +0.00100D-10*U*SIN(TSOL-2D0*EMSUN)
: +0.00133D-10*U*SIN(TSOL-D)
: +0.00133D-10*U*SIN(TSOL+ELSUN-ELJ)
: -0.00229D-10*U*SIN(TSOL+2D0*ELSUN+EMSUN)
: -0.0220 D-10*V*COS(ELSUN+EMSUN)
: +0.05312D-10*U*SIN(TSOL-EMSUN)
: -0.13677D-10*U*SIN(TSOL+2D0*ELSUN)
: -1.3184 D-10*V*COS(ELSUN)
: +3.17679D-10*U*SIN(TSOL)
* --------------- Fairhead model ---------------------------------------
* T**0
W0=0D0
DO I=474,1,-1
W0=W0+FAIRHD(1,I)*SIN(FAIRHD(2,I)*T+FAIRHD(3,I))
END DO
* T**1
W1=0D0
DO I=679,475,-1
W1=W1+FAIRHD(1,I)*SIN(FAIRHD(2,I)*T+FAIRHD(3,I))
END DO
* T**2
W2=0D0
DO I=764,680,-1
W2=W2+FAIRHD(1,I)*SIN(FAIRHD(2,I)*T+FAIRHD(3,I))
END DO
* T**3
W3=0D0
DO I=784,765,-1
W3=W3+FAIRHD(1,I)*SIN(FAIRHD(2,I)*T+FAIRHD(3,I))
END DO
* T**4
W4=0D0
DO I=787,785,-1
W4=W4+FAIRHD(1,I)*SIN(FAIRHD(2,I)*T+FAIRHD(3,I))
END DO
* Multiply by powers of T and combine.
WF=T*(T*(T*(T*W4+W3)+W2)+W1)+W0
* Adjustments to use JPL planetary masses instead of IAU.
WJ= 0.00065D-6 * SIN( 6069.776754D0 *T + 4.021194D0 ) +
: 0.00033D-6 * SIN( 213.299095D0 *T + 5.543132D0 ) +
: (-0.00196D-6 * SIN( 6208.294251D0 *T + 5.696701D0 ))+
: (-0.00173D-6 * SIN( 74.781599D0 *T + 2.435900D0 ))+
: 0.03638D-6*T*T
* -----------------------------------------------------------------------
* Final result: TDB-TT in seconds.
sla_RCC=WT+WF+WJ
END
| gpl-2.0 |
nschloe/seacas | packages/seacas/applications/fastq/cornp.f | 1 | 2743 | C Copyright(C) 2014-2017 National Technology & Engineering Solutions of
C Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
C NTESS, the U.S. Government retains certain rights in this software.
C
C Redistribution and use in source and binary forms, with or without
C modification, are permitted provided that the following conditions are
C met:
C
C * Redistributions of source code must retain the above copyright
C notice, this list of conditions and the following disclaimer.
C
C * Redistributions in binary form must reproduce the above
C copyright notice, this list of conditions and the following
C disclaimer in the documentation and/or other materials provided
C with the distribution.
C
C * Neither the name of NTESS nor the names of its
C contributors may be used to endorse or promote products derived
C from this software without specific prior written permission.
C
C THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
C "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
C LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
C A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
C OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
C SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
C LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
C DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
C THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
C (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
C OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
C
C $Id: cornp.f,v 1.2 1991/03/21 15:44:30 gdsjaar Exp $
C $Log: cornp.f,v $
C Revision 1.2 1991/03/21 15:44:30 gdsjaar
C Changed all 3.14159... to atan2(0.0, -1.0)
C
c Revision 1.1.1.1 1990/11/30 11:05:24 gdsjaar
c FASTQ Version 2.0X
c
c Revision 1.1 90/11/30 11:05:22 gdsjaar
c Initial revision
c
C
CC* FILE: [.PAVING]CORNP.FOR
CC* MODIFIED BY: TED BLACKER
CC* MODIFICATION DATE: 7/6/90
CC* MODIFICATION: COMPLETED HEADER INFORMATION
C
LOGICAL FUNCTION CORNP (ANGLE)
C***********************************************************************
C
C FUNCTION CORNP = LOGICAL FUNCTION THAT RETURNS TRUE IF THE ANGLE IS
C WITHIN THE CURRENT DEFINITION OF A CORNER
C
C***********************************************************************
C
DATA EPS /.62/
C
PI = ATAN2(0.0, -1.0)
IF (ANGLE .LT. ( PI - EPS)) THEN
CORNP=.TRUE.
ELSE
CORNP=.FALSE.
ENDIF
C
RETURN
C
END
| bsd-3-clause |
pecameron/origin | vendor/github.com/gonum/lapack/internal/testdata/dlasqtest/dcopy.f | 191 | 2631 | *> \brief \b DCOPY
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DCOPY(N,DX,INCX,DY,INCY)
*
* .. Scalar Arguments ..
* INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION DX(*),DY(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DCOPY copies a vector, x, to a vector, y.
*> uses unrolled loops for increments equal to one.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_blas_level1
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> jack dongarra, linpack, 3/11/78.
*> modified 12/3/93, array(1) declarations changed to array(*)
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DCOPY(N,DX,INCX,DY,INCY)
*
* -- Reference BLAS level1 routine (version 3.4.0) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
DOUBLE PRECISION DX(*),DY(*)
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I,IX,IY,M,MP1
* ..
* .. Intrinsic Functions ..
INTRINSIC MOD
* ..
IF (N.LE.0) RETURN
IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN
*
* code for both increments equal to 1
*
*
* clean-up loop
*
M = MOD(N,7)
IF (M.NE.0) THEN
DO I = 1,M
DY(I) = DX(I)
END DO
IF (N.LT.7) RETURN
END IF
MP1 = M + 1
DO I = MP1,N,7
DY(I) = DX(I)
DY(I+1) = DX(I+1)
DY(I+2) = DX(I+2)
DY(I+3) = DX(I+3)
DY(I+4) = DX(I+4)
DY(I+5) = DX(I+5)
DY(I+6) = DX(I+6)
END DO
ELSE
*
* code for unequal increments or equal increments
* not equal to 1
*
IX = 1
IY = 1
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
DO I = 1,N
DY(IY) = DX(IX)
IX = IX + INCX
IY = IY + INCY
END DO
END IF
RETURN
END
| apache-2.0 |
CFDEMproject/LAMMPS | tools/ch2lmp/other/mkpdb.f | 60 | 11604 | c -------------------------------------------------------------------------
c Code converts LAMMPS output to .pdb files
c Overlays coordinates from LAMMPS output onto template pdb
c Assumes atom order is the same between the two
c Converts from atom-based pbc to residue-based pbc
c Also assumes starting config fed to LAMMPS had residue-based pbc
c Paul Crozier, SNL, 2002
c -------------------------------------------------------------------------
module global
real*8 xprd,yprd,zprd,box(2,3)
real*8, allocatable :: x(:,:),q(:),mass(:)
real*8, allocatable :: comx(:),comy(:),comz(:),totmass(:)
integer ntimestep,natoms,nframes,iframe,nper
integer nbonds,nangles,ndihedrals,nimpropers,ntypes
integer nbondtypes,nangletypes,ndihedtypes,nimprotypes
integer nconfig,nconfig_skip,nskip,nframes_between_pdbs
integer nmolecules,nprotein_residues
integer, allocatable :: mytrue(:,:),type(:),molecule(:)
integer, allocatable :: nboxx(:),nboxy(:),nboxz(:)
character*200 data_file_path,config_file_path,pdb_file_path
character*200 compare_file_path
character*76, allocatable :: outbeg(:),outend(:)
end module
c -------------------------------------------------------------------------
c -------------------------------------------------------------------------
program mkpdb
use global
implicit none
call read_in_mkpdb
call read_data
call mkpdb_start
do iframe = nskip+1, nframes
call find_config
call read_config
write(6,*) 'Frame # ', iframe
if (mod(iframe,nframes_between_pdbs) == 0) call mk_pdb
enddo
write(6,*) 'Done.'
stop
end
c -------------------------------------------------------------------------
subroutine find_config
use global
implicit none
integer l,m,n,i,j,ntotal
real*8 buf(8)
if (mod((iframe-1),nper) == 0) then
n = (iframe-1)/nper + 1
write(6,*) 'On config file # ', n
close(21)
c l = n/100
c m = n/10 - l*10
c n = mod(n,10)
open(21,file=trim(config_file_path)
$ //char(48+n),status='old')
rewind 21
c skip the first frame of each config file
read(21,*)
read(21,*) ntimestep
read(21,*)
read(21,*) ntotal
read(21,*)
read(21,*) box(1,1),box(2,1)
read(21,*) box(1,2),box(2,2)
read(21,*) box(1,3),box(2,3)
read(21,*)
if (ntotal /= natoms) write(6,*) 'Mismatch # of atoms'
do i = 1, natoms
read (21,*) (buf(j),j=1,5)
enddo
endif
return
end
c -------------------------------------------------------------------------
logical function match(str1,str2,m)
implicit none
character*(*) str1,str2
integer m
match = .FALSE.
m = len(str1) + 1
if (len(str1).gt.len(str2)) return
if (str1.eq.str2(1:len(str1))) match = .TRUE.
return
end
c -------------------------------------------------------------------------
subroutine mk_pdb
use global
implicit none
integer i,j,k,l,m,n,o,imolecule,ith_pdb
real*8 xx,yy,zz,shiftx,shifty,shiftz,proteinmass
ith_pdb = iframe/nframes_between_pdbs
j = ith_pdb/1E4
k = (ith_pdb - j*1E4)/1E3
l = (ith_pdb - j*1E4 - k*1E3)/1E2
m = (ith_pdb - j*1E4 - k*1E3 - l*1E2)/1E1
n = (ith_pdb - j*1E4 - k*1E3 - l*1E2 - m*1E1)
open(26,file=trim(pdb_file_path)//char(48+j)//char(48+k)//
1 char(48+l)//char(48+m)//char(48+n)//'.pdb')
c Have to convert from pbc applied on an atomic basis to pbc applied
c on a residue basis.
c Step 1: Recenter system based on protein c.o.m.
shiftx = 0.0
shifty = 0.0
shiftz = 0.0
proteinmass = 0.0
do i = 1, natoms
imolecule = molecule(i)
if (imolecule <= nprotein_residues) then
shiftx = shiftx + (x(1,i) + mytrue(1,i)*xprd)*mass(type(i))
shifty = shifty + (x(2,i) + mytrue(2,i)*yprd)*mass(type(i))
shiftz = shiftz + (x(3,i) + mytrue(3,i)*zprd)*mass(type(i))
proteinmass = proteinmass + mass(type(i))
endif
enddo
shiftx = shiftx/proteinmass
shifty = shifty/proteinmass
shiftz = shiftz/proteinmass
do i = 1, natoms
x(1,i) = x(1,i) - shiftx
x(2,i) = x(2,i) - shifty
x(3,i) = x(3,i) - shiftz
enddo
c Step 2: Find the c.o.m. of each residue --- "molecule"
do i = 1, nmolecules
comx(i) = 0.0
comy(i) = 0.0
comz(i) = 0.0
totmass(i) = 0.0
enddo
do i = 1, natoms
imolecule = molecule(i)
comx(imolecule) = comx(imolecule) +
1 (x(1,i) + mytrue(1,i)*xprd)*mass(type(i))
comy(imolecule) = comy(imolecule) +
1 (x(2,i) + mytrue(2,i)*yprd)*mass(type(i))
comz(imolecule) = comz(imolecule) +
1 (x(3,i) + mytrue(3,i)*zprd)*mass(type(i))
totmass(imolecule) = totmass(imolecule) + mass(type(i))
enddo
do i = 1, nmolecules
comx(i) = comx(i)/totmass(i)
comy(i) = comy(i)/totmass(i)
comz(i) = comz(i)/totmass(i)
enddo
c Step 3: Decide how many boxes must be moved in each direction
do i = 1, nmolecules
nboxx(i) = nint(comx(i)/xprd)
nboxy(i) = nint(comy(i)/yprd)
nboxz(i) = nint(comz(i)/zprd)
enddo
c Step 4: Apply moves to atoms. Write pdb file.
do i = 1, natoms
imolecule = molecule(i)
xx = x(1,i) + (mytrue(1,i) - nboxx(imolecule))*xprd
yy = x(2,i) + (mytrue(2,i) - nboxy(imolecule))*yprd
zz = x(3,i) + (mytrue(3,i) - nboxz(imolecule))*zprd
write(26,100) outbeg(i),xx,yy,zz,outend(i)
enddo
100 format(a30,3f8.3,a22)
write(26,200) 'END'
200 format(a3)
close(26)
return
end
c -------------------------------------------------------------------------
subroutine mkpdb_start
use global
implicit none
integer i
character*76 pdbline(natoms),str
open(25,file=trim(compare_file_path),status='old')
rewind 25
do i = 1, natoms
read(25,100) pdbline(i)
enddo
100 format (a)
do i = 1, natoms
str = pdbline(i)
read (str(1:30),100) outbeg(i)
read (str(55:76),100) outend(i)
enddo
return
end
c -------------------------------------------------------------------------
c input data from config file
subroutine read_config
use global
implicit none
c local variables
integer i,j,itag,itrue,ntotal
real*8 buf(8)
read(21,*)
read(21,*) ntimestep
read(21,*)
read(21,*) ntotal
read(21,*)
read(21,*) box(1,1),box(2,1)
read(21,*) box(1,2),box(2,2)
read(21,*) box(1,3),box(2,3)
read(21,*)
if (ntotal /= natoms) write(6,*) 'Mismatch # of atoms'
xprd = box(2,1) - box(1,1)
yprd = box(2,2) - box(1,2)
zprd = box(2,3) - box(1,3)
do i = 1, natoms
read (21,*) (buf(j),j=1,5)
itag = nint(buf(1))
type(itag)= nint(buf(2))
x(1,itag) = buf(3)*xprd + box(1,1)
x(2,itag) = buf(4)*yprd + box(1,2)
x(3,itag) = buf(5)*zprd + box(1,3)
mytrue(1,itag) = 0
mytrue(2,itag) = 0
mytrue(3,itag) = 0
enddo
return
end
c -------------------------------------------------------------------------
c read data from input file
subroutine read_data
use global
implicit none
c local variables
logical match
integer i,j,jtmp,m,itag
real*8 buf(7)
character*80 str
900 format (a)
open(27,file=trim(data_file_path),status='old')
rewind 27
read (27,*)
read (27,*)
read (27,*) natoms
read (27,*) nbonds
read (27,*) nangles
read (27,*) ndihedrals
read (27,*) nimpropers
read (27,*)
read (27,*) ntypes
if (nbonds.gt.0) read (27,*) nbondtypes
if (nangles.gt.0) read (27,*) nangletypes
if (ndihedrals.gt.0) read (27,*) ndihedtypes
if (nimpropers.gt.0) read (27,*) nimprotypes
read (27,*)
read (27,*)
read (27,*)
read (27,*)
allocate(q(natoms))
allocate(type(natoms))
allocate(molecule(natoms))
allocate(mass(natoms))
allocate(x(3,natoms))
allocate(mytrue(3,natoms))
allocate(outbeg(natoms))
allocate(outend(natoms))
do
read (27,*,end=999,err=999)
read (27,900,end=999,err=999) str
read (27,*,end=999,err=999)
if (match('All Done',str,m)) then
goto 999
else if (match('Masses',str,m)) then
write (6,*) 'Masses ...'
do i = 1,ntypes
read (27,*) jtmp,mass(i)
enddo
else if (match('Atoms',str,m)) then
write (6,*) 'Atoms ...'
do i = 1,natoms
read (27,*) (buf(j),j=1,7)
itag = nint(buf(1))
molecule(itag) = nint(buf(2))
type(itag) = nint(buf(3))
q(itag) = buf(4)
enddo
else if (match('Bonds',str,m)) then
do i = 1,nbonds
read (27,*)
enddo
else if (match('Angles',str,m)) then
do i = 1,nangles
read (27,*)
enddo
else if (match('Impropers',str,m)) then
do i = 1,nimpropers
read (27,*)
enddo
else if (match('Pair Coeffs',str,m)) then
write (6,*) 'Pair Coeffs ...'
do i = 1,ntypes
read (27,*)
enddo
else if (match('Bond Coeffs',str,m)) then
do i = 1,nbondtypes
read (27,*)
enddo
else if (match('Angle Coeffs',str,m)) then
do i = 1,nangletypes
read (27,*)
enddo
else if (match('Dihedral Coeffs',str,m)) then
do i = 1,ndihedtypes
read (27,*)
enddo
else if (match('Dihedrals',str,m)) then
do i = 1,ndihedrals
read (27,*)
enddo
goto 999
else
write (6,*) 'UNKNOWN: ',trim(str)
write (6,*) 'Unknown identifier in data file'
endif
enddo
999 continue
close (27)
nmolecules = molecule(natoms)
allocate(nboxx(nmolecules))
allocate(nboxy(nmolecules))
allocate(nboxz(nmolecules))
allocate(comx(nmolecules))
allocate(comy(nmolecules))
allocate(comz(nmolecules))
allocate(totmass(nmolecules))
return
end
c -------------------------------------------------------------------------
c read data from in_mkpdb file
subroutine read_in_mkpdb
use global
implicit none
100 format (a)
open(22,file='in_mkpdb')
rewind 22
read (22,*) nconfig
read (22,*) nper
read (22,*) nconfig_skip
read (22,*) nframes_between_pdbs
read (22,*) nprotein_residues
read (22,100) data_file_path
read (22,100) config_file_path
read (22,100) pdb_file_path
read (22,100) compare_file_path
nframes = nconfig*nper
nskip = nconfig_skip*nper
iframe = nskip
close (22)
return
end
c -------------------------------------------------------------------------
| gpl-2.0 |
PeyloW/gcc-4.6.4 | libgfortran/generated/_exp_c4.F90 | 22 | 1482 | ! Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
! Contributed by Paul Brook <paul@nowt.org>
!
!This file is part of the GNU Fortran 95 runtime library (libgfortran).
!
!GNU libgfortran is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public
!License as published by the Free Software Foundation; either
!version 3 of the License, or (at your option) any later version.
!
!GNU libgfortran is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!
!Under Section 7 of GPL version 3, you are granted additional
!permissions described in the GCC Runtime Library Exception, version
!3.1, as published by the Free Software Foundation.
!
!You should have received a copy of the GNU General Public License and
!a copy of the GCC Runtime Library Exception along with this program;
!see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
!<http://www.gnu.org/licenses/>.
!
!This file is machine generated.
#include "config.h"
#include "kinds.inc"
#include "c99_protos.inc"
#if defined (HAVE_GFC_COMPLEX_4)
#ifdef HAVE_CEXPF
elemental function _gfortran_specific__exp_c4 (parm)
complex (kind=4), intent (in) :: parm
complex (kind=4) :: _gfortran_specific__exp_c4
_gfortran_specific__exp_c4 = exp (parm)
end function
#endif
#endif
| gpl-2.0 |
anlongfei/gcc-4.8.4 | gcc/testsuite/gfortran.dg/complex_intrinsic_5.f90 | 136 | 14154 | ! { dg-do run }
!
! PR fortran/33197
!
! Complex inverse trigonometric functions
! and complex inverse hyperbolic functions
!
! Run-time evaluation check
!
module test
implicit none
real(4), parameter :: eps4 = epsilon(0.0_4)*4.0_4
real(8), parameter :: eps8 = epsilon(0.0_8)*2.0_8
interface check
procedure check4, check8
end interface check
contains
SUBROUTINE check4(z, zref)
complex(4), intent(in) :: z, zref
if ( abs (real(z)-real(zref)) > eps4 &
.or.abs (aimag(z)-aimag(zref)) > eps4) then
print '(a,/,2((2g0," + I ",g0),/))', "check4:"," z=",z,'zref=',zref
print '(a,g0," + I*",g0," eps=",g0)', 'Diff: ', &
real(z)-real(zref), &
aimag(z)-aimag(zref), eps4
call abort()
end if
END SUBROUTINE check4
SUBROUTINE check8(z, zref)
complex(8), intent(in) :: z, zref
if ( abs (real(z)-real(zref)) > eps8 &
.or.abs (aimag(z)-aimag(zref)) > eps8) then
print '(a,/,2((2g0," + I ",g0),/))', "check8:"," z=",z,'zref=',zref
print '(a,g0," + I*",g0," eps=",g0)', 'Diff: ', &
real(z)-real(zref), &
aimag(z)-aimag(zref), eps8
call abort()
end if
END SUBROUTINE check8
end module test
PROGRAM ArcTrigHyp
use test
IMPLICIT NONE
complex(4), volatile :: z4
complex(8), volatile :: z8
!!!!! ZERO !!!!!!
! z = 0
z4 = cmplx(0.0_4, 0.0_4, kind=4)
z8 = cmplx(0.0_8, 0.0_8, kind=8)
! Exact: 0
call check(asin(z4), cmplx(0.0_4, 0.0_4, kind=4))
call check(asin(z8), cmplx(0.0_8, 0.0_8, kind=8))
! Exact: Pi/2 = 1.5707963267948966192313216916397514
call check(acos(z4), cmplx(1.57079632679489661920_4, 0.0_4, kind=4))
call check(acos(z8), cmplx(1.57079632679489661920_8, 0.0_8, kind=8))
! Exact: 0
call check(atan(z4), cmplx(0.0_4, 0.0_4, kind=4))
call check(atan(z8), cmplx(0.0_8, 0.0_8, kind=8))
! Exact: 0
call check(asinh(z4), cmplx(0.0_4, 0.0_4, kind=4))
call check(asinh(z8), cmplx(0.0_8, 0.0_8, kind=8))
! Exact: I*Pi/2 = I*1.5707963267948966192313216916397514
call check(acosh(z4), cmplx(0.0_4, 1.57079632679489661920_4, kind=4))
call check(acosh(z8), cmplx(0.0_8, 1.57079632679489661920_8, kind=8))
! Exact: 0
call check(atanh(z4), cmplx(0.0_4, 0.0_4, kind=4))
call check(atanh(z8), cmplx(0.0_8, 0.0_8, kind=8))
!!!!! POSITIVE NUMBERS !!!!!!
! z = tanh(1.0)
z4 = cmplx(0.76159415595576488811945828260479359_4, 0.0_4, kind=4)
z8 = cmplx(0.76159415595576488811945828260479359_8, 0.0_8, kind=8)
! Numerically: 0.86576948323965862428960184619184444
call check(asin(z4), cmplx(0.86576948323965862428960184619184444_4, 0.0_4, kind=4))
call check(asin(z8), cmplx(0.86576948323965862428960184619184444_8, 0.0_8, kind=8))
! Numerically: 0.70502684355523799494171984544790700
call check(acos(z4), cmplx(0.70502684355523799494171984544790700_4, 0.0_4, kind=4))
call check(acos(z8), cmplx(0.70502684355523799494171984544790700_8, 0.0_8, kind=8))
! Numerically: 0.65088016802300754993807813168285564
call check(atan(z4), cmplx(0.65088016802300754993807813168285564_4, 0.0_4, kind=4))
call check(atan(z8), cmplx(0.65088016802300754993807813168285564_8, 0.0_8, kind=8))
! Numerically: 0.70239670712987482778422106260749699
call check(asinh(z4), cmplx(0.70239670712987482778422106260749699_4, 0.0_4, kind=4))
call check(asinh(z8), cmplx(0.70239670712987482778422106260749699_8, 0.0_8, kind=8))
! Numerically: 0.70502684355523799494171984544790700*I
call check(acosh(z4), cmplx(0.0_4, 0.70502684355523799494171984544790700_4, kind=4))
call check(acosh(z8), cmplx(0.0_8, 0.70502684355523799494171984544790700_8, kind=8))
! Exact: 1
call check(atanh(z4), cmplx(1.0_4, 0.0_4, kind=4))
call check(atanh(z8), cmplx(1.0_8, 0.0_8, kind=8))
! z = I*tanh(1.0)
z4 = cmplx(0.0_4, 0.76159415595576488811945828260479359_4, kind=4)
z8 = cmplx(0.0_8, 0.76159415595576488811945828260479359_8, kind=8)
! Numerically: I*0.70239670712987482778422106260749699
call check(asin(z4), cmplx(0.0_4, 0.70239670712987482778422106260749699_4, kind=4))
call check(asin(z8), cmplx(0.0_8, 0.70239670712987482778422106260749699_8, kind=8))
! Numerically: 1.5707963267948966192313216916397514 - I*0.7023967071298748277842210626074970
call check(acos(z4), cmplx(1.5707963267948966192313216916397514_4, -0.7023967071298748277842210626074970_4, kind=4))
call check(acos(z8), cmplx(1.5707963267948966192313216916397514_8, -0.7023967071298748277842210626074970_8, kind=8))
! Exact: I*1
call check(atan(z4), cmplx(0.0_4, 1.0_4, kind=4))
call check(atan(z8), cmplx(0.0_8, 1.0_8, kind=8))
! Numerically: I*0.86576948323965862428960184619184444
call check(asinh(z4), cmplx(0.0_4, 0.86576948323965862428960184619184444_4, kind=4))
call check(asinh(z8), cmplx(0.0_8, 0.86576948323965862428960184619184444_8, kind=8))
! Numerically: 0.7023967071298748277842210626074970 + I*1.5707963267948966192313216916397514
call check(acosh(z4), cmplx(0.7023967071298748277842210626074970_4, 1.5707963267948966192313216916397514_4, kind=4))
call check(acosh(z8), cmplx(0.7023967071298748277842210626074970_8, 1.5707963267948966192313216916397514_8, kind=8))
! Numerically: I*0.65088016802300754993807813168285564
call check(atanh(z4), cmplx(0.0_4, 0.65088016802300754993807813168285564_4, kind=4))
call check(atanh(z8), cmplx(0.0_8, 0.65088016802300754993807813168285564_8, kind=8))
! z = (1+I)*tanh(1.0)
z4 = cmplx(0.76159415595576488811945828260479359_4, 0.76159415595576488811945828260479359_4, kind=4)
z8 = cmplx(0.76159415595576488811945828260479359_8, 0.76159415595576488811945828260479359_8, kind=8)
! Numerically: 0.59507386031622633330574869409179139 + I*0.82342412550090412964986631390412834
call check(asin(z4), cmplx(0.59507386031622633330574869409179139_4, 0.82342412550090412964986631390412834_4, kind=4))
call check(asin(z8), cmplx(0.59507386031622633330574869409179139_8, 0.82342412550090412964986631390412834_8, kind=8))
! Numerically: 0.97572246647867028592557299754796005 - I*0.82342412550090412964986631390412834
call check(acos(z4), cmplx(0.97572246647867028592557299754796005_4, -0.82342412550090412964986631390412834_4, kind=4))
call check(acos(z8), cmplx(0.97572246647867028592557299754796005_8, -0.82342412550090412964986631390412834_8, kind=8))
! Numerically: 0.83774433133636226305479129936568267 + I*0.43874835208710654149508159123595167
call check(atan(z4), cmplx(0.83774433133636226305479129936568267_4, 0.43874835208710654149508159123595167_4, kind=4))
call check(atan(z8), cmplx(0.83774433133636226305479129936568267_8, 0.43874835208710654149508159123595167_8, kind=8))
! Numerically: 0.82342412550090412964986631390412834 + I*0.59507386031622633330574869409179139
call check(asinh(z4), cmplx(0.82342412550090412964986631390412834_4, 0.59507386031622633330574869409179139_4, kind=4))
call check(asinh(z8), cmplx(0.82342412550090412964986631390412834_8, 0.59507386031622633330574869409179139_8, kind=8))
! Numerically: 0.82342412550090412964986631390412834 + I*0.97572246647867028592557299754796005
call check(acosh(z4), cmplx(0.82342412550090412964986631390412834_4, 0.97572246647867028592557299754796005_4, kind=4))
call check(acosh(z8), cmplx(0.82342412550090412964986631390412834_8, 0.97572246647867028592557299754796005_8, kind=8))
! Numerically: 0.43874835208710654149508159123595167 + I*0.83774433133636226305479129936568267
call check(atanh(z4), cmplx(0.43874835208710654149508159123595167_4, 0.83774433133636226305479129936568267_4, kind=4))
call check(atanh(z8), cmplx(0.43874835208710654149508159123595167_8, 0.83774433133636226305479129936568267_8, kind=8))
! z = 1+I
z4 = cmplx(1.0_4, 1.0_4, kind=4)
z8 = cmplx(1.0_8, 1.0_8, kind=8)
! Numerically: 0.66623943249251525510400489597779272 + I*1.06127506190503565203301891621357349
call check(asin(z4), cmplx(0.66623943249251525510400489597779272_4, 1.06127506190503565203301891621357349_4, kind=4))
call check(asin(z8), cmplx(0.66623943249251525510400489597779272_8, 1.06127506190503565203301891621357349_8, kind=8))
! Numerically: 0.90455689430238136412731679566195872 - I*1.06127506190503565203301891621357349
call check(acos(z4), cmplx(0.90455689430238136412731679566195872_4, -1.06127506190503565203301891621357349_4, kind=4))
call check(acos(z8), cmplx(0.90455689430238136412731679566195872_8, -1.06127506190503565203301891621357349_8, kind=8))
! Numerically: 1.01722196789785136772278896155048292 + I*0.40235947810852509365018983330654691
call check(atan(z4), cmplx(1.01722196789785136772278896155048292_4, 0.40235947810852509365018983330654691_4, kind=4))
call check(atan(z8), cmplx(1.01722196789785136772278896155048292_8, 0.40235947810852509365018983330654691_8, kind=8))
! Numerically: 1.06127506190503565203301891621357349 + I*0.66623943249251525510400489597779272
call check(asinh(z4), cmplx(1.06127506190503565203301891621357349_4, 0.66623943249251525510400489597779272_4, kind=4))
call check(asinh(z8), cmplx(1.06127506190503565203301891621357349_8, 0.66623943249251525510400489597779272_8, kind=8))
! Numerically: 1.06127506190503565203301891621357349 + I*0.90455689430238136412731679566195872
call check(acosh(z4), cmplx(1.06127506190503565203301891621357349_4, 0.90455689430238136412731679566195872_4, kind=4))
call check(acosh(z8), cmplx(1.06127506190503565203301891621357349_8, 0.90455689430238136412731679566195872_8, kind=8))
! Numerically: 0.40235947810852509365018983330654691 + I*1.01722196789785136772278896155048292
call check(atanh(z4), cmplx(0.40235947810852509365018983330654691_4, 1.01722196789785136772278896155048292_4, kind=4))
call check(atanh(z8), cmplx(0.40235947810852509365018983330654691_8, 1.01722196789785136772278896155048292_8, kind=8))
! z = (1+I)*1.1
z4 = cmplx(1.1_4, 1.1_4, kind=4)
z8 = cmplx(1.1_8, 1.1_8, kind=8)
! Numerically: 0.68549840630267734494444454677951503 + I*1.15012680127435581678415521738176733
call check(asin(z4), cmplx(0.68549840630267734494444454677951503_4, 1.15012680127435581678415521738176733_4, kind=4))
call check(asin(z8), cmplx(0.68549840630267734494444454677951503_8, 1.15012680127435581678415521738176733_8, kind=8))
! Numerically: 0.8852979204922192742868771448602364 - I*1.1501268012743558167841552173817673
call check(acos(z4), cmplx(0.8852979204922192742868771448602364_4, -1.1501268012743558167841552173817673_4, kind=4))
call check(acos(z8), cmplx(0.8852979204922192742868771448602364_8, -1.1501268012743558167841552173817673_8, kind=8))
! Numerically: 1.07198475450905931839240655913126728 + I*0.38187020129010862908881230531688930
call check(atan(z4), cmplx(1.07198475450905931839240655913126728_4, 0.38187020129010862908881230531688930_4, kind=4))
call check(atan(z8), cmplx(1.07198475450905931839240655913126728_8, 0.38187020129010862908881230531688930_8, kind=8))
! Numerically: 1.15012680127435581678415521738176733 + I*0.68549840630267734494444454677951503
call check(asinh(z4), cmplx(1.15012680127435581678415521738176733_4, 0.68549840630267734494444454677951503_4, kind=4))
call check(asinh(z8), cmplx(1.15012680127435581678415521738176733_8, 0.68549840630267734494444454677951503_8, kind=8))
! Numerically: 1.1501268012743558167841552173817673 + I*0.8852979204922192742868771448602364
call check(acosh(z4), cmplx(1.1501268012743558167841552173817673_4, 0.8852979204922192742868771448602364_4, kind=4))
call check(acosh(z8), cmplx(1.1501268012743558167841552173817673_8, 0.8852979204922192742868771448602364_8, kind=8))
! Numerically: 0.38187020129010862908881230531688930 + I*1.07198475450905931839240655913126728
call check(atanh(z4), cmplx(0.38187020129010862908881230531688930_4, 1.07198475450905931839240655913126728_4, kind=4))
call check(atanh(z8), cmplx(0.38187020129010862908881230531688930_8, 1.07198475450905931839240655913126728_8, kind=8))
!!!!! Negative NUMBERS !!!!!!
! z = -(1+I)*1.1
z4 = cmplx(-1.1_4, -1.1_4, kind=4)
z8 = cmplx(-1.1_8, -1.1_8, kind=8)
! Numerically: -0.68549840630267734494444454677951503 - I*1.15012680127435581678415521738176733
call check(asin(z4), cmplx(-0.68549840630267734494444454677951503_4, -1.15012680127435581678415521738176733_4, kind=4))
call check(asin(z8), cmplx(-0.68549840630267734494444454677951503_8, -1.15012680127435581678415521738176733_8, kind=8))
! Numerically: 2.2562947330975739641757662384192665 + I*1.1501268012743558167841552173817673
call check(acos(z4), cmplx(2.2562947330975739641757662384192665_4, 1.1501268012743558167841552173817673_4, kind=4))
call check(acos(z8), cmplx(2.2562947330975739641757662384192665_8, 1.1501268012743558167841552173817673_8, kind=8))
! Numerically: -1.07198475450905931839240655913126728 - I*0.38187020129010862908881230531688930
call check(atan(z4), cmplx(-1.07198475450905931839240655913126728_4, -0.38187020129010862908881230531688930_4, kind=4))
call check(atan(z8), cmplx(-1.07198475450905931839240655913126728_8, -0.38187020129010862908881230531688930_8, kind=8))
! Numerically: -1.15012680127435581678415521738176733 - I*0.68549840630267734494444454677951503
call check(asinh(z4), cmplx(-1.15012680127435581678415521738176733_4, -0.68549840630267734494444454677951503_4, kind=4))
call check(asinh(z8), cmplx(-1.15012680127435581678415521738176733_8, -0.68549840630267734494444454677951503_8, kind=8))
! Numerically: 1.1501268012743558167841552173817673 - I*2.2562947330975739641757662384192665
call check(acosh(z4), cmplx(1.1501268012743558167841552173817673_4, -2.2562947330975739641757662384192665_4, kind=4))
call check(acosh(z8), cmplx(1.1501268012743558167841552173817673_8, -2.2562947330975739641757662384192665_8, kind=8))
! Numerically: 0.38187020129010862908881230531688930 + I*1.07198475450905931839240655913126728
call check(atanh(z4), cmplx(-0.38187020129010862908881230531688930_4, -1.07198475450905931839240655913126728_4, kind=4))
call check(atanh(z8), cmplx(-0.38187020129010862908881230531688930_8, -1.07198475450905931839240655913126728_8, kind=8))
END PROGRAM ArcTrigHyp
| gpl-2.0 |
PeyloW/gcc-4.6.4 | libgfortran/generated/_asinh_r8.F90 | 22 | 1481 | ! Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
! Contributed by Paul Brook <paul@nowt.org>
!
!This file is part of the GNU Fortran 95 runtime library (libgfortran).
!
!GNU libgfortran is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public
!License as published by the Free Software Foundation; either
!version 3 of the License, or (at your option) any later version.
!
!GNU libgfortran is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!
!Under Section 7 of GPL version 3, you are granted additional
!permissions described in the GCC Runtime Library Exception, version
!3.1, as published by the Free Software Foundation.
!
!You should have received a copy of the GNU General Public License and
!a copy of the GCC Runtime Library Exception along with this program;
!see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
!<http://www.gnu.org/licenses/>.
!
!This file is machine generated.
#include "config.h"
#include "kinds.inc"
#include "c99_protos.inc"
#if defined (HAVE_GFC_REAL_8)
#ifdef HAVE_ASINH
elemental function _gfortran_specific__asinh_r8 (parm)
real (kind=8), intent (in) :: parm
real (kind=8) :: _gfortran_specific__asinh_r8
_gfortran_specific__asinh_r8 = asinh (parm)
end function
#endif
#endif
| gpl-2.0 |
anlongfei/gcc-4.8.4 | libgfortran/generated/misc_specifics.F90 | 27 | 6990 | ! Copyright (C) 2002-2013 Free Software Foundation, Inc.
! Contributed by Paul Brook <paul@nowt.org>
!
!This file is part of the GNU Fortran 95 runtime library (libgfortran).
!
!GNU libgfortran is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public
!License as published by the Free Software Foundation; either
!version 3 of the License, or (at your option) any later version.
!GNU libgfortran is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!
!Under Section 7 of GPL version 3, you are granted additional
!permissions described in the GCC Runtime Library Exception, version
!3.1, as published by the Free Software Foundation.
!
!You should have received a copy of the GNU General Public License and
!a copy of the GCC Runtime Library Exception along with this program;
!see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
!<http://www.gnu.org/licenses/>.
!
!This file is machine generated.
#include "config.h"
#include "kinds.inc"
#if defined (HAVE_GFC_REAL_4) && defined (HAVE_GFC_INTEGER_4)
elemental function _gfortran_specific__nint_4_4 (parm)
real (kind=4) , intent (in) :: parm
integer (kind=4) :: _gfortran_specific__nint_4_4
_gfortran_specific__nint_4_4 = nint (parm)
end function
#endif
#if defined (HAVE_GFC_REAL_8) && defined (HAVE_GFC_INTEGER_4)
elemental function _gfortran_specific__nint_4_8 (parm)
real (kind=8) , intent (in) :: parm
integer (kind=4) :: _gfortran_specific__nint_4_8
_gfortran_specific__nint_4_8 = nint (parm)
end function
#endif
#if defined (HAVE_GFC_REAL_10) && defined (HAVE_GFC_INTEGER_4)
elemental function _gfortran_specific__nint_4_10 (parm)
real (kind=10) , intent (in) :: parm
integer (kind=4) :: _gfortran_specific__nint_4_10
_gfortran_specific__nint_4_10 = nint (parm)
end function
#endif
#if defined (HAVE_GFC_REAL_16) && defined (HAVE_GFC_INTEGER_4)
elemental function _gfortran_specific__nint_4_16 (parm)
real (kind=16) , intent (in) :: parm
integer (kind=4) :: _gfortran_specific__nint_4_16
_gfortran_specific__nint_4_16 = nint (parm)
end function
#endif
#if defined (HAVE_GFC_REAL_4) && defined (HAVE_GFC_INTEGER_8)
elemental function _gfortran_specific__nint_8_4 (parm)
real (kind=4) , intent (in) :: parm
integer (kind=8) :: _gfortran_specific__nint_8_4
_gfortran_specific__nint_8_4 = nint (parm)
end function
#endif
#if defined (HAVE_GFC_REAL_8) && defined (HAVE_GFC_INTEGER_8)
elemental function _gfortran_specific__nint_8_8 (parm)
real (kind=8) , intent (in) :: parm
integer (kind=8) :: _gfortran_specific__nint_8_8
_gfortran_specific__nint_8_8 = nint (parm)
end function
#endif
#if defined (HAVE_GFC_REAL_10) && defined (HAVE_GFC_INTEGER_8)
elemental function _gfortran_specific__nint_8_10 (parm)
real (kind=10) , intent (in) :: parm
integer (kind=8) :: _gfortran_specific__nint_8_10
_gfortran_specific__nint_8_10 = nint (parm)
end function
#endif
#if defined (HAVE_GFC_REAL_16) && defined (HAVE_GFC_INTEGER_8)
elemental function _gfortran_specific__nint_8_16 (parm)
real (kind=16) , intent (in) :: parm
integer (kind=8) :: _gfortran_specific__nint_8_16
_gfortran_specific__nint_8_16 = nint (parm)
end function
#endif
#if defined (HAVE_GFC_REAL_4) && defined (HAVE_GFC_INTEGER_16)
elemental function _gfortran_specific__nint_16_4 (parm)
real (kind=4) , intent (in) :: parm
integer (kind=16) :: _gfortran_specific__nint_16_4
_gfortran_specific__nint_16_4 = nint (parm)
end function
#endif
#if defined (HAVE_GFC_REAL_8) && defined (HAVE_GFC_INTEGER_16)
elemental function _gfortran_specific__nint_16_8 (parm)
real (kind=8) , intent (in) :: parm
integer (kind=16) :: _gfortran_specific__nint_16_8
_gfortran_specific__nint_16_8 = nint (parm)
end function
#endif
#if defined (HAVE_GFC_REAL_10) && defined (HAVE_GFC_INTEGER_16)
elemental function _gfortran_specific__nint_16_10 (parm)
real (kind=10) , intent (in) :: parm
integer (kind=16) :: _gfortran_specific__nint_16_10
_gfortran_specific__nint_16_10 = nint (parm)
end function
#endif
#if defined (HAVE_GFC_REAL_16) && defined (HAVE_GFC_INTEGER_16)
elemental function _gfortran_specific__nint_16_16 (parm)
real (kind=16) , intent (in) :: parm
integer (kind=16) :: _gfortran_specific__nint_16_16
_gfortran_specific__nint_16_16 = nint (parm)
end function
#endif
#if defined (HAVE_GFC_INTEGER_4)
elemental function _gfortran_specific__char_1_i4 (parm)
integer (kind=4) , intent (in) :: parm
character (kind=1,len=1) :: _gfortran_specific__char_1_i4
_gfortran_specific__char_1_i4 = char (parm, kind=1)
end function
#endif
#if defined (HAVE_GFC_INTEGER_8)
elemental function _gfortran_specific__char_1_i8 (parm)
integer (kind=8) , intent (in) :: parm
character (kind=1,len=1) :: _gfortran_specific__char_1_i8
_gfortran_specific__char_1_i8 = char (parm, kind=1)
end function
#endif
#if defined (HAVE_GFC_INTEGER_16)
elemental function _gfortran_specific__char_1_i16 (parm)
integer (kind=16) , intent (in) :: parm
character (kind=1,len=1) :: _gfortran_specific__char_1_i16
_gfortran_specific__char_1_i16 = char (parm, kind=1)
end function
#endif
#if defined (HAVE_GFC_INTEGER_4)
elemental function _gfortran_specific__len_1_i4 (parm)
character (kind=1,len=*) , intent (in) :: parm
integer (kind=4) :: _gfortran_specific__len_1_i4
_gfortran_specific__len_1_i4 = len (parm)
end function
#endif
#if defined (HAVE_GFC_INTEGER_8)
elemental function _gfortran_specific__len_1_i8 (parm)
character (kind=1,len=*) , intent (in) :: parm
integer (kind=8) :: _gfortran_specific__len_1_i8
_gfortran_specific__len_1_i8 = len (parm)
end function
#endif
#if defined (HAVE_GFC_INTEGER_16)
elemental function _gfortran_specific__len_1_i16 (parm)
character (kind=1,len=*) , intent (in) :: parm
integer (kind=16) :: _gfortran_specific__len_1_i16
_gfortran_specific__len_1_i16 = len (parm)
end function
#endif
#if defined (HAVE_GFC_INTEGER_4)
elemental function _gfortran_specific__index_1_i4 (parm1, parm2)
character (kind=1,len=*) , intent (in) :: parm1, parm2
integer (kind=4) :: _gfortran_specific__index_1_i4
_gfortran_specific__index_1_i4 = index (parm1, parm2)
end function
#endif
#if defined (HAVE_GFC_INTEGER_8)
elemental function _gfortran_specific__index_1_i8 (parm1, parm2)
character (kind=1,len=*) , intent (in) :: parm1, parm2
integer (kind=8) :: _gfortran_specific__index_1_i8
_gfortran_specific__index_1_i8 = index (parm1, parm2)
end function
#endif
#if defined (HAVE_GFC_INTEGER_16)
elemental function _gfortran_specific__index_1_i16 (parm1, parm2)
character (kind=1,len=*) , intent (in) :: parm1, parm2
integer (kind=16) :: _gfortran_specific__index_1_i16
_gfortran_specific__index_1_i16 = index (parm1, parm2)
end function
#endif
| gpl-2.0 |
PeyloW/gcc-4.6.4 | gcc/testsuite/gfortran.dg/mvbits_4.f90 | 174 | 1031 | ! { dg-do run }
! PR fortran/35681
! Check that dependencies of MVBITS arguments are resolved correctly by using
! temporaries if both arguments refer to the same variable.
integer, dimension(10) :: ila1 = (/1,2,3,4,5,6,7,8,9,10/)
integer, dimension(20) :: ila2
integer, dimension(10), target :: ila3
integer, pointer :: ila3_ptr(:)
integer, parameter :: SHOULD_BE(10) = (/17,18,11,4,13,22,7,16,9,18/)
integer, parameter :: INDEX_VECTOR(10) = (/9,9,6,2,4,9,2,9,6,10/)
ila2(2:20:2) = ila1
ila3 = ila1
! Argument is already packed.
call mvbits (ila1(INDEX_VECTOR), 2, 4, ila1, 3)
write (*,'(10(I3))') ila1
if (any (ila1 /= SHOULD_BE)) call abort ()
! Argument is not packed.
call mvbits (ila2(2*INDEX_VECTOR), 2, 4, ila2(2:20:2), 3)
write (*,'(10(I3))') ila2(2:20:2)
if (any (ila2(2:20:2) /= SHOULD_BE)) call abort ()
! Pointer and target
ila3_ptr => ila3
call mvbits (ila3(INDEX_VECTOR), 2, 4, ila3_ptr, 3)
write (*,'(10(I3))') ila3
if (any (ila3 /= SHOULD_BE)) call abort ()
end
| gpl-2.0 |
PeyloW/gcc-4.6.4 | gcc/testsuite/gfortran.fortran-torture/execute/entry_7.f90 | 190 | 2079 | ! Test alternate entry points for functions when the result types
! of all entry points match
function f1 (a)
integer a, b
integer, pointer :: f1, e1
allocate (f1)
f1 = 15 + a
return
entry e1 (b)
allocate (e1)
e1 = 42 + b
end function
function f2 ()
real, pointer :: f2, e2
entry e2 ()
allocate (e2)
e2 = 45
end function
function f3 ()
double precision, pointer :: f3, e3
entry e3 ()
allocate (f3)
f3 = 47
end function
function f4 (a) result (r)
double precision a, b
double precision, pointer :: r, s
allocate (r)
r = 15 + a
return
entry e4 (b) result (s)
allocate (s)
s = 42 + b
end function
function f5 () result (r)
integer, pointer :: r, s
entry e5 () result (s)
allocate (r)
r = 45
end function
function f6 () result (r)
real, pointer :: r, s
entry e6 () result (s)
allocate (s)
s = 47
end function
program entrytest
interface
function f1 (a)
integer a
integer, pointer :: f1
end function
function e1 (b)
integer b
integer, pointer :: e1
end function
function f2 ()
real, pointer :: f2
end function
function e2 ()
real, pointer :: e2
end function
function f3 ()
double precision, pointer :: f3
end function
function e3 ()
double precision, pointer :: e3
end function
function f4 (a)
double precision a
double precision, pointer :: f4
end function
function e4 (b)
double precision b
double precision, pointer :: e4
end function
function f5 ()
integer, pointer :: f5
end function
function e5 ()
integer, pointer :: e5
end function
function f6 ()
real, pointer :: f6
end function
function e6 ()
real, pointer :: e6
end function
end interface
double precision d
if (f1 (6) .ne. 21) call abort ()
if (e1 (7) .ne. 49) call abort ()
if (f2 () .ne. 45) call abort ()
if (e2 () .ne. 45) call abort ()
if (f3 () .ne. 47) call abort ()
if (e3 () .ne. 47) call abort ()
d = 17
if (f4 (d) .ne. 32) call abort ()
if (e4 (d) .ne. 59) call abort ()
if (f5 () .ne. 45) call abort ()
if (e5 () .ne. 45) call abort ()
if (f6 () .ne. 47) call abort ()
if (e6 () .ne. 47) call abort ()
end
| gpl-2.0 |
CFDEMproject/LAMMPS | tools/eam_database/create.f | 46 | 8594 | C author: X. W. Zhou, xzhou@sandia.gov
c open(unit=5,file='a.i')
call inter
c close(5)
call writeset
stop
end
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c main subroutine. c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine inter
character*80 atomtype,atommatch,outfile,outelem
namelist /funccard/ atomtype
common /pass1/ re(16),fe(16),rhoe(16),alpha(16),
* beta(16),beta1(16),A(16),B(16),cai(16),ramda(16),
* ramda1(16),Fi0(16),Fi1(16),Fi2(16),Fi3(16),
* Fm0(16),Fm1(16),Fm2(16),Fm3(16),Fm4(16),
* fnn(16),Fn(16),rhoin(16),rhoout(16),rhol(16),
* rhoh(16),rhos(16)
common /pass2/ ielement(16),amass(16),Fr(5000,16),
* rhor(5000,16),z2r(5000,16,16),ntypes,blat(16),
* nrho,drho,nr,dr,rc,outfile,outelem
ntypes=0
10 continue
atomtype='none'
read(5,funccard)
if (atomtype .eq. 'none') goto 1200
open(unit=10,file='EAM_code',form='FORMATTED',status='OLD')
11 read(10,9501,end=1210)atommatch
9501 format(a80)
if (atomtype .eq. atommatch) then
ntypes=ntypes+1
length=len_trim(outfile)
if (length .eq. len(outfile)) then
outfile = atomtype
else
outfile = outfile(1:length)//atomtype
endif
length=len_trim(outelem)
if (length .eq. len(outelem)) then
outelem = atomtype
else
outelem = outelem(1:length)//' '//atomtype
endif
read(10,*) re(ntypes)
read(10,*) fe(ntypes)
read(10,*) rhoe(ntypes)
read(10,*) rhos(ntypes)
read(10,*) alpha(ntypes)
read(10,*) beta(ntypes)
read(10,*) A(ntypes)
read(10,*) B(ntypes)
read(10,*) cai(ntypes)
read(10,*) ramda(ntypes)
read(10,*) Fi0(ntypes)
read(10,*) Fi1(ntypes)
read(10,*) Fi2(ntypes)
read(10,*) Fi3(ntypes)
read(10,*) Fm0(ntypes)
read(10,*) Fm1(ntypes)
read(10,*) Fm2(ntypes)
read(10,*) Fm3(ntypes)
read(10,*) fnn(ntypes)
read(10,*) Fn(ntypes)
read(10,*) ielement(ntypes)
read(10,*) amass(ntypes)
read(10,*) Fm4(ntypes)
read(10,*) beta1(ntypes)
read(10,*) ramda1(ntypes)
read(10,*) rhol(ntypes)
read(10,*) rhoh(ntypes)
blat(ntypes)=sqrt(2.0)*re(ntypes)
rhoin(ntypes)=rhol(ntypes)*rhoe(ntypes)
rhoout(ntypes)=rhoh(ntypes)*rhoe(ntypes)
else
do 1 i=1,27
1 read(10,*)vtmp
goto 11
endif
close(10)
goto 10
1210 write(6,*)'error: atom type ',atomtype,' not found'
stop
1200 continue
nr=2000
nrho=2000
alatmax=blat(1)
rhoemax=rhoe(1)
do 2 i=2,ntypes
if (alatmax .lt. blat(i)) alatmax=blat(i)
if (rhoemax .lt. rhoe(i)) rhoemax=rhoe(i)
2 continue
rc=sqrt(10.0)/2.0*alatmax
rst=0.5
dr=rc/(nr-1.0)
fmax=-1.0
do 3 i1=1,ntypes
do 3 i2=1,i1
if ( i1 .eq. i2) then
do 4 i=1,nr
r=(i-1.0)*dr
if (r .lt. rst) r=rst
call prof(i1,r,fvalue)
if (fmax .lt. fvalue) fmax=fvalue
rhor(i,i1)=fvalue
call pair(i1,i2,r,psi)
z2r(i,i1,i2)=r*psi
4 continue
else
do 5 i=1,nr
r=(i-1.0)*dr
if (r .lt. rst) r=rst
call pair(i1,i2,r,psi)
z2r(i,i1,i2)=r*psi
z2r(i,i2,i1)=z2r(i,i1,i2)
5 continue
endif
3 continue
rhom=fmax
if (rhom .lt. 2.0*rhoemax) rhom=2.0*rhoemax
if (rhom .lt. 100.0) rhom=100.0
drho=rhom/(nrho-1.0)
do 6 it=1,ntypes
do 7 i=1,nrho
rhoF=(i-1.0)*drho
call embed(it,rhoF,emb)
Fr(i,it)=emb
7 continue
6 continue
return
end
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c This subroutine calculates the electron density. c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine prof(it,r,f)
common /pass1/ re(16),fe(16),rhoe(16),alpha(16),
* beta(16),beta1(16),A(16),B(16),cai(16),ramda(16),
* ramda1(16),Fi0(16),Fi1(16),Fi2(16),Fi3(16),
* Fm0(16),Fm1(16),Fm2(16),Fm3(16),Fm4(16),
* fnn(16),Fn(16),rhoin(16),rhoout(16),rhol(16),
* rhoh(16),rhos(16)
f=fe(it)*exp(-beta1(it)*(r/re(it)-1.0))
f=f/(1.0+(r/re(it)-ramda1(it))**20)
return
end
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c This subroutine calculates the pair potential. c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine pair(it1,it2,r,psi)
common /pass1/ re(16),fe(16),rhoe(16),alpha(16),
* beta(16),beta1(16),A(16),B(16),cai(16),ramda(16),
* ramda1(16),Fi0(16),Fi1(16),Fi2(16),Fi3(16),
* Fm0(16),Fm1(16),Fm2(16),Fm3(16),Fm4(16),
* fnn(16),Fn(16),rhoin(16),rhoout(16),rhol(16),
* rhoh(16),rhos(16)
if (it1 .eq. it2) then
psi1=A(it1)*exp(-alpha(it1)*(r/re(it1)-1.0))
psi1=psi1/(1.0+(r/re(it1)-cai(it1))**20)
psi2=B(it1)*exp(-beta(it1)*(r/re(it1)-1.0))
psi2=psi2/(1.0+(r/re(it1)-ramda(it1))**20)
psi=psi1-psi2
else
psi1=A(it1)*exp(-alpha(it1)*(r/re(it1)-1.0))
psi1=psi1/(1.0+(r/re(it1)-cai(it1))**20)
psi2=B(it1)*exp(-beta(it1)*(r/re(it1)-1.0))
psi2=psi2/(1.0+(r/re(it1)-ramda(it1))**20)
psia=psi1-psi2
psi1=A(it2)*exp(-alpha(it2)*(r/re(it2)-1.0))
psi1=psi1/(1.0+(r/re(it2)-cai(it2))**20)
psi2=B(it2)*exp(-beta(it2)*(r/re(it2)-1.0))
psi2=psi2/(1.0+(r/re(it2)-ramda(it2))**20)
psib=psi1-psi2
call prof(it1,r,f1)
call prof(it2,r,f2)
psi=0.5*(f2/f1*psia+f1/f2*psib)
endif
return
end
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c This subroutine calculates the embedding energy. c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine embed(it,rho,emb)
common /pass1/ re(16),fe(16),rhoe(16),alpha(16),
* beta(16),beta1(16),A(16),B(16),cai(16),ramda(16),
* ramda1(16),Fi0(16),Fi1(16),Fi2(16),Fi3(16),
* Fm0(16),Fm1(16),Fm2(16),Fm3(16),Fm4(16),
* fnn(16),Fn(16),rhoin(16),rhoout(16),rhol(16),
* rhoh(16),rhos(16)
if (rho .lt. rhoe(it)) then
Fm33=Fm3(it)
else
Fm33=Fm4(it)
endif
if (rho .lt. rhoin(it)) then
emb=Fi0(it)+
* Fi1(it)*(rho/rhoin(it)-1.0)+
* Fi2(it)*(rho/rhoin(it)-1.0)**2+
* Fi3(it)*(rho/rhoin(it)-1.0)**3
else if (rho .lt. rhoout(it)) then
emb=Fm0(it)+
* Fm1(it)*(rho/rhoe(it)-1.0)+
* Fm2(it)*(rho/rhoe(it)-1.0)**2+
* Fm33*(rho/rhoe(it)-1.0)**3
else
emb=Fn(it)*(1.0-fnn(it)*log(rho/rhos(it)))*
* (rho/rhos(it))**fnn(it)
endif
return
end
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c write out set file. c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
subroutine writeset
character*80 outfile,outelem
common /pass1/ re(16),fe(16),rhoe(16),alpha(16),
* beta(16),beta1(16),A(16),B(16),cai(16),ramda(16),
* ramda1(16),Fi0(16),Fi1(16),Fi2(16),Fi3(16),
* Fm0(16),Fm1(16),Fm2(16),Fm3(16),Fm4(16),
* fnn(16),Fn(16),rhoin(16),rhoout(16),rhol(16),
* rhoh(16),rhos(16)
common /pass2/ ielement(16),amass(16),Fr(5000,16),
* rhor(5000,16),z2r(5000,16,16),ntypes,blat(16),
* nrho,drho,nr,dr,rc,outfile,outelem
character*80 struc
struc='fcc'
outfile = outfile(1:index(outfile,' ')-1)//'.set'
open(unit=1,file=outfile)
write(1,*)
write(1,*)
write(1,*)
write(1,8)ntypes,outelem
8 format(i5,' ',a24)
write(1,9)nrho,drho,nr,dr,rc
9 format(i5,e24.16,i5,2e24.16)
do 10 i=1,ntypes
write(1,11)ielement(i),amass(i),blat(i),struc
write(1,12)(Fr(j,i),j=1,nrho)
write(1,12)(rhor(j,i),j=1,nr)
10 continue
11 format(i5,2g15.5,a8)
12 format(5e24.16)
do 13 i1=1,ntypes
do 13 i2=1,i1
write(1,12)(z2r(i,i1,i2),i=1,nr)
13 continue
close(1)
return
end
| gpl-2.0 |
PeyloW/gcc-4.6.4 | libgfortran/generated/_abs_c10.F90 | 22 | 1485 | ! Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
! Contributed by Paul Brook <paul@nowt.org>
!
!This file is part of the GNU Fortran 95 runtime library (libgfortran).
!
!GNU libgfortran is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public
!License as published by the Free Software Foundation; either
!version 3 of the License, or (at your option) any later version.
!
!GNU libgfortran is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!
!Under Section 7 of GPL version 3, you are granted additional
!permissions described in the GCC Runtime Library Exception, version
!3.1, as published by the Free Software Foundation.
!
!You should have received a copy of the GNU General Public License and
!a copy of the GCC Runtime Library Exception along with this program;
!see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
!<http://www.gnu.org/licenses/>.
!
!This file is machine generated.
#include "config.h"
#include "kinds.inc"
#include "c99_protos.inc"
#if defined (HAVE_GFC_COMPLEX_10)
#ifdef HAVE_CABSL
elemental function _gfortran_specific__abs_c10 (parm)
complex (kind=10), intent (in) :: parm
real (kind=10) :: _gfortran_specific__abs_c10
_gfortran_specific__abs_c10 = abs (parm)
end function
#endif
#endif
| gpl-2.0 |
PeyloW/gcc-4.6.4 | gcc/testsuite/gfortran.dg/merge_bits_1.F90 | 162 | 1304 | ! Test the MERGE_BITS intrinsic
!
! { dg-do run }
! { dg-options "-ffree-line-length-none" }
interface run_merge
procedure run_merge_1
procedure run_merge_2
procedure run_merge_4
procedure run_merge_8
end interface
#define CHECK(I,J,K) \
if (merge_bits(I,J,K) /= ior(iand(I,K),iand(J,not(K)))) call abort ; \
if (run_merge(I,J,K) /= merge_bits(I,J,K)) call abort
CHECK(13_1,18_1,22_1)
CHECK(-13_1,18_1,22_1)
CHECK(13_1,-18_1,22_1)
CHECK(13_1,18_1,-22_1)
CHECK(13_2,18_2,22_2)
CHECK(-13_2,18_2,22_2)
CHECK(13_2,-18_2,22_2)
CHECK(13_2,18_2,-22_2)
CHECK(13_4,18_4,22_4)
CHECK(-13_4,18_4,22_4)
CHECK(13_4,-18_4,22_4)
CHECK(13_4,18_4,-22_4)
CHECK(13_8,18_8,22_8)
CHECK(-13_8,18_8,22_8)
CHECK(13_8,-18_8,22_8)
CHECK(13_8,18_8,-22_8)
contains
function run_merge_1 (i, j, k) result(res)
integer(kind=1) :: i, j, k, res
res = merge_bits(i,j,k)
end function
function run_merge_2 (i, j, k) result(res)
integer(kind=2) :: i, j, k, res
res = merge_bits(i,j,k)
end function
function run_merge_4 (i, j, k) result(res)
integer(kind=4) :: i, j, k, res
res = merge_bits(i,j,k)
end function
function run_merge_8 (i, j, k) result(res)
integer(kind=8) :: i, j, k, res
res = merge_bits(i,j,k)
end function
end
| gpl-2.0 |
anlongfei/gcc-4.8.4 | gcc/testsuite/gfortran.dg/backspace_10.f90 | 166 | 1220 | ! { dg-do run }
! PR33307 I/O read/positioning problem - in BACKSPACE
! Test case devloped from test in PR by Jerry DeLisle <jvdelisle@gcc.gnu.org>
program gfcbug69b
! Modified example program
implicit none
integer, parameter :: iunit = 63
integer :: istat, k, ios
character(len=20) :: line, message
open (iunit)
write (iunit, '(a)') "! ***Remove this line***"
write (iunit, '(a)') "&FOO file='foo' /"
write (iunit, '(a)', advance="no") "&BAR file='bar' /"
close (iunit)
! Note: Failure occurred only when ACTION="read" was specified
open (iunit, action="read", status="old")
read (iunit,'(a)',iostat=ios) line
if (ios /= 0) call abort
read (iunit,'(a)',iostat=ios) line
if (ios /= 0) call abort
read (iunit,'(a)',iostat=ios) line
if (ios /= 0) call abort
read (iunit,'(a)',iostat=ios) line
if (ios /= 0) backspace (iunit)
rewind (iunit)
read (iunit,'(a)',iostat=ios) line
if (ios /= 0) call abort
read (iunit,'(a)',iostat=ios) line
if (ios /= 0) call abort
read (iunit,'(a)',iostat=ios) line
if (ios /= 0) call abort
read (iunit,'(a)',iostat=ios) line
if (ios /= -1) call abort
close (iunit, status="delete")
end program gfcbug69b
| gpl-2.0 |
PeyloW/gcc-4.6.4 | gcc/testsuite/gfortran.dg/open_errors.f90 | 105 | 1264 | ! { dg-do run { target { ! { *-*-mingw* *-*-cygwin* spu-*-* } } } }
! PR30005 Enhanced error messages for OPEN
! Submitted by Jerry DeLisle <jvdelisle@gcc.gnu.org>
! See PR38956. Test fails on cygwin when user has Administrator rights
character(60) :: msg
character(25) :: n = "temptestfile"
logical :: there
inquire(file=n, exist=there)
if (.not.there) then
open(77,file=n,status="new")
close(77, status="keep")
endif
msg=""
open(77,file=n,status="new", iomsg=msg, iostat=i)
if (i == 0) call abort()
if (msg /= "File 'temptestfile' already exists") call abort()
open(77,file=n,status="old")
close(77, status="delete")
open(77,file=n,status="old", iomsg=msg, iostat=i)
if (i == 0) call abort()
if (msg /= "File 'temptestfile' does not exist") call abort()
open(77,file="./", iomsg=msg, iostat=i)
if (msg /= "'./' is a directory" .and. msg /= "Invalid argument") call abort()
open(77,file=n,status="new")
i = chmod(n, "-w")
if (i == 0 .and. getuid() /= 0) then
close(77, status="keep")
open(77,file=n, iomsg=msg, iostat=i, action="write")
if (i == 0) call abort()
if (msg /= "Permission denied trying to open file 'temptestfile'") call abort()
endif
i = chmod(n,"+w")
open(77,file=n, iomsg=msg, iostat=i, action="read")
close(77, status="delete")
end
| gpl-2.0 |
PeyloW/gcc-4.6.4 | gcc/testsuite/gfortran.dg/namelist_18.f90 | 166 | 1101 | !{ dg-do run }
!{ dg-options "-std=legacy" }
!
! Tests character delimiters for namelist write
! provided by Paul Thomas - pault@gcc.gnu.org
program namelist_18
character*3 :: ch = "foo"
character*80 :: buffer
namelist /mynml/ ch
open (10, status = "scratch")
write (10, mynml)
rewind (10)
read (10, '(a)', iostat = ier) buffer
read (10, '(a)', iostat = ier) buffer
if (ier .ne. 0) call abort ()
close (10)
If ((buffer(6:6) /= "f") .or. (buffer(9:9) /= """")) call abort ()
open (10, status = "scratch", delim ="quote")
write (10, mynml)
rewind (10)
read (10, '(a)', iostat = ier) buffer
read (10, '(a)', iostat = ier) buffer
if (ier .ne. 0) call abort ()
close (10)
If ((buffer(5:5) /= """") .or. (buffer(9:9) /= """")) call abort ()
open (10, status = "scratch", delim ="apostrophe")
write (10, mynml)
rewind (10)
read (10, '(a)', iostat = ier) buffer
read (10, '(a)', iostat = ier) buffer
if (ier .ne. 0) call abort ()
close (10)
If ((buffer(5:5) /= "'") .or. (buffer(9:9) /= "'")) call abort ()
end program namelist_18
| gpl-2.0 |
anlongfei/gcc-4.8.4 | libgfortran/generated/_exp_r4.F90 | 26 | 1468 | ! Copyright (C) 2002-2013 Free Software Foundation, Inc.
! Contributed by Paul Brook <paul@nowt.org>
!
!This file is part of the GNU Fortran 95 runtime library (libgfortran).
!
!GNU libgfortran is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public
!License as published by the Free Software Foundation; either
!version 3 of the License, or (at your option) any later version.
!GNU libgfortran is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!
!Under Section 7 of GPL version 3, you are granted additional
!permissions described in the GCC Runtime Library Exception, version
!3.1, as published by the Free Software Foundation.
!
!You should have received a copy of the GNU General Public License and
!a copy of the GCC Runtime Library Exception along with this program;
!see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
!<http://www.gnu.org/licenses/>.
!
!This file is machine generated.
#include "config.h"
#include "kinds.inc"
#include "c99_protos.inc"
#if defined (HAVE_GFC_REAL_4)
#ifdef HAVE_EXPF
elemental function _gfortran_specific__exp_r4 (parm)
real (kind=4), intent (in) :: parm
real (kind=4) :: _gfortran_specific__exp_r4
_gfortran_specific__exp_r4 = exp (parm)
end function
#endif
#endif
| gpl-2.0 |
foss-for-synopsys-dwc-arc-processors/binutils-gdb | gdb/testsuite/gdb.fortran/array-slices.f90 | 5 | 11448 | ! Copyright 2019-2021 Free Software Foundation, Inc.
!
! This program is free software; you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation; either version 3 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program. If not, see <http://www.gnu.org/licenses/>.
subroutine show_elem (array)
integer :: array
print *, ""
print *, "Expected GDB Output:"
print *, ""
write(*, fmt="(A)", advance="no") "GDB = "
write(*, fmt="(I0)", advance="no") array
write(*, fmt="(A)", advance="yes") ""
print *, "" ! Display Element
end subroutine show_elem
subroutine show_str (array)
character (len=*) :: array
print *, ""
print *, "Expected GDB Output:"
print *, ""
write (*, fmt="(A)", advance="no") "GDB = '"
write (*, fmt="(A)", advance="no") array
write (*, fmt="(A)", advance="yes") "'"
print *, "" ! Display String
end subroutine show_str
subroutine show_1d (array)
integer, dimension (:) :: array
print *, "Array Contents:"
print *, ""
do i=LBOUND (array, 1), UBOUND (array, 1), 1
write(*, fmt="(i4)", advance="no") array (i)
end do
print *, ""
print *, "Expected GDB Output:"
print *, ""
write(*, fmt="(A)", advance="no") "GDB = ("
do i=LBOUND (array, 1), UBOUND (array, 1), 1
if (i > LBOUND (array, 1)) then
write(*, fmt="(A)", advance="no") ", "
end if
write(*, fmt="(I0)", advance="no") array (i)
end do
write(*, fmt="(A)", advance="no") ")"
print *, "" ! Display Array Slice 1D
end subroutine show_1d
subroutine show_2d (array)
integer, dimension (:,:) :: array
print *, "Array Contents:"
print *, ""
do i=LBOUND (array, 2), UBOUND (array, 2), 1
do j=LBOUND (array, 1), UBOUND (array, 1), 1
write(*, fmt="(i4)", advance="no") array (j, i)
end do
print *, ""
end do
print *, ""
print *, "Expected GDB Output:"
print *, ""
write(*, fmt="(A)", advance="no") "GDB = ("
do i=LBOUND (array, 2), UBOUND (array, 2), 1
if (i > LBOUND (array, 2)) then
write(*, fmt="(A)", advance="no") " "
end if
write(*, fmt="(A)", advance="no") "("
do j=LBOUND (array, 1), UBOUND (array, 1), 1
if (j > LBOUND (array, 1)) then
write(*, fmt="(A)", advance="no") ", "
end if
write(*, fmt="(I0)", advance="no") array (j, i)
end do
write(*, fmt="(A)", advance="no") ")"
end do
write(*, fmt="(A)", advance="yes") ")"
print *, "" ! Display Array Slice 2D
end subroutine show_2d
subroutine show_3d (array)
integer, dimension (:,:,:) :: array
print *, ""
print *, "Expected GDB Output:"
print *, ""
write(*, fmt="(A)", advance="no") "GDB = ("
do i=LBOUND (array, 3), UBOUND (array, 3), 1
if (i > LBOUND (array, 3)) then
write(*, fmt="(A)", advance="no") " "
end if
write(*, fmt="(A)", advance="no") "("
do j=LBOUND (array, 2), UBOUND (array, 2), 1
if (j > LBOUND (array, 2)) then
write(*, fmt="(A)", advance="no") " "
end if
write(*, fmt="(A)", advance="no") "("
do k=LBOUND (array, 1), UBOUND (array, 1), 1
if (k > LBOUND (array, 1)) then
write(*, fmt="(A)", advance="no") ", "
end if
write(*, fmt="(I0)", advance="no") array (k, j, i)
end do
write(*, fmt="(A)", advance="no") ")"
end do
write(*, fmt="(A)", advance="no") ")"
end do
write(*, fmt="(A)", advance="yes") ")"
print *, "" ! Display Array Slice 3D
end subroutine show_3d
subroutine show_4d (array)
integer, dimension (:,:,:,:) :: array
print *, ""
print *, "Expected GDB Output:"
print *, ""
write(*, fmt="(A)", advance="no") "GDB = ("
do i=LBOUND (array, 4), UBOUND (array, 4), 1
if (i > LBOUND (array, 4)) then
write(*, fmt="(A)", advance="no") " "
end if
write(*, fmt="(A)", advance="no") "("
do j=LBOUND (array, 3), UBOUND (array, 3), 1
if (j > LBOUND (array, 3)) then
write(*, fmt="(A)", advance="no") " "
end if
write(*, fmt="(A)", advance="no") "("
do k=LBOUND (array, 2), UBOUND (array, 2), 1
if (k > LBOUND (array, 2)) then
write(*, fmt="(A)", advance="no") " "
end if
write(*, fmt="(A)", advance="no") "("
do l=LBOUND (array, 1), UBOUND (array, 1), 1
if (l > LBOUND (array, 1)) then
write(*, fmt="(A)", advance="no") ", "
end if
write(*, fmt="(I0)", advance="no") array (l, k, j, i)
end do
write(*, fmt="(A)", advance="no") ")"
end do
write(*, fmt="(A)", advance="no") ")"
end do
write(*, fmt="(A)", advance="no") ")"
end do
write(*, fmt="(A)", advance="yes") ")"
print *, "" ! Display Array Slice 4D
end subroutine show_4d
!
! Start of test program.
!
program test
interface
subroutine show_str (array)
character (len=*) :: array
end subroutine show_str
subroutine show_1d (array)
integer, dimension (:) :: array
end subroutine show_1d
subroutine show_2d (array)
integer, dimension(:,:) :: array
end subroutine show_2d
subroutine show_3d (array)
integer, dimension(:,:,:) :: array
end subroutine show_3d
subroutine show_4d (array)
integer, dimension(:,:,:,:) :: array
end subroutine show_4d
end interface
! Declare variables used in this test.
integer, dimension (-10:-1,-10:-2) :: neg_array
integer, dimension (1:10,1:10) :: array
integer, allocatable :: other (:, :)
character (len=26) :: str_1 = "abcdefghijklmnopqrstuvwxyz"
integer, dimension (-2:2,-2:2,-2:2) :: array3d
integer, dimension (-3:3,7:10,-3:3,-10:-7) :: array4d
integer, dimension (10:20) :: array1d
integer, dimension(:,:), pointer :: pointer2d => null()
integer, dimension(-1:9,-1:9), target :: tarray
! Allocate or associate any variables as needed.
allocate (other (-5:4, -2:7))
pointer2d => tarray
! Fill arrays with contents ready for testing.
call fill_array_1d (array1d)
call fill_array_2d (neg_array)
call fill_array_2d (array)
call fill_array_2d (other)
call fill_array_2d (tarray)
call fill_array_3d (array3d)
call fill_array_4d (array4d)
! The tests. Each call to a show_* function must have a unique set
! of arguments as GDB uses the arguments are part of the test name
! string, so duplicate arguments will result in duplicate test
! names.
!
! If a show_* line ends with VARS=... where '...' is a comma
! separated list of variable names, these variables are assumed to
! be part of the call line, and will be expanded by the test script,
! for example:
!
! do x=1,9,1
! do y=x,10,1
! call show_1d (some_array (x,y)) ! VARS=x,y
! end do
! end do
!
! In this example the test script will automatically expand 'x' and
! 'y' in order to better test different aspects of GDB. Do take
! care, the expansion is not very "smart", so try to avoid clashing
! with other text on the line, in the example above, avoid variables
! named 'some' or 'array', as these will likely clash with
! 'some_array'.
call show_str (str_1)
call show_str (str_1 (1:20))
call show_str (str_1 (10:20))
call show_elem (array1d (11))
call show_elem (pointer2d (2,3))
call show_1d (array1d)
call show_1d (array1d (13:17))
call show_1d (array1d (17:13:-1))
call show_1d (array (1:5,1))
call show_1d (array4d (1,7,3,:))
call show_1d (pointer2d (-1:3, 2))
call show_1d (pointer2d (-1, 2:4))
! Enclosing the array slice argument in (...) causess gfortran to
! repack the array.
call show_1d ((array (1:5,1)))
call show_2d (pointer2d)
call show_2d (array)
call show_2d (array (1:5,1:5))
do i=1,10,2
do j=1,10,3
call show_2d (array (1:10:i,1:10:j)) ! VARS=i,j
call show_2d (array (10:1:-i,1:10:j)) ! VARS=i,j
call show_2d (array (10:1:-i,10:1:-j)) ! VARS=i,j
call show_2d (array (1:10:i,10:1:-j)) ! VARS=i,j
end do
end do
call show_2d (array (6:2:-1,3:9))
call show_2d (array (1:10:2, 1:10:2))
call show_2d (other)
call show_2d (other (-5:0, -2:0))
call show_2d (other (-5:4:2, -2:7:3))
call show_2d (neg_array)
call show_2d (neg_array (-10:-3,-8:-4:2))
! Enclosing the array slice argument in (...) causess gfortran to
! repack the array.
call show_2d ((array (1:10:3, 1:10:2)))
call show_2d ((neg_array (-10:-3,-8:-4:2)))
call show_3d (array3d)
call show_3d (array3d(-1:1,-1:1,-1:1))
call show_3d (array3d(1:-1:-1,1:-1:-1,1:-1:-1))
! Enclosing the array slice argument in (...) causess gfortran to
! repack the array.
call show_3d ((array3d(1:-1:-1,1:-1:-1,1:-1:-1)))
call show_4d (array4d)
call show_4d (array4d (-3:0,10:7:-1,0:3,-7:-10:-1))
call show_4d (array4d (3:0:-1, 10:7:-1, :, -7:-10:-1))
! Enclosing the array slice argument in (...) causess gfortran to
! repack the array.
call show_4d ((array4d (3:-2:-2, 10:7:-2, :, -7:-10:-1)))
! All done. Deallocate.
deallocate (other)
! GDB catches this final breakpoint to indicate the end of the test.
print *, "" ! Final Breakpoint.
contains
! Fill a 1D array with a unique positive integer in each element.
subroutine fill_array_1d (array)
integer, dimension (:) :: array
integer :: counter
counter = 1
do j=LBOUND (array, 1), UBOUND (array, 1), 1
array (j) = counter
counter = counter + 1
end do
end subroutine fill_array_1d
! Fill a 2D array with a unique positive integer in each element.
subroutine fill_array_2d (array)
integer, dimension (:,:) :: array
integer :: counter
counter = 1
do i=LBOUND (array, 2), UBOUND (array, 2), 1
do j=LBOUND (array, 1), UBOUND (array, 1), 1
array (j,i) = counter
counter = counter + 1
end do
end do
end subroutine fill_array_2d
! Fill a 3D array with a unique positive integer in each element.
subroutine fill_array_3d (array)
integer, dimension (:,:,:) :: array
integer :: counter
counter = 1
do i=LBOUND (array, 3), UBOUND (array, 3), 1
do j=LBOUND (array, 2), UBOUND (array, 2), 1
do k=LBOUND (array, 1), UBOUND (array, 1), 1
array (k, j,i) = counter
counter = counter + 1
end do
end do
end do
end subroutine fill_array_3d
! Fill a 4D array with a unique positive integer in each element.
subroutine fill_array_4d (array)
integer, dimension (:,:,:,:) :: array
integer :: counter
counter = 1
do i=LBOUND (array, 4), UBOUND (array, 4), 1
do j=LBOUND (array, 3), UBOUND (array, 3), 1
do k=LBOUND (array, 2), UBOUND (array, 2), 1
do l=LBOUND (array, 1), UBOUND (array, 1), 1
array (l, k, j,i) = counter
counter = counter + 1
end do
end do
end do
end do
print *, ""
end subroutine fill_array_4d
end program test
| gpl-2.0 |
kleskjr/scipy | scipy/sparse/linalg/eigen/arpack/ARPACK/SRC/sneigh.f | 39 | 10381 | c-----------------------------------------------------------------------
c\BeginDoc
c
c\Name: sneigh
c
c\Description:
c Compute the eigenvalues of the current upper Hessenberg matrix
c and the corresponding Ritz estimates given the current residual norm.
c
c\Usage:
c call sneigh
c ( RNORM, N, H, LDH, RITZR, RITZI, BOUNDS, Q, LDQ, WORKL, IERR )
c
c\Arguments
c RNORM Real scalar. (INPUT)
c Residual norm corresponding to the current upper Hessenberg
c matrix H.
c
c N Integer. (INPUT)
c Size of the matrix H.
c
c H Real N by N array. (INPUT)
c H contains the current upper Hessenberg matrix.
c
c LDH Integer. (INPUT)
c Leading dimension of H exactly as declared in the calling
c program.
c
c RITZR, Real arrays of length N. (OUTPUT)
c RITZI On output, RITZR(1:N) (resp. RITZI(1:N)) contains the real
c (respectively imaginary) parts of the eigenvalues of H.
c
c BOUNDS Real array of length N. (OUTPUT)
c On output, BOUNDS contains the Ritz estimates associated with
c the eigenvalues RITZR and RITZI. This is equal to RNORM
c times the last components of the eigenvectors corresponding
c to the eigenvalues in RITZR and RITZI.
c
c Q Real N by N array. (WORKSPACE)
c Workspace needed to store the eigenvectors of H.
c
c LDQ Integer. (INPUT)
c Leading dimension of Q exactly as declared in the calling
c program.
c
c WORKL Real work array of length N**2 + 3*N. (WORKSPACE)
c Private (replicated) array on each PE or array allocated on
c the front end. This is needed to keep the full Schur form
c of H and also in the calculation of the eigenvectors of H.
c
c IERR Integer. (OUTPUT)
c Error exit flag from slahqr or strevc.
c
c\EndDoc
c
c-----------------------------------------------------------------------
c
c\BeginLib
c
c\Local variables:
c xxxxxx real
c
c\Routines called:
c slahqr ARPACK routine to compute the real Schur form of an
c upper Hessenberg matrix and last row of the Schur vectors.
c arscnd ARPACK utility routine for timing.
c smout ARPACK utility routine that prints matrices
c svout ARPACK utility routine that prints vectors.
c slacpy LAPACK matrix copy routine.
c wslapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully.
c strevc LAPACK routine to compute the eigenvectors of a matrix
c in upper quasi-triangular form
c sgemv Level 2 BLAS routine for matrix vector multiplication.
c scopy Level 1 BLAS that copies one vector to another .
c wsnrm2 Level 1 BLAS that computes the norm of a vector.
c sscal Level 1 BLAS that scales a vector.
c
c
c\Author
c Danny Sorensen Phuong Vu
c Richard Lehoucq CRPC / Rice University
c Dept. of Computational & Houston, Texas
c Applied Mathematics
c Rice University
c Houston, Texas
c
c\Revision history:
c xx/xx/92: Version ' 2.1'
c
c\SCCS Information: @(#)
c FILE: neigh.F SID: 2.3 DATE OF SID: 4/20/96 RELEASE: 2
c
c\Remarks
c None
c
c\EndLib
c
c-----------------------------------------------------------------------
c
subroutine sneigh (rnorm, n, h, ldh, ritzr, ritzi, bounds,
& q, ldq, workl, ierr)
c
c %----------------------------------------------------%
c | Include files for debugging and timing information |
c %----------------------------------------------------%
c
include 'debug.h'
include 'stat.h'
c
c %------------------%
c | Scalar Arguments |
c %------------------%
c
integer ierr, n, ldh, ldq
Real
& rnorm
c
c %-----------------%
c | Array Arguments |
c %-----------------%
c
Real
& bounds(n), h(ldh,n), q(ldq,n), ritzi(n), ritzr(n),
& workl(n*(n+3))
c
c %------------%
c | Parameters |
c %------------%
c
Real
& one, zero
parameter (one = 1.0E+0, zero = 0.0E+0)
c
c %------------------------%
c | Local Scalars & Arrays |
c %------------------------%
c
logical select(1)
integer i, iconj, msglvl
Real
& temp, vl(1)
c
c %----------------------%
c | External Subroutines |
c %----------------------%
c
external scopy, slacpy, slahqr, strevc, svout, arscnd
c
c %--------------------%
c | External Functions |
c %--------------------%
c
Real
& wslapy2, wsnrm2
external wslapy2, wsnrm2
c
c %---------------------%
c | Intrinsic Functions |
c %---------------------%
c
intrinsic abs
c
c %-----------------------%
c | Executable Statements |
c %-----------------------%
c
c
c %-------------------------------%
c | Initialize timing statistics |
c | & message level for debugging |
c %-------------------------------%
c
call arscnd (t0)
msglvl = mneigh
c
if (msglvl .gt. 2) then
call smout (logfil, n, n, h, ldh, ndigit,
& '_neigh: Entering upper Hessenberg matrix H ')
end if
c
c %-----------------------------------------------------------%
c | 1. Compute the eigenvalues, the last components of the |
c | corresponding Schur vectors and the full Schur form T |
c | of the current upper Hessenberg matrix H. |
c | slahqr returns the full Schur form of H in WORKL(1:N**2) |
c | and the last components of the Schur vectors in BOUNDS. |
c %-----------------------------------------------------------%
c
call slacpy ('All', n, n, h, ldh, workl, n)
do 5 j = 1, n-1
bounds(j) = zero
5 continue
bounds(n) = one
call slahqr(.true., .true., n, 1, n, workl, n, ritzr, ritzi, 1, 1,
& bounds, 1, ierr)
if (ierr .ne. 0) go to 9000
c
if (msglvl .gt. 1) then
call svout (logfil, n, bounds, ndigit,
& '_neigh: last row of the Schur matrix for H')
end if
c
c %-----------------------------------------------------------%
c | 2. Compute the eigenvectors of the full Schur form T and |
c | apply the last components of the Schur vectors to get |
c | the last components of the corresponding eigenvectors. |
c | Remember that if the i-th and (i+1)-st eigenvalues are |
c | complex conjugate pairs, then the real & imaginary part |
c | of the eigenvector components are split across adjacent |
c | columns of Q. |
c %-----------------------------------------------------------%
c
call strevc ('R', 'A', select, n, workl, n, vl, n, q, ldq,
& n, n, workl(n*n+1), ierr)
c
if (ierr .ne. 0) go to 9000
c
c %------------------------------------------------%
c | Scale the returning eigenvectors so that their |
c | euclidean norms are all one. LAPACK subroutine |
c | strevc returns each eigenvector normalized so |
c | that the element of largest magnitude has |
c | magnitude 1; here the magnitude of a complex |
c | number (x,y) is taken to be |x| + |y|. |
c %------------------------------------------------%
c
iconj = 0
do 10 i=1, n
if ( abs( ritzi(i) ) .le. zero ) then
c
c %----------------------%
c | Real eigenvalue case |
c %----------------------%
c
temp = wsnrm2( n, q(1,i), 1 )
call sscal ( n, one / temp, q(1,i), 1 )
else
c
c %-------------------------------------------%
c | Complex conjugate pair case. Note that |
c | since the real and imaginary part of |
c | the eigenvector are stored in consecutive |
c | columns, we further normalize by the |
c | square root of two. |
c %-------------------------------------------%
c
if (iconj .eq. 0) then
temp = wslapy2( wsnrm2( n, q(1,i), 1 ),
& wsnrm2( n, q(1,i+1), 1 ) )
call sscal ( n, one / temp, q(1,i), 1 )
call sscal ( n, one / temp, q(1,i+1), 1 )
iconj = 1
else
iconj = 0
end if
end if
10 continue
c
call sgemv ('T', n, n, one, q, ldq, bounds, 1, zero, workl, 1)
c
if (msglvl .gt. 1) then
call svout (logfil, n, workl, ndigit,
& '_neigh: Last row of the eigenvector matrix for H')
end if
c
c %----------------------------%
c | Compute the Ritz estimates |
c %----------------------------%
c
iconj = 0
do 20 i = 1, n
if ( abs( ritzi(i) ) .le. zero ) then
c
c %----------------------%
c | Real eigenvalue case |
c %----------------------%
c
bounds(i) = rnorm * abs( workl(i) )
else
c
c %-------------------------------------------%
c | Complex conjugate pair case. Note that |
c | since the real and imaginary part of |
c | the eigenvector are stored in consecutive |
c | columns, we need to take the magnitude |
c | of the last components of the two vectors |
c %-------------------------------------------%
c
if (iconj .eq. 0) then
bounds(i) = rnorm * wslapy2( workl(i), workl(i+1) )
bounds(i+1) = bounds(i)
iconj = 1
else
iconj = 0
end if
end if
20 continue
c
if (msglvl .gt. 2) then
call svout (logfil, n, ritzr, ndigit,
& '_neigh: Real part of the eigenvalues of H')
call svout (logfil, n, ritzi, ndigit,
& '_neigh: Imaginary part of the eigenvalues of H')
call svout (logfil, n, bounds, ndigit,
& '_neigh: Ritz estimates for the eigenvalues of H')
end if
c
call arscnd (t1)
tneigh = tneigh + (t1 - t0)
c
9000 continue
return
c
c %---------------%
c | End of sneigh |
c %---------------%
c
end
| bsd-3-clause |
kleskjr/scipy | scipy/optimize/lbfgsb/linpack.f | 147 | 5978 |
subroutine dpofa(a,lda,n,info)
integer lda,n,info
double precision a(lda,*)
c
c dpofa factors a double precision symmetric positive definite
c matrix.
c
c dpofa is usually called by dpoco, but it can be called
c directly with a saving in time if rcond is not needed.
c (time for dpoco) = (1 + 18/n)*(time for dpofa) .
c
c on entry
c
c a double precision(lda, n)
c the symmetric matrix to be factored. only the
c diagonal and upper triangle are used.
c
c lda integer
c the leading dimension of the array a .
c
c n integer
c the order of the matrix a .
c
c on return
c
c a an upper triangular matrix r so that a = trans(r)*r
c where trans(r) is the transpose.
c the strict lower triangle is unaltered.
c if info .ne. 0 , the factorization is not complete.
c
c info integer
c = 0 for normal return.
c = k signals an error condition. the leading minor
c of order k is not positive definite.
c
c linpack. this version dated 08/14/78 .
c cleve moler, university of new mexico, argonne national lab.
c
c subroutines and functions
c
c blas ddot
c fortran sqrt
c
c internal variables
c
double precision ddot,t
double precision s
integer j,jm1,k
c begin block with ...exits to 40
c
c
do 30 j = 1, n
info = j
s = 0.0d0
jm1 = j - 1
if (jm1 .lt. 1) go to 20
do 10 k = 1, jm1
t = a(k,j) - ddot(k-1,a(1,k),1,a(1,j),1)
t = t/a(k,k)
a(k,j) = t
s = s + t*t
10 continue
20 continue
s = a(j,j) - s
c ......exit
if (s .le. 0.0d0) go to 40
a(j,j) = sqrt(s)
30 continue
info = 0
40 continue
return
end
c====================== The end of dpofa ===============================
subroutine dtrsl(t,ldt,n,b,job,info)
integer ldt,n,job,info
double precision t(ldt,*),b(*)
c
c
c dtrsl solves systems of the form
c
c t * x = b
c or
c trans(t) * x = b
c
c where t is a triangular matrix of order n. here trans(t)
c denotes the transpose of the matrix t.
c
c on entry
c
c t double precision(ldt,n)
c t contains the matrix of the system. the zero
c elements of the matrix are not referenced, and
c the corresponding elements of the array can be
c used to store other information.
c
c ldt integer
c ldt is the leading dimension of the array t.
c
c n integer
c n is the order of the system.
c
c b double precision(n).
c b contains the right hand side of the system.
c
c job integer
c job specifies what kind of system is to be solved.
c if job is
c
c 00 solve t*x=b, t lower triangular,
c 01 solve t*x=b, t upper triangular,
c 10 solve trans(t)*x=b, t lower triangular,
c 11 solve trans(t)*x=b, t upper triangular.
c
c on return
c
c b b contains the solution, if info .eq. 0.
c otherwise b is unaltered.
c
c info integer
c info contains zero if the system is nonsingular.
c otherwise info contains the index of
c the first zero diagonal element of t.
c
c linpack. this version dated 08/14/78 .
c g. w. stewart, university of maryland, argonne national lab.
c
c subroutines and functions
c
c blas daxpy,ddot
c fortran mod
c
c internal variables
c
double precision ddot,temp
integer case,j,jj
c
c begin block permitting ...exits to 150
c
c check for zero diagonal elements.
c
do 10 info = 1, n
c ......exit
if (t(info,info) .eq. 0.0d0) go to 150
10 continue
info = 0
c
c determine the task and go to it.
c
case = 1
if (mod(job,10) .ne. 0) case = 2
if (mod(job,100)/10 .ne. 0) case = case + 2
go to (20,50,80,110), case
c
c solve t*x=b for t lower triangular
c
20 continue
b(1) = b(1)/t(1,1)
if (n .lt. 2) go to 40
do 30 j = 2, n
temp = -b(j-1)
call daxpy(n-j+1,temp,t(j,j-1),1,b(j),1)
b(j) = b(j)/t(j,j)
30 continue
40 continue
go to 140
c
c solve t*x=b for t upper triangular.
c
50 continue
b(n) = b(n)/t(n,n)
if (n .lt. 2) go to 70
do 60 jj = 2, n
j = n - jj + 1
temp = -b(j+1)
call daxpy(j,temp,t(1,j+1),1,b(1),1)
b(j) = b(j)/t(j,j)
60 continue
70 continue
go to 140
c
c solve trans(t)*x=b for t lower triangular.
c
80 continue
b(n) = b(n)/t(n,n)
if (n .lt. 2) go to 100
do 90 jj = 2, n
j = n - jj + 1
b(j) = b(j) - ddot(jj-1,t(j+1,j),1,b(j+1),1)
b(j) = b(j)/t(j,j)
90 continue
100 continue
go to 140
c
c solve trans(t)*x=b for t upper triangular.
c
110 continue
b(1) = b(1)/t(1,1)
if (n .lt. 2) go to 130
do 120 j = 2, n
b(j) = b(j) - ddot(j-1,t(1,j),1,b(1),1)
b(j) = b(j)/t(j,j)
120 continue
130 continue
140 continue
150 continue
return
end
c====================== The end of dtrsl ===============================
| bsd-3-clause |
kleskjr/scipy | scipy/interpolate/fitpack/bispev.f | 115 | 3933 | subroutine bispev(tx,nx,ty,ny,c,kx,ky,x,mx,y,my,z,wrk,lwrk,
* iwrk,kwrk,ier)
c subroutine bispev evaluates on a grid (x(i),y(j)),i=1,...,mx; j=1,...
c ,my a bivariate spline s(x,y) of degrees kx and ky, given in the
c b-spline representation.
c
c calling sequence:
c call bispev(tx,nx,ty,ny,c,kx,ky,x,mx,y,my,z,wrk,lwrk,
c * iwrk,kwrk,ier)
c
c input parameters:
c tx : real array, length nx, which contains the position of the
c knots in the x-direction.
c nx : integer, giving the total number of knots in the x-direction
c ty : real array, length ny, which contains the position of the
c knots in the y-direction.
c ny : integer, giving the total number of knots in the y-direction
c c : real array, length (nx-kx-1)*(ny-ky-1), which contains the
c b-spline coefficients.
c kx,ky : integer values, giving the degrees of the spline.
c x : real array of dimension (mx).
c before entry x(i) must be set to the x co-ordinate of the
c i-th grid point along the x-axis.
c tx(kx+1)<=x(i-1)<=x(i)<=tx(nx-kx), i=2,...,mx.
c mx : on entry mx must specify the number of grid points along
c the x-axis. mx >=1.
c y : real array of dimension (my).
c before entry y(j) must be set to the y co-ordinate of the
c j-th grid point along the y-axis.
c ty(ky+1)<=y(j-1)<=y(j)<=ty(ny-ky), j=2,...,my.
c my : on entry my must specify the number of grid points along
c the y-axis. my >=1.
c wrk : real array of dimension lwrk. used as workspace.
c lwrk : integer, specifying the dimension of wrk.
c lwrk >= mx*(kx+1)+my*(ky+1)
c iwrk : integer array of dimension kwrk. used as workspace.
c kwrk : integer, specifying the dimension of iwrk. kwrk >= mx+my.
c
c output parameters:
c z : real array of dimension (mx*my).
c on succesful exit z(my*(i-1)+j) contains the value of s(x,y)
c at the point (x(i),y(j)),i=1,...,mx;j=1,...,my.
c ier : integer error flag
c ier=0 : normal return
c ier=10: invalid input data (see restrictions)
c
c restrictions:
c mx >=1, my >=1, lwrk>=mx*(kx+1)+my*(ky+1), kwrk>=mx+my
c tx(kx+1) <= x(i-1) <= x(i) <= tx(nx-kx), i=2,...,mx
c ty(ky+1) <= y(j-1) <= y(j) <= ty(ny-ky), j=2,...,my
c
c other subroutines required:
c fpbisp,fpbspl
c
c references :
c de boor c : on calculating with b-splines, j. approximation theory
c 6 (1972) 50-62.
c cox m.g. : the numerical evaluation of b-splines, j. inst. maths
c applics 10 (1972) 134-149.
c dierckx p. : curve and surface fitting with splines, monographs on
c numerical analysis, oxford university press, 1993.
c
c author :
c p.dierckx
c dept. computer science, k.u.leuven
c celestijnenlaan 200a, b-3001 heverlee, belgium.
c e-mail : Paul.Dierckx@cs.kuleuven.ac.be
c
c latest update : march 1987
c
c ..scalar arguments..
integer nx,ny,kx,ky,mx,my,lwrk,kwrk,ier
c ..array arguments..
integer iwrk(kwrk)
real*8 tx(nx),ty(ny),c((nx-kx-1)*(ny-ky-1)),x(mx),y(my),z(mx*my),
* wrk(lwrk)
c ..local scalars..
integer i,iw,lwest
c ..
c before starting computations a data check is made. if the input data
c are invalid control is immediately repassed to the calling program.
ier = 10
lwest = (kx+1)*mx+(ky+1)*my
if(lwrk.lt.lwest) go to 100
if(kwrk.lt.(mx+my)) go to 100
if (mx.lt.1) go to 100
if (mx.eq.1) go to 30
go to 10
10 do 20 i=2,mx
if(x(i).lt.x(i-1)) go to 100
20 continue
30 if (my.lt.1) go to 100
if (my.eq.1) go to 60
go to 40
40 do 50 i=2,my
if(y(i).lt.y(i-1)) go to 100
50 continue
60 ier = 0
iw = mx*(kx+1)+1
call fpbisp(tx,nx,ty,ny,c,kx,ky,x,mx,y,my,z,wrk(1),wrk(iw),
* iwrk(1),iwrk(mx+1))
100 return
end
| bsd-3-clause |
anlongfei/gcc-4.8.4 | gcc/testsuite/gfortran.dg/achar_6.F90 | 174 | 1711 | ! { dg-do run }
! { dg-options "-fbackslash" }
#define TEST(x,y,z) \
call test (x, y, z, iachar(x), iachar(y), ichar(x), ichar(y))
TEST("a", 4_"a", 97)
TEST("\0", 4_"\0", 0)
TEST("\b", 4_"\b", 8)
TEST("\x80", 4_"\x80", int(z'80'))
TEST("\xFF", 4_"\xFF", int(z'FF'))
#define TEST2(y,z) \
call test_bis (y, z, iachar(y), ichar(y))
TEST2(4_"\u0100", int(z'0100'))
TEST2(4_"\ufe00", int(z'fe00'))
TEST2(4_"\u106a", int(z'106a'))
TEST2(4_"\uff00", int(z'ff00'))
TEST2(4_"\uffff", int(z'ffff'))
contains
subroutine test (s1, s4, i, i1, i2, i3, i4)
character(kind=1,len=1) :: s1
character(kind=4,len=1) :: s4
integer :: i, i1, i2, i3, i4
if (i /= i1) call abort
if (i /= i2) call abort
if (i /= i3) call abort
if (i /= i4) call abort
if (iachar (s1) /= i) call abort
if (iachar (s4) /= i) call abort
if (ichar (s1) /= i) call abort
if (ichar (s4) /= i) call abort
if (achar(i, kind=1) /= s1) call abort
if (achar(i, kind=4) /= s4) call abort
if (char(i, kind=1) /= s1) call abort
if (char(i, kind=4) /= s4) call abort
if (iachar(achar(i, kind=1)) /= i) call abort
if (iachar(achar(i, kind=4)) /= i) call abort
if (ichar(char(i, kind=1)) /= i) call abort
if (ichar(char(i, kind=4)) /= i) call abort
end subroutine test
subroutine test_bis (s4, i, i2, i4)
character(kind=4,len=1) :: s4
integer :: i, i2, i4
if (i /= i2) call abort
if (i /= i4) call abort
if (iachar (s4) /= i) call abort
if (ichar (s4) /= i) call abort
if (achar(i, kind=4) /= s4) call abort
if (char(i, kind=4) /= s4) call abort
if (iachar(achar(i, kind=4)) /= i) call abort
if (ichar(char(i, kind=4)) /= i) call abort
end subroutine test_bis
end
| gpl-2.0 |
anlongfei/gcc-4.8.4 | gcc/testsuite/gfortran.dg/module_procedure_1.f90 | 136 | 1087 | ! { dg-do run }
! Modified program from http://groups.google.com/group/\
! comp.lang.fortran/browse_frm/thread/423e4392dc965ab7#
!
module myoperator
contains
function dadd(arg1,arg2)
integer ::dadd(2)
integer, intent(in) :: arg1(2), arg2(2)
dadd(1)=arg1(1)+arg2(1)
dadd(2)=arg1(2)+arg2(2)
end function dadd
end module myoperator
program test_interface
use myoperator
implicit none
interface operator (.myadd.)
module procedure dadd
end interface
integer input1(2), input2(2), mysum(2)
input1 = (/0,1/)
input2 = (/3,3/)
mysum = input1 .myadd. input2
if (mysum(1) /= 3 .and. mysum(2) /= 4) call abort
call test_sub(input1, input2)
end program test_interface
subroutine test_sub(input1, input2)
use myoperator
implicit none
interface operator (.myadd.)
module procedure dadd
end interface
integer, intent(in) :: input1(2), input2(2)
integer mysum(2)
mysum = input1 .myadd. input2
if (mysum(1) /= 3 .and. mysum(2) /= 4) call abort
end subroutine test_sub
| gpl-2.0 |
kleskjr/scipy | scipy/special/cdflib/gaminv.f | 151 | 10511 | SUBROUTINE gaminv(a,x,x0,p,q,ierr)
C ----------------------------------------------------------------------
C INVERSE INCOMPLETE GAMMA RATIO FUNCTION
C
C GIVEN POSITIVE A, AND NONEGATIVE P AND Q WHERE P + Q = 1.
C THEN X IS COMPUTED WHERE P(A,X) = P AND Q(A,X) = Q. SCHRODER
C ITERATION IS EMPLOYED. THE ROUTINE ATTEMPTS TO COMPUTE X
C TO 10 SIGNIFICANT DIGITS IF THIS IS POSSIBLE FOR THE
C PARTICULAR COMPUTER ARITHMETIC BEING USED.
C
C ------------
C
C X IS A VARIABLE. IF P = 0 THEN X IS ASSIGNED THE VALUE 0,
C AND IF Q = 0 THEN X IS SET TO THE LARGEST FLOATING POINT
C NUMBER AVAILABLE. OTHERWISE, GAMINV ATTEMPTS TO OBTAIN
C A SOLUTION FOR P(A,X) = P AND Q(A,X) = Q. IF THE ROUTINE
C IS SUCCESSFUL THEN THE SOLUTION IS STORED IN X.
C
C X0 IS AN OPTIONAL INITIAL APPROXIMATION FOR X. IF THE USER
C DOES NOT WISH TO SUPPLY AN INITIAL APPROXIMATION, THEN SET
C X0 .LE. 0.
C
C IERR IS A VARIABLE THAT REPORTS THE STATUS OF THE RESULTS.
C WHEN THE ROUTINE TERMINATES, IERR HAS ONE OF THE FOLLOWING
C VALUES ...
C
C IERR = 0 THE SOLUTION WAS OBTAINED. ITERATION WAS
C NOT USED.
C IERR.GT.0 THE SOLUTION WAS OBTAINED. IERR ITERATIONS
C WERE PERFORMED.
C IERR = -2 (INPUT ERROR) A .LE. 0
C IERR = -3 NO SOLUTION WAS OBTAINED. THE RATIO Q/A
C IS TOO LARGE.
C IERR = -4 (INPUT ERROR) P + Q .NE. 1
C IERR = -6 20 ITERATIONS WERE PERFORMED. THE MOST
C RECENT VALUE OBTAINED FOR X IS GIVEN.
C THIS CANNOT OCCUR IF X0 .LE. 0.
C IERR = -7 ITERATION FAILED. NO VALUE IS GIVEN FOR X.
C THIS MAY OCCUR WHEN X IS APPROXIMATELY 0.
C IERR = -8 A VALUE FOR X HAS BEEN OBTAINED, BUT THE
C ROUTINE IS NOT CERTAIN OF ITS ACCURACY.
C ITERATION CANNOT BE PERFORMED IN THIS
C CASE. IF X0 .LE. 0, THIS CAN OCCUR ONLY
C WHEN P OR Q IS APPROXIMATELY 0. IF X0 IS
C POSITIVE THEN THIS CAN OCCUR WHEN A IS
C EXCEEDINGLY CLOSE TO X AND A IS EXTREMELY
C LARGE (SAY A .GE. 1.E20).
C ----------------------------------------------------------------------
C WRITTEN BY ALFRED H. MORRIS, JR.
C NAVAL SURFACE WEAPONS CENTER
C DAHLGREN, VIRGINIA
C -------------------
C .. Scalar Arguments ..
DOUBLE PRECISION a,p,q,x,x0
INTEGER ierr
C ..
C .. Local Scalars ..
DOUBLE PRECISION a0,a1,a2,a3,am1,amax,ap1,ap2,ap3,apn,b,b1,b2,b3,
+ b4,c,c1,c2,c3,c4,c5,d,e,e2,eps,g,h,ln10,pn,qg,qn,
+ r,rta,s,s2,sum,t,tol,u,w,xmax,xmin,xn,y,z
INTEGER iop
C ..
C .. Local Arrays ..
DOUBLE PRECISION amin(2),bmin(2),dmin(2),emin(2),eps0(2)
C ..
C .. External Functions ..
DOUBLE PRECISION alnrel,gamln,gamln1,gamma,rcomp,spmpar
EXTERNAL alnrel,gamln,gamln1,gamma,rcomp,spmpar
C ..
C .. External Subroutines ..
EXTERNAL gratio
C ..
C .. Intrinsic Functions ..
INTRINSIC abs,dble,dlog,dmax1,exp,sqrt
C ..
C .. Data statements ..
C -------------------
C LN10 = LN(10)
C C = EULER CONSTANT
C -------------------
C -------------------
C -------------------
C -------------------
DATA ln10/2.302585D0/
DATA c/.577215664901533D0/
DATA a0/3.31125922108741D0/,a1/11.6616720288968D0/,
+ a2/4.28342155967104D0/,a3/.213623493715853D0/
DATA b1/6.61053765625462D0/,b2/6.40691597760039D0/,
+ b3/1.27364489782223D0/,b4/.036117081018842D0/
DATA eps0(1)/1.D-10/,eps0(2)/1.D-08/
DATA amin(1)/500.0D0/,amin(2)/100.0D0/
DATA bmin(1)/1.D-28/,bmin(2)/1.D-13/
DATA dmin(1)/1.D-06/,dmin(2)/1.D-04/
DATA emin(1)/2.D-03/,emin(2)/6.D-03/
DATA tol/1.D-5/
C ..
C .. Executable Statements ..
C -------------------
C ****** E, XMIN, AND XMAX ARE MACHINE DEPENDENT CONSTANTS.
C E IS THE SMALLEST NUMBER FOR WHICH 1.0 + E .GT. 1.0.
C XMIN IS THE SMALLEST POSITIVE NUMBER AND XMAX IS THE
C LARGEST POSITIVE NUMBER.
C
e = spmpar(1)
xmin = spmpar(2)
xmax = spmpar(3)
C -------------------
x = 0.0D0
IF (a.LE.0.0D0) GO TO 300
t = dble(p) + dble(q) - 1.D0
IF (abs(t).GT.e) GO TO 320
C
ierr = 0
IF (p.EQ.0.0D0) RETURN
IF (q.EQ.0.0D0) GO TO 270
IF (a.EQ.1.0D0) GO TO 280
C
e2 = 2.0D0*e
amax = 0.4D-10/ (e*e)
iop = 1
IF (e.GT.1.D-10) iop = 2
eps = eps0(iop)
xn = x0
IF (x0.GT.0.0D0) GO TO 160
C
C SELECTION OF THE INITIAL APPROXIMATION XN OF X
C WHEN A .LT. 1
C
IF (a.GT.1.0D0) GO TO 80
g = gamma(a+1.0D0)
qg = q*g
IF (qg.EQ.0.0D0) GO TO 360
b = qg/a
IF (qg.GT.0.6D0*a) GO TO 40
IF (a.GE.0.30D0 .OR. b.LT.0.35D0) GO TO 10
t = exp(- (b+c))
u = t*exp(t)
xn = t*exp(u)
GO TO 160
C
10 IF (b.GE.0.45D0) GO TO 40
IF (b.EQ.0.0D0) GO TO 360
y = -dlog(b)
s = 0.5D0 + (0.5D0-a)
z = dlog(y)
t = y - s*z
IF (b.LT.0.15D0) GO TO 20
xn = y - s*dlog(t) - dlog(1.0D0+s/ (t+1.0D0))
GO TO 220
20 IF (b.LE.0.01D0) GO TO 30
u = ((t+2.0D0* (3.0D0-a))*t+ (2.0D0-a)* (3.0D0-a))/
+ ((t+ (5.0D0-a))*t+2.0D0)
xn = y - s*dlog(t) - dlog(u)
GO TO 220
30 c1 = -s*z
c2 = -s* (1.0D0+c1)
c3 = s* ((0.5D0*c1+ (2.0D0-a))*c1+ (2.5D0-1.5D0*a))
c4 = -s* (((c1/3.0D0+ (2.5D0-1.5D0*a))*c1+ ((a-6.0D0)*a+7.0D0))*
+ c1+ ((11.0D0*a-46)*a+47.0D0)/6.0D0)
c5 = -s* ((((-c1/4.0D0+ (11.0D0*a-17.0D0)/6.0D0)*c1+ ((-3.0D0*a+
+ 13.0D0)*a-13.0D0))*c1+0.5D0* (((2.0D0*a-25.0D0)*a+72.0D0)*a-
+ 61.0D0))*c1+ (((25.0D0*a-195.0D0)*a+477.0D0)*a-379.0D0)/
+ 12.0D0)
xn = ((((c5/y+c4)/y+c3)/y+c2)/y+c1) + y
IF (a.GT.1.0D0) GO TO 220
IF (b.GT.bmin(iop)) GO TO 220
x = xn
RETURN
C
40 IF (b*q.GT.1.D-8) GO TO 50
xn = exp(- (q/a+c))
GO TO 70
50 IF (p.LE.0.9D0) GO TO 60
xn = exp((alnrel(-q)+gamln1(a))/a)
GO TO 70
60 xn = exp(dlog(p*g)/a)
70 IF (xn.EQ.0.0D0) GO TO 310
t = 0.5D0 + (0.5D0-xn/ (a+1.0D0))
xn = xn/t
GO TO 160
C
C SELECTION OF THE INITIAL APPROXIMATION XN OF X
C WHEN A .GT. 1
C
80 IF (q.LE.0.5D0) GO TO 90
w = dlog(p)
GO TO 100
90 w = dlog(q)
100 t = sqrt(-2.0D0*w)
s = t - (((a3*t+a2)*t+a1)*t+a0)/ ((((b4*t+b3)*t+b2)*t+b1)*t+1.0D0)
IF (q.GT.0.5D0) s = -s
C
rta = sqrt(a)
s2 = s*s
xn = a + s*rta + (s2-1.0D0)/3.0D0 + s* (s2-7.0D0)/ (36.0D0*rta) -
+ ((3.0D0*s2+7.0D0)*s2-16.0D0)/ (810.0D0*a) +
+ s* ((9.0D0*s2+256.0D0)*s2-433.0D0)/ (38880.0D0*a*rta)
xn = dmax1(xn,0.0D0)
IF (a.LT.amin(iop)) GO TO 110
x = xn
d = 0.5D0 + (0.5D0-x/a)
IF (abs(d).LE.dmin(iop)) RETURN
C
110 IF (p.LE.0.5D0) GO TO 130
IF (xn.LT.3.0D0*a) GO TO 220
y = - (w+gamln(a))
d = dmax1(2.0D0,a* (a-1.0D0))
IF (y.LT.ln10*d) GO TO 120
s = 1.0D0 - a
z = dlog(y)
GO TO 30
120 t = a - 1.0D0
xn = y + t*dlog(xn) - alnrel(-t/ (xn+1.0D0))
xn = y + t*dlog(xn) - alnrel(-t/ (xn+1.0D0))
GO TO 220
C
130 ap1 = a + 1.0D0
IF (xn.GT.0.70D0*ap1) GO TO 170
w = w + gamln(ap1)
IF (xn.GT.0.15D0*ap1) GO TO 140
ap2 = a + 2.0D0
ap3 = a + 3.0D0
x = exp((w+x)/a)
x = exp((w+x-dlog(1.0D0+ (x/ap1)* (1.0D0+x/ap2)))/a)
x = exp((w+x-dlog(1.0D0+ (x/ap1)* (1.0D0+x/ap2)))/a)
x = exp((w+x-dlog(1.0D0+ (x/ap1)* (1.0D0+ (x/ap2)* (1.0D0+
+ x/ap3))))/a)
xn = x
IF (xn.GT.1.D-2*ap1) GO TO 140
IF (xn.LE.emin(iop)*ap1) RETURN
GO TO 170
C
140 apn = ap1
t = xn/apn
sum = 1.0D0 + t
150 apn = apn + 1.0D0
t = t* (xn/apn)
sum = sum + t
IF (t.GT.1.D-4) GO TO 150
t = w - dlog(sum)
xn = exp((xn+t)/a)
xn = xn* (1.0D0- (a*dlog(xn)-xn-t)/ (a-xn))
GO TO 170
C
C SCHRODER ITERATION USING P
C
160 IF (p.GT.0.5D0) GO TO 220
170 IF (p.LE.1.D10*xmin) GO TO 350
am1 = (a-0.5D0) - 0.5D0
180 IF (a.LE.amax) GO TO 190
d = 0.5D0 + (0.5D0-xn/a)
IF (abs(d).LE.e2) GO TO 350
C
190 IF (ierr.GE.20) GO TO 330
ierr = ierr + 1
CALL gratio(a,xn,pn,qn,0)
IF (pn.EQ.0.0D0 .OR. qn.EQ.0.0D0) GO TO 350
r = rcomp(a,xn)
IF (r.EQ.0.0D0) GO TO 350
t = (pn-p)/r
w = 0.5D0* (am1-xn)
IF (abs(t).LE.0.1D0 .AND. abs(w*t).LE.0.1D0) GO TO 200
x = xn* (1.0D0-t)
IF (x.LE.0.0D0) GO TO 340
d = abs(t)
GO TO 210
C
200 h = t* (1.0D0+w*t)
x = xn* (1.0D0-h)
IF (x.LE.0.0D0) GO TO 340
IF (abs(w).GE.1.0D0 .AND. abs(w)*t*t.LE.eps) RETURN
d = abs(h)
210 xn = x
IF (d.GT.tol) GO TO 180
IF (d.LE.eps) RETURN
IF (abs(p-pn).LE.tol*p) RETURN
GO TO 180
C
C SCHRODER ITERATION USING Q
C
220 IF (q.LE.1.D10*xmin) GO TO 350
am1 = (a-0.5D0) - 0.5D0
230 IF (a.LE.amax) GO TO 240
d = 0.5D0 + (0.5D0-xn/a)
IF (abs(d).LE.e2) GO TO 350
C
240 IF (ierr.GE.20) GO TO 330
ierr = ierr + 1
CALL gratio(a,xn,pn,qn,0)
IF (pn.EQ.0.0D0 .OR. qn.EQ.0.0D0) GO TO 350
r = rcomp(a,xn)
IF (r.EQ.0.0D0) GO TO 350
t = (q-qn)/r
w = 0.5D0* (am1-xn)
IF (abs(t).LE.0.1D0 .AND. abs(w*t).LE.0.1D0) GO TO 250
x = xn* (1.0D0-t)
IF (x.LE.0.0D0) GO TO 340
d = abs(t)
GO TO 260
C
250 h = t* (1.0D0+w*t)
x = xn* (1.0D0-h)
IF (x.LE.0.0D0) GO TO 340
IF (abs(w).GE.1.0D0 .AND. abs(w)*t*t.LE.eps) RETURN
d = abs(h)
260 xn = x
IF (d.GT.tol) GO TO 230
IF (d.LE.eps) RETURN
IF (abs(q-qn).LE.tol*q) RETURN
GO TO 230
C
C SPECIAL CASES
C
270 x = xmax
RETURN
C
280 IF (q.LT.0.9D0) GO TO 290
x = -alnrel(-p)
RETURN
290 x = -dlog(q)
RETURN
C
C ERROR RETURN
C
300 ierr = -2
RETURN
C
310 ierr = -3
RETURN
C
320 ierr = -4
RETURN
C
330 ierr = -6
RETURN
C
340 ierr = -7
RETURN
C
350 x = xn
ierr = -8
RETURN
C
360 x = xmax
ierr = -8
RETURN
END
| bsd-3-clause |
anlongfei/gcc-4.8.4 | gcc/testsuite/gfortran.dg/pointer_check_2.f90 | 185 | 1629 | ! { dg-do run }
! { dg-options "-fcheck=pointer" }
! { dg-shouldfail "Unassociated/unallocated actual argument" }
!
! { dg-output ".*At line 60.*Pointer actual argument 'ptr1' is not associated" }
!
! PR fortran/40580
!
! Run-time check of passing deallocated/nonassociated actuals
! to nonallocatable/nonpointer dummies.
!
! Check for variable actuals
!
subroutine test1(a)
integer :: a
a = 4444
end subroutine test1
subroutine test2(a)
integer :: a(2)
a = 4444
end subroutine test2
subroutine ppTest(f)
implicit none
external f
call f()
end subroutine ppTest
Program RunTimeCheck
implicit none
external :: test1, test2, ppTest
integer, pointer :: ptr1, ptr2(:)
integer, allocatable :: alloc2(:)
procedure(), pointer :: pptr
allocate(ptr1,ptr2(2),alloc2(2))
pptr => sub
! OK
call test1(ptr1)
call test3(ptr1)
call test2(ptr2)
call test2(alloc2)
call test4(ptr2)
call test4(alloc2)
call ppTest(pptr)
call ppTest2(pptr)
! Invalid 1:
deallocate(alloc2)
! call test2(alloc2)
! call test4(alloc2)
! Invalid 2:
deallocate(ptr1,ptr2)
nullify(ptr1,ptr2)
! call test1(ptr1)
call test3(ptr1)
! call test2(ptr2)
! call test4(ptr2)
! Invalid 3:
nullify(pptr)
! call ppTest(pptr)
call ppTest2(pptr)
contains
subroutine test3(b)
integer :: b
b = 333
end subroutine test3
subroutine test4(b)
integer :: b(2)
b = 333
end subroutine test4
subroutine sub()
print *, 'Hello World'
end subroutine sub
subroutine ppTest2(f)
implicit none
procedure(sub) :: f
call f()
end subroutine ppTest2
end Program RunTimeCheck
| gpl-2.0 |
PeyloW/gcc-4.6.4 | gcc/testsuite/gfortran.fortran-torture/compile/pr32663.f | 193 | 4377 | SUBROUTINE DIMOID(DEN,RLMO,SSQU,STRI,ATMU,IATM,IWHI,MAPT,INAT,
* IATB,L1,L2,M1,M2,NATS,NOSI,NCAT,NSWE)
C
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
C
DIMENSION RLMO(L1,L1),SSQU(L1,L1),STRI(L2),ATMU(NATS),DEN(M2)
DIMENSION IATM(NATS,M1),IWHI(M1+NATS),MAPT(M1),INAT(M1+NATS)
DIMENSION IATB(NATS,M1)
C
PARAMETER (MXATM=500, MXSH=1000, MXGTOT=5000, MXAO=2047)
C
LOGICAL GOPARR,DSKWRK,MASWRK
C
COMMON /INFOA / NAT,ICH,MUL,NUM,NQMT,NE,NA,NB,
* ZAN(MXATM),C(3,MXATM)
COMMON /IOFILE/ IR,IW,IP,IJKO,IJKT,IDAF,NAV,IODA(400)
COMMON /NSHEL / EX(MXGTOT),CS(MXGTOT),CP(MXGTOT),CD(MXGTOT),
* CF(MXGTOT),CG(MXGTOT),
* KSTART(MXSH),KATOM(MXSH),KTYPE(MXSH),
* KNG(MXSH),KLOC(MXSH),KMIN(MXSH),
* KMAX(MXSH),NSHELL
COMMON /OPTLOC/ CVGLOC,MAXLOC,IPRTLO,ISYMLO,IFCORE,NOUTA,NOUTB,
* MOOUTA(MXAO),MOOUTB(MXAO)
COMMON /PAR / ME,MASTER,NPROC,IBTYP,IPTIM,GOPARR,DSKWRK,MASWRK
COMMON /RUNLAB/ TITLE(10),A(MXATM),B(MXATM),BFLAB(MXAO)
C
C
DO 920 II=1,M1
INAT(II) = 0
920 CONTINUE
C
DO 900 IO = NOUTA+1,NUMLOC
IZ = IO - NOUTA
DO 895 II=NST,NEND
ATMU(II) = 0.0D+00
IATM(II,IZ) = 0
895 CONTINUE
IFUNC = 0
DO 890 ISHELL = 1,NSHELL
IAT = KATOM(ISHELL)
IST = KMIN(ISHELL)
IEN = KMAX(ISHELL)
DO 880 INO = IST,IEN
IFUNC = IFUNC + 1
IF (IAT.LT.NST.OR.IAT.GT.NEND) GOTO 880
ZINT = 0.0D+00
DO 870 II = 1,L1
ZINT = ZINT + RLMO(II,IO)*SSQU(II,IFUNC)
870 CONTINUE
ATMU(IAT) = ATMU(IAT) + RLMO(IFUNC,IO)*ZINT
880 CONTINUE
890 CONTINUE
IF (MASWRK) WRITE(IW,9010) IZ,(ATMU(II),II=NST,NEND)
900 CONTINUE
C
NOSI = 0
DO 700 II=1,M1
NO=0
DO 720 JJ=1,NAT
NO = NO + 1
720 CONTINUE
740 CONTINUE
IF (NO.GT.1.OR.NO.EQ.0) THEN
NOSI = NOSI + 1
IWHI(NOSI) = II
ENDIF
IF (MASWRK)
* WRITE(IW,9030) II,(IATM(J,II),A(IATM(J,II)),J=1,NO)
700 CONTINUE
C
IF (MASWRK) THEN
WRITE(IW,9035) NOSI
IF (NOSI.GT.0) THEN
WRITE(IW,9040) (IWHI(I),I=1,NOSI)
WRITE(IW,9040)
ELSE
WRITE(IW,9040)
ENDIF
ENDIF
C
CALL DCOPY(L1*L1,RLMO,1,SSQU,1)
CALL DCOPY(M2,DEN,1,STRI,1)
C
IP2 = NOUTA
IS2 = M1+NOUTA-NOSI
DO 695 II=1,NAT
INAT(II) = 0
695 CONTINUE
C
DO 690 IAT=1,NAT
DO 680 IORB=1,M1
IP1 = IORB + NOUTA
IF (IATM(1,IORB).NE.IAT) GOTO 680
IF (IATM(2,IORB).NE.0) GOTO 680
INAT(IAT) = INAT(IAT) + 1
IP2 = IP2 + 1
CALL DCOPY(L1,SSQU(1,IP1),1,RLMO(1,IP2),1)
CALL ICOPY(NAT,IATM(1,IORB),1,IATB(1,IP2-NOUTA),1)
MAPT(IORB) = IP2-NOUTA
680 CONTINUE
DO 670 IORB=1,NOSI
IS1 = IWHI(IORB) + NOUTA
IF (IAT.EQ.NAT.AND.IATM(1,IWHI(IORB)).EQ.0) GOTO 675
IF (IATM(1,IWHI(IORB)).NE.IAT) GOTO 670
675 CONTINUE
IS2 = IS2 + 1
MAPT(IWHI(IORB)) = IS2-NOUTA
670 CONTINUE
690 CONTINUE
C
NSWE = 0
NCAT = 0
LASP = 1
NLAST = 0
DO 620 II=1,NAT
NSWE = NSWE + (IWHI(II)*(IWHI(II)-1))/2
NCAT = NCAT + 1
INAT(NCAT) = LASP + NLAST
LASP = INAT(NCAT)
NLAST = IWHI(II)
IWHI(NCAT) = II
620 CONTINUE
C
DO 610 II=1,NOSI
NCAT = NCAT + 1
INAT(NCAT) = LASP + NLAST
LASP = INAT(NCAT)
NLAST = 1
IWHI(NCAT) = 0
610 CONTINUE
C
RETURN
C
8000 FORMAT(/1X,'** MULLIKEN ATOMIC POPULATIONS FOR EACH NON-FROZEN ',
* 'LOCALIZED ORBITAL **')
9000 FORMAT(/3X,'ATOM',2X,100(I2,1X,A4))
9005 FORMAT(1X,'LMO')
9010 FORMAT(1X,I3,3X,100F7.3)
9015 FORMAT(/1X,'** ATOMIC POPULATIONS GREATER THAN ',F4.2,
* ' ARE CONSIDERED MAJOR **')
9020 FORMAT(/2X,'LMO',3X,'MAJOR CONTRIBUTIONS FROM ATOM(S)')
9030 FORMAT(2X,I3,2X,100(I2,1X,A2,2X))
9035 FORMAT(/1X,'NO OF LMOS INVOLVING MORE THAN ONE ATOM =',I3)
9040 FORMAT(1X,'THESE ARE LMOS :',100I3)
C
END
| gpl-2.0 |
slitvinov/lammps-swimmer | lib/linalg/dcopy.f | 191 | 2631 | *> \brief \b DCOPY
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DCOPY(N,DX,INCX,DY,INCY)
*
* .. Scalar Arguments ..
* INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION DX(*),DY(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DCOPY copies a vector, x, to a vector, y.
*> uses unrolled loops for increments equal to one.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_blas_level1
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> jack dongarra, linpack, 3/11/78.
*> modified 12/3/93, array(1) declarations changed to array(*)
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DCOPY(N,DX,INCX,DY,INCY)
*
* -- Reference BLAS level1 routine (version 3.4.0) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
DOUBLE PRECISION DX(*),DY(*)
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I,IX,IY,M,MP1
* ..
* .. Intrinsic Functions ..
INTRINSIC MOD
* ..
IF (N.LE.0) RETURN
IF (INCX.EQ.1 .AND. INCY.EQ.1) THEN
*
* code for both increments equal to 1
*
*
* clean-up loop
*
M = MOD(N,7)
IF (M.NE.0) THEN
DO I = 1,M
DY(I) = DX(I)
END DO
IF (N.LT.7) RETURN
END IF
MP1 = M + 1
DO I = MP1,N,7
DY(I) = DX(I)
DY(I+1) = DX(I+1)
DY(I+2) = DX(I+2)
DY(I+3) = DX(I+3)
DY(I+4) = DX(I+4)
DY(I+5) = DX(I+5)
DY(I+6) = DX(I+6)
END DO
ELSE
*
* code for unequal increments or equal increments
* not equal to 1
*
IX = 1
IY = 1
IF (INCX.LT.0) IX = (-N+1)*INCX + 1
IF (INCY.LT.0) IY = (-N+1)*INCY + 1
DO I = 1,N
DY(IY) = DX(IX)
IX = IX + INCX
IY = IY + INCY
END DO
END IF
RETURN
END
| gpl-2.0 |
JasonRuonanWang/ADIOS2 | testing/adios2/bindings/fortran/operation/TestBPWriteReadZfp2D.F90 | 1 | 9076 | program TestBPWriteReadHeatMapZfp2D
use mpi
use adios2
implicit none
integer(kind=8) :: sum_i1, sum_i2
type(adios2_adios) :: adios
type(adios2_io) :: ioPut, ioGet
type(adios2_engine) :: bpWriter, bpReader
type(adios2_variable), dimension(6) :: var_temperatures, var_temperaturesIn
type(adios2_operator) :: zfp_operator
integer:: operation_id
integer(kind=1), dimension(:, :), allocatable :: temperatures_i1, &
sel_temperatures_i1
integer(kind=2), dimension(:, :), allocatable :: temperatures_i2, &
sel_temperatures_i2
integer(kind=4), dimension(:, :), allocatable :: temperatures_i4, &
sel_temperatures_i4
integer(kind=8), dimension(:, :), allocatable :: temperatures_i8, &
sel_temperatures_i8
real(kind=4), dimension(:, :), allocatable :: temperatures_r4, &
sel_temperatures_r4
real(kind=8), dimension(:, :), allocatable :: temperatures_r8, &
sel_temperatures_r8
integer(kind=8), dimension(2) :: ishape, istart, icount
integer(kind=8), dimension(2) :: sel_start, sel_count
integer :: ierr, irank, isize
integer :: in1, in2
integer :: i1, i2
call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, irank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, isize, ierr)
in1 = 10
in2 = 10
icount = (/in1, in2/)
istart = (/0, in2*irank/)
ishape = (/in1, in2*isize/)
allocate (temperatures_i1(in1, in2))
allocate (temperatures_i2(in1, in2))
allocate (temperatures_i4(in1, in2))
allocate (temperatures_i8(in1, in2))
allocate (temperatures_r4(in1, in2))
allocate (temperatures_r8(in1, in2))
temperatures_i1 = 1
temperatures_i2 = 1
temperatures_i4 = 1
temperatures_i8 = 1_8
temperatures_r4 = 1.0
temperatures_r8 = 1.0_8
! Start adios2 Writer
call adios2_init(adios, MPI_COMM_WORLD, adios2_debug_mode_on, ierr)
call adios2_declare_io(ioPut, adios, 'HeatMapWrite', ierr)
call adios2_define_variable(var_temperatures(1), ioPut, &
'temperatures_i1', adios2_type_integer1, &
2, ishape, istart, icount, &
adios2_constant_dims, ierr)
call adios2_define_variable(var_temperatures(2), ioPut, &
'temperatures_i2', adios2_type_integer2, &
2, ishape, istart, icount, &
adios2_constant_dims, ierr)
call adios2_define_variable(var_temperatures(3), ioPut, &
'temperatures_i4', adios2_type_integer4, &
2, ishape, istart, icount, &
adios2_constant_dims, ierr)
call adios2_define_variable(var_temperatures(4), ioPut, &
'temperatures_i8', adios2_type_integer8, &
2, ishape, istart, icount, &
adios2_constant_dims, ierr)
call adios2_define_operator(zfp_operator, adios, 'CompressorZfp', 'zfp', ierr)
call adios2_define_variable(var_temperatures(5), ioPut, &
'temperatures_r4', adios2_type_real, &
2, ishape, istart, icount, &
adios2_constant_dims, ierr)
call adios2_add_operation(operation_id, var_temperatures(5), &
zfp_operator, 'rate', '8', ierr)
if( operation_id /= 0 ) stop 'operation_id not added for real type'
call adios2_define_variable(var_temperatures(6), ioPut, &
'temperatures_r8', adios2_type_dp, &
2, ishape, istart, icount, &
adios2_constant_dims, ierr)
call adios2_add_operation(operation_id, var_temperatures(6), &
zfp_operator, 'rate', '8', ierr)
if( operation_id /= 0 ) stop 'operation_id not added for dp type'
call adios2_open(bpWriter, ioPut, 'HeatMapZfp2D_f.bp', adios2_mode_write, &
ierr)
call adios2_put(bpWriter, var_temperatures(1), temperatures_i1, ierr)
call adios2_put(bpWriter, var_temperatures(2), temperatures_i2, ierr)
call adios2_put(bpWriter, var_temperatures(3), temperatures_i4, ierr)
call adios2_put(bpWriter, var_temperatures(4), temperatures_i8, ierr)
call adios2_put(bpWriter, var_temperatures(5), temperatures_r4, ierr)
call adios2_put(bpWriter, var_temperatures(6), temperatures_r8, ierr)
call adios2_close(bpWriter, ierr)
if (allocated(temperatures_i1)) deallocate (temperatures_i1)
if (allocated(temperatures_i2)) deallocate (temperatures_i2)
if (allocated(temperatures_i4)) deallocate (temperatures_i4)
if (allocated(temperatures_i8)) deallocate (temperatures_i8)
if (allocated(temperatures_r4)) deallocate (temperatures_r4)
if (allocated(temperatures_r8)) deallocate (temperatures_r8)
! Start adios2 Reader in rank 0
if (irank == 0) then
call adios2_declare_io(ioGet, adios, 'HeatMapRead', ierr)
call adios2_open(bpReader, ioGet, 'HeatMapZfp2D_f.bp', &
adios2_mode_read, MPI_COMM_SELF, ierr)
call adios2_inquire_variable(var_temperaturesIn(1), ioGet, &
'temperatures_i1', ierr)
call adios2_inquire_variable(var_temperaturesIn(2), ioGet, &
'temperatures_i2', ierr)
call adios2_inquire_variable(var_temperaturesIn(3), ioGet, &
'temperatures_i4', ierr)
call adios2_inquire_variable(var_temperaturesIn(4), ioGet, &
'temperatures_i8', ierr)
call adios2_inquire_variable(var_temperaturesIn(5), ioGet, &
'temperatures_r4', ierr)
call adios2_inquire_variable(var_temperaturesIn(6), ioGet, &
'temperatures_r8', ierr)
sel_start = (/0, 0/)
sel_count = (/ishape(1), ishape(2)/)
allocate (sel_temperatures_i1(ishape(1), ishape(2)))
allocate (sel_temperatures_i2(ishape(1), ishape(2)))
allocate (sel_temperatures_i4(ishape(1), ishape(2)))
allocate (sel_temperatures_i8(ishape(1), ishape(2)))
allocate (sel_temperatures_r4(ishape(1), ishape(2)))
allocate (sel_temperatures_r8(ishape(1), ishape(2)))
sel_temperatures_i1 = 0
sel_temperatures_i2 = 0
sel_temperatures_i4 = 0
sel_temperatures_i8 = 0_8
sel_temperatures_r4 = 0.0_4
sel_temperatures_r8 = 0.0_8
call adios2_set_selection(var_temperaturesIn(1), 2, sel_start, sel_count, &
ierr)
call adios2_set_selection(var_temperaturesIn(2), 2, sel_start, sel_count, &
ierr)
call adios2_set_selection(var_temperaturesIn(3), 2, sel_start, sel_count, &
ierr)
call adios2_set_selection(var_temperaturesIn(4), 2, sel_start, sel_count, &
ierr)
call adios2_set_selection(var_temperaturesIn(5), 2, sel_start, sel_count, &
ierr)
call adios2_set_selection(var_temperaturesIn(6), 2, sel_start, sel_count, &
ierr)
call adios2_get(bpReader, var_temperaturesIn(1), sel_temperatures_i1, ierr)
call adios2_get(bpReader, var_temperaturesIn(2), sel_temperatures_i2, ierr)
call adios2_get(bpReader, var_temperaturesIn(3), sel_temperatures_i4, ierr)
call adios2_get(bpReader, var_temperaturesIn(4), sel_temperatures_i8, ierr)
call adios2_get(bpReader, var_temperaturesIn(5), sel_temperatures_r4, ierr)
call adios2_get(bpReader, var_temperaturesIn(6), sel_temperatures_r8, ierr)
call adios2_close(bpReader, ierr)
sum_i1 = 0
sum_i2 = 0
do i2 = 1, INT(sel_count(2), 4)
do i1 = 1, INT(sel_count(1), 4)
sum_i1 = sum_i1 + sel_temperatures_i1(i1, i2)
sum_i2 = sum_i2 + sel_temperatures_i2(i1, i2)
end do
end do
if (sum_i1 /= 100*isize) stop 'Test failed integer*1'
if (sum_i2 /= 100*isize) stop 'Test failed integer*2'
if (sum(sel_temperatures_i4) /= 100*isize) stop 'Test failed integer*4'
if (sum(sel_temperatures_i8) /= 100*isize) stop 'Test failed integer*8'
if (sum(sel_temperatures_r4) /= 100*isize) stop 'Test failed real*4'
if (sum(sel_temperatures_r8) /= 100*isize) stop 'Test failed real*8'
if (allocated(sel_temperatures_i1)) deallocate (sel_temperatures_i1)
if (allocated(sel_temperatures_i2)) deallocate (sel_temperatures_i2)
if (allocated(sel_temperatures_i4)) deallocate (sel_temperatures_i4)
if (allocated(sel_temperatures_i8)) deallocate (sel_temperatures_i8)
if (allocated(sel_temperatures_r4)) deallocate (sel_temperatures_r4)
if (allocated(sel_temperatures_r8)) deallocate (sel_temperatures_r8)
end if
call adios2_finalize(adios, ierr)
call MPI_Finalize(ierr)
end program TestBPWriteReadHeatMapZfp2D
| apache-2.0 |
PeyloW/gcc-4.6.4 | libgomp/testsuite/libgomp.fortran/lib3.f | 90 | 2463 | C { dg-do run }
INCLUDE "omp_lib.h"
DOUBLE PRECISION :: D, E
LOGICAL :: L
INTEGER (KIND = OMP_LOCK_KIND) :: LCK
INTEGER (KIND = OMP_NEST_LOCK_KIND) :: NLCK
D = OMP_GET_WTIME ()
CALL OMP_INIT_LOCK (LCK)
CALL OMP_SET_LOCK (LCK)
IF (OMP_TEST_LOCK (LCK)) CALL ABORT
CALL OMP_UNSET_LOCK (LCK)
IF (.NOT. OMP_TEST_LOCK (LCK)) CALL ABORT
IF (OMP_TEST_LOCK (LCK)) CALL ABORT
CALL OMP_UNSET_LOCK (LCK)
CALL OMP_DESTROY_LOCK (LCK)
CALL OMP_INIT_NEST_LOCK (NLCK)
IF (OMP_TEST_NEST_LOCK (NLCK) .NE. 1) CALL ABORT
CALL OMP_SET_NEST_LOCK (NLCK)
IF (OMP_TEST_NEST_LOCK (NLCK) .NE. 3) CALL ABORT
CALL OMP_UNSET_NEST_LOCK (NLCK)
CALL OMP_UNSET_NEST_LOCK (NLCK)
IF (OMP_TEST_NEST_LOCK (NLCK) .NE. 2) CALL ABORT
CALL OMP_UNSET_NEST_LOCK (NLCK)
CALL OMP_UNSET_NEST_LOCK (NLCK)
CALL OMP_DESTROY_NEST_LOCK (NLCK)
CALL OMP_SET_DYNAMIC (.TRUE.)
IF (.NOT. OMP_GET_DYNAMIC ()) CALL ABORT
CALL OMP_SET_DYNAMIC (.FALSE.)
IF (OMP_GET_DYNAMIC ()) CALL ABORT
CALL OMP_SET_NESTED (.TRUE.)
IF (.NOT. OMP_GET_NESTED ()) CALL ABORT
CALL OMP_SET_NESTED (.FALSE.)
IF (OMP_GET_NESTED ()) CALL ABORT
CALL OMP_SET_NUM_THREADS (5)
IF (OMP_GET_NUM_THREADS () .NE. 1) CALL ABORT
IF (OMP_GET_MAX_THREADS () .NE. 5) CALL ABORT
IF (OMP_GET_THREAD_NUM () .NE. 0) CALL ABORT
CALL OMP_SET_NUM_THREADS (3)
IF (OMP_GET_NUM_THREADS () .NE. 1) CALL ABORT
IF (OMP_GET_MAX_THREADS () .NE. 3) CALL ABORT
IF (OMP_GET_THREAD_NUM () .NE. 0) CALL ABORT
L = .FALSE.
C$OMP PARALLEL REDUCTION (.OR.:L)
L = OMP_GET_NUM_THREADS () .NE. 3
L = L .OR. (OMP_GET_THREAD_NUM () .LT. 0)
L = L .OR. (OMP_GET_THREAD_NUM () .GE. 3)
C$OMP MASTER
L = L .OR. (OMP_GET_THREAD_NUM () .NE. 0)
C$OMP END MASTER
C$OMP END PARALLEL
IF (L) CALL ABORT
IF (OMP_GET_NUM_PROCS () .LE. 0) CALL ABORT
IF (OMP_IN_PARALLEL ()) CALL ABORT
C$OMP PARALLEL REDUCTION (.OR.:L)
L = .NOT. OMP_IN_PARALLEL ()
C$OMP END PARALLEL
C$OMP PARALLEL REDUCTION (.OR.:L) IF (.TRUE.)
L = .NOT. OMP_IN_PARALLEL ()
C$OMP END PARALLEL
E = OMP_GET_WTIME ()
IF (D .GT. E) CALL ABORT
D = OMP_GET_WTICK ()
C Negative precision is definitely wrong,
C bigger than 1s clock resolution is also strange
IF (D .LE. 0 .OR. D .GT. 1.) CALL ABORT
END
| gpl-2.0 |
foss-for-synopsys-dwc-arc-processors/binutils-gdb | gdb/testsuite/gdb.fortran/vla-type.f90 | 5 | 3150 | ! Copyright 2016-2021 Free Software Foundation, Inc.
! This program is free software; you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation; either version 3 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program. If not, see <http://www.gnu.org/licenses/>.
program vla_struct
type :: one
integer, allocatable :: ivla (:, :, :)
end type one
type :: two
integer, allocatable :: ivla1 (:, :, :)
integer, allocatable :: ivla2 (:, :)
end type two
type :: three
integer :: ivar
integer, allocatable :: ivla (:)
end type three
type :: four
integer, allocatable :: ivla (:)
integer :: ivar
end type four
type :: five
type(one) :: tone
end type five
type(one), target :: onev
type(two) :: twov
type(three) :: threev
type(four) :: fourv
type(five) :: fivev
type(five) :: fivearr (2)
type(five), allocatable :: fivedynarr (:)
logical :: l
integer :: i, j
allocate (onev%ivla (11,22,33)) ! before-allocated
l = allocated(onev%ivla)
onev%ivla(:, :, :) = 1
onev%ivla(1, 2, 3) = 123
onev%ivla(3, 2, 1) = 321
allocate (twov%ivla1 (5,12,99)) ! onev-filled
l = allocated(twov%ivla1)
allocate (twov%ivla2 (9,12))
l = allocated(twov%ivla2)
twov%ivla1(:, :, :) = 1
twov%ivla1(1, 2, 3) = 123
twov%ivla1(3, 2, 1) = 321
twov%ivla2(:, :) = 1
twov%ivla2(1, 2) = 12
twov%ivla2(2, 1) = 21
threev%ivar = 3 ! twov-filled
allocate (threev%ivla (20))
l = allocated(threev%ivla)
threev%ivla(:) = 1
threev%ivla(5) = 42
threev%ivla(14) = 24
allocate (fourv%ivla (10)) ! threev-filled
l = allocated(fourv%ivla)
fourv%ivar = 3
fourv%ivla(:) = 1
fourv%ivla(2) = 2
fourv%ivla(7) = 7
allocate (fivev%tone%ivla (10, 10, 10)) ! fourv-filled
l = allocated(fivev%tone%ivla)
fivev%tone%ivla(:, :, :) = 1
fivev%tone%ivla(1, 2, 3) = 123
fivev%tone%ivla(3, 2, 1) = 321
allocate (fivearr(1)%tone%ivla (2, 4, 6)) ! fivev-filled
allocate (fivearr(2)%tone%ivla (12, 14, 16))
fivearr(1)%tone%ivla(:, :, :) = 1
fivearr(1)%tone%ivla(2, 2, 3) = 223
fivearr(2)%tone%ivla(:, :, :) = 2
fivearr(2)%tone%ivla(6, 7, 8) = 678
allocate (fivedynarr(2)) ! fivearr-filled
allocate (fivedynarr(1)%tone%ivla (2, 4, 6))
allocate (fivedynarr(2)%tone%ivla (12, 14, 16))
fivedynarr(1)%tone%ivla(:, :, :) = 1
fivedynarr(1)%tone%ivla(2, 2, 3) = 223
fivedynarr(2)%tone%ivla(:, :, :) = 2
fivedynarr(2)%tone%ivla(6, 7, 8) = 678
l = allocated(fivedynarr) ! fivedynarr-filled
end program vla_struct
| gpl-2.0 |
anlongfei/gcc-4.8.4 | gcc/testsuite/gfortran.dg/vect/no-fre-no-copy-prop-O3-pr51704.f90 | 98 | 1884 | ! { dg-do compile }
integer, parameter :: q = 2
integer, parameter :: nx=3, ny=2*q, nz=5
integer, parameter, dimension(nx,ny,nz) :: p = &
& reshape ((/ (i**2, i=1,size(p)) /), shape(p))
integer, parameter, dimension( ny,nz) :: px = &
& reshape ((/ (( &
& + nx*(nx-1)*(2*nx-1)/6, &
& j=0,ny-1), k=0,nz-1) /), shape(px))
integer, parameter, dimension(nx, nz) :: py = &
& reshape ((/ (( &
& +(nx )**2*ny*(ny-1)*(2*ny-1)/6, &
& i=0,nx-1), k=0,nz-1) /), shape(py))
integer, parameter, dimension(nx,ny ) :: pz = &
& reshape ((/ (( &
& +(nx*ny)**2*nz*(nz-1)*(2*nz-1)/6, &
& i=0,nx-1), j=0,ny-1) /), shape(pz))
integer, dimension(nx,ny,nz) :: a
integer, dimension(nx,ny ) :: az
if (sum(sum(sum(a,1),2),1) /= sum(a)) call abort
if (sum(sum(sum(a,3),1),1) /= sum(a)) call abort
if (any(1+sum(eid(a),1)+ax+sum( &
neid3(a), &
1)+1 /= 3*ax+2)) call abort
if (any(1+eid(sum(a,2))+ay+ &
neid2( &
sum(a,2) &
)+1 /= 3*ay+2)) call abort
if (any(sum(eid(sum(a,3))+az+2* &
neid2(az) &
,1)+1 /= 4*sum(az,1)+1)) call abort
contains
elemental function eid (x)
integer, intent(in) :: x
end function eid
function neid2 (x)
integer, intent(in) :: x(:,:)
integer :: neid2(size(x,1),size(x,2))
neid2 = x
end function neid2
function neid3 (x)
integer, intent(in) :: x(:,:,:)
integer :: neid3(size(x,1),size(x,2),size(x,3))
end function neid3
elemental subroutine set (o, i)
integer, intent(in) :: i
integer, intent(out) :: o
end subroutine set
elemental subroutine tes (i, o)
integer, intent(in) :: i
integer, intent(out) :: o
end subroutine tes
end
! { dg-final { cleanup-tree-dump "vect" } }
| gpl-2.0 |
PeyloW/gcc-4.6.4 | gcc/testsuite/gfortran.dg/allocate_alloc_opt_1.f90 | 29 | 1204 | ! { dg-do compile }
program a
implicit none
real x
integer j, k, n(4)
character(len=70) err
character(len=70), allocatable :: error(:)
integer, allocatable :: i(:)
type b
integer, allocatable :: c(:), d(:)
end type b
type(b) e, f(3)
allocate(i(2), stat=x) ! { dg-error "must be a scalar INTEGER" }
allocate(i(2), stat=j, stat=k) ! { dg-error "Redundant STAT" }
allocate(i(2))
allocate(i(2))) ! { dg-error "Syntax error in ALLOCATE" }
allocate(i(2), errmsg=err, errmsg=err) ! { dg-error "Redundant ERRMSG" }
allocate(i(2), errmsg=err) ! { dg-warning "useless without a STAT" }
allocate(i(2), stat=j, errmsg=x) ! { dg-error "must be a scalar CHARACTER" }
allocate(err) ! { dg-error "nonprocedure pointer or an allocatable" }
allocate(error(2),stat=j,errmsg=error(1)) ! { dg-error "shall not be ALLOCATEd within" }
allocate(i(2), stat = i(1)) ! { dg-error "shall not be ALLOCATEd within" }
allocate(n) ! { dg-error "must be ALLOCATABLE or a POINTER" }
allocate(i(2), i(2)) ! { dg-error "Allocate-object at" }
! These should not fail the check for duplicate alloc-objects.
allocate(f(1)%c(2), f(2)%d(2))
allocate(e%c(2), e%d(2))
end program a
| gpl-2.0 |
anlongfei/gcc-4.8.4 | gcc/testsuite/gfortran.dg/argument_checking_13.f90 | 163 | 3013 | ! { dg-do compile }
!
! PR fortran/34796
!
! Argument checks:
! - elements of deferred-shape arrays (= non-dummies) are allowed
! as the memory is contiguous
! - while assumed-shape arrays (= dummy arguments) and pointers are
! not (strides can make them non-contiguous)
! and
! - if the memory is non-contigous, character arguments have as
! storage size only the size of the element itself, check for
! too short actual arguments.
!
subroutine test1(assumed_sh_dummy, pointer_dummy)
implicit none
interface
subroutine rlv1(y)
real :: y(3)
end subroutine rlv1
end interface
real :: assumed_sh_dummy(:,:,:)
real, pointer :: pointer_dummy(:,:,:)
real, allocatable :: deferred(:,:,:)
real, pointer :: ptr(:,:,:)
call rlv1(deferred(1,1,1)) ! valid since contiguous
call rlv1(ptr(1,1,1)) ! { dg-error "Element of assumed-shaped or pointer array" }
call rlv1(assumed_sh_dummy(1,1,1)) ! { dg-error "Element of assumed-shaped or pointer array" }
call rlv1(pointer_dummy(1,1,1)) ! { dg-error "Element of assumed-shaped or pointer array" }
end
subroutine test2(assumed_sh_dummy, pointer_dummy)
implicit none
interface
subroutine rlv2(y)
character :: y(3)
end subroutine rlv2
end interface
character(3) :: assumed_sh_dummy(:,:,:)
character(3), pointer :: pointer_dummy(:,:,:)
character(3), allocatable :: deferred(:,:,:)
character(3), pointer :: ptr(:,:,:)
call rlv2(deferred(1,1,1)) ! Valid since contiguous
call rlv2(ptr(1,1,1)) ! Valid F2003
call rlv2(assumed_sh_dummy(1,1,1)) ! Valid F2003
call rlv2(pointer_dummy(1,1,1)) ! Valid F2003
! The following is kind of ok: The memory access it valid
! We warn nonetheless as the result is not what is intented
! and also formally wrong.
! Using (1:string_length) would be ok.
call rlv2(ptr(1,1,1)(1:1)) ! { dg-warning "contains too few elements" }
call rlv2(assumed_sh_dummy(1,1,1)(1:2)) ! { dg-warning "contains too few elements" }
call rlv2(pointer_dummy(1,1,1)(1:3)) ! Valid F2003
end
subroutine test3(assumed_sh_dummy, pointer_dummy)
implicit none
interface
subroutine rlv3(y)
character :: y(3)
end subroutine rlv3
end interface
character(2) :: assumed_sh_dummy(:,:,:)
character(2), pointer :: pointer_dummy(:,:,:)
character(2), allocatable :: deferred(:,:,:)
character(2), pointer :: ptr(:,:,:)
call rlv3(deferred(1,1,1)) ! Valid since contiguous
call rlv3(ptr(1,1,1)) ! { dg-warning "contains too few elements" }
call rlv3(assumed_sh_dummy(1,1,1)) ! { dg-warning "contains too few elements" }
call rlv3(pointer_dummy(1,1,1)) ! { dg-warning "contains too few elements" }
call rlv3(deferred(1,1,1)(1:2)) ! Valid since contiguous
call rlv3(ptr(1,1,1)(1:2)) ! { dg-warning "contains too few elements" }
call rlv3(assumed_sh_dummy(1,1,1)(1:2)) ! { dg-warning "contains too few elements" }
call rlv3(pointer_dummy(1,1,1)(1:2)) ! { dg-warning "contains too few elements" }
end
| gpl-2.0 |
PeyloW/gcc-4.6.4 | gcc/testsuite/gfortran.dg/pr44691.f | 91 | 1409 | C PR rtl-optimization/44691
C { dg-do compile { target powerpc*-*-* ia64-*-* x86_64-*-* } }
C { dg-options "-O2 -fselective-scheduling2" }
SUBROUTINE ORIEN(IW,NATOT,NTOTORB,NATORB,P,T)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION NATORB(NATOT),P(NTOTORB*(NTOTORB+1)/2)
DIMENSION T(NTOTORB,NTOTORB)
DO 9000 IATOM=1,NATOT
ILAST = NTOTORB
IF (IATOM.NE.NATOT) ILAST=NATORB(IATOM+1)-1
DO 8000 IAOI=NATORB(IATOM),ILAST
DO 7000 IAOJ = IAOI+1,ILAST
R2 = 0.0D+00
R3 = 0.0D+00
DO 6000 INOTA=1,NATOT
DO 5000 IK=NATORB(INOTA),NTOTORB
IMAI=MAX(IK,IAOI)
IMII=MIN(IK,IAOI)
IMAJ=MAX(IK,IAOJ)
IMIJ=MIN(IK,IAOJ)
IKI=(IMAI*(IMAI-1))/2 + IMII
IKJ=(IMAJ*(IMAJ-1))/2 + IMIJ
PIKI=P(IKI)
PIKJ=P(IKJ)
R2 = R2 + (PIKI**4)-6*(PIKI*PIKI*PIKJ*PIKJ)+(PIKJ)
5000 CONTINUE
6000 CONTINUE
R2 = (R2/4.0D+00)
Q = SQRT(R2*R2 + R3*R3)
IF (Q.LT.1.0D-08) GO TO 7000
A = COS(THETA)
B = -SIN(THETA)
CALL ROT1INT(NTOTORB,IAOI,IAOJ,A,B,P)
7000 CONTINUE
8000 CONTINUE
9000 CONTINUE
RETURN
END
| gpl-2.0 |
anlongfei/gcc-4.8.4 | libgfortran/generated/_abs_c10.F90 | 26 | 1481 | ! Copyright (C) 2002-2013 Free Software Foundation, Inc.
! Contributed by Paul Brook <paul@nowt.org>
!
!This file is part of the GNU Fortran 95 runtime library (libgfortran).
!
!GNU libgfortran is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public
!License as published by the Free Software Foundation; either
!version 3 of the License, or (at your option) any later version.
!GNU libgfortran is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!
!Under Section 7 of GPL version 3, you are granted additional
!permissions described in the GCC Runtime Library Exception, version
!3.1, as published by the Free Software Foundation.
!
!You should have received a copy of the GNU General Public License and
!a copy of the GCC Runtime Library Exception along with this program;
!see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
!<http://www.gnu.org/licenses/>.
!
!This file is machine generated.
#include "config.h"
#include "kinds.inc"
#include "c99_protos.inc"
#if defined (HAVE_GFC_COMPLEX_10)
#ifdef HAVE_CABSL
elemental function _gfortran_specific__abs_c10 (parm)
complex (kind=10), intent (in) :: parm
real (kind=10) :: _gfortran_specific__abs_c10
_gfortran_specific__abs_c10 = abs (parm)
end function
#endif
#endif
| gpl-2.0 |
PeyloW/gcc-4.6.4 | gcc/testsuite/gfortran.dg/g77/19981216-0.f | 185 | 3346 | c { dg-do compile }
c { dg-options "-std=legacy" }
c
* Resent-From: Craig Burley <burley@gnu.org>
* Resent-To: craig@jcb-sc.com
* X-Delivered: at request of burley on mescaline.gnu.org
* Date: Wed, 16 Dec 1998 18:31:24 +0100
* From: Dieter Stueken <stueken@conterra.de>
* Organization: con terra GmbH
* To: fortran@gnu.org
* Subject: possible bug
* Content-Type: text/plain; charset=iso-8859-1
* X-Mime-Autoconverted: from 8bit to quoted-printable by mescaline.gnu.org id KAA09085
* X-UIDL: 72293bf7f9fac8378ec7feca2bccbce2
*
* Hi,
*
* I'm about to compile a very old, very ugly Fortran program.
* For one part I got:
*
* f77: Internal compiler error: program f771 got fatal signal 6
*
* instead of any detailed error message. I was able to break down the
* problem to the following source fragment:
*
* -------------------------------------------
PROGRAM WAP
integer(kind=8) ios
character*80 name
name = 'blah'
open(unit=8,status='unknown',file=name,form='formatted',
F iostat=ios)
END
* -------------------------------------------
*
* The problem seems to be caused by the "integer(kind=2) ios" declaration.
* So far I solved it by simply using a plain integer instead.
*
* I'm running gcc on a Linux system compiled/installed
* with no special options:
*
* -> g77 -v
* g77 version 0.5.23
* Driving: g77 -v -c -xf77-version /dev/null -xnone
* Reading specs from /usr/lib/gcc-lib/i686-pc-linux-gnulibc1/2.8.1/specs
* gcc version 2.8.1
* /usr/lib/gcc-lib/i686-pc-linux-gnulibc1/2.8.1/cpp -lang-c -v -undef
* -D__GNUC__=2 -D__GNUC_MINOR__=8 -D__ELF__ -D__unix__ -D__linux__
* -D__unix -D__linux -Asystem(posix) -D_LANGUAGE_FORTRAN -traditional
* -Di386 -Di686 -Asystem(unix) -Acpu(i386) -Amachine(i386) -D__i386__
* -D__i686__ -Asystem(unix) -Acpu(i386) -Amachine(i386) /dev/null
* /dev/null
* GNU CPP version 2.8.1 (i386 GNU/Linux with ELF)
* #include "..." search starts here:
* #include <...> search starts here:
* /usr/local/include
* /usr/i686-pc-linux-gnulibc1/include
* /usr/lib/gcc-lib/i686-pc-linux-gnulibc1/2.8.1/include
* /usr/include
* End of search list.
* /usr/lib/gcc-lib/i686-pc-linux-gnulibc1/2.8.1/f771 -fnull-version
* -quiet -dumpbase g77-version.f -version -fversion -o /tmp/cca24911.s
* /dev/null
* GNU F77 version 2.8.1 (i686-pc-linux-gnulibc1) compiled by GNU C version
* 2.8.1.
* GNU Fortran Front End version 0.5.23
* as -V -Qy -o /tmp/cca24911.o /tmp/cca24911.s
* GNU assembler version 2.8.1 (i486-linux), using BFD version 2.8.1
* ld -m elf_i386 -dynamic-linker /lib/ld-linux.so.1 -o /tmp/cca24911
* /tmp/cca24911.o /usr/lib/crt1.o /usr/lib/crti.o
* /usr/lib/gcc-lib/i686-pc-linux-gnulibc1/2.8.1/crtbegin.o
* -L/usr/lib/gcc-lib/i686-pc-linux-gnulibc1/2.8.1 -L/usr -lg2c -lm -lgcc
* -lc -lgcc /usr/lib/gcc-lib/i686-pc-linux-gnulibc1/2.8.1/crtend.o
* /usr/lib/crtn.o
* /tmp/cca24911
* __G77_LIBF77_VERSION__: 0.5.23
* @(#)LIBF77 VERSION 19970919
* __G77_LIBI77_VERSION__: 0.5.23
* @(#) LIBI77 VERSION pjw,dmg-mods 19980405
* __G77_LIBU77_VERSION__: 0.5.23
* @(#) LIBU77 VERSION 19970919
*
*
* Regards, Dieter.
* --
* Dieter Stüken, con terra GmbH, Münster
* stueken@conterra.de stueken@qgp.uni-muenster.de
* http://www.conterra.de/ http://qgp.uni-muenster.de/~stueken
* (0)251-980-2027 (0)251-83-334974
| gpl-2.0 |
CFDEMproject/LAMMPS | tools/reax/bondConnectCheck.f90 | 44 | 7808 | !# DEC.9, 2010
!# HLL
!# NCSU
!#
!# This is a program to read the output from 'fix reax/bond', TPRD, Lammps
!# The output is saved into file "bonds.reax", where each image is divided
!# into three parts:
!#
!# (1) Head, 7 Lines;
!# (2) Body, No._of_atom Lines;
!# (3) Tail, 1 Line
!#
!# The total number of images is related with the output frequence and number of iterations.
!# In this case, it is "number of iteration+1".
!#
!# Each line in Body part is made up of the following parameters:
!# id, type, nb, id_1, id_2, ... id_nb, mol, bo_1, bo_2, ... bo_nb, abo, nlp, q
!# abo = atomic bond order
!# nlp = number of lone pairs
!# q = atomic charge
!#
!# PLEASE DOUBLE CHECK YOUR OWN LAMMPS INPUT SCRIPT & OUTPUT AND MAKE CORRESPONDING CHSNGES
program main
implicit none
integer I, J, K, L
integer image, natom
integer headline, tailline
integer id, atype, nb, bd1, bd2, bd3, bd4, mol
double precision bo1, bo2, bo3, bo4, abo, nlp, q
open (unit=10, file='bonds.reax')
open (unit=20, file='N129.txt', status='unknown')
open (unit=21, file='N133.txt', status='unknown')
open (unit=22, file='N137.txt', status='unknown')
open (unit=23, file='N141.txt', status='unknown')
open (unit=24, file='N145.txt', status='unknown')
open (unit=25, file='N149.txt', status='unknown')
open (unit=26, file='N153.txt', status='unknown')
open (unit=27, file='N157.txt', status='unknown')
open (unit=30, file='reactionRecord.txt', status='unknown')
!# Make changes accordingly.
image = 1
headline = 7
tailline = 1
natom = 384
do I = 1, image+1
! Skip the head part
do J = 1, headline
read(10,*)
end do
! Each image has 'natom' lines
do K = 1, natom
! read in the first three number each line to determine:
! (1) what type of atom it is, atype
! the correspondence in Lammps: 1-C, 2-H, 3-O, 4-N, 5-S
! (2) how many bonds it has, nb
! this 'nb' determines the following bond_link information & bond_order paramaters of the same line
read(10,*) id, atype, nb
! TEST
! write(*,*) id, atype, nb
if (atype .eq. 4) then
backspace 10
! Should have some easier way to replace this "IF", I am just toooo lazy.
! Thanks to the fact that the maximum number of bonds is 4. ^-^
!??? is it possible that nb = 0 ??? KEEP THAT IN MIND.
if (nb.eq.0) then
read(10,*) id, atype, nb, mol, abo, nlp, q
if (id .eq. 129) then
write(20, 200) id, atype, nb, mol, abo, nlp, q
elseif (id .eq. 133) then
write(21, 200) id, atype, nb, mol, abo, nlp, q
elseif (id .eq. 137) then
write(22, 200) id, atype, nb, mol, abo, nlp, q
elseif (id .eq. 141) then
write(23, 200) id, atype, nb, mol, abo, nlp, q
elseif (id .eq. 145) then
write(24, 200) id, atype, nb, mol, abo, nlp, q
elseif (id .eq. 149) then
write(25, 200) id, atype, nb, mol, abo, nlp, q
elseif (id .eq. 153) then
write(26, 200) id, atype, nb, mol, abo, nlp, q
elseif (id .eq. 157) then
write(27, 200) id, atype, nb, mol, abo, nlp, q
200 format(4I4, 3f14.3)
endif
! If bd .ne. 3, it measn reaction is happening to Nitrogen atom.
write (30, 300) I, id, atype, nb, mol, abo, nlp, q
300 format(5I4, 3f14.3)
elseif (nb.eq.1) then
read(10,*) id, atype, nb, bd1, mol, bo1, abo, nlp, q
if (id .eq. 129) then
write(20, 201) id, atype, nb, bd1, mol, bo1, abo, nlp, q
elseif (id .eq. 133) then
write(21, 201) id, atype, nb, bd1, mol, bo1, abo, nlp, q
elseif (id .eq. 137) then
write(22, 201) id, atype, nb, bd1, mol, bo1, abo, nlp, q
elseif (id .eq. 141) then
write(23, 201) id, atype, nb, bd1, mol, bo1, abo, nlp, q
elseif (id .eq. 145) then
write(24, 201) id, atype, nb, bd1, mol, bo1, abo, nlp, q
elseif (id .eq. 149) then
write(25, 201) id, atype, nb, bd1, mol, bo1, abo, nlp, q
elseif (id .eq. 153) then
write(26, 201) id, atype, nb, bd1, mol, bo1, abo, nlp, q
elseif (id .eq. 157) then
write(27, 201) id, atype, nb, bd1, mol, bo1, abo, nlp, q
201 format(5I4, 4f14.3)
endif
! If bd .ne. 3, it measn reaction is happening to Nitrogen atom.
write (30, 301) I, id, atype, nb, bd1, mol, bo1, abo, nlp, q
301 format(6I4, 4f14.3)
elseif (nb.eq.2) then
read(10,*) id, atype, nb, bd1, bd2, mol, bo1, bo2, abo, nlp, q
if (id .eq. 129) then
write(20, 202) id, atype, nb, bd1, bd2, mol, bo1, bo2, abo, nlp, q
elseif (id .eq. 133) then
write(21, 202) id, atype, nb, bd1, bd2, mol, bo1, bo2, abo, nlp, q
elseif (id .eq. 137) then
write(22, 202) id, atype, nb, bd1, bd2, mol, bo1, bo2, abo, nlp, q
elseif (id .eq. 141) then
write(23, 202) id, atype, nb, bd1, bd2, mol, bo1, bo2, abo, nlp, q
elseif (id .eq. 145) then
write(24, 202) id, atype, nb, bd1, bd2, mol, bo1, bo2, abo, nlp, q
elseif (id .eq. 149) then
write(25, 202) id, atype, nb, bd1, bd2, mol, bo1, bo2, abo, nlp, q
elseif (id .eq. 153) then
write(26, 202) id, atype, nb, bd1, bd2, mol, bo1, bo2, abo, nlp, q
elseif (id .eq. 157) then
write(27, 202) id, atype, nb, bd1, bd2, mol, bo1, bo2, abo, nlp, q
202 format(6I4, 5f14.3)
endif
! If bd .ne. 3, it measn reaction is happening to Nitrogen atom.
write (30, 302) I, id, atype, nb, bd1, bd2, mol, bo1, bo2, abo, nlp, q
302 format(7I4, 5f14.3)
elseif (nb.eq.3) then
read(10,*) id, atype, nb, bd1, bd2, bd3, mol, bo1, bo2, bo3, abo, nlp, q
if (id .eq. 129) then
write(20, 203) id, atype, nb, bd1, bd2, bd3, mol, bo1, bo2, bo3, abo, nlp, q
elseif (id .eq. 133) then
write(21, 203) id, atype, nb, bd1, bd2, bd3, mol, bo1, bo2, bo3, abo, nlp, q
elseif (id .eq. 137) then
write(22, 203) id, atype, nb, bd1, bd2, bd3, mol, bo1, bo2, bo3, abo, nlp, q
elseif (id .eq. 141) then
write(23, 203) id, atype, nb, bd1, bd2, bd3, mol, bo1, bo2, bo3, abo, nlp, q
elseif (id .eq. 145) then
write(24, 203) id, atype, nb, bd1, bd2, bd3, mol, bo1, bo2, bo3, abo, nlp, q
elseif (id .eq. 149) then
write(25, 203) id, atype, nb, bd1, bd2, bd3, mol, bo1, bo2, bo3, abo, nlp, q
elseif (id .eq. 153) then
write(26, 203) id, atype, nb, bd1, bd2, bd3, mol, bo1, bo2, bd3, abo, nlp, q
elseif (id .eq. 157) then
write(27, 203) id, atype, nb, bd1, bd2, bd3, mol, bo1, bo2, bo3, abo, nlp, q
203 format(7I4, 6f14.3)
endif
elseif (nb.eq.4) then
read(10,*) id, atype, nb, bd1, bd2, bd3, bd4, mol, bo1, bo2, bo3, bo4, abo, nlp, q
if (id .eq. 129) then
write(20, 204) id, atype, nb, bd1, bd2, bd3, bd4, mol, bo1, bo2, bo3, bo4, abo, nlp, q
elseif (id .eq. 133) then
write(21, 204) id, atype, nb, bd1, bd2, bd3, bd4, mol, bo1, bo2, bo3, bo4, abo, nlp, q
elseif (id .eq. 137) then
write(22, 204) id, atype, nb, bd1, bd2, bd3, bd4, mol, bo1, bo2, bo3, bo4, abo, nlp, q
elseif (id .eq. 141) then
write(23, 204) id, atype, nb, bd1, bd2, bd3, bd4, mol, bo1, bo2, bo3, bo4, abo, nlp, q
elseif (id .eq. 145) then
write(24, 204) id, atype, nb, bd1, bd2, bd3, bd4, mol, bo1, bo2, bo3, bo4, abo, nlp, q
elseif (id .eq. 149) then
write(25, 204) id, atype, nb, bd1, bd2, bd3, bd4, mol, bo1, bo2, bo3, bo4, abo, nlp, q
elseif (id .eq. 153) then
write(26, 204) id, atype, nb, bd1, bd2, bd3, bd4, mol, bo1, bo2, bd3, bo4, abo, nlp, q
elseif (id .eq. 157) then
write(27, 204) id, atype, nb, bd1, bd2, bd3, bd4, mol, bo1, bo2, bo3, bo4, abo, nlp, q
204 format(8I4, 7f14.3)
endif
! If bd .ne. 3, it measn reaction is happening to Nitrogen atom.
write (30, 304) I, id, atype, nb, bd1, bd2, bd3, bd4, mol, bo1, bo2, bo3, bo4, abo, nlp, q
304 format(9I4, 7f14.3)
! Corresponding to "if (nb.eq.0) then "
endif
! Corresponding to "if (atype .eq. 4) then"
endif
enddo
do L =1,tailline
read(10,*)
enddo
enddo
end program main
| gpl-2.0 |
PeyloW/gcc-4.6.4 | gcc/testsuite/gfortran.dg/allocatable_dummy_1.f90 | 188 | 1177 | ! { dg-do run }
! Test procedures with allocatable dummy arguments
program alloc_dummy
implicit none
integer, allocatable :: a(:)
integer, allocatable :: b(:)
call init(a)
if (.NOT.allocated(a)) call abort()
if (.NOT.all(a == [ 1, 2, 3 ])) call abort()
call useit(a, b)
if (.NOT.all(b == [ 1, 2, 3 ])) call abort()
if (.NOT.all(whatever(a) == [ 1, 2, 3 ])) call abort()
call kill(a)
if (allocated(a)) call abort()
call kill(b)
if (allocated(b)) call abort()
contains
subroutine init(x)
integer, allocatable, intent(out) :: x(:)
allocate(x(3))
x = [ 1, 2, 3 ]
end subroutine init
subroutine useit(x, y)
integer, allocatable, intent(in) :: x(:)
integer, allocatable, intent(out) :: y(:)
if (allocated(y)) call abort()
call init(y)
y = x
end subroutine useit
function whatever(x)
integer, allocatable :: x(:)
integer :: whatever(size(x))
whatever = x
end function whatever
subroutine kill(x)
integer, allocatable, intent(out) :: x(:)
end subroutine kill
end program alloc_dummy
| gpl-2.0 |
kleskjr/scipy | scipy/fftpack/src/fftpack/rffti1.f | 98 | 1357 | SUBROUTINE RFFTI1 (N,WA,IFAC)
DIMENSION WA(*) ,IFAC(*) ,NTRYH(4)
DATA NTRYH(1),NTRYH(2),NTRYH(3),NTRYH(4)/4,2,3,5/
NL = N
NF = 0
J = 0
101 J = J+1
IF (J.le.4) GO TO 102
GO TO 103
102 NTRY = NTRYH(J)
GO TO 104
103 NTRY = NTRYH(4)+2*(J-4)
104 NQ = NL/NTRY
NR = NL-NTRY*NQ
IF (NR.eq.0) GO TO 105
GO TO 101
105 NF = NF+1
IFAC(NF+2) = NTRY
NL = NQ
IF (NTRY .NE. 2) GO TO 107
IF (NF .EQ. 1) GO TO 107
DO 106 I=2,NF
IB = NF-I+2
IFAC(IB+2) = IFAC(IB+1)
106 CONTINUE
IFAC(3) = 2
107 IF (NL .NE. 1) GO TO 104
IFAC(1) = N
IFAC(2) = NF
TPI = 6.28318530717959
ARGH = TPI/FLOAT(N)
IS = 0
NFM1 = NF-1
L1 = 1
IF (NFM1 .EQ. 0) RETURN
DO 110 K1=1,NFM1
IP = IFAC(K1+2)
LD = 0
L2 = L1*IP
IDO = N/L2
IPM = IP-1
DO 109 J=1,IPM
LD = LD+L1
I = IS
ARGLD = FLOAT(LD)*ARGH
FI = 0.
DO 108 II=3,IDO,2
I = I+2
FI = FI+1.
ARG = FI*ARGLD
WA(I-1) = COS(ARG)
WA(I) = SIN(ARG)
108 CONTINUE
IS = IS+IDO
109 CONTINUE
L1 = L2
110 CONTINUE
RETURN
END
| bsd-3-clause |
anlongfei/gcc-4.8.4 | gcc/testsuite/gfortran.dg/defined_assignment_1.f90 | 133 | 1762 | ! { dg-do run }
! Test the fix for PR46897.
!
! Contributed by Rouson Damian <rouson@sandia.gov>
!
module m0
implicit none
type component
integer :: i = 0
contains
procedure :: assign0
generic :: assignment(=)=>assign0
end type
type parent
type(component) :: foo
end type
type, extends(parent) :: child
integer :: j
end type
contains
subroutine assign0(lhs,rhs)
class(component), intent(out) :: lhs
class(component), intent(in) :: rhs
lhs%i = 20
end subroutine
type(child) function new_child()
end function
end module
module m1
implicit none
type component1
integer :: i = 1
contains
procedure :: assign1
generic :: assignment(=)=>assign1
end type
type t
type(component1) :: foo
end type
contains
subroutine assign1(lhs,rhs)
class(component1), intent(out) :: lhs
class(component1), intent(in) :: rhs
lhs%i = 21
end subroutine
end module
module m2
implicit none
type component2
integer :: i = 2
end type
interface assignment(=)
module procedure assign2
end interface
type t2
type(component2) :: foo
end type
contains
subroutine assign2(lhs,rhs)
type(component2), intent(out) :: lhs
type(component2), intent(in) :: rhs
lhs%i = 22
end subroutine
end module
program main
use m0
use m1
use m2
implicit none
type(child) :: infant0
type(t) :: infant1, newchild1
type(t2) :: infant2, newchild2
! Test the reported problem.
infant0 = new_child()
if (infant0%parent%foo%i .ne. 20) call abort
! Test the case of comment #1 of the PR.
infant1 = newchild1
if (infant1%foo%i .ne. 21) call abort
! Test the case of comment #2 of the PR.
infant2 = newchild2
if (infant2%foo%i .ne. 2) call abort
end
| gpl-2.0 |
Alexpux/GCC | gcc/testsuite/gfortran.dg/interface_16.f90 | 155 | 3123 | ! { dg-do compile }
! This tests the fix for PR32634, in which the generic interface
! in foo_pr_mod was given the original rather than the local name.
! This meant that the original name had to be used in the calll
! in foo_sub.
!
! Contributed by Salvatore Filippone <salvatore.filippone@uniroma2.it>
module foo_base_mod
type foo_dmt
real(kind(1.d0)), allocatable :: rv(:)
integer, allocatable :: iv1(:), iv2(:)
end type foo_dmt
type foo_zmt
complex(kind(1.d0)), allocatable :: rv(:)
integer, allocatable :: iv1(:), iv2(:)
end type foo_zmt
type foo_cdt
integer, allocatable :: md(:)
integer, allocatable :: hi(:), ei(:)
end type foo_cdt
end module foo_base_mod
module bar_prt
use foo_base_mod, only : foo_dmt, foo_zmt, foo_cdt
type bar_dbprt
type(foo_dmt), allocatable :: av(:)
real(kind(1.d0)), allocatable :: d(:)
type(foo_cdt) :: cd
end type bar_dbprt
type bar_dprt
type(bar_dbprt), allocatable :: bpv(:)
end type bar_dprt
type bar_zbprt
type(foo_zmt), allocatable :: av(:)
complex(kind(1.d0)), allocatable :: d(:)
type(foo_cdt) :: cd
end type bar_zbprt
type bar_zprt
type(bar_zbprt), allocatable :: bpv(:)
end type bar_zprt
end module bar_prt
module bar_pr_mod
use bar_prt
interface bar_pwrk
subroutine bar_dppwrk(pr,x,y,cd,info,trans,work)
use foo_base_mod
use bar_prt
type(foo_cdt),intent(in) :: cd
type(bar_dprt), intent(in) :: pr
real(kind(0.d0)),intent(inout) :: x(:), y(:)
integer, intent(out) :: info
character(len=1), optional :: trans
real(kind(0.d0)),intent(inout), optional, target :: work(:)
end subroutine bar_dppwrk
subroutine bar_zppwrk(pr,x,y,cd,info,trans,work)
use foo_base_mod
use bar_prt
type(foo_cdt),intent(in) :: cd
type(bar_zprt), intent(in) :: pr
complex(kind(0.d0)),intent(inout) :: x(:), y(:)
integer, intent(out) :: info
character(len=1), optional :: trans
complex(kind(0.d0)),intent(inout), optional, target :: work(:)
end subroutine bar_zppwrk
end interface
end module bar_pr_mod
module foo_pr_mod
use bar_prt, &
& foo_dbprt => bar_dbprt,&
& foo_zbprt => bar_zbprt,&
& foo_dprt => bar_dprt,&
& foo_zprt => bar_zprt
use bar_pr_mod, &
& foo_pwrk => bar_pwrk
end module foo_pr_mod
Subroutine foo_sub(a,pr,b,x,eps,cd,info)
use foo_base_mod
use foo_pr_mod
Implicit None
!!$ parameters
Type(foo_dmt), Intent(in) :: a
Type(foo_dprt), Intent(in) :: pr
Type(foo_cdt), Intent(in) :: cd
Real(Kind(1.d0)), Intent(in) :: b(:)
Real(Kind(1.d0)), Intent(inout) :: x(:)
Real(Kind(1.d0)), Intent(in) :: eps
integer, intent(out) :: info
!!$ Local data
Real(Kind(1.d0)), allocatable, target :: aux(:),wwrk(:,:)
Real(Kind(1.d0)), allocatable :: p(:), f(:)
info = 0
Call foo_pwrk(pr,p,f,cd,info,work=aux) ! This worked if bar_pwrk was called!
return
End Subroutine foo_sub
| gpl-2.0 |
crtc-demos/gcc-ia16 | gcc/testsuite/gfortran.dg/gomp/omp_do1.f90 | 176 | 1682 | ! { dg-do compile }
! { dg-options "-fopenmp -std=gnu" }
subroutine foo
integer :: i, j
integer, dimension (30) :: a
double precision :: d
i = 0
!$omp do private (i)
do 100 ! { dg-error "cannot be a DO WHILE or DO without loop control" }
if (i .gt. 0) exit ! { dg-error "EXIT statement" }
100 i = i + 1
i = 0
!$omp do private (i)
do ! { dg-error "cannot be a DO WHILE or DO without loop control" }
if (i .gt. 0) exit ! { dg-error "EXIT statement" }
i = i + 1
end do
i = 0
!$omp do private (i)
do 200 while (i .lt. 4) ! { dg-error "cannot be a DO WHILE or DO without loop control" }
200 i = i + 1
!$omp do private (i)
do while (i .lt. 8) ! { dg-error "cannot be a DO WHILE or DO without loop control" }
i = i + 1
end do
!$omp do
do 300 d = 1, 30, 6 ! { dg-warning "Deleted feature: Loop variable" }
i = d
300 a(i) = 1
!$omp do
do d = 1, 30, 5 ! { dg-warning "Deleted feature: Loop variable" }
i = d
a(i) = 2
end do
!$omp do
do i = 1, 30
if (i .eq. 16) exit ! { dg-error "EXIT statement" }
end do
!$omp do
outer: do i = 1, 30
do j = 5, 10
if (i .eq. 6 .and. j .eq. 7) exit outer ! { dg-error "EXIT statement" }
end do
end do outer
last: do i = 1, 30
!$omp parallel
if (i .eq. 21) exit last ! { dg-error "leaving OpenMP structured block" }
!$omp end parallel
end do last
!$omp parallel do shared (i)
do i = 1, 30, 2 ! { dg-error "iteration variable present on clause" }
a(i) = 5
end do
!$omp end parallel do
end subroutine
! { dg-error "iteration variable must be of type integer" "" { target *-*-* } 27 }
! { dg-error "iteration variable must be of type integer" "" { target *-*-* } 31 }
| gpl-2.0 |
crtc-demos/gcc-ia16 | gcc/testsuite/gfortran.dg/pointer_intent_3.f90 | 162 | 1226 | ! { dg-do compile }
! { dg-options "-std=f2003 -fall-intrinsics" }
! { dg-shouldfail "Invalid code" }
!
! Pointer intent test
! PR fortran/29624
!
! Valid program
program test
implicit none
type myT
integer :: j = 5
integer, pointer :: jp => null()
end type myT
integer, pointer :: p
type(myT) :: t
call a(p)
call b(t)
contains
subroutine a(p)
integer, pointer,intent(in) :: p
p => null(p)! { dg-error "pointer association context" }
nullify(p) ! { dg-error "pointer association context" }
allocate(p) ! { dg-error "pointer association context" }
call c(p) ! { dg-error "pointer association context" }
deallocate(p) ! { dg-error "pointer association context" }
end subroutine
subroutine c(p)
integer, pointer, intent(inout) :: p
nullify(p)
end subroutine c
subroutine b(t)
type(myT),intent(in) :: t
t%jp = 5
t%jp => null(t%jp) ! { dg-error "pointer association context" }
nullify(t%jp) ! { dg-error "pointer association context" }
t%j = 7 ! { dg-error "variable definition context" }
allocate(t%jp) ! { dg-error "pointer association context" }
deallocate(t%jp) ! { dg-error "pointer association context" }
end subroutine b
end program
| gpl-2.0 |
crtc-demos/gcc-ia16 | libgfortran/generated/_dim_i16.F90 | 16 | 1467 | ! Copyright (C) 2002-2016 Free Software Foundation, Inc.
! Contributed by Paul Brook <paul@nowt.org>
!
!This file is part of the GNU Fortran 95 runtime library (libgfortran).
!
!GNU libgfortran is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public
!License as published by the Free Software Foundation; either
!version 3 of the License, or (at your option) any later version.
!GNU libgfortran is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!
!Under Section 7 of GPL version 3, you are granted additional
!permissions described in the GCC Runtime Library Exception, version
!3.1, as published by the Free Software Foundation.
!
!You should have received a copy of the GNU General Public License and
!a copy of the GCC Runtime Library Exception along with this program;
!see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
!<http://www.gnu.org/licenses/>.
!
!This file is machine generated.
#include "config.h"
#include "kinds.inc"
#include "c99_protos.inc"
#if defined (HAVE_GFC_INTEGER_16)
elemental function _gfortran_specific__dim_i16 (p1, p2)
integer (kind=16), intent (in) :: p1, p2
integer (kind=16) :: _gfortran_specific__dim_i16
_gfortran_specific__dim_i16 = dim (p1, p2)
end function
#endif
| gpl-2.0 |
Alexpux/GCC | gcc/testsuite/gfortran.dg/function_types_2.f90 | 155 | 1574 | ! { dg-do compile }
! Tests the fix for PR34431 in which function TYPEs that were
! USE associated would cause an error.
!
! Contributed by Tobias Burnus <burnus@gcc.gnu.org>
!
module m1
integer :: hh
type t
real :: r
end type t
end module m1
module m2
type t
integer :: k
end type t
end module m2
module m3
contains
type(t) function func()
use m2
func%k = 77
end function func
end module m3
type(t) function a()
use m1, only: hh
type t2
integer :: j
end type t2
type t
logical :: b
end type t
a%b = .true.
end function a
type(t) function b()
use m1, only: hh
use m2
use m3
b = func ()
b%k = 5
end function b
type(t) function c()
use m1, only: hh
type t2
integer :: j
end type t2
type t
logical :: b
end type t
c%b = .true.
end function c
program main
type t
integer :: m
end type t
contains
type(t) function a1()
use m1, only: hh
type t2
integer :: j
end type t2
type t
logical :: b
end type t
a1%b = .true.
end function a1
type(t) function b1()
use m1, only: hh
use m2, only: t
! NAG f95 believes that the host-associated type(t)
! should be used:
! b1%m = 5
! However, I (Tobias Burnus) believe that the use-associated one should
! be used:
b1%k = 5
end function b1
type(t) function c1()
use m1, only: hh
type t2
integer :: j
end type t2
type t
logical :: b
end type t
c1%b = .true.
end function c1
type(t) function d1()
d1%m = 55
end function d1
end program main
| gpl-2.0 |
crtc-demos/gcc-ia16 | libgfortran/generated/_acosh_r8.F90 | 16 | 1477 | ! Copyright (C) 2002-2016 Free Software Foundation, Inc.
! Contributed by Paul Brook <paul@nowt.org>
!
!This file is part of the GNU Fortran 95 runtime library (libgfortran).
!
!GNU libgfortran is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public
!License as published by the Free Software Foundation; either
!version 3 of the License, or (at your option) any later version.
!GNU libgfortran is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!
!Under Section 7 of GPL version 3, you are granted additional
!permissions described in the GCC Runtime Library Exception, version
!3.1, as published by the Free Software Foundation.
!
!You should have received a copy of the GNU General Public License and
!a copy of the GCC Runtime Library Exception along with this program;
!see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
!<http://www.gnu.org/licenses/>.
!
!This file is machine generated.
#include "config.h"
#include "kinds.inc"
#include "c99_protos.inc"
#if defined (HAVE_GFC_REAL_8)
#ifdef HAVE_ACOSH
elemental function _gfortran_specific__acosh_r8 (parm)
real (kind=8), intent (in) :: parm
real (kind=8) :: _gfortran_specific__acosh_r8
_gfortran_specific__acosh_r8 = acosh (parm)
end function
#endif
#endif
| gpl-2.0 |
ajjl/ITK | Modules/ThirdParty/VNL/src/vxl/v3p/netlib/eispack/rs.f | 41 | 1957 | subroutine rs(nm,n,a,w,matz,z,fv1,fv2,ierr)
c
integer n,nm,ierr,matz
double precision a(nm,n),w(n),z(nm,n),fv1(n),fv2(n)
c
c this subroutine calls the recommended sequence of
c subroutines from the eigensystem subroutine package (eispack)
c to find the eigenvalues and eigenvectors (if desired)
c of a real symmetric matrix.
c
c on input
c
c nm must be set to the row dimension of the two-dimensional
c array parameters as declared in the calling program
c dimension statement.
c
c n is the order of the matrix a.
c
c a contains the real symmetric matrix.
c
c matz is an integer variable set equal to zero if
c only eigenvalues are desired. otherwise it is set to
c any non-zero integer for both eigenvalues and eigenvectors.
c
c on output
c
c w contains the eigenvalues in ascending order.
c
c z contains the eigenvectors if matz is not zero.
c
c ierr is an integer output variable set equal to an error
c completion code described in the documentation for tqlrat
c and tql2. the normal completion code is zero.
c
c fv1 and fv2 are temporary storage arrays.
c
c questions and comments should be directed to burton s. garbow,
c mathematics and computer science div, argonne national laboratory
c
c this version dated august 1983.
c
c ------------------------------------------------------------------
c
if (n .le. nm) go to 10
ierr = 10 * n
go to 50
c
10 if (matz .ne. 0) go to 20
c .......... find eigenvalues only ..........
call tred1(nm,n,a,w,fv1,fv2)
* tqlrat encounters catastrophic underflow on the Vax
* call tqlrat(n,w,fv2,ierr)
call tql1(n,w,fv1,ierr)
go to 50
c .......... find both eigenvalues and eigenvectors ..........
20 call tred2(nm,n,a,w,fv1,z)
call tql2(nm,n,w,fv1,z,ierr)
50 return
end
| apache-2.0 |
crtc-demos/gcc-ia16 | gcc/testsuite/gfortran.dg/proc_decl_3.f90 | 193 | 1304 | ! { dg-do compile }
! Some tests for PROCEDURE declarations inside of interfaces.
! Contributed by Janus Weil <jaydub66@gmail.com>
module m
interface
subroutine a()
end subroutine a
end interface
procedure(c) :: f
interface bar
procedure a,d
end interface bar
interface foo
procedure c
end interface foo
abstract interface
procedure f ! { dg-error "must be in a generic interface" }
end interface
interface
function opfoo(a)
integer,intent(in) :: a
integer :: opfoo
end function opfoo
end interface
interface operator(.op.)
procedure opfoo
end interface
external ex ! { dg-error "has no explicit interface" }
procedure():: ip ! { dg-error "has no explicit interface" }
procedure(real):: pip ! { dg-error "has no explicit interface" }
interface nn1
procedure ex
procedure a, a ! { dg-error "already present in the interface" }
end interface
interface nn2
procedure ip
end interface
interface nn3
procedure pip
end interface
contains
subroutine d(x)
interface
subroutine x()
end subroutine x
end interface
interface gen
procedure x
end interface
end subroutine d
function c(x)
integer :: x
real :: c
c = 3.4*x
end function c
end module m
| gpl-2.0 |
crtc-demos/gcc-ia16 | libgfortran/generated/_sinh_r8.F90 | 16 | 1472 | ! Copyright (C) 2002-2016 Free Software Foundation, Inc.
! Contributed by Paul Brook <paul@nowt.org>
!
!This file is part of the GNU Fortran 95 runtime library (libgfortran).
!
!GNU libgfortran is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public
!License as published by the Free Software Foundation; either
!version 3 of the License, or (at your option) any later version.
!GNU libgfortran is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!
!Under Section 7 of GPL version 3, you are granted additional
!permissions described in the GCC Runtime Library Exception, version
!3.1, as published by the Free Software Foundation.
!
!You should have received a copy of the GNU General Public License and
!a copy of the GCC Runtime Library Exception along with this program;
!see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
!<http://www.gnu.org/licenses/>.
!
!This file is machine generated.
#include "config.h"
#include "kinds.inc"
#include "c99_protos.inc"
#if defined (HAVE_GFC_REAL_8)
#ifdef HAVE_SINH
elemental function _gfortran_specific__sinh_r8 (parm)
real (kind=8), intent (in) :: parm
real (kind=8) :: _gfortran_specific__sinh_r8
_gfortran_specific__sinh_r8 = sinh (parm)
end function
#endif
#endif
| gpl-2.0 |
NCAR/icar | src/utilities/assertions.f90 | 2 | 2085 | module assertions_mod
!! Summary: Utility for runtime checking of logical assertions.
!!
!! Compile with -DNO_ASSERTIONS to turn assertions off
!!
!! Use case 1
!! ----------
!! Pass the optional success argument & check for false return value as an indication of assertion failure:
!!
!! use assertions_mod, only : assert,assertions
!! if (assertions) call assert( 2 > 1, "always true inequality", success)
!! if (error_code/=0) call my_error_handler()
!!
!! Use case 2
!! ----------
!! Error-terminate if the assertion fails:
!!
!! use assertions_mod, only : assert,assertions
!! if (assertions) call assert( 2 > 1, "always true inequality")
!!
!! code contributed by Damian Rouson Sourcery Institute
!!
implicit none
private
public :: assert
public :: assertions
! Set the USE_ASSERTIONS constant below using the C preprocessor:
!
! gfortran -cpp -DUSE_ASSERTIONS=.false. -c assertions.f90
!
! or set the corresponding ASSERTIONS variable defined in the makefile
!
! make ASSERTIONS=on
!
! Conditioning assertion calls on this compile-time constant enables optimizing compilers
! to eliminate assertion calls during a dead-code removal phase of optimization.
logical, parameter :: assertions=USE_ASSERTIONS
contains
elemental impure subroutine assert(assertion,description,success)
use iso_fortran_env, only : error_unit
!! Report on the truth of an assertion or error-terminate on assertion failure
implicit none
logical, intent(in) :: assertion
!! Most assertions will be expressions, e.g., call assert( i>0, "positive i")
character(len=*), intent(in) :: description
!! Brief statement of what is being asserted
logical, intent(out), optional :: success
!! Optional assertion result
if (present(success)) success=assertion
if (.not.assertion) then
write(error_unit,*) 'Assertion "',description,'" failed on image ',this_image()
if (.not. present(success)) error stop
end if
end subroutine
end module
| mit |
crtc-demos/gcc-ia16 | gcc/testsuite/gfortran.dg/pr61335.f90 | 56 | 3700 | ! { dg-do run }
! { dg-require-visibility "" }
! { dg-additional-options "-fbounds-check" }
MODULE cp_units
INTEGER, PARAMETER :: default_string_length=80, dp=KIND(0.0D0)
LOGICAL, PRIVATE, PARAMETER :: debug_this_module=.TRUE.
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'cp_units'
INTEGER, SAVE, PRIVATE :: last_unit_id=0, last_unit_set_id=0
INTEGER, PARAMETER, PUBLIC :: cp_unit_max_kinds=8, cp_unit_basic_desc_length=15,&
cp_unit_desc_length=cp_unit_max_kinds*cp_unit_basic_desc_length, cp_ukind_max=9
CONTAINS
FUNCTION cp_to_string(i) RESULT(res)
INTEGER, INTENT(in) :: i
CHARACTER(len=6) :: res
INTEGER :: iostat
REAL(KIND=dp) :: tmp_r
IF (i>999999 .OR. i<-99999) THEN
tmp_r=i
WRITE (res,fmt='(es6.1)',iostat=iostat) tmp_r
ELSE
WRITE (res,fmt='(i6)',iostat=iostat) i
END IF
IF (iostat/=0) THEN
STOP 7
END IF
END FUNCTION cp_to_string
SUBROUTINE cp_unit_create(string)
CHARACTER(len=*), INTENT(in) :: string
CHARACTER(len=*), PARAMETER :: routineN = 'cp_unit_create', &
routineP = moduleN//':'//routineN
CHARACTER(default_string_length) :: desc
CHARACTER(LEN=40) :: formatstr
INTEGER :: i_high, i_low, i_unit, &
len_string, next_power
INTEGER, DIMENSION(cp_unit_max_kinds) :: kind_id, power, unit_id
LOGICAL :: failure
failure=.FALSE.
unit_id=0
kind_id=0
power=0
i_low=1
i_high=1
len_string=LEN(string)
i_unit=0
next_power=1
DO WHILE(i_low<len_string)
IF (string(i_low:i_low)/=' ') EXIT
i_low=i_low+1
END DO
i_high=i_low
DO WHILE(i_high<=len_string)
IF ( string(i_high:i_high)==' '.OR.string(i_high:i_high)=='^'.OR.&
string(i_high:i_high)=='*'.OR.string(i_high:i_high)=='/') EXIT
i_high=i_high+1
END DO
DO WHILE(.NOT.failure)
IF (i_high<=i_low.OR.i_low>len_string) EXIT
i_unit=i_unit+1
IF (i_unit>cp_unit_max_kinds) THEN
EXIT
END IF
power(i_unit)=next_power
! parse op
i_low=i_high
DO WHILE(i_low<=len_string)
IF (string(i_low:i_low)/=' ') EXIT
i_low=i_low+1
END DO
i_high=i_low
DO WHILE(i_high<=len_string)
IF ( string(i_high:i_high)==' '.OR.string(i_high:i_high)=='^'.OR.&
string(i_high:i_high)=='*'.OR.string(i_high:i_high)=='/') EXIT
i_high=i_high+1
END DO
IF (i_high<i_low.OR.i_low>len_string) EXIT
IF (i_high<=len_string) THEN
IF (string(i_low:i_high)=='^') THEN
i_low=i_high+1
DO WHILE(i_low<=len_string)
IF (string(i_low:i_low)/=' ') EXIT
i_low=i_low+1
END DO
i_high=i_low
DO WHILE(i_high<=len_string)
SELECT CASE(string(i_high:i_high))
CASE('+','-','0','1','2','3','4','5','6','7','8','9')
i_high=i_high+1
CASE default
EXIT
END SELECT
END DO
IF (i_high<=i_low.OR.i_low>len_string) THEN
write(6,*) "BUG : XXX"//string//"XXX integer expected"
STOP 1
EXIT
END IF
END IF
ENDIF
END DO
END SUBROUTINE cp_unit_create
END MODULE cp_units
USE cp_units
CALL cp_unit_create("fs^-1")
END
| gpl-2.0 |
tm1249wk/WASHLIGGGHTS-2.3.7 | lib/linalg/dlatrs.f | 7 | 21914 | SUBROUTINE DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
$ CNORM, INFO )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
CHARACTER DIAG, NORMIN, TRANS, UPLO
INTEGER INFO, LDA, N
DOUBLE PRECISION SCALE
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), CNORM( * ), X( * )
* ..
*
* Purpose
* =======
*
* DLATRS solves one of the triangular systems
*
* A *x = s*b or A'*x = s*b
*
* with scaling to prevent overflow. Here A is an upper or lower
* triangular matrix, A' denotes the transpose of A, x and b are
* n-element vectors, and s is a scaling factor, usually less than
* or equal to 1, chosen so that the components of x will be less than
* the overflow threshold. If the unscaled problem will not cause
* overflow, the Level 2 BLAS routine DTRSV is called. If the matrix A
* is singular (A(j,j) = 0 for some j), then s is set to 0 and a
* non-trivial solution to A*x = 0 is returned.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the matrix A is upper or lower triangular.
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* TRANS (input) CHARACTER*1
* Specifies the operation applied to A.
* = 'N': Solve A * x = s*b (No transpose)
* = 'T': Solve A'* x = s*b (Transpose)
* = 'C': Solve A'* x = s*b (Conjugate transpose = Transpose)
*
* DIAG (input) CHARACTER*1
* Specifies whether or not the matrix A is unit triangular.
* = 'N': Non-unit triangular
* = 'U': Unit triangular
*
* NORMIN (input) CHARACTER*1
* Specifies whether CNORM has been set or not.
* = 'Y': CNORM contains the column norms on entry
* = 'N': CNORM is not set on entry. On exit, the norms will
* be computed and stored in CNORM.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
* The triangular matrix A. If UPLO = 'U', the leading n by n
* upper triangular part of the array A contains the upper
* triangular matrix, and the strictly lower triangular part of
* A is not referenced. If UPLO = 'L', the leading n by n lower
* triangular part of the array A contains the lower triangular
* matrix, and the strictly upper triangular part of A is not
* referenced. If DIAG = 'U', the diagonal elements of A are
* also not referenced and are assumed to be 1.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max (1,N).
*
* X (input/output) DOUBLE PRECISION array, dimension (N)
* On entry, the right hand side b of the triangular system.
* On exit, X is overwritten by the solution vector x.
*
* SCALE (output) DOUBLE PRECISION
* The scaling factor s for the triangular system
* A * x = s*b or A'* x = s*b.
* If SCALE = 0, the matrix A is singular or badly scaled, and
* the vector x is an exact or approximate solution to A*x = 0.
*
* CNORM (input or output) DOUBLE PRECISION array, dimension (N)
*
* If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
* contains the norm of the off-diagonal part of the j-th column
* of A. If TRANS = 'N', CNORM(j) must be greater than or equal
* to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
* must be greater than or equal to the 1-norm.
*
* If NORMIN = 'N', CNORM is an output argument and CNORM(j)
* returns the 1-norm of the offdiagonal part of the j-th column
* of A.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -k, the k-th argument had an illegal value
*
* Further Details
* ======= =======
*
* A rough bound on x is computed; if that is less than overflow, DTRSV
* is called, otherwise, specific code is used which checks for possible
* overflow or divide-by-zero at every operation.
*
* A columnwise scheme is used for solving A*x = b. The basic algorithm
* if A is lower triangular is
*
* x[1:n] := b[1:n]
* for j = 1, ..., n
* x(j) := x(j) / A(j,j)
* x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
* end
*
* Define bounds on the components of x after j iterations of the loop:
* M(j) = bound on x[1:j]
* G(j) = bound on x[j+1:n]
* Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
*
* Then for iteration j+1 we have
* M(j+1) <= G(j) / | A(j+1,j+1) |
* G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
* <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
*
* where CNORM(j+1) is greater than or equal to the infinity-norm of
* column j+1 of A, not counting the diagonal. Hence
*
* G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
* 1<=i<=j
* and
*
* |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
* 1<=i< j
*
* Since |x(j)| <= M(j), we use the Level 2 BLAS routine DTRSV if the
* reciprocal of the largest M(j), j=1,..,n, is larger than
* max(underflow, 1/overflow).
*
* The bound on x(j) is also used to determine when a step in the
* columnwise method can be performed without fear of overflow. If
* the computed bound is greater than a large constant, x is scaled to
* prevent overflow, but if the bound overflows, x is set to 0, x(j) to
* 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
*
* Similarly, a row-wise scheme is used to solve A'*x = b. The basic
* algorithm for A upper triangular is
*
* for j = 1, ..., n
* x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
* end
*
* We simultaneously compute two bounds
* G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
* M(j) = bound on x(i), 1<=i<=j
*
* The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
* add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
* Then the bound on x(j) is
*
* M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
*
* <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
* 1<=i<=j
*
* and we can safely call DTRSV if 1/M(n) and 1/G(n) are both greater
* than max(underflow, 1/overflow).
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, HALF, ONE
PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL NOTRAN, NOUNIT, UPPER
INTEGER I, IMAX, J, JFIRST, JINC, JLAST
DOUBLE PRECISION BIGNUM, GROW, REC, SMLNUM, SUMJ, TJJ, TJJS,
$ TMAX, TSCAL, USCAL, XBND, XJ, XMAX
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER IDAMAX
DOUBLE PRECISION DASUM, DDOT, DLAMCH
EXTERNAL LSAME, IDAMAX, DASUM, DDOT, DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DSCAL, DTRSV, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
NOTRAN = LSAME( TRANS, 'N' )
NOUNIT = LSAME( DIAG, 'N' )
*
* Test the input parameters.
*
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -3
ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
$ LSAME( NORMIN, 'N' ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DLATRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Determine machine dependent parameters to control overflow.
*
SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
BIGNUM = ONE / SMLNUM
SCALE = ONE
*
IF( LSAME( NORMIN, 'N' ) ) THEN
*
* Compute the 1-norm of each column, not including the diagonal.
*
IF( UPPER ) THEN
*
* A is upper triangular.
*
DO 10 J = 1, N
CNORM( J ) = DASUM( J-1, A( 1, J ), 1 )
10 CONTINUE
ELSE
*
* A is lower triangular.
*
DO 20 J = 1, N - 1
CNORM( J ) = DASUM( N-J, A( J+1, J ), 1 )
20 CONTINUE
CNORM( N ) = ZERO
END IF
END IF
*
* Scale the column norms by TSCAL if the maximum element in CNORM is
* greater than BIGNUM.
*
IMAX = IDAMAX( N, CNORM, 1 )
TMAX = CNORM( IMAX )
IF( TMAX.LE.BIGNUM ) THEN
TSCAL = ONE
ELSE
TSCAL = ONE / ( SMLNUM*TMAX )
CALL DSCAL( N, TSCAL, CNORM, 1 )
END IF
*
* Compute a bound on the computed solution vector to see if the
* Level 2 BLAS routine DTRSV can be used.
*
J = IDAMAX( N, X, 1 )
XMAX = ABS( X( J ) )
XBND = XMAX
IF( NOTRAN ) THEN
*
* Compute the growth in A * x = b.
*
IF( UPPER ) THEN
JFIRST = N
JLAST = 1
JINC = -1
ELSE
JFIRST = 1
JLAST = N
JINC = 1
END IF
*
IF( TSCAL.NE.ONE ) THEN
GROW = ZERO
GO TO 50
END IF
*
IF( NOUNIT ) THEN
*
* A is non-unit triangular.
*
* Compute GROW = 1/G(j) and XBND = 1/M(j).
* Initially, G(0) = max{x(i), i=1,...,n}.
*
GROW = ONE / MAX( XBND, SMLNUM )
XBND = GROW
DO 30 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 50
*
* M(j) = G(j-1) / abs(A(j,j))
*
TJJ = ABS( A( J, J ) )
XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
*
* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
*
GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
ELSE
*
* G(j) could overflow, set GROW to 0.
*
GROW = ZERO
END IF
30 CONTINUE
GROW = XBND
ELSE
*
* A is unit triangular.
*
* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
DO 40 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 50
*
* G(j) = G(j-1)*( 1 + CNORM(j) )
*
GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
40 CONTINUE
END IF
50 CONTINUE
*
ELSE
*
* Compute the growth in A' * x = b.
*
IF( UPPER ) THEN
JFIRST = 1
JLAST = N
JINC = 1
ELSE
JFIRST = N
JLAST = 1
JINC = -1
END IF
*
IF( TSCAL.NE.ONE ) THEN
GROW = ZERO
GO TO 80
END IF
*
IF( NOUNIT ) THEN
*
* A is non-unit triangular.
*
* Compute GROW = 1/G(j) and XBND = 1/M(j).
* Initially, M(0) = max{x(i), i=1,...,n}.
*
GROW = ONE / MAX( XBND, SMLNUM )
XBND = GROW
DO 60 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 80
*
* G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
*
XJ = ONE + CNORM( J )
GROW = MIN( GROW, XBND / XJ )
*
* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
*
TJJ = ABS( A( J, J ) )
IF( XJ.GT.TJJ )
$ XBND = XBND*( TJJ / XJ )
60 CONTINUE
GROW = MIN( GROW, XBND )
ELSE
*
* A is unit triangular.
*
* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
GROW = MIN( ONE, ONE / MAX( XBND, SMLNUM ) )
DO 70 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 80
*
* G(j) = ( 1 + CNORM(j) )*G(j-1)
*
XJ = ONE + CNORM( J )
GROW = GROW / XJ
70 CONTINUE
END IF
80 CONTINUE
END IF
*
IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
*
* Use the Level 2 BLAS solve if the reciprocal of the bound on
* elements of X is not too small.
*
CALL DTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
ELSE
*
* Use a Level 1 BLAS solve, scaling intermediate results.
*
IF( XMAX.GT.BIGNUM ) THEN
*
* Scale X so that its components are less than or equal to
* BIGNUM in absolute value.
*
SCALE = BIGNUM / XMAX
CALL DSCAL( N, SCALE, X, 1 )
XMAX = BIGNUM
END IF
*
IF( NOTRAN ) THEN
*
* Solve A * x = b
*
DO 110 J = JFIRST, JLAST, JINC
*
* Compute x(j) = b(j) / A(j,j), scaling x if necessary.
*
XJ = ABS( X( J ) )
IF( NOUNIT ) THEN
TJJS = A( J, J )*TSCAL
ELSE
TJJS = TSCAL
IF( TSCAL.EQ.ONE )
$ GO TO 100
END IF
TJJ = ABS( TJJS )
IF( TJJ.GT.SMLNUM ) THEN
*
* abs(A(j,j)) > SMLNUM:
*
IF( TJJ.LT.ONE ) THEN
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by 1/b(j).
*
REC = ONE / XJ
CALL DSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
X( J ) = X( J ) / TJJS
XJ = ABS( X( J ) )
ELSE IF( TJJ.GT.ZERO ) THEN
*
* 0 < abs(A(j,j)) <= SMLNUM:
*
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
* to avoid overflow when dividing by A(j,j).
*
REC = ( TJJ*BIGNUM ) / XJ
IF( CNORM( J ).GT.ONE ) THEN
*
* Scale by 1/CNORM(j) to avoid overflow when
* multiplying x(j) times column j.
*
REC = REC / CNORM( J )
END IF
CALL DSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
X( J ) = X( J ) / TJJS
XJ = ABS( X( J ) )
ELSE
*
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
* scale = 0, and compute a solution to A*x = 0.
*
DO 90 I = 1, N
X( I ) = ZERO
90 CONTINUE
X( J ) = ONE
XJ = ONE
SCALE = ZERO
XMAX = ZERO
END IF
100 CONTINUE
*
* Scale x if necessary to avoid overflow when adding a
* multiple of column j of A.
*
IF( XJ.GT.ONE ) THEN
REC = ONE / XJ
IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
*
* Scale x by 1/(2*abs(x(j))).
*
REC = REC*HALF
CALL DSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
END IF
ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
*
* Scale x by 1/2.
*
CALL DSCAL( N, HALF, X, 1 )
SCALE = SCALE*HALF
END IF
*
IF( UPPER ) THEN
IF( J.GT.1 ) THEN
*
* Compute the update
* x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
*
CALL DAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
$ 1 )
I = IDAMAX( J-1, X, 1 )
XMAX = ABS( X( I ) )
END IF
ELSE
IF( J.LT.N ) THEN
*
* Compute the update
* x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
*
CALL DAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
$ X( J+1 ), 1 )
I = J + IDAMAX( N-J, X( J+1 ), 1 )
XMAX = ABS( X( I ) )
END IF
END IF
110 CONTINUE
*
ELSE
*
* Solve A' * x = b
*
DO 160 J = JFIRST, JLAST, JINC
*
* Compute x(j) = b(j) - sum A(k,j)*x(k).
* k<>j
*
XJ = ABS( X( J ) )
USCAL = TSCAL
REC = ONE / MAX( XMAX, ONE )
IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
*
* If x(j) could overflow, scale x by 1/(2*XMAX).
*
REC = REC*HALF
IF( NOUNIT ) THEN
TJJS = A( J, J )*TSCAL
ELSE
TJJS = TSCAL
END IF
TJJ = ABS( TJJS )
IF( TJJ.GT.ONE ) THEN
*
* Divide by A(j,j) when scaling x if A(j,j) > 1.
*
REC = MIN( ONE, REC*TJJ )
USCAL = USCAL / TJJS
END IF
IF( REC.LT.ONE ) THEN
CALL DSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
*
SUMJ = ZERO
IF( USCAL.EQ.ONE ) THEN
*
* If the scaling needed for A in the dot product is 1,
* call DDOT to perform the dot product.
*
IF( UPPER ) THEN
SUMJ = DDOT( J-1, A( 1, J ), 1, X, 1 )
ELSE IF( J.LT.N ) THEN
SUMJ = DDOT( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
END IF
ELSE
*
* Otherwise, use in-line code for the dot product.
*
IF( UPPER ) THEN
DO 120 I = 1, J - 1
SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
120 CONTINUE
ELSE IF( J.LT.N ) THEN
DO 130 I = J + 1, N
SUMJ = SUMJ + ( A( I, J )*USCAL )*X( I )
130 CONTINUE
END IF
END IF
*
IF( USCAL.EQ.TSCAL ) THEN
*
* Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j)
* was not used to scale the dotproduct.
*
X( J ) = X( J ) - SUMJ
XJ = ABS( X( J ) )
IF( NOUNIT ) THEN
TJJS = A( J, J )*TSCAL
ELSE
TJJS = TSCAL
IF( TSCAL.EQ.ONE )
$ GO TO 150
END IF
*
* Compute x(j) = x(j) / A(j,j), scaling if necessary.
*
TJJ = ABS( TJJS )
IF( TJJ.GT.SMLNUM ) THEN
*
* abs(A(j,j)) > SMLNUM:
*
IF( TJJ.LT.ONE ) THEN
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale X by 1/abs(x(j)).
*
REC = ONE / XJ
CALL DSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
X( J ) = X( J ) / TJJS
ELSE IF( TJJ.GT.ZERO ) THEN
*
* 0 < abs(A(j,j)) <= SMLNUM:
*
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
*
REC = ( TJJ*BIGNUM ) / XJ
CALL DSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
X( J ) = X( J ) / TJJS
ELSE
*
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
* scale = 0, and compute a solution to A'*x = 0.
*
DO 140 I = 1, N
X( I ) = ZERO
140 CONTINUE
X( J ) = ONE
SCALE = ZERO
XMAX = ZERO
END IF
150 CONTINUE
ELSE
*
* Compute x(j) := x(j) / A(j,j) - sumj if the dot
* product has already been divided by 1/A(j,j).
*
X( J ) = X( J ) / TJJS - SUMJ
END IF
XMAX = MAX( XMAX, ABS( X( J ) ) )
160 CONTINUE
END IF
SCALE = SCALE / TSCAL
END IF
*
* Scale the column norms by 1/TSCAL for return.
*
IF( TSCAL.NE.ONE ) THEN
CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
END IF
*
RETURN
*
* End of DLATRS
*
END
| gpl-2.0 |
Alexpux/GCC | gcc/testsuite/gfortran.dg/allocate_with_typespec_1.f90 | 183 | 2897 | ! { dg-do compile }
!
! Allocation of arrays with a type-spec specification with implicit none.
!
subroutine implicit_none_test1
implicit none
real, allocatable :: x(:)
real(4), allocatable :: x4(:)
real(8), allocatable :: x8(:)
double precision, allocatable :: d1(:)
doubleprecision, allocatable :: d2(:)
character, allocatable :: c1(:)
character(len=4), allocatable :: c2(:)
type a
integer mytype
end type a
type(a), allocatable :: b(:)
allocate(real :: x(1))
allocate(real(4) :: x4(1))
allocate(real(8) :: x8(1))
allocate(double precision :: d1(1))
allocate(doubleprecision :: d2(1))
allocate(character :: c1(1))
allocate(character(len=4) :: c2(1))
allocate(a :: b(1))
end subroutine implicit_none_test1
!
! Allocation of a scalar with a type-spec specification with implicit none
!
subroutine implicit_none_test2
implicit none
real, allocatable :: x
real(4), allocatable :: x4
real(8), allocatable :: x8
double precision, allocatable :: d1
doubleprecision, allocatable :: d2
character, allocatable :: c1
character(len=4), allocatable :: c2
type a
integer mytype
end type a
type(a), allocatable :: b
allocate(real :: x)
allocate(real(4) :: x4)
allocate(real(8) :: x8)
allocate(double precision :: d1)
allocate(doubleprecision :: d2)
allocate(character :: c1)
allocate(character(len=4) :: c2)
allocate(a :: b)
end subroutine implicit_none_test2
!
! Allocation of arrays with a type-spec specification with implicit none.
!
subroutine implicit_test3
real, allocatable :: x(:)
real(4), allocatable :: x4(:)
real(8), allocatable :: x8(:)
double precision, allocatable :: d1(:)
doubleprecision, allocatable :: d2(:)
character, allocatable :: c1(:)
character(len=4), allocatable :: c2(:)
type a
integer mytype
end type a
type(a), allocatable :: b(:)
allocate(real :: x(1))
allocate(real(4) :: x4(1))
allocate(real(8) :: x8(1))
allocate(double precision :: d1(1))
allocate(doubleprecision :: d2(1))
allocate(character :: c1(1))
allocate(character(len=4) :: c2(1))
allocate(a :: b(1))
end subroutine implicit_test3
!
! Allocation of a scalar with a type-spec specification without implicit none
!
subroutine implicit_test4
real, allocatable :: x
real(4), allocatable :: x4
real(8), allocatable :: x8
double precision, allocatable :: d1
doubleprecision, allocatable :: d2
character, allocatable :: c1
character(len=4), allocatable :: c2
type a
integer mytype
end type a
type(a), allocatable :: b
allocate(real :: x)
allocate(real(4) :: x4)
allocate(real(8) :: x8)
allocate(double precision :: d1)
allocate(doubleprecision :: d2)
allocate(character :: c1)
allocate(character(len=4) :: c2)
allocate(a :: b)
end subroutine implicit_test4
| gpl-2.0 |
ajjl/ITK | Modules/ThirdParty/VNL/src/vxl/v3p/netlib/lapack/double/dsteqr.f | 47 | 13876 | SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
*
* -- LAPACK routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
CHARACTER COMPZ
INTEGER INFO, LDZ, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
* ..
*
* Purpose
* =======
*
* DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
* symmetric tridiagonal matrix using the implicit QL or QR method.
* The eigenvectors of a full or band symmetric matrix can also be found
* if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
* tridiagonal form.
*
* Arguments
* =========
*
* COMPZ (input) CHARACTER*1
* = 'N': Compute eigenvalues only.
* = 'V': Compute eigenvalues and eigenvectors of the original
* symmetric matrix. On entry, Z must contain the
* orthogonal matrix used to reduce the original matrix
* to tridiagonal form.
* = 'I': Compute eigenvalues and eigenvectors of the
* tridiagonal matrix. Z is initialized to the identity
* matrix.
*
* N (input) INTEGER
* The order of the matrix. N >= 0.
*
* D (input/output) DOUBLE PRECISION array, dimension (N)
* On entry, the diagonal elements of the tridiagonal matrix.
* On exit, if INFO = 0, the eigenvalues in ascending order.
*
* E (input/output) DOUBLE PRECISION array, dimension (N-1)
* On entry, the (n-1) subdiagonal elements of the tridiagonal
* matrix.
* On exit, E has been destroyed.
*
* Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
* On entry, if COMPZ = 'V', then Z contains the orthogonal
* matrix used in the reduction to tridiagonal form.
* On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
* orthonormal eigenvectors of the original symmetric matrix,
* and if COMPZ = 'I', Z contains the orthonormal eigenvectors
* of the symmetric tridiagonal matrix.
* If COMPZ = 'N', then Z is not referenced.
*
* LDZ (input) INTEGER
* The leading dimension of the array Z. LDZ >= 1, and if
* eigenvectors are desired, then LDZ >= max(1,N).
*
* WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
* If COMPZ = 'N', then WORK is not referenced.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: the algorithm has failed to find all the eigenvalues in
* a total of 30*N iterations; if INFO = i, then i
* elements of E have not converged to zero; on exit, D
* and E contain the elements of a symmetric tridiagonal
* matrix which is orthogonally similar to the original
* matrix.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, THREE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ THREE = 3.0D0 )
INTEGER MAXIT
PARAMETER ( MAXIT = 30 )
* ..
* .. Local Scalars ..
INTEGER I, ICOMPZ, II, ISCALE, J, JTOT, K, L, L1, LEND,
$ LENDM1, LENDP1, LENDSV, LM1, LSV, M, MM, MM1,
$ NM1, NMAXIT
DOUBLE PRECISION ANORM, B, C, EPS, EPS2, F, G, P, R, RT1, RT2,
$ S, SAFMAX, SAFMIN, SSFMAX, SSFMIN, TST
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANST, DLAPY2
EXTERNAL LSAME, DLAMCH, DLANST, DLAPY2
* ..
* .. External Subroutines ..
EXTERNAL DLAE2, DLAEV2, DLARTG, DLASCL, DLASET, DLASR,
$ DLASRT, DSWAP, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SIGN, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
*
IF( LSAME( COMPZ, 'N' ) ) THEN
ICOMPZ = 0
ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
ICOMPZ = 1
ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
ICOMPZ = 2
ELSE
ICOMPZ = -1
END IF
IF( ICOMPZ.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
$ N ) ) ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DSTEQR', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
IF( N.EQ.1 ) THEN
IF( ICOMPZ.EQ.2 )
$ Z( 1, 1 ) = ONE
RETURN
END IF
*
* Determine the unit roundoff and over/underflow thresholds.
*
EPS = DLAMCH( 'E' )
EPS2 = EPS**2
SAFMIN = DLAMCH( 'S' )
SAFMAX = ONE / SAFMIN
SSFMAX = SQRT( SAFMAX ) / THREE
SSFMIN = SQRT( SAFMIN ) / EPS2
*
* Compute the eigenvalues and eigenvectors of the tridiagonal
* matrix.
*
IF( ICOMPZ.EQ.2 )
$ CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
*
NMAXIT = N*MAXIT
JTOT = 0
*
* Determine where the matrix splits and choose QL or QR iteration
* for each block, according to whether top or bottom diagonal
* element is smaller.
*
L1 = 1
NM1 = N - 1
*
10 CONTINUE
IF( L1.GT.N )
$ GO TO 160
IF( L1.GT.1 )
$ E( L1-1 ) = ZERO
IF( L1.LE.NM1 ) THEN
DO 20 M = L1, NM1
TST = ABS( E( M ) )
IF( TST.EQ.ZERO )
$ GO TO 30
IF( TST.LE.( SQRT( ABS( D( M ) ) )*SQRT( ABS( D( M+
$ 1 ) ) ) )*EPS ) THEN
E( M ) = ZERO
GO TO 30
END IF
20 CONTINUE
END IF
M = N
*
30 CONTINUE
L = L1
LSV = L
LEND = M
LENDSV = LEND
L1 = M + 1
IF( LEND.EQ.L )
$ GO TO 10
*
* Scale submatrix in rows and columns L to LEND
*
ANORM = DLANST( 'I', LEND-L+1, D( L ), E( L ) )
ISCALE = 0
IF( ANORM.EQ.ZERO )
$ GO TO 10
IF( ANORM.GT.SSFMAX ) THEN
ISCALE = 1
CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L+1, 1, D( L ), N,
$ INFO )
CALL DLASCL( 'G', 0, 0, ANORM, SSFMAX, LEND-L, 1, E( L ), N,
$ INFO )
ELSE IF( ANORM.LT.SSFMIN ) THEN
ISCALE = 2
CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L+1, 1, D( L ), N,
$ INFO )
CALL DLASCL( 'G', 0, 0, ANORM, SSFMIN, LEND-L, 1, E( L ), N,
$ INFO )
END IF
*
* Choose between QL and QR iteration
*
IF( ABS( D( LEND ) ).LT.ABS( D( L ) ) ) THEN
LEND = LSV
L = LENDSV
END IF
*
IF( LEND.GT.L ) THEN
*
* QL Iteration
*
* Look for small subdiagonal element.
*
40 CONTINUE
IF( L.NE.LEND ) THEN
LENDM1 = LEND - 1
DO 50 M = L, LENDM1
TST = ABS( E( M ) )**2
IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M+1 ) )+
$ SAFMIN )GO TO 60
50 CONTINUE
END IF
*
M = LEND
*
60 CONTINUE
IF( M.LT.LEND )
$ E( M ) = ZERO
P = D( L )
IF( M.EQ.L )
$ GO TO 80
*
* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
* to compute its eigensystem.
*
IF( M.EQ.L+1 ) THEN
IF( ICOMPZ.GT.0 ) THEN
CALL DLAEV2( D( L ), E( L ), D( L+1 ), RT1, RT2, C, S )
WORK( L ) = C
WORK( N-1+L ) = S
CALL DLASR( 'R', 'V', 'B', N, 2, WORK( L ),
$ WORK( N-1+L ), Z( 1, L ), LDZ )
ELSE
CALL DLAE2( D( L ), E( L ), D( L+1 ), RT1, RT2 )
END IF
D( L ) = RT1
D( L+1 ) = RT2
E( L ) = ZERO
L = L + 2
IF( L.LE.LEND )
$ GO TO 40
GO TO 140
END IF
*
IF( JTOT.EQ.NMAXIT )
$ GO TO 140
JTOT = JTOT + 1
*
* Form shift.
*
G = ( D( L+1 )-P ) / ( TWO*E( L ) )
R = DLAPY2( G, ONE )
G = D( M ) - P + ( E( L ) / ( G+SIGN( R, G ) ) )
*
S = ONE
C = ONE
P = ZERO
*
* Inner loop
*
MM1 = M - 1
DO 70 I = MM1, L, -1
F = S*E( I )
B = C*E( I )
CALL DLARTG( G, F, C, S, R )
IF( I.NE.M-1 )
$ E( I+1 ) = R
G = D( I+1 ) - P
R = ( D( I )-G )*S + TWO*C*B
P = S*R
D( I+1 ) = G + P
G = C*R - B
*
* If eigenvectors are desired, then save rotations.
*
IF( ICOMPZ.GT.0 ) THEN
WORK( I ) = C
WORK( N-1+I ) = -S
END IF
*
70 CONTINUE
*
* If eigenvectors are desired, then apply saved rotations.
*
IF( ICOMPZ.GT.0 ) THEN
MM = M - L + 1
CALL DLASR( 'R', 'V', 'B', N, MM, WORK( L ), WORK( N-1+L ),
$ Z( 1, L ), LDZ )
END IF
*
D( L ) = D( L ) - P
E( L ) = G
GO TO 40
*
* Eigenvalue found.
*
80 CONTINUE
D( L ) = P
*
L = L + 1
IF( L.LE.LEND )
$ GO TO 40
GO TO 140
*
ELSE
*
* QR Iteration
*
* Look for small superdiagonal element.
*
90 CONTINUE
IF( L.NE.LEND ) THEN
LENDP1 = LEND + 1
DO 100 M = L, LENDP1, -1
TST = ABS( E( M-1 ) )**2
IF( TST.LE.( EPS2*ABS( D( M ) ) )*ABS( D( M-1 ) )+
$ SAFMIN )GO TO 110
100 CONTINUE
END IF
*
M = LEND
*
110 CONTINUE
IF( M.GT.LEND )
$ E( M-1 ) = ZERO
P = D( L )
IF( M.EQ.L )
$ GO TO 130
*
* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
* to compute its eigensystem.
*
IF( M.EQ.L-1 ) THEN
IF( ICOMPZ.GT.0 ) THEN
CALL DLAEV2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2, C, S )
WORK( M ) = C
WORK( N-1+M ) = S
CALL DLASR( 'R', 'V', 'F', N, 2, WORK( M ),
$ WORK( N-1+M ), Z( 1, L-1 ), LDZ )
ELSE
CALL DLAE2( D( L-1 ), E( L-1 ), D( L ), RT1, RT2 )
END IF
D( L-1 ) = RT1
D( L ) = RT2
E( L-1 ) = ZERO
L = L - 2
IF( L.GE.LEND )
$ GO TO 90
GO TO 140
END IF
*
IF( JTOT.EQ.NMAXIT )
$ GO TO 140
JTOT = JTOT + 1
*
* Form shift.
*
G = ( D( L-1 )-P ) / ( TWO*E( L-1 ) )
R = DLAPY2( G, ONE )
G = D( M ) - P + ( E( L-1 ) / ( G+SIGN( R, G ) ) )
*
S = ONE
C = ONE
P = ZERO
*
* Inner loop
*
LM1 = L - 1
DO 120 I = M, LM1
F = S*E( I )
B = C*E( I )
CALL DLARTG( G, F, C, S, R )
IF( I.NE.M )
$ E( I-1 ) = R
G = D( I ) - P
R = ( D( I+1 )-G )*S + TWO*C*B
P = S*R
D( I ) = G + P
G = C*R - B
*
* If eigenvectors are desired, then save rotations.
*
IF( ICOMPZ.GT.0 ) THEN
WORK( I ) = C
WORK( N-1+I ) = S
END IF
*
120 CONTINUE
*
* If eigenvectors are desired, then apply saved rotations.
*
IF( ICOMPZ.GT.0 ) THEN
MM = L - M + 1
CALL DLASR( 'R', 'V', 'F', N, MM, WORK( M ), WORK( N-1+M ),
$ Z( 1, M ), LDZ )
END IF
*
D( L ) = D( L ) - P
E( LM1 ) = G
GO TO 90
*
* Eigenvalue found.
*
130 CONTINUE
D( L ) = P
*
L = L - 1
IF( L.GE.LEND )
$ GO TO 90
GO TO 140
*
END IF
*
* Undo scaling if necessary
*
140 CONTINUE
IF( ISCALE.EQ.1 ) THEN
CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV+1, 1,
$ D( LSV ), N, INFO )
CALL DLASCL( 'G', 0, 0, SSFMAX, ANORM, LENDSV-LSV, 1, E( LSV ),
$ N, INFO )
ELSE IF( ISCALE.EQ.2 ) THEN
CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV+1, 1,
$ D( LSV ), N, INFO )
CALL DLASCL( 'G', 0, 0, SSFMIN, ANORM, LENDSV-LSV, 1, E( LSV ),
$ N, INFO )
END IF
*
* Check for no convergence to an eigenvalue after a total
* of N*MAXIT iterations.
*
IF( JTOT.LT.NMAXIT )
$ GO TO 10
DO 150 I = 1, N - 1
IF( E( I ).NE.ZERO )
$ INFO = INFO + 1
150 CONTINUE
GO TO 190
*
* Order eigenvalues and eigenvectors.
*
160 CONTINUE
IF( ICOMPZ.EQ.0 ) THEN
*
* Use Quick Sort
*
CALL DLASRT( 'I', N, D, INFO )
*
ELSE
*
* Use Selection Sort to minimize swaps of eigenvectors
*
DO 180 II = 2, N
I = II - 1
K = I
P = D( I )
DO 170 J = II, N
IF( D( J ).LT.P ) THEN
K = J
P = D( J )
END IF
170 CONTINUE
IF( K.NE.I ) THEN
D( K ) = D( I )
D( I ) = P
CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
END IF
180 CONTINUE
END IF
*
190 CONTINUE
RETURN
*
* End of DSTEQR
*
END
| apache-2.0 |
tenstream/tenstream | src/mcdmda.F90 | 1 | 56649 | !-------------------------------------------------------------------------
! This file is part of the tenstream solver.
!
! This program is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program. If not, see <http://www.gnu.org/licenses/>.
!
! Copyright (C) 2010-2015 Fabian Jakub, <fabian@jakub.com>
!-------------------------------------------------------------------------
module m_mcdmda
use iso_fortran_env, only: int64, output_unit
use iso_c_binding, only: c_backspace
#include "petsc/finclude/petsc.h"
use petsc
use m_data_parameters, only: ireals, iintegers, ireal_dp, &
mpiint, imp_iinteger, imp_int8, &
zero, i0, i1, i2, i3, i4, i5, i6, pi
use m_helper_functions, only: &
& CHKERR, &
& CHKWARN, &
& cstr, &
& deg2rad, &
& expm1, &
& get_arg, &
& get_petsc_opt, &
& imp_allreduce_sum, &
& ind_1d_to_nd, &
& ind_nd_to_1d, &
& ndarray_offsets, &
& rotate_angle_x, &
& rotate_angle_y, &
& spherical_2_cartesian, &
& toStr
use m_boxmc, only: t_photon, print_photon, scatter_photon, roulette, R, &
tau, distance, update_photon_loc, absorb_photon, &
t_boxmc, t_boxmc_1_2, t_boxmc_3_6, &
imp_t_photon
use m_boxmc_geometry, only: setup_default_unit_cube_geometry
use m_pprts_base, only: &
& atmk, &
& t_coord, &
& t_solver, &
& t_solver_1_2, &
& t_solver_3_6, &
& t_solver_mcdmda, &
& t_state_container
use m_petsc_helpers, only: getVecPointer, restoreVecPointer
use m_buildings, only: &
& t_pprts_buildings, &
& PPRTS_TOP_FACE, &
& PPRTS_BOT_FACE, &
& PPRTS_LEFT_FACE, &
& PPRTS_RIGHT_FACE, &
& PPRTS_FRONT_FACE, &
& PPRTS_REAR_FACE
use m_linked_list_iintegers, only: t_list_iintegers, t_node
implicit none
! queue status indices
integer(iintegers), parameter :: &
PQ_SELF = 1, &
PQ_NORTH = 2, &
PQ_EAST = 3, &
PQ_SOUTH = 4, &
PQ_WEST = 5
character(len=16), parameter :: id2name(5) = [ &
& character(len=16) :: &
& 'PQ_SELF', &
& 'PQ_NORTH', &
& 'PQ_EAST', &
& 'PQ_SOUTH', &
& 'PQ_WEST' &
& ]
type :: t_distributed_photon
type(t_photon) :: p
integer(mpiint) :: request
end type
type :: t_photon_queue
type(t_distributed_photon), allocatable :: photons(:)
type(t_list_iintegers) :: ready ! linked list for read_to_go photon indices
type(t_list_iintegers) :: empty ! linked_list of empty slots in this queue
type(t_list_iintegers) :: sending ! linked_list of sending slots in this queue
integer(mpiint) :: owner ! owner is the owning rank, i.e. myid or the neighbor id
integer(iintegers) :: queue_index ! is the STATUS integer, i.e. one of PQ_SELF, PQ_NORTH etc.
end type
logical, parameter :: ldebug = .false.
logical, parameter :: ldebug_tracing = .false.
real(ireal_dp), parameter :: loceps = 0 !sqrt(epsilon(loceps))
real(ireals), parameter :: blocking_waittime = 5 ! sec
contains
subroutine solve_mcdmda(solver, edirTOA, solution, ierr, opt_buildings)
class(t_solver), intent(in) :: solver
real(ireals), intent(in) :: edirTOA
type(t_state_container) :: solution
integer(mpiint), intent(out) :: ierr
type(t_pprts_buildings), intent(in), optional :: opt_buildings
integer(mpiint) :: myid
type(t_photon_queue) :: pqueues(5) ! [own, north, east, south, west]
integer(iintegers) :: Nqueuesize, Nbatchsize
integer(iintegers) :: Nphotons_global
integer(iintegers) :: locally_started_photons, globally_started_photons, globally_killed_photons
integer(iintegers) :: Nphotons_local
integer(iintegers) :: started_photons
integer(iintegers) :: killed_photons
integer(iintegers) :: ip, kp
integer(iintegers) :: iter, percent_printed, last_percent_printed
integer(mpiint) :: started_request, killed_request, stat(mpi_status_size)
logical :: lcomm_finished, lflg, lfirst_print, lfinish_border_photons_first
real(ireals) :: photon_weight
class(t_boxmc), allocatable :: bmc
real(ireal_dp), dimension(:, :, :, :), allocatable :: edir, ediff, abso
integer(iintegers), dimension(:, :, :, :), allocatable :: Nediff, buildings_idx
ierr = 0
call determine_Nphotons(solver, Nphotons_local, ierr); call CHKERR(ierr)
call mpi_allreduce(Nphotons_local, Nphotons_global, 1_mpiint, imp_iinteger, &
MPI_SUM, solver%comm, ierr); call CHKERR(ierr)
call mpi_comm_rank(solver%comm, myid, ierr); call CHKERR(ierr)
Nbatchsize = 10000
call get_petsc_opt(solver%prefix, "-mcdmda_batch_size", Nbatchsize, lflg, ierr); call CHKERR(ierr)
Nqueuesize = Nphotons_local
call get_petsc_opt(solver%prefix, "-mcdmda_queue_size", Nqueuesize, lflg, ierr); call CHKERR(ierr)
lfinish_border_photons_first = .false.
call get_petsc_opt(solver%prefix, "-mcdmda_finish_border_photons_first", lfinish_border_photons_first, lflg, ierr)
call CHKERR(ierr)
associate (C => solver%C_one_atm, C1 => solver%C_one_atm1, Cdir => solver%C_dir, Cdiff => solver%C_diff)
if (ldebug) then
print *, myid, 'Edir TOA', edirTOA, ': Nphotons_local', Nphotons_local, 'Nphotons_global', Nphotons_global
print *, myid, 'Domain start:', C%zs, C%xs, C%ys
print *, myid, 'Domain end :', C%ze, C%xe, C%ye
print *, myid, 'Domain Size :', C%zm, C%xm, C%ym
print *, myid, 'Global Size :', C%glob_zm, C%glob_xm, C%glob_ym
print *, myid, 'my neighs NESW', &
C%neighbors(22), C%neighbors(16), C%neighbors(4), C%neighbors(10)
end if
if (solution%lsolar_rad) then
allocate (edir(0:Cdir%dof - 1, C1%zs:C1%ze, C%gxs:C%gxe, C%gys:C%gye), source=0._ireal_dp)
photon_weight = edirTOA * real(solver%sun%costheta, ireals) &
& * solver%C_one_atm%xm * solver%C_one_atm%ym / real(Nphotons_local, ireals)
else
photon_weight = 0
end if
allocate ( &
& ediff(0:Cdiff%dof - 1, C1%zs:C1%ze, C%gxs:C%gxe, C%gys:C%gye), &
& abso(0:C%dof - 1, C%zs:C%ze, C%xs:C%xe, C%ys:C%ye), &
& source=0._ireal_dp)
allocate ( &
& Nediff(0:Cdiff%dof - 1, C1%zs:C1%ze, C%gxs:C%gxe, C%gys:C%gye), &
& source=0_iintegers)
call fill_buildings_idx(solver, opt_buildings, buildings_idx)
call setup_photon_queue(pqueues(PQ_SELF), Nphotons_local, myid, PQ_SELF)
call setup_photon_queue(pqueues(PQ_NORTH), Nqueuesize, C%neighbors(22), PQ_NORTH)
call setup_photon_queue(pqueues(PQ_EAST), Nqueuesize, C%neighbors(16), PQ_EAST)
call setup_photon_queue(pqueues(PQ_SOUTH), Nqueuesize, C%neighbors(4), PQ_SOUTH)
call setup_photon_queue(pqueues(PQ_WEST), Nqueuesize, C%neighbors(10), PQ_WEST)
if (C%neighbors(22) .lt. zero) call CHKERR(C%neighbors(22), 'Bad neighbor id for PQ_NORTH')
if (C%neighbors(16) .lt. zero) call CHKERR(C%neighbors(16), 'Bad neighbor id for PQ_EAST')
if (C%neighbors(4) .lt. zero) call CHKERR(C%neighbors(4), 'Bad neighbor id for PQ_SOUTH')
if (C%neighbors(10) .lt. zero) call CHKERR(C%neighbors(10), 'Bad neighbor id for PQ_WEST')
end associate
select type (solver)
class is (t_solver_1_2)
allocate (t_boxmc_1_2 :: bmc)
class is (t_solver_3_6)
allocate (t_boxmc_3_6 :: bmc)
class is (t_solver_mcdmda)
allocate (t_boxmc_3_6 :: bmc)
class default
call CHKERR(1_mpiint, 'initialize bmc for mcdmda: unexpected type for solver object for DMDA computations!'// &
'-- call with -solver 1_2 or -solver 3_6')
end select
if (ldebug_tracing) then
call bmc%init(MPI_COMM_SELF, rngseed=9, luse_random_seed=.false.)
else
call bmc%init(MPI_COMM_SELF, luse_random_seed=.true.)
end if
! Initialize the locally owned photons
call prepare_locally_owned_photons(solver, bmc, solution%lsolar_rad, pqueues(PQ_SELF), Nphotons_local, weight=photon_weight)
killed_photons = 0
call mpi_iallreduce(killed_photons, globally_killed_photons, 1_mpiint, imp_iinteger, &
MPI_SUM, solver%comm, killed_request, ierr); call CHKERR(ierr)
if (ldebug) then
lfirst_print = .true.
locally_started_photons = 0
call mpi_iallreduce(locally_started_photons, globally_started_photons, 1_mpiint, imp_iinteger, &
MPI_SUM, solver%comm, started_request, ierr); call CHKERR(ierr)
end if
last_percent_printed = -1
iter = 0
do
iter = iter + 1
call run_photon_queue( &
& solver, bmc, &
& pqueues, PQ_SELF, &
& edir, ediff, Nediff, abso, &
& started_photons=ip, &
& killed_photons=kp, &
& limit_number_photons=Nbatchsize, &
& opt_buildings=opt_buildings, &
& buildings_idx=buildings_idx)
locally_started_photons = locally_started_photons + ip
started_photons = ip; killed_photons = killed_photons + kp
if (ldebug) print *, 'SELF', 'started_photons', started_photons, 'killed_photons', killed_photons
remote_photons: do ! Run remote photons until they are done, only then go on, this hopefully keeps the queue small
started_photons = 0
call exchange_photons(solver, pqueues)
call run_photon_queue(&
& solver, bmc, &
& pqueues, PQ_NORTH, &
& edir, ediff, Nediff, abso, &
& started_photons=ip, &
& killed_photons=kp, &
& opt_buildings=opt_buildings, &
& buildings_idx=buildings_idx)
started_photons = started_photons + ip; killed_photons = killed_photons + kp
if (ldebug) print *, 'NORTH', 'started_photons', ip, 'killed_photons', kp
call exchange_photons(solver, pqueues)
call run_photon_queue( &
& solver, bmc, &
& pqueues, PQ_EAST, &
& edir, ediff, Nediff, abso, &
& started_photons=ip, &
& killed_photons=kp, &
& opt_buildings=opt_buildings, &
& buildings_idx=buildings_idx)
started_photons = started_photons + ip; killed_photons = killed_photons + kp
if (ldebug) print *, 'EAST', 'started_photons', ip, 'killed_photons', kp
call exchange_photons(solver, pqueues)
call run_photon_queue( &
& solver, bmc, &
& pqueues, PQ_SOUTH, &
& edir, ediff, Nediff, abso, &
& started_photons=ip, &
& killed_photons=kp, &
& opt_buildings=opt_buildings, &
& buildings_idx=buildings_idx)
started_photons = started_photons + ip; killed_photons = killed_photons + kp
if (ldebug) print *, 'SOUTH', 'started_photons', ip, 'killed_photons', kp
call exchange_photons(solver, pqueues)
call run_photon_queue( &
& solver, bmc, &
& pqueues, PQ_WEST, &
& edir, ediff, Nediff, abso, &
& started_photons=ip, &
& killed_photons=kp, &
& opt_buildings=opt_buildings, &
& buildings_idx=buildings_idx)
started_photons = started_photons + ip; killed_photons = killed_photons + kp
if (ldebug) print *, 'WEST', 'started_photons', ip, 'killed_photons', kp
call exchange_photons(solver, pqueues)
if (.not. lfinish_border_photons_first) then
exit remote_photons
elseif (started_photons .eq. 0) then
exit remote_photons
end if
end do remote_photons
if (ldebug) then
if (lfirst_print .or. globally_started_photons .ne. Nphotons_global) then
call mpi_test(started_request, lcomm_finished, stat, ierr); call CHKERR(ierr)
if (lcomm_finished) then
if (globally_started_photons .eq. Nphotons_global) lfirst_print = .false.
if (myid .eq. 0) print *, iter, &
'Globally started photons', globally_started_photons, '/', Nphotons_global, &
'('//toStr(100 * real(globally_started_photons) / real(Nphotons_global))//' % )'
call mpi_iallreduce(locally_started_photons, globally_started_photons, 1_mpiint, imp_iinteger, &
MPI_SUM, solver%comm, started_request, ierr); call CHKERR(ierr)
end if
end if
end if
call mpi_test(killed_request, lcomm_finished, stat, ierr); call CHKERR(ierr)
if (lcomm_finished) then
if (myid .eq. 0) then
percent_printed = int(100 * real(globally_killed_photons) / real(Nphotons_global), kind(percent_printed))
if (ldebug .or. percent_printed .ne. last_percent_printed) then
!print *, iter, 'Globally killed photons', globally_killed_photons, '/', Nphotons_global, &
! '('//toStr(percent_printed)//' % )'
write (*, fmt="(A)", advance='no') repeat(c_backspace, 100)//toStr(iter)// &
& ' Globally killed photons '//toStr(globally_killed_photons)//' / '//toStr(Nphotons_global)// &
& '( '//toStr(percent_printed)//' % )'
call flush (output_unit)
last_percent_printed = percent_printed
end if
end if
if (ldebug) call debug_output_queues()
if (globally_killed_photons .eq. Nphotons_global) then
exit
end if
! if we reach here this means there is still work todo, setup a new allreduce
call mpi_iallreduce(killed_photons, globally_killed_photons, 1_mpiint, imp_iinteger, &
MPI_SUM, solver%comm, killed_request, ierr); call CHKERR(ierr)
end if
end do
call get_result()
! cleanup
call bmc%destroy(ierr); call CHKERR(ierr)
do ip = 1, size(pqueues)
call photon_queue_destroy(pqueues(ip), ierr); call CHKERR(ierr)
end do
contains
subroutine fill_buildings_idx(solver, opt_buildings, buildings_idx)
class(t_solver), intent(in) :: solver
type(t_pprts_buildings), intent(in), optional :: opt_buildings
integer(iintegers), dimension(:, :, :, :), allocatable :: buildings_idx
integer(iintegers) :: m, idx(4)
if (present(opt_buildings)) then
associate (C => solver%C_one_atm, C_diff => solver%C_diff, atm => solver%atm)
allocate (buildings_idx(6, C%zs:C%ze, C%xs:C%xe, C%ys:C%ye))
buildings_idx = -1
associate (B => opt_buildings)
do m = 1, size(B%iface)
call ind_1d_to_nd(B%da_offsets, B%iface(m), idx)
idx(2:4) = idx(2:4) - 1 + [C_diff%zs, C_diff%xs, C_diff%ys]
associate (k => idx(2), i => idx(3), j => idx(4))
select case (idx(1))
case (PPRTS_TOP_FACE)
buildings_idx(PPRTS_TOP_FACE, atmk(atm, k), i, j) = m
case (PPRTS_BOT_FACE)
buildings_idx(PPRTS_BOT_FACE, atmk(atm, k), i, j) = m
case (PPRTS_LEFT_FACE)
buildings_idx(PPRTS_LEFT_FACE, atmk(atm, k), i, j) = m
case (PPRTS_RIGHT_FACE)
buildings_idx(PPRTS_RIGHT_FACE, atmk(atm, k), i, j) = m
case (PPRTS_REAR_FACE)
buildings_idx(PPRTS_REAR_FACE, atmk(atm, k), i, j) = m
case (PPRTS_FRONT_FACE)
buildings_idx(PPRTS_FRONT_FACE, atmk(atm, k), i, j) = m
end select
end associate
end do
end associate
end associate
end if
end subroutine
subroutine get_result()
type(tVec) :: ediff_local, edir_local
real(ireals), pointer, dimension(:, :, :, :) :: xv_dir => null(), xv_diff => null(), xv_abso => null()
real(ireals), pointer, dimension(:) :: xv_dir1d => null(), xv_diff1d => null(), xv_abso1d => null()
integer(iintegers) :: Nundersampled
associate (&
& atm => solver%atm,&
& C_one => solver%C_one, &
& C_dir => solver%C_dir, &
& C_diff => solver%C_diff, &
& C_one_atm => solver%C_one_atm,&
& C_one_atm1 => solver%C_one_atm1)
if (solution%lsolar_rad) then
! handle edir
call DMGetLocalVector(C_dir%da, edir_local, ierr); call CHKERR(ierr)
call getVecPointer(C_dir%da, edir_local, xv_dir1d, xv_dir)
xv_dir(:, C_dir%zs + 1:, :, :) = real(&
& edir(:, atmk(atm, C_one_atm1%zs + 1):C_one_atm1%ze, :, :), &
& kind(xv_dir))
xv_dir(:, C_dir%zs, :, :) = real(edir(:, C_one_atm1%zs, :, :), kind(xv_dir))
call restoreVecPointer(C_dir%da, edir_local, xv_dir1d, xv_dir)
call DMLocalToGlobalBegin(C_dir%da, edir_local, ADD_VALUES, solution%edir, ierr); call CHKERR(ierr)
call DMLocalToGlobalEnd(C_dir%da, edir_local, ADD_VALUES, solution%edir, ierr); call CHKERR(ierr)
call DMRestoreLocalVector(C_dir%da, edir_local, ierr); call CHKERR(ierr)
call PetscObjectSetName(solution%edir, 'edir', ierr); call CHKERR(ierr)
call PetscObjectViewFromOptions(solution%edir, PETSC_NULL_VEC, '-mcdmda_show_edir', ierr); call CHKERR(ierr)
end if
! handle normalization of ediff
call DMGetLocalVector(C_diff%da, ediff_local, ierr); call CHKERR(ierr)
call VecSet(ediff_local, zero, ierr); call CHKERR(ierr)
call getVecPointer(C_diff%da, ediff_local, xv_diff1d, xv_diff)
if (.not. solution%lsolar_rad) then
Nundersampled = count(Nediff .gt. 0_iintegers .and. Nediff .le. 10)
call CHKWARN(int(Nundersampled, mpiint), 'Found '//toStr(Nundersampled)//' fluxes that were certainly reacheable,'// &
& 'but were sampled crudely. This may lead to large biases in the results. Please consider using more photons!')
ediff = ediff * real(pi, kind(ediff)) / real(max(1_iintegers, Nediff), kind(ediff))
end if
xv_diff(:, C_diff%zs + 1:, :, :) = real(&
& ediff(:, atmk(atm, C_one_atm1%zs + 1):C_one_atm1%ze, :, :), &
& kind(xv_diff))
xv_diff(:, C_diff%zs, :, :) = real(ediff(:, C_one_atm1%zs, :, :), kind(xv_diff))
call restoreVecPointer(C_diff%da, ediff_local, xv_diff1d, xv_diff)
call DMLocalToGlobalBegin(C_diff%da, ediff_local, ADD_VALUES, solution%ediff, ierr); call CHKERR(ierr)
call DMLocalToGlobalEnd(C_diff%da, ediff_local, ADD_VALUES, solution%ediff, ierr); call CHKERR(ierr)
call DMRestoreLocalVector(C_diff%da, ediff_local, ierr); call CHKERR(ierr)
call PetscObjectSetName(solution%ediff, 'ediff', ierr); call CHKERR(ierr)
call PetscObjectViewFromOptions(solution%ediff, PETSC_NULL_VEC, '-mcdmda_show_ediff', ierr); call CHKERR(ierr)
! absorption
call getVecPointer(C_one%da, solution%abso, xv_abso1d, xv_abso)
if (.not. solution%lsolar_rad) then
abso = abso * pi * C_one%glob_xm * C_one%glob_ym / Nphotons_global
end if
xv_abso(i0, :, :, :) = real(&
& abso(i0, atmk(atm, C_one_atm%zs):C_one_atm%ze, :, :) &
& / atm%dz(atmk(atm, C_one_atm%zs):C_one_atm%ze, :, :), &
& kind(xv_abso))
! eventually collapsed entry at the top
xv_abso(i0, C_one%zs, :, :) = real( &
& sum(abso(i0, :atmk(atm, C_one_atm%zs), :, :), dim=1) &
& / sum(atm%dz(:atmk(atm, C_one_atm%zs), :, :), dim=1), kind(xv_abso))
call restoreVecPointer(C_one%da, solution%abso, xv_abso1d, xv_abso)
end associate
call PetscObjectViewFromOptions(solution%abso, PETSC_NULL_VEC, '-mcdmda_show_abso', ierr); call CHKERR(ierr)
!Rayli solver returns fluxes as [W]
solution%lWm2_dir = .true.
solution%lWm2_diff = .true.
! and mark solution that it is up to date (to prevent absoprtion computations)
solution%lchanged = .false.
end subroutine
subroutine debug_output_queues()
integer(mpiint) :: myid, numnodes, ierr, i
call mpi_comm_rank(solver%comm, myid, ierr); call CHKERR(ierr)
call mpi_comm_size(solver%comm, numnodes, ierr); call CHKERR(ierr)
do i = 0, numnodes - 1
if (i .eq. myid) then
print *, '---------- rank ', myid
call print_pqueue(pqueues(PQ_SELF))
call print_pqueue(pqueues(PQ_NORTH))
call print_pqueue(pqueues(PQ_EAST))
call print_pqueue(pqueues(PQ_SOUTH))
call print_pqueue(pqueues(PQ_WEST))
end if
call mpi_barrier(solver%comm, ierr); call CHKERR(ierr)
end do
end subroutine
end subroutine
subroutine determine_Nphotons(solver, Nphotons_local, ierr)
class(t_solver), intent(in) :: solver
integer(iintegers), intent(out) :: Nphotons_local
integer(mpiint), intent(out) :: ierr
integer(iintegers) :: mcdmda_photons_per_pixel ! has to be constant over all TOA faces
real(ireals) :: rN
logical :: lflg
integer(mpiint) :: numnodes
ierr = 0
call mpi_comm_size(solver%comm, numnodes, ierr); call CHKERR(ierr)
mcdmda_photons_per_pixel = 1000
call get_petsc_opt(solver%prefix, "-mcdmda_photons_per_px", &
mcdmda_photons_per_pixel, lflg, ierr); call CHKERR(ierr)
call get_petsc_opt(solver%prefix, "-mcdmda_photons", rN, lflg, ierr); call CHKERR(ierr)
if (lflg) then
mcdmda_photons_per_pixel = int(rN, kind(Nphotons_local)) / (numnodes * solver%C_one_atm%xm * solver%C_one_atm%ym)
mcdmda_photons_per_pixel = max(1_iintegers, mcdmda_photons_per_pixel)
end if
Nphotons_local = solver%C_one_atm%xm * solver%C_one_atm%ym * mcdmda_photons_per_pixel
end subroutine
subroutine photon_queue_destroy(pq, ierr)
type(t_photon_queue), intent(inout) :: pq
integer(mpiint), intent(out) :: ierr
ierr = 0
if (allocated(pq%photons)) deallocate (pq%photons)
call pq%ready%finalize()
call pq%empty%finalize()
call pq%sending%finalize()
end subroutine
subroutine run_photon_queue(solver, bmc, &
& pqueues, ipq, &
& edir, ediff, Nediff, abso, &
& started_photons, killed_photons, &
& limit_number_photons, &
& opt_buildings, buildings_idx)
class(t_solver), intent(in) :: solver
class(t_boxmc), intent(in) :: bmc
type(t_photon_queue), intent(inout) :: pqueues(:) ! [own, north, east, south, west]
integer(iintegers), intent(in) :: ipq
real(ireal_dp), allocatable, dimension(:, :, :, :), intent(inout) :: edir, ediff, abso
integer(iintegers), allocatable, dimension(:, :, :, :), intent(inout) :: Nediff
integer(iintegers), intent(out) :: started_photons
integer(iintegers), intent(out) :: killed_photons
integer(iintegers), optional, intent(in) :: limit_number_photons
type(t_pprts_buildings), intent(in), optional :: opt_buildings
integer(iintegers), allocatable, dimension(:, :, :, :), intent(in) :: buildings_idx
integer(iintegers) :: Nphotmax
logical :: lkilled_photon
if (ldebug) then
print *, 'run photon queue ', id2name(pqueues(ipq)%queue_index)
call print_pqueue(pqueues(ipq))
end if
Nphotmax = get_arg(huge(Nphotmax), limit_number_photons)
Nphotmax = min(size(pqueues(ipq)%photons, kind=iintegers), Nphotmax)
killed_photons = 0
started_photons = 0
call pqueues(ipq)%ready%for_each(run_ready)
contains
subroutine run_ready(idx, node, iphoton)
integer(iintegers), intent(in) :: idx
type(t_node), pointer, intent(inout) :: node
integer(iintegers), intent(inout) :: iphoton
integer(mpiint) :: ierr
if (started_photons .ge. Nphotmax) return
call run_photon(&
& solver, &
& bmc, &
& pqueues, &
& ipq, &
& iphoton, &
& edir, &
& ediff, &
& Nediff, &
& abso, &
& lkilled_photon, &
& opt_buildings=opt_buildings, &
& buildings_idx=buildings_idx)
started_photons = started_photons + 1
if (lkilled_photon) killed_photons = killed_photons + 1
call pqueues(ipq)%ready%del_node(node, ierr); call CHKERR(ierr)
return
print *, 'remove unused var warning', idx
end subroutine
end subroutine
subroutine run_photon(solver, bmc, pqueues, ipq, iphoton, &
& edir, ediff, Nediff, abso, &
& lkilled_photon, &
& opt_buildings, buildings_idx)
class(t_solver), intent(in) :: solver
class(t_boxmc), intent(in) :: bmc
type(t_photon_queue), intent(inout) :: pqueues(:) ! [own, north, east, south, west]
integer(iintegers), intent(in) :: ipq
integer(iintegers), intent(in) :: iphoton
real(ireal_dp), allocatable, dimension(:, :, :, :), intent(inout) :: edir, ediff, abso
integer(iintegers), allocatable, dimension(:, :, :, :), intent(inout) :: Nediff
logical, intent(out) :: lkilled_photon
type(t_pprts_buildings), intent(in), optional :: opt_buildings
integer(iintegers), allocatable, dimension(:, :, :, :), intent(in) :: buildings_idx
logical :: lexit_cell, lthermal, lexit_domain
integer(mpiint) :: myid, ierr
lkilled_photon = .false.
call mpi_comm_rank(solver%comm, myid, ierr); call CHKERR(ierr)
associate (p => pqueues(ipq)%photons(iphoton)%p)
if (ldebug_tracing) print *, myid, cstr('Start of run_photon :: QUEUE:', 'pink'), id2name(ipq), 'iphoton', iphoton
if (ldebug_tracing) call print_photon(p)
call check_if_photon_is_in_domain(solver%C_one_atm, p)
lthermal = allocated(solver%atm%planck)
if (p%src_side .eq. PPRTS_TOP_FACE) then ! started at the top of the box, lets increment TOA downward flux
if (p%direct) then
p%side = PPRTS_TOP_FACE
call update_flx(solver, p, p%k, p%i, p%j, edir, ediff, Nediff)
end if
end if
lexit_domain = .false.
lexit_cell = .true. ! mark es exited because it obviously came from some neighbouring box
move: do while (.not. lexit_domain) ! this loop will move the photon to the edge of the subdomain
if (.not. lthermal) then
call roulette(p)
if (.not. p%alive) then
lkilled_photon = .true.
exit move
end if
end if
if (ldebug_tracing) then
print *, 'start of move', p%k, p%i, p%j
call print_photon(p)
end if
call check_if_photon_is_in_domain(solver%C_one_atm, p)
if (lexit_cell) then
! if photon exited cell before, this is the reentrant state
abso(i0, p%k, p%i, p%j) = abso(i0, p%k, p%i, p%j) + real(p%weight, ireals)
end if
if (present(opt_buildings)) then
call building_interaction(lexit_cell)
else
lexit_cell = .false.
end if
if (.not. lexit_cell) call move_inside_cell(lexit_cell)
! Define new cellindex and update local position
if (.not. lexit_cell) then
call scatter_photon_in_cell()
else
abso(i0, p%k, p%i, p%j) = abso(i0, p%k, p%i, p%j) - real(p%weight, ireals)
call exit_cell(lexit_domain)
end if
end do move
call pqueues(ipq)%empty%add(iphoton)
end associate
contains
subroutine scatter_photon_in_cell()
associate (p => pqueues(ipq)%photons(iphoton)%p)
call scatter_photon(p, real(solver%atm%g(p%k, p%i, p%j), ireal_dp))
p%tau_travel = tau(R())
if (ldebug_tracing) print *, myid, cstr('********************* SCATTERING', 'peach'), p%k, p%i, p%j
end associate
end subroutine
subroutine move_inside_cell(lexit_cell)
logical, intent(out) :: lexit_cell
real(ireal_dp) :: kabs, ksca, pathlen
real(ireal_dp) :: Btop, Bbot, B1, B2, dz, tauabs, tm1
real(ireals), allocatable :: vertices(:)
associate (p => pqueues(ipq)%photons(iphoton)%p)
kabs = solver%atm%kabs(p%k, p%i, p%j)
ksca = solver%atm%ksca(p%k, p%i, p%j)
dz = solver%atm%dz(p%k, p%i, p%j)
if (lthermal) then
Btop = solver%atm%planck(p%k, p%i, p%j)
Bbot = solver%atm%planck(p%k + 1, p%i, p%j)
B1 = (Btop * p%loc(3) + Bbot * (dz - p%loc(3))) / dz ! planck at start of the ray
end if
call setup_default_unit_cube_geometry(solver%atm%dx, solver%atm%dy, real(dz, ireals), vertices)
call move_photon(bmc, real(vertices, ireal_dp), ksca, p, pathlen, lexit_cell)
if (lthermal) then
B2 = (Btop * p%loc(3) + Bbot * (dz - p%loc(3))) / dz ! planck at end of the ray
tauabs = kabs * pathlen
if (tauabs > 1e-10_ireal_dp) then
tm1 = expm1(-tauabs)
p%weight = p%weight * (tm1 + 1._ireal_dp) + (B2 - B1) - (B1 - (B2 - B1) / tauabs) * tm1
else
p%weight = p%weight * (1._ireal_dp - tauabs) + (B1 + B2)*.5_ireal_dp * tauabs
end if
!print *,p%k, p%i, p%j,'Btop/bot', Btop, Bbot, 'B1,2', B1, B2, 'weight', p%weight, 'kabs', kabs, 'ksca', ksca
else ! lsolar
call absorb_photon(p, pathlen, kabs)
end if
end associate
end subroutine
subroutine building_interaction(lexit_cell)
logical, intent(out) :: lexit_cell
integer(iintegers) :: bidx
real(ireal_dp) :: mu, phi
lexit_cell = .false.
associate (p => pqueues(ipq)%photons(iphoton)%p)
! p%src_side - side where it is coming from, i.e. where it starts,
! .e.g if flying down, i.e. entering from top, it will be PPRTS_TOP_FACE
bidx = buildings_idx(p%src_side, p%k, p%i, p%j)
if (bidx .gt. 0) then
if (ldebug_tracing) print *, 'hit building @ '//toStr([p%src_side, p%k, p%i, p%j])
p%direct = .false.
p%scattercnt = p%scattercnt + 1
p%weight = p%weight * opt_buildings%albedo(bidx)
if (lthermal) then
p%weight = p%weight + (1._ireals - opt_buildings%albedo(bidx)) * opt_buildings%planck(bidx)
end if
! send right back to where it came from:
p%side = p%src_side
mu = sqrt(R())
phi = deg2rad(R() * 360)
p%dir = [sin(phi) * sin(acos(mu)), cos(phi) * sin(acos(mu)), mu]
select case (p%src_side)
case (PPRTS_TOP_FACE)
continue
case (PPRTS_BOT_FACE)
p%dir = rotate_angle_y(p%dir, 180._ireal_dp)
case (PPRTS_LEFT_FACE)
p%dir = rotate_angle_y(p%dir, 90._ireal_dp)
case (PPRTS_RIGHT_FACE)
p%dir = rotate_angle_y(p%dir, 270._ireal_dp)
case (PPRTS_REAR_FACE)
p%dir = rotate_angle_x(p%dir, 270._ireal_dp)
case (PPRTS_FRONT_FACE)
p%dir = rotate_angle_x(p%dir, 90._ireal_dp)
case default
call CHKERR(1_mpiint, 'Dont know what to do with source spec: '//toStr(p%src_side))
end select
lexit_cell = .true.
end if
end associate
end subroutine
subroutine exit_cell(lexit_domain)
logical, intent(out) :: lexit_domain
real(ireal_dp) :: mu, phi
lexit_domain = .false.
associate (p => pqueues(ipq)%photons(iphoton)%p)
call update_flx(solver, p, p%k, p%i, p%j, edir, ediff, Nediff)
! Move photon to new cell
if (ldebug_tracing) print *, myid, cstr('* MOVE Photon to new cell', 'green')
select case (p%side)
case (PPRTS_TOP_FACE) ! exit on top
if (p%k .eq. solver%C_one_atm%zs) then ! outgoing at TOA
if (ldebug_tracing) print *, myid, '********************* Exit TOA', p%k, p%i, p%j
lkilled_photon = .true.
lexit_domain = .true.
end if
p%loc(3) = zero + loceps
p%k = p%k - 1
p%src_side = PPRTS_BOT_FACE
case (PPRTS_BOT_FACE) ! exit cell at bottom
if (p%k .eq. solver%C_one_atm%ze) then ! hit the surface, need reflection
if (ldebug_tracing) print *, myid, '********************* Before Reflection', p%k, p%i, p%j
p%weight = p%weight * solver%atm%albedo(p%i, p%j)
if (lthermal) then
if (allocated(solver%atm%Bsrfc)) then
p%weight = p%weight + (1._ireals - solver%atm%albedo(p%i, p%j)) * solver%atm%Bsrfc(p%i, p%j)
else
p%weight = p%weight + (1._ireals - solver%atm%albedo(p%i, p%j)) * solver%atm%planck(p%k + 1, p%i, p%j)
end if
end if
p%direct = .false.
p%scattercnt = p%scattercnt + 1
mu = sqrt(R())
phi = deg2rad(R() * 360)
p%dir = [sin(phi) * sin(acos(mu)), cos(phi) * sin(acos(mu)), mu]
p%loc(3) = zero + loceps
p%side = PPRTS_TOP_FACE
p%src_side = PPRTS_BOT_FACE
call update_flx(solver, p, p%k + 1, p%i, p%j, edir, ediff, Nediff)
if (ldebug_tracing) print *, myid, cstr('********************* After Reflection', 'aqua'), p%k, p%i, p%j
lexit_domain = .false.
else
p%loc(3) = solver%atm%dz(p%k + 1, p%i, p%j) - loceps
p%k = p%k + 1
p%src_side = PPRTS_TOP_FACE
end if
case (PPRTS_LEFT_FACE)
p%loc(1) = solver%atm%dx - loceps
p%i = p%i - 1
p%src_side = PPRTS_RIGHT_FACE
if (p%i .eq. solver%C_one_atm%xs - 1) then
if (ldebug_tracing) print *, myid, cstr('* Sending to WEST', 'blue'), pqueues(PQ_WEST)%owner, p%k, p%i, p%j
call send_photon_to_neighbor(solver, solver%C_one_atm, p, pqueues(PQ_WEST))
lexit_domain = .true.
end if
case (PPRTS_RIGHT_FACE)
p%loc(1) = zero + loceps
p%i = p%i + 1
p%src_side = PPRTS_LEFT_FACE
if (p%i .eq. solver%C_one_atm%xe + 1) then
if (ldebug_tracing) print *, myid, cstr('* Sending to EAST', 'blue'), pqueues(PQ_EAST)%owner, p%k, p%i, p%j
call send_photon_to_neighbor(solver, solver%C_one_atm, p, pqueues(PQ_EAST))
lexit_domain = .true.
end if
case (PPRTS_REAR_FACE)
p%loc(2) = solver%atm%dy - loceps
p%j = p%j - 1
p%src_side = PPRTS_FRONT_FACE
if (p%j .eq. solver%C_one_atm%ys - 1) then
if (ldebug_tracing) print *, myid, cstr('* Sending to SOUTH', 'blue'), pqueues(PQ_SOUTH)%owner, p%k, p%i, p%j
call send_photon_to_neighbor(solver, solver%C_one_atm, p, pqueues(PQ_SOUTH))
lexit_domain = .true.
end if
case (PPRTS_FRONT_FACE)
p%loc(2) = zero + loceps
p%j = p%j + 1
p%src_side = PPRTS_REAR_FACE
if (p%j .eq. solver%C_one_atm%ye + 1) then
if (ldebug_tracing) print *, myid, cstr('* Sending to NORTH', 'blue'), pqueues(PQ_NORTH)%owner, p%k, p%i, p%j
call send_photon_to_neighbor(solver, solver%C_one_atm, p, pqueues(PQ_NORTH))
lexit_domain = .true.
end if
end select
end associate
end subroutine
end subroutine
subroutine update_flx(solver, p, k, i, j, edir, ediff, Nediff)
class(t_solver), intent(in) :: solver
type(t_photon), intent(in) :: p
integer(iintegers), intent(in) :: k, i, j ! layer/box indices
real(ireal_dp), allocatable, dimension(:, :, :, :), intent(inout) :: edir, ediff
integer(iintegers), allocatable, dimension(:, :, :, :), intent(inout) :: Nediff
integer(iintegers) :: off, dof
if (ldebug_tracing) print *, 'Update Flux', k, i, j, p%direct, p%side
select case (p%side)
case (PPRTS_TOP_FACE)
if (k .lt. lbound(ediff, 2) .or. k .gt. ubound(ediff, 2)) &
& call CHKERR(1_mpiint, 'invalid k '//toStr(k)//' '// &
& toStr(lbound(ediff, 2))//'/'//toStr(ubound(ediff, 2)))
case (PPRTS_BOT_FACE)
if (k .lt. lbound(ediff, 2) .or. k .gt. ubound(ediff, 2) - 1) &
& call CHKERR(1_mpiint, 'invalid k '//toStr(k)//' '// &
& toStr(lbound(ediff, 2))//'/'//toStr(ubound(ediff, 2) - 1))
case (3:6)
continue
case default
call print_photon(p)
call CHKERR(1_mpiint, 'hmpf .. didnt expect a p%side gt 6, have '//toStr(p%side))
end select
if (i .lt. lbound(ediff, 3) .or. i .gt. ubound(ediff, 3)) &
& call CHKERR(1_mpiint, 'invalid i '//toStr(i)//' '// &
& '['//toStr(lbound(ediff, 3))//','//toStr(ubound(ediff, 3))//']')
if (j .lt. lbound(ediff, 4) .or. j .gt. ubound(ediff, 4)) &
& call CHKERR(1_mpiint, 'invalid j '//toStr(j)//' '// &
& '['//toStr(lbound(ediff, 4))//','//toStr(ubound(ediff, 4))//']')
if (p%direct) then
select case (p%side)
case (PPRTS_TOP_FACE)
edir(i0, k, i, j) = edir(i0, k, i, j) + real(p%weight, kind(edir))
case (PPRTS_BOT_FACE)
edir(i0, k + 1, i, j) = edir(i0, k + 1, i, j) + real(p%weight, kind(edir))
case (PPRTS_LEFT_FACE)
off = solver%dirtop%dof
do dof = 0, solver%dirside%dof - 1
edir(off + dof, k, i, j) = edir(off + dof, k, i, j) + real(p%weight, kind(edir))
end do
case (PPRTS_RIGHT_FACE)
off = solver%dirtop%dof
do dof = 0, solver%dirside%dof - 1
edir(off + dof, k, i + 1, j) = edir(off + dof, k, i + 1, j) + real(p%weight, kind(edir))
end do
case (PPRTS_REAR_FACE) ! rear
off = solver%dirtop%dof + solver%dirside%dof
do dof = 0, solver%dirside%dof - 1
edir(off + dof, k, i, j) = edir(off + dof, k, i, j) + real(p%weight, kind(edir))
end do
case (PPRTS_FRONT_FACE) ! front
off = solver%dirtop%dof + solver%dirside%dof
do dof = 0, solver%dirside%dof - 1
edir(off + dof, k, i, j + 1) = edir(off + dof, k, i, j + 1) + real(p%weight, kind(edir))
end do
case default
call print_photon(p)
call CHKERR(1_mpiint, 'hmpf .. didnt expect p%side '//toStr(p%side))
end select
else
select case (p%side)
case (PPRTS_TOP_FACE)
do dof = 0, solver%difftop%dof - 1
if (.not. solver%difftop%is_inward(i1 + dof)) then !Eup
ediff(dof, k, i, j) = ediff(dof, k, i, j) + real(p%weight, kind(ediff))
Nediff(dof, k, i, j) = Nediff(dof, k, i, j) + 1_iintegers
end if
end do
case (PPRTS_BOT_FACE)
do dof = 0, solver%difftop%dof - 1
if (solver%difftop%is_inward(i1 + dof)) then !Edn
ediff(dof, k + 1, i, j) = ediff(dof, k + 1, i, j) + real(p%weight, kind(ediff))
Nediff(dof, k + 1, i, j) = Nediff(dof, k + 1, i, j) + 1_iintegers
end if
end do
case (PPRTS_LEFT_FACE)
off = solver%difftop%dof
do dof = 0, solver%diffside%dof - 1
if (.not. solver%diffside%is_inward(i1 + dof)) then !Eleft
ediff(off + dof, k, i, j) = ediff(off + dof, k, i, j) + real(p%weight, kind(ediff))
Nediff(off + dof, k, i, j) = Nediff(off + dof, k, i, j) + 1_iintegers
end if
end do
case (PPRTS_RIGHT_FACE)
off = solver%difftop%dof
do dof = 0, solver%diffside%dof - 1
if (solver%diffside%is_inward(i1 + dof)) then !Eright
ediff(off + dof, k, i + 1, j) = ediff(off + dof, k, i + 1, j) + real(p%weight, kind(ediff))
Nediff(off + dof, k, i + 1, j) = Nediff(off + dof, k, i + 1, j) + 1_iintegers
end if
end do
case (PPRTS_REAR_FACE) ! rear
off = solver%difftop%dof + solver%diffside%dof
do dof = 0, solver%diffside%dof - 1
if (.not. solver%diffside%is_inward(i1 + dof)) then !Erear
ediff(off + dof, k, i, j) = ediff(off + dof, k, i, j) + real(p%weight, kind(ediff))
Nediff(off + dof, k, i, j) = Nediff(off + dof, k, i, j) + 1_iintegers
end if
end do
case (PPRTS_FRONT_FACE) ! front
off = solver%difftop%dof + solver%diffside%dof
do dof = 0, solver%diffside%dof - 1
if (solver%diffside%is_inward(i1 + dof)) then !Eforward
ediff(off + dof, k, i, j + 1) = ediff(off + dof, k, i, j + 1) + real(p%weight, kind(ediff))
Nediff(off + dof, k, i, j + 1) = Nediff(off + dof, k, i, j + 1) + 1_iintegers
end if
end do
case default
call print_photon(p)
call CHKERR(1_mpiint, 'hmpf .. didnt expect this p%side, have'//toStr(p%side))
end select
end if
end subroutine
subroutine prepare_locally_owned_photons(solver, bmc, lsolar, pqueue, Nphotons, weight)
class(t_solver), intent(in) :: solver
class(t_boxmc), intent(in) :: bmc
logical, intent(in) :: lsolar
type(t_photon_queue), intent(inout) :: pqueue
integer(iintegers), intent(in) :: Nphotons
real(ireals), intent(in) :: weight
type(t_photon) :: p
real(ireals) :: phi0, theta0
integer(mpiint) :: myid, ierr
integer(iintegers) :: ip, i, j
integer(iintegers) :: Nphotons_per_pixel, l
real(ireals), allocatable :: vertices(:)
real(ireals) :: initial_dir(3)
call mpi_comm_rank(solver%comm, myid, ierr); call CHKERR(ierr)
phi0 = solver%sun%phi
theta0 = solver%sun%theta
initial_dir = spherical_2_cartesian(phi0, theta0)
Nphotons_per_pixel = max(1_iintegers, Nphotons / int(solver%C_one_atm%xm * solver%C_one_atm%ym, kind(Nphotons)))
if (modulo(Nphotons, Nphotons_per_pixel) .ne. 0) &
& call CHKERR(1_mpiint, 'Nphotons '//toStr(Nphotons)//' not divisible by Nphotons_per_pixel '//toStr(Nphotons_per_pixel))
do l = 1, Nphotons_per_pixel
do i = solver%C_one_atm%xs, solver%C_one_atm%xe
do j = solver%C_one_atm%ys, solver%C_one_atm%ye
call setup_default_unit_cube_geometry(solver%atm%dx, solver%atm%dy, &
solver%atm%dz(i0, i, j), vertices)
if (lsolar) then
call bmc%init_dir_photon(p, i1, .true., real(initial_dir, ireal_dp), real(vertices, ireal_dp), ierr)
else
call bmc%init_diff_photon(p, i2, real(vertices, ireal_dp), ierr)
end if
p%i = i
p%j = j
p%k = i0
p%src_side = PPRTS_TOP_FACE
p%weight = weight
p%tau_travel = tau(R())
if (ldebug_tracing) then
call antialiased_photon_start(Nphotons_per_pixel, l, p%loc(1), p%loc(2))
else
p%loc(1) = R()
p%loc(2) = R()
end if
p%loc(1) = p%loc(1) * solver%atm%dx
p%loc(2) = p%loc(2) * solver%atm%dy
call pqueue_add_photon(pqueue, p, 0_mpiint, ip, ierr); call CHKERR(ierr)
call pqueue%ready%add(ip)
if (ldebug) then
print *, 'Prepared Photon', i, j, ': iphoton', ip, Nphotons
call print_photon(pqueue%photons(ip)%p)
end if
end do
end do
end do
end subroutine
subroutine antialiased_photon_start(Nmax, ip, x, y, tilt_angle)
integer(iintegers), intent(in) :: Nmax, ip ! total number of photons per pixel, and the ip'th point for that
real(ireal_dp), intent(in), optional :: tilt_angle ! angle by which the grid is rotated in [rad], default: 30deg
real(ireal_dp), intent(out) :: x, y ! gives x and y position for a regularly sampled tilted grid
real(ireal_dp) :: tilt_grid, rot_x, rot_y
integer(iintegers) :: Nx, Ny ! number of pixels in x and y direction
integer(iintegers) :: i, j
tilt_grid = get_arg(deg2rad(26.6_ireal_dp), tilt_angle)
if (Nmax .eq. i1) then
x = .5_ireals
y = .5_ireals
return
end if
Nx = int(sqrt(real(Nmax, ireal_dp)), iintegers)
Ny = Nx
if (ip .gt. Nx * Ny) then
x = R()
y = R()
return
end if
j = (ip - 1) / int(Nx, kind(ip)) ! zero based offsets
i = (ip - 1) - j * int(Nx, kind(ip))
x = real(i + 1, ireals) / real(Nx + 1, ireals) * sqrt(5._ireals) / 2._ireals
y = real(j + 1, ireals) / real(Ny + 1, ireals) * sqrt(5._ireals) / 2._ireals
! Translate to center (0,0)
x = x - .5_ireals
y = y - .5_ireals
rot_x = x * cos(tilt_grid) - y * sin(tilt_grid) + .5_ireals
rot_y = x * sin(tilt_grid) + y * cos(tilt_grid) + .5_ireals
x = modulo(rot_x, 1._ireal_dp)
y = modulo(rot_y, 1._ireal_dp)
!print *,'plot(', x,',',y,',"o") #',ip
end subroutine
subroutine find_empty_entry_in_pqueue(pqueue, emptyid, ierr)
type(t_photon_queue), intent(inout) :: pqueue
integer(iintegers), intent(out) :: emptyid
integer(mpiint), intent(out) :: ierr
call pqueue%empty%pop(emptyid, ierr)
if (ierr .ne. 0) then
call print_pqueue(pqueue)
end if
end subroutine
subroutine print_pqueue(pq, list_queue)
type(t_photon_queue), intent(in) :: pq
logical, intent(in), optional :: list_queue
if (get_arg(.false., list_queue)) then
print *, 'PQUEUE:', pq%owner, '::', pq%queue_index, 'name ', cstr(trim(id2name(pq%queue_index)), 'blue')
print *, 'empty:'
call pq%empty%view()
print *, 'ready:'
call pq%ready%view()
print *, 'sending:'
call pq%sending%view()
else
print *, pq%owner, cstr(id2name(pq%queue_index), 'blue'), &
& ' '//'empty', pq%empty%len(), &
& ' '//cstr('ready '//toStr(pq%ready%len()), 'green'), &
& ' '//cstr('send '//toStr(pq%sending%len()), 'peach')
end if
end subroutine
subroutine pqueue_add_photon(pqueue, p, request, ind, ierr)
type(t_photon_queue), intent(inout) :: pqueue
type(t_photon), intent(in) :: p
integer(mpiint), intent(in) :: request
integer(iintegers), intent(out) :: ind
integer(mpiint), intent(out) :: ierr
call find_empty_entry_in_pqueue(pqueue, ind, ierr)
if (ierr .ne. 0) then
call finalize_msgs_blocking(pqueue)
call find_empty_entry_in_pqueue(pqueue, ind, ierr)
call CHKERR(ierr, 'Could not find an empty slot in neighbor queue '//toStr(pqueue%queue_index))
end if
! Put photon to send queue to neighbor
pqueue%photons(ind)%p = p
pqueue%photons(ind)%request = request
end subroutine
subroutine setup_photon_queue(pq, N, owner, queue_index)
type(t_photon_queue), intent(inout) :: pq
integer(iintegers), intent(in) :: N
integer(mpiint), intent(in) :: owner
integer(iintegers), intent(in) :: queue_index
integer(iintegers) :: i
if (allocated(pq%photons)) then
call CHKERR(1_mpiint, 'photon queue already allocated')
else
allocate (pq%photons(N))
end if
pq%owner = owner
pq%queue_index = queue_index
do i = 1, N
call pq%empty%add(i)
end do
end subroutine
subroutine send_photon_to_neighbor(solver, C, p_in, pqueue)
class(t_solver), intent(in) :: solver
type(t_coord), intent(in) :: C
type(t_photon), intent(in) :: p_in
type(t_photon_queue), intent(inout) :: pqueue
integer(mpiint) :: myid, tag, ierr
integer(iintegers) :: iphoton
logical, parameter :: lcyclic_boundary = .true.
call mpi_comm_rank(solver%comm, myid, ierr); call CHKERR(ierr)
! Put photon to send queue to neighbor
call pqueue_add_photon(pqueue, p_in, 0_mpiint, iphoton, ierr); call CHKERR(ierr)
call pqueue%sending%add(iphoton)
associate (p => pqueue%photons(iphoton)%p)
if (ldebug) then
select case (pqueue%queue_index)
case (PQ_SELF)
call CHKERR(1_mpiint, 'should not happen that a photon is sent to ourselves?')
case (PQ_WEST)
!print *,'Sending Photon WEST'
if (p%side .ne. PPRTS_LEFT_FACE) call CHKERR(1_mpiint, 'I would assume that side should be 3 when sending WEST')
if (p%src_side .ne. PPRTS_RIGHT_FACE) call CHKERR(1_mpiint, 'I would assume that src_side should be 4 when sending WEST')
case (PQ_EAST)
!print *,'Sending Photon EAST'
if (p%side .ne. PPRTS_RIGHT_FACE) call CHKERR(1_mpiint, 'I would assume that side should be 4 when sending EAST')
if (p%src_side .ne. PPRTS_LEFT_FACE) call CHKERR(1_mpiint, 'I would assume that src_side should be 3 when sending EAST')
case (PQ_NORTH)
!print *,'Sending Photon NORTH'
if (p%side .ne. PPRTS_FRONT_FACE) call CHKERR(1_mpiint, 'I would assume that side should be 6 when sending NORTH')
if (p%src_side .ne. PPRTS_REAR_FACE) call CHKERR(1_mpiint, 'I would assume that src_side should be 5 when sending NORTH')
case (PQ_SOUTH)
!print *,'Sending Photon SOUTH'
if (p%side .ne. PPRTS_REAR_FACE) call CHKERR(1_mpiint, 'I would assume that side should be 5 when sending SOUTH')
if (p%src_side .ne. PPRTS_FRONT_FACE) call CHKERR(1_mpiint, 'I would assume that src_side should be 6 when sending SOUTH')
end select
end if
if (lcyclic_boundary) then
if (p%i .eq. -1) p%i = C%glob_xm - 1
if (p%j .eq. -1) p%j = C%glob_ym - 1
if (p%i .eq. C%glob_xm) p%i = 0
if (p%j .eq. C%glob_ym) p%j = 0
else
call CHKERR(1_mpiint, 'NON-cyclic boundary conditions are not implemented yet!')
end if
! asynchronous SEND starts here
tag = int(pqueue%queue_index, kind(tag))
call mpi_isend(p, 1_mpiint, imp_t_photon, &
pqueue%owner, tag, solver%comm, pqueue%photons(iphoton)%request, ierr); call CHKERR(ierr, 'mpi isend failed')
!call mpi_send(p, 1_mpiint, imp_t_photon, &
! pqueue%owner, tag, solver%comm, ierr); call CHKERR(ierr, 'mpi isend failed')
if (ldebug) then
print *, 'Sending the following photon to rank', pqueue%owner, ':tag', tag
call print_photon(p)
end if
end associate
end subroutine
subroutine finalize_msgs_non_blocking(pqueue)
type(t_photon_queue), intent(inout) :: pqueue
call pqueue%sending%for_each(check_sending)
contains
subroutine check_sending(idx, node, iphoton)
integer(iintegers), intent(in) :: idx
type(t_node), pointer, intent(inout) :: node
integer(iintegers), intent(inout) :: iphoton
integer(mpiint) :: stat(mpi_status_size), ierr
logical :: lcomm_finished
call mpi_test(pqueue%photons(iphoton)%request, lcomm_finished, stat, ierr); call CHKERR(ierr)
if (lcomm_finished) then
call pqueue%empty%add(iphoton)
call pqueue%sending%del_node(node, ierr); call CHKERR(ierr)
if (ldebug) then
print *, 'Finalized Sending a photon:', iphoton
end if
end if
return
print *, 'unused var warning', idx
end subroutine
end subroutine
subroutine finalize_msgs_blocking(pqueue)
type(t_photon_queue), intent(inout) :: pqueue
integer(iintegers) :: cnt_finished_msgs
real(ireal_dp) :: tstart, t
integer(iintegers), save :: count_warnings = 0
integer(iintegers), parameter :: max_warnings = 10
call cpu_time(tstart)
cnt_finished_msgs = 0
do
call pqueue%sending%for_each(check_sending)
call cpu_time(t)
count_warnings = count_warnings + 1
if (count_warnings .lt. max_warnings) then
call CHKWARN(1_mpiint, id2name(pqueue%queue_index)// &
& ': waited for '//toStr(t - tstart)//' s.'//new_line('')// &
& ' But this is bad for performance!'//new_line('')// &
& ' Maybe increasing the queue size helps at the cost of more memory.'//new_line('')// &
& ' -mcdmda_queue_size <int>'//new_line('')// &
& ' or try to reduce the batch_size with '//new_line('')// &
& ' -mcdmda_batch_size <int>'//new_line('')// &
& ' or try to wait for all boundary photons to be finished emitting new photons locally'//new_line('')// &
& ' -mcdmda_finish_border_photons_first')
elseif (count_warnings .eq. max_warnings) then
call CHKWARN(1_mpiint, 'waiting warning has been issued '//toStr(max_warnings)//' times... now suppressing it.')
end if
if (cnt_finished_msgs .ne. 0) return
if (t - tstart .gt. blocking_waittime) then
call CHKERR(1_mpiint, 'waited for '//toStr(t - tstart)//' s but the queues havent freed up... ')
end if
end do
contains
subroutine check_sending(idx, node, iphoton)
integer(iintegers), intent(in) :: idx
type(t_node), pointer, intent(inout) :: node
integer(iintegers), intent(inout) :: iphoton
integer(mpiint) :: stat(mpi_status_size), ierr
logical :: lcomm_finished
call mpi_test(pqueue%photons(iphoton)%request, lcomm_finished, stat, ierr); call CHKERR(ierr)
if (lcomm_finished) then
call pqueue%empty%add(iphoton)
call pqueue%sending%del_node(node, ierr); call CHKERR(ierr)
cnt_finished_msgs = cnt_finished_msgs + 1
if (ldebug) then
print *, 'Finalized Sending a photon:', iphoton
call print_photon(pqueue%photons(iphoton)%p)
end if
end if
return
print *, 'unused var warning', idx
end subroutine
end subroutine
subroutine exchange_photons(solver, pqueues)
class(t_solver), intent(in) :: solver
type(t_photon_queue), intent(inout) :: pqueues(:) ! [own, north, east, south, west]
integer(mpiint) :: myid, mpi_status(mpi_status_size), ierr, tag
integer(iintegers) :: ipq, iphoton
logical :: lgot_msg
call mpi_comm_rank(solver%comm, myid, ierr)
do ipq = 1, size(pqueues)
call finalize_msgs_non_blocking(pqueues(ipq))
end do
! receive all messages that we can get
do
call mpi_iprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, solver%comm, lgot_msg, mpi_status, ierr); call CHKERR(ierr)
if (lgot_msg) then
tag = mpi_status(MPI_TAG)
select case (tag)
case (PQ_WEST) ! was sent towards WEST, i.e. it arrives EAST
ipq = PQ_EAST
case (PQ_EAST)
ipq = PQ_WEST
case (PQ_SOUTH)
ipq = PQ_NORTH
case (PQ_NORTH)
ipq = PQ_SOUTH
case default
call CHKERR(1_mpiint, 'received unexpected message with tag '//toStr(tag))
end select
if (mpi_status(MPI_SOURCE) .ne. pqueues(ipq)%owner) call CHKERR(1_mpiint, 'Something unexpected happened')
call find_empty_entry_in_pqueue(pqueues(ipq), iphoton, ierr)
if (ierr .ne. 0) then
call finalize_msgs_blocking(pqueues(ipq))
call find_empty_entry_in_pqueue(pqueues(ipq), iphoton, ierr)
call CHKERR(ierr, 'no space in queue to receive a msg')
end if
call mpi_recv(pqueues(ipq)%photons(iphoton)%p, 1_mpiint, imp_t_photon, &
mpi_status(MPI_SOURCE), mpi_status(MPI_TAG), solver%comm, mpi_status, ierr); call CHKERR(ierr)
call pqueues(ipq)%ready%add(iphoton)
if (ldebug) then
print *, myid, 'Got Message from rank:', mpi_status(MPI_SOURCE), 'Receiving ipq ', id2name(ipq)
call print_photon(pqueues(ipq)%photons(iphoton)%p)
end if
else
exit
end if
end do
end subroutine
subroutine move_photon(bmc, vertices, ksca, p, pathlen, lexit_cell)
class(t_boxmc) :: bmc
real(ireal_dp), intent(in) :: vertices(:), ksca
type(t_photon), intent(inout) :: p
real(ireal_dp) :: pathlen
logical, intent(out) :: lexit_cell
real(ireal_dp) :: dist, intersec_dist
call bmc%intersect_distance(vertices, p, intersec_dist)
dist = distance(p%tau_travel, ksca)
pathlen = min(intersec_dist, dist)
call update_photon_loc(p, pathlen, ksca)
if (intersec_dist .le. dist) then
lexit_cell = .true.
else
lexit_cell = .false.
end if
end subroutine move_photon
subroutine check_if_photon_is_in_domain(C, p)
type(t_coord), intent(in) :: C
type(t_photon), intent(in) :: p
if (p%k .lt. C%zs .or. p%k .gt. C%ze) &
call CHKERR(1_mpiint, 'Wrong index(dim1) '//toStr(p%k)//' not in ('//toStr(C%zs)//'/'//toStr(C%ze)//')')
if (p%i .lt. C%xs .or. p%i .gt. C%xe) &
call CHKERR(1_mpiint, 'Wrong index(dim2) '//toStr(p%i)//' not in ('//toStr(C%xs)//'/'//toStr(C%xe)//')')
if (p%j .lt. C%ys .or. p%j .gt. C%ye) &
call CHKERR(1_mpiint, 'Wrong index(dim3) '//toStr(p%j)//' not in ('//toStr(C%ys)//'/'//toStr(C%ye)//')')
end subroutine
end module
| gpl-3.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.