text
stringlengths
7
318k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
439
use crate::arc_rwlock_serde; use serde::{Deserialize, Serialize}; extern crate tokenizers as tk; use napi::bindgen_prelude::*; use napi_derive::napi; use std::sync::{Arc, RwLock}; use tk::processors::PostProcessorWrapper; use tk::Encoding; #[derive(Clone, Serialize, Deserialize)] #[napi] pub struct Processor { #[serde(flatten, with = "arc_rwlock_serde")] processor: Option<Arc<RwLock<PostProcessorWrapper>>>, } impl tk::PostProcessor for Processor { fn added_tokens(&self, is_pair: bool) -> usize { self .processor .as_ref() .expect("Uninitialized PostProcessor") .read() .unwrap() .added_tokens(is_pair) } fn process_encodings( &self, encodings: Vec<Encoding>, add_special_tokens: bool, ) -> tk::Result<Vec<Encoding>> { self .processor .as_ref() .ok_or("Uninitialized PostProcessor")? .read() .unwrap() .process_encodings(encodings, add_special_tokens) } } #[napi] pub fn bert_processing(sep: (String, u32), cls: (String, u32)) -> Result<Processor> { Ok(Processor { processor: Some(Arc::new(RwLock::new( tk::processors::bert::BertProcessing::new(sep, cls).into(), ))), }) } #[napi] pub fn roberta_processing( sep: (String, u32), cls: (String, u32), trim_offsets: Option<bool>, add_prefix_space: Option<bool>, ) -> Result<Processor> { let trim_offsets = trim_offsets.unwrap_or(true); let add_prefix_space = add_prefix_space.unwrap_or(true); let mut processor = tk::processors::roberta::RobertaProcessing::new(sep, cls); processor = processor.trim_offsets(trim_offsets); processor = processor.add_prefix_space(add_prefix_space); Ok(Processor { processor: Some(Arc::new(RwLock::new(processor.into()))), }) } #[napi] pub fn byte_level_processing(trim_offsets: Option<bool>) -> Result<Processor> { let mut byte_level = tk::processors::byte_level::ByteLevel::default(); if let Some(trim_offsets) = trim_offsets { byte_level = byte_level.trim_offsets(trim_offsets); } Ok(Processor { processor: Some(Arc::new(RwLock::new(byte_level.into()))), }) } #[napi] pub fn template_processing( single: String, pair: Option<String>, special_tokens: Option<Vec<(String, u32)>>, ) -> Result<Processor> { let special_tokens = special_tokens.unwrap_or_default(); let mut builder = tk::processors::template::TemplateProcessing::builder(); builder.try_single(single).map_err(Error::from_reason)?; builder.special_tokens(special_tokens); if let Some(pair) = pair { builder.try_pair(pair).map_err(Error::from_reason)?; } let processor = builder .build() .map_err(|e| Error::from_reason(e.to_string()))?; Ok(Processor { processor: Some(Arc::new(RwLock::new(processor.into()))), }) } #[napi] pub fn sequence_processing(processors: Vec<&Processor>) -> Processor { let sequence: Vec<tk::PostProcessorWrapper> = processors .into_iter() .filter_map(|processor| { processor .processor .as_ref() .map(|processor| (**processor).read().unwrap().clone()) }) .clone() .collect(); Processor { processor: Some(Arc::new(RwLock::new(PostProcessorWrapper::Sequence( tk::processors::sequence::Sequence::new(sequence), )))), } }
tokenizers/bindings/node/src/processors.rs/0
{ "file_path": "tokenizers/bindings/node/src/processors.rs", "repo_id": "tokenizers", "token_count": 1336 }
200
<p align="center"> <br> <img src="https://huggingface.co/landing/assets/tokenizers/tokenizers-logo.png" width="600"/> <br> <p> <p align="center"> <a href="https://badge.fury.io/py/tokenizers"> <img alt="Build" src="https://badge.fury.io/py/tokenizers.svg"> </a> <a href="https://github.com/huggingface/tokenizers/blob/master/LICENSE"> <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/tokenizers.svg?color=blue"> </a> </p> <br> # Tokenizers Provides an implementation of today's most used tokenizers, with a focus on performance and versatility. Bindings over the [Rust](https://github.com/huggingface/tokenizers/tree/master/tokenizers) implementation. If you are interested in the High-level design, you can go check it there. Otherwise, let's dive in! ## Main features: - Train new vocabularies and tokenize using 4 pre-made tokenizers (Bert WordPiece and the 3 most common BPE versions). - Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes less than 20 seconds to tokenize a GB of text on a server's CPU. - Easy to use, but also extremely versatile. - Designed for research and production. - Normalization comes with alignments tracking. It's always possible to get the part of the original sentence that corresponds to a given token. - Does all the pre-processing: Truncate, Pad, add the special tokens your model needs. ### Installation #### With pip: ```bash pip install tokenizers ``` #### From sources: To use this method, you need to have the Rust installed: ```bash # Install with: curl https://sh.rustup.rs -sSf | sh -s -- -y export PATH="$HOME/.cargo/bin:$PATH" ``` Once Rust is installed, you can compile doing the following ```bash git clone https://github.com/huggingface/tokenizers cd tokenizers/bindings/python # Create a virtual env (you can use yours as well) python -m venv .env source .env/bin/activate # Install `tokenizers` in the current virtual env pip install -e . ``` ### Load a pretrained tokenizer from the Hub ```python from tokenizers import Tokenizer tokenizer = Tokenizer.from_pretrained("bert-base-cased") ``` ### Using the provided Tokenizers We provide some pre-build tokenizers to cover the most common cases. You can easily load one of these using some `vocab.json` and `merges.txt` files: ```python from tokenizers import CharBPETokenizer # Initialize a tokenizer vocab = "./path/to/vocab.json" merges = "./path/to/merges.txt" tokenizer = CharBPETokenizer(vocab, merges) # And then encode: encoded = tokenizer.encode("I can feel the magic, can you?") print(encoded.ids) print(encoded.tokens) ``` And you can train them just as simply: ```python from tokenizers import CharBPETokenizer # Initialize a tokenizer tokenizer = CharBPETokenizer() # Then train it! tokenizer.train([ "./path/to/files/1.txt", "./path/to/files/2.txt" ]) # Now, let's use it: encoded = tokenizer.encode("I can feel the magic, can you?") # And finally save it somewhere tokenizer.save("./path/to/directory/my-bpe.tokenizer.json") ``` #### Provided Tokenizers - `CharBPETokenizer`: The original BPE - `ByteLevelBPETokenizer`: The byte level version of the BPE - `SentencePieceBPETokenizer`: A BPE implementation compatible with the one used by SentencePiece - `BertWordPieceTokenizer`: The famous Bert tokenizer, using WordPiece All of these can be used and trained as explained above! ### Build your own Whenever these provided tokenizers don't give you enough freedom, you can build your own tokenizer, by putting all the different parts you need together. You can check how we implemented the [provided tokenizers](https://github.com/huggingface/tokenizers/tree/master/bindings/python/py_src/tokenizers/implementations) and adapt them easily to your own needs. #### Building a byte-level BPE Here is an example showing how to build your own byte-level BPE by putting all the different pieces together, and then saving it to a single file: ```python from tokenizers import Tokenizer, models, pre_tokenizers, decoders, trainers, processors # Initialize a tokenizer tokenizer = Tokenizer(models.BPE()) # Customize pre-tokenization and decoding tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=True) tokenizer.decoder = decoders.ByteLevel() tokenizer.post_processor = processors.ByteLevel(trim_offsets=True) # And then train trainer = trainers.BpeTrainer( vocab_size=20000, min_frequency=2, initial_alphabet=pre_tokenizers.ByteLevel.alphabet() ) tokenizer.train([ "./path/to/dataset/1.txt", "./path/to/dataset/2.txt", "./path/to/dataset/3.txt" ], trainer=trainer) # And Save it tokenizer.save("byte-level-bpe.tokenizer.json", pretty=True) ``` Now, when you want to use this tokenizer, this is as simple as: ```python from tokenizers import Tokenizer tokenizer = Tokenizer.from_file("byte-level-bpe.tokenizer.json") encoded = tokenizer.encode("I can feel the magic, can you?") ```
tokenizers/bindings/python/README.md/0
{ "file_path": "tokenizers/bindings/python/README.md", "repo_id": "tokenizers", "token_count": 1621 }
201
from typing import Dict, Iterator, List, Optional, Tuple, Union from .. import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers from ..models import BPE from ..normalizers import BertNormalizer, Lowercase, Sequence, unicode_normalizer_from_str from .base_tokenizer import BaseTokenizer class CharBPETokenizer(BaseTokenizer): """Original BPE Tokenizer Represents the BPE algorithm, as introduced by Rico Sennrich (https://arxiv.org/abs/1508.07909) The defaults settings corresponds to OpenAI GPT BPE tokenizers and differs from the original Sennrich subword-nmt implementation by the following options that you can deactivate: - adding a normalizer to clean up the text (deactivate with `bert_normalizer=False`) by: * removing any control characters and replacing all whitespaces by the classic one. * handle chinese chars by putting spaces around them. * strip all accents. - spitting on punctuation in addition to whitespaces (deactivate it with `split_on_whitespace_only=True`) """ def __init__( self, vocab: Optional[Union[str, Dict[str, int]]] = None, merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None, unk_token: Union[str, AddedToken] = "<unk>", suffix: str = "</w>", dropout: Optional[float] = None, lowercase: bool = False, unicode_normalizer: Optional[str] = None, bert_normalizer: bool = True, split_on_whitespace_only: bool = False, ): if vocab is not None and merges is not None: tokenizer = Tokenizer( BPE( vocab, merges, dropout=dropout, unk_token=str(unk_token), end_of_word_suffix=suffix, ) ) else: tokenizer = Tokenizer(BPE(unk_token=str(unk_token), dropout=dropout, end_of_word_suffix=suffix)) if tokenizer.token_to_id(str(unk_token)) is not None: tokenizer.add_special_tokens([str(unk_token)]) # Check for Unicode normalization first (before everything else) normalizers = [] if unicode_normalizer: normalizers += [unicode_normalizer_from_str(unicode_normalizer)] if bert_normalizer: normalizers += [BertNormalizer(lowercase=False)] if lowercase: normalizers += [Lowercase()] # Create the normalizer structure if len(normalizers) > 0: if len(normalizers) > 1: tokenizer.normalizer = Sequence(normalizers) else: tokenizer.normalizer = normalizers[0] if split_on_whitespace_only: tokenizer.pre_tokenizer = pre_tokenizers.WhitespaceSplit() else: tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() tokenizer.decoder = decoders.BPEDecoder(suffix=suffix) parameters = { "model": "BPE", "unk_token": unk_token, "suffix": suffix, "dropout": dropout, "lowercase": lowercase, "unicode_normalizer": unicode_normalizer, "bert_normalizer": bert_normalizer, "split_on_whitespace_only": split_on_whitespace_only, } super().__init__(tokenizer, parameters) @staticmethod def from_file(vocab_filename: str, merges_filename: str, **kwargs): vocab, merges = BPE.read_file(vocab_filename, merges_filename) return CharBPETokenizer(vocab, merges, **kwargs) def train( self, files: Union[str, List[str]], vocab_size: int = 30000, min_frequency: int = 2, special_tokens: List[Union[str, AddedToken]] = ["<unk>"], limit_alphabet: int = 1000, initial_alphabet: List[str] = [], suffix: Optional[str] = "</w>", show_progress: bool = True, ): """Train the model using the given files""" trainer = trainers.BpeTrainer( vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, end_of_word_suffix=suffix, show_progress=show_progress, ) if isinstance(files, str): files = [files] self._tokenizer.train(files, trainer=trainer) def train_from_iterator( self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int = 30000, min_frequency: int = 2, special_tokens: List[Union[str, AddedToken]] = ["<unk>"], limit_alphabet: int = 1000, initial_alphabet: List[str] = [], suffix: Optional[str] = "</w>", show_progress: bool = True, length: Optional[int] = None, ): """Train the model using the given iterator""" trainer = trainers.BpeTrainer( vocab_size=vocab_size, min_frequency=min_frequency, special_tokens=special_tokens, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, end_of_word_suffix=suffix, show_progress=show_progress, ) self._tokenizer.train_from_iterator( iterator, trainer=trainer, length=length, )
tokenizers/bindings/python/py_src/tokenizers/implementations/char_level_bpe.py/0
{ "file_path": "tokenizers/bindings/python/py_src/tokenizers/implementations/char_level_bpe.py", "repo_id": "tokenizers", "token_count": 2509 }
202
[project] name = 'tokenizers' requires-python = '>=3.7' authors = [ {name = 'Nicolas Patry', email = 'patry.nicolas@protonmail.com'}, {name = 'Anthony Moi', email = 'anthony@huggingface.co'} ] classifiers = [ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "Topic :: Scientific/Engineering :: Artificial Intelligence", ] keywords = ["NLP", "tokenizer", "BPE", "transformer", "deep learning"] dynamic = [ 'description', 'license', 'readme', ] dependencies = ["huggingface_hub>=0.16.4,<1.0"] [project.urls] Homepage = 'https://github.com/huggingface/tokenizers' Source = 'https://github.com/huggingface/tokenizers' [project.optional-dependencies] testing = ["pytest", "requests", "numpy", "datasets", "black==22.3"] docs = ["sphinx", "sphinx_rtd_theme", "setuptools_rust"] dev = ["tokenizers[testing]"] [build-system] requires = ["maturin>=1.0,<2.0"] build-backend = "maturin" [tool.maturin] python-source = "py_src" module-name = "tokenizers.tokenizers" bindings = 'pyo3' features = ["pyo3/extension-module"] [tool.black] line-length = 119 target-version = ['py35']
tokenizers/bindings/python/pyproject.toml/0
{ "file_path": "tokenizers/bindings/python/pyproject.toml", "repo_id": "tokenizers", "token_count": 554 }
203
use std::sync::{Arc, RwLock}; use crate::models::PyModel; use crate::tokenizer::PyAddedToken; use crate::utils::PyChar; use pyo3::exceptions; use pyo3::prelude::*; use pyo3::types::*; use serde::{Deserialize, Serialize}; use tk::models::TrainerWrapper; use tk::Trainer; use tokenizers as tk; /// Base class for all trainers /// /// This class is not supposed to be instantiated directly. Instead, any implementation of a /// Trainer will return an instance of this class when instantiated. #[pyclass(module = "tokenizers.trainers", name = "Trainer", subclass)] #[derive(Clone, Deserialize, Serialize)] pub struct PyTrainer { #[serde(flatten)] pub trainer: Arc<RwLock<TrainerWrapper>>, } impl PyTrainer { #[cfg(test)] pub(crate) fn new(trainer: Arc<RwLock<TrainerWrapper>>) -> Self { PyTrainer { trainer } } pub(crate) fn get_as_subtype(&self, py: Python<'_>) -> PyResult<PyObject> { let base = self.clone(); Ok(match *self.trainer.as_ref().read().unwrap() { TrainerWrapper::BpeTrainer(_) => Py::new(py, (PyBpeTrainer {}, base))?.into_py(py), TrainerWrapper::WordPieceTrainer(_) => { Py::new(py, (PyWordPieceTrainer {}, base))?.into_py(py) } TrainerWrapper::WordLevelTrainer(_) => { Py::new(py, (PyWordLevelTrainer {}, base))?.into_py(py) } TrainerWrapper::UnigramTrainer(_) => { Py::new(py, (PyUnigramTrainer {}, base))?.into_py(py) } }) } } #[pymethods] impl PyTrainer { fn __getstate__(&self, py: Python) -> PyResult<PyObject> { let data = serde_json::to_string(&self.trainer).map_err(|e| { exceptions::PyException::new_err(format!( "Error while attempting to pickle PyTrainer: {}", e )) })?; Ok(PyBytes::new(py, data.as_bytes()).to_object(py)) } fn __setstate__(&mut self, py: Python, state: PyObject) -> PyResult<()> { match state.extract::<&PyBytes>(py) { Ok(s) => { let unpickled = serde_json::from_slice(s.as_bytes()).map_err(|e| { exceptions::PyException::new_err(format!( "Error while attempting to unpickle PyTrainer: {}", e )) })?; self.trainer = unpickled; Ok(()) } Err(e) => Err(e), } } } impl Trainer for PyTrainer { type Model = PyModel; fn should_show_progress(&self) -> bool { self.trainer.read().unwrap().should_show_progress() } fn train(&self, model: &mut PyModel) -> tk::Result<Vec<tk::AddedToken>> { self.trainer .read() .unwrap() .train(&mut model.model.write().unwrap()) } fn feed<I, S, F>(&mut self, iterator: I, process: F) -> tk::Result<()> where I: Iterator<Item = S> + Send, S: AsRef<str> + Send, F: Fn(&str) -> tk::Result<Vec<String>> + Sync, { self.trainer.write().unwrap().feed(iterator, process) } } impl<I> From<I> for PyTrainer where I: Into<TrainerWrapper>, { fn from(trainer: I) -> Self { PyTrainer { trainer: Arc::new(RwLock::new(trainer.into())), } } } macro_rules! getter { ($self: ident, $variant: ident, $($name: tt)+) => {{ let super_ = $self.as_ref(); if let TrainerWrapper::$variant(ref trainer) = *super_.trainer.read().unwrap() { trainer.$($name)+ } else { unreachable!() } }}; } macro_rules! setter { ($self: ident, $variant: ident, $name: ident, $value: expr) => {{ let super_ = $self.as_ref(); if let TrainerWrapper::$variant(ref mut trainer) = *super_.trainer.write().unwrap() { trainer.$name = $value; } }}; ($self: ident, $variant: ident, @$name: ident, $value: expr) => {{ let super_ = $self.as_ref(); if let TrainerWrapper::$variant(ref mut trainer) = *super_.trainer.write().unwrap() { trainer.$name($value); } }}; } /// Trainer capable of training a BPE model /// /// Args: /// vocab_size (:obj:`int`, `optional`): /// The size of the final vocabulary, including all tokens and alphabet. /// /// min_frequency (:obj:`int`, `optional`): /// The minimum frequency a pair should have in order to be merged. /// /// show_progress (:obj:`bool`, `optional`): /// Whether to show progress bars while training. /// /// special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`): /// A list of special tokens the model should know of. /// /// limit_alphabet (:obj:`int`, `optional`): /// The maximum different characters to keep in the alphabet. /// /// initial_alphabet (:obj:`List[str]`, `optional`): /// A list of characters to include in the initial alphabet, even /// if not seen in the training dataset. /// If the strings contain more than one character, only the first one /// is kept. /// /// continuing_subword_prefix (:obj:`str`, `optional`): /// A prefix to be used for every subword that is not a beginning-of-word. /// /// end_of_word_suffix (:obj:`str`, `optional`): /// A suffix to be used for every subword that is a end-of-word. /// /// max_token_length (:obj:`int`, `optional`): /// Prevents creating tokens longer than the specified size. /// This can help with reducing polluting your vocabulary with /// highly repetitive tokens like `======` for wikipedia /// #[pyclass(extends=PyTrainer, module = "tokenizers.trainers", name = "BpeTrainer")] pub struct PyBpeTrainer {} #[pymethods] impl PyBpeTrainer { #[getter] fn get_vocab_size(self_: PyRef<Self>) -> usize { getter!(self_, BpeTrainer, vocab_size) } #[setter] fn set_vocab_size(self_: PyRef<Self>, vocab_size: usize) { setter!(self_, BpeTrainer, vocab_size, vocab_size); } #[getter] fn get_min_frequency(self_: PyRef<Self>) -> u32 { getter!(self_, BpeTrainer, min_frequency) } #[setter] fn set_min_frequency(self_: PyRef<Self>, freq: u32) { setter!(self_, BpeTrainer, min_frequency, freq); } #[getter] fn get_show_progress(self_: PyRef<Self>) -> bool { getter!(self_, BpeTrainer, show_progress) } #[setter] fn set_show_progress(self_: PyRef<Self>, show_progress: bool) { setter!(self_, BpeTrainer, show_progress, show_progress); } #[getter] fn get_special_tokens(self_: PyRef<Self>) -> Vec<PyAddedToken> { getter!( self_, BpeTrainer, special_tokens .iter() .map(|tok| tok.clone().into()) .collect() ) } #[setter] fn set_special_tokens(self_: PyRef<Self>, special_tokens: &PyList) -> PyResult<()> { setter!( self_, BpeTrainer, special_tokens, special_tokens .into_iter() .map(|token| { if let Ok(content) = token.extract::<String>() { Ok(tk::tokenizer::AddedToken::from(content, true)) } else if let Ok(mut token) = token.extract::<PyRefMut<PyAddedToken>>() { token.special = true; Ok(token.get_token()) } else { Err(exceptions::PyTypeError::new_err( "Special tokens must be a List[Union[str, AddedToken]]", )) } }) .collect::<PyResult<Vec<_>>>()? ); Ok(()) } #[getter] fn get_limit_alphabet(self_: PyRef<Self>) -> Option<usize> { getter!(self_, BpeTrainer, limit_alphabet) } #[setter] fn set_limit_alphabet(self_: PyRef<Self>, limit: Option<usize>) { setter!(self_, BpeTrainer, limit_alphabet, limit); } #[getter] fn get_max_token_length(self_: PyRef<Self>) -> Option<usize> { getter!(self_, BpeTrainer, max_token_length) } #[setter] fn set_max_token_length(self_: PyRef<Self>, limit: Option<usize>) { setter!(self_, BpeTrainer, max_token_length, limit); } #[getter] fn get_initial_alphabet(self_: PyRef<Self>) -> Vec<String> { getter!( self_, BpeTrainer, initial_alphabet.iter().map(|c| c.to_string()).collect() ) } #[setter] fn set_initial_alphabet(self_: PyRef<Self>, alphabet: Vec<PyChar>) { setter!( self_, BpeTrainer, initial_alphabet, alphabet.into_iter().map(|c| c.0).collect() ); } #[getter] fn get_continuing_subword_prefix(self_: PyRef<Self>) -> Option<String> { getter!(self_, BpeTrainer, continuing_subword_prefix.clone()) } #[setter] fn set_continuing_subword_prefix(self_: PyRef<Self>, prefix: Option<String>) { setter!(self_, BpeTrainer, continuing_subword_prefix, prefix); } #[getter] fn get_end_of_word_suffix(self_: PyRef<Self>) -> Option<String> { getter!(self_, BpeTrainer, end_of_word_suffix.clone()) } #[setter] fn set_end_of_word_suffix(self_: PyRef<Self>, suffix: Option<String>) { setter!(self_, BpeTrainer, end_of_word_suffix, suffix); } #[new] #[pyo3(signature = (**kwargs), text_signature = None)] pub fn new(kwargs: Option<&PyDict>) -> PyResult<(Self, PyTrainer)> { let mut builder = tk::models::bpe::BpeTrainer::builder(); if let Some(kwargs) = kwargs { for (key, val) in kwargs { let key: &str = key.extract()?; match key { "vocab_size" => builder = builder.vocab_size(val.extract()?), "min_frequency" => builder = builder.min_frequency(val.extract()?), "show_progress" => builder = builder.show_progress(val.extract()?), "special_tokens" => { builder = builder.special_tokens( val.downcast::<PyList>()? .into_iter() .map(|token| { if let Ok(content) = token.extract::<String>() { Ok(PyAddedToken::from(content, Some(true)).get_token()) } else if let Ok(mut token) = token.extract::<PyRefMut<PyAddedToken>>() { token.special = true; Ok(token.get_token()) } else { Err(exceptions::PyTypeError::new_err( "special_tokens must be a List[Union[str, AddedToken]]", )) } }) .collect::<PyResult<Vec<_>>>()?, ); } "limit_alphabet" => builder = builder.limit_alphabet(val.extract()?), "max_token_length" => builder = builder.max_token_length(val.extract()?), "initial_alphabet" => { let alphabet: Vec<String> = val.extract()?; builder = builder.initial_alphabet( alphabet .into_iter() .filter_map(|s| s.chars().next()) .collect(), ); } "continuing_subword_prefix" => { builder = builder.continuing_subword_prefix(val.extract()?) } "end_of_word_suffix" => builder = builder.end_of_word_suffix(val.extract()?), _ => println!("Ignored unknown kwargs option {}", key), }; } } Ok((PyBpeTrainer {}, builder.build().into())) } } /// Trainer capable of training a WordPiece model /// /// Args: /// vocab_size (:obj:`int`, `optional`): /// The size of the final vocabulary, including all tokens and alphabet. /// /// min_frequency (:obj:`int`, `optional`): /// The minimum frequency a pair should have in order to be merged. /// /// show_progress (:obj:`bool`, `optional`): /// Whether to show progress bars while training. /// /// special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`): /// A list of special tokens the model should know of. /// /// limit_alphabet (:obj:`int`, `optional`): /// The maximum different characters to keep in the alphabet. /// /// initial_alphabet (:obj:`List[str]`, `optional`): /// A list of characters to include in the initial alphabet, even /// if not seen in the training dataset. /// If the strings contain more than one character, only the first one /// is kept. /// /// continuing_subword_prefix (:obj:`str`, `optional`): /// A prefix to be used for every subword that is not a beginning-of-word. /// /// end_of_word_suffix (:obj:`str`, `optional`): /// A suffix to be used for every subword that is a end-of-word. #[pyclass(extends=PyTrainer, module = "tokenizers.trainers", name = "WordPieceTrainer")] pub struct PyWordPieceTrainer {} #[pymethods] impl PyWordPieceTrainer { #[getter] fn get_vocab_size(self_: PyRef<Self>) -> usize { getter!(self_, WordPieceTrainer, vocab_size()) } #[setter] fn set_vocab_size(self_: PyRef<Self>, vocab_size: usize) { setter!(self_, WordPieceTrainer, @set_vocab_size, vocab_size); } #[getter] fn get_min_frequency(self_: PyRef<Self>) -> u32 { getter!(self_, WordPieceTrainer, min_frequency()) } #[setter] fn set_min_frequency(self_: PyRef<Self>, freq: u32) { setter!(self_, WordPieceTrainer, @set_min_frequency, freq); } #[getter] fn get_show_progress(self_: PyRef<Self>) -> bool { getter!(self_, WordPieceTrainer, show_progress()) } #[setter] fn set_show_progress(self_: PyRef<Self>, show_progress: bool) { setter!(self_, WordPieceTrainer, @set_show_progress, show_progress); } #[getter] fn get_special_tokens(self_: PyRef<Self>) -> Vec<PyAddedToken> { getter!( self_, WordPieceTrainer, special_tokens() .iter() .map(|tok| tok.clone().into()) .collect() ) } #[setter] fn set_special_tokens(self_: PyRef<Self>, special_tokens: &PyList) -> PyResult<()> { setter!( self_, WordPieceTrainer, @set_special_tokens, special_tokens .into_iter() .map(|token| { if let Ok(content) = token.extract::<String>() { Ok(tk::tokenizer::AddedToken::from(content, true)) } else if let Ok(mut token) = token.extract::<PyRefMut<PyAddedToken>>() { token.special = true; Ok(token.get_token()) } else { Err(exceptions::PyTypeError::new_err( "Special tokens must be a List[Union[str, AddedToken]]", )) } }) .collect::<PyResult<Vec<_>>>()? ); Ok(()) } #[getter] fn get_limit_alphabet(self_: PyRef<Self>) -> Option<usize> { getter!(self_, WordPieceTrainer, limit_alphabet()) } #[setter] fn set_limit_alphabet(self_: PyRef<Self>, limit: Option<usize>) { setter!(self_, WordPieceTrainer, @set_limit_alphabet, limit); } #[getter] fn get_initial_alphabet(self_: PyRef<Self>) -> Vec<String> { getter!( self_, WordPieceTrainer, initial_alphabet().iter().map(|c| c.to_string()).collect() ) } #[setter] fn set_initial_alphabet(self_: PyRef<Self>, alphabet: Vec<PyChar>) { setter!( self_, WordPieceTrainer, @set_initial_alphabet, alphabet.into_iter().map(|c| c.0).collect() ); } #[getter] fn get_continuing_subword_prefix(self_: PyRef<Self>) -> Option<String> { getter!(self_, WordPieceTrainer, continuing_subword_prefix().clone()) } #[setter] fn set_continuing_subword_prefix(self_: PyRef<Self>, prefix: Option<String>) { setter!(self_, WordPieceTrainer, @set_continuing_subword_prefix, prefix); } #[getter] fn get_end_of_word_suffix(self_: PyRef<Self>) -> Option<String> { getter!(self_, WordPieceTrainer, end_of_word_suffix().clone()) } #[setter] fn set_end_of_word_suffix(self_: PyRef<Self>, suffix: Option<String>) { setter!(self_, WordPieceTrainer, @set_end_of_word_suffix, suffix); } #[new] #[pyo3( signature = (** kwargs), text_signature = "(self, vocab_size=30000, min_frequency=0, show_progress=True, special_tokens=[], limit_alphabet=None, initial_alphabet= [],continuing_subword_prefix=\"##\", end_of_word_suffix=None)" )] pub fn new(kwargs: Option<&PyDict>) -> PyResult<(Self, PyTrainer)> { let mut builder = tk::models::wordpiece::WordPieceTrainer::builder(); if let Some(kwargs) = kwargs { for (key, val) in kwargs { let key: &str = key.extract()?; match key { "vocab_size" => builder = builder.vocab_size(val.extract()?), "min_frequency" => builder = builder.min_frequency(val.extract()?), "show_progress" => builder = builder.show_progress(val.extract()?), "special_tokens" => { builder = builder.special_tokens( val.downcast::<PyList>()? .into_iter() .map(|token| { if let Ok(content) = token.extract::<String>() { Ok(PyAddedToken::from(content, Some(true)).get_token()) } else if let Ok(mut token) = token.extract::<PyRefMut<PyAddedToken>>() { token.special = true; Ok(token.get_token()) } else { Err(exceptions::PyTypeError::new_err( "special_tokens must be a List[Union[str, AddedToken]]", )) } }) .collect::<PyResult<Vec<_>>>()?, ); } "limit_alphabet" => builder = builder.limit_alphabet(val.extract()?), "initial_alphabet" => { let alphabet: Vec<String> = val.extract()?; builder = builder.initial_alphabet( alphabet .into_iter() .filter_map(|s| s.chars().next()) .collect(), ); } "continuing_subword_prefix" => { builder = builder.continuing_subword_prefix(val.extract()?) } "end_of_word_suffix" => builder = builder.end_of_word_suffix(val.extract()?), _ => println!("Ignored unknown kwargs option {}", key), }; } } Ok((PyWordPieceTrainer {}, builder.build().into())) } } /// Trainer capable of training a WorldLevel model /// /// Args: /// vocab_size (:obj:`int`, `optional`): /// The size of the final vocabulary, including all tokens and alphabet. /// /// min_frequency (:obj:`int`, `optional`): /// The minimum frequency a pair should have in order to be merged. /// /// show_progress (:obj:`bool`, `optional`): /// Whether to show progress bars while training. /// /// special_tokens (:obj:`List[Union[str, AddedToken]]`): /// A list of special tokens the model should know of. #[pyclass(extends=PyTrainer, module = "tokenizers.trainers", name = "WordLevelTrainer")] pub struct PyWordLevelTrainer {} #[pymethods] impl PyWordLevelTrainer { #[getter] fn get_vocab_size(self_: PyRef<Self>) -> usize { getter!(self_, WordLevelTrainer, vocab_size) } #[setter] fn set_vocab_size(self_: PyRef<Self>, vocab_size: usize) { setter!(self_, WordLevelTrainer, vocab_size, vocab_size); } #[getter] fn get_min_frequency(self_: PyRef<Self>) -> u32 { getter!(self_, WordLevelTrainer, min_frequency) } #[setter] fn set_min_frequency(self_: PyRef<Self>, freq: u32) { setter!(self_, WordLevelTrainer, min_frequency, freq); } #[getter] fn get_show_progress(self_: PyRef<Self>) -> bool { getter!(self_, WordLevelTrainer, show_progress) } #[setter] fn set_show_progress(self_: PyRef<Self>, show_progress: bool) { setter!(self_, WordLevelTrainer, show_progress, show_progress); } #[getter] fn get_special_tokens(self_: PyRef<Self>) -> Vec<PyAddedToken> { getter!( self_, WordLevelTrainer, special_tokens .iter() .map(|tok| tok.clone().into()) .collect() ) } #[setter] fn set_special_tokens(self_: PyRef<Self>, special_tokens: &PyList) -> PyResult<()> { setter!( self_, WordLevelTrainer, special_tokens, special_tokens .into_iter() .map(|token| { if let Ok(content) = token.extract::<String>() { Ok(tk::tokenizer::AddedToken::from(content, true)) } else if let Ok(mut token) = token.extract::<PyRefMut<PyAddedToken>>() { token.special = true; Ok(token.get_token()) } else { Err(exceptions::PyTypeError::new_err( "Special tokens must be a List[Union[str, AddedToken]]", )) } }) .collect::<PyResult<Vec<_>>>()? ); Ok(()) } #[new] #[pyo3(signature = (**kwargs), text_signature = None)] pub fn new(kwargs: Option<&PyDict>) -> PyResult<(Self, PyTrainer)> { let mut builder = tk::models::wordlevel::WordLevelTrainer::builder(); if let Some(kwargs) = kwargs { for (key, val) in kwargs { let key: &str = key.extract()?; match key { "vocab_size" => { builder.vocab_size(val.extract()?); } "min_frequency" => { builder.min_frequency(val.extract()?); } "show_progress" => { builder.show_progress(val.extract()?); } "special_tokens" => { builder.special_tokens( val.downcast::<PyList>()? .into_iter() .map(|token| { if let Ok(content) = token.extract::<String>() { Ok(PyAddedToken::from(content, Some(true)).get_token()) } else if let Ok(mut token) = token.extract::<PyRefMut<PyAddedToken>>() { token.special = true; Ok(token.get_token()) } else { Err(exceptions::PyTypeError::new_err( "special_tokens must be a List[Union[str, AddedToken]]", )) } }) .collect::<PyResult<Vec<_>>>()?, ); } _ => println!("Ignored unknown kwargs option {}", key), } } } Ok(( PyWordLevelTrainer {}, builder .build() .expect("WordLevelTrainerBuilder cannot fail") .into(), )) } } /// Trainer capable of training a Unigram model /// /// Args: /// vocab_size (:obj:`int`): /// The size of the final vocabulary, including all tokens and alphabet. /// /// show_progress (:obj:`bool`): /// Whether to show progress bars while training. /// /// special_tokens (:obj:`List[Union[str, AddedToken]]`): /// A list of special tokens the model should know of. /// /// initial_alphabet (:obj:`List[str]`): /// A list of characters to include in the initial alphabet, even /// if not seen in the training dataset. /// If the strings contain more than one character, only the first one /// is kept. /// /// shrinking_factor (:obj:`float`): /// The shrinking factor used at each step of the training to prune the /// vocabulary. /// /// unk_token (:obj:`str`): /// The token used for out-of-vocabulary tokens. /// /// max_piece_length (:obj:`int`): /// The maximum length of a given token. /// /// n_sub_iterations (:obj:`int`): /// The number of iterations of the EM algorithm to perform before /// pruning the vocabulary. #[pyclass(extends=PyTrainer, module = "tokenizers.trainers", name = "UnigramTrainer")] pub struct PyUnigramTrainer {} #[pymethods] impl PyUnigramTrainer { #[getter] fn get_vocab_size(self_: PyRef<Self>) -> u32 { getter!(self_, UnigramTrainer, vocab_size) } #[setter] fn set_vocab_size(self_: PyRef<Self>, vocab_size: u32) { setter!(self_, UnigramTrainer, vocab_size, vocab_size); } #[getter] fn get_show_progress(self_: PyRef<Self>) -> bool { getter!(self_, UnigramTrainer, show_progress) } #[setter] fn set_show_progress(self_: PyRef<Self>, show_progress: bool) { setter!(self_, UnigramTrainer, show_progress, show_progress); } #[getter] fn get_special_tokens(self_: PyRef<Self>) -> Vec<PyAddedToken> { getter!( self_, UnigramTrainer, special_tokens .iter() .map(|tok| tok.clone().into()) .collect() ) } #[setter] fn set_special_tokens(self_: PyRef<Self>, special_tokens: &PyList) -> PyResult<()> { setter!( self_, UnigramTrainer, special_tokens, special_tokens .into_iter() .map(|token| { if let Ok(content) = token.extract::<String>() { Ok(tk::tokenizer::AddedToken::from(content, true)) } else if let Ok(mut token) = token.extract::<PyRefMut<PyAddedToken>>() { token.special = true; Ok(token.get_token()) } else { Err(exceptions::PyTypeError::new_err( "Special tokens must be a List[Union[str, AddedToken]]", )) } }) .collect::<PyResult<Vec<_>>>()? ); Ok(()) } #[getter] fn get_initial_alphabet(self_: PyRef<Self>) -> Vec<String> { getter!( self_, UnigramTrainer, initial_alphabet.iter().map(|c| c.to_string()).collect() ) } #[setter] fn set_initial_alphabet(self_: PyRef<Self>, alphabet: Vec<PyChar>) { setter!( self_, UnigramTrainer, initial_alphabet, alphabet.into_iter().map(|c| c.0).collect() ); } #[new] #[pyo3( signature = (**kwargs), text_signature = "(self, vocab_size=8000, show_progress=True, special_tokens=[], shrinking_factor=0.75, unk_token=None, max_piece_length=16, n_sub_iterations=2)" )] pub fn new(kwargs: Option<&PyDict>) -> PyResult<(Self, PyTrainer)> { let mut builder = tk::models::unigram::UnigramTrainer::builder(); if let Some(kwargs) = kwargs { for (key, val) in kwargs { let key: &str = key.extract()?; match key { "vocab_size" => builder.vocab_size(val.extract()?), "show_progress" => builder.show_progress(val.extract()?), "n_sub_iterations" => builder.n_sub_iterations(val.extract()?), "shrinking_factor" => builder.shrinking_factor(val.extract()?), "unk_token" => builder.unk_token(val.extract()?), "max_piece_length" => builder.max_piece_length(val.extract()?), "seed_size" => builder.seed_size(val.extract()?), "initial_alphabet" => { let alphabet: Vec<String> = val.extract()?; builder.initial_alphabet( alphabet .into_iter() .filter_map(|s| s.chars().next()) .collect(), ) } "special_tokens" => builder.special_tokens( val.downcast::<PyList>()? .into_iter() .map(|token| { if let Ok(content) = token.extract::<String>() { Ok(PyAddedToken::from(content, Some(true)).get_token()) } else if let Ok(mut token) = token.extract::<PyRefMut<PyAddedToken>>() { token.special = true; Ok(token.get_token()) } else { Err(exceptions::PyTypeError::new_err( "special_tokens must be a List[Union[str, AddedToken]]", )) } }) .collect::<PyResult<Vec<_>>>()?, ), _ => { println!("Ignored unknown kwargs option {}", key); &mut builder } }; } } let trainer: tokenizers::models::unigram::UnigramTrainer = builder.build().map_err(|e| { exceptions::PyException::new_err(format!("Cannot build UnigramTrainer: {}", e)) })?; Ok((PyUnigramTrainer {}, trainer.into())) } } /// Trainers Module #[pymodule] pub fn trainers(_py: Python, m: &PyModule) -> PyResult<()> { m.add_class::<PyTrainer>()?; m.add_class::<PyBpeTrainer>()?; m.add_class::<PyWordPieceTrainer>()?; m.add_class::<PyWordLevelTrainer>()?; m.add_class::<PyUnigramTrainer>()?; Ok(()) } #[cfg(test)] mod tests { use super::*; use tk::models::bpe::trainer::BpeTrainer; #[test] fn get_subtype() { Python::with_gil(|py| { let py_trainer = PyTrainer::new(Arc::new(RwLock::new(BpeTrainer::default().into()))); let py_bpe = py_trainer.get_as_subtype(py).unwrap(); assert_eq!("BpeTrainer", py_bpe.as_ref(py).get_type().name().unwrap()); }) } }
tokenizers/bindings/python/src/trainers.rs/0
{ "file_path": "tokenizers/bindings/python/src/trainers.rs", "repo_id": "tokenizers", "token_count": 17617 }
204
import pickle import numpy as np import pytest from tokenizers import AddedToken, Encoding, Tokenizer from tokenizers.implementations import BertWordPieceTokenizer from tokenizers.models import BPE, Model, WordPiece, Unigram from tokenizers.normalizers import Lowercase from tokenizers.pre_tokenizers import ByteLevel from tokenizers.processors import BertProcessing, RobertaProcessing from ..utils import bert_files, data_dir, multiprocessing_with_parallelism, roberta_files class TestAddedToken: def test_instantiate_with_content_only(self): added_token = AddedToken("<mask>") added_token.content = "<MASK>" assert added_token.content == "<MASK>" assert type(added_token) == AddedToken added_token.content = added_token.content.lower() assert added_token.special == False added_token.special = True assert added_token.special == True added_token.special = False assert str(added_token) == "<mask>" assert ( repr(added_token) == 'AddedToken("<mask>", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False)' ) assert added_token.rstrip == False assert added_token.lstrip == False assert added_token.single_word == False assert added_token.normalized == True assert isinstance(pickle.loads(pickle.dumps(added_token)), AddedToken) def test_can_set_rstrip(self): added_token = AddedToken("<mask>", rstrip=True) assert added_token.rstrip == True assert added_token.lstrip == False assert added_token.single_word == False assert added_token.normalized == True def test_can_set_lstrip(self): added_token = AddedToken("<mask>", lstrip=True) assert added_token.rstrip == False assert added_token.lstrip == True assert added_token.single_word == False assert added_token.normalized == True def test_can_set_single_world(self): added_token = AddedToken("<mask>", single_word=True) assert added_token.rstrip == False assert added_token.lstrip == False assert added_token.single_word == True assert added_token.normalized == True def test_can_set_normalized(self): added_token = AddedToken("<mask>", normalized=False) assert added_token.rstrip == False assert added_token.lstrip == False assert added_token.single_word == False assert added_token.normalized == False class TestTokenizer: def test_has_expected_type_and_methods(self): tokenizer = Tokenizer(BPE()) assert type(tokenizer) == Tokenizer assert callable(tokenizer.num_special_tokens_to_add) assert callable(tokenizer.get_vocab) assert callable(tokenizer.get_vocab_size) assert callable(tokenizer.enable_truncation) assert callable(tokenizer.no_truncation) assert callable(tokenizer.enable_padding) assert callable(tokenizer.no_padding) assert callable(tokenizer.encode) assert callable(tokenizer.encode_batch) assert callable(tokenizer.decode) assert callable(tokenizer.decode_batch) assert callable(tokenizer.token_to_id) assert callable(tokenizer.id_to_token) assert callable(tokenizer.add_tokens) assert callable(tokenizer.add_special_tokens) assert callable(tokenizer.train) assert callable(tokenizer.post_process) assert isinstance(tokenizer.model, Model) assert tokenizer.normalizer is None assert tokenizer.pre_tokenizer is None assert tokenizer.post_processor is None assert tokenizer.decoder is None assert isinstance(pickle.loads(pickle.dumps(Tokenizer(BPE()))), Tokenizer) def test_add_tokens(self): tokenizer = Tokenizer(BPE()) added = tokenizer.add_tokens(["my", "name", "is", "john"]) assert added == 4 tokens = [AddedToken("the"), AddedToken("quick", normalized=False), AddedToken()] assert tokens[0].normalized == True added = tokenizer.add_tokens(tokens) assert added == 2 assert tokens[0].normalized == True assert tokens[1].normalized == False def test_add_special_tokens(self): tokenizer = Tokenizer(BPE()) # Can add special tokens as `str` added = tokenizer.add_special_tokens(["my", "name", "is", "john"]) assert added == 4 # Can add special tokens as `AddedToken` tokens = [AddedToken("the"), AddedToken("quick", normalized=True), AddedToken()] assert tokens[0].normalized == True added = tokenizer.add_special_tokens(tokens) assert added == 2 assert tokens[0].normalized == False assert tokens[1].normalized == True def test_encode(self): tokenizer = Tokenizer(BPE()) tokenizer.add_tokens(["my", "name", "is", "john", "pair"]) # Can encode single sequence output = tokenizer.encode("my name is john") assert output.tokens == ["my", "name", "is", "john"] assert type(output.ids) == list assert type(output.type_ids) == list assert type(output.offsets) == list with pytest.warns(DeprecationWarning): assert type(output.words) == list assert type(output.word_ids) == list assert type(output.special_tokens_mask) == list assert type(output.attention_mask) == list assert type(output.overflowing) == list # Can encode a pair of sequences output = tokenizer.encode("my name is john", "pair") assert output.tokens == ["my", "name", "is", "john", "pair"] assert isinstance(pickle.loads(pickle.dumps(output)), Encoding) # Can encode a single pre-tokenized sequence output = tokenizer.encode(["my", "name", "is", "john"], is_pretokenized=True) assert output.tokens == ["my", "name", "is", "john"] # Can encode a batch with both a single sequence and a pair of sequences output = tokenizer.encode_batch(["my name is john", ("my name is john", "pair")]) assert len(output) == 2 def test_encode_formats(self, bert_files): with pytest.deprecated_call(): tokenizer = BertWordPieceTokenizer(bert_files["vocab"]) # Encode output = tokenizer.encode("my name is john") assert output.tokens == ["[CLS]", "my", "name", "is", "john", "[SEP]"] output = tokenizer.encode("my name is john", "pair") assert output.tokens == ["[CLS]", "my", "name", "is", "john", "[SEP]", "pair", "[SEP]"] output = tokenizer.encode(["my", "name", "is", "john"], is_pretokenized=True) assert output.tokens == ["[CLS]", "my", "name", "is", "john", "[SEP]"] output = tokenizer.encode(["my", "name", "is", "john"], ["pair"], is_pretokenized=True) assert output.tokens == ["[CLS]", "my", "name", "is", "john", "[SEP]", "pair", "[SEP]"] # Encode batch result_single = [ ["[CLS]", "my", "name", "is", "john", "[SEP]"], ["[CLS]", "my", "name", "is", "georges", "[SEP]"], ] result_pair = [ ["[CLS]", "my", "name", "is", "john", "[SEP]", "pair", "[SEP]"], ["[CLS]", "my", "name", "is", "georges", "[SEP]", "pair", "[SEP]"], ] def format(encodings): return [e.tokens for e in encodings] def test_single(input, is_pretokenized=False): output = tokenizer.encode_batch(input, is_pretokenized=is_pretokenized) assert format(output) == result_single def test_pair(input, is_pretokenized=False): output = tokenizer.encode_batch(input, is_pretokenized=is_pretokenized) assert format(output) == result_pair # Classic inputs # Lists test_single(["My name is John", "My name is Georges"]) test_pair([("my name is john", "pair"), ("my name is georges", "pair")]) test_pair([["my name is john", "pair"], ["my name is georges", "pair"]]) # Tuples test_single(("My name is John", "My name is Georges")) test_pair((("My name is John", "pair"), ("My name is Georges", "pair"))) # Numpy test_single(np.array(["My name is John", "My name is Georges"])) test_pair(np.array([("My name is John", "pair"), ("My name is Georges", "pair")])) test_pair(np.array([["My name is John", "pair"], ["My name is Georges", "pair"]])) # PreTokenized inputs # Lists test_single([["My", "name", "is", "John"], ["My", "name", "is", "Georges"]], True) test_pair( [ (["My", "name", "is", "John"], ["pair"]), (["My", "name", "is", "Georges"], ["pair"]), ], True, ) test_pair( [ [["My", "name", "is", "John"], ["pair"]], [["My", "name", "is", "Georges"], ["pair"]], ], True, ) # Tuples test_single((("My", "name", "is", "John"), ("My", "name", "is", "Georges")), True) test_pair( ( (("My", "name", "is", "John"), ("pair",)), (("My", "name", "is", "Georges"), ("pair",)), ), True, ) test_pair( ( (["My", "name", "is", "John"], ["pair"]), (["My", "name", "is", "Georges"], ["pair"]), ), True, ) # Numpy test_single( np.array([["My", "name", "is", "John"], ["My", "name", "is", "Georges"]]), True, ) test_single( np.array((("My", "name", "is", "John"), ("My", "name", "is", "Georges"))), True, ) test_pair( np.array( [ [["My", "name", "is", "John"], ["pair"]], [["My", "name", "is", "Georges"], ["pair"]], ], dtype=object, ), True, ) test_pair( np.array( ( (("My", "name", "is", "John"), ("pair",)), (("My", "name", "is", "Georges"), ("pair",)), ), dtype=object, ), True, ) # Mal formed with pytest.raises(TypeError, match="TextInputSequence must be str"): tokenizer.encode([["my", "name"]]) with pytest.raises(TypeError, match="TextInputSequence must be str"): tokenizer.encode("My name is john", [["pair"]]) with pytest.raises(TypeError, match="TextInputSequence must be str"): tokenizer.encode("my name is john", ["pair"]) with pytest.raises(TypeError, match="InputSequence must be Union[List[str]"): tokenizer.encode("My name is john", is_pretokenized=True) with pytest.raises(TypeError, match="InputSequence must be Union[List[str]"): tokenizer.encode("My name is john", ["pair"], is_pretokenized=True) with pytest.raises(TypeError, match="InputSequence must be Union[List[str]"): tokenizer.encode(["My", "name", "is", "John"], "pair", is_pretokenized=True) def test_encode_add_special_tokens(self, roberta_files): with pytest.deprecated_call(): tokenizer = Tokenizer(BPE(roberta_files["vocab"], roberta_files["merges"])) tokenizer.add_special_tokens(["<s>", "</s>"]) tokenizer.pre_tokenizer = ByteLevel(add_prefix_space=True) tokenizer.post_processor = RobertaProcessing( ("</s>", tokenizer.token_to_id("</s>")), ("<s>", tokenizer.token_to_id("<s>")), ) # Can encode with special tokens output_with_specials = tokenizer.encode("My name is John", add_special_tokens=True) assert output_with_specials.tokens == ["<s>", "ĠMy", "Ġname", "Ġis", "ĠJohn", "</s>"] # Can encode without special tokens output_without_specials = tokenizer.encode("My name is John", add_special_tokens=False) assert output_without_specials.tokens == ["ĠMy", "Ġname", "Ġis", "ĠJohn"] def test_truncation(self): tokenizer = Tokenizer(BPE()) tokenizer.add_tokens(["my", "name", "is", "john", "pair"]) tokenizer.enable_truncation(2) # Can truncate single sequences output = tokenizer.encode("my name is john") assert output.tokens == ["my", "name"] # Can truncate pair sequences as well output = tokenizer.encode("my name is john", "pair") assert output.tokens == ["my", "pair"] # Can get the params and give them to enable_truncation trunc = tokenizer.truncation tokenizer.enable_truncation(**trunc) # Left truncation direction tokenizer.enable_truncation(2, direction="left") output = tokenizer.encode("my name is john") assert output.tokens == ["is", "john"] output = tokenizer.encode("my name is john", "pair") assert output.tokens == ["john", "pair"] def test_padding(self): tokenizer = Tokenizer(BPE()) tokenizer.add_tokens(["my", "name", "is", "john", "pair"]) # By default it does nothing when encoding single sequence tokenizer.enable_padding() output = tokenizer.encode("my name") assert output.tokens == ["my", "name"] # Can pad to the longest in a batch output = tokenizer.encode_batch(["my name", "my name is john"]) assert all([len(encoding) == 4 for encoding in output]) # Can pad to the specified length otherwise tokenizer.enable_padding(length=4) output = tokenizer.encode("my name") assert output.tokens == ["my", "name", "[PAD]", "[PAD]"] output = tokenizer.encode("my name", "pair") assert output.tokens == ["my", "name", "pair", "[PAD]"] # Can get the params and give them to enable_padding padding = tokenizer.padding tokenizer.enable_padding(**padding) def test_decode(self): tokenizer = Tokenizer(BPE()) tokenizer.add_tokens(["my", "name", "is", "john", "pair"]) # Can decode single sequences output = tokenizer.decode([0, 1, 2, 3]) assert output == "my name is john" # Can decode batch output = tokenizer.decode_batch([[0, 1, 2, 3], [4]]) assert output == ["my name is john", "pair"] def test_get_vocab(self): tokenizer = Tokenizer(BPE()) tokenizer.add_tokens(["my", "name", "is", "john", "pair"]) # Can retrieve vocab with added tokens vocab = tokenizer.get_vocab(with_added_tokens=True) assert vocab == {"is": 2, "john": 3, "my": 0, "name": 1, "pair": 4} # Can retrieve vocab without added tokens vocab = tokenizer.get_vocab(with_added_tokens=False) assert vocab == {} # Can retrieve added token decoder vocab = tokenizer.get_added_tokens_decoder() assert vocab == { 0: AddedToken("my", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), 1: AddedToken("name", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), 2: AddedToken("is", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), 3: AddedToken("john", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), 4: AddedToken("pair", rstrip=False, lstrip=False, single_word=False, normalized=True, special=False), } def test_get_vocab_size(self): tokenizer = Tokenizer(BPE()) tokenizer.add_tokens(["my", "name", "is", "john", "pair"]) # Can retrieve vocab's size with added tokens size = tokenizer.get_vocab_size(with_added_tokens=True) assert size == 5 # Can retrieve vocab's size without added tokens size = tokenizer.get_vocab_size(with_added_tokens=False) assert size == 0 def test_post_process(self): tokenizer = Tokenizer(BPE()) tokenizer.add_tokens(["my", "name", "is", "john", "pair"]) tokenizer.enable_truncation(2) tokenizer.enable_padding(length=4) encoding = tokenizer.encode("my name is john") pair_encoding = tokenizer.encode("pair") # Can post process a single encoding output = tokenizer.post_process(encoding) assert output.tokens == ["my", "name", "[PAD]", "[PAD]"] # Can post process a pair of encodings output = tokenizer.post_process(encoding, pair_encoding) assert output.tokens == ["my", "pair", "[PAD]", "[PAD]"] def test_multiprocessing_with_parallelism(self): tokenizer = Tokenizer(BPE()) multiprocessing_with_parallelism(tokenizer, False) multiprocessing_with_parallelism(tokenizer, True) def test_from_pretrained(self): tokenizer = Tokenizer.from_pretrained("bert-base-cased") output = tokenizer.encode("Hey there dear friend!", add_special_tokens=False) assert output.tokens == ["Hey", "there", "dear", "friend", "!"] def test_from_pretrained_revision(self): tokenizer = Tokenizer.from_pretrained("anthony/tokenizers-test") output = tokenizer.encode("Hey there dear friend!", add_special_tokens=False) assert output.tokens == ["hey", "there", "dear", "friend", "!"] tokenizer = Tokenizer.from_pretrained("anthony/tokenizers-test", revision="gpt-2") output = tokenizer.encode("Hey there dear friend!", add_special_tokens=False) assert output.tokens == ["Hey", "Ġthere", "Ġdear", "Ġfriend", "!"] def test_unigram_byte_fallback(self): vocab = [ ("<unk>", 0.0), ("A", -0.01), ("sen", -0.02), ("te", -0.03), ("n", -0.04), ("ce", -0.05), ("<0xF0>", -0.06), ("<0x9F>", -0.06), ("<0xA4>", -0.06), ("<0x97>", -0.06), (" ", -0.4), ] tokenizer = tokenizer = Tokenizer(Unigram(vocab, 0, byte_fallback=False)) output = tokenizer.encode("A sentence 🤗") assert output.ids == [1, 10, 2, 3, 4, 5, 10, 0] assert output.tokens == ["A", " ", "sen", "te", "n", "ce", " ", "🤗"] tokenizer = Tokenizer(Unigram(vocab, 0, byte_fallback=True)) output = tokenizer.encode("A sentence 🤗") assert output.ids == [1, 10, 2, 3, 4, 5, 10, 6, 7, 8, 9] assert output.tokens == ["A", " ", "sen", "te", "n", "ce", " ", "<0xF0>", "<0x9F>", "<0xA4>", "<0x97>"] def test_encode_special_tokens(self): tokenizer = Tokenizer.from_pretrained("t5-base") tokenizer.add_tokens(["<eot>"]) tokenizer.add_special_tokens(["<end_of_text>"]) output = tokenizer.encode("Hey there<end_of_text> dear<eot>friend!", add_special_tokens=False) assert output.tokens == ["▁Hey", "▁there", "<end_of_text>", "▁dear", "<eot>", "▁friend", "!"] tokenizer.encode_special_tokens = True assert tokenizer.encode_special_tokens == True output = tokenizer.encode("Hey there<end_of_text> dear<eot>friend!", add_special_tokens=False) assert output.tokens == [ "▁Hey", "▁there", "<", "end", "_", "of", "_", "text", ">", "▁dear", "<eot>", "▁friend", "!", ] tokenizer.add_tokens(["of_text>"]) output = tokenizer.encode("Hey there<end_of_text> dear<eot>friend!", add_special_tokens=False) assert output.tokens == ["▁Hey", "▁there", "<", "end", "_", "of_text>", "▁dear", "<eot>", "▁friend", "!"]
tokenizers/bindings/python/tests/bindings/test_tokenizer.py/0
{ "file_path": "tokenizers/bindings/python/tests/bindings/test_tokenizer.py", "repo_id": "tokenizers", "token_count": 8984 }
205
- sections: - local: index title: 🤗 Tokenizers - local: quicktour title: Quicktour - local: installation title: Installation - local: pipeline title: The tokenization pipeline - local: components title: Components - local: training_from_memory title: Training from memory title: Getting started - sections: - local: api/input-sequences title: Input Sequences - local: api/encode-inputs title: Encode Inputs - local: api/tokenizer title: Tokenizer - local: api/encoding title: Encoding - local: api/added-tokens title: Added Tokens - local: api/models title: Models - local: api/normalizers title: Normalizers - local: api/pre-tokenizers title: Pre-tokenizers - local: api/post-processors title: Post-processors - local: api/trainers title: Trainers - local: api/decoders title: Decoders - local: api/visualizer title: Visualizer title: API
tokenizers/docs/source-doc-builder/_toctree.yml/0
{ "file_path": "tokenizers/docs/source-doc-builder/_toctree.yml", "repo_id": "tokenizers", "token_count": 338 }
206
# The tokenization pipeline When calling `Tokenizer.encode` or `Tokenizer.encode_batch`, the input text(s) go through the following pipeline: - `normalization` - `pre-tokenization` - `model` - `post-processing` We'll see in details what happens during each of those steps in detail, as well as when you want to `decode <decoding>` some token ids, and how the 🤗 Tokenizers library allows you to customize each of those steps to your needs. If you're already familiar with those steps and want to learn by seeing some code, jump to `our BERT from scratch example <example>`. For the examples that require a `Tokenizer` we will use the tokenizer we trained in the `quicktour`, which you can load with: <tokenizerslangcontent> <python> <literalinclude> {"path": "../../bindings/python/tests/documentation/test_pipeline.py", "language": "python", "start-after": "START reload_tokenizer", "end-before": "END reload_tokenizer", "dedent": 12} </literalinclude> </python> <rust> <literalinclude> {"path": "../../tokenizers/tests/documentation.rs", "language": "rust", "start-after": "START pipeline_reload_tokenizer", "end-before": "END pipeline_reload_tokenizer", "dedent": 4} </literalinclude> </rust> <node> <literalinclude> {"path": "../../bindings/node/examples/documentation/pipeline.test.ts", "language": "js", "start-after": "START reload_tokenizer", "end-before": "END reload_tokenizer", "dedent": 8} </literalinclude> </node> </tokenizerslangcontent> ## Normalization Normalization is, in a nutshell, a set of operations you apply to a raw string to make it less random or "cleaner". Common operations include stripping whitespace, removing accented characters or lowercasing all text. If you're familiar with [Unicode normalization](https://unicode.org/reports/tr15), it is also a very common normalization operation applied in most tokenizers. Each normalization operation is represented in the 🤗 Tokenizers library by a `Normalizer`, and you can combine several of those by using a `normalizers.Sequence`. Here is a normalizer applying NFD Unicode normalization and removing accents as an example: <tokenizerslangcontent> <python> <literalinclude> {"path": "../../bindings/python/tests/documentation/test_pipeline.py", "language": "python", "start-after": "START setup_normalizer", "end-before": "END setup_normalizer", "dedent": 8} </literalinclude> </python> <rust> <literalinclude> {"path": "../../tokenizers/tests/documentation.rs", "language": "rust", "start-after": "START pipeline_setup_normalizer", "end-before": "END pipeline_setup_normalizer", "dedent": 4} </literalinclude> </rust> <node> <literalinclude> {"path": "../../bindings/node/examples/documentation/pipeline.test.ts", "language": "js", "start-after": "START setup_normalizer", "end-before": "END setup_normalizer", "dedent": 8} </literalinclude> </node> </tokenizerslangcontent> You can manually test that normalizer by applying it to any string: <tokenizerslangcontent> <python> <literalinclude> {"path": "../../bindings/python/tests/documentation/test_pipeline.py", "language": "python", "start-after": "START test_normalizer", "end-before": "END test_normalizer", "dedent": 8} </literalinclude> </python> <rust> <literalinclude> {"path": "../../tokenizers/tests/documentation.rs", "language": "rust", "start-after": "START pipeline_test_normalizer", "end-before": "END pipeline_test_normalizer", "dedent": 4} </literalinclude> </rust> <node> <literalinclude> {"path": "../../bindings/node/examples/documentation/pipeline.test.ts", "language": "js", "start-after": "START test_normalizer", "end-before": "END test_normalizer", "dedent": 8} </literalinclude> </node> </tokenizerslangcontent> When building a `Tokenizer`, you can customize its normalizer by just changing the corresponding attribute: <tokenizerslangcontent> <python> <literalinclude> {"path": "../../bindings/python/tests/documentation/test_pipeline.py", "language": "python", "start-after": "START replace_normalizer", "end-before": "END replace_normalizer", "dedent": 8} </literalinclude> </python> <rust> <literalinclude> {"path": "../../tokenizers/tests/documentation.rs", "language": "rust", "start-after": "START pipeline_replace_normalizer", "end-before": "END pipeline_replace_normalizer", "dedent": 4} </literalinclude> </rust> <node> <literalinclude> {"path": "../../bindings/node/examples/documentation/pipeline.test.ts", "language": "js", "start-after": "START replace_normalizer", "end-before": "END replace_normalizer", "dedent": 8} </literalinclude> </node> </tokenizerslangcontent> Of course, if you change the way a tokenizer applies normalization, you should probably retrain it from scratch afterward. ## Pre-Tokenization Pre-tokenization is the act of splitting a text into smaller objects that give an upper bound to what your tokens will be at the end of training. A good way to think of this is that the pre-tokenizer will split your text into "words" and then, your final tokens will be parts of those words. An easy way to pre-tokenize inputs is to split on spaces and punctuations, which is done by the `pre_tokenizers.Whitespace` pre-tokenizer: <tokenizerslangcontent> <python> <literalinclude> {"path": "../../bindings/python/tests/documentation/test_pipeline.py", "language": "python", "start-after": "START setup_pre_tokenizer", "end-before": "END setup_pre_tokenizer", "dedent": 8} </literalinclude> </python> <rust> <literalinclude> {"path": "../../tokenizers/tests/documentation.rs", "language": "rust", "start-after": "START pipeline_setup_pre_tokenizer", "end-before": "END pipeline_setup_pre_tokenizer", "dedent": 4} </literalinclude> </rust> <node> <literalinclude> {"path": "../../bindings/node/examples/documentation/pipeline.test.ts", "language": "js", "start-after": "START setup_pre_tokenizer", "end-before": "END setup_pre_tokenizer", "dedent": 8} </literalinclude> </node> </tokenizerslangcontent> The output is a list of tuples, with each tuple containing one word and its span in the original sentence (which is used to determine the final `offsets` of our `Encoding`). Note that splitting on punctuation will split contractions like `"I'm"` in this example. You can combine together any `PreTokenizer` together. For instance, here is a pre-tokenizer that will split on space, punctuation and digits, separating numbers in their individual digits: <tokenizerslangcontent> <python> <literalinclude> {"path": "../../bindings/python/tests/documentation/test_pipeline.py", "language": "python", "start-after": "START combine_pre_tokenizer", "end-before": "END combine_pre_tokenizer", "dedent": 8} </literalinclude> </python> <rust> <literalinclude> {"path": "../../tokenizers/tests/documentation.rs", "language": "rust", "start-after": "START pipeline_combine_pre_tokenizer", "end-before": "END pipeline_combine_pre_tokenizer", "dedent": 4} </literalinclude> </rust> <node> <literalinclude> {"path": "../../bindings/node/examples/documentation/pipeline.test.ts", "language": "js", "start-after": "START combine_pre_tokenizer", "end-before": "END combine_pre_tokenizer", "dedent": 8} </literalinclude> </node> </tokenizerslangcontent> As we saw in the `quicktour`, you can customize the pre-tokenizer of a `Tokenizer` by just changing the corresponding attribute: <tokenizerslangcontent> <python> <literalinclude> {"path": "../../bindings/python/tests/documentation/test_pipeline.py", "language": "python", "start-after": "START replace_pre_tokenizer", "end-before": "END replace_pre_tokenizer", "dedent": 8} </literalinclude> </python> <rust> <literalinclude> {"path": "../../tokenizers/tests/documentation.rs", "language": "rust", "start-after": "START pipeline_replace_pre_tokenizer", "end-before": "END pipeline_replace_pre_tokenizer", "dedent": 4} </literalinclude> </rust> <node> <literalinclude> {"path": "../../bindings/node/examples/documentation/pipeline.test.ts", "language": "js", "start-after": "START replace_pre_tokenizer", "end-before": "END replace_pre_tokenizer", "dedent": 8} </literalinclude> </node> </tokenizerslangcontent> Of course, if you change the way the pre-tokenizer, you should probably retrain your tokenizer from scratch afterward. ## Model Once the input texts are normalized and pre-tokenized, the `Tokenizer` applies the model on the pre-tokens. This is the part of the pipeline that needs training on your corpus (or that has been trained if you are using a pretrained tokenizer). The role of the model is to split your "words" into tokens, using the rules it has learned. It's also responsible for mapping those tokens to their corresponding IDs in the vocabulary of the model. This model is passed along when intializing the `Tokenizer` so you already know how to customize this part. Currently, the 🤗 Tokenizers library supports: - `models.BPE` - `models.Unigram` - `models.WordLevel` - `models.WordPiece` For more details about each model and its behavior, you can check [here](components#models) ## Post-Processing Post-processing is the last step of the tokenization pipeline, to perform any additional transformation to the `Encoding` before it's returned, like adding potential special tokens. As we saw in the quick tour, we can customize the post processor of a `Tokenizer` by setting the corresponding attribute. For instance, here is how we can post-process to make the inputs suitable for the BERT model: <tokenizerslangcontent> <python> <literalinclude> {"path": "../../bindings/python/tests/documentation/test_pipeline.py", "language": "python", "start-after": "START setup_processor", "end-before": "END setup_processor", "dedent": 8} </literalinclude> </python> <rust> <literalinclude> {"path": "../../tokenizers/tests/documentation.rs", "language": "rust", "start-after": "START pipeline_setup_processor", "end-before": "END pipeline_setup_processor", "dedent": 4} </literalinclude> </rust> <node> <literalinclude> {"path": "../../bindings/node/examples/documentation/pipeline.test.ts", "language": "js", "start-after": "START setup_processor", "end-before": "END setup_processor", "dedent": 8} </literalinclude> </node> </tokenizerslangcontent> Note that contrarily to the pre-tokenizer or the normalizer, you don't need to retrain a tokenizer after changing its post-processor. ## All together: a BERT tokenizer from scratch Let's put all those pieces together to build a BERT tokenizer. First, BERT relies on WordPiece, so we instantiate a new `Tokenizer` with this model: <tokenizerslangcontent> <python> <literalinclude> {"path": "../../bindings/python/tests/documentation/test_pipeline.py", "language": "python", "start-after": "START bert_setup_tokenizer", "end-before": "END bert_setup_tokenizer", "dedent": 8} </literalinclude> </python> <rust> <literalinclude> {"path": "../../tokenizers/tests/documentation.rs", "language": "rust", "start-after": "START bert_setup_tokenizer", "end-before": "END bert_setup_tokenizer", "dedent": 4} </literalinclude> </rust> <node> <literalinclude> {"path": "../../bindings/node/examples/documentation/pipeline.test.ts", "language": "js", "start-after": "START bert_setup_tokenizer", "end-before": "END bert_setup_tokenizer", "dedent": 8} </literalinclude> </node> </tokenizerslangcontent> Then we know that BERT preprocesses texts by removing accents and lowercasing. We also use a unicode normalizer: <tokenizerslangcontent> <python> <literalinclude> {"path": "../../bindings/python/tests/documentation/test_pipeline.py", "language": "python", "start-after": "START bert_setup_normalizer", "end-before": "END bert_setup_normalizer", "dedent": 8} </literalinclude> </python> <rust> <literalinclude> {"path": "../../tokenizers/tests/documentation.rs", "language": "rust", "start-after": "START bert_setup_normalizer", "end-before": "END bert_setup_normalizer", "dedent": 4} </literalinclude> </rust> <node> <literalinclude> {"path": "../../bindings/node/examples/documentation/pipeline.test.ts", "language": "js", "start-after": "START bert_setup_normalizer", "end-before": "END bert_setup_normalizer", "dedent": 8} </literalinclude> </node> </tokenizerslangcontent> The pre-tokenizer is just splitting on whitespace and punctuation: <tokenizerslangcontent> <python> <literalinclude> {"path": "../../bindings/python/tests/documentation/test_pipeline.py", "language": "python", "start-after": "START bert_setup_pre_tokenizer", "end-before": "END bert_setup_pre_tokenizer", "dedent": 8} </literalinclude> </python> <rust> <literalinclude> {"path": "../../tokenizers/tests/documentation.rs", "language": "rust", "start-after": "START bert_setup_pre_tokenizer", "end-before": "END bert_setup_pre_tokenizer", "dedent": 4} </literalinclude> </rust> <node> <literalinclude> {"path": "../../bindings/node/examples/documentation/pipeline.test.ts", "language": "js", "start-after": "START bert_setup_pre_tokenizer", "end-before": "END bert_setup_pre_tokenizer", "dedent": 8} </literalinclude> </node> </tokenizerslangcontent> And the post-processing uses the template we saw in the previous section: <tokenizerslangcontent> <python> <literalinclude> {"path": "../../bindings/python/tests/documentation/test_pipeline.py", "language": "python", "start-after": "START bert_setup_processor", "end-before": "END bert_setup_processor", "dedent": 8} </literalinclude> </python> <rust> <literalinclude> {"path": "../../tokenizers/tests/documentation.rs", "language": "rust", "start-after": "START bert_setup_processor", "end-before": "END bert_setup_processor", "dedent": 4} </literalinclude> </rust> <node> <literalinclude> {"path": "../../bindings/node/examples/documentation/pipeline.test.ts", "language": "js", "start-after": "START bert_setup_processor", "end-before": "END bert_setup_processor", "dedent": 8} </literalinclude> </node> </tokenizerslangcontent> We can use this tokenizer and train on it on wikitext like in the `quicktour`: <tokenizerslangcontent> <python> <literalinclude> {"path": "../../bindings/python/tests/documentation/test_pipeline.py", "language": "python", "start-after": "START bert_train_tokenizer", "end-before": "END bert_train_tokenizer", "dedent": 8} </literalinclude> </python> <rust> <literalinclude> {"path": "../../tokenizers/tests/documentation.rs", "language": "rust", "start-after": "START bert_train_tokenizer", "end-before": "END bert_train_tokenizer", "dedent": 4} </literalinclude> </rust> <node> <literalinclude> {"path": "../../bindings/node/examples/documentation/pipeline.test.ts", "language": "js", "start-after": "START bert_train_tokenizer", "end-before": "END bert_train_tokenizer", "dedent": 8} </literalinclude> </node> </tokenizerslangcontent> ## Decoding On top of encoding the input texts, a `Tokenizer` also has an API for decoding, that is converting IDs generated by your model back to a text. This is done by the methods `Tokenizer.decode` (for one predicted text) and `Tokenizer.decode_batch` (for a batch of predictions). The `decoder` will first convert the IDs back to tokens (using the tokenizer's vocabulary) and remove all special tokens, then join those tokens with spaces: <tokenizerslangcontent> <python> <literalinclude> {"path": "../../bindings/python/tests/documentation/test_pipeline.py", "language": "python", "start-after": "START test_decoding", "end-before": "END test_decoding", "dedent": 8} </literalinclude> </python> <rust> <literalinclude> {"path": "../../tokenizers/tests/documentation.rs", "language": "rust", "start-after": "START pipeline_test_decoding", "end-before": "END pipeline_test_decoding", "dedent": 4} </literalinclude> </rust> <node> <literalinclude> {"path": "../../bindings/node/examples/documentation/pipeline.test.ts", "language": "js", "start-after": "START test_decoding", "end-before": "END test_decoding", "dedent": 8} </literalinclude> </node> </tokenizerslangcontent> If you used a model that added special characters to represent subtokens of a given "word" (like the `"##"` in WordPiece) you will need to customize the `decoder` to treat them properly. If we take our previous `bert_tokenizer` for instance the default decoding will give: <tokenizerslangcontent> <python> <literalinclude> {"path": "../../bindings/python/tests/documentation/test_pipeline.py", "language": "python", "start-after": "START bert_test_decoding", "end-before": "END bert_test_decoding", "dedent": 8} </literalinclude> </python> <rust> <literalinclude> {"path": "../../tokenizers/tests/documentation.rs", "language": "rust", "start-after": "START bert_test_decoding", "end-before": "END bert_test_decoding", "dedent": 4} </literalinclude> </rust> <node> <literalinclude> {"path": "../../bindings/node/examples/documentation/pipeline.test.ts", "language": "js", "start-after": "START bert_test_decoding", "end-before": "END bert_test_decoding", "dedent": 8} </literalinclude> </node> </tokenizerslangcontent> But by changing it to a proper decoder, we get: <tokenizerslangcontent> <python> <literalinclude> {"path": "../../bindings/python/tests/documentation/test_pipeline.py", "language": "python", "start-after": "START bert_proper_decoding", "end-before": "END bert_proper_decoding", "dedent": 8} </literalinclude> </python> <rust> <literalinclude> {"path": "../../tokenizers/tests/documentation.rs", "language": "rust", "start-after": "START bert_proper_decoding", "end-before": "END bert_proper_decoding", "dedent": 4} </literalinclude> </rust> <node> <literalinclude> {"path": "../../bindings/node/examples/documentation/pipeline.test.ts", "language": "js", "start-after": "START bert_proper_decoding", "end-before": "END bert_proper_decoding", "dedent": 8} </literalinclude> </node> </tokenizerslangcontent>
tokenizers/docs/source-doc-builder/pipeline.mdx/0
{ "file_path": "tokenizers/docs/source-doc-builder/pipeline.mdx", "repo_id": "tokenizers", "token_count": 5903 }
207
Documentation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The Rust API Reference is available directly on the `Docs.rs <https://docs.rs/tokenizers>`__ website.
tokenizers/docs/source/api/rust.inc/0
{ "file_path": "tokenizers/docs/source/api/rust.inc", "repo_id": "tokenizers", "token_count": 43 }
208
language: node_js node_js: "10" script: - ./node_modules/.bin/webpack
tokenizers/tokenizers/examples/unstable_wasm/www/.travis.yml/0
{ "file_path": "tokenizers/tokenizers/examples/unstable_wasm/www/.travis.yml", "repo_id": "tokenizers", "token_count": 30 }
209
pub mod bpe; pub mod byte_fallback; pub mod ctc; pub mod fuse; pub mod sequence; pub mod strip; pub mod wordpiece; // Re-export these as decoders pub use super::pre_tokenizers::byte_level; pub use super::pre_tokenizers::metaspace; use serde::{Deserialize, Serialize}; use crate::decoders::bpe::BPEDecoder; use crate::decoders::byte_fallback::ByteFallback; use crate::decoders::ctc::CTC; use crate::decoders::fuse::Fuse; use crate::decoders::sequence::Sequence; use crate::decoders::strip::Strip; use crate::decoders::wordpiece::WordPiece; use crate::normalizers::replace::Replace; use crate::pre_tokenizers::byte_level::ByteLevel; use crate::pre_tokenizers::metaspace::Metaspace; use crate::{Decoder, Result}; #[derive(Serialize, Deserialize, Clone, Debug)] #[serde(untagged)] pub enum DecoderWrapper { BPE(BPEDecoder), ByteLevel(ByteLevel), WordPiece(WordPiece), Metaspace(Metaspace), CTC(CTC), Sequence(Sequence), Replace(Replace), Fuse(Fuse), Strip(Strip), ByteFallback(ByteFallback), } impl Decoder for DecoderWrapper { fn decode_chain(&self, tokens: Vec<String>) -> Result<Vec<String>> { match self { Self::BPE(bpe) => bpe.decode_chain(tokens), Self::ByteLevel(bl) => bl.decode_chain(tokens), Self::Metaspace(ms) => ms.decode_chain(tokens), Self::WordPiece(wp) => wp.decode_chain(tokens), Self::CTC(ctc) => ctc.decode_chain(tokens), Self::Sequence(seq) => seq.decode_chain(tokens), Self::Replace(seq) => seq.decode_chain(tokens), Self::ByteFallback(bf) => bf.decode_chain(tokens), Self::Strip(bf) => bf.decode_chain(tokens), Self::Fuse(bf) => bf.decode_chain(tokens), } } } impl_enum_from!(BPEDecoder, DecoderWrapper, BPE); impl_enum_from!(ByteLevel, DecoderWrapper, ByteLevel); impl_enum_from!(ByteFallback, DecoderWrapper, ByteFallback); impl_enum_from!(Fuse, DecoderWrapper, Fuse); impl_enum_from!(Strip, DecoderWrapper, Strip); impl_enum_from!(Metaspace, DecoderWrapper, Metaspace); impl_enum_from!(WordPiece, DecoderWrapper, WordPiece); impl_enum_from!(CTC, DecoderWrapper, CTC); impl_enum_from!(Sequence, DecoderWrapper, Sequence); impl_enum_from!(Replace, DecoderWrapper, Replace); #[cfg(test)] mod tests { use super::*; #[test] fn decoder_serialization() { let json = r#"{"type":"Sequence","decoders":[{"type":"ByteFallback"},{"type":"Metaspace","replacement":"▁","add_prefix_space":true,"prepend_scheme":"always"}]}"#; let decoder: DecoderWrapper = serde_json::from_str(json).unwrap(); let serialized = serde_json::to_string(&decoder).unwrap(); assert_eq!(serialized, json); } #[test] fn decoder_serialization_other_no_arg() { let json = r#"{"type":"Sequence","decoders":[{"type":"Fuse"},{"type":"Metaspace","replacement":"▁","add_prefix_space":true,"prepend_scheme":"always"}]}"#; let decoder: DecoderWrapper = serde_json::from_str(json).unwrap(); let serialized = serde_json::to_string(&decoder).unwrap(); assert_eq!(serialized, json); } #[test] fn decoder_serialization_no_decode() { let json = r#"{"type":"Sequence","decoders":[{},{"type":"Metaspace","replacement":"▁","add_prefix_space":true,"prepend_scheme":"always"}]}"#; assert!(serde_json::from_str::<DecoderWrapper>(json).is_err()); } }
tokenizers/tokenizers/src/decoders/mod.rs/0
{ "file_path": "tokenizers/tokenizers/src/decoders/mod.rs", "repo_id": "tokenizers", "token_count": 1434 }
210
use std::collections::HashMap; use std::hash::Hash; #[derive(Default)] pub struct TrieBuilder<Label> { trie: Trie<Label>, } impl<Label: Eq + Hash + Copy> TrieBuilder<Label> { pub fn push(&mut self, element: &[Label]) { self.trie.push(element); } pub fn build(self) -> Trie<Label> { self.trie } } #[derive(Clone)] pub struct Trie<Label> { root: Node<Label>, } impl<Label: Eq + Hash + Copy> Trie<Label> { pub fn push(&mut self, element: &[Label]) { let mut node = &mut self.root; for label in element.iter() { node = node.children.entry(*label).or_default(); } node.is_leaf = true; } pub fn common_prefix_search<T>(&self, iterator: T) -> TrieIterator<Label, T> where T: Iterator<Item = Label>, { TrieIterator { node: &self.root, prefix: vec![], iterator, } } } pub struct TrieIterator<'a, Label, T> { node: &'a Node<Label>, prefix: Vec<Label>, iterator: T, } impl<Label, T> Iterator for TrieIterator<'_, Label, T> where Label: Eq + Hash + Copy, T: Iterator<Item = Label>, { type Item = Vec<Label>; fn next(&mut self) -> Option<Self::Item> { loop { let label = self.iterator.next()?; self.prefix.push(label); let child = self.node.children.get(&label)?; self.node = child; if self.node.is_leaf { return Some(self.prefix.clone()); } } } } impl<Label> Default for Trie<Label> { fn default() -> Self { Self { root: Node::default(), } } } #[derive(Clone)] pub struct Node<Label> { is_leaf: bool, children: HashMap<Label, Node<Label>>, } impl<Label> Default for Node<Label> { fn default() -> Self { Self { is_leaf: false, children: HashMap::new(), } } }
tokenizers/tokenizers/src/models/unigram/trie.rs/0
{ "file_path": "tokenizers/tokenizers/src/models/unigram/trie.rs", "repo_id": "tokenizers", "token_count": 944 }
211
use std::collections::{HashMap, HashSet}; use crate::utils::SysRegex; use serde::{Deserialize, Serialize}; use crate::tokenizer::{ Decoder, Encoding, PostProcessor, PreTokenizedString, PreTokenizer, Result, SplitDelimiterBehavior, }; use crate::utils::macro_rules_attribute; /// Converts bytes to unicode characters. /// See https://github.com/openai/gpt-2/blob/master/src/encoder.py#L9 fn bytes_char() -> HashMap<u8, char> { let mut bs: Vec<u8> = vec![]; bs.extend(b'!'..=b'~'); bs.extend(b'\xA1'..=b'\xAC'); bs.extend(b'\xAE'..=b'\xFF'); let mut cs: Vec<u32> = bs.iter().map(|i| *i as u32).collect(); let mut n = 0; for b in 0..=255u8 { if !bs.contains(&b) { bs.push(b); cs.push(u32::pow(2, 8) + n); n += 1; } } bs.into_iter() .zip(cs) .map(|(f, t)| (f, unsafe { std::char::from_u32_unchecked(t) })) .collect() } lazy_static! { /// Regex that matches exactly one token. /// See https://github.com/openai/gpt-2/blob/master/src/encoder.py#L98 static ref RE: SysRegex = SysRegex::new( r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) .unwrap(); static ref BYTES_CHAR: HashMap<u8, char> = bytes_char(); static ref CHAR_BYTES: HashMap<char, u8> = bytes_char().into_iter().map(|(c, b)| (b, c)).collect(); } #[derive(Copy, Clone, Debug, PartialEq, Eq)] /// Provides all the necessary steps to handle the BPE tokenization at the byte-level. Takes care /// of all the required processing steps to transform a UTF-8 string as needed before and after the /// BPE model does its job. #[macro_rules_attribute(impl_serde_type!)] #[non_exhaustive] pub struct ByteLevel { /// Whether to add a leading space to the first word. This allows to treat the leading word /// just as any other word. pub add_prefix_space: bool, /// Whether the post processing step should trim offsets to avoid including whitespaces. pub trim_offsets: bool, /// Whether to use the standard GPT2 regex for whitespace splitting /// Set it to False if you want to use your own splitting. #[serde(default = "default_true")] pub use_regex: bool, } fn default_true() -> bool { true } impl Default for ByteLevel { fn default() -> Self { Self { add_prefix_space: true, trim_offsets: true, use_regex: true, } } } impl ByteLevel { pub fn new(add_prefix_space: bool, trim_offsets: bool, use_regex: bool) -> Self { Self { add_prefix_space, trim_offsets, use_regex, } } pub fn alphabet() -> HashSet<char> { BYTES_CHAR.values().copied().collect() } #[must_use] pub fn add_prefix_space(mut self, v: bool) -> Self { self.add_prefix_space = v; self } #[must_use] pub fn trim_offsets(mut self, v: bool) -> Self { self.trim_offsets = v; self } #[must_use] pub fn use_regex(mut self, v: bool) -> Self { self.use_regex = v; self } } /// As a `PreTokenizer`, `ByteLevel` is in charge of transforming all the unicode characters into /// their byte-level counterpart. It also splits the input according to the configured regex. // TODO: Give the ability to modify this regex impl PreTokenizer for ByteLevel { fn pre_tokenize(&self, pretokenized: &mut PreTokenizedString) -> Result<()> { let re_ref: &SysRegex = &RE; pretokenized.split(|_, mut normalized| { if self.add_prefix_space && !normalized.get().starts_with(' ') { normalized.prepend(" "); } if self.use_regex { normalized.split(re_ref, SplitDelimiterBehavior::Isolated) } else { Ok(vec![normalized]) } })?; pretokenized.normalize(|normalized| { let s = normalized.get(); let mut transformations: Vec<(char, isize)> = Vec::with_capacity(s.len()); let mut i = 0; for cur_char in s.chars() { let size = cur_char.len_utf8(); let bytes = s[i..i + size].as_bytes(); i += size; transformations.extend( bytes .iter() .enumerate() .map(|(i, b)| (BYTES_CHAR[b], isize::from(i > 0))), ); } normalized.transform(transformations, 0); Ok(()) }) } } /// As a `Decoder`, `ByteLevel` is in charge of converting any byte-level characters to their /// unicode counterpart, before merging everything back into a single String. /// This decoder will consume the tokens and merge them in one step to alleviate /// the fact that single token decoded might be a byte not representable as /// as String. impl Decoder for ByteLevel { fn decode_chain(&self, tokens: Vec<String>) -> Result<Vec<String>> { let toks = tokens .into_iter() .flat_map(|t| { t.chars() .try_fold(vec![], |mut acc, c| { CHAR_BYTES.get(&c).map(|b| { acc.push(*b); acc }) }) .unwrap_or_else(|| t.as_bytes().to_vec()) }) .collect::<Vec<u8>>(); Ok(vec![String::from_utf8_lossy(&toks).to_string()]) } } /// As a `PostProcessor`, `ByteLevel` is in charge of trimming the offsets if necessary. impl PostProcessor for ByteLevel { fn added_tokens(&self, _is_pair: bool) -> usize { 0 } fn process_encodings( &self, mut encodings: Vec<Encoding>, _add_special_tokens: bool, ) -> Result<Vec<Encoding>> { if self.trim_offsets { for encoding in encodings.iter_mut() { process_offsets(encoding, self.add_prefix_space); encoding .get_overflowing_mut() .iter_mut() .for_each(|encoding| process_offsets(encoding, self.add_prefix_space)); } } for (i, encoding) in encodings.iter_mut().enumerate() { encoding.set_sequence_id(i); } Ok(encodings) //<dyn PostProcessor>::default_process(encodings, add_special_tokens) } } pub fn process_offsets(encoding: &mut Encoding, add_prefix_space: bool) { encoding.process_tokens_with_offsets_mut(|(i, (token, offsets))| { let mut leading_spaces = token .chars() .take_while(|c| *c == BYTES_CHAR[&b' '] || c.is_whitespace()) .count(); let trailing_spaces = token .chars() .rev() .take_while(|c| *c == BYTES_CHAR[&b' '] || c.is_whitespace()) .count(); if leading_spaces > 0 || trailing_spaces > 0 { if leading_spaces > 0 { // If user uses `is_pretokenized=True` we might have // offsets that might begin at the start of the string but are // NOT the first token. let is_first = i == 0 || offsets.0 == 0; if is_first && add_prefix_space && leading_spaces == 1 { // If we are processing the first pair of offsets, with `add_prefix_space`, // then we shouldn't remove anything we added. If there are more than one // leading spaces though, it means we didn't add them, and they should be // removed. leading_spaces = 0; } offsets.0 = std::cmp::min(offsets.0 + leading_spaces, offsets.1); } if trailing_spaces > 0 && offsets.1 >= trailing_spaces { offsets.1 = std::cmp::max(offsets.1 - trailing_spaces, offsets.0); } } }); } #[cfg(test)] mod tests { use super::*; use crate::tokenizer::{ Decoder, Encoding, OffsetReferential, OffsetType, PostProcessor, PreTokenizedString, PreTokenizer, }; use std::iter::FromIterator; #[test] fn pre_tokenization() { let bytelevel = ByteLevel::default().add_prefix_space(false); let mut pretokenized: PreTokenizedString = "Hello my friend, how is your day going?".into(); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("Hello", (0, 5)), ("Ġmy", (5, 8)), ("Ġfriend", (8, 15)), (",", (15, 16)), ("Ġhow", (16, 20)), ("Ġis", (20, 23)), ("Ġyour", (23, 28)), ("Ġday", (28, 32)), ("Ġgoing", (32, 38)), ("?", (38, 39)) ] ); } #[test] fn pre_tokenization_no_regex() { let bytelevel = ByteLevel::default().use_regex(false); let mut pretokenized: PreTokenizedString = "Hello my friend, how is your day going?".into(); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![("ĠHelloĠmyĠfriend,ĠhowĠisĠyourĠdayĠgoing?", (0, 39))] ); } #[test] fn decoding() { let bytelevel = ByteLevel::default().add_prefix_space(false); assert_eq!( bytelevel .decode_chain( vec![ "Hello", "Ġmy", "Ġfriend", ",", "Ġhow", "Ġis", "Ġyour", "Ġday", "Ġgoing", "?" ] .into_iter() .map(|s| s.into()) .collect::<Vec<String>>() ) .unwrap(), vec!["Hello my friend, how is your day going?"] ); } #[test] fn add_prefix_space() { let bytelevel = ByteLevel::default().add_prefix_space(true); for s in &[ " Hello my friend, how is your day going?", "Hello my friend, how is your day going?", ] { let mut pretokenized = PreTokenizedString::from(*s); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Normalized, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("ĠHello", (0, 7)), ("Ġmy", (7, 11)), ("Ġfriend", (11, 19)), (",", (19, 20)), ("Ġhow", (20, 25)), ("Ġis", (25, 29)), ("Ġyour", (29, 35)), ("Ġday", (35, 40)), ("Ġgoing", (40, 47)), ("?", (47, 48)) ] ); } } #[test] fn decode_works_on_separated_tokens() { let samples = vec![ "A Nuskhuri abbreviation of იესუ ქრისტე ( iesu kriste ) \" Jesus Christ \"", "An equal number have descenders , like p or q in English \ : გ , დ , ე , ვ , კ , ლ , ჟ , ტ , უ , ფ , ღ , ყ , ც", ]; let bytelevel = ByteLevel::default().add_prefix_space(false); for sample in samples { let mut pretokenized = PreTokenizedString::from(sample); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); let separated_tokens = pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .iter() .flat_map(|(s, _, _)| s.split("").map(|t| t.into())) .collect::<Vec<_>>(); assert_eq!( sample, bytelevel.decode_chain(separated_tokens).unwrap().join("") ); } } #[test] fn handling_of_newlines() { let mut pretokenized = PreTokenizedString::from("Hello there\nHello there"); let bytelevel = ByteLevel::default().add_prefix_space(false); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("Hello", (0, 5)), ("Ġthere", (5, 11)), ("Ċ", (11, 12)), ("Hello", (12, 17)), ("Ġthere", (17, 23)) ] ); } #[test] fn handling_of_multiple_whitespaces() { let mut pretokenized = PreTokenizedString::from("Hello there dear"); let bytelevel = ByteLevel::default().add_prefix_space(false); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![ ("Hello", (0, 5)), ("Ġthere", (5, 11)), ("ĠĠĠĠĠĠ", (11, 17)), ("Ġdear", (17, 22)) ] ); } #[test] fn offsets_when_char_split_up() { let input = "i⭢j"; let mut pretokenized = PreTokenizedString::from(input); let bytelevel = ByteLevel::default().add_prefix_space(false); bytelevel.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![("i", (0, 1)), ("âŃ¢", (1, 4)), ("j", (4, 5))] ); assert_eq!( pretokenized .get_splits(OffsetReferential::Normalized, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), vec![("i", (0, 1)), ("âŃ¢", (1, 7)), ("j", (7, 8))] ); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(_, o, _)| &input[o.0..o.1]) .collect::<Vec<_>>(), vec!["i", "⭢", "j"] ); } #[test] fn processor_trims_offsets_pre_tokenized() { // If user uses `is_pretokenized=True` we might have // offsets that might begin at the start of the string but are // NOT the first token. let mut encoding = Encoding::new( vec![0; 5], vec![], vec!["Ġl".into(), "ove".into(), "Ġl".into(), "ove".into()], vec![], vec![(0, 1), (1, 4), (0, 1), (1, 4)], vec![], vec![], vec![], HashMap::new(), ); process_offsets(&mut encoding, true); assert_eq!( encoding, Encoding::new( vec![0; 5], vec![], vec!["Ġl".into(), "ove".into(), "Ġl".into(), "ove".into()], vec![], vec![(0, 1), (1, 4), (0, 1), (1, 4)], vec![], vec![], vec![], HashMap::new(), ) ); } #[test] fn processor_trims_offsets() { let start = Encoding::new( vec![0; 5], vec![], vec![ "Ġ".into(), "ĠĠĠĠHelloĠĠ".into(), "ĠĠHello".into(), "HelloĠĠ".into(), "ĠĠĠĠ".into(), ], vec![], vec![(0, 1), (0, 11), (11, 18), (18, 25), (25, 29)], vec![], vec![], vec![], HashMap::new(), ); let expected = Encoding::new( vec![0; 5], vec![0; 5], vec![ "Ġ".into(), "ĠĠĠĠHelloĠĠ".into(), "ĠĠHello".into(), "HelloĠĠ".into(), "ĠĠĠĠ".into(), ], vec![], vec![(0, 0), (4, 9), (13, 18), (18, 23), (29, 29)], vec![], vec![], vec![], HashMap::from_iter(vec![(0, 0..5)]), ); let bytelevel = ByteLevel::default().trim_offsets(true); assert_eq!( expected, bytelevel.process(start.clone(), None, false).unwrap() ); let pair_expected = Encoding::new( vec![0; 10], vec![0, 0, 0, 0, 0, 1, 1, 1, 1, 1], vec![ "Ġ".into(), "ĠĠĠĠHelloĠĠ".into(), "ĠĠHello".into(), "HelloĠĠ".into(), "ĠĠĠĠ".into(), "Ġ".into(), "ĠĠĠĠHelloĠĠ".into(), "ĠĠHello".into(), "HelloĠĠ".into(), "ĠĠĠĠ".into(), ], vec![], vec![ (0, 0), (4, 9), (13, 18), (18, 23), (29, 29), (0, 0), (4, 9), (13, 18), (18, 23), (29, 29), ], vec![], vec![], vec![], HashMap::from_iter(vec![(0, 0..5), (1, 5..10)]), ); assert_eq!( pair_expected, bytelevel .process(start.clone(), Some(start), false) .unwrap() ); } #[test] fn decode_unknown_characters() { let byte_level = ByteLevel::default(); assert_eq!( byte_level .decode_chain(vec![ "Hello".into(), "Ġthere".into(), "Ġdear".into(), "Ġfriend!".into(), "Ġ".into(), "[PA D]".into() ]) .unwrap(), vec!["Hello there dear friend! [PA D]"] ); } #[test] fn deserialization() { // Before use_regex let byte_level: ByteLevel = serde_json::from_str( r#"{"type": "ByteLevel", "add_prefix_space": true, "trim_offsets": false}"#, ) .unwrap(); assert!(byte_level.use_regex); // Loading works, new future BC test. let byte_level: ByteLevel = serde_json::from_str( r#"{"type": "ByteLevel", "add_prefix_space": true, "trim_offsets": false, "use_regex": true}"#, ) .unwrap(); assert!(byte_level.use_regex); let byte_level: ByteLevel = serde_json::from_str( r#"{"type": "ByteLevel", "add_prefix_space": true, "trim_offsets": false, "use_regex": false}"#, ) .unwrap(); assert!(!byte_level.use_regex); } }
tokenizers/tokenizers/src/pre_tokenizers/byte_level.rs/0
{ "file_path": "tokenizers/tokenizers/src/pre_tokenizers/byte_level.rs", "repo_id": "tokenizers", "token_count": 10930 }
212
//! # Template Processing //! //! Provides a way to specify templates in order to add the special tokens to each //! input sequence as relevant. //! //! ## Example //! //! Let's take `BERT` tokenizer as an example. It uses two special tokens, used to //! delimitate each sequence. `[CLS]` is always used at the beginning of the first //! sequence, and `[SEP]` is added at the end of both the first, and the pair //! sequences. The final result looks like this: //! - Single sequence: `[CLS] Hello there [SEP]` //! - Pair sequences: `[CLS] My name is Anthony [SEP] What is my name? [SEP]` //! With the type ids as following: //! ```markdown //! [CLS] ... [SEP] ... [SEP] //! 0 0 0 1 1 //! ``` //! //! So, we can define a [`TemplateProcessing`] that will achieve this result: //! ``` //! # use tokenizers::processors::template::TemplateProcessing; //! let template = TemplateProcessing::builder() //! // The template when we only have a single sequence: //! .try_single(vec!["[CLS]", "$0", "[SEP]"]).unwrap() //! // Same as: //! .try_single("[CLS] $0 [SEP]").unwrap() //! //! // The template when we have both sequences: //! .try_pair(vec!["[CLS]:0", "$A:0", "[SEP]:0", "$B:1", "[SEP]:1"]).unwrap() //! // Same as: //! .try_pair("[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1").unwrap() //! // Or: //! .try_pair("[CLS] $0 [SEP] $B:1 [SEP]:1").unwrap() //! //! // The list of special tokens used by each sequences //! .special_tokens(vec![("[CLS]", 1), ("[SEP]", 0)]) //! .build() //! .unwrap(); //! ``` //! //! In this example, each input sequence is identified using a `$` construct. This identifier //! lets us specify each input sequence, and the type_id to use. When nothing is specified, //! it uses the default values. Here are the different ways to specify it: //! - Specifying the sequence, with default `type_id == 0`: `$A` or `$B` //! - Specifying the `type_id` with default `sequence == A`: `$0`, `$1`, `$2`, ... //! - Specifying both: `$A:0`, `$B:1`, ... //! //! The same construct is used for special tokens: `<identifier>(:<type_id>)?`. //! //! **Warning**: You must ensure that you are giving the correct tokens/ids as these will //! be added to the `Encoding` without any further check. If the given ids correspond to //! something totally different in a `Tokenizer` using this `PostProcessor`, it might lead //! to unexpected results. //! //! [`TemplateProcessing`]: struct.TemplateProcessing.html //! use crate::{Encoding, PostProcessor, Result}; use itertools::Itertools; use serde::{Deserialize, Serialize}; use std::collections::{HashMap, HashSet}; use std::convert::{TryFrom, TryInto}; use std::result::Result as StdResult; /// Represents any sequences received as input of the PostProcessor #[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Eq)] pub enum Sequence { /// This is the first sequence, the one that is always specified A, /// This is the pair sequence, that is optional B, } /// Represents the different kind of pieces that constitute a template. /// It can be either the input sequence or a [`SpecialToken`]: /// /// - The `Sequence` has an associated `type_id` which is used by default /// for any token inside this sequence. The `Sequence` corresponds to one /// of the input sequence given as input of the `PostProcessor`. /// /// - The `SpecialToken` has an associated `id`. It corresponds to a [`SpecialToken`]. /// /// The easiest way to build a `Piece` is actually by converting it from a string: /// ``` /// # use tokenizers::processors::template::Piece; /// # use std::convert::TryFrom; /// let sequence_with_type_id_0 = Piece::try_from("$0").unwrap(); /// let sequence_with_type_id_1 = Piece::try_from("$1").unwrap(); /// let special_token_cls = Piece::try_from("[CLS]").unwrap(); /// ``` /// /// [`SpecialToken`]: struct.SpecialToken.html /// #[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Eq)] pub enum Piece { Sequence { id: Sequence, type_id: u32 }, SpecialToken { id: String, type_id: u32 }, } impl Piece { fn extract_id(s: &str) -> Option<Self> { if s.starts_with('$') { let rest = &s['$'.len_utf8()..]; // If the id is just `$`, we use 0 as type_id, and Sequence A match rest { "" => Some(Self::Sequence { id: Sequence::A, type_id: 0, }), "A" | "a" => Some(Self::Sequence { id: Sequence::A, type_id: 0, }), "B" | "b" => Some(Self::Sequence { id: Sequence::B, type_id: 0, }), n => { if let Ok(type_id) = n.parse::<u32>() { Some(Self::Sequence { id: Sequence::A, type_id, }) } else { None } } } } else { Some(Self::SpecialToken { id: s.to_owned(), type_id: 0, }) } } fn with_type_id(self, type_id: u32) -> Self { match self { Self::Sequence { id, .. } => Self::Sequence { id, type_id }, Self::SpecialToken { id, .. } => Self::SpecialToken { id, type_id }, } } } impl TryFrom<String> for Piece { type Error = String; fn try_from(s: String) -> StdResult<Self, Self::Error> { let parts = s.split(':').collect::<Vec<_>>(); let err = || format!("Cannot build Piece from string \"{}\"", s); match parts.as_slice() { [id, type_id] => { let type_id: u32 = type_id.parse().map_err(|_| err())?; let piece = Self::extract_id(id).ok_or_else(err)?; Ok(piece.with_type_id(type_id)) } [id] => Self::extract_id(id).ok_or_else(err), _ => Err(err()), } } } impl TryFrom<&str> for Piece { type Error = String; fn try_from(s: &str) -> StdResult<Self, Self::Error> { Piece::try_from(s.to_owned()) } } /// Represents a bunch of tokens to be used in a template. /// Usually, special tokens have only one associated id/token but in /// some cases, it might be interesting to have multiple ids/tokens. /// /// # Examples /// ``` /// # use tokenizers::processors::template::SpecialToken; /// // Simple cases, where a single id/token is necessary: /// let cls = SpecialToken::from(("[CLS]", 1)); /// let sep = SpecialToken::from((0, "[SEP]")); // The order in the tuple is not important /// /// // More complex case with multiple values: /// let complex = SpecialToken::new( /// "A complex special token:".into(), /// vec![0, 1, 2, 3, 4], /// vec!["A".into(), "complex".into(), "special".into(), "token".into(), ":".into()] /// ).unwrap(); /// ``` #[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Eq)] pub struct SpecialToken { /// A unique id used to identify this SpecialToken in the template id: String, /// The list of associated ids ids: Vec<u32>, /// The list of associated tokens tokens: Vec<String>, } impl From<(String, u32)> for SpecialToken { fn from(v: (String, u32)) -> Self { Self { id: v.0.clone(), ids: vec![v.1], tokens: vec![v.0], } } } impl From<(&str, u32)> for SpecialToken { fn from(v: (&str, u32)) -> Self { Self::from((v.0.to_owned(), v.1)) } } impl From<(u32, String)> for SpecialToken { fn from(v: (u32, String)) -> Self { Self::from((v.1, v.0)) } } impl From<(u32, &str)> for SpecialToken { fn from(v: (u32, &str)) -> Self { Self::from((v.1.to_owned(), v.0)) } } impl SpecialToken { pub fn new(id: String, ids: Vec<u32>, tokens: Vec<String>) -> Result<Self> { if ids.len() != tokens.len() { Err("SpecialToken: ids and tokens must be of the same length".into()) } else { Ok(Self { id, ids, tokens }) } } } /// A Template represents a Vec<[`Piece`]>. /// /// We can easily build one as follows /// ``` /// # use tokenizers::processors::template::Template; /// # use std::convert::TryFrom; /// // By providing a `String` or `&str`, we just split on whitespaces: /// let template = Template::try_from("[CLS] $0 [SEP]").unwrap(); /// /// // By providing pieces directly: /// let template = Template::try_from(vec!["[CLS]", "$0", "[SEP]"]).unwrap(); /// ``` /// Both of these methods give the same result. /// /// [`Piece`]: enum.Piece.html /// #[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Eq)] #[serde(transparent)] pub struct Template(Vec<Piece>); impl<T> TryFrom<Vec<T>> for Template where T: TryInto<Piece, Error = String>, { type Error = String; fn try_from(v: Vec<T>) -> StdResult<Self, Self::Error> { Ok(Self( v.into_iter() .map(|p| p.try_into()) .collect::<StdResult<Vec<_>, Self::Error>>()?, )) } } impl TryFrom<String> for Template { type Error = String; fn try_from(s: String) -> StdResult<Self, Self::Error> { Self::try_from(s.as_ref()) } } impl TryFrom<&str> for Template { type Error = String; fn try_from(s: &str) -> StdResult<Self, Self::Error> { Self::try_from(s.split(' ').collect::<Vec<_>>()) } } /// A bunch of [`SpecialToken`] represented by their ID. /// Internally, `Tokens` is a `HashMap<String, SpecialToken>` and can be built /// from a HashMap or a Vec<[`SpecialToken`]>. /// /// [`SpecialToken`]: struct.SpecialToken.html #[derive(Debug, Clone, PartialEq, Default, Serialize, Deserialize, Eq)] #[serde(transparent)] pub struct Tokens( #[serde(serialize_with = "crate::utils::ordered_map")] pub HashMap<String, SpecialToken>, ); impl<T: Into<SpecialToken>> From<Vec<T>> for Tokens { fn from(v: Vec<T>) -> Self { Self( v.into_iter() .map(|t| { let token: SpecialToken = t.into(); (token.id.clone(), token) }) .collect(), ) } } impl From<HashMap<String, SpecialToken>> for Tokens { fn from(v: HashMap<String, SpecialToken>) -> Self { Self(v) } } /// This PostProcessor takes care of processing each input `Encoding` by applying /// the corresponding template, before merging them in the final Encoding. /// /// A `Template` is actually a sequence of `Piece` that will be /// concatenated together in the given order. Each `Piece` represents either /// one of the input `Encoding` or a `SpecialToken`. /// /// ## Example /// ``` /// # use tokenizers::processors::template::TemplateProcessing; /// let template = TemplateProcessing::builder() /// .try_single("[CLS] $A [SEP]").unwrap() /// .try_pair("[CLS] $A [SEP] $B:1 [SEP]:1").unwrap() /// .special_tokens(vec![("[CLS]", 1), ("[SEP]", 0)]) /// .build() /// .unwrap(); /// ``` /// #[derive(Debug, Clone, PartialEq, Builder, Serialize, Deserialize, Eq)] #[serde(tag = "type", from = "TemplateProcessingDeserializer")] #[builder(build_fn(validate = "Self::validate"))] pub struct TemplateProcessing { #[builder(try_setter, default = "\"$0\".try_into().unwrap()")] single: Template, #[builder(try_setter, default = "\"$A:0 $B:1\".try_into().unwrap()")] pair: Template, #[builder(setter(skip), default = "self.default_added(true)")] #[serde(skip)] added_single: usize, #[builder(setter(skip), default = "self.default_added(false)")] #[serde(skip)] added_pair: usize, #[builder(setter(into), default)] special_tokens: Tokens, } impl From<&str> for TemplateProcessingBuilderError { fn from(e: &str) -> Self { e.to_string().into() } } impl PartialEq for TemplateProcessingBuilderError { fn eq(&self, other: &Self) -> bool { self.to_string() == other.to_string() } } /// We use this custom deserializer to provided the values for `added_single` /// and `added_pair` during deserialization, while not having to serialize them #[doc(hidden)] #[derive(Deserialize)] #[serde(tag = "type")] struct TemplateProcessingDeserializer { single: Template, pair: Template, special_tokens: Tokens, } impl From<TemplateProcessingDeserializer> for TemplateProcessing { fn from(t: TemplateProcessingDeserializer) -> Self { let added_single = count_added(&t.single, Some(&t.special_tokens)); let added_pair = count_added(&t.pair, Some(&t.special_tokens)); Self { single: t.single, pair: t.pair, added_single, added_pair, special_tokens: t.special_tokens, } } } /// Count the number of added tokens in the given template fn count_added(container: &Template, special_tokens: Option<&Tokens>) -> usize { container .0 .iter() .map(|p| match p { Piece::Sequence { .. } => 0, Piece::SpecialToken { id, .. } => { special_tokens.map_or(0, |spt| spt.0.get(id).map_or(0, |s| s.ids.len())) } }) .sum() } impl TemplateProcessingBuilder { fn default_added(&self, is_single: bool) -> usize { let container = if is_single { self.single.as_ref() } else { self.pair.as_ref() }; container.map_or(0, |pieces| { count_added(pieces, self.special_tokens.as_ref()) }) } fn validate(&self) -> std::result::Result<(), String> { let pair_has_both = self.pair.as_ref().map_or(true, |pair| { let mut has_a = false; let mut has_b = false; for piece in &pair.0 { if let Piece::Sequence { id: Sequence::A, .. } = piece { has_a = true; } if let Piece::Sequence { id: Sequence::B, .. } = piece { has_b = true; } } has_a && has_b }); if !pair_has_both { return Err("Template for `pair` must use both sequences".into()); } let check = |sp| { let exist = self .special_tokens .as_ref() .map_or(false, |map| map.0.contains_key(sp)); match exist { false => Some(sp), true => None, } }; let empty = vec![]; let missing: HashSet<&str> = self .single .as_ref() .map_or(empty.iter(), |s| s.0.iter()) .chain(self.pair.as_ref().map_or(empty.iter(), |s| s.0.iter())) .filter_map(|piece| match piece { Piece::Sequence { .. } => None, Piece::SpecialToken { id, .. } => check(id.as_ref()), }) .collect::<HashSet<_>>(); if missing.is_empty() { Ok(()) } else { Err(format!( "Missing SpecialToken(s) with id(s) `{}`", missing.iter().join(", ") )) } } } impl Default for TemplateProcessing { fn default() -> Self { Self { single: "$0".try_into().unwrap(), pair: "$1".try_into().unwrap(), added_single: 0, added_pair: 0, special_tokens: Tokens::default(), } } } impl TemplateProcessing { pub fn builder() -> TemplateProcessingBuilder { TemplateProcessingBuilder::default() } fn apply_template( &self, template: &[Piece], mut encodings: Vec<Encoding>, add_special_tokens: bool, ) -> Result<Vec<Encoding>> { let final_encodings: Vec<Encoding> = template .iter() .flat_map(|piece| { match piece { Piece::Sequence { id, type_id } => { let i = usize::from(*id != Sequence::A); let encoding = &mut encodings[i]; encoding.set_type_ids(vec![*type_id; encoding.len()]); encoding.set_sequence_id(i); Some(encoding.clone()) } Piece::SpecialToken { id, type_id } => { if add_special_tokens { let tok = &self.special_tokens.0[id]; // We already checked existance above let len = tok.ids.len(); let encoding = Encoding::new( tok.ids.clone(), std::iter::repeat(*type_id).take(len).collect(), tok.tokens.clone(), // words std::iter::repeat(None).take(len).collect(), // offsets std::iter::repeat((0, 0)).take(len).collect(), // special_tokens_mask std::iter::repeat(1).take(len).collect(), // attention_mask std::iter::repeat(1).take(len).collect(), // overflowing vec![], // sequence_range HashMap::new(), ); Some(encoding) } else { None } } } }) .collect(); //let mut pair = if encodings.len() > 1 { // Some(encodings.pop().unwrap()) //} else { // None //}; //let mut encoding = encodings.pop().unwrap(); //let pair_overflowing = pair.as_mut().map_or(vec![], |e| e.take_overflowing()); //let mut overflowing: Vec<Encoding> = encoding // .take_overflowing() // .iter() // .map(|encoding| -> Result<Vec<Encoding>> { // // 1. The pair itself // let mut overflowings = self.apply_template( // template, // if encodings.len() > 1 { // vec![encoding.clone(), encodings[1].clone()] // } else { // vec![encoding.clone()] // }, // add_special_tokens, // )?; // // 2. Its overflowings // for other_o in &pair_overflowing { // overflowings.extend(self.apply_template( // template, // vec![encoding.clone(), other_o.clone()], // add_special_tokens, // )?); // } // Ok(overflowings) // }) // .collect::<Result<Vec<Vec<Encoding>>>>()? // .into_iter() // .flatten() // .collect(); //// We also need to combine the first sequence with all other overflowings //overflowing.extend( // pair_overflowing // .into_iter() // .map(|pair| { // self.apply_template(template, vec![encoding.clone(), pair], add_special_tokens) // }) // .collect::<Result<Vec<_>>>()? // .into_iter() // .flatten(), //); Ok(final_encodings) } } impl PostProcessor for TemplateProcessing { fn added_tokens(&self, is_pair: bool) -> usize { if is_pair { self.added_pair } else { self.added_single } } fn process_encodings( &self, encodings: Vec<Encoding>, add_special_tokens: bool, ) -> Result<Vec<Encoding>> { // let (encoding, pair): (Encoding, Option<Encoding>) = match encodings.len() { // 1 => ( // encodings // .pop() // .ok_or(ProcessorError::InvalidEncodingsVecLength)?, // None, // ), // 2 => { // let pair = encodings // .pop() // .ok_or(ProcessorError::InvalidEncodingsVecLength)?; // let encoding = encodings // .pop() // .ok_or(ProcessorError::InvalidEncodingsVecLength)?; // (encoding, Some(pair)) // } // _ => return Err(Box::new(ProcessorError::InvalidEncodingsVecLength)), // }; let template = match encodings.len() { 2 => &self.pair.0, 1 => &self.single.0, _ => todo!(), }; let encodings = self.apply_template(template, encodings, add_special_tokens)?; Ok(encodings) } } #[cfg(test)] mod tests { use super::*; use std::convert::TryInto; use std::iter::FromIterator; #[test] fn piece_serde() { let seq_0 = Piece::Sequence { id: Sequence::A, type_id: 0, }; let seq_0_s = r#"{"Sequence":{"id":"A","type_id":0}}"#; assert_eq!(serde_json::to_string(&seq_0).unwrap(), seq_0_s); assert_eq!(serde_json::from_str::<Piece>(seq_0_s).unwrap(), seq_0); let seq_1 = Piece::Sequence { id: Sequence::B, type_id: 1, }; let seq_1_s = r#"{"Sequence":{"id":"B","type_id":1}}"#; assert_eq!(serde_json::to_string(&seq_1).unwrap(), seq_1_s); assert_eq!(serde_json::from_str::<Piece>(seq_1_s).unwrap(), seq_1); let spe = Piece::SpecialToken { id: "[CLS]".into(), type_id: 0, }; let spe_s = r#"{"SpecialToken":{"id":"[CLS]","type_id":0}}"#; assert_eq!(serde_json::to_string(&spe).unwrap(), spe_s); assert_eq!(serde_json::from_str::<Piece>(spe_s).unwrap(), spe); } #[test] fn piece() { assert_eq!( Ok(Piece::Sequence { id: Sequence::A, type_id: 0 }), "$".try_into() ); assert_eq!( Ok(Piece::Sequence { id: Sequence::B, type_id: 0 }), "$B".try_into() ); assert_eq!( Ok(Piece::Sequence { id: Sequence::A, type_id: 1 }), "$1".try_into() ); assert_eq!( Ok(Piece::Sequence { id: Sequence::B, type_id: 2 }), "$B:2".try_into() ); assert_eq!( Ok(Piece::Sequence { id: Sequence::A, type_id: 1 }), "$:1".try_into() ); assert!(Piece::try_from("$C:1").is_err()); assert!(Piece::try_from("$A:").is_err()); } #[test] fn special_token_serde() { let simple = SpecialToken::from(("[CLS]", 0)); let simple_s = r#"{"id":"[CLS]","ids":[0],"tokens":["[CLS]"]}"#; assert_eq!(serde_json::to_string(&simple).unwrap(), simple_s); assert_eq!( serde_json::from_str::<SpecialToken>(simple_s).unwrap(), simple ); let complete = SpecialToken::new( "[2FR]".into(), vec![1, 2, 3], vec!["convert".into(), "to".into(), "FR".into()], ) .unwrap(); let complete_s = r#"{"id":"[2FR]","ids":[1,2,3],"tokens":["convert","to","FR"]}"#; assert_eq!(serde_json::to_string(&complete).unwrap(), complete_s); assert_eq!( serde_json::from_str::<SpecialToken>(complete_s).unwrap(), complete ); let malformed = SpecialToken::new( "[2FR]".into(), vec![1, 2], vec!["convert".into(), "to".into(), "FR".into()], ); assert!(malformed.is_err()); let malformed = SpecialToken::new( "[2FR]".into(), vec![1, 2, 3], vec!["convert".into(), "FR".into()], ); assert!(malformed.is_err()); } #[test] fn template_serde() { let template = Template(vec![ Piece::Sequence { id: Sequence::A, type_id: 0, }, Piece::SpecialToken { id: "[CLS]".into(), type_id: 0, }, ]); let template_s = r#"[{"Sequence":{"id":"A","type_id":0}},{"SpecialToken":{"id":"[CLS]","type_id":0}}]"#; assert_eq!(serde_json::to_string(&template).unwrap(), template_s); assert_eq!( serde_json::from_str::<Template>(template_s).unwrap(), template ); } #[test] fn tokens_serde() { let tokens = Tokens::from(vec![("[CLS]", 1), ("[SEP]", 0)]); let tokens_s = r#"{"[CLS]":{"id":"[CLS]","ids":[1],"tokens":["[CLS]"]},"[SEP]":{"id":"[SEP]","ids":[0],"tokens":["[SEP]"]}}"#; let tokens_ser = serde_json::to_string(&tokens).unwrap(); assert_eq!(tokens_ser, tokens_s); assert_eq!(serde_json::from_str::<Tokens>(tokens_s).unwrap(), tokens); } fn get_bert_template() -> TemplateProcessing { TemplateProcessing::builder() .try_single(vec!["[CLS]", "$0", "[SEP]"]) .unwrap() .try_pair("[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1") .unwrap() .special_tokens(vec![("[CLS]", 1), ("[SEP]", 0)]) .build() .unwrap() } #[test] fn template_processing_serde() { let template = tests::get_bert_template(); let template_s = "{\ \"type\":\"TemplateProcessing\",\ \"single\":[\ {\"SpecialToken\":{\"id\":\"[CLS]\",\"type_id\":0}},\ {\"Sequence\":{\"id\":\"A\",\"type_id\":0}},\ {\"SpecialToken\":{\"id\":\"[SEP]\",\"type_id\":0}}\ ],\ \"pair\":[\ {\"SpecialToken\":{\"id\":\"[CLS]\",\"type_id\":0}},\ {\"Sequence\":{\"id\":\"A\",\"type_id\":0}},\ {\"SpecialToken\":{\"id\":\"[SEP]\",\"type_id\":0}},\ {\"Sequence\":{\"id\":\"B\",\"type_id\":1}},\ {\"SpecialToken\":{\"id\":\"[SEP]\",\"type_id\":1}}\ ],\ \"special_tokens\":{\ \"[CLS]\":{\ \"id\":\"[CLS]\",\"ids\":[1],\"tokens\":[\"[CLS]\"]\ },\ \"[SEP]\":{\ \"id\":\"[SEP]\",\"ids\":[0],\"tokens\":[\"[SEP]\"]\ }\ }}"; let template_ser = serde_json::to_string(&template).unwrap(); assert_eq!(template_ser, template_s); assert_eq!( serde_json::from_str::<TemplateProcessing>(template_s).unwrap(), template ); } #[test] fn missing_special_tokens() { let processor = TemplateProcessing::builder() .try_single("[CLS] $0 [SEP]") .unwrap() .try_pair("[CLS] $A:0 [SEP] $B:1 [SEP]") .unwrap() .build(); let err_a = Err("Missing SpecialToken(s) with id(s) `[SEP], [CLS]`".into()); let err_b = Err("Missing SpecialToken(s) with id(s) `[CLS], [SEP]`".into()); assert!(processor == err_a || processor == err_b); } #[test] fn template_processing() { let processor = tests::get_bert_template(); assert_eq!(processor.added_tokens(false), 2); assert_eq!(processor.added_tokens(true), 3); use crate::Token; let encoding = Encoding::from_tokens( vec![ Token::new(12, "Hello".into(), (0, 5)), Token::new(14, "there".into(), (6, 11)), ], 0, ); let pair = Encoding::from_tokens(vec![Token::new(15, "pair".into(), (0, 4))], 0); let single_encoding = processor.process(encoding.clone(), None, true).unwrap(); assert_eq!( single_encoding, Encoding::new( vec![1, 12, 14, 0], vec![0, 0, 0, 0], vec![ "[CLS]".into(), "Hello".into(), "there".into(), "[SEP]".into() ], vec![None, None, None, None], vec![(0, 0), (0, 5), (6, 11), (0, 0)], vec![1, 0, 0, 1], vec![1, 1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..3)]), ) ); assert_eq!(single_encoding.token_to_sequence(2), Some(0)); assert_eq!(single_encoding.token_to_sequence(3), None); let pair_encoding = processor.process(encoding, Some(pair), true).unwrap(); assert_eq!( pair_encoding, Encoding::new( vec![1, 12, 14, 0, 15, 0], vec![0, 0, 0, 0, 1, 1], vec![ "[CLS]".into(), "Hello".into(), "there".into(), "[SEP]".into(), "pair".into(), "[SEP]".into() ], vec![None, None, None, None, None, None], vec![(0, 0), (0, 5), (6, 11), (0, 0), (0, 4), (0, 0)], vec![1, 0, 0, 1, 0, 1], vec![1, 1, 1, 1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..3), (1, 4..5)]), ) ); assert_eq!(pair_encoding.token_to_sequence(2), Some(0)); assert_eq!(pair_encoding.token_to_sequence(3), None); assert_eq!(pair_encoding.token_to_sequence(4), Some(1)); assert_eq!(pair_encoding.token_to_sequence(5), None); } #[test] fn template_processing_overflowing() { let processor = tests::get_bert_template(); assert_eq!(processor.added_tokens(false), 2); assert_eq!(processor.added_tokens(true), 3); use crate::Token; let mut encoding = Encoding::from_tokens( vec![ Token::new(12, "Hello".into(), (0, 5)), Token::new(14, "there".into(), (6, 11)), ], 0, ); let overflowing = Encoding::from_tokens(vec![Token::new(13, "you".into(), (12, 15))], 0); encoding.set_overflowing(vec![overflowing]); let mut pair = Encoding::from_tokens( vec![ Token::new(15, "pair".into(), (0, 4)), Token::new(16, "with".into(), (5, 9)), ], 0, ); let pair_overflowing = Encoding::from_tokens(vec![Token::new(17, "info".into(), (10, 14))], 0); pair.set_overflowing(vec![pair_overflowing]); let single_encoding = processor.process(encoding.clone(), None, true).unwrap(); assert_eq!( single_encoding, Encoding::new( vec![1, 12, 14, 0], vec![0, 0, 0, 0], vec![ "[CLS]".into(), "Hello".into(), "there".into(), "[SEP]".into() ], vec![None, None, None, None], vec![(0, 0), (0, 5), (6, 11), (0, 0)], vec![1, 0, 0, 1], vec![1, 1, 1, 1], vec![Encoding::new( vec![1, 13, 0], vec![0, 0, 0], vec!["[CLS]".into(), "you".into(), "[SEP]".into()], vec![None, None, None], vec![(0, 0), (12, 15), (0, 0)], vec![1, 0, 1], vec![1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..2)]), )], HashMap::from_iter(vec![(0, 1..3)]), ) ); assert_eq!(single_encoding.token_to_sequence(2), Some(0)); assert_eq!(single_encoding.token_to_sequence(3), None); let pair_encoding = processor.process(encoding, Some(pair), true).unwrap(); println!("{pair_encoding:#?}"); assert_eq!( pair_encoding, Encoding::new( vec![1, 12, 14, 0, 15, 16, 0], vec![0, 0, 0, 0, 1, 1, 1], vec![ "[CLS]".into(), "Hello".into(), "there".into(), "[SEP]".into(), "pair".into(), "with".into(), "[SEP]".into() ], vec![None, None, None, None, None, None, None], vec![(0, 0), (0, 5), (6, 11), (0, 0), (0, 4), (5, 9), (0, 0)], vec![1, 0, 0, 1, 0, 0, 1], vec![1, 1, 1, 1, 1, 1, 1], vec![ Encoding::new( vec![1, 13, 0, 15, 16, 0], vec![0, 0, 0, 1, 1, 1], vec![ "[CLS]".into(), "you".into(), "[SEP]".into(), "pair".into(), "with".into(), "[SEP]".into() ], vec![None, None, None, None, None, None], vec![(0, 0), (12, 15), (0, 0), (0, 4), (5, 9), (0, 0)], vec![1, 0, 1, 0, 0, 1], vec![1, 1, 1, 1, 1, 1], vec![Encoding::new( vec![1, 13, 0, 17, 0], vec![0, 0, 0, 0, 1], vec![ "[CLS]".into(), "you".into(), "[SEP]".into(), "info".into(), "[SEP]".into() ], vec![None, None, None, None, None,], vec![(0, 0), (12, 15), (0, 0), (10, 14), (0, 0)], vec![1, 0, 1, 0, 1], vec![1, 1, 1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..2), (1, 3..4)]), ),], HashMap::from_iter(vec![(1, 3..5), (0, 1..2)]), ), Encoding::new( vec![1, 13, 0, 17, 0], vec![0, 0, 0, 0, 1], vec![ "[CLS]".into(), "you".into(), "[SEP]".into(), "info".into(), "[SEP]".into() ], vec![None, None, None, None, None,], vec![(0, 0), (12, 15), (0, 0), (10, 14), (0, 0)], vec![1, 0, 1, 0, 1], vec![1, 1, 1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..2), (1, 3..4)]), ), Encoding::new( vec![1, 12, 14, 0, 17, 0], vec![0, 0, 0, 0, 0, 1], vec![ "[CLS]".into(), "Hello".into(), "there".into(), "[SEP]".into(), "info".into(), "[SEP]".into() ], vec![None, None, None, None, None, None], vec![(0, 0), (0, 5), (6, 11), (0, 0), (10, 14), (0, 0)], vec![1, 0, 0, 1, 0, 1], vec![1, 1, 1, 1, 1, 1], vec![Encoding::new( vec![1, 13, 0, 17, 0], vec![0, 0, 0, 0, 1], vec![ "[CLS]".into(), "you".into(), "[SEP]".into(), "info".into(), "[SEP]".into() ], vec![None, None, None, None, None,], vec![(0, 0), (12, 15), (0, 0), (10, 14), (0, 0)], vec![1, 0, 1, 0, 1], vec![1, 1, 1, 1, 1], vec![], HashMap::from_iter(vec![(0, 1..2), (1, 3..4)]), ),], HashMap::from_iter(vec![(0, 1..3), (1, 4..5)]), ) ], HashMap::from_iter(vec![(0, 1..3), (1, 4..6)]), ) ); assert_eq!(pair_encoding.token_to_sequence(2), Some(0)); assert_eq!(pair_encoding.token_to_sequence(3), None); assert_eq!(pair_encoding.token_to_sequence(4), Some(1)); assert_eq!(pair_encoding.token_to_sequence(5), Some(1)); assert_eq!(pair_encoding.token_to_sequence(6), None); } #[test] fn pair_must_use_both_sequences() { let processor = TemplateProcessing::builder() .try_single("$0") .unwrap() .try_pair("$0 $1") .unwrap() .build(); assert_eq!( processor, Err("Template for `pair` must use both sequences".into()) ); } #[test] fn expect_wrong_error_message() { let processor = TemplateProcessing::builder() .try_single("$0") .unwrap() .try_pair("$0 $1") .unwrap() .build(); assert_ne!( processor, Err("Expect the left side error message to be different from the right side!".into()) ); } }
tokenizers/tokenizers/src/processors/template.rs/0
{ "file_path": "tokenizers/tokenizers/src/processors/template.rs", "repo_id": "tokenizers", "token_count": 21195 }
213
#[cfg(feature = "progressbar")] pub(crate) use indicatif::{ProgressBar, ProgressStyle}; #[cfg(not(feature = "progressbar"))] mod progressbar { use std::borrow::Cow; pub struct ProgressBar; impl ProgressBar { pub fn new(_length: u64) -> Self { Self {} } pub fn set_length(&self, _length: u64) {} pub fn set_message(&self, _message: impl Into<Cow<'static, str>>) {} pub fn finish(&self) {} pub fn reset(&self) {} pub fn inc(&self, _inc: u64) {} pub fn set_style(&self, _style: ProgressStyle) {} } pub struct ProgressStyle {} impl ProgressStyle { pub fn default_bar() -> Self { Self {} } pub fn template(self, _template: &str) -> Result<Self, String> { Ok(self) } } } #[cfg(not(feature = "progressbar"))] pub(crate) use progressbar::{ProgressBar, ProgressStyle};
tokenizers/tokenizers/src/utils/progress.rs/0
{ "file_path": "tokenizers/tokenizers/src/utils/progress.rs", "repo_id": "tokenizers", "token_count": 403 }
214
# Awesome projects built with Transformers This page lists awesome projects built on top of Transformers. Transformers is more than a toolkit to use pretrained models: it's a community of projects built around it and the Hugging Face Hub. We want Transformers to enable developers, researchers, students, professors, engineers, and anyone else to build their dream projects. In this list, we showcase incredibly impactful and novel projects that have pushed the field forward. We celebrate 100 of these projects as we reach the milestone of 100k stars as a community; but we're very open to pull requests adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR to add it. ## [gpt4all](https://github.com/nomic-ai/gpt4all) [gpt4all](https://github.com/nomic-ai/gpt4all) is an ecosystem of open-source chatbots trained on massive collections of clean assistant data including code, stories and dialogue. It offers open-source, large language models such as LLaMA and GPT-J trained in an assistant-style. Keywords: Open-source, LLaMa, GPT-J, instruction, assistant ## [recommenders](https://github.com/microsoft/recommenders) This repository contains examples and best practices for building recommendation systems, provided as Jupyter notebooks. It goes over several aspects required to build efficient recommendation systems: data preparation, modeling, evaluation, model selection & optimization, as well as operationalization Keywords: Recommender systems, AzureML ## [lama-cleaner](https://github.com/Sanster/lama-cleaner) Image inpainting tool powered by Stable Diffusion. Remove any unwanted object, defect, people from your pictures or erase and replace anything on your pictures. Keywords: inpainting, SD, Stable Diffusion ## [flair](https://github.com/flairNLP/flair) FLAIR is a powerful PyTorch NLP framework, convering several important tasks: NER, sentiment-analysis, part-of-speech tagging, text and document embeddings, among other things. Keywords: NLP, text embedding, document embedding, biomedical, NER, PoS, sentiment-analysis ## [mindsdb](https://github.com/mindsdb/mindsdb) MindsDB is a low-code ML platform, which automates and integrates several ML frameworks into the data stack as "AI Tables" to streamline the integration of AI into applications, making it accessible to developers of all skill levels. Keywords: Database, low-code, AI table ## [langchain](https://github.com/hwchase17/langchain) [langchain](https://github.com/hwchase17/langchain) is aimed at assisting in the development of apps merging both LLMs and other sources of knowledge. The library allows chaining calls to applications, creating a sequence across many tools. Keywords: LLMs, Large Language Models, Agents, Chains ## [LlamaIndex](https://github.com/jerryjliu/llama_index) [LlamaIndex](https://github.com/jerryjliu/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retreival mechanisms to perform different LLM tasks and obtain knowledge-augmented results. Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation ## [ParlAI](https://github.com/facebookresearch/ParlAI) [ParlAI](https://github.com/facebookresearch/ParlAI) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dialogue, to visual question answering. It provides more than 100 datasets under the same API, a large zoo of pretrained models, a set of agents, and has several integrations. Keywords: Dialogue, Chatbots, VQA, Datasets, Agents ## [sentence-transformers](https://github.com/UKPLab/sentence-transformers) This framework provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various task. Text is embedding in vector space such that similar text is close and can efficiently be found using cosine similarity. Keywords: Dense vector representations, Text embeddings, Sentence embeddings ## [ludwig](https://github.com/ludwig-ai/ludwig) Ludwig is a declarative machine learning framework that makes it easy to define machine learning pipelines using a simple and flexible data-driven configuration system. Ludwig is targeted at a wide variety of AI tasks. It provides a data-driven configuration system, training, prediction, and evaluation scripts, as well as a programmatic API. Keywords: Declarative, Data-driven, ML Framework ## [InvokeAI](https://github.com/invoke-ai/InvokeAI) [InvokeAI](https://github.com/invoke-ai/InvokeAI) is an engine for Stable Diffusion models, aimed at professionals, artists, and enthusiasts. It leverages the latest AI-driven technologies through CLI as well as a WebUI. Keywords: Stable-Diffusion, WebUI, CLI ## [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) is an easy-to-use and powerful NLP library particularly targeted at the Chinese languages. It has support for multiple pre-trained model zoos, and supports a wide-range of NLP tasks from research to industrial applications. Keywords: NLP, Chinese, Research, Industry ## [stanza](https://github.com/stanfordnlp/stanza) The Stanford NLP Group's official Python NLP library. It contains support for running various accurate natural language processing tools on 60+ languages and for accessing the Java Stanford CoreNLP software from Python. Keywords: NLP, Multilingual, CoreNLP ## [DeepPavlov](https://github.com/deeppavlov/DeepPavlov) [DeepPavlov](https://github.com/deeppavlov/DeepPavlov) is an open-source conversational AI library. It is designed for the development of production ready chat-bots and complex conversational systems, as well as research in the area of NLP and, particularly, of dialog systems. Keywords: Conversational, Chatbot, Dialog ## [alpaca-lora](https://github.com/tloen/alpaca-lora) Alpaca-lora contains code for reproducing the Stanford Alpaca results using low-rank adaptation (LoRA). The repository provides training (fine-tuning) as well as generation scripts. Keywords: LoRA, Parameter-efficient fine-tuning ## [imagen-pytorch](https://github.com/lucidrains/imagen-pytorch) An open-source Implementation of Imagen, Google's closed-source Text-to-Image Neural Network that beats DALL-E2. As of release, it is the new SOTA for text-to-image synthesis. Keywords: Imagen, Text-to-image ## [adapter-transformers](https://github.com/adapter-hub/adapter-transformers) [adapter-transformers](https://github.com/adapter-hub/adapter-transformers) is an extension of HuggingFace's Transformers library, integrating adapters into state-of-the-art language models by incorporating AdapterHub, a central repository for pre-trained adapter modules. It is a drop-in replacement for transformers, which is regularly updated to stay up-to-date with the developments of transformers. Keywords: Adapters, LoRA, Parameter-efficient fine-tuning, Hub ## [NeMo](https://github.com/NVIDIA/NeMo) NVIDIA [NeMo](https://github.com/NVIDIA/NeMo) is a conversational AI toolkit built for researchers working on automatic speech recognition (ASR), text-to-speech synthesis (TTS), large language models (LLMs), and natural language processing (NLP). The primary objective of [NeMo](https://github.com/NVIDIA/NeMo) is to help researchers from industry and academia to reuse prior work (code and pretrained models) and make it easier to create new https://developer.nvidia.com/conversational-ai#started. Keywords: Conversational, ASR, TTS, LLMs, NLP ## [Runhouse](https://github.com/run-house/runhouse) [Runhouse](https://github.com/run-house/runhouse) allows to send code and data to any of your compute or data infra, all in Python, and continue to interact with them normally from your existing code and environment. Runhouse developers mention: > Think of it as an expansion pack to your Python interpreter that lets it take detours to remote machines or manipulate remote data. Keywords: MLOps, Infrastructure, Data storage, Modeling ## [MONAI](https://github.com/Project-MONAI/MONAI) [MONAI](https://github.com/Project-MONAI/MONAI) is a PyTorch-based, open-source framework for deep learning in healthcare imaging, part of PyTorch Ecosystem. Its ambitions are: - developing a community of academic, industrial and clinical researchers collaborating on a common foundation; - creating state-of-the-art, end-to-end training workflows for healthcare imaging; - providing researchers with the optimized and standardized way to create and evaluate deep learning models. Keywords: Healthcare imaging, Training, Evaluation ## [simpletransformers](https://github.com/ThilinaRajapakse/simpletransformers) Simple Transformers lets you quickly train and evaluate Transformer models. Only 3 lines of code are needed to initialize, train, and evaluate a model. It supports a wide variety of NLP tasks. Keywords: Framework, simplicity, NLP ## [JARVIS](https://github.com/microsoft/JARVIS) [JARVIS](https://github.com/microsoft/JARVIS) is a system attempting to merge LLMs such as GPT-4 with the rest of the open-source ML community: leveraging up to 60 downstream models in order to perform tasks identified by the LLM. Keywords: LLM, Agents, HF Hub ## [transformers.js](https://xenova.github.io/transformers.js/) [transformers.js](https://xenova.github.io/transformers.js/) is a JavaScript library targeted at running models from transformers directly within the browser. Keywords: Transformers, JavaScript, browser ## [bumblebee](https://github.com/elixir-nx/bumblebee) Bumblebee provides pre-trained Neural Network models on top of Axon, a neural networks library for the Elixir language. It includes integration with 🤗 Models, allowing anyone to download and perform Machine Learning tasks with few lines of code. Keywords: Elixir, Axon ## [argilla](https://github.com/argilla-io/argilla) Argilla is an open-source platform providing advanced NLP labeling, monitoring, and workspaces. It is compatible with many open source ecosystems such as Hugging Face, Stanza, FLAIR, and others. Keywords: NLP, Labeling, Monitoring, Workspaces ## [haystack](https://github.com/deepset-ai/haystack) Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs. It offers production-ready tools to quickly build complex decision making, question answering, semantic search, text generation applications, and more. Keywords: NLP, Framework, LLM ## [spaCy](https://github.com/explosion/spaCy) [spaCy](https://github.com/explosion/spaCy) is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. It offers support for transformers models through its third party package, spacy-transformers. Keywords: NLP, Framework ## [speechbrain](https://github.com/speechbrain/speechbrain) SpeechBrain is an open-source and all-in-one conversational AI toolkit based on PyTorch. The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognition, speech enhancement, speech separation, language identification, multi-microphone signal processing, and many others. Keywords: Conversational, Speech ## [skorch](https://github.com/skorch-dev/skorch) Skorch is a scikit-learn compatible neural network library that wraps PyTorch. It has support for models within transformers, and tokenizers from tokenizers. Keywords: Scikit-Learn, PyTorch ## [bertviz](https://github.com/jessevig/bertviz) BertViz is an interactive tool for visualizing attention in Transformer language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab notebook through a simple Python API that supports most Huggingface models. Keywords: Visualization, Transformers ## [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) is a haiku library using the xmap/pjit operators in JAX for model parallelism of transformers. This library is designed for scalability up to approximately 40B parameters on TPUv3s. It was the library used to train the GPT-J model. Keywords: Haiku, Model parallelism, LLM, TPU ## [deepchem](https://github.com/deepchem/deepchem) DeepChem aims to provide a high quality open-source toolchain that democratizes the use of deep-learning in drug discovery, materials science, quantum chemistry, and biology. Keywords: Drug discovery, Materials Science, Quantum Chemistry, Biology ## [OpenNRE](https://github.com/thunlp/OpenNRE) An Open-Source Package for Neural Relation Extraction (NRE). It is targeted at a wide range of users, from newcomers to relation extraction, to developers, researchers, or students. Keywords: Neural Relation Extraction, Framework ## [pycorrector](https://github.com/shibing624/pycorrector) PyCorrector is a Chinese Text Error Correction Tool. It uses a language model to detect errors, pinyin feature and shape feature to correct Chinese text errors. it can be used for Chinese Pinyin and stroke input method. Keywords: Chinese, Error correction tool, Language model, Pinyin ## [nlpaug](https://github.com/makcedward/nlpaug) This python library helps you with augmenting nlp for machine learning projects. It is a lightweight library featuring synthetic data generation for improving model performance, support for audio and text, and compatibility with several ecosystems (scikit-learn, pytorch, tensorflow). Keywords: Data augmentation, Synthetic data generation, Audio, NLP ## [dream-textures](https://github.com/carson-katri/dream-textures) [dream-textures](https://github.com/carson-katri/dream-textures) is a library targeted at bringing stable-diffusion support within Blender. It supports several use-cases, such as image generation, texture projection, inpainting/outpainting, ControlNet, and upscaling. Keywords: Stable-Diffusion, Blender ## [seldon-core](https://github.com/SeldonIO/seldon-core) Seldon core converts your ML models (Tensorflow, Pytorch, H2o, etc.) or language wrappers (Python, Java, etc.) into production REST/GRPC microservices. Seldon handles scaling to thousands of production machine learning models and provides advanced machine learning capabilities out of the box including Advanced Metrics, Request Logging, Explainers, Outlier Detectors, A/B Tests, Canaries and more. Keywords: Microservices, Modeling, Language wrappers ## [open_model_zoo](https://github.com/openvinotoolkit/open_model_zoo) This repository includes optimized deep learning models and a set of demos to expedite development of high-performance deep learning inference applications. Use these free pre-trained models instead of training your own models to speed-up the development and production deployment process. Keywords: Optimized models, Demos ## [ml-stable-diffusion](https://github.com/apple/ml-stable-diffusion) ML-Stable-Diffusion is a repository by Apple bringing Stable Diffusion support to Core ML, on Apple Silicon devices. It supports stable diffusion checkpoints hosted on the Hugging Face Hub. Keywords: Stable Diffusion, Apple Silicon, Core ML ## [stable-dreamfusion](https://github.com/ashawkey/stable-dreamfusion) Stable-Dreamfusion is a pytorch implementation of the text-to-3D model Dreamfusion, powered by the Stable Diffusion text-to-2D model. Keywords: Text-to-3D, Stable Diffusion ## [txtai](https://github.com/neuml/txtai) [txtai](https://github.com/neuml/txtai) is an open-source platform for semantic search and workflows powered by language models. txtai builds embeddings databases, which are a union of vector indexes and relational databases enabling similarity search with SQL. Semantic workflows connect language models together into unified applications. Keywords: Semantic search, LLM ## [djl](https://github.com/deepjavalibrary/djl) Deep Java Library (DJL) is an open-source, high-level, engine-agnostic Java framework for deep learning. DJL is designed to be easy to get started with and simple to use for developers. DJL provides a native Java development experience and functions like any other regular Java library. DJL offers [a Java binding](https://github.com/deepjavalibrary/djl/tree/master/extensions/tokenizers) for HuggingFace Tokenizers and easy conversion toolkit for HuggingFace model to deploy in Java. Keywords: Java, Framework ## [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/) This project provides a unified framework to test generative language models on a large number of different evaluation tasks. It has support for more than 200 tasks, and supports different ecosystems: HF Transformers, GPT-NeoX, DeepSpeed, as well as the OpenAI API. Keywords: LLM, Evaluation, Few-shot ## [gpt-neox](https://github.com/EleutherAI/gpt-neox) This repository records EleutherAI's library for training large-scale language models on GPUs. The framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. It is focused on training multi-billion-parameter models. Keywords: Training, LLM, Megatron, DeepSpeed ## [muzic](https://github.com/microsoft/muzic) Muzic is a research project on AI music that empowers music understanding and generation with deep learning and artificial intelligence. Muzic was created by researchers from Microsoft Research Asia. Keywords: Music understanding, Music generation ## [dalle-flow](https://github.com/jina-ai/dalle-flow) DALL·E Flow is an interactive workflow for generating high-definition images from a text prompt. Itt leverages DALL·E-Mega, GLID-3 XL, and Stable Diffusion to generate image candidates, and then calls CLIP-as-service to rank the candidates w.r.t. the prompt. The preferred candidate is fed to GLID-3 XL for diffusion, which often enriches the texture and background. Finally, the candidate is upscaled to 1024x1024 via SwinIR. Keywords: High-definition image generation, Stable Diffusion, DALL-E Mega, GLID-3 XL, CLIP, SwinIR ## [lightseq](https://github.com/bytedance/lightseq) LightSeq is a high performance training and inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP and CV models such as BERT, GPT, Transformer, etc. It is therefore best useful for machine translation, text generation, image classification, and other sequence related tasks. Keywords: Training, Inference, Sequence Processing, Sequence Generation ## [LaTeX-OCR](https://github.com/lukas-blecher/LaTeX-OCR) The goal of this project is to create a learning based system that takes an image of a math formula and returns corresponding LaTeX code. Keywords: OCR, LaTeX, Math formula ## [open_clip](https://github.com/mlfoundations/open_clip) OpenCLIP is an open source implementation of OpenAI's CLIP. The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift. The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset. Specifically, a ResNet-50 model trained with this codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet. Keywords: CLIP, Open-source, Contrastive, Image-text ## [dalle-playground](https://github.com/saharmor/dalle-playground) A playground to generate images from any text prompt using Stable Diffusion and Dall-E mini. Keywords: WebUI, Stable Diffusion, Dall-E mini ## [FedML](https://github.com/FedML-AI/FedML) [FedML](https://github.com/FedML-AI/FedML) is a federated learning and analytics library enabling secure and collaborative machine learning on decentralized data anywhere at any scale. It supports large-scale cross-silo federated learning, and cross-device federated learning on smartphones/IoTs, and research simulation. Keywords: Federated Learning, Analytics, Collaborative ML, Decentralized ## [gpt-code-clippy](https://github.com/CodedotAl/gpt-code-clippy) GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub. Keywords: LLM, Code ## [TextAttack](https://github.com/QData/TextAttack) [TextAttack](https://github.com/QData/TextAttack) 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP. Keywords: Adversarial attacks, Data augmentation, NLP ## [OpenPrompt](https://github.com/thunlp/OpenPrompt) Prompt-learning is a paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modify the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. This library provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. [OpenPrompt](https://github.com/thunlp/OpenPrompt) supports loading PLMs directly from https://github.com/huggingface/transformers. ## [text-generation-webui](https://github.com/oobabooga/text-generation-webui/) [text-generation-webui](https://github.com/oobabooga/text-generation-webui/) is a Gradio Web UI for running Large Language Models like LLaMA, llama.cpp, GPT-J, Pythia, OPT, and GALACTICA. Keywords: LLM, WebUI ## [libra](https://github.com/Palashio/libra) An ergonomic machine learning [libra](https://github.com/Palashio/libra)ry for non-technical users. It focuses on ergonomics and on ensuring that training a model is as simple as it can be. Keywords: Ergonomic, Non-technical ## [alibi](https://github.com/SeldonIO/alibi) Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-quality implementations of black-box, white-box, local and global explanation methods for classification and regression models. Keywords: Model inspection, Model interpretation, Black-box, White-box ## [tortoise-tts](https://github.com/neonbjb/tortoise-tts) Tortoise is a text-to-speech program built with the following priorities: strong multi-voice capabilities, and highly realistic prosody and intonation. Keywords: Text-to-speech ## [flower](https://github.com/adap/flower) Flower (flwr) is a framework for building federated learning systems. The design of Flower is based on a few guiding principles: customizability, extendability, framework agnosticity, and ease-of-use. Keywords: Federated learning systems, Customizable, Extendable, Framework-agnostic, Simplicity ## [fast-bert](https://github.com/utterworks/fast-bert) Fast-Bert is a deep learning library that allows developers and data scientists to train and deploy BERT and XLNet based models for natural language processing tasks beginning with Text Classification. It is aimed at simplicity. Keywords: Deployment, BERT, XLNet ## [towhee](https://github.com/towhee-io/towhee) Towhee makes it easy to build neural data processing pipelines for AI applications. We provide hundreds of models, algorithms, and transformations that can be used as standard pipeline building blocks. Users can use Towhee's Pythonic API to build a prototype of their pipeline and automatically optimize it for production-ready environments. Keywords: Data processing pipeline, Optimization ## [alibi-detect](https://github.com/SeldonIO/alibi-detect) Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection. Keywords: Adversarial, Outlier, Drift detection ## [FARM](https://github.com/deepset-ai/FARM) [FARM](https://github.com/deepset-ai/FARM) makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built upon transformers and provides additional features to simplify the life of developers: Parallelized preprocessing, highly modular design, multi-task learning, experiment tracking, easy debugging and close integration with AWS SageMaker. Keywords: Transfer Learning, Modular design, Multi-task learning, Experiment tracking ## [aitextgen](https://github.com/minimaxir/aitextgen) A robust Python tool for text-based AI training and generation using OpenAI's GPT-2 and EleutherAI's GPT Neo/GPT-3 architecture. [aitextgen](https://github.com/minimaxir/aitextgen) is a Python package that leverages PyTorch, Hugging Face Transformers and pytorch-lightning with specific optimizations for text generation using GPT-2, plus many added features. Keywords: Training, Generation ## [diffgram](https://github.com/diffgram/diffgram) Diffgram aims to integrate human supervision into platforms. We support your team programmatically changing the UI (Schema, layout, etc.) like in Streamlit. This means that you can collect and annotate timely data from users. In other words, we are the platform behind your platform, an integrated part of your application, to ship new & better AI products faster. Keywords: Human supervision, Platform ## [ecco](https://github.com/jalammar/ecco) Explain, analyze, and visualize NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0). Keywords: Model explainability ## [s3prl](https://github.com/s3prl/s3prl) [s3prl](https://github.com/s3prl/s3prl) stands for Self-Supervised Speech Pre-training and Representation Learning. Self-supervised speech pre-trained models are called upstream in this toolkit, and are utilized in various downstream tasks. Keywords: Speech, Training ## [ru-dalle](https://github.com/ai-forever/ru-dalle) RuDALL-E aims to be similar to DALL-E, targeted to Russian. Keywords: DALL-E, Russian ## [DeepKE](https://github.com/zjunlp/DeepKE) [DeepKE](https://github.com/zjunlp/DeepKE) is a knowledge extraction toolkit for knowledge graph construction supporting cnSchema,low-resource, document-level and multimodal scenarios for entity, relation and attribute extraction. Keywords: Knowledge Extraction, Knowledge Graphs ## [Nebuly](https://github.com/nebuly-ai/nebuly) Nebuly is the next-generation platform to monitor and optimize your AI costs in one place. The platform connects to all your AI cost sources (compute, API providers, AI software licenses, etc) and centralizes them in one place to give you full visibility on a model basis. The platform also provides optimization recommendations and a co-pilot model that can guide during the optimization process. The platform builds on top of the open-source tools allowing you to optimize the different steps of your AI stack to squeeze out the best possible cost performances. Keywords: Optimization, Performance, Monitoring ## [imaginAIry](https://github.com/brycedrennan/imaginAIry) Offers a CLI and a Python API to generate images with Stable Diffusion. It has support for many tools, like image structure control (controlnet), instruction-based image edits (InstructPix2Pix), prompt-based masking (clipseg), among others. Keywords: Stable Diffusion, CLI, Python API ## [sparseml](https://github.com/neuralmagic/sparseml) SparseML is an open-source model optimization toolkit that enables you to create inference-optimized sparse models using pruning, quantization, and distillation algorithms. Models optimized with SparseML can then be exported to the ONNX and deployed with DeepSparse for GPU-class performance on CPU hardware. Keywords: Model optimization, Pruning, Quantization, Distillation ## [opacus](https://github.com/pytorch/opacus) Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Keywords: Differential privacy ## [LAVIS](https://github.com/salesforce/LAVIS) [LAVIS](https://github.com/salesforce/LAVIS) is a Python deep learning library for LAnguage-and-VISion intelligence research and applications. This library aims to provide engineers and researchers with a one-stop solution to rapidly develop models for their specific multimodal scenarios, and benchmark them across standard and customized datasets. It features a unified interface design to access Keywords: Multimodal, NLP, Vision ## [buzz](https://github.com/chidiwilliams/buzz) Buzz transcribes and translates audio offline on your personal computer. Powered by OpenAI's Whisper. Keywords: Audio transcription, Translation ## [rust-bert](https://github.com/guillaume-be/rust-bert) Rust-native state-of-the-art Natural Language Processing models and pipelines. Port of Hugging Face's Transformers library, using the tch-rs crate and pre-processing from rust-tokenizers. Supports multi-threaded tokenization and GPU inference. This repository exposes the model base architecture, task-specific heads and ready-to-use pipelines. Keywords: Rust, BERT, Inference ## [EasyNLP](https://github.com/alibaba/EasyNLP) [EasyNLP](https://github.com/alibaba/EasyNLP) is an easy-to-use NLP development and application toolkit in PyTorch, first released inside Alibaba in 2021. It is built with scalable distributed training strategies and supports a comprehensive suite of NLP algorithms for various NLP applications. [EasyNLP](https://github.com/alibaba/EasyNLP) integrates knowledge distillation and few-shot learning for landing large pre-trained models, together with various popular multi-modality pre-trained models. It provides a unified framework of model training, inference, and deployment for real-world applications. Keywords: NLP, Knowledge distillation, Few-shot learning, Multi-modality, Training, Inference, Deployment ## [TurboTransformers](https://github.com/Tencent/TurboTransformers) A fast and user-friendly runtime for transformer inference (Bert, Albert, GPT2, Decoders, etc) on CPU and GPU. Keywords: Optimization, Performance ## [hivemind](https://github.com/learning-at-home/hivemind) Hivemind is a PyTorch library for decentralized deep learning across the Internet. Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers. Keywords: Decentralized training ## [docquery](https://github.com/impira/docquery) DocQuery is a library and command-line tool that makes it easy to analyze semi-structured and unstructured documents (PDFs, scanned images, etc.) using large language models (LLMs). You simply point DocQuery at one or more documents and specify a question you want to ask. DocQuery is created by the team at Impira. Keywords: Semi-structured documents, Unstructured documents, LLM, Document Question Answering ## [CodeGeeX](https://github.com/THUDM/CodeGeeX) [CodeGeeX](https://github.com/THUDM/CodeGeeX) is a large-scale multilingual code generation model with 13 billion parameters, pre-trained on a large code corpus of more than 20 programming languages. It has several unique features: - Multilingual code generation - Crosslingual code translation - Is a customizable programming assistant Keywords: Code Generation Model ## [ktrain](https://github.com/amaiya/ktrain) [ktrain](https://github.com/amaiya/ktrain) is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, [ktrain](https://github.com/amaiya/ktrain) is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. Keywords: Keras wrapper, Model building, Training, Deployment ## [FastDeploy](https://github.com/PaddlePaddle/FastDeploy) [FastDeploy](https://github.com/PaddlePaddle/FastDeploy) is an Easy-to-use and High Performance AI model deployment toolkit for Cloud, Mobile and Edge with packageout-of-the-box and unified experience, endend-to-end optimization for over fire160+ Text, Vision, Speech and Cross-modal AI models. Including image classification, object detection, OCR, face detection, matting, pp-tracking, NLP, stable diffusion, TTS and other tasks to meet developers' industrial deployment needs for multi-scenario, multi-hardware and multi-platform. Keywords: Model deployment, CLoud, Mobile, Edge ## [underthesea](https://github.com/undertheseanlp/underthesea) [underthesea](https://github.com/undertheseanlp/underthesea) is a Vietnamese NLP toolkit. Underthesea is a suite of open source Python modules data sets and tutorials supporting research and development in Vietnamese Natural Language Processing. We provides extremely easy API to quickly apply pretrained NLP models to your Vietnamese text, such as word segmentation, part-of-speech tagging (PoS), named entity recognition (NER), text classification and dependency parsing. Keywords: Vietnamese, NLP ## [hasktorch](https://github.com/hasktorch/hasktorch) Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the core C++ libraries shared by PyTorch. Keywords: Haskell, Neural Networks ## [donut](https://github.com/clovaai/donut) Donut, or Document understanding transformer, is a new method of document understanding that utilizes an OCR-free end-to-end Transformer model. Donut does not require off-the-shelf OCR engines/APIs, yet it shows state-of-the-art performances on various visual document understanding tasks, such as visual document classification or information extraction (a.k.a. document parsing). Keywords: Document Understanding ## [transformers-interpret](https://github.com/cdpierse/transformers-interpret) Transformers Interpret is a model explainability tool designed to work exclusively with the transformers package. In line with the philosophy of the Transformers package Transformers Interpret allows any transformers model to be explained in just two lines. Explainers are available for both text and computer vision models. Visualizations are also available in notebooks and as savable png and html files Keywords: Model interpretation, Visualization ## [mlrun](https://github.com/mlrun/mlrun) MLRun is an open MLOps platform for quickly building and managing continuous ML applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. With MLRun, you can choose any IDE on your local machine or on the cloud. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous improvements. Keywords: MLOps ## [FederatedScope](https://github.com/alibaba/FederatedScope) [FederatedScope](https://github.com/alibaba/FederatedScope) is a comprehensive federated learning platform that provides convenient usage and flexible customization for various federated learning tasks in both academia and industry. Based on an event-driven architecture, [FederatedScope](https://github.com/alibaba/FederatedScope) integrates rich collections of functionalities to satisfy the burgeoning demands from federated learning, and aims to build up an easy-to-use platform for promoting learning safely and effectively. Keywords: Federated learning, Event-driven ## [pythainlp](https://github.com/PyThaiNLP/pythainlp) PyThaiNLP is a Python package for text processing and linguistic analysis, similar to NLTK with focus on Thai language. Keywords: Thai, NLP, NLTK ## [FlagAI](https://github.com/FlagAI-Open/FlagAI) [FlagAI](https://github.com/FlagAI-Open/FlagAI) (Fast LArge-scale General AI models) is a fast, easy-to-use and extensible toolkit for large-scale model. Our goal is to support training, fine-tuning, and deployment of large-scale models on various downstream tasks with multi-modality. Keywords: Large models, Training, Fine-tuning, Deployment, Multi-modal ## [pyserini](https://github.com/castorini/pyserini) [pyserini](https://github.com/castorini/pyserini) is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse representations is provided via integration with the group's Anserini IR toolkit. Retrieval using dense representations is provided via integration with Facebook's Faiss library. Keywords: IR, Information Retrieval, Dense, Sparse ## [baal](https://github.com/baal-org/baal) [baal](https://github.com/baal-org/baal) is an active learning library that supports both industrial applications and research usecases. [baal](https://github.com/baal-org/baal) currently supports Monte-Carlo Dropout, MCDropConnect, deep ensembles, and semi-supervised learning. Keywords: Active Learning, Research, Labeling ## [cleanlab](https://github.com/cleanlab/cleanlab) [cleanlab](https://github.com/cleanlab/cleanlab) is the standard data-centric AI package for data quality and machine learning with messy, real-world data and labels. For text, image, tabular, audio (among others) datasets, you can use cleanlab to automatically: detect data issues (outliers, label errors, near duplicates, etc), train robust ML models, infer consensus + annotator-quality for multi-annotator data, suggest data to (re)label next (active learning). Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active Learning ## [BentoML](https://github.com/bentoml/BentoML) [BentoML](https://github.com/bentoml) is the unified framework for for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models. All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage. Keywords: BentoML, Framework, Deployment, AI Applications ## [LLaMA-Efficient-Tuning](https://github.com/hiyouga/LLaMA-Efficient-Tuning) [LLaMA-Efficient-Tuning](https://github.com/hiyouga/LLaMA-Efficient-Tuning) offers a user-friendly fine-tuning framework that incorporates PEFT. The repository includes training(fine-tuning) and inference examples for LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, and other LLMs. A ChatGLM version is also available in [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning). Keywords: PEFT, fine-tuning, LLaMA-2, ChatGLM, Qwen
transformers/awesome-transformers.md/0
{ "file_path": "transformers/awesome-transformers.md", "repo_id": "transformers", "token_count": 10267 }
215
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Generating the documentation To generate the documentation, you first have to build it. Several packages are necessary to build the doc, you can install them with the following command, at the root of the code repository: ```bash pip install -e ".[docs]" ``` Then you need to install our special tool that builds the documentation: ```bash pip install git+https://github.com/huggingface/doc-builder ``` --- **NOTE** You only need to generate the documentation to inspect it locally (if you're planning changes and want to check how they look before committing for instance). You don't have to commit the built documentation. --- ## Building the documentation Once you have setup the `doc-builder` and additional packages, you can generate the documentation by typing the following command: ```bash doc-builder build transformers docs/source/en/ --build_dir ~/tmp/test-build ``` You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite Markdown editor. ## Previewing the documentation To preview the docs, first install the `watchdog` module with: ```bash pip install watchdog ``` Then run the following command: ```bash doc-builder preview {package_name} {path_to_docs} ``` For example: ```bash doc-builder preview transformers docs/source/en/ ``` The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives. --- **NOTE** The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again). --- ## Adding a new element to the navigation bar Accepted files are Markdown (.md). Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml) file. ## Renaming section headers and moving sections It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information. Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor. So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file: ``` Sections that were moved: [ <a href="#section-b">Section A</a><a id="section-a"></a> ] ``` and of course, if you moved it to another file, then: ``` Sections that were moved: [ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ] ``` Use the relative style to link to the new file so that the versioned docs continue to work. For an example of a rich moved section set please see the very end of [the Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.md). ## Writing Documentation - Specification The `huggingface/transformers` documentation follows the [Google documentation](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) style for docstrings, although we can write them directly in Markdown. ### Adding a new tutorial Adding a new tutorial or section is done in two steps: - Add a new file under `./source`. This file can either be ReStructuredText (.rst) or Markdown (.md). - Link that file in `./source/_toctree.yml` on the correct toc-tree. Make sure to put your new file under the proper section. It's unlikely to go in the first section (*Get Started*), so depending on the intended targets (beginners, more advanced users, or researchers) it should go in sections two, three, or four. ### Translating When translating, refer to the guide at [./TRANSLATING.md](https://github.com/huggingface/transformers/blob/main/docs/TRANSLATING.md). ### Adding a new model When adding a new model: - Create a file `xxx.md` or under `./source/model_doc` (don't hesitate to copy an existing file as template). - Link that file in `./source/_toctree.yml`. - Write a short overview of the model: - Overview with paper & authors - Paper abstract - Tips and tricks and how to use it best - Add the classes that should be linked in the model. This generally includes the configuration, the tokenizer, and every model of that class (the base model, alongside models with additional heads), both in PyTorch and TensorFlow. The order is generally: - Configuration - Tokenizer - PyTorch base model - PyTorch head models - TensorFlow base model - TensorFlow head models - Flax base model - Flax head models These classes should be added using our Markdown syntax. Usually as follows: ``` ## XXXConfig [[autodoc]] XXXConfig ``` This will include every public method of the configuration that is documented. If for some reason you wish for a method not to be displayed in the documentation, you can do so by specifying which methods should be in the docs: ``` ## XXXTokenizer [[autodoc]] XXXTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ``` If you just want to add a method that is not documented (for instance magic methods like `__call__` are not documented by default) you can put the list of methods to add in a list that contains `all`: ``` ## XXXTokenizer [[autodoc]] XXXTokenizer - all - __call__ ``` ### Writing source documentation Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names and objects like True, None, or any strings should usually be put in `code`. When mentioning a class, function, or method, it is recommended to use our syntax for internal links so that our tool adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`function\`\]. This requires the class or function to be in the main package. If you want to create a link to some internal class or function, you need to provide its path. For instance: \[\`utils.ModelOutput\`\]. This will be converted into a link with `utils.ModelOutput` in the description. To get rid of the path and only keep the name of the object you are linking to in the description, add a ~: \[\`~utils.ModelOutput\`\] will generate a link with `ModelOutput` in the description. The same works for methods so you can either use \[\`XXXClass.method\`\] or \[~\`XXXClass.method\`\]. #### Defining arguments in a method Arguments should be defined with the `Args:` (or `Arguments:` or `Parameters:`) prefix, followed by a line return and an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its description: ``` Args: n_layers (`int`): The number of layers of the model. ``` If the description is too long to fit in one line, another indentation is necessary before writing the description after the argument. Here's an example showcasing everything so far: ``` Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AlbertTokenizer`]. See [`~PreTrainedTokenizer.encode`] and [`~PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) ``` For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the following signature: ``` def my_function(x: str = None, a: float = 1): ``` then its documentation should look like this: ``` Args: x (`str`, *optional*): This argument controls ... a (`float`, *optional*, defaults to 1): This argument is used to ... ``` Note that we always omit the "defaults to \`None\`" when None is the default for any argument. Also note that even if the first line describing your argument type and its default gets long, you can't break it on several lines. You can however, write as many lines as you want in the indented description (see the example above with `input_ids`). #### Writing a multi-line code block Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown: ```` ``` # first line of code # second line # etc ``` ```` We follow the [doctest](https://docs.python.org/3/library/doctest.html) syntax for the examples to automatically test the results to stay consistent with the library. #### Writing a return block The return block should be introduced with the `Returns:` prefix, followed by a line return and an indentation. The first line should be the type of the return, followed by a line return. No need to indent further for the elements building the return. Here's an example of a single value return: ``` Returns: `List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token. ``` Here's an example of a tuple return, comprising several objects: ``` Returns: `tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs: - ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` -- Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss. - **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) -- Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). ``` #### Adding an image Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images). If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images to this dataset. ## Styling the docstring We have an automatic script running with the `make style` comment that will make sure that: - the docstrings fully take advantage of the line width - all code examples are formatted using black, like the code of the Transformers library This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's recommended to commit your changes before running `make style`, so you can revert the changes done by that script easily. # Testing documentation examples Good documentation often comes with an example of how a specific function or class should be used. Each model class should contain at least one example showcasing how to use this model class in inference. *E.g.* the class [Wav2Vec2ForCTC](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC) includes an example of how to transcribe speech to text in the [docstring of its forward function](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC.forward). ## Writing documentation examples The syntax for Example docstrings can look as follows: ``` Example: ```python >>> from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC >>> from datasets import load_dataset >>> import torch >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") >>> dataset = dataset.sort("id") >>> sampling_rate = dataset.features["audio"].sampling_rate >>> processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h") >>> model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") >>> # audio file is decoded on the fly >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_ids = torch.argmax(logits, dim=-1) >>> # transcribe speech >>> transcription = processor.batch_decode(predicted_ids) >>> transcription[0] 'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL' ``` ``` The docstring should give a minimal, clear example of how the respective model is to be used in inference and also include the expected (ideally sensible) output. Often, readers will try out the example before even going through the function or class definitions. Therefore, it is of utmost importance that the example works as expected. ## Docstring testing To do so each example should be included in the doctests. We use pytests' [doctest integration](https://docs.pytest.org/doctest.html) to verify that all of our examples run correctly. For Transformers, the doctests are run on a daily basis via GitHub Actions as can be seen [here](https://github.com/huggingface/transformers/actions/workflows/doctests.yml). ### For Python files Run all the tests in the docstrings of a given file with the following command, here is how we test the modeling file of Wav2Vec2 for instance: ```bash pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py -sv --doctest-continue-on-failure ``` If you want to isolate a specific docstring, just add `::` after the file name then type the whole path of the function/class/method whose docstring you want to test. For instance, here is how to just test the forward method of `Wav2Vec2ForCTC`: ```bash pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py::transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward -sv --doctest-continue-on-failure ``` ### For Markdown files You can test locally a given file with this command (here testing the quicktour): ```bash pytest --doctest-modules docs/source/quicktour.md -sv --doctest-continue-on-failure --doctest-glob="*.md" ``` ### Writing doctests Here are a few tips to help you debug the doctests and make them pass: - The outputs of the code need to match the expected output **exactly**, so make sure you have the same outputs. In particular doctest will see a difference between single quotes and double quotes, or a missing parenthesis. The only exceptions to that rule are: * whitespace: one give whitespace (space, tabulation, new line) is equivalent to any number of whitespace, so you can add new lines where there are spaces to make your output more readable. * numerical values: you should never put more than 4 or 5 digits to expected results as different setups or library versions might get you slightly different results. `doctest` is configured to ignore any difference lower than the precision to which you wrote (so 1e-4 if you write 4 digits). - Don't leave a block of code that is very long to execute. If you can't make it fast, you can either not use the doctest syntax on it (so that it's ignored), or if you want to use the doctest syntax to show the results, you can add a comment `# doctest: +SKIP` at the end of the lines of code too long to execute - Each line of code that produces a result needs to have that result written below. You can ignore an output if you don't want to show it in your code example by adding a comment ` # doctest: +IGNORE_RESULT` at the end of the line of code producing it.
transformers/docs/README.md/0
{ "file_path": "transformers/docs/README.md", "repo_id": "transformers", "token_count": 4835 }
216
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Überprüfungen bei einer Pull-Anfrage Wenn Sie eine Pull-Anfrage für 🤗 Transformers öffnen, wird eine ganze Reihe von Prüfungen durchgeführt, um sicherzustellen, dass der Patch, den Sie hinzufügen, nichts Bestehendes zerstört. Es gibt vier Arten von Prüfungen: - reguläre Tests - Erstellung der Dokumentation - Stil von Code und Dokumentation - allgemeine Konsistenz des Repository In diesem Dokument werden wir versuchen zu erklären, worum es sich bei diesen verschiedenen Prüfungen handelt und wie Sie sie lokal debuggen können, wenn eine der Prüfungen in Ihrer PR fehlschlägt. Beachten Sie, dass Sie im Idealfall eine Dev-Installation benötigen: ```bash pip install transformers[dev] ``` oder für eine bearbeitbare Installation: ```bash pip install -e .[dev] ``` innerhalb des Transformers Repo. Da die Anzahl der optionalen Abhängigkeiten von Transformers stark zugenommen hat, ist es möglich, dass Sie nicht alle davon bekommen können. Wenn die Dev-Installation fehlschlägt, stellen Sie sicher, dass Sie das Deep Learning-Framework, mit dem Sie arbeiten, installieren (PyTorch, TensorFlow und/oder Flax). ```bash pip install transformers[quality] ``` oder für eine bearbeitbare Installation: ```bash pip install -e .[quality] ``` ## Tests Alle Jobs, die mit `ci/circleci: run_tests_` beginnen, führen Teile der Transformers-Testsuite aus. Jeder dieser Jobs konzentriert sich auf einen Teil der Bibliothek in einer bestimmten Umgebung: `ci/circleci: run_tests_pipelines_tf` zum Beispiel führt den Pipelines-Test in einer Umgebung aus, in der nur TensorFlow installiert ist. Beachten Sie, dass nur ein Teil der Testsuite jedes Mal ausgeführt wird, um zu vermeiden, dass Tests ausgeführt werden, wenn es keine wirkliche Änderung in den Modulen gibt, die sie testen: ein Dienstprogramm wird ausgeführt, um die Unterschiede in der Bibliothek zwischen vor und nach dem PR zu ermitteln (was GitHub Ihnen auf der Registerkarte "Files changes" anzeigt) und die Tests auszuwählen, die von diesem Unterschied betroffen sind. Dieses Dienstprogramm kann lokal mit ausgeführt werden: ```bash python utils/tests_fetcher.py ``` aus dem Stammverzeichnis des Transformers-Repositoriums. Es wird: 1. Überprüfen Sie für jede Datei im Diff, ob die Änderungen im Code oder nur in Kommentaren oder Docstrings enthalten sind. Nur die Dateien mit echten Codeänderungen werden beibehalten. 2. Erstellen Sie eine interne Map, die für jede Datei des Quellcodes der Bibliothek alle Dateien angibt, auf die sie rekursiv Einfluss nimmt. Von Modul A wird gesagt, dass es sich auf Modul B auswirkt, wenn Modul B Modul A importiert. Für die rekursive Auswirkung benötigen wir eine Kette von Modulen, die von Modul A zu Modul B führt und in der jedes Modul das vorherige importiert. 3. Wenden Sie diese Zuordnung auf die in Schritt 1 gesammelten Dateien an. So erhalten wir die Liste der Modelldateien, die von der PR betroffen sind. 4. Ordnen Sie jede dieser Dateien der/den entsprechenden Testdatei(en) zu und erhalten Sie die Liste der auszuführenden Tests. Wenn Sie das Skript lokal ausführen, sollten Sie die Ergebnisse von Schritt 1, 3 und 4 ausgegeben bekommen und somit wissen, welche Tests ausgeführt werden. Das Skript erstellt außerdem eine Datei namens `test_list.txt`, die die Liste der auszuführenden Tests enthält, die Sie mit dem folgenden Befehl lokal ausführen können: ```bash python -m pytest -n 8 --dist=loadfile -rA -s $(cat test_list.txt) ``` Für den Fall, dass Ihnen etwas entgangen ist, wird die komplette Testreihe ebenfalls täglich ausgeführt. ## Dokumentation erstellen Der Job `build_pr_documentation` erstellt und generiert eine Vorschau der Dokumentation, um sicherzustellen, dass alles in Ordnung ist, wenn Ihr PR zusammengeführt wird. Ein Bot fügt einen Link zur Vorschau der Dokumentation zu Ihrem PR hinzu. Alle Änderungen, die Sie an dem PR vornehmen, werden automatisch in der Vorschau aktualisiert. Wenn die Dokumentation nicht erstellt werden kann, klicken Sie auf **Details** neben dem fehlgeschlagenen Auftrag, um zu sehen, wo der Fehler liegt. Oft ist der Fehler so einfach wie eine fehlende Datei im `toctree`. Wenn Sie daran interessiert sind, die Dokumentation lokal zu erstellen oder in der Vorschau anzusehen, werfen Sie einen Blick in die [`README.md`](https://github.com/huggingface/transformers/tree/main/docs) im Ordner docs. ## Code und Dokumentationsstil Die Formatierung des Codes erfolgt für alle Quelldateien, die Beispiele und die Tests mit `black` und `ruff`. Wir haben auch ein benutzerdefiniertes Tool, das sich um die Formatierung von docstrings und `rst`-Dateien kümmert (`utils/style_doc.py`), sowie um die Reihenfolge der Lazy-Importe, die in den Transformers `__init__.py`-Dateien durchgeführt werden (`utils/custom_init_isort.py`). All dies können Sie starten, indem Sie Folgendes ausführen ```bash make style ``` Das CI prüft, ob diese innerhalb der Prüfung `ci/circleci: check_code_quality` angewendet wurden. Es führt auch `ruff` aus, das einen grundlegenden Blick auf Ihren Code wirft und sich beschwert, wenn es eine undefinierte Variable findet oder eine, die nicht verwendet wird. Um diese Prüfung lokal auszuführen, verwenden Sie ```bash make quality ``` Dies kann sehr viel Zeit in Anspruch nehmen. Um dasselbe nur für die Dateien zu tun, die Sie im aktuellen Zweig geändert haben, führen Sie ```bash make fixup ``` Dieser letzte Befehl führt auch alle zusätzlichen Prüfungen für die Konsistenz des Repositorys durch. Schauen wir uns diese an. ## Repository-Konsistenz Dies fasst alle Tests zusammen, die sicherstellen, dass Ihr PR das Repository in einem guten Zustand verlässt. Sie können diese Prüfung lokal durchführen, indem Sie Folgendes ausführen: ```bash make repo-consistency ``` Dies überprüft, ob: - Alle zum Init hinzugefügten Objekte sind dokumentiert (ausgeführt von `utils/check_repo.py`) - Alle `__init__.py`-Dateien haben in ihren beiden Abschnitten den gleichen Inhalt (ausgeführt von `utils/check_inits.py`) - Der gesamte Code, der als Kopie eines anderen Moduls identifiziert wurde, stimmt mit dem Original überein (ausgeführt von `utils/check_copies.py`) - Alle Konfigurationsklassen haben mindestens einen gültigen Prüfpunkt, der in ihren Dokumentationen erwähnt wird (ausgeführt von `utils/check_config_docstrings.py`) - Alle Konfigurationsklassen enthalten nur Attribute, die in den entsprechenden Modellierungsdateien verwendet werden (ausgeführt von `utils/check_config_attributes.py`) - Die Übersetzungen der READMEs und der Index des Dokuments haben die gleiche Modellliste wie die Haupt-README (durchgeführt von `utils/check_copies.py`) - Die automatisch generierten Tabellen in der Dokumentation sind auf dem neuesten Stand (ausgeführt von `utils/check_table.py`) - Die Bibliothek verfügt über alle Objekte, auch wenn nicht alle optionalen Abhängigkeiten installiert sind (ausgeführt von `utils/check_dummies.py`) Sollte diese Prüfung fehlschlagen, müssen die ersten beiden Punkte manuell korrigiert werden, die letzten vier können automatisch für Sie korrigiert werden, indem Sie den Befehl ```bash make fix-copies ``` Zusätzliche Prüfungen betreffen PRs, die neue Modelle hinzufügen, vor allem, dass: - Alle hinzugefügten Modelle befinden sich in einer Auto-Zuordnung (durchgeführt von `utils/check_repo.py`) <!-- TODO Sylvain, add a check that makes sure the common tests are implemented.--> - Alle Modelle werden ordnungsgemäß getestet (ausgeführt von `utils/check_repo.py`) <!-- TODO Sylvain, add the following - All models are added to the main README, inside the main doc - All checkpoints used actually exist on the Hub --> ### Kopien prüfen Da die Transformers-Bibliothek in Bezug auf den Modellcode sehr eigenwillig ist und jedes Modell vollständig in einer einzigen Datei implementiert sein sollte, ohne sich auf andere Modelle zu stützen, haben wir einen Mechanismus hinzugefügt, der überprüft, ob eine Kopie des Codes einer Ebene eines bestimmten Modells mit dem Original übereinstimmt. Auf diese Weise können wir bei einer Fehlerbehebung alle anderen betroffenen Modelle sehen und entscheiden, ob wir die Änderung weitergeben oder die Kopie zerstören. <Tip> Wenn eine Datei eine vollständige Kopie einer anderen Datei ist, sollten Sie sie in der Konstante `FULL_COPIES` von `utils/check_copies.py` registrieren. </Tip> Dieser Mechanismus stützt sich auf Kommentare der Form `# Kopiert von xxx`. Das `xxx` sollte den gesamten Pfad zu der Klasse der Funktion enthalten, die darunter kopiert wird. Zum Beispiel ist `RobertaSelfOutput` eine direkte Kopie der Klasse `BertSelfOutput`. Sie können also [hier](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L289) sehen, dass sie einen Kommentar hat: ```py # Copied from transformers.models.bert.modeling_bert.BertSelfOutput ``` Beachten Sie, dass Sie dies nicht auf eine ganze Klasse anwenden, sondern auf die entsprechenden Methoden, von denen kopiert wird. Zum Beispiel [hier](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L598) können Sie sehen, wie `RobertaPreTrainedModel._init_weights` von der gleichen Methode in `BertPreTrainedModel` mit dem Kommentar kopiert wird: ```py # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights ``` Manchmal ist die Kopie bis auf die Namen genau gleich: zum Beispiel verwenden wir in `RobertaAttention` `RobertaSelfAttention` anstelle von `BertSelfAttention`, aber ansonsten ist der Code genau derselbe. Aus diesem Grund unterstützt `#Copied from` einfache String-Ersetzungen mit der folgenden Syntax: `Kopiert von xxx mit foo->bar`. Das bedeutet, dass der Code kopiert wird, wobei alle Instanzen von "foo" durch "bar" ersetzt werden. Sie können sehen, wie es [hier](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L304C1-L304C86) in `RobertaAttention` mit dem Kommentar verwendet wird: ```py # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta ``` Beachten Sie, dass um den Pfeil herum keine Leerzeichen stehen sollten (es sei denn, das Leerzeichen ist Teil des zu ersetzenden Musters, natürlich). Sie können mehrere Muster durch ein Komma getrennt hinzufügen. Zum Beispiel ist hier `CamemberForMaskedLM` eine direkte Kopie von `RobertaForMaskedLM` mit zwei Ersetzungen: `Roberta` zu `Camembert` und `ROBERTA` zu `CAMEMBERT`. Sie können [hier](https://github.com/huggingface/transformers/blob/15082a9dc6950ecae63a0d3e5060b2fc7f15050a/src/transformers/models/camembert/modeling_camembert.py#L929) sehen, wie dies mit dem Kommentar gemacht wird: ```py # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM with Roberta->Camembert, ROBERTA->CAMEMBERT ``` Wenn die Reihenfolge eine Rolle spielt (weil eine der Ersetzungen mit einer vorherigen in Konflikt geraten könnte), werden die Ersetzungen von links nach rechts ausgeführt. <Tip> Wenn die Ersetzungen die Formatierung ändern (wenn Sie z.B. einen kurzen Namen durch einen sehr langen Namen ersetzen), wird die Kopie nach Anwendung des automatischen Formats überprüft. </Tip> Eine andere Möglichkeit, wenn es sich bei den Mustern nur um verschiedene Umschreibungen derselben Ersetzung handelt (mit einer groß- und einer kleingeschriebenen Variante), besteht darin, die Option `all-casing` hinzuzufügen. [Hier](https://github.com/huggingface/transformers/blob/15082a9dc6950ecae63a0d3e5060b2fc7f15050a/src/transformers/models/mobilebert/modeling_mobilebert.py#L1237) ist ein Beispiel in `MobileBertForSequenceClassification` mit dem Kommentar: ```py # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification with Bert->MobileBert all-casing ``` In diesem Fall wird der Code von `BertForSequenceClassification` kopiert, indem er ersetzt wird: - `Bert` durch `MobileBert` (zum Beispiel bei der Verwendung von `MobileBertModel` in der Init) - `bert` durch `mobilebert` (zum Beispiel bei der Definition von `self.mobilebert`) - `BERT` durch `MOBILEBERT` (in der Konstante `MOBILEBERT_INPUTS_DOCSTRING`)
transformers/docs/source/de/pr_checks.md/0
{ "file_path": "transformers/docs/source/de/pr_checks.md", "repo_id": "transformers", "token_count": 4986 }
217
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Benchmarks <Tip warning={true}> Hugging Face's Benchmarking tools are deprecated and it is advised to use external Benchmarking libraries to measure the speed and memory complexity of Transformer models. </Tip> [[open-in-colab]] Let's take a look at how 🤗 Transformers models can be benchmarked, best practices, and already available benchmarks. A notebook explaining in more detail how to benchmark 🤗 Transformers models can be found [here](https://github.com/huggingface/notebooks/tree/main/examples/benchmark.ipynb). ## How to benchmark 🤗 Transformers models The classes [`PyTorchBenchmark`] and [`TensorFlowBenchmark`] allow to flexibly benchmark 🤗 Transformers models. The benchmark classes allow us to measure the _peak memory usage_ and _required time_ for both _inference_ and _training_. <Tip> Hereby, _inference_ is defined by a single forward pass, and _training_ is defined by a single forward pass and backward pass. </Tip> The benchmark classes [`PyTorchBenchmark`] and [`TensorFlowBenchmark`] expect an object of type [`PyTorchBenchmarkArguments`] and [`TensorFlowBenchmarkArguments`], respectively, for instantiation. [`PyTorchBenchmarkArguments`] and [`TensorFlowBenchmarkArguments`] are data classes and contain all relevant configurations for their corresponding benchmark class. In the following example, it is shown how a BERT model of type _bert-base-cased_ can be benchmarked. <frameworkcontent> <pt> ```py >>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments >>> args = PyTorchBenchmarkArguments(models=["bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]) >>> benchmark = PyTorchBenchmark(args) ``` </pt> <tf> ```py >>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments >>> args = TensorFlowBenchmarkArguments( ... models=["bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512] ... ) >>> benchmark = TensorFlowBenchmark(args) ``` </tf> </frameworkcontent> Here, three arguments are given to the benchmark argument data classes, namely `models`, `batch_sizes`, and `sequence_lengths`. The argument `models` is required and expects a `list` of model identifiers from the [model hub](https://huggingface.co/models) The `list` arguments `batch_sizes` and `sequence_lengths` define the size of the `input_ids` on which the model is benchmarked. There are many more parameters that can be configured via the benchmark argument data classes. For more detail on these one can either directly consult the files `src/transformers/benchmark/benchmark_args_utils.py`, `src/transformers/benchmark/benchmark_args.py` (for PyTorch) and `src/transformers/benchmark/benchmark_args_tf.py` (for Tensorflow). Alternatively, running the following shell commands from root will print out a descriptive list of all configurable parameters for PyTorch and Tensorflow respectively. <frameworkcontent> <pt> ```bash python examples/pytorch/benchmarking/run_benchmark.py --help ``` An instantiated benchmark object can then simply be run by calling `benchmark.run()`. ```py >>> results = benchmark.run() >>> print(results) ==================== INFERENCE - SPEED - RESULT ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Time in s -------------------------------------------------------------------------------- bert-base-uncased 8 8 0.006 bert-base-uncased 8 32 0.006 bert-base-uncased 8 128 0.018 bert-base-uncased 8 512 0.088 -------------------------------------------------------------------------------- ==================== INFERENCE - MEMORY - RESULT ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Memory in MB -------------------------------------------------------------------------------- bert-base-uncased 8 8 1227 bert-base-uncased 8 32 1281 bert-base-uncased 8 128 1307 bert-base-uncased 8 512 1539 -------------------------------------------------------------------------------- ==================== ENVIRONMENT INFORMATION ==================== - transformers_version: 2.11.0 - framework: PyTorch - use_torchscript: False - framework_version: 1.4.0 - python_version: 3.6.10 - system: Linux - cpu: x86_64 - architecture: 64bit - date: 2020-06-29 - time: 08:58:43.371351 - fp16: False - use_multiprocessing: True - only_pretrain_model: False - cpu_ram_mb: 32088 - use_gpu: True - num_gpus: 1 - gpu: TITAN RTX - gpu_ram_mb: 24217 - gpu_power_watts: 280.0 - gpu_performance_state: 2 - use_tpu: False ``` </pt> <tf> ```bash python examples/tensorflow/benchmarking/run_benchmark_tf.py --help ``` An instantiated benchmark object can then simply be run by calling `benchmark.run()`. ```py >>> results = benchmark.run() >>> print(results) >>> results = benchmark.run() >>> print(results) ==================== INFERENCE - SPEED - RESULT ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Time in s -------------------------------------------------------------------------------- bert-base-uncased 8 8 0.005 bert-base-uncased 8 32 0.008 bert-base-uncased 8 128 0.022 bert-base-uncased 8 512 0.105 -------------------------------------------------------------------------------- ==================== INFERENCE - MEMORY - RESULT ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Memory in MB -------------------------------------------------------------------------------- bert-base-uncased 8 8 1330 bert-base-uncased 8 32 1330 bert-base-uncased 8 128 1330 bert-base-uncased 8 512 1770 -------------------------------------------------------------------------------- ==================== ENVIRONMENT INFORMATION ==================== - transformers_version: 2.11.0 - framework: Tensorflow - use_xla: False - framework_version: 2.2.0 - python_version: 3.6.10 - system: Linux - cpu: x86_64 - architecture: 64bit - date: 2020-06-29 - time: 09:26:35.617317 - fp16: False - use_multiprocessing: True - only_pretrain_model: False - cpu_ram_mb: 32088 - use_gpu: True - num_gpus: 1 - gpu: TITAN RTX - gpu_ram_mb: 24217 - gpu_power_watts: 280.0 - gpu_performance_state: 2 - use_tpu: False ``` </tf> </frameworkcontent> By default, the _time_ and the _required memory_ for _inference_ are benchmarked. In the example output above the first two sections show the result corresponding to _inference time_ and _inference memory_. In addition, all relevant information about the computing environment, _e.g._ the GPU type, the system, the library versions, etc... are printed out in the third section under _ENVIRONMENT INFORMATION_. This information can optionally be saved in a _.csv_ file when adding the argument `save_to_csv=True` to [`PyTorchBenchmarkArguments`] and [`TensorFlowBenchmarkArguments`] respectively. In this case, every section is saved in a separate _.csv_ file. The path to each _.csv_ file can optionally be defined via the argument data classes. Instead of benchmarking pre-trained models via their model identifier, _e.g._ `bert-base-uncased`, the user can alternatively benchmark an arbitrary configuration of any available model class. In this case, a `list` of configurations must be inserted with the benchmark args as follows. <frameworkcontent> <pt> ```py >>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments, BertConfig >>> args = PyTorchBenchmarkArguments( ... models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512] ... ) >>> config_base = BertConfig() >>> config_384_hid = BertConfig(hidden_size=384) >>> config_6_lay = BertConfig(num_hidden_layers=6) >>> benchmark = PyTorchBenchmark(args, configs=[config_base, config_384_hid, config_6_lay]) >>> benchmark.run() ==================== INFERENCE - SPEED - RESULT ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Time in s -------------------------------------------------------------------------------- bert-base 8 128 0.006 bert-base 8 512 0.006 bert-base 8 128 0.018 bert-base 8 512 0.088 bert-384-hid 8 8 0.006 bert-384-hid 8 32 0.006 bert-384-hid 8 128 0.011 bert-384-hid 8 512 0.054 bert-6-lay 8 8 0.003 bert-6-lay 8 32 0.004 bert-6-lay 8 128 0.009 bert-6-lay 8 512 0.044 -------------------------------------------------------------------------------- ==================== INFERENCE - MEMORY - RESULT ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Memory in MB -------------------------------------------------------------------------------- bert-base 8 8 1277 bert-base 8 32 1281 bert-base 8 128 1307 bert-base 8 512 1539 bert-384-hid 8 8 1005 bert-384-hid 8 32 1027 bert-384-hid 8 128 1035 bert-384-hid 8 512 1255 bert-6-lay 8 8 1097 bert-6-lay 8 32 1101 bert-6-lay 8 128 1127 bert-6-lay 8 512 1359 -------------------------------------------------------------------------------- ==================== ENVIRONMENT INFORMATION ==================== - transformers_version: 2.11.0 - framework: PyTorch - use_torchscript: False - framework_version: 1.4.0 - python_version: 3.6.10 - system: Linux - cpu: x86_64 - architecture: 64bit - date: 2020-06-29 - time: 09:35:25.143267 - fp16: False - use_multiprocessing: True - only_pretrain_model: False - cpu_ram_mb: 32088 - use_gpu: True - num_gpus: 1 - gpu: TITAN RTX - gpu_ram_mb: 24217 - gpu_power_watts: 280.0 - gpu_performance_state: 2 - use_tpu: False ``` </pt> <tf> ```py >>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments, BertConfig >>> args = TensorFlowBenchmarkArguments( ... models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512] ... ) >>> config_base = BertConfig() >>> config_384_hid = BertConfig(hidden_size=384) >>> config_6_lay = BertConfig(num_hidden_layers=6) >>> benchmark = TensorFlowBenchmark(args, configs=[config_base, config_384_hid, config_6_lay]) >>> benchmark.run() ==================== INFERENCE - SPEED - RESULT ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Time in s -------------------------------------------------------------------------------- bert-base 8 8 0.005 bert-base 8 32 0.008 bert-base 8 128 0.022 bert-base 8 512 0.106 bert-384-hid 8 8 0.005 bert-384-hid 8 32 0.007 bert-384-hid 8 128 0.018 bert-384-hid 8 512 0.064 bert-6-lay 8 8 0.002 bert-6-lay 8 32 0.003 bert-6-lay 8 128 0.0011 bert-6-lay 8 512 0.074 -------------------------------------------------------------------------------- ==================== INFERENCE - MEMORY - RESULT ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Memory in MB -------------------------------------------------------------------------------- bert-base 8 8 1330 bert-base 8 32 1330 bert-base 8 128 1330 bert-base 8 512 1770 bert-384-hid 8 8 1330 bert-384-hid 8 32 1330 bert-384-hid 8 128 1330 bert-384-hid 8 512 1540 bert-6-lay 8 8 1330 bert-6-lay 8 32 1330 bert-6-lay 8 128 1330 bert-6-lay 8 512 1540 -------------------------------------------------------------------------------- ==================== ENVIRONMENT INFORMATION ==================== - transformers_version: 2.11.0 - framework: Tensorflow - use_xla: False - framework_version: 2.2.0 - python_version: 3.6.10 - system: Linux - cpu: x86_64 - architecture: 64bit - date: 2020-06-29 - time: 09:38:15.487125 - fp16: False - use_multiprocessing: True - only_pretrain_model: False - cpu_ram_mb: 32088 - use_gpu: True - num_gpus: 1 - gpu: TITAN RTX - gpu_ram_mb: 24217 - gpu_power_watts: 280.0 - gpu_performance_state: 2 - use_tpu: False ``` </tf> </frameworkcontent> Again, _inference time_ and _required memory_ for _inference_ are measured, but this time for customized configurations of the `BertModel` class. This feature can especially be helpful when deciding for which configuration the model should be trained. ## Benchmark best practices This section lists a couple of best practices one should be aware of when benchmarking a model. - Currently, only single device benchmarking is supported. When benchmarking on GPU, it is recommended that the user specifies on which device the code should be run by setting the `CUDA_VISIBLE_DEVICES` environment variable in the shell, _e.g._ `export CUDA_VISIBLE_DEVICES=0` before running the code. - The option `no_multi_processing` should only be set to `True` for testing and debugging. To ensure accurate memory measurement it is recommended to run each memory benchmark in a separate process by making sure `no_multi_processing` is set to `True`. - One should always state the environment information when sharing the results of a model benchmark. Results can vary heavily between different GPU devices, library versions, etc., so that benchmark results on their own are not very useful for the community. ## Sharing your benchmark Previously all available core models (10 at the time) have been benchmarked for _inference time_, across many different settings: using PyTorch, with and without TorchScript, using TensorFlow, with and without XLA. All of those tests were done across CPUs (except for TensorFlow XLA) and GPUs. The approach is detailed in the [following blogpost](https://medium.com/huggingface/benchmarking-transformers-pytorch-and-tensorflow-e2917fb891c2) and the results are available [here](https://docs.google.com/spreadsheets/d/1sryqufw2D0XlUH4sq3e9Wnxu5EAQkaohzrJbd5HdQ_w/edit?usp=sharing). With the new _benchmark_ tools, it is easier than ever to share your benchmark results with the community - [PyTorch Benchmarking Results](https://github.com/huggingface/transformers/tree/main/examples/pytorch/benchmarking/README.md). - [TensorFlow Benchmarking Results](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/benchmarking/README.md).
transformers/docs/source/en/benchmarks.md/0
{ "file_path": "transformers/docs/source/en/benchmarks.md", "repo_id": "transformers", "token_count": 7132 }
218
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Hyperparameter Search using Trainer API 🤗 Transformers provides a [`Trainer`] class optimized for training 🤗 Transformers models, making it easier to start training without manually writing your own training loop. The [`Trainer`] provides API for hyperparameter search. This doc shows how to enable it in example. ## Hyperparameter Search backend [`Trainer`] supports four hyperparameter search backends currently: [optuna](https://optuna.org/), [sigopt](https://sigopt.com/), [raytune](https://docs.ray.io/en/latest/tune/index.html) and [wandb](https://wandb.ai/site/sweeps). you should install them before using them as the hyperparameter search backend ```bash pip install optuna/sigopt/wandb/ray[tune] ``` ## How to enable Hyperparameter search in example Define the hyperparameter search space, different backends need different format. For sigopt, see sigopt [object_parameter](https://docs.sigopt.com/ai-module-api-references/api_reference/objects/object_parameter), it's like following: ```py >>> def sigopt_hp_space(trial): ... return [ ... {"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"}, ... { ... "categorical_values": ["16", "32", "64", "128"], ... "name": "per_device_train_batch_size", ... "type": "categorical", ... }, ... ] ``` For optuna, see optuna [object_parameter](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html#sphx-glr-tutorial-10-key-features-002-configurations-py), it's like following: ```py >>> def optuna_hp_space(trial): ... return { ... "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True), ... "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]), ... } ``` Optuna provides multi-objective HPO. You can pass `direction` in `hyperparameter_search` and define your own compute_objective to return multiple objective values. The Pareto Front (`List[BestRun]`) will be returned in hyperparameter_search, you should refer to the test case `TrainerHyperParameterMultiObjectOptunaIntegrationTest` in [test_trainer](https://github.com/huggingface/transformers/blob/main/tests/trainer/test_trainer.py). It's like following ```py >>> best_trials = trainer.hyperparameter_search( ... direction=["minimize", "maximize"], ... backend="optuna", ... hp_space=optuna_hp_space, ... n_trials=20, ... compute_objective=compute_objective, ... ) ``` For raytune, see raytune [object_parameter](https://docs.ray.io/en/latest/tune/api/search_space.html), it's like following: ```py >>> def ray_hp_space(trial): ... return { ... "learning_rate": tune.loguniform(1e-6, 1e-4), ... "per_device_train_batch_size": tune.choice([16, 32, 64, 128]), ... } ``` For wandb, see wandb [object_parameter](https://docs.wandb.ai/guides/sweeps/configuration), it's like following: ```py >>> def wandb_hp_space(trial): ... return { ... "method": "random", ... "metric": {"name": "objective", "goal": "minimize"}, ... "parameters": { ... "learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4}, ... "per_device_train_batch_size": {"values": [16, 32, 64, 128]}, ... }, ... } ``` Define a `model_init` function and pass it to the [`Trainer`], as an example: ```py >>> def model_init(trial): ... return AutoModelForSequenceClassification.from_pretrained( ... model_args.model_name_or_path, ... from_tf=bool(".ckpt" in model_args.model_name_or_path), ... config=config, ... cache_dir=model_args.cache_dir, ... revision=model_args.model_revision, ... token=True if model_args.use_auth_token else None, ... ) ``` Create a [`Trainer`] with your `model_init` function, training arguments, training and test datasets, and evaluation function: ```py >>> trainer = Trainer( ... model=None, ... args=training_args, ... train_dataset=small_train_dataset, ... eval_dataset=small_eval_dataset, ... compute_metrics=compute_metrics, ... tokenizer=tokenizer, ... model_init=model_init, ... data_collator=data_collator, ... ) ``` Call hyperparameter search, get the best trial parameters, backend could be `"optuna"`/`"sigopt"`/`"wandb"`/`"ray"`. direction can be`"minimize"` or `"maximize"`, which indicates whether to optimize greater or lower objective. You could define your own compute_objective function, if not defined, the default compute_objective will be called, and the sum of eval metric like f1 is returned as objective value. ```py >>> best_trial = trainer.hyperparameter_search( ... direction="maximize", ... backend="optuna", ... hp_space=optuna_hp_space, ... n_trials=20, ... compute_objective=compute_objective, ... ) ``` ## Hyperparameter search For DDP finetune Currently, Hyperparameter search for DDP is enabled for optuna and sigopt. Only the rank-zero process will generate the search trial and pass the argument to other ranks.
transformers/docs/source/en/hpo_train.md/0
{ "file_path": "transformers/docs/source/en/hpo_train.md", "repo_id": "transformers", "token_count": 2076 }
219
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Callbacks Callbacks are objects that can customize the behavior of the training loop in the PyTorch [`Trainer`] (this feature is not yet implemented in TensorFlow) that can inspect the training loop state (for progress reporting, logging on TensorBoard or other ML platforms...) and take decisions (like early stopping). Callbacks are "read only" pieces of code, apart from the [`TrainerControl`] object they return, they cannot change anything in the training loop. For customizations that require changes in the training loop, you should subclass [`Trainer`] and override the methods you need (see [trainer](trainer) for examples). By default, `TrainingArguments.report_to` is set to `"all"`, so a [`Trainer`] will use the following callbacks. - [`DefaultFlowCallback`] which handles the default behavior for logging, saving and evaluation. - [`PrinterCallback`] or [`ProgressCallback`] to display progress and print the logs (the first one is used if you deactivate tqdm through the [`TrainingArguments`], otherwise it's the second one). - [`~integrations.TensorBoardCallback`] if tensorboard is accessible (either through PyTorch >= 1.4 or tensorboardX). - [`~integrations.WandbCallback`] if [wandb](https://www.wandb.com/) is installed. - [`~integrations.CometCallback`] if [comet_ml](https://www.comet.ml/site/) is installed. - [`~integrations.MLflowCallback`] if [mlflow](https://www.mlflow.org/) is installed. - [`~integrations.NeptuneCallback`] if [neptune](https://neptune.ai/) is installed. - [`~integrations.AzureMLCallback`] if [azureml-sdk](https://pypi.org/project/azureml-sdk/) is installed. - [`~integrations.CodeCarbonCallback`] if [codecarbon](https://pypi.org/project/codecarbon/) is installed. - [`~integrations.ClearMLCallback`] if [clearml](https://github.com/allegroai/clearml) is installed. - [`~integrations.DagsHubCallback`] if [dagshub](https://dagshub.com/) is installed. - [`~integrations.FlyteCallback`] if [flyte](https://flyte.org/) is installed. - [`~integrations.DVCLiveCallback`] if [dvclive](https://dvc.org/doc/dvclive) is installed. If a package is installed but you don't wish to use the accompanying integration, you can change `TrainingArguments.report_to` to a list of just those integrations you want to use (e.g. `["azure_ml", "wandb"]`). The main class that implements callbacks is [`TrainerCallback`]. It gets the [`TrainingArguments`] used to instantiate the [`Trainer`], can access that Trainer's internal state via [`TrainerState`], and can take some actions on the training loop via [`TrainerControl`]. ## Available Callbacks Here is the list of the available [`TrainerCallback`] in the library: [[autodoc]] integrations.CometCallback - setup [[autodoc]] DefaultFlowCallback [[autodoc]] PrinterCallback [[autodoc]] ProgressCallback [[autodoc]] EarlyStoppingCallback [[autodoc]] integrations.TensorBoardCallback [[autodoc]] integrations.WandbCallback - setup [[autodoc]] integrations.MLflowCallback - setup [[autodoc]] integrations.AzureMLCallback [[autodoc]] integrations.CodeCarbonCallback [[autodoc]] integrations.NeptuneCallback [[autodoc]] integrations.ClearMLCallback [[autodoc]] integrations.DagsHubCallback [[autodoc]] integrations.FlyteCallback [[autodoc]] integrations.DVCLiveCallback - setup ## TrainerCallback [[autodoc]] TrainerCallback Here is an example of how to register a custom callback with the PyTorch [`Trainer`]: ```python class MyCallback(TrainerCallback): "A callback that prints a message at the beginning of training" def on_train_begin(self, args, state, control, **kwargs): print("Starting training") trainer = Trainer( model, args, train_dataset=train_dataset, eval_dataset=eval_dataset, callbacks=[MyCallback], # We can either pass the callback class this way or an instance of it (MyCallback()) ) ``` Another way to register a callback is to call `trainer.add_callback()` as follows: ```python trainer = Trainer(...) trainer.add_callback(MyCallback) # Alternatively, we can pass an instance of the callback class trainer.add_callback(MyCallback()) ``` ## TrainerState [[autodoc]] TrainerState ## TrainerControl [[autodoc]] TrainerControl
transformers/docs/source/en/main_classes/callback.md/0
{ "file_path": "transformers/docs/source/en/main_classes/callback.md", "repo_id": "transformers", "token_count": 1520 }
220
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Tokenizer A tokenizer is in charge of preparing the inputs for a model. The library contains tokenizers for all the models. Most of the tokenizers are available in two flavors: a full python implementation and a "Fast" implementation based on the Rust library [🤗 Tokenizers](https://github.com/huggingface/tokenizers). The "Fast" implementations allows: 1. a significant speed-up in particular when doing batched tokenization and 2. additional methods to map between the original string (character and words) and the token space (e.g. getting the index of the token comprising a given character or the span of characters corresponding to a given token). The base classes [`PreTrainedTokenizer`] and [`PreTrainedTokenizerFast`] implement the common methods for encoding string inputs in model inputs (see below) and instantiating/saving python and "Fast" tokenizers either from a local file or directory or from a pretrained tokenizer provided by the library (downloaded from HuggingFace's AWS S3 repository). They both rely on [`~tokenization_utils_base.PreTrainedTokenizerBase`] that contains the common methods, and [`~tokenization_utils_base.SpecialTokensMixin`]. [`PreTrainedTokenizer`] and [`PreTrainedTokenizerFast`] thus implement the main methods for using all the tokenizers: - Tokenizing (splitting strings in sub-word token strings), converting tokens strings to ids and back, and encoding/decoding (i.e., tokenizing and converting to integers). - Adding new tokens to the vocabulary in a way that is independent of the underlying structure (BPE, SentencePiece...). - Managing special tokens (like mask, beginning-of-sentence, etc.): adding them, assigning them to attributes in the tokenizer for easy access and making sure they are not split during tokenization. [`BatchEncoding`] holds the output of the [`~tokenization_utils_base.PreTrainedTokenizerBase`]'s encoding methods (`__call__`, `encode_plus` and `batch_encode_plus`) and is derived from a Python dictionary. When the tokenizer is a pure python tokenizer, this class behaves just like a standard python dictionary and holds the various model inputs computed by these methods (`input_ids`, `attention_mask`...). When the tokenizer is a "Fast" tokenizer (i.e., backed by HuggingFace [tokenizers library](https://github.com/huggingface/tokenizers)), this class provides in addition several advanced alignment methods which can be used to map between the original string (character and words) and the token space (e.g., getting the index of the token comprising a given character or the span of characters corresponding to a given token). ## PreTrainedTokenizer [[autodoc]] PreTrainedTokenizer - __call__ - add_tokens - add_special_tokens - apply_chat_template - batch_decode - decode - encode - push_to_hub - all ## PreTrainedTokenizerFast The [`PreTrainedTokenizerFast`] depend on the [tokenizers](https://huggingface.co/docs/tokenizers) library. The tokenizers obtained from the 🤗 tokenizers library can be loaded very simply into 🤗 transformers. Take a look at the [Using tokenizers from 🤗 tokenizers](../fast_tokenizers) page to understand how this is done. [[autodoc]] PreTrainedTokenizerFast - __call__ - add_tokens - add_special_tokens - apply_chat_template - batch_decode - decode - encode - push_to_hub - all ## BatchEncoding [[autodoc]] BatchEncoding
transformers/docs/source/en/main_classes/tokenizer.md/0
{ "file_path": "transformers/docs/source/en/main_classes/tokenizer.md", "repo_id": "transformers", "token_count": 1144 }
221
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BERTweet ## Overview The BERTweet model was proposed in [BERTweet: A pre-trained language model for English Tweets](https://www.aclweb.org/anthology/2020.emnlp-demos.2.pdf) by Dat Quoc Nguyen, Thanh Vu, Anh Tuan Nguyen. The abstract from the paper is the following: *We present BERTweet, the first public large-scale pre-trained language model for English Tweets. Our BERTweet, having the same architecture as BERT-base (Devlin et al., 2019), is trained using the RoBERTa pre-training procedure (Liu et al., 2019). Experiments show that BERTweet outperforms strong baselines RoBERTa-base and XLM-R-base (Conneau et al., 2020), producing better performance results than the previous state-of-the-art models on three Tweet NLP tasks: Part-of-speech tagging, Named-entity recognition and text classification.* This model was contributed by [dqnguyen](https://huggingface.co/dqnguyen). The original code can be found [here](https://github.com/VinAIResearch/BERTweet). ## Usage example ```python >>> import torch >>> from transformers import AutoModel, AutoTokenizer >>> bertweet = AutoModel.from_pretrained("vinai/bertweet-base") >>> # For transformers v4.x+: >>> tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base", use_fast=False) >>> # For transformers v3.x: >>> # tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base") >>> # INPUT TWEET IS ALREADY NORMALIZED! >>> line = "SC has first two presumptive cases of coronavirus , DHEC confirms HTTPURL via @USER :cry:" >>> input_ids = torch.tensor([tokenizer.encode(line)]) >>> with torch.no_grad(): ... features = bertweet(input_ids) # Models outputs are now tuples >>> # With TensorFlow 2.0+: >>> # from transformers import TFAutoModel >>> # bertweet = TFAutoModel.from_pretrained("vinai/bertweet-base") ``` <Tip> This implementation is the same as BERT, except for tokenization method. Refer to [BERT documentation](bert) for API reference information. </Tip> ## BertweetTokenizer [[autodoc]] BertweetTokenizer
transformers/docs/source/en/model_doc/bertweet.md/0
{ "file_path": "transformers/docs/source/en/model_doc/bertweet.md", "repo_id": "transformers", "token_count": 806 }
222
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # DeBERTa-v2 ## Overview The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google's BERT model released in 2018 and Facebook's RoBERTa model released in 2019. It builds on RoBERTa with disentangled attention and enhanced mask decoder training with half of the data used in RoBERTa. The abstract from the paper is the following: *Recent progress in pre-trained neural language models has significantly improved the performance of many natural language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the disentangled attention mechanism, where each word is represented using two vectors that encode its content and position, respectively, and the attention weights among words are computed using disentangled matrices on their contents and relative positions. Second, an enhanced mask decoder is used to replace the output softmax layer to predict the masked tokens for model pretraining. We show that these two techniques significantly improve the efficiency of model pretraining and performance of downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained on half of the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9% (90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%). The DeBERTa code and pre-trained models will be made publicly available at https://github.com/microsoft/DeBERTa.* The following information is visible directly on the [original implementation repository](https://github.com/microsoft/DeBERTa). DeBERTa v2 is the second version of the DeBERTa model. It includes the 1.5B model used for the SuperGLUE single-model submission and achieving 89.9, versus human baseline 89.8. You can find more details about this submission in the authors' [blog](https://www.microsoft.com/en-us/research/blog/microsoft-deberta-surpasses-human-performance-on-the-superglue-benchmark/) New in v2: - **Vocabulary** In v2 the tokenizer is changed to use a new vocabulary of size 128K built from the training data. Instead of a GPT2-based tokenizer, the tokenizer is now [sentencepiece-based](https://github.com/google/sentencepiece) tokenizer. - **nGiE(nGram Induced Input Encoding)** The DeBERTa-v2 model uses an additional convolution layer aside with the first transformer layer to better learn the local dependency of input tokens. - **Sharing position projection matrix with content projection matrix in attention layer** Based on previous experiments, this can save parameters without affecting the performance. - **Apply bucket to encode relative positions** The DeBERTa-v2 model uses log bucket to encode relative positions similar to T5. - **900M model & 1.5B model** Two additional model sizes are available: 900M and 1.5B, which significantly improves the performance of downstream tasks. This model was contributed by [DeBERTa](https://huggingface.co/DeBERTa). This model TF 2.0 implementation was contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/microsoft/DeBERTa). ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## DebertaV2Config [[autodoc]] DebertaV2Config ## DebertaV2Tokenizer [[autodoc]] DebertaV2Tokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## DebertaV2TokenizerFast [[autodoc]] DebertaV2TokenizerFast - build_inputs_with_special_tokens - create_token_type_ids_from_sequences <frameworkcontent> <pt> ## DebertaV2Model [[autodoc]] DebertaV2Model - forward ## DebertaV2PreTrainedModel [[autodoc]] DebertaV2PreTrainedModel - forward ## DebertaV2ForMaskedLM [[autodoc]] DebertaV2ForMaskedLM - forward ## DebertaV2ForSequenceClassification [[autodoc]] DebertaV2ForSequenceClassification - forward ## DebertaV2ForTokenClassification [[autodoc]] DebertaV2ForTokenClassification - forward ## DebertaV2ForQuestionAnswering [[autodoc]] DebertaV2ForQuestionAnswering - forward ## DebertaV2ForMultipleChoice [[autodoc]] DebertaV2ForMultipleChoice - forward </pt> <tf> ## TFDebertaV2Model [[autodoc]] TFDebertaV2Model - call ## TFDebertaV2PreTrainedModel [[autodoc]] TFDebertaV2PreTrainedModel - call ## TFDebertaV2ForMaskedLM [[autodoc]] TFDebertaV2ForMaskedLM - call ## TFDebertaV2ForSequenceClassification [[autodoc]] TFDebertaV2ForSequenceClassification - call ## TFDebertaV2ForTokenClassification [[autodoc]] TFDebertaV2ForTokenClassification - call ## TFDebertaV2ForQuestionAnswering [[autodoc]] TFDebertaV2ForQuestionAnswering - call ## TFDebertaV2ForMultipleChoice [[autodoc]] TFDebertaV2ForMultipleChoice - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/deberta-v2.md/0
{ "file_path": "transformers/docs/source/en/model_doc/deberta-v2.md", "repo_id": "transformers", "token_count": 1846 }
223
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # HerBERT ## Overview The HerBERT model was proposed in [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, and Ireneusz Gawlik. It is a BERT-based Language Model trained on Polish Corpora using only MLM objective with dynamic masking of whole words. The abstract from the paper is the following: *In recent years, a series of Transformer-based models unlocked major improvements in general natural language understanding (NLU) tasks. Such a fast pace of research would not be possible without general NLU benchmarks, which allow for a fair comparison of the proposed methods. However, such benchmarks are available only for a handful of languages. To alleviate this issue, we introduce a comprehensive multi-task benchmark for the Polish language understanding, accompanied by an online leaderboard. It consists of a diverse set of tasks, adopted from existing datasets for named entity recognition, question-answering, textual entailment, and others. We also introduce a new sentiment analysis task for the e-commerce domain, named Allegro Reviews (AR). To ensure a common evaluation scheme and promote models that generalize to different NLU tasks, the benchmark includes datasets from varying domains and applications. Additionally, we release HerBERT, a Transformer-based model trained specifically for the Polish language, which has the best average performance and obtains the best results for three out of nine tasks. Finally, we provide an extensive evaluation, including several standard baselines and recently proposed, multilingual Transformer-based models.* This model was contributed by [rmroczkowski](https://huggingface.co/rmroczkowski). The original code can be found [here](https://github.com/allegro/HerBERT). ## Usage example ```python >>> from transformers import HerbertTokenizer, RobertaModel >>> tokenizer = HerbertTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1") >>> model = RobertaModel.from_pretrained("allegro/herbert-klej-cased-v1") >>> encoded_input = tokenizer.encode("Kto ma lepszą sztukę, ma lepszy rząd – to jasne.", return_tensors="pt") >>> outputs = model(encoded_input) >>> # HerBERT can also be loaded using AutoTokenizer and AutoModel: >>> import torch >>> from transformers import AutoModel, AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("allegro/herbert-klej-cased-tokenizer-v1") >>> model = AutoModel.from_pretrained("allegro/herbert-klej-cased-v1") ``` <Tip> Herbert implementation is the same as `BERT` except for the tokenization method. Refer to [BERT documentation](bert) for API reference and examples. </Tip> ## HerbertTokenizer [[autodoc]] HerbertTokenizer ## HerbertTokenizerFast [[autodoc]] HerbertTokenizerFast
transformers/docs/source/en/model_doc/herbert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/herbert.md", "repo_id": "transformers", "token_count": 956 }
224
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # LLaMA ## Overview The LLaMA model was proposed in [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. It is a collection of foundation language models ranging from 7B to 65B parameters. The abstract from the paper is the following: *We introduce LLaMA, a collection of foundation language models ranging from 7B to 65B parameters. We train our models on trillions of tokens, and show that it is possible to train state-of-the-art models using publicly available datasets exclusively, without resorting to proprietary and inaccessible datasets. In particular, LLaMA-13B outperforms GPT-3 (175B) on most benchmarks, and LLaMA-65B is competitive with the best models, Chinchilla-70B and PaLM-540B. We release all our models to the research community. * This model was contributed by [zphang](https://huggingface.co/zphang) with contributions from [BlackSamorez](https://huggingface.co/BlackSamorez). The code of the implementation in Hugging Face is based on GPT-NeoX [here](https://github.com/EleutherAI/gpt-neox). The original code of the authors can be found [here](https://github.com/facebookresearch/llama). ## Usage tips - Weights for the LLaMA models can be obtained from by filling out [this form](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform?usp=send_form) - After downloading the weights, they will need to be converted to the Hugging Face Transformers format using the [conversion script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py). The script can be called with the following (example) command: ```bash python src/transformers/models/llama/convert_llama_weights_to_hf.py \ --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path ``` - After conversion, the model and tokenizer can be loaded via: ```python from transformers import LlamaForCausalLM, LlamaTokenizer tokenizer = LlamaTokenizer.from_pretrained("/output/path") model = LlamaForCausalLM.from_pretrained("/output/path") ``` Note that executing the script requires enough CPU RAM to host the whole model in float16 precision (even if the biggest versions come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). For the 65B model, it's thus 130GB of RAM needed. - The LLaMA tokenizer is a BPE model based on [sentencepiece](https://github.com/google/sentencepiece). One quirk of sentencepiece is that when decoding a sequence, if the first token is the start of the word (e.g. "Banana"), the tokenizer does not prepend the prefix space to the string. This model was contributed by [zphang](https://huggingface.co/zphang) with contributions from [BlackSamorez](https://huggingface.co/BlackSamorez). The code of the implementation in Hugging Face is based on GPT-NeoX [here](https://github.com/EleutherAI/gpt-neox). The original code of the authors can be found [here](https://github.com/facebookresearch/llama). The Flax version of the implementation was contributed by [afmck](https://huggingface.co/afmck) with the code in the implementation based on Hugging Face's Flax GPT-Neo. Based on the original LLaMA model, Meta AI has released some follow-up works: - **Llama2**: Llama2 is an improved version of Llama with some architectural tweaks (Grouped Query Attention), and is pre-trained on 2Trillion tokens. Refer to the documentation of Llama2 which can be found [here](llama2). ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with LLaMA. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. <PipelineTag pipeline="text-classification"/> - A [notebook](https://colab.research.google.com/github/bigscience-workshop/petals/blob/main/examples/prompt-tuning-sst2.ipynb#scrollTo=f04ba4d2) on how to use prompt tuning to adapt the LLaMA model for text classification task. 🌎 <PipelineTag pipeline="question-answering"/> - [StackLLaMA: A hands-on guide to train LLaMA with RLHF](https://huggingface.co/blog/stackllama#stackllama-a-hands-on-guide-to-train-llama-with-rlhf), a blog post about how to train LLaMA to answer questions on [Stack Exchange](https://stackexchange.com/) with RLHF. ⚗️ Optimization - A [notebook](https://colab.research.google.com/drive/1SQUXq1AMZPSLD4mk3A3swUIc6Y2dclme?usp=sharing) on how to fine-tune LLaMA model using xturing library on GPU which has limited memory. 🌎 ⚡️ Inference - A [notebook](https://colab.research.google.com/github/DominguesM/alpaca-lora-ptbr-7b/blob/main/notebooks/02%20-%20Evaluate.ipynb) on how to run the LLaMA Model using PeftModel from the 🤗 PEFT library. 🌎 - A [notebook](https://colab.research.google.com/drive/1l2GiSSPbajVyp2Nk3CFT4t3uH6-5TiBe?usp=sharing) on how to load a PEFT adapter LLaMA model with LangChain. 🌎 🚀 Deploy - A [notebook](https://colab.research.google.com/github/lxe/simple-llama-finetuner/blob/master/Simple_LLaMA_FineTuner.ipynb#scrollTo=3PM_DilAZD8T) on how to fine-tune LLaMA model using LoRA method via the 🤗 PEFT library with intuitive UI. 🌎 - A [notebook](https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart-foundation-models/text-generation-open-llama.ipynb) on how to deploy Open-LLaMA model for text generation on Amazon SageMaker. 🌎 ## LlamaConfig [[autodoc]] LlamaConfig ## LlamaTokenizer [[autodoc]] LlamaTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## LlamaTokenizerFast [[autodoc]] LlamaTokenizerFast - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - update_post_processor - save_vocabulary ## LlamaModel [[autodoc]] LlamaModel - forward ## LlamaForCausalLM [[autodoc]] LlamaForCausalLM - forward ## LlamaForSequenceClassification [[autodoc]] LlamaForSequenceClassification - forward ## FlaxLlamaModel [[autodoc]] FlaxLlamaModel - __call__ ## FlaxLlamaForCausalLM [[autodoc]] FlaxLlamaForCausalLM - __call__
transformers/docs/source/en/model_doc/llama.md/0
{ "file_path": "transformers/docs/source/en/model_doc/llama.md", "repo_id": "transformers", "token_count": 2326 }
225
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # mT5 <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=mt5"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-mt5-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/mt5-small-finetuned-arxiv-cs-finetuned-arxiv-cs-full"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview The mT5 model was presented in [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. The abstract from the paper is the following: *The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We detail the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual benchmarks. We also describe a simple technique to prevent "accidental translation" in the zero-shot setting, where a generative model chooses to (partially) translate its prediction into the wrong language. All of the code and model checkpoints used in this work are publicly available.* Note: mT5 was only pre-trained on [mC4](https://huggingface.co/datasets/mc4) excluding any supervised training. Therefore, this model has to be fine-tuned before it is usable on a downstream task, unlike the original T5 model. Since mT5 was pre-trained unsupervisedly, there's no real advantage to using a task prefix during single-task fine-tuning. If you are doing multi-task fine-tuning, you should use a prefix. Google has released the following variants: - [google/mt5-small](https://huggingface.co/google/mt5-small) - [google/mt5-base](https://huggingface.co/google/mt5-base) - [google/mt5-large](https://huggingface.co/google/mt5-large) - [google/mt5-xl](https://huggingface.co/google/mt5-xl) - [google/mt5-xxl](https://huggingface.co/google/mt5-xxl). This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The original code can be found [here](https://github.com/google-research/multilingual-t5). ## Resources - [Translation task guide](../tasks/translation) - [Summarization task guide](../tasks/summarization) ## MT5Config [[autodoc]] MT5Config ## MT5Tokenizer [[autodoc]] MT5Tokenizer See [`T5Tokenizer`] for all details. ## MT5TokenizerFast [[autodoc]] MT5TokenizerFast See [`T5TokenizerFast`] for all details. <frameworkcontent> <pt> ## MT5Model [[autodoc]] MT5Model ## MT5ForConditionalGeneration [[autodoc]] MT5ForConditionalGeneration ## MT5EncoderModel [[autodoc]] MT5EncoderModel ## MT5ForSequenceClassification [[autodoc]] MT5ForSequenceClassification ## MT5ForTokenClassification [[autodoc]] MT5ForTokenClassification ## MT5ForQuestionAnswering [[autodoc]] MT5ForQuestionAnswering </pt> <tf> ## TFMT5Model [[autodoc]] TFMT5Model ## TFMT5ForConditionalGeneration [[autodoc]] TFMT5ForConditionalGeneration ## TFMT5EncoderModel [[autodoc]] TFMT5EncoderModel </tf> <jax> ## FlaxMT5Model [[autodoc]] FlaxMT5Model ## FlaxMT5ForConditionalGeneration [[autodoc]] FlaxMT5ForConditionalGeneration ## FlaxMT5EncoderModel [[autodoc]] FlaxMT5EncoderModel </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/mt5.md/0
{ "file_path": "transformers/docs/source/en/model_doc/mt5.md", "repo_id": "transformers", "token_count": 1400 }
226
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # REALM ## Overview The REALM model was proposed in [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang. It's a retrieval-augmented language model that firstly retrieves documents from a textual knowledge corpus and then utilizes retrieved documents to process question answering tasks. The abstract from the paper is the following: *Language model pre-training has been shown to capture a surprising amount of world knowledge, crucial for NLP tasks such as question answering. However, this knowledge is stored implicitly in the parameters of a neural network, requiring ever-larger networks to cover more facts. To capture knowledge in a more modular and interpretable way, we augment language model pre-training with a latent knowledge retriever, which allows the model to retrieve and attend over documents from a large corpus such as Wikipedia, used during pre-training, fine-tuning and inference. For the first time, we show how to pre-train such a knowledge retriever in an unsupervised manner, using masked language modeling as the learning signal and backpropagating through a retrieval step that considers millions of documents. We demonstrate the effectiveness of Retrieval-Augmented Language Model pre-training (REALM) by fine-tuning on the challenging task of Open-domain Question Answering (Open-QA). We compare against state-of-the-art models for both explicit and implicit knowledge storage on three popular Open-QA benchmarks, and find that we outperform all previous methods by a significant margin (4-16% absolute accuracy), while also providing qualitative benefits such as interpretability and modularity.* This model was contributed by [qqaatw](https://huggingface.co/qqaatw). The original code can be found [here](https://github.com/google-research/language/tree/master/language/realm). ## RealmConfig [[autodoc]] RealmConfig ## RealmTokenizer [[autodoc]] RealmTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary - batch_encode_candidates ## RealmTokenizerFast [[autodoc]] RealmTokenizerFast - batch_encode_candidates ## RealmRetriever [[autodoc]] RealmRetriever ## RealmEmbedder [[autodoc]] RealmEmbedder - forward ## RealmScorer [[autodoc]] RealmScorer - forward ## RealmKnowledgeAugEncoder [[autodoc]] RealmKnowledgeAugEncoder - forward ## RealmReader [[autodoc]] RealmReader - forward ## RealmForOpenQA [[autodoc]] RealmForOpenQA - block_embedding_to - forward
transformers/docs/source/en/model_doc/realm.md/0
{ "file_path": "transformers/docs/source/en/model_doc/realm.md", "repo_id": "transformers", "token_count": 926 }
227
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Wav2Vec2 ## Overview The Wav2Vec2 model was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. The abstract from the paper is the following: *We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data.* This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). ## Usage tips - Wav2Vec2 is a speech model that accepts a float array corresponding to the raw waveform of the speech signal. - Wav2Vec2 model was trained using connectionist temporal classification (CTC) so the model output has to be decoded using [`Wav2Vec2CTCTokenizer`]. ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Wav2Vec2. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. <PipelineTag pipeline="audio-classification"/> - A notebook on how to [leverage a pretrained Wav2Vec2 model for emotion classification](https://colab.research.google.com/github/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb). 🌎 - [`Wav2Vec2ForCTC`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/audio-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb). - [Audio classification task guide](../tasks/audio_classification) <PipelineTag pipeline="automatic-speech-recognition"/> - A blog post on [boosting Wav2Vec2 with n-grams in 🤗 Transformers](https://huggingface.co/blog/wav2vec2-with-ngram). - A blog post on how to [finetune Wav2Vec2 for English ASR with 🤗 Transformers](https://huggingface.co/blog/fine-tune-wav2vec2-english). - A blog post on [finetuning XLS-R for Multi-Lingual ASR with 🤗 Transformers](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2). - A notebook on how to [create YouTube captions from any video by transcribing audio with Wav2Vec2](https://colab.research.google.com/github/Muennighoff/ytclipcc/blob/main/wav2vec_youtube_captions.ipynb). 🌎 - [`Wav2Vec2ForCTC`] is supported by a notebook on [how to finetune a speech recognition model in English](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/speech_recognition.ipynb), and [how to finetune a speech recognition model in any language](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multi_lingual_speech_recognition.ipynb). - [Automatic speech recognition task guide](../tasks/asr) 🚀 Deploy - A blog post on how to deploy Wav2Vec2 for [Automatic Speech Recognition with Hugging Face's Transformers & Amazon SageMaker](https://www.philschmid.de/automatic-speech-recognition-sagemaker). ## Wav2Vec2Config [[autodoc]] Wav2Vec2Config ## Wav2Vec2CTCTokenizer [[autodoc]] Wav2Vec2CTCTokenizer - __call__ - save_vocabulary - decode - batch_decode - set_target_lang ## Wav2Vec2FeatureExtractor [[autodoc]] Wav2Vec2FeatureExtractor - __call__ ## Wav2Vec2Processor [[autodoc]] Wav2Vec2Processor - __call__ - pad - from_pretrained - save_pretrained - batch_decode - decode ## Wav2Vec2ProcessorWithLM [[autodoc]] Wav2Vec2ProcessorWithLM - __call__ - pad - from_pretrained - save_pretrained - batch_decode - decode ### Decoding multiple audios If you are planning to decode multiple batches of audios, you should consider using [`~Wav2Vec2ProcessorWithLM.batch_decode`] and passing an instantiated `multiprocessing.Pool`. Otherwise, [`~Wav2Vec2ProcessorWithLM.batch_decode`] performance will be slower than calling [`~Wav2Vec2ProcessorWithLM.decode`] for each audio individually, as it internally instantiates a new `Pool` for every call. See the example below: ```python >>> # Let's see how to use a user-managed pool for batch decoding multiple audios >>> from multiprocessing import get_context >>> from transformers import AutoTokenizer, AutoProcessor, AutoModelForCTC >>> from datasets import load_dataset >>> import datasets >>> import torch >>> # import model, feature extractor, tokenizer >>> model = AutoModelForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm").to("cuda") >>> processor = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm") >>> # load example dataset >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000)) >>> def map_to_array(batch): ... batch["speech"] = batch["audio"]["array"] ... return batch >>> # prepare speech data for batch inference >>> dataset = dataset.map(map_to_array, remove_columns=["audio"]) >>> def map_to_pred(batch, pool): ... inputs = processor(batch["speech"], sampling_rate=16_000, padding=True, return_tensors="pt") ... inputs = {k: v.to("cuda") for k, v in inputs.items()} ... with torch.no_grad(): ... logits = model(**inputs).logits ... transcription = processor.batch_decode(logits.cpu().numpy(), pool).text ... batch["transcription"] = transcription ... return batch >>> # note: pool should be instantiated *after* `Wav2Vec2ProcessorWithLM`. >>> # otherwise, the LM won't be available to the pool's sub-processes >>> # select number of processes and batch_size based on number of CPU cores available and on dataset size >>> with get_context("fork").Pool(processes=2) as pool: ... result = dataset.map( ... map_to_pred, batched=True, batch_size=2, fn_kwargs={"pool": pool}, remove_columns=["speech"] ... ) >>> result["transcription"][:2] ['MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL', "NOR IS MISTER COULTER'S MANNER LESS INTERESTING THAN HIS MATTER"] ``` ## Wav2Vec2 specific outputs [[autodoc]] models.wav2vec2_with_lm.processing_wav2vec2_with_lm.Wav2Vec2DecoderWithLMOutput [[autodoc]] models.wav2vec2.modeling_wav2vec2.Wav2Vec2BaseModelOutput [[autodoc]] models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTrainingOutput [[autodoc]] models.wav2vec2.modeling_flax_wav2vec2.FlaxWav2Vec2BaseModelOutput [[autodoc]] models.wav2vec2.modeling_flax_wav2vec2.FlaxWav2Vec2ForPreTrainingOutput <frameworkcontent> <pt> ## Wav2Vec2Model [[autodoc]] Wav2Vec2Model - forward ## Wav2Vec2ForCTC [[autodoc]] Wav2Vec2ForCTC - forward - load_adapter ## Wav2Vec2ForSequenceClassification [[autodoc]] Wav2Vec2ForSequenceClassification - forward ## Wav2Vec2ForAudioFrameClassification [[autodoc]] Wav2Vec2ForAudioFrameClassification - forward ## Wav2Vec2ForXVector [[autodoc]] Wav2Vec2ForXVector - forward ## Wav2Vec2ForPreTraining [[autodoc]] Wav2Vec2ForPreTraining - forward </pt> <tf> ## TFWav2Vec2Model [[autodoc]] TFWav2Vec2Model - call ## TFWav2Vec2ForSequenceClassification [[autodoc]] TFWav2Vec2ForSequenceClassification - call ## TFWav2Vec2ForCTC [[autodoc]] TFWav2Vec2ForCTC - call </tf> <jax> ## FlaxWav2Vec2Model [[autodoc]] FlaxWav2Vec2Model - __call__ ## FlaxWav2Vec2ForCTC [[autodoc]] FlaxWav2Vec2ForCTC - __call__ ## FlaxWav2Vec2ForPreTraining [[autodoc]] FlaxWav2Vec2ForPreTraining - __call__ </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/wav2vec2.md/0
{ "file_path": "transformers/docs/source/en/model_doc/wav2vec2.md", "repo_id": "transformers", "token_count": 3092 }
228
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # YOSO ## Overview The YOSO model was proposed in [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh. YOSO approximates standard softmax self-attention via a Bernoulli sampling scheme based on Locality Sensitive Hashing (LSH). In principle, all the Bernoulli random variables can be sampled with a single hash. The abstract from the paper is the following: *Transformer-based models are widely used in natural language processing (NLP). Central to the transformer model is the self-attention mechanism, which captures the interactions of token pairs in the input sequences and depends quadratically on the sequence length. Training such models on longer sequences is expensive. In this paper, we show that a Bernoulli sampling attention mechanism based on Locality Sensitive Hashing (LSH), decreases the quadratic complexity of such models to linear. We bypass the quadratic cost by considering self-attention as a sum of individual tokens associated with Bernoulli random variables that can, in principle, be sampled at once by a single hash (although in practice, this number may be a small constant). This leads to an efficient sampling scheme to estimate self-attention which relies on specific modifications of LSH (to enable deployment on GPU architectures). We evaluate our algorithm on the GLUE benchmark with standard 512 sequence length where we see favorable performance relative to a standard pretrained Transformer. On the Long Range Arena (LRA) benchmark, for evaluating performance on long sequences, our method achieves results consistent with softmax self-attention but with sizable speed-ups and memory savings and often outperforms other efficient self-attention methods. Our code is available at this https URL* This model was contributed by [novice03](https://huggingface.co/novice03). The original code can be found [here](https://github.com/mlpen/YOSO). ## Usage tips - The YOSO attention algorithm is implemented through custom CUDA kernels, functions written in CUDA C++ that can be executed multiple times in parallel on a GPU. - The kernels provide a `fast_hash` function, which approximates the random projections of the queries and keys using the Fast Hadamard Transform. Using these hash codes, the `lsh_cumulation` function approximates self-attention via LSH-based Bernoulli sampling. - To use the custom kernels, the user should set `config.use_expectation = False`. To ensure that the kernels are compiled successfully, the user must install the correct version of PyTorch and cudatoolkit. By default, `config.use_expectation = True`, which uses YOSO-E and does not require compiling CUDA kernels. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/yoso_architecture.jpg" alt="drawing" width="600"/> <small> YOSO Attention Algorithm. Taken from the <a href="https://arxiv.org/abs/2111.09714">original paper</a>.</small> ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## YosoConfig [[autodoc]] YosoConfig ## YosoModel [[autodoc]] YosoModel - forward ## YosoForMaskedLM [[autodoc]] YosoForMaskedLM - forward ## YosoForSequenceClassification [[autodoc]] YosoForSequenceClassification - forward ## YosoForMultipleChoice [[autodoc]] YosoForMultipleChoice - forward ## YosoForTokenClassification [[autodoc]] YosoForTokenClassification - forward ## YosoForQuestionAnswering [[autodoc]] YosoForQuestionAnswering - forward
transformers/docs/source/en/model_doc/yoso.md/0
{ "file_path": "transformers/docs/source/en/model_doc/yoso.md", "repo_id": "transformers", "token_count": 1243 }
229
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # PyTorch training on Apple silicon Previously, training models on a Mac was limited to the CPU only. With the release of PyTorch v1.12, you can take advantage of training models with Apple's silicon GPUs for significantly faster performance and training. This is powered in PyTorch by integrating Apple's Metal Performance Shaders (MPS) as a backend. The [MPS backend](https://pytorch.org/docs/stable/notes/mps.html) implements PyTorch operations as custom Metal shaders and places these modules on a `mps` device. <Tip warning={true}> Some PyTorch operations are not implemented in MPS yet and will throw an error. To avoid this, you should set the environment variable `PYTORCH_ENABLE_MPS_FALLBACK=1` to use the CPU kernels instead (you'll still see a `UserWarning`). <br> If you run into any other errors, please open an issue in the [PyTorch](https://github.com/pytorch/pytorch/issues) repository because the [`Trainer`] only integrates the MPS backend. </Tip> With the `mps` device set, you can: * train larger networks or batch sizes locally * reduce data retrieval latency because the GPU's unified memory architecture allows direct access to the full memory store * reduce costs because you don't need to train on cloud-based GPUs or add additional local GPUs Get started by making sure you have PyTorch installed. MPS acceleration is supported on macOS 12.3+. ```bash pip install torch torchvision torchaudio ``` [`TrainingArguments`] uses the `mps` device by default if it's available which means you don't need to explicitly set the device. For example, you can run the [run_glue.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py) script with the MPS backend automatically enabled without making any changes. ```diff export TASK_NAME=mrpc python examples/pytorch/text-classification/run_glue.py \ --model_name_or_path bert-base-cased \ --task_name $TASK_NAME \ - --use_mps_device \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ \ --overwrite_output_dir ``` Backends for [distributed setups](https://pytorch.org/docs/stable/distributed.html#backends) like `gloo` and `nccl` are not supported by the `mps` device which means you can only train on a single GPU with the MPS backend. You can learn more about the MPS backend in the [Introducing Accelerated PyTorch Training on Mac](https://pytorch.org/blog/introducing-accelerated-pytorch-training-on-mac/) blog post.
transformers/docs/source/en/perf_train_special.md/0
{ "file_path": "transformers/docs/source/en/perf_train_special.md", "repo_id": "transformers", "token_count": 933 }
230
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Audio classification [[open-in-colab]] <Youtube id="KWwzcmG98Ds"/> Audio classification - just like with text - assigns a class label output from the input data. The only difference is instead of text inputs, you have raw audio waveforms. Some practical applications of audio classification include identifying speaker intent, language classification, and even animal species by their sounds. This guide will show you how to: 1. Finetune [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) on the [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) dataset to classify speaker intent. 2. Use your finetuned model for inference. <Tip> The task illustrated in this tutorial is supported by the following model architectures: <!--This tip is automatically generated by `make fix-copies`, do not fill manually!--> [Audio Spectrogram Transformer](../model_doc/audio-spectrogram-transformer), [Data2VecAudio](../model_doc/data2vec-audio), [Hubert](../model_doc/hubert), [SEW](../model_doc/sew), [SEW-D](../model_doc/sew-d), [UniSpeech](../model_doc/unispeech), [UniSpeechSat](../model_doc/unispeech-sat), [Wav2Vec2](../model_doc/wav2vec2), [Wav2Vec2-BERT](../model_doc/wav2vec2-bert), [Wav2Vec2-Conformer](../model_doc/wav2vec2-conformer), [WavLM](../model_doc/wavlm), [Whisper](../model_doc/whisper) <!--End of the generated tip--> </Tip> Before you begin, make sure you have all the necessary libraries installed: ```bash pip install transformers datasets evaluate ``` We encourage you to login to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to login: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Load MInDS-14 dataset Start by loading the MInDS-14 dataset from the 🤗 Datasets library: ```py >>> from datasets import load_dataset, Audio >>> minds = load_dataset("PolyAI/minds14", name="en-US", split="train") ``` Split the dataset's `train` split into a smaller train and test set with the [`~datasets.Dataset.train_test_split`] method. This'll give you a chance to experiment and make sure everything works before spending more time on the full dataset. ```py >>> minds = minds.train_test_split(test_size=0.2) ``` Then take a look at the dataset: ```py >>> minds DatasetDict({ train: Dataset({ features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'], num_rows: 450 }) test: Dataset({ features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'], num_rows: 113 }) }) ``` While the dataset contains a lot of useful information, like `lang_id` and `english_transcription`, you'll focus on the `audio` and `intent_class` in this guide. Remove the other columns with the [`~datasets.Dataset.remove_columns`] method: ```py >>> minds = minds.remove_columns(["path", "transcription", "english_transcription", "lang_id"]) ``` Take a look at an example now: ```py >>> minds["train"][0] {'audio': {'array': array([ 0. , 0. , 0. , ..., -0.00048828, -0.00024414, -0.00024414], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602b9a5fbb1e6d0fbce91f52.wav', 'sampling_rate': 8000}, 'intent_class': 2} ``` There are two fields: - `audio`: a 1-dimensional `array` of the speech signal that must be called to load and resample the audio file. - `intent_class`: represents the class id of the speaker's intent. To make it easier for the model to get the label name from the label id, create a dictionary that maps the label name to an integer and vice versa: ```py >>> labels = minds["train"].features["intent_class"].names >>> label2id, id2label = dict(), dict() >>> for i, label in enumerate(labels): ... label2id[label] = str(i) ... id2label[str(i)] = label ``` Now you can convert the label id to a label name: ```py >>> id2label[str(2)] 'app_error' ``` ## Preprocess The next step is to load a Wav2Vec2 feature extractor to process the audio signal: ```py >>> from transformers import AutoFeatureExtractor >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base") ``` The MInDS-14 dataset has a sampling rate of 8000khz (you can find this information in it's [dataset card](https://huggingface.co/datasets/PolyAI/minds14)), which means you'll need to resample the dataset to 16000kHz to use the pretrained Wav2Vec2 model: ```py >>> minds = minds.cast_column("audio", Audio(sampling_rate=16_000)) >>> minds["train"][0] {'audio': {'array': array([ 2.2098757e-05, 4.6582241e-05, -2.2803260e-05, ..., -2.8419291e-04, -2.3305941e-04, -1.1425107e-04], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602b9a5fbb1e6d0fbce91f52.wav', 'sampling_rate': 16000}, 'intent_class': 2} ``` Now create a preprocessing function that: 1. Calls the `audio` column to load, and if necessary, resample the audio file. 2. Checks if the sampling rate of the audio file matches the sampling rate of the audio data a model was pretrained with. You can find this information in the Wav2Vec2 [model card](https://huggingface.co/facebook/wav2vec2-base). 3. Set a maximum input length to batch longer inputs without truncating them. ```py >>> def preprocess_function(examples): ... audio_arrays = [x["array"] for x in examples["audio"]] ... inputs = feature_extractor( ... audio_arrays, sampling_rate=feature_extractor.sampling_rate, max_length=16000, truncation=True ... ) ... return inputs ``` To apply the preprocessing function over the entire dataset, use 🤗 Datasets [`~datasets.Dataset.map`] function. You can speed up `map` by setting `batched=True` to process multiple elements of the dataset at once. Remove the columns you don't need, and rename `intent_class` to `label` because that's the name the model expects: ```py >>> encoded_minds = minds.map(preprocess_function, remove_columns="audio", batched=True) >>> encoded_minds = encoded_minds.rename_column("intent_class", "label") ``` ## Evaluate Including a metric during training is often helpful for evaluating your model's performance. You can quickly load a evaluation method with the 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy) metric (see the 🤗 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric): ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") ``` Then create a function that passes your predictions and labels to [`~evaluate.EvaluationModule.compute`] to calculate the accuracy: ```py >>> import numpy as np >>> def compute_metrics(eval_pred): ... predictions = np.argmax(eval_pred.predictions, axis=1) ... return accuracy.compute(predictions=predictions, references=eval_pred.label_ids) ``` Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training. ## Train <frameworkcontent> <pt> <Tip> If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#train-with-pytorch-trainer)! </Tip> You're ready to start training your model now! Load Wav2Vec2 with [`AutoModelForAudioClassification`] along with the number of expected labels, and the label mappings: ```py >>> from transformers import AutoModelForAudioClassification, TrainingArguments, Trainer >>> num_labels = len(id2label) >>> model = AutoModelForAudioClassification.from_pretrained( ... "facebook/wav2vec2-base", num_labels=num_labels, label2id=label2id, id2label=id2label ... ) ``` At this point, only three steps remain: 1. Define your training hyperparameters in [`TrainingArguments`]. The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the accuracy and save the training checkpoint. 2. Pass the training arguments to [`Trainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function. 3. Call [`~Trainer.train`] to finetune your model. ```py >>> training_args = TrainingArguments( ... output_dir="my_awesome_mind_model", ... evaluation_strategy="epoch", ... save_strategy="epoch", ... learning_rate=3e-5, ... per_device_train_batch_size=32, ... gradient_accumulation_steps=4, ... per_device_eval_batch_size=32, ... num_train_epochs=10, ... warmup_ratio=0.1, ... logging_steps=10, ... load_best_model_at_end=True, ... metric_for_best_model="accuracy", ... push_to_hub=True, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=encoded_minds["train"], ... eval_dataset=encoded_minds["test"], ... tokenizer=feature_extractor, ... compute_metrics=compute_metrics, ... ) >>> trainer.train() ``` Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model: ```py >>> trainer.push_to_hub() ``` </pt> </frameworkcontent> <Tip> For a more in-depth example of how to finetune a model for audio classification, take a look at the corresponding [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb). </Tip> ## Inference Great, now that you've finetuned a model, you can use it for inference! Load an audio file you'd like to run inference on. Remember to resample the sampling rate of the audio file to match the sampling rate of the model if you need to! ```py >>> from datasets import load_dataset, Audio >>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") >>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) >>> sampling_rate = dataset.features["audio"].sampling_rate >>> audio_file = dataset[0]["audio"]["path"] ``` The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for audio classification with your model, and pass your audio file to it: ```py >>> from transformers import pipeline >>> classifier = pipeline("audio-classification", model="stevhliu/my_awesome_minds_model") >>> classifier(audio_file) [ {'score': 0.09766869246959686, 'label': 'cash_deposit'}, {'score': 0.07998877018690109, 'label': 'app_error'}, {'score': 0.0781070664525032, 'label': 'joint_account'}, {'score': 0.07667109370231628, 'label': 'pay_bill'}, {'score': 0.0755252093076706, 'label': 'balance'} ] ``` You can also manually replicate the results of the `pipeline` if you'd like: <frameworkcontent> <pt> Load a feature extractor to preprocess the audio file and return the `input` as PyTorch tensors: ```py >>> from transformers import AutoFeatureExtractor >>> feature_extractor = AutoFeatureExtractor.from_pretrained("stevhliu/my_awesome_minds_model") >>> inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") ``` Pass your inputs to the model and return the logits: ```py >>> from transformers import AutoModelForAudioClassification >>> model = AutoModelForAudioClassification.from_pretrained("stevhliu/my_awesome_minds_model") >>> with torch.no_grad(): ... logits = model(**inputs).logits ``` Get the class with the highest probability, and use the model's `id2label` mapping to convert it to a label: ```py >>> import torch >>> predicted_class_ids = torch.argmax(logits).item() >>> predicted_label = model.config.id2label[predicted_class_ids] >>> predicted_label 'cash_deposit' ``` </pt> </frameworkcontent>
transformers/docs/source/en/tasks/audio_classification.md/0
{ "file_path": "transformers/docs/source/en/tasks/audio_classification.md", "repo_id": "transformers", "token_count": 4267 }
231
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Transformers Agents <Tip warning={true}> Transformers Agents is an experimental API which is subject to change at any time. Results returned by the agents can vary as the APIs or underlying models are prone to change. </Tip> Transformers version v4.29.0, building on the concept of *tools* and *agents*. You can play with in [this colab](https://colab.research.google.com/drive/1c7MHD-T1forUPGcC_jlwsIptOzpG3hSj). In short, it provides a natural language API on top of transformers: we define a set of curated tools and design an agent to interpret natural language and to use these tools. It is extensible by design; we curated some relevant tools, but we'll show you how the system can be extended easily to use any tool developed by the community. Let's start with a few examples of what can be achieved with this new API. It is particularly powerful when it comes to multimodal tasks, so let's take it for a spin to generate images and read text out loud. ```py agent.run("Caption the following image", image=image) ``` | **Input** | **Output** | |-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------| | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/beaver.png" width=200> | A beaver is swimming in the water | --- ```py agent.run("Read the following text out loud", text=text) ``` | **Input** | **Output** | |-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------| | A beaver is swimming in the water | <audio controls><source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tts_example.wav" type="audio/wav"> your browser does not support the audio element. </audio> --- ```py agent.run( "In the following `document`, where will the TRRF Scientific Advisory Council Meeting take place?", document=document, ) ``` | **Input** | **Output** | |-----------------------------------------------------------------------------------------------------------------------------|----------------| | <img src="https://datasets-server.huggingface.co/assets/hf-internal-testing/example-documents/--/hf-internal-testing--example-documents/test/0/image/image.jpg" width=200> | ballroom foyer | ## Quickstart Before being able to use `agent.run`, you will need to instantiate an agent, which is a large language model (LLM). We provide support for openAI models as well as opensource alternatives from BigCode and OpenAssistant. The openAI models perform better (but require you to have an openAI API key, so cannot be used for free); Hugging Face is providing free access to endpoints for BigCode and OpenAssistant models. To start with, please install the `agents` extras in order to install all default dependencies. ```bash pip install transformers[agents] ``` To use openAI models, you instantiate an [`OpenAiAgent`] after installing the `openai` dependency: ```bash pip install openai ``` ```py from transformers import OpenAiAgent agent = OpenAiAgent(model="text-davinci-003", api_key="<your_api_key>") ``` To use BigCode or OpenAssistant, start by logging in to have access to the Inference API: ```py from huggingface_hub import login login("<YOUR_TOKEN>") ``` Then, instantiate the agent ```py from transformers import HfAgent # Starcoder agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder") # StarcoderBase # agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoderbase") # OpenAssistant # agent = HfAgent(url_endpoint="https://api-inference.huggingface.co/models/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5") ``` This is using the inference API that Hugging Face provides for free at the moment. If you have your own inference endpoint for this model (or another one) you can replace the URL above with your URL endpoint. <Tip> StarCoder and OpenAssistant are free to use and perform admirably well on simple tasks. However, the checkpoints don't hold up when handling more complex prompts. If you're facing such an issue, we recommend trying out the OpenAI model which, while sadly not open-source, performs better at this given time. </Tip> You're now good to go! Let's dive into the two APIs that you now have at your disposal. ### Single execution (run) The single execution method is when using the [`~Agent.run`] method of the agent: ```py agent.run("Draw me a picture of rivers and lakes.") ``` <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" width=200> It automatically selects the tool (or tools) appropriate for the task you want to perform and runs them appropriately. It can perform one or several tasks in the same instruction (though the more complex your instruction, the more likely the agent is to fail). ```py agent.run("Draw me a picture of the sea then transform the picture to add an island") ``` <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/sea_and_island.png" width=200> <br/> Every [`~Agent.run`] operation is independent, so you can run it several times in a row with different tasks. Note that your `agent` is just a large-language model, so small variations in your prompt might yield completely different results. It's important to explain as clearly as possible the task you want to perform. We go more in-depth on how to write good prompts [here](custom_tools#writing-good-user-inputs). If you'd like to keep a state across executions or to pass non-text objects to the agent, you can do so by specifying variables that you would like the agent to use. For example, you could generate the first image of rivers and lakes, and ask the model to update that picture to add an island by doing the following: ```python picture = agent.run("Generate a picture of rivers and lakes.") updated_picture = agent.run("Transform the image in `picture` to add an island to it.", picture=picture) ``` <Tip> This can be helpful when the model is unable to understand your request and mixes tools. An example would be: ```py agent.run("Draw me the picture of a capybara swimming in the sea") ``` Here, the model could interpret in two ways: - Have the `text-to-image` generate a capybara swimming in the sea - Or, have the `text-to-image` generate capybara, then use the `image-transformation` tool to have it swim in the sea In case you would like to force the first scenario, you could do so by passing it the prompt as an argument: ```py agent.run("Draw me a picture of the `prompt`", prompt="a capybara swimming in the sea") ``` </Tip> ### Chat-based execution (chat) The agent also has a chat-based approach, using the [`~Agent.chat`] method: ```py agent.chat("Generate a picture of rivers and lakes") ``` <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" width=200> ```py agent.chat("Transform the picture so that there is a rock in there") ``` <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes_and_beaver.png" width=200> <br/> This is an interesting approach when you want to keep the state across instructions. It's better for experimentation, but will tend to be much better at single instructions rather than complex instructions (which the [`~Agent.run`] method is better at handling). This method can also take arguments if you would like to pass non-text types or specific prompts. ### ⚠️ Remote execution For demonstration purposes and so that it could be used with all setups, we had created remote executors for several of the default tools the agent has access for the release. These are created using [inference endpoints](https://huggingface.co/inference-endpoints). We have turned these off for now, but in order to see how to set up remote executors tools yourself, we recommend reading the [custom tool guide](./custom_tools). ### What's happening here? What are tools, and what are agents? <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/diagram.png"> #### Agents The "agent" here is a large language model, and we're prompting it so that it has access to a specific set of tools. LLMs are pretty good at generating small samples of code, so this API takes advantage of that by prompting the LLM gives a small sample of code performing a task with a set of tools. This prompt is then completed by the task you give your agent and the description of the tools you give it. This way it gets access to the doc of the tools you are using, especially their expected inputs and outputs, and can generate the relevant code. #### Tools Tools are very simple: they're a single function, with a name, and a description. We then use these tools' descriptions to prompt the agent. Through the prompt, we show the agent how it would leverage tools to perform what was requested in the query. This is using brand-new tools and not pipelines, because the agent writes better code with very atomic tools. Pipelines are more refactored and often combine several tasks in one. Tools are meant to be focused on one very simple task only. #### Code-execution?! This code is then executed with our small Python interpreter on the set of inputs passed along with your tools. We hear you screaming "Arbitrary code execution!" in the back, but let us explain why that is not the case. The only functions that can be called are the tools you provided and the print function, so you're already limited in what can be executed. You should be safe if it's limited to Hugging Face tools. Then, we don't allow any attribute lookup or imports (which shouldn't be needed anyway for passing along inputs/outputs to a small set of functions) so all the most obvious attacks (and you'd need to prompt the LLM to output them anyway) shouldn't be an issue. If you want to be on the super safe side, you can execute the run() method with the additional argument return_code=True, in which case the agent will just return the code to execute and you can decide whether to do it or not. The execution will stop at any line trying to perform an illegal operation or if there is a regular Python error with the code generated by the agent. ### A curated set of tools We identify a set of tools that can empower such agents. Here is an updated list of the tools we have integrated in `transformers`: - **Document question answering**: given a document (such as a PDF) in image format, answer a question on this document ([Donut](./model_doc/donut)) - **Text question answering**: given a long text and a question, answer the question in the text ([Flan-T5](./model_doc/flan-t5)) - **Unconditional image captioning**: Caption the image! ([BLIP](./model_doc/blip)) - **Image question answering**: given an image, answer a question on this image ([VILT](./model_doc/vilt)) - **Image segmentation**: given an image and a prompt, output the segmentation mask of that prompt ([CLIPSeg](./model_doc/clipseg)) - **Speech to text**: given an audio recording of a person talking, transcribe the speech into text ([Whisper](./model_doc/whisper)) - **Text to speech**: convert text to speech ([SpeechT5](./model_doc/speecht5)) - **Zero-shot text classification**: given a text and a list of labels, identify to which label the text corresponds the most ([BART](./model_doc/bart)) - **Text summarization**: summarize a long text in one or a few sentences ([BART](./model_doc/bart)) - **Translation**: translate the text into a given language ([NLLB](./model_doc/nllb)) These tools have an integration in transformers, and can be used manually as well, for example: ```py from transformers import load_tool tool = load_tool("text-to-speech") audio = tool("This is a text to speech tool") ``` ### Custom tools While we identify a curated set of tools, we strongly believe that the main value provided by this implementation is the ability to quickly create and share custom tools. By pushing the code of a tool to a Hugging Face Space or a model repository, you're then able to leverage the tool directly with the agent. We've added a few **transformers-agnostic** tools to the [`huggingface-tools` organization](https://huggingface.co/huggingface-tools): - **Text downloader**: to download a text from a web URL - **Text to image**: generate an image according to a prompt, leveraging stable diffusion - **Image transformation**: modify an image given an initial image and a prompt, leveraging instruct pix2pix stable diffusion - **Text to video**: generate a small video according to a prompt, leveraging damo-vilab The text-to-image tool we have been using since the beginning is a remote tool that lives in [*huggingface-tools/text-to-image*](https://huggingface.co/spaces/huggingface-tools/text-to-image)! We will continue releasing such tools on this and other organizations, to further supercharge this implementation. The agents have by default access to tools that reside on [`huggingface-tools`](https://huggingface.co/huggingface-tools). We explain how to you can write and share your tools as well as leverage any custom tool that resides on the Hub in [following guide](custom_tools). ### Code generation So far we have shown how to use the agents to perform actions for you. However, the agent is only generating code that we then execute using a very restricted Python interpreter. In case you would like to use the code generated in a different setting, the agent can be prompted to return the code, along with tool definition and accurate imports. For example, the following instruction ```python agent.run("Draw me a picture of rivers and lakes", return_code=True) ``` returns the following code ```python from transformers import load_tool image_generator = load_tool("huggingface-tools/text-to-image") image = image_generator(prompt="rivers and lakes") ``` that you can then modify and execute yourself.
transformers/docs/source/en/transformers_agents.md/0
{ "file_path": "transformers/docs/source/en/transformers_agents.md", "repo_id": "transformers", "token_count": 4397 }
232
<!--- Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Instalación En esta guía puedes encontrar información para instalar 🤗 Transformers para cualquier biblioteca de Machine Learning con la que estés trabajando. Además, encontrarás información sobre cómo establecer el caché y cómo configurar 🤗 Transformers para correrlo de manera offline (opcional). 🤗 Transformers ha sido probada en Python 3.6+, PyTorch 1.1.0+, TensorFlow 2.0+, y Flax. Para instalar la biblioteca de deep learning con la que desees trabajar, sigue las instrucciones correspondientes listadas a continuación: * [PyTorch](https://pytorch.org/get-started/locally/) * [TensorFlow 2.0](https://www.tensorflow.org/install/pip) * [Flax](https://flax.readthedocs.io/en/latest/) ## Instalación con pip Es necesario instalar 🤗 Transformers en un [entorno virtual](https://docs.python.org/3/library/venv.html). Si necesitas más información sobre entornos virtuales de Python, consulta esta [guía](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/ ). Un entorno virtual facilita el manejo de proyectos y evita problemas de compatibilidad entre dependencias. Comienza por crear un entorno virtual en el directorio de tu proyecto: ```bash python -m venv .env ``` Activa el entorno virtual: ```bash source .env/bin/activate ``` Ahora puedes instalar 🤗 Transformers con el siguiente comando: ```bash pip install transformers ``` Solo para CPU, puedes instalar 🤗 Transformers y una biblioteca de deep learning con un comando de una sola línea. Por ejemplo, instala 🤗 Transformers y Pytorch: ```bash pip install transformers[torch] ``` 🤗 Transformers y TensorFlow 2.0: ```bash pip install transformers[tf-cpu] ``` 🤗 Transformers y Flax: ```bash pip install transformers[flax] ``` Por último, revisa si 🤗 Transformers ha sido instalada exitosamente con el siguiente comando que descarga un modelo pre-entrenado: ```bash python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('we love you'))" ``` Después imprime la etiqueta y el puntaje: ```bash [{'label': 'POSITIVE', 'score': 0.9998704791069031}] ``` ## Instalación desde la fuente Instala 🤗 Transformers desde la fuente con el siguiente comando: ```bash pip install git+https://github.com/huggingface/transformers ``` El comando de arriba instala la versión `master` más actual en vez de la última versión estable. La versión `master` es útil para obtener los últimos avances de 🤗 Transformers. Por ejemplo, se puede dar el caso de que un error fue corregido después de la última versión estable pero aún no se ha liberado un nuevo lanzamiento. Sin embargo, existe la posibilidad de que la versión `master` no sea estable. El equipo trata de mantener la versión `master` operacional y la mayoría de los errores son resueltos en unas cuantas horas o un día. Si encuentras algún problema, por favor abre un [Issue](https://github.com/huggingface/transformers/issues) para que pueda ser corregido más rápido. Verifica si 🤗 Transformers está instalada apropiadamente con el siguiente comando: ```bash python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))" ``` ## Instalación editable Necesitarás una instalación editable si deseas: * Usar la versión `master` del código fuente. * Contribuir a 🤗 Transformers y necesitas probar cambios en el código. Clona el repositorio e instala 🤗 Transformers con los siguientes comandos: ```bash git clone https://github.com/huggingface/transformers.git cd transformers pip install -e . ``` Éstos comandos van a ligar el directorio desde donde clonamos el repositorio al path de las bibliotecas de Python. Python ahora buscará dentro de la carpeta que clonaste además de los paths normales de la biblioteca. Por ejemplo, si los paquetes de Python se encuentran instalados en `~/anaconda3/envs/main/lib/python3.7/site-packages/`, Python también buscará en el directorio desde donde clonamos el repositorio `~/transformers/`. <Tip warning={true}> Debes mantener el directorio `transformers` si deseas seguir usando la biblioteca. </Tip> Puedes actualizar tu copia local a la última versión de 🤗 Transformers con el siguiente comando: ```bash cd ~/transformers/ git pull ``` El entorno de Python que creaste para la instalación de 🤗 Transformers encontrará la versión `master` en la siguiente ejecución. ## Instalación con conda Puedes instalar 🤗 Transformers desde el canal de conda `conda-forge` con el siguiente comando: ```bash conda install conda-forge::transformers ``` ## Configuración de Caché Los modelos preentrenados se descargan y almacenan en caché localmente en: `~/.cache/huggingface/transformers/`. Este es el directorio predeterminado proporcionado por la variable de entorno de shell `TRANSFORMERS_CACHE`. En Windows, el directorio predeterminado es dado por `C:\Users\username\.cache\huggingface\transformers`. Puedes cambiar las variables de entorno de shell que se muestran a continuación, en orden de prioridad, para especificar un directorio de caché diferente: 1. Variable de entorno del shell (por defecto): `TRANSFORMERS_CACHE`. 2. Variable de entorno del shell:`HF_HOME` + `transformers/`. 3. Variable de entorno del shell: `XDG_CACHE_HOME` + `/huggingface/transformers`. <Tip> 🤗 Transformers usará las variables de entorno de shell `PYTORCH_TRANSFORMERS_CACHE` o `PYTORCH_PRETRAINED_BERT_CACHE` si viene de una iteración anterior de la biblioteca y ha configurado esas variables de entorno, a menos que especifiques la variable de entorno de shell `TRANSFORMERS_CACHE`. </Tip> ## Modo Offline 🤗 Transformers puede ejecutarse en un entorno con firewall o fuera de línea (offline) usando solo archivos locales. Configura la variable de entorno `TRANSFORMERS_OFFLINE=1` para habilitar este comportamiento. <Tip> Puedes añadir [🤗 Datasets](https://huggingface.co/docs/datasets/) al flujo de entrenamiento offline declarando la variable de entorno `HF_DATASETS_OFFLINE=1`. </Tip> Por ejemplo, normalmente ejecutarías un programa en una red normal con firewall para instancias externas con el siguiente comando: ```bash python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ... ``` Ejecuta este mismo programa en una instancia offline con el siguiente comando: ```bash HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \ python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ... ``` El script ahora debería ejecutarse sin bloquearse ni esperar a que se agote el tiempo de espera porque sabe que solo debe buscar archivos locales. ### Obtener modelos y tokenizers para uso offline Otra opción para usar 🤗 Transformers offline es descargando previamente los archivos y después apuntar al path local donde se encuentren. Hay tres maneras de hacer esto: * Descarga un archivo mediante la interfaz de usuario del [Model Hub](https://huggingface.co/models) haciendo click en el ícono ↓. ![download-icon](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/download-icon.png) * Utiliza el flujo de [`PreTrainedModel.from_pretrained`] y [`PreTrainedModel.save_pretrained`]: 1. Descarga previamente los archivos con [`PreTrainedModel.from_pretrained`]: ```py >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/T0_3B") >>> model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0_3B") ``` 2. Guarda los archivos en un directorio específico con [`PreTrainedModel.save_pretrained`]: ```py >>> tokenizer.save_pretrained("./your/path/bigscience_t0") >>> model.save_pretrained("./your/path/bigscience_t0") ``` 3. Cuando te encuentres offline, recarga los archivos con [`PreTrainedModel.from_pretrained`] desde el directorio especificado: ```py >>> tokenizer = AutoTokenizer.from_pretrained("./your/path/bigscience_t0") >>> model = AutoModel.from_pretrained("./your/path/bigscience_t0") ``` * Descarga de manera programática los archivos con la biblioteca [huggingface_hub](https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub): 1. Instala la biblioteca [huggingface_hub](https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub) en tu entorno virtual: ```bash python -m pip install huggingface_hub ``` 2. Utiliza la función [`hf_hub_download`](https://huggingface.co/docs/hub/adding-a-library#download-files-from-the-hub) para descargar un archivo a un path específico. Por ejemplo, el siguiente comando descarga el archivo `config.json` del modelo [T0](https://huggingface.co/bigscience/T0_3B) al path deseado: ```py >>> from huggingface_hub import hf_hub_download >>> hf_hub_download(repo_id="bigscience/T0_3B", filename="config.json", cache_dir="./your/path/bigscience_t0") ``` Una vez que el archivo se descargue y se almacene en caché localmente, especifica tu ruta local para cargarlo y usarlo: ```py >>> from transformers import AutoConfig >>> config = AutoConfig.from_pretrained("./your/path/bigscience_t0/config.json") ``` <Tip> Para más detalles sobre cómo descargar archivos almacenados en el Hub consulta la sección [How to download files from the Hub](https://huggingface.co/docs/hub/how-to-downstream). </Tip>
transformers/docs/source/es/installation.md/0
{ "file_path": "transformers/docs/source/es/installation.md", "repo_id": "transformers", "token_count": 3629 }
233
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Modelado de lenguaje El modelado de lenguaje predice palabras en un enunciado. Hay dos formas de modelado de lenguaje. <Youtube id="Vpjb1lu0MDk"/> El modelado de lenguaje causal predice el siguiente token en una secuencia de tokens, y el modelo solo puede considerar los tokens a la izquierda. <Youtube id="mqElG5QJWUg"/> El modelado de lenguaje por enmascaramiento predice un token enmascarado en una secuencia, y el modelo puede considerar los tokens bidireccionalmente. Esta guía te mostrará cómo realizar fine-tuning [DistilGPT2](https://huggingface.co/distilgpt2) para modelos de lenguaje causales y [DistilRoBERTa](https://huggingface.co/distilroberta-base) para modelos de lenguaje por enmascaramiento en el [r/askscience](https://www.reddit.com/r/askscience/) subdataset [ELI5](https://huggingface.co/datasets/eli5). <Tip> Puedes realizar fine-tuning a otras arquitecturas para modelos de lenguaje como [GPT-Neo](https://huggingface.co/EleutherAI/gpt-neo-125M), [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B) y [BERT](https://huggingface.co/bert-base-uncased) siguiendo los mismos pasos presentados en esta guía! Mira la [página de tarea](https://huggingface.co/tasks/text-generation) para generación de texto y la [página de tarea](https://huggingface.co/tasks/fill-mask) para modelos de lenguajes por enmascaramiento para obtener más información sobre los modelos, datasets, y métricas asociadas. </Tip> ## Carga el dataset ELI5 Carga solo los primeros 5000 registros desde la biblioteca 🤗 Datasets, dado que es bastante grande: ```py >>> from datasets import load_dataset >>> eli5 = load_dataset("eli5", split="train_asks[:5000]") ``` Divide este dataset en subdatasets para el entrenamiento y el test: ```py eli5 = eli5.train_test_split(test_size=0.2) ``` Luego observa un ejemplo: ```py >>> eli5["train"][0] {'answers': {'a_id': ['c3d1aib', 'c3d4lya'], 'score': [6, 3], 'text': ["The velocity needed to remain in orbit is equal to the square root of Newton's constant times the mass of earth divided by the distance from the center of the earth. I don't know the altitude of that specific mission, but they're usually around 300 km. That means he's going 7-8 km/s.\n\nIn space there are no other forces acting on either the shuttle or the guy, so they stay in the same position relative to each other. If he were to become unable to return to the ship, he would presumably run out of oxygen, or slowly fall into the atmosphere and burn up.", "Hope you don't mind me asking another question, but why aren't there any stars visible in this photo?"]}, 'answers_urls': {'url': []}, 'document': '', 'q_id': 'nyxfp', 'selftext': '_URL_0_\n\nThis was on the front page earlier and I have a few questions about it. Is it possible to calculate how fast the astronaut would be orbiting the earth? Also how does he stay close to the shuttle so that he can return safely, i.e is he orbiting at the same speed and can therefore stay next to it? And finally if his propulsion system failed, would he eventually re-enter the atmosphere and presumably die?', 'selftext_urls': {'url': ['http://apod.nasa.gov/apod/image/1201/freeflyer_nasa_3000.jpg']}, 'subreddit': 'askscience', 'title': 'Few questions about this space walk photograph.', 'title_urls': {'url': []}} ``` Observa que `text` es un subcampo anidado dentro del diccionario `answers`. Cuando preproceses el dataset, deberás extraer el subcampo `text` en una columna aparte. ## Preprocesamiento <Youtube id="ma1TrR7gE7I"/> Para modelados de lenguaje causales carga el tokenizador DistilGPT2 para procesar el subcampo `text`: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2") ``` <Youtube id="8PmhEIXhBvI"/> Para modelados de lenguaje por enmascaramiento carga el tokenizador DistilRoBERTa, en lugar de DistilGPT2: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilroberta-base") ``` Extrae el subcampo `text` desde su estructura anidado con el método [`flatten`](https://huggingface.co/docs/datasets/process#flatten): ```py >>> eli5 = eli5.flatten() >>> eli5["train"][0] {'answers.a_id': ['c3d1aib', 'c3d4lya'], 'answers.score': [6, 3], 'answers.text': ["The velocity needed to remain in orbit is equal to the square root of Newton's constant times the mass of earth divided by the distance from the center of the earth. I don't know the altitude of that specific mission, but they're usually around 300 km. That means he's going 7-8 km/s.\n\nIn space there are no other forces acting on either the shuttle or the guy, so they stay in the same position relative to each other. If he were to become unable to return to the ship, he would presumably run out of oxygen, or slowly fall into the atmosphere and burn up.", "Hope you don't mind me asking another question, but why aren't there any stars visible in this photo?"], 'answers_urls.url': [], 'document': '', 'q_id': 'nyxfp', 'selftext': '_URL_0_\n\nThis was on the front page earlier and I have a few questions about it. Is it possible to calculate how fast the astronaut would be orbiting the earth? Also how does he stay close to the shuttle so that he can return safely, i.e is he orbiting at the same speed and can therefore stay next to it? And finally if his propulsion system failed, would he eventually re-enter the atmosphere and presumably die?', 'selftext_urls.url': ['http://apod.nasa.gov/apod/image/1201/freeflyer_nasa_3000.jpg'], 'subreddit': 'askscience', 'title': 'Few questions about this space walk photograph.', 'title_urls.url': []} ``` Cada subcampo es ahora una columna separada, como lo indica el prefijo `answers`. Observa que `answers.text` es una lista. En lugar de tokenizar cada enunciado por separado, convierte la lista en un string para tokenizarlos conjuntamente. Así es como puedes crear una función de preprocesamiento para convertir la lista en una cadena y truncar las secuencias para que no superen la longitud máxima de input de DistilGPT2: ```py >>> def preprocess_function(examples): ... return tokenizer([" ".join(x) for x in examples["answers.text"]], truncation=True) ``` Usa de 🤗 Datasets la función [`map`](https://huggingface.co/docs/datasets/process#map) para aplicar la función de preprocesamiento sobre el dataset en su totalidad. Puedes acelerar la función `map` configurando el argumento `batched=True` para procesar múltiples elementos del dataset a la vez y aumentar la cantidad de procesos con `num_proc`. Elimina las columnas que no necesitas: ```py >>> tokenized_eli5 = eli5.map( ... preprocess_function, ... batched=True, ... num_proc=4, ... remove_columns=eli5["train"].column_names, ... ) ``` Ahora necesitas una segunda función de preprocesamiento para capturar el texto truncado de cualquier ejemplo demasiado largo para evitar cualquier pérdida de información. Esta función de preprocesamiento debería: - Concatenar todo el texto. - Dividir el texto concatenado en trozos más pequeños definidos por un `block_size`. ```py >>> block_size = 128 >>> def group_texts(examples): ... concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} ... total_length = len(concatenated_examples[list(examples.keys())[0]]) ... total_length = (total_length // block_size) * block_size ... result = { ... k: [t[i : i + block_size] for i in range(0, total_length, block_size)] ... for k, t in concatenated_examples.items() ... } ... result["labels"] = result["input_ids"].copy() ... return result ``` Aplica la función `group_texts` sobre todo el dataset: ```py >>> lm_dataset = tokenized_eli5.map(group_texts, batched=True, num_proc=4) ``` Para modelados de lenguaje causales, usa [`DataCollatorForLanguageModeling`] para crear un lote de ejemplos. Esto también *rellenará dinámicamente* tu texto a la dimensión del elemento más largo del lote para que de esta manera tengan largo uniforme. Si bien es posible rellenar tu texto en la función `tokenizer` mediante el argumento `padding=True`, el rellenado dinámico es más eficiente. <frameworkcontent> <pt> Puedes usar el token de final de secuencia como el token de relleno y asignar `mlm=False`. Esto usará los inputs como etiquetas movidas un elemento hacia la derecha: ```py >>> from transformers import DataCollatorForLanguageModeling >>> tokenizer.pad_token = tokenizer.eos_token >>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) ``` Para modelados de lenguaje por enmascaramiento usa el mismo [`DataCollatorForLanguageModeling`] excepto que deberás especificar `mlm_probability` para enmascarar tokens aleatoriamente cada vez que iteras sobre los datos. ```py >>> from transformers import DataCollatorForLanguageModeling >>> tokenizer.pad_token = tokenizer.eos_token >>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15) ``` </pt> <tf> Puedes usar el token de final de secuencia como el token de relleno y asignar `mlm=False`. Esto usará los inputs como etiquetas movidas un elemento hacia la derecha: ```py >>> from transformers import DataCollatorForLanguageModeling >>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False, return_tensors="tf") ``` Para modelados de lenguajes por enmascaramiento usa el mismo [`DataCollatorForLanguageModeling`] excepto que deberás especificar `mlm_probability` para enmascarar tokens aleatoriamente cada vez que iteras sobre los datos. ```py >>> from transformers import DataCollatorForLanguageModeling >>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False, return_tensors="tf") ``` </tf> </frameworkcontent> ## Modelado de lenguaje causal El modelado de lenguaje causal es frecuentemente utilizado para generación de texto. Esta sección te muestra cómo realizar fine-tuning a [DistilGPT2](https://huggingface.co/distilgpt2) para generar nuevo texto. ### Entrenamiento <frameworkcontent> <pt> Carga DistilGPT2 con [`AutoModelForCausalLM`]: ```py >>> from transformers import AutoModelForCausalLM, TrainingArguments, Trainer >>> model = AutoModelForCausalLM.from_pretrained("distilgpt2") ``` <Tip> Si no estás familiarizado con el proceso de realizar fine-tuning sobre un modelo con [`Trainer`], considera el tutorial básico [aquí](../training#finetune-with-trainer)! </Tip> A este punto, solo faltan tres pasos: 1. Definir tus hiperparámetros de entrenamiento en [`TrainingArguments`]. 2. Pasarle los argumentos de entrenamiento a [`Trainer`] junto con el modelo, dataset, y el data collator. 3. Realiza la llamada [`~Trainer.train`] para realizar el fine-tuning sobre tu modelo. ```py >>> training_args = TrainingArguments( ... output_dir="./results", ... evaluation_strategy="epoch", ... learning_rate=2e-5, ... weight_decay=0.01, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=lm_dataset["train"], ... eval_dataset=lm_dataset["test"], ... data_collator=data_collator, ... ) >>> trainer.train() ``` </pt> <tf> Para realizar el fine-tuning de un modelo en TensorFlow, comienza por convertir tus datasets al formato `tf.data.Dataset` con [`to_tf_dataset`](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.to_tf_dataset). Especifica los inputs y etiquetas en `columns`, ya sea para mezclar el dataset, tamaño de lote, y el data collator: ```py >>> tf_train_set = lm_dataset["train"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... dummy_labels=True, ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_test_set = lm_dataset["test"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... dummy_labels=True, ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` <Tip> Si no estás familiarizado con realizar fine-tuning de tus modelos con Keras, considera el tutorial básico [aquí](training#finetune-with-keras)! </Tip> Crea la función optimizadora, la tasa de aprendizaje, y algunos hiperparámetros de entrenamiento: ```py >>> from transformers import create_optimizer, AdamWeightDecay >>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01) ``` Carga DistilGPT2 con [`TFAutoModelForCausalLM`]: ```py >>> from transformers import TFAutoModelForCausalLM >>> model = TFAutoModelForCausalLM.from_pretrained("distilgpt2") ``` Configura el modelo para entrenamiento con [`compile`](https://keras.io/api/models/model_training_apis/#compile-method): ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) ``` Llama a [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) para realizar el fine-tuning del modelo: ```py >>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3) ``` </tf> </frameworkcontent> ## Modelado de lenguaje por enmascaramiento El modelado de lenguaje por enmascaramiento es también conocido como una tarea de rellenar la máscara, pues predice un token enmascarado dada una secuencia. Los modelos de lenguaje por enmascaramiento requieren una buena comprensión del contexto de una secuencia entera, en lugar de solo el contexto a la izquierda. Esta sección te enseña como realizar el fine-tuning de [DistilRoBERTa](https://huggingface.co/distilroberta-base) para predecir una palabra enmascarada. ### Entrenamiento <frameworkcontent> <pt> Carga DistilRoBERTa con [`AutoModelForMaskedlM`]: ```py >>> from transformers import AutoModelForMaskedLM >>> model = AutoModelForMaskedLM.from_pretrained("distilroberta-base") ``` <Tip> Si no estás familiarizado con el proceso de realizar fine-tuning sobre un modelo con [`Trainer`], considera el tutorial básico [aquí](../training#finetune-with-trainer)! </Tip> A este punto, solo faltan tres pasos: 1. Definir tus hiperparámetros de entrenamiento en [`TrainingArguments`]. 2. Pasarle los argumentos de entrenamiento a [`Trainer`] junto con el modelo, dataset, y el data collator. 3. Realiza la llamada [`~Trainer.train`] para realizar el fine-tuning de tu modelo. ```py >>> training_args = TrainingArguments( ... output_dir="./results", ... evaluation_strategy="epoch", ... learning_rate=2e-5, ... num_train_epochs=3, ... weight_decay=0.01, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=lm_dataset["train"], ... eval_dataset=lm_dataset["test"], ... data_collator=data_collator, ... ) >>> trainer.train() ``` </pt> <tf> Para realizar el fine-tuning de un modelo en TensorFlow, comienza por convertir tus datasets al formato `tf.data.Dataset` con [`to_tf_dataset`](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.to_tf_dataset). Especifica los inputs y etiquetas en `columns`, ya sea para mezclar el dataset, tamaño de lote, y el data collator: ```py >>> tf_train_set = lm_dataset["train"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... dummy_labels=True, ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_test_set = lm_dataset["test"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... dummy_labels=True, ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` <Tip> Si no estás familiarizado con realizar fine-tuning de tus modelos con Keras, considera el tutorial básico [aquí](training#finetune-with-keras)! </Tip> Crea la función optimizadora, la tasa de aprendizaje, y algunos hiperparámetros de entrenamiento: ```py >>> from transformers import create_optimizer, AdamWeightDecay >>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01) ``` Carga DistilRoBERTa con [`TFAutoModelForMaskedLM`]: ```py >>> from transformers import TFAutoModelForMaskedLM >>> model = TFAutoModelForCausalLM.from_pretrained("distilroberta-base") ``` Configura el modelo para entrenamiento con [`compile`](https://keras.io/api/models/model_training_apis/#compile-method): ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) ``` Llama a [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) para realizar el fine-tuning del modelo: ```py >>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3) ``` </tf> </frameworkcontent> <Tip> Para un ejemplo más profundo sobre cómo realizar el fine-tuning sobre un modelo de lenguaje causal, considera [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb) o [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb). </Tip>
transformers/docs/source/es/tasks/language_modeling.md/0
{ "file_path": "transformers/docs/source/es/tasks/language_modeling.md", "repo_id": "transformers", "token_count": 6370 }
234
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Allenamento distribuito con 🤗 Accelerate La parallelizzazione è emersa come strategia per allenare modelli sempre più grandi su hardware limitato e accelerarne la velocità di allenamento di diversi ordini di magnitudine. In Hugging Face, abbiamo creato la libreria [🤗 Accelerate](https://huggingface.co/docs/accelerate) per aiutarti ad allenare in modo semplice un modello 🤗 Transformers su qualsiasi tipo di configurazione distribuita, sia che si tratti di più GPU su una sola macchina o di più GPU su più macchine. In questo tutorial, imparerai come personalizzare il training loop nativo di PyTorch per consentire l'addestramento in un ambiente distribuito. ## Configurazione Inizia installando 🤗 Accelerate: ```bash pip install accelerate ``` Poi importa e crea un oggetto [`Accelerator`](https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator). `Accelerator` rileverà automaticamente il tuo setup distribuito e inizializzerà tutte le componenti necessarie per l'allenamento. Non dovrai allocare esplicitamente il tuo modello su un device. ```py >>> from accelerate import Accelerator >>> accelerator = Accelerator() ``` ## Preparati ad accelerare Il prossimo passo è quello di passare tutti gli oggetti rilevanti per l'allenamento al metodo [`prepare`](https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.prepare). Questo include i tuoi DataLoaders per l'allenamento e per la valutazione, un modello e un ottimizzatore: ```py >>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( ... train_dataloader, eval_dataloader, model, optimizer ... ) ``` ## Backward Infine, sostituisci il tipico metodo `loss.backward()` nel tuo loop di allenamento con il metodo [`backward`](https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.backward) di 🤗 Accelerate: ```py >>> for epoch in range(num_epochs): ... for batch in train_dataloader: ... outputs = model(**batch) ... loss = outputs.loss ... accelerator.backward(loss) ... optimizer.step() ... lr_scheduler.step() ... optimizer.zero_grad() ... progress_bar.update(1) ``` Come puoi vedere nel seguente codice, hai solo bisogno di aggiungere quattro righe in più di codice al tuo training loop per abilitare l'allenamento distribuito! ```diff + from accelerate import Accelerator from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler + accelerator = Accelerator() model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) optimizer = AdamW(model.parameters(), lr=3e-5) - device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") - model.to(device) + train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( + train_dataloader, eval_dataloader, model, optimizer + ) num_epochs = 3 num_training_steps = num_epochs * len(train_dataloader) lr_scheduler = get_scheduler( "linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps ) progress_bar = tqdm(range(num_training_steps)) model.train() for epoch in range(num_epochs): for batch in train_dataloader: - batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss - loss.backward() + accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) ``` ## Allenamento Una volta che hai aggiunto le righe di codice rilevanti, lancia il tuo allenamento in uno script o in un notebook come Colaboratory. ### Allenamento con uno script Se stai eseguendo il tuo allenamento da uno script, esegui il comando seguente per creare e salvare un file di configurazione: ```bash accelerate config ``` Poi lancia il tuo allenamento con: ```bash accelerate launch train.py ``` ### Allenamento con un notebook La libreria 🤗 Accelerate può anche essere utilizzata in un notebook se stai pianificando di utilizzare le TPU di Colaboratory. Inserisci tutto il codice legato all'allenamento in una funzione, e passala al `notebook_launcher`: ```py >>> from accelerate import notebook_launcher >>> notebook_launcher(training_function) ``` Per maggiori informazioni relative a 🤗 Accelerate e le sue numerose funzionalità, fai riferimento alla [documentazione](https://huggingface.co/docs/accelerate).
transformers/docs/source/it/accelerate.md/0
{ "file_path": "transformers/docs/source/it/accelerate.md", "repo_id": "transformers", "token_count": 1891 }
235
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Inferenza Efficiente su CPU Questa guida si concentra sull'inferenza di modelli di grandi dimensioni in modo efficiente sulla CPU. ## `BetterTransformer` per inferenza più rapida Abbiamo integrato di recente `BetterTransformer` per fare inferenza più rapidamente con modelli per testi, immagini e audio. Visualizza la documentazione sull'integrazione [qui](https://huggingface.co/docs/optimum/bettertransformer/overview) per maggiori dettagli. ## PyTorch JIT-mode (TorchScript) TorchScript è un modo di creare modelli serializzabili e ottimizzabili da codice PyTorch. Ogni programmma TorchScript può esere salvato da un processo Python e caricato in un processo dove non ci sono dipendenze Python. Comparandolo con l'eager mode di default, jit mode in PyTorch normalmente fornisce prestazioni migliori per l'inferenza del modello da parte di metodologie di ottimizzazione come la operator fusion. Per una prima introduzione a TorchScript, vedi la Introduction to [PyTorch TorchScript tutorial](https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html#tracing-modules). ### IPEX Graph Optimization con JIT-mode Intel® Extension per PyTorch fornnisce ulteriori ottimizzazioni in jit mode per i modelli della serie Transformers. Consigliamo vivamente agli utenti di usufruire dei vantaggi di Intel® Extension per PyTorch con jit mode. Alcuni operator patterns usati fequentemente dai modelli Transformers models sono già supportati in Intel® Extension per PyTorch con jit mode fusions. Questi fusion patterns come Multi-head-attention fusion, Concat Linear, Linear+Add, Linear+Gelu, Add+LayerNorm fusion and etc. sono abilitati e hanno buone performance. I benefici della fusion è fornito agli utenti in modo trasparente. In base alle analisi, il ~70% dei problemi più popolari in NLP question-answering, text-classification, and token-classification possono avere benefici sulle performance grazie ai fusion patterns sia per Float32 precision che per BFloat16 Mixed precision. Vedi maggiori informazioni per [IPEX Graph Optimization](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/features/graph_optimization.html). #### Installazione di IPEX I rilasci di IPEX seguono PyTorch, verifica i vari approcci per [IPEX installation](https://intel.github.io/intel-extension-for-pytorch/). ### Utilizzo del JIT-mode Per abilitare JIT-mode in Trainer per evaluation e prediction, devi aggiungere `jit_mode_eval` negli argomenti di Trainer. <Tip warning={true}> per PyTorch >= 1.14.0. JIT-mode potrebe giovare a qualsiasi modello di prediction e evaluaion visto che il dict input è supportato in jit.trace per PyTorch < 1.14.0. JIT-mode potrebbe giovare ai modelli il cui ordine dei parametri corrisponde all'ordine delle tuple in ingresso in jit.trace, come i modelli per question-answering. Nel caso in cui l'ordine dei parametri seguenti non corrisponda all'ordine delle tuple in ingresso in jit.trace, come nei modelli di text-classification, jit.trace fallirà e lo cattureremo con una eccezione al fine di renderlo un fallback. Il logging è usato per notificare gli utenti. </Tip> Trovi un esempo con caso d'uso in [Transformers question-answering](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) - Inference using jit mode on CPU: <pre>python run_qa.py \ --model_name_or_path csarron/bert-base-uncased-squad-v1 \ --dataset_name squad \ --do_eval \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/ \ --no_cuda \ <b>--jit_mode_eval </b></pre> - Inference with IPEX using jit mode on CPU: <pre>python run_qa.py \ --model_name_or_path csarron/bert-base-uncased-squad-v1 \ --dataset_name squad \ --do_eval \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/ \ --no_cuda \ <b>--use_ipex \</b> <b>--jit_mode_eval</b></pre>
transformers/docs/source/it/perf_infer_cpu.md/0
{ "file_path": "transformers/docs/source/it/perf_infer_cpu.md", "repo_id": "transformers", "token_count": 1497 }
236
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 🤗 Accelerate を用いた分散学習 モデルが大きくなるにつれて、限られたハードウェアでより大きなモデルを訓練し、訓練速度を大幅に上昇させるための方法として並列処理が浮上してきました。1台のマシンに複数のGPUがあっても、複数のマシンにまたがる複数のGPUがあっても、あらゆるタイプの分散処理セットアップ上でユーザーが簡単に 🤗 Transformers モデルを訓練できるように、 Hugging Face では [🤗 Accelerate](https://huggingface.co/docs/accelerate) ライブラリを作成しました。このチュートリアルでは、PyTorch の訓練ループをカスタマイズして、分散処理環境での訓練を可能にする方法について学びます。 ## セットアップ はじめに 🤗 Accelerate をインストールしましょう: ```bash pip install accelerate ``` そしたらインポートして [`~accelerate.Accelerator`] オブジェクトを作成しましょう。[`~accelerate.Accelerator`] は分散処理セットアップを自動的に検出し、訓練のために必要な全てのコンポーネントを初期化します。モデルをデバイスに明示的に配置する必要はありません。 ```py >>> from accelerate import Accelerator >>> accelerator = Accelerator() ``` ## Accelerate する準備をしましょう 次に、関連する全ての訓練オブジェクトを [`~accelerate.Accelerator.prepare`] メソッドに渡します。これには、訓練と評価それぞれのDataloader、モデル、optimizer が含まれます: ```py >>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( ... train_dataloader, eval_dataloader, model, optimizer ... ) ``` ## Backward 最後に訓練ループ内の `loss.backward()` を 🤗 Accelerate の [`~accelerate.Accelerator.backward`] メソッドで置き換えます: ```py >>> for epoch in range(num_epochs): ... for batch in train_dataloader: ... outputs = model(**batch) ... loss = outputs.loss ... accelerator.backward(loss) ... optimizer.step() ... lr_scheduler.step() ... optimizer.zero_grad() ... progress_bar.update(1) ``` 以下のコードで確認できる通り、訓練ループに4行のコードを追加するだけで分散学習が可能です! ```diff + from accelerate import Accelerator from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler + accelerator = Accelerator() model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) optimizer = AdamW(model.parameters(), lr=3e-5) - device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") - model.to(device) + train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( + train_dataloader, eval_dataloader, model, optimizer + ) num_epochs = 3 num_training_steps = num_epochs * len(train_dataloader) lr_scheduler = get_scheduler( "linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps ) progress_bar = tqdm(range(num_training_steps)) model.train() for epoch in range(num_epochs): for batch in train_dataloader: - batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss - loss.backward() + accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) ``` ## 訓練する 関連するコードを追加したら、スクリプトまたは Colaboratory などのノートブックで訓練を開始します。 ### スクリプトで訓練する スクリプトから訓練をしている場合は、設定ファイルを作成・保存するために以下のコマンドを実行してください: ```bash accelerate config ``` そして次のようにして訓練を開始します: ```bash accelerate launch train.py ``` ### ノートブックで訓練する Colaboratory の TPU の利用をお考えの場合、🤗 Accelerate はノートブック上で実行することもできます。訓練に必要な全てのコードを関数に含め、[`~accelerate.notebook_launcher`] に渡してください: ```py >>> from accelerate import notebook_launcher >>> notebook_launcher(training_function) ``` 🤗 Accelerate と豊富な機能についてもっと知りたい方は[ドキュメント](https://huggingface.co/docs/accelerate)を参照してください。
transformers/docs/source/ja/accelerate.md/0
{ "file_path": "transformers/docs/source/ja/accelerate.md", "repo_id": "transformers", "token_count": 2185 }
237
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Hyperparameter Search using Trainer API 🤗 Transformersは、🤗 Transformersモデルのトレーニングを最適化する[`Trainer`]クラスを提供し、独自のトレーニングループを手動で記述せずにトレーニングを開始するのが簡単になります。[`Trainer`]はハイパーパラメーター検索のAPIも提供しています。このドキュメントでは、それを例示します。 ## Hyperparameter Search backend [`Trainer`]は現在、4つのハイパーパラメーター検索バックエンドをサポートしています: [optuna](https://optuna.org/)、[sigopt](https://sigopt.com/)、[raytune](https://docs.ray.io/en/latest/tune/index.html)、および[wandb](https://wandb.ai/site/sweeps)。 これらを使用する前に、ハイパーパラメーター検索バックエンドをインストールする必要があります。 ```bash pip install optuna/sigopt/wandb/ray[tune] ``` ## How to enable Hyperparameter search in example ハイパーパラメータの検索スペースを定義し、異なるバックエンドには異なるフォーマットが必要です。 Sigoptの場合、sigopt [object_parameter](https://docs.sigopt.com/ai-module-api-references/api_reference/objects/object_parameter) を参照してください。それは以下のようなものです: ```py >>> def sigopt_hp_space(trial): ... return [ ... {"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"}, ... { ... "categorical_values": ["16", "32", "64", "128"], ... "name": "per_device_train_batch_size", ... "type": "categorical", ... }, ... ] ``` Optunaに関しては、[object_parameter](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html#sphx-glr-tutorial-10-key-features-002-configurations-py)をご覧ください。以下のようになります: ```py >>> def optuna_hp_space(trial): ... return { ... "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True), ... "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]), ... } ``` Optunaは、多目的のハイパーパラメータ最適化(HPO)を提供しています。 `hyperparameter_search` で `direction` を渡し、複数の目的関数値を返すための独自の `compute_objective` を定義することができます。 Pareto Front(`List[BestRun]`)は `hyperparameter_search` で返され、[test_trainer](https://github.com/huggingface/transformers/blob/main/tests/trainer/test_trainer.py) のテストケース `TrainerHyperParameterMultiObjectOptunaIntegrationTest` を参照する必要があります。これは以下のようになります。 ```py >>> best_trials = trainer.hyperparameter_search( ... direction=["minimize", "maximize"], ... backend="optuna", ... hp_space=optuna_hp_space, ... n_trials=20, ... compute_objective=compute_objective, ... ) ``` Ray Tuneに関して、[object_parameter](https://docs.ray.io/en/latest/tune/api/search_space.html)を参照してください。以下のようになります: ```py >>> def ray_hp_space(trial): ... return { ... "learning_rate": tune.loguniform(1e-6, 1e-4), ... "per_device_train_batch_size": tune.choice([16, 32, 64, 128]), ... } ``` Wandbについては、[object_parameter](https://docs.wandb.ai/guides/sweeps/configuration)をご覧ください。これは以下のようになります: ```py >>> def wandb_hp_space(trial): ... return { ... "method": "random", ... "metric": {"name": "objective", "goal": "minimize"}, ... "parameters": { ... "learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4}, ... "per_device_train_batch_size": {"values": [16, 32, 64, 128]}, ... }, ... } ``` `model_init` 関数を定義し、それを [`Trainer`] に渡す例を示します: ```py >>> def model_init(trial): ... return AutoModelForSequenceClassification.from_pretrained( ... model_args.model_name_or_path, ... from_tf=bool(".ckpt" in model_args.model_name_or_path), ... config=config, ... cache_dir=model_args.cache_dir, ... revision=model_args.model_revision, ... token=True if model_args.use_auth_token else None, ... ) ``` [`Trainer`] を `model_init` 関数、トレーニング引数、トレーニングデータセット、テストデータセット、および評価関数と共に作成してください: ```py >>> trainer = Trainer( ... model=None, ... args=training_args, ... train_dataset=small_train_dataset, ... eval_dataset=small_eval_dataset, ... compute_metrics=compute_metrics, ... tokenizer=tokenizer, ... model_init=model_init, ... data_collator=data_collator, ... ) ``` ハイパーパラメーターの探索を呼び出し、最良のトライアル パラメーターを取得します。バックエンドは `"optuna"` / `"sigopt"` / `"wandb"` / `"ray"` である可能性があります。方向は `"minimize"` または `"maximize"` であり、目標をより大きくするか小さくするかを示します。 `compute_objective` 関数を独自に定義することもできます。定義されていない場合、デフォルトの `compute_objective` が呼び出され、F1などの評価メトリックの合計が目標値として返されます。 ```py >>> best_trial = trainer.hyperparameter_search( ... direction="maximize", ... backend="optuna", ... hp_space=optuna_hp_space, ... n_trials=20, ... compute_objective=compute_objective, ... ) ``` ## Hyperparameter search For DDP finetune 現在、DDP(Distributed Data Parallel)のためのハイパーパラメーター検索は、Optuna と SigOpt に対して有効になっています。ランクゼロプロセスのみが検索トライアルを生成し、他のランクに引数を渡します。
transformers/docs/source/ja/hpo_train.md/0
{ "file_path": "transformers/docs/source/ja/hpo_train.md", "repo_id": "transformers", "token_count": 2841 }
238
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # ALBERT <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=albert"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-albert-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/albert-base-v2"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## 概要 ALBERTモデルは、「[ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942)」という論文でZhenzhong Lan、Mingda Chen、Sebastian Goodman、Kevin Gimpel、Piyush Sharma、Radu Soricutによって提案されました。BERTのメモリ消費を減らしトレーニングを高速化するためのパラメータ削減技術を2つ示しています: - 埋め込み行列を2つの小さな行列に分割する。 - グループ間で分割された繰り返し層を使用する。 論文の要旨は以下の通りです: *自然言語表現の事前学習時にモデルのサイズを増やすと、下流タスクのパフォーマンスが向上することがしばしばあります。しかし、ある時点でさらなるモデルの増大は、GPU/TPUのメモリ制限、長い訓練時間、予期せぬモデルの劣化といった問題のために困難になります。これらの問題に対処するために、我々はBERTのメモリ消費を低減し、訓練速度を高めるための2つのパラメータ削減技術を提案します。包括的な実証的証拠は、我々の提案方法が元のBERTに比べてはるかによくスケールするモデルを生み出すことを示しています。また、文間の一貫性をモデリングに焦点を当てた自己教師あり損失を使用し、複数の文が含まれる下流タスクに一貫して助けとなることを示します。その結果、我々の最良のモデルは、BERT-largeに比べてパラメータが少ないにもかかわらず、GLUE、RACE、SQuADベンチマークで新たな最先端の結果を確立します。* このモデルは[lysandre](https://huggingface.co/lysandre)により提供されました。このモデルのjaxバージョンは[kamalkraj](https://huggingface.co/kamalkraj)により提供されました。オリジナルのコードは[こちら](https://github.com/google-research/ALBERT)で見ることができます。 ## 使用上のヒント - ALBERTは絶対位置埋め込みを使用するモデルなので、通常、入力を左側ではなく右側にパディングすることが推奨されます。 - ALBERTは繰り返し層を使用するためメモリ使用量は小さくなりますが、同じ数の(繰り返し)層を反復しなければならないため、隠れ層の数が同じであればBERTのようなアーキテクチャと同様の計算コストがかかります。 - 埋め込みサイズEは隠れサイズHと異なりますが、これは埋め込みが文脈に依存しない(一つの埋め込みベクトルが一つのトークンを表す)のに対し、隠れ状態は文脈に依存する(1つの隠れ状態がトークン系列を表す)ため、H >> Eとすることがより論理的です。また、埋め込み行列のサイズはV x Eと大きいです(Vは語彙サイズ)。E < Hであれば、パラメータは少なくなります。 - 層はパラメータを共有するグループに分割されています(メモリ節約のため)。次文予測(NSP: Next Sentence Prediction)は文の順序予測に置き換えられます:入力では、2つの文AとB(それらは連続している)があり、Aに続いてBを与えるか、Bに続いてAを与えます。モデルはそれらが入れ替わっているかどうかを予測する必要があります。 ## 参考資料 - [テキスト分類タスクガイド](../tasks/sequence_classification) - [トークン分類タスクガイド](../tasks/token_classification) - [質問応答タスクガイド](../tasks/question_answering) - [マスクされた言語モデルタスクガイド](../tasks/masked_language_modeling) - [多肢選択タスクガイド](../tasks/multiple_choice) ## AlbertConfig [[autodoc]] AlbertConfig ## AlbertTokenizer [[autodoc]] AlbertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## AlbertTokenizerFast [[autodoc]] AlbertTokenizerFast ## Albert specific outputs [[autodoc]] models.albert.modeling_albert.AlbertForPreTrainingOutput [[autodoc]] models.albert.modeling_tf_albert.TFAlbertForPreTrainingOutput <frameworkcontent> <pt> ## AlbertModel [[autodoc]] AlbertModel - forward ## AlbertForPreTraining [[autodoc]] AlbertForPreTraining - forward ## AlbertForMaskedLM [[autodoc]] AlbertForMaskedLM - forward ## AlbertForSequenceClassification [[autodoc]] AlbertForSequenceClassification - forward ## AlbertForMultipleChoice [[autodoc]] AlbertForMultipleChoice ## AlbertForTokenClassification [[autodoc]] AlbertForTokenClassification - forward ## AlbertForQuestionAnswering [[autodoc]] AlbertForQuestionAnswering - forward </pt> <tf> ## TFAlbertModel [[autodoc]] TFAlbertModel - call ## TFAlbertForPreTraining [[autodoc]] TFAlbertForPreTraining - call ## TFAlbertForMaskedLM [[autodoc]] TFAlbertForMaskedLM - call ## TFAlbertForSequenceClassification [[autodoc]] TFAlbertForSequenceClassification - call ## TFAlbertForMultipleChoice [[autodoc]] TFAlbertForMultipleChoice - call ## TFAlbertForTokenClassification [[autodoc]] TFAlbertForTokenClassification - call ## TFAlbertForQuestionAnswering [[autodoc]] TFAlbertForQuestionAnswering - call </tf> <jax> ## FlaxAlbertModel [[autodoc]] FlaxAlbertModel - __call__ ## FlaxAlbertForPreTraining [[autodoc]] FlaxAlbertForPreTraining - __call__ ## FlaxAlbertForMaskedLM [[autodoc]] FlaxAlbertForMaskedLM - __call__ ## FlaxAlbertForSequenceClassification [[autodoc]] FlaxAlbertForSequenceClassification - __call__ ## FlaxAlbertForMultipleChoice [[autodoc]] FlaxAlbertForMultipleChoice - __call__ ## FlaxAlbertForTokenClassification [[autodoc]] FlaxAlbertForTokenClassification - __call__ ## FlaxAlbertForQuestionAnswering [[autodoc]] FlaxAlbertForQuestionAnswering - __call__ </jax> </frameworkcontent>
transformers/docs/source/ja/model_doc/albert.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/albert.md", "repo_id": "transformers", "token_count": 2960 }
239
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BigBirdPegasus ## Overview BigBird モデルは、[Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) で提案されました。 ザヒール、マンジルとグルガネシュ、グルとダベイ、クマール・アヴィナヴァとエインズリー、ジョシュアとアルベルティ、クリスとオンタノン、 サンティアゴとファム、フィリップとラブラ、アニルードとワン、キーファンとヤン、リーなど。 BigBird は注目度が低い BERT などの Transformer ベースのモデルをさらに長いシーケンスに拡張する、Transformer ベースのモデル。まばらに加えて アテンションと同様に、BigBird は入力シーケンスにランダム アテンションだけでなくグローバル アテンションも適用します。理論的には、 まばらで全体的でランダムな注意を適用すると、完全な注意に近づくことが示されていますが、 長いシーケンスでは計算効率が大幅に向上します。より長いコンテキストを処理できる機能の結果として、 BigBird は、質問応答や BERT または RoBERTa と比較した要約。 論文の要約は次のとおりです。 *BERT などのトランスフォーマーベースのモデルは、NLP で最も成功した深層学習モデルの 1 つです。 残念ながら、それらの中核的な制限の 1 つは、シーケンスに対する二次依存性 (主にメモリに関する) です。 完全な注意メカニズムによる長さです。これを解決するために、BigBird は、まばらな注意メカニズムを提案します。 この二次依存関係を線形に削減します。 BigBird がシーケンス関数の汎用近似器であることを示します。 チューリングは完全であるため、二次完全注意モデルのこれらの特性が保存されます。途中、私たちの 理論分析により、O(1) 個のグローバル トークン (CLS など) を持つ利点の一部が明らかになり、 スパース注意メカニズムの一部としてのシーケンス。提案されたスパース アテンションは、次の長さのシーケンスを処理できます。 同様のハードウェアを使用して以前に可能であったものの 8 倍。より長いコンテキストを処理できる機能の結果として、 BigBird は、質問応答や要約などのさまざまな NLP タスクのパフォーマンスを大幅に向上させます。私達も ゲノミクスデータへの新しいアプリケーションを提案します。* ## Usage tips - BigBird の注意がどのように機能するかについての詳細な説明については、[このブログ投稿](https://huggingface.co/blog/big-bird) を参照してください。 - BigBird には、**original_full** と **block_sparse** の 2 つの実装が付属しています。シーケンス長が 1024 未満の場合、次を使用します。 **block_sparse** を使用してもメリットがないため、**original_full** を使用することをお勧めします。 - コードは現在、3 ブロックと 2 グローバル ブロックのウィンドウ サイズを使用しています。 - シーケンスの長さはブロック サイズで割り切れる必要があります。 - 現在の実装では **ITC** のみがサポートされています。 - 現在の実装では **num_random_blocks = 0** はサポートされていません。 - BigBirdPegasus は [PegasusTokenizer](https://github.com/huggingface/transformers/blob/main/src/transformers/models/pegasus/tokenization_pegasus.py) を使用します。 - BigBird は絶対位置埋め込みを備えたモデルであるため、通常は入力を右側にパディングすることをお勧めします。 左。 元のコードは [こちら](https://github.com/google-research/bigbird) にあります。 ## ドキュメント リソース - [テキスト分類タスクガイド](../tasks/sequence_classification) - [質問回答タスク ガイド](../tasks/question_answering) - [因果言語モデリング タスク ガイド](../tasks/language_modeling) - [翻訳タスクガイド](../tasks/translation) - [要約タスクガイド](../tasks/summarization) ## BigBirdPegasusConfig [[autodoc]] BigBirdPegasusConfig - all ## BigBirdPegasusModel [[autodoc]] BigBirdPegasusModel - forward ## BigBirdPegasusForConditionalGeneration [[autodoc]] BigBirdPegasusForConditionalGeneration - forward ## BigBirdPegasusForSequenceClassification [[autodoc]] BigBirdPegasusForSequenceClassification - forward ## BigBirdPegasusForQuestionAnswering [[autodoc]] BigBirdPegasusForQuestionAnswering - forward ## BigBirdPegasusForCausalLM [[autodoc]] BigBirdPegasusForCausalLM - forward
transformers/docs/source/ja/model_doc/bigbird_pegasus.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/bigbird_pegasus.md", "repo_id": "transformers", "token_count": 2264 }
240
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # CLIP ## Overview CLIP モデルは、Alec Radford、Jong Wook Kim、Chris Hallacy、Aditya Ramesh、Gabriel Goh Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) で提案されました。 サンディニ・アガルワル、ギリッシュ・サストリー、アマンダ・アスケル、パメラ・ミシュキン、ジャック・クラーク、グレッチェン・クルーガー、イリヤ・サツケヴァー。クリップ (Contrastive Language-Image Pre-Training) は、さまざまな (画像、テキスト) ペアでトレーニングされたニューラル ネットワークです。かもね 直接最適化することなく、与えられた画像から最も関連性の高いテキスト スニペットを予測するように自然言語で指示されます。 GPT-2 および 3 のゼロショット機能と同様に、タスクに対して。 論文の要約は次のとおりです。 *最先端のコンピューター ビジョン システムは、あらかじめ定められたオブジェクト カテゴリの固定セットを予測するようにトレーニングされています。これ 制限された形式の監視では、指定するために追加のラベル付きデータが必要となるため、一般性と使いやすさが制限されます。 その他の視覚的なコンセプト。画像に関する生のテキストから直接学習することは、 より広範な監督源。どのキャプションが表示されるかを予測するという単純な事前トレーニング タスクが有効であることを示します。 400 のデータセットで SOTA 画像表現を最初から学習するための効率的かつスケーラブルな方法はどの画像ですか インターネットから収集された数百万の(画像、テキスト)ペア。事前トレーニング後、自然言語を使用して参照します。 視覚的な概念を学習し(または新しい概念を説明し)、下流のタスクへのモデルのゼロショット転送を可能にします。私たちは勉強します 30 を超えるさまざまな既存のコンピューター ビジョン データセットでタスクをまたがってベンチマークを行うことにより、このアプローチのパフォーマンスを評価します。 OCR、ビデオ内のアクション認識、地理的位置特定、およびさまざまな種類のきめ細かいオブジェクト分類など。の モデルはほとんどのタスクに簡単に移行でき、多くの場合、必要がなくても完全に監視されたベースラインと競合します。 データセット固有のトレーニングに適しています。たとえば、ImageNet ゼロショットではオリジナルの ResNet-50 の精度と一致します。 トレーニングに使用された 128 万のトレーニング サンプルを使用する必要はありません。コードをリリースし、事前トレーニング済み モデルの重みはこの https URL で確認できます。* このモデルは [valhalla](https://huggingface.co/valhalla) によって提供されました。元のコードは [ここ](https://github.com/openai/CLIP) にあります。 ## Usage tips and example CLIP は、マルチモーダルなビジョンおよび言語モデルです。画像とテキストの類似性やゼロショット画像に使用できます。 分類。 CLIP は、ViT のようなトランスフォーマーを使用して視覚的特徴を取得し、因果言語モデルを使用してテキストを取得します 特徴。次に、テキストと視覚の両方の特徴が、同じ次元の潜在空間に投影されます。ドット 投影された画像とテキストの特徴間の積が同様のスコアとして使用されます。 画像を Transformer エンコーダに供給するために、各画像は固定サイズの重複しないパッチのシーケンスに分割されます。 これらは線形に埋め込まれます。 [CLS] トークンは、イメージ全体の表現として機能するために追加されます。作家たち また、絶対位置埋め込みを追加し、結果として得られるベクトルのシーケンスを標準の Transformer エンコーダに供給します。 [`CLIPImageProcessor`] を使用して、モデルの画像のサイズ変更 (または再スケール) および正規化を行うことができます。 [`CLIPTokenizer`] はテキストのエンコードに使用されます。 [`CLIPProcessor`] はラップします [`CLIPImageProcessor`] と [`CLIPTokenizer`] を両方の単一インスタンスに統合 テキストをエンコードして画像を準備します。次の例は、次のメソッドを使用して画像とテキストの類似性スコアを取得する方法を示しています。 [`CLIPProcessor`] と [`CLIPModel`]。 ```python >>> from PIL import Image >>> import requests >>> from transformers import CLIPProcessor, CLIPModel >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ``` ## Resources CLIP を使い始めるのに役立つ公式 Hugging Face およびコミュニティ (🌎 で示されている) リソースのリスト。 - [リモート センシング (衛星) 画像とキャプションを使用した CLIP の微調整](https://huggingface.co/blog/fine-tune-clip-rsicd)、[RSICD データセット] を使用して CLIP を微調整する方法に関するブログ投稿(https://github.com/201528014227051/RSICD_optimal) と、データ拡張によるパフォーマンスの変化の比較。 - この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/contrastive-image-text) は、プレ- [COCO データセット](https://cocodataset.org/#home) を使用してトレーニングされたビジョンおよびテキスト エンコーダー。 <PipelineTag pipeline="image-to-text"/> - 画像キャプションのビーム検索による推論に事前トレーニング済み CLIP を使用する方法に関する [ノートブック](https://colab.research.google.com/drive/1tuoAC5F4sC7qid56Z0ap-stR3rwdk0ZV?usp=sharing)。 🌎 **画像検索** - 事前トレーニングされた CLIP を使用した画像検索と MRR (平均相互ランク) スコアの計算に関する [ノートブック](https://colab.research.google.com/drive/1bLVwVKpAndpEDHqjzxVPr_9nGrSbuOQd?usp=sharing)。 🌎 - 画像の取得と類似性スコアの表示に関する [ノートブック](https://colab.research.google.com/github/deep-diver/image_search_with_natural_language/blob/main/notebooks/Image_Search_CLIP.ipynb)。 🌎 - 多言語 CLIP を使用して画像とテキストを同じベクトル空間にマッピングする方法に関する [ノートブック](https://colab.research.google.com/drive/1xO-wC_m_GNzgjIBQ4a4znvQkvDoZJvH4?usp=sharing)。 🌎 - を使用してセマンティック イメージ検索で CLIP を実行する方法に関する [ノートブック](https://colab.research.google.com/github/vivien000/clip-demo/blob/master/clip.ipynb#scrollTo=uzdFhRGqiWkR) [Unsplash](https://unsplash.com) および [TMDB](https://www.themoviedb.org/) データセット。 🌎 **説明可能性** - 入力トークンと画像セグメントの類似性を視覚化する方法に関する [ノートブック](https://colab.research.google.com/github/hila-chefer/Transformer-MM-Explainability/blob/main/CLIP_explainability.ipynb)。 🌎 ここに含めるリソースの送信に興味がある場合は、お気軽にプル リクエストを開いてください。審査させていただきます。 リソースは、既存のリソースを複製するのではなく、何か新しいものを示すことが理想的です。 ## CLIPConfig [[autodoc]] CLIPConfig - from_text_vision_configs ## CLIPTextConfig [[autodoc]] CLIPTextConfig ## CLIPVisionConfig [[autodoc]] CLIPVisionConfig ## CLIPTokenizer [[autodoc]] CLIPTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## CLIPTokenizerFast [[autodoc]] CLIPTokenizerFast ## CLIPImageProcessor [[autodoc]] CLIPImageProcessor - preprocess ## CLIPFeatureExtractor [[autodoc]] CLIPFeatureExtractor ## CLIPProcessor [[autodoc]] CLIPProcessor <frameworkcontent> <pt> ## CLIPModel [[autodoc]] CLIPModel - forward - get_text_features - get_image_features ## CLIPTextModel [[autodoc]] CLIPTextModel - forward ## CLIPTextModelWithProjection [[autodoc]] CLIPTextModelWithProjection - forward ## CLIPVisionModelWithProjection [[autodoc]] CLIPVisionModelWithProjection - forward ## CLIPVisionModel [[autodoc]] CLIPVisionModel - forward </pt> <tf> ## TFCLIPModel [[autodoc]] TFCLIPModel - call - get_text_features - get_image_features ## TFCLIPTextModel [[autodoc]] TFCLIPTextModel - call ## TFCLIPVisionModel [[autodoc]] TFCLIPVisionModel - call </tf> <jax> ## FlaxCLIPModel [[autodoc]] FlaxCLIPModel - __call__ - get_text_features - get_image_features ## FlaxCLIPTextModel [[autodoc]] FlaxCLIPTextModel - __call__ ## FlaxCLIPTextModelWithProjection [[autodoc]] FlaxCLIPTextModelWithProjection - __call__ ## FlaxCLIPVisionModel [[autodoc]] FlaxCLIPVisionModel - __call__ </jax> </frameworkcontent>
transformers/docs/source/ja/model_doc/clip.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/clip.md", "repo_id": "transformers", "token_count": 4545 }
241
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Decision Transformer ## Overview Decision Transformer モデルは、[Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) で提案されました。 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch. 論文の要約は次のとおりです。 *強化学習(RL)をシーケンスモデリング問題として抽象化するフレームワークを紹介します。 これにより、Transformer アーキテクチャのシンプルさとスケーラビリティ、および関連する進歩を活用できるようになります。 GPT-x や BERT などの言語モデリングで。特に、Decision Transformer というアーキテクチャを紹介します。 RL の問題を条件付きシーケンス モデリングとして投げかけます。値関数に適合する以前の RL アプローチとは異なり、 ポリシー勾配を計算すると、Decision Transformer は因果的にマスクされたアルゴリズムを利用して最適なアクションを出力するだけです。 変成器。望ましいリターン (報酬)、過去の状態、アクションに基づいて自己回帰モデルを条件付けすることにより、 Decision Transformer モデルは、望ましいリターンを達成する将来のアクションを生成できます。そのシンプルさにも関わらず、 Decision Transformer は、最先端のモデルフリーのオフライン RL ベースラインのパフォーマンスと同等、またはそれを超えています。 Atari、OpenAI Gym、Key-to-Door タスク* このバージョンのモデルは、状態がベクトルであるタスク用です。 このモデルは、[edbeeching](https://huggingface.co/edbeeching) によって提供されました。元のコードは [ここ](https://github.com/kzl/decion-transformer) にあります。 ## DecisionTransformerConfig [[autodoc]] DecisionTransformerConfig ## DecisionTransformerGPT2Model [[autodoc]] DecisionTransformerGPT2Model - forward ## DecisionTransformerModel [[autodoc]] DecisionTransformerModel - forward
transformers/docs/source/ja/model_doc/decision_transformer.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/decision_transformer.md", "repo_id": "transformers", "token_count": 1073 }
242
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Efficient Inference on a Multiple GPUs この文書には、複数のGPUで効率的に推論を行う方法に関する情報が含まれています。 <Tip> 注意: 複数のGPUセットアップは、[単一のGPUセクション](./perf_infer_gpu_one)で説明されているほとんどの戦略を使用できます。ただし、より良い使用法のために使用できる簡単なテクニックについても認識しておく必要があります。 </Tip> ## Flash Attention 2 Flash Attention 2の統合は、複数のGPUセットアップでも機能します。詳細については、[単一のGPUセクション](./perf_infer_gpu_one#Flash-Attention-2)の適切なセクションをご覧ください。 ## BetterTransformer [BetterTransformer](https://huggingface.co/docs/optimum/bettertransformer/overview)は、🤗 TransformersモデルをPyTorchネイティブの高速実行パスを使用するように変換し、その下でFlash Attentionなどの最適化されたカーネルを呼び出します。 BetterTransformerは、テキスト、画像、音声モデルの単一GPUおよび複数GPUでの高速推論もサポートしています。 <Tip> Flash Attentionは、fp16またはbf16 dtypeを使用しているモデルにのみ使用できます。BetterTransformerを使用する前に、モデルを適切なdtypeにキャストしてください。 </Tip> ### Decoder models テキストモデル、特にデコーダーベースのモデル(GPT、T5、Llamaなど)の場合、BetterTransformer APIはすべての注意操作を[`torch.nn.functional.scaled_dot_product_attention`オペレーター](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention)(SDPA)を使用するように変換します。これはPyTorch 2.0以降でのみ使用可能です。 モデルをBetterTransformerに変換するには: ```python from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m") # convert the model to BetterTransformer model.to_bettertransformer() # Use it for training or inference ``` SDPAは、ハードウェアや問題のサイズなどの特定の設定で[Flash Attention](https://arxiv.org/abs/2205.14135)カーネルを呼び出すこともできます。Flash Attentionを有効にするか、特定の設定(ハードウェア、問題のサイズ)で利用可能かを確認するには、[`torch.backends.cuda.sdp_kernel`](https://pytorch.org/docs/master/backends.html#torch.backends.cuda.sdp_kernel)をコンテキストマネージャとして使用します。 ```diff import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m").to("cuda") # convert the model to BetterTransformer model.to_bettertransformer() input_text = "Hello my dog is cute and" inputs = tokenizer(input_text, return_tensors="pt").to("cuda") + with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` もしトレースバックで次のようなエラーメッセージが表示された場合: ```bash RuntimeError: No available kernel. Aborting execution. ``` 当日、Flash Attentionのカバレッジが広範囲である可能性があるPyTorch Nightlyバージョンを試すようにお勧めします。 ```bash pip3 install -U --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu118 ``` [このブログ投稿](https://pytorch.org/blog/out-of-the-box-acceleration/)をチェックして、BetterTransformer + SDPA APIで可能なことについて詳しく学びましょう。 ### Encoder Models 推論中のエンコーダーモデルでは、BetterTransformerはエンコーダーレイヤーのforward呼び出しを、エンコーダーレイヤーの[`torch.nn.TransformerEncoderLayer`](https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html)の相当するものにディスパッチします。これにより、エンコーダーレイヤーの高速実装が実行されます。 `torch.nn.TransformerEncoderLayer`の高速実装はトレーニングをサポートしていないため、代わりに`torch.nn.functional.scaled_dot_product_attention`にディスパッチされます。これにより、ネストされたテンソルを活用しないFlash AttentionまたはMemory-Efficient Attentionの融合カーネルを使用できます。 BetterTransformerのパフォーマンスの詳細については、この[ブログ投稿](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2)をご覧いただけます。また、エンコーダーモデル用のBetterTransformerについては、この[ブログ](https://pytorch.org/blog/a-better-transformer-for-fast-transformer-encoder-inference/)で詳しく学ぶことができます。 ## Advanced usage: mixing FP4 (or Int8) and BetterTransformer モデルの最良のパフォーマンスを得るために、上記で説明した異なる方法を組み合わせることができます。例えば、FP4ミックスプレシジョン推論+Flash Attentionを使用したBetterTransformerを組み合わせることができます。 ```py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16 ) tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", quantization_config=quantization_config) input_text = "Hello my dog is cute and" inputs = tokenizer(input_text, return_tensors="pt").to("cuda") with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
transformers/docs/source/ja/perf_infer_gpu_many.md/0
{ "file_path": "transformers/docs/source/ja/perf_infer_gpu_many.md", "repo_id": "transformers", "token_count": 2561 }
243
<!--- Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Checks on a Pull Request 🤗 Transformersリポジトリでプルリクエストを開くと、追加しているパッチが既存のものを壊していないことを確認するために、かなりの数のチェックが実行されます。これらのチェックには、次の4つのタイプがあります: - 通常のテスト - ドキュメンテーションのビルド - コードとドキュメンテーションのスタイル - リポジトリ全体の一貫性 このドキュメントでは、これらのさまざまなチェックとその背後にある理由、そしてそれらのいずれかがあなたのプルリクエストで失敗した場合のローカルでのデバッグ方法について説明します。 なお、理想的には、開発者用のインストールが必要です: ```bash pip install transformers[dev] ``` または編集可能なインストールの場合: ```bash pip install -e .[dev] ``` トランスフォーマーズのリポジトリ内で作業しています。トランスフォーマーズのオプションの依存関係の数が増えたため、すべてを取得できない可能性があります。開発用インストールが失敗した場合、作業しているディープラーニングフレームワーク(PyTorch、TensorFlow、および/またはFlax)をインストールし、次の手順を実行してください。 ```bash pip install transformers[quality] ``` または編集可能なインストールの場合: ```bash pip install -e .[quality] ``` ## Tests `ci/circleci: run_tests_` で始まるすべてのジョブは、Transformersのテストスイートの一部を実行します。これらのジョブは、特定の環境でライブラリの一部に焦点を当てて実行されます。たとえば、`ci/circleci: run_tests_pipelines_tf` は、TensorFlowのみがインストールされた環境でパイプラインのテストを実行します。 テストスイートの一部のみが実行されるように注意してください。テストスイートは、変更前と変更後のPRのライブラリの違いを決定し、その違いに影響を受けるテストを選択するためのユーティリティが実行されます。このユーティリティは、ローカルで以下のコマンドを実行して実行できます: ```bash python utils/tests_fetcher.py ``` 1. リポジトリのルートからスクリプトを実行します。これは次のステップを実行します: 1. 差分内の各ファイルをチェックし、変更がコード内にあるか、コメントやドキュメンテーション文字列のみにあるかを確認します。実際のコード変更があるファイルのみを保持します。 2. 内部のマップを構築します。このマップは、ライブラリのソースコードの各ファイルが再帰的に影響を与えるすべてのファイルを提供します。モジュールAがモジュールBに影響を与えるとは、モジュールBがモジュールAをインポートする場合を指します。再帰的な影響を得るには、モジュールAからモジュールBへのモジュールのチェーンが必要で、各モジュールは前のモジュールをインポートする必要があります。 3. このマップをステップ1で収集したファイルに適用します。これにより、PRに影響を受けるモデルファイルのリストが得られます。 4. これらのファイルをそれに対応するテストファイルにマップし、実行するテストのリストを取得します。 2. スクリプトをローカルで実行する場合、ステップ1、3、および4の結果が表示され、実行するテストがわかります。スクリプトはまた、`test_list.txt` という名前のファイルを作成します。このファイルには実行するテストのリストが含まれており、次のコマンドでローカルで実行できます: ```bash python -m pytest -n 8 --dist=loadfile -rA -s $(cat test_list.txt) ``` ## Documentation build `build_pr_documentation` ジョブは、ドキュメンテーションのビルドを行い、あなたのPRがマージされた後にすべてが正常に表示されることを確認します。ボットがプレビューのドキュメンテーションへのリンクをPRに追加します。PRに対する変更は、プレビューに自動的に反映されます。ドキュメンテーションのビルドに失敗した場合、失敗したジョブの隣にある「詳細」をクリックして、何が問題になっているかを確認できます。多くの場合、問題は`toctree`内のファイルが不足しているなど、単純なものです。 ドキュメンテーションをローカルでビルドまたはプレビューしたい場合は、[docsフォルダ内の`README.md`](https://github.com/huggingface/transformers/tree/main/docs)をご覧ください。 ## Code and documentation style すべてのソースファイル、例、テストには、`black`と`ruff`を使用してコードのフォーマットが適用されます。また、ドックストリングと`rst`ファイルのフォーマット、Transformersの`__init__.py`ファイルで実行される遅延インポートの順序についてもカスタムツールが存在します(`utils/style_doc.py`と`utils/custom_init_isort.py`)。これらすべては、以下を実行することで起動できます。 ```bash make style ``` CIは、`ci/circleci: check_code_quality` チェック内でこれらのチェックが適用されていることを確認します。また、`ruff` を実行し、未定義の変数や使用されていない変数がある場合にエラーを報告します。このチェックをローカルで実行するには、以下のコマンドを使用してください。 ```bash make quality ``` 時間がかかることがあります。したがって、現在のブランチで変更したファイルのみで同じことを実行するには、次のコマンドを実行します。 ```bash make fixup ``` この最後のコマンドは、リポジトリの整合性のためのすべての追加のチェックも実行します。それらを詳しく見てみましょう。 ## Repository consistency これには、あなたのPRがリポジトリを適切な状態に保ったままであることを確認するためのすべてのテストが含まれており、ci/`circleci: check_repository_consistency` チェックによって実行されます。ローカルでこのチェックを実行するには、以下を実行します。 ```bash make repo-consistency ``` これを確認します: - `utils/check_repo.py` によって実行される、init に追加されたすべてのオブジェクトが文書化されています。 - `utils/check_inits.py` によって実行される、すべての `__init__.py` ファイルがその2つのセクションで同じ内容を持っています。 - `utils/check_copies.py` によって実行される、他のモジュールからのコピーとして識別されたすべてのコードが元のコードと一致しています。 - `utils/check_config_docstrings.py` によって実行される、すべての設定クラスには少なくとも1つの有効なチェックポイントがドキュメント文字列に記載されています。 - `utils/check_config_attributes.py` によって実行される、すべての設定クラスには、対応するモデリングファイルで使用されている属性のみが含まれています。 - `utils/check_copies.py` によって実行される、README とドキュメントのインデックスの翻訳が、メインのREADME と同じモデルリストを持っています。 - `utils/check_table.py` によって実行される、ドキュメンテーションの自動生成テーブルが最新であることを確認します。 - `utils/check_dummies.py` によって実行される、すべてのオブジェクトが利用可能であり、オプションの依存関係がすべてインストールされていなくても問題ありません。 このチェックが失敗する場合、最初の2つの項目は手動で修正する必要があり、最後の4つはコマンドを実行して自動的に修正できます。 ```bash make fix-copies ``` 追加のチェックポイントは、新しいモデルを追加するPull Request(PR)に関連しています。主に次の点を確認します: - すべての追加されたモデルは、Auto-mapping(`utils/check_repo.py`で実行)に含まれています。 <!-- TODO Sylvain、共通のテストが実装されていることを確認するチェックを追加してください。--> - すべてのモデルが適切にテストされています(`utils/check_repo.py`で実行)。 <!-- TODO Sylvain、以下を追加してください - すべてのモデルがメインのREADMEおよびメインのドキュメント内に追加されています。 - 使用されているすべてのチェックポイントが実際にHubに存在しています --> ### Check copies Transformersライブラリは、モデルコードに関して非常に意見があるため、各モデルは他のモデルに依存せずに完全に1つのファイルに実装する必要があります。したがって、特定のモデルのコードのコピーが元のコードと一貫しているかどうかを確認する仕組みを追加しました。これにより、バグ修正がある場合、他の影響を受けるモデルをすべて確認し、変更を伝達するかコピーを破棄するかを選択できます。 <Tip> ファイルが別のファイルの完全なコピーである場合、それを`utils/check_copies.py`の`FULL_COPIES`定数に登録する必要があります。 </Tip> この仕組みは、`# Copied from xxx`という形式のコメントに依存しています。`xxx`は、コピーされているクラスまたは関数の完全なパスを含む必要があります。例えば、`RobertaSelfOutput`は`BertSelfOutput`クラスの直接のコピーですので、[こちら](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L289)にコメントがあります。 ```py # Copied from transformers.models.bert.modeling_bert.BertSelfOutput ``` 注意点として、これをクラス全体に適用する代わりに、コピー元の関連メソッドに適用できます。たとえば、[こちら](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L598)では、`RobertaPreTrainedModel._init_weights` が `BertPreTrainedModel` からコピーされており、以下のコメントがあります: ```py # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta ``` 注:矢印の周りにはスペースが含まれていてはいけません(もちろん、そのスペースが置換パターンの一部である場合を除きます)。 カンマで区切られた複数のパターンを追加できます。例えば、ここでは `CamemberForMaskedLM` は `RobertaForMaskedLM` の直接のコピーで、2つの置換があります: `Roberta` から `Camembert` へ、そして `ROBERTA` から `CAMEMBERT` へと置換されます。[こちら](https://github.com/huggingface/transformers/blob/15082a9dc6950ecae63a0d3e5060b2fc7f15050a/src/transformers/models/camembert/modeling_camembert.py#L929)で、この作業はコメント付きで行われています。 ```py # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM with Roberta->Camembert, ROBERTA->CAMEMBERT ``` もし順序が重要な場合(以前の置換と競合する可能性があるため)、置換は左から右に実行されます。 <Tip> もし置換がフォーマットを変更する場合(たとえば、短い名前を非常に長い名前に置き換える場合など)、自動フォーマッタを適用した後にコピーが確認されます。 </Tip> パターンが同じ置換の異なるケース(大文字と小文字のバリアントがある)の場合、オプションとして `all-casing` を追加するだけの別の方法もあります。[こちら](https://github.com/huggingface/transformers/blob/15082a9dc6950ecae63a0d3e5060b2fc7f15050a/src/transformers/models/mobilebert/modeling_mobilebert.py#L1237)は、`MobileBertForSequenceClassification` 内の例で、コメントがついています。 ```py # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification with Bert->MobileBert all-casing ``` この場合、コードは「BertForSequenceClassification」からコピーされ、次のように置換されます: - `Bert` を `MobileBert` に置き換える(例:`init`で `MobileBertModel` を使用する場合) - `bert` を `mobilebert` に置き換える(例:`self.mobilebert` を定義する場合) - `BERT` を `MOBILEBERT` に置き換える(定数 `MOBILEBERT_INPUTS_DOCSTRING` 内で)
transformers/docs/source/ja/pr_checks.md/0
{ "file_path": "transformers/docs/source/ja/pr_checks.md", "repo_id": "transformers", "token_count": 5982 }
244
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Monocular depth estimation 単眼奥行き推定は、シーンの奥行き情報を画像から予測することを含むコンピューター ビジョン タスクです。 単一の画像。言い換えれば、シーン内のオブジェクトの距離を距離から推定するプロセスです。 単一カメラの視点。 単眼奥行き推定には、3D 再構築、拡張現実、自動運転、 そしてロボット工学。モデルがオブジェクト間の複雑な関係を理解する必要があるため、これは困難な作業です。 シーンとそれに対応する深度情報(照明条件などの要因の影響を受ける可能性があります) オクルージョンとテクスチャ。 <Tip> このチュートリアルで説明するタスクは、次のモデル アーキテクチャでサポートされています。 <!--This tip is automatically generated by `make fix-copies`, do not fill manually!--> [DPT](../model_doc/dpt), [GLPN](../model_doc/glpn) <!--End of the generated tip--> </Tip> このガイドでは、次の方法を学びます。 * 深度推定パイプラインを作成する * 手動で深度推定推論を実行します 始める前に、必要なライブラリがすべてインストールされていることを確認してください。 ```bash pip install -q transformers ``` ## Depth estimation pipeline 深度推定をサポートするモデルで推論を試す最も簡単な方法は、対応する [`pipeline`] を使用することです。 [Hugging Face Hub のチェックポイント](https://huggingface.co/models?pipeline_tag=Depth-estimation&sort=downloads) からパイプラインをインスタンス化します。 ```py >>> from transformers import pipeline >>> checkpoint = "vinvino02/glpn-nyu" >>> depth_estimator = pipeline("depth-estimation", model=checkpoint) ``` 次に、分析する画像を選択します。 ```py >>> from PIL import Image >>> import requests >>> url = "https://unsplash.com/photos/HwBAsSbPBDU/download?ixid=MnwxMjA3fDB8MXxzZWFyY2h8MzR8fGNhciUyMGluJTIwdGhlJTIwc3RyZWV0fGVufDB8MHx8fDE2Nzg5MDEwODg&force=true&w=640" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/depth-estimation-example.jpg" alt="Photo of a busy street"/> </div> 画像をパイプラインに渡します。 ```py >>> predictions = depth_estimator(image) ``` パイプラインは 2 つのエントリを含む辞書を返します。最初のものは`predicted_ Depth`と呼ばれ、次の値を持つテンソルです。 深さは各ピクセルのメートル単位で表されます。 2 番目の`depth`は、深度推定結果を視覚化する PIL 画像です。 視覚化された結果を見てみましょう。 ```py >>> predictions["depth"] ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/depth-visualization.png" alt="Depth estimation visualization"/> </div> ## Depth estimation inference by hand 深度推定パイプラインの使用方法を理解したので、同じ結果を手動で複製する方法を見てみましょう。 まず、[Hugging Face Hub のチェックポイント](https://huggingface.co/models?pipeline_tag=Depth-estimation&sort=downloads) からモデルと関連プロセッサをロードします。 ここでは、前と同じチェックポイントを使用します。 ```py >>> from transformers import AutoImageProcessor, AutoModelForDepthEstimation >>> checkpoint = "vinvino02/glpn-nyu" >>> image_processor = AutoImageProcessor.from_pretrained(checkpoint) >>> model = AutoModelForDepthEstimation.from_pretrained(checkpoint) ``` 必要な画像変換を処理する`image_processor`を使用して、モデルの画像入力を準備します。 サイズ変更や正規化など: ```py >>> pixel_values = image_processor(image, return_tensors="pt").pixel_values ``` 準備された入力をモデルに渡します。 ```py >>> import torch >>> with torch.no_grad(): ... outputs = model(pixel_values) ... predicted_depth = outputs.predicted_depth ``` 結果を視覚化します。 ```py >>> import numpy as np >>> # interpolate to original size >>> prediction = torch.nn.functional.interpolate( ... predicted_depth.unsqueeze(1), ... size=image.size[::-1], ... mode="bicubic", ... align_corners=False, ... ).squeeze() >>> output = prediction.numpy() >>> formatted = (output * 255 / np.max(output)).astype("uint8") >>> depth = Image.fromarray(formatted) >>> depth ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/depth-visualization.png" alt="Depth estimation visualization"/> </div>
transformers/docs/source/ja/tasks/monocular_depth_estimation.md/0
{ "file_path": "transformers/docs/source/ja/tasks/monocular_depth_estimation.md", "repo_id": "transformers", "token_count": 2274 }
245
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Testing 🤗 Transformersモデルがどのようにテストされ、新しいテストを書いて既存のテストを改善できるかを見てみましょう。 このリポジトリには2つのテストスイートがあります: 1. `tests` -- 一般的なAPI用のテスト 2. `examples` -- APIの一部ではないさまざまなアプリケーション用のテスト ## How transformers are tested 1. PRが提出されると、9つのCircleCiジョブでテストされます。PRへの新しいコミットごとに再テストされます。これらのジョブは、[この設定ファイル](https://github.com/huggingface/transformers/tree/main/.circleci/config.yml)で定義されており、必要な場合は同じ環境を自分のマシンで再現できます。 これらのCIジョブは `@slow` テストを実行しません。 2. [GitHub Actions](https://github.com/huggingface/transformers/actions)によって実行される3つのジョブがあります: - [torch hub integration](https://github.com/huggingface/transformers/tree/main/.github/workflows/github-torch-hub.yml): torch hubの統合が動作するかどうかを確認します。 - [self-hosted (push)](https://github.com/huggingface/transformers/tree/main/.github/workflows/self-push.yml): `main` にコミットが行われた場合に、GPUで高速テストを実行します。このジョブは、`main` でのコミットが以下のフォルダーのコードを更新した場合にのみ実行されます:`src`、`tests`、`.github`(追加されたモデルカード、ノートブックなどの実行を防ぐため)。 - [self-hosted runner](https://github.com/huggingface/transformers/tree/main/.github/workflows/self-scheduled.yml): GPUで `tests` と `examples` の通常のテストと遅いテストを実行します。 ```bash RUN_SLOW=1 pytest tests/ RUN_SLOW=1 pytest examples/ ``` 結果は[here](https://github.com/huggingface/transformers/actions)で観察できます。 ## Running tests ### Choosing which tests to run このドキュメントは、テストを実行する方法の多くの詳細について説明しています。すべてを読んだ後でも、さらに詳細が必要な場合は、[こちら](https://docs.pytest.org/en/latest/usage.html)で見つけることができます。 以下は、テストを実行するためのいくつかの最も便利な方法です。 すべて実行します: ```console pytest ``` または: ```bash make test ``` 後者は次のように定義されることに注意してください。 ```bash python -m pytest -n auto --dist=loadfile -s -v ./tests/ ``` 以下は、pytestに渡す設定情報です。 - テストプロセスをCPUコアの数と同じだけ実行するように指示します。ただし、RAMが十分でない場合は注意が必要です。 - 同じファイルからのすべてのテストは、同じテストプロセスで実行されるようにします。 - 出力のキャプチャを行いません。 - 冗長モードで実行します。 ### Getting the list of all tests テストスイートのすべてのテスト: ```bash pytest --collect-only -q ``` 指定されたテスト ファイルのすべてのテスト: ```bash pytest tests/test_optimization.py --collect-only -q ``` ### Run a specific test module 個別のテスト モジュールを実行するには: ```bash pytest tests/utils/test_logging.py ``` ### Run specific tests ほとんどのテストでunittestが使用されているため、特定のサブテストを実行するには、それらのテストを含むunittestクラスの名前を知っている必要があります。例えば、それは次のようになるかもしれません: ```bash pytest tests/test_optimization.py::OptimizationTest::test_adam_w ``` テストの実行方法: テストファイル: `tests/test_optimization.py` クラス名: `OptimizationTest` テスト関数の名前: `test_adam_w` ファイルに複数のクラスが含まれている場合は、特定のクラスのテストのみを実行することを選択できます。例えば: ```bash pytest tests/test_optimization.py::OptimizationTest ``` テストクラス内のすべてのテストを実行します。 前述の通り、`OptimizationTest` クラスに含まれるテストを実行するには、次のコマンドを実行できます: ```bash pytest tests/test_optimization.py::OptimizationTest --collect-only -q ``` キーワード式を使用してテストを実行できます。 名前に `adam` が含まれるテストのみを実行するには: ```bash pytest -k adam tests/test_optimization.py ``` `and`および`or`は、すべてのキーワードが一致するか、いずれかを示すために使用できます。`not`は否定するために使用できます。 `adam`という名前を含むテストを除いてすべてのテストを実行するには: ```bash pytest -k "not adam" tests/test_optimization.py ``` 以下は、提供されたテキストの日本語訳です。 ```bash pytest -k "ada and not adam" tests/test_optimization.py ``` たとえば、`test_adafactor`と`test_adam_w`の両方を実行するには、以下のコマンドを使用できます: ```bash pytest -k "test_adam_w or test_adam_w" tests/test_optimization.py ``` 注意: ここでは、`or` を使用しています。キーワードのいずれか一つが一致すれば、両方を含めるためです。 両方のパターンを含むテストのみを含めたい場合は、`and` を使用してください。 ```bash pytest -k "test and ada" tests/test_optimization.py ``` ### Run `accelerate` tests 時々、モデルに対して `accelerate` テストを実行する必要があります。たとえば、`OPT` 実行に対してこれらのテストを実行したい場合、コマンドに `-m accelerate_tests` を追加するだけで済みます: ```bash RUN_SLOW=1 pytest -m accelerate_tests tests/models/opt/test_modeling_opt.py ``` ### Run documentation tests ドキュメンテーションの例が正しいかどうかをテストするには、`doctests` が合格しているかを確認する必要があります。 例として、[`WhisperModel.forward` のドックストリング](https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py#L1017-L1035)を使用しましょう。 ```python r""" Returns: Example: ```python >>> import torch >>> from transformers import WhisperModel, WhisperFeatureExtractor >>> from datasets import load_dataset >>> model = WhisperModel.from_pretrained("openai/whisper-base") >>> feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-base") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt") >>> input_features = inputs.input_features >>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state >>> list(last_hidden_state.shape) [1, 2, 512] ```""" ``` 指定したファイル内のすべてのドックストリング例を自動的にテストするために、以下の行を実行してください: ```bash pytest --doctest-modules <path_to_file_or_dir> ``` ファイルにマークダウン拡張子がある場合は、`--doctest-glob="*.md"`引数を追加する必要があります。 ### Run only modified tests [pytest-picked](https://github.com/anapaulagomes/pytest-picked)を使用すると、未ステージングのファイルまたは現在のブランチ(Gitに従って)に関連するテストを実行できます。これは、変更内容に関連するテストのみ実行されるため、変更が何も壊れていないことを迅速に確認する素晴らしい方法です。変更されていないファイルに関連するテストは実行されません。 ```bash pip install pytest-picked ``` ```bash pytest --picked ``` すべてのテストは、変更されたがまだコミットされていないファイルとフォルダから実行されます。 ### Automatically rerun failed tests on source modification [pytest-xdist](https://github.com/pytest-dev/pytest-xdist)は、非常に便利な機能を提供しており、すべての失敗したテストを検出し、ファイルを修正する間にそれらの失敗したテストを連続して再実行することができます。そのため、修正を行った後にpytestを再起動する必要がありません。すべてのテストが合格するまで繰り返され、その後再度フルランが実行されます。 ```bash pip install pytest-xdist ``` モードに入るには: `pytest -f`または`pytest --looponfail` ファイルの変更は、`looponfailroots`ルートディレクトリとその内容全体(再帰的に)を見て検出されます。この値のデフォルトが機能しない場合、`setup.cfg`で設定オプションを変更してプロジェクト内で変更できます。 ```ini [tool:pytest] looponfailroots = transformers tests ``` または `pytest.ini`/`tox.ini` ファイル: ```ini [pytest] looponfailroots = transformers tests ``` ファイルの変更を探すことは、iniファイルのディレクトリを基準にして指定されたディレクトリ内でのみ行われます。 [pytest-watch](https://github.com/joeyespo/pytest-watch) は、この機能の代替実装です。 ### Skip a test module 特定のテストモジュールを除外してすべてのテストモジュールを実行したい場合、実行するテストの明示的なリストを指定することができます。例えば、`test_modeling_*.py` テストを除外してすべてを実行するには次のようにします: ```bash pytest *ls -1 tests/*py | grep -v test_modeling* ``` ### Clearing state CIビルドおよび速度に対する隔離が重要な場合(キャッシュに対して)、キャッシュをクリアする必要があります: ```bash pytest --cache-clear tests ``` ### Running tests in parallel 前述のように、`make test` は `pytest-xdist` プラグインを介してテストを並列実行します(`-n X` 引数、例: `-n 2` で2つの並列ジョブを実行)。 `pytest-xdist` の `--dist=` オプションを使用すると、テストがどのようにグループ化されるかを制御できます。`--dist=loadfile` は同じファイルにあるテストを同じプロセスに配置します。 テストの実行順序が異なり予測不可能であるため、`pytest-xdist` を使用してテストスイートを実行すると失敗が発生する場合(つまり、いくつかの未検出の連動テストがある場合)、[pytest-replay](https://github.com/ESSS/pytest-replay) を使用してテストを同じ順序で再生し、その後、失敗するシーケンスを最小限にするのに役立ちます。 ### Test order and repetition 潜在的な相互依存性や状態に関連するバグ(ティアダウン)を検出するために、テストを複数回、連続して、ランダムに、またはセットで繰り返すことは有用です。そして、単純な複数回の繰り返しは、DLのランダム性によって明らかになるいくつかの問題を検出するのに役立ちます。 #### Repeat tests - [pytest-flakefinder](https://github.com/dropbox/pytest-flakefinder): ```bash pip install pytest-flakefinder ``` そして、すべてのテストを複数回実行します (デフォルトでは 50 回)。 ```bash pytest --flake-finder --flake-runs=5 tests/test_failing_test.py ``` <Tip> このプラグインは、`pytest-xdist` の `-n` フラグでは動作しません。 </Tip> <Tip> 別のプラグイン `pytest-repeat` もありますが、これは `unittest` では動作しません。 </Tip> #### Run tests in a random order ```bash pip install pytest-random-order ``` 重要: `pytest-random-order` が存在すると、テストは自動的にランダム化されます。設定の変更や変更は必要ありません。 コマンドラインオプションは必須です。 前に説明したように、これにより、結合されたテスト (1 つのテストの状態が別のテストの状態に影響を与える) の検出が可能になります。いつ `pytest-random-order` がインストールされていると、そのセッションに使用されたランダム シードが出力されます。例: ```bash pytest tests [...] Using --random-order-bucket=module Using --random-order-seed=573663 ``` そのため、指定された特定のシーケンスが失敗した場合、その正確なシードを追加することでそれを再現できます。例: ```bash pytest --random-order-seed=573663 [...] Using --random-order-bucket=module Using --random-order-seed=573663 ``` 特定のテストのリストを使用しない場合、またはまったくリストを使用しない場合、同じテストの正確な順序を再現します。テストのリストを手動で絞り込み始めると、シードに依存せず、テストが失敗した正確な順序で手動でリストを指定する必要があります。これには、`--random-order-bucket=none` を使用してランダム化を無効にするようpytestに指示する必要があります。例えば、次のようにします: ```bash pytest --random-order-bucket=none tests/test_a.py tests/test_c.py tests/test_b.py ``` すべてのテストのシャッフルを無効にするには: ```bash pytest --random-order-bucket=none ``` デフォルトでは、`--random-order-bucket=module` が暗黙的に適用され、モジュールレベルでファイルをシャッフルします。また、`class`、`package`、`global`、および`none` レベルでシャッフルすることもできます。詳細については、その[ドキュメンテーション](https://github.com/jbasko/pytest-random-order)を参照してください。 別のランダム化の代替手段は、[`pytest-randomly`](https://github.com/pytest-dev/pytest-randomly) です。このモジュールは非常に似た機能/インターフェースを持っていますが、`pytest-random-order` で利用可能なバケットモードを持っていません。インストール後に自動的に有効になるという同じ問題があります。 ### Look and feel variations #### pytest-sugar [pytest-sugar](https://github.com/Frozenball/pytest-sugar) は、外観と操作性を向上させ、プログレスバーを追加し、即座に失敗したテストとアサーションを表示するプラグインです。インストール後に自動的にアクティブ化されます。 ```bash pip install pytest-sugar ``` これを使用せずにテストを実行するには、次を実行します。 ```bash pytest -p no:sugar ``` またはアンインストールします。 #### Report each sub-test name and its progress `pytest` による単一またはグループのテストの場合 (`pip install pytest-pspec` の後): ```bash pytest --pspec tests/test_optimization.py ``` #### Instantly shows failed tests [pytest-instafail](https://github.com/pytest-dev/pytest-instafail) では、失敗とエラーが即座に表示されます。 テストセッションが終了するまで待機します。 ```bash pip install pytest-instafail ``` ```bash pytest --instafail ``` ### To GPU or not to GPU GPU が有効な設定で、CPU のみモードでテストするには、`CUDA_VISIBLE_DEVICES=""`を追加します。 ```bash CUDA_VISIBLE_DEVICES="" pytest tests/utils/test_logging.py ``` または、複数の GPU がある場合は、`pytest` でどれを使用するかを指定できます。たとえば、 2 番目の GPU GPU `0` と `1` がある場合は、次を実行できます。 ```bash CUDA_VISIBLE_DEVICES="1" pytest tests/utils/test_logging.py ``` これは、異なるGPUで異なるタスクを実行したい場合に便利です。 一部のテストはCPUのみで実行する必要があり、他のテストはCPU、GPU、またはTPUで実行する必要があり、また別のテストは複数のGPUで実行する必要があります。次のスキップデコレーターは、テストのCPU/GPU/TPUに関する要件を設定するために使用されます: - `require_torch` - このテストはtorchの下でのみ実行されます。 - `require_torch_gpu` - `require_torch` に加えて、少なくとも1つのGPUが必要です。 - `require_torch_multi_gpu` - `require_torch` に加えて、少なくとも2つのGPUが必要です。 - `require_torch_non_multi_gpu` - `require_torch` に加えて、0または1つのGPUが必要です。 - `require_torch_up_to_2_gpus` - `require_torch` に加えて、0、1、または2つのGPUが必要です。 - `require_torch_tpu` - `require_torch` に加えて、少なくとも1つのTPUが必要です。 以下の表にGPUの要件を示します: | n gpus | decorator | |--------+--------------------------------| | `>= 0` | `@require_torch` | | `>= 1` | `@require_torch_gpu` | | `>= 2` | `@require_torch_multi_gpu` | | `< 2` | `@require_torch_non_multi_gpu` | | `< 3` | `@require_torch_up_to_2_gpus` | たとえば、使用可能な GPU が 2 つ以上あり、pytorch がインストールされている場合にのみ実行する必要があるテストを次に示します。 ```python no-style @require_torch_multi_gpu def test_example_with_multi_gpu(): ``` テストに `tensorflow` が必要な場合は、`require_tf` デコレータを使用します。例えば: ```python no-style @require_tf def test_tf_thing_with_tensorflow(): ``` これらのデコレータは積み重ねることができます。たとえば、テストが遅く、pytorch で少なくとも 1 つの GPU が必要な場合は、次のようになります。 設定方法: ```python no-style @require_torch_gpu @slow def test_example_slow_on_gpu(): ``` `@parametrized` のような一部のデコレータはテスト名を書き換えるため、`@require_*` スキップ デコレータをリストする必要があります。 最後にそれらが正しく動作するようにします。正しい使用例は次のとおりです ```python no-style @parameterized.expand(...) @require_torch_multi_gpu def test_integration_foo(): ``` この順序の問題は `@pytest.mark.parametrize` には存在しません。最初または最後に配置しても、それでも問題は解決されます。 仕事。ただし、それは非単体テストでのみ機能します。 内部テスト: - 利用可能な GPU の数: ```python from transformers.testing_utils import get_gpu_count n_gpu = get_gpu_count() # works with torch and tf ``` ### Testing with a specific PyTorch backend or device 特定のtorchデバイスでテストスイートを実行するには、`TRANSFORMERS_TEST_DEVICE="$device"` を追加します。ここで `$device` は対象のバックエンドです。例えば、CPUでテストするには以下のようにします: ```bash TRANSFORMERS_TEST_DEVICE="cpu" pytest tests/utils/test_logging.py ``` この変数は、`mps`などのカスタムまたはあまり一般的ではない PyTorch バックエンドをテストするのに役立ちます。また、特定の GPU をターゲットにしたり、CPU 専用モードでテストしたりすることで、`CUDA_VISIBLE_DEVICES`と同じ効果を達成するために使用することもできます。 特定のデバイスでは、初めて「torch」をインポートした後、追加のインポートが必要になります。これは、環境変数 `TRANSFORMERS_TEST_BACKEND` を使用して指定できます。 ```bash TRANSFORMERS_TEST_BACKEND="torch_npu" pytest tests/utils/test_logging.py ``` ### Distributed training `pytest` は直接的に分散トレーニングを処理することはできません。試みると、サブプロセスは正しい処理を行わず、自分自身が `pytest` であると思い込んでテストスイートをループで実行し続けます。ただし、通常のプロセスを生成し、それから複数のワーカーを生成し、IOパイプを管理するプロセスを生成すれば機能します。 これを使用するいくつかのテストがあります: - [test_trainer_distributed.py](https://github.com/huggingface/transformers/tree/main/tests/trainer/test_trainer_distributed.py) - [test_deepspeed.py](https://github.com/huggingface/transformers/tree/main/tests/deepspeed/test_deepspeed.py) 実行ポイントにすぐに移動するには、これらのテスト内で `execute_subprocess_async` 呼び出しを検索してください。 これらのテストを実行するには、少なくとも2つのGPUが必要です: ```bash CUDA_VISIBLE_DEVICES=0,1 RUN_SLOW=1 pytest -sv tests/test_trainer_distributed.py ``` ### Output capture テストの実行中に、`stdout` および `stderr` に送信された出力はキャプチャされます。テストまたはセットアップメソッドが失敗した場合、通常、それに対応するキャプチャされた出力が失敗のトレースバックと共に表示されます。 出力のキャプチャを無効にし、`stdout` と `stderr` を通常通りに取得するには、`-s` または `--capture=no` を使用してください: これらのテストを実行するには少なくとも2つのGPUが必要です: ```bash pytest -s tests/utils/test_logging.py ``` テスト結果を JUnit 形式の出力に送信するには: ```bash py.test tests --junitxml=result.xml ``` ### Color control 色を持たないようにする(例:黄色のテキストを白い背景に表示すると読みにくいです): ```bash pytest --color=no tests/utils/test_logging.py ``` ### Sending test report to online pastebin service テスト失敗ごとに URL を作成します。 ```bash pytest --pastebin=failed tests/utils/test_logging.py ``` これにより、テスト実行情報がリモートのPasteサービスに送信され、各エラーに対してURLが提供されます。通常通りテストを選択するか、たとえば特定のエラーのみを送信したい場合は `-x` を追加で指定できます。 テストセッション全体のログに対するURLを作成する方法: ```bash pytest --pastebin=all tests/utils/test_logging.py ``` ## Writing tests 🤗 transformersのテストは `unittest` を基にしていますが、 `pytest` で実行されるため、ほとんどの場合、両方のシステムの機能を使用できます。 [こちら](https://docs.pytest.org/en/stable/unittest.html)でサポートされている機能を読むことができますが、重要なことは、ほとんどの `pytest` のフィクスチャが動作しないことです。パラメータ化も同様ですが、似たような方法で動作する `parameterized` モジュールを使用しています。 ### Parametrization 同じテストを異なる引数で複数回実行する必要があることがよくあります。これはテスト内部から行うこともできますが、その場合、そのテストを単一の引数セットで実行する方法はありません。 ```python # test_this1.py import unittest from parameterized import parameterized class TestMathUnitTest(unittest.TestCase): @parameterized.expand( [ ("negative", -1.5, -2.0), ("integer", 1, 1.0), ("large fraction", 1.6, 1), ] ) def test_floor(self, name, input, expected): assert_equal(math.floor(input), expected) ``` デフォルトでは、このテストは3回実行され、それぞれの実行で `test_floor` の最後の3つの引数がパラメータリストの対応する引数に割り当てられます。 そして、`negative` と `integer` パラメータのセットのみを実行することもできます: ```bash pytest -k "negative and integer" tests/test_mytest.py ``` または、`Negative`のサブテストを除くすべての場合、次のようになります。 ```bash pytest -k "not negative" tests/test_mytest.py ``` `-k` フィルターを使用することに加えて、各サブテストの正確な名前を調べ、その正確な名前を使用して任意のサブテストまたはすべてのサブテストを実行することができます。 ```bash pytest test_this1.py --collect-only -q ``` すると次のものがリストされます: ```bash test_this1.py::TestMathUnitTest::test_floor_0_negative test_this1.py::TestMathUnitTest::test_floor_1_integer test_this1.py::TestMathUnitTest::test_floor_2_large_fraction ``` したがって、2 つの特定のサブテストのみを実行できるようになりました。 ```bash pytest test_this1.py::TestMathUnitTest::test_floor_0_negative test_this1.py::TestMathUnitTest::test_floor_1_integer ``` `transformers`の開発者依存関係にすでに含まれているモジュール[parameterized](https://pypi.org/project/parameterized/) は、`unittests` と `pytest` テストの両方で機能します。 ただし、テストが `unittest` でない場合、`pytest.mark.parametrize` を使用することができます(または既存のテストのいくつかで、主に `examples` の下で使用されているのを見ることができます)。 次に、同じ例を示しますが、今度は `pytest` の `parametrize` マーカーを使用しています: ```python # test_this2.py import pytest @pytest.mark.parametrize( "name, input, expected", [ ("negative", -1.5, -2.0), ("integer", 1, 1.0), ("large fraction", 1.6, 1), ], ) def test_floor(name, input, expected): assert_equal(math.floor(input), expected) ``` `parameterized` と同様に、`pytest.mark.parametrize` を使用すると、`-k` フィルタが役立たない場合でも、サブテストの実行を細かく制御できます。ただし、このパラメータ化関数はサブテストの名前をわずかに異なるものにします。以下にその例を示します: ```bash pytest test_this2.py --collect-only -q ``` すると次のものがリストされます: ```bash test_this2.py::test_floor[integer-1-1.0] test_this2.py::test_floor[negative--1.5--2.0] test_this2.py::test_floor[large fraction-1.6-1] ``` これで、特定のテストのみを実行できるようになりました。 ```bash pytest test_this2.py::test_floor[negative--1.5--2.0] test_this2.py::test_floor[integer-1-1.0] ``` 前の例と同様に。 ### Files and directories テストの中で、現在のテストファイルからの相対位置を知る必要があることがよくあります。しかし、これは簡単なことではありません。なぜなら、テストは複数のディレクトリから呼び出されるか、異なる深さのサブディレクトリに存在することがあるからです。`transformers.test_utils.TestCasePlus` というヘルパークラスは、すべての基本パスを整理し、簡単にアクセスできるようにすることで、この問題を解決します。 - `pathlib` オブジェクト(すべて完全に解決されたもの): - `test_file_path` - 現在のテストファイルのパス、つまり `__file__` - `test_file_dir` - 現在のテストファイルを含むディレクトリ - `tests_dir` - `tests` テストスイートのディレクトリ - `examples_dir` - `examples` テストスイートのディレクトリ - `repo_root_dir` - リポジトリのディレクトリ - `src_dir` - `transformers` サブディレクトリが存在する場所 - パスの文字列表現――上記と同じですが、これらは `pathlib` オブジェクトではなく文字列としてパスを返します: - `test_file_path_str` - `test_file_dir_str` - `tests_dir_str` - `examples_dir_str` - `repo_root_dir_str` - `src_dir_str` これらを使用し始めるには、テストが `transformers.test_utils.TestCasePlus` のサブクラスに存在することを確認するだけです。例: ```python from transformers.testing_utils import TestCasePlus class PathExampleTest(TestCasePlus): def test_something_involving_local_locations(self): data_dir = self.tests_dir / "fixtures/tests_samples/wmt_en_ro" ``` もし、`pathlib` を介してパスを操作する必要がない場合、または単に文字列としてパスが必要な場合は、`pathlib` オブジェクトに `str()` を呼び出すか、`_str` で終わるアクセサを使用できます。例: ```python from transformers.testing_utils import TestCasePlus class PathExampleTest(TestCasePlus): def test_something_involving_stringified_locations(self): examples_dir = self.examples_dir_str ``` ### Temporary files and directories 一意の一時ファイルとディレクトリの使用は、並列テストの実行には欠かせません。これにより、テストがお互いのデータを上書きしないようにします。また、これらを作成した各テストの終了時に一時ファイルとディレクトリが削除されることを望みます。そのため、これらのニーズを満たすパッケージである `tempfile` のようなパッケージの使用は重要です。 しかし、テストのデバッグ時には、一時ファイルやディレクトリに何が格納されているかを確認できる必要があり、テストを再実行するたびにランダムに変更されないその正確なパスを知りたいと思います。 `transformers.test_utils.TestCasePlus` というヘルパークラスは、このような目的に最適です。これは `unittest.TestCase` のサブクラスであるため、テストモジュールで簡単に継承することができます。 以下はその使用例です: ```python from transformers.testing_utils import TestCasePlus class ExamplesTests(TestCasePlus): def test_whatever(self): tmp_dir = self.get_auto_remove_tmp_dir() ``` このコードはユニークな一時ディレクトリを作成し、`tmp_dir` をその場所に設定します。 - ユニークな一時ディレクトリを作成します: ```python def test_whatever(self): tmp_dir = self.get_auto_remove_tmp_dir() ``` `tmp_dir` には、作成された一時ディレクトリへのパスが含まれます。期間終了後は自動的に削除されます テスト。 - 任意の一時ディレクトリを作成し、テストの開始前にそれが空であることを確認し、テスト後には空にしないでください。 ```python def test_whatever(self): tmp_dir = self.get_auto_remove_tmp_dir("./xxx") ``` これは、特定のディレクトリを監視し、前のテストがそこにデータを残さないことを確認したい場合に、デバッグに役立ちます。 - `before` と `after` 引数を直接オーバーライドすることで、デフォルトの動作をオーバーライドできます。以下のいずれかの動作に導きます: - `before=True`:テストの開始時に常に一時ディレクトリがクリアされます。 - `before=False`:一時ディレクトリが既に存在する場合、既存のファイルはそのままになります。 - `after=True`:テストの終了時に常に一時ディレクトリが削除されます。 - `after=False`:テストの終了時に常に一時ディレクトリはそのままになります。 <Tip> `rm -r`の相当を安全に実行するために、明示的な `tmp_dir` が使用される場合、プロジェクトリポジトリのチェックアウトのサブディレクトリのみが許可されます。誤って `/tmp` などのファイルシステムの重要な部分が削除されないように、常に `./` から始まるパスを渡してください。 </Tip> <Tip> 各テストは複数の一時ディレクトリを登録でき、要求がない限りすべて自動で削除されます。 </Tip> ### Temporary sys.path override 別のテストからインポートするために一時的に `sys.path` をオーバーライドする必要がある場合、`ExtendSysPath` コンテキストマネージャを使用できます。例: ```python import os from transformers.testing_utils import ExtendSysPath bindir = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/.."): from test_trainer import TrainerIntegrationCommon # noqa ``` ### Skipping tests これは、バグが見つかり、新しいテストが作成された場合であっても、バグがまだ修正されていない場合に役立ちます。メインリポジトリにコミットできるようにするには、`make test` の実行中にそれをスキップする必要があります。 メソッド: - **skip** は、テストが特定の条件が満たされた場合にのみパスすることを期待しており、それ以外の場合は pytest がテストの実行をスキップします。一般的な例は、Windows専用のテストを非Windowsプラットフォームでスキップする場合、または現在利用できない外部リソースに依存するテストをスキップする場合です(例: データベースが利用できない場合)。 - **xfail** は、何らかの理由でテストが失敗することを期待しています。一般的な例は、まだ実装されていない機能のテストや、まだ修正されていないバグのテストです。テストが予想される失敗にもかかわらずパスした場合(pytest.mark.xfailでマークされたテスト)、それはxpassとしてテストサマリーに報告されます。 これらの2つの間の重要な違いの1つは、`skip` はテストを実行しない点であり、`xfail` は実行します。したがって、バグのあるコードが他のテストに影響を与える場合は、`xfail` を使用しないでください。 #### Implementation - テスト全体を無条件にスキップする方法は次のとおりです: ```python no-style @unittest.skip("this bug needs to be fixed") def test_feature_x(): ``` または pytest 経由: ```python no-style @pytest.mark.skip(reason="this bug needs to be fixed") ``` または `xfail` の方法: ```python no-style @pytest.mark.xfail def test_feature_x(): ``` - テスト内の内部チェックに基づいてテストをスキップする方法は次のとおりです。 ```python def test_feature_x(): if not has_something(): pytest.skip("unsupported configuration") ``` またはモジュール全体: ```python import pytest if not pytest.config.getoption("--custom-flag"): pytest.skip("--custom-flag is missing, skipping tests", allow_module_level=True) ``` または `xfail` の方法: ```python def test_feature_x(): pytest.xfail("expected to fail until bug XYZ is fixed") ``` - 一部のインポートが欠落している場合にモジュール内のすべてのテストをスキップする方法は次のとおりです。 ```python docutils = pytest.importorskip("docutils", minversion="0.3") ``` - 条件に基づいてテストをスキップします。 ```python no-style @pytest.mark.skipif(sys.version_info < (3,6), reason="requires python3.6 or higher") def test_feature_x(): ``` または: ```python no-style @unittest.skipIf(torch_device == "cpu", "Can't do half precision") def test_feature_x(): ``` またはモジュール全体をスキップします。 ```python no-style @pytest.mark.skipif(sys.platform == 'win32', reason="does not run on windows") class TestClass(): def test_feature_x(self): ``` 詳細、例、および方法についての詳細は[こちら](https://docs.pytest.org/en/latest/skipping.html)を参照してください。 ### Slow tests テストライブラリは着実に成長しており、テストの一部は数分かかります。そのため、CIでテストスイートの完了を待つのは1時間待つ余裕がないことがあります。したがって、いくつかの例外を除いて、遅いテストは以下の例のようにマークすべきです: ```python no-style from transformers.testing_utils import slow @slow def test_integration_foo(): ``` テストが`@slow`としてマークされたら、そのようなテストを実行するには、環境変数 `RUN_SLOW=1`を設定します。例: ```bash RUN_SLOW=1 pytest tests ``` `@parameterized` のようなデコレータはテスト名を書き換えるため、`@slow` および他のスキップデコレータ `@require_*` は正しく動作するためには、最後にリストアップする必要があります。以下は正しい使用例の一例です: ```python no-style @parameterized.expand(...) @slow def test_integration_foo(): ``` このドキュメントの冒頭で説明したように、遅いテストは定期的なスケジュールに従って実行され、PRのCIチェックでは実行されません。そのため、一部の問題がPRの提出時に見落とされ、マージされる可能性があります。そのような問題は次回のスケジュールされたCIジョブで検出されます。しかし、それはまた、PRを提出する前に自分のマシンで遅いテストを実行する重要性を意味しています。 どのテストを遅いテストとしてマークすべきかを選択するための、おおまかな意思決定メカニズムが次に示されています: - テストがライブラリの内部コンポーネントの1つに焦点を当てている場合(例: モデリングファイル、トークン化ファイル、パイプライン)、そのテストは遅いテストスイートで実行する必要があります。それがライブラリの他の側面、たとえばドキュメンテーションや例に焦点を当てている場合、それらのテストは遅いテストスイートで実行する必要があります。そして、このアプローチを洗練させるために例外を設ける必要があります。 - 重いウェイトセットや約50MB以上のデータセットをダウンロードする必要があるすべてのテスト(例: モデル統合テスト、トークナイザ統合テスト、パイプライン統合テスト)は遅いテストとして設定する必要があります。新しいモデルを追加する場合、統合テスト用にランダムなウェイトを持つ小さなバージョンを作成し、ハブにアップロードする必要があります。これについては以下の段落で詳しく説明します。 - 特に高速化されていないトレーニングを行う必要があるすべてのテストは遅いテストとして設定する必要があります。 - 一部の「遅い」であるべきでないテストが非常に遅い場合、およびそれらを `@slow` として設定する必要がある場合には例外を導入できます。大容量のファイルをディスクに保存および読み込みする自動モデリングテストは、`@slow` としてマークされたテストの良い例です。 - CIで1秒未満でテストが完了する場合(ダウンロードを含む)、それは通常のテストであるべきです。 すべての非遅いテストは、さまざまな内部要素を完全にカバーする必要がありますが、高速である必要があります。たとえば、特別に作成された小さなモデル(レイヤー数が最小限で、語彙サイズが小さいなど)を使用して、かなりのカバレッジを実現できます。その後、`@slow` テストでは大規模な遅いモデルを使用して質的なテストを実行できます。これらを使用するには、以下のように *tiny* モデルを探してください: ```bash grep tiny tests examples ``` [スクリプトの例](https://github.com/huggingface/transformers/tree/main/scripts/fsmt/fsmt-make-tiny-model.py)があり、これにより tiny-wmt19-en-de のような小さなモデルが作成されます。特定のモデルのアーキテクチャに簡単に調整できます。 実行時間を誤って測定することが簡単です。たとえば、巨大なモデルのダウンロードに関するオーバーヘッドがある場合、ローカルでテストするとダウンロードされたファイルがキャッシュされ、ダウンロード時間が計測されなくなります。したがって、CIログの実行速度レポート(`pytest --durations=0 tests` の出力)を確認してください。 このレポートは、遅いテストとしてマークされていない遅い外れ値や、高速に書き直す必要があるテストを見つけるのにも役立ちます。テストスイートがCIで遅くなり始めた場合、このレポートのトップリストには最も遅いテストが表示されます。 ### Testing the stdout/stderr output `stdout` および/または `stderr` に書き込む関数をテストするために、テストは `pytest` の [capsys システム](https://docs.pytest.org/en/latest/capture.html) を使用してこれらのストリームにアクセスできます。以下はその方法です: ```python import sys def print_to_stdout(s): print(s) def print_to_stderr(s): sys.stderr.write(s) def test_result_and_stdout(capsys): msg = "Hello" print_to_stdout(msg) print_to_stderr(msg) out, err = capsys.readouterr() # consume the captured output streams # optional: if you want to replay the consumed streams: sys.stdout.write(out) sys.stderr.write(err) # test: assert msg in out assert msg in err ``` そしてもちろん、ほとんどの場合、`stderr`は例外の一部として提供されるため、そのような場合には try/excel を使用する必要があります。 ケース: ```python def raise_exception(msg): raise ValueError(msg) def test_something_exception(): msg = "Not a good value" error = "" try: raise_exception(msg) except Exception as e: error = str(e) assert msg in error, f"{msg} is in the exception:\n{error}" ``` stdout をキャプチャするもう 1 つのアプローチは、`contextlib.redirect_stdout`を使用することです。 ```python from io import StringIO from contextlib import redirect_stdout def print_to_stdout(s): print(s) def test_result_and_stdout(): msg = "Hello" buffer = StringIO() with redirect_stdout(buffer): print_to_stdout(msg) out = buffer.getvalue() # optional: if you want to replay the consumed streams: sys.stdout.write(out) # test: assert msg in out ``` stdout をキャプチャする際の重要な潜在的な問題は、通常の `print` でこれまでに出力された内容をリセットする可能性がある `\r` 文字が含まれている可能性があることです。`pytest` 自体には問題はありませんが、`pytest -s` ではこれらの文字がバッファに含まれるため、`-s` ありとなしでテストを実行できるようにするには、`re.sub(r'~.*\r', '', buf, 0, re.M)` を使用してキャプチャされた出力に対して追加のクリーンアップを行う必要があります。 しかし、その後、`\r` が含まれているかどうかにかかわらず、すべての操作を自動的に処理するヘルパーコンテキストマネージャラッパーがあります。したがって、次のように簡単に行えます: ```python from transformers.testing_utils import CaptureStdout with CaptureStdout() as cs: function_that_writes_to_stdout() print(cs.out) ``` 完全なテスト例は次のとおりです。 ```python from transformers.testing_utils import CaptureStdout msg = "Secret message\r" final = "Hello World" with CaptureStdout() as cs: print(msg + final) assert cs.out == final + "\n", f"captured: {cs.out}, expecting {final}" ``` `stderr` をキャプチャしたい場合は、代わりに `CaptureStderr` クラスを使用してください。 ```python from transformers.testing_utils import CaptureStderr with CaptureStderr() as cs: function_that_writes_to_stderr() print(cs.err) ``` 両方のストリームを一度にキャプチャする必要がある場合は、親の `CaptureStd` クラスを使用します。 ```python from transformers.testing_utils import CaptureStd with CaptureStd() as cs: function_that_writes_to_stdout_and_stderr() print(cs.err, cs.out) ``` また、テストの問題のデバッグを支援するために、デフォルトで、これらのコンテキスト マネージャーは終了時にキャプチャされたストリームを自動的に再生します。 文脈から。 ### Capturing logger stream ロガーの出力を検証する必要がある場合は、`CaptureLogger`を使用できます。 ```python from transformers import logging from transformers.testing_utils import CaptureLogger msg = "Testing 1, 2, 3" logging.set_verbosity_info() logger = logging.get_logger("transformers.models.bart.tokenization_bart") with CaptureLogger(logger) as cl: logger.info(msg) assert cl.out, msg + "\n" ``` ### Testing with environment variables 特定のテストで環境変数の影響をテストしたい場合は、ヘルパー デコレータを使用できます。 `transformers.testing_utils.mockenv` ```python from transformers.testing_utils import mockenv class HfArgumentParserTest(unittest.TestCase): @mockenv(TRANSFORMERS_VERBOSITY="error") def test_env_override(self): env_level_str = os.getenv("TRANSFORMERS_VERBOSITY", None) ``` 場合によっては、外部プログラムを呼び出す必要があるため、`os.environ` に`PYTHONPATH`を設定してインクルードする必要があります。 複数のローカル パス。ヘルパー クラス `transformers.test_utils.TestCasePlus` が役に立ちます。 ```python from transformers.testing_utils import TestCasePlus class EnvExampleTest(TestCasePlus): def test_external_prog(self): env = self.get_env() # now call the external program, passing `env` to it ``` テストファイルが `tests` テストスイートまたは `examples` のどちらにあるかに応じて `env[PYTHONPATH]` を使用して、これら 2 つのディレクトリのいずれかを含めます。また、テストが確実に行われるようにするための `src` ディレクトリも含めます。 現在のリポジトリに対して実行され、最後に、テストが実行される前にすでに設定されていた `env[PYTHONPATH]` を使用して実行されます。 何かあれば呼ばれます。 このヘルパー メソッドは `os.environ` オブジェクトのコピーを作成するため、元のオブジェクトはそのまま残ります。 ### Getting reproducible results 状況によっては、テストのランダム性を削除したい場合があります。同一の再現可能な結果セットを取得するには、 シードを修正する必要があります: ```python seed = 42 # python RNG import random random.seed(seed) # pytorch RNGs import torch torch.manual_seed(seed) torch.backends.cudnn.deterministic = True if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) # numpy RNG import numpy as np np.random.seed(seed) # tf RNG tf.random.set_seed(seed) ``` ### Debugging tests 警告が発生した時点でデバッガーを開始するには、次の手順を実行します。 ```bash pytest tests/utils/test_logging.py -W error::UserWarning --pdb ``` ## Working with github actions workflows セルフプッシュのワークフローCIジョブをトリガーするには、以下の手順を実行する必要があります: 1. `transformers` のリモートリポジトリで新しいブランチを作成します(フォークではなく、元のリポジトリで行います)。 2. ブランチの名前は `ci_` または `ci-` で始まる必要があります(`main` もトリガーしますが、`main` ではPRを作成できません)。また、特定のパスでのみトリガーされます - このドキュメントが書かれた後に変更された場合に備えて、最新の定義は[こちら](https://github.com/huggingface/transformers/blob/main/.github/workflows/self-push.yml)の *push:* にあります。 3. このブランチからPRを作成します。 4. その後、このジョブが[ここ](https://github.com/huggingface/transformers/actions/workflows/self-push.yml)に表示されます。ジョブはバックログがある場合、すぐに実行されないことがあります。 ## Testing Experimental CI Features CI機能のテストは通常のCIの正常な動作に干渉する可能性があるため、新しいCI機能を追加する場合、以下の手順に従う必要があります。 1. テストが必要なものをテストするための新しい専用のジョブを作成します。 2. 新しいジョブは常に成功する必要があるため、常にグリーン ✓(詳細は以下参照)を表示する必要があります。 3. さまざまな種類のPR(ユーザーフォークブランチ、非フォークブランチ、github.com UIから直接ファイルを編集するブランチ、さまざまな強制プッシュなど)が実行されるまでいくつかの日間実行し、実験的なジョブのログを監視します(意図的に常にグリーンになるようになっている全体のジョブの緑ではなく)。 4. すべてが安定していることが明確になったら、新しい変更を既存のジョブに統合します。 このように、CI機能自体の実験が通常のワークフローに干渉しないようにできます。 では、新しいCI機能が開発中である間、ジョブを常に成功させるにはどうすればいいでしょうか? TravisCIのような一部のCIは `ignore-step-failure` をサポートし、全体のジョブを成功として報告しますが、この文書が作成された時点ではCircleCIとGithub Actionsはそれをサポートしていません。 したがって、以下のワークアラウンドを使用できます: 1. bashスクリプト内で潜在的な失敗を抑制するために実行コマンドの冒頭に `set +euo pipefail` を記述します。 2. 最後のコマンドは成功する必要があります。たとえば `echo "done"` または単に `true` を使用できます。 以下は例です: ```yaml - run: name: run CI experiment command: | set +euo pipefail echo "setting run-all-despite-any-errors-mode" this_command_will_fail echo "but bash continues to run" # emulate another failure false # but the last command must be a success echo "during experiment do not remove: reporting success to CI, even if there were failures" ``` 単純なコマンドの場合は、次のようにすることもできます。 ```bash cmd_that_may_fail || true ``` もちろん、結果に満足したら、実験的なステップやジョブを通常のジョブと統合し、`set +euo pipefail` などの追加した要素を削除して、実験的なジョブが通常のCIの動作に干渉しないようにします。 このプロセス全体は、実験的なステップに対して `allow-failure` のようなものを設定し、PRの全体のステータスに影響を与えずに失敗させることができれば、はるかに簡単になったでしょう。しかし、前述の通り、現在はCircleCIとGithub Actionsはこの機能をサポートしていません。 この機能に関しての投票や、CIに特有のスレッドでその進捗状況を確認できます: - [Github Actions:](https://github.com/actions/toolkit/issues/399) - [CircleCI:](https://ideas.circleci.com/ideas/CCI-I-344)
transformers/docs/source/ja/testing.md/0
{ "file_path": "transformers/docs/source/ja/testing.md", "repo_id": "transformers", "token_count": 22732 }
246
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BERTology BERT와 같은 대규모 트랜스포머의 내부 동작을 조사하는 연구 분야가 점점 더 중요해지고 있습니다. 혹자는 "BERTology"라 칭하기도 합니다. 이 분야의 좋은 예시는 다음과 같습니다: - BERT는 고전적인 NLP 파이프라인의 재발견 - Ian Tenney, Dipanjan Das, Ellie Pavlick: https://arxiv.org/abs/1905.05950 - 16개의 헤드가 정말로 1개보다 나은가? - Paul Michel, Omer Levy, Graham Neubig: https://arxiv.org/abs/1905.10650 - BERT는 무엇을 보는가? BERT의 어텐션 분석 - Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D. Manning: https://arxiv.org/abs/1906.04341 - CAT-probing: 프로그래밍 언어에 대해 사전훈련된 모델이 어떻게 코드 구조를 보는지 알아보기 위한 메트릭 기반 접근 방법: https://arxiv.org/abs/2210.04633 우리는 이 새로운 연구 분야의 발전을 돕기 위해, BERT/GPT/GPT-2 모델에 내부 표현을 살펴볼 수 있는 몇 가지 기능을 추가했습니다. 이 기능들은 주로 Paul Michel의 훌륭한 작업을 참고하여 개발되었습니다 (https://arxiv.org/abs/1905.10650): - BERT/GPT/GPT-2의 모든 은닉 상태에 접근하기, - BERT/GPT/GPT-2의 각 헤드의 모든 어텐션 가중치에 접근하기, - 헤드의 출력 값과 그래디언트를 검색하여 헤드 중요도 점수를 계산하고 https://arxiv.org/abs/1905.10650에서 설명된 대로 헤드를 제거하는 기능을 제공합니다. 이러한 기능들을 이해하고 직접 사용해볼 수 있도록 [bertology.py](https://github.com/huggingface/transformers/tree/main/examples/research_projects/bertology/run_bertology.py) 예제 스크립트를 추가했습니다. 이 예제 스크립트에서는 GLUE에 대해 사전훈련된 모델에서 정보를 추출하고 모델을 가지치기(prune)해봅니다.
transformers/docs/source/ko/bertology.md/0
{ "file_path": "transformers/docs/source/ko/bertology.md", "repo_id": "transformers", "token_count": 1557 }
247
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Whisper [[whisper]] ## 개요 [[overview]] Whisper 모델은 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever에 의해 [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf)에서 제안되었습니다. 논문의 초록은 다음과 같습니다: *우리는 인터넷에서 대량의 오디오를 글로 옮긴 것을 예측하도록 간단히 훈련된 음성 처리 시스템의 성능을 연구합니다. 68만 시간의 다국어 및 다중 작업 지도(multitask supervision)에 확장했을 때, 결과 모델은 표준 벤치마크에 잘 일반화되며, 미세 조정이 필요 없는 제로샷 전송 설정에서 이전의 완전히 지도된(fully-supervised) 결과와 경쟁할 수 있는 경우가 많습니다. 사람과 비교하면, 이 모델은 사람의 정확도와 견고성에 근접합니다. 우리는 강력한 음성 처리를 위한 추가 작업의 기반이 될 모델과 추론 코드를 공개합니다.* 팁: - 이 모델은 일반적으로 별도의 미세 조정 없이도 잘 작동합니다. - 아키텍처는 고전적인 인코더-디코더 아키텍처를 따르기 때문에, 추론을 위해 [`~generation.GenerationMixin.generate`] 함수를 사용합니다. - 현재 추론은 짧은 형식에만 구현되어 있으며, 오디오는 30초 미만의 세그먼트로 미리 분할되어야 합니다. 타임스탬프를 포함한 긴 형식에 대한 추론은 향후 릴리스에서 구현될 예정입니다. - [`WhisperProcessor`]를 사용하여 모델에 사용할 오디오를 준비하고, 예측된 ID를 텍스트로 디코딩할 수 있습니다. - 모델과 프로세서를 변환하려면 다음을 사용하는 것이 좋습니다: ```bash python src/transformers/models/whisper/convert_openai_to_hf.py --checkpoint_path "" --pytorch_dump_folder_path "Arthur/whisper-3" --convert_preprocessor True ``` 스크립트는 OpenAI 체크포인트에서 필요한 모든 매개변수를 자동으로 결정합니다. OpenAI 변환을 수행하려면 `tiktoken` 라이브러리를 설치해야 합니다. 라이브러리를 설치해야 OpenAI 토큰화기를 `tokenizers` 버전으로 변환할 수 있습니다. 이 모델은 [Arthur Zucker](https://huggingface.co/ArthurZ)에 의해 제공되었습니다. 이 모델의 Tensorflow 버전은 [amyeroberts](https://huggingface.co/amyeroberts)에 의해 제공되었습니다. 원본 코드는 [여기](https://github.com/openai/whisper)에서 찾을 수 있습니다. ## WhisperConfig [[whisperconfig]] [[autodoc]] WhisperConfig ## WhisperTokenizer [[whispertokenizer]] [[autodoc]] WhisperTokenizer - set_prefix_tokens - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## WhisperTokenizerFast [[whispertokenizerfast]] [[autodoc]] WhisperTokenizerFast - set_prefix_tokens - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## WhisperFeatureExtractor [[whisperfeatureextractor]] [[autodoc]] WhisperFeatureExtractor - __call__ ## WhisperProcessor [[whisperprocessor]] [[autodoc]] WhisperProcessor - __call__ - from_pretrained - save_pretrained - batch_decode - decode ## WhisperModel [[whispermodel]] [[autodoc]] WhisperModel - forward - _mask_input_features ## WhisperForConditionalGeneration [[whisperforconditionalgeneration]] [[autodoc]] WhisperForConditionalGeneration - forward ## WhisperForAudioClassification [[whisperforaudioclassification]] [[autodoc]] WhisperForAudioClassification - forward ## TFWhisperModel [[tfwhispermodel]] [[autodoc]] TFWhisperModel - call ## TFWhisperForConditionalGeneration [[tfwhisperforconditionalgeneration]] [[autodoc]] TFWhisperForConditionalGeneration - call ## FlaxWhisperModel [[flaxwhispermodel]] [[autodoc]] FlaxWhisperModel - __call__ ## FlaxWhisperForConditionalGeneration [[flaxwhisperforconditionalgeneration]] [[autodoc]] FlaxWhisperForConditionalGeneration - __call__ ## FlaxWhisperForAudioClassification [[flaxwhisperforaudioclassification]] [[autodoc]] FlaxWhisperForAudioClassification - __call__
transformers/docs/source/ko/model_doc/whisper.md/0
{ "file_path": "transformers/docs/source/ko/model_doc/whisper.md", "repo_id": "transformers", "token_count": 2696 }
248
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # 고정 길이 모델의 펄플렉서티(Perplexity)[[perplexity-of-fixedlength-models]] [[open-in-colab]] 펄플렉서티(Perplexity, PPL)는 가장 일반적인 언어 모델 평가지표 중 하나입니다. 자세히 알아보기 전에 이 평가지표는 고전적인 언어 모델(자기회귀 또는 인과적 언어 모델이라고도 함)에만 적용되며 BERT와 같은 마스킹된 언어 모델에는 잘 적용하지 않습니다 (BERT는 [summary of the models](../en/model_summary) 문서를 참고하세요). 펄플렉서티는 시퀀스의 음의 로그 우도(negative log-likelihood, NLL) 값의 평균에 지수(exponentiate)를 취한 값으로 정의됩니다. 토큰화된 시퀀스 \\(X = (x_0, x_1, \dots, x_t)\\) 가 있을 때, \\(X\\) 의 펄플렉서티는 아래 수식과 같이 구할 수 있습니다. $$\text{PPL}(X) = \exp \left\{ {-\frac{1}{t}\sum_i^t \log p_\theta (x_i|x_{<i}) } \right\}$$ \\(\log p_\theta (x_i|x_{<i})\\) 는 모델에 i번째 이전까지 토큰이 주어졌을 때 i번째 토큰의 로그 우도값입니다. 직관적으로 말뭉치에서 지정된 토큰 집합을 균일하게 예측하는 모델의 능력에 대한 평가로 생각할 수 있습니다. 중요한 점은 토큰화 과정이 모델의 펄플렉서티에 직접적인 영향을 미치므로 서로 다른 모델을 비교할 때 항상 이를 고려해야 합니다. 이는 데이터와 모델 예측 간의 cross-entropy 값에 지수를 취한 것과 동일합니다. 펄플렉서티와 문자당 비트 수(BPC) 및 데이터 압축과의 관계에 대해 더 직관적인 이해를 원하신다면 다음 글 [fantastic blog post on The Gradient](https://thegradient.pub/understanding-evaluation-metrics-for-language-models/)을 확인하세요. ## 고정 길이 모델의 펄플렉서티(PPL) 계산하기[[calculating-ppl-with-fixedlength-models]] 모델의 컨텍스트 크기가 정해져있지 않다면, 아래와 같이 시퀀스를 자동 회귀적으로 분해하고 각 단계에서 선행 하는 전체 시퀀스를 조건부 확률에 넣어 모델의 펄플렉서티를 계산할 것입니다. <img width="600" alt="Full decomposition of a sequence with unlimited context length" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/ppl_full.gif"/> 그러나 모델의 근사치를 구할 때는 일반적으로 모델이 처리할 수 있는 토큰 수에 제한이 있습니다. 예를 들어, 가장 큰 버전의 [GPT-2](model_doc/gpt2)는 토큰의 길이가 1024로 고정되어 있습니다. 따라서 \\(t\\) 가 1024보다 큰 경우에 \\(p_\theta(x_t|x_{<t})\\) 을 계산할 수 없습니다. 대신 시퀀스는 일반적으로 모델의 최대 입력 크기와 동일한 길이는 가지는 부분 시퀀스로 쪼갭니다. 만약 모델의 최대 입력 길이가 \\(k\\) 라면, 토큰 \\(x_t\\) 의 우도 값을 계산할 때 이전 토큰을 모두 사용하지 않고, \\(k-1\\) 토큰까지 사용해 대략적인 우도 값을 추정합니다. 모델의 시퀀스에 대한 펄플렉서티를 계산할 때, 수월하지만 차선책은 시퀀스를 청크로 쪼개고 분해된 각 부분의 로그 우도 값을 독립적으로 합산하는 것입니다. <img width="600" alt="Suboptimal PPL not taking advantage of full available context" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/ppl_chunked.gif"/> 이 방법은 각 부분의 펄플렉서티를 한 번의 포워드 패스로 계산할 수 있어 빠르지만 일반적으로 더 높은(더 나쁜) PPL을 산출합니다. 왜냐하면 대부분의 예측 단계에서 모델의 컨텍스트가 적기 때문입니다. 대신, 고정 길이 모델의 PPL은 슬라이딩 윈도우 전략으로 평가해야 합니다. 이 전략에는 컨텍스트 윈도우을 반복적으로 슬라이딩해 모델이 각 예측을 수행할 때 더 많은 컨텍스트를 갖도록 하는 작업이 포함됩니다. <img width="600" alt="Sliding window PPL taking advantage of all available context" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/ppl_sliding.gif"/> 이는 시퀀스 확률의 실제 분해에 더 가까운 근사치이며 일반적으로 더 유리한 점수를 산출합니다. 단점은 말뭉치의 각 토큰에 대해 별도의 포워드 패스가 필요하다는 것입니다. 현실적으로 좋은 절충안은 한 번에 한 토큰씩 슬라이딩하는 것이 아니라 더 큰 간격으로 컨텍스트를 이동하는 스트라이드가 적용된 슬라이딩 윈도우을 사용하는 것입니다. 이렇게 하면 계산을 훨씬 더 빠르게 진행하면서도 모델에 각 단계에서 예측을 수행할 수 있는 긴 컨텍스트를 제공할 수 있습니다. ## 예제: 🤗 Transformers에서 GPT-2로 펄플렉서티(perplexity) 계산하기[[example-calculating-perplexity-with-gpt2-in-transformers]] 이제 GPT-2로 위의 과정을 시연해 보겠습니다. ```python from transformers import GPT2LMHeadModel, GPT2TokenizerFast device = "cuda" model_id = "gpt2-large" model = GPT2LMHeadModel.from_pretrained(model_id).to(device) tokenizer = GPT2TokenizerFast.from_pretrained(model_id) ``` WikiText-2 데이터 세트를 가져오고 몇 가지 슬라이딩 윈도우 전략을 사용해 펄플렉서티를 계산해보겠습니다. 이 데이터 세트는 크기가 작고 포워드 패스 한 번만 수행하기 때문에 전체 데이터 세트를 메모리에 가져오고 인코딩할 수 있습니다. ```python from datasets import load_dataset test = load_dataset("wikitext", "wikitext-2-raw-v1", split="test") encodings = tokenizer("\n\n".join(test["text"]), return_tensors="pt") ``` 🤗 Transformers를 사용하면 모델의 `labels`로 `input_ids`를 전달해 각 토큰에 대한 평균 음의 우도 값을 손실로 반환할 수 있습니다. 하지만 슬라이딩 윈도우 방식을 사용하면 각 반복마다 모델에 전달하는 토큰이 겹칩니다. 컨텍스트로 처리하는 토큰에 대한 로그 우도 값이 손실에 포함되는 것을 원하지 않기 때문에 이러한 토큰의 `input_ids`를 `-100`으로 설정하여 무시할 수 있습니다. 다음은 스트라이드(stride)를 `512`로 사용한 예시입니다. 즉, 모델이 한 토큰의 조건부 우도 값을 계산할 때 컨텍스트에 최소한 512개의 토큰이 포함되어있다는 의미입니다 (해당 토큰 앞에 512개의 토큰이 있는 경우). ```python import torch from tqdm import tqdm max_length = model.config.n_positions stride = 512 seq_len = encodings.input_ids.size(1) nlls = [] prev_end_loc = 0 for begin_loc in tqdm(range(0, seq_len, stride)): end_loc = min(begin_loc + max_length, seq_len) trg_len = end_loc - prev_end_loc # 마지막 루프의 스트라이드 값과 다를 수 있음 input_ids = encodings.input_ids[:, begin_loc:end_loc].to(device) target_ids = input_ids.clone() target_ids[:, :-trg_len] = -100 with torch.no_grad(): outputs = model(input_ids, labels=target_ids) # 손실은 모든 유효한 레이블에 대한 평균값을 구하는 교차 엔트로피(cross entropy)로 계산됩니다. # 나이브 베이지안 모델은 내부적으로 레이블을 왼쪽으로 1개씩 밀기 때문에, (타켓 - 1)개 만큼의 레이블에 대해 손실을 계산합니다. neg_log_likelihood = outputs.loss nlls.append(neg_log_likelihood) prev_end_loc = end_loc if end_loc == seq_len: break ppl = torch.exp(torch.stack(nlls).mean()) ``` 스트라이드를 최대 입력 길이와 동일하게 설정하면 위에서 설명한 차선책인 비슬라이딩 윈도우 전략과 동일합니다. 일반적으로 스트라이드가 작을수록 모델이 각 예측을 할 때 더 많은 컨텍스트를 볼 수 있게 되어 펄플렉서티 값이 좋아집니다. 위의 계산을 토큰이 겹치지 않도록 `stride = 1024`로 설정하면 PPL은 `19.44`로 GPT-2 논문에서 보고된 `19.93`과 거의 동일합니다. `stride = 512`로 슬라이딩 윈도우 전략을 사용하면 PPL은 `16.45`로 떨어집니다. 이는 더 좋은 점수일 뿐만 아니라 시퀀스 확률의 실제 자동 회귀 분해에 더 가까운 방식으로 계산됩니다.
transformers/docs/source/ko/perplexity.md/0
{ "file_path": "transformers/docs/source/ko/perplexity.md", "repo_id": "transformers", "token_count": 6263 }
249
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 테스트[[testing]] 먼저 🤗 Transformers 모델이 어떻게 테스트되는지 살펴보고, 새로운 테스트를 작성 및 기존 테스트를 개선하는 방법을 알아봅시다. 이 저장소에는 2개의 테스트 스위트가 있습니다: 1. `tests` - 일반 API에 대한 테스트 2. `examples` - API의 일부가 아닌 다양한 응용 프로그램에 대한 테스트 ## Transformers 테스트 방법[[how-transformers-are-tested]] 1. PR이 제출되면 9개의 CircleCi 작업으로 테스트가 진행됩니다. 해당 PR에 대해 새로운 커밋이 생성될 때마다 테스트는 다시 진행됩니다. 이 작업들은 이 [config 파일](https://github.com/huggingface/transformers/tree/main/.circleci/config.yml)에 정의되어 있으므로 필요하다면 사용자의 로컬 환경에서 동일하게 재현해 볼 수 있습니다. 이 CI 작업은 `@slow` 테스트를 실행하지 않습니다. 2. [github actions](https://github.com/huggingface/transformers/actions)에 의해 실행되는 작업은 3개입니다: - [torch hub integration](https://github.com/huggingface/transformers/tree/main/.github/workflows/github-torch-hub.yml): torch hub integration이 작동하는지 확인합니다. - [self-hosted (push)](https://github.com/huggingface/transformers/tree/main/.github/workflows/self-push.yml): `main` 브랜치에서 커밋이 업데이트된 경우에만 GPU를 이용한 빠른 테스트를 실행합니다. 이는 `src`, `tests`, `.github` 폴더 중 하나에 코드가 업데이트된 경우에만 실행됩니다. (model card, notebook, 기타 등등을 추가한 경우 실행되지 않도록 하기 위해서입니다) - [self-hosted runner](https://github.com/huggingface/transformers/tree/main/.github/workflows/self-scheduled.yml): `tests` 및 `examples`에서 GPU를 이용한 일반 테스트, 느린 테스트를 실행합니다. ```bash RUN_SLOW=1 pytest tests/ RUN_SLOW=1 pytest examples/ ``` 결과는 [여기](https://github.com/huggingface/transformers/actions)에서 확인할 수 있습니다. ## 테스트 실행[[running-tests]] ### 실행할 테스트 선택[[choosing-which-tests-to-run]] 이 문서는 테스트를 실행하는 다양한 방법에 대해 자세히 설명합니다. 모든 내용을 읽은 후에도, 더 자세한 내용이 필요하다면 [여기](https://docs.pytest.org/en/latest/usage.html)에서 확인할 수 있습니다. 다음은 가장 유용한 테스트 실행 방법 몇 가지입니다. 모두 실행: ```console pytest ``` 또는: ```bash make test ``` 후자는 다음과 같이 정의됩니다: ```bash python -m pytest -n auto --dist=loadfile -s -v ./tests/ ``` 위의 명령어는 pytest에게 아래의 내용을 전달합니다: - 사용 가능한 CPU 코어 수만큼 테스트 프로세스를 실행합니다. (RAM이 충분하지 않다면, 테스트 프로세스 수가 너무 많을 수 있습니다!) - 동일한 파일의 모든 테스트는 동일한 테스트 프로세스에서 실행되어야 합니다. - 출력을 캡처하지 않습니다. - 자세한 모드로 실행합니다. ### 모든 테스트 목록 가져오기[[getting-the-list-of-all-tests]] 테스트 스위트의 모든 테스트: ```bash pytest --collect-only -q ``` 지정된 테스트 파일의 모든 테스트: ```bash pytest tests/test_optimization.py --collect-only -q ``` ### 특정 테스트 모듈 실행[[run-a-specific-test-module]] 개별 테스트 모듈 실행하기: ```bash pytest tests/utils/test_logging.py ``` ### 특정 테스트 실행[[run-specific-tests]] 대부분의 테스트 내부에서는 unittest가 사용됩니다. 따라서 특정 하위 테스트를 실행하려면 해당 테스트를 포함하는 unittest 클래스의 이름을 알아야 합니다. 예를 들어 다음과 같을 수 있습니다: ```bash pytest tests/test_optimization.py::OptimizationTest::test_adam_w ``` 위의 명령어의 의미는 다음과 같습니다: - `tests/test_optimization.py` - 테스트가 있는 파일 - `OptimizationTest` - 클래스의 이름 - `test_adam_w` - 특정 테스트 함수의 이름 파일에 여러 클래스가 포함된 경우, 특정 클래스의 테스트만 실행할 수도 있습니다. 예를 들어 다음과 같습니다: ```bash pytest tests/test_optimization.py::OptimizationTest ``` 이 명령어는 해당 클래스 내부의 모든 테스트를 실행합니다. 앞에서 언급한 것처럼 `OptimizationTest` 클래스에 포함된 테스트를 확인할 수 있습니다. ```bash pytest tests/test_optimization.py::OptimizationTest --collect-only -q ``` 키워드 표현식을 사용하여 테스트를 실행할 수도 있습니다. `adam`이라는 이름을 포함하는 테스트만 실행하려면 다음과 같습니다: ```bash pytest -k adam tests/test_optimization.py ``` 논리 연산자 `and`와 `or`를 사용하여 모든 키워드가 일치해야 하는지 또는 어느 하나가 일치해야 하는지를 나타낼 수 있습니다. `not`은 부정할 때 사용할 수 있습니다. `adam`이라는 이름을 포함하지 않는 모든 테스트를 실행하려면 다음과 같습니다: ```bash pytest -k "not adam" tests/test_optimization.py ``` 두 가지 패턴을 하나로 결합할 수도 있습니다: ```bash pytest -k "ada and not adam" tests/test_optimization.py ``` 예를 들어 `test_adafactor`와 `test_adam_w`를 모두 실행하려면 다음을 사용할 수 있습니다: ```bash pytest -k "test_adam_w or test_adam_w" tests/test_optimization.py ``` 여기서 `or`를 사용하는 것에 유의하세요. 두 키워드 중 하나가 일치하도록 하기 위한 목적으로 사용하기 때문입니다. 두 패턴이 모두 포함되어야 하는 테스트만 실행하려면, `and`를 사용해야 합니다: ```bash pytest -k "test and ada" tests/test_optimization.py ``` ### `accelerate` 테스트 실행[[run-`accelerate`-tests]] 모델에서 `accelerate` 테스트를 실행해야 할 때가 있습니다. 이를 위해서는 명령어에 `-m accelerate_tests`를 추가하면 됩니다. 예를 들어, `OPT`에서 이러한 테스트를 실행하려면 다음과 같습니다: ```bash RUN_SLOW=1 pytest -m accelerate_tests tests/models/opt/test_modeling_opt.py ``` ### 문서 테스트 실행[[run-documentation-tests]] 예시 문서가 올바른지 테스트하려면 `doctests`가 통과하는지 확인해야 합니다. 예를 들어, [`WhisperModel.forward`'s docstring](https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py#L1017-L1035)를 사용해 봅시다: ```python r""" Returns: Example: ```python >>> import torch >>> from transformers import WhisperModel, WhisperFeatureExtractor >>> from datasets import load_dataset >>> model = WhisperModel.from_pretrained("openai/whisper-base") >>> feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-base") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt") >>> input_features = inputs.input_features >>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state >>> list(last_hidden_state.shape) [1, 2, 512] ```""" ``` 원하는 파일의 모든 docstring 예제를 자동으로 테스트하려면 다음 명령을 실행하면 됩니다: ```bash pytest --doctest-modules <path_to_file_or_dir> ``` 파일의 확장자가 markdown인 경우 `--doctest-glob="*.md"` 인수를 추가해야 합니다. ### 수정된 테스트만 실행[[run-only-modified-tests]] 수정된 파일 또는 현재 브랜치 (Git 기준)와 관련된 테스트를 실행하려면 [pytest-picked](https://github.com/anapaulagomes/pytest-picked)을 사용할 수 있습니다. 이는 변경한 내용이 테스트에 영향을 주지 않았는지 빠르게 확인할 수 있는 좋은 방법입니다. ```bash pip install pytest-picked ``` ```bash pytest --picked ``` 수정되었지만, 아직 커밋되지 않은 모든 파일 및 폴더에서 테스트가 실행됩니다. ### 소스 수정 시 실패한 테스트 자동 재실행[[automatically-rerun-failed-tests-on-source-modification]] [pytest-xdist](https://github.com/pytest-dev/pytest-xdist)는 모든 실패한 테스트를 감지하고, 파일을 수정한 후에 파일을 계속 재실행하여 테스트가 성공할 때까지 기다리는 매우 유용한 기능을 제공합니다. 따라서 수정한 내용을 확인한 후 pytest를 다시 시작할 필요가 없습니다. 모든 테스트가 통과될 때까지 이 과정을 반복한 후 다시 전체 실행이 이루어집니다. ```bash pip install pytest-xdist ``` 재귀적 모드의 사용: `pytest -f` 또는 `pytest --looponfail` 파일의 변경 사항은 `looponfailroots` 루트 디렉터리와 해당 내용을 (재귀적으로) 확인하여 감지됩니다. 이 값의 기본값이 작동하지 않는 경우, `setup.cfg`의 설정 옵션을 변경하여 프로젝트에서 변경할 수 있습니다: ```ini [tool:pytest] looponfailroots = transformers tests ``` 또는 `pytest.ini`/``tox.ini`` 파일: ```ini [pytest] looponfailroots = transformers tests ``` 이렇게 하면 ini-file의 디렉터리를 기준으로 상대적으로 지정된 각 디렉터리에서 파일 변경 사항만 찾게 됩니다. 이 기능을 대체할 수 있는 구현 방법인 [pytest-watch](https://github.com/joeyespo/pytest-watch)도 있습니다. ### 특정 테스트 모듈 건너뛰기[[skip-a-test-module]] 모든 테스트 모듈을 실행하되 특정 모듈을 제외하려면, 실행할 테스트 목록을 명시적으로 지정할 수 있습니다. 예를 들어, `test_modeling_*.py` 테스트를 제외한 모든 테스트를 실행하려면 다음을 사용할 수 있습니다: ```bash pytest *ls -1 tests/*py | grep -v test_modeling* ``` ### 상태 초기화[[clearing state]] CI 빌드 및 (속도에 대한) 격리가 중요한 경우, 캐시를 지워야 합니다: ```bash pytest --cache-clear tests ``` ### 테스트를 병렬로 실행[[running-tests-in-parallel]] 이전에 언급한 것처럼 `make test`는 테스트를 병렬로 실행하기 위해 `pytest-xdist` 플러그인(`-n X` 인수, 예를 들어 `-n 2`를 사용하여 2개의 병렬 작업 실행)을 통해 실행됩니다. `pytest-xdist`의 `--dist=` 옵션을 사용하여 테스트를 어떻게 그룹화할지 제어할 수 있습니다. `--dist=loadfile`은 하나의 파일에 있는 테스트를 동일한 프로세스로 그룹화합니다. 실행된 테스트의 순서가 다르고 예측할 수 없기 때문에, `pytest-xdist`로 테스트 스위트를 실행하면 실패가 발생할 수 있습니다 (검출되지 않은 결합된 테스트가 있는 경우). 이 경우 [pytest-replay](https://github.com/ESSS/pytest-replay)를 사용하면 동일한 순서로 테스트를 다시 실행해서 실패하는 시퀀스를 최소화하는 데에 도움이 됩니다. ### 테스트 순서와 반복[[test-order-and-repetition]] 잠재적인 종속성 및 상태 관련 버그(tear down)를 감지하기 위해 테스트를 여러 번, 연속으로, 무작위로 또는 세트로 반복하는 것이 좋습니다. 그리고 직접적인 여러 번의 반복은 DL의 무작위성에 의해 발견되는 일부 문제를 감지하는 데에도 유용합니다. #### 테스트를 반복[[repeat-tests]] - [pytest-flakefinder](https://github.com/dropbox/pytest-flakefinder): ```bash pip install pytest-flakefinder ``` 모든 테스트를 여러 번 실행합니다(기본값은 50번): ```bash pytest --flake-finder --flake-runs=5 tests/test_failing_test.py ``` <Tip> 이 플러그인은 `pytest-xdist`의 `-n` 플래그와 함께 작동하지 않습니다. </Tip> <Tip> `pytest-repeat`라는 또 다른 플러그인도 있지만 `unittest`와 함께 작동하지 않습니다. </Tip> #### 테스트를 임의의 순서로 실행[[run-tests-in-a-random-order]] ```bash pip install pytest-random-order ``` 중요: `pytest-random-order`가 설치되면 테스트가 자동으로 임의의 순서로 섞입니다. 구성 변경이나 커맨드 라인 옵션이 필요하지 않습니다. 앞서 설명한 것처럼 이를 통해 한 테스트의 상태가 다른 테스트의 상태에 영향을 미치는 결합된 테스트를 감지할 수 있습니다. `pytest-random-order`가 설치되면 해당 세션에서 사용된 랜덤 시드가 출력되며 예를 들어 다음과 같습니다: ```bash pytest tests [...] Using --random-order-bucket=module Using --random-order-seed=573663 ``` 따라서 특정 시퀀스가 실패하는 경우에는 정확한 시드를 추가하여 재현할 수 있습니다. 예를 들어 다음과 같습니다: ```bash pytest --random-order-seed=573663 [...] Using --random-order-bucket=module Using --random-order-seed=573663 ``` 정확히 동일한 테스트 목록(또는 목록이 없음)을 사용하는 경우에만 정확한 순서를 재현합니다. 목록을 수동으로 좁히기 시작하면 더 이상 시드에 의존할 수 없고 실패했던 정확한 순서로 수동으로 목록을 나열해야합니다. 그리고 `--random-order-bucket=none`을 사용하여 pytest에게 순서를 임의로 설정하지 않도록 알려야 합니다. 예를 들어 다음과 같습니다: ```bash pytest --random-order-bucket=none tests/test_a.py tests/test_c.py tests/test_b.py ``` 모든 테스트에 대해 섞기를 비활성화하려면 다음과 같습니다: ```bash pytest --random-order-bucket=none ``` 기본적으로 `--random-order-bucket=module`이 내재되어 있으므로, 모듈 수준에서 파일을 섞습니다. 또한 `class`, `package`, `global` 및 `none` 수준에서도 섞을 수 있습니다. 자세한 내용은 해당 [문서](https://github.com/jbasko/pytest-random-order)를 참조하세요. 또 다른 무작위화의 대안은 [`pytest-randomly`](https://github.com/pytest-dev/pytest-randomly)입니다. 이 모듈은 매우 유사한 기능/인터페이스를 가지고 있지만, `pytest-random-order`에 있는 버킷 모드를 사용할 수는 없습니다. 설치 후에는 자동으로 적용되는 문제도 동일하게 가집니다. ### 외관과 느낌을 변경[[look-and-feel-variations] #### pytest-sugar 사용[[pytest-sugar]] [pytest-sugar](https://github.com/Frozenball/pytest-sugar)는 테스트가 보여지는 형태를 개선하고, 진행 상황 바를 추가하며, 실패한 테스트와 검증을 즉시 표시하는 플러그인입니다. 설치하면 자동으로 활성화됩니다. ```bash pip install pytest-sugar ``` pytest-sugar 없이 테스트를 실행하려면 다음과 같습니다: ```bash pytest -p no:sugar ``` 또는 제거하세요. #### 각 하위 테스트 이름과 진행 상황 보고[[report-each-sub-test-name-and-its-progress]] `pytest`를 통해 단일 또는 그룹의 테스트를 실행하는 경우(`pip install pytest-pspec` 이후): ```bash pytest --pspec tests/test_optimization.py ``` #### 실패한 테스트 즉시 표시[[instantly-shows-failed-tests]] [pytest-instafail](https://github.com/pytest-dev/pytest-instafail)은 테스트 세션의 끝까지 기다리지 않고 실패 및 오류를 즉시 표시합니다. ```bash pip install pytest-instafail ``` ```bash pytest --instafail ``` ### GPU 사용 여부[[to-GPU-or-not-to-GPU]] GPU가 활성화된 환경에서, CPU 전용 모드로 테스트하려면 `CUDA_VISIBLE_DEVICES=""`를 추가합니다: ```bash CUDA_VISIBLE_DEVICES="" pytest tests/utils/test_logging.py ``` 또는 다중 GPU가 있는 경우 `pytest`에서 사용할 GPU를 지정할 수도 있습니다. 예를 들어, GPU `0` 및 `1`이 있는 경우 다음을 실행할 수 있습니다: ```bash CUDA_VISIBLE_DEVICES="1" pytest tests/utils/test_logging.py ``` 이렇게 하면 다른 GPU에서 다른 작업을 실행하려는 경우 유용합니다. 일부 테스트는 반드시 CPU 전용으로 실행해야 하며, 일부는 CPU 또는 GPU 또는 TPU에서 실행해야 하고, 일부는 여러 GPU에서 실행해야 합니다. 다음 스킵 데코레이터는 테스트의 요구 사항을 CPU/GPU/TPU별로 설정하는 데 사용됩니다: - `require_torch` - 이 테스트는 torch에서만 실행됩니다. - `require_torch_gpu` - `require_torch`에 추가로 적어도 1개의 GPU가 필요합니다. - `require_torch_multi_gpu` - `require_torch`에 추가로 적어도 2개의 GPU가 필요합니다. - `require_torch_non_multi_gpu` - `require_torch`에 추가로 0개 또는 1개의 GPU가 필요합니다. - `require_torch_up_to_2_gpus` - `require_torch`에 추가로 0개, 1개 또는 2개의 GPU가 필요합니다. - `require_torch_tpu` - `require_torch`에 추가로 적어도 1개의 TPU가 필요합니다. GPU 요구 사항을 표로 정리하면 아래와 같습니디ㅏ: | n gpus | decorator | |--------+--------------------------------| | `>= 0` | `@require_torch` | | `>= 1` | `@require_torch_gpu` | | `>= 2` | `@require_torch_multi_gpu` | | `< 2` | `@require_torch_non_multi_gpu` | | `< 3` | `@require_torch_up_to_2_gpus` | 예를 들어, 2개 이상의 GPU가 있고 pytorch가 설치되어 있을 때에만 실행되어야 하는 테스트는 다음과 같습니다: ```python no-style @require_torch_multi_gpu def test_example_with_multi_gpu(): ``` `tensorflow`가 필요한 경우 `require_tf` 데코레이터를 사용합니다. 예를 들어 다음과 같습니다: ```python no-style @require_tf def test_tf_thing_with_tensorflow(): ``` 이러한 데코레이터는 중첩될 수 있습니다. 예를 들어, 느린 테스트로 진행되고 pytorch에서 적어도 하나의 GPU가 필요한 경우 다음과 같이 설정할 수 있습니다: ```python no-style @require_torch_gpu @slow def test_example_slow_on_gpu(): ``` `@parametrized`와 같은 일부 데코레이터는 테스트 이름을 다시 작성하기 때문에 `@require_*` 스킵 데코레이터는 올바르게 작동하려면 항상 맨 마지막에 나열되어야 합니다. 다음은 올바른 사용 예입니다: ```python no-style @parameterized.expand(...) @require_torch_multi_gpu def test_integration_foo(): ``` `@pytest.mark.parametrize`에는 이러한 순서 문제는 없으므로 처음 혹은 마지막에 위치시킬 수 있고 이러한 경우에도 잘 작동할 것입니다. 하지만 unittest가 아닌 경우에만 작동합니다. 테스트 내부에서 다음을 사용할 수 있습니다: - 사용 가능한 GPU 수: ```python from transformers.testing_utils import get_gpu_count n_gpu = get_gpu_count() #torch와 tf와 함께 작동 ``` ### 분산 훈련[[distributed-training]] `pytest`는 분산 훈련을 직접적으로 다루지 못합니다. 이를 시도하면 하위 프로세스가 올바른 작업을 수행하지 않고 `pytest`라고 생각하기에 테스트 스위트를 반복해서 실행하게 됩니다. 그러나 일반 프로세스를 생성한 다음 여러 워커를 생성하고 IO 파이프를 관리하도록 하면 동작합니다. 다음은 사용 가능한 테스트입니다: - [test_trainer_distributed.py](https://github.com/huggingface/transformers/tree/main/tests/trainer/test_trainer_distributed.py) - [test_deepspeed.py](https://github.com/huggingface/transformers/tree/main/tests/deepspeed/test_deepspeed.py) 실행 지점으로 바로 이동하려면, 해당 테스트에서 `execute_subprocess_async` 호출을 검색하세요. 이러한 테스트를 실행하려면 적어도 2개의 GPU가 필요합니다. ```bash CUDA_VISIBLE_DEVICES=0,1 RUN_SLOW=1 pytest -sv tests/test_trainer_distributed.py ``` ### 출력 캡처[[output-capture]] 테스트 실행 중 `stdout` 및 `stderr`로 전송된 모든 출력이 캡처됩니다. 테스트나 설정 메소드가 실패하면 캡처된 출력은 일반적으로 실패 추적 정보와 함께 표시됩니다. 출력 캡처를 비활성화하고 `stdout` 및 `stderr`를 정상적으로 받으려면 `-s` 또는 `--capture=no`를 사용하세요: ```bash pytest -s tests/utils/test_logging.py ``` 테스트 결과를 JUnit 형식의 출력으로 보내려면 다음을 사용하세요: ```bash py.test tests --junitxml=result.xml ``` ### 색상 조절[[color-control]] 색상이 없게 하려면 다음과 같이 설정하세요(예를 들어 흰색 배경에 노란색 글씨는 가독성이 좋지 않습니다): ```bash pytest --color=no tests/utils/test_logging.py ``` ### online pastebin service에 테스트 보고서 전송[[sending test report to online pastebin service]] 각 테스트 실패에 대한 URL을 만듭니다: ```bash pytest --pastebin=failed tests/utils/test_logging.py ``` 이렇게 하면 각 실패에 대한 URL을 제공하는 remote Paste service에 테스트 실행 정보를 제출합니다. 일반적인 테스트를 선택할 수도 있고 혹은 특정 실패만 보내려면 `-x`와 같이 추가할 수도 있습니다. 전체 테스트 세션 로그에 대한 URL을 생성합니다: ```bash pytest --pastebin=all tests/utils/test_logging.py ``` ## 테스트 작성[[writing-tests]] 🤗 transformers 테스트는 대부분 `unittest`를 기반으로 하지만, `pytest`에서 실행되므로 대부분의 경우 두 시스템의 기능을 사용할 수 있습니다. 지원되는 기능에 대해 [여기](https://docs.pytest.org/en/stable/unittest.html)에서 확인할 수 있지만, 기억해야 할 중요한 점은 대부분의 `pytest` fixture가 작동하지 않는다는 것입니다. 파라미터화도 작동하지 않지만, 우리는 비슷한 방식으로 작동하는 `parameterized` 모듈을 사용합니다. ### 매개변수화[[parametrization]] 동일한 테스트를 다른 인수로 여러 번 실행해야 하는 경우가 종종 있습니다. 테스트 내에서 이 작업을 수행할 수 있지만, 그렇게 하면 하나의 인수 세트에 대해 테스트를 실행할 수 없습니다. ```python # test_this1.py import unittest from parameterized import parameterized class TestMathUnitTest(unittest.TestCase): @parameterized.expand( [ ("negative", -1.5, -2.0), ("integer", 1, 1.0), ("large fraction", 1.6, 1), ] ) def test_floor(self, name, input, expected): assert_equal(math.floor(input), expected) ``` 이제 기본적으로 이 테스트는 `test_floor`의 마지막 3개 인수가 매개변수 목록의 해당 인수에 할당되는 것으로 3번 실행될 것입니다. 그리고 `negative` 및 `integer` 매개변수 집합만 실행하려면 다음과 같이 실행할 수 있습니다: ```bash pytest -k "negative and integer" tests/test_mytest.py ``` 또는 `negative` 하위 테스트를 제외한 모든 서브 테스트를 다음과 같이 실행할 수 있습니다: ```bash pytest -k "not negative" tests/test_mytest.py ``` 앞에서 언급한 `-k` 필터를 사용하는 것 외에도, 각 서브 테스트의 정확한 이름을 확인한 후에 일부 혹은 전체 서브 테스트를 실행할 수 있습니다. ```bash pytest test_this1.py --collect-only -q ``` 그리고 다음의 내용을 확인할 수 있을 것입니다: ```bash test_this1.py::TestMathUnitTest::test_floor_0_negative test_this1.py::TestMathUnitTest::test_floor_1_integer test_this1.py::TestMathUnitTest::test_floor_2_large_fraction ``` 2개의 특정한 서브 테스트만 실행할 수도 있습니다: ```bash pytest test_this1.py::TestMathUnitTest::test_floor_0_negative test_this1.py::TestMathUnitTest::test_floor_1_integer ``` `transformers`의 개발자 종속성에 이미 있는 [parameterized](https://pypi.org/project/parameterized/) 모듈은 `unittests`와 `pytest` 테스트 모두에서 작동합니다. 그러나 테스트가 `unittest`가 아닌 경우 `pytest.mark.parametrize`를 사용할 수 있습니다(이미 있는 일부 테스트에서 사용되는 경우도 있습니다. 주로 `examples` 하위에 있습니다). 다음은 `pytest`의 `parametrize` 마커를 사용한 동일한 예입니다: ```python # test_this2.py import pytest @pytest.mark.parametrize( "name, input, expected", [ ("negative", -1.5, -2.0), ("integer", 1, 1.0), ("large fraction", 1.6, 1), ], ) def test_floor(name, input, expected): assert_equal(math.floor(input), expected) ``` `parameterized`와 마찬가지로 `pytest.mark.parametrize`를 사용하면 `-k` 필터가 작동하지 않는 경우에도 실행할 서브 테스트를 정확하게 지정할 수 있습니다. 단, 이 매개변수화 함수는 서브 테스트의 이름 집합을 약간 다르게 생성합니다. 다음과 같은 모습입니다: ```bash pytest test_this2.py --collect-only -q ``` 그리고 다음의 내용을 확인할 수 있을 것입니다: ```bash test_this2.py::test_floor[integer-1-1.0] test_this2.py::test_floor[negative--1.5--2.0] test_this2.py::test_floor[large fraction-1.6-1] ``` 특정한 테스트에 대해서만 실행할 수도 있습니다: ```bash pytest test_this2.py::test_floor[negative--1.5--2.0] test_this2.py::test_floor[integer-1-1.0] ``` 이전의 예시와 같이 실행할 수 있습니다. ### 파일 및 디렉터리[[files-and-directories]] 테스트에서 종종 현재 테스트 파일과 관련된 상대적인 위치를 알아야 하는 경우가 있습니다. 테스트가 여러 디렉터리에서 호출되거나 깊이가 다른 하위 디렉터리에 있을 수 있기 때문에 그 위치를 아는 것은 간단하지 않습니다. `transformers.test_utils.TestCasePlus`라는 헬퍼 클래스는 모든 기본 경로를 처리하고 간단한 액세서를 제공하여 이 문제를 해결합니다: - `pathlib` 객체(완전히 정해진 경로) - `test_file_path` - 현재 테스트 파일 경로 (예: `__file__`) - test_file_dir` - 현재 테스트 파일이 포함된 디렉터리 - tests_dir` - `tests` 테스트 스위트의 디렉터리 - examples_dir` - `examples` 테스트 스위트의 디렉터리 - repo_root_dir` - 저장소 디렉터리 - src_dir` - `src`의 디렉터리(예: `transformers` 하위 디렉터리가 있는 곳) - 문자열로 변환된 경로---위와 동일하지만, `pathlib` 객체가 아닌 문자열로 경로를 반환합니다: - `test_file_path_str` - `test_file_dir_str` - `tests_dir_str` - `examples_dir_str` - `repo_root_dir_str` - `src_dir_str` 위의 내용을 사용하려면 테스트가 'transformers.test_utils.TestCasePlus'의 서브클래스에 있는지 확인해야 합니다. 예를 들어 다음과 같습니다: ```python from transformers.testing_utils import TestCasePlus class PathExampleTest(TestCasePlus): def test_something_involving_local_locations(self): data_dir = self.tests_dir / "fixtures/tests_samples/wmt_en_ro" ``` 만약 `pathlib`를 통해 경로를 조작할 필요가 없거나 경로를 문자열로만 필요로 하는 경우에는 `pathlib` 객체에 `str()`을 호출하거나 `_str`로 끝나는 접근자를 사용할 수 있습니다. 예를 들어 다음과 같습니다: ```python from transformers.testing_utils import TestCasePlus class PathExampleTest(TestCasePlus): def test_something_involving_stringified_locations(self): examples_dir = self.examples_dir_str ``` ### 임시 파일 및 디렉터리[[temporary-files-and-directories]] 고유한 임시 파일 및 디렉터리를 사용하는 것은 병렬 테스트 실행에 있어 필수적입니다. 이렇게 함으로써 테스트들이 서로의 데이터를 덮어쓰지 않게 할 수 있습니다. 또한 우리는 생성된 테스트의 종료 단계에서 이러한 임시 파일 및 디렉터리를 제거하고 싶습니다. 따라서 이러한 요구 사항을 충족시켜주는 `tempfile`과 같은 패키지를 사용하는 것이 중요합니다. 그러나 테스트를 디버깅할 때는 임시 파일이나 디렉터리에 들어가는 내용을 확인할 수 있어야 하며, 재실행되는 각 테스트마다 임시 파일이나 디렉터리의 경로에 대해 무작위 값이 아닌 정확한 값을 알고 싶을 것입니다. `transformers.test_utils.TestCasePlus`라는 도우미 클래스는 이러한 목적에 가장 적합합니다. 이 클래스는 `unittest.TestCase`의 하위 클래스이므로, 우리는 이것을 테스트 모듈에서 쉽게 상속할 수 있습니다. 다음은 해당 클래스를 사용하는 예시입니다: ```python from transformers.testing_utils import TestCasePlus class ExamplesTests(TestCasePlus): def test_whatever(self): tmp_dir = self.get_auto_remove_tmp_dir() ``` 이 코드는 고유한 임시 디렉터리를 생성하고 `tmp_dir`을 해당 위치로 설정합니다. - 고유한 임시 디렉터리를 생성합니다: ```python def test_whatever(self): tmp_dir = self.get_auto_remove_tmp_dir() ``` `tmp_dir`에는 생성된 임시 디렉터리의 경로가 포함됩니다. 이는 테스트의 종료 단계에서 자동으로 제거됩니다. - 선택한 경로로 임시 디렉터리 생성 후에 테스트 시작 전에 비어 있는 상태인지 확인하고, 테스트 후에는 비우지 마세요. ```python def test_whatever(self): tmp_dir = self.get_auto_remove_tmp_dir("./xxx") ``` 이것은 디버깅할 때 특정 디렉터리를 모니터링하고, 그 디렉터리에 이전에 실행된 테스트가 데이터를 남기지 않도록 하는 데에 유용합니다. - `before` 및 `after` 인수를 직접 오버라이딩하여 기본 동작을 변경할 수 있으며 다음 중 하나의 동작으로 이어집니다: - `before=True`: 테스트 시작 시 임시 디렉터리가 항상 지워집니다. - `before=False`: 임시 디렉터리가 이미 존재하는 경우 기존 파일은 그대로 남습니다. - `after=True`: 테스트 종료 시 임시 디렉터리가 항상 삭제됩니다. - `after=False`: 테스트 종료 시 임시 디렉터리가 항상 그대로 유지됩니다. <Tip> `rm -r`에 해당하는 명령을 안전하게 실행하기 위해, 명시적인 `tmp_dir`을 사용하는 경우 프로젝트 저장소 체크 아웃의 하위 디렉터리만 허용됩니다. 따라서 실수로 `/tmp`가 아닌 중요한 파일 시스템의 일부가 삭제되지 않도록 항상 `./`로 시작하는 경로를 전달해야 합니다. </Tip> <Tip> 각 테스트는 여러 개의 임시 디렉터리를 등록할 수 있으며, 별도로 요청하지 않는 한 모두 자동으로 제거됩니다. </Tip> ### 임시 sys.path 오버라이드[[temporary-sys.path-override]] `sys.path`를 다른 테스트로 임시로 오버라이드하기 위해 예를 들어 `ExtendSysPath` 컨텍스트 관리자를 사용할 수 있습니다. 예를 들어 다음과 같습니다: ```python import os from transformers.testing_utils import ExtendSysPath bindir = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/.."): from test_trainer import TrainerIntegrationCommon # noqa ``` ### 테스트 건너뛰기[[skipping-tests]] 이것은 버그가 발견되어 새로운 테스트가 작성되었지만 아직 그 버그가 수정되지 않은 경우에 유용합니다. 이 테스트를 주 저장소에 커밋하려면 `make test` 중에 건너뛰도록 해야 합니다. 방법: - **skip**은 테스트가 일부 조건이 충족될 경우에만 통과될 것으로 예상되고, 그렇지 않으면 pytest가 전체 테스트를 건너뛰어야 함을 의미합니다. 일반적인 예로는 Windows가 아닌 플랫폼에서 Windows 전용 테스트를 건너뛰거나 외부 리소스(예를 들어 데이터베이스)에 의존하는 테스트를 건너뛰는 것이 있습니다. - **xfail**은 테스트가 특정한 이유로 인해 실패할 것으로 예상하는 것을 의미합니다. 일반적인 예로는 아직 구현되지 않은 기능이나 아직 수정되지 않은 버그의 테스트가 있습니다. `xfail`로 표시된 테스트가 예상대로 실패하지 않고 통과된 경우, 이것은 xpass이며 테스트 결과 요약에 기록됩니다. 두 가지 중요한 차이점 중 하나는 `skip`은 테스트를 실행하지 않지만 `xfail`은 실행한다는 것입니다. 따라서 오류가 있는 코드가 일부 테스트에 영향을 미칠 수 있는 경우 `xfail`을 사용하지 마세요. #### 구현[[implementation]] - 전체 테스트를 무조건 건너뛰려면 다음과 같이 할 수 있습니다: ```python no-style @unittest.skip("this bug needs to be fixed") def test_feature_x(): ``` 또는 pytest를 통해: ```python no-style @pytest.mark.skip(reason="this bug needs to be fixed") ``` 또는 `xfail` 방식으로: ```python no-style @pytest.mark.xfail def test_feature_x(): ``` - 테스트 내부에서 내부 확인에 따라 테스트를 건너뛰는 방법은 다음과 같습니다: ```python def test_feature_x(): if not has_something(): pytest.skip("unsupported configuration") ``` 또는 모듈 전체: ```python import pytest if not pytest.config.getoption("--custom-flag"): pytest.skip("--custom-flag is missing, skipping tests", allow_module_level=True) ``` 또는 `xfail` 방식으로: ```python def test_feature_x(): pytest.xfail("expected to fail until bug XYZ is fixed") ``` - import가 missing된 모듈이 있을 때 그 모듈의 모든 테스트를 건너뛰는 방법: ```python docutils = pytest.importorskip("docutils", minversion="0.3") ``` - 조건에 따라 테스트를 건너뛰는 방법: ```python no-style @pytest.mark.skipif(sys.version_info < (3,6), reason="requires python3.6 or higher") def test_feature_x(): ``` 또는: ```python no-style @unittest.skipIf(torch_device == "cpu", "Can't do half precision") def test_feature_x(): ``` 또는 모듈 전체를 건너뛰는 방법: ```python no-style @pytest.mark.skipif(sys.platform == 'win32', reason="does not run on windows") class TestClass(): def test_feature_x(self): ``` 보다 자세한 예제 및 방법은 [여기](https://docs.pytest.org/en/latest/skipping.html)에서 확인할 수 있습니다. ### 느린 테스트[[slow-tests]] 테스트 라이브러리는 지속적으로 확장되고 있으며, 일부 테스트는 실행하는 데 몇 분이 걸립니다. 그리고 우리에게는 테스트 스위트가 CI를 통해 완료되기까지 한 시간을 기다릴 여유가 없습니다. 따라서 필수 테스트를 위한 일부 예외를 제외하고 느린 테스트는 다음과 같이 표시해야 합니다. ```python no-style from transformers.testing_utils import slow @slow def test_integration_foo(): ``` `@slow`로 표시된 테스트를 실행하려면 `RUN_SLOW=1` 환경 변수를 설정하세요. 예를 들어 다음과 같습니다: ```bash RUN_SLOW=1 pytest tests ``` `@parameterized`와 같은 몇 가지 데코레이터는 테스트 이름을 다시 작성합니다. 그러므로 `@slow`와 나머지 건너뛰기 데코레이터 `@require_*`가 올바르게 작동되려면 마지막에 나열되어야 합니다. 다음은 올바른 사용 예입니다. ```python no-style @parameterized.expand(...) @slow def test_integration_foo(): ``` 이 문서의 초반부에 설명된 것처럼 느린 테스트는 PR의 CI 확인이 아닌 예약된 일정 기반으로 실행됩니다. 따라서 PR 제출 중에 일부 문제를 놓친 채로 병합될 수 있습니다. 이러한 문제들은 다음번의 예정된 CI 작업 중에 감지됩니다. 하지만 PR을 제출하기 전에 자신의 컴퓨터에서 느린 테스트를 실행하는 것 또한 중요합니다. 느린 테스트로 표시해야 하는지 여부를 결정하는 대략적인 결정 기준은 다음과 같습니다. 만약 테스트가 라이브러리의 내부 구성 요소 중 하나에 집중되어 있다면(예: 모델링 파일, 토큰화 파일, 파이프라인), 해당 테스트를 느린 테스트 스위트에서 실행해야 합니다. 만약 라이브러리의 다른 측면(예: 문서 또는 예제)에 집중되어 있다면, 해당 테스트를 느린 테스트 스위트에서 실행해야 합니다. 그리고 이 접근 방식을 보완하기 위해 예외를 만들어야 합니다. - 무거운 가중치 세트나 50MB보다 큰 데이터셋을 다운로드해야 하는 모든 테스트(예: 모델 통합 테스트, 토크나이저 통합 테스트, 파이프라인 통합 테스트)를 느린 테스트로 설정해야 합니다. 새로운 모델을 추가하는 경우 통합 테스트용으로 무작위 가중치로 작은 버전을 만들어 허브에 업로드해야 합니다. 이 내용은 아래 단락에서 설명됩니다. - 특별히 빠르게 실행되도록 최적화되지 않은 학습을 수행해야 하는 테스트는 느린 테스트로 설정해야 합니다. - 느리지 않아야 할 테스트 중 일부가 극도로 느린 경우 예외를 도입하고 이를 `@slow`로 설정할 수 있습니다. 대용량 파일을 디스크에 저장하고 불러오는 자동 모델링 테스트는 `@slow`으로 표시된 테스트의 좋은 예입니다. - CI에서 1초 이내에 테스트가 완료되는 경우(다운로드 포함)에는 느린 테스트가 아니어야 합니다. 느린 테스트가 아닌 경우에는 다양한 내부를 완전히 커버하면서 빠르게 유지되어야 합니다. 예를 들어, 무작위 가중치를 사용하여 특별히 생성된 작은 모델로 테스트하면 상당한 커버리지를 얻을 수 있습니다. 이러한 모델은 최소한의 레이어 수(예: 2), 어휘 크기(예: 1000) 등의 요소만 가집니다. 그런 다음 `@slow` 테스트는 대형 느린 모델을 사용하여 정성적인 테스트를 수행할 수 있습니다. 이러한 작은 모델을 사용하는 방법을 확인하려면 다음과 같이 *tiny* 모델을 찾아보세요. ```bash grep tiny tests examples ``` 다음은 작은 모델[stas/tiny-wmt19-en-de](https://huggingface.co/stas/tiny-wmt19-en-de)을 만든 [script](https://github.com/huggingface/transformers/tree/main/scripts/fsmt/fsmt-make-tiny-model.py) 예시입니다. 특정 모델의 아키텍처에 맞게 쉽게 조정할 수 있습니다. 예를 들어 대용량 모델을 다운로드하는 경우 런타임을 잘못 측정하기 쉽지만, 로컬에서 테스트하면 다운로드한 파일이 캐시되어 다운로드 시간이 측정되지 않습니다. 대신 CI 로그의 실행 속도 보고서를 확인하세요(`pytest --durations=0 tests`의 출력). 이 보고서는 느린 이상값으로 표시되지 않거나 빠르게 다시 작성해야 하는 느린 이상값을 찾는 데도 유용합니다. CI에서 테스트 스위트가 느려지기 시작하면 이 보고서의 맨 위 목록에 가장 느린 테스트가 표시됩니다. ### stdout/stderr 출력 테스트[[testing-the-stdout/stderr-output]] `stdout` 및/또는 `stderr`로 쓰는 함수를 테스트하려면 `pytest`의 [capsys 시스템](https://docs.pytest.org/en/latest/capture.html)을 사용하여 해당 스트림에 액세스할 수 있습니다. 다음과 같이 수행할 수 있습니다. ```python import sys def print_to_stdout(s): print(s) def print_to_stderr(s): sys.stderr.write(s) def test_result_and_stdout(capsys): msg = "Hello" print_to_stdout(msg) print_to_stderr(msg) out, err = capsys.readouterr() # 캡처된 출력 스트림 사용 # 선택 사항: 캡처된 스트림 재생성 sys.stdout.write(out) sys.stderr.write(err) # 테스트: assert msg in out assert msg in err ``` 그리고, 물론 대부분의 경우에는 `stderr`는 예외의 일부로 제공됩니다. 그러므로 해당 경우에는 try/except를 사용해야 합니다. ```python def raise_exception(msg): raise ValueError(msg) def test_something_exception(): msg = "Not a good value" error = "" try: raise_exception(msg) except Exception as e: error = str(e) assert msg in error, f"{msg} is in the exception:\n{error}" ``` `stdout`를 캡처하는 또 다른 방법은 `contextlib.redirect_stdout`를 사용하는 것입니다. ```python from io import StringIO from contextlib import redirect_stdout def print_to_stdout(s): print(s) def test_result_and_stdout(): msg = "Hello" buffer = StringIO() with redirect_stdout(buffer): print_to_stdout(msg) out = buffer.getvalue() # 선택 사항: 캡처된 스트림 재생성 sys.stdout.write(out) # 테스트: assert msg in out ``` `stdout` 캡처에 관련된 중요한 문제 중 하나는 보통 `print`에서 이전에 인쇄된 내용을 재설정하는 `\r` 문자가 포함될 수 있다는 것입니다. `pytest`에서는 문제가 없지만 `pytest -s`에서는 이러한 문자가 버퍼에 포함되므로 `-s`가 있거나 없는 상태에서 태스트를 수행할 수 있으려면 캡처된 출력에 대해 추가적인 정리가 필요합니다. 이 경우에는 `re.sub(r'~.*\r', '', buf, 0, re.M)`을 사용할 수 있습니다. 하지만 도우미 컨텍스트 관리자 래퍼를 사용하면 출력에 `\r`이 포함되어 있는지의 여부에 관계없이 모든 것을 자동으로 처리하므로 편리합니다. ```python from transformers.testing_utils import CaptureStdout with CaptureStdout() as cs: function_that_writes_to_stdout() print(cs.out) ``` 다음은 전체 테스트 예제입니다. ```python from transformers.testing_utils import CaptureStdout msg = "Secret message\r" final = "Hello World" with CaptureStdout() as cs: print(msg + final) assert cs.out == final + "\n", f"captured: {cs.out}, expecting {final}" ``` `stderr`를 캡처하고 싶다면, 대신 `CaptureStderr` 클래스를 사용하세요. ```python from transformers.testing_utils import CaptureStderr with CaptureStderr() as cs: function_that_writes_to_stderr() print(cs.err) ``` 두 스트림을 동시에 캡처해야 한다면, 부모 `CaptureStd` 클래스를 사용하세요. ```python from transformers.testing_utils import CaptureStd with CaptureStd() as cs: function_that_writes_to_stdout_and_stderr() print(cs.err, cs.out) ``` 또한, 테스트의 디버깅을 지원하기 위해 이러한 컨텍스트 관리자는 기본적으로 컨텍스트에서 종료할 때 캡처된 스트림을 자동으로 다시 실행합니다. ### 로거 스트림 캡처[[capturing-logger-stream]] 로거 출력을 검증해야 하는 경우 `CaptureLogger`를 사용할 수 있습니다. ```python from transformers import logging from transformers.testing_utils import CaptureLogger msg = "Testing 1, 2, 3" logging.set_verbosity_info() logger = logging.get_logger("transformers.models.bart.tokenization_bart") with CaptureLogger(logger) as cl: logger.info(msg) assert cl.out, msg + "\n" ``` ### 환경 변수를 이용하여 테스트[[testing-with-environment-variables]] 특정 테스트의 환경 변수 영향을 검증하려면 `transformers.testing_utils.mockenv`라는 도우미 데코레이터를 사용할 수 있습니다. ```python from transformers.testing_utils import mockenv class HfArgumentParserTest(unittest.TestCase): @mockenv(TRANSFORMERS_VERBOSITY="error") def test_env_override(self): env_level_str = os.getenv("TRANSFORMERS_VERBOSITY", None) ``` 일부 경우에는 외부 프로그램을 호출해야할 수도 있는데, 이 때에는 여러 개의 로컬 경로를 포함하는 `os.environ`에서 `PYTHONPATH`의 설정이 필요합니다. 헬퍼 클래스 `transformers.test_utils.TestCasePlus`가 도움이 됩니다: ```python from transformers.testing_utils import TestCasePlus class EnvExampleTest(TestCasePlus): def test_external_prog(self): env = self.get_env() # 이제 `env`를 사용하여 외부 프로그램 호출 ``` 테스트 파일이 `tests` 테스트 스위트 또는 `examples`에 있는지에 따라 `env[PYTHONPATH]`가 두 디렉터리 중 하나를 포함하도록 설정되며, 현재 저장소에 대해 테스트가 수행되도록 `src` 디렉터리도 포함됩니다. 테스트 호출 이전에 설정된 경우에는 `env[PYTHONPATH]`를 그대로 사용합니다. 이 헬퍼 메소드는 `os.environ` 객체의 사본을 생성하므로 원본은 그대로 유지됩니다. ### 재현 가능한 결과 얻기[[getting-reproducible-results]] 일부 상황에서 테스트에서 임의성을 제거하여 동일하게 재현 가능한 결과를 얻고 싶을 수 있습니다. 이를 위해서는 다음과 같이 시드를 고정해야 합니다. ```python seed = 42 # 파이썬 RNG import random random.seed(seed) # 파이토치 RNG import torch torch.manual_seed(seed) torch.backends.cudnn.deterministic = True if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) # 넘파이 RNG import numpy as np np.random.seed(seed) # 텐서플로 RNG tf.random.set_seed(seed) ``` ### 테스트 디버깅[[debugging tests]] 경고가 있는 곳에서 디버거를 시작하려면 다음을 수행하세요. ```bash pytest tests/utils/test_logging.py -W error::UserWarning --pdb ``` ## Github Actions 워크플로우 작업 처리[[working-with-github-actions-workflows]] 셀프 푸시 워크플로우 CI 작업을 트리거하려면, 다음을 수행해야 합니다. 1. `transformers` 원본에서 새 브랜치를 만듭니다(포크가 아닙니다!). 2. 브랜치 이름은 `ci_` 또는 `ci-`로 시작해야 합니다(`main`도 트리거하지만 `main`에서는 PR을 할 수 없습니다). 또한 특정 경로에 대해서만 트리거되므로 이 문서가 작성된 후에 변경된 내용은 [여기](https://github.com/huggingface/transformers/blob/main/.github/workflows/self-push.yml)의 *push:*에서 확인할 수 있습니다. 3. 이 브랜치에서 PR을 생성합니다 4. 그런 다음 [여기](https://github.com/huggingface/transformers/actions/workflows/self-push.yml)에서 작업이 나타나는지 확인할 수 있습니다. 백로그가 있는 경우, 바로 실행되지 않을 수도 있습니다. ## 실험적인 CI 기능 테스트[[testing-Experimental-CI-Features]] CI 기능을 테스트하는 것은 일반 CI 작동에 방해가 될 수 있기 때문에 잠재적으로 문제가 발생할 수 있습니다. 따라서 새로운 CI 기능을 추가하는 경우 다음과 같이 수행해야 합니다. 1. 테스트해야 할 내용을 테스트하는 새로운 전용 작업을 생성합니다. 2. 새로운 작업은 항상 성공해야만 녹색 ✓를 받을 수 있습니다(아래에 자세한 내용이 있습니다). 3. 다양한 PR 유형에 대한 확인을 위해 (사용자 포크 브랜치, 포크되지 않은 브랜치, github.com UI 직접 파일 편집에서 생성된 브랜치, 강제 푸시 등 PR의 유형은 아주 다양합니다.) 며칠 동안 실험 작업의 로그를 모니터링하면서 실행해봅니다. (의도적으로 항상 녹색을 표시하므로 작업 전체가 녹색은 아니라는 점에 유의합니다.) 4. 모든 것이 안정적인지 확인한 후, 새로운 변경 사항을 기존 작업에 병합합니다. 이렇게 하면 CI 기능 자체에 대한 실험이 일반 작업 흐름에 방해가 되지 않습니다. 그러나 새로운 CI 기능이 개발 중인 동안, 항상 성공하도록 할 수 있는 방법은 무엇일까요? TravisCI와 같은 일부 CI는 `ignore-step-failure`를 지원하며 전체 작업을 성공한 것으로 보고하지만, 현재 우리가 사용하는 CircleCI와 Github Actions는 이를 지원하지 않습니다. 따라서 다음과 같은 해결책을 사용할 수 있습니다. 1. bash 스크립트에서 가능한 많은 오류를 억제하기 위해 실행 명령의 시작 부분에 `set +euo pipefail`을 추가합니다. 2. 마지막 명령은 반드시 성공해야 합니다. `echo "done"` 또는 `true`를 사용하면 됩니다. 예시는 다음과 같습니다. ```yaml - run: name: run CI experiment command: | set +euo pipefail echo "setting run-all-despite-any-errors-mode" this_command_will_fail echo "but bash continues to run" # emulate another failure false # but the last command must be a success echo "during experiment do not remove: reporting success to CI, even if there were failures" ``` 간단한 명령의 경우 다음과 같이 수행할 수도 있습니다. ```bash cmd_that_may_fail || true ``` 결과에 만족한 후에는 물론, 실험적인 단계 또는 작업을 일반 작업의 나머지 부분과 통합하면서 `set +euo pipefail` 또는 기타 추가한 요소를 제거하여 실험 작업이 일반 CI 작동에 방해되지 않도록 해야 합니다. 이 전반적인 과정은 실험 단계가 PR의 전반적인 상태에 영향을 주지 않고 실패하도록 `allow-failure`와 같은 기능을 설정할 수 있다면 훨씬 더 쉬웠을 것입니다. 그러나 앞에서 언급한 바와 같이 CircleCI와 Github Actions는 현재 이러한 기능들 지원하지 않습니다. 이 기능의 지원을 위한 투표에 참여하고 CI 관련 스레드들에서 이러한 상황을 확인할 수도 있습니다. - [Github Actions:](https://github.com/actions/toolkit/issues/399) - [CircleCI:](https://ideas.circleci.com/ideas/CCI-I-344)
transformers/docs/source/ko/testing.md/0
{ "file_path": "transformers/docs/source/ko/testing.md", "repo_id": "transformers", "token_count": 35298 }
250
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Usando os Tokenizers do 🤗 Tokenizers O [`PreTrainedTokenizerFast`] depende da biblioteca [🤗 Tokenizers](https://huggingface.co/docs/tokenizers). O Tokenizer obtido da biblioteca 🤗 Tokenizers pode ser carregado facilmente pelo 🤗 Transformers. Antes de entrar nos detalhes, vamos começar criando um tokenizer fictício em algumas linhas: ```python >>> from tokenizers import Tokenizer >>> from tokenizers.models import BPE >>> from tokenizers.trainers import BpeTrainer >>> from tokenizers.pre_tokenizers import Whitespace >>> tokenizer = Tokenizer(BPE(unk_token="[UNK]")) >>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]) >>> tokenizer.pre_tokenizer = Whitespace() >>> files = [...] >>> tokenizer.train(files, trainer) ``` Agora temos um tokenizer treinado nos arquivos que foram definidos. Nós podemos continuar usando nessa execução ou salvar em um arquivo JSON para re-utilizar no futuro. ## Carregando diretamente de um objeto tokenizer Vamos ver como aproveitar esse objeto tokenizer na biblioteca 🤗 Transformers. A classe [`PreTrainedTokenizerFast`] permite uma instanciação fácil, aceitando o objeto *tokenizer* instanciado como um argumento: ```python >>> from transformers import PreTrainedTokenizerFast >>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer) ``` Esse objeto pode ser utilizado com todos os métodos compartilhados pelos tokenizers dos 🤗 Transformers! Vá para [a página do tokenizer](main_classes/tokenizer) para mais informações. ## Carregando de um arquivo JSON Para carregar um tokenizer de um arquivo JSON vamos primeiro começar salvando nosso tokenizer: ```python >>> tokenizer.save("tokenizer.json") ``` A pasta para qual salvamos esse arquivo pode ser passada para o método de inicialização do [`PreTrainedTokenizerFast`] usando o `tokenizer_file` parâmetro: ```python >>> from transformers import PreTrainedTokenizerFast >>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json") ``` Esse objeto pode ser utilizado com todos os métodos compartilhados pelos tokenizers dos 🤗 Transformers! Vá para [a página do tokenizer](main_classes/tokenizer) para mais informações.
transformers/docs/source/pt/fast_tokenizers.md/0
{ "file_path": "transformers/docs/source/pt/fast_tokenizers.md", "repo_id": "transformers", "token_count": 937 }
251
- sections: - local: index title: 🤗 Transformers 简介 - local: quicktour title: 快速上手 - local: installation title: 安装 title: 开始使用 - sections: - local: pipeline_tutorial title: 使用pipelines进行推理 - local: autoclass_tutorial title: 使用AutoClass编写可移植的代码 - local: preprocessing title: 预处理数据 - local: training title: 微调预训练模型 - local: run_scripts title: 通过脚本训练模型 - local: accelerate title: 使用🤗Accelerate进行分布式训练 - local: peft title: 使用🤗 PEFT加载和训练adapters - local: model_sharing title: 分享您的模型 - local: transformers_agents title: agents教程 - local: llm_tutorial title: 使用LLMs进行生成 title: 教程 - sections: - local: fast_tokenizers title: 使用 🤗 Tokenizers 中的分词器 - local: multilingual title: 使用多语言模型进行推理 - local: create_a_model title: 使用特定于模型的 API - local: custom_models title: 共享自定义模型 - local: serialization title: 导出为 ONNX - local: tflite title: 导出为 TFLite title: 开发者指南 - sections: - local: performance title: 综述 - sections: - local: perf_hardware title: 用于训练的定制硬件 - local: hpo_train title: 使用Trainer API 进行超参数搜索 title: 高效训练技术 - local: big_models title: 实例化大模型 - local: debugging title: 问题定位及解决 - local: tf_xla title: TensorFlow模型的XLA集成 - local: perf_torch_compile title: 使用 `torch.compile()` 优化推理 title: 性能和可扩展性 - sections: - local: contributing title: 如何为 🤗 Transformers 做贡献? title: 贡献 - sections: - local: task_summary title: 🤗Transformers能做什么 - local: tokenizer_summary title: 分词器的摘要 title: 概念指南 - sections: - sections: - local: main_classes/agent title: Agents和工具 - local: main_classes/callback title: Callbacks - local: main_classes/configuration title: Configuration - local: main_classes/data_collator title: Data Collator - local: main_classes/keras_callbacks title: Keras callbacks - local: main_classes/logging title: Logging - local: main_classes/model title: 模型 - local: main_classes/text_generation title: 文本生成 - local: main_classes/onnx title: ONNX - local: main_classes/optimizer_schedules title: Optimization - local: main_classes/output title: 模型输出 - local: main_classes/pipelines title: Pipelines - local: main_classes/processors title: Processors - local: main_classes/quantization title: Quantization - local: main_classes/tokenizer title: Tokenizer - local: main_classes/trainer title: Trainer - local: main_classes/deepspeed title: DeepSpeed集成 - local: main_classes/feature_extractor title: Feature Extractor - local: main_classes/image_processor title: Image Processor title: 主要类 - sections: - local: internal/modeling_utils title: 自定义层和工具 - local: internal/pipelines_utils title: pipelines工具 - local: internal/tokenization_utils title: Tokenizers工具 - local: internal/trainer_utils title: 训练器工具 - local: internal/generation_utils title: 生成工具 - local: internal/image_processing_utils title: 图像处理工具 - local: internal/audio_utils title: 音频处理工具 - local: internal/file_utils title: 通用工具 - local: internal/time_series_utils title: 时序数据工具 title: 内部辅助工具 title: 应用程序接口 (API)
transformers/docs/source/zh/_toctree.yml/0
{ "file_path": "transformers/docs/source/zh/_toctree.yml", "repo_id": "transformers", "token_count": 1860 }
252
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 自定义层和工具 此页面列出了库使用的所有自定义层,以及它为模型提供的实用函数。 其中大多数只有在您研究库中模型的代码时才有用。 ## Pytorch自定义模块 [[autodoc]] pytorch_utils.Conv1D [[autodoc]] modeling_utils.PoolerStartLogits - forward [[autodoc]] modeling_utils.PoolerEndLogits - forward [[autodoc]] modeling_utils.PoolerAnswerClass - forward [[autodoc]] modeling_utils.SquadHeadOutput [[autodoc]] modeling_utils.SQuADHead - forward [[autodoc]] modeling_utils.SequenceSummary - forward ## PyTorch帮助函数 [[autodoc]] pytorch_utils.apply_chunking_to_forward [[autodoc]] pytorch_utils.find_pruneable_heads_and_indices [[autodoc]] pytorch_utils.prune_layer [[autodoc]] pytorch_utils.prune_conv1d_layer [[autodoc]] pytorch_utils.prune_linear_layer ## TensorFlow自定义层 [[autodoc]] modeling_tf_utils.TFConv1D [[autodoc]] modeling_tf_utils.TFSequenceSummary ## TensorFlow loss 函数 [[autodoc]] modeling_tf_utils.TFCausalLanguageModelingLoss [[autodoc]] modeling_tf_utils.TFMaskedLanguageModelingLoss [[autodoc]] modeling_tf_utils.TFMultipleChoiceLoss [[autodoc]] modeling_tf_utils.TFQuestionAnsweringLoss [[autodoc]] modeling_tf_utils.TFSequenceClassificationLoss [[autodoc]] modeling_tf_utils.TFTokenClassificationLoss ## TensorFlow帮助函数 [[autodoc]] modeling_tf_utils.get_initializer [[autodoc]] modeling_tf_utils.keras_serializable [[autodoc]] modeling_tf_utils.shape_list
transformers/docs/source/zh/internal/modeling_utils.md/0
{ "file_path": "transformers/docs/source/zh/internal/modeling_utils.md", "repo_id": "transformers", "token_count": 845 }
253
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 预处理 [[open-in-colab]] 在您可以在数据集上训练模型之前,数据需要被预处理为期望的模型输入格式。无论您的数据是文本、图像还是音频,它们都需要被转换并组合成批量的张量。🤗 Transformers 提供了一组预处理类来帮助准备数据以供模型使用。在本教程中,您将了解以下内容: * 对于文本,使用[分词器](./main_classes/tokenizer)(`Tokenizer`)将文本转换为一系列标记(`tokens`),并创建`tokens`的数字表示,将它们组合成张量。 * 对于语音和音频,使用[特征提取器](./main_classes/feature_extractor)(`Feature extractor`)从音频波形中提取顺序特征并将其转换为张量。 * 图像输入使用[图像处理器](./main_classes/image)(`ImageProcessor`)将图像转换为张量。 * 多模态输入,使用[处理器](./main_classes/processors)(`Processor`)结合了`Tokenizer`和`ImageProcessor`或`Processor`。 <Tip> `AutoProcessor` **始终**有效的自动选择适用于您使用的模型的正确`class`,无论您使用的是`Tokenizer`、`ImageProcessor`、`Feature extractor`还是`Processor`。 </Tip> 在开始之前,请安装🤗 Datasets,以便您可以加载一些数据集来进行实验: ```bash pip install datasets ``` ## 自然语言处理 <Youtube id="Yffk5aydLzg"/> 处理文本数据的主要工具是[Tokenizer](main_classes/tokenizer)。`Tokenizer`根据一组规则将文本拆分为`tokens`。然后将这些`tokens`转换为数字,然后转换为张量,成为模型的输入。模型所需的任何附加输入都由`Tokenizer`添加。 <Tip> 如果您计划使用预训练模型,重要的是使用与之关联的预训练`Tokenizer`。这确保文本的拆分方式与预训练语料库相同,并在预训练期间使用相同的标记-索引的对应关系(通常称为*词汇表*-`vocab`)。 </Tip> 开始使用[`AutoTokenizer.from_pretrained`]方法加载一个预训练`tokenizer`。这将下载模型预训练的`vocab`: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") ``` 然后将您的文本传递给`tokenizer`: ```py >>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.") >>> print(encoded_input) {'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 11259, 1998, 4248, 2000, 4963, 1012, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} ``` `tokenizer`返回一个包含三个重要对象的字典: * [input_ids](glossary#input-ids) 是与句子中每个`token`对应的索引。 * [attention_mask](glossary#attention-mask) 指示是否应该关注一个`token`。 * [token_type_ids](glossary#token-type-ids) 在存在多个序列时标识一个`token`属于哪个序列。 通过解码 `input_ids` 来返回您的输入: ```py >>> tokenizer.decode(encoded_input["input_ids"]) '[CLS] Do not meddle in the affairs of wizards, for they are subtle and quick to anger. [SEP]' ``` 如您所见,`tokenizer`向句子中添加了两个特殊`token` - `CLS` 和 `SEP`(分类器和分隔符)。并非所有模型都需要特殊`token`,但如果需要,`tokenizer`会自动为您添加。 如果有多个句子需要预处理,将它们作为列表传递给`tokenizer`: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_inputs = tokenizer(batch_sentences) >>> print(encoded_inputs) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1]]} ``` ### 填充 句子的长度并不总是相同,这可能会成为一个问题,因为模型输入的张量需要具有统一的形状。填充是一种策略,通过在较短的句子中添加一个特殊的`padding token`,以确保张量是矩形的。 将 `padding` 参数设置为 `True`,以使批次中较短的序列填充到与最长序列相匹配的长度: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True) >>> print(encoded_input) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]} ``` 第一句和第三句因为较短,通过`0`进行填充,。 ### 截断 另一方面,有时候一个序列可能对模型来说太长了。在这种情况下,您需要将序列截断为更短的长度。 将 `truncation` 参数设置为 `True`,以将序列截断为模型接受的最大长度: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True) >>> print(encoded_input) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]} ``` <Tip> 查看[填充和截断](./pad_truncation)概念指南,了解更多有关填充和截断参数的信息。 </Tip> ### 构建张量 最后,`tokenizer`可以返回实际输入到模型的张量。 将 `return_tensors` 参数设置为 `pt`(对于PyTorch)或 `tf`(对于TensorFlow): <frameworkcontent> <pt> ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="pt") >>> print(encoded_input) {'input_ids': tensor([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])} ``` </pt> <tf> ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="tf") >>> print(encoded_input) {'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>, 'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>, 'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>} ``` </tf> </frameworkcontent> ## 音频 对于音频任务,您需要[feature extractor](main_classes/feature_extractor)来准备您的数据集以供模型使用。`feature extractor`旨在从原始音频数据中提取特征,并将它们转换为张量。 加载[MInDS-14](https://huggingface.co/datasets/PolyAI/minds14)数据集(有关如何加载数据集的更多详细信息,请参阅🤗 [Datasets教程](https://huggingface.co/docs/datasets/load_hub))以了解如何在音频数据集中使用`feature extractor`: ```py >>> from datasets import load_dataset, Audio >>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") ``` 访问 `audio` 列的第一个元素以查看输入。调用 `audio` 列会自动加载和重新采样音频文件: ```py >>> dataset[0]["audio"] {'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414, 0. , 0. ], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', 'sampling_rate': 8000} ``` 这会返回三个对象: * `array` 是加载的语音信号 - 并在必要时重新采为`1D array`。 * `path` 指向音频文件的位置。 * `sampling_rate` 是每秒测量的语音信号数据点数量。 对于本教程,您将使用[Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base)模型。查看模型卡片,您将了解到Wav2Vec2是在16kHz采样的语音音频数据上预训练的。重要的是,您的音频数据的采样率要与用于预训练模型的数据集的采样率匹配。如果您的数据的采样率不同,那么您需要对数据进行重新采样。 1. 使用🤗 Datasets的[`~datasets.Dataset.cast_column`]方法将采样率提升到16kHz: ```py >>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000)) ``` 2. 再次调用 `audio` 列以重新采样音频文件: ```py >>> dataset[0]["audio"] {'array': array([ 2.3443763e-05, 2.1729663e-04, 2.2145823e-04, ..., 3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', 'sampling_rate': 16000} ``` 接下来,加载一个`feature extractor`以对输入进行标准化和填充。当填充文本数据时,会为较短的序列添加 `0`。相同的理念适用于音频数据。`feature extractor`添加 `0` - 被解释为静音 - 到`array` 。 使用 [`AutoFeatureExtractor.from_pretrained`] 加载`feature extractor`: ```py >>> from transformers import AutoFeatureExtractor >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base") ``` 将音频 `array` 传递给`feature extractor`。我们还建议在`feature extractor`中添加 `sampling_rate` 参数,以更好地调试可能发生的静音错误: ```py >>> audio_input = [dataset[0]["audio"]["array"]] >>> feature_extractor(audio_input, sampling_rate=16000) {'input_values': [array([ 3.8106556e-04, 2.7506407e-03, 2.8015103e-03, ..., 5.6335266e-04, 4.6588284e-06, -1.7142107e-04], dtype=float32)]} ``` 就像`tokenizer`一样,您可以应用填充或截断来处理批次中的可变序列。请查看这两个音频样本的序列长度: ```py >>> dataset[0]["audio"]["array"].shape (173398,) >>> dataset[1]["audio"]["array"].shape (106496,) ``` 创建一个函数来预处理数据集,以使音频样本具有相同的长度。通过指定最大样本长度,`feature extractor`将填充或截断序列以使其匹配: ```py >>> def preprocess_function(examples): ... audio_arrays = [x["array"] for x in examples["audio"]] ... inputs = feature_extractor( ... audio_arrays, ... sampling_rate=16000, ... padding=True, ... max_length=100000, ... truncation=True, ... ) ... return inputs ``` 将`preprocess_function`应用于数据集中的前几个示例: ```py >>> processed_dataset = preprocess_function(dataset[:5]) ``` 现在样本长度是相同的,并且与指定的最大长度匹配。您现在可以将经过处理的数据集传递给模型了! ```py >>> processed_dataset["input_values"][0].shape (100000,) >>> processed_dataset["input_values"][1].shape (100000,) ``` ## 计算机视觉 对于计算机视觉任务,您需要一个[ image processor](main_classes/image_processor)来准备数据集以供模型使用。图像预处理包括多个步骤将图像转换为模型期望输入的格式。这些步骤包括但不限于调整大小、标准化、颜色通道校正以及将图像转换为张量。 <Tip> 图像预处理通常遵循某种形式的图像增强。图像预处理和图像增强都会改变图像数据,但它们有不同的目的: * 图像增强可以帮助防止过拟合并增加模型的鲁棒性。您可以在数据增强方面充分发挥创造性 - 调整亮度和颜色、裁剪、旋转、调整大小、缩放等。但要注意不要改变图像的含义。 * 图像预处理确保图像与模型预期的输入格式匹配。在微调计算机视觉模型时,必须对图像进行与模型训练时相同的预处理。 您可以使用任何您喜欢的图像增强库。对于图像预处理,请使用与模型相关联的`ImageProcessor`。 </Tip> 加载[food101](https://huggingface.co/datasets/food101)数据集(有关如何加载数据集的更多详细信息,请参阅🤗 [Datasets教程](https://huggingface.co/docs/datasets/load_hub))以了解如何在计算机视觉数据集中使用图像处理器: <Tip> 因为数据集相当大,请使用🤗 Datasets的`split`参数加载训练集中的少量样本! </Tip> ```py >>> from datasets import load_dataset >>> dataset = load_dataset("food101", split="train[:100]") ``` 接下来,使用🤗 Datasets的[`Image`](https://huggingface.co/docs/datasets/package_reference/main_classes?highlight=image#datasets.Image)功能查看图像: ```py >>> dataset[0]["image"] ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vision-preprocess-tutorial.png"/> </div> 使用 [`AutoImageProcessor.from_pretrained`] 加载`image processor`: ```py >>> from transformers import AutoImageProcessor >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224") ``` 首先,让我们进行图像增强。您可以使用任何您喜欢的库,但在本教程中,我们将使用torchvision的[`transforms`](https://pytorch.org/vision/stable/transforms.html)模块。如果您有兴趣使用其他数据增强库,请参阅[Albumentations](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb)或[Kornia notebooks](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb)中的示例。 1. 在这里,我们使用[`Compose`](https://pytorch.org/vision/master/generated/torchvision.transforms.Compose.html)将[`RandomResizedCrop`](https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html)和 [`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html)变换连接在一起。请注意,对于调整大小,我们可以从`image_processor`中获取图像尺寸要求。对于一些模型,精确的高度和宽度需要被定义,对于其他模型只需定义`shortest_edge`。 ```py >>> from torchvision.transforms import RandomResizedCrop, ColorJitter, Compose >>> size = ( ... image_processor.size["shortest_edge"] ... if "shortest_edge" in image_processor.size ... else (image_processor.size["height"], image_processor.size["width"]) ... ) >>> _transforms = Compose([RandomResizedCrop(size), ColorJitter(brightness=0.5, hue=0.5)]) ``` 2. 模型接受 [`pixel_values`](model_doc/visionencoderdecoder#transformers.VisionEncoderDecoderModel.forward.pixel_values) 作为输入。`ImageProcessor` 可以进行图像的标准化,并生成适当的张量。创建一个函数,将图像增强和图像预处理步骤组合起来处理批量图像,并生成 `pixel_values`: ```py >>> def transforms(examples): ... images = [_transforms(img.convert("RGB")) for img in examples["image"]] ... examples["pixel_values"] = image_processor(images, do_resize=False, return_tensors="pt")["pixel_values"] ... return examples ``` <Tip> 在上面的示例中,我们设置`do_resize=False`,因为我们已经在图像增强转换中调整了图像的大小,并利用了适当的`image_processor`的`size`属性。如果您在图像增强期间不调整图像的大小,请将此参数排除在外。默认情况下`ImageProcessor`将处理调整大小。 如果希望将图像标准化步骤为图像增强的一部分,请使用`image_processor.image_mean`和`image_processor.image_std`。 </Tip> 3. 然后使用🤗 Datasets的[`set_transform`](https://huggingface.co/docs/datasets/process#format-transform)在运行时应用这些变换: ```py >>> dataset.set_transform(transforms) ``` 4. 现在,当您访问图像时,您将注意到`image processor`已添加了 `pixel_values`。您现在可以将经过处理的数据集传递给模型了! ```py >>> dataset[0].keys() ``` 这是在应用变换后的图像样子。图像已被随机裁剪,并其颜色属性发生了变化。 ```py >>> import numpy as np >>> import matplotlib.pyplot as plt >>> img = dataset[0]["pixel_values"] >>> plt.imshow(img.permute(1, 2, 0)) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/preprocessed_image.png"/> </div> <Tip> 对于诸如目标检测、语义分割、实例分割和全景分割等任务,`ImageProcessor`提供了训练后处理方法。这些方法将模型的原始输出转换为有意义的预测,如边界框或分割地图。 </Tip> ### 填充 在某些情况下,例如,在微调[DETR](./model_doc/detr)时,模型在训练时应用了尺度增强。这可能导致批处理中的图像大小不同。您可以使用[`DetrImageProcessor.pad`]来指定自定义的`collate_fn`将图像批处理在一起。 ```py >>> def collate_fn(batch): ... pixel_values = [item["pixel_values"] for item in batch] ... encoding = image_processor.pad(pixel_values, return_tensors="pt") ... labels = [item["labels"] for item in batch] ... batch = {} ... batch["pixel_values"] = encoding["pixel_values"] ... batch["pixel_mask"] = encoding["pixel_mask"] ... batch["labels"] = labels ... return batch ``` ## 多模态 对于涉及多模态输入的任务,您需要[processor](main_classes/processors)来为模型准备数据集。`processor`将两个处理对象-例如`tokenizer`和`feature extractor`-组合在一起。 加载[LJ Speech](https://huggingface.co/datasets/lj_speech)数据集(有关如何加载数据集的更多详细信息,请参阅🤗 [Datasets 教程](https://huggingface.co/docs/datasets/load_hub))以了解如何使用`processor`进行自动语音识别(ASR): ```py >>> from datasets import load_dataset >>> lj_speech = load_dataset("lj_speech", split="train") ``` 对于ASR(自动语音识别),主要关注`audio`和`text`,因此可以删除其他列: ```py >>> lj_speech = lj_speech.map(remove_columns=["file", "id", "normalized_text"]) ``` 现在查看`audio`和`text`列: ```py >>> lj_speech[0]["audio"] {'array': array([-7.3242188e-04, -7.6293945e-04, -6.4086914e-04, ..., 7.3242188e-04, 2.1362305e-04, 6.1035156e-05], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/917ece08c95cf0c4115e45294e3cd0dee724a1165b7fc11798369308a465bd26/LJSpeech-1.1/wavs/LJ001-0001.wav', 'sampling_rate': 22050} >>> lj_speech[0]["text"] 'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition' ``` 请记住,您应始终[重新采样](preprocessing#audio)音频数据集的采样率,以匹配用于预训练模型数据集的采样率! ```py >>> lj_speech = lj_speech.cast_column("audio", Audio(sampling_rate=16_000)) ``` 使用[`AutoProcessor.from_pretrained`]加载一个`processor`: ```py >>> from transformers import AutoProcessor >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") ``` 1. 创建一个函数,用于将包含在 `array` 中的音频数据处理为 `input_values`,并将 `text` 标记为 `labels`。这些将是输入模型的数据: ```py >>> def prepare_dataset(example): ... audio = example["audio"] ... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000)) ... return example ``` 2. 将 `prepare_dataset` 函数应用于一个示例: ```py >>> prepare_dataset(lj_speech[0]) ``` `processor`现在已经添加了 `input_values` 和 `labels`,并且采样率也正确降低为为16kHz。现在可以将处理后的数据集传递给模型!
transformers/docs/source/zh/preprocessing.md/0
{ "file_path": "transformers/docs/source/zh/preprocessing.md", "repo_id": "transformers", "token_count": 12747 }
254
#!/usr/bin/env python # coding=utf-8 # Copyright 2022 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library vision-encoder-decoder models for image captioning. """ import json import logging import os import sys import time import warnings from dataclasses import asdict, dataclass, field from enum import Enum from functools import partial from pathlib import Path from typing import Callable, Optional import datasets import evaluate import jax import jax.numpy as jnp import nltk # Here to have a nice missing dependency error message early on import numpy as np import optax from datasets import Dataset, load_dataset from filelock import FileLock from flax import jax_utils, traverse_util from flax.jax_utils import unreplicate from flax.training import train_state from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key from huggingface_hub import Repository, create_repo from PIL import Image from tqdm import tqdm import transformers from transformers import ( AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser, is_tensorboard_available, ) from transformers.utils import is_offline_mode, send_example_telemetry logger = logging.getLogger(__name__) try: nltk.data.find("tokenizers/punkt") except (LookupError, OSError): if is_offline_mode(): raise LookupError( "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files" ) with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) # Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right def shift_tokens_right(input_ids: np.ndarray, pad_token_id: int, decoder_start_token_id: int) -> np.ndarray: """ Shift input ids one token to the right. """ shifted_input_ids = np.zeros_like(input_ids) shifted_input_ids[:, 1:] = input_ids[:, :-1] shifted_input_ids[:, 0] = decoder_start_token_id shifted_input_ids = np.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) return shifted_input_ids @dataclass class TrainingArguments: output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."}) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} ) _block_size_doc = """ The default value `0` will preprocess (tokenization + image processing) the whole dataset before training and cache the results. This uses more disk space, but avoids (repeated) processing time during training. This is a good option if your disk space is large enough to store the whole processed dataset. If a positive value is given, the captions in the dataset will be tokenized before training and the results are cached. During training, it iterates the dataset in chunks of size `block_size`. On each block, images are transformed by the image processor with the results being kept in memory (no cache), and batches of size `batch_size` are yielded before processing the next block. This could avoid the heavy disk usage when the dataset is large. """ block_size: int = field(default=0, metadata={"help": _block_size_doc}) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) label_smoothing_factor: float = field( default=0.0, metadata={"help": "The label smoothing epsilon to apply (zero means no label smoothing)."} ) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) push_to_hub: bool = field( default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} ) hub_model_id: str = field( default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} ) hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) def __post_init__(self): if self.output_dir is not None: self.output_dir = os.path.expanduser(self.output_dir) def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates the token values by removing their value. """ d = asdict(self) for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): d[k] = [x.value for x in v] if k.endswith("_token"): d[k] = f"<{k.upper()}>" return d @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: str = field( metadata={"help": "The model checkpoint for weights initialization."}, ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) dtype: Optional[str] = field( default="float32", metadata={ "help": ( "Floating-point format in which the model weights should be initialized and trained. Choose one of" " `[float32, float16, bfloat16]`." ) }, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) data_dir: Optional[str] = field( default=None, metadata={"help": "The data directory of the dataset to use (via the datasets library)."} ) image_column: Optional[str] = field( default=None, metadata={"help": "The name of the column in the datasets containing the full image file paths."}, ) caption_column: Optional[str] = field( default=None, metadata={"help": "The name of the column in the datasets containing the image captions."}, ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) test_file: Optional[str] = field( default=None, metadata={"help": "An optional input predict data file to do prediction on (a text file)."}, ) max_target_length: Optional[int] = field( default=128, metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) val_max_target_length: Optional[int] = field( default=None, metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. " "This argument is also used to override the `max_length` param of `model.generate`, which is used " "during evaluation." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) predict_with_generate: bool = field( default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) num_beams: Optional[int] = field( default=None, metadata={ "help": ( "Number of beams to use for evaluation. This argument will be passed to `model.generate`, " "which is used during evaluation." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] if extension not in ["csv", "json"]: raise ValueError(f"`train_file` should be a csv or a json file, got {extension}.") if self.validation_file is not None: extension = self.validation_file.split(".")[-1] if extension not in ["csv", "json"]: raise ValueError(f"`validation_file` should be a csv or a json file, got {extension}.") if self.val_max_target_length is None: self.val_max_target_length = self.max_target_length image_captioning_name_mapping = { "image_caption_dataset.py": ("image_path", "caption"), } class TrainState(train_state.TrainState): dropout_rng: jnp.ndarray def replicate(self): return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False): """ Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. Shuffle batches if `shuffle` is `True`. """ steps = len(dataset) // batch_size # Skip incomplete batch. # We use `numpy.ndarray` to interact with `datasets.Dataset`, since using `jax.numpy.array` to index into a # dataset is significantly slow. Using JAX array at the 1st place is only to keep JAX's PRNGs generation # mechanism, which works differently from NumPy/SciPy. if shuffle: batch_idx = jax.random.permutation(rng, len(dataset)) batch_idx = np.asarray(batch_idx) else: batch_idx = np.arange(len(dataset)) for idx in range(steps): start_idx = batch_size * idx end_idx = batch_size * (idx + 1) selected_indices = batch_idx[start_idx:end_idx] batch = dataset[selected_indices] batch = shard(batch) yield batch def write_metric(summary_writer, metrics, train_time, step, metric_key_prefix="train"): if train_time: summary_writer.scalar("train_time", train_time, step) metrics = get_metrics(metrics) for key, vals in metrics.items(): tag = f"{metric_key_prefix}_{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) else: for metric_name, value in metrics.items(): summary_writer.scalar(f"{metric_key_prefix}_{metric_name}", value, step) def create_learning_rate_fn( train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float ) -> Callable[[int], jnp.ndarray]: """Returns a linear warmup, linear_decay learning rate function.""" steps_per_epoch = train_ds_size // train_batch_size num_train_steps = steps_per_epoch * num_train_epochs warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) decay_fn = optax.linear_schedule( init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps ) schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) return schedule_fn def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_captioning", model_args, data_args, framework="flax") if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Handle the repository creation if training_args.push_to_hub: # Retrieve of infer repo_name repo_name = training_args.hub_model_id if repo_name is None: repo_name = Path(training_args.output_dir).absolute().name # Create repo and retrieve repo_id repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id # Clone repo locally repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files this script will use the first column for the full image path and the second column for the # captions (unless you specify column names for this with the `image_column` and `caption_column` arguments). # if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False, data_dir=data_args.data_dir, token=model_args.token, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] dataset = load_dataset( extension, data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. # Load pretrained model and tokenizer model = FlaxVisionEncoderDecoderModel.from_pretrained( model_args.model_name_or_path, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) image_processor = AutoImageProcessor.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) tokenizer.pad_token = tokenizer.convert_ids_to_tokens(model.config.pad_token_id) # Preprocessing the datasets. # We need to tokenize inputs and targets. if training_args.do_train: column_names = dataset["train"].column_names elif training_args.do_eval: column_names = dataset["validation"].column_names elif training_args.do_predict: column_names = dataset["test"].column_names else: logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") return # Get the column names for input/target. dataset_columns = image_captioning_name_mapping.get(data_args.dataset_name, None) if data_args.image_column is None: if dataset_columns is None: raise ValueError( f"`--dataset_name` {data_args.dataset_name} not found in dataset '{data_args.dataset_name}'. Make sure" " to set `--dataset_name` to the correct dataset name, one of" f" {', '.join(image_captioning_name_mapping.keys())}." ) image_column = dataset_columns[0] else: image_column = data_args.image_column if image_column not in column_names: raise ValueError( f"--image_column' value '{data_args.image_column}' needs to be one of: {', '.join(column_names)}" ) if data_args.caption_column is None: if dataset_columns is None: raise ValueError( f"`--dataset_name` {data_args.dataset_name} not found in dataset '{data_args.dataset_name}'. Make sure" " to set `--dataset_name` to the correct dataset name, one of" f" {', '.join(image_captioning_name_mapping.keys())}." ) caption_column = dataset_columns[1] else: caption_column = data_args.caption_column if caption_column not in column_names: raise ValueError( f"--caption_column' value '{data_args.caption_column}' needs to be one of: {', '.join(column_names)}" ) # In Flax, for seq2seq models we need to pass `decoder_input_ids` # as the Flax models don't accept `labels`, we need to prepare the decoder_input_ids here # for that dynamically import the `shift_tokens_right` function from the model file model_module = __import__(model.__module__, fromlist=["shift_tokens_right"]) shift_tokens_right_fn = getattr(model_module, "shift_tokens_right", shift_tokens_right) def filter_fn(examples): """remove problematic images""" bools = [] for image_file in examples[image_column]: try: image = Image.open(image_file) image_processor(images=image, return_tensors="np") bools.append(True) except Exception: bools.append(False) return bools # Setting padding="max_length" as we need fixed length inputs for jitted functions def tokenization_fn(examples, max_target_length): """Run tokenization on captions.""" captions = [] for caption in examples[caption_column]: captions.append(caption.lower() + " " + tokenizer.eos_token) targets = captions model_inputs = {} labels = tokenizer( text_target=targets, max_length=max_target_length, padding="max_length", truncation=True, return_tensors="np", ) model_inputs["labels"] = labels["input_ids"] decoder_input_ids = shift_tokens_right_fn( labels["input_ids"], model.config.pad_token_id, model.config.decoder_start_token_id ) model_inputs["decoder_input_ids"] = np.asarray(decoder_input_ids) # We need decoder_attention_mask so we can ignore pad tokens from loss model_inputs["decoder_attention_mask"] = labels["attention_mask"] model_inputs[image_column] = examples[image_column] return model_inputs def image_processing_fn(examples, check_image=True): """ Run preprocessing on images If `check_image` is `True`, the examples that fails during `Image.open()` will be caught and discarded. Otherwise, an exception will be thrown. """ model_inputs = {} if check_image: images = [] to_keep = [] for image_file in examples[image_column]: try: img = Image.open(image_file) images.append(img) to_keep.append(True) except Exception: to_keep.append(False) for k, v in examples.items(): if k != image_column: model_inputs[k] = v[to_keep] else: images = [Image.open(image_file) for image_file in examples[image_column]] encoder_inputs = image_processor(images=images, return_tensors="np") model_inputs["pixel_values"] = encoder_inputs.pixel_values return model_inputs def preprocess_fn(examples, max_target_length, check_image=True): """Run tokenization + image processing""" model_inputs = {} # This contains image path column model_inputs.update(tokenization_fn(examples, max_target_length)) model_inputs.update(image_processing_fn(model_inputs, check_image=check_image)) # Remove image path column model_inputs.pop(image_column) return model_inputs features = datasets.Features( { "pixel_values": datasets.Array3D( shape=( getattr(model.config.encoder, "num_channels", 3), model.config.encoder.image_size, model.config.encoder.image_size, ), dtype="float32", ), "labels": datasets.Sequence(feature=datasets.Value(dtype="int32", id=None), length=-1, id=None), "decoder_input_ids": datasets.Sequence(feature=datasets.Value(dtype="int32", id=None), length=-1, id=None), "decoder_attention_mask": datasets.Sequence( feature=datasets.Value(dtype="int32", id=None), length=-1, id=None ), } ) # If `block_size` is `0`, tokenization & image processing is done at the beginning run_img_proc_at_beginning = training_args.block_size == 0 # Used in .map() below function_kwarg = preprocess_fn if run_img_proc_at_beginning else tokenization_fn # `features` is used only for the final preprocessed dataset (for the performance purpose). features_kwarg = features if run_img_proc_at_beginning else None # Keep `image_column` if the image processing is done during training remove_columns_kwarg = [x for x in column_names if x != image_column or run_img_proc_at_beginning] processor_names = "tokenizer and image processor" if run_img_proc_at_beginning else "tokenizer" # Store some constant train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() if training_args.block_size % train_batch_size > 0 or training_args.block_size % eval_batch_size > 0: raise ValueError( "`training_args.block_size` needs to be a multiple of the global train/eval batch size. " f"Got {training_args.block_size}, {train_batch_size} and {eval_batch_size} respectively instead." ) if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset") train_dataset = dataset["train"] if data_args.max_train_samples is not None: max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) # remove problematic examples # (if image processing is performed at the beginning, the filtering is done during preprocessing below # instead here.) if not run_img_proc_at_beginning: train_dataset = train_dataset.filter(filter_fn, batched=True, num_proc=data_args.preprocessing_num_workers) train_dataset = train_dataset.map( function=function_kwarg, batched=True, num_proc=data_args.preprocessing_num_workers, # kept image paths remove_columns=remove_columns_kwarg, load_from_cache_file=not data_args.overwrite_cache, desc=f"Running {processor_names} on train dataset", fn_kwargs={"max_target_length": data_args.max_target_length}, features=features_kwarg, ) if run_img_proc_at_beginning: # set format (for performance) since the dataset is ready to be used train_dataset = train_dataset.with_format("numpy") steps_per_epoch = len(train_dataset) // train_batch_size num_train_examples_per_epoch = steps_per_epoch * train_batch_size num_epochs = int(training_args.num_train_epochs) total_train_steps = steps_per_epoch * num_epochs else: num_train_examples_per_epoch = 0 if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset") eval_dataset = dataset["validation"] if data_args.max_eval_samples is not None: max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) # remove problematic examples # (if image processing is performed at the beginning, the filtering is done during preprocessing below # instead here.) if not run_img_proc_at_beginning: eval_dataset = eval_dataset.filter(filter_fn, batched=True, num_proc=data_args.preprocessing_num_workers) eval_dataset = eval_dataset.map( function=function_kwarg, batched=True, num_proc=data_args.preprocessing_num_workers, # kept image paths remove_columns=remove_columns_kwarg, load_from_cache_file=not data_args.overwrite_cache, desc=f"Running {processor_names} on validation dataset", fn_kwargs={"max_target_length": data_args.val_max_target_length}, features=features_kwarg, ) if run_img_proc_at_beginning: # set format (for performance) since the dataset is ready to be used eval_dataset = eval_dataset.with_format("numpy") num_eval_examples = len(eval_dataset) eval_steps = num_eval_examples // eval_batch_size if training_args.do_predict: if "test" not in dataset: raise ValueError("--do_predict requires a test dataset") predict_dataset = dataset["test"] if data_args.max_predict_samples is not None: max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) predict_dataset = predict_dataset.select(range(max_predict_samples)) # remove problematic examples # (if image processing is performed at the beginning, the filtering is done during preprocessing below # instead here.) if not run_img_proc_at_beginning: predict_dataset = predict_dataset.filter( filter_fn, batched=True, num_proc=data_args.preprocessing_num_workers ) predict_dataset = predict_dataset.map( function=function_kwarg, batched=True, num_proc=data_args.preprocessing_num_workers, # kept image paths remove_columns=remove_columns_kwarg, load_from_cache_file=not data_args.overwrite_cache, desc=f"Running {processor_names} on prediction dataset", fn_kwargs={"max_target_length": data_args.val_max_target_length}, features=features_kwarg, ) if run_img_proc_at_beginning: # set format (for performance) since the dataset is ready to be used predict_dataset = predict_dataset.with_format("numpy") num_test_examples = len(predict_dataset) test_steps = num_test_examples // eval_batch_size def blockwise_data_loader( rng: jax.random.PRNGKey, ds: Dataset, block_size: int, batch_size: int, shuffle: bool = False, keep_in_memory: bool = False, split: str = "", ): """ Wrap the simple `data_loader` in a block-wise way if `block_size` > 0, else it's the same as `data_loader`. If `block_size` > 0, it requires `ds` to have a column that gives image paths in order to perform image processing (with the column name being specified by `image_column`). The tokenization should be done before training in this case. """ # We use `numpy.ndarray` to interact with `datasets.Dataset`, since using `jax.numpy.array` to index into a # dataset is significantly slow. Using JAX array at the 1st place is only to keep JAX's PRNGs generation # mechanism, which works differently from NumPy/SciPy. if shuffle: indices = jax.random.permutation(rng, len(ds)) indices = np.asarray(indices) else: indices = np.arange(len(ds)) _block_size = len(ds) if not block_size else block_size steps_per_block = _block_size // batch_size num_examples = len(ds) steps = num_examples // batch_size num_splits = steps // steps_per_block + int(steps % steps_per_block > 0) for idx in range(num_splits): if not block_size: _ds = ds else: start_idx = block_size * idx end_idx = block_size * (idx + 1) selected_indices = indices[start_idx:end_idx] _ds = ds.select(selected_indices) _ds = _ds.map( image_processing_fn, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=[image_column], load_from_cache_file=not data_args.overwrite_cache, features=features, keep_in_memory=keep_in_memory, # The images are already checked either in `.filter()` or in `preprocess_fn()` fn_kwargs={"check_image": False}, desc=f"Running image processing on {split} dataset".replace(" ", " "), ) _ds = _ds.with_format("numpy") # No need to shuffle here loader = data_loader(rng, _ds, batch_size=batch_size, shuffle=False) for batch in loader: yield batch # Metric metric = evaluate.load("rouge", cache_dir=model_args.cache_dir) def postprocess_text(preds, labels): preds = [pred.strip() for pred in preds] labels = [label.strip() for label in labels] # rougeLSum expects newline after each sentence preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds] labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels] return preds, labels def compute_metrics(preds, labels): decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) # Some simple post-processing decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True) # Extract a few results from ROUGE result = {key: value.mid.fmeasure * 100 for key, value in result.items()} prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] result["gen_len"] = np.mean(prediction_lens) result = {k: round(v, 6) for k, v in result.items()} return result, decoded_preds, decoded_labels # Enable tensorboard only on the master node has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) # Initialize our training rng = jax.random.PRNGKey(training_args.seed) rng, dropout_rng = jax.random.split(rng) # Create learning rate schedule linear_decay_lr_schedule_fn = create_learning_rate_fn( num_train_examples_per_epoch, train_batch_size, training_args.num_train_epochs, training_args.warmup_steps, training_args.learning_rate, ) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) # find out all LayerNorm parameters layer_norm_candidates = ["layernorm", "layer_norm", "ln"] layer_norm_named_params = { layer[-2:] for layer_norm_name in layer_norm_candidates for layer in flat_params.keys() if layer_norm_name in "".join(layer).lower() } flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} return traverse_util.unflatten_dict(flat_mask) # create adam optimizer adamw = optax.adamw( learning_rate=linear_decay_lr_schedule_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, eps=training_args.adam_epsilon, weight_decay=training_args.weight_decay, mask=decay_mask_fn, ) # Setup train state state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng) # label smoothed cross entropy def loss_fn(logits, labels, padding_mask, label_smoothing_factor=0.0): """ The label smoothing implementation is adapted from Flax's official example: https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104 """ vocab_size = logits.shape[-1] confidence = 1.0 - label_smoothing_factor low_confidence = (1.0 - confidence) / (vocab_size - 1) normalizing_constant = -( confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20) ) soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence) loss = optax.softmax_cross_entropy(logits, soft_labels) loss = loss - normalizing_constant # ignore padded tokens from loss loss = loss * padding_mask loss = loss.sum() num_labels = padding_mask.sum() return loss, num_labels # Define gradient update step fn def train_step(state, batch, label_smoothing_factor=0.0): dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) def compute_loss(params): labels = batch.pop("labels") logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] loss, num_labels = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor) return loss, num_labels grad_fn = jax.value_and_grad(compute_loss, has_aux=True) (loss, num_labels), grad = grad_fn(state.params) num_labels = jax.lax.psum(num_labels, "batch") # true loss = total loss / total samples loss = jax.lax.psum(loss, "batch") loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) # true grad = total grad / total samples grad = jax.lax.psum(grad, "batch") grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad) new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} return new_state, metrics # Define eval fn def eval_step(params, batch, label_smoothing_factor=0.0): labels = batch.pop("labels") logits = model(**batch, params=params, train=False)[0] loss, num_labels = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor) num_labels = jax.lax.psum(num_labels, "batch") # true loss = total loss / total samples loss = jax.lax.psum(loss, "batch") loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) metrics = {"loss": loss} return metrics # Define generation function max_length = ( data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length ) num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def generate_step(params, batch): model.params = params output_ids = model.generate(batch["pixel_values"], **gen_kwargs) return output_ids.sequences # Create parallel version of the train and eval step p_train_step = jax.pmap( partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch", donate_argnums=(0,) ) p_eval_step = jax.pmap(partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch") p_generate_step = jax.pmap(generate_step, "batch") # Replicate the train state on each device state = state.replicate() if training_args.do_train: logger.info("***** Running training *****") logger.info(f" Num train examples = {num_train_examples_per_epoch}") logger.info(f" Num Epochs = {num_epochs}") logger.info(f" Instantaneous train batch size per device = {training_args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") logger.info(f" Optimization steps per epoch = {steps_per_epoch}") logger.info(f" Total optimization steps = {total_train_steps}") if training_args.do_eval: logger.info(f" Num evaluation examples = {num_eval_examples}") logger.info(f" Instantaneous evaluation batch size per device = {training_args.per_device_eval_batch_size}") logger.info(f" Total evaluation batch size (w. parallel & distributed) = {eval_batch_size}") logger.info(f" Evaluation steps = {eval_steps}") if training_args.do_predict: logger.info(f" Num test examples = {num_test_examples}") logger.info(f" Instantaneous test batch size per device = {training_args.per_device_eval_batch_size}") logger.info(f" Total test batch size (w. parallel & distributed) = {eval_batch_size}") logger.info(f" Test steps = {test_steps}") # create output directory if not os.path.isdir(os.path.join(training_args.output_dir)): os.makedirs(os.path.join(training_args.output_dir), exist_ok=True) def save_ckpt(ckpt_dir: str, commit_msg: str = ""): """save checkpoints and push to Hugging Face Hub if specified""" # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)) model.save_pretrained(os.path.join(training_args.output_dir, ckpt_dir), params=params) tokenizer.save_pretrained(os.path.join(training_args.output_dir, ckpt_dir)) if training_args.push_to_hub: repo.push_to_hub(commit_message=commit_msg, blocking=False) def evaluation_loop( rng: jax.random.PRNGKey, dataset: Dataset, metric_key_prefix: str = "eval", ckpt_dir: str = "", is_prediction=False, ): logger.info(f"*** {'Predict' if is_prediction else 'Evaluate'} ***") metrics = [] preds = [] labels = [] batches = blockwise_data_loader( rng, dataset, block_size=training_args.block_size, batch_size=eval_batch_size, keep_in_memory=False, shuffle=False, split="prediction" if is_prediction else "validation", ) steps = len(dataset) // eval_batch_size for _ in tqdm( range(steps), desc=f"{'Predicting' if is_prediction else 'Evaluating'}...", position=2, leave=False ): # Model forward batch = next(batches) _labels = batch.get("labels", None) if not is_prediction and _labels is None: raise ValueError("Evaluation requires the validation dataset to have `labels`") if _labels is not None: _metrics = p_eval_step(state.params, batch) metrics.append(_metrics) # generation if data_args.predict_with_generate: generated_ids = p_generate_step(state.params, batch) preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) if _labels is not None: labels.extend(jax.device_get(_labels.reshape(-1, _labels.shape[-1]))) if metrics: # normalize metrics metrics = get_metrics(metrics) metrics = jax.tree_util.tree_map(jnp.mean, metrics) # compute ROUGE metrics generations = [] rouge_desc = "" if data_args.predict_with_generate: if labels: rouge_metrics, decoded_preds, decoded_labels = compute_metrics(preds, labels) metrics.update(rouge_metrics) rouge_desc = " ".join( [ f"{'Predict' if is_prediction else 'Eval'} {key}: {value} |" for key, value in rouge_metrics.items() ] ) for pred, label in zip(decoded_preds, decoded_labels): pred = pred.replace("\n", " ") label = label.replace("\n", " ") generations.append({"label": label, "pred": pred}) else: decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) # Some simple post-processing decoded_preds = [pred.strip() for pred in decoded_preds] # rougeLSum expects newline after each sentence decoded_preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in decoded_preds] for pred in decoded_preds: pred = pred.replace("\n", " ") generations.append({"pred": pred}) if metrics: # Print metrics and update progress bar desc = f"{'Predict' if is_prediction else 'Eval'} Loss: {metrics['loss']} | {rouge_desc})" if training_args.do_train and not is_prediction: desc = f"Epoch... ({epoch + 1}/{num_epochs} | Step: {cur_step} | " + desc epochs.write(desc) epochs.desc = desc logger.info(desc) if jax.process_index() == 0: if not os.path.isdir(os.path.join(training_args.output_dir, ckpt_dir)): os.makedirs(os.path.join(training_args.output_dir, ckpt_dir), exist_ok=True) if metrics: # Save metrics (only for the evaluation/prediction being done along with training) if has_tensorboard and training_args.do_train: write_metric( summary_writer, metrics, train_time=None, step=cur_step, metric_key_prefix=metric_key_prefix ) # save final metrics in json metrics = { f"{metric_key_prefix}_{metric_name}": round(value.item(), 6) for metric_name, value in metrics.items() } _path = os.path.join(training_args.output_dir, ckpt_dir, f"{metric_key_prefix}_results.json") with open(_path, "w") as f: json.dump(metrics, f, indent=4, sort_keys=True) # Update report with open(os.path.join(training_args.output_dir, "log"), "a", encoding="UTF-8") as fp: fp.write(desc + "\n") # Save generations if generations: output_file = os.path.join(training_args.output_dir, ckpt_dir, f"{metric_key_prefix}_generation.json") with open(output_file, "w", encoding="UTF-8") as fp: json.dump(generations, fp, ensure_ascii=False, indent=4) def evaluate(rng: jax.random.PRNGKey, dataset: Dataset, ckpt_dir: str = ""): evaluation_loop(rng, dataset, metric_key_prefix="eval", ckpt_dir=ckpt_dir) def predict(rng: jax.random.PRNGKey, dataset: Dataset): evaluation_loop(rng, dataset, metric_key_prefix="test", is_prediction=True) input_rng = None if training_args.do_train: cur_step = 0 train_time = 0 epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) for epoch in epochs: # ======================== Training ================================ # Create sampling rng rng, input_rng = jax.random.split(rng) train_metrics = [] train_batches = blockwise_data_loader( input_rng, train_dataset, block_size=training_args.block_size, batch_size=train_batch_size, keep_in_memory=True, shuffle=True, split="train", ) # train for batch_idx, _ in enumerate(tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False)): cur_step += 1 batch = next(train_batches) batch_start = time.time() state, train_metric = p_train_step(state, batch) train_metrics.append(train_metric) train_time += time.time() - batch_start time_per_step = train_time / cur_step # log and save info if training_args.logging_steps > 0 and cur_step % training_args.logging_steps == 0: _train_metric = unreplicate(train_metric) desc = ( f"Epoch... ({epoch + 1}/{num_epochs} | Step: {cur_step} | Loss: {_train_metric['loss']} |" f" Learning Rate: {_train_metric['learning_rate']} | Time per step: {time_per_step})" ) epochs.desc = desc epochs.write(desc) logger.info(desc) with open(os.path.join(training_args.output_dir, "log"), "a", encoding="UTF-8") as fp: fp.write(desc + "\n") # Save metrics if has_tensorboard and jax.process_index() == 0: write_metric( summary_writer, train_metrics, train_time=train_time, step=cur_step, metric_key_prefix="train", ) # ======================== Evaluating (inside an epoch) ============================== if ( training_args.do_eval and (training_args.eval_steps is not None and training_args.eval_steps > 0) and cur_step % training_args.eval_steps == 0 ): ckpt_dir = f"ckpt_epoch_{epoch + 1}_step_{cur_step}" commit_msg = f"Saving weights and logs of epoch {epoch + 1} - step {cur_step}" evaluate(input_rng, eval_dataset, ckpt_dir) save_ckpt(ckpt_dir=ckpt_dir, commit_msg=commit_msg) # ======================== Epoch End ============================== # log and save info if training_args.logging_steps <= 0: logger.info(desc) with open(os.path.join(training_args.output_dir, "log"), "a", encoding="UTF-8") as fp: fp.write(desc + "\n") # Save metrics if has_tensorboard and jax.process_index() == 0: write_metric( summary_writer, train_metrics, train_time=train_time, step=cur_step, metric_key_prefix="train" ) # ======================== Evaluating (after each epoch) ============================== if training_args.do_eval and (training_args.eval_steps is None or training_args.eval_steps <= 0): ckpt_dir = f"ckpt_epoch_{epoch + 1}_step_{cur_step}" commit_msg = f"Saving weights and logs of epoch {epoch + 1} - step {cur_step}" evaluate(input_rng, eval_dataset, ckpt_dir) save_ckpt(ckpt_dir=ckpt_dir, commit_msg=commit_msg) # ======================== Evaluating | Predicting ============================== # Create sampling rng if input_rng is None: rng, input_rng = jax.random.split(rng) # run evaluation without training if training_args.do_eval and not training_args.do_train: evaluate(input_rng, eval_dataset) # run prediction after (or without) training if training_args.do_predict: predict(input_rng, predict_dataset) if __name__ == "__main__": main()
transformers/examples/flax/image-captioning/run_image_captioning_flax.py/0
{ "file_path": "transformers/examples/flax/image-captioning/run_image_captioning_flax.py", "repo_id": "transformers", "token_count": 24465 }
255
#!/usr/bin/env python # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Benchmarking the library on inference and training """ from transformers import HfArgumentParser, PyTorchBenchmark, PyTorchBenchmarkArguments def main(): parser = HfArgumentParser(PyTorchBenchmarkArguments) try: benchmark_args = parser.parse_args_into_dataclasses()[0] except ValueError as e: arg_error_msg = "Arg --no_{0} is no longer used, please use --no-{0} instead." begin_error_msg = " ".join(str(e).split(" ")[:-1]) full_error_msg = "" depreciated_args = eval(str(e).split(" ")[-1]) wrong_args = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in PyTorchBenchmarkArguments.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(arg) if len(wrong_args) > 0: full_error_msg = full_error_msg + begin_error_msg + str(wrong_args) raise ValueError(full_error_msg) benchmark = PyTorchBenchmark(args=benchmark_args) benchmark.run() if __name__ == "__main__": main()
transformers/examples/legacy/benchmarking/run_benchmark.py/0
{ "file_path": "transformers/examples/legacy/benchmarking/run_benchmark.py", "repo_id": "transformers", "token_count": 699 }
256
#!/usr/bin/env python # coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ OpenAI GPT model fine-tuning script. Adapted from https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/train.py It self adapted from https://github.com/openai/finetune-transformer-lm/blob/master/train.py This script with default values fine-tunes and evaluate a pretrained OpenAI GPT on the RocStories dataset: python run_openai_gpt.py \ --model_name openai-gpt \ --do_train \ --do_eval \ --train_dataset "$ROC_STORIES_DIR/cloze_test_val__spring2016 - cloze_test_ALL_val.csv" \ --eval_dataset "$ROC_STORIES_DIR/cloze_test_test__spring2016 - cloze_test_ALL_test.csv" \ --output_dir ../log \ --train_batch_size 16 \ """ import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) logger = logging.getLogger(__name__) def accuracy(out, labels): outputs = np.argmax(out, axis=1) return np.sum(outputs == labels) def load_rocstories_dataset(dataset_path): """Output a list of tuples(story, 1st continuation, 2nd continuation, label)""" with open(dataset_path, encoding="utf_8") as f: f = csv.reader(f) output = [] next(f) # skip the first line for line in tqdm(f): output.append((" ".join(line[1:5]), line[5], line[6], int(line[-1]) - 1)) return output def pre_process_datasets(encoded_datasets, input_len, cap_length, start_token, delimiter_token, clf_token): """Pre-process datasets containing lists of tuples(story, 1st continuation, 2nd continuation, label) To Transformer inputs of shape (n_batch, n_alternative, length) comprising for each batch, continuation: input_ids[batch, alternative, :] = [start_token] + story[:cap_length] + [delimiter_token] + cont1[:cap_length] + [clf_token] """ tensor_datasets = [] for dataset in encoded_datasets: n_batch = len(dataset) input_ids = np.zeros((n_batch, 2, input_len), dtype=np.int64) mc_token_ids = np.zeros((n_batch, 2), dtype=np.int64) lm_labels = np.full((n_batch, 2, input_len), fill_value=-100, dtype=np.int64) mc_labels = np.zeros((n_batch,), dtype=np.int64) for ( i, (story, cont1, cont2, mc_label), ) in enumerate(dataset): with_cont1 = [start_token] + story[:cap_length] + [delimiter_token] + cont1[:cap_length] + [clf_token] with_cont2 = [start_token] + story[:cap_length] + [delimiter_token] + cont2[:cap_length] + [clf_token] input_ids[i, 0, : len(with_cont1)] = with_cont1 input_ids[i, 1, : len(with_cont2)] = with_cont2 mc_token_ids[i, 0] = len(with_cont1) - 1 mc_token_ids[i, 1] = len(with_cont2) - 1 lm_labels[i, 0, : len(with_cont1)] = with_cont1 lm_labels[i, 1, : len(with_cont2)] = with_cont2 mc_labels[i] = mc_label all_inputs = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(t) for t in all_inputs)) return tensor_datasets def main(): parser = argparse.ArgumentParser() parser.add_argument("--model_name", type=str, default="openai-gpt", help="pretrained model name") parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--train_dataset", type=str, default="") parser.add_argument("--eval_dataset", type=str, default="") parser.add_argument("--seed", type=int, default=42) parser.add_argument("--num_train_epochs", type=int, default=3) parser.add_argument("--train_batch_size", type=int, default=8) parser.add_argument("--eval_batch_size", type=int, default=16) parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", type=int, default=1) parser.add_argument( "--max_steps", default=-1, type=int, help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", type=float, default=6.25e-5) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--lr_schedule", type=str, default="warmup_linear") parser.add_argument("--weight_decay", type=float, default=0.01) parser.add_argument("--lm_coef", type=float, default=0.9) parser.add_argument("--n_valid", type=int, default=374) parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") args = parser.parse_args() print(args) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(device, n_gpu)) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True.") if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset special_tokens = ["_start_", "_delimiter_", "_classify_"] tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_tokens(special_tokens) special_tokens_ids = tokenizer.convert_tokens_to_ids(special_tokens) model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(tokenizer)) model.to(device) # Load and encode the datasets def tokenize_and_encode(obj): """Tokenize and encode a nested object""" if isinstance(obj, str): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj)) elif isinstance(obj, int): return obj return [tokenize_and_encode(o) for o in obj] logger.info("Encoding dataset...") train_dataset = load_rocstories_dataset(args.train_dataset) eval_dataset = load_rocstories_dataset(args.eval_dataset) datasets = (train_dataset, eval_dataset) encoded_datasets = tokenize_and_encode(datasets) # Compute the max input length for the Transformer max_length = model.config.n_positions // 2 - 2 input_length = max( len(story[:max_length]) + max(len(cont1[:max_length]), len(cont2[:max_length])) + 3 for dataset in encoded_datasets for story, cont1, cont2, _ in dataset ) input_length = min(input_length, model.config.n_positions) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders tensor_datasets = pre_process_datasets(encoded_datasets, input_length, max_length, *special_tokens_ids) train_tensor_dataset, eval_tensor_dataset = tensor_datasets[0], tensor_datasets[1] train_data = TensorDataset(*train_tensor_dataset) train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) eval_data = TensorDataset(*eval_tensor_dataset) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs param_optimizer = list(model.named_parameters()) no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) if args.do_train: nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs), desc="Epoch"): tr_loss = 0 nb_tr_steps = 0 tqdm_bar = tqdm(train_dataloader, desc="Training") for step, batch in enumerate(tqdm_bar): batch = tuple(t.to(device) for t in batch) input_ids, mc_token_ids, lm_labels, mc_labels = batch losses = model(input_ids, mc_token_ids=mc_token_ids, lm_labels=lm_labels, mc_labels=mc_labels) loss = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() exp_average_loss = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(exp_average_loss, scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer model_to_save = model.module if hasattr(model, "module") else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME) output_config_file = os.path.join(args.output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) tokenizer = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(device) if args.do_eval: model.eval() eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for batch in tqdm(eval_dataloader, desc="Evaluating"): batch = tuple(t.to(device) for t in batch) input_ids, mc_token_ids, lm_labels, mc_labels = batch with torch.no_grad(): _, mc_loss, _, mc_logits = model( input_ids, mc_token_ids=mc_token_ids, lm_labels=lm_labels, mc_labels=mc_labels ) mc_logits = mc_logits.detach().cpu().numpy() mc_labels = mc_labels.to("cpu").numpy() tmp_eval_accuracy = accuracy(mc_logits, mc_labels) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 eval_loss = eval_loss / nb_eval_steps eval_accuracy = eval_accuracy / nb_eval_examples train_loss = tr_loss / nb_tr_steps if args.do_train else None result = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if __name__ == "__main__": main()
transformers/examples/legacy/run_openai_gpt.py/0
{ "file_path": "transformers/examples/legacy/run_openai_gpt.py", "repo_id": "transformers", "token_count": 6165 }
257
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for named entity recognition on CoNLL-2003. """ import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, f1_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) task_type: Optional[str] = field( default="NER", metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."}) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ data_dir: str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) labels: Optional[str] = field( default=None, metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."}, ) max_seq_length: int = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) module = import_module("tasks") try: token_classification_task_clazz = getattr(module, model_args.task_type) token_classification_task: TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) # Prepare CONLL-2003 task labels = token_classification_task.get_labels(data_args.labels) label_map: Dict[int, str] = dict(enumerate(labels)) num_labels = len(labels) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, id2label=label_map, label2id={label: i for i, label in enumerate(labels)}, cache_dir=model_args.cache_dir, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast, ) model = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) # Get datasets train_dataset = ( TokenClassificationDataset( token_classification_task=token_classification_task, data_dir=data_args.data_dir, tokenizer=tokenizer, labels=labels, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) eval_dataset = ( TokenClassificationDataset( token_classification_task=token_classification_task, data_dir=data_args.data_dir, tokenizer=tokenizer, labels=labels, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]: preds = np.argmax(predictions, axis=2) batch_size, seq_len = preds.shape out_label_list = [[] for _ in range(batch_size)] preds_list = [[] for _ in range(batch_size)] for i in range(batch_size): for j in range(seq_len): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) return preds_list, out_label_list def compute_metrics(p: EvalPrediction) -> Dict: preds_list, out_label_list = align_predictions(p.predictions, p.label_ids) return { "accuracy_score": accuracy_score(out_label_list, preds_list), "precision": precision_score(out_label_list, preds_list), "recall": recall_score(out_label_list, preds_list), "f1": f1_score(out_label_list, preds_list), } # Data collator data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) if training_args.fp16 else None # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=compute_metrics, data_collator=data_collator, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") result = trainer.evaluate() output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") if trainer.is_world_process_zero(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key, value in result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) results.update(result) # Predict if training_args.do_predict: test_dataset = TokenClassificationDataset( token_classification_task=token_classification_task, data_dir=data_args.data_dir, tokenizer=tokenizer, labels=labels, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.test, ) predictions, label_ids, metrics = trainer.predict(test_dataset) preds_list, _ = align_predictions(predictions, label_ids) output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt") if trainer.is_world_process_zero(): with open(output_test_results_file, "w") as writer: for key, value in metrics.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) # Save predictions output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt") if trainer.is_world_process_zero(): with open(output_test_predictions_file, "w") as writer: with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f: token_classification_task.write_predictions_to_file(writer, f, preds_list) return results def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers/examples/legacy/token-classification/run_ner.py/0
{ "file_path": "transformers/examples/legacy/token-classification/run_ner.py", "repo_id": "transformers", "token_count": 5023 }
258
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import logging import os import sys import warnings from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version """ Fine-tuning a 🤗 Transformers model for image classification""" logger = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.38.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") MODEL_CONFIG_CLASSES = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def pil_loader(path: str): with open(path, "rb") as f: im = Image.open(f) return im.convert("RGB") @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ dataset_name: Optional[str] = field( default=None, metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." }, ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the training data."}) validation_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the validation data."}) train_val_split: Optional[float] = field( default=0.15, metadata={"help": "Percent to split off of train for validation."} ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) image_column_name: str = field( default="image", metadata={"help": "The name of the dataset column containing the image data. Defaults to 'image'."}, ) label_column_name: str = field( default="label", metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'."}, ) def __post_init__(self): if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( default="google/vit-base-patch16-224-in21k", metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."}) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) ignore_mismatched_sizes: bool = field( default=False, metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."}, ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification", model_args, data_args) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() log_level = training_args.get_process_log_level() logger.setLevel(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: dataset = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=model_args.token, ) else: data_files = {} if data_args.train_dir is not None: data_files["train"] = os.path.join(data_args.train_dir, "**") if data_args.validation_dir is not None: data_files["validation"] = os.path.join(data_args.validation_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=model_args.cache_dir, ) dataset_column_names = dataset["train"].column_names if "train" in dataset else dataset["validation"].column_names if data_args.image_column_name not in dataset_column_names: raise ValueError( f"--image_column_name {data_args.image_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--image_column_name` to the correct audio column - one of " f"{', '.join(dataset_column_names)}." ) if data_args.label_column_name not in dataset_column_names: raise ValueError( f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--label_column_name` to the correct text column - one of " f"{', '.join(dataset_column_names)}." ) def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) labels = torch.tensor([example[data_args.label_column_name] for example in examples]) return {"pixel_values": pixel_values, "labels": labels} # If we don't have a validation split, split off a percentage of train as validation. data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0: split = dataset["train"].train_test_split(data_args.train_val_split) dataset["train"] = split["train"] dataset["validation"] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. labels = dataset["train"].features[data_args.label_column_name].names label2id, id2label = {}, {} for i, label in enumerate(labels): label2id[label] = str(i) id2label[str(i)] = label # Load the accuracy metric from the datasets package metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(p): """Computes accuracy on a batch of predictions""" return metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids) config = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(labels), label2id=label2id, id2label=id2label, finetuning_task="image-classification", cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) model = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) image_processor = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: size = image_processor.size["shortest_edge"] else: size = (image_processor.size["height"], image_processor.size["width"]) normalize = ( Normalize(mean=image_processor.image_mean, std=image_processor.image_std) if hasattr(image_processor, "image_mean") and hasattr(image_processor, "image_std") else Lambda(lambda x: x) ) _train_transforms = Compose( [ RandomResizedCrop(size), RandomHorizontalFlip(), ToTensor(), normalize, ] ) _val_transforms = Compose( [ Resize(size), CenterCrop(size), ToTensor(), normalize, ] ) def train_transforms(example_batch): """Apply _train_transforms across a batch.""" example_batch["pixel_values"] = [ _train_transforms(pil_img.convert("RGB")) for pil_img in example_batch[data_args.image_column_name] ] return example_batch def val_transforms(example_batch): """Apply _val_transforms across a batch.""" example_batch["pixel_values"] = [ _val_transforms(pil_img.convert("RGB")) for pil_img in example_batch[data_args.image_column_name] ] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset") if data_args.max_train_samples is not None: dataset["train"] = ( dataset["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples)) ) # Set the training transforms dataset["train"].set_transform(train_transforms) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset") if data_args.max_eval_samples is not None: dataset["validation"] = ( dataset["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples)) ) # Set the validation transforms dataset["validation"].set_transform(val_transforms) # Initialize our trainer trainer = Trainer( model=model, args=training_args, train_dataset=dataset["train"] if training_args.do_train else None, eval_dataset=dataset["validation"] if training_args.do_eval else None, compute_metrics=compute_metrics, tokenizer=image_processor, data_collator=collate_fn, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() # Evaluation if training_args.do_eval: metrics = trainer.evaluate() trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Write model card and (optionally) push to hub kwargs = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) if __name__ == "__main__": main()
transformers/examples/pytorch/image-classification/run_image_classification.py/0
{ "file_path": "transformers/examples/pytorch/image-classification/run_image_classification.py", "repo_id": "transformers", "token_count": 7153 }
259
#!/usr/bin/env python # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import json import logging import os import random import sys import warnings from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from huggingface_hub import hf_hub_download from PIL import Image from torch import nn from torchvision import transforms from torchvision.transforms import functional import transformers from transformers import ( AutoConfig, AutoImageProcessor, AutoModelForSemanticSegmentation, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version """ Finetuning any 🤗 Transformers model supported by AutoModelForSemanticSegmentation for semantic segmentation leveraging the Trainer API.""" logger = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.38.0.dev0") require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/semantic-segmentation/requirements.txt") def pad_if_smaller(img, size, fill=0): size = (size, size) if isinstance(size, int) else size original_width, original_height = img.size pad_height = size[1] - original_height if original_height < size[1] else 0 pad_width = size[0] - original_width if original_width < size[0] else 0 img = functional.pad(img, (0, 0, pad_width, pad_height), fill=fill) return img class Compose: def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target): for t in self.transforms: image, target = t(image, target) return image, target class Identity: def __init__(self): pass def __call__(self, image, target): return image, target class Resize: def __init__(self, size): self.size = size def __call__(self, image, target): image = functional.resize(image, self.size) target = functional.resize(target, self.size, interpolation=transforms.InterpolationMode.NEAREST) return image, target class RandomResize: def __init__(self, min_size, max_size=None): self.min_size = min_size if max_size is None: max_size = min_size self.max_size = max_size def __call__(self, image, target): size = random.randint(self.min_size, self.max_size) image = functional.resize(image, size) target = functional.resize(target, size, interpolation=transforms.InterpolationMode.NEAREST) return image, target class RandomCrop: def __init__(self, size): self.size = size if isinstance(size, tuple) else (size, size) def __call__(self, image, target): image = pad_if_smaller(image, self.size) target = pad_if_smaller(target, self.size, fill=255) crop_params = transforms.RandomCrop.get_params(image, self.size) image = functional.crop(image, *crop_params) target = functional.crop(target, *crop_params) return image, target class RandomHorizontalFlip: def __init__(self, flip_prob): self.flip_prob = flip_prob def __call__(self, image, target): if random.random() < self.flip_prob: image = functional.hflip(image) target = functional.hflip(target) return image, target class PILToTensor: def __call__(self, image, target): image = functional.pil_to_tensor(image) target = torch.as_tensor(np.array(target), dtype=torch.int64) return image, target class ConvertImageDtype: def __init__(self, dtype): self.dtype = dtype def __call__(self, image, target): image = functional.convert_image_dtype(image, self.dtype) return image, target class Normalize: def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, image, target): image = functional.normalize(image, mean=self.mean, std=self.std) return image, target class ReduceLabels: def __call__(self, image, target): if not isinstance(target, np.ndarray): target = np.array(target).astype(np.uint8) # avoid using underflow conversion target[target == 0] = 255 target = target - 1 target[target == 254] = 255 target = Image.fromarray(target) return image, target @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ dataset_name: Optional[str] = field( default="segments/sidewalk-semantic", metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." }, ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_val_split: Optional[float] = field( default=0.15, metadata={"help": "Percent to split off of train for validation."} ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) reduce_labels: Optional[bool] = field( default=False, metadata={"help": "Whether or not to reduce all labels by 1 and replace background by 255."}, ) def __post_init__(self): if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( default="nvidia/mit-b0", metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."}) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_semantic_segmentation", model_args, data_args) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() log_level = training_args.get_process_log_level() logger.setLevel(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Load dataset # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # TODO support datasets from local folders dataset = load_dataset(data_args.dataset_name, cache_dir=model_args.cache_dir) # Rename column names to standardized names (only "image" and "label" need to be present) if "pixel_values" in dataset["train"].column_names: dataset = dataset.rename_columns({"pixel_values": "image"}) if "annotation" in dataset["train"].column_names: dataset = dataset.rename_columns({"annotation": "label"}) # If we don't have a validation split, split off a percentage of train as validation. data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0: split = dataset["train"].train_test_split(data_args.train_val_split) dataset["train"] = split["train"] dataset["validation"] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. if data_args.dataset_name == "scene_parse_150": repo_id = "huggingface/label-files" filename = "ade20k-id2label.json" else: repo_id = data_args.dataset_name filename = "id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} label2id = {v: str(k) for k, v in id2label.items()} # Load the mean IoU metric from the datasets package metric = evaluate.load("mean_iou", cache_dir=model_args.cache_dir) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. @torch.no_grad() def compute_metrics(eval_pred): logits, labels = eval_pred logits_tensor = torch.from_numpy(logits) # scale the logits to the size of the label logits_tensor = nn.functional.interpolate( logits_tensor, size=labels.shape[-2:], mode="bilinear", align_corners=False, ).argmax(dim=1) pred_labels = logits_tensor.detach().cpu().numpy() metrics = metric.compute( predictions=pred_labels, references=labels, num_labels=len(id2label), ignore_index=0, reduce_labels=image_processor.do_reduce_labels, ) # add per category metrics as individual key-value pairs per_category_accuracy = metrics.pop("per_category_accuracy").tolist() per_category_iou = metrics.pop("per_category_iou").tolist() metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)}) metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)}) return metrics config = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, label2id=label2id, id2label=id2label, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) model = AutoModelForSemanticSegmentation.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) image_processor = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) # Define torchvision transforms to be applied to each image + target. # Not that straightforward in torchvision: https://github.com/pytorch/vision/issues/9 # Currently based on official torchvision references: https://github.com/pytorch/vision/blob/main/references/segmentation/transforms.py if "shortest_edge" in image_processor.size: # We instead set the target size as (shortest_edge, shortest_edge) to here to ensure all images are batchable. size = (image_processor.size["shortest_edge"], image_processor.size["shortest_edge"]) else: size = (image_processor.size["height"], image_processor.size["width"]) train_transforms = Compose( [ ReduceLabels() if data_args.reduce_labels else Identity(), RandomCrop(size=size), RandomHorizontalFlip(flip_prob=0.5), PILToTensor(), ConvertImageDtype(torch.float), Normalize(mean=image_processor.image_mean, std=image_processor.image_std), ] ) # Define torchvision transform to be applied to each image. # jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1) val_transforms = Compose( [ ReduceLabels() if data_args.reduce_labels else Identity(), Resize(size=size), PILToTensor(), ConvertImageDtype(torch.float), Normalize(mean=image_processor.image_mean, std=image_processor.image_std), ] ) def preprocess_train(example_batch): pixel_values = [] labels = [] for image, target in zip(example_batch["image"], example_batch["label"]): image, target = train_transforms(image.convert("RGB"), target) pixel_values.append(image) labels.append(target) encoding = {} encoding["pixel_values"] = torch.stack(pixel_values) encoding["labels"] = torch.stack(labels) return encoding def preprocess_val(example_batch): pixel_values = [] labels = [] for image, target in zip(example_batch["image"], example_batch["label"]): image, target = val_transforms(image.convert("RGB"), target) pixel_values.append(image) labels.append(target) encoding = {} encoding["pixel_values"] = torch.stack(pixel_values) encoding["labels"] = torch.stack(labels) return encoding if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset") if data_args.max_train_samples is not None: dataset["train"] = ( dataset["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples)) ) # Set the training transforms dataset["train"].set_transform(preprocess_train) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset") if data_args.max_eval_samples is not None: dataset["validation"] = ( dataset["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples)) ) # Set the validation transforms dataset["validation"].set_transform(preprocess_val) # Initialize our trainer trainer = Trainer( model=model, args=training_args, train_dataset=dataset["train"] if training_args.do_train else None, eval_dataset=dataset["validation"] if training_args.do_eval else None, compute_metrics=compute_metrics, tokenizer=image_processor, data_collator=default_data_collator, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() # Evaluation if training_args.do_eval: metrics = trainer.evaluate() trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Write model card and (optionally) push to hub kwargs = { "finetuned_from": model_args.model_name_or_path, "dataset": data_args.dataset_name, "tags": ["image-segmentation", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) if __name__ == "__main__": main()
transformers/examples/pytorch/semantic-segmentation/run_semantic_segmentation.py/0
{ "file_path": "transformers/examples/pytorch/semantic-segmentation/run_semantic_segmentation.py", "repo_id": "transformers", "token_count": 8360 }
260
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Text classification examples ## GLUE tasks Based on the script [`run_glue.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py). Fine-tuning the library models for sequence classification on the GLUE benchmark: [General Language Understanding Evaluation](https://gluebenchmark.com/). This script can fine-tune any of the models on the [hub](https://huggingface.co/models) and can also be used for a dataset hosted on our [hub](https://huggingface.co/datasets) or your own data in a csv or a JSON file (the script might need some tweaks in that case, refer to the comments inside for help). GLUE is made up of a total of 9 different tasks. Here is how to run the script on one of them: ```bash export TASK_NAME=mrpc python run_glue.py \ --model_name_or_path bert-base-cased \ --task_name $TASK_NAME \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ ``` where task name can be one of cola, sst2, mrpc, stsb, qqp, mnli, qnli, rte, wnli. We get the following results on the dev set of the benchmark with the previous commands (with an exception for MRPC and WNLI which are tiny and where we used 5 epochs instead of 3). Trainings are seeded so you should obtain the same results with PyTorch 1.6.0 (and close results with different versions), training times are given for information (a single Titan RTX was used): | Task | Metric | Result | Training time | |-------|------------------------------|-------------|---------------| | CoLA | Matthews corr | 56.53 | 3:17 | | SST-2 | Accuracy | 92.32 | 26:06 | | MRPC | F1/Accuracy | 88.85/84.07 | 2:21 | | STS-B | Pearson/Spearman corr. | 88.64/88.48 | 2:13 | | QQP | Accuracy/F1 | 90.71/87.49 | 2:22:26 | | MNLI | Matched acc./Mismatched acc. | 83.91/84.10 | 2:35:23 | | QNLI | Accuracy | 90.66 | 40:57 | | RTE | Accuracy | 65.70 | 57 | | WNLI | Accuracy | 56.34 | 24 | Some of these results are significantly different from the ones reported on the test set of GLUE benchmark on the website. For QQP and WNLI, please refer to [FAQ #12](https://gluebenchmark.com/faq) on the website. The following example fine-tunes BERT on the `imdb` dataset hosted on our [hub](https://huggingface.co/datasets): ```bash python run_glue.py \ --model_name_or_path bert-base-cased \ --dataset_name imdb \ --do_train \ --do_predict \ --max_seq_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir /tmp/imdb/ ``` > If your model classification head dimensions do not fit the number of labels in the dataset, you can specify `--ignore_mismatched_sizes` to adapt it. ## Text classification As an alternative, we can use the script [`run_classification.py`](./run_classification.py) to fine-tune models on a single/multi-label classification task. The following example fine-tunes BERT on the `en` subset of [`amazon_reviews_multi`](https://huggingface.co/datasets/amazon_reviews_multi) dataset. We can specify the metric, the label column and aso choose which text columns to use jointly for classification. ```bash dataset="amazon_reviews_multi" subset="en" python run_classification.py \ --model_name_or_path bert-base-uncased \ --dataset_name ${dataset} \ --dataset_config_name ${subset} \ --shuffle_train_dataset \ --metric_name accuracy \ --text_column_name "review_title,review_body,product_category" \ --text_column_delimiter "\n" \ --label_column_name stars \ --do_train \ --do_eval \ --max_seq_length 512 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 1 \ --output_dir /tmp/${dataset}_${subset}/ ``` Training for 1 epoch results in acc of around 0.5958 for review_body only and 0.659 for title+body+category. The following is a multi-label classification example. It fine-tunes BERT on the `reuters21578` dataset hosted on our [hub](https://huggingface.co/datasets/reuters21578): ```bash dataset="reuters21578" subset="ModApte" python run_classification.py \ --model_name_or_path bert-base-uncased \ --dataset_name ${dataset} \ --dataset_config_name ${subset} \ --shuffle_train_dataset \ --remove_splits "unused" \ --metric_name f1 \ --text_column_name text \ --label_column_name topics \ --do_train \ --do_eval \ --max_seq_length 512 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 15 \ --output_dir /tmp/${dataset}_${subset}/ ``` It results in a Micro F1 score of around 0.82 without any text and label filtering. Note that you have to explicitly remove the "unused" split from the dataset, since it is not used for classification. ### Mixed precision training If you have a GPU with mixed precision capabilities (architecture Pascal or more recent), you can use mixed precision training with PyTorch 1.6.0 or latest, or by installing the [Apex](https://github.com/NVIDIA/apex) library for previous versions. Just add the flag `--fp16` to your command launching one of the scripts mentioned above! Using mixed precision training usually results in 2x-speedup for training with the same final results: | Task | Metric | Result | Training time | Result (FP16) | Training time (FP16) | |-------|------------------------------|-------------|---------------|---------------|----------------------| | CoLA | Matthews corr | 56.53 | 3:17 | 56.78 | 1:41 | | SST-2 | Accuracy | 92.32 | 26:06 | 91.74 | 13:11 | | MRPC | F1/Accuracy | 88.85/84.07 | 2:21 | 88.12/83.58 | 1:10 | | STS-B | Pearson/Spearman corr. | 88.64/88.48 | 2:13 | 88.71/88.55 | 1:08 | | QQP | Accuracy/F1 | 90.71/87.49 | 2:22:26 | 90.67/87.43 | 1:11:54 | | MNLI | Matched acc./Mismatched acc. | 83.91/84.10 | 2:35:23 | 84.04/84.06 | 1:17:06 | | QNLI | Accuracy | 90.66 | 40:57 | 90.96 | 20:16 | | RTE | Accuracy | 65.70 | 57 | 65.34 | 29 | | WNLI | Accuracy | 56.34 | 24 | 56.34 | 12 | ## PyTorch version, no Trainer Based on the script [`run_glue_no_trainer.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue_no_trainer.py). Like `run_glue.py`, this script allows you to fine-tune any of the models on the [hub](https://huggingface.co/models) on a text classification task, either a GLUE task or your own data in a csv or a JSON file. The main difference is that this script exposes the bare training loop, to allow you to quickly experiment and add any customization you would like. It offers less options than the script with `Trainer` (for instance you can easily change the options for the optimizer or the dataloaders directly in the script) but still run in a distributed setup, on TPU and supports mixed precision by the mean of the [🤗 `Accelerate`](https://github.com/huggingface/accelerate) library. You can use the script normally after installing it: ```bash pip install git+https://github.com/huggingface/accelerate ``` then ```bash export TASK_NAME=mrpc python run_glue_no_trainer.py \ --model_name_or_path bert-base-cased \ --task_name $TASK_NAME \ --max_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ ``` You can then use your usual launchers to run in it in a distributed environment, but the easiest way is to run ```bash accelerate config ``` and reply to the questions asked. Then ```bash accelerate test ``` that will check everything is ready for training. Finally, you can launch training with ```bash export TASK_NAME=mrpc accelerate launch run_glue_no_trainer.py \ --model_name_or_path bert-base-cased \ --task_name $TASK_NAME \ --max_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ ``` This command is the same and will work for: - a CPU-only setup - a setup with one GPU - a distributed training with several GPUs (single or multi node) - a training on TPUs Note that this library is in alpha release so your feedback is more than welcome if you encounter any problem using it. ## XNLI Based on the script [`run_xnli.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_xnli.py). [XNLI](https://cims.nyu.edu/~sbowman/xnli/) is a crowd-sourced dataset based on [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/). It is an evaluation benchmark for cross-lingual text representations. Pairs of text are labeled with textual entailment annotations for 15 different languages (including both high-resource language such as English and low-resource languages such as Swahili). #### Fine-tuning on XNLI This example code fine-tunes mBERT (multi-lingual BERT) on the XNLI dataset. It runs in 106 mins on a single tesla V100 16GB. ```bash python run_xnli.py \ --model_name_or_path bert-base-multilingual-cased \ --language de \ --train_language en \ --do_train \ --do_eval \ --per_device_train_batch_size 32 \ --learning_rate 5e-5 \ --num_train_epochs 2.0 \ --max_seq_length 128 \ --output_dir /tmp/debug_xnli/ \ --save_steps -1 ``` Training with the previously defined hyper-parameters yields the following results on the **test** set: ```bash acc = 0.7093812375249501 ```
transformers/examples/pytorch/text-classification/README.md/0
{ "file_path": "transformers/examples/pytorch/text-classification/README.md", "repo_id": "transformers", "token_count": 4133 }
261
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> ## Translation This directory contains examples for finetuning and evaluating transformers on translation tasks. Please tag @patil-suraj with any issues/unexpected behaviors, or send a PR! For deprecated `bertabs` instructions, see [`bertabs/README.md`](https://github.com/huggingface/transformers/blob/main/examples/research_projects/bertabs/README.md). For the old `finetune_trainer.py` and related utils, see [`examples/legacy/seq2seq`](https://github.com/huggingface/transformers/blob/main/examples/legacy/seq2seq). ### Supported Architectures - `BartForConditionalGeneration` - `FSMTForConditionalGeneration` (translation only) - `MBartForConditionalGeneration` - `MarianMTModel` - `PegasusForConditionalGeneration` - `T5ForConditionalGeneration` - `MT5ForConditionalGeneration` `run_translation.py` is a lightweight examples of how to download and preprocess a dataset from the [🤗 Datasets](https://github.com/huggingface/datasets) library or use your own files (jsonlines or csv), then fine-tune one of the architectures above on it. For custom datasets in `jsonlines` format please see: https://huggingface.co/docs/datasets/loading_datasets#json-files and you also will find examples of these below. ## With Trainer Here is an example of a translation fine-tuning with a MarianMT model: ```bash python examples/pytorch/translation/run_translation.py \ --model_name_or_path Helsinki-NLP/opus-mt-en-ro \ --do_train \ --do_eval \ --source_lang en \ --target_lang ro \ --dataset_name wmt16 \ --dataset_config_name ro-en \ --output_dir /tmp/tst-translation \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` MBart and some T5 models require special handling. T5 models `t5-small`, `t5-base`, `t5-large`, `t5-3b` and `t5-11b` must use an additional argument: `--source_prefix "translate {source_lang} to {target_lang}"`. For example: ```bash python examples/pytorch/translation/run_translation.py \ --model_name_or_path t5-small \ --do_train \ --do_eval \ --source_lang en \ --target_lang ro \ --source_prefix "translate English to Romanian: " \ --dataset_name wmt16 \ --dataset_config_name ro-en \ --output_dir /tmp/tst-translation \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` If you get a terrible BLEU score, make sure that you didn't forget to use the `--source_prefix` argument. For the aforementioned group of T5 models it's important to remember that if you switch to a different language pair, make sure to adjust the source and target values in all 3 language-specific command line argument: `--source_lang`, `--target_lang` and `--source_prefix`. MBart models require a different format for `--source_lang` and `--target_lang` values, e.g. instead of `en` it expects `en_XX`, for `ro` it expects `ro_RO`. The full MBart specification for language codes can be found [here](https://huggingface.co/facebook/mbart-large-cc25). For example: ```bash python examples/pytorch/translation/run_translation.py \ --model_name_or_path facebook/mbart-large-en-ro \ --do_train \ --do_eval \ --dataset_name wmt16 \ --dataset_config_name ro-en \ --source_lang en_XX \ --target_lang ro_RO \ --output_dir /tmp/tst-translation \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` And here is how you would use the translation finetuning on your own files, after adjusting the values for the arguments `--train_file`, `--validation_file` to match your setup: ```bash python examples/pytorch/translation/run_translation.py \ --model_name_or_path t5-small \ --do_train \ --do_eval \ --source_lang en \ --target_lang ro \ --source_prefix "translate English to Romanian: " \ --dataset_name wmt16 \ --dataset_config_name ro-en \ --train_file path_to_jsonlines_file \ --validation_file path_to_jsonlines_file \ --output_dir /tmp/tst-translation \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` The task of translation supports only custom JSONLINES files, with each line being a dictionary with a key `"translation"` and its value another dictionary whose keys is the language pair. For example: ```json { "translation": { "en": "Others have dismissed him as a joke.", "ro": "Alții l-au numit o glumă." } } { "translation": { "en": "And some are holding out for an implosion.", "ro": "Iar alții așteaptă implozia." } } ``` Here the languages are Romanian (`ro`) and English (`en`). If you want to use a pre-processed dataset that leads to high BLEU scores, but for the `en-de` language pair, you can use `--dataset_name stas/wmt14-en-de-pre-processed`, as following: ```bash python examples/pytorch/translation/run_translation.py \ --model_name_or_path t5-small \ --do_train \ --do_eval \ --source_lang en \ --target_lang de \ --source_prefix "translate English to German: " \ --dataset_name stas/wmt14-en-de-pre-processed \ --output_dir /tmp/tst-translation \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` ## With Accelerate Based on the script [`run_translation_no_trainer.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/translation/run_translation_no_trainer.py). Like `run_translation.py`, this script allows you to fine-tune any of the models supported on a translation task, the main difference is that this script exposes the bare training loop, to allow you to quickly experiment and add any customization you would like. It offers less options than the script with `Trainer` (for instance you can easily change the options for the optimizer or the dataloaders directly in the script) but still run in a distributed setup, on TPU and supports mixed precision by the mean of the [🤗 `Accelerate`](https://github.com/huggingface/accelerate) library. You can use the script normally after installing it: ```bash pip install git+https://github.com/huggingface/accelerate ``` then ```bash python run_translation_no_trainer.py \ --model_name_or_path Helsinki-NLP/opus-mt-en-ro \ --source_lang en \ --target_lang ro \ --dataset_name wmt16 \ --dataset_config_name ro-en \ --output_dir ~/tmp/tst-translation ``` You can then use your usual launchers to run in it in a distributed environment, but the easiest way is to run ```bash accelerate config ``` and reply to the questions asked. Then ```bash accelerate test ``` that will check everything is ready for training. Finally, you can launch training with ```bash accelerate launch run_translation_no_trainer.py \ --model_name_or_path Helsinki-NLP/opus-mt-en-ro \ --source_lang en \ --target_lang ro \ --dataset_name wmt16 \ --dataset_config_name ro-en \ --output_dir ~/tmp/tst-translation ``` This command is the same and will work for: - a CPU-only setup - a setup with one GPU - a distributed training with several GPUs (single or multi node) - a training on TPUs Note that this library is in alpha release so your feedback is more than welcome if you encounter any problem using it.
transformers/examples/pytorch/translation/README.md/0
{ "file_path": "transformers/examples/pytorch/translation/README.md", "repo_id": "transformers", "token_count": 2710 }
262
import argparse import logging import sys from unittest.mock import patch import run_glue_with_pabee from transformers.testing_utils import TestCasePlus logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() def get_setup_file(): parser = argparse.ArgumentParser() parser.add_argument("-f") args = parser.parse_args() return args.f class PabeeTests(TestCasePlus): def test_run_glue(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_glue_with_pabee.py --model_type albert --model_name_or_path albert-base-v2 --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir {tmp_dir} --overwrite_output_dir --task_name mrpc --do_train --do_eval --per_gpu_train_batch_size=2 --per_gpu_eval_batch_size=1 --learning_rate=2e-5 --max_steps=50 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(sys, "argv", testargs): result = run_glue_with_pabee.main() for value in result.values(): self.assertGreaterEqual(value, 0.75)
transformers/examples/research_projects/bert-loses-patience/test_run_glue_with_pabee.py/0
{ "file_path": "transformers/examples/research_projects/bert-loses-patience/test_run_glue_with_pabee.py", "repo_id": "transformers", "token_count": 672 }
263
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--model_ckpt", type=str, default="microsoft/unixcoder-base-nine") parser.add_argument("--num_epochs", type=int, default=5) parser.add_argument("--batch_size", type=int, default=6) parser.add_argument("--gradient_accumulation_steps", type=int, default=1) parser.add_argument("--freeze", type=bool, default=True) parser.add_argument("--learning_rate", type=float, default=5e-4) parser.add_argument("--seed", type=int, default=0) parser.add_argument("--lr_scheduler_type", type=str, default="cosine") parser.add_argument("--num_warmup_steps", type=int, default=10) parser.add_argument("--weight_decay", type=float, default=0.01) parser.add_argument("--output_dir", type=str, default="./results") return parser.parse_args() metric = load("accuracy") def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return metric.compute(predictions=predictions, references=labels) class CustomCallback(TrainerCallback): def __init__(self, trainer) -> None: super().__init__() self._trainer = trainer def on_epoch_end(self, args, state, control, **kwargs): if control.should_evaluate: control_copy = deepcopy(control) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset, metric_key_prefix="train") return control_copy def main(): args = get_args() set_seed(args.seed) dataset = load_dataset("codeparrot/codecomplex", split="train") train_test = dataset.train_test_split(test_size=0.2) test_validation = train_test["test"].train_test_split(test_size=0.5) train_test_validation = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model") tokenizer = AutoTokenizer.from_pretrained(args.model_ckpt) tokenizer.pad_token = tokenizer.eos_token model = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7) model.config.pad_token_id = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): param.requires_grad = False labels = ClassLabel(num_classes=7, names=list(set(train_test_validation["train"]["complexity"]))) def tokenize(example): inputs = tokenizer(example["src"], truncation=True, max_length=1024) label = labels.str2int(example["complexity"]) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } tokenized_datasets = train_test_validation.map( tokenize, batched=True, remove_columns=train_test_validation["train"].column_names, ) data_collator = DataCollatorWithPadding(tokenizer=tokenizer) training_args = TrainingArguments( output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy="epoch", save_strategy="epoch", logging_strategy="epoch", per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.01, metric_for_best_model="accuracy", run_name="complexity-java", report_to="wandb", ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["valid"], tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, ) print("Training...") trainer.add_callback(CustomCallback(trainer)) trainer.train() if __name__ == "__main__": main()
transformers/examples/research_projects/codeparrot/examples/train_complexity_predictor.py/0
{ "file_path": "transformers/examples/research_projects/codeparrot/examples/train_complexity_predictor.py", "repo_id": "transformers", "token_count": 1799 }
264
#!/bin/bash export CUDA_VISIBLE_DEVICES=0 PATH_TO_DATA=/h/xinji/projects/GLUE MODEL_TYPE=bert # bert or roberta MODEL_SIZE=base # base or large DATASET=MRPC # SST-2, MRPC, RTE, QNLI, QQP, or MNLI MODEL_NAME=${MODEL_TYPE}-${MODEL_SIZE} if [ $MODEL_TYPE = 'bert' ] then MODEL_NAME=${MODEL_NAME}-uncased fi ENTROPIES="0 0.1 0.2 0.3 0.4 0.5 0.6 0.7" for ENTROPY in $ENTROPIES; do python -u run_glue_deebert.py \ --model_type $MODEL_TYPE \ --model_name_or_path ./saved_models/${MODEL_TYPE}-${MODEL_SIZE}/$DATASET/two_stage \ --task_name $DATASET \ --do_eval \ --do_lower_case \ --data_dir $PATH_TO_DATA/$DATASET \ --output_dir ./saved_models/${MODEL_TYPE}-${MODEL_SIZE}/$DATASET/two_stage \ --plot_data_dir ./results/ \ --max_seq_length 128 \ --early_exit_entropy $ENTROPY \ --eval_highway \ --overwrite_cache \ --per_gpu_eval_batch_size=1 done
transformers/examples/research_projects/deebert/entropy_eval.sh/0
{ "file_path": "transformers/examples/research_projects/deebert/entropy_eval.sh", "repo_id": "transformers", "token_count": 437 }
265
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Preprocessing script before training the distilled model. Specific to RoBERTa -> DistilRoBERTa and GPT2 -> DistilGPT2. """ import argparse import torch from transformers import GPT2LMHeadModel, RobertaForMaskedLM if __name__ == "__main__": parser = argparse.ArgumentParser( description=( "Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="roberta", choices=["roberta", "gpt2"]) parser.add_argument("--model_name", default="roberta-large", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_roberta_048131723.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") args = parser.parse_args() if args.model_type == "roberta": model = RobertaForMaskedLM.from_pretrained(args.model_name) prefix = "roberta" elif args.model_type == "gpt2": model = GPT2LMHeadModel.from_pretrained(args.model_name) prefix = "transformer" state_dict = model.state_dict() compressed_sd = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: compressed_sd[f"{prefix}.{param_name}"] = state_dict[f"{prefix}.{param_name}"] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: param_name = f"{prefix}.embeddings.{w}.weight" compressed_sd[param_name] = state_dict[param_name] for w in ["weight", "bias"]: param_name = f"{prefix}.embeddings.LayerNorm.{w}" compressed_sd[param_name] = state_dict[param_name] # Transformer Blocks # std_idx = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: compressed_sd[f"{prefix}.h.{std_idx}.{layer}.{w}"] = state_dict[ f"{prefix}.h.{teacher_idx}.{layer}.{w}" ] compressed_sd[f"{prefix}.h.{std_idx}.attn.bias"] = state_dict[f"{prefix}.h.{teacher_idx}.attn.bias"] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: compressed_sd[f"{prefix}.encoder.layer.{std_idx}.{layer}.{w}"] = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: compressed_sd[f"{layer}"] = state_dict[f"{layer}"] if args.vocab_transform: for w in ["weight", "bias"]: compressed_sd[f"lm_head.dense.{w}"] = state_dict[f"lm_head.dense.{w}"] compressed_sd[f"lm_head.layer_norm.{w}"] = state_dict[f"lm_head.layer_norm.{w}"] elif args.model_type == "gpt2": for w in ["weight", "bias"]: compressed_sd[f"{prefix}.ln_f.{w}"] = state_dict[f"{prefix}.ln_f.{w}"] compressed_sd["lm_head.weight"] = state_dict["lm_head.weight"] print(f"N layers selected for distillation: {std_idx}") print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(f"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
transformers/examples/research_projects/distillation/scripts/extract.py/0
{ "file_path": "transformers/examples/research_projects/distillation/scripts/extract.py", "repo_id": "transformers", "token_count": 2038 }
266
import torch from transformers import AutoTokenizer class FSNERTokenizerUtils(object): def __init__(self, pretrained_model_name_or_path): self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path) def tokenize(self, x): """ Wrapper function for tokenizing query and supports Args: x (`List[str] or List[List[str]]`): List of strings for query or list of lists of strings for supports. Returns: `transformers.tokenization_utils_base.BatchEncoding` dict with additional keys and values for start_token_id, end_token_id and sizes of example lists for each entity type """ if isinstance(x, list) and all(isinstance(_x, list) for _x in x): d = None for l in x: t = self.tokenizer( l, padding="max_length", max_length=384, truncation=True, return_tensors="pt", ) t["sizes"] = torch.tensor([len(l)]) if d is not None: for k in d.keys(): d[k] = torch.cat((d[k], t[k]), 0) else: d = t d["start_token_id"] = torch.tensor(self.tokenizer.convert_tokens_to_ids("[E]")) d["end_token_id"] = torch.tensor(self.tokenizer.convert_tokens_to_ids("[/E]")) elif isinstance(x, list) and all(isinstance(_x, str) for _x in x): d = self.tokenizer( x, padding="max_length", max_length=384, truncation=True, return_tensors="pt", ) else: raise Exception( "Type of parameter x was not recognized! Only `list of strings` for query or `list of lists of" " strings` for supports are supported." ) return d def extract_entity_from_scores(self, query, W_query, p_start, p_end, thresh=0.70): """ Extracts entities from query and scores given a threshold. Args: query (`List[str]`): List of query strings. W_query (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of query sequence tokens in the vocabulary. p_start (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Scores of each token as being start token of an entity p_end (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Scores of each token as being end token of an entity thresh (`float`): Score threshold value Returns: A list of lists of tuples(decoded entity, score) """ final_outputs = [] for idx in range(len(W_query["input_ids"])): start_indexes = end_indexes = range(p_start.shape[1]) output = [] for start_id in start_indexes: for end_id in end_indexes: if start_id < end_id: output.append( ( start_id, end_id, p_start[idx][start_id].item(), p_end[idx][end_id].item(), ) ) output.sort(key=lambda tup: (tup[2] * tup[3]), reverse=True) temp = [] for k in range(len(output)): if output[k][2] * output[k][3] >= thresh: c_start_pos, c_end_pos = output[k][0], output[k][1] decoded = self.tokenizer.decode(W_query["input_ids"][idx][c_start_pos:c_end_pos]) temp.append((decoded, output[k][2] * output[k][3])) final_outputs.append(temp) return final_outputs
transformers/examples/research_projects/fsner/src/fsner/tokenizer_utils.py/0
{ "file_path": "transformers/examples/research_projects/fsner/src/fsner/tokenizer_utils.py", "repo_id": "transformers", "token_count": 2148 }
267
<!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Language model training examples in streaming mode The following examples showcase how to train a language model from scratch using the JAX/Flax backend. JAX/Flax allows you to trace pure functions and compile them into efficient, fused accelerator code on both GPU and TPU. Models written in JAX/Flax are **immutable** and updated in a purely functional way which enables simple and efficient model parallelism. All of the following examples make use of [dataset streaming](https://huggingface.co/docs/datasets/master/dataset_streaming), therefore allowing to train models on massive datasets\ without ever having to download the full dataset. ## Masked language modeling In the following, we demonstrate how to train a bi-directional transformer model using masked language modeling objective as introduced in [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805). More specifically, we demonstrate how JAX/Flax and dataset streaming can be leveraged to pre-train [**`roberta-base`**](https://huggingface.co/roberta-base) in English on a single TPUv3-8 pod for 10000 update steps. The example script uses the 🤗 Datasets library. You can easily customize them to your needs if you need extra processing on your datasets. Let's start by creating a model repository to save the trained model and logs. Here we call the model `"english-roberta-base-dummy"`, but you can change the model name as you like. You can do this either directly on [huggingface.co](https://huggingface.co/new) (assuming that you are logged in) or via the command line: ``` huggingface-cli repo create english-roberta-base-dummy ``` Next we clone the model repository to add the tokenizer and model files. ``` git clone https://huggingface.co/<your-username>/english-roberta-base-dummy ``` To ensure that all tensorboard traces will be uploaded correctly, we need to track them. You can run the following command inside your model repo to do so. ``` cd english-roberta-base-dummy git lfs track "*tfevents*" ``` Great, we have set up our model repository. During training, we will automatically push the training logs and model weights to the repo. Next, let's add a symbolic link to the `run_mlm_flax.py`. ```bash export MODEL_DIR="./english-roberta-base-dummy" ln -s ~/transformers/examples/research_projects/jax-projects/dataset-streaming/run_mlm_flax_stream.py ./ ``` ### Copy config and tokenizer of existing model In this example, we will simply copy an existing config and tokenizer in English. You can run the following code in a Python shell to do so. ```python from transformers import RobertaTokenizerFast, RobertaConfig model_dir = "./english-roberta-base-dummy" tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base") config = RobertaConfig.from_pretrained("roberta-base") tokenizer.save_pretrained(model_dir) config.save_pretrained(model_dir) ``` ### Train model Next we can run the example script to pretrain the model. Compared to the default [`run_mlm_flax`](https://github.com/huggingface/transformers/blob/main/examples/flax/language-modeling/run_mlm_flax.py), we introduced 4 new training settings: - `num_train_steps` - how many update steps should be run. - `num_eval_samples` - how many training samples should be taken for evaluation. - `logging_steps` - at what rate should the training loss be logged. - `eval_steps` - at what rate should evaluation be run. 10K update steps ```bash ./run_mlm_flax_stream.py \ --output_dir="${MODEL_DIR}" \ --model_type="roberta" \ --config_name="${MODEL_DIR}" \ --tokenizer_name="${MODEL_DIR}" \ --dataset_name="oscar" \ --dataset_config_name="unshuffled_deduplicated_en" \ --max_seq_length="128" \ --per_device_train_batch_size="128" \ --per_device_eval_batch_size="128" \ --learning_rate="3e-4" \ --warmup_steps="1000" \ --overwrite_output_dir \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --num_train_steps="10000" \ --num_eval_samples="5000" \ --logging_steps="250" \ --eval_steps="1000" \ --push_to_hub ```
transformers/examples/research_projects/jax-projects/dataset-streaming/README.md/0
{ "file_path": "transformers/examples/research_projects/jax-projects/dataset-streaming/README.md", "repo_id": "transformers", "token_count": 1460 }
268
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from eli5_utils import ( embed_questions_for_retrieval, make_qa_s2s_model, qa_s2s_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer MODEL_TYPE = "bart" LOAD_DENSE_INDEX = True @st.cache(allow_output_mutation=True) def load_models(): if LOAD_DENSE_INDEX: qar_tokenizer = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased") qar_model = AutoModel.from_pretrained("yjernite/retribert-base-uncased").to("cuda:0") _ = qar_model.eval() else: qar_tokenizer, qar_model = (None, None) if MODEL_TYPE == "bart": s2s_tokenizer = AutoTokenizer.from_pretrained("yjernite/bart_eli5") s2s_model = AutoModelForSeq2SeqLM.from_pretrained("yjernite/bart_eli5").to("cuda:0") save_dict = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth") s2s_model.load_state_dict(save_dict["model"]) _ = s2s_model.eval() else: s2s_tokenizer, s2s_model = make_qa_s2s_model( model_name="t5-small", from_file="seq2seq_models/eli5_t5_model_1024_4.pth", device="cuda:0" ) return (qar_tokenizer, qar_model, s2s_tokenizer, s2s_model) @st.cache(allow_output_mutation=True) def load_indexes(): if LOAD_DENSE_INDEX: faiss_res = faiss.StandardGpuResources() wiki40b_passages = datasets.load_dataset(path="wiki_snippets", name="wiki40b_en_100_0")["train"] wiki40b_passage_reps = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat", dtype="float32", mode="r", shape=(wiki40b_passages.num_rows, 128), ) wiki40b_index_flat = faiss.IndexFlatIP(128) wiki40b_gpu_index_flat = faiss.index_cpu_to_gpu(faiss_res, 1, wiki40b_index_flat) wiki40b_gpu_index_flat.add(wiki40b_passage_reps) # TODO fix for larger GPU else: wiki40b_passages, wiki40b_gpu_index_flat = (None, None) es_client = Elasticsearch([{"host": "localhost", "port": "9200"}]) return (wiki40b_passages, wiki40b_gpu_index_flat, es_client) @st.cache(allow_output_mutation=True) def load_train_data(): eli5 = datasets.load_dataset("eli5", name="LFQA_reddit") eli5_train = eli5["train_eli5"] eli5_train_q_reps = np.memmap( "eli5_questions_reps.dat", dtype="float32", mode="r", shape=(eli5_train.num_rows, 128) ) eli5_train_q_index = faiss.IndexFlatIP(128) eli5_train_q_index.add(eli5_train_q_reps) return (eli5_train, eli5_train_q_index) passages, gpu_dense_index, es_client = load_indexes() qar_tokenizer, qar_model, s2s_tokenizer, s2s_model = load_models() eli5_train, eli5_train_q_index = load_train_data() def find_nearest_training(question, n_results=10): q_rep = embed_questions_for_retrieval([question], qar_tokenizer, qar_model) D, I = eli5_train_q_index.search(q_rep, n_results) nn_examples = [eli5_train[int(i)] for i in I[0]] return nn_examples def make_support(question, source="wiki40b", method="dense", n_results=10): if source == "none": support_doc, hit_lst = (" <P> ".join(["" for _ in range(11)]).strip(), []) else: if method == "dense": support_doc, hit_lst = query_qa_dense_index( question, qar_model, qar_tokenizer, passages, gpu_dense_index, n_results ) else: support_doc, hit_lst = query_es_index( question, es_client, index_name="english_wiki40b_snippets_100w", n_results=n_results, ) support_list = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] question_doc = "question: {} context: {}".format(question, support_doc) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _: None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _: None), } ) def answer_question( question_doc, s2s_model, s2s_tokenizer, min_len=64, max_len=256, sampling=False, n_beams=2, top_p=0.95, temp=0.8 ): with torch.no_grad(): answer = qa_s2s_generate( question_doc, s2s_model, s2s_tokenizer, num_answers=1, num_beams=n_beams, min_len=min_len, max_len=max_len, do_sample=sampling, temp=temp, top_p=top_p, top_k=None, max_input_length=1024, device="cuda:0", )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar header_html = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" header_full = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> """ % (header_html,) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia description = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) action_list = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] demo_options = st.sidebar.checkbox("Demo options") if demo_options: action_st = st.sidebar.selectbox( "", action_list, index=3, ) action = action_list.index(action_st) show_type = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) show_passages = show_type == "Show full text of passages" else: action = 3 show_passages = True retrieval_options = st.sidebar.checkbox("Retrieval options") if retrieval_options: retriever_info = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) wiki_source = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) index_type = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: wiki_source = "wiki40b" index_type = "dense" sampled = "beam" n_beams = 2 min_len = 64 max_len = 256 top_p = None temp = None generate_options = st.sidebar.checkbox("Generation options") if generate_options: generate_info = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) sampled = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) min_len = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) max_len = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": n_beams = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: top_p = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) temp = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) n_beams = None # start main text questions_list = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] question_s = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": question = st.text_input("Enter your question here:", "") else: question = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": _, support_list_dense = make_support(question, source=wiki_source, method="dense", n_results=10) _, support_list_sparse = make_support(question, source=wiki_source, method="sparse", n_results=10) support_list = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] support_list = support_list[:10] question_doc = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: question_doc, support_list = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: answer, support_list = answer_question( question_doc, s2s_model, s2s_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): wiki_url = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) sec_titles = res[1].strip() if sec_titles == "": sections = "[{}]({})".format(res[0], wiki_url) else: sec_list = sec_titles.split(" & ") sections = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: nn_train_list = find_nearest_training(question) train_exple = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) answers_st = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) disclaimer = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
transformers/examples/research_projects/longform-qa/eli5_app.py/0
{ "file_path": "transformers/examples/research_projects/longform-qa/eli5_app.py", "repo_id": "transformers", "token_count": 5818 }
269
from torch import nn class ClassificationHead(nn.Module): """Classification Head for transformer encoders""" def __init__(self, class_size, embed_size): super().__init__() self.class_size = class_size self.embed_size = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) self.mlp = nn.Linear(embed_size, class_size) def forward(self, hidden_state): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) logits = self.mlp(hidden_state) return logits
transformers/examples/research_projects/pplm/pplm_classification_head.py/0
{ "file_path": "transformers/examples/research_projects/pplm/pplm_classification_head.py", "repo_id": "transformers", "token_count": 281 }
270
"""Finetuning script for RAG models. Adapted from examples.seq2seq.finetune.py""" import argparse import copy import json import logging import multiprocessing import os import random import shutil import sys import time from collections import defaultdict from pathlib import Path from typing import Any, Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch import torch.distributed as dist from datasets import concatenate_datasets, load_from_disk from torch.utils.data import DataLoader from transformers import ( AutoConfig, AutoTokenizer, BartForConditionalGeneration, BatchEncoding, DPRConfig, DPRContextEncoder, DPRContextEncoderTokenizerFast, RagConfig, RagSequenceForGeneration, RagTokenForGeneration, RagTokenizer, T5ForConditionalGeneration, ) from transformers import logging as transformers_logging from transformers.integrations import is_ray_available if is_ray_available(): import ray from distributed_ray_retriever import RagRayDistributedRetriever, RayRetriever from glob import glob from callbacks_rag import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from kb_encode_utils import add_index, embed_update from lightning_base import BaseTransformer, add_generic_args, generic_train from pynvml import nvmlDeviceGetCount, nvmlDeviceGetHandleByIndex, nvmlDeviceGetMemoryInfo, nvmlInit from utils_rag import ( Seq2SeqDataset, calculate_exact_match, get_git_info, is_rag_model, lmap, pickle_save, save_git_info, save_json, set_extra_model_params, ) logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) transformers_logging.set_verbosity_info() sys.path.insert(2, str(Path(__file__).resolve().parents[1])) isEmUpdateBusy = False isAddIndexBusy = False processes = [] threadHandle_index = None class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self class GenerativeQAModule(BaseTransformer): mode = "generative_qa" loss_names = ["loss"] metric_names = ["em"] val_metric = "em" def __init__(self, hparams, **kwargs): # when loading from a pytorch lightning checkpoint, hparams are passed as dict if isinstance(hparams, dict): hparams = AttrDict(hparams) if hparams.model_type == "rag_sequence": self.model_class = RagSequenceForGeneration elif hparams.model_type == "rag_token": self.model_class = RagTokenForGeneration elif hparams.model_type == "bart": self.model_class = BartForConditionalGeneration else: self.model_class = T5ForConditionalGeneration self.is_rag_model = is_rag_model(hparams.model_type) config_class = RagConfig if self.is_rag_model else AutoConfig config = config_class.from_pretrained(hparams.model_name_or_path) # set retriever parameters config.index_name = hparams.index_name or config.index_name config.passages_path = hparams.passages_path or config.passages_path config.index_path = hparams.index_path or config.index_path config.use_dummy_dataset = hparams.use_dummy_dataset # set extra_model_params for generator configs and load_model extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "attention_dropout", "dropout") if self.is_rag_model: if hparams.prefix is not None: config.generator.prefix = hparams.prefix config.label_smoothing = hparams.label_smoothing hparams, config.generator = set_extra_model_params(extra_model_params, hparams, config.generator) if hparams.distributed_retriever == "ray": # The Ray retriever needs the handles to the retriever actors. retriever = RagRayDistributedRetriever.from_pretrained( hparams.model_name_or_path, hparams.actor_handles, config=config ) if hparams.end2end: ctx_encoder_tokenizer = DPRContextEncoderTokenizerFast.from_pretrained( "facebook/dpr-ctx_encoder-multiset-base" ) retriever.set_ctx_encoder_tokenizer(ctx_encoder_tokenizer) else: logger.info("please use RAY as the distributed retrieval method") model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config, retriever=retriever) if hparams.end2end: ctx_encoder = DPRContextEncoder.from_pretrained(hparams.context_encoder_name) model.set_context_encoder_for_training(ctx_encoder) prefix = config.question_encoder.prefix else: if hparams.prefix is not None: config.prefix = hparams.prefix hparams, config = set_extra_model_params(extra_model_params, hparams, config) model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config) prefix = config.prefix tokenizer = ( RagTokenizer.from_pretrained(hparams.model_name_or_path) if self.is_rag_model else AutoTokenizer.from_pretrained(hparams.model_name_or_path) ) self.config_dpr = DPRConfig.from_pretrained(hparams.context_encoder_name) self.custom_config = hparams self.context_tokenizer = DPRContextEncoderTokenizerFast.from_pretrained(hparams.context_encoder_name) super().__init__(hparams, config=config, tokenizer=tokenizer, model=model) save_git_info(self.hparams.output_dir) self.output_dir = Path(self.hparams.output_dir) self.dpr_ctx_check_dir = str(Path(self.hparams.output_dir)) + "/dpr_ctx_checkpoint" self.metrics_save_path = Path(self.output_dir) / "metrics.json" self.hparams_save_path = Path(self.output_dir) / "hparams.pkl" pickle_save(self.hparams, self.hparams_save_path) self.step_count = 0 self.metrics = defaultdict(list) self.dataset_kwargs: dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": prefix or "", } n_observations_per_split = { "train": self.hparams.n_train, "val": self.hparams.n_val, "test": self.hparams.n_test, } self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} self.target_lens = { "train": self.hparams.max_target_length, "val": self.hparams.val_max_target_length, "test": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}" assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}" self.hparams.git_sha = get_git_info()["repo_sha"] self.num_workers = hparams.num_workers self.distributed_port = self.hparams.distributed_port # For single GPU training, init_ddp_connection is not called. # So we need to initialize the retrievers here. if hparams.gpus <= 1: if hparams.distributed_retriever == "ray": self.model.retriever.init_retrieval() else: logger.info("please use RAY as the distributed retrieval method") self.distributed_retriever = hparams.distributed_retriever def forward(self, input_ids, **kwargs): return self.model(input_ids, **kwargs) def ids_to_clean_text(self, generated_ids: List[int]): gen_text = self.tokenizer.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True ) return lmap(str.strip, gen_text) def _step(self, batch: dict) -> Tuple: source_ids, source_mask, target_ids = batch["input_ids"], batch["attention_mask"], batch["decoder_input_ids"] rag_kwargs = {} if isinstance(self.model, T5ForConditionalGeneration): decoder_input_ids = self.model._shift_right(target_ids) lm_labels = target_ids elif isinstance(self.model, BartForConditionalGeneration): decoder_input_ids = target_ids[:, :-1].contiguous() lm_labels = target_ids[:, 1:].clone() else: assert self.is_rag_model generator = self.model.rag.generator if isinstance(generator, T5ForConditionalGeneration): decoder_start_token_id = generator.config.decoder_start_token_id decoder_input_ids = ( torch.cat( [torch.tensor([[decoder_start_token_id]] * target_ids.shape[0]).to(target_ids), target_ids], dim=1, ) if target_ids.shape[0] < self.target_lens["train"] else generator._shift_right(target_ids) ) elif isinstance(generator, BartForConditionalGeneration): decoder_input_ids = target_ids lm_labels = decoder_input_ids rag_kwargs["reduce_loss"] = True assert decoder_input_ids is not None outputs = self( source_ids, attention_mask=source_mask, decoder_input_ids=decoder_input_ids, use_cache=False, labels=lm_labels, **rag_kwargs, ) loss = outputs["loss"] return (loss,) @property def pad(self) -> int: raise NotImplementedError("pad not implemented") def training_step(self, batch, batch_idx) -> Dict: global isEmUpdateBusy # use to check whether the entire embedding update process is finished or not global isAddIndexBusy # use to check whether the entire indexing process is finished or not global processes # use to keep threads embedding update processes global threadHandle_index # use to keep thread in embedding indexing processes if (self.trainer.global_rank == 0) and (self.custom_config.end2end): if (not batch_idx == 0) and (batch_idx % self.custom_config.indexing_freq == 0): free_gpu_list = [] nvmlInit() deviceCount = nvmlDeviceGetCount() my_list = json.loads(self.custom_config.gpu_order) for i in range(deviceCount): handle = nvmlDeviceGetHandleByIndex(i) info = nvmlDeviceGetMemoryInfo(handle) if info.used / 1e6 < 15: position = my_list.index(i) free_gpu_list.append("cuda:" + str(position)) if len(free_gpu_list) >= self.custom_config.index_gpus: has_free_gpus = True else: has_free_gpus = False if (not isEmUpdateBusy) and has_free_gpus: model_copy = type(self.model.rag.ctx_encoder)( self.config_dpr ) # get a new instance #this will be load in the CPU model_copy.load_state_dict(self.model.rag.ctx_encoder.state_dict()) # copy weights processes = [] if len(free_gpu_list) > self.custom_config.index_gpus: cuda_devices = random.sample(free_gpu_list, self.custom_config.index_gpus) else: cuda_devices = free_gpu_list num_processes = len(cuda_devices) for rank in range(num_processes): logger.info("Iniitializing embedding calculation process rank{}".format(rank)) device = cuda_devices[rank] p = multiprocessing.Process( target=embed_update, args=( copy.deepcopy(model_copy), num_processes, device, rank, self.custom_config.shard_dir, self.custom_config.csv_path, ), ) processes.append(p) for p in processes: p.start() isEmUpdateBusy = True if isEmUpdateBusy and (not isAddIndexBusy): index_process_list = [processes[k].is_alive() for k in range(self.custom_config.index_gpus)] if ( sum(index_process_list) == 0 ): # If entire list is false, we can say all embedding calculation process has finished logger.info("Start adding the index") threadHandle_index = multiprocessing.Process( target=add_index, args=( self.custom_config.shard_dir, self.config.index_path, ), ) threadHandle_index.start() isAddIndexBusy = True # check when index building has started if isAddIndexBusy: # check still the index_building process is happening if not threadHandle_index.is_alive(): logger.info("Merging the dataset shards") saved_dataset_shards = [] for address in glob(str(self.custom_config.shard_dir) + "/*/"): saved_dataset_shards.append(load_from_disk(address)) concat = concatenate_datasets(saved_dataset_shards) concat.save_to_disk(self.config.passages_path) # here we update the main passage file on the disk logger.info("done updating the dataset") # To Do (@Aaron) : Useful in the future dynamic memory implementation. # if you load the index from the disk make sure to update the index file here, otherwise it is ok to update the index file from the worker. # logger.info("then updating the index") # shutil.copy(self.custom_config.temp_index, self.config.idex_path) logger.info("Loading new passages and iniitalzing new index") self.trainer.model.module.module.model.rag.retriever.re_load() self.trainer.model.module.module.model.rag.retriever.init_retrieval() isEmUpdateBusy = False isAddIndexBusy = False self.trainer.strategy.barrier("barrier") loss_tensors = self._step(batch) logs = dict(zip(self.loss_names, loss_tensors)) # tokens per batch tgt_pad_token_id = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer, RagTokenizer) else self.tokenizer.pad_token_id ) src_pad_token_id = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer, RagTokenizer) else self.tokenizer.pad_token_id ) logs["tpb"] = ( batch["input_ids"].ne(src_pad_token_id).sum() + batch["decoder_input_ids"].ne(tgt_pad_token_id).sum() ) self.log("loss", loss_tensors[0]) return loss_tensors[0] def validation_step(self, batch, batch_idx) -> Dict: return self._generative_step(batch) def validation_epoch_end(self, outputs, prefix="val") -> Dict: self.step_count += 1 losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names} loss = losses["loss"] gen_metrics = { k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"] } metrics_tensor: torch.FloatTensor = torch.tensor(gen_metrics[self.val_metric]).type_as(loss) gen_metrics.update({k: v.item() for k, v in losses.items()}) # fix for https://github.com/PyTorchLightning/pytorch-lightning/issues/2424 if dist.is_initialized(): dist.all_reduce(metrics_tensor, op=dist.ReduceOp.SUM) metrics_tensor = metrics_tensor / dist.get_world_size() gen_metrics.update({self.val_metric: metrics_tensor.item()}) losses.update(gen_metrics) metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()} metrics["step_count"] = self.step_count self.save_metrics(metrics, prefix) # writes to self.metrics_save_path log_dict = { f"{prefix}_avg_em": metrics[f"{prefix}_avg_em"], "step_count": metrics["step_count"], f"{prefix}_avg_loss": metrics[f"{prefix}_avg_loss"], f"{prefix}_loss": loss, f"{prefix}_em": metrics_tensor, } self.log_dict(log_dict) def save_metrics(self, latest_metrics, type_path) -> None: self.metrics[type_path].append(latest_metrics) save_json(self.metrics, self.metrics_save_path) def calc_generative_metrics(self, preds, target) -> Dict: return calculate_exact_match(preds, target) def _generative_step(self, batch: dict) -> dict: start_time = time.time() batch = BatchEncoding(batch).to(device=self.model.device) generated_ids = self.model.generate( batch["input_ids"], attention_mask=batch["attention_mask"], do_deduplication=False, # rag specific parameter use_cache=True, min_length=1, max_length=self.target_lens["val"], ) gen_time = (time.time() - start_time) / batch["input_ids"].shape[0] preds: List[str] = self.ids_to_clean_text(generated_ids) target: List[str] = self.ids_to_clean_text(batch["decoder_input_ids"]) # print(preds,target) loss_tensors = self._step(batch) base_metrics = dict(zip(self.loss_names, loss_tensors)) gen_metrics: Dict = self.calc_generative_metrics(preds, target) summ_len = np.mean(lmap(len, generated_ids)) base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **gen_metrics) return base_metrics def test_step(self, batch, batch_idx): return self._generative_step(batch) def test_epoch_end(self, outputs): return self.validation_epoch_end(outputs, prefix="test") def get_dataset(self, type_path) -> Seq2SeqDataset: n_obs = self.n_obs[type_path] max_target_length = self.target_lens[type_path] dataset = Seq2SeqDataset( self.tokenizer, type_path=type_path, n_obs=n_obs, max_target_length=max_target_length, **self.dataset_kwargs, ) return dataset def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False) -> DataLoader: dataset = self.get_dataset(type_path) dataloader = DataLoader( dataset, batch_size=batch_size, collate_fn=dataset.collate_fn, shuffle=shuffle, num_workers=self.num_workers, ) return dataloader def train_dataloader(self) -> DataLoader: dataloader = self.get_dataloader("train", batch_size=self.hparams.train_batch_size, shuffle=True) return dataloader def val_dataloader(self) -> DataLoader: return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size) def test_dataloader(self) -> DataLoader: return self.get_dataloader("test", batch_size=self.hparams.eval_batch_size) @pl.utilities.rank_zero_only def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: save_path = self.output_dir.joinpath("checkpoint{}".format(self.step_count)) self.model.config.save_step = self.step_count # self.model.save_pretrained(save_path) self.tokenizer.save_pretrained(save_path) if self.custom_config.end2end: modified_state_dict = self.model.state_dict() for key in self.model.state_dict().keys(): if key.split(".")[1] == "ctx_encoder": del modified_state_dict[key] self.model.save_pretrained(save_directory=save_path, state_dict=modified_state_dict) save_path_dpr = os.path.join(self.dpr_ctx_check_dir, "checkpoint{}".format(self.step_count)) self.model.rag.ctx_encoder.save_pretrained(save_path_dpr) self.context_tokenizer.save_pretrained(save_path_dpr) @staticmethod def add_model_specific_args(parser, root_dir): BaseTransformer.add_model_specific_args(parser, root_dir) add_generic_args(parser, root_dir) parser.add_argument( "--max_source_length", default=128, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument( "--max_target_length", default=25, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument( "--val_max_target_length", default=25, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument( "--test_max_target_length", default=25, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument("--logger_name", type=str, choices=["default", "wandb", "wandb_shared"], default="default") parser.add_argument("--n_train", type=int, default=-1, required=False, help="# examples. -1 means use all.") parser.add_argument("--n_val", type=int, default=-1, required=False, help="# examples. -1 means use all.") parser.add_argument("--n_test", type=int, default=-1, required=False, help="# examples. -1 means use all.") parser.add_argument("--label_smoothing", type=float, default=0.0, required=False) parser.add_argument( "--prefix", type=str, default=None, help="Prefix added at the beginning of each text, typically used with T5-based models.", ) parser.add_argument( "--early_stopping_patience", type=int, default=-1, required=False, help=( "-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So" " val_check_interval will effect it." ), ) parser.add_argument( "--distributed-port", type=int, default=-1, required=False, help="Port number for distributed training." ) parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token", "bart", "t5"], type=str, help=( "RAG model type: sequence or token, if none specified, the type is inferred from the" " model_name_or_path" ), ) parser.add_argument( "--context_encoder_name", default="facebook/dpr-ctx_encoder-multiset-base", type=str, help="Name of the pre-trained context encoder checkpoint from the DPR", ) parser.add_argument( "--csv_path", default=str(Path(__file__).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv"), type=str, help="path of the raw KB csv", ) parser.add_argument("--end2end", action="store_true", help="whether to train the system end2end or not") parser.add_argument("--index_gpus", type=int, help="how many GPUs used in re-encoding process") parser.add_argument( "--shard_dir", type=str, default=str(Path(__file__).parent / "test_run" / "kb-shards"), help="directory used to keep temporary shards during the re-encode process", ) parser.add_argument( "--gpu_order", type=str, help=( "order of the GPU used during the fine-tuning. Used to finding free GPUs during the re-encode" " process. I do not have many GPUs :)" ), ) parser.add_argument("--indexing_freq", type=int, help="frequency of re-encode process") return parser @staticmethod def add_retriever_specific_args(parser): parser.add_argument( "--index_name", type=str, default=None, help=( "Name of the index to use: 'hf' for a canonical dataset from the datasets library (default), 'custom'" " for a local index, or 'legacy' for the orignal one)" ), ) parser.add_argument( "--passages_path", type=str, default=str(Path(__file__).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset"), help=( "Path to the dataset of passages for custom index. More info about custom indexes in the RagRetriever" " documentation as well as in `examples/rag/use_own_knowledge_dataset.py`" ), ) parser.add_argument( "--index_path", type=str, default=str(Path(__file__).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset_hnsw_index.faiss"), help=( "Path to the faiss index for custom index. More info about custom indexes in the RagRetriever" " documentation as well as in `examples/rag/use_own_knowledge_dataset.py`" ), ) parser.add_argument( "--distributed_retriever", choices=["ray", "pytorch"], type=str, default="ray", help=( "What implementation to use for distributed retriever? If " "pytorch is selected, the index is loaded on training " "worker 0, and torch.distributed is used to handle " "communication between training worker 0, and the other " "training workers. If ray is selected, the Ray library is " "used to create load the index on separate processes, " "and Ray handles the communication between the training " "workers and the retrieval actors." ), ) parser.add_argument( "--use_dummy_dataset", type=bool, default=False, help=( "Whether to use the dummy version of the dataset index. More info about custom indexes in the" " RagRetriever documentation as well as in `examples/rag/use_own_knowledge_dataset.py`" ), ) return parser @staticmethod def add_ray_specific_args(parser): # Ray cluster address. parser.add_argument( "--ray-address", default="auto", type=str, help=( "The address of the Ray cluster to connect to. If not " "specified, Ray will attempt to automatically detect the " "cluster. Has no effect if pytorch is used as the distributed " "retriever." ), ) parser.add_argument( "--num_retrieval_workers", type=int, default=1, help=( "The number of retrieval actors to use when Ray is selected " "for the distributed retriever. Has no effect when " "distributed_retriever is set to pytorch." ), ) return parser def main(args=None, model=None) -> GenerativeQAModule: parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) parser = GenerativeQAModule.add_model_specific_args(parser, os.getcwd()) parser = GenerativeQAModule.add_retriever_specific_args(parser) args = args or parser.parse_args() Path(args.output_dir).mkdir(exist_ok=True) Path(args.output_dir + "/dpr_ctx_checkpoint").mkdir( exist_ok=True ) # save dpr_context encoder seprately for the future use print(args.shard_dir) if os.path.exists(args.shard_dir): # we do not need previous kb shards used in dataset re-conding and re-indexing shutil.rmtree(args.shard_dir) Path(args.shard_dir).mkdir(exist_ok=True) if os.path.exists( args.cache_dir ): # we do not need previous cache files used in dataset re-conding and re-indexing shutil.rmtree(args.cache_dir) Path(args.cache_dir).mkdir(exist_ok=True) named_actors = [] if args.distributed_retriever == "ray" and args.gpus > 1: if not is_ray_available(): raise RuntimeError("Please install Ray to use the Ray distributed retriever.") # Connect to an existing Ray cluster. try: ray.init(address=args.ray_address, namespace="rag") except (ConnectionError, ValueError): logger.warning( "Connection to Ray cluster failed. Make sure a Ray " "cluster is running by either using Ray's cluster " "launcher (`ray up`) or by manually starting Ray on " "each node via `ray start --head` for the head node " "and `ray start --address='<ip address>:6379'` for " "additional nodes. See " "https://docs.ray.io/en/master/cluster/index.html " "for more info." ) raise # Create Ray actors only for rank 0. if ("LOCAL_RANK" not in os.environ or os.environ["LOCAL_RANK"] == 0) and ( "NODE_RANK" not in os.environ or os.environ["NODE_RANK"] == 0 ): remote_cls = ray.remote(RayRetriever) named_actors = [ remote_cls.options(name="retrieval_worker_{}".format(i)).remote() for i in range(args.num_retrieval_workers) ] else: logger.info( "Getting named actors for NODE_RANK {}, LOCAL_RANK {}".format( os.environ["NODE_RANK"], os.environ["LOCAL_RANK"] ) ) named_actors = [ray.get_actor("retrieval_worker_{}".format(i)) for i in range(args.num_retrieval_workers)] args.actor_handles = named_actors assert args.actor_handles == named_actors if model is None: model: GenerativeQAModule = GenerativeQAModule(args) dataset = Path(args.data_dir).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir).startswith("/tmp") or str(args.output_dir).startswith("/var") ): training_logger = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger project = os.environ.get("WANDB_PROJECT", dataset) training_logger = WandbLogger(name=model.output_dir.name, project=project) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger training_logger = WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}") es_callback = ( get_early_stopping_callback(model.val_metric, args.early_stopping_patience) if args.early_stopping_patience >= 0 else False ) trainer: pl.Trainer = generic_train( model, args, logging_callback=Seq2SeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback(args.output_dir, model.val_metric), early_stopping_callback=es_callback, logger=training_logger, profiler=pl.profiler.AdvancedProfiler() if args.profile else None, ) pickle_save(model.hparams, model.output_dir / "hparams.pkl") if not args.do_predict: return model # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": multiprocessing.set_start_method("spawn") parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) parser = GenerativeQAModule.add_model_specific_args(parser, os.getcwd()) parser = GenerativeQAModule.add_retriever_specific_args(parser) parser = GenerativeQAModule.add_ray_specific_args(parser) # Pytorch Lightning Profiler parser.add_argument( "--profile", action="store_true", help="If True, use pytorch_lightning.profiler.AdvancedProfiler to profile the Trainer.", ) args = parser.parse_args() main(args)
transformers/examples/research_projects/rag-end2end-retriever/finetune_rag.py/0
{ "file_path": "transformers/examples/research_projects/rag-end2end-retriever/finetune_rag.py", "repo_id": "transformers", "token_count": 15752 }
271
# Intro Authors: @patrickvonplaten and @lhoestq Aimed at tackling the knowledge-intensive NLP tasks (think tasks a human wouldn't be expected to solve without access to external knowledge sources), RAG models are seq2seq models with access to a retrieval mechanism providing relevant context documents at training and evaluation time. A RAG model encapsulates two core components: a question encoder and a generator. During a forward pass, we encode the input with the question encoder and pass it to the retriever to extract relevant context documents. The documents are then prepended to the input. Such contextualized inputs are passed to the generator. Read more about RAG at https://arxiv.org/abs/2005.11401. # Note ⚠️ This project should be run with pytorch-lightning==1.3.1 which has a potential security vulnerability # Finetuning Our finetuning logic is based on scripts from [`examples/legacy/seq2seq`](https://github.com/huggingface/transformers/tree/main/examples/legacy/seq2seq). We accept training data in the same format as specified there - we expect a directory consisting of 6 text files: ```bash train.source train.target val.source val.target test.source test.target ``` A sample finetuning command (run ` ./examples/research_projects/rag/finetune_rag.py --help` to list all available options): ```bash python examples/research_projects/rag/finetune_rag.py \ --data_dir $DATA_DIR \ --output_dir $OUTPUT_DIR \ --model_name_or_path $MODEL_NAME_OR_PATH \ --model_type rag_sequence \ --fp16 \ --gpus 8 ``` We publish two `base` models which can serve as a starting point for finetuning on downstream tasks (use them as `model_name_or_path`): - [`facebook/rag-sequence-base`](https://huggingface.co/facebook/rag-sequence-base) - a base for finetuning `RagSequenceForGeneration` models, - [`facebook/rag-token-base`](https://huggingface.co/facebook/rag-token-base) - a base for finetuning `RagTokenForGeneration` models. The `base` models initialize the question encoder with [`facebook/dpr-question_encoder-single-nq-base`](https://huggingface.co/facebook/dpr-question_encoder-single-nq-base) and the generator with [`facebook/bart-large`](https://huggingface.co/facebook/bart-large). If you would like to initialize finetuning with a base model using different question encoder and generator architectures, you can build it with a consolidation script, e.g.: ``` python examples/research_projects/rag/consolidate_rag_checkpoint.py \ --model_type rag_sequence \ --generator_name_or_path facebook/bart-large-cnn \ --question_encoder_name_or_path facebook/dpr-question_encoder-single-nq-base \ --dest path/to/checkpoint ``` You will then be able to pass `path/to/checkpoint` as `model_name_or_path` to the `finetune_rag.py` script. ## Document Retrieval When running distributed fine-tuning, each training worker needs to retrieve contextual documents for its input by querying a index loaded into memory. RAG provides two implementations for document retrieval, one with [`torch.distributed`](https://pytorch.org/docs/stable/distributed.html) communication package and the other with [`Ray`](https://docs.ray.io/en/master/). This option can be configured with the `--distributed_retriever` flag which can either be set to `pytorch` or `ray`. By default this flag is set to `pytorch`. For the Pytorch implementation, only training worker 0 loads the index into CPU memory, and a gather/scatter pattern is used to collect the inputs from the other training workers and send back the corresponding document embeddings. For the Ray implementation, the index is loaded in *separate* process(es). The training workers randomly select which retriever worker to query. To use Ray for distributed retrieval, you have to set the `--distributed_retriever` arg to `ray`. To configure the number of retrieval workers (the number of processes that load the index), you can set the `num_retrieval_workers` flag. Also make sure to start the Ray cluster before running fine-tuning. ```bash # Start a single-node Ray cluster. ray start --head python examples/research_projects/rag/finetune_rag.py \ --data_dir $DATA_DIR \ --output_dir $OUTPUT_DIR \ --model_name_or_path $MODEL_NAME_OR_PATH \ --model_type rag_sequence \ --fp16 \ --gpus 8 --distributed_retriever ray \ --num_retrieval_workers 4 # Stop the ray cluster once fine-tuning has finished. ray stop ``` Using Ray can lead to retrieval speedups on multi-GPU settings since multiple processes load the index rather than just the rank 0 training worker. Using Ray also allows you to load the index on GPU since the index is loaded on a separate processes than the model, while with pytorch distributed retrieval, both are loaded in the same process potentially leading to GPU OOM. # Evaluation Our evaluation script enables two modes of evaluation (controlled by the `eval_mode` argument): `e2e` - end2end evaluation, returns EM (exact match) and F1 scores calculated for the downstream task and `retrieval` - which returns precision@k of the documents retrieved for provided inputs. The evaluation script expects paths to two files: - `evaluation_set` - a path to a file specifying the evaluation dataset, a single input per line. - `gold_data_path` - a path to a file contaning ground truth answers for datapoints from the `evaluation_set`, a single output per line. Check below for expected formats of the gold data files. ## Retrieval evaluation For `retrieval` evaluation, we expect a gold data file where each line will consist of a tab-separated list of document titles constituting positive contexts for respective datapoints from the `evaluation_set`. E.g. given a question `who sings does he love me with reba` in the `evaluation_set`, a respective ground truth line could look as follows: ``` Does He Love You Does He Love You Red Sandy Spika dress of Reba McEntire Greatest Hits Volume Two (Reba McEntire album) Shoot for the Moon (album) ``` We demonstrate how to evaluate retrieval against DPR evaluation data. You can download respective files from links listed [here](https://github.com/facebookresearch/DPR/blob/master/data/download_data.py#L39-L45). 1. Download and unzip the gold data file. We use the `biencoder-nq-dev` from https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-dev.json.gz. ```bash wget https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-dev.json.gz && gzip -d biencoder-nq-dev.json.gz ``` 2. Parse the unziped file using the `parse_dpr_relevance_data.py` ```bash mkdir output # or wherever you want to save this python examples/research_projects/rag/parse_dpr_relevance_data.py \ --src_path biencoder-nq-dev.json \ --evaluation_set output/biencoder-nq-dev.questions \ --gold_data_path output/biencoder-nq-dev.pages ``` 3. Run evaluation: ```bash python examples/research_projects/rag/eval_rag.py \ --model_name_or_path facebook/rag-sequence-nq \ --model_type rag_sequence \ --evaluation_set output/biencoder-nq-dev.questions \ --gold_data_path output/biencoder-nq-dev.pages \ --predictions_path output/retrieval_preds.tsv \ --eval_mode retrieval \ --k 1 ``` ```bash # EXPLANATION python examples/research_projects/rag/eval_rag.py \ --model_name_or_path facebook/rag-sequence-nq \ # model name or path of the model we're evaluating --model_type rag_sequence \ # RAG model type (rag_token or rag_sequence) --evaluation_set output/biencoder-nq-dev.questions \ # an input dataset for evaluation --gold_data_path poutput/biencoder-nq-dev.pages \ # a dataset containing ground truth answers for samples from the evaluation_set --predictions_path output/retrieval_preds.tsv \ # name of file where predictions will be stored --eval_mode retrieval \ # indicates whether we're performing retrieval evaluation or e2e evaluation --k 1 # parameter k for the precision@k metric ``` ## End-to-end evaluation We support two formats of the gold data file (controlled by the `gold_data_mode` parameter): - `qa` - where a single line has the following format: `input [tab] output_list`, e.g.: ``` who is the owner of reading football club ['Xiu Li Dai', 'Dai Yongge', 'Dai Xiuli', 'Yongge Dai'] ``` - `ans` - where a single line contains a single expected answer, e.g.: ``` Xiu Li Dai ``` Predictions of the model for the samples from the `evaluation_set` will be saved under the path specified by the `predictions_path` parameter. If this path already exists, the script will use saved predictions to calculate metrics. Add `--recalculate` parameter to force the script to perform inference from scratch. An example e2e evaluation run could look as follows: ```bash python examples/research_projects/rag/eval_rag.py \ --model_name_or_path facebook/rag-sequence-nq \ --model_type rag_sequence \ --evaluation_set path/to/test.source \ --gold_data_path path/to/gold_data \ --predictions_path path/to/e2e_preds.txt \ --eval_mode e2e \ --gold_data_mode qa \ --n_docs 5 \ # You can experiment with retrieving different number of documents at evaluation time --print_predictions \ --recalculate \ # adding this parameter will force recalculating predictions even if predictions_path already exists ``` # Use your own knowledge source By default, RAG uses the English Wikipedia as a knowledge source, known as the 'wiki_dpr' dataset. With `use_custom_knowledge_dataset.py` you can build your own knowledge source, *e.g.* for RAG. For instance, if documents are serialized as tab-separated csv files with the columns "title" and "text", one can use `use_own_knowledge_dataset.py` as follows: ```bash python examples/research_projects/rag/use_own_knowledge_dataset.py \ --csv_path path/to/my_csv \ --output_dir path/to/my_knowledge_dataset \ ``` The created outputs in `path/to/my_knowledge_dataset` can then be used to finetune RAG as follows: ```bash python examples/research_projects/rag/finetune_rag.py \ --data_dir $DATA_DIR \ --output_dir $OUTPUT_DIR \ --model_name_or_path $MODEL_NAME_OR_PATH \ --model_type rag_sequence \ --fp16 \ --gpus 8 --index_name custom --passages_path path/to/data/my_knowledge_dataset --index_path path/to/my_knowledge_dataset_hnsw_index.faiss ```
transformers/examples/research_projects/rag/README.md/0
{ "file_path": "transformers/examples/research_projects/rag/README.md", "repo_id": "transformers", "token_count": 3286 }
272
import re from filelock import FileLock try: import nltk NLTK_AVAILABLE = True except (ImportError, ModuleNotFoundError): NLTK_AVAILABLE = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def add_newline_to_end_of_each_sentence(x: str) -> str: """This was added to get rougeLsum scores matching published rougeL scores for BART and PEGASUS.""" re.sub("<n>", "", x) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(x))
transformers/examples/research_projects/seq2seq-distillation/sentence_splitter.py/0
{ "file_path": "transformers/examples/research_projects/seq2seq-distillation/sentence_splitter.py", "repo_id": "transformers", "token_count": 247 }
273
#!/usr/bin/env bash python run_asr.py \ --output_dir="./wav2vec2-large-lv60-100h" \ --num_train_epochs="30" \ --per_device_train_batch_size="16" \ --per_device_eval_batch_size="16" \ --evaluation_strategy="steps" \ --save_total_limit="3" \ --save_steps="500" \ --eval_steps="100" \ --logging_steps="50" \ --learning_rate="5e-4" \ --warmup_steps="3000" \ --model_name_or_path="facebook/wav2vec2-large-lv60" \ --fp16 \ --dataset_name="librispeech_asr" \ --dataset_config_name="clean" \ --train_split_name="train.100" \ --preprocessing_num_workers="32" \ --group_by_length \ --freeze_feature_extractor
transformers/examples/research_projects/wav2vec2/finetune_large_lv60_100.sh/0
{ "file_path": "transformers/examples/research_projects/wav2vec2/finetune_large_lv60_100.sh", "repo_id": "transformers", "token_count": 255 }
274
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values parser = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") args, unknown = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") cluster = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: cluster = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) example_dir = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"pip install -r transformers/examples/{example_dir}/requirements.txt"]) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
transformers/examples/run_on_remote.py/0
{ "file_path": "transformers/examples/run_on_remote.py", "repo_id": "transformers", "token_count": 1321 }
275
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Script for training a masked language model on TPU.""" import argparse import logging import os import re import tensorflow as tf from packaging.version import parse from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) try: import tf_keras as keras except (ModuleNotFoundError, ImportError): import keras if parse(keras.__version__).major > 2: raise ValueError( "Your currently installed version of Keras is Keras 3, but this is not yet supported in " "Transformers. Please install the backwards-compatible tf-keras package with " "`pip install tf-keras`." ) logger = logging.getLogger(__name__) AUTO = tf.data.AUTOTUNE def parse_args(): parser = argparse.ArgumentParser(description="Train a masked language model on TPU.") parser.add_argument( "--pretrained_model_config", type=str, default="roberta-base", help="The model config to use. Note that we don't copy the model's weights, only the config!", ) parser.add_argument( "--tokenizer", type=str, default="unigram-tokenizer-wikitext", help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.", ) parser.add_argument( "--per_replica_batch_size", type=int, default=8, help="Batch size per TPU core.", ) parser.add_argument( "--no_tpu", action="store_true", help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.", ) parser.add_argument( "--tpu_name", type=str, help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.", default="local", ) parser.add_argument( "--tpu_zone", type=str, help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.", ) parser.add_argument( "--gcp_project", type=str, help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16", action="store_true", help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.", ) parser.add_argument( "--train_dataset", type=str, help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket.", ) parser.add_argument( "--shuffle_buffer_size", type=int, default=2**18, # Default corresponds to a 1GB buffer for seq_len 512 help="Size of the shuffle buffer (in samples)", ) parser.add_argument( "--eval_dataset", type=str, help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket.", ) parser.add_argument( "--num_epochs", type=int, default=1, help="Number of epochs to train for.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Learning rate to use for training.", ) parser.add_argument( "--weight_decay_rate", type=float, default=1e-3, help="Weight decay rate to use for training.", ) parser.add_argument( "--max_length", type=int, default=512, help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py", ) parser.add_argument( "--mlm_probability", type=float, default=0.15, help="Fraction of tokens to mask during training.", ) parser.add_argument("--output_dir", type=str, required=True, help="Path to save model checkpoints to.") parser.add_argument("--hub_model_id", type=str, help="Model ID to upload to on the Hugging Face Hub.") args = parser.parse_args() return args def initialize_tpu(args): try: if args.tpu_name: tpu = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) return tpu def count_samples(file_list): num_samples = 0 for file in file_list: filename = file.split("/")[-1] sample_count = re.search(r"-\d+-(\d+)\.tfrecord", filename).group(1) sample_count = int(sample_count) num_samples += sample_count return num_samples def prepare_dataset(records, decode_fn, mask_fn, batch_size, shuffle, shuffle_buffer_size=None): num_samples = count_samples(records) dataset = tf.data.Dataset.from_tensor_slices(records) if shuffle: dataset = dataset.shuffle(len(dataset)) dataset = tf.data.TFRecordDataset(dataset, num_parallel_reads=AUTO) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here dataset = dataset.apply(tf.data.experimental.assert_cardinality(num_samples)) dataset = dataset.map(decode_fn, num_parallel_calls=AUTO) if shuffle: assert shuffle_buffer_size is not None dataset = dataset.shuffle(args.shuffle_buffer_size) dataset = dataset.batch(batch_size, drop_remainder=True) dataset = dataset.map(mask_fn, num_parallel_calls=AUTO) dataset = dataset.prefetch(AUTO) return dataset def main(args): if not args.no_tpu: tpu = initialize_tpu(args) strategy = tf.distribute.TPUStrategy(tpu) else: strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0") if args.bfloat16: keras.mixed_precision.set_global_policy("mixed_bfloat16") tokenizer = AutoTokenizer.from_pretrained(args.tokenizer) config = AutoConfig.from_pretrained(args.pretrained_model_config) config.vocab_size = tokenizer.vocab_size training_records = tf.io.gfile.glob(os.path.join(args.train_dataset, "*.tfrecord")) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}.") eval_records = tf.io.gfile.glob(os.path.join(args.eval_dataset, "*.tfrecord")) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}.") num_train_samples = count_samples(training_records) steps_per_epoch = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) total_train_steps = steps_per_epoch * args.num_epochs with strategy.scope(): model = TFAutoModelForMaskedLM.from_config(config) model(model.dummy_inputs) # Pass some dummy inputs through the model to ensure all the weights are built optimizer, schedule = create_optimizer( num_train_steps=total_train_steps, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=optimizer, metrics=["accuracy"]) def decode_fn(example): features = { "input_ids": tf.io.FixedLenFeature(dtype=tf.int64, shape=(args.max_length,)), "attention_mask": tf.io.FixedLenFeature(dtype=tf.int64, shape=(args.max_length,)), } return tf.io.parse_single_example(example, features) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm_probability=args.mlm_probability, mlm=True, return_tensors="tf" ) def mask_with_collator(batch): # TF really needs an isin() function special_tokens_mask = ( ~tf.cast(batch["attention_mask"], tf.bool) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) batch["input_ids"], batch["labels"] = data_collator.tf_mask_tokens( batch["input_ids"], vocab_size=len(tokenizer), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=special_tokens_mask, ) return batch batch_size = args.per_replica_batch_size * strategy.num_replicas_in_sync train_dataset = prepare_dataset( training_records, decode_fn=decode_fn, mask_fn=mask_with_collator, batch_size=batch_size, shuffle=True, shuffle_buffer_size=args.shuffle_buffer_size, ) eval_dataset = prepare_dataset( eval_records, decode_fn=decode_fn, mask_fn=mask_with_collator, batch_size=batch_size, shuffle=False, ) callbacks = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=tokenizer) ) model.fit( train_dataset, validation_data=eval_dataset, epochs=args.num_epochs, callbacks=callbacks, ) model.save_pretrained(args.output_dir) if __name__ == "__main__": args = parse_args() main(args)
transformers/examples/tensorflow/language-modeling-tpu/run_mlm.py/0
{ "file_path": "transformers/examples/tensorflow/language-modeling-tpu/run_mlm.py", "repo_id": "transformers", "token_count": 4384 }
276
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import logging import os import sys from unittest import skip from unittest.mock import patch import tensorflow as tf from packaging.version import parse try: import tf_keras as keras except (ModuleNotFoundError, ImportError): import keras if parse(keras.__version__).major > 2: raise ValueError( "Your currently installed version of Keras is Keras 3, but this is not yet supported in " "Transformers. Please install the backwards-compatible tf-keras package with " "`pip install tf-keras`." ) from transformers.testing_utils import TestCasePlus, get_gpu_count, slow SRC_DIRS = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-generation", "text-classification", "token-classification", "language-modeling", "multiple-choice", "question-answering", "summarization", "translation", "image-classification", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm import run_image_classification import run_mlm import run_ner import run_qa as run_squad import run_summarization import run_swag import run_text_classification import run_translation logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() def get_setup_file(): parser = argparse.ArgumentParser() parser.add_argument("-f") args = parser.parse_args() return args.f def get_results(output_dir): results = {} path = os.path.join(output_dir, "all_results.json") if os.path.exists(path): with open(path, "r") as f: results = json.load(f) else: raise ValueError(f"can't find {path}") return results def is_cuda_available(): return bool(tf.config.list_physical_devices("GPU")) stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class ExamplesTests(TestCasePlus): @skip("Skipping until shape inference for to_tf_dataset PR is merged.") def test_run_text_classification(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_text_classification.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() if is_cuda_available(): testargs.append("--fp16") with patch.object(sys, "argv", testargs): run_text_classification.main() # Reset the mixed precision policy so we don't break other tests keras.mixed_precision.set_global_policy("float32") result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_accuracy"], 0.75) def test_run_clm(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_clm.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --num_train_epochs 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() if len(tf.config.list_physical_devices("GPU")) > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return with patch.object(sys, "argv", testargs): run_clm.main() result = get_results(tmp_dir) self.assertLess(result["eval_perplexity"], 100) def test_run_mlm(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --max_seq_length 64 --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --prediction_loss_only --num_train_epochs=1 --learning_rate=1e-4 """.split() with patch.object(sys, "argv", testargs): run_mlm.main() result = get_results(tmp_dir) self.assertLess(result["eval_perplexity"], 42) def test_run_ner(self): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu epochs = 7 if get_gpu_count() > 1 else 2 tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(sys, "argv", testargs): run_ner.main() result = get_results(tmp_dir) self.assertGreaterEqual(result["accuracy"], 0.75) def test_run_squad(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --max_steps=10 --warmup_steps=2 --do_train --do_eval --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(sys, "argv", testargs): run_squad.main() result = get_results(tmp_dir) self.assertGreaterEqual(result["f1"], 30) self.assertGreaterEqual(result["exact"], 30) def test_run_swag(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_swag.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --overwrite_output_dir --max_steps=20 --warmup_steps=2 --do_train --do_eval --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(sys, "argv", testargs): run_swag.main() result = get_results(tmp_dir) self.assertGreaterEqual(result["val_accuracy"], 0.8) @slow def test_run_summarization(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --max_steps=50 --warmup_steps=8 --do_train --do_eval --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(sys, "argv", testargs): run_summarization.main() result = get_results(tmp_dir) self.assertGreaterEqual(result["rouge1"], 10) self.assertGreaterEqual(result["rouge2"], 2) self.assertGreaterEqual(result["rougeL"], 7) self.assertGreaterEqual(result["rougeLsum"], 7) @slow def test_run_translation(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_translation.py --model_name_or_path Rocketknight1/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --overwrite_output_dir --warmup_steps=8 --do_train --do_eval --learning_rate=3e-3 --num_train_epochs 12 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO """.split() with patch.object(sys, "argv", testargs): run_translation.main() result = get_results(tmp_dir) self.assertGreaterEqual(result["bleu"], 30) def test_run_image_classification(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_image_classification.py --dataset_name hf-internal-testing/cats_vs_dogs_sample --model_name_or_path microsoft/resnet-18 --do_train --do_eval --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --output_dir {tmp_dir} --overwrite_output_dir --dataloader_num_workers 16 --num_train_epochs 2 --train_val_split 0.1 --seed 42 --ignore_mismatched_sizes True """.split() with patch.object(sys, "argv", testargs): run_image_classification.main() result = get_results(tmp_dir) self.assertGreaterEqual(result["accuracy"], 0.7)
transformers/examples/tensorflow/test_tensorflow_examples.py/0
{ "file_path": "transformers/examples/tensorflow/test_tensorflow_examples.py", "repo_id": "transformers", "token_count": 5442 }
277
from collections import Counter import datasets import transformers from transformers.convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from transformers.utils import logging logging.set_verbosity_info() TOKENIZER_CLASSES = { name: (getattr(transformers, name), getattr(transformers, name + "Fast")) for name in SLOW_TO_FAST_CONVERTERS } dataset = datasets.load_dataset("xnli", split="test+validation") total = 0 perfect = 0 imperfect = 0 wrong = 0 def check_diff(spm_diff, tok_diff, slow, fast): if spm_diff == list(reversed(tok_diff)): # AAA -> AA+A vs A+AA case. return True elif len(spm_diff) == len(tok_diff) and fast.decode(spm_diff) == fast.decode(tok_diff): # Second order OK # Barrich -> Barr + ich vs Bar + rich return True spm_reencoded = slow.encode(slow.decode(spm_diff)) tok_reencoded = fast.encode(fast.decode(spm_diff)) if spm_reencoded != spm_diff and spm_reencoded == tok_reencoded: # Type 3 error. # Snehagatha -> # Sne, h, aga, th, a # Sne, ha, gat, ha # Encoding the wrong with sp does not even recover what spm gave us # It fits tokenizer however... return True return False def check_LTR_mark(line, idx, fast): enc = fast.encode_plus(line)[0] offsets = enc.offsets curr, prev = offsets[idx], offsets[idx - 1] if curr is not None and line[curr[0] : curr[1]] == "\u200f": return True if prev is not None and line[prev[0] : prev[1]] == "\u200f": return True def check_details(line, spm_ids, tok_ids, slow, fast): # Encoding can be the same with same result AAA -> A + AA vs AA + A # We can check that we use at least exactly the same number of tokens. for i, (spm_id, tok_id) in enumerate(zip(spm_ids, tok_ids)): if spm_id != tok_id: break first = i for i, (spm_id, tok_id) in enumerate(zip(reversed(spm_ids), reversed(tok_ids))): if spm_id != tok_id: break last = len(spm_ids) - i spm_diff = spm_ids[first:last] tok_diff = tok_ids[first:last] if check_diff(spm_diff, tok_diff, slow, fast): return True if check_LTR_mark(line, first, fast): return True if last - first > 5: # We might have twice a single problem, attempt to subdivide the disjointed tokens into smaller problems spms = Counter(spm_ids[first:last]) toks = Counter(tok_ids[first:last]) removable_tokens = {spm_ for (spm_, si) in spms.items() if toks.get(spm_, 0) == si} min_width = 3 for i in range(last - first - min_width): if all(spm_ids[first + i + j] in removable_tokens for j in range(min_width)): possible_matches = [ k for k in range(last - first - min_width) if tok_ids[first + k : first + k + min_width] == spm_ids[first + i : first + i + min_width] ] for j in possible_matches: if check_diff(spm_ids[first : first + i], tok_ids[first : first + j], sp, tok) and check_details( line, spm_ids[first + i : last], tok_ids[first + j : last], slow, fast, ): return True print(f"Spm: {[fast.decode([spm_ids[i]]) for i in range(first, last)]}") try: print(f"Tok: {[fast.decode([tok_ids[i]]) for i in range(first, last)]}") except Exception: pass fast.decode(spm_ids[:first]) fast.decode(spm_ids[last:]) wrong = fast.decode(spm_ids[first:last]) print() print(wrong) return False def test_string(slow, fast, text): global perfect global imperfect global wrong global total slow_ids = slow.encode(text) fast_ids = fast.encode(text) skip_assert = False total += 1 if slow_ids != fast_ids: if check_details(text, slow_ids, fast_ids, slow, fast): skip_assert = True imperfect += 1 else: wrong += 1 else: perfect += 1 if total % 10000 == 0: print(f"({perfect} / {imperfect} / {wrong} ----- {perfect + imperfect + wrong})") if skip_assert: return assert ( slow_ids == fast_ids ), f"line {text} : \n\n{slow_ids}\n{fast_ids}\n\n{slow.tokenize(text)}\n{fast.tokenize(text)}" def test_tokenizer(slow, fast): global batch_total for i in range(len(dataset)): # premise, all languages for text in dataset[i]["premise"].values(): test_string(slow, fast, text) # hypothesis, all languages for text in dataset[i]["hypothesis"]["translation"]: test_string(slow, fast, text) if __name__ == "__main__": for name, (slow_class, fast_class) in TOKENIZER_CLASSES.items(): checkpoint_names = list(slow_class.max_model_input_sizes.keys()) for checkpoint in checkpoint_names: imperfect = 0 perfect = 0 wrong = 0 total = 0 print(f"========================== Checking {name}: {checkpoint} ==========================") slow = slow_class.from_pretrained(checkpoint, force_download=True) fast = fast_class.from_pretrained(checkpoint, force_download=True) test_tokenizer(slow, fast) print(f"Accuracy {perfect * 100 / total:.2f}")
transformers/scripts/check_tokenizers.py/0
{ "file_path": "transformers/scripts/check_tokenizers.py", "repo_id": "transformers", "token_count": 2563 }
278
# Copyright 2021 The HuggingFace Team, the AllenNLP library authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Script to close stale issue. Taken in part from the AllenNLP repository. https://github.com/allenai/allennlp. """ import os from datetime import datetime as dt import github.GithubException from github import Github LABELS_TO_EXEMPT = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def main(): g = Github(os.environ["GITHUB_TOKEN"]) repo = g.get_repo("huggingface/transformers") open_issues = repo.get_issues(state="open") for i, issue in enumerate(open_issues): print(i, issue) comments = sorted(list(issue.get_comments()), key=lambda i: i.created_at, reverse=True) last_comment = comments[0] if len(comments) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at.replace(tzinfo=None)).days > 7 and (dt.utcnow() - issue.created_at.replace(tzinfo=None)).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") try: issue.edit(state="closed") except github.GithubException as e: print("Couldn't close the issue:", repr(e)) elif ( (dt.utcnow() - issue.updated_at.replace(tzinfo=None)).days > 23 and (dt.utcnow() - issue.created_at.replace(tzinfo=None)).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would add stale comment to {issue.number}") try: issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) except github.GithubException as e: print("Couldn't create comment:", repr(e)) if __name__ == "__main__": main()
transformers/scripts/stale.py/0
{ "file_path": "transformers/scripts/stale.py", "repo_id": "transformers", "token_count": 1217 }
279
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections from .utils import ExplicitEnum, is_torch_available, logging if is_torch_available(): import torch logger = logging.get_logger(__name__) class DebugUnderflowOverflow: """ This debug class helps detect and understand where the model starts getting very large or very small, and more importantly `nan` or `inf` weight and activation elements. There are 2 working modes: 1. Underflow/overflow detection (default) 2. Specific batch absolute min/max tracing without detection Mode 1: Underflow/overflow detection To activate the underflow/overflow detection, initialize the object with the model : ```python debug_overflow = DebugUnderflowOverflow(model) ``` then run the training as normal and if `nan` or `inf` gets detected in at least one of the weight, input or output elements this module will throw an exception and will print `max_frames_to_save` frames that lead to this event, each frame reporting 1. the fully qualified module name plus the class name whose `forward` was run 2. the absolute min and max value of all elements for each module weights, and the inputs and output For example, here is the header and the last few frames in detection report for `google/mt5-small` run in fp16 mixed precision : ``` Detected inf/nan during batch_number=0 Last 21 forward frames: abs min abs max metadata [...] encoder.block.2.layer.1.DenseReluDense.wi_0 Linear 2.17e-07 4.50e+00 weight 1.79e-06 4.65e+00 input[0] 2.68e-06 3.70e+01 output encoder.block.2.layer.1.DenseReluDense.wi_1 Linear 8.08e-07 2.66e+01 weight 1.79e-06 4.65e+00 input[0] 1.27e-04 2.37e+02 output encoder.block.2.layer.1.DenseReluDense.wo Linear 1.01e-06 6.44e+00 weight 0.00e+00 9.74e+03 input[0] 3.18e-04 6.27e+04 output encoder.block.2.layer.1.DenseReluDense T5DenseGatedGeluDense 1.79e-06 4.65e+00 input[0] 3.18e-04 6.27e+04 output encoder.block.2.layer.1.dropout Dropout 3.18e-04 6.27e+04 input[0] 0.00e+00 inf output ``` You can see here, that `T5DenseGatedGeluDense.forward` resulted in output activations, whose absolute max value was around 62.7K, which is very close to fp16's top limit of 64K. In the next frame we have `Dropout` which renormalizes the weights, after it zeroed some of the elements, which pushes the absolute max value to more than 64K, and we get an overlow. As you can see it's the previous frames that we need to look into when the numbers start going into very large for fp16 numbers. The tracking is done in a forward hook, which gets invoked immediately after `forward` has completed. By default the last 21 frames are printed. You can change the default to adjust for your needs. For example : ```python debug_overflow = DebugUnderflowOverflow(model, max_frames_to_save=100) ``` To validate that you have set up this debugging feature correctly, and you intend to use it in a training that may take hours to complete, first run it with normal tracing enabled for one of a few batches as explained in the next section. Mode 2. Specific batch absolute min/max tracing without detection The second work mode is per-batch tracing with the underflow/overflow detection feature turned off. Let's say you want to watch the absolute min and max values for all the ingredients of each `forward` call of a given batch, and only do that for batches 1 and 3. Then you instantiate this class as : ```python debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3]) ``` And now full batches 1 and 3 will be traced using the same format as explained above. Batches are 0-indexed. This is helpful if you know that the program starts misbehaving after a certain batch number, so you can fast-forward right to that area. Early stopping: You can also specify the batch number after which to stop the training, with : ```python debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3], abort_after_batch_num=3) ``` This feature is mainly useful in the tracing mode, but you can use it for any mode. **Performance**: As this module measures absolute `min`/``max` of each weight of the model on every forward it'll slow the training down. Therefore remember to turn it off once the debugging needs have been met. Args: model (`nn.Module`): The model to debug. max_frames_to_save (`int`, *optional*, defaults to 21): How many frames back to record trace_batch_nums(`List[int]`, *optional*, defaults to `[]`): Which batch numbers to trace (turns detection off) abort_after_batch_num (`int``, *optional*): Whether to abort after a certain batch number has finished """ def __init__(self, model, max_frames_to_save=21, trace_batch_nums=[], abort_after_batch_num=None): self.model = model self.trace_batch_nums = trace_batch_nums self.abort_after_batch_num = abort_after_batch_num # keep a LIFO buffer of frames to dump as soon as inf/nan is encountered to give context to the problem emergence self.frames = collections.deque([], max_frames_to_save) self.frame = [] self.batch_number = 0 self.total_calls = 0 self.detected_overflow = False self.prefix = " " self.analyse_model() self.register_forward_hook() def save_frame(self, frame=None): if frame is not None: self.expand_frame(frame) self.frames.append("\n".join(self.frame)) self.frame = [] # start a new frame def expand_frame(self, line): self.frame.append(line) def trace_frames(self): print("\n".join(self.frames)) self.frames = [] def reset_saved_frames(self): self.frames = [] def dump_saved_frames(self): print(f"\nDetected inf/nan during batch_number={self.batch_number}") print(f"Last {len(self.frames)} forward frames:") print(f"{'abs min':8} {'abs max':8} metadata") print("\n".join(self.frames)) print("\n\n") self.frames = [] def analyse_model(self): # extract the fully qualified module names, to be able to report at run time. e.g.: # encoder.block.2.layer.0.SelfAttention.o # # for shared weights only the first shared module name will be registered self.module_names = {m: name for name, m in self.model.named_modules()} # self.longest_module_name = max(len(v) for v in self.module_names.values()) def analyse_variable(self, var, ctx): if torch.is_tensor(var): self.expand_frame(get_abs_min_max(var, ctx)) if detect_overflow(var, ctx): self.detected_overflow = True elif var is None: self.expand_frame(f"{'None':>17} {ctx}") else: self.expand_frame(f"{'not a tensor':>17} {ctx}") def batch_start_frame(self): self.expand_frame(f"\n\n{self.prefix} *** Starting batch number={self.batch_number} ***") self.expand_frame(f"{'abs min':8} {'abs max':8} metadata") def batch_end_frame(self): self.expand_frame(f"{self.prefix} *** Finished batch number={self.batch_number-1} ***\n\n") def create_frame(self, module, input, output): self.expand_frame(f"{self.prefix} {self.module_names[module]} {module.__class__.__name__}") # params for name, p in module.named_parameters(recurse=False): self.analyse_variable(p, name) # inputs if isinstance(input, tuple): for i, x in enumerate(input): self.analyse_variable(x, f"input[{i}]") else: self.analyse_variable(input, "input") # outputs if isinstance(output, tuple): for i, x in enumerate(output): # possibly a tuple of tuples if isinstance(x, tuple): for j, y in enumerate(x): self.analyse_variable(y, f"output[{i}][{j}]") else: self.analyse_variable(x, f"output[{i}]") else: self.analyse_variable(output, "output") self.save_frame() def register_forward_hook(self): self.model.apply(self._register_forward_hook) def _register_forward_hook(self, module): module.register_forward_hook(self.forward_hook) def forward_hook(self, module, input, output): # - input is a tuple of packed inputs (could be non-Tensors) # - output could be a Tensor or a tuple of Tensors and non-Tensors last_frame_of_batch = False trace_mode = True if self.batch_number in self.trace_batch_nums else False if trace_mode: self.reset_saved_frames() if self.total_calls == 0: self.batch_start_frame() self.total_calls += 1 # count batch numbers - the very first forward hook of the batch will be called when the # batch completes - i.e. it gets called very last - we know this batch has finished if module == self.model: self.batch_number += 1 last_frame_of_batch = True self.create_frame(module, input, output) # if last_frame_of_batch: # self.batch_end_frame() if trace_mode: self.trace_frames() if last_frame_of_batch: self.batch_start_frame() if self.detected_overflow and not trace_mode: self.dump_saved_frames() # now we can abort, as it's pointless to continue running raise ValueError( "DebugUnderflowOverflow: inf/nan detected, aborting as there is no point running further. " "Please scroll up above this traceback to see the activation values prior to this event." ) # abort after certain batch if requested to do so if self.abort_after_batch_num is not None and self.batch_number > self.abort_after_batch_num: raise ValueError( f"DebugUnderflowOverflow: aborting after {self.batch_number} batches due to" f" `abort_after_batch_num={self.abort_after_batch_num}` arg" ) def get_abs_min_max(var, ctx): abs_var = var.abs() return f"{abs_var.min():8.2e} {abs_var.max():8.2e} {ctx}" def detect_overflow(var, ctx): """ Report whether the tensor contains any `nan` or `inf` entries. This is useful for detecting overflows/underflows and best to call right after the function that did some math that modified the tensor in question. This function contains a few other helper features that you can enable and tweak directly if you want to track various other things. Args: var: the tensor variable to check ctx: the message to print as a context Return: `True` if `inf` or `nan` was detected, `False` otherwise """ detected = False if torch.isnan(var).any().item(): detected = True print(f"{ctx} has nans") if torch.isinf(var).any().item(): detected = True print(f"{ctx} has infs") # if needed to monitor large elements can enable the following if 0: # and detected: n100 = var[torch.ge(var.abs(), 100)] if n100.numel() > 0: print(f"{ctx}: n100={n100.numel()}") n1000 = var[torch.ge(var.abs(), 1000)] if n1000.numel() > 0: print(f"{ctx}: n1000={n1000.numel()}") n10000 = var[torch.ge(var.abs(), 10000)] if n10000.numel() > 0: print(f"{ctx}: n10000={n10000.numel()}") if 0: print(f"min={var.min():9.2e} max={var.max():9.2e}") if 0: print(f"min={var.min():9.2e} max={var.max():9.2e} var={var.var():9.2e} mean={var.mean():9.2e} ({ctx})") return detected class DebugOption(ExplicitEnum): UNDERFLOW_OVERFLOW = "underflow_overflow" TPU_METRICS_DEBUG = "tpu_metrics_debug"
transformers/src/transformers/debug_utils.py/0
{ "file_path": "transformers/src/transformers/debug_utils.py", "repo_id": "transformers", "token_count": 5154 }
280
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging logger = logging.get_logger(__name__) STOPPING_CRITERIA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. If this stopping criteria depends on the `scores` input, make sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. """ class StoppingCriteria(ABC): """Abstract base class for all stopping criteria that can be applied during generation. If your stopping criteria depends on the `scores` input, make sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`. """ @add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: raise NotImplementedError("StoppingCriteria needs to be subclassed") class MaxLengthCriteria(StoppingCriteria): """ This class can be used to stop generation whenever the full generated number of tokens exceeds `max_length`. Keep in mind for decoder-only type of transformers, this will include the initial prompted tokens. Args: max_length (`int`): The maximum length that the output sequence can have in number of tokens. max_position_embeddings (`int`, *optional*): The maximum model length, as defined by the model's `config.max_position_embeddings` attribute. """ def __init__(self, max_length: int, max_position_embeddings: Optional[int] = None): self.max_length = max_length self.max_position_embeddings = max_position_embeddings @add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: cur_len = input_ids.shape[-1] is_done = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " f"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe " "exceptions, performance degradation, or nothing at all." ) return is_done class MaxNewTokensCriteria(StoppingCriteria): """ This class can be used to stop generation whenever the generated number of tokens exceeds `max_new_tokens`. Keep in mind for decoder-only type of transformers, this will **not** include the initial prompted tokens. This is very close to `MaxLengthCriteria` but ignores the number of initial tokens. Args: start_length (`int`): The number of initial tokens. max_new_tokens (`int`): The maximum number of tokens to generate. """ def __init__(self, start_length: int, max_new_tokens: int): warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " f"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` " "with `max_length = start_length + max_new_tokens` instead.", FutureWarning, ) self.start_length = start_length self.max_new_tokens = max_new_tokens self.max_length = start_length + max_new_tokens @add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: return input_ids.shape[-1] >= self.max_length class MaxTimeCriteria(StoppingCriteria): """ This class can be used to stop generation whenever the full generation exceeds some amount of time. By default, the time will start being counted when you initialize this function. You can override this by passing an `initial_time`. Args: max_time (`float`): The maximum allowed time in seconds for the generation. initial_time (`float`, *optional*, defaults to `time.time()`): The start of the generation allowed time. """ def __init__(self, max_time: float, initial_timestamp: Optional[float] = None): self.max_time = max_time self.initial_timestamp = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: return time.time() - self.initial_timestamp > self.max_time class StoppingCriteriaList(list): @add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING) def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: return any(criteria(input_ids, scores) for criteria in self) @property def max_length(self) -> Optional[int]: for stopping_criterium in self: if isinstance(stopping_criterium, MaxLengthCriteria): return stopping_criterium.max_length elif isinstance(stopping_criterium, MaxNewTokensCriteria): return stopping_criterium.max_length return None def validate_stopping_criteria(stopping_criteria: StoppingCriteriaList, max_length: int) -> StoppingCriteriaList: stopping_max_length = stopping_criteria.max_length new_stopping_criteria = deepcopy(stopping_criteria) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter", UserWarning) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=max_length)) return new_stopping_criteria
transformers/src/transformers/generation/stopping_criteria.py/0
{ "file_path": "transformers/src/transformers/generation/stopping_criteria.py", "repo_id": "transformers", "token_count": 2480 }
281
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Integration with Deepspeed """ import importlib.metadata as importlib_metadata import importlib.util import weakref from functools import partialmethod from ..dependency_versions_check import dep_version_check from ..utils import is_accelerate_available, is_torch_available, logging if is_torch_available(): import torch from ..optimization import get_scheduler logger = logging.get_logger(__name__) def is_deepspeed_available(): package_exists = importlib.util.find_spec("deepspeed") is not None # Check we're not importing a "deepspeed" directory somewhere but the actual library by trying to grab the version # AND checking it has an author field in the metadata that is HuggingFace. if package_exists: try: _ = importlib_metadata.metadata("deepspeed") return True except importlib_metadata.PackageNotFoundError: return False if is_accelerate_available() and is_deepspeed_available(): from accelerate.utils.deepspeed import HfDeepSpeedConfig as DeepSpeedConfig else: # Inherits from a dummy `object` if accelerate is not available, so that python succeeds to import this file. # Deepspeed glue code will never inherit this dummy object as it checks if accelerate is available. from builtins import object as DeepSpeedConfig class HfDeepSpeedConfig(DeepSpeedConfig): """ This object contains a DeepSpeed configuration dictionary and can be quickly queried for things like zero stage. A `weakref` of this object is stored in the module's globals to be able to access the config from areas where things like the Trainer object is not available (e.g. `from_pretrained` and `_get_resized_embeddings`). Therefore it's important that this object remains alive while the program is still running. [`Trainer`] uses the `HfTrainerDeepSpeedConfig` subclass instead. That subclass has logic to sync the configuration with values of [`TrainingArguments`] by replacing special placeholder values: `"auto"`. Without this special logic the DeepSpeed configuration is not modified in any way. Args: config_file_or_dict (`Union[str, Dict]`): path to DeepSpeed config file or dict. """ def __init__(self, config_file_or_dict): # set global weakref object set_hf_deepspeed_config(self) dep_version_check("accelerate") dep_version_check("deepspeed") super().__init__(config_file_or_dict) class HfTrainerDeepSpeedConfig(HfDeepSpeedConfig): """ The `HfTrainerDeepSpeedConfig` object is meant to be created during `TrainingArguments` object creation and has the same lifespan as the latter. """ def __init__(self, config_file_or_dict): super().__init__(config_file_or_dict) self._dtype = None self.mismatches = [] def dtype(self): if self._dtype is None: raise ValueError("trainer_config_process() wasn't called yet to tell dtype") return self._dtype def is_auto(self, ds_key_long): val = self.get_value(ds_key_long) if val is None: return False else: return val == "auto" def fill_match(self, ds_key_long, hf_val, hf_key=None, must_match=True): """ A utility method that massages the config file and can optionally verify that the values match. 1. Replace "auto" values with `TrainingArguments` value. 2. If it wasn't "auto" and `must_match` is true, then check that DS config matches Trainer config values and if mismatched add the entry to `self.mismatched` - will assert during `trainer_config_finalize` for one or more mismatches. """ config, ds_key = self.find_config_node(ds_key_long) if config is None: return if config.get(ds_key) == "auto": config[ds_key] = hf_val return if not must_match: return ds_val = config.get(ds_key) if ds_val is not None and ds_val != hf_val: self.mismatches.append(f"- ds {ds_key_long}={ds_val} vs hf {hf_key}={hf_val}") fill_only = partialmethod(fill_match, must_match=False) def trainer_config_process(self, args, auto_find_batch_size=False): """ Adjust the config with `TrainingArguments` values. This stage is run during `TrainingArguments` object creation. """ # DeepSpeed does: # train_batch_size = world_size * train_micro_batch_size_per_gpu * gradient_accumulation_steps train_batch_size = args.world_size * args.per_device_train_batch_size * args.gradient_accumulation_steps self.fill_match( "train_micro_batch_size_per_gpu", args.per_device_train_batch_size, "per_device_train_batch_size", not auto_find_batch_size, ) self.fill_match( "gradient_accumulation_steps", args.gradient_accumulation_steps, "gradient_accumulation_steps", ) self.fill_match( "train_batch_size", train_batch_size, "train_batch_size (calculated)", not auto_find_batch_size, ) self.fill_match("gradient_clipping", args.max_grad_norm, "max_grad_norm") self.fill_match("optimizer.params.lr", args.learning_rate, "learning_rate") self.fill_match( "optimizer.params.betas", [args.adam_beta1, args.adam_beta2], "adam_beta1+adam_beta2", ) self.fill_match("optimizer.params.eps", args.adam_epsilon, "adam_epsilon") self.fill_match("optimizer.params.weight_decay", args.weight_decay, "weight_decay") self.fill_only("scheduler.params.warmup_min_lr", 0) # not a trainer arg self.fill_match("scheduler.params.warmup_max_lr", args.learning_rate, "learning_rate") # total_num_steps - will get set in trainer_config_finalize # fp16 if args.fp16 or args.fp16_full_eval: fp16_backend = "apex" if args.fp16_backend == "apex" else "amp" else: fp16_backend = None if args.save_on_each_node: # deepspeed uses shared storage by default. Let's override this setting if save_on_each_node == True self.config["checkpoint"] = self.config.get("checkpoint", {}) self.config["checkpoint"]["use_node_local_storage"] = args.save_on_each_node # amp: similar to the pytorch native amp - it has a bunch of optional params but we won't set # any here unless the user did the work self.fill_match( "fp16.enabled", ((args.fp16 or args.fp16_full_eval) and fp16_backend == "amp"), "fp16|fp16_full_eval+fp16_backend(amp)", ) # apex: delegates amp work to apex (which needs to be available), but it cannot be used with any # ZeRO features self.fill_match("amp.enabled", fp16_backend == "apex", "fp16+fp16_backend(apex)") self.fill_match("amp.opt_level", args.fp16_opt_level, "fp16_opt_level") self.fill_match("bf16.enabled", (args.bf16 or args.bf16_full_eval), "bf16|bf16_full_eval") # deepspeed's default mode is fp16 unless there is a config that says differently if self.is_true("bf16.enabled"): self._dtype = torch.bfloat16 elif self.is_false("fp16.enabled"): self._dtype = torch.float32 else: self._dtype = torch.float16 def trainer_config_finalize(self, args, model, num_training_steps): """ This stage is run after we have the model and know num_training_steps. Now we can complete the configuration process. """ # zero # deal with config keys that use `auto` value and rely on model's hidden_size hidden_size_based_keys = [ "zero_optimization.reduce_bucket_size", "zero_optimization.stage3_prefetch_bucket_size", "zero_optimization.stage3_param_persistence_threshold", ] hidden_size_auto_keys = [x for x in hidden_size_based_keys if self.is_auto(x)] if len(hidden_size_auto_keys) > 0: if hasattr(model.config, "hidden_size"): hidden_size = model.config.hidden_size elif hasattr(model.config, "hidden_sizes"): # if there are many hidden sizes pick the largest one hidden_size = max(model.config.hidden_sizes) else: raise ValueError( "The model's config file has neither `hidden_size` nor `hidden_sizes` entry, " "therefore it's not possible to automatically fill out the following `auto` entries " f"in the DeepSpeed config file: {hidden_size_auto_keys}. You can fix that by replacing " "`auto` values for these keys with an integer value of your choice." ) self.fill_only("zero_optimization.reduce_bucket_size", hidden_size * hidden_size) if self.is_zero3(): # automatically assign the optimal config values based on model config self.fill_only( "zero_optimization.stage3_prefetch_bucket_size", 0.9 * hidden_size * hidden_size, ) self.fill_only( "zero_optimization.stage3_param_persistence_threshold", 10 * hidden_size, ) # scheduler self.fill_match( "scheduler.params.total_num_steps", num_training_steps, "num_training_steps (calculated)", ) self.fill_match( "scheduler.params.warmup_num_steps", args.get_warmup_steps(num_training_steps), "warmup_steps", ) if len(self.mismatches) > 0: mismatches = "\n".join(self.mismatches) raise ValueError( "Please correct the following DeepSpeed config values that mismatch TrainingArguments" f" values:\n{mismatches}\nThe easiest method is to set these DeepSpeed config values to 'auto'." ) # keep the config object global to be able to access it anywhere during TrainingArguments life-cycle _hf_deepspeed_config_weak_ref = None def set_hf_deepspeed_config(hf_deepspeed_config_obj): # this is a special weakref global object to allow us to get to Deepspeed config from APIs # that don't have an easy way to get to the Deepspeed config outside of the Trainer domain. global _hf_deepspeed_config_weak_ref # will go away automatically when HfDeepSpeedConfig is destroyed (when TrainingArguments is destroyed) _hf_deepspeed_config_weak_ref = weakref.ref(hf_deepspeed_config_obj) def unset_hf_deepspeed_config(): # useful for unit tests to ensure the global state doesn't leak - call from `tearDown` method global _hf_deepspeed_config_weak_ref _hf_deepspeed_config_weak_ref = None def is_deepspeed_zero3_enabled(): if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None: return _hf_deepspeed_config_weak_ref().is_zero3() else: return False def deepspeed_config(): if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None: return _hf_deepspeed_config_weak_ref().config else: return None def deepspeed_optim_sched(trainer, hf_deepspeed_config, args, num_training_steps, model_parameters): """ A convenience wrapper that deals with optimizer and lr scheduler configuration. """ from accelerate.utils import DummyOptim, DummyScheduler config = hf_deepspeed_config.config # Mixing and matching DS schedulers and optimizers is supported unless Offload is enabled in which case it's: # 1. DS scheduler + DS optimizer: Yes # 2. HF scheduler + HF optimizer: Mostly* # 3. DS scheduler + HF optimizer: Mostly* # 4. HF scheduler + DS optimizer: Yes # # Mostly*: All non-native DeepSpeed optimizers that have both CPU and GPU implementation should work (except LAMB) optimizer = None if "optimizer" in config: if args.adafactor: raise ValueError( "--adafactor was passed, but also found `optimizer` configured in the DeepSpeed config. " "Only one optimizer can be configured." ) optimizer = DummyOptim(params=model_parameters) else: if hf_deepspeed_config.is_offload(): logger.info( "Detected ZeRO Offload and non-DeepSpeed optimizers: This combination should work as long as the" " custom optimizer has both CPU and GPU implementation (except LAMB)" ) # ds supports Adam, OneBitAdam, and Lamb optimizers and can import other optimizers from torch. # But trainer uses AdamW by default. optimizer = trainer.create_optimizer() # To use other optimizers requires voiding warranty with: `zero_allow_untested_optimizer` config["zero_allow_untested_optimizer"] = True lr_scheduler = None if "scheduler" in config: lr_scheduler = DummyScheduler(optimizer) else: if isinstance(optimizer, DummyOptim): def _lr_scheduler_callable(optimizer): return get_scheduler( trainer.args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=trainer.args.get_warmup_steps(num_training_steps), num_training_steps=num_training_steps, ) lr_scheduler = DummyScheduler(optimizer, lr_scheduler_callable=_lr_scheduler_callable) else: lr_scheduler = trainer.create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer) return optimizer, lr_scheduler def deepspeed_init(trainer, num_training_steps, inference=False): """ Init DeepSpeed, after updating the DeepSpeed configuration with any relevant Trainer's args. If `resume_from_checkpoint` was passed then an attempt to resume from a previously saved checkpoint will be made. Args: trainer: Trainer object num_training_steps: per single gpu resume_from_checkpoint: path to a checkpoint if to resume from after normal DeepSpeedEngine load inference: launch in inference mode (no optimizer and no lr scheduler) auto_find_batch_size: whether to ignore the `train_micro_batch_size_per_gpu` argument as it's being set automatically by the auto batch size finder Returns: optimizer, lr_scheduler We may use `deepspeed_init` more than once during the life of Trainer, when we do - it's a temp hack based on: https://github.com/microsoft/DeepSpeed/issues/1394#issuecomment-937405374 until Deepspeed fixes a bug where it can't resume from a checkpoint after it did some stepping https://github.com/microsoft/DeepSpeed/issues/1612 """ from deepspeed.utils import logger as ds_logger model = trainer.model args = trainer.args hf_deepspeed_config = trainer.accelerator.state.deepspeed_plugin.hf_ds_config # resume config update - some bits like `model` and `num_training_steps` only become available during train hf_deepspeed_config.trainer_config_finalize(args, model, num_training_steps) # set the Deepspeed log level consistent with the Trainer ds_logger.setLevel(args.get_process_log_level()) if inference: # only Z3 makes sense for the inference if not hf_deepspeed_config.is_zero3(): raise ValueError("ZeRO inference only makes sense with ZeRO Stage 3 - please adjust your config") # in case the training config is re-used for inference hf_deepspeed_config.del_config_sub_tree("optimizer") hf_deepspeed_config.del_config_sub_tree("lr_scheduler") optimizer, lr_scheduler = None, None model_parameters = None else: trainer.optimizer = None # important for when deepspeed_init is used as re-init model_parameters = list(filter(lambda p: p.requires_grad, model.parameters())) optimizer, lr_scheduler = deepspeed_optim_sched( trainer, hf_deepspeed_config, args, num_training_steps, model_parameters ) # keep for quick debug: # from pprint import pprint; pprint(config) return optimizer, lr_scheduler def deepspeed_load_checkpoint(deepspeed_engine, checkpoint_path, load_module_strict=True): # it's possible that the user is trying to resume from model_path, which doesn't necessarily # contain a deepspeed checkpoint. e.g. examples just check if the dir exists and assume it's # a resume from a checkpoint and not just a local pretrained weight. So we check here if the # path contains what looks like a deepspeed checkpoint import glob deepspeed_checkpoint_dirs = sorted(glob.glob(f"{checkpoint_path}/global_step*")) if len(deepspeed_checkpoint_dirs) > 0: logger.info(f"Attempting to resume from {checkpoint_path}") # this magically updates self.optimizer and self.lr_scheduler load_path, _ = deepspeed_engine.load_checkpoint( checkpoint_path, load_module_strict=load_module_strict, load_optimizer_states=True, load_lr_scheduler_states=True, ) if load_path is None: raise ValueError(f"[deepspeed] failed to resume from checkpoint {checkpoint_path}") else: raise ValueError(f"Can't find a valid checkpoint at {checkpoint_path}")
transformers/src/transformers/integrations/deepspeed.py/0
{ "file_path": "transformers/src/transformers/integrations/deepspeed.py", "repo_id": "transformers", "token_count": 7234 }
282
#include <torch/extension.h> #include <ATen/ATen.h> #include "cuda_launch.h" #include <vector> std::vector<at::Tensor> index_max( at::Tensor index_vals, at::Tensor indices, int A_num_block, int B_num_block ) { return index_max_kernel( index_vals, indices, A_num_block, B_num_block ); } at::Tensor mm_to_sparse( at::Tensor dense_A, at::Tensor dense_B, at::Tensor indices ) { return mm_to_sparse_kernel( dense_A, dense_B, indices ); } at::Tensor sparse_dense_mm( at::Tensor sparse_A, at::Tensor indices, at::Tensor dense_B, int A_num_block ) { return sparse_dense_mm_kernel( sparse_A, indices, dense_B, A_num_block ); } at::Tensor reduce_sum( at::Tensor sparse_A, at::Tensor indices, int A_num_block, int B_num_block ) { return reduce_sum_kernel( sparse_A, indices, A_num_block, B_num_block ); } at::Tensor scatter( at::Tensor dense_A, at::Tensor indices, int B_num_block ) { return scatter_kernel( dense_A, indices, B_num_block ); } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("index_max", &index_max, "index_max (CUDA)"); m.def("mm_to_sparse", &mm_to_sparse, "mm_to_sparse (CUDA)"); m.def("sparse_dense_mm", &sparse_dense_mm, "sparse_dense_mm (CUDA)"); m.def("reduce_sum", &reduce_sum, "reduce_sum (CUDA)"); m.def("scatter", &scatter, "scatter (CUDA)"); }
transformers/src/transformers/kernels/mra/torch_extension.cpp/0
{ "file_path": "transformers/src/transformers/kernels/mra/torch_extension.cpp", "repo_id": "transformers", "token_count": 655 }
283
# coding=utf-8 # Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import json import os import re import warnings from functools import partial from pickle import UnpicklingError from typing import Any, Dict, Optional, Set, Tuple, Union import flax.linen as nn import jax import jax.numpy as jnp import msgpack.exceptions from flax.core.frozen_dict import FrozenDict, unfreeze from flax.serialization import from_bytes, to_bytes from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from .configuration_utils import PretrainedConfig from .dynamic_module_utils import custom_object_save from .generation import FlaxGenerationMixin, GenerationConfig from .modeling_flax_pytorch_utils import load_pytorch_checkpoint_in_flax_state_dict from .utils import ( FLAX_WEIGHTS_INDEX_NAME, FLAX_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, PushToHubMixin, add_code_sample_docstrings, add_start_docstrings_to_model_forward, cached_file, copy_func, download_url, has_file, is_offline_mode, is_remote_url, logging, replace_return_docstrings, ) from .utils.hub import convert_file_size_to_int, get_checkpoint_shard_files from .utils.import_utils import is_safetensors_available if is_safetensors_available(): from safetensors import safe_open from safetensors.flax import load_file as safe_load_file from safetensors.flax import save_file as safe_save_file logger = logging.get_logger(__name__) def quick_gelu(x): return x * jax.nn.sigmoid(1.702 * x) ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } def dtype_byte_size(dtype): """ Returns the size (in bytes) occupied by one parameter of type `dtype`. Example: ```py >>> dtype_byte_size(np.float32) 4 ``` """ if dtype == bool: return 1 / 8 bit_search = re.search(r"[^\d](\d+)$", dtype.name) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}.") bit_size = int(bit_search.groups()[0]) return bit_size // 8 def flax_shard_checkpoint(params, max_shard_size="10GB"): """ Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a given size. The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], [6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB]. <Tip warning={true}> If one of the model's weight is bigger that `max_shard_size`, it will end up in its own sub-checkpoint which will have a size greater than `max_shard_size`. </Tip> Args: params (`Union[Dict, FrozenDict]`): A `PyTree` of model parameters. max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). """ max_shard_size = convert_file_size_to_int(max_shard_size) sharded_state_dicts = [] current_block = {} current_block_size = 0 total_size = 0 # flatten the weights to chunk weights = flatten_dict(params, sep="/") for item in weights: weight_size = weights[item].size * dtype_byte_size(weights[item].dtype) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: sharded_state_dicts.append(current_block) current_block = {} current_block_size = 0 current_block[item] = weights[item] current_block_size += weight_size total_size += weight_size # Add the last block sharded_state_dicts.append(current_block) # If we only have one shard, we return it if len(sharded_state_dicts) == 1: return {FLAX_WEIGHTS_NAME: sharded_state_dicts[0]}, None # Otherwise, let's build the index weight_map = {} shards = {} for idx, shard in enumerate(sharded_state_dicts): shard_file = FLAX_WEIGHTS_NAME.replace(".msgpack", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.msgpack") shards[shard_file] = shard for weight_name in shard.keys(): weight_map[weight_name] = shard_file # Add the metadata metadata = {"total_size": total_size} index = {"metadata": metadata, "weight_map": weight_map} return shards, index class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin): r""" Base class for all models. [`FlaxPreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading, downloading and saving models. Class attributes (overridden by derived classes): - **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class for this model architecture. - **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model. - **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP models, `pixel_values` for vision models and `input_values` for speech models). """ config_class = None base_model_prefix = "" main_input_name = "input_ids" _auto_class = None _missing_keys = set() def __init__( self, config: PretrainedConfig, module: nn.Module, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, ): if config is None: raise ValueError("config cannot be None") if module is None: raise ValueError("module cannot be None") # Those are private to be exposed as typed property on derived classes. self._config = config self._module = module # Those are public as their type is generic to every derived classes. self.key = PRNGKey(seed) self.dtype = dtype self.input_shape = input_shape self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None # To check if the model was initialized automatically. self._is_initialized = _do_init if _do_init: # randomly initialized parameters random_params = self.init_weights(self.key, input_shape) params_shape_tree = jax.eval_shape(lambda params: params, random_params) else: init_fn = partial(self.init_weights, input_shape=input_shape) params_shape_tree = jax.eval_shape(init_fn, self.key) logger.info( "Model weights are not initialized as `_do_init` is set to `False`. " f"Make sure to call `{self.__class__.__name__}.init_weights` manually to initialize the weights." ) # get the shape of the parameters self._params_shape_tree = params_shape_tree # save required_params as set self._required_params = set(flatten_dict(unfreeze(params_shape_tree)).keys()) # initialize the parameters if _do_init: self.params = random_params def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> Dict: raise NotImplementedError(f"init method has to be implemented for {self}") def enable_gradient_checkpointing(self): raise NotImplementedError(f"gradient checkpointing method has to be implemented for {self}") @classmethod def _from_config(cls, config, **kwargs): """ All context managers that the model should be initialized under go here. """ return cls(config, **kwargs) @property def framework(self) -> str: """ :str: Identifies that this is a Flax model. """ return "flax" @property def config(self) -> PretrainedConfig: return self._config @property def module(self) -> nn.Module: return self._module @property def params(self) -> Union[Dict, FrozenDict]: if not self._is_initialized: raise ValueError( "`params` cannot be accessed from model when the model is created with `_do_init=False`. " "You must call `init_weights` manually and store the params outside of the model and " "pass it explicitly where needed." ) return self._params @property def required_params(self) -> Set: return self._required_params @property def params_shape_tree(self) -> Dict: return self._params_shape_tree @params.setter def params(self, params: Union[Dict, FrozenDict]): # don't set params if the model is not initialized if not self._is_initialized: raise ValueError( "`params` cannot be set from model when the model is created with `_do_init=False`. " "You store the params outside of the model." ) if isinstance(params, FrozenDict): params = unfreeze(params) param_keys = set(flatten_dict(params).keys()) if len(self.required_params - param_keys) > 0: raise ValueError( "Some parameters are missing. Make sure that `params` include the following " f"parameters {self.required_params - param_keys}" ) self._params = params def _cast_floating_to(self, params: Union[Dict, FrozenDict], dtype: jnp.dtype, mask: Any = None) -> Any: """ Helper method to cast floating-point values of given parameter `PyTree` to given `dtype`. """ # taken from https://github.com/deepmind/jmp/blob/3a8318abc3292be38582794dbf7b094e6583b192/jmp/_src/policy.py#L27 def conditional_cast(param): if isinstance(param, jnp.ndarray) and jnp.issubdtype(param.dtype, jnp.floating): param = param.astype(dtype) return param if mask is None: return jax.tree_util.tree_map(conditional_cast, params) flat_params = flatten_dict(params) flat_mask, _ = jax.tree_util.tree_flatten(mask) for masked, key in zip(flat_mask, flat_params.keys()): if masked: param = flat_params[key] flat_params[key] = conditional_cast(param) return unflatten_dict(flat_params) def to_bf16(self, params: Union[Dict, FrozenDict], mask: Any = None): r""" Cast the floating-point `params` to `jax.numpy.bfloat16`. This returns a new `params` tree and does not cast the `params` in place. This method can be used on TPU to explicitly convert the model parameters to bfloat16 precision to do full half-precision training or to save weights in bfloat16 for inference in order to save memory and improve speed. Arguments: params (`Union[Dict, FrozenDict]`): A `PyTree` of model parameters. mask (`Union[Dict, FrozenDict]`): A `PyTree` with same structure as the `params` tree. The leaves should be booleans, `True` for params you want to cast, and should be `False` for those you want to skip. Examples: ```python >>> from transformers import FlaxBertModel >>> # load model >>> model = FlaxBertModel.from_pretrained("bert-base-cased") >>> # By default, the model parameters will be in fp32 precision, to cast these to bfloat16 precision >>> model.params = model.to_bf16(model.params) >>> # If you want don't want to cast certain parameters (for example layer norm bias and scale) >>> # then pass the mask as follows >>> from flax import traverse_util >>> model = FlaxBertModel.from_pretrained("bert-base-cased") >>> flat_params = traverse_util.flatten_dict(model.params) >>> mask = { ... path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale")) ... for path in flat_params ... } >>> mask = traverse_util.unflatten_dict(mask) >>> model.params = model.to_bf16(model.params, mask) ```""" return self._cast_floating_to(params, jnp.bfloat16, mask) def to_fp32(self, params: Union[Dict, FrozenDict], mask: Any = None): r""" Cast the floating-point `parmas` to `jax.numpy.float32`. This method can be used to explicitly convert the model parameters to fp32 precision. This returns a new `params` tree and does not cast the `params` in place. Arguments: params (`Union[Dict, FrozenDict]`): A `PyTree` of model parameters. mask (`Union[Dict, FrozenDict]`): A `PyTree` with same structure as the `params` tree. The leaves should be booleans, `True` for params you want to cast, and should be `False` for those you want to skip Examples: ```python >>> from transformers import FlaxBertModel >>> # Download model and configuration from huggingface.co >>> model = FlaxBertModel.from_pretrained("bert-base-cased") >>> # By default, the model params will be in fp32, to illustrate the use of this method, >>> # we'll first cast to fp16 and back to fp32 >>> model.params = model.to_f16(model.params) >>> # now cast back to fp32 >>> model.params = model.to_fp32(model.params) ```""" return self._cast_floating_to(params, jnp.float32, mask) def to_fp16(self, params: Union[Dict, FrozenDict], mask: Any = None): r""" Cast the floating-point `parmas` to `jax.numpy.float16`. This returns a new `params` tree and does not cast the `params` in place. This method can be used on GPU to explicitly convert the model parameters to float16 precision to do full half-precision training or to save weights in float16 for inference in order to save memory and improve speed. Arguments: params (`Union[Dict, FrozenDict]`): A `PyTree` of model parameters. mask (`Union[Dict, FrozenDict]`): A `PyTree` with same structure as the `params` tree. The leaves should be booleans, `True` for params you want to cast, and should be `False` for those you want to skip Examples: ```python >>> from transformers import FlaxBertModel >>> # load model >>> model = FlaxBertModel.from_pretrained("bert-base-cased") >>> # By default, the model params will be in fp32, to cast these to float16 >>> model.params = model.to_fp16(model.params) >>> # If you want don't want to cast certain parameters (for example layer norm bias and scale) >>> # then pass the mask as follows >>> from flax import traverse_util >>> model = FlaxBertModel.from_pretrained("bert-base-cased") >>> flat_params = traverse_util.flatten_dict(model.params) >>> mask = { ... path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale")) ... for path in flat_params ... } >>> mask = traverse_util.unflatten_dict(mask) >>> model.params = model.to_fp16(model.params, mask) ```""" return self._cast_floating_to(params, jnp.float16, mask) @classmethod def load_flax_weights(cls, resolved_archive_file): try: if resolved_archive_file.endswith(".safetensors"): state = safe_load_file(resolved_archive_file) state = unflatten_dict(state, sep=".") else: with open(resolved_archive_file, "rb") as state_f: state = from_bytes(cls, state_f.read()) except (UnpicklingError, msgpack.exceptions.ExtraData) as e: try: with open(resolved_archive_file) as f: if f.read().startswith("version"): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"Unable to convert {resolved_archive_file} to Flax deserializable object. ") return state @classmethod def load_flax_sharded_weights(cls, shard_files): """ This is the same as [`flax.serialization.from_bytes`] (https:lax.readthedocs.io/en/latest/_modules/flax/serialization.html#from_bytes) but for a sharded checkpoint. This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being loaded in the model. Args: shard_files (`List[str]`: The list of shard files to load. Returns: `Dict`: A nested dictionary of the model parameters, in the expected format for flax models : `{'model': {'params': {'...'}}}`. """ # Load the index state_sharded_dict = {} for shard_file in shard_files: # load using msgpack utils try: with open(shard_file, "rb") as state_f: state = from_bytes(cls, state_f.read()) except (UnpicklingError, msgpack.exceptions.ExtraData) as e: with open(shard_file) as f: if f.read().startswith("version"): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"Unable to convert {shard_file} to Flax deserializable object. ") state = flatten_dict(state, sep="/") state_sharded_dict.update(state) del state gc.collect() # the state dict is unflattened to the match the format of model.params return unflatten_dict(state_sharded_dict, sep="/") @classmethod def can_generate(cls) -> bool: """ Returns whether this model can generate sequences with `.generate()`. Returns: `bool`: Whether this model can generate sequences with `.generate()`. """ # Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation. # Alternativelly, the model can also have a custom `generate` function. if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate): return False return True @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Union[str, os.PathLike], dtype: jnp.dtype = jnp.float32, *model_args, config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, cache_dir: Optional[Union[str, os.PathLike]] = None, ignore_mismatched_sizes: bool = False, force_download: bool = False, local_files_only: bool = False, token: Optional[Union[str, bool]] = None, revision: str = "main", **kwargs, ): r""" Instantiate a pretrained flax model from a pre-trained model configuration. The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning task. The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those weights are discarded. Parameters: pretrained_model_name_or_path (`str` or `os.PathLike`): Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pt index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_pt` should be set to `True`. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. model_args (sequence of positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*): Can be either: - an instance of a class derived from [`PretrainedConfig`], - a string or path valid as input to [`~PretrainedConfig.from_pretrained`]. Configuration for the model to use instead of an automatically loaded configuration. Configuration can be automatically loaded when: - The model is a model provided by the library (loaded with the *model id* string of a pretrained model). - The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the save directory. - The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a configuration JSON file named *config.json* is found in the directory. cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. from_pt (`bool`, *optional*, defaults to `False`): Load the model weights from a PyTorch checkpoint save file (see docstring of `pretrained_model_name_or_path` argument). ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`): Whether or not to raise an error if some of the weights from the checkpoint do not have the same size as the weights of the model (if for instance, you are instantiating a model with 10 labels from a checkpoint with 3 labels). force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only(`bool`, *optional*, defaults to `False`): Whether or not to only look at local files (i.e., do not try to download the model). token (`str` or `bool`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. <Tip> To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>". </Tip> subfolder (`str`, *optional*, defaults to `""`): In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can specify the folder name here. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). Behaves differently depending on whether a `config` is provided or automatically loaded: - If a configuration is provided with `config`, `**kwargs` will be directly passed to the underlying model's `__init__` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, `kwargs` will be first passed to the configuration class initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that corresponds to a configuration attribute will be used to override said attribute with the supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's `__init__` function. Examples: ```python >>> from transformers import BertConfig, FlaxBertModel >>> # Download model and configuration from huggingface.co and cache. >>> model = FlaxBertModel.from_pretrained("bert-base-cased") >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable). >>> model = FlaxBertModel.from_pretrained("./test/saved_model/") >>> # Loading from a PyTorch checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable). >>> config = BertConfig.from_json_file("./pt_model/config.json") >>> model = FlaxBertModel.from_pretrained("./pt_model/pytorch_model.bin", from_pt=True, config=config) ```""" from_pt = kwargs.pop("from_pt", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) use_auth_token = kwargs.pop("use_auth_token", None) trust_remote_code = kwargs.pop("trust_remote_code", None) from_pipeline = kwargs.pop("_from_pipeline", None) from_auto_class = kwargs.pop("_from_auto", False) _do_init = kwargs.pop("_do_init", True) subfolder = kwargs.pop("subfolder", "") commit_hash = kwargs.pop("_commit_hash", None) # Not relevant for Flax Models _ = kwargs.pop("adapter_kwargs", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token if trust_remote_code is True: logger.warning( "The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is" " ignored." ) user_agent = {"file_type": "model", "framework": "flax", "from_auto_class": from_auto_class} if from_pipeline is not None: user_agent["using_pipeline"] = from_pipeline if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True # Load config if we don't provide a configuration if not isinstance(config, PretrainedConfig): config_path = config if config is not None else pretrained_model_name_or_path config, model_kwargs = cls.config_class.from_pretrained( config_path, cache_dir=cache_dir, return_unused_kwargs=True, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, _from_auto=from_auto_class, _from_pipeline=from_pipeline, _commit_hash=commit_hash, **kwargs, ) else: model_kwargs = kwargs.copy() if commit_hash is None: commit_hash = getattr(config, "_commit_hash", None) # Add the dtype to model_kwargs model_kwargs["dtype"] = dtype # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the # index of the files. is_sharded = False # Load model if pretrained_model_name_or_path is not None: pretrained_model_name_or_path = str(pretrained_model_name_or_path) is_local = os.path.isdir(pretrained_model_name_or_path) if os.path.isdir(pretrained_model_name_or_path): if os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)): # Load from a Flax checkpoint archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME) elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_INDEX_NAME)): # Load from a sharded Flax checkpoint archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_INDEX_NAME) is_sharded = True elif is_safetensors_available() and os.path.isfile( os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_NAME) ): # Load from a safetensors checkpoint archive_file = os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_NAME) elif from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_NAME)): # Load from a PyTorch checkpoint archive_file = os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_NAME) elif from_pt and os.path.isfile( os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_INDEX_NAME) ): # Load from a sharded pytorch checkpoint archive_file = os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_INDEX_NAME) is_sharded = True # At this stage we don't have a weight file so we will raise an error. elif is_safetensors_available() and os.path.isfile( os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_INDEX_NAME) ): # Load from a sharded safetensors checkpoint archive_file = os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_INDEX_NAME) is_sharded = True raise NotImplementedError("Support for sharded checkpoints using safetensors is coming soon!") elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_NAME)): raise EnvironmentError( f"Error no file named {FLAX_WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} " "but there is a file for PyTorch weights. Use `from_pt=True` to load this model from those " "weights." ) else: raise EnvironmentError( f"Error no file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME} found in directory " f"{pretrained_model_name_or_path}." ) elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)): archive_file = pretrained_model_name_or_path is_local = True elif is_remote_url(pretrained_model_name_or_path): filename = pretrained_model_name_or_path resolved_archive_file = download_url(pretrained_model_name_or_path) else: if from_pt: filename = WEIGHTS_NAME else: filename = FLAX_WEIGHTS_NAME try: # Load from URL or cache if already cached cached_file_kwargs = { "cache_dir": cache_dir, "force_download": force_download, "proxies": proxies, "resume_download": resume_download, "local_files_only": local_files_only, "token": token, "user_agent": user_agent, "revision": revision, "subfolder": subfolder, "_raise_exceptions_for_gated_repo": False, "_raise_exceptions_for_missing_entries": False, "_commit_hash": commit_hash, } resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs) # Maybe the checkpoint is sharded, we try to grab the index name in this case. if resolved_archive_file is None and filename == FLAX_WEIGHTS_NAME: resolved_archive_file = cached_file( pretrained_model_name_or_path, FLAX_WEIGHTS_INDEX_NAME, **cached_file_kwargs ) if resolved_archive_file is not None: is_sharded = True # Maybe the checkpoint is pytorch sharded, we try to grab the pytorch index name in this case. if resolved_archive_file is None and from_pt: resolved_archive_file = cached_file( pretrained_model_name_or_path, WEIGHTS_INDEX_NAME, **cached_file_kwargs ) if resolved_archive_file is not None: is_sharded = True # If we still haven't found anything, look for `safetensors`. if resolved_archive_file is None: # No support for sharded safetensors yet, so we'll raise an error if that's all we find. filename = SAFE_WEIGHTS_NAME resolved_archive_file = cached_file( pretrained_model_name_or_path, SAFE_WEIGHTS_NAME, **cached_file_kwargs ) # Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None # result when internet is up, the repo and revision exist, but the file does not. if resolved_archive_file is None: # Otherwise, maybe there is a TF or Torch model file. We try those to give a helpful error # message. has_file_kwargs = { "revision": revision, "proxies": proxies, "token": token, } if has_file(pretrained_model_name_or_path, SAFE_WEIGHTS_INDEX_NAME, **has_file_kwargs): is_sharded = True raise NotImplementedError( "Support for sharded checkpoints using safetensors is coming soon!" ) elif has_file(pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs): raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named" f" {FLAX_WEIGHTS_NAME} but there is a file for PyTorch weights. Use `from_pt=True` to" " load this model from those weights." ) elif has_file(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME, **has_file_kwargs): raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named" f" {FLAX_WEIGHTS_INDEX_NAME} but there is a sharded file for PyTorch weights. Use" " `from_pt=True` to load this model from those weights." ) else: raise EnvironmentError( f"{pretrained_model_name_or_path} does not appear to have a file named" f" {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}." ) except EnvironmentError: # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted # to the original exception. raise except Exception: # For any other exception, we throw a generic error. raise EnvironmentError( f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it" " from 'https://huggingface.co/models', make sure you don't have a local directory with the" f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" f" directory containing a file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}." ) if is_local: logger.info(f"loading weights file {archive_file}") resolved_archive_file = archive_file filename = resolved_archive_file.split(os.path.sep)[-1] else: logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}") else: resolved_archive_file = None # We'll need to download and cache each checkpoint shard if the checkpoint is sharded. if is_sharded: # resolved_archive_file becomes a list of files that point to the different checkpoint shards in this case. resolved_archive_file, _ = get_checkpoint_shard_files( pretrained_model_name_or_path, resolved_archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, _commit_hash=commit_hash, ) safetensors_from_pt = False if filename == SAFE_WEIGHTS_NAME: with safe_open(resolved_archive_file, framework="flax") as f: safetensors_metadata = f.metadata() if safetensors_metadata is None or safetensors_metadata.get("format") not in ["pt", "tf", "flax"]: raise OSError( f"The safetensors archive passed at {resolved_archive_file} does not contain the valid metadata." " Make sure you save your model with the `save_pretrained` method." ) safetensors_from_pt = safetensors_metadata.get("format") == "pt" # init random models model = cls(config, *model_args, _do_init=_do_init, **model_kwargs) if from_pt or safetensors_from_pt: state = load_pytorch_checkpoint_in_flax_state_dict(model, resolved_archive_file, is_sharded) else: if is_sharded: state = cls.load_flax_sharded_weights(resolved_archive_file) else: state = cls.load_flax_weights(resolved_archive_file) # make sure all arrays are stored as jnp.arrays # NOTE: This is to prevent a bug this will be fixed in Flax >= v0.3.4: # https://github.com/google/flax/issues/1261 if _do_init: state = jax.tree_util.tree_map(jnp.array, state) else: # keep the params on CPU if we don't want to initialize state = jax.tree_util.tree_map(lambda x: jax.device_put(x, jax.local_devices(backend="cpu")[0]), state) if "batch_stats" in state: # if flax model contains batch norm layers # if model is base model only use model_prefix key if ( cls.base_model_prefix not in dict(model.params_shape_tree["params"]) and cls.base_model_prefix in state["params"] ): state["params"] = state["params"][cls.base_model_prefix] state["batch_stats"] = state["batch_stats"][cls.base_model_prefix] # if model is head model and we are loading weights from base model # we initialize new params dict with base_model_prefix if ( cls.base_model_prefix in dict(model.params_shape_tree["params"]) and cls.base_model_prefix not in state["params"] ): state = { "params": {cls.base_model_prefix: state["params"]}, "batch_stats": {cls.base_model_prefix: state["batch_stats"]}, } else: # if model is base model only use model_prefix key if cls.base_model_prefix not in dict(model.params_shape_tree) and cls.base_model_prefix in state: state = state[cls.base_model_prefix] # if model is head model and we are loading weights from base model # we initialize new params dict with base_model_prefix if cls.base_model_prefix in dict(model.params_shape_tree) and cls.base_model_prefix not in state: state = {cls.base_model_prefix: state} # flatten dicts state = flatten_dict(state) random_state = flatten_dict(unfreeze(model.params if _do_init else model.params_shape_tree)) missing_keys = model.required_params - set(state.keys()) unexpected_keys = set(state.keys()) - model.required_params # Disabling warning when porting pytorch weights to flax, flax does not uses num_batches_tracked for unexpected_key in unexpected_keys.copy(): if "num_batches_tracked" in unexpected_key[-1]: unexpected_keys.remove(unexpected_key) if missing_keys and not _do_init: logger.warning( f"The checkpoint {pretrained_model_name_or_path} is missing required keys: {missing_keys}. " "Make sure to call model.init_weights to initialize the missing weights." ) cls._missing_keys = missing_keys # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not # matching the weights in the model. mismatched_keys = [] for key in state.keys(): if key in random_state and state[key].shape != random_state[key].shape: if ignore_mismatched_sizes: mismatched_keys.append((key, state[key].shape, random_state[key].shape)) state[key] = random_state[key] else: raise ValueError( f"Trying to load the pretrained weight for {key} failed: checkpoint has shape " f"{state[key].shape} which is incompatible with the model shape {random_state[key].shape}. " "Using `ignore_mismatched_sizes=True` if you really want to load this checkpoint inside this " "model." ) # add missing keys as random parameters if we are initializing if missing_keys and _do_init: for missing_key in missing_keys: state[missing_key] = random_state[missing_key] # remove unexpected keys to not be saved again for unexpected_key in unexpected_keys: del state[unexpected_key] if len(unexpected_keys) > 0: logger.warning( f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when" f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are" f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or" " with another architecture (e.g. initializing a BertForSequenceClassification model from a" " BertForPreTraining model).\n- This IS NOT expected if you are initializing" f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical" " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." ) else: logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably" " TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) elif len(mismatched_keys) == 0: logger.info( f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at" f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint" f" was trained on, you can already use {model.__class__.__name__} for predictions without further" " training." ) if len(mismatched_keys) > 0: mismatched_warning = "\n".join( [ f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" for key, shape1, shape2 in mismatched_keys ] ) logger.warning( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not" f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able" " to use it for predictions and inference." ) # dictionary of key: dtypes for the model params param_dtypes = jax.tree_util.tree_map(lambda x: x.dtype, state) # extract keys of parameters not in jnp.float32 fp16_params = [k for k in param_dtypes if param_dtypes[k] == jnp.float16] bf16_params = [k for k in param_dtypes if param_dtypes[k] == jnp.bfloat16] # raise a warning if any of the parameters are not in jnp.float32 if len(fp16_params) > 0: logger.warning( f"Some of the weights of {model.__class__.__name__} were initialized in float16 precision from " f"the model checkpoint at {pretrained_model_name_or_path}:\n{fp16_params}\n" "You should probably UPCAST the model weights to float32 if this was not intended. " "See [`~FlaxPreTrainedModel.to_fp32`] for further information on how to do this." ) if len(bf16_params) > 0: logger.warning( f"Some of the weights of {model.__class__.__name__} were initialized in bfloat16 precision from " f"the model checkpoint at {pretrained_model_name_or_path}:\n{bf16_params}\n" "You should probably UPCAST the model weights to float32 if this was not intended. " "See [`~FlaxPreTrainedModel.to_fp32`] for further information on how to do this." ) # If it is a model with generation capabilities, attempt to load the generation config if model.can_generate(): try: model.generation_config = GenerationConfig.from_pretrained( pretrained_model_name_or_path, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, token=token, revision=revision, subfolder=subfolder, _from_auto=from_auto_class, _from_pipeline=from_pipeline, **kwargs, ) except OSError: logger.info( "Generation config file not found, using a generation config created from the model config." ) pass if _do_init: # set correct parameters model.params = unflatten_dict(state) return model else: return model, unflatten_dict(state) def save_pretrained( self, save_directory: Union[str, os.PathLike], params=None, push_to_hub=False, max_shard_size="10GB", token: Optional[Union[str, bool]] = None, safe_serialization: bool = False, **kwargs, ): """ Save a model and its configuration file to a directory, so that it can be re-loaded using the `[`~FlaxPreTrainedModel.from_pretrained`]` class method Arguments: save_directory (`str` or `os.PathLike`): Directory to which to save. Will be created if it doesn't exist. push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to with `repo_id` (will default to the name of `save_directory` in your namespace). max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). <Tip warning={true}> If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard which will be bigger than `max_shard_size`. </Tip> token (`str` or `bool`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). kwargs (`Dict[str, Any]`, *optional*): Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. safe_serialization (`bool`, *optional*, defaults to `False`): Whether to save the model using `safetensors` or through msgpack. """ use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token if token is not None: kwargs["token"] = token if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(save_directory, exist_ok=True) if push_to_hub: commit_message = kwargs.pop("commit_message", None) repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) repo_id = self._create_repo(repo_id, **kwargs) files_timestamps = self._get_files_timestamps(save_directory) # get abs dir save_directory = os.path.abspath(save_directory) # save config as well self.config.architectures = [self.__class__.__name__[4:]] # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be # loaded from the Hub. if self._auto_class is not None: custom_object_save(self, save_directory, config=self.config) self.config.save_pretrained(save_directory) if self.can_generate(): self.generation_config.save_pretrained(save_directory) # save model weights_name = SAFE_WEIGHTS_NAME if safe_serialization else FLAX_WEIGHTS_NAME output_model_file = os.path.join(save_directory, weights_name) shards, index = flax_shard_checkpoint(params if params is not None else self.params, max_shard_size) # Clean the folder from a previous save for filename in os.listdir(save_directory): full_filename = os.path.join(save_directory, filename) weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "") if ( filename.startswith(weights_no_suffix) and os.path.isfile(full_filename) and filename not in shards.keys() ): os.remove(full_filename) if index is None: if safe_serialization: params = params if params is not None else self.params flat_dict = flatten_dict(params, sep=".") safe_save_file(flat_dict, output_model_file, metadata={"format": "flax"}) else: with open(output_model_file, "wb") as f: params = params if params is not None else self.params model_bytes = to_bytes(params) f.write(model_bytes) else: save_index_file = os.path.join(save_directory, FLAX_WEIGHTS_INDEX_NAME) # Save the index as well with open(save_index_file, "w", encoding="utf-8") as f: content = json.dumps(index, indent=2, sort_keys=True) + "\n" f.write(content) logger.info( f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be " f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the " f"index located at {save_index_file}." ) for shard_file, shard in shards.items(): # the shard item are unflattened, to save them we need to flatten them again with open(os.path.join(save_directory, shard_file), mode="wb") as f: params = unflatten_dict(shard, sep="/") shard_bytes = to_bytes(params) f.write(shard_bytes) logger.info(f"Model weights saved in {output_model_file}") if push_to_hub: self._upload_modified_files( save_directory, repo_id, files_timestamps, commit_message=commit_message, token=token, ) @classmethod def register_for_auto_class(cls, auto_class="FlaxAutoModel"): """ Register this class with a given auto class. This should only be used for custom models as the ones in the library are already mapped with an auto class. <Tip warning={true}> This API is experimental and may have some slight breaking changes in the next releases. </Tip> Args: auto_class (`str` or `type`, *optional*, defaults to `"FlaxAutoModel"`): The auto class to register this new model with. """ if not isinstance(auto_class, str): auto_class = auto_class.__name__ import transformers.models.auto as auto_module if not hasattr(auto_module, auto_class): raise ValueError(f"{auto_class} is not a valid auto class.") cls._auto_class = auto_class # To update the docstring, we need to copy the method, otherwise we change the original docstring. FlaxPreTrainedModel.push_to_hub = copy_func(FlaxPreTrainedModel.push_to_hub) if FlaxPreTrainedModel.push_to_hub.__doc__ is not None: FlaxPreTrainedModel.push_to_hub.__doc__ = FlaxPreTrainedModel.push_to_hub.__doc__.format( object="model", object_class="FlaxAutoModel", object_files="model checkpoint" ) def overwrite_call_docstring(model_class, docstring): # copy __call__ function to be sure docstring is changed only for this function model_class.__call__ = copy_func(model_class.__call__) # delete existing docstring model_class.__call__.__doc__ = None # set correct docstring model_class.__call__ = add_start_docstrings_to_model_forward(docstring)(model_class.__call__) def append_call_sample_docstring( model_class, checkpoint, output_type, config_class, mask=None, revision=None, real_checkpoint=None ): model_class.__call__ = copy_func(model_class.__call__) model_class.__call__ = add_code_sample_docstrings( checkpoint=checkpoint, output_type=output_type, config_class=config_class, model_cls=model_class.__name__, revision=revision, real_checkpoint=real_checkpoint, )(model_class.__call__) def append_replace_return_docstrings(model_class, output_type, config_class): model_class.__call__ = copy_func(model_class.__call__) model_class.__call__ = replace_return_docstrings( output_type=output_type, config_class=config_class, )(model_class.__call__)
transformers/src/transformers/modeling_flax_utils.py/0
{ "file_path": "transformers/src/transformers/modeling_flax_utils.py", "repo_id": "transformers", "token_count": 27441 }
284
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ALIGN model configuration""" import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAP = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class AlignTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`AlignTextModel`]. It is used to instantiate a ALIGN text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the text encoder of the ALIGN [kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture. The default values here are copied from BERT. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the Align Text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`AlignTextModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`AlignTextModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Example: ```python >>> from transformers import AlignTextConfig, AlignTextModel >>> # Initializing a AlignTextConfig with kakaobrain/align-base style configuration >>> configuration = AlignTextConfig() >>> # Initializing a AlignTextModel (with random weights) from the kakaobrain/align-base style configuration >>> model = AlignTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "align_text_model" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", use_cache=True, **kwargs, ): super().__init__(**kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.pad_token_id = pad_token_id @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type") == "align": config_dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class AlignVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`AlignVisionModel`]. It is used to instantiate a ALIGN vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the vision encoder of the ALIGN [kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture. The default values are copied from EfficientNet (efficientnet-b7) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. image_size (`int`, *optional*, defaults to 600): The input image size. width_coefficient (`float`, *optional*, defaults to 2.0): Scaling coefficient for network width at each stage. depth_coefficient (`float`, *optional*, defaults to 3.1): Scaling coefficient for network depth at each stage. depth_divisor `int`, *optional*, defaults to 8): A unit of network width. kernel_sizes (`List[int]`, *optional*, defaults to `[3, 3, 5, 3, 5, 5, 3]`): List of kernel sizes to be used in each block. in_channels (`List[int]`, *optional*, defaults to `[32, 16, 24, 40, 80, 112, 192]`): List of input channel sizes to be used in each block for convolutional layers. out_channels (`List[int]`, *optional*, defaults to `[16, 24, 40, 80, 112, 192, 320]`): List of output channel sizes to be used in each block for convolutional layers. depthwise_padding (`List[int]`, *optional*, defaults to `[]`): List of block indices with square padding. strides (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`): List of stride sizes to be used in each block for convolutional layers. num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`): List of the number of times each block is to repeated. expand_ratios (`List[int]`, *optional*, defaults to `[1, 6, 6, 6, 6, 6, 6]`): List of scaling coefficient of each block. squeeze_expansion_ratio (`float`, *optional*, defaults to 0.25): Squeeze expansion ratio. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`, `"selu", `"gelu_new"`, `"silu"` and `"mish"` are supported. hiddem_dim (`int`, *optional*, defaults to 1280): The hidden dimension of the layer before the classification head. pooling_type (`str` or `function`, *optional*, defaults to `"mean"`): Type of final pooling to be applied before the dense classification head. Available options are [`"mean"`, `"max"`] initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. batch_norm_eps (`float`, *optional*, defaults to 1e-3): The epsilon used by the batch normalization layers. batch_norm_momentum (`float`, *optional*, defaults to 0.99): The momentum used by the batch normalization layers. drop_connect_rate (`float`, *optional*, defaults to 0.2): The drop rate for skip connections. Example: ```python >>> from transformers import AlignVisionConfig, AlignVisionModel >>> # Initializing a AlignVisionConfig with kakaobrain/align-base style configuration >>> configuration = AlignVisionConfig() >>> # Initializing a AlignVisionModel (with random weights) from the kakaobrain/align-base style configuration >>> model = AlignVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "align_vision_model" def __init__( self, num_channels: int = 3, image_size: int = 600, width_coefficient: float = 2.0, depth_coefficient: float = 3.1, depth_divisor: int = 8, kernel_sizes: List[int] = [3, 3, 5, 3, 5, 5, 3], in_channels: List[int] = [32, 16, 24, 40, 80, 112, 192], out_channels: List[int] = [16, 24, 40, 80, 112, 192, 320], depthwise_padding: List[int] = [], strides: List[int] = [1, 2, 2, 2, 1, 2, 1], num_block_repeats: List[int] = [1, 2, 2, 3, 3, 4, 1], expand_ratios: List[int] = [1, 6, 6, 6, 6, 6, 6], squeeze_expansion_ratio: float = 0.25, hidden_act: str = "swish", hidden_dim: int = 2560, pooling_type: str = "mean", initializer_range: float = 0.02, batch_norm_eps: float = 0.001, batch_norm_momentum: float = 0.99, drop_connect_rate: float = 0.2, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.image_size = image_size self.width_coefficient = width_coefficient self.depth_coefficient = depth_coefficient self.depth_divisor = depth_divisor self.kernel_sizes = kernel_sizes self.in_channels = in_channels self.out_channels = out_channels self.depthwise_padding = depthwise_padding self.strides = strides self.num_block_repeats = num_block_repeats self.expand_ratios = expand_ratios self.squeeze_expansion_ratio = squeeze_expansion_ratio self.hidden_act = hidden_act self.hidden_dim = hidden_dim self.pooling_type = pooling_type self.initializer_range = initializer_range self.batch_norm_eps = batch_norm_eps self.batch_norm_momentum = batch_norm_momentum self.drop_connect_rate = drop_connect_rate self.num_hidden_layers = sum(num_block_repeats) * 4 @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type") == "align": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class AlignConfig(PretrainedConfig): r""" [`AlignConfig`] is the configuration class to store the configuration of a [`AlignModel`]. It is used to instantiate a ALIGN model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the ALIGN [kakaobrain/align-base](https://huggingface.co/kakaobrain/align-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`AlignTextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`AlignVisionConfig`]. projection_dim (`int`, *optional*, defaults to 640): Dimentionality of text and vision projection layers. temperature_init_value (`float`, *optional*, defaults to 1.0): The inital value of the *temperature* paramter. Default is used as per the original ALIGN implementation. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import AlignConfig, AlignModel >>> # Initializing a AlignConfig with kakaobrain/align-base style configuration >>> configuration = AlignConfig() >>> # Initializing a AlignModel (with random weights) from the kakaobrain/align-base style configuration >>> model = AlignModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a AlignConfig from a AlignTextConfig and a AlignVisionConfig >>> from transformers import AlignTextConfig, AlignVisionConfig >>> # Initializing ALIGN Text and Vision configurations >>> config_text = AlignTextConfig() >>> config_vision = AlignVisionConfig() >>> config = AlignConfig.from_text_vision_configs(config_text, config_vision) ```""" model_type = "align" def __init__( self, text_config=None, vision_config=None, projection_dim=640, temperature_init_value=1.0, initializer_range=0.02, **kwargs, ): super().__init__(**kwargs) if text_config is None: text_config = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values.") if vision_config is None: vision_config = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values.") self.text_config = AlignTextConfig(**text_config) self.vision_config = AlignVisionConfig(**vision_config) self.projection_dim = projection_dim self.temperature_init_value = temperature_init_value self.initializer_range = initializer_range @classmethod def from_text_vision_configs(cls, text_config: AlignTextConfig, vision_config: AlignVisionConfig, **kwargs): r""" Instantiate a [`AlignConfig`] (or a derived class) from align text model configuration and align vision model configuration. Returns: [`AlignConfig`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
transformers/src/transformers/models/align/configuration_align.py/0
{ "file_path": "transformers/src/transformers/models/align/configuration_align.py", "repo_id": "transformers", "token_count": 6879 }
285
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ AutoFeatureExtractor class.""" import importlib import json import os import warnings from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) logger = logging.get_logger(__name__) FEATURE_EXTRACTOR_MAPPING_NAMES = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("clvp", "ClvpFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("pop2piano", "Pop2PianoFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("seamless_m4t", "SeamlessM4TFeatureExtractor"), ("seamless_m4t_v2", "SeamlessM4TFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("univnet", "UnivNetFeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-bert", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) FEATURE_EXTRACTOR_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def feature_extractor_class_from_name(class_name: str): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: module_name = model_type_to_module_name(module_name) module = importlib.import_module(f".{module_name}", "transformers.models") try: return getattr(module, class_name) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(extractor, "__name__", None) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. main_module = importlib.import_module("transformers") if hasattr(main_module, class_name): return getattr(main_module, class_name) return None def get_feature_extractor_config( pretrained_model_name_or_path: Union[str, os.PathLike], cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, resume_download: bool = False, proxies: Optional[Dict[str, str]] = None, token: Optional[Union[bool, str]] = None, revision: Optional[str] = None, local_files_only: bool = False, **kwargs, ): """ Loads the tokenizer configuration from a pretrained model tokenizer configuration. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained model configuration hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - a path to a *directory* containing a configuration file saved using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the configuration files and override the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. local_files_only (`bool`, *optional*, defaults to `False`): If `True`, will only try to load the tokenizer configuration from local files. <Tip> Passing `token=True` is required when you want to use a private model. </Tip> Returns: `Dict`: The configuration of the tokenizer. Examples: ```python # Download configuration from huggingface.co and cache. tokenizer_config = get_tokenizer_config("bert-base-uncased") # This model does not have a tokenizer config so the result will be an empty dict. tokenizer_config = get_tokenizer_config("xlm-roberta-base") # Save a pretrained tokenizer locally and you can reload its config from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") tokenizer.save_pretrained("tokenizer-test") tokenizer_config = get_tokenizer_config("tokenizer-test") ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token resolved_config_file = get_file_from_repo( pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, token=token, revision=revision, local_files_only=local_files_only, ) if resolved_config_file is None: logger.info( "Could not locate the feature extractor configuration file, will try to use the model config instead." ) return {} with open(resolved_config_file, encoding="utf-8") as reader: return json.load(reader) class AutoFeatureExtractor: r""" This is a generic feature extractor class that will be instantiated as one of the feature extractor classes of the library when created with the [`AutoFeatureExtractor.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoFeatureExtractor is designed to be instantiated " "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(FEATURE_EXTRACTOR_MAPPING_NAMES) def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): r""" Instantiate one of the feature extractor classes of the library from a pretrained model vocabulary. The feature extractor class to instantiate is selected based on the `model_type` property of the config object (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: List options Params: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - a path to a *directory* containing a feature extractor file saved using the [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] method, e.g., `./my_model_directory/`. - a path or url to a saved feature extractor JSON *file*, e.g., `./my_model_directory/preprocessor_config.json`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model feature extractor should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the feature extractor files and override the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. return_unused_kwargs (`bool`, *optional*, defaults to `False`): If `False`, then this function returns just the final feature extractor object. If `True`, then this functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of `kwargs` which has not been used to update `feature_extractor` and is otherwise ignored. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. kwargs (`Dict[str, Any]`, *optional*): The values in kwargs of any keys which are feature extractor attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is controlled by the `return_unused_kwargs` keyword parameter. <Tip> Passing `token=True` is required when you want to use a private model. </Tip> Examples: ```python >>> from transformers import AutoFeatureExtractor >>> # Download feature extractor from huggingface.co and cache. >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") >>> # If feature extractor files are in a directory (e.g. feature extractor was saved using *save_pretrained('./test/saved_model/')*) >>> # feature_extractor = AutoFeatureExtractor.from_pretrained("./test/saved_model/") ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token config = kwargs.pop("config", None) trust_remote_code = kwargs.pop("trust_remote_code", None) kwargs["_from_auto"] = True config_dict, _ = FeatureExtractionMixin.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs) feature_extractor_class = config_dict.get("feature_extractor_type", None) feature_extractor_auto_map = None if "AutoFeatureExtractor" in config_dict.get("auto_map", {}): feature_extractor_auto_map = config_dict["auto_map"]["AutoFeatureExtractor"] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) # It could be in `config.feature_extractor_type`` feature_extractor_class = getattr(config, "feature_extractor_type", None) if hasattr(config, "auto_map") and "AutoFeatureExtractor" in config.auto_map: feature_extractor_auto_map = config.auto_map["AutoFeatureExtractor"] if feature_extractor_class is not None: feature_extractor_class = feature_extractor_class_from_name(feature_extractor_class) has_remote_code = feature_extractor_auto_map is not None has_local_code = feature_extractor_class is not None or type(config) in FEATURE_EXTRACTOR_MAPPING trust_remote_code = resolve_trust_remote_code( trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code ) if has_remote_code and trust_remote_code: feature_extractor_class = get_class_from_dynamic_module( feature_extractor_auto_map, pretrained_model_name_or_path, **kwargs ) _ = kwargs.pop("code_revision", None) if os.path.isdir(pretrained_model_name_or_path): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(config_dict, **kwargs) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(config_dict, **kwargs) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(config) in FEATURE_EXTRACTOR_MAPPING: feature_extractor_class = FEATURE_EXTRACTOR_MAPPING[type(config)] return feature_extractor_class.from_dict(config_dict, **kwargs) raise ValueError( f"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " f"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}" ) @staticmethod def register(config_class, feature_extractor_class, exist_ok=False): """ Register a new feature extractor for this class. Args: config_class ([`PretrainedConfig`]): The configuration corresponding to the model to register. feature_extractor_class ([`FeatureExtractorMixin`]): The feature extractor to register. """ FEATURE_EXTRACTOR_MAPPING.register(config_class, feature_extractor_class, exist_ok=exist_ok)
transformers/src/transformers/models/auto/feature_extraction_auto.py/0
{ "file_path": "transformers/src/transformers/models/auto/feature_extraction_auto.py", "repo_id": "transformers", "token_count": 7820 }
286
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_bart": ["BART_PRETRAINED_CONFIG_ARCHIVE_MAP", "BartConfig", "BartOnnxConfig"], "tokenization_bart": ["BartTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_bart_fast"] = ["BartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_bart"] = [ "BART_PRETRAINED_MODEL_ARCHIVE_LIST", "BartForCausalLM", "BartForConditionalGeneration", "BartForQuestionAnswering", "BartForSequenceClassification", "BartModel", "BartPreTrainedModel", "BartPretrainedModel", "PretrainedBartModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_bart"] = [ "TFBartForConditionalGeneration", "TFBartForSequenceClassification", "TFBartModel", "TFBartPretrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_bart"] = [ "FlaxBartDecoderPreTrainedModel", "FlaxBartForCausalLM", "FlaxBartForConditionalGeneration", "FlaxBartForQuestionAnswering", "FlaxBartForSequenceClassification", "FlaxBartModel", "FlaxBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bart import BART_PRETRAINED_CONFIG_ARCHIVE_MAP, BartConfig, BartOnnxConfig from .tokenization_bart import BartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bart_fast import BartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bart import ( BART_PRETRAINED_MODEL_ARCHIVE_LIST, BartForCausalLM, BartForConditionalGeneration, BartForQuestionAnswering, BartForSequenceClassification, BartModel, BartPreTrainedModel, BartPretrainedModel, PretrainedBartModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bart import ( TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBartModel, TFBartPretrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bart import ( FlaxBartDecoderPreTrainedModel, FlaxBartForCausalLM, FlaxBartForConditionalGeneration, FlaxBartForQuestionAnswering, FlaxBartForSequenceClassification, FlaxBartModel, FlaxBartPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/bart/__init__.py/0
{ "file_path": "transformers/src/transformers/models/bart/__init__.py", "repo_id": "transformers", "token_count": 1839 }
287
# coding=utf-8 # Copyright 2022 The Salesforce Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch BLIP model.""" import warnings from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn.functional import normalize from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_blip import BlipConfig, BlipTextConfig, BlipVisionConfig from .modeling_blip_text import BlipTextLMHeadModel, BlipTextModel logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Salesforce/blip-vqa-base" BLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ "Salesforce/blip-vqa-base", "Salesforce/blip-vqa-capfilt-large", "Salesforce/blip-image-captioning-base", "Salesforce/blip-image-captioning-large", "Salesforce/blip-itm-base-coco", "Salesforce/blip-itm-large-coco", "Salesforce/blip-itm-base-flickr", "Salesforce/blip-itm-large-flickr", # See all BLIP models at https://huggingface.co/models?filter=blip ] # Copied from transformers.models.clip.modeling_clip.contrastive_loss def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->blip def blip_loss(similarity: torch.Tensor) -> torch.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(similarity.t()) return (caption_loss + image_loss) / 2.0 @dataclass class BlipForConditionalGenerationModelOutput(ModelOutput): """ Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. This class also adds the loss term from the text decoder. Args: loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Languge modeling loss from the text decoder. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*): Prediction scores of the language modeling head of the text decoder model. image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*): The image embeddings obtained after applying the Vision Transformer model to the input image. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[Tuple[torch.FloatTensor]] = None logits: Optional[Tuple[torch.FloatTensor]] = None image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @property def decoder_logits(self): warnings.warn( "`decoder_logits` attribute is deprecated and will be removed in version 5 of Transformers." " Please use the `logits` attribute to retrieve the final output instead.", FutureWarning, ) return self.logits @dataclass class BlipTextVisionModelOutput(ModelOutput): """ Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. This class also adds the loss term from the text decoder. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Languge modeling loss from the text decoder. image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class BlipImageTextMatchingModelOutput(ModelOutput): """ Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. This class also adds the loss term from the text decoder as well as the image-text similarity scores. Args: itm_score (`torch.FloatTensor`): The image-text similarity scores. loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Languge modeling loss from the text decoder. image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. vision_pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*): Last layer hidden-state of the vision of the vision-only branch of the model. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. question_embeds (`torch.FloatTensor`): The question embeddings obtained by the text projection layer. """ itm_score: Optional[torch.FloatTensor] = None loss: Optional[torch.FloatTensor] = None image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None vision_pooler_output: Optional[torch.FloatTensor] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None question_embeds: Optional[Tuple[torch.FloatTensor]] = None @dataclass class BlipOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`]. image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`]. text_model_output(`BaseModelOutputWithPooling`): The output of the [`BlipTextModel`]. vision_model_output(`BaseModelOutputWithPooling`): The output of the [`BlipVisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits_per_image: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None image_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class BlipVisionEmbeddings(nn.Module): def __init__(self, config: BlipVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype) return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Blip class BlipTextEmbeddings(nn.Module): def __init__(self, config: BlipTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings class BlipAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = nn.Dropout(config.attention_dropout) self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim) self.projection = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() mixed_qkv = ( self.qkv(hidden_states) .reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads) .permute(2, 0, 3, 1, 4) ) query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2] # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) attention_scores = attention_scores * self.scale # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,) context_layer = context_layer.reshape(new_context_layer_shape) output = self.projection(context_layer) outputs = (output, attention_probs) if output_attentions else (output, None) return outputs # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Blip class BlipMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class BlipEncoderLayer(nn.Module): def __init__(self, config: BlipConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = BlipAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = BlipMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, head_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = hidden_states + residual residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = hidden_states + residual outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class BlipPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BlipConfig base_model_prefix = "blip" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_range if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=factor) if hasattr(module, "bias") and module.bias is not None: module.bias.data.zero_() if isinstance(module, BlipVisionEmbeddings): if hasattr(self.config, "vision_config"): factor = self.config.vision_config.initializer_range nn.init.trunc_normal_( module.position_embedding, mean=0.0, std=factor, ) nn.init.trunc_normal_( module.class_embedding, mean=0.0, std=factor, ) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() BLIP_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BlipConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ BLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ BLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ BLIP_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class BlipEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`BlipEncoderLayer`]. Args: config (`BlipConfig`): The corresponding vision configuration for the `BlipEncoder`. """ def __init__(self, config: BlipConfig): super().__init__() self.config = config self.layers = nn.ModuleList([BlipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Embedded representation of the inputs. Should be float, not int tokens. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class BlipVisionModel(BlipPreTrainedModel): main_input_name = "pixel_values" config_class = BlipVisionConfig def __init__(self, config: BlipVisionConfig): super().__init__(config) self.config = config embed_dim = config.hidden_size self.embeddings = BlipVisionEmbeddings(config) self.encoder = BlipEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.post_init() @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=BlipVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.post_layernorm(last_hidden_state) pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def get_input_embeddings(self): return self.embeddings @add_start_docstrings(BLIP_START_DOCSTRING) class BlipModel(BlipPreTrainedModel): config_class = BlipConfig def __init__(self, config: BlipConfig): super().__init__(config) if not isinstance(config.text_config, BlipTextConfig): raise ValueError( "config.text_config is expected to be of type BlipTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, BlipVisionConfig): raise ValueError( "config.vision_config is expected to be of type BlipVisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = BlipTextModel(text_config) self.vision_model = BlipVisionModel(vision_config) self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`]. Examples: ```python >>> from transformers import AutoProcessor, BlipModel >>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, return_dict=return_dict, ) pooled_output = text_outputs[1] text_features = self.text_projection(pooled_output) return text_features @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, BlipModel >>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> image_features = model.get_image_features(**inputs) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model(pixel_values=pixel_values, return_dict=return_dict) pooled_output = vision_outputs[1] # pooled_output image_features = self.visual_projection(pooled_output) return image_features @add_start_docstrings_to_model_forward(BLIP_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BlipOutput, config_class=BlipConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BlipOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, BlipModel >>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ```""" # Use BLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale logits_per_image = logits_per_text.t() loss = None if return_loss: loss = blip_loss(logits_per_text) if not return_dict: output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return BlipOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) @add_start_docstrings( """ BLIP Model for image captioning. The model consists of a vision encoder and a text decoder. One can optionally pass `input_ids` to the model, which serve as a text prompt, to make the text decoder continue the prompt. Otherwise, the decoder starts generating text from the [BOS] (beginning-of-sequence) token. will start generating the caption from the text input. If no text input is provided, the decoder will start with the [BOS] token only. """, BLIP_START_DOCSTRING, ) class BlipForConditionalGeneration(BlipPreTrainedModel): config_class = BlipConfig _tied_weights_keys = ["text_decoder.cls.predictions.decoder.bias"] main_input_name = "pixel_values" def __init__(self, config: BlipConfig): super().__init__(config) self.vision_model = BlipVisionModel(config.vision_config) self.text_decoder = BlipTextLMHeadModel(config.text_config) self.decoder_input_ids = config.text_config.bos_token_id self.decoder_pad_token_id = config.text_config.pad_token_id # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BlipForConditionalGenerationModelOutput, config_class=BlipVisionConfig) def forward( self, pixel_values: torch.FloatTensor, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BlipForConditionalGenerationModelOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, BlipForConditionalGeneration >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "A picture of" >>> inputs = processor(images=image, text=text, return_tensors="pt") >>> outputs = model(**inputs) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[0] outputs = self.text_decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=image_embeds, labels=labels, return_dict=return_dict, reduction="mean", ) if not return_dict: outputs = (outputs[0], outputs[1], image_embeds, vision_outputs[0]) + vision_outputs[2:] return tuple(output for output in outputs if output is not None) return BlipForConditionalGenerationModelOutput( loss=outputs.loss, logits=outputs.logits, image_embeds=image_embeds, last_hidden_state=vision_outputs.last_hidden_state, hidden_states=vision_outputs.hidden_states, attentions=vision_outputs.attentions, ) @torch.no_grad() def generate( self, pixel_values: torch.FloatTensor, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, **generate_kwargs, ) -> torch.LongTensor: r""" Overrides *generate* function to be able to use the model as a conditional generator Parameters: pixel_values (*torch.FloatTensor* of shape *(batch_size, num_channels, image_height, image_width)*: Input image to be processed input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): The sequence used as a prompt for the generation. attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, BlipForConditionalGeneration >>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model.generate(**inputs) >>> print(processor.decode(outputs[0], skip_special_tokens=True)) two cats sleeping on a couch ``` """ batch_size = pixel_values.shape[0] vision_outputs = self.vision_model(pixel_values=pixel_values) image_embeds = vision_outputs[0] image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device) if isinstance(input_ids, list): input_ids = torch.LongTensor(input_ids) elif input_ids is None: input_ids = ( torch.LongTensor([[self.decoder_input_ids, self.config.text_config.eos_token_id]]) .repeat(batch_size, 1) .to(image_embeds.device) ) input_ids[:, 0] = self.config.text_config.bos_token_id attention_mask = attention_mask[:, :-1] if attention_mask is not None else None outputs = self.text_decoder.generate( input_ids=input_ids[:, :-1], eos_token_id=self.config.text_config.sep_token_id, pad_token_id=self.config.text_config.pad_token_id, attention_mask=attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, **generate_kwargs, ) return outputs @add_start_docstrings( """ BLIP Model for visual question answering. The model consists of a vision encoder, a text encoder as well as a text decoder. The vision encoder will encode the input image, the text encoder will encode the input question together with the encoding of the image, and the text decoder will output the answer to the question. """, BLIP_START_DOCSTRING, ) class BlipForQuestionAnswering(BlipPreTrainedModel): config_class = BlipConfig _tied_weights_keys = ["text_decoder.cls.predictions.decoder.bias"] def __init__(self, config: BlipConfig): super().__init__(config) self.vision_model = BlipVisionModel(config.vision_config) self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False) self.text_decoder = BlipTextLMHeadModel(config.text_config) self.decoder_pad_token_id = config.text_config.pad_token_id self.decoder_start_token_id = config.text_config.bos_token_id # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig) def forward( self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BlipTextVisionModelOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, BlipForQuestionAnswering >>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> # training >>> text = "How many cats are in the picture?" >>> label = "2" >>> inputs = processor(images=image, text=text, return_tensors="pt") >>> labels = processor(text=label, return_tensors="pt").input_ids >>> inputs["labels"] = labels >>> outputs = model(**inputs) >>> loss = outputs.loss >>> loss.backward() >>> # inference >>> text = "How many cats are in the picture?" >>> inputs = processor(images=image, text=text, return_tensors="pt") >>> outputs = model.generate(**inputs) >>> print(processor.decode(outputs[0], skip_special_tokens=True)) 2 ```""" if labels is None and decoder_input_ids is None: raise ValueError( "Either `decoder_input_ids` or `labels` should be passed when calling `forward` with" " `BlipForQuestionAnswering`. if you are training the model make sure that `labels` is passed, if you" " are using the model for inference make sure that `decoder_input_ids` is passed or call `generate`" ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[0] image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long) question_embeds = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, return_dict=return_dict, ) if labels is not None and decoder_input_ids is None: # labels are already shifted right, see: https://github.com/huggingface/transformers/pull/23153 decoder_input_ids = labels question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state answer_output = self.text_decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=question_embeds, encoder_attention_mask=attention_mask, labels=labels, return_dict=return_dict, reduction="mean", ) if labels is not None: decoder_loss = answer_output.loss.mean() if return_dict else answer_output[0].mean() else: decoder_loss = None if not return_dict: outputs = (decoder_loss, image_embeds, vision_outputs[0]) + vision_outputs[2:] return tuple(output for output in outputs if output is not None) return BlipTextVisionModelOutput( loss=decoder_loss, image_embeds=image_embeds, last_hidden_state=vision_outputs.last_hidden_state, hidden_states=vision_outputs.hidden_states, attentions=vision_outputs.attentions, ) @torch.no_grad() def generate( self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, attention_mask: Optional[torch.LongTensor] = None, **generate_kwargs, ) -> torch.LongTensor: r""" Overrides *generate* function to be able to use the model as a conditional generator Parameters: input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*): The sequence used as a prompt for the generation. pixel_values (*torch.FloatTensor* of shape *(batch_size, num_channels, image_height, image_width)*: Input image to be processed attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`. `1` for tokens that are NOT MASKED, `0` for MASKED tokens. **generate_kwargs: Additional arguments passed to the *generate* function of the decoder Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, BlipForQuestionAnswering >>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "How many cats are in the picture?" >>> inputs = processor(images=image, text=text, return_tensors="pt") >>> outputs = model.generate(**inputs) >>> print(processor.decode(outputs[0], skip_special_tokens=True)) 2 ``` """ vision_outputs = self.vision_model(pixel_values=pixel_values) image_embeds = vision_outputs[0] image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device) if isinstance(input_ids, list): input_ids = torch.LongTensor(input_ids) question_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, return_dict=False, ) question_embeds = question_outputs[0] question_attention_mask = torch.ones(question_embeds.size()[:-1], dtype=torch.long).to(question_embeds.device) bos_ids = torch.full( (question_embeds.size(0), 1), fill_value=self.decoder_start_token_id, device=question_embeds.device ) outputs = self.text_decoder.generate( input_ids=bos_ids, eos_token_id=self.config.text_config.sep_token_id, pad_token_id=self.config.text_config.pad_token_id, encoder_hidden_states=question_embeds, encoder_attention_mask=question_attention_mask, **generate_kwargs, ) return outputs @add_start_docstrings( """ BLIP Model with a vision and text projector, and a classification head on top. The model is used in the context of image-text retrieval. Given an image and a text, the model returns the probability of the text being relevant to the image. """, BLIP_START_DOCSTRING, ) class BlipForImageTextRetrieval(BlipPreTrainedModel): config_class = BlipConfig def __init__(self, config: BlipConfig): super().__init__(config) self.vision_model = BlipVisionModel(config.vision_config) self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False) # vision projection layer self.vision_proj = nn.Linear(config.vision_config.hidden_size, config.image_text_hidden_size) # text projection layer self.text_proj = nn.Linear(config.text_config.hidden_size, config.image_text_hidden_size) # image text matching head self.itm_head = nn.Linear(config.text_config.hidden_size, 2) self.decoder_pad_token_id = ( config.text_config.pad_token_id if not hasattr(config, "decoder_pad_token_id") else config.decoder_pad_token_id ) self.decoder_start_token_id = ( config.text_config.bos_token_id if not hasattr(config, "decoder_start_token_id") else config.decoder_start_token_id ) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig) def forward( self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, use_itm_head: Optional[bool] = True, attention_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BlipTextVisionModelOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, BlipForImageTextRetrieval >>> model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco") >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-itm-base-coco") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "an image of a cat" >>> inputs = processor(images=image, text=text, return_tensors="pt") >>> outputs = model(**inputs) ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[0] image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long) if use_itm_head: question_embeds = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=return_dict, ) question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state output = self.itm_head(question_embeds[:, 0, :]) else: question_embeds = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, return_dict=return_dict, ) question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state image_feat = normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1) text_feat = normalize(self.text_proj(question_embeds[:, 0, :]), dim=-1) output = image_feat @ text_feat.t() if not return_dict: outputs = (output, vision_outputs[0]) + vision_outputs[2:] + (question_embeds,) return tuple(output for output in outputs if output is not None) return BlipImageTextMatchingModelOutput( itm_score=output, last_hidden_state=vision_outputs.last_hidden_state, hidden_states=vision_outputs.hidden_states, attentions=vision_outputs.attentions, question_embeds=question_embeds, )
transformers/src/transformers/models/blip/modeling_blip.py/0
{ "file_path": "transformers/src/transformers/models/blip/modeling_blip.py", "repo_id": "transformers", "token_count": 25453 }
288
# Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_bridgetower": [ "BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP", "BridgeTowerConfig", "BridgeTowerTextConfig", "BridgeTowerVisionConfig", ], "processing_bridgetower": ["BridgeTowerProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_bridgetower"] = ["BridgeTowerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_bridgetower"] = [ "BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST", "BridgeTowerForContrastiveLearning", "BridgeTowerForImageAndTextRetrieval", "BridgeTowerForMaskedLM", "BridgeTowerModel", "BridgeTowerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
transformers/src/transformers/models/bridgetower/__init__.py/0
{ "file_path": "transformers/src/transformers/models/bridgetower/__init__.py", "repo_id": "transformers", "token_count": 1071 }
289
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ CLAP model configuration""" import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) CLAP_PRETRAINED_MODEL_ARCHIVE_LIST = { "laion/clap-htsat-fused": "https://huggingface.co/laion/clap-htsat-fused/resolve/main/config.json", "laion/clap-htsat-unfused": "https://huggingface.co/laion/clap-htsat-unfused/resolve/main/config.json", } class ClapTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ClapTextModel`]. It is used to instantiate a CLAP model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the CLAP [calp-hsat-fused](https://huggingface.co/laion/clap-hsat-fused) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the CLAP model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ClapTextModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"relu"`, `"relu"`, `"silu"` and `"relu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`ClapTextModel`]. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. projection_hidden_act (`str`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the projection layer. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. projection_dim (`int`, *optional*, defaults to 512) Dimension of the projection head of the `ClapTextModelWithProjection`. Examples: ```python >>> from transformers import ClapTextConfig, ClapTextModel >>> # Initializing a CLAP text configuration >>> configuration = ClapTextConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = ClapTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "clap_text_model" def __init__( self, vocab_size=50265, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=514, type_vocab_size=1, initializer_factor=1.0, layer_norm_eps=1e-12, projection_dim=512, pad_token_id=1, bos_token_id=0, eos_token_id=2, position_embedding_type="absolute", use_cache=True, projection_hidden_act="relu", **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_factor = initializer_factor self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.projection_hidden_act = projection_hidden_act self.projection_dim = projection_dim @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the text config dict if we are loading from ClapConfig if config_dict.get("model_type") == "clap": config_dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class ClapAudioConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ClapAudioModel`]. It is used to instantiate a CLAP audio encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the audio encoder of the CLAP [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: window_size (`int`, *optional*, defaults to 8): Image size of the spectrogram num_mel_bins (`int`, *optional*, defaults to 64): Number of mel features used per frames. Should correspond to the value used in the `ClapProcessor` class. spec_size (`int`, *optional*, defaults to 256): Desired input size of the spectrogram that the model supports. It can be different from the output of the `ClapFeatureExtractor`, in which case the input features will be resized. Corresponds to the `image_size` of the audio models. hidden_act (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. patch_size (`int`, *optional*, defaults to 4): Patch size for the audio spectrogram patch_stride (`list`, *optional*, defaults to `[4, 4]`): Patch stride for the audio spectrogram num_classes (`int`, *optional*, defaults to 527): Number of classes used for the head training hidden_size (`int`, *optional*, defaults to 768): Hidden size of the output of the audio encoder. Correspond to the dimension of the penultimate layer's output,which is sent to the projection MLP layer. projection_dim (`int`, *optional*, defaults to 512): Hidden size of the projection layer. depths (`list`, *optional*, defaults to `[2, 2, 6, 2]`): Depths used for the Swin Layers of the audio model num_attention_heads (`list`, *optional*, defaults to `[4, 8, 16, 32]`): Number of attention heads used for the Swin Layers of the audio model enable_fusion (`bool`, *optional*, defaults to `False`): Whether or not to enable patch fusion. This is the main contribution of the authors, and should give the best results. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the encoder. fusion_type (`[type]`, *optional*): Fusion type used for the patch fusion. patch_embed_input_channels (`int`, *optional*, defaults to 1): Number of channels used for the input spectrogram flatten_patch_embeds (`bool`, *optional*, defaults to `True`): Whether or not to flatten the patch embeddings patch_embeds_hidden_size (`int`, *optional*, defaults to 96): Hidden size of the patch embeddings. It is used as the number of output channels. enable_patch_layer_norm (`bool`, *optional*, defaults to `True`): Whether or not to enable layer normalization for the patch embeddings drop_path_rate (`float`, *optional*, defaults to 0.0): Drop path rate for the patch fusion attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. qkv_bias (`bool`, *optional*, defaults to `True`): Whether or not to add a bias to the query, key, value projections. mlp_ratio (`float`, *optional*, defaults to 4.0): Ratio of the mlp hidden dim to embedding dim. aff_block_r (`int`, *optional*, defaults to 4): downsize_ratio used in the AudioFF block num_hidden_layers (`int`, *optional*, defaults to 4): Number of hidden layers in the Transformer encoder. projection_hidden_act (`str`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the projection layer. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. layer_norm_eps (`[type]`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). Example: ```python >>> from transformers import ClapAudioConfig, ClapAudioModel >>> # Initializing a ClapAudioConfig with laion/clap-htsat-fused style configuration >>> configuration = ClapAudioConfig() >>> # Initializing a ClapAudioModel (with random weights) from the laion/clap-htsat-fused style configuration >>> model = ClapAudioModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "clap_audio_model" def __init__( self, window_size=8, num_mel_bins=64, spec_size=256, hidden_act="gelu", patch_size=4, patch_stride=[4, 4], num_classes=527, hidden_size=768, projection_dim=512, depths=[2, 2, 6, 2], num_attention_heads=[4, 8, 16, 32], enable_fusion=False, hidden_dropout_prob=0.1, fusion_type=None, patch_embed_input_channels=1, flatten_patch_embeds=True, patch_embeds_hidden_size=96, enable_patch_layer_norm=True, drop_path_rate=0.0, attention_probs_dropout_prob=0.0, qkv_bias=True, mlp_ratio=4.0, aff_block_r=4, num_hidden_layers=4, projection_hidden_act="relu", layer_norm_eps=1e-5, initializer_factor=1.0, **kwargs, ): super().__init__(**kwargs) self.window_size = window_size self.num_mel_bins = num_mel_bins self.spec_size = spec_size self.patch_size = patch_size self.patch_stride = patch_stride self.num_classes = num_classes self.hidden_size = hidden_size self.depths = depths self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.window_size = window_size self.enable_fusion = enable_fusion self.fusion_type = fusion_type self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.projection_dim = projection_dim self.flatten_patch_embeds = flatten_patch_embeds self.patch_embeds_hidden_size = patch_embeds_hidden_size self.enable_patch_layer_norm = enable_patch_layer_norm self.drop_path_rate = drop_path_rate self.attention_probs_dropout_prob = attention_probs_dropout_prob self.qkv_bias = qkv_bias self.mlp_ratio = mlp_ratio self.patch_embed_input_channels = patch_embed_input_channels self.aff_block_r = aff_block_r self.layer_norm_eps = layer_norm_eps self.initializer_factor = initializer_factor self.projection_hidden_act = projection_hidden_act @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the audio config dict if we are loading from ClapConfig if config_dict.get("model_type") == "clap": config_dict = config_dict["audio_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class ClapConfig(PretrainedConfig): r""" [`ClapConfig`] is the configuration class to store the configuration of a [`ClapModel`]. It is used to instantiate a CLAP model according to the specified arguments, defining the text model and audio model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the CLAP [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`ClapTextConfig`]. audio_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`ClapAudioConfig`]. logit_scale_init_value (`float`, *optional*, defaults to 14.29): The inital value of the *logit_scale* paramter. Default is used as per the original CLAP implementation. projection_dim (`int`, *optional*, defaults to 512): Dimentionality of text and audio projection layers. projection_hidden_act (`str`, *optional*, defaults to `"relu"`): Activation function for the projection layers. initializer_factor (`float`, *optional*, defaults to 1.0): Factor to scale the initialization of the model weights. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import ClapConfig, ClapModel >>> # Initializing a ClapConfig with laion-ai/base style configuration >>> configuration = ClapConfig() >>> # Initializing a ClapModel (with random weights) from the laion-ai/base style configuration >>> model = ClapModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a ClapConfig from a ClapTextConfig and a ClapAudioConfig >>> from transformers import ClapTextConfig, ClapAudioConfig >>> # Initializing a ClapText and ClapAudioConfig configuration >>> config_text = ClapTextConfig() >>> config_audio = ClapAudioConfig() >>> config = ClapConfig.from_text_audio_configs(config_text, config_audio) ```""" model_type = "clap" def __init__( self, text_config=None, audio_config=None, logit_scale_init_value=(1 / 0.07), projection_dim=512, projection_hidden_act="relu", initializer_factor=1.0, **kwargs, ): super().__init__(**kwargs) if text_config is None: text_config = {} logger.info("text_config is None. Initializing the ClapTextConfig with default values.") if audio_config is None: audio_config = {} logger.info("audio_config is None. initializing the ClapAudioConfig with default values.") self.text_config = ClapTextConfig(**text_config) self.audio_config = ClapAudioConfig(**audio_config) self.text_config.projection_dim = projection_dim self.audio_config.projection_dim = projection_dim self.text_config.projection_hidden_act = projection_hidden_act self.audio_config.projection_hidden_act = projection_hidden_act self.projection_dim = projection_dim self.projection_hidden_act = projection_hidden_act self.hidden_size = self.text_config.hidden_size self.logit_scale_init_value = logit_scale_init_value self.initializer_factor = initializer_factor self.num_hidden_layers = self.text_config.num_hidden_layers + len(self.audio_config.depths) @classmethod def from_text_audio_configs(cls, text_config: ClapTextConfig, audio_config: ClapAudioConfig, **kwargs): r""" Instantiate a [`ClapConfig`] (or a derived class) from clap text model configuration and clap audio model configuration. Returns: [`ClapConfig`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), audio_config=audio_config.to_dict(), **kwargs)
transformers/src/transformers/models/clap/configuration_clap.py/0
{ "file_path": "transformers/src/transformers/models/clap/configuration_clap.py", "repo_id": "transformers", "token_count": 7965 }
290
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_clipseg"] = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/clipseg/__init__.py/0
{ "file_path": "transformers/src/transformers/models/clipseg/__init__.py", "repo_id": "transformers", "token_count": 864 }
291
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _import_structure = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_deit"] = ["DeiTFeatureExtractor"] _import_structure["image_processing_deit"] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_deit"] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_deit"] = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/deit/__init__.py/0
{ "file_path": "transformers/src/transformers/models/deit/__init__.py", "repo_id": "transformers", "token_count": 1438 }
292
# coding=utf-8 # Copyright (c) Facebook, Inc. and its affiliates. # Copyright (c) HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MMBT configuration""" from ....utils import logging logger = logging.get_logger(__name__) class MMBTConfig(object): """ This is the configuration class to store the configuration of a [`MMBTModel`]. It is used to instantiate a MMBT model according to the specified arguments, defining the model architecture. Args: config ([`PreTrainedConfig`]): Config of the underlying Transformer models. Its values are copied over to use a single config. num_labels (`int`, *optional*): Size of final Linear layer for classification. modal_hidden_size (`int`, *optional*, defaults to 2048): Embedding dimension of the non-text modality encoder. """ def __init__(self, config, num_labels=None, modal_hidden_size=2048): self.__dict__ = config.__dict__ self.modal_hidden_size = modal_hidden_size if num_labels: self.num_labels = num_labels
transformers/src/transformers/models/deprecated/mmbt/configuration_mmbt.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/mmbt/configuration_mmbt.py", "repo_id": "transformers", "token_count": 531 }
293
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Dilated Neighborhood Attention Transformer model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices logger = logging.get_logger(__name__) DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class DinatConfig(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`DinatModel`]. It is used to instantiate a Dinat model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Dinat [shi-labs/dinat-mini-in1k-224](https://huggingface.co/shi-labs/dinat-mini-in1k-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: patch_size (`int`, *optional*, defaults to 4): The size (resolution) of each patch. NOTE: Only patch size of 4 is supported at the moment. num_channels (`int`, *optional*, defaults to 3): The number of input channels. embed_dim (`int`, *optional*, defaults to 64): Dimensionality of patch embedding. depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 5]`): Number of layers in each level of the encoder. num_heads (`List[int]`, *optional*, defaults to `[2, 4, 8, 16]`): Number of attention heads in each layer of the Transformer encoder. kernel_size (`int`, *optional*, defaults to 7): Neighborhood Attention kernel size. dilations (`List[List[int]]`, *optional*, defaults to `[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]]`): Dilation value of each NA layer in the Transformer encoder. mlp_ratio (`float`, *optional*, defaults to 3.0): Ratio of MLP hidden dimensionality to embedding dimensionality. qkv_bias (`bool`, *optional*, defaults to `True`): Whether or not a learnable bias should be added to the queries, keys and values. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings and encoder. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. drop_path_rate (`float`, *optional*, defaults to 0.1): Stochastic depth rate. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. layer_scale_init_value (`float`, *optional*, defaults to 0.0): The initial value for the layer scale. Disabled if <=0. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. Example: ```python >>> from transformers import DinatConfig, DinatModel >>> # Initializing a Dinat shi-labs/dinat-mini-in1k-224 style configuration >>> configuration = DinatConfig() >>> # Initializing a model (with random weights) from the shi-labs/dinat-mini-in1k-224 style configuration >>> model = DinatModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "dinat" attribute_map = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, patch_size=4, num_channels=3, embed_dim=64, depths=[3, 4, 6, 5], num_heads=[2, 4, 8, 16], kernel_size=7, dilations=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]], mlp_ratio=3.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", initializer_range=0.02, layer_norm_eps=1e-5, layer_scale_init_value=0.0, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) self.patch_size = patch_size self.num_channels = num_channels self.embed_dim = embed_dim self.depths = depths self.num_layers = len(depths) self.num_heads = num_heads self.kernel_size = kernel_size self.dilations = dilations self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1)) self.layer_scale_init_value = layer_scale_init_value self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names )
transformers/src/transformers/models/dinat/configuration_dinat.py/0
{ "file_path": "transformers/src/transformers/models/dinat/configuration_dinat.py", "repo_id": "transformers", "token_count": 2945 }
294
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Donut Swin Transformer model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP = { "naver-clova-ix/donut-base": "https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class DonutSwinConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`DonutSwinModel`]. It is used to instantiate a Donut model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Donut [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 4): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. embed_dim (`int`, *optional*, defaults to 96): Dimensionality of patch embedding. depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`): Depth of each layer in the Transformer encoder. num_heads (`list(int)`, *optional*, defaults to `[3, 6, 12, 24]`): Number of attention heads in each layer of the Transformer encoder. window_size (`int`, *optional*, defaults to 7): Size of windows. mlp_ratio (`float`, *optional*, defaults to 4.0): Ratio of MLP hidden dimensionality to embedding dimensionality. qkv_bias (`bool`, *optional*, defaults to `True`): Whether or not a learnable bias should be added to the queries, keys and values. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings and encoder. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. drop_path_rate (`float`, *optional*, defaults to 0.1): Stochastic depth rate. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. use_absolute_embeddings (`bool`, *optional*, defaults to `False`): Whether or not to add absolute position embeddings to the patch embeddings. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. Example: ```python >>> from transformers import DonutSwinConfig, DonutSwinModel >>> # Initializing a Donut naver-clova-ix/donut-base style configuration >>> configuration = DonutSwinConfig() >>> # Randomly initializing a model from the naver-clova-ix/donut-base style configuration >>> model = DonutSwinModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "donut-swin" attribute_map = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, image_size=224, patch_size=4, num_channels=3, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", use_absolute_embeddings=False, initializer_range=0.02, layer_norm_eps=1e-5, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.embed_dim = embed_dim self.depths = depths self.num_layers = len(depths) self.num_heads = num_heads self.window_size = window_size self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.use_absolute_embeddings = use_absolute_embeddings self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
transformers/src/transformers/models/donut/configuration_donut_swin.py/0
{ "file_path": "transformers/src/transformers/models/donut/configuration_donut_swin.py", "repo_id": "transformers", "token_count": 2322 }
295
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert DPT 3.1 checkpoints from the MiDaS repository. URL: https://github.com/isl-org/MiDaS""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import BeitConfig, DPTConfig, DPTForDepthEstimation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_dpt_config(model_name): hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 out_features = ["stage3", "stage6", "stage9", "stage12"] # beit-base-384 uses [2, 5, 8, 11] if "large" in model_name: hidden_size = 1024 num_hidden_layers = 24 num_attention_heads = 16 intermediate_size = 4096 out_features = ["stage6", "stage12", "stage18", "stage24"] # beit-large-512 uses [5, 11, 17, 23] if "512" in model_name: image_size = 512 elif "384" in model_name: image_size = 384 else: raise ValueError("Model not supported") backbone_config = BeitConfig( image_size=image_size, num_hidden_layers=num_hidden_layers, hidden_size=hidden_size, intermediate_size=intermediate_size, num_attention_heads=num_attention_heads, use_relative_position_bias=True, reshape_hidden_states=False, out_features=out_features, ) neck_hidden_sizes = [256, 512, 1024, 1024] if "large" in model_name else [96, 192, 384, 768] config = DPTConfig(backbone_config=backbone_config, neck_hidden_sizes=neck_hidden_sizes) return config, image_size # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config): rename_keys = [] # fmt: off # stem rename_keys.append(("pretrained.model.cls_token", "backbone.embeddings.cls_token")) rename_keys.append(("pretrained.model.patch_embed.proj.weight", "backbone.embeddings.patch_embeddings.projection.weight")) rename_keys.append(("pretrained.model.patch_embed.proj.bias", "backbone.embeddings.patch_embeddings.projection.bias")) # Transfomer encoder for i in range(config.backbone_config.num_hidden_layers): rename_keys.append((f"pretrained.model.blocks.{i}.gamma_1", f"backbone.encoder.layer.{i}.lambda_1")) rename_keys.append((f"pretrained.model.blocks.{i}.gamma_2", f"backbone.encoder.layer.{i}.lambda_2")) rename_keys.append((f"pretrained.model.blocks.{i}.norm1.weight", f"backbone.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((f"pretrained.model.blocks.{i}.norm1.bias", f"backbone.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((f"pretrained.model.blocks.{i}.norm2.weight", f"backbone.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((f"pretrained.model.blocks.{i}.norm2.bias", f"backbone.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((f"pretrained.model.blocks.{i}.mlp.fc1.weight", f"backbone.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((f"pretrained.model.blocks.{i}.mlp.fc1.bias", f"backbone.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((f"pretrained.model.blocks.{i}.mlp.fc2.weight", f"backbone.encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"pretrained.model.blocks.{i}.mlp.fc2.bias", f"backbone.encoder.layer.{i}.output.dense.bias")) rename_keys.append((f"pretrained.model.blocks.{i}.attn.proj.weight", f"backbone.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((f"pretrained.model.blocks.{i}.attn.proj.bias", f"backbone.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((f"pretrained.model.blocks.{i}.attn.relative_position_bias_table", f"backbone.encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_bias_table")) rename_keys.append((f"pretrained.model.blocks.{i}.attn.relative_position_index", f"backbone.encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_index")) # activation postprocessing (readout projections + resize blocks) for i in range(4): rename_keys.append((f"pretrained.act_postprocess{i+1}.0.project.0.weight", f"neck.reassemble_stage.readout_projects.{i}.0.weight")) rename_keys.append((f"pretrained.act_postprocess{i+1}.0.project.0.bias", f"neck.reassemble_stage.readout_projects.{i}.0.bias")) rename_keys.append((f"pretrained.act_postprocess{i+1}.3.weight", f"neck.reassemble_stage.layers.{i}.projection.weight")) rename_keys.append((f"pretrained.act_postprocess{i+1}.3.bias", f"neck.reassemble_stage.layers.{i}.projection.bias")) if i != 2: rename_keys.append((f"pretrained.act_postprocess{i+1}.4.weight", f"neck.reassemble_stage.layers.{i}.resize.weight")) rename_keys.append((f"pretrained.act_postprocess{i+1}.4.bias", f"neck.reassemble_stage.layers.{i}.resize.bias")) # refinenet (tricky here) mapping = {1:3, 2:2, 3:1, 4:0} for i in range(1, 5): j = mapping[i] rename_keys.append((f"scratch.refinenet{i}.out_conv.weight", f"neck.fusion_stage.layers.{j}.projection.weight")) rename_keys.append((f"scratch.refinenet{i}.out_conv.bias", f"neck.fusion_stage.layers.{j}.projection.bias")) rename_keys.append((f"scratch.refinenet{i}.resConfUnit1.conv1.weight", f"neck.fusion_stage.layers.{j}.residual_layer1.convolution1.weight")) rename_keys.append((f"scratch.refinenet{i}.resConfUnit1.conv1.bias", f"neck.fusion_stage.layers.{j}.residual_layer1.convolution1.bias")) rename_keys.append((f"scratch.refinenet{i}.resConfUnit1.conv2.weight", f"neck.fusion_stage.layers.{j}.residual_layer1.convolution2.weight")) rename_keys.append((f"scratch.refinenet{i}.resConfUnit1.conv2.bias", f"neck.fusion_stage.layers.{j}.residual_layer1.convolution2.bias")) rename_keys.append((f"scratch.refinenet{i}.resConfUnit2.conv1.weight", f"neck.fusion_stage.layers.{j}.residual_layer2.convolution1.weight")) rename_keys.append((f"scratch.refinenet{i}.resConfUnit2.conv1.bias", f"neck.fusion_stage.layers.{j}.residual_layer2.convolution1.bias")) rename_keys.append((f"scratch.refinenet{i}.resConfUnit2.conv2.weight", f"neck.fusion_stage.layers.{j}.residual_layer2.convolution2.weight")) rename_keys.append((f"scratch.refinenet{i}.resConfUnit2.conv2.bias", f"neck.fusion_stage.layers.{j}.residual_layer2.convolution2.bias")) # scratch convolutions for i in range(4): rename_keys.append((f"scratch.layer{i+1}_rn.weight", f"neck.convs.{i}.weight")) # head for i in range(0, 5, 2): rename_keys.append((f"scratch.output_conv.{i}.weight", f"head.head.{i}.weight")) rename_keys.append((f"scratch.output_conv.{i}.bias", f"head.head.{i}.bias")) return rename_keys def remove_ignore_keys_(state_dict): ignore_keys = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(k, None) # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config): hidden_size = config.backbone_config.hidden_size for i in range(config.backbone_config.num_hidden_layers): # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"pretrained.model.blocks.{i}.attn.qkv.weight") q_bias = state_dict.pop(f"pretrained.model.blocks.{i}.attn.q_bias") v_bias = state_dict.pop(f"pretrained.model.blocks.{i}.attn.v_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"backbone.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[:hidden_size, :] state_dict[f"backbone.encoder.layer.{i}.attention.attention.query.bias"] = q_bias state_dict[f"backbone.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ hidden_size : hidden_size * 2, : ] state_dict[f"backbone.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[-hidden_size:, :] state_dict[f"backbone.encoder.layer.{i}.attention.attention.value.bias"] = v_bias def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_dpt_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub): """ Copy/paste/tweak model's weights to our DPT structure. """ name_to_url = { "dpt-beit-large-512": "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_512.pt", "dpt-beit-large-384": "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_384.pt", "dpt-beit-base-384": "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_base_384.pt", } # define DPT configuration based on URL checkpoint_url = name_to_url[model_name] config, image_size = get_dpt_config(model_name) # load original state_dict from URL state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") # remove certain keys remove_ignore_keys_(state_dict) # rename keys rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) # read in qkv matrices read_in_q_k_v(state_dict, config) # load HuggingFace model model = DPTForDepthEstimation(config) missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) print("Missing keys:", missing_keys) print("Unexpected keys:", unexpected_keys) assert missing_keys == [] # assert unexpected_keys == ["pretrained.model.fc_norm.weight", "pretrained.model.fc_norm.bias"] model.eval() # Check outputs on an image # We set `keep_aspect_ratio=False` as our current BEiT does not support arbitrary window sizes processor = DPTImageProcessor( size={"height": image_size, "width": image_size}, keep_aspect_ratio=False, ensure_multiple_of=32 ) image = prepare_img() pixel_values = processor(image, return_tensors="pt").pixel_values print("First values of pixel values:", pixel_values[0, 0, :3, :3]) print("Mean of pixel values:", pixel_values.mean().item()) print("Shape of pixel values:", pixel_values.shape) import requests from PIL import Image from torchvision import transforms url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) transforms = transforms.Compose( [ transforms.Resize((image_size, image_size)), transforms.ToTensor(), ] ) pixel_values = transforms(image).unsqueeze(0) # forward pass with torch.no_grad(): outputs = model(pixel_values) predicted_depth = outputs.predicted_depth print("Shape of predicted depth:", predicted_depth.shape) print("First values of predicted depth:", predicted_depth[0, :3, :3]) # assert logits # TODO there's still a small difference with the original logits if model_name == "dpt-beit-large-512": # OK, checked expected_shape = torch.Size([1, 512, 512]) expected_slice = torch.tensor( [[2804.6260, 2792.5708, 2812.9263], [2772.0288, 2780.1118, 2796.2529], [2748.1094, 2766.6558, 2766.9834]] ) elif model_name == "dpt-beit-large-384": # OK, checked expected_shape = torch.Size([1, 384, 384]) expected_slice = torch.tensor( [[1783.2273, 1780.5729, 1792.6453], [1759.9817, 1765.5359, 1778.5002], [1739.1633, 1754.7903, 1757.1990]], ) elif model_name == "dpt-beit-base-384": # OK, checked expected_shape = torch.Size([1, 384, 384]) expected_slice = torch.tensor( [[2898.4482, 2891.3750, 2904.8079], [2858.6685, 2877.2615, 2894.4507], [2842.1235, 2854.1023, 2861.6328]], ) assert predicted_depth.shape == torch.Size(expected_shape) assert torch.allclose(predicted_depth[0, :3, :3], expected_slice) print("Looks ok!") if pytorch_dump_folder_path is not None: Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model and processor to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print("Pushing model and processor to hub...") model.push_to_hub(repo_id=f"nielsr/{model_name}") processor.push_to_hub(repo_id=f"nielsr/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dpt-beit-large-512", type=str, choices=["dpt-beit-large-512", "dpt-beit-large-384", "dpt-beit-base-384"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub after conversion.", ) args = parser.parse_args() convert_dpt_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/dpt/convert_dpt_beit_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/dpt/convert_dpt_beit_to_hf.py", "repo_id": "transformers", "token_count": 5894 }
296
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class EncoderDecoderConfig(PretrainedConfig): r""" [`EncoderDecoderConfig`] is the configuration class to store the configuration of a [`EncoderDecoderModel`]. It is used to instantiate an Encoder Decoder model according to the specified arguments, defining the encoder and decoder configs. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: kwargs (*optional*): Dictionary of keyword arguments. Notably: - **encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the encoder config. - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the decoder config. Examples: ```python >>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel >>> # Initializing a BERT bert-base-uncased style configuration >>> config_encoder = BertConfig() >>> config_decoder = BertConfig() >>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) >>> # Initializing a Bert2Bert model (with random weights) from the bert-base-uncased style configurations >>> model = EncoderDecoderModel(config=config) >>> # Accessing the model configuration >>> config_encoder = model.config.encoder >>> config_decoder = model.config.decoder >>> # set decoder config to causal lm >>> config_decoder.is_decoder = True >>> config_decoder.add_cross_attention = True >>> # Saving the model, including its configuration >>> model.save_pretrained("my-model") >>> # loading model and config from pretrained folder >>> encoder_decoder_config = EncoderDecoderConfig.from_pretrained("my-model") >>> model = EncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config) ```""" model_type = "encoder-decoder" is_composition = True def __init__(self, **kwargs): super().__init__(**kwargs) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" encoder_config = kwargs.pop("encoder") encoder_model_type = encoder_config.pop("model_type") decoder_config = kwargs.pop("decoder") decoder_model_type = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config) self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config) self.is_encoder_decoder = True @classmethod def from_encoder_decoder_configs( cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs ) -> PretrainedConfig: r""" Instantiate a [`EncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and decoder model configuration. Returns: [`EncoderDecoderConfig`]: An instance of a configuration object """ logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config") decoder_config.is_decoder = True decoder_config.add_cross_attention = True return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs)
transformers/src/transformers/models/encoder_decoder/configuration_encoder_decoder.py/0
{ "file_path": "transformers/src/transformers/models/encoder_decoder/configuration_encoder_decoder.py", "repo_id": "transformers", "token_count": 1491 }
297
# coding=utf-8 # Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ESM model.""" from __future__ import annotations import os from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithPastAndCrossAttentions, TFBaseModelOutputWithPoolingAndCrossAttentions, TFMaskedLMOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras, shape_list, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, stable_softmax from ...utils import logging from .configuration_esm import EsmConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D" _CONFIG_FOR_DOC = "EsmConfig" TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/esm2_t6_8M_UR50D", "facebook/esm2_t12_35M_UR50D", # This is not a complete list of all ESM models! # See all ESM models at https://huggingface.co/models?filter=esm ] def rotate_half(x): x1, x2 = tf.split(x, 2, axis=-1) return tf.concat((-x2, x1), axis=-1) def apply_rotary_pos_emb(x, cos, sin): cos = cos[:, :, : tf.shape(x)[-2], :] sin = sin[:, :, : tf.shape(x)[-2], :] return (x * cos) + (rotate_half(x) * sin) def symmetrize(x): "Make layer symmetric in final two dimensions, used for contact prediction." return x + tf.linalg.matrix_transpose(x) # Transposes last two dimensions only def average_product_correct(x): "Perform average product correct, used for contact prediction." a1 = tf.reduce_sum(x, -1, keepdims=True) a2 = tf.reduce_sum(x, -2, keepdims=True) a12 = tf.reduce_sum(x, (-1, -2), keepdims=True) avg = a1 * a2 avg = avg / a12 normalized = x - avg return normalized class TFRotaryEmbedding(keras.layers.Layer): """ Rotary position embeddings based on those in [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation matrices which depend on their relative positions. """ def __init__(self, dim: int, name=None): super().__init__(name=name) # Matt: The PyTorch version of this layer does a lot of work to cache values, but we just rely on TF compilation # and/or XLA to sort out constants like that. It actually may not seem like this layer needs to be stateful at # all when we benefit from TF compilation, but it does. The reason is that self.inv_freq is a buffer in the # original implementation, but all the shared ESM checkpoints were trained with fp16 params. This means that # the inv_freq tensor was stored as a float16, and we need to replicate those lower-precision values or our # models give different outputs from the original. self.dim = dim def build(self, input_shape): super().build(input_shape) self.inv_freq = self.add_weight( "inv_freq", shape=(self.dim // 2,), dtype=tf.float32, initializer=get_initializer(1.0), trainable=False ) self.inv_freq.assign( 1.0 / (10000 ** (tf.range(start=0, limit=self.dim, delta=2, dtype=tf.float32) / self.dim)) ) def _compute_cos_sin(self, x, seq_dimension=2): seq_len = tf.shape(x)[seq_dimension] t = tf.range(seq_len, dtype=self.inv_freq.dtype) freqs = tf.einsum("i, j -> ij", t, self.inv_freq) # Outer multiplication emb = tf.concat((freqs, freqs), axis=-1)[None, None, :, :] return tf.cos(emb), tf.sin(emb) def call(self, q: tf.Tensor, k: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]: cos_emb, sin_emb = self._compute_cos_sin(k, seq_dimension=-2) return ( apply_rotary_pos_emb(q, cos_emb, sin_emb), apply_rotary_pos_emb(k, cos_emb, sin_emb), ) class TFEsmContactPredictionHead(keras.layers.Layer): """Performs symmetrization, apc, and computes a logistic regression on the output features""" def __init__( self, in_features: int, bias=True, eos_idx: int = 2, name=None, ): super().__init__(name=name) self.eos_idx = eos_idx self.in_features = in_features self.regression = keras.layers.Dense(1, use_bias=bias, activation="sigmoid", name="regression") def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "regression", None) is not None: with tf.name_scope(self.regression.name): self.regression.build((None, self.in_features)) def call(self, tokens, attentions): # remove eos token attentions eos_mask = tf.cast(tokens != self.eos_idx, attentions.dtype) eos_mask = tf.expand_dims(eos_mask, 1) * tf.expand_dims(eos_mask, 2) attentions = attentions * eos_mask[:, None, None, :, :] attentions = attentions[..., :-1, :-1] # remove cls token attentions attentions = attentions[..., 1:, 1:] batch_size, layers, heads, seqlen, _ = shape_list(attentions) attentions = tf.reshape(attentions, (batch_size, layers * heads, seqlen, seqlen)) # features: batch x channels x tokens x tokens (symmetric) attentions = average_product_correct(symmetrize(attentions)) attentions = tf.transpose(attentions, perm=(0, 2, 3, 1)) return tf.squeeze(self.regression(attentions), 3) class TFEsmEmbeddings(keras.layers.Layer): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config, name=None): super().__init__(name=name) self.word_embeddings = keras.layers.Embedding( config.vocab_size, config.hidden_size, embeddings_initializer=get_initializer(config.initializer_range), name="word_embeddings", ) self.position_embeddings = keras.layers.Embedding( config.max_position_embeddings, config.hidden_size, embeddings_initializer=get_initializer(config.initializer_range), name="position_embeddings", ) if config.emb_layer_norm_before: self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") else: self.layer_norm = None # Matt: I think this line was copied incorrectly from BERT, disabling for now # self.dropout = Dropout(config.hidden_dropout_prob) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.position_ids = tf.range(config.max_position_embeddings)[None, :] self.padding_idx = config.pad_token_id self.token_dropout = config.token_dropout self.mask_token_id = config.mask_token_id self.config = config def call( self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = self.word_embeddings(input_ids) # Note that if we want to support ESM-1 (not 1b!) in future then we need to support an # embedding_scale factor here. embeddings = inputs_embeds # Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout # flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however, # masked tokens are treated as if they were selected for input dropout and zeroed out. # This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by # a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample). # This is analogous to the way that dropout layers scale down outputs during evaluation when not # actually dropping out values (or, equivalently, scale up their un-dropped outputs in training). if self.token_dropout: embeddings = tf.where((input_ids == self.mask_token_id)[:, :, None], 0.0, embeddings) mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all ESM model training runs src_lengths = tf.cast(tf.reduce_sum(attention_mask, axis=-1), tf.float32) masked_tokens = input_ids == self.mask_token_id mask_ratio_observed = tf.math.count_nonzero(masked_tokens, dtype=tf.float32, axis=-1) / src_lengths embeddings = embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None] if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings if self.layer_norm is not None: embeddings = self.layer_norm(embeddings) if attention_mask is not None: embeddings = embeddings * tf.cast(tf.expand_dims(attention_mask, -1), embeddings.dtype) # Matt: I think this line was copied incorrectly from BERT, disabling it for now. # embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: tf.Tensor Returns: tf.Tensor """ input_shape = shape_list(inputs_embeds)[:-1] sequence_length = input_shape[1] position_ids = tf.range( start=self.padding_idx + 1, limit=sequence_length + self.padding_idx + 1, dtype=tf.int64 ) return tf.broadcast_to(tf.expand_dims(position_ids, 0), input_shape) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "word_embeddings", None) is not None: with tf.name_scope(self.word_embeddings.name): self.word_embeddings.build(None) if getattr(self, "position_embeddings", None) is not None: with tf.name_scope(self.position_embeddings.name): self.position_embeddings.build(None) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.hidden_size]) class TFEsmSelfAttention(keras.layers.Layer): def __init__(self, config, position_embedding_type=None, name=None): super().__init__(name=name) if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) self.rotary_embeddings = None if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = keras.layers.Embedding( 2 * config.max_position_embeddings - 1, self.attention_head_size, embeddings_initializer=get_initializer(config.initializer_range), ) elif self.position_embedding_type == "rotary": self.rotary_embeddings = TFRotaryEmbedding(dim=self.attention_head_size, name="rotary_embeddings") self.is_decoder = config.is_decoder self.config = config def transpose_for_scores(self, x: tf.Tensor) -> tf.Tensor: new_x_shape = shape_list(x)[:-1] + [self.num_attention_heads, self.attention_head_size] x = tf.reshape(x, new_x_shape) return tf.transpose(x, perm=(0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, output_attentions: Optional[bool] = False, training: bool = False, ) -> Tuple[tf.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = tf.concat([past_key_value[0], key_layer], axis=2) value_layer = tf.concat([past_key_value[1], value_layer], axis=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim). # ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent, # but not when rotary embeddings get involved. Therefore, we scale the query here to match the original # ESM code and fix rotary embeddings. query_layer = query_layer * self.attention_head_size**-0.5 if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) if self.position_embedding_type == "rotary": query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = shape_list(hidden_states)[1] position_ids_l = tf.expand_dims(tf.range(seq_length, dtype=tf.int64), -1) position_ids_r = tf.expand_dims(tf.range(seq_length, dtype=tf.int64), 0) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = tf.cast(positional_embedding, query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = tf.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in EsmModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = stable_softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = attention_probs @ value_layer context_layer = tf.transpose(context_layer, perm=(0, 2, 1, 3)) new_context_layer_shape = shape_list(context_layer)[:-2] + [self.all_head_size] context_layer = tf.reshape(context_layer, new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size]) if getattr(self, "rotary_embeddings", None) is not None: with tf.name_scope(self.rotary_embeddings.name): self.rotary_embeddings.build(None) class TFEsmSelfOutput(keras.layers.Layer): def __init__(self, config, name=None): super().__init__(name=name) self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.config = config def call(self, hidden_states, input_tensor, training=False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states += input_tensor return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) class TFEsmAttention(keras.layers.Layer): def __init__(self, config, name=None): super().__init__(name=name) self.self = TFEsmSelfAttention(config, name="self") self.output_layer = TFEsmSelfOutput(config, name="output") self.pruned_heads = set() self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.config = config def prune_heads(self, heads): raise NotImplementedError def call( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, training=False, ): hidden_states_ln = self.LayerNorm(hidden_states) self_outputs = self.self( hidden_states_ln, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, training, ) attention_output = self.output_layer(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self", None) is not None: with tf.name_scope(self.self.name): self.self.build(None) if getattr(self, "output_layer", None) is not None: with tf.name_scope(self.output_layer.name): self.output_layer.build(None) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) class TFEsmIntermediate(keras.layers.Layer): def __init__(self, config: EsmConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = tf.nn.gelu(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) class TFEsmOutput(keras.layers.Layer): def __init__(self, config, name=None): super().__init__(name=name) self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.config = config def call(self, hidden_states, input_tensor, training=False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states += input_tensor return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) class TFEsmLayer(keras.layers.Layer): def __init__(self, config, name=None): super().__init__(name=name) self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = TFEsmAttention(config, name="attention") self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise RuntimeError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = TFEsmAttention(config) self.intermediate = TFEsmIntermediate(config, name="intermediate") self.output_layer = TFEsmOutput(config, name="output") self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.config = config def call( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, training=False, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, training=training, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise AttributeError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated" " with cross-attention layers by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, training=training, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layernorm_output = self.LayerNorm(attention_output) intermediate_output = self.intermediate(hidden_states=layernorm_output) layer_output = self.output_layer( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + outputs # add attentions if we output them # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "output_layer", None) is not None: with tf.name_scope(self.output_layer.name): self.output_layer.build(None) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) class TFEsmEncoder(keras.layers.Layer): def __init__(self, config, name=None): super().__init__(name=name) self.config = config self.layer = [TFEsmLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] self.emb_layer_norm_after = keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="emb_layer_norm_after" ) def call( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, training=False, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if self.emb_layer_norm_after: hidden_states = self.emb_layer_norm_after(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "emb_layer_norm_after", None) is not None: with tf.name_scope(self.emb_layer_norm_after.name): self.emb_layer_norm_after.build([None, None, self.config.hidden_size]) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Esm class TFEsmPooler(keras.layers.Layer): def __init__(self, config: EsmConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) class TFEsmPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = EsmConfig base_model_prefix = "esm" ESM_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Keras [Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular Keras model and refer to the TF/Keras documentation for all matters related to general usage and behavior. Parameters: config ([`EsmConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ ESM_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ESM Model transformer outputting raw hidden-states without any specific head on top.", ESM_START_DOCSTRING, ) class TFEsmMainLayer(keras.layers.Layer): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config, add_pooling_layer=True, name=None, **kwargs): super().__init__(name=name, **kwargs) self.config = config self.is_decoder = config.is_decoder self.embeddings = TFEsmEmbeddings(config, name="embeddings") self.encoder = TFEsmEncoder(config, name="encoder") self.pooler = TFEsmPooler(config, name="pooler") if add_pooling_layer else None self.contact_head = TFEsmContactPredictionHead( in_features=self.config.num_hidden_layers * self.config.num_attention_heads, bias=True, name="contact_head" ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) if getattr(self, "contact_head", None) is not None: with tf.name_scope(self.contact_head.name): self.contact_head.build(None) def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.word_embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): raise NotImplementedError def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: if not self.config.is_decoder: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_key_values_length = 0 past_key_values = [None] * len(self.encoder.layer) else: past_key_values_length = shape_list(past_key_values[0][0])[-2] if attention_mask is None: attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1) embedding_output = self.embeddings( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, training=training, ) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask_shape = shape_list(attention_mask) mask_seq_length = seq_length + past_key_values_length # Copied from `modeling_tf_t5.py` # Provided a padding mask of dimensions [batch_size, mask_seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] if self.is_decoder: seq_ids = tf.range(mask_seq_length) causal_mask = tf.less_equal( tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)), seq_ids[None, :, None], ) causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype) extended_attention_mask = causal_mask * attention_mask[:, None, :] attention_mask_shape = shape_list(extended_attention_mask) extended_attention_mask = tf.reshape( extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2]) ) if past_key_values[0] is not None: # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length] extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :] else: extended_attention_mask = tf.reshape( attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Copied from `modeling_tf_t5.py` with -1e9 -> -10000 if self.is_decoder and encoder_attention_mask is not None: # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype) num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask)) if num_dims_encoder_attention_mask == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if num_dims_encoder_attention_mask == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask, # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2))) encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) def predict_contacts(self, tokens, attention_mask): attns = self(tokens, attention_mask=attention_mask, return_dict=True, output_attentions=True).attentions attns = tf.stack(attns, axis=1) # Matches the original model layout # In the original model, attentions for padding tokens are completely zeroed out. # This makes no difference most of the time because the other tokens won't attend to them, # but it does for the contact prediction task, which takes attentions as input, # so we have to mimic that here. attention_mask = tf.cast(attention_mask, attns.dtype) attns *= attention_mask[:, None, None, None] attns *= attention_mask[:, None, None, :, None] return self.contact_head(tokens, attns) @add_start_docstrings( "The bare ESM Model transformer outputting raw hidden-states without any specific head on top.", ESM_START_DOCSTRING, ) class TFEsmModel(TFEsmPreTrainedModel): def __init__(self, config: EsmConfig, add_pooling_layer=True, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.esm = TFEsmMainLayer(config, add_pooling_layer=add_pooling_layer, name="esm") @unpack_inputs @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation """ outputs = self.esm( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def predict_contacts(self, tokens, attention_mask): return self.esm.predict_contacts(tokens, attention_mask) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "esm", None) is not None: with tf.name_scope(self.esm.name): self.esm.build(None) @add_start_docstrings("""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING) class TFEsmForMaskedLM(TFEsmPreTrainedModel, TFMaskedLanguageModelingLoss): _keys_to_ignore_on_load_missing = [r"position_ids"] _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm") self.lm_head = TFEsmLMHead(config, name="lm_head") if config.tie_word_embeddings: # Ensure word embeddings are built so that we actually have something to tie with tf.name_scope(os.path.join(self._name_scope(), "esm", "embeddings", "word_embeddings")): self.esm.embeddings.word_embeddings.build((None, None)) self.lm_head.decoder = self.esm.embeddings.word_embeddings.weights[0] def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings def get_lm_head(self): return self.lm_head @unpack_inputs @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: masked_lm_loss = self.hf_compute_loss(labels=labels, logits=prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFMaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def predict_contacts(self, tokens, attention_mask): return self.esm.predict_contacts(tokens, attention_mask) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "esm", None) is not None: with tf.name_scope(self.esm.name): self.esm.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build(None) class TFEsmLMHead(keras.layers.Layer): """ESM Head for masked language modeling.""" def __init__(self, config, name=None): super().__init__(name=name) self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") if config.tie_word_embeddings: self.decoder = None else: self.decoder = keras.layers.Dense( config.vocab_size, kernel_initializer=get_initializer(config.initializer_range), name="decoder", use_bias=False, ) self.config = config def build(self, input_shape=None): # Separate bias to match the PT model and allow weight cross-loading to work # Put it in the build so it gets the right name when adding it as a weight if self.built: return self.built = True self.bias = self.add_weight("bias", shape=(self.config.vocab_size,), initializer="zeros", trainable=True) if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.hidden_size]) if getattr(self, "decoder", None) is not None and not self.config.tie_word_embeddings: with tf.name_scope(self.decoder.name): self.decoder.build([None, None, self.config.hidden_size]) def get_bias(self): return {"bias": self.bias} def call(self, features): x = self.dense(features) x = tf.nn.gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias if self.config.tie_word_embeddings: x = tf.matmul(x, self.decoder, transpose_b=True) + self.bias else: x = self.decoder(x) + self.bias return x @add_start_docstrings( """ ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ESM_START_DOCSTRING, ) class TFEsmForSequenceClassification(TFEsmPreTrainedModel, TFSequenceClassificationLoss): _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm") self.classifier = TFEsmClassificationHead(config, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "esm", None) is not None: with tf.name_scope(self.esm.name): self.esm.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build(None) @add_start_docstrings( """ ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ESM_START_DOCSTRING, ) class TFEsmForTokenClassification(TFEsmPreTrainedModel, TFTokenClassificationLoss): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = keras.layers.Dense(config.num_labels, name="classifier") self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.esm( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "esm", None) is not None: with tf.name_scope(self.esm.name): self.esm.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) class TFEsmClassificationHead(keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, config, name=None): super().__init__(name=name) self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.out_proj = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), activation="linear", name="out_proj", ) self.config = config def call(self, features, training=False): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x, training=training) x = self.dense(x) x = self.dropout(x, training=training) x = self.out_proj(x) return x def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.config.hidden_size]) def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: tf.Tensor x: Returns: tf.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = tf.cast(input_ids != padding_idx, tf.int64) incremental_indices = (tf.cumsum(mask, axis=1) + past_key_values_length) * mask return incremental_indices + padding_idx
transformers/src/transformers/models/esm/modeling_tf_esm.py/0
{ "file_path": "transformers/src/transformers/models/esm/modeling_tf_esm.py", "repo_id": "transformers", "token_count": 30031 }
298
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ FastSpeech2Conformer model configuration""" from typing import Dict from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) FASTSPEECH2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "espnet/fastspeech2_conformer": "https://huggingface.co/espnet/fastspeech2_conformer/raw/main/config.json", } FASTSPEECH2_CONFORMER_HIFIGAN_PRETRAINED_CONFIG_ARCHIVE_MAP = { "espnet/fastspeech2_conformer_hifigan": "https://huggingface.co/espnet/fastspeech2_conformer_hifigan/raw/main/config.json", } FASTSPEECH2_CONFORMER_WITH_HIFIGAN_PRETRAINED_CONFIG_ARCHIVE_MAP = { "espnet/fastspeech2_conformer_with_hifigan": "https://huggingface.co/espnet/fastspeech2_conformer_with_hifigan/raw/main/config.json", } class FastSpeech2ConformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FastSpeech2ConformerModel`]. It is used to instantiate a FastSpeech2Conformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FastSpeech2Conformer [espnet/fastspeech2_conformer](https://huggingface.co/espnet/fastspeech2_conformer) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 384): The dimensionality of the hidden layers. vocab_size (`int`, *optional*, defaults to 78): The size of the vocabulary. num_mel_bins (`int`, *optional*, defaults to 80): The number of mel filters used in the filter bank. encoder_num_attention_heads (`int`, *optional*, defaults to 2): The number of attention heads in the encoder. encoder_layers (`int`, *optional*, defaults to 4): The number of layers in the encoder. encoder_linear_units (`int`, *optional*, defaults to 1536): The number of units in the linear layer of the encoder. decoder_layers (`int`, *optional*, defaults to 4): The number of layers in the decoder. decoder_num_attention_heads (`int`, *optional*, defaults to 2): The number of attention heads in the decoder. decoder_linear_units (`int`, *optional*, defaults to 1536): The number of units in the linear layer of the decoder. speech_decoder_postnet_layers (`int`, *optional*, defaults to 5): The number of layers in the post-net of the speech decoder. speech_decoder_postnet_units (`int`, *optional*, defaults to 256): The number of units in the post-net layers of the speech decoder. speech_decoder_postnet_kernel (`int`, *optional*, defaults to 5): The kernel size in the post-net of the speech decoder. positionwise_conv_kernel_size (`int`, *optional*, defaults to 3): The size of the convolution kernel used in the position-wise layer. encoder_normalize_before (`bool`, *optional*, defaults to `False`): Specifies whether to normalize before encoder layers. decoder_normalize_before (`bool`, *optional*, defaults to `False`): Specifies whether to normalize before decoder layers. encoder_concat_after (`bool`, *optional*, defaults to `False`): Specifies whether to concatenate after encoder layers. decoder_concat_after (`bool`, *optional*, defaults to `False`): Specifies whether to concatenate after decoder layers. reduction_factor (`int`, *optional*, defaults to 1): The factor by which the speech frame rate is reduced. speaking_speed (`float`, *optional*, defaults to 1.0): The speed of the speech produced. use_macaron_style_in_conformer (`bool`, *optional*, defaults to `True`): Specifies whether to use macaron style in the conformer. use_cnn_in_conformer (`bool`, *optional*, defaults to `True`): Specifies whether to use convolutional neural networks in the conformer. encoder_kernel_size (`int`, *optional*, defaults to 7): The kernel size used in the encoder. decoder_kernel_size (`int`, *optional*, defaults to 31): The kernel size used in the decoder. duration_predictor_layers (`int`, *optional*, defaults to 2): The number of layers in the duration predictor. duration_predictor_channels (`int`, *optional*, defaults to 256): The number of channels in the duration predictor. duration_predictor_kernel_size (`int`, *optional*, defaults to 3): The kernel size used in the duration predictor. energy_predictor_layers (`int`, *optional*, defaults to 2): The number of layers in the energy predictor. energy_predictor_channels (`int`, *optional*, defaults to 256): The number of channels in the energy predictor. energy_predictor_kernel_size (`int`, *optional*, defaults to 3): The kernel size used in the energy predictor. energy_predictor_dropout (`float`, *optional*, defaults to 0.5): The dropout rate in the energy predictor. energy_embed_kernel_size (`int`, *optional*, defaults to 1): The kernel size used in the energy embed layer. energy_embed_dropout (`float`, *optional*, defaults to 0.0): The dropout rate in the energy embed layer. stop_gradient_from_energy_predictor (`bool`, *optional*, defaults to `False`): Specifies whether to stop gradients from the energy predictor. pitch_predictor_layers (`int`, *optional*, defaults to 5): The number of layers in the pitch predictor. pitch_predictor_channels (`int`, *optional*, defaults to 256): The number of channels in the pitch predictor. pitch_predictor_kernel_size (`int`, *optional*, defaults to 5): The kernel size used in the pitch predictor. pitch_predictor_dropout (`float`, *optional*, defaults to 0.5): The dropout rate in the pitch predictor. pitch_embed_kernel_size (`int`, *optional*, defaults to 1): The kernel size used in the pitch embed layer. pitch_embed_dropout (`float`, *optional*, defaults to 0.0): The dropout rate in the pitch embed layer. stop_gradient_from_pitch_predictor (`bool`, *optional*, defaults to `True`): Specifies whether to stop gradients from the pitch predictor. encoder_dropout_rate (`float`, *optional*, defaults to 0.2): The dropout rate in the encoder. encoder_positional_dropout_rate (`float`, *optional*, defaults to 0.2): The positional dropout rate in the encoder. encoder_attention_dropout_rate (`float`, *optional*, defaults to 0.2): The attention dropout rate in the encoder. decoder_dropout_rate (`float`, *optional*, defaults to 0.2): The dropout rate in the decoder. decoder_positional_dropout_rate (`float`, *optional*, defaults to 0.2): The positional dropout rate in the decoder. decoder_attention_dropout_rate (`float`, *optional*, defaults to 0.2): The attention dropout rate in the decoder. duration_predictor_dropout_rate (`float`, *optional*, defaults to 0.2): The dropout rate in the duration predictor. speech_decoder_postnet_dropout (`float`, *optional*, defaults to 0.5): The dropout rate in the speech decoder postnet. max_source_positions (`int`, *optional*, defaults to 5000): if `"relative"` position embeddings are used, defines the maximum source input positions. use_masking (`bool`, *optional*, defaults to `True`): Specifies whether to use masking in the model. use_weighted_masking (`bool`, *optional*, defaults to `False`): Specifies whether to use weighted masking in the model. num_speakers (`int`, *optional*): Number of speakers. If set to > 1, assume that the speaker ids will be provided as the input and use speaker id embedding layer. num_languages (`int`, *optional*): Number of languages. If set to > 1, assume that the language ids will be provided as the input and use the languge id embedding layer. speaker_embed_dim (`int`, *optional*): Speaker embedding dimension. If set to > 0, assume that speaker_embedding will be provided as the input. is_encoder_decoder (`bool`, *optional*, defaults to `True`): Specifies whether the model is an encoder-decoder. Example: ```python >>> from transformers import FastSpeech2ConformerModel, FastSpeech2ConformerConfig >>> # Initializing a FastSpeech2Conformer style configuration >>> configuration = FastSpeech2ConformerConfig() >>> # Initializing a model from the FastSpeech2Conformer style configuration >>> model = FastSpeech2ConformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "fastspeech2_conformer" attribute_map = {"num_hidden_layers": "encoder_layers", "num_attention_heads": "encoder_num_attention_heads"} def __init__( self, hidden_size=384, vocab_size=78, num_mel_bins=80, encoder_num_attention_heads=2, encoder_layers=4, encoder_linear_units=1536, decoder_layers=4, decoder_num_attention_heads=2, decoder_linear_units=1536, speech_decoder_postnet_layers=5, speech_decoder_postnet_units=256, speech_decoder_postnet_kernel=5, positionwise_conv_kernel_size=3, encoder_normalize_before=False, decoder_normalize_before=False, encoder_concat_after=False, decoder_concat_after=False, reduction_factor=1, speaking_speed=1.0, use_macaron_style_in_conformer=True, use_cnn_in_conformer=True, encoder_kernel_size=7, decoder_kernel_size=31, duration_predictor_layers=2, duration_predictor_channels=256, duration_predictor_kernel_size=3, energy_predictor_layers=2, energy_predictor_channels=256, energy_predictor_kernel_size=3, energy_predictor_dropout=0.5, energy_embed_kernel_size=1, energy_embed_dropout=0.0, stop_gradient_from_energy_predictor=False, pitch_predictor_layers=5, pitch_predictor_channels=256, pitch_predictor_kernel_size=5, pitch_predictor_dropout=0.5, pitch_embed_kernel_size=1, pitch_embed_dropout=0.0, stop_gradient_from_pitch_predictor=True, encoder_dropout_rate=0.2, encoder_positional_dropout_rate=0.2, encoder_attention_dropout_rate=0.2, decoder_dropout_rate=0.2, decoder_positional_dropout_rate=0.2, decoder_attention_dropout_rate=0.2, duration_predictor_dropout_rate=0.2, speech_decoder_postnet_dropout=0.5, max_source_positions=5000, use_masking=True, use_weighted_masking=False, num_speakers=None, num_languages=None, speaker_embed_dim=None, is_encoder_decoder=True, **kwargs, ): if positionwise_conv_kernel_size % 2 == 0: raise ValueError( f"positionwise_conv_kernel_size must be odd, but got {positionwise_conv_kernel_size} instead." ) if encoder_kernel_size % 2 == 0: raise ValueError(f"encoder_kernel_size must be odd, but got {encoder_kernel_size} instead.") if decoder_kernel_size % 2 == 0: raise ValueError(f"decoder_kernel_size must be odd, but got {decoder_kernel_size} instead.") if duration_predictor_kernel_size % 2 == 0: raise ValueError( f"duration_predictor_kernel_size must be odd, but got {duration_predictor_kernel_size} instead." ) if energy_predictor_kernel_size % 2 == 0: raise ValueError( f"energy_predictor_kernel_size must be odd, but got {energy_predictor_kernel_size} instead." ) if energy_embed_kernel_size % 2 == 0: raise ValueError(f"energy_embed_kernel_size must be odd, but got {energy_embed_kernel_size} instead.") if pitch_predictor_kernel_size % 2 == 0: raise ValueError( f"pitch_predictor_kernel_size must be odd, but got {pitch_predictor_kernel_size} instead." ) if pitch_embed_kernel_size % 2 == 0: raise ValueError(f"pitch_embed_kernel_size must be odd, but got {pitch_embed_kernel_size} instead.") if hidden_size % encoder_num_attention_heads != 0: raise ValueError("The hidden_size must be evenly divisible by encoder_num_attention_heads.") if hidden_size % decoder_num_attention_heads != 0: raise ValueError("The hidden_size must be evenly divisible by decoder_num_attention_heads.") if use_masking and use_weighted_masking: raise ValueError("Either use_masking or use_weighted_masking can be True, but not both.") self.hidden_size = hidden_size self.vocab_size = vocab_size self.num_mel_bins = num_mel_bins self.encoder_config = { "num_attention_heads": encoder_num_attention_heads, "layers": encoder_layers, "kernel_size": encoder_kernel_size, "attention_dropout_rate": encoder_attention_dropout_rate, "dropout_rate": encoder_dropout_rate, "positional_dropout_rate": encoder_positional_dropout_rate, "linear_units": encoder_linear_units, "normalize_before": encoder_normalize_before, "concat_after": encoder_concat_after, } self.decoder_config = { "num_attention_heads": decoder_num_attention_heads, "layers": decoder_layers, "kernel_size": decoder_kernel_size, "attention_dropout_rate": decoder_attention_dropout_rate, "dropout_rate": decoder_dropout_rate, "positional_dropout_rate": decoder_positional_dropout_rate, "linear_units": decoder_linear_units, "normalize_before": decoder_normalize_before, "concat_after": decoder_concat_after, } self.encoder_num_attention_heads = encoder_num_attention_heads self.encoder_layers = encoder_layers self.duration_predictor_channels = duration_predictor_channels self.duration_predictor_kernel_size = duration_predictor_kernel_size self.duration_predictor_layers = duration_predictor_layers self.energy_embed_dropout = energy_embed_dropout self.energy_embed_kernel_size = energy_embed_kernel_size self.energy_predictor_channels = energy_predictor_channels self.energy_predictor_dropout = energy_predictor_dropout self.energy_predictor_kernel_size = energy_predictor_kernel_size self.energy_predictor_layers = energy_predictor_layers self.pitch_embed_dropout = pitch_embed_dropout self.pitch_embed_kernel_size = pitch_embed_kernel_size self.pitch_predictor_channels = pitch_predictor_channels self.pitch_predictor_dropout = pitch_predictor_dropout self.pitch_predictor_kernel_size = pitch_predictor_kernel_size self.pitch_predictor_layers = pitch_predictor_layers self.positionwise_conv_kernel_size = positionwise_conv_kernel_size self.speech_decoder_postnet_units = speech_decoder_postnet_units self.speech_decoder_postnet_dropout = speech_decoder_postnet_dropout self.speech_decoder_postnet_kernel = speech_decoder_postnet_kernel self.speech_decoder_postnet_layers = speech_decoder_postnet_layers self.reduction_factor = reduction_factor self.speaking_speed = speaking_speed self.stop_gradient_from_energy_predictor = stop_gradient_from_energy_predictor self.stop_gradient_from_pitch_predictor = stop_gradient_from_pitch_predictor self.max_source_positions = max_source_positions self.use_cnn_in_conformer = use_cnn_in_conformer self.use_macaron_style_in_conformer = use_macaron_style_in_conformer self.use_masking = use_masking self.use_weighted_masking = use_weighted_masking self.num_speakers = num_speakers self.num_languages = num_languages self.speaker_embed_dim = speaker_embed_dim self.duration_predictor_dropout_rate = duration_predictor_dropout_rate self.is_encoder_decoder = is_encoder_decoder super().__init__( is_encoder_decoder=is_encoder_decoder, **kwargs, ) class FastSpeech2ConformerHifiGanConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FastSpeech2ConformerHifiGanModel`]. It is used to instantiate a FastSpeech2Conformer HiFi-GAN vocoder model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FastSpeech2Conformer [espnet/fastspeech2_conformer_hifigan](https://huggingface.co/espnet/fastspeech2_conformer_hifigan) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: model_in_dim (`int`, *optional*, defaults to 80): The number of frequency bins in the input log-mel spectrogram. upsample_initial_channel (`int`, *optional*, defaults to 512): The number of input channels into the upsampling network. upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 2, 2]`): A tuple of integers defining the stride of each 1D convolutional layer in the upsampling network. The length of *upsample_rates* defines the number of convolutional layers and has to match the length of *upsample_kernel_sizes*. upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[16, 16, 4, 4]`): A tuple of integers defining the kernel size of each 1D convolutional layer in the upsampling network. The length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match the length of *upsample_rates*. resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`): A tuple of integers defining the kernel sizes of the 1D convolutional layers in the multi-receptive field fusion (MRF) module. resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`): A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the multi-receptive field fusion (MRF) module. initializer_range (`float`, *optional*, defaults to 0.01): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. leaky_relu_slope (`float`, *optional*, defaults to 0.1): The angle of the negative slope used by the leaky ReLU activation. normalize_before (`bool`, *optional*, defaults to `True`): Whether or not to normalize the spectrogram before vocoding using the vocoder's learned mean and variance. Example: ```python >>> from transformers import FastSpeech2ConformerHifiGan, FastSpeech2ConformerHifiGanConfig >>> # Initializing a FastSpeech2ConformerHifiGan configuration >>> configuration = FastSpeech2ConformerHifiGanConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = FastSpeech2ConformerHifiGan(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "hifigan" def __init__( self, model_in_dim=80, upsample_initial_channel=512, upsample_rates=[8, 8, 2, 2], upsample_kernel_sizes=[16, 16, 4, 4], resblock_kernel_sizes=[3, 7, 11], resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], initializer_range=0.01, leaky_relu_slope=0.1, normalize_before=True, **kwargs, ): self.model_in_dim = model_in_dim self.upsample_initial_channel = upsample_initial_channel self.upsample_rates = upsample_rates self.upsample_kernel_sizes = upsample_kernel_sizes self.resblock_kernel_sizes = resblock_kernel_sizes self.resblock_dilation_sizes = resblock_dilation_sizes self.initializer_range = initializer_range self.leaky_relu_slope = leaky_relu_slope self.normalize_before = normalize_before super().__init__(**kwargs) class FastSpeech2ConformerWithHifiGanConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`FastSpeech2ConformerWithHifiGan`]. It is used to instantiate a `FastSpeech2ConformerWithHifiGanModel` model according to the specified sub-models configurations, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FastSpeech2ConformerModel [espnet/fastspeech2_conformer](https://huggingface.co/espnet/fastspeech2_conformer) and FastSpeech2ConformerHifiGan [espnet/fastspeech2_conformer_hifigan](https://huggingface.co/espnet/fastspeech2_conformer_hifigan) architectures. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: model_config (`typing.Dict`, *optional*): Configuration of the text-to-speech model. vocoder_config (`typing.Dict`, *optional*): Configuration of the vocoder model. model_config ([`FastSpeech2ConformerConfig`], *optional*): Configuration of the text-to-speech model. vocoder_config ([`FastSpeech2ConformerHiFiGanConfig`], *optional*): Configuration of the vocoder model. Example: ```python >>> from transformers import ( ... FastSpeech2ConformerConfig, ... FastSpeech2ConformerHifiGanConfig, ... FastSpeech2ConformerWithHifiGanConfig, ... FastSpeech2ConformerWithHifiGan, ... ) >>> # Initializing FastSpeech2ConformerWithHifiGan sub-modules configurations. >>> model_config = FastSpeech2ConformerConfig() >>> vocoder_config = FastSpeech2ConformerHifiGanConfig() >>> # Initializing a FastSpeech2ConformerWithHifiGan module style configuration >>> configuration = FastSpeech2ConformerWithHifiGanConfig(model_config.to_dict(), vocoder_config.to_dict()) >>> # Initializing a model (with random weights) >>> model = FastSpeech2ConformerWithHifiGan(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "fastspeech2_conformer_with_hifigan" is_composition = True def __init__( self, model_config: Dict = None, vocoder_config: Dict = None, **kwargs, ): if model_config is None: model_config = {} logger.info("model_config is None. initializing the model with default values.") if vocoder_config is None: vocoder_config = {} logger.info("vocoder_config is None. initializing the coarse model with default values.") self.model_config = FastSpeech2ConformerConfig(**model_config) self.vocoder_config = FastSpeech2ConformerHifiGanConfig(**vocoder_config) super().__init__(**kwargs)
transformers/src/transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py/0
{ "file_path": "transformers/src/transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py", "repo_id": "transformers", "token_count": 9839 }
299