repo_name
stringlengths
6
103
path
stringlengths
5
191
copies
stringlengths
1
4
size
stringlengths
4
6
content
stringlengths
986
970k
license
stringclasses
15 values
vinayak-mehta/scikit-learn
sklearn/metrics/_plot/precision_recall_curve.py
8
13487
from sklearn.base import is_classifier from .base import _get_response from .. import average_precision_score from .. import precision_recall_curve from .._base import _check_pos_label_consistency from .._classification import check_consistent_length from ...utils import check_matplotlib_support class PrecisionRecallDisplay: """Precision Recall visualization. It is recommend to use :func:`~sklearn.metrics.PrecisionRecallDisplay.from_estimator` or :func:`~sklearn.metrics.PrecisionRecallDisplay.from_predictions` to create a :class:`~sklearn.metrics.PredictionRecallDisplay`. All parameters are stored as attributes. Read more in the :ref:`User Guide <visualizations>`. Parameters ---------- precision : ndarray Precision values. recall : ndarray Recall values. average_precision : float, default=None Average precision. If None, the average precision is not shown. estimator_name : str, default=None Name of estimator. If None, then the estimator name is not shown. pos_label : str or int, default=None The class considered as the positive class. If None, the class will not be shown in the legend. .. versionadded:: 0.24 Attributes ---------- line_ : matplotlib Artist Precision recall curve. ax_ : matplotlib Axes Axes with precision recall curve. figure_ : matplotlib Figure Figure containing the curve. See Also -------- precision_recall_curve : Compute precision-recall pairs for different probability thresholds. PrecisionRecallDisplay.from_estimator : Plot Precision Recall Curve given a binary classifier. PrecisionRecallDisplay.from_predictions : Plot Precision Recall Curve using predictions from a binary classifier. Notes ----- The average precision (cf. :func:`~sklearn.metrics.average_precision`) in scikit-learn is computed without any interpolation. To be consistent with this metric, the precision-recall curve is plotted without any interpolation as well (step-wise style). You can change this style by passing the keyword argument `drawstyle="default"` in :meth:`plot`, :meth:`from_estimator`, or :meth:`from_predictions`. However, the curve will not be strictly consistent with the reported average precision. Examples -------- >>> import matplotlib.pyplot as plt >>> from sklearn.datasets import make_classification >>> from sklearn.metrics import (precision_recall_curve, ... PrecisionRecallDisplay) >>> from sklearn.model_selection import train_test_split >>> from sklearn.svm import SVC >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, ... random_state=0) >>> clf = SVC(random_state=0) >>> clf.fit(X_train, y_train) SVC(random_state=0) >>> predictions = clf.predict(X_test) >>> precision, recall, _ = precision_recall_curve(y_test, predictions) >>> disp = PrecisionRecallDisplay(precision=precision, recall=recall) >>> disp.plot() <...> >>> plt.show() """ def __init__( self, precision, recall, *, average_precision=None, estimator_name=None, pos_label=None, ): self.estimator_name = estimator_name self.precision = precision self.recall = recall self.average_precision = average_precision self.pos_label = pos_label def plot(self, ax=None, *, name=None, **kwargs): """Plot visualization. Extra keyword arguments will be passed to matplotlib's `plot`. Parameters ---------- ax : Matplotlib Axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. name : str, default=None Name of precision recall curve for labeling. If `None`, use `estimator_name` if not `None`, otherwise no labeling is shown. **kwargs : dict Keyword arguments to be passed to matplotlib's `plot`. Returns ------- display : :class:`~sklearn.metrics.PrecisionRecallDisplay` Object that stores computed values. Notes ----- The average precision (cf. :func:`~sklearn.metrics.average_precision`) in scikit-learn is computed without any interpolation. To be consistent with this metric, the precision-recall curve is plotted without any interpolation as well (step-wise style). You can change this style by passing the keyword argument `drawstyle="default"`. However, the curve will not be strictly consistent with the reported average precision. """ check_matplotlib_support("PrecisionRecallDisplay.plot") name = self.estimator_name if name is None else name line_kwargs = {"drawstyle": "steps-post"} if self.average_precision is not None and name is not None: line_kwargs["label"] = f"{name} (AP = {self.average_precision:0.2f})" elif self.average_precision is not None: line_kwargs["label"] = f"AP = {self.average_precision:0.2f}" elif name is not None: line_kwargs["label"] = name line_kwargs.update(**kwargs) import matplotlib.pyplot as plt if ax is None: fig, ax = plt.subplots() (self.line_,) = ax.plot(self.recall, self.precision, **line_kwargs) info_pos_label = ( f" (Positive label: {self.pos_label})" if self.pos_label is not None else "" ) xlabel = "Recall" + info_pos_label ylabel = "Precision" + info_pos_label ax.set(xlabel=xlabel, ylabel=ylabel) if "label" in line_kwargs: ax.legend(loc="lower left") self.ax_ = ax self.figure_ = ax.figure return self @classmethod def from_estimator( cls, estimator, X, y, *, sample_weight=None, pos_label=None, response_method="auto", name=None, ax=None, **kwargs, ): """Plot precision-recall curve given an estimator and some data. Parameters ---------- estimator : estimator instance Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline` in which the last estimator is a classifier. X : {array-like, sparse matrix} of shape (n_samples, n_features) Input values. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. pos_label : str or int, default=None The class considered as the positive class when computing the precision and recall metrics. By default, `estimators.classes_[1]` is considered as the positive class. response_method : {'predict_proba', 'decision_function', 'auto'}, \ default='auto' Specifies whether to use :term:`predict_proba` or :term:`decision_function` as the target response. If set to 'auto', :term:`predict_proba` is tried first and if it does not exist :term:`decision_function` is tried next. name : str, default=None Name for labeling curve. If `None`, no name is used. ax : matplotlib axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. **kwargs : dict Keyword arguments to be passed to matplotlib's `plot`. Returns ------- display : :class:`~sklearn.metrics.PrecisionRecallDisplay` See Also -------- PrecisionRecallDisplay.from_predictions : Plot precision-recall curve using estimated probabilities or output of decision function. Notes ----- The average precision (cf. :func:`~sklearn.metrics.average_precision`) in scikit-learn is computed without any interpolation. To be consistent with this metric, the precision-recall curve is plotted without any interpolation as well (step-wise style). You can change this style by passing the keyword argument `drawstyle="default"`. However, the curve will not be strictly consistent with the reported average precision. Examples -------- >>> import matplotlib.pyplot as plt >>> from sklearn.datasets import make_classification >>> from sklearn.metrics import PrecisionRecallDisplay >>> from sklearn.model_selection import train_test_split >>> from sklearn.linear_model import LogisticRegression >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, random_state=0) >>> clf = LogisticRegression() >>> clf.fit(X_train, y_train) LogisticRegression() >>> PrecisionRecallDisplay.from_estimator( ... clf, X_test, y_test) <...> >>> plt.show() """ method_name = f"{cls.__name__}.from_estimator" check_matplotlib_support(method_name) if not is_classifier(estimator): raise ValueError(f"{method_name} only supports classifiers") y_pred, pos_label = _get_response( X, estimator, response_method, pos_label=pos_label, ) name = name if name is not None else estimator.__class__.__name__ return cls.from_predictions( y, y_pred, sample_weight=sample_weight, name=name, pos_label=pos_label, ax=ax, **kwargs, ) @classmethod def from_predictions( cls, y_true, y_pred, *, sample_weight=None, pos_label=None, name=None, ax=None, **kwargs, ): """Plot precision-recall curve given binary class predictions. Parameters ---------- y_true : array-like of shape (n_samples,) True binary labels. y_pred : array-like of shape (n_samples,) Estimated probabilities or output of decision function. sample_weight : array-like of shape (n_samples,), default=None Sample weights. pos_label : str or int, default=None The class considered as the positive class when computing the precision and recall metrics. name : str, default=None Name for labeling curve. If `None`, name will be set to `"Classifier"`. ax : matplotlib axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. **kwargs : dict Keyword arguments to be passed to matplotlib's `plot`. Returns ------- display : :class:`~sklearn.metrics.PrecisionRecallDisplay` See Also -------- PrecisionRecallDisplay.from_estimator : Plot precision-recall curve using an estimator. Notes ----- The average precision (cf. :func:`~sklearn.metrics.average_precision`) in scikit-learn is computed without any interpolation. To be consistent with this metric, the precision-recall curve is plotted without any interpolation as well (step-wise style). You can change this style by passing the keyword argument `drawstyle="default"`. However, the curve will not be strictly consistent with the reported average precision. Examples -------- >>> import matplotlib.pyplot as plt >>> from sklearn.datasets import make_classification >>> from sklearn.metrics import PrecisionRecallDisplay >>> from sklearn.model_selection import train_test_split >>> from sklearn.linear_model import LogisticRegression >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, random_state=0) >>> clf = LogisticRegression() >>> clf.fit(X_train, y_train) LogisticRegression() >>> y_pred = clf.predict_proba(X_test)[:, 1] >>> PrecisionRecallDisplay.from_predictions( ... y_test, y_pred) <...> >>> plt.show() """ check_matplotlib_support(f"{cls.__name__}.from_predictions") check_consistent_length(y_true, y_pred, sample_weight) pos_label = _check_pos_label_consistency(pos_label, y_true) precision, recall, _ = precision_recall_curve( y_true, y_pred, pos_label=pos_label, sample_weight=sample_weight ) average_precision = average_precision_score( y_true, y_pred, pos_label=pos_label, sample_weight=sample_weight ) name = name if name is not None else "Classifier" viz = PrecisionRecallDisplay( precision=precision, recall=recall, average_precision=average_precision, estimator_name=name, pos_label=pos_label, ) return viz.plot(ax=ax, name=name, **kwargs)
bsd-3-clause
Adai0808/scikit-learn
examples/text/mlcomp_sparse_document_classification.py
290
4498
""" ======================================================== Classification of text documents: using a MLComp dataset ======================================================== This is an example showing how the scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays. The dataset used in this example is the 20 newsgroups dataset and should be downloaded from the http://mlcomp.org (free registration required): http://mlcomp.org/datasets/379 Once downloaded unzip the archive somewhere on your filesystem. For instance in:: % mkdir -p ~/data/mlcomp % cd ~/data/mlcomp % unzip /path/to/dataset-379-20news-18828_XXXXX.zip You should get a folder ``~/data/mlcomp/379`` with a file named ``metadata`` and subfolders ``raw``, ``train`` and ``test`` holding the text documents organized by newsgroups. Then set the ``MLCOMP_DATASETS_HOME`` environment variable pointing to the root folder holding the uncompressed archive:: % export MLCOMP_DATASETS_HOME="~/data/mlcomp" Then you are ready to run this example using your favorite python shell:: % ipython examples/mlcomp_sparse_document_classification.py """ # Author: Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause from __future__ import print_function from time import time import sys import os import numpy as np import scipy.sparse as sp import pylab as pl from sklearn.datasets import load_mlcomp from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import SGDClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.naive_bayes import MultinomialNB print(__doc__) if 'MLCOMP_DATASETS_HOME' not in os.environ: print("MLCOMP_DATASETS_HOME not set; please follow the above instructions") sys.exit(0) # Load the training set print("Loading 20 newsgroups training set... ") news_train = load_mlcomp('20news-18828', 'train') print(news_train.DESCR) print("%d documents" % len(news_train.filenames)) print("%d categories" % len(news_train.target_names)) print("Extracting features from the dataset using a sparse vectorizer") t0 = time() vectorizer = TfidfVectorizer(encoding='latin1') X_train = vectorizer.fit_transform((open(f).read() for f in news_train.filenames)) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X_train.shape) assert sp.issparse(X_train) y_train = news_train.target print("Loading 20 newsgroups test set... ") news_test = load_mlcomp('20news-18828', 'test') t0 = time() print("done in %fs" % (time() - t0)) print("Predicting the labels of the test set...") print("%d documents" % len(news_test.filenames)) print("%d categories" % len(news_test.target_names)) print("Extracting features from the dataset using the same vectorizer") t0 = time() X_test = vectorizer.transform((open(f).read() for f in news_test.filenames)) y_test = news_test.target print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X_test.shape) ############################################################################### # Benchmark classifiers def benchmark(clf_class, params, name): print("parameters:", params) t0 = time() clf = clf_class(**params).fit(X_train, y_train) print("done in %fs" % (time() - t0)) if hasattr(clf, 'coef_'): print("Percentage of non zeros coef: %f" % (np.mean(clf.coef_ != 0) * 100)) print("Predicting the outcomes of the testing set") t0 = time() pred = clf.predict(X_test) print("done in %fs" % (time() - t0)) print("Classification report on test set for classifier:") print(clf) print() print(classification_report(y_test, pred, target_names=news_test.target_names)) cm = confusion_matrix(y_test, pred) print("Confusion matrix:") print(cm) # Show confusion matrix pl.matshow(cm) pl.title('Confusion matrix of the %s classifier' % name) pl.colorbar() print("Testbenching a linear classifier...") parameters = { 'loss': 'hinge', 'penalty': 'l2', 'n_iter': 50, 'alpha': 0.00001, 'fit_intercept': True, } benchmark(SGDClassifier, parameters, 'SGD') print("Testbenching a MultinomialNB classifier...") parameters = {'alpha': 0.01} benchmark(MultinomialNB, parameters, 'MultinomialNB') pl.show()
bsd-3-clause
oshadura/GVgenetic
simple-pca/fa_vs_pca.py
1
3270
print(__doc__) # Authors: Alexandre Gramfort # Denis A. Engemann # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from scipy import linalg from sklearn.decomposition import PCA, FactorAnalysis from sklearn.covariance import ShrunkCovariance, LedoitWolf from sklearn.cross_validation import cross_val_score from sklearn.grid_search import GridSearchCV ############################################################################### # Create the data n_samples, n_features, rank = 1000, 50, 10 sigma = 1. rng = np.random.RandomState(42) U, _, _ = linalg.svd(rng.randn(n_features, n_features)) X = np.dot(rng.randn(n_samples, rank), U[:, :rank].T) # Adding homoscedastic noise X_homo = X + sigma * rng.randn(n_samples, n_features) # Adding heteroscedastic noise sigmas = sigma * rng.rand(n_features) + sigma / 2. X_hetero = X + rng.randn(n_samples, n_features) * sigmas ############################################################################### # Fit the models n_components = np.arange(0, n_features, 5) # options for n_components def compute_scores(X): pca = PCA() fa = FactorAnalysis() pca_scores, fa_scores = [], [] for n in n_components: pca.n_components = n fa.n_components = n pca_scores.append(np.mean(cross_val_score(pca, X))) fa_scores.append(np.mean(cross_val_score(fa, X))) return pca_scores, fa_scores def shrunk_cov_score(X): shrinkages = np.logspace(-2, 0, 30) cv = GridSearchCV(ShrunkCovariance(), {'shrinkage': shrinkages}) return np.mean(cross_val_score(cv.fit(X).best_estimator_, X)) def lw_score(X): return np.mean(cross_val_score(LedoitWolf(), X)) for X, title in [(X_homo, 'Homoscedastic Noise'), (X_hetero, 'Heteroscedastic Noise')]: pca_scores, fa_scores = compute_scores(X) n_components_pca = n_components[np.argmax(pca_scores)] n_components_fa = n_components[np.argmax(fa_scores)] pca = PCA(n_components='mle') pca.fit(X) n_components_pca_mle = pca.n_components_ print("best n_components by PCA CV = %d" % n_components_pca) print("best n_components by FactorAnalysis CV = %d" % n_components_fa) print("best n_components by PCA MLE = %d" % n_components_pca_mle) plt.figure() plt.plot(n_components, pca_scores, 'b', label='PCA scores') plt.plot(n_components, fa_scores, 'r', label='FA scores') plt.axvline(rank, color='g', label='TRUTH: %d' % rank, linestyle='-') plt.axvline(n_components_pca, color='b', label='PCA CV: %d' % n_components_pca, linestyle='--') plt.axvline(n_components_fa, color='r', label='FactorAnalysis CV: %d' % n_components_fa, linestyle='--') plt.axvline(n_components_pca_mle, color='k', label='PCA MLE: %d' % n_components_pca_mle, linestyle='--') # compare with other covariance estimators plt.axhline(shrunk_cov_score(X), color='violet', label='Shrunk Covariance MLE', linestyle='-.') plt.axhline(lw_score(X), color='orange', label='LedoitWolf MLE' % n_components_pca_mle, linestyle='-.') plt.xlabel('nb of components') plt.ylabel('CV scores') plt.legend(loc='lower right') plt.title(title) plt.show()
gpl-2.0
sangwook236/SWL
python/test/machine_learning/average_models.py
2
2327
#!/usr/bin/env python # -*- coding: UTF-8 -*- import numpy as np import torch def save_model(model_filepath, model, logger=None): #torch.save(model.state_dict(), model_filepath) torch.save({'state_dict': model.state_dict()}, model_filepath) if logger: logger.info('Saved a model to {}.'.format(model_filepath)) def load_model(model_filepath, model, device='cpu'): loaded_data = torch.load(model_filepath, map_location=device) #model.load_state_dict(loaded_data) model.load_state_dict(loaded_data['state_dict']) print('Loaded a model from {}.'.format(model_filepath)) return model def build_model(): # TODO [implement] >> raise NotImplementedError # Model averaging: # The paper averages the last k checkpoints to create an ensembling effect. def average_models(model, models): for ps in zip(*[mdl.params() for mdl in [model] + models]): ps[0].copy_(torch.sum(*ps[1:]) / len(ps[1:])) def simple_model_averaging_example(): gpu = -1 device = torch.device(('cuda:{}'.format(gpu) if gpu >= 0 else 'cuda') if torch.cuda.is_available() else 'cpu') model_filepaths = [ './model_01.pth', './model_02.pth' ] averaged_model_filepath = './averaged_model.pth' models = list() for mdl_fpath in model_filepaths: mdl = build_model() models.append(load_model(mdl_fpath, mdl, device)) averaged_model = build_model() # Averaged model. average_models(averaged_model, models) save_model(averaged_model_filepath, averaged_model) inputs = None predictions = averaged_model(inputs) def average_predictions(models, inputs): predictions = list(mdl(inputs) for mdl in models) predictions = np.array(predictions) return np.average(predictions, axis=0) #return np.sum(predictions, axis=0) def simple_prediction_averaging_example(): gpu = -1 device = torch.device(('cuda:{}'.format(gpu) if gpu >= 0 else 'cuda') if torch.cuda.is_available() else 'cpu') model_filepaths = [ './model_01.pth', './model_02.pth' ] models = list() for mdl_fpath in model_filepaths: mdl = build_model() models.append(load_model(mdl_fpath, mdl, device)) inputs = None predictions = average_predictions(models, inputs) def main(): simple_model_averaging_example() simple_prediction_averaging_example() #-------------------------------------------------------------------- if '__main__' == __name__: main()
gpl-3.0
lisa-lab/pylearn2
pylearn2/training_algorithms/tests/test_default.py
44
1798
import numpy as np from pylearn2.datasets.dense_design_matrix import DenseDesignMatrix from pylearn2.models.rbm import RBM from pylearn2.models.s3c import S3C, E_Step, Grad_M_Step from pylearn2.training_algorithms.default import DefaultTrainingAlgorithm from pylearn2.training_algorithms.training_algorithm import NoBatchSizeError def test_multiple_monitoring_datasets(): # tests that DefaultTrainingAlgorithm can take multiple # monitoring datasets. BATCH_SIZE = 1 BATCHES = 3 dim = 4 m = 10 rng = np.random.RandomState([2014, 2, 25]) X = rng.randn(m, dim) Y = rng.randn(m, dim) train = DenseDesignMatrix(X=X) test = DenseDesignMatrix(X=Y) algorithm = DefaultTrainingAlgorithm( batch_size=BATCH_SIZE, batches_per_iter=BATCHES, monitoring_dataset={'train': train, 'test': test}) model = S3C(nvis=dim, nhid=1, irange=.01, init_bias_hid=0., init_B=1., min_B=1., max_B=1., init_alpha=1., min_alpha=1., max_alpha=1., init_mu=0., m_step=Grad_M_Step(learning_rate=0.), e_step=E_Step(h_new_coeff_schedule=[1.])) algorithm.setup(model=model, dataset=train) algorithm.train(dataset=train) def test_unspecified_batch_size(): # Test that failing to specify the batch size results in a # NoBatchSizeError m = 1 dim = 2 rng = np.random.RandomState([2014, 3, 17]) X = rng.randn(m, dim) train = DenseDesignMatrix(X=X) rbm = RBM(nvis=dim, nhid=3) trainer = DefaultTrainingAlgorithm() try: trainer.setup(rbm, train) except NoBatchSizeError: return raise AssertionError("Missed the lack of a batch size") if __name__ == '__main__': test_multiple_monitoring_datasets()
bsd-3-clause
ychfan/tensorflow
tensorflow/python/keras/_impl/keras/engine/training.py
15
94748
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras training and evaluation routines. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import numpy as np from tensorflow.python.keras._impl.keras import backend as K from tensorflow.python.keras._impl.keras import callbacks as cbks from tensorflow.python.keras._impl.keras import losses from tensorflow.python.keras._impl.keras import metrics as metrics_module from tensorflow.python.keras._impl.keras import optimizers from tensorflow.python.keras._impl.keras.engine.topology import Container from tensorflow.python.keras._impl.keras.utils.data_utils import GeneratorEnqueuer from tensorflow.python.keras._impl.keras.utils.data_utils import OrderedEnqueuer from tensorflow.python.keras._impl.keras.utils.data_utils import Sequence from tensorflow.python.keras._impl.keras.utils.generic_utils import Progbar from tensorflow.python.platform import tf_logging as logging def _standardize_input_data(data, names, shapes=None, check_batch_axis=True, exception_prefix=''): """Normalizes inputs and targets provided by users. Users may pass data as a list of arrays, dictionary of arrays, or as a single array. We normalize this to an ordered list of arrays (same order as `names`), while checking that the provided arrays have shapes that match the network's expectations. Arguments: data: User-provided input data (polymorphic). names: List of expected array names. shapes: Optional list of expected array shapes. check_batch_axis: Boolean; whether to check that the batch axis of the arrays matches the expected value found in `shapes`. exception_prefix: String prefix used for exception formatting. Returns: List of standardized input arrays (one array per model input). Raises: ValueError: in case of improperly formatted user-provided data. """ if not names: if data is not None and hasattr(data, '__len__') and len(data): raise ValueError('Error when checking model ' + exception_prefix + ': ' 'expected no data, but got:', data) return [] if data is None: return [None for _ in range(len(names))] if isinstance(data, dict): arrays = [] for name in names: if name not in data: raise ValueError('No data provided for "' + name + '". Need data for each key in: ' + str(names)) arrays.append(data[name]) elif isinstance(data, list): if len(data) != len(names): if data and hasattr(data[0], 'shape'): raise ValueError( 'Error when checking model ' + exception_prefix + ': the list of Numpy arrays ' 'that you are passing to your model ' 'is not the size the model expected. ' 'Expected to see ' + str(len(names)) + ' array(s), but instead got ' 'the following list of ' + str(len(data)) + ' arrays: ' + str(data)[:200] + '...') else: if len(names) == 1: data = [np.asarray(data)] else: raise ValueError('Error when checking model ' + exception_prefix + ': you are passing a list as ' 'input to your model, ' 'but the model expects ' 'a list of ' + str(len(names)) + ' Numpy arrays instead. ' 'The list you passed was: ' + str(data)[:200]) arrays = data else: if not hasattr(data, 'shape'): raise TypeError('Error when checking model ' + exception_prefix + ': data should be a Numpy array, ' 'or list/dict of Numpy arrays. ' 'Found: ' + str(data)[:200] + '...') if len(names) > 1: # Case: model expects multiple inputs but only received # a single Numpy array. raise ValueError('The model expects ' + str(len(names)) + ' ' + exception_prefix + ' arrays, but only received one array. ' 'Found: array with shape ' + str(data.shape)) arrays = [data] # Make arrays at least 2D. for i in range(len(names)): array = arrays[i] if len(array.shape) == 1: array = np.expand_dims(array, 1) arrays[i] = array # Check shapes compatibility. if shapes: for i in range(len(names)): if shapes[i] is None: continue array = arrays[i] if len(array.shape) != len(shapes[i]): raise ValueError( 'Error when checking ' + exception_prefix + ': expected ' + names[i] + ' to have ' + str(len(shapes[i])) + ' dimensions, but got array with shape ' + str(array.shape)) for j, (dim, ref_dim) in enumerate(zip(array.shape, shapes[i])): if not j and not check_batch_axis: # skip the first axis continue if ref_dim: if ref_dim != dim: raise ValueError('Error when checking ' + exception_prefix + ': expected ' + names[i] + ' to have shape ' + str(shapes[i]) + ' but got array with shape ' + str(array.shape)) return arrays def _standardize_sample_or_class_weights(x_weight, output_names, weight_type): """Maps `sample_weight` or `class_weight` to model outputs. Arguments: x_weight: User-provided `sample_weight` or `class_weight` argument. output_names: List of output names (strings) in the model. weight_type: A string used purely for exception printing. Returns: A list of `sample_weight` or `class_weight` where there are exactly one element per model output. Raises: ValueError: In case of invalid user-provided argument. """ if x_weight is None or len(x_weight) == 0: # pylint: disable=g-explicit-length-test return [None for _ in output_names] if len(output_names) == 1: if isinstance(x_weight, list) and len(x_weight) == 1: return x_weight if isinstance(x_weight, dict) and output_names[0] in x_weight: return [x_weight[output_names[0]]] else: return [x_weight] if isinstance(x_weight, list): if len(x_weight) != len(output_names): raise ValueError('Provided `' + weight_type + '` was a list of ' + str(len(x_weight)) + ' elements, but the model has ' + str(len(output_names)) + ' outputs. ' 'You should provide one `' + weight_type + '`' 'array per model output.') return x_weight if isinstance(x_weight, dict): x_weights = [] for name in output_names: x_weights.append(x_weight.get(name)) return x_weights else: raise TypeError('The model has multiple outputs, so `' + weight_type + '` ' 'should be either a list of a dict. ' 'Provided `' + weight_type + '` type not understood: ' + str(x_weight)) def _standardize_class_weights(class_weight, output_names): return _standardize_sample_or_class_weights(class_weight, output_names, 'class_weight') def _standardize_sample_weights(sample_weight, output_names): return _standardize_sample_or_class_weights(sample_weight, output_names, 'sample_weight') def _check_array_lengths(inputs, targets, weights=None): """Does user input validation for numpy arrays. Arguments: inputs: list of Numpy arrays of inputs. targets: list of Numpy arrays of targets. weights: list of Numpy arrays of sample weights. Raises: ValueError: in case of incorrectly formatted data. """ def set_of_lengths(x): # return a set with the variation between # different shapes, with None => 0 if x is None: return {0} else: return set([0 if y is None else y.shape[0] for y in x]) set_x = set_of_lengths(inputs) set_y = set_of_lengths(targets) set_w = set_of_lengths(weights) if len(set_x) > 1: raise ValueError('All input arrays (x) should have ' 'the same number of samples. Got array shapes: ' + str( [x.shape for x in inputs])) if len(set_y) > 1: raise ValueError('All target arrays (y) should have ' 'the same number of samples. Got array shapes: ' + str( [y.shape for y in targets])) if set_x and set_y and list(set_x)[0] != list(set_y)[0]: raise ValueError('Input arrays should have ' 'the same number of samples as target arrays. ' 'Found ' + str(list(set_x)[0]) + ' input samples ' 'and ' + str(list(set_y)[0]) + ' target samples.') if len(set_w) > 1: raise ValueError('All sample_weight arrays should have ' 'the same number of samples. Got array shapes: ' + str( [w.shape for w in weights])) if set_y and set_w and list(set_y)[0] != list(set_w)[0]: raise ValueError('Sample_weight arrays should have ' 'the same number of samples as target arrays. Got ' + str(list(set_y)[0]) + ' input samples and ' + str(list(set_w)[0]) + ' target samples.') def _check_loss_and_target_compatibility(targets, loss_fns, output_shapes): """Does validation on the compatibility of targets and loss functions. This helps prevent users from using loss functions incorrectly. Arguments: targets: list of Numpy arrays of targets. loss_fns: list of loss functions. output_shapes: list of shapes of model outputs. Raises: ValueError: if a loss function or target array is incompatible with an output. """ key_losses = { 'mean_squared_error', 'binary_crossentropy', 'categorical_crossentropy' } for y, loss, shape in zip(targets, loss_fns, output_shapes): if loss is None: continue if loss.__name__ == 'categorical_crossentropy': if y.shape[-1] == 1: raise ValueError('You are passing a target array of shape ' + str( y.shape) + ' while using as loss `categorical_crossentropy`. ' '`categorical_crossentropy` expects ' 'targets to be binary matrices (1s and 0s) ' 'of shape (samples, classes). ' 'If your targets are integer classes, ' 'you can convert them to the expected format via:\n' '```\n' 'from keras.utils.np_utils import to_categorical\n' 'y_binary = to_categorical(y_int)\n' '```\n' '\n' 'Alternatively, you can use the loss function ' '`sparse_categorical_crossentropy` instead, ' 'which does expect integer targets.') if loss.__name__ in key_losses: for target_dim, out_dim in zip(y.shape[1:], shape[1:]): if out_dim is not None and target_dim != out_dim: raise ValueError('A target array with shape ' + str(y.shape) + ' was passed for an output of shape ' + str(shape) + ' while using as loss `' + loss.__name__ + '`. ' 'This loss expects ' 'targets to have the same shape ' 'as the output.') def _collect_metrics(metrics, output_names): """Maps metric functions to model outputs. Arguments: metrics: a list or dict of metric functions. output_names: a list of the names (strings) of model outputs. Returns: A list (one entry per model output) of lists of metric functions. For instance, if the model has 2 outputs, and for the first output we want to compute "binary_accuracy" and "binary_crossentropy", and just "binary_accuracy" for the second output, the list would look like: `[[binary_accuracy, binary_crossentropy], [binary_accuracy]]` Raises: TypeError: if an incorrect type is passed for the `metrics` argument. """ if not metrics: return [[] for _ in output_names] if isinstance(metrics, list): # we then apply all metrics to all outputs. return [copy.copy(metrics) for _ in output_names] elif isinstance(metrics, dict): nested_metrics = [] for name in output_names: output_metrics = metrics.get(name, []) if not isinstance(output_metrics, list): output_metrics = [output_metrics] nested_metrics.append(output_metrics) return nested_metrics else: raise TypeError('Type of `metrics` argument not understood. ' 'Expected a list or dictionary, found: ' + str(metrics)) def _batch_shuffle(index_array, batch_size): """Shuffles an array in a batch-wise fashion. Useful for shuffling HDF5 arrays (where one cannot access arbitrary indices). Arguments: index_array: array of indices to be shuffled. batch_size: integer. Returns: The `index_array` array, shuffled in a batch-wise fashion. """ batch_count = int(len(index_array) / batch_size) # to reshape we need to be cleanly divisible by batch size # we stash extra items and reappend them after shuffling last_batch = index_array[batch_count * batch_size:] index_array = index_array[:batch_count * batch_size] index_array = index_array.reshape((batch_count, batch_size)) np.random.shuffle(index_array) index_array = index_array.flatten() return np.append(index_array, last_batch) def _make_batches(size, batch_size): """Returns a list of batch indices (tuples of indices). Arguments: size: Integer, total size of the data to slice into batches. batch_size: Integer, batch size. Returns: A list of tuples of array indices. """ num_batches = int(np.ceil(size / float(batch_size))) return [(i * batch_size, min(size, (i + 1) * batch_size)) for i in range(0, num_batches)] def _slice_arrays(arrays, start=None, stop=None): """Slice an array or list of arrays. This takes an array-like, or a list of array-likes, and outputs: - arrays[start:stop] if `arrays` is an array-like - [x[start:stop] for x in arrays] if `arrays` is a list Can also work on list/array of indices: `_slice_arrays(x, indices)` Arguments: arrays: Single array or list of arrays. start: can be an integer index (start index) or a list/array of indices stop: integer (stop index); should be None if `start` was a list. Returns: A slice of the array(s). """ if arrays is None: return [None] elif isinstance(arrays, list): if hasattr(start, '__len__'): # hdf5 datasets only support list objects as indices if hasattr(start, 'shape'): start = start.tolist() return [None if x is None else x[start] for x in arrays] else: return [None if x is None else x[start:stop] for x in arrays] else: if hasattr(start, '__len__'): if hasattr(start, 'shape'): start = start.tolist() return arrays[start] elif hasattr(start, '__getitem__'): return arrays[start:stop] else: return [None] def _weighted_masked_objective(fn): """Adds support for masking and sample-weighting to an objective function. It transforms an objective function `fn(y_true, y_pred)` into a sample-weighted, cost-masked objective function `fn(y_true, y_pred, weights, mask)`. Arguments: fn: The objective function to wrap, with signature `fn(y_true, y_pred)`. Returns: A function with signature `fn(y_true, y_pred, weights, mask)`. """ if fn is None: return None def weighted(y_true, y_pred, weights, mask=None): """Wrapper function. Arguments: y_true: `y_true` argument of `fn`. y_pred: `y_pred` argument of `fn`. weights: Weights tensor. mask: Mask tensor. Returns: Scalar tensor. """ # score_array has ndim >= 2 score_array = fn(y_true, y_pred) if mask is not None: # Cast the mask to floatX to avoid float64 upcasting in theano mask = K.cast(mask, K.floatx()) # mask should have the same shape as score_array score_array *= mask # the loss per batch should be proportional # to the number of unmasked samples. score_array /= K.mean(mask) # apply sample weighting if weights is not None: # reduce score_array to same ndim as weight array ndim = K.ndim(score_array) weight_ndim = K.ndim(weights) score_array = K.mean(score_array, axis=list(range(weight_ndim, ndim))) score_array *= weights score_array /= K.mean(K.cast(K.not_equal(weights, 0), K.floatx())) return K.mean(score_array) return weighted def _standardize_weights(y, sample_weight=None, class_weight=None, sample_weight_mode=None): """Performs sample weight validation and standardization. Everything gets normalized to a single sample-wise (or timestep-wise) weight array. Arguments: y: Numpy array of model targets to be weighted. sample_weight: User-provided `sample_weight` argument. class_weight: User-provided `class_weight` argument. sample_weight_mode: One of `None` or `"temporal"`. `"temporal"` indicated that we expect 2D weight data that will be applied to the last 2 dimensions of the targets (i.e. we are weighting timesteps, not samples). Returns: A numpy array of target weights, one entry per sample to weight. Raises: ValueError: In case of invalid user-provided arguments. """ if sample_weight_mode is not None: if sample_weight_mode != 'temporal': raise ValueError('"sample_weight_mode ' 'should be None or "temporal". ' 'Found: ' + str(sample_weight_mode)) if len(y.shape) < 3: raise ValueError('Found a sample_weight array for ' 'an input with shape ' + str(y.shape) + '. ' 'Timestep-wise sample weighting (use of ' 'sample_weight_mode="temporal") is restricted to ' 'outputs that are at least 3D, i.e. that have ' 'a time dimension.') if sample_weight is not None and len(sample_weight.shape) != 2: raise ValueError('Found a sample_weight array with shape ' + str(sample_weight.shape) + '. ' 'In order to use timestep-wise sample weighting, ' 'you should pass a 2D sample_weight array.') else: if sample_weight is not None and len(sample_weight.shape) != 1: raise ValueError('Found a sample_weight array with shape ' + str(sample_weight.shape) + '. ' 'In order to use timestep-wise sample weights, ' 'you should specify ' 'sample_weight_mode="temporal" ' 'in compile(). If you just mean to use ' 'sample-wise weights, make sure your ' 'sample_weight array is 1D.') if sample_weight is not None: if len(sample_weight.shape) > len(y.shape): raise ValueError('Found a sample_weight with shape' + str(sample_weight.shape) + '.' 'Expected sample_weight with rank ' 'less than or equal to ' + str(len(y.shape))) if y.shape[:sample_weight.ndim] != sample_weight.shape: raise ValueError('Found a sample_weight array with shape ' + str(sample_weight.shape) + ' for an input with shape ' + str(y.shape) + '. ' 'sample_weight cannot be broadcast.') return sample_weight elif isinstance(class_weight, dict): if len(y.shape) > 2: raise ValueError('`class_weight` not supported for ' '3+ dimensional targets.') if y.shape[1] > 1: y_classes = y.argmax(axis=1) elif y.shape[1] == 1: y_classes = np.reshape(y, y.shape[0]) else: y_classes = y weights = np.asarray( [class_weight[cls] for cls in y_classes if cls in class_weight]) if len(weights) != len(y_classes): # subtract the sets to pick all missing classes existing_classes = set(y_classes) existing_class_weight = set(class_weight.keys()) raise ValueError('`class_weight` must contain all classes in the data.' ' The classes %s exist in the data but not in ' '`class_weight`.' % (existing_classes - existing_class_weight)) return weights else: if sample_weight_mode is None: return np.ones((y.shape[0],), dtype=K.floatx()) else: return np.ones((y.shape[0], y.shape[1]), dtype=K.floatx()) class Model(Container): """The `Model` class adds training & evaluation routines to a `Container`. """ def compile(self, optimizer, loss, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None, **kwargs): """Configures the model for training. Arguments: optimizer: String (name of optimizer) or optimizer object. See [optimizers](/optimizers). loss: String (name of objective function) or objective function. See [losses](/losses). If the model has multiple outputs, you can use a different loss on each output by passing a dictionary or a list of losses. The loss value that will be minimized by the model will then be the sum of all individual losses. metrics: List of metrics to be evaluated by the model during training and testing. Typically you will use `metrics=['accuracy']`. To specify different metrics for different outputs of a multi-output model, you could also pass a dictionary, such as `metrics={'output_a': 'accuracy'}`. loss_weights: Optional list or dictionary specifying scalar coefficients (Python floats) to weight the loss contributions of different model outputs. The loss value that will be minimized by the model will then be the *weighted sum* of all individual losses, weighted by the `loss_weights` coefficients. If a list, it is expected to have a 1:1 mapping to the model's outputs. If a tensor, it is expected to map output names (strings) to scalar coefficients. sample_weight_mode: If you need to do timestep-wise sample weighting (2D weights), set this to `"temporal"`. `None` defaults to sample-wise weights (1D). If the model has multiple outputs, you can use a different `sample_weight_mode` on each output by passing a dictionary or a list of modes. weighted_metrics: List of metrics to be evaluated and weighted by sample_weight or class_weight during training and testing. target_tensors: By default, Keras will create placeholders for the model's target, which will be fed with the target data during training. If instead you would like to use your own target tensors (in turn, Keras will not expect external Numpy data for these targets at training time), you can specify them via the `target_tensors` argument. It can be a single tensor (for a single-output model), a list of tensors, or a dict mapping output names to target tensors. **kwargs: When using the Theano/CNTK backends, these arguments are passed into K.function. When using the TensorFlow backend, these arguments are passed into `tf.Session.run`. Raises: ValueError: In case of invalid arguments for `optimizer`, `loss`, `metrics` or `sample_weight_mode`. """ loss = loss or {} self.optimizer = optimizers.get(optimizer) self.sample_weight_mode = sample_weight_mode self.loss = loss self.loss_weights = loss_weights # Prepare loss functions. if isinstance(loss, dict): for name in loss: if name not in self.output_names: raise ValueError('Unknown entry in loss ' 'dictionary: "' + name + '". ' 'Only expected the following keys: ' + str(self.output_names)) loss_functions = [] for name in self.output_names: if name not in loss: logging.warning( 'Output "' + name + '" missing from loss dictionary. ' 'We assume this was done on purpose, ' 'and we will not be expecting ' 'any data to be passed to "' + name + '" during training.') loss_functions.append(losses.get(loss.get(name))) elif isinstance(loss, list): if len(loss) != len(self.outputs): raise ValueError('When passing a list as loss, ' 'it should have one entry per model outputs. ' 'The model has ' + str(len(self.outputs)) + ' outputs, but you passed loss=' + str(loss)) loss_functions = [losses.get(l) for l in loss] else: loss_function = losses.get(loss) loss_functions = [loss_function for _ in range(len(self.outputs))] self.loss_functions = loss_functions weighted_losses = [_weighted_masked_objective(fn) for fn in loss_functions] skip_target_indices = [] skip_target_weighing_indices = [] self._feed_outputs = [] self._feed_output_names = [] self._feed_output_shapes = [] self._feed_loss_fns = [] for i in range(len(weighted_losses)): if weighted_losses[i] is None: skip_target_indices.append(i) skip_target_weighing_indices.append(i) # Prepare output masks. masks = self.compute_mask(self.inputs, mask=None) if masks is None: masks = [None for _ in self.outputs] if not isinstance(masks, list): masks = [masks] # Prepare loss weights. if loss_weights is None: loss_weights_list = [1. for _ in range(len(self.outputs))] elif isinstance(loss_weights, dict): for name in loss_weights: if name not in self.output_names: raise ValueError('Unknown entry in loss_weights ' 'dictionary: "' + name + '". ' 'Only expected the following keys: ' + str(self.output_names)) loss_weights_list = [] for name in self.output_names: loss_weights_list.append(loss_weights.get(name, 1.)) elif isinstance(loss_weights, list): if len(loss_weights) != len(self.outputs): raise ValueError('When passing a list as loss_weights, ' 'it should have one entry per model outputs. ' 'The model has ' + str(len(self.outputs)) + ' outputs, but you passed loss_weights=' + str(loss_weights)) loss_weights_list = loss_weights else: raise TypeError('Could not interpret loss_weights argument: ' + str(loss_weights) + ' - expected a list of dicts.') # Prepare targets of model. self.targets = [] self._feed_targets = [] if target_tensors is not None: if isinstance(target_tensors, list): if len(target_tensors) != len(self.outputs): raise ValueError('When passing a list as `target_tensors`, ' 'it should have one entry per model outputs. ' 'The model has ' + str(len(self.outputs)) + ' outputs, but you passed target_tensors=' + str(target_tensors)) elif isinstance(target_tensors, dict): for name in target_tensors: if name not in self.output_names: raise ValueError('Unknown entry in `target_tensors` ' 'dictionary: "' + name + '". ' 'Only expected the following keys: ' + str(self.output_names)) target_tensors_ = [] for name in self.output_names: target_tensors_.append(target_tensors.get(name, None)) target_tensors = target_tensors_ else: raise TypeError('Expected `target_tensors` to be ' 'a list or dict, but got:', target_tensors) for i in range(len(self.outputs)): if i in skip_target_indices: self.targets.append(None) else: shape = self.internal_output_shapes[i] name = self.output_names[i] if target_tensors is not None: target = target_tensors[i] else: target = None if target is None or K.is_placeholder(target): if target is None: target = K.placeholder( ndim=len(shape), name=name + '_target', sparse=K.is_sparse(self.outputs[i]), dtype=K.dtype(self.outputs[i])) self._feed_targets.append(target) self._feed_outputs.append(self.outputs[i]) self._feed_output_names.append(name) self._feed_output_shapes.append(shape) self._feed_loss_fns.append(self.loss_functions[i]) else: skip_target_weighing_indices.append(i) self.targets.append(target) # Prepare sample weights. sample_weights = [] sample_weight_modes = [] if isinstance(sample_weight_mode, dict): for name in sample_weight_mode: if name not in self.output_names: raise ValueError('Unknown entry in ' 'sample_weight_mode dictionary: "' + name + '". ' 'Only expected the following keys: ' + str(self.output_names)) for i, name in enumerate(self.output_names): if i in skip_target_weighing_indices: weight = None sample_weight_modes.append(None) else: if name not in sample_weight_mode: raise ValueError('Output "' + name + '" missing from sample_weight_modes ' 'dictionary') if sample_weight_mode.get(name) == 'temporal': weight = K.placeholder(ndim=2, name=name + '_sample_weights') sample_weight_modes.append('temporal') else: weight = K.placeholder(ndim=1, name=name + '_sample_weights') sample_weight_modes.append(None) sample_weights.append(weight) elif isinstance(sample_weight_mode, list): if len(sample_weight_mode) != len(self.outputs): raise ValueError('When passing a list as sample_weight_mode, ' 'it should have one entry per model outputs. ' 'The model has ' + str(len(self.outputs)) + ' outputs, but you passed ' 'sample_weight_mode=' + str(sample_weight_mode)) for i in range(len(self.output_names)): if i in skip_target_weighing_indices: weight = None sample_weight_modes.append(None) else: mode = sample_weight_mode[i] name = self.output_names[i] if mode == 'temporal': weight = K.placeholder(ndim=2, name=name + '_sample_weights') sample_weight_modes.append('temporal') else: weight = K.placeholder(ndim=1, name=name + '_sample_weights') sample_weight_modes.append(None) sample_weights.append(weight) else: for i, name in enumerate(self.output_names): if i in skip_target_weighing_indices: sample_weight_modes.append(None) sample_weights.append(None) else: if sample_weight_mode == 'temporal': sample_weights.append( K.placeholder(ndim=2, name=name + '_sample_weights')) sample_weight_modes.append('temporal') else: sample_weights.append( K.placeholder(ndim=1, name=name + '_sample_weights')) sample_weight_modes.append(None) self.sample_weight_modes = sample_weight_modes self._feed_sample_weight_modes = [] for i in range(len(self.outputs)): if i not in skip_target_weighing_indices: self._feed_sample_weight_modes.append(self.sample_weight_modes[i]) # Prepare metrics. self.metrics = metrics self.weighted_metrics = weighted_metrics self.metrics_names = ['loss'] self.metrics_tensors = [] # Compute total loss. total_loss = None with K.name_scope('loss'): for i in range(len(self.outputs)): if i in skip_target_indices: continue y_true = self.targets[i] y_pred = self.outputs[i] weighted_loss = weighted_losses[i] sample_weight = sample_weights[i] mask = masks[i] loss_weight = loss_weights_list[i] with K.name_scope(self.output_names[i] + '_loss'): output_loss = weighted_loss(y_true, y_pred, sample_weight, mask) if len(self.outputs) > 1: self.metrics_tensors.append(output_loss) self.metrics_names.append(self.output_names[i] + '_loss') if total_loss is None: total_loss = loss_weight * output_loss else: total_loss += loss_weight * output_loss if total_loss is None: if not self.losses: raise ValueError('The model cannot be compiled ' 'because it has no loss to optimize.') else: total_loss = 0. # Add regularization penalties # and other layer-specific losses. for loss_tensor in self.losses: total_loss += loss_tensor # List of same size as output_names. # contains tuples (metrics for output, names of metrics). nested_metrics = _collect_metrics(metrics, self.output_names) nested_weighted_metrics = _collect_metrics(weighted_metrics, self.output_names) def append_metric(layer_index, metric_name, metric_tensor): """Helper function used in loop below.""" if len(self.output_names) > 1: metric_name = self.output_names[layer_index] + '_' + metric_name self.metrics_names.append(metric_name) self.metrics_tensors.append(metric_tensor) with K.name_scope('metrics'): for i in range(len(self.outputs)): if i in skip_target_indices: continue y_true = self.targets[i] y_pred = self.outputs[i] weights = sample_weights[i] output_metrics = nested_metrics[i] output_weighted_metrics = nested_weighted_metrics[i] def handle_metrics(metrics, weights=None): metric_name_prefix = 'weighted_' if weights is not None else '' for metric in metrics: if metric == 'accuracy' or metric == 'acc': # custom handling of accuracy # (because of class mode duality) output_shape = self.internal_output_shapes[i] if (output_shape[-1] == 1 or self.loss_functions[i] == losses.binary_crossentropy): # case: binary accuracy acc_fn = metrics_module.binary_accuracy elif self.loss_functions[ i] == losses.sparse_categorical_crossentropy: # case: categorical accuracy with sparse targets acc_fn = metrics_module.sparse_categorical_accuracy else: acc_fn = metrics_module.categorical_accuracy weighted_metric_fn = _weighted_masked_objective(acc_fn) metric_name = metric_name_prefix + 'acc' else: metric_fn = metrics_module.get(metric) weighted_metric_fn = _weighted_masked_objective(metric_fn) metric_name = metric_name_prefix + metric_fn.__name__ with K.name_scope(metric_name): metric_result = weighted_metric_fn( y_true, y_pred, weights=weights, mask=masks[i]) append_metric(i, metric_name, metric_result) handle_metrics(output_metrics) handle_metrics(output_weighted_metrics, weights=weights) # Prepare gradient updates and state updates. self.total_loss = total_loss self.sample_weights = sample_weights self._feed_sample_weights = [] for i in range(len(self.sample_weights)): if i not in skip_target_weighing_indices: self._feed_sample_weights.append(sample_weights[i]) # Functions for train, test and predict will # be compiled lazily when required. # This saves time when the user is not using all functions. self._function_kwargs = kwargs self.train_function = None self.test_function = None self.predict_function = None # Collected trainable weights, sorted in topological order. trainable_weights = self.trainable_weights self._collected_trainable_weights = trainable_weights def _make_train_function(self): if not hasattr(self, 'train_function'): raise RuntimeError('You must compile your model before using it.') if self.train_function is None: inputs = (self._feed_inputs + self._feed_targets + self._feed_sample_weights) if self.uses_learning_phase and not isinstance(K.learning_phase(), int): inputs += [K.learning_phase()] with K.name_scope('training'): with K.name_scope(self.optimizer.__class__.__name__): training_updates = self.optimizer.get_updates( params=self._collected_trainable_weights, loss=self.total_loss) updates = self.updates + training_updates # Gets loss and metrics. Updates weights at each call. self.train_function = K.function( inputs, [self.total_loss] + self.metrics_tensors, updates=updates, name='train_function', **self._function_kwargs) def _make_test_function(self): if not hasattr(self, 'test_function'): raise RuntimeError('You must compile your model before using it.') if self.test_function is None: inputs = (self._feed_inputs + self._feed_targets + self._feed_sample_weights) if self.uses_learning_phase and not isinstance(K.learning_phase(), int): inputs += [K.learning_phase()] # Return loss and metrics, no gradient updates. # Does update the network states. self.test_function = K.function( inputs, [self.total_loss] + self.metrics_tensors, updates=self.state_updates, name='test_function', **self._function_kwargs) def _make_predict_function(self): if not hasattr(self, 'predict_function'): self.predict_function = None if self.predict_function is None: if self.uses_learning_phase and not isinstance(K.learning_phase(), int): inputs = self._feed_inputs + [K.learning_phase()] else: inputs = self._feed_inputs # Gets network outputs. Does not update weights. # Does update the network states. kwargs = getattr(self, '_function_kwargs', {}) self.predict_function = K.function( inputs, self.outputs, updates=self.state_updates, name='predict_function', **kwargs) def _check_num_samples(self, ins, batch_size=None, steps=None, steps_name='steps'): """Determine the number of samples provided for training and evaluation. The number of samples is not defined when running with `steps`, in which case the number of samples is set to `None`. Arguments: ins: List of tensors to be fed to the Keras function. batch_size: Integer batch size or `None` if not defined. steps: Total number of steps (batches of samples) before declaring `_predict_loop` finished. Ignored with the default value of `None`. steps_name: The public API's parameter name for `steps`. Raises: ValueError: when `steps` is `None` and the attribute `ins.shape` does not exist. Also raises ValueError when `steps` is not `None` and `batch_size` is not `None` because they are mutually exclusive. Returns: When steps is `None`, returns the number of samples to be processed based on the size of the first dimension of the first input numpy array. When steps is not `None` and `batch_size` is `None`, returns `None`. """ if steps is not None: num_samples = None if batch_size is not None: raise ValueError('If ' + steps_name + ' is set, the `batch_size` must be None.') elif ins and hasattr(ins[0], 'shape'): num_samples = ins[0].shape[0] else: raise ValueError('Either the input data should have ' 'a defined shape, or ' + steps_name + ' should be specified.') return num_samples def _fit_loop(self, f, ins, out_labels=None, batch_size=None, epochs=100, verbose=1, callbacks=None, val_f=None, val_ins=None, shuffle=True, callback_metrics=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None): """Abstract fit function for `f(ins)`. Assume that f returns a list, labeled by out_labels. Arguments: f: Keras function returning a list of tensors ins: List of tensors to be fed to `f` out_labels: List of strings, display names of the outputs of `f` batch_size: Integer batch size or None if unknown. epochs: Number of times to iterate over the data verbose: Verbosity mode, 0, 1 or 2 callbacks: List of callbacks to be called during training val_f: Keras function to call for validation val_ins: List of tensors to be fed to `val_f` shuffle: Whether to shuffle the data at the beginning of each epoch callback_metrics: List of strings, the display names of the metrics passed to the callbacks. They should be the concatenation of list the display names of the outputs of `f` and the list of display names of the outputs of `f_val`. initial_epoch: Epoch at which to start training (useful for resuming a previous training run) steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. Ignored with the default value of `None`. validation_steps: Number of steps to run validation for (only if doing validation from data tensors). Ignored with default value of `None`. Returns: `History` object. Raises: ValueError: In case of invalid argument values. """ do_validation = False if val_f and val_ins: do_validation = True if (verbose and ins and hasattr(ins[0], 'shape') and hasattr(val_ins[0], 'shape')): print('Train on %d samples, validate on %d samples' % (ins[0].shape[0], val_ins[0].shape[0])) if validation_steps: if steps_per_epoch is None: raise ValueError('Can only use `validation_steps` when doing step-wise ' 'training, i.e. `steps_per_epoch` must be set.') do_validation = True num_train_samples = self._check_num_samples( ins, batch_size, steps_per_epoch, 'steps_per_epoch') if num_train_samples is not None: index_array = np.arange(num_train_samples) self.history = cbks.History() callbacks = [cbks.BaseLogger()] + (callbacks or []) + [self.history] if verbose: if steps_per_epoch is not None: count_mode = 'steps' else: count_mode = 'samples' callbacks += [cbks.ProgbarLogger(count_mode)] callbacks = cbks.CallbackList(callbacks) out_labels = out_labels or [] # it's possible to callback a different model than self # (used by Sequential models) if hasattr(self, 'callback_model') and self.callback_model: callback_model = self.callback_model else: callback_model = self callbacks.set_model(callback_model) callbacks.set_params({ 'batch_size': batch_size, 'epochs': epochs, 'steps': steps_per_epoch, 'samples': num_train_samples, 'verbose': verbose, 'do_validation': do_validation, 'metrics': callback_metrics or [], }) callbacks.on_train_begin() callback_model.stop_training = False for cbk in callbacks: cbk.validation_data = val_ins for epoch in range(initial_epoch, epochs): callbacks.on_epoch_begin(epoch) epoch_logs = {} if steps_per_epoch is not None: for step_index in range(steps_per_epoch): batch_logs = {} batch_logs['batch'] = step_index batch_logs['size'] = 1 callbacks.on_batch_begin(step_index, batch_logs) outs = f(ins) if not isinstance(outs, list): outs = [outs] for l, o in zip(out_labels, outs): batch_logs[l] = o callbacks.on_batch_end(step_index, batch_logs) if callback_model.stop_training: break if do_validation: val_outs = self._test_loop( val_f, val_ins, batch_size=batch_size, steps=validation_steps, verbose=0) if not isinstance(val_outs, list): val_outs = [val_outs] # Same labels assumed. for l, o in zip(out_labels, val_outs): epoch_logs['val_' + l] = o else: if shuffle == 'batch': index_array = _batch_shuffle(index_array, batch_size) elif shuffle: np.random.shuffle(index_array) batches = _make_batches(num_train_samples, batch_size) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] try: if isinstance(ins[-1], float): # Do not slice the training phase flag. ins_batch = _slice_arrays(ins[:-1], batch_ids) + [ins[-1]] else: ins_batch = _slice_arrays(ins, batch_ids) except TypeError: raise TypeError('TypeError while preparing batch. ' 'If using HDF5 input data, ' 'pass shuffle="batch".') batch_logs = {} batch_logs['batch'] = batch_index batch_logs['size'] = len(batch_ids) callbacks.on_batch_begin(batch_index, batch_logs) outs = f(ins_batch) if not isinstance(outs, list): outs = [outs] for l, o in zip(out_labels, outs): batch_logs[l] = o callbacks.on_batch_end(batch_index, batch_logs) if callback_model.stop_training: break if batch_index == len(batches) - 1: # Last batch. if do_validation: val_outs = self._test_loop( val_f, val_ins, batch_size=batch_size, verbose=0) if not isinstance(val_outs, list): val_outs = [val_outs] # Same labels assumed. for l, o in zip(out_labels, val_outs): epoch_logs['val_' + l] = o callbacks.on_epoch_end(epoch, epoch_logs) if callback_model.stop_training: break callbacks.on_train_end() return self.history def _predict_loop(self, f, ins, batch_size=32, verbose=0, steps=None): """Abstract method to loop over some data in batches. Arguments: f: Keras function returning a list of tensors. ins: list of tensors to be fed to `f`. batch_size: integer batch size. verbose: verbosity mode. steps: Total number of steps (batches of samples) before declaring `_predict_loop` finished. Ignored with the default value of `None`. Returns: Array of predictions (if the model has a single output) or list of arrays of predictions (if the model has multiple outputs). """ num_samples = self._check_num_samples(ins, batch_size, steps, 'steps') if verbose == 1: if steps is not None: progbar = Progbar(target=steps) else: progbar = Progbar(target=num_samples) if steps is not None: # Step-based predictions. # Since we do not know how many samples # we will see, we cannot pre-allocate # the returned Numpy arrays. # Instead, we store one array per batch seen # and concatenate them upon returning. unconcatenated_outs = [] for step in range(steps): batch_outs = f(ins) if not isinstance(batch_outs, list): batch_outs = [batch_outs] if step == 0: for batch_out in batch_outs: unconcatenated_outs.append([]) for i, batch_out in enumerate(batch_outs): unconcatenated_outs[i].append(batch_out) if verbose == 1: progbar.update(step) if len(unconcatenated_outs) == 1: return np.concatenate(unconcatenated_outs[0], axis=0) return [ np.concatenate(unconcatenated_outs[i], axis=0) for i in range(len(unconcatenated_outs)) ] else: # Sample-based predictions. outs = [] batches = _make_batches(num_samples, batch_size) index_array = np.arange(num_samples) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] if ins and isinstance(ins[-1], float): # Do not slice the training phase flag. ins_batch = _slice_arrays(ins[:-1], batch_ids) + [ins[-1]] else: ins_batch = _slice_arrays(ins, batch_ids) batch_outs = f(ins_batch) if not isinstance(batch_outs, list): batch_outs = [batch_outs] if batch_index == 0: # Pre-allocate the results arrays. for batch_out in batch_outs: shape = (num_samples,) + batch_out.shape[1:] outs.append(np.zeros(shape, dtype=batch_out.dtype)) for i, batch_out in enumerate(batch_outs): outs[i][batch_start:batch_end] = batch_out if verbose == 1: progbar.update(batch_end) if len(outs) == 1: return outs[0] return outs def _test_loop(self, f, ins, batch_size=None, verbose=0, steps=None): """Abstract method to loop over some data in batches. Arguments: f: Keras function returning a list of tensors. ins: list of tensors to be fed to `f`. batch_size: integer batch size or `None`. verbose: verbosity mode. steps: Total number of steps (batches of samples) before declaring predictions finished. Ignored with the default value of `None`. Returns: Scalar loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. """ num_samples = self._check_num_samples(ins, batch_size, steps, 'steps') outs = [] if steps is not None: if verbose == 1: progbar = Progbar(target=steps) for step in range(steps): batch_outs = f(ins) if isinstance(batch_outs, list): if step == 0: for _ in enumerate(batch_outs): outs.append(0.) for i, batch_out in enumerate(batch_outs): outs[i] += batch_out else: if step == 0: outs.append(0.) outs[0] += batch_outs if verbose == 1: progbar.update(step) for i in range(len(outs)): outs[i] /= steps else: if verbose == 1: progbar = Progbar(target=num_samples) batches = _make_batches(num_samples, batch_size) index_array = np.arange(num_samples) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] if isinstance(ins[-1], float): # Do not slice the training phase flag. ins_batch = _slice_arrays(ins[:-1], batch_ids) + [ins[-1]] else: ins_batch = _slice_arrays(ins, batch_ids) batch_outs = f(ins_batch) if isinstance(batch_outs, list): if batch_index == 0: for batch_out in enumerate(batch_outs): outs.append(0.) for i, batch_out in enumerate(batch_outs): outs[i] += batch_out * len(batch_ids) else: if batch_index == 0: outs.append(0.) outs[0] += batch_outs * len(batch_ids) if verbose == 1: progbar.update(batch_end) for i in range(len(outs)): outs[i] /= num_samples if len(outs) == 1: return outs[0] return outs def _standardize_user_data(self, x, y, sample_weight=None, class_weight=None, check_batch_axis=True, batch_size=None): if not hasattr(self, 'optimizer'): raise RuntimeError('You must compile a model before ' 'training/testing. ' 'Use `model.compile(optimizer, loss)`.') output_shapes = [] for output_shape, loss_fn in zip(self._feed_output_shapes, self._feed_loss_fns): if loss_fn.__name__ == 'sparse_categorical_crossentropy': output_shapes.append(output_shape[:-1] + (1,)) elif getattr(losses, loss_fn.__name__, None) is None: output_shapes.append(None) else: output_shapes.append(output_shape) x = _standardize_input_data( x, self._feed_input_names, self._feed_input_shapes, check_batch_axis=False, exception_prefix='input') y = _standardize_input_data( y, self._feed_output_names, output_shapes, check_batch_axis=False, exception_prefix='target') sample_weights = _standardize_sample_weights(sample_weight, self._feed_output_names) class_weights = _standardize_class_weights(class_weight, self._feed_output_names) sample_weights = [ _standardize_weights(ref, sw, cw, mode) for (ref, sw, cw, mode) in zip(y, sample_weights, class_weights, self._feed_sample_weight_modes) ] _check_array_lengths(x, y, sample_weights) _check_loss_and_target_compatibility(y, self._feed_loss_fns, self._feed_output_shapes) if self.stateful and batch_size: if x[0].shape[0] % batch_size != 0: raise ValueError('In a stateful network, ' 'you should only pass inputs with ' 'a number of samples that can be ' 'divided by the batch size. Found: ' + str(x[0].shape[0]) + ' samples') return x, y, sample_weights def _get_deduped_metrics_names(self): out_labels = self.metrics_names # Rename duplicated metrics name # (can happen with an output layer shared among multiple dataflows). deduped_out_labels = [] for i, label in enumerate(out_labels): new_label = label if out_labels.count(label) > 1: dup_idx = out_labels[:i].count(label) new_label += '_' + str(dup_idx + 1) deduped_out_labels.append(new_label) return deduped_out_labels def fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0., validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None): """Trains the model for a fixed number of epochs (iterations on a dataset). Arguments: x: Numpy array of training data, or list of Numpy arrays if the model has multiple inputs. If all inputs in the model are named, you can also pass a dictionary mapping input names to Numpy arrays. y: Numpy array of target data, or list of Numpy arrays if the model has multiple outputs. If all outputs in the model are named, you can also pass a dictionary mapping output names to Numpy arrays. batch_size: Integer or `None`. Number of samples per gradient update. If unspecified, it will default to 32. epochs: Integer, the number of times to iterate over the training data arrays. verbose: 0, 1, or 2. Verbosity mode. 0 = silent, 1 = verbose, 2 = one log line per epoch. callbacks: List of callbacks to be called during training. See [callbacks](/callbacks). validation_split: Float between 0 and 1: fraction of the training data to be used as validation data. The model will set apart this fraction of the training data, will not train on it, and will evaluate the loss and any model metrics on this data at the end of each epoch. validation_data: Data on which to evaluate the loss and any model metrics at the end of each epoch. The model will not be trained on this data. This could be a tuple (x_val, y_val) or a tuple (x_val, y_val, val_sample_weights). shuffle: Boolean, whether to shuffle the training data before each epoch. Has no effect when `steps_per_epoch` is not `None`. class_weight: Optional dictionary mapping class indices (integers) to a weight (float) to apply to the model's loss for the samples from this class during training. This can be useful to tell the model to "pay more attention" to samples from an under-represented class. sample_weight: Optional array of the same length as x, containing weights to apply to the model's loss for each sample. In the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile(). initial_epoch: Epoch at which to start training (useful for resuming a previous training run) steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. When training with Input Tensors such as TensorFlow data tensors, the default `None` is equal to the number of unique samples in your dataset divided by the batch size, or 1 if that cannot be determined. validation_steps: Only relevant if `steps_per_epoch` is specified. Total number of steps (batches of samples) to validate before stopping. Returns: A `History` instance. Its `history` attribute contains all information collected during training. Raises: ValueError: In case of mismatch between the provided input data and what the model expects. """ # Backwards compatibility if batch_size is None and steps_per_epoch is None: batch_size = 32 if x is None and y is None and steps_per_epoch is None: raise ValueError('If fitting from data tensors, ' 'you should specify the `steps_per_epoch` ' 'argument.') # Validate user data. x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight, class_weight=class_weight, check_batch_axis=False, batch_size=batch_size) # Prepare validation data. do_validation = False val_ins = [] if validation_data: do_validation = True if len(validation_data) == 2: val_x, val_y = validation_data # pylint: disable=unpacking-non-sequence val_sample_weight = None elif len(validation_data) == 3: val_x, val_y, val_sample_weight = validation_data # pylint: disable=unpacking-non-sequence else: raise ValueError( 'When passing validation_data, ' 'it must contain 2 (x_val, y_val) ' 'or 3 (x_val, y_val, val_sample_weights) ' 'items, however it contains %d items' % len(validation_data)) val_x, val_y, val_sample_weights = self._standardize_user_data( val_x, val_y, sample_weight=val_sample_weight, check_batch_axis=False, batch_size=batch_size) if self.uses_learning_phase and not isinstance(K.learning_phase(), int): val_ins = val_x + val_y + val_sample_weights + [0.] else: val_ins = val_x + val_y + val_sample_weights elif validation_split and 0. < validation_split < 1.: do_validation = True if hasattr(x[0], 'shape'): split_at = int(x[0].shape[0] * (1. - validation_split)) else: split_at = int(len(x[0]) * (1. - validation_split)) x, val_x = (_slice_arrays(x, 0, split_at), _slice_arrays(x, split_at)) y, val_y = (_slice_arrays(y, 0, split_at), _slice_arrays(y, split_at)) sample_weights, val_sample_weights = (_slice_arrays( sample_weights, 0, split_at), _slice_arrays(sample_weights, split_at)) if self.uses_learning_phase and not isinstance(K.learning_phase(), int): val_ins = val_x + val_y + val_sample_weights + [0.] else: val_ins = val_x + val_y + val_sample_weights elif validation_steps: do_validation = True if self.uses_learning_phase and not isinstance(K.learning_phase(), int): val_ins = [0.] # Prepare input arrays and training function. if self.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = x + y + sample_weights + [1.] else: ins = x + y + sample_weights self._make_train_function() f = self.train_function # Prepare display labels. out_labels = self._get_deduped_metrics_names() if do_validation: self._make_test_function() val_f = self.test_function callback_metrics = copy.copy(out_labels) + [ 'val_' + n for n in out_labels ] else: val_f = None callback_metrics = copy.copy(out_labels) # Delegate logic to `_fit_loop`. return self._fit_loop( f, ins, out_labels=out_labels, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=callbacks, val_f=val_f, val_ins=val_ins, shuffle=shuffle, callback_metrics=callback_metrics, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps) def evaluate(self, x, y, batch_size=None, verbose=1, sample_weight=None, steps=None): """Returns the loss value & metrics values for the model in test mode. Computation is done in batches. Arguments: x: Numpy array of test data, or list of Numpy arrays if the model has multiple inputs. If all inputs in the model are named, you can also pass a dictionary mapping input names to Numpy arrays. y: Numpy array of target data, or list of Numpy arrays if the model has multiple outputs. If all outputs in the model are named, you can also pass a dictionary mapping output names to Numpy arrays. batch_size: Integer. If unspecified, it will default to 32. verbose: Verbosity mode, 0 or 1. sample_weight: Array of weights to weight the contribution of different samples to the loss and metrics. steps: Total number of steps (batches of samples) before declaring the evaluation round finished. Ignored with the default value of `None`. Returns: Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. Raises: ValueError: In case of invalid argument values. """ # Backwards compatibility. if batch_size is None and steps is None: batch_size = 32 if x is None and y is None and steps is None: raise ValueError('If evaluating from data tensors, ' 'you should specify the `steps` ' 'argument.') # Validate user data. x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight, check_batch_axis=False, batch_size=batch_size) # Prepare inputs, delegate logic to `_test_loop`. if self.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = x + y + sample_weights + [0.] else: ins = x + y + sample_weights self._make_test_function() f = self.test_function return self._test_loop( f, ins, batch_size=batch_size, verbose=verbose, steps=steps) def predict(self, x, batch_size=None, verbose=0, steps=None): """Generates output predictions for the input samples. Computation is done in batches. Arguments: x: The input data, as a Numpy array (or list of Numpy arrays if the model has multiple outputs). batch_size: Integer. If unspecified, it will default to 32. verbose: Verbosity mode, 0 or 1. steps: Total number of steps (batches of samples) before declaring the prediction round finished. Ignored with the default value of `None`. Returns: Numpy array(s) of predictions. Raises: ValueError: In case of mismatch between the provided input data and the model's expectations, or in case a stateful model receives a number of samples that is not a multiple of the batch size. """ # Backwards compatibility. if batch_size is None and steps is None: batch_size = 32 if x is None and steps is None: raise ValueError('If predicting from data tensors, ' 'you should specify the `steps` ' 'argument.') # Validate user data. x = _standardize_input_data( x, self._feed_input_names, self._feed_input_shapes, check_batch_axis=False) if self.stateful: if x[0].shape[0] > batch_size and x[0].shape[0] % batch_size != 0: raise ValueError('In a stateful network, ' 'you should only pass inputs with ' 'a number of samples that can be ' 'divided by the batch size. Found: ' + str(x[0].shape[0]) + ' samples. ' 'Batch size: ' + str(batch_size) + '.') # Prepare inputs, delegate logic to `_predict_loop`. if self.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = x + [0.] else: ins = x self._make_predict_function() f = self.predict_function return self._predict_loop( f, ins, batch_size=batch_size, verbose=verbose, steps=steps) def train_on_batch(self, x, y, sample_weight=None, class_weight=None): """Runs a single gradient update on a single batch of data. Arguments: x: Numpy array of training data, or list of Numpy arrays if the model has multiple inputs. If all inputs in the model are named, you can also pass a dictionary mapping input names to Numpy arrays. y: Numpy array of target data, or list of Numpy arrays if the model has multiple outputs. If all outputs in the model are named, you can also pass a dictionary mapping output names to Numpy arrays. sample_weight: Optional array of the same length as x, containing weights to apply to the model's loss for each sample. In the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile(). class_weight: Optional dictionary mapping class indices (integers) to a weight (float) to apply to the model's loss for the samples from this class during training. This can be useful to tell the model to "pay more attention" to samples from an under-represented class. Returns: Scalar training loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. """ x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight, class_weight=class_weight, check_batch_axis=True) if self.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = x + y + sample_weights + [1.] else: ins = x + y + sample_weights self._make_train_function() outputs = self.train_function(ins) if len(outputs) == 1: return outputs[0] return outputs def test_on_batch(self, x, y, sample_weight=None): """Test the model on a single batch of samples. Arguments: x: Numpy array of test data, or list of Numpy arrays if the model has multiple inputs. If all inputs in the model are named, you can also pass a dictionary mapping input names to Numpy arrays. y: Numpy array of target data, or list of Numpy arrays if the model has multiple outputs. If all outputs in the model are named, you can also pass a dictionary mapping output names to Numpy arrays. sample_weight: Optional array of the same length as x, containing weights to apply to the model's loss for each sample. In the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile(). Returns: Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. """ x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight, check_batch_axis=True) if self.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = x + y + sample_weights + [0.] else: ins = x + y + sample_weights self._make_test_function() outputs = self.test_function(ins) if len(outputs) == 1: return outputs[0] return outputs def predict_on_batch(self, x): """Returns predictions for a single batch of samples. Arguments: x: Input samples, as a Numpy array. Returns: Numpy array(s) of predictions. """ x = _standardize_input_data(x, self._feed_input_names, self._feed_input_shapes) if self.uses_learning_phase and not isinstance(K.learning_phase(), int): ins = x + [0.] else: ins = x self._make_predict_function() outputs = self.predict_function(ins) if len(outputs) == 1: return outputs[0] return outputs def fit_generator(self, generator, steps_per_epoch, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=True, initial_epoch=0, **kwargs): """Fits the model on data yielded batch-by-batch by a Python generator. The generator is run in parallel to the model, for efficiency. For instance, this allows you to do real-time data augmentation on images on CPU in parallel to training your model on GPU. The use of `keras.utils.Sequence` guarantees the ordering and guarantees the single use of every input per epoch when using `use_multiprocessing=True`. Arguments: generator: A generator or an instance of Sequence (keras.utils.Sequence) object in order to avoid duplicate data when using multiprocessing. The output of the generator must be either - a tuple (inputs, targets) - a tuple (inputs, targets, sample_weights). All arrays should contain the same number of samples. The generator is expected to loop over its data indefinitely. An epoch finishes when `steps_per_epoch` batches have been seen by the model. steps_per_epoch: Total number of steps (batches of samples) to yield from `generator` before declaring one epoch finished and starting the next epoch. It should typically be equal to the number of unique samples if your dataset divided by the batch size. epochs: Integer, total number of iterations on the data. verbose: Verbosity mode, 0, 1, or 2. callbacks: List of callbacks to be called during training. validation_data: This can be either - a generator for the validation data - a tuple (inputs, targets) - a tuple (inputs, targets, sample_weights). validation_steps: Only relevant if `validation_data` is a generator. Total number of steps (batches of samples) to yield from `generator` before stopping. class_weight: Dictionary mapping class indices to a weight for the class. max_queue_size: Maximum size for the generator queue workers: Maximum number of processes to spin up when using process based threading use_multiprocessing: If True, use process based threading. Note that because this implementation relies on multiprocessing, you should not pass non picklable arguments to the generator as they can't be passed easily to children processes. shuffle: Whether to shuffle the data at the beginning of each epoch. Only used with instances of `Sequence` ( keras.utils.Sequence). initial_epoch: Epoch at which to start training (useful for resuming a previous training run) **kwargs: support for legacy arguments. Returns: A `History` object. Example: ```python def generate_arrays_from_file(path): while 1: f = open(path) for line in f: # create numpy arrays of input data # and labels, from each line in the file x1, x2, y = process_line(line) yield ({'input_1': x1, 'input_2': x2}, {'output': y}) f.close() model.fit_generator(generate_arrays_from_file('/my_file.txt'), steps_per_epoch=10000, epochs=10) ``` Raises: ValueError: In case the generator yields data in an invalid format. """ # Legacy support if 'max_q_size' in kwargs: max_queue_size = kwargs.pop('max_q_size') logging.warning('The argument `max_q_size` has been renamed ' '`max_queue_size`. Update your method calls accordingly.') if 'pickle_safe' in kwargs: use_multiprocessing = kwargs.pop('pickle_safe') logging.warning('The argument `pickle_safe` has been renamed ' '`use_multiprocessing`. ' 'Update your method calls accordingly.') if kwargs: raise ValueError('Unrecognized keyword arguments: ' + str(kwargs)) wait_time = 0.01 # in seconds epoch = initial_epoch do_validation = bool(validation_data) self._make_train_function() if do_validation: self._make_test_function() # python 2 has 'next', 3 has '__next__' # avoid any explicit version checks val_gen = (hasattr(validation_data, 'next') or hasattr(validation_data, '__next__') or isinstance(validation_data, Sequence)) if val_gen and not validation_steps: raise ValueError('When using a generator for validation data, ' 'you must specify a value for ' '`validation_steps`.') # Prepare display labels. out_labels = self._get_deduped_metrics_names() callback_metrics = out_labels + ['val_' + n for n in out_labels] # prepare callbacks self.history = cbks.History() callbacks = [cbks.BaseLogger()] + (callbacks or []) + [self.history] if verbose: callbacks += [cbks.ProgbarLogger(count_mode='steps')] callbacks = cbks.CallbackList(callbacks) # it's possible to callback a different model than self: if hasattr(self, 'callback_model') and self.callback_model: callback_model = self.callback_model else: callback_model = self callbacks.set_model(callback_model) callbacks.set_params({ 'epochs': epochs, 'steps': steps_per_epoch, 'verbose': verbose, 'do_validation': do_validation, 'metrics': callback_metrics, }) callbacks.on_train_begin() if do_validation and not val_gen: if len(validation_data) == 2: val_x, val_y = validation_data # pylint: disable=unpacking-non-sequence val_sample_weight = None elif len(validation_data) == 3: val_x, val_y, val_sample_weight = validation_data # pylint: disable=unpacking-non-sequence else: raise ValueError('`validation_data` should be a tuple ' '`(val_x, val_y, val_sample_weight)` ' 'or `(val_x, val_y)`. Found: ' + str(validation_data)) val_x, val_y, val_sample_weights = self._standardize_user_data( val_x, val_y, val_sample_weight) val_data = val_x + val_y + val_sample_weights if self.uses_learning_phase and not isinstance(K.learning_phase(), int): val_data += [0.] for cbk in callbacks: cbk.validation_data = val_data is_sequence = isinstance(generator, Sequence) if not is_sequence and use_multiprocessing and workers > 1: logging.warning( logging.warning('Using a generator with `use_multiprocessing=True`' ' and multiple workers may duplicate your data.' ' Please consider using the`keras.utils.Sequence' ' class.')) enqueuer = None try: if is_sequence: enqueuer = OrderedEnqueuer( generator, use_multiprocessing=use_multiprocessing, shuffle=shuffle) else: enqueuer = GeneratorEnqueuer( generator, use_multiprocessing=use_multiprocessing, wait_time=wait_time) enqueuer.start(workers=workers, max_queue_size=max_queue_size) output_generator = enqueuer.get() callback_model.stop_training = False while epoch < epochs: callbacks.on_epoch_begin(epoch) steps_done = 0 batch_index = 0 while steps_done < steps_per_epoch: generator_output = next(output_generator) if not hasattr(generator_output, '__len__'): raise ValueError('Output of generator should be ' 'a tuple `(x, y, sample_weight)` ' 'or `(x, y)`. Found: ' + str(generator_output)) if len(generator_output) == 2: x, y = generator_output sample_weight = None elif len(generator_output) == 3: x, y, sample_weight = generator_output else: raise ValueError('Output of generator should be ' 'a tuple `(x, y, sample_weight)` ' 'or `(x, y)`. Found: ' + str(generator_output)) # build batch logs batch_logs = {} if isinstance(x, list): batch_size = x[0].shape[0] elif isinstance(x, dict): batch_size = list(x.values())[0].shape[0] else: batch_size = x.shape[0] batch_logs['batch'] = batch_index batch_logs['size'] = batch_size callbacks.on_batch_begin(batch_index, batch_logs) outs = self.train_on_batch( x, y, sample_weight=sample_weight, class_weight=class_weight) if not isinstance(outs, list): outs = [outs] for l, o in zip(out_labels, outs): batch_logs[l] = o callbacks.on_batch_end(batch_index, batch_logs) # Construct epoch logs. epoch_logs = {} batch_index += 1 steps_done += 1 # Epoch finished. if steps_done >= steps_per_epoch and do_validation: if val_gen: val_outs = self.evaluate_generator( validation_data, validation_steps, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing) else: # No need for try/except because # data has already been validated. val_outs = self.evaluate( val_x, val_y, batch_size=batch_size, sample_weight=val_sample_weights, verbose=0) if not isinstance(val_outs, list): val_outs = [val_outs] # Same labels assumed. for l, o in zip(out_labels, val_outs): epoch_logs['val_' + l] = o if callback_model.stop_training: break callbacks.on_epoch_end(epoch, epoch_logs) epoch += 1 if callback_model.stop_training: break finally: if enqueuer is not None: enqueuer.stop() callbacks.on_train_end() return self.history def evaluate_generator(self, generator, steps, max_queue_size=10, workers=1, use_multiprocessing=False, **kwargs): """Evaluates the model on a data generator. The generator should return the same kind of data as accepted by `test_on_batch`. Arguments: generator: Generator yielding tuples (inputs, targets) or (inputs, targets, sample_weights) or an instance of Sequence (keras.utils.Sequence) object in order to avoid duplicate data when using multiprocessing. steps: Total number of steps (batches of samples) to yield from `generator` before stopping. max_queue_size: maximum size for the generator queue workers: maximum number of processes to spin up when using process based threading use_multiprocessing: if True, use process based threading. Note that because this implementation relies on multiprocessing, you should not pass non picklable arguments to the generator as they can't be passed easily to children processes. **kwargs: support for legacy arguments. Returns: Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. Raises: ValueError: In case the generator yields data in an invalid format. """ # Legacy support if 'max_q_size' in kwargs: max_queue_size = kwargs.pop('max_q_size') logging.warning('The argument `max_q_size` has been renamed ' '`max_queue_size`. Update your method calls accordingly.') if 'pickle_safe' in kwargs: use_multiprocessing = kwargs.pop('pickle_safe') logging.warning('The argument `pickle_safe` has been renamed ' '`use_multiprocessing`. ' 'Update your method calls accordingly.') if kwargs: raise ValueError('Unrecognized keyword arguments: ' + str(kwargs)) self._make_test_function() steps_done = 0 wait_time = 0.01 all_outs = [] batch_sizes = [] is_sequence = isinstance(generator, Sequence) if not is_sequence and use_multiprocessing and workers > 1: logging.warning( logging.warning('Using a generator with `use_multiprocessing=True`' ' and multiple workers may duplicate your data.' ' Please consider using the`keras.utils.Sequence' ' class.')) enqueuer = None try: if is_sequence: enqueuer = OrderedEnqueuer( generator, use_multiprocessing=use_multiprocessing) else: enqueuer = GeneratorEnqueuer( generator, use_multiprocessing=use_multiprocessing, wait_time=wait_time) enqueuer.start(workers=workers, max_queue_size=max_queue_size) output_generator = enqueuer.get() while steps_done < steps: generator_output = next(output_generator) if not hasattr(generator_output, '__len__'): raise ValueError('Output of generator should be a tuple ' '(x, y, sample_weight) ' 'or (x, y). Found: ' + str(generator_output)) if len(generator_output) == 2: x, y = generator_output sample_weight = None elif len(generator_output) == 3: x, y, sample_weight = generator_output else: raise ValueError('Output of generator should be a tuple ' '(x, y, sample_weight) ' 'or (x, y). Found: ' + str(generator_output)) outs = self.test_on_batch(x, y, sample_weight=sample_weight) if isinstance(x, list): batch_size = len(x[0]) elif isinstance(x, dict): batch_size = len(list(x.values())[0]) else: batch_size = len(x) if batch_size == 0: raise ValueError('Received an empty batch. ' 'Batches should at least contain one item.') all_outs.append(outs) steps_done += 1 batch_sizes.append(batch_size) finally: if enqueuer is not None: enqueuer.stop() if not isinstance(outs, list): return np.average(np.asarray(all_outs), weights=batch_sizes) else: averages = [] for i in range(len(outs)): averages.append( np.average([out[i] for out in all_outs], weights=batch_sizes)) return averages def predict_generator(self, generator, steps, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0, **kwargs): """Generates predictions for the input samples from a data generator. The generator should return the same kind of data as accepted by `predict_on_batch`. Arguments: generator: Generator yielding batches of input samples or an instance of Sequence (keras.utils.Sequence) object in order to avoid duplicate data when using multiprocessing. steps: Total number of steps (batches of samples) to yield from `generator` before stopping. max_queue_size: Maximum size for the generator queue. workers: Maximum number of processes to spin up when using process based threading use_multiprocessing: If `True`, use process based threading. Note that because this implementation relies on multiprocessing, you should not pass non picklable arguments to the generator as they can't be passed easily to children processes. verbose: verbosity mode, 0 or 1. **kwargs: support for legacy arguments. Returns: Numpy array(s) of predictions. Raises: ValueError: In case the generator yields data in an invalid format. """ # Legacy support if 'max_q_size' in kwargs: max_queue_size = kwargs.pop('max_q_size') logging.warning('The argument `max_q_size` has been renamed ' '`max_queue_size`. Update your method calls accordingly.') if 'pickle_safe' in kwargs: use_multiprocessing = kwargs.pop('pickle_safe') logging.warning('The argument `pickle_safe` has been renamed ' '`use_multiprocessing`. ' 'Update your method calls accordingly.') self._make_predict_function() steps_done = 0 wait_time = 0.01 all_outs = [] is_sequence = isinstance(generator, Sequence) if not is_sequence and use_multiprocessing and workers > 1: logging.warning( logging.warning('Using a generator with `use_multiprocessing=True`' ' and multiple workers may duplicate your data.' ' Please consider using the`keras.utils.Sequence' ' class.')) enqueuer = None try: if is_sequence: enqueuer = OrderedEnqueuer( generator, use_multiprocessing=use_multiprocessing) else: enqueuer = GeneratorEnqueuer( generator, use_multiprocessing=use_multiprocessing, wait_time=wait_time) enqueuer.start(workers=workers, max_queue_size=max_queue_size) output_generator = enqueuer.get() if verbose == 1: progbar = Progbar(target=steps) while steps_done < steps: generator_output = next(output_generator) if isinstance(generator_output, tuple): # Compatibility with the generators # used for training. if len(generator_output) == 2: x, _ = generator_output elif len(generator_output) == 3: x, _, _ = generator_output else: raise ValueError('Output of generator should be ' 'a tuple `(x, y, sample_weight)` ' 'or `(x, y)`. Found: ' + str(generator_output)) else: # Assumes a generator that only # yields inputs (not targets and sample weights). x = generator_output outs = self.predict_on_batch(x) if not isinstance(outs, list): outs = [outs] if not all_outs: for out in outs: all_outs.append([]) for i, out in enumerate(outs): all_outs[i].append(out) steps_done += 1 if verbose == 1: progbar.update(steps_done) finally: if enqueuer is not None: enqueuer.stop() if len(all_outs) == 1: if steps_done == 1: return all_outs[0][0] else: return np.concatenate(all_outs[0]) if steps_done == 1: return [out for out in all_outs] else: return [np.concatenate(out) for out in all_outs]
apache-2.0
spottybones/dotfiles
HOME/ipython/.config/ipython/profile_default/ipython_config.py
1
22356
# Configuration file for ipython. #------------------------------------------------------------------------------ # InteractiveShellApp(Configurable) configuration #------------------------------------------------------------------------------ ## A Mixin for applications that start InteractiveShell instances. # # Provides configurables for loading extensions and executing files as part of # configuring a Shell environment. # # The following methods should be called by the :meth:`initialize` method of the # subclass: # # - :meth:`init_path` # - :meth:`init_shell` (to be implemented by the subclass) # - :meth:`init_gui_pylab` # - :meth:`init_extensions` # - :meth:`init_code` ## Execute the given command string. #c.InteractiveShellApp.code_to_run = '' ## Run the file referenced by the PYTHONSTARTUP environment variable at IPython # startup. #c.InteractiveShellApp.exec_PYTHONSTARTUP = True ## List of files to run at IPython startup. #c.InteractiveShellApp.exec_files = [] ## lines of code to run at IPython startup. c.InteractiveShellApp.exec_lines = [ 'import pandas as pd', 'import numpy as np', 'pd.set_option("display.width", 203)' ] ## A list of dotted module names of IPython extensions to load. #c.InteractiveShellApp.extensions = [] ## dotted module name of an IPython extension to load. #c.InteractiveShellApp.extra_extension = '' ## A file to be run #c.InteractiveShellApp.file_to_run = '' ## Enable GUI event loop integration with any of ('glut', 'gtk', 'gtk2', 'gtk3', # 'osx', 'pyglet', 'qt', 'qt4', 'qt5', 'tk', 'wx', 'gtk2', 'qt4'). #c.InteractiveShellApp.gui = None ## Should variables loaded at startup (by startup files, exec_lines, etc.) be # hidden from tools like %who? #c.InteractiveShellApp.hide_initial_ns = True ## Configure matplotlib for interactive use with the default matplotlib backend. #c.InteractiveShellApp.matplotlib = None ## Run the module as a script. #c.InteractiveShellApp.module_to_run = '' ## Pre-load matplotlib and numpy for interactive use, selecting a particular # matplotlib backend and loop integration. #c.InteractiveShellApp.pylab = None ## If true, IPython will populate the user namespace with numpy, pylab, etc. and # an ``import *`` is done from numpy and pylab, when using pylab mode. # # When False, pylab mode should not import any names into the user namespace. #c.InteractiveShellApp.pylab_import_all = True ## Reraise exceptions encountered loading IPython extensions? #c.InteractiveShellApp.reraise_ipython_extension_failures = False #------------------------------------------------------------------------------ # Application(SingletonConfigurable) configuration #------------------------------------------------------------------------------ ## This is an application. ## The date format used by logging formatters for %(asctime)s #c.Application.log_datefmt = '%Y-%m-%d %H:%M:%S' ## The Logging format template #c.Application.log_format = '[%(name)s]%(highlevel)s %(message)s' ## Set the log level by value or name. #c.Application.log_level = 30 #------------------------------------------------------------------------------ # BaseIPythonApplication(Application) configuration #------------------------------------------------------------------------------ ## IPython: an enhanced interactive Python shell. ## Whether to create profile dir if it doesn't exist #c.BaseIPythonApplication.auto_create = False ## Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. #c.BaseIPythonApplication.copy_config_files = False ## Path to an extra config file to load. # # If specified, load this config file in addition to any other IPython config. #c.BaseIPythonApplication.extra_config_file = '' ## The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # $HOME/.ipython. This option can also be specified through the environment # variable IPYTHONDIR. #c.BaseIPythonApplication.ipython_dir = '' ## Whether to overwrite existing config files when copying #c.BaseIPythonApplication.overwrite = False ## The IPython profile to use. #c.BaseIPythonApplication.profile = 'default' ## Create a massive crash report when IPython encounters what may be an internal # error. The default is to append a short message to the usual traceback #c.BaseIPythonApplication.verbose_crash = False #------------------------------------------------------------------------------ # TerminalIPythonApp(BaseIPythonApplication,InteractiveShellApp) configuration #------------------------------------------------------------------------------ ## Whether to display a banner upon starting IPython. #c.TerminalIPythonApp.display_banner = True ## If a command or file is given via the command-line, e.g. 'ipython foo.py', # start an interactive shell after executing the file or command. #c.TerminalIPythonApp.force_interact = False ## Start IPython quickly by skipping the loading of config files. #c.TerminalIPythonApp.quick = False #------------------------------------------------------------------------------ # InteractiveShell(SingletonConfigurable) configuration #------------------------------------------------------------------------------ ## An enhanced, interactive shell for Python. ## 'all', 'last', 'last_expr' or 'none', specifying which nodes should be run # interactively (displaying output from expressions). #c.InteractiveShell.ast_node_interactivity = 'last_expr' ## A list of ast.NodeTransformer subclass instances, which will be applied to # user input before code is run. #c.InteractiveShell.ast_transformers = [] ## Make IPython automatically call any callable object even if you didn't type # explicit parentheses. For example, 'str 43' becomes 'str(43)' automatically. # The value can be '0' to disable the feature, '1' for 'smart' autocall, where # it is not applied if there are no more arguments on the line, and '2' for # 'full' autocall, where all callable objects are automatically called (even if # no arguments are present). #c.InteractiveShell.autocall = 0 ## Autoindent IPython code entered interactively. #c.InteractiveShell.autoindent = True ## Enable magic commands to be called without the leading %. #c.InteractiveShell.automagic = True ## The part of the banner to be printed before the profile #c.InteractiveShell.banner1 = 'Python 3.5.2 |Continuum Analytics, Inc.| (default, Jul 2 2016, 17:53:06) \nType "copyright", "credits" or "license" for more information.\n\nIPython 5.3.0 -- An enhanced Interactive Python.\n? -> Introduction and overview of IPython\'s features.\n%quickref -> Quick reference.\nhelp -> Python\'s own help system.\nobject? -> Details about \'object\', use \'object??\' for extra details.\n' ## The part of the banner to be printed after the profile #c.InteractiveShell.banner2 = '' ## Set the size of the output cache. The default is 1000, you can change it # permanently in your config file. Setting it to 0 completely disables the # caching system, and the minimum value accepted is 20 (if you provide a value # less than 20, it is reset to 0 and a warning is issued). This limit is # defined because otherwise you'll spend more time re-flushing a too small cache # than working #c.InteractiveShell.cache_size = 1000 ## Use colors for displaying information about objects. Because this information # is passed through a pager (like 'less'), and some pagers get confused with # color codes, this capability can be turned off. #c.InteractiveShell.color_info = True ## Set the color scheme (NoColor, Neutral, Linux, or LightBG). #c.InteractiveShell.colors = 'Neutral' ## #c.InteractiveShell.debug = False ## **Deprecated** # # Will be removed in IPython 6.0 # # Enable deep (recursive) reloading by default. IPython can use the deep_reload # module which reloads changes in modules recursively (it replaces the reload() # function, so you don't need to change anything to use it). `deep_reload` # forces a full reload of modules whose code may have changed, which the default # reload() function does not. When deep_reload is off, IPython will use the # normal reload(), but deep_reload will still be available as dreload(). #c.InteractiveShell.deep_reload = False ## Don't call post-execute functions that have failed in the past. #c.InteractiveShell.disable_failing_post_execute = False ## If True, anything that would be passed to the pager will be displayed as # regular output instead. #c.InteractiveShell.display_page = False ## (Provisional API) enables html representation in mime bundles sent to pagers. #c.InteractiveShell.enable_html_pager = False ## Total length of command history #c.InteractiveShell.history_length = 10000 ## The number of saved history entries to be loaded into the history buffer at # startup. #c.InteractiveShell.history_load_length = 1000 ## #c.InteractiveShell.ipython_dir = '' ## Start logging to the given file in append mode. Use `logfile` to specify a log # file to **overwrite** logs to. #c.InteractiveShell.logappend = '' ## The name of the logfile to use. #c.InteractiveShell.logfile = '' ## Start logging to the default log file in overwrite mode. Use `logappend` to # specify a log file to **append** logs to. #c.InteractiveShell.logstart = False ## #c.InteractiveShell.object_info_string_level = 0 ## Automatically call the pdb debugger after every exception. #c.InteractiveShell.pdb = False ## Deprecated since IPython 4.0 and ignored since 5.0, set # TerminalInteractiveShell.prompts object directly. #c.InteractiveShell.prompt_in1 = 'In [\\#]: ' ## Deprecated since IPython 4.0 and ignored since 5.0, set # TerminalInteractiveShell.prompts object directly. #c.InteractiveShell.prompt_in2 = ' .\\D.: ' ## Deprecated since IPython 4.0 and ignored since 5.0, set # TerminalInteractiveShell.prompts object directly. #c.InteractiveShell.prompt_out = 'Out[\\#]: ' ## Deprecated since IPython 4.0 and ignored since 5.0, set # TerminalInteractiveShell.prompts object directly. #c.InteractiveShell.prompts_pad_left = True ## #c.InteractiveShell.quiet = False ## #c.InteractiveShell.separate_in = '\n' ## #c.InteractiveShell.separate_out = '' ## #c.InteractiveShell.separate_out2 = '' ## Show rewritten input, e.g. for autocall. #c.InteractiveShell.show_rewritten_input = True ## Enables rich html representation of docstrings. (This requires the docrepr # module). #c.InteractiveShell.sphinxify_docstring = False ## #c.InteractiveShell.wildcards_case_sensitive = True ## #c.InteractiveShell.xmode = 'Context' #------------------------------------------------------------------------------ # TerminalInteractiveShell(InteractiveShell) configuration #------------------------------------------------------------------------------ ## Set to confirm when you try to exit IPython with an EOF (Control-D in Unix, # Control-Z/Enter in Windows). By typing 'exit' or 'quit', you can force a # direct exit without any confirmation. #c.TerminalInteractiveShell.confirm_exit = True ## Options for displaying tab completions, 'column', 'multicolumn', and # 'readlinelike'. These options are for `prompt_toolkit`, see `prompt_toolkit` # documentation for more information. #c.TerminalInteractiveShell.display_completions = 'multicolumn' ## Shortcut style to use at the prompt. 'vi' or 'emacs'. c.TerminalInteractiveShell.editing_mode = 'vi' ## Set the editor used by IPython (default to $EDITOR/vi/notepad). c.TerminalInteractiveShell.editor = 'vim' ## Enable vi (v) or Emacs (C-X C-E) shortcuts to open an external editor. This is # in addition to the F2 binding, which is always enabled. #c.TerminalInteractiveShell.extra_open_editor_shortcuts = False ## Highlight matching brackets. #c.TerminalInteractiveShell.highlight_matching_brackets = True ## The name or class of a Pygments style to use for syntax # highlighting: # igor, pastie, fruity, paraiso-dark, manni, arduino, tango, lovelace, vs, borland, murphy, algol_nu, bw, native, monokai, emacs, default, abap, autumn, vim, trac, xcode, paraiso-light, colorful, friendly, perldoc, rrt, algol, rainbow_dash #c.TerminalInteractiveShell.highlighting_style = traitlets.Undefined ## Override highlighting format for specific tokens #c.TerminalInteractiveShell.highlighting_style_overrides = {} ## Enable mouse support in the prompt #c.TerminalInteractiveShell.mouse_support = False ## Class used to generate Prompt token for prompt_toolkit #c.TerminalInteractiveShell.prompts_class = 'IPython.terminal.prompts.Prompts' ## Use `raw_input` for the REPL, without completion, multiline input, and prompt # colors. # # Useful when controlling IPython as a subprocess, and piping STDIN/OUT/ERR. # Known usage are: IPython own testing machinery, and emacs inferior-shell # integration through elpy. # # This mode default to `True` if the `IPY_TEST_SIMPLE_PROMPT` environment # variable is set, or the current terminal is not a tty. #c.TerminalInteractiveShell.simple_prompt = False ## Number of line at the bottom of the screen to reserve for the completion menu #c.TerminalInteractiveShell.space_for_menu = 6 ## Automatically set the terminal title #c.TerminalInteractiveShell.term_title = True ## Use 24bit colors instead of 256 colors in prompt highlighting. If your # terminal supports true color, the following command should print 'TRUECOLOR' # in orange: printf "\x1b[38;2;255;100;0mTRUECOLOR\x1b[0m\n" #c.TerminalInteractiveShell.true_color = False #------------------------------------------------------------------------------ # HistoryAccessor(HistoryAccessorBase) configuration #------------------------------------------------------------------------------ ## Access the history database without adding to it. # # This is intended for use by standalone history tools. IPython shells use # HistoryManager, below, which is a subclass of this. ## Options for configuring the SQLite connection # # These options are passed as keyword args to sqlite3.connect when establishing # database conenctions. #c.HistoryAccessor.connection_options = {} ## enable the SQLite history # # set enabled=False to disable the SQLite history, in which case there will be # no stored history, no SQLite connection, and no background saving thread. # This may be necessary in some threaded environments where IPython is embedded. #c.HistoryAccessor.enabled = True ## Path to file to use for SQLite history database. # # By default, IPython will put the history database in the IPython profile # directory. If you would rather share one history among profiles, you can set # this value in each, so that they are consistent. # # Due to an issue with fcntl, SQLite is known to misbehave on some NFS mounts. # If you see IPython hanging, try setting this to something on a local disk, # e.g:: # # ipython --HistoryManager.hist_file=/tmp/ipython_hist.sqlite # # you can also use the specific value `:memory:` (including the colon at both # end but not the back ticks), to avoid creating an history file. #c.HistoryAccessor.hist_file = '' #------------------------------------------------------------------------------ # HistoryManager(HistoryAccessor) configuration #------------------------------------------------------------------------------ ## A class to organize all history-related functionality in one place. ## Write to database every x commands (higher values save disk access & power). # Values of 1 or less effectively disable caching. #c.HistoryManager.db_cache_size = 0 ## Should the history database include output? (default: no) #c.HistoryManager.db_log_output = False #------------------------------------------------------------------------------ # ProfileDir(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## An object to manage the profile directory and its resources. # # The profile directory is used by all IPython applications, to manage # configuration, logging and security. # # This object knows how to find, create and manage these directories. This # should be used by any code that wants to handle profiles. ## Set the profile location directly. This overrides the logic used by the # `profile` option. #c.ProfileDir.location = '' #------------------------------------------------------------------------------ # BaseFormatter(Configurable) configuration #------------------------------------------------------------------------------ ## A base formatter class that is configurable. # # This formatter should usually be used as the base class of all formatters. It # is a traited :class:`Configurable` class and includes an extensible API for # users to determine how their objects are formatted. The following logic is # used to find a function to format an given object. # # 1. The object is introspected to see if it has a method with the name # :attr:`print_method`. If is does, that object is passed to that method # for formatting. # 2. If no print method is found, three internal dictionaries are consulted # to find print method: :attr:`singleton_printers`, :attr:`type_printers` # and :attr:`deferred_printers`. # # Users should use these dictionaries to register functions that will be used to # compute the format data for their objects (if those objects don't have the # special print methods). The easiest way of using these dictionaries is through # the :meth:`for_type` and :meth:`for_type_by_name` methods. # # If no function/callable is found to compute the format data, ``None`` is # returned and this format type is not used. ## #c.BaseFormatter.deferred_printers = {} ## #c.BaseFormatter.enabled = True ## #c.BaseFormatter.singleton_printers = {} ## #c.BaseFormatter.type_printers = {} #------------------------------------------------------------------------------ # PlainTextFormatter(BaseFormatter) configuration #------------------------------------------------------------------------------ ## The default pretty-printer. # # This uses :mod:`IPython.lib.pretty` to compute the format data of the object. # If the object cannot be pretty printed, :func:`repr` is used. See the # documentation of :mod:`IPython.lib.pretty` for details on how to write pretty # printers. Here is a simple example:: # # def dtype_pprinter(obj, p, cycle): # if cycle: # return p.text('dtype(...)') # if hasattr(obj, 'fields'): # if obj.fields is None: # p.text(repr(obj)) # else: # p.begin_group(7, 'dtype([') # for i, field in enumerate(obj.descr): # if i > 0: # p.text(',') # p.breakable() # p.pretty(field) # p.end_group(7, '])') ## #c.PlainTextFormatter.float_precision = '' ## Truncate large collections (lists, dicts, tuples, sets) to this size. # # Set to 0 to disable truncation. #c.PlainTextFormatter.max_seq_length = 1000 ## #c.PlainTextFormatter.max_width = 79 ## #c.PlainTextFormatter.newline = '\n' ## #c.PlainTextFormatter.pprint = True ## #c.PlainTextFormatter.verbose = False #------------------------------------------------------------------------------ # Completer(Configurable) configuration #------------------------------------------------------------------------------ ## Activate greedy completion PENDING DEPRECTION. this is now mostly taken care # of with Jedi. # # This will enable completion on elements of lists, results of function calls, # etc., but can be unsafe because the code is actually evaluated on TAB. #c.Completer.greedy = False #------------------------------------------------------------------------------ # IPCompleter(Completer) configuration #------------------------------------------------------------------------------ ## Extension of the completer class with IPython-specific features ## DEPRECATED as of version 5.0. # # Instruct the completer to use __all__ for the completion # # Specifically, when completing on ``object.<tab>``. # # When True: only those names in obj.__all__ will be included. # # When False [default]: the __all__ attribute is ignored #c.IPCompleter.limit_to__all__ = False ## Whether to merge completion results into a single list # # If False, only the completion results from the first non-empty completer will # be returned. #c.IPCompleter.merge_completions = True ## Instruct the completer to omit private method names # # Specifically, when completing on ``object.<tab>``. # # When 2 [default]: all names that start with '_' will be excluded. # # When 1: all 'magic' names (``__foo__``) will be excluded. # # When 0: nothing will be excluded. #c.IPCompleter.omit__names = 2 #------------------------------------------------------------------------------ # ScriptMagics(Magics) configuration #------------------------------------------------------------------------------ ## Magics for talking to scripts # # This defines a base `%%script` cell magic for running a cell with a program in # a subprocess, and registers a few top-level magics that call %%script with # common interpreters. ## Extra script cell magics to define # # This generates simple wrappers of `%%script foo` as `%%foo`. # # If you want to add script magics that aren't on your path, specify them in # script_paths #c.ScriptMagics.script_magics = [] ## Dict mapping short 'ruby' names to full paths, such as '/opt/secret/bin/ruby' # # Only necessary for items in script_magics where the default path will not find # the right interpreter. #c.ScriptMagics.script_paths = {} #------------------------------------------------------------------------------ # StoreMagics(Magics) configuration #------------------------------------------------------------------------------ ## Lightweight persistence for python variables. # # Provides the %store magic. ## If True, any %store-d variables will be automatically restored when IPython # starts. #c.StoreMagics.autorestore = False
mit
gryffon/eggofpanku
src/settings/xmlsettings.py
1
5777
import sys import string import os import xml.dom.minidom from xml.dom.minidom import Node from xml.dom.minidom import Document DEFAULT_SETTINGS = { 'gamehost':'localhost', 'gameport':18072, 'last_deck':'', 'maximize':True, 'mainwindow_size':(780,560), 'playername':'Toku-san', 'cardsource':'', 'playfield_snap':True, 'dir_imagepacks':'images/cards/', 'imagepackdir_changed':False, 'playfield_bg_mode':0, 'playfield_bg_color1':(0, 206, 24), 'playfield_bg_color2':(0, 190, 16), 'playfield_bg_image':'', 'playfield_bg_image_display':False, 'attach_ok': ('personality',), 'matchuser':'', 'matchpassword':'1234', 'log_multiplayer_games':False, 'canvas_card_spacing':1, 'use_celestial_holdings':False, 'celestial_card_draw':False, } DEFAULT_SETTINGS_DATA_DIR = { 'data_dir': os.path.join(os.path.expanduser('~'), 'eopk'), } class _XMLSettings: def __init__(self, xmlfile, defaults): self.__dict__['defaults'] = defaults self.__dict__['_filename'] = xmlfile self.__dict__.update(defaults) self.LoadSettingsFile(self._filename) self.ApplySettingsFile() def ApplySettingsFile(self): try: if self.xml: pass except AttributeError: self.CreateSettingsFile() for node in self.xml.getElementsByTagName("eopk:setting"): self.__dict__[node.getAttribute("name")] = eval(node.firstChild.nodeValue) def __setattr__(self,newsetting,value): try: if self.xml: pass except AttributeError: self.CreateSettingsFile() for node in self.xml.getElementsByTagName("eopk:setting"): if(node.getAttribute("name") == newsetting): node.firstChild.nodeValue = repr(value) return print newsetting + " not found in settings: " + self.__dict__['_filename'] def CreateSettingsFile(self): newsettings = Document() eopksettings = newsettings.createElement("eopk:settings") eopkSchemaLocation = newsettings.createAttributeNS("http://code.google.com/p/eopk/", "eopk:schemaLocation") eopkSchemaLocation.nodeValue="http://code.google.com/p/eopk/ http://www.torchdragon.com/l5r/settings.xsd" eopksettings.setAttributeNode(eopkSchemaLocation) eopkXMLNS = newsettings.createAttributeNS("http://code.google.com/p/eopk/", "xmlns:eopk") eopkXMLNS.nodeValue="http://code.google.com/p/eopk/" eopksettings.setAttributeNode(eopkXMLNS) newsettings.appendChild(eopksettings) for k, v in self.__dict__['defaults'].items(): eopkSetting = newsettings.createElement("eopk:setting") eopkSettingName = newsettings.createAttributeNS("http://code.google.com/p/eopk/", "name") eopkSettingName.nodeValue = k eopkSetting.setAttributeNode(eopkSettingName) eopkSettingValue = newsettings.createTextNode(repr(v)) eopkSetting.appendChild(eopkSettingValue) eopksettings.appendChild(eopkSetting) self.__dict__['xml'] = newsettings def WriteSettingsFile(self): try: if self.xml: pass except AttributeError: self.CreateSettingsFile() #Check for new settings for k, v in self.__dict__['defaults'].items(): settingfound = False for node in self.xml.getElementsByTagName("eopk:setting"): if k == node.getAttribute("name"): settingfound = True break if settingfound == False: print "Setting not found: " + k eopkSetting = self.__dict__['xml'].createElement("eopk:setting") eopkSettingName = self.__dict__['xml'].createAttributeNS("http://code.google.com/p/eopk/", "name") eopkSettingName.nodeValue = k eopkSetting.setAttributeNode(eopkSettingName) eopkSettingValue = self.__dict__['xml'].createTextNode(repr(v)) eopkSetting.appendChild(eopkSettingValue) self.__dict__['xml'].childNodes[0].appendChild(eopkSetting) f = file(self._filename, 'w') self.xml.writexml(f, indent=" ", addindent=" ", newl="\n") f.close() self.ApplySettingsFile() def LoadSettingsFile(self, xmlsettings): try: self.__dict__['xml'] = xml.dom.minidom.parse(xmlsettings) except IOError: print "Unable to open settings file: " + xmlsettings return False self.StripTextNodes(self.xml.getElementsByTagName('eopk:settings')) def StripTextNodes(self, nodeList): """The XML parser will keep appending \n to each text node when it outputs the text so we need to strip the \n characters in order to stop bloat from occurring""" for node in nodeList: if node.nodeType == node.ELEMENT_NODE: self.StripTextNodes(node.childNodes) if node.nodeType == node.TEXT_NODE: node.data = string.strip(string.strip(node.data, '\n')) locationsettings = _XMLSettings('location.xml', DEFAULT_SETTINGS_DATA_DIR) settings = _XMLSettings(os.path.join(os.path.expanduser(locationsettings.data_dir), 'settings.xml'), DEFAULT_SETTINGS)
gpl-2.0
OFAI/hub-toolbox-python3
tests/centering_test.py
1
4214
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This file is part of the HUB TOOLBOX available at https://github.com/OFAI/hub-toolbox-python3/ The HUB TOOLBOX is licensed under the terms of the GNU GPLv3. (c) 2016-2018, Roman Feldbauer Austrian Research Institute for Artificial Intelligence (OFAI) Contact: <roman.feldbauer@ofai.at> """ import unittest import numpy as np from sklearn.preprocessing import StandardScaler from hub_toolbox.centering import centering, weighted_centering, \ localized_centering, dis_sim_global, dis_sim_local from hub_toolbox.io import load_dexter from hub_toolbox.hubness import hubness from hub_toolbox.knn_classification import score class TestCentering(unittest.TestCase): def setUp(self): self.distance, self.target, self.vectors = load_dexter() def test_centering_equal_to_sklearn_centering(self): vectors_cent = centering(self.vectors, 'vector') scaler = StandardScaler(with_mean=True, with_std=False) vectors_sklearn_cent = scaler.fit_transform(self.vectors) return np.testing.assert_array_almost_equal( vectors_cent, vectors_sklearn_cent, decimal=7) def test_weighted_centering_with_gamma_zero_equal_centering(self): vectors_wcent = weighted_centering(self.vectors, 'cosine', gamma=0.) vectors_cent = centering(self.vectors, 'vector') return np.testing.assert_array_almost_equal( vectors_cent, vectors_wcent, decimal=7) def test_weighted_centering_with_gamma_notzero_changes_result(self): gamma = np.random.rand(1) vectors_wcent = weighted_centering(self.vectors, 'cosine', gamma) vectors_cent = centering(self.vectors, 'vector') return self.assertNotEqual((vectors_cent - vectors_wcent).sum(), 0) def test_localized_centering(self): """Test whether hubness and k-NN accuracy improve for dexter""" h_orig = hubness(self.distance)[0] acc_orig = score(self.distance, self.target)[0][0, 0] sim_lcent = localized_centering(self.vectors, kappa=20, gamma=1.) h_lcent = hubness(sim_lcent, metric='similarity')[0] acc_lcent = score(sim_lcent, self.target, metric='similarity')[0][0, 0] result = (h_orig / h_lcent > 1.5) & (acc_lcent - acc_orig > 0.03) return self.assertTrue(result) def test_localized_centering_parallel(self): lcent_seq = localized_centering( self.vectors, kappa=20, gamma=1., n_jobs=4) lcent_par = localized_centering( self.vectors, kappa=20, gamma=1., n_jobs=1) return np.testing.assert_array_almost_equal(lcent_par, lcent_seq, 14) def test_dis_sim_global(self): """Test whether hubness and k-NN accuracy improve for dexter""" h_orig = hubness(self.distance)[0] acc_orig = score(self.distance, self.target)[0][0, 0] dist_dsg = dis_sim_global(self.vectors) h_dsg = hubness(dist_dsg)[0] acc_dsg = score(dist_dsg, self.target)[0][0, 0] result = (h_orig / h_dsg > 2) & (acc_dsg - acc_orig > 0.07) return self.assertTrue(result) def test_dis_sim_local(self): """Test whether hubness and k-NN accuracy improve for dexter""" #self.vectors = np.tile(self.vectors, 1) h_orig = hubness(self.distance)[0] acc_orig = score(self.distance, self.target)[0][0, 0] dist_dsl = dis_sim_local(self.vectors, k=50) h_dsl = hubness(dist_dsl)[0] acc_dsl = score(dist_dsl, self.target)[0][0, 0] result = (h_orig / h_dsl > 10) & (acc_dsl - acc_orig > 0.03) return self.assertTrue(result) def test_dis_sim_local_parallel(self): dsl_seq = dis_sim_local(self.vectors, k=50, n_jobs=1) dsl_par = dis_sim_local(self.vectors, k=50, n_jobs=4) return np.testing.assert_array_almost_equal(dsl_seq, dsl_par, 14) def test_dis_sim_local_split_parallel_(self): X = self.vectors[:150, :] Y = self.vectors[150:, :] dsl_seq = dis_sim_local(X, Y, n_jobs=1) dsl_par = dis_sim_local(X, Y, n_jobs=4) return np.testing.assert_array_almost_equal(dsl_seq, dsl_par, 14) if __name__ == "__main__": unittest.main()
gpl-3.0
herow/planning_qgis
tests/src/python/utilities.py
6
11647
"""Helper utilities for QGIS python unit tests. .. note:: This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. """ __author__ = 'Tim Sutton (tim@linfiniti.com)' __date__ = '20/01/2011' __copyright__ = 'Copyright 2012, The QGIS Project' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import qgis import os import sys import platform import tempfile from PyQt4.QtCore import QSize, QDir from PyQt4.QtGui import QWidget from qgis.core import ( QgsApplication, QgsCoordinateReferenceSystem, QgsVectorFileWriter, QgsMapLayerRegistry, QgsMapSettings, QgsMapRendererParallelJob, QgsMapRendererSequentialJob, QgsFontUtils ) from qgis.gui import QgsMapCanvas from qgis_interface import QgisInterface import hashlib import re from itertools import izip import webbrowser import subprocess # Support python < 2.7 via unittest2 needed for expected failure decorator. # Note that you should ignore unused import warnings here as these are imported # from this module by other tests. if sys.version_info[0:2] < (2, 7): try: from unittest2 import TestCase, expectedFailure import unittest2 as unittest except ImportError: print "You should install unittest2 to run the salt tests" sys.exit(0) else: from unittest import TestCase, expectedFailure import unittest QGISAPP = None # Static variable used to hold hand to running QGis app CANVAS = None PARENT = None IFACE = None GEOCRS = 4326 # constant for EPSG:GEOCRS Geographic CRS id FONTSLOADED = False def assertHashesForFile(theHashes, theFilename): """Assert that a files has matches one of a list of expected hashes""" myHash = hashForFile(theFilename) myMessage = ('Unexpected hash' '\nGot: %s' '\nExpected: %s' '\nPlease check graphics %s visually ' 'and add to list of expected hashes ' 'if it is OK on this platform.' % (myHash, theHashes, theFilename)) assert myHash in theHashes, myMessage def assertHashForFile(theHash, theFilename): """Assert that a files has matches its expected hash""" myHash = hashForFile(theFilename) myMessage = ('Unexpected hash' '\nGot: %s' '\nExpected: %s' % (myHash, theHash)) assert myHash == theHash, myMessage def hashForFile(theFilename): """Return an md5 checksum for a file""" myPath = theFilename myData = file(myPath).read() myHash = hashlib.md5() myHash.update(myData) myHash = myHash.hexdigest() return myHash def getQgisTestApp(): """ Start one QGis application to test agaist Input NIL Output handle to qgis app If QGis is already running the handle to that app will be returned """ global QGISAPP # pylint: disable=W0603 if QGISAPP is None: myGuiFlag = True # All test will run qgis in gui mode # Note: QGIS_PREFIX_PATH is evaluated in QgsApplication - # no need to mess with it here. QGISAPP = QgsApplication(sys.argv, myGuiFlag) QGISAPP.initQgis() s = QGISAPP.showSettings() print s global PARENT # pylint: disable=W0603 if PARENT is None: PARENT = QWidget() global CANVAS # pylint: disable=W0603 if CANVAS is None: CANVAS = QgsMapCanvas(PARENT) CANVAS.resize(QSize(400, 400)) global IFACE # pylint: disable=W0603 if IFACE is None: # QgisInterface is a stub implementation of the QGIS plugin interface IFACE = QgisInterface(CANVAS) return QGISAPP, CANVAS, IFACE, PARENT def unitTestDataPath(theSubdir=None): """Return the absolute path to the InaSAFE unit test data dir. .. note:: This is not the same thing as the SVN inasafe_data dir. Rather this is a new dataset where the test datasets are all tiny for fast testing and the datasets live in the same repo as the code. Args: * theSubdir: (Optional) Additional subdir to add to the path - typically 'hazard' or 'exposure'. """ myPath = __file__ tmpPath = os.path.split(os.path.dirname(myPath)) myPath = os.path.split(tmpPath[0]) if theSubdir is not None: myPath = os.path.abspath(os.path.join(myPath[0], 'testdata', theSubdir)) else: myPath = os.path.abspath(os.path.join(myPath[0], 'testdata')) return myPath def svgSymbolsPath(): return os.path.abspath( os.path.join(unitTestDataPath(), '..', '..', 'images', 'svg')) def setCanvasCrs(theEpsgId, theOtfpFlag=False): """Helper to set the crs for the CANVAS before a test is run. Args: * theEpsgId - Valid EPSG identifier (int) * theOtfpFlag - whether on the fly projections should be enabled on the CANVAS. Default to False. """ # Enable on-the-fly reprojection CANVAS.mapRenderer().setProjectionsEnabled(theOtfpFlag) # Create CRS Instance myCrs = QgsCoordinateReferenceSystem() myCrs.createFromId(theEpsgId, QgsCoordinateReferenceSystem.EpsgCrsId) # Reproject all layers to WGS84 geographic CRS CANVAS.mapRenderer().setDestinationCrs(myCrs) def writeShape(theMemoryLayer, theFileName): myFileName = os.path.join(str(QDir.tempPath()), theFileName) print myFileName # Explicitly giving all options, not really needed but nice for clarity myErrorMessage = '' myOptions = [] myLayerOptions = [] mySelectedOnlyFlag = False mySkipAttributesFlag = False myGeoCrs = QgsCoordinateReferenceSystem() myGeoCrs.createFromId(4326, QgsCoordinateReferenceSystem.EpsgCrsId) myResult = QgsVectorFileWriter.writeAsVectorFormat( theMemoryLayer, myFileName, 'utf-8', myGeoCrs, 'ESRI Shapefile', mySelectedOnlyFlag, myErrorMessage, myOptions, myLayerOptions, mySkipAttributesFlag) assert myResult == QgsVectorFileWriter.NoError def compareWkt(a, b, tol=0.000001): r0 = re.compile( "-?\d+(?:\.\d+)?(?:[eE]\d+)?" ) r1 = re.compile( "\s*,\s*" ) # compare the structure a0 = r1.sub( ",", r0.sub( "#", a ) ) b0 = r1.sub( ",", r0.sub( "#", b ) ) if a0 != b0: return False # compare the numbers with given tolerance a0 = r0.findall( a ) b0 = r0.findall( b ) if len(a0) != len(b0): return False for (a1,b1) in izip(a0,b0): if abs(float(a1)-float(b1))>tol: return False return True def getTempfilePath(sufx='png'): """ :returns: Path to empty tempfile ending in defined suffix Caller should delete tempfile if not used """ tmp = tempfile.NamedTemporaryFile( suffix=".{0}".format(sufx), delete=False) filepath = tmp.name tmp.close() return filepath def renderMapToImage(mapsettings, parallel=False): """ Render current map to an image, via multi-threaded renderer :param QgsMapSettings mapsettings: :param bool parallel: Do parallel or sequential render job :rtype: QImage """ if parallel: job = QgsMapRendererParallelJob(mapsettings) else: job = QgsMapRendererSequentialJob(mapsettings) job.start() job.waitForFinished() return job.renderedImage() def mapSettingsString(ms): """ :param QgsMapSettings mapsettings: :rtype: str """ # fullExtent() causes extra call in middle of output flow; get first full_ext = ms.visibleExtent().toString() s = 'MapSettings...\n' s += ' layers(): {0}\n'.format( [unicode(QgsMapLayerRegistry.instance().mapLayer(i).name()) for i in ms.layers()]) s += ' backgroundColor(): rgba {0},{1},{2},{3}\n'.format( ms.backgroundColor().red(), ms.backgroundColor().green(), ms.backgroundColor().blue(), ms.backgroundColor().alpha()) s += ' selectionColor(): rgba {0},{1},{2},{3}\n'.format( ms.selectionColor().red(), ms.selectionColor().green(), ms.selectionColor().blue(), ms.selectionColor().alpha()) s += ' outputSize(): {0} x {1}\n'.format( ms.outputSize().width(), ms.outputSize().height()) s += ' outputDpi(): {0}\n'.format(ms.outputDpi()) s += ' mapUnits(): {0}\n'.format(ms.mapUnits()) s += ' scale(): {0}\n'.format(ms.scale()) s += ' mapUnitsPerPixel(): {0}\n'.format(ms.mapUnitsPerPixel()) s += ' extent():\n {0}\n'.format( ms.extent().toString().replace(' : ', '\n ')) s += ' visibleExtent():\n {0}\n'.format( ms.visibleExtent().toString().replace(' : ', '\n ')) s += ' fullExtent():\n {0}\n'.format(full_ext.replace(' : ', '\n ')) s += ' hasCrsTransformEnabled(): {0}\n'.format( ms.hasCrsTransformEnabled()) s += ' destinationCrs(): {0}\n'.format( ms.destinationCrs().authid()) s += ' flag.Antialiasing: {0}\n'.format( ms.testFlag(QgsMapSettings.Antialiasing)) s += ' flag.UseAdvancedEffects: {0}\n'.format( ms.testFlag(QgsMapSettings.UseAdvancedEffects)) s += ' flag.ForceVectorOutput: {0}\n'.format( ms.testFlag(QgsMapSettings.ForceVectorOutput)) s += ' flag.DrawLabeling: {0}\n'.format( ms.testFlag(QgsMapSettings.DrawLabeling)) s += ' flag.DrawEditingInfo: {0}\n'.format( ms.testFlag(QgsMapSettings.DrawEditingInfo)) s += ' outputImageFormat(): {0}\n'.format(ms.outputImageFormat()) return s def getExecutablePath(exe): """ :param exe: Name of executable, e.g. lighttpd :returns: Path to executable """ exe_exts = [] if (platform.system().lower().startswith('win') and "PATHEXT" in os.environ): exe_exts = os.environ["PATHEXT"].split(os.pathsep) for path in os.environ["PATH"].split(os.pathsep): exe_path = os.path.join(path, exe) if os.path.exists(exe_path): return exe_path for ext in exe_exts: if os.path.exists(exe_path + ext): return exe_path return '' def getTestFontFamily(): return QgsFontUtils.standardTestFontFamily() def getTestFont(style='Roman', size=12): """Only Roman and Bold are loaded by default Others available: Oblique, Bold Oblique """ if not FONTSLOADED: loadTestFonts() return QgsFontUtils.getStandardTestFont(style, size) def loadTestFonts(): if QGISAPP is None: getQgisTestApp() global FONTSLOADED # pylint: disable=W0603 if FONTSLOADED is False: QgsFontUtils.loadStandardTestFonts(['Roman', 'Bold']) msg = getTestFontFamily() + ' base test font styles could not be loaded' res = (QgsFontUtils.fontFamilyHasStyle(getTestFontFamily(), 'Roman') and QgsFontUtils.fontFamilyHasStyle(getTestFontFamily(), 'Bold')) assert res, msg FONTSLOADED = True def openInBrowserTab(url): if sys.platform[:3] in ('win', 'dar'): webbrowser.open_new_tab(url) else: # some Linux OS pause execution on webbrowser open, so background it cmd = 'import webbrowser;' \ 'webbrowser.open_new_tab("{0}")'.format(url) subprocess.Popen([sys.executable, "-c", cmd], stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
gpl-2.0
vinayak-mehta/scikit-learn
sklearn/feature_selection/tests/test_base.py
17
3594
import numpy as np import pytest from scipy import sparse as sp from numpy.testing import assert_array_equal from sklearn.base import BaseEstimator from sklearn.feature_selection._base import SelectorMixin from sklearn.utils import check_array class StepSelector(SelectorMixin, BaseEstimator): """Retain every `step` features (beginning with 0)""" def __init__(self, step=2): self.step = step def fit(self, X, y=None): X = check_array(X, accept_sparse="csc") self.n_input_feats = X.shape[1] return self def _get_support_mask(self): mask = np.zeros(self.n_input_feats, dtype=bool) mask[:: self.step] = True return mask support = [True, False] * 5 support_inds = [0, 2, 4, 6, 8] X = np.arange(20).reshape(2, 10) Xt = np.arange(0, 20, 2).reshape(2, 5) Xinv = X.copy() Xinv[:, 1::2] = 0 y = [0, 1] feature_names = list("ABCDEFGHIJ") feature_names_t = feature_names[::2] feature_names_inv = np.array(feature_names) feature_names_inv[1::2] = "" def test_transform_dense(): sel = StepSelector() Xt_actual = sel.fit(X, y).transform(X) Xt_actual2 = StepSelector().fit_transform(X, y) assert_array_equal(Xt, Xt_actual) assert_array_equal(Xt, Xt_actual2) # Check dtype matches assert np.int32 == sel.transform(X.astype(np.int32)).dtype assert np.float32 == sel.transform(X.astype(np.float32)).dtype # Check 1d list and other dtype: names_t_actual = sel.transform([feature_names]) assert_array_equal(feature_names_t, names_t_actual.ravel()) # Check wrong shape raises error with pytest.raises(ValueError): sel.transform(np.array([[1], [2]])) def test_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xt_actual = sel.fit(sparse(X)).transform(sparse(X)) Xt_actual2 = sel.fit_transform(sparse(X)) assert_array_equal(Xt, Xt_actual.toarray()) assert_array_equal(Xt, Xt_actual2.toarray()) # Check dtype matches assert np.int32 == sel.transform(sparse(X).astype(np.int32)).dtype assert np.float32 == sel.transform(sparse(X).astype(np.float32)).dtype # Check wrong shape raises error with pytest.raises(ValueError): sel.transform(np.array([[1], [2]])) def test_inverse_transform_dense(): sel = StepSelector() Xinv_actual = sel.fit(X, y).inverse_transform(Xt) assert_array_equal(Xinv, Xinv_actual) # Check dtype matches assert np.int32 == sel.inverse_transform(Xt.astype(np.int32)).dtype assert np.float32 == sel.inverse_transform(Xt.astype(np.float32)).dtype # Check 1d list and other dtype: names_inv_actual = sel.inverse_transform([feature_names_t]) assert_array_equal(feature_names_inv, names_inv_actual.ravel()) # Check wrong shape raises error with pytest.raises(ValueError): sel.inverse_transform(np.array([[1], [2]])) def test_inverse_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xinv_actual = sel.fit(sparse(X)).inverse_transform(sparse(Xt)) assert_array_equal(Xinv, Xinv_actual.toarray()) # Check dtype matches assert np.int32 == sel.inverse_transform(sparse(Xt).astype(np.int32)).dtype assert np.float32 == sel.inverse_transform(sparse(Xt).astype(np.float32)).dtype # Check wrong shape raises error with pytest.raises(ValueError): sel.inverse_transform(np.array([[1], [2]])) def test_get_support(): sel = StepSelector() sel.fit(X, y) assert_array_equal(support, sel.get_support()) assert_array_equal(support_inds, sel.get_support(indices=True))
bsd-3-clause
ramon-oliveira/aorun
tests/test_utils.py
1
1275
import pytest from .context import aorun import numpy as np from torch import Tensor from torch.autograd import Variable from aorun import utils def test_to_numpy(): a = Tensor(10) a = utils.to_numpy(a) assert type(a) is np.ndarray a = Variable(Tensor(10)) a = utils.to_numpy(a) assert type(a) is np.ndarray a = np.array([10]) a = utils.to_numpy(a) assert type(a) is np.ndarray with pytest.raises(ValueError) as e: a = 'hahaha' utils.to_numpy(a) def test_to_tensor(): a = Tensor(10) a = utils.to_tensor(a) assert type(a) is Tensor a = Variable(Tensor(10)) a = utils.to_tensor(a) assert type(a) is Variable a = np.array([10.0], dtype='float32') a = utils.to_tensor(a) assert type(a) is Tensor with pytest.raises(ValueError) as e: a = 'hahaha' utils.to_tensor(a) def test_to_variable(): a = Tensor(10) a = utils.to_variable(a) assert type(a) is Variable a = Variable(Tensor(10)) a = utils.to_variable(a) assert type(a) is Variable a = np.array([10.0], dtype='float32') a = utils.to_variable(a) assert type(a) is Variable with pytest.raises(ValueError) as e: a = 'hahaha' utils.to_variable(a)
mit
procoder317/scikit-learn
examples/neighbors/plot_species_kde.py
280
4059
""" ================================================ Kernel Density Estimate of Species Distributions ================================================ This shows an example of a neighbors-based query (in particular a kernel density estimate) on geospatial data, using a Ball Tree built upon the Haversine distance metric -- i.e. distances over points in latitude/longitude. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.sourceforge.net/basemap/doc/html/>`_ to plot the coast lines and national boundaries of South America. This example does not perform any learning over the data (see :ref:`example_applications_plot_species_distribution_modeling.py` for an example of classification based on the attributes in this dataset). It simply shows the kernel density estimate of observed data points in geospatial coordinates. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Author: Jake Vanderplas <jakevdp@cs.washington.edu> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn.neighbors import KernelDensity # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False # Get matrices/arrays of species IDs and locations data = fetch_species_distributions() species_names = ['Bradypus Variegatus', 'Microryzomys Minutus'] Xtrain = np.vstack([data['train']['dd lat'], data['train']['dd long']]).T ytrain = np.array([d.decode('ascii').startswith('micro') for d in data['train']['species']], dtype='int') Xtrain *= np.pi / 180. # Convert lat/long to radians # Set up the data grid for the contour plot xgrid, ygrid = construct_grids(data) X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1]) land_reference = data.coverages[6][::5, ::5] land_mask = (land_reference > -9999).ravel() xy = np.vstack([Y.ravel(), X.ravel()]).T xy = xy[land_mask] xy *= np.pi / 180. # Plot map of South America with distributions of each species fig = plt.figure() fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05) for i in range(2): plt.subplot(1, 2, i + 1) # construct a kernel density estimate of the distribution print(" - computing KDE in spherical coordinates") kde = KernelDensity(bandwidth=0.04, metric='haversine', kernel='gaussian', algorithm='ball_tree') kde.fit(Xtrain[ytrain == i]) # evaluate only on the land: -9999 indicates ocean Z = -9999 + np.zeros(land_mask.shape[0]) Z[land_mask] = np.exp(kde.score_samples(xy)) Z = Z.reshape(X.shape) # plot contours of the density levels = np.linspace(0, Z.max(), 25) plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) plt.title(species_names[i]) plt.show()
bsd-3-clause
tsai-kailin/kernel_proxies
KPV/utils.py
1
17070
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Sep 29 15:48:32 2020 @author: afsaneh """ import os,sys import time import numpy as np import pandas as pd import functools from typing import Callable import jax.scipy.linalg as jsla import jax.numpy.linalg as jnla import operator import torch import matplotlib.pyplot as plt from matplotlib import cm from typing import Dict, Any, Iterator, Tuple from functools import partial import random import scipy as sp import scipy.sparse as sps import scipy.linalg as la from numpy.linalg import matrix_rank import statistics import itertools as it import math import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D from sklearn.model_selection import train_test_split import sklearn.metrics.pairwise from sklearn.kernel_approximation import (RBFSampler,Nystroem) from sklearn.preprocessing import StandardScaler import numba import jax import jax.numpy as jnp import jax.scipy as jsp from jax import grad, jit, vmap from jax import random @jax.jit def modist(v): return jnp.median(v) @jax.jit def sum_jit(A,B): return jnp.sum(A,B) @jax.jit def linear_kern(x, y): return jnp.sum(x * y) @jax.jit def l2_dist(x,y): return jnp.array((x - y)**2) #@functools.partial(jax.jit, static_argnums=(0,1)) def identifier(x,y): if (x!=y): b=0 else: b=1 return b @functools.partial(jax.jit, static_argnums=(0)) def dist_func(func1: Callable, x,y): return jax.vmap(lambda x1: jax.vmap(lambda y1: func1( x1, y1))(y))(x) @jax.jit def rbf_ker(x,y,scale=1): dist_mat=dist_func(l2_dist,x,y) gamma=modist(jnp.sqrt(dist_mat)) #gamma=1 #coef=1/(2*gamma**2) coef=1/(2*scale*(gamma**2)) return jnp.exp(-coef*dist_mat) @jax.jit def identifier_ker(x,y): return dist_func(identifier,x,y) #% function h #@jax.jit def cal_h(params_h,a,w): h,s2_A,s1_W, m1,m2=params_h k_AA_r =rbf_ker (s2_A, jnp.asarray(a).reshape(1,)) k_WW_r =rbf_ker (s1_W, jnp.asarray(w).reshape(1,)) b=h.reshape(m1,m2) return jnp.dot(jnp.dot(mat_trans(k_WW_r),b), k_AA_r) [0][0] def cal_h_vec(params_h,a,W): h,s2_A,s1_W, m1,m2=params_h k_AA_r =rbf_ker (jnp.array(s2_A), jnp.asarray(a).reshape(1,)).squeeze() k_WW_r =rbf_ker (jnp.array(s1_W), jnp.array(W)).squeeze() b=h.reshape(m1,m2) return jnp.dot(jnp.dot(mat_trans(k_WW_r),b), k_AA_r) def cal_h_vecl(params_h,a,W): h,s2_A,s1_W, m1,m2=params_h m1_train=m1 m2_train=m2 lst_a_ker=[] for i in s2_A.columns: if np.issubdtype(s2_A[i],np.integer): kern_ma =identifier_k (jnp.array(s2_A[i]) , jnp.asarray(a).reshape(1,)).reshape(m2_train,1) else: arr=jnp.array(s2_A[i]) kern_ma =rbf_ker (jnp.array(s2_A[i]) , jnp.asarray(a).reshape(1,)).reshape(m2_train,1) lst_a_ker.append(kern_ma) lst_w_ker=[] for i in s1_W.columns: if np.issubdtype(s1_W[i],np.integer): kern_m = identifier_k (jnp.array(s1_W[i]) , jnp.array( W[i])) else: kern_m =rbf_ker (jnp.array(s1_W[i]) , jnp.array( W[i])) lst_w_ker.append(kern_m) def had_ker(lst_k): hk=jnp.ones(lst_k[0].shape) for i in range(len(lst_k)): hk=Hadamard_prod(hk,lst_k[i]) return hk k_AA_r=had_ker(lst_a_ker) k_WW_r=had_ker(lst_w_ker) b=h.reshape(m1,m2) return mat_mul(mat_mul(mat_trans(k_WW_r),b), k_AA_r) def cal_h_veclx(params_h,do_A,sampl_w,lst_a,sampl_x, int_lst=[]): h,s2_AX,s1_W, m1,m2,k_ww_1=params_h m1_train=m1 m2_train=m2 lst_a_ker=[] lst_x_ker=[] lst_w_ker=[] for i in s2_AX.columns: if i in lst_a: if np.issubdtype(s2_AX[i],np.integer): arr=jnp.asarray(s2_AX[i]) kern_ma =identifier_k (arr, do_A)#.reshape(m2_train,1) elif i in int_lst: arr=jnp.asarray(s2_AX[i]) kern_ma =identifier_k (arr, do_A)#.reshape(m2_train,1) else: arr=jnp.asarray(s2_AX[i]) kern_ma =rbf_ker (arr, do_A)#.reshape(m2_train,1) lst_a_ker.append(kern_ma) else: if np.issubdtype(s2_AX[i],np.integer): #arr=jnp.asarray(s2_AX[i]) kern_mx =identifier_k (jnp.asarray(s2_AX[i]) , jnp.asarray(sampl_x[i])) elif i in int_lst: kern_mx =identifier_k (jnp.asarray(s2_AX[i]) , jnp.asarray(sampl_x[i])) else: #arr=jnp.asarray(s2_AX[i]) kern_mx =rbf_ker (jnp.asarray(s2_AX[i]) , jnp.asarray(sampl_x[i])) lst_x_ker.append(kern_mx) for i in s1_W.columns: if np.issubdtype(s1_W[i],np.integer): #arr1=jnp.asarray(s1_W[i]) kern_mw = identifier_k (jnp.array(s1_W[i]), jnp.array(sampl_w[i])) elif i in int_lst: #arr1=jnp.asarray(s1_W[i]) kern_mw = identifier_k (jnp.array(s1_W[i]), jnp.array(sampl_w[i])) else: #arr1=jnp.asarray(s1_W[i]) kern_mw = rbf_ker (jnp.array(s1_W[i]), jnp.array(sampl_w[i])) lst_w_ker.append(kern_mw) def had_ker(lst_k): if lst_k==[]: hk=jnp.ones(m2).reshape(m2,1) else: hk=jnp.ones(lst_k[0].shape) for i in range(len(lst_k)): hk=Hadamard_prod(hk,lst_k[i]) return hk k_XX_r=had_ker(lst_x_ker).mean(axis=1) k_AA_r=had_ker(lst_a_ker).squeeze() k_AX_r=jnp.array([k_AA_r[:,i]* k_XX_r for i in range(k_AA_r.shape[1])]) k_WW_r=had_ker(lst_w_ker).mean(axis=1) b=h.reshape(m1,m2) return mat_mul(k_AX_r,mat_mul(b,k_WW_r)) @jax.jit def Hadamard_prod(A,B): return A*B @jax.jit def jsla_inv(A): return jsla.inv(A) @jax.jit def jnla_norm(A): return jnla.norm(A) @jax.jit def kron_prod(a,b): return jnp.kron(a,b) @jax.jit def modif_kron(x,y): if (y.shape[1]!=x.shape[1]): print("Column_number error") else: return jnp.array(list(jnp.kron(x[:,i], y[:,i]).T for i in list(range(y.shape[1])))) @jax.jit def mat_trans(A): return jnp.transpose(A) def regularisation_term(A,B,reg_coef,m2,m1,lamd=0.000001): term1=reg_coef * m2 * jnp.kron(A,B) #dim=m1*m2 #I=jnp.identity(dim) #term2=(jnp.array(lamd).reshape(1,) * jnp.identity(dim)) return term1 @jax.jit def cal_loocv(K, reg, y, lam): nD = K.shape[0] I = jnp.eye(nD) H = I - K.dot(jsla.inv(K + lam * nD * reg)) tildeH_inv = jnp.diag(1.0 / jnp.diag(H)) return jnp.linalg.norm(tildeH_inv.dot(H.dot(y))) def cal_l_y (K, reg, y, low=0.00001, high=10, n=500): lam_values = np.linspace(low, high, num=n) grid_search={} for lam in lam_values: grid_search[lam]=cal_loocv(K, y, lam) return min(grid_search.items(), key=operator.itemgetter(1))[0] @jax.jit def cal_loocv_emb(K, kernel_y, lam): nD = K.shape[0] I = jnp.eye(nD) Q = jsla.inv(K + lam * nD * I) H = I - K.dot(Q) tildeH_inv = jnp.diag(1.0 / jnp.diag(H)) return jnp.trace(tildeH_inv @ H @ kernel_y @ H @ tildeH_inv) def cal_l_w (K, kernel_y, low=0.0001, high=1, n=10, abs_low=.001): git=1e-05 lam_values = np.logspace(np.log10(low), np.log10(high), n) tolerance=lam_values [1]-lam_values [0] grid_search={} for lam in lam_values: grid_search[lam]=cal_loocv_emb(K, kernel_y, lam) l,loo=min(grid_search.items(), key=operator.itemgetter(1)) '''while (abs(l-low)<tolerance and low> abs_low) : low=low *.1 high=high *.1 + git lam_values = np.linspace(low, high, n) tolerance=lam_values [1]-lam_values [0] grid_search={} for lam in lam_values: grid_search[lam]=cal_loocv_emb(K, kernel_y, lam) l,loo=min(grid_search.items(), key=operator.itemgetter(1)) while abs(l-high)<tolerance: low= low *10 high=high *10 +git lam_values = jnp.linspace(low, high, n) tolerance=lam_values [1]-lam_values [0] grid_search={} for lam in lam_values: grid_search[lam]=cal_loocv_emb(K, kernel_y, lam) l,loo=min(grid_search.items(), key=operator.itemgetter(1))''' return l,loo @jax.jit def cal_loocv_alpha(K, sigma, gamma, y, lam): nD = K.shape[0] I = jnp.eye(nD) H = I - mat_mul(mat_mul(K,gamma), (jsla.inv(sigma + lam * nD* I))) tildeH_inv = jnp.diag(1.0 / jnp.diag(H)) return jnp.linalg.norm(tildeH_inv.dot(H.dot(y))) def cal_l_yw (K, sigma, gamma, y, low=0.01, high=1, n=10, abs_low=.001): git=1e-05 lam_values = np.logspace(np.log10(low), np.log10(high), num=n) tolerance=lam_values [1]-lam_values [0] grid_search={} for lam in lam_values: grid_search[lam]=cal_loocv_alpha(K,sigma, gamma, y, lam) l,loo=min(grid_search.items(), key=operator.itemgetter(1)) ''' while (abs(l-low)<tolerance and low> abs_low): low=low *.1 high=high *.1+git lam_values = np.linspace(low, high, num=n) tolerance=lam_values [1]-lam_values [0] grid_search={} for lam in lam_values: grid_search[lam]=cal_loocv_alpha(K,sigma, gamma, y, lam) l,loo=min(grid_search.items(), key=operator.itemgetter(1)) while abs(l-high)<tolerance: low= low *10 high=high *10 +git lam_values = np.linspace(low, high, num=n) tolerance=lam_values [1]-lam_values [0] grid_search={} for lam in lam_values: grid_search[lam]=cal_loocv_alpha(K,sigma, gamma, y, lam) l,loo=min(grid_search.items(), key=operator.itemgetter(1)) ''' return l,loo #test=pd.DataFrame(grid_search.items()) #plt.scatter(test[0],test[1]) #%Data to store for multiple uses to avoid repeating calculation #k_ZZ_2_act #k_WW_2_act #k_W1W2_act def Kernels(samp1,samp2): k_AA_1 =rbf_ker (samp1[:,0], samp1[:,0]) k_AA_2 =rbf_ker (samp2[:,0], samp2[:,0]) k_A1A2 =rbf_ker (samp1[:,0], samp2[:,0]) k_ZZ_1 =rbf_ker (samp1[:,2], samp1[:,2]) #k_ZZ_2 =rbf_ker (samp2[:,2], samp2[:,2]) k_Z1Z2 =rbf_ker (samp1[:,2], samp2[:,2]) k_WW_1 =rbf_ker (samp1[:,3], samp1[:,3]) #k_WW_2 =rbf_ker (samp2[:,3], samp2[:,3]) #k_W1W2 =rbf_ker (samp1[:,3], samp2[:,3]) return k_AA_1, k_AA_2 , k_A1A2,k_ZZ_1 , k_Z1Z2, k_WW_1 def Kernels_n(samp1,samp2): k_AA_1 =rbf_ker (samp1[:,0], samp1[:,0]) k_AA_2 =rbf_ker (samp2[:,0], samp2[:,0]) k_A1A2 =rbf_ker (samp1[:,0], samp2[:,0]) k_ZZ_1 =rbf_ker (samp1[:,2], samp1[:,2]) k_ZZ_2 =rbf_ker (samp2[:,2], samp2[:,2]) k_Z1Z2 =rbf_ker (samp1[:,2], samp2[:,2]) k_WW_1 =rbf_ker (samp1[:,3], samp1[:,3]) k_WW_2 =rbf_ker (samp2[:,3], samp2[:,3]) k_W1W2 =rbf_ker (samp1[:,3], samp2[:,3]) return k_AA_1, k_AA_2 , k_A1A2,k_ZZ_1 ,k_ZZ_2 , k_Z1Z2, k_WW_1, k_WW_2, k_W1W2 def is_pos_def(x): return (np.linalg.eigvals(x), np.all(np.linalg.eigvals(x) > 0)) def cal_mse(y,ey,n): return 1/n*np.square(y-ey) def sample_split(key, data,n_val,n_trn, n_total): val=jnp.split(random.permutation(key,data), (n_val,n_val+n_trn,n_total),axis=0)[0] train=jnp.split(random.permutation(key,data), (n_val,n_val+n_trn,n_total),axis=0)[1] test=jnp.split(random.permutation(key,data), (n_val,n_val+n_trn,n_total),axis=0)[2] return val,train,test def sampling(A, key, n): return jnp.split(random.permutation(key,A),(n,A.shape[0]),axis=0)[0] @jax.jit def mat_mul(A,B): return jnp.matmul(A,B) @jax.jit def jsla_solve(A,B): return jax.sp.linalg.solve(A, B, assume_a = 'pos') def ace_point(key,A2,n, mu,vu, mw, vw, my, vy, params_h,a_AY,a_WY): causal_effect=pd.DataFrame() A_cause=np.arange(A2.min(),A2.max(),(A2.max()-A2.min())/20) for i in range(len(A_cause)): counter=i*3 A=jnp.repeat(A_cause[i],n) U=gen_U(mu,n,key[counter],vu) W=gen_W( U , mw , n, vw, key[counter+1]) H=cal_h_vec(params_h,A_cause[i],W).reshape(n,) Y=gen_Y(causal_Y,A_cause[i], a_AY, U, W, a_WY,my, n,vy ,key[counter+2]) y_ind_a=causal_Y(A_cause[i], a_AY) Y_c_A=jnp.repeat(y_ind_a,n) causal_effect=causal_effect.append(pd.DataFrame([A,W,H,Y,Y_c_A]).T, ignore_index=True) causal_effect.columns=['A','W','H','Y','Y_c_A'] return causal_effect def h_surf(params_h, A2, W2): list_aw=list(it.product(jnp.arange(A2.min(),A2.max(),1), jnp.arange(W2.min(),W2.max(),1))) #list_aw_df=pd.DataFrame(list(list_aw)) h_surface=list((i[0],i[1],cal_h(params_h,i[0],i[1])) for i in list_aw) #h_surface=pd.concat([pd.DataFrame(list_aw),h_O_aw],axis=1) #h_surface.columns=['A','W','H'] return h_surface def normaliser (K): return (K-K.mean())/(jnp.sqrt(K.var())) def ichol(K, err = 1): n = K.shape[0] d = np.array(np.diag(K)) R = np.zeros((n,n)) I = -1 * np.ones(n, dtype=int) a = np.max(d) j = 0 I[j] = np.argmax(d) nu = [] while(a > err and j < n): a = np.max(d) I[j] = np.argmax(d) nu.append(np.sqrt(a)) for i in range(n): R[j,i] = (K[I[j], i] - R[:,i].dot(R[:, I[j]]))/np.sqrt(a) d[i] -= R[j,i]*R[j,i] j = j+1 R = R[:j,:] return R,I @jax.jit def jsla_inv_svd(A): ur, s, vh =jsla.svd(A, full_matrices=False, overwrite_a=True) return jnp.dot(vh.transpose(),jnp.dot(jnp.diag(s**-1),ur.transpose())) def h_surf_data(params_h, A2,W2): list_aw=list(it.product(A2,W2)) #list_aw_df=pd.DataFrame(list(list_aw)) h_surface=list((i[0],i[1],cal_h(params_h,i[0],i[1])) for i in list_aw) #h_surface=pd.concat([pd.DataFrame(list_aw),h_O_aw],axis=1) #h_surface.columns=['A','W','H'] return h_surface def ace_point_data(key,A2,n, mu,vu, mw, vw, my, vy, params_h,a_AY,a_WY): causal_effect=pd.DataFrame() A_cause=np.arange(A2.min(),A2.max(),(A2.max()-A2.min())/20) for i in range(len(A_cause)): counter=i*3 A=jnp.repeat(A_cause[i],n) U=gen_U(mu,n,key[counter],vu) W=gen_W( U , mw , n, vw, key[counter+1]) H=cal_h_vec(params_h,A_cause[i],W).reshape(n,) Y=gen_Y(A_cause[i], a_AY, U, W, a_WY,my, n,vy ,key[counter+2]) #y_ind_a=causal_Y(A_cause[i], a_AY) #Y_c_A=jnp.repeat(y_ind_a,n) causal_effect=causal_effect.append(pd.DataFrame([A,W,H,Y]).T, ignore_index=True) causal_effect.columns=['A','W','H','Y'] return causal_effect def cal_mse(cal_h_vecAW: callable,params_h,A2, W2, ): estimated_h=cal_h_vecAW(params_h,A2, W2) estimated_ha=jnp.average(estimated_h, axis=0) def identifier(x,y): if (x!=y): b=0 else: b=1 return b def identifier_k(A,B): l=list(it.product(A,B)) a=[] for i in l: a.append(identifier(i[0],i[1])) return np.array(a).reshape(A.shape[0],B.shape[0]) def standardise(X): scaler = StandardScaler() if X.ndim == 1: X_scaled = scaler.fit_transform(X.reshape(-1,1)).squeeze() return X_scaled, scaler else: X_scaled = scaler.fit_transform(X).squeeze() return X_scaled, scaler def stage2_weights(Gamma_w, Sigma_inv): n_row = Gamma_w.shape[0] arr = [mat_mul(jnp.diag(Gamma_w[i, :]), Sigma_inv) for i in range(n_row)] return jnp.concatenate(arr, axis=0) def standardise(X): scaler = StandardScaler() if X.ndim == 1: X_scaled = scaler.fit_transform(X.reshape(-1,1)).squeeze() return X_scaled, scaler else: X_scaled = scaler.fit_transform(X).squeeze() return X_scaled, scaler def standardise_arr (arr=A): return (arr-arr.mean(axis=0))/arr.std(axis=0)
mit
vinayak-mehta/scikit-learn
sklearn/feature_extraction/tests/test_image.py
7
12122
# Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org> # Gael Varoquaux <gael.varoquaux@normalesup.org> # License: BSD 3 clause import numpy as np from scipy import ndimage from scipy.sparse.csgraph import connected_components import pytest from sklearn.utils.fixes import sp_version, parse_version from sklearn.feature_extraction.image import ( img_to_graph, grid_to_graph, extract_patches_2d, reconstruct_from_patches_2d, PatchExtractor, _extract_patches, ) @pytest.fixture(scope="module") def raccoon_face(): if sp_version.release >= parse_version("1.10").release: pytest.importorskip("pooch") from scipy.datasets import face else: from scipy.misc import face return face(gray=True) def test_img_to_graph(): x, y = np.mgrid[:4, :4] - 10 grad_x = img_to_graph(x) grad_y = img_to_graph(y) assert grad_x.nnz == grad_y.nnz # Negative elements are the diagonal: the elements of the original # image. Positive elements are the values of the gradient, they # should all be equal on grad_x and grad_y np.testing.assert_array_equal( grad_x.data[grad_x.data > 0], grad_y.data[grad_y.data > 0] ) def test_img_to_graph_sparse(): # Check that the edges are in the right position # when using a sparse image with a singleton component mask = np.zeros((2, 3), dtype=bool) mask[0, 0] = 1 mask[:, 2] = 1 x = np.zeros((2, 3)) x[0, 0] = 1 x[0, 2] = -1 x[1, 2] = -2 grad_x = img_to_graph(x, mask=mask).todense() desired = np.array([[1, 0, 0], [0, -1, 1], [0, 1, -2]]) np.testing.assert_array_equal(grad_x, desired) def test_grid_to_graph(): # Checking that the function works with graphs containing no edges size = 2 roi_size = 1 # Generating two convex parts with one vertex # Thus, edges will be empty in _to_graph mask = np.zeros((size, size), dtype=bool) mask[0:roi_size, 0:roi_size] = True mask[-roi_size:, -roi_size:] = True mask = mask.reshape(size**2) A = grid_to_graph(n_x=size, n_y=size, mask=mask, return_as=np.ndarray) assert connected_components(A)[0] == 2 # check ordering mask = np.zeros((2, 3), dtype=bool) mask[0, 0] = 1 mask[:, 2] = 1 graph = grid_to_graph(2, 3, 1, mask=mask.ravel()).todense() desired = np.array([[1, 0, 0], [0, 1, 1], [0, 1, 1]]) np.testing.assert_array_equal(graph, desired) # Checking that the function works whatever the type of mask is mask = np.ones((size, size), dtype=np.int16) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask) assert connected_components(A)[0] == 1 # Checking dtype of the graph mask = np.ones((size, size)) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=bool) assert A.dtype == bool A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=int) assert A.dtype == int A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.float64) assert A.dtype == np.float64 def test_connect_regions(raccoon_face): face = raccoon_face.copy() # subsample by 4 to reduce run time face = face[::4, ::4] for thr in (50, 150): mask = face > thr graph = img_to_graph(face, mask=mask) assert ndimage.label(mask)[1] == connected_components(graph)[0] def test_connect_regions_with_grid(raccoon_face): face = raccoon_face.copy() # subsample by 4 to reduce run time face = face[::4, ::4] mask = face > 50 graph = grid_to_graph(*face.shape, mask=mask) assert ndimage.label(mask)[1] == connected_components(graph)[0] mask = face > 150 graph = grid_to_graph(*face.shape, mask=mask, dtype=None) assert ndimage.label(mask)[1] == connected_components(graph)[0] def _downsampled_face(): if sp_version.release >= parse_version("1.10").release: pytest.importorskip("pooch") from scipy.datasets import face as raccoon_face else: from scipy.misc import face as raccoon_face face = raccoon_face(gray=True) face = face.astype(np.float32) face = face[::2, ::2] + face[1::2, ::2] + face[::2, 1::2] + face[1::2, 1::2] face = face[::2, ::2] + face[1::2, ::2] + face[::2, 1::2] + face[1::2, 1::2] face = face.astype(np.float32) face /= 16.0 return face def _orange_face(face=None): face = _downsampled_face() if face is None else face face_color = np.zeros(face.shape + (3,)) face_color[:, :, 0] = 256 - face face_color[:, :, 1] = 256 - face / 2 face_color[:, :, 2] = 256 - face / 4 return face_color def _make_images(face=None): face = _downsampled_face() if face is None else face # make a collection of faces images = np.zeros((3,) + face.shape) images[0] = face images[1] = face + 1 images[2] = face + 2 return images downsampled_face = _downsampled_face() orange_face = _orange_face(downsampled_face) face_collection = _make_images(downsampled_face) def test_extract_patches_all(): face = downsampled_face i_h, i_w = face.shape p_h, p_w = 16, 16 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(face, (p_h, p_w)) assert patches.shape == (expected_n_patches, p_h, p_w) def test_extract_patches_all_color(): face = orange_face i_h, i_w = face.shape[:2] p_h, p_w = 16, 16 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(face, (p_h, p_w)) assert patches.shape == (expected_n_patches, p_h, p_w, 3) def test_extract_patches_all_rect(): face = downsampled_face face = face[:, 32:97] i_h, i_w = face.shape p_h, p_w = 16, 12 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(face, (p_h, p_w)) assert patches.shape == (expected_n_patches, p_h, p_w) def test_extract_patches_max_patches(): face = downsampled_face i_h, i_w = face.shape p_h, p_w = 16, 16 patches = extract_patches_2d(face, (p_h, p_w), max_patches=100) assert patches.shape == (100, p_h, p_w) expected_n_patches = int(0.5 * (i_h - p_h + 1) * (i_w - p_w + 1)) patches = extract_patches_2d(face, (p_h, p_w), max_patches=0.5) assert patches.shape == (expected_n_patches, p_h, p_w) with pytest.raises(ValueError): extract_patches_2d(face, (p_h, p_w), max_patches=2.0) with pytest.raises(ValueError): extract_patches_2d(face, (p_h, p_w), max_patches=-1.0) def test_extract_patch_same_size_image(): face = downsampled_face # Request patches of the same size as image # Should return just the single patch a.k.a. the image patches = extract_patches_2d(face, face.shape, max_patches=2) assert patches.shape[0] == 1 def test_extract_patches_less_than_max_patches(): face = downsampled_face i_h, i_w = face.shape p_h, p_w = 3 * i_h // 4, 3 * i_w // 4 # this is 3185 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(face, (p_h, p_w), max_patches=4000) assert patches.shape == (expected_n_patches, p_h, p_w) def test_reconstruct_patches_perfect(): face = downsampled_face p_h, p_w = 16, 16 patches = extract_patches_2d(face, (p_h, p_w)) face_reconstructed = reconstruct_from_patches_2d(patches, face.shape) np.testing.assert_array_almost_equal(face, face_reconstructed) def test_reconstruct_patches_perfect_color(): face = orange_face p_h, p_w = 16, 16 patches = extract_patches_2d(face, (p_h, p_w)) face_reconstructed = reconstruct_from_patches_2d(patches, face.shape) np.testing.assert_array_almost_equal(face, face_reconstructed) def test_patch_extractor_fit(): faces = face_collection extr = PatchExtractor(patch_size=(8, 8), max_patches=100, random_state=0) assert extr == extr.fit(faces) def test_patch_extractor_max_patches(): faces = face_collection i_h, i_w = faces.shape[1:3] p_h, p_w = 8, 8 max_patches = 100 expected_n_patches = len(faces) * max_patches extr = PatchExtractor( patch_size=(p_h, p_w), max_patches=max_patches, random_state=0 ) patches = extr.transform(faces) assert patches.shape == (expected_n_patches, p_h, p_w) max_patches = 0.5 expected_n_patches = len(faces) * int( (i_h - p_h + 1) * (i_w - p_w + 1) * max_patches ) extr = PatchExtractor( patch_size=(p_h, p_w), max_patches=max_patches, random_state=0 ) patches = extr.transform(faces) assert patches.shape == (expected_n_patches, p_h, p_w) def test_patch_extractor_max_patches_default(): faces = face_collection extr = PatchExtractor(max_patches=100, random_state=0) patches = extr.transform(faces) assert patches.shape == (len(faces) * 100, 19, 25) def test_patch_extractor_all_patches(): faces = face_collection i_h, i_w = faces.shape[1:3] p_h, p_w = 8, 8 expected_n_patches = len(faces) * (i_h - p_h + 1) * (i_w - p_w + 1) extr = PatchExtractor(patch_size=(p_h, p_w), random_state=0) patches = extr.transform(faces) assert patches.shape == (expected_n_patches, p_h, p_w) def test_patch_extractor_color(): faces = _make_images(orange_face) i_h, i_w = faces.shape[1:3] p_h, p_w = 8, 8 expected_n_patches = len(faces) * (i_h - p_h + 1) * (i_w - p_w + 1) extr = PatchExtractor(patch_size=(p_h, p_w), random_state=0) patches = extr.transform(faces) assert patches.shape == (expected_n_patches, p_h, p_w, 3) def test_extract_patches_strided(): image_shapes_1D = [(10,), (10,), (11,), (10,)] patch_sizes_1D = [(1,), (2,), (3,), (8,)] patch_steps_1D = [(1,), (1,), (4,), (2,)] expected_views_1D = [(10,), (9,), (3,), (2,)] last_patch_1D = [(10,), (8,), (8,), (2,)] image_shapes_2D = [(10, 20), (10, 20), (10, 20), (11, 20)] patch_sizes_2D = [(2, 2), (10, 10), (10, 11), (6, 6)] patch_steps_2D = [(5, 5), (3, 10), (3, 4), (4, 2)] expected_views_2D = [(2, 4), (1, 2), (1, 3), (2, 8)] last_patch_2D = [(5, 15), (0, 10), (0, 8), (4, 14)] image_shapes_3D = [(5, 4, 3), (3, 3, 3), (7, 8, 9), (7, 8, 9)] patch_sizes_3D = [(2, 2, 3), (2, 2, 2), (1, 7, 3), (1, 3, 3)] patch_steps_3D = [(1, 2, 10), (1, 1, 1), (2, 1, 3), (3, 3, 4)] expected_views_3D = [(4, 2, 1), (2, 2, 2), (4, 2, 3), (3, 2, 2)] last_patch_3D = [(3, 2, 0), (1, 1, 1), (6, 1, 6), (6, 3, 4)] image_shapes = image_shapes_1D + image_shapes_2D + image_shapes_3D patch_sizes = patch_sizes_1D + patch_sizes_2D + patch_sizes_3D patch_steps = patch_steps_1D + patch_steps_2D + patch_steps_3D expected_views = expected_views_1D + expected_views_2D + expected_views_3D last_patches = last_patch_1D + last_patch_2D + last_patch_3D for image_shape, patch_size, patch_step, expected_view, last_patch in zip( image_shapes, patch_sizes, patch_steps, expected_views, last_patches ): image = np.arange(np.prod(image_shape)).reshape(image_shape) patches = _extract_patches( image, patch_shape=patch_size, extraction_step=patch_step ) ndim = len(image_shape) assert patches.shape[:ndim] == expected_view last_patch_slices = tuple( slice(i, i + j, None) for i, j in zip(last_patch, patch_size) ) assert ( patches[(-1, None, None) * ndim] == image[last_patch_slices].squeeze() ).all() def test_extract_patches_square(): # test same patch size for all dimensions face = downsampled_face i_h, i_w = face.shape p = 8 expected_n_patches = ((i_h - p + 1), (i_w - p + 1)) patches = _extract_patches(face, patch_shape=p) assert patches.shape == (expected_n_patches[0], expected_n_patches[1], p, p) def test_width_patch(): # width and height of the patch should be less than the image x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) with pytest.raises(ValueError): extract_patches_2d(x, (4, 1)) with pytest.raises(ValueError): extract_patches_2d(x, (1, 4))
bsd-3-clause
traveller59/spconv
test/test_multi_impl.py
1
13343
# Copyright 2021 Yan Yan # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Compare results between different algos: CPU: simple gather-mm-scatter Native: Fused gather-mm-scatter ImplicitGemm: implicit gemm """ import time from pathlib import Path import numpy as np import torch from torch import nn from cumm import tensorview as tv from spconv.core import ConvAlgo import spconv.pytorch as spconv import pickle from spconv.test_utils import generate_sparse_data, params_grid class Net(nn.Module): def __init__(self, shape, algo): super().__init__() pool_algo = algo # pool_algo = ConvAlgo.Native self.net = spconv.SparseSequential( spconv.SubMConv3d(3, 32, 3, bias=False, indice_key="c0", algo=algo), spconv.SubMConv3d(32, 32, 3, bias=False, indice_key="c0", algo=algo), # # nn.BatchNorm1d(32), # # nn.ReLU(), spconv.SubMConv3d(32, 64, 3, bias=False, indice_key="c0", algo=algo), spconv.SubMConv3d(64, 64, 3, bias=False, indice_key="c0", algo=algo), # nn.BatchNorm1d(32), # # nn.ReLU(), spconv.SparseConv3d(64, 64, 3, 2, 1, bias=False, indice_key="m0", algo=algo), # # spconv.SparseMaxPool3d(2, 2, algo=pool_algo), spconv.SubMConv3d(64, 96, 3, bias=False, indice_key="c1", algo=algo), spconv.SubMConv3d(96, 96, 3, bias=False, indice_key="c1", algo=algo), # nn.BatchNorm1d(64), # nn.ReLU(), spconv.SparseConv3d(96, 96, 2, 2, bias=False, indice_key="m1", algo=algo), # spconv.SparseMaxPool3d(2, 2, algo=pool_algo), spconv.SubMConv3d(96, 128, 3, bias=False, indice_key="c2", algo=algo), spconv.SubMConv3d(128, 128, 3, bias=False, indice_key="c2", algo=algo), # nn.BatchNorm1d(128), # nn.ReLU(), # spconv.SparseConv3d(128, 128, 2, 2, bias=False, indice_key="m2"), spconv.SparseMaxPool3d(2, 2, algo=pool_algo), spconv.SubMConv3d(128, 160, 3, bias=False, indice_key="c3", algo=algo), spconv.SubMConv3d(160, 160, 3, bias=False, indice_key="c3", algo=algo), # nn.BatchNorm1d(128), # nn.ReLU(), # spconv.SparseConv3d(160, 160, 2, 2, bias=False, indice_key="m3"), spconv.SparseMaxPool3d(2, 2, algo=pool_algo, indice_key="m3"), spconv.SubMConv3d(160, 192, 3, bias=False, indice_key="c4", algo=algo), spconv.SubMConv3d(192, 192, 3, bias=False, indice_key="c4", algo=algo), # nn.BatchNorm1d(128), # nn.ReLU(), spconv.SparseMaxPool3d(2, 2, indice_key="m4", algo=pool_algo), # spconv.SparseConv3d(192, 192, 2, 2, bias=False, indice_key="m4"), spconv.SubMConv3d(192, 224, 3, bias=False, indice_key="c5", algo=algo), spconv.SubMConv3d(224, 224, 3, bias=False, indice_key="c5", algo=algo), # nn.BatchNorm1d(256), # nn.ReLU(), spconv.SparseInverseConv3d(224, 128, 2, indice_key="m4", bias=False, algo=algo), # # nn.BatchNorm1d(128), # nn.ReLU(), spconv.SparseInverseConv3d(128, 64, 2, indice_key="m3", bias=False, algo=algo), ) max_batch_size = 1 # grid (dense map) is used for indice generation. use pre-allocated grid can run faster. # self.grid = None self.shape = shape def forward(self, features, coors, batch_size): x = spconv.SparseConvTensor(features, coors, self.shape, batch_size) return self.net(x) class NetLight(nn.Module): def __init__(self, shape, algo): super().__init__() pool_algo = algo # pool_algo = ConvAlgo.Native self.net = spconv.SparseSequential( spconv.SubMConv3d(3, 32, 3, bias=False, indice_key="c0", algo=algo), spconv.SubMConv3d(32, 32, 3, bias=False, indice_key="c0", algo=algo), # # nn.BatchNorm1d(32), # # nn.ReLU(), spconv.SubMConv3d(32, 64, 3, bias=False, indice_key="c0", algo=algo), spconv.SubMConv3d(64, 64, 3, bias=False, indice_key="c0", algo=algo), # nn.BatchNorm1d(32), # # nn.ReLU(), spconv.SparseConv3d(64, 64, 3, 2, 1, bias=False, indice_key="m0", algo=algo), # # spconv.SparseMaxPool3d(2, 2, algo=pool_algo), spconv.SubMConv3d(64, 96, 3, bias=False, indice_key="c1", algo=algo), spconv.SubMConv3d(96, 96, 3, bias=False, indice_key="c1", algo=algo), # nn.BatchNorm1d(64), # nn.ReLU(), spconv.SparseConv3d(96, 96, 2, 2, bias=False, indice_key="m1", algo=algo), # spconv.SparseMaxPool3d(2, 2, algo=pool_algo), spconv.SparseInverseConv3d(96, 64, 2, indice_key="m1", bias=False, algo=algo), # # nn.BatchNorm1d(128), # nn.ReLU(), spconv.SparseInverseConv3d(64, 32, 3, indice_key="m0", bias=False, algo=algo), ) max_batch_size = 1 # grid (dense map) is used for indice generation. use pre-allocated grid can run faster. # self.grid = None self.shape = shape def forward(self, features, coors, batch_size): x = spconv.SparseConvTensor(features, coors, self.shape, batch_size) return self.net(x) def _test_multi_impl(dtype: torch.dtype): # TODO pytorch 1.12 don't support cpu half mm, f**k pytorch # TODO remove or release this when tf32 op is ready torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cudnn.allow_tf32 = False np.random.seed(50051) if dtype != torch.float16: with open(Path(__file__).parent / "data" / "test_spconv.pkl", "rb") as f: (voxels, coors, spatial_shape) = pickle.load(f) else: # CPU fp16 is very slow, so we use a small data here. spatial_shape = [19, 18, 17] sparse_dict = generate_sparse_data(spatial_shape, [1500] * 1, 3) voxels = np.ascontiguousarray(sparse_dict["features"]).astype( np.float32) coors = np.ascontiguousarray( sparse_dict["indices"][:, [3, 0, 1, 2]]).astype(np.int32) device = torch.device("cuda:0") device_cpu = torch.device("cpu:0") voxels_th = torch.from_numpy(voxels).to(device_cpu).to(dtype) coors_th = torch.from_numpy(coors).to(device_cpu).int() voxels_th_cuda = torch.from_numpy(voxels).to(device).to(dtype) coors_th_cuda = torch.from_numpy(coors).to(device).int() net_cls = Net if dtype == torch.float16: # CPU fp16 is very slow, so we use a small network here. net_cls = NetLight # cpu torch.manual_seed(50051) net_native_cpu = net_cls(spatial_shape, ConvAlgo.Native).to(device_cpu).to(dtype) # gpu_native torch.manual_seed(50051) net_native_gpu = net_cls(spatial_shape, ConvAlgo.Native).to(device).to(dtype) torch.manual_seed(50051) net_imp_gpu = net_cls(spatial_shape, ConvAlgo.MaskImplicitGemm).to(device).to(dtype) torch.manual_seed(50051) net_simp_gpu = net_cls(spatial_shape, ConvAlgo.MaskSplitImplicitGemm).to(device).to(dtype) spconv.assign_name_for_sparse_modules(net_native_cpu) spconv.assign_name_for_sparse_modules(net_native_gpu) spconv.assign_name_for_sparse_modules(net_imp_gpu) spconv.assign_name_for_sparse_modules(net_simp_gpu) with torch.no_grad(): out: torch.Tensor = net_native_cpu(voxels_th, coors_th, 1).dense() dout = np.random.uniform(-0.2, 0.2, out.shape).astype(np.float32) dout_t = torch.from_numpy(dout).to(device_cpu).to(dtype) dout_t_cu = torch.from_numpy(dout).to(device).to(dtype) t = time.time() print(1, time.time() - t) out_cpu = net_native_cpu(voxels_th, coors_th, 1).dense() if dtype != torch.float16: out_cpu.backward(dout_t) out = net_native_gpu(voxels_th_cuda, coors_th_cuda, 1).dense() print(2, time.time() - t) out.backward(dout_t_cu) out_imp = net_imp_gpu(voxels_th_cuda, coors_th_cuda, 1).dense() print(3, time.time() - t) out_imp.backward(dout_t_cu) out_simp = net_simp_gpu(voxels_th_cuda, coors_th_cuda, 1).dense() print(4, time.time() - t) out_simp.backward(dout_t_cu) with torch.no_grad(): dense_cpu = out_cpu.cuda() dense_native = out dense_imp = out_imp dense_simp = out_simp error_native = torch.linalg.norm(dense_cpu - dense_native).cpu().item() error_imp = torch.linalg.norm(dense_cpu - dense_imp).cpu().item() error_simp = torch.linalg.norm(dense_cpu - dense_simp).cpu().item() print(5, time.time() - t) print("error_native", error_native) print("error_imp", error_imp) print("error_simp", error_simp) if dtype == torch.float32: assert error_native < 0.01 assert error_imp < 0.01 assert error_simp < 0.01 else: assert error_native < 10 assert error_imp < 10 assert error_simp < 10 cpu_params = dict(net_native_cpu.named_parameters()) native_params = dict(net_native_gpu.named_parameters()) imp_params = dict(net_imp_gpu.named_parameters()) simp_params = dict(net_simp_gpu.named_parameters()) for k, cpu_w in cpu_params.items(): native_w = native_params[k] imp_w = imp_params[k] simp_w = simp_params[k] native_w_grad = native_w.grad.detach() imp_w_grad = imp_w.grad.detach() simp_w_grad = simp_w.grad.detach() if dtype != torch.float16: cpu_w_grad = cpu_w.grad.detach().cuda() error_native = torch.linalg.norm(native_w_grad - cpu_w_grad).cpu().item() error_imp = torch.linalg.norm(native_w_grad - imp_w_grad).cpu().item() error_simp = torch.linalg.norm(native_w_grad - simp_w_grad).cpu().item() print(k, error_imp, error_simp) assert error_imp < 1 assert error_simp < 1 def test_multi_impl(): _test_multi_impl(torch.float32) _test_multi_impl(torch.float16) if __name__ == "__main__": test_multi_impl()
apache-2.0
vinayak-mehta/scikit-learn
sklearn/utils/tests/test_param_validation.py
9
20820
from numbers import Integral, Real import numpy as np from scipy.sparse import csr_matrix import pytest from sklearn.base import BaseEstimator from sklearn.model_selection import LeaveOneOut from sklearn.utils import deprecated from sklearn.utils._param_validation import Hidden from sklearn.utils._param_validation import Interval from sklearn.utils._param_validation import Options from sklearn.utils._param_validation import StrOptions from sklearn.utils._param_validation import _ArrayLikes from sklearn.utils._param_validation import _Booleans from sklearn.utils._param_validation import _Callables from sklearn.utils._param_validation import _CVObjects from sklearn.utils._param_validation import _InstancesOf from sklearn.utils._param_validation import _MissingValues from sklearn.utils._param_validation import _PandasNAConstraint from sklearn.utils._param_validation import _IterablesNotString from sklearn.utils._param_validation import _NoneConstraint from sklearn.utils._param_validation import _RandomStates from sklearn.utils._param_validation import _SparseMatrices from sklearn.utils._param_validation import _VerboseHelper from sklearn.utils._param_validation import HasMethods from sklearn.utils._param_validation import make_constraint from sklearn.utils._param_validation import generate_invalid_param_val from sklearn.utils._param_validation import generate_valid_param from sklearn.utils._param_validation import validate_params # Some helpers for the tests @validate_params({"a": [Real], "b": [Real], "c": [Real], "d": [Real]}) def _func(a, b=0, *args, c, d=0, **kwargs): """A function to test the validation of functions.""" class _Class: """A class to test the _InstancesOf constraint and the validation of methods.""" @validate_params({"a": [Real]}) def _method(self, a): """A validated method""" @deprecated() @validate_params({"a": [Real]}) def _deprecated_method(self, a): """A deprecated validated method""" class _Estimator(BaseEstimator): """An estimator to test the validation of estimator parameters.""" _parameter_constraints: dict = {"a": [Real]} def __init__(self, a): self.a = a def fit(self, X=None, y=None): self._validate_params() @pytest.mark.parametrize("interval_type", [Integral, Real]) def test_interval_range(interval_type): """Check the range of values depending on closed.""" interval = Interval(interval_type, -2, 2, closed="left") assert -2 in interval and 2 not in interval interval = Interval(interval_type, -2, 2, closed="right") assert -2 not in interval and 2 in interval interval = Interval(interval_type, -2, 2, closed="both") assert -2 in interval and 2 in interval interval = Interval(interval_type, -2, 2, closed="neither") assert -2 not in interval and 2 not in interval def test_interval_inf_in_bounds(): """Check that inf is included iff a bound is closed and set to None. Only valid for real intervals. """ interval = Interval(Real, 0, None, closed="right") assert np.inf in interval interval = Interval(Real, None, 0, closed="left") assert -np.inf in interval interval = Interval(Real, None, None, closed="neither") assert np.inf not in interval assert -np.inf not in interval @pytest.mark.parametrize( "interval", [Interval(Real, 0, 1, closed="left"), Interval(Real, None, None, closed="both")], ) def test_nan_not_in_interval(interval): """Check that np.nan is not in any interval.""" assert np.nan not in interval @pytest.mark.parametrize( "params, error, match", [ ( {"type": Integral, "left": 1.0, "right": 2, "closed": "both"}, TypeError, r"Expecting left to be an int for an interval over the integers", ), ( {"type": Integral, "left": 1, "right": 2.0, "closed": "neither"}, TypeError, "Expecting right to be an int for an interval over the integers", ), ( {"type": Integral, "left": None, "right": 0, "closed": "left"}, ValueError, r"left can't be None when closed == left", ), ( {"type": Integral, "left": 0, "right": None, "closed": "right"}, ValueError, r"right can't be None when closed == right", ), ( {"type": Integral, "left": 1, "right": -1, "closed": "both"}, ValueError, r"right can't be less than left", ), ], ) def test_interval_errors(params, error, match): """Check that informative errors are raised for invalid combination of parameters""" with pytest.raises(error, match=match): Interval(**params) def test_stroptions(): """Sanity check for the StrOptions constraint""" options = StrOptions({"a", "b", "c"}, deprecated={"c"}) assert options.is_satisfied_by("a") assert options.is_satisfied_by("c") assert not options.is_satisfied_by("d") assert "'c' (deprecated)" in str(options) def test_options(): """Sanity check for the Options constraint""" options = Options(Real, {-0.5, 0.5, np.inf}, deprecated={-0.5}) assert options.is_satisfied_by(-0.5) assert options.is_satisfied_by(np.inf) assert not options.is_satisfied_by(1.23) assert "-0.5 (deprecated)" in str(options) @pytest.mark.parametrize( "type, expected_type_name", [ (int, "int"), (Integral, "int"), (Real, "float"), (np.ndarray, "numpy.ndarray"), ], ) def test_instances_of_type_human_readable(type, expected_type_name): """Check the string representation of the _InstancesOf constraint.""" constraint = _InstancesOf(type) assert str(constraint) == f"an instance of '{expected_type_name}'" def test_hasmethods(): """Check the HasMethods constraint.""" constraint = HasMethods(["a", "b"]) class _Good: def a(self): pass # pragma: no cover def b(self): pass # pragma: no cover class _Bad: def a(self): pass # pragma: no cover assert constraint.is_satisfied_by(_Good()) assert not constraint.is_satisfied_by(_Bad()) assert str(constraint) == "an object implementing 'a' and 'b'" @pytest.mark.parametrize( "constraint", [ Interval(Real, None, 0, closed="left"), Interval(Real, 0, None, closed="left"), Interval(Real, None, None, closed="neither"), StrOptions({"a", "b", "c"}), _MissingValues(), _VerboseHelper(), HasMethods("fit"), _IterablesNotString(), _CVObjects(), ], ) def test_generate_invalid_param_val(constraint): """Check that the value generated does not satisfy the constraint""" bad_value = generate_invalid_param_val(constraint) assert not constraint.is_satisfied_by(bad_value) @pytest.mark.parametrize( "integer_interval, real_interval", [ ( Interval(Integral, None, 3, closed="right"), Interval(Real, -5, 5, closed="both"), ), ( Interval(Integral, None, 3, closed="right"), Interval(Real, -5, 5, closed="neither"), ), ( Interval(Integral, None, 3, closed="right"), Interval(Real, 4, 5, closed="both"), ), ( Interval(Integral, None, 3, closed="right"), Interval(Real, 5, None, closed="left"), ), ( Interval(Integral, None, 3, closed="right"), Interval(Real, 4, None, closed="neither"), ), ( Interval(Integral, 3, None, closed="left"), Interval(Real, -5, 5, closed="both"), ), ( Interval(Integral, 3, None, closed="left"), Interval(Real, -5, 5, closed="neither"), ), ( Interval(Integral, 3, None, closed="left"), Interval(Real, 1, 2, closed="both"), ), ( Interval(Integral, 3, None, closed="left"), Interval(Real, None, -5, closed="left"), ), ( Interval(Integral, 3, None, closed="left"), Interval(Real, None, -4, closed="neither"), ), ( Interval(Integral, -5, 5, closed="both"), Interval(Real, None, 1, closed="right"), ), ( Interval(Integral, -5, 5, closed="both"), Interval(Real, 1, None, closed="left"), ), ( Interval(Integral, -5, 5, closed="both"), Interval(Real, -10, -4, closed="neither"), ), ( Interval(Integral, -5, 5, closed="both"), Interval(Real, -10, -4, closed="right"), ), ( Interval(Integral, -5, 5, closed="neither"), Interval(Real, 6, 10, closed="neither"), ), ( Interval(Integral, -5, 5, closed="neither"), Interval(Real, 6, 10, closed="left"), ), ( Interval(Integral, 2, None, closed="left"), Interval(Real, 0, 1, closed="both"), ), ( Interval(Integral, 1, None, closed="left"), Interval(Real, 0, 1, closed="both"), ), ], ) def test_generate_invalid_param_val_2_intervals(integer_interval, real_interval): """Check that the value generated for an interval constraint does not satisfy any of the interval constraints. """ bad_value = generate_invalid_param_val( real_interval, constraints=[real_interval, integer_interval] ) assert not real_interval.is_satisfied_by(bad_value) assert not integer_interval.is_satisfied_by(bad_value) bad_value = generate_invalid_param_val( integer_interval, constraints=[real_interval, integer_interval] ) assert not real_interval.is_satisfied_by(bad_value) assert not integer_interval.is_satisfied_by(bad_value) @pytest.mark.parametrize( "constraints", [ [_ArrayLikes()], [_InstancesOf(list)], [_Callables()], [_NoneConstraint()], [_RandomStates()], [_SparseMatrices()], [_Booleans()], [Interval(Real, None, None, closed="both")], [ Interval(Integral, 0, None, closed="left"), Interval(Real, None, 0, closed="neither"), ], ], ) def test_generate_invalid_param_val_all_valid(constraints): """Check that the function raises NotImplementedError when there's no invalid value for the constraint. """ with pytest.raises(NotImplementedError): generate_invalid_param_val(constraints[0], constraints=constraints) @pytest.mark.parametrize( "constraint", [ _ArrayLikes(), _Callables(), _InstancesOf(list), _NoneConstraint(), _RandomStates(), _SparseMatrices(), _Booleans(), _VerboseHelper(), _MissingValues(), StrOptions({"a", "b", "c"}), Options(Integral, {1, 2, 3}), Interval(Integral, None, None, closed="neither"), Interval(Integral, 0, 10, closed="neither"), Interval(Integral, 0, None, closed="neither"), Interval(Integral, None, 0, closed="neither"), Interval(Real, 0, 1, closed="neither"), Interval(Real, 0, None, closed="both"), Interval(Real, None, 0, closed="right"), HasMethods("fit"), _IterablesNotString(), _CVObjects(), ], ) def test_generate_valid_param(constraint): """Check that the value generated does satisfy the constraint.""" value = generate_valid_param(constraint) assert constraint.is_satisfied_by(value) @pytest.mark.parametrize( "constraint_declaration, value", [ (Interval(Real, 0, 1, closed="both"), 0.42), (Interval(Integral, 0, None, closed="neither"), 42), (StrOptions({"a", "b", "c"}), "b"), (Options(type, {np.float32, np.float64}), np.float64), (callable, lambda x: x + 1), (None, None), ("array-like", [[1, 2], [3, 4]]), ("array-like", np.array([[1, 2], [3, 4]])), ("sparse matrix", csr_matrix([[1, 2], [3, 4]])), ("random_state", 0), ("random_state", np.random.RandomState(0)), ("random_state", None), (_Class, _Class()), (int, 1), (Real, 0.5), ("boolean", False), ("verbose", 1), ("missing_values", -1), ("missing_values", -1.0), ("missing_values", None), ("missing_values", float("nan")), ("missing_values", np.nan), ("missing_values", "missing"), (HasMethods("fit"), _Estimator(a=0)), ("cv_object", 5), ], ) def test_is_satisfied_by(constraint_declaration, value): """Sanity check for the is_satisfied_by method""" constraint = make_constraint(constraint_declaration) assert constraint.is_satisfied_by(value) @pytest.mark.parametrize( "constraint_declaration, expected_constraint_class", [ (Interval(Real, 0, 1, closed="both"), Interval), (StrOptions({"option1", "option2"}), StrOptions), (Options(Real, {0.42, 1.23}), Options), ("array-like", _ArrayLikes), ("sparse matrix", _SparseMatrices), ("random_state", _RandomStates), (None, _NoneConstraint), (callable, _Callables), (int, _InstancesOf), ("boolean", _Booleans), ("verbose", _VerboseHelper), ("missing_values", _MissingValues), (HasMethods("fit"), HasMethods), ("cv_object", _CVObjects), ], ) def test_make_constraint(constraint_declaration, expected_constraint_class): """Check that make_constraint dispaches to the appropriate constraint class""" constraint = make_constraint(constraint_declaration) assert constraint.__class__ is expected_constraint_class def test_make_constraint_unknown(): """Check that an informative error is raised when an unknown constraint is passed""" with pytest.raises(ValueError, match="Unknown constraint"): make_constraint("not a valid constraint") def test_validate_params(): """Check that validate_params works no matter how the arguments are passed""" with pytest.raises(ValueError, match="The 'a' parameter of _func must be"): _func("wrong", c=1) with pytest.raises(ValueError, match="The 'b' parameter of _func must be"): _func(*[1, "wrong"], c=1) with pytest.raises(ValueError, match="The 'c' parameter of _func must be"): _func(1, **{"c": "wrong"}) with pytest.raises(ValueError, match="The 'd' parameter of _func must be"): _func(1, c=1, d="wrong") # check in the presence of extra positional and keyword args with pytest.raises(ValueError, match="The 'b' parameter of _func must be"): _func(0, *["wrong", 2, 3], c=4, **{"e": 5}) with pytest.raises(ValueError, match="The 'c' parameter of _func must be"): _func(0, *[1, 2, 3], c="four", **{"e": 5}) def test_validate_params_match_error(): """Check that an informative error is raised when there are constraints that have no matching function paramaters """ @validate_params({"a": [int], "c": [int]}) def func(a, b): pass match = r"The parameter constraints .* contain unexpected parameters {'c'}" with pytest.raises(ValueError, match=match): func(1, 2) def test_validate_params_missing_params(): """Check that no error is raised when there are parameters without constraints """ @validate_params({"a": [int]}) def func(a, b): pass func(1, 2) def test_decorate_validated_function(): """Check that validate_params functions can be decorated""" decorated_function = deprecated()(_func) with pytest.warns(FutureWarning, match="Function _func is deprecated"): decorated_function(1, 2, c=3) # outer decorator does not interfer with validation with pytest.warns(FutureWarning, match="Function _func is deprecated"): with pytest.raises(ValueError, match=r"The 'c' parameter of _func must be"): decorated_function(1, 2, c="wrong") def test_validate_params_method(): """Check that validate_params works with methods""" with pytest.raises(ValueError, match="The 'a' parameter of _Class._method must be"): _Class()._method("wrong") # validated method can be decorated with pytest.warns(FutureWarning, match="Function _deprecated_method is deprecated"): with pytest.raises( ValueError, match="The 'a' parameter of _Class._deprecated_method must be" ): _Class()._deprecated_method("wrong") def test_validate_params_estimator(): """Check that validate_params works with Estimator instances""" # no validation in init est = _Estimator("wrong") with pytest.raises(ValueError, match="The 'a' parameter of _Estimator must be"): est.fit() def test_stroptions_deprecated_subset(): """Check that the deprecated parameter must be a subset of options.""" with pytest.raises(ValueError, match="deprecated options must be a subset"): StrOptions({"a", "b", "c"}, deprecated={"a", "d"}) def test_hidden_constraint(): """Check that internal constraints are not exposed in the error message.""" @validate_params({"param": [Hidden(list), dict]}) def f(param): pass # list and dict are valid params f({"a": 1, "b": 2, "c": 3}) f([1, 2, 3]) with pytest.raises(ValueError, match="The 'param' parameter") as exc_info: f(param="bad") # the list option is not exposed in the error message err_msg = str(exc_info.value) assert "an instance of 'dict'" in err_msg assert "an instance of 'list'" not in err_msg def test_hidden_stroptions(): """Check that we can have 2 StrOptions constraints, one being hidden.""" @validate_params({"param": [StrOptions({"auto"}), Hidden(StrOptions({"warn"}))]}) def f(param): pass # "auto" and "warn" are valid params f("auto") f("warn") with pytest.raises(ValueError, match="The 'param' parameter") as exc_info: f(param="bad") # the "warn" option is not exposed in the error message err_msg = str(exc_info.value) assert "auto" in err_msg assert "warn" not in err_msg def test_validate_params_set_param_constraints_attribute(): """Check that the validate_params decorator properly sets the parameter constraints as attribute of the decorated function/method. """ assert hasattr(_func, "_skl_parameter_constraints") assert hasattr(_Class()._method, "_skl_parameter_constraints") def test_boolean_constraint_deprecated_int(): """Check that validate_params raise a deprecation message but still passes validation when using an int for a parameter accepting a boolean. """ @validate_params({"param": ["boolean"]}) def f(param): pass # True/False and np.bool_(True/False) are valid params f(True) f(np.bool_(False)) # an int is also valid but deprecated with pytest.warns( FutureWarning, match="Passing an int for a boolean parameter is deprecated" ): f(1) def test_no_validation(): """Check that validation can be skipped for a parameter.""" @validate_params({"param1": [int, None], "param2": "no_validation"}) def f(param1=None, param2=None): pass # param1 is validated with pytest.raises(ValueError, match="The 'param1' parameter"): f(param1="wrong") # param2 is not validated: any type is valid. class SomeType: pass f(param2=SomeType) f(param2=SomeType()) def test_pandas_na_constraint_with_pd_na(): """Add a specific test for checking support for `pandas.NA`.""" pd = pytest.importorskip("pandas") na_constraint = _PandasNAConstraint() assert na_constraint.is_satisfied_by(pd.NA) assert not na_constraint.is_satisfied_by(np.array([1, 2, 3])) def test_iterable_not_string(): """Check that a string does not satisfy the _IterableNotString constraint.""" constraint = _IterablesNotString() assert constraint.is_satisfied_by([1, 2, 3]) assert constraint.is_satisfied_by(range(10)) assert not constraint.is_satisfied_by("some string") def test_cv_objects(): """Check that the _CVObjects constraint accepts all current ways to pass cv objects.""" constraint = _CVObjects() assert constraint.is_satisfied_by(5) assert constraint.is_satisfied_by(LeaveOneOut()) assert constraint.is_satisfied_by([([1, 2], [3, 4]), ([3, 4], [1, 2])]) assert constraint.is_satisfied_by(None) assert not constraint.is_satisfied_by("not a CV object")
bsd-3-clause
Adai0808/scikit-learn
examples/cluster/plot_feature_agglomeration_vs_univariate_selection.py
217
3893
""" ============================================== Feature agglomeration vs. univariate selection ============================================== This example compares 2 dimensionality reduction strategies: - univariate feature selection with Anova - feature agglomeration with Ward hierarchical clustering Both methods are compared in a regression problem using a BayesianRidge as supervised estimator. """ # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause print(__doc__) import shutil import tempfile import numpy as np import matplotlib.pyplot as plt from scipy import linalg, ndimage from sklearn.feature_extraction.image import grid_to_graph from sklearn import feature_selection from sklearn.cluster import FeatureAgglomeration from sklearn.linear_model import BayesianRidge from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.externals.joblib import Memory from sklearn.cross_validation import KFold ############################################################################### # Generate data n_samples = 200 size = 40 # image size roi_size = 15 snr = 5. np.random.seed(0) mask = np.ones([size, size], dtype=np.bool) coef = np.zeros((size, size)) coef[0:roi_size, 0:roi_size] = -1. coef[-roi_size:, -roi_size:] = 1. X = np.random.randn(n_samples, size ** 2) for x in X: # smooth data x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel() X -= X.mean(axis=0) X /= X.std(axis=0) y = np.dot(X, coef.ravel()) noise = np.random.randn(y.shape[0]) noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2) y += noise_coef * noise # add noise ############################################################################### # Compute the coefs of a Bayesian Ridge with GridSearch cv = KFold(len(y), 2) # cross-validation generator for model selection ridge = BayesianRidge() cachedir = tempfile.mkdtemp() mem = Memory(cachedir=cachedir, verbose=1) # Ward agglomeration followed by BayesianRidge connectivity = grid_to_graph(n_x=size, n_y=size) ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity, memory=mem) clf = Pipeline([('ward', ward), ('ridge', ridge)]) # Select the optimal number of parcels with grid search clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_agglomeration_ = coef_.reshape(size, size) # Anova univariate feature selection followed by BayesianRidge f_regression = mem.cache(feature_selection.f_regression) # caching function anova = feature_selection.SelectPercentile(f_regression) clf = Pipeline([('anova', anova), ('ridge', ridge)]) # Select the optimal percentage of features with grid search clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_selection_ = coef_.reshape(size, size) ############################################################################### # Inverse the transformation to plot the results on an image plt.close('all') plt.figure(figsize=(7.3, 2.7)) plt.subplot(1, 3, 1) plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("True weights") plt.subplot(1, 3, 2) plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Selection") plt.subplot(1, 3, 3) plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Agglomeration") plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26) plt.show() # Attempt to remove the temporary cachedir, but don't worry if it fails shutil.rmtree(cachedir, ignore_errors=True)
bsd-3-clause
nansencenter/nansat
nansat/mappers/mapper_obpg_l3.py
1
8499
# Name: mapper_obpg_l3 # Purpose: Mapping for L3 data from the OBPG web-site # Authors: Anton Korosov # Licence: This file is part of NANSAT. You can redistribute it or modify # under the terms of GNU General Public License, v.3 # http://www.gnu.org/licenses/gpl-3.0.html from __future__ import unicode_literals, absolute_import, division, print_function import datetime import os.path import glob import numpy as np from nansat.utils import gdal, ogr from nansat.vrt import VRT from nansat.nsr import NSR from nansat.exceptions import WrongMapperError class Mapper(VRT): ''' Mapper for Level-3 Standard Mapped Image from http://oceancolor.gsfc.nasa.gov''' # detect wkv from metadata 'Parameter' param2wkv = {'Chlorophyll a concentration': 'mass_concentration_of_chlorophyll_a_in_sea_water', 'Diffuse attenuation coefficient': 'volume_attenuation_coefficient_of_downwelling_' 'radiative_flux_in_sea_water', 'Remote sensing reflectance': 'surface_ratio_of_upwelling_radiance_emerging_from_' 'sea_water_to_downwelling_radiative_flux_in_air', 'CDOM Index': 'volume_absorption_coefficient_of_radiative_flux_in_sea_water_due_' 'to_dissolved_organic_matter', 'Sea Surface Salinity': 'sea_surface_salinity', 'Sea Surface Temperature': 'sea_surface_temperature', 'Instantaneous Photosynthetically Available Radiation': 'instantaneous_photosynthetically_available_radiation', 'Particle backscatter at 443 nm': 'volume_backscattering_coefficient_of_radiative_flux_in_sea_water_due_to_suspended_particles', 'Chlorophyll a concentration, Garver-Siegel-Maritorena Model': 'mass_concentration_of_chlorophyll_a_in_sea_water', 'Photosynthetically Available Radiation': 'downwelling_photosynthetic_photon_radiance_in_sea_water', 'Instantaneous Photosynthetically Available Radiation': 'instantaneous_downwelling_photosynthetic_photon_radiance_in_sea_water', } def __init__(self, filename, gdalDataset, gdalMetadata, **kwargs): ''' OBPG L3 VRT ''' try: assert 'Level-3 Standard Mapped Image' in gdalMetadata['Title'] except: raise WrongMapperError # get list of similar (same date) files in the directory iDir, iFile = os.path.split(filename) iFileName, iFileExt = os.path.splitext(iFile) simFilesMask = os.path.join(iDir, iFileName) simFiles = glob.glob(simFilesMask + iFileExt[0:6] + '*') #print 'simFilesMask, simFiles', simFilesMask, simFiles metaDict = [] for simFile in simFiles: #print 'simFile', simFile # open file, get metadata and get parameter name simSupDataset = gdal.Open(simFile) if simSupDataset is None: # skip this similar file #print 'No dataset: %s not a supported SMI file' % simFile continue # get subdatasets from the similar file simSubDatasets = simSupDataset.GetSubDatasets() if len(simSubDatasets) > 0: for simSubDataset in simSubDatasets: #print 'simSubDataset', simSubDataset if 'l3m_data' in simSubDataset[1]: # get SourceFilename from subdataset tmpSourceFilename = simSubDataset[0] break else: # get SourceFilename from dataset tmpSourceFilename = simFile # open subdataset with GDAL #print 'tmpSourceFilename', tmpSourceFilename tmpGdalDataset = gdal.Open(tmpSourceFilename) try: # get metadata, get 'Parameter' tmpGdalMetadata = tmpGdalDataset.GetMetadata() simParameter = tmpGdalMetadata['Parameter'] except: print('No parameter: %s not a supported SMI file') continue else: # set params of the similar file simSourceFilename = tmpSourceFilename simGdalDataset = tmpGdalDataset simGdalMetadata = tmpGdalMetadata # get WKV from the similar file #print 'simParameter', simParameter for param in self.param2wkv: #print 'param', param if param in simParameter: simWKV = self.param2wkv[param] break # generate entry to metaDict metaEntry = {'src': {'SourceFilename': simSourceFilename, 'SourceBand': 1, 'ScaleRatio': float(simGdalMetadata['Slope']), 'ScaleOffset': float(simGdalMetadata['Intercept'])}, 'dst': {'wkv': simWKV}} # add wavelength and BandName if ' at ' in simParameter and ' nm' in simParameter: simWavelength = simParameter.split(' at ')[1].split(' nm')[0] metaEntry['dst']['suffix'] = simWavelength metaEntry['dst']['wavelength'] = simWavelength # add band with Rrsw metaEntry2 = None if simWKV == 'surface_ratio_of_upwelling_radiance_emerging_from_sea_water_to_downwelling_radiative_flux_in_air': metaEntry2 = {'src': [metaEntry['src']]} metaEntry2['dst'] = {'wkv': 'surface_ratio_of_upwelling_radiance_emerging_from_sea_water_to_downwelling_radiative_flux_in_water', 'suffix': simWavelength, 'wavelength': simWavelength, 'PixelFunctionType': 'NormReflectanceToRemSensReflectance', } # append entry to metaDict metaDict.append(metaEntry) if metaEntry2 is not None: metaDict.append(metaEntry2) #get array with data and make 'mask' a = simGdalDataset.ReadAsArray() mask = np.zeros(a.shape, 'uint8') + 64 mask[a < -32000] = 1 self.band_vrts = {'mask': VRT(array=mask)} metaDict.append( {'src': {'SourceFilename': self.band_vrts['mask'].filename, 'SourceBand': 1}, 'dst': {'name': 'mask'}}) # create empty VRT dataset with geolocation only # print 'simGdalMetadata', simGdalMetadata latitudeStep = float(simGdalMetadata. get('Latitude Step', simGdalMetadata.get('Latitude_Step', 1))) longitudeStep = float(simGdalMetadata. get('Longitude Step', simGdalMetadata.get('Longitude_Step', 1))) numberOfColumns = int(simGdalMetadata. get('Number of Columns', simGdalMetadata.get('Number_of_Columns', 1))) numberOfLines = int(simGdalMetadata. get('Number of Lines', simGdalMetadata.get('Number_of_Lines', 1))) #longitudeStep = float(simGdalMetadata['Longitude Step']) # x_size, y_size, geo_transform, projection, gcps=None, gcp_projection='', **kwargs self._init_from_dataset_params(numberOfColumns, numberOfLines, (-180.0, longitudeStep, 0.0, 90.0, 0.0, -longitudeStep), NSR().wkt) # add bands with metadata and corresponding values to the empty VRT self.create_bands(metaDict) # Add valid time startYear = int(simGdalMetadata.get('Start Year', simGdalMetadata. get('Start_Year', 1))) startDay = int(simGdalMetadata.get('Start Day', simGdalMetadata. get('Start)Day', 1))) self.dataset.SetMetadataItem('time_coverage_start', (datetime.datetime(startYear, 1, 1) + datetime.timedelta(startDay)).isoformat())
gpl-3.0
mlskit/astromlskit
FRONTEND/svmfront.py
2
8728
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'svmui.ui' # # Created: Sun Mar 22 21:45:22 2015 # by: PyQt4 UI code generator 4.10.4 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui from sklearn import svm import numpy as np try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_Form(object): def setupUi(self, Form): Form.setObjectName(_fromUtf8("Form")) Form.resize(253, 569) self.groupBox = QtGui.QGroupBox(Form) self.groupBox.setGeometry(QtCore.QRect(10, 10, 221, 61)) self.groupBox.setObjectName(_fromUtf8("groupBox")) self.lineEdit = QtGui.QLineEdit(self.groupBox) self.lineEdit.setGeometry(QtCore.QRect(40, 20, 141, 20)) self.lineEdit.setObjectName(_fromUtf8("lineEdit")) self.groupBox_4 = QtGui.QGroupBox(Form) self.groupBox_4.setGeometry(QtCore.QRect(10, 70, 231, 381)) self.groupBox_4.setObjectName(_fromUtf8("groupBox_4")) self.label_2 = QtGui.QLabel(self.groupBox_4) self.label_2.setGeometry(QtCore.QRect(60, 20, 81, 20)) self.label_2.setObjectName(_fromUtf8("label_2")) self.spinBox_2 = QtGui.QSpinBox(self.groupBox_4) self.spinBox_2.setGeometry(QtCore.QRect(150, 20, 42, 22)) self.spinBox_2.setObjectName(_fromUtf8("spinBox_2")) self.label_3 = QtGui.QLabel(self.groupBox_4) self.label_3.setGeometry(QtCore.QRect(60, 50, 81, 20)) self.label_3.setObjectName(_fromUtf8("label_3")) self.spinBox_3 = QtGui.QSpinBox(self.groupBox_4) self.spinBox_3.setGeometry(QtCore.QRect(150, 50, 42, 22)) self.spinBox_3.setObjectName(_fromUtf8("spinBox_3")) self.label_4 = QtGui.QLabel(self.groupBox_4) self.label_4.setGeometry(QtCore.QRect(60, 70, 81, 20)) self.label_4.setObjectName(_fromUtf8("label_4")) self.spinBox_4 = QtGui.QSpinBox(self.groupBox_4) self.spinBox_4.setGeometry(QtCore.QRect(150, 70, 42, 22)) self.spinBox_4.setObjectName(_fromUtf8("spinBox_4")) self.label_5 = QtGui.QLabel(self.groupBox_4) self.label_5.setGeometry(QtCore.QRect(60, 100, 81, 20)) self.label_5.setObjectName(_fromUtf8("label_5")) self.spinBox_5 = QtGui.QSpinBox(self.groupBox_4) self.spinBox_5.setGeometry(QtCore.QRect(150, 100, 42, 22)) self.spinBox_5.setObjectName(_fromUtf8("spinBox_5")) self.label_6 = QtGui.QLabel(self.groupBox_4) self.label_6.setGeometry(QtCore.QRect(60, 130, 81, 20)) self.label_6.setObjectName(_fromUtf8("label_6")) self.spinBox_6 = QtGui.QSpinBox(self.groupBox_4) self.spinBox_6.setGeometry(QtCore.QRect(150, 130, 42, 22)) self.spinBox_6.setObjectName(_fromUtf8("spinBox_6")) self.label_7 = QtGui.QLabel(self.groupBox_4) self.label_7.setGeometry(QtCore.QRect(60, 160, 81, 20)) self.label_7.setObjectName(_fromUtf8("label_7")) self.spinBox_7 = QtGui.QSpinBox(self.groupBox_4) self.spinBox_7.setGeometry(QtCore.QRect(150, 160, 42, 22)) self.spinBox_7.setObjectName(_fromUtf8("spinBox_7")) self.label_8 = QtGui.QLabel(self.groupBox_4) self.label_8.setGeometry(QtCore.QRect(60, 190, 81, 20)) self.label_8.setObjectName(_fromUtf8("label_8")) self.label_9 = QtGui.QLabel(self.groupBox_4) self.label_9.setGeometry(QtCore.QRect(60, 220, 81, 20)) self.label_9.setObjectName(_fromUtf8("label_9")) self.spinBox_9 = QtGui.QSpinBox(self.groupBox_4) self.spinBox_9.setGeometry(QtCore.QRect(150, 220, 42, 22)) self.spinBox_9.setObjectName(_fromUtf8("spinBox_9")) self.spinBox_10 = QtGui.QSpinBox(self.groupBox_4) self.spinBox_10.setGeometry(QtCore.QRect(150, 250, 42, 22)) self.spinBox_10.setObjectName(_fromUtf8("spinBox_10")) self.label_10 = QtGui.QLabel(self.groupBox_4) self.label_10.setGeometry(QtCore.QRect(60, 250, 81, 20)) self.label_10.setObjectName(_fromUtf8("label_10")) self.spinBox_11 = QtGui.QSpinBox(self.groupBox_4) self.spinBox_11.setGeometry(QtCore.QRect(150, 280, 42, 22)) self.spinBox_11.setObjectName(_fromUtf8("spinBox_11")) self.label_11 = QtGui.QLabel(self.groupBox_4) self.label_11.setGeometry(QtCore.QRect(60, 280, 81, 20)) self.label_11.setObjectName(_fromUtf8("label_11")) self.checkBox_6 = QtGui.QCheckBox(self.groupBox_4) self.checkBox_6.setGeometry(QtCore.QRect(60, 340, 181, 17)) self.checkBox_6.setObjectName(_fromUtf8("checkBox_6")) self.checkBox_7 = QtGui.QCheckBox(self.groupBox_4) self.checkBox_7.setGeometry(QtCore.QRect(60, 310, 181, 17)) self.checkBox_7.setObjectName(_fromUtf8("checkBox_7")) self.comboBox = QtGui.QComboBox(self.groupBox_4) self.comboBox.setGeometry(QtCore.QRect(150, 190, 69, 22)) self.comboBox.setObjectName(_fromUtf8("comboBox")) self.comboBox.addItem(_fromUtf8("")) self.comboBox.addItem(_fromUtf8("")) self.pushButton = QtGui.QPushButton(Form) self.pushButton.setGeometry(QtCore.QRect(50, 470, 161, 23)) self.pushButton.setObjectName(_fromUtf8("pushButton")) self.pushButton.clicked.connect(self.takeinput) self.pushButton_3 = QtGui.QPushButton(Form) self.pushButton_3.setGeometry(QtCore.QRect(50, 530, 161, 23)) self.pushButton_3.setObjectName(_fromUtf8("pushButton_3")) self.pushButton_3.clicked.connect(self.startsvm) self.pushButton_2 = QtGui.QPushButton(Form) self.pushButton_2.setGeometry(QtCore.QRect(50, 500, 161, 23)) self.pushButton_2.setObjectName(_fromUtf8("pushButton_2")) self.pushButton_2.clicked.connect(self.taketest) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def startsvm(self): clf=svm.SVC() clf.fit(self.tr,self.classlabels) for i in self.te: print "test record:",i,"classlabel:",clf.predict(i) def takeinput(self): fname = QtGui.QFileDialog.getOpenFileName(None, 'Open file', 'C:') print type(fname) import pandas as pd df = pd.read_csv(str(fname), sep=",") x=list(df[list(df)[0]]) y=list(df[list(df)[1]]) self.classlabels=list(df[list(df)[2]]) print self.classlabels self.tr=(zip(x,y)) def taketest(self): fname = QtGui.QFileDialog.getOpenFileName(None, 'Open file', 'C:') print type(fname) import pandas as pd df = pd.read_csv(str(fname), sep=",") x=list(df[list(df)[0]]) y=list(df[list(df)[1]]) #print x,y self.te=(zip(x,y)) #print (self.te) #print len(np.array(self.te).shape) def retranslateUi(self, Form): Form.setWindowTitle(_translate("Form", "Form", None)) self.groupBox.setTitle(_translate("Form", "Learner/Classifier Name", None)) self.lineEdit.setText(_translate("Form", "Support vector machines", None)) self.groupBox_4.setTitle(_translate("Form", "parameters", None)) self.label_2.setText(_translate("Form", "C", None)) self.label_3.setText(_translate("Form", "cache_size", None)) self.label_4.setText(_translate("Form", "class_weight", None)) self.label_5.setText(_translate("Form", "coeff0", None)) self.label_6.setText(_translate("Form", "degree", None)) self.label_7.setText(_translate("Form", "gamma", None)) self.label_8.setText(_translate("Form", "kernel", None)) self.label_9.setText(_translate("Form", "probability", None)) self.label_10.setText(_translate("Form", "tol", None)) self.label_11.setText(_translate("Form", "randomstate", None)) self.checkBox_6.setText(_translate("Form", "verbose", None)) self.checkBox_7.setText(_translate("Form", "shrinking", None)) self.comboBox.setItemText(0, _translate("Form", "rbf", None)) self.comboBox.setItemText(1, _translate("Form", "linear", None)) self.pushButton.setText(_translate("Form", "Train File", None)) self.pushButton_3.setText(_translate("Form", "Start", None)) self.pushButton_2.setText(_translate("Form", "Test file", None))
gpl-3.0
lisa-lab/pylearn2
pylearn2/datasets/tests/test_mnist.py
45
2298
from pylearn2.datasets.mnist import MNIST from pylearn2.space import IndexSpace, VectorSpace import unittest from pylearn2.testing.skip import skip_if_no_data import numpy as np class TestMNIST(unittest.TestCase): def setUp(self): skip_if_no_data() self.train = MNIST(which_set='train') self.test = MNIST(which_set='test') def test_range(self): """Tests that the data spans [0,1]""" for X in [self.train.X, self.test.X]: assert X.min() == 0.0 assert X.max() == 1.0 def test_topo(self): """Tests that a topological batch has 4 dimensions""" topo = self.train.get_batch_topo(1) assert topo.ndim == 4 def test_topo_c01b(self): """ Tests that a topological batch with axes ('c',0,1,'b') can be dimshuffled back to match the standard ('b',0,1,'c') format. """ batch_size = 100 c01b_test = MNIST(which_set='test', axes=('c', 0, 1, 'b')) c01b_X = c01b_test.X[0:batch_size, :] c01b = c01b_test.get_topological_view(c01b_X) assert c01b.shape == (1, 28, 28, batch_size) b01c = c01b.transpose(3, 1, 2, 0) b01c_X = self.test.X[0:batch_size, :] assert c01b_X.shape == b01c_X.shape assert np.all(c01b_X == b01c_X) b01c_direct = self.test.get_topological_view(b01c_X) assert b01c_direct.shape == b01c.shape assert np.all(b01c_direct == b01c) def test_y_index_space(self): """ Tests that requesting the targets to be in IndexSpace and iterating over them works """ data_specs = (IndexSpace(max_labels=10, dim=1), 'targets') it = self.test.iterator(mode='sequential', data_specs=data_specs, batch_size=100) for y in it: pass def test_y_vector_space(self): """ Tests that requesting the targets to be in VectorSpace and iterating over them works """ data_specs = (VectorSpace(dim=10), 'targets') it = self.test.iterator(mode='sequential', data_specs=data_specs, batch_size=100) for y in it: pass
bsd-3-clause
ppries/tensorflow
tensorflow/contrib/metrics/python/kernel_tests/histogram_ops_test.py
12
9744
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for histogram_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.contrib.metrics.python.ops import histogram_ops class Strict1dCumsumTest(tf.test.TestCase): """Test this private function.""" def test_empty_tensor_returns_empty(self): with self.test_session(): tensor = tf.constant([]) result = histogram_ops._strict_1d_cumsum(tensor, 0) expected = tf.constant([]) np.testing.assert_array_equal(expected.eval(), result.eval()) def test_length_1_tensor_works(self): with self.test_session(): tensor = tf.constant([3], dtype=tf.float32) result = histogram_ops._strict_1d_cumsum(tensor, 1) expected = tf.constant([3], dtype=tf.float32) np.testing.assert_array_equal(expected.eval(), result.eval()) def test_length_3_tensor_works(self): with self.test_session(): tensor = tf.constant([1, 2, 3], dtype=tf.float32) result = histogram_ops._strict_1d_cumsum(tensor, 3) expected = tf.constant([1, 3, 6], dtype=tf.float32) np.testing.assert_array_equal(expected.eval(), result.eval()) class AUCUsingHistogramTest(tf.test.TestCase): def setUp(self): self.rng = np.random.RandomState(0) def test_empty_labels_and_scores_gives_nan_auc(self): with self.test_session(): labels = tf.constant([], shape=[0], dtype=tf.bool) scores = tf.constant([], shape=[0], dtype=tf.float32) score_range = [0, 1.] auc, update_op = tf.contrib.metrics.auc_using_histogram(labels, scores, score_range) tf.local_variables_initializer().run() update_op.run() self.assertTrue(np.isnan(auc.eval())) def test_perfect_scores_gives_auc_1(self): self._check_auc(nbins=100, desired_auc=1.0, score_range=[0, 1.], num_records=50, frac_true=0.5, atol=0.05, num_updates=1) def test_terrible_scores_gives_auc_0(self): self._check_auc(nbins=100, desired_auc=0.0, score_range=[0, 1.], num_records=50, frac_true=0.5, atol=0.05, num_updates=1) def test_many_common_conditions(self): for nbins in [50]: for desired_auc in [0.3, 0.5, 0.8]: for score_range in [[-1, 1], [-10, 0]]: for frac_true in [0.3, 0.8]: # Tests pass with atol = 0.03. Moved up to 0.05 to avoid flakes. self._check_auc(nbins=nbins, desired_auc=desired_auc, score_range=score_range, num_records=100, frac_true=frac_true, atol=0.05, num_updates=50) def test_large_class_imbalance_still_ok(self): # With probability frac_true ** num_records, each batch contains only True # records. In this case, ~ 95%. # Tests pass with atol = 0.02. Increased to 0.05 to avoid flakes. self._check_auc(nbins=100, desired_auc=0.8, score_range=[-1, 1.], num_records=10, frac_true=0.995, atol=0.05, num_updates=1000) def test_super_accuracy_with_many_bins_and_records(self): # Test passes with atol = 0.0005. Increased atol to avoid flakes. self._check_auc(nbins=1000, desired_auc=0.75, score_range=[0, 1.], num_records=1000, frac_true=0.5, atol=0.005, num_updates=100) def _check_auc(self, nbins=100, desired_auc=0.75, score_range=None, num_records=50, frac_true=0.5, atol=0.05, num_updates=10): """Check auc accuracy against synthetic data. Args: nbins: nbins arg from contrib.metrics.auc_using_histogram. desired_auc: Number in [0, 1]. The desired auc for synthetic data. score_range: 2-tuple, (low, high), giving the range of the resultant scores. Defaults to [0, 1.]. num_records: Positive integer. The number of records to return. frac_true: Number in (0, 1). Expected fraction of resultant labels that will be True. This is just in expectation...more or less may actually be True. atol: Absolute tolerance for final AUC estimate. num_updates: Update internal histograms this many times, each with a new batch of synthetic data, before computing final AUC. Raises: AssertionError: If resultant AUC is not within atol of theoretical AUC from synthetic data. """ score_range = [0, 1.] or score_range with self.test_session(): labels = tf.placeholder(tf.bool, shape=[num_records]) scores = tf.placeholder(tf.float32, shape=[num_records]) auc, update_op = tf.contrib.metrics.auc_using_histogram(labels, scores, score_range, nbins=nbins) tf.local_variables_initializer().run() # Updates, then extract auc. for _ in range(num_updates): labels_a, scores_a = synthetic_data(desired_auc, score_range, num_records, self.rng, frac_true) update_op.run(feed_dict={labels: labels_a, scores: scores_a}) labels_a, scores_a = synthetic_data(desired_auc, score_range, num_records, self.rng, frac_true) # Fetch current auc, and verify that fetching again doesn't change it. auc_eval = auc.eval() self.assertAlmostEqual(auc_eval, auc.eval(), places=5) msg = ('nbins: %s, desired_auc: %s, score_range: %s, ' 'num_records: %s, frac_true: %s, num_updates: %s') % (nbins, desired_auc, score_range, num_records, frac_true, num_updates) np.testing.assert_allclose(desired_auc, auc_eval, atol=atol, err_msg=msg) def synthetic_data(desired_auc, score_range, num_records, rng, frac_true): """Create synthetic boolean_labels and scores with adjustable auc. Args: desired_auc: Number in [0, 1], the theoretical AUC of resultant data. score_range: 2-tuple, (low, high), giving the range of the resultant scores num_records: Positive integer. The number of records to return. rng: Initialized np.random.RandomState random number generator frac_true: Number in (0, 1). Expected fraction of resultant labels that will be True. This is just in expectation...more or less may actually be True. Returns: boolean_labels: np.array, dtype=bool. scores: np.array, dtype=np.float32 """ # We prove here why the method (below) for computing AUC works. Of course we # also checked this against sklearn.metrics.roc_auc_curve. # # First do this for score_range = [0, 1], then rescale. # WLOG assume AUC >= 0.5, otherwise we will solve for AUC >= 0.5 then swap # the labels. # So for AUC in [0, 1] we create False and True labels # and corresponding scores drawn from: # F ~ U[0, 1], T ~ U[x, 1] # We have, # AUC # = P[T > F] # = P[T > F | F < x] P[F < x] + P[T > F | F > x] P[F > x] # = (1 * x) + (0.5 * (1 - x)). # Inverting, we have: # x = 2 * AUC - 1, when AUC >= 0.5. assert 0 <= desired_auc <= 1 assert 0 < frac_true < 1 if desired_auc < 0.5: flip_labels = True desired_auc = 1 - desired_auc frac_true = 1 - frac_true else: flip_labels = False x = 2 * desired_auc - 1 labels = rng.binomial(1, frac_true, size=num_records).astype(bool) num_true = labels.sum() num_false = num_records - labels.sum() # Draw F ~ U[0, 1], and T ~ U[x, 1] false_scores = rng.rand(num_false) true_scores = x + rng.rand(num_true) * (1 - x) # Reshape [0, 1] to score_range. def reshape(scores): return score_range[0] + scores * (score_range[1] - score_range[0]) false_scores = reshape(false_scores) true_scores = reshape(true_scores) # Place into one array corresponding with the labels. scores = np.nan * np.ones(num_records, dtype=np.float32) scores[labels] = true_scores scores[~labels] = false_scores if flip_labels: labels = ~labels return labels, scores if __name__ == '__main__': tf.test.main()
apache-2.0
SU-ECE-17-7/hotspotter
_graveyard/oldhotspotter/ideas/matching_graph.py
2
5495
N = 2000 #min_image_threshold Beta = 1.5 # def matchgraph(hs): cm, vm = hs.get_managers("cm","vm") # Load Images cx_list = cm.all_valid_cxs() num_cx = len(cx_list) # number of chips (> 10,000) # Train Default Bag-of-Words Model V = vm.train_model(cx_list) # The Set of Bag-of-Words Vectors (normalized, tf-idf preweighted) if len(V) < 2: raise Exception('Cannot build matchgraph') # Preallocate Intermediate Variables dims = len(V[0]) # dimensionality of bag of words (>1,000,000,000) W = eye(len(cx_list)) # The learned weighting of word histogram similarity Sim = np.zeros((num_cx,num_cx), dtype=uint8) svm_train_examples = np.zeros((num_cx,num_cx, dims), dtype=float) # Perform Batch Query for x_b, a in enumerate(V): # a = query vector for x_a, b in enumerate(V): # b = database vector svm_train_examples[x_a, x_b, :] = qvec * dvec # LEARN! Sim[x_a, x_b] = np.transpose(qvec).dot(W).dot(dvec) tops_x = Sim[x_a, :].argsort()[::,-1] # sorted indexes spatial_rerank(Sim, tops_x) # Train SVM wT = np.transpose(w) def hinge_loss(y, x, w): val = 1 - y * wT.dot(x) return max(0, val) def svm_cost(y, x, w, C): from sklearn import svm # C is regularization variable training_pairs = rand.select(cx_list, 'pairwise', replacement=False) .5 * wT.dot(w) + C * sum( [hinge_loss(y[a,b], x[a,b], w) for (a,b) in training_pairs ] )**2 C = param(1, min=0, max=inf) kernel = param('''Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a callable is given it is used to precompute the kernel matrix.''', 'linear', choices=['linear','poly','rbf','sigmoid','precomputed']) degree = param('''Degree of kernel function. It is significant only in ‘poly’ and ‘sigmoid''', 3, sigifeq=(kernel,['poly','sigmoid'])) gamma = param('''Kernel coefficient for ‘rbf’ and ‘poly’. If gamma is 0.0 then 1/n_features will be used instead.''', 0, sigifeq=(kernel,['poly', rbf])) coef0 = param('''Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.''', 0, sigifeq=(kernel,['poly','sigmoid'])) probability = param('''Whether to enable probability estimates. This must be enabled prior to calling predict_proba.''', False) tol = param(''' Tolerance for stopping criterion.''', 1e-3) shrinking = param(True, 'use shrinking heuristic') cache_size = param('', 0) class_weight = param('''Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The ‘auto’ mode uses the values of y to automatically adjust weights inversely proportional to class frequencies.''', 'auto', {dict, 'auto'}) max_iter = param('''Hard limit on iterations within solver, or -1 for no limit.''', -1) import numpy as np X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) from sklearn.svm import SVC clf = SVC() clf.fit(X, y) SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0, kernel='rbf', max_iter=-1, probability=False, shrinking=True, tol=0.001, verbose=False) print(clf.predict([[-0.8, -1]])) ''' http://scikit-learn.org/dev/modules/generated/sklearn.svm.SVC.html decision_function(X) Distance of the samples X to the separating hyperplane. fit(X, y[, sample_weight]) Fit the SVM model according to the given training data. get_params([deep]) Get parameters for the estimator predict(X) Perform classification on samples in X. predict_log_proba(X) Compute log probabilities of possible outcomes for samples in X. predict_proba(X) Compute probabilities of possible outcomes for samples in X. score(X, y) Returns the mean accuracy on the given test data and labels. set_params(**params) Set the parameters of the estimator. ''' svm.SVC( C=1, kernel=kernel() # 3.2 Iterative Learning and Matching # w = with vanilla tf-idf Rank[a,b] # While: True # Compute pairwise similarity of all images using weights w # Foreach image rerank a shortlist of its most similar matches # if OPTION_1: # train_data, train_labels = # Learn w using Linear SVM # # Two Stratagies: # Match images with similarity above some threshold # Match images to their #1 Rank w = minimize( ) # Get Pairwise Matches qres_list = vm.batch_query(cx_list, method="TFIDF") qres_list.matching MatchingGraph = np.matrix(2,3) for res in qres_list: qcx = res.qcx fm.
apache-2.0
Adai0808/scikit-learn
sklearn/random_projection.py
206
22098
# -*- coding: utf8 """Random Projection transformers Random Projections are a simple and computationally efficient way to reduce the dimensionality of the data by trading a controlled amount of accuracy (as additional variance) for faster processing times and smaller model sizes. The dimensions and distribution of Random Projections matrices are controlled so as to preserve the pairwise distances between any two samples of the dataset. The main theoretical result behind the efficiency of random projection is the `Johnson-Lindenstrauss lemma (quoting Wikipedia) <http://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma>`_: In mathematics, the Johnson-Lindenstrauss lemma is a result concerning low-distortion embeddings of points from high-dimensional into low-dimensional Euclidean space. The lemma states that a small set of points in a high-dimensional space can be embedded into a space of much lower dimension in such a way that distances between the points are nearly preserved. The map used for the embedding is at least Lipschitz, and can even be taken to be an orthogonal projection. """ # Authors: Olivier Grisel <olivier.grisel@ensta.org>, # Arnaud Joly <a.joly@ulg.ac.be> # License: BSD 3 clause from __future__ import division import warnings from abc import ABCMeta, abstractmethod import numpy as np from numpy.testing import assert_equal import scipy.sparse as sp from .base import BaseEstimator, TransformerMixin from .externals import six from .externals.six.moves import xrange from .utils import check_random_state from .utils.extmath import safe_sparse_dot from .utils.random import sample_without_replacement from .utils.validation import check_array, NotFittedError from .utils import DataDimensionalityWarning __all__ = ["SparseRandomProjection", "GaussianRandomProjection", "johnson_lindenstrauss_min_dim"] def johnson_lindenstrauss_min_dim(n_samples, eps=0.1): """Find a 'safe' number of components to randomly project to The distortion introduced by a random projection `p` only changes the distance between two points by a factor (1 +- eps) in an euclidean space with good probability. The projection `p` is an eps-embedding as defined by: (1 - eps) ||u - v||^2 < ||p(u) - p(v)||^2 < (1 + eps) ||u - v||^2 Where u and v are any rows taken from a dataset of shape [n_samples, n_features], eps is in ]0, 1[ and p is a projection by a random Gaussian N(0, 1) matrix with shape [n_components, n_features] (or a sparse Achlioptas matrix). The minimum number of components to guarantee the eps-embedding is given by: n_components >= 4 log(n_samples) / (eps^2 / 2 - eps^3 / 3) Note that the number of dimensions is independent of the original number of features but instead depends on the size of the dataset: the larger the dataset, the higher is the minimal dimensionality of an eps-embedding. Read more in the :ref:`User Guide <johnson_lindenstrauss>`. Parameters ---------- n_samples : int or numpy array of int greater than 0, Number of samples. If an array is given, it will compute a safe number of components array-wise. eps : float or numpy array of float in ]0,1[, optional (default=0.1) Maximum distortion rate as defined by the Johnson-Lindenstrauss lemma. If an array is given, it will compute a safe number of components array-wise. Returns ------- n_components : int or numpy array of int, The minimal number of components to guarantee with good probability an eps-embedding with n_samples. Examples -------- >>> johnson_lindenstrauss_min_dim(1e6, eps=0.5) 663 >>> johnson_lindenstrauss_min_dim(1e6, eps=[0.5, 0.1, 0.01]) array([ 663, 11841, 1112658]) >>> johnson_lindenstrauss_min_dim([1e4, 1e5, 1e6], eps=0.1) array([ 7894, 9868, 11841]) References ---------- .. [1] http://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma .. [2] Sanjoy Dasgupta and Anupam Gupta, 1999, "An elementary proof of the Johnson-Lindenstrauss Lemma." http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.3654 """ eps = np.asarray(eps) n_samples = np.asarray(n_samples) if np.any(eps <= 0.0) or np.any(eps >= 1): raise ValueError( "The JL bound is defined for eps in ]0, 1[, got %r" % eps) if np.any(n_samples) <= 0: raise ValueError( "The JL bound is defined for n_samples greater than zero, got %r" % n_samples) denominator = (eps ** 2 / 2) - (eps ** 3 / 3) return (4 * np.log(n_samples) / denominator).astype(np.int) def _check_density(density, n_features): """Factorize density check according to Li et al.""" if density == 'auto': density = 1 / np.sqrt(n_features) elif density <= 0 or density > 1: raise ValueError("Expected density in range ]0, 1], got: %r" % density) return density def _check_input_size(n_components, n_features): """Factorize argument checking for random matrix generation""" if n_components <= 0: raise ValueError("n_components must be strictly positive, got %d" % n_components) if n_features <= 0: raise ValueError("n_features must be strictly positive, got %d" % n_components) def gaussian_random_matrix(n_components, n_features, random_state=None): """ Generate a dense Gaussian random matrix. The components of the random matrix are drawn from N(0, 1.0 / n_components). Read more in the :ref:`User Guide <gaussian_random_matrix>`. Parameters ---------- n_components : int, Dimensionality of the target projection space. n_features : int, Dimensionality of the original source space. random_state : int, RandomState instance or None (default=None) Control the pseudo random number generator used to generate the matrix at fit time. Returns ------- components : numpy array of shape [n_components, n_features] The generated Gaussian random matrix. See Also -------- GaussianRandomProjection sparse_random_matrix """ _check_input_size(n_components, n_features) rng = check_random_state(random_state) components = rng.normal(loc=0.0, scale=1.0 / np.sqrt(n_components), size=(n_components, n_features)) return components def sparse_random_matrix(n_components, n_features, density='auto', random_state=None): """Generalized Achlioptas random sparse matrix for random projection Setting density to 1 / 3 will yield the original matrix by Dimitris Achlioptas while setting a lower value will yield the generalization by Ping Li et al. If we note :math:`s = 1 / density`, the components of the random matrix are drawn from: - -sqrt(s) / sqrt(n_components) with probability 1 / 2s - 0 with probability 1 - 1 / s - +sqrt(s) / sqrt(n_components) with probability 1 / 2s Read more in the :ref:`User Guide <sparse_random_matrix>`. Parameters ---------- n_components : int, Dimensionality of the target projection space. n_features : int, Dimensionality of the original source space. density : float in range ]0, 1] or 'auto', optional (default='auto') Ratio of non-zero component in the random projection matrix. If density = 'auto', the value is set to the minimum density as recommended by Ping Li et al.: 1 / sqrt(n_features). Use density = 1 / 3.0 if you want to reproduce the results from Achlioptas, 2001. random_state : integer, RandomState instance or None (default=None) Control the pseudo random number generator used to generate the matrix at fit time. Returns ------- components: numpy array or CSR matrix with shape [n_components, n_features] The generated Gaussian random matrix. See Also -------- SparseRandomProjection gaussian_random_matrix References ---------- .. [1] Ping Li, T. Hastie and K. W. Church, 2006, "Very Sparse Random Projections". http://www.stanford.edu/~hastie/Papers/Ping/KDD06_rp.pdf .. [2] D. Achlioptas, 2001, "Database-friendly random projections", http://www.cs.ucsc.edu/~optas/papers/jl.pdf """ _check_input_size(n_components, n_features) density = _check_density(density, n_features) rng = check_random_state(random_state) if density == 1: # skip index generation if totally dense components = rng.binomial(1, 0.5, (n_components, n_features)) * 2 - 1 return 1 / np.sqrt(n_components) * components else: # Generate location of non zero elements indices = [] offset = 0 indptr = [offset] for i in xrange(n_components): # find the indices of the non-zero components for row i n_nonzero_i = rng.binomial(n_features, density) indices_i = sample_without_replacement(n_features, n_nonzero_i, random_state=rng) indices.append(indices_i) offset += n_nonzero_i indptr.append(offset) indices = np.concatenate(indices) # Among non zero components the probability of the sign is 50%/50% data = rng.binomial(1, 0.5, size=np.size(indices)) * 2 - 1 # build the CSR structure by concatenating the rows components = sp.csr_matrix((data, indices, indptr), shape=(n_components, n_features)) return np.sqrt(1 / density) / np.sqrt(n_components) * components class BaseRandomProjection(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class for random projections. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, n_components='auto', eps=0.1, dense_output=False, random_state=None): self.n_components = n_components self.eps = eps self.dense_output = dense_output self.random_state = random_state self.components_ = None self.n_components_ = None @abstractmethod def _make_random_matrix(n_components, n_features): """ Generate the random projection matrix Parameters ---------- n_components : int, Dimensionality of the target projection space. n_features : int, Dimensionality of the original source space. Returns ------- components : numpy array or CSR matrix [n_components, n_features] The generated random matrix. """ def fit(self, X, y=None): """Generate a sparse random projection matrix Parameters ---------- X : numpy array or scipy.sparse of shape [n_samples, n_features] Training set: only the shape is used to find optimal random matrix dimensions based on the theory referenced in the afore mentioned papers. y : is not used: placeholder to allow for usage in a Pipeline. Returns ------- self """ X = check_array(X, accept_sparse=['csr', 'csc']) n_samples, n_features = X.shape if self.n_components == 'auto': self.n_components_ = johnson_lindenstrauss_min_dim( n_samples=n_samples, eps=self.eps) if self.n_components_ <= 0: raise ValueError( 'eps=%f and n_samples=%d lead to a target dimension of ' '%d which is invalid' % ( self.eps, n_samples, self.n_components_)) elif self.n_components_ > n_features: raise ValueError( 'eps=%f and n_samples=%d lead to a target dimension of ' '%d which is larger than the original space with ' 'n_features=%d' % (self.eps, n_samples, self.n_components_, n_features)) else: if self.n_components <= 0: raise ValueError("n_components must be greater than 0, got %s" % self.n_components_) elif self.n_components > n_features: warnings.warn( "The number of components is higher than the number of" " features: n_features < n_components (%s < %s)." "The dimensionality of the problem will not be reduced." % (n_features, self.n_components), DataDimensionalityWarning) self.n_components_ = self.n_components # Generate a projection matrix of size [n_components, n_features] self.components_ = self._make_random_matrix(self.n_components_, n_features) # Check contract assert_equal( self.components_.shape, (self.n_components_, n_features), err_msg=('An error has occurred the self.components_ matrix has ' ' not the proper shape.')) return self def transform(self, X, y=None): """Project the data by using matrix product with the random matrix Parameters ---------- X : numpy array or scipy.sparse of shape [n_samples, n_features] The input data to project into a smaller dimensional space. y : is not used: placeholder to allow for usage in a Pipeline. Returns ------- X_new : numpy array or scipy sparse of shape [n_samples, n_components] Projected array. """ X = check_array(X, accept_sparse=['csr', 'csc']) if self.components_ is None: raise NotFittedError('No random projection matrix had been fit.') if X.shape[1] != self.components_.shape[1]: raise ValueError( 'Impossible to perform projection:' 'X at fit stage had a different number of features. ' '(%s != %s)' % (X.shape[1], self.components_.shape[1])) X_new = safe_sparse_dot(X, self.components_.T, dense_output=self.dense_output) return X_new class GaussianRandomProjection(BaseRandomProjection): """Reduce dimensionality through Gaussian random projection The components of the random matrix are drawn from N(0, 1 / n_components). Read more in the :ref:`User Guide <gaussian_random_matrix>`. Parameters ---------- n_components : int or 'auto', optional (default = 'auto') Dimensionality of the target projection space. n_components can be automatically adjusted according to the number of samples in the dataset and the bound given by the Johnson-Lindenstrauss lemma. In that case the quality of the embedding is controlled by the ``eps`` parameter. It should be noted that Johnson-Lindenstrauss lemma can yield very conservative estimated of the required number of components as it makes no assumption on the structure of the dataset. eps : strictly positive float, optional (default=0.1) Parameter to control the quality of the embedding according to the Johnson-Lindenstrauss lemma when n_components is set to 'auto'. Smaller values lead to better embedding and higher number of dimensions (n_components) in the target projection space. random_state : integer, RandomState instance or None (default=None) Control the pseudo random number generator used to generate the matrix at fit time. Attributes ---------- n_component_ : int Concrete number of components computed when n_components="auto". components_ : numpy array of shape [n_components, n_features] Random matrix used for the projection. See Also -------- SparseRandomProjection """ def __init__(self, n_components='auto', eps=0.1, random_state=None): super(GaussianRandomProjection, self).__init__( n_components=n_components, eps=eps, dense_output=True, random_state=random_state) def _make_random_matrix(self, n_components, n_features): """ Generate the random projection matrix Parameters ---------- n_components : int, Dimensionality of the target projection space. n_features : int, Dimensionality of the original source space. Returns ------- components : numpy array or CSR matrix [n_components, n_features] The generated random matrix. """ random_state = check_random_state(self.random_state) return gaussian_random_matrix(n_components, n_features, random_state=random_state) class SparseRandomProjection(BaseRandomProjection): """Reduce dimensionality through sparse random projection Sparse random matrix is an alternative to dense random projection matrix that guarantees similar embedding quality while being much more memory efficient and allowing faster computation of the projected data. If we note `s = 1 / density` the components of the random matrix are drawn from: - -sqrt(s) / sqrt(n_components) with probability 1 / 2s - 0 with probability 1 - 1 / s - +sqrt(s) / sqrt(n_components) with probability 1 / 2s Read more in the :ref:`User Guide <sparse_random_matrix>`. Parameters ---------- n_components : int or 'auto', optional (default = 'auto') Dimensionality of the target projection space. n_components can be automatically adjusted according to the number of samples in the dataset and the bound given by the Johnson-Lindenstrauss lemma. In that case the quality of the embedding is controlled by the ``eps`` parameter. It should be noted that Johnson-Lindenstrauss lemma can yield very conservative estimated of the required number of components as it makes no assumption on the structure of the dataset. density : float in range ]0, 1], optional (default='auto') Ratio of non-zero component in the random projection matrix. If density = 'auto', the value is set to the minimum density as recommended by Ping Li et al.: 1 / sqrt(n_features). Use density = 1 / 3.0 if you want to reproduce the results from Achlioptas, 2001. eps : strictly positive float, optional, (default=0.1) Parameter to control the quality of the embedding according to the Johnson-Lindenstrauss lemma when n_components is set to 'auto'. Smaller values lead to better embedding and higher number of dimensions (n_components) in the target projection space. dense_output : boolean, optional (default=False) If True, ensure that the output of the random projection is a dense numpy array even if the input and random projection matrix are both sparse. In practice, if the number of components is small the number of zero components in the projected data will be very small and it will be more CPU and memory efficient to use a dense representation. If False, the projected data uses a sparse representation if the input is sparse. random_state : integer, RandomState instance or None (default=None) Control the pseudo random number generator used to generate the matrix at fit time. Attributes ---------- n_component_ : int Concrete number of components computed when n_components="auto". components_ : CSR matrix with shape [n_components, n_features] Random matrix used for the projection. density_ : float in range 0.0 - 1.0 Concrete density computed from when density = "auto". See Also -------- GaussianRandomProjection References ---------- .. [1] Ping Li, T. Hastie and K. W. Church, 2006, "Very Sparse Random Projections". http://www.stanford.edu/~hastie/Papers/Ping/KDD06_rp.pdf .. [2] D. Achlioptas, 2001, "Database-friendly random projections", http://www.cs.ucsc.edu/~optas/papers/jl.pdf """ def __init__(self, n_components='auto', density='auto', eps=0.1, dense_output=False, random_state=None): super(SparseRandomProjection, self).__init__( n_components=n_components, eps=eps, dense_output=dense_output, random_state=random_state) self.density = density self.density_ = None def _make_random_matrix(self, n_components, n_features): """ Generate the random projection matrix Parameters ---------- n_components : int, Dimensionality of the target projection space. n_features : int, Dimensionality of the original source space. Returns ------- components : numpy array or CSR matrix [n_components, n_features] The generated random matrix. """ random_state = check_random_state(self.random_state) self.density_ = _check_density(self.density, n_features) return sparse_random_matrix(n_components, n_features, density=self.density_, random_state=random_state)
bsd-3-clause
KDB2/OpenReliability
veusz/document/loader.py
2
8303
# Copyright (C) 2014 Jeremy S. Sanders # Email: Jeremy Sanders <jeremy@jeremysanders.net> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. ############################################################################## # note: no future statements here for backward compatibility import sys import os.path import traceback import io import numpy as N from .. import qtall as qt4 from .. import setting from .. import utils from ..compat import cexec, cstr, cstrerror, cbytes, cexceptionuser from .commandinterface import CommandInterface from . import datasets # loaded lazily h5py = None def _(text, disambiguation=None, context='DocumentLoader'): """Translate text.""" return qt4.QCoreApplication.translate(context, text, disambiguation) class LoadError(RuntimeError): """Error when loading document.""" def __init__(self, text, backtrace=''): RuntimeError.__init__(self, text) self.backtrace = backtrace def bconv(s): """Sometimes h5py returns non-unicode strings, so hack to decode strings if in wrong format.""" if isinstance(s, cbytes): return s.decode('utf-8') return s def executeScript(thedoc, filename, script, callbackunsafe=None): """Execute a script for the document. This handles setting up the environment and checking for unsafe commands in the execution. filename: filename to supply in __filename__ script: text to execute callbackunsafe: should be set to a function to ask the user whether it is ok to execute any unsafe commands found. Return True if ok. User should wipe docment before calling this. """ def genexception(exc): info = sys.exc_info() backtrace = ''.join(traceback.format_exception(*info)) return LoadError(cexceptionuser(exc), backtrace=backtrace) # compile script and check for security (if reqd) unsafe = [setting.transient_settings['unsafe_mode']] while True: try: compiled = utils.compileChecked( script, mode='exec', filename=filename, ignoresecurity=unsafe[0]) break except utils.SafeEvalException: if callbackunsafe is None or not callbackunsafe(): raise LoadError(_("Unsafe command in script")) # repeat with unsafe mode switched on unsafe[0] = True except Exception as e: raise genexception(e) env = thedoc.evaluate.context.copy() interface = CommandInterface(thedoc) # allow safe commands as-is for cmd in interface.safe_commands: env[cmd] = getattr(interface, cmd) # define root node env['Root'] = interface.Root # wrap unsafe calls with a function to check whether ok def _unsafecaller(func): def wrapped(*args, **argsk): if not unsafe[0]: if callbackunsafe is None or not callbackunsafe(): raise LoadError(_("Unsafe command in script")) unsafe[0] = True func(*args, **argsk) return wrapped for name in interface.unsafe_commands: env[name] = _unsafecaller(getattr(interface, name)) # get ready for loading document env['__file__'] = filename # allow import to happen relative to loaded file interface.AddImportPath( os.path.dirname(os.path.abspath(filename)) ) with thedoc.suspend(): try: # actually run script text cexec(compiled, env) except LoadError: raise except Exception as e: raise genexception(e) def loadHDF5Dataset1D(datagrp): args = {} # this weird usage of sets is to work around some sort of weird # error where h5py gives an error when doing 'a' in datagrp # this gives error: 'perr' in datagrp parts = set(datagrp) & set(('data', 'serr', 'perr', 'nerr')) for v in parts: args[v] = N.array(datagrp[v]) return datasets.Dataset(**args) def loadHDF5Dataset2D(datagrp): args = {} parts = set(datagrp) & set( ('data', 'xcent', 'xedge', 'ycent', 'yedge', 'xrange', 'yrange')) for v in parts: args[v] = N.array(datagrp[v]) return datasets.Dataset2D(**args) def loadHDF5DatasetDate(datagrp): return datasets.DatasetDateTime(data=datagrp['data']) def loadHDF5DatasetText(datagrp): data = [d.decode('utf-8') for d in datagrp['data']] return datasets.DatasetText(data=data) def loadHDF5Datasets(thedoc, hdffile): """Load all the Veusz datasets in the HDF5 file.""" alldatagrp = hdffile['Veusz']['Data'] datafuncs = { '1d': loadHDF5Dataset1D, '2d': loadHDF5Dataset2D, 'date': loadHDF5DatasetDate, 'text': loadHDF5DatasetText, } for name in alldatagrp: datagrp = alldatagrp[name] datatype = bconv(datagrp.attrs['vsz_datatype']) veuszname = utils.unescapeHDFDataName(bconv(name)) dataset = datafuncs[datatype](datagrp) thedoc.setData(veuszname, dataset) def tagHDF5Datasets(thedoc, hdffile): """Tag datasets loaded from HDF5 file.""" tags = hdffile['Veusz']['Document']['Tags'] for tag in tags: vsztag = bconv(tag) datasets = tags[tag] for name in datasets: dsname = name.decode('utf-8') thedoc.data[dsname].tags.add(vsztag) def loadHDF5Doc(thedoc, filename, callbackunsafe=None): """Load an HDF5 of the name given.""" try: global h5py import h5py except ImportError: raise LoadError(_("No HDF5 support as h5py module is missing")) with thedoc.suspend(): thedoc.wipe() hdffile = h5py.File(filename, 'r') try: vszformat = hdffile['Veusz'].attrs['vsz_format'] vszversion = hdffile['Veusz'].attrs['vsz_version'] except KeyError: raise LoadError(_("HDF5 file '%s' is not a Veusz saved document") % os.path.basename(filename)) maxformat = 1 if vszformat > maxformat: raise LoadError(_("This document version (%i) is not supported. " "It was written by Veusz %s.\n" "This Veusz only supports document version %i." % (vszformat, vszversion, maxformat))) # load document script = hdffile['Veusz']['Document']['document'][0].decode('utf-8') executeScript(thedoc, filename, script, callbackunsafe=callbackunsafe) # then load datasets loadHDF5Datasets(thedoc, hdffile) # and then tag tagHDF5Datasets(thedoc, hdffile) hdffile.close() def loadDocument(thedoc, filename, mode='vsz', callbackunsafe=None): """Load document from file. mode is 'vsz' or 'hdf5' """ if mode == 'vsz': try: with io.open(filename, 'rU', encoding='utf-8') as f: script = f.read() except EnvironmentError as e: raise LoadError( _("Cannot open document '%s'\n\n%s") % (os.path.basename(filename), cstrerror(e)) ) except UnicodeDecodeError: raise LoadError( _("File '%s' is not a valid Veusz document") % os.path.basename(filename) ) thedoc.wipe() executeScript(thedoc, filename, script, callbackunsafe=callbackunsafe) elif mode == 'hdf5': loadHDF5Doc(thedoc, filename, callbackunsafe=callbackunsafe) else: raise RuntimeError('Invalid load mode') thedoc.setModified(False) thedoc.clearHistory()
gpl-2.0
Adai0808/scikit-learn
examples/svm/plot_iris.py
223
3252
""" ================================================== Plot different SVM classifiers in the iris dataset ================================================== Comparison of different linear SVM classifiers on a 2D projection of the iris dataset. We only consider the first 2 features of this dataset: - Sepal length - Sepal width This example shows how to plot the decision surface for four SVM classifiers with different kernels. The linear models ``LinearSVC()`` and ``SVC(kernel='linear')`` yield slightly different decision boundaries. This can be a consequence of the following differences: - ``LinearSVC`` minimizes the squared hinge loss while ``SVC`` minimizes the regular hinge loss. - ``LinearSVC`` uses the One-vs-All (also known as One-vs-Rest) multiclass reduction while ``SVC`` uses the One-vs-One multiclass reduction. Both linear models have linear decision boundaries (intersecting hyperplanes) while the non-linear kernel models (polynomial or Gaussian RBF) have more flexible non-linear decision boundaries with shapes that depend on the kind of kernel and its parameters. .. NOTE:: while plotting the decision function of classifiers for toy 2D datasets can help get an intuitive understanding of their respective expressive power, be aware that those intuitions don't always generalize to more realistic high-dimensional problems. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors C = 1.0 # SVM regularization parameter svc = svm.SVC(kernel='linear', C=C).fit(X, y) rbf_svc = svm.SVC(kernel='rbf', gamma=0.7, C=C).fit(X, y) poly_svc = svm.SVC(kernel='poly', degree=3, C=C).fit(X, y) lin_svc = svm.LinearSVC(C=C).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['SVC with linear kernel', 'LinearSVC (linear kernel)', 'SVC with RBF kernel', 'SVC with polynomial (degree 3) kernel'] for i, clf in enumerate((svc, lin_svc, rbf_svc, poly_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(2, 2, i + 1) plt.subplots_adjust(wspace=0.4, hspace=0.4) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title(titles[i]) plt.show()
bsd-3-clause
sunny256/linux
tools/power/pm-graph/analyze_suspend.py
76
182868
#!/usr/bin/python # # Tool for analyzing suspend/resume timing # Copyright (c) 2013, Intel Corporation. # # This program is free software; you can redistribute it and/or modify it # under the terms and conditions of the GNU General Public License, # version 2, as published by the Free Software Foundation. # # This program is distributed in the hope it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # # Authors: # Todd Brandt <todd.e.brandt@linux.intel.com> # # Links: # Home Page # https://01.org/suspendresume # Source repo # https://github.com/01org/pm-graph # # Description: # This tool is designed to assist kernel and OS developers in optimizing # their linux stack's suspend/resume time. Using a kernel image built # with a few extra options enabled, the tool will execute a suspend and # will capture dmesg and ftrace data until resume is complete. This data # is transformed into a device timeline and a callgraph to give a quick # and detailed view of which devices and callbacks are taking the most # time in suspend/resume. The output is a single html file which can be # viewed in firefox or chrome. # # The following kernel build options are required: # CONFIG_PM_DEBUG=y # CONFIG_PM_SLEEP_DEBUG=y # CONFIG_FTRACE=y # CONFIG_FUNCTION_TRACER=y # CONFIG_FUNCTION_GRAPH_TRACER=y # CONFIG_KPROBES=y # CONFIG_KPROBES_ON_FTRACE=y # # For kernel versions older than 3.15: # The following additional kernel parameters are required: # (e.g. in file /etc/default/grub) # GRUB_CMDLINE_LINUX_DEFAULT="... initcall_debug log_buf_len=16M ..." # # ----------------- LIBRARIES -------------------- import sys import time import os import string import re import platform from datetime import datetime import struct import ConfigParser from threading import Thread from subprocess import call, Popen, PIPE # ----------------- CLASSES -------------------- # Class: SystemValues # Description: # A global, single-instance container used to # store system values and test parameters class SystemValues: title = 'SleepGraph' version = '4.7' ansi = False verbose = False testlog = True dmesglog = False ftracelog = False mindevlen = 0.0 mincglen = 0.0 cgphase = '' cgtest = -1 max_graph_depth = 0 callloopmaxgap = 0.0001 callloopmaxlen = 0.005 cpucount = 0 memtotal = 204800 srgap = 0 cgexp = False testdir = '' tpath = '/sys/kernel/debug/tracing/' fpdtpath = '/sys/firmware/acpi/tables/FPDT' epath = '/sys/kernel/debug/tracing/events/power/' traceevents = [ 'suspend_resume', 'device_pm_callback_end', 'device_pm_callback_start' ] logmsg = '' testcommand = '' mempath = '/dev/mem' powerfile = '/sys/power/state' mempowerfile = '/sys/power/mem_sleep' suspendmode = 'mem' memmode = '' hostname = 'localhost' prefix = 'test' teststamp = '' sysstamp = '' dmesgstart = 0.0 dmesgfile = '' ftracefile = '' htmlfile = 'output.html' embedded = False rtcwake = True rtcwaketime = 15 rtcpath = '' devicefilter = [] stamp = 0 execcount = 1 x2delay = 0 usecallgraph = False usetraceevents = False usetraceeventsonly = False usetracemarkers = True usekprobes = True usedevsrc = False useprocmon = False notestrun = False mixedphaseheight = True devprops = dict() predelay = 0 postdelay = 0 procexecfmt = 'ps - (?P<ps>.*)$' devpropfmt = '# Device Properties: .*' tracertypefmt = '# tracer: (?P<t>.*)' firmwarefmt = '# fwsuspend (?P<s>[0-9]*) fwresume (?P<r>[0-9]*)$' tracefuncs = { 'sys_sync': dict(), 'pm_prepare_console': dict(), 'pm_notifier_call_chain': dict(), 'freeze_processes': dict(), 'freeze_kernel_threads': dict(), 'pm_restrict_gfp_mask': dict(), 'acpi_suspend_begin': dict(), 'suspend_console': dict(), 'acpi_pm_prepare': dict(), 'syscore_suspend': dict(), 'arch_enable_nonboot_cpus_end': dict(), 'syscore_resume': dict(), 'acpi_pm_finish': dict(), 'resume_console': dict(), 'acpi_pm_end': dict(), 'pm_restore_gfp_mask': dict(), 'thaw_processes': dict(), 'pm_restore_console': dict(), 'CPU_OFF': { 'func':'_cpu_down', 'args_x86_64': {'cpu':'%di:s32'}, 'format': 'CPU_OFF[{cpu}]' }, 'CPU_ON': { 'func':'_cpu_up', 'args_x86_64': {'cpu':'%di:s32'}, 'format': 'CPU_ON[{cpu}]' }, } dev_tracefuncs = { # general wait/delay/sleep 'msleep': { 'args_x86_64': {'time':'%di:s32'}, 'ub': 1 }, 'schedule_timeout_uninterruptible': { 'args_x86_64': {'timeout':'%di:s32'}, 'ub': 1 }, 'schedule_timeout': { 'args_x86_64': {'timeout':'%di:s32'}, 'ub': 1 }, 'udelay': { 'func':'__const_udelay', 'args_x86_64': {'loops':'%di:s32'}, 'ub': 1 }, 'usleep_range': { 'args_x86_64': {'min':'%di:s32', 'max':'%si:s32'}, 'ub': 1 }, 'mutex_lock_slowpath': { 'func':'__mutex_lock_slowpath', 'ub': 1 }, 'acpi_os_stall': {'ub': 1}, # ACPI 'acpi_resume_power_resources': dict(), 'acpi_ps_parse_aml': dict(), # filesystem 'ext4_sync_fs': dict(), # 80211 'iwlagn_mac_start': dict(), 'iwlagn_alloc_bcast_station': dict(), 'iwl_trans_pcie_start_hw': dict(), 'iwl_trans_pcie_start_fw': dict(), 'iwl_run_init_ucode': dict(), 'iwl_load_ucode_wait_alive': dict(), 'iwl_alive_start': dict(), 'iwlagn_mac_stop': dict(), 'iwlagn_mac_suspend': dict(), 'iwlagn_mac_resume': dict(), 'iwlagn_mac_add_interface': dict(), 'iwlagn_mac_remove_interface': dict(), 'iwlagn_mac_change_interface': dict(), 'iwlagn_mac_config': dict(), 'iwlagn_configure_filter': dict(), 'iwlagn_mac_hw_scan': dict(), 'iwlagn_bss_info_changed': dict(), 'iwlagn_mac_channel_switch': dict(), 'iwlagn_mac_flush': dict(), # ATA 'ata_eh_recover': { 'args_x86_64': {'port':'+36(%di):s32'} }, # i915 'i915_gem_resume': dict(), 'i915_restore_state': dict(), 'intel_opregion_setup': dict(), 'g4x_pre_enable_dp': dict(), 'vlv_pre_enable_dp': dict(), 'chv_pre_enable_dp': dict(), 'g4x_enable_dp': dict(), 'vlv_enable_dp': dict(), 'intel_hpd_init': dict(), 'intel_opregion_register': dict(), 'intel_dp_detect': dict(), 'intel_hdmi_detect': dict(), 'intel_opregion_init': dict(), 'intel_fbdev_set_suspend': dict(), } kprobes = dict() timeformat = '%.3f' def __init__(self): # if this is a phoronix test run, set some default options if('LOG_FILE' in os.environ and 'TEST_RESULTS_IDENTIFIER' in os.environ): self.embedded = True self.dmesglog = self.ftracelog = True self.htmlfile = os.environ['LOG_FILE'] self.archargs = 'args_'+platform.machine() self.hostname = platform.node() if(self.hostname == ''): self.hostname = 'localhost' rtc = "rtc0" if os.path.exists('/dev/rtc'): rtc = os.readlink('/dev/rtc') rtc = '/sys/class/rtc/'+rtc if os.path.exists(rtc) and os.path.exists(rtc+'/date') and \ os.path.exists(rtc+'/time') and os.path.exists(rtc+'/wakealarm'): self.rtcpath = rtc if (hasattr(sys.stdout, 'isatty') and sys.stdout.isatty()): self.ansi = True self.testdir = datetime.now().strftime('suspend-%y%m%d-%H%M%S') def rootCheck(self, fatal=True): if(os.access(self.powerfile, os.W_OK)): return True if fatal: doError('This command requires sysfs mount and root access') return False def rootUser(self, fatal=False): if 'USER' in os.environ and os.environ['USER'] == 'root': return True if fatal: doError('This command must be run as root') return False def setPrecision(self, num): if num < 0 or num > 6: return self.timeformat = '%.{0}f'.format(num) def setOutputFolder(self, value): args = dict() n = datetime.now() args['date'] = n.strftime('%y%m%d') args['time'] = n.strftime('%H%M%S') args['hostname'] = self.hostname return value.format(**args) def setOutputFile(self): if self.dmesgfile != '': m = re.match('(?P<name>.*)_dmesg\.txt$', self.dmesgfile) if(m): self.htmlfile = m.group('name')+'.html' if self.ftracefile != '': m = re.match('(?P<name>.*)_ftrace\.txt$', self.ftracefile) if(m): self.htmlfile = m.group('name')+'.html' def systemInfo(self, info): p = c = m = b = '' if 'baseboard-manufacturer' in info: m = info['baseboard-manufacturer'] elif 'system-manufacturer' in info: m = info['system-manufacturer'] if 'baseboard-product-name' in info: p = info['baseboard-product-name'] elif 'system-product-name' in info: p = info['system-product-name'] if 'processor-version' in info: c = info['processor-version'] if 'bios-version' in info: b = info['bios-version'] self.sysstamp = '# sysinfo | man:%s | plat:%s | cpu:%s | bios:%s | numcpu:%d | memsz:%d' % \ (m, p, c, b, self.cpucount, self.memtotal) def printSystemInfo(self): self.rootCheck(True) out = dmidecode(self.mempath, True) fmt = '%-24s: %s' for name in sorted(out): print fmt % (name, out[name]) print fmt % ('cpucount', ('%d' % self.cpucount)) print fmt % ('memtotal', ('%d kB' % self.memtotal)) def cpuInfo(self): self.cpucount = 0 fp = open('/proc/cpuinfo', 'r') for line in fp: if re.match('^processor[ \t]*:[ \t]*[0-9]*', line): self.cpucount += 1 fp.close() fp = open('/proc/meminfo', 'r') for line in fp: m = re.match('^MemTotal:[ \t]*(?P<sz>[0-9]*) *kB', line) if m: self.memtotal = int(m.group('sz')) break fp.close() def initTestOutput(self, name): self.prefix = self.hostname v = open('/proc/version', 'r').read().strip() kver = string.split(v)[2] fmt = name+'-%m%d%y-%H%M%S' testtime = datetime.now().strftime(fmt) self.teststamp = \ '# '+testtime+' '+self.prefix+' '+self.suspendmode+' '+kver if(self.embedded): self.dmesgfile = \ '/tmp/'+testtime+'_'+self.suspendmode+'_dmesg.txt' self.ftracefile = \ '/tmp/'+testtime+'_'+self.suspendmode+'_ftrace.txt' return self.dmesgfile = \ self.testdir+'/'+self.prefix+'_'+self.suspendmode+'_dmesg.txt' self.ftracefile = \ self.testdir+'/'+self.prefix+'_'+self.suspendmode+'_ftrace.txt' self.htmlfile = \ self.testdir+'/'+self.prefix+'_'+self.suspendmode+'.html' if not os.path.isdir(self.testdir): os.mkdir(self.testdir) def setDeviceFilter(self, value): self.devicefilter = [] if value: value = value.split(',') for i in value: self.devicefilter.append(i.strip()) def rtcWakeAlarmOn(self): call('echo 0 > '+self.rtcpath+'/wakealarm', shell=True) outD = open(self.rtcpath+'/date', 'r').read().strip() outT = open(self.rtcpath+'/time', 'r').read().strip() mD = re.match('^(?P<y>[0-9]*)-(?P<m>[0-9]*)-(?P<d>[0-9]*)', outD) mT = re.match('^(?P<h>[0-9]*):(?P<m>[0-9]*):(?P<s>[0-9]*)', outT) if(mD and mT): # get the current time from hardware utcoffset = int((datetime.now() - datetime.utcnow()).total_seconds()) dt = datetime(\ int(mD.group('y')), int(mD.group('m')), int(mD.group('d')), int(mT.group('h')), int(mT.group('m')), int(mT.group('s'))) nowtime = int(dt.strftime('%s')) + utcoffset else: # if hardware time fails, use the software time nowtime = int(datetime.now().strftime('%s')) alarm = nowtime + self.rtcwaketime call('echo %d > %s/wakealarm' % (alarm, self.rtcpath), shell=True) def rtcWakeAlarmOff(self): call('echo 0 > %s/wakealarm' % self.rtcpath, shell=True) def initdmesg(self): # get the latest time stamp from the dmesg log fp = Popen('dmesg', stdout=PIPE).stdout ktime = '0' for line in fp: line = line.replace('\r\n', '') idx = line.find('[') if idx > 1: line = line[idx:] m = re.match('[ \t]*(\[ *)(?P<ktime>[0-9\.]*)(\]) (?P<msg>.*)', line) if(m): ktime = m.group('ktime') fp.close() self.dmesgstart = float(ktime) def getdmesg(self): # store all new dmesg lines since initdmesg was called fp = Popen('dmesg', stdout=PIPE).stdout op = open(self.dmesgfile, 'a') for line in fp: line = line.replace('\r\n', '') idx = line.find('[') if idx > 1: line = line[idx:] m = re.match('[ \t]*(\[ *)(?P<ktime>[0-9\.]*)(\]) (?P<msg>.*)', line) if(not m): continue ktime = float(m.group('ktime')) if ktime > self.dmesgstart: op.write(line) fp.close() op.close() def addFtraceFilterFunctions(self, file): fp = open(file) list = fp.read().split('\n') fp.close() for i in list: if len(i) < 2: continue self.tracefuncs[i] = dict() def getFtraceFilterFunctions(self, current): self.rootCheck(True) if not current: call('cat '+self.tpath+'available_filter_functions', shell=True) return fp = open(self.tpath+'available_filter_functions') master = fp.read().split('\n') fp.close() for i in self.tracefuncs: if 'func' in self.tracefuncs[i]: i = self.tracefuncs[i]['func'] if i in master: print i else: print self.colorText(i) def setFtraceFilterFunctions(self, list): fp = open(self.tpath+'available_filter_functions') master = fp.read().split('\n') fp.close() flist = '' for i in list: if i not in master: continue if ' [' in i: flist += i.split(' ')[0]+'\n' else: flist += i+'\n' fp = open(self.tpath+'set_graph_function', 'w') fp.write(flist) fp.close() def basicKprobe(self, name): self.kprobes[name] = {'name': name,'func': name,'args': dict(),'format': name} def defaultKprobe(self, name, kdata): k = kdata for field in ['name', 'format', 'func']: if field not in k: k[field] = name if self.archargs in k: k['args'] = k[self.archargs] else: k['args'] = dict() k['format'] = name self.kprobes[name] = k def kprobeColor(self, name): if name not in self.kprobes or 'color' not in self.kprobes[name]: return '' return self.kprobes[name]['color'] def kprobeDisplayName(self, name, dataraw): if name not in self.kprobes: self.basicKprobe(name) data = '' quote=0 # first remvoe any spaces inside quotes, and the quotes for c in dataraw: if c == '"': quote = (quote + 1) % 2 if quote and c == ' ': data += '_' elif c != '"': data += c fmt, args = self.kprobes[name]['format'], self.kprobes[name]['args'] arglist = dict() # now process the args for arg in sorted(args): arglist[arg] = '' m = re.match('.* '+arg+'=(?P<arg>.*) ', data); if m: arglist[arg] = m.group('arg') else: m = re.match('.* '+arg+'=(?P<arg>.*)', data); if m: arglist[arg] = m.group('arg') out = fmt.format(**arglist) out = out.replace(' ', '_').replace('"', '') return out def kprobeText(self, kname, kprobe): name = fmt = func = kname args = dict() if 'name' in kprobe: name = kprobe['name'] if 'format' in kprobe: fmt = kprobe['format'] if 'func' in kprobe: func = kprobe['func'] if self.archargs in kprobe: args = kprobe[self.archargs] if 'args' in kprobe: args = kprobe['args'] if re.findall('{(?P<n>[a-z,A-Z,0-9]*)}', func): doError('Kprobe "%s" has format info in the function name "%s"' % (name, func)) for arg in re.findall('{(?P<n>[a-z,A-Z,0-9]*)}', fmt): if arg not in args: doError('Kprobe "%s" is missing argument "%s"' % (name, arg)) val = 'p:%s_cal %s' % (name, func) for i in sorted(args): val += ' %s=%s' % (i, args[i]) val += '\nr:%s_ret %s $retval\n' % (name, func) return val def addKprobes(self, output=False): if len(self.kprobes) < 1: return if output: print(' kprobe functions in this kernel:') # first test each kprobe rejects = [] # sort kprobes: trace, ub-dev, custom, dev kpl = [[], [], [], []] for name in sorted(self.kprobes): res = self.colorText('YES', 32) if not self.testKprobe(name, self.kprobes[name]): res = self.colorText('NO') rejects.append(name) else: if name in self.tracefuncs: kpl[0].append(name) elif name in self.dev_tracefuncs: if 'ub' in self.dev_tracefuncs[name]: kpl[1].append(name) else: kpl[3].append(name) else: kpl[2].append(name) if output: print(' %s: %s' % (name, res)) kplist = kpl[0] + kpl[1] + kpl[2] + kpl[3] # remove all failed ones from the list for name in rejects: self.kprobes.pop(name) # set the kprobes all at once self.fsetVal('', 'kprobe_events') kprobeevents = '' for kp in kplist: kprobeevents += self.kprobeText(kp, self.kprobes[kp]) self.fsetVal(kprobeevents, 'kprobe_events') # verify that the kprobes were set as ordered check = self.fgetVal('kprobe_events') linesout = len(kprobeevents.split('\n')) - 1 linesack = len(check.split('\n')) - 1 if output: res = '%d/%d' % (linesack, linesout) if linesack < linesout: res = self.colorText(res, 31) else: res = self.colorText(res, 32) print(' working kprobe functions enabled: %s' % res) self.fsetVal('1', 'events/kprobes/enable') def testKprobe(self, kname, kprobe): self.fsetVal('0', 'events/kprobes/enable') kprobeevents = self.kprobeText(kname, kprobe) if not kprobeevents: return False try: self.fsetVal(kprobeevents, 'kprobe_events') check = self.fgetVal('kprobe_events') except: return False linesout = len(kprobeevents.split('\n')) linesack = len(check.split('\n')) if linesack < linesout: return False return True def fsetVal(self, val, path, mode='w'): file = self.tpath+path if not os.path.exists(file): return False try: fp = open(file, mode, 0) fp.write(val) fp.flush() fp.close() except: return False return True def fgetVal(self, path): file = self.tpath+path res = '' if not os.path.exists(file): return res try: fp = open(file, 'r') res = fp.read() fp.close() except: pass return res def cleanupFtrace(self): if(self.usecallgraph or self.usetraceevents): self.fsetVal('0', 'events/kprobes/enable') self.fsetVal('', 'kprobe_events') def setupAllKprobes(self): for name in self.tracefuncs: self.defaultKprobe(name, self.tracefuncs[name]) for name in self.dev_tracefuncs: self.defaultKprobe(name, self.dev_tracefuncs[name]) def isCallgraphFunc(self, name): if len(self.tracefuncs) < 1 and self.suspendmode == 'command': return True for i in self.tracefuncs: if 'func' in self.tracefuncs[i]: f = self.tracefuncs[i]['func'] else: f = i if name == f: return True return False def initFtrace(self, testing=False): print('INITIALIZING FTRACE...') # turn trace off self.fsetVal('0', 'tracing_on') self.cleanupFtrace() # set the trace clock to global self.fsetVal('global', 'trace_clock') self.fsetVal('nop', 'current_tracer') # set trace buffer to a huge value if self.usecallgraph or self.usedevsrc: tgtsize = min(self.memtotal / 2, 2*1024*1024) maxbuf = '%d' % (tgtsize / max(1, self.cpucount)) if self.cpucount < 1 or not self.fsetVal(maxbuf, 'buffer_size_kb'): self.fsetVal('131072', 'buffer_size_kb') else: self.fsetVal('16384', 'buffer_size_kb') # go no further if this is just a status check if testing: return # initialize the callgraph trace if(self.usecallgraph): # set trace type self.fsetVal('function_graph', 'current_tracer') self.fsetVal('', 'set_ftrace_filter') # set trace format options self.fsetVal('print-parent', 'trace_options') self.fsetVal('funcgraph-abstime', 'trace_options') self.fsetVal('funcgraph-cpu', 'trace_options') self.fsetVal('funcgraph-duration', 'trace_options') self.fsetVal('funcgraph-proc', 'trace_options') self.fsetVal('funcgraph-tail', 'trace_options') self.fsetVal('nofuncgraph-overhead', 'trace_options') self.fsetVal('context-info', 'trace_options') self.fsetVal('graph-time', 'trace_options') self.fsetVal('%d' % self.max_graph_depth, 'max_graph_depth') cf = ['dpm_run_callback'] if(self.usetraceeventsonly): cf += ['dpm_prepare', 'dpm_complete'] for fn in self.tracefuncs: if 'func' in self.tracefuncs[fn]: cf.append(self.tracefuncs[fn]['func']) else: cf.append(fn) self.setFtraceFilterFunctions(cf) # initialize the kprobe trace elif self.usekprobes: for name in self.tracefuncs: self.defaultKprobe(name, self.tracefuncs[name]) if self.usedevsrc: for name in self.dev_tracefuncs: self.defaultKprobe(name, self.dev_tracefuncs[name]) print('INITIALIZING KPROBES...') self.addKprobes(self.verbose) if(self.usetraceevents): # turn trace events on events = iter(self.traceevents) for e in events: self.fsetVal('1', 'events/power/'+e+'/enable') # clear the trace buffer self.fsetVal('', 'trace') def verifyFtrace(self): # files needed for any trace data files = ['buffer_size_kb', 'current_tracer', 'trace', 'trace_clock', 'trace_marker', 'trace_options', 'tracing_on'] # files needed for callgraph trace data tp = self.tpath if(self.usecallgraph): files += [ 'available_filter_functions', 'set_ftrace_filter', 'set_graph_function' ] for f in files: if(os.path.exists(tp+f) == False): return False return True def verifyKprobes(self): # files needed for kprobes to work files = ['kprobe_events', 'events'] tp = self.tpath for f in files: if(os.path.exists(tp+f) == False): return False return True def colorText(self, str, color=31): if not self.ansi: return str return '\x1B[%d;40m%s\x1B[m' % (color, str) def writeDatafileHeader(self, filename, fwdata=[]): fp = open(filename, 'w') fp.write(self.teststamp+'\n') fp.write(self.sysstamp+'\n') if(self.suspendmode == 'mem' or self.suspendmode == 'command'): for fw in fwdata: if(fw): fp.write('# fwsuspend %u fwresume %u\n' % (fw[0], fw[1])) fp.close() sysvals = SystemValues() suspendmodename = { 'freeze': 'Freeze (S0)', 'standby': 'Standby (S1)', 'mem': 'Suspend (S3)', 'disk': 'Hibernate (S4)' } # Class: DevProps # Description: # Simple class which holds property values collected # for all the devices used in the timeline. class DevProps: syspath = '' altname = '' async = True xtraclass = '' xtrainfo = '' def out(self, dev): return '%s,%s,%d;' % (dev, self.altname, self.async) def debug(self, dev): print '%s:\n\taltname = %s\n\t async = %s' % (dev, self.altname, self.async) def altName(self, dev): if not self.altname or self.altname == dev: return dev return '%s [%s]' % (self.altname, dev) def xtraClass(self): if self.xtraclass: return ' '+self.xtraclass if not self.async: return ' sync' return '' def xtraInfo(self): if self.xtraclass: return ' '+self.xtraclass if self.async: return ' async_device' return ' sync_device' # Class: DeviceNode # Description: # A container used to create a device hierachy, with a single root node # and a tree of child nodes. Used by Data.deviceTopology() class DeviceNode: name = '' children = 0 depth = 0 def __init__(self, nodename, nodedepth): self.name = nodename self.children = [] self.depth = nodedepth # Class: Data # Description: # The primary container for suspend/resume test data. There is one for # each test run. The data is organized into a cronological hierarchy: # Data.dmesg { # phases { # 10 sequential, non-overlapping phases of S/R # contents: times for phase start/end, order/color data for html # devlist { # device callback or action list for this phase # device { # a single device callback or generic action # contents: start/stop times, pid/cpu/driver info # parents/children, html id for timeline/callgraph # optionally includes an ftrace callgraph # optionally includes dev/ps data # } # } # } # } # class Data: dmesg = {} # root data structure phases = [] # ordered list of phases start = 0.0 # test start end = 0.0 # test end tSuspended = 0.0 # low-level suspend start tResumed = 0.0 # low-level resume start tKernSus = 0.0 # kernel level suspend start tKernRes = 0.0 # kernel level resume end tLow = 0.0 # time spent in low-level suspend (standby/freeze) fwValid = False # is firmware data available fwSuspend = 0 # time spent in firmware suspend fwResume = 0 # time spent in firmware resume dmesgtext = [] # dmesg text file in memory pstl = 0 # process timeline testnumber = 0 idstr = '' html_device_id = 0 stamp = 0 outfile = '' devpids = [] kerror = False def __init__(self, num): idchar = 'abcdefghij' self.pstl = dict() self.testnumber = num self.idstr = idchar[num] self.dmesgtext = [] self.phases = [] self.dmesg = { # fixed list of 10 phases 'suspend_prepare': {'list': dict(), 'start': -1.0, 'end': -1.0, 'row': 0, 'color': '#CCFFCC', 'order': 0}, 'suspend': {'list': dict(), 'start': -1.0, 'end': -1.0, 'row': 0, 'color': '#88FF88', 'order': 1}, 'suspend_late': {'list': dict(), 'start': -1.0, 'end': -1.0, 'row': 0, 'color': '#00AA00', 'order': 2}, 'suspend_noirq': {'list': dict(), 'start': -1.0, 'end': -1.0, 'row': 0, 'color': '#008888', 'order': 3}, 'suspend_machine': {'list': dict(), 'start': -1.0, 'end': -1.0, 'row': 0, 'color': '#0000FF', 'order': 4}, 'resume_machine': {'list': dict(), 'start': -1.0, 'end': -1.0, 'row': 0, 'color': '#FF0000', 'order': 5}, 'resume_noirq': {'list': dict(), 'start': -1.0, 'end': -1.0, 'row': 0, 'color': '#FF9900', 'order': 6}, 'resume_early': {'list': dict(), 'start': -1.0, 'end': -1.0, 'row': 0, 'color': '#FFCC00', 'order': 7}, 'resume': {'list': dict(), 'start': -1.0, 'end': -1.0, 'row': 0, 'color': '#FFFF88', 'order': 8}, 'resume_complete': {'list': dict(), 'start': -1.0, 'end': -1.0, 'row': 0, 'color': '#FFFFCC', 'order': 9} } self.phases = self.sortedPhases() self.devicegroups = [] for phase in self.phases: self.devicegroups.append([phase]) self.errorinfo = {'suspend':[],'resume':[]} def extractErrorInfo(self, dmesg): error = '' tm = 0.0 for i in range(len(dmesg)): if 'Call Trace:' in dmesg[i]: m = re.match('[ \t]*(\[ *)(?P<ktime>[0-9\.]*)(\]) .*', dmesg[i]) if not m: continue tm = float(m.group('ktime')) if tm < self.start or tm > self.end: continue for j in range(i-10, i+1): error += dmesg[j] continue if error: m = re.match('[ \t]*\[ *[0-9\.]*\] \[\<[0-9a-fA-F]*\>\] .*', dmesg[i]) if m: error += dmesg[i] else: if tm < self.tSuspended: dir = 'suspend' else: dir = 'resume' error = error.replace('<', '&lt').replace('>', '&gt') vprint('kernel error found in %s at %f' % (dir, tm)) self.errorinfo[dir].append((tm, error)) self.kerror = True error = '' def setStart(self, time): self.start = time def setEnd(self, time): self.end = time def isTraceEventOutsideDeviceCalls(self, pid, time): for phase in self.phases: list = self.dmesg[phase]['list'] for dev in list: d = list[dev] if(d['pid'] == pid and time >= d['start'] and time < d['end']): return False return True def sourcePhase(self, start): for phase in self.phases: pend = self.dmesg[phase]['end'] if start <= pend: return phase return 'resume_complete' def sourceDevice(self, phaselist, start, end, pid, type): tgtdev = '' for phase in phaselist: list = self.dmesg[phase]['list'] for devname in list: dev = list[devname] # pid must match if dev['pid'] != pid: continue devS = dev['start'] devE = dev['end'] if type == 'device': # device target event is entirely inside the source boundary if(start < devS or start >= devE or end <= devS or end > devE): continue elif type == 'thread': # thread target event will expand the source boundary if start < devS: dev['start'] = start if end > devE: dev['end'] = end tgtdev = dev break return tgtdev def addDeviceFunctionCall(self, displayname, kprobename, proc, pid, start, end, cdata, rdata): # try to place the call in a device tgtdev = self.sourceDevice(self.phases, start, end, pid, 'device') # calls with device pids that occur outside device bounds are dropped # TODO: include these somehow if not tgtdev and pid in self.devpids: return False # try to place the call in a thread if not tgtdev: tgtdev = self.sourceDevice(self.phases, start, end, pid, 'thread') # create new thread blocks, expand as new calls are found if not tgtdev: if proc == '<...>': threadname = 'kthread-%d' % (pid) else: threadname = '%s-%d' % (proc, pid) tgtphase = self.sourcePhase(start) self.newAction(tgtphase, threadname, pid, '', start, end, '', ' kth', '') return self.addDeviceFunctionCall(displayname, kprobename, proc, pid, start, end, cdata, rdata) # this should not happen if not tgtdev: vprint('[%f - %f] %s-%d %s %s %s' % \ (start, end, proc, pid, kprobename, cdata, rdata)) return False # place the call data inside the src element of the tgtdev if('src' not in tgtdev): tgtdev['src'] = [] dtf = sysvals.dev_tracefuncs ubiquitous = False if kprobename in dtf and 'ub' in dtf[kprobename]: ubiquitous = True title = cdata+' '+rdata mstr = '\(.*\) *(?P<args>.*) *\((?P<caller>.*)\+.* arg1=(?P<ret>.*)' m = re.match(mstr, title) if m: c = m.group('caller') a = m.group('args').strip() r = m.group('ret') if len(r) > 6: r = '' else: r = 'ret=%s ' % r if ubiquitous and c in dtf and 'ub' in dtf[c]: return False color = sysvals.kprobeColor(kprobename) e = DevFunction(displayname, a, c, r, start, end, ubiquitous, proc, pid, color) tgtdev['src'].append(e) return True def overflowDevices(self): # get a list of devices that extend beyond the end of this test run devlist = [] for phase in self.phases: list = self.dmesg[phase]['list'] for devname in list: dev = list[devname] if dev['end'] > self.end: devlist.append(dev) return devlist def mergeOverlapDevices(self, devlist): # merge any devices that overlap devlist for dev in devlist: devname = dev['name'] for phase in self.phases: list = self.dmesg[phase]['list'] if devname not in list: continue tdev = list[devname] o = min(dev['end'], tdev['end']) - max(dev['start'], tdev['start']) if o <= 0: continue dev['end'] = tdev['end'] if 'src' not in dev or 'src' not in tdev: continue dev['src'] += tdev['src'] del list[devname] def usurpTouchingThread(self, name, dev): # the caller test has priority of this thread, give it to him for phase in self.phases: list = self.dmesg[phase]['list'] if name in list: tdev = list[name] if tdev['start'] - dev['end'] < 0.1: dev['end'] = tdev['end'] if 'src' not in dev: dev['src'] = [] if 'src' in tdev: dev['src'] += tdev['src'] del list[name] break def stitchTouchingThreads(self, testlist): # merge any threads between tests that touch for phase in self.phases: list = self.dmesg[phase]['list'] for devname in list: dev = list[devname] if 'htmlclass' not in dev or 'kth' not in dev['htmlclass']: continue for data in testlist: data.usurpTouchingThread(devname, dev) def optimizeDevSrc(self): # merge any src call loops to reduce timeline size for phase in self.phases: list = self.dmesg[phase]['list'] for dev in list: if 'src' not in list[dev]: continue src = list[dev]['src'] p = 0 for e in sorted(src, key=lambda event: event.time): if not p or not e.repeat(p): p = e continue # e is another iteration of p, move it into p p.end = e.end p.length = p.end - p.time p.count += 1 src.remove(e) def trimTimeVal(self, t, t0, dT, left): if left: if(t > t0): if(t - dT < t0): return t0 return t - dT else: return t else: if(t < t0 + dT): if(t > t0): return t0 + dT return t + dT else: return t def trimTime(self, t0, dT, left): self.tSuspended = self.trimTimeVal(self.tSuspended, t0, dT, left) self.tResumed = self.trimTimeVal(self.tResumed, t0, dT, left) self.start = self.trimTimeVal(self.start, t0, dT, left) self.tKernSus = self.trimTimeVal(self.tKernSus, t0, dT, left) self.tKernRes = self.trimTimeVal(self.tKernRes, t0, dT, left) self.end = self.trimTimeVal(self.end, t0, dT, left) for phase in self.phases: p = self.dmesg[phase] p['start'] = self.trimTimeVal(p['start'], t0, dT, left) p['end'] = self.trimTimeVal(p['end'], t0, dT, left) list = p['list'] for name in list: d = list[name] d['start'] = self.trimTimeVal(d['start'], t0, dT, left) d['end'] = self.trimTimeVal(d['end'], t0, dT, left) if('ftrace' in d): cg = d['ftrace'] cg.start = self.trimTimeVal(cg.start, t0, dT, left) cg.end = self.trimTimeVal(cg.end, t0, dT, left) for line in cg.list: line.time = self.trimTimeVal(line.time, t0, dT, left) if('src' in d): for e in d['src']: e.time = self.trimTimeVal(e.time, t0, dT, left) def normalizeTime(self, tZero): # trim out any standby or freeze clock time if(self.tSuspended != self.tResumed): if(self.tResumed > tZero): self.trimTime(self.tSuspended, \ self.tResumed-self.tSuspended, True) else: self.trimTime(self.tSuspended, \ self.tResumed-self.tSuspended, False) def getTimeValues(self): sktime = (self.dmesg['suspend_machine']['end'] - \ self.tKernSus) * 1000 rktime = (self.dmesg['resume_complete']['end'] - \ self.dmesg['resume_machine']['start']) * 1000 return (sktime, rktime) def setPhase(self, phase, ktime, isbegin): if(isbegin): self.dmesg[phase]['start'] = ktime else: self.dmesg[phase]['end'] = ktime def dmesgSortVal(self, phase): return self.dmesg[phase]['order'] def sortedPhases(self): return sorted(self.dmesg, key=self.dmesgSortVal) def sortedDevices(self, phase): list = self.dmesg[phase]['list'] slist = [] tmp = dict() for devname in list: dev = list[devname] if dev['length'] == 0: continue tmp[dev['start']] = devname for t in sorted(tmp): slist.append(tmp[t]) return slist def fixupInitcalls(self, phase): # if any calls never returned, clip them at system resume end phaselist = self.dmesg[phase]['list'] for devname in phaselist: dev = phaselist[devname] if(dev['end'] < 0): for p in self.phases: if self.dmesg[p]['end'] > dev['start']: dev['end'] = self.dmesg[p]['end'] break vprint('%s (%s): callback didnt return' % (devname, phase)) def deviceFilter(self, devicefilter): for phase in self.phases: list = self.dmesg[phase]['list'] rmlist = [] for name in list: keep = False for filter in devicefilter: if filter in name or \ ('drv' in list[name] and filter in list[name]['drv']): keep = True if not keep: rmlist.append(name) for name in rmlist: del list[name] def fixupInitcallsThatDidntReturn(self): # if any calls never returned, clip them at system resume end for phase in self.phases: self.fixupInitcalls(phase) def phaseOverlap(self, phases): rmgroups = [] newgroup = [] for group in self.devicegroups: for phase in phases: if phase not in group: continue for p in group: if p not in newgroup: newgroup.append(p) if group not in rmgroups: rmgroups.append(group) for group in rmgroups: self.devicegroups.remove(group) self.devicegroups.append(newgroup) def newActionGlobal(self, name, start, end, pid=-1, color=''): # which phase is this device callback or action in targetphase = 'none' htmlclass = '' overlap = 0.0 phases = [] for phase in self.phases: pstart = self.dmesg[phase]['start'] pend = self.dmesg[phase]['end'] # see if the action overlaps this phase o = max(0, min(end, pend) - max(start, pstart)) if o > 0: phases.append(phase) # set the target phase to the one that overlaps most if o > overlap: if overlap > 0 and phase == 'post_resume': continue targetphase = phase overlap = o # if no target phase was found, pin it to the edge if targetphase == 'none': p0start = self.dmesg[self.phases[0]]['start'] if start <= p0start: targetphase = self.phases[0] else: targetphase = self.phases[-1] if pid == -2: htmlclass = ' bg' elif pid == -3: htmlclass = ' ps' if len(phases) > 1: htmlclass = ' bg' self.phaseOverlap(phases) if targetphase in self.phases: newname = self.newAction(targetphase, name, pid, '', start, end, '', htmlclass, color) return (targetphase, newname) return False def newAction(self, phase, name, pid, parent, start, end, drv, htmlclass='', color=''): # new device callback for a specific phase self.html_device_id += 1 devid = '%s%d' % (self.idstr, self.html_device_id) list = self.dmesg[phase]['list'] length = -1.0 if(start >= 0 and end >= 0): length = end - start if pid == -2: i = 2 origname = name while(name in list): name = '%s[%d]' % (origname, i) i += 1 list[name] = {'name': name, 'start': start, 'end': end, 'pid': pid, 'par': parent, 'length': length, 'row': 0, 'id': devid, 'drv': drv } if htmlclass: list[name]['htmlclass'] = htmlclass if color: list[name]['color'] = color return name def deviceChildren(self, devname, phase): devlist = [] list = self.dmesg[phase]['list'] for child in list: if(list[child]['par'] == devname): devlist.append(child) return devlist def printDetails(self): vprint('Timeline Details:') vprint(' test start: %f' % self.start) vprint('kernel suspend start: %f' % self.tKernSus) for phase in self.phases: dc = len(self.dmesg[phase]['list']) vprint(' %16s: %f - %f (%d devices)' % (phase, \ self.dmesg[phase]['start'], self.dmesg[phase]['end'], dc)) vprint(' kernel resume end: %f' % self.tKernRes) vprint(' test end: %f' % self.end) def deviceChildrenAllPhases(self, devname): devlist = [] for phase in self.phases: list = self.deviceChildren(devname, phase) for dev in list: if dev not in devlist: devlist.append(dev) return devlist def masterTopology(self, name, list, depth): node = DeviceNode(name, depth) for cname in list: # avoid recursions if name == cname: continue clist = self.deviceChildrenAllPhases(cname) cnode = self.masterTopology(cname, clist, depth+1) node.children.append(cnode) return node def printTopology(self, node): html = '' if node.name: info = '' drv = '' for phase in self.phases: list = self.dmesg[phase]['list'] if node.name in list: s = list[node.name]['start'] e = list[node.name]['end'] if list[node.name]['drv']: drv = ' {'+list[node.name]['drv']+'}' info += ('<li>%s: %.3fms</li>' % (phase, (e-s)*1000)) html += '<li><b>'+node.name+drv+'</b>' if info: html += '<ul>'+info+'</ul>' html += '</li>' if len(node.children) > 0: html += '<ul>' for cnode in node.children: html += self.printTopology(cnode) html += '</ul>' return html def rootDeviceList(self): # list of devices graphed real = [] for phase in self.dmesg: list = self.dmesg[phase]['list'] for dev in list: if list[dev]['pid'] >= 0 and dev not in real: real.append(dev) # list of top-most root devices rootlist = [] for phase in self.dmesg: list = self.dmesg[phase]['list'] for dev in list: pdev = list[dev]['par'] pid = list[dev]['pid'] if(pid < 0 or re.match('[0-9]*-[0-9]*\.[0-9]*[\.0-9]*\:[\.0-9]*$', pdev)): continue if pdev and pdev not in real and pdev not in rootlist: rootlist.append(pdev) return rootlist def deviceTopology(self): rootlist = self.rootDeviceList() master = self.masterTopology('', rootlist, 0) return self.printTopology(master) def selectTimelineDevices(self, widfmt, tTotal, mindevlen): # only select devices that will actually show up in html self.tdevlist = dict() for phase in self.dmesg: devlist = [] list = self.dmesg[phase]['list'] for dev in list: length = (list[dev]['end'] - list[dev]['start']) * 1000 width = widfmt % (((list[dev]['end']-list[dev]['start'])*100)/tTotal) if width != '0.000000' and length >= mindevlen: devlist.append(dev) self.tdevlist[phase] = devlist def addHorizontalDivider(self, devname, devend): phase = 'suspend_prepare' self.newAction(phase, devname, -2, '', \ self.start, devend, '', ' sec', '') if phase not in self.tdevlist: self.tdevlist[phase] = [] self.tdevlist[phase].append(devname) d = DevItem(0, phase, self.dmesg[phase]['list'][devname]) return d def addProcessUsageEvent(self, name, times): # get the start and end times for this process maxC = 0 tlast = 0 start = -1 end = -1 for t in sorted(times): if tlast == 0: tlast = t continue if name in self.pstl[t]: if start == -1 or tlast < start: start = tlast if end == -1 or t > end: end = t tlast = t if start == -1 or end == -1: return 0 # add a new action for this process and get the object out = self.newActionGlobal(name, start, end, -3) if not out: return 0 phase, devname = out dev = self.dmesg[phase]['list'][devname] # get the cpu exec data tlast = 0 clast = 0 cpuexec = dict() for t in sorted(times): if tlast == 0 or t <= start or t > end: tlast = t continue list = self.pstl[t] c = 0 if name in list: c = list[name] if c > maxC: maxC = c if c != clast: key = (tlast, t) cpuexec[key] = c tlast = t clast = c dev['cpuexec'] = cpuexec return maxC def createProcessUsageEvents(self): # get an array of process names proclist = [] for t in self.pstl: pslist = self.pstl[t] for ps in pslist: if ps not in proclist: proclist.append(ps) # get a list of data points for suspend and resume tsus = [] tres = [] for t in sorted(self.pstl): if t < self.tSuspended: tsus.append(t) else: tres.append(t) # process the events for suspend and resume if len(proclist) > 0: vprint('Process Execution:') for ps in proclist: c = self.addProcessUsageEvent(ps, tsus) if c > 0: vprint('%25s (sus): %d' % (ps, c)) c = self.addProcessUsageEvent(ps, tres) if c > 0: vprint('%25s (res): %d' % (ps, c)) # Class: DevFunction # Description: # A container for kprobe function data we want in the dev timeline class DevFunction: row = 0 count = 1 def __init__(self, name, args, caller, ret, start, end, u, proc, pid, color): self.name = name self.args = args self.caller = caller self.ret = ret self.time = start self.length = end - start self.end = end self.ubiquitous = u self.proc = proc self.pid = pid self.color = color def title(self): cnt = '' if self.count > 1: cnt = '(x%d)' % self.count l = '%0.3fms' % (self.length * 1000) if self.ubiquitous: title = '%s(%s)%s <- %s, %s(%s)' % \ (self.name, self.args, cnt, self.caller, self.ret, l) else: title = '%s(%s) %s%s(%s)' % (self.name, self.args, self.ret, cnt, l) return title.replace('"', '') def text(self): if self.count > 1: text = '%s(x%d)' % (self.name, self.count) else: text = self.name return text def repeat(self, tgt): # is the tgt call just a repeat of this call (e.g. are we in a loop) dt = self.time - tgt.end # only combine calls if -all- attributes are identical if tgt.caller == self.caller and \ tgt.name == self.name and tgt.args == self.args and \ tgt.proc == self.proc and tgt.pid == self.pid and \ tgt.ret == self.ret and dt >= 0 and \ dt <= sysvals.callloopmaxgap and \ self.length < sysvals.callloopmaxlen: return True return False # Class: FTraceLine # Description: # A container for a single line of ftrace data. There are six basic types: # callgraph line: # call: " dpm_run_callback() {" # return: " }" # leaf: " dpm_run_callback();" # trace event: # tracing_mark_write: SUSPEND START or RESUME COMPLETE # suspend_resume: phase or custom exec block data # device_pm_callback: device callback info class FTraceLine: time = 0.0 length = 0.0 fcall = False freturn = False fevent = False fkprobe = False depth = 0 name = '' type = '' def __init__(self, t, m='', d=''): self.time = float(t) if not m and not d: return # is this a trace event if(d == 'traceevent' or re.match('^ *\/\* *(?P<msg>.*) \*\/ *$', m)): if(d == 'traceevent'): # nop format trace event msg = m else: # function_graph format trace event em = re.match('^ *\/\* *(?P<msg>.*) \*\/ *$', m) msg = em.group('msg') emm = re.match('^(?P<call>.*?): (?P<msg>.*)', msg) if(emm): self.name = emm.group('msg') self.type = emm.group('call') else: self.name = msg km = re.match('^(?P<n>.*)_cal$', self.type) if km: self.fcall = True self.fkprobe = True self.type = km.group('n') return km = re.match('^(?P<n>.*)_ret$', self.type) if km: self.freturn = True self.fkprobe = True self.type = km.group('n') return self.fevent = True return # convert the duration to seconds if(d): self.length = float(d)/1000000 # the indentation determines the depth match = re.match('^(?P<d> *)(?P<o>.*)$', m) if(not match): return self.depth = self.getDepth(match.group('d')) m = match.group('o') # function return if(m[0] == '}'): self.freturn = True if(len(m) > 1): # includes comment with function name match = re.match('^} *\/\* *(?P<n>.*) *\*\/$', m) if(match): self.name = match.group('n').strip() # function call else: self.fcall = True # function call with children if(m[-1] == '{'): match = re.match('^(?P<n>.*) *\(.*', m) if(match): self.name = match.group('n').strip() # function call with no children (leaf) elif(m[-1] == ';'): self.freturn = True match = re.match('^(?P<n>.*) *\(.*', m) if(match): self.name = match.group('n').strip() # something else (possibly a trace marker) else: self.name = m def getDepth(self, str): return len(str)/2 def debugPrint(self, dev=''): if(self.freturn and self.fcall): print('%s -- %f (%02d): %s(); (%.3f us)' % (dev, self.time, \ self.depth, self.name, self.length*1000000)) elif(self.freturn): print('%s -- %f (%02d): %s} (%.3f us)' % (dev, self.time, \ self.depth, self.name, self.length*1000000)) else: print('%s -- %f (%02d): %s() { (%.3f us)' % (dev, self.time, \ self.depth, self.name, self.length*1000000)) def startMarker(self): # Is this the starting line of a suspend? if not self.fevent: return False if sysvals.usetracemarkers: if(self.name == 'SUSPEND START'): return True return False else: if(self.type == 'suspend_resume' and re.match('suspend_enter\[.*\] begin', self.name)): return True return False def endMarker(self): # Is this the ending line of a resume? if not self.fevent: return False if sysvals.usetracemarkers: if(self.name == 'RESUME COMPLETE'): return True return False else: if(self.type == 'suspend_resume' and re.match('thaw_processes\[.*\] end', self.name)): return True return False # Class: FTraceCallGraph # Description: # A container for the ftrace callgraph of a single recursive function. # This can be a dpm_run_callback, dpm_prepare, or dpm_complete callgraph # Each instance is tied to a single device in a single phase, and is # comprised of an ordered list of FTraceLine objects class FTraceCallGraph: id = '' start = -1.0 end = -1.0 list = [] invalid = False depth = 0 pid = 0 name = '' def __init__(self, pid): self.start = -1.0 self.end = -1.0 self.list = [] self.depth = 0 self.pid = pid def addLine(self, line, debug=False): # if this is already invalid, just leave if(self.invalid): return False # invalidate on too much data or bad depth if(len(self.list) >= 1000000 or self.depth < 0): self.invalidate(line) return False # compare current depth with this lines pre-call depth prelinedep = line.depth if(line.freturn and not line.fcall): prelinedep += 1 last = 0 lasttime = line.time virtualfname = 'missing_function_name' if len(self.list) > 0: last = self.list[-1] lasttime = last.time # handle low misalignments by inserting returns if prelinedep < self.depth: if debug and last: print '-------- task %d --------' % self.pid last.debugPrint() idx = 0 # add return calls to get the depth down while prelinedep < self.depth: if debug: print 'MISALIGN LOW (add returns): C%d - eC%d' % (self.depth, prelinedep) self.depth -= 1 if idx == 0 and last and last.fcall and not last.freturn: # special case, turn last call into a leaf last.depth = self.depth last.freturn = True last.length = line.time - last.time if debug: last.debugPrint() else: vline = FTraceLine(lasttime) vline.depth = self.depth vline.name = virtualfname vline.freturn = True self.list.append(vline) if debug: vline.debugPrint() idx += 1 if debug: line.debugPrint() print '' # handle high misalignments by inserting calls elif prelinedep > self.depth: if debug and last: print '-------- task %d --------' % self.pid last.debugPrint() idx = 0 # add calls to get the depth up while prelinedep > self.depth: if debug: print 'MISALIGN HIGH (add calls): C%d - eC%d' % (self.depth, prelinedep) if idx == 0 and line.freturn and not line.fcall: # special case, turn this return into a leaf line.fcall = True prelinedep -= 1 else: vline = FTraceLine(lasttime) vline.depth = self.depth vline.name = virtualfname vline.fcall = True if debug: vline.debugPrint() self.list.append(vline) self.depth += 1 if not last: self.start = vline.time idx += 1 if debug: line.debugPrint() print '' # process the call and set the new depth if(line.fcall and not line.freturn): self.depth += 1 elif(line.freturn and not line.fcall): self.depth -= 1 if len(self.list) < 1: self.start = line.time self.list.append(line) if(line.depth == 0 and line.freturn): if(self.start < 0): self.start = line.time self.end = line.time if line.fcall: self.end += line.length if self.list[0].name == virtualfname: self.invalid = True return True return False def invalidate(self, line): if(len(self.list) > 0): first = self.list[0] self.list = [] self.list.append(first) self.invalid = True id = 'task %s' % (self.pid) window = '(%f - %f)' % (self.start, line.time) if(self.depth < 0): vprint('Too much data for '+id+\ ' (buffer overflow), ignoring this callback') else: vprint('Too much data for '+id+\ ' '+window+', ignoring this callback') def slice(self, t0, tN): minicg = FTraceCallGraph(0) count = -1 firstdepth = 0 for l in self.list: if(l.time < t0 or l.time > tN): continue if(count < 0): if(not l.fcall or l.name == 'dev_driver_string'): continue firstdepth = l.depth count = 0 l.depth -= firstdepth minicg.addLine(l) if((count == 0 and l.freturn and l.fcall) or (count > 0 and l.depth <= 0)): break count += 1 return minicg def repair(self, enddepth): # bring the depth back to 0 with additional returns fixed = False last = self.list[-1] for i in reversed(range(enddepth)): t = FTraceLine(last.time) t.depth = i t.freturn = True fixed = self.addLine(t) if fixed: self.end = last.time return True return False def postProcess(self, debug=False): if len(self.list) > 0: self.name = self.list[0].name stack = dict() cnt = 0 last = 0 for l in self.list: # ftrace bug: reported duration is not reliable # check each leaf and clip it at max possible length if(last and last.freturn and last.fcall): if last.length > l.time - last.time: last.length = l.time - last.time if(l.fcall and not l.freturn): stack[l.depth] = l cnt += 1 elif(l.freturn and not l.fcall): if(l.depth not in stack): if debug: print 'Post Process Error: Depth missing' l.debugPrint() return False # calculate call length from call/return lines stack[l.depth].length = l.time - stack[l.depth].time stack.pop(l.depth) l.length = 0 cnt -= 1 last = l if(cnt == 0): # trace caught the whole call tree return True elif(cnt < 0): if debug: print 'Post Process Error: Depth is less than 0' return False # trace ended before call tree finished return self.repair(cnt) def deviceMatch(self, pid, data): found = False # add the callgraph data to the device hierarchy borderphase = { 'dpm_prepare': 'suspend_prepare', 'dpm_complete': 'resume_complete' } if(self.name in borderphase): p = borderphase[self.name] list = data.dmesg[p]['list'] for devname in list: dev = list[devname] if(pid == dev['pid'] and self.start <= dev['start'] and self.end >= dev['end']): dev['ftrace'] = self.slice(dev['start'], dev['end']) found = True return found for p in data.phases: if(data.dmesg[p]['start'] <= self.start and self.start <= data.dmesg[p]['end']): list = data.dmesg[p]['list'] for devname in list: dev = list[devname] if(pid == dev['pid'] and self.start <= dev['start'] and self.end >= dev['end']): dev['ftrace'] = self found = True break break return found def newActionFromFunction(self, data): name = self.name if name in ['dpm_run_callback', 'dpm_prepare', 'dpm_complete']: return fs = self.start fe = self.end if fs < data.start or fe > data.end: return phase = '' for p in data.phases: if(data.dmesg[p]['start'] <= self.start and self.start < data.dmesg[p]['end']): phase = p break if not phase: return out = data.newActionGlobal(name, fs, fe, -2) if out: phase, myname = out data.dmesg[phase]['list'][myname]['ftrace'] = self def debugPrint(self): print('[%f - %f] %s (%d)') % (self.start, self.end, self.name, self.pid) for l in self.list: if(l.freturn and l.fcall): print('%f (%02d): %s(); (%.3f us)' % (l.time, \ l.depth, l.name, l.length*1000000)) elif(l.freturn): print('%f (%02d): %s} (%.3f us)' % (l.time, \ l.depth, l.name, l.length*1000000)) else: print('%f (%02d): %s() { (%.3f us)' % (l.time, \ l.depth, l.name, l.length*1000000)) print(' ') class DevItem: def __init__(self, test, phase, dev): self.test = test self.phase = phase self.dev = dev def isa(self, cls): if 'htmlclass' in self.dev and cls in self.dev['htmlclass']: return True return False # Class: Timeline # Description: # A container for a device timeline which calculates # all the html properties to display it correctly class Timeline: html = '' height = 0 # total timeline height scaleH = 20 # timescale (top) row height rowH = 30 # device row height bodyH = 0 # body height rows = 0 # total timeline rows rowlines = dict() rowheight = dict() html_tblock = '<div id="block{0}" class="tblock" style="left:{1}%;width:{2}%;"><div class="tback" style="height:{3}px"></div>\n' html_device = '<div id="{0}" title="{1}" class="thread{7}" style="left:{2}%;top:{3}px;height:{4}px;width:{5}%;{8}">{6}</div>\n' html_phase = '<div class="phase" style="left:{0}%;width:{1}%;top:{2}px;height:{3}px;background:{4}">{5}</div>\n' html_phaselet = '<div id="{0}" class="phaselet" style="left:{1}%;width:{2}%;background:{3}"></div>\n' html_legend = '<div id="p{3}" class="square" style="left:{0}%;background:{1}">&nbsp;{2}</div>\n' def __init__(self, rowheight, scaleheight): self.rowH = rowheight self.scaleH = scaleheight self.html = '' def createHeader(self, sv): if(not sv.stamp['time']): return self.html += '<div class="version"><a href="https://01.org/suspendresume">%s v%s</a></div>' \ % (sv.title, sv.version) if sv.logmsg and sv.testlog: self.html += '<button id="showtest" class="logbtn btnfmt">log</button>' if sv.dmesglog: self.html += '<button id="showdmesg" class="logbtn btnfmt">dmesg</button>' if sv.ftracelog: self.html += '<button id="showftrace" class="logbtn btnfmt">ftrace</button>' headline_stamp = '<div class="stamp">{0} {1} {2} {3}</div>\n' self.html += headline_stamp.format(sv.stamp['host'], sv.stamp['kernel'], sv.stamp['mode'], sv.stamp['time']) if 'man' in sv.stamp and 'plat' in sv.stamp and 'cpu' in sv.stamp: headline_sysinfo = '<div class="stamp sysinfo">{0} {1} <i>with</i> {2}</div>\n' self.html += headline_sysinfo.format(sv.stamp['man'], sv.stamp['plat'], sv.stamp['cpu']) # Function: getDeviceRows # Description: # determine how may rows the device funcs will take # Arguments: # rawlist: the list of devices/actions for a single phase # Output: # The total number of rows needed to display this phase of the timeline def getDeviceRows(self, rawlist): # clear all rows and set them to undefined sortdict = dict() for item in rawlist: item.row = -1 sortdict[item] = item.length sortlist = sorted(sortdict, key=sortdict.get, reverse=True) remaining = len(sortlist) rowdata = dict() row = 1 # try to pack each row with as many ranges as possible while(remaining > 0): if(row not in rowdata): rowdata[row] = [] for i in sortlist: if(i.row >= 0): continue s = i.time e = i.time + i.length valid = True for ritem in rowdata[row]: rs = ritem.time re = ritem.time + ritem.length if(not (((s <= rs) and (e <= rs)) or ((s >= re) and (e >= re)))): valid = False break if(valid): rowdata[row].append(i) i.row = row remaining -= 1 row += 1 return row # Function: getPhaseRows # Description: # Organize the timeline entries into the smallest # number of rows possible, with no entry overlapping # Arguments: # devlist: the list of devices/actions in a group of contiguous phases # Output: # The total number of rows needed to display this phase of the timeline def getPhaseRows(self, devlist, row=0, sortby='length'): # clear all rows and set them to undefined remaining = len(devlist) rowdata = dict() sortdict = dict() myphases = [] # initialize all device rows to -1 and calculate devrows for item in devlist: dev = item.dev tp = (item.test, item.phase) if tp not in myphases: myphases.append(tp) dev['row'] = -1 if sortby == 'start': # sort by start 1st, then length 2nd sortdict[item] = (-1*float(dev['start']), float(dev['end']) - float(dev['start'])) else: # sort by length 1st, then name 2nd sortdict[item] = (float(dev['end']) - float(dev['start']), item.dev['name']) if 'src' in dev: dev['devrows'] = self.getDeviceRows(dev['src']) # sort the devlist by length so that large items graph on top sortlist = sorted(sortdict, key=sortdict.get, reverse=True) orderedlist = [] for item in sortlist: if item.dev['pid'] == -2: orderedlist.append(item) for item in sortlist: if item not in orderedlist: orderedlist.append(item) # try to pack each row with as many devices as possible while(remaining > 0): rowheight = 1 if(row not in rowdata): rowdata[row] = [] for item in orderedlist: dev = item.dev if(dev['row'] < 0): s = dev['start'] e = dev['end'] valid = True for ritem in rowdata[row]: rs = ritem.dev['start'] re = ritem.dev['end'] if(not (((s <= rs) and (e <= rs)) or ((s >= re) and (e >= re)))): valid = False break if(valid): rowdata[row].append(item) dev['row'] = row remaining -= 1 if 'devrows' in dev and dev['devrows'] > rowheight: rowheight = dev['devrows'] for t, p in myphases: if t not in self.rowlines or t not in self.rowheight: self.rowlines[t] = dict() self.rowheight[t] = dict() if p not in self.rowlines[t] or p not in self.rowheight[t]: self.rowlines[t][p] = dict() self.rowheight[t][p] = dict() rh = self.rowH # section headers should use a different row height if len(rowdata[row]) == 1 and \ 'htmlclass' in rowdata[row][0].dev and \ 'sec' in rowdata[row][0].dev['htmlclass']: rh = 15 self.rowlines[t][p][row] = rowheight self.rowheight[t][p][row] = rowheight * rh row += 1 if(row > self.rows): self.rows = int(row) return row def phaseRowHeight(self, test, phase, row): return self.rowheight[test][phase][row] def phaseRowTop(self, test, phase, row): top = 0 for i in sorted(self.rowheight[test][phase]): if i >= row: break top += self.rowheight[test][phase][i] return top def calcTotalRows(self): # Calculate the heights and offsets for the header and rows maxrows = 0 standardphases = [] for t in self.rowlines: for p in self.rowlines[t]: total = 0 for i in sorted(self.rowlines[t][p]): total += self.rowlines[t][p][i] if total > maxrows: maxrows = total if total == len(self.rowlines[t][p]): standardphases.append((t, p)) self.height = self.scaleH + (maxrows*self.rowH) self.bodyH = self.height - self.scaleH # if there is 1 line per row, draw them the standard way for t, p in standardphases: for i in sorted(self.rowheight[t][p]): self.rowheight[t][p][i] = self.bodyH/len(self.rowlines[t][p]) def createZoomBox(self, mode='command', testcount=1): # Create bounding box, add buttons html_zoombox = '<center><button id="zoomin">ZOOM IN +</button><button id="zoomout">ZOOM OUT -</button><button id="zoomdef">ZOOM 1:1</button></center>\n' html_timeline = '<div id="dmesgzoombox" class="zoombox">\n<div id="{0}" class="timeline" style="height:{1}px">\n' html_devlist1 = '<button id="devlist1" class="devlist" style="float:left;">Device Detail{0}</button>' html_devlist2 = '<button id="devlist2" class="devlist" style="float:right;">Device Detail2</button>\n' if mode != 'command': if testcount > 1: self.html += html_devlist2 self.html += html_devlist1.format('1') else: self.html += html_devlist1.format('') self.html += html_zoombox self.html += html_timeline.format('dmesg', self.height) # Function: createTimeScale # Description: # Create the timescale for a timeline block # Arguments: # m0: start time (mode begin) # mMax: end time (mode end) # tTotal: total timeline time # mode: suspend or resume # Output: # The html code needed to display the time scale def createTimeScale(self, m0, mMax, tTotal, mode): timescale = '<div class="t" style="right:{0}%">{1}</div>\n' rline = '<div class="t" style="left:0;border-left:1px solid black;border-right:0;">{0}</div>\n' output = '<div class="timescale">\n' # set scale for timeline mTotal = mMax - m0 tS = 0.1 if(tTotal <= 0): return output+'</div>\n' if(tTotal > 4): tS = 1 divTotal = int(mTotal/tS) + 1 divEdge = (mTotal - tS*(divTotal-1))*100/mTotal for i in range(divTotal): htmlline = '' if(mode == 'suspend'): pos = '%0.3f' % (100 - ((float(i)*tS*100)/mTotal) - divEdge) val = '%0.fms' % (float(i-divTotal+1)*tS*1000) if(i == divTotal - 1): val = mode htmlline = timescale.format(pos, val) else: pos = '%0.3f' % (100 - ((float(i)*tS*100)/mTotal)) val = '%0.fms' % (float(i)*tS*1000) htmlline = timescale.format(pos, val) if(i == 0): htmlline = rline.format(mode) output += htmlline self.html += output+'</div>\n' # Class: TestProps # Description: # A list of values describing the properties of these test runs class TestProps: stamp = '' sysinfo = '' S0i3 = False fwdata = [] stampfmt = '# [a-z]*-(?P<m>[0-9]{2})(?P<d>[0-9]{2})(?P<y>[0-9]{2})-'+\ '(?P<H>[0-9]{2})(?P<M>[0-9]{2})(?P<S>[0-9]{2})'+\ ' (?P<host>.*) (?P<mode>.*) (?P<kernel>.*)$' sysinfofmt = '^# sysinfo .*' ftrace_line_fmt_fg = \ '^ *(?P<time>[0-9\.]*) *\| *(?P<cpu>[0-9]*)\)'+\ ' *(?P<proc>.*)-(?P<pid>[0-9]*) *\|'+\ '[ +!#\*@$]*(?P<dur>[0-9\.]*) .*\| (?P<msg>.*)' ftrace_line_fmt_nop = \ ' *(?P<proc>.*)-(?P<pid>[0-9]*) *\[(?P<cpu>[0-9]*)\] *'+\ '(?P<flags>.{4}) *(?P<time>[0-9\.]*): *'+\ '(?P<msg>.*)' ftrace_line_fmt = ftrace_line_fmt_nop cgformat = False data = 0 ktemp = dict() def __init__(self): self.ktemp = dict() def setTracerType(self, tracer): if(tracer == 'function_graph'): self.cgformat = True self.ftrace_line_fmt = self.ftrace_line_fmt_fg elif(tracer == 'nop'): self.ftrace_line_fmt = self.ftrace_line_fmt_nop else: doError('Invalid tracer format: [%s]' % tracer) def parseStamp(self, data, sv): m = re.match(self.stampfmt, self.stamp) data.stamp = {'time': '', 'host': '', 'mode': ''} dt = datetime(int(m.group('y'))+2000, int(m.group('m')), int(m.group('d')), int(m.group('H')), int(m.group('M')), int(m.group('S'))) data.stamp['time'] = dt.strftime('%B %d %Y, %I:%M:%S %p') data.stamp['host'] = m.group('host') data.stamp['mode'] = m.group('mode') data.stamp['kernel'] = m.group('kernel') if re.match(self.sysinfofmt, self.sysinfo): for f in self.sysinfo.split('|'): if '#' in f: continue tmp = f.strip().split(':', 1) key = tmp[0] val = tmp[1] data.stamp[key] = val sv.hostname = data.stamp['host'] sv.suspendmode = data.stamp['mode'] if sv.suspendmode == 'command' and sv.ftracefile != '': modes = ['on', 'freeze', 'standby', 'mem'] out = Popen(['grep', 'suspend_enter', sv.ftracefile], stderr=PIPE, stdout=PIPE).stdout.read() m = re.match('.* suspend_enter\[(?P<mode>.*)\]', out) if m and m.group('mode') in ['1', '2', '3']: sv.suspendmode = modes[int(m.group('mode'))] data.stamp['mode'] = sv.suspendmode if not sv.stamp: sv.stamp = data.stamp # Class: TestRun # Description: # A container for a suspend/resume test run. This is necessary as # there could be more than one, and they need to be separate. class TestRun: ftemp = dict() ttemp = dict() data = 0 def __init__(self, dataobj): self.data = dataobj self.ftemp = dict() self.ttemp = dict() class ProcessMonitor: proclist = dict() running = False def procstat(self): c = ['cat /proc/[1-9]*/stat 2>/dev/null'] process = Popen(c, shell=True, stdout=PIPE) running = dict() for line in process.stdout: data = line.split() pid = data[0] name = re.sub('[()]', '', data[1]) user = int(data[13]) kern = int(data[14]) kjiff = ujiff = 0 if pid not in self.proclist: self.proclist[pid] = {'name' : name, 'user' : user, 'kern' : kern} else: val = self.proclist[pid] ujiff = user - val['user'] kjiff = kern - val['kern'] val['user'] = user val['kern'] = kern if ujiff > 0 or kjiff > 0: running[pid] = ujiff + kjiff process.wait() out = '' for pid in running: jiffies = running[pid] val = self.proclist[pid] if out: out += ',' out += '%s-%s %d' % (val['name'], pid, jiffies) return 'ps - '+out def processMonitor(self, tid): while self.running: out = self.procstat() if out: sysvals.fsetVal(out, 'trace_marker') def start(self): self.thread = Thread(target=self.processMonitor, args=(0,)) self.running = True self.thread.start() def stop(self): self.running = False # ----------------- FUNCTIONS -------------------- # Function: vprint # Description: # verbose print (prints only with -verbose option) # Arguments: # msg: the debug/log message to print def vprint(msg): sysvals.logmsg += msg+'\n' if(sysvals.verbose): print(msg) # Function: doesTraceLogHaveTraceEvents # Description: # Quickly determine if the ftrace log has some or all of the trace events # required for primary parsing. Set the usetraceevents and/or # usetraceeventsonly flags in the global sysvals object def doesTraceLogHaveTraceEvents(): # check for kprobes sysvals.usekprobes = False out = call('grep -q "_cal: (" '+sysvals.ftracefile, shell=True) if(out == 0): sysvals.usekprobes = True # check for callgraph data on trace event blocks out = call('grep -q "_cpu_down()" '+sysvals.ftracefile, shell=True) if(out == 0): sysvals.usekprobes = True out = Popen(['head', '-1', sysvals.ftracefile], stderr=PIPE, stdout=PIPE).stdout.read().replace('\n', '') # figure out what level of trace events are supported sysvals.usetraceeventsonly = True sysvals.usetraceevents = False for e in sysvals.traceevents: out = call('grep -q "'+e+': " '+sysvals.ftracefile, shell=True) if(out != 0): sysvals.usetraceeventsonly = False if(e == 'suspend_resume' and out == 0): sysvals.usetraceevents = True # determine is this log is properly formatted for e in ['SUSPEND START', 'RESUME COMPLETE']: out = call('grep -q "'+e+'" '+sysvals.ftracefile, shell=True) if(out != 0): sysvals.usetracemarkers = False # Function: appendIncompleteTraceLog # Description: # [deprecated for kernel 3.15 or newer] # Legacy support of ftrace outputs that lack the device_pm_callback # and/or suspend_resume trace events. The primary data should be # taken from dmesg, and this ftrace is used only for callgraph data # or custom actions in the timeline. The data is appended to the Data # objects provided. # Arguments: # testruns: the array of Data objects obtained from parseKernelLog def appendIncompleteTraceLog(testruns): # create TestRun vessels for ftrace parsing testcnt = len(testruns) testidx = 0 testrun = [] for data in testruns: testrun.append(TestRun(data)) # extract the callgraph and traceevent data vprint('Analyzing the ftrace data...') tp = TestProps() tf = open(sysvals.ftracefile, 'r') data = 0 for line in tf: # remove any latent carriage returns line = line.replace('\r\n', '') # grab the stamp and sysinfo if re.match(tp.stampfmt, line): tp.stamp = line continue elif re.match(tp.sysinfofmt, line): tp.sysinfo = line continue # determine the trace data type (required for further parsing) m = re.match(sysvals.tracertypefmt, line) if(m): tp.setTracerType(m.group('t')) continue # device properties line if(re.match(sysvals.devpropfmt, line)): devProps(line) continue # parse only valid lines, if this is not one move on m = re.match(tp.ftrace_line_fmt, line) if(not m): continue # gather the basic message data from the line m_time = m.group('time') m_pid = m.group('pid') m_msg = m.group('msg') if(tp.cgformat): m_param3 = m.group('dur') else: m_param3 = 'traceevent' if(m_time and m_pid and m_msg): t = FTraceLine(m_time, m_msg, m_param3) pid = int(m_pid) else: continue # the line should be a call, return, or event if(not t.fcall and not t.freturn and not t.fevent): continue # look for the suspend start marker if(t.startMarker()): data = testrun[testidx].data tp.parseStamp(data, sysvals) data.setStart(t.time) continue if(not data): continue # find the end of resume if(t.endMarker()): data.setEnd(t.time) testidx += 1 if(testidx >= testcnt): break continue # trace event processing if(t.fevent): # general trace events have two types, begin and end if(re.match('(?P<name>.*) begin$', t.name)): isbegin = True elif(re.match('(?P<name>.*) end$', t.name)): isbegin = False else: continue m = re.match('(?P<name>.*)\[(?P<val>[0-9]*)\] .*', t.name) if(m): val = m.group('val') if val == '0': name = m.group('name') else: name = m.group('name')+'['+val+']' else: m = re.match('(?P<name>.*) .*', t.name) name = m.group('name') # special processing for trace events if re.match('dpm_prepare\[.*', name): continue elif re.match('machine_suspend.*', name): continue elif re.match('suspend_enter\[.*', name): if(not isbegin): data.dmesg['suspend_prepare']['end'] = t.time continue elif re.match('dpm_suspend\[.*', name): if(not isbegin): data.dmesg['suspend']['end'] = t.time continue elif re.match('dpm_suspend_late\[.*', name): if(isbegin): data.dmesg['suspend_late']['start'] = t.time else: data.dmesg['suspend_late']['end'] = t.time continue elif re.match('dpm_suspend_noirq\[.*', name): if(isbegin): data.dmesg['suspend_noirq']['start'] = t.time else: data.dmesg['suspend_noirq']['end'] = t.time continue elif re.match('dpm_resume_noirq\[.*', name): if(isbegin): data.dmesg['resume_machine']['end'] = t.time data.dmesg['resume_noirq']['start'] = t.time else: data.dmesg['resume_noirq']['end'] = t.time continue elif re.match('dpm_resume_early\[.*', name): if(isbegin): data.dmesg['resume_early']['start'] = t.time else: data.dmesg['resume_early']['end'] = t.time continue elif re.match('dpm_resume\[.*', name): if(isbegin): data.dmesg['resume']['start'] = t.time else: data.dmesg['resume']['end'] = t.time continue elif re.match('dpm_complete\[.*', name): if(isbegin): data.dmesg['resume_complete']['start'] = t.time else: data.dmesg['resume_complete']['end'] = t.time continue # skip trace events inside devices calls if(not data.isTraceEventOutsideDeviceCalls(pid, t.time)): continue # global events (outside device calls) are simply graphed if(isbegin): # store each trace event in ttemp if(name not in testrun[testidx].ttemp): testrun[testidx].ttemp[name] = [] testrun[testidx].ttemp[name].append(\ {'begin': t.time, 'end': t.time}) else: # finish off matching trace event in ttemp if(name in testrun[testidx].ttemp): testrun[testidx].ttemp[name][-1]['end'] = t.time # call/return processing elif sysvals.usecallgraph: # create a callgraph object for the data if(pid not in testrun[testidx].ftemp): testrun[testidx].ftemp[pid] = [] testrun[testidx].ftemp[pid].append(FTraceCallGraph(pid)) # when the call is finished, see which device matches it cg = testrun[testidx].ftemp[pid][-1] if(cg.addLine(t)): testrun[testidx].ftemp[pid].append(FTraceCallGraph(pid)) tf.close() for test in testrun: # add the traceevent data to the device hierarchy if(sysvals.usetraceevents): for name in test.ttemp: for event in test.ttemp[name]: test.data.newActionGlobal(name, event['begin'], event['end']) # add the callgraph data to the device hierarchy for pid in test.ftemp: for cg in test.ftemp[pid]: if len(cg.list) < 1 or cg.invalid: continue if(not cg.postProcess()): id = 'task %s cpu %s' % (pid, m.group('cpu')) vprint('Sanity check failed for '+\ id+', ignoring this callback') continue callstart = cg.start callend = cg.end for p in test.data.phases: if(test.data.dmesg[p]['start'] <= callstart and callstart <= test.data.dmesg[p]['end']): list = test.data.dmesg[p]['list'] for devname in list: dev = list[devname] if(pid == dev['pid'] and callstart <= dev['start'] and callend >= dev['end']): dev['ftrace'] = cg break test.data.printDetails() # Function: parseTraceLog # Description: # Analyze an ftrace log output file generated from this app during # the execution phase. Used when the ftrace log is the primary data source # and includes the suspend_resume and device_pm_callback trace events # The ftrace filename is taken from sysvals # Output: # An array of Data objects def parseTraceLog(): vprint('Analyzing the ftrace data...') if(os.path.exists(sysvals.ftracefile) == False): doError('%s does not exist' % sysvals.ftracefile) sysvals.setupAllKprobes() tracewatch = [] if sysvals.usekprobes: tracewatch += ['sync_filesystems', 'freeze_processes', 'syscore_suspend', 'syscore_resume', 'resume_console', 'thaw_processes', 'CPU_ON', 'CPU_OFF'] # extract the callgraph and traceevent data tp = TestProps() testruns = [] testdata = [] testrun = 0 data = 0 tf = open(sysvals.ftracefile, 'r') phase = 'suspend_prepare' for line in tf: # remove any latent carriage returns line = line.replace('\r\n', '') # stamp and sysinfo lines if re.match(tp.stampfmt, line): tp.stamp = line continue elif re.match(tp.sysinfofmt, line): tp.sysinfo = line continue # firmware line: pull out any firmware data m = re.match(sysvals.firmwarefmt, line) if(m): tp.fwdata.append((int(m.group('s')), int(m.group('r')))) continue # tracer type line: determine the trace data type m = re.match(sysvals.tracertypefmt, line) if(m): tp.setTracerType(m.group('t')) continue # device properties line if(re.match(sysvals.devpropfmt, line)): devProps(line) continue # ignore all other commented lines if line[0] == '#': continue # ftrace line: parse only valid lines m = re.match(tp.ftrace_line_fmt, line) if(not m): continue # gather the basic message data from the line m_time = m.group('time') m_proc = m.group('proc') m_pid = m.group('pid') m_msg = m.group('msg') if(tp.cgformat): m_param3 = m.group('dur') else: m_param3 = 'traceevent' if(m_time and m_pid and m_msg): t = FTraceLine(m_time, m_msg, m_param3) pid = int(m_pid) else: continue # the line should be a call, return, or event if(not t.fcall and not t.freturn and not t.fevent): continue # find the start of suspend if(t.startMarker()): phase = 'suspend_prepare' data = Data(len(testdata)) testdata.append(data) testrun = TestRun(data) testruns.append(testrun) tp.parseStamp(data, sysvals) data.setStart(t.time) data.tKernSus = t.time continue if(not data): continue # process cpu exec line if t.type == 'tracing_mark_write': m = re.match(sysvals.procexecfmt, t.name) if(m): proclist = dict() for ps in m.group('ps').split(','): val = ps.split() if not val: continue name = val[0].replace('--', '-') proclist[name] = int(val[1]) data.pstl[t.time] = proclist continue # find the end of resume if(t.endMarker()): data.setEnd(t.time) if data.tKernRes == 0.0: data.tKernRes = t.time if data.dmesg['resume_complete']['end'] < 0: data.dmesg['resume_complete']['end'] = t.time if sysvals.suspendmode == 'mem' and len(tp.fwdata) > data.testnumber: data.fwSuspend, data.fwResume = tp.fwdata[data.testnumber] if(data.tSuspended != 0 and data.tResumed != 0 and \ (data.fwSuspend > 0 or data.fwResume > 0)): data.fwValid = True if(not sysvals.usetracemarkers): # no trace markers? then quit and be sure to finish recording # the event we used to trigger resume end if(len(testrun.ttemp['thaw_processes']) > 0): # if an entry exists, assume this is its end testrun.ttemp['thaw_processes'][-1]['end'] = t.time break continue # trace event processing if(t.fevent): if(phase == 'post_resume'): data.setEnd(t.time) if(t.type == 'suspend_resume'): # suspend_resume trace events have two types, begin and end if(re.match('(?P<name>.*) begin$', t.name)): isbegin = True elif(re.match('(?P<name>.*) end$', t.name)): isbegin = False else: continue m = re.match('(?P<name>.*)\[(?P<val>[0-9]*)\] .*', t.name) if(m): val = m.group('val') if val == '0': name = m.group('name') else: name = m.group('name')+'['+val+']' else: m = re.match('(?P<name>.*) .*', t.name) name = m.group('name') # ignore these events if(name.split('[')[0] in tracewatch): continue # -- phase changes -- # start of kernel suspend if(re.match('suspend_enter\[.*', t.name)): if(isbegin): data.dmesg[phase]['start'] = t.time data.tKernSus = t.time continue # suspend_prepare start elif(re.match('dpm_prepare\[.*', t.name)): phase = 'suspend_prepare' if(not isbegin): data.dmesg[phase]['end'] = t.time continue # suspend start elif(re.match('dpm_suspend\[.*', t.name)): phase = 'suspend' data.setPhase(phase, t.time, isbegin) continue # suspend_late start elif(re.match('dpm_suspend_late\[.*', t.name)): phase = 'suspend_late' data.setPhase(phase, t.time, isbegin) continue # suspend_noirq start elif(re.match('dpm_suspend_noirq\[.*', t.name)): phase = 'suspend_noirq' data.setPhase(phase, t.time, isbegin) if(not isbegin): phase = 'suspend_machine' data.dmesg[phase]['start'] = t.time continue # suspend_machine/resume_machine elif(re.match('machine_suspend\[.*', t.name)): if(isbegin): phase = 'suspend_machine' data.dmesg[phase]['end'] = t.time data.tSuspended = t.time else: if(sysvals.suspendmode in ['mem', 'disk'] and not tp.S0i3): data.dmesg['suspend_machine']['end'] = t.time data.tSuspended = t.time phase = 'resume_machine' data.dmesg[phase]['start'] = t.time data.tResumed = t.time data.tLow = data.tResumed - data.tSuspended continue # acpi_suspend elif(re.match('acpi_suspend\[.*', t.name)): # acpi_suspend[0] S0i3 if(re.match('acpi_suspend\[0\] begin', t.name)): if(sysvals.suspendmode == 'mem'): tp.S0i3 = True data.dmesg['suspend_machine']['end'] = t.time data.tSuspended = t.time continue # resume_noirq start elif(re.match('dpm_resume_noirq\[.*', t.name)): phase = 'resume_noirq' data.setPhase(phase, t.time, isbegin) if(isbegin): data.dmesg['resume_machine']['end'] = t.time continue # resume_early start elif(re.match('dpm_resume_early\[.*', t.name)): phase = 'resume_early' data.setPhase(phase, t.time, isbegin) continue # resume start elif(re.match('dpm_resume\[.*', t.name)): phase = 'resume' data.setPhase(phase, t.time, isbegin) continue # resume complete start elif(re.match('dpm_complete\[.*', t.name)): phase = 'resume_complete' if(isbegin): data.dmesg[phase]['start'] = t.time continue # skip trace events inside devices calls if(not data.isTraceEventOutsideDeviceCalls(pid, t.time)): continue # global events (outside device calls) are graphed if(name not in testrun.ttemp): testrun.ttemp[name] = [] if(isbegin): # create a new list entry testrun.ttemp[name].append(\ {'begin': t.time, 'end': t.time, 'pid': pid}) else: if(len(testrun.ttemp[name]) > 0): # if an entry exists, assume this is its end testrun.ttemp[name][-1]['end'] = t.time elif(phase == 'post_resume'): # post resume events can just have ends testrun.ttemp[name].append({ 'begin': data.dmesg[phase]['start'], 'end': t.time}) # device callback start elif(t.type == 'device_pm_callback_start'): m = re.match('(?P<drv>.*) (?P<d>.*), parent: *(?P<p>.*), .*',\ t.name); if(not m): continue drv = m.group('drv') n = m.group('d') p = m.group('p') if(n and p): data.newAction(phase, n, pid, p, t.time, -1, drv) if pid not in data.devpids: data.devpids.append(pid) # device callback finish elif(t.type == 'device_pm_callback_end'): m = re.match('(?P<drv>.*) (?P<d>.*), err.*', t.name); if(not m): continue n = m.group('d') list = data.dmesg[phase]['list'] if(n in list): dev = list[n] dev['length'] = t.time - dev['start'] dev['end'] = t.time # kprobe event processing elif(t.fkprobe): kprobename = t.type kprobedata = t.name key = (kprobename, pid) # displayname is generated from kprobe data displayname = '' if(t.fcall): displayname = sysvals.kprobeDisplayName(kprobename, kprobedata) if not displayname: continue if(key not in tp.ktemp): tp.ktemp[key] = [] tp.ktemp[key].append({ 'pid': pid, 'begin': t.time, 'end': t.time, 'name': displayname, 'cdata': kprobedata, 'proc': m_proc, }) elif(t.freturn): if(key not in tp.ktemp) or len(tp.ktemp[key]) < 1: continue e = tp.ktemp[key][-1] if e['begin'] < 0.0 or t.time - e['begin'] < 0.000001: tp.ktemp[key].pop() else: e['end'] = t.time e['rdata'] = kprobedata # end of kernel resume if(kprobename == 'pm_notifier_call_chain' or \ kprobename == 'pm_restore_console'): data.dmesg[phase]['end'] = t.time data.tKernRes = t.time # callgraph processing elif sysvals.usecallgraph: # create a callgraph object for the data key = (m_proc, pid) if(key not in testrun.ftemp): testrun.ftemp[key] = [] testrun.ftemp[key].append(FTraceCallGraph(pid)) # when the call is finished, see which device matches it cg = testrun.ftemp[key][-1] if(cg.addLine(t)): testrun.ftemp[key].append(FTraceCallGraph(pid)) tf.close() if sysvals.suspendmode == 'command': for test in testruns: for p in test.data.phases: if p == 'suspend_prepare': test.data.dmesg[p]['start'] = test.data.start test.data.dmesg[p]['end'] = test.data.end else: test.data.dmesg[p]['start'] = test.data.end test.data.dmesg[p]['end'] = test.data.end test.data.tSuspended = test.data.end test.data.tResumed = test.data.end test.data.tLow = 0 test.data.fwValid = False # dev source and procmon events can be unreadable with mixed phase height if sysvals.usedevsrc or sysvals.useprocmon: sysvals.mixedphaseheight = False for i in range(len(testruns)): test = testruns[i] data = test.data # find the total time range for this test (begin, end) tlb, tle = data.start, data.end if i < len(testruns) - 1: tle = testruns[i+1].data.start # add the process usage data to the timeline if sysvals.useprocmon: data.createProcessUsageEvents() # add the traceevent data to the device hierarchy if(sysvals.usetraceevents): # add actual trace funcs for name in test.ttemp: for event in test.ttemp[name]: data.newActionGlobal(name, event['begin'], event['end'], event['pid']) # add the kprobe based virtual tracefuncs as actual devices for key in tp.ktemp: name, pid = key if name not in sysvals.tracefuncs: continue for e in tp.ktemp[key]: kb, ke = e['begin'], e['end'] if kb == ke or tlb > kb or tle <= kb: continue color = sysvals.kprobeColor(name) data.newActionGlobal(e['name'], kb, ke, pid, color) # add config base kprobes and dev kprobes if sysvals.usedevsrc: for key in tp.ktemp: name, pid = key if name in sysvals.tracefuncs or name not in sysvals.dev_tracefuncs: continue for e in tp.ktemp[key]: kb, ke = e['begin'], e['end'] if kb == ke or tlb > kb or tle <= kb: continue data.addDeviceFunctionCall(e['name'], name, e['proc'], pid, kb, ke, e['cdata'], e['rdata']) if sysvals.usecallgraph: # add the callgraph data to the device hierarchy sortlist = dict() for key in test.ftemp: proc, pid = key for cg in test.ftemp[key]: if len(cg.list) < 1 or cg.invalid: continue if(not cg.postProcess()): id = 'task %s' % (pid) vprint('Sanity check failed for '+\ id+', ignoring this callback') continue # match cg data to devices if sysvals.suspendmode == 'command' or not cg.deviceMatch(pid, data): sortkey = '%f%f%d' % (cg.start, cg.end, pid) sortlist[sortkey] = cg # create blocks for orphan cg data for sortkey in sorted(sortlist): cg = sortlist[sortkey] name = cg.name if sysvals.isCallgraphFunc(name): vprint('Callgraph found for task %d: %.3fms, %s' % (cg.pid, (cg.end - cg.start)*1000, name)) cg.newActionFromFunction(data) if sysvals.suspendmode == 'command': for data in testdata: data.printDetails() return testdata # fill in any missing phases for data in testdata: lp = data.phases[0] for p in data.phases: if(data.dmesg[p]['start'] < 0 and data.dmesg[p]['end'] < 0): vprint('WARNING: phase "%s" is missing!' % p) if(data.dmesg[p]['start'] < 0): data.dmesg[p]['start'] = data.dmesg[lp]['end'] if(p == 'resume_machine'): data.tSuspended = data.dmesg[lp]['end'] data.tResumed = data.dmesg[lp]['end'] data.tLow = 0 if(data.dmesg[p]['end'] < 0): data.dmesg[p]['end'] = data.dmesg[p]['start'] if(p != lp and not ('machine' in p and 'machine' in lp)): data.dmesg[lp]['end'] = data.dmesg[p]['start'] lp = p if(len(sysvals.devicefilter) > 0): data.deviceFilter(sysvals.devicefilter) data.fixupInitcallsThatDidntReturn() if sysvals.usedevsrc: data.optimizeDevSrc() data.printDetails() # x2: merge any overlapping devices between test runs if sysvals.usedevsrc and len(testdata) > 1: tc = len(testdata) for i in range(tc - 1): devlist = testdata[i].overflowDevices() for j in range(i + 1, tc): testdata[j].mergeOverlapDevices(devlist) testdata[0].stitchTouchingThreads(testdata[1:]) return testdata # Function: loadKernelLog # Description: # [deprecated for kernel 3.15.0 or newer] # load the dmesg file into memory and fix up any ordering issues # The dmesg filename is taken from sysvals # Output: # An array of empty Data objects with only their dmesgtext attributes set def loadKernelLog(justtext=False): vprint('Analyzing the dmesg data...') if(os.path.exists(sysvals.dmesgfile) == False): doError('%s does not exist' % sysvals.dmesgfile) if justtext: dmesgtext = [] # there can be multiple test runs in a single file tp = TestProps() tp.stamp = datetime.now().strftime('# suspend-%m%d%y-%H%M%S localhost mem unknown') testruns = [] data = 0 lf = open(sysvals.dmesgfile, 'r') for line in lf: line = line.replace('\r\n', '') idx = line.find('[') if idx > 1: line = line[idx:] # grab the stamp and sysinfo if re.match(tp.stampfmt, line): tp.stamp = line continue elif re.match(tp.sysinfofmt, line): tp.sysinfo = line continue m = re.match(sysvals.firmwarefmt, line) if(m): tp.fwdata.append((int(m.group('s')), int(m.group('r')))) continue m = re.match('[ \t]*(\[ *)(?P<ktime>[0-9\.]*)(\]) (?P<msg>.*)', line) if(not m): continue msg = m.group("msg") if justtext: dmesgtext.append(line) continue if(re.match('PM: Syncing filesystems.*', msg)): if(data): testruns.append(data) data = Data(len(testruns)) tp.parseStamp(data, sysvals) if len(tp.fwdata) > data.testnumber: data.fwSuspend, data.fwResume = tp.fwdata[data.testnumber] if(data.fwSuspend > 0 or data.fwResume > 0): data.fwValid = True if(not data): continue m = re.match('.* *(?P<k>[0-9]\.[0-9]{2}\.[0-9]-.*) .*', msg) if(m): sysvals.stamp['kernel'] = m.group('k') m = re.match('PM: Preparing system for (?P<m>.*) sleep', msg) if(m): sysvals.stamp['mode'] = sysvals.suspendmode = m.group('m') data.dmesgtext.append(line) lf.close() if justtext: return dmesgtext if data: testruns.append(data) if len(testruns) < 1: doError(' dmesg log has no suspend/resume data: %s' \ % sysvals.dmesgfile) # fix lines with same timestamp/function with the call and return swapped for data in testruns: last = '' for line in data.dmesgtext: mc = re.match('.*(\[ *)(?P<t>[0-9\.]*)(\]) calling '+\ '(?P<f>.*)\+ @ .*, parent: .*', line) mr = re.match('.*(\[ *)(?P<t>[0-9\.]*)(\]) call '+\ '(?P<f>.*)\+ returned .* after (?P<dt>.*) usecs', last) if(mc and mr and (mc.group('t') == mr.group('t')) and (mc.group('f') == mr.group('f'))): i = data.dmesgtext.index(last) j = data.dmesgtext.index(line) data.dmesgtext[i] = line data.dmesgtext[j] = last last = line return testruns # Function: parseKernelLog # Description: # [deprecated for kernel 3.15.0 or newer] # Analyse a dmesg log output file generated from this app during # the execution phase. Create a set of device structures in memory # for subsequent formatting in the html output file # This call is only for legacy support on kernels where the ftrace # data lacks the suspend_resume or device_pm_callbacks trace events. # Arguments: # data: an empty Data object (with dmesgtext) obtained from loadKernelLog # Output: # The filled Data object def parseKernelLog(data): phase = 'suspend_runtime' if(data.fwValid): vprint('Firmware Suspend = %u ns, Firmware Resume = %u ns' % \ (data.fwSuspend, data.fwResume)) # dmesg phase match table dm = { 'suspend_prepare': 'PM: Syncing filesystems.*', 'suspend': 'PM: Entering [a-z]* sleep.*', 'suspend_late': 'PM: suspend of devices complete after.*', 'suspend_noirq': 'PM: late suspend of devices complete after.*', 'suspend_machine': 'PM: noirq suspend of devices complete after.*', 'resume_machine': 'ACPI: Low-level resume complete.*', 'resume_noirq': 'ACPI: Waking up from system sleep state.*', 'resume_early': 'PM: noirq resume of devices complete after.*', 'resume': 'PM: early resume of devices complete after.*', 'resume_complete': 'PM: resume of devices complete after.*', 'post_resume': '.*Restarting tasks \.\.\..*', } if(sysvals.suspendmode == 'standby'): dm['resume_machine'] = 'PM: Restoring platform NVS memory' elif(sysvals.suspendmode == 'disk'): dm['suspend_late'] = 'PM: freeze of devices complete after.*' dm['suspend_noirq'] = 'PM: late freeze of devices complete after.*' dm['suspend_machine'] = 'PM: noirq freeze of devices complete after.*' dm['resume_machine'] = 'PM: Restoring platform NVS memory' dm['resume_early'] = 'PM: noirq restore of devices complete after.*' dm['resume'] = 'PM: early restore of devices complete after.*' dm['resume_complete'] = 'PM: restore of devices complete after.*' elif(sysvals.suspendmode == 'freeze'): dm['resume_machine'] = 'ACPI: resume from mwait' # action table (expected events that occur and show up in dmesg) at = { 'sync_filesystems': { 'smsg': 'PM: Syncing filesystems.*', 'emsg': 'PM: Preparing system for mem sleep.*' }, 'freeze_user_processes': { 'smsg': 'Freezing user space processes .*', 'emsg': 'Freezing remaining freezable tasks.*' }, 'freeze_tasks': { 'smsg': 'Freezing remaining freezable tasks.*', 'emsg': 'PM: Entering (?P<mode>[a-z,A-Z]*) sleep.*' }, 'ACPI prepare': { 'smsg': 'ACPI: Preparing to enter system sleep state.*', 'emsg': 'PM: Saving platform NVS memory.*' }, 'PM vns': { 'smsg': 'PM: Saving platform NVS memory.*', 'emsg': 'Disabling non-boot CPUs .*' }, } t0 = -1.0 cpu_start = -1.0 prevktime = -1.0 actions = dict() for line in data.dmesgtext: # parse each dmesg line into the time and message m = re.match('[ \t]*(\[ *)(?P<ktime>[0-9\.]*)(\]) (?P<msg>.*)', line) if(m): val = m.group('ktime') try: ktime = float(val) except: continue msg = m.group('msg') # initialize data start to first line time if t0 < 0: data.setStart(ktime) t0 = ktime else: continue # hack for determining resume_machine end for freeze if(not sysvals.usetraceevents and sysvals.suspendmode == 'freeze' \ and phase == 'resume_machine' and \ re.match('calling (?P<f>.*)\+ @ .*, parent: .*', msg)): data.dmesg['resume_machine']['end'] = ktime phase = 'resume_noirq' data.dmesg[phase]['start'] = ktime # suspend start if(re.match(dm['suspend_prepare'], msg)): phase = 'suspend_prepare' data.dmesg[phase]['start'] = ktime data.setStart(ktime) data.tKernSus = ktime # suspend start elif(re.match(dm['suspend'], msg)): data.dmesg['suspend_prepare']['end'] = ktime phase = 'suspend' data.dmesg[phase]['start'] = ktime # suspend_late start elif(re.match(dm['suspend_late'], msg)): data.dmesg['suspend']['end'] = ktime phase = 'suspend_late' data.dmesg[phase]['start'] = ktime # suspend_noirq start elif(re.match(dm['suspend_noirq'], msg)): data.dmesg['suspend_late']['end'] = ktime phase = 'suspend_noirq' data.dmesg[phase]['start'] = ktime # suspend_machine start elif(re.match(dm['suspend_machine'], msg)): data.dmesg['suspend_noirq']['end'] = ktime phase = 'suspend_machine' data.dmesg[phase]['start'] = ktime # resume_machine start elif(re.match(dm['resume_machine'], msg)): if(sysvals.suspendmode in ['freeze', 'standby']): data.tSuspended = prevktime data.dmesg['suspend_machine']['end'] = prevktime else: data.tSuspended = ktime data.dmesg['suspend_machine']['end'] = ktime phase = 'resume_machine' data.tResumed = ktime data.tLow = data.tResumed - data.tSuspended data.dmesg[phase]['start'] = ktime # resume_noirq start elif(re.match(dm['resume_noirq'], msg)): data.dmesg['resume_machine']['end'] = ktime phase = 'resume_noirq' data.dmesg[phase]['start'] = ktime # resume_early start elif(re.match(dm['resume_early'], msg)): data.dmesg['resume_noirq']['end'] = ktime phase = 'resume_early' data.dmesg[phase]['start'] = ktime # resume start elif(re.match(dm['resume'], msg)): data.dmesg['resume_early']['end'] = ktime phase = 'resume' data.dmesg[phase]['start'] = ktime # resume complete start elif(re.match(dm['resume_complete'], msg)): data.dmesg['resume']['end'] = ktime phase = 'resume_complete' data.dmesg[phase]['start'] = ktime # post resume start elif(re.match(dm['post_resume'], msg)): data.dmesg['resume_complete']['end'] = ktime data.setEnd(ktime) data.tKernRes = ktime break # -- device callbacks -- if(phase in data.phases): # device init call if(re.match('calling (?P<f>.*)\+ @ .*, parent: .*', msg)): sm = re.match('calling (?P<f>.*)\+ @ '+\ '(?P<n>.*), parent: (?P<p>.*)', msg); f = sm.group('f') n = sm.group('n') p = sm.group('p') if(f and n and p): data.newAction(phase, f, int(n), p, ktime, -1, '') # device init return elif(re.match('call (?P<f>.*)\+ returned .* after '+\ '(?P<t>.*) usecs', msg)): sm = re.match('call (?P<f>.*)\+ returned .* after '+\ '(?P<t>.*) usecs(?P<a>.*)', msg); f = sm.group('f') t = sm.group('t') list = data.dmesg[phase]['list'] if(f in list): dev = list[f] dev['length'] = int(t) dev['end'] = ktime # if trace events are not available, these are better than nothing if(not sysvals.usetraceevents): # look for known actions for a in at: if(re.match(at[a]['smsg'], msg)): if(a not in actions): actions[a] = [] actions[a].append({'begin': ktime, 'end': ktime}) if(re.match(at[a]['emsg'], msg)): if(a in actions): actions[a][-1]['end'] = ktime # now look for CPU on/off events if(re.match('Disabling non-boot CPUs .*', msg)): # start of first cpu suspend cpu_start = ktime elif(re.match('Enabling non-boot CPUs .*', msg)): # start of first cpu resume cpu_start = ktime elif(re.match('smpboot: CPU (?P<cpu>[0-9]*) is now offline', msg)): # end of a cpu suspend, start of the next m = re.match('smpboot: CPU (?P<cpu>[0-9]*) is now offline', msg) cpu = 'CPU'+m.group('cpu') if(cpu not in actions): actions[cpu] = [] actions[cpu].append({'begin': cpu_start, 'end': ktime}) cpu_start = ktime elif(re.match('CPU(?P<cpu>[0-9]*) is up', msg)): # end of a cpu resume, start of the next m = re.match('CPU(?P<cpu>[0-9]*) is up', msg) cpu = 'CPU'+m.group('cpu') if(cpu not in actions): actions[cpu] = [] actions[cpu].append({'begin': cpu_start, 'end': ktime}) cpu_start = ktime prevktime = ktime # fill in any missing phases lp = data.phases[0] for p in data.phases: if(data.dmesg[p]['start'] < 0 and data.dmesg[p]['end'] < 0): print('WARNING: phase "%s" is missing, something went wrong!' % p) print(' In %s, this dmesg line denotes the start of %s:' % \ (sysvals.suspendmode, p)) print(' "%s"' % dm[p]) if(data.dmesg[p]['start'] < 0): data.dmesg[p]['start'] = data.dmesg[lp]['end'] if(p == 'resume_machine'): data.tSuspended = data.dmesg[lp]['end'] data.tResumed = data.dmesg[lp]['end'] data.tLow = 0 if(data.dmesg[p]['end'] < 0): data.dmesg[p]['end'] = data.dmesg[p]['start'] lp = p # fill in any actions we've found for name in actions: for event in actions[name]: data.newActionGlobal(name, event['begin'], event['end']) data.printDetails() if(len(sysvals.devicefilter) > 0): data.deviceFilter(sysvals.devicefilter) data.fixupInitcallsThatDidntReturn() return True def callgraphHTML(sv, hf, num, cg, title, color, devid): html_func_top = '<article id="{0}" class="atop" style="background:{1}">\n<input type="checkbox" class="pf" id="f{2}" checked/><label for="f{2}">{3} {4}</label>\n' html_func_start = '<article>\n<input type="checkbox" class="pf" id="f{0}" checked/><label for="f{0}">{1} {2}</label>\n' html_func_end = '</article>\n' html_func_leaf = '<article>{0} {1}</article>\n' cgid = devid if cg.id: cgid += cg.id cglen = (cg.end - cg.start) * 1000 if cglen < sv.mincglen: return num fmt = '<r>(%.3f ms @ '+sv.timeformat+' to '+sv.timeformat+')</r>' flen = fmt % (cglen, cg.start, cg.end) hf.write(html_func_top.format(cgid, color, num, title, flen)) num += 1 for line in cg.list: if(line.length < 0.000000001): flen = '' else: fmt = '<n>(%.3f ms @ '+sv.timeformat+')</n>' flen = fmt % (line.length*1000, line.time) if(line.freturn and line.fcall): hf.write(html_func_leaf.format(line.name, flen)) elif(line.freturn): hf.write(html_func_end) else: hf.write(html_func_start.format(num, line.name, flen)) num += 1 hf.write(html_func_end) return num def addCallgraphs(sv, hf, data): hf.write('<section id="callgraphs" class="callgraph">\n') # write out the ftrace data converted to html num = 0 for p in data.phases: if sv.cgphase and p != sv.cgphase: continue list = data.dmesg[p]['list'] for devname in data.sortedDevices(p): if len(sv.devicefilter) > 0 and devname not in sv.devicefilter: continue dev = list[devname] color = 'white' if 'color' in data.dmesg[p]: color = data.dmesg[p]['color'] if 'color' in dev: color = dev['color'] name = devname if(devname in sv.devprops): name = sv.devprops[devname].altName(devname) if sv.suspendmode in suspendmodename: name += ' '+p if('ftrace' in dev): cg = dev['ftrace'] num = callgraphHTML(sv, hf, num, cg, name, color, dev['id']) if('ftraces' in dev): for cg in dev['ftraces']: num = callgraphHTML(sv, hf, num, cg, name+' &rarr; '+cg.name, color, dev['id']) hf.write('\n\n </section>\n') # Function: createHTMLSummarySimple # Description: # Create summary html file for a series of tests # Arguments: # testruns: array of Data objects from parseTraceLog def createHTMLSummarySimple(testruns, htmlfile, folder): # write the html header first (html head, css code, up to body start) html = '<!DOCTYPE html>\n<html>\n<head>\n\ <meta http-equiv="content-type" content="text/html; charset=UTF-8">\n\ <title>SleepGraph Summary</title>\n\ <style type=\'text/css\'>\n\ .stamp {width: 100%;text-align:center;background:#888;line-height:30px;color:white;font: 25px Arial;}\n\ table {width:100%;border-collapse: collapse;}\n\ .summary {border:1px solid;}\n\ th {border: 1px solid black;background:#222;color:white;}\n\ td {font: 16px "Times New Roman";text-align: center;}\n\ tr.alt td {background:#ddd;}\n\ tr.avg td {background:#aaa;}\n\ </style>\n</head>\n<body>\n' # group test header html += '<div class="stamp">%s (%d tests)</div>\n' % (folder, len(testruns)) th = '\t<th>{0}</th>\n' td = '\t<td>{0}</td>\n' tdlink = '\t<td><a href="{0}">html</a></td>\n' # table header html += '<table class="summary">\n<tr>\n' + th.format('#') +\ th.format('Mode') + th.format('Host') + th.format('Kernel') +\ th.format('Test Time') + th.format('Suspend') + th.format('Resume') +\ th.format('Detail') + '</tr>\n' # test data, 1 row per test avg = '<tr class="avg"><td></td><td></td><td></td><td></td>'+\ '<td>Average of {0} {1} tests</td><td>{2}</td><td>{3}</td><td></td></tr>\n' sTimeAvg = rTimeAvg = 0.0 mode = '' num = 0 for data in sorted(testruns, key=lambda v:(v['mode'], v['host'], v['kernel'])): if mode != data['mode']: # test average line if(num > 0): sTimeAvg /= (num - 1) rTimeAvg /= (num - 1) html += avg.format('%d' % (num - 1), mode, '%3.3f ms' % sTimeAvg, '%3.3f ms' % rTimeAvg) sTimeAvg = rTimeAvg = 0.0 mode = data['mode'] num = 1 # alternate row color if num % 2 == 1: html += '<tr class="alt">\n' else: html += '<tr>\n' html += td.format("%d" % num) num += 1 # basic info for item in ['mode', 'host', 'kernel', 'time']: val = "unknown" if(item in data): val = data[item] html += td.format(val) # suspend time sTime = float(data['suspend']) sTimeAvg += sTime html += td.format('%.3f ms' % sTime) # resume time rTime = float(data['resume']) rTimeAvg += rTime html += td.format('%.3f ms' % rTime) # link to the output html html += tdlink.format(data['url']) + '</tr>\n' # last test average line if(num > 0): sTimeAvg /= (num - 1) rTimeAvg /= (num - 1) html += avg.format('%d' % (num - 1), mode, '%3.3f ms' % sTimeAvg, '%3.3f ms' % rTimeAvg) # flush the data to file hf = open(htmlfile, 'w') hf.write(html+'</table>\n</body>\n</html>\n') hf.close() def ordinal(value): suffix = 'th' if value < 10 or value > 19: if value % 10 == 1: suffix = 'st' elif value % 10 == 2: suffix = 'nd' elif value % 10 == 3: suffix = 'rd' return '%d%s' % (value, suffix) # Function: createHTML # Description: # Create the output html file from the resident test data # Arguments: # testruns: array of Data objects from parseKernelLog or parseTraceLog # Output: # True if the html file was created, false if it failed def createHTML(testruns): if len(testruns) < 1: print('ERROR: Not enough test data to build a timeline') return kerror = False for data in testruns: if data.kerror: kerror = True data.normalizeTime(testruns[-1].tSuspended) # html function templates html_error = '<div id="{1}" title="kernel error/warning" class="err" style="right:{0}%">ERROR&rarr;</div>\n' html_traceevent = '<div title="{0}" class="traceevent{6}" style="left:{1}%;top:{2}px;height:{3}px;width:{4}%;line-height:{3}px;{7}">{5}</div>\n' html_cpuexec = '<div class="jiffie" style="left:{0}%;top:{1}px;height:{2}px;width:{3}%;background:{4};"></div>\n' html_timetotal = '<table class="time1">\n<tr>'\ '<td class="green" title="{3}">{2} Suspend Time: <b>{0} ms</b></td>'\ '<td class="yellow" title="{4}">{2} Resume Time: <b>{1} ms</b></td>'\ '</tr>\n</table>\n' html_timetotal2 = '<table class="time1">\n<tr>'\ '<td class="green" title="{4}">{3} Suspend Time: <b>{0} ms</b></td>'\ '<td class="gray" title="time spent in low-power mode with clock running">'+sysvals.suspendmode+' time: <b>{1} ms</b></td>'\ '<td class="yellow" title="{5}">{3} Resume Time: <b>{2} ms</b></td>'\ '</tr>\n</table>\n' html_timetotal3 = '<table class="time1">\n<tr>'\ '<td class="green">Execution Time: <b>{0} ms</b></td>'\ '<td class="yellow">Command: <b>{1}</b></td>'\ '</tr>\n</table>\n' html_timegroups = '<table class="time2">\n<tr>'\ '<td class="green" title="time from kernel enter_state({5}) to firmware mode [kernel time only]">{4}Kernel Suspend: {0} ms</td>'\ '<td class="purple">{4}Firmware Suspend: {1} ms</td>'\ '<td class="purple">{4}Firmware Resume: {2} ms</td>'\ '<td class="yellow" title="time from firmware mode to return from kernel enter_state({5}) [kernel time only]">{4}Kernel Resume: {3} ms</td>'\ '</tr>\n</table>\n' # html format variables scaleH = 20 if kerror: scaleH = 40 # device timeline vprint('Creating Device Timeline...') devtl = Timeline(30, scaleH) # write the test title and general info header devtl.createHeader(sysvals) # Generate the header for this timeline for data in testruns: tTotal = data.end - data.start sktime, rktime = data.getTimeValues() if(tTotal == 0): print('ERROR: No timeline data') sys.exit() if(data.tLow > 0): low_time = '%.0f'%(data.tLow*1000) if sysvals.suspendmode == 'command': run_time = '%.0f'%((data.end-data.start)*1000) if sysvals.testcommand: testdesc = sysvals.testcommand else: testdesc = 'unknown' if(len(testruns) > 1): testdesc = ordinal(data.testnumber+1)+' '+testdesc thtml = html_timetotal3.format(run_time, testdesc) devtl.html += thtml elif data.fwValid: suspend_time = '%.0f'%(sktime + (data.fwSuspend/1000000.0)) resume_time = '%.0f'%(rktime + (data.fwResume/1000000.0)) testdesc1 = 'Total' testdesc2 = '' stitle = 'time from kernel enter_state(%s) to low-power mode [kernel & firmware time]' % sysvals.suspendmode rtitle = 'time from low-power mode to return from kernel enter_state(%s) [firmware & kernel time]' % sysvals.suspendmode if(len(testruns) > 1): testdesc1 = testdesc2 = ordinal(data.testnumber+1) testdesc2 += ' ' if(data.tLow == 0): thtml = html_timetotal.format(suspend_time, \ resume_time, testdesc1, stitle, rtitle) else: thtml = html_timetotal2.format(suspend_time, low_time, \ resume_time, testdesc1, stitle, rtitle) devtl.html += thtml sftime = '%.3f'%(data.fwSuspend / 1000000.0) rftime = '%.3f'%(data.fwResume / 1000000.0) devtl.html += html_timegroups.format('%.3f'%sktime, \ sftime, rftime, '%.3f'%rktime, testdesc2, sysvals.suspendmode) else: suspend_time = '%.3f' % sktime resume_time = '%.3f' % rktime testdesc = 'Kernel' stitle = 'time from kernel enter_state(%s) to firmware mode [kernel time only]' % sysvals.suspendmode rtitle = 'time from firmware mode to return from kernel enter_state(%s) [kernel time only]' % sysvals.suspendmode if(len(testruns) > 1): testdesc = ordinal(data.testnumber+1)+' '+testdesc if(data.tLow == 0): thtml = html_timetotal.format(suspend_time, \ resume_time, testdesc, stitle, rtitle) else: thtml = html_timetotal2.format(suspend_time, low_time, \ resume_time, testdesc, stitle, rtitle) devtl.html += thtml # time scale for potentially multiple datasets t0 = testruns[0].start tMax = testruns[-1].end tTotal = tMax - t0 # determine the maximum number of rows we need to draw fulllist = [] threadlist = [] pscnt = 0 devcnt = 0 for data in testruns: data.selectTimelineDevices('%f', tTotal, sysvals.mindevlen) for group in data.devicegroups: devlist = [] for phase in group: for devname in data.tdevlist[phase]: d = DevItem(data.testnumber, phase, data.dmesg[phase]['list'][devname]) devlist.append(d) if d.isa('kth'): threadlist.append(d) else: if d.isa('ps'): pscnt += 1 else: devcnt += 1 fulllist.append(d) if sysvals.mixedphaseheight: devtl.getPhaseRows(devlist) if not sysvals.mixedphaseheight: if len(threadlist) > 0 and len(fulllist) > 0: if pscnt > 0 and devcnt > 0: msg = 'user processes & device pm callbacks' elif pscnt > 0: msg = 'user processes' else: msg = 'device pm callbacks' d = testruns[0].addHorizontalDivider(msg, testruns[-1].end) fulllist.insert(0, d) devtl.getPhaseRows(fulllist) if len(threadlist) > 0: d = testruns[0].addHorizontalDivider('asynchronous kernel threads', testruns[-1].end) threadlist.insert(0, d) devtl.getPhaseRows(threadlist, devtl.rows) devtl.calcTotalRows() # draw the full timeline devtl.createZoomBox(sysvals.suspendmode, len(testruns)) phases = {'suspend':[],'resume':[]} for phase in data.dmesg: if 'resume' in phase: phases['resume'].append(phase) else: phases['suspend'].append(phase) # draw each test run chronologically for data in testruns: # now draw the actual timeline blocks for dir in phases: # draw suspend and resume blocks separately bname = '%s%d' % (dir[0], data.testnumber) if dir == 'suspend': m0 = data.start mMax = data.tSuspended left = '%f' % (((m0-t0)*100.0)/tTotal) else: m0 = data.tSuspended mMax = data.end # in an x2 run, remove any gap between blocks if len(testruns) > 1 and data.testnumber == 0: mMax = testruns[1].start left = '%f' % ((((m0-t0)*100.0)+sysvals.srgap/2)/tTotal) mTotal = mMax - m0 # if a timeline block is 0 length, skip altogether if mTotal == 0: continue width = '%f' % (((mTotal*100.0)-sysvals.srgap/2)/tTotal) devtl.html += devtl.html_tblock.format(bname, left, width, devtl.scaleH) for b in sorted(phases[dir]): # draw the phase color background phase = data.dmesg[b] length = phase['end']-phase['start'] left = '%f' % (((phase['start']-m0)*100.0)/mTotal) width = '%f' % ((length*100.0)/mTotal) devtl.html += devtl.html_phase.format(left, width, \ '%.3f'%devtl.scaleH, '%.3f'%devtl.bodyH, \ data.dmesg[b]['color'], '') for e in data.errorinfo[dir]: # draw red lines for any kernel errors found t, err = e right = '%f' % (((mMax-t)*100.0)/mTotal) devtl.html += html_error.format(right, err) for b in sorted(phases[dir]): # draw the devices for this phase phaselist = data.dmesg[b]['list'] for d in data.tdevlist[b]: name = d drv = '' dev = phaselist[d] xtraclass = '' xtrainfo = '' xtrastyle = '' if 'htmlclass' in dev: xtraclass = dev['htmlclass'] if 'color' in dev: xtrastyle = 'background:%s;' % dev['color'] if(d in sysvals.devprops): name = sysvals.devprops[d].altName(d) xtraclass = sysvals.devprops[d].xtraClass() xtrainfo = sysvals.devprops[d].xtraInfo() elif xtraclass == ' kth': xtrainfo = ' kernel_thread' if('drv' in dev and dev['drv']): drv = ' {%s}' % dev['drv'] rowheight = devtl.phaseRowHeight(data.testnumber, b, dev['row']) rowtop = devtl.phaseRowTop(data.testnumber, b, dev['row']) top = '%.3f' % (rowtop + devtl.scaleH) left = '%f' % (((dev['start']-m0)*100)/mTotal) width = '%f' % (((dev['end']-dev['start'])*100)/mTotal) length = ' (%0.3f ms) ' % ((dev['end']-dev['start'])*1000) title = name+drv+xtrainfo+length if sysvals.suspendmode == 'command': title += sysvals.testcommand elif xtraclass == ' ps': if 'suspend' in b: title += 'pre_suspend_process' else: title += 'post_resume_process' else: title += b devtl.html += devtl.html_device.format(dev['id'], \ title, left, top, '%.3f'%rowheight, width, \ d+drv, xtraclass, xtrastyle) if('cpuexec' in dev): for t in sorted(dev['cpuexec']): start, end = t j = float(dev['cpuexec'][t]) / 5 if j > 1.0: j = 1.0 height = '%.3f' % (rowheight/3) top = '%.3f' % (rowtop + devtl.scaleH + 2*rowheight/3) left = '%f' % (((start-m0)*100)/mTotal) width = '%f' % ((end-start)*100/mTotal) color = 'rgba(255, 0, 0, %f)' % j devtl.html += \ html_cpuexec.format(left, top, height, width, color) if('src' not in dev): continue # draw any trace events for this device for e in dev['src']: height = '%.3f' % devtl.rowH top = '%.3f' % (rowtop + devtl.scaleH + (e.row*devtl.rowH)) left = '%f' % (((e.time-m0)*100)/mTotal) width = '%f' % (e.length*100/mTotal) xtrastyle = '' if e.color: xtrastyle = 'background:%s;' % e.color devtl.html += \ html_traceevent.format(e.title(), \ left, top, height, width, e.text(), '', xtrastyle) # draw the time scale, try to make the number of labels readable devtl.createTimeScale(m0, mMax, tTotal, dir) devtl.html += '</div>\n' # timeline is finished devtl.html += '</div>\n</div>\n' # draw a legend which describes the phases by color if sysvals.suspendmode != 'command': data = testruns[-1] devtl.html += '<div class="legend">\n' pdelta = 100.0/len(data.phases) pmargin = pdelta / 4.0 for phase in data.phases: tmp = phase.split('_') id = tmp[0][0] if(len(tmp) > 1): id += tmp[1][0] order = '%.2f' % ((data.dmesg[phase]['order'] * pdelta) + pmargin) name = string.replace(phase, '_', ' &nbsp;') devtl.html += devtl.html_legend.format(order, \ data.dmesg[phase]['color'], name, id) devtl.html += '</div>\n' hf = open(sysvals.htmlfile, 'w') # no header or css if its embedded if(sysvals.embedded): hf.write('pass True tSus %.3f tRes %.3f tLow %.3f fwvalid %s tSus %.3f tRes %.3f\n' % (data.tSuspended-data.start, data.end-data.tSuspended, data.tLow, data.fwValid, \ data.fwSuspend/1000000, data.fwResume/1000000)) else: addCSS(hf, sysvals, len(testruns), kerror) # write the device timeline hf.write(devtl.html) hf.write('<div id="devicedetailtitle"></div>\n') hf.write('<div id="devicedetail" style="display:none;">\n') # draw the colored boxes for the device detail section for data in testruns: hf.write('<div id="devicedetail%d">\n' % data.testnumber) pscolor = 'linear-gradient(to top left, #ccc, #eee)' hf.write(devtl.html_phaselet.format('pre_suspend_process', \ '0', '0', pscolor)) for b in data.phases: phase = data.dmesg[b] length = phase['end']-phase['start'] left = '%.3f' % (((phase['start']-t0)*100.0)/tTotal) width = '%.3f' % ((length*100.0)/tTotal) hf.write(devtl.html_phaselet.format(b, left, width, \ data.dmesg[b]['color'])) hf.write(devtl.html_phaselet.format('post_resume_process', \ '0', '0', pscolor)) if sysvals.suspendmode == 'command': hf.write(devtl.html_phaselet.format('cmdexec', '0', '0', pscolor)) hf.write('</div>\n') hf.write('</div>\n') # write the ftrace data (callgraph) if sysvals.cgtest >= 0 and len(testruns) > sysvals.cgtest: data = testruns[sysvals.cgtest] else: data = testruns[-1] if(sysvals.usecallgraph and not sysvals.embedded): addCallgraphs(sysvals, hf, data) # add the test log as a hidden div if sysvals.testlog and sysvals.logmsg: hf.write('<div id="testlog" style="display:none;">\n'+sysvals.logmsg+'</div>\n') # add the dmesg log as a hidden div if sysvals.dmesglog and sysvals.dmesgfile: hf.write('<div id="dmesglog" style="display:none;">\n') lf = open(sysvals.dmesgfile, 'r') for line in lf: line = line.replace('<', '&lt').replace('>', '&gt') hf.write(line) lf.close() hf.write('</div>\n') # add the ftrace log as a hidden div if sysvals.ftracelog and sysvals.ftracefile: hf.write('<div id="ftracelog" style="display:none;">\n') lf = open(sysvals.ftracefile, 'r') for line in lf: hf.write(line) lf.close() hf.write('</div>\n') if(not sysvals.embedded): # write the footer and close addScriptCode(hf, testruns) hf.write('</body>\n</html>\n') else: # embedded out will be loaded in a page, skip the js t0 = (testruns[0].start - testruns[-1].tSuspended) * 1000 tMax = (testruns[-1].end - testruns[-1].tSuspended) * 1000 # add js code in a div entry for later evaluation detail = 'var bounds = [%f,%f];\n' % (t0, tMax) detail += 'var devtable = [\n' for data in testruns: topo = data.deviceTopology() detail += '\t"%s",\n' % (topo) detail += '];\n' hf.write('<div id=customcode style=display:none>\n'+detail+'</div>\n') hf.close() return True def addCSS(hf, sv, testcount=1, kerror=False, extra=''): kernel = sv.stamp['kernel'] host = sv.hostname[0].upper()+sv.hostname[1:] mode = sv.suspendmode if sv.suspendmode in suspendmodename: mode = suspendmodename[sv.suspendmode] title = host+' '+mode+' '+kernel # various format changes by flags cgchk = 'checked' cgnchk = 'not(:checked)' if sv.cgexp: cgchk = 'not(:checked)' cgnchk = 'checked' hoverZ = 'z-index:8;' if sv.usedevsrc: hoverZ = '' devlistpos = 'absolute' if testcount > 1: devlistpos = 'relative' scaleTH = 20 if kerror: scaleTH = 60 # write the html header first (html head, css code, up to body start) html_header = '<!DOCTYPE html>\n<html>\n<head>\n\ <meta http-equiv="content-type" content="text/html; charset=UTF-8">\n\ <title>'+title+'</title>\n\ <style type=\'text/css\'>\n\ body {overflow-y:scroll;}\n\ .stamp {width:100%;text-align:center;background:gray;line-height:30px;color:white;font:25px Arial;}\n\ .stamp.sysinfo {font:10px Arial;}\n\ .callgraph {margin-top:30px;box-shadow:5px 5px 20px black;}\n\ .callgraph article * {padding-left:28px;}\n\ h1 {color:black;font:bold 30px Times;}\n\ t0 {color:black;font:bold 30px Times;}\n\ t1 {color:black;font:30px Times;}\n\ t2 {color:black;font:25px Times;}\n\ t3 {color:black;font:20px Times;white-space:nowrap;}\n\ t4 {color:black;font:bold 30px Times;line-height:60px;white-space:nowrap;}\n\ cS {font:bold 13px Times;}\n\ table {width:100%;}\n\ .gray {background:rgba(80,80,80,0.1);}\n\ .green {background:rgba(204,255,204,0.4);}\n\ .purple {background:rgba(128,0,128,0.2);}\n\ .yellow {background:rgba(255,255,204,0.4);}\n\ .blue {background:rgba(169,208,245,0.4);}\n\ .time1 {font:22px Arial;border:1px solid;}\n\ .time2 {font:15px Arial;border-bottom:1px solid;border-left:1px solid;border-right:1px solid;}\n\ td {text-align:center;}\n\ r {color:#500000;font:15px Tahoma;}\n\ n {color:#505050;font:15px Tahoma;}\n\ .tdhl {color:red;}\n\ .hide {display:none;}\n\ .pf {display:none;}\n\ .pf:'+cgchk+' + label {background:url(\'data:image/svg+xml;utf,<?xml version="1.0" standalone="no"?><svg xmlns="http://www.w3.org/2000/svg" height="18" width="18" version="1.1"><circle cx="9" cy="9" r="8" stroke="black" stroke-width="1" fill="white"/><rect x="4" y="8" width="10" height="2" style="fill:black;stroke-width:0"/><rect x="8" y="4" width="2" height="10" style="fill:black;stroke-width:0"/></svg>\') no-repeat left center;}\n\ .pf:'+cgnchk+' ~ label {background:url(\'data:image/svg+xml;utf,<?xml version="1.0" standalone="no"?><svg xmlns="http://www.w3.org/2000/svg" height="18" width="18" version="1.1"><circle cx="9" cy="9" r="8" stroke="black" stroke-width="1" fill="white"/><rect x="4" y="8" width="10" height="2" style="fill:black;stroke-width:0"/></svg>\') no-repeat left center;}\n\ .pf:'+cgchk+' ~ *:not(:nth-child(2)) {display:none;}\n\ .zoombox {position:relative;width:100%;overflow-x:scroll;-webkit-user-select:none;-moz-user-select:none;user-select:none;}\n\ .timeline {position:relative;font-size:14px;cursor:pointer;width:100%; overflow:hidden;background:linear-gradient(#cccccc, white);}\n\ .thread {position:absolute;height:0%;overflow:hidden;z-index:7;line-height:30px;font-size:14px;border:1px solid;text-align:center;white-space:nowrap;}\n\ .thread.ps {border-radius:3px;background:linear-gradient(to top, #ccc, #eee);}\n\ .thread:hover {background:white;border:1px solid red;'+hoverZ+'}\n\ .thread.sec,.thread.sec:hover {background:black;border:0;color:white;line-height:15px;font-size:10px;}\n\ .hover {background:white;border:1px solid red;'+hoverZ+'}\n\ .hover.sync {background:white;}\n\ .hover.bg,.hover.kth,.hover.sync,.hover.ps {background:white;}\n\ .jiffie {position:absolute;pointer-events: none;z-index:8;}\n\ .traceevent {position:absolute;font-size:10px;z-index:7;overflow:hidden;color:black;text-align:center;white-space:nowrap;border-radius:5px;border:1px solid black;background:linear-gradient(to bottom right,#CCC,#969696);}\n\ .traceevent:hover {color:white;font-weight:bold;border:1px solid white;}\n\ .phase {position:absolute;overflow:hidden;border:0px;text-align:center;}\n\ .phaselet {float:left;overflow:hidden;border:0px;text-align:center;min-height:100px;font-size:24px;}\n\ .t {position:absolute;line-height:'+('%d'%scaleTH)+'px;pointer-events:none;top:0;height:100%;border-right:1px solid black;z-index:6;}\n\ .err {position:absolute;top:0%;height:100%;border-right:3px solid red;color:red;font:bold 14px Times;line-height:18px;}\n\ .legend {position:relative; width:100%; height:40px; text-align:center;margin-bottom:20px}\n\ .legend .square {position:absolute;cursor:pointer;top:10px; width:0px;height:20px;border:1px solid;padding-left:20px;}\n\ button {height:40px;width:200px;margin-bottom:20px;margin-top:20px;font-size:24px;}\n\ .btnfmt {position:relative;float:right;height:25px;width:auto;margin-top:3px;margin-bottom:0;font-size:10px;text-align:center;}\n\ .devlist {position:'+devlistpos+';width:190px;}\n\ a:link {color:white;text-decoration:none;}\n\ a:visited {color:white;}\n\ a:hover {color:white;}\n\ a:active {color:white;}\n\ .version {position:relative;float:left;color:white;font-size:10px;line-height:30px;margin-left:10px;}\n\ #devicedetail {min-height:100px;box-shadow:5px 5px 20px black;}\n\ .tblock {position:absolute;height:100%;background:#ddd;}\n\ .tback {position:absolute;width:100%;background:linear-gradient(#ccc, #ddd);}\n\ .bg {z-index:1;}\n\ '+extra+'\ </style>\n</head>\n<body>\n' hf.write(html_header) # Function: addScriptCode # Description: # Adds the javascript code to the output html # Arguments: # hf: the open html file pointer # testruns: array of Data objects from parseKernelLog or parseTraceLog def addScriptCode(hf, testruns): t0 = testruns[0].start * 1000 tMax = testruns[-1].end * 1000 # create an array in javascript memory with the device details detail = ' var devtable = [];\n' for data in testruns: topo = data.deviceTopology() detail += ' devtable[%d] = "%s";\n' % (data.testnumber, topo) detail += ' var bounds = [%f,%f];\n' % (t0, tMax) # add the code which will manipulate the data in the browser script_code = \ '<script type="text/javascript">\n'+detail+\ ' var resolution = -1;\n'\ ' var dragval = [0, 0];\n'\ ' function redrawTimescale(t0, tMax, tS) {\n'\ ' var rline = \'<div class="t" style="left:0;border-left:1px solid black;border-right:0;">\';\n'\ ' var tTotal = tMax - t0;\n'\ ' var list = document.getElementsByClassName("tblock");\n'\ ' for (var i = 0; i < list.length; i++) {\n'\ ' var timescale = list[i].getElementsByClassName("timescale")[0];\n'\ ' var m0 = t0 + (tTotal*parseFloat(list[i].style.left)/100);\n'\ ' var mTotal = tTotal*parseFloat(list[i].style.width)/100;\n'\ ' var mMax = m0 + mTotal;\n'\ ' var html = "";\n'\ ' var divTotal = Math.floor(mTotal/tS) + 1;\n'\ ' if(divTotal > 1000) continue;\n'\ ' var divEdge = (mTotal - tS*(divTotal-1))*100/mTotal;\n'\ ' var pos = 0.0, val = 0.0;\n'\ ' for (var j = 0; j < divTotal; j++) {\n'\ ' var htmlline = "";\n'\ ' var mode = list[i].id[5];\n'\ ' if(mode == "s") {\n'\ ' pos = 100 - (((j)*tS*100)/mTotal) - divEdge;\n'\ ' val = (j-divTotal+1)*tS;\n'\ ' if(j == divTotal - 1)\n'\ ' htmlline = \'<div class="t" style="right:\'+pos+\'%"><cS>S&rarr;</cS></div>\';\n'\ ' else\n'\ ' htmlline = \'<div class="t" style="right:\'+pos+\'%">\'+val+\'ms</div>\';\n'\ ' } else {\n'\ ' pos = 100 - (((j)*tS*100)/mTotal);\n'\ ' val = (j)*tS;\n'\ ' htmlline = \'<div class="t" style="right:\'+pos+\'%">\'+val+\'ms</div>\';\n'\ ' if(j == 0)\n'\ ' if(mode == "r")\n'\ ' htmlline = rline+"<cS>&larr;R</cS></div>";\n'\ ' else\n'\ ' htmlline = rline+"<cS>0ms</div>";\n'\ ' }\n'\ ' html += htmlline;\n'\ ' }\n'\ ' timescale.innerHTML = html;\n'\ ' }\n'\ ' }\n'\ ' function zoomTimeline() {\n'\ ' var dmesg = document.getElementById("dmesg");\n'\ ' var zoombox = document.getElementById("dmesgzoombox");\n'\ ' var left = zoombox.scrollLeft;\n'\ ' var val = parseFloat(dmesg.style.width);\n'\ ' var newval = 100;\n'\ ' var sh = window.outerWidth / 2;\n'\ ' if(this.id == "zoomin") {\n'\ ' newval = val * 1.2;\n'\ ' if(newval > 910034) newval = 910034;\n'\ ' dmesg.style.width = newval+"%";\n'\ ' zoombox.scrollLeft = ((left + sh) * newval / val) - sh;\n'\ ' } else if (this.id == "zoomout") {\n'\ ' newval = val / 1.2;\n'\ ' if(newval < 100) newval = 100;\n'\ ' dmesg.style.width = newval+"%";\n'\ ' zoombox.scrollLeft = ((left + sh) * newval / val) - sh;\n'\ ' } else {\n'\ ' zoombox.scrollLeft = 0;\n'\ ' dmesg.style.width = "100%";\n'\ ' }\n'\ ' var tS = [10000, 5000, 2000, 1000, 500, 200, 100, 50, 20, 10, 5, 2, 1];\n'\ ' var t0 = bounds[0];\n'\ ' var tMax = bounds[1];\n'\ ' var tTotal = tMax - t0;\n'\ ' var wTotal = tTotal * 100.0 / newval;\n'\ ' var idx = 7*window.innerWidth/1100;\n'\ ' for(var i = 0; (i < tS.length)&&((wTotal / tS[i]) < idx); i++);\n'\ ' if(i >= tS.length) i = tS.length - 1;\n'\ ' if(tS[i] == resolution) return;\n'\ ' resolution = tS[i];\n'\ ' redrawTimescale(t0, tMax, tS[i]);\n'\ ' }\n'\ ' function deviceName(title) {\n'\ ' var name = title.slice(0, title.indexOf(" ("));\n'\ ' return name;\n'\ ' }\n'\ ' function deviceHover() {\n'\ ' var name = deviceName(this.title);\n'\ ' var dmesg = document.getElementById("dmesg");\n'\ ' var dev = dmesg.getElementsByClassName("thread");\n'\ ' var cpu = -1;\n'\ ' if(name.match("CPU_ON\[[0-9]*\]"))\n'\ ' cpu = parseInt(name.slice(7));\n'\ ' else if(name.match("CPU_OFF\[[0-9]*\]"))\n'\ ' cpu = parseInt(name.slice(8));\n'\ ' for (var i = 0; i < dev.length; i++) {\n'\ ' dname = deviceName(dev[i].title);\n'\ ' var cname = dev[i].className.slice(dev[i].className.indexOf("thread"));\n'\ ' if((cpu >= 0 && dname.match("CPU_O[NF]*\\\[*"+cpu+"\\\]")) ||\n'\ ' (name == dname))\n'\ ' {\n'\ ' dev[i].className = "hover "+cname;\n'\ ' } else {\n'\ ' dev[i].className = cname;\n'\ ' }\n'\ ' }\n'\ ' }\n'\ ' function deviceUnhover() {\n'\ ' var dmesg = document.getElementById("dmesg");\n'\ ' var dev = dmesg.getElementsByClassName("thread");\n'\ ' for (var i = 0; i < dev.length; i++) {\n'\ ' dev[i].className = dev[i].className.slice(dev[i].className.indexOf("thread"));\n'\ ' }\n'\ ' }\n'\ ' function deviceTitle(title, total, cpu) {\n'\ ' var prefix = "Total";\n'\ ' if(total.length > 3) {\n'\ ' prefix = "Average";\n'\ ' total[1] = (total[1]+total[3])/2;\n'\ ' total[2] = (total[2]+total[4])/2;\n'\ ' }\n'\ ' var devtitle = document.getElementById("devicedetailtitle");\n'\ ' var name = deviceName(title);\n'\ ' if(cpu >= 0) name = "CPU"+cpu;\n'\ ' var driver = "";\n'\ ' var tS = "<t2>(</t2>";\n'\ ' var tR = "<t2>)</t2>";\n'\ ' if(total[1] > 0)\n'\ ' tS = "<t2>("+prefix+" Suspend:</t2><t0> "+total[1].toFixed(3)+" ms</t0> ";\n'\ ' if(total[2] > 0)\n'\ ' tR = " <t2>"+prefix+" Resume:</t2><t0> "+total[2].toFixed(3)+" ms<t2>)</t2></t0>";\n'\ ' var s = title.indexOf("{");\n'\ ' var e = title.indexOf("}");\n'\ ' if((s >= 0) && (e >= 0))\n'\ ' driver = title.slice(s+1, e) + " <t1>@</t1> ";\n'\ ' if(total[1] > 0 && total[2] > 0)\n'\ ' devtitle.innerHTML = "<t0>"+driver+name+"</t0> "+tS+tR;\n'\ ' else\n'\ ' devtitle.innerHTML = "<t0>"+title+"</t0>";\n'\ ' return name;\n'\ ' }\n'\ ' function deviceDetail() {\n'\ ' var devinfo = document.getElementById("devicedetail");\n'\ ' devinfo.style.display = "block";\n'\ ' var name = deviceName(this.title);\n'\ ' var cpu = -1;\n'\ ' if(name.match("CPU_ON\[[0-9]*\]"))\n'\ ' cpu = parseInt(name.slice(7));\n'\ ' else if(name.match("CPU_OFF\[[0-9]*\]"))\n'\ ' cpu = parseInt(name.slice(8));\n'\ ' var dmesg = document.getElementById("dmesg");\n'\ ' var dev = dmesg.getElementsByClassName("thread");\n'\ ' var idlist = [];\n'\ ' var pdata = [[]];\n'\ ' if(document.getElementById("devicedetail1"))\n'\ ' pdata = [[], []];\n'\ ' var pd = pdata[0];\n'\ ' var total = [0.0, 0.0, 0.0];\n'\ ' for (var i = 0; i < dev.length; i++) {\n'\ ' dname = deviceName(dev[i].title);\n'\ ' if((cpu >= 0 && dname.match("CPU_O[NF]*\\\[*"+cpu+"\\\]")) ||\n'\ ' (name == dname))\n'\ ' {\n'\ ' idlist[idlist.length] = dev[i].id;\n'\ ' var tidx = 1;\n'\ ' if(dev[i].id[0] == "a") {\n'\ ' pd = pdata[0];\n'\ ' } else {\n'\ ' if(pdata.length == 1) pdata[1] = [];\n'\ ' if(total.length == 3) total[3]=total[4]=0.0;\n'\ ' pd = pdata[1];\n'\ ' tidx = 3;\n'\ ' }\n'\ ' var info = dev[i].title.split(" ");\n'\ ' var pname = info[info.length-1];\n'\ ' pd[pname] = parseFloat(info[info.length-3].slice(1));\n'\ ' total[0] += pd[pname];\n'\ ' if(pname.indexOf("suspend") >= 0)\n'\ ' total[tidx] += pd[pname];\n'\ ' else\n'\ ' total[tidx+1] += pd[pname];\n'\ ' }\n'\ ' }\n'\ ' var devname = deviceTitle(this.title, total, cpu);\n'\ ' var left = 0.0;\n'\ ' for (var t = 0; t < pdata.length; t++) {\n'\ ' pd = pdata[t];\n'\ ' devinfo = document.getElementById("devicedetail"+t);\n'\ ' var phases = devinfo.getElementsByClassName("phaselet");\n'\ ' for (var i = 0; i < phases.length; i++) {\n'\ ' if(phases[i].id in pd) {\n'\ ' var w = 100.0*pd[phases[i].id]/total[0];\n'\ ' var fs = 32;\n'\ ' if(w < 8) fs = 4*w | 0;\n'\ ' var fs2 = fs*3/4;\n'\ ' phases[i].style.width = w+"%";\n'\ ' phases[i].style.left = left+"%";\n'\ ' phases[i].title = phases[i].id+" "+pd[phases[i].id]+" ms";\n'\ ' left += w;\n'\ ' var time = "<t4 style=\\"font-size:"+fs+"px\\">"+pd[phases[i].id]+" ms<br></t4>";\n'\ ' var pname = "<t3 style=\\"font-size:"+fs2+"px\\">"+phases[i].id.replace(new RegExp("_", "g"), " ")+"</t3>";\n'\ ' phases[i].innerHTML = time+pname;\n'\ ' } else {\n'\ ' phases[i].style.width = "0%";\n'\ ' phases[i].style.left = left+"%";\n'\ ' }\n'\ ' }\n'\ ' }\n'\ ' if(typeof devstats !== \'undefined\')\n'\ ' callDetail(this.id, this.title);\n'\ ' var cglist = document.getElementById("callgraphs");\n'\ ' if(!cglist) return;\n'\ ' var cg = cglist.getElementsByClassName("atop");\n'\ ' if(cg.length < 10) return;\n'\ ' for (var i = 0; i < cg.length; i++) {\n'\ ' cgid = cg[i].id.split("x")[0]\n'\ ' if(idlist.indexOf(cgid) >= 0) {\n'\ ' cg[i].style.display = "block";\n'\ ' } else {\n'\ ' cg[i].style.display = "none";\n'\ ' }\n'\ ' }\n'\ ' }\n'\ ' function callDetail(devid, devtitle) {\n'\ ' if(!(devid in devstats) || devstats[devid].length < 1)\n'\ ' return;\n'\ ' var list = devstats[devid];\n'\ ' var tmp = devtitle.split(" ");\n'\ ' var name = tmp[0], phase = tmp[tmp.length-1];\n'\ ' var dd = document.getElementById(phase);\n'\ ' var total = parseFloat(tmp[1].slice(1));\n'\ ' var mlist = [];\n'\ ' var maxlen = 0;\n'\ ' var info = []\n'\ ' for(var i in list) {\n'\ ' if(list[i][0] == "@") {\n'\ ' info = list[i].split("|");\n'\ ' continue;\n'\ ' }\n'\ ' var tmp = list[i].split("|");\n'\ ' var t = parseFloat(tmp[0]), f = tmp[1], c = parseInt(tmp[2]);\n'\ ' var p = (t*100.0/total).toFixed(2);\n'\ ' mlist[mlist.length] = [f, c, t.toFixed(2), p+"%"];\n'\ ' if(f.length > maxlen)\n'\ ' maxlen = f.length;\n'\ ' }\n'\ ' var pad = 5;\n'\ ' if(mlist.length == 0) pad = 30;\n'\ ' var html = \'<div style="padding-top:\'+pad+\'px"><t3> <b>\'+name+\':</b>\';\n'\ ' if(info.length > 2)\n'\ ' html += " start=<b>"+info[1]+"</b>, end=<b>"+info[2]+"</b>";\n'\ ' if(info.length > 3)\n'\ ' html += ", length<i>(w/o overhead)</i>=<b>"+info[3]+" ms</b>";\n'\ ' if(info.length > 4)\n'\ ' html += ", return=<b>"+info[4]+"</b>";\n'\ ' html += "</t3></div>";\n'\ ' if(mlist.length > 0) {\n'\ ' html += \'<table class=fstat style="padding-top:\'+(maxlen*5)+\'px;"><tr><th>Function</th>\';\n'\ ' for(var i in mlist)\n'\ ' html += "<td class=vt>"+mlist[i][0]+"</td>";\n'\ ' html += "</tr><tr><th>Calls</th>";\n'\ ' for(var i in mlist)\n'\ ' html += "<td>"+mlist[i][1]+"</td>";\n'\ ' html += "</tr><tr><th>Time(ms)</th>";\n'\ ' for(var i in mlist)\n'\ ' html += "<td>"+mlist[i][2]+"</td>";\n'\ ' html += "</tr><tr><th>Percent</th>";\n'\ ' for(var i in mlist)\n'\ ' html += "<td>"+mlist[i][3]+"</td>";\n'\ ' html += "</tr></table>";\n'\ ' }\n'\ ' dd.innerHTML = html;\n'\ ' var height = (maxlen*5)+100;\n'\ ' dd.style.height = height+"px";\n'\ ' document.getElementById("devicedetail").style.height = height+"px";\n'\ ' }\n'\ ' function callSelect() {\n'\ ' var cglist = document.getElementById("callgraphs");\n'\ ' if(!cglist) return;\n'\ ' var cg = cglist.getElementsByClassName("atop");\n'\ ' for (var i = 0; i < cg.length; i++) {\n'\ ' if(this.id == cg[i].id) {\n'\ ' cg[i].style.display = "block";\n'\ ' } else {\n'\ ' cg[i].style.display = "none";\n'\ ' }\n'\ ' }\n'\ ' }\n'\ ' function devListWindow(e) {\n'\ ' var win = window.open();\n'\ ' var html = "<title>"+e.target.innerHTML+"</title>"+\n'\ ' "<style type=\\"text/css\\">"+\n'\ ' " ul {list-style-type:circle;padding-left:10px;margin-left:10px;}"+\n'\ ' "</style>"\n'\ ' var dt = devtable[0];\n'\ ' if(e.target.id != "devlist1")\n'\ ' dt = devtable[1];\n'\ ' win.document.write(html+dt);\n'\ ' }\n'\ ' function errWindow() {\n'\ ' var text = this.id;\n'\ ' var win = window.open();\n'\ ' win.document.write("<pre>"+text+"</pre>");\n'\ ' win.document.close();\n'\ ' }\n'\ ' function logWindow(e) {\n'\ ' var name = e.target.id.slice(4);\n'\ ' var win = window.open();\n'\ ' var log = document.getElementById(name+"log");\n'\ ' var title = "<title>"+document.title.split(" ")[0]+" "+name+" log</title>";\n'\ ' win.document.write(title+"<pre>"+log.innerHTML+"</pre>");\n'\ ' win.document.close();\n'\ ' }\n'\ ' function onMouseDown(e) {\n'\ ' dragval[0] = e.clientX;\n'\ ' dragval[1] = document.getElementById("dmesgzoombox").scrollLeft;\n'\ ' document.onmousemove = onMouseMove;\n'\ ' }\n'\ ' function onMouseMove(e) {\n'\ ' var zoombox = document.getElementById("dmesgzoombox");\n'\ ' zoombox.scrollLeft = dragval[1] + dragval[0] - e.clientX;\n'\ ' }\n'\ ' function onMouseUp(e) {\n'\ ' document.onmousemove = null;\n'\ ' }\n'\ ' function onKeyPress(e) {\n'\ ' var c = e.charCode;\n'\ ' if(c != 42 && c != 43 && c != 45) return;\n'\ ' var click = document.createEvent("Events");\n'\ ' click.initEvent("click", true, false);\n'\ ' if(c == 43) \n'\ ' document.getElementById("zoomin").dispatchEvent(click);\n'\ ' else if(c == 45)\n'\ ' document.getElementById("zoomout").dispatchEvent(click);\n'\ ' else if(c == 42)\n'\ ' document.getElementById("zoomdef").dispatchEvent(click);\n'\ ' }\n'\ ' window.addEventListener("resize", function () {zoomTimeline();});\n'\ ' window.addEventListener("load", function () {\n'\ ' var dmesg = document.getElementById("dmesg");\n'\ ' dmesg.style.width = "100%"\n'\ ' dmesg.onmousedown = onMouseDown;\n'\ ' document.onmouseup = onMouseUp;\n'\ ' document.onkeypress = onKeyPress;\n'\ ' document.getElementById("zoomin").onclick = zoomTimeline;\n'\ ' document.getElementById("zoomout").onclick = zoomTimeline;\n'\ ' document.getElementById("zoomdef").onclick = zoomTimeline;\n'\ ' var list = document.getElementsByClassName("err");\n'\ ' for (var i = 0; i < list.length; i++)\n'\ ' list[i].onclick = errWindow;\n'\ ' var list = document.getElementsByClassName("logbtn");\n'\ ' for (var i = 0; i < list.length; i++)\n'\ ' list[i].onclick = logWindow;\n'\ ' list = document.getElementsByClassName("devlist");\n'\ ' for (var i = 0; i < list.length; i++)\n'\ ' list[i].onclick = devListWindow;\n'\ ' var dev = dmesg.getElementsByClassName("thread");\n'\ ' for (var i = 0; i < dev.length; i++) {\n'\ ' dev[i].onclick = deviceDetail;\n'\ ' dev[i].onmouseover = deviceHover;\n'\ ' dev[i].onmouseout = deviceUnhover;\n'\ ' }\n'\ ' var dev = dmesg.getElementsByClassName("srccall");\n'\ ' for (var i = 0; i < dev.length; i++)\n'\ ' dev[i].onclick = callSelect;\n'\ ' zoomTimeline();\n'\ ' });\n'\ '</script>\n' hf.write(script_code); # Function: executeSuspend # Description: # Execute system suspend through the sysfs interface, then copy the output # dmesg and ftrace files to the test output directory. def executeSuspend(): pm = ProcessMonitor() tp = sysvals.tpath fwdata = [] # mark the start point in the kernel ring buffer just as we start sysvals.initdmesg() # start ftrace if(sysvals.usecallgraph or sysvals.usetraceevents): print('START TRACING') sysvals.fsetVal('1', 'tracing_on') if sysvals.useprocmon: pm.start() # execute however many s/r runs requested for count in range(1,sysvals.execcount+1): # x2delay in between test runs if(count > 1 and sysvals.x2delay > 0): sysvals.fsetVal('WAIT %d' % sysvals.x2delay, 'trace_marker') time.sleep(sysvals.x2delay/1000.0) sysvals.fsetVal('WAIT END', 'trace_marker') # start message if sysvals.testcommand != '': print('COMMAND START') else: if(sysvals.rtcwake): print('SUSPEND START') else: print('SUSPEND START (press a key to resume)') # set rtcwake if(sysvals.rtcwake): print('will issue an rtcwake in %d seconds' % sysvals.rtcwaketime) sysvals.rtcWakeAlarmOn() # start of suspend trace marker if(sysvals.usecallgraph or sysvals.usetraceevents): sysvals.fsetVal('SUSPEND START', 'trace_marker') # predelay delay if(count == 1 and sysvals.predelay > 0): sysvals.fsetVal('WAIT %d' % sysvals.predelay, 'trace_marker') time.sleep(sysvals.predelay/1000.0) sysvals.fsetVal('WAIT END', 'trace_marker') # initiate suspend or command if sysvals.testcommand != '': call(sysvals.testcommand+' 2>&1', shell=True); else: mode = sysvals.suspendmode if sysvals.memmode and os.path.exists(sysvals.mempowerfile): mode = 'mem' pf = open(sysvals.mempowerfile, 'w') pf.write(sysvals.memmode) pf.close() pf = open(sysvals.powerfile, 'w') pf.write(mode) # execution will pause here try: pf.close() except: pass if(sysvals.rtcwake): sysvals.rtcWakeAlarmOff() # postdelay delay if(count == sysvals.execcount and sysvals.postdelay > 0): sysvals.fsetVal('WAIT %d' % sysvals.postdelay, 'trace_marker') time.sleep(sysvals.postdelay/1000.0) sysvals.fsetVal('WAIT END', 'trace_marker') # return from suspend print('RESUME COMPLETE') if(sysvals.usecallgraph or sysvals.usetraceevents): sysvals.fsetVal('RESUME COMPLETE', 'trace_marker') if(sysvals.suspendmode == 'mem' or sysvals.suspendmode == 'command'): fwdata.append(getFPDT(False)) # stop ftrace if(sysvals.usecallgraph or sysvals.usetraceevents): if sysvals.useprocmon: pm.stop() sysvals.fsetVal('0', 'tracing_on') print('CAPTURING TRACE') sysvals.writeDatafileHeader(sysvals.ftracefile, fwdata) call('cat '+tp+'trace >> '+sysvals.ftracefile, shell=True) sysvals.fsetVal('', 'trace') devProps() # grab a copy of the dmesg output print('CAPTURING DMESG') sysvals.writeDatafileHeader(sysvals.dmesgfile, fwdata) sysvals.getdmesg() # Function: setUSBDevicesAuto # Description: # Set the autosuspend control parameter of all USB devices to auto # This can be dangerous, so use at your own risk, most devices are set # to always-on since the kernel cant determine if the device can # properly autosuspend def setUSBDevicesAuto(): sysvals.rootCheck(True) for dirname, dirnames, filenames in os.walk('/sys/devices'): if(re.match('.*/usb[0-9]*.*', dirname) and 'idVendor' in filenames and 'idProduct' in filenames): call('echo auto > %s/power/control' % dirname, shell=True) name = dirname.split('/')[-1] desc = Popen(['cat', '%s/product' % dirname], stderr=PIPE, stdout=PIPE).stdout.read().replace('\n', '') ctrl = Popen(['cat', '%s/power/control' % dirname], stderr=PIPE, stdout=PIPE).stdout.read().replace('\n', '') print('control is %s for %6s: %s' % (ctrl, name, desc)) # Function: yesno # Description: # Print out an equivalent Y or N for a set of known parameter values # Output: # 'Y', 'N', or ' ' if the value is unknown def yesno(val): yesvals = ['auto', 'enabled', 'active', '1'] novals = ['on', 'disabled', 'suspended', 'forbidden', 'unsupported'] if val in yesvals: return 'Y' elif val in novals: return 'N' return ' ' # Function: ms2nice # Description: # Print out a very concise time string in minutes and seconds # Output: # The time string, e.g. "1901m16s" def ms2nice(val): ms = 0 try: ms = int(val) except: return 0.0 m = ms / 60000 s = (ms / 1000) - (m * 60) return '%3dm%2ds' % (m, s) # Function: detectUSB # Description: # Detect all the USB hosts and devices currently connected and add # a list of USB device names to sysvals for better timeline readability def detectUSB(): field = {'idVendor':'', 'idProduct':'', 'product':'', 'speed':''} power = {'async':'', 'autosuspend':'', 'autosuspend_delay_ms':'', 'control':'', 'persist':'', 'runtime_enabled':'', 'runtime_status':'', 'runtime_usage':'', 'runtime_active_time':'', 'runtime_suspended_time':'', 'active_duration':'', 'connected_duration':''} print('LEGEND') print('---------------------------------------------------------------------------------------------') print(' A = async/sync PM queue Y/N D = autosuspend delay (seconds)') print(' S = autosuspend Y/N rACTIVE = runtime active (min/sec)') print(' P = persist across suspend Y/N rSUSPEN = runtime suspend (min/sec)') print(' E = runtime suspend enabled/forbidden Y/N ACTIVE = active duration (min/sec)') print(' R = runtime status active/suspended Y/N CONNECT = connected duration (min/sec)') print(' U = runtime usage count') print('---------------------------------------------------------------------------------------------') print(' NAME ID DESCRIPTION SPEED A S P E R U D rACTIVE rSUSPEN ACTIVE CONNECT') print('---------------------------------------------------------------------------------------------') for dirname, dirnames, filenames in os.walk('/sys/devices'): if(re.match('.*/usb[0-9]*.*', dirname) and 'idVendor' in filenames and 'idProduct' in filenames): for i in field: field[i] = Popen(['cat', '%s/%s' % (dirname, i)], stderr=PIPE, stdout=PIPE).stdout.read().replace('\n', '') name = dirname.split('/')[-1] for i in power: power[i] = Popen(['cat', '%s/power/%s' % (dirname, i)], stderr=PIPE, stdout=PIPE).stdout.read().replace('\n', '') if(re.match('usb[0-9]*', name)): first = '%-8s' % name else: first = '%8s' % name print('%s [%s:%s] %-20s %-4s %1s %1s %1s %1s %1s %1s %1s %s %s %s %s' % \ (first, field['idVendor'], field['idProduct'], \ field['product'][0:20], field['speed'], \ yesno(power['async']), \ yesno(power['control']), \ yesno(power['persist']), \ yesno(power['runtime_enabled']), \ yesno(power['runtime_status']), \ power['runtime_usage'], \ power['autosuspend'], \ ms2nice(power['runtime_active_time']), \ ms2nice(power['runtime_suspended_time']), \ ms2nice(power['active_duration']), \ ms2nice(power['connected_duration']))) # Function: devProps # Description: # Retrieve a list of properties for all devices in the trace log def devProps(data=0): props = dict() if data: idx = data.index(': ') + 2 if idx >= len(data): return devlist = data[idx:].split(';') for dev in devlist: f = dev.split(',') if len(f) < 3: continue dev = f[0] props[dev] = DevProps() props[dev].altname = f[1] if int(f[2]): props[dev].async = True else: props[dev].async = False sysvals.devprops = props if sysvals.suspendmode == 'command' and 'testcommandstring' in props: sysvals.testcommand = props['testcommandstring'].altname return if(os.path.exists(sysvals.ftracefile) == False): doError('%s does not exist' % sysvals.ftracefile) # first get the list of devices we need properties for msghead = 'Additional data added by AnalyzeSuspend' alreadystamped = False tp = TestProps() tf = open(sysvals.ftracefile, 'r') for line in tf: if msghead in line: alreadystamped = True continue # determine the trace data type (required for further parsing) m = re.match(sysvals.tracertypefmt, line) if(m): tp.setTracerType(m.group('t')) continue # parse only valid lines, if this is not one move on m = re.match(tp.ftrace_line_fmt, line) if(not m or 'device_pm_callback_start' not in line): continue m = re.match('.*: (?P<drv>.*) (?P<d>.*), parent: *(?P<p>.*), .*', m.group('msg')); if(not m): continue dev = m.group('d') if dev not in props: props[dev] = DevProps() tf.close() if not alreadystamped and sysvals.suspendmode == 'command': out = '#\n# '+msghead+'\n# Device Properties: ' out += 'testcommandstring,%s,0;' % (sysvals.testcommand) with open(sysvals.ftracefile, 'a') as fp: fp.write(out+'\n') sysvals.devprops = props return # now get the syspath for each of our target devices for dirname, dirnames, filenames in os.walk('/sys/devices'): if(re.match('.*/power', dirname) and 'async' in filenames): dev = dirname.split('/')[-2] if dev in props and (not props[dev].syspath or len(dirname) < len(props[dev].syspath)): props[dev].syspath = dirname[:-6] # now fill in the properties for our target devices for dev in props: dirname = props[dev].syspath if not dirname or not os.path.exists(dirname): continue with open(dirname+'/power/async') as fp: text = fp.read() props[dev].async = False if 'enabled' in text: props[dev].async = True fields = os.listdir(dirname) if 'product' in fields: with open(dirname+'/product') as fp: props[dev].altname = fp.read() elif 'name' in fields: with open(dirname+'/name') as fp: props[dev].altname = fp.read() elif 'model' in fields: with open(dirname+'/model') as fp: props[dev].altname = fp.read() elif 'description' in fields: with open(dirname+'/description') as fp: props[dev].altname = fp.read() elif 'id' in fields: with open(dirname+'/id') as fp: props[dev].altname = fp.read() elif 'idVendor' in fields and 'idProduct' in fields: idv, idp = '', '' with open(dirname+'/idVendor') as fp: idv = fp.read().strip() with open(dirname+'/idProduct') as fp: idp = fp.read().strip() props[dev].altname = '%s:%s' % (idv, idp) if props[dev].altname: out = props[dev].altname.strip().replace('\n', ' ') out = out.replace(',', ' ') out = out.replace(';', ' ') props[dev].altname = out # and now write the data to the ftrace file if not alreadystamped: out = '#\n# '+msghead+'\n# Device Properties: ' for dev in sorted(props): out += props[dev].out(dev) with open(sysvals.ftracefile, 'a') as fp: fp.write(out+'\n') sysvals.devprops = props # Function: getModes # Description: # Determine the supported power modes on this system # Output: # A string list of the available modes def getModes(): modes = [] if(os.path.exists(sysvals.powerfile)): fp = open(sysvals.powerfile, 'r') modes = string.split(fp.read()) fp.close() if(os.path.exists(sysvals.mempowerfile)): deep = False fp = open(sysvals.mempowerfile, 'r') for m in string.split(fp.read()): memmode = m.strip('[]') if memmode == 'deep': deep = True else: modes.append('mem-%s' % memmode) fp.close() if 'mem' in modes and not deep: modes.remove('mem') return modes # Function: dmidecode # Description: # Read the bios tables and pull out system info # Arguments: # mempath: /dev/mem or custom mem path # fatal: True to exit on error, False to return empty dict # Output: # A dict object with all available key/values def dmidecode(mempath, fatal=False): out = dict() # the list of values to retrieve, with hardcoded (type, idx) info = { 'bios-vendor': (0, 4), 'bios-version': (0, 5), 'bios-release-date': (0, 8), 'system-manufacturer': (1, 4), 'system-product-name': (1, 5), 'system-version': (1, 6), 'system-serial-number': (1, 7), 'baseboard-manufacturer': (2, 4), 'baseboard-product-name': (2, 5), 'baseboard-version': (2, 6), 'baseboard-serial-number': (2, 7), 'chassis-manufacturer': (3, 4), 'chassis-type': (3, 5), 'chassis-version': (3, 6), 'chassis-serial-number': (3, 7), 'processor-manufacturer': (4, 7), 'processor-version': (4, 16), } if(not os.path.exists(mempath)): if(fatal): doError('file does not exist: %s' % mempath) return out if(not os.access(mempath, os.R_OK)): if(fatal): doError('file is not readable: %s' % mempath) return out # by default use legacy scan, but try to use EFI first memaddr = 0xf0000 memsize = 0x10000 for ep in ['/sys/firmware/efi/systab', '/proc/efi/systab']: if not os.path.exists(ep) or not os.access(ep, os.R_OK): continue fp = open(ep, 'r') buf = fp.read() fp.close() i = buf.find('SMBIOS=') if i >= 0: try: memaddr = int(buf[i+7:], 16) memsize = 0x20 except: continue # read in the memory for scanning fp = open(mempath, 'rb') try: fp.seek(memaddr) buf = fp.read(memsize) except: if(fatal): doError('DMI table is unreachable, sorry') else: return out fp.close() # search for either an SM table or DMI table i = base = length = num = 0 while(i < memsize): if buf[i:i+4] == '_SM_' and i < memsize - 16: length = struct.unpack('H', buf[i+22:i+24])[0] base, num = struct.unpack('IH', buf[i+24:i+30]) break elif buf[i:i+5] == '_DMI_': length = struct.unpack('H', buf[i+6:i+8])[0] base, num = struct.unpack('IH', buf[i+8:i+14]) break i += 16 if base == 0 and length == 0 and num == 0: if(fatal): doError('Neither SMBIOS nor DMI were found') else: return out # read in the SM or DMI table fp = open(mempath, 'rb') try: fp.seek(base) buf = fp.read(length) except: if(fatal): doError('DMI table is unreachable, sorry') else: return out fp.close() # scan the table for the values we want count = i = 0 while(count < num and i <= len(buf) - 4): type, size, handle = struct.unpack('BBH', buf[i:i+4]) n = i + size while n < len(buf) - 1: if 0 == struct.unpack('H', buf[n:n+2])[0]: break n += 1 data = buf[i+size:n+2].split('\0') for name in info: itype, idxadr = info[name] if itype == type: idx = struct.unpack('B', buf[i+idxadr])[0] if idx > 0 and idx < len(data) - 1: s = data[idx-1].strip() if s and s.lower() != 'to be filled by o.e.m.': out[name] = data[idx-1] i = n + 2 count += 1 return out # Function: getFPDT # Description: # Read the acpi bios tables and pull out FPDT, the firmware data # Arguments: # output: True to output the info to stdout, False otherwise def getFPDT(output): rectype = {} rectype[0] = 'Firmware Basic Boot Performance Record' rectype[1] = 'S3 Performance Table Record' prectype = {} prectype[0] = 'Basic S3 Resume Performance Record' prectype[1] = 'Basic S3 Suspend Performance Record' sysvals.rootCheck(True) if(not os.path.exists(sysvals.fpdtpath)): if(output): doError('file does not exist: %s' % sysvals.fpdtpath) return False if(not os.access(sysvals.fpdtpath, os.R_OK)): if(output): doError('file is not readable: %s' % sysvals.fpdtpath) return False if(not os.path.exists(sysvals.mempath)): if(output): doError('file does not exist: %s' % sysvals.mempath) return False if(not os.access(sysvals.mempath, os.R_OK)): if(output): doError('file is not readable: %s' % sysvals.mempath) return False fp = open(sysvals.fpdtpath, 'rb') buf = fp.read() fp.close() if(len(buf) < 36): if(output): doError('Invalid FPDT table data, should '+\ 'be at least 36 bytes') return False table = struct.unpack('4sIBB6s8sI4sI', buf[0:36]) if(output): print('') print('Firmware Performance Data Table (%s)' % table[0]) print(' Signature : %s' % table[0]) print(' Table Length : %u' % table[1]) print(' Revision : %u' % table[2]) print(' Checksum : 0x%x' % table[3]) print(' OEM ID : %s' % table[4]) print(' OEM Table ID : %s' % table[5]) print(' OEM Revision : %u' % table[6]) print(' Creator ID : %s' % table[7]) print(' Creator Revision : 0x%x' % table[8]) print('') if(table[0] != 'FPDT'): if(output): doError('Invalid FPDT table') return False if(len(buf) <= 36): return False i = 0 fwData = [0, 0] records = buf[36:] fp = open(sysvals.mempath, 'rb') while(i < len(records)): header = struct.unpack('HBB', records[i:i+4]) if(header[0] not in rectype): i += header[1] continue if(header[1] != 16): i += header[1] continue addr = struct.unpack('Q', records[i+8:i+16])[0] try: fp.seek(addr) first = fp.read(8) except: if(output): print('Bad address 0x%x in %s' % (addr, sysvals.mempath)) return [0, 0] rechead = struct.unpack('4sI', first) recdata = fp.read(rechead[1]-8) if(rechead[0] == 'FBPT'): record = struct.unpack('HBBIQQQQQ', recdata) if(output): print('%s (%s)' % (rectype[header[0]], rechead[0])) print(' Reset END : %u ns' % record[4]) print(' OS Loader LoadImage Start : %u ns' % record[5]) print(' OS Loader StartImage Start : %u ns' % record[6]) print(' ExitBootServices Entry : %u ns' % record[7]) print(' ExitBootServices Exit : %u ns' % record[8]) elif(rechead[0] == 'S3PT'): if(output): print('%s (%s)' % (rectype[header[0]], rechead[0])) j = 0 while(j < len(recdata)): prechead = struct.unpack('HBB', recdata[j:j+4]) if(prechead[0] not in prectype): continue if(prechead[0] == 0): record = struct.unpack('IIQQ', recdata[j:j+prechead[1]]) fwData[1] = record[2] if(output): print(' %s' % prectype[prechead[0]]) print(' Resume Count : %u' % \ record[1]) print(' FullResume : %u ns' % \ record[2]) print(' AverageResume : %u ns' % \ record[3]) elif(prechead[0] == 1): record = struct.unpack('QQ', recdata[j+4:j+prechead[1]]) fwData[0] = record[1] - record[0] if(output): print(' %s' % prectype[prechead[0]]) print(' SuspendStart : %u ns' % \ record[0]) print(' SuspendEnd : %u ns' % \ record[1]) print(' SuspendTime : %u ns' % \ fwData[0]) j += prechead[1] if(output): print('') i += header[1] fp.close() return fwData # Function: statusCheck # Description: # Verify that the requested command and options will work, and # print the results to the terminal # Output: # True if the test will work, False if not def statusCheck(probecheck=False): status = True print('Checking this system (%s)...' % platform.node()) # check we have root access res = sysvals.colorText('NO (No features of this tool will work!)') if(sysvals.rootCheck(False)): res = 'YES' print(' have root access: %s' % res) if(res != 'YES'): print(' Try running this script with sudo') return False # check sysfs is mounted res = sysvals.colorText('NO (No features of this tool will work!)') if(os.path.exists(sysvals.powerfile)): res = 'YES' print(' is sysfs mounted: %s' % res) if(res != 'YES'): return False # check target mode is a valid mode if sysvals.suspendmode != 'command': res = sysvals.colorText('NO') modes = getModes() if(sysvals.suspendmode in modes): res = 'YES' else: status = False print(' is "%s" a valid power mode: %s' % (sysvals.suspendmode, res)) if(res == 'NO'): print(' valid power modes are: %s' % modes) print(' please choose one with -m') # check if ftrace is available res = sysvals.colorText('NO') ftgood = sysvals.verifyFtrace() if(ftgood): res = 'YES' elif(sysvals.usecallgraph): status = False print(' is ftrace supported: %s' % res) # check if kprobes are available res = sysvals.colorText('NO') sysvals.usekprobes = sysvals.verifyKprobes() if(sysvals.usekprobes): res = 'YES' else: sysvals.usedevsrc = False print(' are kprobes supported: %s' % res) # what data source are we using res = 'DMESG' if(ftgood): sysvals.usetraceeventsonly = True sysvals.usetraceevents = False for e in sysvals.traceevents: check = False if(os.path.exists(sysvals.epath+e)): check = True if(not check): sysvals.usetraceeventsonly = False if(e == 'suspend_resume' and check): sysvals.usetraceevents = True if(sysvals.usetraceevents and sysvals.usetraceeventsonly): res = 'FTRACE (all trace events found)' elif(sysvals.usetraceevents): res = 'DMESG and FTRACE (suspend_resume trace event found)' print(' timeline data source: %s' % res) # check if rtcwake res = sysvals.colorText('NO') if(sysvals.rtcpath != ''): res = 'YES' elif(sysvals.rtcwake): status = False print(' is rtcwake supported: %s' % res) if not probecheck: return status # verify kprobes if sysvals.usekprobes: for name in sysvals.tracefuncs: sysvals.defaultKprobe(name, sysvals.tracefuncs[name]) if sysvals.usedevsrc: for name in sysvals.dev_tracefuncs: sysvals.defaultKprobe(name, sysvals.dev_tracefuncs[name]) sysvals.addKprobes(True) return status # Function: doError # Description: # generic error function for catastrphic failures # Arguments: # msg: the error message to print # help: True if printHelp should be called after, False otherwise def doError(msg, help=False): if(help == True): printHelp() print('ERROR: %s\n') % msg sys.exit() # Function: getArgInt # Description: # pull out an integer argument from the command line with checks def getArgInt(name, args, min, max, main=True): if main: try: arg = args.next() except: doError(name+': no argument supplied', True) else: arg = args try: val = int(arg) except: doError(name+': non-integer value given', True) if(val < min or val > max): doError(name+': value should be between %d and %d' % (min, max), True) return val # Function: getArgFloat # Description: # pull out a float argument from the command line with checks def getArgFloat(name, args, min, max, main=True): if main: try: arg = args.next() except: doError(name+': no argument supplied', True) else: arg = args try: val = float(arg) except: doError(name+': non-numerical value given', True) if(val < min or val > max): doError(name+': value should be between %f and %f' % (min, max), True) return val def processData(): print('PROCESSING DATA') if(sysvals.usetraceeventsonly): testruns = parseTraceLog() if sysvals.dmesgfile: dmesgtext = loadKernelLog(True) for data in testruns: data.extractErrorInfo(dmesgtext) else: testruns = loadKernelLog() for data in testruns: parseKernelLog(data) if(sysvals.ftracefile and (sysvals.usecallgraph or sysvals.usetraceevents)): appendIncompleteTraceLog(testruns) createHTML(testruns) return testruns # Function: rerunTest # Description: # generate an output from an existing set of ftrace/dmesg logs def rerunTest(): if sysvals.ftracefile: doesTraceLogHaveTraceEvents() if not sysvals.dmesgfile and not sysvals.usetraceeventsonly: doError('recreating this html output requires a dmesg file') sysvals.setOutputFile() vprint('Output file: %s' % sysvals.htmlfile) if os.path.exists(sysvals.htmlfile): if not os.path.isfile(sysvals.htmlfile): doError('a directory already exists with this name: %s' % sysvals.htmlfile) elif not os.access(sysvals.htmlfile, os.W_OK): doError('missing permission to write to %s' % sysvals.htmlfile) return processData() # Function: runTest # Description: # execute a suspend/resume, gather the logs, and generate the output def runTest(): # prepare for the test sysvals.initFtrace() sysvals.initTestOutput('suspend') vprint('Output files:\n\t%s\n\t%s\n\t%s' % \ (sysvals.dmesgfile, sysvals.ftracefile, sysvals.htmlfile)) # execute the test executeSuspend() sysvals.cleanupFtrace() processData() # if running as root, change output dir owner to sudo_user if os.path.isdir(sysvals.testdir) and os.getuid() == 0 and \ 'SUDO_USER' in os.environ: cmd = 'chown -R {0}:{0} {1} > /dev/null 2>&1' call(cmd.format(os.environ['SUDO_USER'], sysvals.testdir), shell=True) def find_in_html(html, strs, div=False): for str in strs: l = len(str) i = html.find(str) if i >= 0: break if i < 0: return '' if not div: return re.search(r'[-+]?\d*\.\d+|\d+', html[i+l:i+l+50]).group() n = html[i+l:].find('</div>') if n < 0: return '' return html[i+l:i+l+n] # Function: runSummary # Description: # create a summary of tests in a sub-directory def runSummary(subdir, local=True): inpath = os.path.abspath(subdir) outpath = inpath if local: outpath = os.path.abspath('.') print('Generating a summary of folder "%s"' % inpath) testruns = [] for dirname, dirnames, filenames in os.walk(subdir): for filename in filenames: if(not re.match('.*.html', filename)): continue file = os.path.join(dirname, filename) html = open(file, 'r').read(10000) suspend = find_in_html(html, ['Kernel Suspend: ', 'Kernel Suspend Time: ']) resume = find_in_html(html, ['Kernel Resume: ', 'Kernel Resume Time: ']) line = find_in_html(html, ['<div class="stamp">'], True) stmp = line.split() if not suspend or not resume or len(stmp) < 4: continue data = { 'host': stmp[0], 'kernel': stmp[1], 'mode': stmp[2], 'time': string.join(stmp[3:], ' '), 'suspend': suspend, 'resume': resume, 'url': os.path.relpath(file, outpath), } if len(stmp) == 7: data['kernel'] = 'unknown' data['mode'] = stmp[1] data['time'] = string.join(stmp[2:], ' ') testruns.append(data) outfile = os.path.join(outpath, 'summary.html') print('Summary file: %s' % outfile) createHTMLSummarySimple(testruns, outfile, inpath) # Function: checkArgBool # Description: # check if a boolean string value is true or false def checkArgBool(value): yes = ['1', 'true', 'yes', 'on'] if value.lower() in yes: return True return False # Function: configFromFile # Description: # Configure the script via the info in a config file def configFromFile(file): Config = ConfigParser.ConfigParser() Config.read(file) sections = Config.sections() overridekprobes = False overridedevkprobes = False if 'Settings' in sections: for opt in Config.options('Settings'): value = Config.get('Settings', opt).lower() if(opt.lower() == 'verbose'): sysvals.verbose = checkArgBool(value) elif(opt.lower() == 'addlogs'): sysvals.dmesglog = sysvals.ftracelog = checkArgBool(value) elif(opt.lower() == 'dev'): sysvals.usedevsrc = checkArgBool(value) elif(opt.lower() == 'proc'): sysvals.useprocmon = checkArgBool(value) elif(opt.lower() == 'x2'): if checkArgBool(value): sysvals.execcount = 2 elif(opt.lower() == 'callgraph'): sysvals.usecallgraph = checkArgBool(value) elif(opt.lower() == 'override-timeline-functions'): overridekprobes = checkArgBool(value) elif(opt.lower() == 'override-dev-timeline-functions'): overridedevkprobes = checkArgBool(value) elif(opt.lower() == 'devicefilter'): sysvals.setDeviceFilter(value) elif(opt.lower() == 'expandcg'): sysvals.cgexp = checkArgBool(value) elif(opt.lower() == 'srgap'): if checkArgBool(value): sysvals.srgap = 5 elif(opt.lower() == 'mode'): sysvals.suspendmode = value elif(opt.lower() == 'command'): sysvals.testcommand = value elif(opt.lower() == 'x2delay'): sysvals.x2delay = getArgInt('-x2delay', value, 0, 60000, False) elif(opt.lower() == 'predelay'): sysvals.predelay = getArgInt('-predelay', value, 0, 60000, False) elif(opt.lower() == 'postdelay'): sysvals.postdelay = getArgInt('-postdelay', value, 0, 60000, False) elif(opt.lower() == 'maxdepth'): sysvals.max_graph_depth = getArgInt('-maxdepth', value, 0, 1000, False) elif(opt.lower() == 'rtcwake'): if value.lower() == 'off': sysvals.rtcwake = False else: sysvals.rtcwake = True sysvals.rtcwaketime = getArgInt('-rtcwake', value, 0, 3600, False) elif(opt.lower() == 'timeprec'): sysvals.setPrecision(getArgInt('-timeprec', value, 0, 6, False)) elif(opt.lower() == 'mindev'): sysvals.mindevlen = getArgFloat('-mindev', value, 0.0, 10000.0, False) elif(opt.lower() == 'callloop-maxgap'): sysvals.callloopmaxgap = getArgFloat('-callloop-maxgap', value, 0.0, 1.0, False) elif(opt.lower() == 'callloop-maxlen'): sysvals.callloopmaxgap = getArgFloat('-callloop-maxlen', value, 0.0, 1.0, False) elif(opt.lower() == 'mincg'): sysvals.mincglen = getArgFloat('-mincg', value, 0.0, 10000.0, False) elif(opt.lower() == 'output-dir'): sysvals.testdir = sysvals.setOutputFolder(value) if sysvals.suspendmode == 'command' and not sysvals.testcommand: doError('No command supplied for mode "command"') # compatibility errors if sysvals.usedevsrc and sysvals.usecallgraph: doError('-dev is not compatible with -f') if sysvals.usecallgraph and sysvals.useprocmon: doError('-proc is not compatible with -f') if overridekprobes: sysvals.tracefuncs = dict() if overridedevkprobes: sysvals.dev_tracefuncs = dict() kprobes = dict() kprobesec = 'dev_timeline_functions_'+platform.machine() if kprobesec in sections: for name in Config.options(kprobesec): text = Config.get(kprobesec, name) kprobes[name] = (text, True) kprobesec = 'timeline_functions_'+platform.machine() if kprobesec in sections: for name in Config.options(kprobesec): if name in kprobes: doError('Duplicate timeline function found "%s"' % (name)) text = Config.get(kprobesec, name) kprobes[name] = (text, False) for name in kprobes: function = name format = name color = '' args = dict() text, dev = kprobes[name] data = text.split() i = 0 for val in data: # bracketted strings are special formatting, read them separately if val[0] == '[' and val[-1] == ']': for prop in val[1:-1].split(','): p = prop.split('=') if p[0] == 'color': try: color = int(p[1], 16) color = '#'+p[1] except: color = p[1] continue # first real arg should be the format string if i == 0: format = val # all other args are actual function args else: d = val.split('=') args[d[0]] = d[1] i += 1 if not function or not format: doError('Invalid kprobe: %s' % name) for arg in re.findall('{(?P<n>[a-z,A-Z,0-9]*)}', format): if arg not in args: doError('Kprobe "%s" is missing argument "%s"' % (name, arg)) if (dev and name in sysvals.dev_tracefuncs) or (not dev and name in sysvals.tracefuncs): doError('Duplicate timeline function found "%s"' % (name)) kp = { 'name': name, 'func': function, 'format': format, sysvals.archargs: args } if color: kp['color'] = color if dev: sysvals.dev_tracefuncs[name] = kp else: sysvals.tracefuncs[name] = kp # Function: printHelp # Description: # print out the help text def printHelp(): print('') print('%s v%s' % (sysvals.title, sysvals.version)) print('Usage: sudo sleepgraph <options> <commands>') print('') print('Description:') print(' This tool is designed to assist kernel and OS developers in optimizing') print(' their linux stack\'s suspend/resume time. Using a kernel image built') print(' with a few extra options enabled, the tool will execute a suspend and') print(' capture dmesg and ftrace data until resume is complete. This data is') print(' transformed into a device timeline and an optional callgraph to give') print(' a detailed view of which devices/subsystems are taking the most') print(' time in suspend/resume.') print('') print(' If no specific command is given, the default behavior is to initiate') print(' a suspend/resume and capture the dmesg/ftrace output as an html timeline.') print('') print(' Generates output files in subdirectory: suspend-yymmdd-HHMMSS') print(' HTML output: <hostname>_<mode>.html') print(' raw dmesg output: <hostname>_<mode>_dmesg.txt') print(' raw ftrace output: <hostname>_<mode>_ftrace.txt') print('') print('Options:') print(' -h Print this help text') print(' -v Print the current tool version') print(' -config fn Pull arguments and config options from file fn') print(' -verbose Print extra information during execution and analysis') print(' -m mode Mode to initiate for suspend (default: %s)') % (sysvals.suspendmode) print(' -o name Overrides the output subdirectory name when running a new test') print(' default: suspend-{date}-{time}') print(' -rtcwake t Wakeup t seconds after suspend, set t to "off" to disable (default: 15)') print(' -addlogs Add the dmesg and ftrace logs to the html output') print(' -srgap Add a visible gap in the timeline between sus/res (default: disabled)') print(' [advanced]') print(' -cmd {s} Run the timeline over a custom command, e.g. "sync -d"') print(' -proc Add usermode process info into the timeline (default: disabled)') print(' -dev Add kernel function calls and threads to the timeline (default: disabled)') print(' -x2 Run two suspend/resumes back to back (default: disabled)') print(' -x2delay t Include t ms delay between multiple test runs (default: 0 ms)') print(' -predelay t Include t ms delay before 1st suspend (default: 0 ms)') print(' -postdelay t Include t ms delay after last resume (default: 0 ms)') print(' -mindev ms Discard all device blocks shorter than ms milliseconds (e.g. 0.001 for us)') print(' -multi n d Execute <n> consecutive tests at <d> seconds intervals. The outputs will') print(' be created in a new subdirectory with a summary page.') print(' [debug]') print(' -f Use ftrace to create device callgraphs (default: disabled)') print(' -maxdepth N limit the callgraph data to N call levels (default: 0=all)') print(' -expandcg pre-expand the callgraph data in the html output (default: disabled)') print(' -fadd file Add functions to be graphed in the timeline from a list in a text file') print(' -filter "d1,d2,..." Filter out all but this comma-delimited list of device names') print(' -mincg ms Discard all callgraphs shorter than ms milliseconds (e.g. 0.001 for us)') print(' -cgphase P Only show callgraph data for phase P (e.g. suspend_late)') print(' -cgtest N Only show callgraph data for test N (e.g. 0 or 1 in an x2 run)') print(' -timeprec N Number of significant digits in timestamps (0:S, [3:ms], 6:us)') print('') print('Other commands:') print(' -modes List available suspend modes') print(' -status Test to see if the system is enabled to run this tool') print(' -fpdt Print out the contents of the ACPI Firmware Performance Data Table') print(' -sysinfo Print out system info extracted from BIOS') print(' -usbtopo Print out the current USB topology with power info') print(' -usbauto Enable autosuspend for all connected USB devices') print(' -flist Print the list of functions currently being captured in ftrace') print(' -flistall Print all functions capable of being captured in ftrace') print(' -summary directory Create a summary of all test in this dir') print(' [redo]') print(' -ftrace ftracefile Create HTML output using ftrace input (used with -dmesg)') print(' -dmesg dmesgfile Create HTML output using dmesg (used with -ftrace)') print('') return True # ----------------- MAIN -------------------- # exec start (skipped if script is loaded as library) if __name__ == '__main__': cmd = '' outdir = '' multitest = {'run': False, 'count': 0, 'delay': 0} simplecmds = ['-sysinfo', '-modes', '-fpdt', '-flist', '-flistall', '-usbtopo', '-usbauto', '-status'] # loop through the command line arguments args = iter(sys.argv[1:]) for arg in args: if(arg == '-m'): try: val = args.next() except: doError('No mode supplied', True) if val == 'command' and not sysvals.testcommand: doError('No command supplied for mode "command"', True) sysvals.suspendmode = val elif(arg in simplecmds): cmd = arg[1:] elif(arg == '-h'): printHelp() sys.exit() elif(arg == '-v'): print("Version %s" % sysvals.version) sys.exit() elif(arg == '-x2'): sysvals.execcount = 2 elif(arg == '-x2delay'): sysvals.x2delay = getArgInt('-x2delay', args, 0, 60000) elif(arg == '-predelay'): sysvals.predelay = getArgInt('-predelay', args, 0, 60000) elif(arg == '-postdelay'): sysvals.postdelay = getArgInt('-postdelay', args, 0, 60000) elif(arg == '-f'): sysvals.usecallgraph = True elif(arg == '-addlogs'): sysvals.dmesglog = sysvals.ftracelog = True elif(arg == '-verbose'): sysvals.verbose = True elif(arg == '-proc'): sysvals.useprocmon = True elif(arg == '-dev'): sysvals.usedevsrc = True elif(arg == '-maxdepth'): sysvals.max_graph_depth = getArgInt('-maxdepth', args, 0, 1000) elif(arg == '-rtcwake'): try: val = args.next() except: doError('No rtcwake time supplied', True) if val.lower() == 'off': sysvals.rtcwake = False else: sysvals.rtcwake = True sysvals.rtcwaketime = getArgInt('-rtcwake', val, 0, 3600, False) elif(arg == '-timeprec'): sysvals.setPrecision(getArgInt('-timeprec', args, 0, 6)) elif(arg == '-mindev'): sysvals.mindevlen = getArgFloat('-mindev', args, 0.0, 10000.0) elif(arg == '-mincg'): sysvals.mincglen = getArgFloat('-mincg', args, 0.0, 10000.0) elif(arg == '-cgtest'): sysvals.cgtest = getArgInt('-cgtest', args, 0, 1) elif(arg == '-cgphase'): try: val = args.next() except: doError('No phase name supplied', True) d = Data(0) if val not in d.phases: doError('Invalid phase, valid phaess are %s' % d.phases, True) sysvals.cgphase = val elif(arg == '-callloop-maxgap'): sysvals.callloopmaxgap = getArgFloat('-callloop-maxgap', args, 0.0, 1.0) elif(arg == '-callloop-maxlen'): sysvals.callloopmaxlen = getArgFloat('-callloop-maxlen', args, 0.0, 1.0) elif(arg == '-cmd'): try: val = args.next() except: doError('No command string supplied', True) sysvals.testcommand = val sysvals.suspendmode = 'command' elif(arg == '-expandcg'): sysvals.cgexp = True elif(arg == '-srgap'): sysvals.srgap = 5 elif(arg == '-multi'): multitest['run'] = True multitest['count'] = getArgInt('-multi n (exec count)', args, 2, 1000000) multitest['delay'] = getArgInt('-multi d (delay between tests)', args, 0, 3600) elif(arg == '-o'): try: val = args.next() except: doError('No subdirectory name supplied', True) outdir = sysvals.setOutputFolder(val) elif(arg == '-config'): try: val = args.next() except: doError('No text file supplied', True) if(os.path.exists(val) == False): doError('%s does not exist' % val) configFromFile(val) elif(arg == '-fadd'): try: val = args.next() except: doError('No text file supplied', True) if(os.path.exists(val) == False): doError('%s does not exist' % val) sysvals.addFtraceFilterFunctions(val) elif(arg == '-dmesg'): try: val = args.next() except: doError('No dmesg file supplied', True) sysvals.notestrun = True sysvals.dmesgfile = val if(os.path.exists(sysvals.dmesgfile) == False): doError('%s does not exist' % sysvals.dmesgfile) elif(arg == '-ftrace'): try: val = args.next() except: doError('No ftrace file supplied', True) sysvals.notestrun = True sysvals.ftracefile = val if(os.path.exists(sysvals.ftracefile) == False): doError('%s does not exist' % sysvals.ftracefile) elif(arg == '-summary'): try: val = args.next() except: doError('No directory supplied', True) cmd = 'summary' outdir = val sysvals.notestrun = True if(os.path.isdir(val) == False): doError('%s is not accesible' % val) elif(arg == '-filter'): try: val = args.next() except: doError('No devnames supplied', True) sysvals.setDeviceFilter(val) else: doError('Invalid argument: '+arg, True) # compatibility errors if(sysvals.usecallgraph and sysvals.usedevsrc): doError('-dev is not compatible with -f') if(sysvals.usecallgraph and sysvals.useprocmon): doError('-proc is not compatible with -f') # callgraph size cannot exceed device size if sysvals.mincglen < sysvals.mindevlen: sysvals.mincglen = sysvals.mindevlen # just run a utility command and exit sysvals.cpuInfo() if(cmd != ''): if(cmd == 'status'): statusCheck(True) elif(cmd == 'fpdt'): getFPDT(True) elif(cmd == 'sysinfo'): sysvals.printSystemInfo() elif(cmd == 'usbtopo'): detectUSB() elif(cmd == 'modes'): print getModes() elif(cmd == 'flist'): sysvals.getFtraceFilterFunctions(True) elif(cmd == 'flistall'): sysvals.getFtraceFilterFunctions(False) elif(cmd == 'usbauto'): setUSBDevicesAuto() elif(cmd == 'summary'): runSummary(outdir, True) sys.exit() # if instructed, re-analyze existing data files if(sysvals.notestrun): rerunTest() sys.exit() # verify that we can run a test if(not statusCheck()): print('Check FAILED, aborting the test run!') sys.exit() # extract mem modes and convert mode = sysvals.suspendmode if 'mem' == mode[:3]: if '-' in mode: memmode = mode.split('-')[-1] else: memmode = 'deep' if memmode == 'shallow': mode = 'standby' elif memmode == 's2idle': mode = 'freeze' else: mode = 'mem' sysvals.memmode = memmode sysvals.suspendmode = mode sysvals.systemInfo(dmidecode(sysvals.mempath)) if multitest['run']: # run multiple tests in a separate subdirectory if not outdir: s = 'suspend-x%d' % multitest['count'] outdir = datetime.now().strftime(s+'-%y%m%d-%H%M%S') if not os.path.isdir(outdir): os.mkdir(outdir) for i in range(multitest['count']): if(i != 0): print('Waiting %d seconds...' % (multitest['delay'])) time.sleep(multitest['delay']) print('TEST (%d/%d) START' % (i+1, multitest['count'])) fmt = 'suspend-%y%m%d-%H%M%S' sysvals.testdir = os.path.join(outdir, datetime.now().strftime(fmt)) runTest() print('TEST (%d/%d) COMPLETE' % (i+1, multitest['count'])) runSummary(outdir, False) else: if outdir: sysvals.testdir = outdir # run the test in the current directory runTest()
gpl-2.0
lisa-lab/pylearn2
pylearn2/scripts/papers/jia_huang_wkshp_11/evaluate.py
44
3208
from __future__ import print_function from optparse import OptionParser import warnings try: from sklearn.metrics import classification_report except ImportError: classification_report = None warnings.warn("couldn't find sklearn.metrics.classification_report") try: from sklearn.metrics import confusion_matrix except ImportError: confusion_matrix = None warnings.warn("couldn't find sklearn.metrics.metrics.confusion_matrix") from galatea.s3c.feature_loading import get_features from pylearn2.utils import serial from pylearn2.datasets.cifar10 import CIFAR10 from pylearn2.datasets.cifar100 import CIFAR100 import numpy as np def test(model, X, y): print("Evaluating svm") y_pred = model.predict(X) #try: if True: acc = (y == y_pred).mean() print("Accuracy ",acc) """except: print("something went wrong") print('y:') print(y) print('y_pred:') print(y_pred) print('extra info') print(type(y)) print(type(y_pred)) print(y.dtype) print(y_pred.dtype) print(y.shape) print(y_pred.shape) raise """ # def get_test_labels(cifar10, cifar100, stl10): assert cifar10 + cifar100 + stl10 == 1 if stl10: print('loading entire stl-10 test set just to get the labels') stl10 = serial.load("${PYLEARN2_DATA_PATH}/stl10/stl10_32x32/test.pkl") return stl10.y if cifar10: print('loading entire cifar10 test set just to get the labels') cifar10 = CIFAR10(which_set = 'test') return np.asarray(cifar10.y) if cifar100: print('loading entire cifar100 test set just to get the fine labels') cifar100 = CIFAR100(which_set = 'test') return np.asarray(cifar100.y_fine) assert False def main(model_path, test_path, dataset, **kwargs): model = serial.load(model_path) cifar100 = dataset == 'cifar100' cifar10 = dataset == 'cifar10' stl10 = dataset == 'stl10' assert cifar10 + cifar100 + stl10 == 1 y = get_test_labels(cifar10, cifar100, stl10) X = get_features(test_path, False, False) if stl10: num_examples = 8000 if cifar10 or cifar100: num_examples = 10000 if not X.shape[0] == num_examples: raise AssertionError('Expected %d examples but got %d' % (num_examples, X.shape[0])) assert y.shape[0] == num_examples test(model,X,y) if __name__ == '__main__': """ Useful for quick tests. Usage: python train_bilinear.py """ parser = OptionParser() parser.add_option("-m", "--model", action="store", type="string", dest="model_path") parser.add_option("-t", "--test", action="store", type="string", dest="test") parser.add_option("-o", action="store", dest="output", default = None, help="path to write the report to") parser.add_option('--dataset', type='string', dest = 'dataset', action='store', default = None) #(options, args) = parser.parse_args() #assert options.output main(model_path='final_model.pkl', test_path='test_features.npy', dataset = 'cifar100', )
bsd-3-clause
OFAI/hub-toolbox-python3
setup.py
1
3998
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This file is part of the HUB TOOLBOX available at https://github.com/OFAI/hub-toolbox-python3/ The HUB TOOLBOX is licensed under the terms of the GNU GPLv3. (c) 2011-2018, Dominik Schnitzer and Roman Feldbauer Austrian Research Institute for Artificial Intelligence (OFAI) Contact: <roman.feldbauer@ofai.at> Installation: ------------- In the console (terminal application) change to the folder containing this file. To build the package hub_toolbox: python3 setup.py build To install the package (with administrator rights): sudo python3 setup.py install To test the installation: sudo python3 setup.py test If this succeeds with an 'OK' message, you are ready to go. Otherwise you may consider filing a bug report on github. (Some skipped tests are perfectly fine, though.) """ import re, os, sys REQ_MAJOR = 3 REQ_MINOR = 6 if sys.version_info < (REQ_MAJOR, REQ_MINOR): sys.stdout.write( (f"The HUB TOOLBOX requires Python {REQ_MAJOR}.{REQ_MINOR} or higher." f"\nPlease try to run as python3 setup.py or update your Python " f"environment.\n Consider using Anaconda for easy package handling.")) sys.exit(1) try: import numpy, scipy, sklearn # @UnusedImport except ImportError: sys.stdout.write("The HUB TOOLBOX requires numpy, scipy and scikit-learn. " "Please make sure these packages are available locally. " "Consider using Anaconda for easy package handling.\n") try: import pandas, joblib # @UnusedImport except ImportError: sys.stdout.write("Some modules of the HUB TOOLBOX require pandas and joblib. " "Please make sure these packages are available locally. " "Consider using Anaconda for easy package handling.\n") try: import nmslib, falconn # @UnusedImport except ImportError: sys.stdout.write("The 'approximate' module uses 'nmslib' and 'falconn' " "libraries for approximate nearest neighbor search. " "Please make sure these packages are available locally. " "Consider using Anaconda for easy package handling.\n") setup_options = {} try: from setuptools import setup setup_options['test_suite'] = 'tests' except ImportError: from distutils.core import setup import warnings warnings.warn("setuptools not found, resorting to distutils. " "Unit tests won't be discovered automatically.") # Parsing current version number # Adapted from the Lasagne project at # https://github.com/Lasagne/Lasagne/blob/master/setup.py here = os.path.abspath(os.path.dirname(__file__)) try: # obtain version string from __init__.py # Read ASCII file with builtin open() so __version__ is str in Python 2 and 3 with open(os.path.join(here, 'hub_toolbox', '__init__.py'), 'r') as f: init_py = f.read() version = re.search("__version__ = '(.*)'", init_py).groups()[0] except Exception: version = '' setup( name = "hub_toolbox", version = version, author = "Roman Feldbauer", author_email = "roman.feldbauer@ofai.at", maintainer = "Roman Feldbauer", maintainer_email = "roman.feldbauer@ofai.at", description = "Hubness reduction and analysis tools", license = "GNU GPLv3", keywords = ["machine learning", "data science"], url = "https://github.com/OFAI/hub-toolbox-python3", packages=['hub_toolbox', 'tests'], package_data={'hub_toolbox': ['example_datasets/*']}, classifiers=[ "Development Status :: 4 - Beta", "Environment :: Console", "Intended Audience :: Science/Research", "License :: OSI Approved :: GNU General Public License v3 " "or later (GPLv3+)", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Scientific/Engineering" ], **setup_options )
gpl-3.0
pazeshun/jsk_apc
demos/instance_occlsegm/ros/synthetic2d/nodes/place_planning.py
2
6463
#!/usr/bin/env python # flake8: noqa import numpy as np def get_place_mask(img, bboxes, labels, masks, obstacles, target_id, pick, debug=0, n_times=10, mask_fg=None): import chainer_mask_rcnn as cmr import instance_occlsegm_lib from skimage.segmentation import slic from scipy.ndimage import center_of_mass from skimage.transform import rotate from skimage.transform import rescale lbl_ins, _ = cmr.utils.instance_boxes2label(labels + 1, bboxes, masks=np.isin(masks, (1,))) lbl_ins2, _ = cmr.utils.instance_boxes2label( labels[np.arange(len(labels)) != pick] + 1, bboxes[np.arange(len(labels)) != pick], masks=np.isin(masks, (1, 2))) # objects_in_graph = [o + 1 for o in objects_in_graph] mask = lbl_ins == pick cy, cx = center_of_mass(mask) xmin, ymin, xmax, ymax = instance_occlsegm_lib.image.mask_to_bbox(mask) mask_obj = mask[ymin:ymax, xmin:xmax] # plt.imshow(mask_obj, cmap='gray') # plt.show() segments = slic(lbl_ins, n_segments=50) mask_placable = lbl_ins == -1 if mask_fg is not None: mask_placable = np.bitwise_and(mask_placable, mask_fg) # plt.imshow(lbl_cls2) # plt.imshow(mask_placable) # plt.show() disabled = np.unique(segments[~mask_placable]) for s in disabled: segments[segments == s] = -1 # plt.imshow(segments) # plt.imshow(mask_placable, cmap='gray') # plt.show() distances = [] for s in np.unique(segments): if s == -1: continue mask_s = segments == s cy_s, cx_s = center_of_mass(mask_s) d = np.sqrt((cx - cx_s) ** 2 + (cy - cy_s) ** 2) distances.append((s, d)) distances = sorted(distances, key=lambda x: x[1]) for l, d in distances[:n_times]: R = 8 for r in range(0, R): mask_obj_r0 = rotate(mask_obj, resize=True, angle=r * (360. / R), order=0) # mask_obj_r1 = rescale(mask_obj_r0, 1.5, mode='constant', multichannel=False, anti_aliasing=False) mask_obj_r1 = rescale(mask_obj_r0, 1.1, mode='constant') mask_obj_r1 = mask_obj_r1 >= 0.5 # plt.subplot(121) # plt.imshow(mask_obj_r0) # plt.subplot(122) # plt.imshow(mask_obj_r1) # plt.show() H, W = mask.shape[:2] mask_s = segments == l cy_s, cx_s = center_of_mass(mask_s) def get_mask_t(mask_obj_r): h, w = mask_obj_r.shape[:2] cy_o, cx_o = center_of_mass(mask_obj_r) dymax = mask_obj_r.shape[0] - cy_o dymin = 0 - cy_o dxmax = mask_obj_r.shape[1] - cx_o dxmin = 0 - cx_o ymax_t = int(cy_s + dymax) ymin_t = ymax_t - h # ymin_t = int(cy_s + dymin) xmax_t = int(cx_s + dxmax) xmin_t = xmax_t - w # xmin_t = int(cx_s + dxmin) if not (0 <= ymax_t <= H and 0 <= ymin_t <= H and 0 <= xmax_t <= W and 0 <= xmin_t <= W): return None mask_t = np.zeros_like(mask) mask_t[ymin_t:ymax_t, xmin_t:xmax_t] = mask_obj_r return mask_t mask_t1 = get_mask_t(mask_obj_r1) mask_t0 = get_mask_t(mask_obj_r0) if mask_t0 is None or mask_t1 is None: continue # instance_occlsegm_lib.io.tileimg([ # mask_t1, # mask_placable, # np.bitwise_or(mask_t1, mask_placable), # np.bitwise_and(mask_t1, ~mask_placable) # ]) # instance_occlsegm_lib.io.show() if 1. * np.sum(mask_t1 & ~mask_placable) / mask_t1.sum() < 0.05: if debug: instance_occlsegm_lib.io.tileimg([ img, mask, mask_placable, np.bitwise_or(mask_t1, ~mask_placable), np.bitwise_or(mask_t0, ~mask_placable), mask_t0 ]) instance_occlsegm_lib.io.show() return mask_t0 # plt.imshow(segments) # plt.plot([cx_s], [cy_s], 'o', color='r') # plt.show() def main(): data = np.load('book_and_tennis_ball.npz') img = data['img'] bboxes = data['bboxes'] labels = data['labels'] masks = data['masks'] objects_in_graph = [34, 7] target = 34 get_place_mask(img, bboxes, labels, masks, objects_in_graph, target, debug=1) if __name__ == '__main__': main() # def apply_pca(mask): # from sklearn.decomposition import PCA # # pca = PCA() # xy = np.argwhere(mask) # pca.fit(xy) # xy_trans = pca.fit_transform(xy) # cy, cx = pca.mean_ # # axis0_min = xy_trans[:, 0].min() # axis0_max = xy_trans[:, 0].max() # axis1_min = xy_trans[:, 1].min() # axis1_max = xy_trans[:, 1].max() # # yx0_max = axis0_max * pca.components_[0] + pca.mean_ # yx0_min = axis0_min * pca.components_[0] + pca.mean_ # yx1_max = axis1_max * pca.components_[1] + pca.mean_ # yx1_min = axis1_min * pca.components_[1] + pca.mean_ # # # visualize # viz = img.copy() # cv2.circle(viz, (int(cx), int(cy)), radius=5, color=(0, 255, 0), thickness=-1) # # long axis # cv2.line(viz, (int(yx0_min[1]), int(yx0_min[0])), (int(yx0_max[1]), int(yx0_max[0])), color=(0, 255, 0), thickness=1) # cv2.circle(viz, (int(yx0_max[1]), int(yx0_max[0])), radius=5, color=(0, 0, 255), thickness=-1) # cv2.circle(viz, (int(yx0_min[1]), int(yx0_min[0])), radius=5, color=(255, 0, 0), thickness=-1) # # short axis # cv2.line(viz, (int(yx1_min[1]), int(yx1_min[0])), (int(yx1_max[1]), int(yx1_max[0])), color=(0, 255, 0), thickness=1) # cv2.circle(viz, (int(yx1_max[1]), int(yx1_max[0])), radius=5, color=(0, 0, 255), thickness=-1) # cv2.circle(viz, (int(yx1_min[1]), int(yx1_min[0])), radius=5, color=(255, 0, 0), thickness=-1) # plt.imshow(viz) # plt.show() # # viz = img.copy() # mask_flat = mask.flatten() # index = np.random.choice(np.argwhere(~mask_flat)[:, 0]) # x = index % mask.shape[1] # y = index // mask.shape[1] # cv2.circle(viz, (x, y), radius=5, color=(0, 255, 0), thickness=-1) # plt.imshow(viz) # plt.show()
bsd-3-clause
jcrudy/sklearntools
sklearntools/test/validation_plots.py
1
1112
from sklearntools.validation import plot_tolerance, plot_roc,\ calibration_bin_plot, plot_roc_auc_for_bins if __name__ == '__main__': from sklearntools.validation import plot_curve_auc, roc_curve from sklearn.linear_model.logistic import LogisticRegression from scipy.special._ufuncs import expit import numpy as np from matplotlib import pyplot np.random.seed(1) m = 1000 n = 5 X = np.random.normal(size=(m,n)) beta = np.random.normal(size=n) y = np.random.binomial(n=1, p=expit(np.dot(X, beta))) model = LogisticRegression().fit(X, y) pred = model.predict_proba(X)[:,1] pyplot.figure() plot_roc(y, pred, name='test_model') pyplot.savefig('test_roc_plot.png') pyplot.figure() plot_tolerance(y, pred, name='test_model', normalize=True) pyplot.savefig('test_tolerance_plot.png') pyplot.figure() calibration_bin_plot(pred, y, pred, ) pyplot.savefig('test_calibration_plot.png') pyplot.figure() plot_roc_auc_for_bins(10, X[:,0], y, pred) pyplot.savefig('test_bin_auc_plot.png')
bsd-3-clause
nansencenter/nansat
nansat/utils.py
1
9214
# Name: utils.py # Purpose: collection of data and funcs used in NANSAT modules # Authors: Asuka Yamakawa, Anton Korosov, Knut-Frode Dagestad, # Morten W. Hansen, Alexander Myasoyedov, # Dmitry Petrenko, Evgeny Morozov # Created: 29.06.2011 # Copyright: (c) NERSC 2011 - 2013 # Licence: # This file is part of NANSAT. # NANSAT is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, version 3 of the License. # http://www.gnu.org/licenses/gpl-3.0.html # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. from __future__ import absolute_import import os import warnings import logging from dateutil.parser import parse try: import matplotlib except ImportError: MATPLOTLIB_IS_INSTALLED = False else: MATPLOTLIB_IS_INSTALLED = True if 'DISPLAY' not in os.environ: matplotlib.use('Agg') from matplotlib.colors import LinearSegmentedColormap from matplotlib.colors import hex2color from matplotlib import cm import numpy as np try: import gdal, ogr, osr except: from osgeo import gdal, ogr, osr gdal.UseExceptions() NUMPY_TO_GDAL_TYPE_MAP = { 'uint8': 1, 'int8': 1, 'uint16': 2, 'int16': 3, 'uint32': 4, 'int32': 5, 'float32': 6, 'float64': 7, 'complex64': 10, 'complex128': 11 } def remove_keys(dict, keys): if keys is None: keys = [] for key in keys: dict.pop(key, None) return dict def register_colormaps(): ''' Create custom colormaps and register them ''' obpg = {'red': [(0.00, 0.56, 0.56), (0.19, 0.00, 0.00), (0.38, 0.00, 0.00), (0.50, 0.00, 0.00), (0.63, 1.00, 1.00), (0.88, 1.00, 1.00), (1.00, 0.40, 0.40)], 'green': [(0.00, 0.00, 0.00), (0.19, 0.00, 0.00), (0.38, 1.00, 1.00), (0.50, 1.00, 1.00), (0.63, 1.00, 1.00), (0.88, 0.00, 0.00), (1.00, 0.00, 0.00)], 'blue': [(0.00, 0.43, 0.43), (0.19, 1.00, 1.00), (0.38, 1.00, 1.00), (0.50, 0.00, 0.00), (0.63, 0.00, 0.00), (0.88, 0.00, 0.00), (1.00, 0.00, 0.00)], } ak01 = {'red': [(0, 0.1, 0.1,), (0.1, 0.56, 0.56,), (0.22, 0, 0,), (0.27, 0, 0,), (0.37, 0.3, 0.3,), (0.47, 0, 0,), (0.52, 0, 0,), (0.64, 1, 1,), (0.76, 1, 1,), (0.88, 0.4, 0.4,), (1, 1, 1,)], 'green': [(0, 0, 0,), (0.1, 0, 0,), (0.22, 0, 0,), (0.27, 0, 0,), (0.37, 0.6, 0.6,), (0.47, 0.6, 0.6,), (0.52, 1, 1,), (0.64, 1, 1,), (0.76, 0, 0,), (0.88, 0, 0,), (1, 0.5, 0.5,)], 'blue': [(0, 0.1, 0.1,), (0.1, 0.5, 0.5,), (0.22, 0.5, 0.5,), (0.27, 1, 1,), (0.37, 1, 1,), (0.47, 0, 0,), (0.52, 0, 0,), (0.64, 0, 0,), (0.76, 0, 0,), (0.88, 0, 0,), (1, 0.5, 0.5,)], } if MATPLOTLIB_IS_INSTALLED: cm.register_cmap(cmap=LinearSegmentedColormap('obpg', obpg, 256)) cm.register_cmap(cmap=LinearSegmentedColormap('ak01', ak01, 256)) def initial_bearing(lon1, lat1, lon2, lat2): """Initial bearing when traversing from point1 (lon1, lat1) to point2 (lon2, lat2) See http://www.movable-type.co.uk/scripts/latlong.html Parameters ---------- lon1, lat1 : float longitude and latitude of start point lon2, lat2 : float longitude and latitude of end point Returns ------- initial_bearing : float The initial bearing (azimuth direction) when heading out from the start point towards the end point along a great circle. """ rlon1 = np.radians(lon1) rlat1 = np.radians(lat1) rlon2 = np.radians(lon2) rlat2 = np.radians(lat2) bearing = np.arctan2(np.sin(rlon2 - rlon1) * np.cos(rlat2), np.cos(rlat1) * np.sin(rlat2) - np.sin(rlat1) * np.cos(rlat2) * np.cos(rlon2 - rlon1)) return np.mod(np.degrees(bearing) + 360, 360) def haversine(lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the spherical earth (specified in decimal degrees) """ # convert decimal degrees to radians lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2]) # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2 c = 2 * np.arcsin(np.sqrt(a)) distance_meters = 6367000 * c return distance_meters def add_logger(logName='', logLevel=None): """ Creates and returns logger with default formatting for Nansat Parameters ----------- logName : string, optional Name of the logger Returns -------- logging.logger See also -------- `<http://docs.python.org/howto/logging.html>`_ """ if logLevel is not None: os.environ['LOG_LEVEL'] = str(logLevel) # create (or take already existing) logger # with default logging level WARNING logger = logging.getLogger(logName) logger.setLevel(int(os.environ['LOG_LEVEL'])) # if logger already exits, default stream handler has been already added # otherwise create and add a new handler if len(logger.handlers) == 0: # create console handler and set level to debug ch = logging.StreamHandler() # create formatter formatter = logging.Formatter('%(asctime)s|%(levelno)s|%(module)s|' '%(funcName)s|%(message)s', datefmt='%I:%M:%S') # add formatter to ch ch.setFormatter(formatter) # add ch to logger logger.addHandler(ch) logger.handlers[0].setLevel(int(os.environ['LOG_LEVEL'])) return logger def get_random_color(c0=None, minDist=100, low=0, high=255): """Create random color which is far enough from the input color Parameters ---------- c0 : str hexademical representation of the color (e.g. '#ff0000' for red) minDist : int minimal distance to input color Returns ------- c0 : str hexademical representation of the new random color """ if not MATPLOTLIB_IS_INSTALLED: raise ImportError('Matplotlib is not installed') # check inputs if c0 is None: c0 = '#000000' # convert input color to tuple of R,G,B c0rgb = np.array(hex2color(c0)) # create new random color c1rgb = np.array([np.random.randint(low, high), np.random.randint(low, high), np.random.randint(low, high)]) # calculate distance d = np.sum((c0rgb - c1rgb)**2)**0.5 # if distance is small, create new random color if d < minDist: c1 = get_random_color(c0, minDist) else: # convert to HEX code c1 = '#%02x%02x%02x' % tuple(c1rgb) return c1 def parse_time(time_string): ''' Parse time string accounting for possible wrong formatting Parameters ---------- time_string : str string with date and time Returns ------- time_value : datetime object ''' time_string = time_string.strip() # To account for datasets on the format YYYY-MM-DDZ which is # invalid since it has no time, but a timezone try: time_value = parse(time_string) except ValueError: if (len(time_string) == 11 and time_string.endswith('Z')): time_value = parse(time_string[:10]) return time_value register_colormaps() numpy_to_gdal_type = { 'uint8': 'Byte', 'int8': 'Byte', 'uint16': 'UInt16', 'int16': 'Int16', 'uint32': 'UInt32', 'int32': 'Int32', 'float32': 'Float32', 'float64': 'Float64', 'complex64': 'CFloat32', 'complex128': 'CFloat64'} gdal_type_to_offset = { 'Byte': '1', 'UInt16': '2', 'Int16': '2', 'UInt32': '4', 'Int32': '4', 'Float32': '4', 'Float64': '8', 'CFloat32': '8', 'CFloat64': '16'}
gpl-3.0
vinayak-mehta/scikit-learn
sklearn/model_selection/_split.py
8
95127
""" The :mod:`sklearn.model_selection._split` module includes classes and functions to split the data based on a preset strategy. """ # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Gael Varoquaux <gael.varoquaux@normalesup.org> # Olivier Grisel <olivier.grisel@ensta.org> # Raghav RV <rvraghav93@gmail.com> # Leandro Hermida <hermidal@cs.umd.edu> # Rodion Martynov <marrodion@gmail.com> # License: BSD 3 clause from collections.abc import Iterable from collections import defaultdict import warnings from itertools import chain, combinations from math import ceil, floor import numbers from abc import ABCMeta, abstractmethod from inspect import signature import numpy as np from scipy.special import comb from ..utils import indexable, check_random_state, _safe_indexing from ..utils import _approximate_mode from ..utils.validation import _num_samples, column_or_1d from ..utils.validation import check_array from ..utils.multiclass import type_of_target __all__ = [ "BaseCrossValidator", "KFold", "GroupKFold", "LeaveOneGroupOut", "LeaveOneOut", "LeavePGroupsOut", "LeavePOut", "RepeatedStratifiedKFold", "RepeatedKFold", "ShuffleSplit", "GroupShuffleSplit", "StratifiedKFold", "StratifiedGroupKFold", "StratifiedShuffleSplit", "PredefinedSplit", "train_test_split", "check_cv", ] class BaseCrossValidator(metaclass=ABCMeta): """Base class for all cross-validators Implementations must define `_iter_test_masks` or `_iter_test_indices`. """ def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,) The target variable for supervised learning problems. groups : array-like of shape (n_samples,), default=None Group labels for the samples used while splitting the dataset into train/test set. Yields ------ train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) indices = np.arange(_num_samples(X)) for test_index in self._iter_test_masks(X, y, groups): train_index = indices[np.logical_not(test_index)] test_index = indices[test_index] yield train_index, test_index # Since subclasses must implement either _iter_test_masks or # _iter_test_indices, neither can be abstract. def _iter_test_masks(self, X=None, y=None, groups=None): """Generates boolean masks corresponding to test sets. By default, delegates to _iter_test_indices(X, y, groups) """ for test_index in self._iter_test_indices(X, y, groups): test_mask = np.zeros(_num_samples(X), dtype=bool) test_mask[test_index] = True yield test_mask def _iter_test_indices(self, X=None, y=None, groups=None): """Generates integer indices corresponding to test sets.""" raise NotImplementedError @abstractmethod def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator""" def __repr__(self): return _build_repr(self) class LeaveOneOut(BaseCrossValidator): """Leave-One-Out cross-validator Provides train/test indices to split data in train/test sets. Each sample is used once as a test set (singleton) while the remaining samples form the training set. Note: ``LeaveOneOut()`` is equivalent to ``KFold(n_splits=n)`` and ``LeavePOut(p=1)`` where ``n`` is the number of samples. Due to the high number of test sets (which is the same as the number of samples) this cross-validation method can be very costly. For large datasets one should favor :class:`KFold`, :class:`ShuffleSplit` or :class:`StratifiedKFold`. Read more in the :ref:`User Guide <leave_one_out>`. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import LeaveOneOut >>> X = np.array([[1, 2], [3, 4]]) >>> y = np.array([1, 2]) >>> loo = LeaveOneOut() >>> loo.get_n_splits(X) 2 >>> print(loo) LeaveOneOut() >>> for i, (train_index, test_index) in enumerate(loo.split(X)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}") ... print(f" Test: index={test_index}") Fold 0: Train: index=[1] Test: index=[0] Fold 1: Train: index=[0] Test: index=[1] See Also -------- LeaveOneGroupOut : For splitting the data according to explicit, domain-specific stratification of the dataset. GroupKFold : K-fold iterator variant with non-overlapping groups. """ def _iter_test_indices(self, X, y=None, groups=None): n_samples = _num_samples(X) if n_samples <= 1: raise ValueError( "Cannot perform LeaveOneOut with n_samples={}.".format(n_samples) ) return range(n_samples) def get_n_splits(self, X, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if X is None: raise ValueError("The 'X' parameter should not be None.") return _num_samples(X) class LeavePOut(BaseCrossValidator): """Leave-P-Out cross-validator Provides train/test indices to split data in train/test sets. This results in testing on all distinct samples of size p, while the remaining n - p samples form the training set in each iteration. Note: ``LeavePOut(p)`` is NOT equivalent to ``KFold(n_splits=n_samples // p)`` which creates non-overlapping test sets. Due to the high number of iterations which grows combinatorically with the number of samples this cross-validation method can be very costly. For large datasets one should favor :class:`KFold`, :class:`StratifiedKFold` or :class:`ShuffleSplit`. Read more in the :ref:`User Guide <leave_p_out>`. Parameters ---------- p : int Size of the test sets. Must be strictly less than the number of samples. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import LeavePOut >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> lpo = LeavePOut(2) >>> lpo.get_n_splits(X) 6 >>> print(lpo) LeavePOut(p=2) >>> for i, (train_index, test_index) in enumerate(lpo.split(X)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}") ... print(f" Test: index={test_index}") Fold 0: Train: index=[2 3] Test: index=[0 1] Fold 1: Train: index=[1 3] Test: index=[0 2] Fold 2: Train: index=[1 2] Test: index=[0 3] Fold 3: Train: index=[0 3] Test: index=[1 2] Fold 4: Train: index=[0 2] Test: index=[1 3] Fold 5: Train: index=[0 1] Test: index=[2 3] """ def __init__(self, p): self.p = p def _iter_test_indices(self, X, y=None, groups=None): n_samples = _num_samples(X) if n_samples <= self.p: raise ValueError( "p={} must be strictly less than the number of samples={}".format( self.p, n_samples ) ) for combination in combinations(range(n_samples), self.p): yield np.array(combination) def get_n_splits(self, X, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. """ if X is None: raise ValueError("The 'X' parameter should not be None.") return int(comb(_num_samples(X), self.p, exact=True)) class _BaseKFold(BaseCrossValidator, metaclass=ABCMeta): """Base class for KFold, GroupKFold, and StratifiedKFold""" @abstractmethod def __init__(self, n_splits, *, shuffle, random_state): if not isinstance(n_splits, numbers.Integral): raise ValueError( "The number of folds must be of Integral type. " "%s of type %s was passed." % (n_splits, type(n_splits)) ) n_splits = int(n_splits) if n_splits <= 1: raise ValueError( "k-fold cross-validation requires at least one" " train/test split by setting n_splits=2 or more," " got n_splits={0}.".format(n_splits) ) if not isinstance(shuffle, bool): raise TypeError("shuffle must be True or False; got {0}".format(shuffle)) if not shuffle and random_state is not None: # None is the default raise ValueError( "Setting a random_state has no effect since shuffle is " "False. You should leave " "random_state to its default (None), or set shuffle=True.", ) self.n_splits = n_splits self.shuffle = shuffle self.random_state = random_state def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,), default=None The target variable for supervised learning problems. groups : array-like of shape (n_samples,), default=None Group labels for the samples used while splitting the dataset into train/test set. Yields ------ train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) n_samples = _num_samples(X) if self.n_splits > n_samples: raise ValueError( ( "Cannot have number of splits n_splits={0} greater" " than the number of samples: n_samples={1}." ).format(self.n_splits, n_samples) ) for train, test in super().split(X, y, groups): yield train, test def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return self.n_splits class KFold(_BaseKFold): """K-Folds cross-validator Provides train/test indices to split data in train/test sets. Split dataset into k consecutive folds (without shuffling by default). Each fold is then used once as a validation while the k - 1 remaining folds form the training set. Read more in the :ref:`User Guide <k_fold>`. Parameters ---------- n_splits : int, default=5 Number of folds. Must be at least 2. .. versionchanged:: 0.22 ``n_splits`` default value changed from 3 to 5. shuffle : bool, default=False Whether to shuffle the data before splitting into batches. Note that the samples within each split will not be shuffled. random_state : int, RandomState instance or None, default=None When `shuffle` is True, `random_state` affects the ordering of the indices, which controls the randomness of each fold. Otherwise, this parameter has no effect. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import KFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4]) >>> kf = KFold(n_splits=2) >>> kf.get_n_splits(X) 2 >>> print(kf) KFold(n_splits=2, random_state=None, shuffle=False) >>> for i, (train_index, test_index) in enumerate(kf.split(X)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}") ... print(f" Test: index={test_index}") Fold 0: Train: index=[2 3] Test: index=[0 1] Fold 1: Train: index=[0 1] Test: index=[2 3] Notes ----- The first ``n_samples % n_splits`` folds have size ``n_samples // n_splits + 1``, other folds have size ``n_samples // n_splits``, where ``n_samples`` is the number of samples. Randomized CV splitters may return different results for each call of split. You can make the results identical by setting `random_state` to an integer. See Also -------- StratifiedKFold : Takes class information into account to avoid building folds with imbalanced class distributions (for binary or multiclass classification tasks). GroupKFold : K-fold iterator variant with non-overlapping groups. RepeatedKFold : Repeats K-Fold n times. """ def __init__(self, n_splits=5, *, shuffle=False, random_state=None): super().__init__(n_splits=n_splits, shuffle=shuffle, random_state=random_state) def _iter_test_indices(self, X, y=None, groups=None): n_samples = _num_samples(X) indices = np.arange(n_samples) if self.shuffle: check_random_state(self.random_state).shuffle(indices) n_splits = self.n_splits fold_sizes = np.full(n_splits, n_samples // n_splits, dtype=int) fold_sizes[: n_samples % n_splits] += 1 current = 0 for fold_size in fold_sizes: start, stop = current, current + fold_size yield indices[start:stop] current = stop class GroupKFold(_BaseKFold): """K-fold iterator variant with non-overlapping groups. Each group will appear exactly once in the test set across all folds (the number of distinct groups has to be at least equal to the number of folds). The folds are approximately balanced in the sense that the number of distinct groups is approximately the same in each fold. Read more in the :ref:`User Guide <group_k_fold>`. Parameters ---------- n_splits : int, default=5 Number of folds. Must be at least 2. .. versionchanged:: 0.22 ``n_splits`` default value changed from 3 to 5. Notes ----- Groups appear in an arbitrary order throughout the folds. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import GroupKFold >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]]) >>> y = np.array([1, 2, 3, 4, 5, 6]) >>> groups = np.array([0, 0, 2, 2, 3, 3]) >>> group_kfold = GroupKFold(n_splits=2) >>> group_kfold.get_n_splits(X, y, groups) 2 >>> print(group_kfold) GroupKFold(n_splits=2) >>> for i, (train_index, test_index) in enumerate(group_kfold.split(X, y, groups)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}, group={groups[train_index]}") ... print(f" Test: index={test_index}, group={groups[test_index]}") Fold 0: Train: index=[2 3], group=[2 2] Test: index=[0 1 4 5], group=[0 0 3 3] Fold 1: Train: index=[0 1 4 5], group=[0 0 3 3] Test: index=[2 3], group=[2 2] See Also -------- LeaveOneGroupOut : For splitting the data according to explicit domain-specific stratification of the dataset. StratifiedKFold : Takes class information into account to avoid building folds with imbalanced class proportions (for binary or multiclass classification tasks). """ def __init__(self, n_splits=5): super().__init__(n_splits, shuffle=False, random_state=None) def _iter_test_indices(self, X, y, groups): if groups is None: raise ValueError("The 'groups' parameter should not be None.") groups = check_array(groups, input_name="groups", ensure_2d=False, dtype=None) unique_groups, groups = np.unique(groups, return_inverse=True) n_groups = len(unique_groups) if self.n_splits > n_groups: raise ValueError( "Cannot have number of splits n_splits=%d greater" " than the number of groups: %d." % (self.n_splits, n_groups) ) # Weight groups by their number of occurrences n_samples_per_group = np.bincount(groups) # Distribute the most frequent groups first indices = np.argsort(n_samples_per_group)[::-1] n_samples_per_group = n_samples_per_group[indices] # Total weight of each fold n_samples_per_fold = np.zeros(self.n_splits) # Mapping from group index to fold index group_to_fold = np.zeros(len(unique_groups)) # Distribute samples by adding the largest weight to the lightest fold for group_index, weight in enumerate(n_samples_per_group): lightest_fold = np.argmin(n_samples_per_fold) n_samples_per_fold[lightest_fold] += weight group_to_fold[indices[group_index]] = lightest_fold indices = group_to_fold[groups] for f in range(self.n_splits): yield np.where(indices == f)[0] def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,), default=None The target variable for supervised learning problems. groups : array-like of shape (n_samples,) Group labels for the samples used while splitting the dataset into train/test set. Yields ------ train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ return super().split(X, y, groups) class StratifiedKFold(_BaseKFold): """Stratified K-Folds cross-validator. Provides train/test indices to split data in train/test sets. This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class. Read more in the :ref:`User Guide <stratified_k_fold>`. Parameters ---------- n_splits : int, default=5 Number of folds. Must be at least 2. .. versionchanged:: 0.22 ``n_splits`` default value changed from 3 to 5. shuffle : bool, default=False Whether to shuffle each class's samples before splitting into batches. Note that the samples within each split will not be shuffled. random_state : int, RandomState instance or None, default=None When `shuffle` is True, `random_state` affects the ordering of the indices, which controls the randomness of each fold for each class. Otherwise, leave `random_state` as `None`. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import StratifiedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> skf = StratifiedKFold(n_splits=2) >>> skf.get_n_splits(X, y) 2 >>> print(skf) StratifiedKFold(n_splits=2, random_state=None, shuffle=False) >>> for i, (train_index, test_index) in enumerate(skf.split(X, y)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}") ... print(f" Test: index={test_index}") Fold 0: Train: index=[1 3] Test: index=[0 2] Fold 1: Train: index=[0 2] Test: index=[1 3] Notes ----- The implementation is designed to: * Generate test sets such that all contain the same distribution of classes, or as close as possible. * Be invariant to class label: relabelling ``y = ["Happy", "Sad"]`` to ``y = [1, 0]`` should not change the indices generated. * Preserve order dependencies in the dataset ordering, when ``shuffle=False``: all samples from class k in some test set were contiguous in y, or separated in y by samples from classes other than k. * Generate test sets where the smallest and largest differ by at most one sample. .. versionchanged:: 0.22 The previous implementation did not follow the last constraint. See Also -------- RepeatedStratifiedKFold : Repeats Stratified K-Fold n times. """ def __init__(self, n_splits=5, *, shuffle=False, random_state=None): super().__init__(n_splits=n_splits, shuffle=shuffle, random_state=random_state) def _make_test_folds(self, X, y=None): rng = check_random_state(self.random_state) y = np.asarray(y) type_of_target_y = type_of_target(y) allowed_target_types = ("binary", "multiclass") if type_of_target_y not in allowed_target_types: raise ValueError( "Supported target types are: {}. Got {!r} instead.".format( allowed_target_types, type_of_target_y ) ) y = column_or_1d(y) _, y_idx, y_inv = np.unique(y, return_index=True, return_inverse=True) # y_inv encodes y according to lexicographic order. We invert y_idx to # map the classes so that they are encoded by order of appearance: # 0 represents the first label appearing in y, 1 the second, etc. _, class_perm = np.unique(y_idx, return_inverse=True) y_encoded = class_perm[y_inv] n_classes = len(y_idx) y_counts = np.bincount(y_encoded) min_groups = np.min(y_counts) if np.all(self.n_splits > y_counts): raise ValueError( "n_splits=%d cannot be greater than the" " number of members in each class." % (self.n_splits) ) if self.n_splits > min_groups: warnings.warn( "The least populated class in y has only %d" " members, which is less than n_splits=%d." % (min_groups, self.n_splits), UserWarning, ) # Determine the optimal number of samples from each class in each fold, # using round robin over the sorted y. (This can be done direct from # counts, but that code is unreadable.) y_order = np.sort(y_encoded) allocation = np.asarray( [ np.bincount(y_order[i :: self.n_splits], minlength=n_classes) for i in range(self.n_splits) ] ) # To maintain the data order dependencies as best as possible within # the stratification constraint, we assign samples from each class in # blocks (and then mess that up when shuffle=True). test_folds = np.empty(len(y), dtype="i") for k in range(n_classes): # since the kth column of allocation stores the number of samples # of class k in each test set, this generates blocks of fold # indices corresponding to the allocation for class k. folds_for_class = np.arange(self.n_splits).repeat(allocation[:, k]) if self.shuffle: rng.shuffle(folds_for_class) test_folds[y_encoded == k] = folds_for_class return test_folds def _iter_test_masks(self, X, y=None, groups=None): test_folds = self._make_test_folds(X, y) for i in range(self.n_splits): yield test_folds == i def split(self, X, y, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. Note that providing ``y`` is sufficient to generate the splits and hence ``np.zeros(n_samples)`` may be used as a placeholder for ``X`` instead of actual training data. y : array-like of shape (n_samples,) The target variable for supervised learning problems. Stratification is done based on the y labels. groups : object Always ignored, exists for compatibility. Yields ------ train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. Notes ----- Randomized CV splitters may return different results for each call of split. You can make the results identical by setting `random_state` to an integer. """ y = check_array(y, input_name="y", ensure_2d=False, dtype=None) return super().split(X, y, groups) class StratifiedGroupKFold(_BaseKFold): """Stratified K-Folds iterator variant with non-overlapping groups. This cross-validation object is a variation of StratifiedKFold attempts to return stratified folds with non-overlapping groups. The folds are made by preserving the percentage of samples for each class. Each group will appear exactly once in the test set across all folds (the number of distinct groups has to be at least equal to the number of folds). The difference between :class:`~sklearn.model_selection.GroupKFold` and :class:`~sklearn.model_selection.StratifiedGroupKFold` is that the former attempts to create balanced folds such that the number of distinct groups is approximately the same in each fold, whereas StratifiedGroupKFold attempts to create folds which preserve the percentage of samples for each class as much as possible given the constraint of non-overlapping groups between splits. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=5 Number of folds. Must be at least 2. shuffle : bool, default=False Whether to shuffle each class's samples before splitting into batches. Note that the samples within each split will not be shuffled. This implementation can only shuffle groups that have approximately the same y distribution, no global shuffle will be performed. random_state : int or RandomState instance, default=None When `shuffle` is True, `random_state` affects the ordering of the indices, which controls the randomness of each fold for each class. Otherwise, leave `random_state` as `None`. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import StratifiedGroupKFold >>> X = np.ones((17, 2)) >>> y = np.array([0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]) >>> groups = np.array([1, 1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 6, 6, 7, 8, 8]) >>> sgkf = StratifiedGroupKFold(n_splits=3) >>> sgkf.get_n_splits(X, y) 3 >>> print(sgkf) StratifiedGroupKFold(n_splits=3, random_state=None, shuffle=False) >>> for i, (train_index, test_index) in enumerate(sgkf.split(X, y, groups)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}") ... print(f" group={groups[train_index]}") ... print(f" Test: index={test_index}") ... print(f" group={groups[test_index]}") Fold 0: Train: index=[ 0 1 2 3 7 8 9 10 11 15 16] group=[1 1 2 2 4 5 5 5 5 8 8] Test: index=[ 4 5 6 12 13 14] group=[3 3 3 6 6 7] Fold 1: Train: index=[ 4 5 6 7 8 9 10 11 12 13 14] group=[3 3 3 4 5 5 5 5 6 6 7] Test: index=[ 0 1 2 3 15 16] group=[1 1 2 2 8 8] Fold 2: Train: index=[ 0 1 2 3 4 5 6 12 13 14 15 16] group=[1 1 2 2 3 3 3 6 6 7 8 8] Test: index=[ 7 8 9 10 11] group=[4 5 5 5 5] Notes ----- The implementation is designed to: * Mimic the behavior of StratifiedKFold as much as possible for trivial groups (e.g. when each group contains only one sample). * Be invariant to class label: relabelling ``y = ["Happy", "Sad"]`` to ``y = [1, 0]`` should not change the indices generated. * Stratify based on samples as much as possible while keeping non-overlapping groups constraint. That means that in some cases when there is a small number of groups containing a large number of samples the stratification will not be possible and the behavior will be close to GroupKFold. See also -------- StratifiedKFold: Takes class information into account to build folds which retain class distributions (for binary or multiclass classification tasks). GroupKFold: K-fold iterator variant with non-overlapping groups. """ def __init__(self, n_splits=5, shuffle=False, random_state=None): super().__init__(n_splits=n_splits, shuffle=shuffle, random_state=random_state) def _iter_test_indices(self, X, y, groups): # Implementation is based on this kaggle kernel: # https://www.kaggle.com/jakubwasikowski/stratified-group-k-fold-cross-validation # and is a subject to Apache 2.0 License. You may obtain a copy of the # License at http://www.apache.org/licenses/LICENSE-2.0 # Changelist: # - Refactored function to a class following scikit-learn KFold # interface. # - Added heuristic for assigning group to the least populated fold in # cases when all other criteria are equal # - Swtch from using python ``Counter`` to ``np.unique`` to get class # distribution # - Added scikit-learn checks for input: checking that target is binary # or multiclass, checking passed random state, checking that number # of splits is less than number of members in each class, checking # that least populated class has more members than there are splits. rng = check_random_state(self.random_state) y = np.asarray(y) type_of_target_y = type_of_target(y) allowed_target_types = ("binary", "multiclass") if type_of_target_y not in allowed_target_types: raise ValueError( "Supported target types are: {}. Got {!r} instead.".format( allowed_target_types, type_of_target_y ) ) y = column_or_1d(y) _, y_inv, y_cnt = np.unique(y, return_inverse=True, return_counts=True) if np.all(self.n_splits > y_cnt): raise ValueError( "n_splits=%d cannot be greater than the" " number of members in each class." % (self.n_splits) ) n_smallest_class = np.min(y_cnt) if self.n_splits > n_smallest_class: warnings.warn( "The least populated class in y has only %d" " members, which is less than n_splits=%d." % (n_smallest_class, self.n_splits), UserWarning, ) n_classes = len(y_cnt) _, groups_inv, groups_cnt = np.unique( groups, return_inverse=True, return_counts=True ) y_counts_per_group = np.zeros((len(groups_cnt), n_classes)) for class_idx, group_idx in zip(y_inv, groups_inv): y_counts_per_group[group_idx, class_idx] += 1 y_counts_per_fold = np.zeros((self.n_splits, n_classes)) groups_per_fold = defaultdict(set) if self.shuffle: rng.shuffle(y_counts_per_group) # Stable sort to keep shuffled order for groups with the same # class distribution variance sorted_groups_idx = np.argsort( -np.std(y_counts_per_group, axis=1), kind="mergesort" ) for group_idx in sorted_groups_idx: group_y_counts = y_counts_per_group[group_idx] best_fold = self._find_best_fold( y_counts_per_fold=y_counts_per_fold, y_cnt=y_cnt, group_y_counts=group_y_counts, ) y_counts_per_fold[best_fold] += group_y_counts groups_per_fold[best_fold].add(group_idx) for i in range(self.n_splits): test_indices = [ idx for idx, group_idx in enumerate(groups_inv) if group_idx in groups_per_fold[i] ] yield test_indices def _find_best_fold(self, y_counts_per_fold, y_cnt, group_y_counts): best_fold = None min_eval = np.inf min_samples_in_fold = np.inf for i in range(self.n_splits): y_counts_per_fold[i] += group_y_counts # Summarise the distribution over classes in each proposed fold std_per_class = np.std(y_counts_per_fold / y_cnt.reshape(1, -1), axis=0) y_counts_per_fold[i] -= group_y_counts fold_eval = np.mean(std_per_class) samples_in_fold = np.sum(y_counts_per_fold[i]) is_current_fold_better = ( fold_eval < min_eval or np.isclose(fold_eval, min_eval) and samples_in_fold < min_samples_in_fold ) if is_current_fold_better: min_eval = fold_eval min_samples_in_fold = samples_in_fold best_fold = i return best_fold class TimeSeriesSplit(_BaseKFold): """Time Series cross-validator Provides train/test indices to split time series data samples that are observed at fixed time intervals, in train/test sets. In each split, test indices must be higher than before, and thus shuffling in cross validator is inappropriate. This cross-validation object is a variation of :class:`KFold`. In the kth split, it returns first k folds as train set and the (k+1)th fold as test set. Note that unlike standard cross-validation methods, successive training sets are supersets of those that come before them. Read more in the :ref:`User Guide <time_series_split>`. .. versionadded:: 0.18 Parameters ---------- n_splits : int, default=5 Number of splits. Must be at least 2. .. versionchanged:: 0.22 ``n_splits`` default value changed from 3 to 5. max_train_size : int, default=None Maximum size for a single training set. test_size : int, default=None Used to limit the size of the test set. Defaults to ``n_samples // (n_splits + 1)``, which is the maximum allowed value with ``gap=0``. .. versionadded:: 0.24 gap : int, default=0 Number of samples to exclude from the end of each train set before the test set. .. versionadded:: 0.24 Examples -------- >>> import numpy as np >>> from sklearn.model_selection import TimeSeriesSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4, 5, 6]) >>> tscv = TimeSeriesSplit() >>> print(tscv) TimeSeriesSplit(gap=0, max_train_size=None, n_splits=5, test_size=None) >>> for i, (train_index, test_index) in enumerate(tscv.split(X)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}") ... print(f" Test: index={test_index}") Fold 0: Train: index=[0] Test: index=[1] Fold 1: Train: index=[0 1] Test: index=[2] Fold 2: Train: index=[0 1 2] Test: index=[3] Fold 3: Train: index=[0 1 2 3] Test: index=[4] Fold 4: Train: index=[0 1 2 3 4] Test: index=[5] >>> # Fix test_size to 2 with 12 samples >>> X = np.random.randn(12, 2) >>> y = np.random.randint(0, 2, 12) >>> tscv = TimeSeriesSplit(n_splits=3, test_size=2) >>> for i, (train_index, test_index) in enumerate(tscv.split(X)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}") ... print(f" Test: index={test_index}") Fold 0: Train: index=[0 1 2 3 4 5] Test: index=[6 7] Fold 1: Train: index=[0 1 2 3 4 5 6 7] Test: index=[8 9] Fold 2: Train: index=[0 1 2 3 4 5 6 7 8 9] Test: index=[10 11] >>> # Add in a 2 period gap >>> tscv = TimeSeriesSplit(n_splits=3, test_size=2, gap=2) >>> for i, (train_index, test_index) in enumerate(tscv.split(X)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}") ... print(f" Test: index={test_index}") Fold 0: Train: index=[0 1 2 3] Test: index=[6 7] Fold 1: Train: index=[0 1 2 3 4 5] Test: index=[8 9] Fold 2: Train: index=[0 1 2 3 4 5 6 7] Test: index=[10 11] Notes ----- The training set has size ``i * n_samples // (n_splits + 1) + n_samples % (n_splits + 1)`` in the ``i`` th split, with a test set of size ``n_samples//(n_splits + 1)`` by default, where ``n_samples`` is the number of samples. """ def __init__(self, n_splits=5, *, max_train_size=None, test_size=None, gap=0): super().__init__(n_splits, shuffle=False, random_state=None) self.max_train_size = max_train_size self.test_size = test_size self.gap = gap def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,) Always ignored, exists for compatibility. groups : array-like of shape (n_samples,) Always ignored, exists for compatibility. Yields ------ train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) n_samples = _num_samples(X) n_splits = self.n_splits n_folds = n_splits + 1 gap = self.gap test_size = ( self.test_size if self.test_size is not None else n_samples // n_folds ) # Make sure we have enough samples for the given split parameters if n_folds > n_samples: raise ValueError( f"Cannot have number of folds={n_folds} greater" f" than the number of samples={n_samples}." ) if n_samples - gap - (test_size * n_splits) <= 0: raise ValueError( f"Too many splits={n_splits} for number of samples" f"={n_samples} with test_size={test_size} and gap={gap}." ) indices = np.arange(n_samples) test_starts = range(n_samples - n_splits * test_size, n_samples, test_size) for test_start in test_starts: train_end = test_start - gap if self.max_train_size and self.max_train_size < train_end: yield ( indices[train_end - self.max_train_size : train_end], indices[test_start : test_start + test_size], ) else: yield ( indices[:train_end], indices[test_start : test_start + test_size], ) class LeaveOneGroupOut(BaseCrossValidator): """Leave One Group Out cross-validator Provides train/test indices to split data such that each training set is comprised of all samples except ones belonging to one specific group. Arbitrary domain specific group information is provided an array integers that encodes the group of each sample. For instance the groups could be the year of collection of the samples and thus allow for cross-validation against time-based splits. Read more in the :ref:`User Guide <leave_one_group_out>`. Notes ----- Splits are ordered according to the index of the group left out. The first split has testing set consisting of the group whose index in `groups` is lowest, and so on. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import LeaveOneGroupOut >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> groups = np.array([1, 1, 2, 2]) >>> logo = LeaveOneGroupOut() >>> logo.get_n_splits(X, y, groups) 2 >>> logo.get_n_splits(groups=groups) # 'groups' is always required 2 >>> print(logo) LeaveOneGroupOut() >>> for i, (train_index, test_index) in enumerate(logo.split(X, y, groups)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}, group={groups[train_index]}") ... print(f" Test: index={test_index}, group={groups[test_index]}") Fold 0: Train: index=[2 3], group=[2 2] Test: index=[0 1], group=[1 1] Fold 1: Train: index=[0 1], group=[1 1] Test: index=[2 3], group=[2 2] See also -------- GroupKFold: K-fold iterator variant with non-overlapping groups. """ def _iter_test_masks(self, X, y, groups): if groups is None: raise ValueError("The 'groups' parameter should not be None.") # We make a copy of groups to avoid side-effects during iteration groups = check_array( groups, input_name="groups", copy=True, ensure_2d=False, dtype=None ) unique_groups = np.unique(groups) if len(unique_groups) <= 1: raise ValueError( "The groups parameter contains fewer than 2 unique groups " "(%s). LeaveOneGroupOut expects at least 2." % unique_groups ) for i in unique_groups: yield groups == i def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : array-like of shape (n_samples,) Group labels for the samples used while splitting the dataset into train/test set. This 'groups' parameter must always be specified to calculate the number of splits, though the other parameters can be omitted. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if groups is None: raise ValueError("The 'groups' parameter should not be None.") groups = check_array(groups, input_name="groups", ensure_2d=False, dtype=None) return len(np.unique(groups)) def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,), default=None The target variable for supervised learning problems. groups : array-like of shape (n_samples,) Group labels for the samples used while splitting the dataset into train/test set. Yields ------ train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ return super().split(X, y, groups) class LeavePGroupsOut(BaseCrossValidator): """Leave P Group(s) Out cross-validator Provides train/test indices to split data according to a third-party provided group. This group information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the groups could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePGroupsOut and LeaveOneGroupOut is that the former builds the test sets with all the samples assigned to ``p`` different values of the groups while the latter uses samples all assigned the same groups. Read more in the :ref:`User Guide <leave_p_groups_out>`. Parameters ---------- n_groups : int Number of groups (``p``) to leave out in the test split. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import LeavePGroupsOut >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1]) >>> groups = np.array([1, 2, 3]) >>> lpgo = LeavePGroupsOut(n_groups=2) >>> lpgo.get_n_splits(X, y, groups) 3 >>> lpgo.get_n_splits(groups=groups) # 'groups' is always required 3 >>> print(lpgo) LeavePGroupsOut(n_groups=2) >>> for i, (train_index, test_index) in enumerate(lpgo.split(X, y, groups)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}, group={groups[train_index]}") ... print(f" Test: index={test_index}, group={groups[test_index]}") Fold 0: Train: index=[2], group=[3] Test: index=[0 1], group=[1 2] Fold 1: Train: index=[1], group=[2] Test: index=[0 2], group=[1 3] Fold 2: Train: index=[0], group=[1] Test: index=[1 2], group=[2 3] See Also -------- GroupKFold : K-fold iterator variant with non-overlapping groups. """ def __init__(self, n_groups): self.n_groups = n_groups def _iter_test_masks(self, X, y, groups): if groups is None: raise ValueError("The 'groups' parameter should not be None.") groups = check_array( groups, input_name="groups", copy=True, ensure_2d=False, dtype=None ) unique_groups = np.unique(groups) if self.n_groups >= len(unique_groups): raise ValueError( "The groups parameter contains fewer than (or equal to) " "n_groups (%d) numbers of unique groups (%s). LeavePGroupsOut " "expects that at least n_groups + 1 (%d) unique groups be " "present" % (self.n_groups, unique_groups, self.n_groups + 1) ) combi = combinations(range(len(unique_groups)), self.n_groups) for indices in combi: test_index = np.zeros(_num_samples(X), dtype=bool) for l in unique_groups[np.array(indices)]: test_index[groups == l] = True yield test_index def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : array-like of shape (n_samples,) Group labels for the samples used while splitting the dataset into train/test set. This 'groups' parameter must always be specified to calculate the number of splits, though the other parameters can be omitted. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if groups is None: raise ValueError("The 'groups' parameter should not be None.") groups = check_array(groups, input_name="groups", ensure_2d=False, dtype=None) return int(comb(len(np.unique(groups)), self.n_groups, exact=True)) def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,), default=None The target variable for supervised learning problems. groups : array-like of shape (n_samples,) Group labels for the samples used while splitting the dataset into train/test set. Yields ------ train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ return super().split(X, y, groups) class _RepeatedSplits(metaclass=ABCMeta): """Repeated splits for an arbitrary randomized CV splitter. Repeats splits for cross-validators n times with different randomization in each repetition. Parameters ---------- cv : callable Cross-validator class. n_repeats : int, default=10 Number of times cross-validator needs to be repeated. random_state : int, RandomState instance or None, default=None Passes `random_state` to the arbitrary repeating cross validator. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. **cvargs : additional params Constructor parameters for cv. Must not contain random_state and shuffle. """ def __init__(self, cv, *, n_repeats=10, random_state=None, **cvargs): if not isinstance(n_repeats, numbers.Integral): raise ValueError("Number of repetitions must be of Integral type.") if n_repeats <= 0: raise ValueError("Number of repetitions must be greater than 0.") if any(key in cvargs for key in ("random_state", "shuffle")): raise ValueError("cvargs must not contain random_state or shuffle.") self.cv = cv self.n_repeats = n_repeats self.random_state = random_state self.cvargs = cvargs def split(self, X, y=None, groups=None): """Generates indices to split data into training and test set. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,) The target variable for supervised learning problems. groups : array-like of shape (n_samples,), default=None Group labels for the samples used while splitting the dataset into train/test set. Yields ------ train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ n_repeats = self.n_repeats rng = check_random_state(self.random_state) for idx in range(n_repeats): cv = self.cv(random_state=rng, shuffle=True, **self.cvargs) for train_index, test_index in cv.split(X, y, groups): yield train_index, test_index def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. ``np.zeros(n_samples)`` may be used as a placeholder. y : object Always ignored, exists for compatibility. ``np.zeros(n_samples)`` may be used as a placeholder. groups : array-like of shape (n_samples,), default=None Group labels for the samples used while splitting the dataset into train/test set. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ rng = check_random_state(self.random_state) cv = self.cv(random_state=rng, shuffle=True, **self.cvargs) return cv.get_n_splits(X, y, groups) * self.n_repeats def __repr__(self): return _build_repr(self) class RepeatedKFold(_RepeatedSplits): """Repeated K-Fold cross validator. Repeats K-Fold n times with different randomization in each repetition. Read more in the :ref:`User Guide <repeated_k_fold>`. Parameters ---------- n_splits : int, default=5 Number of folds. Must be at least 2. n_repeats : int, default=10 Number of times cross-validator needs to be repeated. random_state : int, RandomState instance or None, default=None Controls the randomness of each repeated cross-validation instance. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import RepeatedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> rkf = RepeatedKFold(n_splits=2, n_repeats=2, random_state=2652124) >>> rkf.get_n_splits(X, y) 4 >>> print(rkf) RepeatedKFold(n_repeats=2, n_splits=2, random_state=2652124) >>> for i, (train_index, test_index) in enumerate(rkf.split(X)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}") ... print(f" Test: index={test_index}") ... Fold 0: Train: index=[0 1] Test: index=[2 3] Fold 1: Train: index=[2 3] Test: index=[0 1] Fold 2: Train: index=[1 2] Test: index=[0 3] Fold 3: Train: index=[0 3] Test: index=[1 2] Notes ----- Randomized CV splitters may return different results for each call of split. You can make the results identical by setting `random_state` to an integer. See Also -------- RepeatedStratifiedKFold : Repeats Stratified K-Fold n times. """ def __init__(self, *, n_splits=5, n_repeats=10, random_state=None): super().__init__( KFold, n_repeats=n_repeats, random_state=random_state, n_splits=n_splits ) class RepeatedStratifiedKFold(_RepeatedSplits): """Repeated Stratified K-Fold cross validator. Repeats Stratified K-Fold n times with different randomization in each repetition. Read more in the :ref:`User Guide <repeated_k_fold>`. Parameters ---------- n_splits : int, default=5 Number of folds. Must be at least 2. n_repeats : int, default=10 Number of times cross-validator needs to be repeated. random_state : int, RandomState instance or None, default=None Controls the generation of the random states for each repetition. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import RepeatedStratifiedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> rskf = RepeatedStratifiedKFold(n_splits=2, n_repeats=2, ... random_state=36851234) >>> rskf.get_n_splits(X, y) 4 >>> print(rskf) RepeatedStratifiedKFold(n_repeats=2, n_splits=2, random_state=36851234) >>> for i, (train_index, test_index) in enumerate(rskf.split(X, y)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}") ... print(f" Test: index={test_index}") ... Fold 0: Train: index=[1 2] Test: index=[0 3] Fold 1: Train: index=[0 3] Test: index=[1 2] Fold 2: Train: index=[1 3] Test: index=[0 2] Fold 3: Train: index=[0 2] Test: index=[1 3] Notes ----- Randomized CV splitters may return different results for each call of split. You can make the results identical by setting `random_state` to an integer. See Also -------- RepeatedKFold : Repeats K-Fold n times. """ def __init__(self, *, n_splits=5, n_repeats=10, random_state=None): super().__init__( StratifiedKFold, n_repeats=n_repeats, random_state=random_state, n_splits=n_splits, ) class BaseShuffleSplit(metaclass=ABCMeta): """Base class for ShuffleSplit and StratifiedShuffleSplit""" def __init__( self, n_splits=10, *, test_size=None, train_size=None, random_state=None ): self.n_splits = n_splits self.test_size = test_size self.train_size = train_size self.random_state = random_state self._default_test_size = 0.1 def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,) The target variable for supervised learning problems. groups : array-like of shape (n_samples,), default=None Group labels for the samples used while splitting the dataset into train/test set. Yields ------ train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. Notes ----- Randomized CV splitters may return different results for each call of split. You can make the results identical by setting `random_state` to an integer. """ X, y, groups = indexable(X, y, groups) for train, test in self._iter_indices(X, y, groups): yield train, test @abstractmethod def _iter_indices(self, X, y=None, groups=None): """Generate (train, test) indices""" def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return self.n_splits def __repr__(self): return _build_repr(self) class ShuffleSplit(BaseShuffleSplit): """Random permutation cross-validator Yields indices to split data into training and test sets. Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <ShuffleSplit>`. Parameters ---------- n_splits : int, default=10 Number of re-shuffling & splitting iterations. test_size : float or int, default=None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is set to the complement of the train size. If ``train_size`` is also None, it will be set to 0.1. train_size : float or int, default=None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int, RandomState instance or None, default=None Controls the randomness of the training and testing indices produced. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import ShuffleSplit >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1, 2, 1, 2]) >>> rs = ShuffleSplit(n_splits=5, test_size=.25, random_state=0) >>> rs.get_n_splits(X) 5 >>> print(rs) ShuffleSplit(n_splits=5, random_state=0, test_size=0.25, train_size=None) >>> for i, (train_index, test_index) in enumerate(rs.split(X)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}") ... print(f" Test: index={test_index}") Fold 0: Train: index=[1 3 0 4] Test: index=[5 2] Fold 1: Train: index=[4 0 2 5] Test: index=[1 3] Fold 2: Train: index=[1 2 4 0] Test: index=[3 5] Fold 3: Train: index=[3 4 1 0] Test: index=[5 2] Fold 4: Train: index=[3 5 1 0] Test: index=[2 4] >>> # Specify train and test size >>> rs = ShuffleSplit(n_splits=5, train_size=0.5, test_size=.25, ... random_state=0) >>> for i, (train_index, test_index) in enumerate(rs.split(X)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}") ... print(f" Test: index={test_index}") Fold 0: Train: index=[1 3 0] Test: index=[5 2] Fold 1: Train: index=[4 0 2] Test: index=[1 3] Fold 2: Train: index=[1 2 4] Test: index=[3 5] Fold 3: Train: index=[3 4 1] Test: index=[5 2] Fold 4: Train: index=[3 5 1] Test: index=[2 4] """ def __init__( self, n_splits=10, *, test_size=None, train_size=None, random_state=None ): super().__init__( n_splits=n_splits, test_size=test_size, train_size=train_size, random_state=random_state, ) self._default_test_size = 0.1 def _iter_indices(self, X, y=None, groups=None): n_samples = _num_samples(X) n_train, n_test = _validate_shuffle_split( n_samples, self.test_size, self.train_size, default_test_size=self._default_test_size, ) rng = check_random_state(self.random_state) for i in range(self.n_splits): # random partition permutation = rng.permutation(n_samples) ind_test = permutation[:n_test] ind_train = permutation[n_test : (n_test + n_train)] yield ind_train, ind_test class GroupShuffleSplit(ShuffleSplit): """Shuffle-Group(s)-Out cross-validation iterator Provides randomized train/test indices to split data according to a third-party provided group. This group information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the groups could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePGroupsOut and GroupShuffleSplit is that the former generates splits using all subsets of size ``p`` unique groups, whereas GroupShuffleSplit generates a user-determined number of random test splits, each with a user-determined fraction of unique groups. For example, a less computationally intensive alternative to ``LeavePGroupsOut(p=10)`` would be ``GroupShuffleSplit(test_size=10, n_splits=100)``. Note: The parameters ``test_size`` and ``train_size`` refer to groups, and not to samples, as in ShuffleSplit. Read more in the :ref:`User Guide <group_shuffle_split>`. Parameters ---------- n_splits : int, default=5 Number of re-shuffling & splitting iterations. test_size : float, int, default=0.2 If float, should be between 0.0 and 1.0 and represent the proportion of groups to include in the test split (rounded up). If int, represents the absolute number of test groups. If None, the value is set to the complement of the train size. The default will change in version 0.21. It will remain 0.2 only if ``train_size`` is unspecified, otherwise it will complement the specified ``train_size``. train_size : float or int, default=None If float, should be between 0.0 and 1.0 and represent the proportion of the groups to include in the train split. If int, represents the absolute number of train groups. If None, the value is automatically set to the complement of the test size. random_state : int, RandomState instance or None, default=None Controls the randomness of the training and testing indices produced. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import GroupShuffleSplit >>> X = np.ones(shape=(8, 2)) >>> y = np.ones(shape=(8, 1)) >>> groups = np.array([1, 1, 2, 2, 2, 3, 3, 3]) >>> print(groups.shape) (8,) >>> gss = GroupShuffleSplit(n_splits=2, train_size=.7, random_state=42) >>> gss.get_n_splits() 2 >>> print(gss) GroupShuffleSplit(n_splits=2, random_state=42, test_size=None, train_size=0.7) >>> for i, (train_index, test_index) in enumerate(gss.split(X, y, groups)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}, group={groups[train_index]}") ... print(f" Test: index={test_index}, group={groups[test_index]}") Fold 0: Train: index=[2 3 4 5 6 7], group=[2 2 2 3 3 3] Test: index=[0 1], group=[1 1] Fold 1: Train: index=[0 1 5 6 7], group=[1 1 3 3 3] Test: index=[2 3 4], group=[2 2 2] See Also -------- ShuffleSplit : Shuffles samples to create independent test/train sets. LeavePGroupsOut : Train set leaves out all possible subsets of `p` groups. """ def __init__( self, n_splits=5, *, test_size=None, train_size=None, random_state=None ): super().__init__( n_splits=n_splits, test_size=test_size, train_size=train_size, random_state=random_state, ) self._default_test_size = 0.2 def _iter_indices(self, X, y, groups): if groups is None: raise ValueError("The 'groups' parameter should not be None.") groups = check_array(groups, input_name="groups", ensure_2d=False, dtype=None) classes, group_indices = np.unique(groups, return_inverse=True) for group_train, group_test in super()._iter_indices(X=classes): # these are the indices of classes in the partition # invert them into data indices train = np.flatnonzero(np.in1d(group_indices, group_train)) test = np.flatnonzero(np.in1d(group_indices, group_test)) yield train, test def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,), default=None The target variable for supervised learning problems. groups : array-like of shape (n_samples,) Group labels for the samples used while splitting the dataset into train/test set. Yields ------ train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. Notes ----- Randomized CV splitters may return different results for each call of split. You can make the results identical by setting `random_state` to an integer. """ return super().split(X, y, groups) class StratifiedShuffleSplit(BaseShuffleSplit): """Stratified ShuffleSplit cross-validator Provides train/test indices to split data in train/test sets. This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized folds. The folds are made by preserving the percentage of samples for each class. Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <stratified_shuffle_split>`. Parameters ---------- n_splits : int, default=10 Number of re-shuffling & splitting iterations. test_size : float or int, default=None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is set to the complement of the train size. If ``train_size`` is also None, it will be set to 0.1. train_size : float or int, default=None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int, RandomState instance or None, default=None Controls the randomness of the training and testing indices produced. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import StratifiedShuffleSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 0, 1, 1, 1]) >>> sss = StratifiedShuffleSplit(n_splits=5, test_size=0.5, random_state=0) >>> sss.get_n_splits(X, y) 5 >>> print(sss) StratifiedShuffleSplit(n_splits=5, random_state=0, ...) >>> for i, (train_index, test_index) in enumerate(sss.split(X, y)): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}") ... print(f" Test: index={test_index}") Fold 0: Train: index=[5 2 3] Test: index=[4 1 0] Fold 1: Train: index=[5 1 4] Test: index=[0 2 3] Fold 2: Train: index=[5 0 2] Test: index=[4 3 1] Fold 3: Train: index=[4 1 0] Test: index=[2 3 5] Fold 4: Train: index=[0 5 1] Test: index=[3 4 2] """ def __init__( self, n_splits=10, *, test_size=None, train_size=None, random_state=None ): super().__init__( n_splits=n_splits, test_size=test_size, train_size=train_size, random_state=random_state, ) self._default_test_size = 0.1 def _iter_indices(self, X, y, groups=None): n_samples = _num_samples(X) y = check_array(y, input_name="y", ensure_2d=False, dtype=None) n_train, n_test = _validate_shuffle_split( n_samples, self.test_size, self.train_size, default_test_size=self._default_test_size, ) if y.ndim == 2: # for multi-label y, map each distinct row to a string repr # using join because str(row) uses an ellipsis if len(row) > 1000 y = np.array([" ".join(row.astype("str")) for row in y]) classes, y_indices = np.unique(y, return_inverse=True) n_classes = classes.shape[0] class_counts = np.bincount(y_indices) if np.min(class_counts) < 2: raise ValueError( "The least populated class in y has only 1" " member, which is too few. The minimum" " number of groups for any class cannot" " be less than 2." ) if n_train < n_classes: raise ValueError( "The train_size = %d should be greater or " "equal to the number of classes = %d" % (n_train, n_classes) ) if n_test < n_classes: raise ValueError( "The test_size = %d should be greater or " "equal to the number of classes = %d" % (n_test, n_classes) ) # Find the sorted list of instances for each class: # (np.unique above performs a sort, so code is O(n logn) already) class_indices = np.split( np.argsort(y_indices, kind="mergesort"), np.cumsum(class_counts)[:-1] ) rng = check_random_state(self.random_state) for _ in range(self.n_splits): # if there are ties in the class-counts, we want # to make sure to break them anew in each iteration n_i = _approximate_mode(class_counts, n_train, rng) class_counts_remaining = class_counts - n_i t_i = _approximate_mode(class_counts_remaining, n_test, rng) train = [] test = [] for i in range(n_classes): permutation = rng.permutation(class_counts[i]) perm_indices_class_i = class_indices[i].take(permutation, mode="clip") train.extend(perm_indices_class_i[: n_i[i]]) test.extend(perm_indices_class_i[n_i[i] : n_i[i] + t_i[i]]) train = rng.permutation(train) test = rng.permutation(test) yield train, test def split(self, X, y, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. Note that providing ``y`` is sufficient to generate the splits and hence ``np.zeros(n_samples)`` may be used as a placeholder for ``X`` instead of actual training data. y : array-like of shape (n_samples,) or (n_samples, n_labels) The target variable for supervised learning problems. Stratification is done based on the y labels. groups : object Always ignored, exists for compatibility. Yields ------ train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. Notes ----- Randomized CV splitters may return different results for each call of split. You can make the results identical by setting `random_state` to an integer. """ y = check_array(y, input_name="y", ensure_2d=False, dtype=None) return super().split(X, y, groups) def _validate_shuffle_split(n_samples, test_size, train_size, default_test_size=None): """ Validation helper to check if the test/test sizes are meaningful wrt to the size of the data (n_samples) """ if test_size is None and train_size is None: test_size = default_test_size test_size_type = np.asarray(test_size).dtype.kind train_size_type = np.asarray(train_size).dtype.kind if ( test_size_type == "i" and (test_size >= n_samples or test_size <= 0) or test_size_type == "f" and (test_size <= 0 or test_size >= 1) ): raise ValueError( "test_size={0} should be either positive and smaller" " than the number of samples {1} or a float in the " "(0, 1) range".format(test_size, n_samples) ) if ( train_size_type == "i" and (train_size >= n_samples or train_size <= 0) or train_size_type == "f" and (train_size <= 0 or train_size >= 1) ): raise ValueError( "train_size={0} should be either positive and smaller" " than the number of samples {1} or a float in the " "(0, 1) range".format(train_size, n_samples) ) if train_size is not None and train_size_type not in ("i", "f"): raise ValueError("Invalid value for train_size: {}".format(train_size)) if test_size is not None and test_size_type not in ("i", "f"): raise ValueError("Invalid value for test_size: {}".format(test_size)) if train_size_type == "f" and test_size_type == "f" and train_size + test_size > 1: raise ValueError( "The sum of test_size and train_size = {}, should be in the (0, 1)" " range. Reduce test_size and/or train_size.".format(train_size + test_size) ) if test_size_type == "f": n_test = ceil(test_size * n_samples) elif test_size_type == "i": n_test = float(test_size) if train_size_type == "f": n_train = floor(train_size * n_samples) elif train_size_type == "i": n_train = float(train_size) if train_size is None: n_train = n_samples - n_test elif test_size is None: n_test = n_samples - n_train if n_train + n_test > n_samples: raise ValueError( "The sum of train_size and test_size = %d, " "should be smaller than the number of " "samples %d. Reduce test_size and/or " "train_size." % (n_train + n_test, n_samples) ) n_train, n_test = int(n_train), int(n_test) if n_train == 0: raise ValueError( "With n_samples={}, test_size={} and train_size={}, the " "resulting train set will be empty. Adjust any of the " "aforementioned parameters.".format(n_samples, test_size, train_size) ) return n_train, n_test class PredefinedSplit(BaseCrossValidator): """Predefined split cross-validator Provides train/test indices to split data into train/test sets using a predefined scheme specified by the user with the ``test_fold`` parameter. Read more in the :ref:`User Guide <predefined_split>`. .. versionadded:: 0.16 Parameters ---------- test_fold : array-like of shape (n_samples,) The entry ``test_fold[i]`` represents the index of the test set that sample ``i`` belongs to. It is possible to exclude sample ``i`` from any test set (i.e. include sample ``i`` in every training set) by setting ``test_fold[i]`` equal to -1. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import PredefinedSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> test_fold = [0, 1, -1, 1] >>> ps = PredefinedSplit(test_fold) >>> ps.get_n_splits() 2 >>> print(ps) PredefinedSplit(test_fold=array([ 0, 1, -1, 1])) >>> for i, (train_index, test_index) in enumerate(ps.split()): ... print(f"Fold {i}:") ... print(f" Train: index={train_index}") ... print(f" Test: index={test_index}") Fold 0: Train: index=[1 2 3] Test: index=[0] Fold 1: Train: index=[0 2] Test: index=[1 3] """ def __init__(self, test_fold): self.test_fold = np.array(test_fold, dtype=int) self.test_fold = column_or_1d(self.test_fold) self.unique_folds = np.unique(self.test_fold) self.unique_folds = self.unique_folds[self.unique_folds != -1] def split(self, X=None, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Yields ------ train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ ind = np.arange(len(self.test_fold)) for test_index in self._iter_test_masks(): train_index = ind[np.logical_not(test_index)] test_index = ind[test_index] yield train_index, test_index def _iter_test_masks(self): """Generates boolean masks corresponding to test sets.""" for f in self.unique_folds: test_index = np.where(self.test_fold == f)[0] test_mask = np.zeros(len(self.test_fold), dtype=bool) test_mask[test_index] = True yield test_mask def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return len(self.unique_folds) class _CVIterableWrapper(BaseCrossValidator): """Wrapper class for old style cv objects and iterables.""" def __init__(self, cv): self.cv = list(cv) def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return len(self.cv) def split(self, X=None, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Yields ------ train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ for train, test in self.cv: yield train, test def check_cv(cv=5, y=None, *, classifier=False): """Input checker utility for building a cross-validator. Parameters ---------- cv : int, cross-validation generator or an iterable, default=None Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 5-fold cross validation, - integer, to specify the number of folds. - :term:`CV splitter`, - An iterable that generates (train, test) splits as arrays of indices. For integer/None inputs, if classifier is True and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. .. versionchanged:: 0.22 ``cv`` default value changed from 3-fold to 5-fold. y : array-like, default=None The target variable for supervised learning problems. classifier : bool, default=False Whether the task is a classification task, in which case stratified KFold will be used. Returns ------- checked_cv : a cross-validator instance. The return value is a cross-validator which generates the train/test splits via the ``split`` method. """ cv = 5 if cv is None else cv if isinstance(cv, numbers.Integral): if ( classifier and (y is not None) and (type_of_target(y, input_name="y") in ("binary", "multiclass")) ): return StratifiedKFold(cv) else: return KFold(cv) if not hasattr(cv, "split") or isinstance(cv, str): if not isinstance(cv, Iterable) or isinstance(cv, str): raise ValueError( "Expected cv as an integer, cross-validation " "object (from sklearn.model_selection) " "or an iterable. Got %s." % cv ) return _CVIterableWrapper(cv) return cv # New style cv objects are passed without any modification def train_test_split( *arrays, test_size=None, train_size=None, random_state=None, shuffle=True, stratify=None, ): """Split arrays or matrices into random train and test subsets. Quick utility that wraps input validation, ``next(ShuffleSplit().split(X, y))``, and application to input data into a single call for splitting (and optionally subsampling) data into a one-liner. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- *arrays : sequence of indexables with same length / shape[0] Allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes. test_size : float or int, default=None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is set to the complement of the train size. If ``train_size`` is also None, it will be set to 0.25. train_size : float or int, default=None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int, RandomState instance or None, default=None Controls the shuffling applied to the data before applying the split. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. shuffle : bool, default=True Whether or not to shuffle the data before splitting. If shuffle=False then stratify must be None. stratify : array-like, default=None If not None, data is split in a stratified fashion, using this as the class labels. Read more in the :ref:`User Guide <stratification>`. Returns ------- splitting : list, length=2 * len(arrays) List containing train-test split of inputs. .. versionadded:: 0.16 If the input is sparse, the output will be a ``scipy.sparse.csr_matrix``. Else, output type is the same as the input type. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import train_test_split >>> X, y = np.arange(10).reshape((5, 2)), range(5) >>> X array([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) >>> list(y) [0, 1, 2, 3, 4] >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, test_size=0.33, random_state=42) ... >>> X_train array([[4, 5], [0, 1], [6, 7]]) >>> y_train [2, 0, 3] >>> X_test array([[2, 3], [8, 9]]) >>> y_test [1, 4] >>> train_test_split(y, shuffle=False) [[0, 1, 2], [3, 4]] """ n_arrays = len(arrays) if n_arrays == 0: raise ValueError("At least one array required as input") arrays = indexable(*arrays) n_samples = _num_samples(arrays[0]) n_train, n_test = _validate_shuffle_split( n_samples, test_size, train_size, default_test_size=0.25 ) if shuffle is False: if stratify is not None: raise ValueError( "Stratified train/test split is not implemented for shuffle=False" ) train = np.arange(n_train) test = np.arange(n_train, n_train + n_test) else: if stratify is not None: CVClass = StratifiedShuffleSplit else: CVClass = ShuffleSplit cv = CVClass(test_size=n_test, train_size=n_train, random_state=random_state) train, test = next(cv.split(X=arrays[0], y=stratify)) return list( chain.from_iterable( (_safe_indexing(a, train), _safe_indexing(a, test)) for a in arrays ) ) # Tell nose that train_test_split is not a test. # (Needed for external libraries that may use nose.) # Use setattr to avoid mypy errors when monkeypatching. setattr(train_test_split, "__test__", False) def _pprint(params, offset=0, printer=repr): """Pretty print the dictionary 'params' Parameters ---------- params : dict The dictionary to pretty print offset : int, default=0 The offset in characters to add at the begin of each line. printer : callable, default=repr The function to convert entries to strings, typically the builtin str or repr """ # Do a multi-line justified repr: options = np.get_printoptions() np.set_printoptions(precision=5, threshold=64, edgeitems=2) params_list = list() this_line_length = offset line_sep = ",\n" + (1 + offset // 2) * " " for i, (k, v) in enumerate(sorted(params.items())): if type(v) is float: # use str for representing floating point numbers # this way we get consistent representation across # architectures and versions. this_repr = "%s=%s" % (k, str(v)) else: # use repr of the rest this_repr = "%s=%s" % (k, printer(v)) if len(this_repr) > 500: this_repr = this_repr[:300] + "..." + this_repr[-100:] if i > 0: if this_line_length + len(this_repr) >= 75 or "\n" in this_repr: params_list.append(line_sep) this_line_length = len(line_sep) else: params_list.append(", ") this_line_length += 2 params_list.append(this_repr) this_line_length += len(this_repr) np.set_printoptions(**options) lines = "".join(params_list) # Strip trailing space to avoid nightmare in doctests lines = "\n".join(l.rstrip(" ") for l in lines.split("\n")) return lines def _build_repr(self): # XXX This is copied from BaseEstimator's get_params cls = self.__class__ init = getattr(cls.__init__, "deprecated_original", cls.__init__) # Ignore varargs, kw and default values and pop self init_signature = signature(init) # Consider the constructor parameters excluding 'self' if init is object.__init__: args = [] else: args = sorted( [ p.name for p in init_signature.parameters.values() if p.name != "self" and p.kind != p.VAR_KEYWORD ] ) class_name = self.__class__.__name__ params = dict() for key in args: # We need deprecation warnings to always be on in order to # catch deprecated param values. # This is set in utils/__init__.py but it gets overwritten # when running under python3 somehow. warnings.simplefilter("always", FutureWarning) try: with warnings.catch_warnings(record=True) as w: value = getattr(self, key, None) if value is None and hasattr(self, "cvargs"): value = self.cvargs.get(key, None) if len(w) and w[0].category == FutureWarning: # if the parameter is deprecated, don't show it continue finally: warnings.filters.pop(0) params[key] = value return "%s(%s)" % (class_name, _pprint(params, offset=len(class_name))) def _yields_constant_splits(cv): # Return True if calling cv.split() always returns the same splits # We assume that if a cv doesn't have a shuffle parameter, it shuffles by # default (e.g. ShuffleSplit). If it actually doesn't shuffle (e.g. # LeaveOneOut), then it won't have a random_state parameter anyway, in # which case it will default to 0, leading to output=True shuffle = getattr(cv, "shuffle", True) random_state = getattr(cv, "random_state", 0) return isinstance(random_state, numbers.Integral) or not shuffle
bsd-3-clause
vinayak-mehta/scikit-learn
examples/svm/plot_svm_tie_breaking.py
13
2165
""" ========================================================= SVM Tie Breaking Example ========================================================= Tie breaking is costly if ``decision_function_shape='ovr'``, and therefore it is not enabled by default. This example illustrates the effect of the ``break_ties`` parameter for a multiclass classification problem and ``decision_function_shape='ovr'``. The two plots differ only in the area in the middle where the classes are tied. If ``break_ties=False``, all input in that area would be classified as one class, whereas if ``break_ties=True``, the tie-breaking mechanism will create a non-convex decision boundary in that area. """ # Code source: Andreas Mueller, Adrin Jalali # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.datasets import make_blobs X, y = make_blobs(random_state=27) fig, sub = plt.subplots(2, 1, figsize=(5, 8)) titles = ("break_ties = False", "break_ties = True") for break_ties, title, ax in zip((False, True), titles, sub.flatten()): svm = SVC( kernel="linear", C=1, break_ties=break_ties, decision_function_shape="ovr" ).fit(X, y) xlim = [X[:, 0].min(), X[:, 0].max()] ylim = [X[:, 1].min(), X[:, 1].max()] xs = np.linspace(xlim[0], xlim[1], 1000) ys = np.linspace(ylim[0], ylim[1], 1000) xx, yy = np.meshgrid(xs, ys) pred = svm.predict(np.c_[xx.ravel(), yy.ravel()]) colors = [plt.cm.Accent(i) for i in [0, 4, 7]] points = ax.scatter(X[:, 0], X[:, 1], c=y, cmap="Accent") classes = [(0, 1), (0, 2), (1, 2)] line = np.linspace(X[:, 1].min() - 5, X[:, 1].max() + 5) ax.imshow( -pred.reshape(xx.shape), cmap="Accent", alpha=0.2, extent=(xlim[0], xlim[1], ylim[1], ylim[0]), ) for coef, intercept, col in zip(svm.coef_, svm.intercept_, classes): line2 = -(line * coef[1] + intercept) / coef[0] ax.plot(line2, line, "-", c=colors[col[0]]) ax.plot(line2, line, "--", c=colors[col[1]]) ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_title(title) ax.set_aspect("equal") plt.show()
bsd-3-clause
procoder317/scikit-learn
examples/neighbors/plot_approximate_nearest_neighbors_hyperparameters.py
226
5170
""" ================================================= Hyper-parameters of Approximate Nearest Neighbors ================================================= This example demonstrates the behaviour of the accuracy of the nearest neighbor queries of Locality Sensitive Hashing Forest as the number of candidates and the number of estimators (trees) vary. In the first plot, accuracy is measured with the number of candidates. Here, the term "number of candidates" refers to maximum bound for the number of distinct points retrieved from each tree to calculate the distances. Nearest neighbors are selected from this pool of candidates. Number of estimators is maintained at three fixed levels (1, 5, 10). In the second plot, the number of candidates is fixed at 50. Number of trees is varied and the accuracy is plotted against those values. To measure the accuracy, the true nearest neighbors are required, therefore :class:`sklearn.neighbors.NearestNeighbors` is used to compute the exact neighbors. """ from __future__ import division print(__doc__) # Author: Maheshakya Wijewardena <maheshakya.10@cse.mrt.ac.lk> # # License: BSD 3 clause ############################################################################### import numpy as np from sklearn.datasets.samples_generator import make_blobs from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt # Initialize size of the database, iterations and required neighbors. n_samples = 10000 n_features = 100 n_queries = 30 rng = np.random.RandomState(42) # Generate sample data X, _ = make_blobs(n_samples=n_samples + n_queries, n_features=n_features, centers=10, random_state=0) X_index = X[:n_samples] X_query = X[n_samples:] # Get exact neighbors nbrs = NearestNeighbors(n_neighbors=1, algorithm='brute', metric='cosine').fit(X_index) neighbors_exact = nbrs.kneighbors(X_query, return_distance=False) # Set `n_candidate` values n_candidates_values = np.linspace(10, 500, 5).astype(np.int) n_estimators_for_candidate_value = [1, 5, 10] n_iter = 10 stds_accuracies = np.zeros((len(n_estimators_for_candidate_value), n_candidates_values.shape[0]), dtype=float) accuracies_c = np.zeros((len(n_estimators_for_candidate_value), n_candidates_values.shape[0]), dtype=float) # LSH Forest is a stochastic index: perform several iteration to estimate # expected accuracy and standard deviation displayed as error bars in # the plots for j, value in enumerate(n_estimators_for_candidate_value): for i, n_candidates in enumerate(n_candidates_values): accuracy_c = [] for seed in range(n_iter): lshf = LSHForest(n_estimators=value, n_candidates=n_candidates, n_neighbors=1, random_state=seed) # Build the LSH Forest index lshf.fit(X_index) # Get neighbors neighbors_approx = lshf.kneighbors(X_query, return_distance=False) accuracy_c.append(np.sum(np.equal(neighbors_approx, neighbors_exact)) / n_queries) stds_accuracies[j, i] = np.std(accuracy_c) accuracies_c[j, i] = np.mean(accuracy_c) # Set `n_estimators` values n_estimators_values = [1, 5, 10, 20, 30, 40, 50] accuracies_trees = np.zeros(len(n_estimators_values), dtype=float) # Calculate average accuracy for each value of `n_estimators` for i, n_estimators in enumerate(n_estimators_values): lshf = LSHForest(n_estimators=n_estimators, n_neighbors=1) # Build the LSH Forest index lshf.fit(X_index) # Get neighbors neighbors_approx = lshf.kneighbors(X_query, return_distance=False) accuracies_trees[i] = np.sum(np.equal(neighbors_approx, neighbors_exact))/n_queries ############################################################################### # Plot the accuracy variation with `n_candidates` plt.figure() colors = ['c', 'm', 'y'] for i, n_estimators in enumerate(n_estimators_for_candidate_value): label = 'n_estimators = %d ' % n_estimators plt.plot(n_candidates_values, accuracies_c[i, :], 'o-', c=colors[i], label=label) plt.errorbar(n_candidates_values, accuracies_c[i, :], stds_accuracies[i, :], c=colors[i]) plt.legend(loc='upper left', fontsize='small') plt.ylim([0, 1.2]) plt.xlim(min(n_candidates_values), max(n_candidates_values)) plt.ylabel("Accuracy") plt.xlabel("n_candidates") plt.grid(which='both') plt.title("Accuracy variation with n_candidates") # Plot the accuracy variation with `n_estimators` plt.figure() plt.scatter(n_estimators_values, accuracies_trees, c='k') plt.plot(n_estimators_values, accuracies_trees, c='g') plt.ylim([0, 1.2]) plt.xlim(min(n_estimators_values), max(n_estimators_values)) plt.ylabel("Accuracy") plt.xlabel("n_estimators") plt.grid(which='both') plt.title("Accuracy variation with n_estimators") plt.show()
bsd-3-clause
thilbern/scikit-learn
examples/svm/plot_svm_anova.py
249
2000
""" ================================================= SVM-Anova: SVM with univariate feature selection ================================================= This example shows how to perform univariate feature before running a SVC (support vector classifier) to improve the classification scores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets, feature_selection, cross_validation from sklearn.pipeline import Pipeline ############################################################################### # Import some data to play with digits = datasets.load_digits() y = digits.target # Throw away data, to be in the curse of dimension settings y = y[:200] X = digits.data[:200] n_samples = len(y) X = X.reshape((n_samples, -1)) # add 200 non-informative features X = np.hstack((X, 2 * np.random.random((n_samples, 200)))) ############################################################################### # Create a feature-selection transform and an instance of SVM that we # combine together to have an full-blown estimator transform = feature_selection.SelectPercentile(feature_selection.f_classif) clf = Pipeline([('anova', transform), ('svc', svm.SVC(C=1.0))]) ############################################################################### # Plot the cross-validation score as a function of percentile of features score_means = list() score_stds = list() percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100) for percentile in percentiles: clf.set_params(anova__percentile=percentile) # Compute cross-validation score using all CPUs this_scores = cross_validation.cross_val_score(clf, X, y, n_jobs=1) score_means.append(this_scores.mean()) score_stds.append(this_scores.std()) plt.errorbar(percentiles, score_means, np.array(score_stds)) plt.title( 'Performance of the SVM-Anova varying the percentile of features selected') plt.xlabel('Percentile') plt.ylabel('Prediction rate') plt.axis('tight') plt.show()
bsd-3-clause
fyffyt/scikit-learn
benchmarks/bench_sgd_regression.py
281
5569
""" Benchmark for SGD regression Compares SGD regression against coordinate descent and Ridge on synthetic data. """ print(__doc__) # Author: Peter Prettenhofer <peter.prettenhofer@gmail.com> # License: BSD 3 clause import numpy as np import pylab as pl import gc from time import time from sklearn.linear_model import Ridge, SGDRegressor, ElasticNet from sklearn.metrics import mean_squared_error from sklearn.datasets.samples_generator import make_regression if __name__ == "__main__": list_n_samples = np.linspace(100, 10000, 5).astype(np.int) list_n_features = [10, 100, 1000] n_test = 1000 noise = 0.1 alpha = 0.01 sgd_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) elnet_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) ridge_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) asgd_results = np.zeros((len(list_n_samples), len(list_n_features), 2)) for i, n_train in enumerate(list_n_samples): for j, n_features in enumerate(list_n_features): X, y, coef = make_regression( n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True) X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] print("=======================") print("Round %d %d" % (i, j)) print("n_features:", n_features) print("n_samples:", n_train) # Shuffle data idx = np.arange(n_train) np.random.seed(13) np.random.shuffle(idx) X_train = X_train[idx] y_train = y_train[idx] std = X_train.std(axis=0) mean = X_train.mean(axis=0) X_train = (X_train - mean) / std X_test = (X_test - mean) / std std = y_train.std(axis=0) mean = y_train.mean(axis=0) y_train = (y_train - mean) / std y_test = (y_test - mean) / std gc.collect() print("- benchmarking ElasticNet") clf = ElasticNet(alpha=alpha, l1_ratio=0.5, fit_intercept=False) tstart = time() clf.fit(X_train, y_train) elnet_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) elnet_results[i, j, 1] = time() - tstart gc.collect() print("- benchmarking SGD") n_iter = np.ceil(10 ** 4.0 / n_train) clf = SGDRegressor(alpha=alpha / n_train, fit_intercept=False, n_iter=n_iter, learning_rate="invscaling", eta0=.01, power_t=0.25) tstart = time() clf.fit(X_train, y_train) sgd_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) sgd_results[i, j, 1] = time() - tstart gc.collect() print("n_iter", n_iter) print("- benchmarking A-SGD") n_iter = np.ceil(10 ** 4.0 / n_train) clf = SGDRegressor(alpha=alpha / n_train, fit_intercept=False, n_iter=n_iter, learning_rate="invscaling", eta0=.002, power_t=0.05, average=(n_iter * n_train // 2)) tstart = time() clf.fit(X_train, y_train) asgd_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) asgd_results[i, j, 1] = time() - tstart gc.collect() print("- benchmarking RidgeRegression") clf = Ridge(alpha=alpha, fit_intercept=False) tstart = time() clf.fit(X_train, y_train) ridge_results[i, j, 0] = mean_squared_error(clf.predict(X_test), y_test) ridge_results[i, j, 1] = time() - tstart # Plot results i = 0 m = len(list_n_features) pl.figure('scikit-learn SGD regression benchmark results', figsize=(5 * 2, 4 * m)) for j in range(m): pl.subplot(m, 2, i + 1) pl.plot(list_n_samples, np.sqrt(elnet_results[:, j, 0]), label="ElasticNet") pl.plot(list_n_samples, np.sqrt(sgd_results[:, j, 0]), label="SGDRegressor") pl.plot(list_n_samples, np.sqrt(asgd_results[:, j, 0]), label="A-SGDRegressor") pl.plot(list_n_samples, np.sqrt(ridge_results[:, j, 0]), label="Ridge") pl.legend(prop={"size": 10}) pl.xlabel("n_train") pl.ylabel("RMSE") pl.title("Test error - %d features" % list_n_features[j]) i += 1 pl.subplot(m, 2, i + 1) pl.plot(list_n_samples, np.sqrt(elnet_results[:, j, 1]), label="ElasticNet") pl.plot(list_n_samples, np.sqrt(sgd_results[:, j, 1]), label="SGDRegressor") pl.plot(list_n_samples, np.sqrt(asgd_results[:, j, 1]), label="A-SGDRegressor") pl.plot(list_n_samples, np.sqrt(ridge_results[:, j, 1]), label="Ridge") pl.legend(prop={"size": 10}) pl.xlabel("n_train") pl.ylabel("Time [sec]") pl.title("Training time - %d features" % list_n_features[j]) i += 1 pl.subplots_adjust(hspace=.30) pl.show()
bsd-3-clause
infinit/grpc
tools/gcp/utils/big_query_utils.py
42
5378
#!/usr/bin/env python2.7 # Copyright 2015, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import argparse import json import uuid import httplib2 from apiclient import discovery from apiclient.errors import HttpError from oauth2client.client import GoogleCredentials NUM_RETRIES = 3 def create_big_query(): """Authenticates with cloud platform and gets a BiqQuery service object """ creds = GoogleCredentials.get_application_default() return discovery.build('bigquery', 'v2', credentials=creds) def create_dataset(biq_query, project_id, dataset_id): is_success = True body = { 'datasetReference': { 'projectId': project_id, 'datasetId': dataset_id } } try: dataset_req = biq_query.datasets().insert(projectId=project_id, body=body) dataset_req.execute(num_retries=NUM_RETRIES) except HttpError as http_error: if http_error.resp.status == 409: print 'Warning: The dataset %s already exists' % dataset_id else: # Note: For more debugging info, print "http_error.content" print 'Error in creating dataset: %s. Err: %s' % (dataset_id, http_error) is_success = False return is_success def create_table(big_query, project_id, dataset_id, table_id, table_schema, description): fields = [{'name': field_name, 'type': field_type, 'description': field_description } for (field_name, field_type, field_description) in table_schema] return create_table2(big_query, project_id, dataset_id, table_id, fields, description) def create_table2(big_query, project_id, dataset_id, table_id, fields_schema, description): is_success = True body = { 'description': description, 'schema': { 'fields': fields_schema }, 'tableReference': { 'datasetId': dataset_id, 'projectId': project_id, 'tableId': table_id } } try: table_req = big_query.tables().insert(projectId=project_id, datasetId=dataset_id, body=body) res = table_req.execute(num_retries=NUM_RETRIES) print 'Successfully created %s "%s"' % (res['kind'], res['id']) except HttpError as http_error: if http_error.resp.status == 409: print 'Warning: Table %s already exists' % table_id else: print 'Error in creating table: %s. Err: %s' % (table_id, http_error) is_success = False return is_success def insert_rows(big_query, project_id, dataset_id, table_id, rows_list): is_success = True body = {'rows': rows_list} try: insert_req = big_query.tabledata().insertAll(projectId=project_id, datasetId=dataset_id, tableId=table_id, body=body) res = insert_req.execute(num_retries=NUM_RETRIES) if res.get('insertErrors', None): print 'Error inserting rows! Response: %s' % res is_success = False except HttpError as http_error: print 'Error inserting rows to the table %s' % table_id is_success = False return is_success def sync_query_job(big_query, project_id, query, timeout=5000): query_data = {'query': query, 'timeoutMs': timeout} query_job = None try: query_job = big_query.jobs().query( projectId=project_id, body=query_data).execute(num_retries=NUM_RETRIES) except HttpError as http_error: print 'Query execute job failed with error: %s' % http_error print http_error.content return query_job # List of (column name, column type, description) tuples def make_row(unique_row_id, row_values_dict): """row_values_dict is a dictionary of column name and column value. """ return {'insertId': unique_row_id, 'json': row_values_dict}
bsd-3-clause
LiaoPan/scikit-learn
sklearn/neighbors/approximate.py
127
22351
"""Approximate nearest neighbor search""" # Author: Maheshakya Wijewardena <maheshakya.10@cse.mrt.ac.lk> # Joel Nothman <joel.nothman@gmail.com> import numpy as np import warnings from scipy import sparse from .base import KNeighborsMixin, RadiusNeighborsMixin from ..base import BaseEstimator from ..utils.validation import check_array from ..utils import check_random_state from ..metrics.pairwise import pairwise_distances from ..random_projection import GaussianRandomProjection __all__ = ["LSHForest"] HASH_DTYPE = '>u4' MAX_HASH_SIZE = np.dtype(HASH_DTYPE).itemsize * 8 def _find_matching_indices(tree, bin_X, left_mask, right_mask): """Finds indices in sorted array of integers. Most significant h bits in the binary representations of the integers are matched with the items' most significant h bits. """ left_index = np.searchsorted(tree, bin_X & left_mask) right_index = np.searchsorted(tree, bin_X | right_mask, side='right') return left_index, right_index def _find_longest_prefix_match(tree, bin_X, hash_size, left_masks, right_masks): """Find the longest prefix match in tree for each query in bin_X Most significant bits are considered as the prefix. """ hi = np.empty_like(bin_X, dtype=np.intp) hi.fill(hash_size) lo = np.zeros_like(bin_X, dtype=np.intp) res = np.empty_like(bin_X, dtype=np.intp) left_idx, right_idx = _find_matching_indices(tree, bin_X, left_masks[hi], right_masks[hi]) found = right_idx > left_idx res[found] = lo[found] = hash_size r = np.arange(bin_X.shape[0]) kept = r[lo < hi] # indices remaining in bin_X mask while kept.shape[0]: mid = (lo.take(kept) + hi.take(kept)) // 2 left_idx, right_idx = _find_matching_indices(tree, bin_X.take(kept), left_masks[mid], right_masks[mid]) found = right_idx > left_idx mid_found = mid[found] lo[kept[found]] = mid_found + 1 res[kept[found]] = mid_found hi[kept[~found]] = mid[~found] kept = r[lo < hi] return res class ProjectionToHashMixin(object): """Turn a transformed real-valued array into a hash""" @staticmethod def _to_hash(projected): if projected.shape[1] % 8 != 0: raise ValueError('Require reduced dimensionality to be a multiple ' 'of 8 for hashing') # XXX: perhaps non-copying operation better out = np.packbits((projected > 0).astype(int)).view(dtype=HASH_DTYPE) return out.reshape(projected.shape[0], -1) def fit_transform(self, X, y=None): self.fit(X) return self.transform(X) def transform(self, X, y=None): return self._to_hash(super(ProjectionToHashMixin, self).transform(X)) class GaussianRandomProjectionHash(ProjectionToHashMixin, GaussianRandomProjection): """Use GaussianRandomProjection to produce a cosine LSH fingerprint""" def __init__(self, n_components=8, random_state=None): super(GaussianRandomProjectionHash, self).__init__( n_components=n_components, random_state=random_state) def _array_of_arrays(list_of_arrays): """Creates an array of array from list of arrays.""" out = np.empty(len(list_of_arrays), dtype=object) out[:] = list_of_arrays return out class LSHForest(BaseEstimator, KNeighborsMixin, RadiusNeighborsMixin): """Performs approximate nearest neighbor search using LSH forest. LSH Forest: Locality Sensitive Hashing forest [1] is an alternative method for vanilla approximate nearest neighbor search methods. LSH forest data structure has been implemented using sorted arrays and binary search and 32 bit fixed-length hashes. Random projection is used as the hash family which approximates cosine distance. The cosine distance is defined as ``1 - cosine_similarity``: the lowest value is 0 (identical point) but it is bounded above by 2 for the farthest points. Its value does not depend on the norm of the vector points but only on their relative angles. Read more in the :ref:`User Guide <approximate_nearest_neighbors>`. Parameters ---------- n_estimators : int (default = 10) Number of trees in the LSH Forest. min_hash_match : int (default = 4) lowest hash length to be searched when candidate selection is performed for nearest neighbors. n_candidates : int (default = 10) Minimum number of candidates evaluated per estimator, assuming enough items meet the `min_hash_match` constraint. n_neighbors : int (default = 5) Number of neighbors to be returned from query function when it is not provided to the :meth:`kneighbors` method. radius : float, optinal (default = 1.0) Radius from the data point to its neighbors. This is the parameter space to use by default for the :meth`radius_neighbors` queries. radius_cutoff_ratio : float, optional (default = 0.9) A value ranges from 0 to 1. Radius neighbors will be searched until the ratio between total neighbors within the radius and the total candidates becomes less than this value unless it is terminated by hash length reaching `min_hash_match`. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- hash_functions_ : list of GaussianRandomProjectionHash objects Hash function g(p,x) for a tree is an array of 32 randomly generated float arrays with the same dimenstion as the data set. This array is stored in GaussianRandomProjectionHash object and can be obtained from ``components_`` attribute. trees_ : array, shape (n_estimators, n_samples) Each tree (corresponding to a hash function) contains an array of sorted hashed values. The array representation may change in future versions. original_indices_ : array, shape (n_estimators, n_samples) Original indices of sorted hashed values in the fitted index. References ---------- .. [1] M. Bawa, T. Condie and P. Ganesan, "LSH Forest: Self-Tuning Indexes for Similarity Search", WWW '05 Proceedings of the 14th international conference on World Wide Web, 651-660, 2005. Examples -------- >>> from sklearn.neighbors import LSHForest >>> X_train = [[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]] >>> X_test = [[9, 1, 6], [3, 1, 10], [7, 10, 3]] >>> lshf = LSHForest() >>> lshf.fit(X_train) # doctest: +NORMALIZE_WHITESPACE LSHForest(min_hash_match=4, n_candidates=50, n_estimators=10, n_neighbors=5, radius=1.0, radius_cutoff_ratio=0.9, random_state=None) >>> distances, indices = lshf.kneighbors(X_test, n_neighbors=2) >>> distances # doctest: +ELLIPSIS array([[ 0.069..., 0.149...], [ 0.229..., 0.481...], [ 0.004..., 0.014...]]) >>> indices array([[1, 2], [2, 0], [4, 0]]) """ def __init__(self, n_estimators=10, radius=1.0, n_candidates=50, n_neighbors=5, min_hash_match=4, radius_cutoff_ratio=.9, random_state=None): self.n_estimators = n_estimators self.radius = radius self.random_state = random_state self.n_candidates = n_candidates self.n_neighbors = n_neighbors self.min_hash_match = min_hash_match self.radius_cutoff_ratio = radius_cutoff_ratio def _compute_distances(self, query, candidates): """Computes the cosine distance. Distance is from the query to points in the candidates array. Returns argsort of distances in the candidates array and sorted distances. """ if candidates.shape == (0,): # needed since _fit_X[np.array([])] doesn't work if _fit_X sparse return np.empty(0, dtype=np.int), np.empty(0, dtype=float) if sparse.issparse(self._fit_X): candidate_X = self._fit_X[candidates] else: candidate_X = self._fit_X.take(candidates, axis=0, mode='clip') distances = pairwise_distances(query, candidate_X, metric='cosine')[0] distance_positions = np.argsort(distances) distances = distances.take(distance_positions, mode='clip', axis=0) return distance_positions, distances def _generate_masks(self): """Creates left and right masks for all hash lengths.""" tri_size = MAX_HASH_SIZE + 1 # Called once on fitting, output is independent of hashes left_mask = np.tril(np.ones((tri_size, tri_size), dtype=int))[:, 1:] right_mask = left_mask[::-1, ::-1] self._left_mask = np.packbits(left_mask).view(dtype=HASH_DTYPE) self._right_mask = np.packbits(right_mask).view(dtype=HASH_DTYPE) def _get_candidates(self, query, max_depth, bin_queries, n_neighbors): """Performs the Synchronous ascending phase. Returns an array of candidates, their distance ranks and distances. """ index_size = self._fit_X.shape[0] # Number of candidates considered including duplicates # XXX: not sure whether this is being calculated correctly wrt # duplicates from different iterations through a single tree n_candidates = 0 candidate_set = set() min_candidates = self.n_candidates * self.n_estimators while (max_depth > self.min_hash_match and (n_candidates < min_candidates or len(candidate_set) < n_neighbors)): left_mask = self._left_mask[max_depth] right_mask = self._right_mask[max_depth] for i in range(self.n_estimators): start, stop = _find_matching_indices(self.trees_[i], bin_queries[i], left_mask, right_mask) n_candidates += stop - start candidate_set.update( self.original_indices_[i][start:stop].tolist()) max_depth -= 1 candidates = np.fromiter(candidate_set, count=len(candidate_set), dtype=np.intp) # For insufficient candidates, candidates are filled. # Candidates are filled from unselected indices uniformly. if candidates.shape[0] < n_neighbors: warnings.warn( "Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (n_neighbors, self.min_hash_match)) remaining = np.setdiff1d(np.arange(0, index_size), candidates) to_fill = n_neighbors - candidates.shape[0] candidates = np.concatenate((candidates, remaining[:to_fill])) ranks, distances = self._compute_distances(query, candidates.astype(int)) return (candidates[ranks[:n_neighbors]], distances[:n_neighbors]) def _get_radius_neighbors(self, query, max_depth, bin_queries, radius): """Finds radius neighbors from the candidates obtained. Their distances from query are smaller than radius. Returns radius neighbors and distances. """ ratio_within_radius = 1 threshold = 1 - self.radius_cutoff_ratio total_candidates = np.array([], dtype=int) total_neighbors = np.array([], dtype=int) total_distances = np.array([], dtype=float) while (max_depth > self.min_hash_match and ratio_within_radius > threshold): left_mask = self._left_mask[max_depth] right_mask = self._right_mask[max_depth] candidates = [] for i in range(self.n_estimators): start, stop = _find_matching_indices(self.trees_[i], bin_queries[i], left_mask, right_mask) candidates.extend( self.original_indices_[i][start:stop].tolist()) candidates = np.setdiff1d(candidates, total_candidates) total_candidates = np.append(total_candidates, candidates) ranks, distances = self._compute_distances(query, candidates) m = np.searchsorted(distances, radius, side='right') positions = np.searchsorted(total_distances, distances[:m]) total_neighbors = np.insert(total_neighbors, positions, candidates[ranks[:m]]) total_distances = np.insert(total_distances, positions, distances[:m]) ratio_within_radius = (total_neighbors.shape[0] / float(total_candidates.shape[0])) max_depth = max_depth - 1 return total_neighbors, total_distances def fit(self, X, y=None): """Fit the LSH forest on the data. This creates binary hashes of input data points by getting the dot product of input points and hash_function then transforming the projection into a binary string array based on the sign (positive/negative) of the projection. A sorted array of binary hashes is created. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- self : object Returns self. """ self._fit_X = check_array(X, accept_sparse='csr') # Creates a g(p,x) for each tree self.hash_functions_ = [] self.trees_ = [] self.original_indices_ = [] rng = check_random_state(self.random_state) int_max = np.iinfo(np.int32).max for i in range(self.n_estimators): # This is g(p,x) for a particular tree. # Builds a single tree. Hashing is done on an array of data points. # `GaussianRandomProjection` is used for hashing. # `n_components=hash size and n_features=n_dim. hasher = GaussianRandomProjectionHash(MAX_HASH_SIZE, rng.randint(0, int_max)) hashes = hasher.fit_transform(self._fit_X)[:, 0] original_index = np.argsort(hashes) bin_hashes = hashes[original_index] self.original_indices_.append(original_index) self.trees_.append(bin_hashes) self.hash_functions_.append(hasher) self._generate_masks() return self def _query(self, X): """Performs descending phase to find maximum depth.""" # Calculate hashes of shape (n_samples, n_estimators, [hash_size]) bin_queries = np.asarray([hasher.transform(X)[:, 0] for hasher in self.hash_functions_]) bin_queries = np.rollaxis(bin_queries, 1) # descend phase depths = [_find_longest_prefix_match(tree, tree_queries, MAX_HASH_SIZE, self._left_mask, self._right_mask) for tree, tree_queries in zip(self.trees_, np.rollaxis(bin_queries, 1))] return bin_queries, np.max(depths, axis=0) def kneighbors(self, X, n_neighbors=None, return_distance=True): """Returns n_neighbors of approximate nearest neighbors. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single query. n_neighbors : int, opitonal (default = None) Number of neighbors required. If not provided, this will return the number specified at the initialization. return_distance : boolean, optional (default = False) Returns the distances of neighbors if set to True. Returns ------- dist : array, shape (n_samples, n_neighbors) Array representing the cosine distances to each point, only present if return_distance=True. ind : array, shape (n_samples, n_neighbors) Indices of the approximate nearest points in the population matrix. """ if not hasattr(self, 'hash_functions_'): raise ValueError("estimator should be fitted.") if n_neighbors is None: n_neighbors = self.n_neighbors X = check_array(X, accept_sparse='csr') neighbors, distances = [], [] bin_queries, max_depth = self._query(X) for i in range(X.shape[0]): neighs, dists = self._get_candidates(X[i], max_depth[i], bin_queries[i], n_neighbors) neighbors.append(neighs) distances.append(dists) if return_distance: return np.array(distances), np.array(neighbors) else: return np.array(neighbors) def radius_neighbors(self, X, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Return the indices and distances of some points from the dataset lying in a ball with size ``radius`` around the points of the query array. Points lying on the boundary are included in the results. The result points are *not* necessarily sorted by distance to their query point. LSH Forest being an approximate method, some true neighbors from the indexed dataset might be missing from the results. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single query. radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional (default = False) Returns the distances of neighbors if set to True. Returns ------- dist : array, shape (n_samples,) of arrays Each element is an array representing the cosine distances to some points found within ``radius`` of the respective query. Only present if ``return_distance=True``. ind : array, shape (n_samples,) of arrays Each element is an array of indices for neighbors within ``radius`` of the respective query. """ if not hasattr(self, 'hash_functions_'): raise ValueError("estimator should be fitted.") if radius is None: radius = self.radius X = check_array(X, accept_sparse='csr') neighbors, distances = [], [] bin_queries, max_depth = self._query(X) for i in range(X.shape[0]): neighs, dists = self._get_radius_neighbors(X[i], max_depth[i], bin_queries[i], radius) neighbors.append(neighs) distances.append(dists) if return_distance: return _array_of_arrays(distances), _array_of_arrays(neighbors) else: return _array_of_arrays(neighbors) def partial_fit(self, X, y=None): """ Inserts new data into the already fitted LSH Forest. Cost is proportional to new total size, so additions should be batched. Parameters ---------- X : array_like or sparse (CSR) matrix, shape (n_samples, n_features) New data point to be inserted into the LSH Forest. """ X = check_array(X, accept_sparse='csr') if not hasattr(self, 'hash_functions_'): return self.fit(X) if X.shape[1] != self._fit_X.shape[1]: raise ValueError("Number of features in X and" " fitted array does not match.") n_samples = X.shape[0] n_indexed = self._fit_X.shape[0] for i in range(self.n_estimators): bin_X = self.hash_functions_[i].transform(X)[:, 0] # gets the position to be added in the tree. positions = self.trees_[i].searchsorted(bin_X) # adds the hashed value into the tree. self.trees_[i] = np.insert(self.trees_[i], positions, bin_X) # add the entry into the original_indices_. self.original_indices_[i] = np.insert(self.original_indices_[i], positions, np.arange(n_indexed, n_indexed + n_samples)) # adds the entry into the input_array. if sparse.issparse(X) or sparse.issparse(self._fit_X): self._fit_X = sparse.vstack((self._fit_X, X)) else: self._fit_X = np.row_stack((self._fit_X, X)) return self
bsd-3-clause
google-research/proteinfer
colab_evaluation.py
1
11557
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Version of evaluation utilities intended for use in lower memory environments, such as colab. This version of the evaluation code leverages the fact that the vast majority of example-label predictions are essentially zero, and so only contribute to false negatives. It therefore represents the data in "tidy format" with one row per example-label pair and excludes example-label pairs below a defined threshold. """ import numpy as np import pandas as pd import sklearn import tqdm import inference import utils import evaluation def read_blast_table(filename): """Read a table of BLAST results.""" blast_out = pd.read_table(filename, names=[ 'up_id', 'target', 'pc_identity', 'pc_positives', 'alignment_length', 'mismatches', 'gap_opens', 'q. start', 'q. end', 's. start', 'evalue', 'bit_score' ]) def extract_accession(long_string): """Strip out accession decoration from a parameter""" return long_string.replace('accession="', '').replace('"', '') blast_out['up_id'] = blast_out['up_id'].map(extract_accession) blast_out['target'] = blast_out['target'].map(extract_accession) blast_out = blast_out[[ 'up_id', 'target', 'pc_identity', 'alignment_length', 'bit_score' ]] return blast_out def stats_by_group(df): """Calculate statistics from a groupby'ed dataframe with TPs,FPs and FNs.""" EPSILON = 1e-10 result = df[['tp', 'fp', 'fn']].sum().reset_index().assign( precision=lambda x: (x['tp'] + EPSILON) / (x['tp'] + x['fp'] + EPSILON), recall=lambda x: (x['tp'] + EPSILON) / (x['tp'] + x['fn'] + EPSILON)).assign( f1=lambda x: 2 * x['precision'] * x['recall'] / (x['precision'] + x['recall'] + EPSILON), count=lambda x: x['tp'] + x['fn']) result['proportion'] = result['count'] / np.sum(result['count']) result['proportion_text'] = (result['proportion'] * 100).round(2).astype(str) + "%" return result def get_stats(df): """Calculate statistics from a dataframe with TPs,FPs and FNs.""" df['dummy_group'] = 'all' data = stats_by_group(df.groupby('dummy_group')).drop( columns=['dummy_group', 'proportion', 'proportion_text']) return data def apply_threshold_and_return_stats(predictions_df, ground_truth_df, threshold=0.5, grouping=None): """Given predictions, ground truth and a threshold get statistics.""" calls = assign_tp_fp_fn(predictions_df, ground_truth_df, threshold) if grouping: calls['group'] = calls['label'].map(grouping) return stats_by_group( calls.groupby("group")).assign(threshold=threshold) else: return get_stats(calls).assign(threshold=threshold) def batch_inferences(iterator, batch_size): """Yield batches of seq_ids and predictions matrices from an iterator.""" counter = 0 predictions = [] seq_ids = [] while True: try: inference = next(iterator) except StopIteration: if len(seq_ids) > 0: yield seq_ids, np.vstack(predictions) return seq_ids.append(inference[0]) predictions.append(inference[1]) counter += 1 if counter == batch_size: yield seq_ids, np.vstack(predictions) predictions = [] seq_ids = [] counter = 0 def batched_inferences_from_files(shard_names, batch_size=100): """Iterate through TFRecord files of inferences and yield batches.""" for file_name in tqdm.tqdm(shard_names, position=0): inference_iterator = inference.parse_shard(file_name) batched_iterator = batch_inferences(inference_iterator, batch_size) while True: try: yield next(batched_iterator) except StopIteration: break def batched_inferences_from_dir(shard_dir_path, batch_size=100): """Iterate through directory of inference TFRecord files and yield batches.""" files_to_process = utils.absolute_paths_of_files_in_dir(shard_dir_path) return batched_inferences_from_files(files_to_process, batch_size) def _make_tidy_df_from_seq_names_and_prediction_array( sequence_names, predictions_array, vocab, min_decision_threshold=1e-20): """Given a list of sequences and a matrix of prediction values, yield a tidy dataframe of predictions.""" up_ids = [] labels = [] values = [] for i in range(len(sequence_names)): up_id = sequence_names[i] preds = predictions_array[i, :] for vocab_index in np.argwhere(preds > min_decision_threshold): vocab_index = vocab_index[0] up_ids.append(up_id) labels.append(vocab[vocab_index]) values.append(preds[vocab_index]) return pd.DataFrame({"up_id": up_ids, "label": labels, "value": values}) def get_normalized_inference_results(shard_dir_path, vocab, label_normalizer, min_decision_threshold=1e-20): """Take a directory of sharded inferences and output a tidy and normalized dataframe. Inferences are in the format defined in inference.py Args: shard_dir_path: directory of TFrecord inference shards vocab: a list of vocabulary items label_normalizer: a dictionary mapping vocabulary items to their parents min_decision_threshold: a threshold reflecting the minimum we will ever be able to use to call a positive in subsequent analysis. Higher values use less RAM at the expense of lower maximum sensitivity. Returns: A pandas dataframe with one row per example-label (provided value > min_decision_threshold) and the associated value from the neural network. """ batches = batched_inferences_from_dir(shard_dir_path) dfs = [] for seq_names, confidences in batches: normed_confidences = evaluation.normalize_confidences( confidences, vocab, label_normalizer) dfs.append( _make_tidy_df_from_seq_names_and_prediction_array( seq_names, normed_confidences, vocab, min_decision_threshold=min_decision_threshold)) return pd.concat(dfs) def make_tidy_df_from_ground_truth(ground_truth): """Create a tidy dataframe from ground truth data.""" up_ids = [] labels = [] for i in tqdm.tqdm(ground_truth.index, position=0): up_id = ground_truth['sequence_name'][i] for vocab_entry in ground_truth['true_label'][i]: up_ids.append(up_id) labels.append(vocab_entry) return pd.DataFrame({"up_id": up_ids, "label": labels, "gt": True}) def merge_predictions_and_ground_truth(predictions_df, ground_truth_df): """Perform an outer join of predictions and ground truth, then set all empty values to False.""" combined = predictions_df.merge(ground_truth_df, how="outer", suffixes=("_pred", "_gt"), left_on=["label", "up_id"], right_on=["label", "up_id"]) combined = combined.fillna(False) return combined def get_pr_curve_df(predictions_df, ground_truth_df, grouping=None, filtered=True): """Given predictions and ground truth in tidy format, yield a precision recall curve. Args: predictions_df: predictions in tidy format ground_truth_df: ground truth in tidy format grouping: optional dictionary mapping sequence names to categories filtered: whether to remove almost redundant points on PR curve """ combined = merge_predictions_and_ground_truth(predictions_df, ground_truth_df) if grouping == None: to_process = {'all': combined}.items() else: combined['group'] = combined['label'].map(grouping) to_process = combined.groupby('group') del combined output_dfs = [] for group_name, group in tqdm.tqdm(to_process, position=0): precisions, recalls, thresholds = sklearn.metrics.precision_recall_curve( group['gt'], group['value']) precisions = precisions[:-1] recalls = recalls[:-1] if filtered: precisions, recalls, thresholds = filter_pr_curve( precisions, recalls, thresholds) output_dfs.append( pd.DataFrame({ 'group': group_name, 'precision': precisions, 'recall': recalls, 'threshold': thresholds, 'f1': 2 * precisions * recalls / (precisions + recalls) })) return pd.concat(output_dfs) def filter_pr_curve(precisions, recalls, thresholds, resolution=1e-4): """Filters out imperceptible shifts in a PR curve.""" last_precision = None last_recall = None new_precisions = [] new_recalls = [] new_thresholds = [] for i in range(len(precisions)): if last_precision is None or abs(recalls[i] - last_recall) >= resolution: new_precisions.append(precisions[i]) last_precision = precisions[i] new_recalls.append(recalls[i]) last_recall = recalls[i] new_thresholds.append(thresholds[i]) return np.array(new_precisions), np.array(new_recalls), np.array( new_thresholds) def assign_tp_fp_fn(predictions_df, ground_truth_df, threshold): """Return a new predictions dataframe where each row is assigned as either a TP, FP or FN.""" combined = merge_predictions_and_ground_truth(predictions_df, ground_truth_df) combined['tp'] = (combined['gt'] == True) & (combined['value'] > threshold) combined['fp'] = (combined['gt'] == False) & (combined['value'] > threshold) combined['fn'] = (combined['gt'] == True) & (combined['value'] < threshold) return combined
apache-2.0
yvlasov/ConProbIN
try-ml/try-regration-v01.py
1
2585
#!/usr/bin/python """ ============================ Nearest Neighbors regression ============================ Demonstrate the resolution of a regression problem using a k-Nearest Neighbor and the interpolation of the target using both barycenter and constant weights. """ ############################################################################### # Generate sample data import pandas import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors #url = "MotionSymulationForNNet.csv" url = "20000-samples.csv" names = ['ShortCurve', 'ShortCurveDer', 'LongTail', 'NoizeSignal', 'SignalWave'] #names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class'] dataset = pandas.read_csv(url, names=names) url = "MotionSymulationForNNet-control.csv" names = ['ShortCurve', 'ShortCurveDer', 'LongTail', 'NoizeSignal', 'SignalWave'] #names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class'] dataset_control = pandas.read_csv(url, names=names) T = np.linspace(0, 1, 1001)[:, np.newaxis] # Split-out validation dataset array = dataset.values #print array X = array[:,0:4] y = array[:,4] array = dataset_control.values #print array X_control = array[:,0:4] y_control = array[:,4] #print X #print Y #validation_size = 0.20 #seed = 7 #X_train, X_validation, Y_train, Y_validation = cross_validation.train_test_split(X, Y, test_size=validation_size, random_state=seed) ############################################################################### # Fit regression model n_neighbors = 20000 print(len(T)) print(len(X)) print(len(y)) for i, weights in enumerate(['uniform', 'distance']): knn = neighbors.KNeighborsRegressor(n_neighbors, weights=weights) y_ = knn.fit(X, y).predict(X_control) plt.subplot(2, 1, i + 1) # plt.scatter(T, y_control, c='r', label='data') #'ShortCurveDer', 'LongTail', 'NoizeSignal', 'SignalWave'] # plt.plot(T, X_control[:,0], c='k', label='ShortCurve') # plt.plot(T, X_control[:,1], c='grey', label='ShortCurveDer') # plt.plot(T, X_control[:,2], c='b', label='LongTail') plt.plot(T, X_control[:,3], c='y', label='NoizeSignal') plt.plot(T, y_, c='g', label='prediction') plt.plot(T, (y_-y_control), c='m', label='Prediction Error') plt.plot(T, (y_-X_control[:,0]), c='c', label='Shortcurve Error') plt.plot(T, y_control, c='r', label='Control Out') plt.axis('tight') plt.legend() plt.title("KNeighborsRegressor (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.show()
mit
ZenDevelopmentSystems/scikit-learn
benchmarks/bench_glm.py
295
1493
""" A comparison of different methods in GLM Data comes from a random square matrix. """ from datetime import datetime import numpy as np from sklearn import linear_model from sklearn.utils.bench import total_seconds if __name__ == '__main__': import pylab as pl n_iter = 40 time_ridge = np.empty(n_iter) time_ols = np.empty(n_iter) time_lasso = np.empty(n_iter) dimensions = 500 * np.arange(1, n_iter + 1) for i in range(n_iter): print('Iteration %s of %s' % (i, n_iter)) n_samples, n_features = 10 * i + 3, 10 * i + 3 X = np.random.randn(n_samples, n_features) Y = np.random.randn(n_samples) start = datetime.now() ridge = linear_model.Ridge(alpha=1.) ridge.fit(X, Y) time_ridge[i] = total_seconds(datetime.now() - start) start = datetime.now() ols = linear_model.LinearRegression() ols.fit(X, Y) time_ols[i] = total_seconds(datetime.now() - start) start = datetime.now() lasso = linear_model.LassoLars() lasso.fit(X, Y) time_lasso[i] = total_seconds(datetime.now() - start) pl.figure('scikit-learn GLM benchmark results') pl.xlabel('Dimensions') pl.ylabel('Time (s)') pl.plot(dimensions, time_ridge, color='r') pl.plot(dimensions, time_ols, color='g') pl.plot(dimensions, time_lasso, color='b') pl.legend(['Ridge', 'OLS', 'LassoLars'], loc='upper left') pl.axis('tight') pl.show()
bsd-3-clause
PatrickChrist/scikit-learn
benchmarks/bench_glm.py
295
1493
""" A comparison of different methods in GLM Data comes from a random square matrix. """ from datetime import datetime import numpy as np from sklearn import linear_model from sklearn.utils.bench import total_seconds if __name__ == '__main__': import pylab as pl n_iter = 40 time_ridge = np.empty(n_iter) time_ols = np.empty(n_iter) time_lasso = np.empty(n_iter) dimensions = 500 * np.arange(1, n_iter + 1) for i in range(n_iter): print('Iteration %s of %s' % (i, n_iter)) n_samples, n_features = 10 * i + 3, 10 * i + 3 X = np.random.randn(n_samples, n_features) Y = np.random.randn(n_samples) start = datetime.now() ridge = linear_model.Ridge(alpha=1.) ridge.fit(X, Y) time_ridge[i] = total_seconds(datetime.now() - start) start = datetime.now() ols = linear_model.LinearRegression() ols.fit(X, Y) time_ols[i] = total_seconds(datetime.now() - start) start = datetime.now() lasso = linear_model.LassoLars() lasso.fit(X, Y) time_lasso[i] = total_seconds(datetime.now() - start) pl.figure('scikit-learn GLM benchmark results') pl.xlabel('Dimensions') pl.ylabel('Time (s)') pl.plot(dimensions, time_ridge, color='r') pl.plot(dimensions, time_ols, color='g') pl.plot(dimensions, time_lasso, color='b') pl.legend(['Ridge', 'OLS', 'LassoLars'], loc='upper left') pl.axis('tight') pl.show()
bsd-3-clause
fyffyt/scikit-learn
benchmarks/bench_glm.py
295
1493
""" A comparison of different methods in GLM Data comes from a random square matrix. """ from datetime import datetime import numpy as np from sklearn import linear_model from sklearn.utils.bench import total_seconds if __name__ == '__main__': import pylab as pl n_iter = 40 time_ridge = np.empty(n_iter) time_ols = np.empty(n_iter) time_lasso = np.empty(n_iter) dimensions = 500 * np.arange(1, n_iter + 1) for i in range(n_iter): print('Iteration %s of %s' % (i, n_iter)) n_samples, n_features = 10 * i + 3, 10 * i + 3 X = np.random.randn(n_samples, n_features) Y = np.random.randn(n_samples) start = datetime.now() ridge = linear_model.Ridge(alpha=1.) ridge.fit(X, Y) time_ridge[i] = total_seconds(datetime.now() - start) start = datetime.now() ols = linear_model.LinearRegression() ols.fit(X, Y) time_ols[i] = total_seconds(datetime.now() - start) start = datetime.now() lasso = linear_model.LassoLars() lasso.fit(X, Y) time_lasso[i] = total_seconds(datetime.now() - start) pl.figure('scikit-learn GLM benchmark results') pl.xlabel('Dimensions') pl.ylabel('Time (s)') pl.plot(dimensions, time_ridge, color='r') pl.plot(dimensions, time_ols, color='g') pl.plot(dimensions, time_lasso, color='b') pl.legend(['Ridge', 'OLS', 'LassoLars'], loc='upper left') pl.axis('tight') pl.show()
bsd-3-clause
djgagne/scikit-learn
benchmarks/bench_glm.py
295
1493
""" A comparison of different methods in GLM Data comes from a random square matrix. """ from datetime import datetime import numpy as np from sklearn import linear_model from sklearn.utils.bench import total_seconds if __name__ == '__main__': import pylab as pl n_iter = 40 time_ridge = np.empty(n_iter) time_ols = np.empty(n_iter) time_lasso = np.empty(n_iter) dimensions = 500 * np.arange(1, n_iter + 1) for i in range(n_iter): print('Iteration %s of %s' % (i, n_iter)) n_samples, n_features = 10 * i + 3, 10 * i + 3 X = np.random.randn(n_samples, n_features) Y = np.random.randn(n_samples) start = datetime.now() ridge = linear_model.Ridge(alpha=1.) ridge.fit(X, Y) time_ridge[i] = total_seconds(datetime.now() - start) start = datetime.now() ols = linear_model.LinearRegression() ols.fit(X, Y) time_ols[i] = total_seconds(datetime.now() - start) start = datetime.now() lasso = linear_model.LassoLars() lasso.fit(X, Y) time_lasso[i] = total_seconds(datetime.now() - start) pl.figure('scikit-learn GLM benchmark results') pl.xlabel('Dimensions') pl.ylabel('Time (s)') pl.plot(dimensions, time_ridge, color='r') pl.plot(dimensions, time_ols, color='g') pl.plot(dimensions, time_lasso, color='b') pl.legend(['Ridge', 'OLS', 'LassoLars'], loc='upper left') pl.axis('tight') pl.show()
bsd-3-clause
Tong-Chen/scikit-learn
benchmarks/bench_glm.py
295
1493
""" A comparison of different methods in GLM Data comes from a random square matrix. """ from datetime import datetime import numpy as np from sklearn import linear_model from sklearn.utils.bench import total_seconds if __name__ == '__main__': import pylab as pl n_iter = 40 time_ridge = np.empty(n_iter) time_ols = np.empty(n_iter) time_lasso = np.empty(n_iter) dimensions = 500 * np.arange(1, n_iter + 1) for i in range(n_iter): print('Iteration %s of %s' % (i, n_iter)) n_samples, n_features = 10 * i + 3, 10 * i + 3 X = np.random.randn(n_samples, n_features) Y = np.random.randn(n_samples) start = datetime.now() ridge = linear_model.Ridge(alpha=1.) ridge.fit(X, Y) time_ridge[i] = total_seconds(datetime.now() - start) start = datetime.now() ols = linear_model.LinearRegression() ols.fit(X, Y) time_ols[i] = total_seconds(datetime.now() - start) start = datetime.now() lasso = linear_model.LassoLars() lasso.fit(X, Y) time_lasso[i] = total_seconds(datetime.now() - start) pl.figure('scikit-learn GLM benchmark results') pl.xlabel('Dimensions') pl.ylabel('Time (s)') pl.plot(dimensions, time_ridge, color='r') pl.plot(dimensions, time_ols, color='g') pl.plot(dimensions, time_lasso, color='b') pl.legend(['Ridge', 'OLS', 'LassoLars'], loc='upper left') pl.axis('tight') pl.show()
bsd-3-clause
amueller/pystruct
examples/plot_latent_node.py
2
3205
""" ================================= Latent Variable Hierarchical CRF ================================= Solving a 2d grid toy problem by introducing an additional layer of latent variables. """ import numpy as np import itertools from pystruct.models import GraphCRF, LatentNodeCRF from pystruct.learners import NSlackSSVM, OneSlackSSVM, LatentSSVM from pystruct.datasets import make_simple_2x2 from pystruct.utils import make_grid_edges, plot_grid import matplotlib.pyplot as plt def plot_boxes(boxes, size=4, title=""): cmap = plt.cm.gray if boxes[0].size == size * size: fig, ax = plt.subplots(1, len(boxes), figsize=(8, 0.7)) for a, x in zip(ax, boxes): plot_grid(x[:size * size].reshape(size, size), cmap=cmap, axes=a, border_color="green") else: # have hidden states fig, ax = plt.subplots(2, len(boxes), figsize=(8, 1)) for a, x in zip(ax[0], boxes): plot_grid(x[size * size:].reshape(size / 2, size / 2), cmap=cmap, axes=a, border_color="green") for a, x in zip(ax[1], boxes): plot_grid(x[:size * size].reshape(size, size), cmap=cmap, axes=a, border_color="green") fig.subplots_adjust(.01, .03, .98, .75, .2, .05) fig.suptitle(title) # learn the "easy" 2x2 boxes dataset. # a 2x2 box is placed randomly in a 4x4 grid # we add a latent variable for each 2x2 patch # that should make the model fairly simple X, Y = make_simple_2x2(seed=1) # flatten X and Y X_flat = [x.reshape(-1, 1).astype(np.float) for x in X] Y_flat = [y.ravel() for y in Y] # first, use standard graph CRF. Can't do much, high loss. crf = GraphCRF() svm = NSlackSSVM(model=crf, max_iter=200, C=1, n_jobs=1) G = [make_grid_edges(x) for x in X] X_grid_edges = list(zip(X_flat, G)) svm.fit(X_grid_edges, Y_flat) plot_boxes(svm.predict(X_grid_edges), title="Non-latent SSVM predictions") print("Training score binary grid CRF: %f" % svm.score(X_grid_edges, Y_flat)) # using one latent variable for each 2x2 rectangle latent_crf = LatentNodeCRF(n_labels=2, n_features=1, n_hidden_states=2, inference_method='lp') ssvm = OneSlackSSVM(model=latent_crf, max_iter=200, C=100, n_jobs=-1, show_loss_every=10, inference_cache=50) latent_svm = LatentSSVM(ssvm) # make edges for hidden states: edges = [] node_indices = np.arange(4 * 4).reshape(4, 4) for i, (x, y) in enumerate(itertools.product([0, 2], repeat=2)): for j in range(x, x + 2): for k in range(y, y + 2): edges.append([i + 4 * 4, node_indices[j, k]]) G = [np.vstack([make_grid_edges(x), edges]) for x in X] # Random initialization H_init = [np.hstack([y.ravel(), np.random.randint(2, 4, size=2 * 2)]) for y in Y] plot_boxes(H_init, title="Top: Random initial hidden states. Bottom: Ground" "truth labeling.") X_ = list(zip(X_flat, G, [2 * 2 for x in X_flat])) latent_svm.fit(X_, Y_flat, H_init) print("Training score with latent nodes: %f " % latent_svm.score(X_, Y_flat)) H = latent_svm.predict_latent(X_) plot_boxes(H, title="Top: Hidden states after training. Bottom: Prediction.") plt.show()
bsd-2-clause
Succeed-Together/bakfu
process/tagging/tag_treetagger.py
2
4160
# -*- coding: utf-8 -*- ''' tag_treetagger.py This module is a wrapper to TreeTagger. ''' import os import sys import string import sklearn from ...core.routes import register from bakfu.process.base import BaseProcessor DELIMITER = "<eol>" DELIMITER_NL = "\n"+DELIMITER+"\n" #TREETAGGER_HOME __errors__ = [] try: import treetaggerwrapper #import treetagger except Exception: e = sys.exc_info() __errors__.append(e) @register('tagging.treetagger', __errors__) class TreeTagger(BaseProcessor): ''' Pre-processes data with treetagger. :param: treetagger_home: Path to treetagger installation. env var TREETAGGER_HOME will also be used. default paths will be used otherwise. :Example: >>>from bakfu.examples.dataset1 import DATA >>>import nltk >>>baf = bakfu.Chain(lang="en") >>>baf.load("data.simple",DATA) >>>baf.process('tagging.treetagger') >>>baf.process('vectorize.sklearn', ... min_df = 2, ... ngram_range=(1, 3), ... #stop_words=nltk.corpus.stopwords.words(baf.get('language')), ... max_features=100, ... tokenizer=lambda x:x, ... ) ... preprocessor=lambda x:x, >>>print(baf.get_chain("vectorizer").get_feature_names()) >>>print(baf.get_chain("vectorizer_result").toarray()[0]) ''' init_args = () init_kwargs = ('tagdir',) run_args = () run_kwargs = () def __init__(self, *args, **kwargs): super(TreeTagger, self).__init__(*args, **kwargs) if 'treetagger_home' in kwargs: self.TREETAGGER_HOME = kwargs['tagdir'] else: self.TREETAGGER_HOME=os.environ.get('TREETAGGER_HOME','') def run(self, caller, *args, **kwargs): ''' TODO:CLEAN UP ''' super(TreeTagger, self).run(caller, *args, **kwargs) data_source = caller.get_chain('data_source') self.caller=caller cur_data = data_source.get_data() #run treetagger text = DELIMITER_NL.join(cur_data) #tagger = treetagger.TreeTagger( #encoding='utf8', #path_to_home=self.TREETAGGER_HOME+'/cmd/tree-tagger-english-utf8', #language=caller.get('language')) #tags = tagger.tag(text) tagger = treetaggerwrapper.TreeTagger( TAGLANG=caller.get('lang'), #TREETAGGER_HOME=self.TREETAGGER_HOME, TAGDIR=self.TREETAGGER_HOME, TAGINENC='utf-8',TAGOUTENC='utf-8') tags = tagger.TagText(text) #process treetagger output tagged_data = [] buffer = [] for tag in tags: tag = tag.split("\t") if tag[0]==DELIMITER: buffer = [ (a, b, c if c != '<unknown>' else a) for a, b, c in buffer] tagged_data.append(buffer) buffer = [] else: buffer.append(tag) tagged_data.append(buffer) result = tagged_data caller.data['result'] = result # Remove data according to filtered tags ; FILTER_TAGS = ('SENT', 'KON', 'PUN','DT') data_clean = [ filter( lambda x:x[1] not in FILTER_TAGS , line) for line in tagged_data] data_clean = [ filter( lambda x:len(x[2]) > 2 , line) for line in data_clean] #remove tags ; only keep cannonical form data_clean = [[d[2] for d in line] for line in data_clean] #reformat data to ((id,data),...) #note: data now contains lists of tokens instead of sentences uids = data_source.get_uids() new_data = zip(uids, data_clean) #Assign processed data to a new data source new_data_source = self.caller.load_unchained("data.simple", new_data) new_data_source.meta_data = {"tokenized":True} self._data.update( {'result':result, 'tagger_result':result, 'data_source':new_data_source, }) return self
bsd-3-clause
mpld3/mpld3_rewrite
test_renderer.py
1
3397
import numpy as np import matplotlib.pyplot as plt from mpld3_rewrite import fig_to_html D3_URL = 'js/d3.v3.min.js' MPLD3_URL = 'js/mpld3.v0.1.js' def test1(filename): x = np.linspace(0, 10, 50) fig, ax = plt.subplots() ax.grid(True) ax.plot(x, np.sin(x), '-ob', alpha=0.5) ax.plot([0.3, 0.5, 0.7], [0.5, 0.8, 0.5], '-ok', lw=2, transform=ax.transAxes) ax.plot(x, np.cos(x), '-^r', alpha=0.5) ax.text(5, 0, "blue moving", fontsize=18, color="blue") ax.text(0.5, 0.4, "red stationary", fontsize=18, color="red", transform=ax.transAxes) ax.set_xlabel('x label') ax.set_ylabel('y label') ax.add_patch(plt.Circle((5, 0), 0.3, ec='k', fc='g', alpha=0.2)) ax.add_patch(plt.Circle((0.3, 0.3), 0.1, ec='k', fc='y', transform=ax.transAxes, alpha=0.2)) print("writing to {0}".format(filename)) open(filename, 'w').write(fig_to_html(fig, d3_url=D3_URL, mpld3_url=MPLD3_URL)) def test2(filename): np.random.seed(0) x, y = np.random.normal(0, 1, (2, 100)) fig, ax = plt.subplots() ax.grid(True) ax.scatter(x, y, c=np.random.random(x.shape), s=100 + 300 * np.random.random(100), alpha=0.3) print("writing to {0}".format(filename)) open(filename, 'w').write(fig_to_html(fig, d3_url=D3_URL, mpld3_url=MPLD3_URL)) def test3(filename): fig, ax = plt.subplots() x = np.linspace(-2, 2, 20) y = x[:, None] X = np.zeros((20, 20, 4)) X[:, :, 0] = np.exp(- (x - 1) ** 2 - (y) ** 2) X[:, :, 1] = np.exp(- (x + 0.71) ** 2 - (y - 0.71) ** 2) X[:, :, 2] = np.exp(- (x + 0.71) ** 2 - (y + 0.71) ** 2) X[:, :, 3] = np.exp(-0.25 * (x ** 2 + y ** 2)) im = ax.imshow(X, extent=(10, 20, 10, 20), origin='lower', zorder=1, interpolation='nearest') fig.colorbar(im, ax=ax) ax.text(16, 16, "overlaid text") ax.text(16, 15, "covered text", zorder=0) ax.set_title('An Image', size=20) ax.set_xlim(9, 21) ax.set_ylim(9, 21) print("writing to {0}".format(filename)) open(filename, 'w').write(fig_to_html(fig, d3_url=D3_URL, mpld3_url=MPLD3_URL)) def test4(filename): from sklearn.datasets import load_iris data = load_iris() X = data.data y = data.target # dither the data for clearer plotting X += 0.1 * np.random.random(X.shape) fig, ax = plt.subplots(4, 4, sharex="col", sharey="row", figsize=(8, 8)) fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95, hspace=0.1, wspace=0.1) for i in range(4): for j in range(4): ax[3 - i, j].scatter(X[:, j], X[:, i], c=y, s=40, alpha=0.3) # remove tick labels for axi in ax.flat: for axis in [axi.xaxis, axi.yaxis]: axis.set_major_formatter(plt.NullFormatter()) print("writing to {0}".format(filename)) open(filename, 'w').write(fig_to_html(fig, d3_url=D3_URL, mpld3_url=MPLD3_URL)) if __name__ == '__main__': test1("renderer_test-1.html") test2("renderer_test-2.html") test3("renderer_test-3.html") test4("renderer_test-4.html")
bsd-3-clause
rasata/pypes
ui/pypesvds/lib/PypesInterface.py
4
12978
from pypes.pipeline import Dataflow import pkg_resources import logging import os import json import traceback from pylons import config log = logging.getLogger(__name__) ENTRYPOINT = 'pypesvds.plugins' PLUGIN_DIR = os.path.join(os.path.dirname(__file__), '../plugins') def init_plugins(): log.info('Initializing Studio Plugins from %s' % config['plugin_dir']) try: if not os.path.exists(config['plugin_dir']): os.mkdir(config['plugin_dir']) except: log.info('Unable to create plugins directory: %s' % config['plugin_dir']) eggs, errors = pkg_resources.working_set.find_plugins(pkg_resources.Environment([PLUGIN_DIR, config['plugin_dir']])) map(pkg_resources.working_set.add, eggs) plugins = {} for egg in eggs: egg.activate() for name in egg.get_entry_map(ENTRYPOINT): entry_point = egg.get_entry_info(ENTRYPOINT, name) cls = entry_point.load() if not hasattr(cls, '__metatype__'): cls.__metatype__ = '' if cls.__metatype__ in plugins: d = plugins[cls.__metatype__] d[cls.__name__] = cls plugins[cls.__metatype__] = d else: d = {} d[cls.__name__] = cls plugins[cls.__metatype__] = d return plugins class DataFlowGraph(object): def __init__(self): self._workflow = None self._config = None self._graph = None # load plugins self.plugins = init_plugins() self.plugin_registry = {} # load each type here... try: self._filters = self.plugins['FILTER'].keys() except: self._filters = [] else: self.plugin_registry.update(self.plugins['FILTER']) try: self._transformers = self.plugins['TRANSFORMER'].keys() except: self._transformers = [] else: self.plugin_registry.update(self.plugins['TRANSFORMER']) try: self._operators = self.plugins['OPERATOR'].keys() except: self._operators = [] else: self.plugin_registry.update(self.plugins['OPERATOR']) try: self._extractors = self.plugins['EXTRACTOR'].keys() except: self._extractors = [] else: self.plugin_registry.update(self.plugins['EXTRACTOR']) try: self._input_adapters = self.plugins['ADAPTER'].keys() except: self._input_adapters = [] else: self.plugin_registry.update(self.plugins['ADAPTER']) try: self._output_adapters = self.plugins['PUBLISHER'].keys() except: self._output_adapter = [] else: self.plugin_registry.update(self.plugins['PUBLISHER']) self._registered_instances = {} fp = None try: fp = open('projects/default.txt', 'r') jsconfig = fp.read() config = json.loads(jsconfig) except: pass else: self.loadConfig(config) finally: if fp is not None: fp.close() def newInstance(self, className): try: className = className.replace(' ', '') cls = self.plugin_registry[className] this_instance = cls() except: # need to complain about invalid className log.error('Failed to create component %s - Invalid Classname' % className) log.debug('Plugin Registry Dump:', self.plugin_registry) return None else: key = str(hash(this_instance)) self._registered_instances[key] = this_instance return key def removeInstance(self, key): try: self._registered_instances[key] except: log.error('Failed to delete component %s - Instance not found' % key) log.debug('Registered Instances: %s' % self._registered_instances) else: self._registered_instances.pop(key) def Inputs(self, key): #return self._registered_instances[key].Inputs # needs error handling here... return self._registered_instances[key].get_in_ports() def Outputs(self, key): #return self._registered_instances[key].Outputs return self._registered_instances[key].get_out_ports() def Instance(self, key): return self._registered_instances[key] def update(self, jsconfig): statusText = 'Unidentified Error Saving Project' # close any existing workflow if self.Workflow is not None: try: self.Workflow.close() except: pass # set the new updated config from the UI try: self._config = json.loads(jsconfig) except: statusText = 'This Project Configuration is Bad' else: # Check for valid input component (in_status, inputs) = self.config_has_valid_input() (out_status, outputs) = self.config_has_valid_output() if in_status is False: statusText = 'Unable To Save Configuration<br><br>No Valid Adapter Specified<br>.' # Check for valid output component elif out_status is False: statusText = 'Unable To Save Configuration<br><br>No Valid Publisher Specified<br>.' else: # translate the current config into a usable DAG result = self.translate() if result is False: statusText = 'Error Translating Supplied Configuration' # check the connectivity of the graph elif not self.is_connected(inputs, outputs): statusText = 'Unable To Save Project<br><br>Found Broken Path Between Adapter and Publisher.<br>' else: # Build the new workflow try: try: # get the core count from the config cores = int(config['cores']) # has to be at least 1 if cores < 1: cores = 1 except: log.warning('Could not get core count from config.') traceback.print_exc() log.warning('Defaulting to core count of 1') cores = 1 #log.info('Core count: %s' % cores) self.Workflow = Dataflow(self.Graph, cores) except: statusText = 'Error Constructing Workflow' else: statusText = 'Project Successfully Saved' # Save config here... fp = None try: fp = open('projects/default.txt', 'w') fp.write(jsconfig) except: log.error('Unable to save configuration') else: log.info('Configuration successfully saved') finally: if fp is not None: fp.close() return statusText def is_connected(self, starts, ends): for start in starts: for end in ends: connected = self.find_path(self.Graph, self._registered_instances[start], self._registered_instances[end]) if connected is None: return False return True def find_path(self, graph, start, end, path=[]): path = path + [start] if start == end: return path if not graph.has_key(start): return None for node in graph[start]: if node not in path: newpath = self.find_path(graph, node, end, path) if newpath: return newpath return None def _get_workflow(self): return self._workflow def _set_workflow(self, wf): self._workflow = wf def _get_config(self): return self._config def _set_config(self, config): self._config = config def _get_graph(self): return self._graph def _set_graph(self, graph): self._graph = graph def config_has_valid_input(self): valid_input = False valid_inputs = [] for container in self.Config['containers']: if container['type'] == 'Adapters': valid_input = True valid_inputs.append(container['cid']) return (valid_input, valid_inputs) def config_has_valid_output(self): valid_output = False valid_outputs = [] for container in self.Config['containers']: if container['type'] == 'Publishers': valid_output = True valid_outputs.append(container['cid']) return (valid_output, valid_outputs) def translate(self): status = None G = {} for entry in self.Config['wires']: try: source_container_id = entry['src']['moduleId'] target_container_id = entry['tgt']['moduleId'] input = entry['tgt']['termid'] output = entry['src']['termid'] source_key = self.Config['containers'][source_container_id]['cid'] target_key = self.Config['containers'][target_container_id]['cid'] source = self._registered_instances[source_key] target = self._registered_instances[target_key] except: status = False else: if G.has_key(source): current_children = G[source] current_children[target] = (output, input) G[source] = current_children else: G[source] = {target:(output, input)} status = True # set the graph self.Graph = G return status def send(self, doc): response = {} try: if self.Workflow is not None: self.Workflow.send(doc) response['status'] = 'success' else: log.error('No workflow defined') response['status'] = 'failure' response['error'] = 'No Active Workflow Defined' except: response['status'] = 'failure' response['error'] = 'Unexpected Error Running Project' return response def _get_filters(self): self._filters.sort() return self._filters def _get_operators(self): self._operators.sort() return self._operators def _get_extractors(self): self._extractors.sort() return self._extractors def _get_input_adapters(self): self._input_adapters.sort() return self._input_adapters def _get_output_adapters(self): self._output_adapters.sort() return self._output_adapters def _get_transformers(self): self._transformers.sort() return self._transformers def getComponentConfig(self, id): try: params = self._registered_instances[id].get_parameters() except: log.error('Could not get component with id %s' % id) params = 'null' log.debug('Component Parameters: %s' % params) return params def setParam(self, id, param, value): try: self._registered_instances[id].set_parameter(param, value) log.debug('Setting Parameters: %s = %s' % (param, value)) except: log.error('Unable to set paramaters: %s' % (param, value)) # class properties Config = property(_get_config, _set_config) Graph = property(_get_graph, _set_graph) Workflow = property(_get_workflow, _set_workflow) Filters = property(_get_filters) Transformers = property(_get_transformers) Extractors = property(_get_extractors) InputAdapters = property(_get_input_adapters) OutputAdapters = property(_get_output_adapters) Operators = property(_get_operators) def loadConfig(self, config): for mod in config['containers']: this_mod = mod['filterName'] id = self.newInstance(this_mod) mod['cid'] = id try: for key, val in mod['params'].items(): self.setParam(id, key, val[0]) except: pass self.update(json.dumps(config))
apache-2.0
nikolas/lettuce
tests/integration/lib/Django-1.2.5/django/contrib/gis/utils/geoip.py
316
14811
""" This module houses the GeoIP object, a ctypes wrapper for the MaxMind GeoIP(R) C API (http://www.maxmind.com/app/c). This is an alternative to the GPL licensed Python GeoIP interface provided by MaxMind. GeoIP(R) is a registered trademark of MaxMind, LLC of Boston, Massachusetts. For IP-based geolocation, this module requires the GeoLite Country and City datasets, in binary format (CSV will not work!). The datasets may be downloaded from MaxMind at http://www.maxmind.com/download/geoip/database/. Grab GeoIP.dat.gz and GeoLiteCity.dat.gz, and unzip them in the directory corresponding to settings.GEOIP_PATH. See the GeoIP docstring and examples below for more details. TODO: Verify compatibility with Windows. Example: >>> from django.contrib.gis.utils import GeoIP >>> g = GeoIP() >>> g.country('google.com') {'country_code': 'US', 'country_name': 'United States'} >>> g.city('72.14.207.99') {'area_code': 650, 'city': 'Mountain View', 'country_code': 'US', 'country_code3': 'USA', 'country_name': 'United States', 'dma_code': 807, 'latitude': 37.419200897216797, 'longitude': -122.05740356445312, 'postal_code': '94043', 'region': 'CA'} >>> g.lat_lon('salon.com') (37.789798736572266, -122.39420318603516) >>> g.lon_lat('uh.edu') (-95.415199279785156, 29.77549934387207) >>> g.geos('24.124.1.80').wkt 'POINT (-95.2087020874023438 39.0392990112304688)' """ import os, re from ctypes import c_char_p, c_float, c_int, Structure, CDLL, POINTER from ctypes.util import find_library from django.conf import settings if not settings.configured: settings.configure() # Creating the settings dictionary with any settings, if needed. GEOIP_SETTINGS = dict((key, getattr(settings, key)) for key in ('GEOIP_PATH', 'GEOIP_LIBRARY_PATH', 'GEOIP_COUNTRY', 'GEOIP_CITY') if hasattr(settings, key)) lib_path = GEOIP_SETTINGS.get('GEOIP_LIBRARY_PATH', None) # GeoIP Exception class. class GeoIPException(Exception): pass # The shared library for the GeoIP C API. May be downloaded # from http://www.maxmind.com/download/geoip/api/c/ if lib_path: lib_name = None else: # TODO: Is this really the library name for Windows? lib_name = 'GeoIP' # Getting the path to the GeoIP library. if lib_name: lib_path = find_library(lib_name) if lib_path is None: raise GeoIPException('Could not find the GeoIP library (tried "%s"). ' 'Try setting GEOIP_LIBRARY_PATH in your settings.' % lib_name) lgeoip = CDLL(lib_path) # Regular expressions for recognizing IP addresses and the GeoIP # free database editions. ipregex = re.compile(r'^(?P<w>\d\d?\d?)\.(?P<x>\d\d?\d?)\.(?P<y>\d\d?\d?)\.(?P<z>\d\d?\d?)$') free_regex = re.compile(r'^GEO-\d{3}FREE') lite_regex = re.compile(r'^GEO-\d{3}LITE') #### GeoIP C Structure definitions #### class GeoIPRecord(Structure): _fields_ = [('country_code', c_char_p), ('country_code3', c_char_p), ('country_name', c_char_p), ('region', c_char_p), ('city', c_char_p), ('postal_code', c_char_p), ('latitude', c_float), ('longitude', c_float), # TODO: In 1.4.6 this changed from `int dma_code;` to # `union {int metro_code; int dma_code;};`. Change # to a `ctypes.Union` in to accomodate in future when # pre-1.4.6 versions are no longer distributed. ('dma_code', c_int), ('area_code', c_int), # TODO: The following structure fields were added in 1.4.3 -- # uncomment these fields when sure previous versions are no # longer distributed by package maintainers. #('charset', c_int), #('continent_code', c_char_p), ] class GeoIPTag(Structure): pass #### ctypes function prototypes #### RECTYPE = POINTER(GeoIPRecord) DBTYPE = POINTER(GeoIPTag) # For retrieving records by name or address. def record_output(func): func.restype = RECTYPE return func rec_by_addr = record_output(lgeoip.GeoIP_record_by_addr) rec_by_name = record_output(lgeoip.GeoIP_record_by_name) # For opening & closing GeoIP database files. geoip_open = lgeoip.GeoIP_open geoip_open.restype = DBTYPE geoip_close = lgeoip.GeoIP_delete geoip_close.argtypes = [DBTYPE] geoip_close.restype = None # String output routines. def string_output(func): func.restype = c_char_p return func geoip_dbinfo = string_output(lgeoip.GeoIP_database_info) cntry_code_by_addr = string_output(lgeoip.GeoIP_country_code_by_addr) cntry_code_by_name = string_output(lgeoip.GeoIP_country_code_by_name) cntry_name_by_addr = string_output(lgeoip.GeoIP_country_name_by_addr) cntry_name_by_name = string_output(lgeoip.GeoIP_country_name_by_name) #### GeoIP class #### class GeoIP(object): # The flags for GeoIP memory caching. # GEOIP_STANDARD - read database from filesystem, uses least memory. # # GEOIP_MEMORY_CACHE - load database into memory, faster performance # but uses more memory # # GEOIP_CHECK_CACHE - check for updated database. If database has been updated, # reload filehandle and/or memory cache. # # GEOIP_INDEX_CACHE - just cache # the most frequently accessed index portion of the database, resulting # in faster lookups than GEOIP_STANDARD, but less memory usage than # GEOIP_MEMORY_CACHE - useful for larger databases such as # GeoIP Organization and GeoIP City. Note, for GeoIP Country, Region # and Netspeed databases, GEOIP_INDEX_CACHE is equivalent to GEOIP_MEMORY_CACHE # GEOIP_STANDARD = 0 GEOIP_MEMORY_CACHE = 1 GEOIP_CHECK_CACHE = 2 GEOIP_INDEX_CACHE = 4 cache_options = dict((opt, None) for opt in (0, 1, 2, 4)) _city_file = '' _country_file = '' # Initially, pointers to GeoIP file references are NULL. _city = None _country = None def __init__(self, path=None, cache=0, country=None, city=None): """ Initializes the GeoIP object, no parameters are required to use default settings. Keyword arguments may be passed in to customize the locations of the GeoIP data sets. * path: Base directory to where GeoIP data is located or the full path to where the city or country data files (*.dat) are located. Assumes that both the city and country data sets are located in this directory; overrides the GEOIP_PATH settings attribute. * cache: The cache settings when opening up the GeoIP datasets, and may be an integer in (0, 1, 2, 4) corresponding to the GEOIP_STANDARD, GEOIP_MEMORY_CACHE, GEOIP_CHECK_CACHE, and GEOIP_INDEX_CACHE `GeoIPOptions` C API settings, respectively. Defaults to 0, meaning that the data is read from the disk. * country: The name of the GeoIP country data file. Defaults to 'GeoIP.dat'; overrides the GEOIP_COUNTRY settings attribute. * city: The name of the GeoIP city data file. Defaults to 'GeoLiteCity.dat'; overrides the GEOIP_CITY settings attribute. """ # Checking the given cache option. if cache in self.cache_options: self._cache = self.cache_options[cache] else: raise GeoIPException('Invalid caching option: %s' % cache) # Getting the GeoIP data path. if not path: path = GEOIP_SETTINGS.get('GEOIP_PATH', None) if not path: raise GeoIPException('GeoIP path must be provided via parameter or the GEOIP_PATH setting.') if not isinstance(path, basestring): raise TypeError('Invalid path type: %s' % type(path).__name__) if os.path.isdir(path): # Constructing the GeoIP database filenames using the settings # dictionary. If the database files for the GeoLite country # and/or city datasets exist, then try and open them. country_db = os.path.join(path, country or GEOIP_SETTINGS.get('GEOIP_COUNTRY', 'GeoIP.dat')) if os.path.isfile(country_db): self._country = geoip_open(country_db, cache) self._country_file = country_db city_db = os.path.join(path, city or GEOIP_SETTINGS.get('GEOIP_CITY', 'GeoLiteCity.dat')) if os.path.isfile(city_db): self._city = geoip_open(city_db, cache) self._city_file = city_db elif os.path.isfile(path): # Otherwise, some detective work will be needed to figure # out whether the given database path is for the GeoIP country # or city databases. ptr = geoip_open(path, cache) info = geoip_dbinfo(ptr) if lite_regex.match(info): # GeoLite City database detected. self._city = ptr self._city_file = path elif free_regex.match(info): # GeoIP Country database detected. self._country = ptr self._country_file = path else: raise GeoIPException('Unable to recognize database edition: %s' % info) else: raise GeoIPException('GeoIP path must be a valid file or directory.') def __del__(self): # Cleaning any GeoIP file handles lying around. if self._country: geoip_close(self._country) if self._city: geoip_close(self._city) def _check_query(self, query, country=False, city=False, city_or_country=False): "Helper routine for checking the query and database availability." # Making sure a string was passed in for the query. if not isinstance(query, basestring): raise TypeError('GeoIP query must be a string, not type %s' % type(query).__name__) # Extra checks for the existence of country and city databases. if city_or_country and not (self._country or self._city): raise GeoIPException('Invalid GeoIP country and city data files.') elif country and not self._country: raise GeoIPException('Invalid GeoIP country data file: %s' % self._country_file) elif city and not self._city: raise GeoIPException('Invalid GeoIP city data file: %s' % self._city_file) def city(self, query): """ Returns a dictionary of city information for the given IP address or Fully Qualified Domain Name (FQDN). Some information in the dictionary may be undefined (None). """ self._check_query(query, city=True) if ipregex.match(query): # If an IP address was passed in ptr = rec_by_addr(self._city, c_char_p(query)) else: # If a FQDN was passed in. ptr = rec_by_name(self._city, c_char_p(query)) # Checking the pointer to the C structure, if valid pull out elements # into a dicionary and return. if bool(ptr): record = ptr.contents return dict((tup[0], getattr(record, tup[0])) for tup in record._fields_) else: return None def country_code(self, query): "Returns the country code for the given IP Address or FQDN." self._check_query(query, city_or_country=True) if self._country: if ipregex.match(query): return cntry_code_by_addr(self._country, query) else: return cntry_code_by_name(self._country, query) else: return self.city(query)['country_code'] def country_name(self, query): "Returns the country name for the given IP Address or FQDN." self._check_query(query, city_or_country=True) if self._country: if ipregex.match(query): return cntry_name_by_addr(self._country, query) else: return cntry_name_by_name(self._country, query) else: return self.city(query)['country_name'] def country(self, query): """ Returns a dictonary with with the country code and name when given an IP address or a Fully Qualified Domain Name (FQDN). For example, both '24.124.1.80' and 'djangoproject.com' are valid parameters. """ # Returning the country code and name return {'country_code' : self.country_code(query), 'country_name' : self.country_name(query), } #### Coordinate retrieval routines #### def coords(self, query, ordering=('longitude', 'latitude')): cdict = self.city(query) if cdict is None: return None else: return tuple(cdict[o] for o in ordering) def lon_lat(self, query): "Returns a tuple of the (longitude, latitude) for the given query." return self.coords(query) def lat_lon(self, query): "Returns a tuple of the (latitude, longitude) for the given query." return self.coords(query, ('latitude', 'longitude')) def geos(self, query): "Returns a GEOS Point object for the given query." ll = self.lon_lat(query) if ll: from django.contrib.gis.geos import Point return Point(ll, srid=4326) else: return None #### GeoIP Database Information Routines #### def country_info(self): "Returns information about the GeoIP country database." if self._country is None: ci = 'No GeoIP Country data in "%s"' % self._country_file else: ci = geoip_dbinfo(self._country) return ci country_info = property(country_info) def city_info(self): "Retuns information about the GeoIP city database." if self._city is None: ci = 'No GeoIP City data in "%s"' % self._city_file else: ci = geoip_dbinfo(self._city) return ci city_info = property(city_info) def info(self): "Returns information about all GeoIP databases in use." return 'Country:\n\t%s\nCity:\n\t%s' % (self.country_info, self.city_info) info = property(info) #### Methods for compatibility w/the GeoIP-Python API. #### @classmethod def open(cls, full_path, cache): return GeoIP(full_path, cache) def _rec_by_arg(self, arg): if self._city: return self.city(arg) else: return self.country(arg) region_by_addr = city region_by_name = city record_by_addr = _rec_by_arg record_by_name = _rec_by_arg country_code_by_addr = country_code country_code_by_name = country_code country_name_by_addr = country_name country_name_by_name = country_name
gpl-3.0
LiaoPan/scikit-learn
sklearn/datasets/olivetti_faces.py
197
4688
"""Modified Olivetti faces dataset. The original database was available from (now defunct) http://www.uk.research.att.com/facedatabase.html The version retrieved here comes in MATLAB format from the personal web page of Sam Roweis: http://www.cs.nyu.edu/~roweis/ There are ten different images of each of 40 distinct subjects. For some subjects, the images were taken at different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial details (glasses / no glasses). All the images were taken against a dark homogeneous background with the subjects in an upright, frontal position (with tolerance for some side movement). The original dataset consisted of 92 x 112, while the Roweis version consists of 64x64 images. """ # Copyright (c) 2011 David Warde-Farley <wardefar at iro dot umontreal dot ca> # License: BSD 3 clause from io import BytesIO from os.path import join, exists from os import makedirs try: # Python 2 import urllib2 urlopen = urllib2.urlopen except ImportError: # Python 3 import urllib.request urlopen = urllib.request.urlopen import numpy as np from scipy.io.matlab import loadmat from .base import get_data_home, Bunch from ..utils import check_random_state from ..externals import joblib DATA_URL = "http://cs.nyu.edu/~roweis/data/olivettifaces.mat" TARGET_FILENAME = "olivetti.pkz" # Grab the module-level docstring to use as a description of the # dataset MODULE_DOCS = __doc__ def fetch_olivetti_faces(data_home=None, shuffle=False, random_state=0, download_if_missing=True): """Loader for the Olivetti faces data-set from AT&T. Read more in the :ref:`User Guide <olivetti_faces>`. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. shuffle : boolean, optional If True the order of the dataset is shuffled to avoid having images of the same person grouped. download_if_missing: optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. random_state : optional, integer or RandomState object The seed or the random number generator used to shuffle the data. Returns ------- An object with the following attributes: data : numpy array of shape (400, 4096) Each row corresponds to a ravelled face image of original size 64 x 64 pixels. images : numpy array of shape (400, 64, 64) Each row is a face image corresponding to one of the 40 subjects of the dataset. target : numpy array of shape (400, ) Labels associated to each face image. Those labels are ranging from 0-39 and correspond to the Subject IDs. DESCR : string Description of the modified Olivetti Faces Dataset. Notes ------ This dataset consists of 10 pictures each of 40 individuals. The original database was available from (now defunct) http://www.uk.research.att.com/facedatabase.html The version retrieved here comes in MATLAB format from the personal web page of Sam Roweis: http://www.cs.nyu.edu/~roweis/ """ data_home = get_data_home(data_home=data_home) if not exists(data_home): makedirs(data_home) if not exists(join(data_home, TARGET_FILENAME)): print('downloading Olivetti faces from %s to %s' % (DATA_URL, data_home)) fhandle = urlopen(DATA_URL) buf = BytesIO(fhandle.read()) mfile = loadmat(buf) faces = mfile['faces'].T.copy() joblib.dump(faces, join(data_home, TARGET_FILENAME), compress=6) del mfile else: faces = joblib.load(join(data_home, TARGET_FILENAME)) # We want floating point data, but float32 is enough (there is only # one byte of precision in the original uint8s anyway) faces = np.float32(faces) faces = faces - faces.min() faces /= faces.max() faces = faces.reshape((400, 64, 64)).transpose(0, 2, 1) # 10 images per class, 400 images total, each class is contiguous. target = np.array([i // 10 for i in range(400)]) if shuffle: random_state = check_random_state(random_state) order = random_state.permutation(len(faces)) faces = faces[order] target = target[order] return Bunch(data=faces.reshape(len(faces), -1), images=faces, target=target, DESCR=MODULE_DOCS)
bsd-3-clause
LiaoPan/scikit-learn
examples/cluster/plot_mean_shift.py
348
1793
""" ============================================= A demo of the mean-shift clustering algorithm ============================================= Reference: Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ print(__doc__) import numpy as np from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn.datasets.samples_generator import make_blobs ############################################################################### # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6) ############################################################################### # Compute clustering with MeanShift # The following bandwidth can be automatically detected using bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500) ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) ms.fit(X) labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) print("number of estimated clusters : %d" % n_clusters_) ############################################################################### # Plot result import matplotlib.pyplot as plt from itertools import cycle plt.figure(1) plt.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): my_members = labels == k cluster_center = cluster_centers[k] plt.plot(X[my_members, 0], X[my_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
ZenDevelopmentSystems/scikit-learn
examples/semi_supervised/plot_label_propagation_structure.py
246
2432
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ print(__doc__) # Authors: Clay Woolam <clay@woolam.org> # Andreas Mueller <amueller@ais.uni-bonn.de> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from sklearn.semi_supervised import label_propagation from sklearn.datasets import make_circles # generate ring with inner box n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = -np.ones(n_samples) labels[0] = outer labels[-1] = inner ############################################################################### # Learn with LabelSpreading label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0) label_spread.fit(X, labels) ############################################################################### # Plot output labels output_labels = label_spread.transduction_ plt.figure(figsize=(8.5, 4)) plt.subplot(1, 2, 1) plot_outer_labeled, = plt.plot(X[labels == outer, 0], X[labels == outer, 1], 'rs') plot_unlabeled, = plt.plot(X[labels == -1, 0], X[labels == -1, 1], 'g.') plot_inner_labeled, = plt.plot(X[labels == inner, 0], X[labels == inner, 1], 'bs') plt.legend((plot_outer_labeled, plot_inner_labeled, plot_unlabeled), ('Outer Labeled', 'Inner Labeled', 'Unlabeled'), 'upper left', numpoints=1, shadow=False) plt.title("Raw data (2 classes=red and blue)") plt.subplot(1, 2, 2) output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plot_outer, = plt.plot(X[outer_numbers, 0], X[outer_numbers, 1], 'rs') plot_inner, = plt.plot(X[inner_numbers, 0], X[inner_numbers, 1], 'bs') plt.legend((plot_outer, plot_inner), ('Outer Learned', 'Inner Learned'), 'upper left', numpoints=1, shadow=False) plt.title("Labels learned with Label Spreading (KNN)") plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92) plt.show()
bsd-3-clause
fyffyt/scikit-learn
examples/semi_supervised/plot_label_propagation_structure.py
246
2432
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ print(__doc__) # Authors: Clay Woolam <clay@woolam.org> # Andreas Mueller <amueller@ais.uni-bonn.de> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from sklearn.semi_supervised import label_propagation from sklearn.datasets import make_circles # generate ring with inner box n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = -np.ones(n_samples) labels[0] = outer labels[-1] = inner ############################################################################### # Learn with LabelSpreading label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0) label_spread.fit(X, labels) ############################################################################### # Plot output labels output_labels = label_spread.transduction_ plt.figure(figsize=(8.5, 4)) plt.subplot(1, 2, 1) plot_outer_labeled, = plt.plot(X[labels == outer, 0], X[labels == outer, 1], 'rs') plot_unlabeled, = plt.plot(X[labels == -1, 0], X[labels == -1, 1], 'g.') plot_inner_labeled, = plt.plot(X[labels == inner, 0], X[labels == inner, 1], 'bs') plt.legend((plot_outer_labeled, plot_inner_labeled, plot_unlabeled), ('Outer Labeled', 'Inner Labeled', 'Unlabeled'), 'upper left', numpoints=1, shadow=False) plt.title("Raw data (2 classes=red and blue)") plt.subplot(1, 2, 2) output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plot_outer, = plt.plot(X[outer_numbers, 0], X[outer_numbers, 1], 'rs') plot_inner, = plt.plot(X[inner_numbers, 0], X[inner_numbers, 1], 'bs') plt.legend((plot_outer, plot_inner), ('Outer Learned', 'Inner Learned'), 'upper left', numpoints=1, shadow=False) plt.title("Labels learned with Label Spreading (KNN)") plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92) plt.show()
bsd-3-clause
seckcoder/lang-learn
python/sklearn/sklearn/ensemble/partial_dependence.py
2
14655
"""Partial dependence plots for tree ensembles. """ # Authors: Peter Prettenhofer # License: BSD Style. from itertools import count, izip import numbers import numpy as np from scipy.stats.mstats import mquantiles from ..utils.extmath import cartesian from ..externals.joblib import Parallel, delayed from ..utils import array2d from ..tree._tree import DTYPE from ._gradient_boosting import _partial_dependence_tree from .gradient_boosting import BaseGradientBoosting def _grid_from_X(X, percentiles=(0.05, 0.95), grid_resolution=100): """Generate a grid of points based on the ``percentiles of ``X``. The grid is generated by placing ``grid_resolution`` equally spaced points between the ``percentiles`` of each column of ``X``. Parameters ---------- X : ndarray The data percentiles : tuple of floats The percentiles which are used to construct the extreme values of the grid axes. grid_resolution : int The number of equally spaced points that are placed on the grid. Returns ------- grid : ndarray All data points on the grid; ``grid.shape[1] == X.shape[1]`` and ``grid.shape[0] == grid_resolution * X.shape[1]``. axes : seq of ndarray The axes with which the grid has been created. """ if len(percentiles) != 2: raise ValueError('percentile must be tuple of len 2') if not all(map(lambda x: 0.0 <= x <= 1.0, percentiles)): raise ValueError('percentile values must be in [0, 1]') axes = [] for col in range(X.shape[1]): uniques = np.unique(X[:, col]) if uniques.shape[0] < grid_resolution: # feature has low resolution use unique vals axis = uniques else: emp_percentiles = mquantiles(X, prob=percentiles, axis=0) # create axis based on percentiles and grid resolution axis = np.linspace(emp_percentiles[0, col], emp_percentiles[1, col], num=grid_resolution, endpoint=True) axes.append(axis) return cartesian(axes), axes def partial_dependence(gbrt, target_variables, grid=None, X=None, percentiles=(0.05, 0.95), grid_resolution=100): """Partial dependence of ``target_variables``. Partial dependence plots show the dependence between the joint values of the ``target_variables`` and the function represented by the ``gbrt``. Parameters ---------- gbrt : BaseGradientBoosting A fitted gradient boosting model. target_variables : array-like, dtype=int The target features for which the partial dependecy should be computed (size should be smaller than 3 for visual renderings). grid : array-like, shape=(n_points, len(target_variables)) The grid of ``target_variables`` values for which the partial dependecy should be evaluted (either ``grid`` or ``X`` must be specified). X : array-like, shape=(n_samples, n_features) The data on which ``gbrt`` was trained. It is used to generate a ``grid`` for the ``target_variables``. The ``grid`` comprises ``grid_resolution`` equally spaced points between the two ``percentiles``. percentiles : (low, high), default=(0.05, 0.95) The lower and upper percentile used create the extreme values for the ``grid``. Only if ``X`` is not None. grid_resolution : int, default=100 The number of equally spaced points on the ``grid``. Returns ------- pdp : array, shape=(n_classes, n_points) The partial dependence function evaluated on the ``grid``. For regression and binary classification ``n_classes==1``. axes : seq of ndarray or None The axes with which the grid has been created or None if the grid has been given. Examples -------- >>> samples = [[0, 0, 2], [1, 0, 0]] >>> labels = [0, 1] >>> from sklearn.ensemble import GradientBoostingClassifier >>> gb = GradientBoostingClassifier().fit(samples, labels) >>> kwargs = dict(X=samples, percentiles=(0, 1), grid_resolution=2) >>> partial_dependence(gb, [0], **kwargs) (array([[-10.72892297, 10.72892297]]), [array([ 0., 1.])]) """ if not isinstance(gbrt, BaseGradientBoosting): raise ValueError('gbrt has to be an instance of BaseGradientBoosting') if gbrt.estimators_.shape[0] == 0: raise ValueError('Call %s.fit before partial_dependence' % gbrt.__class__.__name__) if (grid is None and X is None) or (grid is not None and X is not None): raise ValueError('Either grid or X must be specified') target_variables = np.asarray(target_variables, dtype=np.int32, order='C').ravel() if any([not (0 <= fx < gbrt.n_features) for fx in target_variables]): raise ValueError('target_variables must be in [0, %d]' % (gbrt.n_features - 1)) if X is not None: X = array2d(X, dtype=DTYPE, order='C') grid, axes = _grid_from_X(X[:, target_variables], percentiles, grid_resolution) else: assert grid is not None # dont return axes if grid is given axes = None # grid must be 2d if grid.ndim == 1: grid = grid[:, np.newaxis] if grid.ndim != 2: raise ValueError('grid must be 2d but is %dd' % grid.ndim) grid = np.asarray(grid, dtype=DTYPE, order='C') assert grid.shape[1] == target_variables.shape[0] n_trees_per_stage = gbrt.estimators_.shape[1] n_estimators = gbrt.estimators_.shape[0] pdp = np.zeros((n_trees_per_stage, grid.shape[0],), dtype=np.float64, order='C') for stage in xrange(n_estimators): for k in range(n_trees_per_stage): tree = gbrt.estimators_[stage, k].tree_ _partial_dependence_tree(tree, grid, target_variables, gbrt.learning_rate, pdp[k]) return pdp, axes def plot_partial_dependence(gbrt, X, features, feature_names=None, label=None, n_cols=3, grid_resolution=100, percentiles=(0.05, 0.95), n_jobs=1, verbose=0, ax=None, line_kw=None, contour_kw=None, **fig_kw): """Partial dependence plots for ``features``. The ``len(features)`` plots are aranged in a grid with ``n_cols`` columns. Two-way partial dependence plots are plotted as contour plots. Parameters ---------- gbrt : BaseGradientBoosting A fitted gradient boosting model. X : array-like, shape=(n_samples, n_features) The data on which ``gbrt`` was trained. features : seq of tuples or ints If seq[i] is an int or a tuple with one int value, a one-way PDP is created; if seq[i] is a tuple of two ints, a two-way PDP is created. feature_names : seq of str Name of each feature; feature_names[i] holds the name of the feature with index i. label : object The class label for which the PDPs should be computed. Only if gbrt is a multi-class model. Must be in gbrt.classes_ . n_cols : int The number of columns in the grid plot (default: 3). percentiles : (low, high), default=(0.05, 0.95) The lower and upper percentile used create the extreme values for the PDP axes. grid_resolution : int, default=100 The number of equally spaced points on the axes. n_jobs : int The number of CPUs to use to compute the PDs. -1 means 'all CPUs'. Defaults to 1. verbose : int Verbose output during PD computations. Defaults to 0. ax : Matplotlib axis object, default None An axis object onto which the plots will be drawn. line_kw : dict Dict with keywords passed to the ``pylab.plot`` call. For one-way partial dependence plots. contour_kw : dict Dict with keywords passed to the ``pylab.plot`` call. For two-way partial dependence plots. fig_kw : dict Dict with keywords passed to the figure() call. Note that all keywords not recognized above will be automatically included here. Returns ------- fig : figure The Matplotlib Figure object. axs : seq of Axis objects A seq of Axis objects, one for each subplot. Examples -------- >>> from sklearn.datasets import make_friedman1 >>> from sklearn.ensemble import GradientBoostingRegressor >>> X, y = make_friedman1() >>> clf = GradientBoostingRegressor(n_estimators=10).fit(X, y) >>> fig, axs = plot_partial_dependence(clf, X, [0, (0, 1)]) #doctest: +SKIP ... """ import matplotlib.pyplot as plt from matplotlib import transforms from matplotlib.ticker import MaxNLocator from matplotlib.ticker import ScalarFormatter if not isinstance(gbrt, BaseGradientBoosting): raise ValueError('gbrt has to be an instance of BaseGradientBoosting') if gbrt.estimators_.shape[0] == 0: raise ValueError('Call %s.fit before partial_dependence' % gbrt.__class__.__name__) # set label_idx for multi-class GBRT if hasattr(gbrt, 'classes_') and np.size(gbrt.classes_) > 2: if label is None: raise ValueError('label is not given for multi-class PDP') label_idx = np.searchsorted(gbrt.classes_, label) if gbrt.classes_[label_idx] != label: raise ValueError('label %s not in gbrt.classes_' % str(label)) else: # regression and binary classification label_idx = 0 X = array2d(X, dtype=DTYPE, order='C') if gbrt.n_features != X.shape[1]: raise ValueError('X.shape[1] does not match gbrt.n_features') if line_kw is None: line_kw = {'color': 'green'} if contour_kw is None: contour_kw = {} # convert feature_names to list if feature_names is None: # if not feature_names use fx indices as name feature_names = map(str, range(gbrt.n_features)) elif isinstance(feature_names, np.ndarray): feature_names = feature_names.tolist() def convert_feature(fx): if isinstance(fx, basestring): try: fx = feature_names.index(fx) except ValueError: raise ValueError('Feature %s not in feature_names' % fx) return fx # convert features into a seq of int tuples tmp_features = [] for fxs in features: if isinstance(fxs, (numbers.Integral, basestring)): fxs = (fxs,) try: fxs = np.array([convert_feature(fx) for fx in fxs], dtype=np.int32) except TypeError: raise ValueError('features must be either int, str, or tuple ' 'of int/str') if not (1 <= np.size(fxs) <= 2): raise ValueError('target features must be either one or two') tmp_features.append(fxs) features = tmp_features names = [] try: for fxs in features: names.append([feature_names[i] for i in fxs]) except IndexError: raise ValueError('features[i] must be in [0, n_features) ' 'but was %d' % i) # compute PD functions pd_result = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(partial_dependence)(gbrt, fxs, X=X, grid_resolution=grid_resolution) for fxs in features) # get global min and max values of PD grouped by plot type pdp_lim = {} for pdp, axes in pd_result: min_pd, max_pd = pdp[label_idx].min(), pdp[label_idx].max() n_fx = len(axes) old_min_pd, old_max_pd = pdp_lim.get(n_fx, (min_pd, max_pd)) min_pd = min(min_pd, old_min_pd) max_pd = max(max_pd, old_max_pd) pdp_lim[n_fx] = (min_pd, max_pd) # create contour levels for two-way plots if 2 in pdp_lim: Z_level = np.linspace(*pdp_lim[2], num=8) if ax is None: fig = plt.figure(**fig_kw) else: fig = ax.get_figure() fig.clear() n_cols = min(n_cols, len(features)) n_rows = int(np.ceil(len(features) / float(n_cols))) axs = [] for i, fx, name, (pdp, axes) in izip(count(), features, names, pd_result): ax = fig.add_subplot(n_rows, n_cols, i + 1) if len(axes) == 1: ax.plot(axes[0], pdp[label_idx].ravel(), **line_kw) else: # make contour plot assert len(axes) == 2 XX, YY = np.meshgrid(axes[0], axes[1]) Z = pdp[label_idx].reshape(map(np.size, axes)).T CS = ax.contour(XX, YY, Z, levels=Z_level, linewidths=0.5, colors='k') ax.contourf(XX, YY, Z, levels=Z_level, vmax=Z_level[-1], vmin=Z_level[0], alpha=0.75, **contour_kw) ax.clabel(CS, fmt='%2.2f', colors='k', fontsize=10, inline=True) # plot data deciles + axes labels deciles = mquantiles(X[:, fx[0]], prob=np.arange(0.1, 1.0, 0.1)) trans = transforms.blended_transform_factory(ax.transData, ax.transAxes) ylim = ax.get_ylim() ax.vlines(deciles, [0], 0.05, transform=trans, color='k') ax.set_xlabel(name[0]) ax.set_ylim(ylim) # prevent x-axis ticks from overlapping ax.xaxis.set_major_locator(MaxNLocator(nbins=6, prune='lower')) tick_formatter = ScalarFormatter() tick_formatter.set_powerlimits((-3, 4)) ax.xaxis.set_major_formatter(tick_formatter) if len(axes) > 1: # two-way PDP - y-axis deciles + labels deciles = mquantiles(X[:, fx[1]], prob=np.arange(0.1, 1.0, 0.1)) trans = transforms.blended_transform_factory(ax.transAxes, ax.transData) xlim = ax.get_xlim() ax.hlines(deciles, [0], 0.05, transform=trans, color='k') ax.set_ylabel(name[1]) # hline erases xlim ax.set_xlim(xlim) else: ax.set_ylabel('Partial dependence') if len(axes) == 1: ax.set_ylim(pdp_lim[1]) axs.append(ax) fig.subplots_adjust(bottom=0.15, top=0.7, left=0.1, right=0.95, wspace=0.4, hspace=0.3) return fig, axs
unlicense
pdamodaran/yellowbrick
yellowbrick/utils/target.py
1
2239
# yellowbrick.utils.target # Helper functions related to the target variable. # # Author: Benjamin Bengfort <benjamin@bengfort.com> # Created: Thu Dec 27 20:16:18 2018 -0500 # # For license information, see LICENSE.txt # # ID: target.py [] benjamin@bengfort.com $ """ Helper functions related to the target variable. """ ########################################################################## ## Imports and Module Variables ########################################################################## import numpy as np from sklearn.utils.multiclass import type_of_target __all__ = [ 'CONTINUOUS', 'DISCRETE', 'UNKNOWN', 'MAX_DISCRETE_CLASSES', 'target_color_type' ] CONTINUOUS = "continuous" DISCRETE = "discrete" UNKNOWN = "unknown" MAX_DISCRETE_CLASSES = 12 ########################################################################## ## Helper Functions ########################################################################## def target_color_type(y): """ Determines the type of color space that will best represent the target variable y, e.g. either a discrete (categorical) color space or a continuous color space that requires a colormap. This function can handle both 1D or column vectors as well as multi-output targets. Parameters ---------- y : array-like Must be a valid array-like data structure that can be passed to a scikit-learn supervised estimator. Returns ------- color_type : string One of: * 'discrete': `y` is either a binary target or a multiclass target with <= 12 discrete classes. * 'continuous': `y` is an array-like of floats that are not all integers or a multiclass target with > 12 discrete classes. * 'unknown': `y` is array-like but none of the above. For example a multilabel-indicator or a 3D array. No exception is raised. """ ttype = type_of_target(y) if ttype.startswith(CONTINUOUS): return CONTINUOUS if ttype.startswith("binary"): return DISCRETE if ttype.startswith("multiclass"): if len(np.unique(y)) > MAX_DISCRETE_CLASSES: return CONTINUOUS return DISCRETE return UNKNOWN
apache-2.0
parthea/pydatalab
legacy_tests/bigquery/view_tests.py
2
6022
# Copyright 2015 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations under # the License. from __future__ import absolute_import from __future__ import unicode_literals from builtins import str import mock from oauth2client.client import AccessTokenCredentials import unittest import datalab.bigquery import datalab.context class TestCases(unittest.TestCase): def test_view_repr_sql(self): name = 'test:testds.testView0' view = datalab.bigquery.View(name, TestCases._create_context()) self.assertEqual('[%s]' % name, view._repr_sql_()) @mock.patch('datalab.bigquery._api.Api.tables_insert') @mock.patch('datalab.bigquery._api.Api.tables_get') @mock.patch('datalab.bigquery._api.Api.tables_list') @mock.patch('datalab.bigquery._api.Api.datasets_get') def test_view_create(self, mock_api_datasets_get, mock_api_tables_list, mock_api_tables_get, mock_api_tables_insert): mock_api_datasets_get.return_value = None mock_api_tables_list.return_value = [] mock_api_tables_get.return_value = None mock_api_tables_insert.return_value = TestCases._create_tables_insert_success_result() name = 'test:testds.testView0' sql = 'select * from test:testds.testTable0' view = datalab.bigquery.View(name, TestCases._create_context()) result = view.create(sql) self.assertTrue(view.exists()) self.assertEqual(name, str(view)) self.assertEqual('[%s]' % name, view._repr_sql_()) self.assertIsNotNone(result, 'Expected a view') @mock.patch('datalab.bigquery._api.Api.tables_insert') @mock.patch('datalab.bigquery._api.Api.tabledata_list') @mock.patch('datalab.bigquery._api.Api.jobs_insert_query') @mock.patch('datalab.bigquery._api.Api.jobs_query_results') @mock.patch('datalab.bigquery._api.Api.jobs_get') @mock.patch('datalab.bigquery._api.Api.tables_get') def test_view_result(self, mock_api_tables_get, mock_api_jobs_get, mock_api_jobs_query_results, mock_api_insert_query, mock_api_tabledata_list, mock_api_tables_insert): mock_api_insert_query.return_value = TestCases._create_insert_done_result() mock_api_tables_insert.return_value = TestCases._create_tables_insert_success_result() mock_api_jobs_query_results.return_value = {'jobComplete': True} mock_api_tables_get.return_value = TestCases._create_tables_get_result() mock_api_jobs_get.return_value = {'status': {'state': 'DONE'}} mock_api_tabledata_list.return_value = TestCases._create_single_row_result() name = 'test:testds.testView0' sql = 'select * from test:testds.testTable0' view = datalab.bigquery.View(name, TestCases._create_context()) view.create(sql) results = view.results() self.assertEqual(1, results.length) first_result = results[0] self.assertEqual('value1', first_result['field1']) @mock.patch('datalab.bigquery._api.Api.tables_insert') @mock.patch('datalab.bigquery._api.Api.tables_get') @mock.patch('datalab.bigquery._api.Api.table_update') @mock.patch('datalab.context.Context.default') def test_view_update(self, mock_context_default, mock_api_table_update, mock_api_tables_get, mock_api_tables_insert): mock_api_tables_insert.return_value = TestCases._create_tables_insert_success_result() mock_context_default.return_value = TestCases._create_context() mock_api_table_update.return_value = None friendly_name = 'casper' description = 'ghostly logs' sql = 'select * from [test:testds.testTable0]' info = {'friendlyName': friendly_name, 'description': description, 'view': {'query': sql}} mock_api_tables_get.return_value = info name = 'test:testds.testView0' view = datalab.bigquery.View(name, TestCases._create_context()) view.create(sql) self.assertEqual(friendly_name, view.friendly_name) self.assertEqual(description, view.description) self.assertEqual(sql, view.query.sql) new_friendly_name = 'aziraphale' new_description = 'demon duties' new_query = 'SELECT 3 AS x' view.update(new_friendly_name, new_description, new_query) self.assertEqual(new_friendly_name, view.friendly_name) self.assertEqual(new_description, view.description) self.assertEqual(new_query, view.query.sql) @staticmethod def _create_tables_insert_success_result(): return {'selfLink': 'http://foo'} @staticmethod def _create_insert_done_result(): # pylint: disable=g-continuation-in-parens-misaligned return { 'jobReference': { 'jobId': 'test_job' }, 'configuration': { 'query': { 'destinationTable': { 'projectId': 'project', 'datasetId': 'dataset', 'tableId': 'table' } } }, 'jobComplete': True, } @staticmethod def _create_tables_get_result(num_rows=1, schema=None): if not schema: schema = [{'name': 'field1', 'type': 'string'}] return { 'numRows': num_rows, 'schema': { 'fields': schema }, } @staticmethod def _create_single_row_result(): # pylint: disable=g-continuation-in-parens-misaligned return { 'totalRows': 1, 'rows': [ {'f': [{'v': 'value1'}]} ] } @staticmethod def _create_context(): project_id = 'test' creds = AccessTokenCredentials('test_token', 'test_ua') return datalab.context.Context(project_id, creds)
apache-2.0
ZenDevelopmentSystems/scikit-learn
sklearn/metrics/__init__.py
212
3440
""" The :mod:`sklearn.metrics` module includes score functions, performance metrics and pairwise metrics and distance computations. """ from .ranking import auc from .ranking import average_precision_score from .ranking import coverage_error from .ranking import label_ranking_average_precision_score from .ranking import label_ranking_loss from .ranking import precision_recall_curve from .ranking import roc_auc_score from .ranking import roc_curve from .classification import accuracy_score from .classification import classification_report from .classification import cohen_kappa_score from .classification import confusion_matrix from .classification import f1_score from .classification import fbeta_score from .classification import hamming_loss from .classification import hinge_loss from .classification import jaccard_similarity_score from .classification import log_loss from .classification import matthews_corrcoef from .classification import precision_recall_fscore_support from .classification import precision_score from .classification import recall_score from .classification import zero_one_loss from .classification import brier_score_loss from . import cluster from .cluster import adjusted_mutual_info_score from .cluster import adjusted_rand_score from .cluster import completeness_score from .cluster import consensus_score from .cluster import homogeneity_completeness_v_measure from .cluster import homogeneity_score from .cluster import mutual_info_score from .cluster import normalized_mutual_info_score from .cluster import silhouette_samples from .cluster import silhouette_score from .cluster import v_measure_score from .pairwise import euclidean_distances from .pairwise import pairwise_distances from .pairwise import pairwise_distances_argmin from .pairwise import pairwise_distances_argmin_min from .pairwise import pairwise_kernels from .regression import explained_variance_score from .regression import mean_absolute_error from .regression import mean_squared_error from .regression import median_absolute_error from .regression import r2_score from .scorer import make_scorer from .scorer import SCORERS from .scorer import get_scorer __all__ = [ 'accuracy_score', 'adjusted_mutual_info_score', 'adjusted_rand_score', 'auc', 'average_precision_score', 'classification_report', 'cluster', 'completeness_score', 'confusion_matrix', 'consensus_score', 'coverage_error', 'euclidean_distances', 'explained_variance_score', 'f1_score', 'fbeta_score', 'get_scorer', 'hamming_loss', 'hinge_loss', 'homogeneity_completeness_v_measure', 'homogeneity_score', 'jaccard_similarity_score', 'label_ranking_average_precision_score', 'label_ranking_loss', 'log_loss', 'make_scorer', 'matthews_corrcoef', 'mean_absolute_error', 'mean_squared_error', 'median_absolute_error', 'mutual_info_score', 'normalized_mutual_info_score', 'pairwise_distances', 'pairwise_distances_argmin', 'pairwise_distances_argmin_min', 'pairwise_distances_argmin_min', 'pairwise_kernels', 'precision_recall_curve', 'precision_recall_fscore_support', 'precision_score', 'r2_score', 'recall_score', 'roc_auc_score', 'roc_curve', 'SCORERS', 'silhouette_samples', 'silhouette_score', 'v_measure_score', 'zero_one_loss', 'brier_score_loss', ]
bsd-3-clause
Tong-Chen/scikit-learn
sklearn/linear_model/tests/test_ridge.py
3
14885
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn import datasets from sklearn.metrics import mean_squared_error from sklearn.metrics.scorer import SCORERS from sklearn.linear_model.base import LinearRegression from sklearn.linear_model.ridge import ridge_regression from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.ridge import _RidgeGCV from sklearn.linear_model.ridge import RidgeCV from sklearn.linear_model.ridge import RidgeClassifier from sklearn.linear_model.ridge import RidgeClassifierCV from sklearn.cross_validation import KFold diabetes = datasets.load_diabetes() X_diabetes, y_diabetes = diabetes.data, diabetes.target ind = np.arange(X_diabetes.shape[0]) rng = np.random.RandomState(0) rng.shuffle(ind) ind = ind[:200] X_diabetes, y_diabetes = X_diabetes[ind], y_diabetes[ind] iris = datasets.load_iris() X_iris = sp.csr_matrix(iris.data) y_iris = iris.target DENSE_FILTER = lambda X: X SPARSE_FILTER = lambda X: sp.csr_matrix(X) def test_ridge(): """Ridge regression convergence test using score TODO: for this test to be robust, we should use a dataset instead of np.random. """ rng = np.random.RandomState(0) alpha = 1.0 for solver in ("svd", "sparse_cg", "dense_cholesky", "lsqr"): # With more samples than features n_samples, n_features = 6, 5 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_equal(ridge.coef_.shape, (X.shape[1], )) assert_greater(ridge.score(X, y), 0.47) if solver == "dense_cholesky": # Currently the only solver to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.47) # With more features than samples n_samples, n_features = 5, 10 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_greater(ridge.score(X, y), .9) if solver == "dense_cholesky": # Currently the only solver to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.9) def test_ridge_singular(): # test on a singular matrix rng = np.random.RandomState(0) n_samples, n_features = 6, 6 y = rng.randn(n_samples / 2) y = np.concatenate((y, y)) X = rng.randn(n_samples / 2, n_features) X = np.concatenate((X, X), axis=0) ridge = Ridge(alpha=0) ridge.fit(X, y) assert_greater(ridge.score(X, y), 0.9) def test_ridge_sample_weights(): rng = np.random.RandomState(0) alpha = 1.0 #for solver in ("svd", "sparse_cg", "dense_cholesky", "lsqr"): for solver in ("dense_cholesky", ): for n_samples, n_features in ((6, 5), (5, 10)): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1 + rng.rand(n_samples) coefs = ridge_regression(X, y, alpha, sample_weight, solver=solver) # Sample weight can be implemented via a simple rescaling # for the square loss coefs2 = ridge_regression( X * np.sqrt(sample_weight)[:, np.newaxis], y * np.sqrt(sample_weight), alpha, solver=solver) assert_array_almost_equal(coefs, coefs2) def test_ridge_shapes(): """Test shape of coef_ and intercept_ """ rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y1 = y[:, np.newaxis] Y = np.c_[y, 1 + y] ridge = Ridge() ridge.fit(X, y) assert_equal(ridge.coef_.shape, (n_features,)) assert_equal(ridge.intercept_.shape, ()) ridge.fit(X, Y1) assert_equal(ridge.coef_.shape, (1, n_features)) assert_equal(ridge.intercept_.shape, (1, )) ridge.fit(X, Y) assert_equal(ridge.coef_.shape, (2, n_features)) assert_equal(ridge.intercept_.shape, (2, )) def test_ridge_intercept(): """Test intercept with multiple targets GH issue #708 """ rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y = np.c_[y, 1. + y] ridge = Ridge() ridge.fit(X, y) intercept = ridge.intercept_ ridge.fit(X, Y) assert_almost_equal(ridge.intercept_[0], intercept) assert_almost_equal(ridge.intercept_[1], intercept + 1.) def test_toy_ridge_object(): """Test BayesianRegression ridge classifier TODO: test also n_samples > n_features """ X = np.array([[1], [2]]) Y = np.array([1, 2]) clf = Ridge(alpha=0.0) clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_almost_equal(clf.predict(X_test), [1., 2, 3, 4]) assert_equal(len(clf.coef_.shape), 1) assert_equal(type(clf.intercept_), np.float64) Y = np.vstack((Y, Y)).T clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_equal(len(clf.coef_.shape), 2) assert_equal(type(clf.intercept_), np.ndarray) def test_ridge_vs_lstsq(): """On alpha=0., Ridge and OLS yield the same solution.""" rng = np.random.RandomState(0) # we need more samples than features n_samples, n_features = 5, 4 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=0., fit_intercept=False) ols = LinearRegression(fit_intercept=False) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) def test_ridge_individual_penalties(): """Tests the ridge object using individual penalties""" rng = np.random.RandomState(42) n_samples, n_features, n_targets = 20, 10, 5 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples, n_targets) penalties = np.arange(n_targets) coef_cholesky = np.array([ Ridge(alpha=alpha, solver="dense_cholesky").fit(X, target).coef_ for alpha, target in zip(penalties, y.T)]) coefs_indiv_pen = [ Ridge(alpha=penalties, solver=solver, tol=1e-6).fit(X, y).coef_ for solver in ['svd', 'sparse_cg', 'lsqr', 'dense_cholesky']] for coef_indiv_pen in coefs_indiv_pen: assert_array_almost_equal(coef_cholesky, coef_indiv_pen) # Test error is raised when number of targets and penalties do not match. ridge = Ridge(alpha=penalties[:3]) assert_raises(ValueError, ridge.fit, X, y) def _test_ridge_loo(filter_): # test that can work with both dense or sparse matrices n_samples = X_diabetes.shape[0] ret = [] ridge_gcv = _RidgeGCV(fit_intercept=False) ridge = Ridge(alpha=1.0, fit_intercept=False) # generalized cross-validation (efficient leave-one-out) decomp = ridge_gcv._pre_compute(X_diabetes, y_diabetes) errors, c = ridge_gcv._errors(1.0, y_diabetes, *decomp) values, c = ridge_gcv._values(1.0, y_diabetes, *decomp) # brute-force leave-one-out: remove one example at a time errors2 = [] values2 = [] for i in range(n_samples): sel = np.arange(n_samples) != i X_new = X_diabetes[sel] y_new = y_diabetes[sel] ridge.fit(X_new, y_new) value = ridge.predict([X_diabetes[i]])[0] error = (y_diabetes[i] - value) ** 2 errors2.append(error) values2.append(value) # check that efficient and brute-force LOO give same results assert_almost_equal(errors, errors2) assert_almost_equal(values, values2) # generalized cross-validation (efficient leave-one-out, # SVD variation) decomp = ridge_gcv._pre_compute_svd(X_diabetes, y_diabetes) errors3, c = ridge_gcv._errors_svd(ridge.alpha, y_diabetes, *decomp) values3, c = ridge_gcv._values_svd(ridge.alpha, y_diabetes, *decomp) # check that efficient and SVD efficient LOO give same results assert_almost_equal(errors, errors3) assert_almost_equal(values, values3) # check best alpha ridge_gcv.fit(filter_(X_diabetes), y_diabetes) alpha_ = ridge_gcv.alpha_ ret.append(alpha_) # check that we get same best alpha with custom loss_func f = ignore_warnings ridge_gcv2 = RidgeCV(fit_intercept=False, loss_func=mean_squared_error) f(ridge_gcv2.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv2.alpha_, alpha_) # check that we get same best alpha with custom score_func func = lambda x, y: -mean_squared_error(x, y) ridge_gcv3 = RidgeCV(fit_intercept=False, score_func=func) f(ridge_gcv3.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv3.alpha_, alpha_) # check that we get same best alpha with a scorer scorer = SCORERS['mean_squared_error'] ridge_gcv4 = RidgeCV(fit_intercept=False, scoring=scorer) ridge_gcv4.fit(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv4.alpha_, alpha_) # check that we get same best alpha with sample weights ridge_gcv.fit(filter_(X_diabetes), y_diabetes, sample_weight=np.ones(n_samples)) assert_equal(ridge_gcv.alpha_, alpha_) # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T ridge_gcv.fit(filter_(X_diabetes), Y) Y_pred = ridge_gcv.predict(filter_(X_diabetes)) ridge_gcv.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge_gcv.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=5) return ret def _test_ridge_cv(filter_): n_samples = X_diabetes.shape[0] ridge_cv = RidgeCV() ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) cv = KFold(n_samples, 5) ridge_cv.set_params(cv=cv) ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) def _test_ridge_diabetes(filter_): ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), y_diabetes) return np.round(ridge.score(filter_(X_diabetes), y_diabetes), 5) def _test_multi_ridge_diabetes(filter_): # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T n_features = X_diabetes.shape[1] ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), Y) assert_equal(ridge.coef_.shape, (2, n_features)) Y_pred = ridge.predict(filter_(X_diabetes)) ridge.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def _test_ridge_classifiers(filter_): n_classes = np.unique(y_iris).shape[0] n_features = X_iris.shape[1] for clf in (RidgeClassifier(), RidgeClassifierCV()): clf.fit(filter_(X_iris), y_iris) assert_equal(clf.coef_.shape, (n_classes, n_features)) y_pred = clf.predict(filter_(X_iris)) assert_greater(np.mean(y_iris == y_pred), .79) n_samples = X_iris.shape[0] cv = KFold(n_samples, 5) clf = RidgeClassifierCV(cv=cv) clf.fit(filter_(X_iris), y_iris) y_pred = clf.predict(filter_(X_iris)) assert_true(np.mean(y_iris == y_pred) >= 0.8) def _test_tolerance(filter_): ridge = Ridge(tol=1e-5) ridge.fit(filter_(X_diabetes), y_diabetes) score = ridge.score(filter_(X_diabetes), y_diabetes) ridge2 = Ridge(tol=1e-3) ridge2.fit(filter_(X_diabetes), y_diabetes) score2 = ridge2.score(filter_(X_diabetes), y_diabetes) assert_true(score >= score2) def test_dense_sparse(): for test_func in (_test_ridge_loo, _test_ridge_cv, _test_ridge_diabetes, _test_multi_ridge_diabetes, _test_ridge_classifiers, _test_tolerance): # test dense matrix ret_dense = test_func(DENSE_FILTER) # test sparse matrix ret_sparse = test_func(SPARSE_FILTER) # test that the outputs are the same if ret_dense is not None and ret_sparse is not None: assert_array_almost_equal(ret_dense, ret_sparse, decimal=3) def test_ridge_cv_sparse_svd(): X = sp.csr_matrix(X_diabetes) ridge = RidgeCV(gcv_mode="svd") assert_raises(TypeError, ridge.fit, X) def test_class_weights(): """ Test class weights. """ X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifier(class_weight=None) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = RidgeClassifier(class_weight={1: 0.001}) clf.fit(X, y) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) def test_class_weights_cv(): """ Test class weights for cross validated ridge classifier. """ X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifierCV(class_weight=None, alphas=[.01, .1, 1]) clf.fit(X, y) # we give a small weights to class 1 clf = RidgeClassifierCV(class_weight={1: 0.001}, alphas=[.01, .1, 1, 10]) clf.fit(X, y) assert_array_equal(clf.predict([[-.2, 2]]), np.array([-1])) def test_ridgecv_store_cv_values(): """ Test _RidgeCV's store_cv_values attribute. """ rng = rng = np.random.RandomState(42) n_samples = 8 n_features = 5 x = rng.randn(n_samples, n_features) alphas = [1e-1, 1e0, 1e1] n_alphas = len(alphas) r = RidgeCV(alphas=alphas, store_cv_values=True) # with len(y.shape) == 1 y = rng.randn(n_samples) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_alphas)) # with len(y.shape) == 2 n_responses = 3 y = rng.randn(n_samples, n_responses) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_responses, n_alphas))
bsd-3-clause
nelango/ViralityAnalysis
model/lib/sklearn/metrics/classification.py
6
68080
"""Metrics to assess performance on classification task given classe prediction Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Mathieu Blondel <mathieu@mblondel.org> # Olivier Grisel <olivier.grisel@ensta.org> # Arnaud Joly <a.joly@ulg.ac.be> # Jochen Wersdorfer <jochen@wersdoerfer.de> # Lars Buitinck <L.J.Buitinck@uva.nl> # Joel Nothman <joel.nothman@gmail.com> # Noel Dawe <noel@dawe.me> # Jatin Shah <jatindshah@gmail.com> # Saurabh Jha <saurabh.jhaa@gmail.com> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy.sparse import csr_matrix from scipy.spatial.distance import hamming as sp_hamming from ..preprocessing import LabelBinarizer, label_binarize from ..preprocessing import LabelEncoder from ..utils import check_array from ..utils import check_consistent_length from ..utils import column_or_1d from ..utils.multiclass import unique_labels from ..utils.multiclass import type_of_target from ..utils.validation import _num_samples from ..utils.sparsefuncs import count_nonzero from ..utils.fixes import bincount from .base import UndefinedMetricWarning def _check_targets(y_true, y_pred): """Check that y_true and y_pred belong to the same classification task This converts multiclass or binary types to a common shape, and raises a ValueError for a mix of multilabel and multiclass targets, a mix of multilabel formats, for the presence of continuous-valued or multioutput targets, or for targets of different lengths. Column vectors are squeezed to 1d, while multilabel formats are returned as CSR sparse label indicators. Parameters ---------- y_true : array-like y_pred : array-like Returns ------- type_true : one of {'multilabel-indicator', 'multiclass', 'binary'} The type of the true target data, as output by ``utils.multiclass.type_of_target`` y_true : array or indicator matrix y_pred : array or indicator matrix """ check_consistent_length(y_true, y_pred) type_true = type_of_target(y_true) type_pred = type_of_target(y_pred) y_type = set([type_true, type_pred]) if y_type == set(["binary", "multiclass"]): y_type = set(["multiclass"]) if len(y_type) > 1: raise ValueError("Can't handle mix of {0} and {1}" "".format(type_true, type_pred)) # We can't have more than one value on y_type => The set is no more needed y_type = y_type.pop() # No metrics support "multiclass-multioutput" format if (y_type not in ["binary", "multiclass", "multilabel-indicator"]): raise ValueError("{0} is not supported".format(y_type)) if y_type in ["binary", "multiclass"]: y_true = column_or_1d(y_true) y_pred = column_or_1d(y_pred) if y_type.startswith('multilabel'): y_true = csr_matrix(y_true) y_pred = csr_matrix(y_pred) y_type = 'multilabel-indicator' return y_type, y_true, y_pred def _weighted_sum(sample_score, sample_weight, normalize=False): if normalize: return np.average(sample_score, weights=sample_weight) elif sample_weight is not None: return np.dot(sample_score, sample_weight) else: return sample_score.sum() def accuracy_score(y_true, y_pred, normalize=True, sample_weight=None): """Accuracy classification score. In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must *exactly* match the corresponding set of labels in y_true. Read more in the :ref:`User Guide <accuracy_score>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the number of correctly classified samples. Otherwise, return the fraction of correctly classified samples. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- score : float If ``normalize == True``, return the correctly classified samples (float), else it returns the number of correctly classified samples (int). The best performance is 1 with ``normalize == True`` and the number of samples with ``normalize == False``. See also -------- jaccard_similarity_score, hamming_loss, zero_one_loss Notes ----- In binary and multiclass classification, this function is equal to the ``jaccard_similarity_score`` function. Examples -------- >>> import numpy as np >>> from sklearn.metrics import accuracy_score >>> y_pred = [0, 2, 1, 3] >>> y_true = [0, 1, 2, 3] >>> accuracy_score(y_true, y_pred) 0.5 >>> accuracy_score(y_true, y_pred, normalize=False) 2 In the multilabel case with binary label indicators: >>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2))) 0.5 """ # Compute accuracy for each possible representation y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type.startswith('multilabel'): differing_labels = count_nonzero(y_true - y_pred, axis=1) score = differing_labels == 0 else: score = y_true == y_pred return _weighted_sum(score, sample_weight, normalize) def confusion_matrix(y_true, y_pred, labels=None): """Compute confusion matrix to evaluate the accuracy of a classification By definition a confusion matrix :math:`C` is such that :math:`C_{i, j}` is equal to the number of observations known to be in group :math:`i` but predicted to be in group :math:`j`. Read more in the :ref:`User Guide <confusion_matrix>`. Parameters ---------- y_true : array, shape = [n_samples] Ground truth (correct) target values. y_pred : array, shape = [n_samples] Estimated targets as returned by a classifier. labels : array, shape = [n_classes], optional List of labels to index the matrix. This may be used to reorder or select a subset of labels. If none is given, those that appear at least once in ``y_true`` or ``y_pred`` are used in sorted order. Returns ------- C : array, shape = [n_classes, n_classes] Confusion matrix References ---------- .. [1] `Wikipedia entry for the Confusion matrix <http://en.wikipedia.org/wiki/Confusion_matrix>`_ Examples -------- >>> from sklearn.metrics import confusion_matrix >>> y_true = [2, 0, 2, 2, 0, 1] >>> y_pred = [0, 0, 2, 2, 0, 2] >>> confusion_matrix(y_true, y_pred) array([[2, 0, 0], [0, 0, 1], [1, 0, 2]]) >>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"] >>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"] >>> confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"]) array([[2, 0, 0], [0, 0, 1], [1, 0, 2]]) """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type not in ("binary", "multiclass"): raise ValueError("%s is not supported" % y_type) if labels is None: labels = unique_labels(y_true, y_pred) else: labels = np.asarray(labels) n_labels = labels.size label_to_ind = dict((y, x) for x, y in enumerate(labels)) # convert yt, yp into index y_pred = np.array([label_to_ind.get(x, n_labels + 1) for x in y_pred]) y_true = np.array([label_to_ind.get(x, n_labels + 1) for x in y_true]) # intersect y_pred, y_true with labels, eliminate items not in labels ind = np.logical_and(y_pred < n_labels, y_true < n_labels) y_pred = y_pred[ind] y_true = y_true[ind] CM = coo_matrix((np.ones(y_true.shape[0], dtype=np.int), (y_true, y_pred)), shape=(n_labels, n_labels) ).toarray() return CM def cohen_kappa_score(y1, y2, labels=None): """Cohen's kappa: a statistic that measures inter-annotator agreement. This function computes Cohen's kappa [1], a score that expresses the level of agreement between two annotators on a classification problem. It is defined as .. math:: \kappa = (p_o - p_e) / (1 - p_e) where :math:`p_o` is the empirical probability of agreement on the label assigned to any sample (the observed agreement ratio), and :math:`p_e` is the expected agreement when both annotators assign labels randomly. :math:`p_e` is estimated using a per-annotator empirical prior over the class labels [2]. Parameters ---------- y1 : array, shape = [n_samples] Labels assigned by the first annotator. y2 : array, shape = [n_samples] Labels assigned by the second annotator. The kappa statistic is symmetric, so swapping ``y1`` and ``y2`` doesn't change the value. labels : array, shape = [n_classes], optional List of labels to index the matrix. This may be used to select a subset of labels. If None, all labels that appear at least once in ``y1`` or ``y2`` are used. Returns ------- kappa : float The kappa statistic, which is a number between -1 and 1. The maximum value means complete agreement; zero or lower means chance agreement. References ---------- .. [1] J. Cohen (1960). "A coefficient of agreement for nominal scales". Educational and Psychological Measurement 20(1):37-46. doi:10.1177/001316446002000104. .. [2] R. Artstein and M. Poesio (2008). "Inter-coder agreement for computational linguistics". Computational Linguistic 34(4):555-596. """ confusion = confusion_matrix(y1, y2, labels=labels) P = confusion / float(confusion.sum()) p_observed = np.trace(P) p_expected = np.dot(P.sum(axis=0), P.sum(axis=1)) return (p_observed - p_expected) / (1 - p_expected) def jaccard_similarity_score(y_true, y_pred, normalize=True, sample_weight=None): """Jaccard similarity coefficient score The Jaccard index [1], or Jaccard similarity coefficient, defined as the size of the intersection divided by the size of the union of two label sets, is used to compare set of predicted labels for a sample to the corresponding set of labels in ``y_true``. Read more in the :ref:`User Guide <jaccard_similarity_score>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the sum of the Jaccard similarity coefficient over the sample set. Otherwise, return the average of Jaccard similarity coefficient. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- score : float If ``normalize == True``, return the average Jaccard similarity coefficient, else it returns the sum of the Jaccard similarity coefficient over the sample set. The best performance is 1 with ``normalize == True`` and the number of samples with ``normalize == False``. See also -------- accuracy_score, hamming_loss, zero_one_loss Notes ----- In binary and multiclass classification, this function is equivalent to the ``accuracy_score``. It differs in the multilabel classification problem. References ---------- .. [1] `Wikipedia entry for the Jaccard index <http://en.wikipedia.org/wiki/Jaccard_index>`_ Examples -------- >>> import numpy as np >>> from sklearn.metrics import jaccard_similarity_score >>> y_pred = [0, 2, 1, 3] >>> y_true = [0, 1, 2, 3] >>> jaccard_similarity_score(y_true, y_pred) 0.5 >>> jaccard_similarity_score(y_true, y_pred, normalize=False) 2 In the multilabel case with binary label indicators: >>> jaccard_similarity_score(np.array([[0, 1], [1, 1]]),\ np.ones((2, 2))) 0.75 """ # Compute accuracy for each possible representation y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type.startswith('multilabel'): with np.errstate(divide='ignore', invalid='ignore'): # oddly, we may get an "invalid" rather than a "divide" error here pred_or_true = count_nonzero(y_true + y_pred, axis=1) pred_and_true = count_nonzero(y_true.multiply(y_pred), axis=1) score = pred_and_true / pred_or_true # If there is no label, it results in a Nan instead, we set # the jaccard to 1: lim_{x->0} x/x = 1 # Note with py2.6 and np 1.3: we can't check safely for nan. score[pred_or_true == 0.0] = 1.0 else: score = y_true == y_pred return _weighted_sum(score, sample_weight, normalize) def matthews_corrcoef(y_true, y_pred): """Compute the Matthews correlation coefficient (MCC) for binary classes The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary (two-class) classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] Only in the binary case does this relate to information about true and false positives and negatives. See references below. Read more in the :ref:`User Guide <matthews_corrcoef>`. Parameters ---------- y_true : array, shape = [n_samples] Ground truth (correct) target values. y_pred : array, shape = [n_samples] Estimated targets as returned by a classifier. Returns ------- mcc : float The Matthews correlation coefficient (+1 represents a perfect prediction, 0 an average random prediction and -1 and inverse prediction). References ---------- .. [1] `Baldi, Brunak, Chauvin, Andersen and Nielsen, (2000). Assessing the accuracy of prediction algorithms for classification: an overview <http://dx.doi.org/10.1093/bioinformatics/16.5.412>`_ .. [2] `Wikipedia entry for the Matthews Correlation Coefficient <http://en.wikipedia.org/wiki/Matthews_correlation_coefficient>`_ Examples -------- >>> from sklearn.metrics import matthews_corrcoef >>> y_true = [+1, +1, +1, -1] >>> y_pred = [+1, -1, +1, +1] >>> matthews_corrcoef(y_true, y_pred) # doctest: +ELLIPSIS -0.33... """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) if y_type != "binary": raise ValueError("%s is not supported" % y_type) lb = LabelEncoder() lb.fit(np.hstack([y_true, y_pred])) y_true = lb.transform(y_true) y_pred = lb.transform(y_pred) with np.errstate(invalid='ignore'): mcc = np.corrcoef(y_true, y_pred)[0, 1] if np.isnan(mcc): return 0. else: return mcc def zero_one_loss(y_true, y_pred, normalize=True, sample_weight=None): """Zero-one classification loss. If normalize is ``True``, return the fraction of misclassifications (float), else it returns the number of misclassifications (int). The best performance is 0. Read more in the :ref:`User Guide <zero_one_loss>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. normalize : bool, optional (default=True) If ``False``, return the number of misclassifications. Otherwise, return the fraction of misclassifications. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float or int, If ``normalize == True``, return the fraction of misclassifications (float), else it returns the number of misclassifications (int). Notes ----- In multilabel classification, the zero_one_loss function corresponds to the subset zero-one loss: for each sample, the entire set of labels must be correctly predicted, otherwise the loss for that sample is equal to one. See also -------- accuracy_score, hamming_loss, jaccard_similarity_score Examples -------- >>> from sklearn.metrics import zero_one_loss >>> y_pred = [1, 2, 3, 4] >>> y_true = [2, 2, 3, 4] >>> zero_one_loss(y_true, y_pred) 0.25 >>> zero_one_loss(y_true, y_pred, normalize=False) 1 In the multilabel case with binary label indicators: >>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2))) 0.5 """ score = accuracy_score(y_true, y_pred, normalize=normalize, sample_weight=sample_weight) if normalize: return 1 - score else: if sample_weight is not None: n_samples = np.sum(sample_weight) else: n_samples = _num_samples(y_true) return n_samples - score def f1_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the F1 score, also known as balanced F-score or F-measure The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:: F1 = 2 * (precision * recall) / (precision + recall) In the multi-class and multi-label case, this is the weighted average of the F1 score of each class. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- f1_score : float or array of float, shape = [n_unique_labels] F1 score of the positive class in binary classification or weighted average of the F1 scores of each class for the multiclass task. References ---------- .. [1] `Wikipedia entry for the F1-score <http://en.wikipedia.org/wiki/F1_score>`_ Examples -------- >>> from sklearn.metrics import f1_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> f1_score(y_true, y_pred, average='macro') # doctest: +ELLIPSIS 0.26... >>> f1_score(y_true, y_pred, average='micro') # doctest: +ELLIPSIS 0.33... >>> f1_score(y_true, y_pred, average='weighted') # doctest: +ELLIPSIS 0.26... >>> f1_score(y_true, y_pred, average=None) array([ 0.8, 0. , 0. ]) """ return fbeta_score(y_true, y_pred, 1, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight) def fbeta_score(y_true, y_pred, beta, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the F-beta score The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its worst value at 0. The `beta` parameter determines the weight of precision in the combined score. ``beta < 1`` lends more weight to precision, while ``beta > 1`` favors recall (``beta -> 0`` considers only precision, ``beta -> inf`` only recall). Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. beta: float Weight of precision in harmonic mean. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fbeta_score : float (if average is not None) or array of float, shape =\ [n_unique_labels] F-beta score of the positive class in binary classification or weighted average of the F-beta score of each class for the multiclass task. References ---------- .. [1] R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 327-328. .. [2] `Wikipedia entry for the F1-score <http://en.wikipedia.org/wiki/F1_score>`_ Examples -------- >>> from sklearn.metrics import fbeta_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> fbeta_score(y_true, y_pred, average='macro', beta=0.5) ... # doctest: +ELLIPSIS 0.23... >>> fbeta_score(y_true, y_pred, average='micro', beta=0.5) ... # doctest: +ELLIPSIS 0.33... >>> fbeta_score(y_true, y_pred, average='weighted', beta=0.5) ... # doctest: +ELLIPSIS 0.23... >>> fbeta_score(y_true, y_pred, average=None, beta=0.5) ... # doctest: +ELLIPSIS array([ 0.71..., 0. , 0. ]) """ _, _, f, _ = precision_recall_fscore_support(y_true, y_pred, beta=beta, labels=labels, pos_label=pos_label, average=average, warn_for=('f-score',), sample_weight=sample_weight) return f def _prf_divide(numerator, denominator, metric, modifier, average, warn_for): """Performs division and handles divide-by-zero. On zero-division, sets the corresponding result elements to zero and raises a warning. The metric, modifier and average arguments are used only for determining an appropriate warning. """ result = numerator / denominator mask = denominator == 0.0 if not np.any(mask): return result # remove infs result[mask] = 0.0 # build appropriate warning # E.g. "Precision and F-score are ill-defined and being set to 0.0 in # labels with no predicted samples" axis0 = 'sample' axis1 = 'label' if average == 'samples': axis0, axis1 = axis1, axis0 if metric in warn_for and 'f-score' in warn_for: msg_start = '{0} and F-score are'.format(metric.title()) elif metric in warn_for: msg_start = '{0} is'.format(metric.title()) elif 'f-score' in warn_for: msg_start = 'F-score is' else: return result msg = ('{0} ill-defined and being set to 0.0 {{0}} ' 'no {1} {2}s.'.format(msg_start, modifier, axis0)) if len(mask) == 1: msg = msg.format('due to') else: msg = msg.format('in {0}s with'.format(axis1)) warnings.warn(msg, UndefinedMetricWarning, stacklevel=2) return result def precision_recall_fscore_support(y_true, y_pred, beta=1.0, labels=None, pos_label=1, average=None, warn_for=('precision', 'recall', 'f-score'), sample_weight=None): """Compute precision, recall, F-measure and support for each class The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The F-beta score can be interpreted as a weighted harmonic mean of the precision and recall, where an F-beta score reaches its best value at 1 and worst score at 0. The F-beta score weights recall more than precision by a factor of ``beta``. ``beta == 1.0`` means recall and precision are equally important. The support is the number of occurrences of each class in ``y_true``. If ``pos_label is None`` and in binary classification, this function returns the average precision, recall and F-measure if ``average`` is one of ``'micro'``, ``'macro'``, ``'weighted'`` or ``'samples'``. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. beta : float, 1.0 by default The strength of recall versus precision in the F-score. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None (default), 'binary', 'micro', 'macro', 'samples', \ 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. warn_for : tuple or set, for internal use This determines which warnings will be made in the case that this function is being used to return only one of its metrics. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision: float (if average is not None) or array of float, shape =\ [n_unique_labels] recall: float (if average is not None) or array of float, , shape =\ [n_unique_labels] fbeta_score: float (if average is not None) or array of float, shape =\ [n_unique_labels] support: int (if average is not None) or array of int, shape =\ [n_unique_labels] The number of occurrences of each label in ``y_true``. References ---------- .. [1] `Wikipedia entry for the Precision and recall <http://en.wikipedia.org/wiki/Precision_and_recall>`_ .. [2] `Wikipedia entry for the F1-score <http://en.wikipedia.org/wiki/F1_score>`_ .. [3] `Discriminative Methods for Multi-labeled Classification Advances in Knowledge Discovery and Data Mining (2004), pp. 22-30 by Shantanu Godbole, Sunita Sarawagi <http://www.godbole.net/shantanu/pubs/multilabelsvm-pakdd04.pdf>` Examples -------- >>> from sklearn.metrics import precision_recall_fscore_support >>> y_true = np.array(['cat', 'dog', 'pig', 'cat', 'dog', 'pig']) >>> y_pred = np.array(['cat', 'pig', 'dog', 'cat', 'cat', 'dog']) >>> precision_recall_fscore_support(y_true, y_pred, average='macro') ... # doctest: +ELLIPSIS (0.22..., 0.33..., 0.26..., None) >>> precision_recall_fscore_support(y_true, y_pred, average='micro') ... # doctest: +ELLIPSIS (0.33..., 0.33..., 0.33..., None) >>> precision_recall_fscore_support(y_true, y_pred, average='weighted') ... # doctest: +ELLIPSIS (0.22..., 0.33..., 0.26..., None) It is possible to compute per-label precisions, recalls, F1-scores and supports instead of averaging: >>> precision_recall_fscore_support(y_true, y_pred, average=None, ... labels=['pig', 'dog', 'cat']) ... # doctest: +ELLIPSIS,+NORMALIZE_WHITESPACE (array([ 0. , 0. , 0.66...]), array([ 0., 0., 1.]), array([ 0. , 0. , 0.8]), array([2, 2, 2])) """ average_options = (None, 'micro', 'macro', 'weighted', 'samples') if average not in average_options and average != 'binary': raise ValueError('average has to be one of ' + str(average_options)) if beta <= 0: raise ValueError("beta should be >0 in the F-beta score") y_type, y_true, y_pred = _check_targets(y_true, y_pred) present_labels = unique_labels(y_true, y_pred) if average == 'binary' and (y_type != 'binary' or pos_label is None): warnings.warn('The default `weighted` averaging is deprecated, ' 'and from version 0.18, use of precision, recall or ' 'F-score with multiclass or multilabel data or ' 'pos_label=None will result in an exception. ' 'Please set an explicit value for `average`, one of ' '%s. In cross validation use, for instance, ' 'scoring="f1_weighted" instead of scoring="f1".' % str(average_options), DeprecationWarning, stacklevel=2) average = 'weighted' if y_type == 'binary' and pos_label is not None and average is not None: if average != 'binary': warnings.warn('From version 0.18, binary input will not be ' 'handled specially when using averaged ' 'precision/recall/F-score. ' 'Please use average=\'binary\' to report only the ' 'positive class performance.', DeprecationWarning) if labels is None or len(labels) <= 2: if pos_label not in present_labels: if len(present_labels) < 2: # Only negative labels return (0., 0., 0., 0) else: raise ValueError("pos_label=%r is not a valid label: %r" % (pos_label, present_labels)) labels = [pos_label] if labels is None: labels = present_labels n_labels = None else: n_labels = len(labels) labels = np.hstack([labels, np.setdiff1d(present_labels, labels, assume_unique=True)]) # Calculate tp_sum, pred_sum, true_sum ### if y_type.startswith('multilabel'): sum_axis = 1 if average == 'samples' else 0 # All labels are index integers for multilabel. # Select labels: if not np.all(labels == present_labels): if np.max(labels) > np.max(present_labels): raise ValueError('All labels must be in [0, n labels). ' 'Got %d > %d' % (np.max(labels), np.max(present_labels))) if np.min(labels) < 0: raise ValueError('All labels must be in [0, n labels). ' 'Got %d < 0' % np.min(labels)) y_true = y_true[:, labels[:n_labels]] y_pred = y_pred[:, labels[:n_labels]] # calculate weighted counts true_and_pred = y_true.multiply(y_pred) tp_sum = count_nonzero(true_and_pred, axis=sum_axis, sample_weight=sample_weight) pred_sum = count_nonzero(y_pred, axis=sum_axis, sample_weight=sample_weight) true_sum = count_nonzero(y_true, axis=sum_axis, sample_weight=sample_weight) elif average == 'samples': raise ValueError("Sample-based precision, recall, fscore is " "not meaningful outside multilabel " "classification. See the accuracy_score instead.") else: le = LabelEncoder() le.fit(labels) y_true = le.transform(y_true) y_pred = le.transform(y_pred) sorted_labels = le.classes_ # labels are now from 0 to len(labels) - 1 -> use bincount tp = y_true == y_pred tp_bins = y_true[tp] if sample_weight is not None: tp_bins_weights = np.asarray(sample_weight)[tp] else: tp_bins_weights = None if len(tp_bins): tp_sum = bincount(tp_bins, weights=tp_bins_weights, minlength=len(labels)) else: # Pathological case true_sum = pred_sum = tp_sum = np.zeros(len(labels)) if len(y_pred): pred_sum = bincount(y_pred, weights=sample_weight, minlength=len(labels)) if len(y_true): true_sum = bincount(y_true, weights=sample_weight, minlength=len(labels)) # Retain only selected labels indices = np.searchsorted(sorted_labels, labels[:n_labels]) tp_sum = tp_sum[indices] true_sum = true_sum[indices] pred_sum = pred_sum[indices] if average == 'micro': tp_sum = np.array([tp_sum.sum()]) pred_sum = np.array([pred_sum.sum()]) true_sum = np.array([true_sum.sum()]) # Finally, we have all our sufficient statistics. Divide! # beta2 = beta ** 2 with np.errstate(divide='ignore', invalid='ignore'): # Divide, and on zero-division, set scores to 0 and warn: # Oddly, we may get an "invalid" rather than a "divide" error # here. precision = _prf_divide(tp_sum, pred_sum, 'precision', 'predicted', average, warn_for) recall = _prf_divide(tp_sum, true_sum, 'recall', 'true', average, warn_for) # Don't need to warn for F: either P or R warned, or tp == 0 where pos # and true are nonzero, in which case, F is well-defined and zero f_score = ((1 + beta2) * precision * recall / (beta2 * precision + recall)) f_score[tp_sum == 0] = 0.0 # Average the results if average == 'weighted': weights = true_sum if weights.sum() == 0: return 0, 0, 0, None elif average == 'samples': weights = sample_weight else: weights = None if average is not None: assert average != 'binary' or len(precision) == 1 precision = np.average(precision, weights=weights) recall = np.average(recall, weights=weights) f_score = np.average(f_score, weights=weights) true_sum = None # return no support return precision, recall, f_score, true_sum def precision_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the precision The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The best value is 1 and the worst value is 0. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision : float (if average is not None) or array of float, shape =\ [n_unique_labels] Precision of the positive class in binary classification or weighted average of the precision of each class for the multiclass task. Examples -------- >>> from sklearn.metrics import precision_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> precision_score(y_true, y_pred, average='macro') # doctest: +ELLIPSIS 0.22... >>> precision_score(y_true, y_pred, average='micro') # doctest: +ELLIPSIS 0.33... >>> precision_score(y_true, y_pred, average='weighted') ... # doctest: +ELLIPSIS 0.22... >>> precision_score(y_true, y_pred, average=None) # doctest: +ELLIPSIS array([ 0.66..., 0. , 0. ]) """ p, _, _, _ = precision_recall_fscore_support(y_true, y_pred, labels=labels, pos_label=pos_label, average=average, warn_for=('precision',), sample_weight=sample_weight) return p def recall_score(y_true, y_pred, labels=None, pos_label=1, average='binary', sample_weight=None): """Compute the recall The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The best value is 1 and the worst value is 0. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : list, optional The set of labels to include when ``average != 'binary'``, and their order if ``average is None``. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in ``y_true`` and ``y_pred`` are used in sorted order. .. versionchanged:: 0.17 parameter *labels* improved for multiclass problem. pos_label : str or int, 1 by default The class to report if ``average='binary'``. Until version 0.18 it is necessary to set ``pos_label=None`` if seeking to use another averaging method over binary targets. average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \ 'weighted'] This parameter is required for multiclass/multilabel targets. If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'binary'``: Only report results for the class specified by ``pos_label``. This is applicable only if targets (``y_{true,pred}``) are binary. ``'micro'``: Calculate metrics globally by counting the total true positives, false negatives and false positives. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). This alters 'macro' to account for label imbalance; it can result in an F-score that is not between precision and recall. ``'samples'``: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from :func:`accuracy_score`). Note that if ``pos_label`` is given in binary classification with `average != 'binary'`, only that positive class is reported. This behavior is deprecated and will change in version 0.18. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- recall : float (if average is not None) or array of float, shape =\ [n_unique_labels] Recall of the positive class in binary classification or weighted average of the recall of each class for the multiclass task. Examples -------- >>> from sklearn.metrics import recall_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> recall_score(y_true, y_pred, average='macro') # doctest: +ELLIPSIS 0.33... >>> recall_score(y_true, y_pred, average='micro') # doctest: +ELLIPSIS 0.33... >>> recall_score(y_true, y_pred, average='weighted') # doctest: +ELLIPSIS 0.33... >>> recall_score(y_true, y_pred, average=None) array([ 1., 0., 0.]) """ _, r, _, _ = precision_recall_fscore_support(y_true, y_pred, labels=labels, pos_label=pos_label, average=average, warn_for=('recall',), sample_weight=sample_weight) return r def classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2): """Build a text report showing the main classification metrics Read more in the :ref:`User Guide <classification_report>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. labels : array, shape = [n_labels] Optional list of label indices to include in the report. target_names : list of strings Optional display names matching the labels (same order). sample_weight : array-like of shape = [n_samples], optional Sample weights. digits : int Number of digits for formatting output floating point values Returns ------- report : string Text summary of the precision, recall, F1 score for each class. Examples -------- >>> from sklearn.metrics import classification_report >>> y_true = [0, 1, 2, 2, 2] >>> y_pred = [0, 0, 2, 2, 1] >>> target_names = ['class 0', 'class 1', 'class 2'] >>> print(classification_report(y_true, y_pred, target_names=target_names)) precision recall f1-score support <BLANKLINE> class 0 0.50 1.00 0.67 1 class 1 0.00 0.00 0.00 1 class 2 1.00 0.67 0.80 3 <BLANKLINE> avg / total 0.70 0.60 0.61 5 <BLANKLINE> """ if labels is None: labels = unique_labels(y_true, y_pred) else: labels = np.asarray(labels) last_line_heading = 'avg / total' if target_names is None: width = len(last_line_heading) target_names = ['%s' % l for l in labels] else: width = max(len(cn) for cn in target_names) width = max(width, len(last_line_heading), digits) headers = ["precision", "recall", "f1-score", "support"] fmt = '%% %ds' % width # first column: class name fmt += ' ' fmt += ' '.join(['% 9s' for _ in headers]) fmt += '\n' headers = [""] + headers report = fmt % tuple(headers) report += '\n' p, r, f1, s = precision_recall_fscore_support(y_true, y_pred, labels=labels, average=None, sample_weight=sample_weight) for i, label in enumerate(labels): values = [target_names[i]] for v in (p[i], r[i], f1[i]): values += ["{0:0.{1}f}".format(v, digits)] values += ["{0}".format(s[i])] report += fmt % tuple(values) report += '\n' # compute averages values = [last_line_heading] for v in (np.average(p, weights=s), np.average(r, weights=s), np.average(f1, weights=s)): values += ["{0:0.{1}f}".format(v, digits)] values += ['{0}'.format(np.sum(s))] report += fmt % tuple(values) return report def hamming_loss(y_true, y_pred, classes=None): """Compute the average Hamming loss. The Hamming loss is the fraction of labels that are incorrectly predicted. Read more in the :ref:`User Guide <hamming_loss>`. Parameters ---------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) labels. y_pred : 1d array-like, or label indicator array / sparse matrix Predicted labels, as returned by a classifier. classes : array, shape = [n_labels], optional Integer array of labels. Returns ------- loss : float or int, Return the average Hamming loss between element of ``y_true`` and ``y_pred``. See Also -------- accuracy_score, jaccard_similarity_score, zero_one_loss Notes ----- In multiclass classification, the Hamming loss correspond to the Hamming distance between ``y_true`` and ``y_pred`` which is equivalent to the subset ``zero_one_loss`` function. In multilabel classification, the Hamming loss is different from the subset zero-one loss. The zero-one loss considers the entire set of labels for a given sample incorrect if it does entirely match the true set of labels. Hamming loss is more forgiving in that it penalizes the individual labels. The Hamming loss is upperbounded by the subset zero-one loss. When normalized over samples, the Hamming loss is always between 0 and 1. References ---------- .. [1] Grigorios Tsoumakas, Ioannis Katakis. Multi-Label Classification: An Overview. International Journal of Data Warehousing & Mining, 3(3), 1-13, July-September 2007. .. [2] `Wikipedia entry on the Hamming distance <http://en.wikipedia.org/wiki/Hamming_distance>`_ Examples -------- >>> from sklearn.metrics import hamming_loss >>> y_pred = [1, 2, 3, 4] >>> y_true = [2, 2, 3, 4] >>> hamming_loss(y_true, y_pred) 0.25 In the multilabel case with binary label indicators: >>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2))) 0.75 """ y_type, y_true, y_pred = _check_targets(y_true, y_pred) if classes is None: classes = unique_labels(y_true, y_pred) else: classes = np.asarray(classes) if y_type.startswith('multilabel'): n_differences = count_nonzero(y_true - y_pred) return (n_differences / (y_true.shape[0] * len(classes))) elif y_type in ["binary", "multiclass"]: return sp_hamming(y_true, y_pred) else: raise ValueError("{0} is not supported".format(y_type)) def log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None): """Log loss, aka logistic loss or cross-entropy loss. This is the loss function used in (multinomial) logistic regression and extensions of it such as neural networks, defined as the negative log-likelihood of the true labels given a probabilistic classifier's predictions. For a single sample with true label yt in {0,1} and estimated probability yp that yt = 1, the log loss is -log P(yt|yp) = -(yt log(yp) + (1 - yt) log(1 - yp)) Read more in the :ref:`User Guide <log_loss>`. Parameters ---------- y_true : array-like or label indicator matrix Ground truth (correct) labels for n_samples samples. y_pred : array-like of float, shape = (n_samples, n_classes) Predicted probabilities, as returned by a classifier's predict_proba method. eps : float Log loss is undefined for p=0 or p=1, so probabilities are clipped to max(eps, min(1 - eps, p)). normalize : bool, optional (default=True) If true, return the mean loss per sample. Otherwise, return the sum of the per-sample losses. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float Examples -------- >>> log_loss(["spam", "ham", "ham", "spam"], # doctest: +ELLIPSIS ... [[.1, .9], [.9, .1], [.8, .2], [.35, .65]]) 0.21616... References ---------- C.M. Bishop (2006). Pattern Recognition and Machine Learning. Springer, p. 209. Notes ----- The logarithm used is the natural logarithm (base-e). """ lb = LabelBinarizer() T = lb.fit_transform(y_true) if T.shape[1] == 1: T = np.append(1 - T, T, axis=1) # Clipping Y = np.clip(y_pred, eps, 1 - eps) # This happens in cases when elements in y_pred have type "str". if not isinstance(Y, np.ndarray): raise ValueError("y_pred should be an array of floats.") # If y_pred is of single dimension, assume y_true to be binary # and then check. if Y.ndim == 1: Y = Y[:, np.newaxis] if Y.shape[1] == 1: Y = np.append(1 - Y, Y, axis=1) # Check if dimensions are consistent. check_consistent_length(T, Y) T = check_array(T) Y = check_array(Y) if T.shape[1] != Y.shape[1]: raise ValueError("y_true and y_pred have different number of classes " "%d, %d" % (T.shape[1], Y.shape[1])) # Renormalize Y /= Y.sum(axis=1)[:, np.newaxis] loss = -(T * np.log(Y)).sum(axis=1) return _weighted_sum(loss, sample_weight, normalize) def hinge_loss(y_true, pred_decision, labels=None, sample_weight=None): """Average hinge loss (non-regularized) In binary class case, assuming labels in y_true are encoded with +1 and -1, when a prediction mistake is made, ``margin = y_true * pred_decision`` is always negative (since the signs disagree), implying ``1 - margin`` is always greater than 1. The cumulated hinge loss is therefore an upper bound of the number of mistakes made by the classifier. In multiclass case, the function expects that either all the labels are included in y_true or an optional labels argument is provided which contains all the labels. The multilabel margin is calculated according to Crammer-Singer's method. As in the binary case, the cumulated hinge loss is an upper bound of the number of mistakes made by the classifier. Read more in the :ref:`User Guide <hinge_loss>`. Parameters ---------- y_true : array, shape = [n_samples] True target, consisting of integers of two values. The positive label must be greater than the negative label. pred_decision : array, shape = [n_samples] or [n_samples, n_classes] Predicted decisions, as output by decision_function (floats). labels : array, optional, default None Contains all the labels for the problem. Used in multiclass hinge loss. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float References ---------- .. [1] `Wikipedia entry on the Hinge loss <http://en.wikipedia.org/wiki/Hinge_loss>`_ .. [2] Koby Crammer, Yoram Singer. On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines. Journal of Machine Learning Research 2, (2001), 265-292 .. [3] `L1 AND L2 Regularization for Multiclass Hinge Loss Models by Robert C. Moore, John DeNero. <http://www.ttic.edu/sigml/symposium2011/papers/ Moore+DeNero_Regularization.pdf>`_ Examples -------- >>> from sklearn import svm >>> from sklearn.metrics import hinge_loss >>> X = [[0], [1]] >>> y = [-1, 1] >>> est = svm.LinearSVC(random_state=0) >>> est.fit(X, y) LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=0, tol=0.0001, verbose=0) >>> pred_decision = est.decision_function([[-2], [3], [0.5]]) >>> pred_decision # doctest: +ELLIPSIS array([-2.18..., 2.36..., 0.09...]) >>> hinge_loss([-1, 1, 1], pred_decision) # doctest: +ELLIPSIS 0.30... In the multiclass case: >>> X = np.array([[0], [1], [2], [3]]) >>> Y = np.array([0, 1, 2, 3]) >>> labels = np.array([0, 1, 2, 3]) >>> est = svm.LinearSVC() >>> est.fit(X, Y) LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, verbose=0) >>> pred_decision = est.decision_function([[-1], [2], [3]]) >>> y_true = [0, 2, 3] >>> hinge_loss(y_true, pred_decision, labels) #doctest: +ELLIPSIS 0.56... """ check_consistent_length(y_true, pred_decision, sample_weight) pred_decision = check_array(pred_decision, ensure_2d=False) y_true = column_or_1d(y_true) y_true_unique = np.unique(y_true) if y_true_unique.size > 2: if (labels is None and pred_decision.ndim > 1 and (np.size(y_true_unique) != pred_decision.shape[1])): raise ValueError("Please include all labels in y_true " "or pass labels as third argument") if labels is None: labels = y_true_unique le = LabelEncoder() le.fit(labels) y_true = le.transform(y_true) mask = np.ones_like(pred_decision, dtype=bool) mask[np.arange(y_true.shape[0]), y_true] = False margin = pred_decision[~mask] margin -= np.max(pred_decision[mask].reshape(y_true.shape[0], -1), axis=1) else: # Handles binary class case # this code assumes that positive and negative labels # are encoded as +1 and -1 respectively pred_decision = column_or_1d(pred_decision) pred_decision = np.ravel(pred_decision) lbin = LabelBinarizer(neg_label=-1) y_true = lbin.fit_transform(y_true)[:, 0] try: margin = y_true * pred_decision except TypeError: raise TypeError("pred_decision should be an array of floats.") losses = 1 - margin # The hinge_loss doesn't penalize good enough predictions. losses[losses <= 0] = 0 return np.average(losses, weights=sample_weight) def _check_binary_probabilistic_predictions(y_true, y_prob): """Check that y_true is binary and y_prob contains valid probabilities""" check_consistent_length(y_true, y_prob) labels = np.unique(y_true) if len(labels) != 2: raise ValueError("Only binary classification is supported. " "Provided labels %s." % labels) if y_prob.max() > 1: raise ValueError("y_prob contains values greater than 1.") if y_prob.min() < 0: raise ValueError("y_prob contains values less than 0.") return label_binarize(y_true, labels)[:, 0] def brier_score_loss(y_true, y_prob, sample_weight=None, pos_label=None): """Compute the Brier score. The smaller the Brier score, the better, hence the naming with "loss". Across all items in a set N predictions, the Brier score measures the mean squared difference between (1) the predicted probability assigned to the possible outcomes for item i, and (2) the actual outcome. Therefore, the lower the Brier score is for a set of predictions, the better the predictions are calibrated. Note that the Brier score always takes on a value between zero and one, since this is the largest possible difference between a predicted probability (which must be between zero and one) and the actual outcome (which can take on values of only 0 and 1). The Brier score is appropriate for binary and categorical outcomes that can be structured as true or false, but is inappropriate for ordinal variables which can take on three or more values (this is because the Brier score assumes that all possible outcomes are equivalently "distant" from one another). Which label is considered to be the positive label is controlled via the parameter pos_label, which defaults to 1. Read more in the :ref:`User Guide <calibration>`. Parameters ---------- y_true : array, shape (n_samples,) True targets. y_prob : array, shape (n_samples,) Probabilities of the positive class. sample_weight : array-like of shape = [n_samples], optional Sample weights. pos_label : int (default: None) Label of the positive class. If None, the maximum label is used as positive class Returns ------- score : float Brier score Examples -------- >>> import numpy as np >>> from sklearn.metrics import brier_score_loss >>> y_true = np.array([0, 1, 1, 0]) >>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"]) >>> y_prob = np.array([0.1, 0.9, 0.8, 0.3]) >>> brier_score_loss(y_true, y_prob) # doctest: +ELLIPSIS 0.037... >>> brier_score_loss(y_true, 1-y_prob, pos_label=0) # doctest: +ELLIPSIS 0.037... >>> brier_score_loss(y_true_categorical, y_prob, \ pos_label="ham") # doctest: +ELLIPSIS 0.037... >>> brier_score_loss(y_true, np.array(y_prob) > 0.5) 0.0 References ---------- http://en.wikipedia.org/wiki/Brier_score """ y_true = column_or_1d(y_true) y_prob = column_or_1d(y_prob) if pos_label is None: pos_label = y_true.max() y_true = np.array(y_true == pos_label, int) y_true = _check_binary_probabilistic_predictions(y_true, y_prob) return np.average((y_true - y_prob) ** 2, weights=sample_weight)
mit
marinkaz/orange3
Orange/evaluation/clustering.py
16
5430
import numpy as np from sklearn.metrics import silhouette_score, adjusted_mutual_info_score, silhouette_samples from Orange.data import Table from Orange.evaluation.testing import Results from Orange.evaluation.scoring import Score __all__ = ['ClusteringEvaluation'] class ClusteringResults(Results): def __init__(self, store_data=True, **kwargs): super().__init__(store_data=True, **kwargs) def get_fold(self, fold): results = ClusteringResults() results.data = self.data if self.folds is None: raise ValueError("This 'Results' instance does not have folds.") if self.models is not None: results.models = self.models[fold] results.row_indices = self.row_indices results.actual = self.actual results.predicted = self.predicted[:, fold, :] results.domain = self.domain return results class ClusteringScore(Score): considers_actual = False def from_predicted(self, results, score_function): # Clustering scores from labels if self.considers_actual: return np.fromiter( (score_function(results.actual.flatten(), predicted.flatten()) for predicted in results.predicted), dtype=np.float64, count=len(results.predicted)) # Clustering scores from data only else: return np.fromiter( (score_function(results.data.X, predicted.flatten()) for predicted in results.predicted), dtype=np.float64, count=len(results.predicted)) class Silhouette(ClusteringScore): separate_folds = True def compute_score(self, results): return self.from_predicted(results, silhouette_score) class AdjustedMutualInfoScore(ClusteringScore): separate_folds = True considers_actual = True def compute_score(self, results): return self.from_predicted(results, adjusted_mutual_info_score) class ClusteringEvaluation(ClusteringResults): """ Clustering evaluation. If the constructor is given the data and a list of learning algorithms, it runs clustering and returns an instance of `Results` containing the predicted clustering labels. .. attribute:: k The number of runs. """ def __init__(self, data, learners, k=1, store_models=False): super().__init__(data=data, nmethods=len(learners), store_data=True, store_models=store_models, predicted=None) self.k = k Y = data.Y.copy().flatten() self.predicted = np.empty((len(learners), self.k, len(data))) self.folds = range(k) self.row_indices = np.arange(len(data)) self.actual = data.Y.flatten() if hasattr(data, "Y") else None if self.store_models: self.models = [] for k in range(self.k): if self.store_models: fold_models = [] self.models.append(fold_models) for i, learner in enumerate(learners): model = learner(data) if self.store_models: fold_models.append(model) labels = model(data) self.predicted[i, k, :] = labels.X.flatten() def graph_silhouette(X, y, xlim=None, colors=None, figsize=None, filename=None): """ Silhouette plot. :param filename: Output file name. :param X Orange.data.Table or numpy.ndarray Data table. :param y Orange.data.Table or numpy.ndarray: Cluster labels (integers). :param colors list, optional (default = None): List of colors. If provided, it must equal the number of clusters. :param figsize tuple (float, float): Figure size (width, height) in inches. :param xlim tuple (float, float): Limit x-axis values. """ import matplotlib.pyplot as plt if isinstance(X, Table): X = X.X if isinstance(y, Table): y = y.X y = y.ravel() # Detect number of clusters and set colors N = len(set(y)) if isinstance(colors, type(None)) : colors = ["g" if i % 2 else "b" for i in range(N)] elif len(colors) != N: import sys sys.stderr.write("Number of colors does not match the number of clusters. \n") return # Silhouette coefficients s = silhouette_samples(X, y) s = s[np.argsort(y)] # Sort by clusters parts = [] # Within clusters sort by silhouette scores for label, (i, j) in enumerate([(sum(y == c1), sum(y == c1) + sum(y == c2)) for c1, c2 in zip(range(-1, N-1), range(0, N))]): scores = sorted(s[i:j]) parts.append((scores, label)) # Plot data if figsize: plt.figure(figsize=figsize) else: plt.figure() plt.title("Silhouette score") total = 0 centers = [] for i, (scores, label) in enumerate(parts): plt.barh(range(total, total + len(scores)), scores, color=colors[i], edgecolor=colors[i]) centers.append(total+len(scores)/2) total += len(scores) if not isinstance(xlim, type(None)): plt.xlim(xlim) plt.yticks(centers) plt.gca().set_yticklabels(range(N)) plt.ylabel("Cluster label") if filename: plt.savefig(filename) plt.close() else: plt.show()
bsd-2-clause
rowhit/h2o-2
py/testdir_kevin/test_parse_specific_case1.py
9
2651
import unittest, random, sys, time, os sys.path.extend(['.','..','../..','py']) import h2o, h2o_cmd, h2o_import as h2i import codecs, unicodedata print "create some specific small datasets with exp row/col combinations" print "This is a known fail for both row and col. Leading unmatched double quote issue" tryList = [ ('''\ "a,b,c,d "a,b,c,d "a,b,c,d "a,b,c,d "a,b,c,d a,b,c,d "a,b,c,d "a,b,c,d "a,b,c,d "a,b,c,d ''', 10, 4, [0,0,0,0], ['Enum', 'Enum', 'Enum', 'Enum']), ] def write_syn_dataset(csvPathname, dataset): dsf = codecs.open(csvPathname, encoding='utf-8', mode='w+') encoded = dataset.decode('utf-8') print "utf8:" , repr(encoded), type(encoded) print "str or utf8:" , repr(dataset), type(dataset) dsf.write(dataset) dsf.close() class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): global SEED SEED = h2o.setup_random_seed() h2o.init(java_heap_GB=1) @classmethod def tearDownClass(cls): h2o.tear_down_cloud() def test_parse_specific_case1(self): SYNDATASETS_DIR = h2o.make_syn_dir() hex_key = "a.hex" for (dataset, expNumRows, expNumCols, expNaCnt, expType) in tryList: csvFilename = 'specific_' + str(expNumRows) + "x" + str(expNumCols) + '.csv' csvPathname = SYNDATASETS_DIR + '/' + csvFilename write_syn_dataset(csvPathname, dataset) parseResult = h2i.import_parse(path=csvPathname, schema='put', header=0, hex_key=hex_key, timeoutSecs=10, doSummary=False) inspect = h2o_cmd.runInspect(None, parseResult['destination_key'], timeoutSecs=60) print "inspect:", h2o.dump_json(inspect) numRows = inspect['numRows'] self.assertEqual(numRows, expNumRows, msg='Wrong numRows: %s Expected: %s' % (numRows, expNumRows)) numCols = inspect['numCols'] self.assertEqual(numCols, expNumCols, msg='Wrong numCols: %s Expected: %s' % (numCols, expNumCols)) # this is required for the test setup assert(len(expNaCnt)>=expNumCols) assert(len(expType)>=expNumCols) for k in range(expNumCols): naCnt = inspect['cols'][k]['naCnt'] self.assertEqual(expNaCnt[k], naCnt, msg='col %s naCnt %d should be %s' % (k, naCnt, expNaCnt[k])) stype = inspect['cols'][k]['type'] self.assertEqual(expType[k], stype, msg='col %s type %s should be %s' % (k, stype, expType[k])) if __name__ == '__main__': h2o.unit_main()
apache-2.0
pdamodaran/yellowbrick
yellowbrick/contrib/statsmodels/base.py
1
2626
# yellowbrick.contrib.statsmodels.base # A basic wrapper for statsmodels that emulates a scikit-learn estimator. # # Author: Ian Ozsvald # Created: Wed Jan 10 12:47:00 2018 -0500 # # ID: base.py [] benjamin@bengfort.com $ """ A basic wrapper for statsmodels that emulates a scikit-learn estimator. """ ########################################################################## ## Imports ########################################################################## from sklearn.metrics import r2_score from sklearn.base import BaseEstimator ########################################################################## ## statsmodels Estimator ########################################################################## class StatsModelsWrapper(BaseEstimator): """ Wrap a statsmodels GLM as a sklearn (fake) BaseEstimator for YellowBrick. Examples -------- First import the external libraries and helper utilities: >>> import statsmodels.api as sm >>> from functools import partial Instantiate a partial with the statsmodels API: >>> glm_gaussian_partial = partial(sm.GLM, family=sm.families.Gaussian()) >>> sm_est = StatsModelsWrapper(glm_gaussian_partial) Create a Yellowbrick visualizer to visualize prediction error: >>> visualizer = PredictionError(sm_est) >>> visualizer.fit(X_train, y_train) >>> visualizer.score(X_test, y_test) For statsmodels usage, calling .summary() etc: >>> gaussian_model = glm_gaussian_partial(y_train, X_train) Note ---- .. note:: This wrapper is trivial, options and extra things like weights are not currently handled. """ def __init__(self, glm_partial, stated_estimator_type="regressor", scorer=r2_score): # YellowBrick checks the attribute to see if it is a # regressor/clusterer/classifier self._estimator_type = stated_estimator_type # assume user passes in a partial which we can instantiate later self.glm_partial = glm_partial # needs a default scoring function, regression uses r^2 in sklearn self.scorer = scorer def fit(self, X, y): """ Pretend to be a sklearn estimator, fit is called on creation """ # note that GLM takes endog (y) and then exog (X): # this is the reverse of sklearn's methods self.glm_model = self.glm_partial(y, X) self.glm_results = self.glm_model.fit() return self def predict(self, X): return self.glm_results.predict(X) def score(self, X, y): return self.scorer(y, self.predict(X))
apache-2.0
Tong-Chen/scikit-learn
sklearn/linear_model/tests/test_bayes.py
9
1629
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.linear_model.bayes import BayesianRidge, ARDRegression from sklearn import datasets def test_bayesian_on_diabetes(): """ Test BayesianRidge on diabetes """ raise SkipTest("XFailed Test") diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target clf = BayesianRidge(compute_score=True) # Test with more samples than features clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) # Test with more features than samples X = X[:5, :] y = y[:5] clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) def test_toy_bayesian_ridge_object(): """ Test BayesianRidge on toy """ X = np.array([[1], [2], [6], [8], [10]]) Y = np.array([1, 2, 6, 8, 10]) clf = BayesianRidge(compute_score=True) clf.fit(X, Y) X_test = [[1], [3], [4]] assert(np.abs(clf.predict(X_test) - [1, 3, 4]).sum() < 1.e-2) # identity def test_toy_ard_object(): """ Test BayesianRegression ARD classifier """ X = np.array([[1], [2], [3]]) Y = np.array([1, 2, 3]) clf = ARDRegression(compute_score=True) clf.fit(X, Y) test = [[1], [3], [4]] assert(np.abs(clf.predict(test) - [1, 3, 4]).sum() < 1.e-3) # identity
bsd-3-clause
ZenDevelopmentSystems/scikit-learn
examples/decomposition/plot_incremental_pca.py
243
1878
""" =============== Incremental PCA =============== Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit in memory. IPCA builds a low-rank approximation for the input data using an amount of memory which is independent of the number of input data samples. It is still dependent on the input data features, but changing the batch size allows for control of memory usage. This example serves as a visual check that IPCA is able to find a similar projection of the data to PCA (to a sign flip), while only processing a few samples at a time. This can be considered a "toy example", as IPCA is intended for large datasets which do not fit in main memory, requiring incremental approaches. """ print(__doc__) # Authors: Kyle Kastner # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.decomposition import PCA, IncrementalPCA iris = load_iris() X = iris.data y = iris.target n_components = 2 ipca = IncrementalPCA(n_components=n_components, batch_size=10) X_ipca = ipca.fit_transform(X) pca = PCA(n_components=n_components) X_pca = pca.fit_transform(X) for X_transformed, title in [(X_ipca, "Incremental PCA"), (X_pca, "PCA")]: plt.figure(figsize=(8, 8)) for c, i, target_name in zip("rgb", [0, 1, 2], iris.target_names): plt.scatter(X_transformed[y == i, 0], X_transformed[y == i, 1], c=c, label=target_name) if "Incremental" in title: err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean() plt.title(title + " of iris dataset\nMean absolute unsigned error " "%.6f" % err) else: plt.title(title + " of iris dataset") plt.legend(loc="best") plt.axis([-4, 4, -1.5, 1.5]) plt.show()
bsd-3-clause
fyffyt/scikit-learn
examples/preprocessing/plot_robust_scaling.py
220
2702
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Robust Scaling on Toy Data ========================================================= Making sure that each Feature has approximately the same scale can be a crucial preprocessing step. However, when data contains outliers, :class:`StandardScaler <sklearn.preprocessing.StandardScaler>` can often be mislead. In such cases, it is better to use a scaler that is robust against outliers. Here, we demonstrate this on a toy dataset, where one single datapoint is a large outlier. """ from __future__ import print_function print(__doc__) # Code source: Thomas Unterthiner # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.preprocessing import StandardScaler, RobustScaler # Create training and test data np.random.seed(42) n_datapoints = 100 Cov = [[0.9, 0.0], [0.0, 20.0]] mu1 = [100.0, -3.0] mu2 = [101.0, -3.0] X1 = np.random.multivariate_normal(mean=mu1, cov=Cov, size=n_datapoints) X2 = np.random.multivariate_normal(mean=mu2, cov=Cov, size=n_datapoints) Y_train = np.hstack([[-1]*n_datapoints, [1]*n_datapoints]) X_train = np.vstack([X1, X2]) X1 = np.random.multivariate_normal(mean=mu1, cov=Cov, size=n_datapoints) X2 = np.random.multivariate_normal(mean=mu2, cov=Cov, size=n_datapoints) Y_test = np.hstack([[-1]*n_datapoints, [1]*n_datapoints]) X_test = np.vstack([X1, X2]) X_train[0, 0] = -1000 # a fairly large outlier # Scale data standard_scaler = StandardScaler() Xtr_s = standard_scaler.fit_transform(X_train) Xte_s = standard_scaler.transform(X_test) robust_scaler = RobustScaler() Xtr_r = robust_scaler.fit_transform(X_train) Xte_r = robust_scaler.fit_transform(X_test) # Plot data fig, ax = plt.subplots(1, 3, figsize=(12, 4)) ax[0].scatter(X_train[:, 0], X_train[:, 1], color=np.where(Y_train > 0, 'r', 'b')) ax[1].scatter(Xtr_s[:, 0], Xtr_s[:, 1], color=np.where(Y_train > 0, 'r', 'b')) ax[2].scatter(Xtr_r[:, 0], Xtr_r[:, 1], color=np.where(Y_train > 0, 'r', 'b')) ax[0].set_title("Unscaled data") ax[1].set_title("After standard scaling (zoomed in)") ax[2].set_title("After robust scaling (zoomed in)") # for the scaled data, we zoom in to the data center (outlier can't be seen!) for a in ax[1:]: a.set_xlim(-3, 3) a.set_ylim(-3, 3) plt.tight_layout() plt.show() # Classify using k-NN from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier() knn.fit(Xtr_s, Y_train) acc_s = knn.score(Xte_s, Y_test) print("Testset accuracy using standard scaler: %.3f" % acc_s) knn.fit(Xtr_r, Y_train) acc_r = knn.score(Xte_r, Y_test) print("Testset accuracy using robust scaler: %.3f" % acc_r)
bsd-3-clause
djgagne/scikit-learn
examples/decomposition/plot_incremental_pca.py
243
1878
""" =============== Incremental PCA =============== Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit in memory. IPCA builds a low-rank approximation for the input data using an amount of memory which is independent of the number of input data samples. It is still dependent on the input data features, but changing the batch size allows for control of memory usage. This example serves as a visual check that IPCA is able to find a similar projection of the data to PCA (to a sign flip), while only processing a few samples at a time. This can be considered a "toy example", as IPCA is intended for large datasets which do not fit in main memory, requiring incremental approaches. """ print(__doc__) # Authors: Kyle Kastner # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.decomposition import PCA, IncrementalPCA iris = load_iris() X = iris.data y = iris.target n_components = 2 ipca = IncrementalPCA(n_components=n_components, batch_size=10) X_ipca = ipca.fit_transform(X) pca = PCA(n_components=n_components) X_pca = pca.fit_transform(X) for X_transformed, title in [(X_ipca, "Incremental PCA"), (X_pca, "PCA")]: plt.figure(figsize=(8, 8)) for c, i, target_name in zip("rgb", [0, 1, 2], iris.target_names): plt.scatter(X_transformed[y == i, 0], X_transformed[y == i, 1], c=c, label=target_name) if "Incremental" in title: err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean() plt.title(title + " of iris dataset\nMean absolute unsigned error " "%.6f" % err) else: plt.title(title + " of iris dataset") plt.legend(loc="best") plt.axis([-4, 4, -1.5, 1.5]) plt.show()
bsd-3-clause
sambitgaan/nupic
examples/opf/experiments/spatial_classification/category_1/description.py
32
1554
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- ## This file defines parameters for a prediction experiment. import os from nupic.frameworks.opf.expdescriptionhelpers import importBaseDescription # the sub-experiment configuration config = \ { 'dataSource': 'file://' + os.path.join(os.path.dirname(__file__), '../datasets/category_1.csv'), 'errorMetric': 'avg_err', 'modelParams': { 'sensorParams': { 'verbosity': 0}, 'clParams': { 'clVerbosity': 0, }, } } mod = importBaseDescription('../base/description.py', config) locals().update(mod.__dict__)
agpl-3.0
xupei0610/ComputerGraphics-HW
final/lib/assimp/port/PyAssimp/pyassimp/core.py
4
17722
""" PyAssimp This is the main-module of PyAssimp. """ import sys if sys.version_info < (2,6): raise 'pyassimp: need python 2.6 or newer' # xrange was renamed range in Python 3 and the original range from Python 2 was removed. # To keep compatibility with both Python 2 and 3, xrange is set to range for version 3.0 and up. if sys.version_info >= (3,0): xrange = range import ctypes import os try: import numpy except: numpy = None import logging logger = logging.getLogger("pyassimp") # attach default null handler to logger so it doesn't complain # even if you don't attach another handler to logger logger.addHandler(logging.NullHandler()) from . import structs from . import helper from . import postprocess from .errors import AssimpError from .formats import available_formats class AssimpLib(object): """ Assimp-Singleton """ load, load_mem, export, release, dll = helper.search_library() _assimp_lib = AssimpLib() def make_tuple(ai_obj, type = None): res = None #notes: # ai_obj._fields_ = [ ("attr", c_type), ... ] # getattr(ai_obj, e[0]).__class__ == float if isinstance(ai_obj, structs.Matrix4x4): if numpy: res = numpy.array([getattr(ai_obj, e[0]) for e in ai_obj._fields_]).reshape((4,4)) #import pdb;pdb.set_trace() else: res = [getattr(ai_obj, e[0]) for e in ai_obj._fields_] res = [res[i:i+4] for i in xrange(0,16,4)] elif isinstance(ai_obj, structs.Matrix3x3): if numpy: res = numpy.array([getattr(ai_obj, e[0]) for e in ai_obj._fields_]).reshape((3,3)) else: res = [getattr(ai_obj, e[0]) for e in ai_obj._fields_] res = [res[i:i+3] for i in xrange(0,9,3)] else: if numpy: res = numpy.array([getattr(ai_obj, e[0]) for e in ai_obj._fields_]) else: res = [getattr(ai_obj, e[0]) for e in ai_obj._fields_] return res # It is faster and more correct to have an init function for each assimp class def _init_face(aiFace): aiFace.indices = [aiFace.mIndices[i] for i in range(aiFace.mNumIndices)] assimp_struct_inits = { structs.Face : _init_face } def call_init(obj, caller = None): if helper.hasattr_silent(obj,'contents'): #pointer _init(obj.contents, obj, caller) else: _init(obj,parent=caller) def _is_init_type(obj): if helper.hasattr_silent(obj,'contents'): #pointer return _is_init_type(obj[0]) # null-pointer case that arises when we reach a mesh attribute # like mBitangents which use mNumVertices rather than mNumBitangents # so it breaks the 'is iterable' check. # Basically: # FIXME! elif not bool(obj): return False tname = obj.__class__.__name__ return not (tname[:2] == 'c_' or tname == 'Structure' \ or tname == 'POINTER') and not isinstance(obj,int) def _init(self, target = None, parent = None): """ Custom initialize() for C structs, adds safely accessible member functionality. :param target: set the object which receive the added methods. Useful when manipulating pointers, to skip the intermediate 'contents' deferencing. """ if not target: target = self dirself = dir(self) for m in dirself: if m.startswith("_"): continue if m.startswith('mNum'): if 'm' + m[4:] in dirself: continue # will be processed later on else: name = m[1:].lower() obj = getattr(self, m) setattr(target, name, obj) continue if m == 'mName': obj = self.mName try: uni = unicode(obj.data, errors='ignore') except: uni = str(obj.data, errors='ignore') target.name = str( uni ) target.__class__.__repr__ = lambda x: str(x.__class__) + "(" + x.name + ")" target.__class__.__str__ = lambda x: x.name continue name = m[1:].lower() obj = getattr(self, m) # Create tuples if isinstance(obj, structs.assimp_structs_as_tuple): setattr(target, name, make_tuple(obj)) logger.debug(str(self) + ": Added array " + str(getattr(target, name)) + " as self." + name.lower()) continue if m.startswith('m'): if name == "parent": setattr(target, name, parent) logger.debug("Added a parent as self." + name) continue if helper.hasattr_silent(self, 'mNum' + m[1:]): length = getattr(self, 'mNum' + m[1:]) # -> special case: properties are # stored as a dict. if m == 'mProperties': setattr(target, name, _get_properties(obj, length)) continue if not length: # empty! setattr(target, name, []) logger.debug(str(self) + ": " + name + " is an empty list.") continue try: if obj._type_ in structs.assimp_structs_as_tuple: if numpy: setattr(target, name, numpy.array([make_tuple(obj[i]) for i in range(length)], dtype=numpy.float32)) logger.debug(str(self) + ": Added an array of numpy arrays (type "+ str(type(obj)) + ") as self." + name) else: setattr(target, name, [make_tuple(obj[i]) for i in range(length)]) logger.debug(str(self) + ": Added a list of lists (type "+ str(type(obj)) + ") as self." + name) else: setattr(target, name, [obj[i] for i in range(length)]) #TODO: maybe not necessary to recreate an array? logger.debug(str(self) + ": Added list of " + str(obj) + " " + name + " as self." + name + " (type: " + str(type(obj)) + ")") # initialize array elements try: init = assimp_struct_inits[type(obj[0])] except KeyError: if _is_init_type(obj[0]): for e in getattr(target, name): call_init(e, target) else: for e in getattr(target, name): init(e) except IndexError: logger.error("in " + str(self) +" : mismatch between mNum" + name + " and the actual amount of data in m" + name + ". This may be due to version mismatch between libassimp and pyassimp. Quitting now.") sys.exit(1) except ValueError as e: logger.error("In " + str(self) + "->" + name + ": " + str(e) + ". Quitting now.") if "setting an array element with a sequence" in str(e): logger.error("Note that pyassimp does not currently " "support meshes with mixed triangles " "and quads. Try to load your mesh with" " a post-processing to triangulate your" " faces.") raise e else: # starts with 'm' but not iterable setattr(target, name, obj) logger.debug("Added " + name + " as self." + name + " (type: " + str(type(obj)) + ")") if _is_init_type(obj): call_init(obj, target) if isinstance(self, structs.Mesh): _finalize_mesh(self, target) if isinstance(self, structs.Texture): _finalize_texture(self, target) return self def pythonize_assimp(type, obj, scene): """ This method modify the Assimp data structures to make them easier to work with in Python. Supported operations: - MESH: replace a list of mesh IDs by reference to these meshes - ADDTRANSFORMATION: add a reference to an object's transformation taken from their associated node. :param type: the type of modification to operate (cf above) :param obj: the input object to modify :param scene: a reference to the whole scene """ if type == "MESH": meshes = [] for i in obj: meshes.append(scene.meshes[i]) return meshes if type == "ADDTRANSFORMATION": def getnode(node, name): if node.name == name: return node for child in node.children: n = getnode(child, name) if n: return n node = getnode(scene.rootnode, obj.name) if not node: raise AssimpError("Object " + str(obj) + " has no associated node!") setattr(obj, "transformation", node.transformation) def recur_pythonize(node, scene): ''' Recursively call pythonize_assimp on nodes tree to apply several post-processing to pythonize the assimp datastructures. ''' node.meshes = pythonize_assimp("MESH", node.meshes, scene) for mesh in node.meshes: mesh.material = scene.materials[mesh.materialindex] for cam in scene.cameras: pythonize_assimp("ADDTRANSFORMATION", cam, scene) for c in node.children: recur_pythonize(c, scene) def load(filename, file_type = None, processing = postprocess.aiProcess_Triangulate): ''' Load a model into a scene. On failure throws AssimpError. Arguments --------- filename: Either a filename or a file object to load model from. If a file object is passed, file_type MUST be specified Otherwise Assimp has no idea which importer to use. This is named 'filename' so as to not break legacy code. processing: assimp postprocessing parameters. Verbose keywords are imported from postprocessing, and the parameters can be combined bitwise to generate the final processing value. Note that the default value will triangulate quad faces. Example of generating other possible values: processing = (pyassimp.postprocess.aiProcess_Triangulate | pyassimp.postprocess.aiProcess_OptimizeMeshes) file_type: string of file extension, such as 'stl' Returns --------- Scene object with model data ''' if hasattr(filename, 'read'): ''' This is the case where a file object has been passed to load. It is calling the following function: const aiScene* aiImportFileFromMemory(const char* pBuffer, unsigned int pLength, unsigned int pFlags, const char* pHint) ''' if file_type == None: raise AssimpError('File type must be specified when passing file objects!') data = filename.read() model = _assimp_lib.load_mem(data, len(data), processing, file_type) else: # a filename string has been passed model = _assimp_lib.load(filename.encode("ascii"), processing) if not model: raise AssimpError('Could not import file!') scene = _init(model.contents) recur_pythonize(scene.rootnode, scene) return scene def export(scene, filename, file_type = None, processing = postprocess.aiProcess_Triangulate): ''' Export a scene. On failure throws AssimpError. Arguments --------- scene: scene to export. filename: Filename that the scene should be exported to. file_type: string of file exporter to use. For example "collada". processing: assimp postprocessing parameters. Verbose keywords are imported from postprocessing, and the parameters can be combined bitwise to generate the final processing value. Note that the default value will triangulate quad faces. Example of generating other possible values: processing = (pyassimp.postprocess.aiProcess_Triangulate | pyassimp.postprocess.aiProcess_OptimizeMeshes) ''' from ctypes import pointer exportStatus = _assimp_lib.export(pointer(scene), file_type.encode("ascii"), filename.encode("ascii"), processing) if exportStatus != 0: raise AssimpError('Could not export scene!') def release(scene): from ctypes import pointer _assimp_lib.release(pointer(scene)) def _finalize_texture(tex, target): setattr(target, "achformathint", tex.achFormatHint) if numpy: data = numpy.array([make_tuple(getattr(tex, "pcData")[i]) for i in range(tex.mWidth * tex.mHeight)]) else: data = [make_tuple(getattr(tex, "pcData")[i]) for i in range(tex.mWidth * tex.mHeight)] setattr(target, "data", data) def _finalize_mesh(mesh, target): """ Building of meshes is a bit specific. We override here the various datasets that can not be process as regular fields. For instance, the length of the normals array is mNumVertices (no mNumNormals is available) """ nb_vertices = getattr(mesh, "mNumVertices") def fill(name): mAttr = getattr(mesh, name) if numpy: if mAttr: data = numpy.array([make_tuple(getattr(mesh, name)[i]) for i in range(nb_vertices)], dtype=numpy.float32) setattr(target, name[1:].lower(), data) else: setattr(target, name[1:].lower(), numpy.array([], dtype="float32")) else: if mAttr: data = [make_tuple(getattr(mesh, name)[i]) for i in range(nb_vertices)] setattr(target, name[1:].lower(), data) else: setattr(target, name[1:].lower(), []) def fillarray(name): mAttr = getattr(mesh, name) data = [] for index, mSubAttr in enumerate(mAttr): if mSubAttr: data.append([make_tuple(getattr(mesh, name)[index][i]) for i in range(nb_vertices)]) if numpy: setattr(target, name[1:].lower(), numpy.array(data, dtype=numpy.float32)) else: setattr(target, name[1:].lower(), data) fill("mNormals") fill("mTangents") fill("mBitangents") fillarray("mColors") fillarray("mTextureCoords") # prepare faces if numpy: faces = numpy.array([f.indices for f in target.faces], dtype=numpy.int32) else: faces = [f.indices for f in target.faces] setattr(target, 'faces', faces) class PropertyGetter(dict): def __getitem__(self, key): semantic = 0 if isinstance(key, tuple): key, semantic = key return dict.__getitem__(self, (key, semantic)) def keys(self): for k in dict.keys(self): yield k[0] def __iter__(self): return self.keys() def items(self): for k, v in dict.items(self): yield k[0], v def _get_properties(properties, length): """ Convenience Function to get the material properties as a dict and values in a python format. """ result = {} #read all properties for p in [properties[i] for i in range(length)]: #the name p = p.contents try: uni = unicode(p.mKey.data, errors='ignore') except: uni = str(p.mKey.data, errors='ignore') key = (str(uni).split('.')[1], p.mSemantic) #the data from ctypes import POINTER, cast, c_int, c_float, sizeof if p.mType == 1: arr = cast(p.mData, POINTER(c_float * int(p.mDataLength/sizeof(c_float)) )).contents value = [x for x in arr] elif p.mType == 3: #string can't be an array try: uni = unicode(cast(p.mData, POINTER(structs.MaterialPropertyString)).contents.data, errors='ignore') except: uni = str(cast(p.mData, POINTER(structs.MaterialPropertyString)).contents.data, errors='ignore') value = uni elif p.mType == 4: arr = cast(p.mData, POINTER(c_int * int(p.mDataLength/sizeof(c_int)) )).contents value = [x for x in arr] else: value = p.mData[:p.mDataLength] if len(value) == 1: [value] = value result[key] = value return PropertyGetter(result) def decompose_matrix(matrix): if not isinstance(matrix, structs.Matrix4x4): raise AssimpError("pyassimp.decompose_matrix failed: Not a Matrix4x4!") scaling = structs.Vector3D() rotation = structs.Quaternion() position = structs.Vector3D() from ctypes import byref, pointer _assimp_lib.dll.aiDecomposeMatrix(pointer(matrix), byref(scaling), byref(rotation), byref(position)) return scaling._init(), rotation._init(), position._init()
mit
sdvillal/manysources
manysources/analyses/losses.py
1
10578
# coding=utf-8 from itertools import product from time import time import os.path as op import matplotlib.pyplot as plt import numpy as np import h5py import pandas as pd from sklearn.metrics import roc_auc_score from whatami import whatable from manysources.datasets import MANYSOURCES_DATA_ROOT, ManysourcesDataset from manysources.experiments import ManysourcesResult, DEFAULT_EXPIDS @whatable class CVScore(object): def __init__(self, name, is_loss=True, per_mol=True, columns=None): super(CVScore, self).__init__() self.name = name self._is_loss = is_loss self._per_mol = per_mol self._columns = columns def per_mol(self): return self._per_mol def is_loss(self): return self._is_loss def columns(self): if self._columns is None: return self.what().id(), return self._columns def _compute_one(self, scores, labels, folds): raise NotImplementedError() def compute(self, scores, labels, folds): if not self.per_mol(): df = pd.DataFrame({'scores': scores, 'labels': labels, 'folds': folds}) losses = [self._compute_one(fold_df.scores, fold_df.labels, fold_df.folds) for fold, fold_df in df.sort('folds').groupby(folds)] else: return self._compute_one(scores, labels, folds) class SquaredError(CVScore): def __init__(self): super(SquaredError, self).__init__(name='sqerr', is_loss=True, per_mol=True, columns=('sqerror',)) def _compute_one(self, scores, labels, folds): return (labels - scores) ** 2 class ROCAUC(CVScore): def __init__(self): super(ROCAUC, self).__init__(name='rocauc', is_loss=False, per_mol=False, columns=('rocauc_mean', 'rocauc_std', 'rocauc_stacked')) def _compute_one(self, scores, labels, folds): return roc_auc_score(labels, scores) # also tweak "average" and "sample_weight" def read_losses(dset='bcrp', feats='ecfps1', model='logreg3', #expids=DEFAULT_EXPIDS, expids=tuple(range(4096)), calibration=None, lso=True, verbose=False, also_folds=False): """ N.B. at the moment, only squared loss. """ # the path to the cache file cache_path = op.join(MANYSOURCES_DATA_ROOT, 'results', 'square_losses.h5') # the path to the results group result_coords = '/dset=%s/feats=%s/model=%s/lso=%r/score_calibration=%r' % \ (dset, feats, model, lso, calibration) # # each group will have a few datasets: # - molids: a string list, created once, with the molecule ids # - expids: a growable dataset with the expid # - losses: a growable 2 dimensional dataset with a mols per columns and a row per expid (pointing to loss) # - mfolds: a growable 2 dimensional dataset with a mols per columns and a row per expid (pointing to foldid) # # Storage is write-once, read-many, no-delete # # Try to read def read(): with h5py.File(cache_path, 'r') as h5: group = h5[result_coords] # do we have all the requested expids? infile_expids = group['expids'][()] if expids is not None else expids if 0 == len(set(expids) - set(infile_expids[:, 0])): e2r = {e: i for e, i in infile_expids if i >= 0} ok_expids = [expid for expid in expids if expid in e2r] rows = [e2r[expid] for expid in ok_expids] losses = group['losses'][rows] folds = group['folds'][rows] molids = group['molids'][:] df_losses = pd.DataFrame(losses, columns=molids, index=ok_expids) df_folds = None if not also_folds else pd.DataFrame(folds, columns=molids, index=ok_expids) return df_losses, df_folds def write(): with h5py.File(cache_path, 'a') as h5: group = h5.require_group(result_coords) infile_expids = set(group['expids'][:]) if 'expids' in group else {} expidss = [] oks = 0 losses = [] foldss = [] molids = None for expid in expids: if verbose: print expid, lso if expid in infile_expids: if verbose: print '\tAlready done, skipping...' continue try: # look for the results corresponding to the desired expid, lso res = ManysourcesResult(expid=expid, dset=dset, feats=feats, model=model).lsocv() if lso else \ ManysourcesResult(expid=expid, dset=dset, feats=feats, model=model).crscv() # Merge the "CV" scores to have one score per compound in the dataset scores, labels, folds = res.merge_scores(calibration=calibration) if verbose: print roc_auc_score(labels, scores, average='samples') losses.append((labels - scores) ** 2) foldss.append(folds) if molids is None: molids = res.molids() expidss.append((expid, len(infile_expids) + oks)) oks += 1 except: # We guess that this happens when the external set only contains one class, but we need to check print 'Warning, had troubles with', expid, lso expidss.append((expid, -1)) # write molids - N.B. assume same for all of them, which is reasonable if 'molids' not in group: group['molids'] = molids # write expids index expids_dset = group.require_dataset('expids', shape=(len(infile_expids) + len(expidss), 2), dtype=np.int32, maxshape=(None, 2)) expids_dset.resize((len(infile_expids) + len(expidss), 2)) expids_dset[len(infile_expids):] = expidss # write losses losses_dset = group.require_dataset('losses', shape=(len(infile_expids) + len(losses), len(molids)), dtype=np.float64, maxshape=(None, len(molids))) losses_dset.resize((len(infile_expids) + len(losses), len(molids))) losses_dset[len(infile_expids):] = losses # write folds (should be optional) folds_dset = group.require_dataset('folds', shape=(len(infile_expids) + len(losses), len(molids)), dtype=np.int32, maxshape=(None, len(molids))) folds_dset.resize((len(infile_expids) + len(losses), len(molids))) folds_dset[len(infile_expids):] = foldss try: return read() except: write() return read() def collect_all_lossess(lso=True): """ Reads accross all our interesting results so far, and write down the losses DataFrame into a big h5 file """ dsets = ('bcrp', 'hERG', 'mutagenicity', 'pgp-barbara', 'pgp-barbara-verapamil', 'pgp-cruciani') featss = ('ecfps1',) models = ('logreg1', 'logreg3') calibrations = (None, 'all', '0-1') # 'max-cheating', 'other-folds', for dset, feats, model, calib in product(dsets, featss, models, calibrations): print dset, feats, model, calib start = time() read_losses(dset=dset, feats=feats, model=model, calibration=calib, lso=lso) print 'took %.2f seconds' % (time() - start) def nicita_petits_plot(): # Read-in the data (fast atm) losses, _ = read_losses() losses['source'] = ManysourcesDataset('bcrp').mols().molids2sources(losses.index) df_mean_loss = losses.groupby('source').mean() df_source_sizes = losses.groupby('source').size() # Readability sources = list(df_mean_loss.index) num_sources = len(sources) # Split between lso and crs columns df_lso = df_mean_loss[[col for col in df_mean_loss.columns if 'lso=True' in col]] df_crs = df_mean_loss[[col for col in df_mean_loss.columns if 'lso=False' in col]] # Sort by LSO mean loss order = np.argsort(df_lso.mean(axis=1)) # How to do indirect sorting in pandas? df_crs = df_crs.iloc[order] df_lso = df_lso.iloc[order] df_source_sizes = df_source_sizes.iloc[order] fig, (axl, axr) = plt.subplots(nrows=1, ncols=2, sharey=False) # Could be true # Plot LSO and CRS in same subplot axl.errorbar(df_lso.mean(axis=1), np.arange(num_sources), xerr=df_lso.std(axis=1), fmt='ok', ecolor='gray', alpha=0.5, label='lso mean sqrl') axl.errorbar(df_crs.mean(axis=1), np.arange(num_sources), xerr=df_crs.std(axis=1), fmt='ob', ecolor='blue', alpha=0.5, label='crs mean sqrl') axl.set_xlabel('mean squared loss') axl.set_ylabel('source') axl.set_xlim([0, 1]) axl.set_ylim([-1, num_sources + 1]) axl.set_yticks(range(num_sources)) axl.set_yticklabels(df_lso.index) axl.legend() # Plot differences of the mean axr.errorbar(df_crs.mean(axis=1) - df_lso.mean(axis=1), np.arange(num_sources), fmt='ok', ecolor='gray', alpha=0.5) axr.set_xlabel('difference crs - lso') axr.set_ylabel('molcount') axr.set_ylim([-1, num_sources + 1]) axr.set_yticks(range(num_sources)) axr.set_yticklabels(map(str, df_source_sizes)) axr.vlines(0, 0, len(df_lso), linewidth=5, alpha=0.2) axr.set_xlim([-1, 1]) if __name__ == '__main__': collect_all_lossess(lso=False) # nicita_petits_plot()
bsd-3-clause
xuleiboy1234/autoTitle
tensorflow/tensorflow/contrib/data/python/util/nest.py
4
18364
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """## Functions for working with arbitrarily nested sequences of elements. NOTE(mrry): This fork of the `tensorflow.python.util.nest` module makes two changes: 1. It adds support for dictionaries as a level of nesting in nested structures. 2. It removes support for lists as a level of nesting in nested structures. The motivation for this change is twofold: 1. Many input-processing functions (e.g. `tf.parse_example()`) return dictionaries, and we would like to support them natively in datasets. 2. It seems more natural for lists to be treated (e.g. in Dataset constructors) as tensors, rather than lists of (lists of...) tensors. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections as _collections import six as _six from tensorflow.python.util.all_util import remove_undocumented def _sequence_like(instance, args): """Converts the sequence `args` to the same type as `instance`. Args: instance: an instance of `tuple`, `list`, or a `namedtuple` class. args: elements to be converted to a sequence. Returns: `args` with the type of `instance`. """ if isinstance(instance, dict): # This is a dict. Iterate over the keys in sorted order to make # this deterministic. return {k: v for k, v in zip(sorted(instance.keys()), args)} elif (isinstance(instance, tuple) and hasattr(instance, "_fields") and isinstance(instance._fields, _collections.Sequence) and all(isinstance(f, _six.string_types) for f in instance._fields)): # This is a namedtuple return type(instance)(*args) else: # Not a namedtuple return type(instance)(args) def _elements_of(nest): if isinstance(nest, dict): # Iterate over dict keys in sorted order to make this deterministic. return [v for _, v in sorted(nest.items())] else: return nest def _yield_flat_nest(nest): for n in _elements_of(nest): if is_sequence(n): for ni in _yield_flat_nest(n): yield ni else: yield n def is_sequence(seq): """Returns a true if `seq` is a Sequence or dict (except strings/lists). NOTE(mrry): This differs from `tensorflow.python.util.nest.is_sequence()`, which *does* treat a Python list as a sequence. For ergonomic reasons, `tf.contrib.data` users would prefer to treat lists as implict `tf.Tensor` objects, and dicts as (nested) sequences. Args: seq: an input sequence. Returns: True if the sequence is a not a string or list and is a collections.Sequence. """ return (isinstance(seq, (_collections.Sequence, dict)) and not isinstance(seq, (list, _six.string_types))) def flatten(nest): """Returns a flat sequence from a given nested structure. If `nest` is not a sequence, this returns a single-element list: `[nest]`. Args: nest: an arbitrarily nested structure or a scalar object. Note, numpy arrays are considered scalars. Returns: A Python list, the flattened version of the input. """ return list(_yield_flat_nest(nest)) if is_sequence(nest) else [nest] def _recursive_assert_same_structure(nest1, nest2, check_types): is_sequence_nest1 = is_sequence(nest1) if is_sequence_nest1 != is_sequence(nest2): raise ValueError( "The two structures don't have the same nested structure. " "First structure: %s, second structure: %s." % (nest1, nest2)) if is_sequence_nest1: type_nest1 = type(nest1) type_nest2 = type(nest2) if check_types and type_nest1 != type_nest2: raise TypeError( "The two structures don't have the same sequence type. First " "structure has type %s, while second structure has type %s." % (type_nest1, type_nest2)) for n1, n2 in zip(_elements_of(nest1), _elements_of(nest2)): _recursive_assert_same_structure(n1, n2, check_types) def assert_same_structure(nest1, nest2, check_types=True): """Asserts that two structures are nested in the same way. Args: nest1: an arbitrarily nested structure. nest2: an arbitrarily nested structure. check_types: if `True` (default) types of sequences are checked as well. If set to `False`, for example a list and a tuple of objects will look same if they have the same size. Raises: ValueError: If the two structures do not have the same number of elements or if the two structures are not nested in the same way. TypeError: If the two structures differ in the type of sequence in any of their substructures. Only possible if `check_types` is `True`. """ len_nest1 = len(flatten(nest1)) if is_sequence(nest1) else 1 len_nest2 = len(flatten(nest2)) if is_sequence(nest2) else 1 if len_nest1 != len_nest2: raise ValueError("The two structures don't have the same number of " "elements. First structure: %s, second structure: %s." % (nest1, nest2)) _recursive_assert_same_structure(nest1, nest2, check_types) def _packed_nest_with_indices(structure, flat, index): """Helper function for pack_nest_as. Args: structure: Substructure (tuple of elements and/or tuples) to mimic flat: Flattened values to output substructure for. index: Index at which to start reading from flat. Returns: The tuple (new_index, child), where: * new_index - the updated index into `flat` having processed `structure`. * packed - the subset of `flat` corresponding to `structure`, having started at `index`, and packed into the same nested format. Raises: ValueError: if `structure` contains more elements than `flat` (assuming indexing starts from `index`). """ packed = [] for s in structure: if is_sequence(s): new_index, child = _packed_nest_with_indices(s, flat, index) packed.append(_sequence_like(s, child)) index = new_index else: packed.append(flat[index]) index += 1 return index, packed def pack_sequence_as(structure, flat_sequence): """Returns a given flattened sequence packed into a nest. If `structure` is a scalar, `flat_sequence` must be a single-element list; in this case the return value is `flat_sequence[0]`. Args: structure: tuple or list constructed of scalars and/or other tuples/lists, or a scalar. Note: numpy arrays are considered scalars. flat_sequence: flat sequence to pack. Returns: packed: `flat_sequence` converted to have the same recursive structure as `structure`. Raises: ValueError: If nest and structure have different element counts. """ if not (is_sequence(flat_sequence) or isinstance(flat_sequence, list)): raise TypeError("flat_sequence must be a sequence") if not is_sequence(structure): if len(flat_sequence) != 1: raise ValueError("Structure is a scalar but len(flat_sequence) == %d > 1" % len(flat_sequence)) return flat_sequence[0] flat_structure = flatten(structure) if len(flat_structure) != len(flat_sequence): raise ValueError( "Could not pack sequence. Structure had %d elements, but flat_sequence " "had %d elements. Structure: %s, flat_sequence: %s." % (len(flat_structure), len(flat_sequence), structure, flat_sequence)) _, packed = _packed_nest_with_indices(structure, flat_sequence, 0) return _sequence_like(structure, packed) def map_structure(func, *structure, **check_types_dict): """Applies `func` to each entry in `structure` and returns a new structure. Applies `func(x[0], x[1], ...)` where x[i] is an entry in `structure[i]`. All structures in `structure` must have the same arity, and the return value will contain the results in the same structure. Args: func: A callable that acceps as many arguments are there are structures. *structure: scalar, or tuple or list of constructed scalars and/or other tuples/lists, or scalars. Note: numpy arrays are considered scalars. **check_types_dict: only valid keyword argument is `check_types`. If set to `True` (default) the types of iterables within the structures have to be same (e.g. `map_structure(func, [1], (1,))` raises a `TypeError` exception). To allow this set this argument to `False`. Returns: A new structure with the same arity as `structure`, whose values correspond to `func(x[0], x[1], ...)` where `x[i]` is a value in the corresponding location in `structure[i]`. If there are different sequence types and `check_types` is `False` the sequence types of the first structure will be used. Raises: TypeError: If `func` is not callable or if the structures do not match each other by depth tree. ValueError: If no structure is provided or if the structures do not match each other by type. ValueError: If wrong keyword arguments are provided. """ if not callable(func): raise TypeError("func must be callable, got: %s" % func) if not structure: raise ValueError("Must provide at least one structure") if check_types_dict: if "check_types" not in check_types_dict or len(check_types_dict) > 1: raise ValueError("Only valid keyword argument is check_types") check_types = check_types_dict["check_types"] else: check_types = True for other in structure[1:]: assert_same_structure(structure[0], other, check_types=check_types) flat_structure = [flatten(s) for s in structure] entries = zip(*flat_structure) return pack_sequence_as( structure[0], [func(*x) for x in entries]) def _yield_flat_up_to(shallow_tree, input_tree): """Yields elements `input_tree` partially flattened up to `shallow_tree`.""" if is_sequence(shallow_tree): for shallow_branch, input_branch in zip(_elements_of(shallow_tree), _elements_of(input_tree)): for input_leaf in _yield_flat_up_to(shallow_branch, input_branch): yield input_leaf else: yield input_tree def assert_shallow_structure(shallow_tree, input_tree, check_types=True): """Asserts that `shallow_tree` is a shallow structure of `input_tree`. That is, this function tests if the `input_tree` structure can be created from the `shallow_tree` structure by replacing its leaf nodes with deeper tree structures. Examples: The following code will raise an exception: ```python shallow_tree = ["a", "b"] input_tree = ["c", ["d", "e"], "f"] assert_shallow_structure(shallow_tree, input_tree) ``` The following code will not raise an exception: ```python shallow_tree = ["a", "b"] input_tree = ["c", ["d", "e"]] assert_shallow_structure(shallow_tree, input_tree) ``` Args: shallow_tree: an arbitrarily nested structure. input_tree: an arbitrarily nested structure. check_types: if `True` (default) the sequence types of `shallow_tree` and `input_tree` have to be the same. Raises: TypeError: If `shallow_tree` is a sequence but `input_tree` is not. TypeError: If the sequence types of `shallow_tree` are different from `input_tree`. Only raised if `check_types` is `True`. ValueError: If the sequence lengths of `shallow_tree` are different from `input_tree`. """ if is_sequence(shallow_tree): if not is_sequence(input_tree): raise TypeError( "If shallow structure is a sequence, input must also be a sequence. " "Input has type: %s." % type(input_tree)) if check_types and not isinstance(input_tree, type(shallow_tree)): raise TypeError( "The two structures don't have the same sequence type. Input " "structure has type %s, while shallow structure has type %s." % (type(input_tree), type(shallow_tree))) if len(input_tree) != len(shallow_tree): raise ValueError( "The two structures don't have the same sequence length. Input " "structure has length %s, while shallow structure has length %s." % (len(input_tree), len(shallow_tree))) for shallow_branch, input_branch in zip(shallow_tree, input_tree): assert_shallow_structure(shallow_branch, input_branch, check_types=check_types) def flatten_up_to(shallow_tree, input_tree): """Flattens `input_tree` up to `shallow_tree`. Any further depth in structure in `input_tree` is retained as elements in the partially flatten output. If `shallow_tree` and `input_tree` are not sequences, this returns a single-element list: `[input_tree]`. Use Case: Sometimes we may wish to partially flatten a nested sequence, retaining some of the nested structure. We achieve this by specifying a shallow structure, `shallow_tree`, we wish to flatten up to. The input, `input_tree`, can be thought of as having the same structure as `shallow_tree`, but with leaf nodes that are themselves tree structures. Examples: ```python input_tree = [[[2, 2], [3, 3]], [[4, 9], [5, 5]]] shallow_tree = [[True, True], [False, True]] flattened_input_tree = flatten_up_to(shallow_tree, input_tree) flattened_shallow_tree = flatten_up_to(shallow_tree, shallow_tree) # Output is: # [[2, 2], [3, 3], [4, 9], [5, 5]] # [True, True, False, True] ``` ```python input_tree = [[('a', 1), [('b', 2), [('c', 3), [('d', 4)]]]]] shallow_tree = [['level_1', ['level_2', ['level_3', ['level_4']]]]] input_tree_flattened_as_shallow_tree = flatten_up_to(shallow_tree, input_tree) input_tree_flattened = flatten(input_tree) # Output is: # [('a', 1), ('b', 2), ('c', 3), ('d', 4)] # ['a', 1, 'b', 2, 'c', 3, 'd', 4] ``` Non-Sequence Edge Cases: ```python flatten_up_to(0, 0) # Output: [0] flatten_up_to(0, [0, 1, 2]) # Output: [[0, 1, 2]] flatten_up_to([0, 1, 2], 0) # Output: TypeError flatten_up_to([0, 1, 2], [0, 1, 2]) # Output: [0, 1, 2] ``` Args: shallow_tree: a possibly pruned structure of input_tree. input_tree: an arbitrarily nested structure or a scalar object. Note, numpy arrays are considered scalars. Returns: A Python list, the partially flattened version of `input_tree` according to the structure of `shallow_tree`. Raises: TypeError: If `shallow_tree` is a sequence but `input_tree` is not. TypeError: If the sequence types of `shallow_tree` are different from `input_tree`. ValueError: If the sequence lengths of `shallow_tree` are different from `input_tree`. """ assert_shallow_structure(shallow_tree, input_tree) return list(_yield_flat_up_to(shallow_tree, input_tree)) def map_structure_up_to(shallow_tree, func, *inputs): """Applies a function or op to a number of partially flattened inputs. The `inputs` are flattened up to `shallow_tree` before being mapped. Use Case: Sometimes we wish to apply a function to a partially flattened sequence (for example when the function itself takes sequence inputs). We achieve this by specifying a shallow structure, `shallow_tree` we wish to flatten up to. The `inputs`, can be thought of as having the same structure as `shallow_tree`, but with leaf nodes that are themselves tree structures. This function therefore will return something with the same base structure as `shallow_tree`. Examples: ```python ab_tuple = collections.namedtuple("ab_tuple", "a, b") op_tuple = collections.namedtuple("op_tuple", "add, mul") inp_val = ab_tuple(a=2, b=3) inp_ops = ab_tuple(a=op_tuple(add=1, mul=2), b=op_tuple(add=2, mul=3)) out = map_structure_up_to(inp_val, lambda val, ops: (val + ops.add) * ops.mul, inp_val, inp_ops) # Output is: ab_tuple(a=6, b=15) ``` ```python data_list = [[2, 4, 6, 8], [[1, 3, 5, 7, 9], [3, 5, 7]]] name_list = ['evens', ['odds', 'primes']] out = map_structure_up_to( name_list, lambda name, sec: "first_{}_{}".format(len(sec), name), name_list, data_list) # Output is: ['first_4_evens', ['first_5_odds', 'first_3_primes']] ``` Args: shallow_tree: a shallow tree, common to all the inputs. func: callable which will be applied to each input individually. *inputs: arbitrarily nested combination of objects that are compatible with shallow_tree. The function `func` is applied to corresponding partially flattened elements of each input, so the function must support arity of `len(inputs)`. Raises: TypeError: If `shallow_tree` is a sequence but `input_tree` is not. TypeError: If the sequence types of `shallow_tree` are different from `input_tree`. ValueError: If the sequence lengths of `shallow_tree` are different from `input_tree`. Returns: result of repeatedly applying `func`, with same structure as `shallow_tree`. """ if not inputs: raise ValueError("Cannot map over no sequences") for input_tree in inputs: assert_shallow_structure(shallow_tree, input_tree) # Flatten each input separately, apply the function to corresponding elements, # then repack based on the structure of the first input. all_flattened_up_to = [flatten_up_to(shallow_tree, input_tree) for input_tree in inputs] results = [func(*tensors) for tensors in zip(*all_flattened_up_to)] return pack_sequence_as(structure=shallow_tree, flat_sequence=results) _allowed_symbols = [ "assert_same_structure", "is_sequence", "flatten", "pack_sequence_as", "map_structure", "assert_shallow_structure", "flatten_up_to", "map_structure_up_to", ] remove_undocumented(__name__, _allowed_symbols)
mit
hendrycks/robustness
ImageNet-P/test.py
1
12657
import numpy as np import argparse import torch import torch.backends.cudnn as cudnn import torch.nn.functional as F import torchvision.datasets as dset import torchvision.transforms as trn import torchvision.transforms.functional as trn_F import torchvision.models as models import torch.utils.model_zoo as model_zoo from resnext_50_32x4d import resnext_50_32x4d from resnext_101_32x4d import resnext_101_32x4d from resnext_101_64x4d import resnext_101_64x4d from scipy.stats import rankdata if __package__ is None: import sys from os import path sys.path.append(path.dirname(path.dirname(path.abspath(__file__)))) from utils.video_loader import VideoFolder parser = argparse.ArgumentParser(description='Evaluates robustness of various nets on ImageNet', formatter_class=argparse.ArgumentDefaultsHelpFormatter) # Architecture parser.add_argument('--model-name', '-m', default='resnet18', type=str, choices=['alexnet', 'squeezenet1.1', 'vgg11', 'vgg19', 'vggbn', 'densenet121', 'densenet169', 'densenet201', 'densenet161', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50', 'resnext101', 'resnext101_64']) parser.add_argument('--perturbation', '-p', default='brightness', type=str, choices=['gaussian_noise', 'shot_noise', 'motion_blur', 'zoom_blur', 'spatter', 'brightness', 'translate', 'rotate', 'tilt', 'scale', 'speckle_noise', 'gaussian_blur', 'snow', 'shear']) parser.add_argument('--difficulty', '-d', type=int, default=1, choices=[1, 2, 3]) # Acceleration parser.add_argument('--ngpu', type=int, default=1, help='0 = CPU.') args = parser.parse_args() print(args) # /////////////// Model Setup /////////////// if args.model_name == 'alexnet': net = models.AlexNet() net.load_state_dict(model_zoo.load_url('https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth', # model_dir='/share/data/lang/users/dan/.torch/models')) model_dir='/share/data/vision-greg2/pytorch_models/alexnet')) args.test_bs = 6 elif args.model_name == 'squeezenet1.0': net = models.SqueezeNet(version=1.0) net.load_state_dict(model_zoo.load_url('https://download.pytorch.org/models/squeezenet1_0-a815701f.pth', # model_dir='/share/data/lang/users/dan/.torch/models')) model_dir='/share/data/vision-greg2/pytorch_models/squeezenet')) args.test_bs = 6 elif args.model_name == 'squeezenet1.1': net = models.SqueezeNet(version=1.1) net.load_state_dict(model_zoo.load_url('https://download.pytorch.org/models/squeezenet1_1-f364aa15.pth', # model_dir='/share/data/lang/users/dan/.torch/models')) model_dir='/share/data/vision-greg2/pytorch_models/squeezenet')) args.test_bs = 6 elif 'vgg' in args.model_name: if 'bn' not in args.model_name and '11' not in args.model_name: net = models.vgg19() net.load_state_dict(model_zoo.load_url('https://download.pytorch.org/models/vgg19-dcbb9e9d.pth', # model_dir='/share/data/lang/users/dan/.torch/models')) model_dir='/share/data/vision-greg2/pytorch_models/vgg')) elif '11' in args.model_name: net = models.vgg11() net.load_state_dict(model_zoo.load_url('https://download.pytorch.org/models/vgg11-bbd30ac9.pth', # model_dir='/share/data/lang/users/dan/.torch/models')) model_dir='/share/data/vision-greg2/pytorch_models/vgg')) else: net = models.vgg19_bn() net.load_state_dict(model_zoo.load_url('https://download.pytorch.org/models/vgg19_bn-c79401a0.pth', # model_dir='/share/data/lang/users/dan/.torch/models')) model_dir='/share/data/vision-greg2/pytorch_models/vgg')) args.test_bs = 2 elif args.model_name == 'densenet121': net = models.densenet121() import re # '.'s are no longer allowed in module names, but pervious _DenseLayer # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'. # They are also in the checkpoints in model_urls. # This pattern is used to find such keys. pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') state_dict = model_zoo.load_url('https://download.pytorch.org/models/densenet121-a639ec97.pth', model_dir='/share/data/vision-greg2/pytorch_models/densenet') for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] net.load_state_dict(state_dict) args.test_bs = 5 elif args.model_name == 'densenet161': net = models.densenet161() import re pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') state_dict = model_zoo.load_url('https://download.pytorch.org/models/densenet161-8d451a50.pth', model_dir='/share/data/vision-greg2/pytorch_models/densenet') for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] net.load_state_dict(state_dict) args.test_bs = 3 elif args.model_name == 'resnet18': net = models.resnet18() net.load_state_dict(model_zoo.load_url('https://download.pytorch.org/models/resnet18-5c106cde.pth', # model_dir='/share/data/lang/users/dan/.torch/models')) model_dir='/share/data/vision-greg2/pytorch_models/resnet')) args.test_bs = 5 elif args.model_name == 'resnet34': net = models.resnet34() net.load_state_dict(model_zoo.load_url('https://download.pytorch.org/models/resnet34-333f7ec4.pth', # model_dir='/share/data/lang/users/dan/.torch/models')) model_dir='/share/data/vision-greg2/pytorch_models/resnet')) args.test_bs = 4 elif args.model_name == 'resnet50': net = models.resnet50() net.load_state_dict(model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth', # model_dir='/share/data/lang/users/dan/.torch/models')) model_dir='/share/data/vision-greg2/pytorch_models/resnet')) args.test_bs = 4 elif args.model_name == 'resnet101': net = models.resnet101() net.load_state_dict(model_zoo.load_url('https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', # model_dir='/share/data/lang/users/dan/.torch/models')) model_dir='/share/data/vision-greg2/pytorch_models/resnet')) args.test_bs = 3 elif args.model_name == 'resnet152': net = models.resnet152() net.load_state_dict(model_zoo.load_url('https://download.pytorch.org/models/resnet152-b121ed2d.pth', # model_dir='/share/data/lang/users/dan/.torch/models')) model_dir='/share/data/vision-greg2/pytorch_models/resnet')) args.test_bs = 3 elif args.model_name == 'resnext50': net = resnext_50_32x4d # net.load_state_dict(torch.load('/share/data/lang/users/dan/.torch/models/resnext_50_32x4d.pth')) net.load_state_dict(torch.load('/share/data/vision-greg2/pytorch_models/resnext_50_32x4d.pth')) args.test_bs = 3 elif args.model_name == 'resnext101': net = resnext_101_32x4d # net.load_state_dict(torch.load('/share/data/lang/users/dan/.torch/models/resnext_101_32x4d.pth')) net.load_state_dict(torch.load('/share/data/vision-greg2/pytorch_models/resnext_101_32x4d.pth')) args.test_bs = 3 elif args.model_name == 'resnext101_64': net = resnext_101_64x4d # net.load_state_dict(torch.load('/share/data/lang/users/dan/.torch/models/resnext_101_64x4d.pth')) net.load_state_dict(torch.load('/share/data/vision-greg2/pytorch_models/resnext_101_64x4d.pth')) args.test_bs = 3 args.prefetch = 4 if args.ngpu > 1: net = torch.nn.DataParallel(net, device_ids=list(range(args.ngpu))) if args.ngpu > 0: net.cuda() torch.manual_seed(1) np.random.seed(1) if args.ngpu > 0: torch.cuda.manual_seed(1) net.eval() cudnn.benchmark = True # fire on all cylinders print('Model Loaded\n') # /////////////// Data Loader /////////////// mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] if args.difficulty > 1 and 'noise' in args.perturbation: loader = torch.utils.data.DataLoader( VideoFolder(root="/share/data/vision-greg2/users/dan/datasets/ImageNet-P/" + args.perturbation + '_' + str(args.difficulty), transform=trn.Compose([trn.ToTensor(), trn.Normalize(mean, std)])), batch_size=args.test_bs, shuffle=False, num_workers=5, pin_memory=True) else: loader = torch.utils.data.DataLoader( VideoFolder(root="/share/data/vision-greg2/users/dan/datasets/ImageNet-P/" + args.perturbation, transform=trn.Compose([trn.ToTensor(), trn.Normalize(mean, std)])), batch_size=args.test_bs, shuffle=False, num_workers=5, pin_memory=True) print('Data Loaded\n') # /////////////// Stability Measurements /////////////// identity = np.asarray(range(1, 1001)) cum_sum_top5 = np.cumsum(np.asarray([0] + [1] * 5 + [0] * (999 - 5))) recip = 1./identity # def top5_dist(sigma): # result = 0 # for i in range(1,6): # for j in range(min(sigma[i-1], i) + 1, max(sigma[i-1], i) + 1): # if 1 <= j - 1 <= 5: # result += 1 # return result def dist(sigma, mode='top5'): if mode == 'top5': return np.sum(np.abs(cum_sum_top5[:5] - cum_sum_top5[sigma-1][:5])) elif mode == 'zipf': return np.sum(np.abs(recip - recip[sigma-1])*recip) def ranking_dist(ranks, noise_perturbation=True if 'noise' in args.perturbation else False, mode='top5'): result = 0 step_size = 1 if noise_perturbation else args.difficulty for vid_ranks in ranks: result_for_vid = [] for i in range(step_size): perm1 = vid_ranks[i] perm1_inv = np.argsort(perm1) for rank in vid_ranks[i::step_size][1:]: perm2 = rank result_for_vid.append(dist(perm2[perm1_inv], mode)) if not noise_perturbation: perm1 = perm2 perm1_inv = np.argsort(perm1) result += np.mean(result_for_vid) / len(ranks) return result def flip_prob(predictions, noise_perturbation=True if 'noise' in args.perturbation else False): result = 0 step_size = 1 if noise_perturbation else args.difficulty for vid_preds in predictions: result_for_vid = [] for i in range(step_size): prev_pred = vid_preds[i] for pred in vid_preds[i::step_size][1:]: result_for_vid.append(int(prev_pred != pred)) if not noise_perturbation: prev_pred = pred result += np.mean(result_for_vid) / len(predictions) return result # /////////////// Get Results /////////////// from tqdm import tqdm predictions, ranks = [], [] with torch.no_grad(): for data, target in loader: num_vids = data.size(0) data = data.view(-1,3,224,224).cuda() output = net(data) for vid in output.view(num_vids, -1, 1000): predictions.append(vid.argmax(1).to('cpu').numpy()) ranks.append([np.uint16(rankdata(-frame, method='ordinal')) for frame in vid.to('cpu').numpy()]) ranks = np.asarray(ranks) print('Computing Metrics\n') print('Flipping Prob\t{:.5f}'.format(flip_prob(predictions))) print('Top5 Distance\t{:.5f}'.format(ranking_dist(ranks, mode='top5'))) print('Zipf Distance\t{:.5f}'.format(ranking_dist(ranks, mode='zipf')))
apache-2.0
Titan-C/scikit-learn
sklearn/linear_model/sag.py
30
12959
"""Solvers for Ridge and LogisticRegression using SAG algorithm""" # Authors: Tom Dupre la Tour <tom.dupre-la-tour@m4x.org> # # License: BSD 3 clause import warnings import numpy as np from .base import make_dataset from .sag_fast import sag from ..exceptions import ConvergenceWarning from ..utils import check_array from ..utils.extmath import row_norms def get_auto_step_size(max_squared_sum, alpha_scaled, loss, fit_intercept, n_samples=None, is_saga=False): """Compute automatic step size for SAG solver The step size is set to 1 / (alpha_scaled + L + fit_intercept) where L is the max sum of squares for over all samples. Parameters ---------- max_squared_sum : float Maximum squared sum of X over samples. alpha_scaled : float Constant that multiplies the regularization term, scaled by 1. / n_samples, the number of samples. loss : string, in {"log", "squared"} The loss function used in SAG solver. fit_intercept : bool Specifies if a constant (a.k.a. bias or intercept) will be added to the decision function. n_samples : int, optional Number of rows in X. Useful if is_saga=True. is_saga : boolean, optional Whether to return step size for the SAGA algorithm or the SAG algorithm. Returns ------- step_size : float Step size used in SAG solver. References ---------- Schmidt, M., Roux, N. L., & Bach, F. (2013). Minimizing finite sums with the stochastic average gradient https://hal.inria.fr/hal-00860051/document Defazio, A., Bach F. & Lacoste-Julien S. (2014). SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives https://arxiv.org/abs/1407.0202 """ if loss in ('log', 'multinomial'): L = (0.25 * (max_squared_sum + int(fit_intercept)) + alpha_scaled) elif loss == 'squared': # inverse Lipschitz constant for squared loss L = max_squared_sum + int(fit_intercept) + alpha_scaled else: raise ValueError("Unknown loss function for SAG solver, got %s " "instead of 'log' or 'squared'" % loss) if is_saga: # SAGA theoretical step size is 1/3L or 1 / (2 * (L + mu n)) # See Defazio et al. 2014 mun = min(2 * n_samples * alpha_scaled, L) step = 1. / (2 * L + mun) else: # SAG theoretical step size is 1/16L but it is recommended to use 1 / L # see http://www.birs.ca//workshops//2014/14w5003/files/schmidt.pdf, # slide 65 step = 1. / L return step def sag_solver(X, y, sample_weight=None, loss='log', alpha=1., beta=0., max_iter=1000, tol=0.001, verbose=0, random_state=None, check_input=True, max_squared_sum=None, warm_start_mem=None, is_saga=False): """SAG solver for Ridge and LogisticRegression SAG stands for Stochastic Average Gradient: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a constant learning rate. IMPORTANT NOTE: 'sag' solver converges faster on columns that are on the same scale. You can normalize the data by using sklearn.preprocessing.StandardScaler on your data before passing it to the fit method. This implementation works with data represented as dense numpy arrays or sparse scipy arrays of floating point values for the features. It will fit the data according to squared loss or log loss. The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using the squared euclidean norm L2. .. versionadded:: 0.17 Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values. With loss='multinomial', y must be label encoded (see preprocessing.LabelEncoder). sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). loss : 'log' | 'squared' | 'multinomial' Loss function that will be optimized: -'log' is the binary logistic loss, as used in LogisticRegression. -'squared' is the squared loss, as used in Ridge. -'multinomial' is the multinomial logistic loss, as used in LogisticRegression. .. versionadded:: 0.18 *loss='multinomial'* alpha : float, optional Constant that multiplies the regularization term. Defaults to 1. max_iter : int, optional The max number of passes over the training data if the stopping criteria is not reached. Defaults to 1000. tol : double, optional The stopping criteria for the weights. The iterations will stop when max(change in weights) / max(weights) < tol. Defaults to .001 verbose : integer, optional The verbosity level. random_state : int, RandomState instance or None, optional, default None The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. check_input : bool, default True If False, the input arrays X and y will not be checked. max_squared_sum : float, default None Maximum squared sum of X over samples. If None, it will be computed, going through all the samples. The value should be precomputed to speed up cross validation. warm_start_mem : dict, optional The initialization parameters used for warm starting. Warm starting is currently used in LogisticRegression but not in Ridge. It contains: - 'coef': the weight vector, with the intercept in last line if the intercept is fitted. - 'gradient_memory': the scalar gradient for all seen samples. - 'sum_gradient': the sum of gradient over all seen samples, for each feature. - 'intercept_sum_gradient': the sum of gradient over all seen samples, for the intercept. - 'seen': array of boolean describing the seen samples. - 'num_seen': the number of seen samples. is_saga : boolean, optional Whether to use the SAGA algorithm or the SAG algorithm. SAGA behaves better in the first epochs, and allow for l1 regularisation. Returns ------- coef_ : array, shape (n_features) Weight vector. n_iter_ : int The number of full pass on all samples. warm_start_mem : dict Contains a 'coef' key with the fitted result, and possibly the fitted intercept at the end of the array. Contains also other keys used for warm starting. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> X = np.random.randn(n_samples, n_features) >>> y = np.random.randn(n_samples) >>> clf = linear_model.Ridge(solver='sag') >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='sag', tol=0.001) >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> clf = linear_model.LogisticRegression(solver='sag') >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='l2', random_state=None, solver='sag', tol=0.0001, verbose=0, warm_start=False) References ---------- Schmidt, M., Roux, N. L., & Bach, F. (2013). Minimizing finite sums with the stochastic average gradient https://hal.inria.fr/hal-00860051/document Defazio, A., Bach F. & Lacoste-Julien S. (2014). SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives https://arxiv.org/abs/1407.0202 See also -------- Ridge, SGDRegressor, ElasticNet, Lasso, SVR, and LogisticRegression, SGDClassifier, LinearSVC, Perceptron """ if warm_start_mem is None: warm_start_mem = {} # Ridge default max_iter is None if max_iter is None: max_iter = 1000 if check_input: X = check_array(X, dtype=np.float64, accept_sparse='csr', order='C') y = check_array(y, dtype=np.float64, ensure_2d=False, order='C') n_samples, n_features = X.shape[0], X.shape[1] # As in SGD, the alpha is scaled by n_samples. alpha_scaled = float(alpha) / n_samples beta_scaled = float(beta) / n_samples # if loss == 'multinomial', y should be label encoded. n_classes = int(y.max()) + 1 if loss == 'multinomial' else 1 # initialization if sample_weight is None: sample_weight = np.ones(n_samples, dtype=np.float64, order='C') if 'coef' in warm_start_mem.keys(): coef_init = warm_start_mem['coef'] else: # assume fit_intercept is False coef_init = np.zeros((n_features, n_classes), dtype=np.float64, order='C') # coef_init contains possibly the intercept_init at the end. # Note that Ridge centers the data before fitting, so fit_intercept=False. fit_intercept = coef_init.shape[0] == (n_features + 1) if fit_intercept: intercept_init = coef_init[-1, :] coef_init = coef_init[:-1, :] else: intercept_init = np.zeros(n_classes, dtype=np.float64) if 'intercept_sum_gradient' in warm_start_mem.keys(): intercept_sum_gradient = warm_start_mem['intercept_sum_gradient'] else: intercept_sum_gradient = np.zeros(n_classes, dtype=np.float64) if 'gradient_memory' in warm_start_mem.keys(): gradient_memory_init = warm_start_mem['gradient_memory'] else: gradient_memory_init = np.zeros((n_samples, n_classes), dtype=np.float64, order='C') if 'sum_gradient' in warm_start_mem.keys(): sum_gradient_init = warm_start_mem['sum_gradient'] else: sum_gradient_init = np.zeros((n_features, n_classes), dtype=np.float64, order='C') if 'seen' in warm_start_mem.keys(): seen_init = warm_start_mem['seen'] else: seen_init = np.zeros(n_samples, dtype=np.int32, order='C') if 'num_seen' in warm_start_mem.keys(): num_seen_init = warm_start_mem['num_seen'] else: num_seen_init = 0 dataset, intercept_decay = make_dataset(X, y, sample_weight, random_state) if max_squared_sum is None: max_squared_sum = row_norms(X, squared=True).max() step_size = get_auto_step_size(max_squared_sum, alpha_scaled, loss, fit_intercept, n_samples=n_samples, is_saga=is_saga) if step_size * alpha_scaled == 1: raise ZeroDivisionError("Current sag implementation does not handle " "the case step_size * alpha_scaled == 1") num_seen, n_iter_ = sag(dataset, coef_init, intercept_init, n_samples, n_features, n_classes, tol, max_iter, loss, step_size, alpha_scaled, beta_scaled, sum_gradient_init, gradient_memory_init, seen_init, num_seen_init, fit_intercept, intercept_sum_gradient, intercept_decay, is_saga, verbose) if n_iter_ == max_iter: warnings.warn("The max_iter was reached which means " "the coef_ did not converge", ConvergenceWarning) if fit_intercept: coef_init = np.vstack((coef_init, intercept_init)) warm_start_mem = {'coef': coef_init, 'sum_gradient': sum_gradient_init, 'intercept_sum_gradient': intercept_sum_gradient, 'gradient_memory': gradient_memory_init, 'seen': seen_init, 'num_seen': num_seen} if loss == 'multinomial': coef_ = coef_init.T else: coef_ = coef_init[:, 0] return coef_, n_iter_, warm_start_mem
bsd-3-clause
cybernet14/scikit-learn
examples/cluster/plot_kmeans_assumptions.py
267
2040
""" ==================================== Demonstration of k-means assumptions ==================================== This example is meant to illustrate situations where k-means will produce unintuitive and possibly unexpected clusters. In the first three plots, the input data does not conform to some implicit assumption that k-means makes and undesirable clusters are produced as a result. In the last plot, k-means returns intuitive clusters despite unevenly sized blobs. """ print(__doc__) # Author: Phil Roth <mr.phil.roth@gmail.com> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs plt.figure(figsize=(12, 12)) n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state) # Incorrect number of clusters y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X) plt.subplot(221) plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("Incorrect Number of Blobs") # Anisotropicly distributed data transformation = [[ 0.60834549, -0.63667341], [-0.40887718, 0.85253229]] X_aniso = np.dot(X, transformation) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso) plt.subplot(222) plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred) plt.title("Anisotropicly Distributed Blobs") # Different variance X_varied, y_varied = make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied) plt.subplot(223) plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred) plt.title("Unequal Variance") # Unevenly sized blobs X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10])) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_filtered) plt.subplot(224) plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred) plt.title("Unevenly Sized Blobs") plt.show()
bsd-3-clause
voxlol/scikit-learn
sklearn/utils/class_weight.py
139
7206
# Authors: Andreas Mueller # Manoj Kumar # License: BSD 3 clause import warnings import numpy as np from ..externals import six from ..utils.fixes import in1d from .fixes import bincount def compute_class_weight(class_weight, classes, y): """Estimate class weights for unbalanced datasets. Parameters ---------- class_weight : dict, 'balanced' or None If 'balanced', class weights will be given by ``n_samples / (n_classes * np.bincount(y))``. If a dictionary is given, keys are classes and values are corresponding class weights. If None is given, the class weights will be uniform. classes : ndarray Array of the classes occurring in the data, as given by ``np.unique(y_org)`` with ``y_org`` the original class labels. y : array-like, shape (n_samples,) Array of original class labels per sample; Returns ------- class_weight_vect : ndarray, shape (n_classes,) Array with class_weight_vect[i] the weight for i-th class References ---------- The "balanced" heuristic is inspired by Logistic Regression in Rare Events Data, King, Zen, 2001. """ # Import error caused by circular imports. from ..preprocessing import LabelEncoder if class_weight is None or len(class_weight) == 0: # uniform class weights weight = np.ones(classes.shape[0], dtype=np.float64, order='C') elif class_weight in ['auto', 'balanced']: # Find the weight of each class as present in y. le = LabelEncoder() y_ind = le.fit_transform(y) if not all(np.in1d(classes, le.classes_)): raise ValueError("classes should have valid labels that are in y") # inversely proportional to the number of samples in the class if class_weight == 'auto': recip_freq = 1. / bincount(y_ind) weight = recip_freq[le.transform(classes)] / np.mean(recip_freq) warnings.warn("The class_weight='auto' heuristic is deprecated in" " favor of a new heuristic class_weight='balanced'." " 'auto' will be removed in 0.18", DeprecationWarning) else: recip_freq = len(y) / (len(le.classes_) * bincount(y_ind).astype(np.float64)) weight = recip_freq[le.transform(classes)] else: # user-defined dictionary weight = np.ones(classes.shape[0], dtype=np.float64, order='C') if not isinstance(class_weight, dict): raise ValueError("class_weight must be dict, 'auto', or None," " got: %r" % class_weight) for c in class_weight: i = np.searchsorted(classes, c) if classes[i] != c: raise ValueError("Class label %d not present." % c) else: weight[i] = class_weight[c] return weight def compute_sample_weight(class_weight, y, indices=None): """Estimate sample weights by class for unbalanced datasets. Parameters ---------- class_weight : dict, list of dicts, "balanced", or None, optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data: ``n_samples / (n_classes * np.bincount(y))``. For multi-output, the weights of each column of y will be multiplied. y : array-like, shape = [n_samples] or [n_samples, n_outputs] Array of original class labels per sample. indices : array-like, shape (n_subsample,), or None Array of indices to be used in a subsample. Can be of length less than n_samples in the case of a subsample, or equal to n_samples in the case of a bootstrap subsample with repeated indices. If None, the sample weight will be calculated over the full sample. Only "auto" is supported for class_weight if this is provided. Returns ------- sample_weight_vect : ndarray, shape (n_samples,) Array with sample weights as applied to the original y """ y = np.atleast_1d(y) if y.ndim == 1: y = np.reshape(y, (-1, 1)) n_outputs = y.shape[1] if isinstance(class_weight, six.string_types): if class_weight not in ['balanced', 'auto']: raise ValueError('The only valid preset for class_weight is ' '"balanced". Given "%s".' % class_weight) elif (indices is not None and not isinstance(class_weight, six.string_types)): raise ValueError('The only valid class_weight for subsampling is ' '"balanced". Given "%s".' % class_weight) elif n_outputs > 1: if (not hasattr(class_weight, "__iter__") or isinstance(class_weight, dict)): raise ValueError("For multi-output, class_weight should be a " "list of dicts, or a valid string.") if len(class_weight) != n_outputs: raise ValueError("For multi-output, number of elements in " "class_weight should match number of outputs.") expanded_class_weight = [] for k in range(n_outputs): y_full = y[:, k] classes_full = np.unique(y_full) classes_missing = None if class_weight in ['balanced', 'auto'] or n_outputs == 1: class_weight_k = class_weight else: class_weight_k = class_weight[k] if indices is not None: # Get class weights for the subsample, covering all classes in # case some labels that were present in the original data are # missing from the sample. y_subsample = y[indices, k] classes_subsample = np.unique(y_subsample) weight_k = np.choose(np.searchsorted(classes_subsample, classes_full), compute_class_weight(class_weight_k, classes_subsample, y_subsample), mode='clip') classes_missing = set(classes_full) - set(classes_subsample) else: weight_k = compute_class_weight(class_weight_k, classes_full, y_full) weight_k = weight_k[np.searchsorted(classes_full, y_full)] if classes_missing: # Make missing classes' weight zero weight_k[in1d(y_full, list(classes_missing))] = 0. expanded_class_weight.append(weight_k) expanded_class_weight = np.prod(expanded_class_weight, axis=0, dtype=np.float64) return expanded_class_weight
bsd-3-clause
beardeer/prediction-wrapper
metric_wrappers.py
1
2296
"""Useful performance metric """ # Author: Xiaolu Xiong <beardeer@gmail.com> from abc import ABCMeta, abstractmethod from scipy import stats from sklearn import metrics class MetricWrapper(object): """The abstract class to build performance metrics """ __metaclass__ = ABCMeta @classmethod @abstractmethod def measure(cls, label, prediction): """The abstract class method to measure the performance of predictions Parameters ---------- label : array Lable data prediction : array Prediction data Raises ------ NotImplementedError """ raise NotImplementedError() class RSquare(MetricWrapper): """The implementation of simple coefficient of determination. It is the square of pearson correlation. """ @classmethod def measure(cls, label, prediction): """Measure the simple coefficient of determination. Parameters ---------- label : array Lable data prediction : array Prediction data Returns ------- float The square of pearson correlation between label and prediction """ pearson, _ = stats.pearsonr(label, prediction) return pearson**2 class AUC(MetricWrapper): """The implementation of Area under the ROC curve. """ @classmethod def measure(cls, label, prediction): """Measure the AUC. Parameters ---------- label : array Lable data prediction : array Prediction data Returns ------- float The AUC value between label and prediction """ return metrics.roc_auc_score(label, prediction) class RMSE(MetricWrapper): """The implementation of root-mean-square error. """ @classmethod def measure(cls, label, prediction): """Measure the RMSE Parameters ---------- label : array Lable data prediction : array Prediction data Returns ------- float The RMSE value of lable and prediction """ return metrics.mean_squared_error(label, prediction)**0.5
mit
aelaguiz/pyvotune
samples/util/pickler.py
1
1908
# -*- coding: utf-8 -*- import pyvotune import collections import pyvotune.sklearn import random import copy import sys try: import cPickle as pickle except ImportError: import pickle log = pyvotune.log.logger() def reproduce(offspring_cs, variator, rng, args): if isinstance(variator, collections.Iterable): for op in variator: offspring_cs = op(random=rng, candidates=offspring_cs, args=args) return offspring_cs else: return [variator(random=rng, candidates=offspring_cs, args=args)] if __name__ == '__main__': pyvotune.set_debug(True) # Dummy data n_features = 28 * 28 rng = random.Random() ################################# # Initialize PyvoTune Generator # ################################# gen = pyvotune.Generate( initial_state={ 'sparse': False }, gene_pool=pyvotune.sklearn.get_classifiers(n_features, rng) + pyvotune.sklearn.get_decomposers(n_features, rng) + pyvotune.sklearn.get_image_features(n_features, rng) + pyvotune.sklearn.get_preprocessors(n_features, rng), max_length=4, noop_frequency=0.2, rng=rng) args = { 'crossover_rate': 0.5, 'mutation_rate': 0.3, 'pyvotune_generator': gen } # Use PyvoTun variators variators = [ pyvotune.variators.random_reset_mutation, pyvotune.variators.param_reset_mutation, pyvotune.variators.scramble_mutation, pyvotune.variators.uniform_crossover, pyvotune.variators.n_point_crossover ] genome = gen.generate(max_retries=150) print genome p_genome = pickle.dumps(genome) print p_genome u_genome = pickle.loads(p_genome) print pyvotune.util.side_by_side([genome, u_genome], 50) if genome == u_genome: print "EQUAL" else: print "NOT EQUAL"
mit
voxlol/scikit-learn
examples/cluster/plot_segmentation_toy.py
257
3336
""" =========================================== Spectral clustering for image segmentation =========================================== In this example, an image with connected circles is generated and spectral clustering is used to separate the circles. In these settings, the :ref:`spectral_clustering` approach solves the problem know as 'normalized graph cuts': the image is seen as a graph of connected voxels, and the spectral clustering algorithm amounts to choosing graph cuts defining regions while minimizing the ratio of the gradient along the cut, and the volume of the region. As the algorithm tries to balance the volume (ie balance the region sizes), if we take circles with different sizes, the segmentation fails. In addition, as there is no useful information in the intensity of the image, or its gradient, we choose to perform the spectral clustering on a graph that is only weakly informed by the gradient. This is close to performing a Voronoi partition of the graph. In addition, we use the mask of the objects to restrict the graph to the outline of the objects. In this example, we are interested in separating the objects one from the other, and not from the background. """ print(__doc__) # Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org> # Gael Varoquaux <gael.varoquaux@normalesup.org> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering ############################################################################### l = 100 x, y = np.indices((l, l)) center1 = (28, 24) center2 = (40, 50) center3 = (67, 58) center4 = (24, 70) radius1, radius2, radius3, radius4 = 16, 14, 15, 14 circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2 circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2 circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2 circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2 ############################################################################### # 4 circles img = circle1 + circle2 + circle3 + circle4 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(img, mask=mask) # Take a decreasing function of the gradient: we take it weakly # dependent from the gradient the segmentation is close to a voronoi graph.data = np.exp(-graph.data / graph.data.std()) # Force the solver to be arpack, since amg is numerically # unstable on this example labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) ############################################################################### # 2 circles img = circle1 + circle2 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) graph = image.img_to_graph(img, mask=mask) graph.data = np.exp(-graph.data / graph.data.std()) labels = spectral_clustering(graph, n_clusters=2, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) plt.show()
bsd-3-clause
Titan-C/scikit-learn
sklearn/model_selection/tests/test_search.py
5
51772
"""Test the search module""" from collections import Iterable, Sized from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.externals.six.moves import xrange from sklearn.externals.joblib._compat import PY3_OR_LATER from itertools import chain, product import pickle import sys import numpy as np import scipy.sparse as sp from sklearn.utils.fixes import sp_version from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from scipy.stats import bernoulli, expon, uniform from sklearn.externals.six.moves import zip from sklearn.base import BaseEstimator from sklearn.exceptions import NotFittedError from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_multilabel_classification from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import LeaveOneGroupOut from sklearn.model_selection import LeavePGroupsOut from sklearn.model_selection import GroupKFold from sklearn.model_selection import GroupShuffleSplit from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import ParameterGrid from sklearn.model_selection import ParameterSampler from sklearn.model_selection._validation import FitFailedWarning from sklearn.svm import LinearSVC, SVC from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.neighbors import KernelDensity from sklearn.metrics import f1_score from sklearn.metrics import make_scorer from sklearn.metrics import roc_auc_score from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline from sklearn.linear_model import Ridge, SGDClassifier from sklearn.model_selection.tests.common import OneTimeSplitter # Neither of the following two estimators inherit from BaseEstimator, # to test hyperparameter search on user-defined classifiers. class MockClassifier(object): """Dummy classifier to test the parameter search algorithms""" def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) self.classes_ = np.unique(Y) return self def predict(self, T): return T.shape[0] def transform(self, X): return X + self.foo_param def inverse_transform(self, X): return X - self.foo_param predict_proba = predict predict_log_proba = predict decision_function = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=False): return {'foo_param': self.foo_param} def set_params(self, **params): self.foo_param = params['foo_param'] return self class LinearSVCNoScore(LinearSVC): """An LinearSVC classifier that has no score method.""" @property def score(self): raise AttributeError X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) def assert_grid_iter_equals_getitem(grid): assert_equal(list(grid), [grid[i] for i in range(len(grid))]) def test_parameter_grid(): # Test basic properties of ParameterGrid. params1 = {"foo": [1, 2, 3]} grid1 = ParameterGrid(params1) assert_true(isinstance(grid1, Iterable)) assert_true(isinstance(grid1, Sized)) assert_equal(len(grid1), 3) assert_grid_iter_equals_getitem(grid1) params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]} grid2 = ParameterGrid(params2) assert_equal(len(grid2), 6) # loop to assert we can iterate over the grid multiple times for i in xrange(2): # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2) points = set(tuple(chain(*(sorted(p.items())))) for p in grid2) assert_equal(points, set(("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"]))) assert_grid_iter_equals_getitem(grid2) # Special case: empty grid (useful to get default estimator settings) empty = ParameterGrid({}) assert_equal(len(empty), 1) assert_equal(list(empty), [{}]) assert_grid_iter_equals_getitem(empty) assert_raises(IndexError, lambda: empty[1]) has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert_equal(len(has_empty), 4) assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}]) assert_grid_iter_equals_getitem(has_empty) def test_grid_search(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) # make sure it selects the smallest parameter in case of ties old_stdout = sys.stdout sys.stdout = StringIO() grid_search.fit(X, y) sys.stdout = old_stdout assert_equal(grid_search.best_estimator_.foo_param, 2) assert_array_equal(grid_search.cv_results_["param_foo_param"].data, [1, 2, 3]) # Smoke test the score etc: grid_search.score(X, y) grid_search.predict_proba(X) grid_search.decision_function(X) grid_search.transform(X) # Test exception handling on scoring grid_search.scoring = 'sklearn' assert_raises(ValueError, grid_search.fit, X, y) def check_hyperparameter_searcher_with_fit_params(klass, **klass_kwargs): X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(expected_fit_params=['spam', 'eggs']) searcher = klass(clf, {'foo_param': [1, 2, 3]}, cv=2, **klass_kwargs) # The CheckingClassifer generates an assertion error if # a parameter is missing or has length != len(X). assert_raise_message(AssertionError, "Expected fit parameter(s) ['eggs'] not seen.", searcher.fit, X, y, spam=np.ones(10)) assert_raise_message(AssertionError, "Fit parameter spam has length 1; expected 4.", searcher.fit, X, y, spam=np.ones(1), eggs=np.zeros(10)) searcher.fit(X, y, spam=np.ones(10), eggs=np.zeros(10)) def test_grid_search_with_fit_params(): check_hyperparameter_searcher_with_fit_params(GridSearchCV) def test_random_search_with_fit_params(): check_hyperparameter_searcher_with_fit_params(RandomizedSearchCV, n_iter=1) def test_grid_search_fit_params_deprecation(): # NOTE: Remove this test in v0.21 # Use of `fit_params` in the class constructor is deprecated, # but will still work until v0.21. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(expected_fit_params=['spam']) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, fit_params={'spam': np.ones(10)}) assert_warns(DeprecationWarning, grid_search.fit, X, y) def test_grid_search_fit_params_two_places(): # NOTE: Remove this test in v0.21 # If users try to input fit parameters in both # the constructor (deprecated use) and the `fit` # method, we'll ignore the values passed to the constructor. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(expected_fit_params=['spam']) # The "spam" array is too short and will raise an # error in the CheckingClassifier if used. grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, fit_params={'spam': np.ones(1)}) expected_warning = ('Ignoring fit_params passed as a constructor ' 'argument in favor of keyword arguments to ' 'the "fit" method.') assert_warns_message(RuntimeWarning, expected_warning, grid_search.fit, X, y, spam=np.ones(10)) # Verify that `fit` prefers its own kwargs by giving valid # kwargs in the constructor and invalid in the method call grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, fit_params={'spam': np.ones(10)}) assert_raise_message(AssertionError, "Fit parameter spam has length 1", grid_search.fit, X, y, spam=np.ones(1)) @ignore_warnings def test_grid_search_no_score(): # Test grid-search on classifier that has no score function. clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] clf_no_score = LinearSVCNoScore(random_state=0) grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy') grid_search.fit(X, y) grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}, scoring='accuracy') # smoketest grid search grid_search_no_score.fit(X, y) # check that best params are equal assert_equal(grid_search_no_score.best_params_, grid_search.best_params_) # check that we can call score and that it gives the correct result assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y)) # giving no scoring function raises an error grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}) assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit, [[1]]) def test_grid_search_score_method(): X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2, random_state=0) clf = LinearSVC(random_state=0) grid = {'C': [.1]} search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y) search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y) search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid, scoring='roc_auc').fit(X, y) search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y) # Check warning only occurs in situation where behavior changed: # estimator requires score method to compete with scoring parameter score_no_scoring = search_no_scoring.score(X, y) score_accuracy = search_accuracy.score(X, y) score_no_score_auc = search_no_score_method_auc.score(X, y) score_auc = search_auc.score(X, y) # ensure the test is sane assert_true(score_auc < 1.0) assert_true(score_accuracy < 1.0) assert_not_equal(score_auc, score_accuracy) assert_almost_equal(score_accuracy, score_no_scoring) assert_almost_equal(score_auc, score_no_score_auc) def test_grid_search_groups(): # Check if ValueError (when groups is None) propagates to GridSearchCV # And also check if groups is correctly passed to the cv object rng = np.random.RandomState(0) X, y = make_classification(n_samples=15, n_classes=2, random_state=0) groups = rng.randint(0, 3, 15) clf = LinearSVC(random_state=0) grid = {'C': [1]} group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2), GroupKFold(), GroupShuffleSplit()] for cv in group_cvs: gs = GridSearchCV(clf, grid, cv=cv) assert_raise_message(ValueError, "The 'groups' parameter should not be None.", gs.fit, X, y) gs.fit(X, y, groups=groups) non_group_cvs = [StratifiedKFold(), StratifiedShuffleSplit()] for cv in non_group_cvs: gs = GridSearchCV(clf, grid, cv=cv) # Should not raise an error gs.fit(X, y) def test_classes__property(): # Test that classes_ property matches best_estimator_.classes_ X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) Cs = [.1, 1, 10] grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs}) grid_search.fit(X, y) assert_array_equal(grid_search.best_estimator_.classes_, grid_search.classes_) # Test that regressors do not have a classes_ attribute grid_search = GridSearchCV(Ridge(), {'alpha': [1.0, 2.0]}) grid_search.fit(X, y) assert_false(hasattr(grid_search, 'classes_')) # Test that the grid searcher has no classes_ attribute before it's fit grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs}) assert_false(hasattr(grid_search, 'classes_')) # Test that the grid searcher has no classes_ attribute without a refit grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs}, refit=False) grid_search.fit(X, y) assert_false(hasattr(grid_search, 'classes_')) def test_trivial_cv_results_attr(): # Test search over a "grid" with only one point. # Non-regression test: grid_scores_ wouldn't be set by GridSearchCV. clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1]}) grid_search.fit(X, y) assert_true(hasattr(grid_search, "cv_results_")) random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1) random_search.fit(X, y) assert_true(hasattr(grid_search, "cv_results_")) def test_no_refit(): # Test that GSCV can be used for model selection alone without refitting clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False) grid_search.fit(X, y) assert_true(not hasattr(grid_search, "best_estimator_") and hasattr(grid_search, "best_index_") and hasattr(grid_search, "best_params_")) # Make sure the predict/transform etc fns raise meaningfull error msg for fn_name in ('predict', 'predict_proba', 'predict_log_proba', 'transform', 'inverse_transform'): assert_raise_message(NotFittedError, ('refit=False. %s is available only after ' 'refitting on the best parameters' % fn_name), getattr(grid_search, fn_name), X) def test_grid_search_error(): # Test that grid search will capture errors on data with different length X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_[:180], y_) def test_grid_search_one_grid_point(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]} clf = SVC() cv = GridSearchCV(clf, param_dict) cv.fit(X_, y_) clf = SVC(C=1.0, kernel="rbf", gamma=0.1) clf.fit(X_, y_) assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_) def test_grid_search_when_param_grid_includes_range(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = None if PY3_OR_LATER: grid_search = GridSearchCV(clf, {'foo_param': range(1, 4)}) else: grid_search = GridSearchCV(clf, {'foo_param': xrange(1, 4)}) grid_search.fit(X, y) assert_equal(grid_search.best_estimator_.foo_param, 2) def test_grid_search_bad_param_grid(): param_dict = {"C": 1.0} clf = SVC() assert_raise_message( ValueError, "Parameter values for parameter (C) need to be a sequence" "(but not a string) or np.ndarray.", GridSearchCV, clf, param_dict) param_dict = {"C": []} clf = SVC() assert_raise_message( ValueError, "Parameter values for parameter (C) need to be a non-empty sequence.", GridSearchCV, clf, param_dict) param_dict = {"C": "1,2,3"} clf = SVC() assert_raise_message( ValueError, "Parameter values for parameter (C) need to be a sequence" "(but not a string) or np.ndarray.", GridSearchCV, clf, param_dict) param_dict = {"C": np.ones(6).reshape(3, 2)} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) def test_grid_search_sparse(): # Test that grid search works with both dense and sparse matrices X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180].tocoo(), y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_true(np.mean(y_pred == y_pred2) >= .9) assert_equal(C, C2) def test_grid_search_sparse_scoring(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_array_equal(y_pred, y_pred2) assert_equal(C, C2) # Smoke test the score # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]), # cv.score(X_[:180], y[:180])) # test loss where greater is worse def f1_loss(y_true_, y_pred_): return -f1_score(y_true_, y_pred_) F1Loss = make_scorer(f1_loss, greater_is_better=False) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss) cv.fit(X_[:180], y_[:180]) y_pred3 = cv.predict(X_[180:]) C3 = cv.best_estimator_.C assert_equal(C, C3) assert_array_equal(y_pred, y_pred3) def test_grid_search_precomputed_kernel(): # Test that grid search works when the input features are given in the # form of a precomputed kernel matrix X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) # compute the training kernel matrix corresponding to the linear kernel K_train = np.dot(X_[:180], X_[:180].T) y_train = y_[:180] clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(K_train, y_train) assert_true(cv.best_score_ >= 0) # compute the test kernel matrix K_test = np.dot(X_[180:], X_[:180].T) y_test = y_[180:] y_pred = cv.predict(K_test) assert_true(np.mean(y_pred == y_test) >= 0) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): # Test that grid search returns an error with a non-square precomputed # training kernel matrix K_train = np.zeros((10, 20)) y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, K_train, y_train) class BrokenClassifier(BaseEstimator): """Broken classifier that cannot be fit twice""" def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y): assert_true(not hasattr(self, 'has_been_fit_')) self.has_been_fit_ = True def predict(self, X): return np.zeros(X.shape[0]) @ignore_warnings def test_refit(): # Regression test for bug in refitting # Simulates re-fitting a broken estimator; this used to break with # sparse SVMs. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}], scoring="precision", refit=True) clf.fit(X, y) def test_gridsearch_nd(): # Pass X as list in GridSearchCV X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) check_X = lambda x: x.shape[1:] == (5, 3, 2) check_y = lambda x: x.shape[1:] == (7, 11) clf = CheckingClassifier(check_X=check_X, check_y=check_y) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_4d, y_3d).score(X, y) assert_true(hasattr(grid_search, "cv_results_")) def test_X_as_list(): # Pass X as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_X=lambda x: isinstance(x, list)) cv = KFold(n_splits=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X.tolist(), y).score(X, y) assert_true(hasattr(grid_search, "cv_results_")) def test_y_as_list(): # Pass y as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_y=lambda x: isinstance(x, list)) cv = KFold(n_splits=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X, y.tolist()).score(X, y) assert_true(hasattr(grid_search, "cv_results_")) @ignore_warnings def test_pandas_input(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((DataFrame, Series)) except ImportError: pass X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) for InputFeatureType, TargetType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_df, y_ser).score(X_df, y_ser) grid_search.predict(X_df) assert_true(hasattr(grid_search, "cv_results_")) def test_unsupervised_grid_search(): # test grid-search with unsupervised estimator X, y = make_blobs(random_state=0) km = KMeans(random_state=0) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='adjusted_rand_score') grid_search.fit(X, y) # ARI can find the right number :) assert_equal(grid_search.best_params_["n_clusters"], 3) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='fowlkes_mallows_score') grid_search.fit(X, y) # So can FMS ;) assert_equal(grid_search.best_params_["n_clusters"], 3) # Now without a score, and without y grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4])) grid_search.fit(X) assert_equal(grid_search.best_params_["n_clusters"], 4) def test_gridsearch_no_predict(): # test grid-search with an estimator without predict. # slight duplication of a test from KDE def custom_scoring(estimator, X): return 42 if estimator.bandwidth == .1 else 0 X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) search = GridSearchCV(KernelDensity(), param_grid=dict(bandwidth=[.01, .1, 1]), scoring=custom_scoring) search.fit(X) assert_equal(search.best_params_['bandwidth'], .1) assert_equal(search.best_score_, 42) def test_param_sampler(): # test basic properties of param sampler param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) samples = [x for x in sampler] assert_equal(len(samples), 10) for sample in samples: assert_true(sample["kernel"] in ["rbf", "linear"]) assert_true(0 <= sample["C"] <= 1) # test that repeated calls yield identical parameters param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=3, random_state=0) assert_equal([x for x in sampler], [x for x in sampler]) if sp_version >= (0, 16): param_distributions = {"C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) assert_equal([x for x in sampler], [x for x in sampler]) def check_cv_results_array_types(cv_results, param_keys, score_keys): # Check if the search `cv_results`'s array are of correct types assert_true(all(isinstance(cv_results[param], np.ma.MaskedArray) for param in param_keys)) assert_true(all(cv_results[key].dtype == object for key in param_keys)) assert_false(any(isinstance(cv_results[key], np.ma.MaskedArray) for key in score_keys)) assert_true(all(cv_results[key].dtype == np.float64 for key in score_keys if not key.startswith('rank'))) assert_true(cv_results['rank_test_score'].dtype == np.int32) def check_cv_results_keys(cv_results, param_keys, score_keys, n_cand): # Test the search.cv_results_ contains all the required results assert_array_equal(sorted(cv_results.keys()), sorted(param_keys + score_keys + ('params',))) assert_true(all(cv_results[key].shape == (n_cand,) for key in param_keys + score_keys)) def check_cv_results_grid_scores_consistency(search): # TODO Remove in 0.20 cv_results = search.cv_results_ res_scores = np.vstack(list([cv_results["split%d_test_score" % i] for i in range(search.n_splits_)])).T res_means = cv_results["mean_test_score"] res_params = cv_results["params"] n_cand = len(res_params) grid_scores = assert_warns(DeprecationWarning, getattr, search, 'grid_scores_') assert_equal(len(grid_scores), n_cand) # Check consistency of the structure of grid_scores for i in range(n_cand): assert_equal(grid_scores[i].parameters, res_params[i]) assert_array_equal(grid_scores[i].cv_validation_scores, res_scores[i, :]) assert_array_equal(grid_scores[i].mean_validation_score, res_means[i]) def test_grid_search_cv_results(): X, y = make_classification(n_samples=50, n_features=4, random_state=42) n_splits = 3 n_grid_points = 6 params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]), dict(kernel=['poly', ], degree=[1, 2])] grid_search = GridSearchCV(SVC(), cv=n_splits, iid=False, param_grid=params) grid_search.fit(X, y) grid_search_iid = GridSearchCV(SVC(), cv=n_splits, iid=True, param_grid=params) grid_search_iid.fit(X, y) param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel') score_keys = ('mean_test_score', 'mean_train_score', 'rank_test_score', 'split0_test_score', 'split1_test_score', 'split2_test_score', 'split0_train_score', 'split1_train_score', 'split2_train_score', 'std_test_score', 'std_train_score', 'mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time') n_candidates = n_grid_points for search, iid in zip((grid_search, grid_search_iid), (False, True)): assert_equal(iid, search.iid) cv_results = search.cv_results_ # Check if score and timing are reasonable assert_true(all(cv_results['rank_test_score'] >= 1)) assert_true(all(cv_results[k] >= 0) for k in score_keys if k is not 'rank_test_score') assert_true(all(cv_results[k] <= 1) for k in score_keys if 'time' not in k and k is not 'rank_test_score') # Check cv_results structure check_cv_results_array_types(cv_results, param_keys, score_keys) check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates) # Check masking cv_results = grid_search.cv_results_ n_candidates = len(grid_search.cv_results_['params']) assert_true(all((cv_results['param_C'].mask[i] and cv_results['param_gamma'].mask[i] and not cv_results['param_degree'].mask[i]) for i in range(n_candidates) if cv_results['param_kernel'][i] == 'linear')) assert_true(all((not cv_results['param_C'].mask[i] and not cv_results['param_gamma'].mask[i] and cv_results['param_degree'].mask[i]) for i in range(n_candidates) if cv_results['param_kernel'][i] == 'rbf')) check_cv_results_grid_scores_consistency(search) def test_random_search_cv_results(): # Make a dataset with a lot of noise to get various kind of prediction # errors across CV folds and parameter settings X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0) # scipy.stats dists now supports `seed` but we still support scipy 0.12 # which doesn't support the seed. Hence the assertions in the test for # random_search alone should not depend on randomization. n_splits = 3 n_search_iter = 30 params = dict(C=expon(scale=10), gamma=expon(scale=0.1)) random_search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_splits, iid=False, param_distributions=params) random_search.fit(X, y) random_search_iid = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_splits, iid=True, param_distributions=params) random_search_iid.fit(X, y) param_keys = ('param_C', 'param_gamma') score_keys = ('mean_test_score', 'mean_train_score', 'rank_test_score', 'split0_test_score', 'split1_test_score', 'split2_test_score', 'split0_train_score', 'split1_train_score', 'split2_train_score', 'std_test_score', 'std_train_score', 'mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time') n_cand = n_search_iter for search, iid in zip((random_search, random_search_iid), (False, True)): assert_equal(iid, search.iid) cv_results = search.cv_results_ # Check results structure check_cv_results_array_types(cv_results, param_keys, score_keys) check_cv_results_keys(cv_results, param_keys, score_keys, n_cand) # For random_search, all the param array vals should be unmasked assert_false(any(cv_results['param_C'].mask) or any(cv_results['param_gamma'].mask)) check_cv_results_grid_scores_consistency(search) def test_search_iid_param(): # Test the IID parameter # noise-free simple 2d-data X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0, cluster_std=0.1, shuffle=False, n_samples=80) # split dataset into two folds that are not iid # first one contains data of all 4 blobs, second only from two. mask = np.ones(X.shape[0], dtype=np.bool) mask[np.where(y == 1)[0][::2]] = 0 mask[np.where(y == 2)[0][::2]] = 0 # this leads to perfect classification on one fold and a score of 1/3 on # the other # create "cv" for splits cv = [[mask, ~mask], [~mask, mask]] # once with iid=True (default) grid_search = GridSearchCV(SVC(), param_grid={'C': [1, 10]}, cv=cv) random_search = RandomizedSearchCV(SVC(), n_iter=2, param_distributions={'C': [1, 10]}, cv=cv) for search in (grid_search, random_search): search.fit(X, y) assert_true(search.iid) test_cv_scores = np.array(list(search.cv_results_['split%d_test_score' % s_i][0] for s_i in range(search.n_splits_))) train_cv_scores = np.array(list(search.cv_results_['split%d_train_' 'score' % s_i][0] for s_i in range(search.n_splits_))) test_mean = search.cv_results_['mean_test_score'][0] test_std = search.cv_results_['std_test_score'][0] train_cv_scores = np.array(list(search.cv_results_['split%d_train_' 'score' % s_i][0] for s_i in range(search.n_splits_))) train_mean = search.cv_results_['mean_train_score'][0] train_std = search.cv_results_['std_train_score'][0] # Test the first candidate assert_equal(search.cv_results_['param_C'][0], 1) assert_array_almost_equal(test_cv_scores, [1, 1. / 3.]) assert_array_almost_equal(train_cv_scores, [1, 1]) # for first split, 1/4 of dataset is in test, for second 3/4. # take weighted average and weighted std expected_test_mean = 1 * 1. / 4. + 1. / 3. * 3. / 4. expected_test_std = np.sqrt(1. / 4 * (expected_test_mean - 1) ** 2 + 3. / 4 * (expected_test_mean - 1. / 3.) ** 2) assert_almost_equal(test_mean, expected_test_mean) assert_almost_equal(test_std, expected_test_std) # For the train scores, we do not take a weighted mean irrespective of # i.i.d. or not assert_almost_equal(train_mean, 1) assert_almost_equal(train_std, 0) # once with iid=False grid_search = GridSearchCV(SVC(), param_grid={'C': [1, 10]}, cv=cv, iid=False) random_search = RandomizedSearchCV(SVC(), n_iter=2, param_distributions={'C': [1, 10]}, cv=cv, iid=False) for search in (grid_search, random_search): search.fit(X, y) assert_false(search.iid) test_cv_scores = np.array(list(search.cv_results_['split%d_test_score' % s][0] for s in range(search.n_splits_))) test_mean = search.cv_results_['mean_test_score'][0] test_std = search.cv_results_['std_test_score'][0] train_cv_scores = np.array(list(search.cv_results_['split%d_train_' 'score' % s][0] for s in range(search.n_splits_))) train_mean = search.cv_results_['mean_train_score'][0] train_std = search.cv_results_['std_train_score'][0] assert_equal(search.cv_results_['param_C'][0], 1) # scores are the same as above assert_array_almost_equal(test_cv_scores, [1, 1. / 3.]) # Unweighted mean/std is used assert_almost_equal(test_mean, np.mean(test_cv_scores)) assert_almost_equal(test_std, np.std(test_cv_scores)) # For the train scores, we do not take a weighted mean irrespective of # i.i.d. or not assert_almost_equal(train_mean, 1) assert_almost_equal(train_std, 0) def test_search_cv_results_rank_tie_breaking(): X, y = make_blobs(n_samples=50, random_state=42) # The two C values are close enough to give similar models # which would result in a tie of their mean cv-scores param_grid = {'C': [1, 1.001, 0.001]} grid_search = GridSearchCV(SVC(), param_grid=param_grid) random_search = RandomizedSearchCV(SVC(), n_iter=3, param_distributions=param_grid) for search in (grid_search, random_search): search.fit(X, y) cv_results = search.cv_results_ # Check tie breaking strategy - # Check that there is a tie in the mean scores between # candidates 1 and 2 alone assert_almost_equal(cv_results['mean_test_score'][0], cv_results['mean_test_score'][1]) assert_almost_equal(cv_results['mean_train_score'][0], cv_results['mean_train_score'][1]) try: assert_almost_equal(cv_results['mean_test_score'][1], cv_results['mean_test_score'][2]) except AssertionError: pass try: assert_almost_equal(cv_results['mean_train_score'][1], cv_results['mean_train_score'][2]) except AssertionError: pass # 'min' rank should be assigned to the tied candidates assert_almost_equal(search.cv_results_['rank_test_score'], [1, 1, 3]) def test_search_cv_results_none_param(): X, y = [[1], [2], [3], [4], [5]], [0, 0, 0, 0, 1] estimators = (DecisionTreeRegressor(), DecisionTreeClassifier()) est_parameters = {"random_state": [0, None]} cv = KFold(random_state=0) for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv).fit(X, y) assert_array_equal(grid_search.cv_results_['param_random_state'], [0, None]) @ignore_warnings() def test_search_cv_timing(): svc = LinearSVC(random_state=0) X = [[1, ], [2, ], [3, ], [4, ]] y = [0, 1, 1, 0] gs = GridSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0) rs = RandomizedSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0, n_iter=2) for search in (gs, rs): search.fit(X, y) for key in ['mean_fit_time', 'std_fit_time']: # NOTE The precision of time.time in windows is not high # enough for the fit/score times to be non-zero for trivial X and y assert_true(np.all(search.cv_results_[key] >= 0)) assert_true(np.all(search.cv_results_[key] < 1)) for key in ['mean_score_time', 'std_score_time']: assert_true(search.cv_results_[key][1] >= 0) assert_true(search.cv_results_[key][0] == 0.0) assert_true(np.all(search.cv_results_[key] < 1)) def test_grid_search_correct_score_results(): # test that correct scores are used n_splits = 3 clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] for score in ['f1', 'roc_auc']: grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score, cv=n_splits) cv_results = grid_search.fit(X, y).cv_results_ # Test scorer names result_keys = list(cv_results.keys()) expected_keys = (("mean_test_score", "rank_test_score") + tuple("split%d_test_score" % cv_i for cv_i in range(n_splits))) assert_true(all(np.in1d(expected_keys, result_keys))) cv = StratifiedKFold(n_splits=n_splits) n_splits = grid_search.n_splits_ for candidate_i, C in enumerate(Cs): clf.set_params(C=C) cv_scores = np.array( list(grid_search.cv_results_['split%d_test_score' % s][candidate_i] for s in range(n_splits))) for i, (train, test) in enumerate(cv.split(X, y)): clf.fit(X[train], y[train]) if score == "f1": correct_score = f1_score(y[test], clf.predict(X[test])) elif score == "roc_auc": dec = clf.decision_function(X[test]) correct_score = roc_auc_score(y[test], dec) assert_almost_equal(correct_score, cv_scores[i]) def test_pickle(): # Test that a fit search can be pickled clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True) grid_search.fit(X, y) grid_search_pickled = pickle.loads(pickle.dumps(grid_search)) assert_array_almost_equal(grid_search.predict(X), grid_search_pickled.predict(X)) random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, n_iter=3) random_search.fit(X, y) random_search_pickled = pickle.loads(pickle.dumps(random_search)) assert_array_almost_equal(random_search.predict(X), random_search_pickled.predict(X)) def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(return_indicator=True, random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) res_params = grid_search.cv_results_['params'] for cand_i in range(len(res_params)): est.set_params(**res_params[cand_i]) for i, (train, test) in enumerate(cv.split(X, y)): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal( correct_score, grid_search.cv_results_['split%d_test_score' % i][cand_i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) res_params = random_search.cv_results_['params'] for cand_i in range(len(res_params)): est.set_params(**res_params[cand_i]) for i, (train, test) in enumerate(cv.split(X, y)): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal( correct_score, random_search.cv_results_['split%d_test_score' % i][cand_i]) def test_predict_proba_disabled(): # Test predict_proba when disabled on estimator. X = np.arange(20).reshape(5, -1) y = [0, 0, 1, 1, 1] clf = SVC(probability=False) gs = GridSearchCV(clf, {}, cv=2).fit(X, y) assert_false(hasattr(gs, "predict_proba")) def test_grid_search_allows_nans(): # Test GridSearchCV with Imputer X = np.arange(20, dtype=np.float64).reshape(5, -1) X[2, :] = np.nan y = [0, 0, 1, 1, 1] p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y) class FailingClassifier(BaseEstimator): """Classifier that raises a ValueError on fit()""" FAILING_PARAMETER = 2 def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y=None): if self.parameter == FailingClassifier.FAILING_PARAMETER: raise ValueError("Failing classifier failed as required") def predict(self, X): return np.zeros(X.shape[0]) def test_grid_search_failing_classifier(): # GridSearchCV with on_error != 'raise' # Ensures that a warning is raised and score reset where appropriate. X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we only want to check that errors caused by fits # to individual folds will be caught and warnings raised instead. If # refit was done, then an exception would be raised on refit and not # caught by grid_search (expected behavior), and this would cause an # error in this test. gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=0.0) assert_warns(FitFailedWarning, gs.fit, X, y) n_candidates = len(gs.cv_results_['params']) # Ensure that grid scores were set to zero as required for those fits # that are expected to fail. def get_cand_scores(i): return np.array(list(gs.cv_results_['split%d_test_score' % s][i] for s in range(gs.n_splits_))) assert all((np.all(get_cand_scores(cand_i) == 0.0) for cand_i in range(n_candidates) if gs.cv_results_['param_parameter'][cand_i] == FailingClassifier.FAILING_PARAMETER)) gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=float('nan')) assert_warns(FitFailedWarning, gs.fit, X, y) n_candidates = len(gs.cv_results_['params']) assert all(np.all(np.isnan(get_cand_scores(cand_i))) for cand_i in range(n_candidates) if gs.cv_results_['param_parameter'][cand_i] == FailingClassifier.FAILING_PARAMETER) def test_grid_search_failing_classifier_raise(): # GridSearchCV with on_error == 'raise' raises the error X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we want to test the behaviour of the grid search part gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. assert_raises(ValueError, gs.fit, X, y) def test_parameters_sampler_replacement(): # raise error if n_iter too large params = {'first': [0, 1], 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params, n_iter=7) assert_raises(ValueError, list, sampler) # degenerates to GridSearchCV if n_iter the same as grid_size sampler = ParameterSampler(params, n_iter=6) samples = list(sampler) assert_equal(len(samples), 6) for values in ParameterGrid(params): assert_true(values in samples) # test sampling without replacement in a large grid params = {'a': range(10), 'b': range(10), 'c': range(10)} sampler = ParameterSampler(params, n_iter=99, random_state=42) samples = list(sampler) assert_equal(len(samples), 99) hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c']) for p in samples] assert_equal(len(set(hashable_samples)), 99) # doesn't go into infinite loops params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params_distribution, n_iter=7) samples = list(sampler) assert_equal(len(samples), 7) def test_stochastic_gradient_loss_param(): # Make sure the predict_proba works when loss is specified # as one of the parameters in the param_grid. param_grid = { 'loss': ['log'], } X = np.arange(24).reshape(6, -1) y = [0, 0, 0, 1, 1, 1] clf = GridSearchCV(estimator=SGDClassifier(loss='hinge'), param_grid=param_grid) # When the estimator is not fitted, `predict_proba` is not available as the # loss is 'hinge'. assert_false(hasattr(clf, "predict_proba")) clf.fit(X, y) clf.predict_proba(X) clf.predict_log_proba(X) # Make sure `predict_proba` is not available when setting loss=['hinge'] # in param_grid param_grid = { 'loss': ['hinge'], } clf = GridSearchCV(estimator=SGDClassifier(loss='hinge'), param_grid=param_grid) assert_false(hasattr(clf, "predict_proba")) clf.fit(X, y) assert_false(hasattr(clf, "predict_proba")) def test_search_train_scores_set_to_false(): X = np.arange(6).reshape(6, -1) y = [0, 0, 0, 1, 1, 1] clf = LinearSVC(random_state=0) gs = GridSearchCV(clf, param_grid={'C': [0.1, 0.2]}, return_train_score=False) gs.fit(X, y) def test_grid_search_cv_splits_consistency(): # Check if a one time iterable is accepted as a cv parameter. n_samples = 100 n_splits = 5 X, y = make_classification(n_samples=n_samples, random_state=0) gs = GridSearchCV(LinearSVC(random_state=0), param_grid={'C': [0.1, 0.2, 0.3]}, cv=OneTimeSplitter(n_splits=n_splits, n_samples=n_samples)) gs.fit(X, y) gs2 = GridSearchCV(LinearSVC(random_state=0), param_grid={'C': [0.1, 0.2, 0.3]}, cv=KFold(n_splits=n_splits)) gs2.fit(X, y) def _pop_time_keys(cv_results): for key in ('mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time'): cv_results.pop(key) return cv_results # OneTimeSplitter is a non-re-entrant cv where split can be called only # once if ``cv.split`` is called once per param setting in GridSearchCV.fit # the 2nd and 3rd parameter will not be evaluated as no train/test indices # will be generated for the 2nd and subsequent cv.split calls. # This is a check to make sure cv.split is not called once per param # setting. np.testing.assert_equal(_pop_time_keys(gs.cv_results_), _pop_time_keys(gs2.cv_results_)) # Check consistency of folds across the parameters gs = GridSearchCV(LinearSVC(random_state=0), param_grid={'C': [0.1, 0.1, 0.2, 0.2]}, cv=KFold(n_splits=n_splits, shuffle=True)) gs.fit(X, y) # As the first two param settings (C=0.1) and the next two param # settings (C=0.2) are same, the test and train scores must also be # same as long as the same train/test indices are generated for all # the cv splits, for both param setting for score_type in ('train', 'test'): per_param_scores = {} for param_i in range(4): per_param_scores[param_i] = list( gs.cv_results_['split%d_%s_score' % (s, score_type)][param_i] for s in range(5)) assert_array_almost_equal(per_param_scores[0], per_param_scores[1]) assert_array_almost_equal(per_param_scores[2], per_param_scores[3]) def test_transform_inverse_transform_round_trip(): clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) grid_search.fit(X, y) X_round_trip = grid_search.inverse_transform(grid_search.transform(X)) assert_array_equal(X, X_round_trip)
bsd-3-clause
imaculate/scikit-learn
examples/linear_model/plot_logistic_l1_l2_sparsity.py
377
2601
""" ============================================== L1 Penalty and Sparsity in Logistic Regression ============================================== Comparison of the sparsity (percentage of zero coefficients) of solutions when L1 and L2 penalty are used for different values of C. We can see that large values of C give more freedom to the model. Conversely, smaller values of C constrain the model more. In the L1 penalty case, this leads to sparser solutions. We classify 8x8 images of digits into two classes: 0-4 against 5-9. The visualization shows coefficients of the models for varying C. """ print(__doc__) # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Mathieu Blondel <mathieu@mblondel.org> # Andreas Mueller <amueller@ais.uni-bonn.de> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn import datasets from sklearn.preprocessing import StandardScaler digits = datasets.load_digits() X, y = digits.data, digits.target X = StandardScaler().fit_transform(X) # classify small against large digits y = (y > 4).astype(np.int) # Set regularization parameter for i, C in enumerate((100, 1, 0.01)): # turn down tolerance for short training time clf_l1_LR = LogisticRegression(C=C, penalty='l1', tol=0.01) clf_l2_LR = LogisticRegression(C=C, penalty='l2', tol=0.01) clf_l1_LR.fit(X, y) clf_l2_LR.fit(X, y) coef_l1_LR = clf_l1_LR.coef_.ravel() coef_l2_LR = clf_l2_LR.coef_.ravel() # coef_l1_LR contains zeros due to the # L1 sparsity inducing norm sparsity_l1_LR = np.mean(coef_l1_LR == 0) * 100 sparsity_l2_LR = np.mean(coef_l2_LR == 0) * 100 print("C=%.2f" % C) print("Sparsity with L1 penalty: %.2f%%" % sparsity_l1_LR) print("score with L1 penalty: %.4f" % clf_l1_LR.score(X, y)) print("Sparsity with L2 penalty: %.2f%%" % sparsity_l2_LR) print("score with L2 penalty: %.4f" % clf_l2_LR.score(X, y)) l1_plot = plt.subplot(3, 2, 2 * i + 1) l2_plot = plt.subplot(3, 2, 2 * (i + 1)) if i == 0: l1_plot.set_title("L1 penalty") l2_plot.set_title("L2 penalty") l1_plot.imshow(np.abs(coef_l1_LR.reshape(8, 8)), interpolation='nearest', cmap='binary', vmax=1, vmin=0) l2_plot.imshow(np.abs(coef_l2_LR.reshape(8, 8)), interpolation='nearest', cmap='binary', vmax=1, vmin=0) plt.text(-8, 3, "C = %.2f" % C) l1_plot.set_xticks(()) l1_plot.set_yticks(()) l2_plot.set_xticks(()) l2_plot.set_yticks(()) plt.show()
bsd-3-clause
robintw/scikit-image
skimage/segmentation/random_walker_segmentation.py
19
20435
""" Random walker segmentation algorithm from *Random walks for image segmentation*, Leo Grady, IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83. Installing pyamg and using the 'cg_mg' mode of random_walker improves significantly the performance. """ import warnings import numpy as np from scipy import sparse, ndimage as ndi # executive summary for next code block: try to import umfpack from # scipy, but make sure not to raise a fuss if it fails since it's only # needed to speed up a few cases. # See discussions at: # https://groups.google.com/d/msg/scikit-image/FrM5IGP6wh4/1hp-FtVZmfcJ # http://stackoverflow.com/questions/13977970/ignore-exceptions-printed-to-stderr-in-del/13977992?noredirect=1#comment28386412_13977992 try: from scipy.sparse.linalg.dsolve import umfpack old_del = umfpack.UmfpackContext.__del__ def new_del(self): try: old_del(self) except AttributeError: pass umfpack.UmfpackContext.__del__ = new_del UmfpackContext = umfpack.UmfpackContext() except: UmfpackContext = None try: from pyamg import ruge_stuben_solver amg_loaded = True except ImportError: amg_loaded = False from scipy.sparse.linalg import cg from ..util import img_as_float from ..filters import rank_order #-----------Laplacian-------------------- def _make_graph_edges_3d(n_x, n_y, n_z): """Returns a list of edges for a 3D image. Parameters ---------- n_x: integer The size of the grid in the x direction. n_y: integer The size of the grid in the y direction n_z: integer The size of the grid in the z direction Returns ------- edges : (2, N) ndarray with the total number of edges:: N = n_x * n_y * (nz - 1) + n_x * (n_y - 1) * nz + (n_x - 1) * n_y * nz Graph edges with each column describing a node-id pair. """ vertices = np.arange(n_x * n_y * n_z).reshape((n_x, n_y, n_z)) edges_deep = np.vstack((vertices[:, :, :-1].ravel(), vertices[:, :, 1:].ravel())) edges_right = np.vstack((vertices[:, :-1].ravel(), vertices[:, 1:].ravel())) edges_down = np.vstack((vertices[:-1].ravel(), vertices[1:].ravel())) edges = np.hstack((edges_deep, edges_right, edges_down)) return edges def _compute_weights_3d(data, spacing, beta=130, eps=1.e-6, multichannel=False): # Weight calculation is main difference in multispectral version # Original gradient**2 replaced with sum of gradients ** 2 gradients = 0 for channel in range(0, data.shape[-1]): gradients += _compute_gradients_3d(data[..., channel], spacing) ** 2 # All channels considered together in this standard deviation beta /= 10 * data.std() if multichannel: # New final term in beta to give == results in trivial case where # multiple identical spectra are passed. beta /= np.sqrt(data.shape[-1]) gradients *= beta weights = np.exp(- gradients) weights += eps return weights def _compute_gradients_3d(data, spacing): gr_deep = np.abs(data[:, :, :-1] - data[:, :, 1:]).ravel() / spacing[2] gr_right = np.abs(data[:, :-1] - data[:, 1:]).ravel() / spacing[1] gr_down = np.abs(data[:-1] - data[1:]).ravel() / spacing[0] return np.r_[gr_deep, gr_right, gr_down] def _make_laplacian_sparse(edges, weights): """ Sparse implementation """ pixel_nb = edges.max() + 1 diag = np.arange(pixel_nb) i_indices = np.hstack((edges[0], edges[1])) j_indices = np.hstack((edges[1], edges[0])) data = np.hstack((-weights, -weights)) lap = sparse.coo_matrix((data, (i_indices, j_indices)), shape=(pixel_nb, pixel_nb)) connect = - np.ravel(lap.sum(axis=1)) lap = sparse.coo_matrix( (np.hstack((data, connect)), (np.hstack((i_indices, diag)), np.hstack((j_indices, diag)))), shape=(pixel_nb, pixel_nb)) return lap.tocsr() def _clean_labels_ar(X, labels, copy=False): X = X.astype(labels.dtype) if copy: labels = np.copy(labels) labels = np.ravel(labels) labels[labels == 0] = X return labels def _buildAB(lap_sparse, labels): """ Build the matrix A and rhs B of the linear system to solve. A and B are two block of the laplacian of the image graph. """ labels = labels[labels >= 0] indices = np.arange(labels.size) unlabeled_indices = indices[labels == 0] seeds_indices = indices[labels > 0] # The following two lines take most of the time in this function B = lap_sparse[unlabeled_indices][:, seeds_indices] lap_sparse = lap_sparse[unlabeled_indices][:, unlabeled_indices] nlabels = labels.max() rhs = [] for lab in range(1, nlabels + 1): mask = (labels[seeds_indices] == lab) fs = sparse.csr_matrix(mask) fs = fs.transpose() rhs.append(B * fs) return lap_sparse, rhs def _mask_edges_weights(edges, weights, mask): """ Remove edges of the graph connected to masked nodes, as well as corresponding weights of the edges. """ mask0 = np.hstack((mask[:, :, :-1].ravel(), mask[:, :-1].ravel(), mask[:-1].ravel())) mask1 = np.hstack((mask[:, :, 1:].ravel(), mask[:, 1:].ravel(), mask[1:].ravel())) ind_mask = np.logical_and(mask0, mask1) edges, weights = edges[:, ind_mask], weights[ind_mask] max_node_index = edges.max() # Reassign edges labels to 0, 1, ... edges_number - 1 order = np.searchsorted(np.unique(edges.ravel()), np.arange(max_node_index + 1)) edges = order[edges.astype(np.int64)] return edges, weights def _build_laplacian(data, spacing, mask=None, beta=50, multichannel=False): l_x, l_y, l_z = tuple(data.shape[i] for i in range(3)) edges = _make_graph_edges_3d(l_x, l_y, l_z) weights = _compute_weights_3d(data, spacing, beta=beta, eps=1.e-10, multichannel=multichannel) if mask is not None: edges, weights = _mask_edges_weights(edges, weights, mask) lap = _make_laplacian_sparse(edges, weights) del edges, weights return lap #----------- Random walker algorithm -------------------------------- def random_walker(data, labels, beta=130, mode='bf', tol=1.e-3, copy=True, multichannel=False, return_full_prob=False, spacing=None): """Random walker algorithm for segmentation from markers. Random walker algorithm is implemented for gray-level or multichannel images. Parameters ---------- data : array_like Image to be segmented in phases. Gray-level `data` can be two- or three-dimensional; multichannel data can be three- or four- dimensional (multichannel=True) with the highest dimension denoting channels. Data spacing is assumed isotropic unless the `spacing` keyword argument is used. labels : array of ints, of same shape as `data` without channels dimension Array of seed markers labeled with different positive integers for different phases. Zero-labeled pixels are unlabeled pixels. Negative labels correspond to inactive pixels that are not taken into account (they are removed from the graph). If labels are not consecutive integers, the labels array will be transformed so that labels are consecutive. In the multichannel case, `labels` should have the same shape as a single channel of `data`, i.e. without the final dimension denoting channels. beta : float Penalization coefficient for the random walker motion (the greater `beta`, the more difficult the diffusion). mode : string, available options {'cg_mg', 'cg', 'bf'} Mode for solving the linear system in the random walker algorithm. If no preference given, automatically attempt to use the fastest option available ('cg_mg' from pyamg >> 'cg' with UMFPACK > 'bf'). - 'bf' (brute force): an LU factorization of the Laplacian is computed. This is fast for small images (<1024x1024), but very slow and memory-intensive for large images (e.g., 3-D volumes). - 'cg' (conjugate gradient): the linear system is solved iteratively using the Conjugate Gradient method from scipy.sparse.linalg. This is less memory-consuming than the brute force method for large images, but it is quite slow. - 'cg_mg' (conjugate gradient with multigrid preconditioner): a preconditioner is computed using a multigrid solver, then the solution is computed with the Conjugate Gradient method. This mode requires that the pyamg module (http://pyamg.org/) is installed. For images of size > 512x512, this is the recommended (fastest) mode. tol : float tolerance to achieve when solving the linear system, in cg' and 'cg_mg' modes. copy : bool If copy is False, the `labels` array will be overwritten with the result of the segmentation. Use copy=False if you want to save on memory. multichannel : bool, default False If True, input data is parsed as multichannel data (see 'data' above for proper input format in this case) return_full_prob : bool, default False If True, the probability that a pixel belongs to each of the labels will be returned, instead of only the most likely label. spacing : iterable of floats Spacing between voxels in each spatial dimension. If `None`, then the spacing between pixels/voxels in each dimension is assumed 1. Returns ------- output : ndarray * If `return_full_prob` is False, array of ints of same shape as `data`, in which each pixel has been labeled according to the marker that reached the pixel first by anisotropic diffusion. * If `return_full_prob` is True, array of floats of shape `(nlabels, data.shape)`. `output[label_nb, i, j]` is the probability that label `label_nb` reaches the pixel `(i, j)` first. See also -------- skimage.morphology.watershed: watershed segmentation A segmentation algorithm based on mathematical morphology and "flooding" of regions from markers. Notes ----- Multichannel inputs are scaled with all channel data combined. Ensure all channels are separately normalized prior to running this algorithm. The `spacing` argument is specifically for anisotropic datasets, where data points are spaced differently in one or more spatial dimensions. Anisotropic data is commonly encountered in medical imaging. The algorithm was first proposed in *Random walks for image segmentation*, Leo Grady, IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83. The algorithm solves the diffusion equation at infinite times for sources placed on markers of each phase in turn. A pixel is labeled with the phase that has the greatest probability to diffuse first to the pixel. The diffusion equation is solved by minimizing x.T L x for each phase, where L is the Laplacian of the weighted graph of the image, and x is the probability that a marker of the given phase arrives first at a pixel by diffusion (x=1 on markers of the phase, x=0 on the other markers, and the other coefficients are looked for). Each pixel is attributed the label for which it has a maximal value of x. The Laplacian L of the image is defined as: - L_ii = d_i, the number of neighbors of pixel i (the degree of i) - L_ij = -w_ij if i and j are adjacent pixels The weight w_ij is a decreasing function of the norm of the local gradient. This ensures that diffusion is easier between pixels of similar values. When the Laplacian is decomposed into blocks of marked and unmarked pixels:: L = M B.T B A with first indices corresponding to marked pixels, and then to unmarked pixels, minimizing x.T L x for one phase amount to solving:: A x = - B x_m where x_m = 1 on markers of the given phase, and 0 on other markers. This linear system is solved in the algorithm using a direct method for small images, and an iterative method for larger images. Examples -------- >>> np.random.seed(0) >>> a = np.zeros((10, 10)) + 0.2 * np.random.rand(10, 10) >>> a[5:8, 5:8] += 1 >>> b = np.zeros_like(a) >>> b[3, 3] = 1 # Marker for first phase >>> b[6, 6] = 2 # Marker for second phase >>> random_walker(a, b) array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 2, 2, 2, 1, 1], [1, 1, 1, 1, 1, 2, 2, 2, 1, 1], [1, 1, 1, 1, 1, 2, 2, 2, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=int32) """ # Parse input data if mode is None: if amg_loaded: mode = 'cg_mg' elif UmfpackContext is not None: mode = 'cg' else: mode = 'bf' if UmfpackContext is None and mode == 'cg': warnings.warn('"cg" mode will be used, but it may be slower than ' '"bf" because SciPy was built without UMFPACK. Consider' ' rebuilding SciPy with UMFPACK; this will greatly ' 'accelerate the conjugate gradient ("cg") solver. ' 'You may also install pyamg and run the random_walker ' 'function in "cg_mg" mode (see docstring).') if (labels != 0).all(): warnings.warn('Random walker only segments unlabeled areas, where ' 'labels == 0. No zero valued areas in labels were ' 'found. Returning provided labels.') if return_full_prob: # Find and iterate over valid labels unique_labels = np.unique(labels) unique_labels = unique_labels[unique_labels > 0] out_labels = np.empty(labels.shape + (len(unique_labels),), dtype=np.bool) for n, i in enumerate(unique_labels): out_labels[..., n] = (labels == i) else: out_labels = labels return out_labels # This algorithm expects 4-D arrays of floats, where the first three # dimensions are spatial and the final denotes channels. 2-D images have # a singleton placeholder dimension added for the third spatial dimension, # and single channel images likewise have a singleton added for channels. # The following block ensures valid input and coerces it to the correct # form. if not multichannel: if data.ndim < 2 or data.ndim > 3: raise ValueError('For non-multichannel input, data must be of ' 'dimension 2 or 3.') dims = data.shape # To reshape final labeled result data = np.atleast_3d(img_as_float(data))[..., np.newaxis] else: if data.ndim < 3: raise ValueError('For multichannel input, data must have 3 or 4 ' 'dimensions.') dims = data[..., 0].shape # To reshape final labeled result data = img_as_float(data) if data.ndim == 3: # 2D multispectral, needs singleton in 3rd axis data = data[:, :, np.newaxis, :] # Spacing kwarg checks if spacing is None: spacing = np.asarray((1.,) * 3) elif len(spacing) == len(dims): if len(spacing) == 2: # Need a dummy spacing for singleton 3rd dim spacing = np.r_[spacing, 1.] else: # Convert to array spacing = np.asarray(spacing) else: raise ValueError('Input argument `spacing` incorrect, should be an ' 'iterable with one number per spatial dimension.') if copy: labels = np.copy(labels) label_values = np.unique(labels) # Reorder label values to have consecutive integers (no gaps) if np.any(np.diff(label_values) != 1): mask = labels >= 0 labels[mask] = rank_order(labels[mask])[0].astype(labels.dtype) labels = labels.astype(np.int32) # If the array has pruned zones, be sure that no isolated pixels # exist between pruned zones (they could not be determined) if np.any(labels < 0): filled = ndi.binary_propagation(labels > 0, mask=labels >= 0) labels[np.logical_and(np.logical_not(filled), labels == 0)] = -1 del filled labels = np.atleast_3d(labels) if np.any(labels < 0): lap_sparse = _build_laplacian(data, spacing, mask=labels >= 0, beta=beta, multichannel=multichannel) else: lap_sparse = _build_laplacian(data, spacing, beta=beta, multichannel=multichannel) lap_sparse, B = _buildAB(lap_sparse, labels) # We solve the linear system # lap_sparse X = B # where X[i, j] is the probability that a marker of label i arrives # first at pixel j by anisotropic diffusion. if mode == 'cg': X = _solve_cg(lap_sparse, B, tol=tol, return_full_prob=return_full_prob) if mode == 'cg_mg': if not amg_loaded: warnings.warn( """pyamg (http://pyamg.org/)) is needed to use this mode, but is not installed. The 'cg' mode will be used instead.""") X = _solve_cg(lap_sparse, B, tol=tol, return_full_prob=return_full_prob) else: X = _solve_cg_mg(lap_sparse, B, tol=tol, return_full_prob=return_full_prob) if mode == 'bf': X = _solve_bf(lap_sparse, B, return_full_prob=return_full_prob) # Clean up results if return_full_prob: labels = labels.astype(np.float) X = np.array([_clean_labels_ar(Xline, labels, copy=True).reshape(dims) for Xline in X]) for i in range(1, int(labels.max()) + 1): mask_i = np.squeeze(labels == i) X[:, mask_i] = 0 X[i - 1, mask_i] = 1 else: X = _clean_labels_ar(X + 1, labels).reshape(dims) return X def _solve_bf(lap_sparse, B, return_full_prob=False): """ solves lap_sparse X_i = B_i for each phase i. An LU decomposition of lap_sparse is computed first. For each pixel, the label i corresponding to the maximal X_i is returned. """ lap_sparse = lap_sparse.tocsc() solver = sparse.linalg.factorized(lap_sparse.astype(np.double)) X = np.array([solver(np.array((-B[i]).todense()).ravel()) for i in range(len(B))]) if not return_full_prob: X = np.argmax(X, axis=0) return X def _solve_cg(lap_sparse, B, tol, return_full_prob=False): """ solves lap_sparse X_i = B_i for each phase i, using the conjugate gradient method. For each pixel, the label i corresponding to the maximal X_i is returned. """ lap_sparse = lap_sparse.tocsc() X = [] for i in range(len(B)): x0 = cg(lap_sparse, -B[i].todense(), tol=tol)[0] X.append(x0) if not return_full_prob: X = np.array(X) X = np.argmax(X, axis=0) return X def _solve_cg_mg(lap_sparse, B, tol, return_full_prob=False): """ solves lap_sparse X_i = B_i for each phase i, using the conjugate gradient method with a multigrid preconditioner (ruge-stuben from pyamg). For each pixel, the label i corresponding to the maximal X_i is returned. """ X = [] ml = ruge_stuben_solver(lap_sparse) M = ml.aspreconditioner(cycle='V') for i in range(len(B)): x0 = cg(lap_sparse, -B[i].todense(), tol=tol, M=M, maxiter=30)[0] X.append(x0) if not return_full_prob: X = np.array(X) X = np.argmax(X, axis=0) return X
bsd-3-clause
IraKorshunova/kaggle-seizure-prediction
linear_models/lda.py
1
3910
import numpy as np import json import os from pandas import DataFrame from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt from sklearn.lda import LDA import preprocessors.fft as fft from utils.loader import load_test_data, load_train_data from utils.config_name_creator import * from merger import merge_csv_files from commons import reshape_data from commons import load_test_labels def train(subject, data_path, plot=False): d = load_train_data(data_path, subject) x, y = d['x'], d['y'] print 'n_preictal', np.sum(y) print 'n_inetrictal', np.sum(y - 1) n_channels = x.shape[1] n_fbins = x.shape[2] x, y = reshape_data(x, y) data_scaler = StandardScaler() x = data_scaler.fit_transform(x) lda = LDA() lda.fit(x, y) coef = lda.scalings_ * lda.coef_[:1].T channels = [] fbins = [] for c in range(n_channels): fbins.extend(range(n_fbins)) # 0- delta, 1- theta ... channels.extend([c] * n_fbins) if plot: fig = plt.figure() for i in range(n_channels): if n_channels == 24: fig.add_subplot(4, 6, i) else: fig.add_subplot(4, 4, i) ax = plt.gca() ax.set_xlim([0, n_fbins]) ax.set_xticks(np.arange(0.5, n_fbins + 0.5, 1)) ax.set_xticklabels(np.arange(0, n_fbins)) max_y = max(abs(coef)) + 0.01 ax.set_ylim([0, max_y]) ax.set_yticks(np.around(np.arange(0, max_y, max_y / 4.0), decimals=1)) for label in (ax.get_xticklabels() + ax.get_yticklabels()): label.set_fontsize(15) plt.bar(range(0, n_fbins), abs(coef[i * n_fbins:i * n_fbins + n_fbins])) fig.suptitle(subject, fontsize=20) plt.show() coefs = np.reshape(coef, (n_channels, n_fbins)) return lda, data_scaler, coefs def predict(subject, model, data_scaler, data_path, submission_path, test_labels, opt_threshold_train): d = load_test_data(data_path, subject) x_test, id = d['x'], d['id'] n_test_examples = x_test.shape[0] n_timesteps = x_test.shape[3] x_test = reshape_data(x_test) x_test = data_scaler.transform(x_test) pred_1m = model.predict_proba(x_test)[:, 1] pred_10m = np.reshape(pred_1m, (n_test_examples, n_timesteps)) pred_10m = np.mean(pred_10m, axis=1) ans = zip(id, pred_10m) df = DataFrame(data=ans, columns=['clip', 'preictal']) df.to_csv(submission_path + '/' + subject + '.csv', index=False, header=True) def run_trainer(): with open('SETTINGS.json') as f: settings_dict = json.load(f) data_path = settings_dict['path']['processed_data_path'] + '/' + create_fft_data_name(settings_dict) submission_path = settings_dict['path']['submission_path'] + '/LDA_' + create_fft_data_name(settings_dict) print data_path if not os.path.exists(data_path): fft.run_fft_preprocessor() if not os.path.exists(submission_path): os.makedirs(submission_path) test_labels_path = '/mnt/sda4/CODING/python/kaggle_data/test_labels.csv' test_labels = load_test_labels(test_labels_path) subjects = ['Dog_1', 'Dog_2', 'Dog_3', 'Dog_4', 'Dog_5', 'Patient_1', 'Patient_2'] coef_list = [] for subject in subjects: print '***********************', subject, '***************************' model, data_scaler, coefs = train(subject, data_path) predict(subject, model, data_scaler, data_path, submission_path, test_labels[subject]['preictal']) coef_list.append(coefs) merge_csv_files(submission_path, subjects, 'submission') merge_csv_files(submission_path, subjects, 'submission_softmax') merge_csv_files(submission_path, subjects, 'submission_minmax') merge_csv_files(submission_path, subjects, 'submission_median') if __name__ == '__main__': run_trainer()
mit
voxlol/scikit-learn
sklearn/feature_selection/tests/test_from_model.py
243
1593
import numpy as np import scipy.sparse as sp from nose.tools import assert_raises, assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression from sklearn.linear_model import SGDClassifier from sklearn.svm import LinearSVC iris = load_iris() def test_transform_linear_model(): for clf in (LogisticRegression(C=0.1), LinearSVC(C=0.01, dual=False), SGDClassifier(alpha=0.001, n_iter=50, shuffle=True, random_state=0)): for thresh in (None, ".09*mean", "1e-5 * median"): for func in (np.array, sp.csr_matrix): X = func(iris.data) clf.set_params(penalty="l1") clf.fit(X, iris.target) X_new = clf.transform(X, thresh) if isinstance(clf, SGDClassifier): assert_true(X_new.shape[1] <= X.shape[1]) else: assert_less(X_new.shape[1], X.shape[1]) clf.set_params(penalty="l2") clf.fit(X_new, iris.target) pred = clf.predict(X_new) assert_greater(np.mean(pred == iris.target), 0.7) def test_invalid_input(): clf = SGDClassifier(alpha=0.1, n_iter=10, shuffle=True, random_state=None) clf.fit(iris.data, iris.target) assert_raises(ValueError, clf.transform, iris.data, "gobbledigook") assert_raises(ValueError, clf.transform, iris.data, ".5 * gobbledigook")
bsd-3-clause
cybernet14/scikit-learn
examples/ensemble/plot_gradient_boosting_oob.py
229
4762
""" ====================================== Gradient Boosting Out-of-Bag estimates ====================================== Out-of-bag (OOB) estimates can be a useful heuristic to estimate the "optimal" number of boosting iterations. OOB estimates are almost identical to cross-validation estimates but they can be computed on-the-fly without the need for repeated model fitting. OOB estimates are only available for Stochastic Gradient Boosting (i.e. ``subsample < 1.0``), the estimates are derived from the improvement in loss based on the examples not included in the bootstrap sample (the so-called out-of-bag examples). The OOB estimator is a pessimistic estimator of the true test loss, but remains a fairly good approximation for a small number of trees. The figure shows the cumulative sum of the negative OOB improvements as a function of the boosting iteration. As you can see, it tracks the test loss for the first hundred iterations but then diverges in a pessimistic way. The figure also shows the performance of 3-fold cross validation which usually gives a better estimate of the test loss but is computationally more demanding. """ print(__doc__) # Author: Peter Prettenhofer <peter.prettenhofer@gmail.com> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn.cross_validation import KFold from sklearn.cross_validation import train_test_split # Generate data (adapted from G. Ridgeway's gbm example) n_samples = 1000 random_state = np.random.RandomState(13) x1 = random_state.uniform(size=n_samples) x2 = random_state.uniform(size=n_samples) x3 = random_state.randint(0, 4, size=n_samples) p = 1 / (1.0 + np.exp(-(np.sin(3 * x1) - 4 * x2 + x3))) y = random_state.binomial(1, p, size=n_samples) X = np.c_[x1, x2, x3] X = X.astype(np.float32) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=9) # Fit classifier with out-of-bag estimates params = {'n_estimators': 1200, 'max_depth': 3, 'subsample': 0.5, 'learning_rate': 0.01, 'min_samples_leaf': 1, 'random_state': 3} clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) acc = clf.score(X_test, y_test) print("Accuracy: {:.4f}".format(acc)) n_estimators = params['n_estimators'] x = np.arange(n_estimators) + 1 def heldout_score(clf, X_test, y_test): """compute deviance scores on ``X_test`` and ``y_test``. """ score = np.zeros((n_estimators,), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): score[i] = clf.loss_(y_test, y_pred) return score def cv_estimate(n_folds=3): cv = KFold(n=X_train.shape[0], n_folds=n_folds) cv_clf = ensemble.GradientBoostingClassifier(**params) val_scores = np.zeros((n_estimators,), dtype=np.float64) for train, test in cv: cv_clf.fit(X_train[train], y_train[train]) val_scores += heldout_score(cv_clf, X_train[test], y_train[test]) val_scores /= n_folds return val_scores # Estimate best n_estimator using cross-validation cv_score = cv_estimate(3) # Compute best n_estimator for test data test_score = heldout_score(clf, X_test, y_test) # negative cumulative sum of oob improvements cumsum = -np.cumsum(clf.oob_improvement_) # min loss according to OOB oob_best_iter = x[np.argmin(cumsum)] # min loss according to test (normalize such that first loss is 0) test_score -= test_score[0] test_best_iter = x[np.argmin(test_score)] # min loss according to cv (normalize such that first loss is 0) cv_score -= cv_score[0] cv_best_iter = x[np.argmin(cv_score)] # color brew for the three curves oob_color = list(map(lambda x: x / 256.0, (190, 174, 212))) test_color = list(map(lambda x: x / 256.0, (127, 201, 127))) cv_color = list(map(lambda x: x / 256.0, (253, 192, 134))) # plot curves and vertical lines for best iterations plt.plot(x, cumsum, label='OOB loss', color=oob_color) plt.plot(x, test_score, label='Test loss', color=test_color) plt.plot(x, cv_score, label='CV loss', color=cv_color) plt.axvline(x=oob_best_iter, color=oob_color) plt.axvline(x=test_best_iter, color=test_color) plt.axvline(x=cv_best_iter, color=cv_color) # add three vertical lines to xticks xticks = plt.xticks() xticks_pos = np.array(xticks[0].tolist() + [oob_best_iter, cv_best_iter, test_best_iter]) xticks_label = np.array(list(map(lambda t: int(t), xticks[0])) + ['OOB', 'CV', 'Test']) ind = np.argsort(xticks_pos) xticks_pos = xticks_pos[ind] xticks_label = xticks_label[ind] plt.xticks(xticks_pos, xticks_label) plt.legend(loc='upper right') plt.ylabel('normalized loss') plt.xlabel('number of iterations') plt.show()
bsd-3-clause
jniediek/mne-python
tutorials/plot_artifacts_correction_ssp.py
4
3026
""" .. _tut_artifacts_correct_ssp: Artifact Correction with SSP ============================ """ import numpy as np import mne from mne.datasets import sample from mne.preprocessing import compute_proj_ecg, compute_proj_eog # getting some data ready data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' raw = mne.io.read_raw_fif(raw_fname, preload=True, add_eeg_ref=False) raw.set_eeg_reference() raw.pick_types(meg=True, ecg=True, eog=True, stim=True) ############################################################################## # Compute SSP projections # ----------------------- projs, events = compute_proj_ecg(raw, n_grad=1, n_mag=1, average=True) print(projs) ecg_projs = projs[-2:] mne.viz.plot_projs_topomap(ecg_projs) # Now for EOG projs, events = compute_proj_eog(raw, n_grad=1, n_mag=1, average=True) print(projs) eog_projs = projs[-2:] mne.viz.plot_projs_topomap(eog_projs) ############################################################################## # Apply SSP projections # --------------------- # # MNE is handling projections at the level of the info, # so to register them populate the list that you find in the 'proj' field raw.info['projs'] += eog_projs + ecg_projs ############################################################################# # Yes this was it. Now MNE will apply the projs on demand at any later stage, # so watch out for proj parmeters in functions or to it explicitly # with the ``.apply_proj`` method ############################################################################# # Demonstrate SSP cleaning on some evoked data # -------------------------------------------- events = mne.find_events(raw, stim_channel='STI 014') reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6) # this can be highly data dependent event_id = {'auditory/left': 1} epochs_no_proj = mne.Epochs(raw, events, event_id, tmin=-0.2, tmax=0.5, proj=False, baseline=(None, 0), reject=reject) epochs_no_proj.average().plot(spatial_colors=True) epochs_proj = mne.Epochs(raw, events, event_id, tmin=-0.2, tmax=0.5, proj=True, baseline=(None, 0), reject=reject) epochs_proj.average().plot(spatial_colors=True) ############################################################################## # Looks cool right? It is however often not clear how many components you # should take and unfortunately this can have bad consequences as can be seen # interactively using the delayed SSP mode: evoked = mne.Epochs(raw, events, event_id, tmin=-0.2, tmax=0.5, proj='delayed', baseline=(None, 0), reject=reject).average() # set time instants in seconds (from 50 to 150ms in a step of 10ms) times = np.arange(0.05, 0.15, 0.01) evoked.plot_topomap(times, proj='interactive') ############################################################################## # now you should see checkboxes. Remove a few SSP and see how the auditory # pattern suddenly drops off
bsd-3-clause
mikebenfield/scikit-learn
examples/cluster/plot_kmeans_assumptions.py
267
2040
""" ==================================== Demonstration of k-means assumptions ==================================== This example is meant to illustrate situations where k-means will produce unintuitive and possibly unexpected clusters. In the first three plots, the input data does not conform to some implicit assumption that k-means makes and undesirable clusters are produced as a result. In the last plot, k-means returns intuitive clusters despite unevenly sized blobs. """ print(__doc__) # Author: Phil Roth <mr.phil.roth@gmail.com> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs plt.figure(figsize=(12, 12)) n_samples = 1500 random_state = 170 X, y = make_blobs(n_samples=n_samples, random_state=random_state) # Incorrect number of clusters y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X) plt.subplot(221) plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("Incorrect Number of Blobs") # Anisotropicly distributed data transformation = [[ 0.60834549, -0.63667341], [-0.40887718, 0.85253229]] X_aniso = np.dot(X, transformation) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso) plt.subplot(222) plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred) plt.title("Anisotropicly Distributed Blobs") # Different variance X_varied, y_varied = make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied) plt.subplot(223) plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred) plt.title("Unequal Variance") # Unevenly sized blobs X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10])) y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_filtered) plt.subplot(224) plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred) plt.title("Unevenly Sized Blobs") plt.show()
bsd-3-clause
toastedcornflakes/scikit-learn
examples/calibration/plot_compare_calibration.py
81
5012
""" ======================================== Comparison of Calibration of Classifiers ======================================== Well calibrated classifiers are probabilistic classifiers for which the output of the predict_proba method can be directly interpreted as a confidence level. For instance a well calibrated (binary) classifier should classify the samples such that among the samples to which it gave a predict_proba value close to 0.8, approx. 80% actually belong to the positive class. LogisticRegression returns well calibrated predictions as it directly optimizes log-loss. In contrast, the other methods return biased probabilities, with different biases per method: * GaussianNaiveBayes tends to push probabilities to 0 or 1 (note the counts in the histograms). This is mainly because it makes the assumption that features are conditionally independent given the class, which is not the case in this dataset which contains 2 redundant features. * RandomForestClassifier shows the opposite behavior: the histograms show peaks at approx. 0.2 and 0.9 probability, while probabilities close to 0 or 1 are very rare. An explanation for this is given by Niculescu-Mizil and Caruana [1]: "Methods such as bagging and random forests that average predictions from a base set of models can have difficulty making predictions near 0 and 1 because variance in the underlying base models will bias predictions that should be near zero or one away from these values. Because predictions are restricted to the interval [0,1], errors caused by variance tend to be one- sided near zero and one. For example, if a model should predict p = 0 for a case, the only way bagging can achieve this is if all bagged trees predict zero. If we add noise to the trees that bagging is averaging over, this noise will cause some trees to predict values larger than 0 for this case, thus moving the average prediction of the bagged ensemble away from 0. We observe this effect most strongly with random forests because the base-level trees trained with random forests have relatively high variance due to feature subseting." As a result, the calibration curve shows a characteristic sigmoid shape, indicating that the classifier could trust its "intuition" more and return probabilities closer to 0 or 1 typically. * Support Vector Classification (SVC) shows an even more sigmoid curve as the RandomForestClassifier, which is typical for maximum-margin methods (compare Niculescu-Mizil and Caruana [1]), which focus on hard samples that are close to the decision boundary (the support vectors). .. topic:: References: .. [1] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ print(__doc__) # Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # License: BSD Style. import numpy as np np.random.seed(0) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.svm import LinearSVC from sklearn.calibration import calibration_curve X, y = datasets.make_classification(n_samples=100000, n_features=20, n_informative=2, n_redundant=2) train_samples = 100 # Samples used for training the models X_train = X[:train_samples] X_test = X[train_samples:] y_train = y[:train_samples] y_test = y[train_samples:] # Create classifiers lr = LogisticRegression() gnb = GaussianNB() svc = LinearSVC(C=1.0) rfc = RandomForestClassifier(n_estimators=100) ############################################################################### # Plot calibration plots plt.figure(figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for clf, name in [(lr, 'Logistic'), (gnb, 'Naive Bayes'), (svc, 'Support Vector Classification'), (rfc, 'Random Forest')]: clf.fit(X_train, y_train) if hasattr(clf, "predict_proba"): prob_pos = clf.predict_proba(X_test)[:, 1] else: # use decision function prob_pos = clf.decision_function(X_test) prob_pos = \ (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) fraction_of_positives, mean_predicted_value = \ calibration_curve(y_test, prob_pos, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s" % (name, )) ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title('Calibration plots (reliability curve)') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() plt.show()
bsd-3-clause
toastedcornflakes/scikit-learn
benchmarks/bench_plot_incremental_pca.py
369
6430
""" ======================== IncrementalPCA benchmark ======================== Benchmarks for IncrementalPCA """ import numpy as np import gc from time import time from collections import defaultdict import matplotlib.pyplot as plt from sklearn.datasets import fetch_lfw_people from sklearn.decomposition import IncrementalPCA, RandomizedPCA, PCA def plot_results(X, y, label): plt.plot(X, y, label=label, marker='o') def benchmark(estimator, data): gc.collect() print("Benching %s" % estimator) t0 = time() estimator.fit(data) training_time = time() - t0 data_t = estimator.transform(data) data_r = estimator.inverse_transform(data_t) reconstruction_error = np.mean(np.abs(data - data_r)) return {'time': training_time, 'error': reconstruction_error} def plot_feature_times(all_times, batch_size, all_components, data): plt.figure() plot_results(all_components, all_times['pca'], label="PCA") plot_results(all_components, all_times['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_times['rpca'], label="RandomizedPCA") plt.legend(loc="upper left") plt.suptitle("Algorithm runtime vs. n_components\n \ LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Time (seconds)") def plot_feature_errors(all_errors, batch_size, all_components, data): plt.figure() plot_results(all_components, all_errors['pca'], label="PCA") plot_results(all_components, all_errors['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_errors['rpca'], label="RandomizedPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. n_components\n" "LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Mean absolute error") def plot_batch_times(all_times, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_times['pca'], label="PCA") plot_results(all_batch_sizes, all_times['rpca'], label="RandomizedPCA") plot_results(all_batch_sizes, all_times['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm runtime vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Time (seconds)") def plot_batch_errors(all_errors, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_errors['pca'], label="PCA") plot_results(all_batch_sizes, all_errors['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Mean absolute error") def fixed_batch_size_comparison(data): all_features = [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=5)] batch_size = 1000 # Compare runtimes and error for fixed batch size all_times = defaultdict(list) all_errors = defaultdict(list) for n_components in all_features: pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('ipca', ipca), ('rpca', rpca)]} for k in sorted(results_dict.keys()): all_times[k].append(results_dict[k]['time']) all_errors[k].append(results_dict[k]['error']) plot_feature_times(all_times, batch_size, all_features, data) plot_feature_errors(all_errors, batch_size, all_features, data) def variable_batch_size_comparison(data): batch_sizes = [i.astype(int) for i in np.linspace(data.shape[0] // 10, data.shape[0], num=10)] for n_components in [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=4)]: all_times = defaultdict(list) all_errors = defaultdict(list) pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('rpca', rpca)]} # Create flat baselines to compare the variation over batch size all_times['pca'].extend([results_dict['pca']['time']] * len(batch_sizes)) all_errors['pca'].extend([results_dict['pca']['error']] * len(batch_sizes)) all_times['rpca'].extend([results_dict['rpca']['time']] * len(batch_sizes)) all_errors['rpca'].extend([results_dict['rpca']['error']] * len(batch_sizes)) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('ipca', ipca)]} all_times['ipca'].append(results_dict['ipca']['time']) all_errors['ipca'].append(results_dict['ipca']['error']) plot_batch_times(all_times, n_components, batch_sizes, data) # RandomizedPCA error is always worse (approx 100x) than other PCA # tests plot_batch_errors(all_errors, n_components, batch_sizes, data) faces = fetch_lfw_people(resize=.2, min_faces_per_person=5) # limit dataset to 5000 people (don't care who they are!) X = faces.data[:5000] n_samples, h, w = faces.images.shape n_features = X.shape[1] X -= X.mean(axis=0) X /= X.std(axis=0) fixed_batch_size_comparison(X) variable_batch_size_comparison(X) plt.show()
bsd-3-clause
indraforyou/keras_tfrecord
mnist_tfrecord.py
2
3634
import tensorflow as tf from keras.datasets import mnist from keras import backend as K from keras.models import Model from keras.layers import Dense, Dropout, Flatten, Input, Convolution2D from keras.callbacks import EarlyStopping from keras.objectives import categorical_crossentropy from keras.utils import np_utils import keras_tfrecord as ktfr import time import numpy as np sess = tf.Session() K.set_session(sess) (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train[..., np.newaxis] X_test = X_test[..., np.newaxis] def arch(inp): con1 = Convolution2D(32, 3, 3, border_mode='valid', activation = 'relu', subsample=(2,2)) con2 = Convolution2D(32, 3, 3, activation = 'relu', subsample=(2,2)) fla1 = Flatten() den1 = Dense(128, activation = 'relu') den2 = Dense(nb_classes, activation = 'softmax') out = den2(den1(fla1(con2(con1(inp))))) # fla1 = Flatten() # den1 = Dense(128, activation = 'relu') # den2 = Dense(128, activation = 'relu') # den3 = Dense(nb_classes, activation = 'softmax') # out = den3(den2(den1(fla1(inp)))) return out ktfr.data_to_tfrecord(images=X_train, labels=y_train, filename='train.mnist.tfrecord') # ktfr.data_to_tfrecord(images=X_test, labels=y_test, filename='test.mnist.tfrecord') batch_size=32 nb_classes=10 x_train_, y_train_ = ktfr.read_and_decode('train.mnist.tfrecord', one_hot=True, n_class=nb_classes, is_train=True) x_train_batch, y_train_batch = K.tf.train.shuffle_batch([x_train_, y_train_], batch_size=batch_size, capacity=2000, min_after_dequeue=1000, num_threads=32) # set the number of threads here x_train_inp = Input(tensor=x_train_batch) train_out = arch(x_train_inp) train_model = Model(input=x_train_inp, output=train_out) ktfr.compile_tfrecord(train_model, optimizer='rmsprop', loss='categorical_crossentropy', out_tensor_lst=[y_train_batch], metrics=['accuracy']) train_model.summary() ktfr.fit_tfrecord(train_model, X_train.shape[0], batch_size, nb_epoch=3) train_model.save_weights('saved_wt.h5') K.clear_session() x_test_inp = Input(batch_shape=(None,)+(X_test.shape[1:])) test_out = arch(x_test_inp) test_model = Model(input=x_test_inp, output=test_out) test_model.load_weights('saved_wt.h5') test_model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) test_model.summary() loss, acc = test_model.evaluate(X_test, np_utils.to_categorical(y_test), nb_classes) print '\nTest accuracy: {0}'.format(acc) exit() loss = tf.reduce_mean(categorical_crossentropy(y_train_batch, train_out)) train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss) # sess.run(tf.global_variables_initializer()) sess.run(tf.initialize_all_variables()) with sess.as_default(): coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) try: step = 0 while not coord.should_stop(): start_time = time.time() _, loss_value = sess.run([train_op, loss], feed_dict={K.learning_phase(): 0}) duration = time.time() - start_time if step % 100 == 0: print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration)) step += 1 except tf.errors.OutOfRangeError: print('Done training for %d epochs, %d steps.' % (FLAGS.num_epochs, step)) finally: coord.request_stop() coord.join(threads) sess.close()
mit
ottogroup/dstoolbox
dstoolbox/tests/test_cluster.py
1
3375
"""Tests for cluster.py""" from functools import partial from unittest.mock import patch import numpy as np import pytest from sklearn.metrics import adjusted_mutual_info_score class TestHierarchicalClustering: @pytest.fixture def clustering(self): from dstoolbox.cluster import hierarchical_clustering return partial( hierarchical_clustering, criterion='distance', method='complete', metric='cosine', ) @pytest.fixture def data(self): return np.array([ [0, 0, 1.0], [0, 0, 0.9], [0, -1.0, 0], [0, -0.9, 0], [0, -0.5, 0.6], [1.0, 0, 0], ]) @pytest.mark.parametrize('max_dist, expected', [ (-0.1, [0, 1, 2, 3, 4, 5]), (0.2, [0, 0, 1, 1, 2, 3]), (0.7, [0, 0, 1, 1, 0, 2]), (1.1, [0, 0, 0, 0, 0, 0]), ]) def test_functional(self, clustering, data, max_dist, expected): y_pred = clustering(data, max_dist=max_dist) assert adjusted_mutual_info_score(y_pred, expected) == 1 def test_array_empty(self, clustering): result = clustering(np.zeros((0, 10))) assert (result == np.array([])).all() def test_only_1_sample(self, clustering): result = clustering(np.zeros((1, 10))) assert (result == np.array([0])).all() @pytest.fixture def patched_clustering_cls_and_mocks(self): with patch('dstoolbox.cluster.linkage') as lk: with patch('dstoolbox.cluster.fcluster') as fc: from dstoolbox.cluster import HierarchicalClustering lk.return_value = 123 fc.side_effect = ['1st_result', '2nd_result'] yield HierarchicalClustering, lk, fc def test_linkage_tree_call_default( self, patched_clustering_cls_and_mocks): hc_cls, lk, fc = patched_clustering_cls_and_mocks X = np.zeros((2, 2)) hc_cls().fit(X) assert (lk.call_args_list[0][0][0] == X).all() assert lk.call_args_list[0][1] == {'method': 'single', 'metric': 'euclidean'} assert fc.call_args_list[0][0][0] == 123 assert fc.call_args_list[0][1] == { 't': 0.5, 'criterion': 'inconsistent'} def test_linkage_tree_call_non_default( self, patched_clustering_cls_and_mocks): hc_cls, lk, fc = patched_clustering_cls_and_mocks X = np.zeros((2, 2)) hc_cls( max_dist=0.111, criterion='crit', method='meth', metric='metr', ).fit(X) assert (lk.call_args_list[0][0][0] == X).all() assert lk.call_args_list[0][1] == {'method': 'meth', 'metric': 'metr'} assert fc.call_args_list[0][0][0] == 123 assert fc.call_args_list[0][1] == {'t': 0.111, 'criterion': 'crit'} def test_repeated_fit_predict(self, patched_clustering_cls_and_mocks): model = patched_clustering_cls_and_mocks[0]() X = np.random.random((100, 5)) result = model.fit_predict(X) assert result == '1st_result' assert model.labels_ == '1st_result' result = model.fit_predict(X) assert result == '2nd_result' assert model.labels_ == '2nd_result'
apache-2.0
ottogroup/dstoolbox
dstoolbox/visualization.py
1
2829
"""Helper functions for creating visualizations. Note: * The helper functions contain additional dependencies not covered by dstoolbox. * They are not covered by tests and thus should only be used for convenience but not for production purposes. """ import io from sklearn.utils import murmurhash3_32 from dstoolbox.utils import get_nodes_edges COLORS = [ '#75DF54', '#B3F1A0', '#91E875', '#5DD637', '#3FCD12', '#4A88B3', '#98C1DE', '#6CA2C8', '#3173A2', '#17649B', '#FFBB60', '#FFDAA9', '#FFC981', '#FCAC41', '#F29416', '#C54AAA', '#E698D4', '#D56CBE', '#B72F99', '#B0108D', ] def _get_shape(est): if hasattr(est, 'steps'): shape = 'invhouse' elif hasattr(est, 'transformer_list'): shape = 'oval' else: shape = 'record' return shape def _get_label(name, short_name): if short_name: label = name.split('__')[-1] else: label = name.split('__') label[-1] = label[-1].upper() label = '\n'.join(label) return label def _get_hex_color(est): hashed = int(murmurhash3_32(est)) % len(COLORS) return COLORS[hashed] def _make_node(name, est, short_name=True): """Create a pydotplus.Node based on an sklearn estimator.""" import pydotplus label = _get_label(name, short_name=short_name) label_type = repr(type(est)).strip("'<>").rsplit('.')[-1] label += f'\n({label_type})' shape = _get_shape(est) return pydotplus.Node( name, label=label, shape=shape, color=_get_hex_color(label_type), style='filled', ) def make_graph(name, model, short_name=True): """Create a pydotplus graph of an (sklearn) Pipeline. Parameters ---------- name : string Name of the model model : sklearn.pipeline.Pipeline The (sklearn) Pipeline or FeatureUnion. short_name : bool (default=True) Whether to label nodes only by the actual name of the step or by full name (i.e. the name returned by `get_params`). Returns ------- graph : pydotplus.graphviz.Dot The pydotplus Graph """ import pydotplus nodes, edges = get_nodes_edges(name, model) graph = pydotplus.Dot('Pipeline', graph_type='digraph') pydot_nodes = {} for k, v in nodes.items(): node = _make_node(k, v, short_name=short_name) graph.add_node(node) pydot_nodes[k] = node for edge0, edge1 in edges: graph.add_edge( pydotplus.Edge( pydot_nodes[edge0], pydot_nodes[edge1], )) return graph def save_graph_to_file(graph, filename): """Save a visualization of a pydotplus Graph to a file.""" ext = filename.rsplit('.', 1)[-1] with io.open(filename, 'wb') as f: f.write(graph.create(format=ext))
apache-2.0
maberyick/RPi-EPOC
EpocArmPi/Library/alpha_work.py
1
3111
from PyQt4.QtGui import QPalette, QColor from PyQt4.QtCore import Qt, QObject, pyqtSignal, pyqtSlot from sklearn import preprocessing import numpy as np from scipy.signal import butter, lfilter, welch from os import getcwd as getdir from sklearn.externals import joblib from collections import deque """Import from within the files""" from pyeeg import hjorth_mob import armbot class LinkingPath(QObject): patcher_Alpha = pyqtSignal(int,int) def __init__(self): QObject.__init__(self) def patch_Alpha(self,data1,data2): self.patcher_Alpha.emit(data1,data2) class alpha_work(): def __init__(self,obj): self.epoc_samp = 128.0 self.y = 6500 self.dbuff3=deque([1]*8, 8) self.dir_user = str(getdir()+'/Profile/') self.clf_alpha = joblib.load(self.dir_user+'/alphaSVM.pkl') self.scaler_alpha = joblib.load(self.dir_user+'/alphaScaler.pkl') self.obj = obj self.linking = LinkingPath() self.linking.patcher_Alpha.connect(self.alpha) self.obj = obj self.highlght = QPalette.Highlight self.greeny = QColor(Qt.green) self.bluey = QColor(Qt.blue) self.redy = QColor(Qt.red) self.armb = armbot.arm_bot() def dc2uV(self,val_): vaf_ = ( val_ - np.average(val_) )*0.51 return vaf_ def normalz(self,val_): vaf_ = preprocessing.scale(val_) return vaf_ def alpha_parametrs(self,val_): temp_val1 = []; temp_val2 = [] fq_, px_ = welch(val_, nperseg=256, nfft=1023, fs = 128, noverlap=100, scaling='density' ) fq1_up = 12.0; fq1_dwn = 8.0 fq2_up = 30.0; fq2_dwn = 4.0 for i in range(len(px_)): if fq_[i]<=fq1_up and fq_[i]>=fq1_dwn:temp_val1.append(px_[i]) elif fq_[i]<=fq2_up and fq_[i]>=fq2_dwn:temp_val2.append(px_[i]) vaf_eng1 = sum(temp_val1) vaf_eng2 = sum(temp_val2) vaf_r = vaf_eng1 / vaf_eng2 vaf_hjorth_mob = (hjorth_mob(val_))*10.0 """Value = ['Alpha Ratio','Hjorth mobility']""" vaf_tt = np.array([vaf_r,vaf_hjorth_mob]) return vaf_tt def filtering(self,data): samprate = 128 cutlow = 2.0 nyq = samprate/2.0 low = cutlow / nyq b,a = butter(5,low,btype='highpass',analog=0) data_f = lfilter(b,a,data) return data_f @pyqtSlot() def alpha(self,val,status): palette = QPalette() self.dbuff3.append(val) acumm = int(self.dbuff3.count(0)) self.obj.pB_Alpha.setValue(acumm) if status: palette.setColor(self.highlght, self.greeny) self.obj.pB_Alpha.setPalette(palette) if acumm >= 8: palette.setColor(self.highlght, self.redy) self.obj.pB_Alpha.setPalette(palette) self.armb.Alp(True) else: palette.setColor(self.highlght, self.bluey) self.obj.pB_Alpha.setPalette(palette) def AlphaAction(self,Alpha_val): if Alpha_val == 0: self.linking.patch_Alpha(Alpha_val,True) else: self.linking.patch_Alpha(Alpha_val,False) def alpha_processing(self,ch_): ch_ = self.dc2uV(ch_) ch_ = self.filtering(ch_) ch_ = self.normalz(ch_) param_val = self.alpha_parametrs(ch_) return param_val def svm_alphaPro(self,val_): ch_scl = self.scaler_alpha.transform(self.alpha_processing(val_)) curr_val = self.clf_alpha.predict(ch_scl) self.AlphaAction(curr_val[0])
gpl-3.0
YihaoLu/statsmodels
statsmodels/datasets/strikes/data.py
25
1951
#! /usr/bin/env python """U.S. Strike Duration Data""" __docformat__ = 'restructuredtext' COPYRIGHT = """This is public domain.""" TITLE = __doc__ SOURCE = """ This is a subset of the data used in Kennan (1985). It was originally published by the Bureau of Labor Statistics. :: Kennan, J. 1985. "The duration of contract strikes in US manufacturing. `Journal of Econometrics` 28.1, 5-28. """ DESCRSHORT = """Contains data on the length of strikes in US manufacturing and unanticipated industrial production.""" DESCRLONG = """Contains data on the length of strikes in US manufacturing and unanticipated industrial production. The data is a subset of the data originally used by Kennan. The data here is data for the months of June only to avoid seasonal issues.""" #suggested notes NOTE = """:: Number of observations - 62 Number of variables - 2 Variable name definitions:: duration - duration of the strike in days iprod - unanticipated industrial production """ from numpy import recfromtxt, column_stack, array from statsmodels.datasets import utils as du from os.path import dirname, abspath def load(): """ Load the strikes data and return a Dataset class instance. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_recarray(data, endog_idx=0, dtype=float) def load_pandas(): """ Load the strikes data and return a Dataset class instance. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_recarray_pandas(data, endog_idx=0, dtype=float) def _get_data(): filepath = dirname(abspath(__file__)) data = recfromtxt(open(filepath + '/strikes.csv', 'rb'), delimiter=",", names=True, dtype=float) return data
bsd-3-clause
miguelcleon/ODM2-Admin
odm2admin/views.py
1
173237
import sys from pathlib import Path # if you haven't already done so file = Path(__file__).resolve() parent, root = file.parent, file.parents[1] sys.path.append(str(root)) # Additionally remove the current file's directory from sys.path try: sys.path.remove(str(parent)) except ValueError: # Already removed pass from io import StringIO from decimal import * import math import json import time import sys import os import subprocess import re # import pandas as pd # import numpy # from colour import Color # from celery import shared_task # import odm2admin.tasks as tasks from urllib.parse import urlparse from datetime import datetime from datetime import timedelta from time import mktime from django import template from django.contrib import admin from django.db import connection from django.db.models import Max from django.db.models import Min from django.db.models import Q from django.http import HttpResponseRedirect from django.http import StreamingHttpResponse from django.shortcuts import render from django.template import loader from django.contrib.auth.decorators import login_required # from django.contrib.auth.models import User from django.core.mail import EmailMessage # from django.core import mail from django.core.management.base import CommandError from django.core import serializers from django.core.management import settings from templatesAndSettings.settings import exportdb from django.template.response import TemplateResponse from django.core.exceptions import ObjectDoesNotExist # from hs_restclient_helper import get_oauth_hs from django.core import management # from oauth2_provider.views.generic import ProtectedResourceView from django.http import HttpResponse from django.forms.models import model_to_dict from django.utils.crypto import get_random_string # from django.contrib.gis.geos import GEOSGeometry # import hs_restclient as hs_r from hs_restclient import HydroShare, HydroShareAuthOAuth2 # from oauthlib.oauth2 import TokenExpiredError # from oauthlib.oauth2 import InvalidGrantError, InvalidClientError import requests # from templatesAndSettings.settings import CUSTOM_TEMPLATE_PATH # from templatesAndSettings.settings import DATA_DISCLAIMER as DATA_DISCLAIMER # from templatesAndSettings.settings import MAP_CONFIG as MAP_CONFIG # from templatesAndSettings.settings import RECAPTCHA_PRIVATE_KEY from .models import Actions from .models import Annotations from .models import Authorlists from .models import Citationextensionpropertyvalues from .models import Citations from .models import CvQualitycode from .models import CvAnnotationtype from .models import Dataloggerfiles from .models import Datasetcitations from .models import Datasets from .models import Datasetsresults from .models import Featureactions from .models import Methods from .models import People from .models import Processinglevels from .models import Profileresults from .models import Profileresultvalues from .models import ProcessDataloggerfile from .models import Relatedfeatures from .models import Results from .models import Samplingfeatureextensionpropertyvalues from .models import Samplingfeatureexternalidentifiers from .models import Samplingfeatures from .models import Sites from .models import Specimens from .models import Timeseriesresultvalues from .models import Timeseriesresultvaluesext from .models import Timeseriesresultvaluesextwannotations from .models import Timeseriesresultvalueannotations from .models import Units from .models import Variables from .models import Timeseriesresults from .models import Resultextensionpropertyvalues from .models import Extensionproperties # from .forms import LoginForm from django.views.decorators.cache import never_cache from django.contrib.auth import authenticate, login register = template.Library() __author__ = 'leonmi' # class FeatureactionsAutocomplete(autocomplete.Select2QuerySetView): # def get_queryset(self): # # Don't forget to filter out results depending on the visitor ! # if not self.request.is_authenticated(): # return Featureactions.objects.none() # # qs = Featureactions.objects.all() # # if self.q: # names = FeatureactionsNames.objects.filter(name__icontains=self.q) # qs = Featureactions.objects.filter(featureactionid=names.values("featureactionid")) # #qs = qs.filter(__istartswith=self.q) # # return self.q # class CreatePubView(FormView): # template_name = "publications2.html" # model = Citations # # # def add_pub(request,citationid='NotSet'): # if request.user.is_authenticated(): # #if 'citationidnew' in request.POST: # #if not request.POST['citationidnew'] == '': # #citationid = int(request.POST['citationidnew']) # #citationidnew = citationid # AuthorInlineFormSet = inlineformset_factory(Citations,Authorlists,extra=6) # # CitationpropertyInlineFormSet = inlineformset_factory(Citations, # Citationextensionpropertyvalues) # #citation_form=CitationsAdminForm(request.POST,instance=citation) # if request.method=="POST": # if 'delete_citation' in request.POST: # citation= Citations.objects.filter(citationid=citationid).get() # citation.delete() # return HttpResponseRedirect('../../publications.html') # if citationid == 'NotSet': # citation= Citations(title=request.POST['title'], # publisher=request.POST['publisher'], # publicationyear=int(request.POST['publicationyear']),citationlink=request.POST['citationlink']) # #if citation.is_valid(): # citation.save() # citationid=citation.citationid # citation_form=CitationsAdminForm(request.POST,instance=citation) # else: # citation= Citations.objects.filter(citationid=citationid).get() # citation_form=CitationsAdminForm(request.POST,instance=citation) # #citation= Citations.objects.filter(citationid=citationid).get() # Authorformset=AuthorInlineFormSet(request.POST,instance=citation) # # Citationpropertyformset = CitationpropertyInlineFormSet # (request.POST,instance=citation) # # if Authorformset.is_valid(): # try: # Authorformset.save() # except IntegrityError: # pass # if Citationpropertyformset.is_valid(): # Citationpropertyformset.save() # #for form in CitationPorpertyformset: # #if form.changed_data.__len__() > 0: # #form.save() # if citation_form.is_valid(): # citation_form.save() # return HttpResponseRedirect('../../pubview/citationid=' + str(citationid) +'/') # elif not citationid=='NotSet': # citation= Citations.objects.filter(citationid=citationid).get() # Authorformset = AuthorInlineFormSet(instance=citation) # # #Authorformset.empty_permitted=False # Citationpropertyformset = CitationpropertyInlineFormSet(instance=citation) # #CitationPorpertyformset.empty_permitted=True # citation_form=CitationsAdminForm(instance=citation) # else: # AuthorInlineFormSet = inlineformset_factory(Citations,Authorlists,extra=6) # CitationpropertyInlineFormSet = inlineformset_factory(Citations, # Citationextensionpropertyvalues,extra=8) # Authorformset=AuthorInlineFormSet(instance=Authorlists()) # # i=1 # # for form in Authorformset: # # form.fields['authororder'].initial = i # # i+=1 # Citationpropertyformset = CitationpropertyInlineFormSet # (instance=Citationextensionpropertyvalues()) # citation_form=CitationsAdminForm(instance=Citations()) # citationidnew='' # i=1 # for form in Authorformset: # if form.fields['authororder'].initial == None: # form.fields['authororder'].initial = i # i+=1 # #for form in Citationpropertyformset: # # #if 'propertyid' in form.initial: #not propertyid==None # #propertyid = form.initial['propertyid'] #.initial #type number # #extensionprop = Extensionproperties.objects.filter(propertyid=propertyid).get() # #name = extensionprop.propertydatatypecv # #typecv = CvPropertydatatype.objects.filter(name=name.name).get() # #if typecv.name == "Boolean": # #form.fields['propertyvalue'].widget = widgets.CheckboxInput # #form.fields['propertyvalue']= models.BooleanField() # #elif citationid=='NotSet': # # #if form.fields['authororder'].initial == None: # # return render(request, 'publications3.html', {'Authorformset':Authorformset, # 'Citationpropertyformset':Citationpropertyformset,'citation_form':citation_form,}) # else: # return HttpResponseRedirect('../../') # def add_pub(request,citation='NotSet'): # #citation_form # #author_form # #citation_property_form # author_forms= [] # citation_property_forms=[] # if request.method=="POST": # citation_form=CitationsAdminForm(request.POST,instance=Citations()) # author_forms=[AuthorlistsAdminForm(request.POST,prefix=str(x), # instance=Authorlists()) for x in range(0,3)] # citation_property_forms=[CitationextensionpropertyvaluesAdminForm(request.POST, # prefix=str(x),instance=Citationextensionpropertyvalues())for x in range(0,3)] # if citation_form.is_valid(): # new_citation= citation_form.save() # citationid= new_citation.citationid # for af in author_forms: # if af.is_valid(): # new_author = af.save(commit=False) # new_author.citationid = new_citation # new_author.save() # for cpf in citation_property_forms: # if cpf.is_valid(): # new_cepv = cpf.save(commit=False) # new_cepv.citationid = new_citation # new_cepv.save() # return HttpResponseRedirect('/pubview/citationid=' + str(citationid)) # elif not citation=='NotSet': # citation_form=CitationsAdminForm(instance=Citations.objects.filter(citationid=citation) # .get()) # authors = Authorlists.objects.filter(citationid=citation) # for auth in authors: # author_forms.append(AuthorlistsAdminForm(instance=auth)) # cepvs= Citationextensionpropertyvalues.objects.filter(citationid=citation) # for cepv in cepvs: # citation_property_forms.append(CitationextensionpropertyvaluesAdminForm(instance=cepv)) # else: # citation_form=CitationsAdminForm(instance=Citations()) # author_forms=[AuthorlistsAdminForm(prefix=str(x), # instance=Authorlists()) for x in range(0,3)] # citation_property_forms=[CitationextensionpropertyvaluesAdminForm(prefix=str(x), # instance=Citationextensionpropertyvalues()) for x in range(0,3)] # return TemplateResponse(request, 'publications2.html',{'citation_form':citation_form, # 'author_forms':author_forms,'citation_property_forms':citation_property_forms,}) @login_required() def oauth_view(request, *args, **kwargs): return HttpResponse('Secret contents!', status=200) def publications(request): # if request.user.is_authenticated(): citationList = Citations.objects.all() authList = Authorlists.objects.all() peopleList = People.objects.filter(personid__in=authList.values("personid")) selectedTag = 'CZO Authors' selectedAuthor = 'All' if 'filterTags' in request.POST: if not request.POST['filterTags'] == 'All': selectedTag = request.POST['filterTags'] if request.POST['filterTags'] == 'CZO Authors': citationList = Citations.objects.filter( citationid__in=authList.values("citationid")) else: citationList = Citations.objects.filter(publisher__icontains=selectedTag) else: selectedTag = 'All' else: citationList = Citations.objects.filter(citationid__in=authList.values("citationid")) if 'selectedAuthor' in request.POST: if not request.POST['selectedAuthor'] == 'All': selectedAuthor = int(request.POST['selectedAuthor']) authored = Authorlists.objects.filter(personid=selectedAuthor) citationList = citationList.filter(citationid__in=authored.values("citationid")) filterTags = ['CZO Authors', 'All', 'AGU', 'LCZO Meeting'] citationCategories = Citationextensionpropertyvalues.objects.filter(propertyid=5).distinct( "propertyvalue") # citation category Extensionproperties selectedCategory = None if 'citationCategories' in request.POST: if not request.POST['citationCategories'] == 'All': selectedCategory = request.POST['citationCategories'] citationPropValueFilter = Citationextensionpropertyvalues.objects.filter( propertyvalue__icontains=selectedCategory) citationList = citationList.filter( citationid__in=citationPropValueFilter.values("citationid")) else: selectedCategory = 'All' # context = {'prefixpath': CUSTOM_TEMPLATE_PATH} if 'export_data' in request.POST: response = exportcitations(request, citationList, True) return response if 'export_endnote' in request.POST: response = exportcitations(request, citationList, False) return response return TemplateResponse(request, 'publications.html', {'citationList': citationList, 'authList': authList, 'filterTags': filterTags, 'citationCategories': citationCategories, 'selectedCategory': selectedCategory, 'selectedTag': selectedTag, 'peopleList': peopleList, 'selectedAuthor': selectedAuthor, 'prefixpath': settings.CUSTOM_TEMPLATE_PATH}) # ======================= SHORTCUTS ========================================= def AddSensor(request): if request.user.is_authenticated: context = {'prefixpath': settings.CUSTOM_TEMPLATE_PATH, 'name': request.user, 'authenticated': True, 'site_title': admin.site.site_title, 'site_header': admin.site.site_header, 'short_title': settings.ADMIN_SHORTCUTS[0]['shortcuts'][1]['title']} return TemplateResponse(request, 'AddSensor.html', context) else: return HttpResponseRedirect('../') @login_required() def chartIndex(request): context = {'prefixpath': settings.CUSTOM_TEMPLATE_PATH, 'name': request.user, 'authenticated': True, 'site_title': admin.site.site_title, 'site_header': admin.site.site_header, 'featureaction': settings.SENSOR_DASHBOARD['featureactionids'][0], 'short_title': settings.ADMIN_SHORTCUTS[0]['shortcuts'][5]['title']} return TemplateResponse(request, 'chartIndex.html', context) # chartIndex def AddProfile(request): if request.user.is_authenticated: context = {'prefixpath': settings.CUSTOM_TEMPLATE_PATH, 'name': request.user, 'authenticated': True, 'site_title': admin.site.site_title, 'site_header': admin.site.site_header, 'short_title': settings.ADMIN_SHORTCUTS[0]['shortcuts'][2]['title']} return TemplateResponse(request, 'AddProfile.html', context) else: return HttpResponseRedirect('../') def RecordAction(request): if request.user.is_authenticated: context = {'prefixpath': settings.CUSTOM_TEMPLATE_PATH, 'name': request.user, 'authenticated': True, 'site_title': admin.site.site_title, 'site_header': admin.site.site_header, 'short_title': settings.ADMIN_SHORTCUTS[0]['shortcuts'][3]['title']} return TemplateResponse(request, 'RecordAction.html', context) else: return HttpResponseRedirect('../') def ManageCitations(request): if request.user.is_authenticated: context = {'prefixpath': settings.CUSTOM_TEMPLATE_PATH, 'name': request.user, 'authenticated': True, 'site_title': admin.site.site_title, 'site_header': admin.site.site_header, 'short_title': settings.ADMIN_SHORTCUTS[0]['shortcuts'][4]['title']} return TemplateResponse(request, 'ManageCitations.html', context) else: return HttpResponseRedirect('../') ################################################################### # # # def dataloggerfilesView(request, id): # #model = Dataloggerfiles # #template_name = 'admin/odm2testapp/dataloggerfiles/change_form.html' # #'DataloggerfilecolumnsDisplay.html' # DataloggerfilecolumnsList = Dataloggerfilecolumns.objects.filter(dataloggerfileid=id) # DataloggerfilecolumnsListvalues = str(DataloggerfilecolumnsList.values()) # #raise ValidationError(DataloggerfilecolumnsListvalues) # DataloggerfilecolumnsListvalues= DataloggerfilecolumnsList # #DataloggerfilecolumnsListvalues.split('\'') # #request.session["DataloggerfilecolumnsList"] =DataloggerfilecolumnsListvalues # #fieldsets = Dataloggerfiles.objects.filter(dataloggerfileid=id) # adm = DataloggerfilesAdmin(Dataloggerfiles,admin) #.change_form_template # admform = DataloggerfilesAdminForm(request.POST) # #data =request.POST # data = { # 'opts': Dataloggerfiles._meta, # 'adminform': admform.formset, # 'change': True, # 'is_popup': False, # 'to_field' : True, # 'save_as': False, # #'prepopulated_fields' : adm.get_prepopulated_fields(request), # 'has_delete_permission': True, # 'has_add_permission': True, # 'has_change_permission': True, # 'DataloggerfilecolumnsList' : DataloggerfilecolumnsListvalues,} # # def get_name_of_sampling_feature(selected_result): title_feature_action = Featureactions.objects.filter( featureactionid=selected_result.featureactionid.featureactionid).get() title_sampling_feature = Samplingfeatures.objects.filter( samplingfeatureid=title_feature_action.samplingfeatureid.samplingfeatureid).get() s = str(title_sampling_feature.samplingfeaturename) return s def get_name_of_variable(selected_result): title_variables = Variables.objects.filter(variableid=selected_result.variableid) # s = str(title_variables.values_list('variablecode', flat=True)) name_of_variable = title_variables.variablecode # s.split('\'')[1] return name_of_variable def get_name_of_units(selected_result): title_units = Units.objects.filter(unitsid=selected_result.values('unitsid')) # s = str(title_units.values_list('unitsname', flat=True)) name_of_units = title_units.unitsname # s.split('\'')[1] return name_of_units def relatedFeaturesFilter(request, done, selected_resultid, featureaction, resultType='Time series coverage', ): # selected_relatedfeatid = 18 if 'SelectedRelatedFeature' in request.POST and 'update_result_list' not in request.POST: if not request.POST['SelectedRelatedFeature'] == 'All': done = True selected_relatedfeatid = int(request.POST['SelectedRelatedFeature']) relatedFeatureList = Relatedfeatures.objects.filter( relatedfeatureid=int(selected_relatedfeatid)).distinct( 'relatedfeatureid') relatedFeatureListLong = Relatedfeatures.objects.filter(relatedfeatureid=int( selected_relatedfeatid)) # .select_related('samplingfeatureid','relationshiptypecv','relatedfeatureid') samplingfeatids = relatedFeatureListLong.values_list('samplingfeatureid', flat=True) if featureaction == 'All': resultList = Results.objects.filter( featureactionid__in=Featureactions.objects.filter( samplingfeatureid__in=samplingfeatids)) # .select_related('variable','feature_action') else: resultList = Results.objects.filter( featureactionid__in=Featureactions.objects.filter( samplingfeatureid__in=samplingfeatids)).filter( featureactionid=featureaction) if 'update_result_on_related_feature' in request.POST: # raise ValidationError(relatedFeatureList) selected_relatedfeatid = relatedFeatureList[0].relatedfeatureid.samplingfeatureid selected_resultid = resultList[0].resultid else: selected_relatedfeatid = request.POST['SelectedRelatedFeature'] if featureaction == 'All': resultList = Results.objects.filter( result_type=resultType) # remove slice just for testing [:25] else: resultList = Results.objects.filter(result_type=resultType).filter( featureactionid=featureaction) else: selected_relatedfeatid = 'All' if featureaction == 'All': resultList = Results.objects.filter( result_type=resultType) # remove slice just for testing [:25] else: resultList = Results.objects.filter(result_type=resultType).filter( featureactionid=featureaction) return selected_relatedfeatid, done, resultList, selected_resultid def web_map(request): if request.user.is_authenticated: authenticated = True else: authenticated = False map_config = settings.MAP_CONFIG data_disclaimer = settings.DATA_DISCLAIMER features = Samplingfeatures.objects.all() datasets = Datasets.objects.all() externalidentifiers = None ids = [ds.datasetid for ds in datasets] sf_type_list = [sf.sampling_feature_type for sf in features] sf_types = set(sf_type_list) terms = [sf_type.name for sf_type in sf_types] ds_selections = request.POST.getlist('datasetselection') if ds_selections != []: selected_ds = [] for ds in ds_selections: selected_ds.append(int(ds)) else: selected_ds = ids sftype_selections = request.POST.getlist('sftypeselection') if sftype_selections != []: selected_type = [] for sf in sftype_selections: selected_type.append(sf) else: selected_type = terms legend_ref = [ settings.LEGEND_MAP[sftype] for sftype in map_config['feature_types']] base_maps = [ { 'name': 'Esri_NatGeoWorldMap', 'url': 'http://server.arcgisonline.com/ArcGIS/rest/services/NatGeo_World_Map/' 'MapServer/tile/{z}/{y}/{x}', 'options': { 'attribution': 'Tiles &copy; Esri &mdash; National Geographic, Esri, DeLorme, ' 'NAVTEQ, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, ' 'iPC', 'maxZoom': 16 }, 'group': 'ESRI Basemaps' }, { 'name': 'Esri_WorldImagery', 'url': 'http://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/' 'MapServer/tile/{z}/{y}/{x}', 'options': { 'attribution': 'Tiles &copy; Esri &mdash; Source: Esri, i-cubed, USDA, USGS, ' 'AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, and the ' 'GIS User Community' }, 'group': 'ESRI Basemaps' }, { 'name': 'Esri_WorldTopoMap', 'url': 'http://server.arcgisonline.com/ArcGIS/rest/services/World_Topo_Map/' 'MapServer/tile/{z}/{y}/{x}', 'options': { 'attribution': 'Tiles &copy; Esri &mdash; Esri, DeLorme, NAVTEQ, TomTom, ' 'Intermap, iPC, USGS, FAO, NPS, NRCAN, GeoBase, Kadaster NL, ' 'Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), and ' 'the GIS User Community' }, 'group': 'ESRI Basemaps' }, { 'name': 'MapBox_RunBikeHike', 'url': 'https://api.tiles.mapbox.com/v4/{id}/{z}/{x}/{y}.png?' 'access_token={accessToken}', 'options': { 'maxZoom': 20, 'attribution': 'Map data &copy; ' '<a href="http://openstreetmap.org">OpenStreetMap</a> ' 'contributors, <a href="http://creativecommons.org/licenses/' 'by-sa/2.0/">CC-BY-SA</a>, Imagery &copy; ' '<a href="http://mapbox.com">Mapbox</a>', 'id': 'mapbox.run-bike-hike', 'accessToken': map_config['MapBox']['access_token'] }, 'group': 'OpenStreetMap Basemaps' } ] context = { 'prefixpath': settings.CUSTOM_TEMPLATE_PATH, 'legends': json.dumps(legend_ref), 'features': features, 'externalidentifiers': externalidentifiers, 'datasets': datasets, 'selecteddatasets': selected_ds, 'authenticated': authenticated, 'map_config': map_config, 'data_disclaimer': data_disclaimer, 'name': request.user, 'site_title': admin.site.site_title, 'site_header': admin.site.site_header, 'short_title': 'Map Locations', 'basemaps': base_maps, 'sf_types': sf_types, 'selectedterms': selected_type, 'selectedds': json.dumps(ds_selections), 'selectedtype': json.dumps(sftype_selections), 'urlpath': settings.BASE_URL } return render(request, 'mapdata.html', context) def get_features(request, sf_type="all", ds_ids="all"): if ds_ids == "all" or sf_type == "all": features = Samplingfeatures.objects.exclude(featuregeometry__isnull=True) elif sf_type == 'filtered': dataset_ids = list(ds_ids.split(',')) datasetresults = Datasetsresults.objects.filter(datasetid__in=dataset_ids) results = Results.objects.filter(resultid__in=datasetresults.values("resultid")) fa = Featureactions.objects.filter(featureactionid__in=results.values("featureactionid")) features1 = Samplingfeatures.objects.filter( samplingfeatureid__in=fa.values("samplingfeatureid")) relatedfeatures = Relatedfeatures.objects.filter( samplingfeatureid__in=features1.values("samplingfeatureid")) features2 = Samplingfeatures.objects.filter( samplingfeatureid__in=relatedfeatures.values("relatedfeatureid")) features = features1 | features2 elif ds_ids == 'filtered': samplingfeature_types = list(sf_type.split(',')) if 'Site' in samplingfeature_types: pass features = Samplingfeatures.objects.filter(sampling_feature_type__in=samplingfeature_types) else: features = [] feats = [model_to_dict(f) for f in features] feats_filtered = list() for feat in feats: sf = Samplingfeatures.objects.get(samplingfeatureid=feat['samplingfeatureid']) # Get url to sf feat.update({ 'samplingfeatureurl': 'odm2admin/samplingfeatures/{}/change/'.format(sf.samplingfeatureid), 'samplingfeaturetypeurl': sf.sampling_feature_type.sourcevocabularyuri }) # Get Site Attr if sf.sampling_feature_type.name == 'Site': try: site = Sites.objects.get(samplingfeatureid=sf.samplingfeatureid) feat.update({ 'sitetype': site.sitetypecv.name, 'sitetypeurl': site.sitetypecv.sourcevocabularyuri }) except Sites.DoesNotExist: site = None # Get Specimen Attr if sf.sampling_feature_type.name == 'Specimen': try: specimen = Specimens.objects.get(samplingfeatureid=sf.samplingfeatureid) feat.update({ 'specimentype': specimen.specimentypecv.name, 'specimentypeurl': specimen.specimentypecv.sourcevocabularyuri, 'specimenmedium': specimen.specimenmediumcv.name, 'specimenmediumurl': specimen.specimenmediumcv.sourcevocabularyuri, }) except Specimens.DoesNotExist: specimen = None # Get Relations relationship = get_relations(sf) if all(value == [] for value in relationship.values()): feat.update({ 'relationships': None }) else: feat.update({ 'relationships': relationship }) # Get IGSN's if Samplingfeatureexternalidentifiers.objects.filter( samplingfeatureid=sf.samplingfeatureid).first() is not None: igsn = sf.samplingfeatureexternalidentifiers_set.get() feat.update({ 'igsn': igsn.samplingfeatureexternalidentifier, 'igsnurl': igsn.samplingfeatureexternalidentifieruri }) # Get Soil top and bottom depth if Samplingfeatureextensionpropertyvalues.objects.filter( samplingfeatureid=sf.samplingfeatureid).first() is not None: sfep = sf.samplingfeatureextensionpropertyvalues_set.get_queryset() if len(sfep) != 0: for ep in sfep: feat.update({ '{}'.format(ep.propertyid.propertyname): ep.propertyvalue, '{}_units'.format(ep.propertyid.propertyname): ep.propertyid.propertyunitsid.unitsabbreviation, }) # Get lat, lon lat = sf.featuregeometrywkt().coords[1] lon = sf.featuregeometrywkt().coords[0] epsg = None if sf.featuregeometrywkt().crs is not None: epsg = sf.featuregeometrywkt().crs.srid if lat != 0 and lon != 0: feat['featuregeometry'] = { 'lat': lat, 'lng': lon, 'crs': epsg } feats_filtered.append(feat) return HttpResponse(json.dumps(feats_filtered)) def truncate(f, n): '''Truncates/pads a float f to n decimal places without rounding''' s = '{}'.format(f) if 'e' in s or 'E' in s: return '{0:.{1}f}'.format(f, n) i, p, d = s.partition('.') return '.'.join([i, (d+'0'*n)[:n]]) def sensor_dashboard(request, feature_action='NotSet', sampling_feature='NotSet'): authenticated = True if not request.user.is_authenticated: # return HttpResponseRedirect('../') authenticated = False ids = settings.SENSOR_DASHBOARD['featureactionids'] timeseriesdays = settings.SENSOR_DASHBOARD['time_series_days'] fas = None allfas = None if not feature_action == 'NotSet': selected_featureactionid = int(feature_action) # print(selected_featureactionid) fas = Featureactions.objects.filter(featureactionid=selected_featureactionid ).order_by('-samplingfeatureid') allfas = Featureactions.objects.filter(featureactionid__in=ids).order_by('-samplingfeatureid') elif not sampling_feature == 'NotSet': selected_featureactionid = 'NotSet' samplingfeatureid = int(sampling_feature) fas = Featureactions.objects.filter(samplingfeatureid=samplingfeatureid ).order_by('-samplingfeatureid') allfas = Featureactions.objects.filter(featureactionid__in=ids).order_by('-samplingfeatureid') else: selected_featureactionid = 'NotSet' # print(selected_featureactionid) fas = Featureactions.objects.filter(featureactionid__in=ids).order_by('-samplingfeatureid') allfas = fas #samplingfeatures = Samplingfeatures.filter(samplingfeatureid__in=fas) results = Results.objects.filter(featureactionid__in=fas) tsrs = Timeseriesresults.objects.filter(resultid__in=results) endDateProperty = Extensionproperties.objects.get(propertyname__icontains="end date") #calculated_result_properties={} #for tsr in tsrs: #print(tsr) repvs = Resultextensionpropertyvalues.objects.filter(resultid__in=results).order_by("resultid","propertyid") dcount = 0 dmaxcount = 0 lastResult = None for repv in repvs: # print(repv.resultid) if "start date" in str(repv.propertyid.propertyname): startdate = repv.propertyvalue repv.propertyname = "Time series began on: " elif "end date" in str(repv.propertyid.propertyname): enddate = repv.propertyvalue # (enddate) repv.propertyname = "most recent value on: " elif "dashboard count" in str(repv.propertyid.propertyname): dcount = repv.propertyvalue repv.propertyname = "number of values recorded over last " + str(timeseriesdays) + " days" elif "dashboard maximum count" in str(repv.propertyid.propertyname): dmaxcount = repv.propertyvalue # print(dcount) # print(dmaxcount) # repv.propertyname = str(dcount) + " of " + str(dmaxcount) repv.propertyname = "up time" if float(dmaxcount) > 0: repv.propertyvalue = str(dcount) + " of " + str(dmaxcount) + \ " or " + str(truncate((float(dcount)/float(dmaxcount))*100, 2)) + "%" # else: # print("dmaxcount less then 0") # print(repv) # print(repv.resultid) elif "dashboard below lower bound count" in str(repv.propertyid.propertyname): repv.propertyname = "values below lower bound " elif "dashboard above upper bound count" in str(repv.propertyid.propertyname): repv.propertyname = "values above upper bound " #dashboard last recorded value elif "dashboard sensor active" in str(repv.propertyid.propertyname): repv.propertyname = "sensor active " elif "dashboard last recorded value" in str(repv.propertyid.propertyname): repv.propertyname = "last recorded value " elif "dashboard begin date" in str(repv.propertyid.propertyname): repv.propertyname = "values above upper bound " repv.propertyvalue = None else: repv.propertyname = repv.propertyid.propertyname lastResult = repv.resultid return TemplateResponse(request, 'sensordashboard.html', {'prefixpath': settings.CUSTOM_TEMPLATE_PATH, 'featureactions':fas, 'allfeatureactions':allfas, 'results': results, 'feature_action': selected_featureactionid, 'authenticated': authenticated, 'resultextionproperties':repvs, 'short_title': 'Time Series'}, ) def get_relations(s): pf = Relatedfeatures.objects.filter(samplingfeatureid_id=s.samplingfeatureid) cf = Relatedfeatures.objects.filter(relatedfeatureid_id=s.samplingfeatureid) sibsf = [] parents = [] children = [] if pf.first() is not None: sib = Relatedfeatures.objects.filter(relationshiptypecv_id='Is child of', relatedfeatureid_id=pf.first().relatedfeatureid_id). \ exclude(samplingfeatureid_id=s.samplingfeatureid) if sib.first() is not None: sibsf = list(Samplingfeatureexternalidentifiers.objects.\ filter(samplingfeatureid__in=sib.\ values_list('samplingfeatureid_id', flat=True)). \ values('samplingfeatureexternalidentifieruri', 'samplingfeatureid__samplingfeaturecode', 'samplingfeatureid__samplingfeatureid', 'samplingfeatureexternalidentifier' )) parents = list(Samplingfeatureexternalidentifiers.objects.\ filter(samplingfeatureid__in=pf.\ values_list('relatedfeatureid_id', flat=True)).\ values('samplingfeatureexternalidentifieruri', 'samplingfeatureid__samplingfeaturecode', 'samplingfeatureid__samplingfeatureid', 'samplingfeatureexternalidentifier' )) if cf.first() is not None: children = list(Samplingfeatureexternalidentifiers.objects.\ filter(samplingfeatureid__in=cf.\ values_list('samplingfeatureid_id', flat=True)). \ values('samplingfeatureexternalidentifieruri', 'samplingfeatureid__samplingfeaturecode', 'samplingfeatureid__samplingfeatureid', 'samplingfeatureexternalidentifier' )) return { 'parents': parents, 'siblings': sibsf, 'children': children } def TimeSeriesGraphing(request, feature_action='All'): authenticated = True if not request.user.is_authenticated: return HttpResponseRedirect('../') template = loader.get_template('chart.html') selected_relatedfeatid = None selected_resultid = None if feature_action == 'All': selected_featureactionid = 1 result = Results.objects.filter(featureactionid=selected_featureactionid).first() selected_resultid = result.resultid selected_relatedfeatid = selected_resultid else: selected_featureactionid = int(feature_action) # relatedfeatureList # update_result_on_related_feature done = False selected_relatedfeatid, done, \ resultList, selected_resultid = relatedFeaturesFilter(request, done, selected_relatedfeatid, selected_resultid, feature_action) if 'SelectedFeatureAction' in request.POST and not done: # raise ValidationError(done) if not request.POST['SelectedFeatureAction'] == 'All': selected_featureactionid = int(request.POST['SelectedFeatureAction']) resultList = Results.objects.filter(featureactionid=selected_featureactionid) if 'update_result_list' in request.POST: pass else: selected_featureactionid = request.POST['SelectedFeatureAction'] resultList = Results.objects.filter(result_type="Time series coverage") elif not done: resultList = Results.objects.filter(featureactionid=selected_featureactionid) # find the measurement results series that where selected. numresults = resultList.count() selectedMResultSeries = [] for i in range(0, numresults): selectionStr = str('selection' + str(i)) if selectionStr in request.POST: # raise ValidationError(request.POST[selectionStr]) for result in resultList: if int(request.POST[selectionStr]) == result.resultid: selectedMResultSeries.append(int(request.POST[selectionStr])) # if 'selection0' in request.POST: # raise ValidationError(request.POST['selection0'] + ' '+ # request.POST['selection1']) # selected_resultid = request.POST['selection0'] # else: # selected_resultid = 15 # if no series were selected (like on first load) set the series to some value. if len(resultList) > 0 and len(selectedMResultSeries) == 0: selectedMResultSeries.append(int(resultList[0].resultid)) elif len(resultList) == 0 and len(selectedMResultSeries) == 0: selectedMResultSeries.append(15) EndDateProperty = Extensionproperties.objects.get(propertyname__icontains="end date") if 'startDate' in request.POST: entered_start_date = request.POST['startDate'] else: # entered_start_date = "2016-01-01" recordedenddate = Resultextensionpropertyvalues.objects.\ filter(resultid=selected_resultid).filter(propertyid=EndDateProperty.propertyid).get() end_date = recordedenddate.propertyvalue enddt = time.strptime(end_date, "%Y-%m-%d %H:%M:%S.%f") dt = datetime.fromtimestamp(mktime(enddt)) last_day_previous_month = dt - timedelta(days=30) entered_start_date = last_day_previous_month.strftime('%Y-%m-%d %H:%M') print(entered_start_date) if 'endDate' in request.POST: entered_end_date = request.POST['endDate'] else: recordedenddate = Resultextensionpropertyvalues.objects.\ filter(resultid=selected_resultid).filter(propertyid=EndDateProperty.propertyid).get() entered_end_date = recordedenddate.propertyvalue if entered_end_date == '': recordedenddate = Resultextensionpropertyvalues.objects.\ filter(resultid=selected_resultid).filter(propertyid=EndDateProperty.propertyid).get() entered_end_date = recordedenddate.propertyvalue if entered_start_date == '': recordedenddate = Resultextensionpropertyvalues.objects.\ filter(resultid=selected_resultid).filter(propertyid=EndDateProperty.propertyid).get() end_date = recordedenddate.propertyvalue enddt = time.strptime(end_date, "%Y-%m-%d %H:%M:%S.%f") dt = datetime.fromtimestamp(mktime(enddt)) last_day_previous_month = dt - timedelta(days=30) entered_start_date = last_day_previous_month.strftime('%Y-%m-%d %H:%M') # entered_start_date = "2016-01-01" selected_results = [] name_of_sampling_features = [] name_of_variables = [] name_of_units = [] myresultSeries = [] i = 0 data = {} for selectedMResult in selectedMResultSeries: i += 1 selected_result = Results.objects.filter(resultid=selectedMResult).get() selected_results.append(selected_result) # name_of_sampling_features.append(get_name_of_sampling_feature(selected_result)) tmpname = get_name_of_sampling_feature(selected_result) name_of_sampling_features.append(tmpname) tmpname = get_name_of_variable(selected_result) if name_of_variables.__len__() > 0: namefound = False for name in name_of_variables: if name == tmpname: namefound = True if not namefound: name_of_variables.append(tmpname) else: name_of_variables.append('') else: name_of_variables.append(tmpname) tmpname = get_name_of_units(selected_result) if name_of_units.__len__() > 0: namefound = False for name in name_of_units: if name == tmpname: namefound = True if not namefound: name_of_units.append(tmpname) else: name_of_units.append('') else: name_of_units.append(tmpname) myresultSeries.append(Timeseriesresultvalues.objects.all().filter( ~Q(datavalue__lte=-6999)).filter( valuedatetime__gt=entered_start_date).filter( valuedatetime__lt=entered_end_date).filter( resultid=selectedMResult).order_by('-valuedatetime')) data.update({'datavalue' + str(i): []}) myresultSeriesExport = Timeseriesresultvalues.objects.all() \ .filter(valuedatetime__gt=entered_start_date) \ .filter(valuedatetime__lt=entered_end_date) \ .filter(resultid__in=selectedMResultSeries).order_by('-valuedatetime') i = 0 for myresults in myresultSeries: i += 1 for result in myresults: start = datetime(1970, 1, 1) delta = result.valuedatetime - start mills = delta.total_seconds() * 1000 if math.isnan(result.datavalue): dataval = 'null' else: dataval = result.datavalue data['datavalue' + str(i)].append( [mills, dataval]) # data['datavalue' + str(i)].append([mills, result.datavalue]) # #dumptoMillis(result.valuedatetime) # data['datavalue'].extend(tmplist ) # data['valuedatetime'].append(dumptoMillis(result.valuedatetime)) # build strings for graph labels i = 0 seriesStr = '' series = [] titleStr = '' tmpUnit = '' tmpVariableName = '' tmpLocName = '' for name_of_unit, name_of_sampling_feature, name_of_variable in zip(name_of_units, name_of_sampling_features, name_of_variables): i += 1 if i == 1 and not name_of_unit == '': seriesStr += name_of_unit elif not name_of_unit == '': tmpUnit = name_of_unit seriesStr += ' - ' + name_of_unit if not name_of_variable == '': tmpVariableName = name_of_variable if not name_of_unit == '': tmpUnit = name_of_unit if not name_of_sampling_feature == '': tmpLocName = name_of_sampling_feature series.append( {"name": tmpUnit + ' - ' + tmpVariableName + ' - ' + tmpLocName, "yAxis": tmpUnit, "data": data['datavalue' + str(i)]}) i = 0 name_of_sampling_features = set(name_of_sampling_features) for name_of_sampling_feature in name_of_sampling_features: i += 1 if i == 1: titleStr += name_of_sampling_feature # + ', ' +name_of_variable else: titleStr += ' - ' + name_of_sampling_feature # +name_of_variable+ ', ' chartID = 'chart_id' chart = {"renderTo": chartID, "type": 'scatter', "zoomType": 'xy'} title2 = {"text": titleStr} xAxis = {"type": 'datetime', "title": {"text": 'Date'}} yAxis = {"title": {"text": seriesStr}} graphType = 'scatter' actionList = Actions.objects.filter( action_type="Observation") # where the action is not of type estimation # assuming an estimate is a single value. featureactionList = Featureactions.objects.filter(action__in=actionList) relatedFeatureList = Relatedfeatures.objects.distinct( 'relatedfeatureid') # .order_by('relatedfeatureid') int_selectedresultid_ids = [] for int_selectedresultid in selectedMResultSeries: int_selectedresultid_ids.append(int(int_selectedresultid)) csvexport = False # if the user hit the export csv button export the measurement results to csv if 'export_data' in request.POST: # if request.get('export_data'): response = exportspreadsheet(request, myresultSeriesExport, False) csvexport = True # k=0 # myfile = StringIO.StringIO() # for myresults in myresultSeriesExport: # for result in myresults: # if k==0: # myfile.write(result.csvheader()) # myfile.write('\n') # myfile.write(result.csvoutput()) # myfile.write('\n') # k+=1 # response = HttpResponse(myfile.getvalue(),content_type='text/csv') # response['Content-Disposition'] = 'attachment; filename="mydata.csv"' if csvexport: return response else: # raise ValidationError(relatedFeatureList) return TemplateResponse(request, template, {'featureactionList': featureactionList, 'prefixpath': settings.CUSTOM_TEMPLATE_PATH, 'data_disclaimer': settings.DATA_DISCLAIMER, 'resultList': resultList, 'startDate': entered_start_date, 'endDate': entered_end_date, 'SelectedResults': int_selectedresultid_ids, 'authenticated': authenticated, 'chartID': chartID, 'chart': chart, 'series': series, 'title2': title2, 'graphType': graphType, 'xAxis': xAxis, 'yAxis': yAxis, 'name_of_units': name_of_units, 'relatedFeatureList': relatedFeatureList, 'SelectedRelatedFeature': selected_relatedfeatid, 'SelectedFeatureAction': selected_featureactionid, 'name': request.user, 'site_title': admin.site.site_title, 'site_header': admin.site.site_header, 'short_title': 'Time Series'}, ) template = loader.get_template('chart.html') selected_relatedfeatid = None selected_resultid = None if feature_action == 'All': selected_featureactionid = 1 result = Results.objects.filter(featureactionid=selected_featureactionid).first() selected_resultid = result.resultid selected_relatedfeatid = selected_resultid else: selected_featureactionid = int(feature_action) # relatedfeatureList # update_result_on_related_feature done = False selected_relatedfeatid, done, \ resultList, selected_resultid = relatedFeaturesFilter( request, done, selected_relatedfeatid, selected_resultid, feature_action ) if 'SelectedFeatureAction' in request.POST and not done: # raise ValidationError(done) if not request.POST['SelectedFeatureAction'] == 'All': selected_featureactionid = int(request.POST['SelectedFeatureAction']) resultList = Results.objects.filter(featureactionid=selected_featureactionid) if 'update_result_list' in request.POST: pass else: selected_featureactionid = request.POST['SelectedFeatureAction'] resultList = Results.objects.filter(result_type="Time series coverage") elif not done: resultList = Results.objects.filter(featureactionid=selected_featureactionid) # find the measurement results series that where selected. numresults = resultList.count() selectedMResultSeries = [] for i in range(0, numresults): selectionStr = str('selection' + str(i)) if selectionStr in request.POST: # raise ValidationError(request.POST[selectionStr]) for result in resultList: if int(request.POST[selectionStr]) == result.resultid: selectedMResultSeries.append(int(request.POST[selectionStr])) # if 'selection0' in request.POST: # raise ValidationError(request.POST['selection0'] # + ' '+ request.POST['selection1']) # selected_resultid = request.POST['selection0'] # else: # selected_resultid = 15 # if no series were selected (like on first load) set the series to some value. if len(resultList) > 0 and len(selectedMResultSeries) == 0: selectedMResultSeries.append(int(resultList[0].resultid)) elif len(resultList) == 0 and len(selectedMResultSeries) == 0: selectedMResultSeries.append(15) if 'startDate' in request.POST: entered_start_date = request.POST['startDate'] else: entered_start_date = "2016-01-01" if 'endDate' in request.POST: entered_end_date = request.POST['endDate'] else: entered_end_date = "2016-01-05" if entered_end_date == '': entered_end_date = "2016-01-05" if entered_start_date == '': entered_start_date = "2016-01-01" selected_results = [] name_of_sampling_features = [] name_of_variables = [] name_of_units = [] myresultSeries = [] i = 0 data = {} for selectedMResult in selectedMResultSeries: i += 1 selected_result = Results.objects.filter(resultid=selectedMResult).get() selected_results.append(selected_result) # name_of_sampling_features.append(get_name_of_sampling_feature(selected_result)) tmpname = get_name_of_sampling_feature(selected_result) name_of_sampling_features.append(tmpname) tmpname = get_name_of_variable(selected_result) if name_of_variables.__len__() > 0: namefound = False for name in name_of_variables: if name == tmpname: namefound = True if not namefound: name_of_variables.append(tmpname) else: name_of_variables.append('') else: name_of_variables.append(tmpname) tmpname = get_name_of_units(selected_result) if name_of_units.__len__() > 0: namefound = False for name in name_of_units: if name == tmpname: namefound = True if not namefound: name_of_units.append(tmpname) else: name_of_units.append('') else: name_of_units.append(tmpname) myresultSeries.append(Timeseriesresultvalues.objects.all().filter( ~Q(datavalue__lte=-6999)).filter( valuedatetime__gt=entered_start_date).filter( valuedatetime__lt=entered_end_date).filter( resultid=selectedMResult).order_by('-valuedatetime')) data.update({'datavalue' + str(i): []}) myresultSeriesExport = Timeseriesresultvalues.objects.all() \ .filter(valuedatetime__gt=entered_start_date) \ .filter(valuedatetime__lt=entered_end_date) \ .filter(resultid__in=selectedMResultSeries).order_by('-valuedatetime') i = 0 for myresults in myresultSeries: i += 1 for result in myresults: start = datetime(1970, 1, 1) delta = result.valuedatetime - start mills = delta.total_seconds() * 1000 if math.isnan(result.datavalue): dataval = 'null' else: dataval = result.datavalue if popup == 'Anno': data['datavalue' + str(i)].append( {'x': mills, 'y': dataval, 'id': str(result.valueid)}) else: data['datavalue' + str(i)].append( [mills, dataval]) # data['datavalue' + str(i)].append([mills, result.datavalue]) # #dumptoMillis(result.valuedatetime) # data['datavalue'].extend(tmplist ) # data['valuedatetime'].append(dumptoMillis(result.valuedatetime)) # build strings for graph labels i = 0 seriesStr = '' series = [] titleStr = '' tmpUnit = '' tmpVariableName = '' tmpLocName = '' for name_of_unit, name_of_sampling_feature, name_of_variable in zip(name_of_units, name_of_sampling_features, name_of_variables): i += 1 if i == 1 and not name_of_unit == '': seriesStr += name_of_unit elif not name_of_unit == '': tmpUnit = name_of_unit seriesStr += ' - ' + name_of_unit if not name_of_variable == '': tmpVariableName = name_of_variable if not name_of_unit == '': tmpUnit = name_of_unit if not name_of_sampling_feature == '': tmpLocName = name_of_sampling_feature series.append( {"name": tmpUnit + ' - ' + tmpVariableName + ' - ' + tmpLocName, "yAxis": tmpUnit, "data": data['datavalue' + str(i)]}) i = 0 name_of_sampling_features = set(name_of_sampling_features) for name_of_sampling_feature in name_of_sampling_features: i += 1 if i == 1: titleStr += name_of_sampling_feature # + ', ' +name_of_variable else: titleStr += ' - ' + name_of_sampling_feature # +name_of_variable+ ', ' chartID = 'chart_id' chart = {"renderTo": chartID, "type": 'scatter', "zoomType": 'xy'} title2 = {"text": titleStr} xAxis = {"type": 'datetime', "title": {"text": 'Date'}} yAxis = {"title": {"text": seriesStr}} graphType = 'scatter' actionList = Actions.objects.filter( action_type="Observation") # where the action is not of type estimation # assuming an estimate is a single value. featureactionList = Featureactions.objects.filter(action__in=actionList) relatedFeatureList = Relatedfeatures.objects.distinct( 'relatedfeatureid') # .order_by('relatedfeatureid') int_selectedresultid_ids = [] for int_selectedresultid in selectedMResultSeries: int_selectedresultid_ids.append(int(int_selectedresultid)) csvexport = False # if the user hit the export csv button export the measurement results to csv if 'export_data' in request.POST: # if request.get('export_data'): response = exportspreadsheet(request, myresultSeriesExport, False) csvexport = True # k=0 # myfile = StringIO.StringIO() # for myresults in myresultSeriesExport: # for result in myresults: # if k==0: # myfile.write(result.csvheader()) # myfile.write('\n') # myfile.write(result.csvoutput()) # myfile.write('\n') # k+=1 # response = HttpResponse(myfile.getvalue(),content_type='text/csv') # response['Content-Disposition'] = 'attachment; filename="mydata.csv"' if csvexport: return response else: # raise ValidationError(relatedFeatureList) return TemplateResponse(request, template, {'featureactionList': featureactionList, 'prefixpath': settings.CUSTOM_TEMPLATE_PATH, 'data_disclaimer': settings.DATA_DISCLAIMER, 'resultList': resultList, 'startDate': entered_start_date, 'endDate': entered_end_date, 'SelectedResults': int_selectedresultid_ids, 'authenticated': authenticated, 'chartID': chartID, 'chart': chart, 'series': series, 'title2': title2, 'graphType': graphType, 'xAxis': xAxis, 'yAxis': yAxis, 'name_of_units': name_of_units, 'relatedFeatureList': relatedFeatureList, 'SelectedRelatedFeature': selected_relatedfeatid, 'SelectedFeatureAction': selected_featureactionid, 'name': request.user, 'site_title': admin.site.site_title, 'site_header': admin.site.site_header, 'short_title': 'Time Series'}, ) def groupResultsByVariable(sampling_feature): fas = Featureactions.objects.filter(samplingfeatureid=sampling_feature) results = Results.objects.filter(featureactionid__in=fas).filter( processing_level__in=settings.MAP_CONFIG['result_value_processing_levels_to_display'] ) groupedResults = {} for result in results: # print('id: ' + str(result.featureactionid.featureactionid) +' '+ str(result.featureactionid)) #if str(result.variableid.variable_name) == 'Water temperature': # print('var code: ' + str(result.variableid.variable_name) + ' var id ' + str( # result.variableid.variableid) + ' unit_type: ' + str(result.unitsid.unit_type) + # ' processing level: ' + str(result.processing_level) + ' id: ' + str(result.resultid)) seriesname = str(result.variableid.variable_name) + '; units: ' + str(result.unitsid.unitsabbreviation) +\ '; ' + str(result.processing_level) if str(seriesname) in groupedResults: groupedResults[str(seriesname)].append(result.resultid) else: groupedResults[str(seriesname)] = [result.resultid] # print('grouped results') deletemes = [] for groupedResult in groupedResults: # print(groupedResult) i = 0 for result in groupedResults[groupedResult]: # print(result) #,' : ',groupedResults[groupedResult][result] i +=1 if i == 1: deletemes.append(groupedResult) for deleteme in deletemes: groupedResults.pop(deleteme) return groupedResults def mappopuploader(request, feature_action='NotSet', samplingfeature='NotSet', dataset='NotSet', resultidu='NotSet', startdate='NotSet', enddate='NotSet', popup='NotSet'): # print("HERE") if not request.user.is_authenticated: # return HttpResponseRedirect('../') authenticated = False else: authenticated = True if popup == 'NotSet': template = loader.get_template('chart2.html') else: template = loader.get_template('chartpopup.html') data_disclaimer = settings.DATA_DISCLAIMER useDataset = False useSamplingFeature = False if dataset == 'NotSet': if samplingfeature == 'NotSet': feature_action = int(feature_action) else: samplingfeature = int(samplingfeature) useSamplingFeature = True else: useDataset = True dataset = int(dataset) if resultidu != 'NotSet': pass featureActionLocation = None featureActionMethod = None datasetTitle = None featureActions = None datasetAbstract = None methods = None methodsOnly = 'False' samplingfeatureid= None resultListGrouped = None try: if not useDataset: if useSamplingFeature: samplefeature = Samplingfeatures.objects.\ filter(samplingfeatureid=samplingfeature).get() samplingfeatureid = samplefeature.samplingfeatureid featureActions = Featureactions.objects.\ filter(samplingfeatureid=samplefeature).\ order_by("action__method") resultList = Results.objects.filter(featureactionid__in=featureActions ).order_by("featureactionid__action__method") #.filter( # processing_level__in=settings.MAP_CONFIG['result_value_processing_levels_to_display'] #) actions = Actions.objects.filter(actionid__in=featureActions.values("action")) methods = Methods.objects.filter(methodid__in=actions.values("method")) featureActionLocation = samplefeature.samplingfeaturename resultListGrouped = groupResultsByVariable(samplefeature) # print(resultListGrouped) else: resultList = Results.objects.filter(featureactionid=feature_action ).order_by("featureactionid__action__method") # .filter( # processing_level__in=settings.MAP_CONFIG['result_value_processing_levels_to_display']) featureActions = Featureactions.objects.filter(featureactionid=feature_action).get() featureActionLocation = featureActions.samplingfeatureid.samplingfeaturename samplingfeatureid = featureActions.samplingfeatureid.samplingfeatureid featureActionMethod = featureActions.action.method.methodname actions = Actions.objects.filter(actionid=featureActions.action.actionid).get() methods = Methods.objects.filter(methodid=actions.method.methodid) resultListGrouped = groupResultsByVariable(samplingfeatureid) else: datasetResults = Datasetsresults.objects.filter(datasetid=dataset) resultList = Results.objects.filter(resultid__in=datasetResults.values( "resultid")).order_by("featureactionid__action__method") #.filter( # processing_level__in=settings.MAP_CONFIG['result_value_processing_levels_to_display'] #) datasetTitle = Datasets.objects.filter(datasetid=dataset).get().datasettitle datasetAbstract = Datasets.objects.filter(datasetid=dataset).get().datasetabstract except(ObjectDoesNotExist) as e: html = "<html><body>No Data Available Yet.</body></html>" return HttpResponse(html) try: StartDateProperty = Extensionproperties.objects.get(propertyname__icontains="start date") EndDateProperty = Extensionproperties.objects.get(propertyname__icontains="end date") startdates = Resultextensionpropertyvalues.objects.\ filter(resultid__in=resultList.values("resultid")).filter(propertyid=StartDateProperty) enddates = Resultextensionpropertyvalues.objects.\ filter(resultid__in=resultList.values("resultid")).filter(propertyid=EndDateProperty) realstartdates = [] realenddates = [] for startdate in startdates: if len(startdate.propertyvalue) == 16: realstartdates.append(datetime.strptime(startdate.propertyvalue, "%Y-%m-%d %H:%M")) elif len(startdate.propertyvalue) == 19: realstartdates.append(datetime.strptime(startdate.propertyvalue, "%Y-%m-%d %H:%M:%S")) else: realstartdates.append(datetime.strptime(startdate.propertyvalue, "%Y-%m-%d %H:%M:%S.%f")) for enddate in enddates: if len(enddate.propertyvalue) == 16: realenddates.append(datetime.strptime(enddate.propertyvalue, "%Y-%m-%d %H:%M")) #%Y-%m-%d %H:%M elif len(enddate.propertyvalue) == 19: realenddates.append(datetime.strptime(enddate.propertyvalue, "%Y-%m-%d %H:%M:%S")) else: realenddates.append(datetime.strptime(enddate.propertyvalue, "%Y-%m-%d %H:%M:%S.%f")) startdate = min(realstartdates).strftime('%Y-%m-%d %H:%M') enddate = max(realenddates).strftime('%Y-%m-%d %H:%M') except (ObjectDoesNotExist) as e: try: startdate = Timeseriesresultvalues.objects.\ filter(resultid__in=resultList.values("resultid")).\ annotate(Min('valuedatetime')).\ order_by('valuedatetime')[0].valuedatetime.strftime('%Y-%m-%d %H:%M') enddate = Timeseriesresultvalues.objects.\ filter(resultid__in=resultList.values("resultid")).\ annotate(Max('valuedatetime')).\ order_by('-valuedatetime')[0].valuedatetime.strftime('%Y-%m-%d %H:%M') except IndexError as e: # html = "<html><body>No Data Available Yet.</body></html>" # return HttpResponse(html) try: startdate = Timeseriesresultvalues.objects.\ filter(resultid__in=resultList.values("resultid")).\ annotate(Min('valuedatetime')).\ order_by('valuedatetime')[0].valuedatetime.strftime('%Y-%m-%d %H:%M') enddate = Timeseriesresultvalues.objects.\ filter(resultid__in=resultList.values("resultid")).\ annotate(Max('valuedatetime')).\ order_by('-valuedatetime')[0].valuedatetime.strftime('%Y-%m-%d %H:%M') methodsOnly = 'True' except IndexError as e: html = "<html><body>No time series data available for this site.</body></html>" return HttpResponse(html) except ValueError as e: # html = "<html><body>No Data Available Yet.</body></html>" # return HttpResponse(html) methodsOnly = 'True' for result in resultList: try: tsr = Timeseriesresults.objects.filter(resultid=result).get() result.timeintervalunits = tsr.intendedtimespacingunitsid result.timeinterval = tsr.intendedtimespacing except: pass processing_level__in = settings.MAP_CONFIG['result_value_processing_levels_to_display'] return TemplateResponse(request, template, {'prefixpath': settings.CUSTOM_TEMPLATE_PATH, 'useSamplingFeature': useSamplingFeature, 'methodsOnly': methodsOnly, 'featureActions': featureActions, 'featureActionMethod': featureActionMethod, 'featureActionLocation': featureActionLocation, 'data_disclaimer': data_disclaimer, 'datasetTitle': datasetTitle, 'samplingfeatureid': samplingfeatureid, 'datasetAbstract': datasetAbstract, 'useDataset': useDataset, 'startDate': startdate, 'endDate': enddate, 'processing_level__in': processing_level__in, 'authenticated': authenticated, 'methods': methods, 'resultList': resultList, 'resultListGrouped': resultListGrouped}, ) def is_number(s): try: float(s) return True except ValueError: return False def precision_and_scale(x): max_digits = 14 int_part = int(abs(x)) magnitude = 1 if int_part == 0 else int(math.log10(int_part)) + 1 if magnitude >= max_digits: return (magnitude, 0) frac_part = abs(x) - int_part multiplier = 10 ** (max_digits - magnitude) frac_digits = multiplier + int(multiplier * frac_part + 0.5) while frac_digits % 10 == 0: frac_digits /= 10 scale = int(math.log10(frac_digits)) return (magnitude + scale, scale) def add_shiftvalues(request): shift=None error = None resultid = None shiftvals = None lastshiftval = None firstshiftval = None realshiftvals = [] response_data = {} forwardshift = True if 'direction' in request.POST: if request.POST['direction'] == 'backward': forwardshift = False if 'shift' in request.POST: shift = Decimal(request.POST['shift']) # print(offset) if 'shiftvals[]' in request.POST: shiftvals = request.POST.getlist('shiftvals[]') # print(annotationvals) if 'resultidu[]' in request.POST: resultid = request.POST.getlist('resultidu[]') # print('resultid: ' + str(resultid)) for rid in resultid: intrid = int(rid) # print('result id') # print(rid) # firstdate = shiftvals[0] # lastdate = shiftvals[-2] idvals = [] i=0 for offsetval in shiftvals: # print(offsetval) # if i % 3 == 0: # datevals.append(datetime.strptime(offsetval, '%Y-%m-%d %H:%M:%S')) if i % 3 == 2: idvals.append(int(offsetval)) i += 1 try: order = '' if forwardshift: order = 'valuedatetime' else: order = '-valuedatetime' tsrvs = Timeseriesresultvalues.objects.filter(resultid=rid).filter(valueid__in=idvals).order_by(order) # .filter(valuedatetime__gte=firstdate).filter( # valuedatetime__lte=lastdate).filter(datavalue__in=valstochange).order_by('valuedatetime') realshiftvals = tsrvs except ObjectDoesNotExist: response_data['error'] = 'no values found' valcount = realshiftvals.count() precision, scale = precision_and_scale(realshiftvals.last().datavalue) getcontext().prec = precision normshift = shift - Decimal(realshiftvals.last().datavalue) shiftval = normshift / valcount k = 1 for tsrv in realshiftvals: if k > 1: tsrv.datavalue = float(Decimal(Decimal(tsrv.datavalue) + (shiftval*k))) tsrv.save() # print(tsrv.datavalue) k +=1 return HttpResponse(json.dumps(response_data),content_type='application/json') def add_offset(request): offset=None error = None resultid = None offsetvals = None response_data = {} if 'offset' in request.POST: offset = Decimal(request.POST['offset']) # print('offset') # print(offset) if 'offsetvals[]' in request.POST: # THESE VALUES ARE NOT ORDERED CORRECTLY offsetvals = request.POST.getlist('offsetvals[]') # print(offsetvals) if 'resultidu[]' in request.POST: resultid = request.POST.getlist('resultidu[]') # print('resultid: ' + str(resultid)) valcount = 0 i=0 # datevals = [] idvals = [] for offsetval in offsetvals: # print(offsetval) # if i % 3 == 0: # datevals.append(datetime.strptime(offsetval, '%Y-%m-%d %H:%M:%S')) if i % 3 == 2: idvals.append(int(offsetval)) i+=1 # datevals = sorted(datevals) # print(datevals) i = 0 for rid in resultid: intrid = int(rid) tsrvs = Timeseriesresultvalues.objects.filter(resultid=rid).filter(valueid__in=idvals)# .filter(datavalue__in=valstochange).filter(valuedatetime__gte=firstdate).filter( # valuedatetime__lte=lastdate).filter(datavalue__in=valstochange) print(tsrvs.query) for tsrv in tsrvs: tsrv.datavalue = Decimal(tsrv.datavalue) + offset tsrv.save() # print(tsrv.datavalue) response_data['valuesadded'] = valcount return HttpResponse(json.dumps(response_data),content_type='application/json') def add_annotation(request): # print('annotate') resultid = None annotationvals = None annotation = None setNaNstr = None setNaN = False cvqualitycode = False response_data = {} annotationobj = None anno = None if 'resultidu[]' in request.POST: resultid = request.POST.getlist('resultidu[]') # print(resultid) if 'annotation' in request.POST: annotationFromUser = str(request.POST['annotation']) response_data['annotation'] = annotationFromUser # print(annotation) # annotationtype if 'cvqualitycode' in request.POST: cvqualitycode = str(request.POST['cvqualitycode']) # print(cvqualitycode) if cvqualitycode == 'Select': cvqualitycode = False if 'setNaN' in request.POST: setNaNstr = str(request.POST['setNaN']) if setNaNstr == 'false': setNaN = False if setNaNstr == 'true': setNaN = True # print(setNaN) if 'annotationvals[]' in request.POST: annotationvals = request.POST.getlist('annotationvals[]') # print(annotationvals) annotationtype = CvAnnotationtype.objects.get(name='Time series result value annotation') if cvqualitycode: qualitycode = CvQualitycode.objects.get(name=cvqualitycode) # annotator = People.objects.filter(personfirstname='Miguel').filter(personlastname='Leon') lastannotationval = None for rid in resultid: intrid = int(rid) # print('result id') # print(rid) idvals = [] i = 0 for annotationval in annotationvals: # print(offsetval) # if i % 3 == 0: # datevals.append(datetime.strptime(offsetval, '%Y-%m-%d %H:%M:%S')) if i % 3 == 2: idvals.append(int(annotationval)) i += 1 # firstdate = annotationvals[0] # lastdate = annotationvals[-2] # print(firstdate) # print(lastdate) # tsrvs = Timeseriesresultvalues.objects.filter(resultid=rid).filter(valuedatetime__gte=firstdate).filter( # valuedatetime__lte=lastdate).filter(datavalue__in=valstochange) tsrvs = Timeseriesresultvalues.objects.filter(resultid=rid).filter(valueid__in=idvals) for tsrv in tsrvs: # print(tsrv.datavalue) # print(tsrv.valuedatetime) if setNaN: annotation = annotationFromUser + ' original value was ' + str(tsrv.datavalue) # print(annotation) if len(annotation) > 499: annotation = annotation[:499] try: tsrvanno = Timeseriesresultvalueannotations.objects.filter(valueid=tsrv).get() annotationobj = Annotations.objects.filter(annotationid=tsrvanno.annotationid.annotationid).get() annotationobj.annotationtypecv = annotationtype annotationobj.annotationcode = '' annotationobj.annotationtext = annotation annotationobj.annotationdatetime = datetime.now() annotationobj.annotationutcoffset = 4 annotationobj.save() except ObjectDoesNotExist: # print('error') #if not annotationobj: # print('annotation does not exist') annotationobj = Annotations(annotationtypecv=annotationtype, annotationcode='', annotationtext=annotation, annotationdatetime=datetime.now(), annotationutcoffset=4) annotationobj.save() tsrvanno = Timeseriesresultvalueannotations(valueid=tsrv, annotationid=annotationobj) tsrvanno.save() # print(annotationobj) # print(annotation) # annotationobj.save() tsrv.datavalue = float('nan') if cvqualitycode: tsrv.qualitycodecv = qualitycode tsrv.save(force_update=True) # print(tsrv) elif cvqualitycode: tsrv.qualitycodecv = qualitycode tsrv.save(force_update=True) if not setNaN: annotation = annotationFromUser try: tsrvanno = Timeseriesresultvalueannotations.objects.filter(valueid=tsrv).get() anno = Annotations.objects.filter(annotationid=tsrvanno.annotationid.annotationid).get() anno.annotationtypecv = annotationtype anno.annotationcode = '' anno.annotationtext = annotation anno.annotationdatetime = datetime.now() anno.annotationutcoffset = 4 anno.save() except ObjectDoesNotExist: # print('error') # if not annotationobj: #print('annotation does not exist') annotationobj = Annotations(annotationtypecv=annotationtype, annotationcode='', annotationtext=annotation, annotationdatetime=datetime.now(), annotationutcoffset=4) annotationobj.save() tsrvanno = Timeseriesresultvalueannotations(valueid=tsrv, annotationid=annotationobj) tsrvanno.save() if cvqualitycode: tsrv.qualitycodecv = qualitycode tsrv.save(force_update=True) # try: # tsrvanno = Timeseriesresultvalueannotations.objects.filter(valueid=tsrv).get() # tsrvanno.annotationid = annotationobj # except ObjectDoesNotExist: # tsrvanno = Timeseriesresultvalueannotations(valueid=tsrv, # annotationid=annotationobj) # tsrvanno.save() # print(tsrvanno) # tsrvanno.save() # print(tsrvanno.valueid) # lastannotationval = annotationval # if resultidu != 'NotSet': # resultidu = int(resultidu) return HttpResponse(json.dumps(response_data),content_type='application/json') # def on_raw_message(body): # print(body) def preProcDataLoggerFile(request): response_data = {} formData = None dataloggerfileid = None processingCode = None databeginson = None columnheaderson = None check_dates = False # print('in view') # print(request.POST) if 'dataloggerfileid' in request.POST: dataloggerfileid = int(request.POST['dataloggerfileid']) # print(dataloggerfileid) if 'processingCode' in request.POST: processingCode = request.POST['processingCode'] # print(processingCode) if 'databeginson' in request.POST: databeginson = int(request.POST['databeginson']) # print(databeginson) if 'columnheaderson' in request.POST: columnheaderson = int(request.POST['columnheaderson']) # print(columnheaderson) if 'check_dates' in request.POST: if request.POST['check_dates'] == 'True': check_dates = True dlf = Dataloggerfiles.objects.get(dataloggerfileid=dataloggerfileid) pdlf = ProcessDataloggerfile.objects.get(dataloggerfileid=dataloggerfileid) linkname = str(dlf.dataloggerfilelinkname()) fileid = dlf.dataloggerfileid out = StringIO() try: management.call_command('validate_datalogger_file', linkname, str(fileid) , str(databeginson), str(columnheaderson), stdout=out) # messages = 'complete ' messages = out.getvalue() response_data['validatemessage'] = str(messages) # e.with_traceback() response = HttpResponse(json.dumps(response_data), content_type='application/json') except CommandError as e: response_data['error_message'] = str(e) #e.with_traceback() response = HttpResponse(json.dumps(response_data), content_type='application/json') response.status_code = 400 return response # @shared_task def procDataLoggerFile(request): response_data = {} formData = None dataloggerfileid = None processingCode = None databeginson = None columnheaderson = None check_dates=False # print('in view') # print(request.POST) if 'dataloggerfileid' in request.POST: dataloggerfileid = int(request.POST['dataloggerfileid']) # print(dataloggerfileid) if 'processingCode' in request.POST: processingCode = request.POST['processingCode'] # print(processingCode) if 'databeginson' in request.POST: databeginson = int(request.POST['databeginson']) # print(databeginson) if 'columnheaderson' in request.POST: columnheaderson = int(request.POST['columnheaderson']) # print(columnheaderson) if 'check_dates' in request.POST: if request.POST['check_dates'] =='True': check_dates = True # print(check_dates) # print(dataloggerfileid) dlf = Dataloggerfiles.objects.get(dataloggerfileid=dataloggerfileid) pdlf = ProcessDataloggerfile.objects.get(dataloggerfileid=dataloggerfileid) linkname = str(dlf.dataloggerfilelinkname()) fileid = dlf.dataloggerfileid ftpfile = dlf.dataloggerfiledescription ftpparse = urlparse(ftpfile) response = None try: if not pdlf.processingCode == 'locked' and not pdlf.processingCode=='done': # pdlf.processingCode = 'locked' # pdlf.save() if len(ftpparse.netloc) > 0: ftpfrequencyhours = 24 # re.findall(r'^\D*(\d+)', self.processingCode)[0] management.call_command('update_preprocess_process_datalogger_file', linkname, str(fileid) , str(databeginson), str(columnheaderson), str(ftpfrequencyhours), False) else: # print('processdataloggerfile') # result = tasks.pdataloggerfile.apply_async((linkname,fileid,databeginson,columnheaderson,check_dates,False)) management.call_command('ProcessDataLoggerFile', linkname ,str(fileid) , str(databeginson), str(columnheaderson), check_dates, False, False) # print(result) pdlf.processingCode = 'done' pdlf.save() response = HttpResponse(json.dumps(response_data), content_type='application/json') except CommandError as e: response_data['error_message'] = str(e) #e.with_traceback() response = HttpResponse(json.dumps(response_data), content_type='application/json') response.status_code = 400 #response_data['formData'] = formData return response def addL1timeseries(request): resultid = None response_data = {} createorupdateL1 = None pl1 = Processinglevels.objects.get(processinglevelid=2) pl0 = Processinglevels.objects.get(processinglevelid=1) valuesadded = 0 tsresultTocopyBulk = [] if 'createorupdateL1' in request.POST: createorupdateL1 = str(request.POST['createorupdateL1']) if 'resultidu[]' in request.POST: resultid = request.POST.getlist('resultidu[]') for result in resultid: if createorupdateL1 == "create": #print('create') resultTocopy = Results.objects.get(resultid=result) tsresultTocopy = Timeseriesresults.objects.get(resultid=result) resultTocopy.resultid = None resultTocopy.processing_level = pl1 resultTocopy.save() tsrvToCopy = Timeseriesresultvalues.objects.filter(resultid=tsresultTocopy) tsresultTocopy.resultid = resultTocopy tsresultTocopy.save() newresult = tsresultTocopy.resultid # tsrvToCopy.update(resultid=tsresultTocopy) for tsrv in tsrvToCopy: tsrv.resultid = tsresultTocopy try: tsrva = Timeseriesresultvalueannotations.objects.get(valueid = tsrv.valueid) tsrv.valueid = None tsrv.save() tsrva.valueid = tsrv # print(tsrv.valueid) tsrva.save() except ObjectDoesNotExist: tsrv.valueid = None tsresultTocopyBulk.append(tsrv) newtsrv = Timeseriesresultvalues.objects.bulk_create(tsresultTocopyBulk) elif createorupdateL1 == "update": print('update') tsresultL1 = Timeseriesresults.objects.get(resultid=result) resultL1 = Results.objects.get(resultid=result) # tsrvL1 = Timeseriesresultvalues.objects.filter(resultid=tsresultL1) tsrvAddToL1Bulk = [] relatedL0result = Results.objects.filter( featureactionid = resultL1.featureactionid).filter( variableid = resultL1.variableid ).filter(unitsid = resultL1.unitsid).filter( processing_level=pl0) # newresult = relatedL0result.resultid relateL0tsresults = Timeseriesresults.objects.filter(resultid__in= relatedL0result) relateL0tsresult = None for L0result in relateL0tsresults: if L0result.intendedtimespacing == tsresultL1.intendedtimespacing and L0result.intendedtimespacingunitsid == tsresultL1.intendedtimespacingunitsid: relateL0tsresult =L0result tsrvL0 = Timeseriesresultvalues.objects.filter(resultid=relateL0tsresult) # print(relateL0tsresult) # maxtsrvL1=Timeseriesresultvalues.objects.filter(resultid=relateL1tsresult).annotate( # Max('valuedatetime')). \ # order_by('-valuedatetime') # print(relateL1tsresult) # for r in maxtsrvL1: # print(r) print('L1 result') print(tsresultL1) maxtsrvL0=Timeseriesresultvalues.objects.filter(resultid=relateL0tsresult).annotate( Max('valuedatetime')). \ order_by('-valuedatetime')[0].valuedatetime maxtsrvL1=Timeseriesresultvalues.objects.filter(resultid=tsresultL1).annotate( Max('valuedatetime')). \ order_by('-valuedatetime')[0].valuedatetime mintsrvL0=Timeseriesresultvalues.objects.filter(resultid=relateL0tsresult).annotate( Min('valuedatetime')). \ order_by('valuedatetime')[0].valuedatetime mintsrvL1=Timeseriesresultvalues.objects.filter(resultid=tsresultL1).annotate( Min('valuedatetime')). \ order_by('valuedatetime')[0].valuedatetime # print('max L0') # print(maxtsrvL0) # print('max L1') # print(maxtsrvL1) if maxtsrvL1 < maxtsrvL0: tsrvAddToL1 = tsrvL0.filter(valuedatetime__gt=maxtsrvL1) for tsrv in tsrvAddToL1: tsrv.resultid = tsresultL1 try: tsrva = Timeseriesresultvalueannotations.objects.get(valueid = tsrv.valueid) tsrv.valueid = None tsrv.save() tsrva.valueid = tsrv # print(tsrv.valueid) tsrva.save() except ObjectDoesNotExist: # print('doesnt exist') tsrv.valueid = None tsresultTocopyBulk.append(tsrv) if mintsrvL1 > mintsrvL0: tsrvAddToL1 = tsrvL0.filter(valuedatetime__lt=mintsrvL1) for tsrv in tsrvAddToL1: print(tsresultL1) tsrv.resultid = tsresultL1 try: tsrva = Timeseriesresultvalueannotations.objects.get(valueid = tsrv.valueid) tsrv.valueid = None tsrv.save() tsrva.valueid = tsrv # print(tsrv.valueid) tsrva.save() except ObjectDoesNotExist: tsrv.valueid = None tsresultTocopyBulk.append(tsrv) newtsrv = Timeseriesresultvalues.objects.bulk_create(tsresultTocopyBulk) valuesadded = newtsrv.__len__() print(valuesadded) # for tsrv in newtsrv: # print(tsrv.resultid.resultid) # print(tsrv) response_data['valuesadded'] = valuesadded # response_data['newresultid'] = newresult # print(result) return HttpResponse(json.dumps(response_data),content_type='application/json') #another approach #https://rlskoeser.github.io/2016/03/31/migrating-data-between-databases-with-django/ def createODM2SQLiteFile(request): entered_end_date = '' entered_start_date = '' myresultSeriesExport = [] if 'exportdata' in request.POST and 'myresultSeriesExport[]' in request.POST: selectedMResultSeries = request.POST.getlist('myresultSeriesExport[]') myresultSeriesExport = None if request.POST['useDates'] == 'true': useDates = True else: useDates = False if useDates: if 'endDate' in request.POST: # print(entered_end_date) entered_end_date = request.POST['endDate'] if 'startDate' in request.POST: entered_start_date = request.POST['startDate'] #Employees.objects.values_list('eng_name', flat=True) myresultSeriesExport = Timeseriesresultvalues.objects.all() \ .filter(valuedatetime__gte=entered_start_date) \ .filter(valuedatetime__lte=entered_end_date) \ .filter(resultid__in=selectedMResultSeries).order_by('-valuedatetime') else: myresultSeriesExport = Timeseriesresultvalues.objects.all() \ .filter(resultid__in=selectedMResultSeries).order_by('-valuedatetime') # emailspreadsheet2(request, myresultSeriesExport, False) #management.call_command('dump_object', 'odm2admin.Timeseriesresults', 17160, 17162, kitchensink=True) sysout = sys.stdout loc = settings.FIXTURE_DIR # print(myresultSeriesExport.first()) random_string = get_random_string(length=5) tmpfixture1 = 'tmp' + '.json' #+ random_string sys.stdout = open(loc+ tmpfixture1, 'w') tmploc1 = loc+ tmpfixture1 management.call_command('dump_object', 'odm2admin.Timeseriesresultvalues', myresultSeriesExport.first().valueid, kitchensink=True) sys.stdout.close() #jsonfile = open(loc+ 'tmp2.json', 'w') # i=0 values = myresultSeriesExport.values_list('valueid', flat=True) random_string = get_random_string(length=5) # add random string back later tmpfixture2 = 'tmp' + '.json' # + random_string sys.stdout = open(loc + tmpfixture2, 'w') # sys.stdout = open(loc + 'tmp2.json, 'w') tmploc2 = loc+ tmpfixture1 sys.stdout.write(serializers.serialize("json", myresultSeriesExport[1:], indent=4,use_natural_foreign_keys=False,use_natural_primary_keys=False)) sys.stdout.close() sys.stdout = sysout #settings.MAP_CONFIG['result_value_processing_levels_to_display'] #db_name = exportdb.DATABASES['export']['NAME'] #print(db_name) # print(tmploc1) database = '' if 'exportdata' in request.POST: # print(entered_end_date) exportdata = request.POST['exportdata'] if exportdata == 'true': database = 'export' if 'publishdata' in request.POST: # print(entered_end_date) publishdata = request.POST['publishdata'] if publishdata == 'true': database = 'published' #management.call_command('loaddata', # tmploc1 ,database=database) # ,database='export' # print('finished first file') #management.call_command('loaddata', # tmploc2,database=database) #export_data.send(sender= Timeseriesresultvalues,tmploc1=tmploc1,tmploc2=tmploc2) #management.call_command('create_sqlite_export',tmploc1,tmploc2, settings=exportdb) # call('../') # print(tmploc1) # print(tmploc2) dbfilepath = exportdb.DATABASES['default']['NAME'] path = os.path.dirname(dbfilepath) dbfile = os.path.basename(dbfilepath) dbfilename = os.path.splitext(dbfile)[0] random_string = get_random_string(length=5) dbfile2 = path +"/" + dbfilename + random_string + ".db" #command = ['python', '/home/azureadmin/webapps/ODM2-AdminLCZO/manageexport.py', 'create_sqlite_export', tmploc1, tmploc2] command = 'cp ' + dbfilepath + ' ' + str(dbfile2) # print(command) response = subprocess.check_call(command,shell=True) #write an extra settings file instead - have it contain just DATABASES; remove databases from exportdb.py and import new file. 2 exportdb.DATABASES['default']['NAME'] = dbfile2 command = settings.BASE_DIR + '/scripts/create_sqlite_file.sh '+ dbfile2 + ' %>> ' + settings.BASE_DIR +'/logging/sqlite_export.log' # print(command) response = subprocess.check_call(command,shell=True) # # print("response") # print(response) # print(exportdb.DATABASES['default']['NAME']) return myresultSeriesExport # outfile = loc +'tmp2.json' # print(outfile) # with open(outfile, 'w') as jsonfile: # json.dump(data, jsonfile) #outfile = loc +'tmp2.json' #print(outfile) #with open(outfile, 'w') as jsonfile: # json.dump(data, jsonfile) @login_required() def export_to_hydroshare(request): valuestoexport = createODM2SQLiteFile(request) export_complete = True resource_link = '' user = request.user # print(request.POST['hydroshareusername']) if 'hydroshareusername' in request.POST and 'hydrosharepassword' in request.POST: hs_client_id = settings.SOCIAL_AUTH_HYDROSHARE_UP_KEY hs_client_secret = settings.SOCIAL_AUTH_HYDROSHARE_UP_SECRET username = request.POST['hydroshareusername'] password = request.POST['hydrosharepassword'] auth = HydroShareAuthOAuth2(hs_client_id, hs_client_secret, username=username, password=password) else: hs_client_id = settings.SOCIAL_AUTH_HYDROSHARE_KEY hs_client_secret = settings.SOCIAL_AUTH_HYDROSHARE_SECRET social = user.social_auth.get(provider='hydroshare') token = social.extra_data['access_token'] print(social.extra_data) print(token) auth = HydroShareAuthOAuth2(hs_client_id, hs_client_secret, token=social.extra_data) #hs = get_oauth_hs(request) #userInfo = hs.getUserInfo() # # token = None #if 'code' in request.POST: # print(request.POST['code']) # token = request.POST['code'] #print('expires in ' + str(token['expires_in'])) #auth = HydroShareAuthOAuth2(client_id, client_secret, # username='', password='') hs = HydroShare(auth=auth) username = hs.getUserInfo() # print(username) abstracttext = 'ODM2 Admin Result Series ' + str(valuestoexport.first().resultid) entered_start_date = None entered_end_date = None if 'startDate' in request.POST: entered_start_date = request.POST['startDate'] abstracttext += ' data values from: ' + entered_start_date if 'endDate' in request.POST: # # print(entered_end_date) entered_end_date = request.POST['endDate'] abstracttext += ' ending on: ' + entered_end_date # abstract = abstracttext title = 'ODM2 Admin Result Series ' + str(valuestoexport.first().resultid) keywords = ['ODM2'] rtype = 'GenericResource' fpath = exportdb.DATABASES['default']['NAME'] # # print(fpath) # #metadata = '[{"coverage":{"type":"period", "value":{"start":"'+entered_start_date +'", "end":"'+ entered_end_date +'"}}}, {"creator":{"name":"Miguel Leon"}}]' metadata = str('[{"coverage":{"type":"period", "value":{"start":"' + entered_start_date + '", "end":"' + entered_end_date + '"}}}, ' \ '{"creator":{"name":"' +user.get_full_name() +'"}}]') extra_metadata = str('{"key-1": "value-1", "key-2": "value-2"}') # # #abstract = 'My abstract' # #title = 'My resource' # #keywords = ('my keyword 1', 'my keyword 2') # #rtype = 'GenericResource' # #fpath = 'C:/Users/leonmi/Google Drive/ODM2AdminLT2/ODM2SQliteBlank.db' # #metadata = '[{"coverage":{"type":"period", "value":{"start":"01/01/2000", "end":"12/12/2010"}}}, {"creator":{"name":"John Smith"}}, {"creator":{"name":"Lisa Miller"}}]' # #extra_metadata = '{"key-1": "value-1", "key-2": "value-2"}' resource_id = hs.createResource(rtype, title, resource_file=fpath, keywords=keywords, abstract=abstract, metadata=metadata, extra_metadata=extra_metadata) # print(resource_id) # for resource in hs.getResourceList(): # print(resource) return HttpResponse({'prefixpath': settings.CUSTOM_TEMPLATE_PATH, 'export_complete': export_complete, 'username' : username, 'resource_link': resource_link,},content_type='application/json') @login_required() def email_data_from_graph(request): # print('email data') emailsent = False outEmail = '' entered_end_date = '' entered_start_date = '' myresultSeriesExport = [] if 'email_data' in request.POST and 'resultidu[]' or 'myresultSeriesExport[]' in request.POST: # print(' email data and resultid[]') selectedMResultSeries = request.POST.getlist('myresultSeriesExport[]') # print(selectedMResultSeries) # resultids = request.POST.getlist('resultidu[]') # try: # print(resultidu) # resultidu = [int(selectedMResultSeries)] # except TypeError: # resultids = re.findall(r'\d+',request.POST.getlist('myresultSeriesExport[]')) # re.findall(r'\d+',request.POST['myresultSeriesExport[]']) resultidu = [] # mergeResults = 'true' for results in selectedMResultSeries: ids = re.findall(r'\d+', results) for id in ids: resultidu.append(int(id)) # for results in resultids: # ids = re.findall(r'\d+', results) # for id in ids: # resultidu.append(int(reidsults)) selectedMResultSeries = resultidu myresultSeriesExport = None if request.POST['useDates'] == 'true': useDates = True else: useDates = False if useDates: if 'endDate' in request.POST: # print(entered_end_date) entered_end_date = request.POST['endDate'] if 'startDate' in request.POST: entered_start_date = request.POST['startDate'] myresultSeriesExport = Timeseriesresultvaluesextwannotations.objects.all() \ .filter(valuedatetime__gte=entered_start_date) \ .filter(valuedatetime__lte=entered_end_date) \ .filter(resultid__in=selectedMResultSeries).order_by('-valuedatetime') else: myresultSeriesExport = Timeseriesresultvaluesextwannotations.objects.all() \ .filter(resultid__in=selectedMResultSeries).order_by('-valuedatetime') # print('email spreadsheet') emailspreadsheet2(request, myresultSeriesExport, False) # for command str_selectedresultid_ids # .after_response emailsent=True return HttpResponse({'prefixpath': settings.CUSTOM_TEMPLATE_PATH, 'emailsent': emailsent, 'outEmail': outEmail,},content_type='application/json') def hysterisisMetrics(discharge,response): hystdict = {} return hystdict # https://bsou.io/posts/color-gradients-with-python def hex_to_RGB(hex): ''' "#FFFFFF" -> [255,255,255] ''' # Pass 16 to the integer function for change of base return [int(hex[i:i+2], 16) for i in range(1,6,2)] def RGB_to_hex(RGB): ''' [255,255,255] -> "#FFFFFF" ''' # Components need to be integers for hex to make sense RGB = [int(x) for x in RGB] return "#"+"".join(["0{0:x}".format(v) if v < 16 else "{0:x}".format(v) for v in RGB]) def color_dict(gradient): ''' Takes in a list of RGB sub-lists and returns dictionary of colors in RGB and hex form for use in a graphing function defined later on ''' return {"hex":[RGB_to_hex(RGB) for RGB in gradient], "r":[RGB[0] for RGB in gradient], "g":[RGB[1] for RGB in gradient], "b":[RGB[2] for RGB in gradient]} def linear_gradient(start_hex, finish_hex="#FFFFFF", n=10): ''' returns a gradient list of (n) colors between two hex colors. start_hex and finish_hex should be the full six-digit color string, inlcuding the number sign ("#FFFFFF") ''' # Starting and ending colors in RGB form s = hex_to_RGB(start_hex) f = hex_to_RGB(finish_hex) # Initilize a list of the output colors with the starting color RGB_list = [s] # Calcuate a color at each evenly spaced value of t from 1 to n for t in range(1, n): # Interpolate RGB vector for color at the current value of t curr_vector = [ int(s[j] + (float(t)/(n-1))*(f[j]-s[j])) for j in range(3) ] # Add it to our list of output colors RGB_list.append(curr_vector) return color_dict(RGB_list) def TimeSeriesGraphingShort(request, feature_action='NotSet', samplingfeature='NotSet', dataset='NotSet',dischargeresult='NotSet', resultidu='NotSet', startdate='NotSet', enddate='NotSet', popup='NotSet'): # ,startdate='',enddate='' mergeResults='false' authenticated = True hystdict = None if not request.user.is_authenticated: # return HttpResponseRedirect('../') authenticated = False if popup == 'NotSet': template = loader.get_template('chart2.html') elif popup == 'smll': template = loader.get_template('chartsmall.html') elif popup == 'Anno': if not authenticated: return HttpResponseRedirect(settings.CUSTOM_TEMPLATE_PATH) template = loader.get_template('chartAnnotation.html') elif popup == 'hyst': if not authenticated: return HttpResponseRedirect(settings.CUSTOM_TEMPLATE_PATH) template = loader.get_template('hysteresisChart.html') else: template = loader.get_template('chartpopup.html') data_disclaimer = settings.DATA_DISCLAIMER map_config = settings.MAP_CONFIG useDataset = False useSamplingFeature = False # samplingfeature = None # if 'annotation' in request.POST: # pass # raise ValidationError(request.POST['annotation']) if dataset == 'NotSet': if samplingfeature == 'NotSet': feature_action = int(feature_action) else: samplingfeature = int(samplingfeature) useSamplingFeature = True else: useDataset = True dataset = int(dataset) if resultidu != 'NotSet': try: # print(resultidu) resultidu = [int(resultidu)] except: resultids = re.findall(r'\d+',resultidu) resultidu = [] mergeResults = 'true' for results in resultids: resultidu.append(int(results)) selected_results = [] name_of_sampling_features = [] # name_of_variables = [] name_of_units = [] myresultSeries = [] data = {} featureActionLocation = None featureActionMethod = None datasetTitle = None datasetAbstract = None methods = None resultListGrouped = None # print(settings.MAP_CONFIG['result_value_processing_levels_to_display']) if not useDataset: if useSamplingFeature: samplefeature = Samplingfeatures.objects.filter(samplingfeatureid=samplingfeature).get() feature_actions = Featureactions.objects.filter(samplingfeatureid=samplefeature) resultList = Results.objects.filter(featureactionid__in=feature_actions).filter( processing_level__in=settings.MAP_CONFIG['result_value_processing_levels_to_display'] ).order_by("featureactionid","resultid") resultListGrouped = groupResultsByVariable(samplefeature) actions = Actions.objects.filter(actionid__in=feature_actions.values("action")) methods = Methods.objects.filter(methodid__in=actions.values("method")) featureActionLocation = samplefeature.samplingfeaturename else: resultList = Results.objects.filter(featureactionid=feature_action).filter( processing_level__in=settings.MAP_CONFIG['result_value_processing_levels_to_display'] ).order_by("featureactionid","resultid") featureAction = Featureactions.objects.filter(featureactionid=feature_action).get() featureActionLocation = featureAction.samplingfeatureid.samplingfeaturename resultListGrouped = groupResultsByVariable(featureAction.samplingfeatureid) featureActionMethod = featureAction.action.method.methodname action = Actions.objects.filter(actionid=featureAction.action.actionid).get() methods = Methods.objects.filter(methodid=action.method.methodid) else: datasetResults = Datasetsresults.objects.filter(datasetid=dataset) resultList = Results.objects.filter(resultid__in=datasetResults.values("resultid")).filter( processing_level__in=settings.MAP_CONFIG['result_value_processing_levels_to_display'] ).order_by("featureactionid","resultid") datasetTitle = Datasets.objects.filter(datasetid=dataset).get().datasettitle datasetAbstract = Datasets.objects.filter(datasetid=dataset).get().datasetabstract numresults = resultList.count() selectedMResultSeries = [] mergedResultSets = [] for i in range(0, numresults): selectionStr = str('selection' + str(i)) # when annotating you can only select a single time series # with a radio button if mergeResults == 'true': selectionStr = str('Mergedselection' + str(i)) if popup == 'Anno': selectionStr = str('selection') if selectionStr in request.POST: # raise ValidationError(request.POST[selectionStr]) # print(request.POST[selectionStr]) if mergeResults =='true': mergedresults = re.findall('\d+', request.POST[selectionStr]) mergedResultSets.append(mergedresults) for mergedresult in mergedresults: for result in resultList: if int(mergedresult) == result.resultid: selectedMResultSeries.append(int(mergedresult)) else: for result in resultList: if int(request.POST[selectionStr]) == result.resultid: selectedMResultSeries.append(int(request.POST[selectionStr])) # if we are annotating we only have a single selection to find if popup == 'Anno': break # selectedMResultSeries = Results.objects.filter(featureactionid=feature_action) i = 0 if selectedMResultSeries.__len__() == 0: if resultidu == 'NotSet': try: selectedMResultSeries.append(resultList[0].resultid) except IndexError: html = "<html><body>No Data Available Yet.</body></html>" return HttpResponse(html) else: try: for resultid in resultidu: selectedMResultSeries.append(resultid) except ObjectDoesNotExist: html = "<html><body>No Data Available Yet.</body></html>" return HttpResponse(html) if 'endDate' in request.POST: entered_end_date = request.POST['endDate'] elif not enddate == 'NotSet': entered_end_date = enddate else: entered_end_date = \ Timeseriesresultvalues.objects.filter(resultid__in=selectedMResultSeries).annotate( Max('valuedatetime')).order_by( '-valuedatetime')[0].valuedatetime.strftime('%Y-%m-%d %H:%M') if 'startDate' in request.POST: entered_start_date = request.POST['startDate'] elif not startdate == 'NotSet': entered_start_date = startdate else: # entered_start_date= Measurementresultvalues.objects. # filter(resultid__in=selectedMResultSeries).annotate(Min('valuedatetime')).\ # order_by('valuedatetime')[0].valuedatetime.strftime('%Y-%m-%d %H:%M') # .annotate(Min('price')).order_by('price')[0] datetime_entered_end_date = datetime.strptime(entered_end_date, '%Y-%m-%d %H:%M') if popup == 'smll': entered_start_date = datetime_entered_end_date - timedelta( settings.SENSOR_DASHBOARD['time_series_days']) elif popup =='Anno' or popup =='hyst': entered_start_date = datetime_entered_end_date - timedelta( settings.SENSOR_DASHBOARD['time_series_days']) else: entered_start_date = datetime_entered_end_date - timedelta( map_config['time_series_months'] * 365 / 12) # .strftime('%Y-%m-%d %H:%M') entered_start_date = entered_start_date.strftime('%Y-%m-%d %H:%M') if mergeResults == 'false': for selectedMResult in selectedMResultSeries: i += 1 selected_result = Results.objects.filter(resultid=selectedMResult).get() selected_results.append(selected_result) # name_of_sampling_features.append(get_name_of_sampling_feature(selected_result)) tmpname = get_name_of_sampling_feature(selected_result) name_of_sampling_features.append(tmpname) myresultSeries.append(Timeseriesresultvalues.objects.all() .filter(~Q(datavalue__lte=selected_result.variableid.nodatavalue)) .filter(valuedatetime__gte=entered_start_date) .filter(valuedatetime__lte=entered_end_date) .filter(resultid=selectedMResult).order_by('-valuedatetime')) data.update({'datavalue' + str(i): []}) else: if len(mergedResultSets) > 0: # print(mergedResultSets) for mergedResultSet in mergedResultSets: i += 1 selected_result = Results.objects.filter(resultid__in=mergedResultSet).first() # print('result set') # print(mergedResultSet) # print(selected_result) selected_results.append(selected_result) # name_of_sampling_features.append(get_name_of_sampling_feature(selected_result)) tmpname = get_name_of_sampling_feature(selected_result) name_of_sampling_features.append(tmpname) myresultSeries.append(Timeseriesresultvalues.objects.all() .filter(~Q(datavalue__lte=selected_result.variableid.nodatavalue)) .filter(valuedatetime__gte=entered_start_date) .filter(valuedatetime__lte=entered_end_date) .filter(resultid__in=mergedResultSet).order_by('-valuedatetime')) data.update({'datavalue' + str(i): []}) else: i=1 selected_result = Results.objects.filter(resultid__in=selectedMResultSeries).first() selected_results.append(selected_result) # name_of_sampling_features.append(get_name_of_sampling_feature(selected_result)) tmpname = get_name_of_sampling_feature(selected_result) name_of_sampling_features.append(tmpname) myresultSeries.append(Timeseriesresultvalues.objects.all() .filter(~Q(datavalue__lte=selected_result.variableid.nodatavalue)) .filter(valuedatetime__gte=entered_start_date) .filter(valuedatetime__lte=entered_end_date) .filter(resultid__in=selectedMResultSeries).order_by('-valuedatetime')) data.update({'datavalue' + str(i): []}) i = 0 annotationsexist = False # print(selectedMResultSeries) if popup == 'Anno': tsrvas = Timeseriesresultvalueannotations.objects.filter( valueid__resultid__in=selectedMResultSeries).filter( valueid__valuedatetime__gt=entered_start_date).filter( valueid__valuedatetime__lt=entered_end_date) if tsrvas.count() > 0: # print('time series result value annotation count ' + str(tsrvas.count())) # (tsrvas.query) annotationsexist = True #print('series') #print(myresultSeries) for myresults in myresultSeries: i += 1 resultannotationsexist = False print('response count ' + str(myresults.count())) # print('1st result') # print(myresults[0]) if popup == 'hyst': result = Results fa = Featureactions.objects.filter(featureactionid=selected_results[0].featureactionid.featureactionid).get() sf = Samplingfeatures.objects.filter(samplingfeatureid=fa.samplingfeatureid.samplingfeatureid).get() fas = Featureactions.objects.filter(samplingfeatureid=sf) units = Units.objects.filter(unit_type='Volumetric flow rate') dischargeRs = None if not dischargeresult == 'NotSet': dischargeRs = Results.objects.filter(resultid=int(dischargeresult)) else: dischargeRs = Results.objects.filter(featureactionid__in=fas).filter(unitsid__in=units) dischargeR = dischargeRs.first() dischargeTSR = Timeseriesresults.objects.filter(resultid=dischargeR).get() # print(dischargeTSR) tsrvdischarge = Timeseriesresultvalues.objects.filter(~Q(datavalue__lte=dischargeR.variableid.nodatavalue))\ .filter(valuedatetime__gte=entered_start_date)\ .filter(valuedatetime__lte=entered_end_date)\ .filter(resultid=dischargeTSR).order_by('-valuedatetime') # print(tsrvdischarge.query) # print(tsrvdischarge.count()) hystdict = hysterisisMetrics(tsrvdischarge,myresults) if not popup=='hyst': for result in myresults: start = datetime(1970, 1, 1) delta = result.valuedatetime - start mills = delta.total_seconds() * 1000 if math.isnan(result.datavalue): dataval = 'null' else: dataval = result.datavalue # print(data.keys()) if popup == 'Anno': data['datavalue' + str(i)].append( {'x': mills, 'y': dataval, 'id': str(result.valueid)}) else: data['datavalue' + str(i)].append( [mills,dataval]) if popup == 'Anno': for tsrva in tsrvas: if tsrva.valueid == result: # print('tsrv annotation value id ' + str(tsrva.valueid)) if not resultannotationsexist: # print('resultannotationsexist') resultannotationsexist = True data.update({'datavalueannotated' : []}) data['datavalueannotated'].append( {'x':mills,'y':dataval,'id':str(result.valueid)}) else: valcount = len(myresults) colors = linear_gradient('#BF001B','#00E5C4',n=valcount)# ['#00E5C4','#00E17D','#00DD38','#09D900','#49D500','#86D200','#C2CE00','#CA9900','#C65A00','#C21E00',] hexcolors = colors['hex'] print(valcount) k=0 for result, discharge in zip(myresults,tsrvdischarge): if math.isnan(result.datavalue): dataval = 'null' else: dataval = result.datavalue if math.isnan(discharge.datavalue): dischargeval = 'null' else: dischargeval = discharge.datavalue # + " " + str(discharge.valuedatetime) start = datetime(1970, 1, 1) delta = discharge.valuedatetime - start mills = delta.total_seconds() * 1000 data['datavalue' + str(i)].append( {'x':dischargeval,'y':dataval,'dateTime':mills,'color':hexcolors[k]}) # [dischargeval,dataval] #if threshold == result.valueid: k+=1 timeseriesresults = Timeseriesresults.objects.\ filter(resultid__in=resultList.values("resultid")).\ order_by("resultid__variableid", "aggregationstatisticcv") # build strings for graph labels # print('data') # print(data) i = 0 seriesStr = '' unit = '' location = '' variable = '' aggStatistic = '' series = [] # print('selected result series') # print(selectedMResultSeries) r = Results.objects.filter(resultid__in=selectedMResultSeries)\ .order_by("featureactionid","resultid") # .order_by("unitsid") tsrs = Timeseriesresults.objects.filter(resultid__in=selectedMResultSeries)\ .order_by("resultid__resultid__featureactionid","resultid") L1exists = False for selectedMResult in r: i += 1 tsr = tsrs.get(resultid=selectedMResult) aggStatistic = tsr.aggregationstatisticcv unit = selectedMResult.unitsid.unitsabbreviation variable = selectedMResult.variableid.variable_name location = selectedMResult.featureactionid.samplingfeatureid.samplingfeaturename if i == 1 and not unit == '': seriesStr += str(unit) name_of_units.append(str(unit)) elif not unit == '': seriesStr += ' - ' + str(unit) name_of_units.append(str(unit)) # print('series unit and var') # print(str(unit) + ' - ' + str(variable)) # print(len(mergedResultSets)) if not popup=='hyst': series.append({"name": str(unit) + ' - ' + str(variable) + ' - ' + str(aggStatistic) + ' - ' + str(location), "allowPointSelect": "true", "yAxis": str(unit), "data": data['datavalue' + str(i)], "point": { }}) else: # build color zones vals = len(data['datavalue' + str(i)]) ii=0 j=10 thresholds = [] # print(vals) for datum in data['datavalue' + str(i)]: ii+=1 # print(ii) # print(int(round(vals/j))) if ii== int(round(vals/j)): j-=1 thresholds.append(datum['y']) zones = [] # print(thresholds) for ii in range(1, len(thresholds)): threshold = thresholds.pop() if not threshold == 'null': dict = {'value':float(threshold),'className':'zone-'+str(ii)} zones.append(dict) # print('zones') # print(zones) true = 'true' two = 2 series.append({"name": str(unit) + ' - ' + str(variable) + ' - ' + str(aggStatistic) + ' - ' + str(location), "allowPointSelect": "true", "yAxis": str(unit), "lineWidth":two,"data": data['datavalue' + str(i)], "zones": zones}) # "plotOptions": {"maker": {"enabled": true}, if mergeResults =='true' and len(mergedResultSets) <= i: break if popup == 'Anno': relatedtsr = Timeseriesresults.objects.select_related('resultid').filter( resultid__featureactionid = selectedMResult.featureactionid).filter( resultid__variableid = selectedMResult.variableid ).filter(resultid__unitsid = selectedMResult.unitsid).filter(intendedtimespacing = tsr.intendedtimespacing ).filter(intendedtimespacingunitsid = tsr.intendedtimespacingunitsid) relatedresults = Results.objects.filter(resultid__in=relatedtsr) print(relatedresults) #relatedresults = Results.objects.filter( # featureactionid = selectedMResult.featureactionid).filter( # variableid = selectedMResult.variableid #).filter(unitsid = selectedMResult.unitsid) for rr in relatedresults: if rr.processing_level.processinglevelid ==2: L1exists = True if annotationsexist: series.append({"name": 'Annotated ' + str(unit) + ' - ' + str(variable) + ' - ' + str(aggStatistic) + ' - ' + str(location), "allowPointSelect": "true", "yAxis": str(unit), "data": data['datavalueannotated'], "point": { }}) # "point": { "events": {'click': 'selectPointsByClick'}} i = 0 titleStr = '' # print(series) i = 0 name_of_sampling_features = set(name_of_sampling_features) for name_of_sampling_feature in name_of_sampling_features: i += 1 if i == 1: titleStr += name_of_sampling_feature # + ', ' +name_of_variable else: titleStr += ' - ' + name_of_sampling_feature # +name_of_variable+ ', ' chartID = 'chart_id' chart = {"renderTo": chartID, "type": 'scatter', "zoomType": 'xy'} title2 = {"text": titleStr} graphType = 'scatter' if not popup=='hyst': xAxis = {"type": 'datetime', "title": {"text": 'Date'}} else: xAxis = {"title": {"text": 'Discharge'}} # "dateTimeLabelFormats":{} chart = {"renderTo": chartID, "type": 'scatter', "zoomType": 'xy'} graphType = 'scatter' yAxis = {"title": {"text": seriesStr}} int_selectedresultid_ids = [] str_selectedresultid_ids = [] for int_selectedresultid in selectedMResultSeries: int_selectedresultid_ids.append(int(int_selectedresultid)) str_selectedresultid_ids.append(str(int_selectedresultid)) csvexport = False cvqualitycode = None if popup == 'Anno': cvqualitycode = CvQualitycode.objects.all().order_by('definition') # csvexport = True # k=0 # myfile = StringIO.StringIO() # for myresults in myresultSeriesExport: # for result in myresults: # if k==0: # myfile.write(result.csvheader()) # myfile.write('\n') # myfile.write(result.csvoutput()) # myfile.write('\n') # k+=1 # response = HttpResponse(myfile.getvalue(),content_type='text/csv') # response['Content-Disposition'] = 'attachment; filename="mydata.csv"' # if csvexport: # return response # else: # raise ValidationError(relatedFeatureList) for result in resultList: tsr = Timeseriesresults.objects.filter(resultid=result).get() result.timeintervalunits = tsr.intendedtimespacingunitsid result.timeinterval = tsr.intendedtimespacing responsedict = {'prefixpath': settings.CUSTOM_TEMPLATE_PATH, 'startDate': entered_start_date, 'endDate': entered_end_date, 'popup': popup, 'mergeResults':mergeResults, 'resultListGrouped':resultListGrouped, # 'emailsent': emailsent, # 'outEmail': outEmail, 'useSamplingFeature': useSamplingFeature, 'featureActionMethod': featureActionMethod, 'featureActionLocation': featureActionLocation, 'cvqualitycode': cvqualitycode, 'data_disclaimer': data_disclaimer, 'datasetTitle': datasetTitle, 'datasetAbstract': datasetAbstract, 'useDataset': useDataset, 'startdate': startdate, 'enddate': enddate, 'L1exists': L1exists, 'SelectedResults': int_selectedresultid_ids, 'authenticated': authenticated, 'methods': methods, 'timeseriesresults': timeseriesresults, 'chartID': chartID, 'chart': chart, 'series': series, 'title2': title2, 'resultList': resultList, 'graphType': graphType, 'xAxis': xAxis, 'yAxis': yAxis, 'name_of_units': name_of_units} if hystdict: z = hystdict.copy() z.update(responsedict) responsedict = z return TemplateResponse(request, template, responsedict, ) # # From http://stackoverflow.com/questions/8200342/removing-duplicate-strings-from-a-list-in-python def removeDupsFromListOfStrings(listOfStrings): seen = set() result = [] for item in listOfStrings: if item not in seen: seen.add(item) result.append(item) return result def scatter_plot(request): authenticated = True if not request.user.is_authenticated: authenticated = False xVariableSelection = yVariableSelection = fieldarea1 = fieldarea2 = filteredFeatures = None xVar = None yVar = None title = None if 'fieldarea1' in request.POST and 'fieldarea2' not in request.POST: if not request.POST['fieldarea1'] == 'All': fieldarea1 = request.POST['fieldarea1'] fieldarea1RF = Relatedfeatures.objects.filter(relatedfeatureid=fieldarea1) filteredFeatures = Samplingfeatures.objects.filter( samplingfeatureid__in=fieldarea1RF.values("samplingfeatureid")) fieldarea1 = Samplingfeatures.objects.filter(samplingfeatureid=fieldarea1).get() if 'fieldarea1' in request.POST and 'fieldarea2' in request.POST: if not request.POST['fieldarea1'] == 'All' and not request.POST['fieldarea2'] == 'All': fieldarea1 = request.POST['fieldarea1'] fieldarea2 = request.POST['fieldarea2'] fieldareaRF1 = Relatedfeatures.objects.filter(relatedfeatureid=fieldarea1) fieldareaRF2 = Relatedfeatures.objects.filter(relatedfeatureid=fieldarea2) # fieldareaRF = fieldarea1RF & fieldarea2RF #only sampling features in 1 and 2 filteredFeatures = Samplingfeatures.objects.filter( samplingfeatureid__in=fieldareaRF1.values("samplingfeatureid")) \ .filter(samplingfeatureid__in=fieldareaRF2.values("samplingfeatureid")) fieldarea1 = Samplingfeatures.objects.filter(samplingfeatureid=fieldarea1).get() fieldarea2 = Samplingfeatures.objects.filter(samplingfeatureid=fieldarea2).get() title = str(fieldarea1.samplingfeaturecode) + " - " + str( fieldarea2.samplingfeaturecode) + " : " if 'xVariableSelection' and 'yVariableSelection' in request.POST: xVariableSelection = request.POST['xVariableSelection'] yVariableSelection = request.POST['yVariableSelection'] xVar = Variables.objects.filter(variableid=xVariableSelection).get() yVar = Variables.objects.filter(variableid=yVariableSelection).get() xVariableSelection = Variables.objects.filter(variableid=xVariableSelection).get() yVariableSelection = Variables.objects.filter(variableid=yVariableSelection).get() if title: title = title + str(xVar.variablecode) + " - " + str(yVar.variablecode) else: title = str(xVar.variablecode) + " - " + str(yVar.variablecode) prv = Profileresults.objects.all() # second filter = exclude summary results attached to field areas pr = Results.objects.filter(resultid__in=prv).filter( ~Q( featureactionid__samplingfeatureid__sampling_feature_type="Ecological land " "classification")).filter( ~Q(featureactionid__samplingfeatureid__sampling_feature_type="Field area")) # variables is the list to pass to the html template variables = Variables.objects.filter(variableid__in=pr.values("variableid")) fieldareas = Samplingfeatures.objects.filter( sampling_feature_type="Ecological land classification") # Field area xlocation = [] ylocation = [] xdata = [] ydata = [] prvx = prvy = xlocs = ylocs = None if xVar and yVar: rvx = pr.filter(variableid=xVar).values('resultid') prvx = Profileresultvalues.objects.filter(~Q(datavalue=-6999)) \ .filter(~Q(datavalue=-888.88)).filter(resultid__in=rvx).order_by( "resultid__resultid__unitsid", "resultid__resultid__featureactionid__samplingfeatureid", "zlocation") rvy = pr.filter(variableid=yVar).values('resultid') prvy = Profileresultvalues.objects.filter(~Q(datavalue=-6999)) \ .filter(~Q(datavalue=-888.88)).filter(resultid__in=rvy).order_by( "resultid__resultid__unitsid", "resultid__resultid__featureactionid__samplingfeatureid", "zlocation") xr = Results.objects.filter(resultid__in=prvx.values("resultid")) xfa = Featureactions.objects.filter(featureactionid__in=xr.values("featureactionid")) if filteredFeatures: xlocs = Samplingfeatures.objects.filter( samplingfeatureid__in=xfa.values("samplingfeatureid")).filter( samplingfeatureid__in=filteredFeatures) else: xlocs = Samplingfeatures.objects.filter( samplingfeatureid__in=xfa.values("samplingfeatureid")) # xlocation = re.sub('[^A-Za-z0-9]+', '', xlocation) yr = Results.objects.filter(resultid__in=prvy.values("resultid")) yfa = Featureactions.objects.filter(featureactionid__in=yr.values("featureactionid")) if filteredFeatures: ylocs = Samplingfeatures.objects.filter( samplingfeatureid__in=yfa.values("samplingfeatureid")).filter( samplingfeatureid__in=filteredFeatures) else: ylocs = Samplingfeatures.objects.filter( samplingfeatureid__in=yfa.values("samplingfeatureid")) if prvx and prvx: prvx = prvx.filter(resultid__resultid__featureactionid__samplingfeatureid__in=xlocs) prvy = prvy.filter(resultid__resultid__featureactionid__samplingfeatureid__in=ylocs) for x in prvx: xdata.append( str( x.datavalue ) + ";" + str( x.resultid.resultid.unitsid.unitsabbreviation ) + ";" + str( x.zlocation ) + ";" + str( x.resultid.resultid.featureactionid.samplingfeatureid.samplingfeaturename ) ) tmpLoc = "{0} {1}-{2} {3};{4};{5};{6};{7}".format(str( x.resultid.resultid.featureactionid.samplingfeatureid.samplingfeaturename ), str( x.zlocation - x.zaggregationinterval ), str( x.zlocation ), str( x.zlocationunitsid.unitsabbreviation ), str( x.resultid.resultid.unitsid.unitsabbreviation ), str( x.zlocation ), str( x.resultid.resultid.featureactionid.samplingfeatureid.samplingfeaturename ), str( x.resultid.resultid.unitsid.unitsabbreviation )) xlocation.append(tmpLoc) for y in prvy: ydata.append( str(y.datavalue) + ";" + str( y.resultid.resultid.unitsid.unitsabbreviation) + ";" + str(y.zlocation) + ";" + str( y.resultid.resultid.featureactionid.samplingfeatureid.samplingfeaturename)) foundloc = False for x in prvx: if x.zlocation == y.zlocation or x.resultid.resultid.featureactionid \ .samplingfeatureid.samplingfeaturename == y.resultid.resultid \ .featureactionid.samplingfeatureid.samplingfeaturename: foundloc = True tmpLoc = "{0} {1}-{2} {3};{4};{5};{6};{7}".format( str( y.resultid.resultid .featureactionid.samplingfeatureid.samplingfeaturename ), str(y.zlocation - y.zaggregationinterval), str(y.zlocation), str(y.zlocationunitsid.unitsabbreviation), str(y.resultid.resultid.unitsid.unitsabbreviation), str(y.zlocation), str(y.resultid.resultid.featureactionid .samplingfeatureid.samplingfeaturename), str(y.resultid.resultid.unitsid.unitsabbreviation) ) if not foundloc: xlocation.append(tmpLoc) # xlocation.append(tmpLoc) chartID = 'chart_id' chart = {"renderTo": chartID, "type": 'scatter', "zoomType": 'xy'} title2 = {"text": title} # xAxis = {"categories":xAxisCategories,} #"type": 'category', # "title": {"text": xAxisCategories}, yAxis = {"title": {"text": str(yVar)}} xAxis = {"title": {"text": str(xVar)}} graphType = 'scatter' if 'export_data' in request.POST: resultValuesSeries = prvx | prvy response = exportspreadsheet(request, resultValuesSeries) return response return TemplateResponse(request, 'soilsscatterplot.html', {'prefixpath': settings.CUSTOM_TEMPLATE_PATH, 'data_disclaimer': settings.DATA_DISCLAIMER, 'xVariables': variables, 'yVariables': variables, 'authenticated': authenticated, 'xVariableSelection': xVariableSelection, 'yVariableSelection': yVariableSelection, 'fieldarea1': fieldarea1, 'fieldarea2': fieldarea2, 'fieldareas': fieldareas, 'chartID': chartID, 'chart': chart, 'title2': title2, 'graphType': graphType, 'yAxis': yAxis, 'xAxis': xAxis, 'xdata': xdata, 'ydata': ydata, 'ylocation': ylocation, 'xlocation': xlocation, 'name': request.user, 'site_title': admin.site.site_title, 'site_header': admin.site.site_header, 'short_title': 'Soils Scatter Plot'}, ) def exportcitations(request, citations, csv): myfile = StringIO() first = True citationpropvalues = Citationextensionpropertyvalues.objects.filter( citationid__in=citations).order_by("propertyid") authorheader = Authorlists.objects.filter(citationid__in=citations).order_by( "authororder").distinct("authororder") # MyTable.objects.extra(select={'int_name': 'CAST(t.name AS INTEGER)'}, # order_by=['int_name']) authheadercount = authorheader.__len__() citationpropheaders = citationpropvalues.distinct("propertyid").order_by("propertyid") for citation in citations: if first and csv: myfile.write(citation.csvheader()) for auth in authorheader: myfile.write(auth.csvheader()) for citationprop in citationpropheaders: myfile.write(citationprop.csvheader()) myfile.write('\n') if csv: myfile.write(citation.csvoutput()) else: # endnote instead myfile.write(citation.endnoteexport()) # export authors authors = Authorlists.objects.filter(citationid=citation).order_by("authororder") authcount = authors.__len__() for auth in authors: if csv: myfile.write(auth.csvoutput()) else: myfile.write(auth.endnoteexport()) if csv: for i in range(0, authheadercount - authcount, 1): myfile.write('"",') thiscitationpropvalues = citationpropvalues.filter(citationid=citation).order_by( "propertyid") for matchheader in citationpropheaders: headermatched = False for citationprop in thiscitationpropvalues: headermatched = False if matchheader.propertyid == citationprop.propertyid: headermatched = True if csv and headermatched: myfile.write(citationprop.csvoutput()) elif headermatched: myfile.write(citationprop.endnoteexport()) if headermatched: break if not headermatched and csv: myfile.write('"",') if csv: myfile.write('\n') else: myfile.write('ER - \r\n\r\n') first = False if csv: response = HttpResponse(myfile.getvalue(), content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="mycitations.csv"' else: response = HttpResponse(myfile.getvalue(), content_type='text/txt') response['Content-Disposition'] = 'attachment; filename="myCitationsEndNoteImport.txt"' return response def get_client_ip(request): x_forwarded_for = request.META.get('HTTP_X_FORWARDED_FOR') if x_forwarded_for: ip = x_forwarded_for.split(',')[0] else: ip = request.META.get('REMOTE_ADDR') return ip def grecaptcha_verify(request): if request.method == 'POST': response = {} data = request.POST captcha_rs = data.get('g_recaptcha_response') url = "https://www.google.com/recaptcha/api/siteverify" params = { 'secret': settings.RECAPTCHA_PRIVATE_KEY, 'response': captcha_rs, 'remoteip': get_client_ip(request) } verify_rs = requests.get(url, params=params, verify=True) verify_rs = verify_rs.json() response["status"] = verify_rs.get("success", False) response['message'] = verify_rs.get('error-codes', None) or "Unspecified error." return response def emailspreadsheet(request, resultValuesSeries, profileResult=True): # if the user hit the export csv button export the measurement results to csv response = grecaptcha_verify(request) captach_status = response["status"] out_email = '' entered_start_date ='' entered_end_date ='' use_dates ='' emailsent = False if captach_status: if 'startDate' in request.POST: entered_start_date = request.POST['startDate'] if 'endDate' in request.POST: entered_end_date = request.POST['endDate'] if 'useDates' in request.POST: use_dates = request.POST['useDates'] if 'outEmail' in request.POST: outgoingemail = request.POST['outEmail'] management.call_command('export_timeseriesresultvaluesextwannotations', outgoingemail, entered_start_date, entered_end_date, use_dates, resultValuesSeries) emailsent = True return emailsent # @after_response.enable def emailspreadsheet2(request, resultValuesSeries, profileResult=True): response = grecaptcha_verify(request) captach_status = response["status"] # captach_status = True outgoingemail = '' entered_start_date ='' entered_end_date ='' use_dates ='' emailsent = False emailtitle = 'your ODM2 Admin data is attached' emailtext = 'Attached are results for the following time series: ' if captach_status: # print("captach ok") if 'outEmail' in request.POST: outgoingemail = request.POST['outEmail'] # print(outgoingemail) tolist = [] tolist.append(str(outgoingemail)) # print(tolist) myfile = StringIO() # raise ValidationError(resultValues) k = 0 variablesAndUnits = [] variable = '' unit = '' firstheader = True processingCode = None lastResult = None newResult = None resultValuesHeaders = resultValuesSeries.filter( ~Q( samplingfeaturetypecv="Ecological land classification" # noqa ) ).filter( ~Q( samplingfeaturetypecv="Field area" # noqa ) ).order_by( "resultid", "variablecode", "unitsabbreviation", "processinglevelcode" ) # .distinct("resultid__resultid__variableid","resultid__resultid__unitsid") for myresults in resultValuesHeaders: lastResult = newResult newResult = myresults lastVariable = variable variable = myresults.variablecode lastUnit = unit unit = myresults.unitsabbreviation lastProcessingCode = processingCode processingCode = myresults.processinglevelcode # if not firstheader and firstVar==variable and firstUnit==unit: # only add the first instance of each variable, once one repeats your done. # break if not lastVariable == variable or not lastUnit == unit or not lastProcessingCode == \ processingCode or not newResult.resultid == lastResult.resultid: variablesAndUnits.append(variable + unit + processingCode +str(newResult.resultid)) if firstheader: myfile.write(myresults.csvheader()) firstheader = False myfile.write(myresults.csvheaderShort()) emailtext = emailtext + ' - ' + str(myresults.email_text()) # elif not lastUnit==unit: # myfile.write(myresults.csvheaderShortUnitOnly()) if profileResult: resultValuesSeries = resultValuesSeries.filter( ~Q( resultid__resultid__featureactionid__samplingfeatureid__sampling_feature_type="Ecological land classification" # noqa ) ).filter( ~Q(resultid__resultid__featureactionid__samplingfeatureid__sampling_feature_type="Field area" # noqa ) ).order_by( "resultid__resultid__featureactionid__samplingfeatureid__samplingfeaturecode", "resultid__intendedzspacing", "resultid__resultid__variableid", "resultid__resultid__unitsid__unitsabbreviation" ) else: resultValuesSeries = resultValuesSeries.filter( ~Q(samplingfeaturetypecv="Ecological land classification") # noqa ).filter( ~Q(samplingfeaturetypecv="Field area" # noqa ) ).order_by( "valuedatetime", "resultid", "samplingfeaturename", "variablecode", "unitsabbreviation", "processinglevelcode" ) # myfile.write(lastResult.csvheaderShort()) # emailtext = emailtext + ' - ' + str(lastResult.email_text()) myfile.write('\n') samplingfeaturename = '' lastsamplingfeaturename = '' depth = 0 position = 0 time = None # resultid__resultid__featureactionid__samplingfeatureid__samplingfeaturename for myresults in resultValuesSeries: lastResult = newResult # #newResult = myresults variable = myresults.variablecode unit = myresults.unitsabbreviation lastsamplingfeaturename = samplingfeaturename samplingfeaturename = myresults.samplingfeaturename lastDepth = depth processingCode = myresults.processinglevelcode if profileResult: depth = myresults.resultid.intendedzspacing if not k == 0 and (not lastsamplingfeaturename == samplingfeaturename or not depth == lastDepth): myfile.write('\n') temp = myresults.csvoutput() myfile.write(temp) position = 0 elif k == 0: temp = myresults.csvoutput() myfile.write(temp) else: lastTime = time time = myresults.valuedatetime if not k == 0 and (not lastsamplingfeaturename == samplingfeaturename or not time == lastTime): myfile.write('\n') temp = myresults.csvoutput() myfile.write(temp) position = 0 elif k == 0: temp = myresults.csvoutput() myfile.write(temp) # else: # if variablesAndUnits.index(unicode(variable)+unicode(unit)) ==position: for i in range( position, variablesAndUnits.index(variable + unit + processingCode+str(myresults.resultid)) ): myfile.write(",") myfile.write(",") myfile.write(",") position += 1 myfile.write(myresults.csvoutputShort()) position += 1 k += 1 # response = StreamingHttpResponse(myfile.getvalue(), content_type='text/csv') # response['Content-Disposition'] = 'attachment; filename="mydata.csv"' # print('email!!!!') # print(settings.EMAIL_FROM_ADDRESS) # print(emailtext) # print(tolist) email = EmailMessage(emailtitle,emailtext, settings.EMAIL_FROM_ADDRESS, tolist) email.attach('mydata.csv', myfile.getvalue(),'text/csv') email.send() return True else: # print("captcha not ok") return False def exportspreadsheet(request, resultValuesSeries, profileResult=True): # if the user hit the export csv button export the measurement results to csv myfile = StringIO.StringIO() # raise ValidationError(resultValues) k = 0 variablesAndUnits = [] variable = '' unit = '' firstheader = True processingCode = None resultValuesHeaders = resultValuesSeries.filter( ~Q( resultid__resultid__featureactionid__samplingfeatureid__sampling_feature_type="Ecological land classification" # noqa ) ).filter( ~Q( resultid__resultid__featureactionid__samplingfeatureid__sampling_feature_type="Field area" # noqa ) ).order_by( "resultid__resultid__variableid", "resultid__resultid__unitsid", "resultid__resultid__processing_level__processinglevelcode" ) # .distinct("resultid__resultid__variableid","resultid__resultid__unitsid") for myresults in resultValuesHeaders: lastVariable = variable variable = myresults.resultid.resultid.variableid.variablecode lastUnit = unit unit = myresults.resultid.resultid.unitsid.unitsabbreviation lastProcessingCode = processingCode processingCode = myresults.resultid.resultid.processing_level.processinglevelcode # if not firstheader and firstVar==variable and firstUnit==unit: # only add the first instance of each variable, once one repeats your done. # break if not lastVariable == variable or not lastUnit == unit or not lastProcessingCode == \ processingCode: variablesAndUnits.append(variable + unit + processingCode) if firstheader: myfile.write(myresults.csvheader()) firstheader = False myfile.write(myresults.csvheaderShort()) # elif not lastUnit==unit: # myfile.write(myresults.csvheaderShortUnitOnly()) if profileResult: resultValuesSeries = resultValuesSeries.filter( ~Q( resultid__resultid__featureactionid__samplingfeatureid__sampling_feature_type="Ecological land classification" # noqa ) ).filter( ~Q(resultid__resultid__featureactionid__samplingfeatureid__sampling_feature_type="Field area" # noqa ) ).order_by( "resultid__resultid__featureactionid__samplingfeatureid__samplingfeaturecode", "resultid__intendedzspacing", "resultid__resultid__variableid", "resultid__resultid__unitsid" ) else: resultValuesSeries = resultValuesSeries.filter( ~Q( resultid__resultid__featureactionid__samplingfeatureid__sampling_feature_type="Ecological land classification") # noqa ).filter( ~Q( resultid__resultid__featureactionid__samplingfeatureid__sampling_feature_type="Field area" # noqa ) ).order_by( "valuedatetime", "resultid__resultid__featureactionid__samplingfeatureid__samplingfeaturecode", "resultid__resultid__variableid", "resultid__resultid__unitsid", "resultid__resultid__processing_level__processinglevelcode" ) # myfile.write(lastResult.csvheaderShort()) myfile.write('\n') samplingFeatureCode = '' depth = 0 position = 0 time = None # resultid__resultid__featureactionid__samplingfeatureid__samplingfeaturecode for myresults in resultValuesSeries: variable = myresults.resultid.resultid.variableid.variablecode unit = myresults.resultid.resultid.unitsid.unitsabbreviation lastSamplingFeatureCode = samplingFeatureCode samplingFeatureCode = myresults.resultid.resultid.featureactionid.samplingfeatureid \ .samplingfeaturecode lastDepth = depth processingCode = myresults.resultid.resultid.processing_level.processinglevelcode if profileResult: depth = myresults.resultid.intendedzspacing if not k == 0 and (not lastSamplingFeatureCode == samplingFeatureCode or not depth == lastDepth): myfile.write('\n') temp = myresults.csvoutput() myfile.write(temp) position = 0 elif k == 0: temp = myresults.csvoutput() myfile.write(temp) else: lastTime = time time = myresults.valuedatetime if not k == 0 and (not lastSamplingFeatureCode == samplingFeatureCode or not time == lastTime): myfile.write('\n') temp = myresults.csvoutput() myfile.write(temp) position = 0 elif k == 0: temp = myresults.csvoutput() myfile.write(temp) # else: # if variablesAndUnits.index(unicode(variable)+unicode(unit)) ==position: for i in range( position, variablesAndUnits.index(variable + unit + processingCode) ): myfile.write(",") position += 1 myfile.write(myresults.csvoutputShort()) position += 1 k += 1 response = StreamingHttpResponse(myfile.getvalue(), content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="mydata.csv"' # email = EmailMessage(emailtitle,emailtext, # 'leonmi@sas.upenn.edu', tolist) # email.attach('mydata.csv', myfile.getvalue(),'text/csv') # email.send() return response def graph_data(request, selectedrelatedfeature='NotSet', samplingfeature='NotSet', popup='NotSet'): authenticated = True if not request.user.is_authenticated: authenticated = False if popup == 'NotSet': template = loader.get_template('chartVariableAndFeature.html') else: template = loader.get_template('profileresultgraphpopup.html') selected_relatedfeatid = 15 data_disclaimer = settings.DATA_DISCLAIMER # relatedfeatureList # update_result_on_related_feature # need a variables list instead of a results list # find the variables for the selected related feature if 'SelectedRelatedFeature' in request.POST: if not request.POST['SelectedRelatedFeature'] == 'All': # relatedFeature = Samplingfeatures.objects.filter(samplingfeatureid= # selected_relatedfeatid) #Relatedfeatures.objects.filter(relatedfeatureid= # int(selected_relatedfeatid)).distinct('relatedfeatureid') selected_relatedfeatid = int(request.POST['SelectedRelatedFeature']) # relatedFeature = Samplingfeatures.objects.filter(samplingfeatureid= # selected_relatedfeatid) elif selectedrelatedfeature != 'NotSet': selected_relatedfeatid = int(selectedrelatedfeature) else: selected_relatedfeatid = 15 useSamplingFeature = False samplingfeaturelabel = None if samplingfeature != 'NotSet': samplingfeature = int(samplingfeature) useSamplingFeature = True samplingfeaturelabel = Samplingfeatures.objects.filter(samplingfeatureid=samplingfeature).get() # find variables found at the sampling feature # need to go through featureaction to get to results # need the feature actions for all of the sampling features related to this sampling feature if not useSamplingFeature: sampling_features = Relatedfeatures.objects.filter( relatedfeatureid__exact=selected_relatedfeatid).values( 'samplingfeatureid') samplingfeaturelabel = Samplingfeatures.objects.filter(samplingfeatureid=selected_relatedfeatid).get() # select the feature actions for all of the related features. feature_actions = Featureactions.objects.filter(samplingfeatureid__in=sampling_features) else: feature_actions = Featureactions.objects.filter(samplingfeatureid=samplingfeature) featureresults = Results.objects.filter( featureactionid__in=feature_actions ).order_by( "variableid", "unitsid" ).filter( ~Q(featureactionid__samplingfeatureid__sampling_feature_type="Ecological land " "classification") ).filter( ~Q(featureactionid__samplingfeatureid__sampling_feature_type="Field area")) variableList = Variables.objects.filter(variableid__in=featureresults.values("variableid")) # find the profile results series for the selected variable numvariables = variableList.__len__() # raise ValidationError(numvariables) selectedMVariableSeries = [] for i in range(0, numvariables): selectionStr = str('selection' + str(i)) if selectionStr in request.POST: # raise ValidationError(request.POST[selectionStr]) for variable in variableList: if int(request.POST[selectionStr]) == variable.variableid: selectedMVariableSeries.append(int(request.POST[selectionStr])) # if no series were selected (like on first load) set the series to some value. if len(variableList) > 0 and len(selectedMVariableSeries) == 0: selectedMVariableSeries.append(int(variableList[0].variableid)) elif len(variableList) == 0 and len(selectedMVariableSeries) == 0: selectedMVariableSeries.append(15) selectedMResultsSeries = None for variable in selectedMVariableSeries: if not selectedMResultsSeries: selectedMResultsSeries = featureresults.filter(variableid=variable) else: # concatenante the sets of results for each variable selectedMResultsSeries = selectedMResultsSeries | featureresults.filter( variableid=variable) selected_results = [] name_of_sampling_features = [] name_of_variables = [] name_of_units = [] unitAndVariable = '' i = 0 data = {} resultValuesSeries = None # if 'update_result_on_related_feature' in request.POST: # raise ValidationError(selectedMResultsSeries) # selectedMResultsSeries.order_by("resultid__") # these 5 lines sort the results by there z-spacing low to high, then by # alphabelitcally by there sampling # feature code, luckily Ridge, Slope, Valley are in alphabetical order. profileresults = Profileresults.objects.filter(resultid__in=selectedMResultsSeries).order_by( "resultid__variableid", "resultid__unitsid", "intendedzspacing", "resultid__featureactionid__samplingfeatureid__samplingfeaturecode") sortedResults = list() for result in profileresults: sortedResults.append(selectedMResultsSeries.get(resultid=result.resultid.resultid)) selectedMResultsSeries = sortedResults for selectedMResult in selectedMResultsSeries: i += 1 selected_result = Results.objects.filter(resultid=selectedMResult.resultid).get() # if 'update_result_on_related_feature' in request.POST: # raise ValidationError(selected_result) selected_results.append(selected_result) # name_of_sampling_features.append(get_name_of_sampling_feature(selected_result)) tmpname = selected_result.featureactionid.samplingfeatureid.samplingfeaturename # get_name_of_sampling_feature(selected_result) tmpLocName = tmpname tmpname = selected_result.variableid.variablecode # get_name_of_variable(selected_result) unitAndVariable = tmpname if name_of_variables.__len__() > 0: name_of_variables.append(tmpname) else: name_of_variables.append(tmpname) tmpname = selected_result.unitsid.unitsname # get_name_of_units(selected_result) # if(selectedMResult.resultid==2072): # raise ValidationError(tmpname) unitAndVariable = unitAndVariable + " " + tmpname if name_of_units.__len__() > 0: name_of_units.append(tmpname) else: name_of_units.append(tmpname) resultValues = Profileresultvalues.objects.all().filter( resultid__exact=selectedMResult.resultid) # .order_by("-zlocation") if not resultValuesSeries: resultValuesSeries = resultValues else: resultValuesSeries = resultValuesSeries | resultValues # if 'update_result_on_related_feature' in request.POST: # raise ValidationError(resultValues) for resultValue in resultValues: # raise ValidationError(resultValues) seriesName = 'datavalue' + unitAndVariable tmpLocName = tmpLocName + " Depth " + str( resultValue.zlocation - resultValue.zaggregationinterval) + "-" + str( resultValue.zlocation) + " " + str(resultValue.zlocationunitsid.unitsabbreviation) name_of_sampling_features.append(tmpLocName) if seriesName in data: if resultValue.datavalue != -6999 and resultValue.datavalue != -888.88: data['datavalue' + unitAndVariable].append( [tmpLocName, resultValue.datavalue]) # tmpUnit +' - '+tmpVariableName +' - '+ else: data['datavalue' + unitAndVariable].append([tmpLocName, None]) else: data.update({'datavalue' + unitAndVariable: []}) if resultValue.datavalue != -6999 and resultValue.datavalue != -888.88: data['datavalue' + unitAndVariable].append( [tmpLocName, resultValue.datavalue]) # tmpUnit +' - '+tmpVariableName +' - '+ else: data['datavalue' + unitAndVariable].append([tmpLocName, None]) # data['datavalue' + unitAndVariable].append( resultValue.datavalue) # #get_name_of_variable(selected_result) + " " + # get_name_of_sampling_feature(selected_result) , # data2.append(resultValue.datavalue) # raise ValidationError(data) # build strings for graph labels i = 0 seriesStr = '' series = [] titleStr = '' tmpUnit = '' tmpVariableName = '' numberofLocations = len(name_of_sampling_features) for name_of_unit, name_of_variable in zip(name_of_units, name_of_variables): # raise ValidationError("length of unit names"+ str(len(name_of_units)) + # "length of name of variables"+ str(len(name_of_variables))) # #get fewer sampling feature names i += 1 lastUnit = tmpUnit lastVariableName = tmpVariableName tmpVariableName = name_of_variable tmpUnit = name_of_unit if not name_of_variable == lastVariableName or not name_of_unit == lastUnit: update = True else: update = False if i == 1 and not name_of_unit == '': seriesStr += name_of_unit elif name_of_unit != lastUnit and update: # tmpUnit = name_of_unit seriesStr += ' - ' + name_of_unit lastUnitAndVariable = unitAndVariable unitAndVariable = tmpVariableName + " " + tmpUnit # raise ValidationError(data['datavalue'+unitAndVariable]) # raise ValidationError(name_of_unit) key = 'datavalue' + unitAndVariable if lastUnitAndVariable != unitAndVariable and update and key in data: series.append({"name": tmpUnit + ' - ' + tmpVariableName, "yAxis": tmpUnit, #"area": {"cropThreshold": 50000}, "data": data[ 'datavalue' + unitAndVariable]}) # removewd from name +' - '+ tmpLocName if titleStr == '': titleStr = tmpVariableName else: titleStr += ' - ' + tmpVariableName elif i == numberofLocations and len(series) == 0 and key in data: # raise ValidationError(name_of_unit) series.append({"name": tmpUnit + ' - ' + tmpVariableName, "yAxis": tmpUnit, "data": data['datavalue' + unitAndVariable]}) if titleStr == '': titleStr = tmpVariableName # titleStr += tmpVariableName # series.append(data['datavalue'+str(i)]) chartID = 'chart_id' chart = {"renderTo": chartID, "type": 'column', "zoomType": 'xy'} title2 = {"text": titleStr} # xAxis = {"categories":xAxisCategories,} #"type": # 'category',"title": {"text": xAxisCategories}, yAxis = {"title": {"text": seriesStr}} graphType = 'column' withProfileResults = Profileresults.objects.all() results = Results.objects.filter(resultid__in=withProfileResults) samplefeatid = Featureactions.objects.filter(featureactionid__in=results).values( 'samplingfeatureid') relatedFeatureList = Relatedfeatures.objects.filter( samplingfeatureid__in=samplefeatid).distinct( 'relatedfeatureid') # .order_by('relatedfeatureid') # relatedFeatureList = sorted(relatedFeatureList, # key=operator.attrgetter('relatedfeatureid__samplingfeaturecode')) # #relatedFeatureList.order_by('relatedfeatureid__samplingfeaturecode') int_selectedvariable_ids = [] for int_selectedvariableid in selectedMVariableSeries: int_selectedvariable_ids.append(int(int_selectedvariableid)) # if the user hit the export csv button export the measurement results to csv linkExtProperty = Extensionproperties.objects.filter(propertyname="DatasetFileLink").get() datasetresults = Datasetsresults.objects.filter(resultid__in=selectedMResultsSeries) datasets = Datasets.objects.filter(datasetid__in=datasetresults.values("datasetid")) datasetcitations = Datasetcitations.objects.filter(datasetid__in=datasets) citations = Citations.objects.filter(citationid__in=datasetcitations.values("citationid")) datasetcitationlinks = {} for citation in citations: extprop = Citationextensionpropertyvalues.objects.filter(citationid=citation).get(propertyid=linkExtProperty) try: datasetcitationlinks[citation.title] = extprop.propertyvalue except ObjectDoesNotExist: datasetcitationlinks[citation.title] = '' if 'export_data' in request.POST: resultValuesSeries = resultValuesSeries.order_by( "resultid__resultid__featureactionid__samplingfeatureid__samplingfeaturecode", "resultid__intendedzspacing", "resultid__resultid__variableid", "resultid__resultid__unitsid") response = exportspreadsheet(request, resultValuesSeries) return response else: # this removes duplicates from a list of strings name_of_units = removeDupsFromListOfStrings(name_of_units) # raise ValidationError(relatedFeatureList) return TemplateResponse(request, template, {'prefixpath': settings.CUSTOM_TEMPLATE_PATH, 'datasetcitationlinks': datasetcitationlinks, 'variableList': variableList, 'SelectedVariables': int_selectedvariable_ids, 'authenticated': authenticated, 'data_disclaimer': data_disclaimer, 'chartID': chartID, 'chart': chart, 'series': series, 'title2': title2, 'graphType': graphType, 'yAxis': yAxis, 'name_of_units': name_of_units, 'samplingfeaturelabel': samplingfeaturelabel, 'relatedFeatureList': relatedFeatureList, 'SelectedRelatedFeature': selected_relatedfeatid, 'name': request.user, 'site_title': admin.site.site_title, 'site_header': admin.site.site_header, 'short_title': 'Soils Data' }, )
mit
w-garcia/BugClustering
classifier.py
1
6864
from generate_vectors import generate_vectors from clustering_h_agglomerative import do_h_agglomerative from clustering_sklearn import do_sklearn from config import config as cfg import csv import DBModel import util import copy import random def classify(slice=None): _dataset_stack, selection_cache = setup_datasets(slice) list_of_dicts = [] while _dataset_stack: print "[classifier] : {} tickets left to go.".format(len(_dataset_stack)) row = _dataset_stack.pop() row_copy = copy.deepcopy(row) row_copy.classification = '' assert(uniqueness_condition(selection_cache, row_copy), "Classifier bug ticket is not unique! Check ticket dataset for duplicates.") original_len = len(selection_cache) selection_cache.append(row_copy) new_len = len(selection_cache) print "[vectors] : Original dataset length: {}, new length: {}".format(original_len, new_len) #TODO: change prediction variable such that I can pass in a list of addon rows and get a list of predictions prediction = [] generate_vectors(cfg.model_selection, selection_cache) if cfg.classification_method == 'default': do_h_agglomerative(cfg.model_selection, prediction) elif cfg.classification_method == 'knn': do_sklearn(cfg.model_selection, prediction) elif cfg.classification_method == 'kmeans': do_sklearn(cfg.model_selection, prediction) selection_cache.pop() _row_dict = create_row_dict(prediction, row) list_of_dicts.append(_row_dict) cls_path = util.generate_meta_path(cfg.model_selection, 'classifier') util.ensure_path_exists(cls_path) filename = '' if cfg.classification_method == 'default': filename = cls_path + list_of_dicts[0]['system'] + '_classifier.csv' elif cfg.classification_method == 'knn': filename = cls_path + list_of_dicts[0]['system'] + '_knn_classifier.csv' elif cfg.classification_method == 'kmeans': filename = cls_path + list_of_dicts[0]['system'] + '_kmeans_classifier.csv' write_classifier_file(filename, list_of_dicts) print "[status] : Classifier finished. Analysis started." def create_row_dict(prediction, row): row_dict = {'id': row.id, 'description': row.description, 'system': row.system, 'ground truth': row.classification, 'prediction': ' '.join(prediction[0])} return row_dict def get_chunks(data_list): num_chunks = int(1 / cfg.test_dataset_split) len_chunk = len(data_list) / num_chunks remainders = len(data_list) % num_chunks # Chop off remainder tickets if length of data_list yields a remainder if remainders: data_list = data_list[:-remainders] return [data_list[i:i + len_chunk] for i in range(0, len(data_list), len_chunk)] def contains_classes_of_interest(row): for ci in cfg.classes_of_interest: for c in row.classification.split(' '): if ci in c: return True return False def setup_datasets(slice): # TODO: Get in random order, sequential tickets might be similair (important when processing multiple tickets at once) # Create dataset stack to be labelled if cfg.clustering_mode == 'test': _dataset_stack = [row for row in DBModel.LFF_Keywords.get_db_ref_by_system(cfg.test_dataset).select() if contains_classes_of_interest(row)] if cfg.test_dataset == cfg.model_selection: # Split up the same dataset according to split chunks = get_chunks(_dataset_stack) # Get index to use as test. This is done using the slice variable for k-fold, or randomly for random subsampling if cfg.xvalidation_mode == 'kfold': index = slice elif cfg.xvalidation_mode == 'rand_ss': index = random.randint(0, len(chunks) - 1) else: index = 0 _dataset_stack = chunks[index] chunks.pop(index) # Flatten rest of chunks into selection selection_cache = [row for chunk in chunks for row in chunk] return _dataset_stack, selection_cache elif cfg.model_selection == 'all_systems': # First add all the tickets, ignoring the nested system selection_cache = [] for system in util.systems: if system == cfg.test_dataset: continue for row in DBModel.LFF_Keywords.get_db_ref_by_system(system): if contains_classes_of_interest(row): selection_cache.append(row) # Figure out what the test dataset will be chunks = get_chunks(_dataset_stack) # Get index to use as test. This is done using the slice variable for k-fold, or randomly for random subsampling if cfg._xvalidation_mode == 'kfold': index = slice elif cfg._xvalidation_mode == 'rand_ss': index = random.randint(0, len(chunks) - 1) else: #Not sure default should be yet index = 0 _dataset_stack = chunks[index] chunks.pop(index) # Now add the remaining tickets from the test dataset using flattened rest of chunks for row in [row for chunk in chunks for row in chunk]: selection_cache.append(row) return _dataset_stack, selection_cache else: selection_cache = [row for row in DBModel.LFF_Keywords.get_db_ref_by_system(cfg.model_selection).select()] return _dataset_stack, selection_cache else: _dataset_stack = [row for row in DBModel.LFF_Keywords.get_db_ref_by_system(cfg.labelling_dataset).select()] # Label dataset should never intersect with model data if cfg.model_selection == 'all_systems': selection_cache = [] for system in util.systems: for row in DBModel.LFF_Keywords.get_db_ref_by_system(system).select(): selection_cache.append(row) else: selection_cache = [row for row in DBModel.LFF_Keywords.get_db_ref_by_system(cfg.model_selection).select()] return _dataset_stack, selection_cache def write_classifier_file(filename, list_of_dicts): with open(filename, 'w') as csvfile: fieldnames = list_of_dicts[0].keys() writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for row in list_of_dicts: writer.writerow(row) def uniqueness_condition(selection, addon_selection): original_ids = [row.id for row in selection] add_id = addon_selection.id if add_id in original_ids: return False return True
apache-2.0
mcr/ietfdb
django/contrib/gis/utils/geoip.py
316
14811
""" This module houses the GeoIP object, a ctypes wrapper for the MaxMind GeoIP(R) C API (http://www.maxmind.com/app/c). This is an alternative to the GPL licensed Python GeoIP interface provided by MaxMind. GeoIP(R) is a registered trademark of MaxMind, LLC of Boston, Massachusetts. For IP-based geolocation, this module requires the GeoLite Country and City datasets, in binary format (CSV will not work!). The datasets may be downloaded from MaxMind at http://www.maxmind.com/download/geoip/database/. Grab GeoIP.dat.gz and GeoLiteCity.dat.gz, and unzip them in the directory corresponding to settings.GEOIP_PATH. See the GeoIP docstring and examples below for more details. TODO: Verify compatibility with Windows. Example: >>> from django.contrib.gis.utils import GeoIP >>> g = GeoIP() >>> g.country('google.com') {'country_code': 'US', 'country_name': 'United States'} >>> g.city('72.14.207.99') {'area_code': 650, 'city': 'Mountain View', 'country_code': 'US', 'country_code3': 'USA', 'country_name': 'United States', 'dma_code': 807, 'latitude': 37.419200897216797, 'longitude': -122.05740356445312, 'postal_code': '94043', 'region': 'CA'} >>> g.lat_lon('salon.com') (37.789798736572266, -122.39420318603516) >>> g.lon_lat('uh.edu') (-95.415199279785156, 29.77549934387207) >>> g.geos('24.124.1.80').wkt 'POINT (-95.2087020874023438 39.0392990112304688)' """ import os, re from ctypes import c_char_p, c_float, c_int, Structure, CDLL, POINTER from ctypes.util import find_library from django.conf import settings if not settings.configured: settings.configure() # Creating the settings dictionary with any settings, if needed. GEOIP_SETTINGS = dict((key, getattr(settings, key)) for key in ('GEOIP_PATH', 'GEOIP_LIBRARY_PATH', 'GEOIP_COUNTRY', 'GEOIP_CITY') if hasattr(settings, key)) lib_path = GEOIP_SETTINGS.get('GEOIP_LIBRARY_PATH', None) # GeoIP Exception class. class GeoIPException(Exception): pass # The shared library for the GeoIP C API. May be downloaded # from http://www.maxmind.com/download/geoip/api/c/ if lib_path: lib_name = None else: # TODO: Is this really the library name for Windows? lib_name = 'GeoIP' # Getting the path to the GeoIP library. if lib_name: lib_path = find_library(lib_name) if lib_path is None: raise GeoIPException('Could not find the GeoIP library (tried "%s"). ' 'Try setting GEOIP_LIBRARY_PATH in your settings.' % lib_name) lgeoip = CDLL(lib_path) # Regular expressions for recognizing IP addresses and the GeoIP # free database editions. ipregex = re.compile(r'^(?P<w>\d\d?\d?)\.(?P<x>\d\d?\d?)\.(?P<y>\d\d?\d?)\.(?P<z>\d\d?\d?)$') free_regex = re.compile(r'^GEO-\d{3}FREE') lite_regex = re.compile(r'^GEO-\d{3}LITE') #### GeoIP C Structure definitions #### class GeoIPRecord(Structure): _fields_ = [('country_code', c_char_p), ('country_code3', c_char_p), ('country_name', c_char_p), ('region', c_char_p), ('city', c_char_p), ('postal_code', c_char_p), ('latitude', c_float), ('longitude', c_float), # TODO: In 1.4.6 this changed from `int dma_code;` to # `union {int metro_code; int dma_code;};`. Change # to a `ctypes.Union` in to accomodate in future when # pre-1.4.6 versions are no longer distributed. ('dma_code', c_int), ('area_code', c_int), # TODO: The following structure fields were added in 1.4.3 -- # uncomment these fields when sure previous versions are no # longer distributed by package maintainers. #('charset', c_int), #('continent_code', c_char_p), ] class GeoIPTag(Structure): pass #### ctypes function prototypes #### RECTYPE = POINTER(GeoIPRecord) DBTYPE = POINTER(GeoIPTag) # For retrieving records by name or address. def record_output(func): func.restype = RECTYPE return func rec_by_addr = record_output(lgeoip.GeoIP_record_by_addr) rec_by_name = record_output(lgeoip.GeoIP_record_by_name) # For opening & closing GeoIP database files. geoip_open = lgeoip.GeoIP_open geoip_open.restype = DBTYPE geoip_close = lgeoip.GeoIP_delete geoip_close.argtypes = [DBTYPE] geoip_close.restype = None # String output routines. def string_output(func): func.restype = c_char_p return func geoip_dbinfo = string_output(lgeoip.GeoIP_database_info) cntry_code_by_addr = string_output(lgeoip.GeoIP_country_code_by_addr) cntry_code_by_name = string_output(lgeoip.GeoIP_country_code_by_name) cntry_name_by_addr = string_output(lgeoip.GeoIP_country_name_by_addr) cntry_name_by_name = string_output(lgeoip.GeoIP_country_name_by_name) #### GeoIP class #### class GeoIP(object): # The flags for GeoIP memory caching. # GEOIP_STANDARD - read database from filesystem, uses least memory. # # GEOIP_MEMORY_CACHE - load database into memory, faster performance # but uses more memory # # GEOIP_CHECK_CACHE - check for updated database. If database has been updated, # reload filehandle and/or memory cache. # # GEOIP_INDEX_CACHE - just cache # the most frequently accessed index portion of the database, resulting # in faster lookups than GEOIP_STANDARD, but less memory usage than # GEOIP_MEMORY_CACHE - useful for larger databases such as # GeoIP Organization and GeoIP City. Note, for GeoIP Country, Region # and Netspeed databases, GEOIP_INDEX_CACHE is equivalent to GEOIP_MEMORY_CACHE # GEOIP_STANDARD = 0 GEOIP_MEMORY_CACHE = 1 GEOIP_CHECK_CACHE = 2 GEOIP_INDEX_CACHE = 4 cache_options = dict((opt, None) for opt in (0, 1, 2, 4)) _city_file = '' _country_file = '' # Initially, pointers to GeoIP file references are NULL. _city = None _country = None def __init__(self, path=None, cache=0, country=None, city=None): """ Initializes the GeoIP object, no parameters are required to use default settings. Keyword arguments may be passed in to customize the locations of the GeoIP data sets. * path: Base directory to where GeoIP data is located or the full path to where the city or country data files (*.dat) are located. Assumes that both the city and country data sets are located in this directory; overrides the GEOIP_PATH settings attribute. * cache: The cache settings when opening up the GeoIP datasets, and may be an integer in (0, 1, 2, 4) corresponding to the GEOIP_STANDARD, GEOIP_MEMORY_CACHE, GEOIP_CHECK_CACHE, and GEOIP_INDEX_CACHE `GeoIPOptions` C API settings, respectively. Defaults to 0, meaning that the data is read from the disk. * country: The name of the GeoIP country data file. Defaults to 'GeoIP.dat'; overrides the GEOIP_COUNTRY settings attribute. * city: The name of the GeoIP city data file. Defaults to 'GeoLiteCity.dat'; overrides the GEOIP_CITY settings attribute. """ # Checking the given cache option. if cache in self.cache_options: self._cache = self.cache_options[cache] else: raise GeoIPException('Invalid caching option: %s' % cache) # Getting the GeoIP data path. if not path: path = GEOIP_SETTINGS.get('GEOIP_PATH', None) if not path: raise GeoIPException('GeoIP path must be provided via parameter or the GEOIP_PATH setting.') if not isinstance(path, basestring): raise TypeError('Invalid path type: %s' % type(path).__name__) if os.path.isdir(path): # Constructing the GeoIP database filenames using the settings # dictionary. If the database files for the GeoLite country # and/or city datasets exist, then try and open them. country_db = os.path.join(path, country or GEOIP_SETTINGS.get('GEOIP_COUNTRY', 'GeoIP.dat')) if os.path.isfile(country_db): self._country = geoip_open(country_db, cache) self._country_file = country_db city_db = os.path.join(path, city or GEOIP_SETTINGS.get('GEOIP_CITY', 'GeoLiteCity.dat')) if os.path.isfile(city_db): self._city = geoip_open(city_db, cache) self._city_file = city_db elif os.path.isfile(path): # Otherwise, some detective work will be needed to figure # out whether the given database path is for the GeoIP country # or city databases. ptr = geoip_open(path, cache) info = geoip_dbinfo(ptr) if lite_regex.match(info): # GeoLite City database detected. self._city = ptr self._city_file = path elif free_regex.match(info): # GeoIP Country database detected. self._country = ptr self._country_file = path else: raise GeoIPException('Unable to recognize database edition: %s' % info) else: raise GeoIPException('GeoIP path must be a valid file or directory.') def __del__(self): # Cleaning any GeoIP file handles lying around. if self._country: geoip_close(self._country) if self._city: geoip_close(self._city) def _check_query(self, query, country=False, city=False, city_or_country=False): "Helper routine for checking the query and database availability." # Making sure a string was passed in for the query. if not isinstance(query, basestring): raise TypeError('GeoIP query must be a string, not type %s' % type(query).__name__) # Extra checks for the existence of country and city databases. if city_or_country and not (self._country or self._city): raise GeoIPException('Invalid GeoIP country and city data files.') elif country and not self._country: raise GeoIPException('Invalid GeoIP country data file: %s' % self._country_file) elif city and not self._city: raise GeoIPException('Invalid GeoIP city data file: %s' % self._city_file) def city(self, query): """ Returns a dictionary of city information for the given IP address or Fully Qualified Domain Name (FQDN). Some information in the dictionary may be undefined (None). """ self._check_query(query, city=True) if ipregex.match(query): # If an IP address was passed in ptr = rec_by_addr(self._city, c_char_p(query)) else: # If a FQDN was passed in. ptr = rec_by_name(self._city, c_char_p(query)) # Checking the pointer to the C structure, if valid pull out elements # into a dicionary and return. if bool(ptr): record = ptr.contents return dict((tup[0], getattr(record, tup[0])) for tup in record._fields_) else: return None def country_code(self, query): "Returns the country code for the given IP Address or FQDN." self._check_query(query, city_or_country=True) if self._country: if ipregex.match(query): return cntry_code_by_addr(self._country, query) else: return cntry_code_by_name(self._country, query) else: return self.city(query)['country_code'] def country_name(self, query): "Returns the country name for the given IP Address or FQDN." self._check_query(query, city_or_country=True) if self._country: if ipregex.match(query): return cntry_name_by_addr(self._country, query) else: return cntry_name_by_name(self._country, query) else: return self.city(query)['country_name'] def country(self, query): """ Returns a dictonary with with the country code and name when given an IP address or a Fully Qualified Domain Name (FQDN). For example, both '24.124.1.80' and 'djangoproject.com' are valid parameters. """ # Returning the country code and name return {'country_code' : self.country_code(query), 'country_name' : self.country_name(query), } #### Coordinate retrieval routines #### def coords(self, query, ordering=('longitude', 'latitude')): cdict = self.city(query) if cdict is None: return None else: return tuple(cdict[o] for o in ordering) def lon_lat(self, query): "Returns a tuple of the (longitude, latitude) for the given query." return self.coords(query) def lat_lon(self, query): "Returns a tuple of the (latitude, longitude) for the given query." return self.coords(query, ('latitude', 'longitude')) def geos(self, query): "Returns a GEOS Point object for the given query." ll = self.lon_lat(query) if ll: from django.contrib.gis.geos import Point return Point(ll, srid=4326) else: return None #### GeoIP Database Information Routines #### def country_info(self): "Returns information about the GeoIP country database." if self._country is None: ci = 'No GeoIP Country data in "%s"' % self._country_file else: ci = geoip_dbinfo(self._country) return ci country_info = property(country_info) def city_info(self): "Retuns information about the GeoIP city database." if self._city is None: ci = 'No GeoIP City data in "%s"' % self._city_file else: ci = geoip_dbinfo(self._city) return ci city_info = property(city_info) def info(self): "Returns information about all GeoIP databases in use." return 'Country:\n\t%s\nCity:\n\t%s' % (self.country_info, self.city_info) info = property(info) #### Methods for compatibility w/the GeoIP-Python API. #### @classmethod def open(cls, full_path, cache): return GeoIP(full_path, cache) def _rec_by_arg(self, arg): if self._city: return self.city(arg) else: return self.country(arg) region_by_addr = city region_by_name = city record_by_addr = _rec_by_arg record_by_name = _rec_by_arg country_code_by_addr = country_code country_code_by_name = country_code country_name_by_addr = country_name country_name_by_name = country_name
bsd-3-clause
heli522/scikit-learn
examples/semi_supervised/plot_label_propagation_structure.py
246
2432
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ print(__doc__) # Authors: Clay Woolam <clay@woolam.org> # Andreas Mueller <amueller@ais.uni-bonn.de> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from sklearn.semi_supervised import label_propagation from sklearn.datasets import make_circles # generate ring with inner box n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = -np.ones(n_samples) labels[0] = outer labels[-1] = inner ############################################################################### # Learn with LabelSpreading label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0) label_spread.fit(X, labels) ############################################################################### # Plot output labels output_labels = label_spread.transduction_ plt.figure(figsize=(8.5, 4)) plt.subplot(1, 2, 1) plot_outer_labeled, = plt.plot(X[labels == outer, 0], X[labels == outer, 1], 'rs') plot_unlabeled, = plt.plot(X[labels == -1, 0], X[labels == -1, 1], 'g.') plot_inner_labeled, = plt.plot(X[labels == inner, 0], X[labels == inner, 1], 'bs') plt.legend((plot_outer_labeled, plot_inner_labeled, plot_unlabeled), ('Outer Labeled', 'Inner Labeled', 'Unlabeled'), 'upper left', numpoints=1, shadow=False) plt.title("Raw data (2 classes=red and blue)") plt.subplot(1, 2, 2) output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plot_outer, = plt.plot(X[outer_numbers, 0], X[outer_numbers, 1], 'rs') plot_inner, = plt.plot(X[inner_numbers, 0], X[inner_numbers, 1], 'bs') plt.legend((plot_outer, plot_inner), ('Outer Learned', 'Inner Learned'), 'upper left', numpoints=1, shadow=False) plt.title("Labels learned with Label Spreading (KNN)") plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92) plt.show()
bsd-3-clause
arabenjamin/scikit-learn
examples/semi_supervised/plot_label_propagation_structure.py
246
2432
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ print(__doc__) # Authors: Clay Woolam <clay@woolam.org> # Andreas Mueller <amueller@ais.uni-bonn.de> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from sklearn.semi_supervised import label_propagation from sklearn.datasets import make_circles # generate ring with inner box n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = -np.ones(n_samples) labels[0] = outer labels[-1] = inner ############################################################################### # Learn with LabelSpreading label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=1.0) label_spread.fit(X, labels) ############################################################################### # Plot output labels output_labels = label_spread.transduction_ plt.figure(figsize=(8.5, 4)) plt.subplot(1, 2, 1) plot_outer_labeled, = plt.plot(X[labels == outer, 0], X[labels == outer, 1], 'rs') plot_unlabeled, = plt.plot(X[labels == -1, 0], X[labels == -1, 1], 'g.') plot_inner_labeled, = plt.plot(X[labels == inner, 0], X[labels == inner, 1], 'bs') plt.legend((plot_outer_labeled, plot_inner_labeled, plot_unlabeled), ('Outer Labeled', 'Inner Labeled', 'Unlabeled'), 'upper left', numpoints=1, shadow=False) plt.title("Raw data (2 classes=red and blue)") plt.subplot(1, 2, 2) output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plot_outer, = plt.plot(X[outer_numbers, 0], X[outer_numbers, 1], 'rs') plot_inner, = plt.plot(X[inner_numbers, 0], X[inner_numbers, 1], 'bs') plt.legend((plot_outer, plot_inner), ('Outer Learned', 'Inner Learned'), 'upper left', numpoints=1, shadow=False) plt.title("Labels learned with Label Spreading (KNN)") plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92) plt.show()
bsd-3-clause
DonBeo/scikit-learn
examples/cluster/plot_kmeans_stability_low_dim_dense.py
335
4324
""" ============================================================ Empirical evaluation of the impact of k-means initialization ============================================================ Evaluate the ability of k-means initializations strategies to make the algorithm convergence robust as measured by the relative standard deviation of the inertia of the clustering (i.e. the sum of distances to the nearest cluster center). The first plot shows the best inertia reached for each combination of the model (``KMeans`` or ``MiniBatchKMeans``) and the init method (``init="random"`` or ``init="kmeans++"``) for increasing values of the ``n_init`` parameter that controls the number of initializations. The second plot demonstrate one single run of the ``MiniBatchKMeans`` estimator using a ``init="random"`` and ``n_init=1``. This run leads to a bad convergence (local optimum) with estimated centers stuck between ground truth clusters. The dataset used for evaluation is a 2D grid of isotropic Gaussian clusters widely spaced. """ print(__doc__) # Author: Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm from sklearn.utils import shuffle from sklearn.utils import check_random_state from sklearn.cluster import MiniBatchKMeans from sklearn.cluster import KMeans random_state = np.random.RandomState(0) # Number of run (with randomly generated dataset) for each strategy so as # to be able to compute an estimate of the standard deviation n_runs = 5 # k-means models can do several random inits so as to be able to trade # CPU time for convergence robustness n_init_range = np.array([1, 5, 10, 15, 20]) # Datasets generation parameters n_samples_per_center = 100 grid_size = 3 scale = 0.1 n_clusters = grid_size ** 2 def make_data(random_state, n_samples_per_center, grid_size, scale): random_state = check_random_state(random_state) centers = np.array([[i, j] for i in range(grid_size) for j in range(grid_size)]) n_clusters_true, n_features = centers.shape noise = random_state.normal( scale=scale, size=(n_samples_per_center, centers.shape[1])) X = np.concatenate([c + noise for c in centers]) y = np.concatenate([[i] * n_samples_per_center for i in range(n_clusters_true)]) return shuffle(X, y, random_state=random_state) # Part 1: Quantitative evaluation of various init methods fig = plt.figure() plots = [] legends = [] cases = [ (KMeans, 'k-means++', {}), (KMeans, 'random', {}), (MiniBatchKMeans, 'k-means++', {'max_no_improvement': 3}), (MiniBatchKMeans, 'random', {'max_no_improvement': 3, 'init_size': 500}), ] for factory, init, params in cases: print("Evaluation of %s with %s init" % (factory.__name__, init)) inertia = np.empty((len(n_init_range), n_runs)) for run_id in range(n_runs): X, y = make_data(run_id, n_samples_per_center, grid_size, scale) for i, n_init in enumerate(n_init_range): km = factory(n_clusters=n_clusters, init=init, random_state=run_id, n_init=n_init, **params).fit(X) inertia[i, run_id] = km.inertia_ p = plt.errorbar(n_init_range, inertia.mean(axis=1), inertia.std(axis=1)) plots.append(p[0]) legends.append("%s with %s init" % (factory.__name__, init)) plt.xlabel('n_init') plt.ylabel('inertia') plt.legend(plots, legends) plt.title("Mean inertia for various k-means init across %d runs" % n_runs) # Part 2: Qualitative visual inspection of the convergence X, y = make_data(random_state, n_samples_per_center, grid_size, scale) km = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=1, random_state=random_state).fit(X) fig = plt.figure() for k in range(n_clusters): my_members = km.labels_ == k color = cm.spectral(float(k) / n_clusters, 1) plt.plot(X[my_members, 0], X[my_members, 1], 'o', marker='.', c=color) cluster_center = km.cluster_centers_[k] plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=color, markeredgecolor='k', markersize=6) plt.title("Example cluster allocation with a single random init\n" "with MiniBatchKMeans") plt.show()
bsd-3-clause